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ABSTRACT

This thesis explores Field Programmable Gate Array (FPGA) implementations of

artificial neura-l networks employing pulse-code arithmetic. Pulse-code arithme-

tic uses values encoded as probabilitic pulse streams. Arlificial neural networks

employing pulse-code arithmetic require only simple digitat logic gates to per-

form multiplication and addition which are the essential operations for these

networks. As such, pulse-code techniques offer considerable potential to con-

struct very large neural networks using FPGA technology. The implementation

results presented in this ttresis show that each neuron and synapse element use

an average of 23 CLBs on Xilinx XC4OOO series FPGAs for the XOR problem. One

of tJre advantages of using FPGAs for implementing neural networks is that they

allow the overell network to be easily modified or replaced, by simply download-

ing new circuþ. In addition, thjs thesis describes a top-down design flow meth-

odologr from abstracted simulation through to implementation in Xilinx FPGAs.

The use of top-down design and FPGA technologies shorten the overall develop-

ment cycle. In addition, as these networks are exlremely compact ttrere is the

potential for experimentation during prototyping.

tvRapld-Prototyplng of Artiflclal Neural Networks
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Chapter 1

lntroduct¡on

Almost everything in the fleld of neural networks has been done by simu-

lating ttre networks on serial computers. There has been comparatively little

study of hardware implementations. General purpose computers are not opti-

rntzed for neural network calculations; they require specialized hardware in

order to utilize the inherent parallelism. The alternative approach is to build

special hardware for neural networks on a single chip or multi-chip system. A

neural network architecture can be implemented as an integrated ci¡cuit using

analog, digital, or mixed analog/digital structures. The analog circuitry permits

high density implementation as ttre multiplication is based on modified Gilbert

multipliers II] and summation on Kirchhoffs current law. However, analog hard-

ware does not produce high accuracy arithmetic and the storage of analog

weight values required for the s5mapse is difficult. On the other hand, the digital

ha¡dware can perform arithmetic operations wittr a high degree of accuracy and

the storage of ttre weight values is easy in the digitat form. Also, digital hardware

Rapld-Prototyping of Artiflcial Neural Networks



CHAPTER 1 - lntroduction

can take advantage of some of ttre benefits of current VI^SI technologr, such as

well understood and advanced design techniques, as well as prototying in Fte¿d

ProgrammabLe Gate Arrag FPGA technologies. However one of the major con-

straints of digital implementations of neural networks is ttre amount of circuity

required to perform the multiplication. This problem is especially acute in high

speed digital designs, where parallel multipliers are exlremely expensive in

terms of circuity. Adopting arr equivalent bit serial architecture significantly

reduces this complexity, but still tends to result in large and complex designs. In

addition a single multiplier would consume a significant proporlion of a current

state of the a-rt FPGA, thus making the use of such devices impractical for this

approach

Ttris ttresis describes an a-lternative neural network architecture which may be

implemented using standard VLSI technology, but aJso maps extremely effl-

ciently to FPGAs such as those of Xilinx [2]. The central idea is to represent the

real-valued signals passing between neurons using encoded binary pulse

streams. Pulse st¡eams arithmetic requires only simple digital logic gates to per-

form multiplication and addition. The main advantage of such an approach is

structural simplicity of ttre artificial s]¡napse and neuron, compa.rable to analog

implementations, thus allowing very efflcient space usage of the fine grained

FPGAS.

T?re work presented in this thesis examines pulse-code neural network imple-
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CHAPTER 1 - lntroduction

mentations on FPGAs using top-down design methodolory. In the remainder of

this chapter background material of neural networks is presented which will

serve to familiarZe the reader with some of the general concepts. This will help

establish a coÍunon reference from which to base the discussions in the later

chapters.

1.1 Artificial Neural Network

Modern neural network theories can be traced backed to ideas first intro-

duced in the I94Os and t95Os. In 1943, McCulloch and Pitts proposed a simple

model of neuron operaüon [3]. This model attracted much interest because of its

simplicity. In the late 195Os, Rosenblatt developed networks that could lea¡n to

recognize simple patterns [ ]. The perceptron as it was called, could decide

whettrer an input belonged to one of two classes. A single neuron would compute

the weighted sum of binary-type inputs, subtract a threslwld, and pass the

result through a non-linear hard limiting ttrreshold that classified ttre input. In

1969, Minsþ and Papert [5] showed tl:at a small class of perceptrons could not

perform certain tasks in pattern recognition. The simple example is the excLusiue

or (XOR) problem: a single output neuron is required to turn on if one or the

other of two input lines is on, but not when neither or both inputs are on. They

believed tllat structures wittr more layers of neurons could solve the problem,

but ttrey could not find a learning rule to train a multi-layer network. \Mith this

roadblock, researchers left the neural network paradigm for almost 20 years. It
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CHAPTER 1 - lntroduction

was not until 1986, when Rumelhart, Hinton and Williams introduced a new

learning algorithm, known as backpropogation [6] to tJre problem of the networks

discussed in Perceptrons [5] that neural networks regained t]reir popularity.

Neural networks are usually characterized by the way in which neurons are

interconnected. There are two major classes of neura-l network topologies: muLtí-

Lager feedJortuard networks and Jeedback networks. Feedback networks a¡e

beyond the scope of this thesis which will focus on multi-layer feedforward net-

works only. The general form of the multi-layer feedforward network consists of

an input layer, one or more hidden layers, and an output layer of. neurons (see

Figure l.I).

Output Layer
U)
U)

O.

L{
(Ú

È
fJi

Hidden Layer(s)

lnput Layer

Figure 1.1 : Multi-layer feedforward network.

Complete biparlite graphs are constructed between each adjacent layer of neu-
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CHAPTER 1 - lntroduction

rons using ueíghted connectíons. Data is presented to ttre input layer, each is

multiplied by a weight and summed at neurons of the connecting layer. These

weighted sums are then passed through a reuersibLe nonlinear transfer Jrtnctíon

forming the input to the following layer. This procedure is repeated until reach-

ing the output layer thereby completingaJonaardpass.

Wittrout a program of instructions a computer is a useless machine. The pro-

gram usually instructs ttre computer to perform specific tasks on a set of input

data to create some sort of output. Therefore, the program is an essential part in

a computer environment. Neural networks are not programmed in the conven-

tional sense, they are taught. Teaching a neura-l network cogniüve knowledge is

basically a modification of tJe s5maptic weights according to some learning algo-

rittrm or rule. T?rerefore, the knowledge or "program" of a neura-l network is in

the weights. There are two main types of learning rule: superuísed learning and

unsuperuised learning. In supervised learning, ¿Ln example set of input/output

pairs is necessarSr, and the error between the actual response and ttre target

response is used to correct or modiflr tfie network. In contrast to supervised

learning, unsupervised learning is not given any information about whether its

outputs are right or \¡trong. Instead, the network must decide what characteris-

tics of the training set a¡e relevant, and modi$r tl e weights in order to extract

those features. This thesis will focus on the superwised learning neural network.

A popular supenrised learning algorithm is the barkpropagatíon learning algo-

rithm. which was introduced by Rumelhart, Hinton and V/illiams in 1986 [6].
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CHAPTER 1 - lntroduction

The backpropagation learning algorithm involves the presentation of a training

set of input/output pattern pairs. The objective is to find a set of weights that

ensures that tJ:e output produced by the network is the sarne as, or close to, tl.e

target output pattern for each of ttre input patterns. During Lhe backusard pass

(learning phase), ttre actual output is compared to the target output and an error

vector is created. These errors are then backpropagated through the network

modifiring the connection weights according to an iteratiue grodíent descent aLgo-

rítt'ttt:u After many iterations of tl e training set the connection weights settle to a

local minimum of tJ:e output error over the training set. Better núnima may be

found repeated training with randornly selected initial connection weights.

2.2 Summary

This chapter has provided a quick overview of the advantages and disad-

vantages of analog arrd digital implementations of neural networks. In order to

implement these networks in FPGAs, the area of the circuity is the most impor-

tant criteria. The use of pulse stream arithmetic was proposed as it allows low

area implementation of the hardware required to perform tJle arithmetic for neu-

ral networks. A brief history of neural networks, neura-l network topologies and

learning rules was overviewed. Multi-layer feedforwa¡d networks and ttre learn-

ing algorithm known as Backpropagation was a-lso discussed.
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2.3 Organization of the Thesis

The next chapter discusses ttre implementation of pulse-coded neural

networks. It begins witll tJre fundamentals of pulse stream aritÌrmetic followed

by a discussion of applying pulse stream a¡ithmetic to neura-l networks. Chapter

3 presents the software simulation of these networks. Chapter 4 describes the

design process of the pulse-coded neural networks onto Xilinx FPGAs. Finatly

conclusions are drawn and proposals for future work is presented.

