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ABSTRACT 

Uncertainty surrounds the understanding of natural variability in hydrologic extremes such as 

droughts and floods and how these events are projected to change in the future. This thesis 

leverages Global Climate Model (GCM) data to analyse 738 year streamflow scenarios in the 

Nelson-Churchill River Basin. Streamflow scenarios include a 500 year stationary period and 

future projections forced by two forcing scenarios.  

Fifty three GCM simulations are evaluated for performance in reproducing observed 

runoff characteristics. Runoff from a subset of nine simulations is routed to generate naturalized 

streamflow scenarios. Quantile mapping is then applied to reduce volume bias while maintaining 

the GCM’s sequencing of events.  

 Results show evidence of future increases in mean annual streamflow and evidence that 

mean monthly streamflow variability has decreased from stationary conditions and is projected 

to decrease further into the future. There is less evidence of systematic change in droughts and 

floods.  
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CHAPTER 1 

Introduction 

A reliable water supply is a basic requirement for civilization, important for many purposes 

including drinking, agriculture and energy production. Traditionally, hydrologic infrastructure 

which civilization relies on is planned, designed and operated based on observations (e.g., 

precipitation, streamflow), and is often designed to withstand extreme events (Olsen et al., 

2015). However, observations sample a finite period of time that may or may not adequately 

capture the full range of natural variability. While considerable information resides within 

observational records, the question of how observations compare to past occurrences and future 

projections remains. Traditionally, hydrologists use stochastic and paleo approaches to 

supplement the understanding of natural variability and past hydrology. Evolving climate science 

coupled with modeling is also used to enhance the understanding of hydrology and how 

hydrological processes are projected to change into the future.  

Depending on the application, water supply may be defined using different variables and 

at various temporal and spatial scales. For example: meteorology and urban planning may 

consider hourly precipitation intensity or daily total precipitation at a specific location. 

Agricultural studies may consider seasonal precipitation, soil moisture and ground water levels at 

a regional scale. Frequency-based design for infrastructure may consider the magnitude and 

timing of daily peak streamflow (flood control infrastructure) or peak water levels (transportation 

infrastructure). Drinking water supply infrastructure may consider annual precipitation, 

watershed yield, and storage capacity to reliably supply daily demand. And for large hydropower 

systems with manageable storage, water supply parameters of interest include monthly and 
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annual inflows across large regions, or watersheds. Where many variables exist to define water 

supply (Koshida, Cohen and Mortsch, 2015), they are all intrinsically linked through the 

hydrological cycle. In many cases, streamflow is a fundamental parameter that represents area 

aggregated water supply within a basin of interest.  

In Manitoba, Canada, Manitoba Hydro provides approximately 98% of the electric 

energy via 15 hydroelectric generating stations on five river systems (Manitoba Hydro, 2013a). 

Water supply for these generating stations is characterized in terms of monthly streamflow 

within the Nelson-Churchill River Basin (NCRB). The NCRB spans a diverse geographic area 

covering approximately 1.4 million square kilometres, draining into Hudson Bay in northern 

Manitoba. Over the observation period from 1912 to 2014, the NCRB has experienced water 

supply conditions that include both extended dry periods and large flood events. Periods of low 

streamflow are termed hydrologic droughts and are important considerations for the planning, 

design and operation of Manitoba’s energy infrastructure. Drought is identified as a corporate 

risk with an estimated impact of up to $2 billion (Manitoba Hydro, 2007). Manitoba Hydro is 

primarily concerned with energy drought (a form of socio-economic drought) instead of 

hydrologic drought; however, the two variables are closely related. 

Changes in mean annual streamflow, mean monthly streamflow, maximum monthly 

streamflow and multiyear hydrologic droughts are of interest in the planning, design and 

operation of hydropower infrastructure. Mean streamflow can inform powerhouse capacity 

design whereas maximum monthly streamflow provides information that can help inform 

operations planning. A critical, multi-year, hydrologic drought can provide practical dependable 

energy limits for system planning. At Manitoba Hydro, the critical drought is currently set as the 

lowest water conditions on record, which occurred in Manitoba in the late 1930s to early 1940s. 
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Several other major drought events have occurred in the observed record and Manitoba Hydro 

acknowledges that a drought worse than the drought on record is possible (Manitoba Hydro, 

2013b). Manitoba Hydro’s regulators and regulatory process interveners have inquired about 

how climate change might impact the critical drought. As is the case for many global drought 

studies, no definitive answer currently exists (Trenberth et al., 2014).  

Anecdotal evidence such as entries in Hudson’s Bay Company archives (Ball, 1983; 

Rannie, 1999), statistical evidence (Burn and DeWit, 1996; Akintuğ, 2006; Kubursi and Magee, 

2010) and paleo evidence (Jones and Mann, 2004; Sauchyn, Vanstone, and Perez-Valdivia, 

2011) suggest that past variability may have exceeded observed variability in the NCRB which 

may have produced more extreme droughts or floods. Further evidence also suggests that a 

warmer climate can intensify the hydrologic cycle (Huntington, 2006) and can reduce snow 

accumulation while accelerating snowmelt (Shrestha, Dibike and Prowse, 2012). This evidence 

along with statements that stationarity assumptions have been compromised (Milly et al., 2008; 

Todhunter, 2013) raise further questions on the suitability of observed streamflow data for use in 

future hydrologic assessment. These questions place pressure on engineers and water managers 

to consider climate change impacts on planning, design and operations (Wood, Lettenmaier and 

Palmer, 1997). However, due to large uncertainties in projecting future hydrology (Chen et al., 

2011) and a lack of established standards to incorporate climate change impacts on future 

projects, little direction is currently available to guide industry (Olsen et al., 2015). In many 

regions such as northern Manitoba, these concerns are accompanied with other issues that 

include shorter observational records and coarse spatial coverage (Coulibaly et al., 2013). 

Recent advances in Global Climate Models (GCMs) provide a potential source of 

information to explore natural variability and future projections. GCMs numerically simulate the 
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Earth’s physics, including hydrological processes. Like many models, GCMs are not perfect and 

can contain bias when compared to observations (Trenberth, 1997; Flato et al., 2013). Despite 

challenges in simulating observed patterns, GCMs are tools that can provide insight and enhance 

our understanding of natural climate variability and hydrologic response to increased greenhouse 

gas concentrations. Existing studies generally focus on coupling GCM temperature and 

precipitation projections with a calibrated hydrological model to analyze future streamflow 

projections (e.g., Wood et al., 1997; Chen et al., 2011; Brekke and Prairie, 2009; Hirabayashi et 

al,, 2008; Bohrn, 2012; Shrestha et al., 2012). These existing studies typically focus on a 30 year 

baseline period (e.g., 1971-2000) and a 30 year future period (e.g., 2041-2070) and can require 

substantial computing resources. GCMs from the latest Coupled Model Intercomparison Project 

Phase 5 (CMIP5) offer finer spatial resolutions and improved land surface schemes with 

hydrologic schematic complexities similar to those in distributed hydrologic models (Sperna 

Weiland et al., 2012b), nudging researchers to consider hydrological output from GCMs directly. 

The methods and results within this thesis directly couple the GCM’s internally simulated runoff 

with a modified version of the WATROUTE (Kouwen, 2012) routing model to analyze 738 

years of streamflow in three periods: a 500 year stationary period, a historic period spanning 

1861 to 2005, and a future period spanning from 2006 to 2100. These streamflow scenarios 

leverage GCM data to enhance the understanding of hydrologic processes in the NCRB and 

analyze future streamflow projections including hydrologic droughts and floods.  
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1.1 Objectives 

The overall objective of this research is to leverage 738 years of GCM simulated runoff data to 

assess how streamflow in the historic period (1912-2005) compares to natural variability and 

future projections with respect to key hydrological variables in the NCRB. This research focuses 

on naturalized streamflow in the NCRB over the period of 1362-2099 and relies primarily on 

simulated GCM data from CMIP5. The methods used in reaching this overall objective represent 

a simplified approach to addressing a complex issue. Acknowledging the simplifications and 

uncertainty inherent in this research, results should be viewed as initial academic findings. 

Results however, will contribute to an enhanced understanding of long term streamflow in the 

NCRB. In order to effectively address the overall objective, four sub-objectives are identified 

and used for thesis organization: 

1. Evaluate GCM skill in simulating observed hydrological patterns; 

2. Develop a model to route GCM runoff and produce streamflow at key locations; 

3. Adapt existing bias correction methods, typically used for meteorological variables, for 

application to the correction of streamflow time series; and 

4. Assess how streamflow in the historic period (1912-2005) compares to natural variability 

and future projections with respect to key hydrological variables using streamflow 

simulations from 1362-2099.  
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1.2 Thesis Organization 

Chapter two presents a review of literature related to this research and objectives. The literature 

review builds background information, introduces current understanding, approaches, results and 

gaps in the research.  

Chapter three presents a description of the study area, the NCRB and various sub-basins 

considered and the various temporal domains (periods).  

Chapter four presents the methodology and is divided into sections that align with the 

research objectives. Sections include methodology for evaluating GCM skill in reproducing 

observed hydrological patterns (Objective 1), development of a routing model based on a 

modified WATROUTE scheme (Objective 2), adaptation of existing bias correction methods for 

use in correcting streamflow time series (Objective 3), and time series analysis of bias corrected 

streamflow for key hydrological variables (Objective 4). 

 Chapter five presents results and discussion, following a similar format to chapter four, 

including subsections that align with each objective. 

Chapter six presents conclusions and recommendations for further study.  
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CHAPTER 2 

Literature Review 

Extending knowledge about regional hydrology, beyond observational records, has been an area 

of interest in hydrologic literature for many years. The interest applies to extension of records 

backwards in time and also includes projecting hydrology into the future. A common goal in the 

scientific literature is to increase understanding of how observed hydrologic records compare to 

the potential range of natural variability and increase understanding of how hydrology is 

projected to change in the future. From an academic perspective, this understanding is important 

for improving climate science and modeling. From a practical perspective, this understanding is 

important for planning, design and risk assessment; especially in consideration of extreme 

droughts and floods.  

Temporal windows used to define observed and future periods vary among studies but 

are generally defined as follows: The observed period coincides with a time window where direct 

measurements (typically instrumental) exist and the future period coincides with a window 

beyond observations. Theoretically, there is no end to the future period; however, when based on 

emission scenarios and GCM projections, the future period is limited by the modeled data. The 

potential range of natural hydrologic variability can be studied using several approaches, which 

generally require long term (e.g., ≥ 500 years) records.  Stochastic approaches, which use 

statistical models to generate hydrologic variables typically assume stationary conditions 

(statistical properties do not change with time) and do not have a time signature. Proxy 

approaches, which relate hydrologic variables to a measurable attribute, provide information that 

corresponds to specific points in time. Both stochastic and proxy approaches have been applied 
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in traditional assessments of long term hydrology and can provide information on how hydrology 

can vary naturally over time (e.g., Burn and DeWit, 1996; St. George, 2007). With recent 

advances in climate science and modeling, researchers have also turned to GCMs for assessment 

of long term hydrology (e.g., Milly, Dunne and Vecchia, 2005). As a result of the various 

approaches for assessing long term hydrology, a wide range of literature exists. Some studies 

seek to compare observed droughts and floods with stationary stochastic simulations or proxy 

data, whereas other studies seek to project future changes in average streamflow. Some studies 

focus on streamflow whereas others focus on precipitation, soil moisture or time integrated 

variables for drought analysis.  

For organization, this literature review is divided into three sections: The first section 

presents a sample of literature that applies traditional methods for studying hydrologic droughts 

and floods. The second section presents background literature on climate modeling and the third 

section presents literature that employs GCMs for assessment of long term hydrology. The three 

part structure introduces key topics to provide background and understanding on the objectives 

and methods set in this thesis. The structure follows a somewhat chronological order that begins 

with traditional approaches, introduces newer climate science and ends with recent applications 

of newer climate science tools to answer traditional questions. The sections transition from views 

about the past to views about the future and identify gaps in existing literature to build an 

understanding for the methods chosen in this thesis. The spatial domains in the reviewed 

literature range from the global scale to smaller watershed scales. Where possible, a global 

perspective is presented. However, since many large northern basins have unique hydrological 

characteristics, such as snowmelt dominated streamflow regimes; this review also focuses on the 

literature pertaining to the NCRB and other large northern basins. Furthermore, where 
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information is available for the NCRB, this literature is highlighted as it is relevant to this thesis 

and its objectives.     

2.1 Traditional Assessment of Long Term Hydrology 

Traditional assessments of long term hydrology typically follow stochastic approaches or proxy 

approaches. Stochastic approaches rely on statistical relationships derived from observations to 

generate synthetic time series of data for analysis. Proxy approaches rely on physically-based 

relationships between a variable of interest (e.g., streamflow) and a measurable quantity (e.g., 

tree ring width). Unlike stochastic approaches, proxy approaches have a corresponding time 

signature. In some studies, the two approaches are blended such that information obtained 

through proxy approaches helps enhance information obtained from observations to develop 

stochastic models (e.g., Henley et al., 2011). For the purposes of this literature review, stochastic 

and proxy approaches are reviewed separately.  

2.1.1 Stochastic Approaches 

Stochastic approaches have been applied extensively in hydrology, relying on statistical 

relationships to generate time series data from an assumed distribution. The distinction between 

stochastic and statistical analysis is that stochastic analyses incorporate a time component (i.e., 

generates a time series) whereas statistical analyses are used to assess magnitudes only (Caissie 

and El-Jabi, 1999). Stochastic approaches are practical and computationally inexpensive, which 

increases their appeal.  

Stochastic models, of varying complexity have previously been explored for hydrologic 

analysis in the NCRB. Burn and DeWit (1996) performed drought analysis using 80,000 years 

(1000 simulations of 80 years each) of simulated streamflow from the SPIGOT multi-site 

stochastic model. The analysis used monthly streamflow observations from a period of 1912 to 
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1990 or from 1957 to 1990, depending on the location. Drought severity, duration and magnitude 

were considered, however, the authors reasoned that magnitude and duration were less attractive 

parameters. Burn and DeWit (1996) characterized the most severe observed drought (124 10
9
 

m
3
) as a one in 79 year event when using only the historic record, and as a one in 381 year event 

based on the stochastic simulations. Furthermore the authors noted that the worst stochastically 

simulated drought was nearly three times more severe than the observed event. 

 Akintuğ (2006) studied system-wide energy drought in the NCRB following a similar 

approach to Burn and DeWit (1996) but incorporated a longer observed record (1912 to 1998) 

and tested nine stochastic modeling frameworks. Among the models were a traditional 

autoregressive model, and a Markov-Switching (MS) model. Autoregressive models were used 

to predict a given years’ streamflow based on the previous year whereas MS models allowed for 

different behavior in dry and wet regimes. MS models have been used application in hydrology 

as early as 1975 and have been applied in simulating mean annual discharge for the Niagara 

River (Akintuğ and Rasmussen, 2005). Both single site with spatial disaggregation models and 

multi-site models were applied in the NCRB by Akintuğ (2006).  The importance of maintaining 

spatial cross correlation was noted, and various generation and disaggregation schemes explored 

with uncertainties in statistical parameters and data (missing and estimated) considered. One 

million years were simulated (1000 sequences of 1000 year each) for the various stochastic 

models. Model results were compared, and advantages and disadvantages of each model were 

noted. Using the 1912 to 1998 data, return periods for the critical energy drought (3309 gigawatt 

hours; GWh) ranged from 200 years to 2380 years. Using a shorter period of 1930 to 1998, 

return periods varied from 120 years to 740 years. Akintuğ (2006) noted that the single-site 
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model frameworks may not have been the best choice and also noted issues with the multi-site 

model’s ability to accurately simulate autocorrelation. 

 Kubursi and Magee (2010) conducted an independent risk review for Manitoba Hydro 

including an assessment of drought using autoregressive models and extreme value models based 

on the generalized Pareto distribution. The generalized Pareto distribution was selected for its 

ability to better account for tail end risk (e.g., drought), which could be underestimated when 

using normal distributions. Reasoning that approximately 70% of Manitoba Hydro’s risk is 

volumetric, the authors analyzed stochastic simulations of monthly streamflow and noted that 

long term predictions are valuable in making decisions on future generation investments. Instead 

of assigning return periods to specific events, the authors instead considered how their 94-year 

stochastic model simulations compared to observations. Results indicated that the observed 

minimum annual water flow, minimum five-year mean water flow and minimum monthly water 

flow was captured within the 95% intervals of the various simulations. However, the models 

indicated that more extreme (lower) minimum annual water flows and minimum five-year mean 

water flows were possible. The authors acknowledged that their methods assume stationarity and 

additional uncertainties exist due to climate change. However, they did not offer guidance on 

how to incorporate climate change.  

Additional studies, not specific to the NCRB, exist that have applied different stochastic 

approaches. For example, Sadri and Burn (2014) combined statistical distributions from copula 

families and methods to substitute space for time in shorter records (regional frequency analysis) 

and analyzed joint probability distributions (severity and duration) of hydrologic droughts on the 

Canadian prairies. While regional studies have contributed to understanding drought risk at 

smaller spatial scales, they have offered limited information towards understanding basin-wide 
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drought risk in spatial domains such as the NCRB. In some cases, the application of methods 

from regional studies could be applied to enhance understanding in the NCRB. 

Stochastic approaches have also been used to assess flood risk. Todhunter (2012) 

questioned the assumption of stationarity in flood frequency analysis for the 100 year flood on 

the Red River at Grand Forks, North Dakota and noted that examination of assumptions is 

required, especially in the future as climate change and other factors can lead to increased flood 

risk. Similarly, Ehsanzadeh, van der Kamp and Spence (2011) demonstrated monotonic and step-

like nonstationary behaviour in the Lake Winnipeg watershed annual runoff, precipitation, 

maximum discharge, and runoff ratio records. The observed nonstationary behaviours were 

attributed to natural climate variability and climate change. Caissie and El-Jabi (1991) applied a 

stationary stochastic extreme value model (using an exponential distribution) and analyzed daily 

flood peaks across Canada. The authors described benefits of using a relatively simple 

exponential distribution and argued that more complex multi-parameter distributions may fit 

better but didn’t guarantee a better representation of flood phenomena. The authors noted 

difficulties in applying the stochastic model consistently across Canada due to different flood 

driving mechanisms, climatic and physiographic characteristics. However, a majority of Alberta, 

Saskatchewan, Manitoba and northwestern Ontario were grouped into three regions. 

Several studies have addressed non-stationarity and have explored methods for 

incorporating climate change through statistical approaches. For example, climate models, 

hydrological modeling and flood frequency analysis have been be combined to assess changes to 

future extreme floods (Chernet, Alfredsen and Midttømme, 2014, in Norway; Camici et al., 

2014, in Italy). Salas and Obeysekera (2013) presented a different approach for incorporating 

non-stationarity into hydrologic frequency analysis where time variant parameters were used in 
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statistical distributions. Demonstrating limitations in assuming a stationary precipitation record, 

Kuo and Gan (2015) applied regional climate models for computation of statistical properties in 

various time periods, and found an increased risk of future extreme rainfall in central Alberta, 

Canada.  

In a comprehensive review of floods in future climates, Whitfield (2012) provided insight 

into complexities surrounding the study of present floods and projection of future floods. 

Whitfield (2012) recognized the greater atmospheric water holding capacity in a warmer climate 

but balanced this view with inconsistent evidence that historical floods have increased in some 

regions and decreased in others. This behaviour was similar to global future water cycle studies, 

which projected wet areas to get wetter and dry areas to become drier (e.g., Trenberth et al., 

2014; Collins et al., 2013); but it is important to also consider how driving flood mechanisms 

might change in the future. While recognizing that GCMs did not reproduce extreme events very 

well, it was proposed that multiple GCMs and hydrological models are required to properly 

address uncertainty. Whitfield (2012) also recognized that longer records, such as those available 

from proxy approaches, can provide interesting context in comparison of observed floods to long 

term climate variability and assessment of how extreme floods behave in warmer or cooler 

climates. In a more recent study, Burn and Whitfield (2015) addressed trends in Canadian rivers 

with different flood mechanisms. A majority of Canada, including the NCRB was characterized 

by snowmelt dominated floods (nival), which could decrease due to reduced snowpack in a 

warmer climate. However, flood risk for rivers with rainfall dominated flood regimes (pluvial) 

could increase due to increased extreme precipitation events.  
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2.1.2 Proxy Approaches 

Proxy approaches are popular for their application in assessing long term meteorological and 

hydrological time series. Proxy approaches rely on relationships between a variable of interest 

(e.g., climatic variables such as temperature or hydrologic variables such as streamflow) and a 

measurable proxy (e.g., tree ring width, or physical and chemical composition of ice cores and 

lake sediments). Relationships and proxy records are then combined to produce reconstructed 

time series of the variable of interest. Studies relying on proxy data provide extended records 

into the past and are often given the paleo- prefix (e.g., paleoclimate or paleohydrology) 

denoting the ancient nature of the data or study.  Since the spatial distribution of suitable proxy 

data can vary, most studies focussed on one proxy record, one variable of interest and one 

region. Compared to stochastic approaches, proxy approaches can produce time series that 

correspond to a specific point in time and can be useful in assessing how statistical properties 

have changed with time (non-stationarity). These properties make proxy approaches valuable in 

understanding stationarity and examining how small changes in mean conditions can result in 

larger changes to extremes (Milly et al., 2008).  

Within the NCRB, several tree-ring based studies exist that examined past meteorological 

and hydrological conditions on the Canadian Prairies. Sauchyn, Vanstone and Perez-Valdivia 

(2011) used tree rings in the upper Saskatchewan River basin to reconstruct mean streamflow 

from 1063-2007 and tested the hypothesis that observed record does not capture the entire range 

of experienced variability. The authors specifically noted that the wettest reconstructed period 

occurred in the late 19
th

 century to the early 20
th

 century but periods of multi-decadal droughts 

occurred prior to settlement and included droughts lasting 30 years up to nearly a century of 

below mean water conditions in the 14
th

 century. Of particular interest, the authors correlated dry 
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and wet periods to large scale climate patterns such as the El Niño Southern Oscillation (ENSO) 

and the Pacific Decadal Oscillation (PDO).   

 St. George and Nielson (2002) correlated tree ring records to summer precipitation 

anomalies in the Red River Basin since 1409. It was found that pre-settlement precipitation 

variability exceeded what is recorded in observations. Consequently, the authors cautioned that 

regional drought and flood planning based only on the observed record may not capture the 

potential range that is possible due to natural variability. A similar study by St. George (2007) 

correlated tree ring records to various streamflow and precipitation records in the Winnipeg 

River Basin. Weak correlations were found between tree rings and individual streamflow or 

climate variables but high growth was generally correlated with cool, wet summers and low 

growth was correlated with warm, dry summers. Overall, there was no clear evidence that the 

past variability in summer precipitation was more extreme prior to the observed record. St. 

George (2007) also noted that there is considerable spatial heterogeneity and as a result, it may 

not be appropriate to characterize large regions such as the Canadian Prairies as being either wet 

or dry. 

 Beyond the NCRB, Woodhouse et al. (2010) used tree rings to reconstruct 1,200 years of 

streamflow in the southwestern United States. The authors showed that the recent observed 

drought was exceeded in the past. In the Peace-Athabasca Delta (within the Mackenzie River 

Basin), Wolfe et al., 2006 used lake sediment cores to reconstruct flood frequency for the past 

300 years. The authors presented evidence of multi-decadal intervals between major floods and 

corroborated findings with anecdotal evidence such as Hudson Bay Company archives. Burn, 

Wychreschuk and Bonin (2004) combined 130 years of tree ring reconstructed annual 

streamflow records with observed records to better inform stochastic generation of streamflow in 
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the Athabasca River. The results indicated that estimation of drought quantiles could be 

improved by incorporating paleo data, helping to narrow the confidence intervals compared to 

using only the observed record. Brekke and Prairie (2009), Henley et al. (2011), Bonsal et al. 

(2013) and Ault et al. (2014) have also studied the incorporation of paleo data by blending it 

with observed records or future climate projections to obtain a more comprehensive picture of 

past, present and future water supply. Bonsal et al. (2013) considered multi-year meteorological 

droughts over the period of 1365-2100 and showed that longer droughts occurred in paleo 

records compared to observed records and that depending on which drought parameter was used 

(Simple Precipitation Index, SPI; or Palmer Drought Severity Index, PDSI), future droughts 

could become more or less frequent and last for longer or shorter durations. The authors 

highlighted the importance of combining precipitation and evaporation effects, as done in the 

PDSI method that indicated longer droughts that occurred more frequently into the future. 

Sheffield, Wood and Roderick (2012) and Trenberth et al. (2014) argued that temperature-based 

evaporative modeling (such as PDSI using the Thornwaite algorithm) can overestimate historic 

and future projections of global drought and suggested that a more physically based algorithm 

such as the Penman-Monteith equation is appropriate. Sheffield, Wood and Roderick (2012) also 

cautioned that paleoclimate drought reconstructions using tree rings could be susceptible to the 

Thornwaite algorithm’s sensitivity to temperature changes and other environmental factors such 

as increased growth due to atmospheric carbon dioxide (CO2) concentrations. These special 

circumstances require further consideration when interpreting results from proxy approaches. 

Appropriate interpretation of proxy data also requires a proper understanding of the relationships 

between proxy variables and the climate.   
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2.2 Climate Modeling 

Numerical modeling of the earth’s climate is a broad area of research, bringing together many 

different disciplines and areas of expertise (Trenberth, 1997). The Intergovernmental Panel on 

Climate Change (IPCC) was formed by the United Nations Environment Programme (UNEP) 

and the World Meteorological Organization (WMO) in 1988 and acts as a scientific body for 

evaluating climate change research, providing guidance and producing assessment reports which 

summarize the current state of knowledge. The IPCC also plays a key role in preparing 

atmospheric forcing scenarios for use in the Coupled Model Intercomparison Projects led by the 

World Climate Research Programme’s Working Group on Climate Modelling. Coupled models 

are a generation of climate models that specifically recognize the interactions between parts of 

the climate system. At a high level, the climate system can be defined as the atmosphere, 

hydrosphere, cryosphere, land surface, biosphere, and geosphere and the interactions between 

these various components (McGuffie and Henderson-Sellers, 2005). The realm of climate 

modeling can include very specific topics but for many researchers, climate models are tools and 

their output is used for impact assessments. This section covers some climate modeling basics, 

some specifics relating to climate model’s representation of hydrology and the application of 

climate models in hydrological impact assessments.  

2.2.1 Developing Future Climate Scenarios 

The IPCC and other literature provide good practise guidance for using climate models to 

develop future climate scenarios. Although the development of future climate scenarios for 

specific projects may require special consideration due to unique circumstances, there are several 

common considerations relevant to most studies. For example, several temporal domains are 

typically required to define baseline and future time periods. Other examples include the finite 
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number of future atmospheric forcing scenarios (sometimes referred to as greenhouse gas 

scenarios) available to drive climate models, the number of climate models with available data 

and the sources of uncertainty to consider when developing and assessing future climate 

scenarios. The sections below introduce some of the common considerations and include further 

detail as it pertains to the future climate scenarios used in this thesis  

Selection of the temporal domain is an important early step in developing future climate 

scenarios. At the basic level, one fixed future period and one fixed baseline period is defined. In 

some instances, multiple baseline and future periods or continuous time spans are considered. 

