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ÀBSTRACT

The results of a detailed investigation of the ground and

unrelaxed excited states of the F* center in magnesium oxide

are presented. We use the program package, ICECAP, which

allows self-consistent calculations to be made of the

electronic structure and lattice distortion and polarization
of a point-defect in an ionic crystal, The ground and

unrelaxed excited states are shown to be well-localised"
Spin density analysis illustrates the importance of basis

set optimisation for nearest-neighbor ions and self-
consistent Iattice relaxationr' yielding a good description
of the ground state. Our calculation fails to give an

acceptable value of the optical absorption energy, probably

due to inadequate basis set optimisation of near-neighbor

ions in the unrelaxed excited state. However the results
reveal that second nearest-neighbor oxygen ions play an

important. role in the optical absorption process, and must

be included in Lhe defect cluster describing the unrelaxed

excited state of the F* center in maganesium oxide.
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Chapter I

GENERÀL INTRODUCTION

1"1 INTRODUCTION

The computer-based microscopic description of the

structure and properties of materials is an area of much

current interest" Àdvances in computational and theoretical
approaches have developed capabirities of yierding precise

results and making succesful predictions. rn coordination
with current advances in experimental techniques, these

theoretical efforts serve to elucidate complex processes and

phenomena connected with the microstructure of materials.
For exampler computation of electronic structure can follow
solid state processes at the atomic level in a degree of

detail that the experimentarists wourd dearly love to
observe but usually cannot" At the same time, it yields
extra information about the properties such as bonding

through the wavefunctions which can contribute to an

understanding of the results obtained.

ronic crystals make up a particular class of solid
materials, characterized both by a marked localisation of

erectrons and strong insurating properties. A variety of

thermal or chemical treatments or irradiations easily create

t-
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the so called 'point-defects' , namely vacancies,

interstitials, and impurities in the crystarline rattice of

these materials" since properties as diverse as mechanical

strength or color are controlled by t.he point.-def ects, the

nature.of these point-defects has been of fundamentar and

practical concern for years.

During the past decade, there has been considerable
growth in t.he use of computer simulation methods to study a

diverse range of point-defect properties, including
thermodynamic, structural and transport properties in ionic
crystals. In particular, the development by Norgett[Norg 74]

of a generalised conputer program HADES(ttarwell Automatic

Defect Examination system) has led to a number of notable

successes in yierding reriable quantitative varues for the

fundamental atomistic parameters such âs, defect formation
energies controlling transport propert ies in ionic
crystals[t¡ack 82 and references therein] "

HADES is based on a crassical moder which describes a

crystalline rattice containing a point-defect as a set of
point-ions, interacting by pair-wise potentials. However,

the pairwise interaction between the ions near a defect v¡ill
not be exactly the same as that in a perfect crystarline
environment, from which the potenÈials are derived. since

this deviation depends sensitivety on the detailed
electronic structure near the defect, it is a quanÈum-
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mechanical ef f ect. Furthermore, t.he . def ect may be an

intrinsically electronic defect such as, an electron trapped

in a vacancy whose properties can only be understood on the

basis of a detaited quantum-electronic structure analysis.
I t is therefore necessary to consider the electronic
structure for both the defect and the ions immediately

surrounding the defect from a quantum-mechanical point of

view.

Assuming that the electronic structure effects of the

defect are localised, the so cal1ed 'cluster approximation'

[¡tx 78) can provide an ef f ect ive model f or point-def ects in

ionic crystals. In this approximation, the defect and its
near vicinity can be considered as a many electron quantum-

mechanical molecular cluster, representing an explicit
region of the crystal in real space. A varieiy of molecular

orbital methods can then be applied within this cluster to

examine its electronic structure and properties. (for a

general discussion vre refer to HRSP 86, Ston 75) .

Convenient computer program packages are widely available
for such moLecular cluster calculations,

The major diffculty associated v¡ith the cluster
approximation is the correct representation of the remainder

of the crystal, since we are not dealing with an isolated

'super-molecule' but are attempting to simulate an infinite
crystalline lattice" It is. therefore necessary to add
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features to the cluster approximaÈion, and different
boundary conditions have been proposed to provide the

correct crystalline environment according to the nature of

the problem under investigation"

For ionic crystals, par.ticular care is needed to simulate

the crystalline environment surrounding the cluster. A

common approach is to combine the cluster approximation with

a classical Lreatment of the crystalline environment. The

cluster is generally embedded in a large array of point-
charges, representing the crystalline environment. The

positions and magnitudes of these point-charges are no$r

varied to simulate the crystal potential in a reasonable

way" This approach has been widely adopted in studying the

point-defects in ionic crystals, for example, self-trapped
exciton in NaCl[Ston 74], H chemisorption on NiO[wSwK 80],

and the F center in LiFITM 81].

Recently, Vail et al. IvHHS 84] have described a method,

combining a quantum-mechanical treatment of ions near a

point-defect in an ionic crystal with self-consistent
polarization in the surrounding perfect lattice. In this
method, the defecÈ cluster is treated in the unrestricted
Hartree-Fock self-consistent. field (UUn-SCf) approximation

and the surrounding lattice is described in terms of the

shell modeI. Minimising the total energy of the defect

cluster plus surrounding lattice with respect to variation
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ot cluster ionic positions, and simultaneously maintaining

multipole consistency between cluster and surrounding

lattice then leads to a physically consistent solution, Vail
et aI" have applied this method to the point-defect, F*

center in magnesium oxíde. The results sho!ïr gualitative
agreement with experiment and have cast considerable light
on the role of lattice polarization and the details of the

electronic structure of the ions neighboring the defect
(ttrat is, the ion-size ef f ect ) in accurate calculat.ions of

the optical absorption and emission of the F* center in

magnesium oxide.

In an ionic crystal, the electronic strucLure of the ion

is assumed to be well localised about the nuclei. However in

the work of V.ail et aI., it was seen that the defect cluster
wavefunction has a tendency to delocalise unphysic.ally

compared to true crystalline behaviour when embedded in a

classical point-ion lattice. This may be due to the fact
that the Coulomb field of the surrounding classical lattice
does not force localisation upon the defect cluster of

quantum-mechanical- origin. Thus, some treatement less

detailed than UHF-SCF approximation such as associating a

pseudopotential, has been suggested for ions surrounding the

defect cluster, Furthermore, a need for an automation of

this procedure in the form of a well-documented, user-

friendly program package to perform calculations for wide

range of materials and defect types has been recognised

lvait Bsl .



The development of a general

package, ICECAP (lonic Crystal

Àutomated Program), to provide a

in a convenienL and ef f ic ient

analysing point-defects in ionic

for this thesis work"

i sed,

6

automated program

v¡ith Electronic Cluster :

physically reliable model

computational form for

crystals, provides a base

ICECAP is based on the HADES-sheII model treatment of t.he

embedding lattice [norg 74] , incorporating a UHF-SCF

molecular cluster approximation [nn 78] of the defect and its
near vicinity. It aIlows for electrostatic consistency up

to octupole order between the cluster and the embedding

lattice. It provides the cluster boundary conditions in the

sense of approximate orthogonalisation of cluster to Iattice
either by associating pseudopotentials [r¡¡u* 76, BHS 82] with

a cage of cations surrounding the cluster or introducing a

consistent localised potential (nnr.p) for ions in the

vicinity of the cluster into Fock operatorInv]. Electronic

correlation can be introduced in terms of many-body

perturbation theory Ittunz 83] .

1 "2 STRUCTURE OF THIS THESI S

In this thesis, the theoretical background of ICECÀP is
given in Chapter 2, This includes the description of HADES-

sheIl model, UHF*SCF approximation, pseudopotentials and

KKLP procedure. The program package and its numerical

implementation are described in Chapter 3"
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Since both the ICECAP code, and the model upon which it
is based are relat.ively new and not exLensively testedo the

point-defect, F* center in magnesium oxide has been chosen

Lo test the operation of the program plus its options and

the physical accuracy of the model, The results of a

detailed investigation of the ground and unrelaxed excited

staLes of this defect are presented in Chapter 4" AIso the

conclusions drawn from the work are summarised and some

suggestions are made for future work"



Chapter II
THEORETICAL BACKGROUND

2"1 INTRODUCTI ON

Point-defeets in ionic crystals may be viewed

theoretically as consisting of two regions, namely an inner

region in the immediate vicinity of the defect where

deviations from perfect lattice conditions can only be

determined by quantum mechanical analysis, and the outer

region for which the perturbation due to the defect is weak

and to which a classical model successful in describing weak

perturbations of the perfect crystal may be applied.

The defect and its immediate vicinity may be treated as a
molecular cluster of ions for which ICECAP uses the program

package, developed by Kunz and coworkerslKunz]. This program

package implements the unrestricted Hartree-Fock self-
consistent field (ugr-sCr) approximation and provides

pseudopotentials as options for ionic cores in the cluster.
The surrounding lattice is treated by HADES using the shell
model and the Mott-Littleton method"

In this chapter¡ wê describe briefly the shell model,

HADES and the UHF-SCF approximaÈion. Cluster boundary

-8



conditions to be applied

and classical regions of

physically consistent and

also discussed.

9

in inLerfacing quantum-mechanical

Lhe rnodel def ect latL ice in a

computationally practical tray are

2"2 THE EMBEDDING LATTICE

Ionic crystals can be described as an assembly of
polarizable point-ions in the Lwo-body central-force moder,

in which the totar potential energy, v(yt rlzr t tLy,! ) of an

assernbry of N ions with coordinates !t rt r rÍN is written as

V(rr rlzrrr!,,1 ) ë 5j)
(2.2"1)

Thus, v is taken as a sum of pair interaction terms each of
which is dependent only on the distance between the ions.
These pairwise interactions can be written as the sum of

long-range Coulomb interact ions and short-range
interact ions. The Iatter describe the effect,s of
interacting (electron ) charge clouds

ions

of the neighboring

.E, V¿i (t.t-
¿>J d

It is assumed that short-range interactions
represented by a simple analytical expression and

widely used is due to Born and Mayer, which has the

v(r) A exp (-r /e )

can be

the most

form

(2.2 "2)
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This may be supplemented by short*range attractive terms,

namely terms in r*6 and r-8. In Lhis expression, r is the

distance beLween the ith and jth ions and the A and p are

empirically determined parameters, These parameters are

generally derived from empirical fitting to perfect lattice
properties such as cohesive energy, elastic constants and

dielectric constants, ensuring Lhat the potential V, is
compatible with lattice stability.

An alternative, non-empirical approach is to obtain the

potential by electron gas methods(for example, Wede 67).

Here, the interaction between charge densities representing

the interacting ions are carcurated, the densities being

obtained by calculating the wavefunction of the isolated ion

with an assumption about the crystalline environment. (for
a general discussion, see CDM 82). Recent1y, an ab-initio
method has been used to determine the potential between

anions in magnesium oxide [Hu 85] " Both, empirical and non-

empirical types of parameterisation have been applied

successfully to a wide range of ionic and semi-ionic

crystals and compilations of these potentials are

available [Ston 81 , cKM 81 ] .

Ionic polarization, that is, the response of the crystal
to the electrostatic perturbation provided by a charged

point-defect, can be simulated simply and effectively using

the shell model[po 58]. This moder rá¡as originarly developed



for describing lattice dynamics of ionic crystals,
11

but is
now most widely used in defecL-simulation studies. rn the

shell model, each point-ion consists of a core of charge x

and a shell of charge of Y, such that the total ionic charge

z is the sum of core and sherl charges. The core and shelt
of a given ion are coupled by a spring with a force constant

K, y¡hiIe the polarization energy is assumed to be an

harmonic function of t.he core-sherr separation" since the

mass of the ion is centered at the core, shel1s are

essentially massless, and respond instantly and

adiabatically to the electrostatic fierd, The relative
dispracement of core and shell gives a dipole moment,

associated with each ion" The polarizability of the ion d,

is then given by a=Y2/R. The parameters y and K are obtained

by fitting to appropriate rattice properties such as the

dielectric and erastic constants and phonon frequencies.

the cores and shells are treated as independent entities,
referred to as species. coulombic interactions appry between

all species with the exception of the core and sheIl of the

same ion. Non-courombic short-range interactions between

adjacent ions are assumed Lo be she1l-she1l interactions,
that is, the short-range interaction is determined primariry
by that part of the electronic distribution ¡+hich displaces
during polarization.
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The sheIl model arlosvs us to simulate the dielectric
properties of the crystal accurately. rt also provides
adequate agreement on fitting Lo experimentar phonon

dispersion curves. A few discrepancies, however, occur
which are due largery to the intrinsic inadequacies of the
central-force approximation. The most important one is that
the sherr model cannot predict the cauchy violation in the
cubic crystars; that is, the noder will predict that the
elastic constants ctz and c+a âF€ equal at 0oK, although
they can be significantry differentr âs is the case in
magnesium oxide. subsequentry, refinements in the sherl
model have been proposed by introducing 'breathing sherrs'
which a1low spherically symmetric and ellipsoidal distortion
of the shells and thus reproduce the cauchy viorationlsang
741" However, it is to be noted here that the carcuLated
defect-energies have been found insensitive to a particular
choice of sherr parameters as rong as they reproduce the
burk dielectric behavior of the crystal [cN 73, Ms 79J .

2"2"1 HADES

HADES, the Harwell Àutomatic Defect Examination sysLem,

is a computer program package f o.r the carculation of point-
defect energies and the rattice distortions introduced by

such defects in ionic crystars" Much of the generar theory
underlying the program package has been developed from the
Mott-Littleton approximation[¡¿f 3g] and has been described
in various reportslttorg 74, Norg 77, CJMS gZ].
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The basic method divides a crystalline lattice containing
the defect into two regions:
(a) Àn inner region(region r) is defined consisting of the

defect. and its immediate vicinity" rn this region, the ions

interact according to the she1l model and the lat.tice
configuration is evaluated explicitly by relaxing each ion

until it is subject to no force.
(Þ) The outer rçgion(region rr) represents the rest, of the

lattice and is weakry perturbed by the defect. The lattice
distortion in this region is calcurated by considering the

rattice as a dierectric continuum so that the ions are

displaced in response to the effective charge of the defect"

this approximation, the totar lattice energy may be written

E ( I,y) erz(ë,Y) Ez (I)
(2.2.3)

where, Er(X) is the energy of the inner region I expressed

as a function of the ionic coordinates x, Ez(y) is the

energy of region rr as a function of the ionic dispracements

Y and Erz(årY) is the interaction energy between the two

regions.

