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Abstract

Polystyrene spheres, suspended in deionized water, flowing in a microfluidic chan-

nel are actuated using a non-uniform electric field, with the final goal of determining

the dielectrophoretic (DEP) force spectra of the particles. Particle height changes

are detected by measuring the capacitance of set of electrodes at high frequency

(1.58 GHz). Two sets of DEP experiments are analyzed for applied DEP signals

ranging in frequency from 50 kHz to 10 MHz. For one experiment, a simulated map-

ping is found to determine the Clausius-Mossotti factor, a frequency dependent term

in the DEP force equation, for each particle in the data set. Remaining experiments

are analyzed by plotting the normalized height change, a measure of the relative

change in height of each particle as an indication of the DEP force.
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Chapter 1

Background and Motivation

AC electrokinetic manipulation of micrometer and nanometer scale particles has

rapidly become a major area of research. The ability to manipulate particles via con-

tactless forces has allowed non-invasive and efficient characterization, identification,

and separation of different particle types in fluidic suspension [3]. Using photolitho-

graphic and etching techniques common for the manufacturing of semiconductor de-

vices, the fabrication of microfluidic devices become much more acessible and has

allowed analysis on the single particle level to follow. By characterizing particles

one at a time and with use of automation techniques, detailed analysis of a large

populations of particles can be performed in a short amount of time.

A major area of interest for applications in electrokinetic particle manipulation

is biological particles, namely biological cells, viruses, DNA, and proteins [3]. For

biological cells in particular it has been shown that the dielectric properties of a cell

can be directly linked to cell physiology [4]. This makes it possible to use electrokinetic

techniques such as dielectrophoresis (DEP), which will be main focus of this thesis,

to determine specific properties of individual cells within a population. As opposed

to bulk dielectric measurements, single cell dielectrophoretic analysis can allow for
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characterization of subpopulations that make up a very small percentage of a bulk

sample, allowing for the detection of even the smallest of subpopulations. In order

to develop a more accurate model for the characterization of biological cells using

DEP, this thesis will explore the DEP characteristics of various sizes of polystyrene

microspheres (PSS) in a frequency range of 50 kHz to 10 MHz. Techniques will be

explored to normalized collected capacitance signals and convert them into a Clausius-

Mossotti factor, a term in the dielectrophetic force equation that determines the

polarity and magnitude of the force.

The term dielectrophoresis was first used by Herbert Pohl in a paper published

in 1951. The paper defines the DEP force as “the phenomenon seen in the relative

motion of suspensoid and medium resulting from polarization forces produced by

an inhomogeneous electric field”[5]. He named and theoretically calculated the di-

electrophoretic force after attempting to use electrophoresis to remove carbon-black

filler from polyvinyl chloride. In the paper he contrasted the difference between di-

electrophoresis and the already commonly known electrophoresis after he discovered

that the resulting force in his experiment wasn’t reversible by a field of opposite po-

larity, and that it affected neutrally charged particles, which electrophoresis would

not. Following this original use for removing colloidal particles for polymer analysis,

he moved on from his initial application to using dielectrophoresis to analyze the

electrical properties of biological cells [6, 7, 8, 9].

The following contributions were made:

� Developed theory and experimental study of dielectrophoretic force on polystyrene

spheres in a fluid suspension

� Developed analysis method for finding the instantaneous particle speed based

on the width of the particle signal
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� Developed analysis method for finding the system sensitivity and particle heights

using simulated data and curve fitting

� Developed analysis method to determine the Clausius-Mossotti factor of each

particle in a population based on a calculated particle heights and a mapping

created from multiple simulated particle trajectories

� Design of a microfluidic chip with a split electrode design along with microflu-

idics group allowing for separation of the sensing and actuation regions

� Wrote signal processing and capture software to collect and analyze capacitance

signals

� Developed interferometric system for measuring electrode capacitance and mi-

crofluidics delivery system along with microfluidics group: G. Ferrier, S.F. Ro-

manuik, M. Nikolic-Jaric, S. Rzeszowski, E. Salimi, and D. Card

The following sections will outline the derivation of the dielectrophoretic force

on a micron scale particle, suspended in a solution, in the presence of a non-uniform

electric field. The derivation will follow the steps outlined in Thomas B. Jones’s book,

Electromechanics of Particles [10].

1.1 Force Induced on a Dipole in an Electric Field

In order to characterize the dielectrophoretic force and properly interpret exper-

imental results, an analytical approach is first necessary to determine an expression

to approximate the dielectrophoretic response. The following sections will be used to

derive an equation to approximate the force exerted on a lossy, polarizable particle

in a lossy medium, in the presence of a non-uniform field.
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+Q +

−Q-y

x
z

d̄

r̄

Ē(r̄ + d̄)

Ē(r̄)

Figure 1.1: Dipole placed in an external electric field.

When a dielectric particle is placed in an electric field, electric charges will separate

according to the direction of the field and the particle will become polarized. The

simplest approximation for any polarized particle is an electric dipole. A general

illustration of the dipole is shown in Figure 1.1; formed when equal and opposite

charges, ±Q, are separated by distance, |d|. When the dipole is introduced into an

external electric field, E, both charges will experience a force proportional to their

sign and position in the field. If the field is uniform the force magnitudes will cancel,

since E(r + d) = E(r), and the particle will experience a torque with no net force.

However, if the field is non-uniform, then the forces on each of charges will not be

equal and a net force will be produced. The net force being given as:

F = QE(r+ d)−QE(r) (1.1)

where QE(r+ d) is the Coulomb force acting on the positive charge located at r+ d

and −QE(r) is the Coulomb force acting on the negative charge at r. When |d| is

small compared to the electric field non-uniformity, generally when |r| >> |d|, if the

origin is the point of field emission, a Taylor series expansion can be done for E(r+d)

4



about r:

E(r+ d) = E(r) + d · ∇E(r) +
1

2
(d · ∇)(d · ∇)E(r) + · · · (1.2)

If the field non-uniformities are small, relative to the length of the dipole, then the

first two terms will dominate and (1.1) becomes:

F ≈ Q(E(r) + d · ∇E(r))−QE(r)

= Qd · ∇E(r) (1.3)

If the length of the dipole is reduced to approach zero, |d| → 0, while still main-

taining a finite length such that the dipole moment, p ≡ Qd is non-zero, then the

expression approaches the force on an infinitesimal dipole:

Fdipole = p · ∇E (1.4)

From this general equation it is shown that for a dipole in an electric field, no net

force is exerted unless there is some non-uniformity in the field, that is ∇E 6= 0.

1.2 Dipole Potential and Effective Dipole Moment

The above force derivation can be extended to work on any dipole, including

a polarized particle, assuming field non-uniformities are on a larger scale than the

dipole. When an external non-uniform field polarizes a particle, which in turn causes

the force on the particle, the above approximation is known as the dielectrophoretic

approximation and the resulting force is a dielectrophoretic (DEP) force, FDEP . In

order to determine the full equation for the dielectrophoretic force on a spherical

5



+Q +

−Q -

r̄

φ(r̄,Θ)

d̄

r̄+

r̄−

z

Figure 1.2: Electric field of an infinitesimal dipole.

dielectric particle an effective dipole moment, peff , must be found. The effective

dipole moment is the dipole moment of an infinitesimal dipole placed at the center

of the dielectric particle in the same medium which, when the particle is removed,

results in the same electrostatic field.

First the potential of an infinitesimal dipole with dipole moment peff is needed.

Figure 1.2 shows a the dipole used in the derivation. Using superposition the poten-

tials from the two point charges are combined:

φdipole(r, θ) =
Q

4πεmedr+

− Q

4πεmedr−

=
Q

4πεmedr

(
r

r+

− r

r−

)
(1.5)

where by geometry r± can be found to be:

r2
± = (d/2)2 + r2 ∓ dr cos(θ)(

r

r±

)
=

[
1 +

(
d

2r

)2

∓
(
d

r

)
cos(θ)

]−1/2

(1.6)
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then expanding the function using a Maclaurin series:

(
r

r±

)
= P0 ± P1

(
d

2r

)
+ P2

(
d

2r

)2

± P3

(
d

2r

)3

+ · · · (1.7)

where Pn(cos(θ)) are Legendre polynomials and are given by Table 1.1. Combining

(1.6) and (1.7) gives the full expression for the electrostatic potential of an infinitesi-

mal dipole:

φdipole(r, θ) =
QdP1(cos(θ))

4πεmedr2
+
Qd3P3(cos(θ))

16πεmedr4
+ · · · (1.8)

≈ QdP1(cos(θ))

4πεmedr2
(1.9)

As long as d << r, a first order approximation is sufficiently accurate, making the

potential due to a dipole with dipole moment, p = Qd:

φdipole(r, θ) ≈
|p|P1(cos(θ))

4πεmedr2
(1.10)

The approximation breaks down as r → d and the multipolar terms become larger.

Applying this solution to a dielectric particle, the effective dipole moment is first found

by solving the boundary value problem when the particle is placed in an electric field

and comparing the induced dipole term from the solution.

Table 1.1: Maclaurin series coefficients for electrostatic dipole potential.

n Pn(cos(θ))
0 f(0) 1

1 f ′(0)
1!

cos(θ)

2 f ′′(0)
2!

[3 cos2(θ)− 1]/2

3 f ′′′(0)
3!

[5 cos3(θ)− 3 cos(θ)]/2

7
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Figure 1.3: Dielectric particle placed in a uniform electric field.

1.3 Effective Dipole Moment of a Lossless Dielec-

tric Particle in a Uniform Electric Field

Consider a uniform electric field of magnitude E0 polarized in the âz direction in

a medium with permittivity ε1. Shown in Figure 1.3, a lossless dielectric sphere of

radius a and permittivity ε2 is placed in the field. The resulting potential outside and

inside the sphere, will be defined as φ1(r, θ) and φ2(r, θ), respectively. Upon solving

Laplace’s equation, ∇ · (ε∇φ) = 0, inside and outside the sphere the solution takes

the form [10]:

φ1(r, θ) = −E0r cos(θ) +
A cos(θ)

r2
, r ≥ a (1.11a)

φ2(r, θ) = −Br cos(θ), r ≤ a (1.11b)

where A and B are unknown coefficients that will now be determined. Starting from

the boundary conditions, both the electrostatic potential and the normal component

8



of the electric displacement field must be continuous:

φ1(r = a, θ) = φ2(r = a, θ) (1.12a)

ε1Er1(r = a, θ) = ε2Er2(r = a, θ) (1.12b)

where Er1 = −∂φ1/∂r and Er2 = −∂φ2/∂r are the radial components of the electric

field outside and inside of the particle, respectively. On combining (1.11) and (1.12),

and solving for A and B the following result is obtained:

A =
ε2 − ε1

ε2 + 2ε1

a3E0 (1.13a)

B =
3ε1

ε2 + 2ε1

E0. (1.13b)

Plugging A and B back into (1.11), the potential inside and outside the particle

becomes:

φ1(r, θ) = −E0 cos(θ)

[
r +

Ka3

r2

]
, r ≥ a (1.14a)

φ2(r, θ) = − 3ε1

ε2 + 2ε1

r cos(θ), r ≤ a (1.14b)

where K = ε2−ε1
ε2+2ε1

. Solving for E = −∇φ inside and outside the particle gives the full

solution:

E1(r, θ) = −∂φ1

∂r
âr −

1

r

∂φ1

∂θ
âθ, r ≥ a

= E0 cos(θ)
[
1− 2Ka3/r3

]
âr − E0 sin(θ)

[
1 +Ka3/r3

]
âθ, r ≥ a

= E0âz +
E0Ka

3

r3
[2 cos(θ)âr + sin(θ)âθ] , r ≥ a (1.15a)

E2(r, θ) = −∂φ2

∂r
âr −

1

r

∂φ2

∂θ
âθ, r ≤ a

9



=
3ε1

ε2 + 2ε1

E0 [cos(θ)âr − sin(θ)âθ] , r ≤ a

=
3ε1

ε2 + 2ε1

E0âz, r ≤ a. (1.15b)

Following from (1.10), (1.11a), and (1.13a), the effective dipole moment, peff , can

be found:

peff = 4πε1Aâz

= 4πε1Ka
3E0âz (1.16)

where K is known as the Clausius-Mossotti function, which models the contrast

between the permittivity of the spherical particle and medium. The Clausius-Mossotti

function, which is defined as:

K(ε1, ε2) =
ε2 − ε1

ε2 + 2ε1

=
ε2/ε1 − 1

ε2/ε1 + 2
(1.17)

gives a measure of the relative strength as well as the direction of the polarization the

particle undergoes. When ε2 > ε1, then K > 0 and the effective polarization, peff ,

will be in the same direction as E0. In the case of ε2 < ε1, then K < 0 and peff is

in line with −E0. A plot the Clausius-Mossotti function for a range of ε2 is shown in

Figure 1.4. The function is limited to −0.5 ≤ K ≤ 1 so even as ε2 →∞, K → 1.

1.4 Effective Dipole Moment of a Conductive Par-

ticle in a Uniform DC Field

The same analysis as used in Section 1.3 can be applied to a spherical conductive

particle of radius a in a uniform DC field. If a particle with conductivity, σ2, sus-

10
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Figure 1.4: Clausius-Mossotti function.

pended in a solution with conductivity, σ1, is subject to a uniform DC field, Laplace’s

equation, ∇ · (σ∇φ) = 0, must be satisfied inside and outside the spherical particle

with the following boundary conditions applied:

φ1(r = a, θ) = φ2(r = a, θ) (1.18a)

σ1Er1(r = a, θ) = σ2Er2(r = a, θ). (1.18b)

When combined with (1.11), the same solution is found, with peff = 4πε1Ka
3E0.