Rapld-Prototyping of Artiflclal Neural Networks



Chapter 2

Pulse-Code Neural
Networks

Pulse-code neura-l networks use pulse streams to perform the network

calculations. The idea of using pulse streams to communicate information

between neurons is motivated from biological models, although biological pulse

streams are much more complex tJ:an the simple pulse representation consid-

ered in this thesis. The main motivation here of applying pulse-code arithmetic

to neura-l networks is ttre ability to implement high density arithmetic operations

using digital circuitry. Specifically, pulse-code representations are able to use

simple digital ha¡dware to perform addition and multiplication, which are the

two most important operations in a neural network. Also, pulse-code implemen-

tations offer the advantages of bottr analog and digital computation. Like analog,

pulse representation requires only one line to carr}r the values, and the size of

the hardware (digital gates) needed to perform arithmetic computations is com-

parable to analog ha¡dwa¡e. Like digital, tl e design mettrods and implementa-

tions are well established.

Rapid-Prototyping of Artif lcial Neural Networks



CHAPTER 2 - Pulse-Code Neural Networks

In this chapter the fundamentals of pulse-code arithmetic are presented and

this discussion leads to application of pulse-code arithmetic for neura-l net-

works.

2.1 Fundamentals of Pulse-Code Arithmetic

The fundamental idea of pulse-code arithmetic is to use probabilities to

carry information [7, 8]. Here the probability p is defined experimentally by con-

sidering the frequency of the occurrence of an event (pulse in a time slot). A

small number of time slots results in an erroneous assessment of tJle probability

and the number which it represents. In the limiting case of an infinite number of

time slots: if there are n pulses in N slots for a given time, and if n/N tends

towards a limit as N -+ - we set

(2.1)

Figure 2.I shows a slmchronous random pulse sequence. At the top of the Fig-

ure 2.I, 3 pulses are in 10 time slots, leading to the conclusion ttrat the number

transmitted is O.3. At the bottom, 3 pulses are arranged in different time slots,

leading again to 0.3. The order of ttre pulses in the time slots does not affect tlle

outcome of tl.e representation. The probability can be transformed into some

physical quantity by an appropriate mapping. Ttris thesis only considers a linear

mapping, although it should be noted ttrat nonlinear mappings exist which per-

mit computations with numbers in an infinite range with logarithmic error char-

np = Ilm -,,
N -+ -lV
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CHAPTER 2 - Pulse-Code Neural Networks

acteristics [8]. There are two kinds of linear mapping: unípoLar mappíng and

bipoLar mapping.

wt.\wt

W
Þ-wtffiw
WINW'
W

3 in lO (Average) -> O.3

Different arrangement
of 3 in IO
(also -> O.3)

Figure 2.1: Random pulse sequence

Unipolar linear mapping is used as the implementation method in ttris thesÍs. In

unipolar mapping, the values a¡e encoded between O and 1. An example of uni-

polar pulse representation is shown in Figure 2.2. Tlne va-lue of the unipolar

pulse stream is represented by number of pulses, n, being ON within ttre time

interval divided by length of tJ'e time interval, .lV, or

UnipolarValue (2.2)

A unipolar pulse stream with N bits can represent N+l unique values. For exam-

ple, a lO-bit pulse stream c¿ìn represent I I values from O.O to l.O, in increments

of O.1. The resolution of value depends on the lengþ of tJre pulse stream. The

longer the pulse stream, tlle higher ttre resolution that can be achieved.

n
N
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CHAPTER 2 - Pulse-Code Neural Networks

10- bit Pulse Streams
Uninolar
Pulôe Value

0.3

1.0

0.6

0.5

Figure 2.2: Unipolar pulse stream representation.

2.1.1 Pulse Stream Addition

The addition of two unipolar pulse can be performed by using an OR gate.

However, OR gate addition does not perform exact addition with pulse streams

because of limitations imposed by the representation of ttre pulse streams, fur-

thermore it cannot handle a sum greater than 1. The output of ttre OR gate is

given by

AwB = AB+ÃB+AB
= A+B-AB

Define: Ã,=I-A

Thus for A<<1 and B<<1 ttre AB term is small and the output of tJ:e OR gate is

approximately A + B. For large A and B, the output of the OR gate saturates to 1.

This result of a saturating nonlinearity will be useful to the implementation of

Rapid-Prototyping of Añlflclal Neural Networks 11



CHAPTER 2 - Pulse-Code Neural Networks

neural networks. The output for an OR gate with n inputs is given by

Output = l-f[{t-;,) (2.3)

The n-input OR gate can be easily implemented in hardware by using wi¡ed-OR

logic. Figure 2.3 shows the output probability of tJle OR gate addition. As the

number of tl-e inputs increases, the output of the OR gate addition saturates for

a greater range of inputs. Also, as the value of average input increases, tl-e out-

put of tl.e OR gate addition saturates. Therefore, it is desirable to keep ttre fan-in

of tl.e inputs as well as the value of ttre input small.

Figure 2.3: OR gate addition.

1.2

1

E o.e
-o(úoo
ö 0.6

=
_o-

-5 0.4(J

o.2

0
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CHAPTER 2 - Pulse-Code Neural Networks

2.1.2 Pulse Stream Multiplication

To multiply two unipolar pulse streams, an AND gate may be used if two

pulse sequence are statistically uncorrelated [8]. Since tl.e unipolar value is

always less ttran or equal to one, tlle product of two numbers is guaranteed to be

at most one and the result will not saturate as it did with OR-gate addition.

Assuming the pulse sequences A and B are statistically uncorrelated, the output

sequence of an AND gate multiplication is given by

A¡B = AB (2.4)

Figure 2.4 shows an ex¿unple of the OR-gate addition and AND-gate multiplica-

tion.

fl-n-Rn -5-a. -f''l-¡ULI )_ t-Lrlfl I )-_ r1_n_
Í-1-n aJ nr-r- -t-/

0.4 _fl-n_r1-l-t_
0.3 _n_ruf-]_

0.4 l-l_rLn_
0.s n_F]__l-t_

0.7 -I-LJ-L 0.2 n_Íl_

Figure 2.4: Example of the OR-gate addition and AND-gate multiplication.

2.1.3 Pulse Stream Generation

An essential component of pulse-code arithmetic is the generation of ttre

pulse streams for use in the arithmetic operations. As mentioned ea¡lier, the

information is carried by the probability of occurrence of a ON logic level \Mithin

Rapid-Prototyplng of Artiflcial Neural Networks 13



CHAPTER 2 - Pulse-Code Neural Networks

a time slot. Each logic level is generated from a random variable, and the statis-

tically independent results form a pulse sequence whose average pulse rate is

determined by the variable to be represented. It should be noted that the validity

of ttre pulse streams arittrmetic relies heavily on the assumed property of statis-

tical independence between operating variables. Hence, of vital importance is

generators for the provision of independent uniformly distributed random num-

bers.

In general, a random pulse stream is generated with a uniform random number

generator and a digital comparator. Figure 2.5 shows a block diagram of a rate

multiplier to generate weighted pulse streams. The following procedure can be

used to produce a random pulse stream wittr probability P(ON)=W:

Generate a random number R, such that 0 <R < 1 .

If W>R, output a I else output a O.

In digital hardware R and W are usually represented as binary integers. If the

maximum possible weight value is M, and tJ:e value stored in tJ:e weight register

is W ttren ttre probability of a pulse should be P(ON) = W/M.

Rap¡d-Prototyplng of Artiflcial Neural Networks 14



CHAPTER 2 - Pulse-Code Neura! Networks

Random Number
Generator

Digital Comparator
(v/>R)

Pulse Stream Output

P(ON) = weight

Figure 2.5: Block diagram of a pulse stream generation

A common technique to generate a pseudorandom number in digital hardware is using a

linear feedback shift register (LFSR)[9]. Another method to produce a digital random

number is to employ a particular configuration of a one-dimensional Cellular Automata

(CA) anayllO]. Hortensius[ Il has shown t]rat certain arrangements of CAs pos-

sess maximal lengtlt sequences wittr superior random number properties com-

pared to the LFSR. A CA is a set of registers whose next state is governed by nearest

neighbour connections. A CA can yield a maximal-length binary sequence from each site

(i.e. z^ - r ), like the maximalJength LFSR by combining rules 90

a,(t+ 1) = ai_r (r) o a,*r(t)

Rapld-Proto$plng of Artiflclal Neural Networks 15



CHAPTER 2 - Pulse-Code Neural Networks

and rules l5O,

a,(t+ l) = ei_l (t) O ai?) @ a,*r(t)

where aij) is tJre value of the register at position i at time t.

The ordering of the rules for construction of a maximal-length binary sequence

is irregular, with complexity similar to tJlat involved in determining the polyno-

mial for a maximal-length LFSR. Table 2.1 gives a sample of possible construc-

tions for producing CAs with maximal cycle length up to length 15. Here, "1"

refers to CA rule l5O and "0" refers to CA rule gO. Hence, a length-5 maximal-

length CA would be constmcted by using rules gO and 15O irr the following

order: I50, 15O,90,90 f5O.

Table 2.1: Construction of CA with maximal cycle length

Length n Construction Cycle Length

5 11001 3I

6 010101 63

7 1101010 127

8 11010101 255

9 110010101 511

10 0101010101 to23

11 11010101010 2047

t2 010101010101 4095

13 1100101010100 8191

t4 011111011111 10 16383

Rapld-Prototypln g of Arllf lclal Neu ral Networks 16



CHAPTER 2 - Pulse-Code Neural Networks

Bit St¡eam
Output

w0 wl V/N-1

Figure 2.6: Rate multiplier schematic

A rate multiplier can be used to compare a binary set of weights and a set of ran-

dom bit streams with P(ON)=O.5, and produces a weighted bit stream wit]:

P(OU)=w7 2N - | . The rate multiplier as shown in Figure 2.6 originated out of

research in VI,SI pseudo-random test pattern generation [12].

