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' åBSTRACT

The design of electrical tubular resistance heaters

has in the past been hampered. by a lack of knowledge of re-

sistance wíre temperature aS a function of geometry" This

study provides a method of dete:min5-ng the cond'uct'ion heat

transfer between the helical resistance wire coil and the

metal sheath material. From this tl're wire temPerature may

be calculated.

shape factors for condueLion from the wire to the

sheath rdere found by usíng a finite element computer program

whictr modeled each turn of the resistance wire helix as a

torus of revolut,ion" After computing shape factors for a

wide range of geometries, the model was tested using an

electrical analog technique "

Through ttre use of these pred.etermined shape factors '

resista¡rce wire temperature ca¡¡ be calculated for a Particular

geometrjr given only the sheath surface temperatureo thermal

cond.uctívity of the insulating medigm, and ttre watt' density

on the resistance wire"



rL"

ACKNOWLEDGEMENTS

I would like to thank Dr" G" K. Yui1l for his guidance

and encouragement throughout the course of this work" I

would also like to acknowledge t.he assistance given by many

other members of the Faculty of Engineering. In particular,

gratitude is extend.ed to Dr. T. R. Hsu and Mr. G. Bertels

for their help in the computer analysis and to Dr" K.

McLachlan and Dr. M" Chaturvedi for their help in the

experimental study" Thanks also to Mr. L" E" Windsor and

the staff of the Temro Division of James B" Carter Limited'

for their assistance. I would. also lÍke to acknowledge the

Manitoba Research Council for the R.A.D.A.P. grant that made

this study possible. Thanks are also due to Mrs" Jeanne

wright for her careful typing of this thesis. Last, but

far from }east., I would like to thank my wife, Donna , for

her patience and understanding.



aaa-"

TABLE OF CONTENTS

ÃBSTRÄCT

ASKNOWLEDGEMENTS

TABLE OF CONTENTS

T,TST OF FTGURES

&IST OF TABLES

NOMENCLATURE

r TNTRODUCTTON

1.1 Background' Tnformation
1"1.1 Basic Heater DescriPtiôn
1"1-2 Manufacturing Processes

L"2 Statement Of The Problem
1"3 ScoPe Of The Thesis

TT COMPUTER SIMULATION

PAGE

2"1 The Model
2 "L"L SimPlif ication
2.1"2 assirmptions and Boundary conditions
2"1.3 Changing GeometrY
2"L"4 ComPuter Program
2.1"5 Calculating A ShaPe Factor

2.2 Results Of The ComPuter StudY
2.2"L Presentation of The Data
2"2"2 How To Use The Dat'a'

2"3 peterminat'ion Of Correct Dimensionless
Parameters
2.3"1 SPringback
2.3 "2 Sheath Thickness
2.3.3 Stretching The Helix
2'3.4 Decrease In Resistance
2"3"5 SummarY

i.
ii.

íii.
v"

vi"
vii.

I
I
1
2
6
a

9
9

10
14
14
ll
19
19
25

28
29
30
30
31
33



IIÏ EXPERIMENTAL STUDY

3"1 Electrical .A,nalog
3.2 Experimental Model

3"2"1 Electrically Conducting Cells
3.2"2 Use Of Alternati-ng Current
3.2"3 Apparatus
3"2"4 Method.

3"3 Prese.ntation Of DaLa

TV DISCUSSION

4.1 Error Analysis
4.1"1 Error Analysis Of The Apparatus
4"L.2 Systematic Errors
4"1"3 Undefined Errors

4"2 Torus Mod.el Versus An Act,ual Tubular
Heating Element,

V EONCLUSION

5"1 Statement Of Accomplishment,
5.2 Suggestions For Further Study

APPENDIX A CaLculation Of Change In Helix fnside
Diameter Upon Stretching Fron Close
Vlound To Final Pitch

Error Analys5-s Of Experimental DataAPPENDÏX B

REFERENCES

lv".

PAGE

34
35
35
38
40
42
46

50

50
50
52
54

56

58

58
58

60

64

74



v"

FIGURE NO"

1"1

2 "L"L
2 .L.2

2.2.L

2.2 "2

2"3

2"4"L

2"4"2

2"4"3

2,4.4

3"1

5oÁ

3"3

3"4

A"1

À-2

LTST OF FIGURES

Schematic Of An Electric Tubular
Resistance Heater

Helix As In Actual Heater

Torus Mode1

Elemental Volume

Computer Model

Finite Element Grid

Shape Factor From Helica1 Heater
Coil to Sheath For Pitch Ratioo
P = 3"0

Shape Factor From Helical Heater
Coil to Sheath For Pitch Ratio'
P - 4.0

Shape Factor From Helical Heater
CoiI to Sheath For Pitch Ratio'
P - 5"0

Shape Factor From Helical geater
CoiI to Sheath For Pit.ch Ratio o

P = 8"0

Schematic Of Electrical Ãnalog

Photograph Of Helix Cell

Photograph of Standard Ce11

Photogr¿ph of Experimental Apparatus

Close Wound Helix

Stretched Helix

PAGE

3

11

11

L2

L2

15

24

39

41

43

44

63

63

2L

22

23



viJ

T-,IST OF TABLES

Results Of The ExPerimental StudY

PAGETABTE NO"

3"1" 48



VTI "

A

b

d

D

E

G

h

i

K

IJ

m

P

P

0

R

t
T

Greek Symbols

p

A

0

1t

NOIÍENCI,ATURE

area

odds

diameter

dimensionless diameter

electrícal Potential
shape factor

convective heat. transfer co-efficient

elect,rical current

thermal conductivitY

length

mean

helix pitch

dimensionless Pitch

heat flux

electrical or thermal resistance

wall thickness of sheath material

temperat,ure

electrical resistivitY

difference

helix lead angle

3"14



V].aa¡

g, length

ü) uncertainty'interval

r, índePend'ent variable

SubscriPts

a ambient or helix inside
ra inner

o outer

s surface or sheat'h

std stand'ard

Ìd wire



CHAPTER I

TNTRODUCTTON

1.1 Background Information

Since not everyone is familiar with Lhe construction

of electrical tr.lbular resistance heaters, a brief or¡tline of

the processes and materials involved is presented" It' is

hoped that the reader will gain a clearer understanding of

the main part of this presentation after reading this

background material, Howevero this information is not in-

tended as a precise description of all the different' manu-

facturing techniques used. Rather, it is only a brief

d,escri-ption of the general characteristics of a tubular

resistance heater"

1.1.1 Basic Heater DescríPtion

An electric tubular resistance heater is composed of

three. basic parts; the resistance wire helix¿ Èhe electrical

ånsulating mediumo and a tubular metal sheath"

Resistance wire is mosÈ commonly made from 80-20

nickel-chromium alloy with traces of iron and silicon"

Ilowever, other resistance wire alloys are widely used; for

exampleo alloys of chromium, aluminum, and iron"

The resistance wire helíx must be protect'ed

1-
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electrically by a non-conductor from.the tubular met'al

sheath" Thís insurating materiar must have both high die-

lectric strength and good thermal conducta¡tce" Although

other materials máy be used for this Purpose, granular

magnesium oxide is most common

Theresístancewirehelixandinsulatingmaterial

are enclosed in'a thin walled metal tube of copPer, stainless

ormildsteelrnickelalloysraluminum'oroLtrermaterial'

depending on the final application" The metal Èubing Pro-

videsprotectionagainsttheenvironmenÈandallowsameans

of increasing the density of the insulating materíal, the

importance of which will be discussed below"

Figure(1"1)isaschematicofthecomponentsofan

electrical tubular resist'ance heater"

1" 1.2 Manuf act'uring Processes

Thefollowingisabriefd'escriptionofthevarious

stages in the manufacturing of an electrical tubular resis-

tance heater

Theobviousfirststepinproducingaheatingelement

is its initial design" The main design criterion is the

rate aÈ which an elemént must produce heat' to fit its final

application. For a given voltage this is determined' solely

by the total electrical resistance of the resistance wire

helix" As there are many ways of obt,aining the required
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resistance, a specific geometry for heater construction must

be chosen. The geometric variables of a heating element arei

resistance wire diameter, arbor diameter, helix pitch, and

heater element outside diameter" Then, before constructj-on

beginsr other oesign decisions are made, such as; the length

and type of terminal pins, overall heater length, ancl the

type of sheath material"

The first. ,construction process is thaL of winciing the

resistance wire into a helix of the required length. Winding

may be done mechanically on a macìrine tirat draws the wire

around a stationary cylinder into a continuous helix" The

helix is then automatically cut to the desired lengtir.

