TEXspec:
A Computer Aided Software Engineering Tool
for Scientific and Mathematical Applications

By
Stephen E. Oliver

A Practicum Report
Submitted to the Faculty of Graduate Studies, University of Manitoba
in partial fulfillment of the requirements

for the Degree of

Master of Mathematical, Computational and Statistical Sciences

Institute of Industrial Mathematical Sciences
University of Manitoba

Winnipeg, Manitoba

© Stephen E. Oliver, 2001



i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et

Bibliographic Services
385 Wellington Street

Ottawa ON K1A 0NA

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your e Vouve réidrence

Qur fe Notre riférence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété da
droit d’auteur qui protége cette thése.
Ni Ia thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-62813-2

Canadi

b



THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

kkkk

COPYRIGHT PERMISSION

TEXspec: A COMPUTER AIDED SOFTWARE ENGINEERING TOOL FOR SCIENTIFIC AND
MATHEMATICAL APPLICATIONS

BY

STEPHEN E. OLIVER

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of
Manitoba iz partial fulfillment of the requirement of the degree
of

MASTER OF MATHEMATICAL, COMPUTATIONAL AND STATISTICAL SCIENCES

STEPHEN E. OLIVER © 2001

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfiims [nc. to publish an abstract of this thesis/practicam.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and
copied as permitted by copyright laws or with express written authorization from the copyright
owner.



Abstract

This report discusses the development of the TEXspec Computer Aided Software Engineering (CASE) tool,
which assists with the development and documentation of software in an environment where software quality
is closely monitored, perhaps by independent regulators. The tool can assist in the development of a broad
range of software, but is targeted at the software that implements mathematical models.

TEXspec generates requirements specifications, design specifications and compilable code in a structured

form while ensuring consistency between products.

The original application of TEXspec was to assist developers of software modeling a repository for Canada’s
high level nuclear waste to achive compliance with a quality assurance standard specified by goverment

regulators.

This report details the form of documentation products produced by TgXspec and all required inputs. It
discusses the processing that TgXspec uses to convert input into final products. The method of ensuring
consistency between products is reviewed. Instruction is provided for operating TEXspec using a graphical
user interface. The significance of the work is discussed and directions for future development are suggested.

Some of the requirements of TRXspec are continuing to evolve. As such, the development is of necessity of a
prototype, or spiral model, nature. This report acts as a status report on the development of TgXspec and

provides a reference for both users and programmers.



Acknowledgements

The author acknowledges the guidance, patience and funding provided by Ontarioc Pawer Gereration sup-
porting the development of the TiXspec CASE tool. Paul Gierszewski has acted as project officer providing
valuable feedback and ariginal ideas.

Many TgXspec documentation products have been reviewed by Ted Melnyk and Chuck Kitson. Their
feedback provided valuable input to the development process.

Many of the innovative concepts implemented by the TEXspec system, including the separation of content
from format of documentation, originate with Tetry Andres, who co-supervised TEXspec development. Some
of these concepts were researched initially by Dennis LeNeveu, whose Fortran program TgXdef inspired
TEXspec.

Dr. Sylvanus Ehikioya served as co-supervisor at the University of Manitoba. He has responded to an

unknown path to be travelied under tight time constraints in an effective and helpful manner.

The patience and support of Atomic Energy of Canada Ltd. management, in the persons of Alf Wikjord
and Peter Sargent has been crucial to the development of TgXspec. The unusual employment situation as

the research site in Pinawa is wound down has been a challenge to everyone involved.

The administration at the University of Manitoba and the Institute of Industrial Mathematical Sciences
(IMS) have reacted to the peculiar circumstances in Pinawa in a highly flexible and patient manner. Pro-
fessor John Brewster directs the [IMS and has led the way.



Contents

1 Introduction 1
L1 Problem Definition . . . . . . .. ... ... e L
LLL Commercial Tools . ......... .. ... ... . .. . . ... ... 2

1.I.2  Yourdon/DeMarco Methodology . ... ... ....................... 2

1.I.3 Design Specifications . . . . . . . .. ... ... e 3

L.1.4 Experience with Software Quality Control . . . . .. . .. ... ... ......... 3

1.2 Objectiveofthe Study . . . . . . . . .. . .. .. e 4
1.3 Significanceofthe Study . . . . . . . . . . . . e e e, 3

L4 Limitations . .. .. ... .. ... e 5

15 Related Work . . . . .. .. .. . e e e 3
L6 Notations . . . . . . . ... e e 6
1.7 Organizationof the Report . . . . . . . . ... ... ... .. ... 7

2 Specification and Design 8
21 The TRXspec CASETool . .. ... ... ... . ... i, 8
2.1.1 Requirements Specification for TRXspec . . ... ... ... ... ... ... ..., 8

2.1.2  Architecture of TEXspec - . . . . . . .. . Lo 9

213 Designof TRXSpec . . . . . o ittt e e e e e e e e e 10

2.1.4 Implementation Language . . . . . . . . . ... ... ... .. ... 13

2.2 Application Shared Components . . . ... . . . .. .. ... ... 14
2.2.1 Requirements Data Dictionary . . . . _ . ... ... ... ... ... ..., 14



222 DesignDataDictionary . . .. ... .. . i ittt i i e 15

223 Dictionary Listing . . ... .. .. .. ... ... e 17
224 Equations . . .. . ... . .. .. e e e e e e e e 18

2.3 Applicaticn Composite Camponents . . . . . . . . . ..ttt e e e 20
231 DataFlowDiagrams . . . . . ... .. ... ... ...t ee e 20
2.3.2 Process Specifications (Mini-Spees) . - . . . . . . ... L. o oLt 25
233 DesignSpecifications . . . . .. .. .. ... ... . e 2”7
234 StructureCharts . . . . . . ... ... e k]
235 Manuals . . . .. .. . e 16

3 Graphical User Interface 37
3.1 Architecture. . . . . . . .. e e e e 37
3.2 ConfigurationandtheSearch List ... .......... ... ... ... . 00t enew... 38
3.3 Requirements Data Dictionary . . . ... .. ... ... . ... ... 39
34 DesignDataDictionary . . . . .. .. ... . . .. e e e e i1
3.5 Dictionary Listing . . . . . . .. ... e i1
3.6 Process Specifications (Mini-specs) . . . . ... . ... ... i i e e 42
37 DataFlowDiagrams . . . . . . . . . ... . it ittt e e et e e 43
3.8 Design Specifications . . . . . ... ...l e e e e e e 45
39 StructureCharts . . . . . ... . ... e 48
3.10 Manualsand Equations . . . ... .. ... .. ... .ttt 49
311 Java ~ PerlInterface . . . . ... . ... . ... ... e 49



Conclusions 52

4.1 Maintenance and Future Development . . . . . .. ... ... ... . ... ... ... ... .. 52

Sample Data Flow Diagram 54

Sample Design Specification 56
Bl Qutput . . . .. e e e e e et e e 36
B Imput. . . ... e e e e e e e e 63

Sample PERL Script 68

Sample Java Module {(GUI) 7
Installation 83
E.l PrerequisiteSoftware . . . . . . . . . .. . .. e e 83
E.LL Perl . ... . e e 83
E12 TRXand IEX . . . . . . e 83
EL3 Noweb . . . . . .. . ... e e e s &
E.1.4 JAVA Runtime Environment . . . .. ... .. .. ... e 84
E.2 TgXspec Specific Installation . . ... .. ... .. ... .. ... .. ... 84

El



1 Introduction

The Deep Geologic Repository Technology Program (DGRTP), administered by Ontario Power Generation
(OPG) , is charged with developing technology to deal with Canada’s high level nuclear waste. Atomic Energy
of Canada Ltd (AECL), as a major contractor to the DGRTP, has accumulated considerable experience
developing computer programs to model a deep geologic repository for used fuel (8, 9]. These programs
require software of demonstrably kigh quality to support results presented to the Canadian Nuclear Safety
Comumission (CNSC) and the public.

In 1999 the Canadian Standards Association (CSA) adopted a standard (CSA N286.7) [4] for the development
of nuclear safety related computer programs, a scope that included many DGRTP models. While the
software development process used previously was considered robust, it required refinement in aorder to

achieve compliance with the standard.

The TEXspec project seeks to address the issue of compliance with the CSA standard in a general way. The
objective is to develop a tool to support a compliant software development procedure while imposing a min-
imum of additional averhead. The tool must support the use of diagrams and/or graphics and mathematical
notation. While TgXspec is optimised to meet the particular requirements associated with modeling the
disposal of Canada’s nuclear fuel waste, it is hoped that TgXspec will find more general usage.

1.1 Problem Definition

The principles of the CSA N286 standards require that

o All software products be subject to a review by qualified staff,
¢ Genealogy of products be preserved and

e Ownership of products be clearly defined.

To adhere to these principles, products must be clearly delineated and countroiled. Where multiple products
share common components, this can become difficult to achieve. For example, the same mathematical equa-
tion might appear in the theory manual, requirements specification and design documentation. The equation
may have been developed by one author, the requirement specification by another and the design documen-
tation by someone else. Tracking this relationship requires that the equation be maintained separately from
the products that reference it.



The requirement to document the INROC [16, 17] computer program in a CSA N286.7 compliant manner
has led to the development of the TgXspec Computer Aided Software Engineering (CASE) tool. TpXspec
implements support for software development methodologies used in the development of INROC documenta-
tion, including requirements specification, design description and manuals. TpXspec is designed to allow for
enhancements handling other software development praducts outlined in CSA N286.7, and may be expanded
to include other methodologies (including object ariented approaches). It is intended to be sufficiently flexible

to permit enhancements tc include other phases of the software development life cycle.

1.1.1 Commercial Tools

Several commercial CASE tools have been examined, including DecDesign[6], Graphical Designer(1|, Software
Through Pictures[11, 27, and Teamwork{3]. Each of the examined tools was found to be deficient in one or

more critical areas:

o Lack of support for scientific and mathematical notations. The nature of the models demands that
mathematical notations ( e.g., Ai(t) = [y [F/¥(r)]dr ) be permitted in specifications, including
diagrams.

o [nsufficient accountability. The principle of ownership and accountability for products is not strictly
enforced. While a record of who updated products is often kept, the process control is often inadequate.

For example, anyone who shares a data dictionary might be permitted to update any entry without

regard to individual ownership of particular entries.

¢ Assembling large products from smaller components is not adequately supported. In the experience
accumulated with the INROC program and it’s predecessors (18], many software defects were found to
be the result of transcription errors between products.

¢ [nsufficient consistency checking between products.

1.1.2 Yourdon/DeMarco Methadology

TgEXspec is based on the Yourdon/DeMarco structured analysis methodology (5, 30] for software development.

Many models have, to date, been described using a modified Yourdon/DeMarco methodology {15]. Although
0OQ methods would perhaps be more appropriate for some models, priority is given to the more common
structured analysis methodology. Products associated with this methodology are:

e Data flow diagrams (DFDs),



s Process descriptions (mini-specs),
e Structure charts,
¢ Module design descriptions (Design Specifications), and

o Data dictionary listings.

Data Flow Diagram (DFD)s and Mini-specs comprise the requirements specification, while Structure Charts
and Design Specifications specify the design. Data dictionary listings may be separated into requirements

and design, or combined into a single product.

Although Object Oriented (OO} analysis and design is appropriate for many software applications, there are
still applications for procedure/flow based software. [n particular, some models which are basically linear in
structure, including maay scieatific models, are best described using non-Q0 techniques.

1.1.3 Design Specifications

Module design descriptions form an engineering blueprint for code [20, 24]. A programmer serves analogously
to a construction tradesman, who implements the design. This philosophy has resulted in design documen-
tation which closely parallels the final code or pseudo-code [19]. The design specification and compilable
code can be sufficiently similar that creating and maintaining both can be an inefficient use of resources.
The two must also be closely monitored to ensure that they are synchronized. The duplication of effort must
be reduced and the chance of incousistency between products must be addressed.

1.1.4 Experience with Software Quality Control

Many models and associated programs are most clearly specified using mathematical abstractions. While it
is possible to express A (t) = [ [F¥(r) + Ay Ap (r) — FOUT (r)] exp (=i (t — 7)) dr in plain english text,
it is much more convenient and expressive to utilize the mathematical notation. It is therefore imperative to
support the use of this kind of notation in software development products, including requirements and design
specifications, as well as manuals and other documentation. The transcription of mathematical notation has

proven to be error-prore [18], and must be minimized.

The relationship between Requirements and Design leads to other common items between their specifications,
as they are different expressions of the same system. For example, a requirement specification might specify
a ‘density’, denoted as ‘p’, with physical units ‘%’; the design might then specify a real variable ‘tho’ with

the gama 3!:!!:"\“.’06 and dasavintinn Mﬂng sommarsinl (C"AQE tanls maintaein a8 somnnn Data n;nfinnsl—g’ LCag
— eadeia e eaanas,

3



handle some of this overlap between Requirements and Design. This approach, unfortunately, can compro-
mise the principle of responsibility for products. In an environment where the genealogy of products must
be known, sharing a common Data Dictionaty must be carefully controlled, or multiple data dictionaries can
be used. In the past, DGRTP has used multiple data dictionaries, but this has led to transcription related
defects, and a propensity for dictionaries to fall out of synchronization. In addition, any attempt to merge
dictionaries has had to resolve duplicate entries.

For the models implemented for a single environmental assessment, AECL invested over $1 million to verify
software by unit testing [18]. The result was far from encouraging. The contractor (Science Applications
International Corporation) found many defects in the documentation and transcription between products,
but nothing that could materially affect results. An embarrassing number of defects was reported.

The format of software documentation may have a much shorter lifetime than the software itself. Docu-
mentation for some long lived Fortran modules have been published in Mass-11 (a word processor that is
no longer supported), Wordperfect, MS-Word, and others, all with differing styles. Software supporting a
single study has been published in several different formats. This experience suggests that the content of
documentation should be separated from the presentation; the information should be collected independently

and assembled according to the current format in use at the time of final publication.

Attributing ownership and responsibility for products is a basic principle of the CSA N286 standards. In
order to effectively reuse common information, while remaining faithful to this principle, it is helpful to
collect, in very small pieces, information used to assemble software products. The dependencies between
products and components are easier to manage if the shared information is not contained in large packages.
Keeping the granularity of components very fine also allows ownership to be tracked, without assigning
ownership to more than one individual.

Verification of consistency between software products has been a costly and error prone procedure [18]. The
number of products has been high, and verification has not been sufficiently automated. If a high granularity

of components is desired, then automation is clearly required.

1.2 Objective of the Study

The objective of this study is to develop a tool to assist in the development of software and associated
documentation compliant with the CSA N286.7 standard [4]. The tool must address some of the deficiencies
observed in commercial CASE tools which make those tools difficult to deploy for the development of software
that implements mathematical models.



1.3 Significance of the Study

The TgXspec tool described in this report is a stepping stone to compliance with the CSA standard for the
development of nuclear safety related computer programs. This compliance is expected to be required to
support future licence applications to the CNSC.

The tool offers a viable CASE capability for computer programs which are best specified with intensive use

of mathematical notation.

1.4 Limitations

TgXspec is a prototype. Many features in both the underlying technology and in the usability remain to be
addressed. Some of the requirements of TgXspec are continuing to evolve. As such, the initial development
is of necessity a prototype, developed using a spiral model. This report is a snapshot of the current state of
TgXspec development.

Currently, TEXspec can only generate design documents for Fortran-77 code. In the next stage of develop-
ment, this will be expanded to include some Fortran-90 extensions, including *modules’. In the future, this
is expected to expand further to include other languages.

The Graphical User Interface (GUI) is in an early stage of development. The editors are not sophisticated,
with no search-and-replace capability. Development of graphical products is based on non-graphical editors
and no preview capability has been implemented. The system is usable and effective, but there is still room

for development and further research.

The system has not yet been integrated with a secure configuration management system. Effective sharing of
data and meaningful software audit capabilities await this development. This could be expanded to integrate
with a change control system.

The data processing and the GUI are currently both run on the same machine. A client/server model might
be an important development in the future, assigning the compute and /O intensive processing to a server,

1.5 Related Work

Aside from commercial CASE tools, the work of Wieringa {29] is notable. The Toaikit for Conceptual Mod-
eling {TCM) is implemented to support the Toolkit for Requirements And Design Engineering (TRADE).
This tool generates several different diagram types and even performs some consistency checking of data flow

A3, Tt e ol e b e LFTAITW LIV et sl oo v vt admsrrembales bhaerrdlo wemsbe
LKL OLLC, WML SULIGLCLY) WAUHT OFOUTELL LULLD VALY WViL LMLYAI Fr AT HIUMUTTO, UUTO UVe UTHUMLTELY UOMUIT LIaLN™

3



ematical notation and does not integrate well with an acceptable Data Dictionary. Even so, a modification
of TCM may provide a useful interface for TgXspec.

Also a possibility for a drawing interface, ¥TEXcad [14] provides a GUI capable of handling math-centric
IATEX [13] labeling, but would require some modification. Like TCM, [¥TEXcad is also a single platform toal,
running under Microsoft Windows (MS-Win).

Another CASE tool which uses Java as a front end is the ArgoUML {22] design tool. ArgoUML is exclusively
an object oriented tool. The interface is mature and allows the user to interact directly with diagram

components. Since ArgoUML is an "open source’ project, the code is available.

TiXspec is built on the BIEX foundation with a pair of significant extensions. The Noweb [21] system
for Literate Programming is used to separate module Design Specifications and compilable code. Graphics
extensions suitable for the generation of diagrams are provided by the xypic [23] package.

1.6 Notations

TgXspec input files are ASCII files, organized as ‘field: value’ pairs. When specifying the content of these
files, the following notation is used:

FieldName: description of value

The *description of value' is contained within delimiters as follaws:

e Orequired field, may appear only once«
o Drequired field, may appear more than onced
e >optional field, may appear only once<

e >optional field, may appear more than once=

Where sets of ‘field: value’ pairs are grouped, the group is named in bold type within brackets for later
expansion. The same delimiters are used. For example: >[group name|< specifies a group of fields which
is required and may appear more than once.

These delimiters are used rather than the more conventional bracket/brace notations to allow for non-
ambiguous delimitation of TEX content, which uses brackets and braces.



1.7 Organization of the Report

The remainder of this report is organized as follows. The underlying technology of TgXspec is detailed in
Chapter 2, including the requirements, design, and various file formats. The user interface for TgXspec was
implemented separately from the underlying processing and is detailed in Chapter 3. Chapter 4 offers some
concluding remarks and suggests some directions for further development. Appendices contain sample code
listings and examples of the longer TRXspec inputs and products that are not fully shown in the text. The
final appendix provides instruction for installing TgXspec.



2 Specification and Design
2.1 The TgXspec CASE Tool
2.1.1 Requirements Specification for TgXspec

The TEXspec application is based on the following requirements:

o Assemble user inputs to generate consistent publication quality Data Flow Diagrams (DFDs) and
Process Specifications in a modified Yourdon/DeMarco format. This includes support for ‘leveled’
diagrams [30], which allow a “parent’ process ta be decomposed in a ‘child’ diagram.

¢ Permit the use of composite data flows on DFDs. Break composites as required for a child DFD or
Process Specification (Mini-spec}.

¢ Ensure consistency between the data flows shown on the DFDs and Mini-spec.

¢ Generate Structure Charts and Design Specifications.

¢ Ensure consistency between the flows on the Structure Charts and the Design Specifications.
o Ensure consistency between the Design Specifications and executable code.

o Permit the use of mathematical notation in all products.

¢ Allow sharing of mathematical formulae between products.

o Permit ownership of products to be tracked and reported.

¢ Allow components under development to reference other components from a variety of sources. Stable
libraries of components should be supported as a default, which new components under development
supercede.

o Support the use of Fortran as a target implementation language.

e A user interface must be provided that allows users to interact with TgXspec in an intuitive way. The

interface should require minimal training before a user becomes proficient.

¢ [nformation to be processed by TEXspec is assumed to have a long lifetime, perhaps exceeding that of
TEXspec itself. The information must therefore be stored in a format suitable for later processing by
other programs, or perhaps the human eye.

e A ‘batch processing’ option must be supported that can capture and log processing details.

o Learning curves for both users and implementers should not be excessive. Maintenance expertise should
not be difficult to recruit or train.



o Coding languages, libraries and tools should be freely available.

o The system must be portable between computing platforms. Although the desktop environment is
dominated by MS-WIN, being locked to any single system restricts deployment options and reduces
the number of potential users. Also, if the application were divided into client and server portions, the

server environment is likely to be more heterogeneous.

Some preferred attributes of TgXspec are not required in an absolute sense:

1. The application should run in ‘reasonable’ time on common desktop computers. This is a difficult
requirement to quantify, since the term ‘reasonable’ is subject to interpretation and what is common
on the desktop differs in time and location. Even so, it can be said that a responsive application is
preferred over the aiternative and that some design effort can reasonably be applied to achieving the
best possible performance.

2. The implementation should be maintainable. Code implemented in an uncommon language is more

difficuit to maintain, as programmers are less likely to be familiar with it.

3. There should be a migration path to allow a gradual transition from existing methods. The ‘cold
turkey’ implementation of new tools is rarely well received. A pilot project style of implementation is

preferred, as it allows operational difficulties to be dealt with before a large commitment is made.

2.1.2 Architecture of TgXspec

TeXspec's GUI is discussed in Chapter 3, which captures interactions with the user. Most of this interaction
consists of displaying and manipulating "‘component’ files, which form the inputs for the TgXspec scripts that
select components and assemble them into products. These products are primarily ITEX [13] or Noweb [21]
input files, which can be post-processed to produce cutput suitable for viewing, printing, or con:piling. While
these outputs may be viewed as being intermediate, they are intended to be retained, as TgXspec places
commentary in them to record the details of TEXspec processing.

While the GUI is a convenient way to construct components and initiate processing, it can be bypassed if
required. The components can be generated by any means that can generate an ASCII output file, including
a text editor. More importantly, the processing can be controlled by any means that can initiate a process,
with no requirement for interaction with a GUL When processing many components, or when a log of
processing is required, this ‘batch’ style processing is a useful alternative.



Neither the TEXspec scripts, nor
the GUI can display or print the
products. Figure 2.1 indicates
that an intermediate script, which
is intended to be edited by the

user, initiates TpXspec to pro-

C
(7
®
q

!

Il

¢~ Graphical Interface

Edit Files &
Manage Processing r\

&f Processing Scripts )

User Defined Processing,
Dis Display/Print Products

(=

duce the product files, then con-
trols post-processing as appropri-
ate. This flexibility allows the

user to integrate TEXspec into ex-
isting procedures. For example,

if a static code analyzer such as
Floppy [2] is in use, it can be run

automatically on code as it is gen- Peri Scripts

erated. Interaction with a version
Assemble Inputs &

Genarate Products

control system might be desired,

or the user may even wish to com- P"

o ———

pile code as it is generated. Al- e
Figure 2.1: Schematic view of the TgXspec architecture

ternatively, processing that is not
needed can be removed, such as removing documentation generation (including IXTRX processing) until the
code Is stable.

2.1.3 Design of TeXspec

All input files for TEXspec are human readable. That is, they are in ASCII format, organized in ‘Label:
value’ pairs, which is intended to ease visual interpretation. The input files can be created using a standard
text editor and reviewed easily due to the intuitive syntax, without the overhead of an elaborate interface.

A more sophisticated interface for handling TgXspec files, which can be large in number, has been developed.
Still, the ASCII fermat files can be edited or read by readily available tools and do not require TEXspec
programs to interpret.

In order to support sharing of equations and data definitions, while tracking ownership and responsibility
for content, TEXspec supports a fine granularity of components. Components are tracked independently by
placing each in a unique file which is mapped by the file name to the name of the component and by the file
name ‘extension’ (in the tradition of MS-DOS or CP/M) to the type of component.

10



TEXspec components, with associated file name extensions, are:
¢ Requirements Data Dictionary entries (.rdd: Section 2.2.1),
o Design Data Dictionary entries (.ddd: Section 2.2.2),
¢ Equations (.teq: Section 2.2.4),
¢ Process Specifications (.ms: Section 2.3.2},
o Design Specifications (.ds: Section 2.3.3),
¢ Structure Charts (.sc: Section 2.3.4), and

¢ Manusls (.tex: Section 2.3.5).

In order to share components between individuals and projects, the location of these files is flexible. A ‘search
list' provides a list of directories to be searched sequentially for component files. This is often referred to as

a ‘PATH’. A different ‘search list” cah [ rivera. #a04\oone 1\ dealgn\ rer00CI\ work

be provided for each component type | .. ‘i@ setioons 4 o S inresumnLtpect

in a file named *.TeXspecrc', as shown |, Fifi®sstficentia)

wt\aba iu\.ln\m:\eumm\m\

. . o

in Figure 2.2 :‘;“‘*I Se04\conf 15\

- Anet sz\n!. [ 3
wtaba m:uu\mt\nlM\M\m\m\
wil\ae _shr\ips\intioed02\Crglld\btosda\1na\

i i is i \aleene\1pa\int)acea2\cngca \ducoda\s o\
This mechanism is intended to be s o a2 .
. . Wz\Eha_shz\IM\ g : et e """D. \
supplemented in future versions of *:\Ehe_anc\IM\ Iy \oot\

ol s:\uf. -u\e-cu\m\v-m:\-u\
. £2\ufp_saos - ; ¢
TgXspec. It is intended that compo- | .s: e \atapsaOt\omeiny A\

zz\ufdp_sadd) Lag\
. . Jdfd: xz\ufdp_s -u\-uzu\”\v-m\—a\
nents should be ‘installed’ in a con- o \ufdy_sadd g tariovoisgreay
£ \ufdp_¢ nu \var000S\ agram\

figuration management system for fu-

PFigure 2.2: Example .TeXspecrc flle, specifying search lists by compo-
nent type

ture reference. Once installed, depen-
dencies between components would be
monitored to ensure that the creator of a product is not surprised by a change in his product caused by
a change in a referenced component (a ‘sub-component’) for which someone else is responsible. For the
moment, however, the directory search list meets the requirement, ailowing components to reference other
components from a variety of sources. This mechanism will continue to be supported as a *working area’.
That is, the ‘search list’ will be set up to specify that working directories be searched first, followed by
libraries under the configuration management system.

Component files are each assigned a version of format ‘NINA', where ‘NN’ is a two digit integer indicating
the installation number and ‘A’ is a single character ‘draft letter’ indicating changed versions between
installations. This corresponds to the scheme used at AECL to configure software versions manually.

i1



To keep track of the components used to assemble a TEXspec product, the ETEX input files generated
by TgXspec modules contain commentary that identifies all referenced components and the version of

. s flle 1y —— et not sl Lt
,,T) T by tar S e e the TEXspec module that assembled
1J:I9:3A 20037 - .z

' owpanent.  veenien them. A date-time stamp is included

.-.. R:\OZdp_ A\ TEXIVR \ . pl.  O2F

... designepe: O .

' 1 /Te_shr/ TIM) Top/CGASA/ LR /VO204/ oct/eles.dtd 018 and is also placed an the generated

[ . N/ “Imlhlmummlmumqlﬂl—_ it OIB

L 2NN 'xm_mlwwo:mu'-"“‘ ddd 018 .

VD Wi/Emelehe/TIV ep/CCA02VIEAGIOA/ /oud ey Akt 018 product (in the upper left corner} to

.. Wi /Ee_shr/ I/ INp/OC402/V1 T/VOZ04/A10TLENATY/ 004 /uncivas . dil 018

e e g uniquely associate the IATEX fle with

ves Wt

.. -:l-_-mnnn' 02/V1t/V0I04/dictionary/ood/mumsec.ddd  0I1C que y ciate the € Wi

oo W:/Iba_shr/IFA/Tap/tCa02/V1E/VOI04/dictionary/ocd/tegeea. did  01C . ..

.. M:/Eee_shx/TIA/ TEp/CCA0/VI £/V0204/ dictienary/cos/sec. déd 018 the associated pl'Odl.lCt. By retaining

.. Wt /Mha_shr/ TN/ INp/CCA02/V1 C/VOZ05/d1aCi onary/ood/Tag.add  01B

.. We/lhe_shr/TH/ Imp/C402/V1e/V0I05/dictionary/evi/nalme . dad  JIA . . . .
the XTEX file, it is possible to audit

Figure 2.3: Top of a IFTgX file generated by TpXspec, showing versions the content of any produc:- This is
of components

demonstrated in Appendix B.

