A Thesis
Presented to

the Faculty of Graduate Studies and Research

The University of Manitoba

In Pavrial Fulfillment

of the requiremerts for thes Degree
Master of Science

In Computer Science

.3:)\;"
R. J. Bomford

May 1872

FarAr

ABSTRACT

The thesis describes a package of programs which enables users
of Alberta Gas Trunk Line's Supervisory Control System to develop
programs and integrate them into the system in an on—iine background

mode. The package consists of three independent programs:

(i) UTILITY - which provides the standard utility functions
such as:
- listing cards or tape,
- copying cards to tape,
- editing source tapes,

which are necessary for the preparation and

updating of source proarams.

(ii) SYMBOL - which assembles ﬁfnérams“written in XDS Symbnl

PUESESI—

Assembler language (prgpéred by UTILITY) into

machine code for the XPS 920.

(iii) LOADER - which loads the machine code (produced by SYMBOL)

S

and integrates it into the Supervisory System,

ii

A brief history of the evolution of Alberta Gas Trunk Line's
Supervisory System is given with a view to demonstrating the justification

and urgency of the package.

The appendices contain examples of use of the package within the

environment of Alberta Gas Trunk Line's Supervisory System.

ACKNOWLEDGEMENTS

| wish to express my sincere thanks to Professor J. Wells, my
supervisor, for his advice and assistance which have been essential

to me in the preparation of this thesis.

Special thanks to Dr. S. R. Clark (Victoria) for his interest,

comments, and infinite patience.

| would also like to thank Mrs. J. Hauser for her help in typing

this thesis.

Abstract

TABLE OF CONTENTS

Acknowledgements ..veuiiierseassosesnsonssansossasanssasssanssnanses

Table of

CHAPTER

1

FigUPES iveroinnsossosssnsceasscnnanononsansssns e

History of Alberta Gas Trunk Line's Supervisory

Control Systemooonveeiivnennnn

1.1 Original Systemceieireennsnsneneesoasenassnonaas
1.2 System Upgrading ...veveeneneeennroonnosenecscnansans
1.3 Program Developmentccvvvnne. e e e sreseracranre
Design Philosophy ...eeiiiiiiiinreneneneneeensnoensnanenss
2.1 Integration with Existing Systemc.oiiveninnn.
2.1.1 EXECULIVE ittt iininonensonsonsnsnnnensons
2.1.2 1/0 SyStemM..veeeeenseeeocesoosronnscososannnssn

2.2 Access tO Programs ...eeeeeeseecocssscnsssasonvasanson
2.3 User Interface ...viiinneienreieennsrenenenennncansans
2.0 Error Analysis wiviuieirreeennonsansossansassasssnnses
2.5 StatisticsS iieeuneerioneneasesceassosncnassosnconnas
2.6 Operator Interventioneeeeeeeerencennreasnanns

-y -

vi,

Page

CHAPTER
3 Utility R R R R R PR REPRRE 33
3.l AbSEraCt. . iirenireeitaetiorenssrensaoosnossscsnanans 33
3.2 User Interface..viieiiiseencnsennsssneseescacennnnsan 33
3.2.1 Command Input Device ..vieeeerecrernencnsnnnes 33
3.2.2 Source Input Device ..ivveerrnennncssnioncnnnns - 35
3.2.3 Updated Output Device..veweeeeneenncanennnonss 36
3.2.Lh List Output Devicevvveirreneenennenennens 36
3.2.5 Operator Message Devicecveeeeveennanens 38
3.3 Command LanQuagecuoeeveenrocaconancesossoonsnses 39
3.3.1 General . .i.iiiiiieriinneionncennescnansonnsenns 39
3.3.2 ANalYzZer..iuuieeieerineosronrosnniasonsonennnns 43
3.3.3 Syntax Descriptionc.ieeieeresenecsonnnas L3
3.3.3.1 Blocked By......... I ko
3.3.3.2 Commands Fromceeeensnnsnnsoenns 50
3.3.3.3 Copy eeereesetaaar et as e 50
3.3.3. End tiii i i i i i i e 51
3.3.3.5 List Commands.....ccveerenecennnnsonns 51
3.3.3.6 LISt tviiiiierneonennsnsancncasncnnnns 54
3.3.3.7 Page tiiiiiiii it ittt e 5k
3.3.3.8 Pause Cetseceacee et a et sens 55

3.4 Program Size

Symbol

3.3.3.13 Tabs At

3.3.3.15TX |

L.1 Abstract

h.3.1
L. 3.2
4.3.3
L.3.4
4.3.5
L.3.6

Program Statistics

Assembly Options

4.3.6.1
4.3.6.2
4.3.6.3
4,3.6.4
4.3.6.5
4.3.6.6
4.3.6.7

¢ o o

oooooooooooooooooooooooooooo

oo LY

...........................
............................
Rewind ciiiiiiiiiniinninnn

........................
...........................

oooooooooooooooooooooooooooooo

vii

59
59
59
67
68
72
75
78
78
79
79
79
79
79

79
80
80

Page

B 3.6.8 TX eeeiieinianeeesrenensonannnnasnsnss 80

4,3.6.9 'Delta Records''....ceveeuveeennnaenns 80

L.L Standard Binary Language ...ceeeeecococeseosenscnasns 82
4.5 Program Size and Run-Time Statistics ..ocvvvencenaens 33
LOADER L.t vtviieevovacacnsonsnssossssessssenssvsaasonsans 86
S.1 AbStraclt v.oeveieceeessseesssscaasnsssossnssnasssansns 86
5.2 ObJeCtiVeS tuvevveoneniasosonncnsaosssacsencnsasnnons 86
5.2.1 Diagnostic and Loading Information «.ccvevvn.n. 86

5.2.2 Complete or Partial Load «vcecencecenenciananns 87
5.2.3>No Restrictions on Program Size EERRTRRE 87

5.2.4 Multiple Input Tapes «eeeeeceeaoronansvecnsanns 88

5.2.5 System SECUFity oeveeeeesooanosoroonneasnaeens 89

5.3 MEEhOG « s ennnnnnenesenennernessesseseneeneenneones 90
5.3.1 General ..eveveerinnennns Ceeeeeises e 90

5.3.2 Handling Binary Records «..ceveeecrseceecnnanns 93

5.3.3 Resolving External References .«.ceevceeeranaannn 98
5.3.L Load Address Map eeceeveeraronennacoascnocsnens 101

5.t User COMMANAS «uveveeecercsssosossssnsonsasosoncasoss 103
5.4,1 General .veeeneeass B R RS 105

5.4.2 Specific COMMANdS «vvvrennreaseesroesennnanennns 105
5.4.2.1 Rewind cvvvvenenenennns s eeaosrese e 105

5.4.2.2 New System.eceeerocannacns Ceeeeeneeeeaa 105

LT I T ¢ o

L N T 1 3 e

B, 2.5 DUMP . i iiienierersavennonsardanens

B, 2.6 TX tiiiietieeeeenosanssnanosonssnnsns

5.5 Program Size and Run-Time Statisticsovvvuueees

6 Conclusions and Further Developmentsoeeeeeenenncns
6.1 Utility Development +..eieereroenrnoencnanoennnnnns

6.2 Symbol Developmentieverervecensenncnonansanas

6.3 Loader Developmentciveeeeeeseseencsessansoonsns

AP PEND I v s ittt eeeesooseanssscessonssssssoensosnsnsnsnsnaosssns
1 Use of the Package .c.veeeeeernenrecnsarsroccosensssossnsa
REFERENCES 4 ittt iterieeneccosacaansansasasoesasssonssnsenssanssns

Page
106
106
106

106

FIGURE

Il

U i
. .

