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This thesis advances the state of the art in modeling electric machines in electro-

magnetic transient simulation programs, particularly in real-time digital simulators. A 

new tool, developed in this thesis, expands the application of real-time digital simulators 

to closed-loop testing of protection relays designed to protect synchronous machines 

during internal faults. 

 To evaluate the inductances of synchronous machines, a winding function approach 

was developed in this thesis which is capable of taking into account both the actual 

distribution of windings and the shape of the pole-arc. Factors such as MMF drop in the 

iron and effects of slots are compensated by evaluating the effective permeance function 

of the machine using experimentally measured values of d-, q- and 0- axis inductances. In 

this winding function approach, the effects of magnetic saturation are also included by 

considering the actual distribution of magneto-motive force in each loading condition of 

the machine. The inductances of an experimental machine are evaluated using this 

approach and validated using the finite-element method and laboratory measurements. 

This thesis also proposes an embedded phase-domain approach for time-domain 

simulation of the machine model in electromagnetic transients programs. The approach 

significantly improves the numerical stability of the simulations. Special numerical 

techniques are introduced, which speed up the execution of the algorithm as needed for 

real-time simulation. The machine model is validated in healthy and faulted conditions 

using simulations and laboratory experiments. Effects of damper grid representation on 

simulating turn-to-turn faults are investigated. The capability of this new real-time 

synchronous machine model in closed-loop testing of synchronous machines ground- 

faults protection relays is clearly demonstrated. 
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Chapter 1:  Introduction 

 The background of power system transient simulation tools and the significance of 

real-time digital simulators in closed-loop testing of equipment are briefly covered in this 

chapter. The chapter also introduces the advantages and limitations of conventional 

synchronous machine models in electromagnetic transients programs.       

The need for a detailed and numerically stable synchronous machine model for off-

line and real-time electromagnetic transients programs is introduced. This model 

considers details such as the geometry and winding distribution of the machine, and it can 

simulate the behaviour of the machine during internal faults. 

1.1 Power System Transient Simulation Tools 

Modern electric power networks, which carry out the tasks of generation, 

transmission, and distribution of electric energy, are considered to be amongst the largest 

and most sophisticated systems in the world  [1]. These are large-scale, nonlinear systems 

that demonstrate complicated dynamic behavior. This arises from the fact that such 

systems usually contain a large number of both linear and nonlinear elements, different 

types and layers of controls, and in an increasing number of cases, power electronic 

equipment used for purposes such as real and reactive power control and voltage 

regulation  [1]. Electric machines play an important role in the operation of a power 

system with their capacity of converting the energy from mechanical form to electrical 

form and vice versa. Synchronous generators are the main source of generating electricity 

in the power system network, and induction machines dominate the energy consumption 
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sector. Modern transportation systems employ the advanced technology of electric 

machine drives to provide fast and environmentally friendly service to the public. 

The analysis, design, and operation of such complex systems require various types of 

advanced tools and techniques to be employed. Power system simulation software 

consists of tools that can be used for both the analysis and design of power networks. In 

these tools, mathematical equations of the system are formed and solved using numerical 

methods. Thereby, they provide a sound understanding of the behavior of the system 

without recourse too costly or even destructive laboratory or field experiments.  

Electromagnetic transient simulation programs are simulation tools that precisely 

analyze the performance of power systems in the time-domain. In these programs, time 

domain differential equations of the system, including individual elements, electric 

machines, controls, semiconductor switches, etc., are set up and solved using numerical 

integration methods, such as the trapezoidal rule  [2]. Electromagnetic transient simulation 

programs or EMTP-type programs are used in a wide range of applications such as the 

tuning of power system controls, study of stress on components during transients, 

harmonic analysis and power quality studies  [3]- [5].  

1.2 Closed-Loop Testing of Equipment Using Real-Time Simulation  

If an electromagnetic transient simulation program can be run in real-time, i.e. the 

simulation results are synchronized with the real world phenomenon, then it is possible to 

interface actual equipment with the simulator and verify its performance under real-world 

conditions. Real-time simulation is needed for rigorous closed loop testing and correction 

of any potential problems such as harmonic injection and resonance of power electronic 

controllers and the power system. Closed-loop testing is characterized by taking output 
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signals from the simulation, and using them as input signals to a device under test. The 

output from the device under test is then fed back into the simulation, thereby affecting 

the simulation. This type of testing most closely resembles the actual performance of the 

device in service. However, it often requires the exchange of hundreds of input and 

output signals. The simulator’s hardware architecture must facilitate handling these input 

and output requirements. A need therefore exists to develop techniques for accurate and 

efficient real-time simulation of systems containing power system components and power 

electronic apparatus. Since a real-time simulator is designed to operate essentially 

forever, developing numerically stable routines for these simulators is crucial.  

RTDS® is the first real-time digital simulator for the power industry which was 

originally developed by the Manitoba HVDC Research Centre. This research is done 

under the sponsorship and guidance of RTDS Technologies Inc. Therefore, most of the 

simulations and the results obtained there-from are influenced by the capabilities and 

limitations of the RTDS simulator. The RTDS simulator can be used to mimic the 

physical system and provide the full system response during closed-loop testing. Closed 

loop testing not only tests the functionality and setting of particular devices, but also tests 

the system’s reaction to the operation of that device. This provides a realistic testing 

environment for testing the system, the device, and the interaction between the two. As 

well, using an RTDS simulator for closed-loop testing enables a large number of 

contingency tests to be run either with or without user interaction. Many of these 

contingencies could not be performed by any other means or would not be permitted on 

the real system  [6].  
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1.3 Problem Motivation  

Existing models of synchronous machines in electromagnetic transients programs use 

the dq0 theory to express the physical behavior of the machine in terms of mathematical 

equations. These equations are usually implemented in electromagnetic transients 

programs using the interface-based approach by solving machine equations in dq0 frame 

and injecting machine currents into the network as current sources. The main assumption 

in the dq0 theory is that the eigenvalues of the inductance matrix of a machine are 

unvarying as the rotor position changes. These models are widely used as the algorithm is 

fast; also electric utilities usually have access to the dq0 parameters of their synchronous 

generators. These models, however, are not capable of correctly predicting the transient 

performance of the synchronous machines in irregular conditions such as during the 

presence of internal faults or rotor eccentricity. Furthermore, these models cannot 

account for the effects of non-sinusoidal distribution of the windings and permeance in 

synchronous machines. This is due to the fact that some fundamental assumptions of the 

dq0 theory may not be applied in these situations.  

There are some phase-domain machine models which have been previously 

developed for electromagnetic transients programs  [7],  [8]. In these models, the 

inductance matrix in the phase-domain is directly derived from the dq0 inductance matrix 

using an algebraic transformation. Hence, their simulation results will be no different 

than the results from the interfaced models. The differences arise when the numerical 

stability and computational burden of the two approaches are compared. 
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1.4 Research Objectives of the Thesis  

The main objective of this research is to develop a detailed and numerically stable 

synchronous machine model for electromagnetic transients programs which accounts 

for  fine details of machine physical characteristics such as the winding distribution, 

rotor geometry and operating-point dependent saturation. This model is capable of 

properly representing winding- and permeance-related time harmonics, and predicting 

the transient behaviour of synchronous machines in conditions such as internal faults. 

Implementation of this model in a real-time digital simulator RTDSTM has created a 

unique tool for closed-loop testing of relays designed to protect the synchronous 

machines during internal faults. Also, this detailed model can be a reference for assessing 

the accuracy of more simple models, i.e. it can identify the effects of including each 

detail on the simulation results and the cost in execution time for considering finer 

details.  

In this thesis, a winding function approach is developed which altogether takes into 

account details such as pattern of winding distribution, actual rotor geometry, and effects 

of iron saturation to generate the differential equations of the machine in a form 

appropriate for a coupled electric circuit approach. To improve the numerical stability of 

the time-domain simulation which is critical, particularly for real-time digital simulation, 

the model is implemented as an embedded phase-domain machine model. In this thesis, 

matters regarding the numerical stability of existing models of synchronous machines are 

also addressed. 

This machine model is implemented in a real-time electromagnetic transients 

program (RTDSTM); and is capable of correctly simulating the transient performance of 
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synchronous machines in conditions such as stator internal faults. Thus, this tool has a 

unique feature of being used for closed-loop testing of relays designed to protect the 

synchronous machines from internal faults. Some of the applications of this model in 

synchronous generators protection schemes are also investigated in this thesis. 

1.5 Thesis Organization 

As stated, the main objective of this research is to develop a detailed synchronous 

machine model for a real-time digital simulator which is capable of properly representing 

winding- and permeance-related time harmonics, and predicting the transient behaviour 

of synchronous machines in conditions such as internal faults. 

Following this introductory chapter, Chapter 2 introduces some basic theoretical 

background of electromagnetic transient simulation programs and also the significance of 

real-time digital simulation and its application. The chapter starts with the application of 

trapezoidal integration in Dommel’s method of nodal analysis for electromagnetic 

transient phenomena. It also demonstrates the method of modeling simple elements such 

as inductors and capacitors in transient simulation programs. Furthermore, Chapter 2 

introduces the method of interfacing more sophisticated power system components such 

as electric machines and power electronic sub-networks, its advantages and 

shortcomings. Further, the limitations of existing synchronous machine models for 

EMTP-type programs in representing the effects of non-sinusoidally distributed windings 

and their inability of modeling internal faults is explained.    

Later in Chapter 2, real time digital simulation and its application is introduced. The 

structure (hardware and software) of RTDS, a widely used real-time digital simulator for 

the power industry, is presented. Finally the constraints of modeling in real-time such as 
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the limited amount of time for computation and communication, and the importance of 

numerical stability are discussed. 

Chapter 3 identifies the “coupled electric circuit approach” as a suitable method for 

time-domain simulation of electric machines in electromagnetic transients programs. 

Various methods of evaluating the phase-domain inductance matrix of a synchronous 

machine (dq0 theory, finite element, and winding function approach) are also explained 

in Chapter 3. The relative merits of each of these approaches as to the level of modeling 

detail and accuracy of results are discussed. Chapter 3 also presents the proposed 

contributions and adjustments of this thesis to the winding function approach, and uses 

this method to evaluate the inductances of an experimental synchronous machine. The 

computed inductances are validated using the finite element approach and laboratory 

experiments. 

Chapter 4 reviews methods of saturation treatment for calculating inductances and 

then proposes a new approach to accurately incorporate saturation effects in the Modified 

Winding Function Approach (MWFA). In this method effects of change in the operating 

point on the saturated values of inductances are taken into account. 

Chapter 5 is devoted to time-domain simulation of electric machines in 

electromagnetic transients programs.  The traditional approach of interfacing machine 

models into electromagnetic transients programs is explained briefly. Subsequently, 

Chapter 5 presents a detailed procedure for the development of an embedded approach 

for incorporating machine models into electromagnetic transients programs. This is one 

of the contributions of this thesis. Chapter 5 also proposes additional numerical and 
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analytical techniques for speeding up the above procedure. These improvements are 

sometimes critical for real-time digital simulation.  

In Chapter 6, the new embedded synchronous machine model is validated through 

simulations and laboratory experiments. Through comparison with simulation results, 

the capability of the new model in correctly solving the differential equations of 

synchronous machines is verified. Later in Chapter 6, comparison with the results of 

laboratory experiments shows that the new model correctly represents winding- and 

permeance-related time-harmonics in the voltage and current signals of the machine. 

Limitations of this real-time synchronous machine model in simulating some internal 

faults are also explained in this chapter. 

Chapter 7 presents some applications for this new machine model. The capabilities of 

this model in testing the relays designed to protect synchronous machines during stator-

ground faults are demonstrated.  

Finally, Chapter 8 provides a summary of this thesis and identifies the contributions 

made by the author. It also suggests future work and possible extension of the thesis. 

This thesis ends with the list of references cited throughout the thesis and appendices 

which clarify some numerical, electromagnetic and electromechanical concepts. 

 

 

 

 

 



Chapter 2:  Background 

This chapter provides a brief history of electromagnetic transient simulation programs 

as well as the basic theoretical background of these programs. The chapter introduces 

real-time digital simulation, the basic structure of an RTDS simulator and the constraints 

of performing transient simulation in real-time.    

2.1 Electromagnetic Transients Programs 

Electromagnetic transients programs, known as EMTP-type programs, are widely 

accepted tools for simulating power system transient phenomena  [2]. These programs 

typically model the power system components in full detail and are able to simulate fast 

electromagnetic transients in power networks. The EMTP-type programs are powerful 

tools to simulate and analyze power system equipment and circuits in the time domain. In 

addition to transient studies, the increasing number of non-linear controllers and fast 

switching components puts a greater emphasis on the application of electromagnetic 

transient analysis in the steady-state; this is because continuous switching transients 

cause significant waveform distortion. 

The Electro-Magnetic Transient Program (EMTP) was developed in Bonneville 

Power Administration (BPA), based on a proposed algorithm  [2], to simulate the transient 

phenomena in single- and multi-phase networks. This program is considered to be the 

foundation of the majority of modern electromagnetic transients programs. The program 

uses trapezoidal integration to transform inductive and capacitive differential equations 
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into equivalent admittances and current sources in the discrete format. The procedure of 

discretizing the differential equation of such elements is explained as follows: 

The differential equation of an inductor with the value of L  is shown in (2.1). 

 ( ) ( )
L L

d
v t L i t

dt
=  (2.1) 

Equation (2.1) is integrated for the time interval of [ ]t t t−∆  as shown in (2.2):  

 ( ) ( )
t t

L L
t t t t

d
v t dt L i t dt

dt−∆ −∆
=∫ ∫  (2.2) 

The integral in the right side of (2.2) has an analytical solution, and the one in the left 

side of  (2.2) is numerically evaluated using the trapezoidal rule of integration as shown 

in (2.3).  

 ( ) ( )( ) ( ) ( )( )1

2
L L L Lt v t v t t L i t i t t∆ + −∆ = − −∆  (2.3) 

Equation (2.3) is the differential equation of the inductor in the discrete form. It 

shows the relationship between the inductor current and voltage at the present time-step 

( )t  and at the previous time step ( )t t−∆ . In (2.4), ( )Li t , the inductor current at the 

present time-step, is expressed in terms of other present and past quantities. 

 

( ) ( ) ( )

( ) ( ) ( )

where:

and
2 2

L L L hL

L h L L

i t g v t I t t

t t
g I t t v t t i t t

L L

= ⋅ + −∆

∆ ∆
= −∆ = −∆ + −∆

 (2.4) 

The term hI  is called the history term, because it is a function of past values of the 

current and voltage only. The term Lg  is the admittance value of the inductor in discrete 

representation. This value is constant for non-varying inductors. This approach 
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transforms (2.4) to an equivalent circuit that consists of a resistor in parallel with a 

current source. This Norton equivalent  [9] of the inductor in electromagnetic transients 

programs is shown in Figure  2.1-a, and is valid in any given time-step. This 

representation is employed later to calculate the voltage of the network nodes at the end 

of that time-step.  

L

( )
Li t

( )Lv t

+

−

( )a

2
c

C
g

t
=

∆ ( )hcI t t−∆

( )b

C

( )ci t
( )ci t

( )cv t

+

−

2
L

t
g

L

∆
= ( )hLI t t−∆

( )Li t

 

Figure  2.1: Norton equivalents in electromagnetic transients programs: (a) inductor, (b) 

capacitor 

The differential equation of a capacitor (2.5) can be discretized in a similar manner as 

shown in (2.6):  

 ( ) ( )
C C

d
i t C v t

dt
=  (2.5) 

 

( ) ( ) ( )

( ) ( ) ( )

where:

2 2
and

C C C hC

C hC C C

i t g v t I t t

C C
g I t t v t t i t t

t t

= ⋅ + −∆

= −∆ = − −∆ − −∆
∆ ∆

 (2.6) 
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Figure  2.1-b shows the Norton equivalent of a capacitor in electromagnetic transients 

programs. 

In electromagnetic transients programs, the above discretizing procedure is performed 

on every capacitive and inductive branch in the system. Other linear passive elements 

such as transformers, transmission lines, etc. can also be shown to be amenable to such a 

Norton equivalent representation. Once the network elements are reduced into such 

Norton equivalents, they can be represented by the set of linear equations using the 

standard nodal analysis method  [2] as shown by (2.7). In this equation, [ ] ( ),  Y V t  and 

( )hI t t−∆  correspond to the nodal admittance matrix, node voltage vector, and injected 

node current vector respectively. In (2.7), ( )I t is the vector of excitation sources 

externally applied to the network. In the basic formulation, it is assumed that all such 

sources are current sources. The process of forming and solving this equation is generally 

called the network solution. In the network solution, the quantities on the right side are 

applied sources and history terms from previous time-steps, therefore they are known in 

the present time-step. By factorizing [ ]Y ,  (2.7) can be solved to yield the network node 

voltages in the present time-steps. This process is continued from time-step to time-step 

to evolve the time-domain solution of the network.  

 [ ] ( ) ( ) ( )hY V t I t I t t⋅ = − −∆  (2.7) 

EMTP was one of the first electromagnetic transients programs capable of simulating 

transients in power systems  [2]. It was suitable for modeling infrequent switching 

phenomenon in conventional power systems; however it was inefficient in modeling 

power electronic converters that need a large number of switching operations and 
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complex control systems. Hence, the EMTDC program  [5] was developed with the 

capability of modeling large power electronic networks such as HVDC systems. This 

program relied on improved numerical methods facilitated by partitioning the network 

into smaller sub-networks and confining the switch branches to the lower portion of the 

[ ]Y  matrix. When the status of the switch changed, it was thus only necessary to invert 

the matrices in the small sub-network resulting in considerable computational savings. It 

also had a more comprehensive library of control components necessary for power 

electronic device controls. In 1985, the Manitoba HVDC Research Centre validated 

EMTDC simulation with transient field data from Bipoles 1 and 2 of the Nelson River 

DC transmission system. In 1993, the Power System Computer Aided Design (PSCAD) 

package was combined with EMTDC to provide a graphical interface to assist users in 

setting up, running and analyzing simulations. The RTDS simulator evolved from 

EMTDC as a real-time implementation of the basic algorithm  [10].  

2.2 Approaches of Modeling Machines in Digital Electromagnetic 

Transient Simulation: Interface-Based & Embedded 

Sophisticated non-linear or time-varying components such as electric machines are 

usually integrated into the network solution of an electromagnetic transients program as a 

controlled current source. The electromagnetic transients program solves the circuit 

external to the component and communicates the voltages on the nodes of the component 

back to the component model. The component model in turn, uses these voltages as 

inputs and calculates the currents by solving the differential equations of that particular 

component. The computed currents are then injected back into the main network solution 

of the electromagnetic transients program. The network solution sees the externally 
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computed machine currents as an impressed current source. The machine model uses the 

network voltages computed by the external solver to calculate its currents. Note that the 

latest values available to each of the two solvers from the other are necessarily from the 

previous time-step. This one time-step delay between the solutions can be a source of 

errors or even numerical instabilities.  The above procedure is repeated in each time-step. 

This is called the interfaced-based approach of modeling components. Figure  2.2 shows 

the manner in which a component is interfaced to the network solution as a current 

source. 

Interfaced

Model

( )m Ni f v=

Nv A v= ⋅ Main Transient

Network Solution

[ ] ( ) ( )m hY v t I i I⋅ = + −

mi

 

Figure  2.2: Interfacing components to the network solution as a current source 

This technique allows smaller and more manageable sub-systems that can be easily 

simulated in parallel for real time purposes. The advantage of this approach in modeling 

electric machines is that the machine model is external to the network solution program, 

and the machine inductances are not included in the admittance matrix of the transient 

solution. Note that, unlike other elements, the machine rotates continuously, therefore its 

inductances are time-varying. Following the interfacing approach means that a new 

admittance matrix needs not to be calculated (and factorized) for each time-step in an 

electro-magnetic transient program.  
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 This method has acceptable numerical stability and accuracy in conventional power 

system circuits with the operating frequency of 50-60 Hz and a simulation time-step of 

50 sµ  [11]. However, it shows numerical instability and inaccuracies in some cases, 

depending on the network configuration, system frequency and simulation time-step  [12], 

 [13].The numerical performance can often be improved using projection methods that 

predict one time-step ahead node voltages from previous time-step values  [14]. However, 

this is not always effective. The numerical performance is a critical matter in real-time 

simulation, because real-time digital simulators often operate for long periods of time 

(even continuous), and therefore there is a possibility of the constant accumulation of 

error as time progresses.  

Another approach of integrating electric machines into electromagnetic transients 

programs is to involve the network solution engine in solving the mathematical equations 

of machines. In this approach, called embedded in this thesis, the time-varying 

inductances of machines are absorbed into the network solution in the manner of other 

passive elements such as capacitors, inductors and resistors. As before, in a manner 

similar to simple inductors and capacitors, the trapezoidal integration method  [2] is 

applied to convert the phase-domain machine equations into Norton equivalents. Due to 

the avoidance of the time-step delay, the resulting machine model, referred to as the 

embedded phase-domain, is more stable than the interfaced-based model as will be 

shown in Chapter 5 of this thesis.  
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2.3 Level of Detail in Existing Synchronous Machine Models in 

Digital Electromagnetic Transient Simulators 

So far, the synchronous machine models implemented in electromagnetic transients 

programs use the dq0 theory  [15],  [16] to express the physical behaviour of the machines. 

In this theory, using the well known dq0 transformation, the machine variables in abc 

frame are transformed into a dq0 frame to eliminate the dependence of machine 

inductances on rotor position. This theory will be discussed in the following chapter. 

The implementation of dq0-based machine models can be conducted either directly in 

dq0 frame by interfacing the machine model to electromagnetic transients programs  [11], 

 [17], or by transferring the variables back to abc frame and solving the machine equations 

in the phase-domain  [7], [8]. Since the differential equations in both of the above 

approaches are algebraically equivalent, both models are expected to show identical 

transient behaviors  [18], [19]. The models, however, may show different performances 

due to the individual numerical stability and accuracy behaviors of the selected approach 

 [12],  [19]. 

The advantage of the dq0-based formulation is its simplicity and the familiarity of 

dq0-based models amongst power system engineers. Also, the algorithm for 

implementing this model in electromagnetic transients programs is fast and efficient, 

particularly if the model is solved directly in dq0 domain and interfaced to the program.  

 One of the assumptions in this approach is that the machine windings are considered 

to be sinusoidally distributed and therefore the machine inductances have a particular 

sinusoidal form which does not contain space harmonics. Consequently, such models 
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cannot generate time-harmonics in the voltages and currents of the machine which 

otherwise exist as a result of space harmonics of the machine.  

The other inadequacy of dq0 theory is that this theory is not valid if some structural 

asymmetries (e.g. internal faults or dynamic eccentricity) exist in the machine. Therefore, 

dq0-based models in electromagnetic transients programs are not suitable for such 

scenarios. 

In the dq0 theory, machine equations in dq0 frame are interpreted as equivalent 

circuits on d-, q- and 0-axes. Each of the equivalent circuits on the d- and q-axes contains 

a magnetizing inductance called mdL  and mqL  respectively. In dq0-based synchronous 

machine models, the values of mdL  and mqL are adjusted for the purpose of incorporating 

the effects of iron saturation. This approach is a macroscopic treatment of saturation 

which does not account for local saturation in the iron and distribution of magneto-

motive force (MMF). Furthermore, the implementation of saturation in various 

electromagnetic transients programs is done in different manners, causing some 

discrepancies in the simulation results. This matter is addressed in Chapter 4 of this 

thesis.  

2.4 Real-Time Electromagnetic Transients Programs 

Real time simulation was originally developed for the closed-loop testing of physical 

equipment that could be externally connected to the simulator. Electromagnetic transient 

simulation tools (excluding the fully digital offline simulators) can be classified into three 

main groups in accordance with their order of evolution  [20]. 

1. Transient Network Analyzers (TNAs) 
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2. Analogue and Hybrid Simulators 

3. Digital Transient Network Analyzers (DTNAs) 

A  TNA is a set of scaled down models of actual physical equipment operating at 

much lower levels of voltage and current  [21]. The power system components, including 

generators, transformers, transmission lines, and power electronic converters are 

connected as in a real-network to assure real-time operation. TNAs are very expensive 

and difficult to build, but before the advent of computers, they were the only possible 

solution. A major problem with analogue TNAs is that parameter settings are 

implemented using potentiometers and other analogue means. This makes precise setting 

very difficult. Also component aging and other mechanical variations make it very 

challenging to precisely reproduce results from a study at much later dates. 

Analogue electronic integrators, summers, and multipliers have been used in some 

analogue simulators to solve the equations describing a power system  [22]. This approach 

helped in reducing the size and cost of the simulator. With the progress of digital 

computers, hybrid simulators were born. These simulators were combinations of passive 

physical equipment and digital computer models. 

A digital simulator emulates a physical component by solving the mathematical 

equations which describe the behavior of the component. Electromagnetic transients 

programs such as EMTP and EMTDC are circuit oriented programs which utilize the 

nodal method of analysis for transient simulation  [2]. 

Fast advancement in computer technology and parallel processing provided 

motivation for the development of fully real-time digital simulators which conquered the 

market of existing TNAs and hybrid simulators. Digital simulation overcomes the 
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shortcomings of the traditional analogue technology; it provides superior capabilities to 

analogue simulators; and it results in significant economies in operating costs and 

laboratory space over analogue technology. Digital simulators do not use physical 

miniaturizations of the system components. Component parameters and circuit 

configurations are instead, based on software models. Therefore, the models are not 

limited by the parameters of a single study. Digital simulation studies can be quickly and 

easily modified and there is minimal time involved to switch from one study to another 

 [6].  Popular examples of real-time digital simulators are: 

• RTDSTM ; initially designed by Manitoba HVDC Research Centre  [6], 

• HypersimTM Simulator; initially designed by Hydro-Québec's Research 

Institute  [23], and the 

• Opal_RTTM Simulator  [24] 

Major applications of real time simulators are power system protection (relay testing) 

 [10] and testing of FACTS1, and HVDC2 controllers  [25]. They can also be used for 

analytical system studies and training of operators  [6]. 

The simulator used in this thesis is the RTDS Simulator from RTDS Technologies 

Inc.  [6]. It takes advantage of a custom parallel processing hardware architecture 

assembled in modular units called racks. Each rack contains slots (max. 20) and rail-

mounted cards. A common communications backplane links all rack-mounted cards 

facilitating information exchange. Each rack's backplane functions independently so that 

communication of data can be done in parallel thereby reducing communication 

bottlenecks. The present generation of RTDS hardware, uses a GPC (Giga Processor 
                                                 
1 Flexible Alternating Current Transmission System 
2 High-Voltage Direct Current 
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Card)  [26] to perform the network solution. The computations required to model the 

user's power system components are performed on Triple Processor Cards (3PC)  [26] or 

other GPC cards. The computed history terms and admittance values are then transferred 

through the backplane communication channels to the GPC card, which runs the network 

solver. The RTDS Simulator uses a graphical user interface, the RSCAD Software Suite. 

This software is the user’s main interface with the RTDS hardware. The software 

contains several modules designed to allow the user to perform all of the necessary steps 

to prepare and run a simulation, and to analyze simulation output  [6],  [26]. 

As mentioned, computational time plays a very important role in modeling 

components for RTDS. Any model has to be implemented with a limited number of 

instructions in the range of the computational capacity of 3PC and GPC cards  [6],  [26] to 

ensure a real-time simulation. There are also limitations on the amount of data that can be 

transferred between different cards of the simulator  [26]. Also, numerical instability is 

not acceptable since the simulation must be capable of being run on a continuous basis. 

 



Chapter 3:  Evaluation of Synchronous 

Machines Electric Parameters 

This chapter begins with the introduction of the coupled electric circuit approach as a 

suitable method for time-domain modeling of electric machines in electromagnetic 

transients programs. In this approach, the inductances of a machine are the input 

parameters which need to be evaluated before the simulation begins. In this chapter, 

different methods of evaluating inductances of synchronous machines (dq0 theory, finite 

element, and the winding function approach) are introduced. The relative merits of each 

of these approaches, based on the level of modeling detail and accuracy of results, are 

discussed. This chapter also proposes some adjustments to the winding function 

approach, which makes this method capable of taking into account the effects of iron 

saturation in different loading conditions. The computed inductances using this method 

are validated using the finite element approach and laboratory experiments. 

3.1  Time Domain Modeling of Electric Machines Using the Coupled 

Electric Circuit Approach 

The equivalent magnetic circuit approach  [27], [28] and the coupled electric circuit 

approach are two widely used methods for time-domain modeling of electric machines. 

In the latter, a machine is modeled as a set of mutually-coupled time-varying inductances. 

This approach is more common in simulating the dynamic response of electric machines 

 [7],  [8],  [11],  [12],  [17],  [29] as it leads to a relatively small number of equations. In 

system level studies, machines are connected to a large external network; hence a fast, 

simple and yet sufficiently accurate machine model is needed for such studies. Thus, in 
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electromagnetic transients programs electric machines are modeled using the coupled 

electric circuit approach  [7],  [8],  [11],  [12],  [17]. 

In this coupled electric circuit approach the relationship between voltages and 

currents of the windings of a machine are as in (3.1). Here, ( ), ( )v t i t and ( )tΨ are 

respectively vectors of voltages, currents and flux linkages for each of the windings in the 

machine. The resistance matrix [ ]R  is a diagonal matrix containing resistances of the 

windings. The time-varying inductance matrix of the machine [ ( )] [ ( ( ), ( ))]L t L t i tθ=  is 

the major factor in machine dynamic behaviour, which changes with rotor position and 

winding currents.  

 [ ] [ ]( ) [ ]( ) ( ) ( ) ( ) ( ) ( )
d d

v t t R i t L t i t R i t
dt dt

= Ψ + = +  (3.1) 

In the following sub-sections, the principal methods of evaluating the inductance 

matrix of a synchronous machine are explained. Throughout this thesis, the positive sign 

is used for the inward flow of current into a coil as indicated in Figure  3.1 . Also, the 

positive torque corresponds to motoring operation of an electric machine (i.e. the torque 

generated by the machine is positive). Throughout this thesis, the per-unit bases for the 

voltage and current quantities of a machine are the rated line-neutral RMS voltage and 

the rated line RMS current of the machine respectively.    

3.2 Dq0 Theory on Modeling Electric Machines 

In this section, the dq0 theory is reviewed, and the manner in which this theory is 

used for modeling synchronous machines and permanent magnet synchronous machines 

is explained. The following dq0 analysis is a summary of the comprehensive work 

conducted by previous authors.  
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Equation (3.1) is the differential equation of an electric machine in the coupled 

electric circuit approach, which is often referred to as the phase-domain model of a 

machine. Some of the inductances of electric machines are functions of rotor position; 

therefore the inductance matrix of a machine is time-dependent. A change of variable is 

often employed to reduce the complexity of these differential equations. In the late 

1920’s, R. H. Park  [15], [16] formulated a change in variables which effectively replaced 

the variables affiliated with the stator windings of a synchronous machine with variables 

associated with a fictitious windings rotating with the rotor. By transforming the stator 

variables to a frame of reference fixed in the rotor, he eliminated the dependence of 

synchronous machine inductance matrix on rotor position. The procedure of transforming 

inductances of a synchronous machine from the stator frame of reference to the rotor 

frame of reference is shown in the next section.  

3.2.1 Application of Dq0 Theory in the Modeling of Synchronous Machines 

The diagram of an idealized two-pole synchronous machine is shown in Figure  3.1. 

