Unsupervised Learning
in Analog Networks

by

Dean K. McNeill

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree of

Master of Science

Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Manitoba

© 1993 Dean K. McNeill

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street

Bibliothéque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington

Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Ottawa (Ontario)

Your lile Votre rétérence

Our file Notre référence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des

personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-85959-8

gl

Canada

Name

Dissertation sosiracts Infernational is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

A/ZJ/:C L CHL /11(9/.‘ e P Y

oL UM

SUBJECT TERM

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES

COMMUNICATIONS AND THE ARTS
0729 Reading -

Psychology ... 0525

Architecture .0535
Art History 377 Religious ..0527
Cinema 900 Sciences . ..0714
Dance .. 378 Secondary0533
Fine Arts 357 Social Scien ..0534
Information 723 Sociology of ..0340
Journalism 391 Special0529
Library Science ... 399 Teacher Training ..0530
Mass Communica 708 'I'echnolzrgz40710
Music ... 413 Tests and Measuremen ...0288
Speech 459 Vocational ...c.covevvvereeercnn, 0747
Theater ..oooveveerenenne .0465

EDUCATION LANGUAGE, LITERATURE AND
General ... 0515 LINGUISTICS

Language
g} 2 eneral ...

Agricultural .0517 ﬁ\gc{ig:lcs
Art.... -0273 Mo%ern
Bilingu .0282 Literature
Business -0¢688 Generdl ...c.oooverveeeceieein,
gsm?::lr:‘nycnd Instruction Slossical ...
Early Childhood l(\:Aomg\]';ch.Y.e. .
Elementary ... Modern ... 70298
Finance ... African ... 0316
Guidance and Counseling American . 70591
R — Asian 10305
H!g er G Canadian (English) . ..0352
istory of Canadian (French} . ..0355
Horme' Economic nglish cooororoer 10593
Industrial s Germanic 70317
Lun?lucge.ond Literature . Latin American . 0312
Maiematics ... 0559 Middle Eastern . ..0315
Phlljﬁ)l(s:ophy g 0998 Romancecccocvvviniann 0313
PRYSICOl eer oo 0523 Slavic and Fast Europear..... 0314

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES Geodesy ... 0370
Agriculture Geology0372
Generdlocverevririeriennns 0473 Geophysics ..0373
AGronomycoeevieiinns 0285 Wdrology . ..0388
Animal Culture and ineralogy0411
NUHON L. 0475 Paleobotany0345
Animal Pathologyc........ 0476 Palececology0426
Food Science and Paleontology0418
Technologycccorvuue, 0359 Paleozoology0985
Forestry and Wildlife .0478 Pal ynolog{0427
Plant Culture0479 Physical Geography0368
Plant Pathology .0480 Physical Oceanography 0415
Plant Physiology0817
Range Management . .0777 HEALTH AND ENVIRONMENTAL
. Wood Technology 0746 SCIENCES
Biology Environmental Sciences 0768
Generdl ...ccoevvrrercrriennns 0306 Health Sciences
Anatomy0287 General 0566
Biostatistics .0308 Audiolo)' """""""""""""" 0300
(B:ot”cnyi... 83(7)3 Chemotherapy . 0992
Ee lomy 0320 Dentistry0567
Erroody oo 0353 Education0350
anomo °gy " 0389 Hospital Management 0769
L.enei S .o 6793 Human Development . .0758
A;\".""c’ Qgr - 0470 immunology0982
Mu:lro 31[0 ogy - 0307 Medicine and Surgery .0564
i - Mental HealthC.. ..0347
euroscience . ..0317 Nursing 0569
Geeanography . 0418 N 0570
E)é51'°.°97 """ ""ng] Obstetrics and Gynecology .. 0380
adiation Occupational Health an
Veterinary Science. .0778 Therapy 0354
. Zhool.ogy 0472 oph,haﬁm,ogy 0381
’O%gf:::a] 0786 Pﬁt o cgyl0571
Medical - 0760 Ehg;ﬁggg °gy - o412
Physical Therapy0382
EARTH SCIENCES Publc Health 0573
iogeochemistryooovvervanee. 0425 Radiology 0574
Geochemistry ..oo.corsvvosove 0996 Recreationccvecrevenennn. 0575

PHILOSOPHY, RELIGION AND
THEOLOGY

Philosophyovrrereccieiniieninn. 0422
Religion
eneralocooviviiian, 0318
Biblical Studies0321
Clergy0319
History of0320
Philosophy of0322
Theology .. eoeivieeeceeerna, 0469
SOCIAL SCIENCES
American Studies 0323
Anthropologf/
Archaeologycoovvrinnnnn. 0324
Cultural
Physical
Business Administration
Generalcocooivieien, 0310
Accounting0272
Banking0770
Management . ..0454
Marketing0338
Canadian Studies 0385
Economics
Generalocoeveerrcnn, 0501
Agricultural0503
Commerce-Business ..0505
Finance .0508
History0509
Labor”.. ..0510
Theory . .0511
Folklore0358
Geography0366
Gerontologyccovvcereririninn, 0351
History
Generdloooeveunan e 0578
Speech Pathology 0460
Tgxico ogy ... g)' ...0383
Home Economicsc..c........... 0386
PHYSICAL SCIENCES
Pure Sciences
Chemistry
Generalccoooevvran. 0485
Agricultural0749
Analytical0486
Biochemistry ..0487
Inorganic0488
Nuclear0738
Organic....... ..0490
Pharmaceutical ..0491
Physical0494
Polymer ..0495
Radiation ...0754
Mathemahicscoooveneeeenan.. 0405
Physics
Generalc.coooeevveennnn. 0605
ACOUSHES v, 0986
Astronomy and
Astrophysicscc........ 0606

Atmospheric Science ..
Afomic s
Electronics and Electriczg 0607
Elementary Particles an

High Energyccocveee... 0798
Fluid and Plasma ...0759
Molecular0609
Nuclear0610
Optics0752
Radigtion . ..0756
Solid State ...0611
SEAHSHES ..o, 0463
Applied Sciences
Applied Mechanics 0346
Computer Sciencecocvnrnn. 0984

SUBJECT CODE

o b 0
Asio,d/{\ustrolio and Oceania 0332

Canadionccoveeveinee..., 0334
European0335
Latin American . .0336
Middle Eastern . 0333

United States ...
History of Science

aw

Political Science
Generalcovveeinn, 0615
International Law and

Relationsccccouneec.. 0616

Public Administration

Recreation

gociall Work

ociolo

Ger?eyro
Criminology and Penology ... 0627
Demogrua?nl 0938

Ethnic and l{ccicﬂ Studies0631
individual and Family
Studiesoooeeiiviennn.
industrial and Labor
Relationsccooeeienennnn,

Social Structure and
Development
Theory and Methods .
Transportation
Urban and Regional Planning ... 0999

Women's Studiesc....... 0453
Engineerin
General ..o 0537

Aerospace . .0538
Agricultural 0539
Automotive .0540
Biomedical . .0541

0542

Heat and Thermodynamics ... 0348
Hydraulic.......cco.loereirininns 0545
Industrial ...
Marine

Mec l?nicc:
etatiurgy .
Mining gy
Nuclear ..
Packaging .
Petroleum
Sanitary and Municip
System Science
Geotechnology
Operations Research
Plastics Technology . .
Textile Technology

PSYCHOLOGY
eneral ... 0621
Behavioral .0384

Clinical
Developmental .
Experimental ...

Industrial0624
Personality0625
Physiological0989
Psychobiology . .0349
Psychometrics .. .0632
Social cceirierireeieeeee e 0451

Nom
Dissertation Abstracts International est organisé en catégories de sujets. Veuillez s.v.p. choisir le sujet qui décrit le mieux votre

thése et inscrivez le code numérique approprié dans 'espace réservé ci-dessous.

SUJET CODE DE SUJET

Catégories par sujets
HUMANITES ET SCIENCES SOCIALES

COMMUNICATIONS ET LES ARTS Lecture ..ot PHILOSOPHIE, RELIGION ET Ancienne
érchirechrgsre 8;%9; mcﬂ)émoﬁques . . ;E'IEOLOE‘IE mégiévqle
equx-arts USIQUE -...oeoecen ilosophieovereeevrcecreinene oderne .
Bibliothéconomie0399 Orientation et consultation0519 Reli iorF*»3 Histoire de:
glnému o 8328 gaﬂo.sophle de I'éducation gggg C,enérzalires éfrica(jpe
ommunication ve . YSIQUE oo ergé ... anadienne
Communications .. .0708 Programmes d'études et Etudes bibliques Etats-Unis ...
Danse0378 enseignementc.ccccnunnes 0727 Histoire des religions ... Européenne ...
Histoire de I'art0377 Psychologie0525 Philosophie de [a religio Moyen-orientale .
;Xurpahsme 83%’% gcgences SO 8@2 Théologieovvivvreererreerenennn, k:ﬁno:mérilcaineo 033
USIQUE ..o ciences sociales sie, Australie et Océanie ... 2
Sciences de 'information0723 Sociologie de I'éducation............0340 SCIENCES SOCIALES Histoire des sciences
ThEGITE ..ot 0465 Technologiecovvvverennn . 0710 Ant}Ko%oloFie 032 L?iSirfs s
, P rchéologie ...l 4 Planification urbaine et
EDUCATION s LANGGUE, LITTERATURE ET gﬁ[tqre”eg.... BT —
LTI e 1 LINGUISTIQUE ysique .. cience politique
Administration .. .0514 Lanaues DFOIt o 0398 Géngrc]ilgs
Ay .0273 aneralités 0679 Economie Administration publique 0617
olleges communautaires .0275 Anciennes 0289 Généralitésc.cococvnien 0501 Droit et relations
Commefced......“.:0688 Linguistiqum 10290 Commegce-Achxres .0505 _ internationales 0616
Economle omestique .. .0278 Modernes ... " 0291 Economie agricole0503 Socuollog’le »
ducation pefmclr\qnfe. L0516 Littérature Economie du travail .. .0510 Génerdlités ST 0626
Ecucog!on pre§'co_ aire .. . 82;38 Geénérdlités 0401 Ep?qces 8283 élde_ef Iblep-cfre social 0630
ECUC'Q ion SGT;I aire o - 0080 Anciennes .. 0294 TIS’ oire ... 0207 rfmng!g) ogie et
Ense}gnemen g?.ncoe Comparée . 0295 gorie établissements
nseignement bilingue et Mediévale . . 0297 Etudes américaines .. .0323 pénitentiaires
E my hculfuretl o N 8%%]2 Moderne . 10208 E:ujes ?gngc'infennes . 832% Dergogécplb{ea
Enseggnement industrie 0921 Alricaine . 0316 ; udes féministes .. 9433 Ehé els Fe iln e
Ense!gnement pl’ll’?cll'.e. e 0524 Américaine. 0591 C?‘ ore N 9338 e § CIdGmI F.:
Enseggnement professionne 0747 Anglaise 0593 Ggogr'ogl: ie... 936 tudes Ifs_re ations
Ense!gnemen' re 1g|eé»g 0355 Asiatique ... 0305 Ger?n ogzg: i . anteretl niques et
Ense!gnement secon Icl 9233 Canadienne [Anglaise] 0352 eSéqn ¢ esl_q 0310 es re aho&'n; rtlmcles 0631
Ense!gnemen special .. . Canadienne {Francaise} eneralitescooooenn Structure et développement
nseignement supérieur0745 Germanique Administration .0454 social .o 0700
Evaluation0288 Lafino-américaine ... Banques0770 Théorie et méthodes. 0344
Flncnc;gs e 8%;6 Moyen-orientale . : ,S\omkpi?blhie 8%;5 Trgvdod et rﬁ ations
qu;ng loc? lﬁsdensziggnon S .. 9330 ROMGNE ..o 0313 Hi Aarketingccooooviviniinnns . industrielles 0629
LIS oire eI.e, ucation Slave ef est-curopéenne 0314 istoire ransports 0709
angues et littérature Histoire générale 0578 Travail social 0452

