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Abstract

A new finite element is formulated for cables which enables
a truly three dimensional approach to be adopted for the
dynamic analysis of any lattice transmission or communica-
tion tower. The generalization, unlike previous proposals,
can conveniently accommodate towers with significant geome-—
trical complexities and asymmetry stemming from torque
frames and antennae. Furthermore, interactions between the
guys and mast of a guyed tower can be investigated readily.
The free vibrations of two different towers have been ana-
lyzed and the generalization 1is shown to be accurate and
versatile. It also enables the recorded galloping motion of
the final, most complex tower example to be examined curso-

rily from a modal perspective.
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Chapter 1

INTRODUCTION

Electrical transmission and multi-level guyed communica-
tion towers form importané lifelines in modern society. How-
ever these structures can be subjected to severe dynamic
loads from wunbalanced tensions, galloping of iced cables,
impact due to a broken <cable, extreme winds, and earth-
guakes. For example, there have been ice storms followed by
prolonged wuni-directional winds in the Canadian prairie
provinces, and Manitoba in particular, which have produced
galloping of guy wires. In 1983, heavy freezing rain com-
bined with moderate wind speeds led to the complete collapse
of at least eight transmission and communication towers
including a 410-meter ( 1350-foot ) TV-tower. The total loss
was estimated to be more than 5 million dollars. Therefore,
a realistic assessment of the dynamic characteristics of
these structures is required to prevent their damage or

failure.

The present study examines methods of obtaining the free
vibrations of complex guyed towers with the eventual aim of
assessing galloping. The galloping phenomenon involves low
0.7 to 3 Hz frequencies and large ( typically 5 to 300 mul-
tiples of the conductor's diameter ) amplitude, self-excited

oscillations of transmission 1lines in a direction which is



transverse to that of a steady, wusually 6 to 25 m/s wind
[5]. It is caused by asymmetry in a conductor's cross-sec-
tion due either to ice accretion, which may be as thin as 1
mm or quite short in length for the initiation of vibrations
[5], or stranding of the conductor cable itself. Den Hartog
[9] has given the classical criterion for aerodynamic insta-
bility. However, Cheers [4], Chadha [3], Simpson [21] and
Nigol and Buchan [18] have suggested that the additional
influence of the twisting of a conductor may be significant
too. Although the galloping phenomenon is well documented
on iced transmission lines, comparatively little attention
has been paid to guyed towers. On the other hand, Novak et
al [19] have shown that the galloping of gquys can lead to
stresses high enough to impair the safety of a quyed tower.
Also, in a recent study by Tinkler et al [23], it has been
suggested that an ice formation with a distinct longitudinal
‘ridge could cause aerodynamically excited galloping of guys
whereas one which has ridges or lumps distributed around

part of the circumference and along the length should be

stable.

Signif?cant coupling was observed between the guy and
tower motions on the most well-documented occasion in Mani-
toba which led to a serious misalignment of the communica-
tion tower's antennae dishes and a loss of signal for an
extended period. The vibration was complex, involving multi-

ple-loop oscillation of the guys, concomitant with a damag-



ing flexure of the mast. Therefore, the excited modes were
much higher than the fundamental so that a detailed dynamic
analysis was undertaken with the aim of determining, ulti-
mately, the types of modes which are most easily excited.
However, the existing approximate method of Novak et al [19]
,even with the later refinements of McCaffrey [16] and Tuomo
Karna [13], was inadequate. Specifically, these procedures
cannot handle practical complexities stemming from offset or
non-symmetrically placed antennae dishes. Furthermore, a
sloping ground, arbitrary loads and torque frames, which may
be used to connect the guys to the tower, invariably present
difficulties. Instead, therefore, a somewhat generalized
finite element algorithm was developed whose essential new
feature is a cable element which can handle 3—dim¢nsional
transverse vibrations. Mast segments were modelled as equiv-
alent beams to simplify input data and reduce the size of
the global stiffness matrix. An analytical solution for a
guyed mast was also formulated by incorporating the dynamic
stiffness of a simple wire developed, in a closed form, by
Veletsos and Darbre [24] . These theoretical expressions are
fairly similar to those developed by Irvine [12] but they
can also accommodate guys having large inclinations to the
horizontal. The last solution provides a useful check on
the finite element method but it 1is valid only for simple

symmetrical towers.



The accuracy and computational efficiency of the present
finite element approach, which is termed "generalized" for
convenience, will be demonstrated by using two practical
towers having progressively more complex geometries., First,
a multi-level guyed tower from Wisconsin will be considered.
This tower has been analyzed previously by McCaffrey and
Hartmann [17] who used a mode summation technique. It is
symmetrical so that a further check can be made by utilizing
the analytical technique. Then, a multi-level guyed micro-
wave tower, the Manitoba Telephone System ( MTS ) tower
located in the Manitoba province of Canada, will be assessed
because it has several offset microwave dishes and torgue
frames. This tower can be handled only by using the gener-

alized finite element procedure.



Chapter 2

ANALYTICAL METHOD

2.1 Introduction

An analytical method will be developed 1in the present
chapter to study the free vibrations of a guyed tower with a
uniform mast. Equations of motion will be derived for the
tower's mast and the guys, with both components treated as
continuous systems. Thus, modelling should be more accurate
than a comparable finite element idealization with reduced
degrees of freedom. However, it will be shown that there
are computational difficulties associated wiﬁh the analyt-
ical procedure. It is essentially less efficient than a
finite element technique. Therefore, only simple towers can
be analyzed conveniently. Nevertheless, the usefulness of
the analytical technique arises from the fact that the
results obtained from approximate methods can be compared
and verified for problems of simple geometries like symme-

trical towers.

Modelling of the tower, by using the analytical tech-

nigue, will be described next.



2.2 Modelling the tower

A two-level guyed tower and its equivalent model are
shown in Figure-2.1a and b. Consider the case of undamped
transverse vibrations. The tower's mast 1is assumed to be a
beam while the guy cables are represented by horizontal fre-
guency-dependent springs each with stiffness Kgqq . The Kagg
depends on the circular frequency, w, ©of the transverse
vibrations. The actual expression for Kggis quite complicat-
ed and it 1is included more conveniently 1in Section 2.2.2.
Hoﬁever, to elucidate the spring's behaviour, consider the
horizontal stiffness of the simple oscillator shown in Fig-
ure 2.2. It can be seen that the undamped dynamic stiffness
is a vector sum of a spring force and an inertial force,
. both which arise from a unit displacement from the oscilla-
tor's static equilibrium position. The freguency dependence

of Kg stems from the inertial force.