This type of representation is customary for the purpose of developing theories for 

electric machines  [30]- [32]. The machine depicted in Figure  3.1 is a simplified form of a 

practical machine with three armature windings on the stator ( ,a b  and c ) and one field 

winding on the rotor (F ). The axes as , bs , and cs  indicate the positive direction of the 

magneto-motive force (MMF) produced by phase-A, B, and C of the stator respectively. 

The direct-axis is the direction of MMF produced by the field winding. The angular 

velocity of the rotor, and the angular shift between the direct-axis and the axis of phase-A 

are designated by rω  and rθ  respectively. The damper grid of a practical synchronous 

machine consists of many circuits carrying different currents and would require a large 
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number of coils for its representation. Nevertheless, for many applications it is 

sufficiently accurate to represent the damper circuit by only one or two damper windings 

(D  and Q ) on each of the direct and quadrature axes  [30]- [33] .   

as axis

bs axis cs axis

Direct

axis

Quadrature

axis

av

bi

ai

bv
ci

cv

Fv

Fi

D

Q

rθ

rω

 

Figure  3.1: Diagram of an idealized synchronous machine 

The set of differential equations for the machine in (3.1) is usually divided into flux 

linkage equations and voltage equations as respectively shown in (3.2) and (3.3). In (3.2)

⋯a QΨ Ψ  and ⋯a Qi i   are respectively flux linkages and currents of the machine 

windings. As shown in (3.3), the inductance matrix of the machine identifies the 

relationship between the flux linkages and currents. The synchronous machine inductance 

matrix can be divided into four sub-matrices: the inductance matrix of stator windings 
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shown by [ ]ssL , the mutual inductances between stator and rotor windings included in 

[ ]srL  and [ ]rsL , and the inductance matrix of the rotor windings shown by [ ]rrL .  

 

�

�

[ ] [ ]

stator

rotor

abcs
ss sr

FDQr

L L

aa ab ac aF aD aQa

ba bb bc bF bD bQb

ca cb cc cF cD cQc

Fa Fb FcF

Da Db DcD

Qa Qb QQ

L L L L L L

L L L L L L

L L L L L L

L L L

L L L

L L L

Ψ

Ψ

 Ψ     Ψ    Ψ  
=

 Ψ     Ψ    Ψ  

��������������� �����������������

[ ] [ ] [ ]

�abcs

T
rrrs sr FDQ

i

a

b

c

FF FD FQ F

DF DD DQ D

c QF QD QQ Q

LL L i

i

i

i

L L L i

L L L i

L L L i

=

                                                     
	������
������� 	������
������� �

r

 (3.2) 
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0 0 0 0 0 0

abcs s

FDQr
r

v r

s aa

sb b

c s

F F

D

Q

v r

r iv

rv i

v r i

v r

r

r

                          =                            
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   Ψ          Ψ         Ψ     
+

   Ψ         Ψ         Ψ     

 (3.3) 

From symmetry considerations, in a two-pole synchronous machine, in each complete 

rotation of the rotor, the stator inductances assume the same values twice. Therefore, 

stator inductances show a space variation of period equal to π and hence consist of a 

constant value and even space harmonics. Similarly, the values of mutual inductances 

between stator and rotor repeat once in every complete rotation of the rotor. These 

functions have the period of 2π  and consist of odd space harmonics. In the dq0 analysis, 

the space harmonics higher than the second space harmonic are ignored, therefore the 

functions shown in (3.4)-(3.10) are used to represent the inductances of a synchronous 
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machine (for an equivalent two-pole machine). This is tantamount to the assumption of 

windings with a perfectly sinusoidal distribution. 

• Stator inductances: 

 Stator inductances show a space variation of frequency equal to twice the 

fundamental and hence, predominantly consist of a constant value and a second space 

harmonic. Stator self inductances of a synchronous machine are shown in (3.4). In this 

equation both sL  and mL  are constants and 0s mL L> ≥   [32]. 

 

( ) ( ) ( )

( ) ( )

( ) ( )

cos2 H

2
cos2 H

3

2
cos2 H

3

aa r s m r

bb r s m r

cc r s m r

L L L

L L L

L L L

θ θ

π
θ θ

π
θ θ

= +

 = + −   

 = + +   

 (3.4) 

Equation (3.5) shows the stator mutual inductances of the synchronous machine. In 

this equation both sM  and mL  are constants and s mM L>   [32]. With perfectly 

sinusoidally distributed windings and permeance (assumptions implicit in the dq0 

theory), the stator self and mutual inductances have the same peak-to-peak values. In 

(3.4) the leakage portion of stator self inductances sl  is included in sL , and 

2s s sL l M− =  [31]. 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

cos2 H
6

cos2 H
2

5
cos2 H

6

ab r ba r s m r

bc r cb r s m r

ca r ac r s m r

L L M L

L L M L

L L M L

π
θ θ θ

π
θ θ θ

π
θ θ θ

 = = − − +   

 = = − − −   

 = = − − +   

 (3.5) 
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• Mutual inductances between stator and rotor windings: 

Equations (3.6) to (3.8) show the mutual inductances between the stator windings and 

windings F ,D  and Q  of the rotor. As can be seen, in these functions, only the 

fundamental space harmonics are considered and higher space harmonics are ignored. 

The actual form of these inductances consists of additional odd harmonics which will be 

clarified more in Section  3.4.  

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

cos H

2
cos H

3
4

cos H
3

aF r Fa r F r

bF r Fc r F r

cF r Fc r F r

L L M

L L M

L L M

θ θ θ

π
θ θ θ

π
θ θ θ

= =
 = = −   
 = = −   

 (3.6) 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

cos H

2
cos H

3
4

cos H
3

aD r Da r D r

bD r Db r D r

cD r Dc r D r

L L M

L L M

L L M

θ θ θ

π
θ θ θ

π
θ θ θ

= =
 = = −   
 = = −   

 (3.7) 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

sin H

2
sin H

3
4

sin H
3

aQ r Qa r Q r

bQ r Qb r Q r

cQ r Qc r Q r

L L M

L L M

L L M

θ θ θ

π
θ θ θ

π
θ θ θ

= =
 = = −   
 = = −   

 (3.8) 

• Rotor inductances 

Because of the cylindrical structure of the stator (ignoring the effects of slots), the 

rotor windings (field and damper windings) observe constant permeance. Therefore, self 

and mutual inductances of the rotor windings do not vary with rotor position. All pairs of 

windings with 90° displacement have zero mutual inductance. The self inductances of the 
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rotor windings and the mutual inductances between any pair of these windings are 

respectively shown in (3.9) and (3.10) . 

 ( ) ( ) ( ) ( )              HFF r F DD r D QQ r QL L L L L Lθ θ θ= = =  (3.9) 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

H      

0 H      

0 H

FD r DF r R

FQ r QF r

DQ r QD r

L L M

L L

L L

θ θ

θ θ

θ θ

= =

= =

= =

 (3.10) 

3.2.1.1 Flux linkage equations in dq0 frame 

At the beginning of this chapter it was mentioned that in the dq0 approach, a 

transformation is used to transfer variables from the stator’s frame of reference to the 

rotor’s frame of reference. In this thesis, the transformation P , as shown in (3.11),  is 

used for this purpose. This is a modified form of the original Park’s transformation  [15], 

in that it is an orthogonal transformation (i.e. ( ) ( )1 TP Pθ θ− = ) . The use of this 

orthogonal transformation results in a symmetrical inductance matrix in dq0 format.  

 ( )

2 4
cos cos cos

3 3

2 2 4
sin sin sin

3 3 3

1 1 1

2 2 2

r r r

r r r rP

π π
θ θ θ

π π
θ θ θ θ

       − −                     = − −               

 (3.11) 

This transformation generates the dq0 components of the voltages, currents, and flux 

linkages as shown in (3.12): 

 

( )

( )

( )

0

0

0

 

dq s abcsr

dq s abcsr

dq s abcsr

v P v

i P i

P

θ

θ

θ

= ⋅

= ⋅

Ψ = ⋅ Ψ

 (3.12) 
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Applying the transformation P  to the flux linkage equation of (3.2) results in (3.13): 

 

1

3 3 33

0 0 00

0 0 00

ss srabcs abcs

T
FDQrFDQr sr rr

L LP P P iP

iI I IL L I

−        Ψ                      =                 Ψ                   
 (3.13) 

Using (3.12) and (3.13), the flux linkage equations in dq0 frame are derived and 

shown in (3.14): 

 

1
0 0

1

dq s dq sss sr

T
FDQrFDQr sr rr

P L P P L i

iL P L

−

−

  Ψ ⋅ ⋅ ⋅      =     Ψ   ⋅      
 (3.14) 

Equation (3.15) shows the expanded version of (3.14) and the new inductance matrix 

of the machine in dq0 frame. As shown, the inductance matrix in dq0 frame is much 

simpler than the inductance matrix in the phase-domain formulation and is independent 

of the rotor position.  
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   Ψ           Ψ           Ψ        =     Ψ            Ψ             Ψ       
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+ + 2
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2

d s s m s s s

q s s m

L L M L L L M l
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  

= = − =

= − =

 (3.15) 

3.2.1.2 Voltage equations in dq0 frame 

The voltage equations of (3.3) can also be transferred to dq0 frame using the 

transformation P  as shown in (3.16) and (3.17). Here, 3I is the 3 3×  identity matrix. 
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1

3 3 33

3

0 0 0 00

00 0 00

0

0

abcs abcss

FDQr FDQrr
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−                         =                              
   Ψ    +    Ψ     

 (3.16) 

 

1
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0

abcsdq s dq ss

FDQr FDQrr
FDQr

d
Pv iP r P dt

v i dr

dt

−
  ⋅ Ψ    ⋅ ⋅           = +               Ψ   

 (3.17) 

Evaluation of d
abcsdtP ⋅ Ψ can be done by recalling the definition of  0dq sΨ  in (3.12), 

and simple computations of (3.18).  
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1
0 0therefore:

dq s abcs abcs abcs

abcs dq s dq s

d d d d
P P P

dt dt dt dt

d d d
P P P
dt dt dt

−

     Ψ = ⋅ Ψ = ⋅ Ψ + ⋅ Ψ       

     ⋅ Ψ = Ψ − ⋅ ⋅ Ψ       

 (3.18) 

Now the voltage equations in dq0 frame are: 
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0 0 0 0
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0 0

d
dq s dq s dq ss dq sdt

FDQr FDQrr FDQr

v r i P Pd
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−  Ψ   ⋅ ⋅ Ψ           = + −          Ψ           
 (3.19) 

After expansion, the voltage equations of the machine are obtained in a simple dq0 

format shown in (3.20): 
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3.2.1.3 Derivation of the synchronous machine equivalent circuit in the dq0 frame 

By combining (3.15) and (3.20), and re-arranging rows and columns of matrices with 

respect to the d-, q- and 0- axes, (3.21) is derived. The inductance matrix in this equation 

is a block diagonal matrix in which each block matrix is the inductance matrix of sets of 

windings in d-, q- and 0- axes respectively. As predicted, there is no mutual inductance 

between windings from different axes. This form of equations simplifies the analysis of 

synchronous machines. Furthermore, an equivalent circuit can be extracted more easily 

using this equation.  
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 (3.21) 

Windings ( ,  and F D Q ) have different turns compared to stator windings. 

Therefore, the mutual inductances between each of the windings ( ,  and F D Q ) and 

stator windings have much different values compared to the magnetizing inductances of 

stator d- and q-axes ( ,md d s mq q sL L l L L l= − = − ). Hence, to extract the equivalent 
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circuit of the synchronous machine from (3.21), the turns-ratio of these windings must be 

taken into account  [34]. This method of normalizing machine equations is adopted in this 

thesis and results in an equivalent circuit with physical parameters (not per unit). The 

resulting equivalent circuit can be per-unitized later if needed. Equation (3.22) shows the 

normalized values of the parameters of the windings ( ,  and F D Q ). After this 

normalization, the equivalent circuit of the synchronous machine in dq0 frame can be 

extracted which is shown in Figure  3.2. Leakage and magnetization inductances of the 

synchronous machine’s equivalent circuit are also defined in (3.22) .  
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The inductance '
DFl  in the d-axis of the equivalent circuit represents the mutual flux 

linkage path, which links the field and damper windings on the d-axis, but which does not 

link the armature winding on the d-axis  [30],  [33]. The existing synchronous machine 

model in RTDS  [26] is based on the ladder model presented in  [33], which includes the 

inductance '
DFl . 
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Figure  3.2: Dq0 equivalent circuit of a synchronous machine: (a) d-axis, (b) q-axis, (c) 0-axis 
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3.2.2 Application of the Dq0 Theory in the Modeling of Permanent Magnet 

Synchronous Machines  

Two types of synchronous machines are considered in this thesis: conventional 

synchronous machines with the field winding and a permanent magnet synchronous 

machine (PMSM). This section begins with an introduction to the physical characteristics 

of permanent magnets; it then describes the magnetic and electric models of a magnet. 

Finally it presents the manner in which a permanent magnet synchronous machine can be 

modeled using a dq0 equivalent circuit. Methods of incorporating this model of PMSM 

into electromagnetic transients programs are discussed in Chapter 4. 

3.2.2.1 Characteristics of permanent magnet materials 

Permanent magnet materials are those magnetic materials which can produce a 

magnetic flux outside the material and maintain it in spite of a large externally applied 

field intensity  [35]. Similar to other magnetic materials, B-H characteristics of permanent 

magnets follows the path of a hysteresis loop; however permanent magnets have a much 

larger B-H hysteresis loop compared to soft magnetic materials  [35]. Permanent magnet 

materials are therefore characterized by very high values of coercive force ( )cH   [35]. 

The first and the second quadrants of a typical B-H hysteresis loop of a permanent 

magnet are shown in Figure  3.3. The permanent magnet is formed by applying a large 

external magnetic field intensity ( )H  to an un-magnetized sample of material (shown as 

initial magnetization in Figure  3.3), then shutting it off  [36] . This allows the material to 

relax or recoil along the upper curve  [36] as shown in Figure  3.3. The recoil region of the 

B-H characteristics in Figure  3.3 is a straight line with a slope of 0rµ µ µ=  which is 

called the recoil permeability of the magnet. As a reminder, 7
.0 4 10 ( )Wb
Amµ π −= ×  is the 
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permeability of free space and rµ  is the relative permeability of the magnetic material. 

For Alnico magnets  [35], the recoil permeability is in the range of 3-5 0µ , whereas for 

ferrite magnets it is typically between 1.0 0µ  and 1.1 0µ   [35]. If the two ends of a magnet 

are shorted by an infinite permeance, the magnetic field intensity( )H  will be zero and the 

magnetic flux density leaving the magnet will be equal to the remanence (shown by rB  in 

Figure  3.3).  

( )B T

( )AH m

Initial
Magnetization

First

Quadrant

Second

Quadrant

rB

µ

Recoil

cH−

Knee

mB

mHThird

Quadrant  

Figure  3.3: The B-H loop of a permanent magnet  

The second quadrant of the hysteresis loop is the operating region of a magnet in 

permanent magnet machines. When the magnet is being utilized around an operating 

point, it is in fact operating along some minor hysteresis loops (shown in Figure  3.3) 

which can often be estimated by a straight line. With the load increase, the operating 
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point moves towards the knee point of the B-H characteristics. In practical operations of 

machines, the excessive load on the magnet, which pushes the operating point to the 

nonlinear part in the third quadrant, is avoided as it may demagnetize and damage the 

magnet  [36],  [37].  

3.2.2.2 Linear models for permanent magnets  

The fact that the operating locus of a permanent magnet is on the straight line of the 

second quadrant in Figure  3.3, suggests that the magnet can be represented by a linear 

model. Such a model facilitates calculations, particularly in complex systems that include 

permanent magnets.  

As an example, for the simple rectangular magnet shown in Figure  3.4 with the length 

of ml  and cross-section area of mA , the relationship between operating flux density ( )mB  

and magnetic field intensity ( )mH  of the magnet is shown in (3.23).  

 0m r r mB B Hµ µ= +  (3.23) 

 

Equation (3.23) is re-written in the form of (3.24). In this equation, the term m ml H is 

the magnetomotive force along the magnet, also shown by mFFFF , and the term m mA B  is 

equal to the magnetic flux of the magnet ( )mΦ . 

 ( )
0 0

m m
m m m m m r

r m r

l l
l H A B B

Aµ µ µ µ
= = −FFFF  (3.24) 

Thus, the relation between the MMF and flux of the magnet is as shown in (3.25). In 

this equation, the magnet is represented by a source of magnetomotive force ( )0FFFF  in 
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series with a reluctance mRRRR . The magnetic equivalent circuit of this representation is 

shown in Figure  3.5a. 
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Figure  3.4: A simple rectangular magnet 

The magnetic equivalent circuit of a device is most useful in analysis and design of 

that device, however in circuit analysis it is desirable to have the electric equivalent 

circuit of the element under study  [35]. The electric equivalent circuit can be derived 

directly and uniquely from the magnetic equivalent circuit using the theory of dual 

circuits, where current and voltage correspond respectively to magnetomotive force and 

flux  [35]. The electric equivalent of the magnetic circuit, shown in Figure  3.5a, is a coil 

with mN  turns in parallel with a current source. This electric equivalent circuit is shown 

in Figure  3.5b, with parameters defined in (3.26). 
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Figure  3.5: Equivalent circuits of a magnet: (a) magnetic circuit, (b) electric circuit 

3.2.2.3 Dq0 equivalent circuit for a permanent magnet synchronous machine 

A PMSM is a synchronous machine which uses permanent magnets on the rotor to 

create flux in the air-gap instead of a field winding. Similar to a synchronous machine, 

the stator of a PMSM holds a three-phase winding, which produces an almost 

sinusoidally distributed magnetomotive force rotating at synchronous speed.  

The cross-sectional layouts of two permanent magnet synchronous machine types 

with their different parts are shown in Figure  3.6. 

( )b

STATOR

MAGNET

MOTOR CORE

STATOR

MAGNET

MOTOR CORE

( )a
 

Figure  3.6: Simple structure of permanent magnet synchronous machine, (a) surface-mounted 

PMSM, (b) buried-magnet PMSM. 
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In a PMSM, if the magnets are mounted on the rotor as shown in Figure  3.6 (a), the 

machine is called a surface-mounted PMSM. However, if the magnets are buried inside 

the iron (Figure  3.6 (b)), the term buried-magnet PMSM is used  [35]. These two 

machines have some differences with respect to the inductances of d- and q- axes, which 

will be discussed later in this section. 

The dq0 equivalent circuit of a PMSM  [38] ignoring damper windings is shown in 

Figure  3.7. The representation of armature windings is identical to the ones belonging to 

synchronous machines shown in Figure  3.2. If present, damper windings can also be 

represented in a manner similar to that used for synchronous machines.  The magnet is 

modeled as a current source mi  in parallel to the magnetizing inductance mdL   [38]. The 

value of this current source is calculated such that the induced flux linkage on the 

armature windings is equal to the flux linkage induced by the actual magnet  [38]. The 

power loss as the result of eddy currents in the magnet is modeled by the resistance mR . 

The circuit parameters mi  and mR  can be computed using dimensions and physical 

properties of the magnet as explained in  [38]. 

As discussed previously in this section, permeability of magnets is in the range of 

permeability of the air; therefore in a surface-mounted PMSM, magnetizing inductances 

on the d- and q-axis ( mdL  and mqL ) are almost equal. Because of the large length of air-

gap in this machine type, the effects of saturation in the iron are rarely experienced. In a 

buried-magnet PMSM, because of shorter length of air-gap in the q-axis, mqL  is larger 

than mdL . 
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Figure  3.7: Dq0 equivalent circuit of a synchronous machine: (a) d-axis, (b) q-axis, (c) 0-axis. 

3.2.3 Advantages and Disadvantages of Modeling Machines Using Dq0 Theory 

Application of the dq0 theory for analyzing synchronous machines is discussed in 

previous sections. In this section, the advantages and drawbacks regarding the use of this 

theory in modeling synchronous machines are discussed. 

• Advantages 

As shown in (3.21), the differential equation of the machine in dq0 frame has a 

relatively simple form; and the inductance matrix in dq0 frame is a block diagonal matrix 

and is independent of rotor position. Additionally, the existence of an equivalent circuit 

in dq0 frame simplifies the analysis of synchronous machines. This approach also 

facilitates a better physical understanding of the performance of synchronous machines.  
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Incorporation of a synchronous machine model into electromagnetic transients 

programs has a lower computational burden if it is done directly in dq0 mode. This is due 

mostly to the fact that the inductance matrix of the machine in dq0 frame is not changing 

with time and therefore, it is not required to invert the inductance matrix in every time-

step. Normally a dq0 model of a synchronous machine is interfaced into electromagnetic 

transients programs; in the interfaced approach the machine model is external to the 

transient program, and the machine elements are not included in the admittance matrix of 

the transient solution. This, in turn, means a simpler model and fewer computational 

operations. 

The other advantage of dq0 models is the wide application of these models in the 

power industry and amongst electrical engineers. Almost every electric power utility 

identifies its synchronous generators by their dq0 parameters.  

• Disadvantages 

The dq0 models also have some shortcomings listed as follows. It is not feasible to 

model internal faults directly in dq0 frame. Although some internal fault models may 

have used the dq0 theory to calculate the approximate values of faulted inductances, the 

actual solutions of differential equations are performed in the phase-domain  [39]- [41]. 

Furthermore, using the above method, the error in the calculation of faulted winding 

inductances becomes larger as the fault point approaches the end of the winding  [40], 

 [41]. 

The dq0 models of synchronous machines essentially assume a sinusoidal distribution 

for the windings, thus they cannot account for the space harmonics of the machine 

windings and permeance distributions. This matter shows its importance in some 
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protection schemes based on the harmonic content of voltage and/or the current signals of 

the machine. One such scheme is the stator-ground fault protection, which is based on 

the level of the third harmonic voltage in the neutral and terminals of synchronous 

machines  [44]. Application of the new model, developed in this thesis, and the 

shortcomings of dq0 models regarding this protection scheme are explained in Chapter 6. 

Finally, in the dq0 models, the saturation effects are modeled by modifying the values 

of magnetizing inductances on d- and/or q- axes. In this approach, the effect of MMF 

distribution on the saturation of local pole-arc portions is ignored. 

3.2.4 Calculation of Approximate Phase-Domain Inductances from the Dq0 

Equivalent Circuit 

Some authors  [7]- [8],  [12],  [45]- [46], have performed time-domain modeling of 

synchronous machines directly in the phase domain, i.e., the final differential equations 

are in the form of equation (3.1), which uses the phase currents instead of d-q 

transformed currents as state variables. In this approach, the inductances are changing 

with time. The phase-domain approach is adapted in  [45] as an initial effort to model 

internal faults in synchronous machines. In  [7]- [8],  [12],  [46], the phase-domain approach 

is used for the purpose of improving the numerical stability of machine models developed 

in the electromagnetic transients programs.  Some authors modified the phase-domain 

dq0-based models of synchronous machines to simulate internal faults  [39]- [41],  [47]-

 [52]. 

Although the time-domain solution in all of the above machine models is in terms of 

phase quantities, the inductance matrix of the machine in phase-domain is actually 

extracted from the inductance matrix of the machine in dq0 frame. This is because, as 
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discussed earlier, the electric data for the majority of machines is available only in the 

dq0 format, due to the pervasiveness of the dq0 based models.  

The above machine models consider equations (3.4)-to-(3.15) as functions of phase-

domain inductances with parameters that can be calculated using (3.27). Parameters 

,s mL L and sM  in (3.27) are evaluated by performing simple algebraic operations on the 

expressions of ,d qL L and 0L  in (3.15). Parameters of normalized mutual inductances 

between stator and rotor (i.e. ' ',F DM M  and '
QM ) are also evaluated from the expressions 

of these mutual inductances in dq0 frame as shown in (3.15).These phase domain 

machine models are algebraically identical to dq0 frame models, therefore the transient 

response of a dq0-based machine model and an equivalent phase-domain model are 

expected to be identical  [12],  [18]. Some differences may arise due to the numerical 

stability and accuracy of these models  [12]- [13],  [18]- [19]. 
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3.3 Application of the Finite Element Method in Obtaining the 

Inductances of Electric Machines 

As mentioned earlier, usually the dq0 data are the only available electrical parameters 

of electric machines. The models developed in this thesis are intended to simulate internal 

faults and winding- and permeance-based time harmonics. The dq-based models are not 

suitable for these objectives; therefore alternative methods such as the finite element 

method (FEM) and the winding function approach (WFA) are also discussed.  

In this section, a brief review is done on obtaining electric machine parameters using 

the finite element method (FEM). The advantages and shortcomings of this method for 

such applications are also mentioned. Since the finite element method itself is not the 

focus of this research, the descriptions are very brief.  

The finite element method (FEM) (sometimes referred to as finite element analysis) is 

a numerical technique for solving relevant field equations for a specific study. This 

method is based on solving an equation by approximating continuous quantities as a set 

of quantities at discrete points, often spaced into sub-regions called mesh (Figure  3.8). 

Because the finite element method can be adapted for problems of great complexity 

and unusual geometry, it is an extremely powerful tool in the solution of important 

problems in heat transfer, fluid mechanics, mechanical systems, and electromagnetism. 

The availability of fast and inexpensive computers allows problems which are intractable 

using analytic methods to be solved using finite element methods.  

A significant amount of research has been done to study electric machines using the 

finite element method (FEM)  [54]- [64]. The main purpose of FEM related research 

activities is mostly designing electric machines. Such studies are usually performed by 
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detailed calculation of the inductances of a machine using finite element programs  [61]- 

 [64]. Because FEM considers details of machine materials, geometry, saturation level, 

etc., it has the capability of providing extremely detailed plots of the functional variation 

of inductances with rotor position etc. FEM is used in Section  3.4 to obtain the 

inductances of an experimental machine, and to verify the inductance values calculated 

by the modified winding function approach (MWFA). 

 

Figure  3.8: A triangular mesh pattern used to model a synchronous machine using FEM 

For time-domain simulation, these inductances can be used to formulate the machine 

state space equations; which are then numerically solved to provide the various 

waveforms of interest. If the focus is on the detailed performance of the machine, rather 

than on the impact of the machine on a large external network, Faraday’s law can be 

added to the FEM formulation to make a time-domain simulation possible  [61]- [62]. 
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However, this process is extremely slow as the resulting problem is a dynamic solution of 

the field equations, i.e. FEM analysis is run in every time-step of simulation. Therefore, 

these types of FEM-based simulations are usually limited to the study of a single machine 

connected to an ideal supply. A better approach is to use the FEM to calculate and store 

machine inductances and use a separate time-domain simulation program to obtain the 

transient response. 

One of the contributions of this thesis is a new approach of using the finite element 

method to provide inductance information that is incorporated into a highly detailed real-

time formulation of a machine and external network. In this approach, the FEM-based 

calculated inductances of a synchronous machine are tabulated and used for simulation of 

the embedded phase domain model developed on the RTDS platform  [12],  [65] . Such 

integration results in a time-domain machine model with high accuracy of parameters 

generated by FEM, combined with the speed of real-time simulation. 

• FEM-based Inductance Calculation versus Winding Function Approach 

The FEM is a very detailed and accurate method of analyzing electric machines. In a 

FEM analysis, the exact geometry of machine parts such as dimensions of stator, rotor 

and their slots, precise distribution of the windings and air-gap length are taken into 

account. The electromagnetic properties of the material used in the machine are 

considered in a FEM analysis.  

Although finite element analysis is a very accurate and detailed method of analyzing 

electric machines, it is also, at the same time, a very time consuming process.  In FEM-

based studies, the inductances of machines must be calculated for each rotor position, and 
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various loading conditions and field excitations. Such analysis, although performed only 

once, is extremely time-consuming.  

The next section discusses the modified winding function approach (MWFA) which 

is a more direct approach to calculate inductance parameters. This method can provide 

higher order harmonic representation of inductances (compared to the dq0 theory). The 

role of the FEM in this thesis is an alternative method that is used to validate and fine 

tune the MWFA approach, which is the principal approach in this research. 
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3.4 Application of the Modified Winding Function Approach for 

Obtaining the Inductances of Electric Machines 

In previous sections, two methods (dq0 theory and FEM) of computing inductances 

of electric machines were discussed. This section explains the modified winding function 

approach (MWFA) for this application. Unlike the dq0 theory, the MWFA is capable of 

taking into account non-sinusoidally distributed windings. Also, this method is 

computationally more efficient than the finite element method.  In this approach, a 

suitable integration loop is used to determine, using Ampere’s law, the resultant air-gap 

flux density at any given angle. A winding distribution function is used to calculate the 

Ampere-turns in the integration loop. The results are then processed to determine 

inductances as described later in Section  3.4.2. The following are the reviews of previous 

works on the winding function theory and the contributions of the author to this 

approach.  

3.4.1 Background 

Early applications of the winding function approach  [31] assumed sinusoidal 

distribution for windings and air-gap length to calculate the inductances in an idealized 

two-pole synchronous machine. The resulting inductances are in agreement with the 

format expressed in (3.4)-(3.10); this work relates the parameters of equations (3.4)-

(3.10) to the geometrical characteristics of the machine. A great motivation for the 

application of the winding function approach is its capacity to consider actual distribution 

of windings rather than idealized sinusoidal distributions. The winding function approach 

(WFA) was introduced in  [66] as a new method of modeling induction machines based 

on the coupled electric circuit approach. In  [29],  [67] and  [68] the winding function 
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approach was used to model the air-gap dynamic eccentricity in induction machines. In 

 [29] the winding function approach was modified by taking into account Gauss’s law in 

addition to Ampere’s law to calculate the flux density created by each winding. This 

approach was called the modified winding function approach (MWFA) and will be 

explained briefly in the next section. 

In  [69] and  [70] the MWFA was used for modeling turn-to-turn faults and 

development of new techniques for detecting turn-to-turn faults in synchronous machine 

and synchronous reluctance machines. Based on the winding function approach, a 

synchronous machine model for internal faults was presented in  [43]. In this model, the 

permeance is assumed to be varying sinusoidally as a function of angular position with 

respect to the rotor. 

In this thesis, the actual distribution of air-gap length, effects of slots, and MMF 

drop in the iron are incorporated into MWFA to calculate the inductances of an 

experimental synchronous machine. Comparison with the inductance values calculated 

using FEM shows that the above considerations significantly improve the accuracy of 

inductances. One way of compensating for these factors, which is introduced in this 

thesis, is to define an effective permeance function based on the physical air-gap function 

and experimental values of ,d qL L  and 0L . Incorporation of the effects of operating-point 

dependent saturation into the winding function theory is also one the main contributions 

of this thesis which will be discussed in Section  4.3. 

3.4.2 Fundamentals of MWFA  

In this section, using a simplified synchronous machine, the fundamentals of the 

winding function theory  [29] are briefly explained. Application of this method to an 
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experimental machine, and contributions of this thesis to the MWFA are discussed in the 

following sections. 

Consider the elementary salient-pole synchronous machine shown in Figure  3.9. The 

stator windings of the synchronous machine are embedded in the slots around the inside 

circumference of the stationary member. Each phase winding of the three-phase stator 

winding is displaced 120º with respect to the other. A single conductor is threaded back 

and forth forming a coil. One slot holds the conductors with the flow of current into the 

plane of the paper shown by (⊗ ) and is assigned as the positive direction. The other slot 

holds the conductors with the opposite flow of current (⊙ ).The field winding consists of 

two coils connected in series, and located in the pole-shoe area of the rotor.  

