THE UNIVERSITY OF MANITOBA

CONDUCTION HEAT TRANSFER IN A TUBULAR

RESISTANCE HEATER WITH

A HELICAL RESISTANCE COIL

by
J. R, Lion
‘ A Thesis
Submitted to the Faculty of Graduate Studies

in Partial Fulfilment of the Requirements for the Degree
of Master of Science

Department of Mechanical Engineering

Winnipeg, Manitoba
September, 1975




"CONDUCTION HEAT TRANSFER IN A TUBULAR
RESISTANCE HEATER WITH
A HELICAL RESISTANCE COIL"

by
J. R. LION

A dissertation submitted to the Faculty of Graduate Studies of
the University of Manitoba in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE

© 1975

Permission has been granted to the LIBRARY OF THE UNIVER-
SITY OF MANITOBA to lend or sell copies of this dissertation, to
the NATIONAL LIBRARY OF CANADA to microfilm this
dissertation and to lend or sell copies of the film, and UNIVERSITY
MICROFILMS to publish.an abstract of this dissertation.

The author reserves other publication rights, and neither the
dissertation nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written permission.




ABSTRACT

The design of electrical tubular resistance heaters
has in the past been hampered by a lack of knowledge of re-
sistance w1re temperature as a function of geometry. This

study provides a method of determining the conduction heat

transfer between the helical resistance wire coil and the

“metal sheath material. From this the wire temperature may

be calculated.
Shape factors for conduction from the wire to the

sheath were found by using a finite element computer program

which modeled each turn of the resistance wire helix as a

torus of revolution. After computing shape factors for a

‘wide range of geometries, the model was tested using an

~e1ectr1eal analog technique.

- Through the use of these- predetermlned shape factors,

resistance wire temperature can be calculated for a particular

geometry given only the sheath surface temperature, thermal

~conductivity of the insulating medium, and the watt density

on the resistance wire.
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CHAPTER I

INTRODUCTION

1.1 Background Information

Since not everyone is familiar with the construction
of electrical tubular resistance heaters, a brief outline of
the processes'and materials involved is presented. It is
hoped that the reader will gain a clearéf understanding of
the main part of this presentation after reading this
- background material. However, this information is not in-
~tended as a precise description of all the different manu-
facturing techniques used. Rather, it is 6nly a brief
description of the general characteristics of a tubular

yesistance heater.

1.1.1 Basic Heater Description

An electric tubular resistance heater is composed of
'ﬁhree_basic parts; the resistance wire helix, the electrical
insulating mediuﬁ, and a tubularlmétai sheath.

Resistance wire is most commonly made from 80-20
nickel-chromium alloy with traces of iron and silicon.
However, other resistanée wire alloys are widely used; for
example, alloys of chromium, aluminum, and iron.

The resistance wiré helix must be protected
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electrically by a non-conductor from the tubular metal
sheath. This insulating material must have both high die-
jectric strength and good thermal conductance. Although
other materials méy be used for this purpose, granular
magnesium oxide is most common.

The resistance wire helix and insulating material
are enclosed in a thin walled metal tube of copper, stainless
or mild steel, nickel alloys, aluminum, or other material,
depending on the final application. The metal tubing pro-
vides p;otection against the environment and allows a‘means
of increasing the density of the insulating material, the
importance of which will be discussed below.

Figure (1.1) is a schematic of the components of an

electrical tubular resistance heater.

1.1.2 Manufacturing Processes

The following is a brief description of the various
stages in the manufacturing of an electrical tubular resis-
tance heater.

The obvious first step in producing a heating element
is its initial design. The main design criterion is the
rate at which an element must produce heat to fit its final
application. For a given voltage this is determined solely
by the total electrical resistance of the resistance wire

helix. As there are many ways of obtaining the required
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resistance, a specific geometry for heater construction must
be chosen. The geometric variables of a heating element are;
resistance wire diameter, arbor diameter, helix pitch, and
heater element outside diameter. Then, before construction
»begins, other design decisions are made, such as; the length
and tYpé of terminal pins, overall heater length, and the
type of sheath material.

The first construction process is that of winding the
resistance wire into a helix of the required length. Winding
may be done mechanically on a machine that draws the wire
around a stationary cylinder into a continuous helix. The
helix is then automatically cut to the desired length.
Alternately, winding may be accomplished by turning a length
of drill rod in a variable speed drill and manually feeding the
the wire onto the rod. An ohmmeter may then be used to measure
the desired electrical resistance therefore determining the
helix length.

It should be noted that the helix now has a pitch
equal to one wire diameter. That is, the helix is close
wound with oné turn touching another.raﬁher than stretched
to a larger pitch as in the finished heater. The inside
diameter is now the sum of the arbor diameter, the diameter
of the cylinder on which it &as wound, and the wire
"springback". The springback is caused by the elasticity

in the resistance wire and its effect is to cause the helix
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to unwind somewhat. Thus the inside diameter of helix is
slightly larger than the arbor cylinder diameter. This
phenomenon usually causes an increase in diameter of only
a few thousandths'of an inch.

The next step in the production process is to fasten
terminal pins to both ends of the hélixn This may be done
in various ways. One way is to push a number of turns of
the helix around the cylindrical terminal pin and make a

spot resistance weld, thus fusing the helix to the terminal

~pin. Another method is crimping the helix to the pin. Again

a few turns of the helix are pushed over the end of the
terminal pin. This assembly is then held in a die while a
stamping operation deforms the wire thus fastening the helix
to the terminal pin. Yet another methéd is Eo use threaded
terminal pins and simply thread the helik onto the pin.

In the next production step, the helix and terminal
pin assembly is held concentrically in a length of the metal
tubing chosen for sheath material. The helix is stretched
to a‘predetermined length so that the terminal pins protrude
slightly from both ends of the tubing. WNext the insulating
medium is vibrated into the metal sheath and falls around
the terminal pins as well as around and between the turns
of the resistance wire helix. The helix and terminal pin
assembly is thus electrically insulated from the metal sheath

material. There are various ways of producing the above
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configuration. Perhaps the most common is a batch process
in which the helix and terminal pin assembly is held station-
ary on a machine. The length of metal tubing for sheath
material is then mechanically moved down around the helix
assembly and at the same time stretches the helix to its
required length. The insulating medium, usually magnesium
oxide, is then vibrated into the tubing. The vibration
serves to increase the density of the magnesium oxide which
results in a higher thermal conductance.

Thermal conductance increases exponentially with in-
creasing density in most granular insulating materials used
in heater elements. Since it is desirable to have as 1ittle
thermal resistance as possible between the resiétance wire
helix and the tubular metal sheath, operations are performed
to increase the density of the insulating medium. One way
to achieve this is to draw the metal tube containing the
insulating material through a set of rolls. For powdered
magnesium oxide, a significant diameter reduction compresses
the powder into a granular solid. At this point the tubular
resistance heater is a straight cylinder with a work hardened

metal sheath, the basic electrical tubular resistance heater.

1.2 Statement Of The Problem

The lack of knowledge of the maximum heat flux that

may be prescribed for a particular geometry has hindered
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designers of tubular heating elements. _That is, what resis-
tance wire or sheath watt density may be prescribed and still
allow the resistance wire to remain at a temperature low
enough to ensure a'long heater service life.