Each formatted product has an additional configured component. The I¥TEX ‘class’ .cls file used to specify
the format of the product (in particular the page header) must be installed into the IEX system that
TEXspec will use to produce products. At the upper right corner of each generated product, the version of
the “class’ file is printed.

As discussed in Section 1.1.4, minimal formatting information is stored with the TgXspec components.
Formatting is a function of the processing of the components. The hope is that as documentation formats

evolve, the critical content of the components shall not be rendered obsolete.

Many scientific models benefit greatly from the ability to incorporate mathematical notation in their speci-
fication. One of the requirements of TEXspec is to support such notation in all products. To be compatible
with the ‘human readable’ design decision, a notation is required that stores such information in ASCII

format. This information must then be transiated into a flexible presentation format.

Since the IXTEX system is already mature and offers leverage toward meeting the requirements stated in
section 2.1.1, TEXspec produces documentation via BTEX.

To keep code synchronized with associated documentation, a literate programming [10, 12] methadology is
ideal. A single file is used to generate both a Design Specification and compilable code. Fortunately, several
systems already exist to support this method in a KTEX environment. The Noweb system was selected
because it is not sensitive to programming language, allowing TgXspec to evolve (in the future) to handle
languages other than Fortran. An additional benefit of adopting Noweb is that much of the syntax for the
Design Specification file (Section 2.3.3) is defined in Noweb, relieving TgXspec of the requirement to define
such syntax.

Components are processed by TEXspec modules according to the How specitied in Figure 2.4. Users of
12



TgXspec provide content in components in the ‘Shared Components’ and ‘Product Definition’ categories,
which together comprise the TEXspec inputs. The ‘Shared Components’ are intended primarily to be refer-
enced by the ‘Product Definition’ files.

The inputs are processed into ‘Products’ by TgXspec. These products are listed in Figure 2.4 and correspend
to the products defined by Yourdon [30] and Page-Janes [19], plus the Fortran code. Note that the output

from TgXspec is not publishable (or compilable), but must be post-processed by KIEX and/or Naoweb to
produce final products.

Product

Figure 2.4: TEXspec flaw, indicating the major scripts, with the relationship of inputs and outputs.

2.1.4 Implementation Language

The main TEXspec processing is performed by modules which have been implemented in Practical Extraction
and Report [anguage (PERL) [28]. The selection of PERL was based on a number of factors:

o it does not conflict with the requirements stated in section 2.1.1 and

o it has sufficient flexibility to act as a general purpose language.

For the purpose of developing a user interface, PERL is not as good a fit. Although a simple GUI can be
implemented in PERL using existing libraries, the required GUI is not sufficiently simple. The TgXspec GUL
is implemented in Java. The selection of Java was based on a number of factors:

13



¢ it does not conflict with the requirements stated in section 2.1.1 and

o the associated ‘Swing’ 7] library can be used to develop a sophisticated GUL

2.2 Application Shared Components

Some TgXspec input files are intended to be shared. That is, they are referenced by other input files (see
Section 2.3). This relatiouship is illustrated in Figure 2.4.

2.2.1 Requirements Data Dictionary

Although a Data Dictionary listing (Section 2.2.3) is available as a stand-alone product, the primary use of
Data Dictionary entries is to be referenced by other components such as Mini-specs or Data Flow Diagrams.

Each entry is contained in a file name.rdd where name is the argument in the ‘Name:’ line.

Syntaz of Requirements Data Dictionary (.rdd) file

Name: O short name in ascii format - minimal for unique identificationq

LabelName: > name to appear in diagrams (if different)<

MathName: >name using mathematical notation entered in BTEX format<

LongName: D-descriptive name in ascit format - up to a sentenceq

Version: O version number for tracking history - appears on listings<

Project: o project identification<

Subproject: > sub-project identification<

Author: t>author’s full namea

Date: t>date that the entry was wriltenq

Implementer: & full name of person wha input this eniry into the system<

ImplementDate: o date that the eniry was entered into TeXspec

Reviewer: »full name of reviewer~<

ReviewDate: ~date of review<

CompositeOf: »comma delineated list of other Requirements Data Dictionary
entry ‘Name's if the enlry is ¢ compesite of other entries<

PhysicalUnits: »=SI units enclosed within square brackets<

DataType: »descriptive data type e.g., ‘integer’<

Dimension: »dimensioning information<

Description: o full description - up lo a paragreph<

An example of a Requirements Data Dictionary entry is shown in Figure 2.5. The example is a ‘composite’
entry, composed of several other entries. Naote the optional ‘LabelName’ field is used to produce labels on
Data Flow Diagrams which differ from the ‘Name’. TgXspec requires that name.rdd be a valid file name.
but the dash in the ‘sp-Alpha’ might create an illegal rame.rdd. Using ‘LabelName’ prevents the potentially
offensive syntax from appearing in the ‘Name’ field, but diagram labels can contain the dash.

14



Nama: spalph

LabelName: sp-ALPHA

MathName: saspled \alpha

LongNamne : Sampled paramaters for alpha radiclysis
Version: 018

Project: cc4e

Submodel : inroc

Author: 8.E. Oliver

Date: Oct 4, 2000

Irplemanter: S.E. Oliver
IrplemantDate: Oct 4, 2000

CompositeOf:  AALPHA,ALFCOF,ALPEDG, ALPHTI,BALPHA,CALPHA,DALPHA, EALPHA, FALPHA , NOALPE, STONCA
Description: Sampled parameaters for calculation of fuel corrosion rate
due to alpha radiolysis of watar.

Figure 1.5: Example Requirements Data Dictionary file.

222 Design Data Dictionary

Much like Requirements Data Dictionary entries, Design Data Dictionary entries may appear in a Data
Dictionary listing (Section 2.2.3), but their primary use is to be referenced by other components such as
Design Specifications or Structure Charts.

A Design Data Dictionary entry may reference a Requirements Data Dictionary entry via the ‘Requirements’
field. If this is done, any missing fields in the Design Data Dictionary entry will default to the value found
in the specified Requirements Data Dictionary entry. This is particulariy useful to avoid transcription and
synchronization problems with the ‘MathName’ and ‘Description’. Fields which are specified in the Design
Data Dictionary supercede any inherited defaults.

Currently, the ‘CompositeQf’ field is supported in the Requirements Data Dictionary only, and is unsup-
ported in Design. As TgXspec evolves to support programming languages with more advanced data structures
than Fortran-77, this will probably change.

Each entry is contained in a file name.ddd where name is the argument in the *‘Name' line.

The dictionary can specify a constant value, or a ‘condition’ may be placed on the value. A ‘condition’ is
interpreted as a a ‘precondition’ to modules for which the variable is used as input and a ‘postcondition’ to
modules assigning a value to the variable. This is usually a physical limitation on the range of valid values.

15



Syntaz of Design Data Dictionary (.ddd) file

Name:
LabelName:
MathName:
LongName:
Version:
Project:
Subpraject:
Author:
Date:
Implementer:

Reviewer:
ReviewDate:
Requirements:
PhysicalUnits:
DataType:
Dimension:
File:
Common:
Value:
Condition:
Description:

[mplementDate:

C-short name in ascii format - minimal for unigue identificationd
»name to appear in diagrams (if different)<

»name using mathematical notation entered in ATEX format<
o> descriptive neme in ascii format - up Lo a senlence<
truersion number for tracking history - appears on listings<

b project identification<

t-sub-project identificationa

b author’s full name<

Ddate that the entry was written<

o full name of person who input this entry into the system<

D date that the entry was entered into TeXspeed

»>full name of reviewer<

»date of review<

»‘Name’ of corresponding Requirements Data Dictionary entry~<
=81 units enclosed within square brackets~<

edata type suitable for program design in target language<
tdimensioning informationa

»for shared (COMMON) variables - file to contain definition~<
»name of Fortran COMMON block to contain data—<

»value if constant~<

»limitation on value, used as ‘pre-" or ‘post-condition’<

& full description - up to a parugraph<

[n cases where the variable can be directly mapped to a Requirements Data Dictionary entry, the *Require-
ments’ field can be used to specify the mapping, and any common fields are inherited from the Requirements

Data Dictionary (unless overridden here).

An example of a Requirements Data Dictionary entry is shown in Figure 2.6.

Name :

MathNane
Longiiame
Vacsion:
Project:

TR

Athog:

Date:
lmplemantar:
IsplemantDate:

DacaType:
Dimansion:
File:
Common:
Dascription:

MALPHA

a_\alpha

Fit coefficient a for alpha radiolysis
01C

CC4

IMROC

1.8, Olivar

October 25, 2000

S.E. Olivar

Octabar 25, 2000

deuble

scalar

SPALPH . INC

SFALFH

Empirical fit cosfficiant “$a$' for alpha radiolysias,
usad in the calculation of of ths degradation rate par

Figure 2.6: Example Design Data Dictionary flle.

16




2.2.3 Dictionary Listing

Data dictionary entries are incorparated into other products, but can also be assembled into a stand-alone
product. TeXspec provides a module ‘formatDD.pl" which provides listings of Data Dictionary entries. It can
also provide a cross-reference, showing the Process Specifications (Section 2.3.2} and Design Specifications
(Section 2.3.3) in which they occur (optionally colour coded ta indicate the direction of flow).

A sufficient number of fields exists to make a complete listing impractical to tabulate on a single page. To
ease this problem, formatting on "legal” size sheets is supported, and the default orientation is landscape.
Even so, the user is abliged to select a subset of the available fieids for listing. The user may also specify
the width of particular fields. Usage is shawn in Figure 2.7 and a sample output is shown in Figure 2.8.

The ‘width’ fields are specified in IXTEX-style measures including units (e.g., "0.5in'). The “xref’ option
produces a cross reference column and the *flow” sub-option causes the cross reference to be colour coded to

indicate direction of flow.

Usage: formatDD.pl
RIDIM
[lines=nn]
[chars=nn]
(caps=nn]
(portrait]
{dascription[:width]]
[xref [:width] [:flow]]
[longnama ( zwidth] ]
[mathnamea [ :width] ]
[version{:width]]
[project[:width]}
[submodel [:width}]
[author([:width]]
(date [:width]]
[implementar [:width}]
{izplementdata(:width]]
[reviever[:width] ]
[reviewdate[ :width]]
(physicalunits[:width]]
(dataType (:width]]
[dimansion(:width]]
[file[:width]]
[commen [ :width}]
[value(:width]]
[coquizemants[:width]]
>filecut.tex

.». "R"equiremsnt, "D7esign, or "WYerged
. ast max lines per page

... ast chars/inch

«.. @8t CAPS/inch

-
.

Figure 2.7: Usage of formatDD.pl.

17



St M W 1DV BT —
Name Versian | Lang Name Symbol Deseription Comman | Appears in

TALFCOF | 018 | Scale factor for alpha deose 3. Estimates uncertainty in piece— | SPALPH | ALPHOS

wise linear fit of aipha dose as 2
function of time a(t).

ALPHDO { 0tB alpha dose to used Riel surface a values of alpha dose rate to the | SPALPH | ALPPDS
surface of used fuel

ALPHRE | 01D release rate from alphs radiolysis A&(L) release rate from used fuel per ALPERDS
cantainer fram alpha radialysis

AREABF | 018 area of the Backfill B arez of the backfill VLCDEP

AREADZ | 018 area of the damaged zone Bz anea of the damaged zane VLGDEP

BALPHA | 01E Fit cosfficient b for 2igha radialysis | b Empirical it caefficent 'y for { SPALPH | ALPHDS

alpha radiolysis, used in the cal-
culation of of the degradatien

rate per unit surface area of fuel
co (t) = [da (¢ + €)1 100
BKFRAR | 1D frac of vault with backfll Ar = 2p{S | fraction of vauit area containing | VARIVG | VLCDEP
Backfill VLTDEP
SUFRAR | 01D frac of vault with buffer Ag =2Tg/S |fractian of vault area containing | VARLVG | VLGDEP
buffer VLTDEP
EALPHA | OLE Statistical p alpha radiglys ¥ (lﬂﬂ:-i;l_-ﬂ-? Bawed on exgerimental data cor- | SPALPH | ALPHDS

relating alpha daose to rate of
fuel corrosion. Used to estimste
the standard dewiztion of pre-
dicted corrosion rate.

EXPONA | 0IC log{predicted aipha comasion 1ate] | logéa (¢) base [0 log of predicted coro- ALPHDS
sion due to alpha dose as 3 fung~
tion of time

FALPHA | QIC Mean experimenta] alpha radiclysis | loga Mean exgerimental alpha rad-- | SPALPH | ALPHOS
alysis

Pigure 2.8: Portion of a Data Dictionary listing, including a cross reference column.
Input and autput data flows are colour coded green and red, respectively. Local variables are black.

2.2.4 Equations

Equations are held in individual files, with version information similar to other TgXspec components. These
files can be inserted into MTRX documents using the \input{} macro. A slight modification to the usual
TXspec file format stores TEXspec information in ATRX comments, as shown in Figure 2.9.

It has proved convenient to generate these files using a PC/Macintosh product called MathType, which
adds additional comments to the file, containing encoded information which allows the equation to be

18



used in PC-based word processors,

\Mame CylinderiassBal
\LongWame : convection-disparsion equation (cylindeical)
H T | \WVaraion: 27 %
as well as HIRX, as shown in Fig Areo3ece: oy
ASubproiect: DROC.
ure 2.9. The comments generated ...,,,,.,,3” 2.8 Melnyk
\Dats: ¥ov 5, 1999
1 VImplamanter: T.E. Melnyk
by MathType are ignored by ITEX, N oaie: mov s 155
. \Description: In cylindrical (z,x} co-ordinates,
but can be imported back onto the |4 peies tucguv‘cuu-ﬁil;ulm mass balanos equaticn
1) for a single decaying suclide.
personal computer for inclusion in |VechTypeizzhxe? qucyOTemiqaei -""‘"';::m‘““‘“"
oiidsaticreGaikdsadCedosadbixCl
rdig

This
decreases the possibility of inconsis-

word processing documents.

tency between TEXspec documenta-
tion products and related technical
reports, memoranda, etc. that ref-

erence the same equations.

Aba¥chiXGébqgeaOGayICagAkedosabiXsl.
\asaeGaysGasAMaysGagARedosabiXGl s XGTaMi iGH2kXGCThascy 4k
togilanéqoyypoGiasaa ! 3CDSt

{{\paztial C} \over {\partial t}}

-{{D_r\kern 1pt \partial ~2C} \over (K\;\partial r*2}}
-{{D_z\kern 1pt \partial €} \over {Kr\;\paztisl r}}
-{{D_s\kern lpt \pertial “2C} \over (K\;\psrtial z*2}}
+{{V_s\kern lpt \partial C} \over [(K\:\pertial =]}
+{{\:\phi \;\partial C} \Over {Rr\kern 1pt \partisl r}}
+\Lambda C=0

Although the use of MathType is
optional, many users prefer the use
of a graphical equation editor over
ASCII input of KWIEX math syn-
tax. Figure 2.9 illustrates the use
of the graphical editor and shows
the ASCII equivalent. Other graph-
ical editors are available, inc[uding Figure 2.9: An example Equation file, shown in ASCII format (top) and
TgXaide, which is available without - "o 1o b MathType (bottom)

charge from the manufacturers of MathType (but lacks the word processor interface).

aC D.8*C D.dC D.8C  V.8C K ¢4C

+Kr&r+'\c =0

% Ko? Kror Ko Koz

The syntax for the Equation file is as follows:

Syntaz of Equation (.teg) file

%Name: t>short name in ascii format - minimal for unique identification<
%LongName: t>descriptive name in asci format - up to a sentence<
%Version: Dversion number for tracking history - appears on listings<
%Project: D-project identification<

%Subproject: D> sub-project identification<

%Author: prauthor’s full namea

%Date: date that the entry was written<g

%Implementer: O full name of person who input thiz entry into the system<
%ImplementDate: t>date that the entry was entered into TeXspecd
%Reviewer: »full name of reviewer<

% ReviewDate: »date of review<

% Description: o full description - up to a paragraph<

»~comments from MathType<

o HIEX equation<

19



2.3 Application Compasite Components

Some TEXspec input files are directly associated with a final product. They typically reference the shared

components discussed in Section 2.2.

Each of these files is the primary input for TgXspec processing as shown in Figure 2.4. Note that Design
Specifications act as both a primary input for designSpec.pl and a shared component for structureChart.pl.

2.3.1 Data Flow Diagrams

DFDs are stored by name, and are assigned a number only when the processing script (dfd.pl) is run. This
mechanism allows a project to be re-numbered without necessarily changing the content of the diagram. The
output from the processing script is named according to the specified number, which is then processed by
ATEX. This naming convention is important for consistency checking, as discussed below.

Figure 2.10 illustrates this process. The diagram *Diagram-

DiagramName.ds

Name’ is assigned number 1.2.3, which is represented as *1.2.3’

in file names. Consistency checking is performed against the .\df d_1_2.tex

parent Data Flow Diagram (DFD 1.2) as described below.
dfd_1_2_3.tex
Syntax for processes (often called *bubbles’ when speaking of

Data Flow Diagrams) and data stores are described by Your- LaTeX

don [30]. Of particular importance is the distinction between
*atomic’ processes (i.e., processes which have an associated Pro- -
diagram
processes with lower level DFDs (i.e., processes associated with Figure 2.10: Dataflow Diagram processing,

child DFDs which decompose the process further) which are 3Pecifying the diagram number (1.2.3) at run
time.

cess Specification), which are shown with double circles, and

shown with a single circle.

20



The syntax for the DFD file is as follows:

Syntaz of Data Flow Diagram {.dfd} file

Name: D short name in ascit format - minimal for unique identification<
Version: D>version number for tracking history - appears on listings<
Project: D project identificationd

Subproject: > sub-project identification<

Author: Dauthor’s full name<

Date: O date that the entry was writtena

Implementer: & full name of person who input this entry into the system<
ImplementDate: t>date that the entry was entered into TeXspeca

Reviewer: > full name of reviewer<
ReviewDate: >date of review<

Units: »uglid BTEX units of measure<
Labels: o ‘math’, ‘short’,‘med’, or ‘long’a

©[process spec|<
B[connector spec]<
> [datastore spec] <
(flow spec]d

> flegend spec] <

Notes: »annotation associated with the diagram~<

Where:
process spec =

Process D#<: Ddfd or mini-spec name
{name may include \\’ = line beaks for labeling)}<q

At: B,y coordinales in specified units<

atomic »flag to indicate that process is a mini-spec<
connector spec =

Connector: t>label for off-page connector<

At: &1,y coordinates in specified units<a

datastore spec =

DataStore: elabel for data store<

At: D1,y coordinates in specified units<
flow spec =

Flow: oenlry in Requirements Data Dictionary<

From: D process, connector, or data store<

To: D> process, connector, or data stored

Type: »‘static’ or ‘temporal’<

Inflection: >curvature of arrow<

RelPos: >position of label along the curve (0,1 are the ends)<

LabelOffset: »offset of label away from the curve (99 = do not label)<
legend spec =

Legend: D ‘vertical’ or ‘horizontal’q

At: D,y coordinates in specified units<q

pil



Connectors are placed at the ends of arrows representing flows that terminate outside the current diagram.
Processes, data stores and connectors are all located on the diagram by specifying (z,y) coordinates, in units
selected by the user.

The specified positions are relative, but the scale is absolute. The origin will be located so that negative
values will not be placed off the page. Distances between objects that are larger than the available drawing
area causes the diagram to be truncated; no scaling is performed.

Flows are specified by stating the end points (processes, data stores, or connectors), the inflection of the
curve and label location. The meaning of the values for curve inflection and label location are defined by the
xypic (23] package. The inflection is specified as the offset from linear at the midpoint of the curve, in the
same units as the rest of the diagram, with positive values bending up and to the left and negative values
bending down and to the right. Label location is specified relative to the flow, with 0 being the start of the
flow and 1 being the end of the flow, but values less than O or greater than | are permitted. Label offset
values place the label the specified distance from the curve, with positive values being above the curve and
negative offsets being below the curve.

Tatle: Detarming Spagiation of Groundwater
Version: L34 ] !
l-.:::.: um.u Flow: KCASOL
Anther: Tod Moluyk Trom: Loput KEARDL e .
Date: Feb 22, 2000 il , Chlgalawmd phatay
Implementar: fteave Oliver e -:".‘ ? >
ImplenectDate: Sep 19. 2000 L Ium“ﬂ-:x 0,18
Unita:r nches
Ladml M Tlow: fprion
¢ From: loput fprien
aohee 1:  Caloul 1 A, To: Caloulate\\Calcium-Sulphate\\Conoantrations
::1 e 1t 1,1 ta\\Ca v W Iafisatian: 0.1
ateaia ' Ralpos: 8.18
Labalogfsat: -4.15
Procsas 1: Calsulaca\\Miase\\Aaias\\Concentraticas
Ak 3.25.3 Tow: tprion
From: Loput {prioa
Treosss 3:  Adjuse\\SediumeChlerida\\Canoantrations ;.:;! Adjuat\\Soliue-Chloride\\Canoentrations
AR 2.8 esation: -0.4
atamyn LabylOffpnt: 9
Conmemtoc:  Input NCASUL b
ALr 9.5,1 ]
Cosnaqtap: IApot [peion
ae: 0.5,2 [ ]
Commentor: Iaput spmjcn
Akt 0.5.2.5 Mow: onIre
Connecter: Iaput minoc eq ::-x Cuul.l:l\\ﬂu‘:-\\unu‘\tfmmum
ac: 0.5.3.5 ' \
Connsater: Ibput spmion I.:(hc:unz :IJ;
ae: 0.5,4 10as : -
Cannestar:  Input wph LabelOffame: -0.27
At: 0.5,4.8%
Comnedtor: loput KN
A 0.5.3
Coomector: ar
Avr €.5.5
Notea:
Cenmsator: Output =L
ar: = 6.8 Taplanentad by SPOZN
o 6.3.95
Comnmector: [~ 4
At .14

Pigure 2.11: Example DFD file.
Not all flows are shawn. Note the use of the \\ to denote a line break in the ‘Process’ names.
The 'Notes’ are supplemented by generated notes from TgXspec, as shown in Figure 2.12.

2



An example of a DFD file is shown in Figure 2.11, and the output genarated by TgXspec and I#TEX is shown
in Figure 2.12. A complete example is contained in Appendix A.

m=an-nu~ D-MMV‘I.I
_ INROC-LE ___jnroc
Data Flow Diagram 1.4.3 Determine Speciation of Groundwater ~ Version 01B
Author: Ted Melnyk " Feb 22, 2000
Implementer: Steve Oliver Scp 29, 2000
| Reviewer: ~ September 29, 2000

Implemented by SPCGCN

equilibrium-constants = {minor_eq, KCASUL, KW}
sp-ion = {spmicn, spmjcn, fprion}

gw-speciation = {conc_anious, ISF}

conc-majoranions = {CCL, CSUL}

conc-anions = {conc_majoranions, conc_minaranions}

Figure 2.13: Example Data Flow Diagram.
‘Notes’ are generated to detail the contents of any composite flow whose contents appear on the
diagram. The components which appear on the diagram are shown in bold type.

TEXspec supports two types of flows: ‘static” (not time dependent) and ‘temporal’ (time dependent). This
contrasts with the Yourdon [30] specification, which supports ‘data’ and ‘control’ flows. Both ‘static’ and
‘temporal’ flows would be considered ‘data’ flows by Yourdon. The visual presentation of two distinct types
of flow is similar and only a generated legend {which is optional) would betray the user who redefired the
two TgXspec flow types for the purposes specified by Yourdon. In the future, TEXspec may be enhanced to

e b ;
suppert o third {*contrel”} Sow type, or porhops an arbitrary number of fow types

23



Consistency between DFDs is monitored by TpXspec. As shown in Figure 2.10, at run time dfd.pl accepts
an input parameter to define the diagram number. Generated output is tagged with the diagram number,
by including the number in the name of the file containing the generated output. The script looks for output
from the parent of the assigned diagram number by searching for the file name containing the parent’s
diagram number. If cutput from the parent diagram does not exist, then a warning message is generated. If
a parent diagram does exist, then consistency is checked, allowing for compasite flows. The input and output
flows on the current diagram must correspond to the flows to/from the appropriately numbered Process on
the parent diagram and all flows belonging to that Process must be represented on the child diagram. This
can be either an exact match, or flows on the child diagram may be contained in composite flows on the

parent.

Parent DFD 1.4.3

. : ‘Qp

Child DFD 1.4.3.2

swpk = (PH}
cone-minoranions = (C¥, CFCARB, CHPS]

Figure 2.13: Consistency Checking of DFDs.
Parent DFD 1.4.3 is shown on the left and it's only child (DFD 1.4.3.3) [s shown on the right. The highlighted
flelds illustrate consistent use of a composite flow - no highlighting appears on actual output.

Figure 2.13 illustrates consistency checking. The parent diagram (DFD 1.4.3. on the left) contains three
Processes. Process 1 and Process 3 are represented by double lined circles, indicating that they are ‘atomic’
and are detailed in an equivalently numbered Process Specification. Process 2 is represented by a single lined
circle, indicating that a child diagram (DFD 1.4.3.2) exists, as shown on the right.

To illustrate the treatment of composite flows. 'spmicn’ is highlighted in red and it's components are high-

lighted in green. The child diagram (on the right) shows inputs of *CFTOT", ‘CPTOT" and “TCAR’, which is

consistent with flow ‘spmicn’ into Process 2 on the parent diagram. Detail of the decomposition is contained
24



in the ‘Notes’ section on the child Diagram. Note that ‘spmicn’ is itself a component of flow ‘sp-ion’, which
would appear on the grandparent diagram (DFD 1.4).

2.3.2 Process Specifications (Mini-Specs)

Process Specifications are stored by name and are assigned a number only when the processing script (miniS-
pec.pl) is run. This mechanism allows a project to be re-numbered without necessarily changing the content
of the specifications.

Input and output flows are specified as Requirements Data Dictionary entries. If the parent Data Flow
Diagram (Section 2.3.1) has been processed, then the flows are verified for consistency, otherwise a warning
message indicates that no verification was performed. Flows in the Process Specification must be atomic,
but the corresponding fow on the Data Flow Diagram may be composite (although this is discouraged).
Otherwise, consistency checking is analogous to checking between & Data Flow Diagram and it’s parent.

The detail of the process is specified in free form KTEX. No consistency checking is performed between this
and the specified flows. A macro is provided to allow the user to include a TgXspec equation. The macro
include Equation{name} causes TgXspec to scan the search list for name.teq and insert the contents at the

specified position.

The syntax for the Process Specification file is as follows:

Syntaz of Process Specification {.ms) file

Process: ©>short neme in ascit format - minimal for unique identification<
Version: t>version number for tracking history - appears on listings<
Project: tproject identification<

Subproject: D sub-project identificationg

Author: D author’s full nameg

Date: O date that the eniry was writtend

Implementer: o full name of person who input this entry into the system<
ImplementDate: > date that the entry was entered into TeXspecq

Reviewer: >full name of reviewer<
ReviewDate: »>date of review
\begin{description}

pshort description«

\end{description}

r \inputFlow{ Requirements Data Dictionary entry}=
> \outputFlow{ Requirements Data Dictionary entry}=<
> BTpX description of process<

An example of a Process Specification file is listed in Figure 2.14, with the corresponding specification as
generated by TeXspec and ETEX.