Similar to Figure  3.1, the axes as , bs , and cs  indicate the positive direction of the 

magneto-motive force (MMF) produced by phase-A, B, and C of the stator respectively. 

The direct-axis is the direction of MMF produced by the field winding. The angular 

velocity of rotor, and the angle between the direct-axis and the axis of phase-A are shown 

by rω , and rθ  respectively. The quantities sφ  and rφ   are angular positions with respect 

to the stator axis (as ) and the rotor axis ( fd ) respectively. Equation (3.28) applies to 

these quantities: 

 r s rφ φ θ= −  (3.28) 

To calculate the self inductance of a winding, the flux linking a winding due to its 

own current must be calculated. Similarly, the mutual inductance requires the calculation 

of the flux linking one winding caused by another winding. The first step in this 

procedure is to calculate the distribution of flux density due to an energized winding. For 

example, if only winding A is energized with a current i , the magnetic field intensity H
��
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created by this winding can be calculated by applying Ampere’s law to the integration 

path C shown in Figure  3.9. 
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Figure  3.9: An elementary salient-pole synchronous machine with placements of the windings 

Such an approach results in the computation of magnetic field intensity in the air-gap 

as a function of number of turns in the closed path C and the winding current i   [29].  In 

previous research conducted using MWFA, the permeability of iron was assumed to be 

infinite and therefore only MMF drops along the air-gap were taken into account. In 

 [29] Gauss’s law was also used to determine the correct value of MMF drop at 0sφ =  
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which was not properly estimated in earlier formulations. This ensured that the calculated 

inductances followed the reciprocity principle. 

After the determination of magnetic field intensity in the air-gap, the flux density ( )B
��

 

is determined from the relation between the flux density and the magnetic field intensity 

( )H
��

in the air-gap (i.e. 0B Hµ= ⋅
�� ��

). Finally the inductances are calculated by integrating 

the flux density over the span of windings and computing the total flux linkage induced 

in each winding  [29].  

Equation (3.29) shows the formula used for the calculation of inductances between 

any two windings for different rotor positions of the machine using this approach. The 

inductance between windings j and k is shown by the symbol jkL , with the indices j and k 

ranging over the set of stator phases (a, b, c), and the field winding (F). For 

example, aaL is the self inductance of stator phase-A, and abL is the mutual inductance 

between phase-A and phase-B. The stack length and rotor radius are respectively shown 

by symbols l  and r . The function ( , )j s rn φ θ  is called the turns function and represents 

the number of turns of the winding j enclosed by the path C. In general, the turn function 

is a function of sφ  and rotor position ( )rθ , however for a stationary coil, it is only a 

function of sφ . Turns carrying currents into the page are considered positive while the 

turns carrying currents out of the page are considered to be negative. In (3.29), 

( , )k s rM φ θ  is called the modified winding function which was introduced in  [29] by the 

application of Gauss’s law into this theory. 

In (3.29), 1( , )s rg φ θ−  is the inverse air-gap function of the machine which shows the 

variation of air-gap length with respect to angular position in rotor’s frame of reference 
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rφ . In (3.29), rφ is replaced by s rφ θ−  as previously defined in (3.28) . The average 

value of the inverse gap function is shown by 1( , )s rg φ θ− . In this equation, lsL  accounts 

for leakage inductances such as slot leakages and coil end leakages  [72] which are not 

included in the inductances computed by the winding function theory.  
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The MWFA, similar to the other methods of analyzing machines has some 

advantages and limitations which are as follows: 

• Advantages 

In the winding function theory, the actual distribution of the windings can be easily 

considered, and the effects of space harmonics on the resulting inductances and machine 

currents and voltages can be taken into account. The permeance related harmonics also 

can be taken into analysis of the machine. Analysis of internal faults and rotor 

eccentricity is also possible using this method. This method is also computationally more 

efficient than the FEM. Since there is a closed integral formula for the inductances, it is 

possible to develop an analytical relation between the time-harmonics of the machine 

voltages and currents and the type of fault in the machine  [70].  

• Assumptions and Limitations 

In the winding function theory the permeability of iron is assumed to be infinite, 

therefore researchers ignored the effects of saturation in the iron. Unlike FEM, it is 
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difficult to account for fine geometrical details of the machine in MWFA. To address 

some of these shortcomings, this thesis introduces some techniques into the MWFA 

which account for the MMF drop in the iron, effects of slots, and non-circular shape 

of pole-arc. The effects of operating point dependent saturation are also incorporated 

into the MWFA as discussed in Section  4.3.    

3.4.3 Improvements in the MWFA and Validations 

In this section, the inductances of an experimental machine are calculated using the 

MWFA. The inductances are compared with the values computed using a FEM-based 

software, and also with experimentally measured results. Some modifications are 

introduced by the author to increase the accuracy and flexibility of the MWFA.  

3.4.3.1 Description of the laboratory synchronous machine 

A 3kW, 4-pole, 60 Hz, 1800 rpm, 208 V (line to line), star connected salient-pole 

synchronous machine is considered for this study. The stator and rotor of this machine 

are shown in Figure  3.10. The stator has a single layer, 3-phase, random-wound 

concentric winding distributed in 36 stator slots. Each phase of the stator winding has two 

series-connected coils. There are 16 turns/slot/phase with a total of 96 turns per phase. 

The salient-pole rotor has 24 damper bars (6 bars/pole-face). The field winding consists 

of four coils connected in series with 500 turns in each coil. Figure  3.11 shows the 

layouts for the stator and rotor windings of the laboratory machine. Stator phase-A 

consists of two sub-windings A1 and A2. Series-connected concentric coils '
1 1-a a , '

2 2-a a  

and '
3 3-a a  form the sub-winding A1 and the coils '

4 4-a a , '
5 5-a a  and '

6 6-a a  form the sub-

winding A2. The two sub-windings A1 and A2 are 180� apart. Other stator phases, B and 
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C, also have similar arrangements. The field winding consists of four series-connected 

coils '
1 1-f f , '

2 2-f f , '
3 3-f f  and '

4 4-f f  as shown in Figure  3.11.  

 

 

 

 

Figure  3.10: The Laboratory synchronous machine: (a) stator, (b) rotor 
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Figure  3.11: Layout of the windings in the stator and rotor of the laboratory machine 
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The ratings and geometrical specifications of the experimental machine are shown in 

Table  3.1. In addition to the information about the windings, the table shows the 

geometrical specifications of the rotor such as stack length, angle of pole-arc, and 

physical air-gap along d- and q-axes.  

A cross-section of the rotor with the position of field windings and rotor damper bars 

are shown in Figure  3.12-a. To limit the eddy currents, the rotor core is made up of 

numerous identical rotor laminations. One of these laminations is shown in Figure  3.12-b. 

As observed in the figure, the rotor pole-arc of the experimental machine is not exactly 

circular but has different curvatures along the pole-face  [71]. This design feature is to 

make the flux density more sinusoidally distributed.  

TABLE  3.1: SPECIFICATIONS OF THE LABORATORY MACHINE 
Machine Ratings 

Rated Line-line RMS voltage 208 V 
Rated VA 3 kVA 
Frequency 60 Hz 
Number of phases 3 
Field rated volts 120 V 
Field rated amps 1.25 A 
Number of poles 4 

Stator Data 

Stator inner diameter 150 mm 
Number of slots 36 
Slots/phase/pole  3 
Turns/coil  16 
Number of layers 1 
Number of series coils 2 
Turns/phase  96 
Coil connection of phase A 1-12, 2-11, 3-10 

Rotor Data 

Rotor outer diameter 148.6 mm 
Stack length 90 mm 
Pole-arc along d-axis  70.5 deg 
Physical air-gap along d-axis 0.7 mm 
Physical air-gap along q-axis 32.6 mm 
Number of damper bars/pole 6 
Field turns/coil 500 

 



Chapter 3  

 

57 

The actual air-gap function, ( )a rg φ , of the machine is shown in Figure  3.13, on which 

is also superposed a commonly used circular approximation ( )c rg φ  where the air-gap is 

considered constant along the pole arc. In this thesis, the actual air-gap distribution is 

used in the MWFA process to compute the inductances of the experimental machine. 

These inductances are then compared with the inductances calculated from 

approximated air-gaps.  

 
Figure  3.12: Rotor of the laboratory synchronous machine: (a) rotor cross-section, (b) rotor 

lamination. 
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Figure  3.13: The air-gap function considering actual rotor pole-arc 
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From the arrangements of the stator windings, the turns-function of stator phase-A 

( )a sn φ  is shown in Figure  3.14. This function represents the number of phase-A turns 

enclosed in an enclosed path similar to the path C of Figure  3.9. As a reminder, the 

conductors with the flow of current into the paper are assigned positive values and the 

ones with the outward flow of the current are considered to be negative values. The turns-

functions of phase-B and phase-C can also be obtained in a similar manner. The turns-

function of the rotor field winding is shown in Figure  3.15. 
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Figure  3.14: The turns function of the stator phase-A 
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Figure  3.15: The turns function of the field winding 
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3.4.3.2 Incorporating the effects of iron MMF drop and slot fringing into the MWFA 

Equation (3.29) is the formula for calculating machine inductances using MWFA. 

This equation is re-written in terms of the permeance function of the machine, ( , )s rφ θΡ , 

as shown in (3.30). In this thesis, this change of variable is used to facilitate further 

improvements by incorporating effects of MMF drop in iron and saturation into MWFA. 
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As mentioned earlier, the straightforward application of MWFA assumes that the 

permeability of iron is infinite, and therefore only MMF drops along the air-gap are taken 

into account. The air-gap function, ( , )c s rg φ θ , is also assumed to have a constant value 

along the pole-arc. With such assumptions the permeance function becomes the function 

0( , )s rφ θΡ  as shown in (3.31). 

 0
0( , )

( , )
s r

c s r

rl

g

µ
φ θ

φ θ
Ρ =  (3.31) 

In contrast to the above straightforward approach, in this thesis, the accuracy of 

MWFA is improved by taking into account the actual shape of the pole-arc, MMF drops 

in the iron, and effects of stator slots. Table  3.2 shows the respective formulae for 

calculating the permeance function of the machine with such improvements. In this 

section, the impacts of using each one of these factors will be shown. 

In Table  3.2, 1( , )s rφ θΡ  is the permeance function of the machine when the actual 

shape of pole-arc is considered in the evaluation of air-gap function ( , )a s rg φ θ . However, 
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it still ignores the MMF drop in the iron and fringing in the slots. A further improvement 

is achieved by considering the effects of MMF drop in the iron in the calculation of the 

permeance function 2( , )s rφ θΡ . This permeance function is evaluated based on the 

approximation that the normal component of flux density in the iron is constant along the 

path C in Figure  3.9 , and equal to the flux density in the air-gap. In the equation for 2Ρ , 

sr  is the outer radius of the stator and µ  is the permeability of iron. Here, the terms 

0

( , )a s rg φ θ
µ  and 

( , )s a s rr g φ θ
µ

−
 account for the MMF drops in the air-gap and iron, respectively. 

Finally, to account for the effect of slots, the air-gap function, ( , )s s rg φ θ , is generated by 

considering the effective depth of stator slots using Carter’s coefficients  [36],  [72]. The 

permeance function 3( , )s rφ θΡ  is generated using this air-gap function. 

TABLE  3.2: PERMEANCE FUNCTIONS OF THE MACHINE BY INCORPORATING 

DIFFERENT DETAILS 

Parameters Included in Calculating the Permeance 

Function 
Equation for Calculating the Permeance 

Function 

Air-Gap with the circular pole-arc ( )cg  0
0( , )

( , )
s r

c s r

rl

g

µ
φ θ

φ θ
Ρ =  

Actual gap ( )ag  0
1( , )

( , )
s r

a s r

rl

g

µ
φ θ

φ θ
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Actual gap ( )ag  + iron MMF drop 2

0

( , )
( , ) ( , )s r
a s r s a s r
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g r g
φ θ

φ θ φ θ

µ µ

Ρ =
−

+
 

Actual gap considering the slots ( )sg  + iron MMF drop 3

0

( , )
( , ) ( , )s r
s s r s s s r

rl

g r g
φ θ

φ θ φ θ

µ µ

Ρ =
−

+
 

 

Figure  3.16 shows the variation of the above permeance functions 0 3Ρ Ρ⋯  with rφ . 

Note that, r s rφ φ θ= −  is the angular position in rotor’s frame of reference as defined in 

(3.28). As can be seen, 0Ρ  has a rectangular shape, because the assumed air-gap in this 
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function is constant along the pole-arc. On the other hand, 1Ρ  varies along the pole-arc as 

it is generated using the actual air-gap. As the effects of MMF drop in the iron is taken 

into account in the calculation of the permeance function 2Ρ , it has smaller values in 

comparison with 1Ρ . The effects of stator slots is noticeable in the variation of 3Ρ . The 

air-gap function, including effects of slots, sg , is a function of both rφ  and sφ . Here 3Ρ  

has been plotted at rotor position 0rθ = . 
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Figure  3.16: The permeance functions considering different details ( )0 3Ρ Ρ⋯  

Using (3.30) and permeance functions 0 3Ρ Ρ⋯ , the self inductance of stator phase-A 

( )aa rL θ  is calculated and shown in Figure  3.17. For the purpose of comparison, this 
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inductance is also computed using the FEM-based software Maxwell® from ANSOFT 

Corporation  [73] and plotted in each graph of Figure  3.17. As can be seen, the more 

details considered in calculating the permeance function, the more accurate the calculated 

inductances from MWFA. For example, the computed inductances using 3Ρ  are the best 

match with the inductances calculated using FEM. In addition, by considering the actual 

shape of pole-arc in computing the permeance function, the shapes of the resulting 

inductances are more precise.  
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Figure  3.17: The stator phase-A self inductance computed using permeance functions 0 3Ρ Ρ⋯  

A similar procedure is followed for calculating the mutual inductance between phase-

A and phase-B of the stator. The results are presented in Figure  3.18. As can be seen, 
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similar to Figure  3.17, better results are obtained when more details are considered in 

calculating the permeance function.  

These observations show that inductance values comparable to those obtained from 

FEM can be generated by proper application of MWFA in which several additional 

details are considered. The FEM program, however, takes close to one hour to compute 

the entire inductance matrix of a synchronous machine on a 1.73 GHz dual core 

processor. The computational time for MWFA is a small fraction of the above time and is 

in the range of seconds. 
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Figure  3.18: The mutual inductance between stator phase-A and phase-B computed using 

permeance functions 0 3Ρ Ρ⋯ . 
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3.4.3.3 Adjusting the permeance function using experimental values of ,d qL L and 0L  

As observed in the previous section, the inductances calculated using either the 

circular (Figure  3.17-a) or even the physical air-gap (Figure  3.17-b) are significantly 

different from the actual inductances. The cause of this discrepancy is the change in the 

permeance due to the presence of factors such as the rotor pole-shoe, stator slots, and the 

MMF drop in the iron. The accuracy is improved by taking into account the actual shape 

of pole-arc and effects of stator and rotor slots in the calculation of permeance. However, 

such calculations assume detailed knowledge of the machine geometry. 

More commonly, the dq0 inductances of the machine ( ,d qL L  and 0L ) are known. In 

this thesis, an MWFA approach is used that modifies the permeance function so that the 

resultant ,d qL L  and 0L  parameters agree with experimentally obtained values. Earlier 

authors  [69] used an effective air-gap function to achieve a similar objective; which 

substituted the physical air-gap function. Their approach assumed a circular pole-arc. 

For increased accuracy, the proposed method in this thesis defines an effective 

permeance function (ignoring saturation) using the experimental values of 0, ,d qL L L  and 

the actual shape of pole-arc. The first step is accomplished by comparing the MWFA 

computed values of ,d qL L  and 0L  with their corresponding experimental values, shown 

in Table  3.3, and modifying the average and the peak-to-peak values of ( , )s rφ θΡ  as 

shown in (3.32). The method of incorporating saturation effects will be discussed later. In 

(3.32), the subscripts exp and MWFA are used for the parameters measured from the 

experiment and computed using the MWFA respectively. Inductances ,d qL L  and 0L  

originally arose from the conventional dq0 theory in which the winding distribution are 
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assumed to be sinusoidal. In that theory, inductances ,d qL L  and 0L  are constants and 

they are not varying with a change in rotor position. However, when Park’s 

transformation is applied to the phase-domain inductance matrix [ ]( )rL θ , with individual 

elements  ( ),  ( ),..aa r ab rL Lθ θ  of the actual machine (i.e. with shapes such as those in 

Figures  3.17 and  3.18), the resulting inductances ,d MWFA q MWFAL L− −  and 0 MWFAL −  oscillate 

slightly with rotor position. The parameters d MWFAL − , q MWFAL −  and 0 MWFAL −  in (3.32) are 

the average values of the actual inductances computed using MWFA. A detailed 

derivation of equation (3.32) is provided in Appendix A. 
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L L L
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φ θ φ θ

φ θ φ θ
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− − −

− −
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− −
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Ρ = Ρ

+ −

−
Ρ = Ρ

−

 (3.32) 

TABLE  3.3: THE DQ0 PARAMETERS OF THE LABORATORY SYNCHRONOUS MACHINE 
Per-Unit bases Value 

Voltage base value = Rated line-neutral RMS voltage 120.09 V 

Current base value = Rated line RMS current 8.33 A 

Impedance base value  14.42 Ω 

Inductance base value  38.25 mH 

Measurement MWFA Parameter 
 Per-unit value Physical value Per-unit value 

D-axis inductance 0.89 34.1 mH 1.16 

Q-axis inductance 0.48 18.4 mH 0.51 

Zero sequence inductance 0.11 4.2 mH 0.12 

Stator leakage inductance 0.048 1.8 mH  

Field leakage inductance 0.066 2.5 mH  

D-axis damper leakage inductance 0.055 2.1 mH  

Q-axis damper leakage inductance 0.050 1.9 mH  

Stator resistance 0.039 0.56 Ω  

Field resistance 0.011 0.16 Ω  

D-axis damper resistance 0.037 0.53 Ω  

Q-axis damper resistance 0.024 0.34 Ω  
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Note that the effective permeance function ( , )eff s rφ θΡ  is a scalar multiplication of the 

originally calculated permeance, and does not change the harmonic content of the 

function. This can also be seen from Figure  3.19. Also, note that these functions correct 

for any mismatch between MWFA results and the measurement.  
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Figure  3.19: Comparison of physical and effective permeance functions of the machine 

As mentioned earlier, the permeance adjustment formulation in (3.32) ensures that the 

resulting inductances ,d MWFA q MWFAL L− −  and 0 MWFAL −  will be equal to the experimentally 

measured d-, q-, 0- axis inductances respectively. If any of the permeance functions 

( 1 3Ρ Ρ⋯  in Figure  3.16) are used in this adjustment procedure, the resulting effective 

permeance function will contain the information regarding the shape of pole-arc, and also 

the correct inductance values will be achieved. Among the permeance functions in Table 

 3.2, 1Ρ  requires the least amount of information, and therefore it seems to be the most 

suitable permeance function to be used in the adjustment process of (3.32). Although 

minimal data is needed to generate this permeance function, the adjustment in (3.32) has 

the capability of compensating for the initial error.  In Figure  3.19, the effective 
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permeance function, obtained by this adjustment, is compared with the permeance 

function determined using physical data. The unsaturated self and mutual inductances of 

the stator are calculated using the modified winding function approach and compared 

with the inductances computed by FEM as shown in Figure  3.20.  

Two different values are shown for the inductances calculated using MWFA; one 

with the physical permeance function 1( )Ρ  and the other with the effective permeance 

function. It can be seen that the stator inductances computed using the effective 

permeance function are very close to the results of FEM calculations, whereas the 

inductances calculated from the physical permeance function have noticeable errors.  
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Figure  3.20: Stator inductances using 1( , )s rφ θΡ , ( , )eff s rφ θΡ  and FEM, (a) self inductance of 

stator phase-A, (b) mutual inductances between stator phase-A and phase-B 
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It must be noted that the comparison carried out above is mainly for establishing 

confidence in the approach and does not imply that the FEM-calculated results are the 

absolute template. Indeed, the effective permeance function approach makes the resulting  

,d qL L  and 0L  values match the experimentally measured ones. The FEM approach used 

here is a two-dimensional analysis, and effects such as rotor skewing and end winding 

leakages cannot be considered, which may account for the slight differences. Note that, if 

the permeance adjustment procedure is carried out using the ,d qL L  and 0L  from FEM, 

the resulting inductance plots become almost identical as shown in Figure  3.21. 
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Figure  3.21: Stator inductances using 1( , )s rφ θΡ , ( , )eff s rφ θΡ  and FEM. The permeance is adjusted 

using the 0,  ,  d qL L L  from FEM  (a) self inductance of stator phase-A, (b) mutual inductances 

between stator phase-A and phase-B. 
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3.4.4 Calculation of Faulted Winding Inductances using MWFA 

As mentioned in Section  3.4.3.1, every stator phase of the laboratory machine 

consists of two series connected sub-windings. The inductances of these windings or 

other portions of a winding can also be computed using the MWFA. These inductances 

can be used to model internal faults in the machine (as discussed later in Chapter 6).  

Similar to the above procedure, the MWFA can be used to compute the inductances 

of faulted windings of a synchronous machine.  Figures  3.22-a, and  3.22-b, respectively, 

show the self inductance of winding A2 and the mutual inductance between this winding 

and the field winding.  
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Figure  3.22: Inductances of sub-winding A2 using 1( , )s rφ θΡ , ( , )eff s rφ θΡ  and measurement, (a) 

self inductance of A2, (b) mutual inductances between A2 and the field winding 
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Similar to Figure  3.20, the MWFA-based inductances are calculated using both the 

physical permeance function 1( )Ρ  and the effective permeance function ( )effΡ .In Figures 

 3.22, the MWFA-based computed inductances are compared with the measured values 

for these quantities. These inductances were measured in the laboratory using the 

inductance bridge method  [74] for various rotor positions. It can be seen that the 

inductance values computed using the effective permeance function are in good 

agreement with the measured values, whereas the inductances calculated from the 

physical permeance function have considerable error. 

3.5 Chapter Contributions and Conclusions 

Three known methods of obtaining inductances of electric machines were reviewed in 

this chapter; the dq0 theory, the finite element method (FEM), and the modified winding 

function approach (MWFA). The fundamentals of the dq0 theory were discussed and the 

dq0 equivalent circuit of synchronous machines was extracted using this theory. In this 

thesis the orthogonal Park’s transformation of (3.11) was used which generates a 

symmetrical dq0 inductance matrix. The details of using the dq0 theory to analyze 

permanent magnet synchronous machines were also discussed in this chapter. 

The finite element method as a tool of analyzing and evaluating the inductance 

matrices of machines was also reviewed. 

Finally the modified winding function approach (MWFA) was introduced and 

suitably modified. These modifications, include taking into account the actual shape of 

pole-arc and iron MMF drop in computing the permeance function of the machine; and 
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adjusting the permeance function with the help of experimentally measured ,d qL L  and 

0L .  

The relative merits for each of these approaches as to the level of modeling detail and 

accuracy of results and complexity were discussed. The MWFA (along with the 

modifications described in this thesis) is adopted in the thesis as the main tool for 

computing synchronous machine inductances for the purpose of time-domain simulation 

in the environment of the real-time digital simulator (RTDS®). This assessment is based 

on the flexibility and speed of this routine and its capacity to represent the effects of 

space harmonics.      

 



Chapter 4:  Inclusion of Saturation 

Effects in Evaluating Synchronous 

Machine Inductances 

 So far, in the process of computing inductances using the MWFA, the effects of iron 

saturation were ignored. Incorporation of these effects in the winding function 

approach, which is one of the main contributions of this thesis, is explained in Section 

 4.3. 

Magnetic saturation in synchronous machines can influence the steady-state loadings 

as well as the transient waveforms in a simulation. Although the effect of saturation is 

stronger and hence more relevant in transformer studies than in electric machines (as 

there is typically an air-gap in a machine), there are nevertheless situations where 

saturation in machines must be taken into account. This chapter reviews treatment of 

saturation in calculating inductances and then proposes a new approach to accurately 

incorporate saturation effects in the MWFA-based models. 

4.1 Incorporation of Saturation in the Dq0 Approach 

In the dq0 theory, the effects of iron saturation in synchronous machines are modeled 

by adjusting the values of d-axis magnetizing inductance ( )mdL  and q-axis magnetizing 

inductance ( )mqL  of the synchronous machine’s equivalent circuit shown in Figure  3.2. 

This adjustment is based on the magnitude of magnetizing currents mdi   and mqi . The 

following assumptions are usually made in representing the magnetic saturation for 

synchronous machines using dq0 theory  [75]: 
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1. The leakage inductances are independent of saturation. The leakage fluxes 

flow in the air for a considerable portion of their path so that they are not 

significantly affected by saturation of the iron portion. As a result the only 

elements of the equivalent circuit that saturate are magnetizing inductances   

mdL   and mqL .  

2. It is also assumed that, saturation does not deform the sinusoidal distribution 

of the magnetic field over the face of a pole, and all the inductances therefore 

maintain their sinusoidal dependence on rotor position. 

3. Hysteresis is ignored, while eddy currents are sometimes approximated by 

inclusion of additional windings on the d- and q-axes or by modifying the 

parameters of the existing windings.  

Given the above assumptions, the effect of saturation can be represented by (4.1). In 

this equation, mduL  and mquL  are the unsaturated values of  mdL   and mqL  respectively. 

sdK  and sqK  are called the saturation factors and identify the level of saturation in the d- 

and q- axes respectively. These factors are functions of d- and/or q- axis magnetizing 

fluxes (or currents) referred to as saturation indices. In unsaturated conditions these 

factors are equal to 1. 

 
md sd mdu

mq sq mqu

L K L

L K L

= ⋅

= ⋅
 (4.1) 

Minor differences between various approaches of modeling saturation in dq0 theory 

arise from the manner in which the dependency of these saturation factors on 

magnetizing fluxes (or currents) is represented: 
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One method  [1],  [75]  assumes that both the d- and q-axes magnetizing inductances 

mdL   and mqL  vary with saturation. Also sdK  and sqK  are both functions of total air-gap 

flux linkage( )atΨ  which is defined in (4.2). These functions are identified by the 

saturation characteristics of d- and q- axes  [1]. 

 

2 2

where:

,

at md mq

md md md mq mq mqL i L i

Ψ = Ψ + Ψ

Ψ = ⋅ Ψ = ⋅

 (4.2) 

Transient stability programs like PSSE  [76] and electromagnetic transients programs 

like EMTP  [75] use this approach to implement the effects of saturation in the 

synchronous machine models. Although this approach considers different saturation 

curves for the d- and q- axes, it uses only one saturation index ( )atΨ  for both axes. This 

assumption ignores the angular displacement of MMF peak from the d-axis and therefore 

is more appropriate for non-salient pole synchronous machines. 

Other methods assume that saturation takes place on both the d- and q-axes , and sdK  

is a function of mdΨ  and sqK  is a function of mqΨ . The relation between sdK  and mdΨ  is 

identified from the d-axis saturation characteristics, and the relation between sqK  and 

mqΨ  is defined based on the saturation characteristics of the q-axis. Existing models in 

the current commercial release of programs like EMTDC  [11] and RTDS  [26] use this 

approach of realizing saturation in synchronous machines. These programs, in addition to 

the above assumptions, introduce an approximation by ignoring the effects of q-axis 

saturation (i.e. 1sqK =  ). This assumption is based on the existence of a relatively large 
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air-gap on the q-axis which is not accurate particularly for non-salient pole synchronous 

machines. 

4.1.1 The Cross-Magnetization Phenomenon in Saturated Synchronous Machines 

The above methods assume that the d-axis magnetizing flux does not affect the 

saturation on the q-axis and vice versa. Research  [77],  [78] has shown that due to 

nonlinearities introduced by saturation, the permeability pattern is not symmetric around 

the d-axis. This results in asymmetry in flux linkages; that is, d-axis currents produce q-

axis flux linkage and vice versa. This phenomenon is known as cross-magnetization 

effect which is briefly explained in this section. Incorporating the effects of this 

phenomenon into MWFA in calculating the phase-domain inductances is explained in 

Section  4.3.  

Consideration of the cross-coupling effect in saturated synchronous machines is a 

result of analyzing machines using a more microscopic technique. Here the actual 

distribution of magnetomotive force in the air-gap space is taken into account to calculate 

the flux density in each location of the air-gap. The d- and q-axis components of the flux 

linkage are then determined by suitable integrations.  

For the purpose of simplicity consider a synchronous machine with constant air-gap 

length along the pole-face area. The unsaturated permeance function of this machine is 

shown as Ρ in Figure  4.1 (the same as 0Ρ  in Figure  3.16). The distribution of magneto-

motive force for a balanced operating condition is also presented in Figure  3.16. The 

MMF distribution with respect to rotor frame of reference is approximately a sinusoidal 

function (as the windings may not be perfectly sinusoidally distributed). Its magnitude 

and angle depend on the loading conditions and the level of field excitation. The 



Chapter 4  

 

76 

saturated permeance function, satΡ , is also plotted in Figure  4.1. This calculation is 

performed by taking into account the intensity of magneto-motive force in each angular 

position of the rotor space; i.e. when the absolute value of MMF is higher, higher 

saturation levels are experienced and therefore the value of permeance is reduced more in 

that particular angular position. Figure  4.1 shows that the saturated permeance is not 

symmetric on the sides of the d-and q-axis; this results in asymmetry in the generated 

flux density which is interpreted as cross-coupling effect in the dq0 theory.  
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Figure  4.1: The effect of MMF distribution on saturated permeance function 

The saturated permeance, satΡ , can be computed using the formulae presented in 

(4.3). In this equation, dS  and qS  are known as multiplicative saturation factors of the 

pole-face area and interpole area respectively. These saturation factors are functions of 

( )rφFFFF , the MMF at that particular angle, and have a value in the range of [0  1]. These 

factors are close to unity for small values of MMF and they decrease in value with the 

increase in MMF. The saturation factors vary with the ratio of iron to air for each slice of 

the machine at angle rφ  of width rdφ . For example, because of the small air-gap length 

on the d-axis area, dS  is smaller than qS  for the same value of MMF.  
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Ρ =

Ρ ⋅

FFFF

FFFF
 (4.3) 

The saturation factors ( dS  and qS ) can be computed using the saturation 

characteristic along the d- and q-axes using a least-square fitting approach as explained in 

 [79],  [80]. In this approach the saturation factors are approximated by polynomials and 

the least-square fitting ensures that the measured d and q open-circuit saturation 

characteristics match those calculated using saturation factor method. The precise shapes 

of dS  and qS  will be shown later; they typically assume the profile shown later in Figure 

 4.5. In  [79],  [80] the air-gap flux density at angle rφ  is computed using (4.4), where Bk  is 

a constant that depends on the machine dimensions.  

 ( )( ) ( )r B sat r rB kφ φ φ= ⋅ Ρ ⋅ FFFF  (4.4) 

Equation (4.4) is then integrated to calculate the d- and q- axes flux linkages ( dΨ  and 

qΨ )  [79],  [80]. The computed dΨ  and qΨ  are functions of both magnitude and angle of 

the magnetomotive force. At the magnetomotive force angle of0� , the relation between 

dΨ  and magnetomotive force magnitude is essentially the computed open-circuit 

characteristics of the machine ( dΨ  versus the field current with the stator open circuited). 