The dynamic behaviour of a mast and guys will be dis-
cussed in the next two sections. The major results derived
in these two sections will be incorporated in the third sec-

tion which examines the guyed tower as a whole.
2.2.1 The mast

A uniform mast, with constant material properties along
its length, can be considered reasonably as a beam which,

due to its self-weight and guy tensions, is subjected to a



compressive axiallload. However, it is necessary to subdi-
vide the mast into more than one segment in order to consid-
er the concentrated axial loads arising at each guy level.
For example, the 2-level guyed mast shown in Figure 2.1a is
divided into three elements. The axial 1load (due to the
self-weight of the mast) varies along the mast's length.
However, it 1is taken to be constant for each element in
order to reduce the complexity of the equations of motion.
This is a reasonable approximation providing a sufficient
number of elements is taken on the mast. Note that the
idealization is not the same as that in a finite element
formulation because each subdivided mast element still
remains a continuous system with an infinite number of

degrees-of-freedom.

As the mast is considered to consist of uniform beam ele-
‘ments, consider a uniform beam element acted upon by a com-
pressive load, P (Figure 2.3). The end shear forces, Q; and
Q2, and corresponding moments, M; and M;, can be expressed
in terms of the end displacements, v; and v,, and rotations,

Q, and Q. (Figure 2.4), as follows

P~ - o - ™~ -~
Qi ki1 kiz kis kiga vV
M kaz k2a kaa Q4

< } = 4 1 (2.1a)
Q2 symmetric kazz kags Va2

| M2 5 Kss Q2




or, in abbreviated form,

{F} = [Rpyql{U}l . (2.1b)

The ki3 , 1,7 =1 to 4, 1in equation (2.1a) are the ele-
ments of a 4x4 elemental dynamic flexural stiffness matrix,
Kpg . The detailed steps leading from the equation of motion
to the precise derivation of Kyg are included in Appendix A.
It is found that the elements of Kpq involve trigonometric
and hyperbolic functions of the circular frequency w. It
will be shown later, therefore, that an exact analytical
solution is very difficult to obtain. Hence, a numerical
procedure will be adopted to compute the natural frequen-
cies. In order to analyze the guyed tower as a whole, the
stiffness matrices, Kpgare computed for each element of the
mast. These elemental matrices are then assembled after

including the guy stiffness at each level.

2.2.2 The guy cable

The guys affect the mast's vibrations in two ways. They

1. provide lateral stiffness at the point of attachment
to the mast due to the horizontal component of their
stiffness; and

2. increase the compressive axial load on the mast due

to the vertical components of the tensions.



Figure 2.5 illustrates the forces acting on the mast due
to an inclined guy cable attached at point P. The Fyr and Fyq
shown are the horizontal and vertical components of the ten-
sion, respectively. In most practical cases, the guys are
arranged uniformly at a particular level, about the centre
of the mast, so that the algebraic sum of their correspond-
ing Fyvalues vanishes. The other three forces, i.e., Fy ,  Fyp
and Fy, , arise due to the horizontal displacement of node P.

They can be expressed as

Fyv = Kyly (2.2)
Fyr = K; Ax (2.3)
Fuo = Ko Az (2.4)

where Ax, Ay and Az are the displacements of P along the X,
y and z directions, respectively. Furthermore, the K; , Ky
and Ko are the dynamic stiffnesses of the guy cable in the
corresponding x, y and z directions. The K;y are 1in the
plane of the mast and the guy so that they are called the
in-plane horizontal stiffnesses. The Ko , on the other hand,
are normal to this plane so that they are termed out-of-
plane horizontal stiffnesses. These latter stiffnesses may
be derived by considering the case where the upper end, P,
of the guy in Figure 2.5 is subjected to a harmonically var-
ying horizontal displacement. The expressions for K; and K,

are given by Veletsos and Darbre [24] as



(1 +1/2 y0 )2

K; = (AE/Le ) cos?(#)

(1 + 12 yp/¢2?)

+ ¢ cot(¢) (T, /L) sin2(6) (2.5)
and
Ko = ¢ cotl(g¢) T,/L (2.6)
where
v = 2/¢ tan(¢/2) - 1 (2.7)
o = qyL/To tan(g) (2.8)
1 AE L
p = — — — (gyL/T,)? (2.9)
12 T, Le
Le = L {1+ 1/8 (qL/T, )2} (2.10)
¢ = w/wo (2.11)
and
wo= 1/L (To/u)'/2 . (2.12)

The description of symbols is as follows.

dy 1s the intensity of the normal self load per unit

chord length; L is the length of the chord; T, is the axial

- 10 -



component of the guy tension, 1i.e., the component parallel
to the chord; A is the cross-sectional area of the guy; E is
the Youngs modulus of elasticity; 6 is the inclination of
the chord to the horizontal; u is the mass of the guy per
unit of chord length; Le is the effective guy length; w is
the circular frequency of the actual motion; w, is a refer-
ence circular freguency; ¢ is the dimensionless frequency; p
is the relative stiffness parameter; and o is a dimension-

less parameter which gives a measure of sag.

Various limitations and approximations involved in
expressions (2.5) through (2.12) may be summarized as fol-
lows.

1. The expressions are valid only for an undamped case.

2. The material 1is assumed to be linearly elastic so

that it obeys Hooke's Law.

3. The guy cable 1is assumed to be deflected 1in a para-

bolic profile at its position of static equilibrium.
This latter approximation is reasonable for a cable
with a sag-to-span ratio of 1/8 or less [12].
(Another approximation implicit in this assumption is
that the component of the 1load in the direction of
the chord due to the weight of the cable has negligi-
ble effect on the cable's profile and tension. In
practice, this last approximation is justified for
small sags because the cable tension is much larger

than the weight of the cable.)



4. The displacement amplitude is presumed small so that
the cable's motion is considered linear.

5, The inertial forces in the longitudinal direction
(along the chord) are negligible in comparison to
those in the transverse direction. This approximation
is reasonable for cables wused as guys because the
ratio of the fundamental natural frequendy of longi-
tudinal vibrations to that of lateral vibrations is
about 40 [12].

6. There is no coupling between the in-plane and out-of-

plane motions.

These assumptions and approximations will be discussed
further in Chapters 4 and 5 where actual towers will be ana-

lyzed.

2.2.3 The guyed tower

Consider next the free vibrations of a compléte guyed
tower undergoing bending. The analysis for longitudinal and

torsional motions will be similar.

