RAPID-PROTOTYPING OF ARTIFICIAL
NEURAL NETWORKS

BY

ROGER K.W. NG

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Canada

©Roger K. W. Ng 1995

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

395, rue Wellington
Ottawa ON K1A ON4

Biblioth&que nationale

services bibliographiques

Your file Votre référence

Qur file Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protege cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-23440-1

|

Canada

RAPID-PROTOTYPING OF ARTIFICIAL NEURAL NETWORKS

BY

ROGER K.W. NG

A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba
in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

© 1996

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA
to lend or sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to
microfilm this thesis and to lend or sell copies of the film, and LIBRARY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive
extracts from it may be printed or other-wise reproduced without the author’s written
permission.

I hereby declare that I am the sole author of this thesis.
I authorize the University of Manitoba to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

Roger K. W. Ng
I furthermore authorize the University of Manitoba to reproduce this thesis by

photocopying or by other means, in total or in part, at the request of other

institutions or individuals for the purpose of scholarly research.

Roger K. W. Ng

Rapid-Prototyping of Artificial Neural Networks ii

ABSTRACT

This thesis explores Field Programmable Gate Array (FPGA) implementations of
artificial neural networks employing pulse-code arithmetic. Pulse-code arithme-
tic uses values encoded as probabilitic pulse streams. Artificial neural networks
employing pulse-code arithmetic require only simple digital logic gates to per-
form multiplication and addition which are the essential operations for these
networks. As such, pulse-code techniques offer considerable potential to con-
struct very large neural networks using FPGA technology. The implementation
results presented in this thesis show that each neuron and synapse element use
an average of 23 CLBs on Xilinx XC4000 series FPGAs for the XOR problem. One
of the advantages of using FPGAs for implementing neural networks is that they
allow the overall network to be easily modified or replaced, by simply download-
ing new circuity. In addition, this thesis describes a top-down design flow meth-
odology from abstracted simulation through to implementation in Xilinx FPGAs.
The use of top-down design and FPGA technologies shorten the overall develop-
ment cycle. In addition, as these networks are extremely compact there is the

potential for experimentation during prototyping.

Rapid-Prototyping of Artificial Neural Networks iv

ACKNOWLEDGEMENTS

When everything in your life seems to be leading you towards some unknown yet
strangely familiar conclusion and its not until you reach the end that you realize
that coincidence has been conspiring to guide you into this particular window of
the eternal now. My three-year graduate studies was sort of like that. So thanks
to all the guides and earth angels who generously contributed and supported
throughout my graduate studies.

I would like especially thank my advisor, Professor Robert McLeod for his advice,

encouragement, and assistance throughout this thesis.

I also would like to acknowledge all the members of the VLSI Laboratory at the
University of Manitoba, specifically Hart Poskar, Dean McNeill, Richard Wieler
and Ken Ferens. In addition, I would like to acknowledge the support of

Computer Services at University of Manitoba,

Support provided by the Natural Sciences and Engineering Research Council of
Canada, the Federal Government’s Centers of Excellence Micronet Program and

the Canadian Microelectronics Corporation is highly appreciated.

Rapid-Prototyping of Artificial Neural Networks v

TABLE OF CONTENTS

CHAPTER 1
Introduction e e 1
Artificial Neural NetworK . . o oo it it it ittt et e e e et et e it e e e 3
SUINIMATY &+« v v v vt e ettt ettt i ettt et et ittt eenn 6
Organizationofthe Thesis 7
CHAPTER 2
Pulse-Code Neural Networks i, 8
Fundamentals of Pulse-Code Arithmetic 9
Pulse Stream Addition i e e 11
Pulse Stream Multiplication 13
Pulse Stream Generationttt ittt it e 13
Pulse-Code Neural NetworK . ..o v vttt ittt i et e e e e e e e et e 17
Pulse-code Feedforward Neural Network 18
Training Pulse-Code Neural Networks 20
R 1B 3 ¥ 55 = o/ 23

Rapid-Prototyping of Artificial Neural Networks vi

TABLE OF CONTENTS

CHAPTER 3
Simulation of Pulse-Code Neural Networks 24
Simulation Environment e 24
XORProblem e e 26
Parity Problem 28
Encoder e 30
Cheque Character Recognition, 31
B 15188 = 34

CHAPTER 4
Implementation of Pulse-Code Neural Networks in Xilinx FPGAs 35
FPGAs Implementation 35
Modular Design of Pulse Stream Neural Networks 35
Neuron Synapse Units i, 37
Re-randomuizerttt it i, 38
Weight Resolutionn 39
Overview of Xilinx Field Programmable Gate Arrays 40
Design Flow of Pulse Code Neural Network Hardware 43
Database Structurettt 45
Xerion Neural Network Simwulator 46
VHDL Code ittt et e e 46
Synthesis and Optimization 48
Design Verification 49
Neocad FPGAFoundryouiiiiiiinin i, 50
FPGAs Design Examples 51
XORProblemttt i e 51
Encoder Problem e 55
Cheque Character Recognition 56
SUIMNIMATY . .ottt it it et ettt ettt et et ettt e et 58

Rapid-Prototyping of Artificial Neural Networks vii

TABLE OF CONTENTS

CHAPTER 4

Conclusionsand Future Work. 59

APPENDIX A

Targeting VHDL Design to Xilinx FPGAs. 62
Wait for XX ns Statement i e 63
After XX nsStatement i e 63
Initial Valueso i ittt i e e e e 64
Order and Group Arithmetic Functions 64
Xilingk Name Conventionsot v ittt ittt ittt 64
Latchesand Registers i 65
Implementing Multiplexers with Tristate Buffers 67

APPENDIX B

Xilinx Device Quick References. 71

References. i e 72

Rapid-Prototyping of Artificial Neural Networks viii

LIST OF FIGURES

Figure 1.1:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:

Multi-layer feedforward network. 4
Random pulse sequencec.uuiiunununnnnnn. 10
Unipolar pulse stream representation. 11
ORgateaddition. 12

Example of the OR-gate addition and AND-gate multiplication. . 13

Block diagram of a pulse stream generation 15
Rate multiplier schematic 17
Negative and positive weight. 20

The user interface of the pulse-code neural network simulator .25

Training evolution of the XOR problem. 26
The impact on division on network training. 28
Training for the four bit parity problem 29
Training for 8-6-8 encoder, 31
Samplecheque i 32
Training for the cheque character recognition 33

Input activation for the cheque character recognition problem .33

Rapid-Prototyping of Artificial Neural Networks ix

LIST OF FIGURES

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:

Figure 4.10:
Figure 4.11:
Figure 4.12:
Figure 4.13:

Figure A.1:
Figure A.2:
Figure A.3:
Figure A.4:
Figure A.5:

Figure A.6:

The top-level of pulse stream neural networks 36
NeuronSynapse Unit 37
Block diagram of the re-randomizer circuit. 38
Xilinx FPGAs architecture. 41
XC4000 CLB ...ttt ittt e e s e e e e e e 42
Pulse-code neural network design process 44
Database organization 45
VHDL testbenches 49
XOR simulationresultso 52
The FPGA layout of XORproblem 53
The timing report of the XORFPGA design 54
The FPGA layout of 5-4-5encoder 55
The FPGA layout of cheque character recognition 57
Latch inference 66
Latch implemented with gates 66
Implementing 5-to-1 MUX with gates 68
5-to-1 MUX implemented with gates 69
Implementing 5-to-1 MUXwith BUFTs 69
5-10-1 MUX implemented with BUFTs 70

Rapid-Prototyping of Artificial Neural Networks

LIST OF TABLES

Table 2.1: Construction of CA with maximal cyclelength 16
Table A.1: D latch implementation comparison 67

Table B.1: Xilinx Devices, Packages and Speed Grades

Rapid-Prototyping of Artificial Neural Networks xi

Chapter 1

Introduction

Almost everything in the field of neural networks has been done by simu-
lating the networks on serial computers. There has been comparatively little
study of hardware implementations. General purpose computers are not opti-
mized for neural network calculations; they require specialized hardware in
order to utilize the inherent parallelism. The alternative approach is to build
special hardware for neural networks on a single chip or multi-chip system. A
neural network architecture can be implemented as an integrated circuit using
analog, digital, or mixed analog/digital structures. The analog circuitry permits
high density implementation as the multiplication is based on modified Gilbert
multipliers [1] and summation on Kirchhoff's current law. However, analog hard-
ware does not produce high accuracy arithmetic and the storage of analog
weight values required for the synapse is difficult. On the other hand, the digital
hardware can perform arithmetic operations with a high degree of accuracy and

the storage of the weight values is easy in the digital form. Also, digital hardware

Rapid-Prototyping of Artificial Neural Networks 1

CHAPTER 1 - Introduction

can take advantage of some of the benefits of current VLSI technology, such as
well understood and advanced design techniques, as well as prototying in Field
Programmable Gate Array FPGA technologies. However one of the major con-
straints of digital implementations of neural networks is the amount of circuity
required to perform the multiplication. This problem is especially acute in high
speed digital designs, where parallel multipliers are extremely expensive in
terms of circuity. Adopting an equivalent bit serial architecture significantly
reduces this complexity, but still tends to result in large and complex designs. In
addition a single multiplier would consume a significant proportion of a current
state of the art FPGA, thus making the use of such devices impractical for this

approach.

This thesis describes an alternative neural network architecture which may be
implemented using standard VLSI technology, but also maps extremely effi-
ciently to FPGAs such as those of Xilinx [2]. The central idea is to represent the
real-valued signals passing between neurons using encoded binary pulse
streams. Pulse streams arithmetic requires only simple digital logic gates to per-
form multiplication and addition. The main advantage of such an approach is
structural simplicity of the artificial synapse and neuron, comparable to analog
implementations, thus allowing very efficient space usage of the fine grained

FPGAs.

The work presented in this thesis examines pulse-code neural network imple-

Rapid-Prototyping of Artificial Neural Networks 2

CHAPTER 1 - Introduction

mentations on FPGAs using top-down design methodology. In the remainder of
this chapter background material of neural networks is presented which will
serve to familiarize the reader with some of the general concepts. This will help
establish a common reference from which to base the discussions in the later

chapters.

1.1 Artificial Neural Network

Modern neural network theories can be traced backed to ideas first intro-
duced in the 1940s and 1950s. In 1943, McCulloch and Pitts proposed a simple
model of neuron operation [3]. This model attracted much interest because of its
simplicity. In the late 1950s, Rosenblatt developed networks that could learn to
recognize simple patterns [4]. The perceptron, as it was called, could decide
whether an input belonged to one of two classes. A single neuron would compute
the weighted sum of binary-type inputs, subtract a threshold, and pass the
result through a non-linear hard limiting threshold that classified the input. In
1969, Minsky and Papert [5] showed that a small class of perceptrons could not
perform certain tasks in pattern recognition. The simple example is the exclusive
or (XOR) problem: a single output neuron is required to turn on if one or the
other of two input lines is on, but not when neither or both inputs are on. They
believed that structures with more layers of neurons could solve the problem,
but they could not find a learning rule to train a multi-layer network. With this

roadblock, researchers left the neural network paradigm for almost 20 years. It

Rapid-Prototyping of Artificial Neural Networks 3

CHAPTER 1 - Introduction

was not until 1986, when Rumelhart, Hinton and Williams introduced a new
learning algorithm, known as backpropagation [6] to the problem of the networks

discussed in Perceptrons [5] that neural networks regained their popularity.