The only distinction being that K(ε1, ε2) becomes:

K(σ1, σ2) =
σ2 − σ1

σ2 + 2σ1

=
σ2/σ1 − 1

σ2/σ1 + 2
(1.19)

If the particle is a good conductor, that is σ2/σ1 >> 1, then the Clausius-Mossotti
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function will approach K = 1 and the effective dipole moment will be:

peff → p0 = 4πε1a
3E0 (1.20)

1.5 Effective Dipole Moment of a Lossy Dielectric

Particle in a Time Harmonic Uniform Electric

Field

z

y

x

r̄

E0 cos(ωt)âz Θ

ε′2
ε′′2 σ2 ε′1

ε′′1 σ1

Figure 1.5: Lossy particle placed in a time harmonic non-uniform electric field.

In this section a lossy dielectric sphere is subject to a uniform time harmonic

electric field of magnitude E0 and angular frequency ω, described by:

E0(t) = Re
{
E0âze

jωt
}
. (1.21)

The particle, shown in Figure 1.5 with permittivity, ε2, and conductivity, σ2, is placed

in a lossy medium of permittivity, ε1, and conductivity, σ1. The permittivities of the

sphere and medium are extended from Section 1.3 to include the dielectric loss term,

ε′′. The permittivities of the sphere and medium take the form ε2 = ε′2 − jε′′2 and

12



ε1 = ε′1 − jε′′1, respectively.

General solutions for the electric potential inside and outside are found by solving

Laplace’s equation in complex form, ∇ · (ε∇φ) = 0, where ε = ε′ − jε′′ + σ/jω.

The solutions take the same form as (1.11), but are complex functions with complex

constants. That is:

φ1(r, θ) = −E0r cos(θ) +
A cos(θ)

r2
, r ≥ a (1.22a)

φ2(r, θ) = −Br cos(θ), r ≤ a (1.22b)

The first boundary condition, (1.12a), requiring the potential be continuous across

the boundary remains unchanged. However, (1.12b) will be modified to include time-

dependent accumulation of surface charge. In the time domain, the charge conserva-

tion condition, ∇ · J = −∂σf
∂t

, at the surface must be satisfied:

Jr1 − Jr2 +
∂σf
∂t

= 0, r = a (1.23)

σ1Er1 − σ2Er2 +
∂

∂t
(ε1Er1 − ε2Er2) = 0, r = a (1.24)

where Jr1 = σ1Er1 and Jr2 = σ2Er2 are the normal components of the ohmic current

inside and outside the particle, respectively, and σf = ε1Er1−ε2Er2 is the free surface

charge at the interface. Assuming that the permittivities are time invariant and the

field inside and outside the particle are time harmonic, ∂/∂t → jω, the boundary

condition becomes:

σ1Er1 − σ2Er2 + jωε1Er1 − jωε2Er2 = 0, r = a (1.25)

ε1(ω)Er1 = ε2(ω)Er2, r = a (1.26)
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where ε1(ω) = ε′1 − jε′′1 + σ1/jω and ε2(ω) = ε′2 − jε′′2 + σ2/jω are the complex

permittivity of the medium and the particle, respectively. The coefficients for the

general solution of Laplace’s equation then become:

A =
ε2 − ε1

ε2 + 2ε1

a3E0 (1.27a)

B =
3ε1

ε2 + 2ε1

E0 (1.27b)

and effective dipole moment becomes the complex:

peff = 4πε′1Ka
3E0 (1.28)

The Clausius-Mossotti function becomes complex as well as a function of the

frequency of the applied field:

K(ε1, ε2) =
ε2(ω)− ε1(ω)

ε2(ω) + 2ε1(ω)
(1.29)

1.6 Dielectrophoretic Force on a Lossless Particle

in a Non-Uniform Field

From Section 1.1 the force on a dipole placed in a non-uniform external electric

field is given by:

Fdipole = p · ∇E0 (1.30)

where E0 = Exâx + Eyây + Ezâz is an external electric field and p is the moment

of the dipole. When a polarizable particle is placed in a medium with an external
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electric field, E0, the changes in the total electric field can be approximated by the

electric field of either a single infinitesimal dipole or a multipole in the same medium,

located at the same position as the particle. The effective dipole moment, peff , can

be found for the particle by solving Laplace’s equation using the boundary conditions

on the surface of the particle and finding the total electric field. The effective dipole

moment can then be used in combination with (1.30) to find the force on the particle:

F particle = peff · ∇E0 (1.31)

In the case of a lossless dielectric particle, peff is in line with E0 and the polarity

is determined by the sign of K. If the field non-uniformities are on a larger scale than

the particle then the polarization can be approximated by a single dipole potential.

That is, peff is as defined in (1.16), and the effective instantaneous force on the

particle is:

F particle = 4πε1Ka
3E0 · ∇E0

= 4πε1Ka
3E0 · (∂xExâxx + ∂yExâxy + ∂zExâxz + . . .

∂xEyâyx + ∂yEyâyy + ∂zEyâyz + . . .

∂xEzâzx + ∂yEzâzy + ∂zEzâzz) (1.32)

= 4πε1Ka
3[(Ex∂xEx + Ey∂xEy + Ez∂xEz) âx + . . .

(Ex∂yEx + Ey∂yEy + Ez∂yEz) ây + . . .

(Ex∂zEx + Ey∂zEy + Ez∂zEz) âz] (1.33)
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= 4πε1Ka
3[

1

2
∂x
(
E2
x + E2

y + E2
z

)
âx + . . .

1

2
∂y
(
E2
x + E2

y + E2
z

)
ây + . . .

1

2
∂x
(
E2
x + E2

y + E2
z

)
âz] (1.34)

where ∂x, ∂y, and ∂z are the partial spacial derivatives with respect to x, y, and z,

respectively, and ai,j denotes the element at (i,j) in the tensor array. Since E2
x+E2

y +

E2
z = |E0|2, the total force on the particle takes the same form as the commonly used

approximation of the dielectrophoretic force:

FDEP = 2πε1a
3K∇ |E0|2 . (1.35)

1.7 Dielectrophoretic Force on a Lossy Particle in

a Non-Uniform Field

If a lossy particle in a lossy medium, each as shown in Figure 1.5 with a finite

conductivity and dielectric loss, are subject to a non-uniform electric field, E0 =

Exâx +Eyây +Ezâz, the particle will become polarized with an effective polarization,

peff . Due to changes in the boundary conditions to allow for changes in surface

charge, the effective polarization will be complex and will have a phase angle which

can be interpreted as a lag of the particle polarization behind the external field. The

instantaneous force on the particle will then take the form:

FDEP (t) = Re
{
peffe

jωt
}
· ∇Re

{
E0e

jωt
}
. (1.36)

Assuming the external electric field and the polarization are time harmonic, all

components of the field are in phase, and assuming field non-uniformities are on a
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scale larger than the particle, the instantaneous force on the particle will be:

FDEP (t) =
[
cos2(ωt)

]
peff · ∇E0 (1.37)

=
1

2
[1 + cos(2ωt)] 4πε′1Re{K} a3E0 · ∇E0 (1.38)

= [1 + cos(2ωt)] 2πε′1Re{K} a3∇
∣∣E0

∣∣2 (1.39)

Due to the relatively high viscosity (low Reynolds number environment) of the fluid,

the double frequency term of the force is dampened and the constant term dominates.

Taking the time average of force gives:

〈
FDEP (t)

〉
=

1

2
Re
{
peff · ∇E∗0

}
(1.40)

= 2πε′1Re{K} a3∇E2
0,rms (1.41)

where 〈f(t)〉 denotes the time average of f(t), and E0,rms is the root mean square

magnitude of the external electric field. The real part of the Clausius-Mossotti factor

is what determines the relative strength and polarity of the induced force, as well as

providing a frequency dependence of the force.

1.8 Electrical Double Layer

When a particle is placed in a liquid with non-zero conductivity, an electrical dou-

ble layer is formed at the interface between the particle and the liquid which creates

a finite surface conductivity. As a low-loss particle becomes smaller, surface conduc-

tivity will play a larger role in the overall dielectrophoretic response since currents

move more easily around the outside of the particle making the total conductivity of

the particle increase. The decreasing total surface resistance can be incorporated into
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Figure 1.6: Lossy particle with equivalent double layer.

the total complex particle permittivity by using the shell method, which adds a small

conductive layer of thickness, ∆ << a, with conductivity, σ∆, and permittivity, ε∆.

An illustration of the shell method equivalent particle is shown in Figure 1.6. Assum-

ing σ∆

ω
>> ε∆, making the layer conductive, and using the shell method described in

Appendix C of Jones [10], the effective complex permittivity will become:

ε2,eff =
σ∆

jω

(1 + ∆
a

)3 + 2
(
ε2−σ∆/jω
ε2+2σ∆/jω

)
(1 + ∆

a
)3 −

(
ε2−σ∆/jω
ε2+2σ∆/jω

)
 . (1.42)

Since ∆
a
<< 1, (1 + ∆

a
)3 ≈ 1 + 3∆

a
:

ε2,eff ≈
σ∆

jω

{
(1 + 3∆

a
)(ε2 + 2σ∆/jω) + 2 (ε2 − σ∆/jω)

(1 + 3∆
a

)(ε2 + 2σ∆/jω)− (ε2 − σ∆/jω)

}
(1.43)

≈ σ∆

jω

{
3ε2 + 6σ∆

jω
∆
a

3σ∆

jω
+ 3ε2

∆
a

}
(1.44)

≈
ε2 + 2σ∆

jω
∆
a

1 + ε2jω
σ∆

∆
a

. (1.45)
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Since (1 + x)−1 ≈ (1− x) for x << 1:

ε2,eff ≈
(
ε2 +

2σ∆

jω

∆

a

)(
1− ε2jω

σ∆

∆

a

)
(1.46)

≈ ε2 +
2σ∆

jω

∆

a
− ε2

2jω

σ∆

∆

a
− 2ε2jω

∆2

a2
(1.47)

≈ ε2 +
2∆σ∆

jωa
(1.48)

= ε2 +
2Ks

jωa
, (1.49)

where Ks = ∆σ∆ is the surface conductance of the particle. Incorporating this term

into the conductivity of the particle, the effective conductivity takes the form:

σ2 = σbulk +
2Ks

a
(1.50)

and the complex particle permittivity remains ε2(ω) = ε′2− jε′′2 +σ2/jω. Here σbulk is

the bulk conductivity of the particle and Ks is the surface conductance, a value that

will depend on the properties of the particle and medium.

1.9 Clausius-Mossotti Function for Various Parti-

cle Types

To get a sense of the behavior of different particle types in a non-uniform time

harmonic field, this section will explore the Clausius-Mossotti function for a few

particle types. The types of particles described will include: metallic particles, lossless

and non-dispersive lossy homogeneous dielectric particles (polystyrene spheres), and

biological cells (yeast). Figure 1.7 shows a plot of the Clausius-Mossotti functions for

the inorganic particle types, each with a radius of 3 µm, and parameters as specifed
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in Table 1.2. The lossy particle described in Table 1.2 has the double layer surface

conductivity include in the conductivity term, as included in (1.50).
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Figure 1.7: Clausius-Mossotti function for metallic, homogeneous lossless and lossy
dielectric particles in a low loss medium.

For a metallic particle in a low loss medium, the Clausius-Mossotti factor remains:

K =
ε2 − ε1

ε2 + 2ε1

≈ 1. (1.51)

Since
√
|ε′1|+ |σ1/ω| << |ε2| ≈ σ2/ω. Giving the metallic particle a constant

Clausius-Mossotti function of 1, meaning it will always experience a positive DEP

force, pulling it into areas of higher electric field.

For a lossless dielectric particle in a low loss medium, ε2 ≈ ε2, ε′1 >> σ1/ω, the
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Table 1.2: Clausius-Mossotti function plot parameters.

Parameter Value
Particle Radius 3 µm

ε0 8.854 187 82× 10−12 F
m

DI water
ε′1 78ε0

ε′′1 0
σ1 1× 10−6 S

m

Metallic Particle ε′2 ε0

(Silver colloid) σ2 1× 108 S
m

Lossless Particle ε′2 2.5ε0

(Lossless PSS) σ2 0
Lossy Particle ε′2 2.5ε0

(Lossy PSS) σ2 1.7× 10−3 S
m

Clausius-Mossotti function will be:

K =
ε2 − ε1

ε2 + 2ε1

≈ ε′2 − ε′1
ε′2 + 2ε′1

. (1.52)

The particle will experience either a constant positive or negative DEP force depend-

ing on whether ε′2 > ε′1 or ε′2 < ε′1, respectively.