Many problems are encountered in measuring resistance
wire temperature. For example, thermocouple probes inserted
into heating elements give limited accuracy since the measure-
ment is only local. Furthermore, heat is conducted away
through the thermocouple faster than through the insulating
medium. Also the geometry of the heater may be easily dis-
turbed by inserting the probe. F. S. Epstein (ref. 1)
describes a method of determining resistance wire temperature
by using the helix as a resistance thermometer. Although his
method allows accurate determination of wire température'for
a particular heater, it does not enable the determindtion of
a reuseable shape factor since the thermal conductivity of
the insulating material remains unknown. Therefore, the
scope of this approach is limited to single geometries and

a single insulating material having a standard density.

‘1.3 Scope Of The Thesis

“The study presehted here utilized a simplified model
of the resistance wire helix and a finite element computer
analysis of the heat transfer. The model's geometry was

varied, thereby simulating a wide range of tubular heating
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elements. Shape factors were determined over a range of
variables which covered most of the heater geometries
commonly manufactured. Dimensionless variables were used
in‘plotting the daéa to allow the user to easily identify
the correct shape factor for the geometry in question.

The computer simulation was tested using a steady
state electrical analog technique with a liquid conductor.
This was found to be preferable to determining the shape
factor from an actual heater because of the difficulty in
accurately obtaining the thermal conductivity of the insu-
iating medium. The analog measurements agreed well with

the results found in the computer study.



CHAPTER II

COMPUTER SIMULATION

;2°1 The Model

In ordexr to compute the conduction heat transfer
between the resistance wire helix and the outer sheath ma-
terial, a simplified model wasvconstructed. This model
allowed solution by the numerical finite element technique.

Since there were four geometric variables, three of
them were non-dimensionalized by dividing them byAthe wire
diameter. The computed shape factor is presented as a
function of these non-dimensionalized variables in sets of
curves that cover the range of values encountered in common

heater geometries.

2.1.1 Simplification

The resistance wire helix was modeled as a series of
doughnut shaped elements or tori. Each turn of wire in the
helix was modeled as a torus of revolution having helix
inside diameter the same as the torus inside diameter. The
pitch of the helix, the axial length for one turn of wire,
was modeled as the center to center axial length between
two adjacent tori. The wife diameter of the helix and

torus circle diameter of the model were the same.
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The outside diameter of the heating element, the sheath di-
ameter, was the same in the torus model as it was in the real
heater. Figures (2.1.1) and (2.1.2) illustrate‘the helix and
the model described above. . .

As can be seen from Figure (2.1.2) the geometry
becomes axisymmetric when modeled in this way. A single
element has a disk shape such as would be made by rotating
the wedge shown in Figure (2.2.1) to £ill the entire 360°.
The volume normally filled by the resistance wire was omitted
as will be explained below. Figure (2.2.2) shows an infini-
tesimally thin slice of the wedge shown in Figure (2.2.1).
The dimensions, "p"., “dw", "da“y and "d" fully describe a
heater geometry when modeled as a series of tori of revo-

lution.

2.1.2 Assumptions And Boundary Conditions

Heat flux and temperature boundary conditions were
applied to the axisymmetric shape as shown in Figure (2.2.2).

Tn the torus model the temperature field is a function
of the axial and radial co-ordinates and is not a function of
the angular co-ordinate. Therefore, the adiabatic sides
shown are found by symmetry from adjoining identical elements.
The bottom of the element is obviously adiabatic since it is
the axis of symmetry.

The resistance wire was assumed isothermal since its
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thermal conductivity is fifty to one hundred times greater

than that of the electrical insulating material. This

>assumption was further verified by a finite element computer

éﬁalysis in which the resistance wire was part of the

elemental volume. The resistance wire was assumed to have

-uniform heat generation. It was found that the temperature

differences between any two points in the resistance wire
were negligiblie. Therefore, the semi-circular region
shown in Figure (2.2.2) was considered isothermal.

For similar reasons the comparatively thin layer
of sheath material was not included as part of the grid
for the final computer program. Common sheath materials
such as copper and mild steel have tﬁermal conductivities

fifty to four hundred times greater than that of the

electrical insulating material. A preliminary finite ele-

ment analysis showed that the sheath material was nearly

isothermal in both axial and radial directions. The absence

of the sheath material in the elemental volume also greatly

gimplified the manipulation of input for the computer program

because the elemental volume was composed of one material

-only.
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2.1.3 Changing Geometry

The basic finite elément grid which was drawn on the
shape shown in Figure (2.2.2), is presented in Figure (2.3).
As numerous heater geometries were studied variousAaltér—
ations were made to the basic grid to accommodate particular
~geometries. For example, for larger arbor diameters blocks
of insulating material had to be added to the bottom of the
shape shown in Figure (2.3). Siﬁilarly; for latge: heater
outside diameters blocks of insulating material were added
to the top of the grid. To allow for cﬁénges iﬁ pitch or
stretch ratio of the helix, insulating material was added
in the axial direction. A computer progrém was written to
produce punched input data for the many different geometries.
Since the grid contained a single material, obtaining
computer run input data for the varied geometries was ac-

complished with comparative ease.

2.1.4 Computer Program o S

The finite element computer program, "NLHEAT", that
was used for this stﬁdy was developed by Hsu and Bertels
(ref. 2), using a method described by Wilson and Nickell,
(ref. 3)-.

The computer program was flexible and handled both

axisymmetric and planar geometries. It allowed the speci-
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fication of isothermal and adiabatic boundaries. Material
properties and heat transfer co-efficients could be made to
vary with temperature, time, and position. The computer
program calculated and returned node point temperatures
for any specified set of conditions.

For the torus model the following set of specifications
or boundary conditions were applied. Referring again to
Figure (2.2.2), the semi-circular boundary representing the
wire surface was given a prescribed temperature. The upper
horizontal boundary which represents the outer surface of
the heating element was given a prescribed uniform convective
heat transfer co-efficient. In the case of the adiabatic
boundaries, there was no prescribed heat transfer co-
efficient and, therefore, no heat could be transferred
through those boundaries. The insulating material was given
a uniform thermal conductivity which was approximately the
value of thermal conductivity of compacted magnesium oxide
found in heating elements. As previously mentioned, a
preliminary analysis showed that even for a heater with a
large helix inside diameter and a convective heat transfer
co-efficient of 1 Btu../ft,2 - hr. - °F, the outer surface
of the heater was found to be isothermal within two degrees
Fahrenheit.

Before using the computer program on the torus model,

it was checked for accuracy by using known geometries such
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as the plane wallvand concentric cylinder. It was found
that the numerical solution compafed to five significant
figures with the exact analytical solution.

Several different grid sizes were used when the torus
model was analyzed. It was found that enlarging the grid

size did not significantly change the computer results for

the same geometry.

2.1.5 .Calculating A Shape Factor

The method used to determine a single shape factor
from the results of the computer program was as follows:

A shape factor describes the influence of geometry
between two isothermal surfaces in héat conduction problems.
Since the resistance wire was modeled as an isothermal
surface and the outside heater surface was found to be
almost isothermal from computer results, the use of shape

factors was feasible. The conduction equation for this

case is:

Q = Gk (T, - Ts) cesecsccnn 2.1
where

Q =  heat loss (Btu./hr.)

G = shape factor- (ft.)

