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ABSTRACT

The results of a detailed investigation of the ground and
unrelaxed excited states of the F* center in magnesium oxide
are presented. We use the program package, ICECAP, which
allows self-consistent calculations to be made of the
electronic structure and lattice distortion and polarization
of a point-defect 1in an ionic crystal. The ground and
unrelaxed excited states are shown to be well-localised.
Spin density analysis illustrates the importance of basis
set optimisation for nearest-neighbor ions and self-
consistent lattice relaxation, yielding a good description
of the ground state. Our calculation fails to give an
acceptable value of the optical absorption energy, probably
due to inadeqguate basis set optimisation of near-neighbor
ions in the unrelaxed excited state. However the results
reveal that second nearest-neighbor oxygen ions play an
important role in the optical absorption process, and must
be included in the defect cluster describing the unrelaxed

excited state of the F* center in maganesium oxide.
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Chapter 1I

GENERAL INTRODUCTION

1.1 INTRODUCTION

The computer-based microscopic description of the
structure and properties of materials is an area of much
current interest. Advances in computational and theoretical
approaches have developed capabilities of yielding precise
results and making succesful predictions. In coordination
with current advances in experimental techniques, these
theoretical efforts serve to elucidate complex processes and
phenomena connected with the microstructure of materials.
For example, computation of electronic structure can follow
solid state processes at the atomic level in a degree of
detail that the experimentalists would dearly 1love to
observe but wusually cannot. At the same time, it yields
extra information about the properties such as bonding
through the wavefunctions which can contribute to an

understanding of the results obtained.

Ionic «crystals make up a particular class of solid
materials, characterized both by a marked 1localisation of
electrons and strong insulating properties. A variety of

thermal or chemical treatments or irradiations easily create



2
the =1e) called 'point-defects’, namely vacancies,
interstitials, and impurities in the crystalline lattice of
these materials. Since properties as diverse as mechanical
strength or color are controlled by the point-defects, the
nature of these point-defects has been of fundamental and

practical concern for years.

During the past decade, there has been considerable
growth in the use of computer simulation methods to study a
diverse range of point-defect properties, including
thermodynamic, structural and transport properties in ionic
crystals. In particular, the development by Norgett[Norg 74]
of a generalised computer program HADES(Harwell Automatic
Defect Examination System) has led to a number of notable
successes in yielding reliable quantitative values for the
fundamental atomistic parameters such as, defect formation
energies controlling transport properties in ionic

crystals[Mack 82 and references therein].

HADES is based on a classical model which describes a
crystalline lattice containing a point-defect as a set of
point-ions, interacting by pair-wise potentials., However,
the pairwise interaction between the ions near a defect will
not be exactly the same as that in a perfect crystalline
environment, from which the potentials are derived. Since
this deviation depends sensitively on the detailed

electronic structure near the defect, it is a Qquantum-
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mechanical effect. Furthermore, the defect may be an
intrinsically electronic defect such as, an electron trapped
in a vacancy whose properties can only be understood on the
basis of a detailed gquantum-electronic structure analysis.
It 1is therefore necessary to consider the -electronic
structure for both the defect and the ions immediately
surrounding the defect from a guantum-mechanical point of

view,

Assuming that the electronic structure effects of the
defect are localised, the so called 'cluster approximation'
[KRK 78] can provide an effective model for point-defects in
ionic crystals. In this approximation, the defect and its
near vicinity can be considered as a many electron quantum-
mechanical molecular cluster, representing an explicit
region of the crystal in real space. A variety of molecular
orbital methods can then be applied within this cluster to
examine its electronic structure and properties. (For a
general discussion we refer to HRSP 86, Ston 75).
Convenient computer program packages are widely available

for such molecular cluster calculations.

The major diffculty associated with the cluster
approximation is the correct representation of the remainder
of the crystal, since we are not dealing with an isolated
'super-molecule' but are attempting to simulate an infinite

crystalline lattice. It 1is. therefore necessary to add



features to the cluster

boundary conditions have been

correct crystalline

the problem under investigation.

For ionic crystals, particular care is
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common approach 1s to combine the cluster
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Recently, Vail et al.[VHHS 84] have described a method,
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point-defect in an ionic crystal with self-consistent

polarization in the surrounding perfect

method, the defect

Hartree-Fock self-consistent field

and the surrounding lattice
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cluster is treated in
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is described

energy

surrounding lattice with respect

lattice. In this
the unrestricted
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in terms of the
of the defect

to variation
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of cluster ionic positions, and simultaneously maintaining
multipole consistency between cluster and surrounding
lattice then leads to a physically consistent solution. Vail
et al. have applied this method to the point-defect, F*
center in magnesium oxide. The results show qualitative
agreement with experiment and have cast considerable light
on the role of lattice polarization and the details of the
electronic structure of the 1ions neighboring the defect
(that is, the ion-size effect) 1in accurate calculations of
the optical absorption and emission of the F* center in

magnesium oxide.

In an ionic crystal, the electronic structure of the ion
is assumed to be well localised about the nuclei° However in
the work of Vail et al., it was seen that the defect cluster
wavefunction has a tendeﬁcy to delocalise unphysically
compared to true crystalline behaviour when embedded in a
classical point-ion lattice. This may be due to the fact
that the Coulomb field of the surrounding classical lattice
does not force 1localisation upon the defect cluster of
guantum-mechanical origin. Thus, some treatement less
detailed than UHF-SCF approximation such as associating a
pseudopotential, has been suggested for ions surrounding the
defect cluster. Furthermore, a need for an automation of
this procedure in the form of a well-documented, user-—
friendly program package to perform calculations for wide
range of materials and defect types has been recognised

[Vail 85].
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The development of a generalised, automated program
package, ICECAP (Ionic Crystal with Electronic Cluster

Automated Program), to provide a physically reliable model

in a convenient and efficient computational form for

analysing point-defects in ionic crystals, provides a base

for this thesis work.

ICECAP is based on the HADES-shell model treatment of the
embedding lattice[Norg 74], incorporating a UHF-SCF
molecular cluster approximation[KK 78] of the defect and its
near vicinity. It allows for electrostatic consistency up
to octupole order between the cluster and the embeddihg
lattice. It provides the cluster boundary conditions in the
sense of approximate orthogonalisation of cluster to lattice
either by associating pseudopotentials[TMM* 76, BHS 82] with
a cage of cations surrounding the cluster or introducing a
consistent 1localised potential (KKLP) for ions in the
vicinity of the cluster into Fock operator[KV]. Electronic
correlation can be introduced 1in terms of many-body

perturbation theory[Kunz 83].

1.2 STRUCTURE OF THIS THESIS

In this thesis, the theoretical background of ICECAP is
given in Chapter 2. This includes the description of HADES-
shell model, UHF-SCF approximation, pseudopotentials and
KKLP procedure. The program package and its numerical

implementation are described in Chapter 3.
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Since both the ICECAP code, and the model upon which it

is based are relatively new and not extensively tested, the
point-defect, F"' center in magnesium oxide has been chosen
to test the operation of the program plus its options and
the physical accuracy of the model. The results of a
detailed investigation of the ground and unrelaxed excited
states of this defect are presented in Chapter 4. Also the
conclusions drawn from the work are summarised and some

suggestions are made for future work.



Chapter 1II

THEORETICAL BACKGROUND

2.1 INTRODUCTION

Point-defects in ionic crystals may be viewed
theoretically as consisting of two regions, namely an inner
region in the immediate vicinity of the defect where
deviations from perfect lattice conditions can only be
determined by quantum mechanical analysis, and the outer
region for which the perturbation due to the defect is weak
and to which a classical model successful in describing weak

perturbations of the perfect crystal may be applied.

The defect and its immediate vicinity may be treated as a
molecular cluster of ions for which ICECAP uses the program
package, developed by Kunz and coworkers[Kunz]. This program
package implements the unrestricted Hartree-Fock self-
consistent field (UHF-SCF) approximation and provides
pseudopotentials as options for ionic <cores in the cluster.
The surrounding lattice is treated by HADES using the shell

model and the Mott-Littleton method.

In this chapter, we describe briefly the shell model,

HADES and the UHF-SCF approximation. Cluster boundary
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conditions to be applied in interfacing quantum-mechanical
and classical regions of the model defect 1lattice in a
physically consistent and computationally practical way are

also discussed.

2.2 THE EMBEDDING LATTICE

Ionic crystals can be described as an assembly of
polarizable point-ions in the two-body central-force model,
in which the total potential energy, V(ry,r2,,,£9 ) of an
assembly of N ions with coordinates L15,55,L, 18 written as

V(ri,r2,,,r,) = zfj Vi (£e- 1)

(2.2.1)

Thus, V is taken as a sum of pair interaction terms each of
which is dependent only on the distance between the ions.
These pairwise interactions can be written as the sum of
long-range Coulomb interactions and short-range
interactions. The latter describe the effects of
interacting (electron) charge clouds of the neighboring

ions.

It 1is assumed that short-range interactions can be
represented by a simple analytical expression and the most

widely used is due to Born and Mayer, which has the form

v(r) = A exp(-r/e¢ ) (2.2.2)
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This may be supplemented by short-range attractive tefms,
namely terms in r~% and r-8. In this expression, r is the
distance between the ith and jth ions and the A and { are
empirically determined parameters. These parameters are
generally derived from empirical fitting to perfect lattice
properties such as cohesive energy, elastic constants and
dielectric constants, ensuring that the potential V, 1is

compatible with lattice stability.

An alternative, non-empirical approach 1is to obtain the
potential by electron gas methods(for example, Wede 67).
Here, the interaction between charge densities representing
the interacting ions are calculated, the densities being
obtained by calculating the wavefunction of the isolated ion
with an assumption about the crystalline environment. (For
a general discussion, see CDM 82). Recently, an ab-initio
method has been wused to determine the potential between
anions in magnesium oxide[HH 85]. Both, empirical and non-
empirical types of parameterisation have been applied
successfully to a wide range of ionic and semi-ionic
crystals and compilations of these potentials are

available[Ston 81, CKM 81].

Ionic polarization, that is, the response of the crystal
to the electrostatic perturbation provided by a charged
point-defect, can be simulated simply and effectively using

the shell model[DO 58]. This model was originally developed
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for describing lattice dynamics of ionic crystals, but is
now most widely wused in defect-simulation studies. In the
shell model, each point-ion consists of a core of charge X
and a shell of charge of Y, such that the total ionic charge
Z is the sum of core and shell charges. The core and shell
of a given ion are coupled by a spring with a force constant

K, while the polarization energy 1is assumed to be an

harmonic function of the core-shell separation. Since the
mass of the ion is centered at the core, shells are
essentially massless, and respond instantly and

adiabatically to the electrostatic field. The relative
displacement of core and shell gives a dipole moment
associated with each ion. The polarizability of the ion «,
is then given by a=Y2/K. The parameters Y and K are obtained
by fitting to appropriate lattice properties such as the

dielectric and elastic constants and phonon fregquencies.

The cores and shells are treated as independent entities,
referred to as species. Coulombic interactions apply between
all species with the exception of the core and shell of the
same ion. Non-Coulombic short-range interactions between
adjacent ions are assumed to be shell-shell interactions,
that is, the short-range interaction is determined primarily
by that part of the electronic distribution which displaces

during polarization.
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The shell model allows us to simulate the dielectric
properties of the crystal accurately. It also provides
adequate agreement on fitting to experimental phonon
dispersion curves. A few discrepancies, however, occur
which are due 1largely to the intrinsic inadequacies of the
central-force approximation. The most important one is that
the shell model cannot predict the Cauchy violation in the
cubic crystals; that is, the model will predict that the
elastic constants C;, and C;; are equal at 0°K, although
they can be significantly different, as is the case in
magnesium oxide. Subsequently, refinements in the shell
model have been proposed by introducing ‘'breathing shells'
which allow spherically symmetric and ellipsoidal distortion
of the shells and thus reproduce the Cauchy violation[Sang
74]. However, it is to be noted here that the calculated
defect-energies have been found insensitive to a particular
choice of shell parameters as long as they reproduce the

bulk dielectric behavior of the crystall[CN 73, MS 79].

2,2.1 HADES

HADES, the Harwell Automatic Defect Examination System,
is a computer program package for the calculation of point-
defect energies and the lattice distortions introduced by
such defects in ionic crystals. Much of the general theory
underlying the program package has been developed from the
Mott-Littleton approximation[ML 38] and has been described

in various reports[Norg 74, Norg 77, CJMS 82].
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The basic method divides a crystalline lattice containing
the defect into two regions:
(a) An inner region(region I) is defined consisting of the
defect and its immediate vicinity. 1In this region, the ions
interact according to the shell model and the lattice
configuration is evaluated explicitly by relaxing each ion
until it is subject to no force.
(b) The outer region(region II) represents the rest of the
lattice and is weakly perturbed by the defect. The lattice
distortion in this region is calculated by considering the
lattice as a dielectric continuum so that the ions are

displaced in response to the effective charge of the defect.

In this approximation, the total lattice energy may be written

as .

E(X,Y) = Ei(X) + Eq(X,¥) + E,(Y)

—

(2.2.3)

wvhere, E{(X) 1is the energy of the inner region I expressed
as a function of the ionic coordinates X, E,(Y) is the
enerqgy of region II as a function of the ionic displacements
Y and E;2(X,Y) is the interaction energy between the two

regions.

Now, it is assumed
(i) that E,(Y) 1is a quadratic function of the displacements

in region 11,
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(2.2.4)

where A is the force-constant matrix of the perfect crystal.
(ii) that the equilibrium condition for Y is

~ ¢

S E
Y‘*Y (2.2.5)

in which ¥' are the equilibrium values corresponding to

arbitrary values of X.

The total energy, E then becomes

T

a2 | . i/i
= \/’
-7 (2.2.6)

E(X,Y') = Eq.(X) + E1z(§,g') - %

o)
=g

This expression now involves interactions only between ions
within region I and between those 1in regions I and II; all

interactions between ions in region II are eliminated.