TABLE OF ‘FIGURES

PAGE
November 1967 Configurationc.eveveennnnnnaneenns 2
January 1972 Configurationcoeeiiiiinnnennnennanes 5
EXECULIVE viuvvervsonsnscensonsnononnes eeeeceecearaaees 14
Card Read Handlerviiiirieerrenreecvecnennsosnnnnsons 19
Read Magnetic Tape e tesesasenseeeansasstestenens s 21
Write Magnetic Tape v.vuveeeeeesnsncnsocnrosnsocnsnanns 24
Typewriter INPUL L uueieeveeensroroesonnnsneansnssosasces 34
Print OUEPUL vuvreeveveneoneonsanocnccnssoasansnossasoes 37
Utility Controller. iuueeeeereseeonreconesosnscnsnsnnnnes L2
Analyzer ...civeeeeaess et teaeseeeeeeaseat e Lh
Copy/Skip/and Listeieiirrrennnenensannencnassannsas 52
Symbol Controlleriieieenreeeeonnoeennsonnsnsnnanes 66
Overlay Handleriiiinneereesenneonesseasssanannsos 70
Search RAD Resident Symbol Tablesveveviivnenrannnns 7L
Purge RAD Resident Symbol Tables eeereananens 77
Loader Controllerieieeerroenoerncnensonnnasnansnons 91
Delta Record Handler ..uveveeeeeeeenesononecannosnnsnanns 94
Data Record Handlercecvvuevennanns Ceeerseerasenen 95
POP Reference and Definition Handlercaven... 96
External Reference and Definition Handler............... 96

- X -

FIGURE

Al.

Al.

Al.

Al.

Al.

At.

Al

7.1

End Record Handler iiieiiiiirenereeneancnnnnns
Resolving External Referencescvveevevenannnen
Sort Algorithm iiiiieiieievenenensooarocarans
Console Typewriter 1/0 PN

Generate Coreloadvevivereenoonsoonnaossncnons

PAGE

Xi

CHAPTER |

HISTORY OF ALBERTA GAS TRUNK LINE'S SUPERVISORY CONTROL SYSTEM

1.1 ORIGINAL SYSTEM

In May of 1966 Alberta Gas Trunk Line contracted Automatic Electric
(Canada) Limited to provide a computer controlled Supervisory System to
facilitate centralized control and monitoring of Alberta Gas Trunk Line's

pipeline system.

The initial system design was undertaken by Automatic Electric in
cooperation with Alberta Gas Trunk Line; Automatic Electric provided the
hardware and software expertise while Alberta Gas Trunk Line provided
the applications objectives. This was the first such system designed
and built by Automatic Electric; they planned to develop Alberta Gas Trunk
Line's system as a prototype and to market the system as a supervisory |
package with their CONITEL 2100 communications hardware, Because the
system had considerable market potential, Automatic Electric spent a good
deal of time and expense incorporating sophisticated programming techniques
which normally would not have been justified on a system of this size.
After spending five to six man years developing the system, Automatic
Electric Management abandoned plans for marketing the system and advised

their personnel to complete and deliver Alberta Gas Trunk Line's system.

The original system is illustrated in figure 1.1.

A/

— W BUFFER

XDS 920

BK 24 BIT Wokns

I

PATER TAPE

ReRder

—

——
PhPeErR. TAPE

e

Figure 1.1

SELECTRIC

Y BOFFER -

HITH IRNTVERLACE

/ RAD
3 24 BT

\ WORDS

tAupEL. ' B

TYPEWRVTER

TYEEWRITERS |

November 1967 configuration

A

] MOLTIPLEAER

T
A7 DiseLay
/7 AND
L CoWTREOL
CONBOLE

—1 Ling Burren

' '
t []
¢]
’ .
t 1

COMMUNICATIONG
Lings To
FIELD REMOTES

(24)

As a direct result of the cooperative approach to system design

and Automatic Electric's subsequent business decisions, Alberta Gas

Trunk Line received a Supervisory System with the following properties:

(1)

(i)

(iii)

The system was overdesigned in the ''Supervisory'' area.
The executive and operating system were considerably more

sophisticated and complex than required.

The system was underdesigned in the ''Applications'' area.

The applications programs were an unsuccessful attempt at
satisfying Alberta Gas Trunk Line's Gas Control require-
ments due to a large extent to the fact that Alberta Gas
Trunk Line had not analyzed their system requirements
adequately prior to specifying the system. The requirements
of the Supervisory System are still growing and changing as
experience with the system leads to a better understanding

of the functions it must perform.

The system was almost completely neglected in the ''support'
area. Such essential support programs as utility routines,
assemblers, loaders, debugging aids, test routines, and
simulators were generally ignored or were far below standard.
The obvious reason for this inconsistency was Automatic
Electric's decision not to market the system commercially.

Because support software is typically the last developed it

was the first area to suffer from Automatic Electric's

haste to complete the project. The less obvious explanation
for neglect in this area was Alberta Gas Trunk Line's lack

of experience, and their inability to forecast the programming
changes necessary to keep pace with expansion and growth in

the pipeline system.

1.2 SYSTEM UPGRADING

The initial system did not permit in-house program development
and updating since such peripherals as card reader, line printer, and
magnetic tape drives were not purchased. The first system update, done
in the fall of 1968, was taken to Chicago and completed with the

facilities and staff supplied by Automatic Electric.

Although of a minor nature, the first update did demonstrate that
an alternative to travelling to Chicago and using Automatic Electric
staff and equipment had to be developed. Alberta Gas Trunk Line
proceeded to expand the system to enable in-house program development
and system updating. The hardware was upgraded as illustrated in figure

1.2.

Alberta Gas Trunk Line had considered maintenance of the Supervisory
System as requiring only extensions in the applications area - e.g.
adding a new station or changing the format of an existing station and/or
its associated reports. Alberta Gas Trunk Line had failed to appreciate
that the system would have to evolve in overall structure as it was used,

and as Gas Control developed new techniques centered around the real-

Figure 1.2

yz

A0S 920

bl 24 BT
WOoRDS

i

/

W BUFFER

Y BUFFER -
WiTH INTERLRCE

s S —

—

——...

PrOPER ThPg
READER

—— o
PrReeR TAPE

Pumatt

Y

_/’-
— 2. IBM
SELECTRAC

RAD

6.55 K 24 B\T{
WORD S \

m{:

TYPEWRITERD

’ Carp

Reppur

7

Lbme /
P&\m TR //

MAG TAPE
DrwvES

MoPEl. B’
TYPEWMTER |

January 1972 configuration

——-l MULTIPLERER

D\SP\.}\\)
AND
CONTRODOW-
COMNSOWE

1 LINE BUFFeER

]
|
1
}
'
\

COMMUNILICATIONG

LINES TO
FLELD REMOTEY

(%)

U

time system. Experienced programmers were required to undertake the
program development as existing staff did not have a programming
background. Coincident with the purchase of the additional hardware,

new programming staff were hired - of which the author was one.

1.3 PROGRAM DEVELOPMENT

The first task was to evaluate the present system and to update
bit since it had not been updated in approximately a year. The changes
in the applications programs were extensive, as a large number of new
meter and compressor stations had been ''patched in' over the year
through the 1/0 typewriter. The maintenaéce programmers responsible
for the modifications had either transferred to other departments or
had left the Company, leaving the programming group with an unfamiliar

and poorly documented system.

Although the line printer had been purchased for off-line program
development, its speed relative to the typewriters made it imperative
to incorporate it into the real-time system, and to rebuild all system
reports for the printer. Virtually all system reports had to be
redesigned and rewritten since the existing reports had been written for
30 inch logging typewriters and had to be reoriented to 120 character

lines.

An investigation of the existing software and hardware for

program development proved to be most discouraging:

(i)

There were no key punches or key punch operators on

site - all programs had to be written on coding sheets
and sent out for key punching. This required a three
to four day turn-around for the modification of a few

cards.