When the tower's mast is displaced from its position of
static equilibrium, a restoring force tries to bring it
back. This restoring force arises from the flexural rigidity
of the mast and the lateral dynamic stiffnesses, Kgd , of the

guys. The Kgd is obtained by the vector addition of the in-



plane (K;) and out-of-plane (K, ) horizontal stiffnesses.
- The latter depend on the afrangement, at any particular lev-
el, of the guys about the centre of the mast. For example,
if three or more (n 2 3) identical guys are arranged uni-
forﬁly about the centre of the mast, the expression for Kgd

will be [24]
Kgd= n/2 ( Ki; + Ko ) (2°13)

Here, by assuming linearity, the resistance offered by
the guys at any particular level will be proportional to Kgd.
The Kgd is added to the corresponding flexural stiffness term
of the stiffness matrix of the mast. Therefore, by using
equations (2.7a) and (2.13), the assembled dynamic stiffness
matrix for the guyed tower of Figure 2.1a, including the

effect of the guys, is given by

r 7 — T
Q1 ki1l k121 kizl kqgf V1
M, k221 k231 k241 Lo
kasl kazal

Q2 +Kgd, + k132 ka2 Va2
k112 ki22
kagal

M, -+ k232 k242 Qz
- ks22

1 - i kaz2 kgza2 i r

QO3 +th + k{33 k143 V.3
k113 ki23
. kaa2

M3 symmetric + ko33 ka3 Q3
ko223

Q4 k333 k343 Vg

VM4~ - k44i LQ4~

(2.14)



Here the superscripts on kijs denote the element number

idealizing the tower mast.

Now the external force vector vanishes for free vibrations.

Also, the tower's base is fixed so that v, Qs = 0. There-

fore equation (2.14) simplifies to

J— ~ -

kgl k21 kial kKial Vi
k221 k231 k241 91
kazs1l kaal
+Kqd?2 + ky32 k142 Vo
k{2 kKy22 4 r = {O} (2.15a)
k441
+ k232 k242 Q2
koo2
k3z2 k342
symmetric k1T§mﬁk,2§ V3
kaa2
+ Qs
_ ka23| | ]
or, alternatively,
[Rqllu} = 0 . (2.15b)

As seen already ( equations(2.5) through (2.12) and
Appendix A), both the guys' stiffnesses as well as the
mast's stiffness contain terms which are trigonometric and
hyperbolic functions of the natural frequency. Therefore,
equation (2.15b) is, by definition, a set of homogeneous

transcendental eguations. For a non-trivial solution

det [ Rg] =0 . (2.16)



The roots, w , i=1, 2, - - - -0, of the last equation
must be obtained numerically because a general method of
solution exists only in the case of polynomial-form eqguation
with the degree of polynomial less than five. Hence, a com-
puter program was developed by using an Incremental Search
Method, to compute the natural frequencies and the corre-

sponding mode shapes.

2.3 Discussion of numerical efficiency

A detailed numerical study of the analytical method dis-

cussed in this chapter revealed the following advantages.

1. By using the Incremental Search Method, the natural
frequencies and corresponding mode shapes can be com-
puted within any freqguency range. This is particu-
larly useful to check for the natural frequencies of
the tower which 1lie in a given frequency band of an
external forcing function like that of a wind.

2, The dynamic stiffness matrix, Ky , 1is symmetric and
most of the off—diaéonal elements are zero as indi-
cated in figure 2.6. Hence, a semi-bandwidth storage
mode can be adopted which requires only 4n elements
to be stored for a nxn matrix. The 4n should be com-
pared to n? in a full storage mode and n{(n+1)/2 in a
half storage mode. In a practical case when n » 1, 4n
« { n(n+1)/2 or n?2 } so that a significant saving can

be achieved 1in computer storage by using semi-band-

width storage mode.



Savings in storage lead to the possibility of analyz-
ing a multi-level guyed tower with relatively less
difficulty than in the case of an approximate method.
For example, 1in the case of a five-level guyed tower
with three guys at each level, the size of the stiff-
ness matrix in the analytical method will be 12x12.
On the other hand, by using the finite element formu-
lation with ten elements taken on the mast with four
degrees-of-freedom assigned to each node and 12 ele-
ments on each guy with three degrees-of-freedom to
each guy node, the size of the stiffness matrix will

be 531x531.

However, the analytical method has the following short-

comings.

1.

The solution procedure for computing the natural fre-
quencies may not reveal all the natural freguencies.
This problem is best illustrated by considering the
plot of Kgyas a function of circular frequency, w,
shown in Figure 2.7 . The actual root and the discon-
tinuity 1lie very close together because the curve
becomes almost vertical at the point of discontinu-
ity. Hence, there is a high possibility of missing a
root.

The dynamic stiffnesses of all the guys, at a partic-
ular level, are first lumped and then added to the

dynamic flexural stiffness matrix of the mast. There-



fore, the separate mode shapes of the guys at a par-
ticular level cannot be computed easily.

It is not feasible to develop partial differential
equations of motion which can take into consideration
arbitrarily spaced guys, cross—-arms, torgue frames,
Hence, the analytical method is applicable to only

towers which have a simple geometry.



Chapter 3

NUMERICAL METHODS

3.1 Introduction

This chapter reviews several numerical techniques which
avoid the difficulty of a frequency dependent stiffness
matrix. However, many of these numerical techniques suffer
from some over simplification in the modelling of the mast
or guys. The chapter concludes with a description of a gen-
eralized 3-dimensional finite element technigue which was
developed in this thesis. The generalized method incorpo-
rates a new finite element for the cable and it is demon-
strated to be an accurate and convenient method for the free

vibration analysis of a guyed tower.

Several numerical methods for the dynamic analysis of the
guyed tower have been employed in the past. In 1966, Hart-
mann and Davenport [10] suggested a mode summation technigue
in which the displacements of the mast and guys were repre-
sented by a summation of generalized time coordinates multi-
plied by assumed mode shapes. The equations of motion for
the guy were derived by using a Newtonian method whilst the
-mast equa&ions were developed using by Lagrange's technique.
The resulting two sets of coupled equations were written in
a matrix form in which the generalized time coordinates for
the guys and the mast formed the vector of unknowns. The

equations could be solved for the free vibration case to



obtain the natural freguencies and corresponding mode shapes
for the guy-mast system. A limitation in this study was that
only the lowest frequency in-plane mode of each guy was con-
sidered. However, it has been observed that the lowest natu-
ral frequency of a guy of a tall mast is typically in the
range of 0.2 to 0.6 Hz while the galloping vibrations gener-
ally occur in the range of 0.2 to 3 Hz [13]. Hence, many
vibration modes of the guys may be needed to account for the
interaction between the mast and the guys. Also, usually
more than five guy modes are needed to investigate the gal-
loping phenomenon [13]. However, Davenport's [6] model may
suffice in case of gusty wind whose spectrum is confined to
the low frequency region. 1In 1972, McCaffrey and Hartmann
[17] presented a paper on the dynamics of guyed towers.
Their method was similar to that developed by Hartmann and
Davenport [10] but was more general as it could also include
non-symmetricity in mass and stiffness matrices. The method
was applied to a five-level guyed tower. Further, a moré
accurate catenary guy model was compared with the much sim-
pler parabolic approximation and it was observed that these
two guy models predicted natural frequencies which differed
by as much as 4% . Also, as most of the lower frequencies
were due to guys it was found to be necessary to consider
guy modes higher than the fundamental. The mast's mode
shapes were assumed to be those of a freely vibrating uni-

form cantilever of constant flexural rigidity ( EI ).