2.2 Pulse-Gode Neural Network

The idea of using pulse streams has been tried by Tomberg and his co-

workers, who published two papers on neural networks using pulse-density

modulation [13, 14]. The implementation \¡/as a Hopfield type fully connected

neural nehvork architecture based on bipolar pulse density modulation. Tomlin-

son [15] and Dickson [16] a-lso studied in-situ learning neural network using
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unipolar pulse streams. The work presented in this section is based on the

research from Tomlinson and Dickson, extending the design methodolos/ for

these implementations.

2.2.1 Pulse-code Feedforward Neural Network

The basic computational operations required in feedforward neura-l networks a¡e

multiplication, surtì.rnation, and a non-linearity function. Each neuron computes

a weighted sum of its inputs from otlter neurons, and passes this summation

through a nonlinear function to produce an output. This output forms the input

to ttre following layer. Tomlinson [15] has proposed a new neural activation func-

tion where the summation and the nonlinear activation are performed simulta-

neously using tJ:e OR logic. As mentioned earlier the OR gate addition saturates

to I with eitÏrer an increase in the number of inputs or an increase in the value

of those inputs. The saturating effect of ttre OR gate addition requires no extra

hardware to implement a nonlinear activation function. Also, tl.e logical OR can

be easily implemented in hardware using wired-OR logic. The multiplication of

the weight (w ij) and tlle input (o,) are performed with a simple AND gate as pre-

viously described, assuming that these pulse sequences are statistically uncor-

related.

I.et n, be ttre probability of a pulse occurrence in the output sequence of an n-

input oR gate. The inputs of an oR gate are the product 
'of 

w,,and o, producedTJT
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from the AND gates. This is represented mathematically by the following equa-

tion:

n.=
J

1- lI
i= 1

(I - w,,o,) (2.s)

(2.6)

(2.7)

Since the unipolar nature of the pulse stream representation does not support

negative values, each synaptic weight is separated into two distinct nets: the

excttatory and ttre inhíbitory nets. Therefore, there are two dedicated w-ired-OR

lines per neuron ANDed together to form the activation function and the net

inputs variables are defined as

4 ='-

n-. - l-
J

n Q -w,,o¡)
,,rr0

fJ (t + w,,o,)
*,rto

Each neuronj combines the excitatory net input n] and the inhibitory net input

", to determine the neuron output or. Since ttrere is no means to perform sub-

traction in pulse-code arittrmetic, the net output of the neuron is not simply

o¡ = nl - r, . Vtoreover negative and positive nets would require the accommoda-

tion of negative neuron outputs. If the excitatory net input ni andinhibitory net

input ,, ate statistically uncorrelated, the probability of output pulse occur-

rence o, is
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oj=P((";=t)"(";=o))

o, = ni(r-";) (2.8)

While ttre mathematics implies that a weight can have a positive (r,uf.) compo-

nents and a negative (wU.) components, it is not necessaÐ¡ to accommodate both

simultaneously. Therefore, it only requires one register to store ttre weight value

and one bit to indicate tJ:e sign of tJ:e weight. The hardware required for ¡1.ris

computation is shown in Figure 2.7.

Excitatory

o.
I

Weight Sign Bit
(positive = l)

Figure 2.7: Negative and positive weight.

2.2.2 Training Pulse-Code Neural Networks

Because a pulse-code neural network uses a non-traditiona-l activation
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function, it is instructive to consider a modified learning algorithm where this

activation function is incorporated into a popular learning algorithm. Equations

2.5 and 2.8 are continuous and differentiable, indicating that the bacþropaga-

tion learning atgorithm can. be used for training. Backpropagation is an iterative

technique ttrat performs a gradient descent, typically over a sum squared error

measure:

where tj is the desired output, and o, is the actual output of the neuron j. The

weights should be modified along the negative gradient of ttris etror witJr respect

to each v/eight:

E = ,>e,-o,)2
l

^òELW..æ --u ¿wii

(2.e)

(2.10)

(2.rr)

The goal of the backpropagation learning atgorithm is to reduce the total

elror by adjusting the weights. Since the output of the neurons are computed

from the excitatory nets and inhibitory nets, the derivative must be considered

separately for positive and negative weights. Using tJle chain rule, the positive

and negative equations governing trre change of weights is as follows

+
Lw.. -U

AE
=_òu hü

ðw!. ào.òn!ðwl..JJJU
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Lw-.. -
U

ðE ðo,òn,

ào, ðn,ðw-,¡

òE
--=

aw ¡¡

Let us define,

(2.r2)

(2.r3)

(2.r4)

(2.16)

àEc-_-
J òo.l

The result of tJle positive and negative equations become:

Lw! =-^ -@=rr(, -r)":l'-!dw.. I -w..o.,J UI

AE
¿.----L.-It.J òo. J J

J

(2.rs)
àw..,l I +w..o.UT

Equation 2.9 shows ttrat the error at the output neurons is simply the differ-

ence between the trainirrg data and the network output:

For the hidden layers, the error is propagated back through the network.

Each of the K output neurons is connected to hidden neuron j, and will contrib-

ute to this error. Ttris error has two components, from the excitatory and inhibi-

tory net inputs to each output neuron.
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Therefore, the result of tlre error for the tridden neuron becomes

AE s òE ðni ðE òno
S =--= t -- 

&- \t doi t,frro ðniòo i r:rrL'.0 ðn¡ðo i

-òE- sòo¡- trrlro
c-

J
,o(,- ,)*i,'i ,"î')I _w¡¡ro¡

_ ( _\
luro[ t - "r)

I +w-.,o.JKJ

(2.17)

(2.18)

2.3 Summary

This chapter has presented a method of arithmetic using pulse streams.

As discussed pulse streams allow computation using only simple gates. In addi-

tion this chapter has discussed ttre suitability of pulse stream implementations

for neural networks. The theoretical analysis showed ttrat the backpropagation

learning algorithm can be used for training this network, using the OR-gate acti-

vation function as a continuous and differentiable non-linear function. It may be

possible to implement neural networks of high density due to the use of simple

digital gates for performing arithmetic.
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Chapter 3

Simulation of Pulse-
Gode Neural Networks

This chapter examines the simulation of pulse stream neural networks.

Four examples will be discussed in ttris section. The first three examples are "toy

problems" which are often used for testing and benchmarking neural networks.

Typically the training set contains all possible input patterns so there is no

question of generalization. The last example is a more real-world classification

problem in which a network is trained to recognize ttre digits of a cheque book.

Simu lation Environment

The networks can be simulated on two levels: probability and pulse

stream. The probability level models the network activation as probabilities; the

pulse level models all activations as pulses and directly emulates a hardware

implementation of this network. In our simulator the probability model is chosen

for the training of ttre networks, since it produces more accurate results without

worrying about the hardware limitation of the network. A backpropagation algo-

3.1
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rithm is employed for training as described in the previous section.
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Figure 3.1: The user interface of the pulse-code neural network simulator

The trainjng of the pulse-code neural network has been performed off-line using

C code interfaced with the Xerion neural network simulator library [I7]. Xerion's

libraries contain routines for constructing, displaying and trainjng networks.

The softr¡¡are also contains routines to graphically display neuron outputs and

weights using Hinton diagrams. The pulse-code neural network simulator \¡/rit-
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ten using tl-e Xerion libraries has access to a command line interface with built

in commands for: creating and training networks, examining and modi$¡ing data

structures, as well as miscellaneous utilities. Once the training is completed, the

simulator can generate a network description ûle which includes the network

topologr and the \Ã/eights of ttre synapses for hardware implementation.

3.2 XOR Problem

The XOR problem [6] is a frequently applied test of neural networks since

it cannot be solved by a single layer network because it is not a linearly separa-

ble problem. A network consisting of two input neurons, two hidden nerlrons,

and one output neuron was applied to the pulse-code neural network.

1,2

t

2
I o.e

õ o.o

E o.¡
ts

1.6

r.4

e l2

ã03a
ão6
õtso¡

o2

o
3a5

Nuñb€r ol opo<fi (xld)

(a) Regular BP

rærsæ29@g{æ49
Numb6r ol epod¡

(b) Pulse-Code BP

0

Figure 3.2: Training evolution of the XOR problem.

Figure 3.2 shows the learning curve of the XOR problem trained with the regular
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and pulse-code backpropagation algorithms. It has an interesting result ttrat the

pulse-code network learns the XOR problem almost lO times faster tJ.an the

normal backpropagation network. The normal bacþropagation network uses

tl.e sigmoid function as ttre nonlinear transfer function, while the pulse-code

network uses the wired-OR gate addition saturation to obtain the nonlinearity.

In addition, the initial \Meights of ttre pulse-code network must be very small to

prevent immature saturation. In general the wired-OR gate addition saturation

is not uniform ttrroughout tlle network, depending on the number of inputs to

the neuron (see Figure 2.3).