(ii) The existing software for program development was ''off-

line'', and very inefficient. To compound the problem,
Gas Control was becoming more dependent on the Supervisory

System and a conflict of interest rapidly developed.

An evaluation of the system support software illustrated

severe inadequacies which had to be corrected before efficient

program development could be possible. The software provided

consisted of the following three programs, all off-line:

(i)

An EDITOR program written in FORTRAN Il and still
containing several "bugs''. The program was extremely
slow and provided a restricted set of commands designed

specifically for tape editing.

(i)

(iii)

An ASSEMBLER program which was the XDS supplied SYMBOL
Assembler with minor modifications made by Automatic
Electric. The SYMBOL assembler itself operated as

specified by XDS, the problems being:

A1l symbol tables were core resident. With the size of

our Supervisory System and the number of global symbols,

the core available for symbol table expansion was inadequate
with the existing data base design. It was necessary to
segment the system and load only the essential symbol tables
for each individual system tape in order to keep within
available core. Assemblies had to be set up several times,
with a consequent loss of time, in order to eliminate as

much redundant information as possible.
There was no provision for ''conditional test assemblies''.

A LOADER written by Automatic Electric which operated as
specified but which was far below standards which should
have been expected. It was admittedly designed for the
initial hardware configuration of paper tape input of object
code and typewriter listing of the final symbol table (Load
Address Map). The programmer-analyst utilized the computer
console (lights, push buttons, and toggles) as the user

interface rather than the input/output typewriter. It was

impossible to use the program without a detailed list of
program halts and a program listing. Output of the '"'LOAD
ADDRESS MAP'' was not sorted and therefore was very difficult

to search visually for a specific item.

It was clear that support software had to be develbped in order
for program development and system updating to take place. Priorities
had to be established since any delay for extensive support program

development would be intolerable to a system so badly in need of revision.

Due to the condition of the system and our unfamiliarity with it,
an iterative approach to system updating was adopted. The majority of
the computer time was spent on editing and listing tapes with an infrequent
assembly to indicate the remaining ''bugs' to be eliminated. The initial

improvements made in the support software area were as follows:

(i) A minor modification was made to the assembler,
permitting the user to specify options necessary
for ''test assemblies' e.g. list all or list errors,
binary output (of object code) or no binary output.
The typical assembly time for ''test assemblies'' was

reduced considerably by not requiring a complete listing.

(ii) An off-line UTILITY package was developed to replace
the tape editor written in FORTRAN. The package was
programmed in SYMBOL and was therefore able to take
advantage of hardware features not available to FORTRAN,
e.g. tape scan features, continuous tape reading, etc.
The significant result of this UTILITY package, aside
from the tremendous saving in time, was the experience
gained which formed the basis for the present on-line

version developed and incorporated into this thesis.

(iii) The LOADER was modified to permit binary input of object
code from magnetic tape but was otherwise left virtually
intact. Very little downtime was required for system
loading at this point, and the time necessary to redesign

and reprogram the LOADER could not be spared.

In spite of the significant improvements in the support programs,
the first major update took in excess of six months to complete! The
hardships suffered by Gas Control for that period are incalculable -
because of program development they were without the Supervisory System
for an average of three to four hours a day. The emergency backup system

proved to be inadequate and was rarely used.

At this point Management was approached with the proposal that
the author be given the necessary time and assistance to develop as
a thesis topic a package of programs which would enable '‘on~1line'’
program preparation and system updating. Management was easily
convinced of the necessity of such a package and guaranteed their

cooperation.

CHAPTER 2

DESIGN PHILOSOPHY

This chapter outlines the common areas of design philosophy
arising as a consequence of the package being designed for the same

operating system and the same users.

2.1 INTEGRATION WITH THE EXISTING SYSTEM

Because the package is designed for an existing environment, the
interface with the operating system is critical, and will be described

in some detail for those areas which require special attention.

2.1.1 EXECUTIVE

The real-time executive is a standard multiprogramming executive
employing simple round robin scheduling. The executive allocates the
remaining core memory not used by the core resident operating system to
four program partitions associated with job priorities according to the
following table:

~PRIORITY FUNCTION

1 Data retrieval and system scan.

2 System calculations and report formatting.
3 Output of summary reports (background).

b Background jobs such as:

- program patching and inspection,
- system simulation,
- program development and system updating.

_,]2 -

13

The executive algorithm is flow charted in figure 2.1. The
queueing scheme is FIFO and no job swapping takes place. Once a job
comes to the head of its job queue, it remains the only active job
in that priority until it is completed or otherwise released. Lower
priority programs are effectively blocked from the system until a
higher priority job requests /0 and waits fdr the 1/0 to finish.

When a job is completed, the executive drops to the next lower priority

to prevent blocking of jobs when a high priority queue builds up.

Although the executive determines ''when'' jobs are to be run,
other portions of the operating system initiate the jobs by attaching
them to their job queues. Jobs are linked to their job queues when

any of the following external stimuli are sensed:

(i) Line Buffer Interrupt - Which saves each block of data

from a remote station and queues the data processing
routine when the data is complete i.e. information from
each remote is sent as several '‘blocks', each causing an

interrupt to.the CPU from the line buffer.

(ii)Push Button Interrupt - Which queues a program to analyze

the cause for the interrupt and to execute the desired

function.

ExgcuT\E

14

é‘ 3
:
i
N i
s ——J ~
]
JTOBS ATTACHED | /\s
'E)\] WTERRUEY E P \(
Habwers |~ 7777 J08 AQUELEIN)
EreTy 7

\
Actwe' geseT
WHEN TOB
QUEVED

gt

<

THIS WIRST

SET ACTWVE,

FIROT Chv.\a

QUEVE Busy, 9

REQUE c;r\\
CORELOMD

CAVLT

Resey Quens |
B'L\G\; Aeg £
TSy _CALL

REGI\STERS

TRAMSFER
To

CORELOAD

Figure 2.1 Executive

(iii) User Requests - Which queue jobs as commands from the 1/0

typewriters are analvzed,

External interrupts cause the executive to restart its
loop at priority one since the interrupt may have queued

@ hicher priority job than the one beirg exeruted when the

interrupt ocourred,

Integration of the packace with the executive presents no difficulty
since it is designed to handle such jobs at user request (iii). An
initial consideration is to ensure that adequate memory is available.
it was possible to 2llorate only 4K words of core memory to priority four
without seriously degrading the operation of foreground jobs. Experience
with the XDS SYMBOL assembler indicated that auxiliary storage would be
necessary to supplement the limited core available. RAD storage provided
the logical solution because of its availability (500K) and its fast

access time.
The only core resident structures in the system are:

{1} the executive,
(ii) the 1/0 system,
(iii)the interrupt handlers,

(iv) the system POP library.

16

A1l other information resides on the RAD in structures known
as coreloads. This structure has been created to provide a means of
referencing RAD structure by name, with the SYMBOLIC reference being
assigned a RAD address at load time. The scheme is analogous to that
provided by SYMBOL for inter-program communication of SYMBOLIC core
locations, i.e. external definitions and external references which are
associated at load time. A coreload definition is created by prefixing
a group of source programs with a ''delta record' which provides the
LOADER with the SYMBOLIC name and execution bias to be used (see
Sections L4.3.4 and 5.3 for a further description of delta records).
All programs between delta records are considered to be part of the
previous coreload and therefore the length of the coreload can be
determined by the LOADER. The RAD address associated with a coreload
requires a complete word (24 bits) to represent it as 14 bits are
required for the starting RAD address and 8 bits are required for the

length (in 64 word ''sectors'').

The LOADER relocates all information to its execution address
determined from the 'priority" supplied in the delta record. Dynamic
program relocation is prohibitive because of the absence of base-

displacement addressing.