Essentially, these mode shapes are over simplified since
concentrated forces occur at the guy attachment points ang
the mast may be non-uniform. Hence, an exact deflection

curve cannot be achieved even in an infinite summation.

In a mode summation technique, the number of mast and guy
modes which needs to be considered generally depends upon
the rate of convergence while computing the natural frequen-
cies and the mode shapes. In addition, higher guy modes
might be important from the point of view of guy-mast inter-

action or galloping of cables.

In 1381, Wright [25] reported on several simple tower
dynamic analysis methods in which the guy was considered as
a massless taut wire. Thus, the inertial force due to the
guy was neglected which predicted the tower frequencies
those were higher than the exact values. Nevertheless,
these simpler methods give results which might be useful in
preliminary design analysis. In 1984, Tuomo Karna [13] pro-
posed a method where the mast was described by simplified
lumped masses and the undamped in-plane mode shapes of the
guys were used as Ritz shape functions. The resulting equa-

tions were solved in the frequency domain.

In the present work a generalized 3-dimensional technigue
is proposed. The next section describes the modelling of

the different components constituting the guyed towers.
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3.2 Modelling

The wuniversal features of the distinct components of
mast, guys, cross-arms and torque frames which may comprise
different transmission and communication towers will be out-
lined next. Assumptions wused to formulate their dynamic
properties by using the finite element procedure will be
summarized first. Then, further simplifications to justify
the mode summation or analytical procedures will be high-
lighted. Relative difficulties arising from the necessarily
different numerical solutions of the resulting equations of

motion will be indicated.

3.2.1 The Mast

A mast can be reasonably considered to consist of beam
elements, each having a uniform weight distribution [22]. An
individual beam will be assumed to possess the now standard
three rotational and three translational degrees-of-freedom
at each end. The resulting conventional 12x12 consistent
mass and stiffness matrices can be found in reference [20].
However, the former matrix will be diagonalized in the most
complex tower example by lumping masses equally at the ends
to alleviate the then excessive computations. The moment of
inertia I, needed to compute the flexural rigidity EI, of a
'lattice mast segment corresponds reasonably to the inertia

of its cross-section [22]. 1Illustrative procedures for tri-



angular cross-sections are presented in Appendix B. How-
ever, the basic stiffness matrix does not include the com-
pressive loads due to a cable's tension, the weight of high-
er elevation elements and the self-weight of the element
itself. Such loads can be incorporated straightforwardly
into the basic stiffness matrix by employing the standard
geometric stiffness matrix described, for exampleée, in refer-
ence [15] . This procedure was followed selectively in gen-

erating new results.

3.2.2 Guy Cables

The new cable element has the typical geometry shown in
Figure 3.1b where a node has the three degrees-of-freedom u,
v and w. Now u and v are the displacements in the longitudi-
nal and transverse directions which are, respectively, along
and perpendicular to the chord, whilst w is the displacement
out of the plane of sag. Thus, this cable element can rep-
resent a three dimensional motion. Details of the final
element stiffness matrix are given more conveniently in
Appendix B. The formulation was verified by correlating
results with the known free vibrations of a single inclined
cable and it will be shown in Section 3.2.2.1 that 8 to 16
elements provide a reasonable representation of a single
cable. It should be noted that the same assumptions made

for the guy analysis in the analytical approach also apply
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here. However, the effect of the longitudinal inertia can be
investigated in the present modelling by chluding the cor-
responding terms in the mass matrix. The finite element
results for the cable will be compared with theoretical

solutions outlined in the next section.

3.2,

[38)

1 Theoretical studies

There have been several studies [6,7,8,12,14,24] which
have developed an expression for the dynamic stiffness of an
inclined cable subjected to a prescribed harmonic displace-
ment at the upper end while the bottom end is fixed. 1In
1947, Kolousek [14] gave a series solution for a uniform,
undamped cable deflected in a parabolic profile at its posi-
tion of static equilibrium. Davenport [6] in 1959 published
a paper which condensed Kolousek's series solution to a
closed form. In 1961, Dean [8] gave an expression for the
dynamic guy modulus by using a catenary profile. However, he
neglected the elastic stretch of the cable. Later in 1965,
Davenport and Steels [7] generalized Kolousek's series solu-
tion to include the effect of a uniform external damping.
McCaffrey-and Hartmann [17] in 1970 presented approximate
series solution for an undamped cable whose static deflec-
tion was a catenary. In 1978, Irvine [12] gave a solﬁtion
for undamped parabolic cable which was essentially identical
to that of Davenport. Recently, in 1983, Veletsos and Darbre

[24] presented a closed-form solution for damped cables.
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Figures 3.2a to ¢ show the in-plane horizontal dynamic
stiffness, K; , as a function of the circular frequency, w,
for an undamped inclined guy cable. The three different mod-
els of Davenport [6], Irvine [12], and Veletsos [24] are
given. It can be seen that all the curves correspond at w =
0 to the static case with a positive dynamic stiffness. This
indicates that the cable force opposes the mast's displace-
ment. However, with increasing freguency, the stiffness
decreases to zero and ultimately becomes negative. The neg-
ative stiffness indicates that the cable force, 1instead of
providing support to the mast, acts in phase with the mast's
motion. The stiffness asymptotically approaches minus infin-
ity which is a point of discontinuity. It restarts at plus
infinity and follows the same trend with further increases
in frequency. A zero dynamic stiffness corresponds to a
natural frequency of the guy cable whose ends are fixed-
free. An infinite stiffness, conversely, corresponds to a
natural freqguency for the case of fixed-fixed ends. 1In the
latter case there are two modes of vibration which are sym-
metric and antisymmetric. In the case of an antisymmetric
mode, no overall additional tension is induced in the cable
at its ends. A symmetric mode, on the other hand, generates
an overall additional tension. It should be noted, however,
that an antisymmetric distribution of additional tension is
possible so that the overall additional tension is zero.

