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ABSTRACT

Scattering of elastic waves by near-surface in homogeneities

are cons i dered.Thei s i nvest i gated.Two i ndependent sets of probì ems

first set consists of a pipel ine embedded in a rectangular trench

of backfiìl or,alternativeìy,two pipel ines embedded in a single trench.

The second set consists of three surface breaking cracks : a verticaì

crack,a h5 incl ined crack and a branched (Y) crack.The exampìes

considered are probìems invoìving plane strain in semi-infinite medium.

A hybrid numerical technigue that combines the finite element method

th eigenfunction expansions is used to obtain the resuìts.Alì the

probìems are independentìy subjected to in-pìane pressure(P),shear (SV)

and Rayleigh waves. ln the first set of problems,dynamic radiaì

dispìacements and hoop stresses on the outer circumferences of the pipes

are presented. ln the second set of probìems,stress intensity factors at

the crack tips and scattered surface displacements are presented.The

dynamic responses of the pipeì ine(s) and the surface breaking cracks are

significantly dependent on the frequency,the angle of incidence and the

nature of the i nc i dent waves.
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CHAPÎER I. INTRODUCTION

t. l trnglneering APPlicatl

The phenomenon of scatteriag and diffractíon of elastic vaves has found

nany practical applicatlons in the fíelds of Earthquake Engineering, non-de-

structlve Ëesting, fracture uechanÍcs, seismic exploration, CÍvil Engiueer-

ing, Acoustics, aud Electromaguetics. In order to stress the importance of

the subject, a few of the above will be discussed briefly. However, it

should be noted that there are rnanÏ other applications of elastic wave

phenomena.

In Earthquake Englneering, the scattering of seismic r¡aves by any

inhonogeneitíes or dÍscontinuities under or oD the ground surface cause's

local auplificatious of the ground motion. Typical inhonogeneities are

undergrouud pípel1nes and tuuoels, structures resting ou or enbedded in the

ground, soiJ. Iayeríng and irregular topography of the ground surface. The

task is to fÍud the resulting stress or displaeenent field at points of

Lnterest.

In the field of non-destructlve testing, ultrasonics pulses are used to

locate defects in a solfd by rneasurÍng the reflection of pulse energy. The

locatiou, size, shape, and orieutation of the defects or obstacles cat be

determined fron the scattered fields. Thus, there is considerable lnterest

iu the scattering caused by the cracks, with a viers towards obtainÍng the

crack geometry fron the scattered field. It fs also possible Èo determine

tnany fundaroental properties of naterials such as elastic constants and

danping characteristics by studyiug the propagation, reflection aud "tt.tur"-
tion of ultrasouic pulses.

Ia fracture mechanics, the quantities of ioterest are the stress inÈen-

sity factors, since they are a measure of the stress environment around a
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erack tip. The crack will propagate when

the critical values. A1so, under dynamic

the stress inteusity factors reach

loading, lt 1s important to knov

the elastodynamic response of the crack because a local stress conceotration

eould result at the crack tfP'

In Clvil Engineeríng, nave scatteriog studies are required to determine

the effects of blast loading on buried structures and shocks c¿used by pile

drivíng. A1so, scatteriug of elastic r¡aves has uany engfneering applícation

fn Acoustics and Electromagnetics.

Á,11 of the problems mentioned above have the sane basic nâture. When

iucident elastíc lraves iuteract wlth iuhomogeneitíes or discontinuities such

as cavlties (e.g., tunnels and pipes), s1Íts (e.g., cracks) and lnclusioos

(e.g., flaws ín rnaterials) in a medium, scattering of elastic rvaves occur as

a consequence of reflection phenomena.

The prlncipal objective of this thesis is to study the scattering of

elastfc waves by near surface inhornogeueít1es. Two sets of problens are

cousidered. The first set cousists of a buried pipeline surrounded by a

rectangular trench of backfíll and, also, tvo pipelÍnes lying parallel to

each other in a si¡oilar backfilled trench (See Fig. 4.I and Fig. 4.2). These

problems are of interest in lifeline earthquake engineering. The second set

1s of interest in uon-destructÍve testing and fracture mechanics, aud

consists of three surface breaking cracks: a vertical crack, a 45o inclined

crack, and a Y crack (See Fig. 5.i and Fig.5.2). Both sets of problems are

subjected to ín-pIaue harmonÍc P, SV and Rayleigh waves. These rlaves n¡ill be

diseussed 1n the next section.

L.2 l{ave Types

Three basic types of saves -- body waves, surface waves, and interface

waves cao propagate depeudiug on the medlun considered. Reference tll

liìì

t:È
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Èfo"" an extensfve review of these three types of nraves and their behavlours.
.'
j.brí"f revier¿ w111 be giveu in the followlng paragraphs.

:-, Iu an infinlte medium or ful1 space, only body waves can propagate.

Tbere are tno types of body waves: dllatational or pressure (P) waves, and

equivoluroinal or shear (SV, SH) waves, each being characterized by a specific

speed. Furthentrore, these wave types can exist independently or uucoupled

fro¡s each other. For a medium having À and y as Lamefs coustants and p as

rhe mass density, the P Lrave propagates with speed C1 = [(À + 2u)/p]L and the

direction of the particle motion ls in the direction of Èhe wave motíon. The

SV aud SH waves propagate r¡ith shear speed C2 = (v/p)4 ana the dÍrection of

the particle motion is perpendicular to the wave motion. Furthermore, SV and

SH waves are independent of each other. Whea the 1n-p1ane problen is

eousidered, only P and SV waves can exist. On the other hand, when the

autí-plane problem is considered' only SE waves can exist.

In a semi-infinite medium or half-space, both body L'aves aud surface

waves can propagate. If the surface boundary ls free, a pure reflectíon

process wÍ11 occur when Íncident waves encounter the boundary. Then the

phenomenon known as mode conversioa occurs; that is, ao lncident wave of one

type, either pressure or shear, is converted into a combínation of pressure

and shear lraves on reflectiou. Surface waves knovn as Rayleigh vaves propa-

gate wíth a speed which is less than the shear speed. Also, the speed is

índependent of frequeucy, and thÍs indicates thaÈ a surface pulse propagates

non-díspersively. The particle motiou is elliptical in nature and retrograde

wÍth respect to the dlrection of vave motion. A1so, the amplitude of the

motion decreases exponentlally with depth.

In a layered medium, body waves and ínterface ¡vaves carr propagate. Mode

couversiou also occurs in a layered medlum. In faet, the serni-infÍnite
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¡¡a¿iur 1s a layered mediun wlth oue medfum usually Ëaken as alr. UnlÍke the

i*i-lotinlte mediura, incident body waves are not ouly reflected but are also
':"

iefracted at the boundary of the two media. The exístence of iuterface waves

kaown as SÈonely \raves Ii] requires that the shear wave velocities of the two

nedia bave to be nearly the same. The Stonely wave 1s a generalized Raylelgh

r¡ave. The autiplane surface or 1nÈerface Iùave 1n layered medium is also

eall-ed a Love wave t 1] .

Since aÌr Íu-plane (plane strain)

eonsidered ín this thesis, a combiuat

exist.

I .3 Previous l,lork

problen in a semi-infiuite rnediun is

ion of P, SV, and Rayleigh waves can

In the last twenty years, the scatterlng of incident plane harmonic

t¡aves by ínhomogeneities has received considerable attention by nany resear-

chers. Eorsever, much of the early work was concentrated on one- and trco-d1-

menslonal scattering in an infinÍte medíum, and one-dimensional scattering Ín

a sení-infinite rnediuro. A revÍer¡ of the later studies can be fouud in

reference ï,2). 0n1y durÍng recent years have two-dimeusíonal iu-plane scat-

tering problens in a semi-infiníte nedium been studied. A thorough revier.r of

thfs recent work and the work on two-dimeuslonal scattering in an infinite
medlum have been lfsted in reference t3]. Nevertheless, the receot r¡ork most

relevant to this thesis is reviewed in the following paragraphs.

the dynamic response of buried pipelínes and tunnels excited by elastíc

l¡aves iu an elastÍc mediun is a subject of considerable lnterest in lifeline
earthquake engíneering. In reference [3], it l¡as stated that many research-

ers have fguored the lnteraction betr.¡een the plpeline and lts surrounding

grouud, by sinply nodelling the pipeline as a beam on an elastic foundatlon.

Others have modelled the pipe as a cyllndrícal she1l, but have not taken into

âccount the fnteraction of the shell l¡tth the surrounding ground. On the
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other hand, Shah' Datta and llong t4-71 have accounted for such an interactiou

ln their exteusive studies of the dynanic behavlour of burled pipellnes and

tunnels. For instance, ln artícle [5j, the pipeline ís assumed to be sur-

rounded locally by a coaxial annular reglon of honogeneous material ¡shich is

differeut from the material of the homogeneous nedium. This assumptíon

rJas a first attemPt to model the actual situation in which the embedded

pipeliue is usually surrounded by a trench of backfill. However, 1n this

thesis, the actual geometry of the trench is uodelled (see Flg. 4.L). rn

additiou, two pipelines lylng paral1e1 to each other in a siuilar backfítled

trench are consídered.

The scatterÍng of elastic waves by cracks has received considerable

atteution by many researchers. Such studies are importaut fn the fietd of

quantÍtative non-destructlve evaluation and in the field of fracture mechan-

ics where the stress intensity factors at the crack tips are of Ínterest.

References [8,9] revierved previous nethods of studying the scatterlng of

antiplane and in-plane waves by sub-surface cracks. In thls thesis, atten-

tiou is focused on the scatteriug of elastic lraves by surface breaking

cracks. Achenbach eË al. t10] and Mencielsohn et al. III] have used an

integral equation approach to study scattering by surface-breakiog plane

cracks. AlternatÍvely, Hirao et al. [L2] have used the fiuite-difference

nethod to study the scattering of Rayleigh waves by surface-breaking cracks.

Also, ín a recent artícle Ii3], Visscher uses a boundary lntegral equatÍon

formulation Èo evaluate scatterÍDg by surface-breakiug or subsurface planar

cracks. The scattering of SH waves by surface breaking planar cracks was

studied by Stone et 41. [14], using an iotegral equatlou formulation, aad by

Datta [15], using a metehed asynptotic expanslon technique. Nevertheless,

all the above studies of scatterlng by surface-breaking cracks are linited
I
äìì

i!ì
lr

:i
I

lìì

:lìÊ-
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either to a vertical strafght crack or to scattering by SH r¡aves.

Prevíous studies of the scattering of elastic waves by inhomogeneities

have generaLLy consÍdered sÍnplistlc geometrÍes and/or an isotropic, elastic

aud houogeoeous rnedÍum surrounding the iuhomogeneities. Also, the formula-

tl.ons could sol-ve only one particular problen. 1lro methods, the separation

of variables and the numerical solutÍon of an lntegral equation, are exten-

slvely employed in the l-iterature as revier¿ed iu reference tt6]. Both of

these methods have the above linitations. On the other hand, uunerical meth-

ods like the fÍnite dÍffereuce and the finite element technique caunot be

used to discretÍze the eutire sení-infiníte donain. Artificial absorbing

boundary coaditlons have to be imposed in the far field region. However, the

discretlzed reglon is still large, and the techniques are too expensive

conputat ionally.