2.1.2 INPUT/OUTPUT SYSTEM

The objective of providing an 1/0 system in a real-time
environment is primarily to provide a scheduling mechanism which will
maximize throughput by overlapping processing and 1/0. Providing a
standardized and efficient package allows the applications programmer
to take full advantage of the capabilities of the peripherals without

becoming involved with the specialized techniques of 1/0 programming.

Absence of interlace hardware on one of the two /0 channels
makes overlapping of 1/0 and processing an impossibility for the

"higher speed' devices on this channel for the following reasons:

(i) Once 1/0 is begun the CPU must be able to transfer
information at the rate of the device or a transfer
error will occur., The physical rate of movement of the-

device generally determines the minimum rate of transfer.

(ii) The absence of an interlace to synchronize block data
transfers makes it necessary for the CPU to word transfer

information on this channel.

(iii) The operating system is not re-entrant and therefore
disables the interrupt system when performing ''system'
functions. The interrupt system is disabled for sufficiently
long periods to cause a transfer error as in (i) above for

"higher speed'' devices.

18

The above considerations make it necessary to disable the
interrupt system and dedicate the CPU to the device for such peripherals
as card reader, line printer, and magnetic tape. A line printer handler
was incorporated into the 1/0 system because it was required by so many
programs but handlers for the magnetic tapes and card reader, being in

lesser demand, were included only in the programs requiring them.

The handlers to be described are those in UTILITY as they are

representative of those provided in each of the programs.

(i) CARD READER
The handler flow charted in figure 2.2 reads eighty column
BCD cards from the card reader. Feed check and validity errors cause
a message to be output to the user, requiring him to restart the job
to reread the card. A time-out routine is incqrporated to produce
messages to the user at regqular intervals if the card reader is not

ready.

(1i) MAGNET!C TAPE

The magnetic tape handlers_take advantage of the fact that
all records are fixed length card images to utilize a continuous read
(or write) technique. Overhead is decreased considerably by requiring
only a single read (or write) to dispose of several records in a buffer
area, without stopping and starting for each inter-record gap as is

conventional. The gap is read (or written) but the tape is given a

R

READ CARD

19

DISABLE N\
WITER G RPTS
W c\\rw\rg/
FREE /

AR

UTERT REEDER

l

.

ST /
oR ‘
’\ \fsa(z) (READ L WoRrp [
TR]
] ¥
- , Ft’k
q—-1 T FEED CH\ECK i*“"’\ AT
. N
“iL
—-/
T needlY AL
\jp._u)\\y C“‘CC‘MQ‘}'M\C&ECK/I/
N
CEpnsuen? >l

J—

R
WoT READY

MESSAGT AT Y

REGULAR.
MTERYALS

AD\;;\NCC 'ru
NEZT WOR D ‘

e N
DISCONNTET,

READER AT
ERNARLSE /
UTE LTS

Figure 2.2 Card Read Handler

20

command to continue before it has had time to stop and become not

ready.

The buffering scheme saves considerably on overhead since the
tape is moved only when the buffer area becomes empty (or full).
The number of records that can be handled by one read (or write) is

a function of:

(i) the buffer size,
(ii) the number of records per block (blocking factor),
(iii)the maximum time the interrupt system can be disabled

without losing information from the line buffer.

The handlers employ a time-out routine to produce messages to the

user at regular intervals if the tape unit is not ready.

READ
The magnetic tape read handler is flow charted in figure 2.3.1.
Each call to the handler will return the next record from the read

buffer; the tape is physically read only when the buffer area becomes

empty.

WRITE

The magnetic tape write handler is flow charted in figure 2.4.1.
Each call to the handler will store the record in the write buffer; the

tape is physically written only when the buffer area becomes full.

e

y

READ
MAGRET\C

21

RETURW,

(ERD-SECT vOr)

\

N\
SET ue AN

ReESET EOF
COUnNTER,

H
!
i

UNIT DePErnbeERNT

C Ot17ANDS /
O W

OO, S

RETLRN,
(ERND-FUWE)

o
™.

< heND EOF T

DIsSABLE N . .
INTERRUFTS LFE B\)FFEP\ € K?; Y

ThPe § Cuanner,/

RESEYT woF

READY 7
¥
E
2.3.2 -
END-TAPE "\”éﬁ'{ém;xpa’ [RE®wD
Se? MESIAGE
N
CoPy pexrY % ‘
Recupt YO RESET EMD-TAPE:
RECORD BUFEER

QETU&N-&
(vopsaaL)

Figure 2.3.1 Read Magnetic Tape

T0

ReETurw

Ergcuiweg

22

. 1 REY Ky% I°Y
(=

END - TAPE
START TAPE

LD -TAPE
e

BLoaes N
BUFFER

ADUANCE

ADNANCE WIREINE KT BOF |
WwWooeo COUMTER {
ADTRESS SEY ToOF E

B
)

TBLOCK LEWLIW |

Figure 2.3.2

ERROR!

H

3>

ADVANCLE
BLCcks N
BuFFer

)

‘ EYURY
Y ' R R

Yo

EYE COTIWE

END -TARS
Mpp?

ADVANCE
BLOLLS W
BurFfFe R

WLTLPLE

YRLO O LENGTH
grtoR’

Figure 2.3.3

=1
N

S
BTN

Perunw
To

CYECLTWLE

REYRyp- Rery-|

Thte ROAD
eep orY

b 1y
WeaaT
=08
USTER

D\GARLE
INTERRU ET1S F
TAPE k CHANNEL

\'LEJ\D\)

\
/

RETUR N

23

AVAR (G
TIAGNMET\C
TAPE

74
Co?v RECORD
To
RurFe &

o \~\
SEQUEME
CromM

BLANK
S ERVENLE
NUMRE R

ADD In C;QE [laha My
TO LAST
SEQUENCE

b Y
Lol a4

'8
RLO eI
FuLl?

Figure 2.4.1 VWrite Magnetic Tape

A

REWIND

TepD - oF-TAPEY

DISARLE

N,

INTERAVWPTS \F \

TRPES Canmer, /o

EEE

/

Gor NEYT
BLOCK

#»—/).1 k.
e w AT
» YV Fue R FOR
PROTELCTEDY VS ER
P
ReeETury

@

SET BufFee.
£t PT\/

REWR\TE <= 2_

e

RECET ENG-TAPE

STARY TAPE

o

WRATE

Figure 2.4.2

2 Loty

i

RETURW
7o

ExEQumvE

Figure 2.1&.43

\\j%?& & CﬂANN€;7>

RETURW
0
BrecuTwe

INTEERLPTS \F

FRET

DSARLE

\,

ERASE
bloa
REVERSE

REWRA\TE =e—
PEWRYTE - L

2

DisARLE N

\

INTERRUFTS \F \

TAPE & CHAMNEL
FREC

t

QEYTJKN \

STAPE WRATE
ERRORY

V@;QLE

N
N,

\

WTERRVETG &\
TAPE € CUANNEL

rRee

¥,

<

N

TO
EXECOTIWE

26

27

2.2 ACCESS TO PROGRAMS

Each program is requested by typing its call letters - UTILITY,
SYMBOL, or LOADER - as a standard request through either 1/0 typewriter.
The program will be loaded only if no other jobs are active in that
priority; otherwise a message is output advising the user to try later
rather than queue the job to its job queue. Since the user must be
available to provide the options requested by the program, it may not
be practical for him to wait for the job to come to the head of the
job queue if a long job (e.g. a simulation) is already in progress in

priority k.

2.3 USER INTERFACE

The software and hardware forming the user interface were chosen

with the following primary considerations:

(i) Device Speed and Availability

The physical size of the Supervisory System in source form
(100,000 records) dictated very early that all source would be kept on
magnetic tape and revisions only (i.e. updates) would be input from the
card reader. RAD storage is used whenever possible because of faster
access and because RAD 1/0, being on the interlaced channel, can be
overlapped with processing. Any large amounts of printed output are

routed to the line printer in preference to the typewriter.