If the saturation factors are selected properly, this computed open-circuit characteristics 

can be made to match the experimental one. The same procedure can be repeated for the 

q-axis saturation characteristics. The author of  [80] concluded that a fourth-order 

polynomial is an adequately accurate approximation to represent saturation functions.  
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The relations between the magnitude and angle of the total MMF in pu ( magI and ξ ) 

and the magnetizing currents on the d- and q- axes (in pu) are shown in (4.5). These, ( mdi  

and mqi ) can be obtained by transforming winding currents for all three phase windings 

into d-and q components and summing the currents in all the resulting d and q windings 

respectively as shown in (4.5).  

 

( ) ( )
2 2 1

1,2.. 1,2..

cos

, tan ( / )

,  
n n

r mag r

mag md mq mq md

md d mq q

n n

I

I i i i i

i i i i

φ φ ξ

ξ −

= =

= ⋅ +

= + =

= =∑ ∑

FFFF

 (4.5) 

This equation can be used to extract the d- and q- axes flux linkages ( dΨ  and qΨ ) and 

magnetizing reactances ( mdX  and mqX ) as functions of mdi  and mqi . As an example, the 

variation of mdX  and mqX  with d- and q- axes magnetizing currents for a generator unit, 

with the parameters and experimental d- and q-axes saturation curves given in  [1], are 

computed and shown in Figures  4.2 and  4.3. These figures show the dependence of d- 

and q- axis magnetizing reactances ( mdX  and mqX ) on both magnetizing currents mdi  and 

mqi . 

Although the above method originally was developed for dq-based models, it can be 

directly applied to a phase-domain MWFA-based model as explained in Section  4.3. This 

is because the approach is used primarily to represent the permeance function as a 

function of saturation (Equation(4.3)). Once, the saturated permeance is known, (3.29) 

can be used to calculate the full set of machine inductances.  
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Figure  4.2: Variation of direct axis magnetization inductance with d- and q- axes magnetization 

currents  
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Figure  4.3: Variation of quadrature axis magnetization inductance with d- and q- axes 

magnetization currents 
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4.2 Modeling of Saturation in the FEM 

Application of the finite element method (FEM) in analyzing electric machines was 

briefly introduced in Section 3.3. Fine details including local saturation in the teeth, 

actual shape of the rotor and stator parts can be included in such analysis. 

In  [54]- [57],  [60],  [77] finite element analysis is used to evaluate the saturated d- and 

q- axis impedances of synchronous machines. In some results  [56] it is found that the 

actual saturated impedances and load angles determined from comprehensive magnetic 

field solutions have significant differences compared to the values calculated according 

to the classical methods described in the previous section. Some of these researchers  [56] 

,  [60],  [77] point out that the magnetizing current in one of the d- or q- axis affects the 

flux in the other axis; i.e. the use of FEM in analyzing the saturation in synchronous 

machines provides evidence of the presence of cross-magnetization phenomenon. 

In  [59] , [62] the finite element analysis is used to compute the phase-domain 

inductances of electric machines under saturated conditions. It is reported in  [62] that a 

change in loading condition can cause a phase shift in the calculated phase-domain 

inductance waveforms which is a result of inherent inclusion of ‘cross-magnetization 

effect’ in the FEM analysis. 

As mentioned in Section  3.3, the procedure of using FEM to evaluate the saturated 

phase-domain inductances of a machine is very time-consuming as the magnetic field 

calculations must be repeated for each loading condition. Therefore in this thesis, for 

practical reasons, saturation is incorporated into the MWFA to compute the inductances 

of synchronous machines as described in the next section. 
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4.3 Incorporation of Saturation in the MWFA 

This section introduces a new approach in which saturation effects are incorporated 

into a MWFA formulation for the purpose of calculating inductances of synchronous 

machines. The MMFs are calculated as function of winding currents, and the saturated 

permeance is then evaluated based on the magnitude of MMF at each angular position in 

the rotor frame of reference. Once this permeance variation is determined, (3.30) is used 

to calculate all phase-domain inductances for any loading condition. Such treatment is 

one of the main contributions of this thesis. The full machine model resulting from this 

treatment is later (in Chapter 7) shown to be vitally important in representing ambient 

harmonic conditions in synchronous machines. This factor is vital for closed-loop testing 

of some protection relays which use these harmonics as a signature to detect faults in 

synchronous machines.  

As mentioned in Section  3.4.3, previous researchers assumed infinite permeability for 

the iron and therefore only MMF drops along the air-gap were taken into account in the 

MWFA. With this assumption, it is not feasible to take into account the effects of iron 

saturation on the inductances calculated from the MWFA. In previous research in this 

field  [69] the effect of saturation in reducing the permeance was approximated by 

reducing the rotor pole-arc span. This treatment was performed at only one operating 

point, and any effect of operating-point dependent saturation was ignored.  

In contrast, in this thesis, by introducing the permeance function in (3.30) and by 

incorporating the technique of modifying the permeance function, discussed in Section 

 4.1.1 the effects of operating-point dependent saturation are incorporated into MWFA. 

This treatment automatically takes into account the so called ‘cross-magnetizing 
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phenomenon’ into the computation of machine inductances. Inherent in this treatment is 

the simplification that the spatial distribution of total MMF is sinusoidal. Although this is 

an approximate treatment, it is validated in Section  6.2 by comparison with experiment. 

The following assumptions are made in the incorporation of the effects of magnetic 

saturation into the MWFA: 

1. The leakage inductances are independent of saturation. The leakage 

inductance ( )lsL  is simply added to the magnetizing portion of the inductance.  

2. Hysteresis effects are ignored.  

In this section the experimental machine of Section  3.4 is used again as an example to 

demonstrate the process of incorporating the effects of saturation into MWFA. 

4.3.1 Derivation of saturation factors ( dS  and qS ) from the experimental open-

circuit characteristics of the machine 

As mentioned in Section  4.1.1, the saturation factors can be derived from the d- and 

q- axis saturation curves as explained in  [79],  [80] (see Appendix D for more details). 

The open-circuit characteristic of the laboratory machine is shown in Figure  4.4. From 

this curve, using the saliency factor (ratio of d- and q- axis magnetizing inductances) and 

assuming a quadratic characteristics for the portion of MMF which contributes to 

saturation  [81] the q-axis saturation curve is also obtained   [81]. In this method, the 

needed applied magnetomotive force ( )FFFF , for a certain magnetic flux in the saturated 

region, is assumed to consist of two components: one component ( )agFFFF  corresponding to 

the air-gap line (unsaturated condition) and an additional component ( )satFFFF , which is 

needed in addition to agFFFF , to produce the same flux under saturated conditions. This 
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additional magnetomotive force ( )satFFFF  is assumed to have the quadratic form  [82] shown 

in (4.6). In (4.6), Φ  is the magnetic flux at the operating point and 0Φ  is the magnetic 

flux at the knee point at which the saturation characteristic starts to be nonlinear.  

 
2

0 0

0

( )

0

sat satk= ⋅ Φ−Φ Φ > Φ

= Φ ≤ Φ

FFFF
 (4.6) 

The values of the d- and q-axis knee point magnetic flux ( 0dΦ  and 0qΦ ) are different: 

0dΦ  is known from the open circuit characteristics, and 0qΦ  can be calculated in terms of 

0dΦ , saliency ratio, and angular span of the pole-arc  [81]. This value corresponds to a 

particular MMF where the edges of the pole-arc start saturating. The constant satk  is 

assumed to be the same for both d- and q-axes  [82]. Its value can be evaluated from the 

open-circuit characteristics, angular span of the pole-arc and ratio of permeability in the 

pole-arc region and interpole region [81].  

 The q-axis saturation curve for the laboratory machine in this thesis is extracted 

using the above method and shown in Figure  4.4. Using the saturation characteristics 

along the d- and q-axes, the saturation factors ( dS  and qS ) are computed with a least-

square fitting approach  [79],  [80] as mentioned in Section  4.1.1. The resulting variation 

of saturation factors for the machine as functions of magneto-motive force are shown in 

Figure  4.5.  
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Figure  4.4: D- and Q-axis saturation curves generated from the open-circuit characteristics of 

the experimental machine 
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Figure  4.5: Direct- and quadrature-axis saturation factors (Sd and Sq) of the experimental 

machine 
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4.3.2 Generating the saturated permeance function ( )satΡ  for each operating point 

using the saturation factors ( dS  and qS )  

As the loading of the machine varies, the resulting MMF distribution changes in 

magnitude and phase as mentioned earlier in Section  4.1.1. At each operating point 

(loading condition) of the machine the total magnetomotive force has an approximate 

sinusoidal distribution which can be computed using the total magnetizing currents on the 

d- and q- axis ( mdi  and mdi ) as shown in (4.5). Using the function of total MMF and the 

saturation factors ( dS  and qS ) the effective permeance function( )effΡ , evaluated in (3.32)

, can be modified to derive the saturated permeance function ( )satΡ  for that particular 

operation point. This modification is done by replacing rφ  with s rφ θ−  in (4.3) as shown 

in (4.7):  

 
( )( )

( )( )

( , ) , in the pole face area

( , )
( , ) , in the interpole region

eff s r d s r

sat s r

eff s r q s r

S

S

φ θ φ θ

φ θ

φ θ φ θ

Ρ ⋅
Ρ =

Ρ ⋅

FFFF

FFFF

 (4.7) 

Now the saturated values of inductances for that particular operation point can be 

obtained by using the saturated permeance function, ( , )sat s rφ θΡ , in (3.30). 

As an example, the saturated permeance functions, ( , )sat s rφ θΡ , for two different 

operating points are computed and shown in Figure  4.6. At the first operating point which 

is shown by ‘Sat1’, the total magnetizing currents in the d- and q- axis are respectively 

1.8 pumdi =  and 0mqi = , which correspond to an open-circuit condition. At this 

operating point the saturated permeance function has a dip in the middle of the pole-arc 

as the total MMF peaks in the middle of the pole-arc (as 0mqi = ). The second operating 

point, identified by ‘Sat2’ in Figure  4.6, corresponds to a loaded condition with 
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1.2 pumdi = and 1.4 pumqi = . For this case, the total MMF is more oriented towards 

the q- axis and hence one side of the rotor pole-arc is more saturated than the other side; 

as a result satΡ  is lower in that side as seen in Figure  4.6. 
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Figure  4.6: Change in the permeance function due to change in operating condition 

The corresponding saturated stator inductances are shown in Figure  4.7. The saturated 

inductances have different magnitudes compared to the unsaturated ones, and the 

inductance variations in the ‘Sat2’ loading condition also show a slight advancement in 

angular displacement. This angular displacement of the inductance with loading under 

saturated conditions has also been reported by other authors  [62] who used the FEM to 

evaluate inductances of a synchronous machine.  

The proposed method of incorporating saturation, presented here, inherently includes 

the “cross-magnetization effect” which is at the root of such inductance variation. 

It should be noted that, the d-q quantities used in the above derivations are used only 

to determine the permeance variation with saturation. The MMFs are calculated as 

functions of winding currents according to (4.5), and the saturated permeance functions 
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are then calculated using (4.7). Once this permeance variation has been determined, 

(3.30) can be used to calculate all phase-domain inductances for any loading condition. 
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Figure  4.7: Change in the stator inductances due to saturation, (a) self inductance of stator 

phase-A, (b) mutual inductances between stator phase-A and phase-B. 

All self and mutual inductances of the machine are calculated using (3.30), (4.5) and 

(4.7). Note that these inductances are functions of rotor position rθ , and magnetizing 

currents mdi   and mqi .  To indicate that the inductances in (3.30) now are saturation 

dependent, the vector of currents i  is explicitly added to the list of function arguments in 

(3.30), and thus the inductance matrix of the machine becomes: 

 [ ] { },( , ) ( , ), where , , , , , ,r j k rL i L i j k a b c F D Qθ θ= ∈  (4.8) 
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To save on-line computation time, these calculations are done in advance and the 

values of the inductances are stored in tables for look-up during simulation. An efficient 

technique for this task is discussed further in Section  5.4. 

Detailed procedural steps of computing the machine inductances are shown in Figure 

 4.8. An off-line program is written to automatically calculate the inductances, including 

saturation effects, based on this flowchart.  

1

2

3

4

5

6

7

Using the effective permeance function, Sd ,and Sq

(from 2) calculate phase-domain inductances for each
rotor position and each set of Imd and Imq

By comparing Xd, Xq and X0 obtained from MWFA
and the experimental ones, compute the effective

permeance function

From OCC compute d- and q-axis saturation curves

Evaluate d- and q-axis saturation functions (Sd, Sq)

Store inductances in a tabular format

Using MWFA and physical permeance function of the
machine compute unsaturated values of Xd, Xq and X0

Obtain experimental values of Xd, Xq and X0

 

Figure  4.8: Procedure for computing machine inductances using MWFA 

4.4 Chapter Contributions and Conclusions 

Earlier in Chapter 3, three known methods of obtaining electric machine inductances 

were reviewed; the dq0 theory, the finite element method (FEM), and the winding 

function approach (MWFA). The relative merits for each of these approaches as to the 

level of modeling detail and accuracy of results and complexity were discussed, and the 

MWFA was adopted as the main tool of computing synchronous machine inductances in 

this thesis.  
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Here in Chapter 4, the effects of operating-point dependent saturation are 

incorporated into the MWFA routine. In this new approach, the total magneto-motive 

force is calculated as a function of winding currents, and the saturated permeance 

function is then evaluated based on the magnitude of the MMF at each angular position 

with respect to the rotor frame of reference. The unsaturated effective permeance 

function, defined in Section  3.4.3.3, and the open-circuit saturation characteristic are the 

inputs for this procedure. 

Chapters 4 and 5 described the methods in which the inductances of synchronous 

machines are evaluated. The next chapter is dedicated to time-domain simulation of 

electric machines with particular emphasis on electromagnetic transient programs and 

real-time digital simulators. 

 



Chapter 5:  Development of an 

Embedded Approach for Time-Domain 

Simulation of Electric Machines in 

Electromagnetic Transients Programs 

Earlier chapters describe the manner in which conventional machine inductances are 

determined and how they vary with rotor position and level of saturation. This chapter 

shows the manner in which the set of machine differential equations (i.e. (3.1)), resulting 

from the calculated inductance values, can be integrated into a generalized model of the 

network external to the machine to solve the full power system equations. The chapter 

begins with a brief description of the conventional approach of interfacing machine 

models into electromagnetic transients programs. Subsequently, the embedded approach 

of incorporating machine models into electromagnetic transients programs is introduced 

and explained with more details. Implementation of this approach in the real-time 

simulator (RTDS) is one of the main contributions of this thesis.   

5.1 Introduction 

As discussed in Chapter 2, usually the sophisticated components such as electric 

machines are interfaced into electromagnetic transients programs (shown schematically 

in Figure  2.2). That means that the machine is modeled as an external component which 

receives the node voltages from the network solution of the EMTP-type program and, 

using the differential equation of the machine, it calculates the currents and 

communicates them back into the network solution  [11]. The interfaced machine model 

has relatively low computational burden as this model is external to the transients 
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program, and the machine elements are not included in the admittance matrix of the 

transient solution.  

This technique allows smaller and more manageable sub-systems that can be easily 

simulated in parallel for real time purposes. The advantage of this approach is that the 

machine model is external to the transients program, and the machine elements are not 

included in the admittance matrix of the transient solution. This, in turn, means that a new 

admittance matrix does not need to be calculated (and factorized) for each rotor position. 

However, the interfaced models may show numerical instability in some network 

configurations  [11] or high operating frequencies (e.g. 400 Hz in  [12]).  As indicated by 

Figure  2.2, there is necessarily a time delay of one time-step introduced by the interface. 

The time-step delay in the procedure of interfacing is believed to be the main reason 

behind the instability problem. In real time simulation the importance of this problem is 

more significant, because the models are required to run in practice for long simulations 

at the actual speed of the physical phenomenon. 

In this chapter, the embedded approach of incorporating electric machines into 

EMTP-type programs is introduced which absorbs the machine time-varying inductances  

into the network solution in the manner of other passive elements like capacitors, 

inductors and resistors. As will be shown in Section  6.1.4., this approach tends to show 

significantly improved numerical stability compared to the interfaced model. 

5.2 Traditional Approach of Interfacing Electric Machines in 

Electro-Magnetic Transient Programs 

In Section  3.2, the dq0 theory was applied to the differential equations of 

synchronous machines (3.1) to transform them into dq0 frame. The dq0 format of 
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machine equations in (3.21) is much simpler than the original equations in abc frame, and 

it is commonly used in the analysis of synchronous machines. Therefore, to solve the 

synchronous machine equations inside the network solution programs of EMTP type 

programs like EMTP, EMTDC and RTDS, the dq0 format of machine equations are used 

 [11]. The conceptual diagram of solving machine equations inside the EMTDC network 

solution loop  [11]  is shown in Figure  5.1. In each time-step, the program receives the 

node voltages ,a bv v  and cv  from the EMTDC network solution. These node voltages are 

computed by solving the nodal equation of the external network as in (2.7) for the 

previous time-step. Using Park’s transformation, ( )rP θ  defined in (3.11), it then 

computes the dq0 components of the node voltages ,d qv v  and 0v . The derivatives of the 

flux linkages are obtained using ,d qv v  and 0v and the machine equations in (3.20). By 

integrating the state space variables (i.e. flux linkages) over time, the new values of flux 

linkages are computed as shown in Figure  5.1. Using the inductance matrix of the 

machine as in (3.15), the new values of winding currents in dq0 frame are computed. 

Finally the inverse of Park’s transformation, ( )1
rP θ− , is used to evaluate the abc frame 

currents ,a bi i  and ci . These currents are then communicated back into the network 

solution of EMTDC. 

The method of interfacing the machine model into the network solution of EMTDC is 

shown by Figure  5.2.  In this figure each phase of the machine is modeled as a current 

source with the values computed using the above procedure. To improve the numerical 

stability of the machine, the model is terminated to the network through a resistance  [11].  

The value of this resistance is " 2 cl

tr ∆=  , where cl  is called the characteristics inductance 



Chapter 5  

 

93 

of the machine, and usually is chosen as sub-transient inductance of the machine  [11]. 

The current source ( )cI t  compensates for the current of resistance "r . 

Electromagnetic transients programs have additional state variable based models for 

multi-mass inertia systems, excitation systems and so on, that are solved externally. The 

machine model interfaces via excitation voltage, electrical torque, and mechanical speed 

to these components  [11]. 

, ,a b cv v v 0, ,d qv v v

, ,..d q FΨ Ψ Ψɺ ɺ ɺ
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di qi 0i

Park's
transform

( )P θ

Dq0 format of
machine

differential
equations

∫

Machine
inductance

matrix

Inverse
Park's

transform
1( )P θ−

Fv

...

......

Fi

...

... from
previous
time-step

, ,a b ci i i

Back to network
solution

, ,..d q FΨ Ψ Ψ

s te− ⋅∆

 

Figure  5.1: Conceptual diagram of solving the machine equations 
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Figure  5.2: Interfacing the machine model to the network solution  
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5.2.1 Methods of Integrating Differential Equations of Electric Machines 

As mentioned earlier, numerical integration is used in the process of discretizing the 

differential equations of a machine and interfacing it to the network solution of the 

electromagnetic transients programs. In this section, different methods of integrating the 

machine equations are explained. The effects of using different integration methods on 

the numerical stability of the model will be discussed later in Section  6.1.4.  

One method of integration used in the past is a predictor corrector method. The 

second order Runge-Kutta method  [83] is used to directly integrate the flux linkages in 

the conceptual diagram of Figure  5.1. However, it is not recommended for reasons 

discussed later in Section  6.1.4. 

Another method is discretizing the differential equations of a machine using the 

trapezoidal method of integration. One significant advantage of trapezoidal integration is 

that it is stability preserving for linear systems  [2]. This means that if the original system 

is stable, then so is the simulation of the discretized system. Likewise, if the original 

system is unstable, so is the case for the discretized system. See Appendix B for more 

details. 

Although, typical real-world power networks modeled in electromagnetic transients 

programs are not linear, they consist mostly of linear elements. Hence, even though, a 

stability preserving algorithm (for linear systems) cannot guarantee the stability of non-

linear systems, it has nevertheless been observed to exhibit excellent numerical 

performance in comparison with non-stability preserving algorithms  [75].  

Here, the trapezoidal method is directly applied to discretize (3.20) which is the 

differential equation of a machine in the dq0 frame. This differential equation in a more 
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compact format can be written as in (5.1). In (5.1), vΨ,  and i  are the vectors of fluxes, 

voltages and currents in dq0 frame. [ ]L  and [ ]R  represent the inductance and resistance 

matrices of the machine in the dq0 frame.  

 

( ) [ ] ( ) ( ) [ ] ( )

( ) [ ] ( )

[ ]

d
v t R i t t t

dt

where

t L i t

ω

ω ω

= + Ψ + Ψ

Ψ =

    −   =        

:

0 1 0

1 0

0 0

…

… ⋮

⋮ ⋮ ⋱ ⋮

⋯ ⋯

 (5.1) 

Note that Figure  5.1 shows that flux linkages , ,..d qΨ Ψ  are the state variables. 

Sometimes it is more convenient to use currents as state variables particularly when 

developing an admittance matrix based model as will be discussed in Section  5.3.  

By expressing ( )tΨ  as [ ] ( )L i t  in (5.1), the differential equation of (5.2) can be 

obtained. Equation (5.2) is a first order differential equation with ( )i t  as the independent 

variable. 

 ( ) [ ] ( ) [ ] [ ][ ]( )
[ ]

( )
A

d
v t L i t R L i t

dt
ω= + +

	�����
������
 (5.2) 

Equation (5.2) is integrated for the time interval [ ]t t t−∆ using trapezoidal 

integration to obtain the discretized form of this equation as shown in (5.3). In (5.3) ( )v t  

and ( )i t  are respectively the vectors of winding voltages and currents for the present 

time-step, and ( )v t t−∆  and ( )i t t−∆  are these quantities for the previous time-step. 

 ( ) ( )( ) [ ] ( ) ( )( ) [ ] ( ) ( )( )2 2
t tv t v t t L i t i t t A i t i t t∆ ∆+ −∆ = − −∆ + + −∆  (5.3) 
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By expressing ( )i t  in terms of other quantities in (5.3), equation (5.4) is obtained 

which can directly be used to update the dq0 components of currents and prepare them 

for injection using the conceptual diagram of Figures  5.1.     

 

( ) [ ] [ ] ( ) [ ] [ ] ( )

[ ] [ ] [ ] [ ] ( )

t t t t
i t L A v t L A v t t

t t
L A L A i t t

− −

−

   ∆ ∆ ∆ ∆  = + + + −∆       

   ∆ ∆  + + − −∆       

1 1

1

2 2 2 2

2 2

 (5.4) 

In (5.4), ( )i t  is computed using ( )v t , the vector of the node voltages at each time 

instant ( )t , whose value is assumed to be known. In the interfaced approach used here, 

these voltage values are calculated by the external system as per the approach depicted in 

Figure  2.2. Therefore, ( )v t  is not actually known yet, but ( )v t t−∆  is. To estimate ( )v t  

for use in (5.4), projection methods   [14],  [26] can be used, which attempt to estimate 

( )v t  based on voltages in previous time-steps.  
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5.3  The Embedded Approach for Integrating Machine Models in 

Electro-Magnetic Transient Programs 

Since the interface-based model of the machine, discussed in Section  5.2, uses a 

current source to interface the machine to the network solution, it may show numerical 

instability and inaccuracy in some cases. Principally these difficulties occur because the 

decoupled solution approach introduces additional delays. If the machine is integrated 

into the network solution of electromagnetic transients programs such as EMTDC and 

RTDS in the same manner as passive elements like inductors and capacitors, interface 

delays are eliminated and it is expected that the numerical problem will be minimized. 

This approach is called the embedded approach.  Later sections will confirm that this 

‘embedded model of the machine’ is indeed numerically superior. 

Rather than immediately dealing with the detailed set of coupled inductances as in 

(3.1) for a full machine, this method is first explained by a simple example of a time-

varying inductor embedded into an external network. Additionally, special techniques 

developed in this thesis for speeding up the procedure, and considerations for real-time 

simulation are also introduced. 

5.3.1 An Example of the Embedded Approach: Modeling a Time-Varying 

Inductor in Electromagnetic Transients Programs 

The machine model is essentially a set of mutually coupled time-varying inductors. 

To address the issues relevant to the embedded machine model, the example of a single 

time-varying inductor interfaced to an external network is presented below. 

The method of discretizing the differential equation of a simple constant inductor 

using trapezoidal integration was briefly mentioned in Chapter 2. At first glance, it 
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appears that the straightforward approach to incorporate a time-varying inductor would 

be to use the model of the fixed inductor of Section  2.1, but make Lg  and hI  in (2.4) 

functions of the time-varying inductor ( )L t . However, this approach will be shown later 

to cause errors in the simulation results. Equation (5.5) shows the general differential 

equation for a time-varying inductor including the non-linearity of the inductance. In 

(5.5), ( )tΨ  is the time-varying flux linkage and ( )L t   is the time-varying inductance of 

the inductor. 

 ( ) ( )( ) ( ) ( )( )d d
v t t L t i t

dt dt
= Ψ = ⋅  (5.5) 

Equation (5.5) is integrated for the time interval [ ]t t t−∆  as shown in (5.6) 

 ( ) ( ) ( )( )
t t

t t t t

d
v t dt L t i t dt

dt−∆ −∆
= ⋅∫ ∫  (5.6) 

For numerical evaluation of this integral, the trapezoidal rule is applied to the left side 

of (5.6) as shown in (5.7).   

 ( ) ( )( ) ( ) ( ) ( ) ( )( )1

2
t v t v t t L t i t L t t i t t∆ + −∆ = ⋅ − −∆ ⋅ −∆  (5.7) 

The current ( )i t  can be expressed in terms of other parameters as shown in (5.8). 

This equation is similar to the discretized representation of a constant inductor in (2.4). 

The difference is that, the conductance value ( )Lg t  in (5.8) is time-varying and the 

history current hI has the extra term ( )
( )

L t t

L t

−∆  as a multiplier to ( )i t t−∆ . Note that for 

simple inductors, (5.8) degenerates into (2.4), the discretized equations for a simple 

inductor.  
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( ) ( ) ( )

( )
( )

( )
( )

( )
( )

( )

:

2

2

L h

L

h

i t g t v t I

where

t
g t

L t

L t tt
I v t t i t t

L t L t

= ⋅ +

∆
=

−∆∆
= −∆ + −∆

 (5.8) 

 Equation (5.8) shows the relation between the voltage across the inductor and the 

current of the inductor.  The electromagnetic transients program solves for node voltages 

using nodal current injections, and so (5.8) must be transformed into a node voltage 

form. The voltage across the inductor is the difference between voltages of the two nodes 

of the inductor; and current of the inductor is equal to the current of node 1.  This relation 

between node quantities and winding quantities of the inductor is shown in (5.9) where 

1( )v t  and 2( )v t  are the voltages between the two ends of the inductor and ground. 

 
1 2

1 2

( ) ( ) ( )

( ) ( ) ( )

v t v t v t

i t i t i t

− =

= − =
 (5.9) 

Using (5.8) and (5.9), the discretized form of the inductor equation in nodal format is 

derived and shown in (5.10). 

 
( ) ( )

( ) ( )

( )[ ]
�

1 1

2 2

( ) ( )

( ) ( )

inductorinductor

L L h

hL L

IhG t

i t g t g t v t I

Ig t g ti t v t

      −
      = ⋅ +      −−           	���������
����������

 (5.10) 

The equivalent circuit of equation (5.10) is shown in Figure  5.3, where the history 

terms are represented as current sources and ( )[ ]inductorG t  as a conductance network.  
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hI

( )i t

1A

2A

1A 2A

hI hI
( )Lg t

( )Lg t

(a) (b)  

Figure  5.3: Discretized equivalent circuit of a time-varying inductor: (a) for branch quantities, 

(b) for nodal quantities. 

This equivalent circuit is similar to the one for a constant inductor which was 

discussed in Chapter 2. The distinction is that the conductance matrix of Figure  5.3 is 

changing in each time-step, but the conductance matrix is constant for the discrete model 

of a constant inductor. This model can be implemented in EMTP-type programs by 

adding the history terms to the nodes 1A  and 2A  injected currents; and adding the 

elements of matrix ( )[ ]inductorG t  to the corresponding elements of the network admittance 

matrix in each time-step of the simulation.  

5.3.1.1 A simulation example of implementing a time-varying inductor in 

PSCAD/EMTDC 

This example presents modeling of a time-varying inductor in PSCAD/EMTDC. The 

variation of inductance with time is selected such that the solution for the implemented 

example circuit can be analytically derived. The results show that the discretizing method 

can provide an accurate simulation result which is essentially identical to the theory. The 

PSCAD circuit diagram for modeling a time-varying inductor is shown in Figure  5.4. 

Three different approaches are used: a) the correct approach discussed in the above 
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section, b) the approach that simply changes the inductance L  with time in the 

formulation of a constant inductor as discussed at the beginning of Section  5.3.1, and c) 

the analytical solution.  

Ia
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Figure  5.4: Modeling a time-varying inductor in PSCAD/EMTDC, three different ways 

The time-varying inductance is changed according to ( ) ( )0 1L t L t= +  with 

0 1.0( )L H= . It is connected to a DC source with negligible series resistance. Figure  5.4-

c contains another circuit which computes the analytical solution of this problem. The 

simulation case also includes a circuit containing a constant inductance model which 

models the variable inductor by simply changing the value of inductance in every time-

step, as discussed at the beginning of Section  5.3.1. This component ignores the term 

( )
( )

L t t

L t

−∆  in computing the history term in (5.8). The current of this inductor is labeled as bI  

in Figure  5.4.  

The analytical solution for this case can be computed as follows: 
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 ( )
( ) ( )( )

( )
( )

( )
( )L t i t di t dL t

v t d L t i t
dt dt dt

= = +  (5.11) 

Assuming a constant voltage source V connected to the inductor with the inductance 

of ( )0 1L tα+ , (5.11) can be written as: 

 ( )
( )

( )0 01
di t

V L t i t L
dt

α α= + +  (5.12) 

As can be verified by substituting into (5.12), the analytical solution for this differential 

equation is shown in (5.13):   

 ( )
( )0

1
1

1

V
i t

L tα α

  = −   + 
 (5.13) 

For the special case of the circuit in Figure  5.4 in which 1.0( )V V= , 0 1.0( )L H= , 

and 11.0( )sα −= , the analytical solution of inductor current can be calculated with the 

formula shown in (5.14). 

 ( )
( )
1

1
1

ai t
t

= −
+

 (5.14) 

The simulated current in the time-varying inductor ( )aI t  and the analytical solution 

of the circuit are shown in Figure  5.5a. The error of simulation is shown in Figure  5.5b. 

As can be seen, although the simulation is run with the fairly large time-step of 200 Sµ , 

the simulation results are very accurate. Further reduction in the simulation time-step will 

result in more accurate results.  

