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Abst rac t

À new finite element is formulated for cables which enables

a truly three dimensional approach to be adopted for the
dynamic analysis of any lattice transmission or communica-

tion tower. The generarization, unlike previous proposals,
can conveniently accommodate towers with significant geome-

trical comprexities and asymmetry stemming from torque
frames and antennae. Furthermore, interactions between the
guys and mast of a guyed tower can be investigated readily.
The free vibrations of two different towers have been ana-
lyzed and the generalization is shown to be accurate and

versatile" rt arso enabres the recorded galloping motion of
the final, most complex tower exampre to be examined curso-
rily from a modal perspective.
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Chapter '1

INTRODUCTION

Electrical transmission and multi-1eve1 guyed communica-

tion towers form important liferines in modern society. How-

ever these structures can be subjected to severe dynarnic

loads from unbalanced tensions, 9a11oping of iced cables,
impact due to a broken cabre, extreme winds, and earth-
quakes. For example, there have been ice storms forrowed by

prolonged uni-directional winds in the canadian prairie
provinces, and Manitoba in particurar, which have produced

galJ-oping of guy wires" In 1983, heavy freezing rain com-

bined with moderate wind speeds led to the complete corlapse
of at least eight transmission and communication towers

incruding a 410-meter ( 1350-foot ) Tv-tower. The total ross

was estimated to be more than 5 milrion dollars. Therefore,
a realistic assessment of the dynamic characteristics of
these structures is required to
fai lure.

prevent their damage or

The present study examines methods of obLaining the free
vibrationò of comprex guyed towers with the eventual aim of
assessing galloping. The galloping phenomenon involves 1ow

0.1 to 3 Hz frequencies and rarge ( typicatly 5 to 300 mul-

tiples of the conductor's diameter ) ampritude, self-excited
oscillations of transmission lines in a direction which is

1-



t.ransverse to that of a steady, usually 6 to ZS m/s wind

t5]. rt is caused by asymmetry in a conductor's cross-sec-
tion due eiLher to ice accretion, which may be as t.hin as j
mm or quite short in length for the initiation of vibrations
[5], or stranding of the conductor cabre itself. Den Hartog

t9l has given the classical criterion for aerodynamic insta-
bility. However, Cheers l4l, Chadha [3], Simpson l21l and

Nigol and Buchan t18l have suggested that the additional
influence of the twisting of a conductor may be significant
too" Although the galloping phenomenon is werr documented

on iced transmission lines, comparatively rittle attention
has been paid to guyed towers. On the other hand, Novak et
ar [19] have shown that the galloping of guys can lead to
stresses high enough to impair the safety of a guyed tower.
Also, in a recent study by Tinkler et al 123), it has been

suggested that an ice formation with a distinct longitudinal
ridge courd cause aerodynamically excited garroping of guys

whereas one which has ridges or lumps distributed around

part of the circumterence and arong the rength shourd be

stable "

significant coupling was observed between the guy and

tower rnotions on the most well-documented occasion in Mani-

toba which Led to a serious misarignment of the communica-

tion tower's antennae dishes and a loss of signar for an

extended period. The vibration was comprex, invorving murti-
ple-loop oscilration of the guys, concomitant with a damag-

2-



ing frexure of the mast" Therefore, the excited modes were

much higher than the fundamental so that a detailed dynamic

analysis was undertaken with the aim of determining, urti-
mately, the types of modes which are most easily excited.
However, the existing approximate method of Novak et ar [19]

,even ç.'ith the l-ater ref inements of Mccaffrey [16] and Tuomo

Karna [1 3] , v¡as inadequate. SpecificaIly, these procedures

cannot handle practical comprexities stemming from offset or

non-symmetrically praced antennae dishes. Furthermore, a

sloping ground, arbitrary loads and torque frames, which may

be used to connect the guys to the tower, invariably present

difficurties. Instead, therefore, a somewhat generalized

finite element argorithm was developed whose essentiar new

feature is a cabre element which can handle 3-dimensional

transverse vibrations. Mast segments were modelred as equiv-
arent beams to simplify input data and reduce the size of

the globar stiffness matrix. Àn anarytical solution for a

guyed mast was also formulated by incorporating the dynamic

stiffness of a simple wire developed, in a closed form, by

Veletsos and Darbre l24l . These theoretical expressions are

fairly sirnilar to those developed by Irvine L12l but they

can also âccommodate guys having large inclinations to the

horizontal. The last solution provides a useful check on

the finite element method but it is valid only for simple

symmetrical towers "
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The accuracy and computational efficiency of the present
finite element approach, which is termed "generarized,, for
convenience, will be demonstrated by using two practical
towers having progressively more complex geometries. FirsL,
a multi-leveI guyed tower from wisconsin wirl be considered.
This tower has been analyzed previously by Mccaffrey and
Hartmann L17l who used a mode summation technique. rt is
symmetricar so that a further check can be made by utilizing
the analytical technique. Then, a multi-1eve1 guyed micro-
wave tor'¡er, the Manitoba Telephone system ( urs ) tower
located in the Manitoba province of canada, will be assessed
because it. has several offset microwave dishes and torque
frames" This tower can be handled only by using the gener-
alized finite element procedure.

4
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Chapter 2

ANÀLYTICAL METHOD

I nt roduc t i on

Àn anarytical method vri1l be developed in the present
chapter to study the free vibrations of a guyed tower with a

uniform mast. Equations of motion wirl be derived for the
tower's mast and the guys r with both components treated as

continuous systems. Thus, modetring shourd be more accurate
than a comparable finite element idealization with reduced
degrees of freedom. However, it will be shown that there
are computational difficulties associated with the analyt-
icar procedure. rt is essentially less efficient than a

finite element technique. Therefore, onry simple towers can
be anaryzed conveniently" Nevertheress, the usefulness of
the analytical technique arises from the fact that the
results obtained from approximate methods can be compared

and verified for problems of simple geometries like symme-

trical towers.

Modell-ing of the tower, by

nique, wilI be described next.

using the analytical tech-
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aaz"¿ Modellinq the tower

À two-level guyed tower and its equivar-ent moder are

shown in Figure-2.1a and b. consider the case of undamped

transverse vibrations. The tower's mast is assumed to be a

beam while the guy cables are represented by horizontal fre-
quency-dependent springs each with sti f f ness Ks.a . The Ksa

depends on the circular frequency, (,), of. the transverse
vibrations. The actuar expression for Ifoaisquite complicat-
ed and it is included more conveniently in section 2.2.2.
However, to erucidate the spring's behaviour, consider the

horizontar stiffness of the simpre oscilrator shown in Fig-
ure 2.2. It can be seen that the undamped dynamic stiffness
is a vector sum of a spring force and an inertiar force,
both which arise from a unit dispracement from the oscilla-
tor's static equilibrium position. The frequency dependence

of K¿ stems from the inertial force.

The dynamic behaviour of a mast and guys wiII be dis-
cussed in the next two sections. The major results derived

in these two sections wirl be incorporated in the third sec-

tion which examines the guyed tower as a whole.