At this point, it is necessary to introduce a further
approximation since the summation of the interactions of all
pairs of ions between region I and region II, contributing
to energy Ey; 1is diffcult to evaluate as region II extends
‘to infinity. Since the wenergy E;, is a sum of two
contributions, namely Coulombic and non-Coulombic, it is
assumed that the contribution due to the latter has a
maximum range. Beyond this range, the contribution to Eg»
from region II is purely Coulombic. In other words, region

I1 is itself sub-divided. Region IIa, surrounding the
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region I is defined in which short-range non-Coulombic
interactions between the displaced ions and those in region
I is explicitly calculated. The outer region IIb is treated
as a continuum assuming that the displacements in this
region are purely a dielectric response to the effective
charge of the defect. (For further details, wve refer to

Lidiard and Norgett[LN 721).

In the total energy expression(2.2.6), the short-range
non-Coulombic part is thus simply summed explicitly over a
finite region of real space. For the Coulombic part, the aim
is to modify the summation so that interactions between
explicit ions in region I can be excluded. This is achieved
by the Ewald method which replaces a point-charge by a
Gaussian charge distribution. The complete lattice sums are
then evaluated in real space and the explicit terms for
inner region I are subtracted by transforming and performing
a rapidly convergent reciprocal lattice space summation. The

method in detail is described by Norgett [Norg 74].

As discussed earlier, the equilibrium configuration in
region I is determined by requiring that the force on each

ion is zero, that is,

BE

XISV

\/:: yi
T (2.2.9)
Solution of this equation requires Y to be constant. But

since the displacements in region 1II can vary significantly
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during minimisation, Y is updated between successive

iterations.

In order to describe the crystal lattice in this region
I/region II formulation, HADES requires as input data, the
lattice wvectors, unit cell components, the defect
configuration and sizes of region I and ITa, to generate all
the lattice sites within a given radius from the defined
defect-origin. Since the symmetry of any defect must be
equal or lower than the symmetry of the unit cell of the
perfect lattice, HADES starts with the symmetry operations
of either «cubic or hexagonal point-group and defines the
defect symmetry from the given initial defect configuration.

Using this symmetry, defects and lattice sites are sorted

into classes of sites equivalent by symmetry, thereby
reducing the crystal region to a minimum number of
independent variables. Finally, HADES identifies

interactions between groups of ions that are equivalent so
that it evaluates a single energy for each class of
eguivalent interactions together with an appropriate
weighting factor, which corresponds to the number of ions in
the respective classes. Thus, HADES accelerates the
calculation by exploiting symmetry to reduce the number of

variables to be used in minimisation.

The minimisation method wused in HADES is a second-

derivative type and requires the storage and inversion of
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the second-derivative matrix. The inverse second-derivative
matrix is only calculated once and afterwards updated at
intervals. The following sequence is employed for
minimisation of the total energy in HADES :

(a) Since the lattice is in stable equilibrium, the perfect
lattice second-derivative matrix, W () is easy to calculate.
This matrix is now inverted and a first displacement, § is
calculated as :

s = - H () g (0

where H(® is the inverse second-derivative matrix and g (©
is the first-derivative vector.

(b) An improved approximation to the equilibrium

configuration is obtained,

XM = x© - [ g
and a new set of first-derivatives, g (9 is calculated.
(c) The second-derivative matrix, H( is now updated using

one of the formulas that have been suggested by
Fletcher[Flet 70].
(d) New coordinates are then obtained as

X(@ = x(M - gg
and the cycle 1is repeated. The minimisation 1is successful
when the largest component of the displacement is

sufficiently small.

In summary, the success of the HADES-shell model method
in describing perfect lattice harmonic properties as well as

a wide range of non-electronic point-defect properties in
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ionic crystals suggests that it should be valid in
describing the effects of electronic point-defects in the
embedded lattice region where electronic effects other than

induced ionic dipole moments are negligible,

2.3 THE CLUSTER

The cluster is defined as consisting of the defect and
its immediate vicinity in the crystal. A general
formulation for its quantum-mechanical analysis can be given
in terms of a Hamiltonian expressing all interactions
present between electrons and nuclei within the cluster; the

many-body Hamiltonian is :

H = He + Hn + Hi (2.3.1)
where
b2 b 7
He = {”Zvé + 7 Z Py, -l |
¢ Jot!
(2.3.2)
i Zy L
B T A L
wn = L LT 2Mp I L7 1Re - Bol
(2.3.3)
by S ]
Hi = Z‘ T X i§1~”ﬁf
(2.3.4)

in atomic units.

In this set of units, h=1, e=1 and the electron mass=1. The
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unit of energy is then the hartree(1 Hy = 27.21 eV) and that
of distance is the bohr(1 bohr = 0.529 A = 0.529x10-'° m).

The Schrodinger equation for the many-body wavefunction

is:

HY (r,R) = E(L,R)
(2.3.5)
Here upper-case letters refer to nuclear properties and
lower-case letters designate electronic properties. The Ith
nucleus has atomic number Zj3 , mass M7, and position Ry.

The ith electron has a coordinate r-, charge e and mass m,.

All the physics of the system is contained in the
solution of the Schrodinger equation(2.3.5) which in general
is very cumbersome. In practice, it proves feasible to
obtain approximate solutions. The method, either ab-initio
or semiempirical' uses a number of simplifying assumptions
and approximations that reduce the N-body problem to a N
one-electron problem which is manageable. Many excellent
articles on these methods are available in the literature,
notably the ones by Reitz[Reit 55], and Lowdin[Lowd 55]. 1In

the present work, the cluster is treated in the Hartree-Fock

' Ab-initio methods seek in principle exact solutions,
implying that within the frame of a particular method no
approximations are adopted; though the method itself is an
approximation to the solution of the Schrodinger equation.
All integrals appearing in the calculation are computed as
exactly as numerically possible, whereas in semiempirical
methods they are either neglected or approximated by
simplified expressions and functions containing empirical
parameters.
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selfi-consistent field method which when coupled with
systematic treatment of correlation is probably the most
viable approximation to the exact solution of the guantum-
mechanical many-body problem available today. We briefly

outline this approximation in the following section.

2.3.1 Hartree-Fock Self-Consistent Field Theory

We begin with the Born—dppenheimer approximation[BO 27]
to decouple nuclear and electronic motion. Thisg essentially
amounts to neglecting phonon and dynamic electron
correlation effects and reduces the problem of solving the
Schrodinger equation(2.3.5) to that of an interacting-
electron system in the field of a fixed nuclear potential

corresponding to a static lattice.
The resulting N-electron Schrodinger equation,

[He + HilV (r,R) = E(R) “F(r,R)

(2.3.6)
then depends only parameterically on the nuclear coordinates
R. Exact solution of this equation can only be obtained in
rather simple cases such as the hydrogen molecule; for
systems with a large number of electrons the independent-
particle or one-electron model[Hart 28] provides a method of
approximate solution. According to this model, each electron
sees, in addition to the potential of the fixed nuclei, only

some average potential due to the charge distribution of the
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other = electrons and moves essentially independently
throughout the system. The N-electron wavefunction(V¥ ), a
function of the space and spin coordinates of all the
electrons taken together, can then be approximated as a
product of one-electron functions that are known as spin
orbitals, a term coined by Mulliken[Mull 32]. Since
electrons are fermions, the N-electron wavefunction must
satisfy the antistmetry property to ensure that it obeys

the Pauli principle.

Within the Hartree-Fock approximation[Fock 301, the N-
electron wavefunction(), is represented by a single
determinant whose elements are one-electron spin
orbitals(@s) and the orbitals are optimised to yield the
best determinantal function according to the variational

principle.

The determinantal form is known as a Slater

determinant[Slat 30] and is given by

@1(cy) R . ¢1(§N)
@2(r,) . . @2(r)
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(2.3.7) .

This determinantal wavefunction is manifestly
antisymmetric and accounts for the Pauli principle since the
determinant vanishes wunless the spin orbitals form a
linearly independent set. The factor (N!)m%2 normalises the
function in (2.3.7) when spin orbitals form an orthonormal

set,

J dr ¢?<g)®j(5) = Sg
(2.3.8)
We emphasise here that the choice of orthonormality of spin
orbitals is a convenience and not a theoretical necessity.

Furthermore,

Bi(r) = ¢ (x) %:(x)

(2.3.9)
represents the 4-dimensional manifold of space(x) and
spin(¢) coordinates of the spin orbitals concerned. We also
assume in the following discussion that As are normalised
eigenfunctions of the z-component of the spin operator S;
they may be labeled as 'spin-up' or 'spin-down', the two
functions being mutually orthogonal. We also abbreviate
combined integration over spin coordinates by integration

over r, that is,

J dr = Z | dx (2.3.10)
- o
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In accordance with the variational principle, the
expectation value of the Hamiltonian with antisymmetric
normalized function () is a rigourous upper bound to the

exact energy, E of the system, that is,

W
K]

<Vln|ys = &

(2.3.11)
If the function (Y ) happens to be the exact wavefunction
for the electronic ground state, E' will be the exact energy

E.

The variational principle may now be applied to determine
the optimal orbitals in the determinantal function () by
adjusting (@s) to minimise the energy E'. The resulting
value of E' will then be as close to the exact energy E as
possible. Hence, the best function (V) is found by"
minimising E' with respect to (@s). This implies the

variational equations,

2E' = O

[

o (2.3.12)

which leads directly to the equations, referred to as the

Fock equations.

<H> = §arVV(r) [He + Hi]l W (r)
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- 2 2= [dv [dv, /;f‘ (Y.) 4{62&)

< &¥é

i

(2.3.13)
We introduce Lagrange multipliers 'A@to maintain the ortho-

normality of the @i during the variation :

-i
Sl<u> -z Aji(sar o (c)e (x,)] = o
< g -t -9
(2.3.14)

At the stationary point, the integrand must be =zero

s
independent of $@; for every i, so

Ly (%)
[“ 2 E-f——’—“'},g*_m ]4>
T 'ji z [dy 4{<v)_) ERSA . () P (X
> V) P ()
- % Z f dv 4% L TR f ()
= T )i PO
J
(2.3.15)

The left side of (2.3.15) is the Fock operator applied to
Ch’(g1). Its first term represents the kinetic energy for the
electron of coordinate x, plus its potential energy in the
field of all the nuclei. The second term represents the
Coulomb potential energy acting on the elecﬁron at position

x of all the electronic charge including that of the ith

wavefunction and is called as the Coulomb integral J;, . The

“
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last term, referred to as the exchange term Kég » takes
account of antisymmetry, and for the fact that the electron
does not act upon itself, which it would do if this term
were absent. We may describe the combined effect of the
exchange and Coulomb terms in the sense that electrons of

opposite spins to the one under consideration produce an

ordinary Coulomb potential, while for electrons of the same
spin the Coulomb potential 1is not produced by the full
charge distribution, but by a corrected one in which an
amount of charge totalling one electron is removed from the
immediate vicinity of the given electron. The region around
each electron effectively excluded to electrons of the same
spin is sometimes called the Fermi or exchange holel[Reit
55]. We may therefore express the Fock equation as the wave
equation for a single electron, moving in the field produced
by the nuclei and- the average field of the remaining
electrons. The average field consists of the field produced
by electrons of opposite spin plus the field produced by

electrons of the same spin but outside the Fermi hole.,

The determinantal wavefunction will be unchanged under
any unitary transformation, so we may choose that
transformation which diagonalizes the matrix of Lagrange
multipliers in  (2.3.15). When the A -matrix is

diagonalised, the Fock equation becomes

Foi(r) = & pi(r)
(2.3.16)
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The eigenvalue E; ’ can be interpreted as the energy
required to remove an electron from the ith orbital, within
the framework of Koopman's theorem[Koop 33] assuming that
all the remaining orbitals of the System are unaffected by
the removal of the electron from ith orbital, Physically,
the system is e€xpected to readjust its orbitals to the new
situation. Koopman's theorem is therefore valid only if such
a readjustment or relaxation can be neglected. For real
Systems, it is usually found that Koopman's theorem gives a
good approximation to the binding energy, although the
relaxation effect is normally quite significant for the more

tightly bound electrons.

The Fock equations are coupled, non-linear, integro-
differential equations ang therfore there isg no direct
method for solving them. In fact, each Fock equation
requires prior knowledge of all the other orbitals. It ig
thus necessary to resort to a self-consistent field
method(SCF) which consists, in pPrinciple, of initial more or
less arbitrary selection of one electron orbitals, In this
method, an initial Fock operator, say FO = ig calculateqd
from some Suitably chosen set of orbitals g (0 The
eigenfunctions @ (1) of F( are then useg to construct a new
operator F (1) yhoge eigenfunctions are @, Thig iterative
cycle is continued until the solutions are self—consistent,
that is, unti1 the difference between two sets of orbitals

in successive cycles of computation is sufficiently small to
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achieve the desired accuracy. This general method of
solution is called the HF-SCF method. The only constraints
which have so far been described are that the orbitals are
forced to be orthonormal, and functions of the space and
spin coordinates of only one electron. This level of
approximation is referred to as the generalised Hartree-Fock
approximation(GHF) and has not yet been solved for any large

system.

Given that the orbitals have the form, @(£)=¢(§)7ﬁ ),
one of the two most frequently made assumptions is that each
orbital is required to be an eigenfunction of spin. In other
words, @(r) must be either #(x)a(c) or g(x)B(c), where #(x)
represents the spatial part of the orbital and « and 3
corresponds to the spin-up and spin-down eigenfunctions of
the spin operator Sz respectively. This constraint does not
affect the form of the Fock equation and orthogonality of «
and 8 ensures correct counting in the exchange integral.
This mild constraint produces the level of approximation
known as Unrestricted Hartree-Fock approximation(UHF). By
way of  contrast, the Restricted Hartree-Fock (RHF)
approximation places an additional requirement on the
orbital. For doubly occupied orbitals, the spin-up and
spin-down spatial parts are required to be equal, unlike the
UHF case. Therefore a RHF calculation produces orbitals
which are eigenfunctions of both overall spatial symmetry

and spin, which in turn may provide a quite incorrect
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description of spin-density at a nucleus, The UHF
calculation is free from this deficiency. Thus, RHF is
useful in studying systems of high inherent symmetry whereas
UHF finds increasing use in systems of the type under

consideration in the present work.