Recently, shah, Datta, and l{ong [3-9, 17, iB] have proposed a hybrid

technique whfch uses a finite elemeut representatÍon ín the near field and an

eigenfunctÍon expansion representation in the far field (acronym FEEET). The

FEEET has the advautage that it can be used for any arbitrarily-shaped

scatterer as well as for nultiple scatterers. Also, the FEEET ls more

computationally effíclent thau the finite element nethod alone. At first,
the FEEET was used to study the scattering of in-plane P, SV waves by arbi-
trarÍ1y-shaped inhomogeneitÍes in an infinfte uedium [17]. Later, the

techníque was further employed to study the scattering of in-plane P, SV, and

Rayleigh waves by arbÍtrarily-shaped inhonogeneitíes ln a semí-infínite

nediun [3-9, 18]. I{owever, in the above studfes, the restrictÍon that the

inhomogeneities have to be enbedded deep in the medium was imposed. In this
thesis, the FEEET is generalized so that the restrictiou can be relaxed and

lnhomogeneities can be enbedded near the surface of the half'soace. Examolesbe enbedded near the surface of the half,space. Examples
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of. 6uch lnhomogenelties are pipeline(s) surrouuded by a trench of backflll

nateríaL and surface breaking cracks '

In the FEEET, inhouogeneities are enclosed by a contour or bouodary B as

showo in Fig . 2.L. The region iuslde B is represented by finite elements and

the solution outsíde B is expressed in terBs of eigenfunctÍon expanslons.

The reglons outsÍde and insfde of B are designated Reglon I and Region II'

respeetively. By using the eigenfunction expausion and Ímposing the

continuity cooditions f.ot dísplacemeucs and forces at a finite number of

points on B, an iupedance matrix is formed for exterior Reglon I' Corobining

thís with the fiaite element impedance matrix of ioterior Reglon II' the

unkuor¡n coefficients of the eigenfunction expansíon can be deternined'

Knowing these coeffÍcients, the dfsplacement and stress fields can be deter-

mínedanywhereinthesenl-Ínfiniteplaneorhalf-sPace.

In order to generalize the FEEET, the potentials used 1n the eigenfunc-

tion expansion are expressed 1n a geoeral lntegral foru iustead of the

expanded iDtegral forn used prevfously. In Chapter 2, these general expres-

sions are given and the problen fornulatlon is discussed' In Chapter 3' the

numerical scheme of the integrals is discussed. Chapter 4 presents numerical

results for the pipelines and Chapter 5 preseuts numerical results for the

surface breaking planar and non-planar cracks'

$,

tì
I

¡-ìr'
ì!r

È*
â.f

i::
ìtl

{Ì,}
;::
-;\-:
.Èi

tì,ìì
l_ì:

ìl.ìi
lì
s

. ì1.
it
!:,

*r
: .i:r
Ì:i
iì
*l:

,tì
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CHAPTER 2. PROBLE}1 FORMI]LATION

Z.I Plane Straln Hotion 1n Senl-Infinlte Þíediun-

Consider a homogeneous, isotropíc, aod linearly elastic medíum which

occupies the half plaue y > 0 as sho¡¿n ín Flg. 2.L. Assume the displaceuent

u(x,y,t) at a point P to be a time-varyiug harmonic of the form u(x,y)"-ilr-tt,

shere o is the circular frequency and i ts /-L. The displacenent equatlon of

motioa io vector notatiou can be written as

pV2u + (À + U)VV.: = -gut: (2.1)

Eere, À and il are the Lamers constants and p is the mass density of

uedluro. Note that the time harmonic factor 
"-ítlt 

which fs conrmon to

displaceuent and stress fields vill be onitted in the sequel.

It can be shown that Eq. (2.L) is satisfied by a displacement vector

field of the forro

u(x,y)=!þ+Vx¡, (2.2)

provided that the potentials, þ and are solutlons to the rsave equatíons

'ô=ovto *

V'X*kr'X= 0 (2.3)

r¡here k, = t.t/c, and k, = u/ c2 are the pressure and shear wave numbers respec-

tively and c 1 = "ÇJIFS and cz = "ÇTft are the pressure and. shear wave

speeds, respectively.

Fron Eq. (2.2¡, the horizontal and vertical displacernents are

aóu =î!+xdx

âö
U=--y.y (2.4)

relationshíps, theAlso, from the strain-displacement and the stress-strain

three conponeuts of stress field can be written as:

the

the

X

k,
$

i1

ì
ti:
i:.
^!.:,1

t:
t:

t:
tt:

llì

I
ìr

âX

ãy

ðX

)x

ðu ðu

** = (À + zu)t'. ¡;I
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ãu âu
1¡ + zu)J + ¡,- f,

oY dx

àu âu

-ul-x+=Y'>ry -"*ãil- Ë)

Scattered Field

The potentials Q aud X accordÍtrg to Gregory ti9l can be expanded 1n the

(2.6)

(2.s)

(2.7 a)

o= î (aóP+bôs)- - D'n -u'n'
D-æ

x= i-,""*;+bux:)
tI=-a

¡shere the expressfo"" 01, Oi, tl and Xl are derived in Appendix A, and rhe

B are unknor*n. The potentíals 0 and X satisfy the free

= g = 0. and consíst of outgoing tdaves at fnfinity.)ry yy

valÍd for y > 0 and r ( a (o < a < h) as shor¿n in Fíg.

coefficÍents a and b
D

surface conditions, o

Note that 0 au<i X are

2.2.

nent

aud

(s)u=
X

(s)
lf=

v

b-(o-" -- + x" ) ln'' orx "Dry'

b_(o: __ - x: )lu IlrY 'DrX-

+b(ó" *x" )ln Drxx ''Itrlx-

I t"orof .*
Il=-æ

i t"o(01..,,
n-æ

(À+a) i {"-(0P
n=-æ n ntxx

æ

+ | {" (óP
D-æ n'' n¡TY

By substitutlng Eqs. (2.6) iuro Eqs. (2.4) and Eqs. (2.5), rhe displace_

and stress comPonents of plane strain scattered field can be determiued

lrritten as

^ 
(s)
xx

xl,r)

.,P \nt, y'

* ,,P )"nryx'

- YP ) + b"n¡xY- D
(os -xs )lnrYY "rtrxY'



(s) -o-
vv

(s) -6-xy

{a (oP
n-'DryY

{a (oP
D 'nrxy

¡ (os
D nrYY

u (os
n 'nrxx

(À+2u) i
D=-æ

+À
a

IL
fl =-æ

-10-

- *1,*r,

o., (o) 
= o ., 

(i) + o.- 
(t)

JK Jr( jk

,*y) ]

(2.7 a)

(j,k = L,z). (2.8a)

s
\,

* xl,r*) i

,Ï
n-o

*l, r*)

- 
'1,**)

{a (2oP + yPu 'u¡xY "nrYY

+ b-(2ol --. * r" - .,," )]-n'-tnrxY ^nrYY ^nrxx'

Here, the ûoËation is as follows:

- superscrÍpt (s) deuotes the scattered field qualfties

- subscríptsrx andrxx denote, respectively, first and second derivatives with
respect to x

- subscriptsrY andrlry denote' respectively, first and second derÍvatÍves with
respect to y

- subscriPtsrxf or'yx denote mixed derivatives taken in the order indicated.
Note that the nixed derivatfves are egual ín respect to the order taken.

The first, secoud and nixed derivatives of the potentials can be d.eÈer-

nined fron the expressions for the potentials given by Eq. (A-33) iu Appendix

A. The uumerÍcal method of evaluatÍng the potentials and thelr d.erivatives

is dÍscussed in Chapter 3.

2.I.2 Incídent and Reflected Field

The free displacenents and stress fÍeIds are the sum of the ÍncÍdent and

reflected fields r¡hich, in the absence of a scatterer, are

,r.(o) -,r.(i) *,r.(t) (i = 1,2)J j -j

These displacement and stress fields can be expressed in terms of the

Potentiar" *(i), 0(t), x(t), and x(t) frorn Eqs. (2.4) and (2.5). Nore rhar
suPerscrÍPts (0), (i), and (r) denote free, Íncfdent, aud reflected field



guaotities' resPectlvely.

incldent P, SV' aud R r¡aves
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The free displacement and

are suuunrlzed 1n Appeodix B.

sEress fields for

of the scattered dfsplacement

(j = 1,2). (2.8b)

the scattered stress fleld

(j,k = I,2). (2.8c)

2.L.3 Total Field

The total dlsplacement field is the sun

field aod the free displaceuent field so that

,r. = rr.(") + u.(o)
JJJ

SÍnilarly, the total stress field is tbe sum of

and the free stress field' so that
(s) (o)

o.. = a.. f o"jk "jk 'jk

"l
lì
'-lì

Èi

2.2 The Finite Eleraent and Eigenfunctiou Expansion Technique (FEEET)

In the FEEET technique, the inhomogeneities in region II are enclosed by

a conËour or boundary B as shown ln Fig. 2.3. Interior region II is subdí-

vided into fÍnite elements having N, interior nodes and NU boundary nodes.

Regiou I outsfde contour B is represented by eigenfunction expansíoas. The

naterial in region I ls assumed to be 1ínear, elastic, isotropic and

homogeneous. By usiug the eigenfunctiou expansfon and imposing the continu-

ity conditlons for displacements and forces at a finite number of poÍnts on

B, an impedance matrix is formed for exÈerior Regíon I. Corobining thÍs with

the finite element ímpedance matrlx of interior Region II, the unknown

coefficieats of the eigenfunctiou expansion can be deternined. Knowing these

coefficients, the displacement and stress fields can be deternined auywhere

iu the seroi-ínfinite plane or half-space.

2.2.L Representation of the field Ín Region I

The scattered displaeements are given by Eqs. (2.7a). Evaluating Eqs.

(2.7a) at each of the boundary nodes on contour B, the scattered nodal dis-

placement vector, {3r(")}, can be wrftten as
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. (s)'
{gB'-' } = [c] {a }

r.¡here tG] is a (2*NB) x (2*$B) natrix formulated in Appendix

the unknovn coefficients or generalized coordinates.

oo = 
Jutooor(t) 

)rioÍ1) ]dr

(2.e)

C aod {a} are

it

I
i:

È

i:

¡r

I
i:

i
it
i:-:

i:
I
t:

Sinilarly, from Eq. (2.7b), the scattered uodal stress vecÈor can be

r,¡ritten as

{gu(")} = [F]{a} (2. r0)

where [F] is also a (2*NB)x(2*NB) matríx formulated in Appendix c.

In terms of the nodal displaceuents, rre have froro Eqs. (2.10) and (2,9)

{gu(") } = [F] tcl-l{3u(") } (2. ii)
To avoid the inversion of the tG] matrlx Ín Eq. (2.11), a variational formu-

lation is performed vith the generalized coordfnates {ai in Eq. (2.10). To

this end, the expressÍon for the virtual r¿ork done on the boundary B can be

rrrítten as

(2.12>

where superscript (i) denotes the total field 1n region I, superscript

denotes coroplex conjugate and superscrípt T deuotes the transPose.

Because of the continuitÍes of dlsplacements and tractíon forces at the

boundary oodes,

(1)

-qn

:Í')

(2)

-qs

_(2)l¡

(0)
q-
-D

_ (0)
ïn

(s)
q-
-D

-(s)ï¡

(2. r3 )

(2. l4)

in region II.

and (2.I4) ínto Eq. (2.L2) and

(2.12)

(2.1s)

I and regiou

where superscript

Sub st ituting
r r)notiog that ô9r'

(2) denotes the total field

Eqs. (2 .9), (2. l0) , (2. 13) '

- 6gB(s), we have from Eo.

ôn = {0"*}T{páI) }

where lrtt' 1s the generaLhzed interactÍon force between reglon

II, and it is given by

¡.
l:,

Èi

llì

i:i
t:ì

iì:
!ì::

l,ìl
ì:i

i:

tìl
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r¡here

and

where

Note

t-Rl = 
Jrt6*1r¡rlar

r:Ío)r = lrt.*ttrgÍo)

r:Í') r = [-n] ia] * 1r{o) r (2.r6)

(2.17 )

(2. 18)

(2.1e)

(2.20)

contour B.