SCIENCES ET INGENIERIE

SCIENCES BIOLOGIQUES G{eolohgig 0372 SCIENCES PHYSIQUES Biomédicalecocoorvennnnan
AN s 0473 bydelgnr 0083 Sciences Pures O rarmicse
Agronomie.cccocouevnnn 0285 Nzilnérclogie04 Ch'"(l;e sralite Condif{onnemenr
Al m}entcl:iqn et technologie 0350 ?céono?mphie physique géilg Biggﬁirriilss : (Emballage) e ——
Coltre oo e 70428 Chimie agricole ... Geme ol
Elevage et alimentation Paléontolo: gie 0418 Chimie analytique . GZn;Z z_vlmlque .
Ex, ogtuﬁon des péturages ...0777 Pa éozoolog0985 Chimie mingrale ... Génie éllelcf ique ef f
Pa?ho ogie onimge 9o 0476 Pa ynologieg -.0427 Chimie nucléaire ... électri Ueromque ¢
Pathologie végétale - 0480 p Ctjmfe o]:ganique Génie inqdust;i‘é'l‘: """""""""
Physiologie végétale0817 SCIENCES DE LA SANTE ET DE gh imie pharmaceutique Génie mécanique ..
_?y \ﬁcullturga eé ogm;a 8%2 L’ENVIRONNEMENT o ysrﬁESes ------------- Génie nucléaire ...
Bl echnologie du bois.............. Econornie domesfique 0386 Rodiaton Ingénierie des sylsromes.
olegle, ., Sciences de I'environnement 0768 Mathématiquesc..cocveeeee Mecanique navale
Généralités 0306 : p 9 Métallurgie
e 0287 Screncles,de ‘lg santé Physique Science des mc
Biologe (Sicisfiques) ... 0308 Qhnerdltes. ..\ 0566 GENrOltES v 060 Technique du péirol
Bio ogie s écu?}ire T 007 Administration des hipitaux .. 0769 AcOUSHQUE ...evvevreeeiiaae 0986 Tech 1que au perole :
Bor g T 0306 Alimentation et nutrition 0570 Asironomie et Techngque MINIEre ...oovoeeeee
Cce):lfurileque - 0379 Audiclogie0300 astrophysiquecc.o..c..... 0606 echmiques sanitaires et
Ecologic 0329 ghlr;‘_!l?f érapie .. Eilecéronique et électricité 0607 Te?hunnélcég?eeﬁ);a}aaif que ... 0545
i entisterie................. I t P LT TR e
gné:gg%lgeg 8328 !E)éveloppement humain M%'tézijogigsT?. Ié'\g(c)qu:gsgighquee - 0346
7 ; nseignement Optiquecovvveriiceirn, - e
k;\r;lrr‘g;gigg'l:e : 8‘71]98 {m_mpnolog;e Pcrricln{[eg, (l;hysique Mcherﬁiflﬁgfgiis)
Neuro]ogie o317 OI‘SII'S rersenenenenie SETTIPEITOPREP nucleaire, F Py Rech h érati ” """""""

; : Médecine du travail et Physique atomique SenEene OPCTCHORNENE . .. o....
%ci?(;}ggggphle.. 821;8 HhErapie ... Ph;sique de l’ét(lt - clida 0611 Textiles et tissus {Technologie) 0794
Radiation .. 0821 Médecine et chirurgie ... 0564 Physique moléculaire0609 pSYCHOLOGIE
Scionee vathrie 0778 Obstétrique et gynécologie ... 0380 Physique nucléaire . 0610 Génaralits
Zoologie SN o v/ 8gttalr}?olque """""""""" 8326 Radiation 0756 Pe?:?:;iéﬁ:e

Biophysique. Pathologie ... 057] goistiaves Psychobiologie .
énéralités ... 0786 Pharmacie 0572 Sciences Appliqués Et Psychologie clinique
Medicale ...c.ooeverrrceenee. 0760 Pharmacolog 0219 Techno!ogie Psychologie du comportement 0384

SCIENCES DE LA TERRE Physiothérapie0382 Informatiqueccocoveieieieiens Psychologie du deyeloppemenf 0620

LENCES O Radicloge 0574 Ingénierie Psychologie expérimentale 0623
Blggeﬁc THE c.oveiniiierieinnnerenens 0425 Santé mentale 0347 Généralités . Psychologie industrielle
(G§§o§,lrple 83;8 Santé pyblique 0573 Agricole ... Psychologie phx5|lc>lognque .
G?O esteh.“....ﬁ.,.:.. 0368 Soins tnfirmiers0569 Automobilerriveis Psychologie sociale

éographie physiquec......... TOXICOIOGI® erererrrmerrrrnnree 0383 Psychométrie ...

UNSUPERVISED LEARNTNG IN ANALOG NETWORKS
BY

DEAN K. MCNEILL

A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial

fulfillment of the requirements for the degree of

MASTER OF SCIENCE

@ 1993

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to lend or
sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and
to lend or sell copies of the film, and UNTVERSITY MICROFILMS to publish an abstract of this

thesis.
The author reserves other publications rights, and neither the thesis nor extensive extracts from it

may be printed or otherwise reproduced without the author’s permission.

ii

I hereby declare that I am the sole author of this thesis.
I authorize the University of Manitoba to lend this thesis to other institutions

or individuals for the purpose of scholarly research.

I further authorize the University of Manitoba to reproduce this thesis by
photocopying or other means, in whole or in part, at the request of other
institutions or individuals for the purpose of scholarly research.

iii

The University of Manitoba requires the signatures of all persons using or
photocopying this thesis. Please sign below, and give address and date.

ABSTRACT

Artificial neural networks have shown their usefulness in the solution of a
number of complex problems such as pattern recognition and associative
memories. Typically these networks are simulated on serial computers or
using expensive vector processors. This thesis examines several issues impor-
tant to the implementation of unsupervised learning algorithms in compact
dedicated analog structures. Two unsupervised learning algorithms known as
Coherence Based Unsupervised Learning (CBUL) and Competitive Learning
are discussed in detail.

A fully custom analog implementation of CBUL is presented and test cir-
cuitry implemented in 3um CMOS is described. These circuits make extensive
use of a CMOS version of the Gilbert multiplier to perform the majority of the
neural computations. A complete implementation of the coherence based net-
work, with capacitive weight storage, would consist of approximately 20 neu-
rons and 400 synapses when fabricated on a 1em silicon die in a typical 3um
technology.

Additionally, the effect of inherent device fabrication variations are exam-
ined in terms of their effects on the construction of analog circuits for compet-
itive learning. Several simulations are conducted involving a number of
modelled hardware effects, including multiplier gain variations, errors due to
noisy multipliers, multiplier zero-crossing offsets, and the effects of noisy
input signals. These results demonstrate that competitive learning is tolerant
of most expected fabrication variations with the exception of multiplier zero-

crossing offset errors.

ACKNOWLEDGEMENTS

I would like express my thanks to my advisor Professor Howard Card, whose
continual enthusiasm, wealth of inspirations, and direction were invaluable in
the completion of this thesis. I would also like to thank my friends and col-
leagues who have been a valuable source of information and assistance
throughout my graduate program. Most notably, Bob Pelletier, Dave Blight,
Chris Schneider, Bob McLeod, Zaifu Zhang, Martin Meier, Brion Dolenko,

Brendan Frey, and Brad Brown.

Financial support for this work was received from NSERC, and from Micro-
net, a Network of Centres of Excellence, and was made possible with equip-
ment loans and fabrication facilities provided through the Canadian

Microelectronics Corporation.

TABLE OF CONTENTS

Chapter 1
INEPOAUCTION ... 1
Basic Neural Network Theory.........covveeeieeeiiceiiieeee e eeeeeee e 2
The Learning Algorithmooovviiiiiniieiiiiicieceeeee e 4
Supervised Learning......ccocuiiueeeierieeeeeeeeeeecceeeeceeeeete e ee e 5
The Backpropagation Learning Algorithmcoccovvvevivvevenennn... 6
Unsupervised Learningcc.ecoeeeveeeeeeeeceeeeeeeeeeeeeeeee et eeeeeeeeee e 8
Hebbian Learning....ccccoccvieeieeieeieieeeeeeeeeeeceeeeeee et 9
Hardware Implementations of Neural Networks.......ccccceeeeveveeveueennn... 10
SUININATY «eeeiieiiieeeetiieeeee et et eeae s e eeneeeseeeeeeeseeeseeeesssasasseesen 11
Chapter 2
Coherence Based Unsupervised Learning........... 13
Coherence Based Unsupervised Learning.........cccoocveeevevecveeeeeeeenneannnn. 13
Mutual Information.......ecceeeeeveeueeeeeeeeeieeee e 14
A Sample Problem........ooceeeieeeieeeeeee e e e 15
Hardware Implementation of the CBUL Algorithmccceeevuvenn...... 16
The Gilbert Multiplier.........coovireeiuieeeeeeieeeeeeeeeeeeee e ee e 17
Circuit Implementation of Backpropagationccccceevveveunen..... 18
Circuit Implementation of Mutual Informationccceueeeue...... 22
SUIMIMIATY ceeereeriiieniiteriteesreercreeeeeeeereeseseteeesseeeasesoaaessneeeesereeessesseessesaes 25
Chapter 3
Competitive LeQrning ..., 27
Competitive Learningceevieeiiiveeeeeeieeeeeeeee e s s 27

Hard and Soft Competitive Learning.........c.ccoeeeeeveeeveeneeesvreeeeeseennann. 28

TABLE OF CONTENTS vii

Hardware Issues of Competitive Learning........cccccceevvevevvereeeveeeeeennnn... 30

Effects of Fabrication Variation on Learning..........cccoovvvvvvvveneeeeeennnn... 30

Variations in Multiplier Characteristics.......cccovuveeeeevvereiervinnnnnne. 32

Effects of Multiplier Gain Variations on Learning....................... 34

Effects of Circuit Noise on Learning.ccceceeeeevvveiiiecnneeeeeeennnn. 37

Effects of Multiplier Offset Variations on Learning..................... 39

Effects of Noisy Inputs on Learning........cccccoeveeeeviiiicieeveeeennn.. 41

SUIMIIATY «eeeeiieriiriieeeeeciiie e eeecctrer e cee e e eseeiaaeeeeeesseeeseeaneeeeeeeeseseeaasans 42
Chapter 4

Conclusions and Future Work..........oeom. 44

Future WOTKc.c.ooiiiiieeeeee ettt 45

LIST OF FIGURES

Figure 1.1:
Figure 1.2:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:

Figure 2.10:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:

Figure 3.10:
Figure 3.11:

Basic neural network structure.ooooevveuiieevineeeeeieeeeeeen, 2
Sigmoidal nonlnearity.cccoeeveeeveeveeeeeeeeeecee e eeeeeeeee e 3
General structure of a CBUL network.ccccoeevuieicveveeeeneenn. 14
Stereoscopic input pattern selection.ccoeevveevveeeeeeeceeeeeannn. 16
Gilbert multiplier characteriStic.........ooveeveevieieiiciieeeeeeeeeeeeen, 17
Hardware building blocks.ccoovveeeveeiiniiiiiiceieeee e 18
Block diagram of neuron backpropagation.cccceecvvevevrveeennn... 18
Photomicrograph of backpropagation test structure.................. 20
Photomicrograph of a synapse fabricated in 3um CMOS. 21
Measured synaptic characteristic.........ccceeuveeeveveivvveeineeeeennne. 21
Proposed mutual information circuit.ccocovvvveivveeeenneeennnnn. 23
Current mirror output stage with control inputs. 24
Basic competitive learning network...........cococeveeviveeeeeeeeseennnn. 28
Proposed competitive learning circuit implementation. 30
Xerion weight connection display.cocvvvvveveieeeieeeeeeeererenenan, 32
Learning using the ideal arithmetic multiplier. 33
Learning using tanh multiplier model..........ccceeeveevevvveeeennnnn.. 33
Non-ideal multiplier with uniform slope variations................... 35

Non-ideal multiplier with positively biased slope variations 36
Non-ideal multiplier with negatively biased slope variations... 37

Non-ideal multiplier with NOIS€.......ccueeveeevreeeeeeeeeeeeeeeeeeeesnnn. 38
Non-ideal multiplier with offset variations.ccccoccvevvvvreunnn.n. 40
Effectiveness of learning with noisy inputs.cccceveeeeevveeeennn... 42

CHAPTER].

Introduction

Computers have become an indispensable tool in all areas of scientific
research, and in fact have infiltrated virtually every facet of our daily lives.
However, for all the amazing accomplishments in computer architectures and
algorithms, there is a class of problems which have shown themselves to be
exceedingly difficult, if not impossible to solve using standard computational
techniques. These include such diverse tasks as speaker recognition, speech
generation, image identification, pattern classification, character recognition,
handwriting analysis, and the like. The reason these tasks are so difficult
results from the fact that there is no clearly definable algorithm which one can
lay out in order to accomplish them. Yet, in contrast, it is generally quite easy
to produce large numbers of examples representing the problem at hand.

The extraordinary thing about this class of problems is that they are pre-
cisely the sorts of tasks which human beings have little or no difficulty doing,
and in fact, we do them hundreds of times each day without a second thought.
Some underlying biological factor has empowered us with the skills necessary
to accomplish these feats; an aspect which appears to be lacking in traditional
computer architectures. It would seem reasonable then to look at the source of
our own knowledge and intellect, the human brain, for an insight into archi-
tectures which are more suitable for the solution of these varied problems.
This is precisely what the field of neural networks, or connectionist research,
attempts to do. It attempts to extract those features of biological learning
which are essential for the solution of this suite of problems and to use the
information in the design of algorithms and hardware architectures capable of
performing these tasks.

CHAPTER 1—Introduction 2

The work presented in this thesis examines two specific learning algo-
rithms and addresses some of the concerns associated with the eventual
implementation of these algorithms in custom VLSI hardware. In the remain-
der of this chapter background material is presented which will serve to famil-
iarize the reader with some of the general concepts associated with neural
networks. This will help establish a common reference from which to base dis-

cussion in later chapters.

1.1 Basic Neural Network Theory

What is it about the human brain which makes it so much better at solv-
ing problems, such as those listed previously? A simple desktop computer is
much faster and more efficient at performing arithmetic computations than
the brain, so why is the brain so much more efficient in these other areas? An
important reason is parallelism. The brain relies on a large network of simple,
highly interconnected computing elements (neurons) for its computation, as
opposed to a single complex processor in a serial computer. This parallel sys-
tem, when coupled with a suitable learning algorithm, is the basis for solving
the complex tasks we are interested in.

Connectionist research has borrowed from the structure of the brain, and
has produced a simplified model which is felt represents the important fea-
tures of biological computation. The result is an artificial neural network
(ANN) computing architecture, the basic form of which is shown in Figure 1.1.

Figure 1.1: Basic neural network structure.

CHAPTER 1—Introduction 3

In keeping with their biological origin, each processing element in the
ANN is called a neuron, and the connections between the neurons are known
as synapses. A neuron may have many inputs, but produces only one output.
Each synapse has associated with it a weighting which represents the contri-
bution which that particular input has towards the neuron output. The neu-
ron performs a simple weighted summation of its inputs and produces as its
output, some nonlinear transformation of this input. This is represented

mathematically in Equation 1.1.

Vi = f(. Wijvj) (1.1
J

Here V; is the neuron output, V; the inputs to the neuron, and W;; the weight-
ing associated with the connection from input j to neuron i. The individual
inputs to a neuron may be supplied as either stimuli from an external source,
or may be the outputs produced by other neurons in the network.

The nonlinear transformation f{®) of the weighted sum is commonly real-
ized through the sigmoid function of Equation 1.2 in the majority of neural
network algorithms. The shape of the sigmoid is shown in Figure 1.2 below.

J/—

0

Figure 1.2: Sigmoidal nonlinearity.

1
l1+e

f(x) = (1.2)

-X

Another common nonlinearity is the hyperbolic tangent function (Equation
1.3). It is used in place of the sigmoid function when it is desired to have the
neuron output in the range [-1,+1] instead of [0,1].

CHAPTER 1—Introduction 4

X _ _—x
f(x) = tanh (x) = ex—‘i__;c (1.3)

e +e
In general, neurons are grouped into layers with each neuron in a layer
receiving its inputs from the previous layer of neurons, and supplying its out-
put to the following layer. Neurons which receive their inputs from an exter-
nal source are said to be input units and are members of the input layer. Those
that drive external signals are output units, and are members of the output
layyer. Neurons which are in neither the input layer nor the output layer are
known as hidden units and are grouped into one or more hidden layers. The
network in Figure 1.1 consists of three input units, five hidden units, and two
output units, organized into three layers. The number of neurons in each layer
of the network, and the number of layers depends on the application of inter-

est and the type of network being used.

1.2 The Learning Algorithm

Neural networks differ from standard computers in a number of ways, but
one of the most noticeable is the method of programming. Any traditional
computer (both serial and parallel) performs its task by following a sequence
of steps laid out by a human programmer in some form of programming lan-
guage. Inputs are supplied by the user, and the program follows the pre-
scribed set of steps in order to arrive at the final result. Neural networks,
however, do not follow the standard programming model. Instead, they learn
to solve the desired task by example, and not by explicit direction. All the
information necessary to arrive at a correct solution for a given set of inputs,
is stored in the values of the connection weights W;;. It is through the modifi-
cation of these weightings that the network is able to learn to perform the
task assigned to it. The method by which the weights are modified is known as
the learning algorithm.

In a newly constructed network the synaptic connection weights contain
no useful information. Before the network can solve a desired problem for a
specific input pattern, it must first be taught how to solve that problem in gen-
eral. This is done by showing the network a set of sample inputs which are

CHAPTER 1—Introduction 5

representative of the task it must perform, and it is up to the learning algo-
rithm to determine what connection weights are needed to accomplish it. Once
trained, the network can then be shown new input patterns, from which it will
produce outputs based on the these inputs and the learned connection
weights. How effectively the network is able to combine the novel inputs and
weights to produce a correct output is known as its ability to generalize. That
is, if a network is presented with an input pattern which it has not been
shown during the training phase, and it produces an output which would be
considered correct within the bounds of the problem, then the network is said
to show good generalization. If, conversely, the network is shown a new pat-
tern, and it produces an output which would not be considered correct, it is
said to show poor generalization. In practice, the measurement of generaliza-
tion is not established on the basis of a single pattern classification, but is
averaged over a large number of such inputs. This gives a more reasonable
measure of the performance of the network.

Individual learning algorithms differ in the way in which information is
encoded in the weights. Yet they all share an important common property.
Knowledge encoded in a network is distributed among a number of weights of
a number of neurons as a natural consequence of the learning process. This is
an extremely valuable feature, since it will allow the network a level of toler-
ance to individual component failure. If a single synapse or neuron fails, the
network should still function correctly, since only a small component of the
distributed knowledge will be lost. The level of this robustness will depend on
the size of the network, and the learning algorithm being used.

All of the numerous learning algorithms available can be grouped into two

basic classes known as supervised, and unsupervised learning.

1.3 Supervised Learning

In supervised learning the network is trained by presenting a pattern at
its input which is characteristic of the specific task. At the same time, infor-
mation is provided indicating what the correct network output should be for
that input case when the problem has been correctly learned. The input is
propagated forward through the various layers until it reaches the outputs of
the final layer. These generated outputs are then compared against the

CHAPTER 1—Introduction 6

desired output values, and the difference, known as the error, is then used as a
basis for modifying the weights.This process is repeated hundreds or thou-
sands of times, with each training iteration resulting in a small change in the
weights. The objective of this training process is to minimize the amount of
error between the desired and actual network outputs. If successful, the result
will be a network which has learned a correct mapping from the input space to
the desired output space. The process by which the network error is used in
updating the weights is what makes the various forms of supervised learning
unique. The best understood and most commonly used supervised learning
algorithm is the Backpropagation Algorithm!13,

1.3.1 The Backpropagation Learning Algorithm

Backpropagation learning gets it name from the way in which the net-
work error is used to update the weights. Under this scheme the resultant
error between the actual and desired outputs is propagated in a backwards
fashion from the output layer towards the input layer. The individual W;; are
modified during this process in proportion to their contribution to the output
error. That is, the more influence a synaptic connection has on the eventual
output, the more it is modified at each stage of learning. The network error is
calculated via Equation 1.4, which is the mean-squared error of the outputs.

- %ZZ(VZ‘" vy > (1.4)

Here, V; represents the actual neuron output, and Vid the desired or objective
output. The summation index i ranges over the set of output units, and ¢ over
the set of training examples. Thus E is the accumulated error from all output
units for the ¢ training patterns presented.

This error is then used to adapt the weights by an amount calculated in
Equation 1.5, which performs steepest (gradient) descent in E. If the neuron
nonlinearity is the sigmoid function, then the value of 9E/3W,;1s given by Equa-
tion 1.6 for all weights in the output layer, and by Equation 1.7 for weights in
the hidden layers [13][6]. Here V; are the outputs of the neurons in the output
layer, VJ are the output of the hidden units in the layer below the output layer,
and V}, are the output of the next lower layer.

CHAPTER 1—Introduction 7

oE
1
oE oE
oW = Svvi-v)v, (1.6)
E _ (wOE
S = (.aVV(l—V)WjVj(I—Vj)Vk (1.7)
J i l
oE
57 = (V,— V% (1.8)

The € term is known as the learning rate and is used to control the size of the
weight updates. This factor is usually quite small, compared to other values in
the network, and must be so in order for the network dynamics to settle
smoothly. If € is too large, the weight changes will become erratic, which will
result in the network failing to learn the task.