Neural networks are usually characterized by the way in which neurons are
interconnected. There are two major classes of neural network topologies: multi-
layer feedforward networks and feedback networks. Feedback networks are
beyond the scope of this thesis which will focus on multi-layer feedforward net-
works only. The general form of the multi-layer feedforward network consists of
an input layer, one or more hidden layers, and an output layer of neurons (see

Figure 1.1).

-

Output Layer

Forward Pass

Input Layer

Figure 1.1: Multi-layer feedforward network.

Complete bipartite graphs are constructed between each adjacent layer of neu-

Rapid-Prototyping of Artificial Neural Networks 4

CHAPTER 1 - Introduction

rons using weighted connections. Data is presented to the input layer, each is
multiplied by a weight and summed at neurons of the connecting layer. These
weighted sums are then passed through a reversible nonlinear transfer function
forming the input to the following layer. This procedure is repeated until reach-

ing the output layer thereby completing a forward pass.

Without a program of instructions a computer is a useless machine. The pro-
gram usually instructs the computer to perform specific tasks on a set of input
data to create some sort of output. Therefore, the program is an essential part in
a computer environment. Neural networks are not programmed in the conven-
tional sense, they are taught. Teaching a neural network cognitive knowledge is
basically a modification of the synaptic weights according to some learning algo-
rithm or rule. Therefore, the knowledge or “program” of a neural network is in
the weights. There are two main types of learning rule: supervised learning and
unsupervised learning. In supervised learning, an example set of input/output
pairs is necessary, and the error between the actual response and the target
response is used to correct or modify the network. In contrast to supervised
learning, unsupervised learning is not given any information about whether its
outputs are right or wrong. Instead, the network must decide what characteris-
tics of the training set are relevant, and modify the weights in order to extract
those features. This thesis will focus on the supervised learning neural network.
A popular supervised learning algorithm is the backpropagation learning algo-

rithm, which was introduced by Rumelhart, Hinton and Williams in 1986 [6].

Rapid-Prototyping of Artificial Neural Networks 5

CHAPTER 1 - Introduction

The backpropagation learning algorithm involves the presentation of a training
set of input/output pattern pairs. The objective is to find a set of weights that
ensures that the output produced by the network is the same as, or close to, the
target output pattern for each of the input patterns. During the backward pass
(learning phase), the actual output is compared to the target output and an error
vector is created. These errors are then backpropagated through the network
modifying the connection weights according to an iterative gradient descent algo-
rithm. After many iterations of the training set the connection weights settle to a
local minimum of the output error over the training set. Better minima may be

found repeated training with randomly selected initial connection weights.

2.2 Summary

This chapter has provided a quick overview of the advantages and disad-
vantages of analog and digital implementations of neural networks. In order to
implement these networks in FPGAs, the area of the circuity is the most impor-
tant criteria. The use of pulse stream arithmetic was proposed as it allows low
area implementation of the hardware required to perform the arithmetic for neu-
ral networks. A brief history of neural networks, neural network topologies and
learning rules was overviewed. Multi-layer feedforward networks and the learn-

ing algorithm known as Backpropagation was also discussed.

Rapid-Prototyping of Artificial Neural Networks 6

CHAPTER 1 - Introduction

2.3 Organization of the Thesis

The next chapter discusses the implementation of pulse-coded neural
networks. It begins with the fundamentals of pulse stream arithmetic followed
by a discussion of applying pulse stream arithmetic to neural networks. Chapter
3 presents the software simulation of these networks. Chapter 4 describes the
design process of the pulse-coded neural networks onto Xilinx FPGAs. Finally

conclusions are drawn and proposals for future work is presented.

Rapid-Prototyping of Artificial Neural Networks 7

Chapter 2

Pulse-Code Neural
Networks

Pulse-code neural networks use pulse streams to perform the network
calculations. The idea of using pulse streams to communicate information
between neurons is motivated from biological models, although biological pulse
streams are much more complex than the simple pulse representation consid-
ered in this thesis. The main motivation here of applying pulse-code arithmetic
to neural networks is the ability to implement high density arithmetic operations
using digital circuitry. Specifically, pulse-code representations are able to use
simple digital hardware to perform addition and multiplication, which are the
two most important operations in a neural network. Also, pulse-code implemen-
tations offer the advantages of both analog and digital computation. Like analog,
pulse representation requires only one line to carry the values, and the size of
the hardware (digital gates) needed to perform arithmetic computations is com-
parable to analog hardware. Like digital, the design methods and implementa-

tions are well established.

Rapid-Prototyping of Artificial Neural Networks 8

CHAPTER 2 - Pulse-Code Neural Networks

In this chapter the fundamentals of pulse-code arithmetic are presented and
this discussion leads to application of pulse-code arithmetic for neural net-

works.

2.1 Fundamentals of Pulse-Code Arithmetic

The fundamental idea of pulse-code arithmetic is to use probabilities to
carry information (7, 8]. Here the probability p is defined experimentally by con-
sidering the frequency of the occurrence of an event (pulse in a time slot). A
small number of time slots results in an erroneous assessment of the probability
and the number which it represents. In the limiting case of an infinite number of

time slots: if there are n pulses in N slots for a given time, and if n/N tends

towards a limit as N — «~ we set

p= limZ

2.1
Jm S (2.1)

Figure 2.1 shows a synchronous random pulse sequence. At the top of the Fig-
ure 2.1, 3 pulses are in 10 time slots, leading to the conclusion that the number
transmitted is 0.3. At the bottom, 3 pulses are arranged in different time slots,
leading again to 0.3. The order of the pulses in the time slots does not affect the
outcome of the representation. The probability can be transformed into some
physical quantity by an appropriate mapping. This thesis only considers a linear
mapping, although it should be noted that nonlinear mappings exist which per-

mit computations with numbers in an infinite range with logarithmic error char-

Rapid-Prototyping of Artificial Neural Networks 9

CHAPTER 2 - Pulse-Code Neural Networks

acteristics [8]. There are two kinds of linear mapping: unipolar mapping and

bipolar mapping.

3 in 10 (Average) -> 0.3

Different arrangement
of 3in 10
{also -> 0.3)

Figure 2.1: Random pulse sequence

Unipolar linear mapping is used as the implementation method in this thesis. In
unipolar mapping, the values are encoded between O and 1. An example of uni-
polar pulse representation is shown in Figure 2.2. The value of the unipolar
pulse stream is represented by number of pulses, n, being ON within the time

interval divided by length of the time interval, N, or

UnipolarValue = (2.2)

zl=

A unipolar pulse stream with N bits can represent N+1 unique values. For exam-
ple, a 10-bit pulse stream can represent 11 values from 0.0 to 1.0, in increments
of 0.1. The resolution of value depends on the length of the pulse stream. The

longer the pulse stream, the higher the resolution that can be achieved.

Rapid-Prototyping of Artificial Neural Networks 10

CHAPTER 2 - Pulse-Code Neural Networks

Unipol
10- bit Pulse Streams Plrllllgé) {/glue

0.3

1.0

0.6

0.5

Figure 2.2: Unipolar pulse stream representation.
2.1.1 Pulse Stream Addition

The addition of two unipolar pulse can be performed by using an OR gate.
However, OR gate addition does not perform exact addition with pulse streams
because of limitations imposed by the representation of the pulse streams, fur-
thermore it cannot handle a sum greater than 1. The output of the OR gate is

given by

AUB = AB+AB+AB Define: A=1-A
= A+B-AB

Thus for A<<1 and B<<1 the AB term is small and the output of the OR gate is
approximately A + B. For large A and B, the output of the OR gate saturates to 1.

This result of a saturating nonlinearity will be useful to the implementation of

Rapid-Prototyping of Artificial Neural Networks 1

CHAPTER 2 - Pulse-Code Neural Networks

neural networks. The output for an OR gate with n inputs is given by

Output = 1-J[(1-i,) (2.3)

The n-input OR gate can be easily implemented in hardware by using wired-OR
logic. Figure 2.3 shows the output probability of the OR gate addition. As the
number of the inputs increases, the output of the OR gate addition saturates for
a greater range of inputs. Also, as the value of average input increases, the out-
put of the OR gate addition saturates. Therefore, it is desirable to keep the fan-in

of the inputs as well as the value of the input small.

1.2

-t

o
[

T 2-Inputs
> 4-Inputs
:...6. Inputs
~ 8- Inputs
10 - Inputs

o
N

Output Probability
(=)
[+>]

i T | T [T T T | T T T T 1

!
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Average Input

Figure 2.3: OR gate addition.

Rapid-Prototyping of Artificial Neural Networks 12

CHAPTER 2 - Pulse-Code Neural Networks

2.1.2 Pulse Stream Multiplication

To multiply two unipolar pulse streams, an AND gate may be used if two
pulse sequence are statistically uncorrelated [8]. Since the unipolar value is
always less than or equal to one, the product of two numbers is guaranteed to be
at most one and the result will not saturate as it did with OR-gate addition.
Assuming the pulse sequences A and B are statistically uncorrelated, the output

sequence of an AND gate multiplication is given by

ANB = AB (2.4)

Figure 2.4 shows an example of the OR-gate addition and AND-gate multiplica-

tion.

Figure 2.4: Example of the OR-gate addition and AND-gate multiplication.

2.1.3 Pulse Stream Generation
An essential component of pulse-code arithmetic is the generation of the
pulse streams for use in the arithmetic operations. As mentioned earlier, the

information is carried by the probability of occurrence of a ON logic level within

Rapid-Prototyping of Artificial Neural Networks 13

CHAPTER 2 - Pulse-Code Neural Networks

a time slot. Each logic level is generated from a random variable, and the statis-
tically independent results form a pulse sequence whose average pulse rate is
determined by the variable to be represented. It should be noted that the validity
of the pulse streams arithmetic relies heavily on the assumed property of statis-
tical independence between operating variables. Hence, of vital importance is
generators for the provision of independent uniformly distributed random num-

bers.

In general, a random pulse stream is generated with a uniform random number
generator and a digital comparator. Figure 2.5 shows a block diagram of a rate
multiplier to generate weighted pulse streams. The following procedure can be

used to produce a random pulse stream with probability P(ON)=W:

s Generate a random number R, such that 0<R<1.

e IfW>R, output a 1 else output a 0.

In digital hardware R and W are usually represented as binary integers. If the
maximum possible weight value is M, and the value stored in the weight register

is W, then the probability of a pulse should be P(ON) = W/M.