K = thermal conductivity of insulating

material (Btu./hr. - ft. - °F)
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Tw = resistance wire temperature prescribed
in computer program (°F)

Ts = surface or sheath temperature calculated
by the computer program (°F)

In equation 2.1, G is the shape factor having units of
length and is equal to a representative area divided by a -
representative length. The shape factor is a function of
geometry only¢'

Since this is a steady state heat transfer process,
the total heat flux from the resistance wire is equal to
the total heat flu# from the heater surface for the elemental

volume shown in Figure (2.2.1). The surface heat loss is

given by:
Q = hsA (TS ha Ta) 0 ©® & ©0 6 & © 00 202
where
hs = convective heat transfer co-efficient
prescribed in the computer program
(Btu./hr. - ft.2 - °F)
Ta = ambient temperature prescribed in the
computer program (°OF)
A = heater surface area (ft,Z)

~Phe area, A, for the torus model is equal to the
product of the circumference and half the pitch.
The shape factor, G, per unit axial length of heater

can then be found by rearranging equation 2.1 to the form:

= Q |
G %pK(Tw"TS) © 0 0 © % © 90000 203
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where

p = is the axial pitch between two adjacent
tori (£t.)

~and evaluated by substituting the value of O from eguation
2.2. Equation 2.3 is divided by % p because the elemental
volume under consideration has that axial length as shown

in Figure (2.2.2).

2.2 Results Of The Computer Study

In this section the results of the computer study
are presented. A sample calculation is also presented to

indicate how these results may be used on a real heater.

2.2.1 Presentation Of The Data

over five hundred computer rﬁns were made to encompass
common heater geometries and a shape factor calculated for
each geometry by the method described in section 2.1.5.

As previously mentioned, the heater geometry of the
torus model is fully described by: resistance wire diameter,
dw; helix inside-diameter, da; heater outside diameter, d;
and pitch, p. These variables were non—dimensionalizéd in
-order to reduce the number of curves required to show the
results of the computer study. That is, a four dimensional
- plot was reduced to three dimensions by dividing the heater
diameter, helix inside diameter, and pitch by the wire

diameter. Therefore, any torus model geometry is described



- 20 =

by three dimensionless variables: the dimensionless diame-
ter, D; the dimensionless helix inside diameter, D_i and
the dimensionless pitch, P.

The resulté of the study given in Figures (2.4.1),
(2.4,2),‘(2,4,3), and (2.4.4) are presented in terms of the
dimensionless variables. Each set of curves is representa-
tive of a particular dimensionless pitch. For example, for
Figure (2.4.1) the dimensionless pitch is three for any
value of dimensionless heiix inside diameter’or for any
value of dimensionless heater diameter. The dimensionless
pitch is equal to the stretch ratio of the resistance wirgﬁ
helix from the close wound position to the final position
in the finished heater. The stretch ratio for good heater
design should be at least three to one to prevent arcing
from one turn of the helix to the next. For this reason
the dimensionless pitches chosen for the computer study
were three, four, five, and eight. The values of the
dimensionless helix inside diameters were chosen to include
common geometries. The values‘are 3.5, 6.5, 11, 15,5; 2b,;
24.5, and 29. Similarly, the dimensionless diameter which
is the abscissa on each drawing has a range varying from
ten to one hundred. The ordinate for each curve gives the

shape factor, G, in inches per inch of axial heater length.
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2.2.2 How To Use The Data

The purpose of this study was to make it possible
%fo,determine resistance wire temperature for a given watt
density and heater geometry. ToO illustrate the use of shape
factors presented in Figures (2.4.1) through (2.4.4) a sample
calculation is performed for a real heater.

A baseboard heater is a straight heating element
whose surface temperature can easily be measured. In order
to calculate the wire temperature the following information
must be Supplied:

1. wattage _

2. axial heated length of the heating element

3. helix inside diameter '

4, wire diameter

5. heater diameter

6. pitch

7. heater surface temperature

8. thermal conductance of the insulating material
Once these parameters have been obtained the calculation is
straightforward.

_ First the heat flux per inch axial length of heater
is obtained by dividing the wattage by the heated length.

0 (Btu./hr. - inch of heater)

= Power (watts) x 3.414 cceecvosse 2.4
heated length (inches)

The shape factor must be determined from Figures
{2.4.1) through (2.4.4). To do this the geometric variables

are non-dimensionalized by the wire diameter. Care must be
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exercised when the geometric variables are evaluated. That
is, the final helix inside' diameter, pitch, and wire diame-
ter must be used since there may be considerable difference

in these variables after the element has been roll reduced

from what appeared before. This will be discussed in detail

in the next section. Once the non-dimensionalized variables
have been evaluated the shape factor is chosen from the
correct curve. It may be necessary to interpolate or
extrapolate between curves or sets of curves.

Knowing the shape factor, the wire temperature is

found by rearranging equation 2.1 to read:

. 9 ~
Tw '-. GK + TS ® © © 6 8 00 ¢ 6 © ZCS
where
Tw. = resistance wire temperature (OF)
Ts = sheath temperature (OF)
K = thermal conductivity of the electrical o
insulating material (Btu./hr. = in. = "F)
G = shape factor (inch/inch of heater)
Q' = - heat flux (Btu./hr. = inch of heater)

As a numerical example consider a baseboard heater
with the following specifications:

1000 watts '

38.5 inches of heated length
0.072 inch helix inside diameter
0.014 inch wire diameter

0.440 inch heater diameter
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0.044 inch pitch

400°F heater surface temperature

0.042 Btu./hr. - in. - °F thermal conductance
of insulating material

The heat flux per inch of heater is:

_ 1000 x 3.414 Btu.
Q = 38.5 90.4 g¥r— Inch of heater

Non-dimensionalizing the pitéh, helix inside diameter,
and heater diameter by dividing by the wire diameter, the

non-dimensionalized variables are:

_ 0.044 _ a4 . .
P = 0.014 = 3.14 non-dimensional pitch
Da = 30812 = 5.14 non-dimensional helix
° inside diameter
_ 0.440 _ . S,
D = 5. 012 = 31.4 non-dimensional heater

diameter

Knowing the above parameters, Figures (2.4.1) and
(2.4.2) are consulted and by interpolation the shape factor,
G is approximately 4.5 inches per inch ofvheatero Substi-
tuting this value into equation 2.5:

_ 90. 4
Ty = 75w o.0az 400

= 878°F
This is well below the limiting continuous service

temperature for tubular resistance heaters.
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2.3 Determination of Correct Dimensionless Parameters

The previous'section demonstrated how easily the
curves in Figures (2.4.1) to (2.4.4) may be used to find av
shape factor once the heater geometry is known. However,
determining the final geometry in a compacted, straight,
tubular heating element is not simple.

Since there are many variables which influence the
final geometry, it was impossible to apply'a cofreéﬁion to
the "as wound helix" that would predict the final-geometry
in ‘any circumstance. This was mainly due to the proceés of
diameter reduction which occurs after the filling operation.
- The variations in materials and material properties with the
degree of diameter reduction caused'by rolling or swaging
directly influence the final heater geometry so that it
cannot be predicted accurétely.

In order to avoid choosing an erroneous shape factor,
the correct coii inside diameter, wire diameter, pitch, and
“heater diameter must be determined from a finished heater.
This may be accomplished by carefully cutting the heater
apart and measuring or by x-raying the heater against a cal—
ibrated tranSparént grid.

