
A Secure Single Clock Cycle

Reconfigurable Field Programmable Gate Array

by

James Millar

A Thesis
Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements
for the Degree of

Master of Science

Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Manitoba

@ Copyright by James Millar 2003.

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES
t(****

COPYRIGHT PERMISSION PAGE

A SECUR.E SINGLE CLOCK CYCLE RECONFIGURABLE FIELD
PROGRAMMABLE GATE ARRAY

BY

JAMES MILLAR

A Thesis/Practicum submitted to the Faculty of Gradr¡ate Studies of The University

of Manitoba in partial fr¡lfillment of the requirements of the degree

of

Master of Science

JAMES MILLAR @ 2OO3

Permission has been granted to the Library of The University of Manitoba to lend or sell copies of this
thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies
of the film, and to University Microfilm Inc. to publish an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive extracts
from it may be printed or otherwise reproduced without the author's written permission.

Abstract

Smaller transistors have resulted in more circuitry in the same area, operating

at increasing speeds. The ability to place what seems like an endless amount of

transistors with increasing density on a microchip is what made this project possible.

While past Field Programmable Gate Array (FPGA) designs remained inactive during

chip reconfiguration, I have designed an FPGA capable of reconfiguring its hardware

design (or function) in just one clock cycle. This feat was accomplished by using a

set of standby register banks and one active register bank for fast reconfiguration.

The abílity to save state information from the active registers into one of the standby

registers is also possible. All registers are connected as a scan chain so as to make

the FPGA testable for manufacturing errors. ln order to secure the intellectual

property of downloaded hardware designs, my FPGA decrypts encrypted hardware

designs for its programmable registers. This is accomplished using both public key

and secret key techniques for flexible and quick decryption suitable in a data

broadcast environment. During the public key design process, it was also

discovered that a more efficient method of encoding sequential (vs. parallel) circuitry

in behaviouralVery High Speed lntegrated Circuit Hardware Description Language

(VHDL) is doable by creating a small extension to the exísting language.

Acknowledgemenb

I would like to thank my advisor Dr. Robert Mcleod for the inspiring idea of

creating a reconfigurable FPGA in one clock cycle, and his contacts in industry which

allowed me to obtain financial support for my thesis work. I would like to

acknowledge from Nortel Networks Rod whitford, Kent Felske, and especially

Mohamed Zaid for providing me with financíal aid. ln addition to Nortel's help,

Jonathan Rose of Altera, provided funding for two summer students, Clint Stuart and

Doug Cornelson, to work on the FPGAs initial routing scheme.

On a personal note, I would like to thank my family, especially my parents

and grandparents for all of their financial support and encouragement. Lasfly, I

would like to thank my wife, Ellie Tsai, for helping to provide all of the food and

shelter during my studies until I may find employment.

Table of Contents:

Abstract......2
Acknowledgements 3
Table of Contents:4
List of Figures5
Chapter 1 lntroduction6

Overview of FPGAs6
FPGA Application lssues9
Thesis Objectives..9

Chapter 2 Literature Review.......12
Field Programmable Gate Arrays12
Cryptography..........16

Symmetric Key Cryptography..........17
PublicKey /AsymmetricCryptography.-....24
Fast Modular Multiplication for Public-Key Cryptography.................26
Data Broadcast Cryptography...........28

Chapter 3 RFPGA....30
What's ln a Name?30
RFPGA Requirements30
RFPGA Design Outline31
RFPGA components34

"R83"35
"R84"36
Switching Component41

RFPGA assembly.... 51
Component Connectivity Example51

RFPGA support too|s...........52
Bitstream Generator..52
Bitstream Encryption and Decryption.............S3

Chapter 4 RFPGA Decryption Unit............. Ss
Decryption Unit Requirements and Overview................ bs
Public Key Design55
Secret Key Design61

Chapter 5 RFPGA Controller Unit66
Controller Requirements................66
Controller Design62

Chapter6 Results Discussion70
Results70

Reconfigurable Blocks...70
Public Key Decryption unit74
ModelSim Simulation Results.......74

Chapter 7 Conclusions and Future Work..........79
Conclusions79
Future Work81

Appendices83
Acronym List83
References.84

List of Figures

Generalized FPGA Architecture8
Alphabet based One Time Pad (OTP)18
BASTC LFSR19
Generalized 1FSR..........22
Basic Stream Cipher System24
High Level SSFPGA View...........31
R83............36
RB4 with Controller Hook-Up on the side38
Basic Logic Element within a Configurable Logic Block and Scan Chain...............40

Figure I
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure I
Figure 9
Figure 10 : Latest switch_6 entity..........42
Figure 11 : Switch 81ock..........4J
Figure 12 : c_block_x and c_blockj45
Figure 13 : Various input/output blocks45
Figure 14 : Switch Block Scan Chain46
Figure 15 : C Block X Scan Chain47
Figure 16 : C Block Y Scan Chain.........47
Figure 17 : lO Block, Left Hand Side Scan Chain.........4g
Figure 18 : lO Block Right Hand Side Scan Chain49
Figure 19 : lO Block Top Scan Chain49
Figure 20 : lO Block Bottom Scan Chain. S0
Figure 21 : Complete 3x3 FPGA51
Figure 22 : Guntheds original Alternating Step Generator.............. .,...................62
Figure 23: Programmable De Bruijn 1FSR..........63
Figure 24: Programmable Galois LFSR.........64
Figure 25 : Designed Gunther Alternating Step Generator..............65
Figure 26 : RB3 and Bus Short Circuiting ProblemT0
Figure 27 : RB4, explanation of "selectHoAc" Hold/Active Multiplexer purpose-..............71
Figure 28 : Reconfigurable Block Clock Speed Comparisons,.....73
Figure 29: RB4 Simulation Results.......Ts
Figure 30 : Run of AND Gate on RFPGA with Port Command77
Figure 31 : Run of AND Gate with Synchronous Output (through R84)..........77

Chapter I lntroduction

Overuiew of FPGAs

When computational circuitry was first implemented on silicon, custom design

techniques were the sole method of production. These circuits generally had one

purpose and were termed "ASlCs" or Application Specífic lntegrated Circuits. As

time passed, companies began to look at ways to reduce their up front costs for

smaller projects by taking advantage of the lower costs of mass production. Today a

variety of techniques exist including the use of Standard Cells, Mask-Programmed

Gate Arrays (MPGAs), and Fiefd Programmable Gate Arrays (FPGAs). Whíle the list

is by no means exhaustive, the first two provide semi-custom designers with the

ability to create relatively high-speed designs with lower up front costs than a full

custom design. FPGAs on the other hand provide desígners with an inexpensive,

mass produced, general purpose hardware device for rapid development and

deployment on even the smallest of scales.

FPGAs come in two flavours, mainly those that are one-tíme-programmable

and those that are reconfigurable over their lifetime. One-time-programmable (OTP)

FPGAs are designed with what are termed "anti-fuses" as their configuration is set

by making, rather than breaking, electrical connections as a household fuse would

do. This is accomplished at first by having the anti-fuse reside in a high-impedance

state prior to being programmed, and then in a permanently low impedance state

following programmíng. The popular technique for reconfigurable FPGAs uses static

RAM (SRAM) based technology and provides the abílity to indefinitely reprogram the

device which has some obvious advantages, namely:

. hardware designs can be upgraded (e.9. new standards to be
implemented)

r a field technician may not be required to upgrade computing systems
. designs can be tested and retested without any additionalfixed costs. designs can be implemented immediately

Field programmable gate arrays (FPGA) were first produced by Xilinx

Corporation and have since been manufactured by Altera, Advanced Micro Devices

(AMD), Quicklogic and many others [1]. The general structure of an FPGA varies

from manufacturer to manufacturer, however, the basic resource requirements are

similar. Each FPGA must have a means of connecting to its pins, and this is

accomplished through inpuUoutput blocks of logic (lOB). These lOBs must then

connect to routing switches or interconnect blocks (lC's). lOBs must also connect to

configurable logic blocks (CLB) or functional units (FU). A generalized diagram of an

FPGA is provided in Figure 1 and various designs on this theme may be extracted

from it f1,2,3,4,5,61.

Figure 1 : Generalized FPGA Architecture

Modern lOBs not only connect the FPGA logic to its pins, but also provides

some routability around a pin. Pin routability allows for greater flexibility when port

pins and their functionality are fixed, and design changes are expected to occur.

FU's (or cLB's) contain the logic that implements the application. Each FU may

contain look-up tables (LUTs) and memory devices such as flip flops or simply basic

NAND and NOR gates. Routing resources may have the flexibility to connect one

block (loB or FU) to its nearest neighbour or, in some cases, for faster data

throughput, they may connect to a few blocks away.

At this point in time, one must begin to realize that no FPGA is usefulwithout

some form of computer automated design (CAD) tools. Since all of the actual

hardware resides on an FPGA, designs are always written using a high level

language such as Verilog or Very High Speed lntegrated Circuit Hardware

Description Language (VHDL). Once the design is implemented in a hardware

description language (HDL), it is first simulated then synthesized. Synthesis is the

process by which the HDL is converted into a stream of bits for downloading into the

FPGA for the purpose of confìguration. This bit stream can be quite long as FPGAs

typically have hundreds of thousands to millions of switches to set on or off in order

to be configured properly. The time to download such a configuratíon depends on its

length, the clock speed, and whether or not the bit stream was loaded in parallel

bfocks or serially. A serial stream is often used as it requires fewer píns to

implement and therefore represents a cost savings.

F PG A Ap p I i c ati on Issues

A variety of common characteristics of FPGAs include:

o the FPGA is designed using custom layout techniques
. configuration of the gate arrays do not allow for continuous application

operation
. one configuration is configured at a time
o lack of an on-chip method for saving or passing on previous configuration

state information
. lack of intellectual property (lP) protection.

This research project focuses on solving some of the common issues

plaguing current FPGA designs and in the process, offers new or enhanced features

in a flexible, easy to modify manner.

Ihesis Objectives

Numerous FPGA designs have been proposed by various universities and

companies using custom design techniques. Few, if any, have been fully specified in

VHDL. To the best of this author's knowledge, no FPGA design has been fully

specified in VHDL. By specifying an FPGA in VHDL, companies will have the ability

to test new configurations fully through both simulation and by using another FPGA

evaluation board as the base hardware. Furthermore, the designed FPGA will be

enhanced by allowing the reconfiguration of designs in just one clock cycle. This will

eliminate the downtime in a system that uses FPGAs intensively for its computation.

Current designs must wait for large bitstreams to download and be reconfigured.

Furthermore, the registers holding configuratíons in waíting (hereto referred to as the

"standby registers") can be multiple in depth and extract state information from a

previously running design. This should allow for smoother transitions between

various reconfigurations and will be referred to as "soft-reconfiguration". Designs

that do not make use of previous state information wilf result in what will be termed

"hard-reconfigurations". An example of a soft-reconfiguration would be if the next to

be reconfigured hardware design were initialized with the previous design's state

information. This soft-reconfíguration would allow for some continuity of information

flow between the designs. ln the case of a hard-reconfiguration, individual designs

to be reconfigured would have no knowledge of what had happened before them and

run as they were first synthesízed. Since the FPGA being devefoped is to be

created similar to SRAM based designs, the question of intellectual property (lP)

protection must be solved. lP protection is to be done using a combinatíon of public

and secret key techniques. A host of basic tools is also to be developed to automate

much of the configuration bitstream generation. The FPGA design will be based on a

scan design technique borrowed from testabilíty or "Design For Test" (DFT)

technology. Finally, recommendations to enhance the VHDL language for more

rapid development are presented.

10

The final name given to this, single-clock-cycle reconfigurable FPGA is

"RFPGA". Where R stands for "Ouf' FPGA and "Reconfigurable" FPGA. lt also

distinguishes our FPGA (RFPGA) from the FPGA that was used to target RFPGA to.

The FPGA to target will be referred to as "Virtex", the trademarked name given to it

by Xilinx Corporation. With the decryption units included, the top entity is called

"ssFPGA", or the secure, single clock cycle reconfigurable FPGA.

Since no FPGA was actually fabricated, RFPGA should be considered a

prototype, or design concept FPGA.

RFPGA was designed and simulated in Synopsys [7] and Modelsim [8]. The

Xilinx ISE [9] development environment was used for synthesis and an XSV800

FPGA evaluation board by XESS [10] Corporation, containing a Xilinx Virtex chip,

was targeted.