25



T TR I I R TR LY T T T PR LT TSR TICTRTE T U R ]

te) P :\.A VH TN

ﬁ—r.:....:::....:.::.-_.:s_ai.?t.:-..-: 7.:.. .3:&..-.:-:._.3....::....:_sl!:.i
PO XTI .4_ vt w e Gtprenh g g (oo Carpupey ¥ bt e (g ...: .:.x:—

1] (YRR R R VR M IO )

TCTTE EON AN Y IR Ty Rl 17 )

3] [
14708 ohe 3 Aot

$ ;g1 gy p of asy ey £ad g0 o ¢ egonmeinos popre)
5 bptiinn i: o -t.:c.:.c __.. .... WEv ) Y Itteretns L] : Sty P agnn O s Citqigmgont dinjre) sy

] MY a By azanpeitmy [*Y e JENEIN _
i 1nn) W) San(vs suwrer W Loy
] appstivnls aangpg Maspeinses i peg & o byt <..=
[3) MM W ) (Roftug RRARITEILRS Ju himpuiiln “.I. F ol 3 I
0/t | *rn T ] s | ooy

M NIITItS Snp) ot JIRYe o)) W JROtY] ANEY) Qe LD oo dovgnrne el e A py]

T LL iy P e

oUg 0t Wy [ ITTOIE B T s G

DL '2E M) LT RLL UL

X P 4 Y sunp Laneimo) supiaagy o 1 wmig ]
pr e 2OUNL 15X TR TR TS

‘Twnuww Aioeql DoIul sty JO HOTIONS
LSARINTYRS ISTYTRIOON. W) UT PESSNONYP wY syylL

{uoryenben jpus\
{ebe | ToqeT\ (3IFYPTYTEOUTqEND jsoFImbepaTout)
{uoraenbe)urbeqy\

‘Leseoone, Jo §4§ Litrrqueqoad SuyAawy Yowe

! {exmyeymon Twiod) sTeYIY $Nd WoI3 (seanyTe] IBUTEIVOD)
ML -
3o swqunu eqy perrec oF fwi Lypumend iy  CooTINQEIISTP
& 7Trqeqord TwTwouyq SATIRTIEND oqy oF ${d‘w/w)a¢ exequ

{uorienbenjpus\

{Zbeireqery, (eanTTeTeUTEIuCO)UoFIenbgepnyouty
_ {01 (voyaenben}uyBeq\

st g\ UT\ & NS SupEISIep BEYAISYIO

(uoraenbenjpus)
:!;3-.3 O=N N
{uoTyenbe)upbeq\ $(x a’'s Nio)a oT\ XDt 31

Jeq@ gous ${\i N

SUTTHSU\SUTTASU\ {HOTINGTIISTP TWTEOUTY SAFIRITEMO ®3
WXy peuTRIISp §7 SISUFEINOC0 THI03 $1 M§ JO Ino

‘¢4 m¢ 'saeurwiuvco perIvl 30

Toqy ey} o8 ‘EIGUTEIVO0 TIW IO SENS oY) PUR JUWIFVOO 6T
¢x a¢ xsurejuco TenpraTpuy duw jo Lrrvqeqoad santyieg eqr

{oes” gamoan)soTmINEINON,
{zonaarnoTmnduy
{ows” Drivaz)noTEINdUT
{oes DEmOIM}NoTEINdTT

‘QOFIW[NAYS WY JO A
Y3 I® PRI AW IeYl YISUTRIUCO JO I O} SUTEISING

0002 ‘01 1dy !eywaiuemetdsy

IeATIO ‘E'f Ivjuswetdar
000z 'TZ aex teyeq
whotes ‘%' 3 Xoany
SouNt 12efoxdany

[T i3oefoxy

710 {GOYwISA

EINTIEA IWNITIUCD SUTEIeeg X1, J.X7]

Figure 2.14: Example Process Specification.

The input file on the left resulted in the specification on the right.

26



2.3.3 Design Specifications

Module design documentation adheres to the concept of literate programming [10, 12|, which uses a single
source file to generate bath the Design Specification and compilable code (the same file is also referenced to
assure consistency with Structure Charts, as discussed in Section 2.3.4).

The syntax follows a hybrid format, with TeXspec specific syntax providing an interface with the rest of the
system. This component is processed by TeXspec to produce a Noweb [21] input file, which is then processed
into final products.

Noweb is a literate programming tool that permits a madule to be broken down into code chunks which
consist of blocks of BTEX commentary and corresponding compilable code. It has a simple syntax that is
portable to most programming languages, including Fortran.

Noweb code chunks that are not referenced in other chunks are placed in the defauit code chunk << »>>.
The description, declaration, "include”. and directive chunks are generated automatically by TEXspec.

Although the generated code is not intended to be a main-

module.ds

tained product, the description is replicated (as comments) in
the generated code. The code "chunks’ are also commented,
by practice. to allow easy navigation when using a symbolic
debugger.

Also carried through to the code are the variable definitions

from the Design Data Dictionary, These definitions are placed | madule.t 1 module.f
next to the variable declarations. This includes the ‘Physical

Units’ assigned to each variable and allows the use of AECL's

unit checking program ‘UNITCK' on the generated Fortran

code. UNITCK is a proprietary static analysis tool that bal- module.tex module.for

ances physical units in each executable Fortran statement. latex

The actual processing of a Design Specification occurs in . R o

¢ P P specification
stages, as shown in Figure 2.15. The processes performed by
TeXspec PERL scripts appear in highlighted boxes. Other

processes are shown as unshaded baxes.

Figure 2.15: Design Specification Processing

A Design Specification file is processed by “designSpec.pl’ to produce & Noweb (21| input file. Noweb’s two
constituent programs ‘noweave’ and ‘notangle’ independently process this file to produce a KTEX input file
containing the formatted specification (see Figure 2.17}, and an ASCII file containing the compilable code.

27



Noweb output contains declarations in ‘code chunks’ which would be printed in the specification. TgXspec
prints a superset of this information in tabular format, so the ‘cleantex pl' PERL script removes the redundant
code chunks before generating the Design Specification, without impacting the generated code.

The code output by Noweb contains, by default, many blank lines which make it difficult to use a symbolic
debugger. The PERL ‘cleanfortran.pl’ is used to remove the extraneous blank lines.

Further reformatting of the code is up to the user. For example, it is possible to pass the Fortran through
CERNs Floppy [2] package to reformat the code and produce a rudimentary static analysis. Most processing
that users would perform on manually generated code can be applied to the generated code.

When revising and debugging code, it may be advantageous to eliminate the overhead of generating the

documentation as shown on the left branch of Figure 2.15 (starting at ‘noweave’} until the code is stable.

Design Specifications are checked for internal consistency between declared variables and the Fortran code.
Since information in the Design Data Dictionary is not repeated, but is extracted and placed in the Design
Specifications (and hence the code), these products cannot be inconsistent with the Data Dictionary.

Information that appears in both the Design Specifications and the Structure Charts {Section 2.3.4} is also
not repeated. The Design Specification acts as the repository of the shared information that the Structure

Charts reference so they cannot be inconsistent.

Similacly, users are encouraged to share equations in a common pool (see Section 2.2.4). Although there
is no requirement to do so, it is helpful to keep notation consistent and to propagate changes through all
affected products.

Since both the code and the formatted specification are produced from the same file, TEXspec(through
Noweb), acquires the attributes of literate programming {10, 12| systems, including consistency of the spec-
ification and the code. Correct code documented with an inconsistent Design Specification can result in

many software defects (18], which cannot occur with literate programming techniques.

Arguments and shared variables must have a declared direction of flow: ‘input’, ‘output’ or ‘input,output’.
This information is reflected in tabular listings in the specification (the table for call arguments is similar to
the table for shared variables shown in Figure 2.17). It is also used in the generation of Structure Charts
(Section 2.3.4).

When the design specification is processed by TgXspec, the Fortran code itself is examined for internal
consistency with the declared variables, including direction of flow. The use of undeclared variables is
flagged, as is the declaration of variables that are not used. TEXspec issues a warning message if variables
designated as ‘cutput’ flows are never the subject of a Fortran assignment statement, or if ‘input’ variabies
are changed. It is critical to have ‘input’ and ‘output’ correctly tagged, to ensure a correct Structure Chart
(see Section 2.3.4), Dictionary Listings (see Section 2.2.3) and Design Specification.

28



The syntax for the Design Specification file is as follows:

Syntazr of Design Specification (.ds) file

Module:
LongName:
Version:
Project:
Subproject:
Author:

Date:
Implementer;
ImplementDate:
Reviewer:
ReviewDate:
Language:
Standard:
<<description>>=

b tect description<
<1 %edef description<
> [argument] <

Dmodule name in ascii formatd

>descriptive name in ascii format for Structure Chart<

D> uersion number for tracking history - appears on listingsq
D project idenlification<

D sub-project identification<

>author’s full name<

t>date that the entry was written<

D full name of person who input this entry into the system<
D date that the entry was entered into TeXspecd

> full name of reviewer<

»date of review<

& ‘Fortran-77," ‘PROGRAM’ or ‘SUBROUTINE’ ar ‘FUNCTION'a
>applicable programming standard<

!

* [shared] <
Constant: »varigble with an assigned value in Design Data Dictionary=
> (local] <
ichunk|d
Where:
argument =
Argument: D uarigble in Design Data Dictionaryd
Flow: B ‘input’ or ‘oulput’ or ‘input,output’q
Dimension: & Dimension to gverride definition in Design Data Dictionary<
> [prepost| <
shared =
Shared: p>variable in Design Data Dictionaryq
Flow: & ‘input” or ‘output’ or ‘input,output’q
> [prepost] <
local =
Local: pygriable in Design Data Dictionary<
Dimension: > Dimension to override definition in Design Data Dictionary<
Data: & Initial value<
prepost =
Precondition: »ascii tert< or
Postcondition: =ascii tert<
chunk =

> <<chunk name>>=q
> coded
o> %def chunk name<t




ot

(11 amBig w

Junyo apod uolduosap, 3yl aAlasqo) UolYBIYIdads 3ty U PIaPIIOJAI 30U §1 INq ‘apod pajersusd ay; Jo doy
277 Teau pade]d puw SWAWWOD 03U} Pa)JUNLICal ST 31 IUSMIIwal] [elddads £aA1adal JUNYDO STQ], “Spjay fenmm
ay3 Ieye 1snl Junyd 3pod uolidudsep, ayy 20N g Xipusddy Ul paureinod §1 Junsy e|dwod Ay, -3y
uorresyadg ufisa(q 2yl Jo SUOIIDE IR JO ULIO] 3] saWIEN[ g ‘Buiysy a3sjduwiod € j0U §1 91°g aIndly

“UMOYS ATV DUNYD IPOD, 10 AMOY [I* JON"9|P uopesgiseds ultsa) ojduexy :p1-¢ sanliy

dees,

symmnodsnnkarep Jepy ]
(SRR MNIVD / (DEE)VAIVO = BOOAYE
(M) XTAWT / (JWE) BANNVO = AITAWY

RIT STAY WOI VSAAIST STHUR JO SO0 PUR TTF GIWRTRAR -~~~ 2
(Zas (OR8] INEEVG + Zeos (D88) DNNVAIZEDS = (DTS} UANIVE
(EEIONNVE = (DEFI VAN

Aymorea Aneg 3o musuodEco TYTIPEI PUY TETXY eandmod "t 2

wccrITmucden JknTwpn>

“$o=lamSvaiqIne\¢

o298 5T MW3zING UT AasooTea Aoren ‘woumty

Paw ‘038z 9% JezIng 30 KITTTqRewred swnswy

“$(3UBTI\TIORI\)IFOT\P00\§ POV § (3BT \WISDI\)IFST\UTI S
.ndEo) “A0T3 Je3ea JO TOTIONITH Oy POY
WS ST Jo FTXV 8Q3 Useajeq oTBUN gATnDe\ WINn\$ SUTIeQ

*¢ {(¥003 3Ivg)BOTIENDIEPNTOUT ¢

% PRANDTRAD §T POV

NS SIPUTPIONO UNTIN TN Nroayet srwdsoed e 3o
susTd XX S UT 8Q 03 P X d E
YOOI oy T AJTDOTRA IMBaponot SATGASTRTY Oq

Aho

“g {aoos vIeg)uo TavedEemnToUT\ ¢

At@ate o7 3ucodEce TEIXS O4; O

WeAS MIPUTRIOOD UNTHNIWD Xioaet erxsgdeosdb sy Jo
amepodecs X B3 03 TeTTerwd Bq O3 PUSTESE ST UTIE WOOI Sl

* {ons)
Zo308s 800 I0; X003 UT AyToores AnIwg 7o s3UeuodEce GRWRTBAY

[
[ ]
°
dee,
wrew Fyepy
[

KL

<CTPUROTBSTSS

<cuxwqdecabyy
- CCUTI
{ezReg T )pam)
+seatedold a(nws POSTIVUOTONI SIUNTEAY WHETY

= {Twvey Azowgz, e W

.szeydsoen ButpuholIng &M It SOWLININ] )
I TOTZFe00 notsIads T PUR SETITOOTAL ADIRQ GJWDTRAR WIT\
{mzTEm T]ubeqy
SUDTIDNS O&3 FO $IAFIFUCD ITPOR OQI

-Aoumroyize
TweAMNADe GACIANT 03 PEPURINT IOUITIIV ubreep »
¥ vothe1 JTONA STIDUIF ¥ CIUT SIVIDN JFIhEA
STATITIR 30 UOCTIFTRANCOY O  “SIDIDNS FTNWA
ImwszodEoo oy 3o set3xedoad ey uo peeng ‘sucibex
ITORA 307 SINAGWRIWS SGATIND JEQYIA “ATTRUOTITIDY

- bu L) 33 .
spenozd wmafwrg o1l waeg savews ANt SEODIA

-

.

.

[

[
W EARs 3tvooT
200NN 170
RN 1 TeD0Y
ozt IuoTeUNTG
o 279007
+EERTA. 3w3eg
P ] 3 TEDO
m 3 l.’ﬂ :

[

[

.
ITOO SIT\E ISETIN SDOT\§ T :uoTITRUCOEIg
andny 1mo14

[

[3

.
Indyne IADTL
aIndoy MO
k7 parIugs
anduy IADTE
MR spermgs
andmt iaDtd
AeDR spaswyg

wrkadtioewp Fepr |}

XIS 3 (R0-BWE-T00Z) D90 SOIFEEA 900 WO JRewg

7 0EP T PRUTEINIED SIRI0WRIVE

aITnbaz avgs d atana PUSASpT -SWTy St
=gcuodrIeeey)
suco pIRpuRIg
WEIOOTENS * L LTS :abenbuwy
4 JTnea P T-swTy U Wpuvy
T00Z ‘€T IWM :e3vyuemetdm
IWATIO ‘E°F  :¥MuemeTday
T00T ‘ST W 3w
JATTIO ‘K°S 1xoQINY
somu 2 TpowmE
"o 130eloay
n0 ITOTEIN,
WA @ TOpON

"L1°g am3tg w umoys are XH[y] pue sadsyd],

Aq pareisuad qndjno aqy jo suonlod puw ‘g1z amBig Wy wMoys s 9[y uoywogweds uldisa(] v jo sjdurexs Uy



The example module in Figure 2.16 has no arguments. Argument flows are placed in the flow list in the
order that they occur in the argument list. By convention these ffows would be declared before any shared
or local variables to make this order clear.

Arguments and shared variables may optionally specify a precondition and/or a postcondition, depending
on the direction of flow. If the variable has a ‘Condition’ in the Design Data Dictionary, then that condition
is taken to be a precondition and/or postcondition, as appropriate. Explicitly stated preconditions and
postconditions in the Design Specification file are added to anything contained in the Design Data Dictionary.
For example, the variable BKFRAR is declared in Figure 2,16 without a precondition, but the precondition
0 < BKFRAR < 1 is extracted from the Design Data Dictionary and appears below the table of shared

variables,

Preconditions and postconditions for arguments and shared variables can optionally be accumulated together
in the specification, but after some experimentation, the default behaviour has been set to place the conditions
separately, below the appropriate table. This generates a longer specification, but keeps associated elements
at close proximity, which makes the specification easier to read. In some cases (perhaps code which involves
few variables), the accumulated format may be preferred, so the option to overtide the default behaviour

remains.

Tables are formatted dynamically, so that no blank columns are produced. If no mathematical symbols exist
for any variable in a table, then that table will not contain the *‘Symbol’ column.

The first major heading in the Design Specification is ‘Module Components’, which identifies the Noweb code
chunks that comprise the default code chunk << ¢ >>. This section is generated by TEXspec to include any
chunks specified in the Design Specification file (which are not referenced by other code chunks), plus chunks
generated by TpXspec. The generated chunks correspond to the sections of the document, but the order in
the Design Specification is different from the order in << « >>, which specifies a compilable sequence.

For example, the << include >> code churnk is generated and placed before any executable code chunks
in << = >>, but is detailed near the end of the Design Specification. This is because few readers wish
to use this section, yet it can become quite large. Any declared variables whose Design Data Dictionary
entry specifies a ‘File’ causes the file to be included in the << include >> code chunk (‘INCLUDE’ files
in Fortran). This relieves the user from the burden of assembling the correct header files, as the job is
performed automatically.

31



(ows)areo 7 (ae)vamrcra = RDARE
(ows)mewve / [J00YNATYFD « RISANE
#01s pue wite woos Waeajaq oTTNY 0 BO3 PUT | MiERiwAR’ D)
(zestonmiznevd ¢ cestoms)Lmmvaiiube ~ Low8)whinvd
(ms)rwaeve - (J28)VAwEYG
£1150184 darvg o emewcdeos tetpet pme fvize Sindmey - 3
= {tevaduwolaep)
0= FA om1 of sagyng ¥ (pema 1m0 ‘ouny par ‘ams o syng je Agureaued sussry
@) voa pum (g} windhianr) ‘mmy sitwm pb DAY SiI PUE LU Si JO BOR SiS Wnamgay sl ® g SugeC)
‘.'A+.‘,|/‘-]'A-m--w|-'ﬂ "t
*gl )0 sumpd 24 3 W) 5 ¥ poumesy Aphupuodssis of 1pel M iy Axpwps punedl Maeumn By
154 = A Ao 1y Porumdas o el oF e e

Ly L g

. - Wims e syt po 3t 83 Py ad oy o3 pramess & W depat Sy L
(238) m1me suo my sl by A Aawg o ~ 3
H
am
WL
‘ov-’_‘w
m{wrw)
wopmdord jors panpunginl sEnpmy ¢
‘(ororyy Ksooni,
" 9 Py S 1 (P R ) INRONI0 Yepmdng e terpema ki SseTRERE ©

(031NN 1) i 0 =< 'vaauva
{930mnN 1) =10 =< Yneuvd

(9390w £ LNNTON 1) ) 0 < IV
19IWON t INNTIN t] 210 < Sivegad

e upuEIwed

[raseanint ' INWTIN t] o) 0 =< tANMaYDY

15 Hviing 5 0 tevaidne

0 < 13
t S Hvi1u 5 0 uvaldie
E Y
il v | [ H w L e R il B ]
i wyrep mrs |~ Iy st puleaieg jo eyl | OB
i oy [ ded o " Wpreq sy | Mvaie
| oy mom 1] 1 oty iy wonandep wrel | it 0%
i | L
{ ayop | Sasiovn e iy woepar yaos oud 10 lone) howins | ANV
O | = | FISxvWNIHONN "y ay Lsedes suak puiewep | NGV
1 pyrop Ll s/t w ey m{pg e ams g0 3 | e ing
i | arep [ few) 4y Appesaiind pppes | pdridsin
1] _agrop L] i] dgr =4y | |m3_;| glﬁ. [LYEUER
i) ) L marrn? ] reer |
isaqerien (NOWNOD) Paieyg
()05 w1 LA0end
e (psapmenr}
@depaiu) Tujje)
LI0IID W) pouiwieisy areimntvd
s1tnbes 1oy sivysenred 1Twes Tenpusdepd . sute uTRIFISG
ufurvidhnwp)
wondinsag
[T
{rrop,
ey
[sprpsen}
(smartonnp}
’ iy}
isuanodwod anpopy
[ et isaaangy
- 1002 €8 | e e Ll 0 3G meswepdu
toat '8l ) . -5 ) . L)
b, L el pus it suiwneg) SN _MEPON.
w:m“m T B s s T e e S — [E L] —

Figure 2.17: Exampie Design Specification.

Since the product is quite lengthy, only portions are shown here.

32



Only one table of variables is shown in Figure 2.17). There are no arguments to the example module and the
table of local variables is not shown to conserve space in the figure. The table of local variables is similar,
but does not have a column for the direction of flow (‘I/Q'). [t would, however, have a column of values if
any local variables were assigned a constant ‘Value' in the Design Data Dictionary.

Two executable code chunks, ‘<< main >>" and ‘<< darcyComponents >>" are shown in Figures 2.16
and 2.17. There are several other chunks, but they are not shown. The ‘Module Components’ section of the
specification specifies the content of the default code chunk ‘<< « >>". Note that this references a number
of generated code chunks and the input code chunk ‘<< main >>', but not *<< darcyComponents >>'.
TEXspec places all input code chunks that do not appear in other code chunks into *<< e >>" in the order
that they occur in the Design Specification file. Code chunks that are referenced by other code chunks, such
as ‘<< darcyComponents >>', which is referenced by *<< main >>’, are not placed in ‘<< « >>’.

The description of the ‘<< darcyComponents >>' code chunk illustrates the use of mathematical natation
to clarify the specification. Some of this notation is input locally, and some is extracted from shared equations
in .teq files via the \includeEquation{} macro, which causes TgXspec to scan the search list for name.teq
and insert the contents at the specified position.

2.3.4 Structure Charts

Structure Charts form the high level system design abstraction. They are similar to the format specified by
Page-Jones [19], but include some additional information and use colour coding, rather than symbols and
arrows, to specify the direction of data flow.

Structure Charts assemble Design Specifications in a manner roughly analagous to Data Flow Diagrams
assembling Mini-specs. One difference is that Structure Charts are not layered, so each Module is "atomic’
and is not decomposed. The result is that a Structure Chart can be very large, so support is provided for off-
page connectors which allow the user to break a Structure Chart into sections that can be sized convienently
for publication. If multiple Structure Chart sections are connected with off-page connectors, then TiXspec
verifies consistency between them using a method similar to that used for Data Flow Diagrams. For each
off-page connector, TgXspec searches for a previously processed Structure Chart with the same name. If
such a Structure Chart is found, then the connection is validated, otherwise a warning message is generated.

Options supported by TEXspec specifically for Fortran-77 display the status of ‘COMMON” variables within
each module, as well as in the argument list.



The syntax for the Structure Chart file is as follows:

Syntaz of Structure Chart (.sc) file

Chart:

o chart name in ascii format<

Longl&ame: > descriplive name in ascii format for Structure Chartq
Version: D version number for tracking history - appears on listings<i
Project: D project identification<
Subproject: O sub-project identification<
Author: D author’s full nameq
Date: Ddate that the eniry was urittend
Implementer: o full name of person who input this entry into the systemd
fmplementDate: > date that the entry was entered into TeXspecg
Reviewer: >full name of reviewer<
ReviewDate: >~date of review~<
Units: >valid BTEX units of measure<
Labels: & ‘long’:mazimum width and/or ‘shared’a
EntryPeint: »z,y coordinates in specified units<
SubmodelColour: >submodel name:colour code (default for submodel}<
> [submodelcolour] <
&[module]jd
= [offpage] <
Where:
module =
Module: & Design Specification<
At: D1,y coordinates in specified unitsq
Background: »colour code~
Caption: »override of module long name=
CallString: =z, y-mazimum length=<
cal]
call =
Call: omoadule or off-page connector that appears on this charta
Via: >z,y point on connecting lineX
offpage =
OffPage: pname of child Structure Chartq
At: oI,y coordinates in specified units<t

Ar example of a Structure Chart file is shown in Figure 2.18, and portions of the output generated by
TgXspec and XIEX is shown in Figure 2.19.

Much of the information on a Structure Chart is extracted from the referenced Design Specifications. The
call interface, including the argument list and direction of data flow is extracted from each referenced Design
Specification and placed above the module. if Labels:shared is specified, then any Fortran COMMON blocks
are shown, in alphabetical order, with referenced variables colour coded by direction of data flow.

TrXspec performs some consistency checking between the source code contained in the Design Specifications
and the Structure Chart. If the referenced (called) modules do not agree, TgXspec issues a warning message

34



that extra or extraneous calls are shown on the chart.

If Labels: long is specified, then the ‘Long Name’ in each Design Specification is placed with the module,
as shown in Figures 2.18 and 2.19. If these names are too long, the boxes become excessively wide and the

user can then specify Labels: long:len to specify a maximum width before a line break is used. Likewise, the

CallString: z,y:len syntax allows an interface string to be broken over multiple lines.

Chart:
LongName :
Version:
Project:
Submodel :
Author:
Data:

Units:
Labels:

EntryPoint:

Module:
At:
Call:
Via:
Via:
Call:
Via:
Via:
Call:
Via:
via:
Call:
Via:
Via:

SIMALL

Inventory of All Nuclides

01A

o o |

INROC

8. Oliver

December 17, 2000
Implementer: S. Oliver
IrplementDate: December 17, 2000

inchas
long, shared

2.1,9

SIMALL
2.1,7
NUCINF
2.1,6.25
0,6.25
SOURCE
2.1,6.25
1.75,6.25
ZAPINT
2.1,6.25
2.75,6.25
PRECIF
2.1,6.25
4,6.25

|

NUCINF
0,4.75
0.5,6:22

SOURCE
1.75,3
REPFUN

yellow

ZAPINT
2.75,3.5
yellow

PRECIF
4,5.25
4.5,6.05:22

REPFUN
1.75,2.25
INVTRY
yellow

INVTRY
1.75,1.5

Figure 2.18: Example Structure Chart file.

35




—Jea Dve (T LTARIITO00 ste Yor &
CCL ﬁ::ig
SIMALL Version 014
Author: S. Oliver December 17, 2000
| Tmplementer: 5. Oliver December 17, 2000
Reviewer: none NA
SIMALL
Inventories for all nuclides before simulation of release
TUCTDC ATTID
FUCLIDIFSENC
LIRS
TCLIDISEEETT
I
|
FCTIFIICCTICN l . ______L'Nﬂ_‘-’lﬂf‘u‘-‘mm
NUCINF ! _ PRECIF
Sector-independent parameter information l Determine values for precursors
CAMMIIGAFSM ONTANIITVTAS  SPOCTTIDIFMAL ! EMTFIoEATY
CAPONEZISAPSUt  ATREDINIDIY SPOLIY DI ! LAVIRE | LIYTAS
CAFDMEIOLYaIR  SUCIDEIENIDE  STANUG v i DAL
CAPORXIDIFENM NUGTIX)NIDIR STANUG JYUCP AL l MEIFICECATY
CAPNT |2arsey WGIDT |3 IDLP : PRELEP | LIVTR
CAPDNUICAY3AA  NUGLIDINOPRS : PRIFFLINVYPAL

CAPONV JOLF SN TN [Dzcare
CAPONT 1DL1F Ry NUCKTE | LA TRT
DECATX [Dzcary NUCNTZ PSUL."t
OECAY DAL PRINFLISaiL :
OPIEVTILIVIRY SPCAPFICAPYE i
DPSLT ISaLEMY SPCAPYICLPUE i

ZAPINT

REPFUN

| INVTRY

Figure 2.19: Example Structure Chart. [nput and output data flows are colour coded green and
red, respectively. INVTRY i3 an off-page cannector.

2.3.5 Manuals

For the most part, manuals are simply BTEX documents. TiXspec simply defines the syntax of the equation
(Section 2.2.4) files to be inserted with the \input{} macro.

Further support for manuals will be provided once a configuration management system is incorporated into
TgXspec.

Also. the CSA standard [4] demands a number of specific documents, and templates will be provided.

36



3 Graphical User Interface

To assist in the operation of the TEXspec system, a GUI is provided, making the application much more

intuitive to operate.

For the purpose of this practicum, the intention was to implement a *simple but effective’ GUIL. Unfortunately,
these objectives are not always consistent and the program now comprises over 32,000 lines of source code
in 85 modules. This compares to 8,000 lines of PERL code in 8 scripts to implement the core TgXspec
technology. At this writing, the GUI is in regular use, and has proven to be fairly robust.

3.1 Architecture

The GUI fits into the TEXspec architecture as shown in Figure 2.1. It is implemented as a Java application.
It manipulates the input files, executes the PERL scripts. and handles the output.

The application is distributed as a Java archive {.JAR) file and is initiated by a Java runtime environment.

From a command line, this often looks like:

java -jar TeXspecGUI

The initial presentation is as shown in Figure 3.1. The
user must identify himself and declare a default project
on which he will be working.

The options presented on the ‘login’ screen indicate the
future development path of the product. At the mo-
ment, the options (user identification, project, and sub~
project) are ‘hard coded’ into the application and the

‘Password’ field does not process input. These fields

will have meaning when the application is divided into

client and server portions (Section 2.1.1} Figure 3.1: TEXspec GUI Initial Screen.

The GUI is based on compouents provided with Java and two additional libraries;
o ‘regexp’: regular expression parser from The Free Software Foundation (FSF)

¢ ‘format”: Henrik Bengtsson’s printf package (for ncn-commercial use).

37



TEXspec components tend to be small and held in many files. Repeatedly opening a large number of files
tends to inhibit performance on many systems, so the GUI has an abstract class “TeXspecComponent’

which establishes and maintains an inventory (cache)
of components that have already been parsed. A back-
ground process periodically scans the search list direc-
tories (Section 2.1.2) for files that have been updated
since they were last parsed and placed in inventory.