For a lossy particle in a lossy medium, from Section 1.7, the term, Re{K}, is the

only frequency dependent term in the time average DEP force. Here the electrical

double layer is included in the particle conductivity, that is σ2 = σ2,bulk + 2Ks

a
=

1.7 mS m−1 when Ks = 2.56 nS [11]. Starting from the general expression for the

Clausius-Mossotti factor, and assuming ε′′1 = ε′′2 = 0,

Re{K} = Re

{
ε2 − ε1

ε2 + 2ε1

}
(1.53)

= Re

{
ε2 + σ2/jω − ε1 − σ1/jω

ε2 + σ2/jω + 2ε1 + 2σ1/jω

}
(1.54)
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=
(σ2 − σ1)(σ2 + 2σ1) + ω2(ε2 − ε1)(ε2 + 2ε1)

(σ2 + 2σ1)2 + ω2(ε2 + 2ε1)2
(1.55)

=
K0 + ω2τ 2

MWK∞
1 + ω2τ 2

MW

(1.56)

= K∞ −
K∞ −K0

1 + ω2τ 2
MW

. (1.57)

Here K0 and K∞ are the low and high frequency limits of the Clausius-Mossotti

function, respectively, and τMW is the Maxwell-Wagner charge relaxation time. As

defined in [2, 10, 12, 13, 14]:

K0 = lim
ω→0

K =
σ2 − σ1

σ2 + 2σ1

(1.58)

K∞ = lim
ω→∞

K =
ε2 − ε1

ε2 + 2ε1

(1.59)

τMW =
ε2 + 2ε1

σ2 + 2σ1

, (1.60)

making the frequency response governed by a single Maxwell-Wagner relaxation pro-

cess centered at fMW = 1/2πτMW . Specifically, for the lossy particle with parameters

shown in Table 1.2, the DEP response, shown in Figure 1.7, is characterized by low

and high Re{K} limits of K0 = 0.9982 and K∞ = −0.4764, respectively, as well as a

center frequency of fMW = 193 kHz.

A major application of DEP techniques is in single cell diagnostics. The com-

monly used, simplified model of a biological cell is the shelled sphere, in which the

cell is modeled as a lossy dielectric sphere with multiple shells of various thicknesses

and permittivities. These shells, made to represent the nucleoplasm, nuclear enve-

lope, cytoplasm, cytoplasmic membranes, cell wall, and other layers of the particular

cell of interest. As an example, Figure 1.8 shows a model of a baker’s yeast cell

(Saccharomyces cerevisiae), as described in [2, 15]. The permittivity, conductivity,

and thickness of each layer has been experimentally determined by fitting to data
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Figure 1.8: Shelled model of a baker’s yeast cell (not to scale).

collected through electrorotation (ROT) [15]. The effective complex permittivity of

the cell is found by using a similar method to that in Section 1.8. Starting from

the innermost sphere, the cytoplasm, and the innermost shell, the membrane, the

equivalent effective complex permittivity for the cytoplasm and the membrane, ε6,eff ,

is found [2, 10, 12]:

ε6,eff = εmem


(
rcyt+dmem

rcyt

)3

+ 2
(
εcyt−εmem

εcyt+2εmem

)
(
rcyt+dmem

rcyt

)3

−
(
εcyt−εmem

εcyt+2εmem

)
 (1.61)

If this method is continued through all the layers eventually an equivalent complex

permittivity for the entire cell is found:

εn,eff = εn



 rcyt+
6∑

i=n
di

rcyt+
6∑

i=n+1

3

+ 2
(
εn+1,eff−εn
εn+1,eff+2εn

)
 rcyt+

6∑
i=n

di

rcyt+
6∑

i=n+1

3

−
(
εn+1,eff−εn
εn+1,eff+2εn

)


, 2 ≥ n ≤ 5 (1.62)

where n = 1, n = 2,. . .,n = 6 denotes the layers, medium, outer cell wall, inner cell

wall, periplasmic space, cytoplastic membrane, and cytoplasm, respectively. Using

the above iterative algorithm to calculate the effective complex permittivity, with
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parameters shown in Table 1.3, the Clausius-Mossotti function was plotted and is

shown in Figure 1.9. With each layer of added dielectric material, an additional

Maxwell-Wagner relaxation process is observed, giving the cell a more complex fre-

quency response than that of the lossy homogeneous sphere. The Clausius-Mossotti

function for a cell with N lossy dielectric layers takes the form [10]:

Re{K} = K∞ −
N∑
i=1

∆Ki

1 + ω2τ 2
MW,i

(1.63)

where K∞ is the high frequency limit of Re{K(ω)}, ∆Ki is the change in Re{K} for

a given relaxation time, τMW,i. The values of ∆Ki and τi can be found when τi are

widely separated; however, ∆Ki and τi cannot be reduced to simple expressions like

in the case of a lossy homogeneous sphere, and the Clausius-Mossotti function has to

be recalculated for each change in parameters [10].

The following chapter will describe the detection method used for sensing the

response of particles to the applied DEP force. It will also describe the design,

fabrication, and simulation of the microelectrodes used to detect particles and apply

the DEP force.
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Figure 1.9: Clausius-Mossotti function of a baker’s yeast cell (Saccharomyces cere-
visiae), with parameters according to Table 1.3.

Table 1.3: Clausius-Mossotti function plot parameters for biological cell (S.
cerevisiae)[2].

Layer Radius/Thickness ε σ [µS
m

]
Cytoplasm (cyt) 3 µm 51ε0 120

Cytoplasmic Membrane (mem) 3.5 nm 3ε0 3.02e-4
Periplasmic Space (pps) 25 nm 14.4ε0 0.41

Inner Cell Wall (icw) 110 nm 60ε0 0.304322
Outer Cell Wall (ocw) 50 nm 5.9ε0 2

Medium 78ε0 0.334
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Chapter 2

Experimental Setup:

Microelectrode Design and DEP

Simulation

Experimental measurement of the dielectrophoretic force exerted on a particle

required that a system be designed to both apply a non-uniform electric field in order

to actuate the particle, and simultaneously measure the response to allow for an

estimate of the polarity and magnitude of the force and determination of the Clausius-

Mossotti function. The particles, biological cells and non-biological particles, to be

actuated and measured by the system range in size from 1 µm to 20 µm. Electrode

dimensions must be small to create a strong enough electric field, keeping∇|E0|2 large

enough to create a measurable force, while keeping the source voltage at a reasonable

level for available lab equipment. The non-uniformities in the DEP electric field must

also be small across the largest particle in order for the dipole approximation to be

accurate and all higher order polarization terms be negligible. Using these criteria, a

set of electrodes was designed to allow for DEP actuation as well as sensing of particle
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Figure 2.1: Channel and electrode configuration.

position, with use of an electrode capacitance measurement. Figure 2.1 shows a 3D

view of the final electrode array design with a microfluidic channel running over the

electrode array. A microfluidic channel is used to move particles over the sensing and

actuation electrodes to measure their translation due to an applied DEP force.

The microfluidic chip, further discussed in Chapter 3, was designed at the Uni-

versity of Manitoba and fabricated using the Sensonit process [16] by Micronit Mi-

crofluidics BV in conjunction with CMC Microsystems to flow multiple particles over

the electrode array. A 2D graphical representation of the channel and electrode con-

figuration is shown in Figure 2.2. The electrode array consists of two measurement

zones, shown by ERF in the figure, to measure the height of the particle before and

after the DEP force is applied. The remaining electrode gaps are two DEP zones,
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Figure 2.2: As the particle moves over the electrodes the initial height is measured by
the first half of the sensing field, next the particle is actuated and is again measured.

shown by EDEP in the figure, wherein the passing particle is actuated using the DEP

force.

The particles used in experiments are polystyrene microspheres, with nominal

diameters of 4.5 µm, 6 µm, and 10 µm. They are manufactured by Polysciences, Inc.

to provide a precise monodisperse particle size distribution [17]. Polystyrene spheres

(PSS) were chosen because of their consistent dielectric properties and size, as well

as their high dielectric contrast with the background medium, deionized water.

This chapter will describe finite element simulations of the sensing and DEP elec-

tric fields. Using the simulated fields and analytical expressions, the theoretical in-

duced sensing electrode capacitance changes are found and the theoretical particle

trajectories are simulated.

2.1 Theoretical Capacitance Change

Sensing of the particle position is done by measuring the capacitance of the set

of sensing electrodes as the particle flows through the sensing field. The theoretical

capacitance change corresponding to a passing particle can be found analytically by

finding the energy change caused by the presence of the particle. The channel is first

analyzed without the particle and with a homogeneous fluid medium of permittivity,

ε′1, dielectric loss, ε′′1, and conductivity, σ1. The sensing electrodes, shown in Figure 2.2
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as the two electrodes on the outside edges, are energized with the time harmonic RMS

potential, ΦRF , oscillating at angular frequency, ω. The total stored energy of the

detection zone, defined as the region in the channel surrounding the sensing electrodes,

is equal to:

W0 =
1

2
C0Φ2

RF (2.1)

where C0 is the electrode capacitance [18, 1]. Setting ΦRF constant for a given

experiment, any change in capacitance will result in a change in energy:

∆W =
1

2
∆CΦ2

RF (2.2)

Now if a homogeneous lossy dielectric sphere is introduced to the detection zone,

there is a change in the total stored energy of the system. The sphere has a radius,

a, permittivity, ε′2, dielectric loss, ε′′2, and conductivity, σ2 = σbulk + 2Ks

a
where σbulk

and Ks are the bulk particle conductivity and the surface conductance, respectively.

The total energy of the detection zone then becomes:

W =
1

2
C0Φ2

RF +
1

2
Re

{∫
V

ERF ·P∗partdV
}

(2.3)

=
1

2
C0Φ2

RF +
1

2
Re

{∫
Vpart

ERF ·P∗partdVpart

}
(2.4)

where V is the volume of the detection zone, ERF = −∇ΦRF is the RMS electric field

generated by the electrode potential, and P∗part is the complex conjugate of the RMS

particle polarization. Since Ppart is zero outside the particle, then the volume integral

is reduced to the region inside the particle, Vpart [18, 1]. The change in stored energy
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then becomes:

∆W = W −W0 =
1

2
Re

{∫
Vpart

ERF ·P∗partdVpart

}
(2.5)

1

2
∆CΦ2

RF =
1

2
Re

{∫
Vpart

ERF ·P∗partdVpartdV

}
(2.6)

The change in electrode capacitance due to the presence of the particle then

becomes:

∆C =
1

Φ2
RF

Re

{∫
Vpart

ERF ·P∗partdVpart

}
(2.7)

The particle polarization is defined as in [18, 1]:

Ppart = (ε2 − ε1)Epart (2.8)

where Epart is the electric field inside the particle. If the non-uniformities in the

electric field are small over the particle, the dipole approximation will be reasonably

accurate, and the electric field inside the particle can be found by combining (1.22b)

and (1.27b), defined in Section 1.5:

Epart =
3ε1

ε2 + 2ε1

ERF (2.9)

Ppart = 3ε1KERF (2.10)

The change in energy can then be found by integrating the time average energy

over the total volume of the detection zone with and without the particle. Using (2.7)
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and (2.10) the change in electrode capacitance then becomes [18, 1]:

∆C =
1

Φ2
RF

Re

{∫
Vpart

ERF ·
[
3ε1KERF

]∗
dVpart

}
(2.11)

= 3VpartRe{[ε1K]∗} E
2
RF

Φ2
RF

. (2.12)

In order to further simplify the capacitance change expression approximate values

can be used for the complex permittivity of the medium and particle. In the exper-

imental apparatus used for DEP force cytometry, sensing electrodes are excited at

frequencies close to 1.58 GHz. As calculated in [12] and [19], the relative permittivity

and dielectric loss for DI water at 25 ◦C can be found using the formula:

εr(ω) = εinf +
εs − ε2

1 + jωτ1

+
ε2 − εinf
1 + jωτ2

(2.13)

εr(ω) = 4.57 +
78.32− 6.32

1 + jω9.6× 10−12 s
+

6.32− 4.57

1 + jω1.2× 10−12 s
(2.14)

making ε′1 = 77.67ε0 and ε′′1 = 6.82ε0 at 1.58 GHz. Since ε′′1 << ε′1, for the sake

of simplicity the dielectric loss will be assumed negligible and the permittivity will

be approximated as 78ε0 for both the high frequency capacitance changes and the

DEP force estimates. The DI water conductivity was measured using a conductivity

meter prior to each experiment and ranged from 64 µS
m

to 593 µS
m

depending on time

exposed to air. Polystyrene permittivity is ε′2 ∼ 2.55ε0 and dielectric loss is low

(ε′′2 ∼ 0.001ε0), so it can be neglected [2, 11]. Particle conductivity takes the form,

σ2 = σbulk+ 2Ks

a
which will depend on particle size. However, with the frequency being

in the gigahertz range, the Clausius-Mossotti function reaches its high frequency limit,
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since ε1 << σ1/ω and ε2 << σ2/ω, such that:

K∞ = lim
ω→∞

ε2 − ε1

ε2 + 2ε1

(2.15)

=
ε′2 − ε′1
ε′2 + 2ε′1

(2.16)

making the particle detection rather insensitive to changes in fluid and particle con-

ductivity. The change in capacitance due to a passing particle, including the high

frequency approximations, then becomes:

∆C = 4πa3ε′1K∞
E2
RF

Φ2
RF

(2.17)

and for PSS with parameters as previously specified

∆C = 4πa3
[
3.29× 10−10

] E2
RF

Φ2
RF

. (2.18)

Capacitive detection of particles passing over the electrode array generates time do-

main “capacitance signatures”. In order to predict and analyze the capacitance signa-

tures resulting from passing particles, a finite element simulation was done to simulate

the only position dependent portion of the capacitance change,
E2

RF

Φ2
RF

, in (2.17).