The subsections below describe the variables involved
in determining a final geometry and in some cases how these

affect the calculation of the correct dimensionless variables.
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2.3.1 Springback

As mentioned in section 1.1.2, springback is the
elasticity in the -‘resistance wire helix causing it to unwind
and increase its inside diameter. That is, as the resistance
wire is wound into a helix it undergoes an elastic-plastic
deformation. When the constriction holding either end of
“the hélix is removed, it unwinds causing an increase in helix
inside diameter. At the same time there are fewer turns of L
wire in the helix which would be stretched to the same length
“in the finished heater. Subsequently, there is an increase
in pitch over that which might be predicted if the helix
inside diameter was assumed to be the arbor diameter. How=
.ever, while the increase in helix inside diameter causes an
increase in shape factor above that predicted at the arbor
diameter, the increase in pitch causes the-shape factor to

_decrease beyond that predicted by the original pitch.

In the production of a tubular resistance heater,
--gpringback is the first complication that makes the pre-
‘diction of a final geometry difficult since different wire
_diameters and types of resistance wire will have different

springback characteristics.

An average increase in helix inside diameter due to
springback is approximately 0.005 inches. For nearly all
)

cases in real heaters springback will have negligible effect

on final geometry.
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2.3.2 : Sheath Thickness

As was mentioned iﬂ section 2.1.2, the sheath material
was not modeled as part of the finite element grid. That is,
the temperature gradient in the radial direction through the
sheath material was assumed negiigible. For this reason the
dimensionless heater diameter should be calculated as the
heater outside diameter minus twice the thickness of the

sheath material divided by the resistance wire diameter.

That is:

D = d 3 2t

W _

where

D = dimensionless diameter ratio

a = heater outside'diameter (inches)

t = 'wall thickness of sheath material (inches)

dw = wire diameter (inches)

This correction becomes more important for small resistance

wire diameters and large sheath material thicknesses.

2.3.3 Stretching The Helix

The second process, after springback which complicates
the determination of a final geometry in a tubular heater,
from the geometry of the helix as wound on the arbor pin,

occurs when the helix is stretched during the filling
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operation. At. this stage in production the helix is fixed
at both ends and stretched to the length of the tubing used
as sheath material. This causes the helix inside diameter
to decrease since the length of resistance wire for one turn
of the helix remains constant while pitch increases from one
wire diameter in the close wound heiix to the larger pitch
in the stretched helix.

At this point the helix geometry  can be calculated as
shown in Appendix A since the original geometry is known and
the length of resistance wire for one turn of the helix
remains constant. However, this first major change in
'geometry is further complicated by the next production step

as discussed in section 2.3.4

2.3.4 Decrease In Resistance

sphe third and most unpredictable change in geometry
‘of the resistance wire helix occurs after the tubing used
as sheath material is complete with resistance wire helix
.and filled with granular insulating material such as mag-
pesium oxide. The tubular element is then reduced in outside
diameter by passing the tubular sheath through a set of rolls
or by the rotary hammering action of a swager. This is done
to increase the thermal conductance and electrical resistance
of the insulating material and results in elongation of the

sheath.
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.The diametef reduction of the heating element causes
a decrease in electrical resistance measured from terminal
_pin to terminal pin compared to that which existed after the
sheath had been filled with insulating material. The |
' decrease in resistance may vary from two per cent to sixty-
five per cent and is dependent upon several factors such as:
the type and femper of the metal tubing used as sheath
material, the 6riginal geometry of the resistance wire helix,
 the fill density of the insulating material achieved inside
the sheath during'the filling opération, the type of insu-
lating material itself, and the percentage diameter reduction.

There are several possible explanations for this
decrease in resistance. One is that high pressures may cause
the helix to be pushed into itself and thus thicken the wire
causing a decrease ih resistance with increasing wire diame-
ter. Another is that several turns of the resistance wire
are pushed onto the terminal pin causing a decrease in resis-
tance. Although this seems possible for a two per cent
decrease it seems higﬁly improbable for a sixty—five per cent
decrease. In fact, x-ray photographs of diameter reduced
tubular elements show that this effect is not a large factor.
A third possibility is that -the electrical resistance of the

resistance wire is altered due to metallurgical effects.
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2.3.5 Summary

-

.it was not the intent of the author of this thesis
to predict the final geométry of a tubular resistance heater
which may undergo the above transformations, but rather to
solve the conduction heat transfer problem between the resis-
tance wire helix and the metal sheath material. Section 2.3
and the ensuing subsections were included to demonstrate the
complicated geometric changes that occur in a tubular resis-
tance heater and to emphasize that care must be exercised in
determining; the final wire diameter, pitch, helix inside
diameter, and the outside heater diameter minus sheath
material. The dimensionless variables are then evaiuated
and the appropriate shape factor chosen as shown in section

2.2.2.



CHAPTER III
EXPERIMENTAL STUDY

3.1 Electrical Analog

A steady state eléctrical analog method was used to
verify the accuracy of modéling a helix as a series of tori
of revolution. In this analog method a series of electrolytic
cells which wére the geomgtric equivalents of héatér elements
were constructed. Appropriate measurements of vdltage, current,
or resistance were taken so that the shape factor for électri—
cal resistance could be calculated.

In the electrical analog to a conduction heat transfer
problem the following parameters are equivalent:

a) The electrical current is equivalent to the heat
flux. :

b) Thé voltage gradient is equivalent to the
temperature gradient. ”

c) The electrical resistivity of the electrically
conducting liquid is inversely equivalent to the
thermal conductivity of the material through
which the heat is transferred.

d) The ratio of normal conducting area to path
length, the shape factor, is the same for both
the electrical analog and the equivalent heat
transfer geometry.

The liquid used in this analog method was an ionic

conductor or electrolyte. The electrical power source was
of high frequency (abovz 10~ Hertz) alternating current to

negate any electrolytic plating action.

- 34 -
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3.2 Experimental Model

This section discusses the theory of the electrical
analog as it applies to the particular problem of the helix
inside the metal sheath. The physical test apparatus and

method is then discussed.

3.2.1. Electrically Conducting Cells

in the electrical analog of a stretched helix inside

a tubular metal sheath, the sheath and helix acted as two
‘ eleétrodes at different voltages. The sheath was at a

voltage, El’ which is analogous to a temperature, le while
the helix was at a different voltage, Ez, which is analogous
to a temperature, T,. The two electrodes were in electrical
contact only through an electrolyte which was sealed inside
the sheath. That is, the electrolyte, which in this case

was a weak solution of copper sulfate and sulfuric acid,

was poured into the sheath around the helix in the same way
‘magnesium oxide would be poured into a real heater. When
+he cell was connected to a power supply and current flowed

across it, Ohm's law states:

. _ 1 A
l - p EL] AE ©©0 9000 CO©CO0OOB (1)

i = the electrical current (amps)

where

p = the resistivity of the electrolyte (ohms-inch)
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AE = the potential difference or voltage drop
between coil ana sheath (volts)

= the shape factor (inch)

_ L
= D[}i] cooooooc oo (2)

R = the total electrical resistance of the
cell (ohms)

W B

and

where

The conduction heat transfer analog to equations (1) and (2)

= a
Q = K [L] AT coo0coco0ceooo (3)

is:

where
Q = heat flux (Btu./hr.)
K = thermal conductivity " (Btu./hr. - ihch - oF)
AT = the temperature difference between coil
and sheath (CF) :
% = the shape factor (inch)
_ 1 L
and R - E’ [X] ©©o©000®© 0000 (4)
where
R = the total thermal resistance of the cell
(°F - hr.)
Btu.