Alternately, winding may be accomplished by turning a leugth

of drill rod in a variable speed drill and manually feeding the

the wire onto the rod" An ohmmeter may then be used to measure

the desired electrical resistance therefore determining the

helix length.

It should be noted tirat the helix now has a pitch

equal to one wire diameter" That is, the helix is close

wound with one turn touciring anotirer rather than stretched

to a larger pitch as in the finished heater. The inside

diameter is no\^r the sum of the arbor diameter, the diameter

of the cylinder on which it was wound, and the wire

"springback" " The springback is caused by the elasticity

in the resistance wire and its effect is to cause the helix
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to unv'ind somewhat" Thus the inside diameÈer of helix is

slightly larger than the arbor cylinder diameter" This

phenomenon usually causes af) increase in diameter of only

a few thousandths of an inch-

The next step in the production process is to fasten

terminal pins to both end.s of the helix" This may be done

in various vrays. One way is to push a number of turns of

the helix around the cylindrical terminal pin and make a

spot resistance weld, thus fusing the helix to the terminal

pin" Another method is crimping the hei-íx to the pin" Again

a few Lurns of the helix are pushed over the end of the

termínal pin" This assembly is Èhen held in a d'ie whj-le a

stamping operation deforms the wire thus fast'ening the helix

to the terminal pin" Yet another method is to use threaded

terminal pins and si:nply thread the helix onto the pin"

In the next production step, t,he helix and t,erminal

pin assembly is held concentrically in a length of the metal

tr:bing chosen for sheath material. The helix is stretched

to a predetermined length so that' the terminal pins protrude

slightly from both ends of Lhe tubing" Next the insulating

medium is vibrated into the metal sheath and falIs around'

the terminal pins as well as around and between the turns

of the resistance wire helix. The helix and terminal pin

assembly is thus electrically insulated from the metal sheath

material. There are various vrays of producing the above
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configuration" Perhaps the most comnon is a batch process

in which the helix and terminal pin assembly is held station-

ary on a machine. The length of metal tubing for sheath

maÈerial is then mãchanically moved down around the helix

assembly and at. the same t.ime st'retches the helix to its

required length" The insulating medium' usually magnesium

oxide, ís then vibrated into Èhe tubing" The vibration

serves to increase the d.ensity of the magnesium oxide which

result.s in a higher thermal conductance"

Thermal conductance increases exPonentially with in-

creasíng density in mosÈ granular insulating materials used

in heater elements. since it is desirable to have as little

thermal resj-stance as possible between €he resistance wire

helix and the tubular metal sheath' operations are performed

to increase the density of the insulating medium" One way

to achieve this is to draw t'he metal Lube cont'aining the

insulating material through a set of rol}s" For powdered

magnesium oxide ' a Significant diameter reduction compresses

the powder into a granular solid" At this point the tubular

resistance heater is a straight cylinder with a work hardened

metal sheatho the basic electrical tubular res'istance heater"

L"2 Statement Of The Problem

heat flux that

has hindered
The lack of

may be prescribed

knowledge of the maximum

for a particular geometrY
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designers of tr¡bular heating elements. . That is, what resis-

tance wire or sheath wat,t density may be prescribed and' still

allow the resistance wire t,o remain at a temperature low

enough to ensure a long heaÈer service life

Many problems are encountered in measuring resistance

srire temperature. For examPleo thermocouple probes inserted

into heating elements give limited accuracy since t'he measure-

ment is only local. Furthermore, heat is conducted' away

through the thermocouple faster than through the insulating

sredium. Also the geometry of the heater may be easily dis-

turbed by inserting the probe" F" S" Epstein (ref" 1)

describes a method of d.etermining resistance wire temperature

by using the helix as a resistance thermometer" Although his

method allows accurate determination of wire temperature for

a pariicular heater, it does not enable the determination of

a reuseable shape factor since t'he thermal conductivity of

the insulating material remains unknown" Thereforer the

scope of this approach is limited to single geometries and

a single insulating material having a standard density"

1.3 ScoPe Of The thesis

The study presented here utilized a simplified model

of the resist.ance wire helix and a finite element computer

analysis of Èhe heat transfer. The model's geometry was

varied, thereby simulat.ing a wide range of tubular heating
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elements. shape f actors were d.etermined' over a range of

variableswhichcovered'mosËoft'heheatergeometries

eommonly manufactured. Dimensionless variables v¡ere used

in plotting the ¿.t- to allow the user to easily identify

thecorrectshapefactorforthegeometryinquestion"
Thecomputersimulationwastestedusíngasteady

stat,e electricai analog technique with a liquid conductor"

This was found to be preferable to determining t'he shape

factor from an actual heater because of t'he difficulty in

accurately obtaining the thermal conductiviÈy of the insu-

lating medium. The analog measurements agreed well with

the results found in the compuLer study"



CIIAPTER IT

COMPUTER SIMULATIOI'T

2.I The Model

In order to compute the conduction heat transfer
between the resistance wire helix and the outer sheath ma-

terial, a simplified model was constructed. this model

allowed solution by the numerical finite element technique.

Since there were four geometric variables, three of

them were non-dimensionalized by dividing them by the wire

diameter" The computed shape factor is presented as a

function of these non-dimensionalized variables in sets of

curves that cover the range of values encountered in common

heater geometries"

2.I.L Simplification

' The resistance wire helix was modeled as a series of

doughnut shaped elements or tori" Each turn of wire in the

helix was modeled as a torus of revol-ution havj-ng helix

inside diameter the same as the torus inside diameter. The

pitch of the helix, the axial length for one turn of wire,

was modeled as the center to center axial lenqth between

two adjacent tori" fhe wire diameter of the helix and

torus circle diameter of the model were the same"

9-
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The outsid.e diameter of the heating element, the sheath di-

ameter, was Lhe same ín thp torus model aS it was in the real

heaÈer, Figures (2.1.1) and (2.L.2) illustrate the helix and

the model descríbed above"

As can be seen from Figure (2"L"21 the geomet,ry

becomes axisymmetric when mod'eled in this way" 'A single

element has a disk shape such as would be made by rotating

the wedge shown ín Figure (2.2"L) to fill the entire 3600"

The volume nor]nally filled by the resistance wire was omitted

as will be explained below. Figure (2"2"2\ sho$ts an infini-

tesi¡nally thin slice of the wedge shown in Figure (2"2"I) "

The dimenSiOnS, "p", "d*'0, t'dat', and t¡d!¡ fUlly deSCfibe a

heater geometry when modeled as a series of tori of revo-

lution "

tions And Bounda Conditions

Heat flux and temperature bound.ary condit'ions !{ere

appliedtoÈheaxislrmmetricshapeasshowninFigure(2"2"2)"
In the torus model Èhe t'emperature field ís a function

of the axial and rad.ial co-ordinates and is not a function of

the angular co-ordinate" Therefore, the adiabatic sides

shownarefoundbyslrrrunetryfromadjoiningidenticalelements"

The bottom of the element is obviously adiabatic since it is

the axis of symmetrY

The resistance wire was assumed isothermal since its
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thermal conductivity ís fífty to one hundred times greater

than that of the electrical insulating material" This

assumption was further verífied by a finite element computer

alìalysis in which the resistance wire was part of the

elemental volr:me. The resistance wire was assumed to have

u¡rifora heat generation. It was found that Èhe temperature

differences between any two points in the resistance wire

tfere negligible. Therefore, the semi-circular region

shown in Figure (2.2"2) was considered isothermal"

For sj¡nilar reasons the comparatively t'hin layer

of sheath material was not included as part of the grid

for the fj-naI computer Program. common sheath materials

such as coPper and mild steel have thermal conductivities

fifty to four hundred times greater than that of the

electrical insulating material" A preliminary finite ele-

ment analysis showed that the sheat'h material was nearly

isothe¡maI in both axial and. rad.ial directions" The absence

of the sheath material in the elemental volume also greatly

.,sÍmplified the manipulation of input for the comPuter program

because the elemental volume btas composed of one material

,only"
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The basic finite "tlment 
grid which was drawn on the

shape shown in Figure (2"2.2), is presenÈed in Figure Q"3l "

