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Abstract

One of the difficult issues in detection theory is to design a robust detector that takes

into account the actual distribution of the original data. The most commonly used sta-

tistical detection model for blind detection is Gaussian distribution. Specifically, linear

correlation is an optimal detection method in the presence of Gaussian distributed fea-

tures. This has been found to be sub-optimal detection metric when density deviates

completely from Gaussian distributions. Hence, we formulate a detection algorithm that

enhances detection probability by exploiting the true characterises of the original data.

To understand the underlying distribution function of data, we employed the estimation

techniques such as parametric model called approximated density ratio logistic regres-

sion model and semiparameric estimations. Semiparametric model has the advantages

of yielding density ratios as well as individual densities. Both methods are applicable to

signals such as watermark embedded in spatial domain and outperform the conventional

linear correlation non-Gaussian distributed.

Keywords: Signal detections, parametric and nonparametric estimations, K-means,

expectation maximization, maximum likelihood estimations, density ratio estimation,

Gaussian mixture model, Logistic regression model.
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Chapter 1

Introduction

1.1 The Concept of Watermark Detection

Watermarking is a type of digital communication where the aim is to transmit a wa-

termark message reliably over a noisy channel. It is mainly used for different security

reasons in applications such as images, copyright protection, fingerprinting, device con-

trol and data authentication [1], and has recently been employed to provide sensory data

authentication in wireless sensor networks (WSNs) [2].

Figure 1.1: General model of watermarking process.

In Figure (1.1), we present a typical watermarking process where the input message to

be embedded as watermark signal is b, K is the secret key usually shared by the embedder

and decoder. The watermark signal is either additively or multiplicatively inserted into

the original data Xi such as images or sensory data. Sometimes, the watermarked data

can encounter either intentional or unintentional attacks. Finally, a watermark decoder

is applied to decode the embedded signal. It is our intention to state that decoder and

1



Introduction 2

detector are used interchangeably throughout this thesis. Furthermore, in most appli-

cations it is required that the original data and watermarked version be perceptually

similar, meaning that addition of watermark should not affect the original data signifi-

cantly.

In general, most researchers have focused on different strategies to embed watermark in

a cover work such as image data so that watermarked work is robust to some well known

attacks. Such attacks like lossy compression, cropping, lowpass filtering and additive

noise can easily be dealt with by embedding watermark in spread spectrum like fashion

[1][3]. Others have focused on robustness to geometric distortions such as rotation, scal-

ing and flipping caused to the watermarked image by applying Zernike moments [4][5].

Watermark detection is usually associated with the type of embedding algorithm used.

This means that if watermark is embedded in frequency domain or spatial domain, then

to detect the watermark, the watermarked data has to also be transformed in frequency

or spatial domain. In all these watermark embedding strategies developed, the detection

algorithms used are mostly sub-optimal [6].

Developing an optimal watermark detection method is very difficult task. There are

two common factors that contribute to the difficulties while developing watermark detec-

tion strategy. The first is that a watermarked data may undergo series of unpredictable

attacks that affects the signal detection. Secondly, the probability density function (PDF)

of the original data may not be available during watermark detection especially in blind

watermark detection [6]. These two factors, attack and data features are mainly the

sources of noise to the watermark signal. Generally, watermarks embedded in spatial

domain of the original data have counterpart detection algorithm as linear correlation

(LC). Linear correlation is always optimal for Gaussian distributed features [1], but since

most of image data are not Gaussian distributed as we shall see, applying LC as detec-

tion metric may not perform optimally [6] . Therefore, the general assumption of using

central limit theory (CLT) to approximate the distribution of features of data may not

work very well since according to CLT, the data has to be very large for this to hold .

This is not always the case in watermark applications.

Also, for watermark embedded into frequency domain host features such as discrete

cosine transform (DCT) and discrete wavelet transforms (DWT), the generalized Gaus-

sian distribution (GGD) is proven to be better statistical model for the host features

during detection [6]. The frequency domain host features are not approximated by the
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Gaussian distribution because the PDF of frequency domain host features is slightly

deviated from the Gaussian distribution. In fact, for DCT features, it is proven that

the statistical distribution that best fits the model is Laplacian distribution [7]. The

Gaussian and Laplacian distributions are the special cases of generalized Gaussian dis-

tributions. For details on frequency domain detection metric using GGD see [8][9] [10].

We skipped the design of new frequency domain detector in this thesis since GGD has

adaptational and flexible properties that enable it to fit the unknown frquency domain

characteristics.

1.2 Description of the Techniques

To overcome these drawbacks, it is proven that better modelling of the host features

PDF during watermark detection improves the detection performance [11]. We propose

to estimate the underlying density of data with the following density estimation methods.

• Gaussian mixture model (GMM). GMM is a parametric density function that

comprises of two or more Gaussian distributions added up to form a statistical

density, and it is termed multimodal density. Usually, it has a finite number of

Gaussian densities which is totally characterized by their estimated parameters.

As we shall see, most image data are distributed according to this model GMM, so

estimating the parameters of this PDF model accurately can improve the proba-

bility of watermark detection. One of the advantages of GMM distribution is that

computational load required to estimate the density compared to other methods

such as nonparametric method is much lower. The disadvantage of this estimation

method is that if number of components is not estimated correctly, the original

PDF may be inaccurately estimated [12].

• Density ratio estimation (Logistic Regression Model). In watermark de-

tection design, likelihood ratio test (LRT) is usually compared to a predetermined

threshold so as to determine the presence of watermark in a received data. The

universal method employed to determine the LRT is simply to estimate the wa-

termarked and non-watermark densities separately and then take their ratio. It

is proven that sometimes estimating individual densities and taking their ratio is

more difficult and increases the error probability [13][14]. Moreover, in LC detection

individual densitites need not be estimated since central limit theory is invoked.

Therefore, to avoid density estimation, parametric logistic regression model based
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on exponential family is employed which directly models the density ratio of the

two distributions [15].

• Semiparametric and Nonparametric Estimation. In some applications, the

distribution of the original data is not known a priori during detection so assuming

univariate Gaussian may be wrong assumption and costly. Therefore, the obvious

choice is to estimate the underlying density either nonparametrically [16] or exploit

the compromise of semiparametric approach offers. The advantage of nonparamet-

ric based detector is that modelling error is eliminated and with semiparametric

approach the computational load maybe reduced [17].

• Informed and Blind watermark detection. Generally, there are two types

of watermark detection schemes which can be classified as informed and blind de-

tection. The former requires original PDF of the image during detection process

whereas the later does not require this PDF. In some applications where the origi-

nal data is available during detection, the informed detection is appropriate. The

original data can easily be subtracted from the received data to obtain the embed-

ded watermark [1]. In other applications, it is not always possible to have original

data during detection, so the underlying data has to be estimated before water-

mark detection is applied. In this thesis, the blind watermarking assumption is

made throughout unless otherwise stated.



Chapter 2

Review of Binary Hypothesis

Testing of Watermarked Data

The basic watermark detection problem is to decide whether watermark is present or

absent in the received data. This is called binary hypothesis testing because we are

deciding between two hypotheses[18][19][20].

Decision =

H0 : Watermark is absent

H1 : Watermark is present.
(2.1)

The objective is to use receive watermarked data to make correct decisions about the

existence of watermark signal. Sometimes we encounter errors due to bad decisions, and

try minimizing these errors as possible as we can thereby improving watermark detection

probability. The four possible conditional probabilities of decision criteria encountered

in binary hypotheses testing are

1. P (Decide H0|H0) is the probability that correct decision is made when watermark

is absent.

2. P (Decide H1|H1) is the probability that correct decision is made when watermark

is present.

3. P (Decide H1|H0) is the probability of wrong decision when watermark is absent.

4. P (Decide H0|H1) is the probability of wrong decision when watermark is present.

5



Review of Binary Hypothesis Testing of Watermarked Data 6

The conditional probabilities P (Decide H1|H0) and P (Decide H0|H1) are called the

probability of false alarm Pfa and probability of miss detection Pm respectively. There-

fore, the objective is to minimize these probabilities so that probability of detection

P (Decide H1|H1) is maximized. In some applications, it is more severe or catastrophic

to have Pm occur regularly than Pfa. For example, an image watermarked for copy right

control would be more catastrophic when detector fails to detect watermark given that

watermark is actually embedded than when Pfa occurs. As an example of a simple bi-

nary hypothesis testing of watermarked data, if we assume that a set of data has been

watermarked by simply adding watermark to the original data as.

Yi = Wi + di. (2.2)

The original data is given as i.i.d of Gaussian distribution di v N (µd, σ
2
d) and watermark

signal is Wi v N (µw, σ
2
w), where i = 1, ..., N . Hence, Yi v N (µd + µw, σ

2
d + σ2

w) is the

convolution of both random independent variables which takes continuous value over

domain Y . The assumption in this case is that data feature is the only source of noise

encountered. This is not the case in many applications where other sources of noise such

as lossy compression or additive white Gaussian noise (AWGN) may also be encountered.

Based on the observed values Y, we decide the presence or absent of watermark as

Decide =

H0 : Y v g(Y )

H1 : Y v f(Y ).
(2.3)

.

In equation (2.3), there are two cases that possibly led to hypothesis H0, either that

the original data is not watermarked or that a wrong watermark is embedded instead of

required watermark Wi. If we let Y domain to be the set of possible observations, then

Y = YH0 ∪ YH1 . (2.4)

We accept the hypotheses H0, if Y ∈ YH0 and accept hypothesis H1, if Y ∈ YH1 .The

false alarm probability Pfa and probability of miss detection in this case are derived

respectively as in [19]

Pfa = P (Y ∈ YH1|H0) =

∫
YH1

g(Y )dY

Pm = P (Y ∈ YH0|H1) =

∫
YH0

f(Y )dY . (2.5)
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The two most common detection approaches in hypotheses testing are the Bayesian

and Neyman-Pearson approaches[18][19][20]. Usage of any of the approach depends on

the application intended for. For instance, it is common practice to use Bayesian ap-

proach for pattern recognition applications and Neyman-Pearson approach in radar de-

tection applications [19]. In watermarking system, both approaches can be used, but

their usage depends on the attack watermarked data undergoes and our willingness to

assign cost and prior probabilities to the hypotheses.

2.1 Bayes Theory of Hypothesis Testing of Water-

mark

In Bayes theory of hypothesis, prior probabilities of hypotheses are assigned during de-

tection of watermark. These probabilities express the knowledge of likelihood occurring

of each hypothesis. The objective in Bayes decision theory is to minimize the risk which

is defined as the average cost assigns to the decision made during detection, and it is

given as [19]

R = C00(1− Pfa)P (H0) + C10PfaP (H0) + C11(1− Pm)P (H1) + C01PmP (H1), (2.6)

where P (H0) and P (H1) are the a priori probabilities and Ci,j, i, j = {0, 1} are the

cost functions assigned due to a particular decision. The assumption mostly made when

using Bayes criterion in watermark application is that the cost of making a wrong decision

during detection is always greater than the cost of making a correct decision. Hence we

made wrong decisions when Pfa, C10 > C00

Pm, C01 > C11.
(2.7)

Therefore, to minimize R, the decision boundary YH1 has to be selected appropriately.

Substituting the integrations of (2.5) into (2.6) and selecting the values that are func-

tions of YH1 gives

P (H0)(C10 − C11)f(yH0)− P (H1)(C01 − C00)f(yH1) < 0. (2.8)

Re-arranging equation (2.8) gives the Bayes risk detector [19] given as

f(Y )

g(Y )

H1

≷
H0

P (H0)(C10 − C11)

P (H1)(C01 − C00)
, (2.9)
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where L(Y ) = f(Y )
g(Y )

is the one dimensional random variable known as likelihood ratio test

(LRT) and γ = P (H0)(C10−C11)
P (H1)(C01−C00)

is the threshold of the LRT. Finally, the Bayes detection

equation is written as

L(Y )
H1

≷
H0

γ. (2.10)

Sometimes, it is convenient to compute the natural logarithm of (2.10) since natural

logarithm is a monotonic function

L(Y )
′ H1

≷
H0

γ
′
, (2.11)

where L(Y )
′

= {logL(Y )} and γ
′

= log {γ}. If we let C11 = C00 = 0 and C10 = C01 = 1

such that γ is computed as the ratio of prior probabilities, we obtain the error probability

Pe from equation (2.6) as

Pe = PfaP (H0) + PmP (H1)

= P (L(Y ) ≥ γ|H0)P (H0) + P (L(Y ) < γ|H1)P (H1).
(2.12)

When the two a priori probability hypotheses P (H0) = P (H1) = 0.5, the threshold

log {γ} = 0. This is illustrated in Figure 2.1. This procedure is called maximum

likelihood detection (ML) and it is from the fact that equation (2.9) reduces to

f(Y ) > g(Y ). (2.13)

That is, we choose the hypothesis with larger conditional probability density function.