Eq. (2.20)

first and

]df

Equations (2.I7) and (2.18) are approxfnated by

[ñ] = tc*lTIFl *R^e

{:jo)i - [.*ittgÍo)] *R¡o

RÅ0 is the arc length betr¡een two adjacent boundary nodes on

that the first two rows and lasË ttro roÌrs of Eq. (2.I9) and

are multfplied by R+ instead of RÅ0 because they correspond to the

last boundary nodes, respectively.

2.2.2 FiniËe.Element Representation in Regiou II

As shovn in Fig. 2.3, Region II, which is bounded by eontour B of radius

R, coutains all the scattering inhonogeneities and anisotropy. RegÍon II 1s

subdivided into finite elements having Nl nunber of interi-or nodes and NU

number of bouudary nodes.

For the interior fínite element represeutatÍon in region II, the appro-

priate fuuctlonal for minimization is

L ((o=2))o
..II

l¡here * indieated complex conj

- p02u.u*)dxdy

(lr.Tr* * lr*.ln)¿" (2.2r)

and or { are column vectors defioed as

r r - r .To=tol=(o**'oyy'o*y)

(g'!*

1f
, ),

ugate

Superscript T denotes transpouse. The l, t"d uB represent the tracËion force

and dÍsplacement at contour B, respectively.

|ì

.iì, ,

::;Sl':'



where each q: has ttro components u--, ard u--. along the x and y directlous,-J'XJYJ

respectively. The Ne represents the number of uodes in each element.

The o:- aud g:.. are conputed by substituting Eq. (2.22) ínrolJIJ
straiu-displacement relations and these, Ín turn, Ínto the stress-strain

relations. Using these ín Eq. (2.21), we get

Assurniug the dlsplacement

of the shape fuuctÍons

-t4-

fÍeld within the ¡th

L. (x,y) and elemental
J

lie
I tr-J{eii

j=1 J J

F"r,r2[L]Ttl-l) dxdy

0

tt

is gÍven

À
e

+2ue 'e

0

element fs represeuted in

nodal displacemeuts tqÎl.J

(2.22)

(2.24)

= [N] [L]

t = _o*T 
srr 3r * 3nl tm

* 3*lruu 3u - 3.lrÍt)

ín which g, = gr(t), 3s = _qst", autt' =

natrices S. . are defined aslJ

3u 
* 3*l ssr _qr Q.23)

l-ltt) 3n

lu(') and the eleneutal impedance

ls-l =

Iu Eq . (2.24 ,)

ff*,tt",t tDl tBel -

d

A*
èln'l = ô

ãt
a

ãx_

by

tl

2x2N
e

mã ter

[+

l'^
t0
e thear

0

d

ãt
matrÍx

ial [D ]

2v
e

À

Lzl

'j[,'

Note that tI,l is a

I'or ao isotropíc

ID]

where À and u Lamers constant.



Ê
,F

]v
rH

H
o

F
5É

.T
iJ

(t
or

D
H

ao
õr

l
rJ

iE
rØ

f 
R

 
ñ 

q 
F

1'
r-

-^
 

--
t 

å
X

;,r
¡,

tJ
.e

¡,
.ñ

'b
ø

¡
3 

E
 ë

', 
ç.

 ä
 

E
 

; 
L 

(n
 ;

 
I

B
o'

'É
ãÈ

ä(
nH

o
oe

¡,
.ir

.H
H

Ø
r-

r
Q

 
^ 

.?
 

þ 
_ 

o 
t¡

 
o 

r.
ñt

 
N

) 
E

 
ûa

 
o 

ji 
-F

l 
;+

 
h

".
 

0J
 

' 
w

 
4 

l',
o 

É
 

ç
H

*l
gt

4F
H

Þ
qr

r
Ë

. 
e 

.i 
f 

a 
Ë

 
il 

Ê
 

ú*
o 

e 
I 

Ø
_ 

. 
* 

tj,
 

' 
o 

ø
 

0q
Ø

_ 
0¡

 
^ 

H
F

,.]
 

'H
 

q 
I 

ã 
o 

ts
.

f-
rÉ

c)
t¡

c/
lú

v:
.

4 
- 

!-
t 

ï 
cn

 
N

) 
F

{r
.3

 
H

 
r 

o 
}-

¡ 
--

 
E

 
ft

rD
 

!r
 

É
 

H
 

; 
ä 

e 
H

r-
 

rt
r 

<
n 

E
 

l.
at

Û
oa

H
lts

p-
tÉ

c)
rr

úD
 

O
 

v,
 

o.
 

t€
 

I 
u)

 
tc

l 
tÉ

 
H

 
o)

H
^o

aE
rn

vH
H

.ô
cr

ã^
T

oì
iæ

H
cr

'tÉ
ö 

É
 ii

 
I 

b-
 i

 
I 

i 
,-

s,
 ^

' 
'Ë

 
:

u 
o,

 
6)

 
{ 

x¡
r-

p 
i 

t 
v)

_ 
6¡

 
,+

 
,1

 
+

 
=

-l 
o 

v
u'

 
0)

 
ts

 
5 

H
 

* 
n 

t-
¡ 

H
. 

F
J 

o 
..

r 
ã 

K
 

*-
. 

r 
l" 

rË
ut

 *
 

,-
.,-

 g
 

ro
r 

'tr
 

È
 

Ë
'

H
 

o.
 

o 
11

 .l
 . 

1.
o 

t! 
o 

E
Ë

 
õ 

f
F

 
a 

;i 
l-l

¡-
 

td
l 

o\
 

(l 
d 

i,a
 

o 
I 

--
_-

l 
ä 

O
cn

v]
'ú

-^
il*

r*
(t

 
H

 
ro

r 
o,

 
-'o

 
ã 

I 
tt,

O
O

tÉ
H

.Ø
vÞ

,ô
O

 
O

 
v 

rÞ
 

d 
ll 

ø
 

' 
m

+
 

É
 

O
 

r€
 

ç 
er

 
o

Ë
 I

 
å 

*ê
 

: 
,i 

; 
$ 

-
O

ts
.v

ll 
fd

liH
r-

¿
¡\

)
F

lE
r*

o¡
-¡

t-
.i.

llF
Ë

Ë
'o

¡+
.ú

añ
gN

)
P

'td
ct

lr-
(,

Þ
 

* 
o 

r'd
 

È
d 

r 
c\

 
¿

, 
H

 
J

O
 

úr
 

Þ
Ja

 
¡.

) 
lÁ

 
É

 
T

: 
F

i' 
E

q 
Þ

 
o 

. 
rr

^ 
- 

*t
 

b'
 

E
 

ol
' 

H
 

v 
¡.

.)
 

cl
 

O
, 

cr
J 

.,o
 

ã
O

 
'$

' 
! 

v 
o 

tË
 

ú^
 

cf
 

õ
w

vt
É

oo
'-

pf
 

e 
+

 
¿

ro
 

\,
H

 
r 

{ 
,}

d 
tâ

 
S

 
fi

Y
 

ñ 
o 

rË
^ 

J 
lÌ 

zr
åo

P
F

f
O

v
'.r

c/
+

ã'
õ

èt
ftt

^ã
",

¡lo
¡,

.
fD

5t
sl

'¿
i' o-
l-i

oo
aÉ

É
-

ß
.5

 
H

 ü
h1

 
a 

l..
l 

.-
;-

o,
É

i*
:'j

t,F
iH

8.
[ 

H
 

\ 
H

 
u 

3Ë
'

Q
vv

vv
H

¿
{

r.
t¡

5d
0r

 
(f

,
4i

äã

I F (J
l

I



- 16 -

CHAPTER 3. NINIERICAL SCHEME

The poteutials 0r,0, *r,n, 0.,", and Xos "re derived fn Appendix A. H.ow-

evet, their first, second and cross derivaËlves with respect to x and y must

be evaluated nunerfcally in order to formulate the ma¡rixes [G] ana If] listed

iu Appendix C. In this chapter, such a numerical scheme is discussed. The

s¿me nuroerical scheue 1s used to evaluate both the potentials and their

derívatives because they are of similar lntegral forrn. In the following

paragraphs, only the poteutials are mentioned.

3.L Contour of Integration

The potentials Ôr,0, Xon

written as

ôP=H(k,r).íoÊ*ii,r.rl n' ' n 
¿

tff)o"ik * r-kif '>".

' 0o"' c
ano /. can

D
be iutegrated fro¡o 0 to - and

gkzvrv21 e-vr (h+y)

FGt-r vt

-ikxi dk

XP = -4 l (rt-trz¡"-vrh-urt{k,k*u, \"n 
1T år19- 

(u:.,

- kr-k+vr,o"-tu*] dk\-k /

rr ikx
e

(3. 1)

(3.2¡

(3.3)

ê
u-'n

r ..
4 I (2k-k2z;.-vzh-vtY{k,k*ur.t 

"ik1T¿-T6- tn,',

. ,-ft+vr. o -ik*.-k(T-)e idk

,Ï
;),
t*l

Ys=H,.n (k, r) e 
tt'u 

+
n

. ,-k*Vr.n+ ( --E--=,l e

(t - ru;ïÈ;,re-vzh-vzt ttni;,1

dk

n lkx
e

where H is then

Equations

Eankel function of the first kfnd.

(3.1) to (3.4) were used to evaluate

(3.4)

the potentials corres-
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,.to successlve terms ta. Twenty such terms were found to be required

i for Eq. 2.6 to converge. For the numerfcal values preseuted ín this
:r

,-,twerrty-four terns of n were taken from -11 to L2: that is -fY - i)
'.a. ¿

,nf l" taken as 24, where NB 1s the number of boundary nodes.

irìll$", choÍce of lntegration contours for the fntegrals fa Eq. (3.1) to Eq.

àñ governed by the integral defioition of the functlon. H* "to0 inn

W 
A requiring the contour c, such that

i:.,i., Re siah(s) Í 0 and In sinh(s) > 0
i;::-ì.ìi:::r:. . -

iìiii,, kr sính(s) - -v1, aud kz sinh(s) - -v2
t.:'ri'ilri:.]

ore t Re (vr) > 0 aud Re (vZ) > 0

Irn (vi) . O aud In (v2) < 0

v, are also defined as

u¡=ff;j and u2=f{-y.}.

(3.s)

(3.6)

$"*
i k, and k, are the pressure and shear ¡cave numbers, respectívely.

Ììl:,..:ì-i.,:I

ìii,¡..Tþe,integration contour in Fig. (3.f¡ is choseo to both satisfy Eq.

(3.6) and to avoid the numerical complication associated wlth the

the Rayleigh wave number.