Now, it is assumed

(i) that Ez(y) is a quadratic function of the displacements

in region II,

In

as

Er (x)

I= F Y.À.Y¿---Ez (Y)



s Lhe force-constant matrix

the equilibrium condition

' (2"2"

perfect crysta
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4)

I.where

( ii )

Ài
Lhat

of the

for I is

-F
)y

are the e

Iues of X.

brium values

(2.2.s)

corresponding to

!
I{_t-
I

'y=Y

quiliin which Y'

arbitrary va

The total energy,

n(ðrv') = Er(x)

This expression novr

within region I and

interactions between

E then becomes

z (I,!') -El I )E¡e fv iY- fv
. y'
-_ Y'- (2"2"6)

involves interactions only between ions

between those in regions I and II; all
ions in region II are eliminated.

At this point, it is necessary to introduce a further
approximation since the summation of the interactions of all
pairs of ions between region r and region rr, contributing
to energy Etz is diffcult to evaluate as region rr extends

to infinity. Since the energy Er z is a sum of two

contributions, namely Coulombic and non-Coulombic, it is
assumed that the contribution due to the latter has a

maximum range. Beyond this range, t.he contribution to E12

from region rr is purely coulombic. rn other words, region

II is itself sub-divided. Region IIa, surrounding the
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region r is defined in which short-range non-courombic

interactions betv¡een the dispraced ions and those in region
r is explicitly carculated. The outer region rrb is treated
as a conLinuum assuming that the displacements in this
region are purely a dierectric response to the effective
charge of the defect" (for further details,
Lidiard and Norgett ILN 7Z]) "

we refer to

rn the toLar energy expression(2 "2"6), the short-range
non-coulombic part is thus simply summed explicitly over a

finite region of real space. For the coulonbic part, the aim

is t.o modify the summation so that interactions between

expricit ions in region r can be excluded. This is achieved
by the Ewald method which repraces a point-charge by a

Gaussian charge distribution. The complete lattice sums are
then evaruated in real space and the explicit terms f.or

inner region r are subtracted by transforming and performing
a rapidry convergent reciprocar rattice space summation. The

method in detail is described by Norgett lNorg 74J 
"

As discussed earlier
region I is determined

ion is zero, thaÈ is,

Åtr

Solution of this equat

since the displacements

the equilibrium configuration in
requiring that the force on each

,

by

l=o
Y= /'ày

I10n

1n

requi res

region I I

(2 "2 "e)
to be constant, But

can vary sigriificantly



during minimisation,

i teraL i ons .

16

updated between successive

rn order to describe the crystar lattice in Lhis region
r/region rr formuration, HÀDES requires as input data, the
latt ice vectors, unit ce11 components, the defect
configuration and sizes of region r and rra, to generate alr
the lattice sites within a given radius from the defined
defect-origin. since the symmetry of any defect must be

equal or lower than the symmetry of the unit cel1 of the
perfect lattice, HÀDES starts with Lhe symmetry operations
of either cubic or hexagonal point-group and defines the
defect symmetry from Lhe given initial defect configuration.
using this symmetry, defects and rattice sites are sorted
into classes of sites equivalent by symmetry, thereby
reducing the crystal region to a minimum number of
independent variables. FinalIy, HADES ident i f ies
interactions between groups of ions that are equivalent so

that it evaluates a single energy for each crass of
equivalent interactions together with an appropriate
weighting factor, which corresponds to the number of ions in
the respective classes. Thus HAÐES accelerates the

Lo reduce the number of

Y is

calculation by exploiting symmet

variables to be used in minimisat

The minimisation method used

derivative type and requires the

,

ry

ion

in HADES is
storage and

a second-

inversion of
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the second-derivative matrix. The inverse second-derivative
matrix is only calculated once and afLerwards updated at
intervals. The following seguence is employed for
minimisation of the Lotal energy in HÀDES :

(a) since the lattice is in stable equilibrium, the perfect
lattice second-derivative mat.rix, ç(o) is easy to calcurate.
This matrix is nov¡ inverted and a first dispracement, f is
calculated as ;

6 = ¡1 (o)g(o)

where H (o) is the inverse second-derivative matrix and g (o)

is the first-derivative vector.
(b) An improved approximation to the equilibrium
configuration is obtained,

¡(t) = 3(o) g(o)g(o)

and a new set of first-derivatives, 9 (t) is calculated.
(c ) The second-derivative matrix, ¡-¡ (o) is now updated using
one of the formulas that have been suggested by

Fletcher Intet 70] .

(d) New coordinates are then obtained as

3(z) = ¡(r) ¡1 (r)g(r)

and the cycre is repeated. The minimisation is successful
when the rargest component of the displacement is
sufficiently smaIL

rn summary, the success of the HADES-sherl model method

in describing perfect rattice harmonic properties as welr as

a wide range of non-electronic point-defect properties in
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ionic crystals suggests Lhat it should be varid in
describing the effects of electronic point-defects in the
embedded lattice region where elect.ronic effects other than

induced ionic dipole moment,s are negligible"

2"3 THE CLUSTER

The cruster is defined as consisting of the defect and

its immediate vicinity in the crystar. À general
formuration for its quantum-mechanicar anarysis can be given
in terms of a Hamiltonian expressing arl interactions
present between erectrons and nuclei within the clusteri the
many-body Hamiltonian is :

He+Hn+Hi (2.3.1)

where

He=

Q "3.2)

H

.t-Þ-,2

I
I

-t

atomic units"
this set of units, å=1, e=1 and

L-
l,.l l8i - ßti

(2.3"3)

(2"3"4)

r-lft

i
IV:
2-l-1.¡ xHn=

Hi= TTi
*_zi

ifii- Y; I

1n

In the electron mass=1 " The
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unit of energy is then the hart.ree(1 Hy = 27"21 eV) and thaL

of distance is the bohr(1 bohr = 0.s29 Å = 0.s29x10-1o m).

The Schrodinger equation for the many-body wavefunction
is;

HV(r,R) = E \il
T

(rrR)

(2.3.5)
Here upper-case retters refer to nuclear properLies and

rower-case letters designate erectronic properties. The rth
nucleus has atomic number 21 , mass Ml , and position Br.
The ith electron has a coordinate r¿, charge e and mass mo,.

À11 the physics of the system is contained in the
solution of the schrodinger equation(2"3.5) which in generar

is very cumbersome. rn practice, it proves feasibre to
obtain approximate solutions. The method, either ab-initio
or semiempiricar 1 uses a number of simprifying assumptions

and approximations that reduce the N-body probrem to a N

one-electron problem which is manageable. Many excellent
articles on these methods are available in the riterature,
notably the ones by Reitz lReit 55] , and Lowdin [¡,owd 55] " In
the present work, the cruster is treated in the Hartree-Fock

r Ab-initio methods seek in principle exact solutions,implying that within the frame of a particurar method noapproximations are adopted; though the method itserf is anapproximation to the solution of the schrodinger equation.All integrals appearing in the carcuration .rã comfuted asexactly as numerically possibre, whereas in semiempiricalmethods they are either neglected or approximated bysimplified expressions and functions containing empiricaiparameters.



20

self-consisLent field method which when coupled with
systemat ic t.reatment of correlat ion i s probabry the rnost

viable approximation to the exact solution of the quantum-

mechanical many-body problem availabre Loday. we briefly
outrine this approximation in the following sect,ion"

2"3" 1 Hartree-Fock self-consistent Field Theorv

we begin with the Born-oppenheimer approximation lso 27J

to decouple nucrear and electronic motion. This essentiarly
amounts to neglecting phonon and dynamic el_ectron
correlation effects and reduces the problem of solving the
schrodinger equation(2.3.5) to that of an interacting-
electron system in the field of a fixed nuclear potentiar
corresponding to a static 1attice.

The resulting N-electron Schrodinger equation,

lue + (rrn) E(R) $(r,R)Híl v/

then depends only paramet,erically

R. Exact solution of this equati

(2.3"6)

the nuclear coordinates

can only be obtained in

on

on

rather simpre cases such as the hydrogen morecule; for
systems with a large number of erectrons the independent-
particle or one-electron model [Hart 2g] provides a method of
approximate solution" According to this modeI, each electron
sees, in addition to the potential of the fixed nuclei, only
some average potential due to the charge distribution of the
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other electrons and moves essentially independently
throughout the system" The N-erecLron !ûavef unction (.V ), a

funcLion of the space and spin coordinates of al1
erectrons taken together, can then be approximated
product of one-electron functions that are known as

orbitals, a term coined by MuIlikenluutt 32J"

electrons are fermions, the N-erectron wavefunction
satisfy the antisymmetry property to ensure that it
Lhe Pauli principle"

the

asa
spi n

Since

rnust

obeys

within the Hartree-Fock approximation lrock 30] , the N-

erectron v¡avefunction ( l/ ) , is represented by a single
determinant whose elements are one-electron spin
orbitals(Øs) and the orbitars are optimised to yield the
best determinantal function according to the variational
principle,

The determinantal form is known

determinant [Stat 30] and is given by

)

)

Y ty, t!2 t, " "rr)

Ø,(r )'r\Å -t'

AS Slater

Ør(r

Ø z(r

Øt

Øz

(rr¡ )

( 
-t,r )

Ø*(rro )

I

iNt
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Q"3.7)

manifestly
antisymmetric and accounts for the pauli principle since the
determinant vanishes unress the spin orbitars form a

linearry independent set. The facLor (r'rt i/' normarises the
function in (2"3"7) when spin orbitals form an orthonormal
seL ,

ikI dr øi(r)øj(r) = $rj

(2.3.8)

orthonormality of spin

Lheoretical necessity.

Thi s determi nantal ?¡avefunction 1S

We emphasise here that the choice
orbitals is a convenience and not

Furthermore,

of

d

Øí(r) = 7,(-)
(2.3.e)

represents the 4-dimensionar manifold of space(x) and

spin (r-) coordinates of the spin orbitals concerned. t{e also
assume in the following discussion that. T-, are normalised
eigenfuncÈions of the z-component of the spin operator s;
they may be labeled as 'spin-up' or 'spin-dowh', the two
functions being mutuarry orthogonar. we arso abbreviate
combined integration over spin coordinates by integration
over L¡ that is,

Jdr=EJdx
ü'

Ø,(x)L--

(2.3,10)
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In accordance wit.h the variational principle, the
expectation varue of the Hamiltonian with antisymmetric
normalízed function (V ) is a rigourous upper bound to Lhe

exact energy, E of the system, that is,

.'\tlH l1¿'

If the function (Y ) happens

for the electronic ground state,
E.

E' > E

(2.3.11)

to be t.he exact wavefunction

E' will be the exact energy

The variational principle may nov¡ be applied to determine
the optimar orbitars in the determinantar function (V) by

adjusting (Øs) to minimise the energy E'. The resulting
varue of E' will then be as close to the exact energy E as

possible. Hence, the best function (.y ) is found by.
minimising E' with respect to @s) "

variational equations,
This implies the

=e

which leads directly
Fock equations.

to the equations,

(2"3.12)

referred to as the

<H [He + Hil 'Y (r)

rY,) t - ; I +.. (r )

? E'
ã4;

-'¿ 
<v$+
.L

J dr \fllr)

ãJ"l¡,+:
,l<;l'+tt,.j*?'-

- ¡d
J dI, J.iy,- € ,y,, +i rr,) r*yj 'E u,, t'u
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2
ld_

4i tv, td --'

#+ rY, l 4o, {yo)lY,-Tu{

we introduce Lagrange multipriers À;;to rnaintain
o

normality of tlne Øí during the variation :

5l<H>-E );¡ {r ar,ø!(r_u
-d(r, ))J

the integrand

SO

(2.3.13)

the orLho-

(2.3"14)

musL be zeto

)Ø,
-tü

L
:

i,

At the

independent

t.-
L

stationary point,
or ó øÍ ro, every i,

-7 
_.-

LI

,l*-

T" t3r-Y'l
,lr

.l v., +. (Yr)
-L d -

I -2-.\/2 Yl

<.
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ig

dr, { tT,r

'1 
t

J '7: t .l' J

I

t \/ --\/ iI rt r>t

TI,"T' i

(Y') *¿ [],)

r T, ) 'Þr' L'1")
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L

-L¡
7
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à>.
'J

+',
o

À,¿ +r rv,)

(2.3.15)

The left side of (2.3"1s) is the Fock operator applied to
'(rt). rts first term represents the kinetic energy for the
electron of coordinate ¡!, prus its potentiar energy in the
field of all the nuclei " The second term represents the
coulomb potential energy acting on the erectron at position
x of alr the electronic charge incruding that of the ith

J..¿l
wavefunction and is called as the coulomb integral The
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last Lerm¡ F€ferred to as the exchange term Kjr- , takes
account of antisymmetry, and for the facL that the electron
does not act upon itserf, which it wourd do if Lhis term
vrere absent 

" We may describe the combined effect of. the
exchange and coulomb terms in the sense that electrons of
opposite spins to the one under consideration produce an

ordinary coulomb potential, whil-e for electrons of the same

spin the coulomb potential is not produced by the furl
charge distribution, but by a corrected one in which an

amount of charge totarling one erectron is removed from the
irnmediate vicinity of the given electron" The region around
each electron effectivery excluded to electrons of the same

spin is sometimes calred the Fermi or exchange hore [neit
551. we may therefore express the Fock equation as the wave

equation for a single electron, moving in the field produced
by the nuclei and' the average fierd of the remaining
electrons. The average field consists of the field produced
by el-ectrons of opposite spin plus the fierd produced by

erectrons of the same spin but outside the Fermi hole.