Rapid-Prototyping of Artificial Neural Networks 14

CHAPTER 2 - Pulse-Code Neural Networks

Random Number
Generator

<

Digital Comparator p Pulse Stream Output
(W>R) P(ON) = weight

T

Weight Register

Figure 2.5: Block diagram of a pulse stream generation

A common technique to generate a pseudorandom number in digital hardware is using a
linear feedback shift register (LFSR)[9]. Another method to produce a digital random
number is to employ a particular configuration of a one-dimensional Cellular Automata
(CA) array[10]. Hortensius[11] has shown that certain arrangements of CAs pos-
sess maximal length sequences with superior random number properties com-
pared to the LFSR. A CA is a set of registers whose next state is governed by nearest

neighbour connections. A CA can yield a maximal-length binary sequence from each site
(i.e. 2"-1), like the maximal-length LFSR by combining rules 90

a;(t+1) =a;,_ (1) ®a; ()

Rapid-Prototyping of Artificial Neural Networks 15

CHAPTER 2 - Pulse-Code Neural Networks

and rules 150,

a,(t+1) = a,_, (1) ®a,(r) ®a,, (1)

where a, (f) is the value of the register at position i at time t.

The ordering of the rules for construction of a maximal-length binary sequence
is irregular, with complexity similar to that involved in determining the polyno-
mial for a maximal-length LFSR. Table 2.1 gives a sample of possible construc-
tions for producing CAs with maximal cycle length up to length 15. Here, “1”
refers to CA rule 150 and “0” refers to CA rule 90. Hence, a length-5 maximal-
length CA would be constructed by using rules 90 and 150 in the following

order: 150, 150, 90, 90 150.

Table 2.1: Construction of CA with maximal cycle length

Length n Construction Cycle Length
5 11001 31
6 010101 63
7 1101010 127
8 11010101 255
9 110010101 511
10 0101010101 1023
11 11010101010 2047
12 010101010101 4095
13 1100101010100 8191
14 01111101111110 16383

Rapid-Prototyping of Artificial Neural Networks 16

CHAPTER 2 - Pulse-Code Neural Networks

Yo
Y

// Bit Stream

Output

Figure 2.6: Rate multiplier schematic

A rate multiplier can be used to compare a binary set of weights and a set of ran-

dom bit streams with P(ON)=0.5, and produces a weighted bit stream with

P(ON)=w/ 2N_1. The rate multiplier as shown in Figure 2.6 originated out of

research in VLSI pseudo-random test pattern generation [12].

2.2 Pulse-Code Neural Network

The idea of using pulse streams has been tried by Tomberg and his co-
workers, who published two papers on neural networks using pulse-density
modulation [13, 14]. The implementation was a Hopfield type fully connected
neural network architecture based on bipolar pulse density modulation. Tomlin-

son [15] and Dickson [16] also studied in-situ learning neural network using

Rapid-Prototyping of Artificial Neural Networks 17

CHAPTER 2 - Pulse-Code Neural Networks

unipolar pulse streams. The work presented in this section is based on the
research from Tomlinson and Dickson, extending the design methodology for

these implementations.
2.2.1 Pulse-code Feedforward Neural Network

The basic computational operations required in feedforward neural networks are
multiplication, summation, and a non-linearity function. Each neuron computes
a weighted sum of its inputs from other neurons, and passes this summation
through a nonlinear function to produce an output. This output forms the input
to the following layer. Tomlinson [15] has proposed a new neural activation func-
tion where the summation and the nonlinear activation are performed simulta-
neously using the OR logic. As mentioned earlier the OR gate addition saturates
to 1 with either an increase in the number of inputs or an increase in the value
of those inputs. The saturating effect of the OR gate addition requires no extra
hardware to implement a nonlinear activation function. Also, the logical OR can

be easily implemented in hardware using wired-OR logic. The multiplication of
the weight (wij) and the input (o0;) are performed with a simple AND gate as pre-

viously described, assuming that these pulse sequences are statistically uncor-

related.

Let n ; be the probability of a pulse occurrence in the output sequence of an n-

input OR gate. The inputs of an OR gate are the product of W and o; produced

Rapid-Prototyping of Artificial Neural Networks 18

CHAPTER 2 - Pulse-Code Neural Networks

from the AND gates. This is represented mathematically by the following equa-
tion:
n
n= 1= (1-wy0) (2.5)
i=1

Since the unipolar nature of the pulse stream representation does not support
negative values, each synaptic weight is separated into two distinct nets: the
excitatory and the inhibitory nets. Therefore, there are two dedicated wired-OR

lines per neuron ANDed together to form the activation function and the net

inputs variables are defined as

n1+ =1- H (1-w;0) (2.6)
w;>0

n,=1-] (L+w0) @.7)
w; <0

Each neuron j combines the excitatory net input nJ+ and the inhibitory net input

n; to determine the neuron output 0;- Since there is no means to perform sub-

traction in pulse-code arithmetic, the net output of the neuron is not simply

+ - . s .
0; = n;—n;. Moreover negative and positive nets would require the accommoda-

tion of negative neuron outputs. If the excitatory net input n; and inhibitory net

input nj- are statistically uncorrelated, the probability of output pulse occur-

rence o j is

Rapid-Prototyping of Artificial Neural Networks 19

CHAPTER 2 - Pulse-Code Neural Networks

1
0= n(1-1) 2.8)

While the mathematics implies that a weight can have a positive (w;.) compo-

nents and a negative (w U) components, it is not necessary to accommodate both

simultaneously. Therefore, it only requires one register to store the weight value
and one bit to indicate the sign of the weight. The hardware required for this

computation is shown in Figure 2.7.

Excitatory
Net Input‘

From other
Neurons

Weight Sign Bit -0
(positive = 1)

From other
Neurons

Inhibitory
Net Input

Figure 2.7: Negative and positive weight.

2.2.2 Training Pulse-Code Neural Networks

Because a pulse-code neural network uses a non-traditional activation

Rapid-Prototyping of Artificial Neural Networks 20

CHAPTER 2 - Pulse-Code Neural Networks

function, it is instructive to consider a modified learning algorithm where this
activation function is incorporated into a popular learning algorithm. Equations
2.5 and 2.8 are continuous and differentiable, indicating that the backpropaga-
tion learning algorithm can be used for training. Backpropagation is an iterative
technique that performs a gradient descent, typically over a sum squared error

measure:

E = %}:(5-45)2 (2.9)
J

where t; is the desired output, and o ; 1s the actual output of the neuron j. The

weights should be modified along the negative gradient of this error with respect

to each weight:

Awi.oc— oF

J awij

(2.10)

The goal of the backpropagation learning algorithm is to reduce the total
error by adjusting the weights. Since the output of the neurons are computed
from the excitatory nets and inhibitory nets, the derivative must be considered
separately for positive and negative weights. Using the chain rule, the positive

and negative equations governing the change of weights is as follows

A JE oE aoj an;
Wij = P TV«
ow., aoj anj aw,.j

2.11)
ij

Rapid-Prototyping of Artificial Neural Networks 21

CHAPTER 2 - Pulse-Code Neural Networks

Aw, = —= = (2.12)

Let us define,
_ OE
g = = (2.13)

+
Yol 1—n,
awt = ~9E _ 8.(1 —-n.) N (2.14)
] a + J J 1 +
Wi = W9
- oE _ +0i(1 —-n]_)
AWU = -———=gn - (2.15)
awij 1+wij0i

Equation 2.9 shows that the error at the output neurons is simply the differ-

ence between the training data and the network output:

_ _9E _
g = o = -0, (2.16)

For the hidden layers, the error is propagated back through the network.
Each of the K output neurons is connected to hidden neuron j, and will contrib-

ute to this error. This error has two components, from the excitatory and inhibi-

tory net inputs to each output neuron.

Rapid-Prototyping of Artificial Neural Networks 22

CHAPTER 2 - Pulse-Code Neural Networks

a aO- - +ao . —ao . :
7 kw;>0 ank J o kw;<0 ank J

Therefore, the result of the error for the hidden neuron becomes

+ + - -
Wl 1l-n w.(l—n)
e, =-L. ¥ ek(l—nk)i—)ﬂ e ¥ e)

2.3 Summary

This chapter has presented a method of arithmetic using pulse streams.
As discussed pulse streams allow computation using only simple gates. In addi-
tion this chapter has discussed the suitability of pulse stream implementations
for neural networks. The theoretical analysis showed that the backpropagation
learning algorithm can be used for training this network, using the OR-gate acti-
vation function as a continuous and differentiable non-linear function. It may be
possible to implement neural networks of high density due to the use of simple

digital gates for performing arithmetic.

Rapid-Prototyping of Artificial Neural Networks 23

Chapter 3

Simulation of Pulse-
Code Neural Networks

This chapter examines the simulation of pulse stream neural networks.
Four examples will be discussed in this section. The first three examples are “toy
problems” which are often used for testing and benchmarking neural networks.
Typically the training set contains all possible input patterns so there is no
question of generalization. The last example is a more real-world classification

problem in which a network is trained to recognize the digits of a cheque book.

3.1 Simulation Environment

The networks can be simulated on two levels: probability and pulse
stream. The probability level models the network activation as probabilities; the
pulse level models all activations as pulses and directly emulates a hardware
implementation of this network. In our simulator the probability model is chosen
for the training of the networks, since it produces more accurate results without

worrying about the hardware limitation of the network. A backpropagation algo-

Rapid-Prototyping of Artificial Neural Networks 24

CHAPTER 3 - Simulation of Pulse-Code Neural Networks

rithm is employed for training as described in the previous section.

=
Epoch 168 ERROR = 1.499506 AL

Epncg 169: Egg$ = 1.485552 L

poch 170: = 1.47863

Epoch 171 ERROR = 1.481457 Netuork Displays

Epoch 172 ERROR = 1.471566

Epoch 173: ERROR = 1.466341

Epoch 174: ERROR = 1.466696

Epoch 175: ERROR = 1.481754

Epucg 176: ERROR = 1.457557 Learning Hethods

Epoch 177: ERROR = 1.453796

Epoch 178 ERROR = 1.450385 Scatter Plot '

Epoch 179: ERROR = 1.452340

Epach 180t ERROR = 1.447587

Epoch 181: ERROR = 1.444333

Epoch 182: ERROR = 1.441289

Epach 183: ERROR = 1.438404

Epoch 184: ERROR = 1.435636

EpocR 132: Enngg - :.43‘2;323 =

Epoch 186: ERROR = 1.4 O

Epoch 167: £RROR = 1.430173 -

Epoch 188: ERROR = 1.427182 | Wi Ex I
EpocR 189: ERROR = 1424235 ndoy Exemplo Sets Network
Epoch 180: ERRCR = 1.4

Epoch 191+ ERROR = 1.418354 Training Target Qutput
EpocR 132: ERROR = 1.4133;3

Epoch 193: ERROR = 1.41 1

Epoch 134 ERROR = 1.409282 g::”i:; -
Epoch 195: ERROR = 1.406110 P

Epoch 196: ERROR = 1.402910 Example 3

Epoch 197: ERROR = 1.401903

Epoch 198: ERROR = 1.398083 Rctivity
Epoch 199: ERROR = 1.394337

Epoch 200: ERROR = 1.390450

Epoch 201: ERROR = 1.386413

p_bp->

n Variance

Figure 3.1: The user interface of the pulse-code neural network simulator

The training of the pulse-code neural network has been performed off-line using
C code interfaced with the Xerion neural network simulator library [17]. Xerion's
libraries contain routines for constructing, displaying and training networks.
The software also contains routines to graphically display neuron outputs and

weights using Hinton diagrams. The pulse-code neural network simulator writ-

Rapid-Prototyping of Artificial Neural Networks 25

CHAPTER 3 - Simulation of Pulse-Code Neural Networks

ten using the Xerion libraries has access to a command line interface with built
in commands for: creating and training networks, examining and modifying data
structures, as well as miscellaneous utilities. Once the training is completed, the
simulator can generate a network description file which includes the network

topology and the weights of the synapses for hardware implementation.