The solution of the Fock equations by expanding molecular
orbitals as a linear combination of atomic orbitals(LCAO)
has been elegantly formulated by Roothaan[Root 60]. This
formulation is the basis of the UHF-SCF program, used in the
present work., Each one-electron molecular orbital is
expressed as a LCAO, localised on the nuclear and other

sites,

@i

ﬁ Liué a/pu
(2.3.17)
where Csare the molecular orbital expansion coefficients and

are sets of atomic orbitals.

The most frequently used forms for atomic orbitals are

Ge¢

either Slater-type orbitals(STO) of the form, " NpY
exp(—ar)Yz% (¢, ¢ ) " or Cartesian Gaussian-type
orbitals(GTO) of the form, " Nrﬂ“‘exp(—arz)x2 v gHn where

the spherical harmonics are replaced by cubic harmonics|[Boys
50]. The a's are a set of chosen exponents spanning a
sufficiently wide range to give adequate flexibility for the
determination of the orbitals in the variational

calculation.
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The STOs wusually provide a rapidly convergent expansion
for molecular orbitals. Because they possess a cusp at the
nucleus, they lead to a good representation of the
wavefunction near the nucleus. Unfortunately, multicentered
integrals over STOs are quite diffcult to compute. On the
other hand the strength of GTOs 1lies in the fact that
multicentered integrals can be easily evaluated since the
product of two gaussians on different centres is eqguivalent
to a single gaussian on a new centre. However, the GTOs
suffer from two major disadvantages. The first is the fact
that the functions are steeper than the STOs and so
inadequately describe outer regions of atoms and molecules.
But, for solids, the correct atomic tail-shape is not
helpful as bonding states are often built only awkwardly
from STOs. The second disadvantage of GTOs 'is the lack of a
cusp affecting the ability of gaussians to describe
properties that rely on the wavefunction close to the
nucleus. This may be overcome by using slightly larger
expansions of GTOs. It is to be noted here that no one
choice of basis functions has yet shown overall

superiority[BW 72, CU 80],

There is growing preference towards GTOs over the STOs in
atomic and molecular structure calculations because of the
analyticity of multi-centered gaussian integrals, and
availability of very efficient computer programs to handle

this. The drawback is that many more of them have to be used
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in order to achieve the same level of accuracy as, say, the
double-zeta basis(a basis of two STOs per atomic orbital).
The increase in the number of basis function corresponds to
an increase N4 in the number of integrals requiring
evaluation, thereby 1leading to a considerable increase in
computation time during the iterative solutibn° One way of
reducing this problem is by the use of contracted sets of
GTOs(CGTO). A CGTO is a linear combination of (primitive)

Gaussians with fixed coefficients of the form

Q’fi = I ¢
= Lie 9e
& e
(2.3.18)
where n, is the number of gaussians contracted to a single
atomic orbital, ds are the fixed contraction coefficients,

_ G
ds are primltive‘@raussians° Provided the contraction

and
coefficients are carefully chosen, the CGTOs are capable of
giving results of comparable accuracy to their uncontracted
counterpart[Whit 66]. The coefficients(ds), for a wide

variety of atoms and ions, have been computed and tabulated

in the literature[Huzi 84].

We note here that an unpleasant technical feature, namely
basis set superposition error, is associated with the HF-SCF
procedure. The severity of it 1is proportional to the
incompleteness of the atomic basis set. Thus, to the extent
the atom-centered basis is inadequate, the HF-SCF procedure

will attempt to utilise any available basis functions on
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neighbouring centers to make up for the deficiency. No
completely reliable scheme for either -eliminating or

estimating superposition errors has been given so far .

Calculations are performed in three steps. First, the
labels generation program, LABELS, uses any available
information on the symmetry of the given problem to generate
a list of non-zero integrals to be computed. Then the
polyatomic gaussian integrals evaluation program, POLYIN,
evaluates the listed integrals. These two programs are from
the Caltech POLYATOM program package[NBK*], as modified by
Runz and coworkers. POLYIN permits also the user to replace
the core electrons of one or more atoms in the given problem
with an effective potential or pseudopotential. Finally, the
iterative program UHFABK of Kunz[Kunz] uses the integrals to

form a self-consistent solution.

Knowledge of the wavefunction permits us to obtain an
insight into the distribution of electrons in the molecular
space and also into the various orbitals centered on each
atom. This is achieved by the Mulliken population
analysis[Mull 55] for the system under consideration by
integrating the electron density over all space. (For a
detailed discussion, we refer to HRSP 86). Such information
is instrumental in analysis of charge transfer and
determination of the character of the basis functions in the

present work.
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2.4 CLUSTER BOUNDARY CONDITIONS

When a quantum-mechanical cluster is embedded in a weakly
perturbed classical lattice, there remains the question of
achieving physical consistency, electrostatic and quantum-

mechanical, between the cluster and the embedding lattice.

The embedded cluster is seen by the surrounding lattice
as a Coulomb potential, computed from the guantum-mechanical
charge density of the cluster itself. This Coulomb potential
is expressed as a multipole expansion. Hence, electrostatic
consistency (between the cluster and the embedding lattice)
requires that the cluster simulators (a set of point-charges
for simulating the cluster) that produce the lattice
distortion R in the embedding lattice possess the same value
of low-order electric multipole moments as does the quantum-
mechanical cluster whose electronic configuration is
determined by R. The procedure adopted in ICECAP to achieve

electrostatic consistency is described in Chapter 3.

Quantum-mechanical consistency, on the other hand,
requires that the cluster boundary conditions reflect the
quantum-mechanical structure of ions 1in the surrounding
lattice. Since the embedding Shell-Model lattice does not
provide any Pauli exclusion, the cluster wavefunction tends
to spread unphysically compared to true crystalline
behavior. It 1is therefore necessary to orthogonalise the
cluster wavefunction to a realistic electronic crystalline

environment.
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It is 1impractical to significantly enlarge the size of
the cluster since large clusters contain so many electrons
that they exceed the maximum basis-set capacity and
practical CPU time 1limitations of present Hartree-Fock
programs. Hence, some treatment less detailed than the
Hartree-Fock is required for ions at the cluster boundary.
The well-known pseudopotential approach may be used by
associating complete-ion pseudopotentials with ions that
surround the cluster, to overcome these computational
diffculties. Alternatively, we may use the formalism,
proposed by Kunz and Klein[KK 78] which adds only one
electron integrals and provides a systematic, mathematically
rigourous boundary for the gquantum-mechanical cluster,
These steps would considerably enlarge the one-electron
integral part of the calculation, but are much more
efficient and manageable than a corresponding larger

Hartree~Fock calculation.

Both the approaches, namely pseudopotential and Kunz-
Klein orthogonalisation, have been included in ICECAP to
provide appropriate cluster boundary conditions. We briefly
describe their concept and construction methods in the

following sections.
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2.4.1 Pseudopotentials

A pseudopotential( v an effective potential) is an
approximation to the real potential that an electron
experiences in a solid and whose characteristic feature is
its separation of core electrons properties from those of
valence electrons. The atomic cores are composed of nuclei
plus core electrons and are considered to be inert and
unchanged in going from a gas of isolated atoms to a solid
composed of strongly interacting atoms. It is assumed that
the valence electrons are largely responsible for the
bonding and most of the electronic properties commonly

studied in chemistry and solid state physics.

Because the valence electron wavefunctions are orthogonal
to the core electron states, they are repelled from the core
region as a consequence of the Pauli exclusion principle.
Philips and Kleinman[PK 59] demonstrated that this repulsive
potential cancels a large part of the attractive Coulomb
potential from the nucleus leaving a net weak
pseudopotential. The basic idea of the pseudopotential
method is then to take advantage of this orthogonality to
simplify electronic structure calculations by eliminating
the need to include atomic core states and the strong

Coulombic potentials responsible for binding them.

Several methods have been developed to construct
pseudopotentials and can be classified into two distinct

categories
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(a) The so-called empirical pseudopotential method forces
the pseudopotential to reproduce some experimentally
determined features, such as reflectivity and density of
states of the energy bands. The pseudopotential can then be

used to compute a variety of properties and analyse

experimental data. This method has been particularly
successful in describing the band structures of
semiconductors and simple metals. [For a general

discussion, see Cohe 84 and references therein]

(b) Alternative approaches, relying more on ‘first-
principles', require only the atomic number as input to
generate the atomic wavefunctions and a descr;ption of how
the valence electrons interact with cores and among
themselves, therby avoiding the introduction of empirical
parameters. The basic assumption 1is the frozen-core
approximation which pictures the cores as stationary when
discussing the electron dynamics. The valence electrons are
then solved self-consistently, orthogonalised to the frozen-
core orbitals[PK 59]. The resulting pseudo-wavefunction
approximates the true 'all- electron' wavefunction beyond
the core radius and then extends smoothly inside the core.
The pseudopotential responsible for generating the pseudo-
wavefunction can then be used to compute a variety of

properties[TMM* 76].
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The ab-initio calculations to obtain pseudopotentials
are, however, based on the Hartree-Fock calculations in
which the radial equation for the wavefunction contains non-
local exchange operator in the sense that each angular
momentum component of the pseudo-wavefunction sees a
different potential. This in turn complicates the problem of
finding a 1local pseudopotential to replace the core.
Goddard and coworkers[MG 74, MOG 74, TMM 78] have dealt with
this complexity by introducing a pseudopotential basis set
(powers of r times gaussian) and varying the coefficients to
minimise the error in integrals of the non-local Schrodinger
equation, satisfied by the pseudo-wavefunction. The
resulting pseudopotential depends upon the angular momentum
of the valence electron thereby reflecting particularly the
" different Pauli exclusion effects for different symmetries.

It is of the form

2]
V(R) = IV (R |[£><t]
l=0 /
(2.4.1)
+£
where |I><[ ]| = Z£ |lm><1lm|, a projection operator onto
[

states of angular momentum 1, and vi(g) is a radial funtion
which can be expressed in terms of Gaussians :
V,(R) = ZC R*exp(-y R2)
L= Kk ki k2
(2.4.2)

The resulting orbitals are called Core-less Hartree-

Fock(CHF) orbitals. Since it is smoothly varying and has a
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small amplitude in the core region, it does not require
core-like basis functions. This allows minimisation of the
number of basis functions required to give an accurate
description of the eigenstates of the potential. A
tabulation of the CHF pseudopotentials for atoms lithium to
zinc is available[TMM* 76]. In the present work, we refer to

these CHF pseudopotentials as TOPIOL pseudopotentials.

The so-called orthogonality-hole problem, that is, the
difference between the true electron density and the
electron pseudo-density persists in the approaches following
Philips-Kleinman[PK 59]. This results from the fact that
the pseudo-wavefunction overestimates the electron charge
inside the core region; forcing it to differ from the true
valence wavefunction in amplitude, although it does have the
same shape outside the core. When used in a self-consistent
calculation, this error in amplitude is manifest in an
incorrect Coulomb potential, and thus an incorrect

distribution of charge[BHS 82].

Hamann et al[HSC 79] have introduced a new family of
pseudopotentials, where a pseudo-wavefunction is nodeless
and after normalisation it matches the true valence
wavefunction beyond some core radius, say Rc. For a given
pseudo-wavefunction, the radial Schrodinger equation is
inverted to yield the corresponding pseudopotential. By

construction the integrals from zero to R of the real and



38
pseudo charge agree for R > Rc for each valence state. The
‘term 'norm-conserving' is used to describe pseudopotentials
with these qualities, and it guarantees that the Coulomb
potential produced, outside the core is identical for the

real and pseudo charge distributions.

Bachelet et al[BHS 82] have developed a consistent set of
norm-conserving pseudopotential for most of the periodic
table. An ab-initio calculation via a density-functional
approach [KS 65, SS 82] with the use of a 1local
approximation for the exchange- and correlation- potential
is performed[CA 80, Pz 81]. The numerical potentials are
then constructed from energies, wavefunctions and potential
of a reference full-core atom. Finally, analytical
expressions are fitted to these numerical potential
fﬁnctions, yielding the total ionic pseudopotential :

{en s

o
vir) = z [i>[ v, (r) + v, (r) L.s 1<i|
I 7 i \E L7 e
(2.4.3)
sc

where V; is a difference potential describing the strength
of spin-orbit coupling(relativistic correction) and is
neglected in the present work. We may therefore express the

pseudopotential as

.fmtm ,:a,/]
v(r) = Ve, () + R 1> av, <i]
- i=p 5
(2.4.4)
where
CEYE. |/2
Vewe (E) = = 2y Z C; exp{(a)” r }

(2.4.5)
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and

won 3
av, (r) = gf (A/+ r?a, ) exp(-a;r? )

(2.4.6)
Each atom is thus characterised by (i) a valance charge Zy
and two sets of linear coefficients and decay constants
describing the core, szi ay; i=1,2 respectively; (ii) for
each 1 value, two sets of three linear coefficients each, A/
and A;. 5, corresponding to the decay constant “i)i=1’293 for
the average potential. A compilation 1is given of the
parameters necessary to synthesize norm-conserving
pseudopotentials for the elementé hydrogen to plutonium [BHS

82] and in the present work, we refer to them as BHS

pseudopotentials.

Woodward[Wood 85] has written and implemented efficient
pseudopotential integral codes for both TOPIOL and BHS cases
in the UHF* program package which we have used in the

present work.

2.4.2 Kunz-Klein Localising Potential (KKLP)

Kunz and Klein have described a self-consistent procedure
to include the 1interaction of an émbedded cluster with its
environment in cluster simulation studies[RK 78]. This
procedure and 1its implementation in ICECAP is reviewed in

some detail below. (For a general discussion, see KV).
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Let us recall the generalised form of the Fock equation

(2.3.16)

where F is the Fock operator for the entire crystal. For
systems under study, the Fock operator F can be divided into
two parts; the first Fﬁ » representing all interactions of
the electrons with each other and with the nuclei within
cluster(A), and the second Uy » representing the potential
energy of interaction between the cluster(a) and its

environment(E).