The number of windows generated by the GUI can be
large. A desktop window is used to contain these win-
dows, which avaids cluttering the user’s main desktop
with many TgXspec windows and icons. The desktop

Figure 3.2: TpXspec GUI Desktop Screen. The bar window also provides a convenient place for a progress
along the bottom is a ‘progress bar! and message aroa.

bar, as shown in Figure 3.2

3.2 Configuration and the Search List

Since the GUI is used to create and edit TEXspec components, as well as process them, the search-list has
an additional role to play beyond the base functionality. The first directory (for each file type) defines
the directory in which output will be written. No output is written to directories lower in the search-list,
although they can be deleted. If a component is accessed from a fower directory, then edited and saved, the
edited copy will be written to the first directory in the search-list. By placing a working directory at the top
of the list for each file type, the user can collect his working files as they are modified and move them to the
appropriate directaries once the products are known to be satisfactory.

The Search List (Section 2.1.2) can contain a large list
of directories to be searched. This would be oner-
ous to regenerate each time the GUI is invoked. To
avoid this, the GUI allows the user to load a *Configu-
ration” (which may in the future contain more than
the search list). This allows the user ta work on
multiple projects without having to manipulate the
search list on every invocation. To lcad a configura-
tion, use Options->Load Configuration to bring up

the ch r window, as shown in Fi 3.3. Figure 3.3: Choocser to sclect a flle containing a

sanrch-list.

i8



Initially, however, a search list must be built before it
can be saved and subsequently reloaded. To manipu-

late the list of directories, use Options->Search List

to bring up the search list editing window, as shown
in Figure 3.4. A drop-down menu allows the user to
select a file type and directories can be added (via a
pop-up chooser} or deleted using the edit buttons. The

*Up’ and 'Down’ buttons allow the order in which the
Figure 3.4: Window to edit & search-list.
directories are searched to be manipuiated. When the

list is complete, use Options->Save Configuration A4s.. to save the search list.

3.3 Requirements Data Dictionary

Requirements Data Dictionary entries define flows or components of flows which occur on DFDs (Sec-

tion 2.2.1).
They can be accessed by the following methods, from the File menu:

e File->New~>Requirements->Data Dictionary Entry

to create a new Data Dictionary entry.

s File->(pen->Hequirements->Data Dictionary Entry
to edit an existing Data Dictionary entry (or create similar ones).

¢ File->List->Requiremeats->Data Dictionary Entry
to see a list of existing Data Dictionary entries, or generate a formatted listing. suitable for printing
{Section 1.5).

The File->List method ailows the dictionary to be accessed from an alphabetical listing. After scanning
the search list for the appropriate files, a8 window, as shown in Figure 3.5, displays the candidate entries.
By default, these are in alphabetical order, but an option allows the entries to be sorted by project. The
‘Refresh’ button causes the search-list to be scanned for changed entries.

Multiple entries can be selected for ‘Edit’ or *‘Delete’ by holding down the ‘shift’ or “control” buttons while
selecting with the mouse. Editing is initiated with either the *Edit’ button or a mouse double-click.

The 'Generate Listing’ button activates the Dictionary Listing window, as shown in Section 3.5.

Keeping a dictionary listing on hand is a useful method of avoiding logically duplicate entries. Scanning the
Kit



‘Long Name’ column can quickly identify any existing definitions that might be used instead of a new entry.

Since the listing is generated from files
and the time stamp on each file is
checked before the listing is displayed,

d

the dictionary listing can be slow to

i

1
|
|

generate, particularly if a long search

list is employed. It is usually a good

practice to request a dictionary list-

R

W

TEe o B B s B P v

ing when the GUI is started and to

4]

|
|

keep the window for reference (per-

haps shrunk to an icon).

Having arrived at the ‘Edit’ window,
via one of the mechanisms outlined

i

above, as shown in Figure 3.6, fields

Figure 3.5: List of Requirements Data Dictionary entries.

are analogous to the Requirements Data Dictionary (.rdd} file (Section 2.2.1). Note the support for compos-

ite entries: the 'Add’ button brings up the full list of available Requirements Data Dictionary entries, from

~
T

»

t ceafficient a faxr alpha radialynis

; 018 INROGLE  INROC . Time comvsponding i an s _ &

\alpha

Smpiricel fit cesffiotsnt '@b§* far alpha zadislywis,
weed in the caloulatisn of of the degzedation cate per
mit nmforw xve of fusl
fc_\alpha\left( t \right)=

Figure 3.6: Edit a Requirements Data Dictionary entry.

which the desired components can be selected.
The 'New’ button brings up an empty Re-
quirements Data Dictionary entry, which can
be filled in and, when saved, becomes incor-
porated into the current entry. Similarly, the
‘Edit’ button can be used to edit a child entrv

(if there is one).

Changing the ‘Name’ and saving creates a new
Requirements Data Dictionary entry. This is
a quick method to create several similar Re-

quirements Data Dictionary entries.

The 'Math Name’ field is intended to have
a preview button, to allow for the fact that
ITEX equations often require more than one
attempt to achieve a correctly formatted re-
sult. This has not yet been implemented.



3.4 Design Data Dictionary

Largely analogous to the Requirements Data Dictio-
nary, the Design Data Dictionary entries are referenced
in much the same manner, but the editing window is
slightly larger to handle the increased number of fields
{defined in Section 2.2.2). Recall that the Design Data
Dictionary entry may be mapped to a Requirements
Data Dictionary entry, which can eliminate the need
for some of these fields. Inheriting a *Math Name’ or
*Description’ can save both typing and maintenance

effort.

The "Select’ button brings up the full list of available
Requirements Data Dictionary entries, from which the
corresponding entry can be selected. Alternatively, the
name can simply be typed in.

3.5 Dictionary Listing

=
e
e
=

R 014 _CC4 _INROC __permuanilly of octt (vivagonad

U 018 CC4 MROC .’". K COMIENn

. tatistical paramstsz alphs zadialyeis
T ( \

|

FHHHRE

i - \evexline{ \ i

Based an 4

alghs dose ta rats of fasl eczmesion.
Uoed te satimgts the standaxd devistion of
pxedisted csxxseism rats.

Figure 3.7: Edit a Design Data Dictionary entry.

From the File->List window for either type of Data Dictionary entries, the ‘Generate Listing’ button

Ln
.
»
”
-
L]
¥
»
»
[

Figure 3.8: Ganerate a Data Dictionary Listing.

41

will bring up the window shown in Figure 3.8. This window provides an interface with ‘formatDD.pl" out-

lined in Section 2.2.3, through the script file ‘for-
matDD.bat’. The mechanism is outlined in Sec-
tion 3.11.

The dictionary listing module is very flexible (see
Figure 2.7), and capturing all of that flexibility
might result in an unnecessarily complicated in-
terface. Some of the flexibility is compromised to
achieve a more intuitive interaction. The available
columns are easily seen and the column width can
be adjusted, but the order of the columns cannot
be controlled. Should experience prove that the
order of the columns is important, then the design

of this window may be reviewed.



3.6 Process Specifications (Mini-specs)
Process Specifications are required for all atemic processes which occur on DFDs (Section 2.3.2).

They can be accessed by the following methods, from the File menu:

o File->New->Requirements->Process Spec

to create a new Requirements Specification.

e File->Open->Requirements->Process Spec
to edit an existing Requirements Specification (or create similar ones).

e File->List->Requirements->Process Specs

to see a list of existing Requirements Specifications, or generate formatted listings. suitable for printing.

Flows on a Process Specification are Requirements Data Dictionary entries and are shown in tabular form
on the editing screen, as illustrated in the leftmost window in Figure 3.9. Selecting a ‘Flow’ and pushing the
‘Edit’ button causes a Requirements Data Dictionary edit window (Section 3.3) to come up.

In Figure 3.9, the "Add’ button was used to bring up the list of Requirements Data Dictionary entries at
the upper right. Selecting an entry from this window to form a new flow caused the window on the lower
right to prompt for the direction of the flow {the remainder of the windaw echoes the content of the selected
Requirements Data Dictionary entry in non-editable form).

Flows can be resorted according to several sorting schemes by toggling the 'Sort’ button.

Note the support for a bibliography using BibTEX. Filling in the bibliography fields will cause the appropriate
BibTgXcommands to be generated.



Slssslution Ratw -
. REPe
[ 14, 1004 A = .
Cmver 15, 1008 A S 3 .
— 3] WROCLE WRGC Sca cieor
[T ] ROCLE dete
12 o ih}
08 IHROCAE Jacostiow § lor o
BEETA ata - 3 &
Jogradatiam of fual dea te alpha xadialysis. @SETGA €1 IROCLE INROS sidon . |-
CaLPA Gt WROCLE Extvartanes £
[ WROCTE WNAOC  Numberwtastegenn [
B - |2
JPROSNROC oo o
OO MROC-LEANROC Mowrec
=) A
L] L o = T Mnver

Tha degeadation zate of iha Cuel frem alphas cadinkysis is du

azmined fren 1]
apirical squations derived frwm Win fitting of degredstion et 4. M0
zaton pexr mit surfasw msa ve dnes xatas la . et . 1000
wntim~ ok tu (pF7] [Joeall) ~\oita loh. ] Dialngd] .

\beqtal(vgmation} : imer vuzzesgmmding te an alghe dnee

\nalodaguatiom (zadhlpha} | \alyha
\Labal{zadhlphs} ral
\enad(vquation) - pha dosn Zata peinty

[LH
Timw far spediired wlpha deae ALNED

e Lo & ineax PIL (nloye Sa_|\alphal¥, Lntarcope #_(\algh:.
0] 5 the loy tramefsumstimm

\boginiequesim|

A

Figure 3.9: Edit a Process Specification.

3.7 Data Flow Diagrams

Data Flow Diagrams are high level abstractions of requirements, specifying conceptual processes and the
flow of data between them. TXspec DFDs use a modified Yourdon/DeMarco format traditionally employed
by the DGRTP.

They can be accessed by the following methods, from the File menu:

e File—>New->Requirements->Data Flow Diagram

to create a new Data Flow Diagram.

# File->(pen->Requirements->Data Flow Diagram
to edit an existing Data Flow Diagram (or create similar ones).

s File->List->Requirements->Data Flow Diagrams

ta wea a list of existing Data Flow Diagrams, ar ganerate farmatted listings suitable for printing.

&)



The fields on the Data Flow Diagram editing screen are analogous to those in the Data Flow Diagram file
(Section 2.3.1).

‘Elements’ on a Data Flow Diagram may be:

® atomic processes with a corresponding Process Specification,
o a child Data Flow Diagram,
¢ a data store, or

e an off-page connector.

The first two options are represented as circles (often called bubbles), and are grouped together as ‘Processes’.
They are distinguished in the “Type’ column of the ‘Elements’ section of the edit window. Selecting a
process and pressing the ‘Mini-spec’ button will make the process ‘atomic’, create a Process Specification

(Sections 2.3.2 and 3.6} and bring up an edit window as shown in Figure 3.9.

‘Flows’ on a Data Flow Diagram are shown in tabular form in the ‘Flaws’ section of the editing screen.
as illustrated in Figure 3.10. The ‘Content’ of ‘Flows’ on a Data Flow Diagram are Requirements Data
Dictionary entries.

The edit screen shows the rejationship between ‘Elements’ and ‘Flows’ by changing the typeface of the ‘Flows’
associated with the selected ‘Elements’ to a bold font. Likewise, the ‘Elements’ at either end of selected
'Flows' are shown in bold type.

Since the number of fields associated with both ‘Elements’ and ‘Flows’ are fairly small, they are placed
on the edit window and no child windows are used. Valid data must appear iz the data fields before the
‘Add/Update’ buttons become active.



termine Speaciation sf Greundwatex
W Meinyk e 22, 2000 OC-LE
E Olver 29, 2000
]
nches hort
ust\\Sodimm-Chloride\\Canventrations R
.00
.06
Calculate\Calclum-Sulphate\\Concentrations iProcess '( 3.00, 1.00
Calcuiate\MinerVARlem\Concentrations 'Process 3.25 3.00 )
ut KCASUL Cannector .50, 1.00)
Ut KW cannector 0.50, 5.00) "
input fprion Connector { .50, 2.00)
alculatetCalcium-EuiphatetConcantrations .48
CalculatatiinoAnicniConcentrations .18
A 1.0820
1.05
st\Bedium-ChisrideV\Concentrations [Output CCL cCL istage
ust\Bedium-ChisrideN\Concentratiens |Output ISF ISF Lstatic
CalculateW\Calcium-Sulphate\Concentrations _Adjust\§edium-Chioride\Cancentrations CSUL _ static
CaiculatshwCalcium-Suphate\Concentrations AdjustSedium-ChioridaWCancantrations CCA State
CalculateWCalclum-Sulphat=\Cancantrations \Sa Lhisride\Concantratiens IS jstatc
Tmplamented by SPCOCH

Figure 3.10: Edit a Data Flow Diagram.

3.8 Design Specifications
Design Specifications are required for all code modules (Section 2.3.3}.

They can be accessed by the following methods, from the File menn:



e File->New->Design->Module Spec
to create a new Design Specification.

e File->Open->Design->Module Spec
to edit an existing Design Specification (or create similar ones}.

e File->List->Design->Module Specs
to see a list of existing Design Specifications, or generate formatted listings. suitable for printing.

Symbols in a Design Specification are Design Data Dictionary entries, and are shown in tabular form on the
editing screen, as illustrated in the leftmost window in Figure 3.11. Selecting a ‘Symbol’ and pushing the
‘Edit’ button causes a Design Data Dictionary edit window (Section 3.4) to come up.

Note that the symbols are presented as two tabbed tables, ope for *Arguments’ and the other for ‘Vari-
ables’. Data flows can be considered to be all *Arguments’, plus those 'Variables' that are in shared storage
(COMMON blocks in Fortran).

In Figure 3.11, the 'Add’ button was used to bring up the list of Design Data Dictionary entries at the
upper right. Selecting an entry from this window to form a new flow caused the window on the lower right
to prompt for the direction of the flow {the remainder of the window echoes the content of the selected
Design Data Dictionary entry in non-editable form). While the window is labeled 'Flow’, in fact it declares
a symbol, and specifying no flow direction causes non-shared symbols to become local variables.

The 'Flow’ edit window allows the user to specify preconditions, postconditions and initialising data. Having
the non-editable Design Data Dictionary fields displayed in the same window helps to avoid conflicts or
duplication. The *Units’ and ‘Dimension’ of the Design Data Dictionary entry are subject to override here.

Note the support for a bibliography using BibTEX. Filling in the bibliography fields will cause the appropriate
BibTEXcommands to be generated.

Noweb code ‘Chunks’ are input it commentary-code pairs in the tabbed panes on the edit (leftmost) window.
Pressing the ‘Add’ button causes a a dialog to prompt for a name and a new pair is generated. Because
*designspec.pl’ places Chunks into the default Chunk in the order that they occur, the Chunks are numbered
and the "Up’/*Down’ buttons causes the selected Chunk to change its position in the sequence.

46



ot A§ LT4 _ SIROC el pan W Saness v

{7801-NER-00) T. WRSTH

o€ Daccy ¥ IR CME CHC GnE Begtar (2EX).

Toe coom @iis L0 URESE B Do pazaiiel te e X CHMPGERT
of e T it

0 O wisl compensmr ie rLaply

€\ Lo tuselrmciom (Saxa _Tve 6.

The SEMEWLIe WAREPLST TRINCILT 5 e OB
L) COLTempondingly middud to b L6 th T pLADSE
it

of dazey

NAEVR{TEC) ~ BARSNE(S8E)
DENIVE(SEC) ~ SUNY(MEMSEX(EBC) "*T + JUINCI(SNC) **T7) B sres in tha calculalion of i€ TNS donTedatismn Tale o
Corvsrvaleats sin and oue of angle Mtwsen toum axis wd flav A wnLt surfars skew of Fusd
VST « MREV{IDC) / SMEEN{SEC) i B¢ \alpharlofri £ Leughti-AbetE( 14 ValghablsTri ltex e)
WOVCRE « BAABWL(EET) [ SASEN[3EC) . E)} Ariaht] e Valpha) 10-1b \alphal$

Figure 3.11: Edit a Design Speciflcation.

47



3.9 Structure Charts

Structure Charts are high level abstractions showing the relationships between code modules (Section 2.3.4).

They can be accessed by the following methods, from the File menu:

e File->New->Design->Structure Chart
to create a new Structure Chart.

s File->Open->Design->Structure Chart

to edit an existing Structure Chart (or create similar ones).

e File->List->Design->Structure Charts

to see a list of existing Structure Charts, or generate formatted listings. suitable for printing.

Divwrn 3 1% Bdit o Qiructnes Ohart The subewlindow an

———— D

the bottom edits a singie module on the chart.

&

Having atrived at the ‘Edit’ window, shown in
Figure 3.12 (top), fields are analogous to the
Structure Chart (.sc} file (Section 2.3.4).

The top of the window identifies the chart and
sets up some page layout parameters. The next
section allows default background colours to be
assigned to modules by sub-project, which is
useful if the code calls modules from libraries

that are not considered part of the same project.

The final section of the main editing screen is
the list of modules that are to appear on the
chart. There are a sufficient number of felds as-
sociated with each module on the chart that a
sub-window is used for editing them. The drop-
down list of other modules on the chart (on the
right of ‘Sub-Program Calls’) allows the selec-
tion of modules which are to be called by the

current module.

Changing the ‘Name’ and saving creates a new
Structure Chart. This is a quick method to cre-
ate several similar charts.



3.10 Manuals and Equations

Currently, no support is provided for TpXspec equations or manuais, but these items are present on the

menus as an indication of future development.

3.11 Java — Perl Interface

The underlying TiXspec technology is implemented as Perl scripts, but the user interface is a Java applica-
tion. In order for the user to generate TEXspec products, the Java application must interface with the Peri
scripts.

Both Perl and Java are relatively portable, but
there is no portable interface between them

defined in the Application Program Interface

(API) of either. It is necessary, then, to define

such an interface for TEXspec. Parameters Messages
for Display

The interface could be implemented in sev-

eral ways. [t would be possible, for example, name

' et . - .bat

0 set up an interprocess communication sys- |

tem [25, 26] between the GUI and a server ap-

plication which would be responsible for run~ Messages

ning the TgXspec Perl scripts. Such a server and Products

application could be implemented in Perl in Texspec Othef

a portable manner and would be a stepping SCI’ipt proc_esses
stone to future TEXspec development. (Optlﬂnal)

Figure 3.13: TgXspec Architecture for running Perl scripts
For the sake of simplicity, however, the GUI from the Java GUL. The user asks for a listing to be generated

uses the Java ‘Runtime.exec()’ function to ex- which initiates ‘name.bat’ to execute the TegXspec script, and
e 1 e - tionaily fc ther functions.

ecute a command, which is itself the name of °P" periorm ofhier Tunctions

a script. For each Perl script ‘name.pl’, there exists a corresponding initializations script “name.bat’ which

the GUI can *exec()’ to run the Perl script, as illustrated in Figure 3.13.

The script name ‘name-bat’, is selected to make the implementation as portable as possible. MS-DOS prefers
scripts with such a name, and UNIX accepts it. Although a Macintosh implementation has not been written,
no difficulty is foreseen.

49



The script based interface offers a further advantage. Since ‘name.bat’ is typically a short script, it can be
customized to perform other functions in addition to running the TEXspec Perl scripts. Since the TgXspec
outputs are primarily IXTEX files, it is convenient to run ETEX once the TgXspec script has run to successful

completion. A viewer can then be initiated to show the praduct on the screen.

This is particularly useful in the case of ‘designSpec.bat’, since in this case TEXspec produces a Noweb file as
output. The script can continue processing to generate both the Design Specification and the corresponding
code. The documentatior can be displayed and the code can be further processed, including compilation.
The sample ‘designSpec.bat’, provided with TgXspec, executes the ‘Floppy’ [2] tool to reformat and provide
a static analysis of the generated Fortran code.

The location of the scripts to be run (both interface and base TpXspec) is defined to the GUI using the same
‘search list’ arrangement used to locate other files. By modifying the search list, it is possible to override the
default processing with revised scripts which reflect the current project, user preferences, or the particular
job at hand.

Output from the processing of ‘name.bat’ is displayed to the GUI user. The display is in three sections:

o Output, which includes both ‘standard output’ and ‘standard error’ listings.

o Errors, to reduce the possibility of error messages going unnoticed in voluminous ‘standard output’
and

¢ a button to interrupt the process or dismiss the display.

Figure 3.14 illustrates the format of the display.



trdesignipec, bac: Running X:\OZdp_seld\ConfigA\TEXSFEC\Ver0006\bin\designipec.pl To produce noweb
*tdegigilpec.bat; Ruming noweave ©0 produce the injcial LaTeX specificacion
>uoveave markup: sarnup  ALFHDS.nm
ave backend: totex -noindex -delay
ave: sarking up
»In0veave: cunhing backend: <cocex -noindex -delay>
v*designipec.bat: Runaing nocangle to produce initial forcran
»>notangle: markup ALVHDS.mw | nc -LWN
svdesignipec.bat: Running cleanfOrtran to Cemave blank lines from the FURTRAN
redesigndpec. bat: Running Cloppy to feformat che FURTRAN
r¥designIpec.bat: Running Lloppy to generatz a static amalysis
**desiguipec.bac: Rumning clesntex &0 reacve tedundant sections of che [aTeX specificaticn
Tvdssi gnipec.bac: homing pdflatex o process the LaTeX specificaticn
13 pdETeX, Version 3.14L159-14f-treleased-20000525 (MiKTeX 2 beta 6}
(ALRDA. cex{pdLrex.cLg}
LaT2e <2000/06/01>
abel <v3.43> aad hyphanacisn pactarne for english, freach, qerman, ngeraen, du
ylang, sohyphenation, loaded.
(C:\prag\tex) tex\latex \TeXspec\Designipac.cls
ocument Class: DesxgnSpec 1999/10/10 vl.0 TeXspec Design-3pec 35.0liver

BETADS ave mazkwp: asctkup ALPMDS.pw

[CBALVA ave backend: totex -noindex -delay

CNTRY ave: aarking up

CLCBOL ave: funning beckend: <tocex -aoindex -deley>

CNCNCY Tangle: 3arkup  ALMDS.nw [ o -LaN
CONFLO

ELMSOL
FLOIND
FACYL

0AMADS
GETSOL
ON

CON

LININT

MJIONS 0z iCC4 NVAULT h
LICING ‘nc [y NVALR T

Figure 3.14: TgXspec script being run from the GUIL The ‘errors’ are any output directed to the ‘standard
error’ output stream. Noweb sends some messages to this stream.



4 Conclusions

Prior to the development of TgXspec no CASE tool could be fuund which could simutaneously

o produce Yourdon/Demarco structured analysis documentation,
+ support scientific and mathematical notations,

o enforce ownership of companents,

® permit sharing of components,

¢ assemble large products from smaller components, and

¢ verify consistency between praducts.

TgXspec is a fully usable tool capable of producing highly presentable and reliable software documentation,
featuring robust mathematical notation. Reuse of components and automatic checking between products
reduces the chance of inconsistent documentation, which has been a major source of software defects in the

past.
TEXspec satisfies the requirements specified in Section 2.1.1.

The TEXspec tool achieves the objective of offering automated support to assist developers of technical
software who wish to comply with the CSA N286.7 standard [4]. Compliance is expected to become a

tequirement for licence applications to the CNSC.

4.1 Maintenance and Future Development

It should be noted that TEXspec development has been, to date, a one man show. If the product is to be
developed in another manner, the following skills are essentiai to an understanding of the technical aspects

of the implementation:

o Java, including Swing,
¢ PERL,

e BTEX, including the generation of ‘class’ files, and

& Navemh

L2 02 24204



Fortunately, these skills are common and none is difficult to learn, with the possible exception of BTEX
‘class’ files.

The following items are considered priorities for future development:

o Editors could be added to the GUI to handle equations and manuals.

o The parsing of the TEXspec files by the GUI is performed by an ad-hoc implementation based on the
FSF reguiar expression parser ‘regexp’. In fact, there exists a YACC-style parser for Java. JYACC
could replace the current parsing. This would make the parsing code more compact and easier to
modify or extend.

o Input file formats may be converted to a format which is easier to parse. For example, TEXspec may
be a natural fit for Extensible Markup Language (XML). This would make processing of multiple
line fields easier to pracess. Internal flags used to keep track of what field is being parsed could be
eliminated.

¢ The configuration file is named as a ‘resource file’, which typically retains settings between runs. The
configuration file might be one entry in a true resource file and could be lcaded at invocation.

e The GUT support for the graphical products (Data Flow Diagrams and Structure Charts) could be
based on editable graphics, or perhaps provide a ‘preview’ window. Having to process the file to see

the format of the output is not optimal.

o More types of diagrams could be supported, including Object Otiented abstractions. Object Oriented
technology from the ArgaUML [22] project might be reusable for this purpose.

o Data flow diagrams could support ‘contrel’ flows, as defined by Yourdon/DeMarco (5, 30|. This dif-
ferentiates between flows that control the nature of the processing from flows containing data to be
processed.

¢ Languages other than Fortran-77 could be supported.

o Some allowance for tracing between design and requirements could be provided. Currently, the most
useful link between requirements and design is the mathematical specification of Design Data Dictionary
entries, which may correspond to Requirements Data Dictionary entries, which allows a reader to
associate variables in Design Specifications to terms in Process Specifications. It would be advantageous
to allow a Design Specification to explicitly declare what requirement is being met.

o The TEXspec system couid be divided into client and server portions, with traffic between them over

a network.

e The system could allow installation of files into a configuration management system. Dependencies
between tiles should be monitored from this system, and security would be enforced.

53



A Sample Data Flow Diagram

Figure A.2 details the input required to produce the Data Flow Diagram shown in Figure A.1. The syntax
is discussed in Section 2.3.1. For convienence, the input has been divided into sections, delimited by a line
of hashes. Note that this file would typically be generated and maintained through the GUL

The first section contains the identification

information common to all TgXspec compo-
nents. kW /—\

The second section indicates that the posi-

ISF

1.433
Sodiem-Chiaride
G ccL

tions on the diagram are specified in inches,
and that the ‘Name’ field in the Require-
ments Data Dictionary entries are to be used
to label the Hows. Alternatively, the ‘long’
name or mathematical symbol could be used.

The third section specifies the process ‘bub- K\
bles’ to appear on the chart. Note that pro- | *C4%¢ e )

\_—’ w
Concetrations

cesses 1 and J are specified to be ‘atomic’, in- :

dicating that they are associated with a Pro- Implemented by SPCGCN

equilibrium-constants = {minor_eq, KCASUL, KW}

e L. _— . fon = {spmien, spemjea, fprion |
cess Specification (Mini-spec), while process :v-mduin- {comc.anions, ISP}

2 is associated with a child diagram. conc-anions = {coac_majoranions, conc_minoranions}

The fourth section specifies the location of Figure A.1: Sample Data Flow Diagram

off-page connectors. This particular diagram employs a convention placing inputs on the left and outputs
on the right, but this is not a requirement.

The largest section details the ‘Flows’ to appear on the diagram. Each ‘Flow” in the diagram is defined with
a Requirements Data Dictionary entry similar to Figure 2.5.

The final section contains notes to be placed on the diagram. This is often supplemented by notes generated
by TgXspec to indicated the treatment of composite Requirements Data Dictionary entries.