2.2 Finite Element Capacitance Change Simula-

tion

A 2D model of the electrode configuration was created in COMSOL Multiphysics,

with use of the Electric Currents partial differential equation type, to compute the

electric field, ERF = −∇V , created by the sensing electrodes. This field will be used
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Figure 2.3: Model and parameters for COMSOL simulation of the sensing field, ERF .

to find the expected capacitance signatures of passing polystyrene spheres. A 2D

simulation was chosen to approximate the electric field as the electrode configuration

is transversely symmetric to the fluid flow and since it shortens simulation time and

simplifies the interpretation and visualization of the resulting data. The 2D approxi-

mation assumes that passing particles are in the middle third of the channel, where

the channel height is 40µm, or that particles are not near the walls of the channel.

A diagram of the electrode configuration within the channel is shown in Figure 2.3.

Sensing electrode spacing and width are set to 25 µm and the total separation, center

to center, of the electrode pairs to 215 µm. The dielectric properties of the model are

set according to Table 2.1. Channel height is set to 40 µm, the length to 2 mm, and

the permittivity and conductivity to 78ε0 and 100 µS
m

, respectively. The channel is

etched into borosilicate glass with a permittivity 4.8ε0 and negligible losses. As per

the Sensonit fabrication documentation, the top layer and bottom layer glass thick-

nesses are 1.1 mm and 0.7 mm, respectively [16]. The inside sensing electrodes are set

to ground, simultaneously providing ground for the DEP field during experiments.

The DEP electrode is also set to ground with respect to the sensing electrode poten-

tial. The outer sensing electrode potential is set to
√

2V magnitude so the electrode

potential is 1 V RMS, making E2
RF/Φ

2
RF = E2

RF . A Neumann (insulating) boundary

condition, ân·J = 0, was set for the outside edges of the simulation with the assump-
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Table 2.1: Parameters for COMSOL simulation of sensing field.

Parameter Value
ε1 78ε0

ε0 8.854 187 82× 10−12 F
m

σ1 100× 10−6 S
m

εglass 4.8ε0 [12]
σglass ∼0 [12]
ΦRF 1Vrms

tion that the edges are far enough from the electrodes that the field would be near

0.

The solution to the complex form of Laplace’s equation, ∇ · (ε∇V ) = 0, was

found for a frequency of 1.58 GHz within detection zone. The electric field was cal-

culated from the spatially dependent potential solution using, ERF = −∇V . Fig-

ure 2.4 shows the squared RMS electric field magnitude over the RMS electrode

potential, E2
RF/Φ

2
RF , as a function of x position for a variety of heights above the

electrodes. Heights are measured from the bottom of the channel to the center of

the particle. A particle with a height of 4µm corresponds to a maximum E2
RF/Φ

2
RF

of 10.2× 108 m−2 and a particle with a height of 34 µm corresponds to a maximum

E2
RF/Φ

2
RF of 0.96× 108 m−2. Generally, as the height above the electrodes is increased

the total field decreases and the electrode edges become less pronounced in the field

curves, causing maxima to occur over the electrode gaps rather than the electrode

edges.

Upon simulating the normalized sensing electric field, changes in capacitance due

to the presence of a particle could then be found by scaling based on particle size,

dielectric contrast, medium permittivity and actual electrode potential using (2.17).

Figure 2.5 shows the capacitance signature for unactuated (constant elevation) pass-

ing polystyrene spheres of radii, 2.3265µm, 2.7485 µm, and 4.985µm, the particle

sizes used during experiments, in DI water for a constant elevation of 10µm. The
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Figure 2.4: COMSOL simulation results showing the square of the RMS electric field
magnitude over the square of the RMS electrode potential.

capacitance signatures can now be found for any given particle size and height. These

plots should match the capacitance signal voltage measured experimentally when a

particle passes over the sensing electrodes after scaling based on capacitance sensitiv-

ity and particle velocity. Experimental capacitance signals may differ slightly when

compared with the theoretical curves if the particle is close to the electrodes. This is

due to the averaging effect of the dielectric particle when field non-uniformities are

large compared to the particle size.

Given the solution for E2
RF/Φ

2
RF , the next step is to simulate the force exerted

on a particle and find particle trajectories for each initial particle height and initial

velocity. From these particle trajectories theoretical capacitance signatures can be

made for all three particle sizes, and a range of Clausius-Mossotti factors, and initial

velocities and heights.
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Figure 2.5: Theoretical capacitance change of a 4.653µm, 5.497µm, and 9.97µm
diameter PSS in DI water at heights of 10 µm.

2.3 Finite Element Dielectrophoretic Force Simu-

lation

Similar to the method used in solving E2
RF/Φ

2
RF , a simulation was performed to

solve for the electric field due to ΦDEP . Once the actuation field, EDEP , is found, the

gradient of the squared electric field magnitude, ∇E2
DEP , can then be calculated and

used to find the total dielectrophoretic force exerted on a particle in the actuation

zone, which is defined as the area over the electrodes where ∇E2
DEP is non-zero.

Figure 2.6 shows the model used for the DEP force simulation. Simulation parameters

are the same as shown in Table 2.1, with the exception of the electrode potential

which is set to 4 V peak-to-peak, which is the potential used in experiments. Outside

boundaries remain the Neumann (insulation) boundary condition, ân·J = 0, with the

assumption that the field is near zero at the simulation edges. The solution to the

complex form of Laplace’s equation, ∇ · (ε∇V ) = 0, was found for a frequency of

1 MHz within the actuation zone. The electric field was solved only at 1 MHz since
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Figure 2.6: Model and parameters for COMSOL simulation of DEP electric field.

it remains relatively constant over the DEP frequency range of interest, 50 kHz to

10 MHz. The electric field does not change with frequency in this range due to the

dominant role of conduction current, Jcond = σ1E, as compared with the displacement

current, Jdisp = jωε′1E.

The resulting square of the RMS electric field magnitude, E2
DEP , is shown in

Figure 2.7. The general shape of the E2
DEP plot is the same as that of the E2

RF/Φ
2
RF

plot in Section 2.2. The electric field magnitude becomes lower as the height above

the electrode is increased. Local maxima occur over the electrode edges when close

to the electrodes and move towards the centers of the electrode gaps as the height is

increased.

The average DEP force on the particle, (1.41), depends on the gradient of the

square of the the RMS electric field. Taking the gradient of the square of the electric

field, the resulting x component is shown in Figure 2.8 and y component in Figure 2.9.

The overall effect of the x component of the gradient, ∂
∂x
E2
DEP âx, on the total inte-

grated force exerted on the particle as it moves over the electrodes is small since it will

act in both directions. The contribution of the x component will be to slow particle,

then speed it up as it moves over areas of maximum E2
DEP in the case of nDEP, or vice

versa in the case of pDEP. The total net force is dominated by the y component of the

gradient, ∂
∂y
E2
DEP ây, as it remains the same sign anywhere within the actuation zone
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Figure 2.7: Square of the RMS electric field magnitude for the actuation field with
σ1 = 100× 10−6 S

m
and ε1 = 78ε0.

and only varies in magnitude. Generally, the ∇E2
DEP , and therefore the force exerted

on a particle with positive Re{K}, will be directed strongly towards the electrode

edges when the particle is at a low elevation, and as the elevation is increased the

force will become weaker and will be directed toward the gap between the electrodes.

2.4 Laminar Fluid Flow and Additional Forces

In general, particles flowing in the microfluidic channel will be subject to more

forces than just dielectrophoretic forces. These forces will need to be accounted for

in order to create a simulation of the expected particle trajectories and accurately

interpret experimental data. The particle, will in addition to FDEP , will be subject
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to drag, gravity and buoyancy, and a hydrodynamic lift force:

F total =
〈
FDEP

〉
+ F grav + F buoy + Fdrag + F lift (2.19)

A visual representation of the forces acting on a particle flowing in the channel are

shown in Figure 2.10. The gravity and buoyancy forces being [12]

F grav + F buoy =
4π

3
a3g(ρm − ρp)ây (2.20)

where g is the gravitational acceleration, g = 9.81 m s−1, ρm is the density of the

medium (1000 kg m−3 for DI water), ρp is the particle density, (1050 kg m−3 for polystyrene),

and a is the particle radius. The Stokes’ drag force is given by [12]

Fdrag = 6πaη(vm − vp) (2.21)

where η is the medium viscosity, with η = 1× 10−3 Pa s for DI water, and vm and vp

are the medium and particle velocity, respectively.

Finally, determining the fluid velocity flow profile within the microfluidic channel

is necessary to find the expected lift and drag forces. The Reynolds number in a

microfluidic channel is typically low (Re<< 1), meaning that the flow can be described

as laminar, as opposed to turbulent [20, 21]. Laminar flow means that the velocity

profile will be parabolic, with the fluid velocity being zero at the walls of the channel

and maximum at the center of the channel. The velocity profile will take the form

[12]

vm = 6 〈v〉 (h/H)(1− h/H) (2.22)
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Figure 2.10: Summary of forces acting on a particle in motion in the microfluidic
channel.

where vm is the fluid velocity for a given height above the electrodes, h, 〈v〉 is the

average velocity of the fluid flow and H is the total height of the channel, in this case

40µm.

Since the fluid velocity varies across the channel, if the particle is anywhere but

the center of the channel, either side of the particle will be at a point in the channel

with a different velocity. Due to this difference in velocity the particle will experience

a shear force that will rotate and push it towards the center for the channel, otherwise

known as a hydrodynamic lift force. The hydrodynamic lift force when the particle

is in the lower half of the channel is given as:

F lift =


C 6ηa3〈v〉
H(h−a)

ây, a ≤ h ≤ H/2

−C 6ηa3〈v〉
H(h−a)

ây, H/2 ≤ h ≤ H − a
(2.23)

where a is the particle radius, η is the fluid viscosity, and C is the lift force constant

which varies depending on the particle and system parameters [22]. A method is used

in [12] and [1] to empirically determine the lift force constant from experimental data.
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In [1], a set of interdigitated electrodes are used to measure capacitance changes due

to a population of a = 2.75 µm PSS. The alternative electrode design allowed for a

height estimate of each passing particle. By estimating the height and velocity of

passing polystyrene spheres a best fit was done and it was found that C = 0.106.

Though the above hydrodynamic lift equation typically overestimates the lift force

compared to experimental data, it will be used as a best guess in simulation and to

estimate the equilibrium height of particles.

Balancing the ây components of the above forces for a given particle size and

medium velocity results in the expected equilibrium height of the particle. The ex-

pression for the equilibrium particle height, heq, assuming the particle settles in the

lower half of the channel takes the form:

heq = a+
9Cη 〈v〉

2πgH(ρp − ρm)
(2.24)

Calculating the equilibrium particle height for a range of fluid velocities results in a

series of equilibrium heights. Next, for each of the fluid velocities and equilibrium

heights an associated particle velocity can be found from the fluid velocity at that

height in the parabolic flow. Figure 2.11 shows the equilibrium heights for each

particle velocity of a 5.5 µm diameter PSS in DI water.

By using the above forces along with the DEP force, the trajectories of particles

with a range of sizes, initial heights, and initial velocities can be calculated. The

following section will outline the calculation of the particle trajectories and expected

capacitance signatures.

42



0 500 1000 1500 2000 2500 3000 3500 4000
2

4

6

8

10

12

14

16

18

20

E
q
u
il
ib

ri
u
m

P
ar

ti
cl

e
H

ei
gh

t
[µ

m
]

Average Fluid Velocity [µm s−1]

Figure 2.11: Equilibrium height for a 5.5 µm diameter PSS in DI water at a range of
velocities.
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Table 2.2: Parameters for PSS Trajectory Calculation.

Param Value Param Value
a 2.75µm ε0 8.854× 10−12 F m−1

ε1 78ε0 [11] ε2 2.5ε0

ΦDEP 4 V peak-to-peak fdep 1 MHz
H 40 µm σ1 100× 10−6 S m−1

σ2,bulk 1× 10−16 S m−1 Ks 2.56× 10−9 S [11]
εglass 4.8ε0 [12] σglass ∼0 [12]
η 1× 10−3 Pa s 〈v〉 1500µm s−1

ρm 998 kg m−3 ρp 1050 kg m−3

C 0.106 [1] g 9.81 m s−1

2.5 Simulated Particle Trajectories and Capacitance

Signatures

Using the solved DEP electric field and the forces defined in Section 2.4, particle

trajectories can be calculated for multiple initial elevations and particle sizes in order

to find a general trend for the behavior of particles passing over an electrode array.

Multiple initial elevations are used due to the uncertainty in the equilibrium height

calculation.

Particle trajectories are calculated with COMSOL Multiphysics post-processing

mode after the sensing and actuation fields have been calculated. Figure 2.12 shows

the trajectories of 5.5 µm diameter PSS subject to a 1 MHz, 4 V peak-to-peak DEP

voltage. The 5.5 µm diameter PSS are released at a range of elevations and the

trajectories are traced as they move over the sensing and actuation zones. Parameters

are chosen to be the same as in the previous sections and are outlined in Table 2.2.

As expected, since Re{K} = −0.4073 < 0 at 1 MHz, the particles are pushed away

from the electrodes as they pass. Since the electric field gradient as well as the lift

force is stronger near the bottom of the channel, the particles closest to the electrodes

experience a much stronger force and experience a greater change in elevation.
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Figure 2.12: Trajectory for a 5.5 µm PSS at a range of initial elevations. The particle
elevation, h, is referenced from the bottom of the channel to the center of the particle.
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Figure 2.13: Simulated capacitance signatures for a 5.5 µm diameter PSS at a range
of initial elevations.