3.2 XOR Problem

The XOR problem [6] is a frequently applied test of neural networks since
it cannot be solved by a single layer network because it is not a linearly separa-
ble problem. A network consisting of two input neurons, two hidden neurons,

and one output neuron was applied to the pulse-code neural network.

. bR
NN

Total squared ermors
o [=3
o

Total squared emors

4
*»

o
13
L !

1 T T T T t T 1
8] 50 100 150 300 350 400 450

20 2%
Number of epoch

(a) Regular BP (b) Pulse-Code BP

Figure 3.2: Training evolution of the XOR problem.

Figure 3.2 shows the learning curve of the XOR problem trained with the regular

Rapid-Prototyping of Artificial Neural Networks 26

CHAPTER 3 - Simulation of Pulse-Code Neural Networks

and pulse-code backpropagation algorithms. It has an interesting result that the
pulse-code network learns the XOR problem almost 10 times faster than the
normal backpropagation network. The normal backpropagation network uses
the sigmoid function as the nonlinear transfer function, while the pulse-code
network uses the wired-OR gate addition saturation to obtain the nonlinearity.
In addition, the initial weights of the pulse-code network must be very small to
prevent immature saturation. In general the wired-OR gate addition saturation
is not uniform throughout the network, depending on the number of inputs to

the neuron (see Figure 2.3).

The learning equations for pulse-code networks contain division. Although divi-
sion can be performed using pulse-code arithmetic [8], it is undesirable for a
number of reasons. For example there are problems associated with division by
zero, in addition to being a time consuming operation and requiring more hard-
ware. Dickson[18] has proposed to omit division for training pulse-code network

in order to reduce hardware overhead for implementing on chip learning capabil-

ity.

To determine whether division is necessary the networks were trained with the
division operation omitted. The results of the simulation are shown Figure 3.3.
Although the XOR problem trained in more cycles without the division, in con-
trast again to regular backpropagation it still required only half the time. The

results show that eliminating division does not impair the ability of the network

Rapid-Prototyping of Artificial Neural Networks 27

CHAPTER 3 - Simulation of Pulse-Code Neural Networks

to minimize the error.

(
)

o
@
L 1

Total squared emors
g
o
-]
)

Total squared emors
o
@

T T T 1 o T T T
250 300 350 400 450] 0.5 1

T 1
a5 4

200 1.5 2 ZIS
Number of epoch Number of epoch (x10%)
(a) Training for XOR problem with denominator (b) Training for XOR problem without denominator

Figure 3.3: The impact on division on network training.

3.3 Parity Problem

The parity problem is well known to researchers doing performance eval-
uation of neural networks. This problem is essentially a generalization of the
XOR problem to N inputs [5]. Here the network is presented with binary inputs,
O’s and 1’s, and the single output neuron must output a high value if the input
pattern has odd parity (an odd number of 1’s), and a low value if the inputs have
even parity. The parity problem is one of the most difficult problems for an artifi-
cial neural network to solve, because the network must look at all the input sig-
nals in order to determine whether the pattern has even or odd parity. This is
untypical of most real-world classification problems which usually have much
more regularity and allow generalization within classes of similar input patterns.

Four inputs were used in this study. It is known that a network with four hidden

Rapid-Prototyping of Artificial Neural Networks 28

CHAPTER 3 - Simulation of Pulse-Code Neural Networks

neurons[19] can solve this problem using the standard backpropagation algo-
rithm, but the pulse-code network failed to do so because of the limiation of the
pulse stream representation. By trying different network topologies, the final
network topology for the four bit parity problem consisted of two hidden layers of

12 and 8 units respectively. Figure 3.4 shows the error during training.

S 10

4O -

< —

5 3l

»n 6 U

S "“‘*\
2 o4

0 T T T T Y T T T T T T

4 5 6
Number of Epoches (x10°)

Figure 3.4: Training for the four bit parity problem

This problem has shown a limitation of the pulse-code representation, specifi-
cally the limited range of the synaptic weights. The other potential problem is
using the OR gate for addition. As the number of inputs to a neuron (the OR
gate) increases, the probability of a 1 output for a given set of inputs rises. This

result suggests that the weights in a neural network must be very small to pre-

Rapid-Prototyping of Artificial Neural Networks 29

CHAPTER 3 - Simulation of Pulse-Code Neural Networks

vent the neuron from constantly saturating. The accommodation of the limited
synaptic connections and premature neuron saturation is crucial for the suc-
cess of pulse-code networks. While the complexity of the network is greater for
these networks, the hardware complexity is still significantly less than the con-
ventional digital networks. Since the hardware requirement is significantly less,

the cost of adding more computing elements is not severe.

3.4 Encoder

The general encoding problem involves finding an efficient set of hidden
neuron patterns to encode a large number of input/output patterns. The
number of hidden neurons is intentionally made small to force an efficient
encoding. The specific problem usually considered involves auto-association,
using identical unary input and output patterns. A three-layer network consists
of N inputs, N outputs and M hidden neurons, with M < N. This is often referred
to as an N-M-N encoder. There are exactly N members of the training set, each

having one input and the corresponding target on, and the rest off.

An 8 input encoder was used in this study. Conventional backpropagation could
solve this problem with an 8-3-8 encoder network [19]. The activation pattern of
the hidden neurons give the binary representation of the training pattern
number. This can be achieved with the connection strengths patterned after the

binary numbers. Clearly pulse code networks will fail as the weight connection is

Rapid-Prototyping of Artificial Neural Networks 30

CHAPTER 3 - Simulation of Pulse-Code Neural Networks

bounded by [-1, +1]. In order to solve this problem, a more complex pulse code
network is needed. The final network uses 6 hidden neurons, which is an 8-6-8
encoder. Figure 3.5 shows the learning of the 8-6-8 encoder. Once again, the
limited range of the synaptic weights is the roadblock of the learning capability

in pulse code network.

©
[5)]

N @
a =)
1
/

N
(]
L

Total Squared Error

-t el
o [s,]
1

0 T T T T T T T T T

T T ;
] 20 40 60 80 100 120 140 160 180 200
Number of Epoches

Figure 3.5: Training for 8-6-8 encoder

3.5 Cheque Character Recognition

In the proceeding three examples the training set normally includes all
possible input patterns, so no generalization issues arises. Cheque character
recognition is a more real-life problem in which noisy patterns can be used for

testing the generalization ability. Most cheques have some strange characters

Rapid-Prototyping of Artificial Neural Networks 31

CHAPTER 3 - Simulation of Pulse-Code Neural Networks

indicating the account number, as shown in Figure 3.6. These characters are
mapped to a 5x5 matrix as the input to this network with 10 output neurons
corresponding to each of the possible character (0,1, ...,9). One hidden layer of
six neurons is used to train the pulse-code network. The training error is shown

in Figure 3.7 and the input activation is shown in Figure 3.8.

Figure 3.6: Sample cheque

Rapid-Prototyping of Artificial Neural Networks 32

CHAPTER 3 - Simulation of Pulse-Code Neural Networks

20

—_
[&2]
|

Total Squared Error
o 3
1 | ' I

N

i = T ' I ' T ' 1

0 2 4 6 8
Number of Epoches (x10°%)

Figure 3.7: Training for the cheque character recognition

CIE]

|
|
||
L
|

Figure 3.8: Input activation for the cheque character recognition problem

Rapid-Prototyping of Artificial Neural Networks

33

CHAPTER 3 - Simulation of Pulse-Code Neural Networks

3.6 Summary

This chapter presented a number of simulation contrasting pulse-code
neural network implementations to more traditional networks. Two potential
problems arose using pulse-code representations. The first concerns the use of
the OR gate for addition. As the nonlinearity of the OR gate depends on the
number of inputs, some of the neurons could immaturely saturate. This problem
can be solved using multi-layered architecture and limiting the number of
inputs to each neuron. Rumelhart et. al [19] stated that “A simple method for
overcoming the fan-out limitation is simply to use multiple layers of units.” The
second potential problem with pulse-code neural networks is the limited range
of the weight connections. Increasing network topology or complexity could

accommodate these limitations.

Rapid-Prototyping of Artificial Neural Networks 34

Chapter 4

Implementation of Pulse-
Code Neural Networks
in Xilinx FPGAs

This chapter describes the FPGA implementation of the pulse stream neu-
ral networks. It starts off by describing the overall hardware architecture of
these networks, followed by the brief overview of Xilinx XC4000 series FPGAs.
The design process of the network implementation is then described in detail.
Finally, several examples of the networks implemented in Xilinx FPGAs are

examined.

4.1 FPGAs Implementation

This section discusses the implementation of pulse stream neural net-

works in FPGAs.

4.1.1 Modular Design of Pulse Stream Neural Networks

There are two main components required to construct a pulse stream

neural network; a random number generator and a neuron/ synapse element.

Rapid-Prototyping of Artificial Neural Networks 35

CHAPTER 4 - implementation of Pulse-Code Neural Networks in Xilinx FPGAs

Figure 4.1 shows the block diagram of the network structure. Each neuron syn-

apse layer has one CA based random number generator. This random number is

used to generate a weighted pulse stream of each synapse. The output of neu-

ron/synapse elements are passed to the inputs of next layer.

Neuron/
Synapse

Neuron/
Synapse

Neuron/
Synapse

Neuron/
Synapse

Neuron/
Synapse

Neuron/ Neuron/
Synapse Synapse
Neuron/ Neuron/
Synapse Synapse
Neuron/ Neuron/
Synapse Synapse
Neuron/ Neuron/
Synapse Synapse
Neuron/ Neuron/
Synapse Synapse
Neuron/ Neuron/
Synapse Synapse

Figure 4.1: The top-level of pulse stream neural networks

Neuron/
Synapse

Rapid-Prototyping of Artificial Neural Networks

36

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

4.1.2 Neuron Synapse Units

Each neuron synapse unit consists of one neuron element and n synapse
elements. The number of synaptic elements depends on the number of input
neurons from the previous layer. Figure 4.2 shows a block diagram of neuron/

synapse element.

O.

]

]
Re-randomizer random_num

clk
new_iter

e €
Excitatory
Inhibitory

Neuron @

4.
S

asdeuis

asdeufs

asdeufs
)—“:.3

.>

4|0 —P
H l-:

18l mau

e indu; —p-

winuTwiopues —p-

random_num -—i Rate-Multiplier
W,
l

Figure 4.2: Neuron Synapse Unit

Each synaptic element has a preset weight value. A rate multiplier compares

this weight value and a random number from a CA to produce a weighted pulse

Rapid-Prototyping of Artificial Neural Networks 37

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

stream. This weighted pulse stream is ANDed with an input pulse stream from a
previous layer to produce a synaptic multiplication. The product is transmitted
to an excitatory net-input line or an inhibitory net-input line. If the sign bit of
the weight is ‘0’, the product pulse stream is transmitted to an excitatory net

input line. Otherwise, it is transmitted to an inhibitory net input line.