W Aq psruemstder Lowyou
LZ'0- tavezzOTRREL
sce invoatey
20~ tusoryosyul
whe e rssoscli \epTao (U)-mnIpos\ \2en{py 103
200 TIPIIEMOBOZ Lo ey L Tou e\ \eie no v 1oes
are tmotd
SC‘D tImajpoTmget
(1] ooty
SZ'0 tusrineyyul
S BOTIBIIUSCUOD\ \ WP 120 TIO- W TP\ \ 1Dy oy
SHOTIV FIUBAUSIA L UO TUYA L JOUTI\\ 839 (D T8 twozy
[~ ] tmots
44 tImezpoTeqeT]
§'t- tuorioeypul
SEOTIEIIIBAO\\ P T20 YO - Wn Tpog\ \ aen Py iog
FUOTIEIIUSOUOD, \CISYdINg - e IS TED\\@Iw NOTE) 1m0y
L 4 1m0Y8
t'0 tIsegzoteqel
t'0 teodtey
L'D« {worioeTyUI
3018 IIUBaUOD\ o TURA\ ToU I \ 018 IO TR) fog
ORI esed\ \rieyding - un o TED\\ese nOTe) 1uny
» tmo1
4 t3Ivegroreqes
§'ge tuorinegrut
SHOTIVIIUNOUCO\ \ 9P 130 NO-wn Tpog i\ Aoy 1og
8011 er1vecuoD\ \mivdding -en D TED\\#1e RO 1) 1y
o tnots
oT'0 tIsej0TRqe]
er'n teoaten
§0't- tuamperiur
o TIvIIUsoUeIA LU TUYA L TouTI\\e3e (ROt e) iog
SUOTINIIGROUOD L ImidIng - SN IO PO\ @I (RO TE) twezg
o tmota
Z£'0 taee0TeIwL
st'o tengtod
£- ‘tuorioetsul
SHOTIRIMOUCON\SPTI0 TUO-wn TRog |\ s ipy 108
*50 11810800\ \Pteydmg-an o e\ \eIe RO 19) tmoxg
me tmots
£t'0- tIezpOteqe]
] {eogtoy
g'0 tworiowtsvl
e whino iop
a0 11 #r1usowes) \siruding-mn T Tea\\ele Ao Ted twazg
men tmots
44 tIN030TEPT
g« tuotaoerjul
SU0TINIIINOUOIN\ S LI TUD~n TRog\ A senlpy 183
SUOTIW IR0 \uoTuYi \Iou T\ \ereno Y] iy
stuoTowtou e DUSO 7]
SE2'D- tImeg 0 Tev]

‘0 1eoaTog
§0°0 tuoroerzei
spITUeIcUTE Duce jading [T
SweTIT RO\ \ o gL L 20U TI(, LT w TRo tvD 1m0a

ayo HmIou Ty Buse

tnota

nno

< o
120 ndino

CUOTRS AUREUDD\ \BP 130 TyD-am Tpog\\ 3en( Py
L=

st'o
t

€0

481 sading

euoTiR2EmONET\\P 30 TuD-wn tpog\ \ 1en{pY
aut

o

c'o
suoTaIvsumoUes\ \SP 1o Tu) - e tpog\\ 1en Py
ol anduep

[ ]

(1]

Ete0-

FUS TIRI TUBCUOI\ \PD T 614D tpog\\ 1en(pY
wdde yndig

wids

]

£'0

suBTIvIIURCUED\ \To T L 20U DN\ \#1W TnOted
ydde Indiy

wiis

€10~

L]

10~

SUO tIRTIUBOEOD\ (e TUW\ | 30U Y \e1e (o TeD
uorede anduy

o rmie

E10-

]

z'o-

FUS £ 2 TUCUON L HO TUYY | & 33’3!153
) Joutm it

e sourw

[ 13

13e0530t0qwt
1scatow
tuori0mTIVY
ioa

iwoig

taora

tiseaz01eqwy
1sogtow
tuoriontul
tog

teng

kmara

ryeas3018qet
1eogtew
1ot ygur
108

teozy

1m0t

13983 2018qw1
tuarioe gyt

13e8)010q%1
teod o
luataoe tauy

13885301 8qv]

2'0- iusrioeygur

suo eI Ieowes\ \BpTIoTUD - W TpOR\\ A enipy
wvolmie andup
wotwde

c1'o-

zt'o

c'o

suo \\ dy tote\\enemotes
uolwie yndisp

wl{wde

[ 13

*0-

wprIn - amipy

FUOTINI IUBOLHOI\ ! T zaqvcuqhww ey
worrdy

-Ii-!.luccu/,!ii.!!io;!-ilﬁu
ueiady yndut
woixdy

13083301 8qw1
taot108 (gl
tog

tensg

tmagy

tyeepoTeaw]

St 0~ tIME330T0awY
-] 1004 tod
€'0- twovrioetyv
sustywriusouod\ \e1eud g . m{wd\\memoted log
nevod Anduy 1woag
el taots
AN X1 ]
e indang ! SO3DBEWOD
ce' u ’ taw

™ ouon 1
§'y 1y
0 indino t 203000003
s's'y (ka4
amt wnding taoioeuuo)d
s's'o e
mt andip { 101000000
$'0'g'0 1y
dde andut { 101000
v'e'o tay
andug | 2
s'ti's'o [l
b routw sndig | 30100WH0D
§'2'8'0 5ol
dolede andup 1 203001900

z's'e

tay

dotady Indig {soyoeuuon
t's'o t3¢

Lomeot Andug 1 101000003
orwole

3 1y

sHOTINIIOUOI\ \ep 120 THD- mn Tpog\\ 1enlpyY
ce'se't

1§ wescosy

13y

SO TIE1WN0U0D\ \UO TUYA L rouTir\\e1e tmoTed ig sewcosg
orwose

t'e tay

suorsRnItecuo) \steydyng-antorea\\memotes it ssecolg
Lol | e oqey

syt tesren

0002 ‘¢z dna 1wAwTIwetde

IVATID Gawly

ooog ‘e wma

WaTe DOL

bosey

1= D01

a0

s\sapunoan ¢ Yotastoeds SutRIEIeg

{ swrtrenm ydny
tersmg
tacgsny

| fepowarg
taoelosg
1ot
1e1ats




B Sample Design Specification

Figure B.3 details the input required to produce the Design Specification shown in Figure B.1. The syntax
is discussed in Section 2.3.3. For convienence, the input has been divided into sections, delimited by a line
of ‘%’ characters.

8.1 Output

The header contains the identification information common to all TEXspec components. To keep track of
the components used to assemble a Design Specification, or any TEXspec product, the XTEX files generated
by TgXspec contain commentary that identifies all referenced components, and the version of the TgXspec
module that assembled them. A date-time stamp is visible above the header in Figure B.1 (in the upper
left corner) to uniquely associate the KXIEX file with the associated product. By retaining the IXTEX file, it
is possible to audit the content of any product. Figure B.2 shows the top of the IXTEX file associated with
Figure B.1. Note the matching date stamps and the list of components, including version identification.

Below the header is the default cade chunk << ¢ >>. The code chunks that are represented by tables
(<< argument >>, << local >>, ete.) are generated and are not identified in << e >> by obvious
association. The TEXspec module cleanter.p! removes these code chunks from the Design Specification.
since the tables contain a superset of the information in the associated code. Generated code chunks that
are not represented by tables (<< interface >>. << description >>, etc.) are displayed using the usual
Noweb notation.

User written code chunks, which are not referenced in other code chunks, are placed in << = >> in the order
that they occur in the input. [n this case << checkArrayBounds >>, << initialize >>, and << main >>

are in this category.



M o 008 & IR oLy

; [ INROC
i Module: ALPHDS : Simulate fuel refease from alpha radicly Version 02H
Author: S.E. Qliver Feb 23, 2001
Implementer: 5.E. Oliver Mar L6, 2001
. Reviewar: T.W. Melnyk Mar 15, 2001

Module components:
=
{interface)
{description)
{directivas)
finclude)
{argument}
thocal)
{data)
{checkArrayBounds)
(initialize)
{mam)

Description:
{descnption)=
Simlate fusl release froa a pha radiolys:s.

Calling interface:
{interface)=
SUBROUTINE ALPHDS(CALTYP,NT,TIMSS,ALPHRE,CCNTIN . CX)

Arguments:

Argument Long Name Symbal  Units | Dimension | DataType | /O
CALTYP call type: "TIMES™ or "VALUES® )} . character | |
NT : number of simes in subsenes 1] scalar nteger | 1/O
TIMSS  umes for user time senes fal . double | 11O
ALPHRE : release rate from aipha radiolysis | A &, it]  [mol/a) . double 0
CONTIN . continuation flag 1] scalar boolean | O
OK . jons thus far ok fag 1] scalar boolean | O
Preconditions:

NT: none if CALTYP = "TIMES"
> 1 if CALTYP = "VALUES®
TIMSS: none if CALTYP = “TIMES™
> 0 for (1.NT) f CALTYP = “VALUES"

Postconditions:

NT: <6 + NOGALPH if CALTYP = “TIMES®

unchanged if CALTYP = “VALUES™
TIMSS: > 0 for (1.NT) if CALTYP = "TIMES™

unchangad if CALTYP = “VALUES™
ALPHRE: unset if CALTYP = ~TIMES™
>0 for (1.NT) if CALTYP = “VALUES"

CONTIN: = TRUE
oK: = TRUE

Figure B.1: Exampie Design Speciiication (i of 3}.

5T




Constants (PARAMETER):

Constant Long Name Units | DataType | Valve
FMXUDOS | Max dose rate ts ents for radiclyss | ] integer mn
TDELTA | duration of delta fn input fal double | 0N

Shared (COMMON) variables:

Shared Long Name Symbol Units ~ Dimension . DataType ' I/0
AALPHA | Fit coefficient 3 for alpha radiolysis da saatar double 1
ALFCOF | Scale factor for alpha dose S scalar double 1
ALPHDO | alpha dose to used fue surface a [Gy/a]  MXUDCS  double I
ALPHTI | ume values for aipha dose rate al MXUDGCS  double i
BALPHA | Fit coefficient b for aipha radiclyss by 1] scalar double 1
CALPHA | Est vanance alpha [ i} saalar double !
DALPHA | Number of data poinzs for alpha dose ft L+ -_‘_': 1] ealar double I
EALPHA | Smristical parameter alpha radiotysis z—»———-—r(“m o i scalar double t
FALPHA | Maan experimenzal alpha radiotysis ogn ] scalar double !
NOALPH | num entries in aloha dose ts s I} scalar double |
STDNOA | std normal vanate for alpha dose rate Nal0- ) i scalar double 1

TCOOL | effective coaling time [ 3 scalar double 1
USURFA | effective surface area A [m2} scalar double |

Preconditions:

AALPHA: sat

ALFCOF: > 0 for if CALTYP = “TIMES™
none if CALTYP — " VALUES™

ALPHDO: > 0 for (1. NOALPH) f CALTYP = “TIMES™

none if CALTYP = “VALUES™

ALPHTIL: > 0 for (1..NOALPH) if CALTYP = "TIMES™
none if CALTYP = "VALUES™

BALPHA: sat

CALPHA: st

DALPHA: sez

EALPHA: set

FALPHA: set

NOALPH: 1 < NOALPH < MXUDQS

STDONOA: sat

TCOOL: >0

USURFA: > 0

Local variables:

Local Long Name Symbal Units Dimension . DataType | Nom
ALFDRL . dimensioniess and factorsd alpha dose 1] MXUDOS  double | save
ALFREL . relativs alpha dose rate {Gy/al scalar double
ALFTRL . dimies e for alpha dose rate il MXUDOS  double | v
DOAFLG DOALOG is caleulated 1] scalar boolean
DOALOG * log{prediciad alpha dose rate) Ing(d} i scalar  double
EXPONA - log{predictad aipha corrosion rate) log e, (8} a scalar double

| . general index i U scalar neger

J . general index : 0 scalar integer
MOONAM - module name i 6 character
MSG . ertor message 1] o4 character

REFRAA : relative aipha dissolution rate [malf{m2a)] scalar double

STOPP ' signal to stop processing 0 scalar boolean
TIMREL : relative tme fa] scalar double

Data:

MODNAM: "ALPHDS"
STOPP: TRUE.

e 0 . . Y Thoerrlome T
S NPULS MPeAl LIARILIPAS Lrss (es o prritiiate s is

In &8\
A® “e e

38




Module Precorditions
ALPHINL} € TDELIA + TCOOL

This moduds & used by SYVACS to et up a time serfes. Far sach time savies. [t s first called once with
CALTYP = "TIMES™; then it is callad posaibly marty times with CALTYP = "VALUES" until the time series
Is completas.

Excagtions

if & valus cannot be interpolated at any particular time bacause of bad duse-time deta an evTor message is
writtem using WERR

if CALTYP £ ("TIMES” or “VALUES"} NT,TIMSS.ALPHRE and CONTIN are not set and 3n error memage
i written using WRERR

Sumemary
ALPHDS imgplements Data Flow Diagram processes ‘Fuel Dissolution Rate Alpha’, and scales 0 the asrface
area of the fuel {ie part of ‘Calculate Total Fuel Dissociation Rats').

The dose-time relationsivp is provided numerically as n, ondered time-dose pairs. The final valee prowided is
continued as a constant for all longer times. Linear interpoiation on the logarithmically transiormed values
ia usad for sil intermadiate times. To aweid owmarical problermns with logarithms of smail times, the dase is
assuned to be zero for times smaller than the small time TDELTA.

The primary function is to nplement the theory manual squations in the 'Cegradation Rats of Fuel® section,
for a-radiolysis. scaled to the fusl surface area. That is. we are computing .1 &, (L), Here. the theory manusi
notation would have d = q In &[1) — o (1) 10V0M Ny

This implemantation generates a SYVAC] time saries, and is designed in accordance with the tamplate provided
with SYVAC]). Tha input and output arguments are defined by the template.

Check the numerical dose-time function that the user wpplied in the input file (a8 sanpled parameters). If too
many data peirs have been wupplied then write an eror message.
{checkArrayBounds)=
€.....Check array bounds
IF {NINT(MOALPH) .GT. MXLDOS)} TEEM
%SG = *FYEL DOSE YALUES OUTSIDE ARRAY HOUMCS
CALL WRER(MODNAM,MSG,STOFP)
END IF

Initiskize local variables and the output argument "0K”.
ALFREL, TIMREL and REFRAA are alweys unity. and are used to resoive physical units of the values. This
aselets the UMITCK {unt checker) static snalysis tool.
{initiafioa)=
| - loitialize
0K = .TRUE.

Figure B.i: Exampie Uesign Specificaiion (3 of 5}.

39




Determine the madule flow based on the ‘call type’. Signal an error if the call type is neither "TIMES™ nor
"VALUES".
{mam)=
IF (CALTYP .EJ. 'TIMES') TEEX
{initiai Times)
ELSE IF (CALTYP .EQ. 'VALLES® ) THEN
{supply Values}
ELSE
MSG = 'UNIDENTIFLABLE CALL TYPE *// CALTYP //
L 7, SHOULD BE “TINES" O "VALUES™*
CAL! WRERR(MDNAM,MSG,STOPP)
END IF

RETURN
END

Provide somae times to initislize the time series. The ingut file contains (time,aipha-dose) pairs in pscameters
(ALPHTIALPHOO). These times are offset by the cooling time TCOOL. For initiskzation times use ol the
times on the dose-time function supplied and a number of times around TDELTA where a discontinuity occurs.

Alsg, initiaiize tha doss values in the doss-time function. by scaling by the uncertainty factor ALFCOF. A
singje uncartainty is appiied 1o the data for each sirwintion using the sampled parameter STONGA. then used
comistently (regardiess of time or dose rata) throughout the simulation.

*TSNOTE®"" This code couid he changed to redefine ALFDRL to contain the log(doss). This wouid remove
some of the overhead for interpalation betwsen points. Also, the interpolation itssil couid be performed by
SYVAC] if the does-time function were represented as a time series.
{moal Times)=

N =6

TIMSS(1) = TDELTAs!.0100

TIMSS(2] = TDELTA=1.00000.00

TIMSS(3) = IDELTA=0.9300

TIMSS(4) ~ TDELTAD.9999%900

TIMSS(5) = TDELTA~Q.500

TINSS(6) = TDELTAs).100

DO J = L AINT(NOALPE)

IF (C(ALPETI(J)-TCICOL) .GE. 0.00) THEY

AT = NT+1
TIMSS(KT) ~ ALPETI(J)-7CCCL
EXD IF
Covennnnn Zaitialize <he desc-=:iae functiocn by applying
[ - the unceztainty factor ALFCOF and mormalizing <o
Corrvnnnn resove physical ucizs

ALFORL{J} = ALPHDO(J)*ALFCCF/ALFREL
ALFTRL(J} <« ALPHTI{I)/TIMAEL

END DO

CoxTIX - .TAUE.

Figure B.i: Sxampie Dewign Jpecificaiion {4 of 5.

60




Compute cosrosion rate dua to a radiolysis at specified times.

SYVAC3 supgiies times at which the corrosion rate is to be evaluated in TIMSS(1..NT). The calcuiated vales
are retumed in ALPHRE(1..NT).

The valus of logéy(t) = log ey (L] ~ Vg {0. L} su g, is computed in local variable EXPONA.
Muitiplying by the surfaca area yields the corrosion rate for an entire container.

{supplyValues)=
DA J = I NT
[ SR Couvert used fuel dose rate to disscluz:ion rate

IF (TINSS(J) .LE. TDELTA) THEK
ALPHRE(J) = 0.D0

ELSE
{LogAlphaDoseAtTime)
EXPOHA = BALPHA « AALPHAsDOALOG ~
t STONGASCALPHA=
1 SQRT (DALPHA» EALPHAS (DCALIG-FALPHA) ve2)
ALPHRE(J) = BEFRAASUSURFA~10.DOweEXPONA
END tF
END DO

Evaiuate the log of the predictad alphs dose log{4} at » particidar tine TIMSS(J).
{LagAlphaDoseAt Time)=
IF (TIMSSCJ)+TCOOL .LT. ALPHIT(NINT(NCALPH))) THEX
-t
DCAFLG = .TRUE.
00 WHILE ((I .LE. NINT(NOALFY)-1) .AND. DOAFLG)
[~ <f tize is greater thaa TDELTA detezmine log dose rate
IF (ALPETI(I). EQ. TIMSS(J)+TCOOL) THEM
DOALOG = LOGIOCALFDRL(I))
DOAFLG = .FALSE.
[ - aterpolate dose rate values an a LOGIC basis
ELSE [F ((TIMSS(J)+TCOCL .GT. ALPHTI(I}) .AND.
4 (TINSS(J)+TCOOL .LT. ALPHTI(I#1))) THEN
DOALIG = LOGLOCALFDRL(I)}+
(LOG10(ALFORL(I+1)}-LIGIOCALFORL(LY} 3/
(LOGIOCALFTAL(I+ 1)} ~LOGIOCALFTRL(L})) =
(LOG10((TIMSS(J)+TCCL)/TIREL) ~
LOGLOCALFTAL(L) )}
DOAFLG = .FALSE.
END IF
=11
0o
IF (DOAFLG) TMEM
Covevenenenannn VYalues casnaz bae interpalated
¥SG = 'FUEL DOSE VALUES CANNOT BE IKTEAPILATED *
CALL WAERR(MODNAN XSG, STOFP}
ENU [F
ELSE
DOALOG = LOGIOCALFDRL(NINTCYCALPN)I)
END IF

LA LN A

'

{linclodey=
[+4

INCLUDE *¥XUDOS. INC*
INCLUDE ‘SPALPH.INC'
INCLUDE ‘SPRADI.INC*
INCLUDE 'TDELIA.INC’

14
{directives)=
IMPLICIT NONE
c

Figure B.1: Example Design Specification (5 of §).

61




t sma)> this file was generatsd autamatically by nowsave --- batter not adit it
$... output genarated by I:\Ufdp sa04\Config\TEXSFEC\Ver0006\bin\designspec.pl on Fri Mar 16 14:08:40 2001
S... camponent version

... :\Ufdp_sal4\Config\TEXSIRC\Vaz0006\bin\designspec.pl 02¥

S... designspec 021

S... W:/Bba_shr /XI0/tmp/CC402/V1e/V0204/dictionary/ccd/alfdxl.ddd 018
S... w: m._mmum/cc‘uchmzoc/mum/ecuuzm ddd 01B
... W:/Ebs_ske/XIR/Imp/cC402/V1L/V0204/dictionary/ccd/alterl.ddd 018
s... W:/Xba_shr/IPA/Imp/CC402/V1t/V0204/dictionary/ccé/alphti.ddd 018
... W:/Kba_shr/I¥A/Twp/CC402/V1t/V0204/dictionary/ccé/contin. ddd 018
$... W:/Eba_shr/IMA/Imp/CC402/V1t/V0204/dictionary/ecd/doatly.ddd 018
... W:/Eba_shr/IA/Imp/CC402/V1t/V0204/dictionary/cad/L.ddd 018

s... W:/Bba_shr/IMA/Imp/CC402/Vit/V0204/dictionazy/ced/3 . ddd 018

... W:/Eba_shr/XI8/Imp/CC402/V1t/V0204/dictionary/ceé/mdnam.4dd  01R
,... W:/Eba_shz/IIN/Inp/CC402/V1E/W0204/dictionary/cad/meg.ddd 013
... W:/Eba_shr/TIN/Imp/CC402/ViL/V0204/dictionary/cad/mudas.ddd 018

| W:/Bba_shr/IFA/Iwp/CCé02/Vit/V0204/dictionasy/cod/ne.ddd 013
| . W:/Sba_she/IVA/Iwp/CCA02/V1iE/V0204/dictionary/cod/ok . ddd 018

... W:/Eba_shr/IPA/INg/CCAG2/Vit/W204/dictionary/ccd/refras.ddd 018
... W:/Bba_shr/X¥A/Imp/CC402/V1e/V0204/dictionary/cad/atopp . ddd 018
... ) H /m_mlxn/np/eclumzmzulmmm/uclmn.m 2 {4
... W:/Eba_shr/IFA/Imp/CC402/Vit/V0204/dictionary/ccé/tinzel .ddd 028
... W:/Eba_shr/I¥A/Imp/CCA02/V1t/V0204/dictionacy/cad/tinas . ddd 018
... x:/utdp _sa0é/aonfig/Theorian/ver0003/quations/prediatedCorzlin.teqy JIA
S... x: fuldp --u/mumm/mooosmmn/mouxw teg 01A
8... =z /uzq sa04/config/design/ver0003/DesigalD/anlpha.ddd

... 2:/uldp_sa04/config/design/ver0003/DesigniD/alfcot. ddd au

... x:/ufdp_sa04/contig/design/var0003/DesignbD/alphdo.ddd 018

| T x:/utdp_s _sa04/contig/design/vex0003/DesiguDD/alphre.ddd Q1D

S... x: /ufdp_sa04/contig/design/vex0003/Deaigndd/balpha.ddd 01R

... x./uzq 2804 /contig/design/vezd003/DesignDd/calpha.ddd 0C1C

S... x./u(b 1804 /contig/dasign/vex0003/DesignbDl/caltyp.ddd Q1C

[ PO x:/ufdp_sald/config/design/vex0003/Designdd/dalpha.ddd 01C

S... x:/ufdp_i IINIMIMN:OOO)MI doalog.ddd 01D

... x:/utdp --u{m/wmooosw/mm 01m

... x:/ufdp_s _sald/config/dasign/ver0003/DesignDD/espooa.ddd 01C

S... x:/utdp_i _sad4/contig/design/ver0003/DesignhD/falpha.ddd 01C

S... x:/utdp_i -auleuzu/wmaoslmmo/w. 018

S... x:/ufdp_i _aa04/contig/dasign/ver0003/DesignbD/stdnos.ddd 018

S... x'/ﬁ!Q sald/centig/dasign/var0003/DeaigubD/toool .ddd 01C

S... ' /uzq_uulea:ulasmlmoauwluuun.un 0ic
\renewcomand ( \familydefault} (cmas}

\documentclass (Designipeci
\usepackage{nowab}
\pagestyle{mpty}

\produatID({Fri Mar 1€ 14:08:40 2001}
\project{cce]

\submodal { INROC)

\title(ALPEDS : Simmlata fual release fxum alpha radiolysis}
\author{s.f. Olivec)

\version{02R)

\dats(Frad 23, 3001}
\isplemantez({s.8. Olivex)
\isplemsatDate(dar 1§, 2001}
\reviewer{?.¥. Malsyk}
\zeviswDate(dar 16, 2001}

\begin({documant}
\maketitle \thispagestylsiempty}

\setleagth{\pazindant} {Oin}
\settoheight{\pazakip} {X}
\ndseziss

\newcomsand{ \sep} { \bagia{picture} {100,20) {0,0) \put(0,10) (\line(100,0) {100} }\end{piaturs} \newline}
\vbox{

\noindant \bfseriss\IANMIR Moduls components:

\mdseries \normalsize

F- BJ: ‘Eﬂﬁ- Ot. iie +y ~ P . :’Y %_.,’?‘r-_ﬁg q.-m :a‘_. l\...{an 0:..&—.:-— ak: i el k

Figure B.3.

62



8.2 Input

Figure B.3 shows the input Design Specification file used to generate Figure B.1. Other input information
was extracted from the Design Data Dictionary, as indicated in Figure B.2. Note that this {ile would typically
be generated and maintained through the GUL

The first section contains the identification information common to all TEXspec components.

The second section provides a description for the module to be placed in both the code and the Design
Specification. For the code, Fortran comment characters (a ‘C’ in column 1) are added.

The third lists the arguments to the module, in the order that they are to occur in the interface. Direction
of data flow must be stated. Preconditions and postconditions are optional, and are added to any conditions
in the Design Data Dictionary.

The fourth section lists global (COMMON) variables. The order does not impact any preducts, but alpha-
betical order is often easier to read. Direction of data flow, preconditions and postconditions are similar to
the arguments.

The fifth section lists the local variables and any initializing data. Note the variable *MSG’ for which the
dimension in the Design Data Dictionary has been overridden.

The next section lists constants used in the module. Values are extracted from the Design Data Dictionary.

The next several sections are free form WIRX, which is processed to the commentary associated with the
first code chunk.

The remaining sections are the user supplied code chunks.