1 The mast

A uniform mast, with constant maLerial properties along

its length, can be considered reasonabry as a beam which,

due to its self-weight and guy tensions, is subjected to a

.).)
LôL
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compressive axial load. However, it is necessary to subdi-
vide the mast into more than one segment in order to consid-
er the concentrated axial loads arising at each guy lever.
For example, the 2-level guyed mast shown in Figure 2,1a is
dívided into three elements. The axial road (due to the

serf-weight of the mast ) varies along the mast's renglh.
However, it is taken to be constant for each erement in
order to reduce the complexity of the equations of motion.
This is a reasonable approximation providing a sufficient
number of elements is taken on the mast. Note that the

idealization is not the same as that in a finite erement

formuration because each subdivided mast element still
remains a continuous system with an infinite number of
degrees-of-freedorn.

As the mast is considered to consist of uniform beam ele-
ments, cqnsider a uniform beam eLement acted upon by a com-

pressive load, P (nigure 2"3)" The end shear forces, er and

Q.z, and corresponding moments, M1 and Mz, can be expressed

in terms of the end displacements, V1 and yz¡ and rotations,
Qr and Oz (figure 2.4), as follows

kroQr

M1 kzz kzs kz¿

symmetric ks s

kr r
t.t\l2 krs v1

Qr

(2.1a)

ks +

k¿+_

V2

-7
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or, in abbreviated form,

{r} = lK¡al{ui (2.1b)

The k

ments of 4x4 elemental- dynamic flexural sti ffness matrix,
Ku¿ The deLaired steps leading from the equation of motion

to the precise derivation of K¡a are included in Appendix À.

rt is found that the elements of K¡a involve trigonometric
and hyperboric functions of the circular frequency e. It
will be shown later, therefore, that an exact anarytical
solution is very difficuLt to obtain. Hence, a numericar

procedure will be adopted to compute the natural freguen-
cies, In order to analyze the guyed tower as a whole, the

sLiffness matrices, K66are computed for each element of the

mast. These eremental matrices are then assembled after
including the guy stiffness at each leve1.

The quv cable

The guys affect the mast's vibrations in two ways. They
'1 " provide rateral st i f f ness at the point of attachment.

Lo the mast due to the horizontal component of their
stiffness; and

2" increase the compressive axial road on the mast due

to the vertical cornponents of the tensions.

ij

a

, irj = 1 to 4, in equation (2"1a) are the ele-

z"z.z
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Figure 2"5 illust.rates the forces acting on the mast due

to an inclined guy cable attached at point p. The Fsr and Fu"

shown are the horizontar and vertical components of the ten-
sionr F€spectively. In most practical cases, the guys are
arranged uniformry at a particurar leve1, about the centre
of the mast r so that the algebraic sum of their correspond-
ing Fìrrval-ues vanishes. The other three forces, i.e., Fv, Fnr

and F*o, arise due to the horizontar displacement of node p.

They can be expressed as

Fv = KvAy (2 "2)

(2 "3)

(2"4)

where ax, ay and az are the dispracements of p along the x,
y and z ð'írections, respectively" Furthermore, the Kr , Kv

and K6 are the dynamic stiffnesses of the guy cabre in the
corresponding x, y and z directions. The K1 are in the
prane of the mast and the guy so that they are carled the
in-plane horizontal stiffnesses. The Ke r on the other hand,

are normal to this plane so that they are terrned out-of-
prane horizontal stiffnesses. These latter stiffnesses may

be derived by considering the case where the upper end, p,

of the guy in Figure 2.s is subjected to a harmonicarry var-
ying horizontal dispracement. The expressions for Ki and Ko

are given by Veletsos and Darbre lZ4) as :

FHr = Kr Ax

Fso = Ko Az

9-



( I + 1/Z 7o )2

( I + 12 tp/A2)

and

Ko = 6 cot(@) To/L

where

7 = Z/A tan( O/Z) 1

o = qrL/'Io tan(g)

(en/r,. ) cos2(e)

+ 4 cot(4) (r" /r) sin2(e) (2.5)

(2"6)

(2"7)

(2.8 )

K¡

1ÀEL

P = (gy r,/ro ) t (2 "9)
12 To Le

Le = f, { I + 1/A (qrl/To)2}

O = ø/uo

(2.10)

(2 " 11)

and

û)o= 1/f' ('to / P) 1 / 2

The description of symbols is as follows"

(2 " 12)

gy is the intensity of the normat self load per unit
chord length; L is the length of the chord! To is the axial

- 10



component of the guy tension, i.e., the component parallel
to the chord; A is the cross-sectional area of the guy; E is
the Youngs modulus of elasticity; 0 is the inclination of

the chord to the horizontal; p is bhe mass of the guy per

unit of chord length ) L" is the ef f ective guy J-ength; e is

the circular freguency of the actual motion; o)o is a refer-
ence circular frequency; 0 is the dimensionless frequency; p

is the relative stiffness parameter; and o is a dimension-

less parameter which gives a measure of sag.

Various limitations and approximations involved in

expressions (2"5) through (2.12) may be summarized as fol-
lows "

1"

2.

The expressions are valid only for an undamped case.

The material is assumed to be linearly elastic so

that it obeys Hooke's Law.

The guy cable is assumed to be deflected in a para-

bolic profile at its position of static equilibrium,
This latter approximation is reasonable for a cable

with a sag-to-span ratio of 1/8 or less [12] .

(Another approximation implicit in this assumption is
that the component of the load in the direction of

the chord due to the weight of the cable has negligi-
ble effect on the cable's profile and tension. In

practice, this last approxirnation is justified for

smaLl sags because the cable tension is much larger

than the weight of the cable.)

- 11



The displacement ampritude is presumed smarl so that
the cable's motion is considered Iinear.
The inertial forces in the longitudinal direction
(a1ong the chord) are negligible in comparison to
those in the transverse direction. This approximation

is reasonable for cables used as guys because the

ratio of the fundamental natural frequency of longi-
tudinar vibrations to that of lateral vibrations is
about 40 112) "

There is no coupling between the in-plane and out-of-
plane motions.

These assumptions and approxirnations wirl be discussed

further in chapters 4 and 5 where actual towers wirl be ana-

lyzed

The quved tower

consider next the free vibrations of a compréte guyed

tower undergoing bending. The analysis for rongitudinal and

torsional rnotions will be similar.

when the tower's masL is dispraced from its position of

stat.ic equiribrium, a restoring force tries to bring it
back. This restoring force arises from the flexurar rigidity
of the mast and the laterar dynamic stiffnesses, Ksd r of the

guys. The ttsa is obtained by the vector addition of the in-

4"

ç

6"

z"?.!



plane (xt ) and ouL-of-plane (Ko ) horizontal stiffnesses.
The latter depend on Lhe arrangement, at any particular rev-
€f, of the guys about the centre of the mast. For exampre,

if three or more (n

formly about the centre of the mast, the expression for Ksd

r,¡itI be 124)

Ksd= n/2 ( t<t a Ko ) (2"13)

Here, by assuming linearity, the resistance offered by

the guys at any particular revel wilr be proportional to Kea.