The determinantal wavefunction will
any unitary transformation, so we

transformation which diagonalizes the
multipliers in (2.3" 1S) " When

diagonalised, the Fock equation becomes

be unchanged under

may choose that
matrix of. Lagrange

the -¡ -matrix is

F Øi(r) = Ë; ø¡ (¡)

(2.3.16)



26The eigenvalue Ê¿ r câfi be interpreted as the energyreguired to remove an elecLron from the ith orbiLal, withinthe framework of Koopman,s theoremlnoop 331 assuming thatalL the remaining orbitars of the system are unaffected bythe removal of Lhe electron from ith orbital. physically,
the system is expected to readjust its orbiLals to the newsituation' Koopman's theorem is therefore valid only if sucha readjustment or relaxatjon can be neglected. For realsystems' it is usually found that Koopman,s theorem gives agood approximation to the binding energy, although therelaxation effect is normally quite significant for the moretightly bound electrons"

The Fock equations are coupled, non-1inear, integro-di fferential eguations and therfore there is no directmethod for solving them' rn factr each Fock equationreguires prior knowledge of all the other orbitals. It isthus necessary to resort to a self_consistent fieldmethod(scr) r¿hich consists, in principle, of initial more orless arbitrary selection of one eLectron orbitals. In thismethodr ârl initial Fock operatorr sây ¡ (o), is calcuratedfrom some suitably chosen set of orbitals 6 @) . Theeigenfunctions 6 (t) of ¡ (o) are then used to construct a newoPerator F (t) whose eigenfunctions are Ø (z) . This iterativecycle is continued until the solutions are self-consistent,
that is, until the difference between two seLs of orbitalsin successive cycles of computation is sufficiently smarr to
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achieve the desired accuracy. This general method of
solution is ca11ed the HF-scF method. The only constraints
which have so far been described are thaL the orbitars are
forced to be orthonormal, and functions of the space and
spin coordinates of only one electron. This level 0f
approximation is referred to as the generalised Hartree_Fock
approximation(c*r) and has noL yet been solved for any large
system.

Given that the orbitals have the form , Ø(r)=ø(x) ã, (r ),
one of the two most frequently made assumptions is that ea.ch
orbital is required to be an eigenfunction of spin, ïn other
¡uords, Ø(r ) must be either ø(x)a(r-) or ø(x)ß(c-), where ø(5)
represents the spatial part of the orbital and a and ß
corresponds to the spin-up and spin-down eigenfunctions of
the spin operator sz respectively. This constraint does not
affect the form of the Fock equation and orthogonality of q
and ß ensures correct counting in the exchange integral.
This mild constraint produces the lever of approximation
known as unrestricted Hartree-Fock approximation(u'r). By
way of contrast, the Restricted Hartree_Fock (ngf)
approximation places an additional requirement on the
orbital" For doubly occupied orbitals, the spin-up and
spin-down spatial parts are required to be equar, unlike the
UHF case. Therefore a RHF calculation produces orbit.als
which are eigenfunctions of both overarr spatial symmetry
and spin, which in turn may provide a quite incorrect
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description of spin-density at a nucleus. The uHF

calculation is free from this deficiency. Thus, RHF is
usefur in studying systems of high inherent symmetry whereas
UHF finds increasing use in systems of the type under
consideration in the present work.

The soluLion of the Fock equations by expanding morecurar
orbitals as a linear combination of atomic orbitals(rcao)
has been elegantly formulated by Roothaan [Root 60] " This
formulation is the basis of the uHF-scF program, used in the
present work 

" Each one-electron molecular orbital is
expressed as a LCAO,

sites,
Iocalised on the nuclear and other

Øí c 
"tuí 

&b

(2.3.17)
wherè Csare the molecular orbital expansion coefficients and'C3;
are sets of atomic orbitals"

The most frequently used forms for atomic orbitars ère
either srater-type orbitals(sto) of the form, ,, Nrfi-í
exp(-"r)v[ ( g , q ) " or cartesian Gaussian-type
orbitars(cto) of the form, " Nrr''.*p(-or2)xl y'w zH,, where
the spherical harmonics are replaced by cubic harmonicsIaoys
50] ' The c's are a set of chosen exponents spanning a
sufficientry wide range to give adequate flexibirity for the
determination of the orbitars in Èhe variational
calcuLat i on ,

,þL
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The sTos usuarly provide a rapidty convergent expansion

for molecular qrbit.als. Because they possess a cusp aL the
nucleus, they lead to a good representation of the
wavefunction near the nucleus. unfortunately, murticent.ered
integrals over sros are quite diffcult to compute. on the
other hand the strength of GTos lies in the fact that
murticentered integrals can be easily evaruated since the
product of two gaussians on different centres is equivarent
to a single gaussian on a new centre. However, the GTos

suffer from two major disadvantages. The first is the fact
that the functions are steeper than the sros and so

inadequately describe outer regions of atoms and morecules.

But, for solids, the correct atomic tail-shape is not
herpful as bonding states are often built onry awkwardry

from sTos. The second disadvantage of GTos'is the rack of a

cusp affecting the abirity of gaussians to describe
properties that rery on the vravefunction close to the
nucreus. This may be overcome by using srightry larger
expansions of GTOs. rt is to be noted here that no one

choice of basis functions has yet shown overall
superioritylnw 12, CU B0l "

There i s grovring pref erence

atomic and molecular structure
analyticity of multi-centered

availability of very efficient
this. The drawback is that many

towards GTOs over the STOs in

calculations because of the

gaussian integrals, and

computer programs to handle

more of them have to be used
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in order Èo achieve Lhe same leve1 of accuracy as, say¡ the

double-zet.a basis (a basis of two sros per at.omic orbital ) .

The increase in the number of basis function corresponds to
an increase ¡¡a in Lhe number of integrals requiring
evaluation, thereby leading to a considerable increase in
computation t.ime during the iterative sorution. one vlay of

reducing this problem is by the use of contracted sets of

GTos(ccro). A ccro is a linear combination of (primitive)
Gaussians with fixed coefficients of the form

&u' =

(2"3"18)

where no is the number of gaussians contracted to a single
atomic orbital, d's are the f ixed contraction coef f icients,
and ä's are primitive Pr,r="ians. provided the contraction¡r
coefficients are carefully chosen, the cGTos are capable of
giving results of comparabre accuracy to their uncontracted

counterpart lwhit 66], The coefficients(db ), for a wide

variety of atoms and ions, have been computed and taburated
in the literature [Huzi 84] .

we note here that an unpreasant technical feature, namery

basis set superposition error, is associated with the HF-scF

procedure, The severity of it is proportional to the

incompreteness of t.he atomic basis set" Thus, to the extent
the atom-centered basis is inadequate, the HF-scF procedure

will at.tempt to utilise any availabre basis functions on

', 
Jot 1t
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neighbouring cent,ers Èo make up for the deficiency. No

completely reliable scheme for either .eliminating or

estimaLing superposition errors has been given so far

Calculations are performed in three steps. First, the

labels generation program, LÀBELS, uses any available
information on the symmetry of the given problem to generate

a list of non-zero integrals to be computed" Then the

polyatomic gaussian integrals evaluation program, pOLyIN,

evaluates the Iisted integrals. These two programs are from

the Caltech POLYATOM program packagelltnn*J, as modified by

Kunz and coworkers" POLYIN permits also the user to replace

the core electrons of one or more atoms in the given problem

with. an effective potential or pseudopotential" Fina1ly, the

iterative program UHFABK of Kunz.[Kunz] uses the integrals to
form a self-consistent solution.

Knowledge of the wavefunction permits us to obtain an

insight into the distribution of erectrons in the molecular

space and also into the various orbitals centered on each

atom" This is achieved by the Mulliken population

analysis [l"ful1 55] f or the system under consideration by

integrating the electron density over all space, (for a

detailed discussion, v¡e refer to HRSP 86). Such information
is instrumental in analysis of charge transfer and

determination of the character of the basis functions in the

present work"
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2,4 CLUSTER BOUNDARY CONDITIONS

when a guantum-mechanicar cluster is embedded in a weakly

perturbed classical lattice, there remains the question of

achieving physical consístency, electrostat.ic and quanLum-

mechanical, between the cluster and the embedding lattice.

The embedded cruster is seen by the surrounding lattice
as a coulonb potential, computed from the quantum-mechanical

charge density of the cluster itself" This couromb potential
is expressed as a multipole expansion. Hence, electrostatic
consistency (between the cluster and the embedding lattice)
requires that the cluster simurators (a set of point-charges

for simulating the cruster ) that produce the ratt ice
distortion R in the embedding lattice possess the same varue

of low-order erectric multipole moments as does the guantum-

mechanical cluster whose erectronic configuration is
determined by R" The procedure adopted in rcEcÀp to achieve

electrostatic consistency is described in Chapter 3.

Quantum-mechanical consistency r oD the other hand,

reguires that the cluster boundary conditions reflect the
quantum-mechanical structure of ions in the surrounding

rattice. since the embedding she1l-Model rattice does not

provide any Pauri excrusion, the cruster wavefunction tends

Èo spread unphysically compared to true crystarrine
behavior. rt is therefore necessary to orthogonalise the

cluster wavefunction to a realistic electronic crystalline
envi ronment .
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rt is impractical to significantry enrarge t.he size of
the cruster since large clusters contain so many erectrons
that they exceed the maximum basis-set capacity and

practicar cPU time rimitations of present Hartree-Fock
programs. Hence, some treatment less detailed than the

Hartree-Fock is required for ions at the cruster boundary.

The well-known pseudopotential approach may be used by

associating comprete-ion pseudopot.entials with ions that
surround the cluster, to overcome these computational

diffculties. Alternativelyr wê may use the formalism,
proposed by Kunz and Klein[n¡< 78] which adds only one

erectron integrars and provides a systematic, mathematically

rigourous boundary for the quantum-mechanicar cruster "

These steps wourd considerabry enrarge the one-erectron
integral part of the calcuration, but are much more

eff icient and manageable than a corresponding rarger
Hartree*Fock calculation "

Both the approaches, namely pseudopotentiar and Kunz-

Klein orthogonalisation, have been incruded in rcECAp Lo

provide appropriate cLuster boundary conditions. vÍe briefry
describe their concept and construction methods in the

following sections.
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2.4 " 1 Pseudopótentials

A pseudopotential ( ø an ef f ective pot.ential ) is an

approximation to thp real potentiar that an electron
experiences in a sorid and whose characteristic feature is
its separation of core electrons properties from those of
varence electrons. The atomic cores are composed of nuclei
plus core electrons and are considered to be inert and

unchanged in going from a gas of isolated atoms Lo a solid
composed of strongly interacting atoms. rt is assumed that
the varence electrons are largely responsible for the

bonding and most of the erectronic properties commonly

studied in chemistry and solid state physics"

Because the valence el-ectron wavefunctions are orthogonal

to the core electron states, they are repetled from the core

region as a conseguence of the paul-i excrusion principte"
Philips and KleinmanIpK 59] demonstrated that this repulsive
potential cancers a large part of the attractive coulomb

potential from the nucleus leaving a net weak

pseudopotential. The basic idea of the pseudopotential

method is then to take advantage of this orthogonality Lo

simprify electronic structure calculations by eriminating
the need to incrude atomic core states and the strong

Coulombic potentials responsible for binding them.

SeveraL methods have

pseudopotentials and can

categories i

been developed to construct

be classified into Èwo distinct
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(a) The so-calIed empirical pseudopoLential method forces
the pseudopotential to reproduce some experimentarly
determined features, such as refrectivity and density of
states of the energy bands. The pseudopotentiar can Lhen be

used to compute a variety of properties and anaryse

experimental data. This method has been particularry
successful in describing the band sLructures of
semiconductors and simple metals. Iror a general
discussion, see Cohe 84 and references thereinl

(b) Alternative approaches, rerying more on 'first-
principres', require onry the atomic number as input to
generate the atomic wavefunctions and a description of how

the varence erectrons interact with cores and among

themserves, therby avoiding the introduction of empirical
parameters. The basic assumption is the frozen-core
approximation which pictures the cores as stationary when

discussing the electron dynamics. The val-ence electrons are
then solved serf-consistentry, orthogonarised to the frozen-
core orbitals IpK 59] , The resulting pseudo-wavefunction

approximates the true 'a11- erectron' vravefunction beyond

the core radius and then extends smoothry inside the core.
The pseudopotential responsibre for generating the pseudo-

wavefunction can then be used to compute a variety of
properties lt¡a¡* 76] .
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The ab-init.io calculations to ebtain pseudopotentials

are, however, based on the HarLree-Fock calcurations in
which the radial equation for the wavefunction contains non-

locar exchange operator in the sense that each angular
momentum component of the pseudo-wavefunction sees a

different potential. This in turn complicates the probrem of
f inding a local pseudopotential to reprace the core.
Goddard and coworkers[t'tG 74, MoG 74, TMM 78] have dealt with
this complexity by introducing a pseudopotential basis set
(powers of r times gaussian) and varying the coefficients to
minimise the error in integrars of the non-loca1 schrodinger
equation, satisfied by the pseudo-wavefunction. The

resulting pseudopotential depends upon the angurar momentum

of the varence electron thereby refrecting particularly the

different Pauri exclusion effects for different symmetries.

It is of the form

v(R) =

Q"4.1)
projection operator onto

V, (R) is a radial funtion
Gaussians :

ù,0

E
l= t)

where l"t

states of

which can

't-L><l | = E. lrm><tml, a
lh: _f

angular momentum 1, and

be expressed in terms of

v, (R) = E" c .fn .*o(-z R2)L- K ,¿,1" ,kz

Q "4 "2)
The resulting orbitals are carred core-Iess Hartree-
Fock(cH¡') orbitals" since it is smoothly varying and has a
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smarr arnplitude in t.he core region, it does noL require
core-rike basis funcLions. This arrows minimisation of Lhe

number of basis functions required t.o give an accurate

description of the eigenstates of the potentiar, A

tabulation of Lhe cHF pseudopotentiars for at,oms lithium to
zinc is availablelt¡æl* 761. rn the present work, we refer to
these cHF pseudopotentiars as TopIoL pseudopotentials.

The so-ca11ed orthogonality-ho1e problem, that is, the

difference between Lhe true electron density and the

el-ectron pseudo-density persists in the approaches following
Philips-KIeinman Ipx 59] , This results from the fact that
the pseudo-wavefunction overestimates the erectron charge

inside the core region; forcing it to differ from the true
varence $¡avefunction in ampritude, arthough it does have the

same shape outside the core" when used in a self-consistent
calcuration, this error in amplitude is manifest in an

incorrect coulomb potential, and thus an incorrect
distribution of charge [nHS 82] .