Figure 2.1: Maximum likelihood ratio decision plot.
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2.2 Neyman-Pearson Hypothesis Testing of Water-

mark

Neyman-Pearson (NP) testing is widely used as a detection criterion in watermark ap-

plications because unlike Bayes approach, it does not rely on the cost function Cij and

prior hypothesis probabilities P (Hi) or P (Hj). This is helpful in situations where neither

these costs nor probabilities are known and difficult to estimate. Also, another signif-

icant difference between Bayes and NP tests is how the threshold γ is determined. In

Bayes criterion, costs and prior probabilities must be determined to obtain the threshold,

whereas in NP criterion, the threshold is obtained in such a way that a pre-chosen false

alarm probability is achieved. The NP tests has the advantage that it allows detector

to fixed false alarm whilst maximizing the probability of detection PD = (1 − Pm) [16].

This simply means that during detection that the detector keeps Pfa below the constraint

regardless of probability of missing the watermark Pm. Mathematically

P (Y ∈ YH1|H0) ≤ α. (2.14)

We can also re-write and evaluate equation (2.14) as∫
YH1

g(Y )dY ≤ α. (2.15)

The likelihood ratio test (LRT ) for NP is written as

L(Y ) =
f(Y )

g(Y )

H1

≷
H0

γ. (2.16)

In logarithm form, we have

L(Y )
′ H1

≷
H0

γ
′
, (2.17)

where L(Y )
′

= log {L(Y )} and γ
′

= log {γ}. The probability of false alarm and proba-

bility of miss detection are respectively written as

Pfa = P (L(Y )
′
> γ

′ |H0) =

∫ +∞

γ′
g(L(Y )

′
)dL,

PM = P (L(Y )
′
< γ

′ |H1) =

∫ γ
′

−∞
f(L(Y )

′
)dL. (2.18)

For Gaussian distributed features in watermarking applications, it is easier to apply NP

test as the detection algorithm because test statistics can be obtained in a close form.

In other features that are not Gaussian, test statistics might be challenging to obtain.
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2.3 Optimal Detection of an Additive Watermark

Watermark detection in the presence of an additive white Gaussian noise (AWGN) is an

example detection considered in this thesis [6]. It is simply adding a watermark signal

to the original data as follow

Yi = di + αWi + ni, (2.19)

where di is the original data features, αWi is the watermark with scaling factor α and

ni is the uncertainty AWGN attack introduced in the channel. The original features and

AWGN attack are the two sources of noise experienced by the watermark signal, and we

may assume that both are drawn from the Gaussian distribution which is not always the

case. If we let noise sources to be Xi = di + ni, then (2.19) can be re-written as

Yi = Xi + αWi. (2.20)

It is worth noting that original data features such as natural image di are not necessary

Gaussian distributed [21][22], this is the main goal of this thesis. That is, to exploit the

actual distribution of the original data so as to improve the watermark detection.

2.3.1 Spatial Domain Features Distribution

In many watermark applications, the watermark is directly embedded in the spatial

domain of the original data. This is the simplest embedding method. It is not always

the optimal embedding strategy as slight modification to the watermarked data can

remove the embedded watermark. In this type of embedding, the underlying data is

mostly modelled as Gaussian distribution. Though, this is not always the case, but for

the time being, we assume this to be true. It is proven [1] that the optimal detection

metric for the watermark embedded in Gaussian distributed features is linear correlation

between the received data and the watermark. The mathematical illustration of this

assumption using Neyman Pearson criterion which can also be found in [6] is given as

L(Y ) =

∏N
i=1 f(Yi)∏N
i=1 g(Yi)

H1

≷
H0

γ. (2.21)

The random variables Yi coming from conditonal PDFs f(Yi|Hk), k = {0, 1} are inde-

pendent and identically distributed (iid) due to the fact that Xi = di + ni are also iid,

then we have

N∏
i=1

f(Yi) =

(
1√

2πσX

)N
exp (−

N∑
i=1

(Yi − µX − αWi)
2

2σ2
X

), (2.22)
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N∏
i=1

g(Yi) =

(
1√

2πσX

)N
exp (−

N∑
i=1

(Yi − µX)2

2σ2
X

), (2.23)

where µX and σ2
X are the mean and variance of Xi = di +ni respectively and Wi is fixed

parameter representing the watermarks. Substituting (2.22) and (2.23) into (2.21)

yields

L(Y ) =
exp

(
−
∑N

i=1
(Yi−µX−αWi)

2

2σ2
X

)
exp

(
−
∑N

i=1
(Yi−µX)2

2σ2
X

) H1

≷
H0

γ. (2.24)

Simplifying (2.24) gives log form as

L(Y )
′
=

1

2σ2
X

(
N∑
i=1

2YiαWi −
N∑
i=1

2µXαWi −
N∑
i=1

α2W 2
i )

H1

≷
H0

γ
′
. (2.25)

Noticing that the last two terms do not depend on the received data yi and that they

are absorbed by the NP threshold, we can ignore them to obtain the final statistics as

L(Y,W )
′
=

1

N

N∑
i=1

YiWi

H1

≷
H0

γ
′
. (2.26)

This is the test statistics for this watermark detection problem. Obtaining this test

statistics is all we need to detect the presence of watermark in the received data. It is

also called the linear correlation detection between watermark and received data. The

detector in (2.26) is average product vectors of the received data and watermark because

sometimes it is convenient to work with. Since Yi follows Gaussian distribution, linear

correlation is the optimal detection metric for this model. The ease of implementation

for this detection metric and the fact that Yi is approximated with central limit theory

are what make this detector widely acceptable. One of the drawbacks for this detector as

noted earlier is that Yi is not always Gaussian distributed and cannot be modelled assum-

ing central limit theory especially when the data is not sufficiently large enough[21][22].

Therefore, linear detector may work sub-optimally.

Next, the statistical parameters of the detector which is the mean and variance are

calculated for different hypotheses [6]. In general, if the mean of watermark is zero, then

the mean of output detector will also be zero. But if the mean of watermark is different

from zero, the output detector will have a specified mean as well. Two cases commonly

considered in watermarking are deterministic and random cases of signal Wi.
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Case 1: Deterministic Signal

As stated before, since we have the test statistics, it is enough to obtain the statistical

parameters of it and use it to check the presence of watermark.

• Hypothesis H0 (Watermark absent) Since there is no watermark embedded,

the received data is actually the original data which includes the noise as well,

i.e Yi = Xi, with mean E(Yi) = E(Xi) = µX and variance Var(Yi) = σ2
X where

Xi = di + ni .

The sample mean of sufficient statistics becomes

µL0 = EL(Y )
′

= E[ 1
N

∑N
i=1 YiWi]

= µX
1
N

∑N
i=1 Wi.

(2.27)

The variance is calculated as

σ2
L0 = VarL(Y )

′

= Var[ 1
N

∑N
i=1 YiWi]

=
σ2
X

N2

∑N
i=1W

2
i .

(2.28)

• Hypothesis H1 (Watermark present)

Similarly, for statistical parameters of linear correlation when watermark is present

Yi = Xi +αWi, the mean and variance of received data are E(Yi) = µX +αWi and

Var(Yi) = σ2
X respectively. The statistical parameters are

Mean
µL1 = EL(Y )

′

= E[ 1
N

∑N
i=1 (Xi + αWi)Wi]

= µX
N

∑N
i=1 Wi + α

N

∑N
i=1W

2
i .

(2.29)

Variance
σ2
L1 =

σ2
X

N2

∑N
i=1W

2
i

= σ2
L0.

(2.30)

Case 2: Random Signal

In some applications, applying a watermark signal as random variables enhances the

robustness of embedded signal against certain attacks. It is worth noting that product

of two Gaussian random variables is not Guassian, therefore test statistics in real sense

is not Gaussian distributed. Hence, central limit theory is invoked which approximates

the test statistics as Gaussian when the sample size is sufficiently large [6]. In this case,

the statistical parameters differ slighly from the case of determistic signal.



Review of Binary Hypothesis Testing of Watermarked Data 13

• Hypothesis H0

Mean

µL0 = µXµW . (2.31)

Let U be the watermark signal known to the detector which will be correlated with

W if present, also the assumption is that U and Y are independent then

Variance
σ2
L0 = 1

N
{Var(Y )Var(U)

+Var(Y )E2(U)

+Var(U)E2(Y )},
(2.32)

where Var(Y ) = σ2
X + σ2

n, see derivation in Appendix (A.1). To avoid confusion,

U is used specifically for only calculation of variance.

• Hypothesis H1 .

Mean
µL1 = E(Y )E(W )

= (µX + αµW )µW

= µXµW + αµ2
W .

(2.33)

Variance,

Under H1, the task is to find the correlation of U and W when we recieved Y =

X +W . In general, there are two scenarios that can be encountered. First, wrong

watermark U is used for correlation during detection and second, correct watermark

is used for correlation. If we consider the first case of using wrong watermark which

assumes that X, U and W are all independent on each other that is W 6= U , then

the variance of linear correlator becomes

σ2
L1 = 1

N
{(Var(X) + α2Var(W ))Var(U)

+(Var(X) + α2Var(W ))E2(U)

+Var(U)(E(X) + αE(U))}.
(2.34)

When correct watermark signal U is used for detection, that is X is independent

on U and W whereas U and W are correlated by the relaionship U = γW , where

γ is the correlation coefficient, the variance is re-calculated as

σ2
L1 = 1

N
{Var(X)Var(U)

+E2(U)Var(X) + E2(X)Var(U)

+α2E(W 4)− E2(W 2)

+2αE(X)α2(E(W 3)− E(W )E(W 2))},

(2.35)
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where the derivation is in Appendix (A.2).

In summary, the test statistics L(Y )
′

is asymptotically Gaussian such that

L− E(L)√
Var(L)

N' N (0, 1), (2.36)

where E(L) and Var(L) are given by the above formulas depending on whether we have

H1 or H0. Therefore, the distribution of linear correlation between the received data and

the watermark is summarized as

L(Y,W )
′ '

N (µL0, σ
2
L0)

N (µL1, σ
2
L1).

(2.37)

The threshold of NP test can be obtained by using NP equation derived in previous

Section as
α =

∫ +∞
γ′

f(L(Y )
′ |H0)dL

=
∫ +∞
γ′

1
σL0

φ(L−µL0

σL0
)dL

=
∫ +∞
γ
′−µL0
σL0

φ(u)du

= 1− Φ(γ
′−µL0

σL0
).

(2.38)

Re-arranging (2.38) and solving for γ
′

yields the threshold solution

γα = Φ−1(1− α)σL0 + µL0, (2.39)

where φ(.) is the PDF of standard normal distributionN (0, 1), Φ(.) is the CDF ofN (0, 1)

and Φ−1(1−α) = Q1−α is the quantile of N (0, 1). Equation (2.39) is then re-written as

γα = Q1−ασL0 + µL0. (2.40)

Finally, using the pre-determined false alarm α as a function of threshold γ
′
, the proba-

bility of detection PD is obtained as

PD = 1− Φ(γα−µL1

σL1
)

= 1− Φ
(
Q1−α − α

NσL1

∑N
i=1 W

2
i

)
.

(2.41)

Therefore, to maximize the power of the test, we minimize the second term in (2.41).

To use the linear correlation detector (2.26), we have to know the mean of the original

data µX and its variance σ2
X which is used in the detector. The obvious choice however is
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to estimate these statistical parameters, but due to wide range of vector of the received

data (i.e. high magnitude), it is sometimes difficult to estimate these parameters. It also

means that watermark is not robust against some simple attacks commonly encountered.

In [1], it is shown that to get around this problems, computing the normalized correlation

between the received data and the watermark of (2.26) is better and more robust detector

than simple linear correlation detector. This is called normalized correlation detector

given as

L(Y,W ) =
N∑
i=1

Yi
|Yi|

Wi

|Wi|
H1

≷
H0

γ
′
. (2.42)

2.4 Classical Density Estimation Techniques for Wa-

termarked Features

As already seen in Section 2.3, modelling the distributions of the watermarked data is

essential part of watermark detector. In the previous Section when we examined the

spatial domain features, the ratio of two distributions is approximated and replaced

with its sufficient statistics. This is common practice due to simplicity of its nature

and ease of implementations, but it has limitations as well. The three general density

estimation techniques that can be applied to watermark applications are parametric,

nonparametric and semiparametric estimation techniques. Two most common errors

obtained as a result of these estimation techniques are parameter estimation error and

modelling error. The usage of each of these techniques depends on the prior knowledge

of the model which the underlying density belongs to. If we believe that our model

is correct, then parametric estimation is the best choice since it gives best parameter

estimates with very high precision. On the other hand, if our model is incorrect we can

estimate parameters precisely, but with high modelling error [23], so the convergence of

parameter is not accurate as well. Therefore, the obvious choice for this case is to employ

a nonparametric estimation technique where the modelling error is zero. Semiparametric

technique gives a good compromise between parametric and nonparametric.We briefly

summarize these techniques in the next Subsections.