If the neuron nonlinearity is implemented using the tanh(e) function
instead of the sigmoid, then Equations 1.6 and 1.7 become [6]

gE aE (1—V)V, (1.9)
ij
oE oFE 2 2
v - (_‘a“V‘i(l_Vz‘)Wijj(l_Vj)Vk (1.10)

Backpropagation does have its problems, however. The amount of compu-
tation that must be performed for each weight update increases with the num-
ber of weights and is approximately O(N®), where N is the number of weights
in the network[8l. This is related to the fact that backpropagation networks
are, most commonly, fully connected. This means that every output from any
given layer is connected as an input to each neuron in the next layer. As a
result, each successive neuron added to a layer will require the addition of

more and more synaptic connections. In order to attempt to tackle realistic

CHAPTER 1—Introduction 8

problems, a large number of neurons and an even larger number of synapses
are required. For example, one network 2% which attempts to identify hand-
written digits utilizes 1000 neurons and 63660 synaptic connections. (Though
this network has many fewer independent parameters as a result of the use of
weight sharing.) This size of network takes an extremely long time to simu-
late, even on a RISC workstation, due to the shear volume of computations
needed, even though the individual computations are very simple.

A great deal of effort has gone into attempts to modify the algorithm in
order to speed up the learning process. However, the details relating to these
enhancements are not important to the development of the work presented in
this thesis. Those readers who are interested in a more in depth discussion of
the backpropagation algorithm, the derivation of the learning equations, and
its enhancements are directed to [13], [6], and [2].

1.4 Unsupervised Learning

Supervised learning depends on the presence of a labeled set of input data
from which to train the network. However, for a variety of problems it is
extremely difficult or impossible to produce a set of labelled training data that
will fully characterize the input space the network may encounter. For these
types of problems a learning algorithm is required that can adapt to new
inputs as they appear, without the need for the data to be pre-labelled. Unsu-
pervised learning algorithms fulfill this requirement. They differs from super-
vised learning in that there is no explicit indication to the network of what the
correct outputs should be for any given input pattern. Instead, the network
must decide what characteristics of the training set are relevant, and to mod-
ify the weights in order to extract those features. The method used to accom-
plish this is a function of the learning algorithm, which is based on some type
of internal error measure. When a pattern is presented to the network, it is
forward propagated to the outputs (through Equation 1.1), and the error mea-
sure is then applied to extract relevant statistics from these outputs. The
connection weights are modified in order to minimize this objective measure,
via the learning rule. The error measure may not be explicitly defined but may
be implicit in the learning equation. At no time is the network given any
external indication as to the desired output values.

CHAPTER 1—Introduction 9

1.4.1 Hebbian Learning

A very simple example of an unsupervised learning rule is known as Heb-
bian learning since it is based on observations by Dr. Donald Hebb%!. One ver-
sion of this says that inputs to a neuron, which are correlated with its output
on a majority of the patterns presented, should have their weight increased so
that these signals will agree more strongly in the future. Similarly, inputs
which are not correlated should have their weights reduced in order to mini-
mize their effect on the output. This idea is represented by Equation 1.11,
where V; in the neuron output, V;is the input of interest, and ¢ is the learning
rate.

AWij = SViVj_ bWij (1.11)
The second term in this equation is a weight decay term and is used to pre-
vent the weights from growing without bound. In the absence of a reinforcing
input (which occurs when V; and V; are anti-correlated), this term will cause
the weight to slowly decay towards zero, and the rate of this decay is con-
trolled by the constant b1.

It is important to note that the learning rule does not make reference to
external knowledge of any kind. The incremental weight update is only depen-
dent on the neuron output, the present weight, and the present input.

Though not explicitly determined in developing the weight update rule,
the error function being optimized can be calculated. This equation is given in
Equation 1.12, where V}* and V}* are the neuron input and output for the spe-

cific training pattern p.

1 2
E{W;} = 52 (bW~ 2V§LV]*.1WU.) (1.12)
i

1. In the case where the inputs are bipolar, which occurs when the tanh(e) function is used, the
decay term is not required for negative weight changes as in the case of unipolar inputs. However,
itis still useful, since it allows the network to “forget” the effects of past weight updates by slowly
reducing their effects over time. In dynamic environments this places more emphasis on recent
inputs and reduces the influence of inputs which have not occurred recently.

CHAPTER 1—Introduction 10

1.5 Hardware Implementations of Neural Networks

As was stated earlier, the main focus of the work presented in this thesis is
directed to the eventual implementation of neural network algorithms in
hardware. Specifically, two different unsupervised learning algorithms are
examined in relation to their suitability for construction in analog CMOS
hardware. However, before discussing the details of these algorithms it is use-
ful to explore the rationale for wishing to construct these hardware networks
in the first place.

Much of the research performed in the field of neural networks is done
using traditional serial computers which have been programmed to emulate
the functions of the neural architecture being investigated. The problem with
this approach is that, typically, training a network takes thousands of itera-
tions through the training set, which translates into thousands of updates of
hundreds/thousands of weights. In and of themselves, the computations are
quite simple, but when taken as a whole, a powerful workstation can take
days or even weeks to learn a particular task. In an effort to reduce this prob-
lem, researchers have attempted to speed up the learning process by simulat-
ing the networks on specialized vector processors. These parallel processors
are generally quite expensive. Since the learning algorithms used in most net-
works are relatively simple, with localized computation, and the network
structures themselves are highly parallel by definition, it would seem to make
sense to construct specialized VLSI hardware, taking these factors into
account. By constructing simple inexpensive processing elements which
embody the desired learning algorithm, and using these specialized processors
to construct a hardware network, the learning process can be greatly acceler-
ated. As a consequence of this, the speed of processing after learning will also
be increased, but this is often not of major concern, since only a single propa-
gation is required to classify an input pattern.

So by implementing the architectures in hardware, we take advantage of
the parallelism of the network structures. The most desirable situation would
see the implementation of a complete network in a single VLSI chip, as this is
both efficient in terms of ease of design and manufacture. In any hardware
neural network it quickly becomes apparent that the limiting factor on the

CHAPTER 1—Introduction 11

number of neurons that can be fabricated in a single device is dependent on
the size and quantity of the synaptic elements. For example, the network
depicted in Figure 1.1 is made up of only 7 neurons, but has a total of 25 syn-
apses. The more neurons a network contains, the more dominant the synapses
will become in terms of the use of silicon area. Very quickly the amount of area
required for the neuron circuitry is insignificant compared to the number of
synapses feeding it. As a result, the synapse should be made as compact as
possible, and it is primarily for this reason that an analog hardware imple-
mentation is preferred over digital structures. The amount of area required
for equivalent computations using analog components is significantly smaller
than what one would expect for a similar digital system.

Several groups, including [9], have designed single chip networks which
will perform the forward propagation using analog components. However,
these devices don’t include circuitry for the learning algorithm, and as a
result, the learning must be computed off-line by a serial computer. This
allows for flexibility in the choice of learning algorithm, but does not help to
reduce learning times since the learning must still be performed off-line by a
serial computer. To truly take advantage of the parallel aspects of the net-
work, both the forward propagation and the learning should be constructed in
hardware. This will increase the silicon area required for each synapse, but
will dramatically improve the learning speed, in addition to the forward prop-
agation speed. This approach has been pursued by a number of researchers,
including Chris Schneider of our laboratory[14].

For these reasons, it is felt that an analog architecture, with on-chip learn-
ing is the best arrangement for practical applications of neural network tech-

nology.

1.6 Summary

This chapter has provided a quick overview of the area of neural networks.
It began by examining the biological motivation for the creation of these archi-
tectures, which was followed by a description of the artificial neural struc-
tures. The concept of a learning algorithm was presented, and was examined
in relation to traditional programing techniques. Next, supervised networks
were discussed, and specifically the algorithm known as Backpropagation.

CHAPTER 1—Introduction 12

This was followed by a similar examination of unsupervised learning, which is
the main algorithmic area of interest to this thesis. Hebbian learning was
then presented as an example of an unsupervised learning algorithm. Finally,
the motivation relating to the need for dedicated hardware implementations
of these algorithms was outlined, and specifically, the advantages afforded by
the use of analog VLSI techniques.

In Chapter 2 the concepts of unsupervised learning will be extended as it
relates to the hardware implementation of a specific unsupervised learning
algorithm known as Coherence Based Unsupervised Learning. This algorithm
will be presented from a theoretical perspective, and will then be examined in
relation to a dedicated hardware implementation.

Chapter 3 examines a second unsupervised algorithm known as competi-
tive learning. This method is presented, and various aspects relating to the
potential hardware implementations of such a network are discussed.

In Chapter 4, conclusions will be drawn based on the simulations and
measurements obtained in Chapters 2 and 3. In addition, proposals for future

work in this area will be presented.

CHAPTER 2

Coherence Based Unsupervised Learning

In this chapter an unsupervised learning algorithm is examined known as
Coherence Based Unsupervised Learning (CBUL) developed by Suzanna
Becker and Geoffrey Hinton at the University of Toronto™1l, Initially the
basic properties of this algorithm are presented, and this discussion is fol-
lowed by a description of the work performed in attempting to implement this
algorithm in fully custom analog CMOS hardware.

2.1 Coherence Based Unsupervised Learning

CBUL is an unsupervised learning method which attempts to train a neu-
ral network to extract higher-order spatially or temporally coherent informa-
tion present in its input space. If the input is an image, for example, the
network may be trained to recognize features such as the depth, reflectance,
or surface orientation of an object. The training method used in CBUL is
based on the assumption that the information which is present in neighbour-
ing portions of the input space are relatively consistent, and that this fact can
be exploited in order to extract the underlying higher-order properties of this
input. The basic structure of a CBUL network is illustrated in Figure 2.1.

The network is made up of a number of small backpropagation style net-
work modules which function independently of one another for the purposes of
forward propagating the input patterns. Since the individual modules are
small, the amount of computation performed in each one is also kept small.
This reduces the learning time compared to networks such as standard back-
propagation networks which are usually large fully connected, or very nearly

CHAPTER 2—Coherence Based Unsupervised Learning 14

... Maximizel
HIDDEN HIDDEN
011]11]0]0 0j1/0]1|0
oj0f0y1]11]0 ofof1lo0|1]|O0

Figure 2.1: General structure of a CBUL network.

fully connected structures. Each of the layers in a module are fully connected
to the following layer, but there are no connections between modules.

Coherence based networks differ from standard backpropagation networks
in the method which is used to determine the output error. The technique
employed here is based on the objective of assuring coherence between the
outputs of adjacent modules, and does not make use of any external (supervi-
sory) knowledge about the outputs.

But what kind of coherence method should be used? A very simple form of
coherence would be to enforce the requirement that outputs of neighbouring
modules be equal. There is a problem with this criteria, since the network will
be able to fulfill this requirement perfectly by simply setting all weights to
zero, and the resulting outputs will always be zero. This is obviously not a use-
ful solution, so some other algorithm is needed to assure coherence. The

answer is the use of a mutual information measure.

2.1.1 Mutual Information

Coherence based unsupervised learning attempts to solve the learning
task by maximizing the mutual information present between adjacent output
units. The mutual information measure used in this network is based on
Equation 2.1, where I(®) is the mutual information, H(*) denotes the entropy
of each input, and H(a,b) is the entropy of the joint distribution.