Irvine [12] has compared the peak additional tensions. on the
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basis of identical amplitudes of vibration in both the anti-
symmetric and symmetric in-plane modes. On comparing the
first antisymmetric and first symmetric modes for a cable of
deep profile, the ratio of additional tensions is found to

be about 20% .

Comparing the three models of dynamic stiffness , it can
be noted that both Irvine and Davenport have not included
the antisymmetric mode. Figure 3.2d shows a plot of the
out-of-plane dynamic stiffness K, gs a function of w. 1In
this case the natural frequencies for the fixed-fixed case

are same as those of a taut cable.

Figures 3.3a to d show plots of the in-plane dynamic
stiffness obtained from the finite element approach. As the
number of elements is increased from six to sixteen, the
natural frequencies approach those predicted by Veletsos.
Using a 16-element model, the maximum discrepancy in the
first six natural frequencies is found to be less than 4% .

.

3.2.3 Cross-Arms and Torgue Frames

Guys are often attached to a mast by triangular cross-
arms callgd torque frames in order to increase the tower's
torsional stiffness. A typical torque frame is shown in
Figure 3.4a where it can be seen that a frame normally con-
sists of non-symmetrical, short lattice members. The shear
deformations of these frames cannot be ignored because they

are not "slender" [22]. Hence, unlike the mast, the frame



cannot be modelled as a series of beams. Nevertheless, 1its
mass and stiffness matrices can be.derived by considering
plausible motions at the extremities. The extremity con-
sisting of the four ( normally close ) attachment points to
the mast can'be assumed to remain planar in accordance with
the small vibration constraint of the overall linear theory.
Conseqguently, the left wvertical plane in Figure 3.4b will
undergo the three translations and three rotations illus-
trated. The torque frame's right extremity is essentially a
point to which the guys are attached so that three transla-
tions should suffice. Thus, a torque frame's motion can be
normally described largely by nine components at the two
extremities. The resulting 9x9 static stiffness matrix can
be computed by separately applying unit forces and moments,
commensurate with the nine degrees of freedom, and noting
the ensuing movements. This procedure was performed by using
the readily available computer package SAPIV [2] for static
analyses. The corresponding mass matrix was formed by lump-
ing and proportioning the total mass of the frame according

to the translational degrees-of-freedom.

.4 Microwave Dish

§-0

(L8]

A microwave dish is normally a short, stiff conical sec-
tion which protrudes from the mast of a communication tower.

It is treated, therefore, in Appendix B as a deadweight



which is off-set from a finite element node of the mast by
means of a rigid horizontal ‘member . Both the off-set's
translation and rotation may profoundly affect a dish's
alignment which must remain within 1/2° of the original ori-

entation to preserve communications.

3.2.5 Complete Tower

The element mass and stiffness matrices developed previ-
ously can be selected appropriately for the form of a par-
ticular tower. They can be combined conventionally [1] to

give the equations of motion in the eigenvalue form
(k] - w2iMl] tv3 = (03 (3.1)

for a freely vibrating tower. Matrices [K] and [M] corre-
spond to the assembled global stiffness and mass matrices,
respectively; eigenvalue w is the circular natural frequency
and {V} is the corresponding eigenvector describing the rel-
ative motions of a given mode. Eigenvalues and eigenvectors
were computed by using either the subspace iteration proce-
dure [1] or the standard IMSL package [11] depending which
was more advantageous from the viewpoint of storage regquire-
ment and computational time., The subspace iteration incor-
porated a skyline technique [1] of storing the matrix system
in order to alleviate potential storage difficulties arising
from the usually large order, n, of the sparsely populated

[K] and [M].



3.3 Comparison with other approaches

Rather than presume deflection fields within small finite
elements, McCaffrey [16] assumed that the whole mast and
each complete guy moved in a series of modes. Then the so
called "mode summation technique" parallels somewhat the
finite element procedure but the final eigenvalue problem's
order can be reduced by around 95% ! The technique's accura-
Cy, however, depends critically upon the preciseness of the
assumed modes. Mode shapes can be estimated reasonably a
priori when, as 1in the situation considered by McCaffrey,
the mast is fairly uniform without complicating appendages
or asymmetries, guys vibrate predominantly in one plane and
the lowest frequency ( or most easily imagined ) modes domi-

nate. Such conditions, however, rarely arise in practice.

In contrast, the analytical procedure is essentially a
hybrid implementation of the generalized finite element and
the mode summation strategies. A mast is treated as a series
of equivalent beams, which are céntinuous and wuniform
between consecutive guy a£tachments, whereas each guy is
considered as a whole. It can be seen that the final dynam-
ic stiffness matrix, [ Kgq{w) 1, does not have the separate
mass and stiffness form of equation (3.1). Indeed, [ Kq(w) ]
contains transcendental functions of the circular frequency,

w, which make the necessarily numerical solution more tedi-

ous. A straightforward incremental search was adopted to



calculate the zeros of the determinant of the dynamic stiff-
ness matrix, Det[ Kgq(w) 1, and, hence, the natural frequen-
cies. However, there is no sophisticated means of determin-
ing all the zeros with certainty so that increasingly finer
increments of w ( which, of course, 1involve proportionately

more computations ) may be needed.



Chapter 4

WTMJ TOWER

Introduction

|
-k

In the present chapter, the free vibrations of a symme-
trical multi-level guyed tower will be studied by using the
generalized finite element technique. Comparisons will be
made with the analytical model and an earlier study by

McCaffrey [16].

4.2 The tower

The WTMJ Tower 1is a five-level, guyed television tower
located in Milwaukee, Wisconsin, U.S.A. In planform it has
three equally spaced guys at each level which are connected
directly to the mast as illustrated in Figure 4.1a. The
mast consists of piecewise prismatic sections whose proper-
ties are listed in reference [16]. SAPIV does not have pro-
vision to include the cable elements so that comparisons
will be made with the analytical model and an earlier study
by McCaffrey and Hartmann [17]. The tower was modelled by
using 16 cable elements for each guy whilst the mast was
idealized by 47 prismatic beam elements. This idealization

leads to 282 nodes and 957 degrees-of-freedom.
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The first two columns in Table 4.1 give the natural fre-
quencies of the lowest modes obtained by wusing the analyt-
ical model and the generalized finite element approach. The
maximum discrepancy is a respectable 5% . The first, third
and eleventh modes involve significant coupling between the
mast ( in bending ) and the guys. Then the tower's upper-
most 30 metres, corresponding to the antenna, dominates the
mast's bending because its flexﬁral rigidity is only about
0.1% of that of the lower sections. The omission of all but
the first and last natural frequencies 1in the next two col-
umns of Table 4.1, which correspond to the additional neg-
lect of all the guys' out-of-plane stiffnesses, suggests
that the majority of the previous modes involve predominant-
ly out-of-plane guy motions. Thus, only the two retained
modes have guys which move in-plane and interact noticeably

with the mast.