íntegrals, the domain k is

(3.5 )

pole

transformed to donaiu u as

r¡here k* is

conpute the

=u-ih

a

= -iu + dk = -idu
rh

dk=- lqr¿,,)o

ls
Jo

+

QduQdk=

dk=du
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dk = ídu

Path f3

letk=g_ih
IBI Quu=i,_*r

rh

,lo

au

Q idu

Path frn

letk=u + dk=du

t- ¡r"

I Qdk= lQ¿,')g )g

where Q 1s the kernel of the íntegrals and !' ín path Ia Ís the last point of

Íot,egratíon. The l, is deterrnined by a convergence study'

A conplication arises ¡¿ith the sÍgn of In(v1) aud IE(v2) which do not

satisfy Eq. (3.6) on paËh f1. The v1 and v2 are evaluated by the Fortraû

statement CDSQRT. CDSQRT evaluates only one root of a complex number' The

real part of the root is always taken as positíve so that Eq' (3'5) fs always

satisfied. However, the sign of the lnaginary part of the root depends on the

guadrant 1n which the origiual couplex number lÍes ' To demonstrate this

point, the root of a complex number x + íy ís evaluated by the Fortran state-

nent CDSQRT. The results are shown in Table 1. It can be seen that the

imaginary part of the root is only negative when the eomplex number lies in

the third and fourth quacirants. Eo¡¡ever, uI2 and v22 oû Path f1 always lie ou

the negative real axis. This is demonstrated straightfor-wardly as follows:

0n path f1, k = -iu and u > 0

,12=k2-ktz=Çíu)2

= -(u2 +

vl=tíÆ*æ

As u + h, v12 always lies ou the negative real axis. Eeûce, the state-

nent SDSQRT (ur2) evaluates the posítlve lnaginary root. Therefore, Eq' (3'6)

is not satisfied because it requires the lmaginary root to be negative' In

- ki2

tr2)
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order to satlsfy Eq. (3.6), v1 fs deffned as -v1 on this path.

is deflned as -v2.

SluÍlarly, v2

Such a problen does not occur on paths 12, f3, and 14. 0n path 12, it

eaa be shor"n stralghtforwardly that vt2 and v22 always lie in the third or

fourth quadraut and on path l3, rl2 and uz2 lie in the fourth quadrant.

Therefore, CDSQRT calculates the ínaginary parts of ul2 and vzL as negatÍve.

0u path 14, vI2 arrd v22 always lfe on the posftlve real axis and consequently

have real roots. Therefore, Eq. (3.6) 1s not requlred and there is no prob-

len.

3.2 Accuracy of the ìùumerical Schene

The integral representation of

uo{krr)eiuo = + J; ;v1h+v1v ,,î)ouik .,. ,-+)o"-ikl ¿r (3.2)

can be evaluated by usíng the numerical seheme mentioned in Section 3.1.

Alteroatively, an exact evaluatlou of Ho(k1r) 1s available from an IMSL

subroutine. Therefore, the numerical scheme can be tested by evaluating the

lntegral form of Hrr(ktt).ioo and comparing it r,¡ith the exact value of Ho(krr)

nultiplied by "1oe. Sioce the integral forrn of Ho(ktr).ioo Ís similar to Eq.

(3.t¡ to Eq. (3.4) and their derivatives, this comparison gives a valid test

of the accuracy of the uumerical scheme.

The Èrapezoidal rule r¡as employed in the numerical scheme and was found

to be accurate provídecì that the slze of each interval, 
^, 

is sufficiently

srnall. As au example, the values of Holkrr¡.ino at a point x = 3.0 and y =

0.0 were computed by the numerical scheme aod eompared wíth the values comput-

ed by the IÞISL subroutiue. The values from both methods, for a few selected

D' are shosn in Table 2. They conpare well. The choíce of A and the path

linit parameters h, E, auci g as shown in Fig. 3.1 for the numerical scheme is

discussed iu the following paragraphs.
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The choÍce of h r¡as rn¡de ou the basis of the convergence

the fntegrals on path 11, 12, and 13. The range of values 0.1

found to give consistent coûvergence. An internediate value

cbosen for convenience.

Path liroit g is chosen to be than \ to avoid the numerlcal

k = \. The Rayleigh wave nuuber,

propertÍes of

<h<0.5r¡as

h = 0.25 was

díffículties assocÍated with the

þr can be approxirnated by \. =

ratlo and kz Ís the shear r¿ave

g = 3.5 1s chosen because 1t is

this thesis.

k2 where v is the Pofssonrs

v is taken as I/3. path limit

k* for the range of k2 used in

greater

pole at
l+v

0.862 + 1.14v

number. The

greater than

A convergeDce study tùas perforrned by usíng the path linits described

above. The integral forro of Eq. 3.7 was found to have converged at I = 30.

Ïhe kernels of the integrals are oscil-lating functions. Therefore, two

difficulties ean ari.se trhea choosing Á to uumerically evaluate the integrals.

I'lhen lo I t Z, the nagnitude of each point of integratÍon is large and, there-

fore, a small À is ueeded to compute the integrals accurately. Also, when x

is large, the wavelength of each oscillation of the kernel is short and a snall
A Ís needed to evaluate the nagnitude of the integrals within each ¡ravelength.

0n paths fr, lz, 13, anci r,*, the iuterval Â = 0.0i rras fou¡rd to be suffi-
ciently s¡u411 to evaluate the lntegrals for all values of n provided x < 5.0.

0n path 14, the larger ÍnËerval a = 0.05 nay be used unless l"l r 7 and z.s <

x < 5.0. The situatj.on x > 5.0 would require a Â srnaller than 0.01 and heace

Inore computer time will be requíred. In that case, the author would suggest

the use of Filonrs Íntegratíon formula [20]. However, the situatiou x > 5.0

is not eocountered in the present study. The author has also employed two

other uurnerical schemes to compute Eq. (3.2¡. Both of these schemes ernployed

integration along the real axís. rn one scheue the varlable k hTas used
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variable of integraË1on aod, fn another scheme, variable k

k = klsin(u) 1f k < k1 and k = klcosh(u) if k > k1.

directlY as

transfol:lDed

the

to

was

The

k2.

and

the

the

transformation was used to avoid numerical singularities at k = ki and k =

It was found that these two nuuerical schemes gíve the sane results

required the same conputing tfme as the contour iotegration. Eowever,

contour integration schene was chosen because it is the simplest aod

easiest to Progran.
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CHAPTER 4. DYNAHIC SÎRESSES AND DISPLACE}IENTS

IN BURIED PIPE

In this chapter, the proposed hybrid cornbined finite eleuent and eigeo-

function expansion techolque (FEEET) is used to study Ëhe scattering of

elastic waves, P, SV aud Rayleigh, by plpelines in a seml-infinite elastic

nediun. The task ls to find the resultant dynanic streases and displacenents

at the outer círcumference of the plpeline. Î¡o problems are considered.

the fÍrst problem is a pipellne enbedded in a rectaugular trench of backfitl

(FÍg.4.1) and the second problen ís two pipeliues lying parallel to each

other Ín a sÍnÍIar backfilled trench (Fig. 4.2). The finíte element meshes

for the above two problems are shown iu Fíg. 4.3 and Fig. 4.4, respectívely.

The pipellnes are assumed to be infÍnÍtely long, eontinuous, cylÍndrical

shells of inner and outer radÍir r = A and C, respectively, lying parallel to

the free plane surface of seni-infinlte medium. Since a plane strain problern

is cousidered, the waves are propagating perpeodicular to the axes of Èhe

pipelines.

The uumerical results presented in seetions 4.I aud 4.2 are for

concrete shell of thickuess ratio T/A = (C-A)/d = 0.1 and depth ratio H/A

5.0. Typical material properties are assumed as follows:

(a) for concrete:

a

p-

f,=

v=

(b) for

p-

[=

v=

mass density = 2.24 * 10 3kg/n 3

Young's modulus = 1.6 * I0 to t¡/n 2

Poissonrs ratio = 0.2

the backfill:

2.685 x 10 3kg rn 3

6.9 x t0 8tl/n 2

0.45
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(c) for the surrounding soil:

I = 2.665 x to3 kgln3

E = 7.567 x t09 n/ro2

v = 0.333

The totel radial displacenents and the hoop stresses at the outer shell

boundary, T = C, are conputed as fuuctions of the shear wave uumber, kZ, aud

the angle of incÍdence,.¡. All figures wíI1 be plotted by usíog the polar

coordinates, r and 0, defined in Fig,4.I and 4.2. The total radíal dis-

placenent and the hoop stress are normalized wlth respect to the maximum free

field radial displacement and hoop stress, resPectively' at r = C. The

norualÍzed total radial displaceuent is denoted by iIN and the normalized

total hoop stress Ís denoted by STT. The normalizatíon factors are denoted

by }{f. Also, Ëhe angles of incidence are deooted as GAI'fl'lA (f). The k2A is

the diuenslonless frequency. It is also the number of conplete waveleugths

contained in the radial distance A.

To justífy the numerical results presented later 1n this chaPter, the

oormalized total radlal displacernents, UN, and the hoop stresses' STT' at

r = C of a concrete pipe obtained by using the FEEET program will be compared

with those results obtained by the analytical nethod of refereoce t3]. The

results are for the case of the pipe without backfill naterial. Results for

incident P and SV waves at y = 0" are showo in the polar plot of Fig. 4.5(a)

and 4.5 (b), respectively. In Fig. 4.5, results are syrnmetrical about Èhe

vertical axís as expected, because the waves are iqcident at Y = 0o. For

conveuience, the values of the normalized displacement, UN, are shor¡n ou the

Ieft side of the pipe and the values of the normalized sÈress, STT, on the

Ieft side. The scales for IIN and STT are glven on the left and right
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horizontal axls' respectÍvely. The scale for U-1!Ì is drawn by the conputer

plotter for convenience. To understand the polar ptot of Fig. 4.5 (a), the

clrcular dotted lioe represents the outer circumference of the pipe. The

displacement at locatlou p Ís narked ¡¡tth an x auci the rnagnltude of the

displacenent can be read from the left horizonÈal axis. In other fígures,

the circumference of the plpe is Dot drawn, but slmilar interpretation

applles. The two solutions agree we11. Results for incldent Rayleigh Lraves

have also been checked, and are uot shown here. Thís comparÍson validates

the use of the FEEET and the results for more conplÍcated geometries will be

consÍdered in the text tr{o sections. l,lo aoalytical solutíon is possible for

these tnore complex problems.

Iu section 4.1, the uumerical results are presented for a single pipe-

line enbedded by a rectangular trench of backfill. In sectior. 4.2, numerÍcal

results are presented for tno pipelines lying parallel to each other in a

rectaugular trench of backf1l1.

4.I Single Pipeline Enbedded iu a Rectangular Trench of Backfill

A pipelÍne ernbedded in a rectangular trench of backfill is a common

praetical situatfou. The dístrÍbutiou of the normalized total radÍa1 dis-

placements, lJN, and hoop stresses, STT, at the outer boundary of the concrete

pipe can be observed Ín Figs. 4.6 to 4.11, inclusive. The incident distur-

bances are P, SV and Rayleígh lraves. In all cases, the total radial dÍs-

placements and hoop stresses increase ¡rith increasing frequency. Iu general,

larger stresses are found to occur for lncident SV !/aves than for P and

Rayleigh waves. Also, the angle of incidence has a signlficant effect on the

radial displacenents and hoop stresses for SV waves. Thls is not true for P

rraves. In geueral, for all incident waves at low frequencies, k2A 5 0.I2,

results are s)nmetrical about the dianeter of the pipe which is aligued wlth



-25-

tbe íncldent rlave. Hovever, at hlgher frequencies, k2A à 0.3, results aÍe

as)'Emetrical except for 0o locident waves. Further detailed observatlons are

listed 1n sectÍon 4.1.1,4.I.2 aud 4.I.3. The observatious are classified

according to whether the incldent waves are P, SV or Rayleigh.

It should be noted that in the following sections, aay position ou the

pípe's circumference is indicated by the angle 0 as shor^¡n ín Fig. 4.I. The

angle is measured clockwlse fron the upward vertical. Therefore, the crown

of the pipe is at 0 = 0o, and the base of the pipe ís at 0 = tl80o.