CHAPTER 2—Coherence Based Unsupervised Learning 15

I(ab) = H(a) +H(b) —H (a,b) 2.1)

In a network with continuous valued outputs, this can be written as!!

V(a) V(b)

I(a;b) = logm +logm (2.2)

with V(*) denoting the statistical variance of the inputs. The simple interpre-
tation of this equation is that in order to maximize the mutual information
between the two inputs it is important that the individual outputs show a sig-
nificant variation over time, while their mutual difference is kept as small as
possible. This satisfies the coherence constraint while eliminating the trivial
solution through the output variation requirement.

The derivative of Equation 2.2 is given by Equation 2.3, below.

(2.3)

a _Z_[aa— @) _, <a°‘—b°‘)—<a—b>}
3a% N| V(a) V(a-b)

In this equation, a® is the output of module a for the input pattern o, and b* is

the corresponding output for module b. V(®) denotes the variance of the speci-

fied output, (-) represents a statistical average, and N corresponds to the

number of patterns in the training set.

Two passes through the training set are required in order to update the
weights. In the first pass, the average output and the variance of the outputs
is accumulated. Then, on the second pass, the value of 31/3:* can be calculated
from the above equation, and the resulting value supplied as the error deriva-
tive for the weight updates in the small back-propagation modules.

2.2 A Sample Problem

An example of a simple CBUL network learning task is depicted in Figure
2.1. The objective of this network is extract the depth information present in a
stereoscopic image. In a binocular system, such as the human visual system,
depth information is determined by the amount of shift present between the
images received by the left and right eyes. If either of the visual inputs is
removed, a subject will no longer be able to determine depth in this manner

CHAPTER 2—Coherence Based Unsupervised Learning 16

Left Right

Figure 2.2: Stereoscopic input pattern selection.

and will have to rely on other factors in judging distances. The inputs to each
module would be corresponding portions of a stereoscopic image, as repre-
sented by the diagram of Figure 2.2. The top row of the inputs is taken from
the right image, and the bottom row from the left, or vice versa. In order to
emulate this effect without the need to collect real stereoscopic images, the
inputs to this sample network consist of a random binary bit stream with an
artificially inserted bit shift. The shift inserted in the random stream corre-
sponds to the depth in a real image. Since the input stream is random, except
for the shift, the only consistent information that can be extracted to ensure
coherence at the module outputs would be the bit shift, and hence the depth.

2.3 Hardware Implementation of the CBUL Algorithm

The objective of the work undertaken for this thesis was to translate the
structure of the CBUL network into a comparable analog CMOS hardware
implementation, thus taking advantage of the inherent parallelism of the
architecture. This task can be broken down into two main areas; the circuitry
to perform the backpropagation in the individual modules, and a circuit to cal-
culate the mutual information measure.

The implementation of the backpropagation algorithm requires two basic

CHAPTER 2—Coherence Based Unsupervised Learning 17

arithmetic computations. These are the multiplication of two parameters, and
the addition of two parameters. If the parameters are represented in the form
of currents, addition can be performed by summing of currents on a wire,
employing the electrical properties known as Kirchoff’s current law. However,
in order to perform multiplication it is necessary to construct a multiplier
using analog components. Such a multiplier was used previously by Chris
Schneider of our laboratory in [14], and is known as the CMOS Gilbert multi-
plier, since it is an adaptation of a bipolar multiplier designed originally by B.
Gilbert in [4].

2.3.1 The Gilbert Multiplier

The Gilbert multiplier is a transconductance multiplier producing an out-
put current based on the product of two differential input voltages, as given by
Equation 2.4. The term a controls the gain of the multiplier.

Ioyr = a(Vi=V,) (V53— V) 2.4)

The measured response of our 3um CMOS version of this multiplier for
various ranges of inputs is shown in Figure 2.3. Each curve represents the
characteristic for a particular value of the differential input (V;-V,), as the
input (V3-V,) is varied. Over the input range +/-0.6 volts the multiplier is
essentially linear, and does not show significant deviation until the +/-0.8 volt

(VLV2)=-0.8v
= OV

- : : : ' : : (ViV2)= D4 v
3 ‘ ! : ! (VIV2)=02v
. B : : N « (VI-V2)= Ov

(V1-V2)= 0.2v
© (V1-V2)= 04 v
(V1-V2)= 0.6 v
(V1-V2)= 0.8 v

Tout (uamps)
o

Figure 2.3: Gilbert multiplier characteristic.

CHAPTER 2—Coherence Based Unsupervised Learning 18

level is reached. Outside of these ranges the output saturates. Minor varia-
tions in the multiplier characteristic are not considered significant, since the
resulting product will ultimately be passed through the nonlinearity function

in the neuron.

2.3.2 Circuit Implementation of Backpropagation

In addition to the Gilbert multiplier, a simple current/voltage converter is
also required. The schematic representation of both of these components is
given in Figure 2.4.

V;
gi _] >< Lour In— I/V Vour
VvV,

Gilbert Multiplier Current/Voltage Convertor

Figure 2.4: Hardware building blocks.

The hardware multiplier actually serves a secondary function in addition
to multiplication. By exploiting its saturating characteristic it may also be
used to implement the nonlinearity of the neuron output. This is important, as
it reduces the number of components that must be designed, which helps to
simplify the design structure. Figure 2.5 is a block diagram representation of
the neural circuitry for a typical neuron/synapse in the hidden layer.

Synapse Neuron

Inputs from
other synapses.

Figure 2.5: Block diagram of neuron backpropagation.

CHAPTER 2—Coherence Based Unsupervised Learning 19

The functions of this circuit can be broken down into four sections. The
first of these is the weight multiplier M4 which computes the product of the
synaptic input Vj and the weight Wj;. This weight value is stored as a quantity
of charge on the capacitor C. Since this charge will leak away over time, thus
changing the value of the stored weight, it is necessary to continually inter-
leave training steps with classification steps in order to refresh its value. It
would be greatly desirable to use some form of non-volatile storage instead of
the capacitive storage, such as an EEPROM. However, this option was not
supported in the available fabrication technology.

The output current from each synapse is summed with the output currents
from the other synapses using the simple properties of Kirchoff’s current law.
This sum is then passed on to the neuron.

The neuron portion is made up of the two current/voltage converters IV3
and IV4 and the multiplier M5. IV3 converts the summed synaptic input cur-
rent into a corresponding voltage which then drives one input of the multiplier
M5. The multiplier serves as the neuron nonlinearity under the control of the
GAIN input. Increasing the GAIN input makes the neuron output more non-
linear, and also increases the range of the neuron output current. The result-
ing output current is converted to the neuron output voltage V; by the current/
voltage converter IV4.

The third section embodies the weight update Equation 1.9, as given in the
backpropagation section of Chapter 1. This encompasses multipliers MI1-M3,
and convertors IVI and IV2. The input denoted “1”, at the input to multiplier
M2, represents the input voltage corresponding to a mathematical value of 1.
The final output current of this section represents the weight update that is to
be applied to the weight capacitor C. This update current is gated through the
learning control circuitry which allows for the option of turning learning off
and on. In practice the learning control is pulsed in order to update the
weight, thus controlling the quantity of charge added to or removed from the
capacitor. The duration of this pulse corresponds to the learning rate (¢) in
Equation 1.5.

The final section is the weighted error calculation and is implemented by
multiplier M6. This is the error which is passed back to the next lower hidden

CHAPTER 2—Coherence Based Unsupervised Learning 20

layer below the current layer (if it exists) for use in updating the weights in
that layer.

Two test implementations of this circuitry were designed using the Elec-
tric VLSI CAD software, and fabricated in 3pum and 1.2um CMOS by Northern
Telecom Electronics, through the auspices of the Canadian Microelectronics
Corporation. A photomicrograph of the entire 3um test layout appears in Fig-
ure 2.6, while Figure 2.7 shows a single synapse. Each synapse is 516um by
526um, while the entire test layout requires 7000um by 2600um. As can be
seen this area is underutilized and is only required because of the relatively
large number of test pads that are used in the design. The neuron shown in
the figure does not include circuitry for the mutual information measure, but
simply performs the nonlinearity operation on the weighted sum. The mutual
information will be dealt with separately.

Simple tests were conducted to evaluate operation of the test implementa-
tion. The plot of Figure 2.8 shows the response of a single synapse to changes
in its input. Here all inputs were held at a constant value except for the error
input Errln which was switched between a positive and a negative input level.
The resulting change in the value of the stored weight can be seen on the
SumOut signal line. It is not possible to non-intrusively measure the weight
value stored on the capacitor, so the effects of weight changes must be evalu-
ated by observing their effects on the synaptic output. In the test, the synaptic
output is initially at a strongly negative level, since the weight storage capaci-

Figure 2.6: Photomicrograph of backpropagation test structure.

CHAPTER 2—Coherence Based Unsupervised Learning

21

ErrIn
=== SumQut [

1
100 120

time (s) (x10°%)

Figure 2.8: Measured synaptic characteristic.

SumOut (v)

CHAPTER 2—Coherence Based Unsupervised Learning 22

tor is completely discharged. Switching the value of Errln to a strong positive
value causes the weight update circuitry to produce a positive output current
which charges the weight capacitor. This in turn causes the output of the syn-
apse to become strongly positive, indicating that the weight capacitor changed
from being fully discharged to fully charged. When the ErrIn value is once
again switched low, the output becomes strongly negative as the weight capac-
itor once again discharges. This clearly demonstrates that the weight capaci-
tor is being updated correctly with the changes on the input signals. In actual
practice the update current to the capacitor would be gated in order to allow a
small weight update for each training pattern, but for the purposes of these
tests this was not done. The duration of the gating signal corresponds to the
learning rate € for the synapse since it controls the maximum amount of
charge that can be added to the weight capacitor at each update in the train-
ing cycle.

It is clear that an implementation of the backpropagation style of learning
will not be completely accurate in its implementation of the learning equa-
tions. The effects of using the Gilbert multiplier instead of a true arithmetic
multiplier, as well as the component variations which will be encountered as a
result of the fabrication process, will have an impact on the performance of the
backpropagation learning. The effects of these factors as they relate to stan-
dard backpropagation learning have been examined by Brion Dolenko of our
laboratory in [2]. His simulations showed that the synaptic circuits can be
expected to perform correctly using the Gilbert multiplier and are able to tol-
erate anticipated variations in its gain. However it was also found that perfor-
mance will suffer if significant multiplier zero crossing offsets are present in
the system. So, based on the hardware tests and these simulations, the back-
propagation style modules are expected to function correctly in the absence of
multiplier offsets.

2.3.3 Circuit Implementation of Mutual Information

This section examines a proposed circuit for implementing the mutual
information measure used by CBUL to generate the training error. Recall that
this error is used by the backpropagation modules to update the synaptic
weights. The error derivative has been given previously in Equation 2.3 and it

CHAPTER 2—Coherence Based Unsupervised Learning 23

Weighted sum
from synapses

Figure 2.9: Proposed mutual information circuit.

is the objective of the following circuits to implement this equation in analog
hardware. The diagram of Figure 2.9 shows the proposed circuit implementa-
tion. There are two major portions to this design; the circuitry to accumulate
the statistics for the calculation, and the circuitry to perform the calculation
itself. The statistical accumulation circuitry is comprised of the Gilbert multi-
pliers M7 and M8, and the current-voltage convertors IV5-IV7. The remaining
circuit elements, M9-M11, IV8-IV10, and the voltage divider DI comprise the
calculation portion. The elements labeled M5, IV3, and IV4, are the same
three elements shown in the neuron output stage of Figure 2.5.