When the more simplistic approach, in which the representation of a fixed inductor is 

modified to model a time-varying inductor, is used, significant errors result as shown by 

the plots of Figure  5.6. This large error is the result of ignoring the term ( )
( )

L t t

L t

−∆  in the 



Chapter 5  

 

103 

formulation of a fixed inductor. For this particular inductor, the term ( )
( )

L t t

L t

−∆  is always 

smaller than 1.0, and acts as a correction factor. 
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Figure  5.5: Comparison of the simulated current and analytical solution of a time-varying 

inductor in the circuit shown in Figure  5.4 : (a) comparison, (b) error 
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Figure  5.6: Simulated current of a time-varying inductor using the representation of a constant 

inductor and comparison with analytical solution 
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5.3.2 Discretizing Machine General Differential Equations 

As discussed in Chapter 3, every electric machine can be considered as a set of 

mutually coupled inductances. The conceptual configuration for this representation is 

shown in Figure  5.7. This set has self and mutual inductances that change in value with 

the rotor position and level of saturation in the iron, and the resulting differential 

equations are as shown in (3.1).  

Ai

Machine
Windings

1A2A
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1B

1N

2NBi

Ni

NvBv

Av

.  .
  . 

 .

.  .
  . 

 .

 

Figure  5.7: Representing the machine as a set of time-varying mutually coupled inductances 

In Section  5.2, the common traditional interfaced approach was presented, where 

(3.1) (with suitable expressions for the inductance and resistance matrices) was 

implemented in electromagnetic transients programs as interfaced current sources. At the 

beginning of Section  5.3, it was mentioned that the interfaced approach can have 

numerical problems and the embedded approach is superior.  The embedded approach 

was first demonstrated with a simple example of a time-varying inductor in Section  5.3.1. 
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This section discusses the implementation of (3.1) in general form for a set of mutually 

coupled inductors using the embedded approach. 

In the embedded approach of modeling machines, trapezoidal integration is applied to 

the phase-domain differential equations of the machine (3.1) to form the discretized 

format of machine differential equations. To discretize the differential equation of the 

machine, (3.1) is integrated for the time interval of [ ]t t t−∆  as shown in (5.15). For 

numerical evaluation of this integral, the trapezoidal rule is applied to the left side of 

(5.15) and also to the term [ ] ( )
t

t t
R i t

−∆∫  in the right side, and the results are shown in 

(5.16). The term [ ]( )( ) ( )
t

d
dt

t t
L t i t dt

−∆∫  has an analytical solution [ ]{ ( ) ( )L t i t −  

[ ]( ) ( )}L t t i t t−∆ −∆  as shown in (5.16).  Here, ( )v t  and ( )i t  are, respectively, the 

vectors of winding voltages and currents for the present time-step, and ( )v t t−∆  and 

( )i t t−∆  are these quantities for the previous time-step. 

 [ ]( ) [ ]( ) ( ) ( ) ( )
t t t

t t t t t t

d
v t dt L t i t dt R i t dt

dt−∆ −∆ −∆
= +∫ ∫ ∫  (5.15) 

 
( )

[ ] [ ] [ ]( )

( ) ( )
2

( ) ( ) ( ) ( ) ( ) ( )
2

t
v t v t t

t
L t i t L t t i t t R i t i t t

∆
+ −∆ =

∆
− −∆ −∆ + + −∆

 (5.16) 

In  [7], [8] this equation was used to express ( )v t  in terms of other quantities and 

therefore the discrete equivalent circuit of the machine was developed in the form of 

voltage sources in series with resistances.  

In this thesis, the discrete equivalent circuit of the machine is extracted as a Norton 

form; which is consistent with the discretized form for elements such as inductors and 
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capacitors (see Section  2.1), and permits direct application of the nodal analysis method. 

In (5.17), ( )i t , the resulting winding currents in each time-step are expressed in terms of 

voltages across the windings in the same time-step ( )v t  via a conductance matrix 

( )eqG t 
   and vector of history terms Ih  containing the information from the previous 

time-step. This representation is similar to representation of simple inductors  [2] for 

electromagnetic transients programs as explained in Section  2.1. The difference is that, 

the machine inductances are changing with rotor position and level of saturation therefore 

the conductances ( )eqG t 
   are also changing in each time-step. 

 

( )

( ) ( ) [ ] [ ]

( ) ( )( )
( ) [ ] [ ]

1
1

( ) ( )

where:

2
( )

( ) ( )

2
( )

eq

eq eq

eq eq

eq

i t G t v t Ih

G t R t L t R
t

Ih G t v t t R t t i t t

R t t L t t R
t

−
−

 = + 

     = = +       ∆
   ′= −∆ + −∆ −∆   

 ′ −∆ = −∆ −  ∆

 (5.17) 

In (5.17) the vector ( )v t  represents the voltages across the machine windings. 

Electromagnetic transients programs solve for node voltages using nodal current 

injections, and so (5.17) must be expressed by node voltages instead of winding voltages. 

Every winding has two nodes so the vectors of voltages and currents of the nodes of the 

machine are divided into two groups identified by indices 1 and 2. The voltage across a 

winding is the difference between voltages of nodes 1 and 2 of that winding; and the 

current of that winding is equal to the current of node 1 and negative of the current of 

node 2.  This relation between node quantities and winding quantities is shown in (5.18).  
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1 2

1 2

( ) ( ) ( )

( ) ( ) ( )

v t v t v t

i t i t i t

− =

= − =
 (5.18) 

Using (5.17) and (5.18) the relation between the node currents and node voltages of 

the machine in the discretized format is shown in (5.19). In this equation the matrix 

( )[ ]setG t  is called the equivalent admittance matrix of the machine, and Ihs  is the vector 

of history terms in nodal form. Note that 1( )v t  and 2( )v t  are node voltages and not 

branch voltages; and these nodes are also nodes of the combined machine and external 

network system.  

 
( ) ( )

( ) ( )

( )[ ]

�

1 1

2 2

( ) ( )

( ) ( )

set

eq eq

eq eq

Ihs
G t

i t G t G t v t Ih

Ihi t v tG t G t

         −         = ⋅ +      −    −             	�����������
������������

 (5.19) 

Equation (5.19) can be presented in the form of an equivalent circuit with history 

terms as current sources and ( )[ ]setG t  as a conductance network as shown in Figure  5.8. 

This circuit is called the discretized Norton equivalent circuit of the machine. 

 The method of incorporating this Norton equivalent circuit into the network solution 

of electromagnetic transients programs will be shown in the next section. 
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Figure  5.8: Discretized Norton equivalent circuit of the machine  

5.3.3 Incorporating the Discretized Equivalent Circuit of the Machine in EMTP-

Type Programs 

It was discussed  in Chapter 2 that, off-line (i.e. EMTP, PSCAD/EMTDC) as well as 

real time electromagnetic transient simulators (i.e. RTDS), use a formulation in which all 

elements, including dynamic elements such as inductors, capacitors and transmission 

lines, are converted to an equivalent circuit form consisting only of current sources and 

resistances  [2]. This network representation allows the calculation of network quantities 

at the end of a time-step with the knowledge of sources and network quantities at the 

beginning of the time-step. The network history is embedded in the history current source 

values. The resulting network can be solved by nodal admittance matrix based techniques 

as shown in (2.7). Equation (2.7) is solved for the unknown voltages using LU 

factorization techniques  [83]. Once these node voltages are known, all other voltages and 
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currents can be calculated. By starting with known (or assumed) values at 0t = , the 

entire voltage and current history can be determined. 

To include the discretized Norton equivalent circuit of the machine (shown in Figure 

 5.8) into EMTP-type programs, and thus achieve the embedded model of the machine; it 

is necessary to add the elements of the equivalent admittance matrix of the machine, 

( )[ ]setG t , to the elements of the admittance matrix of the network, ( )[ ]Y t , at the terminal 

nodes of the machine as in (5.20)-a. In (5.20) p and q identify typical machine terminal 

nodes. The external network is typically large and has several additional nodes, and its 

own numbering system. Let the indices m and n represent these connection nodes p and q 

in the full network numbering scheme. This process of adding the machine’s admittance 

formulation, shown in (5.19), to that of the external network is referred to as overlaying. 

Similarly, the history current injection at machine node p pIhs  must be added to the 

node injection at the corresponding renumbered node m mI  as shown in (5.20)-b.   

 

[ ] [ ] ( )[ ]

{ }

, , p,q

p

( ) ( ) (a)

(b)

, 1,2,..2

setm n m n

m m

Y t Y t G t

I I Ihs

p q N

N number of machinewindings

= +

= +

∈

=

 (5.20) 

The network solution equation, (2.7) described earlier, calculates the network 

voltagesV , which now includes the nodes of the embedded machine model, from which 

the winding voltages ( )v t  are readily determined. Then, using the first line of  (5.17), 

currents in the machine windings ( )i t  are determined. 
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5.3.4 Validation Test for the Model of Mutually Coupled Inductances in 

PSCAD/EMTDC 

Unlike the earlier case for the single inductor (Section  5.3.1.1), no easy theoretical 

solutions are available for validation of a set of time-varying mutually coupled 

inductances. Hence to validate the model of the set of mutually coupled inductors, the 

model is compared against a theoretical solution of a circuit with constant mutually 

coupled inductors (i.e. a multi-winding transformer). This set of mutually coupled 

inductors is implemented in PSCAD/EMTDC. Figure  5.9 shows a test circuit that is used 

to verify this model. There are four inductors that are mutually coupled and are connected 

to four impedances and one voltage source ( )sin 2 60s mv V tπ= ⋅ ⋅  as shown in the 

circuit.  
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Figure  5.9: Test circuit for modeling a set of mutually coupled constant inductors  
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The phasor solution used for validation is described below. In steady state, the 

relationship between voltage and current phasors of the inductors considering the 

inductance matrix is shown by (5.21).  

 

[ ]

A AA AB AC AD A

B BA BB BC BD B

C CA CB CC CD C

D DA DB DC DD D

X

V L L L L I

V L L L L I
j

V L L L L I

V L L L L I

ω

     
     
     
     

= ⋅     
     
     
               	������������
�������������

 (5.21) 

Kirchhoff’s voltage law (KVL) can also be written for the circuit in Figure  5.9 as 

shown in (5.22): 

 

[ ]

0 0 0

0 0 0 0

00 0 0

00 0 0

A A A s

B B B

C C C

D D D

Z

V Z I V

V Z I

V Z I

V Z I

       
       
       
       + =       
       
       
                   	��������
���������

 (5.22) 

By substituting the voltage vector from (5.21) into (5.22), (5.23) is obtained. 

 [ ] [ ]( )
0

0

0
eq

A s

B

C
Z

D

I V

I
X Z

I

I
   

   
   
   
   + ⋅ =   
   
   
       

	����
�����
 (5.23) 

And finally the current phasors in the windings are evaluated as shown in (5.24). 

 
1

0

0

0

A s

B

eq
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D

I V

I
Z

I

I

−

   
   
   
    = ⋅       
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       

 (5.24) 
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Figure  5.10 shows the comparison between the steady state analytical solution for the 

currents using (5.24) and the simulation results using PSCAD/EMTDC. At the start of 

simulation, there is a difference between these two results as expected due to the start-up 

transients.  Once the transient has converged to a steady state, no discernable difference is 

observed between the results of the theoretical phasor solution and the simulated transient 

simulation. This validates the accuracy of the embedded approach.  

0 0.02 0.04 0.06 0.08

-6

-4

-2

0

2

4

6

Time (s)

C
ur

re
nt

 (
A

)

vs

va

ia

ib

Start-up
 transient Converged

solution in 
steady-state 

 

Figure  5.10: Comparison of the simulation results with analytical steady state solutions of the test 

circuit in Figure  5.9  

In Section  5.3, the procedure of creating the embedded model of the machine in 

EMTP-type programs was explained. The method was validated using a single time-

varying inductor and a set of mutually coupled constant inductances. In the next section, 

the technical challenges of implementing the full procedure for the time-varying 
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inductance matrices of machines in an EMTP-type program, techniques for speeding up 

the procedure, and special considerations for real-time digital simulations are discussed.  

5.4 Techniques for Speeding up the Procedure and Special 

Considerations for Real-Time Implementation of the Embedded 

Model 

In the course of implementing the embedded model of the machine for EMTP-type 

programs, a few new techniques are developed in this thesis which speed up the 

procedure and in some cases are critical for addressing the limited available capacity for 

computation and communication in real-time digital simulation. These techniques are 

outlined in this section.  

5.4.1 Rapid Updating of the Synchronous Machine Inductance Matrix 

The elements of the inductance matrix of the machine change in every time-step as 

the position of the rotor changes. Moreover as discussed in Section  4.3, if the effects of 

saturation are considered, the inductance matrix is not only a function of rotor position 

rθ , but also is a function of the magnetizing currents mdi  and mqi . Hence, the inductance 

matrix of the machine changes with rotor position and level of saturation, and has to be 

evaluated and inverted in each time-step. To speed up the updating procedure of the 

inductance matrix, the following techniques are applied. 

5.4.1.1 Embedded phase-domain machine model with dq0 theory-based inductances; 

updating the inductance matrix 

Note that, the embedded approach can be used with the dq-based phase-domain 

model of the machine as well as more sophisticated models such as MWFA-based or 

FEM-based models discussed in Chapter 3. For dq-based phase-domain models a fast 
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routine is presented in this section to update the inductance matrix of the machine in 

every time-step. A more general procedure is proposed in Section  5.4.1.2 which can be 

applied to MWFA and FEM-based inductances as well. 

Equations (3.4)-(3.10) of Section  3.2 can be used to update the phase-domain 

inductances of a synchronous machine if the dq0 theory is used to analyze the machine. 

The dq0 parameters of the machine are usually provided by the manufacturer. These dq0 

parameters can also be obtained using tests  [85]. The abc frame parameters of the 

inductances ( , ,..)s sL M  can be expressed in terms of dq0 frame parameters ( , ,..)d qL L  as 

shown in (3.27). The self and mutual inductances of rotor windings are the same in dq0 

and abc frame.  

Hence, the instantaneous values of the abc frame inductances are obtained by 

multiplying the inductance coefficients , ,..s sL M by trigonometric functions of the new 

rotor position rθ . To consider the effects of saturation in updating the inductance matrix, 

the saturated values of magnetizing inductances mdL  and mqL  must be computed based 

on the new values of magnetizing currents mdi  and mqi , then the saturated values of the 

abc frame parameters are evaluated using (3.27). These updated inductance values are 

used to generate new values of eqG 
   and Ih (shown in (5.17) ) for each time-step in the 

embedded approach. 

5.4.1.2 Updating the inductance matrix when the inductances are computed using 

MWFA or FEM 

It is not realistic to use MWFA or FEM to compute machine inductances in each 

time-step of an electromagnetic transients program due to the excessive computation 
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requirements. A workaround is to pre-compute, the inductance values as functions of 

rotor position and magnetizing currents and store these in a tabular form, amendable to 

quick look-up during the simulation. However, the size of this table becomes excessively 

large, particularly when a fine granularity in stored values is desired. For example for 

even a simple synchronous machine with 3 stator windings and one field winding, each 

element of the inductance matrix must be tabulated as a function of 4 winding currents 

and also the rotor position. This requires a 5 dimensional table for each inductance. This 

problem is critical for real-time simulation as the amount of storage on the simulator’s 

hardware could be limited, and also accessing such a complex table could be time 

consuming. The approach used in this thesis is based on the recognition that the 

inductance variation is periodic in rθ  and so is expressible as Fourier series. Hence, 

storing only the most dominant (i.e. lower order) Fourier series coefficients of the 

inductance functions, as tables of magnetizing currents mdi  and mqi  greatly reduces the 

amount of storage. As shown earlier in Figure  4.7 of Section  4.3, saturation not only 

changes the magnitude of inductances but also may cause angular displacement in the 

inductance waveforms in some loading conditions. For any harmonic order, both the 

Fourier cosine and Fourier sine coefficients are stored as separate tables. This approach 

guarantees that variations of both the magnitude and angular displacement of the 

inductances as functions of the d- and q- axis magnetizing currents are properly 

represented. The real-time simulation implementation, looks-up the appropriate Fourier 

coefficients in each time-step corresponding to the instantaneous values of mdi  and mqi . 

These Fourier coefficients are then used to reconstruct the instantaneous inductance 

values from the known rotor position rθ . By experimentation, the first three Fourier 



Chapter 5  

 

116 

coefficients are adequate to reconstruct the inductance profile, although it is possible to 

consider more Fourier coefficients in the reconstruction of inductances.  

As the d- and q- axis magnetizing currents are continuous functions of time, their 

variation within a simulation time-step (a few tens of microseconds) is relatively small. 

The program therefore calculates saturated inductances from the magnetizing current 

values in previous time-steps. This is done to avoid iteration as the need to stay in 

synchronism with a real-world clock puts severe limitations on the number of possible 

computations in a time-step in real time simulators.  

If the effects of operating-point dependent saturation are ignored, the inductances will 

be only functions of rotor position, and therefore it is possible to store inductances in the 

forms of arrays  [69]. This is useful for example when the details of slots and very high 

order harmonics are the subject of study and the finite element approach is applied to 

compute the inductances. 

5.4.2 Continuous Inversion of the Matrix ( )eqR t 
   

One of the constraints of models in real-time simulation is that only a limited number 

of algebraic operations can be executed in each time-step due to the requirement of 

keeping in synchronism with a real world clock. Therefore a considerable amount of 

effort must be made to limit the number of operations in the routine. As shown in (5.17), 

the discretization of machine equations requires the inversion of  matrix 

( ) [ ] [ ]2( ( ) )eq tR t L t R∆
  = +   in every time-step. This matrix inversion is perhaps the most 

time-consuming part of the mathematical operation which is executed on the simulator’s 

hardware. Generally there is no analytical formula for the inverse of this matrix.  
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Therefore, the matrix ( )eqR t 
   must be numerically inverted in each time-step. In this 

thesis, the numerically-efficient Cholesky decomposition routine  [83],  [84] is 

implemented in real-time for this purpose. This routine is used to factorize the matrix 

eqR 
  , and then the equation , 1i ieqR x b i N  ⋅ = =  …  is solved, where each ib  is the thi  

column of the unity matrix. The resulting ix is the thi  column of the matrix 
1

eqR
− 

  . 

A necessary condition for using the Cholesky decomposition routine is that matrix 

( )eqR t 
   must be positive definite and symmetric. This condition is satisfied for the 

inductance matrices of electric machines as shown below: 

It is shown that for every set of mutually coupled inductors, even for nonlinear 

systems, mutual inductances between any two windings α  and β  follow the reciprocity 

theorem (i.e. L Lαβ βα= )  [86]. Therefore, the machine inductance matrix [ ]( )L t  and 

consequently ( )eqR t 
   are symmetric matrices.   

Further, according to definition  [83], a matrix [ ]A  is positive definite if 

[ ]( ) 0Tx A x⋅ ⋅ >  for every non-zero vectorx . This definition applies to a set of mutually 

coupled inductances with the inductance matrix [ ]L  as the stored energy in the set can be 

expressed as [ ]( )1
2

T

storedE i L i= ⋅ ⋅ , where i  is the vector of arbitrary branch currents in 

the set of mutually coupled inductances. The stored energy in a natural inductance system 

is always positive therefore the inductance matrix [ ]L  for this system is always positive 

definite. Simple algebraic operation shows that if [ ]L  is positive definite then eqR 
   is 

also positive definite as [ ]R  is a diagonal matrix with positive elements.  
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5.4.2.1 Analytical inversion of ( )eqR t 
   when the phase-domain inductance matrix is 

extracted using dq0 theory 

There is no general analytical formula for the inverse of the general inductance matrix 

of a machine as the inductances of the machine contain various space harmonics. 

However, if the phase-domain inductances of the machine are directly extracted from the 

inductance matrix in dq0 frame, then there will be an analytical inversion for the phase-

domain inductance matrix as will be shown in this section. This analytical inversion is 

one of the contributions of this thesis. It should be noted that, this can only be done for 

cases where a dq-based model is adequate, and does not apply when more complex 

MWFA or FEM generated inductances are used. Analytical inversion of the machine 

inductance matrix can significantly reduce the number of operations in each time-step. 

Recalling (3.13), the relation between the inductance matrix in abc and dq0 frame is: 

 1
abc frame dq frameL T L T−

− −
   = ⋅ ⋅     (5.25) 

The resistance matrices in abc and dq0 frames are diagonal and equal: 

 1
_ _abc frame dq frame dq frameR T R T R−

−
     = ⋅ ⋅ =          (5.26) 

The matrix eqR 
   in (5.17) now can be expressed as shown in (5.27)  

 

( )

2

1 12
_ _

1 2
_ _

eq abc frame abc framet

dq frame dq framet

dq frame dq framet

R L R

T L T T R T

T L R T

− −∆

− −
∆

−
∆

     = +     

   = ⋅ ⋅ + ⋅ ⋅      

   = ⋅ + ⋅      

 (5.27) 

The inverse of the matrix ( )eqR t 
   can be calculated as: 
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( )

( )

11 1 2
_ _

1
1

2 2_ _

eq dq frame dq framet

t t
dq frame dq frame

R T L R T

T L R T

−− −
∆

−
−∆ ∆

     = ⋅ + ⋅        

   = ⋅ ⋅ + ⋅      

 (5.28) 

The matrices _dq frameL     and _dq frameR     do not change with rotor position. Therefore 

the matrix 2_ _
t

dq frame dq frameL R∆   +        can be inverted and stored before the time-domain 

simulation starts, and the inverse of the matrix eqR 
   can be evaluated using (5.28) in each 

time-step.  

This problem can be simplified even further by expanding 2_ _
t

dq frame dq frameL R∆   +        

as shown in (5.29). In (5.29), _dq frameL     is the dq0 frame block diagonal inductance 

matrix introduced in (3.21).  

2_ _

2

0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 00 0 0 0

0 0 0 0 00 0 0 0

0 0 0 0 00 0 0 0 0

t
dq frame dq frame

d F D s

F F R F

D R D D
t

sq Q

QQ Q

s

L R

L kM kM r

kM L M r

kM M L r

rL kM

rkM L

rL

∆

∆

   + =      

              +            

'
_

'

'

'

'

'

'
0

0 0 0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

dq frame

d F D

F F R

D R D

q Q

Q Q

L

L kM kM

kM L M

kM M L

L kM

kM L

L

 
  

 =         

                        	�����������������
�������������� �

'
2

'
2

'
2

'
2

'
2

'
20 0

t
d d s

t
F F F

t
D D D

t
q q s

t
Q Q Q

t
s

L L r

L L r

L L r
where

L L r

L L r

L L r

∆

∆

∆

∆

∆

∆

 = + = + = + = + = + = +���

 (5.29) 
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In (5.29), the matrix '
_dq frameL     is a block matrix which can be inverted in the form of 

another block matrix as shown in (5.30)-(5.31). 

 
1'

_ _

0

0 0 0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

d dF dD

dF F FD

dD FD D

dq frame dq frame

q qQ

qQ Q

B B B

B B B

B B B
L B

B B

B B

B

−

              = =                   

 (5.30) 

where: 

 

1
'

'

'

1'

' 1
0 0'

,

d F Dd dF dD

dF F FD F F R

dD FD D D R D

q qQ q Q

qQ Q Q Q

L kM kMB B B

B B B kM L M

B B B kM M L

B B L kM
B L

B B kM L

−

−

−

          =             

      = =        

 (5.31) 

The structure of _dq frameB     in (5.30) is identical to that of _dq frameL    in (5.29). When 

_dq frameB     is transformed to phase (abc-frame) quantities, the resultant expressions must 

be analogous to (3.4)-to-(3.10) applicable to _dq frameL    , as given by (5.32)-(5.37). 

Analogous to (3.27), the coefficients sB , mB , sP , FP , DP  and QP  in (5.32)-(5.37) are given 

by (5.38). For stator self elements: 

 

( ) ( )

( )

( )

cos2

2
cos2

3

2
cos2

3

aa r s m r

bb r s m r

cc r s m r

B B B

B B B

B B B

θ θ

π
θ θ

π
θ θ

= +

 = + −   

 = + +   

 (5.32)  
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For stator mutual elements: 

 

( ) ( )

( ) ( )

( ) ( )

cos2
6

cos2
2

5
cos2

6

ab r ba r s m r

bc r cb r s m r

ca r ac r s m r

B B P B

B B P B

B B P B

π
θ θ θ

π
θ θ θ

π
θ θ θ

 = = − − +   

 = = − − −   

 = = − − +   

 (5.33) 

For mutual elements between stator and rotor: 

 

( ) ( ) ( )

( ) ( )

( ) ( )

cos

2
cos

3
4

cos
3

aF r Fa r F r

bF r Fc r F r

cF r Fc r F r

B B P

B B P

B B P

θ θ θ

π
θ θ θ

π
θ θ θ

= =
 = = −   
 = = −   

 (5.34) 

 

( ) ( ) ( )

( ) ( )

( ) ( )

cos

2
cos

3
4

cos
3

aD r Da r D r

bD r Dc r D r

cD r Dc r D r

B B P

B B P

B B P

θ θ θ

π
θ θ θ

π
θ θ θ

= =
 = = −   
 = = −   

 (5.35) 

 

( ) ( ) ( )

( ) ( )

( ) ( )

sin

2
sin

3
4

sin
3

aQ r Qa r Q r

bQ r Qc r Q r

cQ r Qc r Q r

B B P

B B P

B B P

θ θ θ

π
θ θ θ

π
θ θ θ

= =
 = = −   
 = = −   

 (5.36) 

Finally for rotor elements: 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

    

0     

FF r F DD r D QQ r Q

FD r DF r FD

FQ r QF r DQ r QD r

B B B B B B

B B B

B B B B

θ θ θ

θ θ

θ θ θ θ

= = =

= =

= = = =

 (5.37) 
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( ) ( )1 1
3 30

1 2
3 30

2 2
3 3

2

= + + = −

 + = − − + =  

= =

s d q m d q

d q

s F dF

D dD Q qQ

B B B B B B B

B B
P B P B

P B P B

 (5.38) 

Using (5.32) to  (5.37) the number of operations needed to invert the inductance 

matrix of a machine can be reduced significantly. This is because the factors sB ,  mB , 

sP , FP , DP  and QP  do not vary with rotor position, and the elements of the matrix 

abc frameB −
 
   can be generated merely by multiplying these factors and appropriate 

trigonometric functions of the rotor position.  

It should be noted that, if saturation is modeled, '
_dq frameL    , though not a function of 

rotor position, it is a function of magnetizing currents, and could require repeated 

inversion if the saturation state of the machine changes. This matrix inversion is required 

even if the machine is modeled directly in dq0 domain. As this matrix has block structure 

this inversion process is not computationally expensive.  

5.4.3 Amortisseur Winding Representation in Real-Time Machine Modeling 

The damper grid of a synchronous machines consists of damper bars brazed to the 

copper segments at the end of each pole  [71]. Conventionally the damper gird is modeled 

as equivalent windings along the d-axis and q-axis only  [30],  [31],  [87],  [88] . Multiple 

windings on the d- or q-axis are used to incorporate deep bar and solid rotor effects  [89].  

Increasing the complexity of the model brings it closer to the computational limit for 

real-time implementation. Further, the computational complexity increases enormously if 

the damper grid with individual damper bars are modeled  [56],  [67]. Hence, in order to 

achieve real-time computing speeds with a time-step in the order of 20µs-50µs, the 
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phase-domain machine model in this thesis represents the damper grid in the 

conventional manner with d- and q-axis amortisseur windings. This is even the case, 

when the MWFA is used in computing machine inductances. For the small experimental 

machine in this thesis, only one damper winding in each axis was required to achieve the 

desired accuracy. The field-test comparison in Chapter 6 validates this simplification. For 

machines with a solid rotor or deep bars  [89] the model has been dimensioned to 

accommodate inclusion of up to two additional windings for each axis. For a simulation 

in real-time with the time-step of 50µs, the total number of machine windings is limited 

to ten windings. This damper windings representation is also used for simulating turn-

turn faults. The accuracy of this assumption is discussed further in Chapter 6. 

5.4.4 Technical Consideration for Overlaying the Equivalent Admittance Matrix 

of the Machine ( )[ ]setG t  onto the Admittance Matrix of the Main Network 

Solution 

It was discussed in Section  5.3.3 that to achieve the embedded model of the machine, 

it is necessary to add the elements of ( )[ ]setG t , the equivalent admittance matrix of the 

machine, to the elements of admittance matrix of the network ( )[ ]Y t  at the terminal 

nodes of the machine. This process was referred to as overlaying.  

For a machine with 6 windings ( 3 stator, 1 field , and 2 dampers) the equivalent 

admittance matrix ( )[ ]setG t  will be a 12×12 matrix. Note that the network solution and 

solution of machine equations (including calculation of ( )[ ]setG t ) are carried out on 

separate processor cards of RTDS hardware. To overlay ( )[ ]setG t  onto the network 

admittance matrix ( )[ ]Y t , elements of ( )[ ]setG t must be passed over a communication 

conduit to the network solution processor. It takes approximately 60ns  for each of these 
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elements to be passed over this communication channel  [26] . It would be theoretically 

possible to transfer all the elements of the admittance matrix ( )[ ]setG t  of dimensions 

12×12 to the network solution in each time-step. However, if too much information is 

transferred, the real-time nature of the solution would be in jeopardy due to the time 

required for the transfers.  

Generally, the windings of a synchronous machine are connected in a particular 

manner. For example, as shown in Figure  5.11, the laboratory machine has a Y-connected 

stator and short-circuited d- and q-axis damper windings. Rather than bringing all 12 

nodes out to the external network solution, only the resulting connection points (i.e. A1, 

B1, C1, N, F1, and F2) need to be connected to the external network. This, results in a 

6×6 ( )'
setG t 

   matrix derived from the original 12×12 matrix ( )[ ]setG t  to be overlaid. The 

rows and columns of ( )[ ]setG t  corresponding to the grounded nodes D1, D2, Q1 and Q2 

are eliminated. To form the corresponding elements of the neutral node N, rows and 

columns corresponding to the nodes A2, B2 and C2 are added together to form a single 

row and a single column  [9]. Figure  5.12 shows the procedure of deriving ( )'
setG t 

   from 

the original 12×12 matrix ( )[ ]setG t . 

The number of conductance values to be transmitted reduces from 66 (for the 12×12 

matrix) to 15 (for the 6×6 matrix). Note that, because the conductance matrices are 

symmetric and the sum of the elements in each row is equal to zero, only the upper 

diagonal elements need to be transferred. 

 It is obvious that the history current injection for node N will be the sum of current 

injections for nodes A2, B2 and C2. 
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Figure  5.11: Connection of winding nodes in an embedded model of a synchronous machine in 

electromagnetic transients programs 
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Figure  5.12: Treatment of the equivalent admittance matrix of the machine for the node 

connection in Figure  5.11 
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Figure  5.13 shows the detailed procedural steps for implementing the real-time 

routine for the embedded approach of modeling machines.  

Compute the new admittance matrix of the machine
and overlay it onto the network admittance matrix

Compute inductance values by multiplying the F.C.
and proper trigonometric functions of rotor position.

Store the Fourier coefficients of each inductance as
tables of Imd and Imq

 Input node voltages

Main network solution of RTDS

Update Fourier coefficients of saturated inductances
based on the values of Imd and Imq

Calculate the branch currents of the previous time-step
then compute magnetizing currents Imd and Imq

Form the matrix Req  and invert it

Compute and inject history terms to the nodes

1

2

3

4

5

6

7

8

9

 

Figure  5.13: Procedure for incorporating the embedded machine model into the network solution 

of RTDS 

5.5 Electric Torque Calculation in ABC and DQ0 Frames and 

Interfacing External Mechanical and Control Systems 

Electrical torque in synchronous machines must be calculated to observe the effects 

of the network on the rotor speed. The general equation for the torque is the rate of 

change of co-energy ' ( , )e m rT W iθ θ∂
∂=  (see Appendix C). For the non-saturated 

conditions, (5.39) is a direct representation of this formula and therefore is an accurate 

expression for the torque  [92],  [93]. In this thesis, this equation is used for calculating the 

electric torque in the phase-domain machine model. In (5.39), [ ]( , )rL iθ  is the inductance 
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matrix in abc coordinates calculated in (4.8), and the derivative is calculated by taking 

differences of the quantities in the present and previous time-steps. 