The baseline period, sometimes referred to as the reference period, is generally selected for a 

historic period such that observations are available. A baseline period should be selected such 

that it covers a period of sufficient duration, captures a large portion of natural variability and 

includes various anomalies such as droughts and floods. Whereas in many cases, a typical 30 

year period such as that used by the WMO might be sufficient, consideration should be given to 

incorporate longer periods in order to capture multidecadal variability. In many cases, such as 

those focusing on extreme events, a baseline period longer than 30 years is warranted (IPCC-

TGICA, 2007). Similarly, Kundzewicz and Robson (2004) recommended the use of at least 50 

years of record for climate change detection to avoid apparent trends and obscure climate change 

signals produced by natural climate variability. In the literature, future periods were typically of 

the same duration as the baseline periods. In the case of fixed 30 year domains future periods 

were often defined as the 2020s (2010-2039), 2050s (2040-2069) and 2080s (2070-2099). 

One of the major inputs to climate modeling, and an important consideration for 

developing future climate scenarios is the atmospheric forcing used to drive the model. 

Atmospheric forcing scenarios prescribe the changing conditions that the climate responds to. In 
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the past, atmospheric forcing was prescribed by the IPCC’s Special Report on Emission 

Scenarios (SRES; Nakicenovic et al., 2000). The latest climate models in CMIP5 use 

atmospheric forcing prescribed by Representative Concentration Pathways (RCPs). RCPs are 

used to prescribe the levels of various anthropogenic induced forcing agents (e.g., GHGs and 

aerosols) in the atmosphere. RCPs include assumptions about societal evolution and represent 

different demographic, social, economic, regulatory, technological, and environmental 

developments. RCPs are used in GCMs to simulate the evolution of climate over time in 

response to changes in atmospheric forcing agents and can be useful in exploration of uncertainty 

due to future GHG scenarios. RCPs were developed by the research community, independent of 

the IPCC and were named according to their radiative forcing in 2100. An overview of the four 

RCPs can be found in van Vuuren et al. (2011) and are summarized in Table 1. Figure 1 

illustrates RCP projections of CO2 concentrations and modeled global surface warming. Sanford 

et al. (2014) showed that emission rates are currently tracking just above RCP8.5.  

Table 1 - Description of Representative Concentration Pathways (van Vuuren et al., 2011) 

RCP Description CO2 equivalent  

RCP8.5 Rising radiative forcing pathway leading to 8.5 W/m
2
 by 2100 ~1370 ppm 

RCP6.0 Stabilization without overshoot pathway to 6 W/m
2
 at stabilization after 2100 ~850 ppm 

RCP4.5 Stabilization without overshoot pathway to 4.5W/m
2
 at stabilization after 2100 ~650 ppm 

RCP2.6 
Peak radiative forcing at ~3W/m

2
 before 2100 and then a decline to 2.6 W/m

2
 

by 2100 
~490 ppm 
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Figure 1 - RCP CO2 concentrations (left) and projected global surface warming (right). 

Data extracted on July 8, 2013 from KNMI Climate Explorer (climexp.knmi.nl; van 

Oldenborgh and Burgers, 2005).   

In ideal situations, modelling centers and researchers conducting impact assessments 

would use all available atmospheric forcing scenarios. However, due to resource limitations, it is 

often not possible to assess all RCP scenarios and researchers must make decisions on which 

RCP(s) to consider. At a basic level, one RCP can be used. However, this decision hinders a 

complete assessment of uncertainty since future greenhouse gas and aerosol emissions are a 

primary source of uncertainty (IPCC-TGICA, 2007). The North American Regional Climate 

Change Assessment Program (NARCCAP) used only one emission scenario however, the 

program was designed to primarily focus on climate model uncertainties (Mearns et al., 2012). If 

a considerable amount of certainty in a single RCP projection existed, this might provide some 

justification for only using one RCP scenario. In most cases, researchers consider two or more 

RCPs to capture a range of potential future outcomes. 

The end use of the RCP is to drive a climate model which simulates the temporal 

evolution of climate parameters as a result of the specified atmospheric forcing. From these 

climate models, variables of interest such as temperature and precipitation can be examined. Not 

all climate models are equal as they can use various physical schemes, parameterizations, 
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resolutions and numerical solution methods. In some cases coupled climate models might share 

an ocean model but use different atmospheric models. Furthermore, not all climate models 

contain output for all RCPs and for all variables at desired temporal resolutions which could 

limit the number of models available for assessment. A more detailed description of climate 

models is provided in Section 2.2.2, but at this point it is important to recognize that climate 

models are the primary source of climate change data for impact assessment studies. Climate 

model data generally requires post processing to be useful in impact assessments and as such, 

further work is required to develop future climate scenarios from climate model data.  

Several methods and guidelines exist for developing future climate scenarios that can 

help guide researchers in selecting RCPs, climate models and post-processing methods. The 

IPCC and other researchers have published guidance on: assessing and combining multi-model 

projections (Knutti et al., 2010a; Knutti et al., 2010b; Pierce et al., 2009), treatment and 

communication of uncertainties (Mastrandrea et al., 2010) and the use of scenario data for 

impact assessments (IPCC-TGICA, 2007; Mote et al., 2011). 

Evaluation of climate model performance is an important consideration for impact 

assessments. Ideally, climate models would produce perfect representations of observed climate, 

which may increase the confidence in the climate model’s ability to project future climate. 

However, for many reasons (e.g., coarse resolution, parameterizations, model drift, natural 

climate variability, theoretical understanding of the climate) today’s climate models still contain 

bias (Reichler and Kim, 2008). Bias correction of climate model data is a form of post-

processing and is discussed later in this chapter in Section 2.2.2.3.  

Researchers have found that combining multiple models often leads to improved baseline 

performance. Considerable effort has gone into assessing climate model performance in attempts 
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to find a preferred subset of climate models from the entire suite (ensemble) of available models. 

Knutti et al. (2010b) and Pierce et al. (2009) showed that performance of the ensemble continued 

to improve for up to five models after which the performance gains become less. The authors 

also suggested that the mean of a few good performing models may outperform the entire multi 

model ensemble which may include models with poor performance. However, the climate state 

derived by averaging models may not be physically realistic and presentation of a multi-model 

mean may be misleading without further discussion. As an alternative to taking the mean of a 

subset of good performing models, some researchers have assigned weights based on 

performance. However, care should be given such that multiple simulations from the same model 

are not artificially assigned greater weights (Mote et al., 2011). 

Although no clear directive exists on a preferred subset of climate models to select, the 

following general guidance is useful in preparing future climate scenarios: Researchers may 

select a subset of models for a particular analysis but should document the reasons why (Knutti 

et al., 2010a). It has also been suggested that researchers may choose to discard a particular 

climate model due to poor regional performance (Knutti et al., 2010a) or due to lack of available 

data (as done in Reichler and Kim, 2008). Though some authors have suggested using a multi-

model mean as a best estimate (Reichler and Kim, 2008), other authors have suggested 

presenting all model results without combination as a useful choice that benefits adaptation 

planning (Knutti et al., 2010b). In addition to considering multiple models, Mote et al. (2011) 

emphasised the recognition and understanding of various uncertainty sources including GCM 

selection, future greenhouse gas emission scenarios and natural climate variability. It is also 

important to consider the regional and time varying importance of each of these uncertainty 

sources (Hawkins and Sutton, 2011). 
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 Similar to how good performance may increase confidence in a climate model’s ability to 

simulate the future; agreement among multiple climate models’ future projected changes may 

also increase confidence in a particular result. This multi model agreement provides greater 

evidence regarding the direction or magnitude of change into the future. In some cases with 

strong agreement on direction and magnitude of change, such as projected temperature increases, 

researchers might assign confidence intervals to the magnitude of the projection. In other cases 

with strong agreement on direction but less agreement on magnitude, researchers might assign 

confidence to the direction of change (e.g., increasing future precipitation). It is important to 

note, however, that while model agreement can increase confidence in a particular result, it does 

not necessarily infer greater likelihood (Knutti et al., 2010a). Confidence can be expressed as a 

qualitative measure (e.g., low, medium, high) as a function of model agreement and the amount 

of evidence. Mastrandrea et al. (2010) provides criteria where likelihood may be assigned. One 

such criteria states that when “a likelihood or probability can be determined for a variable, for 

the occurrence of an event, or for a range of outcomes (e.g., based on multiple observations, 

multiple ensemble runs, or expert judgment): Assign a likelihood for the event or outcomes, for 

which confidence should be ‘high’ or ‘very high’.” The use of the IPCC’s likelihood scale must 

be adapted for individual studies but provides a good means for communicating results. The 

scale also provides a good tool and language for treatment of uncertainty as is important in all 

climate change studies. Olsen et al. (2015) reiterated the IPCC’s emphasis on the importance of 

communicating the difference between confidence and likelihood, and noted that likelihood 

should only be assigned when confidence in a projected change was high. 

 Since the confident application of future climate scenarios intrinsically relies on climate 

models that perform reasonably well, it is important to consider details on various models and 
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evaluation techniques. Furthermore, it is important to consider techniques to correct bias 

identified in the climate model performance evaluation.     

2.2.2 Climate Models, Evaluation and Bias Correction 

The overall development and assessment of future climate scenarios should follow the general 

best practise guidance described in the previous section. In addition, climate scenario 

development is limited by available climate models, their output, and should follow established 

methods for evaluation and post processing techniques. A brief introduction to climate models 

and climate model evaluation is provided below along with specific examples of established bias 

correction methods.  

2.2.2.1 Climate Model Types and Components 

There are several types of climate models with varying degrees of complexity. Climate models 

have evolved with time from coarse models of the atmosphere only to finer resolution coupled 

models such as Atmosphere-Ocean General Circulation Models (AOGCMs) that simulate the 

atmosphere and ocean and can also include the land surface, ice processes and other earth 

components. Earth Systems Models (ESMs) are the most recent type of climate model which 

include AOGCM components as well as biogeochemical processes such as the carbon cycle 

(Flato et al., 2013). Despite the intricate differences among the various types of climate models, 

they can be generally classified into one of two types depending on their spatial domain. Global 

Climate Models (GCMs) refer to climate models that simulate the entire earth whereas Regional 

Climate Models (RCMs) refer to climate models that simulate a limited area of the earth.  

RCMs are occasionally referred to as limited area models or nested models and require 

boundary layer conditions which are typically provided by GCMs. The process of driving an 

RCM with GCM boundary conditions is also known as dynamical downscaling, where 
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downscaling refers to the process of taking coarse resolution data and bringing it down to a finer 

resolution. RCMs are developed using finer spatial resolutions compared to GCMs (e.g., 50 km 

in Mearns et al., 2012) which allows for greater topographical definition. In certain areas, such 

as the head waters of the Columbia River Basin, topographical definition was found to be 

important and influenced the results of hydrologic climate change impact assessments (Gao et 

al., 2011). However, in areas with low topographic relief, such as the Canadian prairies, or for 

longer time-averaged periods (e.g., monthly), the added value from RCMs was less apparent (Di 

Luca, de Elía and Laprise R, 2012).    

 In general, GCMs and RCMs contain at least an atmospheric model and a Land Surface 

Model (LSM) which is often referred to as a land surface scheme. A simple schematic showing 

the interaction between the atmosphere and land surface can be found in Verseghy (2000). 

Modern GCMs also contain an ocean model but many RCM experiments (e.g., Mearns et al., 

2012) do not simulate the ocean, and instead require an ocean boundary layer to be prescribed. 

For many climate impact assessments, model outputs from the atmosphere and land surface are 

of particular interest. Variables of interest from the atmospheric model include surface air 

temperature, precipitation, humidity, surface pressure, zonal and meridional wind speed, short 

wave radiation and precipitable water (in an atmospheric column). Atmospheric variables 

provide some of the inputs required by LSMs which then compute the water and energy balances 

and return other variables including upward moisture flux (evapotranspiration), runoff, snow 

water equivalent, ground temperature, and soil moisture. Typically, LSMs also require 

information about vegetation and soil properties and can include a river and lake routing 

component. Routing is important to delay the delivery of runoff into the oceans that can affect 
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salinity and circulation (Arora and Boer, 1999). However, this routing may be very conceptual 

and routed runoff is not a standard climate model output (Taylor, 2013). 

 Differentiating between LSMs and traditional hydrological models is important for 

understanding differences in model behaviour. Haddeland et al. (2011) defined LSMs as models 

using energy balance approaches to solve vertical exchanges of heat and water at small time 

steps (e.g., hourly). LSMs may utilize information on rainfall, snowfall, temperature, specific 

humidity, surface pressure, radiative fluxes, and wind speed. LSMs are well suited for coupling 

with atmospheric models since most of the required data is readily available. Alternatively, 

Haddeland et al. (2011) suggested that hydrological models are more focussed on solving lateral 

water exchanges and often use approximations to solve the energy balance. Since hydrological 

models generally operate on longer time steps (e.g., daily) and rely on fewer variables (some 

only require temperature and precipitation), hydrological models are common in practical 

applications with limited computational resources and available data. These definitions for LSMs 

and hydrological models are fairly simple and it is important to recognize that complexity varies 

for both LSMs and hydrological models. Several researchers have characterized the additional 

uncertainty introduced by the LSM or hydrological model in climate impact assessments (Chen 

et al., 2011; Prudhomme et al., 2014; Hagemann et al., 2013; Eum, Dibike and Prowse, 2014) 

but recognized that this uncertainty was often masked by larger uncertainties such as GCM 

selection. Furthermore, although LSMs and hydrological models often include a river and lake 

routing routine, it is common for the routing model to be separate from the LSM or hydrological 

model.  

 Another important feature of climate models is their ability to simulate the chaotic nature 

of the climate. This chaos is inherent in the real climate system (Trenberth, 1997) and plays a 
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role in natural climate variability (internal variability). Other causes of natural climate variability 

include ocean circulation patterns (e.g., ENSO, PDO) and changes to the earth’s radiative forcing 

(e.g., due to the sun’s solar activity or volcanic eruptions). Most GCM experiments do not 

include natural variability due to changes in radiative forcing and natural variability due to ocean 

circulation is internally modeled (not forced). However, many GCM experiments are designed to 

explore natural climate variability due to unknowns in initial conditions. These experiments use 

identical GCM configurations and forcing but initialize the model with slightly different initial 

conditions. Due to the chaotic nature of the climate, small perturbations in the initial conditions 

can result in different climate evolutions. GCM simulations from these experiments are referred 

to as runs or members (e.g., run1, run2, run3). Deser et al. (2012a) used a 40 run ensemble and 

demonstrated that natural climate variability affected several decades of future regional 

temperature projections. The authors also noted that precipitation was subject to even greater 

natural variability and advances in climate modeling were not expected to overcome 

uncertainties due to the chaotic nature of the climate. Although natural climate variability has 

been shown to contribute large uncertainty to shorter term climate projections (less than 50 

years), at longer time horizons, other sources of uncertainty such as emission scenario and GCM 

selection play a more significant role (Hawkins and Sutton 2011).  

2.2.2.2 Evaluation of Climate Model Skill 

There are many ways to evaluate climate model skill and many climate change studies include 

some form of model evaluation. One common skill assessment approach is to calculate the error 

(bias) in simulating climatology (mean conditions) over an observed reference period. 

Comparison of climate statistics such as mean conditions or quantiles is preferred due to the 

chaotic nature and natural variability simulated by climate models (e.g., Gao et al., 2011). Many 
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different performance metrics and error terms have been used. Temperature and precipitation on 

various temporal and spatial scales were common performance metrics but some researchers 

have looked at specific variables at specific locations over specific periods of time. Statistical 

measures have become more common in recent model evaluation studies (Flato et al., 2013) but 

it is important to note that currently, no all-purpose metric has been found that identifies the best 

model (Knutti et al., 2010a; Reichler and Kim, 2008) and a climate model that performs well 

with one metric may perform poorly in other metrics. Furthermore, a climate model that has 

good skill in simulating observed climatological conditions does not ensure it is robust for 

projecting future climate, and for certain variables, observational uncertainties in the reference 

climate may be quite large. Regardless of issues with quantifying climate model performance 

and searching for a best model to project the future, it is important to consider a large set of 

models for analysis, and only disregard a model if its performance is very poor with respect to a 

relevant metric. 

 Gleckler, Taylor and Doutriaux (2008) ranked CMIP3 GCMs based on spatial mean 

monthly climatologies for 22 metrics including temperature, precipitation, wind, specific 

humidity and precipitable water content. Root Mean Square Error (RMSE) was the statistical 

measure used to calculate the error. In this study, RMSE was averaged spatially (all grid points 

for a given region) and temporally for the annual cycle (monthly means) over the period of 1980 

to 1999. Although other statistical measures exist including the climate prediction index 

(Reichler and Kim, 2008), the probability plot correlation coefficient (Hirabayashi et al., 2008) 

or several other measures presented in Schoetter et al. (2012) the space-time RMSE was 

presented in Gleckler et al. (2008) as a comprehensive statistical measure that provides an 

overall depiction of GCM performance.  Gleckler et al. (2008) also ranked GCMs using relative 
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RMSE, which compared how individual GCMs perform with respect to the GCM with the 

median performance. For individual performance metrics, relative RMSE provided information 

on the best, median and worst performing models, relative to the entire GCM ensemble. Results 

were presented using “portrait” diagrams that summarize and help to visualize individual model 

performance by metric, using colours to indicate relative RMSE. Gleckler et al. (2008) found 

that averaging results among multiple GCMs often performed better than any individual GCM. 

 Sillmann et al. (2013) evaluated GCM performance for 27 extreme indices based on 

temperature and precipitation data. Following similar methods in Gleckler et al. (2008), RMSE 

and relative RMSE were used to evaluate 31 CMIP5 models for the period of 1981 to 2000. 

RMSE was, however, averaged spatially on annual metrics instead of monthly. Sillmann et al. 

(2013) also used portrait diagrams, found that the GCM median climatology outperformed 

individual GCMs and noted improvement in the ability of CMIP5 GCMs to capture extremes in 

comparison to CMIP3 GCMs. The authors highlighted the importance of considering 

observational uncertainties, noting large differences in observed (reanalysis) datasets. 

Sheffield et al. (2013) evaluated 17 CMIP5 models over North America for the period of 

1979 to 2005 on multiple metrics including runoff using offline LSMs. In some regions, runoff 

was underestimated and peaked earlier in the spring while in dry regions and high latitudes 

runoff was overestimated. However, the authors noted that spatial variability in total annual 

runoff was generally replicated. Over the NCRB, the GCM mean performed quite well with 

respect to mean annual runoff and runoff to precipitation ratio when compared to the average of 

two LSMs. It is important to note that this assessment relied on the accuracy of other models, the 

LSMs, and their forcing data that can introduce additional uncertainty. The frequency of 

occurrence of meteorological and agricultural droughts and excess moisture events were also 
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assessed spatially. Many models reasonably captured spatial patterns but underestimated the 

frequency of occurrence of drought.  

 Other studies have evaluated climate model skill using different metrics, statistical 

analyses to quantify error, and spatial domains. Watterson, Bathols and Heady (2014) found that 

CMIP5 outperformed CMIP3 GCMs and suggested that the improvement is primarily a function 

of model formulation upgrades and increased resolution and not necessarily the inclusion of 

Earth system components. Reichler and Kim (2008) analyzed spatially averaged annual metrics 

and also found increased performance in CMIP3 when compared against previous model 

generations. Improvements were attributed primarily to finer resolutions and more realistic 

parameterizations. Recognizing that sampling uncertainty combined with natural climate 

variability can affect performance and detect-ability of climate change, there is ongoing work to 

incorporate measures of natural climate variability into climate change assessments (Deser et al., 

2012b). Ault et al. (2012) assessed CMIP5 simulations of precipitation at the decadal and multi-

decadal scale over the 1850-2005 period. Overall the CMIP5 ensemble mean underestimated 

decadal variability in several key regions which could have an important influence on the 

assessment of drought risk. The key regions include northern Africa, Australia, Western North 

America and the Amazon but the authors’ concerns were not as pronounced for the NCRB.  

Sushama et al. (2006) and Poitras et al. (2011) included an evaluation of routed Canadian 

Regional Climate Model (CRCM) runoff in the NCRB. CRCM was shown to overestimate 

streamflow volume and overestimate the monthly cycle of streamflow in the Nelson and in the 

Churchill rivers. This outcome is partially explained by the studies not considering diversion 

flows and other forms of regulation, as well as concerns with basin delineation (i.e., the Nelson 

River delineation included the neighbouring Hayes River Basin). 
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Overall, climate model data users should not expect perfect performance from climate 

models but should recognize that evaluation is important for appropriate interpretation of results. 

Climate model errors may result from several sources including shortcomings of the climate 

models or even perceived errors due to uncertainty in observational data. Once errors are better 

understood, users can account for them through bias correction to increase the utility of climate 

model data in impact studies.   

2.2.2.3 Bias Correction of Climate Model Data 

Similar to the many ways of evaluating climate model skill, there are many ways to correct the 

bias present in the climate models. Bias correction techniques range from simple methods that 

only account for changes in monthly mean climate to more complex methods that correct for the 

daily statistical distributions. For climate models, bias correction has traditionally been limited to 

the correction of temperature and precipitation fields where observational data is more reliable 

over large spaces for longer periods of time. Some studies (Shrestha et al., 2012; Wilke, Mendlik 

and Gobiet, 2013; Cheng et al., 2014), however, have bias corrected other variables such as solar 

radiation, relative humidity, wind speed and surface air pressure when observational data is 

available. Other studies such as (Hagemann et al., 2013) chose only to bias correct some GCM 

variables and used other variables directly. Hashino, Bradley and Schwartz (2007) applied bias 

correction techniques to streamflow data in shorter-term forecasting applications to improve 

forecast skill. 

 Studies such as Mpelasoka and Chiew (2009), Watanabe et al. (2012), Chen et al. (2013) 

and Räty, Räisänen and Ylhäisi (2014) have summarized and compared common techniques for 

post-treating climate model data. Generally, there are two categories of techniques. Perturbation 
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methods (e.g., the delta method) scale the observed climate time series based on changes 

between climate modeled future and reference simulations: 

𝐹𝑢𝑡𝑢𝑟𝑒 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 + (𝐺𝐶𝑀𝐹𝑢𝑡𝑢𝑟𝑒 − 𝐺𝐶𝑀𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) (1) 

  

The other category is referred to as bias correction methods which correct the climate model’s 

generated time series based on bias in a reference period (e.g., daily translation):  

𝐹𝑢𝑡𝑢𝑟𝑒 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝐺𝐶𝑀𝐹𝑢𝑡𝑢𝑟𝑒 + (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 −  𝐺𝐶𝑀𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) (2) 

  

Each technique also varies in its complexity ranging from those that correct the mean climate to 

those that correct the entire statistical distribution. Although perturbation techniques offer more 

realistic sequencing of events and can better match observed climate variability, since they are 

based on observations, it is often of interest to look at bias correction techniques to study climate 

change impacts that depend on potential changes to sequencing of events, such as long term 

droughts. Shrestha et al. (2012) suggested that since bias correction methods allow for changes 

in future variability, these methods are more appropriate for climate impact assessments. 

 Of the available bias correction techniques, distribution-based methods such as quantile 

mapping (QM) of empirical distribution functions performed better than mean-based methods as 

they correct the entire distribution instead of just changes in the mean (Chen et al., 2013). 

Various types of QM techniques also exist including techniques that depend on an assumption of 

the statistical distribution and techniques that also incorporate correction of wet and dry days (for 

precipitation).  Adjustment values computed in QM can be applied for various numbers of 

quantiles and either as additive values (i.e., for variables that can be negative such as 

temperature) or as multiplicative factors (i.e., for variables that must be greater than zero such as 

precipitation).  Using fictitious data, Figure 2 illustrates how QM can be applied using empirical 

distribution functions for 20 quantiles in an additive fashion. Panel A shows the observed and 



33 

raw GCM time series. Panel B compares the empirical distribution functions for observed and 

GCM in the reference period. Panel C shows the adjustment values computed at 20 quantiles 

between the Panel B distribution functions. Panel D shows the observed and quantile mapped 

GCM time series which has had the adjustment values applied. 

 

Figure 2 - Illustrative quantile mapping example for correcting monthly flow data in a 

reference period and future period. 

 Despite QM being a commonly preferred approach compared to alternatives, there does 

not appear to be one method that universally performs well (Räty et al., 2014) and there are some 

notable issues: QM assumes that bias is constant in the reference period and future periods. For 

empirical distributions, the bin size for adjustment value computations should be sized 

appropriate to available data. For example, 20 years of data may not contain enough information 

to define adjustment values for 100 quantiles (Chen et al., 2013). Separate QM of individual 

variables can lead to physical inconsistencies, for example when minimum daily temperature and 

maximum daily temperature are corrected individually (Thrasher et al., 2012). QM retains the 

GCM’s strengths and weaknesses such as the ability to accurately simulate sequencing of events 
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which may underestimate or overestimate observed climate variability (Wilke et al., 2013). 

When QM using empirical distributions does not capture the range of extremes in the future, 

assumptions are required such as holding adjustment values constant for extreme minimum and 

maximum quantiles (Wilke et al., 2013; Chen et al., 2013).  It should also be recognized that bias 

correction can add uncertainty to future climate assessments, however, uncertainty in bias 

correction techniques is typically small compared to other sources of uncertainty such as GCM 

selection (Mpelasoka and Chiew, 2009; Chen et al., 2011). 

Although many researchers have either separately applied raw GCM runoff data or bias 

corrected GCM atmospheric data, the process of bias correcting gridded runoff fields from 

climate models has not received a lot of attention. Several reasons likely contribute to this gap in 

the literature. For one, gridded GCM runoff is generally coarse and may not be suitable for direct 

use in smaller watersheds. Secondly, the largest effort has gone into analyzing, understanding 

and applying atmospheric fields (i.e., temperature and precipitation) from climate models and 

there is greater support for bias correcting these variables. Thirdly, hydrologists may be more 

inclined to use a hydrological model that has been set up for a specific purpose, in a specific 

region, calibrated to observations and proven to perform reasonably well. Finally, there are no 

long term, reliable, gridded observed runoff datasets at fine temporal resolutions. Gridded runoff 

products are either a function of observed streamflow coupled with a water balance model such 

as the World Meteorological Associations’ (WMO) monthly gridded Global Runoff Data Center 

(GRDC; Fekete, Vörösmarty and Grabs, 2000) or based on output from an LSM driven by 

observed precipitation and temperature. Gonzáles-Zeas et al. (2012) bias corrected RCM runoff 

data via a simple annual correction factor derived from the GRDC dataset. The authors showed 
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considerable improvement in RCM runoff performance, however, the use of annual correction 

factors were noted as a shortcoming since RCM runoff seasonality was not corrected.   

Many gridded runoff products from LSMs exist, however there are documented 

performance issues with these products (Reichle et al., 2011; Schwalm et al., 2014) and using 

their values as observations for bias correction is not be an ideal solution.  Koshida et al., 2015 

recognized that gridded runoff products, such as those developed from global hydrological 

models or LSMs typically overestimated global terrestrial runoff and disagreed on runoff 

fractions. Errors in the forcing precipitation data, evapotranspiration schemes (Zhou, et al., 2012) 

and representation of snow water equivalent (Pietroniro et al., 2007) are among the major 

sources for the LSM bias. Zhou et al. (2012) also showed that 14 LSMs overestimated mean 

annual runoff in the St. Lawrence, Mississippi and Nelson River Basin for the 1986-1995 period. 