4.I .I P Wave

Figure 4.6(a) shows the normalized radial displacenents, lIN, and hoop

stresses, STT, at 0e angle of incidence for four different dÍroensiouless

frequencies. À11 results are symmetrical about Èhe vertlcal axis as ex-

pected. For conveuience, the values of STT are sho¡¡n iu the rlght side of

the pÍpe, and the values of IIN on the left side. At the three lower frequen-

cies, the maxímum values of Uìù occur at the crovn] of the pipe. On the other

hand, at the híghest frequency considered, IIN is maximum at the base of the

pipe. In the same figure, the maximum values of STT occur at Q = 160o,

except for the highest frequency considered. Then, the m¡xfmum occurs at the

crowo of the pipe (e = 0o).

For P waves at 45" incldence as shown in F1g.4.7, the distributions of

UN corresponding to 1ow frequencÍes are differeut fron those at higher

frequencies. At low frequencles, IIN is symetrical about the dianeter of the

pípe vhich 1s aligned wfth the iucident wave. Þlaximum values occur on the

upper righr side of the pipe at Q = 45". At the tv¡o higher frequencies,

there is no syrnmetry and 'naxiroum values for k2A = 0.30 and k2A = 0.60 occur

at e = 15o and 0 = -135o, respectively. The distríbution of STT is synrmetrl-

cal about both the vertical aud horfzontal diameter at the lowest frequency'
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and maximum occurs at the crol¡-n of the plpe. However, STT distrlbution

becomes less symetrical at the two lntermediate frequencles and the me¡{pr¡¡

value is largest on the upper left slde of the plpe at g = -45o. In con-

trast, at the highest frequency, the maximum occurs at the base of the pipe at

0 = 180o'

Figure 4.8 elaborates the variation of UN aod STT r¡ith the angle of

iocidence yr for a particular value of k2A = 0.12. The distrfbution of UN is

s)'@etrical about the pipe diameter a1Ígned with the wave propagat lon.

I'laximum values of IIN occur on the upper right síde of the pipe at angles 0

egual y and are approximately equal in magnÍtude regardless of the incídent

.angle. The distríbutions of STT are almost sy"mmetrÍcal about the diameter

aligne<Í r¡Íth the Íncldent Ì¿ave. The magnitude of the maximun STT 1s falrly

coûstant and occurs at 0 = y t 90o.

4 .I.2 SV liave

Fígure 4.6 (b) shows the distributlon of uornalízed radial dlsplacements

and hoop stresses scattered by SV waves at 0o angle of incidence. Results

are slrrmetrlcal about the vertical dÍameter of the pipe as expected. There-

fore, only one half of the results are shown. The distributíons of UN vary

significantly with frequency. Nevertheless, maximum values of LIN occur

invariably on the lower half of the shell at 0 = 1135o. In the same figure¡

the lowest three frequeucies produce mexlmum values of STT at Q = t 135o.

The distríbution of STT at the híghest frequency is distínctÍve1y dÍfferent

and the maximum value occurs at 0 = 160".

At a 45o angle of incideoce as shown in Fig.4.9, the distributlon of IIN

is symmetrical about the vertical diameter at the tv¡o lowest frequeucies. At

hígher frequencies, IJN becomes progresslvely asymmetric. MaxÍmu¡u IJN occurs

on the crotrn or the upper left part of the shell, dependfng on the frequency
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considered. The distrfbution of STT is symetrical about both the vertfcal

and horizontal diameters at the tlro lowest frequencies. At higher frequen-

cies, STT is asymmetric, and the maxlmum values are signÍffcantly larger.

They occur at 0 = -60o.

Figure 4.I0 elaborates ou the variatÍon of lfN and STT rùith the augle of

Íncideuce, 1, for k2A = 0.12. Each dÍstrlbution of IIN is syñmetrical and

ttfigure-eight" shaped. However, there is no apparent relation betlteen the

orientations of these shapes and the angles of lncideuce. It can be illus-

trated Êhat by using the normalizatfon factor, absolute radial displacemeot

is largest at the critical angle* at y = 30o. The angle of Íncident of SV

waves has a sÍgnificant effect on the hoop stresses. Like the radial dis-

placemeuË, hoop stress is largest at the crltical augle. On the other hand,

incideoce angle greater than the critícal angle has lÍttle scattering effect.

4. I .3 Ravleigh lJave

Fig.4.I1 shows the distributíons of IIN and STT for four dlfferent

frequencies. The distrlbution of UN ls syñmetric about the vertÍca1 PiPe

diameter at lolr frequencies. As frequency iucreases, UN becomes Progressive-

ly asymetríc. At the three lower frequencÍes, the maximum occurs at the

crown of the pipe, whereas at the highest frequeucy, it occurs at 0 = -30o.

The dÍstributlon STT is s¡rnmetrical about the vertical diameter at the two

lower frequeucies, and the maximum occurs at 0 = 0o. As frequency íncreases,

STT becomes progressively asynmetric, and the maxlmun occurs at the upper

right side of the pipe aË 0 = 45" for k2A = 0.3 and at 0 = 75o for k2A =

,

,f

It
SV

AS

ed

can be shown by Snell I s law that
waves is 30o, since the Poissonr
L/3. The critical angle fs the
P wave r¡i1l be Èangential to the

the critical aogle for free iucident
s ratio of the host Baterial is taken
incident augle such that the reflect-
free surface.
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4.2 1\¡o Pipes Lylng Parallel to Each Other fn a Rectaugular Backfilled

Trench

In a practical situation, two or rnore pipes lylng in the same rectangu-

lar trench are common. Therefore, the second scattering problero studíed fn

this chapter is the dynamÍc respoase of one pipe 1u the presence of another

as shown in Fig. 4.2. The normallzed total radial displaceuents and hoop

stresses of the left pipe are presented ín Figs.4.I2 to 4.L6. The overall

trends are similar to those observed for a single pipe, that is, the total

radial displaceneuts and hoop stresses iocrease with increasiug frequency and

larger stresses are createci by incident SV hraves than by P and Rayleigh

lraves. Nevertheless, the presence of one pípe has a signíficant effect on

the other pipe. For the P wave, the distrlbution of STT was significantly

affected by the second pipe, but not the distríbution of IlN. Compared to the

results of the síngular pipe, the nagnitudes of both iiN and STT are fairly

similar at the three lower frequencies, but the results are aroplified at the

highest frequeucy. For the SV rlave, llN at the tlÀro lower frequeucies are not

affected by the second pipe, but at the two higher frequencies, the results

are amplified. Also, STT ¡cas arnplifled at the three lower frequencÍes, but

reduced at the highest frequency. For Rayleigh rrave, both the distribution

of IJN aud STT are sfgnificantly affected by the presence of the second plpe,

and both magnitudes are reduced. Further detailed observations are llsted in

sections 4.2.I, 4.2.2, and 4.2.3. The observations are classif ied according

to whether the incídeut saves are P, SV or Rayleigh.

4.2.1 P Wave

Figure 4.L2 shows the distributfon of the uormalfzed

meuts, UN, aud hoop stresses, STT, at 0o angle of Íncidence

eut dimensionless frequencies. The dlstribution of IIN fs

radial dlsplace-

for four differ-

symmetrical about

L
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the vertical axÍs at the three lor¿er frequencles. Ìlaximum values occur at

the crolrn of the shell at 0 = 0o. At the hÍghest frequency, UN is asynmetri-

caL, and the maximum occurs at the case of the shel1 at Q = 180'. ThÍs is

also true for the case of the single pipe fn section 4.I.1. The effect of

the second pÍpe has little effect on UN at low frequencles. The dístrÍbution

of STT 1s syrrms¡rical about the vertical and horizontal axes and the maximum

occurs at 0 = 90o for all frequeneies. This 1s Dot true for a single pipe.

Flgure 4. 13 shows the dístrfbution of IIN and STT at different angles of

incidence for k2A = 0.L2. The distrÍbution of UN is sirnÍlar to that for the

single plpe. The distribution of STT varÍes slgnlficautly with the angle of

incidence. The locatÍon of tbe maximum depends upon the'angIe of incideuce,

although the maximuu rnaglÍtude is almost coDStant.

4 .2.2 SV Wave

Fig. 4.14 shows the dlstribution of the normaLízed radial displacernents,

UN, and hoop stresses, STT, at 0o angle of incidence for different dimension-

less frequeucíes. IIN is nearly symetrical about the vertical axis at all

frequencíes. At k2A = 0.3, the distrÍbutiou of UN ís distinctively different

from the other frequencies. Þlaxinuu IJN occurs aÈ the upper part of the shell

aud the locatíon depends ou the frequency considered. At the three lor¿er

frequencies, the distribuÈion of STT ís symnetrical about the horizonËal axis

and the maximum occurs at 0 = 45o. At the highest frequency, the distribu-

tfon is completely different and the maximurn occurs at 0 = -45o. As compared

to the stresses of the single pipe, the nagoitude are sÍgnificantly auplified

at the three lower frequencies and reduced at the highest frequency.

Figure 4.L5 shor¡s the dÍstribution of UN and STT with the angle of

incÍdence for k2A = 0.L2. the dístributioo and nagnitude of UN are almost

identical to that of the slugle pipe. The disÈributlon and nagnitude of STT
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àre affected by the second pfPe at different angles of lucidence. The

uagnltude at 0o incideuce is slgniflcantly aroplified.

: 4.2.3 Rayleigh l'Jave

. Figure 4.i5 sbows rhe distributíon of the normalized radíal displace-

Eents, UN, and hoop stresses, STT, for different dlmensionless frequencles'

The distributÍon of lIN ís symmetrical about the vertical axis for 1ow fre-

guencies. As f requency increases, uN becomes II¡ore as1'mnetrical. l'faximum

values occur at the crosn of the shell at 0 = 0o for all frequencles. The

dlstributions of sTT are asymmetrical at all frequeucies and are different

from each other. The location of the meximuu depends uPon the frequency

eonsidered. The distribution of UN and STT are significantly affected by the

presence of the second Plpe, aad both magnitudes are reduced at all frequen-

cies.

4.3 Conclusions

VariatÍons of the normalized radial displacements and hoop stresses at

the outer circumference of the pipeliue(s) are presented. The dynamic

responses of the pipeline(s) are significantly dependent on the frequency'

the angle of incidence, and the nature of the iucident 9¡aves'

In the case of the single pipe, the total radial displacenents and hoop

stresses lncrease ¡¿ith increasing frequency. Larger hoop stresses are fouod

to occur for incident SV r,raves than for P aud Rayleigh waves. A1so, the

angle of incidence has a significant effect on the radÍal displacements and

hoop stresses for SV waves but not for P waves '

lu the case of two pipes, the overall trenches of the nornalized total

radial displacement and hoop stress of the left PiPe are similar to those

observe<i for a single piPe. That is, the total radial displacements and hoop

stresses lncrease with Íncreasing frequency and larger stresses are created
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!y SV traves than by P and Rayleigh !¡aves. Nevertheless, the Presence of one

þi.pe has a signlficant effect oD the other piPe'

,,Fordesignpurposesrítisrecor"mendedthatansVwaveincídentata

,erítical angle should be used to deËerr0ine the hoop stresses, anci more

detailed parametric study is oeeded to provide design guidelines' In the

ease of tqro or more pipes, the effect of the other pipe(s) has to be takea

,fûto accouBt '
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CHAPTER 5. SCATTERING OF ELASTIC WAVES

BY SI]RFACE BREAKING CRACKS

The proposed FEEET fs further employed to study the scatterlng of

elastic l/aves by surface breakÍng cracks. This chapter presents the stress

íntensíty factors and surface displacenents due to the scattering of P, SV

aud Rayleigh !¡aves by three types of surface breaking cracks: a vertical

crack (fig. 5.1 ¡sltha = 90o), a 45o Ínclined crack (Fíe. 5.1 with c = 45"),

atd a vertical branched (Y) craek (Fig. 5.2). Figure 5.3 shoivs the crack tip

elements and Fig.5.4 to Fig. 5.6 show the finite element meshes of the three

cracks.