28

The design of the 1/0 system makes it necessary to ensure
externally that conflicts over use of peripherals do not occur.
Conventional 1/0 in this system is not spooled but queued directly
to the device queue and input (or output) as soon as possible
(FIFO). Because more than one priority may be competing for use
of the line printer, it is necessary to reserve the printer for the
job in progress and not permit other priorities to share the device.
Background jobs are required to set a ''reserve printer' flag if they
must use the printer and to reset this flag when they are finished.
The /0 system aborts all other requests for the printer as though
they never occurred until the flag is reset. Background jobs are
given this priority because their output is normally of relatively
long duration and because all system output is ''on demand'' and can
be requested again when the background job is completed. See Section
2.6 for a means of allowing urgent reports when a background job is

in progress.

(ii) Real-time Environment

The programs are to be run as 'background' jobs which implies
that they cannot interfere with or delay the ''foreground' task of
moni toring and controlling the pipeline. All instances where the program
is required to wait for status to change in order to proceed (e.g. device

ready, user input) are in a "wait loop' which returns control to the

23

executive between tests, allowing other jobs to use this non productive

time.

(iii) User
Use of the system is on an 'open shop' basis where each
programmer is responsible for running his own job. The primary user
of the package is the maintenance programmer whose responsibilities
include routine system updating and maintenance. All communication
between the program and the user (e.g. error messages, user requests,
and user input) must be specific and unamb{guous since the user is

neither an experienced programmer nor an operator,

(iv) Flexibility
It was known that areas of the specific programs would undergo
numerous revisions and improvements before the user requirements were
satisfied. All programs were segmented and built as modules which can
be individually modified or replaced. Command decoders are constructed
so that the syntax of the commands can be changed without restructuring

and reprogramming the associated decoding and analysis logic.

2.4 ERROR ANALYSIS

Error analysis is performed at two levels in each of the programs:

(i) At the program level

Diagnostic messages output as a result of detecting operational
and logic errors during execution are detailed and specific.

The programs are written to trap as many errors as possible

30

and to force the user to correct the problem before
proceeding. All error messages have been designed and
formatted to provide the user with the maximum available
information in order that he may debug the problem inter-

actively.

(i1) At the user level

Diagnostic output as a result of detecting syntactic

errors in user input is over-simplified and provides no

specific indication of the reason for the error other than

the message ''SYNTAX ERROR".

The simplicity of the command language structures permits
this approach since the user is able to visually detect almost all

errors with no difficulty.

2.5 STAflSTICS

Each program in the package provides statistics output when the
job is released, giving job time in hours, minutes, and seconds and
total progrém usage (since the last system load) in hours and minutes.
These statistics are useful for estimating programming activity and
for projecting system time required for future projects. The format

of this line can be seen in the examples in the appendix.

31

2:6 OPERATOR INTERVENTION

It is frequently necessary to delay or abort the job once it

has started for either of the following reasons:

(i) Errors are discovered which make continuing the job
unnecessary.

(ii) Gas Control may require a report and cannot wait for the
job to finish.

Three commands are available through the 1/0 typewriter which

accomplish the necessary intervention:

HOLD - which causes the background program to empty its print
buffer, skip a page, release the printer, and wait for the job

to be released or restarted.

CONTINUE - which causes the background job to reserve the printer

and continue from the point of interruption.

RELEASE - which causes the background job to empty its 1/0 buffers,
skip a page, release the printer, and release the job from the

sys tem.

These commands are input to the system command decoder which
operates in a foreground priority and therefore will take precedence

over the background job. The commands alter only the ''reserve printer”

flag which the background job must test to initiate the action
described. Requesting the commands when no background job is active

has no effect on the rest of the system.

32

CHAPTER 3

UTILITY
3.1 ABSTRACT

The UTILITY program provides an on-line means of performing the
standard utility functions necessary for program preparation and

updating. Such functions as:

(i) listing cards / tape,
(ii) copying card / typewriter / tape input to tape,
(iii) editing tape with changes from cards / typewriter,

are typical of those implemented.

3.2 USER INTERFACE

The user interface consists of five functions assigned to 1/0

devices according to the following:

3.2.1 COMMAND INPUT DEVICE (CID)

This function handles input of all user commands,
including new source records. This function is assigned by
default to the card reader but can be assigned by the user to

the typewriter.

The handler incorporated for reading cards is described in

Section 2.1.2 and is flow charted in figure 2.2.

Although typewriter 1/0 is handled by the |/0 system, the
handler flow charted in figure 3.1 is required to perform the

following functions on each input line:

_‘33 -

g To CARD

TYPEWRITER
INPUTY

A/
GET LinE
Wl

FRO™M A

TOSVS /

INATIALLVZE
To

CHARACTER L

l

Pek WP
CHARACTER

CONVE RT \

RBLANK

FuD TAG 2
/ ' \ TABS

TAG wirtrd
BLANKS

/ ADUARNCE
T > TO NERT

Figure 3.1)

CRARALTE R

/
fLinNE 10O

LonNGY

Typewriter Input

34

PAD wiTH

3,

N T BLANKS IO)
CWJM&E’/

NI, 4

RETURN

35

- All typewriter spaces are converted to card blanks
for compatibility with card input.

- All records containing tabs are reconstructed to ful]
80 character images. The SYMBOL tab list will be used
by default (columns 8, 16, 36, and 73), unless a tab
list is assigned by the user.

- All records are padded with blanks to a full 80
characters.

- Detection of a '"delete' character will delete the line

and request the next.

3.2.2 SOURCE INPUT DEVICE (SiD)

This function handles input of all source information to be updated.
This function is unconditionally assigned to magnetic tape unit one and
is referred to as the "INPUT tape''. The device is not referenced when
generating a new program from the CID as there are no records '"to be

updated''.

The handler provided for reading magnetic tape is described in
Section 2.1.2 and flow charted in figure 2.3.1. If a blocking factor is
not specified, the handler assumes one record per block (unblocked). If
the blocking factor on the input tape is greater than the specified (or
default) blocking factor, a '"block length error' will be detected and an

appropriate message will be output to the user.

36

3.2.3. UPDATED OUTPUT DEVICE (UOD)

This function handles output of all source records. This function
is unconditionally assigned to magnetic tape unit two and is referred to
as the "OUTPUT tape''. The device is referenced in all cases where a

program is being generated.

The handler provided for writing magnetic tape is described in
Section 2.1.2 and flow charted in figure 2.4.1. |If a blocking factor is

not specified, the handler will write one record per block (unblocked).

3.2.4 LIST OUTPUT DEVICE (LOD)

This function handles listing of all commands as they are executed
and all specific listing requests. This function is normally assigned
to the line printer and can be changed only by changing the device assign-

ment in the /0 system.

Although the line printer output is handled by the 1/0 system, the
handler flow charted in figure 3.2 is required to perform the following

functions on each record to be printed:

- It strips the trailing blanks from each record, packs
several records into a buffer area, and outputs the buffer
area to the RAD for future output by the printer. UTILITY
can thus continue processing without having to wait for the

line to be printed.

PRINT 37
Ling

X

WitTiawge TO
LAST WORD
[S NI WL XY -

2

Moug Al
I WORD

Comn PUTE
e

LERNLTY

INTTAUZE
T £ RSY

CRARACTER

COMvE RY
To
~

ABVANCE
To NEWT

tNSERY
TKG
Codbe

ouTPUYT
BAuFFeR
TO RAD

LEQueLT
oVTrUT TO
PrRANTER

RO BurfFeRr
LenGnt

Figure 3.2 . Print Output

38

- A1l carriage return codes imbedded in the output line
are translated to the printable character\.Besides
not being printable, carriage return codes are used by
the 1/0 system to indicate end-of-line and would cause

an erroneous line advance.