The last column in Table 4.1 relates to the model of
McCaffrey [16]. McCaffrey neglected the guys' out-of-plane
stiffnesses again so that, not surprisingly, he reasonably
predicted only the first and the last frequencies in column
1 and 2 of Table 4.1. ( However Table 4.2 suggests that even
higher natural frequencies where guys display purely in-
plane movements are still estimated fairly well. ) He also
assumed that the mast's mode shapes corresponded to those of
a freely vibrating, uniform cantilever beam having a con-

stant flexural rigidity. The validity of this assumption
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can be assessed by reference to Figures 4.1b and ¢ where the
various predictions of the mast's movement alone, relative
to its tip, are presented for the first and eleventh modes.
Analytical and finite element results agree, of course, but
they produce a less smooth change in slope than the mode
summation procedure near the top of the mast. Thus, the uni-
form beam assumption does not completely account for the
sudden transition expected between the mast and antenna due

to their significantly different flexural stiffnesses.

In summary, the generalized finite element technique
gives comparable results to the analytical and, if mode
shapes are anticipated reasonably and fully, the mode summa-
tion procedure. However, only the former technique can be
applied readily to problems which, as in the next example,
involve a variety of structural components generating a com-

mensurately complex tower geometry.



Chapter 5

MTS TOWER

jon

Introduction

In the present chapter, a multi-level guyed tower, the
MTS tower, will be assessed in which the complex geometry
necessitates the use of the generalized finite element

approach.

5.2 The tower

The MTS tower illustrated 1in Fiqure 5.1a is a lattice
microwave tower having four circular antenna dishes posi-
tioned at the elevations shown in Figure 5.1b. Like the
WTMJ tower, it has five guy levels which are located symme—
trically in planform. However, although the third level has
three guys connected directly to the mast as in the WTMJ
tower, each of the other four levels has six guys joined to
a torque frame. A torque frame is offset from the mast to
give the mast extra torsional stiffness. It is incorporated
in the géneralized finite element procedure by creating a
member with nine degrees-of-freedom in the manner described
in Section 3.2.3. Microwave dishes, on the other hand, are
treated as large masses which are offset rigidly from finite

element nodes of the mast. Details of the procedure to cal-
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culate the dishes' moments of inertia are presented 1in
Appendix B. Also, given in Appendix B for completeness is
the way of determining the moment of inertia of a beam ele-
ment which is equivalent to that of the lattice mast's tri-

angular cross-section.

Computational effort 1is beneficially reduced in any
finite element analysis by minimizing the total number of
elements used and the bandwidth of the final dynamic stiff-
ness matrix [1] . Such requirements become more acute as
sizes increase but they have to be mitigated by the opposing
demand of more elements for usually improved accuracy. Then,
for a given element idealization, the bandwidth can be mini-
mized by a skillful numbering of the nodal points. Of par-
ticular interest here is an adequate but concise representa-
tion of the guy wires which may exhibit damaging
interactions with the mast in the 0.1 to 3 Hz galloping
prone range. Preliminary calculations which approximated the
inclined guys by using pinned-pinned ends suggested a repre-
sentation of 16, 16, 10, 8 and 8 cable elements for the top
through lowest guys, respectively. Thus, there should be a
reasonably accurate three nodes minimum per half-loop of guy
movement below 3 Hz. At least seventeen beam elements was
needed to represent the mast's geometric and material chang-
es and to easily accommodate microwave dishes and guy con-
nections. This resulted in 1014 total degrees-of-freedom and

the optimum nodal numbering gave a bandwidth of 191.



It was found that the lowest 100 or so natural frequen-
cies of the MTS tower involved primarily guy motions. Conse-
quently, the IMSL eigenvalue package was.used only in this
particular example to avoid simultaneously finding these
somewhat superfluous modes in addition to the desired modes
having more guy-mast coupling. The present behaviour con-
trasts with that of the WIMJ tower where three out of the
first eleven modes exhibited significant guy-mast coupling.
The contrast arises because the MTS tower has almost twice
the number of guys with tensions which are 3 to 10 times
lower than those for the WIMJ tower. Consequently, the guy
stiffnesses of the WIMJ tower are more nearly comparable to
the stiffness of its mast which leads to greater coupling at

the lowest freguencies.

Table 5.1 lists those natural frequencies below 3 Hz in
which noticeable coupling occurs between the MTS mast and
its guys. The effects on .such natural frequencies of an
axial load ( from the tensions in the guys and the mast's
own weight ), temperature and icing may be determined from.
this table. 1Indeed, the first two columns indicate that the
axial load has only a marginal reducing effect on a typical
day of ZOBC. The three central columns, on the other hand,
show that temperature reductions from 20°C through 0°C to
-12°C consistently raise the frequencies quite noticeably
and also introduce progressively more guy-mast couplings.

The increase occurs because a temperature decrease produces

- 35 -



higher tensions 1in the guys whose combined ( stiffening )
effect more than compensates the opposing influence\‘of the
resulting compressive load on the mast. Problems with
freezing rain can arise when air temperatures are at or
somewhat below 0°C so that the rain freezes on contact with
a guy to form a more galloping susceptible, asymmetrical
cross-section. For simplicity, however, the "~ 3/8" radial
thickness icing associated with the fifth column of Table
5.1 is assumed to be distributed symmetrically around and
along the entire length of each guy. The difference should
be anticipated to be significant only when, unlike in the
present theory, an off-axis centre of mass is permitted to
twist a guy about its own geometric axis [21]. The third
and fifth columns of Table 5.1 show that the heavy icing
alone reduces the natural frequencies associated with con-
spicuous ( flexurally vibrating ) guy and mast interactions
by up to an appreciable 12% . A similar reduction'happens
too for the omitted, dominantly guy modes and it is caused,
not surprisingly, by the additional mass of the ice. Dis~-
tributed ice accretions with smaller masses, therefore,
should produce almost correspondingly lower percentage fre-
guency changes. Table 5.1 also suggests that a heavy ice
deposit significantly increases the number of interactive

modes which may make the tower more vulnerable to galloping.