 

[ ]

[ ]
( ) ( )

1
2( ) ( ) ( , ) ( )

where:

( ), ( ) ( ), ( )
( , )

( ) ( )

T

e r

r r

r

r r

T t i t L i i t

L t i t L t t i t t
L i

t t t

θ

θ

θ

θ θ
θ

θ θ

∂
∂

∂
∂

=

   − −∆ −∆   ≈
− −∆

 (5.39) 

As ( )i t  is the instantaneous current and [ ]( , )rL iθ  includes space harmonics, (5.39) 

accurately models torque components due to time harmonics in currents and winding 

space harmonics. Also, as discussed in Section  4.3, [ ]( , )rL iθ  is the matrix of saturated 

inductances. Hence (5.39) is also affected by saturation, and therefore torque components 

due to saturation and saturation related harmonics do appear in this formulation. 

However, their values are not entirely accurate as (5.39) is mathematically derived from 

the rate of change of co-energy in linear conditions. Nevertheless, due to the constraint of 

real-time simulation, the calculation has to be completed in the time-step used, which is 

typically 20µs- 50µs, and therefore any errors resulting from this partial treatment of 

saturation-related torque are neglected. 

Equation (5.40) is used to calculate the electric torque in the dq-based synchronous 

machine models. This expression is equivalent to the one in (5.39) for synchronous 

machines with sinusoidal distribution of the windings and permeance, i.e. if the 

inductances are in the form of (3.4)-(3.10) (see Appendix C). Equation (5.40) is widely 

used to calculate the electric torque in dq based synchronous machine models in 

electromagnetic transients programs  [5],  [11],  [75]. 

 e q d d qT i i= Ψ − Ψ  (5.40) 
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The electrical coupled-inductance based model of the machine is directly embedded 

within the main network solution of the RTDS, i.e., it is similar to any other resistor or 

transformer in the network, the difference is that its parameters change with time. 

However, additional state variable based models such as multi-mass inertia and governor 

are interfaced via electrical torque, and mechanical speed to the main network solution 

 [5]  [11], as shown in Figure  5.14.  

The mechanical equations are solved external to the electrical solution. Torque 

calculated from the electrical model (i.e. (5.39) for phase domain models and (5.40) for 

dq0 models) is fed as an input to the state-variable model of the mechanical system. One 

of the state-variables of the mass-inertia model is the rotor angle which is fed to the 

electrical model as an input. The rotor angle rθ  is required for updating the values of the 

inductance matrix elements. Note that, this approach introduces a one time-step delay 

 [11], because the latest values available to the electric and mechanical models 

respectively were calculated in previous time-steps. However, as the time constants 

associated with the mechanical models are very large, this error is not important. 
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Figure  5.14: Interfacing control and mechanical systems to the main network solution 
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5.6 Chapter Contributions and Conclusions 

The conventional interfaced-based approach of modeling electric machines for 

electromagnetic transients programs was briefly introduced in this chapter. In addition, 

methods of integrating differential equations of machines, and techniques of projecting 

node voltages were discussed.    

The procedure of developing the new embedded phase-domain machine model was 

explained in detail. Special techniques were established to speed up the time-domain 

simulation of the model, and special considerations were introduced for the real-time 

implementation of this model. 

The following chapter will discuss validation of the developed model through 

comparison with other simulation approaches and laboratory experiments. 

 



Chapter 6:  Validation of the New 

Embedded Phase-Domain Machine Model  

 The new embedded phase-domain machine model has been implemented in both 

EMTDC and RTDS using the procedure explained in Chapter 5. In this chapter, the 

model is validated through comparison with other simulation approaches and laboratory 

experiments. The numerical stability of the model is also assessed in this chapter. 

6.1 Embedded Phase-Domain Models Algebraically Equivalent to 

Dq0 Models  

In this section, the inductances of the synchronous machines under study are 

computed using the dq0 theory as functions of rotor position as discussed in Section 

 5.4.1.1. The time-domain simulation results of the new embedded phase-domain model 

for these machines are compared against the results of the conventional dq-based 

interfaced model from the RSCAD library. Since these two models both use dq0 theory, 

they are algebraically equivalent, and theoretically must show identical results in time-

domain simulation. Hence, comparing their results helps in validating the capability of 

the new phase-domain model in accurately solving differential equations of machines1.  

Note that, the dq0-based models of synchronous machines are widely used and their 

performance in fundamental frequency steady state and transient situations are validated 

 [15], [16], [30], [33], [88]. The model in the RSCAD library is a standard dq0-based model 

in electromagnetic transients programs and it has already been validated  [11]. 

                                                 
1 Note that the phase-domain approach used in this thesis is primarily intended for non-sinusoidally 
distributed windings and arbitrary geometry, which cannot be handled in a dq-based model.    
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6.1.1 Modeling a Synchronous Machine Based on the Data in Dq Frame 

The synchronous machine data shown in Table  6.1 is taken from  [90], and  initially is 

used in a benchmark model for the study of subsynchronous resonance. It belongs to a 60 

Hz, 100 MVA, 13.8 kV, 3 phase synchronous machine. This data is used to simulate the 

synchronous machine using both the dq-based interfaced model from the RSCAD library 

and the new embedded phase domain model in the RTDS environment. For the purpose 

of simplicity, damper windings and effects of saturation are not included in this example 

as the purpose is only to establish the mathematical equivalence of the proposed approach 

with the conventional approach. 

TABLE  6.1: THE DQ PARAMETERS OF THE SIMULATED SYNCHRONOUS MACHINE 
Parameter Value 

Voltage base value = Rated line-neutral RMS voltage 7.97          (kV) 

Power base value = Rated MVA 100           (MVA)  

Current base value = Rated stator RMS current 4184         (A) 

Excitation voltage 1               (norm) 

D-axis inductance 1.79          (pu) 9.04   (mH) 

Q-axis inductance 1.71          (pu) 8.37  (mH) 

Zero sequence inductance 0.13          (pu) 0.66  (mH) 

Field inductance 1.722        (pu) 8.70  (mH) 

Stator leakage inductance 0.13          (pu) 0.13  (mH) 

Stator resistance 0.002        (pu) 3.81  (mΩ) 

Field resistance  0.001407  (pu) 2.70  (mΩ) 

During the real-time simulation, the machine is operating in open-circuit and its field 

voltages is adjusted such that the terminal voltage of 1 pu is achieved (1 norm field 

voltage). The simulation time-step is 50 micro-seconds.  After reaching steady state 

conditions, a sudden three phase short-circuit is applied to the terminals of the machine. 

Variations of stator phase A current and the field current of the machine during the short 

circuit is shown in Figure  6.1a and Figure  6.1b respectively. In each figure there are two 

curves, one corresponding to the new embedded phase domain model and the other to the 
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model from the RSCAD library. Figure  6.2 shows the stator phase A currents of both 

models for the first ten cycles of the short circuit facilitating a better comparison between 

the two signals.  
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Figure  6.1: Short circuit currents in windings of the two synchronous machine models: a) stator 

phase A, b) field winding  
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Figure  6.2: First ten cycles of the short circuit currents in stator phase A of the two 

synchronous machine models (curves are overlapping and indistinguishable.) 
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As shown, the two curves are indistinguishable, establishing the fact that the phase 

domain machine model is equivalent to the dq-based model when sinusoidal distribution 

is assumed for the windings and permeance. 

6.1.2 Incorporation of Saturation in the Dq-equivalent Embedded Phase Domain 

Approach 

The dq-based synchronous machine model from the RSCAD library, incorporates 

saturation effects only on the d-axis, i.e. mdL  varies with the change in the value of the d-

axis magnetizing current  [26]. Although inclusion of more points for accurate modeling 

of the saturation curve is feasible, for the purpose of simplicity, the saturation curve is 

approximated by only two straight line segments as shown in Figure  6.3.  
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Figure  6.3: Assumed saturation characteristics of the synchronous machine under study  

Again the purpose for this simplified representation is to validate the mathematical 

approach by comparing it with earlier established approaches. As discussed in Section 

 4.3, the complete developed model in this thesis uses the MWFA-based advanced 

treatment of saturation based on the actual distribution of magnetomotive force. This 

detailed representation will be validated later Section  6.2. 
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To incorporate the effects of saturation in the dq-equivalent phase-domain machine 

model, the saturated phase-domain inductances of the synchronous machine are 

calculated based on the saturated values of mdL  and mqL , in every time-step, using on the 

method discussed in Section  5.4.1.1. 

In the time-domain simulation, both synchronous machine models (data in Table  6.1) 

are connected to identical 3 phase 13.8 kV voltage sources.  The field voltage for both 

models is adjusted to 00.5 fdE  (where 0fdE is the field voltage required for 1pu  terminal 

voltage in open circuit). During a manual transient, the field voltage increased from 

00.5 fdE  to 02.5 fdE . This increase in the field voltage changes the total magnetizing 

MMF in the d-axis and consequently changes the level of saturation in the machines. The 

simulation results are shown in Figure  6.4. 

Figure  6.4-a and  6.4-b, respectively, show the variation of stator phase A current and 

the field current in both models. The waveforms show that the two models are in a very 

good agreement and saturation has been implemented properly. Figure  6.4-c shows the 

variation in the d-axis magnetization inductance mdL  during this transient. 
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Figure  6.4: Transient behaviour of the synchronous machines during a step-increase in the field 

voltage, a) Phase A currents of the machines, b) Currents of the field windings c) Variation of d-axis 

magnetization inductance mdL  with time (curves are indistinguishable) . 
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6.1.3 Modeling a Permanent Magnet Synchronous Machine 

The second example of modeling synchronous machines based on the dq0 theory is 

developed for a permanent magnet synchronous machine (PMSM). This section is a 

detour in the main flow of this work. Its purpose is to show that the proposed embedded 

approach can be used with other types of machines. Also, this PMSM model is used in 

Section  6.1.4 for comparing the numerical stability of different approaches. The reader 

may skip this section and review it independently at a later time. 

The dq0 equivalent circuit of a permanent magnet machine is shown in Figure  3.7. As 

mentioned in Chapter 3, this equivalent circuit is very similar to that of a synchronous 

machine. Table  6.2 shows the dq parameters of the 3-phase 208 V, 6 kW PMSM under 

study  [27]. The per-unit system used here is explained in Section  3.1. 

TABLE  6.2: THE DQ PARAMETERS OF THE SIMULATED PMSM 
Parameter Symbol Value 

Rated line-neutral RMS voltage = Voltage base value _ll rmsV  120.09    (V) 

Rated stator RMS current = Current base value _l rmsI  16.7   (A) 

Rated power  ratedP  6016  (W) 

D-axis inductance dL  0.249 (pu) 4.76 (mH) 

Q-axis inductance qL  0.249 (pu) 4.76 (mH) 

Stator leakage inductance sl  0.109 (pu) 2.09 (mH) 

Stator resistance sr  0.059 (pu) 0.423 (Ohm) 

Magnet resistance mR  1.94 (pu) 13.92 (Ohm) 

Equivalent magnet current mi  5.47 (pu) 91.35 (A) 

Using the dq parameters of Table  6.2 and based on the procedure discussed in Section 

 5.4.1.1 the phase-domain inductances of the PMSM are computed and an embedded 

phase-domain model for this PMSM is developed. Based on the conventional approach of 

modeling machines, discussed in Section  5.2, an interfaced-based model for this PMSM 

is also developed. For the purpose of simplicity damper windings are ignored. The 
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PMSM has a large air-gap  [38], and it is assumed that the magnet is operating in the 

linear region of the B-H curve shown in Figure  3.3, therefore saturation is not modeled. 

 Figure  6.5 shows a test circuit used for comparing the two models. Both machines 

are connected to a 60Hz three-phase voltage source with the line-line voltage of 208V  

and the initial phase angle of 60sϕ = � . Both machine models (embedded phase-domain 

and conventional dq0) are operating at rated constant speed with the initial rotor angle of 

0δ = � . As shown in Figure  6.5 and discussed in Chapter 3, the magnet in the PMSM is 

represented by the current source mi  connected to the field winding.  

AC source Embedded Machine Model

mimR

sr

sr

sr

PM

sr

sr

sr

AC source Interfaced Machine Model

 

Figure  6.5: Test circuit for comparing the embedded and interfaced models of the PMSM 
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6.1.3.1 Steady state performance of the PMSM 

Figure  6.6 shows the phase A voltage and stator currents of the above machine 

models in steady-state. The currents of the two machines are essentially identical. 

Superimposed on the currents of these two approaches, is a third curve obtained by 

modifying the parameters of the synchronous machine in the RTDS library so that it 

represents a permanent magnet synchronous machine. This curve is essentially in 

complete agreement with the other two curves.  
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Figure  6.6: Steady-state performances of the permanent magnet machines  

It is relatively easy to obtain a theoretical solution for the steady state current of the 

machine. This analytical solution can be used to validate the PMSM models. Figure  6.7 

shows the steady-state equivalent circuit for the permanent magnet synchronous machine. 

This circuit is obtained from the dq equivalent circuit of the PMSM in Section  3.2.2  [38].   

Using this circuit, the peak value of armature current in the above example can be 

easily calculated as shown in (6.1).  

 
2
3,

, 79.95 9.44  (A)a peak s md m

a peak

d s

V L i
I

jX r

ϕ ω δ− ⋅ ⋅ ⋅
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�∡ ∡
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This calculation verifies the magnitude of simulated current shown in Figure  6.6. 

Equation (6.1) also shows that the angle between the phase A current and voltage is 

50.5° which is equivalent to 2.34ms as shown in Figure  6.6. 

dLaI sr

s sV ϕ∡

2
3 md mX i δ∡

 

Figure  6.7: Steady state equivalent circuit for the PMSM 

6.1.3.2 Analyzing the transient short circuit current in the PMSM 

While the above permanent magnet synchronous machine is operating at the rated 

speed and rated voltage, a sudden symmetrical three phase short circuit is applied to the 

terminals of the machine at the instant where the point-of-wave angle of the phase A 

voltage is 25.5° . The simulated phase A currents from the two models during the short 

circuit are shown in Figure  6.8. A third curve corresponding to the commercial RTDS 

model is also superposed in this figure. As can be seen, similar to the steady-state 

situation, the three models have identical performance. The results may appear peculiar 

because the pre-fault current is larger than the fault current. This is because, in this 

example, the phase and magnitude of the applied voltage were such that the machine was 

initially loaded beyond its rated current.  The steady state and transient components of the 

short circuit current are also shown in Figure  6.8. For analytical validation of the 

simulated short circuit current, the steady-state and transient parts of this waveform are 

validated separately. By solving the dq equivalent circuit of the PMSM in Section  3.2.2 

in steady state short circuit conditions (i.e. 0 0d qΨ = Ψ = Ψ =  and 0 0d qv v v= = = ), 
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the peak value of the short circuit current in the steady state can be analytically calculated 

as shown in (6.2). The analytically calculated and simulated values of the steady-state 

short circuit current are in good agreement.  
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Figure  6.8: Stator phase A short circuit currents of the PMSM models (the transient simulated 

curves for the two approaches lie exactly on each other) 

The transient part of the short circuit current contains three components: steady state 

AC current, transient exponentially damping AC current with the time constant '
dT  

(known as unsaturated direct axis transient short-circuit time constant  [30]), and the 

transient exponentially damping DC component with the initial value of 0DCI  and time 

constant aT  (known as the armature time constant   [30]). For the PMSM under study the 
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values of '
dT  and aT  are shown in (6.3). Parameters of this machine are shown in Table 

 6.2    
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Equation (6.3) demonstrates that, in this PMSM, the direct axis time constant '
dT  is 

very small, therefore the transient AC component of the short circuit current damps very 

quickly, and is not noticeable. Therefore, the short circuit current essentially contains a 

steady state AC current and a transient exponentially damping DC component only. In 

Figure  6.8 the transient and steady state components of the simulated armature short 

circuit current has been extracted from the short circuit waveform. No AC component can 

be noticed in the transient part of short circuit current as was predicted before. The 

transient component is, in fact, an exponential function with the time-constant of 

11.25 (ms)aT = . This analysis shows that even permanent magnet type machines can be 

modeled using the proposed phase-domain approach.  

6.1.4 Assessing the Numerical Stability of the New Embedded Machine Model 

In this section, the numerical stability of the embedded phase-domain machine model 

is examined and compared to that of the interfaced machine models. The effects of 

different integration methods (Section  5.2.1) on the stability and accuracy of the 

interfaced machine model are also discussed. So far it has been shown that the 
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conventional interfaced and the proposed embedded approach are essentially equivalent 

as long as the inductances of the phase-domain model are extracted using dq0 theory. 

However, in this section it will be shown that the embedded approach is numerically 

more robust compared to the interfaced approach.  

The permanent magnet synchronous machine models of Section  6.1.3 were used in 

this study. Numerical stability of the models is examined by performing two tests: in the 

first test, every machine model is connected to an inductive voltage source and the time-

step of the simulation is increased until the sinusoidal waveforms of the armature currents 

diverge. This time-step is called the critical time-step ct∆ . The inductive source is used 

instead of a resistive source, because it provides a bigger numerical challenge. The 

resistive source damps the errors built up by the numerical operations and gives 

optimistic results. The value of the inductance in the voltage source is normally a fraction 

of the base inductance of the machine (0.2-0.3 pu ). In the second test, the machine is 

connected to a non-linear circuit, such as a voltage source converter bridge (VSC). In the 

RTDS simulator this particular VSC bridge component, similar to the interface machine 

model, is modeled as a current source. In electro-magnetic transient programs such a 

situation where two components both replaced by current sources are connected to each 

other, is often numerically unstable. The connection of two current sources at a common 

point of coupling is also a challenging situation for the numerical stability of the 

algorithm  [94]. The purpose of this test is to observe the interaction of two injection-

based (interfaced) models and the effect of this interaction on their numerical stability. 

Similar to the first test, this analysis is performed by increasing the simulation time-step 

and observing the divergence of the waveforms. 
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In this study, in addition to the new embedded machine model and the synchronous 

machine model from the library of RSCAD, the human-machine interface for the RTDS 

simulator  [26], another interfaced model is developed in which different integrating 

methods (discussed in Section  5.2.1) are tried out. This interfaced model is shown by the 

modified interfaced model in Table  6.3. The critical time-step( )ct∆ in which different 

machine models become numerically unstable is shown in Table  6.3.  

As can be seen, the embedded machine model shows excellent numerical stability in 

both the inductive source case and the VSC source case. This model can be used in a 

simulation with a time-step in excess of 30ms , without becoming unstable. Needless to 

say, the accuracy with such a time-step is totally unacceptable since it is much larger than 

the period of 16.667 ms for a 60 Hz AC waveform. However it makes the point that the 

numerical stability of the algorithm is very good. The RTDS synchronous machine model 

from the RSCAD library is stable with time-steps smaller than 167 sµ . Table  6.3 also 

shows that, in the modified interfaced model, generally the numerical stability is affected 

by the integration method. Machine models implemented by the use of trapezoidal 

integration show significantly better numerical stability.  

With the typical simulation time-step of  50 sµ  and operational frequency of  60 Hz  

all of the above machine models generate accurate results in steady-state. However the 

interfaced model shows some errors and delays when the case is dealing with transients 

and switching operations or when the frequency of the operation increases. With further 

increase in the frequency of operation, interfaced machine models can experience 

numerical instabilities even with a simulation time-step of 50 sµ . 
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TABLE  6.3: NUMERICAL STABILITY OF DIFFERENT MACHINE MODELS  

 Inductive source VSC source 

Embedded Model ( )36000ct sµ∆ ≃  ( )36000ct sµ∆ ≃  

RTDS Synchronous Machine ( )167ct sµ∆ ≃  ( )167ct sµ∆ ≃  

Predictor Corrector 

Integration 
( )106ct sµ∆ ≃  ( )167ct sµ∆ ≃  

Modified Interfaced 

Model 

Trapezoidal Integration ( )6500ct sµ∆ ≃  ( )1638ct sµ∆ ≃  
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6.2 Validation of the MWFA-based Embedded Phase-Domain 

Machine Model  

The capability of the new embedded phase-domain model in solving the differential 

equations of mutually coupled inductors (3.1) was verified in Section  5.1. In that section, 

machine inductances were sinusoidal functions in the form of (3.4)-(3.10), therefore the 

steady-state waveforms of simulated voltage and current were purely sinusoidal.   

In this section, the MWFA is used to calculate inductances of the experimental wound 

rotor synchronous machine (introduced in Section  3.4). The new embedded phase-

domain machine model is incorporated into the real-time digital simulator (RTDS®). 

Laboratory experiments are conducted to validate the model. Figure  6.9 shows the 

configuration of this model in the RTDS environment: the machine has three stator 

windings, one field winding, one damper winding on the d-axis and one damper winding 

on the q-axis. In addition, stator phase A is divided into two sub-windings A1 and A2 and 

the electric node AJ provides the possibility of simulating internal faults. This node is left 

open-circuited for situations where modeling internal faults is not intended.  Electric 

nodes A, B, C, AJ, N, F1 and F2 can be connected to any of the power system 

components in the RSCAD Library  [26]. The electric torque eT  is calculated using (5.39) 

and is available for external measurements. The mechanical speed signal ω is the input 

for the machine model. This machine speed ω  is externally specified, and could be the 

output of additional state-variable based models such as multi-mass inertia and governor 

models as described in Section  5.5.  
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Figure  6.9: Configuration of the embedded synchronous machine model developed in the RTDS 

environment 

In order to validate the model, its transient performance is compared with the 

corresponding experimental results under healthy and faulted conditions. In this thesis, 

the focus of the model is the electrical part and accurate comparisons can be made if both 

the model and the experimental machine were running at exactly the same speed at any 

time. Therefore, the experimental machine is driven by an external prime mover (motor) 

whose speed is manually adjusted to the rated speed. Hence, the test machine runs 

nominally at rated speed, but does experience slight speed transients on the application of 

faults and loads. For comparison with field tests, the speed signal recorded in the 

experiment as a function of time is fed back through the speed input of the model (ω in 

Figure  6.9 ).  

6.2.1 Validation of the Model in Healthy Conditions 

As the incorporation of saturation into MWFA is an important contribution of this 

thesis, some of the tests consider conditions where the effects of saturation are 
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significant. These include a resistive load switching and a switching on of a leading 

power factor load; both result in over-voltage and consequently drive the machine into 

saturation. These tests clearly demonstrate the additional accuracy gained by considering 

winding distribution, rotor geometry and detailed representation of saturation. 

6.2.1.1  Simulation and experimental results for the R-C load switching 

This interesting scenario is switching of a ∆-connected series R-C load (1.05 pu, at 

0.5 pf) onto a synchronous machine as shown in Figure  6.10. The data related to this load 

is shown in Table  6.4. The machine is initially operating in open circuit at the rated speed 

and 84% of rated voltage. The machine data is as in Table  3.3. 

SM

RC LoadA

B

C

N

 

Figure  6.10: Circuit diagram of the synchronous machine connected to an R-C load. 

TABLE  6.4: SPECIFICATION OF THE LOADS IN LABORATORY EXPERIMENTS  
R-C Load 

Parameter Symbol Value 

Load capacitance LC  74.5 µF 

Load resistance LR  20.5 Ω 

Field voltage fV  32.37 V 

Resistive Load 

Parameter Symbol Value 

High load resistance HR  15.2 Ω 

Low load resistance LR  40.0 Ω 

Field voltage fV  56.0 V 
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An R-C load was selected because the switching on a capacitor increases the d- and 

q-axis magnetizing currents, and hence exercises the proposed saturation modeling 

feature. Figure  6.11 shows the simulated per-unit magnetizing currents in the d-and q 

axis, clearly indicating an increase of MMF. In particular, the iron is significantly 

saturated along the d-axis ( 2.6 pumdI = ).  
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Figure  6.11: Simulated variation of the total magnetizing currents along d and q-axis of the 

generator with R-C load switching: a) mdi  , b) mqi  

The field current transient is presented in Figure  6.12 which shows a) the 

experimental result; b) the result from simulation with the full model and; c) the result 

from simulation with saturation ignored. The full model agrees closely with the 

experiment. When saturation is ignored, the rise-time of the field current is considerably 

(incorrectly) larger.  
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The steady-state ripple in the simulated waveforms is not due to numerical error, but 

due to the presence of harmonics of order 6 ,  1,2,..k k ∈  as a result of stator winding 

space harmonics  [70]. The ripple in the measured current (Figure  6.12a) is due not only 

to winding space harmonics but also due to measurement noise and not-modeled factors 

such as structural asymmetries. Note that the comparisons of Figures  6.12-b and  6.12-c 

with Figures  6.12-a should be made on the basis of the field current DC transient and not 

on the basis of ripple.  
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Figure  6.12: Experimental and simulated variation of the field current during the switching of 

the generator on the R-C load: a) experiment b) simulation incorporating saturation c) simulation 

ignoring saturation 
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Figures  6.13 and  6.14 show the simulated phase-neutral voltage and phase current, 

ignoring and including saturation respectively, together with the experimental results for 

the two-cycle interval just after the switching instant. The simulation results with 

saturation incorporated (Figure  6.14-a) are only marginally closer to the experimental 

results than those with saturation ignored (Figure  6.13-a). Both are in good agreement 

with the experiment. This is because the machine was initially operating at a low level of 

saturation (open circuit with 84% rated voltage) and so the inclusion of saturation in the 

model makes only a small improvement. Later experiments that exercise the saturation 

behaviour more strongly are presented later in this section. 

The results from the model also contain the time harmonic in the waveform. The 

existence of these time harmonics can be explained using space and permeance related 

harmonics resulting from the non-sinusoidal distribution of the windings and saliency of 

the machine  [70]. These would have been absent in the conventional dq0 representation. 

Figures  6.15 and  6.16 show the same comparisons after the post-switching steady 

state is attained. At this time, the machine is highly saturated and therefore ignoring 

saturation makes significant errors as seen in Figure  6.15. On the other hand the 

comparison with the full model including saturation is very close as seen in Figure  6.16. 
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Figure  6.13: Experimental and simulated R-C switching transient ignoring saturation, a) phase-

neutral voltage, b) phase current 

0.1 0.11 0.12 0.13 0.14 0.15

-100

0

100

V
ol

ta
ge

 (
V

)

 

 

0.1 0.11 0.12 0.13 0.14 0.15

-10

-5

0

5

10

Time (s)

C
ur

re
nt

 (
A

) 

 

 

Exp
Sim

Exp
Sim

(a)

(b)

 

Figure  6.14: Experimental and simulated R-C switching transient including saturation, a) phase-

neutral voltage, b) phase current 
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Figure  6.15: Experimental and simulated steady-state waveforms with R-C load ignoring 

saturation, a) phase-neutral voltage, b) phase current 
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Figure  6.16: Experimental and simulated steady-state waveforms with R-C load including 

saturation, a) phase-neutral voltage, b) phase current 
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6.2.1.2  Simulation and experimental results for the resistive load switching 

The synchronous machine was operated as a generator in the steady state at the rated 

speed and 109 % of rated voltage with a 0.95 pu resistive load (resistance of 15.2 Ω ). A 

portion of the load was then switched off resulting in a much reduced load of 0.36 pu 

(resistance of 40 Ω ). A resistive load has de-magnetizing effect; therefore reducing the 

load (i.e. increasing the resistance) increases the saturation level and results in over-

voltage. Data related to this experiment is also shown in Table  6.4.  

The steady-state pre- and post-switching waveforms of phase voltage were examined 

to check the impact of the proposed model on the steady state machine performance. 

Figure  6.17a shows the experimentally obtained phase-to-neutral voltage and the 

simulation results from the proposed detailed model (including saturation). Figure  6.17b 

compares the same experimental result with the proposed model, but with saturation 

ignored; and in this case the comparison is poorer. However, the simulation ignoring 

saturation still shows time harmonics in the waveform (indicating that the non-sinusoidal 

windings and actual shape of rotor pole-arc are being considered).  

Figure  6.18 shows similar waveforms when steady-state is reached after switching off 

the load. Again, the comparisons with the detailed model (saturation included) are very 

good. Also, comparing Figure  6.17a (0.95 pu resistive load) and Figure  6.18a (0.36 pu 

resistive load), shows that the voltage waveform with higher loading is more distorted. 
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Figure  6.17: Experimental and simulated steady-state pre-switching (full-load) phase to neutral 

voltage: a) saturation modeled b) saturation ignored 
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Figure  6.18: Steady-state experimental and simulated post-switching (0.36 pu load) phase to 

neutral voltage: a) saturation modeled b) saturation ignored. 
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6.2.1.3  Comparison of proposed model with conventional d-q based model regarding 

harmonic generation 

The new detailed model was validated through laboratory experiments in Sections 

 6.2.1.1 and   6.2.1.2. The simulated waveforms are in good agreement with the 

experimental results with respect to fundamental components as well as time harmonics 

of these signals. To demonstrate the difference in results between the proposed detailed 

model and conventional d-q axis based models, a test is conducted in which the same R-C 

load as in Section 5.2.1.1 was connected to the machine. The machine is operating at the 

rated speed, and the field voltage is adjusted to 54% of the rated open-circuit voltage. 

Figure  6.19 shows the waveform of the experimentally obtained phase current superposed 

on the results obtained by the detailed and simplified (d-q axis) based modeling  [11]. The 

agreement between the proposed detailed model and the experiment is very close. The 

magnitude and harmonic profile of the simulated current agrees with the experimentally 

obtained waveform.  However, the d-q based model shows a current which is purely 

sinusoidal, and the time harmonics are absent. This is because; in dq0 theory a sinusoidal 

distribution is assumed for the machine windings and its permeance (see Chapter 3).  

As can be seen in Figure  6.19, the magnitude of the current generated by the d-q 

based model is also (incorrectly) larger.  The reason for this error is the method of 

modeling the effects of iron saturation in electromagnetic transients programs (EMTDC 

and RTDS). In these programs, saturation is modeled by adjusting the value of only d-

axis magnetizing inductance mdL  as a function of total d-axis magnetizing current mdi  

(see Section  4.1).  
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Figure  6.19: Experimental and simulated steady-state phase current waveforms with R-C load  

Figure  6.20. shows the simulated per-unit magnetizing currents in the d-and q axis for 

this switching scenario. The steady-state values for these quantities respectively are 

2.0 pumdI =  and 1.0 pumqI = . The dq synchronous machine model only considers 

the d-axis magnetizing current as an index for saturation, therefore based on the open-

circuit characteristics (Figure  4.4), it assumes that the machine still operates in the linear 

region. However, according to  (4.5) of Section  4.1.1, the total magnetomotive force in 

this situation has a sinusoidal distribution with the peak value of 2 22.0 1.0 5.0 pu+ =  

which is deviated from the middle of pole-arc. This means that one side of rotor pole-arc 

is considerably saturated, and therefore the assumption of operation in the linear region in 

the dq synchronous machine model is incorrect. 