As numerous heater geometries were studied various alter-

atj-ons v¡ere made to the basic grid to accommodate particular

geometries. For example, for larger arbor d'iameters blocks

of ínsulating material had to be added to the bottom of t'he

shapeshowninFigure(2._3)"Sjmilarlyoforlargerheater

outsid.e diameters blocks of insulatíng material were ad'd'ed

to the top of the grid. To allow for changes in pitch or

stretch ratio of the helixu insulating material was added

ín the axial direction " A ccrnputer prograln $¡as written to

produce punched input data for the many d'ifferent' geometries"

since the grid cont,ained a single materialo obtaining

computer run input d.ata for the varied geometries was ac-

complished with comparative ease"

2.1"4 Computer Program

ThefiniteelemenÈcomputerprogram'*NLHEAT'''that'

was used for Lhis study was developed by Hsu and Bertels

(ref " 2| u using a meth.od described.by lüilson and Nickell,

(ref " 3) "

The computer program I{as flexible and hand'led both

axisynunetric and planar geometries" It altowed t'he speci-
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fication of isgthermal and adiabatic bound'aries" Material

properties and heat t.ransfer co-efficients could be made to

vary with temperature, time, and position. The computer

program calculateá and returne¿ node point temperatures

for any specified set of conditions"

For the Lorus model the following set of specifications

or boundary conditions were applied" Referring again to

Figure (2"2.2) ' the semi-circular boundary representing the

wire surface was given a prescribed temperature. The uPPer

horizonÈal boundary whi-ch represents the outer surface of

the heat.ing element was given a prescribed uniform convective

heat, transfer co-efficienÈ" In the case of the adiabat'ic

boundaries, there rúas no prescribed heat transfer co-

efficíent and, therefore, no heat could be transferred

through those bound,aries" The insulating material was given

a uniform thermal conductivit'y which was approximately the

value of thermal conductivíty of compacted magnesium oxíde

found. in heating elements" As previously mentioned' a

preliminary analysis showed that even for a heater with a

large helix inside diameter and a convective heat transfer

co-efficient of 1 Btu "/fE"z - hr" - opr the outer surface

of the heater was found to be isothermal within two degrees

Fahrenheit "

Before using the computer Program on the Lorus model,

it was checked for accuracy by using known geometries such
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as the plane wall and concentric cylinder" It was found'

that the numerical solution compared to five åignificant

figures with the exact analytical solution'

several different, grid. sizes were used when the torus

model was analyzed. It was found that enlarging the grid

size did not significantly change the .o*poa.t results for

the same geometrY.

2.1.5 'Calculating A Shape Factor

The method used to determine a single shape factor

from the results of the computer program was as follows:

A shape factor describes the influence of geometry

between two isothermal surfaces in heat conduction problems"

Since the resistance wire was modeled aS an isothermal

surface and the outside heater surface was found to be

almost isothermal from computer results, the use of shape

factors was feasible. The conduction equation for this

case .Is:
2"LO = cK (Tw-fs)

where

o

G

K

= .heat loss (Btu " /ht "\

= shape factor' (ft")

= thermat conductivity of insulating
material (etu ./]nt- ' ft- oF)
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T* resistance wj-re temperature prescribed
ín computer. program (oF)

Tu = surface oT sheath temperature calculated
Ay tft" computer Program (or)

In equation 2.Ln G is the shape factor having units of

Length and ís equal to a representative area divided by a

representative length. The shape factor is a function of

geometry onIY"

since this is a steady state heat transfer Process,

the total heat flux from the resistance wire ís equal to

the total heat flux from the heater surface for the element'al

volume shown in Figure (2"2"L't " The surface heat loss is

given by:

O = h=A (Ts - Ta) 2"2

where

h* = ;:::ï:å:ã i;"th:':Ëi;lJ";::ålä""'
(Btu"/hr" - fE"¿ "F)

r" *ffii:,ïiË;*"'" Tæi""oed 
in rhe

A : heater surface area (ft.z)

-The area" A, for the torus model is equal to the

producÈ of the circumference and half the pitch"

The shape factor, Go per unit axial length of heater

can then be found by rearranging equation 2"1 to the form:

= ffi 
o'oo'oeoso 2"3
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where

p=istheaxialpitchbetweentwoadjacenL
tori (ft" )

"a+d evaluated by substitut,ing the value of Q from equation

2.2" Equation 2.3 is d,ivided by t P because t'he elemental

volume under consid.erat.ion has that axial length as shown

in Figure (2"2-2) "

2.2 Results Of The Computer Study

ïn this section the results of the computer study

are presented" A sample calculation j-s also presented to

indicate how these resulÈs may be used oR a real heater"

2.2.1 Presentation Of The Datq

over five hundred computer runs v¡ere made to encompass

c9úrtrnon heater geometries and a shape factor calculated for

each geomet,ry by the method descrj-bed in section 2"L"5"

.AsPreviouslymentioned,theheatergeometryoft'he

torus model is fully described by: resistance wire diameter'

dr, helix inside diameter, da; heaÈer outside d'iameter, d;

and pitch, p. These variables were non-di:nensj-onalized in

.order to reduce the number of curves required t'o show the

.results of the computer study. That is, a four dimensional

plot was reduced to three dimensions by dividing the heaÈer

diaÍIeter, helix inside d'iameter, artd pit'ch by the wire

diamete.r. Therefore, any torus model geometry is described
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by three dimensionless variables: the d,imensionless diame-

ter, Dt the dimensionless .helix inside d.iameter, Dai and'

the dimensionless Pitchu P"

The resultå of the study given in Figures (2"4"1),

(2"4.2) , (2.4.3', , and (2"4"41 are presented in t'erms of the

dimensionless variables" Each set of curves is representa-

tive of a particular dimensionless pitch" For example, fox

Figure (2"4"1) the dimensionless pitch is t'hree for any

value of d.imensionless helix inside diameter or for any-

value of dimensionless heater d.iameter" The dimensionless

pitch is equal to the stret-ch ratio of the resistance wire-

helix from the close wound positS-on t'o the final position

in the finíshed heater" The stretch ratio for good heater

design should be at least three to one Èo prevent arcing

from one turn of the helix to the next'. F.or this reason

the dimensionless pitches chosen for the comput'er study

were three, four, five, and eight" The values of Lhe

dimensionless helix inside diameters $tere chosen to include

coÍrmon geometries" The values are 3"5u 6"50110 15'5 o 20,-

24"5, and 29" similarly, Èhe dimensionless diameter which

ís the abscissa on each drawing has a range varying from

ten to one hundred. ihe ordinate for each curve gives the

shape factor, Go in inches per inch of axial heater length"
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2.2"2 How To Use The Data

Thepurposeofthisstudywast'omakeitpossible
'-tO determine resistance wire t.emperature for a given watt

d.ensity and. heater geometry" To illustrate the use of shape

factors presented in Figures (2"4.L\ through (2"4"4) a sample

calculation is performed for a real heater

Abaseboardheaterisastraightheatingelement

whose surface temperature can easily be measured. In order

to calculate the wire temperature the fol]'owing information

must be suPPlied:

1" wattage
2. axial heated length of the heating element
3" helix inside d'iameter
4" wire diameter
5" heater diameter
6" Pitch
7. heater surface temPerature
I" thermal conductancã of the insulating material

O¡rce these parameters have been obtained the calculation is

straightforward"

First the heat flux per inch axial length of heater

is obtained by dividing the wattage by the heated length"

0 
ï";i":;-"".:,": :ïî' 2.4

I

The shape factor must be determined from Figures

(2"4.1) through (2"4"41 " To do this the geometric variables

are non-di:nensionalized by the wire diameter" care must be
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exercised when the geometric variables are evaluated" That'

is, the final helix inside'diameter, pitch, and wire diame-

ter must be used since there may be corrsiderable difference

in these variaUles after the element has been roll red'uced.

from what appeared before" This witl be discussed in detail

in the next section. once the non-dimensionalized vari¡hIes

have been evaluâted the shape fact'or is chosen from t'he

correct curve" Tt may be necessary to interpolat'e or

extrapolate between curves or sets of curves"