The neuron preforms addition of all the net input signals from synapses through
an OR gate. The outcome of these excitatory and inhibitory net input signals are
ANDed to form the activation signal. This signal passes through a re-randomizer

circuit to generate the output pulse stream.

4.1.3 Re-~-randomizer

CA Random Number

Y

Output Pulse
Rate Multiplier B Stream
Input Pulse —D'— UP Up/Down
Stream Counter
o

Figure 4.3: Block diagram of the re-randomizer circuit.

Rapid-Prototyping of Artificial Neural Networks 38

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

As mentioned in the earlier chapter the pulse stream arithmetic relies heavily on
the assumed property of statistical independence between pulse streams. The
re-randomizer re-orders the neuron output in order to prevent the correlation

between the output pulse streams from the earlier layers.

The re-randomizer [18] consists of an up-down counter and a rate multiplier, as
shown in Figure 4.3. The up-down counter controls the density of the output
stream. If the output is high when the input is low, the counter is decremented.
If the output is low and the input is high, then the counter is incremented. If the
input and the output are equivalent then there is no change. The re-randomizer
uses the random number from the neuron/synapse shifted one bit to the left.
The rate multiplier compares the counter value and the random number to form

the re-randomized output pulse stream.

4.1.4 Weight Resolution

The weights are stored in the form of an n-bit fractional sign-magnitude
number. Each pulse represents the magnitude of 1/2"~1. A 9 bit weight resolu-
tion is chosen, which has 8 bits magnitude and 1 sign bit. Thus there are 28 -2

possible positive values, 28 - 2 negative values, and zero. Increased resolution
requires more hardware due to a larger random number generator, neuron re-
randomizer and rate multiplier. Kim et al.[20] has shown that a 9 bit weight pro-

vides an acceptable result for neural network classification and generalization.

Rapid-Prototyping of Artificial Neural Networks 39

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

4.2 Overview of Xilinx Field Programmable Gate Arrays

In 1985, a new technology for implementing digital logic was introduced, Field
Programmable Gate Arrays (FPGAs). These devices could be viewed as a cross between
Mask-Programmable Gate Arrays (MPGAs) and Programmable Logic Devices (PLDs).
FPGAs are capable of implementing significantly more logic than PLDs, because they can
implement multi-level of logic, while most PLDs are optimized for two-level logic. While
they do not have the capacity of MPGAs, they also do not have to be custom fabricated,
greatly lowering the costs for low-volume parts and avoiding long fabrication delays. One
of the best know FPGAs is the Xilinx Logic Cell Arrays(LCAs)[2]. In this section their

third generation FPGA, the Xilinx 4000 series will be discussed.

Xilinx FPGAs consist of an array of uncommitted logic elements that can be
interconnected in a general way like MPGAs. It uses static RAM (SRAM) cells as
the programmable element so that it can be re-programmed as many times as
the designer wishes. Figure 4.4 shows a typical architecture of a Xilinx FPGA. It
is a symmetrical array architecture, consisting of a two-dimensional array of
Configurable Logic Blocks (CLBs) that can be connected by programmable inter-
connection resources. The interconnect comprises segments of wire, where the
segments may be of various lengths. Present in the interconnect are programma-
ble switches that serve to connect the CLBs to the wire segments, or one wire
segment to another. Logic circuits are implemented in the FPGA by partitioning

the logic into individual CLBs and then interconnecting the blocks as required

Rapid-Prototyping of Artificial Neural Networks 40

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

via the switches. The I/O Blocks (I0Bs) surround the boundary of the FPGAs,

providing the interface between the packages pins and internal signal lines.

I/0 Blocks ——=1 1 [[@ 1 B &3 £

Configurable
Logic Blocks

Programmable
Interconnect

Figure 4.4: Xilinx FPGAs architecture.

A Xilinx 4000 series CLB, as shown in Figure 4.5, is made up of three Lookup
Tables (LUTs), two programmable flip-flops, and multiple programmable multi-
plexers. The LUTs allow arbitrary combinational functions of their inputs to be
created. Thus, the structure can perform any function of five inputs (using all
three LUTs, with the F & G inputs identical), any two functions of four inputs
(the two 4-input LUTs used independently), or some functions of up to nine

inputs (using all three LUTSs, with F & G inputs different). SRAM controlled mul-

Rapid-Prototyping of Artificial Neural Networks 41

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

tiplexers then can route these signals out the X and Y outputs, as well as to the
two flip-flops. The inputs at top (C1-C4) provide the third input to the 3-input
LUT, enable and set or reset signals to the flip-flops, and a direct connection to
the flip-flop inputs. This structure yields a very powerful method of implement-
ing arbitrary, complex digital logic. Note that there are several additional fea-
tures of the Xilinx FPGA not shown in these figure, including support for

embedded memories and carry chains.

c1 2 3 C4
Py by
[LHL_DIN SR _EC]
[1

{_S/R

G3— Fanotion O
G2—d] -
of G1-G4

3 b SR B ——
i AND H1 Y
F4—o| | .
Lookup s
F3—— Function _ K= b
F2—— of F1-F4)

Figure 4.5: XC4000 CLB

The CLBs are surrounded by horizontal and vertical routing channels that per-
mit arbitrary point-to-point communication. All internal connections are com-
posed of metal segments with programmable switching points to implement the
desired routing. There are three main types of interconnect, distinguished by the

relative length of their segments: single-length lines, double-length lines, and

Rapid-Prototyping of Artificial Neural Networks 42

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

longlines. Single-length lines travel the height of a single CLB, where they then
enter a switch matrix. The switch matrix allows this signal to travel out vertically
and/or horizontally from the switch martix. Thus, multiple single-length lines
can be cascaded together to travel longer distances. Double-length lines are sim-
ilar, except that they travel the height of two CLBs before entering a switch
matrix, thus double-length lines are useful for longer-distance routing, travers-
ing two CLB heights without the extra delay and the wasted configuration sites
of an intermediate switch matrix. Finally, longlines are lines that go half the chip
height, and do not enter the switch matrix. In this way, very long-distance
routes can be accommodated efficiently. With this rich sea of routing resources,
the Xilinx 4000 series is able to handle fairly arbitrary routing demands, though
mappings that emphasize local communication will still be handled more effi-

ciently.

4.3 Design Flow of Pulse Code Neural Network Hardware

Although the Xerion neural network simulator is valuable tool for simu-
lating pulse-code networks, another goal of this thesis is to search for a design
flow generating FPGA hardware from a high level network description. Ideally
the design flow progresses from the Xerion neural network simulation to the
generation of a Xilinx bit file for programming the FPGA device. Xerion is used to
simulate and train the pulse-code neural network, iterate the design, and then

generate a network description file including the network topology and final

Rapid-Prototyping of Artificial Neural Networks 43

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

Xerion Neural Network Simulator

Xerion
VYHDL Generation

NN training
and simulation

Mentor Graphics Top-Down Tools

Design Architect

VHDL Compilation,
Schematic Capture

Y

NeoCad Library

VHDL
Simulation

Autologic Gate-Level .
Simulation { Mentor Design Back Annotated
Synthesis and Database Design Database
Optimization
Annotated
Simulation
ENWrite QuickSim ENRead
Edif200 Functional (Edif200
gletiist Writer) Verification Netlist Reader)
NeoCAD FPGA Foundry

— To Xilinx FPGA

Figure 4.6: Pulse-code neural network design process

Rapid-Prototyping of Artificial Neural Networks

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

weights. Using this description, a custom ‘C’ program converts it to a VHDL

description. Mentor Graphics Top-Down Tools [21] are used for VHDL! compi-
lation, syntax verification, synthesis, optimization, and simulation. NeoCad
FPGA Foundry tools[22] are used to map the design to a physical FPGA device
and to create the bit file for programming the Xilinx chip. Static timing analysis
of the placed and routed design is also done within the NeoCad tools. Finally, the
design information is back-annotated to a Mentor Graphics database and func-
tionally tested against the top-level VHDL testbench. The complete design flow is

shown in Figure 4.6

4.3.1 Database Structure

As the design goes through various tools, it is very important to organize
the database properly. Many procedural problems can be avoided by planning
the directory structure. Figure 4.7 illustrates one example of how to organize

design database for the design.

nn_design

xerion vhdl_src work schem neocad

Figure 4.7: Database organization

1. VHDL - VHSIC Hardware Description Language is a language for designing integrated circuits.

Rapid-Prototyping of Artificial Neural Networks 45

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

The neural network design directory is divided into five sub-directories for
Xerion simulation, VHDL source, synthesis and optimization, gate-level sche-

matic and the physical FPGA layout.

4.3.2 Xerion Neural Network Simulator

Xerion is used to train and simulate the pulse code neural networks, as
mentioned in the previous chapter. The input of the simulator is a text file with
the description of the network topology and example training data. The networks
train with the backpropagation algorithm. Once the training is completed,
Xerion generates a network specification for hardware implementation. This

specification includes the topology and the weights of synapses.

4.3.3 VHDL Code

The network specification generated from Xerion is converted into VHDL
code for hardware implementation. VHDL is a language for designing Integrated
Circuits, which can describe the circuits at the behaviour and/or structure level.
In order to ensure that the VHDL code is synthesizable, the designs must be
described at Register Transfer Language (RTL) level. In addition, there are cer-
tain code styles to use when targeting Xilinx FPGAs. Appendix A provides design
hints for writing VHDL for Xilinx FPGA designs. A custom “C” program is used to
generate the synthesizable VHDL code for Xilinx FPGAs from the network speci-

fication.

The VHDL description of the network is hierarchically organized. The top-level

Rapid-Prototyping of Artificial Neural Networks 46

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

circuit represents the connections between the neuron/synapse units and CA
random number generators. It is described in structural VHDL. The neuron/

synapse units and CAs are described in RTL descriptions.

Each VHDL component must have an entity which defines the I/O of the model.
Each VHDL component in the design also has several architectures. For neu-
ron/synapse units and CAs, the RTL description of the circuit is in an architec-
ture called RTL. The top-level circuit uses a structural VHDL model which

should be in an architecture called struct.

Other VHDL architectures are also necessary. In order to facilitate the creation
of a hierarchical schematic for the top-level circuit, a dummy architecture has to
be created for each low-level circuit (neuron/synapse elements and CAs). These
dummy architectures have nothing between the BEGIN and END statements in
the VHDL. They are just place holders for the schematic generation process. A
schem architecture is required of the top-level circuit. The architecture is the
same as the struct architecture except that it calls only the dummy VHDL archi-

tecture for the circuits beneath it.

Mentor Graphics’ system-1076 compiler performs the syntax checking and data-
base generation of the VHDL design. Once syntactically correct, the compiler
creates a Mentor Eddm database from the VHDL code which can be simulated in

Quicksim for simulation and read into Autologic for synthesis.