Hamann et ar IHSC 79] have introduced a new farnily of
pseudopotentiars, where a pseudo-wavefunct.ion is noderess

and after normalisation it matches the true valence

wavefunction beyond some core radius, say Rc. For a given

pseudo-wavefunction, the radial schrodinger equation is
inverted to yield the corresponding pseudopotentiar. By

construction the integrals from zero to R of the rear and
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pseudo charge agree for R > Rc for each valence state. The

'Lerm 'norm-conserving' is used to describe pseudopotentials
with these qualities, and it guarantees that the couromb

potential produced, out,side the core is identicar for the
real and pseudo charge distributions"

Bachelet et at IBHS 82] have developed a consistent set of
norm-conserving pseudopotential for most of the periodic
table. Àn ab-initio calculation via a density-functional
approach InS 65, SS 821 with the use of a loca1
approximation for Lhe exchange- and correration- potential
is performed [cA 80, pz 81 ] . The numerical potentials are

then constructed from energies, wavefunctions and potential
of a reference furl-core atom. Finalry, analytical
expressions are fitted to these numerical potential
f unctions, yierding the total .ionic pseudopotential :

v(r) = 4 ll,tr;iil * v,]l'l 
-1".q 1..É.1- L L- L

Q"4.3)
5C

where v¿ is a difference poLentiar describing t.he strength
of spin-orbit coupling(relativistic correction) and is
neglected in the present work. we may therefore express Lhe

pseudopotential as

.Åør^^ ianv(r) = v"rru(I) * ,l lt> dvf <,r_l
., -u

-3Y
""t

(2"4,4)

E
¿-

CEVÊ- t j.,

c; expi (o)" r j

where

vc*u (5)

(2"4.5)



39

and

Lc¡1

AV¡ (r)*
1

= ¿: 
(Ar'+ r'A;ú) exP (-a"'r2 )

(2"4"6)

Each aLom is t.hus characterised by (i) a valance charge zç

and t.wo sets of linear coefficients and decay constants
describing the corer r\tno, dà¡ !=1 ,Z respectivety; (ii) for
each I value, two seLs of three linear coefficients each, Àj
and A¿"3, corresponding to the decay constant oJ, i=1 ,213 for
the average potential.
parameters necessary

A compilation is given of the

to synthesize norm-conservi ng

pseudopotentiars for the elements hydrogen to prutonium IgHs

82) and in the present work r wê refer to them as BHS

pseudopotent ials "

woodward[wood 85] has written and impremented efficient
pseudopotentiar integrar codes for both ToproL and BHS cases

in the UHF* program package which we have used in the
present work 

"

2"4"2 Kunz-KIein Localisinq potential(nnf,p)

Kunz and Klein have described a serf-consistent procedure

to include the interaction of an embedded cluster with its
environment in cluster simulation studies [nn 7g] " This
procedure and its implementation in rcEcAp is reviewed in
some deLail berow" (ror a general discussion, see KV).
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ionLet us recall
(2"3"16) :

the genera.lised f orm of t.he Fock equat

FØx = €aØ¡,

where F is the Fock operator for the entire crystar. For

systems under study, the Fock operator F can be divided into
two parts; the first Ffi , representing ar1 interactions of
the electrons with each other and with the nucrei within
cluster(A), and the seccnd u ß , representing the potential
energy of interact.ion between the cluster (A) and its
environment (E) 

"

The cruster erectrons(N17 ) and the embedding rattice
erectrons(Ng) might be assumed to occupy separate manifolds
of states, denoted k(À) and k(E) respectively. since the
crystalline lattice is made up of welr-localised separate
ions, the cluster erectrons do not significantly overlap the
maniford of the embedding lattice. However, basis sets for
both cluster and embedding lattice are chosen subjectively,
from physicar insight, with the result that cluster and

lattice do not occupy mutually exclusive manifolds of
functions. rn fact, the cluster manifold generally exceeds

the occupied manifold(k(A) ) in order to provide variational
flexibilty.
occupied and

electrons "

Thus, the cluster manifold contains both

unoccupied(virtual ) states of cluster
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The Fock equation may now be written as

( ura + un)Øo = t*Ø<
(2"4"7)

where

and

t¡t = Vz 2,2^ z;lr-$;l-1
.! e- ¡?) 'r " '- 

'J

+ 2 I dr' lr-r'¡-t

un = 2.8 z; lr-n- | - t,s J¿i) r.r -. -.¡

+ 2 I dr' lr-r'¡-t

Q "4.8)

where P(I rJ) is the erectron pairwise interchange operator and

I is the Dirac delta-function.

The Fock-Dirac one-erectron density operator is given by,

r¡ N¡l(6 ( r' ,y) ="8 Ø *(r' ) Ø O(v)11:I
(2.4 "e)

and similarly for e, , wit.h summat,ions over k(E) from (n +l)
to ø) for an infinite crystal.
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Þle note here that the Fock equation(2 "4"7) for the

cluster depends in par! on the occupied states of the

embedding lattice through uñ (since u¡E depends on k(E)

fhrough Ft.)" However, we do not wish to sorve for the states
of the embedding lattice. on the other hand, if we choose

thern, Lhen such a choice will generarry not be orthogonal to
the cluster manifol-d as the chosen t(e) states wilr at most

be orthogonal to the occupied states and not to the
unoccupied states of the cluster. Furthermore, if vre decide

to project k(E) out of k(A) then the projection may reduce

k(A) from its original range in Fock space making incorrect
evaruation of certain defect properties. on the other hand,

the projection of k(À) out of k(E) may distort the effect of
surrounding ions in the cluster" rn factr wê wourd like to
incorporate the orthonormality between our cruster and

l-attice manifolds maintainining our careful choice of both

cluster and lattice basis sets.

This has been approached by applying a subsidary
condition r,¡hich modif ies the Fock equation(2 "4"7) by adding

an arbitrary effective potential. The procedure, described

by Gilbert [CifU 64] is based on the fact that the density
operator, e* (=E I k><k L where I rt is the state vector
corresponding to orbitar Øù is a projection operator onto

the manif o1d of occupied states(tfrat is, Qor= (, and (,a = ei I

with the property that

(¡¡lt> = lkt, if k is occupied
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= 0, if k is unoccupied.

Q"4.10)

An irnport.ant consequence of this property is that the
projection ( 16 w€a) of an arbitrary one-erectron operator w

onto the manifold of occupied states(k(A)) wilr satisfy the
equation :

eÉ weúlk> 

=

wlk>, if k is ocuupied

0, if k is unocuupied.

Since,
Nn D{,

wlkt =, E wjklj> 1 E wj'klj't
J.1 ! j= cf.jrn+r)

where Wjk = .j lWlnt. We then have

¡,|n.
(6 w¿,rlk> =j?, wjkli>, if l¡.t is ocupied

= O, if lft is unocupied.

(2"4"11)

(2"4"12)

(2"4"13)
By adding together equations (z "4 "7 ) and (2.4.13 ) , v¡e obtain

( rr+ un* (ttw ?¡t ) lkt =.Ët , ¿'¡ 5 ¡r + wjk) lit
J=t

(2"4"14)

which is structurally identical to Èhe general Fock

equation(2 "4.7) " A unitary transformation within the
manifold of occupied states may then be sought to yierd the
diagonar form of a modifed HF equation for an arbitrary one-

elecLron operator W. Thus,

'Tl
,t l, l¡.o( vn+ rJn+ Qw Q ) lkt =
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for [ = 112r""..N/;

(2 .4 " 15)

since the electronic density of the embedding

rattice(k(E)) is well-rocarised about the nucrei in ionic
crystars, r{e may divide the environmental contribution u4

into long-range Madelung(or coulomb) contribution, v# , and

short-range contribution, v; . The Madelung term: êËising
from point-charge ions is given by

Mvri = 2.8-I; l(r-B;)l-t
¿t Ù: )

in atomic (¡ohr-Uartree) units. Here, IJ = (zj

are ionic charges and positions respectively,
number of electrons associated with the ion

designating for ions outside the cluster.

(2 .4 ,1 6)

- Nj ) and ^B;

and N; is the

j with E

The short-range term ft; ) is the potentiar arising from

the electrons in the occupied orbitars of the environment

and is given by

svra = -r;r2r*ill-Bjl-' + 2 I d"-r'lI-_f'l-'

(ç (t-, ,y-l
(2.4"17)

the one-eÌectronIn the modified Fock equation(2.4.15),
operator W, is taken equal to -vÅ r so that

( r* + uJt * urt - eo rì(d ) | k> = -tiq 
l¡.t

Q"4"18)



The added ef f ecrive pot.ential(- il:d.^e )

localising potential and in the Iimit of
it cancels out the vj , the short range

lattice ions as seen by cluster
equation ( 2.4. 1 I ) then reduces to :
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is the Kunz-Klein

self-consistency,
pot.ential due to

electrons. The

{ro"vf )lx'= Tolx'
(2 "4 "19)

Thus, it is in t.his sense that KKLP is a rocarising
potential, because the cluster electrons end up seeing
lattice ions as weakly perturbed point charges, and the
essence of orthogonalisation without compromising either
cluster or lattice basis sets has been captured by KKLp.

The appropriate total-energy algorithm for equation(2"4.1g)
has been given by Kunz and VaiI [KV] "

rn practice, the orbitals in the environment are obLained

from solutions to the equation(2 "4.19) for the perfect
crystal" The KKLPs locarised about individuar ions in the
environment are derived for each species in a perfect
crystal and are then assoc iated .with those ions t.hat

neighbor a defect cruster. The use of perfecÈ-lattice KKLps

with a defect cruster is consistent with the idea that the
cluster shourd contain ar1 signi f icant deviat ions from
perfect-Iattice electronic structure.

The short-range potential(v| ) may be considered to be

made up of additive contributions from all the ions in the
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environment," rt falls off very rapidly with distance, and

so only contributions from ions in the immediate vicinity of
the cluster need to be considered" We use Kunz's LOPÀS

code lttunzJ , which sorves the modif ied Fock equation(2.4.1g)
for each ionic species in a perfect lattice, with v
including only a few sets of near-neighbors. A set of
orbitars is associated with each ionic species which are
taken to be linear combinations of slater-type orbitals in
our case from Clementi and RoetLi ICR 74] and consistency is
obtained between the two species. This solution is then
used Lo determine KKLP for each species using Keegstra's
KKLFTT codelxeeg 86] . Here, KKLP is evaluated on a grid of
positions and then fitted to a set of gaussians, since
evaluation of integrals is only possible in the polyrN

subroutine of rcEcÀp in terms of gaussians. The result is a

set of locarising potentials, one for each ionic species,
which can be added at as many ionic sites of the embedding

lattice as desired in equation(2.4.19)" rn contrast with the
use of taburated pseudopotentials(topror, or BHS), KKLP

applies to anions as well as to cations, and is an integral
part of Hartree-Fock approximation.



Chapter I I I

THE PROGRAM, ICECAP

3" 1 TNTRODUCTION

rcEcAP is a self-consistent lattice relaxation and

erectronic sLructure program package for performing

calculations of the erectronic st,ructure of point-defects in
ionic crystals. rt is based on a physical model which has a

guantum-mechanical defect cluster embedded in a shelI model

lattice, solved variationarly by energy minimisation with
respect to cluster parameters and rattice configurations
maintaining finite-order multipole consisLency between the
cruster and the lattice. This model is essentiarly the same

as described by Vail et aI. lvrigS gZ] and is discussed in
section(3"2). [.re brief ly give an outline of the program-

package ICECAP in section(3.3). For a detailed discussion,
we refer to a report [HgI(* 84] describing the program

organisation, the required input data for a given problem

and the procedure for the execution of the program. we note

here that ICECAP is adapted to IBM/Amdahl, VAx/FpS and CRAy

systems.

47
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3"2 METHOD

we def ine the defect clusLer as any excess el_ect,rons,

plus t.hose ions that are significantly perturbed by the
defect, including both perturbations of their electronic
structure and dispracements of. their nuclei. The erectrons
of the cluster are treated quantum-mechanically in the uHF-

scF approximation. The surrounding infinite lattice is a

perturbed shell moder crystar in which the ions are
represented as dipole porarizabre point charge combinations,

The coordinates of nuclei and of ions in the cluster are

collectivery denoted Rc, referred to as the cluster
configuration" coordinates of the surrounding sherl_ model

lattice(core and shell positions of alr the ions in the
surrounding lattice) are collectively denoted R, referred to
as the lattice configuration" Electronic coordinates
(positions and spins) of the cluster are denoted

collectivery by r. The many-electron v¡avefunction for the
cluster is denoted by '\ûl ( r Rc ,c) , indicating parameteric

dependence on the cluster configuration Bc and a set of
elect.ronic variational parameter d.

We writ.e the total defect crysÈa1 energy E as

E(R,Rcrc) = Ec(Rc-rg) + Ec¿(RrRcrc) + EL(RrRc)

(3"2.1)



where Ec is the expectat.ion value
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of the energy of the

cluster in a given quantum state(.V ), including elect.ronic
kinetic energy and interaction among all nuclei, ions and

erectrons in the cruster; E¿ is the energy of Lhe crassical
rattice(R) and Ec/ is the cruster-lattice interaction.

Àssuming that the strong localisation of ions in an ionic
crystal provides a boundary condition for which the quantum-

mechanical cluster does not, significantly overrap the

surrounding classical lattice, we divide the cluster-Iattice
interaction into crassical coulomb interaction and short-
range interaction, which simulates quantum-mechanical

effects. Thusr w€ write,

Eca (R"Rc -a) =þ v(RrRcrcx) + ns(RrRc)

(3.2.2)

where v and Es are the cluster-rattice coulomb and shorÈ-

range interactions respectively. The short-range cluster-
lattice interaction is taken to be the same as the short-
range ion-ion interaction of the surrounding lattice. The

total defect crystal energy is then,

E(RrRcrc) = Ec(Rcrc) + V(RrRcra) + E¡'(RrRc)

(3.2"3)

the energy of the classical lattice,where E¿' represents

plus its short-range

t.otal energy E, is
parameters Rc and gr

lattice configuration

interaction with the cluster, the

now minimised with respect to cluster
and simultaneously v¡ith respect to

R, that is,
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,5 n/ = { 6(ec+v)/ 6a }
¡\ ¿

Es/ ú = { 5(v+n{)/ lB }

$ ")l

n)
c¡\c

r)

,g

(3 "2.4)

0

(3.2.5)

yielding a

electronic (c) ,

e/ $nc) = O

(3"2"6)

variational estimate of cluster (Rc ) ,

and lattice(n) configurations and of total
defect crystar energy(e) and electronic wavefunction (V ) "

To sorve equation(3"2"G) subject to equations (3"2"4) and
( 3 " 2.5) simurtaneously r ldê reprace v by v' r¡hich is the
coulomb interaction between the lattice and cruster
simulators (a small set of point charges simulating the
cluster) " The equation(3 "Z"S) now becomes

(3 "2.7 )

This step is necessary to
the equation(3 "2"6),

simplify the problem of solving
since eguation ( 3.2. S ) wi th

equation(3.2"4) requires variation of v(RrRcra) with respect
to many ionic coordinates R for each configuration of which

the coulomb interaction v with the quantum-mechanical

cruster must be evaluated. This is, however, prohibitively
expensive in computer time"

t ,5(v'+EL')/ 6B tl = Q

ot\c



51

The cluster simurators are chosen such that their charges

and positions allow them collect.iveIy to have the same low-
order el-ectric multipole moments as the cluster. This can

be achieved as follows :

(i) we begin wit.h a f ixed cluster configuration(nc) and an

associated set of cluster simulators, and solve

equation(3 "2.7) to obtain a f irst estimate for B, the
lattice conf iguration,
( i i ) r n the presence of thi s ratt ice conf igurat ion, we

evaluate the multipole moments, colrectively denoted by M,

up to some finite order n for the quantum-mechanicar

cluster (Rc_,g) 
"

( i i i ) we no$r readjust the cruster-simurator charges and

positions, keeping Rc fixed untir their corlectively
multipole moments, denoted by M', agree with the set M up to
order n.