Figure 5.2(a) presents an idea of the MTS tower's motion

obtained from a video recording on the day following a
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freezing rain storm and after a loss of communication had
been detected. Later enguiries at the nearest Meteorological
Office indicated that, on the day of the recording, the
affected region had a temperature around -12°C and a steady
wind of about 8 m/s blowing from the north-west to the
south-east. Thus, Figures 5.1(c) and 5.2(a) suggests that
merely the virtually windward guys were galloping apprecia-
bly but only at the second and fourth levels. The icing on
the galloping guys occurred intermittently and was probably
very light because it was difficult to discern clearly.
These guys, therefore, are likely quite close to an ice-free
condition. Indeed, two ice-free modes whose natural fre-
Quencies almost coincide with vibrations actually observed
at 0.83 Hz in the fourth level windward guy and at 1.67 Hz
in the second level windward guy and the mast are also given
in Figures 5.2(b) and (c), respectively. As expected, the
first such theoretical mode involves only the fourth level
guys whereas the latter has coupling between the mast and
the second level guys. Although a combination of these modes
seems to be predominantly excited in the galloping situ-
ation, it is the coupled one which presumably leads to the
misalignment of the mast-attached microwave dishes. The
major outstanding question, however, is : why did the down-
wind second and fourth level guys ( whose theoretical modal
motions, according to Figures 5.2(b) and (c) relate strongly

to the corresponding upwind guys ) barely oscillate in the
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field ? The answer remains uncertain but may be related to
local aerodynamic damping fluctuations caused by small
changes in the guys' effective orientations to the wind [9].

Obviously, this point bears further investigation.



Chapter 6

CONCLUSIONS

An analytical technigque has been extended and applied
here to a symmetrical tower having no off-set components.
Results agree reasonably with those derived from a mode sum-
mation approach and a generalized finite element procedure.
However, the generalized finite element procedure has been
shown to be particularly useful for a guyed tower possessing
often used off-set dishes and torque frames. It is also able
to straightforwardly accommodate even more complicated asym-
metrical geometries. The effects of typical axial loads on a
mast, temperature and icing of the guys have been investi-
gated. Severe icing produces the largest shifts in the natu-
‘ral frequencies and greater coupling between the mast and
guys of a guyed tower. Limited field data suggests that a
coupled mode of the guyed MTS tower could well have led to
misalignment of its microwave dishes after a freezing rain

storm.
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Appendix A

THE ANALYTICAL MODEL FOR THE MAST

An analytical model for a mast in transverse bending will
be developed in the present section. The mast is considered
to consist of uniform beam elements and one such uniform
beam element of length A, acted upon by a compressive load,
P, 1is shown in Figure 2.3, The equation of motion can be
written in terms of the transverse displacement, V(x,t),
where x is the spatial coordinate along the element's axis

and t is time. Consequently,
d?/dx? ( E'I' d2v/dx? ) + p' d2v/dt?
+d/dx ( P av/dx ) = 0 (A.1)

where E'I' is the flexural rigidity and p' 1is the mass per
unit length. Equation (A.1) can be solved by employing the

Separation of Variables and assuming
Vix,t) = v(x) sin(wt). (A.2)

The v(x) in equation (A.2), which depends only on x, 1is
called the shape function. The w is the circular frequency
of the beam element's free vibration in transverse motion.
Substituting V(x,t) from equation (A.2) into equation (A.1)

and solving for v(x), leads to

- 43 -



vi(x) Cy cos(byx) + C, sin(b,;x)

+ C3 cosh(b,x) + Cs sinh(byx). (A.3)

The C; , i 1 to 4, are four constants which have to be
evaluated by considering the four boundary conditions, two

at each end of the beam element. Also,

by = {( a® + g4/4 )1/%2 + g2}1/2 (A.4)

b = {( a* + p4/4 )'/2 - p2}1/2 (A.5)
where

a* = p/w?/EY/ (A.6)
and g* = P/ET . (A.7)

It can be seen from equation (A.3) tﬁat the shape function,
v(x), involves trigonometric and hyperbolic functions of the
circular frequency w . It will be shown later, therefore,
that an exact analytical solution 1is very difficult to
obtain. Hence, a numerical procedure will be adopted to com-

pute the natural frequencies.

Figures A.1(a) and (b) give the sign conventions for the
shear force and bending moment which can be expressed in

terms of shape functions as
V(x) = -Efv(x)''' - Pv' (A.8)

M (x) = Efv(x)"’ (A.9)
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L

(Q; ’—

From Figures A.1(a) and (b)),

Q1 = =V
M; = -Mo
Q2 = -V
MZ = M)\

EJI/V()' Yo+ on'
_E/I}vo L ]
~ETv''' + py'
EIvV'' .

From equations A.3 and A.10,

M,

I

ETb, 2

-ETb 1 3 +Pb 4 0

0 -EI'b, ?

(A.10)

Efb23+Pb2

Qz "EII'S1b13+PSb1 E’IIC1b13—PC1b1 —EJI/Sszs-P52b2 —E/IIC1b23—PC1b2

MZJ

where

“E’I’C1b1 2 —E/I/S1b1 2 E/I’C1b22
€C{ = cos byA , s; = sin by,
cz2 = cosh bN and s; = sinh by}

ElI}S 2b2 2

(A.11)

(A.12)

Equation A.11 can be written in abbreviated form as

{r} = [2]){n} .

From eguations A.3 and A.12,
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Fv1 rV(O) : ’r 1 0 1 0 ] FC1‘
91 V'(O) ’ 0 b1 0 b2 Cz
ST A J r
Vo v(A) Cq S 1 C2 S Cs
,QZJ ._V'()\)J :S1b1 C1b1 Sp_bz. Czbz-_l ~.Cz;J
(A.14)
or,
{U} = [Wl{n} . (A.15)

From eguations (A.13) and (A.15),the end shear forces, Q;
and Q,, and corresponding moments, My and Mz, can be
expressed in terms of the end displacements, v,; and vz, and

rotations, ©; and Q,, as follows

~ -~ p—

Q1 ki1 k12 kiz kig er

M, k22 kaz kag 24

Y o= - L (A.16)
Qz Symmetric k3.3 k34 Va

M k Q

R R LAl

or, in abbreviated form,
{F} = [Rpgl{U} . (A017)



where [Rogl= [2] [wWl-' . (A.18)

The elements of the symmetric dynamic stiffness matrix [ Ryq (w)]

are given as:
k11 = k33 = b1b2(b12+b22)(b1CZS1+b2C1SZ)
k12 = —~kgzg = b1b2(b22_b12)(C1C2“1)+2bp2b225152

kyz = —b1b2(b12+b22)(b1S1+b252)

(A.19)
k1a = -kz23 = biba(by1?+b32)(cz-cy)
k22 = kas = (by1%2+bz2)(bscasi-bicysy)
kos = (b12+b22)(bysz-basy)
where Kpg (@) = (BT/A) ky , i, = 1,4
and (A.20)

A = {2b1b2(1—C1C2)—S152(b1z—bzz)} .
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Appendix B

Properties of Individual Tower Elements

Formulae needed to compute the elemental stiffness con-
tributions of a guy cable, latticed mast or a microwave dish

will be given here for completeness.