Rapid-Prototyping of Artificial Neural Networks 47

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

4.3.4 Synthesis and Optimization

After compiling the VHDL files, the Mentor Eddm database is read into
Autologic and synthesized to the Xilinx XC4000 FPGAs. The NeoCad Xilinx
XC4000 library is used and the target environment variables are set to commer-

cial derating factors.

The neuron/synapse elements and CA circuits in the low-level hierarchy are
written in RTL level VHDL. This code is synthesized directly to XC4000 gates.
These circuits are synthesized separately. All hierarchy implied in the VHDL
code at this level is flattened to improve the area optimization. The optimization
recipe in Autologic used is AREA(LOW) with an AREA REPORT. Since timing

optimization is not available this is all that is required at this level.

Symbols must be created for each low-level circuit so that they can be referenced
by the top-level hierarchical schematic. These symbols are automatically gener-
ated when the VHDL entities are compiled. To save these symbols, they must be

opened within Design Architect and saved.

The top-level for this design is only the connection between the neuron/synapse
and CAs, which is defined in a structural VHDL netlist. In order to generate a
hierachical schematic for the top-level circuit in Autologic, the following multiple

step process is used:

Rapid-Prototyping of Artificial Neural Networks 48

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

e All neurons/synapse units and CAs circuit must have a dummy architec-
tures.

* The low-level circuit must have been previously synthesized to gates and a
symbol created to represent the circuits.

e The top-level circuit should have a schem architecture which calls the
dummy architecture of the low-level circuits. This was previously mentioned.

e The schem architecture of the top-level circuit is synthesized and optimized
into a schematic.

* On the resulting schematic, the dummy components are replaced with sym-
bols for the real circuits that have been previously synthesized.

e Back in Autologic, the resulting schematic with real componets is re-opti-
mized. The I/O ports and buffers are added to the final schematic.

4.3.5 Design Verification

— o e o ———— — P o v = = - —

'
]

TEST ' TEST
| DRIVER 1 Inputs MONITOR
| ;
| i

i
: —
l
|
z - |
i Behavioral Behavioral
! VHDL
!
I
I
i
i
¥

- - —— - - ——— . - o - - - ——

Figure 4.8: VHDL testbenches

Quicksim is used to simulate the operation of the circuits in both VHDL and
XC4000 gate representations. To functionally verify the design, VHDL test-

benches are created for the top-level circuits. After synthesis, the same test-

Rapid-Prototyping of Artificial Neural Networks 49

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

benches are used to simulate the gate-level circuit. The VHDL and a gate opera-

tion are compared to make sure they match.

The VHDL test-benches are only a piece of behavioural VHDL to drive the input.
If the design is complex, then a piece of VHDL can also be written to monitor the
outputs and report if an error is seen. The advantage to the VHDL driver/moni-
tor test-bench is that it can be used to test the gate-level models as well as the
VHDL. Figure 4.8 shows the connections of a VHDL testbench and how it can be
used to drive and monitor the operation of a circuit block. For pulse stream neu-
ral network design, the test-driver provides the input example to the network,
and the test-monitor uses a number of up counters to monitor the pulse density

of the output neurons.

4.3.6 Neocad FPGA Foundry

The Neocad foundry tools are used to map the Xilinx XC4000 gates into a
physical array. The NeoCad tools accept data from Mentor Graphics in the form
of EDIF 2 0 O netlist. Mapsh, mapping tool, maps the EDIF file into the specific
Xilinx part and package, performs the design rule checking. and generates a
NeoCad database file for place and route. Parsh, place and route tool, performs
the place the and route of the FPGA. Trcesh is then used to analysize the timing
of the design. The layout related timing information is back-annotation to Men-
tor Graphics design verification tools. Finally, Neocad can create a bitstream file

which is used to physically program the Xilinx FPGA chip

Rapid-Prototyping of Artificial Neural Networks 50

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

4.4 FPGAs Design Examples

Three neural networks example problems are implemented into Xilinx
FPGAs: the XOR, the encoder and the cheque character recognition. The first
two examples are implemented onto Xilinx XC4010 PG -6 FPGAs. Appendix B
provides a quick reference of different Xilinx 4000 series FPGAs that are availa-
ble. The XC4010 part has 4000 CLBs equivalent to 10,000 gates. Therefore, it is
able to accommodate a significantly large design in a single FPGA. The speed
grade of this part is 6 which means there is a 6ns delay of each CLB. The last
problem is implemented on a Xilinx XC4013 FPGA. In this section, the simula-
tion of the XOR problem will be discussed and the area and timing of all three

problems will also be examined.

4.4.7 XOR Problem
The XOR problem, as mentioned in the chapter 3, is implemented into
Xilinx XC4010 FPGAs. The networks to solve this problem consists of two input

neurons, two hidden neurons and output neuron.

A top-level testbench was created to Ve;ify the VHDL model and the gate level
representation. This testbench presented inputs to the network and monitored
the output pulse density using and up-counter. Figure 4.9 shows the simulation
result of the network. The curve in the figure represents the value of the coun-
ter in the re-randomizer of the output neuron. The initial value of re-randomiz-

ers has a “precharging” value, 1/2 of the maximum counter value. With each

Rapid-Prototyping of Artificial Neural Networks 51

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

presentation of an input vector the value of re-randomizer is reset to “precharg-
ing” value. The simulation result has proved that the design is functioning as

expected.

Output pulse density

Figure 4.9: XOR simulation results

The complete layout of the design is shown in Figure 4.10. The design required
69 CLBs and 5 IOBs. It has the interesting result that there are two clusters of
CLBs in the layout. The small cluster of the CLBs is the output neuron and the
larger one is the two hidden neurons. It only takes 23 CLBs per neuron in this

design.

Neocad's timing analysis tools, Trcesh, is used to perform the static timing anal-
ysis. Figure 4.11 shows the timing report of the XOR design. It details the maxi-

mum delay path of the design. This report identifies both logic delays and route

Rapid-Prototyping of Artificial Neural Networks 52

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

delays. The ‘R’ next to the delay entry indicates a delay based on rising edge tim-
ing of signals through a IOB or CLB. The maximum delay path of this design is
171.585ns. The report also shows a breakdown of the percentage of delay attrib-
uted to logic vs. routing delays. In this case 53.6% is logic delay and 46.4% is
routing delay. The total delay of the design is 171.585ns logic and routing delay
plus 8.0ns setup, which is 179.585ns. Therefore the maximum operating fre-

quency of the XOR design is 5.568MHz.

D, .g .0 .a .

.8, .9 .0 .8 i
=T = = R =
=N = = N « AT

ol .o .p A .A.a .
2 .9 .8, .0 .8 .4

Y = N o I =~ R « R

ol.o .o .o .go.a L
cl].o .0 .0 .0 .0 .5
of.g, .8 .0 .8 .0 .
lo..o .o .0.0 .0 .
T S w YR v G o N = R
2% n N S = R = I = B = B

a .o .4 .48 .p /A9
inl |o .0, .0 .0, .0 .0 .0 .4 .

i

.D- G. G
aillo

ol v v we we e we

.Aal.g .8 .0 oo .o .Aa A g
B | I N O N U = O = T = N s Y O

.ol.n.g.g oo .p .o .o .0 i
18 0| la .o .o .0, .0 .0 .0 .4 .

Ja lalle .o .0 .0 .8 .0 .0 .0 .

Ta o ollla
-G- 'QD‘ '-Gc U

=]
dafc
Ialo

Fr". 81,0

[m ¢
r

o
o
=)
g

i
q
q
=}
o
=)

E)

0= < T < T T Y = S~ Y = R I =1 [-
‘e .0 .80 .0 .0 .0 .0 .0 .0
G G ==
S N N = Y Y = N = = A=

‘-G- '.D- '-D- '-Dl '-D- '-D- .-D. .'U- '.D- '-U- -
=T T =T - W = = R = = I = = = ™

’ -G- M -U- . -D- - -D- - .Dn * -D- - -m- M IG- M -D- “w

’ -G- M -D- . -D- - .D- . .D. . -D- . -D- . 'U

‘0.8 0.8 .0 .0 0]

’ IUI '-D- . .DI - DD. * -D- . -D. - 'Dl . IGI . -D - ln-
’ -a- ’-n- - tu- . -nn M -ﬂl . -D- - -Q- - -u- . ln M -n-

.= N R R = R = Y = O &

.= R = R = R = R »)
= QU = A= R = N A ¢

' .p .0 .p .p A A .49 .0 .0
: '@ .0, .0 .p .0 .0 .0 .0 .0 .0
:'Qq .0 .0 .pop A A a0 0
RN o [= R R = Y x P s P o I w = X

P8 .n .8 .8.8 .02 .9

[
v
[
'
g
s
[}
-

Figure 4.10: The FPGA layout of XOR problem

Rapid-Prototyping of Artificial Neural Networks 53

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

R/F Delay
R 5.000ns
R 10.112ns
R 6.000ns
2.182ns
6.000ns
3.190ns
6.000ns
10.023ns
6.000ns
5.784ns
6.000ns
8.307ns
7.000ns
8.296ns
8.000ns
9.751ns
6.000ns
1.686ns
6.000ns
10.086ns
8.000ns
1.954ns
8.000ns
5.092ns
6.000ns
1.611ns
8.000ns
1.511ns

- - R R B~ I~ B - B~ B - B~ B B B A RS

8.000ns setup requirement (totaling 117.000ns) by 54.585ns

Site Resource
CLB_RI3C16.K to CLB_RI3C16.XQ /I$181/1$1263%SYNTH__FUNCARG__2(1) (from /i_CLOCK)
CLB_R13C16.XQ to CLB_RI3CI3.F2 /I$181/1$1263%SYNTH__FUNCARG__2(1)
CLB_RI13C13.F2to CLB_RI3C13.X /I$181/_N42
CLB_R13CI13.X to CLB_RI3C14.F1 /I$181/_N42
CLB_R13C14.F1 1o CLB_R13C14.X /1$181/_G32/ANDO
CLB_RI13Cl14.X to CLB_RIOC14.F2 /15181/_G32/ANDO
CLB_RI0CI4.F2 to CLB_R10C14.X /I$181/_N41
CLB_R10C14.X to CLB_R10CI2.F2 /I$181/_N4l
CLB_RIOCI12.F2 to CLB_R10CI2.X /I$181/_G24/ANDO
CLB_RIOC12.X to CLB_R7C8.F1 /1$181/_G24/ANDO
CLB_R7C8.F1t0o CLB_R7C8X /NEURON_LAYER1(0)
CLB_R7C8.X to CLB_R8C14.C4 /NEURON_LAYER1(0)
CLB_R8C14.C4 to CLB_R8C14.Y /I$181/_NO
CLB_R8C14.Y to CLB_RI3C15.F4 /I$181/_N22
CLB_R13Cl5.F410 CLB_R13C15.Y /I$181/_N5
CLB_RI3C15.Y to CLB_R13C17.F4 /I$181/_N69
CLB_RI13C17.F4t0o CLB_RI3C17.X /I$181/_N6
CLB_R13C17.X to CLB_R14C16.G4 /15181/_N6
CLB_R14C16.G4 to CLB_R14C16.Y /I$181/_N38
CLB_R14C16.Y to CLB_R14CI15.F2 /I$181/_N92
CLB_RI4C15.F2 to CLB_R14C15.X /I$181/_N52
CLB_R14C15.X to CLB_R1I5C15.F1 /I$181/_N52
CLB_RI15C15.F1 to CLB_R15C15.X /I$181/_N12
CLB_RI5C15.X to CLB_R8C16.F3 /I$181/_NI2
CLB_R8C16.F3 to CLB_R8C16.X /1$181/_GO/AND1
CLB_R8C16.X to CLB_R8CI5.F3 /I$181/ GO/ANDI1
CLB_R8CI15.F3to CLB_R8CI15.Y /I5181/_N28
CLB_R8CI5.Y to CLB_R7CI5.F2 /I$181/_N28 (to /i_CLOCK)

171.585ns (53.6% logic, 46.4% route), 14 logic levels.