11

Ghapter 2 Literature Review

Field Programmable Gate Arrays

While a variety of FPGA architectures exist [1], it is the academic variety that

have been analyzed the most in public literature and are therefore easiest to learn

from.

One such published FPGA is called "Triptych" [11] at the University of

Washington in U.S.A.. The Triptych architecture was a custom design that tried to

make better use of chip area by using routable logic blocks (RLBs). That is, routing

functionality and implementation logic were on the same block. ln doing so, the

authors of Triptych hoped to minimize the tradeoff between creating an easily

routable chip and high logic density. ln order to make their design feasible, routing

software capable of finding short paths between the necessary logic in a design was

required as arbitrary and flexible routing was not efficient. ln their research, they

claim that most designs fit this criteria.

There are two primary disadvantages to the Triptych architecture that I can

see. The first is that digital circuits only operate at the fastest speed of the slowest

connectíon. lt therefore only takes one poorly routed connection to slow an entire

FPGA's operation. The second involves design upgrades. lf an FPGA lacks a

flexible routing architecture, then design upgrades requiring pin functions to remain

fixed may be challenging to implement. lt only takes one impossible upgrade to

upset a customer.

Another FPGA named "LEGO" [3,4] was developed at the University of

Toronto (U of T) in Canada. The FPGA designs of the U of T team were built on

12

years of testing basic circuit blocks for ever increasing speed. Tests were done on

logic-blocks to determine where it would be best to have hard-wired connections to

íncrease speed without sacrificing too much in flexibility [12]. Other tests

demonstrated that a four-input look-up-table (LUT) was the optimal choice for speed

and chip area [13]. The final chip's design layout is similar to that of a Xilinx XC4000

chip. Each configurable logic block (CLB) has its four sides surrounded by a

connection block (CB). Each connection block then connects to the nearest switch

block for more generalized routing. Such a design allows for a flexible routing

architecture and is easily repeatable over the entire chip. Repeatable designs often

make for better use of silicon, hence the basic design of "LEGO" was chosen to build

on for this thesis' "RFPGA" chip.

While some FPGA designs include special circuitry such as video decoders

and phase-locked-loop circuitry, there is at least one design that has generalized

such circuitry within a system of FPGAs to create a kind of supercomputing machine.

Such a system was described as having a "Programmable Active Memory" [14]

(PAM) by its authors. The authors claim that "At comparable cost, the computing

power virtually available in a PAM exceeds that of conventional processors by a

factor 10 to 1000" [14]. A system of over twenty FPGAs were coupled together with

external SRAM and a system processor to allow for at least twelve hardware designs

to time-share the FPGA hardware. While the system provides a means to generalize

software functions onto hardware, it lacks communication back to an external

processor making it difficult for state information of various routines to be passed

easily from one design to the next. The reference is also not specific on how this

might occur. The authors do however state to have proven the PAM concept

through a variety of designs targeted for their system.

13

ln the ASIC community, the design concept often implemented is Design For

Testability or "DFT". The testability of a design is based on its controllability and

observability. Controllability refers to how easily a circuit's elements can be set to

various states by a test engineer. Observability is how easily one can monitor the

circuit's output once those elements have been set. ln general, scan designs result

in the replacement of a circuit's flip-flops by the scan-design flip-flop (SDFF). The

SDFF is connected in much the same way as the originalflip-flop with additional

wires that also make for a separate shift-register chain during testing. Therefore, a

test vector would be first scanned in through the SDFF, then the vector is applied to

the circuit for one clock cycle allowing the test vector to propagate through the

asynchronous elements. Next, the resulting vector is scanned out of the chip for

comparison. ln this manor, synchronous and asynchronous circuitry are separated

and both controllabilíty and observability are increased. Popular techniques for DFT

are described in [19] including IBM's level sensitive scan design (LSSD) approach

and NEC's scan path [28].

When creating a testable chip, it is usefulto follow some simple guidelines.

The below guidelines are compiled from 119,20,211.

Avoid Logic Redundancy. For a designer using a high level programming
language, this can be a challenge. The primary reason being that as an
end user of synthesis software, unless you have a wriüen guarantee from
the company supplying you of that software, most designers may never
know the details of the synthesis, Most synthesis software should
automatically remove redundancy, but this is no guarantee.
Separate Sequential and Asynchronous Logic. Through separation, one
is able to apply a test vector for one clock cycle, and read the result back
without further interference. This increases both controllability and
observability and breaks all combinational logic feedback loops that may
result in circuit instability.
Avoid Gated clocks. some designers control clocks with gates to reduce
logic area, however this results in difficult to test círcuits. There are two
reasons why it becomes difficult. The first ís that an error in the gate
controlling the clock may make it impossible to determine where in the

1.

2.

3.

14

circuit the actual error is coming from. The second is that gated clocks
are not controllable.
Design for Easy lnitialization. Each flip-flop should have a reset input so
that all sequential logic starts at a known state. ln doing so, testing can
begin immediately and does not require any test setup vectors. The reset
should also extend to a chip's external pin.

15

Cryptography

Cryptography, "the art of writing in code or cipher" [15], has been gaining

increasing importance for a variety of legitimate or illigitimate organisations. War

probably spearheaded some of cryptography's modern beginnings. Examples of

early cryptographic techniques included simple letter substitution algorithms and

rotor machines, to the newer electronic stream and block ciphers as well as the

famous Rivest-shamir-Adleman (RSA) public key algorithm. Each of these

techniques and many more are well described in Bruce Schneie/s book "Applied

Cryptography" [16]. While Schneier's book focuses on providing a clear explanation

of the concepts of cryptography, another text, "Handbook of Applied cryptography"

l17l by Menezes, van oorschot, and vanstone takes a more academic approach

and provides detailed mathematical algorithms for each type of cryptography.

Prior to the design of a cryptographic system, one should ensure at least the

classical laws of a cryptographic system desígn by Kerckhoff tlBl are followed,

namely:

1. The system must be practically, if not mathematically, undecipherable;
2. lt must not be required to be secret, and it must be able to fall into the

hands of the enemy without inconvenience;
3. lts key must be communicable and retainable without the help of written

notes, and changeable or modifiable at the will of the correspondents;
4. lt must be applicable to telegraphic correspondence;
5. lt must be portable, and its usage and function must not require the

concourse of many people;
6. Finally, it is necessary, seeing the circumstances that the application

commands, that the system be easy to use, requiring neither mental
strain nor the knowledge of a long series of rules to observe.

There are two basic types of cryptography, symmetric and asymmetric. ln

symmetric cryptography, the keys are termed "secret keys" and their value is

guarded at alltimes because the sending key and receiving key is the same. tn

l6

asymmetric cryptography, the sending key is different from the receiving key. The

sending key is often termed the "public key" and the receiving key is called the

"private key". The public key for encryption can be known by anyone, and the

private key for decryption, is only known to the receiver. Often, systems are

designed so the human users don't even know what their secret or private key is.

This added secrecy of the decryption key can help destroy the chance of the ancient

arts of bribery, sex, and torture in unlocking encrypted data.

Symmetric Key Cryptography

A considerable amount of work has been done regarding symmetric

cryptography, that is, a cryptosystem which relies on its key being the same for

encryption and decryption. Unfortunately, this doesn't mean that it is well

understood. A simple search of the IEEE database of designs will yield numerous

proposals and successful attacks. lt is therefore very important to fully understand

the mathematics behind symmetric key cryptography before creating one's own

algorithm. Learning however can be dívided into various types of symmetric ciphers.

There are block ciphers, stream ciphers as well as memory and memoryless

systems. This thesis will concentrate on stream cipher design.

The ultimate stream cipher was not invented recently, in fact, it was invented

in 1917 by Mauborgne and vernan [16]. This cipher system was termed the "one-

time pad" or OTP for short. To create an OTP assuming alphabetical leüers are to

be transmitted only, one could write out in a completely random fashion the letters of

the alphabet on a pad of paper. Starting with the first letter on the pad and the first

letter of the message to be encrypted, one could add their alphabetical location

together, take mod 26 and that would be the encrypted character. The next letter to

17

be encrypted would use the next letter on the pad and so on. The pad would only be

used once for encryption and then destroyed. Such a system has not been found to

be breakable due to the fact the sequence of letters on the pad is totally random. An

example is given in Figure 2.

PAD
(alphabetical location)

ABZEFOMHSD
L 2 26 5 6 r1 13 I 19 4

Plaintext Message
(alphabetical location)

HÏHOSfLVER
8 9 815 19 91222 518

Sum 9 113420 25 2625302422

Mod 26 9 778 20 25 0 254 2422

Decryption:
((above)+26-PAD)mod26

B 9 815 19 91222 518
HfHOSILVER

Figure 2 : Alphabet based One Time Pad (OTP)

lf a one-time pad system were used more than once, it would then be

possible for someone to compare messages for similarities and decrypt the plaintext.

Correlations between popular code words or common characters such as the letter

"E" in English, may allow a determined cryptanalyst to decode the entire plaintext.

However, when used correctly, the OTP is considered unbreakable.

lf a computer were to use an OTP, it could simply exclusive-OR (XOR) a

random stream of 1's and 0's with the plaintext message's binary representation.

The decryption operation would be similar - an XOR of the pad with the ciphertext

would yield the plaintext.

Although OTPs have been extensively used in the past, their potential size

and difficulty in transfening the pad to the end user ensures their use is limited to

18

relatively small applications. The problem therefore is to create a seemingly random

sequence of bits with a small and easily transferable piece of information or "key"

which can be used to define the longer sequence. Such systems exist in the form of

stream ciphers.

Stream ciphers may come in a variety of forms including "Linear Feedback

Shift Registers" (LFSRS), which this thesis will concentrate on, and cellular

automata. An LFSR is composed of a series of registers that usually shift their

contents one bit at a time in one direction only. The contents of specific shift

registers are then combined to generate a bit to fill the void left from a previous shift

as shown in Figure 3.

Combining
function " f "

Figure3: BASIC LFSR

When the shift register is clocked, after one cycle, the current contents of

1001 would become 0100 in Figure 3. LFSR's have a varying number of registers

and different combining functions to produce different sequences of 1's and 0's. lf an

LFSR is composed of "m" shift registers and is capable of cycling through all

possible states, then this LFSR is said to have a maximal-period, and the resulting

output sequence is termed an m-sequence. ln order to generate such a sequence,

the combining function "f' must be composed of a primitive polynomial. Primitive

19

polynomials are sa¡d to be "irreducible" just as common prime numbers are not

factorable (beyond 1 multiplied by themselves). The definition "a polynomialf(x) e

Zpfxl of degree m > 1 is said to be irreducible over Zp it it cannot be written as a

product of two polynomials in Zp[x] each having degree less than m" can be found in

[41] along with techniques for testing and generating primitive polynomials. The

testing and generation of primitive polynomials is outside the scope of this thesis,

however, they are required to create useful results for LFSR designs in cryptography.

Much of the basic understanding for LFSR design has been well summarized

by Golomb [45] and Rueppel 1421, a condensed version of which will be used here for

the purpose of providing basic definitions and understanding.

Let "p" be a prime number, and "Fp" represent the set of integers {0,1,...,p-1}.

Given the algebraic system .Fp, +, .> we use symbols a and b to represent Fp's

integers for:

a+b=Rp(a+b)

aob=Rp(ab)

to define a Galois field of order p, denoted GF(p). The remainder is defined as Rp

when an integer n is divided by the field's maximum prime number p. For a stream

cipher based on flip flops, p equals 2 and the set of integers is {0,1}. ln this field

termed GF(2), arithmetic operation Rp is termed "modulo-2 arithmetic". As has been

mentioned, polynomials are used to describe the feedback taps of an LFSR. These

polynomials in GF(p) are written as:

a(X) = adKo + â1X1 + ã2X2 +... + anxn

where: a¡ is the leading coefficient and

20

X is called the indeterminate.

Definitíons for polynomial addition and multiplication are given in l42l on page 18 and

are worth repeating here so the reader may understand their linkage to LFSR design.

Addition is performed by:

a(X) + b(X) = SUMI(ai + b¡)*Xilfor i=0 to n

Multiplicatíon is performed by:

a(X)b(X) = SUM(c¡,xk) for k=O to (n+m)

where

c¡=SUM(a¡ o þ) for (i+¡=¡, and 0<=i <= n, g<=j<=m)

and

n and m are the degrees of a(X) and b(X) respectively.