In equation (1) both the resistivity and the shape
factor are unknown. In order to experimentally determine
the shape factor, a standard with a known shape factor was
compared with the unknown helix cell. The standard cell

was the concentric cylinder with the inner and outer cylinders
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acting as electrodes. The shape factor for this case is:

_ . 21L
Shape factor - ln (d /d.) ©© 09006 o000 6o (5)
o/ i
where
L = length of the cylinder (inches)
do = outside diameter of electrolyte -- i.e. inside
radius of outer cylinder (inches)
di = inside diameter of electrolyte -- i.e. outside
radius of inner cylinder (inches)

Since the helix cell and the standard cell could be
connected in series, the same current could pass through
both. Using the subscript, 1, to iﬁdicate the helix cell
and the subscript, 2, to indicate the standard cell,

-equation (1) may be written for each cell as:

i = (A/L)l AEl (6)

Ol D

i = (A/L)z AEZ © 06 00060060 (7)

Since thé same electrolyte was used in both cells,
.equation (6) can be divided by equation (7) and rearranged

to read:

(a/L)

TZ7ETI A E{/A E, SRSRRRREE (8)

Since the shape factor for the standard cell was
~known, to find the unknown shape factor, (A/L)l, the ratio
of the voltage drops across the two sets of electrodes had

t+0 be measured.
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Figure (3.1) is a schematic of the electrical analog

test method described above.

3.2.2 Use-of Alternating Current s

The original power source for the circuit shown in
Figure (3.l1) was a variable voltage direct current power
supply. Direct current was used initially to negate»ény
inductive effects in the cell containing the helix. However,
the applicétioﬁ of direct current proved more difficult than
originally anticipated due to problems such as differential
electrode areas between the helix cell and the standard cell
causing the resistivity of the electrolyte in each cell to
be different. Other problems were differential resistance
heating of the electrolyte and the formation of concentration
gradients within the cells. Many trials of using a direct
cﬁrrent power supply for several electrolytes and many applied
voltages showed no reproducible results.

The main objection to using alternating current was
the inductance effect on the helix c-ell° To determine the
magnitude of the inductive resistance a variable frequency
input was connected to the helix cell. An oscilloscope trace
showed that there was no significant phase shift of applied
alternating current for input frequencies of several kilo-
hertz. Therefore, the inductance-was neglected and alternating
current equipment was used to measure the circuit shown in

Figure (3.1).



90IVYNY IVII¥12373
30 JILYW3IHIS
T 38n91d

[1ed - |82
X8y ‘pJepuels

2 g

J
L2
A

s Zl

. - . . o0
‘.. AN .t
. . . . ' . b
a. . ’
¢ Ve @
" .

N\

J03R|NS U

. Iivo.&

xyey—1.- “.‘ B OUTHLEIT X
... -.c.. el .”...... / mcwﬂ:“. \\\ .. .....

u'l".‘ﬂ'.ﬂ.' L

43l3wWij04

JaIswWy|0A @




- 40 -

3.2.3  Apparatus

The apparatus used to perform the electrical analog
was reduced to four main components when an alternating
current source was applied to the circuit; the helix cell,
the standard cell, the electrolyte, and the Wayne Kerr B 421
Autobalance Component Bridge. The measurement method employing
the Wayne Ke#r instrument will be discussed in section 3.2.4.
Figure (3.2) is a photograph of the helix cell. As

previously mentioned the outer cylinder and wire hélix were “
both made from commercially pure copper. The two end plugs
which electrically insulated the cylinder from the helix were
machined from teflon. The plugs also serﬁed to hold the helix
concéntrically with respect to the outer cylinder. The wire
helix was threaded onto the bolts shown in the photograph.

The threaded washer prevented the bolt from slipping through
the teflon plug and into the cell. In this way the washer
also served as an adjustment to the stretch ratio of the
helix. Thaﬁhis, bybturning the washer to the desired position
on the bolt a small adjustment could be made to the amount

the helix was stretched. The cell was held in a vertical
position duringvtestin.g° Therefore, the bottom teflon plug
had to be water-tight to prevent any leakage of electrolyte.
This was accomplished by using silicone cement around the
periphery of the plug next to the copper cylinder and around

the bolt holding the helix. The top plug had two small holes
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in it beside the larger hole used for the top bolt. These
two holes were used to fill the cell with electrolyte once
_it was assembled with the helix inside. One hole was used
£6 £i1l the cell and the other acted as an air vent and
jndicated when the cell was full. The hose clamp around
the copper cylinder served to make electrical connection
with measuring equipment.

The standard cell was similar to the helix cell in
construction. As can be seen in the photograph shown in

Figure (3.3) the only difference between the two cells was

that no elaborate means for holding the copper rod concentric

within the outer copper cylinder was required.  The copper

rod had a tight fit in the center holes of both teflon plugs.

Figure (3.4) is a photograph of the assembled apparatus

ready for test.

3.2.4 Method

The following method was used to determine the shape
factor for a particular helix geometry inside an enclosing
cylinder.

The copper sulfate, sulfuric acid, and distilled
water solution was prepared in a mechanical mixer to ensure

that the copper sulfate was completely dissolved. The

solution was then strained through filter paper into a clean

container ready to be poured into the test cells.
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Once the standard cell and the helix cell were sealed
to prevent leakage of electrolyte, they were placed in test
tube holders and held vertically. The electrolyte was again
mixed and then poured into one of the cells through one of
the two 0.125 inch holes drilled into the top teflon plug.

The other hole acted as an air vent and indicated when the
cell was full of electrolyte. The Wayne Kerr B 421 Autobalance
Component Bridge was then connected with one lead to each

- electrode. The lead wires were of heavf gauge copper and

as short as possible. They were, therefore, of negligible
?esistance when compared to the resistance of the cell. The
Wayne Kerr Bridge then measured the resistance of the cell
being tested. This reading was recorded immediately after
the cell was filled with electrolyte (i.e. within one minute)
to minimize the effects of any chemical reactionse The
remaining cell was then filled with electrolyte poured from
the same bottle used to f£fill the first cell. A resistance
measurement was taken and recorded.

As was previously mentioned, no appreciable inductive
resistance was found in the helix cell using input frequencies
of several kHz. The Wayne Kerr instrument has a bridge
frequency of 1 kHz and should, therefore, introduce negligible
error due to inductive effects.

This test method deviates somewhat from the method

described in section 3.2.1 since the resistance measurement
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is made directly and each cell was measured independently.
However, the theory of that section still applies and the
&;atio of cell resistance is equal to the ratio of shape
féctors since the'electrolyte in both cells has the same
resistivity and both cells were measured by the same instru-
ment which passes the same current through each cell.
Therefore, in equation 3.8 the voltage drop can be replaced

by the total resistance of each cell to read:

(A/L) R
7z 1 (3.9)
(A/L) 1 R2
wherxre
Rl = the electrical resistance of the helix
cell (chms) :
RZ = the electrical resistance of the standard

cell (ohms)

Only three geometries were tested due to the difficulty
iﬁ'obtaining uncoated copper wire to use for helix construction.
Also, the apparatus did not allow a wide variety of geometries
to be tested since the tube inside diameter (which is equiva-
lent to the heater outside diameter) was fixed, as was the
diameter of the threaded connection which held the helix

concentric inside the tube.