This circuit makes use of an additional symbol which has not been encoun-
tered thus far. This is the output stage of a current mirror and is shown in
Figure 2.10 along with the equivalent analog circuit structure. The input
stage of this mirror is already present within the Gilbert multiplier, and
drives the multiplier output through a current mirror output stage. By using
this circuit in conjunction with the control signals already present, it is possi-
ble to generate a second output current which is a copy of the first.

CHAPTER 2—Coherence Based Unsupervised Learning 24

Voo
P
h—‘ Vorr
Von, — VOFF P
VenTL
Tour Lout
N
VentL
Current mirror output stage
with gated output level N
I—'— Vorr
Vs

Figure 2.10: Current mirror output stage with control inputs.

The statistical accumulation portion of the mutual information circuit is
required to collect a number of averages in order to generate the variances
used in Equation 2.3. These are given by Equations 2.5-2.9.

1 o
a=1
1 y 2
X3 =5 Y, (@ (2.6)
a=1
. N
XA—BZNZ (a*-bp% @.7)
a=1
1 al 2
X2, = - Y (@”-b% (2.8)
o=1
(a) = X, V(a) = X5-X,
(a=by=X,_p V(a-b) =Xi _z-X,_, (2.9)

The simplest of these averaging circuits computes the mean of the neuron
output over the range of training cases. It is denoted X,, and its value is
stored on capacitor C1. The AVG signal is used to control the amount of charge

CHAPTER 2—Coherence Based Unsupervised Learning 25

added to the capacitor, and as with the gating circuit used in the synapse, it is
pulsed for a fixed duration for each training input. The pulse duration corre-
sponds to the Y/ term of the average. The second sub-circuit stores the mean
of the square of the neuron output X,? on capacitor C2. The squaring opera-
tion is carried out by multiplier M7 and the resulting output is transferred to
the storage capacitor. Similarly the average difference between adjacent out-
puts X, g and the squared difference X, z° are stored in the same manner on
capacitors C3 and C4, respectively.

All four of these stored averages are accumulated on the first pass through
the training set of N patterns. The actual weight updates are then performed
on the second pass where the stored averages are combined with the current
output of the synapse to generate the final error value 09I/9V,, which is
denoted Vggg in the circuit. This is the error value which is passed as an input
to the output layer backpropagation style synapses.

Though this circuit appears to be much more complex than the synaptic
circuit of Figure 2.5, it is actually comparable in size, given the number and
type of elements used. In order to evaluate the feasibility of this structure it
would be necessary to generate a hardware layout for simulation and fabrica-
tion purposes. However, based on experience with the layout of the elements
used, we can readily estimate that the resulting layout of the neuron would be
on the order of 1.5-2 times the area occupied by one of the backpropagation
synapses. However, there are far fewer neurons in a network than synapses,
so a neuron of this size is not unreasonable. The complete neuron portion of
the circuitry (all elements from Figure 2.9) would occupy an area of approxi-
mately 1000pum by 500um in a final implementation. Using a 3um fabrication
technology this would allow for approximately 20 neurons and 400 synapses

on a typical silicon die measuring 1cm on a side.

2.4 Summary

In this chapter an unsupervised learning algorithm based on coherence
between adjacent spatial portions of the input data has been discussed in its
relation to the solution of a simple depth extraction problem. As well, circuitry
to perform the backpropagation of errors used in the hidden layers has been
designed and fabricated using CMOS VLSI analog design techniques. In addi-

CHAPTER 2—Coherence Based Unsupervised Learning 26

tion, a proposed circuit to calculate the mutual information error measure for
controlling the backpropagation weight updates has been given. Both of these
circuits make extensive use of the CMOS wide-range Gilbert multiplier, and
capacitive weight storage.

CHAPTER 3

Competitive Learning

This chapter deals with some of the problems which are encountered when
implementing networks in hardware, and specifically how these difficulties
effect competitive learning algorithms[e]. Initially the theory of competitive
learning will be explored, and this information will then be expanded upon as
it relates to potential analog hardware implementations of this algorithm.

3.1 Competitive Learning

Competitive learning (CL) is an unsupervised learning procedure that
attempts to motivate correct learning through the use of competition between
output units. The basic structure of a simple competitive learning network is
shown in Figure 3.1.

In addition to the layer to layer connections seen in other networks, CL
networks also have connections from each output unit to all output units,
including the source unit itself. The connection from a unit to itself is excita-
tory, meaning that it has a positive weighting and will help to reinforce the
output of the neuron. The connections to all other output units are inhibitory
and attempt to suppress the output of the other neurons. It is this mechanism
which is the basis of the network competition. (Note: For simplicity, not all
connections between output units have are shown in the figure.)

It is the objective of competitive learning to modify the connection weights
in order to have each output, or group of outputs, represent some underlying
class in the input data. As a result of this behavior, these networks are also

commonly known as clustering networks, since they cluster inputs into a

CHAPTER 3—Competitive Learning 28

Figure 3.1: Basic competitive learning network.

number of categories. Ideally each input presented should excite a single out-
put unit strongly, while all other outputs remain low. This is an indication
that the network is confident as to the class membership of the input.

3.2 Hard and Soft Competitive Learning

There are two general classes of competitive learning, hard competitive
learning (HCL) and soft competitive learning (SCL).

In hard competitive learning ideally only one neuron output should be
active at any one time. An input pattern is applied to the network and the out-
puts are allowed to settle to stable values. The unit whose output is most
active for this pattern is selected as the “winner” for this input, and this unit
then updates its connection weights in order to reinforce the response. The
weights connected to all other output units remain unchanged. As a result,
the winning unit will be more likely to win for this input in the future. The
forward propagation of input patterns to outputs is performed by Equation
1.1.

The weight update rule for HCL is given by Equation 3.1 for normalized
inputs. Here Wl.*j denotes the weight connecting input unit j to the winning
neuroni , V;is the jth element of input pattern V¥, and ¢ is again the learning

CHAPTER 3—Competitive Learning 29

rate. Initially the weights are set to small random values before training.

— L_ow
AWi*j = S(Vj Wi*j) (3.1)

There is a problem with this method of weight updating which manifests
itself if the random initial weights place a unit outside the range of the input
patterns. If this occurs, this particular unit will never be selected as the win-
ning unit for any of the input patterns, and as a result, its weights will never
be updated. These orphaned units will, therefore, never contribute to the solu-
tion derived by the network and are essentially wasted. An alternative learn-
ing method which combats this problem is known as soft competitive learning.

In soft competitive learning, all output units update their weights in rela-
tion to their output level. The unit which would be classified as the winner
updates its weights the most, and all other units update their weights in pro-
portion to their reduced activations. This ensures that all units get utilized in
the eventual clustering solution by slowly moving orphaned units into the
solution space. Eventually, these units will start to win for some of the input
patterns, and the result is more efficient utilization of the outputs. The learn-
ing equation for SCL is given by Equation 3.2 below.

- H

The only difference between this equation and that of Equation 3.1 is the addi-
tion of the V; term which is the output value of the unit being updated. This
equation is similar to the weight update equation for Hebbian learning
employing a weight decay term (Equation 1.11).

It should be noted that the update rule of Equation 3.2 was not derived
from a previously determined error measure, as was the case for backpropaga-
tion in Chapter 1. However, a corresponding error measure does exist and is

given by Equation 3.3[6],
E{W.} = 1"ZV*.*(V”—W..)Z (3.3)
) D i 1 J lj
7]
Gradient decent based on this error function will result in the weight update
function of Equation 3.2.

CHAPTER 3—Competitive Learning 30

3.3 Hardware Issues of Competitive Learning

As was the case with Coherence Based Unsupervised Learning it is our
intension to examine the competitive learning algorithm in relation to its
eventual implementation in analog CMOS hardware. This and following sec-
tions will explore the feasibility of CMOS implementations in relation to
expected process variations, based on experience with CMOS circuitry mea-
surements such as those of Chapter 2. As was the case with CBUL the major
component of the proposed hardware circuits will be our CMOS version of the

Gilbert multiplier.
Learn Gain
Vij—t— 1\;(1 Wij M2 i | M v2
v * Ol
T T vEX Ko
\ / \ /
Synapse 3 Neuron

Inputs from
other synapses.

Figure 3.2: Proposed competitive learning circuit implementation.

A diagram of the proposed synapse/neuron circuitry appears in Figure 3.2
above, and is very similar to the synaptic circuitry used in CBUL in Chapter
2. The learning algorithm of Equation 3.2 is realized by a single multiplier
M1, while the remainder of the circuitry remains unchanged.

3.4 Effects of Fabrication Variation on Learning

Though in theory it is possible to implement these unsupervised learning
algorithms in hardware, the actual fabrication process will introduce varia-
tions in the characteristics of the fabricated components. As a result, the fab-
ricated components will not operate precisely as predicted by theory, but will
show a slight variation in their characteristics. The following sections will
investigate the effects that these variations will have on the learning process.
This will help to determine whether the competitive learning algorithm can

CHAPTER 3—Competitive Learning 31

tolerate them, as well as showing how the variations affect parameters in the
learning equation. The basis for the evaluations given are the direct result of a
number of simulations of the CL algorithm using the Xerion neural network
simulator[15], which was modified for the purposes of these hardware simula-
tions. During simulation the characteristics of the Gilbert multiplier are mod-
elled using a trigonometric hyperbolic tangent function. This function is
commonly used to implement the nonlinearity in some neural network imple-
mentations as discussed earlier. However, it also compares closely with the
measured characteristics of our CMOS hardware multipliers of Figure 2.3.
Both the multiplier characteristics and tanh(®) function saturate at the
extremities of the input range, as well as being essentially linear near the
midpoint of this range. Thus it is felt that parameterized versions of tanh(®)
functions serve as good models of the hardware multipliers.

In order to determine whether competitive learning is a good candidate for
eventual fabrication in hardware it is important to explore the range of fabri-
cation variations which this algorithm will tolerate. Once this is known it can
be compared with the known parameters for the fabrication technology and a
determination of its suitability can be well established.

In order for this evaluation to be carried out, it was necessary to select
some task for the network to perform, and to be evaluated on. The problem
selected involves the learning of a simple binary decoder. The basic structure
of the decoder network is identical to that given previously in Figure 3.1. Each
input pattern is a three bit binary number, and if correctly trained, the net-
work should map each of these inputs to a single output unit. Thus, when an
input is presented only one output should be activated. As a result the connec-
tion weights for each output neuron, when taken as a group, should represent
a logical minterm. An example of actual weight values results for a correctly
learned decoder problem are shown in Figure 3.3.