In a case study on hydrological model uncertainty in the Athabasca watershed, Canada, Eum et 

al. (2014) showed that most locations were more sensitive to precipitation forcing in comparison 

to soil and routing parameters. However, Vaze et al. (2010) showed that the hydrologic state 

(wet or dry) and duration of time (10 to 40 years) used to calibrate hydrologic models can impact 

their performance in a climate of the opposite hydrologic state. Haddeland et al., (2011) found 

mixed results where some LSMs overestimated runoff and other LSMs underestimated runoff in 

Arctic basins (Mackenzie River and Lena River). However, the authors noted that the models 

generally overestimated runoff in arid and semiarid basins. Some of the identified causes of the 

differences include how models handle snow accumulation/melting and lakes. Haddeland et al., 

(2011) who also assessed LSM differences in runoff timing, cautions that since the LSMs 

simulate naturalized conditions, it is not appropriate to compare directly to observed discharge at 

sub annual time scales.  
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In a recent conference paper, Duong, Tachikawa and Yorozu (2015) used gridded runoff 

from an LSM to bias correct GCM runoff for use in a routing model. The authors recognized the 

absence of observed gridded runoff data and used an LSM to approximate observations. Two 

Japanese river basins, less than 3,000 km
2
, were simulated at 20 km resolution. To correct bias, 

QM was applied at each grid for individual months. The authors noted that bias correction 

improved river discharge simulations but also noted several concerns. One concern was the LSM 

generated runoff sensitivity to precipitation input data. Two possible precipitation datasets were 

considered and one was selected based on how well the generated LSM streamflow compared to 

observed streamflow distributions. However, no emphasis was placed on temporal distribution 

patterns. The authors also noted that further work is needed to address spatial correlation 

between neighbouring grid cells for bias correction.  Successful future applications of similar 

works will rely heavily on LSM ability to reproduce realistic gridded runoff (spatially and 

temporally) and will also require sophisticated bias correction techniques to preserve spatial 

patterns. Similar obstacles have been addressed in statistical downscaling of precipitation data 

where advanced methods are now available (e.g., Werner and Cannon, 2015) and potentially 

applicable for bias correction of gridded runoff in future work. Another potential approach is to 

use statistical up-scaling of observed streamflow to generate gridded runoff estimates, as done by 

Gudmundsson and Seneviratne (2015) for the continent of Europe. 

Overall, there is consensus in the literature that considerable differences exist between 

LSM simulated evapotranspiration and runoff, thereby introducing uncertainty into estimates of 

observed gridded runoff. These uncertainties are an important consideration in future climate 

impact studies especially when considering methods for bias correcting gridded runoff. While it 

is important to invest in improving estimates of observed gridded runoff, it is also important to 
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move forward with evaluating alternative bias correction techniques for GCM runoff for 

applications in assessment of long term hydrology. 

2.3 Application of Climate Models in Assessment of Long Term Hydrology 

Climate models are recognized as sophisticated tools used to assess global response to increased 

greenhouse gases and other atmospheric forcing (Reichler and Kim, 2008; Gao et al., 2011). It 

can also be argued that due to their physically-based processes, climate models can be useful in 

understanding long term natural variability. Although it is important to recognize limitations in 

modeling the climate (e.g., bias in simulating current climate) one should not discount the 

usefulness of climate models. Instead, as suggested by Beven (2011), decision makers should be 

precautionary and use available climate science in understanding a range of potential future 

conditions. Similarly, Trenberth (1997) suggested that despite uncertainties, climate model 

projections provided information that is preferred over the alternative of declaring ignorance. 

 There are many ways in which climate models can be used in the assessment of long term 

hydrology. In some cases, future climate model projections are combined with physical 

understanding of historic climate processes to aid in interpreting future impacts. Trenberth et al. 

(2014) demonstrated this process by accepting that future temperature will increase but 

rationalized that it may not translate into increased drought risk, as drought is a complex 

phenomenon. Instead, the authors cautioned that climate change trends could be masked with 

natural variability and the understanding of climate change impacts on natural droughts such as 

those caused by ENSO (a common cause of episodic droughts around the world) contain 

outstanding issues. The authors concluded that climate change may not initiate future droughts, 

but could accelerate their onset, severity and duration. Contrary to using climate change 

projections to physically rationalize future impacts, some studies have relied directly on climate 
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model output to portray the future climate. These studies involved post processing and 

assessment of climate model data and are discussed below from a hydrological assessment 

standpoint. 

Hydrological analyses with respect to natural climate variability and climate change 

varies, depending on the parameter of interest. And often, multiple parameters are considered in 

the same study. For streamflow, some studies have considered changes in mean streamflow at 

different temporal scales (e.g., annual, seasonal, monthly, daily), whereas other studies have 

looked at more specific events such as changes to timing of the spring freshet, changes to the one 

day high flow event, changes to intra-annual drought events at various time scales and changes to 

multi-annul drought events. Presentation and analysis of averaged hydrographs (e.g., Huziy et 

al., 2013; Chen et al., 2011; Nohara, et al., 2006; Sperna Weiland et al., 2012a; Poitras et al., 

2011) and continuous time series hydrographs (Woodhouse et al., 2010; Alkama et al., 2013) 

were common approaches to answer many of the studies` questions. Other studies have used box 

plots and cumulative distribution functions to present results (Burn et al., 2004; Bonsal et al., 

2013; Sadri and Burn, 2014; Burn and DeWit, 1996; Sperna Weiland et al., 2012a; Sushama et 

al., 2006). Events which span extended lengths of time such as multi-year hydrological droughts 

have typically been defined using the theory of runs (Yevjevich, 1967), beginning and ending 

when the streamflow crosses a specified threshold. Thresholds were subjective values but were 

typically taken as the mean, or a time varying mean such as the monthly mean. In studies where 

a hydrological model was not used to produce streamflow hydrographs, river and lake routing 

has been applied.  
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2.3.1 River and Lake Routing of Climate Model Runoff Data 

River and lake routing is used to produce streamflow from runoff. In some climate models, a 

basic routing scheme is used to return freshwater generated on land surface to the ocean, and to 

assist with GCM validation through hydrograph comparison (Arora, Chiew & Grayson, 1999). 

However, since routed runoff is not a standard climate model output (Taylor, 2013), and GCM’s 

operate on coarse spatial grids, offline routing is typically a post processing exercise. Various 

routing schemes are available ranging from simpler hydrologic routing methods that use lumped 

transfer functions (e.g., Dingman, 2008) to more complex hydraulic routing methods that solve 

the complete Saint-Venant equations to describe shallow water flow in a distributed environment 

(e.g., Rousseau et al., 2015; Arora et al., 2001).  

 Using an offline routing model allows for customization to a specific region and is a 

common method for evaluating climate model runoff. River and lake routing in a gridded 

domain (i.e., GCM domains) typically requires more detailed physiographic information 

including elevation, river drainage network, river width and depth, lake storage and outflow 

relationships and river roughness characteristics. WATROUTE is a popular routing model that 

has been coupled with both hydrological models (Kouwen, 2012; Pietroniro et al., 2007), GCMs 

(Arora et al., 2001) and RCMs (discussed below). 

WATROUTE uses a storage-routing algorithm and falls somewhere in the middle of 

routing model complexities. Kouwen (2012) noted that more sophisticated models may not 

provide increased accuracy, especially in larger basins. Although storage-routing methods are 

often associated with simplified transfer functions (Li, et al., 2013), WATROUTE assumes 

steady, uniform flow, a parallel energy grade and channel bottom (friction slope equals channel 

slope) and falls within the Saint-Venant equation category as a Kinematic Wave routing method. 
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Compared to solving the complete shallow water equations, Kinematic Wave routing neglects 

acceleration, and pressure terms in the momentum equation and has limitations such as 

producing null discharge in completely flat terrain (Rousseau et al., 2014). Assuming a 

rectangular river cross section area (Figure 3) and prescribing a minimum channel slope, 

WATROUTE combines the continuity equation (Equation 3) and Manning’s equation (Equation 

4 and Equation 5) to solve for storage changes and outflow changes in each gird cell. 

WATROUTE also allows wetland routing (when coupled with the hydrological model 

WATFLOOD) and lake routing using power functions or polynomial functions as relationships 

between lake storage and outflow. 

 

Figure 3 - WATROUTE channel cross section 
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where subscripts (1 and 2) denote the beginning and end of a time step.  
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where Q denotes streamflow, A denotes area, R denotes hydraulic radius, S denotes channel 

slope and n denotes Manning’s roughness coefficient. 

 

Assuming that A equals river width (w) multiplied by water depth, and the channel is wide such 

that R is approximately equal to A/w, Equation 4 is simplified to Equation 5. 

𝑄 =  
1

𝑛

1

𝑤0.667
𝐴1.667𝑆0.5 

(5) 

  



41 

 WATROUTE can be run in multiple configurations  depending on available runoff data 

from the hydrological model or land surface scheme. The minimum requirement is gridded total 

runoff but it can also incorporate gridded recharge (lower zone flow) and gridded leakage 

(potentially from a groundwater model). Using the minimum requirement routes total runoff as  

surface flow directly into the channel network and is common when only total runoff is available 

(Kouwen, 2012; Arora et al., 2001). 

 Other routing models have been used to route climate model runoff. For example, 

Falloon et al., 2011 implemented the Total Runoff Integrated Pathways (TRIP) model to validate 

GCM runoff. Sperna Weiland at al., 2012b applied Kinematic Wave routing for two GCMs at 

0.5° resolution in six large basins including the Mississippi River Basin. Koirala et al. (2014) 

used the Catchment-based Macro-scale Floodplain Model (CaMa-Flood) global river routing 

model for daily GCM runoff at 0.25° resolution. Arora (2001) used a variable velocity flow 

routing algorithm from Arora and Boer (1999) to assess GCM generated streamflow. Comparing 

the variable velocity flow routing algorithm to WATROUTE for the Mackenzie River Basin, 

Arora et al., (2001) showed that differences in routing schemes did not introduce major 

differences in simulated streamflow and that spatial resolution can contribute to more substantial 

differences. In a comparison of routing methods Rousseau et al. (2014) also found Kinematic 

Wave routing to be appropriate for hydrological applications. Some of the Kinematic Wave 

limitations discussed in Rousseau et al. (2014) are overcome by implementing a minimum 

channel slope, as is the case in WATROUTE.  

 Overall, it is important to recognize that many different routing models exist and many 

have been applied in GCM studies. The WATROUTE model has been tested and accepted in 
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hydrologic studies and balances computational efficiency with data requirements of large domain 

watersheds, such as the NCRB. 

2.3.2 Future Runoff and Streamflow Scenarios from Climate Models 

Typical future climate assessments combine future greenhouse gas scenarios with GCMs and 

some form of downscaling technique and/or bias correction technique to produce temperature 

and precipitation projections. Temperature and precipitation projections are then used to force 

calibrated hydrological models which are then used for impact assessments of future streamflow. 

Most of these GCM studies compared 20 year or 30 year climates in a baseline period (e.g., 1971 

to 2000) to a future period such as the 2050s (e.g., 2041 to 2070). Studies have focussed on 

temperature, precipitation, streamflow as well as drought variables. Recent studies such as Milly 

et al. (2005), Nohara et al. (2006), Meehl et al. (2007), Sperna Weiland et al. (2012a),  Sperna 

Weiland, et al. (2012b), Collins et al. (2013) and Koirala et al. (2014) have explored the use of 

direct GCM hydrologic data across large areas whereas Sushama, et al. (2006), Frigon, Music 

and Slivitzky (2010), Music et al. (2012), Poitras, et al. (2011), Clavet-Gaumont et al. (2013) 

and Huziy et al. (2013) have explored the use of direct Regional Climate Model (RCM) 

hydrologic data in smaller basins. Comparing RCM projections to their driving GCM, Gao et al. 

(2011) found that annual runoff changes were generally consistent among the two model types. 

For seasonal changes, the authors showed that GCMs exhibited larger inter-model variability 

than RCMs. The authors also noted that differences between GCM and RCM projected runoff 

changes can be important in areas of high topographic relief and large snow accumulations. Most 

existing studies focused on the CMIP3 ensemble of GCMs. 

Around the time of the IPCC’s Second Assessment Report, it was recognized that 

hydrologic variables such as runoff were poorly reproduced by GCMs (Wood et al., 1997). Since 
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then, several studies have demonstrated how modeling advances have increased the hydrologic 

representation in GCMs. Sperna Weiland et al. (2012a) investigated the suitability of using GCM 

generated runoff fields for hydrologic impact studies and found that when GCM runoff was 

tuned with discharge observations and a routing scheme is added, direct GCM runoff can be as 

suitable as discharge derived from runoff calculated by an offline hydrological model for large 

scale studies. Additionally, some GCMs use land surface schemes that have benefited from 

coupling with land surface schemes in more detailed hydrological models (Soulis et al., 2000). 

Suitable results obtained using runoff from the Coupled Model Intercomparison project Phase 3 

(CMIP3) GCMs in large basins (>170,000 km
2
 in Sperna Weiland et al., 2012a) with different 

climates show promise for the use of GCM runoff in other large basins. Huziy et al., 2013 

proposed that GCMs and RCMs are well suited to evaluate the climate change impacts on 

streamflow because of their physical basis which includes a closed water budget. Furthermore, 

Guay, Minville and Braun (2015) suggested that climate models may produce more reliable 

estimates of actual evapotranspiration since they are based on radiative balances instead of 

empirical relationships using temperature data. Use of direct GCM runoff data leverages the 

immense investment in computer processing involved in climate modeling (reducing off-line 

processing) while still accounting for many of the sources of uncertainty in climate change 

studies and producing results that are reasonable for use in hydrologic impact assessment. The 

use of GCM direct runoff data captures the largest sources of uncertainty previously assessed in 

other studies such as Kay et al. (2009) and Chen et al. (2011).   

 Many studies which assessed climate change impacts on hydrology considered a global 

domain, in which information about specific regions can be extracted. Of the available global 

studies, Milly et al. (2005), Meehl et al. (2007), Collins et al. (2013), Nohara et al. (2006), 
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Sperna Weiland et al. (2012a) generally illustrated increasing mean annual runoff volume in the 

NCRB as a whole. However, greater changes and greater model agreement were projected for 

northern parts of the basin and some decreases were projected for southwestern parts of the 

basin. Alkama et al. (2013) showed increasing annual runoff for North America from an 

ensemble of CMIP5 GCMs. Kumar et al. (2014) assessed monthly water availability 

(precipitation minus evapotranspiration) in the CMIP5 ensemble and found future water 

availability to increase in the winter and decrease in the summer in North America under a more 

severe future greenhouse gas scenario. Koirala et al., (2014) also assessed global runoff from an 

ensemble of 11 CMIP5 GCMs, opting to assess relative changes without bias correction. The 

authors presented the multi-model mean which projected increasing mean and low flows with 

decreasing high flows in the NCRB. However, there was weak to moderate GCM agreement that 

low flows will increase and less evidence for changes in mean and high flows.     

Inconsistent results can be found in the literature that reduces confidence in how future 

hydrology is projected to change. In a study on changing flood and drought risk, Hirabayashi et 

al. (2008) used a single GCM and analyzed future hydrological projections over 30 large basins. 

For the Nelson River’s future, the authors projected annual runoff to decrease by 17.8%, the 

frequency of the 100 year flood to become a 133,000 year flood, and three times more drought 

days. However, it should be noted that this study only used one GCM simulation, which 

projected relatively large temperature increases (+6.57°C) and an overall very dry future in the 

NCRB. Interestingly, the authors noted that an increase in annual discharge does not always 

correspond to an increase in 100 year flood frequency and that future changes in drought should 

be correlated to changes in long term water availability (i.e., precipitation minus 

evapotranspiration) and not precipitation alone. In a similar study, Milly et al. (2002) analyzed 
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annual maximum of monthly-mean flows from a climate model under an idealized quadrupled 

CO2 scenario to assess changes in 100 year flood events. Downstream of Lake Winnipeg at 

Bladder Rapids on the Nelson River, mean annual discharge was projected to increase by 76%, a 

future 100 year event was projected to increase by 36% and the baseline 100 year event could 

become a 9 year event in the future. The quadruple CO2 is quite extreme and the authors found 

that the frequency of floods having shorter return periods did not change significantly.     

Using the CRCM, Poitras et al. (2011) combined CRCM runoff with the WATROUTE 

routing scheme in Western Canada to examine climate change impacts on seasonal streamflow 

including low and high flow events. This study considered the Nelson River Basin, Churchill 

River Basin and isolated the North Saskatchewan and South Saskatchewan River sub-basins. The 

four river basins all showed increases in mean annual flows (12% to 17%), increases in mean 

winter flows, and earlier snow melt with a higher peak. Sushama et al. (2006) analyzed CRCM 

runoff routed using a variable-lag flow algorithm, in the Nelson and Churchill River Basins. 

Different CRCM model versions and future emission scenarios were used, showing that the 

annual change in runoff (-6% to +9% for the Nelson River and -1% to +13% for the Churchill 

River) was sensitive to model and forcing scenario. Both Nelson and Churchill rivers showed 

small increases to 7-day low flow events, increases to late-winter flows and decreases to 

snowmelt peaks but insignificant changes to high flow events.  

Overall, studies that applied direct GCM or RCM runoff presented similar results as 

studies that coupled GCM climate forcing to hydrological models. Hagemann et al. (2013) 

showed increases in a majority of NCRB but also indicated decreasing water availability or very 

little change in some arid regions. These authors noted the importance of considering 

seasonality, supported the conclusion that wet (dry) areas are projected to get wetter (drier) and 
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suggested that while bias correction reduced the spread of projections, it was not a large source 

of uncertainty compared to other sources. Haddeland et al. (2014) used GCMs and hydrological 

models to assess the cumulative impacts of anthropogenic impact (irrigation withdrawals, 

reservoir operation) and a two degree increase in global mean temperature on global annual 

runoff. At northern latitudes, including the NCRB and Mackenzie River Basin, there was a clear 

increase in runoff and the anthropogenic impacts were small. However, in the Mississippi and 

Colorado River basins, the anthropogenic effect outweighed the climate change effect. The 

authors noted that in all cases, water withdrawals increased with increasing temperatures but 

climate change can cause increases or decreases in water availability therefore amplifying or 

damping the effect of increased withdrawals. Prudhomme et al. (2014) assessed global 

hydrologic drought, measured by the number of days where runoff less than 10
th

 percentile. 

When using the multi model ensemble (5 GCMs and 7 hydrological models) most of NCRB 

showed 5-10% increase in drought days. However there is less agreement among GCMs and 

hydrological models in North America including one model that showed decreased future 

drought (-5%). 

Limitations in hydrological model studies include the absence of feedback from the 

hydrological model to the atmosphere (Hagemann et al., 2013) and the absence of dynamic 

vegetation schemes in most hydrological models. Dynamic vegetation can be important since 

increased CO2 can reduce stomatal openings in plants and reduce transpiration. Prudhomme et 

al. (2014) showed that a hydrological model with dynamic vegetation projected decreased future 

drought risk in some areas which is partially attributed to reduced plant transpiration. 

Cohen, Koshida and Mortsch (2015) addressed the infrequent application of raw climate 

model runoff data in past studies but suggested that there is an opportunity to explore ways to 
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implement routed climate model runoff data to complement current practise. As demonstrated in 

this chapter, considerable effort has led to improved GCMs, LSMs and applications of their 

runoff data directly in climate impact studies. Also noteworthy are the limitations in existing 

studies that used relatively short 30 year time periods to characterize climate and reliance on 

hydrological models. The use of shorter time periods can increase sampling uncertainty which 

can be important for analysis of extremes in hydrologic records with low frequency oscillations. 

Limitations due to reliance on hydrological models include the absence of feedback from 

hydrological model to climate model, temperature based evapotranspiration schemes, 

computational resources and other resource requirements to set up calibrate and validate the 

models. Although the use of GCM runoff data in climate impact studies comes with its own set 

of limitations, results can provide researchers and practitioners with a more balanced view using 

multiple assessment approaches. This thesis intends to help build that balanced view by applying 

tools and methods for assessment of long term hydrology to long term simulations from the latest 

CMIP5 GCMs and their runoff variable.   
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CHAPTER 3 

Spatial and Temporal Domain 

This chapter characterizes the spatial and temporal domain of study for the proposed objectives. 

In alignment with Manitoba Hydro interests, the spatial domain is the Nelson-Churchill River 

Basin (NRCB) and is shown in Figure 4. The NCRB is separated into five sub-basins, consistent 

with Manitoba Hydro’s Long Term Flow Dataset (LTFD) used in planning studies. The five 

LTFD sub-basins are the: Upper Churchill River Sub-Basin (UCR), Nelson River Local Sub-

Basin (NRL), Saskatchewan River Sub-Basin (SRB), Lake Winnipeg Partial Inflow Available 

for Outflow (PIAO) and Winnipeg River Sub-Basin (WRB). 

 

Figure 4 - The Nelson-Churchill River Basin and sub-basin spatial domains 

The NCRB covers approximately 1.4 million km
2
 spanning west to the Rocky Mountains, 

east to Lake Superior, stretching as far south as South Dakota, United States and nearly to the 

northern borders of Manitoba and Saskatchewan. For the 1950-2005 period, Table 2 presents 
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annual mean flows calculated using LTFD, drainage areas (Agriculture and Agri-food Canada, 

2012) and approximate annual mean runoff (mm/day) calculated by dividing mean flow by the 

effective drainage area.  Similar to Ehsanzadeh, et al. (2011), effective drainage area is used to 

account for non-contributing drainage areas (such as prairie potholes), which do not contribute to 

streamflow under certain climatic conditions. Effective drainage areas presented in Agriculture 

and Agri-food Canada (2012) are representative of average hydrological conditions (i.e., a 1 in 2 

year event). Annual mean runoff values shown in Table 2 are similar to values reported in 

Statistics Canada (2010) for the period of 1971-2004.  

Table 2 - Nelson-Churchill River Basin and sub-basin mean annual flow and runoff for 

1950-2005 

Basin 
Mean Annual Flow  Gross Drainage Area 

(km
2
) 

Effective Drainage 

Area (km
2
) 

Mean Annual 

Runoff (mm/day) (m
3
/s) % of NCRB 

UCR 972 27.3% 260,000 252,000 0.333 

NRL 425 12.0% 92,000 92,000 0.399 

SRB 575 16.2% 406,000 231,000 0.215 

PIAO 647 18.2% 477,000 313,000 0.179 

WRB 935 26.3% 137,000 135,000 0.598 

NCRB 3555 100.0% 1,372,000 1,023,000 0.300 

 

Two additional NCRB sub-basins are notable in this thesis. The Lower Churchill River 

Sub-Basin stretches from Missi Falls, the natural outlet of Southern Indian Lake, to the mouth of 

the Churchill River Basin at Hudson Bay. Together the Upper and Lower Churchill River Basins 

naturally drained the Churchill River into the Hudson Bay. Starting in the late 1970s, a portion of 

the Churchill River flow was diverted at Southern Indian Lake, through the Notigi control 

structure and into the Local Nelson River Sub-Basin to assist power production on the Nelson 

River. This system is referred to the Churchill River Diversion (CRD; Newbury, McCullough 

and Hecky, 1984) and is operated by Manitoba Hydro. Similar to the CRD, water is also diverted 

at Lake St. Joseph into the Winnipeg River Sub-Basin through the Root River control structure. 

The Lake St Joseph Diversion has been in operation since the late 1950s and is currently 
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operated by Ontario Power Generation for power production purposes (Lake of the Woods 

Control Board, 2014). Manitoba Hydro’s generating stations downstream from the diversion also 

benefit from the additional diverted water. Other diversions exist within the NCRB but are not 

considered in this thesis due to their small volumes or transfer of water within the larger basin 

boundary.  

Manitoba Hydro operates 15 hydroelectric generating stations in the NRCB with a total 

capacity of approximately 5,200 megawatts (MW), producing approximately 30,000 GWh of 

energy each year. Of these 15 generating stations, six are located in the WRB (579 MW total), 

one is located in the SRB (479 MW), two are located in a small sub-basin of the UCR (10 MW 

total) and the remaining six are located in the NRL (4,149 MW total). Keeyask, a seventh 

generating station is currently being constructed in the NRL, which will add approximately 695 

MW of capacity and 4,400 GWh of annual average energy.  

Manitoba Hydro operates several reservoirs in the NCRB, the largest of which being 

Lake Winnipeg which covers an area of 24,400 km
2
. Manitoba Hydro also operates Southern 

Indian Lake, Cedar Lake, and a series of smaller reservoirs. Operation of these reservoirs can 

affect the natural flow regime in the rivers, but it should be noted that since a large portion of the 

NCRB lies upstream of Manitoba Hydro’s operations, the rivers’ natural flows are generally 

augmented by other organisations (e.g., for power production, flood relief, water supply and 

agricultural use). As such, much of the flow into Manitoba Hydro’s reservoirs is affected by 

anthropogenic influenced to some degree. 

Three general temporal windows are considered, however some variation is required for 

different steps of the analysis. Temporal windows are a combination of available data and 

CMIP5 experimental design (Taylor, Stouffer and Meehl, 2012), which include a historic period, 
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a preindustrial control (piControl) period, and a future period. Based on available GCM data, the 

historic period used in this study spans from 1861 to 2005 and the future period continues from 

2006 to 2099. For the purposes of analysis and plotting of data, the 500 year piControl period is 

nominally assigned a date range of 1361 to 1860. This range is arbitrary because the piControl 

period corresponds to a 500 year un-dated, quasi-equilibrium GCM experiment where 

atmospheric forcing is held constant (i.e., atmospheric CO2 concentration is held constant at 

approximately 280 parts per million; ppm) and the GCM’s are allowed to simulate unforced 

natural climate variability.  

Two additional reference periods are used from within the historic period. For the 

evaluation of model skill, a reference period of 1950 (earliest date when GCM data is commonly 

available for the large GCM ensemble) to 2005 is selected. For bias correction, a reference 

period of 1912 (earliest observed LTFD entry) to 2005 is selected. For streamflow scenarios and 

time series analysis, the piControl and historic periods are further divided into quasi-equal blocks 

of time (91 to 94 years), one of which (piControl 6; pi6) spans both the piControl and Historic 

periods. A summary of the temporal domains are provided in Table 3. 

Table 3 - CMIP5 temporal domains and additional temporal domains used in analysis  

CMIP5   Streamflow Scenario Analysis  Additional Reference Periods 

Period Dates  Period Dates  Period Dates 

piControl 1361-1860 

 piControl 1 (pi1) 1362-1452  
Reference for 

Evaluation of 

Model Skill 

1950-2005 
 piControl 2 (pi2) 1453-1543  

 piControl 3 (pi3) 1544-1634  

 piControl 4 (pi4) 1635-1726  

 piControl 5 (pi5) 1727-1818  

Reference for 

Bias Correction 
1912-2005 Historic 1861-2005 

 piControl 6 (pi6) 1819-1911  

 Historic 1912-2005  

Future 2006-2099  Future 2007-2099  
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CHAPTER 4 

Methodology and Data Sources 

This chapter outlines the methods and data sources used in this thesis, divided into sections 

according to the four thesis sub-objectives.  

4.1 Evaluation of Climate Model Skill 

Climate model skill is first evaluated in order to better understand how well different GCMs 

represent existing hydrologic conditions in the NCRB. Initially, 16 skill metrics were chosen but 

this was later reduced to nine as many of the errors among the metrics were found to be well 

correlated. The nine metrics considered in this thesis are shown in Table 4 and selected such that 

they are relatively simple and statistically robust in accordance with Knutti et al. (2010a) and 

appropriate for the objectives of this thesis in accordance with Johnson et al. (2011). Daily total 

runoff is the only GCM variable used in this thesis and was selected based on routing model 

requirements and data availability. Daily total runoff represents the total runoff leaving a land 

grid cell, including drainage through the base of the soil and is identified by the “mrro” output 

variable name (Taylor, 2013).  