5.1 Stress Intensity Factors
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COD and the stress iutensity factors obtained usÍng the FEEET Program wfll be

corupared r¿ith the results in reference t10]. In this case' the scatterer is

a surface breaking vertical crack and the incideut field is a Rayleigh wave.

However, the crack-face loadlng of the preseot study and reference [10] are

dÍffereut. In order to make a comparlson the FEEET results must be normal-

ízed as explained below.

In reference [10], the geoeral forn of crack-face loadíng which corre-

sponds to the tractiou Ín the x-dírection induced by an arbitrary surface

disturbance in a semi-iafiníte uediurn is

ox = 2Ak-DiKt
zht - 2k72 + kr' 

"Ãy 
_ .-Bt] (s.4)

u

and ín our presenL study'

2\.¿ - k2¿

-aox = 2Bk- BI í'
K

u

kr2 -dv -Ey.- e '-e -l

¡I = Ar/E ;
l-

k-' = k. D'/ß ;II
- /--=-
ß = /\t -kz' .

ti = Lz/E

orro = i'r, o\/B

(s.s)

Conparing

(s.6)

2-2kt2*

'k^' 
- nt

where " = Ç - t¡, E =,q:æ, and D is the crack length.

Eq. (5.4) and Eq. (S.5) and lettíng B = 1, rre get lel = E/o.

Substituting lel = BID and after manlpulatiog, the normalization factor

for the COD ís L/B anð, f or the stress iatensity f actor is n4/ø. Ë.euce, 
^Û

and AV in Fig. 5.7 are deflned as \/E and Lz/ß respectÍvely, and Kro and

KII" in Fig. 5.8 are defined as xrn\/ø "oa RrrlL/F respectively, where A1 and

Ã2 are the COD defÍned in Eq. (S.3), and R, aad R' are the normalized stress

intensity factors defined in Eq. (5.2¡. Thus

aud

After normalization, the FEEET results compare veIl with the results in

reference t10l as shown in Fig.5.7 and 5.8. Therefore, the FEEET and the

presert program are justified.
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Next, the normallzed stress inteosity factors Kl and K' at the crack

tips of the three types of crack due to lncideut P and SV ¡¡aves at 0o, 45"

and 75o angle of íncídence and Rayleigh waves are plotted against the dimeu-

slonless frequency, k2D, in FÍgs. 5.9 to 5.15' 1uc1usíve. Note that the

present uormalization factor is U/2(1-v) as show¡ in Eq. (5.1). Comparison

of the results show considerably different responses at the tips of the three

dtfferent types of crack. Nevertheless, the mode I (RI) normalízed stress

intensíty factors are Ínvariably larger than the mode II (Rff) norn¿lized

stress inËer¡sity factors. AIso, it should be noted that the Y-crack has two

tips, A and B. However, Ín the case of scattering of P and SV waves at 0o

incidence, the intensities are equal at tips A and B because of symmetry.

Further detailed trends which can be observed fron Figs. 5.9 to 5.15 are

listed in Sectlons 5.1.1., 5.L.2, aud 5.1.3. The observatioûs are classÍfied

accordiug to r¡hether the lncÍdent ldaves are P, SV or RayleÍgh.

5.1.I P l.Iave

Fígures 5.g to 5.Il show the mode f (Rf) and node II (Rff) nornalized

stress inteusity factors of the three cracks due 0or 45", and 75o incidence P

waves.

At 0o íncideuce, the 45o inclíued crack shovs different trend of R, fron

the other two cracks. R, for the 45o iaclined crack increases wiÈh frequen-

cy, whereas for the vertical and Y crack, RI increases and then decreases

wÍth frequeucy. Note that R' is zero for the vertical crack. This is also

true for a sub-surface vertical crack 13]. AII three craeks show a different

trend of R--.l1

At 45o fncidence, all three cracks shol¡ a similar trend of R, increasing

with frequency except at tip A of Y crack at high frequeocies. Rt, for all

Ëhree cracks also increases with frequency, but at a differeut rate. It fs
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lateresting to know that RI and Ír, at both tlPS of Y crack are generally

equal, but díverge at high frequencies'

At 75" lncídence, all three cracks shor¡ similar trend of R, iucreasing

with frequeÌ]cy. The 45o incllned crack shor¡s different trend of RII from the

other tr¡o cracks. There is a distinct peak at intermediaEe frequency'

5.L.2 SV Wave

Figures 5.L2 to 5.L4 show mode f (Rf) and mode II (Rff) norrnalized

stress Ínteosity factors of the three cracks due to 0o, 45" ' and 75o ínci-

dence SV waves. Since v = l/3, the critical angle is 30"' R, and R' are

generally larger, due to sv waves than those due to P aud Rayleigh waves (see

Fig. 5. I5) .

At 0' Íncideuce, R, for the vertical crack ls zexo' This is also true

for a sub-surface verticar crack t3]. All three cracks show a different

trend of Í.r. In contrast to Rr, the vertical crack has the largest intensity

--tor KII

At 450 incideuce, all three cracks shot¡ simílar trend of K, increasing

withfrequencyatlowfrequencíes'butathÍghfrequencies'valuesofKI

diverge. AII three cracks show differeut trend of Rtr' Note that Ril for

the vertical crack is zero, and for the Y crack, Rll "t both tips are equal'

The 45o inclÍned crack has the highest intensity of Rrt'

At 75' incídeoce, all three cracks again show similar trend of f, at lov

frequencies, but at high frequencles, values of R, diverge. Note that tip A

and tip B of y crack show considerably different results at high frequencies'

ÀII three cracks show símilar trend of R' increasing with frequency'

5 . 1. 3 RaYleigh llave

Figure 5.I5 shor¡s rhe normalized mode r (Rr) aud mode II (Ru) stress

intenslty factors due to incident Rayleigh !¡ave'
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The responses due to Rayleigh waves are differeut from the responses due

to P and SV waves. Both R, and R.r, fluctuate significantly with frequency

producing dlstinct peaks and troughs. The peak nagnitudes are lower than

those generated by P and SV n¡aves.

5.2 Surface Displaceneuts

The surface displaceüents at any point on

Eq. Q.7), where the generalízed coordinates

(2.28). In the following, we present results

the scattered dÍsplacement u (s).
'v

the scattered surface displacenents are normalized with respect to the

anplÍtude of the free fíeld u(0) at y = 0. The accuracy of the FEEET has

already been tested in section 5.I by comparing the stress-intensity facËors

and crack opening displaceuents with those results in Ref. tl0]. We nor,¡ test

the accuracy of the FEEET to determíne the surface displacemeuts by comparÍ-

son with analytical results obtained by the analytfcal method of Ref. t3] for

the case where the scatterer is síroply an eubedded circular cavity. As show¡

1n Fig.5.i6, results for P and SV agree velI. Further confirmatlon of the

accuracy of the FEEET is that the surface displacements calculated fron Eq.

(2.7) on the first and last boundary nodes are equal to those obtained frou

the finite element calculatious.

In Figures 5.I7 to 5.25, three different surface breaking cracks are

consídered: a vertical, a 45" iucliued, and a vertlcal branched (Y) crack.

For each type of crack, the uornaLízed vertíca1 scattered displacenent at y =

O is plotted versus the dimeosionless distance x/D ¡rhere D is the crack

leugth. Five cases of incident wave are considered: P hTave at 0o and 45o

incidence, SV wave at 0o and 45o lncidence, and Raylelgh wave. Four dimen-

sionless frequeucies, kZD = 0.225, 0.9,2.25, and 4.5 are consídered. The

y = 0 can be calculated from

{a} were determined fron Eq.

for the normalÍzed values of
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quantity NF is the uornallzation factor'

It can be seen that the surface dlsplacements due to elastic weves

scattered by the vertical crack are generally very sinÍlar to those scattered

by the Y-crack. Therefore, detailed observation on the scatterfng effect of

both of these cracks are nade in sectioo 5.2.L. Ou the other hand' the

surface displacements scattered by the 45" inclined crack aTe conpleCely

different and observation on the scattering effect of this crack are made ln

sectíou 5.2.2.

5.2.I Surface Displacenent Scallgred by VertÍcal a

Figures 5.17 to 5.19 and Figs. 5.20 to 5.22 show the normalízed vertical

surface displaceroents scattered by vertical and Y crack, respectfvely' For

all incident fields, it can be seeu that both cracks have a simifar scattel-

ing effect.

For P wave at 0o incídence, the results are s1'mnetrical about x = 0'

The location of the maxiuum displaceroent depends on the frequency. I'faximuu

displacement occurs at the vicinity of the crack mouth at low frequeucies'

and away from the crack mouth at higher frequencíes' At 45o locídence' there

1s no syru0etry of results, excePt at the very lot¡ frequency' There Ís

generally a discontlnuity in displaceuents across the crack mouth' Results

at the illuuinated side are generally larger'

For SV wave at 0o iucidence, the results are symmetrÍcal about x = 0 for

all frequencies. Pronounced maximum displacenent occurs at the vicínity of

the crack mouth. Ir is noted that the hlghest frequency dÍd not produce the

largest displacement. At 45" incidence, results are symmetrical and m¡ximum

displacement occurs at the vicinity of the crack mouth at 1ow frequencies'

At hlgh frequencies, distinct mÍnima or maxlma occur aÌùay from the craek

mouth.
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For Rayleigh wave, results are also s5rmmetrical about x = 0 at the very

low frequêriclr but not at higher frequencies. There is a dlscontinuity in

displacemenËs across the crack mouth. ìlaxÍnun displacement occurs at the

left (0-) or right (O*) side of the crack mouth dependiug on the frequency.

Note that at k2D = 4.5, a distÍnct minlmurn occurs at the íllurninated side.

5.2.2 Surface Displacenent Scattered by 45o Iocliued Crack

Figures 5.23 to 5.25 shor¡ the uornalized surface displacenent scattered

by a 45o inclíned surface breaklng crack. In al1 the figures, the displace-

neÊts on the shadow side of the crack are much larger Èhao that on the

illuroinated side. Hence, the 45o fnclined crack has little scattering effect

on the illuninated side of the crack.

For P wave at 0o incÍdence, maximun. displaeenent occurs at 0+ of the

crack mouth and decreases as x/O decreases for all frequeucies except at

k2D = 4.5 where local niuima and maxima occur at x/D > 0. At 45o incidence,

the scattering effect is almosË si¡nilar to 0o incidence, but with different

magnitudes.

For SV wave at 0o incidencer m¡ximum displacements also occur at 0+ of

the crack mouth and decreases as x/D increases for all frequencies. At 45"

fncidence, uaximum displacemeut also occurs at 0+ of the crack mouth aud

decreases whea x/D increases for all frequeocies, except at k2D = 4.5 where

uaximum displacenent occurs at x/D > 0.

For Rayleigh waver mâximuu displacement occurs at 0+ of the crack mouth

and decreases as x/D iucreases for all frequencies. It is noted that the

Iargest dísplacenent fs not due to the highest frequency.

5.3 Conclusions

The node I and mode II normalfzed

Èips of three surface breaking cracks

stress íntensity factors at the crack

are presented. The varÍatÍons of the



-39-

6tress intensity factors depend on the frequency, the angle of lncidence, and

the nature of the íncldeut !¡aves. Nevertheless, the rnode I normalized stress

lntensity factors are iuvariably larger than the mode II normalized stress

intenslty factors.

under dynarnic loading, it 1s important to knor¡ the elastodynamic

response of. the crack because a local stress concentratíon could result at

the crack tip. The crack will propagate rvhen the stresses reach a crftical

va1ue. The stress intensity factors presented are a measure of the stress

environment around Ëhe crack típs. The results provide the stress field

around the crack tÍps to design against crack ProPagatíou.