5.568MHz is the maximum frequency for this preference.

Figure 4.11: The timing report of the XOR FPGA design

Rapid-Prototyping of Artificial Neural Networks

54

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

4.4.8 Encoder Problem

o 3 K BCCIRTCS I o o =T =1 - ES
:qqq:u_:]‘]q.q::gcr:u CIU{JD:{I”UUU:!IU
R R EEREE Chbs Y o o o
. 5 MG . =3
S CEE ~o) o of o o o .u:r}
\ i | .
R ClE SOl o o P : ket
=L oo 3] o 0.
L == g L 13 I
=] l;: o old Hlc] Jiof o]l L O 11:1:
R S S M B Eas !
" ld o] gl gl o o] [cH# (=X
\ s . o T e
S o _) D,,h?' o] =
e B T & *
N o] oy c[l|o o] | oif g 1
L Fa b Zhlal
3 - FE, 1 T e iy

a .o o .ql el la) g e ok

Figure 4.12: The FPGA layout of 5-4-5 encoder

The other design example is an encoder. The network has five inputs, four hid-
den and five output neurons. This network is smaller than the one discussed in
chapter 3, but it is the same class of problem. The FPGA layout of the encoder

design is shown in Figure 4.12. There are 215 CLBs and 12 I0Bs used. The total

Rapid-Prototyping of Artificial Neural Networks 55

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

logic and routing delay is 249.346ns with 44.9% from logic and 55.1% from
routing. The routing delay in this design has higher percentage than the XOR as
it has more synaptic connections between the layers. The maximum operating
frequency is 3.886Hz. The average number of CLBs per neurons are 23.89. The
design has more synapses per neuron than the XOR but this average is still very
close to that of the XOR. As all the synapses are combinational logic, the place

and route is able to efficiently pack them into the CLBs.

449 Cheque Character Recognition

This problem was discussed in chapter 3 and the network has 25 inputs,
6 hidden and 10 output neurons. This design is implemented into a Xilinx
XC4013 FPGA. It used 506 CLBs and 37 IOBs and the average number of CLBs
per neurons is 31.63. The maximum delay path of this design is 340.09 with
32.6% logic and 67.4% routing. The maximum operating frequency is

2.873MHz.

Rapid-Prototyping of Artificial Neural Networks 56

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

oo =3y ﬂ_‘—hﬁ
vl I VO o . o B b Yool IR g '! S ‘ ol T B S i I | R
. -‘ : K | i T . et |] A= | v
00 o dsds g_|cllseh O] o |=
—
G 0 = o
~
o o MR
B i
T .
R 3
N)' .
ERI | (=] [} R
S I [=A |0' a3
e %41,
: sil ; ; ARE
N % ol s
- N v L
Y [=} I (=
o,
£ D: w
o
2 It 4l &)
o i
. E C

|

=)
4n

=)

¥i 0}

I

o
el

Ko Ke Rl 3

2t |
(1

o [l (o
Y

AT
1

I
B

1
4
410, ol io

Figure 4.13: The FPGA layout of cheque character recognition

Rapid-Prototyping of Artificial Neural Networks

57

CHAPTER 4 - Implementation of Pulse-Code Neural Networks in Xilinx FPGAs

4.5 Summary

This chapter has presented a hardware implementation of multi-layer
neural networks using pulse-code arithmetic. The design of the networks is hier-
archically organized so that they results in more optimized circuity during logic
synthesis and optimization. The networks are divided into neuron/synapse
units and random number generators. This chapter also discussed a re-rand-
omizer for the neuron output in order to prevent conrrelation between the neu-

ron pulse streams.

A top-down design flow for constructing these networks has been discussed.
This flow progresses from a high-level network description to the generation of a
Xilinx bit stream for programming the Xilinx FPGA device. The use of a VHDL
testbench for design verification was also discussed. Following this, three exam-
ple problems were implemented on Xilinx 4000 series FPGAs. The implementa-
tion results showed that the network are extremely compact and use only 23

CLBs per neuron/synapse unit for XOR problem.

Rapid-Prototyping of Artificial Neural Networks 58

Chapter 5

Conclusions and
Future Work

This thesis has demonstrated the implementation of pulse-code neural
networks in Xilinx FPGAs. The hardware requirements of these networks was
shown to be minimal; only simple digital gates were required to perform the
arithmetic. Also, the use of the backpropagation learning algorithm for training,
as well the simulation of these networks was discussed. The simulation results
suggested that the weights in a neural network must be very small to prevent
the neuron from constantly saturating and multi-layers networks should be

used in order to overcome the fan-in limitation of the neuron.

The hardware architecture of these networks was described as well the top-down
design flow for implementing these networks in Xilinx FPGAs. In addition, two
design examples, the XOR and encoder, were implemented and examined. The
implementation results have shown that the average number of CLBs per neu-

ron/synapse unit was only 23 for XOR problem. The increase in the number of

Rapid-Prototyping of Artificial Neural Networks 59

CHAPTER 5 - Conclusions and Future Work

the synapse connections of the neuron did not significantly contribute to this
hardware cost. As a result a significantly large network can be implement on a
single Xilinx FPGA. For example, approximately 44 neuron/synapse units could
be implemented on a Xilinx XC4025 part, the largest Xilinx 4000 series part
which has 1024 CLBs on a single chip. With the aid of the current state of art
CAD tools, the design cycle took only days to complete as opposed to traditional

design methodology of weeks or months.

Continued work in this area should investigate the use of time multiplexing to
further increase the number of neurons per device. The idea is to have one single
physical layer of neurons and re-use them for different layers emulating multiple

layers of neurons.

The use of multiple FPGA environments for implementing these networks should
also be investigated. In this case, very large scale neural networks can imple-
mented for prototying. As well, other FPGAs device should be considered. One
potential candidate is the new Xilinx 8000 series FPGA, which is a sea of gate
architecture. Since neural network structures are highly regular with little glo-
bal wiring, the basic architecture is similar to the architecture of the XC8000

series FPGAs, therefore better utilization of the FPGA can be achieved.

A sophisticated high level interface that compiles a given neural architecture

directly to a single FPGA or multi-FPGA based hardware system should be devel-

Rapid-Prototyping of Artificial Neural Networks 60

CHAPTER 5 - Conclusions and Future Work

oped. However, the logic synthesis tools could be a problem for such systems as
the current logic synthesis tools do not work well when the design exceeds 3000
gates. Further work should be done on partitioning the networks into small
pieces for logic synthesis as well as on the use the Mentor Graphics’ design man-

agement software, WorkXpert, to automate the design flow and design capture.

Rapid-Prototyping of Artificial Neural Networks 61

Appendix A

Targeting VHDL Design
to Xilinx FPGAs

As the density and complexity of Xilinx FPGA designs increase to 20,000
gates and beyond, the traditional schematic capture design entry is often cum-
bersome. The use of hardware description languages (HDLs), such as VHDL and
Verilog HDL, can raise designer productivity. High-level languages combined
with logic synthesis can provide a consistent design methodology across a range
of technologies. By raising the level of design abstraction, synthesis tools can
increase productivity, ensuring error-free gate level realizations and freeing
designers for more creative tasks. However, the designer should not ease up on
hardware implementation consideration when synthesis tool aids are available.
The methods for designing ASICs do not always apply to designing with Xilinx
FPGAs. ASICs have more gates and routing resources than Xilinx FPGAs. Since
ASICs have a large number of available resources, the designer can easily create
inefficient code that results in a large number of gates. When designing with Xil-

inx FPGAs, the designer must create efficient code.

Rapid-Prototyping of Artificial Neural Networks 62

APPENDIX A - Targeting VHDL Design to Xilinx FPGAs

The VHSIC Hardware Description Language (VHDL) is a language for designing
Integrated Circuits (ICs), which can descibe the designs at the behaviour and/or
structure level. VHDL designs can be behaviourally simulated and tested to be
functionally correct before synthesis. However many VHDL constructs are not
supported by synthesis tools. In general, only a subset of VHDL constructs,
called Register Transfer Level (RTL) constructs, are accepted by the synthesis
tools. In addition, systhesis tools intreprete the VHDL code differently when tar-
geting different technologies. The following guidelines ensure VHDL code that
takes the best advantages of Xilinx’s resources and produces the same function-

ality after synthesis.

A.1 Wait for XX ns Statement

Wait for XX ns statements specifies the number of nanoseconds that must
pass before a condition is executed. This statement does not synthesize to a
component. In designs that include this statement, the functionality of the sim-

ulated design does not match the functionality of the synthesized design.

A.2 After XX ns Statement

After XX ns statement is usually used as a condition of a signal assign-
ment. This statement is usually ignored by the synthesis tool. An example of this
statement is:

Q <=0 after xx ns

Rapid-Prototyping of Artificial Neural Networks ‘ 63

APPENDIX A - Targeting VHDL Design to Xilinx FPGAs

A.3 Initial Values

Assigning signals and variables initial values are ignored by most synthe-
sis tools. The functionality of the simulated design may not match the function-
ality of the synthesized design. For example, do not use initialization statements

such as the following:

variable SUM: INTEGER:=0

A.4 Order and Group Arithmetic Functions

The ordering and grouping of arithmetic functions influence design per-
formance. For example, the following two statements are not equivalent:

ADD <= Al + A2 +A3 +A4;

ADD <= (Al + A2) + (A3 + A4d);
The first statement cascades three adders in series. The second statement cre-
ates two adders in parallel: Al + A2 and A3 + A4. In the second statement, the
two additions are evaluated in parallel and the results are combined with a third
adder. RTL simulation results are the same for both statements, however, the

second statement results in a faster circuit after synthesis.

A.5 Xilinx Name Conventions

Xilinx has reserve names for their FPGA. The following FPGA resource

names are reserved and should not be used to name nets or components:

Rapid-Prototyping of Artificial Neural Networks 64

APPENDIX A - Targeting VHDL Design to Xilinx FPGAs

» Configurable Logic Blocks (CLBs), Input/Output Blocks (IOBs), clock buffers,
tristate buffer (BUFTSs), oscillators, package pin names, CCLK, DP, GND,
VCC, and RST

* CLB names such as AA, AB, and RIC2

e Primitive names such as TDO, BSCAN, M0, M1, M2, or STARTUP

¢ Do not use pin names such as P1 and P2 for component names

¢ Do not use pad names such as PAD1 for component names

For further Xilinx naming conventions, Xilinx Data Books [2] provide a more

detailed references.