The connections to each of the eight output neurons is represented by the
eight outer boxes. Each of the three smaller boxes within these represents the
connection strength of one weight. The sign of the weight is indicated by the
colour of the fill in the weight boxes, with positive values being white, and
negatives being black. The magnitude of the weight is represented by the
amount of the box which is shaded black or white. The group of three weights

CHAPTER 3—Competitive Learning 32

L]

Figure 3.3: Xerion weight connection display.

at the top of each neuron box are the weights from the three input units to the
particular output unit. The eight weights grouped below these are the connec-
tion weights from all other output units to the given unit. These eight weights
are held constant during the training process, while the three input weights
are varied by the learning algorithm. Note that the weights in Figure 3.3 cor-
respond to soft competitive learning, and that when learning is complete the
weights have taken on maximal positive and negative values.

3.4.1 Variations in Multiplier Characteristics

Device variations are an inevitable result of the VLSI fabrication process.
These variations are not as critical for the production of digital circuitry
because of the relatively high tolerances which are permitted before faulty
operation is experienced. However, analog components are much more suscep-
tible to process variations, and as a result these variations must be accounted
for in the design process. The variations introduced during fabrication may
result in a number of perversions of the ideal device characteristics. Though
every effort was taken in the layout of the Gilbert multiplier circuitry to mini-
mize the effects of these variations, they can not be completely eliminated and
will result in variations of the multiplier characteristics. As a result a number
of simulations of the competitive learning algorithm of Equation 3.2 were car-
ried out in order to identify the effects of this variation.

The first of these potential effects is the replacement of the arithmetic
multiply with the nonlinear hardware multiplier itself. Will the network be
able to learn under these circumstances? Figure 3.4 shows the results of simu-
lations using an ideal arithmetic multiplier, while Figure 3.5 shows the same
simulation using the tanh multiplier. Twenty learning trials were attempted
using a variety of learning rates (¢) in the range (0,0.1). The training inputs

CHAPTER 3—Competitive Learning

33

20

of Correctly Learned Trials
[
<

n
o

—_
14,1

of Correctly Learned Trials
o 5

RN Y S T N N SN SUPOY AV AU T TR NN S AUNY TN S N

I IS e
0.04 0.05 0.06 0.07 0.08
Learning Rate (epsilon)

T T T T T | T
002 0.03

o
o
=)
=

0.09

Figure 3.4: Learning using the ideal arithmetic multiplier.

0.1

— ———— ——
0.02 0.03 0.04 0.05 0.06 0.07
Learning Rate (epsilon)

0 0.01 0.08

Figure 3.5: Learning using tanh multiplier model.

T
0.09

0.1

for the network consist of the complete set of eight possible binary input pat-

terns, which fully characterize the range of possible input states. Since the

training inputs and the testing inputs comprise the same set of patterns gen-

eralization is not an issue. The only factor that was changed between separate

learning trials at any given learning rate was the random values of the con-

nection weights. All other factors remained constant.

CHAPTER 3—Competitive Learning 34

It is clear from these plots that the tanh network is able to reliably learn
the task for a wide range of learning rates, and that the use of the non-ideal
multiplier does not significantly affect the learning process. Best learning per-
formance is found over the range €=(0.05, 0.08). Learning rates higher than
0.08 result in larger weight modifications at each learning step, which cause
the weights to become unstable. As a result, the network does not settle to a
stable state, and will produce an unsatisfactory solution. Learning rates
which are too small will result in the network becoming trapped in a non-opti-
mal solution, from which it is unable to escape. Selecting a learning rate mid-
way between these two extremes will eliminate both these problems.

In the cases where learning becomes unstable the final weights contain no
useful information. However, in those cases which result in non-optimal solu-
tions the final weight values do embody some usable information. In this case
most output units have learned weights which represent a particular min-
term. Those that do not have learned weights which represent a sum of min-
terms, instead of a single minterm. As well, a non-optimal solution can result
in which two output learn the same minterm value. For the purposes of the
simulations conducted, learning is only considered successful when all eight

output units learn a unique minterm.

3.4.2 Effects of Multiplier Gain Variations on Learning
It has been shown that the arithmetic multiply can be safely replaced by a

non-ideal Gilbert multiplier. However, it must also be determined how varia-
tions in this multiplier will effect the learning process. To evaluate the effects
of variations, the soft competitive learning module of the Xerion simulator
was further modified to allow for the introduction of statistical variations in
the multiplier gain. Variations in gain are equivalent to changing the slope of
the multiplier characteristic. The variations introduced follow a gaussian dis-
tribution and are applied to the characteristic of the multiplier in order to per-
turb the gain (or slope) of the multiplier characteristic. This multiplier is used
in the computation of the weight update value in the learning equation. A nor-
mal multiplier characteristic has a slope of 1, and these random variations
alter that slope by various amounts. Figure 3.6 gives the results of simula-
tions using a variety of slope variations. Each plot in this figure represents the

CHAPTER 3—Competitive Learning 35

[SV]
(=]
}

[
ot

S T T Y '

of Correct Trials
-
=)

=D
[© B R T

w

of Correct Trials
ot
=)

TEE T R R R

D
(== o]
I

[y
o

TR S

of Correct Trials
o
=

| P

~

LI A e | ! LI L | LI L | LR L [L l T T T T [L | T 1T I\i T T [T 1 T7T [T 1T [
0 0.01 0.02 003 004 005 006 007 0.08 0.09 01 0.11
Learning Rate

o o

Figure 3.6: Non-ideal multiplier with uniform slope variations

number of correctly learned training runs from the twenty learning trials
attempted at each value of €. At the start of a training run each synaptic mul-
tiplier was assigned a modified slope selected from a gaussian distribution
centred at 1. The standard deviation of the distribution was changed between
plots, but remains constant in any given plot. The bottom plot shows the
results with a small standard deviation of 0.1, while each successive plot
shows the same simulation with a larger and larger variation.

Initially, the network is able to tolerate the gain variations, with only a
small reduction in the acceptable range of learning rates when compared to
the unaltered tanh multiplier of Figure 3.5. Over the range £=[0.02,0.06] the
network is able to learn correctly in 95% of the learning trials performed. As
the range of variations increases the range of acceptable learning rates
shrinks. For a standard deviation of 0.3 the network in still able to learn cor-
rectly 90% of the time, but the range of € has been reduced to [0.02,0.05]. As
degradation of the multiplier continues the network is soon unable to ade-
quately compensate for this behaviour. At a standard deviation of 0.5 the net-

CHAPTER 3—Competitive Learning 36

Do
<

"
ot

of Correct Trials
[
<

(AR NN REENRENREE

[\
S O v

—

(=} @4
Levanbrs i bl
-

"

%]

of Correct Trials
[
)

=N
ot O

v bvaa et gd

of Correct Trials
o
1=

(o= |

T T T] LR | T l T 1 17 ' T T | T T T T] T 17 | T 7171] T T] T T] T T 1 1]
0 0.01 0.02 003 004 0.05 0.06 007 0.08 0.09 0.1 0.11
Learning Rate

Figure 3.7: Non-ideal multiplier with positively biased slope variations

work is only able to achieve correct learning in 51% of the trials, over the
range €=[0.02,0.04].

Additional simulations were also carried out to determine the effects of
non-uniform slope variations. In this case, multipliers are considered where
the mean of the gaussian perturbations is not 1, but is shifted in either a posi-
tive or negative direction. Figures 3.7 and 3.8 show the results of these simu-
lations using a standard deviation of 0.1 (corresponding to the bottom plot of
Figure 3.6), and various mean offsets.

For the positively biased variations in Figure 3.7 the network is able to
compensate quite well for the change in slope. The only significant change
between the separate plots is the reduction of the range of valid learning
rates. This reduction is in response to the corresponding increase in the slope
of the multiplier characteristic which is producing larger products. Over this
reduced range the network is still able to learn the task correctly in 94% of the
trials shown.

A similar result is observed for simulations involving the negatively biased

variations of Figure 3.8. Here the range of viable learning rates has expanded

CHAPTER 3—Competitive Learning 37

)
(=]

ot
W

Lo bean oo L]

of Correct Trials
=
[ow]

DD
[SR = T e RN

L b b

w

of Correct Trials
[
>

DD
w O

prve e deen i gl

of Correct Trials
fay
<o

(o=

T T 171 l T 51T 1 [L L] LI L I T T 17T | T T 11 | LI 2 I S] T T 7T ’ T T § T [T T 17T] 1T r—i
0 002 004 006 008 01 012 014 016 0.18 0.2 0.22
Learning Rate

Figure 3.8: Non-ideal multiplier with negatively biased slope variations

in relation to the variation in slope, which is to be expected with the corre-
sponding reduction in the multiplier characteristic. As a result, the network is
able to find a correct solution in 91% of the above trials, within the active
range of the results.

These simulations demonstrate that the network learning algorithm is
capable of compensating for multiplier slope variations, as long as these varia-
tions are not too severe. Experimental hardware variations for actual fabri-
cated devices have resulted in approximately 10% variation in the multiplier
gain4l, These variations are well within the acceptable boundaries as
derived from the simulations. So slope variations are not expected to have a
significant effect on network performance in an actual hardware implementa-

tion.

3.4.3 Effects of Circuit Noise on Learning.

Another area which was explored deals with the effect noisy circuitry has
on the learning process. In order to determine the impact of this phenomenon,

CHAPTER 3—Competitive Learning 38

20 L g e e e T
A Y - ’ Y N R m=0 $d=0.3

Pt VAR e ; Y , e m=0 5d=0.7

A v === m=0sd=15

of Correct Trials # of Correct Trials
= DD e) i
ot o O 92] V23 oo [, o
Levnadana i e Lol lennibond

of Correct Trials
DO et
o O [é; ==

Lo b e lagaa)

[EERENRENENRENE RRENE|

ok
o

|
HE
[
1
A
1
1

of Correct Trials
[y
=)

T T | T (T 1 11 | T 1 17 l LI I T 71T I T 1T 7 { T :\I\ T | T 1T I T T 1T] T l‘l_i
0 0.01 0.02 003 004 005 006 0.07 0.08 0.09 0.1 0.11
Learning Rate

[N

Figure 8.9: Non-ideal multiplier with noise.

the neural network decoder problem is once again simulated with the addition
of a continuously changing perturbation of the multiplier slope. As before the
perturbations were drawn randomly from a normal distribution and applied
to the slope of the multiplier characteristic. However, for this simulation the
random slope was changed before the presentation of each input pattern. The
simulator was modified in such a way as to allow this perturbation effect to be
included in addition to the uniform slope variations discussed in section 3.4.2.
The simulations presented in Figure 3.9 represent the dynamic random per-
turbations with various standard deviations applied to multipliers having a
small static slope variation similar to that of the bottom plot of Figure 3.6. The
static variation was selected at the start of each training case and remained

CHAPTER 3—Competitive Learning 39

unchanged for the duration of the trial.

It is quite clear from these plots that the dynamic noise present in the
multipliers does not greatly effect the learning performed by the network. In
all four learning cases shown the network is able to learn the decoder problem
in more than 91% of the training cases over the range £=[0.02,0.07]. This
result would be expected given that the mean of the noise added to the multi-
plier characteristics is zero, and as a result, over an infinite number of train-
ing iterations the mean effect on the weight updates should average to zero as
well. In fact the noise actually tends to compensate slightly for the static vari-
ations present in the multipliers by reducing its effects through the short term
statistics of the noise.