The cluster electrons(Nn ) and the embedding lattice
electrons(NE) might be assumed to occupy separate manifolds
of states, denoted k(A) and k(E) respectively. Since the
crystalline lattice is made up of well-localised separate
ions, the cluster electrons do not significantly overlap the
manifold of the embedding lattice. However, basis sets for
both cluster and embedding lattice are chosen subjectively,
from physical 1insight, with the result that cluster and
lattice do not occupy mutually exclusive manifolds of
functions. In fact, the cluster manifold generally exceeds
the occupied manifold(k(A)) in order to provide variational
flexibilty. Thus, the cluster manifold contains both
occupied and unoccupied(virtual) states of cluster

electrons.
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The Fock equation may now be written as

(FQ+U[§)¢B&< =é}<®5<
(2.4.7)
where
F, = - vy2-22Z 2. |r-R:|"1
A v TR
+2 Jdr' |r-r'|-?
J dy £(y—f')[1 - P(f,y)] %ﬁg',y)
and
Up= —-22Z Z:|r-r-|-1
A Jie) i1zl
+2 fdr' fr-r'|-?
J; dy $(y - g')[1 - P(g,y)](é(r',y)
(2.4.8)

where P(r,y) is the electron pairwise interchange operator and

§ is the Dirac delta-function.

The Fock-Dirac one-electron density operator is given by,
€ g
¥ — ¥

- K-
(2.4.9)

and similarly for @E , With summations over k(E) from (N +1)

to @ for an infinite crystal.
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We note here that the Fock equation(2.4.7) for the
cluster depends in part on the occupied states of the
embedding lattice through Ug (since Ugdepends on k(E)
through €z ). However, we do not wish to solve for the states
of the embedding lattice. On the other hand, if we choose
them, then such a choice will generally not be orthogonal to
the cluster manifold as the chosen k(E) states will at most
be orthogonal to the occupied states and not to the
unoccupied states of the cluster. Furthermore, if we decide
to project k(E) out of k(A) then the projection may reduce
k(A) from its original range in Fock space making incorrect
evaluation of certain defect properties. On the other hand,
the projection of k(A) out of k(E) may distort the effect of
surrounding ions in the cluster. 1In fact, we would like to
incorporate the orthonormality between our cluster and
lattice manifolds maintainining our careful choice of both

cluster and lattice basis sets.

This has been approached by applying a subsidary
condition which modifies the Fock equation(2.4.7) by adding
an arbitrary effective potential. The procedure, described
by Gilbert[Gilb 64] is based on the fact that the density
operator, (4 (=I|k><k], where |k> is the state vector
corresponding to orbital ¢k) is a projection operator onto

*

the manifold of occupied states(that is, ¢, %= €,and ¢, =C )

¥

with the property that

€ylk> = |k>, if k is occupied
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=0, if k is unoccupied.

(2.4.10)

An important consequence of this property is that the
projection ( €3 W¢€) of an arbitrary one-electron operator W

onto the manifold of occupied states(k(A)) will satisfy the

eqguation
€ We|k> = W|k>, if k is ocuupied
= 0, if k is unocuupied.
(2.4.11)
Since,
Nﬂ %)
Wlk> = Z Wjk|j> + Z wi'k|j'>
1z J=INa+)
(2.4.12)
where Wjk = <j|W|k>. We then have
N’
Cq WE, k> =JZ Wik|j>, if |k> is ocupied
34
= 0, if |k> is unocupied.
(2.4.13)

By adding together equations(2.4.7) and (2.4.13), we obtain

Ng
( Fiq'*' UA+ gﬁwei) )|k> =‘j§‘

(£3§3k + wik)|j>

(2.4.14)
which 1is structurally identical to the general Fock
eguation(2.4.7). A unitary transformation within the
manifold of occupied states may then be sought to yield the
diagonal form of a modifed HF equation for an arbitrary one-

electron operator W. Thus,

( Fﬁ+ U/}+ @QW f{_} )!k> = ‘)Tklk>
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for k = 1,2,.,.,Nﬁ
(2.4.15)

Since the electronic density of the embedding
lattice(k(E)) 1is well-localised about the nuclei 1in ionic
crystals, we may divide the environmental contribution Uy
into long-range Madelung(or Coulomb) contribution, Vgi, and
short-range contribution, V; . The Madelung term, arising
from point-charge ions is given by

V;i = - Zﬂé)ljl(f—gj)]—1
(2.4.16)
in atomic (Bohr-Hartree) units. Here, I;= (2;- Ny) and R;
are ionic charges and positions respectively, and Njis the
number of electrons associated with the ion j with E

designating for ions outside the cluster.

< . . .
The short-range term (Vﬁ ) is the potential arising from
the electrons in the occupied orbitals of the environment

and 1is given by

s
V, = -2 Z N:|r-R:
A Jegy 4= =

7t 2 pdet feept
J dy $ (y—f')[1 - P(E,y)] ﬁ;(g',g)

(2.4.17)

In the modified Fock equation(2.4.15), the one-electron

operator W, is taken equal to —Vj s SO that

M 3 s —
CE + V) +V, =V ¢) k> = T |k>

(2.4.18)
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The added effective potential('&ﬁiéﬁ ) is the Kunz-Klein
localising potential and in the limit of self-consistency,
it cancels out the V; > the short range potential due to
lattice ions as seen by cluster electrons. The

equation(2.4.18) then reduces to :

iy
( F,+ Vv

Wt YV, V k> = T k>

(2.4.19)
Thus, it is in this sense that KKLP is a localising
potential, because the cluster electrons end up seeing
lattice ions as weakly perturbed point charges, and the
essence of orthogonalisation without compromising either
cluster or lattice basis sets has been captured by KKLP.
The appropriate total-energy algorithm for equation(2.4.18)

has been given by Kunz and vaillKv].

In practice, the orbitals in the environment are obtained
from solutions to the equation(2.4.18) for the perfect
crystal. The KKLPs localised about individual ions in the
environment are derived for each species in a perfect
crystal and are then associated with those ions that
neighbor a defect cluster. The use of perfect-lattice KKLPs
with a defect cluster is consistent with the idea that the
cluster should contain all significant deviations from

perfect-lattice electronic structure.

s
The short-range potential(VF? ) may be considered to be

made up of additive contributions from all the ions in the
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environment. It falls off very rapidly with distance, and
so only contributions from ions in the immediate vicinity of
the cluster need to be considered. We use Kunz's LOPAS
code [Kunz], which solves the modified Fock equation(2.4.18)
for each 1ionic species in a perfect lattice, with V
including only a few sets of near-neighbors. A set of
orbitals is associated with each ionic species which are
taken to be linear combinations of Slater-type orbitals in
our case from Clementi and Roetti[CR 74] and consistency is
obtained between the two species. This solution 1is then
used to determine KKLP for each species using Keegstra's
KKLFIT codel[Keeg 86] . Here, KKLP is evaluated on a grid of
positions and then fitted to a set of gaussians, since
evaluation of integrals is only possible in the POLYIN
subroutine of ICECAP in terms of gaussians. The result is a
set of localising potentials, one for each ionic species,
which can be added at as many ionic sites of the embedding
lattice as desired in equation(2.4.18). In contrast with the
use of tabulated pseudopotentials(TOPIOL or BHS), KKLP
applies to anions as well as to cations, and is an integral

part of Hartree-Fock approximation.



Chapter III

THE PROGRAM, ICECAP

3.1 INTRODUCTION

ICECAP 1is a self-consistent lattice relaxation and
electronic structure program package for performing
calculations of the electronic structure of point-defects in
ionic crystals. It is based on a physical model which has a
quantum-mechanical defect cluster embedded 1in a shell model
lattice, solved variationally by energy minimisation with
respect to cluster parameters and lattice configurations
maintaining finite-order multipole consistency between the
cluster and the lattice. This model is essentially the same
as described by Vail et al.[VHHS 82] and is discussed in
section(3.2). We briefly give an outline of the program-
package ICECAP in section(3.3). For a detailed discussion,
we refer to a report[HHK* 84] describing the program
organisation, the required input data for a given problem
and the procedure for the execution of the program. We note
here that ICECAP is adapted to IBM/Amdahl, VAX/FPS and CRAY

systems.

- 47 -
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3.2 METHOD

We define the defect cluster as any excess electrons,
plus those ions that are significantly perturbed by the
defect, including both perturbations of their electronic
structure and displacements of their nuclei. The electrons
of the cluster are treated quantum-mechanically in the UHF-
SCF approximation. The surrounding infinite lattice 1is a
perturbed shell model crystal in which the 1ions are

represented as dipole polarizable point charge combinations.

The coordinates of nuclei and of 1ions in the cluster are
collectively denoted Rc, referred to as the cluster
configuration. Coordinates of the surrounding shell model
lattice(core and shell positions of all the 1ions in the

surrounding lattice) are collectively denoted R, referred to

as the lattice configuration. Electronic coordinates
(positions and spins) of the cluster are denoted
collectively by r. The many-electron wavefunction for the

cluster is denoted by r\U (r Rc,a), indicating parameteric
dependence on the cluster configuration Rc and a set of

electronic variational parameter a.
We write the total defect crystal energy E as

E(R,Rc,a) = EC(BS:..’S‘) + Ecy (R,Rc,a) + E;i(R,Rc)

(3.2.1)
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where Ec is the expectation value of the energy of the
cluster in a given guantum state("™V ), including electronic
kinetic energy and interaction among all nuclei, ions and
electrons in the cluster; E; is the energy of the classical

lattice(R) and Ecj is the cluster-lattice interaction.

Assuming that the strong localisation of ions in an ionic
crystal provides a boundary condition for which the quantum-
mechanical cluster does not significantly overlap the
surrounding classical lattice, we divide the cluster-lattice
interaction into «classical Coulomb interaction and short-
range interaction, which simulates guantum-mechanical

effects. Thus, we write,

Ecy (R,Rc,a) = V(R,Rc,a) + Es(R,Rc)

(3.2.2)
where V and Es are the cluster-lattice Coulomb and short-
range interactions respectively. The short-range cluster-
lattice interaction is taken to be the same as the short-
range ion-ion interaction of the surrounding lattice. The

total defect crystal energy is then,

E(R,Rc,a) = Ec(Rc,a) + V(R,Rc,a) + E;'(R,Rc)

(3.2.3)
where E ;' represents the energy of the classical lattice,
plus 1its short-range interaction with the cluster. The
total energy E, is now minimised with respect to cluster
parameters Rc "and a, and simultaneously with respect to

lattice configuration R, that is,
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( $E/ § ) = { §(Bc+V)/ §a} =0
Ke.8 (3.2.4)
( S8/ §R)| =1 S(vsm;")/ gRY = 0
Re, & (3.2.5)
( SE/ §Rc) =0
(3.2.6)
yielding a variational estimate of cluster(Rc),

electronic(a), and lattice(R) configurations and of total

defect crystal energy(E) and electronic wavefunction(V ).

To solve equation(3.2.6) subject to equations(3.2.4) and
(3.2.5) simultaneously, we replace V by V' which is the
Coulomb interaction between the lattice and cluster
simulators (a small set of point charges simulating the

cluster). The equation(3.2.5) now becomes

{ §(vi+E,")/ SR = o0

Re (3.2.7)
This step is necessary to simplify the problem of solving
the equation(3.2.6), since equation(3.2.5) with
equation(3.2.4) requires variation of V(R,Rc,a) with respect
to many ionic coordinates R for each configuration of which
the Coulomb interaction V with the gquantum-mechanical
cluster must be evaluated. This is, however, prohibitively

expensive in computer time.
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The cluster simulators are chosen such that their charges
and positions allow them collectively to have the same low-
order electric multipole moments as the cluster. This can
be achieved as follows
(i) We begin with a fixed cluster configuration(Rc) and an
associated set of cluster simulators, and solve
equation(3.2.7) to obtain a first estimate for R, the
lattice configuration.
(ii) In the presence of this lattice configuration, we
evaluate the multipole moments, collectively denoted by M,
up to some finite order n for the quantum-mechanical
cluster(Rc,a).
(iii) We now readjust the cluster-simulator charges and
positions, keeping Rc fixed until their collectively
multipole moments, denoted by M', agree with the set M up to

order n.

(iv) We iterate these steps until the cluster and cluster
simulator multipole moments, M and M' respectively, are

consistent to order n.

At this stage, we have a lattice configuration(R) in
equilibrium with a set of cluster simulators that have the
same multipole moments, up to order n, as does the cluster |
whose electronic configuration(a) 1is in equilibrium with R,
all for a given cluster configuration Rc. We say that that

R and a are consistent to multipole order n. Finally, we
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vary Rc, maintaining n-th order consistency, to minimise E,
satisfying equation(3.2.6). This solution with n-th order
multipole consistency can be assessed from the multipole

expansion of V, the cluster-lattice Coulomb interaction.

Suppose that the lattice consists of point charges Q at

positions R . Then, we write

V(R,Rc,a) = 2 0; J d’ € /|z-R;]

J
(3.2.8)
where € (r . Rc,a) is the charge density of cluster
configuration Rc. A similar formula applies for V', where

refers to the charge density of the point-charge cluster

simulators.

Since V represents the interaction of the cluster with

all the ions outside the cluster, we have |[R;| > |r| in

;|
equation (3.2.8) and, for this case, V <can therefore be
expressed as a multipole expansion about the origin in the
cluster, i.e.,
K (w) m+1i)
V(R,Rc,a) = Z Q; Z M /|R|
= J Tizp J
(3.2.9)
where
{m) ‘ ..
M (Rc,3) = <a,(3) .,.tAéJ) My . Ay (Re)
(3.2.10)
with Einstein summation conventions on Ak (=1,2,3) and
k=1,2,..,n. Here, £ (j) are cartesian components of the unit

vector, that is,
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(€1(3),€62(3),¢5(§)) = Rj/IR;!
(3.2.11)
tn}

In equation (3.2.10), M are the n-th order multipole

moments of the cluster's charge distribution( € ).

The three lowest-order multipole moments are
(i) the total charge,
M@ = g3r @
(ii) the dipole moment,
MDY = f d%c P
(iii) the guadrupole moment,

(2) = 3 ) )
%ﬁﬁ J d3r (3 r r r ég ) €

B

where r, are the cartesian coordinates of the position

vector r.

Thus, if V' in eqguation (3.2.7) agrees with V in
equations (3.2.5) and (3.2.8) to order n, then the error

L)
involves only contributions to the energy of order (35).