The learning equations for pulse-code networks contain division. Although divi-

sion can be performed using pulse-code arithmetic [8], it is undesirable for a

number of reasons. For example there are problems associated with division by

zero, irt addition to being a time consuming operation and requiring more hard-

ware. Dickson[I8] has proposed to omit division for training pulse-code network

in order to reduce ha¡dware overhead for implementing on chip learning capabil-

rty.

To determine whether division is necessar5r the networks were trained wittr ttre

division operation omitted. The results of the simulation are shown Figure 3.3.

Although the XOR problem trained in more cycles without tJle division, in con-

trast again to regular backpropagation it still required only half the time. The

results show ttrat eliminating division does not impair the ability of the network
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to minirnize ttre error.

Figure 3.3: The impact on division on network training.

3.3 Parity Problem

The parity problem is well known to researchers doing performance eval-

uation of neural networks. This problem is essentially a generaJwatton of the

XOR problem to N inputs [5]. Here the network is presented wit]r binary inputs,

O's and I's, artd tJ:e single output neuron must output a high value if tfre input

pattern has odd parity (an odd number of 1's), and a lowvalue if the inputs have

even parity. The padty problem is one of ttre most difficult problems for an artifi-

cial neural network to solve, because the network must look at all the input sig-

nals in order to determine whether tJre pattern has even or odd parity. Ttris is

untypical of most real-world classification problems which usually have much

more regularity and allow generalization within classes of similar input patterns.

Four inputs were used in this study. It is known that a network with four hidden
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neuronsll9] can solve this problem using t]re standard backpropagaüon algo-

rithm, but the pulse-code network failed to do so because of the limiation of the

pulse stream representation. By trying different network topologies, tl.e final

network topologr for the four bit parity problem consisted of two hidden layers of

12 and I units respectively. Figure 3.4 shows the error during training.

Figure 3.4: Training for the four bit parity problem

Ttris problem has shown a limitation of the pulse-code representation, specifi-

cally tJ'e limited range of the synaptic \Ã¡eights. The other potential problem is

using the OR gate for addition. As ttre number of inputs to a neuron (the OR

gate) increases, the probabitity of a I output for a given set of inputs rises. This

result suggests tJ:at tJle weights in a neural network must be very small to pre-
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vent the neuron from constantly saturating. The accommodation of the limited

s5rnaptic connections and premature neuron saturation is crucial for the suc-

cess of pulse-code networks. While the complority of the network is greater for

these networks, the hardware complexity is still significantly less ttran the con-

ventional digital networks. Since tJle hardware requirement is significantly less,

th.e cost of adding more computing elements is not severe.

3.4 Encoder

The general encoding problem involves finding an efficient set of hidden

neuron patterns to encode a large number of input/output patterns. The

number of hidden neurons is intentionally made small to force an efficient

encoding. The specific problem usually considered involves auto-association,

using identical unary input and output patterns. A three-layer network consists

of N inputs, N outputs and M hidden neurons, with M < N. This is often referred

to as an N-M-N encoder. Ttrere are exactly N members of the training set, each

having one input and the corresponding target on, and ttre rest off.

An B input encoder was used in this study. Conventional backpropagation could

solve ttris problem witl an 8-3-8 encoder network [19]. The activation pattern of

the hidden neurons give the binary representation of the training pattern

number. This can be achieved \Mith the connection strengf,hs patterned after the

binary numbers. Clearly pulse code networks will fail as tJle weight connection is
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bounded by [-t, +1]. In orderto solve this problem, a more complexpulse code

network is needed. The final network uses 6 hidden neurons, which is an 8-O-B

encoder. Figure 3.5 shows the learning of ttre 8-6-8 encoder. Once again, ttre

limited range of the syeaptic weights is the roadblock of the learning capability

in pulse code network.
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Figure 3.5: Training for 8-6-8 encoder

3.5 Cheque Character Recognition

In tl:e proceeding three examples tJle training set normally includes all

possible input patterns, so no generalization issues arises. Cheque character

recognition is a more real-life problem in which noisy patterns can be used for

testing the generaliz¿lio¡ ability. Most cheques have some strange characters
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indicating the account number, as shown in Figure 3.6. These characters are

mapped to a 5x5 matrix as the input to this network with lO output neurons

corresponding to each of tl.e possible character (O,1, ...,9).One hidden layer of

six neurons is used to train ttre pulse-code network. The training error is shown

in Figure 3.7 and ttre input activation is shown in Figure 3.8.
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Figure 3.6: Sample cheque
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Figure 3.7: Training for the cheque character recognition
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Figure 3.8: lnput activation for the cheque character recognition problem
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3.6 Summary

This chapter presented a number of simulation contrasting pulse-code

neural network implementations to more traditional networks. Ttvo potential

problems arose using pulse-code representations. The first concerns the use of

the OR gate for addition. As the nonlinearity of tJle OR gate depends on the

number of inputs, some of ttre neurons could immaturely saturate. This problem

can be solved using multi-layered architecture and limiting ttre number of

inputs to each neuron. Rumelhart et. al [19] stated t]rat 'A simple method for

overcoming the fan-out limitation is simply to use multiple layers of units." The

second potential problem witJr pulse-code neural networks is ttre limited range

of ttre weight connections. Increasing network topologr or complexity could

accoÍunodate these limitations.
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Chapter 4

lmplementation of Pulse-
Code Neural Networks
in Xilinx FPGAs

Ttris chapter describes the FPGA implementation of ttre pulse stream neu-

ral networks. It starts off by describing the overall hardware architecture of

these networks, followed by the brief overyiew of Xilinx XC4OOO series FpGAs.

The design process of the network implementation is then described in detail.

Finally, several examples of tJ:e networks implemented in Xilinx FpGAs are

examined.

FPGAs lmplementation

This section discusses the implementation of pulse stream neural net-

works in FPGAS.

4.1.1 Modular Design of Pulse Stream Neurat Networks

Ttrere are two main components required to construct a pulse stream

neural network; a random number generator and a neuron/slmapse element.

4.1
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Figure 4.I shows the block diagram of the network structure. Each neuron s)m-

apse layer has one CA based random number generator. This random number is

used to generate a weighted pulse stream of each s5mapse. The output of neu-

ron/synapse elements a¡e passed to tl.e inputs of next layer.

Figure 4.1: The top-level of pulse stream neural networks
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4.1.2 Neuron Synapse Units

Each neuron slmapse unit consists of one neuron element and n sJmapse

elements. The number of synaptic elements depends on the number of input

neurons from the previous layer. Figure 4.2 shows a block diagram of neuron/

synapse element.

Figure 4.2: Neuron Synapse Unit

Each synaptic element has a preset weight value. A rate multiplier compares

this weight value and a random number from a CA to produce a weighted pulse
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stream. This weighted pulse stream is ANDed with an input pulse stream from a

previous layer to produce a synaptic multiplication. The product is transmitted

to an excitatory net-input line or an inhibitory net-input line. If the sign bit of

the weight is 'O', the product pulse stream is transmitted to an excitatory net

input line. Otherwise, it is transmitted to an inhibitory net input line.

The neuron preforms addition of all the net input signals from sJmapses through

an OR gate. The outcome of these excitatory and inhibitory net input signals are

ANDed to form the activation signal. This signal passes through a re-randomizer

circuit to generate the output pulse stream.

4.1.3 Re-randomizer

CA Random Number

Rate Multiplier

uP up/Down
Counter

DOWN

Figure 4.3: Block diagram of the re-randomizer circuit.
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As mentioned in the earlier chapter ttre pulse stream a¡ithmetic relies heavily on

the assumed properby of statistical independence between pulse streams. The

re-randomizer re-orders the neuron output in order to prevent the correlation

between tJee output pulse streams from the ea¡lier layers.

The re-randomizer [8] consists of an up-down counter and a rate multiplier, as

shown in Figure 4.3. The up-down counter controls tJle density of the output

stream. If the output is high when the input is low, the counter is decremented.

If tlle output is low and the input is high, ttren the counter is incremented. If the

input and the output are equivalent ttren there is no change. The re-randomizer

uses the random number from the neuron/s5mapse shifted one bit to ttre left.

The rate multiplier compares the counter value and the random number to form

the re-randomized output pulse stream.

4.1.4 Weight Resolution

The weights are stored in the form of an n-bit fractional sign-magnitude

number. Each pulse represents the magnitude of I/2n- 1 . 4 9 bit weight resolu-

tion is chosen, which has 8 bits magnitude and I sign bit. Thus there are 28 -2

possible positive values, 28 - Z negative values, and zero. Increased resolution

requires more hardware due to a larger random number generator, neuron re-

randomizer and rate multiplier. Kim et al.[20] has shown ttrat a 9 bit weight pro-

vides an acceptable result for neura-l network classification and generalization.
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4.2 Overview of Xilinx Field Programmable Gate Arrays

In 1985, a new technology for implementing digital logic was introduced, Field

Programmable Gate Aruays (FPGAs). These devices could be viewed as a cross between

Mask-ProgrammabLe Gate Arrags (MPGAs) and Programmable Logic Devices (PLDs).