The Kqa is added to the corresponding flexural stiffness term

of the stiffness matrix of the mast. Therefore, by using
equations (2"1a) and (2"13), the assembled dynamic stiffness
matrix for the guyed tower of Figure 2"1a, including the

effect of the guys, is given by

Xr,1 krzl krsl kr¿1

lli,l
ll"lo'"1 

I 
"'l

o'-'ll"'l

;.1 ü
(2 " 14\

o,l

''l

.:l:

^,,1

9ol

,.j

kzzl kzsl kz+1

kssl ks¿'1
+Kgdz +
ktt2 ktz2

k¿+1
+

kzz2

symmet r ic

kts2 kta2

kzs2 kzq2

kss2 kz+2
+Ksd3 + kls3
k r r 3 k r z3

kt+2
+ kzs3

kzz3

13

kss3



Here the super sc r ipts on kijs

idealizing the tower mast.

denote the el-ement number

Now the external

Also, the tower's

fore equation (2"

krrl krzl krsl

kzzl kzsl

kssl
+Kqd2

ktt2

symmetric

force vector

base is fixed
14) simplif ies

kr¿1

vanishes for
so that V4 =

to

kt+2

free vibrations.
Q¿ - 0" There-

= {o} (2"15a)

V1

Orkz+1

ks¿1
+

ktz2
k¿¿1

+
kzz2

krs2

kzs2

kss2
+Ksd3

kr r3

V2

Qzkzq

ks¿

kr z

k¿ ¿

kzz

,l
2l
*l
3l
2l
+l
3l

V3

Os

or, alternatively,

Ixol{u1 = o (2"15b)

through (2"12) andAs seen already ( equations(2.5)

Àppendix À), both the guys' stiffnesses as werr as the

mastrs stiffness contain terms which are trigonometric and

hyperbor iç funct ions of the natural freguency. Therefore,
equation (2.15b) is, by definition, a set of homogeneous

transcendentar equations. For a non-trivial solution

det I xoJ = 0

14

(2 " 16)
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The rooLs, e) , í=1, 2, - - o¿ , of the last equation

must be obtained numericalJ-y because a general method of

sol-ut ion exi sts onJ-y in the case of porynomial-f orm equat ion

wi th the degree of polynomiar l-ess than f ive. Hence, a com-

puter program was deveroped by using an rncremental search

Method, to compute the natural frequencies and the corre-
sponding mode shapes.

Discussion of numerical efficiencv

À detailed numerical study of the analytical method dis-
cussed in this chapter revealed the following advantages.

1. By using the Incremental Search Method, the natural
frequencies and corresponding mode shapes can be com-

puted within any frequency range. This is particu-
Iarly useful to check for the natural frequencies of

the tower which lie in a given frequency band of an

external forcing function like that of a wind"

2" The dynamic stiffness matrix, Kd , is symmetric and

most of the off-diagonal elements are zero as indi-
cated in Figure 2.6. Hence, a semi-bandwidth storage

mode can be adopted which requires only 4n el_ements

lo-be stored for a nxn matrix" The 4n should be com-

pared to n2 in a full storage mode and n(n+1)/2 in a

half storage mode. In a practical case when n >> 1, 4n

( { n(n+1)/2 or n2 } so that a signif icant saving can

be achieved in computer storage by using semi-band-

r+idth storage mode.
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Savings in storage lead to the possibility of analyz-
ing a multi-level guyed tower with relat.ively l_ess

difficulty than in the case of an approximate method.

For example, in the case of a five-level guyed tower

with three guys at each leveI, the síze of the stiff-
ness matrix in the analytical method wilI be 12x12.

On the other hand, by using the finite element formu-

lation with ten elements taken on the mast with four
degrees-of-freedom assigned to each node and 1Z ele-
ments on each guy with three degrees-of-freedom to

each guy node, the size of the stiffness matrix wiII
be 531x531.

However, the anarytical method has the forlowing short-
comi ngs .

1. The solution procedure for computing the natural fre-
guencies may not reveal all the natural frequencies.

This probl-em is best illustrated by considering the

plotof K6asa functionof. circular frequency¡ ú)y

shown in Figure 2"7 The actual root and the discon-

tinuity lie very close together because the curve

becomes almost vertical at the point of discontinu-
ity. Hence, there is a high possibility of missing a

?

2"

root.

The dynamic stif
ular level, are

dynamic flexural

fnesses of all the guys, at a partic-
first lumped and then added to the

sliffness matrix of the mast. There-

- 16



3.

fore, the separate mode shapes of the guys at a par-
ticular leve] cannot be computed easily.
It is not feasibre to develop partial differential
equations of motion which can take into consideration
arbitrarily spaced guys, cross-arms, torgue frames.

Hence, the analytical method is applicable to only
towers which have a simple geometry.

17



3_.1_

Chapter 3

NUMERICÀL METHODS

ïntroduction

This chapter reviev¡s several numericar technigues which
avoid the difficulty of a frequency dependent stiffness
matrix" However, many of these numerical techniques suffer
from some over simprification in the modelling of the mast
or guys. The chapter concludes with a description of a gen-
erarized 3-dimensional finite element technique which lras

developed in this thesis. The generarized method incorpo-
rates a nev¡ finite erement for the cabre and it is demon_

strated to be an accurate and convenient method for the free
vibration analysis of a guyed tower.

severar numerical methods for the dynamic anarysis of the
guyed tower have been emproyed in the past. rn 1966, Hart-
mann and Davenport t10l suggested a mode summation technique
in which the dispracements of the mast and guys were repre-
sented by a summation of generarized time coordinates murti-
plied by assumed mode shapes. The equations of motion for
the guy were derived by using a Newtonian method whirst the
mast equations þrere deveroped using by Lagrange's technique.
the resulting two sets of coupled equations Ì{ere written in
a matrix form in which the generalized time coordinates for
the guys and t.he mast formed the vector of unknowns. The

equations couLd be solved for the free vibration case to

- 18



obtain the nat,ural frequencies and corresponding mode shapes

for the guy-mast system. À limitation in this study r{as that
onry the lowest frequency in-prane mode of each guy was con-
sidered" However, it, has been observed that the l_owest natu-
rar frequency of a guy of a tarr mast is typicalry in the
range of 0.2 to 0"6 Hz whire the galloping vibrations gener-
ally occur in the range of 0.2 to 3 Hz t131. Hence, many

vibration modes of the guys may be needed to account for the
interaction between the mast and the guys. A1so, usually
more than five guy modes are needed to investigate the gar-
roping phenomenon t 1 3l " However, Davenport's t6l moder may

suffice in case of gusty wind whose spectrum is confined to
the row frequency region. In 1972, Mccaffrey and Hartmann

l17l presented a paper on the dynamics of guyed towers.
Their method was simirar to that developed by Hartmann and

Davenport [10] but was more general as it courd arso incrude
non-symmetricity in mass and stiffness matrices. The method

v¡as applied to a five-level guyed tower. Further, a more

accurate catenary guy model was compared with the much sim-
pler paraboric approximation and it was observed that these
two guy models predicted natural frequencies which differed
by as much as 4%. Àlso, as most of the rower frequencies
were due to guys it was found to be necessary to consider
guy modes higher than the fundamentar. The mast's mode

shapes !¡ere assurned to be those of a f reely vibrating uni-
form cantilever of constant flexural rigidity ( gr ).