The scattered surface displacement due to the vertical straight crack

and the vertical Y crack are sinilar. 0n the other hand, the scattered

surface displacement due to the 34" inclined crack is dlfferent froro the

vertical and Y craek ín a distinct manner. Therefore, the orientation of Èhe

crack rather than the type of crack produces distinct results. The variatiou

of the scattered surface <iisplacements also depend on the frequency, the

angle of incidence, and the nature of the incident llaves.

In the field of quantitative nou-destructive evaluation, the scattered

surface displacements, it fs hoped, provide data for solving the inverse

problen of obtainÍng the crack geoxoetry. The results presented are necessary

prerequisites to the Ínverse problem.
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APPENDIX A

Derivation of the Potential" OoO, 0o", X.,P, and Xrrs

solutions to Eq. (2.3) for

0rr(r, o) = "orrr(1) 
(krr)eine

x',(r,o) = boHr,(1) 1¡rt).ioo

where tott' is Hankel function of the first kind, r and 0

shor¡n in Fig. AI .

yt, .v = h * yr

Fig. 41. Coordinate System

outgoing waves in an infinite medium are

(A-I )

are defined as

t1 (h-f) sinhs-ns + iklxcoshs
ds

>0

Note:

,o(t) 1k1r¡.ioo

A1so, contour ci is

Now, change kicoshs

then dk

Fig.A'2.

and k sinhs
s

sÍnhs ds

Contour for s

= -ff-z - p¡

such (see Fig. A2)

(real) sinh(s) < 0

naginary) sinh(s)

À

l
I

t
Re

(i

S

7i

e

I

ha

m

u]

í

I.
t

I

I

=1
1I

=lç
-k1
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Also '

-dkUÞ - .
_/uz _ uf

.-t" = ("-")o = (coshs - sinhs)n
.k+E--t3-"_,. 

kr...........".....:

(1) 1r,').íog =-f [* "ikx 
- F-æ

n r_) tTkT

ór, = Hoii) 1¡rr¡.ioo

(t-y),t*€lt7ro
(A-3)

but,

then

oo=

In order to

separate the two

tern of Ôo, that

Def in

and E

$=.TI

+lJ

æ

I+l
L
U

ikx - ,n_v) 
{

r;-------a,k + y'k'-kr'
k1 )t

.l_u---'n It

dk

/u2 - yf

ñ,u,
-vrh I

-c vl

ikx + vrve"

e will be reflected

+ 4(r)

(h-y) ,\-

= /k2 - kz2

.k + vr-n( kr-) r v7e have

find the reflection coefficients, it will be convenient Eo

integrals of 0n. Thus, we shal1 only consíder the first

is

"ik 
- @i3 (n-v), u. fF,"

(A-4)

(A-s)

(A-6)

(A-7)

(a-a¡

ing v1 =

(v'h,n)

æ

-i f rn¿ dk

o
-tr-l
nJ

0

The P r¡av

op = o(í)n
@

I

óP =-3ln'n r )
0

as P and SV r+ave. Thus'

-kr 2

x + ¡\rz-prz \rì
--81 

- 

I

"ikx 
+ uty dk _ re.ik - vtY 

dk



P-xo- Í ,, "t* 
- uzY 

dk
)o

r¡here A and B are consÈaots to be evaluated from

(1 t=QOl=-YYly=o tlr=o

In the sequel, we vill 
"rrnot""" - f, J, "oa

,(i) _ _ikx+vrk0' = e

*(r)=Aetu'vrk
,(r)=8"fu-v2y

L

1T
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^ (r)+_u
ây

+ ilcAeik - vtY -

^ (r)
+ -9J-

âx

(A-e)

boundary couditions:

0 (A- ro)

E, and write

(A-I1)

- rz! (A-12)

(A-r3)

To evaluate A and B

T,('lu = 99 *19-x âx âx

-.,--ikx + vtY= ]-Ke

'r=#tt'*#t"
= ur.i + vly + u1A"ik - vtY - tk¡eik - vz}

o____ rro.. auy Àâu*
YY - rÀ r-4.r 

- 
¿

U ' v ' ây u âx

= {Zlvr2gvIY + vI2Ae-vtY + ikvzB"-u2Y]

* (kzz - zu¡2) t- (evry + Ae-vrv¡ 11"ik

v2Belk

ow
u I=0 -

âux
äy

o
_ry_ =

u

oxy
u

g + (2k2 - kz2)A + (2ikv2)B + (ztz - k22) = 0

âu
v

ðx

Iikvleviy - ikulAe-viY + pr2g"-vz!

+ ikvlevty - ikvlAe-vIY + ¡2g"-v2yl.ik*

I = 0 + -2ikvra + (2k2 - kzz)B + 2ikv1 = 0

lr=o
(A-14)



solvlng Eqs. (A-I3) and (A-14), we get
1r=- 1, tr(k)+gk2vtv2l

F (k)

I
and t = ,(tt [-4rtv1 Qk2 - u.zz)]

where F(k) = (2k2 - kzz) - 4k2v1v2

Thus,

Ln=

Sfunilar1y,

X =bHND

suppressing b

t=-i
\T1

Define

G(v2,h,n) =

^n

The SV-¡¿ave

G "ik*uzY dk
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as P and SV wave. Thus,

(A-1s)

(A-16)

(A-I7 )

(A-18)
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0o"=o(t) =- "ih*'tY dk (A-23)
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G .ik*uz] dk

t.o be evaluated

^ (r)+ dY
ây

v2ev2Y - v2De-v2y1 e

_ r'cDe_v2yi 
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cD "lk-uzÏ ¿t @_24)
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fromnhere C and D are constants

o r =Qyy 
I y=0

In the sequel, we vill suPPress

, (r): "^ikx-v1yI -r"Ë

(i)- ^ikx-v2Yx=e
(r)- -^ikx-veyx=De

To Evaluate C and D
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"=tdY-x Ax ây

= { (ik)Ce-vIY +
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=Q
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kr2) = g

Solving Eqs. (A-27) and (A-28), we get

(A-28)
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. = ,å [4íkv2 eyz - kz2)]

o=F#tF(k)+8k2v1v2l

where F(k) = (zbz - kz2)2 - 4k2v1v2

Thus '

-uro rn i;u >" u(rSdfrtl .lk-u,Y dk

. t -V,:h
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(k I u2)n 
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i "-u'n '1- I u, (TrL, )olr * çHl .ik'x-vzv ¿t J

ú'-

These integrands wíII be from Irri,"o we take the other teru.
-L

RerirrÍting Eqs. (A-18), (A-19), (A-31), aud (A-32), we have:

óP = H (t)(o.'r)"tou
'n n

oi
=_l enl

ó

(A-29)

(A-30)

(A-3 i )

(A-3 2 )

(A-33)

(A-34)

. +i t' . 'u;ï+;"'H ,u i 
utr" .íkx-v1y uU

s
9D

ê
xn

r: = - *J E(+fuiz_')" -v1h,n i,u'," .ik-urv dk

- oi ^-vzh k(2r2-k22) ,k + v2rn ikx-v1y= n ) -ff' (Tt--a) e L¿ dk

- ,i', (k,r)eino
n

.+Ï tI . +W, +' {k i-'z¡o "Ík*

where x7 = @Ç and k2 = /u7t"}

cr = /(l * ìùTp and c2 = lvh

dk
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k1 and k2 are the shear and pressure \rave numbers. c1 and c2 are the

shear and pressure wave speeds. p and À are Lamb'6 coustants, and p is the

nass density.

,1 =rEtf andv2 =rP-y7
F(k) = (Zt<z - kzz)z - 4k2v1v2 is rhe Rayleigh vave frequency eguarÍon.



Incldent and Reflected Field

-Inc 
ident P Have

ConsideraPlanePwave

the y-ar'1s as sho'"¡n in Fig' Bl
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AI'PENDIX B

mov In8 in a directÍon naking an angle y wich

(ts-l )

(n-z ¡

(B-3)

(B-4 )

(n-o ¡

Br)

Fig. Bl. Incident P wave.

th..r u(i) = os(l)

--L^-^ .(i) - L-ôikr(x sin Y - Y cos'1)
where * = *0.

Tiris field will be reffected Ínto a P and SV v¡ave such that

u(t) =vg(r) +gxx(r)

r^,here o(t) = Bl"ikl(x sin r + y cos'¡)

(r) - D ^ ik2(x sin ß + Y cos 9)
x -b2e L

r ñ = L- sin?Ysin26-t2cos2Band Bì yu sin 21. ,ffi

r:2 - Q0

t.je have sÍn ¡; = I sin r
T

k.
ancj r =+r\l

where k, and k, are the pressure anc shear wave number, resPeccively'

taken as I.

SV(Bz)

0o r-s
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(0)
wirh u. '

J
(0)

ux
(0)

uv

(1) (r)
- u. + u.

JJ
(j - l'2)

v

Incident SV

(B-2) as

= l*t sfn T (Et + BzEù + 82 1k2 cos B E3

= ikIY (-Ei + BtEz) - 821k2 sln ß Es

(B-7 )

(B-e )

(B-I0)

(r-t t ¡

By euploylug the straln-displacement and stress-strain relatlonshlp' the

three comPonents of stresses can be wrltten a6'

For a plane sv wave rnovÍog 1n a directfon naklug an angle ß r¡1th the

y-axis as shor.¡n in F1g. 82.

o (0)
)cK- - , Zy¡"or2\
U =KI

o (0)
i- ' 

= kt2[2stnztu'
o (0)
xY' = kr2 siu2yu'

lkt (xsinY -
where tsl = e

ikr (xsÍnY +
E2=e

E3 = sikz 
(xsing +

Incident SV I'lave

Fig. 82.

rh"o ,r(i) = 6tr(i)

,rh"r" x(1) = ,0"1k'(xsinß - Ycosß)

The reflected field is given bY Eq'

,r(r) =99(r) +vx*(r)

,rh"r" O(t) = Bt.fkl(xsluY 
+ YcosY)

- r2l (Er + BiEz) - Bzkzzsfn2Ê E3 (B-8)

- *l (Et + BtEz) - Bzkzzsln28 E3

(Er - BtEz) - Bzkz?cos2ß E3

ycosy)

ycosY)

ycosT)

tlave

\,u',



.

i',]i(0)

'.]...ìfaÐ{0)

.:::r'

r.:r:'

Ix

-1k2sinß(8,+ + BzEs) + BtiktcoslE2

k22sin2ß(E,* - BzEe) + 81k12ç2"or2\-t2)82

k22s1n2ß(-Er, + BzEs) + Btkt2(2siu2y-t2)tr2

(0) 
= ik2cosB(-Eq + B2E3) + B¡iklcoslE2

iì¡l::l¡

$f-9) =
;ì$
b:.:(0)

,ì: =e

Ir$.ß
:t::ir,:ì,, gf

:$(ol
x = ik2cosß(-E+ + B2E3) + BtikzsinßEs

= -1k2sín8(Eq + BzEs) - B1ãE5

= k22siu2ß(E¡* - B2E3) + B1(-k22 - z-a2¡n5

rì(t)
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ikr(xsinÊ + ycosß)
= B2e

rrhere ß", = sln-I (L/ù

-2t2 sín2lcos 2 ßxoffi
sinllsír^}l - r?cos?ZB

= X0 ãio2osin2ß + r¿cos'Z1

then

81"*z*"inß - dY

Eru*r(xsinß 
+ Ycosß)

-2sin2ßcos2ß
= x0 ZiBstnßsin2ß + eos¿29

'. -Li1sin2ßsinß - cos228.-xoffi
ffi=W and õ = kz-B. x0 ís taken as uoit,v.