Table 4 - Skill metrics for GCM evaluation 

Skill Metric Identifier Description (units) 

Mean Mean annual flow (mm/day) 

Min Minimum of mean annual flow (mm/day) 

Max Maximum of mean annual flow (mm/day) 

Var Variance of mean annual flow (mm/day) 

AR1 Annual autocorrelation lag-1 

Slope Slope (percent of mean flow) 

Cum. Wet Mean number of cumulative wet years (years) 

Cum. Dry Mean number of cumulative dry years (years) 

Cross Corr. Spatial cross correlation (15 basin-to-basin combinations) 
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Metrics are based on daily total runoff averaged throughout a calendar year; therefore the 

timing of runoff is not evaluated. Runoff timing is not incorporated in the skill analysis because 

in the absence of routing (as is the case for this preliminary skill assessment), it is difficult to 

compare GCM runoff to available observed streamflow. Second, no reliable, long term, observed 

gridded runoff dataset exists.  Finally, observed streamflow records often contain considerable 

anthropogenic influence, such as reservoir operations that can alter hydrograph timing. Use of 

annual average flows focuses the skill assessment on runoff volume instead of timing, as in Zhou 

et al., 2012. However, even when considering annual runoff, interannual water storage or 

consumptive use (volume withdrawal) in the observed record is not accounted for. 

The observed dataset that GCMs are evaluated against is Manitoba Hydro’s LTFD. 

Streamflow records from 1912 to current are available for the outlets of the five sub-basins 

described in Chapter 3 (consistent with Manitoba Hydro’s resource planning) and are adjusted to 

represent present day use. LTFD also includes some smaller sub-basins within the NRL but for 

the purposes of this thesis, these smaller basins are aggregated into one, larger, sub-basin. In 

some instances, it is also useful to aggregate all sub-basins as done in Table 2 to produce a 

measure of system-wide NCRB inflows. For the skill evaluation, daily runoff is estimated from 

LTFD by dividing mean annual streamflow by the effective drainage area of each of the sub-

basins. 

Since the skill evaluation is performed at the outlet of each sub-basin, GCM runoff must 

be aggregated to represent total sub-basin response. To uniformly evaluate all GCMs, which 

operate at various spatial resolutions, GCM runoff is re-gridded to a common grid. This is a 

common step in skill evaluation for multiple GCMs (Sillmann et al., 2013; Gleckler et al., 2008). 

A 0.25° latitude x 0.25° longitude grid (approximately 25 km x 25 km) is used based on the 
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resolution selected for the routing model, and balancing of spatial detail with computational 

demand. Re-gridding is performed using a nearest neighbour approach which conserves runoff 

volume within a GCM grid. For example, if a 1° x 1° GCM grid produced 1 mm of runoff in a 

given day, each of the 16 0.25° x 0.25° grids within the original grid would also produce 1 mm 

of runoff on that same day. Other interpolation methods such as bilinear interpolation in Koirala 

et al. (2014) may produce more realistic spatial patterns but can introduce additional errors that 

affect the volume of water. In a comparison of methods, González-Zeas et al. (2012) showed that 

the nearest neighbour interpolation performed better than an inverse distance squared 

interpolation.  

Many skill assessments consider 20 or 30 year periods, however, given the potential for 

low frequency climate patterns to impact runoff climatology, a longer 56 year period (1950-

2005) was selected. 1950-2005 represents a period in which all analyzed GCMs have daily 

runoff data. Skill is computed for each metric in Table 4 based on 56 year climatological means 

using Root Mean Squared Error (RMSE): 

𝑅𝑀𝑆𝐸𝑀𝑒𝑡𝑟𝑖𝑐 =  √< (𝐺𝐶𝑀𝑀𝑒𝑡𝑟𝑖𝑐 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑀𝑒𝑡𝑟𝑖𝑐)2 > (6) 

 

where 𝐺𝐶𝑀𝑀𝑒𝑡𝑟𝑖𝑐 and 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑀𝑒𝑡𝑟𝑖𝑐 denote the 56 year climatologies for each metric and  

< > denotes the spatial mean calculation 

 

Similar to Sillmann et al. (2013), RMSE is calculated as a spatial mean, covering the five 

sub-basins plus the entire NCRB (six domains total). In the case of spatial cross correlation, the 

spatial mean is calculated based on 15 individual basin-to-basin cross correlations, including the 

aggregated NCRB. The entire NCRB is included in the nine metrics because some GCMs may 

perform better at larger spatial scales instead of individual sub-basin scales. Two additional error 

terms from Sillmann et al. (2013) are also considered: the Relative Root Mean Squared Error 

(RMSE’; Equation 7) and the Mean Relative Root Mean Square Error (RMSE’ALL; Equation 8): 
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𝑅𝑀𝑆𝐸′𝑀𝑒𝑡𝑟𝑖𝑐 =  
𝑅𝑀𝑆𝐸𝑀𝑒𝑡𝑟𝑖𝑐 −  𝑅𝑀𝑆𝐸𝑀𝑒𝑑𝑖𝑎𝑛(𝑀𝑒𝑡𝑟𝑖𝑐)

𝑅𝑀𝑆𝐸𝑀𝑒𝑑𝑖𝑎𝑛(𝑀𝑒𝑡𝑟𝑖𝑐)
 

(7) 

𝑅𝑀𝑆𝐸′𝐴𝐿𝐿 =  
𝑅𝑀𝑆𝐸′𝑀𝑒𝑡𝑟𝑖𝑐1 + 𝑅𝑀𝑆𝐸′𝑀𝑒𝑡𝑟𝑖𝑐2 + ⋯ + 𝑅𝑀𝑆𝐸′𝑀𝑒𝑡𝑟𝑖𝑐9 

9
 

(8) 

RMSE’ provides information on how individual models rank with respect to the 

ensemble, neglecting absolute errors. For every metric there will be a GCM simulation whose 

performance is the median of all simulations. For each skill metric, an RMSE’ value of zero is 

assigned to the simulation with the median performance. Models performing better (worse) than 

the median simulation will have negative (positive) values of RMSE’. RMSE’ALL is an overall 

score for each GCM simulation based on its relative performance for all nine metrics. The best 

(worst) performing simulation, overall, will have the smallest (largest) RMSE’ALL. 

GCM data for the skill evaluation comes from the output of 23 CMIP5 models with daily 

runoff available for the historic period. From the 23 GCMs, 53 simulations were evaluated, 

which include GCMs with multiple runs. GCM data were extracted in January 2014 and 

provided by the Ouranos Consortium on Regional Climatology and Adaptation to Climate 

Change. Since CMIP5 databases are continually updated as modeling centers make their data 

available, it is possible that more daily runoff simulations have been made available since the 

extraction date for this study. Table 5 (adapted from Flato et al., 2013) shows the GCMs used in 

this thesis along with the institution name and the name of their LSM. Table 6 shows the 

individual GCM simulations and available data for piControl (at least 500 years), historic (1950-

2005) and future (2006-2099) periods. Some historic GCM simulations also contained longer 

historical periods starting in 1861. 
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Table 5 - GCM name, institution and land surface model name (adapted from Table 9.A.1 

in Flato et al., 2013) 

Model Name Institution 
Land Surface 

Model Name 

BCC-CSM1.1 Beijing Climate Center 
BCC-AVIM1.0 

(based on CLM3) 

BNU-ESM Beijing Normal University ColM 

CanESM2 Canadian Center for Climate Modeling and Analysis CLASS 2.7 

CMCC-CM 
Centro Euro-Mediteraneo per I Cambiamenti Climatici 

From ECHAM5 

GCM CMCC-CMS 

CNRM-CM5 

Centre National de Recherches Meteorologiques and Centre 

Europeen de Recherche et Formation Avancees en Calcul 

Scientific 

ISBA  

(through SURFEX) 

CSIRO-Mk3.6.0 Queensland Climate Change Centre of Excellence and 

Commonwealth Scientific and Industrial Research 

Organization 

Included within 

Atmospheric Model CSIRO-Mk3L 1.2 

FGOALS-g2 
LASG (Institute of Atmospheric Physics)- CESS (Tsinghua 

University) 
CLM3 

GFDL-CM3 

NOAA Geophysical Fluid Dynamics Laboratory 

LM3 

GFDL-ESM2G LM3 

GFDL-ESM2M LM3 

INM-CM4 Russian Institute for Numerical Mathematics Included (Simple) 

MIROC-ESM-CHEM 
University of Tokyo, National Institute for Environmental 

Studies and Japan Agency for Marine-Earth Science and 

Technology 

MATSIRO 
MIROC-ESM 

MIROC4h 

MIROC5 

MPI-ESM-LR 

Max Planck Institute for Meteorology JSBACH MPI-ESM-MR 

MPI-ESM-P 

MRI-CGCM3 
Meteorological Research Institute  HAL 

MRI-ESM1 

NorESM1-M Norwegian Climate Centre CLM4 
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Table 6 - GCM simulation data availability from various CMIP5 experiments (as of 

January, 2014). For historic experiments, S denotes simulations containing a shorter 

record (1950-2005) and L denotes simulations containing a longer record (1861-

2005). 
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1 BCC-CSM1.1 r1  S      30 MIROC-ESM-CHEM r1  S     

2 BCC-CSM1.1 r2  S      31 MIROC-ESM r1  S     

3 BCC-CSM1.1 r3  S      32 MIROC-ESM r2  S     

4 CanESM2 r1*  L      33 MIROC-ESM r3  S     

5 CanESM2 r2*  L      34 MIROC4h r1  S     

6 CanESM2 r3*  L      35 MIROC5 r1*  L     

7 CanESM2 r4  L      36 MIROC5 r2*  L     

8 CanESM2 r5  L      37 MIROC5 r3*  L     

9 CMCC-CM r1  S      38 MIROC5 r4  L     

10 CMCC-CMS r1  L      39 MIROC5 r5  L     

11 CNRM-CM5 r1  S      40 MPI-ESM-LR r1  S     

12 CSIRO-Mk3.6.0 r1  S      41 MPI-ESM-LR r2  S     

13 CSIRO-Mk3.6.0 r10  S      42 MPI-ESM-LR r3  S     

14 CSIRO-Mk3.6.0 r7  S      43 MPI-ESM-MR r1  S     

15 CSIRO-Mk3.6.0 r8  S      44 MPI-ESM-MR r2  S     

16 CSIRO-Mk3.6.0 r9  S      45 MPI-ESM-MR r3  S     

17 CSIRO-Mk3L 1.2 r1  L      46 MPI-ESM-P r1  S     

18 CSIRO-Mk3L 1.2 r2  L      47 MPI-ESM-P r2  S     

19 CSIRO-Mk3L 1.2 r3  L      48 MRI-CGCM3 r1  S     

20 FGOALS-g2 r1  S      49 MRI-ESM1 r1  S     

21 FGOALS-g2 r3  S      50 NorESM1-M r1*  L     

22 GFDL-CM3 r1  L      51 NorESM1-M r2  L     

23 GFDL-CM3 r2  L      52 NorESM1-M r3  L     

24 GFDL-CM3 r3  L      N/A BNU-ESM r1  S     

25 GFDL-CM3 r4  L      Total Simulation Count: 6 53 21 31 9 29 

26 GFDL-CM3 r5  L              

27 GFDL-ESM2G r1*  L              

28 GFDL-ESM2M r1*  L              

29 INM-CM4 r1  S              

* Denotes simulations that were selected for routing, bias correction and streamflow time series analysis. 
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4.2 River and Lake Routing 

The river and lake routing methods used in this thesis are largely based on WATROUTE. 

However, since WATROUTE is typically set up in conjunction with WATFLOOD using pre-

processers such as Green Kenue (CHC, 2010), some additional data and pre-processing were 

required. Additionally, some adjustments were made to the original code to allow for 

implementation in the MATLAB software package (MATLAB, 2012), and to enable the code for 

use with the GCM daily runoff data. MATLAB was chosen for its common availability within 

academic and industry communities, for straight forward interfacing with GCM data and for the 

researcher’s familiarity with the software. The routing method developed for this thesis will be 

henceforth referred to as WATROUTEMOD, a modified version of the original WATROUTE 

code. A description of WATROUTE can be found in Kouwen (2012) and was summarized in 

Chapter 2. This Chapter contains a description of the unique pre-processing features and code 

implementation used for WATROUTEMOD in this thesis.  

For comparison, Table 7 summarizes basic physiographic properties in NCRB sub-basins 

for the WATFLOOD/WATROUTE model set up by Stadnyk and Newsom (2013) and 

WATROUTEMOD. Several differences exist between these two models and it should be noted 

that neither model was calibrated in a traditional sense and is subject to change. Of particular 

note is WATFOOD’s consideration of water coverage within grids (determined by land cover 

data), which inherently affects channel properties in WATROUTE. Channel width and depths 

are typically calculated using geomorphological relationships but in grids with considerable 

water coverage, WATFLOOD internally increases channel widths accordingly. Further 

comparison between WATROUTEMOD and a separate calibrated WATFLOOD/WATROUTE 

model for the WRB with finer resolution is discussed in Chapter 5. 
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Table 7 - Physiographic comparison of WATROUTE (from Stadnyk and Newsom, 2013) 

and WATROUTEMOD models by NCRB sub-basin 

 Parameter WATROUTE WATROUTEMOD 

Spatial Resolution 0.14°lat x 0.18°lon 0.25°lat x 0.25°lon 

U
C

R
 Mean channel slope 0.0011 0.0017 

Mean bankfull channel geometry (width/depth in m) 2010.8 / 1.9* 44.3 / 1.0 

Mean Manning’s n (in-channel/flood plain) 0.003 / 0.400 0.010 / 0.400 

N
R

L
 Mean channel slope 0.0007 0.0014 

Mean bankfull channel geometry (width/depth in m) 1454.2 / 1.7* 105.8 / 1.9 

Mean Manning’s n (in-channel/flood plain) 0.009 / 0.400 0.010 / 0.400 

S
R

B
 Mean channel slope 0.0024 0.0035 

Mean bankfull channel geometry (width/depth in m) 589.9 / 3.7* 60.5 / 1.3 

Mean Manning’s n (in-channel/flood plain) 0.013 / 0.400 0.010 / 0.400 

P
IA

O
 Mean channel slope 0.0014 0.0015 

Mean bankfull channel geometry (width/depth in m) 1399.7 / 3.0* 40.8 / 0.9 

Mean Manning’s n (in-channel/flood plain) 0.005 / 0.317 0.010 / 0.400 

W
R

B
 Mean channel slope 0.0008 0.0011 

Mean bankfull channel geometry (width/depth in m) 2534.6 / 2.7* 55.7 / 1.1 

Mean Manning’s n (in-channel/flood plain) 0.019 / 0.400 0.010 / 0.400 

*Values show WATFLOOD’s internally corrected bankfull channel geometry. 

 

 Gridded routing models require several pieces of information within each grid, a large 

portion of which is derived from Digital Elevation Models (DEMs). Considerable work already 

exists where elevation data from DEMs have been processed into information, such as drainage 

directions, required for routing models. This thesis leverages that existing work, largely based on 

the publically available, global coverage HydroSHEDS (Lehner, Verdin and Jarvis, 2008) and 

Hydro1k (U.S. Geological Survey, 2000) DEM products.  

The river network and its drainage directions are critical inputs to the routing model. Wu 

et al. (2011) presented an automated method, dominant river tracing (DRT), which upscaled 

river networks in Hydro1k to coarser resolutions (2°, 1°, 0.5°, 0.25°, 0.125° and 0.0625°) for use 

in macroscale hydrological modeling. Selecting an appropriate resolution requires balancing 

detail and computational requirements. The authors compared the various resolutions and 

showed that a resolution of 0.25° (grid size of about 900km
2
) was reasonable for capturing basin 

shape and area for basins as small as the Salmon River, Idaho, (35,502km
2
) in 35 grids. The data 
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product in Wu et al. (2012) is used in this thesis and is an updated version of Wu et al. (2011) 

using the HydroSHEDS product. Flow direction and flow distance (i.e., river length in a grid) at 

0.25° resolution from Wu et al. (2012) are used in WATROUTEMOD. A resolution of 0.25° 

results in grid cells with an average area of 462 km
2
 and discretizes the NRCB domain into 3,321 

grids, not including grids with non-contributing drainage areas. At 0.25° resolution, 

WATROUTEMOD takes approximately 45 minutes to simulate one year of streamflow on an Intel 

Xenon processors operating at 3.47 Gigahertz with 24 Gigabytes of RAM on a 64-bit operating 

system. WATROUTE and WATROUTEMOD are both linearly programmed using upstream to 

downstream, cell by cell, computation. Processing speed improvements could be realized by 

making the model run parallel when possible (e.g., by simulating upstream basins 

simultaneously), but this was outside the scope of this thesis. 

Wu et al. (2012) noted drainage direction discrepancies in flat areas, including an area 

overlapping the NCRB. Pietroniro et al. (2007) also recognized difficulties in resolving coherent 

drainage directions from DEMs and noted that adjustments are often required. For quality 

assurance, the flow direction and flow distance data were manually examined and some 

corrections were made. Three major drainage network edits were made: (1) along the border 

between the UCR and SRB, near the NRL, (2) in the NRL near the Churchill River Diversion 

(CRD), and (3) delineation and drainage of SRB boundary.  For (1), an incorrect drainage 

direction in one grid originally drained approximately half of the UCR into the SRB, which was 

manually corrected to properly drain the UCR. For (2), a small portion of the NRL northwest 

corner that originally drained into the UCR was manually corrected to drain into the NRL. And 

for (3), seven grids were edited to drain into the SRB instead of their original drainage to the 

neighbouring Athabasca river basin. These types of error are common in coarse flow direction 
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datasets. For example, the Nelson River Basin as portrayed in Poitras et al. (2011) appears to 

incorrectly include the Hayes River, which in fact drains directly into Hudson Bay very close to 

the Nelson River’s mouth. Figure 5 shows the discretized routing model domain over the NCRB 

including original flow paths, non-contributing areas (closed basins) and locations of lake 

outlets. Lake outlets represent lakes exceeding 4 km
2
 in area that are included in Manitoba 

Hydro’s individual (sub-basin) WATROUTE models. 

 

Figure 5 - WATROUTEMOD Routing model domain for the NCRB 

Since drainage areas can behave dynamically and the routing model is stationary, no 

changes were made to non-contributing drainage areas. This is a potential area for further 

improvement and is discussed in Chapter 6. In some instances, where flow distance from Wu et 

al., (2012) was (presumably) inaccurately reported as 1 m, this was recomputed as the average 

flow distance from eight neighbouring cells. The average value of eight neighbouring cells 

samples flow distance within the nearby physiographic region for a reasonable estimate.  
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Elevation data to determine river slope were derived directly from the HydroSHEDS 

DEM. The finer resolution DEM was averaged over the 0.25° grid, and slopes were computed as 

per the corrected drainage directions. In some instances, calculated slopes were very small and in 

rare instances, were negative. Negative slopes can occur because mean elevations at 0.25° 

resolution may not accurately portray the river bed profile. Arora and Boer (1999) encountered a 

similar problem and prescribed a minimum slope of 0.001. As such, a minimum slope of 0.001 is 

applied across the entire domain in WATROUTEMOD. A maximum slope of 0.235 was calculated 

in a western grid of the SRB, near the Rocky Mountains. A mean slope of 0.0026 was calculated 

for the entire NCRB. 

In order to solve Manning’s equation in each grid cell, river properties such as bankfull 

width, depth and roughness (Manning’s n) are required. Some studies (Arora and Boer, 1999; 

Arora, Chiew and Grayson, 1999; Arora, 2001) have used geomorphological relationships to 

estimate these properties. In WATROUTE, bankfull area is a function of geomorphological 

relationships, and the river width to depth ratio is user specific for each river class. Recently, 

Andreadis, Schumann and Pavelski (2013) combined geomorphological relationships with 

HydroSHEDS hydrographic data to improve the estimates and produce a global dataset. Gridded 

bankfull widths and depths from Andreadis, Schumann and Pavelski (2013) were incorporated 

into WATROUTEMOD. In most large scale studies, Manning’s n is estimated. A common range 

of 0.03 to 0.04 for natural streams is suggested by Arora et al. (1999) but a wider range of values 

exist in specific literature such as 0.01 (Rousseau et al., 2014), 0.012 (Aldridge and Garrett, 

1973) and 0.4 for overland flow in Li et al. (2013). In-channel and overbank Manning’s n values 

in WATROUTEMOD were estimated as 0.01 and 0.4, respectively, using NCRB spatially 

averaged values from Stadnyk and Newsom (2013).  
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 WATROUTE applies a dynamic computational time step as a function of channel storage 

and flow. The time step is selected such that water in the fastest draining grid does not 

completely drain.  This dynamic computational time step is similar to the Courant criterion 

which aids numerical stability. 

𝐶 =  |
∆𝑡 ∗ 𝑣

∆𝑥
|  ≤ 1 

(9) 

 

where C denotes the Courant criterion, 𝛥t denotes the time step, v denotes the velocity and 

𝛥x denotes the spatial distance of a grid. 

 

  

In WATROUTE, the minimum time step is user defined and typically set at five minutes, 

which coincides well with WATFLOOD’s generation of runoff at 15 minute intervals. 

WATFLOOD is also typically run with much finer spatial resolutions than 0.25° that require 

smaller routing time steps. Testing was done to find a suitable, constant, time step for the routing 

model used in this thesis. Numerical instabilities were noted at the GCM’s archived 24 hour time 

step but a one hour time step ensured computational stability. As such a constant one hour time 

step was used in WATROUTEMOD. The Courant criteria dependant time step applied in 

WATROUTE likely contributes to improved computational performance compared to 

WATROUTEMOD. 

 Lake routing is coded into WATROUTEMOD for 57 lake outlets, capturing 86.8% of the 

lake surface area that is currently captured in existing WATROUTE models for the NCRB. In 

WATROUTE, lakes are coded using stage-discharge through power law or polynomial 

functions, which can be calibrated to capture natural lakes as well as regulated lakes. Except for 

the Lake St. Joseph Diversion, WATROUTEMOD does not account for regulation, and therefore 

lakes are coded using stage-storage curves and naturalized rating curves. Where stage-storage 

data is available (e.g., Lake of the Woods Control Board, 2014), it is used directly. In other 

cases, stage-storage is estimated based on lake surface area, similar to the process followed in 
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WATROUTE. Naturalized rating curves (with no regulation decisions) are approximated using 

the broad-crested weir equation: 

𝑄 = 𝐶𝐿𝐻1.5 (10) 

  

where Q is flow in m
3
/s, C is assumed to be constant at 1, L is the sill length in metres and H 

is the water height above the sill. 

 

  

The broad crested weir equation largely resembles other power functions used to 

approximate naturalized lake rating curves such as those in Pietroniro et al. (2007) for the Great 

Lakes. In order to best estimate the natural flow conditions, the sill length (L) is estimated by 

reorganizing the equation, assuming average flow conditions, average lake levels above the sill 

and solving for L. In cases where flow and height data are not available, average flow from a 

nearby gauge is used and height above the sill is arbitrarily set to 1 m. WATROUTE also allows 

for a Manning’s roughness (n) multiplier to account for lakes that are present within a grid but 

not resolved by WATROUTE. Since spatially uniform roughness values were implemented in 

WATROUTEMOD, a roughness multiplier, which accounts for grids with considerable water area, 

was not used. As such, WATROUTEMOD may provide less flow damping in certain sections 

when compared to an equivalent WATROUTE model.  

 Although WATROUTEMOD is developed to look at naturalized flow conditions, it is 

important to consider the Lake St. Joseph Diversion as it adds a considerable amount of volume 

(80 m
3
/s on average) to the WRB, which is reflected in the LTFD historic record. Rather than 

coding a complex decision algorithm into WATROUTEMOD, a simple three-state decision was 

coded. This decision operates on the limits that the maximum diversion outflow is 245 m
3
/s, a 

minimum preferred diversion outflow is 10 m
3
/s and a minimum mean annual outflow into the 

Albany River is 18 m
3
/s (Lake of the Woods Control Board, 2014). Accordingly, 

WATROUTEMOD partitions Lake St. Joseph flows in accordance with the following rules: 
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𝐼𝑓 𝑄𝐿.𝑆𝑡.𝐽. ≥ 263 (245 + 18) 𝑄𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 245 

𝐼𝑓 𝑄𝐿.𝑆𝑡.𝐽. ≥ 28 (10 + 18) 𝐴𝑁𝐷 𝑄𝐿.𝑆𝑡.𝐽. < 263 𝑄𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑄𝐿.𝑆𝑡.𝐽. − 18; 

𝐼𝑓 𝑄𝐿.𝑆𝑡.𝐽. < 28 𝑄𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑜𝑛 =  𝑄𝐿.𝑆𝑡.𝐽. 2⁄  

  

where QL.St.J. is the naturalized Lake St. Joseph outflow, as calculated from the naturalized rating curve. 

QDiversion is the flow diverted into the WRB 

 

It is recognized that this representation of Lake St. Joseph diversions does not properly 

account for wet conditions where the diversion is reduced due to high flows on the Winnipeg 

River. However, the upper diversion limit remains at 245 m
3
/s and for average years and dry 

years the relationships performs reasonably. 

Ice can play an important role in river and lake routing as it can naturally restrict flow, 

raise water levels, and cause rapidly changing water conditions when ice dams break. 

WATROUTE accounts for ice either through a degree day method driven by temperature, or 

through the use of different rating curves that can be hard-coded to switch on a specific date. 

Manitoba Hydro also accounts for ice effects through the use of outlet performance curves. 

Outlet performance curves are a function of time and show that some reservoir outlet capacities 

can be reduced to ~70% of their normal capacity. Although it is possible to set up a conceptual 

outlet performance model at each location driven by GCM temperature, the intent of this thesis is 

not to look at the effect of ice. Instead, a synthetic curve was created, based on outlet 

performance curves from Manitoba Hydro and existing WATROUTE relationships at various 

lakes. This synthetic curve was then applied consistently in WATROUTEMOD space and is held 

stationary for every year of simulation. Similarly, seasonal ice corrections were also applied in 

Pietroniro et al. (2007) for modeling the Great Lakes with WATROUTE. 

Since some GCMs can produce negative runoff, it is important to handle the occurrence 

of negative runoff appropriately. Negative runoff represents water coming out of storage, as is 

the case for lakes when there is water deficit but lake volume is assumed to be constant. This is 
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the case for land surface schemes based on the Community Land Model (CLM; Oleson et al., 

2004). Negative storage is handled in WATROUTEMOD by allowing water to be removed from 

channel and lake storage for a particular grid. The channel or lake storage is bound at zero and 

will not become negative. 

 Although it is difficult to test routing models in highly regulated basins like the NCRB 

(Sushama et al., 2006), a simple test was designed to compare WATROUTE to 

WATROUTEMOD in the WRB. This test is not intended to compare WATROUTEMOD to reality, 

but rather to ensure that its performance is consistent with an established WATROUTE model. 

The WRB WATROUTE model used for comparison was provided by Manitoba Hydro in 

October, 2014. The WRB WATFLOOD model was originally set up by WATFLOOD developer 

Dr. Nicholas Kouwen and has undergone continuous improvement and calibration at Manitoba 

Hydro. Past versions of the WRB WATFLOOD model were implemented in Master of Science 

theses at the University of Manitoba (Wruth, 2013; Slota, 2013).   