-19



Essentially, these rnode shapes are over simprified since
concentrated forces occur at the guy attachment poinLs and

the mast may be non-uniform. Hence, an exact defrection
curve cannot be achieved even in an infinite summation.

In a mode summation technique, the number of mast and guy

modes which needs to be considered generarly depends upon

the rate of convergence whire computing the natural frequen-
cies and Lhe mode shapes. rn addition, higher guy modes

might be important from the point of view of guy-mast inter-
action or galloping of cables.

In 1981, Wright t25l reported on severat simple tower
dynamic analysis methods in which the guy was considered as

a massless taut wire" Thus, the inertiar force due to the
guy r.ras negrected which predicted the tor{er f requenc ies
those were higher than the exact values. Nevertheless,
these simprer methods give resurts which might be useful in
preliminary design anarysis. rn 1994, Tuomo Karna t13j pro-
posed a method where the mast was described by sirnplified
lumped masses and the undamped in-plane mode shapes of the
guys were used as Ritz shape functions. The resulting egua-
tions r¡ere solved in the f requency domain.

In the present work a generarized 3-dimensionar technique
is proposed" The next section describes the moderling of
the different components constituting the guyed towers.
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3"2"1

3"2 ModeI I i nq

The universal features of the distinct components of
mastr guys, cross-arms and torque frames which may comprise
different transmission and communication t,owers will be out-
lined next" Àssumptions used to formulate their dynamic
properties by using the finite element procedure wirl be

summarized first. Then, further simprifications to justify
the mode summation or analytical procedures wilr be high-
lighted. Rerative difficurties arising from the necessarily
different numericar solutions of the resulting equations of
motion will be indicated.

The Mast

À mast can be reasonably considered to consist of beam

elements, each having a uniform weight distribution Lzz)" Àn

individual beam wirl be assumed to possess the now standard
three rotational and three translational degrees-of-freedom
at each end" The resurting conventional 1zx1z consistent
mass and stiffness matrices can be found in reference t20l.
However, the former matrix wirr be diagonalized in the most

complex tower example by lumping masses equalry at the ends

to alleviate the then excessive computat.ions. The moment of
inertia r, needed to compute the flexural rigidity er, of a

lattice mast segment corresponds reasonably to the inertia
of. its cross-section L221" Illustrative procedures for tri-
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3 "2.2

angular cross-secLions are presented in Àppendix B" How_

ever' the basic stiffness matrix does not include the com_
pressive loads due to a cabre's tension, the weight of high-
er elevation erements and the self-weight of the erement
itself. such roads can be incorporated straightforwardly
into the basic stiffness matrix by emproying the standard
geomeLric stiffness matrix described, for example, in refer_
ence [15] This procedure ]¡as folrowed selectivery in gen-
erating new results.

Guy Cables

The new cabre erement has the typical geometry shown in
Figure 3"1b where a node has the three degrees-of-freedom u,
v and w. Now u and v are the displacements in the longitudi-
nal and transverse directions which are, respectively, arong
and perpendicurar to the chord, whi lst r¡, i s the di splacement
out of the prane of sag. Thus, this cabre element can rep-
resent a three dimensionar motion. Detairs of the final
element stiffness matrix are given more conveniently in
Àppendix B. The formuration r.Ias verified by correrating
result s w^i th the known f ree vibrations of a single inclined
cabre and it wirl be shown in section 3.2.2.1 that g to 16

erements provide a reasonable representation of a single
cable. rt should be noted that the same assumptions made

for the guy analysis in the analyticar approach also appty
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here. Hoþrever, the effect of the longitudinar inertia can be

investigated in the present moderring by including the cor-
responding terms in the mass matrix. The finite el_ement

resurts for the cable wirr be compared with theoretical
solutions outlined in the next section.

3"2"2"1 Theoretical studies

There have been several studies 16 r7 ,g r1Z r14,24] which
have developed an expression for the dynamic stiffness of an

inclined cable subjected to a prescribed harmonic displace-
ment at the upper end while the bottom end is fixed. rn
1947, Kolousek Ita1 gave a series solution for a uniform,
undamped cabre deflected in a parabolic profile at its posi_
tion of static equiribrium. Davenport t6l in 1959 pubrished
a paper which condensed Kolousek's series sorution to a

closed form" In 1961, Dean [B] gave an expression for the
dynamic guy modulus by using a caÈenary profile. However, he

negrected the elastic stretch of the cable. Later in 1965,

Davenport and steels t7] generalized Kolousek's series sol_u-

tion to include the effect of a uniform external damping.

McCaffrey- and Hartmann 117l in 1970 presented approximate
series sorution for an undamped cable whose static deflec-
tion was a catenary. In 1978, Irvine l12l gave a solution
for undamped parabolic cable which was essentiarry identical
to that of Davenport " Recentry, in 1 993, veletsos and Darbre

L24) presented a closed*form solution for damped cables.
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Figures 3.2a to c show the in-plane horizontar dynamic

stiffness, K, , âs a function of the circular freguency, o),

for an undamped inclined guy cable. The three different mod-

els of Davenport [6], Irvine 1121, and Veletsos lZ4) are
given. lt can be seen that. arr the curves correspond at a'l =

0 to the static case with a positive dynamic stiffness. This
indicates that the cable force opposes the mast's disprace-
ment. However, with increasing freguency, the stiffness
decreases to zero and ultimatery becomes negative. The neg-

ative stiffness indicates that the cabre force, instead of
providing support to the mast, acts in phase with the mast's
motion. The stiffness asymptoticarly approaches minus infin*
ity which is a point of discontinuity. It restarts at plus
infinity and follows the same trend with further increases
in frequency 

" À zero dynamic stiffness corresponds to a

natural frequency of the guy cabre whose ends are fixed-
free. Àn infinite stiffness, conversery, corresponds to a

natural frequency for the case of fixed-fixed ends. In the
latter case there are two modes of vibration which are sym-

metric and antisymmetric. rn the case of an antisymmetric
moder Do overall additionar tension is induced in the cabre

at its enàs. À symmetric mode, on the other hand, generates

an overall additional tension. It shourd be noted, however,

that an antis¡immetric distribution of additional tension is
possible so that the overall additional tension is zeto.
Irvine l12l has compared the peak additional tensions.on the
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basis of identical amplit

symmetric and symmetric

f irst antisymmetric and f.

deep profile, the ratio
be about 20%

udes of vibration in both the anti-
in-plane modes. On comparing the

irsl symmetric modes for a cable of

of additional tensions is found to

Comparing the three models of dynamic stiffness , it can

be noted that both rrvine and Davenport have not included

the ant-isyrnmetric mode" Figure 3"2d shows a plot of the

out-of-pIane dynamic stiffness Ko as a function of a). In

this case the naturar frequencies for the fixed-fixed case

are same as those of a taut cable.