63



SRR 0RRRREIINLAALRLALLELARLALLLAVAAHASVIIBANCERAAGIISARAAO0S

anduy
vaunen

0 $beb\¢
Induy
70004

L
anduy
yonais

anduy
HaTVOR

anduy
VHaTVA

anduy

SR TVON) IBAONT) ¢ T =g

208
anduy
VHETD

e
anduy
vHa TG

wBRYIVAL = JALTYD JY wuod

wEBEHILG = 4LLTYD 3T (RATVOM 't} 203 o $hed\¢
anduy

118a8TY

WHAYIVAL = ARITVD 3% euou

UEENILy = QALTVO ZF (HATVOM' ‘T) 30y 0 ¢beb\¢
Indug

oanaTY

wSUYIVAL = 4ALTYD JY suoy
»EBNILu = JALTVO JT 203 Q <
anduy

20081V

08
anduy
RV

tnora
tpexeyy

t1o11 TPUOOely
tnors
tpeaeyy

tupyl tpucosss
thots
tpeawyg

thots
tpeaeyy

tnota
tpezeyg

tnota
peseyy

1O 1] TPUODELS
»’n.ﬂ-

ipereyy

tuorl TPUDCeLY
tnory

tpereyg

oy Tpucoela
tnots
1pereyg

tuaty fpuocetd
inots

tpeanyy

tUoT3 IPUOOeIy
thota
tporeys

yOTI TPUCOsay
thota
tpeaeys

1O T3 TPUOCOeLy
tnots
tpezeyy

SUALARALAAAASARALLARRLRALALALAALAULLRELAAA SRV EE00408000

WL = {UOTITPUCOIROY
andano tnoty
NO 1tewnBay
‘amiy’ = {tovyypucolsoy
andano tnotd
MIZNOD t3usemBIy
wEMYTVAL = SXLTVO 3T (IN'‘T) 303 0 theb\¢
uSEHILu = SALTVD 37 1403 TPUCO3Isod
andinoe tnota
TURATY t3uewnBay
#BUYIVAL = SALTVO 37 pebusyoun
wEBHILy ~ JALTVD JY (IN‘‘T) Zo3 o gbeB\¢ !toy3TpUcoIsoy
«BITTVAL = AXLTeD 3% (aW'‘1) 303 0 theb\§
WEBMIIu = JALIVD JT suCt  {uoY)tpucnesy
andano’anduy thota
ssM1L t3usumBay
uSEIMIVAL = JALTIVD 37 pebuwyoun
«BENIL. = SALTYD 3T HATVOM + 9 g$ber\¢ :Uoryipuccisos
WIENTYAL = AALTVO 3% T $bwd\¢
»BWMIL. & JALTVYD 3T BUOU  {UOTITIpUOORIY
andano ' yndut 1nota
M tJUswnbday
Induy tuors
4ALTeD tusunBay

SEASALERARAAAARNNNLTANHRNAAHALOTALARARALAALATININASACLERANNE

uvovidyaosep jepy §
‘orskintper eydie wWoIj SsERTSI (ON] SIWTNATE
—t<uoTIdrIneepy

FEAABALAAAALBLEUNLLEATAEL R0 ELALLLAAANALERA00000080S

U
ENTLNOWENS * LLEVELWOS
syshyjorpesr wydiy @033 esveiss (Eny eSIEinmyy
t00Z ‘9t awmt

qRutoM ‘u's

100z ‘zZ I

AGATIO ‘T‘S

100z ‘€z qea

20AYI0 ‘T'S

DOMNT

00

1zo

samaTv

tpawpumyg
telenfuwy

t oureyuoy
tereguesaed
tzone TAR
t@3wqI vews dug
{ 2@030ewe YA
te3eq
tzoyany

t yopomqng
t3oefoxd
tUoYsIeA
ternpos

Figure B.3: [nput required to produce Figure B.1 (1 of 4).



ooooooooooo‘oo'oo.ao‘ooooo.o‘ooooooooooooocoo.aooo.oaooonao
LAY

spinmogAeIvxosto Jepe § A1 guy
{44018 ' DEH ' HNAOM) HHDIN TTO
i BANNOW XYMV RQISLN0 SITIVA X800 ‘1304 = DEM
NISHI (BOQMXH ‘1D° (HATYOR)ININ) A
spunoqg Awrzw yoeys- -t o
=ccopunogiviayoeysss
‘shussewl JO1IW UW BIYIA U] periddins Useq aart sxyed viep Autw 003 3%
¢ (sawivweied petduwe sw) ery) Induy eyl
uy peyrddns 108N Syl VY] UOTIDUNZ SWYI-SEOP [TOTISANU B NOWYD

-occoovooooooooooooooaooooooooo.ooooooooooooooo..cooo-aooo.““on
.\

‘ejurdeey eyl Aq peutrjep eiw saueenbiw Indino puw Induy ey
‘EOVAAS HATA pepiacad elwidus) eyl It souspiIcocE Uy peubiesep
o7 pue ‘seties ewt) EIVAAS ¢ sejwisued torIRjuswetdmt FTYL

‘g {urrrr0oopeInTPRadiUoTIenbgepniouT\$

uy geydiw\ Aynbe\ pd sAwy PTNOA UOTIETION TENUwN Arxoeyd eyl
‘exel  ‘${THETVIUITE\§ BuTIndeoo saw sa ‘et jeys

‘esaw sOw3iIne ten3 eyl 01 petwns ‘stsArorper-(feuydre\é)

203 ‘uotaves ;teng 30 S3wy UoTIEpRiBed, eyl ity suoriendbe [Enuww
K3oety o3 AUswwidey 03 et uworiouny Kiewrad eyz

‘N21E0L SWEl [TEWS Syl UNY) IeTIves SOuT] 103 O10F &3 O PINMeESY of
esop BY] ‘sewyl Tiwws JO swyltaeBor YITsn swerqoad [eotiewny pjoAw of
‘SeWT] SIRTPONISIUT TIW 103 pesn #Y seNn{eA pewiogeuwsy K{resywyirseBory
oyl uo uorawiodiesuy Jweuyry ‘sewrs 3sbuor (1w 103 JueIsUCO

v s® penuy3iuco sy peprAcad entes teutl eyt ‘eiyed esop-swr) peiepro
¢{RSTVON ) tdww\¢ sw K{TeoTiewnt peptacad s3 dIUFUOTINISI SWII-SE0P UL

‘{1938 UOTIEWTOONSTA TINS {WIOL SIWINDTED,

30 33wd ®F) (ENJ Sy} JO WeIW SOVIINE WYY O ES(WOR puw
! ieydiy @3wy uotIntossta jena,

sessencid weibeyg MOT4 ®ieg SJUews ANy FORSTY

{ {Kawesmng jout yampuny ) 3qQ\

cooo.oooooa-oocoocooaoo.c.oooooo.oooooo..ocooooco..-o-oon-a“".-
"\

NiNA BUyen Le33TaIn ¥Y ebussew I031® ue
PUT 188 30U SI¥ NIINOO PU® TUHATV'SEMIL'LIN
(uERTTVAL 30 LBEMILu) WU\E ARLTVD 3¢

WMIN DUYeNn te33714 #Y7 sbuseew IOIIG UY WIWP SWTI-BEOP PG JO
senwoeq suyl awrnoyiawd Auw 3w pejerodieiuy eq J0UUNC SNTEA ® 3T

{ {wuoy Fimugrampun\ ) yu\

..oooo..-.-.-.-.-a..o-coo'ccooo.ooo.oo.ooooooocoooocoooocoo“""”

‘e (dE00 87 eeTIes ewT) Syl TTIUN LEEVIVAL = JALTYD

yate swmry Avww Apqieecd pet{ied &7 11 eyl ‘uEEMIle = JLLTVD
HITH SOUO PE{¥D 1031] 7 I ‘weyies swyy Youws 10]

‘emtaes swt) @ dn Jes 03 gOVALS AQ DESR ST ETNPOW FIYL
S1T000LIaayawen, + (VITIAL Imaaeen o1\ { (1) IIHATYIsuIve g

{ {suatyTRUCORIS .-.ﬁa:.!-:uis/wuu”
AOALHABSRANAARANEARLALHRNEELRUALLAEAARALAEAANRLAERAGENRNN
vi1sas taueysuod

SOANOL tavezeuod
BAAAALETAANANALAAEAAAEALERALARRLLLLAAREINCLRAGVRNCNCAN
TIWNLL

‘ arods iwleq
44088

niand

t yeoory

t tenon

Figure B.3: Input required to produce Figure B.1 (3 of 4).



setniiealiddns Jeps )

oa ang
41 any
YMOAXNe s 00" 0T VAUNSNsVAITY = (L) MURATY
(Zs o (VHITVYS-DOTVOO) » YHATVE $VHETVA) 2408 1
SVYHATYO s YONALE 1
+ DOTVOQeVHATVY ¢ YHATVH = YNOAXE
<coutLIvesogRyd Vo>
2613
0a'0 = () NMRATY
NEHL (vi130L ‘T1° (C)ESMIL} A1
9392 UOTINTOSNTP OF SINT SEOP [SNJ PEEN JIABAUOY  * 4"+ 4+ 2
'y = r o

wccmuniuplrddnes>s
‘2OUTEIUOO SITIUS UR 203 e3ea
©OTE02100 eyl FPLetA weiw sowzane eyl Aq BurKrdranet

‘YNOIXE STqQuTIRA [wsol Uy peaindsoo st
¢ Borrionpeintpezd)uorienbrepntout\§ JO enteA B

S {IM 1) BMRAIV UY POUINIGZ BIW SSTPA PEININOLND Sl
S laM ThEmsIL UT pelTnjEAe

®q 03 97 ejwd UDYROIIOO WYY

Yotys e sewty seriddne gIvALE

‘esity petjroeds 3w
srsAtorpes geydiw\g 01 snp BIw3 toysorioo windeon

ooaooooooo.o-o-.-oo.ooocooooooooooooooooo..o.oopoaot"'.-'..n"."
]

SeWTITETITUY JoT4 §
‘amis’ =~ HILHOD
og anx TIMIL/ (C) TiRATY = (C)NILETY
TIUETY/A008TY (D) OTHA'TY = (C)THRATY
s37un jeoyelud eAcwmyt it o
03 ButRTiTeloN pUs SOOA'TY 2070€7 AJUTEIINOUT Wyttt 2
BuyArdde Aq UOIIOUN] EwTI-BE0P SY] SETTRFIFULC L e
41 ang
10002~ (') 1RSIV = (L) EoMTL
T4EM = LN
MaHe (00'0 ‘EO‘ (10008~ {C) IIRSTVY } AT
{HATVON) ININ'T = © Oa
0at‘osvi1ads = (9)BEMIZ
0aS‘0sV2 2GS = (S)omMId
00666666 0s¥i'120L = (PISEMIS
0066 °0sV11201 = () sMIL
00%00000° T+¥3130L = (Z)semiz
0a10° T+¥L1302 = (1) SuMIL
9 = IN
= LBORTLIETITUL>D
‘series ewy) ¢ ev pejveserdex
IR LOTIDUN] SWTI-SE0P WY 3T
€IVALS Aq pew10jaed eq PInooO JIes3T uojawpodisyuy ey3 ‘oeTy
‘m3urod ueenieq tvosjerodiezut 103 PYSYIBAC Bi) O SWOT BACESI
pInos e3yr  ‘ (esop)Bot Sy UTEILUCO O3 THRANIV
sugjepex 03 pebuwyo eq PINCO SPOO FTUL sseklONsse

‘000t swyy BuYTodo ey AQ 19wJJO saw sewy) eselyy

‘yoryernuye syy Inoytnoayy

{w3ez ssop 10 wwit3 )OO sseipiefel) KA{Iuelisisuco pesn ueyy
'wONQLS Ivjeweawd petrdees eyi Buten

yorIeINuTE Yowe 103 wiep eyl 03 petrdde sy Kjureraeoun etbuye ¥
‘A004TY 3030w Kaurejaeoun syy Aq Buyteos Aq

‘O TIDUN] SWTI.EBCP GY] UT SONTRA BS0P O] SETIETITUY ‘tosty

‘wanooo K3pnupavoostp ¥

SISy WI130L PUNOIE semyy 3O lequnu w puw peyrddns uorioung
SuwyI-PROp B3 U0 sewtI SUI TIV OFN SOl UOTIETIEIITUY 208
¢ {oanaT’ 1anaTV)
vavyowesnd Uy sited (esop-wydiw’ewtl) SUTRIUCO BTTJ Induy eyy
‘EGYTION BMIT] ) SEYIRTITUY O3 SONT] SWOE SPIACIL

o-oc-oaao.a.ocoaacooa.o-ococ.ac.o-.naao.oo.cco.o.o..oooo.oo“"“”

Uyww Jopy §
ang
Hant

a1 anx
144018 DB’ HVHOOH) MMM ‘T'IVO
JuBNTIVAL MO WSIMILI. TR awnous ' 1
/7 d33TND /74 BAAL TTVD TTAVIAIINEOIMN = DM
srin
ccvanyepltddnes>
NEHL ( (BEYIVA: ‘O3 4ALTVD) 41 1913
<<ETWILLPTIFULLD
MIHL (oEMIL: ‘0% 4x11VO) AX
Ut
‘WAENTVAL TOU LSENIL. awmpiteu s7 adfy (w0 ey3 Jt 10118 uew (wubyy
‘edhy TTEO, eyl UO pesEq AOTJ SINPoW SYY BUTWIeIS]

.oo-oao.oa'..o'o-o.oooocoo.oo..o.c.ocoo.ocoooooo.oo.ooooooo“ﬂﬂ

ORYIUIITUT JOpe ¥
0a‘'t = TINIL
00't = \WWiasd
0a't = THAIVY

‘En¥L’ = %O
oyiEyIFULC ‘!’ o]
=<CCORTIRIIFUTSD

‘roo3 syshiuue OTIWAE (IGR0GHD ITUN) ROLINN
oYyl SINTESE STYL ‘PENTEA By3 JO sITuUn teoysiyd sAtose:s
03 pesn waw puw ‘KItun skesale S1v VAT PUT TIWNIL ‘TndaTY

‘a0 JUswnfiw INAINC GYI PUR SEIQETINA [ED0Y OZTIETITUL

Figure B.3: Input required te produce Figure B.1 (3 of 4).



(poauy) AudeaBot 1qTa\
{ toee jethyeiydesBot rqray

...3....33.........-....3:.-.....-..-:o...:o.o.....uu.”
e
swriiyesoqeydvBor Jeps §
21 ONZ
{ { {BETVOM) ININ) THAETY) 0IDO0T = DOTYOD
w13
a1 ans
{44028 ' DM WOOOM) Y TIN TTVD
| OXIVICAMBLNI 3% LOMMYD BIYTVA P0G 1AM, = DM
gﬂﬂah.ﬂp—d 3 Hga l.n-ﬂ.> .............. o
N H: {DLAv0O) A1
00 UM3
fel = 2
AL QN3
‘IeIV4’ = oravod
(4 (1) M2 LTV} OYDOT x
- {Tmmrd/ t1000+ (o) s 3) Y 0100T) t
w1 LRIV O1OOT- ( {T41) TURATY) C1001) T
Zti {1y niarvl 01007- (T +1) TUQLTY) 0100T) t
+ {1 TUATVI 01D0T = DOTWOA
MEHE (C(XeT) TINATV 371° 1100034 (0)SEMIL) t
‘anyt (LD IABATY ‘19' 100034 (C)SMMIL}) A 3912
pERwqg QIO v o sentea WL SROP .ul.—ab.uﬂn ........... D
‘EFIVA' = OLEvwOd
{1} THALTVI 01007 = DOTVOT
HEHL {70003+ ([)OENIZ ‘03 '{I)I3RATV) 41X
®3¥1 seop BOT SUTWISISD VITIAL Uyl I97eeaB 07 Swgy Jretctcccict ]
{O1svod ‘anv’ {T- (HEITYON)ININ ‘¥1* I}) T11HM Od
‘amst w oLvea
LA §
REME ¢ {MaTVOM) ANIN} IZHATY ‘2T' ‘TOOOL+ (') SWMIL) &1
nccomytivenoguydryBor>>
‘{C)ogHIL swtl aeInotiawnd ¥ 3w §{D0TIVOd}yIve¢
weop wydye pejotpexd syl 2o BOY eyl GIWNTEAR

-ocoooooooooooooopoovpo9.o.ooooooooocoooo.oa.oo..oo-o-ooooonoﬂ
»

Figure B.3: Input required to produce Figure B.1 (4 of 4).

67



*(6 30 T) amMpo THI4 °|durexy :1°D amBy

1{)9®WTITED0] = ITIIUNIS
2oUPRAIY
ER ARSI RS EY, 1 o

TRET W#IF IPyL saovased
3.0971380C 2

stiRlas, = (QTUOISIaAg)AT
vy £ (abeyoegasnglic
TIPoATTNE, = (TRPOWMES)AT
£ (swT3Tmag)ic

D @3eameinal, = (IIVGMRTAIIS) A
T TOU JIAMEIATI, = (I9M3TARAS) AR
LATTTU3IE DUIAID® JURELIC " e 2{IPAD = (pmds)dc
21Uy eT oL 3ral = t{asaloadg)ic

210lADNVS » (JoqunyscascadglAu
f.. = (swenssadoads)ir

2. = (BERUAZRdg)Ac

2 u0133n03) Aw

ip = (moT3INDUg) Az

70 = (MDLIUTUS)AE

2D = (DIAIOFOTUILIBBIFUL) At
Swgmmyr e 10 = (INOPFOus)Ac

SwIl, TIET
ndine ;&

2T saqumt e 1p = (uIpQUS) Am
{no13uIdl AT

[eyegIusmeTdoye) An

JEileTeTdn:, » (J33cemRTdmyg)Ac

Yuo paTTddng e -ty 2 {mIoiaeazp) Lo

dau = (FuoTIdOIRIO]S) Au
1{p)ADHYS = (JaqunNweaderps)is

2 020D ALy U CTelIDdmel/lILvIn. movr Jo addl v e ! tadAlanopzpR) Az
T3Py LI UL EFRASDIC R EmCTz SngIns g 213IN0P3PAI Ax
KIPD BUL uo TeIndges T m27; 30 bAdAT e 2 (adAzuIpIPR) An
wCT; PIPT Bul UL FRwoead $Iyl 297 vmMutz ghdur Cty 2 (uIpzPi) At

L2 * APl = (BIEDS)AC
fon = [FWENUOTIDISICIZINOS AT

1.BUuCY (UOTIDBFIURIINDIG) AT
- Iim LRDUIZZRI SUC S RTINS
DUt 33 ITie fUTEUaDnId dndpap TQ YRIIIE J¥yL BPI; Ttte 1D = {YRIQIQSIAW

dygeatsiiqia sebiiage t--e  f(Audeabriqidade
2 DML AT 1TU nv, = (I0QINR$I AT
ZaPT AUTINLIQURE T EWWSIWED £14L SV U SMTQVIIWL TTDOT STItel FUV @AVIOIL T T

EMI]I e s LEET AUPL MDY FLUNDD S73P13€n 1430 c Tty D = PRSHeITSOdwWODUS
*azTsodund. ifeigeizes Teqoib 2aUIC e

SUSUTEIPT INIVT SUD T e 1 =i ADMYR 37 LFETIMdSTUtE . SeJUINERED03C (f sebesi, TP

TITPULBWTT TTE L SUTILIAN UL L A0RII dedr T
wITEsas 3AIIDE PYL L IWE FUOSIU

- g -uOTEIIAS
TOTAR T

S0
1pMD B8
v
*
@I Cf F0 38 11 39T 00T ]
¥
« JeTUANFFEsLad TdrDedgIuIz tsbesn g
¥
@775 2ndut queiidmcs NaIPT CL g
uDIIPsT;108dr ,cads-tutm, P oSEadcad o3 JuTInoI DadEEIl
s2-opdgTute ]
s T28d/uUIQ/3ISN/ i

“sa[npou 2 1aA0 TYHJ JO Seul] 0)'S 4240 aIe surejuos sadsyHy

“S3[MpoW Yous {[e Ul pasn ajAls pue UBisap IuIpod Iy
218IIST[[1 0) PapuR3w 51 Bunsy styy, -, d-vadsruru, sonpout TyFd dedsyE], seqpews aq3 jo suo sy 1°) 331y

1dudS TY3d ddwes )



Puy w8
FLAANEALAE 1Y 783 J1 1T$Iwiedoa1da1tndioy « |@1048911p wio4e01)s
103308 $°'0107001¢ « ¢

IND3) 390 3t

TN T . e T8
P UstHtoa I S
1pARCE = &

ngto

tpotytrade 1nn, bo uhgzuzg HoteIoasd 4 - Ubzuz¢ uorerdAe

aca

LIDAQNEMBUS® 16AMOILS « UbHUJE LOTRIAANS
EI AR
ti{l1epqneEpIod 15 1RAUNSMaAUS) 3y
1 10AP[O¢ == 21DAMBUG) Yo
{10AP1Og < IAMDIR) | A
IDAqNGMatIS* 10AMBLE « UbZUZS HOTTIRAS
tz4 = (1spangptogiAn
trs = (1oppiog)Au
(81 I2-v YN o/ gt
t ubguls UOTRIDASE = ¢
12¢ = (18AGQNEMPUG) At
s = (3I9AMBUS) Auw
1780 12-9 1 RN L/ 0t
t1g = ¢

(YIRS -AVEL- AV T WL RN | FARYET-AVEL AV} WhE ROV
Z8 148\ sRANOISHAA «" YA/ 11 /8IS v B ANOISHIA "N/ 13t
1j2-Nf2-0/22

17 = (2809¢)An
ICEL R USR] SRR F U |
E33 P lTd
1<NDE>I 1M
“uopimer, e 44 FLHbALE s, ‘NDA] uado
Iapwtbionds Jou, = ubyuid vorEiIDAg
febaas samepts - sk ko derrgandut « (ubaugs) da
g = (oueNuoyivhed)Au
1,8 = (123108 Au
t g = loaojeqp)Am
7 M N, ) \uopjenbaoparout Ay iepTys
luw A "8 3Lt

T.ued For by

FRETIE R IR EXE NPT 3% 6 X IRED TALE L {11 I S 1

Ut 1amsitt ot ienbo osdeyoer Cccw

e ¢~ ¢
L TTEL I T DN I [FERY AT P I RS
luw ™ "33

LA L]

1- 10400133 » OIDI0JOUUIOAODIIUS
f.. « SWENUSTIDUSILOIINIG

fLun00l, w UDE1INBgIReIZINIE

1E¢ = |+4MOL4IN0US MmOTSIIN0OY

ganwmde furtIer) RIOUIUIe "l /8,808 ')/ = 18
tmagaandinn foep (/888 (s [E\HY ) AMOTIINGINONN,ZIITRTD
{0w=0I[9103RQEI0OIBRIJUS Tt (- (H1040323]) » OIPICIOHUICINAL UG
t,y = BUWEONUO]JIDRGIUGIINDG

Lm0, - HOPIDSEILeTZNDS

118 = |+pMOTIUIUE MOTIUTS

woowdr BUHTIIEIL @IPUET S Pt g F /S NG/ e 14

tmot3andiy e (/8«84 VD (8\M\ ) wotdandugys, 2l gtets

$48.8% \/) ~e gto52d0I0MIOZE | 1t

{pwwplO1030ERIOITDIJUS S

11wl Vo e p vhey

IELERLIFER S 1] LN

o [hu'suo1dpivaiogd - suoyadolewaoly
Py \NeBA./ -= suotidOivuirole | 3t

suofidplivaizogé’,, |y, w» Suopidolewiols

merg agonhe fregeepoegn tarde ottt oAty
ttg = suojadoavurolg

aacpde hagrtegp ajunimra ol $/8 .88}/ ~w 18
LRI R | (/81" BY) JE AT \IVNIOS /) 2191
l.u = BUCNUDT1DBGIUDLINOE

t,an t, - Uo110885Ua2INDE

g = D1PgMOTADLS
XA FLAS - AV AR AN £

gaaede FUTTIC1Y siputwI (A ¢ty

tajeqratamt iy 1780 8\) AL ABIRQMD TABY L/} IR TR
1., = OWONHOLIDSGIUBIINIY

.23, » UotlDegIUe1IINTS

11 = aoMBIASIE

croedE BHITICTL AEtEMITe 0 e LR WRNIRN ) S e I6

TIPMAIAAY t Y [781«"8V) o8\ \2OMBTADY /) Jto (R
f,, = GEENUOTID8EIUBIINDG

., - UofiDeglIueIsndd

11¢ = mivgrueustdutd

Aot s ity 128 BN(8Y )/ ~= 16
{781 87 BAEADIRQIame tdul /) J1RLe
f.u = DHWONUOTIDREIUBIINDG

fuaney, = UofiDepItierIngd

4 « tejupusiduse

qunuds FUt)es) nieusietta ot a 178,808V )/ w18
tral 8N (Bt \2ouototdul, /) JretR
f.. » DUWNUO]3IDEEIHOLINDG
f.ouch, e Hofidegitderinogd

e = 89pg
1734808\ )/ ~o 18

nasods g ie

an~pde Farptery ayeanaryn oy

ey ey RZ XAV AYALEL AR AT AL
2, w AMPNUDYAID0GIUSL2INGG
t,enol, e UDYIDBgIUed LD
f1é¢ » toilangg
suovde DUTTEva) wguuiwtie g £/84EN(8 )/ A 1§

tioyany t e .\n.. AV ASRECUERUNMYA S LS 4
,u = BWENUOYIDISIUSIRNDE
. = Hotinsgiuaimnog
11§ = jepougned
eniader BHEEIs ) At ga g /BB )/ v= 1
wMe N (78188 SN NTOPOUONS, /1318 1R
{,4 = GUENUOTIDBEIUBIINDS
1,00, w UOTISDEIURAINDE
118 =~ 108(01dy
encgde DUTTIPIY AAvUswWE{e ' 0 LG .oNEN )/ += 1§
AL I AT ] (/7406 V) At vI8(023, /) tHtm
{,, = GUCYNUOTIDREIUBLIINDS
.81, = HOFIDIGIUSIINDS
fgjuoTesag = ooedopiin, UOTea0AS
{1d = dIUOTRIGAS
ennods Dhygairsy naontut{a “c o 28aBNIENL' )/ ~e {4
e redug oty _\nn..n,..n,*,znanue>«\,n.w~a
{.. w OwUNUOYIO0DGIUSIINDS
£, - UDTI288IURIINDS
116 ~ owvNowasoxrdy
canude buygtwsg sjunnie e 2/4.80BVe' )/ = 14
trentAa1r ey (78144 B\ J0 N\t \weanaag, /)21
[ECTG IR R 1]
aprg induy ayy peagy oy

TREILE RS S..%. SR _ &AL

[,

_ -

CIEUIE ekl QASIUPNTE KL (VAU (4 UL &)=

-

69



ttrne ey guansgd

(6l

P T e pen st cwl e waa ool tuoNEd e, MYADLE Jaugad
tustiie, sy odAtesanoldolpg) 1t
townpnesodo1ds ‘oueNsEdd01dPIPE
Tadernrye gy -m. s mARTOE 30 potltaRd I TNV ..

dy3aLe Jausad
{owwpuenooids oit oweNEROD0IIPIPS) It
i1 » punojetqqngssesoids
{1oqunieenaotde ho 1equnpNeessoldpIRel It
tgg = (odAiswod019pipéiin
124 = (oweNEEaDOIIPIRS) A
11 = {1oqunpevedordpips)ie
te') t\ssonordl\ “\*\'\ /13t
{tewgoiqqngeendolduyd) Jy

tandA1iy  [o*) t\ouwul

10 = SmOtIVINAULS (7680013 @IUP 3O PUS ‘\*\*\ /7))t

It = sMorieIRgUte t/7¢8n013 PIOp AOPIP N\ Ay 2131

1) = EO{OANYSSOD018UTE (/¢v91018 wiwp vowid ‘\*\'\y /)%

i1 = Esjqaniyecsdsordtité t/7¢notaqnqg seasozd asetd “\c\iAy /)3

i1¢ =« U UOIBILAG
{/i4*) uo tdpyp Aq potesrousd andito  *\* A\, /)38
telEs) DT IYn
10 = (smotjyvaequid)Au
ip = (punojetqunyssososdé)Au
tp - {sstqqngreosozdute) Au
(11)¢ . "NE) usdo)

ty, = S10jaug

g} 3t (T¢)ei0 o131 IN0IOY « (HICJOD13) WIOIO91IH
! ¢'vioaqf w ¢
apte

tou = &

128N E\ 21 99 T¢) 3t (T¢)utogonignitndiolt « (wi10iw0i}y wiofool)g

1393)0d’ ¢ivl0)uqE = ¢
tdaioys
tiont) gowr gy
creias 10 pus g

tonveg - ¢

[T IT
t ety wie 3oy, ba ouguzé uoteisad 3t T f < DUIUE Uotdlead
ag{a
130AQNEMBUS  TOAMDUS = DUTU]E UoTR2DAS
eEte

!

Pl tugg e, bettaandut « ugg
(7YY TP T
fate Anir, - U3$

(VZIARY SN VAT

t1oquupeead01ds « ¢

4 prared 1y st frcd
QEvs 23 pavber 1naulta 3108 00N tAotdInog  (ag) ot duo {wgiot 1108 = moldIhwog
AR EY L E TSR UL A R T I S Tal U ] tnotititg  (ag)nt dur (wgiaf 1108 = MOTIULP
topts geotaageiedie o emerg ayy atoe ey
toiepéd - sivgiuousiduré
ftoyinwe « 10iUswatduts
{Louutiap 1o astiesstdut, be 19iuswetduté) i3
fetpane ~y eytneise sajasotinr ']
[t UR R ET R TR UYLV Ia R £ T, bo giuoyesong It whattrhar tuteian, ofp
tLpautgap 101 (apewpte, bo {opowgneé 2t . wvativhar fpepouang. Sip
t.pontrap 19y 1oai{ctd, ba 1oofoxdg 3t ,ratirbar iyvafnra, stp
tupautyne e aiep, be siepg J1 ,pattnhst tatwr, atp
Lopeut gop jou touine, be toyined 3t ,uaatnbalr troyany, atp
vec~>ou& eom ineduy pemgUtm Py BINE LNPR D Cgoadn ]
peoat onn ewy jrebry 0oy

lutogeosiy wiogodt)s
asta
Ty NaeN 21 1Y T8) 3t (Té)uz0ia91493In010U « [diogeoi)y wiogodije

ty w o~

t781 33 asmeq
t{oN ) neOL Y

t{{{2opqnEhiog 16 2oAGUEMOUS) Y
{10Aptoguntopnoug) ) I
(20Ap 0§ <topMBUg) [ 3]
10AqQnEMOUE 10AMDUE « DULUFE UDiEIoAd
fzg = liopqngplog) Au
t1¢ = {(r0Aptog)AY
(el lz-y ) Lapvd L/ 3y
{ outuy4 Uotelond « ¢
tz¢ = (2opqhgasUd)iu
11¢ = .ho>)¢=n_mﬂ
Lrgihz~y Y aprl /i 31
1"y - 4

[OFZIRT-AVRE AN - T AL RV} JA RNEE-ATRE AV PR R
/1

s¢taprh e \NOIBHAA 0 N\, Jeniag ) se \HOIBYAA ¥ V) [ ¥4
1/2-¥/t-v/22
17¢ = {oAved)iy
1 P oteyan sy :.n.. AN | _‘.—- i
t<ontshartum
Foatidrt 1eg oy wptre sy Hedbe 1 g . Ot [ U rteegen, PoNE Huede
byoatvgt wmde jd, « DUIUZE Uotdiengd
IOUTUSE 8= | 31 - \MT4 . KIZASEUING CULS GTU plNcs, e1p
12utuge o« | Jt {uvoit Al couiddru, lottaandey - odiugd
touguge oo § 1t {ourg’ . ev, jortaandul e otguld
touguIe o= | 3t d,x807 4 tDUTE Y e, hattdandu) - pbzugd
totTgd vua, be12Indut « piliuld
16/78\/8 ~u DULE
ot = l10330g)in
1,6 « [01030q¢)Au
114 = (oug)Ae
Hetigesty wopr ol 12 M1 A0 S ) deei\Ragtaptioutsi/ietiys
el
T mRte

1741 3t amey
INDD) weotD

fhw = 0103009

tgetaasgiyabuet 3§ 2i0¢ = [wiogeoljp wiojearjd
$1Tg 0103008 WroJon1gelIindIony = (I1ud)Aw
este

Figure C.1: Example PERL Madule (3 of 9).