FPGAs are capable of implementing significantly more logic than PLDs, because they can

implement multi-level of logic, while most PLDs are optimized for two-level logic. V/hile

they do not have the capacity of MPGAs, they also do not have to be custom fabricated,

greatly lowering the costs for low-volume parts and avoiding long fabrication delays. One

of the best know FPGAs is the Xilinx Logic Cell Arrays(LCAs)[2]. In this section their

third generation FPGA, the Xilinx 4000 series will be discussed.

Xilinx FPGAs consist of an array of uncommitted logic elements that can be

interconnected in a general way like MPGAs. It uses statíc RAM (SRAM) cells as

the programmable element so that it can be re-programmed as many times as

the designer wishes. Figure 4.4 shows a typical architecture of a Xilirrx FPGA. It

is a symmetrical ¿uray architecture, consisting of a two-dimensional array of

ConfigurabLe Logir Blocks (CLBs) that can be connected by prograrnmahLe inter-

connectíort resources. The interconnect comprises segments of wire, where the

segments may be of various lengths. Present in ttre interconnect are programma-

ble switches that serve to connect the CLBs to the \¡/ire segments, or one wire

segment to another. Logic circuits are implemented in the FPGA by partitioning

the logic into individual CLBs and then interconnectÍng the blocks as required
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via tlre switches. T};re I/O Blocks (IOBs) surround ttre boundary of the FPGAs,

providing ttre interface between the packages pins and internal signal lines.
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Programmable
Interconnect

EIEIEE@æE@EE

Figure 4.4: Xilinx FPGAs architecture.

A Xilinx 4OOO series CLB, as shown in Figure 4.5, is made up of three Lookup

Tables (LUTs), two programmable flip-flops, and multiple programmable multi-

plexers. The LUTs allow arbitrary combinational functions of their inputs to be

created. Thus, the structure can perform any function of five inputs (using all

three LUTs, wittr ttre F & G inputs identical), any two functions of four inputs

(the two 4-input LUTs used independently), or some functions of up to nine

inputs (using all three LUTs, with F & G inputs different). SRAM controlled mul-
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tiplexers then can route these signals out the X and Y outputs, as well as to the

two flip-flops. The inputs at top (CI-C4) provide ttre third input to the 3-input

LUT, enable and set or reset signals to ttre flip-flops, and a direct connection to

ttre flip-flop inputs. This structure yields a very powerful mettrod of implement-

ing arbitrary, complex digital logic. Note that there are several additional fea-

tures of the Xilinx FPGA not shown in these figure, including support for

embedded memories and carry chains.

cl c2 c3 c4

XQ

X

Figure 4.5: XC4000 CLB

The CLBs are surrounded by horizontal and verlical routing channels that per-

mit arbitrary point-to-point communication. All internal connections are com-

posed of metal segments with programmable switching points to implement the

desired routing. There are three main types of interconnect, distinguished by the

relative length of ttreir segments: single-length lines, double-length lines, and
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longlines. Single-length lines travel the height of a single CLB, where they tl.en

enter a switch matrix. The switch matrix allows this signal to travel out vertically

and/or horizontally from the switch marlix. Thus, multiple single-length lines

can be cascaded togetJrer to travel longer distances. Double-lengttr lines are sim-

ilar, except ttrat tJrey travel the height of two CLBs before entering a switch

matrix, thus double-length lines are useful for longer-distance routing, travers-

ing two CLB heights wittrout tl.e extra delay and the wasted configuration sites

of an intermediate switch matrix. Finally, longlines are lines that go half the chip

height, and do not enter the switch matrix. In this way, very long-distance

routes can be accoûunodated efficiently. \Mith this rich sea of routing resources,

the Xilinx 4OOO series is able to handle fairly arbitrary routing demands, though

mappings that emphasize local communication will still be handled more effi-

ciently.

4.3 Design Flow of Pulse Code Neural Network Hardware

Although ttre Xerion neural network simulator is valuable tool for simu-

lating pulse-code networks, another goal of this thesis is to search for a design

flow generating FPGA hardware from a high level network description. Ideally

the design flow progresses from the Xerion neura-l network simulation to the

generation of a Xilinx bit file for programming the FPGA device. Xerion is used to

simulate and train the pulse-code neural network, iterate tl.e design, and then

generate a network description file including the network topology and final
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Xerion Neural Network Simulator

Mentor Graphics Top-Down Tools

VHDL
Simulation

Simulation

NeoCAD FPGA Foundry

To Xlinx FPGA

Figure 4.6: Pulse-code neural network design process
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weights. Using this description, a custom 'C' program converts it to a VHDL

description. Mentor Graphics Top-Down Tools [21] are used for VHDLI compi-

lation, s5mtax verification, synthesis, optimization, and simulation. NeoCad

FPGA Foundry tools[22] are used to map t]re design to a physical FPGA device

and to create the bit file for programrning the Xilinx chip. Static timing analysis

of the placed and routed design is also done within the NeoCad tools. Fina-lly, tJ e

design information is back-annotated to a Mentor Graphics database and func-

tionally tested against the top-level VHDL testbench. The complete design flow is

shown in Figure 4.6

4.3.1 Database Structure

As ttre design goes through various tools, it Ís very important to organize

the database properly. Many procedural problems can be avoided by planning

the directory structure. Figure 4.7 illustrates one example of how to organize

design database for the design.

nn_design

vhdl src neocad

Figure 4.7: Database organization

l. VHDL - VHSIC Hardwa¡e Description Language is a language for designing integrated circuits.
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The neural network design directory is divided into five sub-directories for

Xerion simulation, VHDL source, slmthesis and optimization, gate-level sche-

matic and ttre physical FPGA layout.

4.3.2 Xerion Neural Network Simulator

Xerion is used to train and simulate tJ.e pulse code neural networks, as

mentioned in ttre previous chapter. The input of ttre simulator is a text flle with

the description of the network topolory and example training data. The networks

train with the backpropagaüon algorithm. Once tJre training is completed,

Xerion generates a network specification for hardware implementation. This

specification includes the topologr and the weights of sSmapses'

4.3.3 VHDL Gode

The network specification generated from Xerion is converted into VHDL

code for hardware implementation. VHDL is a language for designing Integrated

Circuits, which can describe the circuits at ttre behaviour and/or structure level.

In order to ensure that ttre VHDL code is synthesizable, the designs must be

described at Register Transfer l,anguage (RTL) level. In addition, there are cer-

tain code styles to use when targeting Xilinx FPGAs. Appendix A provides design

hints for writing VHDL for Xilinx FPGA designs. A custom "C" program is used to

generate the synthesizable VHDL code for Xilinx FPGAs from the network speci-

fication.

The VHDL description of the network is hierarchically organized. The top-level
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circuit represents the connections between the neuron/synapse units and CA

random number generators. It is described in structural VHDL. The neuron/

synapse units and CAs are described in RTL descriptions.

Each VHDL component must have an entity which deflnes the I/O of the model.

Each VHDL component in ttre design also has several architectures. For neu-

ron/slmapse units and CAs, the RTL description of the circuit is in an architec-

ture called RTL. The top-level circuit uses a structural WIDL model wtrich

should be in an architecture called sfruct.

Ottrer VHDL architectures are also necessary. In order to facilitate the creation

of a hierarctrical schematic for the top-level circuit, a dummg architecture has to

be created for each low-level circuit (neuron/sSmapse elements and CAs).These

dummg architectures have nothing between the BEGIN and END statements in

the VHDL. They are just place holders for the schematic generation process. A

schem architecture is required of ttre top-level circuit. The a¡chitecture is ttre

sarne as ttre struct architecture except that it calls only the dummg VHDL archi-

tecture for the circuits beneath it.

Mentor Graphics' system-1076 compiler performs the slmtax checking and data-

base generation of the VHDL design. Once syntactically correct, the compiler

creates a Mentor Eddm database from the VHDL code which can be simulated in

Quicksim for simulation and read into Autologic for slmthesis.
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4.3.4 Synthesis and Optimization

After compiling the VHDL files, the Mentor Eddm database is read into

Autologic and synthesized to the Xifirìx XC4OOO FPGAs. The NeoCad Xilinx

XC4OOO library is used and tl.e target environment variables are set to coûuner-

cial derating factors.

The neuron/synapse elements a¡rd CA circuits in the low-level trierarchy are

written in RTL level VHDL. This code is s¡mttresized directly to XC4OOO gates.

These circuits are synthesized separately. All hiera¡chy implied in the VHDL

code at this level is flattened to improve ttre area optimization. The optimization

recipe in Autologic used is AREA(LOWI with an AREA REPORT. Since timing

optirnization is not available this is all tJ:at is required at this level.

Symbols must be created for each low-level circuit so ttrat ttrey can be referenced

by ttre top-level lderarchical schematic. These s5rmbols are automatically gener-

ated when tlle VHDL entities are compiled. To save these s5rmbols, tJrey must be

opened',vithin Desþn Architect and saved.