The results of this section differ from those of the slope variations in sec-
tion 3.4.2, where the network learned to compensate for the fixed variations.
Here the statistics are mainly responsible for the compensation, and not the
learning algorithm itself. However, these simulations show that the learning
is not overly sensitive to the incremental variations in the dynamic variations.
This result differs from those obtained Brion Dolenkol?! for his simulations of
the backpropagation modules discussed in Chapter 2. He has found that back-
propagation does not tolerate circuit noise particularly well, whereas here the
noise does not adversely affect the learning. In fact, the results indicate that a
small amount of noise may actually be desirable in compensating for other

imperfections.

3.4.4 Effects of Multiplier Offset Variations on Learning

Another important effect that will be encountered as a consequence of the
fabrication process is a zero crossing offset variation in the multiplier. This
will result in the multiplier producing a non-zero output value when one or
both of its inputs are zero. In order to evaluate the effects of this behaviour
the sample problem was once again simulated with various degrees of offsets.
The results of these simulations appear in Figure 3.10. As before, the random
offsets have been selected from a gaussian distribution with a variety of stan-
dard deviations.

It is expected from actual measurements of past fabrication runs that fab-
rication errors will yield multiplier zero crossing offsets which are in the

CHAPTER 3—Competitive Learning

40

of Correct Trials # of Correct Trials # of Correct Trials # of Correct Trials # of Correct Trials

of Correct Trials

[)
[9;1 (=) [9; [«
Lovenduaon bovielsnaal

(=]

e
[%13 (== [9]
[FNERE FENTE TR |

)
ot o o
Lianbeena lagaalengd

[uy
o

w

s 0.5% (sd=0.005)
s 1.0% (sd=0.010)
o= 1,5% (5d=0.015)
e 2.0% (sd=0.020)

: ; : ; : : © | =i 2.5% (sd=0.025)
..... S OSSO SO OOt SO PR OROPOOE FODTOPOPOPIOUORORIUOD ST PR]| — 3.0% (d=0.030)

Leee b das sl

Licva g leesadaaas!

e b by laaa]

N

II!I[IIl|’(!ll|llll|IIII|||II|Illlilllliilllillllj

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Learning Rate

Figure 3.10: Non-ideal multiplier with offset variations.

CHAPTER 3—Competitive Learning 41

range of +/-5% of the maximum multiplier output value. It is clear from the
plots that the network is capable of tolerating a small amount of offset, but
begins to fail for offsets larger than 1%. Offsets of 0-1% learn correctly on
>89% of the learning trials conducted over the range £=[0.01,0.08]. However,
offsets of 1.6%, 2%, 2.5% and 3% learn correctly on only 79%, 60%, 34%, and
15% of the trials respectively. These results are clearly well below the
expected level of variations for this multiplier, greatly increasing the probabil-
ity that a hardware implementation will perform unsatisfactorily. This is con-
sistent with the results obtained for backpropagation in [2]. Those simulations
demonstrated that the backpropagation algorithm does not tolerate zero-
crossing variations either.

This problem must be corrected before a usable hardware network can be
constructed. One possible alternative to this problem would see the use of a
form of weight update thresholding. Under this scheme weight values are
updated only if the size of the weight change is above a predetermined thresh-
old. If the calculated update is below the threshold the resulting update would
not be applied. This approximates a true zero crossing when the multiplier
product approaches what should ideally be a zero value.

3.4.5 Effects of Noisy Inputs on Learning

An actual implementation of any neural algorithm must be capable of
dealing with other difficulties in addition to variations in the fabrication pro-
cess. One of the most common is noise in the system, caused by noise in the
input signals. In order to evaluate the effects that noisy input signals will
have on the learning process, various amounts of gaussian random noise were
applied to each of the input patterns before presenting them to the network.
The results of these simulations appear in Figure 3.11. A variety of standard
deviations were selected for the random noise, ranging from 0.1 for the bottom
plot to 0.4 for the top plot. It is clear that for deviations up to 0.3 the learning
is not adversely effected by the noisy inputs. Learning begins to break down
for deviations of 0.4 and above. In practical applications this demonstrates
that the learning is extremely robust in the presence of a significant quantity
of input noise. In actual practice the amount of input noise present will be
well below 10% of the input range (bottom plot). Therefore this effect will not

CHAPTER 3—Competitive Learning 42

o
[==]

[3 LT et T D [IS :

= E AR ‘ B S m=0 sd=0.1

£ 15 Jend. g TN : o m=05d-0.2
Frd i : i : o2

R R S m=0 56=0.4

3] J 1 v

g 10 |- [24Y

S E ! N e i

AT O SUSNS DONRUPEN SRRSO SN SNSS SES I S

S 3 L

b 0_3 I.. R

20

—
ot

sl o)

of Correct Trials
[y
=)

[=I]

Do
[==]
\
\
i
\;
\,

[FENREENERE SRRUE FRNN!

—
wt

of Correct Trials
=
)

(=T

no
(=]

YAV

—
[$44

of Correct Trials
Jd
=)
NETARRRES IRETI NAET
\\

LI B B B S A e

001 002 003 004 005 006 007 0.08 0.09 01 011
Learning Rate

(=T
(=]

Figure 3.11: Effectiveness of learning with noisy inputs.

hinder the learning process to any significant extent. In fact, the noisy inputs
should improve the performance of a network since the small variations in the
input signals result in the dynamic creation of additional training patterns.
The noise essentially expands the training set as a natural consequence of its
presence. The additional patterns will allow the network to generalize better
after learning is complete, compared to an ideal network which was only

trained on the ideal input patterns.

3.5 Summary

The work presented in this chapter has examined the competitive learning
algorithm and its susceptibility to analog CMOS hardware implementation
difficulties. The basic theory of competitive learning has been discussed with
an eventual focus on soft competitive learning. Following this discussion, a
variety of hardware fabrication problems were outlined and the effects of

CHAPTER 3—Competitive Learning 43

these variations on the competitive learning were investigated.

Investigations showed that competitive learning is able to tolerate most
anticipated hardware variations except zero-crossing offsets in the Gilbert
multipliers. Apart from this effect it was found that the use of a tanh(®) style
multiplier, fixed multiplier slope variations, and noisy slope variations were
tolerated very well. In addition it was observed that noise present in the net-
work inputs do not effect the learning process to any significant degree. Thus
an actual hardware implementation of competitive learning would be

expected to operate correctly, as long as multiplier offsets could be controlled.

CHAPTER 4

Conclusions and Future Work

This thesis has given a brief overview of neural network theory, and has
examined two specific neural learning algorithms in relation to their suitabil-
ity for fabrication in analog hardware. The rationale for hardware implemen-
tations in general, and analog versions specifically, has been presented. It has
been stated that hardware implementations which include implementation of
the learning algorithm will significantly reduce the learning times of a net-
work, compared to simulation on serial computers. As well, it was reasoned
that analog implementations provide the necessary computational power
needed for these algorithms while improving integration density when com-
pared to equivalent digital techniques.

A learning algorithm for the extraction of spatially coherent information
in an input stream has been described. A fully custom analog version of the
CBUL algorithm was then presented. This included both the design of cir-
cuitry for the backpropagation of errors in the synapses, and for mutual infor-
mation calculations in the neuron. It was shown that it is possible to
implement a complex algorithm such as this, in analog hardware, using a
small collection of circuit elements.

Finally, a number of simulations were presented which examined the
effect which expected fabrication variation will have on the construction of a
hardware version of competitive learning. It was clearly shown that the com-
petitive learning algorithm was robust in the presence of most variations but
did suffer unacceptably from multiplier zero-crossing offsets. As well, the
results obtained for this unsupervised algorithm were compared with those

CHAPTER 4—Conclusions and Recommendations 45

obtained for the backpropagation algorithm. The results observed were quite
similar with the exception that competitive learning was more tolerant of

noise in the multiplier characteristic than backpropagation.

4.1 Future Work

Continued work in this area should result in the layout, fabrication, and
full testing of both the mutual information neuron of chapter 2, and the com-
petitive learning circuitry of chapter 3. As well, additional tests on the CBUL
synapse, which has already be fabricated, should also be performed. Effective
testing of these circuits has been hampered in the past by a testing environ-
ment which is poorly suited to the test of analog devices. The hardware tests
presented in this thesis had been performed using an ASIX-II digital tester
which provides only a limited ability to supply analog signals, and no facility
to measure them.

Additional simulations should be conducted in order to examine the effects
which non-ideal circuitry has on the network settling dynamics. One would
expect that hardware variations should result in longer settling time, but
actual simulations are required. As well, further simulations should be con-
ducted in order to determine the effects of fabrication variations on modifica-
tions of the standard competitive learning presented in chapter 3. These
should include examinations of networks with non-uniform lateral inhibitions
between the output units, frequency sensitive learning algorithms, as well as
examinations of these networks with more complex learning tasks. In addi-
tion, this work can be extended to include other unsupervised learning algo-
rithms such as self-organizing feature maps.

REFERENCES

[11 S. Becker, An Information-theoretic Unsupervised Learning Algorithm for Neural
Networks, Ph.D. Dissertation, Department of Computer Science, University of
Toronto, 1992.

[2] B.K. Dolenko, Performance and Hardware Compatibility of Backpropagation and
Cascade Correlation Learning Algorithms, MSc. Thesis, Department of Electrical
and Computer Engineering, University of Manitoba, 1992.

[3] B.K. Dolenko and H.C. Card, “The Effects of Analog Hardware Properties on
Backpropagation Networks with On-Chip Learning,” IJCNN ‘93, San Francisco,
CA, March 1993.

[4] B. Gilbert, “A High-Performance Monolithic Multiplier Using Active Feedback,”
IEEE Journal of Solid-State Circuits, Vol. SC-9, No. 6, December 1974.

[5] D.O. Hebb, The Organization of Behavior, Wiley, New York, 1949.

[6] J. Hertz, A. Krogh, R. Palmer, Introduction to the Theory of Neural Computation,
Addison-Wesley Publishing Co., 1991.

[7] G.E. Hinton and S. Becker, “An Unsupervised Learning Procedure that Discovers
Surfaces in Random-dot Stereograms,” Proceedings of the International Joint
Conference on Neural Networks, Washington, DC, 1990.

[8] G.E. Hinton, “Connectionist Learning Procedures,” Artificial Intelligence, Vol. 40,
pp 185-234, 1989.

[9] M. Holler, S. Tam, H. Castro, R. Benson, “An Electrically Trainable Artificial
Neural Network (ETANN) with 10240 “Floating Gate” Synapses,” International
Conference on Neural Networks, 1989.

[10] Y. Le Cun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D.
Jackel, “Backpropagation Applied to Handwritten Zip Code Recognition,” Neural
Computation, Vol. 1, pp 541-551, 1989.

[11] R. Linsker, “Self-Organization in a Perceptual Network,” IEEE Computer, March
1988.

REFERENCES 47

[12] C.Mead, Analog VLSI and Neural Systems, Addison-Wesley, 1989.

[13] D.E. Rumelhart, G.E. Hinton, R.J. Williams, “Learning representations by back-
propagating errors,” Nature, 323:533-536, 1986.

[14] C. Schneider, Analog CMOS Circuits for Artificial Neural Networks, Ph.D.
Dissertation, Department of Electrical and Computer Engineering, University of
Manitoba, 1991.

[15] D. Van Camp, T. Plate, G.E. Hinton, The Xerion Neural Network Simulator,

Department of Computer Science, University of Toronto, 1991.