( iv) we iterate these steps untir the cluster and cl-uster
simulator multipole moments, M and M' respectivery, are
consistent to order n.

At this stager wê have a rattice configuration(n) in
equiribrium with a set of cluster simulators that have the

same multipole moments, up to order n, as does the cluster
whose electronic configuration(a) is in equilibrium with R,

all for a given cruster configuration Rc" we say that that
R and d are consistent to multipore order no Finally¡ wê
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vary Rc , maint.aining n-th order consistency, to minimise E,

satisfying equation(3 "2"6) " This solution with n-th order

multipole consistency can be assessed from the multipore
expansion of v, the cluster-laLtice coulomb interaction.

Suppose that the lattice consists
positions R " Then, we write

of point charges O at

v(RrRcrc) J d3r ç / lr-B; I

(3.2"8)

where q (l; &,g) is the charge density of cluster
configuration Rc" A similar formula applies for V', where

e refers to Lhe charge density of the point-charge cruster
simulators.

Since v represents the interaction of the cruster with
all the ions outside the clusterr wê have ll;l
equation (3"2"8) and, for this case, v can therefore be

expressed as a multipole expansion about the origin in the
cluster, i.e.,

= E O'| 
-lts

V(R.Rc.a) = E
t

("/

where
("t )

M (Rc,j) =

with Einstein summation

k=1r2r".rn. Here, å lj)
vector, that is,

î/) <ti ) [n + t)
E M /ln.l
r¡:t '-J '

€^, ( j ) . . " ¿.À ( j )
tI

M¡,. Ay1 (nc)

(3.2.10)

À* {= 1,2,3) and

components of the unit.

o;
(3.2"s)

conventions on

are cartesian
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( Qr(j),€z(j),de(j)) = e;/ll;l

rn equation (3.2. 10), ri'n| are the n-th order

momenLs of the cluster's charge distribution( I )"

The three lowest-order multipole momenLs are
( i ) Lhe toLal charge,

1r¡(o) = J d3r €

(ii) t.he dipole momenL,

MrJl) = J d3r r^P
(iii) the quadrupole moment,

totoi' = J d3r (3

(3"2.11)

multipole

coordinates of

)c

the position

'^ 
t {n- tz{url

where rc( are the cart,esian

vector t.

Thus, if V' in equation (3"2"7) agrees with V in
equations (3.2.5) and (3.2.8) to order n, then the error
involves only contributions to the energy of order (n ..;.t'n'"'

J

3.3 THE PROGRÀM

rcEcAP defines severar crasses of entities in order to
ensure that each class must have their coordinates varied
only in the appropriate portion of the program and that the

interaction between any two entities must be taken into
account exactry once, that is, neither omitted nor double

counLed. The cfasses of entities defined are :

(a) rons that will be replaced by bare nuelei plus electrons,
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(b) Ions t.hat r¡i11 be repraced by core pseudopotentials prus

valence electrons,
(c) Ions that wiIl be replaced by complete-ion pseudo-

potentiars or Kunz-Klein locarisation potentials(xff e),
(d) shell model ions that will be explicitly.moved about in

minimising the total defect crysLal energy,
(e) Point charges simulating excess electrons in the cl-uster

(electronic simulators),
(f) Point charges simulating multipole corrections(multipole

simulators ) ,
(g) Shell model ions of the surrounding lattice.

crasses (a) through (c) define the guantum-mechanical

(uHr-scr) region, whereas crasses (a) through (f) define the

cluster " The embedding lattice region is defined by

entities in class (g) " class (e) is chosen initially to
simulate the deviations of the charge distribution of the

UHF-scF region from the point-charge ( sherl modet )

distribution of classes (a) to (d). After a given run of
the carcuration, rcECÀp may introduce point-charges of class
(f) by the multipore consistency routines to correct low-
order multipore moments of the cluster region simulated in
HÀDES. Point-charges of crasses (e) and (f) exert onry

couromb forces, but do not interact among themselves, nor

with ions of classes (a) to (d), except that point-charges

of cIass. (e) do interact with sherrs of ions in classes (b)

to (d). Thus dipore polarization of ions in the cluster, not
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inc 1uded.

by quantum-mechanical
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elecLrons is

The program-package, rcEcAp consists of a master driver
program r¡hich generaLes data files for several programs.

This method of organisation minimises the number of changes

which have to be made to rarge pre-existing codes, namely

HÀDES and UHF* " The programs which are under the control of

the driver are CRYÐFN(trre HADES symmetry anarysis rouLine),
RUN(the HÀDES lattice relaxation routine), uHF* (lannls,
POLYTN and UHFÀBK routines) , pRops (molecular properties
evaruation routine), MPFrr(multipore consist.ency routine)
and TorMrN(totar energy minimisation routine). The burk of
computing is not concentrated in very few kernels, but is
rather scattered over various program sections. A1so,

ro(input/output) operations associated with the two-electron
integrals requires a lot of disk usage. For example, a

carcuration of 18 atoms(180 erectrons) with 97 basis

functions requires about 3000T disk space for Lhe LABEL

fire, containing the rist of integrals. rt is to be noted

here that some of my thesis work was in development of

ICECAP, particularly in writing the MpFIT routine.

The MPFIr routine provides multipore consistency between

the embedded cruster and the surrounding lattice up to
octopore order" First, the murtipole moments M and M' due to
the UHF cluster and point-charge cluster simuators from
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HAÐES are generated respectively. Then the MpFrr routine
inLroduces point-chargesrreferred to as multipole
simulators" They are determined from the difference between

the multipole moments, M and M', by solving the system of
non-linear equations from a given initial approximation.
The solution provides the corresponding multipole strengths
and direction cosines of displacemenLs from which the
charges and positions of multipole simulators are returned
to the calling routine.

rn its originar form, the program IcEcAp requires core
space of 7.5 Mbytes, which is in excess to that available, 5

Mbyt.es, in the university of Manitoba (amdatrt 5g7o ) computer
system" This diffculty has been overcome by rearranging the
program into an overray structurer so that only those
segments needed in executing a given calculation step are in
core for the duration of that step. The overlay structure is
along the lines suggested by Harker [Hark] and reduces the
core requirement substantially from 7 "s Mbytes to 4.s
Mbytes, a 40% reduction.

The operating procedure of rcEcAp, ilrustrated in Figure
3.1, is executed under Èhe direction of the driver and can

be summarised as follows :

(1) For a given cluster configuration, the excess electrons
and the cruster ions are simurated by fixed point charges,
from which HADES determines the porarized, disLorted lattice



Figure J.ì : schematic diagram describing the operating procedure
of the program package, lCECAp.
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the point-chargeconfigurat.ion and the

simulated Iatt.ice (Eh) ,

We may now write,

total energy of

E.l,' = Eh - Ec' - Es' - av'

where, E¿' is the same as in equation(3.1.7)
energy among all ions outside the cluster
cluster-lattice interaction ;

AV' is the Coulomb interaction of

simulators with region rIb(of HADES)"

Es' is the short-range plus she1l-core interaction
energy of any shelr model ions that are included in the

cluster-simulator set;
Ec' is the Coulomb interaction of the cÌuster

simurators among themserves plus their coulomb interaction
with regions I and IIa(of HADES); and

(3.3"1)

, the interaction
plus short-range

the cluster

Here, it is assumed that shell-she11 and shell-core
interactions are simulated by electron-erectron and

electron-pseudopotential/KKLP interactions, except that in
the case of a comprete-ion psudopotential, where the sherl-
core interaction is not incruded. Both the terms Ec' and

Es' are therefore subtracted from the energy Eh"

Furthermore, she1ls in the cruster region(classes (a) to
(d) ) are free to respond to all point-charges in HADES

except class(f), the multipole simulators.
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(2) shell moder ions of the lattice, along with t.he cluster
ions( i.e' nucrei/pseudopotentiars/¡<rrp ions) of a f ixed

cruster conf iguration are now applied as a background

potent iar f or a UHF-scF calcurat i on . The totar c l-uster

energy(ea) is evaluaLed by the UHF program package.

hle may then r¡rite :

(pc + v) Ea+Eo+Ed+AV

(3"3.2)

where, Ec and V are defined as for equation(3.3.1 ), and AV

is the coulomb interaction of the cruster with region rrb,
which is noL evaruated" For nuclei, pseudopotentials or

KKLP ions, i.e. for classes (a) to (c), the energy Ea

incrudes their coulombic interaction among themselves and

with classes (d) and (g) " The energy Eo represents a

correction term for the energy of the dipores simulating the
polarization of ions associated with complete-ion
pseudopotentials or Kunz-Klein localised potentiars" rt is
assumed here that a dipole, including sherr-core interaction
can be carried over from a HÀDES shelr moder. ion to a uHF

complete-ion pseudopotential or a KKLP ion. Furthermore,

HÀDES shel1-shel1 interactions between classes (c) and (d)

are assumed to 'be represented by their uHF short-range
interactions.

by

The toÈal defect crystal energy E (3,2"3) is then given
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E (eh-ec'-Es' ) + ( ea+eo+Ed )

(3.3.3)

from ( 3,3 " 1 ) and (3 "3 "2) , assuming that the term (av-av' ) is
negligible. This energy is evaluated at each iteration in
working towards murtipole consist.ency and overall energy

minimisation.

(3) rdearly, the the cluster simulators should have at1
their murtipole moments identical to those of uHF-scF

cruster' rcEcÀP, however, matches only a finite set of low-

order multipore moments, This is accomplished by comparing,

in the murtipole consistency rouLine, a given set of low-

order multipole moments (presently up to and including
octopole) for classes (a) to (c) as carcurated from the
HADES and UHF* programs. rf consistency is not found,

additional point-charge simulators, called multipole
simurators(class (f) ), are introduced. Their positions and

charges are evaluated by the multipore consistency routine
such that when added into HADES they produce agreement to a

required accuracy between HÀDES and uHF* murtipole moments.

TCECAP now iterate the HADEs/u¡rr* seguence to consistency.

(4) FinaIly, the driver minimises

given by the equation(3"3"3) wittr

configuration (classes (a) to (d) ) ,
consistency between the cluster and

the total energy E, as

respect to the cluster
maintaining multipote

!he embedding Iattice.
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rcEcAP is based on HADES and UHF* program packagesu bot.h

of which have been extensivery test.ed, refined and applied
Lo point-defect calculations In 10n1C crystals.
consequentlyr any poinL-defect configuration in any ionic
cryst.al host lattice geometry can be analysed, provided

shell model parameters are availabre" Atomic orbital sets

may include s, p¡ d and f types. Either norm-conserving BHS

or Philips-Kleinman ToProL pseudopotentials can be used, and

Kunz-Klein orthogonalisation procedure can be applied at the

cluster boundary" Octopole consistency is presently
availabre. correlation correction can be included in the

totar energyr using a many body perturbation theory(unpt)
developed by Kunz [nunz 83w] " The whole seL of input data

necessary for a calcuration of the ground state of the F*

center in magnesium oxide with the appropriate JcL for our

computer system (emdatrt 5870) is given in the appendix.

The urtimate test of the physicar moder on which rcEcÀp

is based can be made through comparisons with experimentally
observed properties" For example¡ optical absorption and

luminescence measure splittings between energy levers,
whereas spin resonance can measure the sguare modulus of the

wavefunction at a particurar site. rcEcAp does calculation
of energy revels and rrravef unct ions and the subsquent

calculation evaluates experimentally measurabre quantities.
rf the results of such a comparison are favourabre, the

model acquires predictive credibility and can then be used
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t.o study point-defects for which experimentar data is either
lacking or scarce, Hence, with this attituder wê now apply

rcEcAP to study the electronic st,ructure of the point-
defect, F* center in magnesium oxide and present the results
in the following chapter.



Chapter IV

RESULTS AND DISCUSSIONS

The principal applications of ICECAP wiII be to point-
defect properties, particularly those for which deviations
from perfect lattice electronic structure are cruciar. we

have chosen to examine properties of a werr-documented color
center, the F* center in magnesium oxide which invorves not

only perturbations of ionic electronic structures, but also
electronic states associated with vacancies. These coror
center states may be considerably more diffuse than ionic
states, and through their optical transitions and hyperfine
interactions with'neighboring nucrei provide a sensitive
test of the accuracy with which distortion and polarisation
of the surrounding lattice and the electronic states are

being treated.

Preliminary calculati
emission process of the

followed by the detailed
unrelaxed excited states

ox ide "

ons modelling the absorption and

F* center wiIl be presented first,
investigation of the ground and

of the F* center in magnesium

62
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4"1 FO CENTER

An elecLron trapped in an anion vacancy is calred an F

center in arkari harides whereas an analogous center in
alkarine-earth oxides, the divalent cousins of arkari
harides, is carled. an F* center. rts structure has been

verified by the ENDOR experiment IUC 67] which maps the
density of the electron trapped in the vacancy through its
hyperfine interaction with the nuclear moments of the r¡ear-

neighbor lattice ions"

The F* center has a number of electronic states and the
optical absorption produces a transition of the trapped
electron from the ground state to the first excited state.
we note here that it is analogous to a one-erectron atom,

He* and we may therefore raber its erectronic states as 1s,

2s, 2p and so on" The first allowed optical transition is
then between the 1s and 2p states. since such a transition
takes place on a time scare short in comparison to lattice
vibrations, it will occur while the lattice atoms remain

essentially at some fixed configuration, This is the Franck-
Condon principle,

In the exciÈed 2p st.ate,

changed, and the interaction
neighboring ions (which are

configurations) is different.
in the relaxed excited st.ate(

the charge distribution has

of the electron with those on

nolr relaxed to new Iatt ice

Thus, the electronic energy

2pn) has changed, Now, from
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this state, t,he luminescence Lransition(2p* 1s*) may occur

at a f ixed latt ice conf igurat ion . The guant.a of energy

involved in optical absorption and luminescence transitions
are t.herefore di fferent and this energy di fference is
ref erred to as the St.okes shi f t "

The optical properties of

oxide are weIl-documented exper

absorption band is reported

corresponding emission band at
Stokes shi ft.