ß"r, the free displacement and stress fíe1ds can be written

(n-rz¡

(B- r3)

(B- 14 )

(B- 1s )

AS:

(B- 16)

(B-r7)

(n-re¡

= -k22cos2ß(Er+ + BzE¡) - Btkt2sin2y E2

ik2(xsinB - ycosß) and E ¡, E2 and E3 are defined earlier-

= k22sin2ß(-E,+ + B2E3) - B1k22cos2ß E5 (B-1e )
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o (o) -."ry - -kz?cos2$(E,* + BzES) - Bl2io[2s1ng E5

u

--L^-^r -^ik2xslnß-dy!¡nefe E5 = e

Iucident Rayleígh Wave

For a Rayleigh wave moving in the positÍve x direction,

t*(o) -,r*(i) = 811\E5 - BeEiEz

(0) (. \.rt"' - trt = -8101E5, - B2í\E7

o (o) o (i)

ï +- = Bt (E'tt - \.t - 2ãf)85 - B22t\.Errz

o (o) s (i)
+, ï - 81(812 + ç2)Eo + Bz2ikìErEz

o (o) o (i)

ï -]ry- - -B12ih;rE6 + Bz(Erz + ç2)Ez

where Eg = "i\.x 
- õtY

- ík-* - EtyE7=e K

and sr = /Çz - kF
Et = $i]

t)
cn , C* is the Rayleigh wave speed, and o is the circular

can show that

(B-20)

(B-21)

where \ =

freguency

and Br

B2

= 6r' * h' = zk*' - kzz

2i\;1 2ih'qz - rq 2

.!.,,.r '::tË¡::.:,
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APPENDIX C

Forroulation of Þlatríxes IG] aad IF]

As mentioned iu chapter 2, the

{q-(")}r vas forned by evaluatíng u,

à"åu"t'

of points on contour B.

{:u(")} = [c] ii]
l¡here,

scat t ered

("), 
"odx-

uodal

u (s)
v

vector,

at NB

displacement

in Eqn . (2.7a)

Thus, ¡¡e have ia Equ. (2.9):

part i

["*

l,*

t Íon
I

I

I

-+

ed as,

.*l
I

.*_]

(c-t )

(c-2)

(c-3 )

(c-4 )

To fornulate the Datrix [F], consider

"od oxy at auy point of a body represented

shown in Fig. Cl.

evaluated from Eqn. (2.7) at (xr,lr)

(c-s )

taken from

first columo to

to NB/2,

the stress coEpoûentsr o**r oyy,

by an iofinlteslmal element as

t3r(") ] - iux¡r ' ..., r**ui ryBr '... ' ryBNn]

{a} = {a1, ..., al¡n; bl, ..., O*U}t

If tcl is

2NBx2NB

then each of the NBxl{B submatrix can be

onBas

(exe¡io=(0Ï,**rl,r)
(GXB)io= (01,**rl,r)
(eYa¡i., = (0Ï,, - *Ï,r,)

(evt).,, = (Ol,y - *3,*) , f = I to NB

The parameter n in the sqrrmalie¡ series of Equ. (2.7) is

(-NB/2 - 1) to NB/2 for numerical purposes. Heuce, n in the

the last column of each submatrlx corresponds Èo (-NB/2 - t)

respectively.



o*x

Fig. Cl. Stress conpoDerts

Sides AB and AC have an

area of slde BC is taken as

dlrectíons requíre that

rrhere
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I
I

I
v

oxx, oyy, tod o,., 1o an lnfinftesinal element.

area of cos6 aod slng, respectlvely when the

unlty. Equtlibrlun of forces in the x and y

(c-6)

(c-7)

T"=oro"oso+o*y"iot

T =o cos6+o sÍu0y -xy w
where T_- and T_- are the components of stress resultant acting on BC iu thexy
and y directions, respectlvely.

Evaluating oro,("), or"t"', and oat"' fron Eqn . (2.7b) at NB number of

poÍnts on coutour B aod substítutiug in Eqn. (C-6), we have the scattered

nodal scress vector, {ou(")}, as in Eqn. (2-i0),

{or(")i = [F]{a}

(c-8)

{ ovv
o*r-)_

{or(") i - {T*¡1, ... , TyBNri TyBr, . .. , TyBH¡}

Eqn. (c-3)

as

2NBx2NB
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Each of the NBxNB submatríx can be evaluated frour Eqn. (2.8) and Eqn.

(c-6) at (xr,lr) on B as,

(rxe¡io = [(r + 2u)(01,** * xl,*y) * r(ol,yy - rl,*r)] cos e

'^P *"P -"t )sino+ u(Z0nrxy ^nrIy ^nr)o<

(FXB)rr, = [(r + 2u)(01,** * xl,*y) * r(ol,yy - rÌ,*r)] cos 0

* u(201,*y- * xl,yy - *1,,o.) "tou
.PPP(rre¡in = !(2ö-o,*y * xl,yy - Xl,**) cos0 +

[ (¡. + zu) (ol,yy - xl,*r) * 
^(*1,** 

* xl,*y) ]sine

(FyB). = u(2óS * 
"S - "t ) cose +.---,iu -.-Ynrxy ^nryY ^ur)o{,

[ (r + zu) (ol,r, - *i,*r) * ^(0i,** 
* xl,*y)]sin'

Paraneter n ranges from -(NB/2 - 1) to NB/2 as discussed before, and

í = 1 to NB.



ÀPPEND] X I) STRESS I NTENS I Ti" FÀCTORS

classical solution for the stress and di spràcement

field around a crôck tip are vell hnovn. There is à singu-
larity in the stress fierd and the stresses along any radial
line from the tip of the cr6ck are all proport ional to
Kr- 1 lz uhere K is known ôs the stress intensity factor.
There is ô vaJue of K corresponding to each of the charac-

teristic loading modes.

Kr - crack opening mode

Krr- shearing mode

Krrr- tçisting mode

It is of considerabl.e importance in many engineering situ-
ations to know the numerical. val.ue of the stress intensity
factors since there are critical values of K vhich determine

uhether or not the crack yill propagate.

In this thesis, the stress intensity factors K1 and Krr

are calcul.ated f rom lhe crach opening displacement (c.o.D. )

near a crôck tip by the reJations.

2(l-v)

= ! ( t/L)\

L::]

[:]

[::]

[::]

r¡he re



8nd

.rl

b2

(o
-JO-

4 (Us - Ur.) - (U¡ - Uz)

4(V5-V\)-(v¡-vz)

In the âbove equation vi and Ui

displacement components Uy ând Ux,

node. The nodes 2,3 4 and 6 along

follouing f igure.

rePresent the

respectively, at the i-th
uith L are defined in the

f-* ^

LI
Ll4

J-

1-

Fig. D1. Crack tip.

CRÀCK TI P- ELEMENT ÀND TRÀNS I TI ON ELE}ENT

In lzt ), the use of guadratic isoparamatric elements

has been shown to provide an excelLent crack tip element
vhen the nid-side node closest to the crack are put at the
guarter point. The element has been shoun to contain 1/yt rz

order of singularity, thus providing a stress field vhich
âgrees vith the theoretical stress singu).arity of linear
fracture mechanics. It has also been shovn that the element

Y
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contôins rigid body motion and constônt strain modes, thus

satisfying the necessary conditions for convergence. In ad-

dition, they satisfy the patch test.

À six-noded triangle r¡ith mid-side nodes at the guarter

points is generated by collapsing the 1-4 of the quadrilat-

eral in the following figure.

I

T1

t4
Ç)(,

i



For

functions
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the six-node and seven

ôre expressed in terms of
follors.

node elements the shape

the locaL ( t, q) coordi _

6-node singular eÌement:

Lr

Lz

L3

La

L5

Le

0.s t(t-1)
0.2s (t+¡¡ (,-tl
0.25 (1+{) (1+a)

0.5 (t-¿z) (l-r¡)

0.5 (t*¿¡ (t-nz¡
0.5 (r-¿z) (1+a)

( t - rt- 1 )

(f +a-t )

7-node transi t ion element:

Lr

L2

L3

Le

L5

L5

Lt

-0.2s t (1-t) (1-a)

0.25 (t*¿¡ (l-t) (f-,?-1)

0.25 (t*¡¡ (1+n) (g+q-1)

-0.2s t (t-t) (t*n¡

0.s (t-¿z) (l-l)
0.5 (1+{) (r-nz¡

0.5 (t-¡z) (t+a¡
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Furthermore, it is shovn in Í,ZZ) that by using eight noded

quadrilateral isoparametric elements uith appropriately
placed side-nodes âs transition elements betveen the guar-
ter-point crack tip triangu).ar and remaining non-singular
el.ements, stress intensity f actors are computed ui th higher
accuracy.

SHÀPE FUNCTIONS FOR SPECIÀL ELEMENTS

The shape functions corresponding to the 6-node crack-
tip singurar elements and 7-node transi t ion el.ements are

given here for easy reference. The geometries of the ere-
ments are shovn belor¡.

I

(-t.o)

6.NODE CRACK-T1P
SINGULAR ELEMENT

(0,-t) 2(t,-l)
4

(l.o)

7-NODE TRANSITION
ELEMENI

(-t.-tl (o,-t) (¡,-t)
t5?

6
(o,l ) 3(t,t) 4

(-l,l)
73
(o,tl (t,l)
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TabIe I. The root of a corrplex nur¡lber evaluated by

Ehe Fortran statement CDSQRT.

x+iy CDSQRT (x + iy)

+ve real
Ist quad.

+ve imag.

2nd quad.

-ve real
3rd quad.

-ve imag.

4th quad.

4.0 + i 0.0

4.0 + Í 3.0

0.0 + j_ 3.0

-4.0 + i 3.0

-4.0 + i 0.0

-4.0 - i 3.0

0.0 - i 3.0

4.0 - i 3.0

2.0 + i 0.0

2.121 + i 0.707

1.225 + í 1.22

0.707 + í 2.121

0.0 + Í 2.0

0.707 - í 2.121

r.225 - í 1.225

2.r2r - i 0.707
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Table 2. Conparison of Hn (krr) .ino

IHSL Subroutine liumer ical Scheme

-tI
-8

-4
0

4

8

T2

rc2

t0l
-0.33032

-0 . r47 95

-0.65505

-0 .167 34

-0.28546
0.r4472

0. 2360 r

x I02 + i 0.80879 x

x l0l + i 0.22849 x

x I0-l * 0.42824

- i 0.31296

- i 0.32588

xl02+i0.80960x102
x I0l + i 0.2283 x 101

x I0-1 * 0.4?824

- i 0.31297

- i 0.32589

x I0l + Í O.23O5I x iOt

x lo3 - Í o.26976 x lo3

x l0l + Í 0.23055 x lOt

x Io3 - i 0.26942 x Io3

-0.33r73

-0. r478

-0.65494

-0.16733

-0.28546
0.t447r6

0.23606

kl = I.5
l-=_-^

r-y'x¿+v'=
0 = l.f0Z ra¿.

=9
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Fig.2.2 - Circular CavitY ln a Semi-lnf inite l'ledium
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-__

Fig.2.3 _ Plane Strain Èlotion of
Semi-lnf inite lledium
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Fig.lr.3 - Finite Element Hesh of a Single Pipe ln a

Rectangul ar. Trench
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Fig.t.¡{ - tinite Element llesh
Trench

of Two PiPes'ln a Rectanguìar
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