2.4.1 Parametric Estimation Model

The idea behind linear correlation detectors is of parametric nature. The underlying

density is assumed to come from a specified model. If the assumed model deviates
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completely from the true model, we obtain very high modelling error. Let us denote the

modelling error as em and parameter estimation error as ep. The total error of parametric

model becomes

eT = ep + em. (2.43)

A typical watermark detection model involves using received signal plus noise test

statistics given as

Yi = f(Xi|θo) + εi, i = 1, ..., n. (2.44)

f(.) is a parametric function specified up to unknown true vector parameters θo ∈ Θ, εi

are iid random noise errors with mean µ = 0 and variance σ2
ε > 0 and Xi ∈ Rd denotes

the underlying data sequence. The function f(.) also belongs to model space S, i.e f ∈ S
and the formal representation of parametric model space for this problem is written as

S = {f(Xi|θ) : θ ∈ Θ} . (2.45)

The error in our model can be measured using the mean square error (MSE) as

E(θ) = E(Yi − f(Xi|θ))2. (2.46)

Furthermore, the function f(.) needs to be approximated if it is unknown or it’s parameter

vector θ estimated if known. The classical least square

θo = argmin
θ∈Θ

E(θ) (2.47)

can solve this problem. The empirical counterpart of MSE in (2.46) is given as

Ên(θ) =
1

n

n∑
i=1

E(Yi − f(Xi|θ))2, (2.48)

where the empirical least square estimator is

θ̂n = argmin
θ∈Θ

Ên(θ). (2.49)

The estimated parameter θ̂n is consistent estimate of the true parameter θo [24][25], that

is

θ̂n → θo(P ) as n→∞, (2.50)

where (P ) denotes convergence in probability. The optimal rate of convergence then

becomes θ̂n = θo + OP (n−1/2). Therefore, the task becomes finding the optimal finite-

dimensional parameters θo that characterizes the true model such that (2.50)is satisfied.[23]

The two interpretations of θo are described as follow
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1. Assume that the chosen data comes from true model state space f ∈ S, we need

to only estimate θo which completely specifies the system model. Thus, the correct

model becomes

Yi = f(Xi|θo) + εi, (2.51)

of which we obtain minimum possible error as

E(θ0) = E(Yi − f(Xi|θ0))2

= E(f(Xi|θo) + εi − f(Xi|θ0))2

= Eε2
i .

(2.52)

Therefore, we infer that modelling error does not exist and the only source of error

comes from noise variance.

2. The second interpretation of θo is that if the data comes from an unknown function

say g(Xi) which is outside our assumed model class f /∈ S, such that the correct

model is given as

Yi = g(Xi) + εi. (2.53)

Then we choose a known function f(Xi|θ) from the assumed class as an approxi-

mation of g(Xi). The parameter θo is such a parameter called limiting value which

minimizes the MSE of our model

E(θ) = E(Yi − f(Xi|θ))2

= E(g(Xi) + εi − f(Xi|θ))2

= E(g(Xi)− f(Xi|θ))2 + Eε2
i ,

(2.54)

where the minimum possible error (irreducible error) for this case is E(g(Xi) −
f(Xi|θ0))2. Therefore, f(X|θ0) is the closest model to the true function g(X).

Consequently, we conclude that least square estimator is robust to misspecification prob-

lem. As we shall see, this approach is used extensively in parametric density ratio esti-

mation of likelihood ratio test using logistic model. Therefore, the idea is to minimize

the total error eT experienced due to parametric assumption, and one way to do this is

to use least square approximation method.

2.4.2 Nonparametric Estimation Model

When the a priori knowledge of the underlying function is unknown, it is appropriate

to apply nonparametric method which perfectly can recover infinite-dimensional object
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of such function. The nonparametric function estimation approach is completely free of

the modelling assumption made in the parametric case. Any function can be captured

by this approach, hence the modelling error em = 0. On the other hand, establishing

the test statistics function using fully nonparametric method is not very useful because

in most binary detection algorithm, it is assumed that both data under H0 and H1 are

very similar with one only shifted or scaled version of the other. Applying nonparametric

method in such situation, we will lose such similarity property. However, understanding

nonparametric method is essential for the semiparametric approach used as our detection

metric. The estimation error in nonparametric model can be measured also by the mean

square error given as

E = E(Yi − f(Xi))
2. (2.55)

Hence, we can obtain the minimum error for fo(X) being the regression given as the

conditional expectation function [26]

fo(Xi) = E(Yi|Xi). (2.56)

If we let the true function be

Yi = fo(Xi) + ε. (2.57)

Then the minimal error for this model becomes

E = Eε2, (2.58)

since there is no modelling error and the error reduces to noise variance. Again the

empirical MSE counterpart is

Ên(θ) =
1

n

n∑
i=1

E(Yi − f(Xi))
2, (2.59)

The optimal rate of convergence for the estimate f̂(Xi) is given as OP (n−α) where α <

1/2. Also, notice that there is no restriction on the form or model of f(Xi). This is the

main advantage of fully nonparametric model, for full details regarding nonparametric

density estimation or regression models, see [26][17]

2.4.3 Semiparametric Estimation Model

In the previous Subsections, we introduced parametric and nonparametric models. The

challenge with parametric method is mainly due to model misspecification especially
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when we do not have prior knowledge of the underlying data at hand. But it has fast

estimate convergence rate which is OP (n−1/2). The nonparametric method does not have

misspecification problem, but it is known to have slower convergence rate than OP (n−1/2)

[17] and we lose similarity property between data under H0 and H1. The semiparametric

method is between parametric and nonparametric methods which allows model flexibility.

In many watermark applications, an attacker may change the distribution of the original

data. In this case, it is imperative to apply a technique that captures the model of

the system accurately such that the power of the test is maximized. Let us denote a

semiparametric model expressed as conditional expectation function as

E(Yi|Xi) = fo(Xi)

= g(b(Xi|θ)).
(2.60)

This is idea of single index model (SIM) which summarizes input variables Xi as a

one dimensional problem [26]. There are two step estimation processes of SIM model.

First, we estimate the parameter θ̂, then use θ̂ in the second stage process which is

estimating function ĝ(.) nonparametrically (univariate). Therefore, both θ and g(.) are

to be estimated directly from the given data [26][17]. Similarly as in previous Subsections,

we try to obtain the parameter θ and the function g(.) that minimizes the error given as

E(θ, g(.)) = E[(Yi − g(b(Xi|θ))]2, (2.61)

where Yi = fo(Xi) + ε and we obtain minimum possible error as

E(θo, go(.)) = E[Yi − g(b(Xi|θ))]2

= E[fo(Xi) + ε− g(b(Xi|θ))]2

= E[fo(Xi)− go(b(Xi|θo))]2 + Eε2.

(2.62)

Equation (2.62) is the case when modeling error exists, but when we do not have mod-

elling error (2.62) becomes E(θo, go(.)) = Eε2.



Chapter 3

Optimal Watermark Detection in

the Presence of Non-Gaussian

Features

Figure 3.1 shows some of the distributions of most natural image pixels for different

greyscale values and they are invariant to scaling see [21][22]. We can see clearly that in

most cases, the densities of image pixels are skewed and not unimodal in nature, hence

Gaussian PDF may not work very well during watermark decoding. Therefore, blindly

estimating the statistical distribution of these watermarked images is appropriate.

Figure 3.1: The histogram of most popular images.

20
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3.1 Gaussian Mixture Model Distributed Features

The Gaussian mixture model (GMM) is a popular parametric probability density function

that has been used extensively to model data which reveals skewness and multi-modality.

A similar approach where the host features have been modelled as GMM can be found in

[11]. The significant different between our model and the one in [11] is how the number

of GMM components is obtained, also we approximate GMM with logistic regression and

use it as likelihood ratio test. The advantages of using GMM to model the distribution

of images are summarised as follow

• Most images are hardly unimodal Gaussians as observed in Figure 3.1, so the GMM

can almost capture the underlying density perfectly if it is multimodal Gaussian.

• In the case of unimodal probability density distribution of a data, GMM can eas-

ily be reduced to a single component density, and comparable to optimal linear

detector.

• GMM has the advantage of less computational load put on the detection system.

• In some cases, with GMM, the attack parameters such as Gaussian attack can be

estimated and learned.

The obvious disadvantage of using GMM is that if data is close to other densities such

as exponential, gamma or even mixture models, modelling error increases significantly.

To illustrate the proposed method, we assume that watermark is embedded in the

presence of an additive white Gaussian noise (AWGN), with host features distributed

according to Gaussian mixture model, the entire model for this system is demonstrated

in the Figure 3.2 below
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Figure 3.2: General block diagram of GMM setup.

There are many different researched methods of encoding watermark prior to embed-

ding into the host data for security reasons. Since designing an optimal robust embedding

strategy is not our goal in this thesis, we simplify the embedding process by encoding

only one bit of message b = 1. It is proven [1] that representing watermark bits as iden-

tically and independent iid random variables provides robustness needed in watermark

applications. This random variables is generally regarded as reference pattern. Embed-

ding watermark Wb = N (µw, σ
2
w) encoded this way has significant effect on the detection

metric employed. After encoding, the watermark is inserted additively into host data

vector Xi and can experience AWGN noise attack denoted as ni v N (µn, σ
2
n) to yield

Yi = Xi + αWb + ni, (3.1)

where α is the scaling parameter representing trade-off between watermark robustness

and watermark strength.

The original data Xi is distributed according to Gaussian mixture model Xi v∑K
j=1 πjN (µxj, σ

2
xj) and finally

Yi '
K∑
j=1

πjN (µyj, σ
2
yj), (3.2)

where µyj = µxj + αµw and σ2
yj = σ2

xj + α2σ2
w + σ2

n.

Obtaining a close form equation for this model is extremely difficult unlike the simple

linear correlation detector, hence during performance evaluation we resort to Monte Carlo

simulation. In this embedding algorithm, there is a requirement to have the watermarked

version to be perceptibly similar to the original data. Therefore, the image data Xi and



Optimal Watermark Detection in the Presence of Non-Gaussian Features 23

the watermarked counterpart will have similar distributions. This requirement ensures

that addition of watermark to the original data does not modify the data significantly.

Hence, we can exploit this property to estimate the watermarked data using GMM

density. If we let the watermarked data or received image to be yi, and if we also assume

that this data is identically and independent random variables, then under hypotheses

Hi, i = {0, 1} the received data is given as

p(y1, y2, ..., yN | H1) =
N∏
i=1

p(yi|H1),

p(y1, y2, ..., yN | H0) =
N∏
i=1

p(yi|H0). (3.3)

The mixture models for the underlying density function with K components under both

hypotheses are

p(yi|H1) =
K∑
j=1

πjN (µj1, σ
2
j1)

p(yi|H0) =
K∑
j=1

πjN (µj0, σ
2
j0), (3.4)

where
∑K

j=1 πj = 1.

3.1.1 Determine the Number of Components for GMM Using

Silhouette Validation Technique

We want to estimate the parameters of Gaussian mixture and the number of mixture

components. There are many existing methods already developed to obtain the number

of components in mixture models. Here, we adopt a simple technique that is used to

validate clustered data called Silhouette validation technique [27]. Since we assume blind

watermark detection where the density of the original data is not available during de-

tection, determining the optimal number of mixture components of our model becomes

a challenge. If the number of the components K is too large, it over estimates the true

PDF and if it is too small it suboptimally models the true PDF. The Silhouette value

tells us how closely a data point is associated with its assigned cluster and how dissimilar

it is from the other clusters [27]. The algorithm of using Silhouette value to determine

optimal cluster number is as follow
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Silhouette Algorithm

1. Select an arbitrarily number range for clusters (components) say k = 1 to 10.

2. Calculate the K-means of these selected clusters.

3. Determine the silhouette value of each clustered data point and the mean value

over all the points.

4. Plot the graphical representation of silhouette mean value to find the peak corre-

sponding to optimal number of cluster.

The next step is to use the k-th cluster corresponding to the peak Silhouette mean value in

K-means again to determine the initialization parameters for expectation maximization

(EM) algorithm given as

θ = (πj, µj, σ
2
j )
K
j=1. (3.5)

These initialization parameters obtained using K-means algorithm for k component PDFs

are derived as

µj =
1

nj

nj∑
i=1

xi1(xi ∈ Gj),

σ2
j =

1

nj

nj∑
i=1

(xi1(xi ∈ Gj)− µj)2,

πj =
nj
N
, (3.6)

where
∑nj

i=1 πj = 1, nj ∈ N , j = 1, ..., K and 1(.) is an indicator function defined as

1 =

1, if xi ∈ Gj

0, if xi /∈ Gj.
(3.7)

The µj and σ2
j are the sample mean and variance of each component of the density

respectively, whereas πj is the mixing coefficient of the density, Gj is the jth cluster

group and N is the total number of data in the entire image or data. We are now ready

to use this parameter set θ = (πj, µj, σ
2
j )
K
j=1 from K-Means to initialize EM algorithm.
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3.1.2 Iterative Expectation Maximization Algorithm for Esti-

mating the Parameters

The EM algorithm is generally accepted algorithm used to estimate or refine the param-

eters of Gaussian mixture model [12]. The algorithm requires initialization of parameters

which is obtained by K-Means as described above.

Iterative EM Procedure

1. Initialize using parameters obtained from K-Means algorithm.

2. For each data point xi, calculate the probability that point xi belongs to the jth

term called posterior probability τ̂i.