F* center in the magnesium

imentally [Hend 80] . The F*

to be at 4.95 eV with a

3,1 3 êV, suggesting a large

Magnesium oxide(ugO), the host lattice of the F* center
in the present work, calls for a brief comment here. It
belongs to the family of alkaline-earth oxides and is
strongly ionic in character; the anions and cations having

the rare-gas electronic configurations" It has an NaCl

strucLure, with a lattice parameLer of 4.2112 ÐA (i.e. near-

neighbor dist,ance(a)=2.1056 ål . There are two atoms per

unit ceIl in which anions and cations form two

interpenetrat ing face-centered cubic sublattices. Thus,

anions and cations are arranged on alternate cube corners

along the <1 00> directions, (a+d---+be <<J4J+>_*e+a*e.s------a+e

a++e¡+na+i@e8'b-Lr@) and the {1 1 1 }

planes are alternatively composed entirely of anions or

cations. Several band strucLure calculations have been

carried out, and these are in general qualitative agreement



as to the broad features of the valence and

bands lCopn g0 and references therein] .
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conduction

4.2 THE MODEL

The program package, ICECÀP, facilitates the computing of

defect properties in ionic materials systematically and

routinely in a standardized model. In this model, the

embedded (quantum-mechanicar) cluster consists of an excess

electron, that is associated with an oxygen vacancy, plus

six nearest-neighbor magnesium(ug2*) ions (rigure 4. 1 ) .

These Ylgz* ions are represented by shell model (su),
pseudopotent ials (roproL/BHs), Kunz-KIe i n locaI i sed

potential (xnrp) and gaussians centered on ionic sites,
referred to as Hartree-Fock ions, in a series of

calcurations, presented here. The surrounding rattice is
treated in the shell model"

sherr moder parameters for Mgo crystal are taken from the

work of Sangster and Stoneham ISS I 1 ] , wi th Mg 2 * ions

unporarisabre and invorving only nearest-neighbor short-
range interactions but with gz - ions polarisable and

including second-neighbor short-range interactions as werl.
These parameters which are given in Table 4,1, reproduce the

perfect lattice properties of Mgo crystal reasonably

well (tabIe 4 "2') .
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Figure 4.'l : F* center in HgO crystal.
Sol id ì ine indicates (quantum-mechanical) defect cìuster
region. lons with dashed ìine are included in the cluster
in the later part of the study.
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TABLE 4.I

Parameters of the Shell-model and Short-range
Potent ia I (V = A exp (-r /e) - cr - 6 )

Shel I -model
pa rameter s

I'tg t *

02-

Shel I

Cha r ge
(e)

Spr i ng
Cons tan t
(eV A- ")

unpolarisable

2.8 t t+6.125

Potent i a I

l'19' *

0z-

l,lg r *

A

(ev)
I
(A)

c
(eV A 6)

02-

02^

l'1g t *

1275 "2

2276\.3

0.30I2

o. r 4go

0.0

20 "37
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TABLE 4.2

Calculated and Observed Perfect Lattice properties
of l"lagnes i um 0x ide.

Proper t i es Calculated 0bserved

I att i ce spac i nS (R)
(near-nei ghbor di stance)

dielectric constants
t-
¿;

I att i ce energy (eV)

elastic constants
(ì0r' dynes/c¡¡z)

ct l

ct2

c44

2"106

9.77
2'96

-40.9

3.7 |

1 .57

1 "57

2. to6

9.86
2'96

-l+0.4

2.89

0.88

1.55
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4 "3 PRELIMINARY CALCULATIONS

Our preliminary calculat
cenLer, either placed alone

nearest-neighbor cations

ions involve the one elecLron F*

in a shell model lattice or with
represented by pseudopotentials

localised potential (Xxfp) or

energy, denoted Ea

calculaÈions are

(roproL/BHS), Kunz-KIe in
Hartree-Fock ions"

For the one electron F* cenLer, s- and p-type basis
functions(gasis Fc) are used for ground and excited states
of the F* center respectively, Basis FC consists of g

gaussian primitives. Table 4"3 rists the actual val_ues of d

along with their corresponding range, defined by (z o)-1/2.
This range is the distance at which the charge density of an
s-type gaussian is e- I times its maximum, and of a p-type
gaussian is maximum. For Mg2* ions (atomic number:12) which
are represented as Hartree-Fock(HF) ionsr wê use Huzinaga's
smallest optimal minimal basis set [Huzi g4] , referred to as
Basis MGA. rt is based on free-atom contractions(3,3/3) for
1s, 2s and 2p cation states. we note here that the numericar
varues in Lhe contration symbol represent the number of
primitive Gaussians contracted to singre atomic orbitars.
Basis MGA is listed in Tabre 4.3 which also incrudes an

oxygen basis set(gasis oxA) used in the later part of this
work "

For each electronic optical transition
for absorption and Ee for emission, Lwo
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TABLE 4. 3

Basis Sets Associated with Vacancy, l,lgr* ions
and 02- i ons.

(i) Vacancv

Basis FC

(ii) o2--lons

type exponent r ange

s/p o.97\
O.2I+\
0.t08
0 .061
o "027
0.0r5
0.0ì0
0 .007
0 .004

O. l8a
0.36a
0 .54a
O.72a

.08a

.44a
1.80a
2.ì0a
2.80a

where a = 3.979 bohr, the nearest-neighbor distance in HgO.

Bas i s OXA

ß,3/3)

type exponent coefficient

I ir t

lz.t

281 .86658
42 .4 I 600
9.09562

r ì .46603
o .88786
0.27880

8.0\72\
1.668\2
0 "37251

o.0690599
0.3931595
0.6656691

-0 .0808 I gg
0.5820895
0 .\97 1596

0.12\2709
o.\765%5
0.6 I 30445

lzp'
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(iii) flg2*-tons

Bas i s llGA
ß,3/3)

Bas i s t'lGR
(3,3,1/3,1)

type exponent coefficient coefficient

I l. ,

Iz=t

650 "64367
98.37078
21 .322\9

27.97738
2.32652
o"8t808

7 .\7

23 "21663
5.00222
1 .20\65

0.1973

0.0680297
0.3907384
o .667267 3

-o .0867 ì 95
o.5856969
o.\86\97\

o.l2t4603
o.\7g2gtt+
0.5989\17

| "'
lzpt

I zp'

o.afigt+z
o. t88603
0.275350

-0.066825
0.34 I I 60
o.2go5gg

1.0

axial-
o.o4gl78
0. I 95580
0.242770

non-ax i a I
0.044945
0 " ì 78684
o.221938

1.0
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required; one for the initiar sLate in which the lattice is
relaxed to equiribrium with the cluster, and the other for
the finar state in which the ionic positions and
porarisations are herd fixed in the initial state
conf igurations. Thus we have four sLates, namely, ground
state(cs), unrelaxed excited state(unRes), relaxed excited
state(nes) and unrelaxed ground state(u¡rncs). The rattice
configuration is Lhe same for both states of a transition.
For absorption, they are determined by the ground state and
through symmetry are equal (d) for aIl six nearest-
neighbors" For emission, they are determined by the reraxed
excited state, which is assumed to invor-ve a p-type state
oriented along the z-axis. fhe two axial neighbors are
Lherefore displaced to (dz) whereas the other four neighbors
are displaced equally in the x-y prane, radially to (dx).
The mean radial distance(RMs), <rz>1 /z, represents the
extent of the rocalisation of the er_ectronic density that is
associated vrith F* center elecLron in a given state and is
different for each state. we present the resurts in Tabr.e
4"4" The calcurated transition energies are compared with
corresponding experimental values in Tabre 4.5"

Referring to Tables 4.4 and 4.5, we note that a single
guantum-mechanicar erectron(witrr Basis Fc) in a sherr model
lattice reproduces experimental absorption energy very werr,
and emission ener.gy roughly e âssociated ¡¡ith reasonabry
well-localised !ùavefunctions in ar1 four states. However,
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TABLE 4.4

Results of Prel iminary Calculations.

(Basis FC - Vacancy )

(a) sfl-NN

(b) KKLP-NN

(c) ToP I oL-NN

tB., I ,r. ,,
1.03a

I

r9.38 I ,,r .Sl

IREs I UNRGS
--t------

I2t.93 I tg.tz

(1.07a,0.98a)

0.lta | 0.76a
I

I--t------

--t----
I

I22.95 I z0.so

(l.iOa,O.92a)

1.63a I 0.73"
I

I--t------

energy (eV)

d (dx, dz)

RtlS

energy (eV)

d (dx, dz)

RÈ1S

energy (eV)

d (dx, dz)

Rl'1S

-t---------_
I

2s.28 | ze.tz

'l.09a

1 .77a I 2.69"
I

i.03a

0.68a .l.5ìa

--t-------_.
I25.53 I Qs.AÐ

(l.loa,l.0a)

2.3\a I z.4la
I

continued...
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(d) BHS - NN

(e) HF -

energy (eV)

d (dx, dz)

R¡1S

energy (eV)

d (dx, dz)

Rt'lS

21 "07 | 26 "31

.l.0!a

0.63a I z.l4a
I

I-t----------

25.\6 I zl"çS

(l.lOa,l.0a)

2.21a I O.j3a
I

I--t------
NN

(Bas i s ÈlGA)

-32256.90 -32251 .7 |

2.17a

.l.04a

-32253.38

(.l. ì0a,

2.23a

-3225\.\5

ì.0a)

0.73a0.64a
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TABLE 4.5

Calculated Absorption and Emission Energiesof the F *-center.

Absorpt i on
Energy (eV)

Emission
Energy (eV)nearest-nei ghbors

Shell-l'lodel

KKLP

TOP I OL

BHS

HF (Basis flGA)

4.8¡

5. t5

0.84

5.2\

5. t9

2.8t

2.\5

(-0. ¡o)

I .83

1 .07

note': F*-center absorption and emission energies are reportedto be 4.95 uV and J.lg eV respecrivelyiHend BOI
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when the ion-size effects are introduced, the picture
changes. with KKLP, BHS and HarLree-Fock ne.arest-neighbors,
the ground state remains well-locarised, with slight lat.tice
distortion @'5%)" simirarly, in the unreraxed excited state
sre expect to find the vravefunction locarised inside the
vacancy. But. r oÍl the conttary, Lhe wavefunction does not
remain locarised, and spirls welr beyond the nearest-
neighbor distance(nuS

function has significant amplitude beyond the nearest-
neighbors. The agreement vrith the experimental absorption
energy thus becomes poorer,

The relaxed .*"it"a state(nes) wavefunction is simirarly
diffuse, but the carcurated emission energies are very
wrong(rable 4.5). we note how quadrupole consistency
associates an obrate nearest-neighbor configuration with the
prolate p-type state REs r¿ravefunction oriented along the z_
axis, in all cases(tabre 4"4). However, with ToproL, the
calculated results are compretery unphysical, with extremery
small absorption energy. The s*type UNRGS state turns out to
be above the p-type RES state, resulting in a negative
emission energy. It appears that the ion-size effect of
TOPIOL is greater than that of either KKLP/BHS or Hartree_
Fock' iudging by wavefunction diffuseness(Tabte e"q).

Thus, the resurts suggest that roproL pseudopotentials do
not prove to be appropriate model elemets for representing
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the electronic structure of Mg 2 * ions in the present

calcurations, Furthermore, the ion-size effect of anions on

the z-axis in UNRES and RES p-type states seems to be

importanL as p-type functions¡ orienLed along the z-axis
spill beyond the nearest-neighbor. The anions(oxygen ions)

are the second nearest-neighbors and are represented by

shel1 model point-charge ions in these calculations,

Similar result.s have been obtained by us wi

vacancy-centered basis function (consisting

primitives) in an earlier investigationlvp B6]

tha

of5

di f ferent
gauss ian

we now associate Kunz-Klein locarised potentiar (KKLP)

with the ions beyond the nearest-neighbor ions of t.he

vacancy to provide the ion-size effect, since neither Toprol
nor BHs pseudopotentials are avairble for anions. The

results are given in Table 4"6" Herer w€ find that the
introduction of KKLP localises the UNRES !{avefunction (nUS

a). But the carcurated absorption energy turns out to be

totally wrong.

rn examining the Mulriken popuration over vacancy-

centered basis function(¡asis Fc), we notice that some of
the primitives have sizeable negative Murliken popuration in
both the ground and unrelaxed excited states (tabre 4,7, 

"

For UNRES state, the dominant components correspond to the
primitives of ranges 1 " 08a , 1 "44a and 1 .80a respectivery;
the first two have opposite signs, thereby leaving the third



b1 *,

2 r3rl+,5,6,/ nearest-nei ghbor
ions of vacancy

Absorpt i on Enerqy (eV)

( ¡ ) Ground State :

energy (eV)

d

ltlulliken Population
vacancy

(i i) Unrelaxed Exci ted State :

energy (eV)

f,lul I iken Popuìation -
vacancy

Rt4S

TABLE 4.6

F +-center : i on-s i ze effect

(Basis FC - vacancy )
(Basis I'1GA - flgz' ion)

5"19

-32256.90

1.04a

r.or63

0 .64a

-32251 .71

r.02r8

2.17a

Rl'1S

7.65

-32261.O8

l.0la

t.0ì02

o .58a

-32253 "\3

r.0238

.l.03a
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BASIS FC
(Vacancy)

TABLE 4.7

Vacancy Basis Set : llulìiken Population

(Basis t4GA - flg,*-ions)
(no KKLP ion-size effect)

llulìiken Population
exponent
range (a) GS UNRES

0.t8
0.36
0 .54
o.72

.08

.44

.80
2.t0
2 .80

0 .0006
-0. r 828

.9251
-1.2521
r.0r74

-0.88 I I
o.5967

-0.2252
0.0r84

0 .0007
-o " 0478

o .5848
- r .2060
2.3687

-2.3398
2 .4440

-0.8505
o.0677
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one as a result.ant whose range is werl-beyond the nearest-
neighbor distance. Thus, the derocalisaLion appears to be

spurious and may be due to overlapping ot primitives,
forming the UNRES wavefunction. The calculations with KKLP

ion-size effect have arso sho¡vn negative Murriken population

associated with some of the primitives of the function,
Basis FC.