A.6 Latches and Registers

VHDL compilers infer latches from incomplete specifications of condi-
tional expressions. Latch primitives are not available in XC4000 CLBs, however,
the IOBs contain input latches. Latches described in VHDL are implemented
with gates in the CLB function generators. For example, the D latch shown in
Figure A.1 is implemented with one function generator. The D Latch imple-

mented with gates is shown in Figure A.2.

Rapid-Prototyping of Artificial Neural Networks 65

APPENDIX A - Targeting VHDL Design to Xilinx FPGAs

LIBRARY mgc_portable ;
USE mgc_portable.qsim_logic.all ;
ENTITY d_latch IS
PORT (GATE, DATA: in gsim_state;
Q: out gsim_state);
end case_ex;

ARCHITECTURE BEHAV OF d_latch IS
begin

LATCH: process (GATE, DATA)
begin
if (GATE ='1") then
Q <=DATA;
end if;
end process; --End LATCH
end BEHAV;

Figure A.1: Latch inference

DATA —4—'>o—3 RESET | LQ o

Figure A.2: Latch implemented with gates

In this example, the VHDL code contains an IF statement without the ELSE
which always implies a latch in gate-level representation. The drawback of a

latch is that it is implemented as a combinatorial feedback loop in a CLB and

Rapid-Prototyping of Artificial Neural Networks 66

APPENDIX A - Targeting VHDL Design to Xilinx FPGAs

synthesis tools do not process hold-time requirements because of the uncer-
tainty of routing delays. In order to eliminate unnecessary latches, it is desirable
to replace them with D registers, as each CLB has two D flip-flops. To convert a
latch to a D register uses an ELSE clause in the IF statement or a WAIT UNTIL

statement.

In all other cases (such as latches with reset/set or enable), use the D flip-flop
instead of a latch. This rule also applies to JK and SR flip-flops. Table A.1 pro-
vides a comparison of area and speed for a D latch implemented with gates and
a D flip-flop.

Table A.1: D latch implementation comparison

D Latch D Flip-Flop

Advantages/ VHDL that infers D latch imple- | Requires change to VHDL to
Disadvantages | mented with gates. Combinato- | convert D latches to D flip-flops,

rial feed-back loop results in No hold time or combinatorial
hold-time requirement. loop

Area I Function Generator 1 Register

Speed 1 Logic Level 1 Logic Level; no combinatorial

Combinatorial feedback loop loop.

A.7 Implementing Multiplexers with Tristate Buffers

A 4-to-1 multiplexer is efficiently implemented in a single XC4000 CLB.
The six input signals (four inputs, two select lines) use the F, G, and H function

generators. Multiplexers that are larger than 4-to-1 exceed the capacity of one

Rapid-Prototyping of Artificial Neural Networks 67

APPENDIX A - Targeting VHDL Design to Xilinx FPGAs

CLB. For example a 16-to-1 multiplexer requires five CLBs and has two logic lev-
els. These additional CLBs increase area and delay. In order to utilize XC4000
resources, using tristate buffers (BUFTs) is recommended to implement multi-

plexers larger than 4-to-1.

A VHDL design of a 5-to-1 multiplexer built with gates is shown in Figure A.3.
Typically, the gate version of this multiplexer has binary encoded selector inputs
and requires three select inputs (SEL<2:0>). The schematic representation of

this design is shown in Figure A.3

LIBRARY mgc_portable ;
USE mgc_portable.qsim_logic.all ;
ENTITY mux_gate IS
PORT (sel: in gsim_state_vector(2 downto 0);
A,B,C,D,E: in gsim_state;
MUX_OUT: out gsim_state);
end mux_gate;

ARCHITECTURE BEHAYV OF mux_gate IS
begin

SEL_PROCESS: process (SEL,A,B,C,D,E)
begin
case SEL is
when "000" => MUX_OUT<=A;
when "001" => MUX OUT<=B;
when "010" => MUX_OUT<=C;
when "011" => MUX_OUT<=D;
when others => MUX_OUT <=E;
end case;
end process; --End SEL._PROCESS
end BEHAV;

Figure A.3: Implementing 5-to-1 MUX with gates

Rapid-Prototyping of Artificial Neural Networks 68

APPENDIX A - Targeting VHDL Design to Xilinx FPGAs

C — MUX_OUT

SEL<0>

SEL<1>
SEL<2>

Figure A.4: 5-to-1 MUX implemented with gates

LIBRARY mgc_portable ;
USE mgc_portable.qsim_logic.all ;
ENTITY mux_tbuf IS
PORT (sel: in gsim_state_vector(4 downto 0);
A,B,.C,D,E: in gsim_state;
MUX_OUT: out gsim_state_resolved_x);
end mux_tbuf;

ARCHITECTURE BEHAV OF mux_tbuf IS
begin
MUX_OUT <= A when (SEL(0)='0") else 'Z";
MUX_OUT <= B when (SEL(1)='0") else 'Z';
MUX_OUT <= C when (SEL(2)='0") else 'Z';
MUX_OUT <= D when (SEL(3)='0") else 'Z';
MUX_OUT <=E when (SEL(4)='0") else 'Z';
end BEHAV;

Figure A.5: Implementing 5-to-1 MUX with BUFTs

Rapid-Prototyping of Artificial Neural Networks

69

APPENDIX A - Targeting VHDL Design to Xilinx FPGAs

The VHDL design shown in Figure A.5 is a 5-to-1 multiplexer built with tristate
buffers. The tristate buffer version of the multiplexer has one-hot encoded selec-
tor inputs and requires five select inputs SEL<4:0>. The schematic representa-

tion of this design is shown in Figure A.6.

SEL(0)

A
SEL(1)

B
SEL(2)

MUX_ouUT
C

SEL(3)

D
SEL(4)

E

A aaag

Figure A.6: 5-10-1 MUX implemented with BUFTs

Rapid-Prototyping of Artificial Neural Networks 70

Appendix B

Xilinx Device Quick

References

Table B.1: Xilinx Devices, Packages and Speed Grades

Device Packages Speed Grades
XC4002A | PC84 PQI100 PG120 -5 -6
XC4003A | PC84 PQ100 CB100 CQ100 PG120 -5 -6
XC4003 PC84 PQ100 CB100 CQ100 PG120 -5 -6
XC4004A | PC84 PQ100 PG120 PQ160 -5 -6
XC4005A | PC84 PG156 PQ160 PQ208 -5 -6
XC4005 PC84 PG156 PQ160 CB164 PQ208 -5 -6 -10
XC4006 PG156 PQ160 PQ208 -5 -6
XC4008 PG191 CB196 PQ208 -5 -6 -10
XC4010 PG191 CB196 PQ208 MQ208 -5 -6 -10
XC4013 PG223 MQ208 PQ240 MQ256 -5 -6 -10
XC4025 PG223 PG299 MQ240 -5-6 -10

Rapid-Prototyping of Artificial Neural Networks

7

References

[1]

[2]

[3]

[4]

[5]

[6]

(7]

(8]

B. Gilbert, “A High-Performance Monolithic Multiplier Using Active Feedback,”
IEEE J. Solid-State Circuits, vol. SC-9, pp. 364-373, 1974.

Xilinx Inc., The Xilinx Data Book, 1994.

W. S. McCulloch and W. Pitts, "A Logical Calculus of The Ideas Immanent in Ner-
vous Activity," Bulletin of Mathematical Biophysics 5, pp. 115-133, 1943.

F. Rosenblatt, "Principles of Neurodynamics," New York: Spartan Books, 1959.

M. Minsky and S. Papert, "Perceptrons: An Introduction to Computational Geom-
etry," Cambridge, MA: The MIT Press, 1969.

D. Rumelhart, G. Hinton and R. Williams, "Learning Internal Representation by
Backpropagating Errors," Nature: 323, pp. 533-536, 1986.

B. R. Gaines, “Stochastic Computing Systems,” Advances in information System
Science, volume-2, Julius T. Tou, editor, Plenum Press, 1969.

P. Mars, Stochastic and Deterministic Averaging Processors, The Institution of
Electrical Engineers, London and New York, 1981.

Rapid-Prototyping of Artificial Neural Networks 72

S

References

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S.W. Golomb, “Shift Register Sequences”, Holden-Day Publishing Co., San Fran-
ciso, 1982.

P. Hortensius, R. McLeod, B. Podaima, “Cellular Automata Circuits for Built-In
Self-Test”, IBM Journal of Research and Development vol 34, March, 1990.

P. Hortensius, “Parallel Computation of Non-deterministic Algorithms in VLSI,”
Ph.D. thesis, Department of Electrical and Computer Engineering, University of
Manitoba, 1987. - -

F. Breglez, C. Gloster, and G. Kedem. “Hardware-based Weighted Random Pat-
tern Generation for Boundary Scan,” IEEE International Test Conference, Aug
1989.

J. Tomberg, T. Ritoniemi, K. Kaski and H. Tenhunen, “Full Digital Neural Network
Implementation Based on Pulse Density Modulation,” Proc. IEEE Custom Inte-
grated Circuits Conf., (San Diego, CA; May 15-17), pp. 12.7.1-12.7.4, 1989.

J. Tomberg and K. Kaski, “Pulse-density Modulation Technique in VLSI Imple-
mentation of Neural Network Algorithms,” IEEE Journal of Solid State Circuits,
25(2), pp. 1277-1286, Oct. 1990.

M. Tomlinson Jr., M. Walker and M. Silvilott, “A Digital Neural Network Archi-
tecture for VLSL,” Proc. IJCNN-90, pp. 545-550, San Diego, CA, 1990.

J. Dickson, R. McLeod and H. Card, “Stochastic Arithmetic Implementations of
Neural Networks with In Situ Learning,” IEEE International Conference on Neural
Networks, (San Francisco, CA; Mar. 28-Apr. 1), pp. 711-716, 1993.

Drew van Camp, Evan E. Steeg, and Tony Plate. XERION Neural Network Simula-
tor. Computer Science Department, University of Toronto, 1991.

J. Dickson, "Stochastic Arithmetic Implementation of Artificial Neural Networks,"
MSc. Thesis, Department of Electrical Engineering, University of Manitoba, 1992.

Rapid-Prototyping of Artificial Neural Networks 73

References

[19]

[20]

[21]

(22]

D. Rumelhart, J. McClelland and PDP Research Group, Parallel Distributed Pro-
cessing Volume 1, The MIT Press, 1986.

Y. C. Kim, and M. Shanblatt, “Random Noise Effects in Pulse-Mode Digital Mul-
tilayer Neural Networks”, IEEE Transactions on Neural Networks Vol 6, No. 1 s
January 1995.

Mentor Graphics, Bold Browser, 1995.

NeoCad Inc, NeoCad FPGA Foundry Tutorial, 1994

Rapid-Prototyping of Artificial Neural Networks 74