Multiplication of course introduces us to division where a(X) divides c(X) if

c(X)=¿1¡¡5(x). lf a(X) or b(x) is a simple constant vatue of GF(p), then c(X) is said

to be an ineducible polynomial. That is, we have a primitive polynomial.

useful polynomials are those that can no longer be factored and are termed

irreducible polynomials. lf an LFSR is of length r, and its feedback polynomials are

irreducible, then the shift register is guarenteed to go through all2'-1 possible states

before repeating. Factoring is a challenging operation that will not be explained here,

however long division which may result in factoring is the same with numbers.

Examples of polynomial division are given inþaland a software program to

generate irreducible polynomials can be found in [43].

21

4
l

t
-A

: a\t,- I I t"-u

so, s1...s¡_r

L shift registers

Figure 4 : Generalized LFSR

A generalized LFSR as shown in Figure 4 can be used to explain the

mathematical operation of LFSRS.

The feedback polynomial coefficients are represented by 'f while the state of

the shift registers is defined by's'. There are a total of L shift registers in the design.

Given we are working in GF(2), addition or multiplication can be accomplished with

the use of an XOR gate as is done in our design. The feedback polynomial can be

described by;

F(D) = 1+fiD1 +fz)2 +fsD3 +f+Da

where the exponent of the power D represents the delay, and D is referred to as the

'indeterminate' and f represents the feedback coefficients. Substituting in their

values yiefds:

F(D)=1+ D+D2+D4

To determine the sequence of digits 's', the coefficients of F(D) is multiplied by the

state of each shift register or:

s¡*¡ = -59¡yt(-fis¡.r--i) for i=1 to L, j>=9

or simply s¡*¡ = SUM(f¡s¡.r--i) mod2, for i=1 to L, j>=9

22

There are two points worth mentioning here. The first is that an LFSRs

output is highly predictable and must be combined with others to form a less

predictable bit stream for cryptography. The second is that this combination of

LFSRs must produce as close to a truly random sequence as possible so as to limit

the analyzability of the stream. Golomb's [45] popular definition of the randomness

of an ideal coin toss is formulated as three postulates.

1. The number of heads is approximately equal to the number of tails.
2. Runs of consecutive heads or of consecutive tails frequently occur, with

short runs being more frequent than long runs.
3. Random sequences possess a special kind of auto-correlation function,

peaked in the middle and tapering off rapidly at the ends.

Golomb's definition however generally describes an LFSR using an

irreducible polynomial for feedback. Rueppel however recommends that

randomness should include some measure ol unpredictability and suggests the

Berlekamp-Massey LFSR synthesis algorithm[46]be used as a test. As the

synthesis algorithm generates a larger LFSR to represent a finite bit stream, s, this

may indicate that the stream's digits are less predictable or, the linear complexity of

the sequence has increased. Rueppel goes on to provide his own mathematical

clarification of unpredictability. Rueppel's mathematical definitions are necessary to

ensure that trivial exceptions like a stream of zero's followed by a single one, are not

deemed secure by an algorithm like Berlekamp-Massey's.

The basic fundamentals of a stream cipher system are illustrated in Figure 5.

once the LFSR has been seeded with a key, its output is then passed through a

non-linear function. Non-linear functíons generate the unpredictability necessary to

make a stream cipher secure. Such a function may be generated on the existing

23

state of the LFSRS, the outputs of a few different LFSRs, or by means of a custom

LFSR clocking scheme.

Cipheftext /
PlaintextLFSR system

Figure 5 : Basic Stream Cipher System

The output of the stream cipher occurs just before the XOR stage in Figure 5.

XOR is used to combine the plaintext with the stream cipher output yielding the

ciphertext. The exact same operation is applied to turn ciphertext into plaintext at the

receiving end.

ln general stream ciphers may be synchronous or self-synchronizing. Self-

synchronizing ciphers will self-correct errors that may occur due to noise or attacks.

Synchronous ciphers have no such ability, however, this also makes them immune to

many attacks such as injection, deletion or replay of the cipher text since any of

these would result in a permanent loss of synchronization 1421.

Public Key I Asymmetric Cryptography

Public Key cryptography has been around long enough that its initial patent

by the RSA group has expired that it may be applied by anyone. The first known

publication of public key cryptography came from Diffie and Hellman [29] in 1976.

Their paper, "New Directions in Cryptography", gave a theoretical description of how

24

public key cryptography was to work. Unfortunately, they gave neither software nor

hardware designs for their concept. Diffie and Hellman didn't get the patent on it (but

they did for key exchange [30,31]). lt wasn't until two years later Rivest, Shamir, and

Adleman pieced together the first public key cryptography algorithm and signature

scheme known as "RSA" [32,33]. To this day, RSA has remained a secure algorithm

with no efficient technique for breaking the scheme. Extensive documentation and a

variety of implementations have been published. The RSA web site however

provides one of the best sources of summarized information at

http://www. rsasecurity. com/ .

The basic technique for public key cryptography is as follows:

1. Define p and q to be two large prime numbers chosen at random, and of
equal length.

2. Letn=p*q.
3. Define e to be the encryption key, and set it to a number relatively prime

to (p-1).(q-1).
4. Compute the decryption key, d, as : e*d=1 mod ((p-1Xq-t)) using the

extended Euclidean Algorithm.
5. The pair (e,n) are the public encryption keys.
6. "d" is the private decryption key, and requires "n" to work.
7. The encryption formula is:

ci = frlie mod n,
where: m is the message, and m is smaller than n, but fixed in binary

digit length.
the subscript "i" refers to each message or ciphertext block.

L The decryption formula is:
fTìi=C¡d mOd n

While RSA has never been broken, failures to properly implement the RSA protocol

would result in a weak form of cryptography. Bruce Schneier explains in [16] a

variety of attacks against the protocol including:

a) Chosen ciphertext attack,
b) Common modulus attack,
c) Low encryption exponent attack,
d) Low decryption exponent attack,

25

e) Attack on encrypting and signing.

Each form of attack requires careful consideration [34,35] when implementing RSA.

Fast Modular Multiplication for Public-Key Cryptography

Modular multiplication involves simplifying the expression: (a*b)mod n. ln

order to carry out modular multiplication, one may try the following classical method:

1. c<=a*b.
2. Determine c mod n.

2a. d= remainder (c/n), where d is the answer.

Note, in order to perform c mod n, a division operation is performed. Division on a

computer is generally slow with the exception of base 2 division which involves

simple right shift operations. This can be a problem for cryptographic systems that

must compute a" mod n, where e is a large exponent. While this problem can be

easily managed by repetitive multiplication and dívision [16], it is still slow to

compute. This problem was later solved by the mathematical scientist, Peter

Montgomery 122} "Montgomery Multiplication" as it has since been referred to

requires intensive division for only set up and completion of operations. Division

during the Montgomery process only involves simple shifts. Therefore,

Montgomery's method is generally well suited for public key cryptography and has

seen wide application in research.

Montgomery's method also works for any residue system. To perform

Montgomery multiplication, some precomputation is required where:

26

1. For N>1, where N represents the residue class, modulo N.
2. R is chosen as the system radix and is greater than N as well as coprime

to N. ln order for computation to be quick, R should be a power of the
machine word size.

3. Compute R-1 such that R"R-1 mod N =1. Note, R-1 is the multiplicative
inverse of R.

4. Compute N-1 such that R*R-1 - N* N-1 = 1.

Prior to computing a' mod N, "â" must first be converted to the chosen
residue system R.

5. A <= a*R mod N
6. X <= 1"R mod N

Borrowing a simplified algorithm from [23]we can complete the
computation of a" mod n with:

7a. i<=j_l downto 0
7b. X <= MonPro(X,X)
7c' if et=1then X<=MonPro(X,A)

8. return x<=MonPro(X,1)

where MonPro is.
function MonPro(A,B)
i. t <= A*B
ii. u <= [t+(t

* N-1 mod R) - N]i R
iii. if u > N then return (u - N) , else return u

Looking at line (ii) of the function MonPro, we have at first glance what may

appear to be two computationally intensive operations, namely "mod R" and division

by R. Remember, R is a power of the machine word size. To simplify things, lets

assume R=2b, where b is an integer greater than zero. Then, "Z mod R" simply

involves selecting the least significant "b" bits of Z.

For example, compute "221s rnod 16ß".

22ro-101102
16ß=21s4
Therefore, 1}11}zmod 2ßa = 011}zor 61s.

27

From the example it can be seen that for the base 10 power 24, one only

needs the 4 least significant binary digits to obtain the modulus. Mod R, where R is

related to the machine word size is simple to compute (for any base).

The division by R is easier to explain. There are simply "b" logical shifts to

the right to complete the computation.

Numerous theoretical enhancements have been made on Montgomery

Multiplication as well as custom hardware designs 123,24,25,26,271and many, many

more. To the authofs best knowledge, the published hardware designs to date are

all custom. Usually, the only significant improvement comes from performing the

multiplication and reduction steps in parallel. Others may provide performance

enhancements by placing hardware elements close together in what's termed a

"systolic array", a variation of a pipelining technique.

Data Broadcast Cryptography

The concept of broadcast encryption is somewhat of a Mecca for the

business community with its practical considerations being the devil. Broadcast

encryption ís when a specific subset of users from a community receive encrypted

data for which only they can decrypt. This simple idea has wide ranging applícations

in business.

One of the biggest failures of broadcast encryption technology, is also the

perfect example as to where one would like to deploy such technology. Digital

Versatile Discs (DVD), if you don't have them, you will. lt appears to be that every

video store around is renting an increasing number of DVDs. The movie industry

would love to prevent the unauthorised copying and distribution (piracy) of its product

through some form of broadcast encryption. Broadcast encryption would allow every

28

user who has legally obtained a copy to view the movie, and those who attempt to

illegally obtain a copy fail.

The DVD cipher system is called the "Contents Scrambling System" or CSS

for short. Putting together a group of sub keys and master keys allows one to

descramble the contents of a DVD. A complete description and cryptanalysis of the

algorithm is given in reference [36]. Why did CSS fail so badly? The desígners of

the CSS algorithm broke a golden rule of cryptography. That is, for maximum

security, one should only use published algorithms that have seen only failed attacks

over a period of time.

Broadcast encryption was first published by Berkovits in 1991 [37]. There are

a variety of researchers who continue to look into the problem of broadcast

encryption. ln Canada, D. Stinson [50,51] of the University of Waterloo has

published papers on the topic. Overseas, considerable attention has been given by

Taiwan Universities [38,39,40] .

For this thesis, Chiou and Chen's broadcast encryption algorithm [40]was

implemented in Java. Chiou and Chen's algorithm was used to encrypt the secret

session key, and then ssFPGAs hardware design decrypted the secret key so the

application could then be decrypted using a Gunther Alternating Step Generator (G-

ASG).

One of the primary problems left unsolved by such encryption algorithms is

the greater the number of end users, the more setup information needs to be sent.

Therefore, each scheme must include a secure key distribution system to ensure

setup overhead doesn't become unmanageable. Considerable research is still

required to make broadcast encryption more practical.

29

Chapter 3 RFPGA

What's ln a Name?

It is worth mentioning again the name of this FPGA came about after

examining its function and how it was going to be tested. The "R" in RFPGA stands

for both "Our" and "Reconfigurable". lt is "Our" FPGA because the initial design for

the switch boxes, c-blocks, s-blocks, and l/O blocks were done by two summer

students and the rest, including modifications to the summer student's work, was

done by myself. The FPGA is also designed to be reconfigurable in a single clock

cycle and so we needed a suitable letter to represent that. RFPGA (Our FPGA) is

therefore the one we designed, while Virtex is used to refer to the FPGA I would

target RFPGA to for synthesis. Virtex is a trademark of Xilinx Corporation.

The remainder of the project involved the creation of a public key decryption

unit and a Gunther Alternating Step Generator. RFPGA and the decryption units are

managed by a controller entity. Each of these entities are then wired together with

the super-entity "ssfpga" - or the Secure Single clock cycle RFPGA (ssFPGA).

RFPGA Requirements

As mentioned in the introduction chapter, RFPGA was required to overcome

certain FPGA problems and at the same time, achieve new functionality. The

resulting prototype has the following features:

o Reconfigure its functionality in just one clock cycle.
. Save a state worth of information.
. Designed with easily modifiabfe VHDL source code.
. Provide intellectual property protection.
. Designed using a scannable architecture for testability.