Figures 3.3a to d show plots of the in-plane dynamic

stiffness obtained from the finite erement approach. Às the

number of elements is increased from six to sixteen, the

naturar frequencies approach those predicted by veretsos.

Using a 16-element model, the maximum discrepancy in the

first six natural frequencies is found to be l-ess than 4%

l"?"1 Cross-Arms and Torgue Frames

Guys are often attached to a mast by triangular cross-

arms called torque frames in order to increase the tower's

torsional stiffness. A typical torque frame is shown in
Figure 3.4a where it can be seen that a frame normally con-

sists of non-symmetrical, short lattice members. The shear

deformations of these frames cannot be ignored because they

are not "slender" l22l. Hence, unlike the mast, the frame
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cannot be modelled as a series of beams. Nevertheress, its
mass and stiffness matrices can be derived by considering
plausibl-e motions at the ext,remities. The extremity con-

sisting of the four ( normalty close ) attachment points to
the mast can be assumed to remain.pranar j.n accordance with
the small vibration constraint of the overalr rinear theory.
consequently, the left vertical plane in Figure 3.4b will
undergo the three translations and three rotations irtus-
trated. The torque frame's right extremity is essentiarly a

point to i+hich the guys are atLached so that three transLa-
tions should suffice. Thus, a torque frame's motion can be

normally described largely by nine components at the two

extremities. The resurting 9x9 static stiffness matrix can

be computed by separately appl-ying unit forces and moments,

commensurate with the nine degrees of freedom, and noting
the ensuing movements. This procedure was performed by using

the readily available computer package SAPIV 12) for static
anaryses" The corresponding mass matrix vras formed by lump-

ing and proportioning the totar mass of the frame according
to the translational degrees-of-freedom.

3 "2.4 Microwave Dish

À microwave dish is normal

tion which protrudes from the

I t is treated, therefore,

ly a short, stiff conical sec-

mast of a communication tower.

in Àppendix B as a deadweight
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which is off-set from a finite element node of the mast by

means of a rigid horizontal member. Both the off-set,s
translation and rotation may profoundry affect a dish's
arignment which must remain within 1/zo of the original ori-
entation to preserve communications

Complete Tower1.?"2

The element mass a

ously can be selecte

t icular tower . They

give the equations of

--.l
[J^] - co2 [uJ-]

nd stiffness matrices developed

d appropriately for the form of

can be combined conventionally
motion in the eigenvalue form

prevl -

a par-

t1l to

{v'} = {ol (3.1)

f or a f reely vibrating tower. Matrices tnl and t¡,rl corre-
spond to the assembled global stiffness and mass matrices,
respectively; eigenvalue ¿¿ is the circular natural frequency

and iv'] is the corresponding eigenvector describing the rel-
ative motions of a given mode. Eigenvarues and eigenvectors
were computed by using eilher the subspace iteration proce-

dure t1l or the standard IMSL package lttl depending which

was more àdvantageous from the viewpoint of storage require-
ment and computational time" The subspace iteration incor-
porated a skyline technique t1l of storing the matrix system

in order to alleviate potential storage difficurties arising
from the usually large orderr or of the sparsely popurated

lnl and it'tl .
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3_.3_ Comparison with oLher aÞproaches

Rather than presume defl-ection fields within small finite
elements, Mccaffrey t16l assumed t.hat the whore mast and

each cornplete guy moved in a series of rnodes. Then the so

cal1ed "mode summation technique" pararlers somewhat the
finite element procedure but the final eigenvalue probrem's

order can be reduced by around 9s% ! The technique's accura-
cyr however, depends criticalry upon the preciseness of the

assumed modes" Mode shapes can be estimated reasonably a

priori whenr âs in the situation considered by Mccaffrey,
the mast is fairry uniform without compricating appendages

or asymmetriesr guys vibrate predominantly in one plane and

Lhe lowest frequency ( or most easily imagined ) modes domi-
nate. such conditions, however, rarely arise in practice.

rn contrast, the analytical procedure is essentiarry a

hybrid implementation of the generalized finite erement and

the mode summation strategies. À mast is treated as a series
of equivalent beams , *.hich are 

"ont 
inuous and un i f orm

between consecutive guy attachments, whereas each guy is
considered as a whore. rt can be seen that the finar dynam-

ic stiffnèss matrix, I na(c¿) ], does not have the separate
mass and stif f ness f orm of equation (3" 1). Indeed, I Ka (r..,) ]

contains transcendental functions of the circular frequeDCy,

e), which make the necessarily numerical solution more tedi-
ous" A straightforward incremental search was adopted to
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calculate the zeros of

ness matr ix , oet I K6 (o)

c ies. However , there i
ing a1J- the zeros with

incrementsofo¡(which
more computations ) may

the determinant of the dynamic stiff-
], and, hence, the naturaJ- frequen-

s no sophisticated means of determin-

certainty so that increasingly finer
, of course, involve proportionately
be needed.
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Chapter 4

WTMJ TOWER

I ntroduct ion

In the present chapter, the free vibrations.of a symme-

trical murti-level guyed tower rvill be studied by using the
generarized finite element technique. comparisons wirl be

made with the analyticar model and an earrier study by

McCaffrey I1 6l "

The tower

The wrMJ Tower is a five-leve1, guyed tel-evision tower

located in Mil-waukee, wisconsin, u"s"A" rn planf orm it has

three equarly spaced guys at each level which are connected

directly to the mast as illustrated in Figure 4.1a. The

mast consists of piecewise prismatic sections whose proper-

ties are listed in reference tl6l, SÀprv does not have pro-
vision to include the cable erements so that comparisons

will be made with the analytical model and an earlier study

by McCaffrey and Hartmann l17l " The tower was modelled by

using 16 cable elements for each guy whirst the mast was

idealized by 47 prismatic beam elements. This idealization
leads to 282 nodes and 957 degrees-of-freedom.

L.Z
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The f irst two columns in Table 4.1 give the natural_ fre-
quencies of the rowest modes obtained by using the anaryL-
ical model and the generalized finite element approach. The

maximum discrepancy is a respectable 5% The first, third
and eleventh modes involve significant coupring between the
mast ( in bending ) and t.he guys, Then the tower,s upper-
most 30 metres, corresponding to the antenna, dominates the
mast's bending because its flexurar rigidity is onry about
0"1% of. that of the rower sections. The omission of arl but
the first and last naturar frequencies in the next two col_
umns of Tabre 4"1, which correspond to the additional neg-
lect of alr the guys' out-of-plane stiffnesses, suggests
thaL the majority of the previous modes involve predominant-
ly out-of-plane guy motions. Thus, only the tvro retained
modes have guys which move in-plane and interact noticeably
with the mast.