E.9\14) 49 putot 101t Lt 134 motdinog

C.omntg Ahdino tantibivn . t L Beiusivdg « Beiustedg it = womot3¢
AL M punng 10ttt 138 MOTAINeg . =~1t andinn tonbibiYH.. WHIOLE 1utad } { susvodmoog be notié )3t
ts1teodmodpunossil 1t ] dmoo §) Qoo 3
{ {aveucdmong) Au
| {motasnog) wotgze {ovezoy
tisey { (nopge) Au
11 = #3ysoduo)puno}g 10 » (wonotz¢)Am
{tionlosde’ |38 MOTa1N0s’ |14 INOPIPE) DITeodmos 108) 31 1 {roeCozdg * (¥8)3nopIPe) ritusuoduoo 1Y 168 « (3teucdescd) e
{4418 ¢ ANOPIQUE>IS ¢ D=F8) 103 } tesrs ! An0PIQUE>TE ! OwTs) 203
PoA(OTaT 'lond ery 3jteadiler 1YY ARIEIIPUL dtentood 8 1) - {®11v0dwoptino s ¢) Aw pedstute syy Ut jusessd =g pEnoys gid w1 o oty indine g
41 sy uc siteoiduos v 13 @t jeva Koty [] {sitvodmorntéi it \
1
tasey t u\osdetute T punos jou Jusrvd wory |
1) = sapsodwoyeig ‘treuIeIPe . MOtS .::.5 5.:32:. LY
{138 notaanog be 11¢ InowIpsl s d¢
tesss ¢ anopgaus>tE ¢ 0=ts) vl tirgturpIpd ‘Lu\Dedetute Uy punos 10U Juesvd wory we xo: andur .oz::-‘x:
4 9y Un eitecduor ¥ UL Bt MoTg Yelrdtbut Nvetoca ‘ol It = (e3tsodmonsid) e wendis Jaugad

13438 thotdanoussss ¢ 0esd) 1oy | twosotzellst
4l #4310y By piboge cadetiitu sy e wmepy grdgeo o [}

1 ) {gosotse) u«
t

taswy
fLUdd e Ut ) jod Lt 134 motauts 1t = WONOTId
Saomnt o aednt tantibiymM. C o u Lt Besiusivds o Beiiuervde 1 { stteuodmoog be hotrsé )3t
B dVa e pemng o 0 138 ROTAUEE L, Mo il andNE EnNTMYA .. dYRALE 3uttd [ dmoop) 3 dmoog Y 3
{s1trodmospunogéih it ! {sveuodeong) fu
| {notaurd) wot3e yoweroy
t {not3e) Am
[ATLX 10 = (onoT3¢) Amt
i1t « s1tsoduospuncgp ! (aoeloxdy ’(t4]0IPIPE) Pitieoduos 11w 388 w (Juedodmony) Xt
{tionlordg i (3¢ notiute’ I1¢ uipIpels1teoduwos 108) §1t 1 tesyé ! urpsaud>ye ! owvél 3oy
testg 1 Utppguestes | peté)10) vedsrtite sy Uy jusssad e prnoye aAd syl 1o enoty andur - §

paagrent dnoug ew ajtsodion R rege.
e wy e syt beo

¢ qeagact o8t e {81tvodwospuno ) Aw
PR B U BRI T Y E R ] {eiteodmonetg) 1t :ln.u-a-o
wezbetp not3 wivp sys Burpess psysguyy -
.

tiseg i
19 « s1tv0daonese t
t13¢ motauty be 118 UIDIPE) SY 1aR3g = o ¢ "
teet¢ 1 UIpP3aUE>TS ¢ O=td) 103 ~'c. - ~u§uﬂ¢3u§h‘o
Bptendaas v UE vt Mol 1wy wnjeotpat weagang Cop It « (s3teodwopets) A [N | d. be wox3¢) sy
tes3s troTRULUS>3E ¢ O=381 103 weibwip sueted uo sysoord ::u 30 Ino wnotz ‘g
44l M ta 8 pinae cadetitte Ay e emotd vl v g .
tdRag = (ssuIp3aue] sdhaurpspe
tuvug = {urpaavs) C1IPIPS
i (zecqumgeseccidg’, wweco1d, be o34}t
wribetp 1uetvd uo ssesord wryl oluy wnotg "t
WrAnedetam ut purcg 1o susted story Lt Te ANOPIPS 194 w (dR3g)Aw
t. MOTE IndIno 1ONTHHVM. ‘s tBeIusIvde « Beiusyedg 166 w (woug)Am
t138 InOPIPE ‘.i\oodertar 1t punog i gusted wogg e ot IlIne YONTNMYM b tzg = toag)lm
MH2ALS 3Iuted 11§ = (woxze) A

iomotssii s Vot/8te) \edAIE\ (o) t\mmwul\ (¢‘) t\osl\ le‘) 1\woxzi\ ‘\'\'\e iXii

} (snotaviegnité) 3t

[RT121 {MonoT38t 3t t
t

[2Y1 2% t
| smwgeseoot P IPE

&
%
hA
:
=
:
g
:

o

Figure C.



t {ez0jemspgl 11y
110 wr04002328 LnO 111ad
{s41¢ fOlmi0J0eguIOIBNLIUSSTE 10aT$] 101

Pt (A rdua 13 Sgenfivdarygay atatianeuny, LN oyl
toh I e e pithegyy, 2100 ey ad

tuartt gap 10t GledReiaet, BU SITASIADIS )t
WY (O IRgRataa LA Ju iriMBtABI N\, LA0Q TS

Pupecitiar quU tumuyasl, eU leAetAels )t
WiN(1BRB RIS TuRBIASY VY, 100 TutId
F NNt e upee pdat 4 be e e pday V. 20O 10t ad
tatty ftmyamuntbat s p2equece (dutt v\, L0 T Id
Py feargs lodenyy, 2o ugad
F oty w10t Rtaag Ittete1aany, 2NO Y id
Fyby (impativ s Prettane \y, 3O kMt ad
toun fowepees o s o pngunpgeeayorde ity dao wnid
Ly drspowyned I{ojesxpre\y, L0 1t d
tauy rtoeberds (3 refoadyy, dno 1utsd
1,40 feet quné dpasupoadyy, RO Miad

P ety wiv o wte vt oy g wivsheavediy
s, Indtveaut pesrdyy iy fydiyetedyy Jauabuspiesay, oo utid
futtasprde g0 ted go pgepnt anLy -

Cobvman 1y artetat tedyyviabuatiae yy, gno 1y ed
Py 1Padao i3 tA e abed \y, LG it td

try Koave 1, tedopadog s afivqmdunnny, 2o 1t
t Aoxg sbBeyoejeeng « (etuoyidod)in
17¢ » (Aend)dn
{ (eBuyaegonnt) shey] avetu)
t,0y Pyeddtuty |, ‘suot1doivw1o g8 e er s imnaop Y\, L0 1T

0 i, Ano 3antad
{{tdo1e10A0 cAby)r108] 2§ Ydvelny
t o, r1adectitel, UOIBIEAS eietap

t 54 HOtereAS D8, 1 5

$oaradatniy, Uoteteagt codesra, d unes ko T aee d00 Fruyed
t 0¢ HoIEIGAG Simtan
t 04 uotmIeAg ot e, o Tevih, tND Fngad

f ungot®ion  grauodee s Srtiv, tne tugad
tLu\eettuntie U 08 A Leivteyst andite  c ot oy, R0 augad
toatdine 103 c11é trady ot pphor, eip |1 (.r1d«, POl uado
Plaumy AT e, e dettgandine = Ugs

[FARVARYE

trecEnpsEes01ds - 8
1ndine wngel Bpttn cccu

areg

10y wranteger Sydethos g P d0u pito, etp
tim31os) cheyluoveto;
sUOT1v1ty Deatudetiti Jul Y20y> @
tlg1g) w0t

[N TEETTRN 1 B

sele
t "¢ » (Aydesdtratag Auydeabyiaias
puttn) Ussy awy] wountager srgdethorigty gy Gegg c ol 1t « weajurg safog
Lttt woltuyg oa1yodiererxs) vy {wargityé) 3y
spts
tigwt

. fo = weajuyg
17¢ » [Aydvibitqiag Audeadytqtasg
(7 \owNAUdRIBOT T Tt o\ \ s \DUSNA ¥\, /) 3
tliperteaRd|) ¥y (me3jugs)) ¢ o IVydeaboat paraea vurbegyy put) o any e, etp
100N Al A ) VeV ING I ] Ve Neeataial\/ 3t B8 - sﬂﬂ.:»
I setle
17¢ e |Audeadiratas Audeidtiatas
1t = porlessg
17 \V.e\AydesBortiargoyi.e\ \.8\utbag\\.e\, /)Y
T Netitna Jo pus W
teAved » "¢
afa

a1yl Uoyeieag
sute

ety teds vy, be  Qguls uogessad 31 4 -

11eAONERSUS ‘ TRAABUS » QU4 UotTeioagd
scte
ttlttoaangptod 16 1oAGMEASUS) 99
(1oaplog=atopnoug) ) L]
{1spApYOgctoAnaUg) ) 3%
LeAUNEABUE  1PARGUS =  qiUUSS UotwieAsd
tz¢ = t1oAqngpiog) A
21¢ » (1wADlOS) Aw
(/8 1z=¢ ) bp\) L/ Y
1 dqigusé Uotesens « ¢
126 » (2opqnEAOtg)An
11 « (2spAntig)An
1760 12-v ) tsb\} L7131

ttg = "¢
21 AR AT T L AW AN | AN MK AVT TR AW AN B
FELsRAT s BANDIGHIA L 1AL/ 11 /8N 1EN 40 \NOTBHAA 4 8\ L/ 13}
1/e-N/2-w/11

17¢ « lwaveg)iu
181t 1of Heteten syl el og Aty -y
(edttds) @f 1UYn
to » (peitvaeg)du
10 = {woagtifg}iu
t.hatgioede 10, « didquld Uoteload
fLanI 11 - vtgtge sy dado Ay oo, etp | tuatgz s, ‘q1d) dodo
FQIEUEE @= | J1 ,rmicERcusinfo 1) 10U P, Bip
t{.va3 svsusengey, o tt,) e pdandut = qiguze
(VR ¥ TRd Y Xulotlag cuoantg vestt wiin\y, ¥dIdls Wt d
tixegatasi) vy (oclorgon)sleon) )y
Al ibost i syl tog dauleieger syl Ut Pees oty

tovay e duielug 1r7)

. tngempeeasotd pd tahwen, oyp

I

f rwe ndpge

oty e Fonnaetelitd o) pirel 30l g wetlbeing antyg vand opiidYmae f o,
‘Bupiustedd « Bepitetedg

f3oted uge ucthEtg Aetd 3kl TOHTHYVM G,
H¥daLE uyad
srte

ERUTFURE Y]

[ VDFIRY U gt

Figure C.1: Example PERL Module (5 of 9).



tievy
1t - pegnApeartud
{1uatede ba (1¢ paspeirtsodwong)t
{1sr¢ipesqoagsoduodud>t$f0eté) 10}
ty = (pospApessted) Axt
tite) Aut
(punozg) st
t(10a(ozdg *pr1yss 1rusuodeong) 81780dwod 196 « punojg
tiueredg sy usuodwosg) 3y
{3usuodwosy) 1uduoduod$ Yiesto}
EMrt ) oyrancbiact aay A posurkg gt grees o oyarecdurr s vy tpunogétist

1t « punojg
teed 11 = PUIY9e‘, ', Auezvdg pesaeatvodewmnd
|+ +poepalfsoduadits peenvltsoducag ipeendpvergueil s

poen et 1udanafuod
13uezeds =

tagey
tt - paenAprazyog
[iun2ede be |1¢ pesnoiteodmong) gt
{+stgtpsenarveaduodutsfiiontt) 10
o = (prepAprozteé)Au

1(vg) Aw
{pPtIuss ba umdodwond) j1
{1 fwoog) 4 4 ¢ yoweilo)

pUnog usad sy Motd e ftadhieer 180 K3 IVIIPUL Ueatoneg g 10 » {putogé]Aa

t tanouodwood | Au
ttivefoids 'ausiedy) eruouodwor 106 - auouodwony Au

waluead sy 9 waunbie puoovs e t1giye « 1o0f(ords Auw
ooy M0y ) agl ) tiaunfie 1sKig e 113148 = ptiuog Aw
paynoys ag 01 sirteodwnrs syl st juaumbrn JEtEy e 13314E - ucuuamw Au

o1tsodwas” 39b ane
maty o3tandaen (Spperigaind] v ojo abesn Agtjuapt o3 suibatqee CC g
P LR LT T L Y T LR N R TP TR A AR PR R AR LA L LAY L) I

t{nolesoin
Lty CHrsannnn Jua Ly, N0 1utrd

ttAydvabytatal 3gyys
t|p AydeiByraias Lno usad
tAyderbyrarqal #yrus

t{utogesx}g) 371us
tp wiogesize tno wyid
{uzogeeipimttun
lgepoenolteodwodus 31 LU lutecg banedenyy, Lno btad
t ung VooV Iad i\, 00 Jutad
1t ¢IqIBURT =+ YIBUGTIUITE

e AL nE, uTivad gy, 100 Jaursd

187 1\AN/ Ve

B/ INANS A/

187 \A\f \/®

B \\\/

1B A\ A
ltsuodoaqned « ¢
3T

IVtrrIee Ly, ANO 2auYid
167 1A\ /8
ICTAAAST AR YL
167 ANV A8
187 _\\\/_\/E
[T RNV AT ]

Husuoduonqneg = ¢
I jusuodwonqneg‘, ', " I1¢ pouneljeoduwodd pesneateodwongiernine) 31
tu'y = dosg

| esta

to = {1BUotouUTTE
f, A\, 100 dutd

e guaradarn Allen) Jt o geate ity K {gacyibusteurté) AT
ldoeg 100 3utzd
{qundodwonaneg) 1usuoduedqueg yoveivj

I {auguodaodane$) Aw
t7t7 111ds » (VWeuoduodgney) A
t |t1¢ pespoitsoduoas artnoduoot = ¢
P = (devg)An
tes (T¢hyabuet = tlabueqeuttdlAw
18 B IRe TG Ay, 00 Jaurad
1B A\ /@
LLTRR ALY ARY L
167 AN\ \/e
1y A\ e
1B\ T e
1{10alosdg *11g peapnaitsoduosg !, busi, jisge) 18B « ¢
tests tpoensitvoduwodugsts f0=18) 103
t6ouitoredy fno 1ursd
Putwieys AousigtkUoD Ju #1181 ')

t7g dunreraray oy

f e e peoedvany, Lo autdd
[URRETSRID LS BIMTEARU AT NS AR u dfo u.:u“-
teatung ‘roquAes YTE YLUAMMAY [ TN E. Ty €AS-sh 1A Si, 100 Fiugad
1B/ A/ AN/ IB/T AN TA/R 1 [TE AOTAULE w T 6
877 AN/ \A\V/C ~a [oquieg
tasefordg ! 11¢ moTdUTg) eaTUnToquipInd « [B37unyg droquheg)
{3eteinorquitigsyéigmy gl 10y
teatung ‘toquAsd ‘TE FLUNNNAL O YN R TN B\RGSN ¥y @., 300 JIui2d
16/70/\\\V/8 1B/TANN A/ 11T moTaIOE - T8
167 ANV AN/ ow toquhug
t{ioefo1dg ! |14 notdInog) Basuioquigied ~ [(watund ’rogquiedl
(4414 nDt33N0UESTEID=0) 203

Fousduttusy AN\ {071 Wrduany v imatug uduaany Y,
f CRUAE Rickaniy v (BTavtres Prduaa UL untoD 3 Iuyy, 400 Jutid
PLUABHYTUAY LDt ) itegtogey juthoayy, tno utid
Py ey g eoedeayy, o 1urdd
ino utid

-

Figure C.1: Example PERL Module {6 of 9).

3



19eloid sq3 wt usambie puuves ] 133148« [RELICT IR

ewwtl viwp oty vt usmbie 1e11y [ PYIE - (1oaetfl/im
s1runtoquigIss Tic
o) Atvuoryotg rivg visustinboy s asted o antinone B ]
ssersaRNiNInen CEREOOTOPEATROREORANSIINSIOHINEINIRIOItNIROtIANY iy

HifrAIR L@ uLhIN)

Iswelig « [sseiusucdeorus tvAlsiIg

tits ptoyg « lsisiusuoduwogug teaisss (punoggil g
risvt
I - punoge

Lits ptoyg be I0¢ Trat1ergy
fsste tatiseodworugste ro-lg)ros
t0 = fpunciéiie
Higlin

tsite tprogugstd fpetdiing

tigsdodwoagnganeg « |siptopud prots
{18 teAImi¢ su 1ustodwodgnansdl )
L RLZ LT
! {auetodwoaampqnes) dw
t{1oolotdg’ it tvA1a1g) ejusvodens tte 108 « (1touodmorangamegiis
(est¢ teruntodworugste ipetl) 22}
10 - iptokugiie
tiptoug)i=
titg)in
lagdbsect

i aangansg)

114 st 1oslosde gr ,1-afordg et 1-nintd metbrtp ing ‘1 et ameug 103 3 alord, stp
wosvds Dutitess savututte - 8 178,80 (BN ]/ ~= L§
/81 o8\ avnz\uviontond 7ot

tif « U3 uorEiIeAg
ERTIIIL A RS B B FI T AT AT F AT £ §
(78 0et o8B\ st o \tORRIBA /i S0

naseds Furrtery

1 - faew (LIS LIT]
_..:-...o.»luun:-. Austodworqned Haveto)
e ‘77 3tds « 1usuodwodgneg

¢ « swryg s3jveodwodg
sooweds Burttvsg eavutuife ¢ I/¢JSNIBNGHS <= 1
176 14" o8\ 48\ e \J D22 twodwoD. /) 3}
[+~ BY R g
foamduy deg oage dade on pinns, atp It 0td - gt usdn

tUultu Ly, =« UFé WOtEIGAS
Plutmn ewwugd v s battgandut « ugg
[BAI/Ead PP YEwy 8183 » A DedwTdsy s {11M S edvy $113 ey stitwieler

pesn £t susuodwod wajsodwod R

1{1eprnsg) fm
1 [qtistiodwoxneg ) fu

t (yveoduoaqneg) e
tg = {savevodmootig) A=

¢ (u3e) km
1ssfoad ays o1 JusenBav puocoes ‘' I1ag1e »  3ve(osdg Aw
Sumu K013 w1 87 jueanBiv IE3t3 g f3gr4e = iy Kut

} sjusuoducc™tre el 4ns
FTT 3_.9?80 Arisrausyod) v g0 siusucdauss Agtsuept 03 sutinoIgNe
LT (1]]

t {tvAteap}tamies
townitg « {és0atmuodmug] (vAISIS

t (o) weotD
t
1
118 »u 3pefo1dy J1 .iowlesdy w1 1oe{oad weabeip ang ‘1g ¥t wwwug 103 .uonoum.. -tp
cesnde ButTIesy eavurwyie '@ {/Gee\(S\e'}/ = 18§
trete ..:..C,.}uocno.?\.u«
114 = (u3givoyRread
t/4eo\(8\s'}/ = 18
.c,..-,;.-,.l.-u»:\.!

seowde Buttiviy ejvutwrie
)

(7]

tauesodesared = (s S0 tor038
. rec

tee *7'7 1ttde = Juevodsoined
114 = |vamug)e3yeodecod
wsovde ButiIvry evurwiie - tlgeu\(B\s'}/ ~= 18
V200t sg\) o9\ 1\ ou\ SORsTe0AmD, /) 3
| (cagwrietyys
Jahdut 103 434 undo 1oy btnon, etp |1 (138>, 'ood)vedo

.torssmact, w {4zgitotereAd
tlppt . cemmug’ upprL)etrainday = UIE
(SAS/40M PUv Yeeg.etty ¥ Aq peontdest eg (1te Bigl) ewwl Bt syl Sitwseiep @

t {teArmag) Rl

! {sustodmosqneg) Kw

1 {(3vedodmm e ) N

10 = (esuvevodunag) Au
1 tuag) ket

aseloxdy Am

1oefoxd eija ¢t jvewnbiv puooes ]
ouvig Ka

wemit KOTI W OF JuewmBav 492t

13zt =
123949 =

| sjueusdusc 308 qne
nof7 witsodwoo {A1tvtiusiod) ¢ jo sidsitodmod K33iuepy 01 suyinoigne
(11}

¢ {punoz phusnier
t
|

taseg

HENE! Am 1..,... 4%\

) fyumawdg = (4 Feodm 3 dunog | .1!%033:!

Figure C.I: Example PERL Module (7 of U).

74



11 su 1omCosdg st _ionlondg et 1 calasd arrber

tougayg 8- | Ft e yTItEey apeianray pUEt et pines, stp

fouruge o= § 2t f.ves y.routgtotn hsptaindul o uturg

tougugg 8- | J1 (outg ' ew jeprgthdut o augdd

tauguzg - | 3t tuwey sutgi.ver, bertaandut « aupuss

Hiautg' svibattaindut « Jupuyd

13780/ -u DUTE

1.4 = (203)wg)hw

b e leutpgiin

i o (ouygiin
[T TR I VAR P I AT TED IS VAR Do R )

I AT A TR

PUIDNEUIEWET TS BN L MSENTIILA R SR

tIsiywg  swenUivep stOjeq} - ¢

tlaoeCords ‘ewenNttoyup ‘Luive,) fedel 38D o (savNyived)An
itg =~ (sweniloysg)/w

t,8 a (1033041 Au

t ¢ - (wiogeqiiiy

[TARYLAT I Ve b vaEsgimeiydetiyn
14131
sets

1wz it - ¢

tigagtashiztue
foty, = dewg
qiguyg deug orirgg = suigg
fftamr o fEt fud *N/ 3t B - atqule
caretrervd dist g0 Ierrnced w1y [ FYAVASYLIRERG AL L
tgtguzg & 1 3 . wave ¥er31d put: a3 Bria, etp
ST Lt e ) et L d i te tqlaus g ) A
18/20N/% - Qlug
tlo adatae = {ejqfhie
(aettan) bt fin
foa = (degg)iu
CLEe s A attds = {dddtag)As
NI
b e teuttgiAe
H o« xagatat
Briteessated yoira 08 TR b teAydesfatigigans 9 TEigt
yede Eirkriwty wywivwt (s TP LA 1T VAR I ]
t.. t strtandurg | surtindutd = §

t, b fertm e

Pojiversagst o s ANTt Bq et ieurfre terrg g

FArtde = (suttindutd) /et
wiogentiertndion yne

LIS B R UEE UL |

[R2ZRIINIINN L)

TINsNRRRRIRIRENY

fitonsssgiutnint

ttanwlesnt

M 1§ et suwisg (o) ralunl, etp
answde Burprvzy saenrrwrts o0 g Mig.eleve’ i) -e T8
g1 snl st it enaanfora /g

Mg = UEt votersag
Brrgteny wavntwite -- 0 PARaanigNGT )/ <m T
[FIIPSRC IR ANV AU T2 [P WA ¥ L]

tgg su y2efoxdg st |1

114 = {WAIRLg
ewordr RS EIREY miRcliRbte R LAY IV PRI Y

17810 o\l os NI s TOqutg, /)it
{caassistiyn
Poaredt tug chpp vmbe gt Breco wmtp 11 {Lrss oL fagd)ieds

f e ten~~t, w USP HOtwleAf
Floappy .towstp’ vt dottaindut » U3¢
Fear gt pore usey w1ty v A pe owideg & Y Ln slUgt [IRFREATERN THLIEE T LAY |

toymvy, o togetd

(131

Poenvibucct, o toaeid

v, e sdiptegeig) srege

ttivie, » {eqeid
Jiew, e sdAtieaeigl gt

tomolit « (tWAI®Ig)An

titegeig) A

tlug ) Ant

13ebcad ey e gummndie priys -4 l133tys = 13efordf Aw

sTeh A () sl Kt jamatbiy (4H0IRE B} Pigtus o owvi Au

Ang qaay ey twqel e ootk £y Atemefte qarry o 0y 1attye » wdhtegeis Au

teaet ded qhe
URIN TR LIUERCEIETTE S Ul £ LT S |
(11 PurranddbrtEnt

Pty Ateirationg savyg £ U
seaeesiinit it ddInalInIny

titvasnapitinaee

ttda) sen s

Pty ke yaa{oend tederuic ana 43 st fegwys 1oy ade!
tp vt Papfrety novaintle o FpgasnlEnetl s
1780, sl st aevannlong. /4

¢ = UJE Uotwieag
tosrde Mutttety savenutis g 27880 €N )2 w18
[P TIPREC AL ANAWLRAUTILEL VOV A b A

14 = 11 (vArnsg

cwoyle Mgttty aiNaIvLES IR L ST ANE AVARFAET IR )
{7814 i\ ae Nt s tuntestekad. /gt
1t = lo t¥AlIe2S
twonda doregrway mawetnrge - g Fré aNIRNS )2 o U}
[ZIT PR SURCIYRWCRC LT ST TS T
{eda>iotiyn
(hatag s 'dadiuedo) gt
Poarininact, » U3¢ USTEIBAL
Pl.opt L teantt’ . ent dettaandut o (H34)Aw
(gansend pre yeey mity v Ay peawqder et (1A BTUL) sdell B WU wHemIeep g

1..eit teade1g {,. a0 tvarets f{tvAInIQ) AW

Figure C.1: Example PEXL Module {3 of ¥).