From these particle trajectories the expected capacitance signatures can be found

by plotting E2
RF along the particle path and scaling by 4πa3ε′1K∞/Φ

2
RF . Figure 2.13

shows the capacitance signatures for a range of initial particle heights. As the initial

particle elevation is increased the fluid velocity around the particle is increase, making

the particle crossing time lower and the width of the capacitance signature shorter.

As the initial height is increased E2
RF and ∇E2

DEP both decrease meaning the total

signal magnitude is smaller due to lower sensing field magnitude and the relative

change in magnitude is smaller since the DEP field gradient is lower. This will be

explored further in Chapter 5 when experimental data is analyzed and more particle

trajectories are used to find the Clausius-Mossotti factor of experimental results.

The following chapter will discuss the experimental apparatus used to collect

the capacitance signals. This will include the discussion of the fabrication of the

microfluidic chip used for experiments and an analysis of the microwave interferometer

and resonator used to measure the electrode capacitance.
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Chapter 3

Experimental Setup: Microwave

Interferometer and Microfluidic

Chip

To measure the dielectrophoretic force on a polystyrene sphere, a system was

required to both deliver the particles to the actuation zone and measure the change

in electrode capacitance, ∆C, and change in particle elevation cause by the force. To

accomplish this a microfluidic chip was designed and fabricated to deliver particles

to the actuation zone, and a microwave interferometer in combination with a couple-

line resonator was used to measure the sensing electrode capacitance changes. This

chapter will outline the steps taken to the final design of the microfluidic chip and

microwave interferometer.
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120µm

240µm

Figure 3.1: IFSMB010 microfluidic chip photograph, with channels, dimensions, and
flow pattern overlaid.

3.1 Microfluidic Chip Fabrication

Measuring DEP forces and the Clausius-Mossotti factor of polystyrene spheres,

along with other particles, requires the ability to selectively flow particles over the

electrode array while accurately controlling the speed of the particles, within a thresh-

old, and controlling the density of particles withing the flow, as to eliminate particle-

particle interactions and accurately measure single particles. An H-channel design was

used, shown in Figure 3.1, where the fluid velocity in the cross channel is determined

by the differential pressure between the two larger side channels.
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Microfluidic channels are etched into the bottom of the top, 1.1 mm thick, borosil-

icate glass layer. The total width of the side and cross channels are 240 µm and

120µm, respectively, as measured at the bottom of the channel. Having the smaller

width cross channel allows for fine control of flow velocity by changing the differential

pressure between the side channels. By changing the total flow speed of the side chan-

nels, allows for small changes in particle density within the cross channel. Channel

heights are 40µm. The channels have quarter circles on the top corners due to the

isotropic etch used in the Sensonit manufacturing process [16], making the width of

the channel at the top 160 µm and 40µm. Microelectrodes, with the same dimensions

as simulations in Chapter 2, were countersunk into the of the bottom, 0.7 mm thick,

glass layer and deposited as gold with a thickness of 200 nm.

Flow control is provided by a gravity fed mechanism, shown in Figure 3.2, where

the pressure differential is provided by the difference in heights between two vials, the

higher containing the DI water and polystyrene spheres and the lower just DI water.

Solenoids, located on the two output ports, are normally clamping the output ports

on each side. Purging of the device, to eliminate settling, is accomplished by having

both vials pressurized at 7 psi. To purge, one or both of the solenoids are released

and the water is allowed to flow straight through the system.

3.2 Microwave Interferometer and Resonator

This section will discuss the operation of the microwave resonator and interferom-

eter, and provide a detailed circuit equivalent of the resonator and channel. It will

also determine the total system sensitivity and total system noise.

Since the capacitance changes that are to be measured are on the order of tens

of attofarads, a system was needed to accurately measure capacitances with a sub-
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Figure 3.2: Gravity controlled flow is accomplished by placing the vials for each side
channel at different heights, with the flow through the cross channel being controlled
by the resulting pressure differential.

attofarad resolution. The solution was a microwave interferometer in combination

with a quarter-wave-coupled-line resonator, similar to the systems found in [23] and

[12, 18, 1, 24, 20]. In the system used for our experiments a slightly different resonator

was used. As shown in Figure 3.3, a coupled-line resonator was used with the sensing

electrodes connected to one of the traces so that the varying electrode capacitance

will change the electrical length of the resonator and therefore change its resonant

frequency. The microwave interferometer used to measure the electrode capacitance

operates by splitting a 1-2 GHz range signal into two paths, a reference path and a

resonator path, and measuring the change in phase difference between them caused
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Short Circuit

Figure 3.3: Quarter-wave-coupled-line resonator photograph with dimensions.

by the change in the sensing electrode capacitance. This section will describe the

operation of the resonator and interferometer and outline the approach used in their

design.

3.2.1 Quarter-Wave-Coupled-Line Resonator

To amplify the measured capacitance changes due to a particle passing over the

electrodes and improve the signal-to-noise-ratio of the entire system, a quarter-wave

coupled-line resonator, shown in Figure 3.3, was fabricated. The resonator was milled

into copper on a copper clad low loss dielectric substrate, Rogers Duroid 5880 (εr =

2.2ε0, tan δ ≈ 0.0007), and is used to create a steep phase response at and around the

resonance frequency. Figure 3.4 shows the |S21| thru response of the resonator, found
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Figure 3.4: Quarter-wave-coupled-line resonator |S21| response with sensing electrodes
attached. A 90 MHz shift is observed between the channel being filled with air (blue)
and DI water (green).

using an Anritsu MS2036A vector network analyzer (VNA). From the figure it can

be seen that the resonant frequency changes from the channel being filled with air

at 1.667 GHz to 1.577 GHz when it is filled with DI water. By design, the insertion

loss, |S21|, is kept fairly constant (∼ −5 dB) with the change in medium as to not

significantly reduce the sensitivity when higher conductivity mediums are used. The

unwrapped phase response of the resonator is shown in Figure 3.5, with a phase

sensitivity at resonance of 1.013◦/MHz, when the channel is filled with DI water.

Keeping the gaps between the coupled-lines small makes the resonator insertion loss

reasonably small, and makes quality factor, Q ∼ 15, fairly low to make the resonator

more immune to changes in medium conductivity. Connection of the resonator to the

sensing electrodes is done through a set of brass probes attached to the resonator and

contact is made by use of a 3-axis positioner.
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Figure 3.5: Quarter-wave-coupled-line resonator ∠S21 response with sensing elec-
trodes attached and channel filled with air (blue) and DI water (green).

An RF simulation was created, using Ansoft Designer, to verify the design and

find the approximate voltage on the electrodes. Electrode voltage levels are required

to be sufficiently low as to not have an effect on the particle trajectory by inducing

a strong DEP force or other electromotive forces such as ac electro-osmisis and the

electrothermal effect [12, 11]. The simulation was made to match the measured VNA

data for resonator without the microfluidic chip attached, and with the chip attached

and the channel filled with air then with DI water. Using these data, and the resonator

dimensions and substrate, a circuit representation of the resonator and channel was

found, shown in Figure 3.6. The resonator and brass probes are modeled by changing

the 0.1W to an open circuit, with everything to the right being the channel model.

Removing the 180 fF capacitor and the 30 kW resistor on the far right will change the

response from the channel filled with DI water to the air filled channel response.
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Figure 3.6: Ansoft Designer simulation model of the resonator and channel. Adding
and removing the 180 fF capacitor and the 30 kW resistor models DI water and air in
the channel, respectively.

Since the capacitance changes in experiments due to PSS or cells are on the order

of a few hundred attofarads, the shifts in resonance will be no more than 100 kHz,

meaning the insertion loss and electrode voltage magnitude will remain constant

through the experiments. With 13 dBm on the RF source, -11.8 dBm is expected on

port 1 of the resonator after including component and estimated line losses. Inputting

-11.8 dBm on port one of the model, the voltage on the electrodes becomes ∼ 310mV

peak when the source is operating close to resonance. This low voltage means the

DEP force and other electromotive forces will be negligible in the sensing regions.

3.2.2 Microwave Interferometer

As a first-order approximation, the microwave interferometer measures small changes

in the insertion phase of the quarter-wave short-circuit resonator described in Sec-

tion 3.2.1, caused by small changes in electrode capacitance connected to its open-

circuit terminal. The microwave interferometer operates by splitting a fixed frequency

source into two paths, a reference path and a measurement path. The measurement

path, containing the resonator, is mixed back with the reference path, whose low-
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frequency output component is proportional to the capacitance change caused by

passing particles. To reduce noise one branch of the interferometer is modulated at

a lower frequency and a lock-in amplifier is used to extract the modulated signal.

A block diagram for the microwave interferometer is shown in Figure 3.7. For

use in experiments the RF source, Agilent E8663B, is set to a power level of 13 dBm

with the resonant frequency of the resonator when connected to fluid filled channel

electrodes (∼1.58 GHz). From the RF source, the signal is first passed through a

power splitter, Minicircuits ZAPDJ-2-S, into two paths, a reference path (ref) and a

resonator path (res). From the power splitter the reference path is passed through

a variable phase delay, ATM Microwave P1213, which is used to control the phase

difference between the two paths at the resonant frequency. The reference path signal

is input to the LO-port of the mixer, Minicircuits ZEM-4300MH+, a level 13 mixer.

From the splitter the resonator path is passed through a 6 dB attenuator for

matching and power adjustment. Next it is amplitude modulated using an RF switch,

ZASWA-2-50DR+. The switch is absorptive, with the second switch output termi-

nated in a 50W load. The modulating signal, at a frequency of 91 kHz, is provided

by the lock in amplifier (LIA). A second attenuator is then used to lower the signal

further by 10 dB, so the desired -10 dBm input to the resonator is achieved. The

resonator path signal is then passed through the resonator, with an insertion loss of

5.45 dB and a phase response which is a function of the electrode capacitance, before

being amplified by 30 dB by a low-noise amplifier, Minicircuits ZRL-2400LN. The am-

plifier output is passed through a 13 dB coupler, Minicircuits ZNDC-13-2G-S+. The

coupler coupled port output is used, along with a peak detector, to find the resonant

frequency when a VNA is unavailable. The thru-port signal of the coupler is input

to the RF port of the mixer.

The reference path and the resonator path signals are then mixed. The lower
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Figure 3.7: Block diagram for microwave interferometer.
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frequency down-converted output is a 91 kHz signal with an amplitude proportional to

the phase difference between the paths and the capacitance of the sensing electrodes.

The higher frequency up-converted components are removed by the LIA input filter.

The LIA down-converts the 91 kHz signal to a voltage dependent on the interferometer

phase difference. Given as:

S = G|Φref | cos(ωt+ φref )× |Φres| cos(ωt+ φres) (3.1)

=
G

2
|Φref ||Φres| [cos(φref − φres) + cos(2ωt+ φref + φres)]

→ G

2
|Φref ||Φres| cos(φref − φres) (3.2)

where G is the combined gain of the mixer and LIA, |Φref | and |Φres| are the final

reference and resonator path signal magnitudes, respectively, and φref and φres are

reference and resonator path signal phases, respectively. At the beginning of a set

of experiments the resonant frequency is verified using the 13 dBm coupler and the

variable phase delay in the reference path is adjusted so that φref − φres is an odd

multiple π/2, so that any change in electrode capacitance will be measured from zero.

The signal then becomes:

S =
G

2
|Φref ||Φres| cos(π/2−∆φres) (3.3)

=
G

2
|Φref ||Φres| sin(∆φres) (3.4)

≈ G

2
|Φref ||Φres|∆φres (3.5)

≈ G

2
|Φref ||Φres|

dφres
df

df

dC
∆C (3.6)

where dφres
df

is the small signal change in phase of the resonator path per unit change

in frequency, estimated in Section 3.2.1 at 1.013 ◦/MHz, df
dC

is the small signal change

in resonant frequency cause by a per unit capacitance change, and ∆C is the change
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in the electrode capacitance due to the particle.

A 3D simulation of the channel was made to calculate the electrode capacitance

with both air and water filling the channel. An estimated capacitance change of 80 fF

was calculated when the air was replaced with water. Since replacing the air filled

channel with DI water resulted in a 90 MHz change in resonant frequency, df
dC

is es-

timated to be 1.125 MHz/fF. From the ZEM-4300MH+ datasheet [25] the estimated

conversion loss for the mixer for an LO power level of 9 dBm is ∼ 7 dB (∼ 0.2). The

estimated power level for the resonator path at the input of the mixer including cable

loss and power loss in the components is 7.9 dBm. The LIA sensitivity during the ex-

periments was set to 500 µV meaning the total LIA gain is 10 V/500 µV=20000 V/V.

Finally, unipolar switching AM modulation means that after modulation the funda-

mental, at fRF ± 91 kHz, is reduced by 2/π. Making the final signal:

S ≈ Gtot|Φres|
dφres
df

df

dC
∆C (3.7)

≈
[
(0.2)(20000)

2

π

]
[0.56]

[
1.013

π

180

] [
1.125× 10−3

]
∆C (3.8)

≈
[
0.028 V aF−1

]
∆C (3.9)

Making the estimated system sensitivity 36 aF V−1 (1/0.028) for a LIA gain of 20,000.