Knowing the shape factore the wire temperature is

found by rearrangíng equation 2"1 t'o read:

T = L + T êôoo€ 2.5-\d GK -s

rrhere

T* . = resistance wire temperature (or')

Tu sheath temPerature (or)

K = thermal cond.uctivity of the electrical rl
insulating material (Btu"/}i,t" 'in" -F)

G = shape factor (inch,/inch of heater)

Q = heat fh¡c (Btu 
" /hx " - inch of heater)

As a numerical example consider a baseboard heater

with the following specifications:

1000 wat'ts
38"5 inches of heated length
O.072 inch helix inside d'iamet'er
0"014 inch wire diameter
0"440 inch heater diameter
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0"044 inch Pitch
400oF heater surface teqtperature
0.042Btu./hr"in.-()Fthermalconductance

of insulating material

The heat f ]ux Per j-nch of heater is:

o=19s#=e0.4
Non-dimensionali-zing the pitch, helix inside diameter '

and heater diameter by divid.ing by the wire d'iameter, the

non-dimensionalized variables are s

P = 3#å = 3.14 non-dimensional pitch

D = 0="W : 5.14 non-dimensional helix"a 0.014 inside diameter

Ð = å#å = 31.4 
åïHåäensional 

heater

Knowingtheaboveparameters,Figures(2"4"L1and
(2.4.2'.) are consulted and by int,erpolation the shape factorn

G is approxi:nately 4.5 inches per inch of heater" substi-

tuting this value into equation 2"5:

r*="#-t+4oo
878or

This is well below the limíting continuous service

temperaÈure for tubular resistance heaters"
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2.3 Determination of Correct Dimensionless Parameters

The previous section demonstrated how easily the

curves in Figures (2.4.I) to (2.4.4) may be used to find a

shape factor once the heater geometry is known" However,

determining the final geometry in a compacted, straight,

tubular heating elemenÈ is not simple

since there are many variables which influence the

final geometry, it was impossible to apply a correction to

the "as wound helix" that would þredict the final geometry

in any circumàtance. This was mainly due tp the process of

diameter reduction whj-ch occurs after the filling operation'

The variations in materials and material properties with the

degree of diameter reduction caused by rolling or swaging

aire'ctty influence the final heater geometry so that it

cannot be predicted. accuratelY-
. In order to avoid choosing an erroneous shape factor,

the correct coil inside diameter, wire diameter, pitch, and,

heater diameter must be determined -from a finished' heater"

This may be accomplished by carefully cutting the heater

apart and measuring or by x-raying the heater against a cal-

ibrated transparent grid.

The subsections below aes"riUe the variables involved

in determining a final geometry and in some cases how these

affect the calculation of the correct di-mensionless variables.
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2" 3" 1 SPringback

As mentioned in ="".,o,, L.L"2, springback is the

elasticity in the .resistance wire helix causing ít to r:nwind

a¡¡d increase its inside diameter. That is, as the resistance

wire is wound into a helix it undergoes an elastic-plastic

deformation. lfhen the constrictíon holding either end of

the helix is removed, it unwinds causing an increase in helix

ínside diameter" At the same time t'here are fewer turns of

wire in the helj-x which would be stretched to the sane length

i¡r the finished heater. subsequently, there is an increase

in pitch over that which might be pred.icted if t'he helix

inside diameter was assumed to be the arbor diameter" How-

,ever" while the increase in helíx inside diameter causes an

increase in shape factor above that predicted at the arbor

diametero the increase in pitch causes the shape factor fo

decrease beyond that predicted by the original pitch"

In the product,ion of a tubular resistance heatero

springback is the first complication t'hat makes the pre-

diction of a final geometry difficult since different wire

diameters and types of resistance wire will have different

springback characteristics "

Anaverageincreaseinhelixinsidediameterdueto

,springback 
ís approximately 0"005 ínches' For nearly all

cases in real heaters sp::ingback will have negligible effect

on final geometrY"
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2"3"2 ' 'sheath Thickness

As was mentionea in section 2.L.2, the sheath material

was not modeled. as part of the finite element grid" That is'

the temperature gradient in the radial direction through the

sheath material was assumed negiigible. For this reascn the

dimensionless heater diameter should be calculat'ed as the

heater outside diameter minus twice the t'hickness of the

sheath material divided by the resistance wire diameter"

That, is:

D = ð'=2t
*I^¡

where

E dimensionless diameter raLio

d = heater outside diamet'er (inches)

t = 'waLl thickness of sheath mat'erial (inches)

dw = wire diamet'er (inches)

This correcÈion becomes more important for small resistance

wire diameters and large sheath material Èhicknesses"

2.3 " 3 Stretching The' lIelix

The second pfocessr after springback which complicates

Ëhe determination of a final geometry in a tubular heater'

from the geometry of the helix as wound on the arbor Pin,

occurs when the helix is stret,ched during the filling
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operation. Ã,t. this stage in production the helix is fixed

at both ends and stretched to the length of the tubing used

as sheath material. This causes the helix inside diameter

to decrease since the length of resistance wire for one turn

of the helix remains constant while pit'ch increases from one

wire diameter in the close wound helix to t'he larger pitch

in the stretêhed helix"

åt this point the helix geomeÈry can be calculated' as

shown in Appendix A since the original geometry is known and

ttre length of resistance wire for one turn of the helix

remains constant. However, this first major change in

geometry is further complicated by the next production step

as discussed. in section 2"3"4

2"3.4 Deerease In Resistance

The third and most unpredictable change in geomet'ry

of the resistance wire helix occurs after the tubing used

'as sheath material is complete with resistance wire helix

,a¡rd filled wittr granular insulating materíaÌ such as mag-

rfiesium oxide " The tubular element is t'hen red'uced in outside

diameter by passing the tubular sheath through a set of rolls

or by ttre rotary hammering action of a svTager" This is done

to íncrease the thermal cond.uctance and elect'rical resistance

of the insul-ating material and results in elongatíon of the

sheath"
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The diameter reduction of the heating element causes

a decrease in electrical resistance measured from terminal

pin to Èerminal pin compared to that which existed after the

sheath had been filled with insulating material. The

decrease in resistance may vary from tv¡o per cent to sixty-

five per cent and is dependent upon beveral factors such as:

the type and temper of the metal tubing used as sheath

material, the original geometry of the resistance wire helix,

the fill density of the insulatinq material achieved inside

the sheath during the filling operation, the type of insu-

lating material itself, and. the percentage diameter reduction.

There are several possible explanations for this

decrease in resistance. One is that high pressures may cause

the helix to be pushed into itself and thus thicken the wire

causing a d.ecrease in resistance with increasing wire d.j-ame-

ter. Another'is'that several turns of the resistance wire

are pushed onto the terminal pin causing a decrease in resis-

tance" Although this seems possible for a two per cent

decrease it seems highly improbable for. a sixty-five per cent

decrease. In fact, x-ray photographs of diameter reduced

tubular elements show that this effect is not a large factor-

A third possibility is that'the electrical resistance of the

resistance wire is al-tered due to metallurgical effects.
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2 " 3.5 Sunimary

It was not the intent of the author oi ani= thesis

to predict the final geometry of a tubular resistance heater

which may undergo the above transformations, but rather to

solve the conduction heat transfer problem between the resis-

tance wire helix and the metal sheath *.t"ti-.f. Section 2.3

and the ensuing subsections were included to demonstrate the

complicated geometric changes that occur in a tubular resis-

tance heater and to emphasize that care must be exercised in

determinirg; the final wire diameter, pitch, helix inside

diameter, and the outsj-de heater d.iameter minus sheath

material. The di-mensionless variables are then evaluated

and the appropriate shape factor chosen as shown in section

2.2 "2 "



. CHAPTER ITT

EXPERTI\,IENTAL STUDY

3" I Electrical Analog

A steady state electrical anatog method was used to

verify the accuracy of modeling a helix as a series of tori

of revolution" In this analog method a series of electrolyÈic

cells which vrere the geometric equivalents of heater elements

$rere constructed. Appropriate measurements of voltage, current,

or resistance \{ere taken so that the shape factor for electri-

cal resistance could be calculated.