Experience has shown that negative Mulliken popurations

for basis orbitalsr ârising as they do from predominance of

overrap compared to direct contributions, should be taken as

an indication of present, or incipient linear-dependence

failure of the carcuration[w]. Hence vre go back and rook

crosely into our model erements, .namely vacancy-centered and

Mg2* basis functions in the defect cluster for ground and

excited states of the F* center.

4"4 GROUND STATE

For the ground stater w€ start with a single gaussian,

centered at the vacancy and optimise its range in a defect
cluster; a vacancy and six nearest-neighbor Mg2*ions

represented by Basis MGA, The optimum range of the s-type
ground state wavefunction comes out to be 0.63a as shown in
Figure 4.2.

g.le now look into the other model element, Mg2 * basis

set (Basis MGÀ) and notice that it. is constructed by
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optimisation of the Hartree-Fock energy of a free Mg atom,

This choice places heavy emphasis on representing the core

orbitalsr âs these orbiLals conLribute most of the total
energy of an atom. If t.he atom is placed in a cluster
environment,, additional diffuse primitives may be needed to
describe its (electronic density) distortion in the cruster
environment" Furthermore, Basis MGÀ does not take account, of

core polarisation in an asymetric environment, provided by

the vacancy to nearest-neighbor Mg2*ions in our defect
cluster. we therefore reoptimise Basis MGÀ in a realistic
crystalline environment.

I n bas i s-set opt imi saL i on , vre de-contract the ( f ree )

atomic basis-set, re-contract them in the (relaxed) tattice
containing the defect, and optimise the ranges of additional
s- uld p-type primitives at ionic sites"
The procedure consists of the following steps :

( i ) First r w€ de-contract Basis MGA (3,3/3) " primitives are

now arlowed to vary independently in the UHF carculation
increasing the number of basis functions from 31 to 91 in
the defect cluster
(ii) The serf-consistent sorution of the cluster, obLained

from rcEcÀP calcurati.on provides new contraction
coefficients for the basis functions associated with 1s, zs

and 2p orbitals.
(iii) I,te nov¡ contract the 1s orbital onJ-y and repeat the

calculation with decontracted 2s and 2p orbitals. From this
calculation, we contract the 2s orbital.
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(iv) Fina1ly, the next calcuration with conLracLed 1s and zs

orbitals gives the neÞr contraction coefficients for 2p

orbi tal s "

This reoptimised Mgz* basis set, referred to as Basis MGR

is given in Table 4"3 and is a contraction of (3,3/3) " We

notice that the contraction coefficients of axial p-type

orbital (pointing towards the vacancy) are different from

the other two non-axial p-type orbitals, reflecting the

asymmetric environment for the nearest-neighbor Mg2* ions in
the defect cluster.

We now add primitives of both s- and p-type to Basis MGR

to increase the flexibilty of the basis set" The most

widely used quality criterion for the basis set has been the

total energy test and is adapted in our work. care has been

taken to avoid the negative Mulliken popuration on the basis

functions. Accordingly, s- and p-type primitives of ranges

0"065a and 0.4a repectively gives the minimum total energy

for the defect cluster for the ground state(figure 4.3,
Table 4.8)' we have incruded these primitives in Basis MGR

for our subsquent calculations.

Referring to Figure 4"3, we notice that the addition of

an (optimised) s-type primitive to Basis MGR lowers the

total energy of the cluster by 60 eV. This primitive is of

short-range (-0.065a), indicating the need of an additionar
s-type basis function for core states in the set, Basis MGR.
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TABLE 4.8

Ground State - Tota I Energy of the C tusrer (f . (e) -f,tg6)

È192* Basis Set Energy (eV)

(a) Bas i s ltlGA (3,3/ 3)

- decontracted

- contracted
ls

I s,2s
l s,2s, 2p

Bas i s llGR (3 ,3/ 3)

(b) * sl

(c) * p'

-32256 "06

-32271.13

-32270.92
-32196 . ) 2
-32195.66

-32195.66

-3225\.38

-32258.9t+

(b)

(c)

(d)



The additional_ (optimised) p-type
the total energy significantly and,

expected to describe t.he distorL
density of Mg2* ions in the cl_uster
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primitive does not lower

in a limited sense, is
ion of the electronic
envi ronment, .

However, crose examination of Table 4.g reveals that the
total energy of the defect cruster r+ith reoptimised þ1g2*

basis set(nasis McR) is about 7s ev higher than that with
the deconLracted Mg2* basis seL. This increase in the toLar
energy may be understood from the fact that the conLraction
coefficients of the basis functions associated with 1s and
2s orbitals are not obtained from pure 1s- and 2s-type
eigenstates but instead are obtained from admixtures of 1s-
and 2s-type eigenstates of the defect cruster.

we have therefore modified our procedure of basis-set
optimisation and have obtained a nevl set of contraction
coefficients for the basis functions in the following way :

(i) we do an rcEcAP calculation with the decontracted basis
set, Basis MGB" This set is a smallest optimal minimar basis
set for Mg2* ion(table 4"9, Huzi B4). The self-consistent
solution of the cruster then gives the nee¡ contraction
coefficients for basis functions associated with 1s, zs, and
2p orbitals.
(ii) we now read the coefficients for s-type functions(6 in
the present case) from 1s- and æ** 2s-type eigenstates to
form contractions for 1s and 2s orbitals.
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TABLE 4.9

(a) Ground State : Total Energy of

Bas is I'tGB (3,3/3)

- decontracted

- contracted
lso2s

ìs,2so2p

Bas i s llGT (6 ,6/ 3)

(b) lïg2" Basis Sets 2

rhe cìusrer (r. (e) -flg6)

Energy (eV)

-32256.26

-32271 .t+1

-3227 1 "39
-3227 1 .39

-3227 1 .39

Bas i s l4GB

ß,3/3)
Bas i s llGT

(6,6/3)

type exponen t coefficient coefficient

lz"t

axial-
0.033577
0.13\761
0.172058

non-ax i a I
0.058927
0.236905
0.300990

I ir t 65\.890970
98 .727 577
21.335201
28.128657

2 .295112
0.799752

65\ "890970
98 .7 27 577
21 "335201
28 .128657
2.295112
0.799752

23 .805 I 08
5.1 16593
1.231392

0.067567\
0.390 I I 95
0.6683850

:

-

-o " 0863368
0.5978077
0.47\6$o

0.il82t92
0.47488 I 6
o.605toto

O.O228t+5
0.1275\2
0.t87t78
0.03291 I

o .028823
-0.0ì t074

-0.0 ì 0839
-0.066309
-0. I tl{28t
-0.05ì tg3
0.379727
o .3ot \23

lzpt



calculation with
Lhe nerd conLracLion

The resulting Mg2* basis setr f€ferred to as Basis MGT,
is a contraction of (616/3) and is given in Table 4.9. t{e
notice here that the totar energy of Lhe cruster either with
decontracted set or with reoptimised set remains the same,
thereby indicating the improvemenL in our basis-set
optimisation procedure.

Recently, Causa et aI[cDpR g6] have reported a basis set
for the Mg2* ion, obtained frorn perfect lattice calculations
of MgO crystal" rt consists of the contraction (g16/6) and
is therefore expected to represent Mgz* core states more
adequately than the basis sets used here. However, we
cannot reoptimise this set in the rattice containing the F*
center as a decontracted set with 1g2 basis functions is too
large t.o handle by our computer system.

The calculated ground state energy of the F* center with
the different Mgz* basis sets is given in Table 4"10. The
optimised range of the vacancy-centered s-type basis
function remains approximately the same, indicating a werr_
localised wavefunction for the ground state of the F+ center
in Mgo crystar. AJ-so, Murriken population shows that there
is no charge transfer either from Mgz* ions to the vacancy
or viceversa and approximately one erectron..is locarised on
the vacancy.

(iii) The nexr

orbitals gives

orbiÈaIs.

contracted 1 s and

coef f ic ients for

74

?s

2p
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TABLE 4. .lO

Ground State : 1.1g2 * Bas is Sets

(r.(e)-¡tg6 ctuster)

Bas i s Set

Vacancy-cen te
Basis : range

¡4GR

ß,3/3)

¡lGR + s'* p'

(3,3, ì /3,1)

14GT

(6 
"6/ 3)

ed
0.60a

energy (eV)

d

llulliken
Population
(vacancy)

Rt'lS

-32t95 .7 4

ì.04a

r.0054

O.J2a

o.53a

-32258.9\

1.03a

0.9969

0 "63a

0 .50a

-3227 t .7 3

.l.03a

r.0054

0.60a
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A final set of calculations has been done in order to
assess the ion-size effecL of second nearest-neighbor gz-
ions onto the ground state of the F* center. The defecL
cluster nonr contains 1g1 electron associated with a vacancy,
six nearest-neighbor ( 100) Mgz* ions and twelve second
nearesL-neighbor (110) o2- ions. The third (111) and fourth
(200 ) nearest-nighbors are associated with Kunz-KIein
localising potentials.

For gz- ions (atomic number:g) which are represented as
Hartree-Fock ions, we use two basis sets, namery Basis oxÀ
and Basis OXT. Basis OXA consists of the contraction
(3,3/3) and is constructed by optimisation of the Hartree_
Fock energy of a free oxygen atomlHuzi g4]. It is 1isted in
Table 4"3" Basis oxr cons.ists of the contraction (717/4)
and is constructed by reoptimising the contraction
coefficients in a perfect-lattice configuration of Mgo
crystal in the following way:
(i) In our o2--centered cluster, the six nearesL-neighbor
Mg2* ions are associated with Basis MGC (q,g/a, Huzi 94)
whereas the second nearest-neighbor (110) gz- ions and the
third nearest-neighbor (111) Mg2* ions are associaLed with
Kunz-Klein locarising potential in the perfect-rattice
configuration.
(ii) We now take the set Basis OxB (4,3/4, Huzi g4) and de_
conLract it" we then do an rcEcAp calculation with the
decontracted Basis oxB" The serf-consistent sorution of the



cl-uster provides the new contraction coeffic
functions associated with 1s, 2s, and 2p
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ients for basis

orbitals of 62-
10n .

(iii) we read the coefficients for s-type functions (l in
the present case) from 1s- and and 2s-type eigenstates to
form conLracLions for 1s and 2s orbitals.
(iv) The next calculation with contracted 1s and 2s orbitals
gives the new contraction coefficients for 2p orbitals.

The resulting gz- basis set(easis oxr) is given in Table
4'11 ' This tabre also includes the total energy of the
perfect-lattice cluster with contracted, decontracted and
reoptimised 02- basis sets, showing a gain in the total
energy of nearly 11 ev when r{e reoptimse the basis set.

The calculated ground state energy of the F* center in
the cluster(Mg6o12) with different Mg r*/or- basis sets is
given in Table 4.12' Referring to this tabler wê notice
that the ground state remains werr-locarised with slight
lattice distortion, the (100) Mgz* ions relaxing outward
whereas (110) 9z- lons relax inward, by about 3%
respectively. However, the calculation with Basis OXA(associated with gz- ions in the cruster ) shows that
approximately 1 "7s electron is locarised on the vacancy due
to a substantial charge transfer (_,6%) from each of the
tweLve (110) 62- ions to the vacancy. But when s¡e associaLe
an improved basis set, Basis oxr, with these 02- ionsr r{€
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TABLE 4. I I

(a) Toral Energy of the perfect-Latt 
i ce C I uster (¡ig60)

l'1gz* ion.s :

Energy (eV)

Bas is tlGC
(t+,3/4)

Basis 0XB (L,3/tr)

- decontracted
- contracted

I s,2s
ìsr2sr2p

Basís OXT (7,7/4)

-34$5.a9

-34446.21

-34\46 "24
-3t44\6 " 17

-3\446 . t7

(b) 02- Basis Sets :

Bas i s 0XB
(4 ,3/ L)

Bas i s OXT

0 ,7 /4)
type exponent coefficient coefficient

I l. t

lzrt

lzpt

821 .83%\
123.68182
27 .66617

7 "29957
10.60696
0.9t76\
0 " 28000

8z I .839¡4
123.68192
27 .66617
7.29957

to.60696
o.9176\
0.28000

t7 .750370
3.86468
t .o\772
0.28000

o. o i 98745
0. l3l0g3t
0"4577fi9
0.5308957

:

-0.08850 I 7
0.5838364
o .\9339\6

0.040394 I
0.2236495
o .51 20991
0.4\43718

0.0ì ggTo
0.133227
o.\\6412
o . \7 1g2o
0.052033
0.o\3176

-o.ot3ì79

-0 .003963
-o "029757
-0. t06946
-o.117476
-0.074976
o .463203
0.637957

o .03\47 \
o. lgog2l
0.370858
0.6 I I 384
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TABLE 4. ì2

F*-center : Ground State

(r. (e) -¡,tg6oì2 clusrer)

Vacancy (0oo)
tnn ions (100)
2nn ions (l io)
J,4 nn ions

Vacancy- centered
Basis : range

energy (eV)

d (t00)
d (t t0)

RÀ1S

llulliken population -
vacancy

(too¡ Ê'lg'* ion

(l lo) oz- ion

Basis FR

Bas is llGR
Bas i s OXA

KK LP

Basis FT
Bas i s lçlGT

Bas i s 0XT
KKLP

0.53a

-5627 1 .oB

1.03a

, 1.00a

o .87a

1.7512

I 0 .0000

9.9409

0 .50a

-56sls.oe

ì.OJa
0.97a

0.85a

1 .o759

9 "9993

9 .9940
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find very little charge transfer ( 0.6%) from 02_ ion to thevacancy" The vacancy now contains approximately one
electron" Thus, Mulliken population analysis demonstrates
the effect of 'reoptimisation, of the (free) atomíc basis
sets in Lhese types of the calculation.

Theoreticar- prediction of the hyperfine constants has
long been recognised as the most criticar test of the defect
moder. The isotropic constant(a) is proportional to theelectron spin-density at the nucreus and thereby furnishes
an exact determination of the wavefunction ampritude in the
ground state" we therefore calculate the isotropic constant
to test our model elements for the ground state of the F*center in MgO crystal.