To correct this problem in dq-based synchronous machine models, saturated values of 

the d- and q-axis magnetizing inductances mdL , mqL can be determined based on both d- 

and q-axis magnetizing currents mdi , mqi   [78],  [79],  [91].  
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Figure  6.20: Simulated variation of total d and q-axis magnetizing currents of the generator with 

R-C load switching: a) mdi  , b) mqi   
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6.2.2 Validation of the Model for Faulted Conditions 

To investigate fault simulations, three phase, single phase and internal fault short 

circuit tests are conducted and the results are compared with the simulation. As shown in 

Figure  3.11, every stator phase of the experimental machine consists of two sub-windings 

which are mechanically 180� apart.  The sub-windings of each phase are connected in 

series to form individual phases as shown in Figure  6.21. In this Figure, AJ is the 

connection point between two sub-windings of phase A. The node N identifies the neutral 

of the Y-connected stator in this synchronous machine.   

Symmetrical three phase faults (i.e. solid short circuits between the nodes A, B, C) 

and line-neutral faults (i.e. solid short circuits between the nodes A, N) are applied and 

the results are compared with the simulation in Section  6.2.2.1. In Section  6.2.2.2, the 

results of an internal fault (a solid short circuit between the nodes AJ and the neutral) are 

discussed. 

 

Figure  6.21: Connection of the synchronous machine windings in the laboratory setup 
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6.2.2.1 Validation of the model for three phase and line-neutral short circuits 

The machine is initially operating in open circuit at the rated speed and 95% of the 

rated voltage. A three phase short circuit is applied to the stator terminals of the machine, 

and the resulting field and armature current waveforms are captured and compared with 

the simulation. Figure  6.22 shows the field and armature currents following a three phase 

fault. The close comparison demonstrates that the machine time constants have been 

properly represented in the new model. The short circuit fault occurs at the instant where 

the point-of-wave angle of the phase A voltage is close to90° (i.e. at an instant very close 

to the peak of phase A voltage), therefore the transient short circuit current waveform 

does not contain considerable amount of DC offset  [30]. 

In another laboratory experiment, the machine is initially operating in open circuit at 

the rated speed and rated voltage. A sudden short circuit is applied between the phase-A 

terminal and the neutral of the machine. Figure  6.23 shows the comparison between 

experimental and simulated waveforms of the field and armature currents for this line-

neutral fault. As shown in Figure  6.23-a, there is close agreement between the simulated 

and experimental stator currents with respect to both magnitude and the harmonic 

contents (mainly third harmonic) of these waveforms. 
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Figure  6.22: Experimental and simulated transients of a symmetrical three phase short circuit on 

the initially open circuited generator: a) phase-A current, b) field current  
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Figure  6.23: Experimental and simulated transients of a terminal-to-neutral short circuit on the 

initially open circuited generator: a) phase-A current, b) field current 
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6.2.2.2   Performance of the model during internal faults (a turn-to-neutral fault) 

In this experiment, the machine is initially operating in open circuit at the rated speed 

and 97% of the rated voltage. A solid short circuit is applied between node AJ and the 

neutral of the machine (i.e. one of the two series coils of phase A is shorted), and the 

resulting armature and field current waveforms are captured. Figures  6.24-a and –b, 

respectively, show the experimental currents of the winding A2 and the field winding for 

this internal fault. This fault, with the same pre-fault conditions, is also simulated using 

the embedded phase-domain model and the results from the first attempt in doing so are 

shown in Figure  6.25. As can be seen, unlike external faults in the previous sub-section, 

the results from the embedded phase-domain model have very large errors (around 64%). 

The oscillations of the experimental fault current are much larger than the ones from 

simulation. The causes of this discrepancy will be discussed in the following pages of this 

section. It will be shown that the conventional modeling of the damper gird as 

equivalent windings along the d-axis and q-axis is not adequate for modeling these 

types of faults. This indicates that a refinement to the model is necessary for simulating 

internal faults. Such a modification is introduced later in this section. 
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Figure  6.24: Experimental transient currents of a short circuit on the stator winding A2: a) 

faulted winding A2, b) the field winding 
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Figure  6.25: Simulated transient currents of a short circuit on the stator winding A2 using the 

new embedded phase-domain model: a) faulted winding A2, b) the field winding 
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During this internal fault (a short circuit between nodes AJ and the neutral), only the 

sub-winding A2 (see Figure  6.21) from the stator is carrying current and the rest of the 

stator windings are open-circuited. Figure  6.26 shows the cross-section of the machine in 

this situation at an instant in which the rotor is at 0� . As mentioned in Chapter 3, series-

connected concentric coils '
1 1-a a , '

2 2-a a  and '
3 3-a a  form the sub-winding A1 and the coils 

'
4 4-a a , '

5 5-a a  and '
6 6-a a  form the sub-winding A2. During the internal fault, the flux 

produced by winding A2 (shown by 2AΦ ) tends to enter the rotor area from pole 3 (and 

thus is strongest in magnitude in this pole) and goes out through the poles 1, 2 and 4. In 

this condition, according to Lenz’s law, the flux 3fΦ created by the coil '
3 3-f f  , of the field 

winding, is such that it resists 2AΦ  (i.e. it is in a direction opposite to the flow of 2AΦ ). 

Therefore  3fΦ  has an outward direction as shown in Figure  6.26. The field coils in all 

poles are series connected and as a consequence they carry identical currents with the 

direction identified in Figure  6.26.  Hence, the same reactionary current which creates 

3fΦ  to oppose 2AΦ , now flows into coils '
1 1-f f , '

2 2-f f  and '
4 4-f f  to generate fluxes 1fΦ , 

2fΦ  and 4fΦ  respectively. As shown, the coils '
2 2-f f  and '

4 4-f f  generate inward-directed 

fluxes 2fΦ  and 4fΦ , and the coil '
1 1-f f  generate outward-directed flux 1fΦ . Hence, MMF 

produced by coils '
2 2-f f  and '

4 4-f f  appears to be in a direction opposite to that of 2AΦ , and 

MMF produced by the coil 1fΦ  is in the same direction that 2AΦ  flows.   

The damper grid also reacts to the flow of flux 2AΦ . The damper grid consists of 6 

bars per pole connected through copper laminations at both ends of the bars. Unlike the 

field winding, the damper bars of each pole have independent performance, and all of 
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them resist the flow of 2AΦ . Hence, the damper bars in poles 1,2 and 4 generate inward-

directed fluxes 1DΦ , 2DΦ  and 4DΦ ,and the damper bars in pole 3 generate the outward-

directed flux 3DΦ  as shown in Figure  6.26. 
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Figure  6.26: Direction of fluxes generated by the field winding and damper grid when only 

winding A2 is energized. 

The above analysis shows that the damper grid resists the flow of  2AΦ  in pole 1 

whereas the field winding in this pole aids the flow of this flux component.  In the 
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conventional approach of modeling a damper grid as equivalent windings along the d-

axis and q-axis  [30],  [31],  [87],  [88], the d-axis damper winding consists of coils for each 

pole which are connected in series in a manner similar to the field winding. The q-axis 

damper winding also has similar distribution with an electrical angular shift of 90� , and 

there is no mutual coupling between the d- and q- axis damper windings. Such an 

arrangement causes the d-axis damper winding to behave like the field winding and aids 

the flow of  2AΦ  in pole 1, which is contrary to the reaction of the actual damper grid as 

discussed above. Therefore the arrangement of series connected damper coils does not 

correctly represent the behaviour of the actual damper grid during situations like a fault 

between node AJ and the neutral of the machine. 

A better representation of the damper grid for such faults is considering independent 

d- and q-axis shorted damper windings for each pole: for example in pole 1 the damper 

bars 1 2 3, ,d d d  and ' ' '
1 2 3, ,d d d  can form a concentric shorted d-axis winding 1( )D ; and the set 

of bars ' ' '
1 2 3, ,d d d  and ' ' '

4 5 6, ,d d d  can form a q-axis damper winding 1( )Q . Such a 

representation results in a complex machine model with four d-axis 1 4( - )D D  and four q-

axis damper winding 1 4( - )Q Q . Every d-axis damper winding is located between two q-

axis damper windings having three damper bars (as indicated above) in common with 

each of these windings, and vice versa.  

To take into account the proper coupling of each of these damper windings and all 

other windings, the MWFA procedure as discussed in Section  3.4 is used to generate the 

position varying inductance matrix of this 15 winding machine ( 3 stator windings, 1 field 

winding, 4 d-axis damper windings and 4 q-axis damper windings) . Strictly speaking, as 
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the windings share common conductances, there are also mutual resistances between 

these damper windings, and a current flowing in a d-axis damper winding causes the 

leakage flux of the shared bars to be induced on the neighboring q-axis damper windings 

 [67]. These effects are neglected for now. 

With the present technology, the computational capacity of the RTDS hardware does 

not allow implementation of such a complex machine model with 15 windings. Therefore 

a stand-alone program is written in MATLAB® to model the synchronous machine with a 

detailed representation of the damper grid as described above. The computational 

approach of this program is similar to that used in the RTDS formulation of the 

embedded phase-domain machine model. An EMTP-type program  [1] solves the network 

equations for the full system; i.e. arbitrary external network including RLC elements1 and 

voltage and current sources with the machine represented as an embedded set of time-

varying coupled coils as described in Section  5.3. Development of this program is one of 

the main contributions of this thesis. 

 As shown in Figure  6.27, every terminal of the experimental machine in Figure  6.21 

is shown by an electric node in the developed electromagnetic transients program (nodes 

1-14). In this electro-magnetic transient program, any two nodes can be connected 

through arbitrary voltage sources or impedance for applying any kind of fault or 

energizing windings independently. This level of flexibility will be helpful for future 

research in this area.  

The internal fault on the sub-winding A2 is simulated by connecting nodes 7 and 10 

of the electromagnetic transients program through a very small resistor. Figures  6.28-a 

                                                 
1 Resistive, inductive and capacitive elements 
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and –b, respectively, show the simulated currents of the faulted winding A2 and the field 

winding. These results are in better agreement with the experimental results (Figure  6.24) 

compared to the simulation results obtained from the model with the conventional 

damper winding representation (Figure  6.25).  
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Figure  6.27: Diagram of the synchronous machine model with a detailed damper representation 

embedded in a stand-alone electromagnetic transients program 
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Figure  6.28: Simulated transient currents of a short circuit on the stator winding A2 using the 

model with individual damper windings for each pole: a) faulted winding A2, b) the field winding 
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Figures  6.29-a and  6.29-b, respectively, show the steady-state simulated current of the 

faulted winding A2 and currents of the d-axis damper windings. The rotor windings in 

the model are normalized to the stator and therefore the magnitude of damper currents 

(Figure  6.29-b) is reflected to the stator side. As can be seen, at any positive or negative 

peak of the stator current, one of the damper winding currents 1 4( - )D D  peaks. Also, the 

current in each of these d-axis damper windings is phase shifted from the current of the 

neighboring d-axis damper winding, which would not be represented with a single 

damper winding.  
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Figure  6.29: Steady-state simulated waveforms of a short circuit on the stator winding A2 using 

the model with individual damper windings for each pole: a) the current in the faulted winding A2, 

b) currents of the d-axis damper windings (D1-D4) reflected to the stator side. 

It should be noted that this detailed machine model (with individual d- and q-axis 

damper windings for each pole) and the model with the conventional damper 

representation generate identical stator currents for external faults such as terminal-



Chapter 6 

 

169 

neutral and three-phase faults. The terminal-neutral fault of Section  6.2.2.1 (i.e. an 

external fault) is simulated using the machine model with individual d- and q-axis 

damper windings for each pole with the machine operating at the same pre-fault 

conditions. Figure  6.30-a shows the steady-state simulated phase A current in this 

machine model. Comparison of the waveforms in Figures  6.30-a and  6.23-a shows that, 

consideration of individual d- and q-axis damper windings for each pole does not affect 

the behaviour of the machine for external faults, and validates the long used 

conventional approach of modeling the damper grid for such faults. Figure  6.30-b shows 

the steady-state simulated currents of the d-axis damper windings in this machine model. 

As can be seen, the four dampers have identical currents contrary to the situation in 

Figure  6.29-b. 
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Figure  6.30: Steady-state simulated currents of a terminal-to-neutral short circuit using the 

model with individual damper windings for each pole: a) phase current, b) currents of the d-axis 

damper windings (D1-D4) reflected to the stator side. (Curves are indistinguishable) 
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For this internal fault (a solid short circuit on the winding A2) the simulation results 

can be improved even further by modeling the rotor damper grid in the form of a cage 

 [30],  [56],  [67]. As explained, every d-axis damper winding is between two q-axis 

damper windings and shares damper bars with each of these windings. As shown in 

Figure  6.31, in addition to the effects of mutual inductances, a current flow in a d-axis 

damper winding causes the leakage flux of the shared bars to be induced on the 

neighboring q-axis windings. This effect is considered by superposing the leakage 

inductance of the damper bars to the off-diagonal elements of the rotor inductance matrix 

 [67]. Similar arrangement is done for the resistance matrix of the rotor dampers  [67].  
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Figure  6.31: Equivalent circuit of the rotor damper cage showing rotor loop currents and end 

ring currents 
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Figures  6.32-a and  6.32-b, respectively, show the steady-state simulated current of the 

faulted winding A2 using the machine model with four d-axis and four q-axis damper 

windings and the one with the damper grid modeled in a form of a cage. Figures  6.32-c 

shows the current of A2 captured experimentally. As shown, there is good agreement 

between the experiment and the machine model in which the damper grid is simulated in 

the form of a cage. 
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Figure  6.32: Experimental and simulated currents of a short circuit on the stator winding A2 in 

the steady-state: a) simulated using a model with 4 d-axis and 4 q-axis damper winding, b) simulated 

using a model with damper grid modeled as a cage, c) Experiment 
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With the present technology, it is not foreseeable that RTDS computational capability 

will be sufficient for modeling the damper grid as individual dampers for each pole. 

However, as technology improves, modeling additional damper windings may become 

possible. The number of these damper windings will be defined by technology and 

accuracy requirements.   

6.2.2.3 Comments on Possible Adaptability of the Machine Model with Conventional 

Damper Windings for Representing Internal Faults 

It could be argued that the error in the results of the machine model with conventional 

damper winding representation could be remedied by adjusting some of the parameters of 

the machine such as leakage inductances of the stator and rotor side. To investigate this 

possibility, the stator leakage inductances, field winding leakage inductance, and damper 

windings leakage inductances of this machine model were varied over a range from 0.01 

to 10.0 times of the nominal leakages , and the internal fault between nodes AJ and the 

neutral was simulated for each set of these leakage inductances. As expected, by 

decreasing these leakage inductances the current of the faulted winding A2 increases. 

However this change is relatively small, and the steady-state peak value of the fault 

current does not exceed20A , even with very small leakage inductances (the actual fault 

current has a peak value of 50A ). Therefore detailed representation of the damper grid, 

as discussed in the previous section, is necessary for proper modeling of this internal 

fault. 

6.3 Chapter Contributions and Conclusions 

The new real-time embedded machine model was systematically validated using 

simulations and laboratory experiments. By comparing this new model against the 
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existing interfaced dq-based models of electromagnetic transients programs, the 

capabilities of this model in accurate solving of the differential equations of 

synchronous machines were confirmed. The Numerical stability of the model was also 

assessed in this chapter. 

Laboratory experiments showed that this new model properly represents the effects of 

non-sinusoidally distributed windings, and the actual shape of the pole-arc. Also the 

effects of operating point dependent saturation were included correctly in this model. 

For modeling some internal faults, it is necessary to consider the actual damper grid 

instead of the conventional representation of equivalent damper windings in d- and q-

axis. When this is not possible, individual d- and q- damper windings can be considered 

for each pole, which improves the simulation results significantly. The accuracy of this 

approach can be improved by considering more windings for each pole and by taking into 

account the fact that these rotor windings are connected in the form of a cage. 

Generalization of this concept to other synchronous machines with larger number of 

poles and different winding distribution requires further research.  

 



 

Chapter 7:  Application of the New Real-

Time Model in Synchronous Generators 

Protection Studies 

 The new embedded phase-domain machine model is implemented in a real-time 

digital simulator RTDS. This model was validated as described in Chapter 6 using 

laboratory experiments. This model is intended to be used in the testing of some stator 

fault protection schemes in synchronous machines. In this chapter, the capabilities of this 

machine model in testing the stator-ground fault protection schemes are demonstrated. 

7.1 Introduction 

Stator-ground faults are amongst the most frequent causes of damage to the stator 

windings of synchronous machines and a direct cause of phase-phase faults  [44],  [95]. 

 An undetected or non-cleared ground fault could develop into a phase-to-phase fault or 

into an inter-winding fault if another single-phase-to-ground fault occurs  [96]- [98]. This 

can inflict significant damage to the generator. 

The amount of current which flows during a phase-to-ground fault depends on the 

configuration of grounding in the stator of generators. In many applications, generator 

neutrals are grounded through an impedance to limit ground fault currents and to provide 

means to detect ground faults. Two common methods of stator grounding are low-

impedance and high-impedance grounding  [96]- [98].  

In the low impedance grounding method, a resistor or a reactor is connected between 

the generator neutral and the ground. In general, this impedance is selected to limit the 
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generator’s contribution to a single-phase-to-ground fault at its terminals to a value up to 

150% of rated full-load current  [98]. Solid connection of the neutral to ground is not 

recommended  [97],  [99] as a stator-ground fault in this case will be equivalent to a turn-

turn fault causing a large amount of current to flow in the faulted winding. In this type of 

grounding, a stator-ground fault provides sufficient current for differential relaying 

systems. The capabilities of the new real time machine model for testing differential 

protection schemes of stator-ground fault are explained briefly in Section  7.2. 

In the high-impedance grounding method, a distribution transformer is connected 

between the generator neutral and ground, and a resistor is installed across the 

transformer secondary. The resistor limits the ground fault current, and the transformer’s 

secondary voltage can be used to detect ground faults. The high impedance normally 

limits the fault current to levels considerably below the practical sensitivity of the 

differential relay  [96]. Therefore, differential relaying will not detect stator ground faults 

in high-impedance grounded generators. One of the protection schemes which is used in 

case of high impedance grounding is based on the existence of the third harmonic voltage 

on the neutral and terminals of synchronous machines. Section  7.3 explains the procedure 

for using the new machine model in the setting and testing of such relays. 

7.2 Differential Protection for Stator-Ground Faults 

As stated in the introductory section of this chapter, in the low impedance grounding 

method for synchronous generators, a stator-ground fault provides sufficient current for 

differential relaying systems. Figure  7.1 shows the fundamental technique of using the 

differential scheme for stator-ground fault protection  [97].  For each phase, during normal 

operation, the current flowing in essentially equals the current flowing out. However, 
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during a fault between a stator winding and ground the flow of fault current fI  causes an 

unbalance between the incoming and outgoing currents of that winding. This difference 

between the currents of the two sides of a winding enables the differential relay to detect 

the stator-ground fault.  
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Figure  7.1: Basic current differential scheme for the generator stator-ground fault protection  

Because the new synchronous machine model for a real-time simulator (RTDS), 

developed in this thesis, allows application of internal faults, it is useful for closed-loop 

testing of differential relays designed to protect synchronous generators against stator-

ground faults. As mentioned in Section  1.2, in closed-loop testing the actual relay is 

connected to the real-time simulator, and is therefore subject to waveforms similar to 

those that it would experience in a field application. Furthermore any trip signal provided 

by the relay can operate circuit-breaker models in the simulation. Hence, this type of 

simulation is a very realistic representation of the true field experience that the relay 

would be subject to.   

In this model as shown in Figure  6.9, the stator phase A is divided into two sub-

windings A1 and A2 and the electric node AJ can be connected to the ground to simulate 

a stator-ground fault. The computed currents of sub-windings A1 and A2 in the RTDS 
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model are converted to analog signals using D/A converters and suitably amplified to 

conform to the input requirements of the differential relays under test  [26]. 

As discussed in Section  6.2.2.2, due to computational speed limitations, the detailed 

damper grid, required for accurate modeling of internal faults, cannot be included in the 

RTDS model. Also, the more simplified machine model with conventional amortisseur 

winding representation causes an underestimation of the magnitude of the fault current. 

However, as industrial differential protection schemes are triggered by differential 

currents as low as 10% of the rated current  [99], this model is still reasonable to use for 

such applications.  

Additionally, as stated in the introductory section of this chapter, in the low 

impedance grounding method the grounding impedance is selected such that the terminal-

ground fault will be limited to a value up to 150% of rated full-load current  [98]. This 

means that, the grounding impedance is large enough to be a more important factor in 

determining the magnitude of fault current than the machine model itself. For the 

experimental machine in this thesis, a grounding resistance of 5.3 Ohms limits the 

terminal-ground fault to the above stated value. Using this grounding resistance, a fault 

between node AJ and the ground is simulated. The same pre-fault conditions as in Section 

 6.2.2.2 (rated speed and 97% of rated voltage) are applied here. Figure  7.2-a shows the 

simulated fault current from the custom model developed in Section  6.2.2.2, which 

represents the damper grid as equivalent windings along the d- and q-axis. This 

simulation is repeated using the machine model which considers the detailed damper 

cage, the results are shown in Figure  7.2-b. As verified in Section  6.2.2.2, this detailed 

machine model accurately generates the internal fault currents. A comparison between 
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Figures  7.2-a and -b shows that the error of the machine model with conventional damper 

winding representation is a more acceptable value of 21%. This error is much smaller in 

comparison with the 64% error for the solidly grounded stator (see Section  6.2.2.2). 
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Figure  7.2: Simulated transient currents of a stator-ground fault (node AJ-to-ground) with a 

grounding resistance of 5.3 Ohm, a) conventional representation of the damper grid as d- and q-axis 

windings, b) damper grid modeled as a cage. 

7.3 100% Stator-Ground Fault Protection Scheme 

Synchronous generators produce some amount of third-harmonic voltage. These 

harmonic voltages are generated due to space harmonics of windings and non-sinusoidal 

permeance of the machine  [70]. Figure  7.3 is a conceptual circuit diagram of a 

synchronous machine with the neutral connected to the ground through a resistance NR . 

In this figure, NC  represents the equivalent lumped charging capacitance-to-ground of 

the stator winding at the ground end of the winding, and TC  represents the equivalent 

lumped capacitance-to-ground at the stator terminal (windings, cables, etc.)  [95],  [96]. 
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When no fault is present, the voltages across the stator windings of the synchronous 

machine contain the fundamental component in addition to the odd harmonics  [70].  As 

the machine is balanced, only the harmonics of order 3 , 1,3,..k k ∈   are present in the 

neutral-ground voltage of the machine, Nv , whereas the terminal-ground voltage, Tv , 

contains the fundamental component and all the odd harmonics. During normal 

operation, the magnitude of the third harmonic voltage in the neutral and terminal of the 

machine, 3NV  and 3TV , depends on the magnitude of the third harmonic voltage across 

the winding and impedance values of  ,N TC C   and NR   [95],  [96]. During a stator-to-

ground fault, the third harmonic components in the neutral, as well as, on the phase 

terminals change. This change is used as a signature to detect the ground fault  [95]-

 [98].This detection method is commonly  [96]- [98] referred to as the “100% stator-

ground fault protection scheme”.  
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Figure  7.3: Circuit diagram of a stator-ground fault in a synchronous machine   

As discussed above, the third harmonic voltage on the neutral and terminals exists 

even without a stator-ground fault. Hence in the industrial commissioning of such relays, 

one of the requirements is recording these harmonic voltages at different operating points 

as the loading conditions affect the magnitude of these signals  [95],  [96],  [98]. 
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In the present day industrial practice, this procedure must be carried out individually 

for each machine type using a laboratory setup. In order to expedite the setting process, 

relay manufacturers and utilities have expressed the desire to have EMTP-type models 

that would show this third harmonic behavior. The detailed MWFA-based synchronous 

machine model developed in this thesis is a good candidate for such applications. The 

model considers the actual distribution of the windings, the shape of the pole-arc; and the 

effects of operating point dependent saturation. Therefore correct modeling of harmonics 

such as the third harmonic voltage across the winding and their variation with loading is 

ensured. Furthermore, the model is developed for a real-time simulator (RTDS), so it can 

also be used for on-line closed-loop testing of the relay performance.  

7.3.1 Shortcomings of the Dq-based Models in this Application  

Some authors have modified the phase-domain dq0-based models of synchronous 

machines to simulate internal faults  [39]- [41],  [45],  [47]- [53]. These authors calculated 

the approximate inductances of faulted windings based on the assumption that the 

inductances of unfaulted windings are in the form of equations (3.4)-to-(3.15).  

Numerical methods were then employed for time-domain simulation of an isolated case 

which consists of a synchronous machine and a source. 

 In  [47],  [48] the inductances of faulted windings were calculated from the 

inductances of healthy windings based on the turns ratio of the faulted winding. The 

symmetrical component approach were used in  [49],  [50] to compute the internal fault 

currents of the machine based on the inductances computed in   [47],  [48]. 

Synchronous machine armature windings are the combination of coils in different 

angular positions connected in series and in parallel. In  [53], using proper turns ratios and 
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angular shifts, the inductances of faulted windings of a synchronous machine were 

calculated. 

Authors of  [39]- [41] assumed that the faulted portions of armature windings create 

approximately sinusoidally distributed magnetomotive forces in the stator space. 

Therefore, a faulted armature winding was divided into two sinusoidally distributed 

windings in specific angular positions  [39]. Using this technique the analytical formulae 

for the faulted inductances were also presented. 

 Although these models are developed primarily for simulating synchronous machine 

internal faults, in healthy conditions such models have identical time-domain responses to 

dq0-based models and generate no time harmonics. Therefore, these models cannot be 

used for the testing of this “100% stator-ground fault protection scheme”.    

7.3.2 Validation of the Detailed Phase-Domain Machine Model Regarding the 

Generation of the 3rd Harmonic Voltage  

As stated above, the “100 stator-ground fault protection scheme” operates based on 

the 3rd harmonic component of winding voltages. In this section, the harmonic contents of 

winding voltages obtained from the new embedded phase-domain model and laboratory 

experiment are compared and presented. 

In Figures  6.16a, and  6.17a, the steady-state simulated stator phase-to-neutral 

voltages of the machine are compared against the experimental results for a leading 

power factor load and a resistive load. Very good agreement between the experiment and 

simulation was achieved. These curves are re-plotted here in Figures  7.4-a and  7.5-a, 

respectively. Figures  7.4-b and  7.5-b, respectively, show the harmonic spectrums of the 

voltage waveforms in Figures  7.4-a and  7.5-a.  
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Figure  7.4: Experimental and simulated voltage across the stator phase-A with the R-C load a) 

steady state waveform, b) harmonic spectrum (peak magnitude). 
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Figure  7.5: Experimental and simulated voltage across the stator phase-A with the resistive 

load: a) steady state waveform, b) harmonic spectrum (peak magnitude). 
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As can be seen, the third harmonic component in the phase voltage is considerable 

(17.5 V for the R-C test and 17.2 V for the resistive load). Also, the third harmonic 

component of the simulated waveforms shows good agreement with the experiment in 

both tests (18.0 V for the R-C test and 19.1 V for the resistive load). 

7.3.3 Simulation for the Purpose of Relay Setting Determination  

In this section, using the new embedded phase-domain machine model, variation of 

the third harmonic voltage in the neutral and terminals of the machine is studied. This 

exercise demonstrates the capability of this new machine model in setting the relays 

designed to detect stator-ground faults in synchronous machines using the “100% stator-

ground fault protection scheme”.  

Figure  7.6 shows a part of the simulated circuit as drawn in RSCAD, the human-

machine interface for the RTDS simulator  [26]. The neutral and terminals are connected 

to the ground using the neutral resistance and charging capacitances mentioned at the 

beginning of Section  7.2. The stator terminals are connected to a dynamic load which can 

be altered during the simulation in RUN TIME environment  [26]. As mentioned, in the 

new embedded phase-domain machine model developed in the RTDS environment, the 

stator phase A is divided into two sub-windings A1 and A2. Node NAJ represents a point 

in the stator phase-A winding which divides phase-A into two sub-windings A1 and A2. 

This node can be connected to ground through a fault model (externally specified time-

dependent impedance) to simulate the effects of a stator-ground fault. The machine is run 

at rated speed, and excitation voltage is set so that rated terminal voltage is achieved with 

a 1pu, 0.8 pf ∆-connected series R-L load. The circuit is simulated in real-time on the 

GPC hardware card of RTDS  [26] with a simulation time-step of 50µs. 
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Figure  7.6: RSCAD draft circuit used for the simulation of the 3
rd
 harmonic voltage 

In this example, stator sub-winding A1 has 80 turns and sub-winding A2 contains the 

remaining 16. Using the procedure discussed in Section 3.4 of this thesis, the inductances 

of machine windings including faulted windings A1 and A2 can be computed for various 

operating points and rotor positions.  

As an example, the inductances of windings A1 and A2 in a loading condition, where 

1.2 pumdi = and 1.4 pumqi = , are shown in Figure  7.7. The variations of the self 

inductance of sub-winding A1 1 1( )A AL  and the self inductance of sub-winding A2 2 2( )A AL  
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with rotor position are shown in Figure  7.7-a. Also Figure  7.7-b shows the mutual 

inductances between sub-winding A1 and A2 and the field winding ( 1A FL  and 2A FL , 

respectively).  
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Figure  7.7: Saturated inductances of faulted windings generated using MWFA, a) self 

inductances of windings A1 and A2, b) mutual inductances between the field winding and sub-

windings A1 and A2. 

Figure  7.8a shows the variation of neutral voltage during a fault between node NAJ 

and ground. As can be seen, before the fault this signal is mostly the third harmonic with 

the peak value of 13.1V. After the fault, the neutral voltage contains the fundamental 

component as well. This is because the machine is operating in an unbalanced condition. 

The peak value of the third harmonic however is reduced to 2.1 V, as determined from 

Fourier analysis (not shown).  The variation of the neutral voltage during a fault between 

the terminal node NA1 and the ground (SL-G) is shown in Figure  7.8b, where the peak 

value of the third harmonic voltage changes from 13.1V to 15.8V. The simulation of the 
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SL-G fault is repeated with a dq-based machine model and the results are shown in 

Figure  7.8c. As can be seen, no voltage exists on the neutral of this machine before the 

fault (which is incorrect), and this voltage contains only the fundamental frequency after 

the fault. This clearly shows that a conventional dq-based model would be inadequate 

for a real time simulator required for testing such protection schemes. 
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Figure  7.8: Neutral voltage during a stator-ground fault a) ground fault on node NAJ, b) 

ground fault on terminal node NA1, c) ground fault on terminal node NA1 in a dq-based machine 

model. 

As mentioned earlier, in the industrial commissioning of relays designed to detect 

stator-ground faults based on the “100% stator-ground fault protection scheme”, one of 
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the requirements is the recording of the third harmonic voltage of terminals and the 

neutral at different operating points. By running a pre-programmed automated sequence 

of runs, using the RSCAD’s Script feature  [26], the circuit in Figure  7.6 is simulated in 

real-time on the RTDS hardware with the load absorbing various active and reactive 

powers. In each set of active and reactive powers, the third harmonic component of the 

neutral and terminal voltages ( 3NV  and 3TV ) are recorded after the circuit reaches the 

steady state condition. 

Figures  7.9 and  7.10 show the variation of the third harmonic component in the 

neutral and the terminals respectively. These figures are generated by dynamically 

changing the resistor and inductances of the load and recording the active and reactive 

power of the load and the third harmonic component of the neutral and terminals 

voltages. 