The top-level for this design is only the connection between the neuron/synapse

and CAs, which is defined in a structural VHDL netlist. In order to generate a

hieractrical schematic for ttre top-level circuit in AutoLogrb, the following multiple

step process is used:
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. All neurons/synapse units and CAs circuit must have a dummy architec-
tures.

o The low-level circuit must have been previously synthesized to gates and a
symbol created to represent the circuits.

. The top-level circuit should have a schem architecture which calls the
dummy architecture of the low-level circuits. This was previously mentioned.

. The schem architecture of the top-level circuit is synthesized and optimized
into a schematic.

. On the resulting schematic, the dummy components are replaced with sym-
bols for ttre real circuits that have been previously sSmthesized.

. Back in Autologic, the resulting schematic with real componets is re-opti-
mized. The I/O ports and buffers are added to the final schematic.

4.3.5 DesignVerification

TEST
DRTVER

TEST
MONITOR

Behavioral
VHDL

Behavioral
VHDL

Figure 4.8: VHDL testbenches

@uicksûn is used to simulate ttre operation of tJ'e circuits in botl. VHDL and

XC4OOO gate representations. To functionally veri$r tl:e design, VFIDL test-

benches are created for the top-level circuits. After slmthesis, the same test-
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benches are used to simulate the gate-level circuit. The VHDL and a gate opera-

tion are compared to make sure they match.

The VHDL test-benches are only a piece of behavioural VHDL to drive the input.

If the design is complex, then a piece of VHDL can also be written to monitor the

outputs and report if an error is seen. The adva¡rtage to the VHDL driver/moni-

tor test-bench is that it can be used to test the gate-level models as well as the

VHDL. Figure 4.8 shows the connections of a VHDL testbench and how it can be

used to drive and monitor the operation of a circuit block. For pulse stream neu-

ral network design, the test-driver provides the input example to the network,

and the test-monitor uses a number of up counters to monitor ttre pulse density

of the output neurons.

4.3.6 Neocad FPGA Foundry

The Neocad foundry tools are used to map the Xilinx XC4OOO gates into a

physical ¿uray. The NeoCad tools accept data from Mentor Graphics in ttre form

of EDIF 2 O O netlist. Mapsh. mapping tool, maps the EDIF file into the specific

)ülinx part and package, performs ttre design rule checking. and generates a

NeoCad database file for place and route. Parslu place and route tool, performs

the place the and route of ttre FPGA. Trcesh is ttren used to analysize the tirning

of the design. The layout related tirning information is back-annotation to Men-

tor Graphics design verification tools. Finally, Neocad can create a bitstream file

which is used to physically program the Xilinx FPGA chip
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4.4 FPGAs Design Examples

Three neural networks example problems are implemented into Xilinx

FPGAs: tlle XOR, the encoder and the cheque character recognition. The first

two examples are implemented onto Xilinx XC4OIO PG -6 FPGAs. Appendix B

provides a quick reference of different Xilinx 4OOO series FPGAs ttrat are availa-

ble. The XC4O1O part has 4OOO CLBs equivalent to IO,OOO gates. Therefore, it is

able to accorunodate a significanfly large design in a single FPGA. The speed

grade of ttris part is 6 which means ttrere is a 6ns delay of each CLB. The last

problem is implemented on a Xilinx XC4OI3 FPGA. In this section, the simula-

tion of the XOR problem will be discussed and ttre area and timing of all three

problems will also be examined.

4.4.7 XOR Problem

The XOR problem, as mentioned in the chapter 3, is implemented into

)Clinx XC4O1O FPGAs. The networks to solve ttris problem consists of two input

nerlrons, two hidden neurons and output neuron.

A top-level testbench was created to veri$r the VHDL model and the gate level

representation. This testbench presented inputs to the network and monitored

ttre output pulse density using and up-counter. Figure 4.9 shows the sirnulation

result of the network. The curve in the flgure represents the value of the coun-

ter in ttre re-randomizer of ttre output neuron. The initial value of re-randomtz-

ers has a "precharging" value, I/2 of ttre maximum counter value. 'With each
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presentation of an input vector the value of re-randomizer is reset to "precharg-

ing" value. The simulation result has proved that the design is functioning as

ex¡lected.

Figure 4.9: XOR simulation results

The complete layout of tJ:e design is shown in Figure 4.10. The design required

69 CLBs and 5 IOBs. It has the interesting result tl.at ttrere are two clusters of

CLBs in ttre layout. The small cluster of the CLBs is tl:e output neuron and the

larger one is the two hidden neurons. It only takes 23 CLBs per neuron in this

design.

Neocad's timing analysis tools, Trcesll is used to perform the static timing anal-

ysis. Figure 4.1I shows the timing report of the XOR design. It details the maxi-

mum delay path of the design. This report identifies botll logic delays and route
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delays. The'R'next to the delay entry indicates a delay based on rising edge tim-

ing of signals ttrrough a IOB or CLB. The maximum delay patl. of this design is

171.585ns. The report a-lso shows a breakdown of the percentage of delay attrib-

uted to logic vs. routing delays. In this case 53.60lo is logÍc delay and 46.40/o is

routing delay. The total delay of the design is l7l.585ns logic and routing delay

plus 8.Ons setup, which is l79.585ns. Therefore the maximum operating fre-

quency of the XOR design is 5.568MH2.

Figure 4.10: The FPGA layout of XOR problem
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8.000ns serup requirement (totaling I 17.000ns) by 54.585ns

R./F Delay Site Resource

R 5.000ns CLB-RI3Cl6.K to CLB-Rl3Cl6.XQ /ISl8l/I$1263%SYNTH-FUNCARG-2(l) (from /i-CLOCK)

R l0.ll2ns CLB-Rl3Cl6.XQtoCLB-Rl3Cl3.F2 /I$l8l/I$l2637oSYNTH-FIJNCARG-2(I)

R 6.000ns CLB-Rl3Cl3.F2 to CLB-Rl3Cl3.X /l$l8l/-N42

R 2.l82ns CLB-Rl3Cl3.X to CLB-Rl3Cl4.Fl /l$l8l/-N42

R 6.000ns CLB-RI3Cl4.Fl to CLB-Rl3Cl4.X n$l8l/-G3ZAND0

R 3.l90ns CLB-RI3Cl4.X to CLB-R10C14.F2 /ISlSIi-G3ZANDO

R 6,000ns CLB-RI0CI4.F2 to CLB-RI0CI4.X /I$181/-N4l

R 10.023ns CLB-RI0Cl4.X to CLB-R10C12.F2 /l$l8l/-N4l

R 6.000ns CLB-RIOCI2.F2 to CLB-RI0CI2.X /I$l8l/-G24lAND0

R 5.784ns CLB-RIOCI2.X to CLB-R7C8.F1 /l$l8li-G24lANDO

R 6.000ns CLB-R7C8.FItoCLB-R7C8.X /NEURON-LAYERI(0)

R 8.307ns CLB-R7C8.X to CLB-R8CI4.C4 NEURON-LAYERI(0)

R 7.000ns CLB_R8CI4.C4 to CLB_R8CI4.Y il$l8l/_No

R 8.296ns CLB-R8Cl4.Y to CLB-RI3CI5.F4 /I$181/-N22

R 8.000ns CLB-Rl3Cl5.F4 to CLB-RI3Cl5.Y /IS18l/-N5

R 9.751ns CLB-RI3Cl5.Y to CLB-RI3CI7.F4 /I$l8l/-N69

R 6.000ns CLB-RI3CI7.F4 to CLB-RI3CI7.X /I$181/-N6

R l.686ns CLB-RI3Cl7.X to CLB-Rl4Cl6.G4 /lSl81/-N6

R 6.000ns CLB-RI4CI6.G4 to CLB-RI4CI6.Y /I$l8l/-N38

R 10.086ns CLB-RI4CI6.Y to CLB-RI4CI5.F2 /I$l8l/-N92

R 8.000ns CLB-R14C15.F2 to CLB-RI4CIS.X /I$l8l/-N52

R l.954ns CLB-RI4Cl5.X to CLB-Rl5Cl5.Fl iI$l8l/-N52

R 8.000ns CLB-RlsCl5.Fl to CLB-Rl5Cl5.X /ISl8l/-Nl2

R 5.092ns CLB-RISCI5.X to CLB-R8CI6.F3 /I$l8l/-Nl2
R 6.00ons CLB-R8C16.F3 to CLB-R8C!6.X /ISl8I/-G0/ANDI

R t.6l lns CLB-RBCI6.X to CLB-R8CI5.F3 n$18I/-G0/ANDI

R 8.000ns CLB-RBCIS.F3 to CLB-R8CI5.Y iISlSl/-N28

R l.51lns CLB-R8CI5.Y to CLB-R7CI5.F2 /I$l8l/-N28 (to /i-CLOCK)

l7l.585ns (53.6% logic, 46.4vo ro\te), 14 logic levels.

5.568MH2 is the maximurn frequency for this preference.