3.3 Presentation of Data

Three different helix geometries were tested using the

method described in section 3.2.4. Each geometry was tested
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three times using a different helix and batch of electrolyte
on each trial. Table 3.2 shows the results of the tests and
the percentage deviation of these results from those pre-
dicted by the theoretical analysis given in Chapter II. A
discussion of these discrepencies is presented in the next
chapter.

- In order to predict the ratio of helix cell shape
factor to the standard cell shape factor, the shape factor
per unit axial length (per inch) of the standard cell must
be calculated. Since the standard cell was a concentric
cylinder, equation 3.5 gives the shape factor as:

21L

Gstd = Th (do 7 di) = 2.529 inches
© © 6 0 © 0 © © 6 C© (3010)
where
GStd = standard cell shape factor
L = 1.00 inches
do = 1.50 inches
di = 0.125 inches

The helix cell shape factor, G, per unit axial length
was established by interpolation of the original data obtained
from the analytical analysis which was used to plot the curves
in Figures (2.4.1) thfough (2.4.4). The dimensionless
parameters used were those found by dividing the helix geome-
try given in the extreme left hand'column of Table 3.1 by the

wire diameter.
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Having obtained the analytical value of the helix
shape factor which was modeled as a series of tori, the
‘theoretical ratio of G/GStd is easily calculated. For
example, using the first geometry the dimensionless para-

‘meters are:

P = 3.00
D, = 6.81 |
D = 46.9 T

By interpolation of the original data, the corre-

sponding shape factor per inch axial length of helix is 3.60

inches.
The ratio G/Gstd is, therefore:
G _ 3.60 _
G = 3.539 - 1.42

It is this value which appears in the sixth column in
Tabie 3.1. This is the ratio predicted by the analytical
model presented in Chapter II. This ratio is compared to
- the experimental results shown in the fifth column, with the
percentage difference based on the analytical anaiysis shown
in the seventh column. As stated in equation 3.9, the ratio
of the shape factors is inversely equal to the ratio of the

total cell resistances. That is:

R

GG = -R—z- ® 0o 060000000 (3.11)
std 1

Similar calculations were performed on the other two

geometries. .



CHAPTER IV
DISCUSSION

4.1 Error Analysis

This section contains a discussion of the systematic
and random errors that occurred in the experimental model and
their‘effecté on the ratio of the helix cell shape factor to
the standard cell shape factor. .

The percentage difference between the ratio of the
helix cell shape factbr to the standard cell shape factor
predicted by the theoretical analysis of Chapter II and that
predicted by the experimental model of Chépter IIT are shown
in Table 3.1. The average percentage difference based on
three trials of each of the three geometries tested was:

2.8 per cent for the first geometry, 5.8 per cent for the
second geometry, and 6.2 per cent for the third geometry.

The possible causes of these discrepancies are presented below.

4.1.1 Error Analysis Of The Apparatus

The following is an error analysis of the effect of
the uncertainty in the geometric variables on the standard
cell and helix cell shape factors. Instrument error is also
included. The analysis was made fqllowing the format and

theory of a single sample experiment as was presented by Kline
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and McClintock (ref. 4). The detailed analysis appears in

Appendix B.

The analysis showed that the uncertainty in the geo-

metric variables associated with the helix cell contributed
negligible percentage error to the helix cell shape factor.
This was especially true when compared to the percentage
difference between the average shape factor ratio, G/Gstd’
found by experiment and that predicted by the theoretical
analysis of Chapter II. The small error was primarily due

to the fact that the change in the helix cell shape factor
was not greatly affected by small variations in the dimension-
less variables in the range of the geometries tested. How-
ever, for small values of the dimensionless diameter and large
values of the dimensionless helix inside diameter (see Figures
(2.4.1) through (2.4.4), the change in shape factor with small
variations in the dimensionless variables could become sig-

nificant.

The error analysis of the instrumentation was easily

obtained since the only instrument used was the Wayne Kerr
B 421 autobalance component bridge. The manufacturer states
an uncertainty in each reading of * 0.25 per cent of full
"""" scale. Again this was' considered negligible when compared
with the difference between experimental and theoretical

values of the shape factor ratio.

The error analysis of the effect of uncertainty in the



- 52 =

geometric variables on the shape factor for the standard,
concentric cylinder cell is also shown in detail in Appendix
B. The percentage error in the shape factor was estimated as
1.7 per cent and wﬁile still not responsible for all of- the
difference between the experimental and theoretical shape

factor ratios was still considered significant.

4.1.2 Systematic Errors

When predicting the theoretical helix cell shape
factor, two systematic errors were introduced.

The first error was due to assuming that the diameter
of the arbor pin on which the helix was wound was also the
inside diameter of the stretched helix as it appeared in the
helix cell. This was not actually the case since the helix
inside diameter increases due to springback and then decreases
when the helix is stretched from its close wound condition,
as was explained in section 2.3. The magnitude of the error
introduced by assuming the arbor pin diameter to be the helix
inside diameter was determined by applying the method shown
in Appendix A. A springback allowance of 0.005 inches was
used. The worst error occurred in the second geometry tested
where the nominal helix inside diameter was 0.125 inches and
the calculated diameter was 0.127 inches. This was a per-
centage difference of 1.6 per cent, but, however, caused a

negligible difference in the shape factor. In each geometry
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the calculated value of the helix inside diameter was slightly
higher than the mean value-:used. This would imply an even
less significant increase in the helix cell shape factor.

The nominal diametér of the arbor pin was taken as the mean
value for error analysis because the helix inside diameter
was the only geometric variable that could not be easily
measured by means of calipers.

The second systematic error was caused by modelling the
helix as a series of tori of revolution and assuming thétrthe
real helix would behave exactly the same as the torus model.
The main difference between the two models is that there is
a longer length of wire in one turn of the helix than for the
equivalent torus of revolution. Therefore, there is more
- surface area available for heat transfer in the helix than in
the ﬁorus model. The percentage difference between the area
of one turn in the helix and the area of one equivalent torus
was calculated as: 2.0 per cent for the first geometry,

3.3 per cent fdr the second geometry, and 1.9 per cent for

the third geometry. As a very rough approximation, the larger
percéntage area could be assumed to cause a corresponding
percehtage increase in the helix cell shape faétoro If the
measured shape factor ratio was higher than that predicted

by the theoretical analysis then the difference could be
explained by this difference in surface area plus the error

in the standard cell geometry. However, as can be seen in
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Table 3.1 this is not the case. For example, in the second
geometry, which has the largest differential in area between
ﬁfhe helix and the torus model, two of the three trials show
Eﬁat’ratio of the helix cell shape factor to the standard
cell shape factor was lower than that predicted by the theo-
retical analysis. The first geometry shows a similar scatter
of the results. The third geometry showed that every trial
produced a shape factor ratio that was higher than that
predicted by theory in all three trials. However, the ratio
was higher than could be explained by the sum of the increased

surface area effect and the standard cell geometric error.