30

i) Vertical or Y connection blocks
ii) Horizontal or X connection blocks

3) Configurable Logic Blocks (CLBs)
a) Basic Logic Elements (BLEs)

Each of the aforementioned functional units are then tied together through a

routing architecture entity. Within this entity it is possible to specify the dimensions

of RFPGA. This way, as new physical layer technologies develop (e.9.

enhancements to silicon fabrication technology) and more transistors or metal layers

are packed per unit area, larger chips may easily be reproduced. The primary

variables for modifying the size and functionality of RFPGA include:

1) size.
2) tw¡dth (track width).
3) lntClusterSize.
4) ScanWidth.

Through simple modification of these variables, one may effortlessly play with

the speed, CLB coarseness, chip area, and routing capabilities of RFPGA. The

"size" variable determines the overall "grid size" of RFPGA. For example, to design

RFPGA with 3 CLB's across and 3 CLB's vertically, set size to "3". For a much

larger RFPGA, set size to 50 for a 50x50 CLB FPGA. Note however, that as the

RFPGA chip size increases, so may its routing requirements. That is, it may be

more difficult to find a path from one CLB to another in a larger design. To alleviate

this problem, one may increase "twidth" or the track width between all blocks. This

will allow for greater routing capability between all lC's and CLBs, much the same as

adding extra highways to a province would do. lncreasing lntClusterSize will allow

the user to pack more BLE's withín a CLB. ln doing so, one may make better use of

available chip area and also increase the speed of implemented designs. Speed

increases are possible this way because all routing within a CLB is fully connected -
which of course makes the job of any routing software considerably less challenging

32

as well. Note however, additional programming of the "c_block_x.vhd" unit is

required for interfacing with multiple BLE outputs. lf a greater number of standby

scan chains are desired, then modify the ScanWidth variable. A value of two

represents one active chain, and one standby chain. A value of X units represents 1

active chain and (X-1) standby chains. lncreasing the number of standby scan

chains allows one to reconfigure downloaded hardware designs in a single clock

cycle to a greater selection of designs and increases the ability of the system to store

more states of a given hardware design. By storing more states one can use

RFPGA to emulate hardware designs as software more easily by creating an artificial

stack of state information and functions.

The next major component is the decryption unit. The decryption unit is

composed of the following two major entities:

1) Gunther inspired Alternating Step Generator (G-ASG).
2) Montgomery Enhanced / Broadcast Decryption Public Key (PK) Unit.

ln addition to modifying RFPGAs dimensions, the decryption units have their own

scalability constants such as:

1) vbits.
2) SRSize.

The constant "vbits" or "vector-bits" allows for a variation in the public-key

decryption routines'variable size. All variables use this same size, therefore, vbits

must represent the largest required word size for the output of any given calculation.

"SRSize" or "Shift Register Size" is used to vary the length of the shift registers

associated with the Gunther ASG. A larger shift register size would allow for a larger

key and therefore greater security.

33

Within the Gunther ASG are third generation single clock cycle reconfigurable

blocks (RB3) as opposed to RFPGAS fourth generation blocks (RB4). By using

RB3's I was able to create a design with configurable feedback connections by

reusing previously designed hardware. This allows for faster turnaround time in the

design cycle as well as reducing the maintenance costs of redesign.

The original intention of the public key decryption unit was to be able to work

with algorithms designed for broadcast encryption. ln the end, the mathematics for

such a unit turned out to be backwards compatible with existing RSA techniques and

hence little modification was required on my part. The PK unit however was

designed using Montgomery's technique for quick modular operations as mentioned

in the literature review section.

Lastly, the control unit is required to automate the setup and running of

RFPGA and the decryption unit. The controller is capable of detecting a reset

condition, and know which designs to load into what RFPGA standby registers as

well as when to reconfigure them active. The specific capabilities of the controller

unit will be outlined later. Note, the ssfpga unit is the top entity which has little

function other than to tie each of the three major subunits together as one entity.

RFPGA components

The heart and primary focus of this thesis was to develop an FPGA that

would reconfigure in a single clock cycle. lnitial designs led to a reconfigurable block

named "R83" which, much later ln the project, evolved into "R84". RB3 is still used

in the G-ASG decryption section, while RB4 is the only scannable flip-flop used in the

FPGA. Since RB3 is a simpler design, it will be described first.

34

"R83"

RB3 was designed to be a simple and easily modifiable scannable block

capable of reconfiguration in one clock cycle. lts components include two D-flip-flops

as well as two multiplexers as shown in Figure 7. Each flip-flop was carefully

included to ensure that scan operation was not controlled at the clock input. This

meant that afl flip-flop l/O had to be retimed through the multiplexers. Therefore, the

standby chain, which is at the top of Figure 7, retimes its output back through a

multiplexer. When data is to be scanned in, the multiplexer is configured to select

the input from the previous shift registers output, and the data marches through the

chain until retimed again. The active chain at the bottom of Figure 7 operates in a

similar fashion, but with greater functionality. The multiplexer controlling the active

chain allows for one of the following inputs:

1) operational data from a user's circuit design.
2) retiming of circuit data.
3) reconfiguration from the standby chain to the active chain.
4) test data to be scanned through the chain.

35

Figure 7 : RB3

While RB3 was simple and easily incorporated into higher level entities, some

time during the testing stages of the project it became apparent that RB3 would not

suffice for the final RFPGA design. One of RB3's biggest drawbacks was the

possibility that a short circuit could occur in the final design. This is because the

state of the active chain would be initially undetermined resulting in buses with logic

0 and 1 on the same line. RB3's other disadvantage was in its lack of support for a

reset switch, and multiple banks of standby registers. This meant a larger

reconfigurable block would have to be designed, but it would prove necessary for

RFPGAS stable operation.

"R84"

RB4 solved the problems of RB3 and provided some enhancements.

Starting with the standby chain at the top of Figure 8, there are multiple scan chains

36

each controlled by their own separate multiplexer. By having separate control lines,

one is able to scan in different designs for reconfÌguration. Furthermore, the number

of standby chains is easily controlled by the ScanWidth constant which allows the

implementer to tradeoff useable chip area against the maximum number of stored

designs and state information.

State lnformation from a currently running design can be saved in any one of

the standby designs through the multiplexer controlled by the SelectRtSs (Select

Retime or Save State) line. This multiplexer allows an application to substitute

retimed data with that of active data thus allowing for data to be reused or passed to

other applications. Note, this control line should be configured with the SelectSiRt

control line in mind. SelectSiRt is set to "Si" or "Scan ln" when loading the standby

registers, while the "Rt" or retime setting will pass the output of the SelectRtSs

multiplexer through to the flip-flop.

Due to the multiple standby chains, there had to be a simple technique for

selecting which data was to be reconfigured. This could be accomplished through

either a multiplexer or tri-state buffers onto a bus. lt was decided that tri-state buffers

would be used so as to reduce area requirements. These tri-state buffers are

controlled using the SelectSout input line. Note that tri-state switches are not always

mapped efficiently onto a targetted FPGA, but since RFPGA is meant to be

fabricated as an ASIC, it was deemed appropriate.

37

Slandby Scan Chain

\
Bus wilh one ready to
reconlig, olhers at'Z'

Act¡vescan- --- >

Figure 8 : RB4 with Controller Hook-Up on the side

The final major enhancement was to allow the output of the active chain to be

set to zero. This is helpful during the setup stage and avoids any possible chance of

short-circuits while scanning is taking place. Once RFPGA is loaded, the active D-

flip-flop's output is allowed to present itself to the switch it is setting on or off, or in

the case of a tri-state, it could be the high-impedance value represented as a'Z'.

Each flip-flop also has a reset switch and can be cleared to zero. The control line to

the multiplexer that selects a zero as output, or the value of the active flip-flop is

SelectHoAc.

38

It should be noted that any data to pass through to the active flip-flop is

controlled by a line called SelectOpRtRcSi. For this line, "Op" allows operational

data to flow through to the active flip flop. This is to allow for synchronous hardware

applications. lf "Rt" is selected, then the output of the active flip-flop is simply

retimed, or kept in a holding pattern. "Rc" invokes a reconfiguration from one of the

selected standby registers, and Si is used when data is to be scanned directly into

the active chain for testing purposes.

RB4 was then incorporated into a basic logic element (BLE), which is then

built into a configurable logic block (CLB). Each BLE is similar in design to what's

found on U of T's LEGO or Xilinx' XC4000 logic elements[3,4,9]. There can be as

many BLE's per CLB as is desired. One such BLE is shown in Figure 9.

39

raJ

0c

o
\o

tË
a
fà

F
0e
?)

14
(Þ

o

f

Àl

ôo
oq

(!
Fo
te
aà

oê

È
Ø
a)
À¡

c)
Þ

Ther6 are four muxes, one
Per variable connected to

the LUT
Each mux has RB4's for
scan and setup purposes

There are 16 RB4's connecled
to the value ¡nputs of lh€ LUT

Ào

Scånln Scanoul

S¡mplif¡ed

oprn RB4

SôleclsiRl €lk

Scanln scânout

Simpl¡fied

opln RB4

SalêclslRl clk

The BLE of Figure g illustrates how RB4 is also used as part of the scan

chain. The scan chain begins with the first input multiplexer at the top of the diagram

where it is used to hold the selected values for input to the look-up table (LUT). The

number of RB4's used here is dependent on the size of the generated multiplexer.

The next chain of RB4's is down the left side of the LUT. There are 16 RB4's, only

two of which are shown attached to the LUT. These RB4's active output values are

what determines the LUT's function. The output of the LUT can then be accessed in

asynchronous fashion or be passed through another RB4 to be used in a

synchronous fashion. The asynchronous or synchronous path ways are selected by

a multiplexer, just before the final output stage. The aforementioned RB4 is also part

of the scan chain, and comes just before the final RB4 which sets the final

multiplexer's selection value. ln this configuration, the scan chain can apply in one

clock cycle a new value to the circuitry, and then scan it out of the chip for test

evaluation.

Switching Component

During the FPGA design, some components were easily simulated, but not

synthesizable. While the synthesis software should have been able to extract a

circuit, it probably wasn't sophisticated enough, hence a more structural redesign

was required. The most notable redesign was the switching unit. The initial

switching unit's design described the flow of data from one port to another, given

input from a control line. The initial design also lacked clarity in describing how the

data was to be handled by the circuitry connected to the entity's 'in/out' ports for the

synthesizer. The in-out ports circuitry had to be changed to clearly allow data to flow

bidirectionaly, using circuitry behind the ports that is unidirectional. Figure 10

41

illustrates how this was done. There are now four groups of two tri-State buffers to

allow data to flow in or out of the top, bottom, left or right side of each basic switch. lf

the control line turns on a switch, data is allowed to flow through, otherwise, the tri-

state enters a high impedance state. By only allowing one buffer to allow data in and

one to allow data out, there is no conflict on the bus (represented as a ring in the

centre). Furthermore, by specifying the exact type of circuitry to be used and how it

interfaces with in/out ports, the design is easily synthesized.

Figure l0 : Latest switch_6 entity

Each switch_6 entity is then combined to form a switch block as shown in

Figure 11. The switch block is the major interconnect (lC) device in the FPGA

allowing for routing in any direction. Each FPGA lC uses the same number of tracks

42

on the top, bottom, left and right hand sides to ensure they line up when

together. The final design of the individual switch_6 entity was simple to

and easy to replicate for the creation of the larger switch block.

all put

implement,

L(twidth-l) R(twidth-1)

Figure 1l : Switch Block

The switch block was built as simple as poss¡ble in order to fit on the target

FPGA, the Virtex. Switch blocks used in most practical FPGAs contain the ability to

route over larger distances than simply from one switch block to the next nearest

routing entity or CLB. A Xilinx 4000 series switch is similar to that designed in Figure

1 1, with the exception that wires may also run past 2 or 4 CLBs at a time [52]. By

43

varying the distance over which a signal may travel before passing through a tri-state

buffer or pass transistor, speed is increased.

According to Betz et al. [53] consideration should also be given to using a mix

of tri-state and pass transistors for optimal speed and area requirements. Betz et al

conclude that a mix of "5Oo/o - 83% pass-transistor switched wires..having a length of

4 or 8" with the rest of the routing being performed by tri-state buffers for shorter

wires provides the best trade-off. For this project, only tri-state buffers were used as

there is no VHDL statement to specify pass transistor instantiation.

Betz et al. [53] also analyze different switch block topologies. Each of the

topologies involve switching from one track input over to a subset of other track

outputs. For this project, if a signal entered on the left hand side on track 4, then it

will leave on track 4 of the top, right, or bottom side. This is not a limitation since the

track the signal initally travels on is determined by the horizontal connection block,

c_block_x, after leaving a CLB.