In the electrical analog to a conduction heat transfer

problem the following parameters are equivalent:

a) The electrical current is equivalent to the heat
flux "

b) The voltage gradient is equivalent to the
temperature gradient.

c) The electrical resistivity of the electrically
conducting liquid is inversely equivalent to the
thermal conductivity of-the material through
which the heat is transferred"

d) The ratio of normal conducting area to path
length, the shape factor, is the sarne for both
the electrical analog and the equivalent heat
transfer geometry.

The liquid used in this analog method was an ionic

conductor or electrolyte" The electrical power source \das

of high frequency (above 103 gertz) alternating current to
negate any electrolytic plating action

'34
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3"2 Experimental Model

This section ai=.o=""= the theory of the electrical

analog as it applies to the particular problem of the helix

ínside the metal sheath. The physical Lest apparatus and

method is then discussed"

3.2.1 Electrically Conducting Cells

In the electrical analog of a stretched helix inside

a tubular met.al sheath, the sheath and helix acted as two

electrodes at different volt,ages" The sheath was at a

voltage, Elo which is anal-ogous to a temperaÈure, T1, while

the helix was at, a different voltâ9ê, EZn which is analogous

to a temperature, TZ" The two electrodes vlere in electrical

contact only through an electrolyte which was sealed' insid'e

the sheath. That is, the elect,rolyte, which in this case

rras a weak solut.ion of copper sulfate and' sutfuric acid'

was poured int.o the streath around the helix in t'he same way

magnesium oxide would be poured into a real heater" When

the cell was connected to a po!'ter supply and current flowed

.across ito Ohm¡s law states:

i = å tå]^E o o c o o o o o o o (1)

current (amps)

of the electrolYte (ohms-inch)
a

p

= the electrical

= the resistivity

vrhere
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A E = the potential difference or voltage drop
between coil ano sheath (volts)

+ = the shape fåctor (inch)
L

i' fr-Jand R = ol = |- LAI
ooôooooooo (21

where

R = the total electrical resisÈance of the
celI (ohms)

The conduction heat transfer analog to equat'ions (1) and (2)

is:
ô o o o o (3)

where

O = heat f lux (Bt.u" /hr " )

K = thermal conductivity (Btu. /nt- inch - of)

a T = the temperature d.ifference between coil
and sheath (oF)

å = Lhe shaPe factor (inch)
. -tr

and R = + l-+l côooo (4)
K L/IJ

where

R = the total thennal resistance of the ceIl
(or - rrr")

Btu"

In equation (1) both the resistivity and the shape

factor are unknown. In order to experiment'ally determine

the shape f actor, a sÈandard with a known shape fact'or was

compared with the unknown helix cel}" The stand'ard cell

was the concentric cylinder with the inner and outer cylinders

o = Kt*]^r
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actíng as electrodes" The shape factor for

shape factor = i" ?fu
where

this case is:

(71

in both ce1ls,

and rearranged

(s)

t = length of the cylinder (inches)

d = outside diameter of electrolyte i"e" insideo radj-us of out.er cylinder (inches)

dí= inside diameter of electrolyte i"e" outside
radius of inner cylinder (inches)

since the helix ceIl and the standard cell could be

connected in series, the Same current could. paSS t'hrough

both. Using the subscrj-pt, 1, to ind.icate the helix cell

and the subscript, 2, to indicat'e the stanCard cell,

equation (1) may be written for each cel-l as å

Since

equation (6)

to read:

1

Ë (A/r,')t A El

.T

Ë (A/L)z LEz

the same electrolYte was used

can be divided by equation (7)

(A/L\ 
2w = L EL/L E2

since the shape factor for the standard cell was

known, to find the unknown shape factor, (A/L) L' the ratio

of the voltage drops across the two sets of electrodes had

to be measured."

(8)
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Figure (3.1) is a schernatic of the electrical analog

test method described above.

3.2.2 Use'of Alternating Current

The original power source for the circuit shown in

Figure (3.1) etas a variable voltage direct current po\^7er

supply" Direct current was used initially to negate any

inductive effects in the ce]} containing the helix" However,

the application of direct current proved more d'ifficult than

originally anticipated due t.o problems such as differential

electrod.e areas between the helix cell and Lhe standard cell

causing the resistivity of the electrolyte in each celI to

be different,. Other Problems were differential resistance

heating of the electrolyte and the formation of concentration

gradients within the cells" Many trials of using a d-irect

current povter supply for several electrolytes and many applied'

voltages showed no reProducible results"

The main object,ion Èo using alternating current was

the induct,ance effect on the helix cell" To determine the

magnitude of the inductive resistance a varíable frequency

input was connected t.o the helix celI" An oscilloscope trace

showed that there l^Ias no significant phase shift of applied

alternating current for input frequencies of several kilo-

hertz" Thereforen the inductance was neglected and alternating

current, equipment was used to measure the circuit shown in

Figure (3.1).
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3 " 2'"'3 ApParatus

The apparatus used åo perform the electrical analog

was reduced to fou¡ main components when an alternating

current source was applied to the circuit; the helix celI '
the standard ce}l, Lhe electrolyte, and t'he l{ayne Kerr B 42L

Autobalance component Bridge" The measurement method employing

the glayne Kerr instrument wíIl be discussed in section 3"2"4"

Figure (3.2) is a photograph of the helix cell" As

previously mentioned the outer cylinder and wire helix \Alere

both made from commercially pure coPper. The two end plugs

which electrically insulated the cylinder from the helix were

machined from teflon. The plugs also served to hold the helix

concentrically with respect to the outer cylinder" The wire

helix was threaded onto the bolts shown in the photograph"

The threaded washer prevented the bolt from slipping through

the teflon plug and. into the ce}l" In this way t'he washer

also served as an adjustment t.o the stretch ratio of the

hel-ix" That isn by turning the washer to the desired posj-tion

on the bolt a small adjustment could be made to the amount

the helix \áras stretched" The cell was held in a vertical

position during testing" Thereforeo the bottom teflon P1u9

had to be water-tight. to prevent any leakage of electrolyte"

This was accomplished by using silicone cement around the

periphery of the plug next to the copper cylinder and around

the bott holding the helix. The t'op plug had two small holes
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Ín it beside the larger hole used for the top bolt" These

two holes utere used to fill the ce}l with elect'rolyte once

it was assembled with the helix inside. One hole was used'
a¡.

to fi.1l the cell an¿ tne other acted as an air vent and'

indicated when the ceIl $/as full" The hose clamp around

the copper cylinder served to make elect'rical connection

rúith measuring equipment"

The standard cell was similar to the helix cell in

construction" As can be seen in Lhe photograph shown in

Figure (3"3) the only difference between the two cells was

that no elaborate means for hold.ing the copper rod concentric

within the outer copper cylind.er was required" The coPPer

rod had a t.ight fit in the center holes of both teflon p1ugs"

Figure (3"4) is a photograph of the assembled apparatus

ready fcr test"

3"2.4 Method

The following method hlas used to determine the shape

factor for a part,icular helix geometry inside an enclosing

cylinder"

The copper sulfate, sulfuric acid, and distilled

waÈer solution $7as prepared in a mechanical mixer to ensure

that the copper sulfate was completely dissolved" the

solution was then strained through fitter paper into a clean

container ready to be poured into the test cells"
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Once thq st,andard ce}l and the helix cell vlere sealed

to prevent leakage of electroryt'e, they \'{ere placed in t'est

tube holders and held vertically" The electrolyte was again

mixed and then poured into one of the cells through one of

the two 0"L25 inch holes drilled into the top teflon Plug.