3. The parameters are updated iteratively using the estimates π̂j, µ̂j and σ̂2
j

4. Repeat step 2 to step 3 until estimate converges.

We note that it is not our intention to develop new parameter estimation algorithm,

therefore we use the popular iterative EM algorithm since it has been proven to be

efficient. The above EM procedure can also be found in [12]. The posterior probability

of step 2 in the algorithm is given analytically as

τ̂i =
π̂jN (yi; µ̂j, σ̂

2
j )∑K

j=1 π̂jN (yi; µ̂j, σ̂2
j )
. (3.8)

The updated parameters which we will use to substitute the parameters obtained by the

K-Means algorithm are given as

µ̂j =
1

nj

nj∑
i=1

xi1(xi ∈ Gj),

σ̂2
j =

1

nj

nj∑
i=1

(xi1(xi ∈ Gj)− µj)2,

π̂j =
N∑
i=1

τ̂i. (3.9)
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3.1.3 GMM Detector for Watermark Signal

Next, since watermarked data is estimated and ready, we can apply a detection criterion

such as Bayes or Neyman Pearson criterion to detect the embedded watermark. The

GMM detector is a family of Bayes criterion, but the significant contribution is that the

PDF used in this detector is explicitly estimated using Gaussian mixture model. The

likelihood ratio test (LRT) for this detector is therefore given as

L(Y ) =

∏N
i=1 p(yi|H1)∏N
i=1 p(yi|H0)

H1

≷
H0

γ, (3.10)

where γ is the threshold. As stated earlier, it is difficult to obtain a closed form equation

of Gaussian mixture model detector like in the case of the linear detector. This is

therefore one of the setbacks of this model since the only way to check the performance

measure for this detector is by resorting to Monte Carlo (MC) simulation. However, it

is known that MC simulation approach is always very close to the true system if the

number of experimental trial is chosen to be very high.

3.2 An Example of Gaussian Mixture Model

Here, we apply the GMM detection technique to watermarked greyscale images. The

images selected for watermarking are some of the popular images used in image processing

field which are shown in Figure 3.3. We assume that an additive embedding rule has

been used such as the one explained in Section (3.1), then the task is to detection the

embedded watermark in the host images at the receiver side. As already shown, the

first step is to estimate the probability density function of the host images from the

watermarked images.

The set of test images selected are 128 x 128 pixels in size, each has different char-

acteristics of intensity and distributions. These test images are selected in such a way

that no single image has the same data distributions with each other. For each image we

employ the Silhouette validation algorithm discussed in Section (3.1.1) and the results

of these data clusters validation is shown in Figure 3.4

As we can see in Figure 3.4, different number of clusters for each image is plotted

against the mean Silhouette value. In each image, the cluster corresponding to the

maximum Silhouette mean value is regarded as the actual number of clustered data in
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Figure 3.3: Test Images (a)Baboon (b)Lena (c)Peppers (d)Elaine (e)Fishing Boat

(f)Clock.

that image. We obtained three clusters in baboon image, five in Lena, four in pepper,

five in Elaine, two in fishing boat and two in the clock.

Figure 3.4: Number of clusters in each test image.
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3.3 Experimental Results of Gaussian Mixture Model

We perform experiment on the watermarked images shown in Figure 3.3. For each

experiment, the watermark signal is chosen to be iid random variables from Gaussian

distribution with parameters mean µw and variance σ2
w. The variance of the watermark

σ2
w is equivalent to the scaling parameter α which controls the strength of the watermark.

One may vary α as needed so far as it does not significantly corrupt the original image

data. The idea is to compare the performance of GMM detector with the traditional

linear detector in the presence of images with different distributions. We shall experiment

this in simulation studies, for now lets concentrate on estimating the parameters of the

unknown density using GMM.

3.3.1 Monte Carlo Simulation of GMM

Generally in simulations, we are often required to generate more random variables fol-

lowing an underlying image watermark data received which has been estimated by the

GMM procedure [12]. To generate these random samples from GMM distribution, the

following Monte Carlo algorithm is used

GMM Algorithm:

1. Use the estimated parameters obtained by the Iterative EM algorithm θ = (π̂j, µ̂j, σ̂
2
j )
K
j=1

to generate GMM.

2. Generate N -Uniform(0, 1) random variables Ui

• If Ui < π̂1, then Yi belongs to group 1 of the density.

• If π̂1 ≤ Ui < (π̂1 + π̂2), then Yi belongs to group 2 of the density.

• If (π̂1 + π̂2) ≤ Ui < (π̂1 + π̂2 + π̂3), Yi belongs to group 3 of the density.

• And so on ...

3. Generate N (µ̂j, σ̂
2
j ), j = 1 : K(term) according to group members found in step 2.

4. Then, the GMM is generated as p(yi|Hk) =
∑K

j=1 πjN (µkj , σ
2
kj

) for k = {0, 1} and

i = 1, ..., N .

In Figure 3.5 to 3.7 , we plotted the original histograms of these watermarked images

with their corresponding estimated data obtained using the Monte Carlo finite Gaussian
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mixture model. We can see from these figures, that the estimated data using the pro-

posed Gaussian mixture model is very close to the true underlying histograms of the

watermark images which are similar in distribution to the original image data. Looking

at these histograms, we can also see that applying a detector such as linear detector that

assumes image data to be Gaussian distributed may not perform very well.

Figure 3.5: Comparing the histogram of original data to the estimated data using GMM

(left clock and right fishing boat).

Figure 3.6: Comparing the histogram of original data to the estimated data using GMM

(left Elaine and right Lena).
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Figure 3.7: Comparing the histogram of original data to the estimated data using GMM

(left Peppers and right Babbon).

3.4 Density Ratio Estimation of Likelihood Ratio

Test

Density ratio estimation (DRE) is an estimation technique which focuses on estimating

the ratio of two densities directly [13]. In other words, with DRE technique, we try

to avoid estimating individual densities from two set of random variables and estimate

their ratio directly. As already seen in Section 3.3, estimating mixture models (GMM)

of individual densities coming from both hypotheses is very cumbersome. It requires

accurately estimating the following parameters before being used for detection.

• The number of components of the density using Silhouette validation technique.

Sometimes, we can encounter error using this technique to determine number of

mixture components in a data.

• The initialization parameters of EM-algorithm must be obtained using K-means al-

gorithm. K-means requires accurate initial guess of number of components to work

well. Therefore if we unknowingly made an error while estimating mixture com-

ponents, the entire GMM estimation becomes suboptimal and affects watermark

detection probability.

We clearly see that the idea of estimating density ratios directly is beneficial and

easier than estimating individual densities.
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3.4.1 Density Ratio Estimation of Likelihood Ratio Test via

Exponential Tilt Model

Exponential tilt model also known as density ratio model is equivalent to classical para-

metric logistic regression model. The logistic model is well known as probabilistic classi-

fication model [13][15][28] . In probabilistic classification related to watermark detection

system, we try to classify the two hypotheses as binary outcomes. Let us assign output

binary labels or statues to the watermark hypotheses using an indicator function given

as Z = 0, (X1, ..., Xm) v g(x)

Z = 1, (Y1, ..., Yn) v f(x),
(3.11)

where the output Z is regarded as a random variable and n+m = N is the total sample

size.

Specifically, if we consider the two hypotheses data as (Xi, ..., Xm;Yj, ..., Yn), then their

corresponding output binary response becomes (Z1, ..., ZN) = (0, ..., 0; 1, ..., 1) where i =

1, ...,m and j = 1, ..., n, Xi ∈ Rp and Yi ∈ Rp, p is the p-dimensional vector same size

as the original data, it has to be estimated from the data. Let us denote a new variable

x ∈ {H0, H1}, then following Baye’s rules the density ratio is expressed as

r(x|θ) =
P (Z = 1|x)

P (Z = 0|x)
, (3.12)

or

r(x|θ) =
f(x)P (Z = 1)

g(x)P (Z = 0)
, (3.13)

where n = m, complete derivation and proof of this function can be found in [13].

If we apply the logistic model (sigmoid function) to the model’s relationships between

watermarked and non-watermark data (since they are probabilities),we have

P (Z = 1|x, θ) =
exp(α + βT b(x))

1 + exp(α + βT b(x))
(3.14)

P (Z = 0|x, θ) =
1

1 + exp(α + βT b(x))
, (3.15)

where θ = (α, β), θ ∈ Θ ⊂ Rd is the unknown parameter to be estimated from the data

with d = p+ 1 and b(x) ∈ Rb is a function which has the form
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b1(x) = x, b2(x) = x2, ..., bp(x) = xp. (3.16)

Taking the likelihood ratio test of these probabilities in (3.14) and (3.15) yield the ex-

pression derived as

r(x|θ) = P (y=1|x,θ)
P (y=0|x,θ)

= exp(α + βT b(x)).
(3.17)

The equation (3.17) is called the link function between densities g(x) and f(x). The goal

is to express the likelihood ratio test during watermark detection as a certain function

called the link function exp(α + βT b(x)) and to get powerful estimator which is more

efficient. Hence, using exponential family distribution as a link function is very useful

because it covers large densities from which the real density ratios of two distributions are

obtained. The link function depends on unknown parameter θ, estimating this parameter

accurately will yield a link function between the density ratios of the two distributions.

Therefore, we form a powerful and more efficient likelihood ratio test detector than the

traditional linear correlation.

3.4.2 Maximum Likelihood Estimation of Parameters of Expo-

nential Tilt Model

Figure 3.8 illustrates the idea of how to estimate the parameters of the exponential

function. To estimate the parameters, the idea is to utilize all the data together coming

from both hypotheses, then apply maximum likelihood estimation to obtain the estimate

of the density ratio of two set of random variables.

Figure 3.8: Block diagram illustrating ML estimation process of the parametric density

ratio.
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Let us assume that we have respectively independent data of watermarked and non-

watermark data given as

xN =

 (X1, ..., Xm) v g(x)

(Y1, ..., Yn) v f(x),
(3.18)

The following derivation of maximum likelihood parameter estimation can also be

found in [15][26]. We can express the likelihood ratio test as a link function between the

two continuous densities as

r(x; θ) =
f(x)

g(x)
. (3.19)

Re-arranging we obtain

r(x; θ)g(x)− f(x) = 0,

if only θ = θ∗, θ ∈ Θ. Let η(x; θ) : H x Θ → Rd be a vector function, then the moment

matching estimator for density ratio model which is derived in [15] is given as

E(r(x; θ)η(x; θ))− E(η(x; θ)) = 0. (3.20)

The corresponding estimation function for density ratio is therefore given as

ϕ̂η(θ) =
1

m

m∑
i=1

r(xi; θ)η(xi; θ)−
1

n

n∑
i=1

η(xi; θ). (3.21)

The estimate of θ∗ requires using Newton algorithm since our problem involves system

of nonlinear equations, and the roots of the following equation

ϕ̂η(θ̂) = 0 (3.22)

gives our estimate θ̂. The mathematical expression for Newton iterations algorithm to

estimation θ is given as

θ̂new = θ̂old −
(
J (θold)

)−1
ϕ̂η(θ

old), (3.23)

where J (.) is the Jacobian matrix.

The iterations is stopped when we obtain the value of θ̂ such that ϕ̂η(θ̂) = 0. In ex-

periment, it is difficult to obtain the exact solution that yields ϕ̂η(θ̂) = 0, so the exact

solution is obtained by checking when the estimated error is less or equal to a predeter-

mined small value ε > 0. The bound of this estimated error is expressed as

‖ θ̂
new − θ̂old

θ̂old
‖≤ ε. (3.24)
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The detailed computational Newton algorithm conducted in MATLAB software can be

found in [29]

The optimal close form equation for the equation η(x; θ) is derived in [15] and is given

as

ηopt(x; θ) =
1

1 + ρr(x; θ)

∂

∂
log r(x; θ), (3.25)

where r(x; θ) = exp(α + βT b(x)) and ρ = n
m

, note that in most watermark applications

ρ = 1, since m = n.

3.4.3 An Example of Likelihood Ratio Test as Link Function

In this Section, we apply the technique of logistic regression model discussed in the

previous Section to illustrate how the true parameter values are obtained. Then we

compare with the estimated counterparts to understand how the estimate approaches

the true value. It is worth noting that simple Gaussian distribution is used as the data

features and watermark added in the data is also Gaussian distributed. In watermarking,

data from H0 and H1 only differ either in their means or variances. If they differ in their

mean values, that is one is the shifted version of the other, their density ratio yields

linear function. On the other hand, if their mean values are the same and differ only in

their variances, they yield quadratic density ratio.

• Quadratic Density Ratio Function: Here, we illustrate with an example where

the ratio of two densities such as Gaussian gives a quadratic model. The simple

case is scaled density functions given as

f(x) =
1

σ
g(
x

σ
), (3.26)

where E(X) = E(Y ) = µ, given that X v g(x) and Y v f(x), σ controls the shape

of the densities.