~ An identification tag is attached to the beginning of
each output line indicating the type of record being
printed. These tags form an''edit trail' for possible
future bench checking. An index is provided as an
argument in each call to the handler to indicate the
tag to be appended. See Section 3.3.1 for a description

of the tags provided.

3.2.5 OPERATOR MESSAGE DEVICE (OMD)

This function handles the output of all error messages and requests
for operator intervention. The function is normally assigned to the
console |/0 typewriter and can be changed only by chanéing the device
assignment in the 1/0 system. MNon-terminal error messages are also
output to the LOD to complete the ''edit trail' when the CID is assigned to

the card reader.

No handler is required in UTILITY as all output is queued to the

I/0 system and handled like any other 1/0 request.

39

3.3 COMMAND LANGUAGE

The command language forms the nucleus of the UTILITY program
and to be successful must provide a functional and flexible interface

between the user and the program.

3.3.1 GENERAL
All records input from the CID are considered to be UTILITY

commands, either EXPLICIT or IMPLICIT.

(i) EXPLICIT

Explicit commands state specifically what function is
required and are recognized by haviﬁg an equals symbol (=)
in character position one of the input record. A rigorous

description of all explicit commands is given in Section 3.3.3.

(ii) IMPLICIT

Implicit commands do not state specifically the function
to be performed but imply action té be taken. They are
characterized by not having an equals symbol (=) in character
position one.

Implicit commands are those source records from the CID
which are to be written to the OUTPUT tape (UOD). They ma? |
require positioning of the INPUT and OUTPUT tapes, depending
on whether or not a sequence number is given in positions 73

to 80 of the record.

Lo

SEQUENCE GIVEN implies two operations before the record is copied

to the UOD:
- All records with sequence numbers less than the given sequence

number are copied from the SID to the UOD.

- All subsequent records are skipped until a sequence number is

read from the SID which is greater than the given sequence number.

By providing a sequence number equal to an existing sequence number on
the SID, the record from the CID will replace the original. Otherwise
the record from the CID will be inserted between the two records having

sequence numbers lower and higher than that given.

SEQUENCE NOT GIVEN does not require positioning of the INPUT and

OUTPUT tapes. The new source record is copied directly to the UOD at

the current position.

A1l commands are listed on the LOD by default after execution by
UTILITY. This listing may be suppressed by the user if desired. All
commands are listed with an identification tag in character positions

one through eight according to the following table:

4

TYPE OF COMMAND IDENTIFIER

explicit COMAND

implicit, replacing

an existing record REPLAC

implicit, not replacing

an existing record INSERT

implicit, no sequence

given i.e. blank

All listings of implicit commands also contain the sequence number
assigned to this record on the OUTPUT tape, giving the facility to
correct faulty insertions of source records without re-listing the

updated program.

The listing of all commands as they are executed provides a complete

"edit trail" which is useful for bench checking and for detecting reasons

for incorrect updates.

The UTILITY control program is flow charted in figure 3.3.

UTu \T\}
CONTROLLER

4
ReseRVE

PRNTER

£ T T

—
NIRRT UMM AN DS ./,—/,/-""/}l
TO FRE _‘_(_;, INPUT ONE
IyPewR eSS LIvE ;

ComMmAnDs?

\

:
owreuT
TQ

LOD

sk p
(SeRuence)/

ANALY 2E \
ek

Figure 3.3 Utility Controller

43

3.3.2 .ANALYZER
A command analyzer is provided to decode all ''explicit'’ commands
according to their syntactic definitions and transfer control to the

required program module when the command has been analyzed.

The prerequisites for the analyzer are:

(i) 1t must allow complete flexibility in structuring of

individual commands.

(ii) 1t must permit the syntactic definitions of statements in
the language to be changed without requiring extensive

reprogramming.

Error analysis and fast turnaround are not major considerations
since UTILITY is a background job and is intended to be used inter-

actively from the 1/0 typewriter.

A version of the analyzer developed by Cheatham and Sattley [1]

is used by UTILITY to analyze commands. (See Figure 3.4.).

The analyzer may be defined as the algorithm which performs the
recognition of allowable input strings in the language by using an

encodement of the syntax specification as data. The syntactic specification

of a language is a concise and compact representation of the structure of
the language, i.e. a set of ''grammar rules'" in table form for forming

allowable statements in the language.

Notation:

RECOG: Recognizer which returns '"'Success' or '"Failure'.

il

GENER: Generation routine - null if not a ''Generating'' structure.

SOURCE:Syntactic type being analyzed.
GOAL: First component of syntactic type.

CHAR: Character position in the input string.

GEN: Generated parameter list pointer.

SOWRCE- © :
GORAr— "STaTEmessU |

1

Gohtt— T ReT CHAf < L

COMPONENT OF v GEa<— O
50unte

[

TTSAC
GoAL, SCVRLE,
CHAR % Ggn

Souttia FLRLT
ComMfPonrEnNT CF 4
Geaw

Suceess

UsTAQGL

SOURLE DEF'N
COMPLETE 5

GoAL §, S OURE

SOURLEE WELY i}
cotafonent !

Figure 3.4 Analyzer

A

S OWR C Eastmr—me
ALTERWATE OF
SOuURCE

B

\5

THERYE KD
ATERVDATE
Deral

N
FALLURE

URSTAQC
CoklyS DURCE,

CHAR 4 GER

TSy MTA%
ERROR

RETURN

45

The function of the analyzer is to take each source statement
and, by reference to the encoded syntax specification tables, to
'predict'' how the statement is constructed. The construction is
verified by exhausting as many possibilities as necessary to find an
allowable construction. Exhausting all possibilities indicates that
the statement is not made up of allowable strings in the language and
is syntactically invalid. A history is kept of the allowable strings
which formed the statement, to be used after transferring control to

the required program module.

This "history'' takes the form of object code generation in a
conventional compiler application but in this case consists of a
"parameter list'' of components of the statement. Each command in the
language is an independent entity, the largest construction being a
'statement'' rather than a ''program'’. Once the statement has been
analyzed and the parameter list generated, the required modules of

UTILITY are executed to perform the requested function.

There are two classes of strings or syntactic types in the

structural definition of the language:

(i) terminal types - By definition, terminal types are the

single characters of the source alphabet since it is from

these basic components that all valid strings are generated.

L6

(ii) defined types - Defined types are defined in terms of

other defined types or terminal types. Two conditions
must be satisfied for the syntax specification to be

correct:

- Any defined type occurring as a component of any
definition must be defined in some other definition

(completeness).

- Every defined type must ultimately be constructed

entirely out of terminal characters (connectedness).

The AMALYZER uses a routine called the RECOGNIZER to detect terminal
types in the input string. Rather than recognizing only terminal
characters, the RECOGNIZER is designed to detect the larger set consisting
of those defined types which are defined strictly in terms of terminal
characters. When the ANALYZER determines from the syntactic definitions
that one of these '"'terminal types' should exist at this point in the input

string, it requests the RECOGNIZER to determine its presence or absence.

The RECOGNIZER is capable of recognizing five different '"terminal

types'':

(i) A CARRIAGE RETURN character which indicates the end of the

statement.

L7

(ii) A SLASH (/) character which indicates the start of the
comment field and therefore the end of the statement to

be analyzed (see Section 3.3.3).

(iii) A COMMA (,) character which is used as a delimiter in

certain statements.

(iv) A NUMBER which is defined to be any string of numeric characters

(0-9) of total length not greater than eight characters.

(v) A NAME which is defined to be any string of alphabetic
characters (A - Z) of total length not greater than eight
characters. The RECOGNIZER is asked by the ANALYZER if a
"'specific'' name exists; the RECOGNIZER checks the name
recognized against a list of keywords before returning

success or failure,

The ANALYZER uses a ''pushdown stack'' to facilitate its ''goal
directed' parse of the statement. Each non-terminal or '"defined type"
is stacked until the ANALYZER either satisfies that definition or the
definition fails. The stack forms a tree structure of those definitions
still being examined. Successful analysis of a statement occurs only if

the complete statement has been analyzed and the stack is empty.