The c-block-x and c-block-y routing units are shown in Figure 12. lt should

be noted that if a wire is labed with a "0", it is an output, if it is labelled with a "1", it is

an input. For example, TCO is an output, TC1 is an input. Each c_block_x connects

TCO, TC1, and BCO to horizontal tracks or wires. Each c_blockj connects LCO and

RCO to vertical tracks or wires.

44

c_block_x
a

a

a

a

C_block_y
aaaa

tr'igure 12 : c_block_x and c_block¡r

ïhe inpuVoutput (lO) units for the left, right, top and bottom sides of RFPGA

connect all internal circuitry to the pins of the microchip. Track connections to each

block also pass data through to the nearest switch block. This allows for some

routing around a p¡n.

lO_bottom

a

a

.a

a

11tltt
lO_top

a

ô

I

,t

Figure 13 : Various input/output blocks

45

While RFPGAS BLE's were built with the scannable RB4 flip-flop, the

remaining components had RB4 added later. The addition of an RB4 scan chain,

and the order in which each RB4 appears is illustrated in each of the following

component figures. Each of the component figures are necessary viewing when

trying to map a hardware design onto RFPGA using the place and route tool

"RLocate" developed for RFPGA. The arrow in each figure represents the direction

data is clocked through the scan chain, and each number represents the local switch

to be set in a chain segment. Each local switch is in fact an RB4 to be set on or off.

s block g scan

Careful: switch conf¡g is 0 to 9, d¡rect¡onal sw¡tch block ¡s l'l to 0

ÏOPO TOPI TOP2 TOP3 TOP4 TOPS TOP6 TOPT TOPS TOPg

LE FTg

LE FT8

LEFTT

LEFT6

LEFTS

LE FT4

LEFT3

LEF'12

LEFT'I

LE FTO

sw¡tch
Confìg 1

RIGHT9

RIGHTS

RIGHTT

RIGHT6

RIGHÏ5

RIGHT4

RIGHT3

RIGHT2

RIGHTl

RIGHTO

lnput
switch

C onf¡90

BOTO BOTI BOT2 BOT3 BOT4 BOT5 80T6 BOTT BOT8 BOl9

Figure 14 : Switch Block Scan Chain

46

c block x o scan Ifficrrco c11c1 cTBc0

TRACK 9 .,

Control Line
Number for

Switch Setting

... ÏRACK O

Figure 15 : C Block X Scan Chain

c_block_y_g_scan

...TRACK 9 control Line

ò-""n-lnpur for Switch sett¡ng

i.j -E B-_E q_$_[-E $tr.-""*"ry g.-g. g._g.-g. g. ¡. g.-g.f crRco

Figure l6 : C Block Y Scan Chain

47

io_block_lhs_g_scan

TRACK 0...
Scan Oulput

TRACK 9
Conlrol L¡ne N

for Sw¡tch Sett¡ñg

-E-B-E}BT B#-B-E E] CTRO

j

, f;L f'1. t;} t;a f;A f;A [a f;] t;] f;L_lttlttttttlttttttttl
TRACK 0... ...TRACK 9

cTto_tN_l

cTto_ouT_r

cTto_tN_0

cTto_ouT_0

Scên lnpul

io_b¡ock_rhs_g_scan

TRACK 0...
Scên Oulput

Control Line
for Switch Sett¡n9

C-f L0 4

CTIO_|N_1 3

CTIO_OUT_1 2

-ü-EBBBEIBB-B-8,
lIE.-B-B-B-B-BBBBB,

__lIE.[fBBE-BBB-B-8,
l

' E-B-B__B-B-B-B B B Br cro-N-o

ll
L f;} fl f,l. f+ f¡* t-;}-[ul- f;] l-'} ['l- crro-our-o o

I I I I I I I I I I I I I I I I I - | I - |
scantnput

TRACK 0,,, ...TRACK 9

Figure t7 : IO Block, Left Hand Side Scan Chain

Figure l8 : IO Block Right Hand Side Scan Chain

48

io bl top g scan

Scan lnput

Figure 19 : IO Block Top Scan Chain

49

io_block_bot_g_sca n 'o
"1ro-\nfiroPutfro-r$-1

ç11G0

-s""n

lnput crto- Ti c7
TRAC

i

ll Output

K9...

ACK O

9

o

7

6

4

ù

2

1

0

I

o

7

6

5

4

2

1

0

I

7

6

5

4

2

0

I

7

6

5

4

J

2

0
Sca

Figure 20 : IO Block Bottom Scan Chain

50

RFPGA assembly

Component Connectivity Example

When size=3, a 3x3 FPGA would be fabricated.

Figure 21 : Complete 3x3 FPGA

Since even the small 3x3 RFPGA of Figure 21 contains enough components

to make it difficult to decipher on an 8 112 x 1 1 inch sheet of paper, I will describe the

connectivity here. The majority of the squares are switch blocks and are the ones

rffia .. i--
t'--..1_1-.1
1...: ..f1..: L

- Ê-+ffi_.fT' 3)-F
l1 .".*, i- 1..) F

C--r---=J

Æ-=lt--
- ,t.-
t'*'.1t.l

i \' _-i l
t' t-\-r--td

d-1-u1-5 r\ f-I '-:" f
-1 .. - :L1..ì L
\r--çÈ

51

with the diamond on a diagonal. An example switch block can be found in any one

of the four corners (minimum). On the outer rim of RFPGA are the rectangular lO

blocks. The top, bottom, left, and right lO blocks are on the top, bottom, left and right

of the figure respectively. "c_blockj" or "cby"'s for short are the thin horizontal

connection blocks while the "c_block_x"'s or "cbx"'s for short are the thin vertical

connection blocks. The remainder are the rectangular and slightly fatter CLB's which

appear to have a complex design within themselves. This example RFPGA is

termed a "3x3" RFPGA because it has 3 rows of CLB's and 3 columns of CLB's. To

generate a 3x3 RFPGA, set the "size" variable to equal 3.

Connectivity out of each switch block is performed through a set of parallel

wires termed "tracks". Therefore all lines emanating from a switch block are of a

certain width specified by the variable "twidth" and are numbered from zero to twidth.

All other lines represent single wires. The remaining detail is left to be deciphered

from the source code comments or an explanation from this author.

Throughout allthe various functional units of RFPGA, there are RB4s to set

switches on or off to allow circuits to be created. That is, there is a complete scan

chain in addition to what is visible in Figure 21 lor RFPGA configuration and testing

purposes. Supporting tools designed specifically for the RFPGA project are included

to program RFPGA.

RFPGA support tools

Bitstream Generator

Following the creation of a VHDL application for RFPGA, one requires a bit

stream to be scanned into the chip to make that application run. While the bitstream

generator was not a core part of this Masters project, it is a necessary evil. Without

52

the bitstream generator, an FPGA with a track width of 10 and size of three, there

would be 3120 RB4's to set to a 1 or 0. To use the bitstream generator program,

Rlocate, one must already have an idea as to what the final circuit is to look like.

Then, with the help of a diagram of RFPGA, manually map their circuit to it. Circuit

mapping is performed by selecting only the RB4's to be set to a logic'1'. Rlocate will

then generate the final bitstream for download into RFPGA.

Bitstream Encryption and Decryption

Once the bitstream has been generated, it must be encrypted. This is

because RFPGA is expecting to decrypt whatever is to be downloaded.

To support the encryption process there are two pieces of software. The first

is a Java tool used to generate the public key information according to Chiou and

Chen's broadcast encryption protocol [40]. This tool can be used to encrypt the

secret key used by the Gunther ASG and represents the first part of RFPGAs

downloadable datastream. The second tool is some VHDL code that can be used to

generate the pseudo-random bitstream via the G-ASG and combine it with the

hardware application bitstream for RFPGA to configure. The finaltwo encrypted

data streams are then combined and placed in memory for use by RFPGA when

required.

Decryption is done in a three phase process. The first phase is to use

RFPGAS private key to obtain the secret key. Once the secret key has been

obtained, it is programmed into the Gunther ASG. At this point, the encrypted

hardware design bitstream is ready to be read from memory and downloaded into

RFPGA. At the same time this is happening the Gunther ASG's output is being

53

XOR'd with the bitstream and turned into its originalformat (unencrypted) for use on

RFPGA.

54

Ghapter 4 RFPGA Decryption Unit

Decryption Unit Requirements and Overuiew

Keeping in mind Kerckhoffs[18] ideals for a cryptographic system, it was

decided that a hybrid public-key / secret key system be designed. lf the system was

solely based on public-key theory, then the decryption of the bitstream would be too

slow for most applications on RFPGA. lf the system was based totally on a secret

key design, then it might limit RFPGAS applications. By going with a hybrid

approach, the best of public key and secret key systems are utilized. That is, anyone

can send an encrypted message to RFPGA easily while the speed of decryption will

remain fast. To perform the decryption, the secret key is encrypted using Chiou and

Chen's broadcast encryption scheme [40]encoded in Java. This allows the secret

key to be sent as a broadcast message if necessary to a variety of end users. The

secret key is then decrypted using the RSA scheme [32]. This RSA scheme

however is augmented by the mathematicaltheory of Montgomery's quick modular

multiplication algorithm [22]. The decrypted secret key is then passed to the stages

of the Gunther ASG for use in decrypting the hardware design.

Public Key Design

There have been many public key cryptosystems designed as of today. Most

of the literature found in an IEEE search will focus on improving the speed of the

basic public key operation which is "a" mod n", where a is the text (or ciphertext), e is

the exponent for encryption (or decryption), and n is the modulus. The engineering

research to date has been a variety of custom hardware designs that are designed

55

once, and require another custom redesign for modifications. lt has been said that

"Hardware is called hardware not because it is hard to understand, but hard to

change". Custom designs take this notion to the extreme. For this project, a slightly

higher level of design is performed in VHDL. VHDL is a software programming

language that allows for quick and easy modification of algorithms just like in a high-

level software programming language such as Java or C. VHDL code can also be

targeted to general purpose, reprogrammable FPGAs for the ultimate in hardware

upgradeability, or MPGA's and ASICs allowing for simple price / performance /

maintainability tradeoffs depending on the final application. Therefore, this open-

source project will allow for quick improvements to hardware designs using current

mathematical theory.

For RFPGA, the secret session key is encrypted using Chen and Chiou's

algorithm previously mentioned. This secret key is also used to encrypt the

downloadable hardware design. This is how the hardware design's intellectual

property is protected. Once the encrypted hardware design has been downloaded

into RFPGA, RFPGA's decryption units decrypt and configure each design. Another

primary objective for providing a public key system was to learn about behavioural

hardware description in VHDL. Prior to designing the public key system, all

hardware was encoded usíng a structuraltechnique. Structuraltechniques are used

to specify and connect specific components together, much like drawing a circuit's

wires, multiplexers and flip-flops out by hand on paper. The behavioural technique

however is akin to a high-level programming language like Java or C which only

requires a description of what is to happen. Since the specification of basic digital

components is minimized or non-existent, the synthesis software is required to do

56

more work in generating the final digital circuit. This extra effort however results in

some trade-offs for the hardware designer such as.

1) Quick method for rapid application development.
2) Easy to understand, and therefore lower software maintenance costs [47].
3) Potentially reduced circuit speed due to an inefficient synthesis.
4) Potentially massive area requirements for a given behavioural

description.
5) A lack of visible control over the exact circuit implementation.

The first two reasons for producing behavioural as opposed to structural

source code may be so ovenruhelmingly positive for most companies that they may

choose to always write behavioural code. ln fact, Fjelstad and Hamlen l47l reported

that approximately half of all the time spent maintaining code was actually spent

simply trying to understand what had been previously written. lt is therefore

imperative that in order to reduce maintenance costs, one should write easily,

humanly readable code. Generally speaking, a behavioural description of what is to

happen is easier to understand, than adding basic components and connecting them

with wires. ln fact, structural code is most dislike pseudo-code, a common, easy to

comprehend, method for documenting exísting code functions.

ln terms of the ease of maintaining a digital design, I propose that the higher-

level the design, the easier it is to maÍntain. The following list starts from low-level

design techniques and proceeds to the high-level methods:

1) Custom design involving the drawing layout of individual polygons.
representing different layers and materials of the manufacturing process.

2) Standard Cell design involving the layout of known components.
3) Structural HDL involving the software layout of known components.
4) Behavioural HDL involving the description of a hardware's function.