3.3 THE PROGRAM

ICECAP defines several classes of entities in order to
ensure that each class must have their coordinates varied
only in the appropriate portion of the program and that the
interaction between any two entities must be taken into
account exactly once, that is, neither omitted nor double
counted. The classes of entities defined are

(a) Ions that will be replaced by bare nuclei plus electrons,
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(b) Ions that will be replaced by core pseudopotentials plus
valence electrons,

(c) Ions that will be replaced by complete—-ion pseudo-
potentials or Kunz-Klein localisation potentials{(KKLP),

(d) Shell model ions that will be explicitly moved about in
minimising the total defect crystal energy,

(e) Point charges simulating excess electrons in the cluster
(electronic simulators),

(f) Point charges simulating multipole corrections(multipole
simulators),

(g) Shell model ions of the surrounding lattice.

Classes (a) through (c) define the quantum-mechanical
(UHF-SCF) region, whereas classes (a) through (f) define the
cluster. The embedding lattice region is defined by
entities in class (g). Class (e) 1is chosen initially to
simulate the deviations of the charge distribution of the
UHF-SCF region from the point-charge (shell model)
distribution of classes (a) to (4d). After a given run of
the calculation, ICECAP may introduce point-charges of class
(f) by the multipole consistency routines to correct low-
order multipole moments of the cluster region simulated in
HADES. Point-charges of classes (e) and (f) exert only
Coulomb forces, but do not interact among themselves, nor
with ions of classes (a) to (d), except that point-charges
of class (e) do interact with shells of ions in classes (b)

to (d). Thus dipole polarization of ions in the cluster, not



55
otherwise provided by gquantum-mechanical electrons is

included.

The program-package, ICECAP consists of a master driver
program which generates data files for several programs.
This method of organisation minimises the number of changes
which have to be made to large pre-existing codes, namely
HADES and UHF®. The programs which are under the control of
the driver are CRYDFN(the HADES symmetry analysis routine),
RUN(the HADES 1lattice relaxation routine), UHF * (LABELS,
POLYIN and UHFABK routines), PROPS (molecular properties
evaluation routine), MPFIT(multipole consistency routine)
and TOTMIN(éotal energy minimisation routine). The bulk of
computing is not concentrated in very few kernels, but is
rather scattered over various program sections. Also,
10(input/output) operations associated with the two-electron
integrals requires a lot of disk usage. For example, a
calculation of 18 atoms(180 electrons) with 97 basis
functions requires about 3000T disk space for the LABEL
file, containing the list of integrals. It is to be noted
here that some of my thesis work was in development of

ICECAP, particularly in writing the MPFIT routine.

The MPFIT routine provides multipole consistency between
the embedded cluster and the surrounding lattice up to
octopcle order. First, the multipole moments M and M' due to

the UHF cluster and point-charge cluster simuators from
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HADES are generated respectively. Then the MPFIT routine
introduces point-charges,referred to as multipole
simulators. They are determined from the difference between
the multipole moments, M and M', by solving the system of
non-linear equations from a given initial approximation.
The solution provides the corresponding multipole strengths
and direction cosines of displacements from which the
charges and positions of multipole simulators are returned

to the calling routine,

In its original form, the program ICECAP reguires core
space of 7.5 Mbytes, which is in excess to that available, 5
Mbytes, in the University of Manitoba (Amdahl 5870) computer
system. This diffculty has been overcome by rearranging the
program 1into an overlay structure, so that only those
segments needed in executing a given calculation step are in
core for the duration of that step. The overlay structure is
along the lines suggested by Harker[Hark] and reduces the
core requirement substantially from 7.5 Mbytes to 4.5

Mbytes, a 40% reduction.

The operating procedure of ICECAP, illustrated in Figure
3.1, is executed under the direction of the driver and can
be summarised as follows :

(1) For a given cluster configuration, the excess electrons
and the cluster 1ions are simulated by fixed point charges,

from which HADES determines the polarized, distorted lattice



Figure 3.1

Schematic diagram describing the operating procedure
of the program package, [CECAP.
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configuration and the total energy of the point-charge

simulated lattice(Eh).

We may now write,

Ei' = Eh - BEc' - Es' - AV

(3.3.1)
where, Ef is the same as in equation(3.1.7), the interaction
energy among all ions outside the cluster plus short-range
cluster-lattice interaction;

Es' is the short-range plus shell-core interaction
energy of any shell model ions that are included in the
cluster-simulator set;

Ec' 1is the Coulomb interaction of the cluster
simulators among themselves plus their Coulomb interaction
with regions I and Ila(of HADES); and

AV' is the Coulomb interaction of the <cluster

simulators with region IIb(of HADES).

Here, it is assumed that shell-shell and shell-core
interactions are simulated by electron-electron and
electron-pseudopotential/KKLP interactions, except that in
the case of a complete-ion psudopotential, where the shell-
core interaction is not included. Both the terms Ec' énd
Es' are therefore subtracted from the energy Eh.
Furthermore, shells in the cluster region(classes (a) to
(a)) are free to respond to all point-charges in HADES

except class(f), the multipole simulators.
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(2) Shell model ions of the lattice, along with the cluster
ions(i.e. nuclei/pseudopotentials/KKLP ions) of a fixed
cluster configuration are now applied as a background
potential for a UHF-SCF calculation. The total cluster

energy(Ea) is evaluated by the UHF program package.
We may then write :

(Ec + V) = Ea + Eo + Ed + AV

(3.3.2)
where, Ec and V are defined as for equation(3.3.1), and AV
is the Coulomb interaction of the cluster with region Ilb,
which is not evaluated. For nuclei, pseudopotentials or
KKLP ions, i.e. for classes (a) to (c), the energy Ea
includes their Coulombic interaction among themselves and
with classes (d) and (g). The energy Eo represents a
correction term for the energy of the dipoles simulating the
polarization of ions associated with complete-ion
pseudopotentials or Kunz-Klein localisea potentials. It is
assumed here that a dipole, including shell-core interaction
can be carried over from a HADES shell model ion to a UHF
complete~-ion pseudopotential or a KKLP ion. Furthermore,
HADES shell-shell interactions between classes (c) and (d)
are assumed to be represented by their UHF short-range

interactions.

The total defect crystal energy E (3.2.3) 1is then given
by
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E = (Eh-Ec'-Es') + (Ea+Eo+Ed)

(3.3.3)
from (3.3.1) and (3.3.2), assuming that the term (AV-AV') is
negligible. This energy is evaluated at each iteration in
working towards multipole consistency and overall energy

minimisation,

(3) 1deally, the the cluster simulators should have all
their multipole moments identical to those of UHF-SCF
cluster. ICECAP, however, matches only a finite set of low-
order multipole moments. This is accomplished by comparing,
in the multipole consistency routine, a given set of low-
order multipole moments(presently up to and 1including
octopole) for classes (a) to (c) as calculated from the
HADES and UHF* programs. If consistency is not found,
additional point-charge simulators, called multipole
simulators(class (f)), are introduced. Their positions and
charges are evaluated by the multipole consistency routine
such that when added into HADES they produce agreement to a
required accuracy between HADES and UHF* multipole moments.

ICECAP now iterate the HADES/UHF® seqguence to consistency.

(4) Finally, the driver minimises the total energy E, as
given by the equation(3.3.3) with respect to the cluster
configuration(classes (a) to (4)), maintaining multipole

consistency between the cluster and the embedding lattice.
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ICECAP is based on HADES and UHF' program packages, both

of which have been extensively tested, refined and applied
to point-defect calculations in ionic crystals.
Consequently, any point-defect configuration in any ionic
crystal host lattice geometry can be analysed, provided
shell model parameters are available. Atomic orbital sets
may include s, p, d and f types. Either norm-conserving BHS
or Philips-Kleinman TOPIOL pseudopotentials can be used, and
Runz-Klein orthogonalisation procedure can be applied at the
cluster boundary. Octopole consistency is presently
available. Correlation correction can be included 1in the
total energy, using a many body perturbation theory(MBPT)
developed by Kunz[Kunz 83w]. The whole set of input data
necessary for a calculation of the ground state of the F*
center in magnesium oxide with the appropriate JCL for our

computer system (Amdahl 5870) is given in the appendix.

The ultimate test of the physical model on which ICECAP
is based can be made through comparisons with experimentally
observed properties. For example, optical absorption and
luminescence measure splittings between energy levels,
whereas spin resonance can measure the square modulus of the
wavefunction at a particular site. ICECAP does calculation
of energy levels and wavefunctions and the subsquent
calculation evaluates experimentally measurable quantities.
If the results of such a comparison are favourable, the

model acquires predictive credibility and can then be used
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to study point-defects for which experimental data is either
lacking or scarce. Hence, with this attitude, we now apply
ICECAP to study the electronic structure of the point-

defect, F* center in magnesium oxide and present the results

in the following chapter.



Chapter IV

RESULTS AND DISCUSSIONS

The principal applications of ICECAP will be to point-
defect properties, particularly those for which deviations
from perfect lattice electronic structure are crucial. We
have chosen to examine properties of a well-documented color
center, the F* center in magnesium oxide which involves not
only perturbations of ionic electronic structures, but also
electronic states associated with vacancies. These color
center states may be considerably more diffuse than ionic
states, and through their optical transitions and hyperfine
interactions with neighboring nuclei provide a sensitive
test of the accuracy with which distortion and polarisation
of the surrounding lattice and the electronic states are

being treated.

Preliminary calculations modelling the absorption and
emission process of the F* center will be presented first,
followed by the detailed investigation of the ground and
unrelaxed excited states of the F* center 1in magnesium

oxide.
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4.1 F* CENTER

An electron trapped in an anion vacancy is called an F
center in alkali halides whereas an analogous center in
alkaline-earth oxides, the divalent cousins of alkali
halides, 1is called. an F* center. Its structure has been
verified by the ENDOR experiment[UC 67] which maps the
density of the electron trapped in the vacancy through its
hyperfine interaction with the nuclear moments of the near-

neighbor lattice ions.

The F' center has a number of electronic states and the
optical absorption produces a transition of the trapped
electron from the ground state to the first excited state.
We note here that it is analogous to a one-electron atom,
He' and we may therefore label its electronic states as 1s,
2s, 2p and so on. The first allowed optical transition is
then between the 1s and 2p states. Since such a transition
takes place on a time scale short in comparison to lattice
vibrations, it will occur while the lattice atoms remain
essentially at some fixed configuration. This is the Franck-

Condon principle.

In the excited 2p state, the charge distribution has
changed, and the interaction of the electron with those on
neighboring ions(which are now relaxed to new lattice
configurations) is different. Thus, the electronic energy

in the relaxed excited state(2p*) has changed. Now, from
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this state, the luminescence transition(2p* - 1s*) may occur
at a fixed lattice configuration. The quanta of energy
involved in optical absorption and luminescence transitions
are therefore different and this energy difference is

referred to as the Stokes shift.

The optical properties of F* center in the magnesium
oxide are well-documented experimentally[Hend 80]. The F*
absorption band 1is reported to be at 4.95 eV with a
corresponding emission band at 3.13 eV, suggesting a large

Stokes shift.

Magnesium oxide(Mg0), the host lattice of the F* center
in the present work, calls for a brief comment here. It
belongs to the family of alkaline-earth oxides and is
strongiy ionic in character; the anions and cations having
the rare-gas electronic configurations. It has an NaCl
structure, with a lattice parameter of 4.2112 A (i.e. near-
neighbor distance(a)=2.1056 &). There are two atoms per
unit cell in  which anions and cations form two
interpenetrating face-centered cubic sublattices. Thus,
anions and cations are arranged on alternate cube corners
~along the <100> directions, (eréd—the «IHi»—planes—are
altternatively composed—entirely-directions,) and the {111}
planes are alternatively composed entirely of anions or
cations. - Several band structure calculations have been

carried out, and these are in general gualitative agreement
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as to the broad features of the valence and conduction

bands [CDPR 86 and references therein].

4,2 THE MODEL

The program package, ICECAP, facilitates the computing of
defect properties 1in ionic materials systematically and
routinely in a standardized model. In this model, the
embedded (quantum-mechanical) cluster consists of an excess
electron, that is associated with an oxygen vacancy, plus
six nearest-neighbor magnesium(Mg?*) ions(Figure 4.1).
These Mg?* 1ions are represented by shell model (SM),
pseudopotentials (TOPIOL/BHS), Runz-Klein localised
potential (KKLP) and gaussians centered on ionic sites,
referred to as Hartree-Fock ions, in a series of
calculations, presented here. The surrounding lattice is

treated in the shell model.

Shell model parameters for MgO crystal are taken from the
work of Sangster and Stoneham[SS 81], with Mg?*ions
unpolarisable and involving only nearest-neighbor short-
range interactions but with 02- ions polarisable and
including second-neighbor short-range interactions as well.
These parameters which are given in Table 4.1, reproduce the
perfect lattice properties of MgO crystal reasonably

well(Table 4.2).



Figure L.1 : F* center in Mg0 crystal.
Solid line indicates {guantum-mechanical) defect cluster
region. lons with dashed line are included in the cluster
in the later part of the study.
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TABLE 4.1

Parameters of the Shell-model and Short-range
Potential (V = A exp(-r/g) - cr-¢)

Shell-model Shell Spring
parameters Charge Constant
(e) (eV A-2)
Mgz + unpolarisable
02- 2.81 k6,125
Potential A ¢ C
(eV) (R) (eV A¢)
Mg2* - 02- 1275.2 0.3012 0.0
0z- - 02~ 22764.3 0.1490 20.37
Mgz+ - Mg2+ - - -




TABLE 4.2

Calculated and Observed Perfect Lattice Propertaes
of Magnesium Oxide.

lattice spacing (A)

(near-neighbor distance) 2.106 2,106
dielectric constants
€ 9.77 9.86
€ 2.96 2.96
lattice energy (eV) -40.9 -40.4
elastic constants
(10*2 dynes/cm??
Chi 3.71 2.89
Ci2 1.57 0.88

Chh 1.57 1.55
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4.3 PRELIMINARY CALCULATIONS

Our preliminary calculations involve the one electron F*
center, either placed alone in a shell model lattice or with
nearest-neighbor cations represented by pseudopotentials
(TOPIOL/BHS), Kunz-Klein 1localised potential (KKLP) or

Hartree-Fock ions.