4.1.3 Undefined Errors

Sections 4.1.1 and 4.1.2 showed that the discrepancies
between the shape factor ratio found experimentally and that
predicted theoretically could not be fully explained by the
uncertainty in geometric variables, instrument error, or
errors inherent in modelling the helix as a series of tori
of revolution. Therefore, another undefined error must exist.
One possibility is contaminated electrodes which would cause
an increase in cell resistance in either the helix cell or

the standard cell. BAnother possibility is that the resistivity



, -'. 55 =
of the electrolyte in one cell may have been‘slightly differ-
ent than the resistivity of the electrolyte in the othér cell.
Since no measurements were made of these two effects (although
precautions were taken to minimize any possible effects),
their magnitude remains unknown. ‘

The effect of eccentricity on the standard cell shape
factor was aléo investigated. It was found fhat in the geo-
metries tested; a relatively large degree of eccent;icity
caused a negligible change-in the.standard,‘concéntfic cylin-
der cell shape factor. For exémple, a 0.050 inch eccentricity
cauéed only a 1.0 per cent difference in shape factors.
Therefore, eccentricity was not considered as a major possible
source of error.

. Despite the differences between the shape factor ratios
predicted analytically and those fouﬁd experiméntally, an
excellent correlation existed between the two results. The
ChiLSquare goodness of fit test indicated a 0.99 probability
or.greater that the experimental data matched the analytical
predictions when the least probable set of data was examined.
The test was performed by considerihg each helix cell geometry
separately. The shape factor ratio of each trial in that
geometry was éonsidered a discreet observation and was compared
to the ratio predicted analytically. The analytical ratio was

considered the mean value. The only restriction in freedom

was that of the number of observations.
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4.2 Torus Model Versus An Actual Tubular Heating

Element

. As was mentioned in section 4.1.2 an error exists
when the torus model is assumed to be the exact equivalent
of a resistance wire helix. The torus model becomes a poor
approximation to the real helix in two instances.

In the first case, a small value of the dimensionless
helix inside diameter, Da, combined with a large value of
the dimensionless pitch, P, will cause a large difference
between the length of wire required to make one torus as was
‘modelied in the computer program and the length of wire
required for one turn of the actual helix. The magnitude of
this effect can be calculated using the method shown in
Appendix A. For example, consider the helix geometry having
an original close wound helix inside diameter of 0.072 inches
made from a resistance wire of 0.040 inches in diameter. If
‘the helix is stretched to three times its original length,
the surface area available for heat transfer in the real
helix would be 5.9 per cent greater than that predicted by
the torus model. If, however, this same geometry was
stretched to eight times its original length the difference
‘in areas would be 57 per cent and the theoretical model
:wyould collapse. |

The second instance in which the torus model becomes
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a poor approximation to a real heater occurs when the helix
outside diameter is very close to the heater outside diameter.

That is for large values of the dimensionless inside helix

Ty

diameter, Da, combined with small values of the dimensionless

heater diameter, D. In this case the torus model collapses

because the outside surface of the heater was assumed isothermal

in the axial direction during the computer analysis.
Fortunately, common heater geometries do not contain

either of the above geometrical configurations. Therefore,

the torus model is an accurate model of the helix contained

within an actual heater for most heater geometries and the

shape factors presented in Figures (2.4.1) through (2.4.4)

can be used in the conduction equatién 2.1 to compute re-

sistance wire temperature.



CHAPTER V

CONCLUSION

5.1 Statement Of Accomplishment

The main accomplishment of this thesis was determining
the effect of the geometric variables present in a tubular
resistance heater on the conduction heat transfer between the
resistance wire helix and the tubular metal sheath. Within
the limitation of the design variables, a designer can
guantitatively compare one heater geometry to another and
choose the most advantageous design.

If’the thermal conductivity of the‘maqnesium oxide
insulation is known or can be approximated, then the operating
temperature of the resistance wire can be calculated by the
method shown in Chapter II. The designer could then determine
whether or not an excessive wire temperature will promote

premature failure of the heating element.

5.2 Suggestions For Further Study

The major uncertainty in solving the conduction
equation for heat transfer in tubular resistance heaters is
the value of thermal conductivity of magnesium oxide, the
electrical insulating material used to separate the resistance

‘wire helix from the metal sheath. Present literature only
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discusses the thermal conductivity on a gualitative basis. It
is known to be a strong function of both density and tempera-
ture and to a lesser extent also of grain size. This is one
area that requires further study.

Some further work could be done on expanding the number
of geometries tested using the electrical analog technique
develéped in Chapter III. For example, due to lack of time
and available apparatué no geometries were tested that had
large values of the dimensionless helix inside diameter
céupled with small values of the dimensionless heater diameter.

One other task that could be undertaken would be to
deVélop an equatioﬁ tb fit the theoretical data shown as

curves in Figures (2.4.1) through (2.4.4).



APPENDIX A

CALCULATION OF CHANGE IN HELIX INSIDE DIAMETER UPON

" STRETCHING FROM CLOSE WOUND TO FINAL PITCH

in order to calculate the change in arbor diameter
with increasing pitch consider first the helix in its close
wound position. Figure (A-1l) illustrates the helix aé it
would appear if its cylindrical shape were cut axially,
unwrapped, and shown in two dimensions. The subscript, 1,
indicates the conditions that exist when the helix is close
wound. The length of one turn of the helix is shown as a
iine inclined at the helix lead angle. The line represents
the axial center line of the resistance wire which would be
‘wound on a mean diameter which is the sum of the helix

inside diameter and one wire diameter (if springback is

neglected). The circumference of the mean diameter is shown

in Figure (A-1) as; (da + dw) T. From the geometry the
1
length of one turn of resistance wire can be calculated as:

. = (dal o4y G eeeeeenee (1)
cos 03
~where
o = tan-l dy ceeee (2)
1 T (d + 4 )
al w
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and
L = length of resistance wire for one turn of
the helix
da = helix inside diameter at the close wound
1l position
dw = resistance wire diameter
6y = helix lead angle at the close wound position

the length,‘i, is constant for any pitch and it is also
assumed that the resistance wire cross sectional area does
not change.

Figure (A-2) shows the helix in two dimensions after
it has been stretched to a new pitch. The subscript, 2,
indicates the new condition. The pitch may easily be
calculated since the number of turns of resistance wire in
the helix is constant and the length to which the helix is
stretched is known. That is, the new pitch is:

helix length
number of turns of resistance wire

pitch

The length for one turn of the helix is already known,
therefore, the new helix inside diameter is found from the

geometry as:

4 = ___P_.— - d
a2 T tan 62 W
where
02 = sinul 2



and
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pitch

helix inside diameter at the stretched
position

helix lead angle at the stretched position
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FIGURE A-1

CLOSE WOUND HELIX

FIGURE A-2
STRETCHED HELIX



APPENDIX B
ERROR ANALYSIS OF EXPERIMENTAL DATA

Since there'were an insufficient number of observations
made to do a comprehensive statistical analysis of experi-
mental error, the error analysis was made on a single sample
basis proposed by Kline and McClintock, (ref. 4). ﬁsihg
their terminology and nomenclature, the uncertainty in each
variable was specified as a mean of the readings and an
uncertainty interval based on specified odds. That is:

m + o (b to 1)
where

m = arithmetic mean of observed values

w uncertainty interval

b = the odds
Kline and McClintock defined a result, R, as a function of
variables; Vye vz, Vys ecscccccecs Ve Fach variable, vi,
had an uncertainty interval, W based on certain odds. The

-uncertainty in the result, is then related to the

Wr
-uncertainty in the variables as follows:

X
2 2 2
laR l 'aR ‘ ‘BR ‘
W = 7 W + an— W +eoeo+ o W oo(l)
R avl 1 BV2 2 avn n
The odds expressed for each uncertainty interval was a measure

of the confidence the experimenter had that any reading
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would ’ie within its estimated uncertainty interval. For
this error analysis odds of twenty to one were chosen for
the uncertainty interval in each variable.