4"4"1 Ground State Isotropic Hvperfine Constant

The F*-center electron which is an unpaired eLectron
shows zeeman splitting in the presence of a magnetic field"
rt arso undergoes mutual magnetic interactions with
neighboring nucrei which have non-zero nucrear spin, reading
to further splittings. The ratter phenomenon is referred Loas hyperfine interaction. The theory of hyperfine
interaction in coror centers has been reviewed by seider and
Ivolf ISçv 6g] " Neglecting guadrupole ef f ects, the spin
HamilÈonian is written as :

I, .A"SE
û

E
2.t

H 9¿Fa Þ'9 9* Pi,r E "I þuo

(4.4.1)
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in which Fa and ,u,.¡ are the electron and nuclear Bohr
magnetonsr 9¿ and 9¡q are the erectron and nuclear g-factors,
g and r, are the erectron and nucrear spin operatorso _B is
the appried magnetic field, and å is the (second rank)
hyperfine interaction tensor. The summation is over arr the
nucl-ei in the system. (For Mg2s nucleus, 9Âi = -0.3419 ISW

681 )

The first two terms in (4"4.1) represent the electron-
Zeeman and the nuclear-zeeman effect respectivery, and the
last is the hyperfine structure term which splits each
electronic levet into 2I+1 hyperfine levels.

The hyperfine Lensor, å is generarly written as the sum

of two parts, a scalar 'a' and a traceless tensor '!'. The

scalar is then referred to as the isotropic hyperfine
interaction constant,

hyperf ine structure.
and '9' describes the anisulropic
The magnitude of rhe nrJ.rfine

interaction is directly related to the extent of electronic
overrap onto the neighboring nuclei. The isotropic part
depends on the amplitude of the F*-center electron at Lhe

nuclear site, and consquently rel-ates to the radiar extent
of the wavefunction, The anisiropic part involves a

weighted average of the erectron-spin density, and this
turns out to be relatively sensitive to angular variations
in the wavefunction,



Following Stichter IStic 7B] ,

be written as :
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the isotropic constant can

r(3r) - r.4 9¿]re 9*.trrus(R"r)

(4 "4.2)
where 5- is the distance measured relative to the ;-¡ -th
nucreus and s (R;r) is the spin density at the nucleus. Here,
lre use ,Ða =0 "92731x10-20 ergs/Gauss, ,¡rñ =0.50504x10-23
ergs/Gauss, and s has units of cm-3 when'a' is measured in
ergs. Exper imental i sts quote 'a' in units of
frequencies(unz). The conversion factor into energy E

expressed in ergs is E(ergs)=106h(Mhz) where h is pranck's

constant "

The spin density s(n) for a N-body system is rigorously
defined as :

S(R) = 2 IyÊ(x1r...xru) å=(Bl^t, (xr,"..*ru) d*,...d**
(4.4.3)

where, xí represents the space-spin coordinates ( r; , d-r, ) ,
a{i is the slater determinant of one-electron orbitals

Øt ,*r) ... Ø(x*) and ó, t3l is the z-component of the totar-
spin operator at point R given by :

sr(n)

Substituting (4"4"4) into (4.4.

of the Øs and the fact that fzi

for the ith electron, the N-body

= ï- Fr;d(t-, -R)

3 ) and using

is the Pauli

spin density

(4"4.4)

orthonormal i ty
spin operator

becomes :
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s (R) { ¡ lø (Bll'- ¿ lø (n)12 }
9[:cø tP t,
Vy åa;n (4 "4 "5)

Thg self-consistent sorution of the defect cluster
produces a set of Øs from which s(R) can be carcurated. we

have writt.en a subroutine for spin-density carculation arong

the li nes suggested by Kung [t<ung 81 ] " The value of the

isotropic hyperfine constant is then compretery determined

by equation (4"4"2),

4.13 
"

and the resul-ts are listed in Table

The F* center in Mgo crystal rr¡as first identified by

Wertz et aI " [wewS 57] through its electron spin
resonance(asn) spectrum. The ESR spectrum consists of an

intense ' free-electron' absorption due to the F*-center
erectrons interacting r.¡ith only non-magnetic nuclei, and a
number of weaker but f airly v¡eI1-resolved hyperf ine
satellites from centers with one or more Mgzs isotopes
(10.1% abundant, r=5/2) in <1oo> nearest-neighbor sites
adjoining the vacancy. Unruh and Culvahouse IUC 67J in an

electron-nuclear doubre-resonance (eNooR) experiment have

extended these results and have obtained an improved values

for the isotrpic constant(a/U = 11.03 + 0"02 MHz).

commencing with Table 4"13, it can be seen that agreement

with experiment gets progressively better as r{e improve the
Mg2 * basis set and incrude rattice reraxatíon in our

calculations" This is what ?re expected since the isotropic
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constant(a/n) is sensitive to the chosen basis set.. Also the

relaxed-lattice configuration shows an outward relaxation of

the nearesL-neighbor Mg2* ions which is consistent with the

ENDOR experiment [uC 67] " The calculated value of (a/h) wittr

our best Mg2* basis set(gasis MGT) comes out to be 13"12 wtz

in a configuration corresponding to outward reraxation ( 3%)

of nearesL-neighbor ions, Thus, it can be concluded that
Basis MGT is an adequate basis set to represent Mgz* ions in
the ground state of the F* center for t.he purpose of the
present calculations.

Now hre include (110) çz- ions as the Hartree-Fock ions in
Lhe defect cruster and associut. them with the set, Basis

oxT. When the nearest-neighbor ions are held at the

perfect-lattice positions, the varue of (a/n) comes out to
be 21 "24 wrz showing an increase in (a/n) witn the addition
of these 02- ions in the cluster. This is what we expected

since the calculation in the perfect-Iattice configuration
has shown an increase of about 13% in the charge density
centered at. t.he vacancy. However when we relax the lattice,
(a/n) turns out to be 6"94 }4[Iz, a surprisingly 1ow value. À

possible explanation for this substantial decrease in (a/tr)

with the rattice relaxation may be a stronger ion-size
effect of (110) g2- ions onto the F*-center wavefunction.

Recall that the F*-center wavefunction is compact in the

ground state and the extent of its effect on the neighboring
.'¡¿g'5 nucleus determines the varue of (a/rr) . rn Lhe reraxed-



a'^¡ ìt (4

lsotropíc Hyperfine
f'19 2 s of

TABLE 4. r 3

Constant (a/h)
the F * center

for the nearest-neighbor
in 1190.

perfect-lattice
configuration

relaxed-lattice
configuration

(i) F*(e) - fis6 cluster

Bas i s l'lGA (3,3/ 3)

Basis l,lGR (3,3, ì /3,1)

Basis llGT (6,6/3)

26.73 ilHz

20.2j tlïz

ì 7 .0.l lvlHz

21 "2\ tlïz

21 .63 t Hz

t6 "21 nïz

13 . 12 lIHz

(¡i) F.(e) - ¡tg60t2 Clusrer

Basis ÈlGT (6,6/3)
Basis OXT (7,7/\) 6 "9\ nnz

note : The experimental value of (a/h) is reported to be I LO3 t'iHz.
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Iattice conf iguraLi.on, the gz- ions move inwardly and

therefore the F*-cenLer wavefunction becomes more compact

than that in the perf ect-lattice conf iguration. [.Ie also note

here that the nearesL-neighbor Mg2* ions relaxes outwardly.

Hence t.he cumulative effect of the relaxation reduces the

extent of interaction of Lhe F*-center wavefunction with the

Mgz s nucleus. This calculated interaction is now

significantly less than that required to represent the

observed hyperfine interaction in the ENDOR study, and

thereby representing a low value of (a/f¡). We may therefore

conclude that the details of the electronic structure of the

F*-center ground state are sensitive to the O2- ions,

IAIe now turn our attention to the unrelaxed excited state
of the F* center in magnesium oxide"

4.5 UNRELÀXED EXCITED STATE

For the unrelaxed excited state (UHneS), we use either
shell model or the basis set(gasis MGR) to represent Mg2*

ions in our defect cluster and optimise the range of p-type

vacancy-centered fuction, oriented along z-axis. The

results are presented in Figure 4.4. Accordingly, the UNRES

wavefunction becomes diffuse with the introduction of the

ion-size effect for Mg2* ions, conÈrary t.o our expectations"

The optimised range of the p-type function comes out to be

well-beyond the nearest-neighbor distance. AIso the use of

Basis Causa which represents Mg2* core states adequately

does not change the picture at all(Figure 4.4).



0Lr,^.

F i gure 4.4 : 0ptimisation of
i n the unre I axed

the vacancy-centered bas i s funct i on
exc i ted state (F. (e) -t4g6 c luster) .
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The diffuseness of the UNRES wavefunction may be an

art.ifact of Lhe absence of the ion-size effect of the second

nearest-neighbor(110) gz- ions of Lhe vacancy. rn our
calculationsr wê have considered these 92- ions as shelr
model ions which do not provide pauli exclusion to the p-
type vacancy-centered function. To verify this supposition,
we now associate the Kunz-Krein locarising potentials with
second nearesÈ-neighbor(110) O2- ions, thi rd nearest-
neighbor(111) Mg2* ions and fourth nearest-neighbor(200) gz-

ions and optimise the range of the uNREs v¡avefunction, The

resurt is shown in Figure 4.5, indicating that the (weak)

KKLP ion-size effect does not rocarise the UNRES

wavefunction.

Now we replace KKLps from (110) gz-

in our cluster, expecting to provide

effect to the UNRES wavefunction. It
that the UNRES yravefunction becomes

optimised range of about 0.5a (rigure

calculation demonstrates that (110)

important role in determining the exc

center and their ion-size effect must

in t.he def ect cluster.

ions with Basis OXA

a stronger ion-size
comes as no surprise
localised with the

4.5b) , Thus, this
gz - ions play an

ited state of the F*

therefore be included

The absorption energy carculation constitutes our first
test of the treatment of the unrelaxed excited state in the
defect model. we therefore calculate absorption energy
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Figure 4.! : Optimisation of
i n the unre ì axed

the vacancy-centered bas i s funct i on
exc i ted state (f . (e) -t'lg6012 cl uster)
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(which is the difference betr+een the ground and unrelaxed

exciLed state energies). The calculated resu1L with gasis

MGT/Basis OXT, our best Mg2* /a,- basis sets, is listed in

Table 4.14, The absorption energy comes out to be 7"01 eV in

comparison to the experimental value of 4"95 eV.

This failure of agreement seems to indicate the

inadequacy of our model elements, particulary O2- basis set

for Lhe unrelaxed excited state" Recall that Basis OXT is
reoptimised in a

configuration " However,

perfect-lattice (non-defected)

the ( f :.mi red ) ava i lable

computational power prohibits us from doing optimisation of

the 02- basis set for the cluster in the unrelaxed excited
state of the F* center. Furthermore, I4g2* basis set(Sasis

MGT) employed in the unrelaxed excited state calculation is
derived from the ground state calculation. But there may be

fairly substantial readjustment of the electronic structure
of these neighboring ions as the F* electron undergoes

excitation from an s-like state to a p-Iike state. Hence it
is of interest to optimise Mg2* basis set in the unrelaxed

excited state. Also, we have not taken account of either
electron correlation or polaronic effect in any of the above

calculations; although its effect may be small, it will be

different for the ground and excited states, affecting the

optical absorption energy,



TABLE l+. l4

F*-center : Absorption Energy

( F.(e)-ttg6ot2 cìuster )

Vacancy (Ooo¡
lnn ions (t00)
2nn ions (t t0)
3nn ions (l I t)
4nn i ons (2OO)

Absorpt i on Enerov

Vacancy- centered
Basis : range

d (t00)
d (l lo)

energy (eV)

Rl,lS

Àlulliken Population
vacancy

(loo) l'1g'* ion
axial
p I anar

(llo) o2- ion
axial
p I anar

Basis FT
Bas i s l,lGT
Bas i s OXT

KKLP
KKLP

7 .01 eV

0.!0a

1.03a
0.97a

-565ss.og

0.85a

1 .0759

9.9993

9.9940

0.!0a

l.OJa
0.97a

-56528.07

0 .87a

t.0644

9.9972
9.9999

9.9929
9.9995



FinalIy, t.he CPU

calculations is given in
idea of the magnitude of

8s

time required for some of our

Table 4"15 which should provide an

the computations involved.

4"6 CONCLUSION

The program package, rcEcAp, offers a reriabre method to
perform localised electronic defect calculations in ionic
crystars" we have iested its options and have examined its
physical model using the defect, F* center in magnesium

ox ide .

The ground and unreÌaxed excited states have been

calcurated. The F* center l{avefunction in both the states
is proven to be localisedr âs expected. The ground state is
well-characterised ¡ yierding a reriabre value for the
isotropic hyperfine constant. Spin density analysis
qualitatively illustrates the importance of basis set
optimisation of nearest-neighbor ions and serf-consistent
lattice relaxat ion for the ground state. The second

nearest-neighbor gz- ions pray an important role in the
optical absorption process, and must be incruded in the

defect cluster describing the unrelaxed excited state of the
F* center, The calculated absorption energy fails to agree

with the experiment, probabry due to inadequate basis set
optimisation of near-neighbors in the unrelaxed excited
state of the F* center"



TABLE 4. t5

Amdahl 5870 cPU time required in one position iteration
of ICECAP for some of the calculations reported here.

Cluster
number of
e ì ec trons

number of
basis
funct i ons

CPU

t ime

F*(e)

F. (e)
+ l,tg6

F. (e)
+ Hg6

F* (e)
+ ttg6 + 0.l2

61 3r

9l

9r

ì min

ì2 min

80 min

380 mi n

6t

r8t
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By explicitly demonstrating the various sLeps in
analysing the F+-center ground state, it is hoped that this
work will assist in yielding an adequate excited state when

the computationar power becomes availabre. rL is arso
expected that the present work wirl serve as an exampre for
further point-defect simuration studies, reading to reriable
resurts where experimental data are less readily available.

Presentry, rcEcAp deals with a point-defect in an

otherwise perfect, infinite ionic crystal. However, point-
defect interactions with interfaces (surfaces rtwins, and
grain boundaries), and in finite crystals, as werr as with
dislocations are of technorogical importance and of
fundamental interest. since the uHF package has been
successfully applied to a very wide range of condensed
matter problems and shell moder treatments of most of these
extended defects have been developed, the rcEcAp code can
therefore be extended to include these types of the defect
in a crystalline lattice"
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