75



L LT LT T A T EL N TR 2 D DY TRV EEN LT L LES T DAL L L)

f.. Utinjes

Hi3¢ nyay
-I—'
iggt Lol hdfas, Yieds uinqaa
tt wniviRag, gredgleisine) 3

t13tue = (U3f)Aw
11ptue » (dA3g)Aw
atiyindino gne
sitr ndite ue sueil e wUE N aghe Tt
T L L L T T e L LT I T Ly e Y PR LT T ]

fuje ushisy

uste
Brrgiuaet N 178 24} gy T4 uangsa
HT-wtg-Nr 21
I EF ST LN I ] H1T¢ 2-) 5y T4 uiniaz
g gl s, theds = T8
tjr-efi-N/2)
IH1g = ¢
LAY e 17 2-) 21 T¢ uinasy
H12-N72-%) 22
HT¢ 2=} pr T¢ uImm:
TIEAHAVE e T Lrebvitae, wivdg = T
tpg-w r-wi12
_ uys = g
RSN SRR LY R PLT¢ 2-} 1t "¢ wrey
fuger Lrel v, wivdg - T8

(sstgt dR1g yrwdgstetgutshany
11g)An
11 WAy tivditsraine) 3t

fugg 1« 3t MJ§ uinay
fagtyy = tu3g)Ae

t1pttie w (dA1g)Aw
etrinduy ans

SEIT o andue ue puLy e AU eINne ol
T T T T R T L RN L TR R R RN TR ES RN DRER AT AT DR AL L L LR L] ] ] L]
tuanaes
tiggieeoyo

t) enge |
treluygigseds = (upd)ipwdg
tzypd = (Amyg)yiedg
tClurgIqandg) ‘L 1\Utg, = (Rexg)ie
1 taypg p-)3y
SwEI0q Un emyois Kep @ I8\ /\\/® —= 2108
t78 t wrepd T & Jén\/ = lxtpg)he
t4em\Ug\s*)/ 3T 16 = 8
e §
Y] I {/8ts B\) ew\ /) JA0T
frelupfiqaedg « (urg]tzedy
12ypg = ({urgittawdg . i \ute. ] uswdg
curigoq Uo sexoud Xed ' 1B//\/\\/ = 27D}
t{turgIandg) sasyam| JT O = (UTHlUIwdy
tItPE P- ) 31 L<\21PE>\ A207081ip PILEAUT UlRIUSO <\UIE>h\. ST
178 wrrepdt T & N/ « latpd)
t/8eu\tENe Y/ 31 Th = #
g w
t1h - Urg
VAR AR ASAN LA RA WL F 34
| teomsieryn
fuu = {ush)ie
t.andur 103 Ugg Usdo 10U prnon, etp (| Luuzd>. ‘odluede
| {uzd w-hay

(Kt{qtsvod) sotiojoertp eidrythem

edAy @113 Jo uotIwoot 'y

£ {41 a0l | ANES) amtXe 39 {U3g ®-) }) 37 eSTTAOIE* | EHOH. |ANEE » UZE
Lt Ta02asXEs . I ANES) samtxe 9y (Ugé | )} 37 erraoad‘{ . MIQOTLEXEL. I ANRE = UIE
traose = (uzd)fe
t p1ondeyes y = (9118034) e

[PYAYRON CRCST TUAN NP _l:._v.;u
tpudg =

towpwes s
o7%3 oL pewt ‘'
PRAGRRQUPNUISUNEBURERNRRNUNINAAREY

{
! {yvAreLg) Uiniex

fuu ¥ TR & TH = ttRAImag) A

t{} (\mopuyaByz)\utBeq\\/ 93 8} 31 «u = |uTedutord.isBexavaweng
U amea\N/ 93 T8) 2% u{\xeazpd)\y = |Lie2sedhy, leburovdeeng
1 {/eotudetepntous\\/ 93 “#) 3T L(\xei3pdj\, = (LxoTUdesD, | abeyoegeeng
11/ (\ew\[Dewse\|\sv\BrRIA0AduIBoTIQIT\\/ Y T8) 3t uu m {Lentivde, iefugovgeeng
1) ewte |
ieawsd » ¢
{
1 tuorawaros)azys
{0 = | $lwsrog
18/ /e\fv
t{ojuotamatog = §
1 (boyawsrogl ety
1{xg! 1\ 3vtde w_{uosawmitog)ie
"¢ = albln.-ml

T LN TGN e\ e LINT FNem\®aroAN/ |1 21N EeLINCI\u]) INawAmasorN /) 9 “#)3Y

1] uﬂnc 1
133w L (\u DUIUZE SULTY =
t/gtam) {xe) [23]°\/ 3Y 8 = ucucu-

Figure C.1: Example PERL Module (9 of 9).

76



D Sample Java Module (GUI)

Figure D.1 lists one of the smaller TgXspec Java modules ‘ DesignSpecificationEditFrame.java’. This lsting
is intended to illustrate the coding design and style used in all such modules.

The TgXspec GUI contains are over 32,000 lines of Java over 85 modules.



//Ticle: TeXspec : DesignSpecificationgdit
//Version: a.

//Coovrigat: Copvright ici 2
//Author: Steve Ol:
//Company: Universitv cf Mani:

//Descripoticn: Graohical :iaterface for TeXsosec CASE
packaa¢ TeXsoecGU;

import java.awt.*;
import javar.swinc.*;
imoort fava.awt.event.v;

/tt

* tdit/Create a Desizn Specrficact.

* @aucthaor <A HREIT="mailtc:cliversiaecl.ca">3Stephen CLiv

* @version 0.13., Mar 3, 2

*/

public class DesignSpecificaticnEdit®r: extend: JIinternalFram

//... rastance var.abl

/"
* uaderlving cane
7£ivateJPaneIedi:Pane,= new JPanel'
e
* lavout tor the uncerlving par
.
oéivateGridBaaLavou editPanelLaveoL = new GridBaglavou

i

/'~

* panel for cocmmen TeXssecCompanent CONT:

s

crivate TeXsvecComponentEditPar componentPane;

/v-

* panel for Qesign spec specific coate

s

private DesianSpecificationEditPar desyqgnPfane;

/oq
* panel for "SAVE" and "CANCEL"™ zuct
[ ]
!
private SaveCancelPane buttonPane = new SaveCancelPane

A\

/vt
* LCesign Specification =c be ecited lazZigl
-
/
private DesignSpecificati. dsOlc;

/"
®* Designr Data Dictigonarv Entrv to be edited (moc:
.
J;
private DesignSpecificati: dsiesw

/v'

® data mecdel for table of desian so

'

private TeXspecComponentTableMoc dataMaode. ;

/w.
* Used for arneratinga lavout constral

-

T

private 1nt curRov = 0;

. - v . » e e Se e
EIGURE L. L7 DRASHEHE JAVES AVILEUI: (L UL Of.

78




'[vo

* Creates an instanc

* @varam title tke Strira tc displav i the ticl

* @naram resizable 1f trie, the frame can be

* dparam claosable 1f trie, the frame can be ¢

* @garam maximizable :1f true, the frame can be max

+ @naram iconifiable 1f true, the frame can be 1icao

* @param & desiqgn Spec:fication tc be e

* dparam o dataModel for Jtable of specif:icaticns which mav ber
-

14
public DesignSvecificationEditPri:Stranc title, boolear resizabl,
boolear closabl., boolea:r maximizabl, bcolear iconifiabl,
DesianSvecificati- d. TeXsvecComponentTableMoc m:

supe: . title, resizabl, closabl., maximizabl, tconifiabl ;

dsaclc = d;
dsNewv = :DesignSvecificati: 'd.cocov
dataMcde. = m;

Al

try -
ibInit:
pachk: -;

catct Exceptio ex
ex.printStackTrac

/'0

* Creates an 1nstanc

.

* @oaram © design Spec.Ls-cation ¢ be e

* @oaram = dataModel =cr Jtable of sp=aciticaticns wWhizh mav be !

‘.,
oublic DesianSpecificationEditFri DesignSpecificati. o,
TeXspecCaomponentTableMoc m.

this: "Desian Speciticatioc, Trueé trué, True, Lrue o, m: 7

/.-
* Creates an |nstance. ltsed bv JBu:ider

.

-

’
public DesiranSpecificationEditFr:.
this "™, true, true, true, true, null., null ;s

/..,
* fnitiall:

.

*

orivate vocic ibInit: . throw: Exceptia:

/f... set 13 ccmmon TeXscec component elements Ecr e«
componentPane = new TeXsnecComponentEditPar:dsNev. :

//... set uz desicn cata Qlctigonary sceciiic eilements Lar €
designPane = new DesianSoecificationEditPal dsNev ;

f//... set iy the listeners far the "SAYE" & "CANCEL" b
buttonPane.getSaveButtc: .addActionbListene
new javz.awt.event.ActionlListene:
oublic voi1c actionPerforme Acticniven e.
saveButton actionPerfornie:;

Ld
buttonPane.getCancelButtc . .addRctionListenc

Bienea N 1: Rvamnle Jave Madula {2 of R).
=2 -ghiilialiil B¥ Rl s

_——— —i s

79



new javz.awt.event.ActionListens: .
public voic actionPerforme:ActionEven e:
cancelButton actionPerforie:;

//... sSet up the zain ovar

getContentPar :.setLavou new GridBagLavou:

getContentPar' ' .ad¢:componentfane,

new GridBaaConstrain

0. 0, // arid pos x.
GridBacConstrain .REMAINDE, 1,
// arrd width, heira
1.0 0.¢C
// werche =x.
GridBaacConstrain .EAST,
Gr:dBagConstrain .HORIZONTA,
f/ archeor, £11
new [ngec:e 0, 0, 0, O,
/! Loset
5. 2
f/ zmadw., gad

-

getContentPar: .adc:desiagnPane,.
new Gridl3agCanstraln

a, I, // ar:d pos x,
GrrdBacConstrain .REMAINDE, 1,
gr.d wicth, 1eigl
1.5, 1.¢C
Sl owercht ¥,
GridBagCenstrain .EAST.

GridBacConstrain .BOTE. s

anchas, Tio

new [nset:.Q, 0, 0, O .,
/¢ inset

s, 2

J/ vadx, ovad

’

getContentPar -.adc¢'buttonPane,
new GridBaagConstraLin-

0, 2, // arzd pos x,
GridBacConstrain .REMAINDE, 1.
agrid width, aeral
1.C Q.C.
// werzht x.
GridBagConstrain .EAST,
GridBacConstrain .HORIZONTA,
7/ anchar. £1L1
new Inset: G, 0, 0, O .,
// inset
3, 2
s/ vadx, vad

-

/9'
* Generate lavout consctraints faor most f.
~ %param width arid width <0 = end of 2w, 7 = remainder
./
orivate GridBagConstrain lavout.int widtl

recurr Llavoutiwidtl, GridBagCanstrain .CENTEEL 7

/vt
* Generazte lavout ccasTtral

2/

7/

Pigurs D2 Example Javs Module (2 o£5).

80




-

*

@param width
fparam anchor

crid widtchk (<2
see GridBagConstra

vy
private GridBagConstrain lavoutrint widti,
GridBagConstrain' retVal = null;

Lfiwidtr <= 0.
1f widtl==0 )

= end af raw.

B

int anchorn

widtt = GridBaaConstrain .REMAINDE;

else -
widtr = -widtl

retVal = new GridBaaConstrain
GridBagConstrain .RELATIV,
widtt, 1.
he>ght
1.C. 0.¢C,
anchol,
new Inset: 0, 0, O,
0, 2

H

.

else
retVal = new GridBaaConstrain
GridBagConstrain .RELATIV,

GridBagCcnstralin .BOTE,

/
!

curRowvt+,

/
/
/
/

curRos, //

remainder

/
/

Iric pes H.
cric width.

/
/
/
/

wergat x.
anchece, £il
Laset.

padx, pad

arid pos X.

widtt, 1, 7/ arid width. heila
1.¢, 0.C, // weight x%.
anchoil, GridBagConstrain .NONE, // anchor, EIl
new Inset:: 0, 0, 0, 0., /7 Lnsec
s. /¢ padx, cad
2
returt retvVac;
/ L3
* Generate laveou: cgsnstra:
* dparam width ar.d width (<3 = =pnd of row, } = rema:nder
* dparam anchor see GridBagConstra
* Aparam f:1° see GridBaaCcnstza
g
private GridBagConstrain lavoutiint widti. -nt anchos rat £ill
GridBagConstrain- retVal = null;
18wider <= O
1f: widtl==0
widtlh = GridBacConstrain .REMAINDE;
else
widtt = -widtl:
retVal = new GridBagConstrain-
GridBacConstrain .RELATIV., curRow+, // =rid cos Xx.
widtl, 1, // zric wideh,
he-aht
1.C, 0.1, t/ weigalt x,
anchoi, £1ll, /4 anchor, zesiz
colict
new Inset: Q. 0, 0, 0. // Lnset.
g, 2 // vacz. vad
else
retVal = new GridBagConstrain-
GridBagConstrain .RELATIV., curRos, // arid pocs X.
width, 1. /7 agrid width. heira
0.1, 0.1, // weicht x.
anchol £111, // ancheor, reszz

T o %o Dunm .

81

™ e - Fommem Al dunben £,
SIPULS Aresc AAGLLPIE wava svabblalas

& =l
[

=V
-pe




pvolics
new Inset:0, 0, 0, Q. // inset.
5, 2 // padx. cad

returr retVal;

/V't
¥ Raespond to mouse-click on cthe "SAVE" pushb

-
v/
orivate voic saveButton actienPerforn ActicnEven e:
componentPane.recordDat .;
designPane.recordbDat 7
L1f: dsOlc.getName: .equal:idsNev.getNamt

dgNev.copvTcdsOlc ;
try

dsQlc.write ;
buttonPane.getCancelButtc .setTexi "ExiC";;

@param e event from -

catcti TeXspecExceptic ex
ExceptionDialc dlg = new ExceptionbDialc:Confiquratic.
getDefaultfran: ,"TeXscec,trus TeXspecExceptic.erzor,
"Could not save Des.aqnbl+" ex.descriptic 7
Dimensio dlaSize = dlc.getPreferredSis: ;
Dimensio frmSize = getSize ;
Point loc = getlLocatic ;
dla.setLocatioc £frmSizi.widtht - dlaSizi.widtl / 2 + loc.x.
frmSize height - dlaSize.height: / 2 + loc.v.;
dlg.show ;

else
tcy
dsNev.write:  ;
buttonPane.getCancelButtc: .setTexit"Exit”;;

1f: dataMode != null dataMode .addComponen dsNewv.; //...
update Jtabl

catcl’ TeXspecExceptic ex

ExceptionDialc dla = new ExceotionDialc Configuratio.
getDefaultfran ."TeXscec.,true TeXspecExceptic.error,
"Could not c<reate new Desicnl+" T+ex.descriotio: 7
Cimensio. dlasize = dlc.getPreferredsis ;

Dimensio. frmSize = getSizd :

Paint Loc = qetlLocatio

dlg.setLocatio. frmSizi.widtlr - dlasSiz.widtl: / 2 + loc.X.
frmSizi.height — dlgSizi.heightt / 2 + lec.v:

dlg.shaw: -;

/==
* Respond t¢ mouse-click on the "CANCEL™ pusht

-

« dparam e event “rom ¢

v/

nrivate voic cancelButton actionPerfornrActicnEven e
dispose . ;

Figure U.i: Exampie java Moduie {3 of 5}.

82




E Installation

E.1 Prerequisite Software

‘TrXspec relies on a number of tools which are available without charge and can be downloaded from various
Internet sites. These tools can be installed on various computing platforms. Each of these tools must be
installed on a system before TEXspec can be installed. TgXspec should operate on any platform where each
of these tools has been installed.

€11 Ped

The main TgXspec processing is performed by modules which have been implemented in PERL [28]. Perl
Version 5 was used to develop TEXspec, and earlier versions are unlikely to be compatible.

E.1.2 TgX and ETEX

Various distributions of TgX and HIEX exist for many platforms. TgXspec has been tested on the TeTEX
and MikTEX distributions, but should be compatible with any other valid distribution.

Some distributions do not contain the xy-pic package which provides drawing capabilities that TgXspec
uses to produce Data Flow Diagrams and Structure Charts. or the vmargin package, which TiXspec uses
to control margins. If the selected distribution does not include either of these packages, then the missing
package(s) must be downloaded and installed within the TEX installation. Installation of extension packages
is detailed in documentation of the TEX distribution.

E.1l.3 Noweb

Noweb is a combination of executable programs and a IXTEX extension package. Detailed installation in-
structions are provided for various platforms with the Noweb distribution.

Microsoft Windows-NT users should be aware of the incompatibility of Windows-NT with the Noweb dis-

83



tribution binaries (executable images) for other Microsoft Windows systems. Instructions are included with
the Noweb distribution for building NT binaries.

E.1.4 JAVA Runtime Environment

Users wishing to run the Graphical User [nterface must install a Java Runtime Environment that includes
the "Swing” libraries. TgXspec has been tested on Sun Microsystem’s JRE version 1.2 and 1.3, but TEXspec
should be compatible with any Swing enabled envircament.

E.2 TgXspec Specific Installation

The TEXspec distibution includes:

® A number of Perl scripts. If TEXspec is to be run from the command line, then some platforms prefer
these to be placed in a particular location. if the GUT is to be used, then the scripts can be placed
anywhere provided that the GUI search list is updated to look in that location.

o GUI "batch” files. For each Per! script, a file is required to interface between the GUI and Perl.
The TEXspec distribution includes samples for Microsoft Windows environments. These files are only
required if the GUL is to be used, and can be placed anywhere provided that the GUI search list is
updated to look in that location.

¢ A Java ARchive (.jar) file containing the executable GUL This can be placed anywhere, provided that

the Java Runtime Environment can access it.

o A class (.cls) file for each publishable product. These must be placed in the XTEX installation. Instal-

Iation of new class files is detailed in documentation of the TEX distribution.



References

[l] Advanced Software Technologies Graphical Designer. http://www.advancedsw.com
(2] J.J. Bunn. Floppy and Flow User Manual http://vscrna.cern.ch/floppy/contents.html, 1997.

[3] Cadre Technologies, Providence RI. Teamwork.

[4] Canadian Standards Association. Quality Assurance of Analytical, Scientific, and Design Computer
Programs for Nuclear Power Plants. Technical Report N286.7-99, 1999. 178 Rexdale Blvd. Etobicoke,
Ontario, Canada MOW 1R3.

[5] T. DeMarco. Structured Analysis and System Specification. Yourdon Press/Prentice-Hall, 1978.
{6] Digital Equipment Corporation, Maynard Massachusetts. Guide to DECdesign. 1992.
[7] R. Eckstein, D. Wood. and M. Loy. Java Suing. O'Reilly & Associates Inc., 1998.

(8] B.W. Goodwin, T.H. Andres, D.C. Donahue, W.C. Hajas, S.B. Keeling, C.I. Kitson, D.M. LeNeveu,
T.W. Melnyk, S.E. Oliver, J.G. Szekely, A.G. Wikjord, K. Witzke, and L. Wojciechowski. The Disposal
of Canada’s Nuclear Fuel Waste: A Study of Postclosure Safety of In-room Emplacement of Used
CANDU Fuel in Copper Containers in Permeable Plutonic Rock. Volume 5: Radiological Assessment.
Technical Report AECL-11494-5,C0G-95-552-5, Atomic Energy of Canada Ltd, 1996.

[9] B.W. Goodwin, D.B. McConnell, T.H. Andres, W.C. Hajas, D.M. LeNeveu, T.W. Melnyk, G.R. Sher-
man, M.E. Stephens, J.G. Szekely, P.C. Bera, C.M. Cosgrove, K.D. Dougan, S.B. Keeling, C.I. Kit-
son, B.C. Kummen, S.E. Oliver, K. Witzke, L. Wajciechowski, and A.G. Wikjord. The Disposal of
Canada’s Nuclear Puel Waste: Postclosure Assessment of a Reference System. Technical Report AECL-
10717,COG-93-7, Atomic Energy of Canada Ltd, 1994.

(10] E.M. Gurari. TgX™ and BTEX: Drowing and Literate Programming. McGraw-Hill, 1994.
[L1] Interactive Development Environments, San Francisco, CA. Software Through Pictures. 1992.
[12} D.E. Kouth. Literute Programming. Center for the Study of Language and Information, 1992.

(13] L. Lamport. BTEX: A Document Preparation System. Addison-Wesicy. Reading Massachusetts USA,
1986.

(L4] J.W. Leis. BTgXcad - ¢ Drawing Package for BTgX2e. Communications of the TeX User Group Vol. 21
No. 1, 2000. http://www.ceng.dcu.ie/ csg/latex/latexcad.html

[15] D.M. LeNeveu. Analysis Specifications for the CC3 Vault Model. Technical Report AECL-10970,COG-
94-100, Atomic Energy of Carada Ltd, 1994.
85



(18] T-W. Melnyk. INROC Theory Manual Technical Report (unassigned), Ontario Power Generation,
2000. in draft.

[17] 8. Oliver. Computer Program Abstract - INROC 01. Technical Report 06819-03787.1-T10, Ontario
Power Generation, 1999.

{t8] S. Oliver, K. Dougan, K. Kersch, C. Kitson, G. Sherman, and L. Wojciechowski. Unit Testing - o
Component of Verification of Scientific Modelling Software. In T.1. Oren and G.B. Birta, editors, /995
Summer Computer Simulation Conference, pages 978-983. The Society for Computer Simulation, 1995.

[19] M. Page-Jones. The Practical Guide to Structured Systems Design. Yourdon Press, 1980.

(20 R. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill, 4th edition, 1996.
[21] N. Ramsey. Literate Programming Simplified. [EEE Software, September 1994.

[22] J. Robbins. ArgoUML Object Oriented Design Tool. 2001.

[23] K. Rose. Very High Level 2-Dimensional Graphics. TeX User Group Conference 1997. http://www.ens-
lyon.fr/ krisrose/Xy-pic.html

(24] I. Sommerville. Sofiware Engineering. Addison-Wesley, 6th edition, 2000.

[25] W.R. Stevens. UNLX Network Programming, Volume I: Networking AP[s - Sockets and XT/. Prentice-
Hall, 1997.

[26] W.R. Stevens. UNI/X Network Programming, Volume 2: Interprocess Communications. Prentice-Hall,
1998.

[27] P.D. Stotts. Tools Review: ‘Software Through Pictures’ from [DE. Journal of Visual Languages and
Computing, 4 p20i-204, 1993.

[28] L. Wall, T. Christiansen, and R. Schwartz. Programming Perl. O'Reilly & Associates, 101 Morris Street,
Sebastopol, CA 95472, second edition, 1989.

[29] R.J. Wieringa. Requirements Engineering: Frameworks for Understanding. Wiley, 1996.

[30] E. Yourdon. Modern Structured Analysis. Yourdon Press/Prentice-Hall, 1989.



Glossary

AECL Atomic Energy of Canada Ltd

API Application Program Interface A set of routines, pratocols, and tools for building software applications.
An API facilitates program development by providing pre-defined components.

ASCIH American Standard Code for Information Interchange A code for representing English characters
as numbers, with each letter assigned a number from 0 to 127.

CASE Computer Aided Sofiware Engineering A category of software that provides a development envi-
ronment for software programming. CASE systems offer tools to automate, manage and simplify the

development process.

CERN Europesn Laboratory for Particle Physics European Organization for Nuclear Research, the world’s
largest particle physics centre.

CNSC Canadian Nuclear Safety Commission Regulator of nuclear energy and materials in Canada.

configuration management system A system to identify and manage change, keeping a record for his-

torical reference.

CP/M Contral Program for Microprocessors Created by Digital Research Corporation, CP/M was one of
the first operating systems for personal computers.

CSA Canadian Standards Association A not-for-profit, nonstatutory, voluntary membership association
engaged in standards development and certification activities.

Symbolic Debugger A program used to find defects (bugs) in other programs. A debugger allows a
programmer to stop a program at a specified point and examine and change the values of variables.

DFD Data Flow Diagram A high level abstraction of software requirements showing conceptual processes
and the flow of data between them.

DGRTP Deep Geologic Repository Technology Program
Design Specification The specification for a single compilable module.
FSF The Free Software Foundation

GUI Graphical User Interface Pronounced goo-ee. A program interface that takes advantage of the com-
puter’s graphics capabilities to make the program easier to use. Well-designed graphical user interfaces

nnn Fean tha nenn Fonm L o L A lanmsacoa
SO QT LAl USCr T LLoITnY 4. Snguages.

87



ISO International Organization for Standardization Derived from the greek word iso, which means equal.
Founded in 1946, ISO is an international organization composed of national standards bodies from

over 75 countries.

Java A general purpose, high-level programming language developed by Sun Microsystems. Java is an
object-oriented language similar to C++, but simplified to eliminate language features that cause
common programming errors. Java source code files are compiled into a format called bytecode, which
can then be executed by a Java interpreter. Compiled Java code can run on most computers because
Java interpreters and runtime environments, known as Java Virtual Machines (VMs), exist for most
operating systems, including UNTX, the Macintosh OS, and Windows. Bytecode can also be converted
directly into machine language instructions by a ‘just-in-time’ compiler.

ITEX A typesetting system based on the TEXprogramming language developed by Donald E. Knuth. Most
people who use TrXutilize 8 macro package that provides an easier interface. ¥TgX, originally written
by Leslie Lamport, is ore of the most popular. KTgXprovides higher-level macros, which makes it
easier to format documents but sacrifices some of the flexibility of TEX.

Macintosh A popular model of personal computer made by Apple Computer, featuring a graphical user

interface to make it relatively easy for novices to use the computer productively.

MathType An interactive tool for Windows and Macintash from Design Science Inc that assists in the
creation of mathematical natation for word processing, and for TgX& ETEXand MathML documents

Mini-spec Process Specification The description of what is happening in a bottom level, primitive bubble
in a dataflow diagram.

MS-DOS MicroSoft Disk Operating System Otiginally developed by Microsoft for IBM, MS-DOS was the
standard operating system for [BM-compatible personal computers

MS-Win Microsoft Windows A family of operating systems for personal computers owned by Microsoft
Inc.

N288.7 CSA Standard for the Quality Assurance of Analytical, Scientific, and Design Computer Programs
for Nuclear Power Plants.

QO Object Oriented A special type of programming that combines data structures with functions to create

re-usable abjects.

OPG Ontario Power Generation A company owned by the Government of Ontario which operates the

majority of Canadian nuclear reactors.



PC Personal Computer The first personal computer produced by IBM was called the PC, and increasingly
the term PC came to mean [BM or [BM-compatible personal computers, to the exclusion of other
types of personai computers, such as Macintoshes.

PERL Practical Ertraction and Report Language A programming language developed by Larry Wall,
especially designed for processing text. Pet] is an interpretive language, which makes it easy to build
and test simple programs.

Structure Chart An abstraction of software design showing software modules, usually as a tree, and the
flow of data between them.

search Iist A list of directories to be searched sequentially for a file of a given name. The accurance of the
file at a higher level in the list effectively superceeds files of the same name in directories lower in the
list.

SGMIL Stendard Generglized Markup Language A system for organizing and tagging elements of a doc-
ument. SGML was developed and standardized by the [SO in 1986. SGML itself does not specify
any particular formatting; rather, it specifies the rules for tagging elements. These tags can then be

interpreted to format elements in different ways.

TCM Toolkit for Conceptual Modeling R.J. Wieringas’ collection of software tools to present conceptual
models of software systems in the form of diagrams, tables, trees, and the like.

TRADE Toolkit for Requirements And Design Engineering R.J. Wieringas’ Toolkit for Requirements And
Design Engineering.
UNIX Pronounced yoo-niks. A popular muiti-user, multitasking operating system developed at Bell Labs

in the early 1970s.

W3C World Wide Web Consortium An international consortium of companies invelved with the [nternet
and the Web.

XML, Eztensible Markup Language A specification developed by the W3C. XML is a pared-down version
of SGML, designed especially for Web documents. [t allows designers to create their own customized
tags, enabling the definition, transmission, validation, and interpretation of data between applications
and between organizations.

X-Windows A windowing and graphics system developed at the Massachusetts Institute of Technology.
Almost all UNIX graphical interfaces are based on X-Window.

89



Index

AECL, 1,4, 12,27
API, 50
ArgoUML, 6, 54

CASE, 2-6

CERN, 28

Chunk, 27, 28, 30-32, 34, 47, 57, 64

Class File, 12, 53, 54

CNSC, 1, 5,53

Cade Chunk, 27

Condition, 15, 16, 32, 64

Configuration File, 11, 39, 40, 54
Configuration Management, 11, 12, 37, 54
Consistency, 2-5, 8, 19, 20, 24, 25, 28, 29, 34, 35
Control Flow, 23

CSA, 1,2, 4,5, 37,53

Data Dictionary, 3, 4, 6, 11, 14-18, 21, 25, 27, 28,
30, 32, 34, 4045, 47, 55, 64

Data Flow Diagram, 2, 3, 5, 8, 15, 20-25, 34, 40,
43, 45, 46, 54, 55

DecDesign, 2

Design Specification, 3, 6, 8, 11-13, 15, 17, 27-32,
34-36, 47, 48, 51, 57-64

DGRTP, 1, 45

European Laboratory for Particle Physics, 28

Floppy, 10, 28, 51
FSF, 39, 54

Graphical Designer, 2
GUL, 9, 14, 38

INROC, 2
Java, 6, 14, 38, 50, 53, 54, 78-83

LaTeX, 6, 9, 10, 12-14, 16-21, 25, 28, 35, 37, 42,
31, 33, 54, 57, 63, 64
Literate Programming, 6, 12, 27, 28

Mini-Spec, 25
Mini-spec, 2, 3, 8, 11, 17, 20, 24-26, 34, 4345, 55
MS-windows, 6

Noweb, 6, 10, 13, 27, 28, 32, 47, 51-53, 57, 63
OPG, 1

PERL, 13, 14, 27, 28, 38, 50, 51, 53, 54, 69-77
Postcondition, 15, 16, 30, 32, 47, 64
Precondition, 15, 16, 30, 32, 47, 64

Process Specification, 25

Search List, 11, 39
Structure Chart, 2, 3, 8, 11, 15, 27-30, 34-37, 49,
GT |

TCM, 5
TRADE, 5

UNIX, 5
Version of Components, 12, 57
Windows, 6

X-windaws, 5
XML, 54



xypic, 6, 22

Yourdon, 2, 8, 13, 20, 23, 45

91