More complicated case is when E(X) 6= E(Y ) with also a scaling factor σ. Such a

relationship between f(x) and g(x) is not common in watermark applications and

it is given as

f(x) =
1

σ
g(
x− µ
σ

). (3.27)

An example of such quadratic model is expressed as (X1, ..., Xm) v N (µ, τ 2) = g(x)

(Y1, ..., Yn) v N (µ, σ2) = f(x).
(3.28)
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The likelihood ratio test for these variables gives

r(x|θ) =
N (µ, σ2)

N (µ, τ 2)
=

1√
2π

1
σ

exp (− (x−µ)2

2σ2 )

1√
2π

1
τ

exp (− (x−µ)2

2τ2
)
. (3.29)

Further simplification gives the quadratic link function which is given as

r(x|θ) =
N (µ, σ2)

N (µ, τ 2)
= exp (α + β1x+ β2x

2), (3.30)

where α = (log( τ
σ
) + µ2

2τ2
− µ2

2σ2 ), β1 = ( µ
σ2 − µ

τ2
), β2 = ( 1

2τ2
− 1

2σ2 ) and θ = (α, β1, β2).

Clearly, we see that equating the density ratio of distributions like Gaussian distri-

bution with exponential family link function is justified. Furthermore, we observed

that the optimal dimensionality for the link function for the Gaussian case is d = 2.

Letting τ = 2, σ = 4 and µ = 20 for this example, the true parameter becomes

θo = (37.5,−3.75, 0.09375). (3.31)

• Linear Density Ratio Model: Another case of model where two density func-

tions differ only in their mean values is expressed as

f(x) = g(x− µ), (3.32)

where E(X) 6= E(Y ), Var(X) = Var(Y ) = σ2 and θ = (α, β1).

The next example is a typical example of watermark applications where the water-

mark signal is in form of deterministic signal. (X1, ..., Xm) v N (0, σ2) = g(x)

(Y1, ..., Yn) v N (µ, σ2) = f(x)
(3.33)

The likelihood ratio test for this model is

r(x|θ) =
N (µ, σ2)

N (0, σ2)
=

1√
2π

1
σ

exp (− (x−µ)2

2σ2 )

1√
2π

1
σ

exp (− x2

2σ2 )
. (3.34)

Again, simplifying

r(x|θ) =
N (µ, σ2)

N (0, σ2)
= exp (α + β1x) (3.35)
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where α = (−µ
2

2σ2 ), β1 = µ
σ2 , β2 = 0 and θ = (α, β1).

If we let σ = 4 and µ = 20 , we get the true parameter as

θo = (−12.5, 1.25). (3.36)

Therefore, the link function totally depends on parameter vector θ = (α, βi), i =

1, ..., p and parameters of the densities µ, σ. In the simulation studies, we apply

the maximum likelihood and the Newton method to estimate these parameters and

check how fast they approach the true values obtained analytically.

3.5 Least Square Approximation of Link Function to

Mixture Model

In the previous Section where we made assumption of unimodal Gaussian distribution

in the example of density ratio, we obtained a well define analytical true parameter vec-

tor θ = (α, β1, ..., βp) of the link function. As already shown, the distributions of noise

such as original images data are mostly skewed and multimodal in nature. Modelling it

with distribution such as Gaussian mixture model (GMM) for parametric case gives very

powerful estimator and therefore can improve the detection measure. Also, we noticed

in Section 3.4 that we can avoid estimating individual densities of the hypotheses and

play with density ratio directly. This technique offers some advantages such as ease of

implementation of test statistics and adapts fairly for smaller sample size N . That is, it

does not require central limit theory like linear correlation case to give good estimate of

test statistics. The challenge with the case of mixture model distribution is to obtain a

good analytical true parameter vector θ, such that estimated parameter θ̂ is comparable

to θ. The ratio of Gaussian mixture models is very difficult to solve analytically and we

want to avoid individual density estimation. We apply classical least square approxima-

tion technique to fit the exponential link function to the mixture model. This approach

helps to reduce modelling error due to misspecification. Least square approximation to

an unknown function has been studied extensively in [25].

Let L(x|η) represents the density ratio of the multimodal data such as Gaussian

mixture models with parameter set η and let r(x|θ) be the link function of which the

optimal dimension for unimodal Gaussian case is d = 2. Let θ̂N be an estimate of
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true value parameter θ∗. Then the measured expected error is obtained by applying an

empirical mean sqaure error

Err(θ, d) =
1

N

N∑
i=1

(L(xi|η)− rd(xi|θ))2, (3.37)

where θ̂N is a consistent estimator of θ∗, that is

θ̂N → θ∗(P ) as N →∞. (3.38)

We apply the classical least square estimator to approximate link function to mixture

model as

Err(θ̂N , d̂) = argmin
θ∈Θ,d∈D

Err(θ, d). (3.39)

We find parameter set such that

lim
N→∞

Err(θ̂N , d̂) = Err(θ
∗, d∗). (3.40)

The dimension d ∈ D of rd(xi|θ) is varied from d = 2, 3, ... until we obtain an optimal d∗

that minimizes the error Err(θ, d) and also produces the optimal parameter set θ∗. This

is observed in the simulation studies. Hence, we can apply r̂d∗(x|θ∗) as a link function

to the density ratio of Gaussian mixture models, thereby avoiding density estimation of

complicated GMM.

3.6 Monte Carlo Evaluation of Link Function as Test

Statistics via Bootstrap Method

The basic methodology for checking the presence or absence of watermark in a received

signal is through null and alternative hypotheses testing. The test statistics in our case is

the link function already developed in the previous Section. As noted earlier, there is no

close form formula of test statistics of exponential tilt model which is an approximation

of mixture models. Therefore, we resort to Monte Carlo simulation via bootstrapping

which is generally very close to the true model as the sample size tends to infinity i.e

N →∞ .We follow Neyman Pearson hypothesis criterion as it is popular testing model

in watermark applications. Two types of errors commonly encountered during detection

of watermark using NP test are type 1 error commonly known as probability of false
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alarm Pfa and type 2 error called probability of missed detection Pm. These errors are

given respectively as

Pfa = P
(
r(X|θ̂) > γ|H0

)
,

Pm = P
(
r(X|θ̂) < γ|H1

)
, (3.41)

where γ is a pre-determined threshold.

The null hypothesis is rejected when our test statistics exceed a pre-determined threshold

γα, that is r(x|θ̂) > γα, where γα is also called the control limit or the critical value for

the test statistics [12]. The critical value is the value of our test statistics under H0 that

demarcate the regions where null hypothesis will be accepted or rejected. It is determined

by constraining the null hypothesis (probability of false alarm) to a significance level α

which is amount of error we are willing to accept. The rejection probability is generally

very small say α = 0.05 and γα is found as

γα = min
{
γ : P

(
r(X|θ̂) > γ|H0

)
≤ α

}
, (3.42)

Before proceeding to estimation of type 1 error and γα, we need to estimate the parameter

θ̂ used in the link function r(x|θ̂).

3.6.1 Bootstrap Estimation of Link Function Parameters

Bootstrap is a method of Monte Carlo simulation that assumes no knowledge of parent

distribution or parameters of a distribution. Instead, sample of an estimate of parame-

ters of the population is used. The general procedure of bootstrap is to resample with

replacement from the original sample [12]. Let us illustrate a typical example in boot-

strap approach, if we assume that random sample is given as x = (4, 7, 2, 1), then the

first sample with replacement could be x∗1 = (x4, x2, x2, x1) = (1, 7, 7, 4) and the second

sample could be x∗2 = (x4, x2, x3, x3) = (1, 7, 2, 2) and so on. Hence, we get new samples

as

Original Sample x = (x1, ..., xN),

New Sample x = (x∗1, ..., x
∗
N), (3.43)

To estimate the parameter θ, we apply the bootstrap procedure by combining the entire

data coming from watermarked and those not watermarked. We denote (X1, ..., Xm) as

data not watermarked H0 and (Y1, ..., Yn) as watermarked data H1 where m+ n = N .

(X1, ..., Xm;Y1, ..., Yn)
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B1 : (X∗b11 , ..., X∗b1m ;Y ∗b11 , ..., Y ∗b1n )⇒ θ̂b1 ,

B2 : (X∗b21 , ..., X∗b2m ;Y ∗b21 , ..., Y ∗b2n )⇒ θ̂b2 ,

: :

BM : (X∗bM1 , ..., X∗bMm ;Y ∗bM1 , ..., Y ∗bMn )⇒ θ̂bM . (3.44)

In each bootstrap replicate Bi, i = 1, ...,M , we estimate the parameter set of the com-

bined data θ̂bi , and obtain the final estimate of link function parameters as

θ̂M =
1

M

M∑
i=1

θ̂bi . (3.45)

Since Monte Carlo bootstrap is based on law of large numbers, we expect the estimate

to be consistent and that the following expression holds for very small value ε

lim
N→∞

P [θ − ε < θ̂N < θ + ε]→ 1. (3.46)

3.6.2 Bootstrap Hypothesis Testing of Errors

To estimate type 1 error using bootstrap method, we first put all the data together,

estimate the parameter θ̂M as described above, and then use only those data not wa-

termarked to test type 1 error. We note that non-watermark data used in the classifier

link function are those not selected during the bootstrap resampling. This procedure is

similar to dividing our samples into training and testing data set as illustrated in the

Figure 3.9 below.

Figure 3.9: Data partitioning for evaluating the test statistics.

We use the training data to build the test statistics (i.e. estimate the parameters

of link function) and then use the independent test data to evaluate its accuracy. The

bootstrap re-sampling of type 1 error for each replicate Bi

P̂ bi
fa =

1

K

K∑
j=1

1(r̂(xj|θ̂bi) > γα), (3.47)
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where K are those data not selected, and final bootstrap of type 1 error estimate becomes

P̂Boot
fa =

1

M

M∑
i=1

P̂ bi
fa. (3.48)

Similarly, we estimate type II error using test data from the alternate hypothesis, then

yielding

P̂ bi
m =

1

K

K∑
j=1

1(r̂(xj|θ̂bi) < γα). (3.49)

K again are those data not selected during bootstrap re-sampling of alternate hypothesis,

and final bootstrap type 1 error estimate becomes

P̂Boot
m =

1

M

M∑
i=1

P̂ bi
m . (3.50)

Finally, the probability of detection of watermark is obtained as

Pd = 1− P̂Boot
m . (3.51)

It is worth noting that since the data of hypothesis H1 is generally larger than hypothesis

H0, dividing the corresponding densities or directly estimating the density ratio will

always result in very large values. To obtain a reasonable density ratio model for type

1 and II errors, we invert the density ratios in each case, and also invert the critical

threshold γα. The probabilities of false alarm and probability of detection in (3.48) and

(3.50) can be rewritten respectively as

1

P̂ bi
fa

<
1

γα
, (3.52)

1

P̂ bi
m

>
1

γα
. (3.53)

3.7 Simulation Studies

In this Section, we conduct simulation studies of the proposed model starting with the es-

timation of parameters of the density ratio (link function) which is used as our likelihood

ratio test in watermark detection. As already stated, accurate estimation of parameter

vector θ̂N is crucial in determining a very good test statistics that is used for classifi-

cation of our watermark model. The first step of simulation is to use the Monte Carlo
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simulation method precisely bootstrap approach described in Section 3.6.1 to obtained

the parameter estimates. Furthermore, a model misspecification simulation analysis is

carried out. This simulation shows the core results and reason behind this research. We

have already seen similar results in Section 3.3 when we use Gaussian mixture model

to show that true distributions of greyscale image data is not really Gaussian. We also

perform some simulations to study the least square approximation of exponential tilt

model to Gaussian mixture model discussed in Section 3.5. The idea is to prove that

approximated exponential tilt model can be used as test statistics which is easy and

improved detection probability than using mixture model or linear correlation. Finally,

we used the receiver operation characteristics (ROC) to check the performance measure

of our watermark detector built using the model described in Section 3.1 to 3.6.

3.7.1 Maximum Likelihood Estimation of Density Ratio Model

vs Sample Size

The analytical ML estimate model for density ratio estimation is described in Section

3.4.2. Since we know that our estimate θ̂N is a consistent estimator as limN→∞, it is easy

to see that we will perform our simulation as a function of N called the sample size. In

this simulation, we use artificial univariate Gaussian random variables examples given

in Section 3.4.3. The focus is to perform experiments both on quadratic density ratio

model and linear density ratio model.

Quadratic density ratio model where x1, ..., xm v N (20, 22) and x1, ..., xn v N (20, 42) has

the form exp(α+β1x+β2x
2). Recall that the true parameter θo = (37.5,−3.75, 0.09375)

Applying the parameter estimation technique in bootstrap method, we obtain the

estimates of parameters with increasing number of data from n = 50 to n = 2000. In

each run of simulation, we repeat the experiment M = 1000 and then compute the θ̂ as

the estimate. Table 3.1 below shows these estimates as data n increases, and we can see

that the estimates starts converging stochastically to the true parameter as n increases

which satisfies the consistence property.
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n=50 n=500 n=1000 n=2000

α̂ 48.8140 42.2694 41.2731 36.2225

β̂1 -4.8694 -4.2577 41.2731 -3.7010

β̂2 0.1193 0.1054 0.1044 0.0929

Table 3.1: Parameter estimation of quadratic density ratio model

Similarly, we performed experiment on the linear density ratio model of our example

in Section 3.4.3. Linear density ratio model where x1, ..., xm v N (0, 42) and x1, ..., xn v

N (20, 42) has the form exp(α + β1x), where the true parameter is θo ∈ (−12.5, 1.25).