A synthetic runoff time series applying a uniform 0.2 mm/day with a single annual peak 

of 4.7 mm/day in May was generated to perform this test. This time series was repeated for five 

years to allow routing models to spin up. To help with consistency, both models were run 

without Lake St, Joseph diversion and WATROUTEMOD used a Manning’s n of 0.01 (in channel) 

and 0.4 (overbank) to better account for in-stream lakes simulated in WATROUTE. While this 

comparison serves as a good test for WATROUTEMOD, one should recall the differences between 

the two models including discretized drainage area, Manning’s n, number of lakes, lake routing 

relationships, channel slopes, and channel geometry. Results from this comparison can be found 

in Chapter 5.  
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4.3 Bias Correction 

In the absence of vetted bias correction methods for GCM generated streamflow, a QM method 

(daily translation; Mpelasoka and Chiew, 2009) is adapted for correcting WATROUTEMOD time 

series. Limitations with this approach are acknowledged, and are further discussed as potential 

improvements in Chapter 6. For the objectives of this thesis, however, the QM approach was 

chosen because it corrects for streamflow volume errors while maintaining the GCM’s 

sequencing of events. A similar method was also tested in Hashina et al., (2007) for correcting 

shorter term streamflow forecasts. Although some GCM runoff studies have skipped bias 

correction, reasoning that bias will cancel out when looking at changes in GCM baseline and 

future simulations (Alkama et al., 2013; Kumar et al., 2014), this thesis presents bias corrected 

results that may better reflect realistic magnitudes for analysis of results. To better understand 

how QM is applied in this thesis, an overview of the underlying daily translation method is 

provided, and then differences between daily translation and the implementation of QM in this 

thesis are discussed.  

Daily translation can be described in three simplified steps. Step 1 compares observed 

empirical cumulative distribution functions (ECDFs) with GCM distributions in a reference 

period. In step 2, adjustment values from the ECDFs are computed at various quantiles. Step 3 

applies adjustment values to GCM simulations to produce bias corrected time series. QM can be 

adaptable to specific applications, with differences in approaches observed in literature. For 

example, the reference period may include 30 years of daily data (Räty et al., 2014) or 25 years 

of monthly data (Watanabe et al., 2012). Some studies may compute adjustment values at each 

percentile (100 quantiles in Räty et al., 2014) or might group percentiles to compute adjustment 

values (20 quantiles in Mpelasoka and Chiew, 2009). And some studies may compute adjustment 
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values for each month (Hashino et al., 2007), or group months together and compute adjustment 

values for seasons (Mpelasoka and Chiew, 2009).  

This thesis applies QM of ECDFs to grouped monthly streamflow data in a 94 year 

reference period (1912-2005) to compute adjustment values for 100 quantiles. The result is one 

adjustment value set for each sub-basin and each GCM. Using ECDFs essentially ranks the data 

from the smallest value to the largest value and in the case of 94 years of monthly data, 1,128 

values are ranked and define the ECDF. Adjustment values for 100 quantiles based on 1,128 

values therefore results in each adjustment value representing one correction for approximately 

11 data points. Alternatively, the use of a continuous distribution would alleviate the need for 

quantile-specific adjustments but would require further assumptions about the underlying 

statistical distribution. Empirically defining adjustments is common in literature and the use of 

11 data points per quantile is within the range used in published literature. Use of a 94 year 

reference period helps reduce sampling uncertainty associated with shorter time periods and may 

be particularly important in streamflow analysis with low frequency fluctuations.  

Grouping all months together, as opposed to independently calculating adjustment values 

for each month, avoids the undesirable effect of correcting streamflow timing. Correcting 

streamflow timing is undesirable because it would rely on QM to correct for more than just the 

systematic GCM volume bias. The additional timing related errors include anthropogenic 

influence in the observed record, routing model errors, and the GCM’s timing of runoff 

generation. The approach used in this thesis assumes that streamflow time series generated by 

WATROUTEMOD include monthly flow distributions that are similar to the observed record, but 

allows peak and low flow months to occur at different times of the year. This assumption is 

realistic for the occurrence of high and low flow events. For example, during an extreme high 
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flow event, a naturalized model will pass flow through lakes providing some natural attenuation. 

In reality a reservoir might first be filled prior to increasing outflows, but could still produce 

similar peak flows to the naturalized environment. In the case of an extreme low flow event 

where reservoir storage has been depleted, it is conceivable that an operator may set reservoir 

outflow equal to inflow, producing minimum flows similar to a naturalized environment. There 

may be more discrepancy in the median flow range where operations can have the greatest 

impact. For this thesis, differences in the median flow range are accepted as the objectives are 

primarily concerned with variability in high and low flow events. 

Once adjustment values are computed for the reference period (1912-2005), they are 

applied individually to de-trended piControl, historic and future periods. The de-trending and 

individual application helps ensure that a potentially more extreme future (high or low) does not 

oversample adjustment values from the tail ends of the distribution. After adjustment values are 

applied, the linear trend is added back into the time series. Whereas the de-trending step can be 

important for scenarios with large trends, it will not have a substantial impact on scenarios that 

are more stationary, including the piControl periods. 

Since QM of monthly data can alter the GCM`s original simulated annual change signal, 

similar to an issue noted by Maurer and Pierce (2014), an additional step was considered to 

preserve the GCM`s original annual change. The step was conceptualized as a secondary 

adjustment, applied uniformly across all months in a given year, to preserve the percent 

departure in GCM annual flow from the average annual GCM flow. After some testing, it was 

found that the differences were not large and this secondary adjustment was not performed. 
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4.4 Streamflow Scenarios and Time Series Analysis 

Bias corrected GCM streamflow scenarios from WATROUTEMOD provide simulations of 

streamflow under stationary conditions (piControl), historic conditions, and various future 

conditions as a result of specific RCPs. Since the bias correction does not account for all types of 

errors, and we accept that the streamflow scenarios are representative of more naturalized 

conditions, it is best to compare simulations from individual GCMs. In other words, results will 

be based on the comparison of GCM piControl and future periods to GCM historic periods (as 

opposed to comparison with observation). Where appropriate, results will include 1912-2005 

observations to help illustrate residual bias. 

Due to computational requirements and limited GCM simulations with piControl, historic 

and future periods, a subset of simulations listed in Table 6 were selected (marked with an 

asterisk; *). Nine simulations from five GCMs were selected that contained adequate data in 

piControl and historic periods, and contained projections for RCP4.5 and RCP8.5 scenarios. 

Three simulations (run1, run2 and run3) from CanESM2 and MIROC5 are included to explore 

uncertainty in natural climate variability for historic and future periods. These runs are driven by 

the exact same GCM under the exact same atmospheric forcing but are initialized with a slightly 

different set of initial conditions, causing their climates to evolve differently over time. The 

subset of simulations selected for this analysis is similar to other studies such as Koirala et al. 

(2014) who only considered RCP4.5 and RCP8.5 and Prudhomme et al. (2014) who assessed 

five GCMs. 

From a practical perspective, it is of interest to consider how the streamflow climatology 

may have been observed in different 94 year windows, outside of the 1912-2005 reference 

period. The use of longer samples is also consistent with literature which has recognized that 
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longer samples can aid the assessment of extreme events (Huziy et al., 2013; Maloney et al., 

2014). Available data from 1361 to 2099 were split into eight quasi-equal segments of 91 to 94 

years (Table 3). These segments include five piControl periods, one period that bridges piControl 

and historic periods, one 1912-2005 reference period, and one future period. The period that 

bridges piControl and historic periods is included to maximize use of available information but 

one should note that this period is likely discontinuous at the year 1861. Without knowledge of 

how modeling institutions used piControl simulations to initialize historic runs, it is not possible 

to consider a continuous time series at 1861. Furthermore, due to WATROUTEMOD spin-up, the 

first year of each CMIP5 period (1361, 1861 and 2006) is discarded from analysis. Future 

periods could be further divided and considered individually as there are two different 

realizations depending on the RCP.   

  Monthly mean flows generated by WATROUTEMOD are analyzed using different 

approaches across the aggregated NCRB domain. The NCRB as a whole is considered to better 

understand the entire system as one unit instead of individual sub-basins. Considering the 

aggregated NCRB also aligns with Manitoba Hydro’s hydraulic generation system, which is 

primarily located at the downstream end of the Nelson River.  

To compare average conditions, mean hydrographs of the annual cycle are calculated and 

presented to analyze streamflow climatology and extract information regarding monthly mean 

flows and timing of runoff. Annual average flows are also analyzed to better understand 

variability in the annual water budget. Monthly mean and annual mean streamflow are among 

the most common hydrological indicators used in climate change literature (Koshida et al., 

2015). For these indicators, changes in hydrologic variability are determined using the 

coefficient of variation (CV):  
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𝐶𝑉𝑄 =
𝜎𝑄

𝜇𝑄
 

(11) 

 

where CV is coefficient of variation, σ is the standard deviation and µ is the mean. Q may be 

monthly streamflow or annual streamflow. 

 

  

CV has been used in past studies to compare model agreement and spread in multi-model 

ensembles (Haddeland et al., 2011; Hagemann et al., 2013; Koirala et al., 2014) but is applied in 

this thesis to determine changes in hydrologic variability was done in Gudmundsson, Tallaksen 

and Stahl (2011). CV calculated on mean annual streamflow provides information of inter-

annual streamflow variability. CV calculated on mean monthly streamflow provides information 

on intra-annual flow variability. 

To better understand extreme events in stationary and future climates, droughts and 

floods are also analyzed. Using time series of annual average flow, multi-annual drought severity 

(m
3
) and duration (years) are considered. Consistent with the theory of runs (Yevjevich, 1967), a 

drought begins when the annual average flow drops below a threshold and ends when the flow 

rises above the same threshold. For simplicity, the threshold is set as the mean 1912-2005 

observed NCRB streamflow, common for all GCMs. A common threshold enables comparability 

among GCMs and since bias corrected mean flows are within 90 m
3
/s of the observed mean, the 

results are not overly sensitive to this decision. The maximum of monthly mean flows within a 

year are also used to examine floods. In large basins, the maximum of monthly mean flows are 

well correlated to instantaneous peak flows (Milly et al., 2002), providing a suitable indicator for 

changes in flood events.  

 The statistical tests and methods presented in Koirala et al. (2014) are applied in this 

thesis to quantify the significance of change and assign confidence to projected change. A brief 

summary is provided below with further details found in Koirala et al. (2014). The method 

combines the two-sample Mann-Whitney-Wilcoxon U (MW-U) non-parametric rank-based test 
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with bootstrap resampling. The two samples are comprised of historic, piControl, and future 

streamflow scenarios. One sample always comes from a historic simulation while the other 

sample comes from either a piControl or future simulation. GCMs with one historic simulation 

(run1) produce six piControl pairs and two future pairs. GCMs with three historic simulations 

(run1, run2 and run3) produce 18 piControl pairs and six future pairs. For the five GCMs 

assessed, a total of 54 piControl pairs and 18 future pairs are tested for statistically significant 

differences between historic and stationary conditions (piControl) and differences between 

historic and future projections (RCP4.5 and RCP8.5). These tests assume that all simulations 

including both future scenarios are equally plausible. The MW-U tests the null hypothesis that 

both samples have equal means. Therefore, the results inform on changes in mean annual flow, 

mean drought severity, mean drought duration and mean of maximum monthly flow. In Koirala 

et al., (2014) bootstrap resampling is used to filter out effects of outliers in the studies’ relatively 

short 30 year periods. Although the 91-94 year periods used in this thesis provide a larger 

sample, the sample size of multi-year droughts is less than 91-94, therefore bootstrap resampling 

can be beneficial. In addition, bootstrapping is good practise for statistical analysis of hydrologic 

data (Kundzewicz and Robson, 2004) since it does not require assumptions about the underlying 

statistical distribution. Bootstrap resampling based on random number generation with 

replacement is therefore applied consistently to all MW-U tests.   

 The procedure to test statistical significance is briefly described as follows. A pair of data 

(e.g., CanESM2 run1 historic and CanESM2 run1 RCP8.5) is used to compute an original MW-

U test statistic (MW-U0). Ten thousand equal-length bootstrap samples are generated for each the 

historic and future data (normalized to the original sample as in Koirala et al., 2014 

supplementary information) and 10,000 MW-U test statistics are generated (MW-U1 to MW-
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U10,000). The bootstrapped test statistics are then sorted in ascending order. The rank of MW-U0 

is then used to determine the non-exceedance probability using a plotting position that is in 

accordance with Cunnane (1978) recommendations: 

𝑝0 =
𝑅𝑂 − 0.4

𝑁𝑏 + 0.2
 

(12) 

  

where p0 is the non-exceedance probability, R0 is the rank of MW-U0 among bootstrap 

resampled MW-Us and Nb is the number of bootstrap samples (10,000 in this case). 

 

  

At the two-sided 5% significance level, a non-exceedance probability less than 0.025 

(greater than 0.975) rejects the null hypothesis and suggests a statistically significant increase 

(decrease). Non-exceedance probabilities between 0.025 and 0.975 accept the null hypothesis. 

 Similar to Koirala et al. (2014), the degree of consistency (DOC) is used to determine 

agreement among climate simulations regarding the direction of future climate change. In this 

thesis, DOC is also used to determine agreement among climate simulations regarding natural 

climate variability by comparing historic and piControl simulations. A strong DOC demonstrates 

consensus among model simulations regarding the direction of change. When coupled with 

statistically significant evidence of change, a strong DOC identifies robust changes which reflect 

greater confidence in results.  

DOC is also used for characterizing differences in CV; however, no statistical evidence is 

presented to support these results. While a statistical test for different variances could have been 

applied, there is little literature currently available for detecting changes in second order statistics 

(Kundzewicz and Robson, 2000). One potential test is the two sample f-test, but this test assumes 

that the samples are normally distributed and can be sensitive to outliers. In the absence of a 

reliable and appropriate test for change in variability, DOC is presented for CV without 

statistical evidence. The differentiation is made by DOCSTAT for DOC supported by statistical 
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evidence and DOCNON-STAT for DOC not supported by statistical evidence. Table 8 contains 

criteria for assigning DOC. 

Table 8 - Criteria for assigning degree of consistency with statistical evidence (DOCSTAT) 

and degree of consistency without statistical evidence (DOCNON-STAT) 

 DOC Criteria 

D
O

C
S

T
A

T
 Strong ≥89% scenarios statistically significant and agree on direction of change 

Moderate ≥72% scenarios statistically significant and agree on direction of change 

Weak ≥56% scenarios statistically significant and agree on direction of change 

Negligible <56% scenarios statistically significant and don’t agree on direction if change 

D
O

C
N

O
N

-S
T

A
T
 

Strong ≥89% scenarios agree on direction of change 

Moderate ≥72% scenarios agree on direction of change 

Weak ≥56% scenarios agree on direction of change 

Negligible <56% agree on direction of change 

   

The DOC criteria presented as percentages depend on the number of pairs being tested. 

For future projections (18 pairs total), the percentages correspond to 16 pairs for strong DOC, 13 

pairs for moderate DOC and 10 pairs for weak and negligible DOC. For natural climate 

variability (54 pairs total), the percentages correspond to 48 scenarios for strong DOC, 39 

scenarios for moderate DOC and 30 scenarios for weak or negligible DOC.  

Other qualitative assignments of evidence and agreement have been used in literature. 

The IPCC offers some guidance on this topic and promotes the use of summary terms, which are 

subjective. In Mastrandrea et al. (2010), qualitative terms such as “low”, “medium”, “high”, 

“limited” and “robust” are used to describe evidence and agreement to a specific conclusion. 

Mastrandrea et al. (2010) also suggests that a quantitative confidence level should be presented 

only when there is high agreement and robust evidence.   
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CHAPTER 5 

Results and Discussion 

This chapter presents the results obtained following the methods and datasets described in 

Chapter 4. As with Chapter 4, this chapter is organized by sections according to thesis objectives. 

5.1 Evaluation of Climate Model Skill 

GCM skill evaluation provides the foundation for interpretation of subsequent results. Of the 53 

available GCM simulations listed in Table 6, one simulation is discarded from the analysis (and 

is not shown). Daily runoff data from BNU-ESM run1 contains values that were orders of 

magnitude larger than other simulations, and much larger than realistically expected (>300 

mm/day). While this runoff could be model error, it could also be an error in the way the model’s 

daily runoff data was archived since the monthly runoff data from the same simulation is more 

realistic. It is important to note that runoff errors in GCMs could result from more than just GCM 

LSM error. For example, runoff errors could be the result of poor representations of precipitation 

as discussed in Chapter 2 (Sections 2.2.2.1 and 2.2.2.3).  

Table 9 shows observed (LTFD) values to which GCM performance is compared and 

Figure 6 to Figure 9 illustrate GCM skill. Figure 6 illustrates how GCM simulations perform 

with respect to observed mean runoff and runoff variability in the NCRB. Annual average runoff 

over the 1950-2005 period are shown. Generally, simulations from the same GCM have similar 

characteristics with differences attributed to natural climate variability. Figure 6 helps identify 

models that produce: relatively higher (e.g., CMCC-CMS) and lower (e.g., CSIRO-Mk3.6.0 and 

NorESM1-m) mean annual runoff, greater interannual variability (e.g., CMCC-CMS), and less 

interannual variability (e.g., NorESM1-m). Some performance aspects of certain GCMs can be 
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attributed to their LSM. For example, models such as BCC-CSM1.1, FGOALS-g2 and 

NorESM1-m whose land surface models are based on Community Land Model (CLM; Table 5) 

may produce lower runoff since CLM allows runoff to be negative (Oleson et al., 2004). This 

issue was discussed in Chapter 4 (Section 4.2) of this thesis.   Although Alkama et al. (2013) 

noted that BCC-CSM1.1 largely underestimated global runoff, its performance seems reasonable 

with respect to mean annual observed runoff in the NCRB.  

Table 9 - 1950-2005 observed (LTFD) values for skill evaluation performance metrics. 

Metric (units) UCR LNR SRB PIAO WRB NCRB 

Mean (mm/day) 0.334 0.401 0.216 0.179 0.597 0.300 

Min (mm/day) 0.218 0.161 0.109 0.036 0.292 0.169 

Max (mm/day) 0.536 0.801 0.387 0.344 0.902 0.494 

Var (mm/day)
2
 0.004 0.016 0.004 0.007 0.026 0.004 

AR1 0.454 0.300 0.414 0.310 0.215 0.326 

Slope (% of mean) -0.424 0.101 -0.672 0.067 -0.012 -0.204 

Cum. Wet (years) 3.625 2.077 2.273 2.273 2.636 2.600 

Cum. Dry (years) 3.375 2.417 3.100 2.818 2.455 3.000 

C
ro

ss
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el
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  UCR 1.000 0.536 0.381 0.229 0.142 0.576 

LNR - 1.000 0.257 0.404 0.444 0.684 

SRB - - 1.000 0.385 0.291 0.622 

PIAO - - - 1.000 0.637 0.829 

WRB - - - - 1.000 0.772 

NCRB - - - - - 1.000 

 

 

Figure 6 - GCM Skill in reproducing annual runoff volume and variability relative to the 

observed (LTFD) record for the NCRB (1950-2005) 
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Figure 7 - RMSE portrait diagram of GCM skill for 1950-2005. Additional information on 

metrics and their units can be found in Table 4 and Table 9. 

 

Figure 8 - Relative RMSE (RMSE') portrait diagram of GCM skill for 1950-2005. 

Additional information on metrics can be found in Table 4 and Table 9. 

Figure 7 illustrates RMSE for the 52 GCM simulations with respect to the nine metrics 

listed in Table 4. Whereas Figure 6 and Figure 7 contain similar information, RMSE in Figure 7 

is spatially averaged such that the GCM’s performance in each sub-basin and the NCRB as a 

whole is reflected. Therefore, Figure 6 might indicate that a simulation performs well across the 
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aggregated NCRB domain, but Figure 7 may suggest that GCM performance in individual sub-

basins is not as good. An example of this behaviour is seen for BCC-CSM1erf.1 simulations 

where mean annual runoff performs well for the aggregated NCRB, but is largely overestimated 

in the SRB, and underestimated in the WRB and NRL, resulting in a poorer RMSE in Figure 7. 

Figure 8 illustrates similar information as Figure 7 except RMSE’ and RMSE’ALL is shown 

instead of RMSE, reflecting how individual GCMs perform relative to the median simulation 

(RMSE’ of zero) within the ensemble of 52 GCM simulations.  A great deal of information is 

presented in Figure 7 and Figure 8 but RMSE alone does not make the distinction of whether a 

simulation over or under predicts a given metric. Although this limitation is important for 

metrics such as slope, a RMSE value of (or near) zero is still preferred and therefore the metric is 

included in the analysis. 

No one GCM stands out as having exceptional performance with respect to lag-1 

autocorrelation (AR1) or the cross correlation (cross corr.) metrics. For AR1, RMSE ranges from 

0.13 to 0.50 with a mean of 0.29; however, there is also considerable variability in observed 

LTFD estimates of AR1. To test sampling uncertainty, AR1 in the observed LTFD record is 

calculated for a 56 year moving window from 1912-2005 showing an AR1 range of 0.33 to 0.54 

across the NCRB. The lowest AR1 of 0.33 is calculated in the 1950-2005 observed period which 

is the reference period in this skill evaluation. Using the same aggregated NCRB data, Akintuğ 

(2006) reported an AR1 value of 0.48 for the period of 1912-1998. Similar sampling uncertainty 

is possibly evident in cross corr. although this was not specifically tested. Colours shown on 

Figure 7 and Figure 8 suggest that the GCMs do not accurately capture the cum. wet and cum. 

dry metrics. However, y-axis bounds on Figure 7 show that RMSE is generally less than 1.24 
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years. In other words, most GCMs simulate average durations of wet and dry periods with an 

RMSE less than 1.24 years of the average duration of observed wet and dry periods.     

Alkama et al. (2013) found that most GCMs simulated mean runoff reasonably well over 

North America. Similarly, simulations evaluated in this thesis indicate that most GCMs perform 

well in simulating mean annual runoff across the NCRB. Results above also show that GCMs are 

capable of reasonably simulating other annual runoff metrics such as minimum annual flow, 

maximum annual flow, variance and mean durations of cumulative wet and dry periods. Past 

studies such as Ault et al. (2014) have suggested that CMIP5 GCMs do not capture long term 

persistence in precipitation fields over certain areas such as the southwestern United States. 

Johnson et al. (2011) also assessed CMIP3 GCM skill in capturing long term persistence and 

showed that performance varied considerably among models. The use of 56 year climatologies in 

this thesis aligns with Johnson et al. (2011) who noted the importance of considering longer 

periods in assessing GCM skill. In this thesis, persistence is partially represented by the AR1 

skill metric. And although there are considerable differences between observed and GCM 

simulated values, uncertainty in observations may play a significant role in the RMSE values. 

Furthermore, persistence of low flow conditions only addresses one component of drought risk. 

Another component is drought severity which can be important for short duration, very low flow 

events even in the absence of long term persistence. Overall, based on RMSE’ALL, the subset of 

nine simulations selected for further analyses capture a range in model performance, including 

those that perform 10% worse (NorESM1-m r1) to 30% better (CanESM2 r1) than the median 

model.  

Figure 9 compares monthly GCM runoff to monthly LTFD observed streamflow, 

illustrating the importance of using a routing model to capture the time lag between runoff 
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generation and streamflow. Monthly mean composite runoff fields from the Global Runoff Data 

Center (GRDC; Fekete, Vörösmarty and Grabs, 2002) are shown as supplementary. Since GRDC 

methodology uses streamflow records with as few as 12 years of observations, the period does 

not correspond to 1950-2005. In the GCMs and GRDC, normal peak runoff correlates to snow 

melt, typically occurring in March, April or May. In reality, snow melt might begin in March or 

April, but realization of the freshet (i.e., runoff from the melted snowpack) in the downstream 

streamflow record may not occur until May or later, depending on the basin.  Figure 9 also 

illustrates GCM simulations that frequently generate negative runoff in the summer. This 

behaviour requires special handling in WATROUTEMOD and was discussed in Chapter 4 

(Section 4.2). 

 

Figure 9 - GCM skill - mean monthly runoff for the aggregated NCRB. Left panel shows 

LTFD observations (1950-2005), the ensemble of 52 GCM simulations (1950-2005) 

and GRDC estimated observations (multiple year ranges considered). Right panel 

shows subset of nine GCM simulations selected for further analysis.  

5.2 River and Lake Routing using WATROUTEMOD 

Results and discussion for WATROUTEMOD output include a comparison with WATROUTE for 

the WRB and non-bias corrected (raw) output at key locations within the NCRB, corresponding 

to LTFD sub-basin outlets. Comparison between WATROUTEMOD and WATROUTE verifies 

that WATROUTEMOD performs in a similar manner as the original WATROUTE code. Although 
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it is possible to conduct a more comprehensive set of tests, including additional synthetic runoff 

events, this simple test illustrates how the two routing models respond to a single event and 

allows for assessment of the rising and falling limbs of the hydrographs. It is also important to 

note that this is a comparison of model results to model results, with no comparison to the truth 

(i.e., the observed record).  

Although a comparison to observation would be ideal, there are challenges due to the 

absence of gridded runoff observations and imperfect knowledge of anthropogenic influence on 

observed records. An alternative test may have used WATFLOOD generated gridded runoff for a 

set of observed years (multiple years required to capture antecedent conditions) in place of a 

synthetic runoff event. In this case, both WATROUTE and WATROUTEMOD would be subject 

to errors in WATFLOOD’s generated runoff which may artificially favor the performance of 

WATROUTE since WATFLOOD and WATROUTE were calibrated in parallel. The use of a 

synthetic runoff event with no comparison to observations reduces bias towards the calibrated 

model and allows for a more direct model to model comparison with differences that are easier to 

diagnose. A similar approach was used in Arora et al. (2001) to compare two routing methods in 

a hypothetical basin. Figure 10 shows the results from the test in the WRB. 

 

Figure 10 - WATROUTEMOD vs. WATROUTE at the Winnipeg River Basin outlet for a 

synthetic runoff event 
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 Hydrograph timing is similar in both routing models, especially for the receding limb. 

However, WATROUTEMOD responds with a slightly earlier rising limb that peaks 279 m
3
/s 

higher. WATROUTE produces a more attenuated hydrograph response with some other subtle 

differences resulting from model setup and parameterization. The addition of lakes and lake area 

when running WATROUTEMOD has one of the greatest impacts to the simulated hydrograph in 

the test basin. There are 58 lakes programmed into WATROUTE in the WRB, covering an area 

of approximately 12,600 km
2
. Originally, WATROUTEMOD was programmed with only five 

lakes (not including Lake St. Joseph) and during preliminary testing, peaked 1000 m
3
/s greater 

than the current version. Twenty-two additional lakes were added to the original 

WATROUTEMOD version; however some lakes were combined into one with the same lake 

outlet as they were too small to be discretized into their own grid at the 0.25° resolution. 

Together, lakes in WATROUTEMOD now account for 83.1% of the original lake area in the WRB 

WATROUTE model. This realization also led to increasing the number of lakes coded in the 

NCRB domain, which went from an original 15 to the 57 lake outlets embedded in the current 

version of the model. In addition, the rating curves used to route water through the lakes also 

varied substantially as a result of the increasing grid resolution in WATROUTEMOD, resulting in 

differences in flow attenuation and runoff travel time. 