There is however one problem with behavioural design that could be

eliminated with a change to the VHDL specification.

57

The initial design of the public key decryption unit was totally behavioural. lt

was also theoretically possible, but not practical, to synthesize. Unfortunately, VHDL

has a tendency to synthesize the described circuitry in parallel. VHDL also requires

that the bounds of every "foi' or "while" loop be well defined. ln many cases, this is

a blessing, and produces fast circuitry, however it is area inefficient. VHDL allows

little room to produce albeit slower, but area efficient behavioural code involving

loops. For completeness sake, there is a simple way to produce sequential code

through the use of variable assignments, but this has its limitations. What is required

is a modification of the VHDL specification to produce area efficient behavioural code

which is easy to maintain To give an example as to the extent of the problem, I will

first explain what happened for the first public-key HDL code I wrote.

Sample Code:

forx=11o1000
forY=1to1000

a=X+y
procedure MathSubroutine(a, b,c,x,y)

endloop y
endloop x

ln the sample code, the loops of x and y are static which is what VHDL

requires to synthesize a circuit. Since the code generates parallel circuitry, the two

statements within the nested loop are synthesized (generated physically) 1000-1000

times. Furthermore, MathFunction (lets say) includes one or two for-loops. One may

also wish to base these for-loops on x and y; so that the loop ranges are to be

dynamic. Some VHDL synthesizers will reject these dynamic ranges, others will

produce circuitry for the entire possible range of a dynamic loop. Either way, one

can easily see how a chip's area can quickly become consumed. ln the public-key

crypto routine I created, many MathFunctions are required within many loops. The

nested loops were impractical for the VHDL synthesizer to produce a usable circuit.

To solve this problem, the code had to be completely rewritten, which brings

us a step closer to a solution to VHDL's automatic parallelization problem.

It is possible in VHDL to create simple counters, which when coupled with 'if /

then / else' statements, will mimic the function of a for or while-loop. ln doing so,

VHDL creates only the counter and associated "if' condition circuitry, but it does not

generate all possible solutions in parallel. To do this, a state machine is required

and the "if'statements are used to determine which state is to be executed next.

Furthermore, one other technique had to be employed to reduce the circuitry

generated by VHDL. That is, the procedures had to be turned into entities. This is

because the procedures themselves call other procedures with for-loops which all

need to be broken down into state machines with counters and "iflthen/else"

statements. W¡th the creation of entities, a technique for reusing the same entity

(which would only be generated once) was employed. This was done by creating

basic-language-like'gosub' routines. This is illustrated in the following code and

associated comments:

59

when Current_SLate=lnitialize

Cur rent._State:S La rt
when Current_SLate=Start

x::x+1
do

if (x<1001) then
Cur rent_State=Xloop 1

/ / go to next state after clock tick

//add 7 to x counter as for-looÞ wou.Ld

/ /check for-loop .Iimj ts
//if positive, continue Xloop1

//inside Xloopl, execute this code
//caLI a subroutine entity
/,/remember where to return control to

/ /where contro.I returns to after sub

,/,/continue the for Ioop

//we've reached the end of the code

el,se

end if
Current State:À.fter Xloop //if negative, quit this for-foop

when Current_StaLe=Xloopl
a:x+Y
Current_SLa te=MathSubrout i ne
Re turn_Sta te:X1oop2

when Current_State:Xloop2
. . .do some things. . .

Cur rent_Sta te=S Lart

when Current State:After Xloop
. ..do some tiringì. . ..
.. .end the program.. .

// "subroutinesÍ ********************+*******1

when Current State=Mathsubroutine /,/Math subroutine code********
fnput*t = a
Input_2 : betc...
Input_Controf : Run_MaLh_Function_Now //teIl Math subroutine to execute
Current_State:Hold_Unti l_Done

when Current State:Hold UntÍ1 Done ,/,/wait until Math sub is finished
if Output Mathsubroutine=Done

Current_State:Return_SLate //ít Mai-h done, return to main code
else

end if
Current_State:Hold_Until Done //if MaLh unfinished, stay here longer

The actual code is only slightly more involved than the pseudo-code above. lt,

however, powerfully illustrates the following points:

1) Subroutines do not need to be synthesized for each case of a for-loop
2) Chip area requirements are significantly less than the VHDl-natural

parallel implementation
3) Counters allow for dynamic loop assignment
4) The translation from parallel VHDL code to versatile sequential VHDL

code is s¡mple for a computer to do.
5) The translation from parallelto sequential is cunently more involved than

it should be for a programmer to do.

The problem and solution should now be obvious. lf a programmer doesn't

require speed as a top prior¡ty, there should be a simple means within VHDL to

implement chip-area efficient circuitry that is sequential in nature and behavioural as

well. When I moved from the original code, to the sequential code, I had to

structurally add in the math subroutines. A low level feat that a behavioural

60

programmer may shun. Each step I took to resolve the problem can be automated,

and give the full look and feelto the designer of behavioural programming.

I propose the following enhancement to the VHDL language as a result of my

work. To implement sequential behavioural code, one should have the option of

sequentialfor and while-loop statements. These sequential statements would also

have the advantage of dynamic loop limit assignment as described previously. To

accomplish this, one could create two new statements in VHDL. Simply by

concatentating the letter "s" in front of the VHDL reserved words: "for", "while", and

"procedure" would direct the synthesizer to produce sequential code as above. ln

doing so, the code would be far easier to interpret by those expected to maintain the

hardware. Thís would result in significant cost reductions for potentially numerous

applications. To understand the exact implementation details, I refer the reader to

both the pre and post sequential public-key source code written as part of this thesis,

and available from the author.

Secref Key Design

The purpose of the public key unit is to decrypt a secret session key. This

secret session key is then implanted within the Gunther Alternating Step Generator

(G-ASG). Gunther's ASG has been proven to be both mathematically secure and to

have stood the test of time. To this date, this author has not read of a suitable attack

to break the Gunther ASG. The author himself has only found one attack, "a

correlation attack ...[that] ... does not substantially reduce the effort to break the

system." [48] Gunthe/s ASG as he published it, is shown in Figure22.

61

Gunther Alternat¡ng Step Generator

C lock
f)

Figure 22 : Gunther's original Alternating Step Generator

For this thesis, there were two design changes from other Gunther designs.

Prior to discussing the design change I will review Kerckhoffs [18] first two

postulates from the literature review section, namely:

1. The system must be practically, if not mathematically, undecipherable.
2. lt must not be required to be secret, and it must be able to fall into the

hands of the enemy without inconvenience.

While Gunther's design has been shown time and again to be

undecipherable, the modification I make to the G-ASG slightly stretches the limits of

postulate #2. Postulale #2 states that you should be able to provide the encrypting

and deciphering schemes to others, and no one without the key should be able to

break it. For my modified G-ASG, the traditionally fixed feedback polynomials of the

shift registers are now programmable and thus part of the key itself. This has been

made possible through the use of FPGA SRAM technology and the fact the secret

key can be easily transported and programmed into the G-ASG by use of public-key

crypto techniques. Allthe mathematics proven by Gunther and others still apply.

There is simply more information kept securely unknown from a potential attacker,

and Kerckhoffs principles are maintained.

While the mathematics of the programmable LFSR remains sound, and the

flexibility increases, there is one tradeoff, area. The area requirements for a

programmable LFSR are approximately twice that of the non-programmable kind.

This is because for each feedback loop there must be an associated RB3. The

feedback RB3 is used to determine whether or not the cunent state of an individual

LFSR register is to be multiplied with the LFSR output state. Given today's

fabrication technology, the extra area required should be a minor issue, and even

less so in the future.

ln addition to designing a more flexible G-ASG, the hardware design is

considered more practical as the shift register's clock inputs do not have any

asynchronous logic before them. lf a clock is gated, errors may result (especially at

increasing clock speeds) with changes in temperature and fabrication process. The

solution to this is accomplished by adding multiplexers before each RB3. When new

data is to be shifted in, the ssFPGAs controller module selects the input line instead

of the retime line on the De Bruijn LFSR as can be seen in Figure 23.

De Bru¡jn LFSR

Figure 23 : Programmable De Bruijn LFSR

63

Galois LFSR

Figure 24 : Programmable Galois LFSR

The multiplexer's select line of the two instantiated Galois LFSRs in Figure 24

is connected to the output of the De Bruijn LFSR through an AND gate like in Figure

22. At a higher level, all LFSR's are ultimately managed by a controller entity. The

purpose of which will be clarified later. The clock for the De Bruijn and Galois

LFSR's enters directly into each scannable flip-flop, RB3 - as a proper design should,

with no gates between itself and the source. The final design of the Gunther

Alternating Step Generator is shown in Fígure 25.

64

Partial Galois LFSR Detail

Feedback Polynoñ¡al
Shift RegÆters

local¡on

Stale Sh¡ft Register Locatíon

One ofX LFSR State
Flow Control Multiplexers.

Peñiâl Gãlois LFSR Detâil

Feedback Poíynoñ¡al
S¡¡,iñ RegÆlers

Galois LFSR
Ouþut

OUTPUT of
G unther

:: l Alternat¡ng Step
Generator

Figure 25 : Designed Gunther Alternating Step Generator

LFSR - Linear Feedback Shift Register

65

Ghapter 5 RFPGA Gontroller Unit

Co ntrol ler Requ i rements

The controller entity is required to manage the resources of RFPGA and the

decryption units. The entire project termed ssFPGA, has three distinct entities

requiring management control, namely:

1) public-key decryption unit,
2) Gunther Alternating Step Generator secret-key decryption unit,
3) RFPGA.

Within RFPGA the following tasks must be managed by the controller:

1) reset conditions,
2) detect a request for a new hardware design,
3) download a new hardware design,
4) save the state of an active hardware design,
5) reconfiguration to the new hardware design.

To accomplish these tasks, three state machines exist. One to reset

ssFPGA, one to load and run new designs, and the other to monitor the run-time

requests of RFPGA.

ln order to facilitate the communication between the controller entity and the

public-key entity, a handshaking protocol had to be developed. This is because the

public-key entity was designed using a behavioural model, and has the ability to

complete its computations early depending upon the complexity of the computation.

While knowledge was learned from Gutberlet and Rosenstiel's [49]work, the final

handshaking routine is my own.

66

Controller Design

While the controller has numerous states of detailed operation, only the high

levelworkings will be explained here. For a detailed explanation, the reader is

referred to the actual source code, "controller.vhd".

The controller can be in a reset mode, idle, or be initiating a run or load

command.

One of the controller's first responsibilities is to initialize the public-key's fast

modular multiplier's constants. These constants are used in the Montgomery

Multiplication process described in the literature review section of this document.

The constants are the private decryption key, the modulus, and the precalculated

inverse of the modulus which are stored in variables PrivateKey, Modulus, and

PreCalculatedNpri respectively. Each of these constants were calculated using a

Java program that implements the broadcast encryption [40] algorithm.

The next step is to load the first hardware design of the first memory bank.

RFPGA was designed such that there are 2a possible memory banks, each of which

stores one hardware design. Within a memory bank, data can be accessed by a 16

bit vector to grab a block of 4 bits of information. Note, that all values are easily

modifiable given the design is in the high-level programming language, VHDL.

The first blocks of data to be loaded are for the public-key decryption unit.

The results of the public-key unit are simply the secret key for the Gunther

Alternating Step Generator (G-ASG). The secret key bits are first decrypted and

then they are clocked into the scan chain of the G-ASG. Once the G-ASG is

programmed for the design to be downloaded, the reset finite state machine (FSM)

checks to see if it can fit more hardware designs into RFPGAS scan chain. lf for

example the width of the standby registers is 2, then 2 hardware designs will be

67

downloaded. Furthermore, those two designs will be the first two designs in the

memory made accessible to the controller. Once the reset FSM has filled all of the

standby registers it runs the first hardware design and enters an idle mode called

"LastState".

Once the reset FSM is in LastState, it is possible for the downloaded

hardware design to issue commands to the controller module. The commands come

from an output port on RFPGA and can be:

1) "00" ldle,
2) "01" Run or
3) "10" Load.

ïhese commands are termed "port commands". The initialdesign of RFPGA

allowed for commands to also come from within the application itself as opposed to

using external pins, however, this would have made testing more difficult. The

change however does not in any way reduce the capability of the existing design.