The estimation for this linear model is summarized in the Table 3.2

n=50 n=500 n=1000 n=2000

α̂ -232.6166 -92.3623 -13.5714 -11.9917

β̂1 22.065 9.8152 1.4363 1.2223

Table 3.2: Parameter estimation of Linear density ratio model

Therefore, we clearly see that our estimates converges and can be used in the link

function as the test statistics in the situation where f(x) and g(x) are distributed accord-

ing to Gaussian distributions. This function can be comparable to the linear correlation

test statistics due to the fact that both require sample data to be large for the detector to

perform well. Also noticing that linear correlation is based on sufficient statistics, we see

that both linear correlation and link function model do not require individual estimation

of density functions of both hypotheses to perform well. The obvious improvement using

link function is that we can approximate it to the case where the underlying data is not

really Gaussian distributed.

3.7.2 Least Square Approximation Error vs Dimension of Link

Function

In this Section, we perform simulation study to compute the least square approxi-

mation error versus dimension of our logistic model. We take data to be f(x) v
1
2
N (2, 1) + 1

2
N (4, 1) and g(x) v 1

2
N (2, 0.5) + 1

2
N (4, 0.5). As shown in Section 3.5,

the idea is to approximate the density ratio of this model by link function r(x|θ). This

is done by varying the dimension of r(x|θ) from d = 2, ... until we obtain the dimension
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d∗ which gives minimum mean square error. To do this, we estimate type I and II errors

of our models, find the d∗ in each case that gives the best dimension appropriate for

test statistics r(x|θ). The number of observations used for this experiment is fixed at

N = 1000. Figure 3.10 shows the plot of mean square error of the original density ratio

versus the input dimension of the link function for probability of false alarm. One can

see that dimensionality of link function needed to approximate the logistic model to the

simulated Gaussian distribution is at d∗ = 8. This gives the minimum MSE of the least

square model and can be used to obtain the critical threshold γα needed for watermark

detection.

In Figure 3.11, we observe the plot of density ratio models estimated by the logistic

regression. We see that at d = 2, the model gives large error which is 0.3125. The

shape of density model at this point is Gaussian type shape. This is in agreement with

our discussion in Section 3.5 where we stated that the optimal dimension for univriate

Gaussian density is at d = 2. Hence, we cannot model the Gaussian mixture data with

link function when d = 2. The third plot in Figure 3.11 shows density ratio plot of

logistic regression model when d∗ = 8. This is found to have minimum mean square

error of 0.0292, we see that is it comparable to the true density ratio model in (a).

Hence we conclude that this link function is the best we can use as test statistics for the

Gaussian mixture model at hand. For the figure in (c), we see clearly that the shape

starts deviating slightly away from the true model and the MSE starts getting bigger as

well.
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Figure 3.10: Least square approximation error vs dimensionality of link function for Pfa

.

Figure 3.11: The plot of density ratio estimated by Logistic regression model. (a) True

density ratio model. (b) Exponential density ratio at d = 2 (c) d∗ = 8 and (d) d=11 .

The corresponding parameter estimated at this dimension d∗ = 8 is shown in the
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Table 3.3

θ̂N=1000 α̂ β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8

V alues -35.9 -136.1 -224.9 203.5 -107.5 33.8 -6.2 0.6 -0.025

Table 3.3: Parameter estimation of exponential density ratio model when d∗ = 8

Similarly, for type II error which is probability of miss detection, we observe that

the dimension required in link function that gives the minimum error is at d∗ = 9 (see

Figure 3.12). Therefore, we can apply an exponential link function with d∗ = 9, where

the corresponding estimated parameters for this model is given in Table 3.4 as well.

Figure 3.12: Least square approximation error vs dimensionality of link function for Pm

.

θ̂N=1000 α̂ β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9

V alues -51.78 209.4266 -364.3 346.9 -196.4 68.448 -14.7 1.90 -0.13 0.004

Table 3.4: Parameter estimation of exponential density ratio model when d∗ = 9

Furthermore, we run simulations for different artificial data under hypothesis H0 used

to obtain the probability of false alarm. The aim is to apply least square approximation

method to different Gaussian mixture model data set and find the optimal dimension

in each case. Table 3.5 shows that for different Gaussian mixture models randomly
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generated for simulation purpose only, that the optimal dimension required in exponential

link function is d∗ = 8.

GMM Minimum MSE d∗

f(x|H1) v 0.5N (4, 2) + 0.5N (6, 2)

g(x|H0) v 0.5N (4, 0.5) + 0.5N (6, 0.5) 0.0281 8

f(x|H1) v 0.5N (20, 9) + 0.5N (35, 9)

g(x|H0) v 0.5N (20, 6) + 0.5N (35, 6) 0.0022 8

Table 3.5: Mean square error vs dimension of logistic regression model for randomly

picked Gaussian mixture models under H0

To understand the behaviour of our least square approximation method under hy-

pothesis H1, we conduct similar experiments focusing on watermarked data. The results

summarized in Table 3.6 is obtained for this case. Again we see that optimal dimension

is around d∗ = 8, sometimes we can obtained optimal d∗ = 9. We conclude that the

dimension of our exponential model test statistics required for Gaussian mixture model

distributed features is around d∗ = [8, 9]. Obviously this is an approximation technique,

getting exact dimension without error is very difficult, and hence we conjecture that

approximating Gaussian mixture model with d∗ = 8 or 9 will be a good model for test

statistics.

GMM Minimum MSE d∗

f(x|H1) v 0.5N (4, 2) + 0.5N (6, 2)

g(x|H0) v 0.5N (4, 0.5) + 0.5N (6, 0.5) 0.0159 8

f(x|H1) v 0.5N (20, 9) + 0.5N (35, 9)

g(x|H0) v 0.5N (20, 6) + 0.5N (35, 6) 0.0122 8

Table 3.6: Mean square error vs dimension of logistic regression model for randomly

picked Gaussian mixture models under H1

3.7.3 Density Ratio Model Probability of Detection vs Sample

Size

To understand the effect of the estimated density ratio model on probability of detection

Pd, we simulate the Pd of density ratio model (logistic model) and compare it with

Pd of the density ratio when individual densities are estimated independently (linear
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correlation detector). We vary the sample size of data x1, ..., xm|H0 v N (20, 22) and

x1, ..., xn|H1 v N (20, 42) from N = 10 to N = 5000. The Monte Carlo bootstrap

method described in Section 3.6.2 is used to obtain the critical threshold. Figure 3.13 (a)

shows the plot of type 1 error and the critical threshold for this problem is approximately

γα = 1.2 for significance level α = 0.05. Finally, we use the obtained critical threshold

(control limit) γα to test type 2 error which is given as Pr(r(x|θ̂) < γα|H1). To estimate

likelihood ratio test r(x|θ̂) for type 2 error, we use the parameter θ̂ estimated from all

the data put together and apply only watermarked data estimate to get type 2 error.

In Figure 3.13 (b), we plot corresponding power of the test versus sample size N . The

probability of detection increases with increasing sample size and we see clearly that the

link function based on exponential model perfectly fits the true model estimated.

Figure 3.13: Probability of detection versus sample size. (a) Critical threshold with

siginifican level α = 0.05. (b) Corresponding power of the test.

3.7.4 Model Misspecification vs Sample Size

The model misspecification as applied to the context of detection theory in this re-

search is choosing wrong density estimation model for the underlying distribution of the

data. We have already stated that correctly estimating the distributions of the underly-

ing density of data can improve the watermark detection. For comparison purpose, we
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apply the standard nonparametric estimation technique called the kernel density func-

tion (KDE) which is given as f̂Ker(x) = 1
n

∑n
i=1Kb(x−Xi) for f(x) and ĝKer(x) =

1
m

∑m
i=1Kb(x−Xi) for g(x) . Parameter b is the bandwidth according to Silvermans rule

of thumb given as b = 1.06σ̂n−1/5 and K(.) used here is the classical Kernel Gaussian.

We know that KDE can capture perfectly the shape of the distribution of data when n

is large enough and perform sub-optimally when n is small. To check the performance of

our parametric detector based on the link function, we perform experiments by apply-

ing it to different set of artificial data. Firstly, we generate data according to Gaussian

distributions and then another set of data according to Gaussian mixture model. We

applied least square approximation to get the optimal dimension of Gaussian mixture

model at d∗ = 8

The probability of detection computed by the bootstrap method in Section 3.6.2

is used as performance measure. We perform experiment for N = 10 to N = 1000

and compare KDE with link function probability of detection. In this experiment, if we

assume that the actual individual densities are Gaussians. We use a simple Gaussian case

where f(x) v N (1, 1) and g(x) v N (1, 0.5). In the case where we assume that actual

densities are Gaussian mixture model we take the functions as f(x) v 0.5N (1, 2) +

0.5N (4, 2) and g(x) v 0.5N (1, 0.5) + 0.5N (4, 0.5) . A Monte Carlo realization of M =

1000 is applied to each sample size N = 10 to N = 1000 and averaged to obtain detection

probability of watermark. Shown in Figure 3.14 is the probability of detection versus

sample size when the actual distribution of data is Gaussian distributed in (a) and when

it is Gaussian mixture model (b). From Figure 3.14, we made the following observations.

• In the Gaussian distributed features, as N increases to 1000, both detectors built

based on KDE and logistic function tend to 1 which is expected as increasing

number of samples, increases both probability of false alarm as well as probability

of detection.

• In the Gaussian distributed individual density case in (a), the logistic model de-

tector with dimension d = 2 outperforms the kernel based detector. This is also

expected as well, because logistic based detector is optimal for Gaussian case model.

On the other hand, when the distributions are distributed according to complicated

Gaussian mixture model, the KDE detector outperforms the logistic detector with

d = 2. This is attributed to the fact that KDE can capture the shape of the under-

lying distribution better than parametric logistic model, but logistic detector with
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d = 8 outperforms KDE especially for smaller sample size. Therefore, we see the

need to design a detector that takes into account the distribution of data so that

the detection probability is improved.

• Finally, Figure 3.14 shows as well that for small sample size, logistic based detector

with both d = 2 and d = 8 performs better than KDE. It is due to the fact that

KDE is not suitable for small sample size, even in the case where the density model

is Gaussian mixture model, logistic detector performs reasonably well comparing

to KDE.

Figure 3.14: Model misspecification: probability of detection of watermark versus sam-

ple size. (a) Gaussian distributed features. (b) Gaussian mixture model distributed

features .

3.7.5 Receiver Operating Characteristic of Approximated Link

functions

The receiver operating characteristics normally known as ROC curve is a graphical rep-

resentation of performance evaluation of classifier commonly used in signal detection

analysis. The ROC curve shows the trade off between the probability of detection and

probability of false alarm. To apply this curve to check the quality of our test statistics,
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we vary the threshold to obtain the false alarm probability and for each case plot the

detection probability versus Pfa. The values of the Pfa used to obtain threshold set are

in the range of Pfa = 0.01 to 0.99 with the step size equal to 0.01. We use the same

artificial data applied in Section 3.7.3 where under null hypothesis the data is given

as g(x) v 0.5N (2, 0.5) + 0.5N (4, 0.5) and under the alternate hypothesis the data is

f(x) v 0.5N (2, 1) + 0.5N (4, 1) . The sample size is fixed at N = 1000. We know that

from Section 3.7.3 that under H0 and H1 the dimensionality of exponential density ratio

for this model that yields the minimum least square errors are d∗ = 8 and d∗ = 9 respec-

tively. Also for the univariate single mode Gaussian case d∗ = 2. Hence, we compare the

performance of detectors built using exponential link function with d∗ = 8 ,9 for bimodal

Gaussian mixture and d∗ = 2 for single mode Gaussian data using ROC curve. Note also

that we applied univariate kernel density estimation (KDE) for correspondences. The

kernel bandwidth applied is an arbitrary value close to Silvermans rule with Gaussian

kernel. There are several methods to simulate the ROC performance curve. One such

method is to apply the bootstrap Monte Carlo simulation described in Section 3.6.1.

Another method is to apply cross validation where the data is partitioned into two sets

N = NTrain+NTest, the NTrain is used to build the density ratio and NTest used to test it.

The observations from Figure 3.15 shows that when appropriate dimensions of the

link function is used which corresponds to the case where the distributions of the original

data is used. Watermark signals can be detected better than the case when density ratio

is wrongly modelled as a single mode Gaussian. Also notice that kernel based detector

is very close to the parametric density ratio model with d∗ = 8, 9 which confirms that

that modelling density ratio with an optimal d∗ is good assumption.
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Figure 3.15: The ROC curve of detectors of watermark based on exponential density

ratio models with different dimensionalities and kernel based likelihood ratio test.

3.8 Conclusion and Future Works

In this Section, we conclude the approximated parametric inference used as likelihood

ratio test. According to conducted simulations, most data such as image data water-

marked are not distributed according to unimodal Gaussian density. Therefore, applying

linear correlation detector works sub-optimal. Designing a detector which incorporates

the close enough characteristics distribution of the original data helped to improve wa-

termark detection. The Gaussian mixture model (GMM) is a non-Gaussian parametric

model applied as true characteristics. The advantage of GMM is that it can adapt to

different models such as unimodal and multimodal Gaussians.