The last column in Tabre 4"1 relates to the moder of
Mccaffrey t161" Mccaffrey neglected the guys' out-of-prane
stiffnesses again so that, not surprisingly, he reasonably
predicted only the first and the rast frequencies in column
1 and , 

"! Tab1e 4.1" ( However Table 4.2 suggests that even
higher natural freguencies where guys dispray purery in-
plane movements are stilr estimated fairry werr. ) He aLso
assumed that the mast's mode shapes corresponded to those of
a freely vibrating, uniform cantilever beam having a con-

The validity of Lhis assumptionstant flexural rigidity"
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can be assessed by reference to Figures 4.1b and c where the
various predictions of the mast's movemenL aloner r€lative
to its tip, are presented for the first and ereventh modes.

Ànalyticar and finite element resurts agree, of course, but
Lhey produce a less smooth change in srope than the mode

summation procedure near the top of the mast. Thus, the uni-
form beam assumption does not completery account for the
sudden transition expected between the mast and antenna due
to their significantly different frexural stiffnesses"

rn summary, the generalized finite elernent technigue
gives comparable results to the anarytical and, if mode

shapes are anticipated reasonabry and fully, the mode summa-

Lion procedure. However, on]-y the former technique can be

applied readily to probrems whichr âs in the next exampre,
invorve a variety of structural components generating a com-
mensurately complex tower geometry.
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5.1

Chapter 5

MTS TOWER

I nt roduc t i on

In the present chapter, a

MTS tower, will be assessed

necessitates the use of the

approach.

multi-leve1 guyed tower, the

in which the complex geometry

generalized f inite element

5" The tower

The MTS tower illustrated in Figure 5.1a is a lattice
microwave tower having four circurar antenna dishes posi-
tioned at the elevations shown in Figure 5.1b. Like the
wrMJ tower, it has five guy leveIs which are rocated symme-

tricarly in planform. However, although the third level_ has

three guys connected directly to the mast as in the }ITMJ

tower, each of the other four levels has six guys joined to
a torque frame. À torque frame is offset from the mast to
give the mast extra torsional stiffness. rt is incorporated
in the generalized finite erement procedure by creating a

member with nine degrees-of-freedom in the manner described
in section 3 "2 "3 " Microv.rave dishes, oD the other hand, are
treated as large masses which are offset rigidJ.y from finite
element nodes of the mast. Ðetairs of the procedure to cal-

z
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culate the di shes' moments of inert ia are presented in
Appendix B" Àrso, given in Àppendix B for completeness is
t.he way of determining Lhe moment. of inertia of a beam el_e-

ment which is equivalent to that of the lattice mast's tri-
angular cross-secLion.

computational effort is beneficialry reduced in any
finite element analysis by minimizing the totar number of
elements used and the bandwidth of the finar dynamic stiff-
ness matrix l1] . Such requirements become more acute as

sizes increase but they have to be mitigated by the opposing
demand of more erements for usualry improved accuracy. Then,
for a given eÌement idearization, the bandwidth can be mini-
mized by a skillfur numbering of the nodal points. of par-
ticurar interest here is an adequate but concise representa-
tion of the guy wires which may exhibit damaging

interactions with the mast in the 0.1 to 3 Hz galloping
prone range" Preliminary calculations which approximated the
incrined guys by using pinned-pinned ends suggested a repre-
sentation of 161 161 10, I and I cable erements for the top
through lowest guys, respectivery. Thus, there should be a
reasonably accurate three nodes minimum per half-loop of guy

movement below 3 Hz. Àt reast seventeen beam elements was

needed to represent the mast's geometric and materiar chang-
es and to easily accommodate microslave dishes and guy con-
nections" This resulted in 1014 total degrees-of-freedom and

the optimum nodal numbering gave a bandwidth of 1 91 .
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It was found that the rowest 100 or so natural frequen-
cies of the MTS tower involved primarily guy motions. conse-
quently, the IMSL eigenvalue package was used onry in this
particular exampre to avoid simurtaneously finding these
somewhat superfruous modes in addi.tion to the desired modes

having more guy-mast coupling. The present behaviour con-
trasts with that of the wrMJ tower where three out of the
first eleven modes exhibited significant guy-mast coupling.
The contrast arises because the MTS tower has armost twice
the number of guys with tensions which are 3 to 10 times
lower than those for the wrMJ tower. consequently, the guy

stiffnesses of the wrMJ tower are more nearly comparabre to
the stiffness of its mast which reads to greater coupling at
the lowest frequencies.

Table 5"1 lists those naturar frequencies berow 3 Hz in
which noticeable coupling occurs between the MTS mast and

its guys. The effects on such naturaL frequencies of an

axiar load ( from the tensions in the guys and the mast,s
o1.¡n weight ) , temperature and icing rnay be determined f rom

this table. Indeed, the first two corumns indicate that the
axiar load has only a marginar reducing effect on a typical
day of 20oc" The three central columnsr orì the other hand,
show that temperature reductions from 20oc through 0oc Lo

-120c consistently raise the frequencies quite noticeably
and also introduce progressivery more guy-mast couprings.

a temperature decrease producesThe increase occurs because
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higher tensions in the guys whose combined ( stiffening )

effect more than compensates the opposing infr_uence _ of the
resul-ting compressive Load on the mast. probrems wiLh
freezing rain can arise when air temperatures are at or
somewhat below Ooc so that the rain freezes on contact with
a guy to form a more galloping susceptible, asymmetrical
cross-section " For simplic ity, however, the 3/g" radiar
thickness icing associated with the fifth corumn of Table
5.1 is assumed to be distributed symmetricarly around and
along the entire length of each guy. The difference should
be anticipated to be significant only when, unlike in the
present theoryr âo off-axis centre of mass is permitted to
twist a guy about its ovrn geometric axis t21l " The third
and fifth columns of Tabre 5.1 show that Lhe heavy icing
arone reduces the naturar frequencies associated with con_
spicuous ( flexurarly vibrating ) guy and mast interactions
by up to an appreciabre 12% . À similar reduction happens
too for the omitted, dominantly guy modes and it is caused,
not surprisingry, by the additional mass of the ice. Dis-
tributed ice accretions with smaller masses, therefore,
shourd produce armost correspondingly lower percentage fre-
quency ctranges " Tabre s. 1 ar-so suggests that a heavy ice
deposit significant.ly increases the number of interactive
modes which may make the tower more vurnerable to garroping.