48

3.3.3 SYNTAX DESCRIPTION

NOTATION
To illustrate and describe the formats of "explicit'' commands,

the following notational conventions will be used:

(i) Parenthesis (rounded brackets) will be used to enclose
parameters which are optional, i.e. they may be left out

if 'not required.

(ii) Brackets (squared brackets) will be used to enclose a set

of parameters of which one must be chosen.
(iii) A and B will be used to represent sequence numbers.
(iv) N will be used to represent a repetition counter.
(v) All other words used are keywords and appear in context as

they would in an actual statement.

TERMINOLOGY
The following words, with their associated definitions, appear

as keywords in the command language:
(i) INPUT refers to the SID (tape 1).
(ii) OUTPUT refers to the UOD (tape 2).

(11i) RECORD refers to an 80 character (20 word) BCD card image.

1}9

(iv) BLOCK refers to one or more RECORDS on magnetic tape

followed by an inter-record gap.

(v) FILE refers to one or more BLOCKS on magnetic tape

followed by an end-file (EOF) mark.

(vi) SECTION refers to one or more FILES on magnetic tape

followed by an end-file (EOF) mark.

All explicit commands must begin with an = in column one, but
otherwise are '"free form''. Each command may be commented if desired
by following the command with a slash (/), followed by arystring of
characters the user wishes. Using the notation defined, the general

form of an explicit command is:

= COMMAND ' (/ COMMENT)

There are 14 "explicit' UTILITY commands available to the user.
The syntax and function of each will be described in Sections 3.3.3.1

through 3.3.3.14,

3.3.3.1 INPUT BLOCKED BY N

ouTPUT

This command is used to set the blocking factor for the [NPUT

50

and OUTPUT tapes where 'N'' represents the number of records per block.

Default blocking factor is one record per block, i.e. unblocked.

A '"block length ervor' will be output if the INPUT blocking
factor specified is less than the actual INPUT blocking factor. The
maximum blocking factor is determined by the time it takes to read/
write the block and is limited to twenty-five records per block by

the buffer size.

3.3.3.2 .~ COMMAND (S) FROM TW

CARD (S)

This command is used to assign the CID to the typewritér (TW)
or card reader (CARDS). ‘Defau]t input is from the card reader.
3.3.3.3 COPY (AND LIST) A]
A THRU B
THRU B

RECORD (S)
N FILE (S)

SECTION (S)

51

This command copies, and optionally lists, the specified
records from the SID to the UOD. If a starting sequence number is
not ¢iven, copying begins with the next record in the buffer. If a
starting sequence number is given, the routine skips all records

preceding that record.
The routine flow charted in figure 3.5.1 is used to copy/skip
list all records from the designated tape.
3.3.3.4 END FILE (S)
SECTION (S)
This command will write a single end-file (END FILE) or double
end-file (END SECTION) mark to the UOD.

3.3.3.5 (pbo NOT_) LIST COMMAND (S)

This command is used to enable or disable the listing of records

from the CID. Default is to list commands.

a

N RECORDS NKEEE
WES

ECT\ONS} NE1L

/’

/7 WRITE
RECORD

READ
fecorp

CJoP\/]Srchy ouTPuUT
e TO [l
RECTRD LOD

. ST .,,.....\\

RETURN, ReTuRn, \,
CERROP) C ”Oﬁzlﬁk}/

/

SN

CcuTTLY
To

Loo

Figure 3.5.1 Copy, Skip, and List

—

e e s

DecCpotaent i

£ . i
/ N ' 0 << f Q ETUR ?\)i

_ (NORMAYY

P,

/—-‘“’ ——
EUE /’r: oS N
READ

N
BTN
)

Cop Y
LT
Receun

(R E-T [BLAN \
_{error) /.

Y

DECREV EWT
v M'

coly [s K
LT
ReECORD

F'igure 3.5.2

Decretne nT

53

Coty JSkue/\
LAST
Retor /

RETURN ,

(NORYIAL)

54

r

3.3.3.6 LIST A (Fron INPUT 5—
A THRU B 0UTPUT |
THRU B

RECORD (S)
N | FILE (S)

SECTION (S)

DELTA (S)

CARD (S)

This command will list the specified records from the indicated
input device. Default input for listing tapes is INPUT (SID). If a
starting sequence number is not given, listing starts with the next
record fn the buffer. '"List deltas" will list all records with a delta
(£2) in character position one. '‘Delta records' contain LOADER
information and delimit coreloads on source tapes (see Section 4.3.4).
“List‘cards“ will list all cards from the card reader until a card is

read with a 0 - 8 = 5 punch in column one.

The routine flow charted in figure 3.5.1 is used to copy/skip/list

all records from the designated input tape.

3.3.3.7 PAGE

This command causes a page skip on the LOD.

55

3.3.3.8 PAUSE

| This command causes UTILITY to pause and to wait for the
user to input a command on the typewriter to restart it. The command,
complete with comment, is output to the OMD and the user is requested
to restart UTILITY or to release it. This command is normally used for
changing SID tapes so that other active coreloads can use the time the

operator takes to mount the tape.

3.3.3.9 REVERSE INPUTw} N BLOCK (S)
OUTPUT FILE (S)

SECTION (SE

This command is used to reverse the specified tape the amount
requested or to the load point marker, whichever occurs first. If the
load point marker, unexpected end-file, or unexpected end-section are

read, a message is output on the OMD and UTILITY proceeds.

The user must be aware that this command applies to movement
of the tape and not to the current record addressed in the buffer area.
Because of the buffering of input and output, the user must reverse at

least one more buffer than actual sequence numbers would indicate.

3.3.3.10 REWIND INPUT
OUTPUT
This command will rewind tape one (INPUT) or tape 2
(OUTPUT) .
3.3.3.11 SEQUENCE _ FROM A BY é
[NPUTJ

OFF

This command determines the method of sequencing of all
records output to the UOD. From A BY B gives a starting sequence
(A) and increment (B); FROM INPUT indicates that no resequencing
should take place, i.e. as read from the SiD; OFF will blank all

sequence numbers. Default sequencing is FROM INPUT.

3.3.3.12 SKIP (AND LIST) | A (FROM INPUT_D~
A THRU B OUTPQﬂ
THRU B
RECORD (S)
N | FILE (S)
i SECTION (S)]

57

This command skips, and optionally lists, the specified
records from the indicated tape. Default input for skipping tapes
is INPUT (SID). |If a starting sequence number is not given, skipping
starts from the next record in the bﬁffer. If a starting sequence
number is given and skipping is FROM INPUT, the routine copies all

preceding records from the SID to the UOD,
The routine flow charted in figure 3.5.1 is used to copy/skip/
list all records from the designated input tape.

3.3.3.13 TAB (S) ATT,, T,, === , T

12 2 N

This -command is used to set internal tabs for reconstructing
typewriter input of commands. T] to TN are the character positions of
the tabs. Default tabs are at columns 8, 16, 36, and 73 for SYMBOL.

A maximum of ten tabs are permitted.

3.3.3.14 TX

This command is used to ''sign off' or release UTILITY.

58

3.4 PROGRAM SIZE AND RUN-TIME STATISTICS

The present version of UTILITY consists of 250010
source records and occupies 77608 words of core memory, allocated
as follows:

Program and Constants 55104 words

Buffer Areas 22508 words
77608 words (4K)

Run-time statistics are as follows:

(i) Read Magnetic Tape: 2300 - 2500 records/minute (unblocked)

(ii) Write Magnetic Tape: 2300 - 2500 records/minute (unblocked)

(iii) Line Printer Listing: 125 150 records/minute

(iv) Reading Cards : 150

175 records/minute

CHAPTER L

SYMBOL

L1 ABSTRACT
The SYMBOL program provides an on-line means of translating
source programs written in XDS assembler language SYMBOL into machine

code for the XDS 920.