In Section 3.4, we have seen that an individual multimodal density can be totally

avoided by estimating the density ratio directly. The density ratio which is the link

function between watermark and non-watermark data is replaced with exponential fam-
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ily model. The simulation in Section 3.7.1 shows that parameters of this model can be

estimated accurately. The irreducible error of this parametric inference is simulated in

Section 3.7.3 and we clearly see that this model with its irreducible error can perform

better than linear correlation detector when the underlying data is not Gaussian dis-

tributed. This is observed in ROC curve simulations conducted in Section 3.7.4.

Future Work: Some of the future work for approximated parametric inference de-

scribed in this Section are summarised below

• The optimal dimension d∗ of logistic regression model should be estimated directly

without going through sub-optimal approach of least square approximation as in

our case.

• A generalized model which includes non-exponential family member should be de-

veloped. In this regard, estimating nonparametrically the link function should be

considered. The advantage of such approach is that for models which fall out-

side the exponential family, this nonparametric generalized model would capture

it perfectly. Hence, this will eliminate the modelling error completely.



Chapter 4

Semiparametric Based Watermark

Detector

In Chapter 2, we briefly introduced the semiparametric method for estimating the den-

sity of watermarked data. We learnt that in many applications of watermark that no

knowledge of the distribution of the underlying data is available during detection. Hence,

applying a semiparametric estimation technique to obtain the distribution of the data

seems appropriate. This is an ideal candidate for blind watermark detection, where we

lack the knowledge of the underling distribution of data. It is also noted that semi-

parametric model is a good compromise between parametric and nonparametric models.

This is because it takes care of model misspecifications commonly experience in para-

metric model and slow convergence rate that is predominant in nonparametric systems.

In Section 3.4, we introduced a parametric density ratio model via exponential family

model. This parametric model focuses on estimating density ratio known in detection

paradigm as likelihood ratio test directly and avoids individual densities estimation.

The density ratio is set as a known parametric function called the link function given as

r(x; θ) = exp(α+ βT b(x)) where θ = (α, β), so we simply try to estimate θ correctly and

use least square to approximate the misspecified model.

4.1 Modified Weighted Kernel Estimator

The modified weighted kernel estimation is two step process algorithms. First, we esti-

mate the parametric part of the process using density ratio logistics model estimation

r(y; θ), and secondly kernel density estimation which depends on the parametric ratio as

53
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the second process. If we denote f(x) and g(x) as probability densities under alternate

and null hypothesis respectively, then we can combine data coming from each hypothesis

to estimate our semiparametric model term modified weighted kernel estimator. This is

illustrated in the Figure 4.1

Figure 4.1: Block diagram illustrating semiparametric based watermark detector.

In semiparametric inference, we assume that the density ratio can be modelled by a

certain function r(x; θ̂) with exponential family which is link function between f(.) and

g(.) .This link function depends on two unknown densities, so we have set of unknowns

{α, β, f(.), g(.)} all to be estimated. This is why the semiparametric approach is more

difficult than parametric counterpart. Nevertheless, if they are estimated accurately, we

will have an advantage of getting the link function r(x; θ) as well as individual densities

f̂(x|θ̂) and ĝ(x|θ̂). Therefore, except getting the density ratio semiparametric method

gives the shape of each class under H0 and H1. The main idea behind this estimator is

that since both data coming from H0 and H1 are linked together (i.e. there is information

of source g(.) in source f(.), we can take advantage of that combine data together to

estimate our functions.

Let the density ratio (likelihood ratio test) of our model be given as

f(x)

g(x)
, r(x|θ∗), (4.1)

where θ∗ denotes true parameter r(x|θ∗) = exp (α∗ + β∗T b(x)), b(x) is a known function

(see Section 3.4.1) and θ∗ ∈ (α∗, β∗), θ∗ = Θ ⊂ Rd.

The function under hypothesis H1 can then be

f(x) , g(x) exp (α∗ + β∗T b(x)), (4.2)

The equal by definition sign , indicates that for equality to hold, function f(x) depends

on correct estimation of the term in right-hand-side which involve the link functions

exp(.). Before proceeding to modified weighted kernel estimator, let us first consider a

conventional approach of estimating semiparametric models. Two steps naive process of

estimating function f(x) are
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1. Estimate g(x) by classical kernel density estimation (KDE) ignoring the fact that

g(x) and f(x) are linked. Hence we get

ĝ(x) =
1

m

m∑
i=1

Kb(x−Xi), (4.3)

whereKb(.) = K(./b)/b andK(.) ≥ 0 is a kernel function that satisfies
∫ +∞
−∞ K(v)dv =

1.

2. Secondly, estimate the parameters of the parametric part exp (α̂ + β̂T b(x)). Hence,
ˆf(x) is obtained by plugging in ˆg(x) into (4.2) to yield

f̂(x) = ĝ(x) exp (α̂ + β̂T b(x)). (4.4)

This naive process of estimating densities by KDE method is suboptimal because in

most watermark detection process, individual data are always related either through

their means or variances. Even though similarity property is taken into account in the

parametric part, we lost lots of information of their dependence in the nonparametric

part because data are treated completely independent. The second efficient method called

modified weighted kernel estimator takes into account the density ratio and incorporates

it into the nonparametric part.

4.1.1 Parametric Inference

We start by estimating the parametric part of the semiparametric problem. This esti-

mator has been built in Section 3.8 and fitted using least square method. Let the entire

data under both hypotheses be represented as

(X1, ..., Xm, Y1, ..., Yn) = (x1, ..., xN), (4.5)

where n+m = N .

As usual, we apply least square estimator to obtain an optimal dimension d∗ as well as

parameter θ∗ that minimizes sum of square errors

Err(θ̂, d̂) = argmin
θ∈Θ,d∈(D)

1

N

N∑
i=1

(L(xi|η)− rd(xi|θ))2, (4.6)

where L(xi|η) is the true density ratio model and rd(Ti|θ) model used for fitting. Finally

we obtain the parametric part of the semiparametric inference as

f(xi)

g(xi)
, r(xi|θ∗), (4.7)
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This function is very important in the nonparametric part because it is going to

appear in each individual density as a weight function. The parameter θ is estimated by

maximum likelihood procedure explained in Section 3.4.2 which is equivalent to logistic

model see [15] for details.

4.1.2 Semiparametric Inference

The idea behind this model is that since the functions f(.) and g(.) are linked, we put

data together as in parametric part and assign weight function Ui(xi), i = 1, , N in the

kernel density formula such that Ui(.) ≥ 0, so that equation (4.3) becomes

ĝb(x) =
N∑
i=1

Ui(xi)Kb(x− xi), (4.8)

So weights depend on the link model, and for classical KDE the weight reduces to

Ui(xi) =

 1
m
, i = 1, ...,m

0, otherwise.
(4.9)

Therefore, we can infer immediately that classical kernel density estimation is the spe-

cial case of modified weighted kernel estimator (4.8) when we neglect data coming from

source f(.)

Statistical Properties: The weight function Ui(xi) completely depends on the sta-

tistical properties of estimator (4.8) such as mean and variance. The task is to obtain

an optimal weight function U∗i (.) by using unbiased estimator of (4.8) that minimizes

the variance. We can either express the semiparametric properties either as mean square

error or individually mean and variance. The MSE of this estimator is

MSE(ĝb(x)) = Var(ĝb(x)) + [Bias(ĝb(x))]2. (4.10)

The bias is given as

Bias(ĝb(x)) = E(ĝb(x))− g(x)

=
∑N

i=1 E(Ui(xi)Kb(x− xi))− g(x).
(4.11)

Consequently, the first term in 4.11 becomes the expectation of ĝb(x) given as

E(ĝb(x)) =
N∑
i=1

E(Ui(xi)Kb(x− xi)). (4.12)
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Since the data are combined to get the estimator in (4.8), the individual term in (4.12)

via Taylor expansion becomesUi(x)g(x) +O(b), 1 ≤ i ≤ m

Ui(x)g(x)r(x|θ) +O(b), m+ 1 ≤ i ≤ N.
(4.13)

Then, the overall combined expectation is written as

E(ĝb(x)) = g(x)

(
m∑
i=1

Ui(x) +
N∑

i=m+1

Ui(x)r(x|θ)

)
+O(b). (4.14)

Similarly, the variance of the single term in (4.8) coming from each density source is

given as U2
i (x)g(x)(1 +O(b)), 1 ≤ i ≤ m

U2
i (x)γ

b
g(x)r(x|θ)(1 +O(b)), m+ 1 ≤ i ≤ N,

(4.15)

where γ =
∫
K2(v)dv.

Then, the empirical combined variance is

Var(ĝb(x)) = g(x)
γ

b

(
m∑
i=1

U2
i (x) +

N∑
i=m+1

U2
i (x)r(x|θ)

)
+O(b). (4.16)

Optimal weight function U∗i (.): To obtain the optimal weight function used in our

estimate, we perform an optimization that minimizes the variance. The optimization

problem statement is as follow

Define an objective function as

L =
m∑
i=1

U2
i (x) +

N∑
i=m+1

U2
i (x)r(x|θ)). (4.17)

The task is to minimize L

U∗i (.) = argmin
U∈Ψ

L, (4.18)

subject to the constraint

m∑
i=1

Ui(x) +
m∑

i=m+1

Ui(x)r(x|θ) = 1. (4.19)

The constraint is an asymptotically unbiased estimator . In this case the optimal weight

function is found to be

U∗i (.) =
1

m+ nr(x|θ̂)
. (4.20)
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Intuitively, we say that an optimal weight U∗i (.) is the weight from the set Ψ that gives

the smallest variance that satisfied the constraint. We clearly see that optimal weight

depends on the parametric link model between densities under H0 v g(x) and under

H1 v f(x). Therefore, the most important part of our semiparametric estimator is the

optimal weight. If the estimated density ratio r(x|θ̂) is close enough to the true ratio

r(x|θ∗), we can get an optimal weight U∗i (x). In this case, the estimator of ĝ(x) is more

efficient than classical kernel estimator. But if the estimated density ratio is far away

from the true ratio, we end up with classical kernel density estimation. Finally, the

estimate of these densities under H0 and H1 are given respectively as

ĝ(x) =
N∑
i=1

1

m+ nr(xi|θ̂)
Kb(x− xi) (4.21)

and

f̂(x) =
N∑
i=1

r(x|θ̂)
m+ nr(xi|θ̂)

Kb(x− xi). (4.22)

Notice that density under H1 need not to be estimated since it depends on ĝ(x) and

r(x|θ̂) (i.e. constant). This is an additional advantage of this estimator over KDE. We

also notice that the parametric part r(x|θ̂) is present in both ĝ(x) and f̂(x). Hence, we

conclude that prior knowledge of relationship between data in H0 and H1 greatly help

to get better estimate of r(x|θ̂) and ĝ(x).

4.1.3 Bandwidth Parameter Selection

As already stated earlier, the bandwidth parameter b is very important parameter for

smoothness of the semiparametric estimator developed in this thesis. Selecting b opti-

mally will yield an estimator which is neither over-smooth nor under-smooth which in

turn affects detection probability. Furthermore, another advantage of this estimator is

that since f̂(x) is constant, we need to only select optimally the bandwidth when esti-

mating function ĝ(x), then use it in f̂(x).

One of the most popular methods for bandwidth selection is Silvermans reference rule

of thumb [12]. The idea is to choose values of b such that asymptotic mean integrated

square error (MISE) is minimized. That way we can maintain a good variance-bias trade

off. It is shown that when the Gaussian kernel K(.) assumption is made, that the optimal

bandwidth is given as

b = ĈN−1/5, (4.23)
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where Ĉ = 1.06σ̂, N is the sample size of data combined together and

σ̂ =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2. (4.24)

Noting that

x̄ =
1

N

N∑
i=1

xi (4.25)

is the empirical sample mean, hence we can employ a Monte Carlo approach to estimate

these variables.

To verify the selected b and obtain the error made due to this estimator, we compute the

MISE between ĝ(x) and the true model g(x) as follow

ISE(ĝb) =
1

N

N∑
i=1

(ĝb(xi)− g(xi))
2. (4.26)

Then MISE is obtained by computing

MISE(ĝ) =
1

N

N∑
i=1

ISE(ĝ). (4.27)

We vary bandwidth say b = 0.03 to 1 and obtain the MISE in each case. It is worth

noting that the optimal bandwidth b∗ used in our experiment is the one with minimum

MISE. This bandwidth also gives the maximum possible probability of detection of wa-

termark in our experiment.

Semiparametric Estimation Algorithm

The following algorithm is the procedure of estimating our semiparametric model called

the modified weighted kernel estimator.

1. Generate domain set x under Hi, i ∈ {0, 1}, put data together to get xi, i = 1, ..., N ,

choose a kernel function say Gaussian and finally the bandwidth b.

2. Estimate the parametric part as r(xi|θ̂) and weight function U∗i (.)

3. For each xi, evaluate the kernels at x

Ki = K

(
x− xi
b

)
, i = 1, ..., N (4.28)
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4. Normalize each kernel by 1
b

5. Finally for each x, obtain the average of modified weighted kernel using the weight

function U∗i (.)