(a) Mast with lattice cross-section

Latticed masts wusually have a horizontal cross-section
which is either square or triangular. Both WTMJ and MTS
masts possess a constant triangular form. The following for-
mulae were used to calculate the principal moments of iner-
tia for the MTS masts' flexural stiffnesses. For the case of
the WTMJ tower these values were obtained from reference

[16].

(i) Triangular cross-section

By using the dimensions indicated in Figure B.1,

I = 0,51 = I = (A'"/4 )( 2c2+3r2) (B.1)
XX vy A A

A' = g r? (B.2)
is the cross-sectional area of each (circular) main leg with

radius r.



(ii) Microwave dish

The plan and side view of a typical microwave dish
(mounted on a triangular latticed mast) is presented in Fig-
ures B.2(a) and (b), respectively. The principal moments of

inertia for the axes shown are

M!
I = I = — ( R2 + 4 g2 ) ' (B.3)
XX Yy 4
and
I = M' R2/2 . (B.4)

zz
where M' and R are the mass and radius of the dish, respec-
tively. The d is the mean distance, in planview, of the dish

from the vertical y axis.

(b) Cable Element

The characteristic movement of a guy cable and an illus-
tration of the partial homenclature describing the dynamic
deflection of 1its typical element are given in Figures
3.1(a) and (b), respectively. At the instant shown, point P,
and P, are located at (x;,vy) and (x2,v;) with respect to
the global co-ordinates x and y. The shortest span between
the ends of the complete cable is L but the cable 1is
deforméd due to the pretension force, To, and its self-
weight per unit span normal to the chord, dy, - A guy cable is

usually uniform with a constant cross-sectional area, A,
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mass per

Thus,

unit length,

following the lead of

"

s and modulus of

Veletsos and Darbre [24],

elasticity E'.

the

cable is presumed to have no flexural rigidity. Furthermore,

the component of the cable's

considered not to affect the

librium profile or the tension.

of vibrati

ons 1is

assumed.

Finally,

This is justified

self-weight along the chord is

cable's parabolic static equi-

the linear theory

for typically

observed sag-to-span ratios less than 1/8 [12].

By using the above assumptions, it was shown in reference

[15] that the stiffness matrix of

total six degrees-of-freedom, can

Components in the above matrix are

k k
XX Xy
k
Xy
symmetric

‘—_(L*XZ—J‘H

1 A E'
k= ( )
XX T+p L'
m e
1 qQ
kK = {— =
vy 2 To

2z

Xy

- 50 -

)12

a cable element,

having a

be written in the form

-k 0
Xy
-k 0
yy
0 -k
zz
. (B.5)
-k 0
Yy
k 0
Yy
k
z2z _
given by
1 A E' To
) | )+ ( )
1+p L' X2—X 4
e



Xy

4

where

and

1 AE' 1 q,
( ) ( ) { — (L - x2 - %7 )}
1+p L' 2 To .
m e
To
X=X 1
X2 1 qy
L' = JI 1+ — (L -2 x )}2]3 dx
e X1 2 2 To
1 AE' L gy L
oM = — >y ¢ — ) | )2
12 To L' To
e
X2—Xq
p = pm( )3 .
m L

- 51 -
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(a) (b)

Figure 2.1 (a) A two-level guyed tower and (b) its
equivalent model.

F—x(t) = X sin(wt)

=

\\\%gbocx
3

Q O
77777777777 77777777777

N

Figure 2.2 A single-degree-of-freedom oscillator
whose undamped dynamic stiffness is
Kd(w) = k - wzm.
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—fi- 1

Figure 2.3 A uniform beam element subjected to an
axial load, P.

Figure 2.4 The convention used for beam forces
(Qi, Q2), moments (M,, M), displace-
ments (v,, vz) and rotations (Q,, Q,).
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> Fur Fyr

Figure 2.5 Tbe forces at mast node, P', when P' is
displaced from its original position, P.

f'x X X X ] Storage Number of elements
X X X 0 mode stored
X X X X
XXX Full n?
XX X X
X X X Upper triangle n(n+1)/2
symmetric X X XX
X X X Semi-bandwidth 4n
X X
] X |

Figure 2.6 The form of the nxn dynamic stiffness matrix Kg.
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v(x,t) dynamic
deflection

Y(x) parabolic
static position

i cable
y/
To

tower
(a) (b)

Figure 3.1 In-plane configuration of an inclined cable.
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(a)

Md ol | 1 (o2 M2

(b)

Figure A.1 Positive generalized end forces and moments
(a) "mechanics of solids" convention, and
(b) "finite element™ convention.
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cross-bracing

v
B2 X
main leg

Figure B, 1

Planform of the MTS tower's masf.



mast ———— X

antenna dish Y

(b)

Figure B.2 (a) The planform of the mast and antenna dish
of the MTS tower, and (b) the front view of an
antenna dish.



Natural frequencies, Hz.
Out-of-plane stiffness Qut-of-plane stiffness
of guys included of guys neglected
Mode Analytical Generalized Analytical Generalized McCaffrey's
procedure finite element procedure finite element method [16]
procedure procedure

s

1 L2177 L2211 .2229 L2217 .2213

2 .2290 .2287

s

3 .2338 .2346

4 .2895 .2752

5 .3096 .3085

6 .3099 .3087

7 © L3226 L3224

8 .3299 .3232

9 .3263 .3259
10 3271 .3264

s
T .3415 .3386 .3400 .3378 L3414

Table 4,1 A comparison of the natural frequencies of the guyed WTMJ tower predicted by different
procedures.( Superscript s indicates strong interactions between the mast and guys.)



Natural frequencies (in Hz.)
with out-of-plane guy stiffnesses
neglected
Analytical Generalized McCaffrey's
procedure finite element method [16]
procedure
.2229 .2217 .2213
.3400 .3378 .3414
.3676 ‘ .3660 .3914
.3904 .3869 .4468
.4575 .4461 .4748
.4672 4607 .4759

Table 4.2 Lowest six in-plane natural freqguencies

of the WIMJ tower,
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Natural frequencies, Hz
no axial load axial load included but ice free axial load and
and ice free 3/8"(9.5 mm) ice
20°C 20°C 0°c -12°% 0°c
1.35
1.47 1.46
1.52 1.53 149
1.59 1.59
1.60 182
1.67
1.73
1.89
2.38 2.38 2.38
2.43 2.44 2.43 2.41
2.51 2.50 2.52
2.56

Table 51The interactive modes of the MTS tower tabuloted on a linear vertical scale according to the
corresponding natural frequencies.