The other hole acted as an air vent and indi-cated when the

cell was full of electrolyte. the l{ayne Kerr B 421 Autobalance

Component Bridge was ttren connected with one lead to each

electrod.e. The lead wires were of heavy gauge copper and

as short as possible" They werer thereforer of negligible

resistance when compared to the resistance of the cell" The

Vüayne Kerr Brid.ge then measured the resistance of the cell

being tested" This read,ing was recorded immediately after

the cell was filled with electrolyte (i"e" within one minute)

to minimize the effects of any chemical reactions" The

remaining cell was then filled with electrolyte poured from

the same bottle used. to fill the first cell" A resistance

measurement was taken and recorded"

ås was previously mentioned.r rlo appreciable inductive

resistance ltras found in the helix cell using input frequencies

of several kflz " The lrlayne Kerr instrument has a bridge

frequency of I kgz and should, therefore, introd'uce negligible

error due to inductive effects"

This test method deviat,es somewhat from the method

described in sect,ion 3"2"1 since the resistance measurement



46

is mad.e directly and each ce11 was measured independently"

However, the theory of that section still aPplies and' the

ratio of cell resistance is equal to the ratio of shape

fàctors since the electrolyte in both cells has the same

resistivity and both cells \^¡ere measured by the same instru-

ment which passes the same current through each cell"

Thereforen in equation 3"8 the voltage drop can be replaced

by the total resistance of each cell to read:

(A/:!2 : Rt (3.e)W=E
where

R}=theelect.rj-calresistanceoft'hehelix
cell (ohms)

R2 = the electrical resistance of the standard'
cell (ohms)

Only three geometries were Èested due to the difficulty

in obtaining uncoat,ed copper wire to use for helix construction"

Also, the apparatus did. not allow a wide variety of geometries

to be tested since the tube inside diameter (which is equiva-

lent to the heater outside diameter) was fixed' as vlas the

diameter of the threaded connection which held' t'he helix

concenÈric i-nside the tube"

3"3 Presentation of Data

Three different helix geometries were tested using the

method described in section 3.2"4" Each geometry was tested
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three times using a dífferent helix and batch of electrolyte

on each trial" Table 3"2 shows the results of the tests and

the percentage deviation of these results from those pre-

dicted by the theoretical analysis given in chapter II. A

discussion of these discrepencies is presented in the next

chapter"

ln order to predict the rat,io of helix cell shape

factor to the standard cell shape fact'or, the shape factor

per unit axial length (per inch) of the standard cell must

be calculated. Since the sÈandard. celI was a concen€ric

cylindero equation 3"5 gives the shape factor as:

2rL
rn-Ï_ao_@rr

"std = 2 "529 inches
o o o c o o o (3"10)

where

Fustd

t=

do=

di=

The helix cell shape factor, G, per unit axial length

was established by interpolation of the original data obtained

from Èhe analytical analysis which was used Lo plot t'he curves

ín Figures (2"4"1) through (2"4.4)" The dimensionless

parameters used were those found by dividing t'he helix geome-

try given in the extreme left hand column of Table 3.1 by the

wire diameter.

standard ce11 shaPe factor

1"00 inches

l- " 50 inches

0"125 inches
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Having obtained the analytical value of the helix
shape factor which was modeled as a series of tori, the

theoretical ratio of G/G"rd ir easily calculated. For

example, using the first geometry the dimensionless para-

meters are:

P = 3"00

D" = 6.81

D = 46.9

By interpolation of the original data, the corre-
sponding shape faitor per inch axial length of helix is 3.60

inches

The ratio G/G^-. is, therefore:' sto

c 3.60
=Gstd 2.529

It is this value which appears in the sixth column in
Table 3.1. This is the rat.io predicted by the analytical
model presented in Chapter II" This ratio j-s compared to
the experimental results shown in the fifth column, with the

percentage difference based on the analytical analysis shown

in the seventh column. As stated in equation 3.9, the ratio
of the shape factors is inversely equal to the ratio of the

total cell resistances. That is:
G

Rz

Ç=E ( 3. r1)

Similar calculations $/ere performed on the other two

geometries.



CHAPTER IV

DISCUSSION

4.1 Error Ar¡alysi's

This section contaíns a discussion of the systematic

and random errors that occurred in the experimental model and

their effects on the ratio of the helix cell shape factor to

the standard ce11 shape fact,or"

The percentage difference between the rat,io of the

helix cel-l shape factor to the standard cell shape factor

predicied by the theoretical analysís of Chapter II and. that

predicted by the experimental model of Chapter III are shown

ín Table 3.1. The average percentage difference based on

three trials of each of the three geometries tested was 3

2"8 per cent for the first geometry, 5.8 per cent for the

second geometry o and 6.2 per cent for the third geometry"

The possible causes of these discrepancies are presenÈed below"

4.1"1 Error Analysis Of The Apparatus

The following is an error analysis of the effect of

the uncertainty in the. geometric variables on the standard

cell and helix cell shape fact,ors" Instrument error is also

included" The analysis was made following the format and

theory of a single sample experiment as was presented by Kline

50
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and McClintock (ref" 4) " The detailed analysis appears in

Appendix B"

The analysis showed that the uncertainty in the geo-

metríc variables a'ssociated with the helix cell contributed

negligible percentage error to the helix cell shape factor"

This was especially true when compared to the percentage

difference between Lhe average shape factor ratio e G/Gs,,d,

found by experiment and that predicted by the theoretical

analysis of Chapter fT" The smal1 error was primarily due

t,o the fact that the change in the helix cell shape factor

was not greatly affected by small variations in the dimension-

less variables in the range of the geometries tested" How-

ever, for small values of the dimensionless diameter and large

values of the dimensionless helix inside diameter (see Figures

(2"4"1) through (2"4"4, ' the change in shape factor with small

variations in the dimensionless variables could become sig-

nificant"

The error analysis of the instrumentation was easily

obtained sínce the only instrument used was the hlayne Kerr

B 42L autobalance component bridge" The manufacturer states

an uncertainty in each reading of t 0.25 per cent of ful}

scale" Again this vras'considered negligible when compared

wit,h the difference between experimental and theoret,ical

values of the shape factor ratio"

The error analysis of the effect of uncertainty in the
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geometric variables on the ShaPe factor for the standard,

concentric cylinder cell isl also shown in detail in Appendix

B" The percentage error in the shape factor was estimated as

1.7 per cent an¿ wúite still not responsible for all of'the

difference between the experimental and theoretical shape

factor ratios was stil1 considered significant'

4" 1"2 SYstematic Errors

when predicting the theoretical helix cell shape

fact,or, two systematic errors were introduced"

The first error was due to assuming that the diameter

of the arbor pin on which the helix was wound was also the

ínside diameter of the stretched helix as it appeared in the

helix cell. This was not actually the case since the helix

inside diameter increases due to springback and then decreases

when the helix is stretched from its close wound condition,

as !,tas explained in section 2"3" The magnitude of the error

introduced by assuming the arbor pin diameLer to be the helix

inside diameter was determined by applying the method shown

Ín Àppend.ix A" A springback allowance of 0 " 005 inches was

used" The worst error occurred in the second geometry tested

where the nominal helix inside diameter was 0"L25 i-nches and

the calculated diameter was 0"L27 inches" This was a per-

centage difference of 1.6 per cent, but', ho1^¡ever, caused a

negligible difference in the shaPe factor" In each geometry
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the calculated. value of the helix inside diameter was sJight,ly

higher than the mean value'used" This would imply an even

less significant increase in the helix cell shape fact,or.

The nominal diameter of the arbor pin was taken as the mean

value for error analysis because the helix inside diameter

vras the only geometric variable that could not be easily

measured by means of calipers"

The second. systematic error was caused by modelling the

helix as a series of tori of revolution and assuming that the

real helix would behave exactly the same as the Èorus model"

The main clifference between the two models is that there is

a longer length of wire in one turn of the helix than for the

equivalent t,orus of revolution. Therefore, there is more

surface area available for heat Ëransfer in the helix than in

the torus model" The percentage difference between the area

of one turn in the helix and. the area of one equivalent torus

r{as calculated asz 2"0 per cent for the first geometry'

3.3 per cent for the second geometry, and 1"9 per cent for

the third geometry" As a very rough approximationr the larger

percentage area could be assumed to cause a corresponding

percentage increase ín the helix ce1l shape fact,or. If the

measured shape factor ratio was higher than that predicted

by the theoretical analysis then the difference could be

explained by this difference in surface area plus the error

ín the standard cell geometry. However, as can be seen in
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Table 3"1 this is not the case" For example, in the second

geometry, which has the largest d.ifferential in area between

_the helix and the t,orus mode!, two of the three trials show

tlìat ratio of the helix cell shape factor to the st,andard

cell shape factor was lower than that predicted by the theo-

retical analysis" The first geomeÈry shows a similar scatter

of the results" The third geome!ry showed that every trial

produced a shape factor ratio that was higher than that

predicted by theory in all three trials. Howevero the ratio

was higher than could. be explained by the sum of the increased

surface area effect and the standard. ce11 geometric error"

4.1"3 Undefined Errors

Sect,ions 4"1"1 and 4"1"2 showed. that the discrepancies

beÈween the shape factor ratio found. experimentally and that

predicted theoretically could not be fully explained by the

U¡Certainty in geomeÈric variables, instrr¡menL error, or

errors inherent in modelling Èhe helix as a series of Èori

of revolution" Therefore, another r¡¡rdefined error must exist.