Given RFPGA was designed as a general purpose chip capable of storing a

subset of designs from RAM for later use, there had to be a way to determine which

design uses what standby register. The question is important because fixed designs

are not capable of knowing dynamically exactly where in the standby registers the

next-to-be-activated hardware design resides. To solve this probelm two different

options were possible.

1) A request could be made as to where the location of application lD
"XY2123" resides,

2) A fixed location for each design.

Option 2) was selected for simplicity and to ensure the hardware would

reconfigure in just one clock cycle. Furthermore, option 1) would have resulted in an

elaborate scheme to save state information within another design.

6B

Thus, the commands listed previously are actually augmented with an

application number, which is also the memory bank of the stored hardware design,

and whether or not current state information is to used by that application. Therefore

a full command from the ports of an application to the controller unit would look like

(for example):

01110111

The first number, "01", is the Run command. The next number "101" means

run Application #5. The last digit, if a '1' means to use the current application's state

information otherwise, simply reconfigure and run application #5.

69

Ghapter 6 Results Discussion

Resu/fs

Reconfigurable Blocks

RFPGA was originally designed with only RB3, (or "reconfigurable block, 3'd

version"). This initial implementation resulted in the possibility of short circuits being

created on busses prior to a reconfiguration attempt.

BUS DRIVEN BY TRI-STATE SWITCH

Figure 26 : RB3 and Bus Short Circuiting Problem

Figure 26 shows that the tri-state switch may take on one of three values, 1,0,

or'Z'which represents a high-impedance state. lf one tri-state is outputting a logic

"0" or 0 volts, and the other a logic'1' or some positive voltage, then a short circuit

on the bus may result. This near-sighted problem was rectified with the advent of

RB4, a scannable flip-flop that's capable of keeping the tri-states at a constant value,

prior to reconfiguration. The RFPGA was then programmed to interpret a control

value of logic'0'from RB4 to mean a high-impedance state on the tri-state switch.

70

SeleclHoAc

CLR FF to 0

Operational
ln put

(C'fRL same as shift for
active register)

Figure 27 : NB4, explanation of "SelectHoAc" Hold/Active Multiplexer Purpose

This is accomplished by simply placing a multiplexer before the "Active Out"

stage as can be seen in the lower portion of Figure 27 . Prior to RFPGAS initial

reconfiguration, the output multiplexer is set to zero. All tri-state switches connected

to the multiplexer's output will output a high-impedance state, or'Z' during this time.

This high impedance state on the bus is what prevents short circuits during changes

to values stored in RB4.

71

Another defìciency of RB3 was that it was limited to one standby register.

This decreases the flexibility of a VHDL design, and other potential applications. As

the number of standby registers increases, so does the number of potential hardware

designs one may switch to. ln order to activate one hardware design over another

from the standby registers, a bus system, as seen in the middle of Figure 27, was

created. Using the SelectStby (or "Select Standby") array, one may choose a

standby register's output to impress upon the "Reconfig" input of the multiplexer

controlling the active D-flip-flop. Alf tests showed this to be successful.

ln order to make RFPGA more suitable for real{ime computing applications,

some state information from previous calculations had to be stored. This was

accomplished by adding a second retiming multiplexer to the standby registers which

is controlled by the SelectRtSsQ line. By allowing one of the inputs to be from the

Active Out flip-flop, it is possible to feed current state information into one of the

standby chains. This results in a potentially more application-rich FPGA design.

Tests were also performed to determine the maximum frequency of a given

reconfigurable logic block (RB). Figure 28 illustrates the changes in RB clock speed

based on the type of RB and the number of standby registers per RB.

72

were performed at the initial design stage of RB3 and RB4 as well as with the entire

system using ModelSim version 5.6a.

Public Key Decryption unit

The original behavioural description of the public-key algorithm using

Montgomery Multiplication was not synthesizable due to its size. The original

description resulted in a massive amount of parallel circuitry being created which the

synthesis software could not process.

The revised code using a versatile sequential programming process was

synthesizable using a reduced maximum decryption block data size (vbits) equal to

24 instead of the usual 148 bit width. lt had the following summary results:

Number of Sfices: 2429 out of 9408 25%

Number of Sfice Efip FÌops | 2546 out of 18816 l-3+
Nurìber of 4 input LUTS: 4504 out of 18816 232

The maximum frequency of the public key unit was calculated by the synthesis

software at: 43. 995MHz, forthe Virtex FPGA I had.

All simulations of the new and original public key code performed flawlessly.

ModelSim Simulation Results

ModelSim version 5.6a was the primary vehicle for producing simulation

results. The first result worth observing is the heart of RFPGA, RB4. This simulation

demonstrates RB4's ability to be used as a scannable flip-flop, reconfigure in one

clock cycle, and to pass information from an active register back into a standby

register. The key control lines for managing this functionality are SelectSiRt,

SelectRtSs, SelectSout, SelectHoAc, SelectOpRtRcSi, each of which were

74

previously described in the "RFPGA Componenfs" section of this document. The

results of this simulation are shown in Figure 29 : RB4 Simulation Results.

/top2/uut/scànin

/top2/uut,/oPin

/top2/uut/selectsirt

/top2luut/selectrlss

/top2/uut/selectsout

/top2/uut/selætoPrtrcs¡

/top2/uur/selecthoac

lLopzluutldk

/toPrluut/act¡veout

/top2/uut/sc¿nout

/top?/uuL/reset

/top2/uut/dstandby

/top2/uut,/retinlereconf i9

/LopZluut/ret¡mestatesàve

/top2luut/reconfÌ9ðct¡ve

/top2luut/d¿ctivc

/too2luut/retimeõLt¡ve

/top2luuL/rbact¡veout

lbyqcn 1/stdbyscanin/rn0

lbygen ,,. !./stdbVscant n/rn 1

1/stdÞyscan¡n/muxselect

!n 1/stdbyscanin/muxout

itandbygen_1/sLdbydf frld

itèndbygen - 1/stdbydffr,/q

sr.rnd byqen . -r I sldbydfk I I

rndbygen-1 /stdbyrtss/in0

¡ndbygen 1/stdbyrtss/in1

?n_1/stdbyrt$s/muxselect

/qen 1/stdbyrtss/muxout

/top2/uut/àctrvectrl/in0

/toÞ2/0 ut/activectrl/in1

/ top2 | úu¡l a(rív cctrl I iñ2

/top2/uut/adivectrl/ìn3

)2/uut/actrvectri/muxselect

Lop2luut/act¡vectrl/muxor¡t

/l.op2luuVàqtivedffr/d

/top2/uut/åct¡vedff r/q

/top2/uuVactivcdffr/r

/rop2/uút/activeoLPt/¡n0

/top2/uut/act¡veotpt/ln I

2/uuVaçtiveotPt/¡ìluxselect

rp2/uut/êctiveoLpVmuxo¡rt

rrlrt

l
I

I

i

i500)u""
Êntitv:top2 Architccture:rL'4tester2 Däte: Wcd Mðr 05 16:01:4I Eastern Standard Time 2003 RouJ: I Paqe: 1

-I-ir

I
I

Figure 29 : RB4 Simulation Results

75

Observe that in Figure 29 through port input "scanin", a'f is scanned into the standby

register, and a '0' into the active register at the start of the simulation. At the rising

edge of the clock just after "SelectOpRtRcSi" goes from "Si" to "Rc", the active D-FF

transitions from a'0'to a'1'demonstrating single clock cycle reconfiguration as can

be seen from the "ActiveOut" and "ScanOut" signals. The data is then retimed by

selecting "Rt" on the "SelectOpRtRcSi" line before selecting the operational input or

"Op". Since the input to the "Op" port, Opln, was set to '0', this data then flows

through the active flip-flop during the next clock cycle, and hence'ActiveOut"

becomes zero. At the next clock cycle, the'f in the standby register is reconfigured

back into the active D flip-flop, while at the same time, the'0' in the active, goes into

the standby register. This is most easily seen by looking at the "ScanOut" vector

which flips from "10", to "01". By performing this operation, the simulation proves

that RB4 is capable of saving active flip-flop memory into a standby register while

reconfiguring to another state. This is the feature that allows data to be shared from

one configuration to the next, and is in fact the "soft-reconfiguration" described in the

first chapter of this thesis.

ln Figure 30, one can see an application running on RFPGA. Since the

synthesis tools used were home-made and primitive, only a simple AND gate was

targetted to RFPGA. The first input is the first subheading under i_chanx, and the

second input is also the last subheading but under i_chany. The output is the first

subheading under i_chany.

76

/top_sse2-newest/clock

l/uut/controllerio/c_r_state

t/u ut/controller¡o/c-,1_state

top_ssae2_newesVi_chanx

(1)

top_ss¿e2*newesVi_chany

(1)

(1)

op_s9e2_newesVportcmd

ssae2_newesVportappnum

ssô e2_newest/Po rtsavereg

/top ssae2_newest/clock

Figure 30 : Run of AND Gate on RFPGA with Port Command

Following the AND gate test, an eliternal port command was applied to the

controller. This command was issued through the three ports named PortCmd,

PortAppNum, and PortSaveReg. The port command encoded for "PortCmd" as'01',

orders RFPGA to run a new hardware design. This command may only last for one

clock cycle before returning to an idle state such as'00'. The port application

number or the 'rPoñ/qppNum" signal was set to the value 2, or'10' in binary. This

tells the controller to run the second appfication into the standby registers. lf the

controller was told to load another application, then the formula for determining which

standby scan chain to map the hardware design into is given by:

ScanchainNumOp := ((CONV_INTEGER(UNSIGNED(PortAppNum))-1) mod (Scanwidth-l)) + 1;

The results of the second hardware design are shown in Figure 31.

/top_ssae2_newesvclock

t/uut/controllerìo/c r state

Uuuvcontrolleno/c I state

top_ssae2_newest/i_chanx

(1)

top $ae2 newest/i,chany

(1)

(1)

op ssae? newesvportcmd

5sae2_newest/port¿ppnum

ssae2_newest/portsvereg

/top_sse2_newest/clock

Figure 3l : Run of AND Gate with Synchronous Output (through RB4)

77

The second application is the same as the first with the exception that the

AND gate's output is run through the scannable flip-flop RB4. These two simulations

demonstrate RFPGAs ability support both asynchronous and synchronous

applications while supporting single clock cycle reconfiguration.

78

Chapter 7 Gonclusions and Future Work

Conclusions

RFPGA has been successfully designed to provide reconfiguration of its

function in just one clock cycle. This will allow future designers to run more

functionality on one chip with RAM, than any single ASIC could manage. RFPGA's

quick reconfiguration capability may find uses in supercomputing, and custom

computing applications requiring the cost effective use of microchips, with a high

degree of flexibility.

The entire FPGA system, "ssFPGA" (entity "ssfpga") has been shown in

ModelSim to successfully download, decrypt, load, and run hardware designs into

RFPGA. The decryption of the hardware designs was accomplished using a hybrid

scheme of both asymmetric and symmetric key cryptography so as to adhere to

Kerckhoffs principles. The asymmetric key cryptography is based on Chiou and

Chen's broadcast encryption methodology [40], RSA [32,33], and Montgomery's

modular multiplication method 1221. The symmetric key cryptography was based on

Gunther's Alternating Step Generator [48]with some enhancements.

The final reconfigurable logic block (RB4), may be generated with as many

standby registers as is required or is feasible. lt also allows for one to save an

existing state, in a standby register, for later use by another. ln doing so, information

can be transferred to other designs, or stored on a stack-like interface allowing for a

soft reconfiguration from one design to the next. This allows the hardware design for

each function to be written in behavioural VHDL and to be targeted to RFGPA thus

permitting data to be passed to various hardware designs. Since the VHDL code is

being run as hardware, RFPGA creates a platform for a potential supercomputer to

79

run faster than a straight software implementation. Since all of this occurs on one

chip, it may offer significant improvements over the PAM architecture discussed in

the literature review.

The design of the public-key decryption unit of the system brought insight into

one of VHDL's shortcomings. That is, hardware being executed in sequence using

behavioural code with procedure calls is not as simple a task as it should be.

Suggestions were made and pseudo-code was given as to how this could be made

more effortlessly. The inclusion of the recommendations into the VHDL language

specification would make behavioural programming easier and more relevant to area

efficient design segments, and the reduction of maintenance costs. I refer the reader

to the actual source code to see how this was accomplished.

80

Future Work

RFPGA was mostly synthesized using the Xilinx ISE XST synthesis tools.

Future students may wish to ensure adequate RAM requirements before attempting

to synthesize the entire system from the top entity, "ssfpga.vhd". Each entity below

ssfpga, however, synthesized successfully. The entire design simulated successfully

for various tests.