F igure 5. 2 (a )

obtained from a

presents an idea

video recording

the MTS tower's motion

the day following a

of

on
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freezing rain storm and after
been detected. Later enguiries

Ioss of communication had

the nearest Met.eorological
office indicaLed thatr o. the day of the recording, the
affected region had a temperature around -1zoc and a steady
wind of about g */= bl0wing from the north-west to the
south-east" Thus, Figures 5.1 (c) and 5.2(a) suggests that
merery the virtuarly windward guys were galloping apprecia-
bly but only at the second and fourth revers. The icing on
the galloping guys occurred intermittentry and was probabry
very light because it was difficurt to discern crearly.
These guys, therefore, are rikely guite close to an ice-free
condition" rndeed, two ice-free modes whose naturar. fre-
quencies armost coincide with vibrations actuarry observed
at 0"83 Hz in the fourth revel windward guy and at 1.67 Hz

in the second rever windward guy and the mast are also given
in Figures 5.2(b) and (c), respectivery. As expected, the
first such theoretical mode invorves only the fourth level
guys whereas the ratter has coupring between the masL and
the second lever guys. Àlthough a combination of these modes
seems to be predominantJ-y excited in the gall0ping situ_
ation, it is the coupled one which presumabry reads to the
misalignment of the mast-attached microwave dishes. The
major outstanding question, however, is : why did the down-
wind second and fourth level guys ( whose theoreticar modal
motions ' according to Figures 5" 2 (b) and (c ) rerate strongJ_y
to the corresponding upwind guys ) barery oscirrate in the

a

at
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f ield ? the anskrer remains

loca1 aerodynamic damping

changes in the guys' effect
Obviously, this point bears

uncertain but may be

fluctuat ions caused

ive or ient.at ions to the

further investigation.

related to

by small

v¡ind t9l .
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Chapter 6

CONCLUSIONS

An analyticar technique has been extended and applied
here to a symmetrical tower having no off-set conponents.
Results agree reasonably with those derived from a mode sum_

mation approach and a generalized finite erement procedure.
However, the generalized finite element procedure has been
shown to be particularly useful- for a guyed tower possessing
often used off-set dishes and torque frames. It is arso abre
to straightforwardly accommodate even more compricated asym-
metrical geometries. The effects of typicar axial roads on a
mast' temperature and icing of the guys have been investi-
gated" severe icing produces the rargest shifts in the natu_
rar frequencies and greater coupring between the mast and
guys of a guyed Lower. Limited fierd data suggests that a

coupled mode of the guyed MTS tower could welr have red to
misarignment of its microwave dishes after a freezing rain
storm.
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Appendix À

THE ÀNÀLYTICÀL MODEL FOR THE MÀST

Àn analytical ¡nodeL for a mast in transverse bending will
be developed in the present section. The mast is considered
to consist of uniform beam elements and one such uniform
beam element of length À, acted upon by a compressive road,
P, is shown in Figure 2"3" The equation of motion can be

written in terms of the transverse dispracement, v(x rt) ,

where x is the spatial coordinate along the element's axis
and t is time" Consequently,

d2/dxz ( E'I' dzv/¿yz ¡ + p' ð2v/6¡z

+d/dx(pav/ax)-o (¡"r)

where E'I ' is

unit length.

Separation of

the flexural
Equat i on (e.

Variables and

rigidity and p'

1 ) can be solved

a s sumi ng

Lhe mass per

employing the

IS

by

V(x,t) = v(x) sin(ot). (e"z)

Tire v(x) in equation (¡.e), which depends only on x, is
calIed the shape function" The e is the circurar frequency
of the beam element's free vibration in transverse moLion.
substituting v(xrt) from equation (e.z) inLo equation (e.l)
and solving for v(x), leads to
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TheCi, i
evaluated by

at each end

v(x) = Cr cos(brx) + Cz sin(brx)

+ C¡ cosh(bzx) + C¿ sinh(bzx). (¡.9)

= 'l to 4, are f our constants which have to be

considering the four boundary conditions, two

of the beam element. ÀIso,

br =

bz=

t( a4 + 94/+ )1/2 + P2\1/2

{( a4 + P4/4 )1/2 - P2}1/2

(¡"+)

(e.s)

(A.6 )

(e"z)

(À"8)

(¡.9)

where

a4 = ptaz /ø\l

and P4 = P/fllt

it can be seen from equation (À.3) that the shape funcLion,
v(x), involves trigonometric and hyperbolic functions of the

circurar frequency t.l . It wirr be shown rater, therefore,
that an exact analytical solution is very difficurt to
obtain. Hence, a numerical procedure wilr be adopted to com-

pute the natural frequencies.

Figures ¡.1(a) and (b) give the sign conventions for the

shear force and bending moment which can be expressed in
terms of shape functions as :

V(x) = -81'v(x)"' - Pv'

M (x) = Et/v(x)"
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Qz

From Fi gures a " 
'1 (a ) and ( b) ,

Qr =

M1 =

-V9 = dr'vott' + Pvot

-M9 = -Etivott

Qz=

M2=

From equations

-vr = -g!'u't t I + Pvt

Mr = E'r'v' '

À.3 and 4.1 0,

0

E?br 2

-dl'br3+Pbr

{r} = [z] {ni

From eguations 4.3 and A"12

dlbz3+Pbz

-E'I's r br 3+psb1 dr'c 1b1 3-pc 1b 1 -dlrs2b2 3-ps2b2

0

-dr'c1b23-pc1b2

Elrts zb zz-E/I'clbr2 -dI'srbr2 dlc tbz2

(À.11)

whe re Cr = coS blÀ r Sl = Sin bltr,

c2 = cosh bzÀ and 5z = sinh bzÀ (À.12)

Equation À.11 can be written in abbreviated form as :

0

-ÉI'brz

(À.10)

(À" 13 )

Cr

Cz

Cs

Ct
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bz

S2C2

br

["'
jn,
l
I ,,

1",

v(0)

v'(0)

v( I)

v'(À)

C1

Cz

C3St

crbr Szbz czb C+

(À" 14 )

oFt

{u} = [w][zr] (A.1s)

From equations (e.rg) and (Ä.1s) rthe end shear forces, er
and Q.z, and corresponding moments, M' and þIz, can be

expressed in terms of the end displacements, V1 and vz¡ and
rotations, Q1 and O2, as follows

kr r
l412 krs kr¿

kzz kzs kz¿

(À"16)

Symmetric k¡ ¡

or, in abbreviated form,

,]

i

I

-ln.ll
ll,ll

ll

]L

ks¿

kq ¿

Qr

M1

Qz

M2

{n} lK¡al{u}
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where lxooJ= lz] [w] - 1 (À"18)

The el-ements of the symmetric dynamic sLi f f ness matrix I t<oo (<,r)J

are given as:

' krr = k33 = brbz(btz+622)(brczst+bzclsz)

ktz = -ks¿ = brbz(brz-br2) (crc 2-1)+2br..2br2srsz

kr s = -brbz(btz*bz2) (brsr+bzsz)

(A.19)

kr¿ = -kzs = brbz(btz+522)(cz-ct)

kzz = k44 = (btz+622)(bzczsr-brcrsz)

kz+ = (btz+622) (brsz-bzsr)

where K'o (co) = (dtt/l¡ ktj , i,j = 1,4

and

A = {2b1bz(1-crcz)-srsz(b12-b22llt

(À" 20 )
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Âppendix B

Properties o:i_ Individual Tower ElemenLs

Formulae needed to compute the elemental stiffness con-
tributions of a guy cable, ratticed mast or a microrâ¡ave dish
will be given here for completeness

(a) Mast with lattice cross-section

Latticed masts usualry have a horizontal cross-section
which is either sguare or triangurar. Both wrMJ and MTS

masts possess a constant triangurar form. The forlowing for_
mulae were used to calcurate the principal moments of iner-
tia for the MTS masts' frexural st.iffnesses. For the case of
the wrMJ tower these values were obtained from reference
t161 .