3.3 Experimental Sensitivity Estimate

Due to the various approximations in the above sensitivity estimation method, the

overall system sensitivity was also found using experimentally collected capacitance

signals. This section will describe the estimation of system sensitivity with use of

experimentally collected data.

Experimental determination of the system sensitivity was accomplished by first
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simulating the peak electrode capacitance changes versus average crossing speed for

a PSS in the detection zone, for a given fluid velocity profile, and then applying the

curve as a best-fit to experimentally collected capacitance signals. A block of data

was chosen so that many particles crossed the detection zone within a short time,

so as to limit effects due to changes in the fluid velocity. A seven minute block of

signals were chosen shortly after a purge, when no DEP was applied, so that the

particles were more dispersed over the height of the channel. A simulation was done

to find the expected capacitance signatures that, when particles are dispersed through

the channel, would have the same maximum particle velocity as those observed in the

experiment. For this measurement a set of 5.5 µm PSS data were chosen that consisted

of 180 PSS crossings. The maximum velocity was found to be roughly 4000 µm s−1

and a simulation was done to find the capacitance signatures of particles dispersed in

a flow profile matching the top speed of the experimental data.

Figure 3.8 shows the curve resulting from the simulated data. In the figure, the

peak capacitance change, ∆C, due to the particle moving over the first pair of sensing

electrodes is plotted against the average crossing speed as estimated by the physical

distance between centers of the sensing electrodes (∼215µm) divided by the time

between the two capacitance peaks. The range of particle heights results in a range

of average crossing speeds that match the fluid velocity profile across the channel.

A fit, shown in red, was applied to the particles in the lower half of the channel.

Next, the segment of experimental data, described above, was plotted and is shown

in Figure 3.9. The figure shows, in blue circles, the amplitude of the first peak in the

capacitance signals as plotted against the average particle crossing speed, calculated

in the same way as in Figure 3.8. The simulated curve fit from Figure 3.8 was then

scaled to fit the experimental plot for signal voltage versus average crossing speed,

shown in red in Figure 3.9. The simulated peak capacitance change fit was scaled
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Figure 3.8: Simulated capacitance change of the first peak versus average crossing
speed for 5.5 µm PSS in a laminar flow with 〈v〉 = 2667 µm s−1. Average crossing
speed is calculated by dividing the physical distance between the centers of the sens-
ing electrode pairs, 215µm, by the time between the two peaks in the capacitance
signature. A third order polynomial fit, shown in red, is done on the data points from
the lower half of the channel.

by 1/45 to match the experimental data, making the resulting estimated system

sensitivity 45 aF V−1 for that given experiment.

This same method was used to find the sensitivity of each of the experiments

which will be described later in this thesis. Using the mean particle radii and an

estimated average fluid velocity for the set of closely spaced particles, a simulation

was done for each of the data sets. The results of the sensitivity estimates are detailed

in Chapter 5.
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Figure 3.9: Experimental capacitance signal of the first peak versus average particle
velocity is plotted for unactuated 5.5 µm. Third order polynomial fit from simulation
is scaled by 1/45 V aF−1 to match the experimental results and shown in red.

3.4 System Output Noise Measurement

This section will be used to calculate the total output noise of the experimental

apparatus. This will also determine the minimum detectable capacitance change.

An example of a 5.5 µm diameter PSS signal at an estimated height of 12µm,

shown in Figure 3.10, was chosen in order to show the signal noise compared to the

capacitance signals due to passing particles. To measure the total output noise of the

system, the block of capacitance signal, shown in red, was analyzed from the 5.5 µm

PSS data set used in the sensitivity analysis above. The DC offset was removed from

the original signal, using the same baseline fit technique discussed later in Section 4.2,
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leaving a zero offset noise signal. The RMS noise voltage was found using:

Srms =

√√√√ 1

n

n∑
i=1

S2
i (3.10)

where n is the total number of points in the signal section, and Si are the sample values

in the signal. From this, the RMS signal noise was found to be 9.5 mV. With the

sensitivity estimate detailed in Section 3.3 (45 aF V−1) applied to the noise voltage, a

resulting RMS capacitance floor of 430 zF was found. All measurements in this thesis

were taken with LIA settings, τ=1 ms, and a filter roll off of 12 dB/oct, meaning the

equivalent noise bandwidth, according to the LIA manual [26], will be 1/8τ =125 Hz.

The total sensitivity, assuming only white noise, thus corresponds to 38.5 zF/
√

Hz.
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Figure 3.10: Section of capacitance signal from 5.5 µm diameter PSS at an estimate
height of 12µm with DC offset removed, shown in blue. Area shown in red used for
noise measurement, with an RMS value of 9.5 mV.

The following chapter will discuss the data acquisition and post processing pro-

grams created for the collection and analysis of experimental data.
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Chapter 4

Signal Processing

The experimental apparatus described in the previous chapters, a block diagram

of which is shown in Figure 4.1, was designed to facilitate the measurement of the

dielectric properties of various particles. This is accomplished by collecting the time

domain signals that are proportional to the capacitance changes of a set of sensing

electrodes, ∆C(t). These raw signals, an example of which is shown in Figure 4.2, can

have shifts in the baseline as the system approaches equilibrium, multiple particles

passing over the electrode array simultaneously, and sharp discontinuities cause by

external disturbances. Once these undesired signals are removed, quantifiable infor-

mation needs to be extracted from the signals. This thesis makes use of the time

between peaks, and the peak amplitudes and widths for the pre-DEP and post-DEP

events. These data are used to filter the data and measure the force on the parti-

cle with the final goal of determining the Clausius-Mossotti factor over a range of

frequencies for each of the particle sizes.

Two programs were written to facilitate the rapid collection and analysis of capac-

itance signatures. The first is used to collect and label the capacitance signal output

of the microwave interferometer. The second is used to analyze collected capacitance
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Figure 4.1: Block diagram showing entire experimental apparatus.

signals and to identify usable single cell or particle crossings, allowing for the signifi-

cant reduction in the non-useful information. This chapter will explore the operation

and use of these programs.

4.1 Data Collection and Labeling

Capacitance signals from the lock-in amplifier are collected using a PCI data ac-

quisition (DAQ) board within the desktop computer that accompanies the impedance

cytometry system. A program was written to collect sampled data from the DAQ

board, mark it with a time stamp, break the data up into chunks for storage, label

each of the data files with experimental parameters, and display real-time data during

collection.
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Figure 4.2: Ten second sample of raw 5.5 µm diameter PSS signals.

Figure 4.3 shows a screenshot of the graphical user interface (GUI) of the DAQ

program at startup. Before each experiment the information in the middle of the

screen is filled in to identify the parameters of the experiment. Next the directory in

which the data will be saved is chosen using a folder browser dialog when the “Choose

Directory” button is pressed. An option is available to record an auxiliary input on

channel 1 of the DAQ, which can be used to record DEP signals or electroporation

signals [27], in addition to the capacitance signal from the interferometer on channel

0. There is another option to process data in real time, allowing for real time baseline

subtraction of signal offset and identification and saving of signal information such

as peak times, peak voltages, and event times. The process by which this is done is

the same as that discussed later in Section 4.2, but the baseline fit and peak search

algorithms are applied to data after a delay of one to two seconds. This feature is

not commonly used as it is CPU intensive and processing during purges and settling

times can lead to an overload of data and slow program response.

Once the experiment information is filled in and any additional options are se-

lected, the “Start DAQ” button is pressed, and the program sets up directories and

files to store collected data, initializes the DAQ and disables a number of input op-
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Figure 4.3: Data acquisition program GUI on launch.
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Figure 4.4: Data acquisition program GUI during capacitance signal sampling.
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tions to ensure consistency in the data files. The program then starts the DAQ session

on the DAQ board and starts collecting, displaying, and saving capacitance signals.

A screenshot of the DAQ program GUI while collecting capacitance signals is shown

in Figure 4.4. The real-time capacitance signal is displayed on the top axes in volts,

with an auto-adjusting voltage extent to allow for viewing of smaller signals and a

rolling window width of 20 s to allow for viewing of multiple events. Data is collected

from the DAQ buffer in blocks specified in the GUI under “Sample Size” before the

experiment begins. Collecting data with a larger sample size means the program will

be able to process more data each time through the main loop and will not have any

problems keeping up with the real time collection. A drawback of the larger sam-

ple size being that the plot updates in larger blocks making feedback delayed when

changing experimental parameters such as flow speed and the DEP signal. With

smaller sample sizes the plot updates smoothly, but under a heavy CPU load from

other programs the DAQ program may need to collect multiple samples in a loop and

could lead to loss of data if the heavy CPU load continues. As the program collects

multiples of 30000 data points, the blocks of data are saved to comma-separated val-

ues (CSV) files, making each file 30 s when sampling rate is 1 kSample/s as is typical,

keeping the data files relatively small for fast loading in MATLAB and Microsoft

Excel. Table 4.1 shows an example of the top of a saved data file, showing the header

format and format of the collected data.

When the experiment is over the “Stop DAQ” button is pressed, the program stops

the DAQ session, saves the remaining data in the buffer to a new file, and re-enables

the original buttons and text fields for another experiment. All the experimental

parameters are also saved in a preferences file to be reloaded on the next program

launch since most of the parameters remain the same over multiple experiments.
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Table 4.1: Data file header and data points example.

Chip Name: IFSMB010 Cell Type: 6um PSS Buffer Type: DI Water, 180uS/m
RF Sensing Freq: 1.584 GHz RF Sensing Power: 13 dBm Modulation Freq: 91.6 kHz
LIA Time Const: 1 ms LIA T.C. Slope: 12 dB/oct LIA Sensitivty: 500 uV

Start Time: 08-Aug-2012 19:55:05 Sample Rate: 1 kSamples/s
Time: Raw Data: Processed Data: Peaks:
7:55:05.608 PM -2.350957504
7:55:05.609 PM -2.353704128
7:55:05.610 PM -2.353704128
7:55:05.611 PM -2.350957504
7:55:05.612 PM -2.347600519
7:55:05.613 PM -2.350347143
7:55:05.614 PM -2.356145571
7:55:05.615 PM -2.355230030

4.2 Post Processing and Analysis

Since irregularities are commonly observed in the capacitance signals, including

purges of the channel, discontinuities due to changes in sensing frequency or changes

in DEP voltage, or mechanical disturbances, a program was written to convert the

high volume of time domain data accompanying each experiment into a more compact

form. The time domain signals are broken down into peak amplitudes, times, and

widths. The program adds an interface, shown in Figure 4.5, to allow for seamless

viewing of full experiments and the ability to identify single crossings of particles.

To start, the location of the experimental data to be processed is identified by

clicking the “Choose Directory” button and navigating the directory dialog to the

proper data location. The folder is then scanned to find the files with the correct

format for loading and the drop down menu labeled “Available Files” is populated

with the data files in the experiment. The first file in the data set, along with the

adjacent file, is then loaded into memory and displayed. The bottom axis is used

to display the processed data. The DC offset is removed and the signal peaks are

identified. The raw signal voltage is displayed on the top axis to give a comparison
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Figure 4.5: Post processing program.
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in case processing causes an distortion in the signals.

Processing of the data first includes a base-line fit to subtract out an offset or

a slow drift in the capacitance signal. This base-line fit is found by subtracting a

moving average filtered signal from the raw data and removing the points that exceed

a threshold, typically cause by a passing particle, then applying a polynomial fit to

the remaining raw data points. Subtracting the filter signal from the raw is similar

to finding the time derivative of the signal and removing points with too high of a

slope. The data points to which the fit is applied then satisfy:

∣∣∣∣∣S[n]− 1

N

N∑
i=0

S[n− i]

∣∣∣∣∣ < dmax (4.1)

where S[n] is the nth signal sample in the data to be fit, N is the filter size, specified

in the GUI in the “Averages” text field, and dmax is the threshold for the maximum

change from average, specified in the “Poly Threshold” text field in the GUI. A

polynomial fit of an order specified in the “Polynomial Order” drop-down menu, is

then applied to the data points that are under the threshold. The values of the

polynomial are then calculated for the times of each data point and the raw data is

plotted along with the calculated polynomial on the top axis. The polynomial fitted

base-line is subtracted from the raw data, moving the base-line to zero. An optional

moving average filter, with a filter size specified by the “Smoothing” text field, is then

applied to the base-line subtracted data to reduce noise in the signal and the filtered

signal is plotted on the bottom axes of the GUI.

After any offset is removed from the capacitance signal and the optional smooth-

ing filter is applied, local minima are found, identifying a particle passing over the

electrodes, using the peak detection function, peakdet [28], configured to find local

minima. The peak threshold level for the function is set using the “Peak Find Thresh”
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Figure 4.6: Example of the peakdet algorithm run using a threshold of 0.3 V.

text field. The zero derivative with thresholding algorithm in the peakdet function

will only accept local minima with points above the threshold on either side of the

minima, an example of the results when the threshold is set to 0.3 V is shown in

Figure 4.6. Depending on the electrodes used in the experiment, selected in the GUI

using the “Split Electrodes” check box, the signals will have a different form and need

to be labeled in different ways to simplify plotting of processed data.

Two gap electrode sets, such as those shown in Figure 4.7 with an inset capacitance

signal example, have multiple peaks and only deviate from the base-line once per

crossing, unlike the signals from the split electrode configuration discussed in earlier

chapters. For the two gap electrodes, crossing events are bookended by in and out

flags which are found by setting a threshold level, “T-Time Threshold” text field in

the GUI, and finding the points at which the signal deviates from the base-line by

more than the threshold. These in an out flags group the minima, and maxima if the
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100 µm

Figure 4.7: Two gap electrode micrograph with inset capacitance signal example.