For the one electron F* center, s- and p-type basis
functions(Basis FC) are used for ground and excited states
of the F* center respectively. Basis FC consists of 9
gaussian primitives. Table 4.3 lists the actual values of «
along with their corresponding range, defined by (2 a)-1/2,
This range is the distance at which the charge density of an
s—-type gaussian is e~ ' times its maximum, and of a p-type
gaussian is maximum. For Mg2* ions (atomic number:12) which
are represented as Hartree-Fock(HF) ions, we use Huzinaga's
smallest optimal minimal basis set[Huzi 84], referred to as
Basis MGA. It is based on free-atom contractions(3,3/3) for
1s, 2s and 2p cation states. We note here that the numerical
values 1in the contration symbol represent the number of
primitive Gaussians contracted to single atomic orbitals.
Basis MGA 1is listed in Table 4.3 which also includes an
oxygen basis set(Basis OXA) used in the later part of this

work.

For each electronic optical transition energy, denoted Ea

for absorption and Ee for emission, two calculations are
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TABLE 4.3

Basis Sets Associated with Vacancy, Mg?* ions

and 02?2~ ions.
(i) Vacancy

Basis FC type exponent range
s/p 0.97k 0.18a
0.244 0.36a
0.108 0.54a
0.061 0.72a
0.027 1.08a
0.015 1.4ka
0.010 1.80a
0.007 2.10a
0.004 2.80a

wHere a = 3.979 bohr, the nearest-neighbor distance in Mg0.

(ii) 02--lons

Basis OXA
(3,3/3)
type exponent coefficient
] s > 281.86658 0.0690599
L2.41600 0.3931595
9.09562 0.6656691
| 2s > 11.46603 -0.0808199
0.88786 0.5820895
0.27880 0.4971596
] 2p > 8.0L724 0.1242709
1.66842 0.4765935
0.37251 0.6130445




(iii) Mg2*-lons

650.
98.
21,

27

64367
37078
32249

-97738
.32652
.81808

47
.21663

.00222
.20k65

Basis MGA
(3,3/3)

0.0680297
0.3907384
0.6672673

-0.0867195
0.5856969
0.486L974

0.1214603
0.4792914
0.5389417

Basis MGR
(3,3,1/3,1)

0.033942
0.188603
0

275350

-0.066825
0.341160
0.2390599

1.0

axial-
0.049178
0.195580
0.242770

non-axial
0.044945
0.178684
0.221938

b6k
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required; one for the initial state in which the lattice is
relaxed to equilibrium with the cluster, and the other for
the final state in which the ionic positions and
polarisations are held fixed in the initial state
configurations. Thus we have four states, namely, ground
state(GS), unrelaxed excited state(UNRES), relaxed excited
state(RES) and unrelaxed ground state(UNRGS). The lattice
cohfiguration is the same for both states of a transition.
For absorption, they are determined by the ground state and
through symmetry are equal (4) for all six nearest-
neighbors. For emission, they are determined by the relaxed
excited state, which is assumed to involve a p-type state
oriented along the z-axis. The two axial neighbors are
therefore displaced to (dz) whereas the other four neighbors
are displaced equally in the x-y plane, radially to (dx).
The mean radial distance(RMS), <r2>1'/2_  represents the
extent of the localisation of the electronic density that is
associated with F* center electron in a given state and is
different for each state. We present the results in Table
4.4. The calculated transition energies are compared with

corresponding experimental values in Table 4.5.

Referring to Tables 4.4 and 4.5, we note that a single
quantum-mechanical electron(with Basis FC) in a shell model
lattice reproduces experimental absorption energy very well,
and emission energy roughly, associated with reasonably

well-localised wavefunctions in all four states. However,



(c) TOPIOL-NN

TABLE 4.4

Results of Preliminary Calculations.

(Basis FC - Vacancy )

GS UNRES

energy (eV) 18.33 23.18
d (dx,dz) 1.03a

RMS 0.7ka 0.93a

energy (eV) 19.38 24.53
d (dx,dz) 1.03a

RMS 0.68a 1.51a

energy {eV) 25.28 26.12
d (dx,dz) 1.09a

RMS 1.77a ’ 2.69a

21.93 ' 19.12
(1.07a,0.98a)

0.91a 0.76a

22.95 20.50
(1.10a,0.92a)

1.63a 0.73a

25.53 (25.83)

(1.10a,1.0a)

continued...




(d) BHS - N

=2

energy (eV)

d {(dx,dz)
RMS
(e) HE - NN
(Basis MGA)

energy (eV)
d (dx,dz)

RMS

-32256.90 -32251.71
1.04a

0.64a

25.46 | 23.63
(1.10a,1.0a)

2.21a 0.73a

-32253.38 -32254 .45
(1.10a,1.0a)

2.23a 0.73a

b)




TABLE 4.5

Calculated Absorption and Emission Energies
of the F*-center.

Absorption Emission
Energy (eV) Energy (eV)
nearest-neighbors |-==-eceeeeo o __ZT_ T __
Shell-Model L.85 2.81
KKLP 5.15 2.45
TOPIOL 0.84 (-0.30)
BHS 5.24 1.83
HF (Basis MGA) 5.19 1.07

note : F*-center absorption and emission energies are reported
to be 4.95 eV and 3.18 eV respectively[Hend 80].
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when the ion-size effects are introduced, the picture
changes. With KKLP, BHS and Hartree-Fock nearest-neighbors,
the ground state remains well-localised, with slight lattice
distortion (5%). Similarly, in the unrelaxed excited state
we expect to find the wavefunction localised inside the
vacancy. But, on the contrary, the wavefunction does not
remain localised, and spills well beyond the nearest-
neighbor distance(RMS > 1.5a). In other words, the p-type
function has significant amplitude beyond the nearest-
neighbors. The agreement with the experimental absorption

energy thus becomes poorer.

The relaxed excitéd state(RES) wavefunction is similarly
diffuse, but the calculated emission energies are very
wrong(Table 4.5), We note how quadrupole consistency
associates an oblate nearest-neighbor configuration with the
prolate p-type state RES wavefunction oriented along the z-
axis, in all cases(Table 4.4). However, with TOPIOL, the
calculated results are completely unphysical, with extremely
small absorption energy. The s—-type UNRGS state turns out to
be above the p-type RES state, resulting 1in a negative
emission energy. It appears that the ion-size effect of
TOPIOL is greater than that of either KKLP/BHS or Hartree-

Fock, judging by wavefunction diffuseness(Table 4.4),

Thus, the results suggest that TOPIOL pseudopotentials do

not prove to be appropriate model elemets for representing
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the electronic structure of Mg?*ions in the present
calculations. Furthermore, the ion-size effect of anions on
the z-axis in UNRES and RES p-type states seems to be
important as p-type functions, oriented along the z-axis
spill beyond the nearest-neighbor. The anions{oxygen ions)
are the second nearest-neighbors and are represented by

shell model point-charge ions in these calculations.

Similar results have been obtained by us with a different
vacancy-centered basis function (consisting of 5 gaussian

primitives) in an earlier investigation[VP 86].

We now associate Kunz-Klein localised potential (KKLP)
with the 1ions beyond the nearest-neighbor ions of the
vacancy to provide the ion-size effect, since neither TOPIOL
nor BHS pseudopotentials are availble for anions. The
results are given in Table 4.6. Here, we find that the
introduction of KKLP localises the UNRES wavefunction (RMS
a). But the calculated absorption energy turns out to be

totally wrong.

In examining the Mulliken population over vacancy-
centered basis function(Basis FC), we notice that some of
the primitives have sizeable negative Mulliken population in
both the ground and unrelaxed excited states (Table 4.7).
For UNRES state, the dominant components correspond to the
primitives of ranges 1.08a, 1.44a and 1.80a respectively;

the first two have opposite signs, thereby leaving the third



TABLE L.6

F*-center :

(Basis FC

ion-size effect

- vacancy )

asis - * jon
(Basis MGA Mg2+ i )

2,3,4,5,6,7 nearest-neighbor
ions of vacancy

Absorption Energy (eV)

(1)

Ground State

energy (eV)
d

Mulliken Population -
vacancy

RMS

(ii)

Unrelaxed Excited State

energy {eV)

Mulliken Population -
vacancy

RMS

Shell-Mode! KKLP
ions ions
5.19 7.65

-32256.90 -32261.08
1.0ka 1.01a
1.0163 1.0102
0.6ka 0.58a

-32251.71 -32253.43

1.0218 1.0238
2.17a 1.03a

[y




BASIS FC
(Vacancy)

Vacancy Basis Set :

TABLE L.7

(Basis MGA - Mg2*-ions)
{(no KKLP ion-size effect)

Mulliken Population
exponent |=--—=m=—emc e
range (a) GS UNRES
0.18 0.0006 0.0007
0.36 -0.1828 -0.0478
0.5k 9251 0.5848
0.72 -1.252] ~1.2060
1.08 017k 3687
1. 44 -0.8818 -2.3398
1.80 0.5967 2.Lk40
2.10 -0.2252 -0.8505
2.80 0.0184 0.0677

Mulliken Population

b3k
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one as a resultant whose range is well-beyond the nearest-
neighbor distance. Thus, the delocalisation appears to be
spurious and may be due to overlapping of primitives,
forming the UNRES wavefunction. The calculations with KKLP
ion-size effect have also shown negative Mulliken population
associated with some of the primitives of the function,

Basis FC.

Experience has shown that negative Mulliken populations
for basis orbitals, arising as they do from predominance of
overlap compared to direct contributions, should be taken as
an indication of present or incipient linear-dependence
failure of the calculation[VW]. Hence we go back and look
closely into our model elements, namely vacancy-centered and
Mg?* basis functions in the defect cluster for ground and .

excited states of the F* center.

4.4 GROUND STATE

For the ground state, we start with a single gaussian,
centered at the vacancy and optimise its range in a defect
cluster; a vacancy and six nearest-neighbor Mg2*ions
represented by Basis MGA. The optimum range of the s-type
ground state wavefunction comes out to be 0.63a as shown in

Figure 4.2.

We now look into the other model element, Mg2* basis

set(Basis MGA) and notice that it 1is constructed by



100

energy (eV)

' (
-250 \

-255 - . {

S
-260 -
0.2 0.4 0.6 0.8 1.0
range of the vacancy-centered basis function(a) --->

Figure 4.1 : Optimisation of the vacancy-centered basis function
in the ground state (Mg?* ion - Basis MGA).
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optimisation of the Hartree-Fock energy of a free Mg atom.
This choice places heavy emphasis on representing the core
orbitals, as these orbitals contribute most of the total
energy of an atom. If the atom is placed in a cluster
environment, additional diffuse primitives may be needed to
describe its (electronic density) distortion in the cluster
environment. Furthermore, Basis MGA does not take account of
core polarisation in an asymetric environment, provided by
the wvacancy to nearest-neighbor Mg?*ions in our defect
cluster. We therefore reoptimise Basis MGA in a realistic

crystalline environment.

In basis-set optimisation, we de-contract the (free)
atomic basis-set, re-contract them in the (relaxed) lattice
containing the defect, and optimise the ranges of additional
s— and p-type primitives at ionic sites.

The procedure consists of the following steps

(i) First, we de-contract Basis MGA(3,3/3). Primitives are
now allowed to vary independently in the UHF calculation
increasing the number of basis functions from 31 to 91 in
the defect cluster.

(ii) The self-consistent solution of the cluster, obtained
from  ICECAP calculation  provides new contraction
coefficients for the basis functions associated with 1s, 2s
and 2p orbitals.

(iii) We now contract the 1s orbital only and repeat the
calculation with decontracted 2s and 2p orbitals. From this

calculation, we contract the 2s orbital.
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(iv) Finally, the next calculation with contracted 1s and 2s
orbitals gives the new contraction coefficients for 2p

orbitals.

This reoptimised Mg?* basis set, referred to as Basis MGR
is given in Table 4.3 and is a contraction of (3,3/3). We
notice that the contraction coefficients of axial p-type
orbital (pointing towards the vacancy) are different from
the other two non-axial p-type orbitals, reflecting the
asymmetric environment for the nearest-neighbor Mg?* ions in

the defect cluster.

We now add primitives of both s- and p-type to Basis MGR
to increase the flexibilty of the basis set. The most.
widely used quality criterion for the basis set has been the
total energy test and is adapted in our work. Care has been
taken to avoid the negative Mulliken population on the basis
functions. Accordingly, s- and p-type primitives of ranges
0.065a and 0.4a repectively gives the minimum total energy
for the defect cluster for the ground state(Figure 4.3,
Table 4.8). We have included these primitives in Basis MGR

for our subsquent calculations.

Referring to Figure 4.3, we notice that the addition of
an (optimised) s-type primitive to Basis MGR lowers the
total energy of the cluster by 60 eV. This primitive is of
short-range (v»0.065a), indicating the need of an additional

s-type basis function for core states in the set, Basis MGR.



T

energy (eV)

=220

-230

-2Lo

-250

-260

| | | | |

0.1 0.2 0'3 O.LI 0.5

range of the added primitive (a) --->

Figure 4.2 : Optimisation of the range of the added [s>- and |p>-type
primitives to the Mg2?* basis set, Basis MGR.



TABLE 4.8

Ground State - Total Energy of the Cluster (F* (e) -Mgb)

Mg2* Basis Set Energy (eV)
(a) Basis MGA (3,3/3) -32256.06
- decontracted -32271.13

- contracted
1s -32270.92
1s,2s ~32196.12
1s,2s,2p -32195.66
(b) Basis MGR (3,3/3) -32195.66
(c) (b) + s! -32254,38
(d) () + p! ~32258.94
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The additional (optimised) p-type primitive does not lower
the total energy significantly and, 1in a limited sense, 1is
expected to describe the distortion of the electronic

density of Mg2?* ions in the cluster environment.

However, close examination of Table 4.8 reveals that the
total energy of the defect cluster with reoptimised Mg?2?*
basis set(Basis MGR) is about 75 eV higher than that with
the decontracted Mg2* basis set. This increase in the total
energy may be understood from the fact that the contraction
coefficients of the basis functions associated with 1s and
2s orbitals are not obtained from pure 1s- and 2s-type
eigenstates but instead are obtained from admixtures of 1s-

and 2s-type eigenstates of the defect cluster.