Figure 4.11: The timing repoft of the XOR FPGA design
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4.4.8 Encoder Problem

Figure 4.122 The FPGA layout of 5-4-5 encoder

The other design example is an encoder. The network has five inputs, four krid-

den and five output neurons. This network is smaller than the one discussed in

chapter 3, but it is the same class of problem. The FPGA layout of the encoder

design is shown in Figure 4.I2. There are 215 CLBs and 12 IOBs used. The total
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logic and routing delay is 249.346ns with 44.9o/o from logic and 55.Iolo from

routing. The routing delay in this design has higher percentage tJ:an the XOR as

it has more synaptic connections between ttre layers. The maximum operating

frequency is 3.886H2. The average number of CLBs per neurons are 23.89. The

design has more s)mapses per neuron tlitan the XOR but this average is still very

close to ttrat of the XOR. As all the synapses are combinational logic, the place

and route is able to efficiently pack them into the CLBs.

4.4.9 Cheque Character Recognition

Ttris problem was discussed in chapter 3 and the network has 25 inputs,

6 hidden and lO output neurons. This design is implemented into a Xilinx

XC4OI3 FPGA. It used 5O6 CLBs and 37 IOBs and the average number of CLBs

per neurons is 31.63. The maximum delay path of this design is 34O.Og with

32.60/o logic and 67.40/o routing. The maximum operating frequency is

2.873MH2.
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Figure 4.13: The FPGA layout of cheque character recogn¡tion
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4.5 Summary

Ttris chapter has presented a ha¡dwa¡e implementation of multi-layer

neural networks using pulse-code arithmetic. The design of ttre networks is hier-

archically organized so that tJrey results in more optimized circuity during logic

slmthesis and optimization. The networks are divided into neuron/slmapse

units and ra¡rdom number generators. This chapter also discussed a re-rand-

omizer for the neuron output in order to prevent conrrelation between the neu-

ron pulse streams.

A top-down design flow for constructing these networks has been discussed.

Ttris flow progresses from a high-level network description to the generation of a

)ütinx bit stream for programming the Xilinx FPGA device. The use of a VHDL

testbench for design verification was also discussed. Following this, three exarn-

ple problems were implemented on Xilinx 4OOO series FPGAs. The irnplementa-

tion results showed that the network are extremely compact and use only 23

CLBs per neuron/s5mapse unit for XOR problem.
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Gonclusions and
Future Work

This thesis has demonstrated the implementation of pulse-code neural

networks in Xilinx FPGAs. The hardware requirements of these networks was

shown to be minimal; only simple digital gates \Mere required to perform ttre

arittrmetic. Also, the use of the backpropagation learning algorithm for training,

as well the simulation of these networks was discussed. The simulation results

suggested that ttre \Ã/eights in a neural network must be very small to prevent

the neuron from constantly saturating and multi-layers networks should be

used in order to overcome the fan-in limitation of ttre neuron.

The hardware architecture of these networks was described as well ttre top-down

design flow for implementing these networks in Xilinx FPGAs. In addition, two

design examples, the XOR and encoder, were implemented and examined. Ttre

implementation results have shown that the average number of CLBs per neu-

ron/slmapse unit was only 23 for XOR problem. The increase in the number of
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the synapse connections of the neuron did not significantly contribute to this

hardware cost. As a result a significantly large network can be implement on a

single Xilinx FPGA. For example, approximately 44 neuron/synapse units could

be implemented on a Xilinx X,C4O25 part, the largest Xilinx 4OOO series part

which has IO24 CLBs on a single chip. With ttre aid of the current state of art

CAD tools, the design cycle took only days to complete as opposed to traditional

design mettrodologr of weeks or months.

Continued work in this area should investigate the use of time multiplexing to

further increase the number of neurons per device. The idea is to have one single

physical layer of neurons and re-use them for different layers emulating multiple

layers of neurons.

The use of multiple FPGA environments for implementing these networks should

also be investigated. In this case, very large scale neural networks can imple-

mented for prototying. As well, other FPGAs device should be considered. One

potential candidate is ttre new Xilinx 8O0O series FPGA, which is a sea of gate

architecture. Since neural network structures are highly regular with little glo-

bal wiring, the basic arckritecture is similar to the a¡chitecture of the XCSOOO

series FPGAs, therefore better utilization of the FPGA can be achieved.

A sophisticated high level interface that compiles a given neural arctritecture

directly to a single FPGA or multi-FPGA based hardwa¡e system should be devel-
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oped. However, the logic sJmthesis tools could be a problem for such systems as

the current logic synttresis tools do not work well when the design exceeds 3OOO

gates. Further work should be done on parlitioning the networks into small

pieces for logic syntJresis as well as on the use the Mentor Graphics'design man-

agement software, Worlc){pert, to automate the design flow and design capture.
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Targeting VHDL Design
to Xilinx FPGAs

As tJe density and complexity of Xilinx FPGA designs increase to 2O,OOO

gates and beyond, the traditional schematic capture design entry is often cum-

bersome. Ttre use of hardtuare descriptionLanguages (HDLs), such as VHDL and

Verilog HDL, can raise designer productivity. High-level languages combined

with logic synthesis can provide a consistent design methodologr across a range

of technologies. By raising the level of design abstraction, s¡rnthesis tools can

increase productivity, ensuring error-free gate level realizations and freeing

designers for more creative tasks. However, the designer should not ease up on

hardware implementation consideration when s¡mthesis tool aids are available.

The methods for designing ASICs do not always apply to designing with Xilinx

FPGAs. ASICs have more gates and routing resources than Xilinx FPGAs. Since

ASICs have a large number of available resources, the designer can easily create

inefficient code that results in a large number of gates. 'When designing with )ül-

inx FPGAs, ttre designer must create efficient code.
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The VHSIC Hardware Description l,anguage IVHDL) is a language for designing

Integrated Circuits (ICs), which can descibe tJre desiSns at the behaviour and/or

structure level. VHDL designs can be behaviourally simulated and tested to be

functionally correct before slmtJresis. However many VHDL constructs are not

supported by synthesis tools. In general, only a subset of VHDL constructs,

called Register TransJer LeueL (RTL) constructs, are accepted by the synthesis

tools. In addition, systhesis tools intreprete the VHDL code differently when tar-

geting different technologies. The following guidelines ensure VHDL code that

takes tJ.e best advantages of Xilinx's resources and produces the same function-

ality aft.er slmtJresis.

4.1 Wait for XX ns Statement

WaitJor Æ. ns statements specifies the number of nanoseconds that must

pass before a condition is executed. This statement does not s5mthes?e to a

component. In designs ttrat include this statement, the functionality of tl.e sim-

ulated design does not match the functionality of the synttresized design.

A.2 After XX ns Statement

Afier )O( ns statement is usually used as a condition of a signal assign-

ment. This statement is usually ignored by the synthesis tool. An example of ttris

statement is:

Q <=0 after xx ns
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A.3 lnitial Values

Assigning signals and va¡iables initial values a-re ignored by most synthe-

sis tools. The functionality of the simulated design may not match the function-

afiff of the slmthesized design. For example, do not use initialization statements

such as the following:

variable SUM: INTEGER: =0

4.4 Order and Group Arithmetic Functions

The ordering arrd grouping of arithmetic functions influence design per-

formance. For example, the following two statements a¡e not equivalent:

ADD <= A1 + A2 +43 +A4;
ADD <= (41 + A2) + (43 + A4);

The first statement cascades three adders in series. The second statement cre-

ates two adders in parallel: Al + A2 and A3 + 44. In the second statement, the

two additions are evaluated in parallel and the results are combined wittr a thfud

adder. RTL simulation results are the sarne for bottr statements, however, the

second statement results in a faster circuit after synthesis.

4.5 Xilinx Name Gonventions

Xifinx has reserve narnes for their FPGA. The following FPGA resource

names are resewed and should not be used to name nets or components:
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. Configurable Logic Blocks (CLBs), Input/Output Blocks (IOBs), clock buffers,

tristate buffer (BUFTs), oscillators, package pin names, CCLK, Dp, GND,

VCC, and RST

CLB names such as AA, AB, and RIC2

Primitive n¿unes such as TDO, BSCAN, MO, Ml, M2, or STARTUP

Do not use pin narnes such as PI and P2 for component names

Do not use pad names such as PADI for component names

For further Xilinx naming conventions, Xilinx Data Books [2] provide a more

detailed references.

4.6 Latches and Registers

VHDL compilers infer latches from incomplete specifications of condi-

tional expressions. Latch primitives are not available in XC4OOO CLBs, however,

ttre IOBs contain input latches. I-atches described in VHDL are implemented

with gates in the CLB function generators. For example, the D latch shown in

Figure 4.1 is implemented with one function generator. Ttre D Latch imple-

mented with gates is shown in Figure 4.2.
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LIBRARY mgc_portable;
USE mgc-portable.qsim-togic.all ;

ENTITY d-Iatch IS

PORT ( GATE, DATA: in qsim_state;

Q: out qsim_state);

end case_ex;

ARCHITECTURE BEHAV OFd IAtCh IS

begin

LATCH: process (GATE, DATA)
begin

if (GATE ='l') then

Q <= DATA;
end if;

end process; -End LATCH
end BEHAV;

Figure A.1: Latch inference

Figure 4.2: Latch implemented with gates

In this exarnple, ttre VHDL code contains an IF statement \Mithout the EISE

which always implies a latch in gate-level representation. The drawback of a

latch is that it is implemented as a combinatorial feedback loop in a CLB and
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synthesis tools do not process hold-time requirements because of the uncer-

tainty of routing delays. In order to eliminate unnecessary latches, it is desirable

to replace them with D registers, as each CLB has two D flip-flops. To convert a

latch to a D register uses an EI,SE clause in tJ:e IF statement or a Wz\IT UNTIL

statement.