4.1.4 Likelihood Ratio Test for Semiparametric Model

Having estimated correctly the shape of distributions under each hypothesis as defined

in (4.21) and (4.22), the next step is to obtain the likelihood ratio test (LRT) or test

statistics denoted as DN and use it to determine the presence or absence of watermark.

We regard DN also as semiparametric based detector written as

DN =
f̂(x)

ĝ(x)
. (4.29)

To detect watermark, we simply apply any of the detection criteria such as Bayes or

Neyman-Pearson (NP) as described in chapter 2. When NP criterion is applied, the

threshold is again obtained by

γα = min {γ : P (DN > γ|H0) ≤ α} . (4.30)

Therefore, we detect presence of watermark when DN > γα and absence of watermark is

obtained when DN < γα

Cross Validation Algorithm for Semiparametric LRT

The proper evaluation of test statistics DN for this estimator is very crucial for detector

based on semiparametric model. A good DN requires using different set of data to build

DN and another set to test it. Cross-validation is very effective method to partition data

into two sets called k training data and N − k testing data [12]. The training set is

denoted NTrain and testing set denoted as NTest, such that NTrain + NTest = N . Two

test statistics are required to evaluate the efficiency of the proposed detector, one for

non-watermark data denoted as (DN |H0) used to obtain the threshold γα given α and

another for watermarked data given as (DN |H1). The computational algorithm for LRT

is given below

Algorithm

1. Given observations xi v H0, i = 1, .., N select a value for k
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2. Leave out k points from xi v H0 to obtain the test data set NT est

3. Use the remaining N − k data to get the semiparametric estimators ĝ(x) and f̂(x)

4. For each of k point test data, evaluate the test statistics as

DN |H0 =
f̂(x)

ĝ(x)
. (4.31)

5. Repeat step 2 through 4 focusing on data under H0

6. Similarly, by now focusing on data under xi v H1, steps 2 through 5 will be

repeated so that we get test statistics as

DN |H1 =
f̂(x)

ĝ(x)
. (4.32)

Before proceeding to simulation results, we shall state briefly the method of applica-

tion of semiparamteric based watermark detector in commonly watermark embedding

approaches already existed. Two most common watermark embedding approaches are

one-bit watermarking via two pseudonoise sequences (PNS) and one-bit watermarking

via one PNS [4]. For host features where a single bit watermark m ∈ {0, 1} is embedded

using two PNS’s, we generate the watermark message as follow

Wm =

W0, if m = 0

W1, if m = 1,
(4.33)

where W0 = W0[1], ...,W0[K], and W1 = W1[1], ...,W1[K], for Wj[i] v (N)(µw, σ
2
w), j =

0, 1; i = 1, ..., K

The semiparametric detector in this case is applied as usual and the presence of water-

mark is checked by considering

m̂ =


0, if DN(W0) > γα

1, if DN(W1) > γα

None, if max {DN(W0), DN(W1)} < γα

(4.34)

is satisfied.
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On the other hand for host features where only one PNS is generated to represent the

watermark, we have the embedding process as

Wm =

−W0, if m = 0

W0, if m = 1,
(4.35)

where W0 = W0[1], ...,W0[K]. Then the watermark detection process is

m̂ =


0, if DN(W0) < −γα
1, if DN(W0) > γα

None, if |DN(W0)| ≤ γα.

(4.36)

4.2 Simulation Studies

To understand the effect of the proposed semiparametric detector on the watermark ap-

plications, we investigate the advantages of this detector via simulations. We first use

semiparametric estimation algorithm described in Section 4.3 to obtain individual den-

sities coming from both sources under H0 and H1. The effect of bandwidth selection on

the estimator is investigated in Section 4.2.1 and in Section 4.2.2, we explore the per-

formance detection measure for this detector by obtaining the probability of watermark

detection while varying the sample size of data.

4.2.1 Estimation Error vs Kernel Bandwidth

The artificial data used for simulation are f(x) v 0.5N (2, 1) + 0.5N (4, 1) and g(x) v

0.5NN(2, 0.5) + 0.5N (4, 0.5). We recall that estimating the received data accurately

requires choosing a near optimal value of bandwidth parameter b. This bandwidth in our

case is the one that maximizes the probability of detection as well as minimizing the MISE

of the estimated data. To do this, we vary the bandwidth arbitrary from b = 0 to b = 1

and choose the bandwidth which gives the minimum MISE or maximum power of the

test. We run simulations for MISE by repeating the number of trials N = 1000 times and

then taking the average of the error as described in Section 4.2. To compare our proposed

semiparametric estimator fairly with a nonparametric estimator, we run simulations on
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same data in both cases. We know that applying a fully nonparametric estimator on these

data ignores the fact that both data f(x) and g(x) are linked. This can actually affect the

detection performance as we shall see. Figure 4.2 shows the estimation error of density

ratios (LRT) for both semiparametric and nonparametric estimators. We clearly see

that nonparametric estimator always yield higher error than semiparametric estimator

for any bandwidth chosen. This is simply due to prior knowledge of relationships between

watermarked and non-watermark data which is clearly observed in the semiparametric

estimation. Second observation is that the bandwidth which maximizes our power of test

is at b∗ = 0.21 with minimum error 0.0037. This bandwidth b∗ is close to the Silvermans

rule bandwidth which for this case is b = 0.3 with error 0.0086. The conclusion is that

the range of bandwidth necessary for obtaining high power of the test for these data set

is from b = 0.03 to b = 0.3.

Figure 4.2: Estimation error in semiparametric and nonparametric estimators with

varying kernel bandwidth.

We recall that semiparametric detector has the advantage of getting the density ratio

directly as well as individual densities under the hypotheses H0 and H1. We display these

estimated densities for the two most common errors encountered in watermark detection

metric called type 1 error (false alarm probability) and type 2 error (miss detection

probability). In Figure 4.3 , we can see that for type 1 error, the individual densities



Semiparametric Based Watermark Detector 64

under H0 in (a) and H1 in (b) can be captured with high accuracy by the semiparametric

model. Similarly, in Figure 4.4 below, the densities for type 2 error under H0 in (a) and

H1 in (b) are displayed, and we clearly see that our semiparametric model almost captures

the characteristics shape perfectly.

Figure 4.3: Individual densities of true model and semiparametric estimated model for

type 1 error. (a)Densities under H0. (b)Densities under H1.

Next, we display the corresponding density ratios used to obtain the estimation errors

described previously. In this regard, since it is important to obtain the density ratios

both when watermark is present and when it is absent, we display these density ratios as

seen in figure 4.5. Clearly, our estimated ratio is very close to the true model and hence

can be used as likelihood ratio test during watermark detection.
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Figure 4.4: Individual densities of true model and semiparametric estimated model for

type 2 error. (a) Densities under H0. (b) Densities under H1.

Figure 4.5: Density ratios of true model and semiparametric estimated model .

(a)Density ratio for type 1 error. (b)Density ratio for type 2 error.
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4.2.2 Model Misspecification vs Sample Size

Having obtained individual densities and density ratios for semiparametric detector, the

next task is to detect the presence or absence of watermark in a received data. Different

detection measures such as probability of detection versus sample size and probability of

detection versus probability of false alarm (ROC) can be applied. In model misspecifica-

tion case, we try to fix the threshold by setting significance level α = 0.05 and then use

Monte Carlo simulation approach to obtain the critical threshold γα = 1.95. this result

is plotted in figure 4.6.

Figure 4.6: Critical threshold selection significant level α = 0.05.

To understand how semiparametric model works as sample size increases, we conduct

two sets of experiments. First, we assume perfect knowledge of the original data and

assume that actual individual densities are unimodal Gaussian given as f(x) v N (1, 1)

and g(x) v N (1, 0.5). For this case we applied parametric logistic model with dimen-

sion d = 2, semiparametric model and classical kernel density function (KDE). Secondly,

we assume that individual densities are multimodal densities such as Gaussian mixture

models given as f(x) v 0.5N (1, 2) + 0.5N (4, 2) and g(x) v 0.5N (1, 0.5) + 0.5N (4, 0.5).

Also we applied parametric logistic model with dimension d = 2, semiparametric model

and classical KDE. A Monte Carlo realization of M = 1000 is applied to each sample

size N = 20 to 1000 with step size 20 and averaged to obtain detection probability of wa-

termark. We plot in Figure 4.7 the probability of detection versus sample size when the
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actual distribution of data is Gaussian distributed in (a) and when it is Gaussian mixture

model (b).We know that the optimal detection model for the case in (a) is linear correla-

tion or logistic model with optimal dimension d = 2, we see that linear correlation has the

highest detection probability and our semiparametric based detector is very close to the

linear correlation, but obviously kernel based detector perform poorly as expected. The

semiparametric detector performs reasonably well because it incorporates the paramet-

ric inference properties as well as nonparametric inference especially for smaller sample

sizes where fully nonparametric detector suffers. The second part of experiment plotted

in Figure 4.7 (b) shows that semiparametric based detector outperforms both paramet-

ric and nonparametric detectors. As expected the linear correlation detector performs

poorly since the underlying data is not Gaussian distributed. The interesting observation

is that semiparametric detector outperforms the fully nonparametric detector for smaller

sample size. Again this is the due to the compromise semiparametric model brings, and

also it exploit the fact that both data under H0 and H1 are combined during estimation

which is not the case in nonparametric inference.

Figure 4.7: Model misspecification: probability of detection versus sample size

.(a)Gaussian distributed features. (b)Gaussian mixture model distributed features.
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4.3 Conclusion

In this Chapter, we have examined the semiparametric based watermark detection. One

of the advantages of this detector is that it gives the density ratio directly as well as

individual densities coming from both sources under H0 and H1. The hybrid nature of

this semiparametric model is very important for watermark applications where the prior

knowledge relationship between data under H0 and H1 are not known. The efficiency of

this model totally depends on optimal weight function. If the prior knowledge of data is

known, semiparametric detector works optimally, but if prior knowledge is not known,

semiparametric model reduces to worst case nonparametric based detector. In Section

4.2.1, we have seen that the bandwidth kernel for this model is very close to normal

reference rule. We have also seen that applying classical kernel density estimation when

data under H0 and H1 are connected yields higher MISE error in nonparametric infer-

ence than semiparametric model. Both individual densitites and density ratios estimated

using this model are very close to the true density of the original data.

A very important conclusion is that semiparametric based detector can work as well

as linear correlation detector when the actual density of the received data is Gaussian

distributed. When the true density is far from Gaussian distribution, semiparametric

based detector outperforms linear correlation detector as seen in simulation studies. An-

other important advantage of this model over parametric inference described in Chapter

3 is its adaptive nature to fully nonparametric model when data are not connected. For

instance, if an attack modified the distribution of watermarked data completely from

nonwatermark data, semiparametric inference will still detect optimally which is difficult

for parametric inference. This is robustness property of semiparametric based detector.
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Appendices

A.1 Derivation of (2.32)

Let X and W be independent random variables, then the variance of product of two

random variables is derived as

Var(XW ) = E(X2W 2)− E2(XW )

= E(X2)E(W 2)− E2(X)E2(W )

= (E(X2)− E2(X)︸ ︷︷ ︸
=Var(X)

+E2(X))(E(W 2)− E2(W )︸ ︷︷ ︸
=Var(W )

+E2(W ))− E2(X)E2(W )

= Var(X)Var(W ) + Var(X)E2(W ) + Var(W )E2(X)

.

(A.1)

If E(X) = E(W ) = 0, then

Var(XW ) = Var(X)Var(W ) (A.2)

A.2 Derivation of (2.35)

The assumption is that U and W are linearly correlated by U = γW , and both signal

parameters are independent onX. Again following the method of calculating the variance

of product of two random variables we have

Var(Y U) = Var(XU + αUW )

= Var(XU) + α2Var(UW ) + 2αCov(XU,UW ).
. (A.3)

69
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Starting with the last term on the right hand side in (A.3), the covariance can be derived

as
Cov(XU,UW ) = E(XWU2)− E(XU)E(WU)

= E(X)E(WU2)− E(X)E(U)E(UW )

= E(X)(E(WU2)− E(U)E(U))︸ ︷︷ ︸
=Cov(UW,U)

= E(X)Cov(UW,U).

. (A.4)

Using the fact that U = γW , we can derive the covariance in (A.4) as follow

Cov(U,UW ) = Cov(γW, γW 2)

= γ2Cov(W,W 2)

= γ2(E(W 3)− E(W )E(W 2)).

. (A.5)

Finally, the last derivation is the second term of (A.3) which is the variance of the

correlated random variables U and W ,

Var(UW ) = Var(γW 2)

= γ2Var(W 2)

= γ2E(W 4)− E2(W 2).

. (A.6)

Substituting (A.5) into (A.4), then (A.4) and (A.6) into (A.3) yields the variance of

(2.35) as

σ2
L1 = Var(X)Var(U)

+ E2(U)Var(X) + E2(X)Var(U)

+ α2E(W 4)− E2(W 2)

+ 2αE(X)α2(E(W 3)− E(W )E(W )2)

(A.7)
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