We have therefore modified our procedure of basis-set
optimisation and have obtained a new set of contraction
coefficients for the basis functions in the following way
(i) We do an ICECAP calculation with the decontracted basis
set, Basis MGB. This set is a smallest optimal minimal basis
set for Mg?* ion(Table 4.9, Huzi 84). The self-consistent
solution of the cluster then gives the new contraction
coefficients for basis functions associated with 1s, 2s, and
2p orbitals.

(ii) We now read the coefficients for s-type functions(6 in
the present case) from 1s- and ard 2s-type eigenstates to

form contractions for 1s and 2s orbitals.



(a) Ground State

TABLE 4.9

: Total Energy of

Basis MGB (3,3/3)
- decontracted
- contracted

1s,2s

1s,2s,2p

Basis MGT (6,6/3)

the Cluster (F* (e) -Mgb)

-32256.26
-32271.41
-32271.39
-32271.39
-32271.39

__-._-.-.—.-.—.-_.—_..-_—...—-._-_—_—__.._-.____—___--._—_—_—_—.._-...—_—-_—

| 2p >

| 1s > 654.890970

98.727577
21.335201
28.128657

2.295112

0.799752

| 25 > 654.890970

98.727577
21.335201
28.128657

2.295112

0.799752

23.805108
5.116593
1.231392

Basis MGB
(3,3/3)

0.067567L4

0.3901195
0.6683850

-0.0863368

0.5978077
0.L4746430

.1182192
.L748816
.6051010

oo Ne]

Basis MGT
(6,6/3)

0.022845
0.127542
0.187178
0.032911
0.028823
0.011074

-0.010839
-0.066309
-0.114281
-0.051193
0.379727
0.301423

axial-
0.033577
0.134761
0.172058

non-axial
0.058927
0.236805
0.300990
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(iii) The next calculation with contracted 1s and 2s
orbitals gives the new contraction coefficients for 2p

orbitals.

The resulting Mg2* basis set, referred to as Basis MGT,
is a contraction of (6,6/3) and is given in Table 4.9. We
notice here that the total energy of the cluster either with
decontracted set or with reoptimised set remains the same,
thereby indicating the improvement in our basis-set

optimisation procedure.

Recently, Causa et al[CDPR 86] have reported a basis set
for the Mg?* ion, obtained from perfect lattice calculations
of MgO crystal. It consists of the contraction (8,6/6) and
is therefore expected to represent Mg2* core states more
adequately than the basis sets used here. However, we
cannot reoptimise this set in the lattice containing the F*
center as a decontracted set with 192 basis functions is too

large to handle by our computer system.

The calculated ground state energy of the F* center with
the different Mg?* basis sets is given in Table 4.10. The
optimised range of fhe vacancy-centered s—-type basis
function remains approximately the same, indicating a well-
localised wavefunction for the ground state of the F* center
in MgO crystal. Also, Mulliken population shows that there
is no charge transfer either from Mg2* ions to the vacancy
or viceversa and approximately one electron’ is localised on

the vacancy.



Basis Set

TABLE 4.70

Ground State :

Mg?* Basis Sets

(F*(e) -Mgb cluster)

MGR

(3,3/3)

Vacancy-centered

Basis : range

energy (eV)

d
Mulliken

Population
(vacancy)

RMS

0.60a

-32195.74

1.0ka

1.0054

0.72a

MGR + s'+ p'

(3,3,1/3,1)

0.53a

-32258.94

1.03a

0.9969

0.63a

MGT

(6,6/3)

0.50a

-32271.73

1.03a

1.0054

0.60a

71’f A
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A final set of calculations has been done in order to
. assess the ion-size effect of second nearest-neighbor 02-
ions onto the ground state of the F* center. The defect
cluster now contains 181 electron associated with a vacancy,
Six nearest-neighbor (100) Mg?* ions and twelve second
nearest-neighbor (110) 02- ions. The third (111) and fourth
(200) nearest-nighbors are associated with RKunz-Klein

localising potentials.

For O2” ions (atomic number:8) which are represented as
Hartree-Fock ions, we use two basis sets, namely Basis OXA
and Basis OXT, Basis OXA consists of the contraction
(3,3/3) and is constructed by optimisation of the Hartree-
Fock energy of a free oxygen atom[Huzi 84]. It is listed in
Table 4.3. Basis OXT consists of the contraction (7,7/4)
and is constructed by reoptimising the contraction
coefficients in a perfect-lattice configuration of MgoO
crystal in the following way
(i) In our O2--centered cluster, the six nearest-neighbor
Mg?* ions are associated with Basis MGC(4,3/4, Huzi 84)
whereas the second nearest-neighbor (110) 02~ ions and the
third nearest-neighbor (111) Mg?* ions are associated with
Runz-Klein localising potential in the perfect-lattice
configuration.

(ii) We now take the set Basis OXB(4,3/4, Huzi 84) and de-
contract it. We then do an ICECAP calculation with the

decontracted Basis OXB. The self;consistent solution of the
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cluster provides the new contraction coefficients for basis
functions associated with 1s, 2s, and 2p orbitals of 02-
ion.

(iii) We read the coefficients for s-type functions (7 in
the present case) from 1s- and and 2s-type eigenstates to
form contractions for 1s and 25 orbitals.

(iv) The next calculation with contracted 1s and 2s orbitals

gives the new contraction coefficients for 2p orbitals.

The resulting 02- basis set(Basis OXT) is given in Table
4.11. This table also includes the total energy of the
perfect-lattice cluster with contracted, decontracted and
reoptimised 02- basis sets, showing a gain in the total

energy of nearly 11 eV when we reoptimse the basis set.

The calculated ground state energy of the F* center in
the cluster(Mg6012) with different Mg2+/02- basis sets is
given in Table 4.12, Referring to this table, we notice
that the ground state remains well-localised with slight
lattice distortion, the (100) Mg2?* ions relaxing outward
whereas (110) 02- ions relax inward, by about 3%
respectively. However, the calculation with Basis 0xa
(associated with o02- ions in the cluster) shows that
approximately 1.75 electron is localised on the vacancy due
to a substantial charge transfer (v6%) from each of the
twelve (110) 02- ions to the vacancy. But when we associate

an improved basis Set, Basis OXT, with these 02- ions, we



Tto,

TABLE 4.11

(@) Totail Energy of the Perfect-Lattice Cluster (Mg60)

Energy (ev)
Mg?* ions : Basis MGC Basis OXB (L,3/4) -34435 49
(4,3/4)
- decontracted -3LLL6, 27
=~ conhtracted
Is,2s =-3L446 04
Is,2s,2p =34L4L46,17
Basis OXT (7,7/4) -34k446 .17

Basis 0XB Basis OXT
(4,3/5L) (7,7/4)
type exponent coefficient coefficient
] Is > 821.83934 0.0188745 0.018970
123.68182 0.1310931 0.133227
27.66617 0.4577639 0.LL64Y2
7.28957 0.5308957 0.471820
10.60696 - : 0.052033
0.91764 - 0.043176
0.28000 - -0.013178
] 2s > 821.83934 - -0.003963
123.68182 - -0.029757
27.66617 - ~0.106846
7.29957 - -0.117476
10.60696 -0.0885017 -0.074976
0.91764 0.5838364 0.463203
0.28000 0.4933946 0.637957
| 2p > 17.750370 0.0403941 0.034L7L
3.86468 0.2236495 0.190821
1.04772 0.5120981 0.370858
0.28000 0.L4443718 0.611384

__.._.-—.-___....——___-.-..-.——____-..__..-..——___.__-.-———_-.-...-.----._-__-._



TABLE 4,12

F+-center :

(F* (e) ~Mgb012 cluster)

Vacancy (000)
Inn ions (100)
2nn ions (110)
3,4 nn ions

Vacancy~ centered
Basis : range
energy (eV)

d (100)
d(110)

RMS

Mulliken Population -
vacancy

(100) Mg2* ion

(110) 02~ jon

Ground State

Basis FR

Basis MGR

Basis 0XA
KKLP

0.53a
-56271.08

1.03a
1.00a

0.87a

1.7512

10.0000

9.9409

Basis FT

Basis MGT

Basis OXT
KKLP

0.50a
-56535.08

1.03a
0.97a

0.85a

1.0759
9.9993
9.99L0

ol
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find very little charge transfer ( 0.6%) from 02~ ion to the
vacancy. The vacancy now contains approximately one
electron. Thus, Mulliken population analysis demonstrates
the effect of 'reoptimisation' of the (free) atomic basis

sets in these types of the calculation.

Theoretical prediction of the hyperfine constants has
long been recognised as the most critical test of the defect
model, The isotropic constant(a) 1is proportional to the
electron spin-density at the nucleus and thereby furnishes
an exact determination of the wavefunction amplitude in the
ground state. We therefore calculate the isotropic constant
to test our model elements for the ground state of the F+

center in MgO crystal.

4.4.1 Ground State Isotropic'ﬂyperfine Constant

The F*-center electron which is an unpaired electron
shows Zeeman splitting in the presence of a magnetic field.,
It also undergoes mutual magnetic interactions with
neighboring nuclei which have non-zero nuclear spin, leading
to further splittings. The latter phenomenon is referred to
as hyperfine interaction. The theory of hyperfine
interaction in color centers has been reviewed by Seidel and
Wolf[sw 68], Neglecting gquadrupole effects, the spin

Hamiltonian is written as :
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in which g, and My are the electron and nuclear Bohr
magnetons, g, and dy are the electron and nuclear g-factors,
S and I, are the electron and nuclear spin operators, B is
the applied magnetic field, and A is the (second rank)
hyperfine interaction tensor. The summation is over all the
nuclei in the system. (For Mg?% nucleus, g, = —0.3419 [sw

681)

The first two terms in (4.4.1) represent the electron-
Zeeman and the nuclear-Zeeman effect respectively, and the
last is the hyperfine structure term which splits each

electronic level into 2I+1 hyperfine levels.

The hyperfine tensor, A is generally written as the sum
of two parts, a scalar ‘'a' and a traceless tensor '2'. The
scalar 1is then referred to as the isotropic hyperfine
interaction constant, and '2' describes the ani§?ropic
hyperfine structure. The magnitude of the hyperfine
intefaction is directly related to the extent of electronic
overlap onto the neighboring nuclei. The isotropic part
depends on the amplitude of the F*-center electron at. the
nuclear site, and consquently relates to the radial extent
of the wavefunction. The anié}ropic part involves a
weighted average of the electron-spin density, and this
turns out to be relatively sensitive to angular variations

in the wavefunction.
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Following Slichter[Slic 78], the isotropic constant can
be written as
9e Mg 9y Py S(B&)

(4.4.2)
where R, is the distance measured relative to the » —-th
nucleus and S(R.) is the spin density at the nucleus. Here,
we use u, =0.92731x1072° ergs/Gauss, My =0.50504x107 23

ergs/Gauss, and S has units of cm~2 when 'a’' is measured in

ergs. Experimentalists quote a in units of
frequencies(MHz). The conversion factor into energy E
expressed in ergs is E(ergs)=108h(Mhz) where h is Planck's

constant.

The Spin density S(R) for a N-body system is rigorously
defined as
S(R) = 2 f#f(x1,...xw) gz(B)“V (x1,0..%xy) ax, ...dx,
(4.4.3)
where, x; represents the space-spin coordinates (ry ,00),
is the Slater determinant of one-electron orbitals
D1 (X1) ...@(xy) and §Z_(§) is the z-component of the total

spin operator at point R given by :

S2(R) = F 5 ((r;- R)
& (4.4.4)
Substituting (4.4.4) into (4.4.3) and using orthonormality
of the §s and the fact that ¢z is the Pauli spin operator
for the ith electron, the N-body spin density becomes :
Sérr———f o e 2ot
SPN-;

u f‘a‘—w merenir . fﬁw’h
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S(R) = {Z |g (R)|2-Z |0 (R)]2}
- gE:c;n - s:gun -
p down (4.4.5)

The self-consistent solution of the defect cluster
produces a set of @s from which S(R) can be calculated. We
have written a subroutine for spin-density calculation along
the 1lines suggested by Kung[Kung 81]. The value of the
isotropic hyperfine constant is thén completely determined
by equation (4.4.2), and the results are listed 1in Table
4,13,

The F* center in MgO crystal was first identified by
Wertz et al.[wAawS 57] through its electron spin
resonance(ESR) spectrum. The ESR spectrum consists of an
intense 'free-electron' absorption due to the F*-center
electrons interacting with only non-magnetic nuclei, and a
number of weaker Dbut fairly well-resolved hyperfine
satellites from centers with one or more Mg2® isotopes
(10.1% abundant, I=5/2) in <100> nearest-neighbor sites
adjoining the vacancy. Unruh and Culvahouse[UC 67] in an
electron-nuclear double-resonance (ENDOR) experiment have
extended these results and have obtained an improved values

for the isotrpic constant(a/h = 11.03 + 0.02 MHz).

Commencing with Table 4.13, it can be seen that agreement
with experiment gets progressively better as we improve the
Mg2* basis set and include lattice relaxation in our

calculations. This is what we expected since the isotropic
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constant{(a/h) is sensitive to the chosen basis set. Also the
relaxed-lattice configuration shows an outward relaxation of
the nearest-neighbor Mg?* ions which 1is consistent with the
ENDOR experiment[UC 67]. The calculated value of (a/h) with
our best Mg?* basis set(Basis MGT) comes out to be 13.12 MHz
in a configuration corresponding to outward relaxation ( 3%)
of nearest-neighbor ions. Thus, it can be concluded that
Basis MGT is an adequate basis set to represent Mg2* ions in
the ground state of the F* center for the purpose of the

present calculations.