WATROUTE uses a finer grid resolution of approximately 0.10° x 0.07° and discretizes 

the shape and area of the WRB slightly differently (into 3039 grids). Differences in resolution 

and discretized area can affect both streamflow amplitude and volume. In a study of runoff 

model sensitivity to resolution, Arora et al. (2001) found that a coarser routing model 

overestimated high flows, helping to explain differences between WATROUTEMOD and 

WATROUTE. Differences in streamflow volume are partially an attribute of differences in the 
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discretized basin shape and area. The WRB in WATROUTEMOD is 2.5% larger than in 

WATROUTE (137,720 km
2 

vs. 134,354 km
2
), and the domain is discretized into only 274 grids. 

Whereas one would also expect mean annual streamflow to be 2.5% greater (given the larger 

area), WATROUTEMOD produces mean annual streamflow that is 4.6% greater than 

WATROUTE. In this test, WATROUTEMOD produces mean annual streamflow within 0.08% of 

the expected value (964 m
3
/s for WATROUTEMOD; mean annual runoff of 0.605 mm/day over 

an area of 137,720 km
2
), while WATROUTE underestimates the expected runoff (941 m

3
/s; 

mean annual runoff of 0.605 mm/day over an area of 134,354 km
2
) by 1.9%. WATROUTE’s 

underestimation of flow volume may be related to the internal treatment of grid cells, where only 

a fraction of their area contributes to the WRB or due to the numerical solution method. 

Fractionalized grid cells are not applied in WATROUTEMOD. Instead, grids either contribute 

completely to the basin or contribute nothing. Both WATROUTEMOD and WATROUTE use 

numerical solution schemes that allowed 20 iterations or convergence to within three percent. 

However, WATROUTEMOD uses a constant one hour time step whereas WATROUTE uses a 

dynamic time step to increase computational efficiency. It is possible that the one hour time step 

in WATROUTEMOD performs better; meeting a 3% convergence criterion before the 20 iteration 

limit and therefore provides more accurate streamflow estimates. However, this was not directly 

tested. 

 WATROUTE’s parameterization, specifically channel geometry, slope, length, and 

Manning’s n, differ from WATROUTEMOD partially due to different grid resolutions. This can 

impact streamflow attenuation. WATROUTE’s channel bankfull area is based on user specified 

geomorphological relationships as a function of upstream drainage area. WATROUTE then 

applies user specified width to depth ratios to translate channel bankfull area to bankfull width 
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and bankfull depth. Bankfull area versus drainage area relationship parameters and width to 

depth rations are set by river class. Of the 16 river classes in the WRB WATROUTE model, user 

specified width to depth ratios vary from 20:1 to 57:1 with a mean value of 25:1. In 

WATROUTEMOD, which uses bankfull channel width and depths directly from Andreadis, et al. 

(2013), width to depth ratios vary from 25:1 to 50:1 with a mean value of 40:1. In a secondary 

step, WATROUTE internally incorporates land cover information to adjust channel widths to 

correspond to the total water coverage in a grid. In grids where land cover classified as water 

exceed the area determined by channel width multiplied by channel length; channel width is 

adjusted to match the grid’s land cover derived water coverage. This adjustment accounts for 

grids containing lakes that are too small to be discretized but are important for routing. However, 

since this adjustment only affects channel width and not depth, the resulting width to depth ratio 

is exaggerated. As a result, WATROUTE uses much larger bankfull areas and width to depth 

ratios than WATROUTEMOD. Table 10 details select physiographic differences between 

Manitoba Hydro’s finer resolution WRB WATROUTE model and the WRB sub-basin in this 

thesis’ NCRB WATROUTEMOD model. 

Channel slope in WATROUTE ranges from 0.010% to 1.950% (mean of 0.115%); 

whereas in WATROUTEMOD, channel slope ranges from 0.100% to 0.944% (mean of 0.113%). 

For channel lengths, WATROUTEMOD is based on dominant river tracing (DRT; Wu et al., 

2012; see Chapter 4), where WATROUTE approximates channel length according to grid 

dimensions and drainage direction. For drainage directions flowing east-west or north-south, 

channel length is set equal to the grid length (7.48 km in WRB). For diagonal drainage directions 

(e.g., northeast to southwest) channel length is set to the grid length multiplied by 1.41. Due to 
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differences in spatial resolution, it is not meaningful to compare gridded channel lengths between 

WATROUTE and WATROUTEMOD and as such channel length is excluded from Table 10. 

Table 10 - Physiographic comparison of the Winnipeg River Sub-Basin WATROUTE 

model and the Winnipeg River Sub-Basin in WATROUTEMOD.  

Parameter WATROUTE WATROUTEMOD 

Spatial Resolution 0.07°lat x 0.10°lon 0.25°lat x 0.25°lon 

Minimum channel slope 0.00010 0.00100 

Mean channel slope 0.00115 0.00110 

Maximum channel slope 0.01950 0.00940 

Minimum bankfull channel geometry (width/depth in m) 1.6 / 0.1* 5.5 / 0.2 

Mean bankfull channel geometry (width/depth in m) 976.3 / 1.1* 55.7 / 1.1 

Maximum bankfull channel geometry (width/depth in m) 10,575.6 / 14.9* 165.0 / 3.1 

Minimum bankfull width to depth ratio 20:1* 25:1 

Mean bankfull width to depth ratio 1673:1* 40:1 

Maximum bankfull width to depth ratio 30,839:1* 53:1 

Minimum Manning’s n (in-channel/flood plain) 0.010 / 0.400 0.010 / 0.400 

Mean Manning’s n (in-channel/flood plain) 0.022 / 0.400 0.010 / 0.400 

Maximum Manning’s n (in-channel/flood plain) 0.042 / 0.400 0.010 / 0.400 

*Values show WATFLOOD’s internally corrected bankfull channel geometry. 

User specified Manning’s n for WATROUTE varies from 0.01 (in channel) to 0.4 

(overbank). Similar to WATROUTE’s adjustment of bankfull channel width, in-channel 

Manning’s n can also be internally adjusted to compensate for small lakes. The adjustment is a 

function of a grid’s water coverage derived from land cover data as well as a user specified in-

grid lake multiplier. In the WRB model, the in-grid lake multiplier ranges from 1 to 3 with an 

average value of 2 but this option was turned off for testing purposes. Other differences such as 

resulting drainage directions when the channel network is delineated across the discretized 

domain may also affect results. 

 Despite the differences between WATROUTEMOD and WATROUTE, both models show 

skill in translating a runoff event that is uniformly distributed (spatially) within the river basin to 

streamflow at the basin outlet. Without observed gridded runoff data and a streamflow record 

with anthropogenic influence removed, it is not possible to determine which routing model 

performs more accurately. One consideration for future research may include further study and 
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testing to improve WATROUTEMOD. For the purposes of this thesis WATROUTEMOD facilitates 

interaction with GCM daily runoff data, serves as a routing model with a spatial domain covering 

the entire NCRB and performs adequately with respect to a finer resolution WATROUTE model. 

The adequate performance of WATROUTEMOD shown in this thesis supports other publications 

that found WATROUTE and modified versions of WATROUTE to perform well when coupled 

with GCMs (Arora et al., 2001), RCMs (Poitras et al., 2011; Huziy et al., 2013; Clavet-Gaumont 

et al., 2013) and LSMs (Soulis et al., 2000; Pietroniro et al., 2007). 

Given the importance of the Lake St Joseph Diversion in the WRB (and other sub-basins 

in the NRCB), it is important to ensure that WATROUTEMOD internally handles this diversion in 

a realistic manner. To test this, WATROUTEMOD driven by GCM historic simulations are 

considered and the volume of diverted water is assessed. According to Lake of the Woods 

Control Board (2014), the mean annual diversion flow is 80 m
3
/s, typically varying from 70 m

3
/s 

in late winter and early spring to 90 m
3
/s in fall, with historic diversion flows peaking as high as 

195 m
3
/s. In the nine historic GCM simulations, the mean annual hydrographs from 1861-2005 

show mean annual diversion flows ranging from 64 m
3
/s to 100 m

3
/s, typically peaking in April 

or May. All GCM-driven WATROUTEMOD simulations show daily diversion flows that reach 

zero cubic meters per second, and all GCM-driven WATROUTEMOD simulations except 

NorESM1-m reach the maximum daily diversion outflow capacity of 245 m
3
/s. Despite some 

timing issues, the WATROUTEMOD Lake St. Joseph diversion seems to function in a reasonable 

manner and generally allocates the correct annual volume of water into the WRB. Timing issues 

are consistent with the overall unregulated methodology followed in this thesis. A more 

comprehensive rule set for Lake St. Joseph diversion that includes upper limits based on 
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downstream flow, downstream lake levels and season dependant preferences would likely 

improve the routing model’s performance.  

Annual average hydrographs (1861-2005 daily flows) based on WATROUTEMOD driven 

by the nine GCM simulations are shown in Figure 11. Various basin outlets (coloured lines) are 

included to compare flow within the NCRB, however, these basin flows differ from the LTFD 

sub-basin flows used as the observed record in this thesis. For example, Lake Winnipeg and 

Nelson River Outflow on Figure 11 include all upstream contributions instead of local flows 

corresponding to Lake Winnipeg PIAO or NRL from the LTFD observed record. For bias 

correction, WATROUTEMOD output is used to calculate local sub-basin flows to better match 

with the observed record. For example, Lake Winnipeg PIAO is calculated by subtracting SRB 

flow, WRB flow and back-routing Lake Winnipeg Outflow through Lake Winnipeg. Within the 

hydrographs, one will notice that CanESM2 produces the greatest amount of local runoff in 

NRL, as seen by the difference between Nelson River Outflow (black line) and Lake Winnipeg 

Outflow (grey line). One can also note that the SRB flows have a wet bias for most GCM 

simulations and that the NorESM1-m simulation is much drier and produces relatively flat 

hydrographs.  
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Figure 11 - Uncorrected GCM-driven WATROUTEMOD mean annual hydrographs for 

CMIP5 historic period (1861-2005).  Colours denote various locations in the NCRB.   

5.3 Bias Correction of GCM-driven WATROUTEMOD Streamflow 

Results from the bias correction step are summarized in plots of adjustment values (Figure 12). 

The plots illustrate the magnitude of adjustment, at each quantile, that are applied to monthly 

WATROUTEMOD streamflow after de-trending the time series and prior to re-trending. A set of 

adjustment values is derived for each sub-basin and GCM combination. For CanESM2 and 

MIROC5, three runs (run1 run2 and run3) are combined during the reference period of 1912-

2005 to help reduce sampling uncertainty, resulting in a total of 25 sets of adjustment values 
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(five GCMs and five sub-basins). Going forward, each set of adjustment values will be referred 

to as a quantile map (QM). 

 

Figure 12 - Bias correction adjustment values by NCRB sub-basin and GCM 

Within each QM there are 100 points. The y-axis represents quantiles from 0 to 100, and 

the x-axis shows the adjustments for a given quantile (Figure 12). If the GCM’s monthly flow 

distribution matches the observed distribution perfectly (recall timing of flow is not considered), 

then all adjustment values within the QM would be zero. Negative values indicate the GCM 
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over-predicts a quantile, and positive values indicate the GCM under-predicts a quantile. 

Adjustment values that lie further away from zero indicate larger adjustments are required, 

suggesting the GCM runoff combined with WATROUTEMOD is not able to properly capture the 

given streamflow quantile. It is acknowledged that the bias correction procedure is accounting 

for errors in both the GCM runoff, and errors in WATROUTEMOD‘s ability to simulate realistic 

flow response to runoff events.  

 Among the sub-basins, Lake Winnipeg PIAO requires application of the largest 

adjustment value, with most CGMs over-predicting monthly flows at higher quantiles. Part of 

this over-prediction is attributed to many small lakes within the sub-basin that are not considered 

in WATROUTEMOD as well as large snowpack accumulation due to positive bias in simulating 

winter precipitation (Sheffield et al., 2013).  For most GCMs and most quantiles, SRB flows are 

over-predicted, which is partly attributed here to reasons listed above for Lake Winnipeg PIAO 

and the absence of water withdrawals in WATROUTEMOD. For UCR, NRL and WRB the 

majority of quantiles show adjustment values near zero, with some exceptions at higher and 

lower quantiles. MIROC5 produces notably higher SRB flows in comparison to other GCMs 

(Figure 11 and Figure 12). With respect to high flows, most simulations show a mix of over and 

underestimation in the various sub-basins. CanESM2 however, shows consistent overestimation 

of high flows in all sub-basins, while NorESM1-m shows nearly consistent underestimation of 

high flows in all sub-basins. Overall, NorESM1-m produces monthly flow distributions closest to 

the observed record and, therefore, shows the smallest adjustment values. It is important to note 

that Nor-ESM1-m also produces the flattest hydrographs and has an overall dry bias for mean 

annual runoff.  
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Figure 13 illustrates the bias corrected monthly flows for the aggregated NCRB. Dark 

lines represent the 1912-2005 observed mean (black) and bias corrected WATROUTEMOD mean 

(blue), while shaded areas show the range. The mean bias corrected WATROUTEMOD flows 

generally peak earlier and produce lower winter flows, compared to flatter observed hydrographs 

that contain anthropogenic influence. Ranges in monthly flows are generally well captured. 

 

Figure 13 - Observed and bias corrected mean monthly aggregated NCRB streamflow 

(1912-2005) for individual GCM simulations 

In theory, a QM method which uses a larger number of quantiles could perfectly replicate 

the observed distribution. One must be weary, however, of over-fitting the data as is the case in 

some statistical distribution fitting studies (Caissie and El-Jabi, 1991). Furthermore, a more 
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detailed QM method could better match the observed hydrograph timing if monthly maps are 

used. This approach would lump the correction of additional bias sources (e.g., GCM timing of 

runoff generation, routing model errors, anthropogenic influence, etc.) with the correction of 

GCM runoff volume bias, adding another layer of complexity that can complicate interpretation 

of results. Bias correction of runoff timing is beyond the scope of this thesis which intends to 

correct for GCM runoff volume bias, alone, and allows for streamflow simulation of naturalized 

conditions. Naturalized conditions are preferred for this thesis given the long time frame (738 

years) and unknowns about past and future anthropogenic effects.  

The QM method applied in this thesis successfully reduces bias in the entire distribution 

of streamflow in NCRB sub-basins by implementing techniques developed for bias correction of 

other climatic variables. The success is evident through comparison of bias corrected hydrograph 

ranges in Figure 13 with adjustment values in Figure 12. Issues such as overestimation of high 

flows in CanESM2 and underestimation of high flows in NorESM1-m are resolved and the 

results from both GCMs are more comparable after QM. The QM method applied in this thesis 

also uses a 94 year baseline period which helps reduce sampling uncertainty that can result from 

use of shorter time periods. Bias corrected streamflow scenarios facilitate analysis of GCM 

output by increasing comparability among GCMs as well as comparability with observed 

records, which is important for meeting the objectives of this thesis and for practitioners utilizing 

the results. Building on previous work that applied bias correction techniques to non-traditional 

GCM variables (e.g., Wilke et al., 2013; Cheng et al., 2014), this thesis demonstrates the utility 

of simple methods for bias correcting variables other than traditional climatic variables such as 

temperature and precipitation. This thesis also builds on previous work by Koirala et al. (2014) 

which did not correct for bias in GCM derived streamflow scenarios. In line with many 
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hydrologic studies (e.g., Eum, et al., 2014; Pietroniro et al., 2007; Haddeland et al., 2011; 

Haddeland et al., 2014; van Huijgevoort et al., 2014; Koirala et al., 2014), this thesis simulates 

naturalized conditions as opposed to regulated conditions. The QM method facilitates the 

approach of modeling naturalized conditions by grouping all months in each quantile map 

instead of bias correcting individual months. Although this approach does not directly account 

for issues with multi-year storage, it does account for intra-annual storage which is more 

common in the relatively small reservoirs in the NCRB.  

5.4 Streamflow Scenarios and Time Series Analysis 

Bias corrected WATROUTEMOD streamflow for all periods are shown on Figure 14 (annual time 

series) and Figure 15 (monthly mean hydrographs) as NCRB aggregated streamflow. Figure 16 

through to Figure 19 present boxplots of mean annual flow, drought severity, drought duration 

and maximum monthly flow. Since droughts are defined as multi-year events (≥ 1 year) and each 

analysis period is 91 to 94 years long, each boxplot represents a limited number of events (e.g., 

14 to 20 drought events during the historic period). The small sample of drought events within a 

period can create odd distributions, which should be considered when interpreting boxplots. For 

all figures, the various colours represent the piControl (purple), historic (blue) and future (green 

as RCP4.5, and orange as RCP8.5) periods; with grey representing LTFD observations from 

1912-2005. LTFD observations (OBS) are incorporated for comparison purposes, but results are 

drawn from GCM data only. The rational for doing so is that comparison of a GCM’s future or 

piControl simulation to the same GCM’s historic simulation removes the reliance on the bias 

correction method to remove all bias in all hydrologic variables.  Drawing results by comparing a 

GCM’s future simulation to the same GCM’s historic simulation is standard practice in climate 

model studies (e.g., van Huijgevoort et al., 2014; Hageman et al., 2013; Arnell and Gosling, 
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2013; Chen et al., 2011; Prudhomme et al., 2014; Shrestha et al., 2011; Gao et al., 2011; 

Sushama et al., 2006; Poitras et al., 2011). Results are presented in Figure 14 to Figure 19, Table 

11 to Table 16, and discussed in the text. Summaries of future projected changes in mean and 

extreme conditions are included at the end of this section in Table 17 and Table 18. 

Each panel within Figure 14 shows the annual average streamflow time series of 

aggregated NCRB flow from 1362-2099, with discontinuities at 1861 and 2006. The dotted black 

line represents the 1912-2005 observed mean annual flow (3,399 m
3
/s), which is used as the 

constant drought threshold. Although a time variable drought threshold (e.g., monthly thresholds 

in Burn and DeWit, 1996) captures additional information such as droughts lasting fractions of 

one year, there are complexities associated with using stationary sub-annual thresholds in the 

context of climate change. For example, van Huijgevoort et al. (2014) found that climate change 

induced shifts in hydrograph timing could lead to unintentional classification of sub-annual 

droughts, especially in cold climates. In a future scenario that produced an earlier spring freshet 

with earlier hydrograph recession, the authors showed that summer and fall months could be 

classified as droughts even if annual average streamflow increased. Although one could argue 

that these months are indeed experiencing drought (as defined in the study), water managers in 

systems with multi-month storage (such as the NCRB) might have options to manage the shift in 

timing without the resulting consequences of a typical multi-annual drought event.  
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Figure 14 - Time series of bias corrected mean annual NCRB aggregated streamflow (1362-

2099) for individual GCM simulations 

Overall, Figure 14 shows that GCM year-to-year variability is underestimated relative to 

variability in the observed record; however, the GCMs are capable of simulating periods of 

sustained low flow and sustained high flow conditions representative of the observed record. 
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Very little trend in the time series is apparent up until 2006, where CanESM2 and the GFDL 

GCMs appear to exhibit an increasing trend.  

Coefficients of Variation (CV; Table 11) support the finding that GCMs underestimate 

year-to-year mean annual streamflow variability compared to observations which produce a CV 

of 0.20. Comparing each historic simulation to piControl simulations (54 pairs), 33 pairs (61.1%) 

show that mean annual streamflow variability in piControl periods exceed variability in the 

historic period, and 20 pairs (37.0%) show that mean annual streamflow variability in historic 

period exceeds variability in piControl periods. One pair (1.9%) shows the same variability in 

historic and piControl periods. Comparing each historic simulation to future projections (18 

pairs), 11 pairs (61.1%) show that mean annual streamflow variability in the future exceeds 

variability in the historic period, and seven pairs (38.9%) show that mean annual streamflow 

variability in the historic period exceeds variability in future projections.  

Table 11 - Coefficients of Variation (CV) for mean annual NCRB streamflow in different 

periods. CV shown as *10
-3

. 

Simulation 
piControl Historic 

OBS 
RCP4.5 RCP8.5 

pi1 pi2 pi3 pi4 pi5 pi6 r1 r2 r3 r1 r2 r3 r1 r2 r3 
CanESM2 124 123 115 120 134 131 124 113 116 

200 

128 106 119 121 131 145 

GFDL ESM2g 138 125 131 128 127 130 121 n/a n/a 142 n/a n/a 143 n/a n/a 

GFDL ESM2m 157 126 139 112 138 139 133 n/a n/a 145 n/a n/a 153 n/a n/a 

MIROC5 130 128 124 144 104 150 125 155 112 121 132 126 159 148 131 

NoRESM1-m 107 111 107 110 110 137 126 n/a n/a 114 n/a n/a 114 n/a n/a 

 

These results show weak evidence (DOCNON-STAT) that variability in the historic period 

underestimates potential variability in a stationary climate (natural climate variability) for mean 

annual streamflow. These results also show weak evidence (DOCNON-STAT) for future changes, 

that annual mean streamflow variability is projected to exceed variability in the historic period. It 

is important to note that these results simply compare the agreement on direction of change in 
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CV and are not supported by statistical evidence. One should note that there are no dramatic 

differences in mean annual streamflow variability for piControl, historic and future periods. 

Mean monthly hydrographs of NCRB streamflow are shown in Figure 15 for each GCM 

simulation. To keep figures simple, the six piControl periods (Table 3) are shown as a shaded 

range and the observed record is omitted. Overall, the GCMs show tight ranges in monthly 

cycles for the piControl periods, which are similar to the historic period. Some differences are 

noted between piControl and historic periods, such as the GFDL-ESM2m historic simulation 

simulating lower mean monthly flows than the piControl range during April to October.  

All GCMs agree that normal winter flows in the NCRB are projected to increase into the 

future, exceeding normal flows in both historic and piControl periods. Future increases in winter 

flows are a common finding in northern climates where the hydrological regime is largely 

influenced by snowmelt (Kundzewicz and Gerten, 2015). For example, Sushama et al. (2006), 

Poitras et al. (2011) and Shrestha et al. (2011) showed increased winter flows for the Nelson 

River and Churchill River basins using RCMs. Kumar et al. (2014) presented increased winter 

water availability for North America which is consistent with Arnell and Gosling (2013), Sperna 

Weiland et al. (2012a) and Hagemann et al. (2013) who showed that winter runoff in a majority 

of Canada was projected to increase. Arnell and Gosling (2013) also showed much higher 

consistency among 21 GCMs in winter runoff projections. Similar results were shown for the 

Colorado River Basin which is situated at lower latitudes but is also influenced by snowmelt 

(Gao et al., 2011).  CanESM2 and GFDL-ESM2g generally simulate futures with monthly mean 

flows greater than historic for both RCPs. GFDL-ESM2m, MIROC5 and NorESM1-m show 

future monthly flows that transition from wetter conditions in winter, to drier conditions in the 

spring and summer. Many of the studies that projected increased winter streamflow (noted 
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above) also projected decreased summer flows (e.g., Sperna Weiland et al., 2012a; Hagemann et 

al., 2013; Kumar et al., 2014; Arnell and Gosling, 2013; Gao et al., 2011). However, the 

agreement among GCM’s was typically less for summer decreases compared to winter increases 

(Arnell and Gosling, 2013). 

 

Figure 15 - Bias corrected piControl, historic and future monthly mean hydrographs for 

aggregated NCRB streamflow. Time periods are provided in Table 3. 

No clear relationship seems to exist between RCP4.5 and RCP8.5 simulations. In some 

cases, RCP8.5 flows are very similar to RCP4.5 and in other cases the two RCPs produce 



100 

different mean monthly flow cycles. Differences also occur within a single model, as illustrated 

by the three runs of CanESM2 and MIROC5 that project RCP4.5 or RCP8.5 to behave 

differently depending on the run. These results suggest that increased carbon dioxide 

concentrations can alter the monthly mean flow patterns, but the degree of change may also be 

influenced by natural climate variability. Past research (Koirala et al., 2014) showed stronger 

signals from higher emission scenarios such as RCP8.5 compared to lower emission scenarios 

such as RCP4.5. However, many studies only considered a single run from each GCM, 

potentially missing information regarding the role of natural climate variability in future 

climates. Differences between RCP4.5 and RCP8.5 may also be underemphasized in this thesis, 

which considers a 93 year future period of 2007-2099 selected for its relevance in continuous 

planning studies. Most studies considered 30 year future periods (e.g., 2070-2099) where greater 

differences between RCP4.5 and RCP8.5 exist (e.g., Figure 1).   

Visual detection of changes to the timing of spring freshet requires substantial shifts in 

the monthly hydrographs. Figure 15 shows some indication of earlier freshet, as indicated by 

larger March and April flows accompanied by reduced or constant May flows; but it remains 

difficult to resolve these changes at the monthly scale. Assessment of bias corrected daily 

averaged hydrographs may have revealed a more pronounced and quantifiable change in freshet 

timing. However daily analysis is outside of this thesis’ scope and it remains questionable 

whether coarse GCM data is suitable to resolve daily streamflow details, especially for extreme 

flows (Hirabayashi et al. (2008). Nohara et al. (2006) examined monthly hydrographs to assess 

the issue of timing and noted earlier spring freshets due to earlier snowmelts at high latitude 

basins. Hirabayashi et al. (2008) found that the month of maximum streamflow was projected to 

occur earlier at higher latitudes and cause a lower peak discharge. Sperna Weiland et al. (2012a) 
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also showed peak streamflow to occur approximately 0.5 months earlier in the NRCB. 

Explanation for this behaviour (earlier peak with reduced magnitude) can be attributed to 

snowpack evolution. In a warmer climate, snowpack accumulation may start later in the season 

and experience intermittent melting throughout the winter. Snowmelt may also begin earlier due 

to warmer temperatures before the snowpack has reached a higher water equivalent that would 

have been possible in a colder climate. 

Coefficients of Variation (CV) (Table 12) suggest that the bias corrected streamflow 

scenarios overestimate monthly streamflow variability compared to observations producing a CV 

of 0.41. The overestimation may be a result of the unregulated simulated data compared to the 

regulated observed data which represents a flatter hydrograph under normal operating conditions 

which is also visible in Figure 13. Comparing each historic simulation to piControl simulations 

(54 pairs), 48 pairs (88.9%) show that mean monthly streamflow variability in piControl periods 

exceed variability in the historic period, and 6 pairs (11.1%) show that mean monthly streamflow 

variability in historic period exceeds variability in piControl periods. Comparing each historic 

simulation to future projections (18 pairs), all 18 pairs (100.0%) show that mean monthly 

streamflow variability in the historic period exceeds variability in the future period. These results 

show strong evidence (DOCNON-STAT) that variability in the historic period underestimates 

potential variability in a stationary climate (natural climate variability) for mean monthly 

streamflow. These results also show strong evidence (DOCNON-STAT) for future change, 

indicating that mean monthly streamflow variability is projected to decrease. It is important to 

note that these results simply compare the agreement on direction of change and are not 

supported by statistical evidence. These future projections are consistent with literature, which 
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suggests decreasing CV in northern latitudes (Gudmundsson et al., 2011) and increased low 

flows combined with decreased high flows presented in Koirala et al. (2014). 

Table 12 - Coefficients of Variation (CV) for mean monthly NCRB streamflow in different 

periods. CV shown as *10
-3

. 