In all other cases (such as latches w-ith reset/set or enable), use the D flip-flop

instead of a latch. This rule also applies to JK and SR flip-flops. Table A.l pro-

vides a comparison of area and speed for a D latch implemented with gates and

a D flip-flop.

Table 4.1: D latch implementation compar¡son

D Latch D Flip-Flop

Advantages/
Disadvantages

VHDL that infers D latch imple-
mented with gates. Combinato-
rial feed-back loop results in
hold-time requirement.

Requires change to VHDL to
convert D latches to D flip-flops,
No hold time or combinatorial
loop

Area I Function Generator 1 Register

Speed 1 Logic Level
Combinatorial feedback loop

1 Logic Level; no combinatorial
loop.

4.7 lmplementing Multiplexers w¡th Tristate Buffers

A 4-to-1 multiplexer is efficiently implemented in a single XC4OOO CLB.

The six input signals (four inputs, two select lines) use ttre F, G, and H function

generators. Multiplexers that are larger ttran 4-to-1 exceed the capacity of one
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CLB. For example a l6-to-l multiplexer requires five CLBs and has two logic lev-

els. These additional CLBs increase area and delay. In order to utilize XC4OOO

resources, usin$ tristate buffers (BUFTs) is recommended to implement multi-

plexers larger ttran 4-to-1.

A VHDL design of a 5-to-1 multiplexer built with gates is shown in Figure 4.3.

Tlrpically, ttre gate version of this multiplexer has binary encoded selector inputs

and requires three select inputs (SEL<2:O>). The schematic representation of

this design is shown in Figure 4.3

LIBRARY mgc_portable ;

USE mgc_portable.qsim_logic.all ;

ENTITY mux_gate IS
PORT ( sel: in qsim state_vector(2 downto 0);

A,B,C,D,E: in qsim_state;

MUX_OUT: out qsim state);

end mux_gate;

ARCHITECTURE BEHAV OF muxgate IS
begin

SEL_PROCESS : process (SEL,A,B,C,D,E)
begin

case SEL is
when "000" => MUX_OUT <= A;
when "001" => MUX_OUT <= B;
when "010" => MUX_OUT<= C;
when "011" => MUX_OUT<= D;
when others => MUX_OUT <= E;

end case;

end process; --End SEL_PROCESS
end BEHAV;

Figure A.3: lmplementing 5-to-1 MUX with gates
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A
B
C
D
E

SEL<O>

SEL<1>
SEL<2>

MUX-OUT

Figure A.4: 5-to-1 MUX implemented with gates

LIBRARY mgc_portable;
USE mgc_portable.qsim_logic.all ;

ENTITY mux_tbuf IS
PORT ( sel: in qsim state_vector(4 downto 0);

A,B,C,D,E: in qsim_state;

MUX_OUT: out qsim_state_resolved_x);

end mux_tbuf;

ARCHITECTTiRE BEHAV OF mux tbuf IS
begin

MUX_OUT <= A when (SEL(0)='0) else'Z';
MUX_OUT <= B when (SEL(1)='0') else'Z';
MUX_OUT <= C when (SEL(2)='0') else'Z';
MUX_OUT <= D when (SEL(3)='0) else'Z'i
MUX_OUT <= E when (SEL(4)='0') else 'Z';

end BEHAV;

Figure 4.5: lmplementing 5-to-1 MUX with BUFTs
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The VHDL design shown in Figure 4.5 is a 5-to-1 multiplexer built with tristate

buffers. The tristate buffer version of the multiplexer has one-hot encoded selec-

tor inputs and requires five select inputs SEL<4:O>. The schematic representa-

tion of this design is shown in Figure A.6.

sEL(O)

A

SEL(I)

B

sEL(2)

C

sEL(3)

D

sEL(4)

E

MUX-OUT

Figure 4.6: 5-10-1 MUX implemented with BUFIs
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Xilinx Device Quick
References

Table 8.1: Xilinx Devices, packages and speed Grades

Device Packages Speed Grades

XC4OO2A PC84 PQ100 PG120 -5 -6
XC4OO3A PC84 PQ100 C8100 cQ100 PG120 -s -6
xc4003 PC84 PQ100 C8100 cQ100 PG120 -5 -6
XC4OO4A PC84 PQ100 PG120 PQ160 -5 -6
XC4OO5A PC84 PG1s6 PQ160 PQ208 -s -6
xc4005 PC84 PGls6 PQ160 C8164 PQ208 -5 -6 -10

xc4006 PG156 PQ160 PQ208 -5 -6
xc4008 PG191 C8196 PQ208 -5 -6 -10

xc4010

xc4013

PG191 C8196 PQ208 MQ208 -5 -6 -10

PG223 MQ208 PQ240 MQ2s6 -5 -6 -10

xc4025 PG223 PG299 MQ240 -5 -6 -10

Rapld-Prototyplng of Artlflclal Neural Networks 71



References

tll B. Gilbert, "A High-Performance Monolithic Multiplier Using Active Feedback,"

IEEE J. Solid-State Circuíts, vol. SC-9, pp.364-373, lg'14.

I2l Xilinx Inc.,The Xilinx Data &ook,1994.

t3l W. S. McCulloch and V/. Pitts, "A Logical Calculus of The Ideas Immanent in Ner-
vous Activity," Bulletin of Mathematical Biophysics 5, pp. Il5-L33, 1943.

l4l F. Rosenblatt, "Principles of Neurodynamics," New York: Spartan Books,1959.

t5] M. Minsky and S. Papert, "Perceptrons: An Introduction to Computational Geom-

etry," Cambridge, MA: The MIT Press,1969.

t6] D. Rumelhart, G. Hinton and R. Williams, "Learning Internal Representation by
Backpropagating Errors, " Nature : 32 j, pp. 533-536, 1 986.

Ul B. R. Gaines, "Stochastic Computing Systems," Advances in information System

Science, volume-2, Julius T. Tou, editor, Plenum press, 1969.

t8l P. Mars, Stochastic and Deterministic Averaging Processors, The Institution of
Electrical Engineers, London and New York, 1981.

Rapld-Prototyplng of Artlflclal Neural Networks



References

tel

t10l

[11]

S.W. Golomb, "Shift Register Sequences", Holden-Day Publishing Co., San Fran-

ciso,1982.

P. Hortensius, R. Mcleod, B. Podaima, "Cellular Automata Circuits for Built-In
Self-Test", IBM Journal of Research and Development vol 34,March, 1990.

P. Hortensius, "ParaÌlel Computation of Non-deterministic Algorithms in VLSI."
Ph.D. thesis, Department of Electrical and Computer Engineering, University of
Manitoba, 1987.

lL2) F. Breglez, C. Gloster, and G. Kedem. "Hardware-based Weighted Random Pat-
tern Generation for Boundary Scan," IEEE International Test Conference, Au_9
1989.

t13l J. Tomberg, T. Ritoniemi, K. Kaski and H. Tenhunen, "Full Digital Neural Network
Implementation Based on Pulse Density Modulation," Proc. IEEE Custom Inte-
grated Circuits Conf., (San Diego, CA; May 15-17),pp. 12.7.1-12.7.4,1989.

t14l J. Tomberg and K. Kaski, "Pulse-density Modulation Technique in VLSI Imple-
mentation of Neural Network Algorithms," IEEE Journal of Solid State Circuits,

25(2 ), pp. 1277 -1286, Oct. 1990.

t15l M. Tomlinson Jr., M. Walker and M. Silvilott, "A Digital Neural Network Archi-
tecture for VLSI," Proc. IJCNN-9}, pp.545-550, San Diego, CA, 1990.

J. Dickson, R. Mcleod and H. Card, "stochastic Arithmetic Implementations of
Neural Networks with In Situ Learning," IEEE International Conference on Nettral
Nenvorks, (San Francisco, CA; Mar. 28-Apr. l), pp. j Ll-716, 1993.

Drew van Camp, Evan E. Steeg, and Tony Plate. XERION Neural Network Sitnulct-
/or. Computer Science Department, University of Toronto, 199i.

J. Dickson, "Stochastic Arithmetic Implementation of Artificial Neural Networks,"
MSc. Thesis, Department of Electrical Engineering, University of Manit oba, 1992.

l16l

ull

t 181

Rapid-Prototypíng of Artificial Neural Networks 73



References

t19l D. Rumelhart, J. McClelland and PDP Research Group, Parallel Distributed pro-

cessing Volume 1, The MIT Press, 1986.

l20l Y. C. Kim, and M. Shanblatt, "Random Noise Effects in Pulse-Mode Digital Mul-
tilayer Neural Networks",IEEE Transactions on Neural Networks VoI 6, No. I,
January 1995.

l2ll Mentor Graphics, Bold Browser,1995.

l22l NeoCad Inc, NeoCad FPGA Foundry Tutorial,1994

Rapid-Prototyplng of Artlflclal Neural Networks 74