(i) Trianqular cross-section

By using the dimensions indicated in Figure 8.1 ,

0"5 r
vv

where

Àt = .rî t2

is the cross-sectional area

radius r -

( e'/+ )( z c2 + 3 r2 ) (s.l)

of each (circular)
(8"2)

main leg with

XX
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(ii) Microwave dish

The pran and side view of a typical microwave dish
(mounted on a triangular latticed mast) is presented in Fig-
ures e.2(a) and (b), respectively. The principar moments of

inertia for the axes shovgn are

xx vv

M'
( R2 + 4 ð,2 )

2

(8.3)

(¡.¿)

of the dish, respec-

planview, of the dish

and

I

where M'

tively"
from the

M' R2 /2

and R are the mass and radius

The d is the mean distance, in

vertical y axis.

(b) CabIe Element

The characteristic movement of a guy cable and an irlus-
tration of the partial nomencrature describing the dynamic

deflection of its typicar erement are given in Figures

3.'1 (a) and (b) , respectively. Àt the instant shown, point p1

and P2 are located at (xr rvr ) and (xzrvz) with respect to

the global- co-ordinates x and y. The shortest span between

the ends of the complete cabre is L but the cabre is
deformed due to the pretension force, To, and its self-
weight per unit span normal to the chord, ey. A guy cable is
usually uniform with a constant cross-sectional area, A,
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mass per unit length, p", and modurus of ei_asticity E'.
Thus, f ol-lowing the lead of Vel-etsos and Darbre l24l , the
cable is presumed to have no flexural rigidity. Furthermore,
the component of the cabre's self-weight along the chord is
considered not to affect the cabre's parabolic static equi-
librium prof iJ-e or the tension. Finarly, the linear theory
of vibrations is assumed. This is justified for typically
observed sag-to-span ratios less than 1/A jU 

"

By using the above assumptions,

[15] that the stiffness matrix of

total six degrees-of-freedom, can

it was shown in reference

a cable eLement, having a

be written in the form

-k
xy

vv

-k

-k-k

xy

xy xy

xy

-k

-k
(s"s)

Ts
(_)
xz-xt

Component

:
s in the

1_)
1*p

m

1ev
2 '1 o

symmetric yv

yv

above matrix are

À E'

k
LL

given by

L'
e

vv

50

ì¿



(e.s)
1 À E' 1 o..

k - (-) (-) {_xy 1*p L' 2 To
me

Te

ZZ Xz-X I

whe re

x2 1 euL' = J[ 1 + { ' ( I - 2 x )}2]3 dx
e x1 2 2 To

1 À E' L o.,L
p"'= ; 

( 
_ ) ( ) (

t¿ ro Lt T9
e

and

-ril 
Xz-xl

P p ( )3
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Figure 2"1

(a)

(a) À two-leveI guyed tower and
equival-ent model.

(b)

(b) its

Figure 2.2 A singre-degree-of-freedom oscilrator
whose undamped dynamic stiffness is
K6(r''r) = k --c¿2m.

***ttl = fi sin(art)
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Figure 2.3 A uniform beam element subjected to an
ax ial load, p.

,,, (',1

Á\

þ, ''
v(x,t)

Figure 2.4 The convention used for beam forces(Q,, ez), moments (M1, Mz), displace-
ments (v1 , vz) and rotations (Oì , ez ) .
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Figure 2.5 The forces at mast node, p,, when p, isdisplaced from irs 
"iiõí""r posirion, p.

Storage
mode

Ful L

Upper tr iangle

Semi -bandw idth

FHI FHr

Number of elements
stored

n2

n(n+1) /2
4n

XXXX
XXX

XXX
XX

X

symmetric

X
JI

XX
XX

X

0

X
X
XX
XX

X

X
X
X
X

Figure 2.6 The form of the nxn dynamic stiffness matrix Kd
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Figure À.1

(a)

(b)

þ)""(4

þ,)",
",(,,1

Positive general_ized
(a) "mechanics of(b) "finite element"

end forces and moments
solids" convention, and
convention"
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cross-brac ing

leg

Figure l" 1 Planforr¡ of che MTS Èower's mast.
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antenna dish

Pigure 8"2 (a) tt¡e planform
of che IÍTS Ëower,
antenna dish-
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of the mast and antenna
and (b) Ehe fronÈ view

dish
of an
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Nôtural lrequencics. Hz

OuÈ-of-plane sti f f ness
of guys included

Out-of -pìànc st i f fncss
of guys neqlected

Hodê Ànðlyticðl
procedure

cencrðlizêd
f init.c elemenÈ

proccdure
Anal.yticðl
proccdure

ceneralized
finite clement

procedure

ltcCaffrey'6
merhod [16¡

5
1

2

s
3

5

6

7

I

9

r0

s
11

.2't 77

.2290

.2338

.2895

.3096

.3099

.3226

.3299

,3263

327 1

3415

.22 r 1

.2247

.2346

.27 52

.3085

,3087

,3224

.3232

,3259

3264

3386 _ 3400

221 7

3378

.221 3

.3{14

T¡bIe 4.1 A cdmpårison of the nstural trequencies of the guyed HTflJ tower prcdicted by ditfercnt
proccdurcs.( superscript s indicêtcs strong inter¡ctions betvcen Èhc rust and 9uys.)
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NaLuraI frequencies
with out-of-pIane guy

neglec ted

(in Hz.)
st i f fnesses

ÀnaJ-yt ical
procedure

Generalized
f inite element,

proc edure

McCaffrey's
method t 1 6l

.2229

.3400

.367 6

.3904

.4575

.4672

2217

3378

3660

38 69

4461

4607

221 3

341 4

391 4

4468

47 48

47 59

Table 4.2 Lowest six
of the lfllMJ

in-plane natural frequencies

t owe r.
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Nolurol f requencies, Hz

no oxiol lood
ond ice lree

2ooc

oxiol lood íncluded bul ice f ree oxiol lood o nd
3/8"(9.5 mm) ice

0
0 a2o"c 0c - 1 ?-oC

1 .47

r .60

2.5 r

I .46

r .59

2-43

1.52

r .67

2.58
2.44

1.55

r.73

2.J8
2.43
2.50

1 .J5

r .49

1 .59
1 .62

r .89

2.58
2.41

2.52
2.56

Toble 5lThe inleroclive modes of the MTS lower lobuloled on o lineor verlicol scole occording lo the
corresponding nolurol f requencies.
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