Simulation 
piControl Historic 

OBS 
RCP4.5 RCP8.5 

pi1 pi2 pi3 pi4 pi5 pi6 r1 r2 r3 r1 r2 r3 r1 r2 r3 
CanESM2 485 472 481 487 497 482 465 464 463 

410 

421 422 419 378 409 395 

GFDL ESM2g 466 452 452 452 449 460 447 n/a n/a 398 n/a n/a 400 n/a n/a 

GFDL ESM2m 493 482 479 449 470 469 445 n/a n/a 419 n/a n/a 373 n/a n/a 

MIROC5 506 487 501 510 476 500 465 479 456 404 440 423 415 430 404 

NoRESM1-m 430 431 428 439 435 449 442 n/a n/a 419 n/a n/a 402 n/a n/a 

 

Changes in water supply seasonality can have important implications that depend on the 

seasonality of water demand. From a hydropower perspective, increased winter flows may 

correspond well to periods of high energy demand that can be beneficial for hydropower 

operators. A reduction in intra-annual variability also flattens the hydrograph which might 

facilitate regulators who seek to anthropogenically create a flatter hydrograph (e.g., Kundzewicz 

and Gerten, 2015). However, lower summer flows projected by some simulations, might put 

additional strain on the agriculture industry with high summer water demands or fish needs 

which might have specific environmental flow requirements. It is also important to note that 

there are many other considerations (e.g., water licensing, changes in energy demand and other 

social factors) that are not accounted for in this thesis. 

Figure 16 presents simulated mean annual streamflow distributions across the various 

time periods for the aggregated NCRB streamflow. Each panel (A through E) presents results 

from an individual GCM. GCM historic simulations reasonably simulate median values of mean 

annual flow, but underestimate the observed range (i.e., observed minimum of 1,776 m
3
/s to the 

observed maximum of 5,846 m
3
/s).  
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Figure 16 - Mean annual streamflow box plots for aggregated NCRB streamflow. GCM 

simulated piControl, historic and future periods plus LTFD observations shown on 

x-axis. Individual GCMs shown in separate panels. 
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Comparing piControl and historic simulations from individual GCMs, the median and 

range of mean annual streamflow is fairly stationary and does not vary substantially with time. 

However, there are exceptions that illustrate the potential impact of natural climate variability. 

For example, Figure 16 (Panel C) and Table 11 demonstrate that the pi1 simulation from GFDL-

ESM2m produces greater variability and a wider range in mean annual streamflow (2,053 m
3
/s to 

5,144 m
3
/s) compared to the other stationary piControl periods (pi2 to pi6). This simulation also 

contains the minimum single-year mean annual streamflow (lowest leg of the boxplot) among 

piControl, historic and future periods. Similarly, the historic run2 from MIROC5 (Figure 16 

Panel D and Table 11) produces greater variability and a wider range in mean annual streamflow 

compared to other historic runs (historic r1 to historic r3). MIROC5 historic run2 contains the 

maximum single-year mean annual streamflow (highest point on the boxplot) among piControl, 

historic and future period. These results suggest that although a 90-94 year sampling period is 

typically well suited to characterize mean annual streamflow, there are exceptions even in a 

stationary climate that can produce notably higher or lower mean annual streamflow. The 

potential for sampling uncertainty has important implications for water resource planners 

interested in annual water supply, especially if observational records are short term.  

The three future runs (available from CanESM2 and MIROC5) generally show consistent 

results within each GCM and RCP combination. Although there are some minor differences such 

as MIROC5 RCP4.5 run2 showing a slightly higher median than MIROC5 RCP4.5 run1 and 

run3 (Figure 16, Panel D), most distributions among the three runs are fairly similar. This result 

suggests that for the analysis of mean annual streamflow, one 93 year future run may reasonably 

capture a large portion of natural climate variability. However, since piControl and historic 

simulations can exhibit greater natural climate variability, further testing of multiple future runs 
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should be explored to support this finding. For comparison, Chen et al. (2011) used five runs 

from one GCM as part of an overall uncertainty assessment and found that natural climate 

variability was the greatest source of uncertainty for timing of flood events but ranked third for 

overall uncertainty, behind GCM selection and emission scenario. This display of natural climate 

variability underscores the importance of considering GCMs with multiple runs.   

Table 13 presents non-exceedance probabilities for the two-sample bootstrapped MW-U 

test. Statistically significant changes (at the 5% level) are shown in bold font (red for decreasing 

flow, blue for increasing flow). Comparing each historic simulation to piControl simulations (54 

pairs), 16 pairs (29.6%) shows statistically significant greater mean annual streamflow in 

piControl simulations compared to historic simulations. Eight pairs (14.8%) show statistically 

significant greater mean annual streamflow in the historic simulations compared to piControl 

simulations, and 30 pairs (55.6%) were statistically insignificant. Comparing each historic 

simulation to future projections (18 pairs), 13 pairs (72.2%) project statistically significant 

increases in future mean annual streamflow and two pairs (11.1%) project statistically significant 

decreases in the future. Three pairs (16.7%) were statistically insignificant.  

Table 13 - MW-U Non-exceedance probabilities for NCRB mean annual streamflow. Bold 

font indicates statistically significant values where red (blue) denotes a drier 

(wetter) condition in piControl of future compared to historic simulations. 

Simulation 

Historic vs. piControl Historic vs. Future 

pi1 pi2 pi3 pi4 pi5 pi6 
RCP4.5 RCP8.5 

r1 r2 r3 r1 r2 r3 
CanESM2 r1 0.951 0.996 0.582 0.932 0.102 0.715 0.000 n/a n/a 0.000 n/a n/a 

CanESM2 r2 0.985 0.999 0.721 0.969 0.155 0.864 n/a 0.000 n/a n/a 0.000 n/a 

CanESM2 r3 0.997 1.000 0.886 0.993 0.359 0.937 n/a n/a 0.000 n/a n/a 0.000 

GFDL ESM2g r1 0.001 0.003 0.429 0.016 0.160 0.732 0.000 n/a n/a 0.000 n/a n/a 

GFDL ESM2m r1 0.019 0.000 0.000 0.003 0.013 0.005 0.000 n/a n/a 0.000 n/a n/a 

MIROC5 r1 0.424 0.920 0.911 0.103 0.000 0.014 0.996 n/a n/a 0.618 n/a n/a 

MIROC5 r2 0.752 0.988 0.982 0.351 0.016 0.123 n/a 0.000 n/a n/a 0.999 n/a 

MIROC5 r3 0.056 0.554 0.469 0.010 0.000 0.001 n/a n/a 0.022 n/a n/a 0.701 

NoRESM1-m r1 0.007 0.331 0.193 0.061 0.003 0.216 0.009 n/a n/a 0.576 n/a n/a 
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Results show negligible evidence (DOCSTAT) of systematic changes within piControl and 

historic periods for mean annual streamflow. Although most pairs are statistically insignificant, 

all GCMs contain at least one pair with a significant change. The presence of statistically 

significant changes suggest that even in a stationary climate, significant increases or decreases 

are possible among the 90-94 year periods. In the case of GFDL-ESM2m, the historic simulation 

is significantly drier than piControl and future simulations, and all pairs show statistically 

significant higher flows than the historic simulation. In the absence of multiple runs from GFDL-

ESM2m with daily runoff data in the historic period, it is difficult to discern whether the drier 

historic period is a function of natural variability or a true climate signal when transitioning from 

a stationary climate (~280 ppm CO2 in piControl periods) to a climate with increasing CO2 

(historic period).  Since GFDL-ESM2m future periods (with further increases in CO2) indicate 

statistically significant wetter periods, it is likely that the dry historic period is part of a naturally 

induced “dip” in the streamflow record instead of an atmospheric CO2 concentration induced 

climate signal. 

Results also indicate moderate evidence (DOCSTAT) for future changes, indicating that 

mean annual streamflow is projected to increase in the future. These future projections are 

consistent with literature, suggesting increasing mean annual streamflow at northern latitudes 

(Arnell and Gosling, 2013; Koirala et al., 2014). A summary of changes in all hydrologic 

variables is shown in Table 17. The average of all GCM simulations projects future mean annual 

streamflow to increase by 228 m
3
/s. Individual projections range from a decrease of 253 m

3
/s to 

an increase of 637 m
3
/s. Increasing mean annual streamflow in the future provides greater water 

supply on average. Arnell and Gosling (2013) found similarities between changes in mean 

annual runoff and changes in droughts (defined as the 10 year return period of minimum annual 
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runoff), however, the authors did not consider how multi-year drought severity or duration were 

projected to change, as done in this thesis. 

Figure 17 and Figure 18 present multi-year drought severity and multi-year drought 

duration distributions across the various time periods from the aggregated NCRB streamflow 

simulations. GCM historic simulations reasonably simulate median drought severities and 

durations but underestimate the largest observed drought severity (196.7 10
9
 m

3
). All GCMs 

display capability in simulating drought severity similar to the second largest observed drought 

(140.6 10
9
 m

3
). All GCMs also display capability in simulating droughts longer than the longest 

observed drought of nine years which occurred from 1936-1944. 
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Figure 17 - Drought severity box plots for aggregated NCRB streamflow. GCM simulated 

piControl, historic and future periods plus LTFD observations shown on x-axis. 

Individual GCMs shown in separate panels. 
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Figure 18 - Drought duration box plots for aggregated NCRB streamflow. GCM simulated 

piControl, historic and future periods plus LTFD observations shown on x-axis. 

Individual GCMs shown in separate panels. 

 



110 

Unlike GCM simulations of mean annual streamflow, which are approximately stationary 

for piControl and historic periods, GCM simulated median drought severity and duration show 

greater variability. This variability is seen in Figure 17 and Figure 18, illustrating larger sampling 

uncertainty, even in a stationary climate. For example, Figure 17 and Figure 18 (Panel B) 

illustrate that GFDL-ESM2g pi1 and pi2 simulations represent wetter periods with less severe 

and shorter droughts followed by a drier pi3 period with more sever and longer droughts. 

Similarly, the CanESM2 pi2 simulation (Figure 17 and Figure 18, Panel A) represents a period 

with more severe median droughts compared to historic and future periods. However, the 

relatively wetter CanESM2 historic periods (less severe and shorter duration median droughts) 

are capable of producing severe and long droughts, exceeding the most severe drought in pi2, 

illustrated by the upper (red crosses) on the box plots. Results suggest that a 90-94 year sampling 

period is not particularly ideal for characterizing multi-year drought severity and duration. The 

potential for sampling uncertainty has important implications for water resource planners 

interested in determining the dependable flow, especially if observational records are short term.  

Three future runs (available from CanESM2 and MIROC5; Panel A and Panel D of 

Figure 17 and Figure 18) echo the variability noted above, showing different drought 

distributions within each GCM and RCP combination. Median drought conditions and extreme 

drought conditions (upper legs and red crosses on boxplots) show variability from one future run 

to the next. This result suggests that for the analysis of future multi-year drought, it is important 

to consider GCMs with multiple runs in the future period and caution should be exercised when 

interpreting results from single-run models. For example, results presented in Hirabayashi et al. 

(2008) are based on a single GCM, emission scenario and run project 3.34 times more drought 

days (number of days below 10
th

 percentile flow) in the Nelson River Basin for the period of 
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2071-2100 compared to 1901-2000. Based on results presented in this thesis, it is possible that 

another run of the same model and emission scenario would have produced conflicting results to 

those presented by Hirabayashi et al. (2008). Many studies now use multiple runs for analysis of 

hydrologic extremes, such as Maloney et al. (2014) who analyzed persistent drought. 

Table 14 and Table 15 present non-exceedance probabilities for the two-sample 

bootstrapped MW-U test results. Statistically significant changes (assessed at the 5% level) are 

shown in bold font (red for more severe or longer droughts, blue for less severe or shorter 

droughts). Comparing each historic simulation to piControl simulations (54 pairs) for drought 

severity: 11 pairs (20.4%) show statistically significant lower mean drought severity in piControl 

simulations compared to historic simulations. Two pairs (3.7%) show statistically significant 

lower mean drought severity in the historic simulations compared to piControl simulations, and 

41 pairs (75.9%) were statistically insignificant. Comparing each historic simulation to future 

projections (18 pairs), eight pairs (44.4%) project statistically significant decreases in future 

mean drought severity and one pair (5.6%) projects statistically significant increases in the 

future. Nine pairs (50.0%) were statistically insignificant.  

Comparing each historic simulation to piControl simulations (54 pairs) for drought 

duration: 13 pairs (24.1%) show statistically significant lower mean drought duration in 

piControl simulations compared to historic simulations. One pair (3.7%) shows statistically 

significant lower mean drought duration in the historic simulations compared to piControl 

simulations, and 40 pairs (74.1%) were statistically insignificant. Comparing each historic 

simulation to future projections (18 pairs), eight pairs (44.4%) project statistically significant 

decreases in future mean drought severity and no pairs (0.0%) project statistically significant 

increases in the future. Ten pairs (55.6%) were statistically insignificant. 
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Table 14 - MW-U Non-exceedance probabilities for NCRB multi-year drought severity. 

Bold font indicates statistically significant values where red (blue) denotes a drier 

(wetter) condition in piControl of future compared to historic simulations. 

Simulation 

Historic vs. piControl Historic vs. Future 

pi1 pi2 pi3 pi4 pi5 pi6 
RCP4.5 RCP8.5 

r1 r2 r3 r1 r2 r3 
CanESM2 r1 0.141 0.063 0.813 0.061 0.658 0.227 0.995 n/a n/a 0.986 n/a n/a 

CanESM2 r2 0.081 0.064 0.620 0.015 0.396 0.113 n/a 1.000 n/a n/a 0.999 n/a 

CanESM2 r3 0.029 0.058 0.214 0.004 0.138 0.042 n/a n/a 0.984 n/a n/a 0.621 

GFDL ESM2g r1 0.845 0.990 0.124 0.621 0.248 0.129 0.467 n/a n/a 0.893 n/a n/a 

GFDL ESM2m r1 0.854 0.999 0.997 1.000 0.925 0.982 0.999 n/a n/a 0.958 n/a n/a 

MIROC5 r1 0.195 0.452 0.441 0.671 1.000 0.809 0.042 n/a n/a 0.125 n/a n/a 

MIROC5 r2 0.312 0.734 0.701 0.926 0.998 0.867 n/a 0.997 n/a n/a 0.026 n/a 

MIROC5 r3 0.208 0.462 0.476 0.780 1.000 0.844 n/a n/a 0.687 n/a n/a 0.019 

NoRESM1-m r1 1.000 0.900 0.749 0.999 0.999 0.843 1.000 n/a n/a 0.509 n/a n/a 

 

Table 15 - MW-U Non-exceedance probabilities for NCRB multi-year drought duration. 

Bold font indicates statistically significant values where red (blue) denotes a drier 

(wetter) condition in piControl of future compared to historic simulations. 

Simulation 

Historic vs. piControl Historic vs. Future 

pi1 pi2 pi3 pi4 pi5 pi6 
RCP4.5 RCP8.5 

r1 r2 r3 r1 r2 r3 
CanESM2 r1 0.206 0.106 0.869 0.018 0.179 0.804 0.994 n/a n/a 0.994 n/a n/a 

CanESM2 r2 0.232 0.041 0.883 0.025 0.157 0.154 n/a 0.999 n/a n/a 0.999 n/a 

CanESM2 r3 0.038 0.038 0.105 0.027 0.163 0.160 n/a n/a 0.172 n/a n/a 0.881 

GFDL ESM2g r1 0.909 0.929 0.149 0.152 0.114 0.159 0.880 n/a n/a 0.935 n/a n/a 

GFDL ESM2m r1 0.996 1.000 0.999 0.998 0.996 0.998 1.000 n/a n/a 0.997 n/a n/a 

MIROC5 r1 0.178 0.898 0.872 0.851 0.999 0.913 0.139 n/a n/a 0.150 n/a n/a 

MIROC5 r2 0.204 0.832 0.832 0.803 0.989 0.986 n/a 0.984 n/a n/a 0.238 n/a 

MIROC5 r3 0.174 0.907 0.884 0.892 0.999 0.919 n/a n/a 0.906 n/a n/a 0.181 

NoRESM1-m r1 0.983 0.988 0.289 0.726 0.989 0.753 0.992 n/a n/a 0.697 n/a n/a 

 

Results show negligible evidence (DOCSTAT) of systematic changes within piControl and 

historic periods for mean drought severity and mean drought duration. Although a majority of 

pairs are statistically insignificant, most GCMs contain at least one pair with a significant 

change. The presence of statistically significant change suggests that even in a stationary climate, 

statistically significant increases or decreases are possible among the 90-94 year periods. Similar 

to results for mean annual streamflow, GFDL-ESM2m’s historic simulation is significantly drier 

than many piControl and future simulations.  
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Similar to changes from piControl to historic periods, results also show negligible 

evidence (DOCSTAT) that the mean drought severity and mean drought duration is projected to 

change in the future. Although drought indices vary from study to study, future projections 

presented in this thesis are generally consistent with the literature. Studies such as Sperna 

Weiland et al. (2012), Arnell and Gosling (2013) and Koirala et al. (2014) indicated a mean 

GCM tendency towards increased annual low flows in the future, but considerable spread among 

GCMs produced weak evidence of change. Although shorter term droughts (less than one year) 

were not considered in this thesis, other studies such as Poitras et al. (2011) showed increasing 

intra-annual low flow events (i.e., becoming wetter) in the Nelson River Basin, but these results 

corresponded to lower confidence. 

A summary of mean changes (Table 17) and extreme changes (Table 18) is provided. The 

average of all GCM simulations (ensemble mean) projects future mean drought severity to 

decrease (i.e., become wetter) by 6.5 10
9
 m

3
 and mean drought duration to decrease (i.e., become 

shorter) by 0.7 years. Individual projections range from a mean drought severity decrease of 27.3 

10
9 

m
3
 to an increase of 23.4 10

9 
m

3
 and a mean drought duration decrease of 2.0 years to an 

increase of 0.7 years. For changes in extremes, GCMs typically show the most severe and 

longest duration droughts (e.g., red crosses and highest box plots legs in Figure 17 and Figure 

18) to decrease in the future, but this attribute was not statistically tested. The most extreme 

change in drought severity towards drier conditions is simulated by MIROC5 run2 under 

RCP8.5. This projection produces a future drought 86.3 10
9
 m

3
 (81%) more severe than the 

historic GCM simulation. Although this scenario represents the most extreme case in this thesis, 

the simulated drought is less severe than a stochastically simulated drought by Burn and DeWit 

(1996), which was three times worse than the observed drought of record. The extreme MIROC5 
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run2 RCP8.5 drought severity is associated with a shorter duration, suggesting that droughts can 

be more severe but this does not necessarily coincide with a longer duration. Although this sole 

projection should not be interpreted as truth, it is potentially useful as context for future drought 

risk discussion. Unlike paleo studies which have shown long periods of drought conditions (e.g., 

nearly a century of South Saskatchewan River drought in Sauchyn et al., 2011) no multi-decadal 

droughts are simulated by the GCMs in this thesis for the NCRB. One reason for the lack of 

multi-decadal droughts might be the large NCRB compensating for dry conditions in one area 

with wetter conditions in another area, damping the effect of extreme drought. This behaviour is 

evident in MIROC5 run2 RCP8.5 where the SRB experiences more severe and longer duration 

droughts than the rest of the NCRB (not shown). Although this extreme simulation originates 

from RCP8.5, results do not show systematic differences between drought severities between 

RCPs, contradicting result from other studies such as Prudhomme et al. (2014) who suggested a 

systematic increase in drought severity with radiative forcing. Prudhomme et al. (2014) also 

discussed how some GCM feedbacks such as dynamic vegetation reduce projected drought risk. 

Figure 18 presents simulated maximum monthly flow (flood) distributions across the 

various time periods for the aggregated NCRB streamflow. Each panel (A through E) presents 

results from an individual GCM. GCM historic simulations tend to overestimate the median and 

minimum floods. However, all GCMs are capable of simulating floods of similar magnitude to 

the greatest observed monthly flood (11,894 m
3
/s in May, 1974). It is important to reiterate that 

the floods presented here do not represent the streamflow at the NCRB outlet. Instead, the floods 

represent an aggregation of all naturalized inflows into the NCRB system. In reality, large flood 

peaks are attenuated by reservoirs and regulation as they make their way to the NCRB outlet.  
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Figure 19 - Maximum monthly flow box plots for aggregated NCRB streamflow. GCM 

simulated piControl, historic and future periods plus LTFD observations shown on 

x-axis. Individual GCMs shown in separate panels. 
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Comparing piControl and historic simulations from individual GCMs, Figure 19 shows 

that the median of maximum monthly streamflow is fairly stationary and does not vary 

substantially with time. However, there are exceptions, especially in extreme floods, illustrating 

the potential impact of natural climate variability. For example, Figure 19 (Panel B) 

demonstrates that the pi1 simulation from GFDL-ESM2g simulates an extreme flood (highest 

mark on the boxplot) of 16,492 m
3
/s; 4,102 m

3
/s greater than the next largest simulated flood in 

pi5. Similarly, pi1 in GFDL-ESM2m (Figure 19, Panel C) produces a wider range in monthly 

floods compared to other piControl periods. Results suggest that although a 90-94 year sampling 

period is typically well suited to characterize the median of maximum monthly streamflow, there 

are exceptions even in a stationary climate that can produce more extreme floods. The potential 

for sampling uncertainty has important implications for engineering design using maximum 

monthly streamflow as an input variable, especially if observational records are short term. 

However, many design approaches fit statistical distributions to observational data and then 

select a frequency based design value (e.g., 1:100 year event). In these cases, fitting a statistical 

distribution and computing a 1:100 year event may smooth out sampling uncertainty and reduce 

the effect of differences in the absolute extremes (empirical maximums) that are presented in 

Figure 16. The impact on statistical distribution fitting is not within this thesis’ scope.  

The three future runs (available from CanESM2 and MIROC5) generally show consistent 

results within each GCM and RCP combination for median values of maximum monthly 

streamflow, with some variability in simulating extreme values. For example, MIROC5 run2 and 

run3 (Figure 16, Panel D) project future extreme floods of lower magnitude than historic extreme 

floods. However, run1 projects similar extreme floods in historic periods and under RCP4.5 and 

RCP8.5 projections. This suggests that it is important to consider GCMs with multiple runs in 
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the future period and that caution should be exercised when interpreting results from single-run 

models. For example, Hirabayashi et al. (2008); who used a single GCM, emission scenario and 

run; projected that the return period of a historic (1901-2000) defined 1:100 year flood event in 

the Nelson River Basin became a 1:133,000 year flood in 2071-2100. Based on results presented 

in this thesis, it is likely that another run of the same model and emission scenario could produce 

conflicting results to those presented in Hirabayashi et al. (2008). Multiple runs for analysis of 

hydrologic extreme events such as persistent drought were also used by Maloney et al. (2014). 

As for mean annual flow and multi-year droughts, the display of natural climate variability in 

maximum monthly streamflow underscores the importance of considering GCMs with multiple 

runs.   

Table 16 presents non-exceedance probabilities for the two-sample bootstrapped MW-U 

test results. Statistically significant changes (assessed at the 5% level) are shown in bold font 

(red for decreasing flow, blue for increasing flow). Comparing each historic simulation to 

piControl simulations (54 pairs), 22 pairs (40.7%) show statistically significant greater mean of 

maximum monthly streamflow in piControl simulations compared to historic simulations. One 

pair (1.9%) shows statistically significant greater mean annual streamflow in the historic 

simulations compared to piControl simulations, and 31 pairs (57.4%) were statistically 

insignificant. Comparing each historic simulation to future projections (18 pairs): 3 pairs (16.7%) 

project statistically significant increases in future mean annual streamflow and five pairs (27.8%) 

project statistically significant decreases in the future. Ten pairs (55.6%) were statistically 

insignificant.  
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Table 16 - MW-U Non-exceedance probabilities for NCRB maximum monthly streamflow. 

Bold font indicates statistically significant values where red (blue) denotes a drier 

(wetter) condition in piControl of future compared to historic simulations. 

Simulation 

Historic vs. piControl Historic vs. Future 

pi1 pi2 pi3 pi4 pi5 pi6 
RCP4.5 RCP8.5 

r1 r2 r3 r1 r2 r3 
CanESM2 r1 0.573 0.954 0.268 0.588 0.021 0.384 0.320 n/a n/a 0.364 n/a n/a 

CanESM2 r2 0.673 0.977 0.379 0.677 0.031 0.501 n/a 0.015 n/a n/a 0.007 n/a 

CanESM2 r3 0.619 0.950 0.322 0.622 0.021 0.437 n/a n/a 0.048 n/a n/a 0.732 

GFDL ESM2g r1 0.002 0.008 0.360 0.028 0.197 0.392 0.487 n/a n/a 0.080 n/a n/a 

GFDL ESM2m r1 0.000 0.000 0.000 0.004 0.004 0.003 0.004 n/a n/a 0.986 n/a n/a 

MIROC5 r1 0.005 0.367 0.135 0.002 0.000 0.003 1.000 n/a n/a 0.999 n/a n/a 

MIROC5 r2 0.030 0.626 0.352 0.012 0.003 0.016 n/a 0.366 n/a n/a 1.000 n/a 

MIROC5 r3 0.000 0.061 0.010 0.000 0.000 0.000 n/a n/a 0.889 n/a n/a 1.000 

NoRESM1-m r1 0.185 0.592 0.462 0.112 0.046 0.244 0.070 n/a n/a 0.883 n/a n/a 

 

These results show negligible evidence (DOCSTAT) of systematic changes within 

piControl and historic periods for the mean of maximum monthly streamflow. Although most 

pairs are statistically insignificant, four of five GCMs contain at least one pair with a significant 

change. The presence of statistically significant changes suggests that even in a stationary 

climate, statistically significant increases or decreases are possible among the 90-94 year periods.  

Results also show a negligible evidence (DOCSTAT) for future changes in the mean of 

maximum monthly streamflow. Although flood indices vary from study to study, the future 

projections presented in this thesis are generally consistent with the literature, showing that there 

is a lack of confidence in changes to future high flow events. Arnell and Gosling (2013) 

projected an increase in high flow events in most of Canada; however, Koirala et al. (2014) 

showed a decrease. These two studies along with others (Poitras et al., 2011, Sushama et al., 

2006) reiterate the finding that there is generally low confidence in projections of future floods in 

the NCRB. Similar to Hirabayashi et al. (2008), results in this thesis do not indicate a consistent 

pattern between increases in mean annual flow and increases in flood events. As discussed in 

Whitfield (2012) who noted that a warming climate can have different impacts on different flood 
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driving mechanisms, uncertainty in projections of future floods may actually be the correct 

finding. This statement from Whitfield (2012) may be particularly relevant in the NCRB, which 

contains rivers with different flood driving characteristics and historic trends (Burn and 

Whitfield, 2015).    