“Process Maxima and Minima” check box is active, into events.

When data collected using the split electrode configuration is analyzed, peaks due

to particle crossing before and after the actuation are fully separated and the signal

returns to the baseline in between peaks. This means that signals need to be identified

as pre-actuation and post-actuation to identify them as the same particle when the

processed file is saved. Once the peakdet function finds the minima, the program will

go through each of the peaks and estimate the width of the peak by finding the full

width at half maximum associated with each peak.

After events are identified using the method above, user input is needed to identify

useful signals and remove signals from multiple particles passing over the detection

zone at once, channel purges, and signal discontinuities. Signals are identified by

clicking on acceptable peaks and half-maximum points or by clicking the “Collect

On-Screen Data” button when everything in the current span is acceptable. When
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clicking on individual signals, pre-actuation and post-actuation events are identified

by clicking on the left-most or right-most half-maximum point of each peak, respec-

tively.

Once acceptable signals have been identified they can be saved to a CSV file

using the “Save P&TT” button. In the case of two gap electrode data, each event

is saved in a single row with the in and out flag times being on the outsides and

the times and amplitudes of the six possible peaks being in the middle. An example

of the formatting of the two gap processed data CSV is shown in Table 4.2 with

four of the six peak columns filled. Times are saved in the Excel datenum format,

which is scalable to the Matlab datenum by an offset of −693960. In the case of split

electrodes, file rows are formatted with the separate in and out flag times surrounding

the peak amplitudes and times of the pre-actuation and post-actuation signals. An

example of the CSV formatting is shown in Table 4.3, with the data after the baseline

subtraction is applied shown in Figure 4.8.

20:52:18 20:52:20 20:52:22 20:52:24 20:52:26 20:52:28 20:52:30 20:52:32 20:52:34

−0.5

0

0.5

S
ig

n
al

[V
]

Time [s]

−1

−1.5

−2

−2.5

−3

−3.5

Figure 4.8: Capacitance signal from which data in Table 4.3 was collected.

The following chapter will discuss the results of the two sets of PSS experiments

for the three particle sizes. One experiment will be analyzed in detail, using simula-

tion results, in order to extract the Clausius-Mossotti function of the particle. The

74



remaining experiments are normalized to find the spectral dielectrophoretic response.
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Table 4.2: Sample of processed data CSV from two gap electrodes.
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Table 4.3: Sample of processed data from split electrodes.
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-0.6479

20:52:30.706
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0.014
20:52:30.756
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20:52:30.763

20:52:30.770
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20:52:34.490
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20:52:34.498
20:52:34.506

0.016
20:52:34.553
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20:52:34.561

20:52:34.568
0.015

20:52:37.210
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20:52:37.219
20:52:37.228

0.018
20:52:37.281

-1.3905
20:52:37.291

20:52:37.299
0.018

20:52:37.852
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20:52:37.859
20:52:37.866

0.014
20:52:37.909
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20:52:37.916

20:52:37.923
0.014

...
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Chapter 5

Results

The final goal of this thesis is to determine the Clausius-Mossotti factor for a

population of polystyrene spheres at a range of frequencies. Two sets of experiments

were done with polystyrene spheres of nominal diameters 4.65µm, 5.5 µm, and 9.97µm

in DI water at DEP frequencies ranging from 50 kHz to 10 MHz. This chapter will

analyze one population in detail, that being from one of the two 5.5 µm diameter

PSS experiments, and extract the Clausius-Mossotti factor spectrum. This will be

accomplished by filtering the data and comparing each of the remaining particles with

finite element simulations, to determine the Clausius-Mossotti factor as an average

over the full population.

The first step in finding the Clausius-Mossotti factor of the experimental data was

to run all of the data through the post processing program described in Section 4.2

and extract the peak voltages and times in the capacitance signals for the range of

DEP frequencies. The extracted peak voltages will be scaled in order to find the

induced capacitance changes. Next, the initial and final particle heights are found

using simulation data. The particle heights are then used in combination with particle

trajectory simulations to find the Clausius-Mossotti function of one of the 5.5 µm PSS
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Figure 5.1: Example of the capacitance change, ∆C, of a 5.5 µm diameter PSS in DI
water. Here, P1 and P2 show the peak capacitance change of the first and second
peak, respectively. ∆t is used to calculate the average crossing speed using 215 µm/∆t.

data sets, hereafter for simplicity called the 5.5 µm PSS data set. The sensitivities,

and initial and final particle heights are then found for the remaining data sets and

a factor called the normalized height difference is plotted to show an approximation

of the DEP force on each of the particles.

5.1 Experimental Capacitance Signatures and Par-

ticle Heights

In Section 3.3 the sensitivity for the 5.5 µm PSS data set was found. This was

accomplished by first simulating the peak capacitance change of 5.5 µm PSS in a

laminar flow of DI water with 〈v〉 = 2667 µm s−1 at a range of heights. A curve, shown

with the simulated points in Figure 3.8, was then found to approximate the peak ∆C
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Figure 5.2: Peak capacitance histogram of the 5.5 µm PSS data set, found with a
45 aF V−1 scaling factor.

versus average crossing speed for the particles in the lower half of the channel. Next

a series of 180 closely spaced PSS signals were selected, having no DEP applied,

and the peak signal voltage was plotted against their average crossing speed. Shown

in Figure 3.9, the simulation curve was then scaled to fit the experimental data,

thus giving the scaling factor to convert the experimental voltage to a capacitance in

attofarads (45 aF V−1) for that experiment.

Using the calculated capacitance sensitivity scaling factor (45 aF V−1), every signal

voltage peak in the 5.5 µm PSS data set can be converted to an estimated peak

capacitance change. A visualization of the peak capacitance changes, ∆C, of the first

and second peaks can be found in Figure 5.1. Figure 5.2 shows a histogram of the first

peak of each particle crossing from the 5.5 µm PSS data set, scaled by 45 aF V−1. The

next step in analyzing the data is to find the initial and final heights of each of the
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Figure 5.3: Simulated capacitance change, ∆C, of the first peak due to crossing
particles of diameters 4.65 µm, 5.5 µm, and 9.97µm, at a range of heights above the
electrodes.

particle crossings using simulations and the calculated experimental peak capacitance

changes. Simulated peak capacitances for a range particle heights, shown for all three

particle sizes in Figure 5.3, are used to find the heights of each of the particles from

their calculated peak capacitances. Simulated peak capacitances are found by finding

the minima of the simulated capacitance signatures, found using the method described

in Section 2.5, for particles with heights ranging from touching the channel floor to

just over halfway up the channel. Using the simulated peak capacitances and the

experimental peak capacitances from the 5.5 µm PSS data set, particle elevations

were found for each of the passing particles. The first and second peaks of each

crossing were mapped using Figure 5.3 to find the initial and final particle elevations,

respectively. A histogram of the initial particle elevations is shown in Figure 5.4.

Finding the Clausius-Mossotti function from the experimental data requires ex-
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Figure 5.4: Estimated initial particle heights by peak height for the 5.5 µm PSS data
set.

tracting forces from a range particle speeds and elevations, fluid velocity profiles, and

force magnitudes. In order to use simulations to estimate Re{K}, the fluid velocity

profile must be known since different fluid velocities will determine how long each of

the particles is exposed to the DEP force and therefore, the total change in particle

height. Estimating the fluid flow profile can be difficult as it is changing through-

out the experiment, with fluid purges occurring roughly every 10 minutes, and fluid

pressures varying in between purges. Since particle trajectories are only calculated

at fixed fluid velocity profiles, an estimation of the fluid profile over time was needed

in order to limit calculation time. It is first assumed that at all times during the

experiment a parabolic fluid profile exists over the height of the channel. Using this

fact and knowing that the fluid flow is zero at the top and bottom of the channel, the

fluid velocity profile can be determined if the particle height and velocity is known

for each particle crossing. The following section will discuss finding the fluid velocity
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Figure 5.5: Initial and final particle speeds are found by finding a best fit between the
inverse peak width at half maximum of the first peak, 1/t1, and the average crossing
speed, [215/∆t]µm s−1.

profile and using this to filter the data to better match simulated parameters.

5.2 Fluid Velocity Profile Estimation

Typically the particle speed is found using the average crossing speed approxi-

mation, the physical distance between the centers of the sensing electrodes divided

by the time between the peaks in the capacitance signal. While this is accurate for

particles that have minimal or no DEP force acting upon them, if the particle is ac-

tuated by more than a few micrometers it can experience a large shift in velocity as it

enters an elevation where the fluid flow is significantly faster or slower than its initial

elevation. This change in elevation can lead to an averaging effect of the particle ve-

locity and can skew the estimate of the fluid velocity profile. A different method will
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Figure 5.6: Experimental fit for estimating initial particle velocity based on inverse
peak width, vinit = 57.92/t1 − 265.6.

be described in this section to find an approximation for the instantaneous particle

velocity as it enters and exits the detection zone. The particles with no DEP applied

are used to find a best fit between the inverse of the full width at half maximum of

the first peak when plotted against the average crossing speed as described above.

An explanation of the widths and times is shown in Figure 5.5. Unactuated particles

are used based on the assumption that their speed is constant over the detection zone

so the average crossing speed is an accurate measure of their velocity.

The resulting least-squares linear fit, shown in Figure 5.6, was found to be vinit =

57.92/t1−265.6 for the 5.5 µm PSS data set. This method of estimating the initial and

final velocity using the first and second peaks, respectively, was applied individually

to each experiment using the first peak in the set of unactuated particle for a fit.

Using this fit to find the initial velocities of every particle crossing along with the

initial heights found earlier, the fluid velocity profile can be calculated through the
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Figure 5.7: Estimated average fluid velocity, 〈v〉, over time for unactuated 5.5 µm
PSS. Calculated from estimated particle height, average crossing speed and assumed
parabolic flow profile: v = 6 〈v〉 (h/H)(1− h/H). Note the purges at roughly 2000 s,
7000 s, and at the start of the experiment.

experiment. The average fluid velocity at the time of each crossing is found by:

〈v〉 = vinit

[
6
hinit
H

(
1− hinit

H

)]−1

(5.1)

Figure 5.7 shows the resulting estimated average fluid velocity over time for the 5.5 µm

PSS data set. As shown in the figure, the average fluid velocity changes significantly

over the course of the experiment. Most notable are the purges at roughly 2000 s,

7000 s, and at the start of the experiment, as well as the slow dropping of the average

speed between the purges. The best option to fit the experimental data to simulations

is to choose a small range of average fluid velocities which will cover a majority of the

experiment and simulate particle trajectories for the average velocity at the center of

that range.
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5.3 Experimentally Determining the Clausius-Mossotti

Function for 5.5 µm Polystyrene Spheres

Determining the Clausius-Mossotti function for each of the experiments will re-

quire many simulations for each particle size with a range of Clausius-Mossotti func-

tion values, initial particle heights, and the individual mean 〈v〉 values for each ex-

periment. For this reason, only the 5.5 µm PSS data set will be normalized. This

section will describe the simulation, filtering, and normalization to find the average

Clausius-Mossotti function for the 5.5 µm PSS data set.

Simulations were then done in COMSOL Multiphysics to find the change in par-

ticle elevations for a Clausius-Mossotti factor ranging over all possible values, from

−0.5 to 1, and a DEP electrode potential of 4 V peak-to-peak. The simulations used

a range of initial particle heights, from 4.7 µm to 7.2 µm, and a constant average fluid

velocity of 2000 µm s−1, which was found to be the best approximation for the average

fluid velocity over the course of the experiment. The resulting particle trajectories

were calculated and a mapping was produced to find the estimated Clausius-Mossotti

factor for each of the particles in the 5.5 µm PSS data set that occurred when the

average fluid velocity was in the range 1800µm s−1 to 2200 µm s−1. This was done by

interpolating the surface between the simulated points to find the Clausius-Mossotti

factor that caused a specific change in height, ∆h, for a given initial height, hinit. The

mapped Clausius-Mossotti factor values for the filtered data were then sorted by DEP

frequency and a mean was found for each frequency. Figure 5.8 shows the resulting

Clausius-Mossotti spectra for each of the DEP frequencies of the 5.5 µm PSS data set,

when compared against the theoretical Re{K} spectra, calculated using ε1 = 78ε0,

σ1 = 180 µS m−1, ε2 = 2.5ε0, Ks = 2.56 nS [11], σ2,bulk = 100 aS m−1 [12], a = 2.75 µm,
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Figure 5.8: Experimental and theoretical Re{K} spectra for 5.5 µm PSS data set.
Experimental Re{K} mapped using simulations with ΦDEP = 4 V peak-to-peak

.
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Re {K (ω)} =
3.74× 10−6 − 1.20× 104ε2

0ω
2

4.94× 10−6 + 2.51× 104ε2
0ω

2
(5.2)

for this case.

As is clearly shown in Figure 5.8, the simulated mapping produced a significantly

different Re{K} spectra from that of the theoretical plot. The crossover frequency

is similar, though slightly lower than the theoretical spectrum, meaning that most

of the frequency dependent simulation parameters are likely close. However, the

magnitude of the Re {K} values have been dramatically underestimated. This is

likely due to an overestimation in the experimental DEP electrode potential, causing

an overestimation of ∆h for a given Re {K} value. This error is likely due to an

unexpectedly low impedance of the DEP application apparatus, including the cables
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and electrodes, making the high impedance approximation no longer valid.