Now we include (110) 02" ions as the Hartree-Fock ions in
the defect cluster and associ;te them with the set, Basis
OXT. When the nearest-neighbor ions are held at the
perfect-lattice positions, the value of (a/h) comes out to
be 21.24 MHz showing an increase in (a/h) with the addition
of these 02~ ions in the cluster. This is what we expected
since the calculation in the perfect-lattice configuration
has shown an increase of about 13% in the charge density
centered at the vacancy. However when we relax the lattice,
(a/h) turns out to be 6.94 MHz, a surprisingly low value. A
possible explanation for this substantial decrease in (a/h)
with the lattice relaxation may be a stronger ion-size
effect of (110) 02 ions onto the F*-center wavefunction.
Recall that the F*'-center wavefunction is compact in the
ground state and the extent of its effect on the neighboring

'Mg?® nucleus determines the value of (a/h). In the relaxed-



TABLE 4.13

Isotropic Hyperfine Constant (a/h) for the nearest-neighbor
Mg?3 of the F* center in Mg0.

perfect-lattice relaxed-lattice
configuration configuration
(i) F*(e) - Mgb Cluster
Basis MGA (3,3/3) 26.73 MHz 21.63 MHz
Basis MGR (3,3,1/3,1) 20.25 MHz 16.21 MHz
Basis MGT (6,6/3) 17.01 MHz 13.12 MHz
(ii) F*(e) - Mgb012 Cluster
Basis MGT (6,6/3)
Basis OXT (7,7/L) 21.24 MHz 6.94 MHz

note : The experimental value of (a/h) is reported to be 11.03 MHz.

S
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. lattice <configuration, the 02" ions move inwardly and

therefore the F¥-center wavefunction becomes more compact
than that in the perfect-lattice configuration. We also note
here that the nearest-neighbor Mg?* ions relaxes outwardly.
Hence the cumulative effect of the relaxation reduces the
extent of interaction of the F*-center wavefunction with the
Mg?25 nucleus. This calculated interaction is now
significantly 1less than that required to represent the
observed hyperfine interaction in the ENDOR study, and
thereby representing a low value of (a/h). We may therefore
conclude that the details of the electronic structure of the

F*-center ground state are sensitive to the 02~ ions.

We now turn our attention to the unrelaxed excited state

of the F* center in magnesium oxide.

4.5 UNRELAXED EXCITED STATE

For the unrelaxed excited state (UNRES), we use either
shell model or the basis set(Basis MGR) to represent Mg?2*
ions in our defect cluster and optimise the range of p-type
vacancy-centered fuction, oriented along =z-axis. The
results are presented in Figure 4.4. Accordingly, the UNRES
wavefunction becomes diffuse with the introduction of the
ion-size effect for Mg?* ions, contrary to our expectations.
The optimised range of the p-type function comes out to be
well-beyond the nearest-neighbor distance. Also the use of
Basis Causa which represents Mg?* core states adequately

does not'change the picture at all(Figure 4.4).



Figure 4.4 : Optimisation of the vacancy-centered basis function
in the unrelaxed excited state (F*(e)~Mgb cluster).

m
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—L}ho - /\D-__—/
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range of the vacancy-centered basis function(a) --->
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The diffuseness of the UNRES wavefunction may be an
artifact of the absence of the ion-size effect of the second
nearest-neighbor (110) 02- ions of the vacancy. In our
calculations, we have considered these 02~ ions as shell
model ions which do not provide Pauli exclusion to the p-
type vacancy-centered function. To verify this supposition,
we now aésociate the Kunz-Klein localising potentials with
second nearest-neighbor(110) 02- ions, third nearest-
neighbor(111) Mg2* ions and fourth nearest-neighbor(200) 02"
ions and optimise the range of the UNRES wavefunction. The
result is shown in Figure 4.5, indicating that the (weak)
KKLP ion-size effect does not localise the UNRES

wavefunction.

Now we replace KKLPs from (110) 02~ ions with Basis OXA
in our cluster, expecting to provide a stronger ion-size
effect to the UNRES wavefunction. It comes as no surprise
that the UNRES wavefunction becomes localised with the
optimised range of about 0.5a(Figure 4.5b). Thus, this
calculation demonstrates that (110) 02- ions play an
important role in determining the excited state of the F*
center and their ion-size effect must therefore be included

in the defect cluster.

The absorption energy calculation constitutes our first
test of the treatment of the wunrelaxed excited state in the

defect model. We therefore calculate absorption energy



Figure L.5

Optimisation of the vacancy-centered basis function
in the unrelaxed excited state(F*(e)-Mgb012 cluster)

G



(100) ions : Basis MGR, (111) ions : KKLP,
(110) ions : KKLP, (200) ions : KKLP.

energy (eV)
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(which is the difference between the ground and unrelaxed
excited state energies). The calculated result with Basis
MGT/Basis OXT, our best Mg2*/02- basis sets, is listed in
Table 4.14. The absorption energy comes out to be 7.01 eV in

comparison to the experimental value of 4.95 eV.

This failure of agreement seems to indicate the

inadequacy of our model elements, particulary 02~ basis set

for the unrelaxed excited state. Recall that Basis OXT is
reoptimised in a perfect-lattice (non-defected)
configuration. However, the (limited) available

computational power prohibits us from doing optimisation of
the 02 basis set for the cluster in the unrelaxed excited
state of the F* center. Furthermore, Mg?* basis set(Basis
MGT) employed in the unrelaxed excited state calculation is
derived from the ground state calculation. But there may be
fairly substantial readjustment of the electronic structure
of these neighboring 1ions as the F* electron undergoes
excitation from an s-like state to a p-like state. Hence it
is of interest to optimise Mg?* basis set in the unrelaxed
excited state. Also, we have not taken account of either
electron correlation or polaronic effect in any of the above
calculations; although its effect may be small, it will be
different for the ground and excited states, affecting the

optical absorption energy.



TABLE L.14

F+*-center :

Absorption Energy

( F*(e)-Mgb012 cluster )

(000)
(100)
(110)
(111)
(200)

Vacancy
Inn ions
2nn ions
3nn ions
knn ions

Absorption Energy

Vacancy- centered
Basis : range

d (100)
d(110)

energy (eV)
RMS

Mulliken Population
vacancy

(100) Mg2* ion
axial
planar

(110) 02~ ion
axial
planar

Basis FT

Basis MGT

Basis OXT
KKLP

0.50a 0.50a

1.03a
0.97a

-56535.08
0.85a

1.03a
0.97a

-56528.07
0.87a

1.0759 1.0644

9.9972
9.9999

9.9929
9.9995

9.9993

9.9940
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Finally, the CPU time required for some of our
calculations is given in Table 4.15 which should provide an

idea of the magnitude of the computations involved.

4.6 CONCLUSION

The program package, ICECAP, offers a reliable method to
perform localised electronic defect calculations in ionic
crystals. We have tested its options and have examined its
physical model wusing the defect, F* center in magnesium

oxide.

The ground and unrelaxed excited states have been
calculated. The F* center wavefunction in both the states
is proven to be localised, as expected. The ground state is
well-characterised, yielding a reliable value for the
isotropic hyperfine constant. Spin density analysis
qualitatively illustrates the importance of basis set
optimisation of nearest-neighbor ions and self-consistent
lattice relaxation for the ground state. The second
nearest-neighbor 02 ions play an important role in the
optical absorption process, and must be included in the
defect cluster describing the unrelaxed excited state of the
F* center. The calculated absorption energy fails to agree
with the experiment, probably due to inadequate basis set
optimisation of near-neighbors in the unrelaxed excited

state of the F* center.



TABLE k.15

Amdahl 5870 CPU time required in one position iteration
of ICECAP for some of the calculations reported here.

F*(e)

F*(e)
+ Mgb

F*(e)
+ Mgb

F*(e)
+ Mgb + 012

number of
electrons

61

61

181

number of
basis
functions

31

91

91

12 min

80 min

380 min
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By explicitly demonstrating the various steps in
analysing the F*-center ground state, it is hoped that this
work will assist in yielding an adequate excited state when
the computational power becomes available. It is also
expected that the present work will serve as an example for
further point-defect simulation studies, leading to reliable

results where experimental data are less readily available.

Presently, ICECAP deals with a point-defect in an
otherwise perfect, infinite ionic crystal. However, point-
defect interactions with interfaces (surfaces,twins, and
grain boundaries), and in finite crystals, as well as with
dislocations are of technological importance and of
fundamental interest. Since the UHF package has been
successfully applied to a very wide range of condensed
matter problems and Shell model treatments of most of these
extended defects have been developed, the ICECAP code can
therefore be extended to include these types of the defect

in a crystalline lattice.
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This is a sample data set for a calculation on the ground
state of the F canter in Magnesium Oxide.
The quantum-moechanical cluster is made up of the vacancy,
{100) Mg2 and {110) D2 iJons. KKLPs are associatad with
{111} and {200) naear-naighbors.
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o 1.43347317E+00 ~8.2237833BE+00
© 3.84421742E+00 ~0.2288C6808E+00
o 1.108382B8E+01 =1.88835778E+01
-] 3.4788080BE+01 ~3.49280483E+01
° 1.18668622E+02 “7.48343867E+01
° 4.32462440E+02 ~1.B801862538E+02
° 1.770B887TE+03 ~2.39403918E+02
° §.040062262+03 ~8.02842858E+02
© 2.82211482E+04 “~1.6E6761218E+03
° 9.0000467T7E+04 “2.197428732+02
o 3.01258452E+08 ~1.08141808E+04

>

ENTER

sTO0P

/s

b A T L L LI

>

JCL for axacuting the program on Amdah) 5870 computer systom.

>
>
>
>
P BB RN USRI B R SN O F NSRS OSSO NSNS USCLORBREBCAEROTERT



//Y¥YAIL JOB “0201,,T5400M,L580,1:3000° MSGLEVELe(1,1),CLASS:]
//J40BLIB DD DSNsVAIL,.PROGRAM.LOAD,

/7 VOL*SER*USEROG,UNIT:DISK,DISPISHR

7/ DD DSN:*SYS!. VFORTLIB,UNITz3360,

/7 VOL*SEReSYSO02,DISPrSHR

// BREC PGMsSOURCE,REGIOH:8BO0K

/®ROUTE PRINT LOCAL

A

//8=w==-==- B L R R e ermasammaan .

//FTO1FOO1 DD URITIDISK,.

/7 SPACES {TRK,{10,10),RLSE),DCB: {RECFMevES,LRECLIBO,
// BLKSIZE+2200),DISP:z(NEW,PASS])

A -

/7% Scratch €ile for UKPROP

A R eemecavensacmacnevareennoe. [ AR AR R R
//FTO2F001 DD DSNsVAIL.TEST.FYO2,VOLTSER:z5YS110,UNITsDISK,

/7 DISPISHR

//=

1/ Copy ¢ile for POLYIN

J/8=cccnmnece J R
//FTO37001 DD DSNsVAIL.TEST.PFYO3,VOLsSER*SYSSHR,UNITeDISK,
1/ DISPEGHR
/1=

//= Output ¢ilo from LABELS

VA REE R R R AR R R AR R A A E R R R R AR R AR
//FTO4FOO1 DD DSNEVAIL.TEST.FTO4,VOLISER:SYSMVS UNITsDISK,
A DISP2SHR
//3
//= Cutput ffle from POLYIN

/.-.. ----- B I I R et B L e m ...
//FTOBPOOt DD SYSOUT=:A

//=

//= Print (output) ¢ile

Bemeeman cheenasmnmanan e [ e ecescne e .

//FTOTFOO1 DD SYSO0UTeA , DCBe{LRECL:133,RECFMeFA)
/7=

/7% Print {detalled osutput) ¢ite
I T T A
//FT20F001 DD DSNsVAIL.TEST.FT20,VOL*SER:SYSMVS UNITsDISK,

/7= SPACE:[TRK, {50,50},RLSE)},DCBe (DSORGEDA, RECFM=F,

/7= LRECL=2048 ,BLKSIZE=z2048),018Pe (NEW,KEEP)
/7 DISP:*SHR

//=

IEA UHF eigenvectors

/
//FT30FO01 DD UNIT:DISK,
/7 SPACEx(TRK,(10,10) ,RLSE),DCBs (DSORG*DA, RECFMIF,

1/ LRECL:320,BLKSIZE®320) ,DISPx(NEW,PASS)
A
A UKF data for MBPT
18-~ feeeeemaann DR cmememmamamm—————- fmeceecenrmnaaamann
//FT41F001 DD DSNsVAIL.TEST.FT41,VOL:SERsSYS110,UNIT*DISK,
/7 DISP:SHR
/7=
//= Input data for CRYDFN
teemen fmeeressceesemamsuane s e e e n e
//FT42F001 DD DSNsVAIL.TEST.FT42,UNIT:DISK,VOLESERISYS110,
/1= SPACE={TRK,{3,1),RLSE) , DCB: (RECFMeVBS,LRECL2800,
XA BLKSIZEx3204) ,DISPs{NEW, KEEP}
/7 CISPESHR
//=
//= Summary of main calculation to date

A R R R Y P L LR T T R R

//FT43F001 DD DSNeVAIL.TEST.FT43 , UNITeDISK,VOL*SERISYS110,
//= SPACE: [TRK, (10,10} ,RLSE]},DCBs (RECFMsFB, LRECL280,

A BLKSIZE®3200),D1ISPr{NEW, KEEP)

/7 DISP:SHR

A

//= Input data for HADES
Beoceerocmecamanen feecemeerereacmemcenaccobsescatonsnamn e

//FT48F001 DD DSN=VAIL.TEST.FT44 UNITzDISK,VOLs*SERSSYS110,

// DISPESHR

/7=

/;' Symmatry and class {nformation input to LABELS.
Gememmmmmmmaneneaeaanm————- O R

//FT4BFOO1 DD DSNTVAIL.TEST.FT46,VOLsSERsSYS110,URITsDISK,

/7 DISPsSHR

/=

/7% Input data for integration phase

//FTa7F001 DD DSNeVAIL .TEST.FY47,VOLsSERsSYS110,UNITsDISK,
/

/ DISPEISKR
VA
;;. Input data for UKF-SCF phase
Semameen ereeescmsccsecteceemnomsamanaamemeeema———m—nnn ceevemnen
//FT48FO01 DD DSN:VAIL.TEST,.FT48,VOLSSERFSYS110,UNITEDISK,
/ CISPISHR
/7=
/7= INPUT data for UHF properties phase
VA R R R PR R R E R P EEEEE R EE R LR R R R
//FT4B8F001 DD DSN:VAIL.TEST.FT40,VOLISER*SYS110,UNIT=DISK,
A SPACEs(TRK,{10,10} ,RLSE) ,DCB* {RECFMsFB,LRECL=z80O,
/7= BLKSIZEx3200),DISPs(NEW,KEEP])
v DISPaSHR
/=
/7= CUTPUT from UNF proparties calculation (MULTIPOLES)

/7% Main {nput file

L R R A R R R