Future work should involve the creation of synthesis tools for applications to

run on top of RFPGA. Such tools would allow for the easy linking of one hardware

design's states to the subsequent design's invocation. Currently, the placement and

routing of designs is done mostly manually, and therefore, only small test designs

can be synthesized.

The public key decryption unit was written as behavioural code for ease of

modification. Future students wishing to modify the design may opt to allow for

computations based on a subset of each math function's maximum output. ln doing

so, variable lengths of integers can be computed, and hence the design will be in use

longer as cryptographic applications require greater security. Routines to shift

subsets of data in and out of the basic math routines would be required as well. Any

common computational speed inefficiencies in the Montgomery implementation

should also be addressed. The primary one being the parallelization of multiplication

and reduction routines which is cunently not done, but is common in many

Montgomery custom designs.

The Gunther Alternating Step Generator could also be altered to a

programmable length. Currently, the length is easily set using a constant, but that

constant is set at synthesis time and not modifiable after that. Everything else is

81

programmable. By allowing for a dynamic point to read off the last bit out of the

register, one could offer a slightly more flexible alternative. Currently, the non-linear

combining function is a simple addition operation. While this has proven to be

sufficient, one may modify it to another programmable LFSR to incorporate future

enhancements in non-linear function research.

82

Appendices

Acronym List

ASG Alternating Step Generator
ASIC Application Specific lntegrated Circuit
BLE Basic Logic Element
CAD Computer Automated Design
CB Connection Block
CLB Configurable Logic Block (see also BLE)
CSS Contents Scrambling System
DFT Design For Testability
DVD DigitalVersatile Disc
FPGA Field Programmable Gate Array
FU Functional Units
G-ASG Gunther ASG
HDL Hardware Description Language
lC lnterconnect Switch
IOB lnput Output (Logic) Block
lP lntellectual Property
LFSR Linear Feedback Shift Register
LSSD Level Sensitive Scan Design (by IBM)
LUT Look-Up Table
MPGA Mask Programmable Gate Array
OTP One Time Pad
OTP One Time Programmable
PAM Programmable Active Memory
PK Public Key
PLA Programmable Logic Array
RAM Random Access Memory
RB Reconfigurable Logic Block - any generation
RB3 Reconfigurable Logic Block - third generation
RB4 Reconfigurable Logic Block - fourth generation
RFPGA ft <=> Our, R<=>Reconfigurable (see also SCCRFPGA) (RFPGA is the
entire design)
RLB Routable Logic Block (for Triptych FPGA Architecture)
SCCR-FPGA Single Clock Cycle Reconfigurable FPGA (see also RFPGA)
SDFF Scan Design Flip Flop (a generic term)
SRAM Static Random Access Memory
SRSize Shift Register Size
twidth Track Width
U of M University of Manitoba (in Canada)
U of T Universi$ of Toronto (in Canada)
vbits vector bits
VHSIC Very High Speed lntegrated Circuit
VHDL VHSIC HDL

(Very High Speed lntegrated Circuit Hardware Description Language)
XOR Exclusive - OR (Boolean logic operation)

83

References

1. Stephen D. Brown, Robert J. Francies, Jonathan Rose, Zvonko G'
Vranesic, "Field Programmable Gate Arrays", Kluwer Academic
Publishers, Boston, 1993.

2. Peter Alfke, "Dynamic Reconfiguration",Xilinx XAPP093, November
10,1997.

3. Paul Chow, Soon Seo, Jonathan Rose, Kevin Chung, Gerard Paez-
Monzon, lmmanuel Rahardja, "The Design of a SRAM-Based Field-
Programmable Gate Array - Part l: Architecture", IEEE Transactions on
VLSI Systems, Vol. 7, No.2, June 1999.

4. Paul Chow, Soon Seo, Jonathan Rose, Kevin Chung, Gerard Paez'
Monzon, lmmanuel Rahardja, "The Design of a SRAM-Based Field-
Programmable Gate Array - Part ll: Circuit Design and Layout", ¡EEE
Transactions on VLSI Systems, Vol. 7, No.2, June 1999.

5. Ethan Mirsky, Andre DeHon, "MATRIX: A Reconfigurable Computing
Architecture with Configurable I nstruction Distribution and Deployable
Resources", FPGAs for Custom Computing Machines, Proceedings,
IEEE, 1996

6. Scott Hauck, "The Roles of FPGAs in Reprogrammable Systems",
Proceedings of the IEEE. Vol. 86, No. 7, April 1998.

7. SynopsysWebsite:http://www.svnopsvs.com/
L ModelTechnology Website: http://www.modef.com/
9. XilinxCorporationWebsite:http://www.xilinx.com/
10. XESS CorporationWebsite: http://www.xess.com/
11. Gaetano Borriello, Carl Ebeling, Scott Hauck, Steven Burns, "The

Triptych FPGA Architecture", IEEE Transactions on VLSI Systems, Vol. 3,

No. 4, December 1995.
12. Kevin Chung, "Architecture and synthesis of field-programmable gate

arrays with hard-wired connections", Ph.D. dissertation, Dept. Electrical
and Computer Engineering, University of Toronto, Canada 1994.

13. J. Rose, R. Francis, D. Lewis, P. Chow, "Architecture of Programmable
Gate Arrays: The Effect of Logic Block Functionality on Area Efficiency",
IEEE Journal of Solid State Circuits, Vol. 25, No 5, October 1990.

14. Jean Vuíflemin, Patrice Bertin, Didier Roncin, Mark Shand, Herve Touati,
Philippe Boucard, "Programmable Active Memories: Reconfigurable
Systems Come of Age", IEEE Transactions on VLSI Systems, Vol. 4, No.
1, March 1996.

15. "The New Lexicon Webstefs Encyclopedic Dictionary of the English
Language, Canadian Edition", Lexicon Publications, 1988.

16. Bruðe Sthneier, 'Applied Cryptography,2no Edition", Wiley, 1996.
17. Alfred Menezes, Paul van Oorschot, Scott Vanstone, "Handbook of

Applied Cryptography", CRC Press, June 2001edition.
18. Auguste Kerckhoffs, "La cryptographie militaire", Journal des sciences

militaires, vol. lX, pp. 5-83, Jan. 1883, pp. 161-191, Feb. 1883
19. Paul Bardell, William McAnney, Jacob Savir, "Built-ln Test for VLSI:

Pseudorandom Techniques", John Wiley & Sons lnc., 1987.

B4

20. Benson Cheung, L. T. Wang, "The Seven Deadly Sins of Scan-Based
Designs", lSD, August 1997. (

http://www.eedesig n. com/editorial/1 997/test9708. htm I)
21. Ken Jaramillo, Subbu Meiyappan, "10 tips for successful scan design",

EDN Access, February 2000.
22. Peter L. Montgomery, "Modular Multiplication Without Trial Division",

Mathematics of Computation, Yol44, No 170, April 1985, pages 519-521.
23. Cetin Kaya Koc, Tolga Acar, Burton S. Kaliski Jr., "Analyzing and

Comparing Montgomery Multiplicatíon Algorithms", RSA Laboratories,
IEEE Micro, June 1996.

24. Braden Phillips, "Modular Multiplication in the Montgomery Residue
Number System", IEEE Signals, Systems and Computers, 2001.
Conference Record of the Thirty-Fifth Asilomar Conference on , Volume:
2 ,2001, pages 1637-1640.

25. Alan Daly, William Marnane, "Efficient Architectures for implementing
Montgomery Modular Multiplication and RSA Modular Exponentiation on
Reconfigurable Logic", ACM FPGA '02, February 24-26,2002.

26. C. K. Koc, "Montgomery reduction with even modulus",lEE Proceedings,
Computers and DigitalTechniques, pages 314-316, Sept 1994.

27. J. Oh, S. Moon, "Modular multiplication method", IEEE Proceedings,
Copmut. Digit. Tech., Vol. 145, No 4, July 1998.

28. Shigehiro Funatsu, Masato Kawai, Akihiko Yamada, "Scan Design at
NEC", NEC Corp., IEEE Design & Test of Computers, June 1989.

29. Diffie, Hellman, "New Directions in Cryptography", IEEE Transactions on
lnformation Theory V ol 22, 197 6, 644-654.

30. Hellman, Diffie, Merkle, "Cryptographic Apparatus and Method", U.S.
Patent M,2O0,7700, April 29,1980.

31. Hellman, Diffie, Merkle, "Cryptographic Apparatus and Method",
Canadian Patent #1,121,480, April 6, 1982.

32. R.L. Rivest, A. Shamir, and L.M. Adleman, "A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems", Communications of
the ACM (2) 21, 1978, 120-126.

33. http://www.rsasecurity.com/ (see the FAQ section for general
cryptography information), The RSA Company.

34. Moore, "Protocol Failures in Cryptosystems", Proceedings of the IEEE,
vol.76, No. 5, May 1998.

35. Moore, "Protocol Failures in Cryptosystems", Contemporary Cryptology.
The Science of lnformation lntegrity, G.J. Simmons, ed., IEEE Press,
1992, pages 541-558.

36. http://www-2.cs.cmu.edu/-dsVDeCSS/Gallerv/, Touretzky, D. S. (2000)
Gallery of CSS Descramblers, Computer Science Department, Carnegie
Mellon University

37. S. Berkovits, "How to Broadcast a Secret", Advances in Cryptology -
Eurocrypt 1991, lecture Notes in Computer Science, 1991 , vol. 547 ,

pages 536-541
38. Yuh-Min Tseng, Jinn-Ke Jan, "Cryptanalysis of Liaw's Broadcasting

Cryptosystem", Pergamon, Computers and Mathematics with Applications
Vol 41,2001, pages 1575-1578

85

39.

40.

Chen, Chang , "secure lnformation Broadcasting Scheme using
Embedded Locks", Computer Systems Science and Engineering, vol. 10,

No.2, Apr, 1995, p67-74.
Chiou, Chen, "secure Broadcasting Using the Secure Lock", IEEE
Transactions on Software Engineering, Vol. 15, No.8, August 1998.

Alfred Menezes, Paul van Oorschot, Scott Vanstone, "Handbook of
Applied Cryptography", CRC Press, June 2001edition, page 154, section
4.5 "lrreducible polynomials over Zp".
Rainer A. Rueppel, "Analysis and Design of Stream Ciphers", Springer-
Verlag, (c) 1986.
http://wims. unice.frl-wims/fr tool-alqebra-primpolv.en.html Xiao Gang,
"Primpoly", University of Nice, France.,
http://www.sosmath.com/alqebra/factor/fac01 /facO1 . html Helmut Knaust,
"Polynomial Long Division", S.O.S. Mathematics.
S. Golomb, "Shift Register Sequences", Holden-Day, San Francisco,
California, 1967.
J. Massey, "Shift-Register Synthesis and BCH Decoding", IEEE
Transactions on lnformation Theyory, v lT-15, January 1969.

R. K. Fjelstad, W. T. Hamlen, "Application Program Maintenance Study:
Report to Our Respondents", Proceedings Guide 48, Philidelphia PA,

1979.
C. G. Gunther, "Alternating Step Generators Controlled by De Bruijn
Sequences", Eurocrypt '87, published in 1988.
www.fzi.de/sim/publications/1 994002-paper. pdf Gutberlet, Rosenstiel,
"Timing Preserving lnterface Transformations for the Synthesis of
Behavioural VHDL.",, Forschungszentrum lnformatik (FZI), University of
Tuebingen, no publication date given.
C. Blundo, L. Frota Mattos and D. R. Stinson, "Trade-offs between
communication and storage in unconditionally Secure schemes for
broadcast encryption and interactive key distribution.", Lecture Notes in

Computer Science 1109 (1996), 387-400, (Advances in Cryptology -

CRYPTO'96).
D. R. Stinson and R. Wei., "Key preassigned traceability schemes for
broadcast encryption.", Lecture Notes in Computer Science 1556 (1999),

144-156, (SAC'98 Proceedings).
J. Armstrong, F. Gray,'VHDÙDesign Representation and Synthesis", 2nd

Ed., (c) 2000, Prentice Hall.
V. Betz, J. Rose, A. Marquardt, "Architecture and CAD for Deep-
Submicron FPGAS", (c)tÖOS, Kluwer Academic Publishers, 2nd printing,

2000.

41.

42.

43.

44.

45.

46.

47.

50.

51.

52.

53.

48.

49.

86