As shown, the active power significantly affects the value of the third harmonic 

voltage, which is also reported in  [95],  [98]. The variation of the third harmonic voltage 

with the active power is comparable to the variation of this signal with a stator-to-ground 

fault. This re-affirms the need to record the pre-fault values of the third harmonic voltage 

in the neutral and terminals to avoid ambiguity in detecting the fault. Using these pre-

determined values for ambient 3rd harmonic voltage in stator and neutral terminals, the 

threshold settings for the relay can later be determined  [96]. 
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Figure  7.9: Neutral voltage 3
rd
 harmonic component as a function of active and reactive power 

loading 
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Figure  7.10: Terminal voltage 3
rd
 harmonic component as a function of active and reactive power 

loading 
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7.4 Chapter Contributions and Conclusions 

The stator-ground fault protection schemes for synchronous generators were briefly 

introduced in this chapter. The capabilities of the new real-time synchronous machine 

model in the closed-loop testing of a “differential protection scheme” and a “100% 

stator-ground fault protection scheme” were demonstrated.  

As discussed, in some of the stator-ground fault protection schemes, the third 

harmonic voltage in the neutral and terminals of the machine are utilized to detect a 

stator-to-ground fault. These harmonics are generated due to the non-sinusoidal 

distribution of the windings and machine permeance. It was demonstrated that the new 

machine model properly represents these harmonics and their variation with fault and 

loading conditions. This is because, this new model considers effects of winding 

distribution, rotor geometry and operating-point dependent saturation. Therefore it can 

be used in setting the relays designed to detect stator-ground faults in synchronous 

machines using such harmonics.  

 

 

 

 

 



 

Chapter 8:  Conclusions and Future 

Directions  

This thesis has contributed to advances in electric machine models for electro-

magnetic transient simulation programs and real-time digital simulators. The new tools 

and techniques, developed in this thesis, expand the application of real-time digital 

simulators to closed-loop testing of protection relays designed to protect synchronous 

machines against internal faults. In addition, the effects of magnetic saturation are 

modeled more accurately compared to previous models in electromagnetic transients 

programs. Also numerical stability of the machine models has improved significantly. 

This chapter summarizes the major contributions of the thesis and also identifies 

some other related areas where further research may be carried out.  

8.1 Main Contributions of the Thesis 

The followings are considered the main contributions of this thesis: 

• To evaluate the inductances of synchronous machines, a winding function 

approach was developed in this thesis which is capable of taking into account 

the actual distribution of windings, shape of the pole-arc, and effects of 

operating point-dependent saturation.  The inductances of an experimental 

machine were evaluated using this approach and validated using the finite-

element method and laboratory measurements. 

• An embedded phase-domain approach was developed for the time-domain 

simulation of electric machines in off-line and real-time electromagnetic 



Chapter 8 

 

191 

transients programs. Particular techniques were established to speed up the 

time-domain simulation of the model, and special considerations were 

introduced for the real-time implementation of this model. The accuracy and 

numerical stability of the model were also validated. 

• Laboratory experiments were conducted to show the capability of this new 

synchronous machine model in properly representing the time-harmonics 

generated due to non-sinusoidally distributed windings, and pole-arc. The 

importance of incorporating the effects of iron saturation into the procedure of 

calculating inductances was also discussed. 

• An off-line EMTP-type program was developed to solve the network 

equations for an arbitrary external network and an embedded phase-domain 

machine model. The damper grid of this machine model was represented by 

considering individual d- and q-axis damper windings for each pole. An 

internal fault can be applied to any of the stator windings. Effects of damper 

grid representations on simulating turn-turn faults were also investigated. 

•  Capabilities of this new real-time synchronous machine model in the closed-

loop testing of protection relays, designed to protect synchronous machines 

against stator-ground faults, were demonstrated.   

8.2 Summary of the Conclusions  

The following conclusions were obtained during the progress of this thesis: 
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8.2.1 Method of Evaluating Synchronous Machine Inductances for the Purpose of 

Real-Time Simulation 

Three known methods for evaluating electric machines inductances (the dq0 theory, 

the finite element method, and the modified winding function approach) were discussed. 

The relative merits for each of these approaches as to the level of modeling detail and 

accuracy of results and complexity were discussed. Unlike the dq0 approach, the MWFA 

is capable of taking into account details such as the actual distribution of windings. At 

the same time, the computational burden and input data for this approach is much lower 

than the finite element method. Consequently, the modified winding function approach is 

preferred as the main tool for computing synchronous machine inductances for the 

purpose of real-time digital simulation.  

Based on the MWFA, the inductances calculated using the physical data are 

significantly different from the actual inductances. The cause of this error is the change in 

the permeance due to the presence of factors such as the rotor pole-shoe, stator slots, and 

the MMF drop in the iron. Although, the accuracy can be improved by taking into 

account these details in calculating the permeance function, such calculations need very 

detailed knowledge of the machine geometry, which may not be readily available. 

To compensate for these effects, an effective permeance function was defined and 

used in the process of calculating inductances using MWFA. In this thesis, the effective 

permeance function was computed based on the actual shape of the pole-arc and 

experimental values of d-, q- and 0-axis inductances.  

Any variation in the loading condition and the level of the synchronous machines 

field excitation changes the distribution of the magnetic flux and the intensity of 

saturation in different parts of the iron. Therefore, using a single permeance function to 
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compute synchronous machine inductances will not be valid for all loading conditions. 

To incorporate the effects of operating point-dependent saturation into the MWFA, the 

permeance function was adjusted based on the local magnitude of the magneto-motive 

force in each loading condition. The saturated inductances were stored in a tabular form 

as functions of rotor position, and the direct and quadrature axis magnetizing currents. 

8.2.2 Embedded Phase-Domain Approach for Inclusion of the Machine Model in 

Electromagnetic Transients Programs 

The procedure of modeling electric machines in electromagnetic transients programs 

using the new embedded phase-domain approach was explained. This method              

was compared to the conventional interface-based approach. Generally the burden of 

computation and communication is higher in the embedded phase-domain approach, as 

the inductance matrix needs to be inverted in each time-step and elements of the 

equivalent admittance matrix are continuously changing. With the aid of new techniques 

such as analytical inversion of the inductance matrix, merging electric nodes, and 

Fourier-based storage, the described computational and computational loads were 

minimized.   

It was shown that, the numerical stability of the embedded phase domain models is 

higher than the interfaced models. This can be crucial for situations where the operational 

frequency of the system or the component is higher than usual frequencies (50  or 60Hz ).  

8.2.3 Experimental Validation of the MWFA-Based Embedded Machine Model 

and Observations 

Inductances of an experimental synchronous machine were computed using the 

MWFA and the modifications, introduced in this thesis, were applied. Then the 

embedded phase domain machine model was utilized for time-domain simulation of this 
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experimental machine in the environment of a real-time digital simulator (RTDS®). 

Laboratory experiments were used to validate this model in healthy and faulted 

conditions. 

It was shown that, even in unfaulted conditions, time harmonics exist in voltages and 

currents of the synchronous machine. The source of these harmonics is the non-sinusoidal 

distribution of the windings and the air-gap. These harmonics as well as the fundamental 

components vary with a change in the loading conditions of the machine. It was shown 

that the new MWFA-based phase-domain synchronous machine model shows all of the 

above effects properly. These time-harmonics are absent in the dq-based models as they 

assume sinusoidal distribution for the windings and permeance. It was also shown that, 

the inclusion of saturation effects into the MWFA is crucial for correct representation of 

these time-harmonics as well as the fundamental component in the voltages and currents 

of the machine. 

It was also shown that, the conventional representation of the damper grid as 

equivalent shorted windings along the d- and q- axes is adequate for short circuit faults 

between external nodes like terminals and the neutral. However, for proper modeling of 

short circuits that involves a point inside a winding (internal faults) it might be necessary 

to model the damper grid as a detailed network which includes individual damper bars 

and end segments of each pole. It was shown that, representation of the damper grid by 

one d-axis damper winding and one q-axis damper winding for each pole is adequate for 

simulating the internal fault short circuit conducted in this thesis. 
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8.2.4 Application of the New Tool in Testing Protection Schemes of Synchronous 

Machines 

The capabilities of this new real-time synchronous machine model in closed-loop 

testing of some protection schemes were demonstrated. The procedures of using this tool 

for closed-loop testing of a “differential protection scheme” and a “100% stator-ground 

fault protection scheme” were explained.  

Some stator-ground fault protection schemes utilize the third harmonic voltage in the 

neutral and terminals of the machine to detect a stator-to-ground fault. These harmonics 

vary with a stator-to-ground fault, as well as, a change in loading conditions. The new 

machine model developed in this thesis properly represents these effects, and therefore is 

a good candidate for the testing of such protection schemes. 

The use of the new detailed synchronous machine model in testing synchronous 

machine protection schemes opens new industrial applications for real-time digital 

simulators.  

8.3 Thesis Publications 

The followings are the publications arose during the progress of this thesis:  

8.3.1 Refereed Journal Papers 

1. A. B. Dehkordi, R.W. Menzies, T.L. Maguire, and, A.M Gole “Effects of 
Damper Grid Representation on Modeling Synchronous Machines Stator 
Turn-Turn Faults,” IEEE Trans. Energy Conversion, to be submitted for 
publication.  

2. A. B. Dehkordi, P. Neti, A.M Gole, and T.L. Maguire, “Development and 
Validation of a Comprehensive Synchronous Machine Model for a Real-Time 
Environment,” IEEE Trans. Energy Conversion, Vol. 25, No. 1, March 2010.  
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8.3.2 Refereed Conference Papers 

1. A.B. Dehkordi, D.S. Ouellette, P.A. Forsyth, “Protection Testing of a 100% 
Stator Ground Fault Scheme Using a Phase Domain Synchronous Machine 
Model in Real-Time,” The 10th International Conference on Developments in 
Power System Protection (DPSP 2010), Manchester, UK, March-April 2010, 
submitted for publication.  

2. A. B. Dehkordi, P. Neti, A.M Gole, and T.L. Maguire, “Development and 
Validation of a Comprehensive Synchronous Machine Model for a Real-Time 
Environment,” 2009 IEEE Power & Energy Society General Meeting (PES 
09), Calgary, July, 2009. 

3. A.B. Dehkordi, A.M Gole, T.L. Maguire, and P. Neti, “A Real-Time Model 
for Testing Stator-Ground Fault Protection Schemes of Synchronous 
Machines”, International Conference on Power System Transients (IPST 
2009), Kyoto, June, 2009. 

4. P. Neti, A.B. Dehkordi, and A.M Gole, “A New Robust Method To Detect 
Rotor Faults in Salient-Pole Synchronous Machines Using Structural 
Asymmetries”, 2008 Industry Applications Society Annual Meeting (IAS 
2008), Edmonton, Oct., 2008. 

5. A. B. Dehkordi, A.M Gole, and T.L. Maguire, “Real-time Simulation of 
Internal Faults in Synchronous Machines”, International Conference on 
Power System Transients (IPST 2007), Lyon, June, 2007. 

6. R.C. Okonkwo, A. Dehkordi, A.M. Gole, and R. Hanitsch, “Permanent 
Magnet DC Linear Machine Model for Real Time Simulation”, Canadian 
Conference on Electrical and Computer Engineering (CCECE 05), pp.1509-
1512, May 2005. 

7. A.B. Dehkordi, A.M Gole, and T.L. Maguire, “ Permanent magnet 
synchronous machine model for real- time simulation”, International 
Conference on Power System Transients (IPST 2005), Montreal, June, 2005.  

8.4 Recommended Future Directions 

The tools and techniques developed in this thesis show great potential for further 

research in this area both in the development of new advanced tools and applications. 

8.4.1 Development of Detailed Induction Machine Models and Permanent Magnet 

Machines Models for Off-Line and Real-Time Electromagnetic Transients 

Programs 

With the rapid expansion of distributed and small-scale generation plants such as 

wind farms and kinetic hydropower applications, more detailed and sophisticated tools 



Chapter 8 

 

197 

are needed to analyze these systems and study their interactions with the power system 

network.  

Permanent magnet and induction generators play an important role in these small-

scale grids. A permanent magnet machine generates harmonics due to the particular 

shape of the magnets. These harmonics can interact with power electronics and filters in 

small-scale grids and also the rest of the network. Development of detailed models of 

permanent magnet machines for off-line and real-time electromagnetic transients 

programs capable of representing these harmonics will be a very useful tool to analyze 

such effects. Similarly, there are interests to develop such detailed models for induction 

machines. 

8.4.2 Exploring New Applications for Real-Time Simulators in Protection Studies 

The capabilities of the new tool developed in this thesis for closed-loop testing of 

some protection relays were demonstrated. It would be a very useful research activity to 

explore new applications for the real-time digital simulators in protection studies.  

Initially, a comprehensive study could be performed to analyze the common 

protection schemes of power equipment. In the next step, the feasibility of utilizing the 

existing models of equipment in closed loop testing of the above schemes can be 

assessed. It will be necessary in many cases to develop new models to be able to test the 

performance of other protection schemes using the real-time digital simulators. 

8.4.3 Further Study for Proper Representation of Damper Grids for Modeling 

Internal Faults 

It was shown that, the conventional representation of the damper grid as equivalent 

shorted windings along the d- and q- axes causes large errors in modeling internal short 
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circuit faults for the experimental machine considered in this thesis. For accurate 

modeling of these faults, the damper grid of the experimental machine was represented as 

a detailed network which considered individual damper bars and end segments of each 

pole. Such sophisticated representation of damper grids puts a large computational 

burden on the simulation, and therefore real-time simulation of a machine model with 

such damper grid representation is currently not feasible.  

Further research is needed to investigate the level of detail needed for proper 

representation of the damper grid when synchronous machines with a higher number of 

poles and different winding distributions are subjects of internal faults studies. It will 

also be useful to find out the amount of error caused by conventional representation of 

damper windings in the above situations. References  
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Appendix A:  Calculation of the Effective 

Permeance Function 

In this appendix, the theoretical background for the calculation of the effective 

permeance function shown in (3.32) is explained.  

In general, calculation of inductances using the MWFA requires numerical 

integration methods to evaluate the integral in (3.29). However, due to the inherent 

periodicity of the machine windings, the turns function a winding can be expressed by a 

Fourier series of its space harmonics. Based on these Fourier coefficient expressions, it is 

possible to obtain analytical expressions for the self and mutual inductances of any set of 

windings. According to  [69] the turns functions for the stator windings A, B and C can be 

expressed as:   

 

( )0
1

0
1

0
1

( ) cos

( ) cos ( )

2
( ) cos ( )

where: 1, 3,5 2
3

a s s k s

k

b s s k s

k

c s s k s

k

n N a a pk

n N a a pk
p

n N a a pk
p

k

φ φ

β
φ φ

β
φ φ

π
β

∞

=

∞

=

∞

=

 = + ⋅   

    = + ⋅ −        

    = + ⋅ −        

= =

∑

∑

∑

…

 (A.1) 

In (A.1) , sN  is the number of turns in each stator coil andp  is the number of pole-

pairs. The permeance function can also be expressed in terms of Fourier coefficients as 

shown in (A.2). In (A.2), ( , )s r aveφ θΡ and ( , )s r p pφ θ −Ρ  are the average and peak-peak 

values of the permeance function.   
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 (A.2) 

Using the (A.1), (A.2) and the MWFA integral in (3.30), the analytical expressions 

for the self and mutual inductances are evaluated and expressed in  [69]. Equation (A.3) 

shows the expressions for the stator inductances ,aa abL L  and acL  as the function of rotor 

position rθ .  
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 (A.3) 

In this equation, 0sL  and 0sM  are functions of all Fourier coefficients of the stator 

turns function ( )ka . 0sL  and 0sM , however are linearly proportional to the average 

permeance function ( , )s r aveφ θΡ and do not depend on other Fourier coefficients of the 

permeance function. In a similar manner, skL  and skM , depend on all Fourier coefficients 

of the stator turns function and only on the thk  Fourier coefficient of the permeance 

function. For  0 0 1, ,s s sL M L  and 1sM  this relationship is shown in (A.4). Constants 1 4...k k  

are functions of Fourier coefficients of the stator turns functions. 
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 (A.4) 

The stator inductance matrix can be formed using the expressions in (A.3), and the d-, 

q- and 0- axis inductances can be obtained by applying the Park’s transformation to the 
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stator inductance matrix in each rotor position. Since the windings are not sinusoidally 

distributed, the d-, q- and 0- axis inductances are not constant, but varying periodically 

with the rotor position. However, the average value of these inductance values can be 

considered as  ,d MWFA q MWFAL L− −  and 0 MWFAL − which are related to 0 0 1, ,s s sL M L  and 1sM  

as shown in (A.5). 
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 (A.5) 

From (A.4) and (A.5) it can be shown that: 
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 (A.6) 

Therefore, to adjust the permeance function such that the MWFA generates dq0 

inductances equal to the experimentally measured dq0 inductances, the following 

equation must be used: 
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 (A.7) 

In addition to the effective permeance function, the leakage inductance lsL  can also 

be calculated from the experimental values of ,  d qL L and 0L . It was mentioned in 

Chapter 3 that, lsL  accounts for leakage inductances such as slot leakages and coil end 

leakages not calculated by the winding function theory. Equation (A.8) is derived by 

substituting the values of 0 0 1, ,s s sL M L  and 1sM  from (A.4)  into (A.5):  
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This equation shows that the terms 2d MWFA q MWFA lsL L L− −+ −   and 0 MWFA lsL L− −  are 

proportional to the average value of the permeance function. As shown in (A.9), the ratio 

between these two terms is a constant term 5k . This constant term depends on Fourier 

coefficients of stator turn functions. 

 1 2
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 (A.9) 

From (A.9), lsL  is derived as a function of 0, ,d MWFA q MWFA MWFAL L L− − − and 5k  as shown 

in (A.10). 

 5 0

52

d MWFA q MWFA MWFA

ls

L L k L
L

k

− − −+ −
=

−
 (A.10) 

This leakage inductance must be added to the stator self inductance calculated using 

MWFA. 

 



 

Appendix B:  Numerical Stability of a 

Discretized System Using Rectangular and 

Trapezoidal Integration 

In this appendix, stability of a discretized system using different integration methods 

is analyzed. Consider a system described by the following state-space equation, which is 

presumed to be stable. , ,X U and Y  are vectors of state variables, inputs and outputs. 

 
[ ] [ ]

[ ] [ ]

X A X B U

Y C X D U

 = + = +

i

 (B.1) 

The discrete form of this set of equations is shown in (B.2). The matrices [ ]G  and 

[ ]H  can be expressed in terms of [ ]A and [ ]B depending on the method of discretization.  

 
( ) [ ] ( ) [ ] ( )

( ) [ ] ( ) [ ] ( )

X t G X t t H U t t

Y t C X t D U t

 = −∆ + −∆ = +
 (B.2) 

In Appendix  B.1, the rectangular rule of integration is used to discretize (B.1) and 

subsequently the numerical stability of this discretized system is analyzed. Similar 

analysis is performed for the method of trapezoidal integration in Appendix  B.2.  

Since the original system is stable, the eigenvalues of matrix [ ]A  are located in the 

left side of the imaginary axis in the complex plane. It will be shown in this appendix 

that, after applying the trapezoidal integration, the eigenvalues of matrix [ ]G  will be 

inside the unity circle regardless of the value of the simulation time-step. This conclusion 

cannot be made for the eigenvalues of matrix [ ]G  after application of the rectangular 

integration.  
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B.1 Stability of the System Using Rectangular Integration 

The first equation of (B.1) is integrated for the time interval of [ ]t t t−∆ : 

 ( ) [ ] ( ) [ ] ( )( ) ( )
t

t t
X t A X B U d X t t

τ
τ τ τ

= −∆
= + + −∆∫  (B.3) 

Using the rectangular rule of integration: 
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= + ∆ = ∆

 (B.4) 

Now, the goal is to find out the condition in which all the eigenvalues of matrix [ ]G  

are enclosed in the unity circle. If λ′  is one of the eigenvalues of matrix [ ]G , (B.5) 

applies: 

 0I Gλ′ − =  (B.5) 

Equation (B.5) can be expressed in terms of matrix [ ]A : 
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According to definition, λ  is an eigenvalue of matrix [ ]A  and its relation with λ′ is 

shown in (B.7). The condition for the discretized set of equations (B.4) to be numerically 

stable is that the eigenvalues of matrix [ ]G  must be in the unity circle: 

 1 1 1tλ λ′ ≤ ⇒ ∆ + ≤  (B.8) 

Every complex value like λ  can be in the form of (B.9): 

 a jbλ = +  (B.9) 

From (B.8) and (B.9): 
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1 1

1 1

a bj t
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 (B.10) 

This means: 
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+
 (B.11) 

Equation (B.11) must be valid for every eigenvalue of matrix [ ]A , therefore the 

maximum simulation time-step which provides a stable discretized system is:  
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2

2Re
minct

λ

λ

 −  ∆ =    
 (B.12) 

Based on the complex variable theory, the location of the eigenvalue loci of matrices  

[ ]A  and [ ]G  are evaluated and plotted in Figure  B.1. All the eigenvalues of the matrix 

[ ]A  are located in a circle on the left hand side of the complex plane. The imaginary axis 

is tangent to this circle. Multiplying [ ]A  by ct∆ , maps these eigenvalues into another 
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circle on the left hand side half plane with the unity radius. Finally, adding the identity 

matrix I to [ ] cA t∆ , transfers the eigenvalues into the unity circle.  

[ ]( )eig A

[ ]( )ceig A t∆

[ ]( )ceig I A t+ ∆

Re

Im

 

Figure  B.1: Eigenvalue loci of matrix [A] and matrix [G] using rectangular integration 

B.2 Stability of the System Using Trapezoidal Integration 

Application of the trapezoidal integration for discretizing the state-space equations 

results in the following equation: 
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 (B.13) 

Assuming λ′  is one of the eigenvalues of matrix [ ]G , (B.14) applies: 

 0I Gλ′ − =  (B.14) 
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Equation (B.14) can be expressed in terms of matrix [ ]A : 
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 (B.15) 

The determinant of the product of two matrices is the product of the determinants of 

the matrices, therefore: 
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This means: 
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Equation (B.17) shows thatλ , defined in (B.18), is an eigenvalue of the matrix[ ]A . 
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In the following, it is proven that as long as the eigenvalues of [ ]A  are in the left side 

of the imaginary axis in the complex plane, the eigenvalues of matrix [ ]G  stay in the 

unity circle. An eigenvalue of matrix [ ]G is expressed in terms of real and imaginary parts 

of an eigenvalue of [ ]A ( a jbλ = + ). 
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 (B.19) 

And the magnitude of λ′  is evaluated in (B.20) 
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 (B.20) 

The condition for λ′  to be in the unity circle is:  
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   ∆ ∆  ⇔ + ≤ −       

 (B.21) 

Since the eigenvalues of matrix [ ]A are on the left hand side of the complex plane (i.e. 

0a ≤ ), (B.21) is always correct regardless of the value of the time-step t∆ . This proves 

the stability preserving nature of the trapezoidal integration. 
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Similar to the previous section, a diagram is shown here (Figure  B.2 ) which presents 

the loci of matrices [ ]A  and [ ]G  using the trapezoidal integration. 
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2 2

t t
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Figure  B.2: Eigenvalue loci of matrix [A] and matrix [G] using the trapezoidal integration 

 

 

 

 

 

 



 

Appendix C:  Electric Torque Calculation in 

Synchronous Machines 

 In this appendix, the theoretical background of calculating electric torque in 

synchronous machines is explained. It is also shown that the formulae for calculating 

electric torque in dq-based models (5.40) and phase-domain models (5.39) are equivalent. 

In an electromechanical energy conversion system, defined by the coordinates iθ , 

currents ii  and flux linkages iΨ , the mechanical torque can be calculated  [92] using the 

following set of equations shown in Table   C.1.  

TABLE  C.1: MECHANICAL TORQUE CAUSED BY MAGNETIC COUPLING FIELD  

Independent 

variables 
Torque evaluated from stored 

energy 
Torque evaluated from co-energy 

Currents ii  

Coordinates iθ  
( ) ( ) ( )

1

, ,n
m i

ie
k

ik k

W i i
T i

θ θ

θ θ=

∂ ∂Ψ
= − +

∂ ∂∑  ( ) ( ),m

e
k

k

W i
T

θ

θ

′∂
=

∂
 

Fluxes iλ  

Coordinates iθ  
( ) ( ),m

e
k

k

W i
T

θ

θ

∂
= −

∂
 ( ) ( ) ( )

1

, ,n
im

ie
k

ik k

W i i i
T

θ θ

θ θ=

′∂ ∂
= − Ψ

∂ ∂∑  

 

Consider the equation in Table  C.1 which calculate torque from the co-energy with 

the independent variables ii  and iθ . From the mathematical point of view, since 

variables ii and iθ  are independent variables, the partial derivative is taken with respect to 

iθ , holding all other ,sθ  and ,i s  constant. The holding of the ,i s  constant is a 

mathematical restriction imposed by the selection of the independent coordinates and has 

nothing to do with the electrical terminal constraints  [92]. The mathematical restrictions 

are often misinterpreted as electrical terminal constraints, and some confusion about the 

generality of the force expression results. 
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In a linear system the torque can be calculated as: 

 ( ) [ ]
1

2
T

e k
k

d
T i L i

dθ
= ⋅ ⋅  (C.1) 

Equation (C.1) can be used directly to calculate the electric torque in synchronous 

machines. For dq-based synchronous machine models this equation can be simplified 

further. Recalling (3.2), the electric torque for an equivalent two-pole synchronous 

machine can be expressed as shown in (C.2). Here [ ]ssL  and [ ]rrL  are the stator and rotor 

inductance matrices, and [ ]srL  is the matrix of mutual inductances between stator and 

rotor windings.  
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 (C.2) 

According to (3.9) and (3.10), the elements of rotor inductance matrix [ ]rrL  are 

independent of rotor position, therefore (C.2) can be simplified to:  

 ( ) [ ] ( ) [ ]1

2

T T

abc abc abc FDQe ss sr

r r

T i L i i L i
θ θ

  ∂ ∂ = ⋅ ⋅ + ⋅ ⋅  ∂ ∂  
 (C.3) 

The torque equation can be expressed in terms of dq0 variables as shown in (C.4): 
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 (C.4) 
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Each line of (C.4) is expanded separately to evaluate the expression for torque. For 

the first line  (C.5) applies: 
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 (C.5) 

The matrices 
1

r

PP θ

−∂
∂⋅  and 

r

PP θ
∂
∂⋅  are transposed of each other and evaluated in (C.6): 

 
1

1

0 1 0 0 1 0

1 0 0 , 1 0 0

0 0 0 0 0 0
r r

P P
P P

θ θ

−
−

   −   
∂ ∂   

⋅ = − =   
∂ ∂   

         

 (C.6) 

Now (C.5) becomes: 
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 (C.7) 

And: 
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For the second line of (C.4), the following applies: 
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 (C.9) 

Using (C.4), (C.8) and (C.9), the expression for electric torque in terms of dq0 

variables is evaluated and shown in  
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Appendix D:  Derivation of Synchronous 

Machines Saturation Factors   

The saturated permeance functions of the laboratory synchronous machine were 

evaluated using the saturation factors for the pole-arc and the inter-pole regions of the 

synchronous machine ( dS and qS ). In this appendix, the method of evaluating these 

saturation factors is explained in detail  [80]. Figure  D.1 shows the unsaturated permeance 

function of a two pole salient-pole synchronous machine with the pole-arc expansion of 

2τ . The permeances of the machine in the pole-arc and inter-pole regions are 

respectively shown by dΡ  and q dαΡ = Ρ . 

d-axis

dΡ

q-axis

( )r radφ
2

π0

( )rφΡ

q-axis

2

π
−

q dαΡ = Ρ

ττ−

 

Figure  D.1: Unsaturated permeance function of a salient-pole synchronous machine  

As mentioned in Chapter 4, during the operation a synchronous machine, the total 

MMF in the air-gap has a sinusoidal distribution with the magnitude of magI and angle of 

ξ as shown in (D.1). 

 ( ) ( )cosr mag rIφ φ ξ= ⋅ +FFFF  (D.1) 
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The d-axis component of air-gap flux density can be computed using (D.2). Here, kΦ  

is a constant that depends on the distribution of stator windings. 
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 (D.2) 

By expressing ( )rB φ in terms of the total magneto-motive force and the saturation 

factors (Equation(4.4)), dΦ  can be evaluated as shown in (D.3). 
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 (D.3) 

Since ,  ,  and B dk kΦ Ρ are constant values for a given machine, they can be grouped 

into a single constant value k  as shown in (D.4): 

 B dk k kΦ= Ρ  (D.4) 

Representing the saturation factors ( ( ))d rS φFFFF  and ( ( ))q rS φFFFF  as polynomial 

functions of total MMF: 
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By substituting (D.4) and (D.5) in (D.3), the d-axis component of the magnetic flux 

can be expressed as:  
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Equation (D.6) can be simplified to:  
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where: 
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 (D.8) 

 

Similarly the q-axis component of the air-gap magnetic flux can be computed as 

shown in (D.9) and (D.10). 
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where: 
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 (D.10) 

D.1 Determination of the Constants ,  kα  

The parameters ,  kα  can be determined from the values of unsaturated d- and q-axis 

magnetizing reactances. The unsaturated value of d-axis magnetizing reactance mduX can 

be computed by substituting 0ξ = , 0ida =  (i.e. ( ( )) 1.0d rS φ =FFFF ), and 0iqa =  (i.e. 

( ( )) 1.0q rS φ =FFFF ) in (D.6) and dividing the computed magnetic flux by magI . This is 

shown in (D.11). 
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Similarly, the unsaturated value of q-axis magnetizing reactance mquX can be 

computed by substituting 2
πξ = , 0ida =  (i.e. ( ( )) 1.0d rS φ =FFFF ), and 0iqa =  (i.e. 

( ( )) 1.0q rS φ =FFFF ) in (D.9) and dividing the computed magnetic flux by magI . The 

resulting magnetizing inductance is shown in (D.12). 

 
( ) ( )

( ) ( ) ( )( )

22 2

0

4
sin sin

1 sin 1

mqu r r r rX k d d

k

πτ

τ
φ φ α φ φ

π

α τ α τ απ

 = + ⋅   

= − + − +

∫ ∫  (D.12) 

Knowing the values of unsaturated d- and q- axis magnetizing reactances mduX , mquX  

and the span of the pole-arc( )τ , the parameters ,  kα  can be determined as shown in 

(D.13): 
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D.2 Determination of the Saturation Factors Coefficients ,  id iqa a  

The coefficients ,  id iqa a  ( 1 )i n= ⋯  of the saturation function are constants for a 

given machine. They can be obtained from the measured d- and q-axis saturation curves. 

Substituting 0ξ =  in (D.7) and (D.8), the equation of the d-axis saturation curve can be 

written as follows:   
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Similarly, for the q-axis magnetizing flux:  
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Clearly:  
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The representations of the d- and q-axis saturation curves of (D.14) and (D.15) are 

polynomials in terms of the magnitude of total MMF magI , and can be written in the 

following form:  
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Solving (D.17) yields the polynomial coefficients of saturation factors ( ida  and iqa ), 

hence d- and q-axis saturation factors can be determined. The least square errors fitting 

technique is used in  [80] to determine these coefficients.   

 

  

 

 

  

 

 
 
 
 
 
 
 
 
 
 
 