The subsections that follow give an error analysis of
the helix cell, the standard concentric cylinder cell, and
the total error in ratio of the helixbcell shape factor to

the standard cell shape factor including instrument error.

Error Analysis Of The Helix Cell

In this subsection the effect of the uncertainty in
geometric variables on the helix cell shape factor is ana-
lyzed. The geometric variables are; the pitch, p; the helix
inside diameter, da; the heater outside diameter, d; and the
wire diameter; dw. In order to determine a shape factor from
the data compiled in the computer study these four variables

were non-dimensionalized as shown in Chapter III to read:

= B
P d ©c© ©00600®©000 (2)
w
d
- .2
Da - d ofaceccnoco (3)
W
= 4
D - d . ©®o 0 o000 00eo0 (4)
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The uncertainty in each of the non-dimensionalized variables

from equation (1) is:

' %
. 2 2
AR 3 aP
’ [V = W + = W o000 00@ (5)
Y
. 3D, 2, 2

Da= '§‘a—'wd + -a—d.—wd © 0060000 (6)

a a A\ w

Y
2 2
R 5D 3D
L\)D - E—d—wg + Ea—d_md] © o0 000 o0 (7)
w W

To simplify equationms (5), (6), and (7) the differentiation

)

Q

was performed and equations (5), (6), and (7) were divided

by equations (2), (3), and (4) respectively to read:

2
2 w
) d
= —E + '_ﬂ cooco0cococoe 8
w 5.2 © o
D d d © © ©o0 0 © @ O
a a A\

M'me
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. 5
2
2 w
w 14
D _ d \74
b— - [—“d] + [‘d—'—w] © o e 00 o000 (10)

Having determined the uncertainty intervals of the non-

e

dimensionalized variables, the uncertainty in the shape

| factor, G, from equation (1) is:

2 2 2
N I:ac; :‘ i 3G ’ [ae 1
W = 37 Yp + 35; wDa + 35 “p oo (11)

In equation (11) the uncertainties in the dimensionless

variables are found from equations (8), (9), (10). The terms
%%, %g—, and %% have values which must be determined from the
a

computer data since the analytical relationship between G and
the non-dimensionalized variables is unknown.

In the gebmetries tested the uncertainties in the
geometric variables contributed negligible error to the helix
cell shape factor. This is best illustrated by an example.
The first geometry tested had the following mean values and

uncertainty intervals:

p = 0.096" + 0.002"

d, = 0.218" "+ 0.005"

d = 1.50 " + 0.005"
+ 0.0002" |

dw = 0.032"



- 68 -
The corresponding mean values of the non-dimensionalized

variables are:

Tt - P = L = 3 L] 00
“ d,.
p, = Ja = s.81
d
W
D = g— = 46.9
W

‘The percentage uncertainties in the non-dimensionalized
variables are found by substituting the appropriate variables

into equations (8), (9), and (10). Putting in the numbers:

- - %
Yp = (4.34 x 1074 + (3.91 x 107°) | = T 2.163
P
- i
) 1 . I
Dy = (5.26 x 104 + (3.91 x 107°) = % 5,382
D_ i |
%
Y = [(1011 x 107°) + (3.91 x 10'5)] - *0.709%
...... )

“The corresponding non-dimensional uncertainty interval are,

therefore:

,,,,,,,,,,, w, =  0.0648
0wy . * '

Da = 0.162

wy, = % 0.0110
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Finall;, to determine the uncertainty in the helix cell
shape factor, G, the following quantities were found from
the original tabulated data using the appropriate uncertainty
interval; Wp wDa, or wys

IS g + 0.0042 (inches/inch of heater)

P
-G _ . .
o + 0.044 (inches/inch of heater)
a -
3G . .
D ° 0 (inches/inch of heater)

Substituting the above values into equation (11), the

uncertainty interval for the shape factor is:

. ' . L

wg = 11(0.0042) (0.0648)}2 + {(0.044) (0.162)}% + {0}?}* = +0.0071
The mean value of G from the original tabulated data was 3.60
inches/inch of heater. Therefore, the percentage uncertainty

is:

G _
g = +0.20%

This error was considered to be negligible when compéred
with those found in other parts of the experiment.

The other two geometries tested have similar
uncertainties which have negligible effect on the shape

factor.
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Error Analysis Of The Standard Cell

In this subsection-the effect of the uncertainty in

“ggoﬁetric variables on the standard cell shape factor will
be analyzed. Since the standard cell was a concentric
cylinder, the shape factor is related to the geometric

variables by:

G = 21L
std 0 © 06 0 0 0 0 Q00 (12)
in (do / di)
where
Gstd = the standard cell shape factor
L = the axial length of the cell
do = the inside diameter of the copper tubing
which corresponds to the outside diameter
of the concentric cylinder cell
di = the outside diameter of the copper rod
which was placed concentrically inside
the tubing

Equation (1) was used to determine the uncertainty
in the standard cell shape factor due to the geometric

yariables, L, do' and di as follows:

5
2 2 2
|3G l ‘BG l ‘SG l
std w std w std w
W = —_— 1| + a.] + d soee (13)
Gstd oL Sdi i ado o)
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To simnlify equation (13) the differentiation was performed
and equation (13) was divided by equation (12) to read:

5
®

2 w 2 w 2
Gstd - EE + di + do (14)
Gstd L diln(do/di) doln(do/di)

The following mean values and uncertainty intervals were

substituted into the non-dimensionalized equation (14).

S L = 6.00 + 0.030 (inches)
d, = 1.50 + 0.005 (inches)
d, = 0.125 % 0.005 (inches)

Substituting the above values into equation (14) , the
percentage uncertainty in the standard cell shape factor

due to the uncertainty in the geometric variables was:

e

X
= std _ {Ezes % 107%) + (2.59 x 1074 + (1.80 x 10'65} =+ 1.7%

std

Although this error is small relative to the difference

between the expected and observed values of the experimental
data it is considerably larger than the error introduced by

geometric variable in the helix cell shape factor.

Instrument Error

The only measurement taken was the total resistance

measurement on the Wayne Kerr B 421 Autobalance component
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bridge. The manufacturer states an uncertainty interval of
4+ 0.25 per cent of full scale reading on the range being
,used. Therefore, the mean value and the uncertainty for the
ihstrument used fér the experiment is:
10 + 0.025 (ohms)
Again the instrument error was considered negligible when

compared with other discrepancies in the experiment.

Error In The Ratio Of The Helix Cell To The Standard

. Cell Shape Factor

»Tékiné'into.account the instrument error and the error
in geometric variables in both the helix and the standard
cell, the total percentage uncertainty in the ratio of the
helix cell shape factor to the standard cell shape factor

according to equation (1) is:

2%
2 w
TRT — —G— + 'é‘—_ © 00 © 068 o 0 0 O (5)
std

G

Gstd

where

R =

For an example, using the first geometry tested, where G had
a mean value of 3.60 inches per inch of heater, the total
percentage error in the ratio of the shape factor was ¥ 1.75

per cent. Again this shows that instrument error and the
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error in the geometry of the helix cell had negligible
effect on the ratio of the shape factors when compared to
the error caused by the uncertainty in the geometry of the

standard concentric cylinder cell.
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