One possibility is cont,aminated electrodes which ',vou1d cause

an increase in cell resistance in either the helix cell or

the standard cell. .Another possibility is that the resistivity
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of the electrolyte in one cell may have been s1ight,ly differ-

ent than the resistivity of the electrolyte in-the other celI.

Since no measurements vJere mad.e of these two effect.s (although

precautions v¡ere taken to minimize any possible effects),

their magnitud.e remains unknown.

The effect of eccentricity on the standard cel1 shape

factor was also investigated. It was found that in the geo-

metries tested, a relatively large degree of eccentricity

caused a negligible change -in the. standard., concentric cylin-

der cell shape factor. For examplen a 0"050 inch eccentricity

caused only a 1"0 per cent difference in shape factors

Therefore, eccentricity was not considered as a major possible

source of error"

Despite the d.ifferences between the shape factor ratios

predicted analytically and those found experimentally, an

excellent correlation existed between the two results. The

Chi-Square goodness of fit test indicated a 0"99 probability

or greater that the experimental data matched the analytical

predictions when the least probable set, of data was examined.

The test was performed by considering each helix cell geometry

separately" The shape factor ratio of each trial in that

geometry was considered a discreet observation and was compared

to the ratio predicted. ana1ytically. The analytical ratio was

considered the mean value. The only restriction in freedom

was that of the nu¡nber of ol¡servations
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4"2 Torus Model Versus An Actual Tubula$leat:!¡g

Element

'"., å,s was mentioned in secÈion 4"L"2 aJÌ error exists

when the torus model is assumed to be the exact equivalent

of a resistance wire heIix" The torus model becomes a poor

approximation to the real helix in t'wo instances"

In the first case, a sma1l value of the dimensionless

helix inside d.iameter, Dâo combined wi|h a large value of

the dimensionless pitch, P, will cause a large difference

between the length of wire required to make one Lorus as qtas

modelied in the computer program and. the length of wire

required for one turn of t,he actual helix. The magnitude of

this effect can be calculated using the method shown ín

.Appendix A. For examPle, consider the helix geometry having

an original close wound helix insid,e diameter of 0.072 inches

made from a resistance wire of 0"040 inches in diameter" If

the helix is stretched. to three times its original length'

the surface area available for heat transfer in the real

helix would be 5"9 per cent great.er Lhan t'hat predicted by

tt¡e torus model" If , however, t'his same geometry was

stretched to eight Èimes it.s original length the difference

in areas would be 57 per cent and the theoretical model

.would collapse "

The second instance in which the torus model becomes
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a poor approximation to a real heater occurs when the helix

outside diameter is very cl,ose to the heater outside diameter"

That is for large values of the dimensj-onless inside helix

di-ameter, Dâo combined with sma11 values of the dimensionless

heater d.iameter, D. Tn this case the torus model collapses

because the outside surface of the heater was assumed isothermal

in the axial d.irection during the computer analysis"

Fortunately' common heater geometries do not contain

either of the above geometrical configurations" Therefore '
the torus model is an accurate model of the helix contained

rr¡ithin an actual heater for most heater geometries and the

shape factors presented in Figures (2"4"1) through (2"4"4)

can be used in the conduction equation 2.1 to compute re-

sistance wire temperature"



CHAPTER V

co*"a"utto*

5.i Statement of Áccomplishment

The main accomplishment of this thesis was determining

the effect of the geometric variables present in a tubular

resistance heater on the conduction heat transfer between Èhe

resistance wire helix and the tubular metal sheath" Within

the limitation of the design variablesu a designer can

quantitatively comPare one heater geometry to another and.

ehoose the most advantageous design"

Tf the thermal conductivit'y of the magnesium oxide

insulation is known or can be approximated, then the operating

temperature of the resistance wire can be calculated by t'he

method shown in Chapter II" The designer could. then determine

whether or not ¿u1 excessive wire temperature will promote

premaLure failure of the heatS-ng element"

5.2 Suggestions For Further Study

The major uncertainty in solving the conduct'ion

equation for heat Eransfer in tubular resistance heaters is

the value of thermal conductivity of magnesium oxide, the

electrical insulating material used to separate the resist'ance

wire helix from the metal sheath. Present lit'erature only

58
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discusses the thermal conductivity on a qualitative basis" It,

is known to be a strong function of both density and. tempera-

ture and t.o a lesser extent also of grain size" This is one

áÈea that requires'further study

Some further work could be done on expanding the number

of geomet,ries tested usi-ng the electrical analog technique

developed in Chapter III" For example, due to lack of time

and available apparatu= to geometries r¡tere tested that, had

large values of the dimensionless helix inside diameter

eoupled with small values of the dimensionless heater diamet,er.

One other task t,hat. could be undertaken would be to

develop an equation to fit the theoretical dat,a shown as

curves ín Figures (2 " 4 " 1) through (2 " 4 " 4') "



APPENDIX A

CALCULATTON OF CHA}TGE IN HELIX INSIDE DIA}'IETER UPON

STRETSHING FROM CLOSE WOT]ND TO FINAT PITCH

In order to calculate the change in arbor díameter

with increasing pitch consider first t'he helix in its close

wound position. Figure (A-1) illustrates the helix as it'

would appear if iÈs cylindrical shape $/ere cut' axially,

unwrapped, and. shown in two dimensions" The subscript' I'

indicates the conditions that exist when the helix is cl0se

sround. The length of one turn of the helix is shown as a

line inclined at the helix lead angle" The líne represents

the axial center line of the resistance wire which would be

wor¡¡rd on a mean diameter whích is the sum of the helix

inside diameter and one wire diamet'er (if springback is

neglected). The circumference of the mean d'iameter is shown

in Figure (A-1) as; (d, + d*) n. From the geometry the
ol

length of one turn of resistance wire can be calculated as:

g, = ,u., + d*) 1T

cos 0r

o o o o o o o o o o (1)

where
.-ld*Èan 

æ ol

(21
Or

60
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9, = length of resistance wire for one turn of
the helix

d^=hel'ixinsid'ediameterattheclosewound
'1 Position

d = resist'ance wire diameter
ü¡

0r = helix lead. angle at the close wound position

the length, i, is constant for any pitch and it is also

assumed that the resistance wire cross sectional area does

noÈ change "

Figure (A-2) shows the helix in two dimensions after

it, has been stretched to a nehl pit,ch" The subscript' 2r

indicates the new condj-tion. The pitch may easily be

caliulated since the number of turns of resisÈance wire in

the helix is const,ant and the length to which the helix is

stretched is known- That is, the new pitch is:

helix lengthprccir =

The length for one Lurn of the helix is already known,

therefore, the new helix inside diameter is found from the

geometrY as:

where

0z = sin-l p
k
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and

p = pitch

d- = helix inside diameter at the stretchedo2 position

0z = helix lead angle at. the stretched position
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FIGURE A-T
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FIGUR E A-2
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APPENDTX B

ERROR AI{ALYSIS O' U*N"*ÏMENTA], DATA

t*'.*

Since there were an insufficient number of observations

made to do a comPrehensive statistícal analysis of experi-

mental error, the error analysis was made on a single sample

basis proposed by Kline and McClintock, (ref" 4) " Using

their terminology and. nomenclature, the uncertainty in each

variable $¡aS specified aS a mean of the readíngs and an

uncertainty interval based on specified odds" That is:

m t o (bt,o1)

where

m = arit.hmetic mean of observed values

u! = uncertainty int.erval

b = the odds

Kline and McClintock defined a result, Ro as a function of

variables; ul, \2, u3, cêcco vn. Each variableo vi,

had an uncertainty intervalo oi, based on certain odds" The

-uncertainty in the result.u oR, is then relat'ed t'o t'he

uncertainty in the variables as follows:

,R= [n'!'
The odd.s expressed for each uncert.ainty interval was a measure

of the confidence the experimenter had that any reading

lãn 12+ EE? + +

-1L

R'¡'l ""t'r

64
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ü¡ould lie within its est.imated uncertainty ínt'erval" For

Èhis error analysis odds of'twenty to one were chosen for

the uncert,ainty interval in each variable "

The subsections that follow give an error analysis of

the helix cellr the standard concentric cylj-nder ce]l, and

the total error in ratio of the helix cel} shape factor to

the standard cell shape factor including instrument error"

Error Analysis Of The Helix Cell

In this subsection the effect of the uncertainty in

geometric variables on the helix cell shape fact'or is ana-

lyzed. The geometric variables arei the pitch, p; the helix

inside diameter, d-i the heater outside diametero d; and the

wire diamet,er, d*" In order to determine a shape factor from

the data compiled. in the computer study these four variables

were non-dimensionalized as shown in Chapter TII to read':

ooe oo (21

D=a
o o o G o ô o o o þ (3)

o o o o o o o o e o (4)

P.
d

td

d"
ã-

\,ìI

d
ã-

Tú
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the non-dimensionalized vari-ables

eoocoooo (6)

(7)

(8)

+

I

[-F"" 1'. lão. l;l*
LEq'%l 

+ 
15 "'JJ

The uncertaintY in each of

from equation (1) is:

a¡.r^
I E.,,J"6P = l[¡p'plIr-rt_

toa 
=

differentiation

) were divided

to reade

[r*,,'ll' + lÞ,,.1 '1''Ð = llF'1I r l5'uol ILJ

To. simplify equations (5) , (6) , and (7) the

hras performed and equations (5) ' (6) ' and (l

by equations (2) , (3), and (4) respectively

r ^ ^-t\
'P = | t--l'+ [þ-l' IÞ- IPJ r:-J IL

[,- -.', ,1'
'o"= | I'u"l * I'u*l Iç= ll5_l + 

l5_l IL- -J

oooooeoo (g)
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ooccoooe (10)

Having determined the uncertainty intervals of the non-

dimensionalized variables, the uncertainty ín the shape

factor, Go fiom equation (1) is:

']-

l
t'd 1I vrf
td I

L\IIJ

0D [*"-,'õ- = 
LL-_i 

+

'G = 
[w'¡' 

+ Ë'"J'+
-1\

rãe -2 I

F':J I (11)

J
In equation (11) the uncertainties in the dimensionless

variables are found from equatíons (8), (9) , (10) " The terms

âG AG -*r 1r:
,u, ,u_, o..,. ffr have values which must be determined from the

a
computer data since the analyt,ical relationship between G and

the non-dimensionalized variables is unknown.

In the geometries tested the uncert'ainties in the

geometric variables contributed negligible error to the helix

cell shape factor" This is best illustrated by an example"

The first geometry tested had t,he following mean values and

uncertainty intervals :

p=
d"=

d=

0"096" t 0"002"

0"218* J 0"005'o

1"50 o' t 0"005"

0"032!¡ + 0"0002"dt=



The percentage uncertainties in the non-dimensionalized

variables are found by substituting the appropriate variables

into equations (8) , (9) , and. (10) " Putting in the numberss

1\op = f,n.34 x t0-4) + (3.e1 * ro-sl l'= J z-L6z
PLJ

"68

The corresponding mean values of the non-dimensionalized

variables are:

r*.. P = E- = 3"00ow'

åD. = f = 6"81
w

D = + = AG.go*

1\oD = f,r.r, * ro-5) + (3"e1 x ro-sl | 
" 
= J o'7oea

DtJ
The corresponding non-dimensional uncertainty interval are,

therefore:

op = t 0"0648

0D = t o.roz-a
tD = t 0"0110

to. 
= f,u"26x1o-4)+(3"e1 x10-5,1 

*= 
t z"3sz

çLr



69

Finall;, to detèrmine the uncertad-nty in the helix celI

shape factor, G, the following quantities l^Iere found from

the original tabulated data using the appropriate uncertainty

intervalÍ 6o¡ 0n , or tttn:r ua L'

aG r ^ ^^A.'ãÞ t 0"0042 (inches/inch of heater)

9. = + 0.044 (inches/inch of heater)
âDa

AG :: 0 (inches,/inch of heater)
ãõ' 

v

substitut,ing the above values into equation (11) ' the

uncertainty interval for the shape factor is:

û)^ = {{(0 .0042) (0.0648) }2 +:{(0"044) (0 "L6Ð}2 + {0}2t\ = t0'0071
rJ

The nrean value of G from the original tabulated data was 3"60

inches,linch of heater. Therefore¿ the percentage uncertainty

ís:
0t

r̂.3__=. = + 0"208
G

This error was considered to be negligible when compared

with those found in other part.s of the experimenÈ"

The other two geomet.ries tested have similar

uncertaintíes which have negligible effect on Lhe shape

factor "
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Error Analysis Of The S$]ar<]:þ!!

In this subsection the effect of the uncertainty in

'.ggometric variables on the standard cell shape factor will

be analyzed" since the standard cell was a concentric

cylinderr the shape factor is related to the geometric

variables bY3

t= = 2nL.- oe ooooôe oo (12)"std 
''ffiJ 

oÉoGGGG:c

where

î = the standard' celI shaPe factor
"std
L = the axial lengÈh of the cell

d = the inside ciameter of the copper tubing
o which corresponds to the out.side diameter

of the concentric cYlinder cel1

d.=t'heoutsidediameterofthecopperrodiL which was placed concentrically inside
the tubing

Equation (1) was used to determine the uncertainty

ín the standard cell shape factor due to the geometric

variables, h, do, and dt as follows:

,"",u= 
[Ë='!'. Ë='u!'. P*"!1- " *3)



'n".u l-lo;l 
t

õ;*= 
LtrJ

7L-

To simplifY equation (13) the

and equation (f3) v¡as divided

differentiation !'¡as Performed

by equaÈion (L2) to read:

(inches)

(inches)

(inches)

( r4)

The following mean values and uncertainty intervals vlere

substitut,ed into the non-dimensionalized equation (14) "

L = 6.00 J 0" 030

d-=1"50+0"005o

d. = 0"125+ 0"005
l-

Substituting the above values into equation (14) ' the

percenLage uncertainty in the standard ceIl shape factor

due to the uncert,ainty in the geometric variables was:

0l^ l-

-ostd - ltr"u * r0-5) + (z.ssx t0-4) + (r.80 x t0-t;1'= ! L-72
_Jsstd L

Although this error is small relative to the difference

between the expected and observed. values of the experimental

dat.a it is considerably larger than the error introduced by

geomet.ric variable ín the helix celt shape factor"

Instrument ErrQr

The only measurement. taken was the total resistance

measurement on the wayne Kerr B 421 Autobalance cOmpOnent

Jd
l_

J
d

cl

(0

T.1l-n
t_
l:

+ t- 'uo l;l-+EffiiJ
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bridge" The manufacturer states an uncertainty interval of

t 0"25 per cent of fuIl scale read.ing on Lhe range being

,Used" Therefore, the mean value and. the uncertainty for the

ínstrument used for the experiment ís:

10 * 0"025 (ohms)

Again the instrument error v¡as considered negligible when

compared with other discrepancies ín the experiment"

Error In The Ratio Of The Helix CeIl To The Standard

CeIl Shape Factor

tthere

R = =s--Gstd

For an exampleu using the first geometry testedo where G had

a mean value of 3.60 inches per inch of heater, t'he total

percentage error in the ratio of the shape factor t"= t 1.75

per cent" Again this shows that instrument error and the

the error

andard

of the

factor

o o (15)

to account the instrumenL error and

iables in both the helix and the st

percentage uncertainty in the rat'io

factor to the standard cell shaPe

ation (1) is:
r 

-',11\
I r'"-l' I-"=*l' | 

-

ll-l + 
lÇ_l IL-t t- 

-i

Taking in

in geometric var

eell, the t,otal

helix ce1I shaPe

according to equ

ul-
¡t

H-
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errorinthegeometryofthehelixcellhadnegligible

effect on the ratio of the shape factors when compared to

trre error caused by the uncertainty in the geometry of the

standard concerrt'ric cylinder ce11"
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