A summary of mean (Table 17) and extreme (Table 18) changes in all hydrologic 

variables is provided. The average of all GCM simulations (ensemble mean) projects the mean of 

future maximum monthly streamflow to decrease by 91 m
3
/s. Individual projections range from a 

mean decrease of 901
 
m

3
/s to an increase of 435

 
m

3
/s. For changes in hydrological variable 

extremes (Table 18) GCMs typically show that the absolute maximum monthly streamflow (e.g., 

red crosses and highest box plot legs in Figure 19) will decrease in the future, but this attribute 

was not statistically tested. The most extreme change in maximum monthly streamflow towards 

drier conditions is simulated by CanESM2 run1 under RCP8.5. This projection produces a future 

maximum monthly streamflow which is 2902 m
3
/s less (-25.6%) than its historic simulation. The 

most extreme change in maximum monthly streamflow towards wetter conditions is simulated 

by GFDL-ESM2g run1 under RCP8.5. This projection produces a future maximum monthly 

streamflow 4032 m
3
/s greater (+39.7%) than its historic simulation, but this simulation also has a 

drier historic period relative to piControl simulations which has the potential to exaggerate future 

projections. Although there are considerable amounts of uncertainty surrounding these two 

extreme case projections, they may be potentially useful as context for future flood risk 

discussions. Similar to the multi-year drought projections in this thesis, the large NCRB might 

compensate for dry conditions in one area with wetter or near-normal conditions in another area, 

damping the effect of extreme floods in the large basin.   
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Table 17 - Future GCM projection summary for mean values of hydrological variables 

Simulation 

Projected Changes to Mean 

Annual Flow (m
3
/s) 

Drought Severity 

(10
9
 m

3
) 

Drought Duration 

(years) 

Maximum 

Monthly Flow 

(m
3
/s) 

 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

CanESM2 r1 324 539 -13.4 -15.6 -1.1 -1.4 72 58 

CanESM2 r2 459 637 -18.9 -16.8 -1.4 -1.3 338 435 

CanESm3 r3 377 338 -8.0 -1.4 0.0 -0.5 282 -101 

GFDL-ESM2g r1 268 397 0.8 -7.4 -0.1 -0.9 3 211 

GFDL-ESM2m r1 469 268 -27.3 -15.5 -2.0 -1.2 496 -401 

MIROC5 r1 -167 -25 9.2 11.5 0.2 0.1 -901 -581 

MIROC5 r2 248 -253 -20.1 23.4 -1.5 0.7 76 -831 

MIROC5 r3 126 -32 -4.0 12.4 0.0 0.5 -182 -653 

NorESM1-m r1 146 -13 -23.2 -2.0 -1.6 -0.1 221 -172 

Ensemble Mean 228 -6.5 -0.7 -91 

 

Table 18 - Future GCM projection summary for extreme values of hydrological variables 

Simulation 

Projected Change 

to Minimum 

Annual Flow (m
3
/s) 

Projected Changes to Maximum Values 

Drought Severity 

(10
9
 m

3
) 

Drought Duration 

(years) 

Maximum 

Monthly Flow 

(m
3
/s) 

 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

CanESM2 r1 267 134 4.0 -45.7 1.0 -2.0 -565 -2902 

CanESM2 r2 335 374 -117.6 -114.4 -10.0 -9.0 -83 1230 

CanESm3 r3 234 -21 -129.1 -31.3 -3.0 -1.0 -623 -1255 

GFDL-ESM2g r1 -68 135 -15.2 -39.8 1.0 -2.0 671 4032 

GFDL-ESM2m r1 574 404 -31.5 -38.1 -4.0 -5.0 2301 -371 

MIROC5 r1 -222 -251 -4.4 4.8 1.0 -1.0 -766 800 

MIROC5 r2 162 -265 -57.0 86.3 -7.0 -1.0 -2390 -1937 

MIROC5 r3 -116 -129 -38.1 -5.8 2.0 2.0 -1569 -1204 

NorESM1-m r1 199 58 9.8 -18.7 2.0 0.0 778 102 

Ensemble Mean 100 -32.3 -2.0 -208 

 

5.5 Uncertainty  

In addition to the address of uncertainty in results and discussion above, it is important to 

communicate a clear understanding on how uncertainty affects the interpretation of results and 

conclusions. In a recent publication, Kundzewicz and Gerten (2015) identified uncertainty as a 
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grand challenge related climate change assessment on water resources. There are several sources 

of uncertainty addressed in this thesis. The intent of this section is not to characterize magnitude 

of uncertainty or relative contributions from the sources. Instead, this section intends to discuss 

identify primary sources of uncertainty including uncertainty in: GCM selection, natural climate 

variability, and future forcing scenario (RCP). Other sources of uncertainty inherent in this 

research, but not explicitly considered, include the uncertainty introduced by the bias correction 

method, the WATROUTEMOD routing model, and uncertainty in the observed record. At a high 

level, different sources of uncertainty are understood to have different magnitudes of impact at 

different time scales. For example, in the NCRB, Hawkins and Sutton (2009) showed that natural 

climate variability dominate uncertainty in the first decade of projection, GCM uncertainty 

becomes increasingly important for the fourth decade and radiative forcing scenario (RCP) 

dominates uncertainty in the ninth decade. This decadal classification complicates the 

characterization of uncertainty in this thesis where the future period (2007-2099) spans all three 

decades considered in Hawkins and Sutton (2009). 

 Uncertainty in GCM selection can be explored through comparison of individual GCM 

results to one another. For example, if only MIROC5 run1 were assessed, results suggest drier 

conditions in the future; but if only CanESM2 run1 were assessed, results suggest a wetter 

future. Similarly, if only GFDL-ESM2m is considered (only 1 run available), all comparisons 

suggest that the piControl periods and future projections have increased streamflow due to the 

dry nature of the historic simulation. The subset of five GCMs sampled a range of models from 

different modeling centers, with different spatial resolutions, land surface models, and skill. This 

small subset tends towards projecting a wetter future (e.g., Table 13). However, these results 

should be confirmed through comparison with additional GCMs from a larger ensemble. 



122 

Uncertainty in natural climate variability can be explored through the comparison of the 

six pi-Control periods (natural climate variability in a stationary climate) and comparison of 

GCMs with multiple runs (natural climate variability due to different initial conditions). For 

example, comparison among piControl periods (e.g., Figure 16) illustrates six different plausible 

climates in quasi-equal (91-94 year) periods that could have been sampled. Similarly, each of the 

three runs in CanESM2 or MIROC5 could be valid representations of the historic, (1912-2005) 

period. Comparison of these historic periods (e.g., Figure 16 panels A and D) shows considerable 

differences in the hydrologic climate. If all piControl periods in GFDL-ESM2g are examined, 

pi1 and pi2 produce much wetter conditions than pi3 to pi6 (Figure 16 and Figure 17, Panel B). 

This realization complicates interpretation of future projections. Both future simulations (RCP4.5 

and RCP8.5) from run1 show wetter conditions into the future. However, it is conceivable that 

the historic period sampled a drier climate and the future periods coincidentally sampled wetter 

climates that are part of the natural (modelled) cycle. Such natural climate variability may mask 

the climate change signal, and in some cases produce misleading results. Inclusion of the 

piControl period and GCMs with multiple runs help to demonstrate uncertainty due to natural 

climate variability, but this phenomenon should be further explored. Future studies should 

consider models with more runs, such as the 40 member CCSM3 ensemble or the 10,000 year 

control simulation using CCSM3’s atmospheric model (Deser et al., 2012a). 

Uncertainty in future forcing scenarios can be explored through comparison of RCP4.5 

with RCP8.5 results, but is also evident in the assumptions used to generate the RCP scenarios. 

In other words, one should note that the RCPs are conceptual pathways in which society, 

economy and technology evolves into the future and there are many uncertainties associated with 

the development of RCPs. For variables such as annual average global temperature, which is 
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well correlated with atmospheric carbon dioxide concentrations, there is a clear indication that 

RCP8.5 projections have greater temperature increases than RCP4.5 (Figure 1). However, this is 

not always the case for regional analyses or the more complex hydrologic variables in this thesis. 

If a strong correlation exists between hydrologic variables and atmospheric carbon dioxide 

concentrations, one might expect RCP8.5 and RCP4.5 projections to agree on direction and 

produce proportional changes in magnitude. Results in this thesis show that the two RCPs agree 

on the direction of change for most variables but the magnitude of change is not always 

proportional. There are also several instances where the RCPs disagree on the direction of 

change. Although RCP4.5 and RCP8.5 capture a wide range of possible future scenarios, further 

assessments should incorporate RCP2.6 and RCP6.0 to corroborate results and assess if a 

relationship exists between project hydrological change and RCP. 

As suggested in Knutti et al. (2010a), the spread of results from an ensemble of 

opportunity (such as the subset used in this thesis) does not provide a direct measure of 

uncertainty but can help in characterizing uncertainty. In this thesis, agreement among GCM 

simulations is used as evidence regarding the projected future direction of change. Results in 

GCM agreement assume that each GCM simulation and each RCP is equally likely, which may 

or may not be the case. GCM agreement is reported to summarize results but further 

interpretation should acknowledge the various sources of uncertainty involved in analyzing 

hydroclimatic conditions in areas with large natural variability.  
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CHAPTER 6 

Conclusions and Recommendations 

From the results and discussion presented in Chapter 5, conclusions and recommendations are 

aligned with the four objectives and discussed in this chapter. Since a large amount of data was 

analyzed, including multiple GCM scenarios, sub-basins, performance metrics, and hydrological 

variables; conclusions are presented at a higher level compared to content presented in Chapter 

5. In many cases, high level statements can be more robust than quantitative measures. 

Recommendations are presented to guide future work intending to improve and expand on the 

methods used in this thesis, and to suggest avenues for further study.    

6.1 Evaluation of Climate Model Skill  

The 52 GCM simulations show a wide range of skill in producing annual runoff characteristics in 

the NCRB. No single GCM stands out as the best performing model across all nine metrics, but 

some GCMs perform better and some worse, overall, when compared to the median GCM 

performance. There are cases where a single simulation displays very good performance for one 

metric and very poor performance for another metric. Many GCMs do a reasonable job of 

reproducing spatial patterns of mean annual runoff in the NCRB, including the Canadian Earth 

Systems Model, CanESM2. One GCM (BNU-ESM) appears to contain erroneous data, off by 

orders of magnitude, and is excluded from the analysis.  

 Past studies have critiqued GCM ability to reproduce long term persistence (e.g., Ault et 

al., 2014). Results in this thesis show evidence that GCMs are capable of simulating persistent 

dry and persistent wet conditions but similar to Ault et al. (2014), this thesis found that most 

GCMs have some difficulty in reproducing exact patterns of observed long term persistence. 
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However, it is found that natural variability can play a major role in evaluating GCM skill, as is 

the case for autocorrelation. This finding suggests that further work is needed before blanket 

conclusions can be made about GCM ability to simulate long term hydrologic persistence in the 

NCRB. Future work should avoid the use of a single reference climate and focus on 

incorporating natural variability (e.g., a range of reference climates) into GCM skill assessment. 

 The GCM skill evaluation in this thesis is based on a single observed dataset in a specific 

time period, and as such reflects GCM performance with respect to the observed dataset and time 

period. The evaluation of GCM skill is supplementary information for the rest of this analysis 

and provides a means to identify good performing models, discard models with unrealistic 

performance and identify unique behaviours to aid in interpretation of results. Overall, the subset 

of nine simulations selected for further analysis samples GCMs with relatively poor and 

relatively good performance. This subset with a range in skill helps to ensure that this study 

samples fundamentally different GCMs that have been developed independently. Use of multiple 

independent GCMs produces more robust results in comparison to studies that use a single GCM 

or very similar GCMs with similar skill.  

6.2 River and Lake Routing 

The WATROUTEMOD routing scheme reasonably translates GCM simulated runoff into 

naturalized streamflow at various locations in the NCRB. In the absence of calibrated and 

validated WATFLOOD and WATROUTE models for the entire NCRB, WATROUTEMOD 

provides a comparable routing model useful for GCM runoff.  WATROUTEMOD is particularly 

attractive for study domains comprising the entire NCRB and when GCM runoff is an input.  

Coding of WATROUTEMOD into MATLAB software creates a product that is well positioned for 

GCM-based runoff studies and is capable of relatively quick processing speeds, allowing many 
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years of streamflow to be simulated in a timely fashion. Although GCM runoff can be adapted to 

WATROUTE input file formats, the use of MATLAB and WATROUTEMOD provides a more 

direct integration.  

 Further advancements of WATROUTEMOD are possible and can increase comparability 

with WATROUTE. Some improvements come with computational cost (e.g., using a finer 

spatial resolution) while others are modeller inputs (e.g., Manning’s n, channel geometry, 

number of lakes coded). Through the comparison of WATROUTEMOD with WATROUTE, 

several WATROUTE functions are also identified for further investigation such as 

WATROUTE’s internal handling of channel geometry and in-channel Manning’s n when land 

classification within a grid contains a substantial portion of water coverage. 

 Some of the differences between WATROUTE and WATROUTEMOD are masked when 

evaluating mean monthly streamflow as opposed to mean daily streamflow. As such, 

WATROUTEMOD serves the purposes of this thesis, which analyzes mean monthly streamflow in 

the NCRB. Many areas for improvement can be considered but will increase the model’s 

complexity and do not necessarily guarantee more accurate results. WATROUTEMOD used in 

this thesis relies on routing total runoff. In theory, total runoff could be partitioned into surface 

runoff, and groundwater components as in Poitras et al. (2011) and Sperna Weiland et al. 

(2012b) for example. Separate handling of groundwater would further attenuate the hydrograph, 

provide greater baseflow response, and increase the realism with minimal increases in 

computational cost. However, the additional data requirements (i.e., individual runoff 

components) might reduce the already small GCM ensemble and limit how many GCMs are 

analyzed. Other potential improvements include the use of a dynamic method for considering 

non-contributing drainage areas, the use of GCM temperature data to derive lake-outlet 
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performance curves (ice restricted) in individual years and the use of Regional Climate Model 

outputs for enhanced spatial detail.  Non-contributing drainage area may behave differently in 

wet or dry years and could be an important consideration and impact adjustment values in higher 

quantiles. Furthermore, anthropogenic changes in land use and drainage systems over time may 

have also impacted hydrological response such as flooding in the Assiniboine River Basin as 

discussed in Szeto et al. (2015). Outlet performance based on GCM temperatures might add 

additional variability and uncertainty but could be important, especially when considering a 

warmer future. Finally, the use of finer resolution climate models (such as RCMs) provides 

enhanced spatial detail that may allow for analysis at a finer sub-basin scale. 

6.3 Bias Correction 

Quantile mapping techniques developed for meteorological variables were adapted for use in this 

thesis to remove bias in the GCM-driven WATROUTEMOD streamflow simulations. The 

technique successfully corrects volume (not timing) and produces naturalized streamflow 

scenarios with similar characteristics as the observed record. The technique produces streamflow 

scenarios that facilitate comparison with observations, facilitate interpretation and provide more 

realistic patterns compared to non-bias-corrected simulations. The success of quantile mapping 

for streamflow simulations in this thesis illustrates potential for further implementation in similar 

studies and for adapting the method for use with other GCM variables.  

Several improvements can be explored for future research. The technique in this thesis 

corrects mean annual flow and the range of monthly flows but the GCM’s underestimation of 

inter-annual variability remains. A more advanced procedure could focus on correcting monthly 

and inter-annual variability simultaneously. Such a procedure might first correct the annual time 

series and then implement a second step to correct monthly time series. Guidance for this type of 
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improvement might be found in existing methods such as the Double Bias Corrected Constructed 

Analogue method, described in Werner and Cannon (2015). A preferred bias correction method 

might first apply a spatially distributed bias correction of gridded GCM runoff using pseudo-

observed gridded runoff prior to routing (as explored in Duong et al., 2015). This approach 

would require a reliable gridded runoff dataset with long term observations, which does not exist 

at this time.  

 Sub-basins with large quantile mapping adjustment values offer some guidance in 

identifying potential areas for improvement. In this thesis, the largest adjustment values were 

computed for the Lake Winnipeg PIAO sub-basin, which is the largest sub-basin with the fewest 

lakes coded into WATROUTEMOD. A potential improvement for bias correction in this sub-basin 

includes further separation into sub-basins such as the Red and Assiniboine river sub-basins. 

Improvements to WATROUTEMOD within Lake Winnipeg PIAO might also improve the bias 

correction. For example, additional lakes and better representation of non-contributing drainage 

area could reduce the bias due to the routing scheme. Consideration of the Portage diversion 

(which diverts a part of the Assiniboine River flow into Lake Manitoba) would also help 

attenuate peaks and reduce adjustment values at higher quantiles. 

 One limitation of the bias correction method is that it compares naturalized flow from 

WATROUTEMOD to the observed record, which is subject to anthropogenic influence. This 

thesis presents a unique bias correction method that merges naturalized streamflow simulations 

with regulated streamflow observations by grouping all months together and bias correcting for 

monthly volume instead of timing. However, some anthropogenic volume errors, such as water 

withdrawals in the SRB are unaccounted for. A more robust bias correction method is possible if 

naturalized streamflow records (with anthropogenic effects removed) were available. With 
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naturalized flow records, monthly bias correction methods could be explored without concern 

that bias correction is also accounting for anthropogenic influence. However, it is worthwhile 

noting that many recent studies have generally ignored anthropogenic influence (e.g., Hagemann 

et al., 2013; Haddeland et al., 2011), attesting to the difficulty in considering anthropogenic 

effects. Other studies that have considered anthropogenic influence show that climate change 

effects generally surpass anthropogenic effects in the NCRB (Haddeland et al., 2014).  

6.4 Streamflow Scenario and Time Series Analysis 

Time series’ of bias corrected streamflow scenarios were analyzed to characterize how observed 

variability (1912-2005) compares to natural variability and future projections in the NCRB. Four 

key hydrological variables were analyzed: mean streamflow, multi-year hydrologic drought 

severity, multi-year hydrologic drought duration and maximum monthly streamflow. Since bias 

correction only intended to correct monthly streamflow volume, the historic GCM simulations 

don’t always capture every aspect of the observed record. Conclusions are therefore derived from 

comparison of GCM piControl and future simulations to GCM historic simulations. For future 

simulations, both RCP4.5 and RCP8.5 are considered equally probable. Based on results, it is 

preferred to draw conclusions by comparing GCM piControl and future simulations to GCM 

historic simulations as opposed to LTFD observations. The degree of consistency (DOC) criteria 

(Table 8) is used to summarize conclusions among all GCMs. DOCNON-STAT is used to summarize 

changes in the coefficient of variability (CV) and DOCSTAT is used to summarize changes based 

on results from the MW-U statistical test.     

 Variability in mean streamflow is analyzed at annual and monthly resolutions. Results 

show weak evidence (DOCNON-STAT) that variability in the historic period underestimates 

potential variability in a stationary climate for mean annual streamflow; and weak evidence 
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(DOCNON-STAT) for future changes indicating that mean annual streamflow variability may 

increase. Despite the weak nature of the evidence, these results highlight the importance of 

considering more than just observations to fully understand risk due to hydrologic variability.  

 All GCMs tend to agree that normal winter flows in the NCRB are projected to increase 

into the future, exceeding normal flows in both historic and piControl periods. This represents an 

upward shift in months with typically lower natural flows. There is less agreement among GCM 

simulations regarding projected changes in other months, where some show decreases and other 

show increases. Overall, there is strong evidence (DOCNON-STAT) that variability in the historic 

period underestimates potential variability in a stationary climate for mean monthly streamflow 

and strong evidence (DOCNON-STAT) for future changes indicating that that mean monthly 

streamflow variability is projected to decrease further. Decreased future mean monthly 

streamflow variability produces a flattening of the naturalized hydrograph. The process of 

hydrograph flattening is typically done through regulation to aid water management. Here it is 

seen that a warming climate may naturally assist the hydrograph flattening process currently 

done by regulating reservoirs. Through modeling of naturalized conditions in this thesis, changes 

to mean monthly streamflow variability are potentially more pronounced whereas the inclusion 

of reservoir operation and water withdrawals could have masked the climate change signal if 

regulation were considered. Changes in mean monthly flows do not seem to be particularly 

sensitive to the future RCP scenario, suggesting that although increased carbon dioxide 

concentrations can alter the monthly mean flow patterns, the degree of change may also be 

influenced by natural climate variability. This result provides some rational for considering a 

larger ensemble of RCP scenarios (e.g., RCP2.6, RCP4.5, RCP6.0 and RCP8.5) to increase the 

number of futures scenarios to assess and make best use of available GCM data. 
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 Mean annual streamflow, mean drought severity, mean drought duration and the mean of 

maximum monthly streamflow were analyzed statistically to assess how streamflow in the 

historic period (1912-2005) compares to natural variability and future projections. Results show 

negligible statistical evidence that mean annual streamflow has systematically changed within 

piControl and historic periods. However, all GCMs show some evidence that a statistically 

significant difference even in a stationary climate is possible. The presence of statistically 

significant differences suggests that notable increases or decreases are possible among the 90-94 

year periods, perhaps due to very low frequency climatic patterns such as PDO. Results show 

moderate evidence (DOCSTAT) for future changes indicating that mean annual streamflow is 

projected to increase. The average of all GCM simulations projects future mean annual 

streamflow to increase by 228 m
3
/s with individual projections range from a decrease of 253 

m
3
/s to an increase of 637 m

3
/s. Increasing mean annual streamflow in the future provides greater 

water supply on average. The worst case projection corresponds to an approximate 7% reduction 

in mean annual streamflow in the NCRB. Depending on where in the NCRB this reduction is 

projected to occur (not presented in this thesis), there are potential water resource management 

strategies to compensate for decreases. For example, one might use diversion infrastructure to 

move water to where it is needed.     

Results show negligible evidence (DOCSTAT) that the mean drought severity and mean 

drought duration has systematically changed within piControl and historic periods. However, 

similar to mean annual streamflow, most GCMs show some evidence that a statistically 

significant difference even in a stationary climate is possible. The presence of statistically 

significant differences suggests that different mean drought severities and durations are possible 

among the 90-94 year periods, perhaps due to very low frequency climatic patterns such as PDO. 
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Results also show negligible evidence (DOCSTAT) that the mean drought severity and mean 

drought duration is projected to change in the future. The average of all GCM simulations 

(ensemble mean) projects future mean drought severity to decrease (i.e., become wetter) by  

6.5 10
9
 m

3
 and mean drought duration to decrease (i.e., become shorter) by 0.7 years. The most 

extreme future projection (MIROC5 run2 RCP8.5) produced a future drought 86.3 10
9
 m

3
 more 

severe (approximately 81% more severe) than the historic GCM simulation. Despite being the 

worst case presented in this thesis, this simulated drought change is considerably less severe than 

a stochastically simulated a drought in Burn and DeWit (1996), which was three times worse 

than the drought of record. The worst projected change in drought severity in this thesis is 

associated with a shorter duration, suggesting that droughts can be more severe but this does not 

necessarily coincide with longer durations. Although there is a considerable amount of 

uncertainty surrounding this one projection, it is potentially useful as context for future drought 

risk discussions. These extreme projections may also partially serve as a tool to help address the 

grand global challenge for adaptation decision under high uncertainty proposed by Kundzewicz 

and Gerten (2015). The very dry MIROC5 run2 RCP8.5 projection does not show uniform 

drying throughout the NCRB and includes some regions such as the SRB which have much more 

drastic drought impacts (not shown).  

Further investigation could consider a more detailed spatial breakdown to see if greater 

evidence exists for drought projections in specific regions as opposed to the entire NCRB which 

may have a damping effect on drought severity with wetter sub-basins offsetting drier sub-

basins. The general finding that wet regions will become wetter and dry regions will become 

drier (Kundzewicz and Gerten, 2015) has important implications for the NCRB, which contains 

both wetter (e.g., WRB) and drier (e.g., SRB) regions. The balance of evidence in this thesis 
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suggests that the NCRB as a whole is tending towards slightly higher mean annual streamflow, 

which can be beneficial for hydropower generation near the basin outlet. However, the 

disaggregation of these changes into specific sub-basins may have important regional impacts. 

 These results show negligible evidence (DOCSTAT) of systematic changes within 

piControl and historic periods for mean of maximum monthly streamflow. Results also show 

negligible evidence (DOCSTAT) that the mean of maximum monthly streamflow is projected to 

increase. The average of all GCM simulations (ensemble mean) projects the mean of future 

maximum monthly streamflow to decrease by 91 m
3
/s. Individual projections range from a mean 

decrease of 901
 
m

3
/s to an increase of 435

 
m

3
/s. The most extreme simulations project future 

absolute maximum monthly streamflow to decrease by as much as 2902 m
3
/s, and increase by as 

much as 2301 m
3
/s. Some of these projections produce alarming results at first, but it is 

important to consider that statistical analysis is usually combined with observed data in 

engineering design, and that the impact of different GCM streamflow samples on statistically 

derived low frequency return periods (e.g., 1:1,000 year floods) was not assessed in this thesis. 

This would make an interesting area of study, and is recommended in the future as a next step.   

There are several key areas, in addition to those identified above, where further study 

would be beneficial to the science of climate change impacts on the NCRB water resources. In 

the case of aggregated NCRB flows, opposite changes among sub-basins may mask a more 

prominent pattern. This was discussed for drought severity, but is applicable to all other 

hydrological variables as well. Extending the existing analysis to individual sub-basins might 

identify whether spatial patterns, with greater GCM agreement, emerge. Additionally, to enhance 

understanding of large scale drivers of droughts and floods it would be interesting to isolate very 

extreme events produced by the GCMs and further analyze the GCM output. For example, one 
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could extract atmospheric and oceanic variables from CanESM2 in the piControl period (pi2) to 

understand what caused the drier conditions in this period. Other good candidate simulations for 

this study include the MIROC5 run2 RCP8.5 simulation, which produced severe future 

hydrologic droughts, and the GFDL-ESM2m model that produced relatively drier conditions in 

the historic period compared to both piControl and future periods. However, a comprehensive 

assessment should also consider multiple climate models, runs and RCPs.  

For some of the more extreme hydrological variables (e.g., drought severity and 

maximum monthly streamflow), there is limited evidence with respect to systematic differences 

between the historic period and natural variability and how hydrologic conditions are projected 

to change into the future. This uncertainty creates challenges for implementing results in a 

practical manner. An alternative to implementing uncertain results in adaptation planning could 

be to further analyze output and develop climate change informed sensitivity analysis limits. For 

example, one could calculate percent changes in the most severe future drought, rank the GCM 

projections from smallest change to largest change and select an upper and lower limit (e.g., 5
th

 

and 95
th

 percentiles) to inform a sensitivity analysis.  From a general uncertainty and adaptation 

planning standpoint, it is important to stress the use of multiple GCMs, multiple member runs 

and multiple RCPs to sample various sources of uncertainty and produce more robust 

conclusions. Furthermore, it is important to stress that for some hydrologic variables, especially 

extremes, analyses should attempt to use longer time periods to limits the potential for under 

sampling the range in natural variability. These suggestions apply to future research, as well as 

practical applications. 

Overall, this thesis presents information to leverage long term GCM simulations for 

assessment of how observed streamflow compares to natural variability and future projections. In 
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conclusion, results show negligible statistical evidence about systematic changes (historic vs. 

natural climate variability and historic vs. future projections) in drought severity, drought 

duration and maximum of mean monthly streamflow. Although there is some indication that 

statistically significant changes are possible, there is a lack of GCM agreement on the magnitude 

and direction of change. This is a common conclusion in the assessment of climate change 

impacts on extreme events and in light of conclusive information, some GCM-derived extreme 

changes are shown in this thesis to guide further discussion and efforts towards adaptation. 

Greater confidence exists is the assessment of mean annual streamflow and mean monthly 

streamflow. Although there is negligible statistical evidence that mean annual streamflow was 

different in a stationary climate compared to the historic climate, there is moderate statistically 

significant evidence (DOCSTAT) that mean annual streamflow is projected to increase into the 

future. There is also some weaker non-statistically significant evidence (DOCNON-STAT) that mean 

annual streamflow was more variable in a stationary climate and is projected to increase in the 

future. Finally there is strong non-statistically significant evidence (DOCNON-STAT) that mean 

monthly streamflow was more variable in a stationary climate compared to the historic period 

and will continue to decrease into the future, demonstrating the tendency towards a flatter 

hydrograph in a warmer climate for the NCRB.   
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