Two additional simulation sets were done in order to approximate the DEP elec-

trode potential. The first set, with an electrode potential of 2 V peak-to-peak, led to

a mapping that produced Clausius-Mossotti factor values outside the possible range

(−0.5 to 1). The filtered results are shown in Figure 5.9, all points outside the

valid Clausius-Mossotti factor range have been removed. Next simulations were done

with an electrode potential of 2.7 V peak-to-peak which produced more accurate re-

sults. This final set of simulations was used to create a surface mapping, shown in

Figure 5.10, which was used to map the experimental data to the simulated Clausius-

Mossotti factors, as described above. Values were separated into DEP frequencies

and the average Re{K} value was found for each frequency. The calculated Re{K}

spectra, found using the experimental data normalized with the 2.7 V peak-to-peak

simulations, along with the theoretical spectrum is shown in Figure 5.11.

Variations in the crossover frequency from the theoretical DEP spectrum were

seen and can be partially attributed to the overestimation of the lift force in the

simulation data, which will shift the crossover point to a higher Clausius-Mossotti

factor value, or in this case to a lower frequency. Two simulations were done with

Re {K} = −0.5 to compare the effect of the estimated lift force from Section 2.4, with

a lift force constant of C = 0.106, with trajectories having no lift force. The absence

of the lift force, comparison shown in Figure 5.12, results in a significant reduction in

∆h, meaning the experimental curve will be shifted to lower frequencies.

A shift in the crossover frequency could also be due to inaccurate measurement

of the medium conductivity or, more significantly, overestimation of the particle con-

ductivity as shown in Figure 5.13 where the particle conductivity was changed from

1.862 mS m−1 to 1.0 mS m−1. Errors can also be attributed to the over or underesti-

mation of the DEP voltage on the electrodes in experiments, and can lead to mapped
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Experimental Re{K} found using mapping created from simulations with ΦDEP =
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Figure 5.10: Simulated Re{K} mapping for values of ∆h and hinit. Simulation done
for a = 2.75 µm, 〈v〉 = 2000 µm s−1, and ΦDEP = 2.7 Vpp.
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Figure 5.13: Demonstration of the variation in crossover due to changes in particle
conductivity.

Re{K} values which have a range that is smaller or larger than the experimental

results, respectively. Direct measurements of the DEP voltage at the time of the

experiments were not made and would be dependent on frequency due to the highly

capacitive impedance of the connecting cables for the DEP signal.

Other factors in the variations in the Clausius-Mossotti factor spectra include the

uncertainty in the sensitivity measurement (45 aF V−1) found in Section 3.3 and the

particle and fluid velocity estimate. The sensitivity estimate can change the estimated

heights which will change the total force on the particle. Uncertainty in the initial

particle speed can lead to plotting of particles flowing in an average fluid velocity, 〈v〉,

which deviates significantly from the simulated value of 2000 µm s−1. Filtering will

also play a role in the uncertainty of the plotted Clausius-Mossotti factor, as a higher

range of allowed 〈v〉 can lead to more dispersed results since values can deviate from

the simulated 〈v〉 value. An estimated average fluid of 1800 µm s−1 to 2200 µm s−1 is

used in the above data, in order to keep the number of crossings for each frequency
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above 50.

5.4 Normalization and Plotting of PSS Data

Due to the time intensive act of simulating the full range of Clausius-Mossotti

factors, with a range of initial particle heights for each particle size and average

fluid velocities, simulations were only done to normalize the 5.5 µm PSS data set

at an average fluid velocity of 2000µm s−1. This section will describe the filtering,

normalization, and plotting of the six sets of PSS data in order to compare them with

the theoretical Clausius-Mossotti spectra.

The sensitivities of the remaining experiments were individually found using the

method shown in Section 3.3, which found the sensitivity of the 5.5 µm PSS data set.

The resulting sensitivities, shown in Table 5.1 under Sens., where then applied to

find the two peak capacitances of each of the passing particles and the same height

estimation was done using the curves shown in Figure 5.3. The particle speeds were

estimated using a least squares fit, as shown in Figure 5.6 for the 5.5 µm PSS data

set, to find the relationship between the inverse full width at half maximum and the

average crossing speed for the unactuated particles in each experiment. These fits,

the coefficients of which are shown in Table 5.1 under a and b for vinit,fin = a/t1,2 + b,

were then applied to each of the crossing particles to find the initial and final particle

speeds. The particle velocities were then used to find the average fluid velocity at the

time of each crossing and to filter out particles in an average flow velocity that are

not within 200µm s−1 of the mean 〈v〉 shown in Table 5.1.

In place of fitting the experimental data to the simulated Re{K}, hinit, ∆h surface,

as in Section 5.3, an approximate measure of the relative force exerted on the particle

is used in order to reduce simulation time. Using the changes in height, as well as the
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Table 5.1: Sensitivity estimates, least squares particle velocity linear fit, and esti-
mated mean 〈v〉 for each experiment. Sensitivity and least squares fit found using
same method as the 5.5 µm PSS data set. Fit takes the form: vinit,fin = a/w1,2 + b,
where vinit,fin is the estimated particle velocity for a peak width of w1,2.

Particle size Exp. # Sens. [aF V−1] a b mean 〈v〉 [µm s−1]
4.65µm 1 24 62.01 −318.4 850
4.65µm 2 45 54.98 −190.4 1500
5.50µm 1 24 62.01 −618.4 1500
5.50µm 2 45 57.92 −265.6 2000
9.97µm 1 25 56.54 −148.7 1400
9.97µm 2 35 59.42 −426.4 2200

initial height of the filtered data, the normalized height difference is found for each

of the particle crossings:

H =
hfin − hinit

hinit
=

∆h

hinit
(5.3)

This normalized height difference will is simalar to the force index, defined in [1] as

2R−L
R+L

, where R and L are the right and left signal peaks, respectively. The force

index is more immune to the initial particle height than simply using the absolute

change in particle height. However the force index, is dependent on the signal voltage,

which is directly proportional to the change in capacitance, ∆C, and is therefore a

non-linear mapping based on height and force. The normalized height difference acts

to eliminate the non-linearity in the capacitance measurement that is present in the

force index. The normalized height difference, however, is not immune to changes in

particle size, making it a measure of the total force exerted on the particle rather than

a direct measure of Re{K}. It is also a function of the particle velocity as particles

moving faster in the channel will experience the DEP force for a shorter time and

will therefore be deflected less. Figure 5.14 to 5.19 show the results of the H spectra,

plotted as −H to match the Re{K} spectra.
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Figure 5.14 and 5.15 show the response of the first and second 5.5 µm PSS experi-

ments, respectively. Ideally, the responses of the two experiments would be the same.

However, due to the significant change in the mean 〈v〉 between the two, 1500µm s−1

to 2000µm s−1, there is a significant shift towards zero for the second experiment

since the particles are, on average, moving faster and experience the DEP force for a

shorter time. The two responses do however have similar crossover frequencies Fig-

ure 5.16 and 5.17 show the normalized height difference for the first and second set of

9.97µm PSS experiments, respectively. As expected, the height difference generally

has a larger magnitude than the 5.5 µm PSS experiments. This is due to the a3 term

in the time averaged DEP force equation, making larger particles have larger forces

exerted on them in the same field. The same trend is true as in the 5.5 µm PSS, the

second experiment sees a response closer to zero since the particles are, on average,

moving at a faster speed than the first experiment. Figure 5.18 and 5.19 show the

normalized height difference of the first and second 4.65 µm PSS experiments, respec-

tively. The first 4.65 µm PSS experiment shows average fluid velocities much lower

than that of any of the other experiments. As a consequence of this the normalized

height difference is quite large, but generally matches the expected trend. The second

4.65µm PSS experiment shows speeds closer to that of the other experiments, but has

a far less consistent distribution in height changes. This could be caused by a poor

connection on the DEP electrodes, the accidental collection of multiple simultaneous

passes of multiple particles, or by an unknown source of noise during the experiment.

In conclusion, the normalized height difference provides a measurement of the

relative change in height of a particle subject to a DEP force. While not as immune

to changes in fluid velocity profiles as the Re {K} method used in Section 5.3, it

help to eliminate the of effects of changes in system sensitivity and removes the non-

linearity in height by converting values from capacitances to physical heights.

94



Experimental H
Theoretical CM factor

−
H

−1.2

0

0.2

0.4

0.6

0.8

−1.0

−0.8

−0.6

−0.4

−0.2

104

DEP Frequency [Hz]
105 106 107

Figure 5.14: Normalized height difference spectra for the first 5.5 µm PSS experiment
(parameters shown in Table 5.1) with overlaid theoretical Re{K} spectra. Sensitivity
was found to be 24 aF V−1. Average fluid velocity was estimated to be 1500µm s−1.
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Figure 5.15: Normalized height difference spectra for the second 5.5 µm PSS ex-
periment (parameters shown in Table 5.1) with overlaid theoretical Re{K} spectra.
Sensitivity was found to be 45 aF V−1. Average fluid velocity was estimated to be
2000µm s−1.
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Figure 5.16: Normalized height difference spectra for the first 9.97µm PSS experiment
(parameters shown in Table 5.1) with overlaid theoretical Re{K} spectra. Sensitivity
was found to be 25 aF V−1. Average fluid velocity was estimated to be 1400µm s−1.
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Figure 5.17: Normalized height difference spectra for the second 9.97µm PSS ex-
periment (parameters shown in Table 5.1) with overlaid theoretical Re{K} spectra.
Sensitivity was found to be 35 aF V−1. Average fluid velocity was estimated to be
2200µm s−1.
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Figure 5.18: Normalized height difference spectra for the first 4.65µm PSS experiment
(parameters shown in Table 5.1) with overlaid theoretical Re{K} spectra. Sensitivity
was found to be 24 aF V−1. Average fluid velocity was estimated to be 850µm s−1.
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Figure 5.19: Normalized height difference spectra for the second 4.65 µm PSS experi-
ment (parameters shown in Table 5.1) with overlaid theoretical Re{K} spectra. Sen-
sitivity 45 aF V−1 was used in the plot, with and average fluid velocity of 1500µm s−1.
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Chapter 6

Conclusion and Recommended

Future Work

The development of the signal processing and data acquisition systems described

in this thesis has allowed for the rapid collection and processing of raw capacitance

signals into a few parameters to describe each particle. The programs created allow

for analysis of large data sets consisting of 5000+ particle crossing events with a

collection and processing time of a day or two. Once the peak amplitudes, widths,

and times are extracted from the data using the data processing software, they are

used to reconstruct to the initial and final particle speeds and heights, giving the full

picture of the net effect of the DEP force on the passing particles.

The analysis technique used in this thesis, while time consuming, provides a map-

ping of the change in signal due to a dielectrophoretic force to the Clausius-Mossotti

factor for that particle. The technique of finding the sensitivity for a given experiment

by mapping signal voltages to capacitance changes allows for a direct comparison with

simulated data, and the ability to find initial and final heights of particles. This is

directly applicable to particles with a small variance in size and well defined high fre-
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quency properties. A new technique of finding the initial particle velocity even when

the particle is subject to large dielectrophoretic forces was used to find the average

fluid velocity at the time of the particle crossing. This was possible by solving the

parabolic fluid flow equation for the average fluid velocity using the estimated heights

and velocities of each particle. It was then possible to filter the data to limit the range

of fluid velocity profiles and use simulations with a fluid velocity only in that range,

rather than simulating using multiple fluid velocity profiles. By simulating the parti-

cle trajectories at a range of initial heights and Clausius-Mossotti factors, a mapping

was produced to find the Clausius-Mossotti factor for each particle based on their

initial and final heights.

Due to the simulation time required for finding the Clausius-Mossotti factor for

one set of data, the full analysis was not performed on the five remaining data sets.

Instead the capacitance sensitivities as well as the initial and final particle heights

were found for each of the remaining data sets. The data could then be filtered to

limit the range of fluid velocity profiles within each experiment. The remaining data

points were averaged and the normalized height change was plotted for each, to be

an indication of the DEP force on the particle.

For additional work on the aspects of signal normalization discussed in this work I

would recommend that additional simulation be done to find trajectories for particles

with a range of DEP forces and fluid velocities. The simulation results could then be

interpolated in order to develop a mapping that could be used to find the total forces

and Clausius-Mossotti factors of experimental particles in a range of fluid flows. The

technique could also benefit from having two sets of two-gap electrodes, one each

before and after the actuation, to allow for fast estimation of particle height and
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total sensitivity rather than curve fitting a relatively small block of data. Another

recommendation I would make would be to use a channel of the data acquisition

module to periodically sample the DEP voltage as close to the chip as possible. This

would allow for the correction of the cable loss as a function of frequency and in

general give a more accurate measure of the DEP voltage being applied.

The bulk of the suggestions I would make regarding the operation of the microflu-

idic apparatus and interferometric system are in the process of being carried out.

First I would recommend a program to automate the processing of data collected

with the system and eventually allow for real-time processing. Another recommen-

dation I would make, which is commonly pointed out as a benefit of the all electronic

approach to cell detection, would be miniaturization. This would eliminate the need

for a large electrical isolation chamber that houses the optics and interferometer elec-

tronics.
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