The basic assembler is the off-line SYMBOL assembler supplied
by XDS, extended and modified to meet the requirements and operating

environment of Alberta Gas Trunk Line's Supervisory System.

SYMBOL will be described on a macro scale only; further
information concerning the syntax and semantiqs of the XDS SYMBOL
language can be found in the XDS reference manuals [4], [5], [6é],

and [7].

k.2 GENERAL DESCRIPTION

The SYMBOL assembler performs the following functions:
(i) It reads source statements from magnetic tape unit

one (unblocked),

(ii) It translates these source statements from XDS SYMBOL

language into machine code for the XDS 920.

..59..

60

(iii) 1t outputs the machine code to magnetic tape unit two
in XDS standard binary language.
(iv) It produces a listing of the source and object code on

the line printer for future reference.

SYMBOL performs these functions by defining and referencing

four tables as it analyzes each statement:

(1) MNEMONIC TABLE

The mnemonic table defines all operation code symbols
recognized by the assembler. Besides the standard 920 instruction list,
the table is expanded during assembly to contain the user-defined operation
codes (from OPD and FORM statements) and all undefined OP codes which are

considered to be externally resolvable programmed operators (POPS).

Each entry in the table contains the following information:

- one to six characters of the symbol,
- type of operand field to follow,
- whether standard op-code or user defined,
- how to decode and use the operand field if the op-code
is user-defined or a SYMBOL ''directive'',
- whether the op-code is 'local'' or ''global'’ (see Section 4.3.3),

- the op-code to be used in the assembled instruction.

61

(ii) LABEL TABLE
The label table defines all labels which may be referenced
by the program being assembled. The table is developed during assembly

with the addition of each label recognized as statements are processed.

Each entry in the table contains the following information:
- one to six characters of the label,

- whether its address is relocatable or absolute,

- whether it is '"local or '‘giobail',

- whether it is "external'' or not,

- the value (address) of the label.

(iii) LITERAL TABLE

The literal table defines all constants in the program
which are referenced by value rather than by name. Literals are assigned
sequentically as they are recognized to a ''literal pool' which starts at
the next relative location past the last word used by the program

instructions.

Each entry in the table contains the following information:
- value of the literal,

- whether the value is relocatable or absolute,

- the relative location the literal will occupy in the

object program.

62

(iv) REFERENCE TABLE

The reference table defines those symbolic references within
the program which are not found in the label table and which are assumed

to exist in some context external to the program.

Each entry in the table contains the following information:
- one to six characters of the symbol,
- the relative location of the last data word to reference

this symbol.

To allow the loader to resolve these ''external references', all
data words referencing this symbol are '‘chained’ with the address portion
of the last reference location containing the address of the second last
reference and so on until the first reference location where the address

portion is zero.

SYMBOL is a two pass assembler, back spacing to the start of the

program and re-reading the source statements for pass two.

PASS 1 (1) Source lines are read and a location counter is maintained
for defining labels.
(ii) Label fields are analyzed and the labels are entered into
the LABEL table.
(iii) Operation codes are analyzed and if not defined they are

entered into the MNEMONIC table as POP's.

63

(iv) Only operand fields of ''directives' are analyzed since
they may cause the location counter to be incremented

as a function of their operand fields.

At the end of pass one all external labels and POPS are output
to the binary output device (magnetic tape two) to provide loader
information for building global label and mnemonic tables. All entries
to the MNEMONIC and LABEL tables must be made during pass one. The
program reverses the symbolic input tape to the first record of the

program in preparation for pass two.

PASS 2 (i) Source lines are completely processed and both object
code and a listing are generated.
(ii) References to symbols not in the LABEL table are entered
into the REFERENCE table.
(iii)Literals are processed and entries are made in the LITERAL

table.

At the end of pass two all literals and references are output
and listed. Once the table areas have been purged of all local definitions

(see Section 4.3.3.), SYMBOL is readied to accept the next program.

64

SYMBOL will continue assembling programs until an end-section
(double EOF) is read. The operator must then request SYMBOL to continue

or to sign off. The SYMBOL controller is flow charted in figure 4.1.

SYMBOL provides error detection by the appearance of up to
four single character diagnostic flags in columns one - four of the

output listing.

The following table describes the meaning of these flags.

FLAG ERROR ACTION
D DUPLICATE Duplicate definition or reference.
All references take the value of

the first definition.

E EXPRESSION I11egal expression in operand field.

Operand interpretation terminated.

! INSTRUCT I ON Instruction mnemomic not defined.

Treated as implicit POP reference.
L LABEL 111egal symbol in label field.

0 OVERFLOW Symbol table overflow. The
assembly continues but the definition

is NOT made.

65

FLAG ERROR ACTION

P PARENTHESIS Too many parenthesis levels or
unequal number of left and right
parenthesis.

Operand interpretation is terminated.

R RELOCATION Operand expression involves the
illegal use of one or more
relocatable items. The correct,
but non-relocatable, value of the

expression is determined and output.

T TRUNCATION " Significant bits were lost due to
left-hand truncation in inserting
a value into a specific field. The
value is truncated modulo 2" where

the field size is ''n'' bits.

U UNDEFINED A reference has been made to an
undefined symbol in the address
field. Zero is substituted for the

undefined value.

EXTERNAL An external address reference has
been made (which may or may not be in

error).

66

fAss2. { symooL

ALL VEE
S\MBoLs /

VIR T FOR

. ,/”\\\ - VS ER
SR N ¢ ST
N\ / REVERGEN COVIPAND

\‘-ﬁ' ENP U Fom) —

/ \PA 86 2 -1/ SR A
',,/ AbGeT INATLALVEE

- s For

1

L

y)
Y
by
1

PuRGE
ALL
"yLpeams!

Wene
=05

T0 Q.o

AouRNLE \

L0 LRTLON
C.OUATE R R
A——""“:—K“M SN0 AND
. (B0
List / A Reco 0y RETERRMICES/
?,0. I\ND// PrRocEgs X
R E R
& OuRCE LhSEL Coo. AND
e
LATERALS

CotletY
OB ¢ ODE

PrROCELS
STARTUMERT

N k/ PROCLes \

Dl\RECTWE

Symbol Controller

Figure 4.1

67

SYMBOL makes no attempt to indicate the position in the
source line where the error occurred. Despite the simplicity of the
flag fields (single character), they are sufficiently exhaustive to
make most errors immediately obvious. There are few enough so that
the user quickly becomes familiar with their interpretation and rarely

has need for a cross referencing table.

The INSTRUCTION flag (1) and the EXTERMAL flag (*) may or
may not indicate an actual error. To provide symbolic inter-program
communication, SYMBOL treats all references to undefined op-code mnemonics
and undefined labels as though they will be defined externally by other

programs at load time.

4.3 EXTENSIONS
Although SYMBOL is basically the stand alone off-line version
of the assembler supplied by XDS, several modifications and extensions

were necessary to satisfy the requirements of Alberta Gas Trunk Line.

Interfacing with the Supervisory System required such changes

as:

(i) Development of a resident 1/0 package to handle source
input from magnetic tape unit one, binary output on magnetic
tape unit two, listing on the line printer, and operator
messages to the console typewriter. The package was

developed to satisfy specific user and operating system

68

requirements and is similar to the package described in

Section 2.1.2.

(ii) Ensuring that the system executive could not alter hardware
indicators (overflow), via the interrupt system, which are
used and tested in SYMBOL to detect truncation and overflow

errors.

SYMBOL will assemble all valid statements in the XDS assembler
language SYMBOL as well as specific extension to be discussed in

sections 4.3.3 and 4.3.4.

4,3.1 OVERLAYS

It was possible to allocate a maximum of LK 24 bit words of
core memory to the priority four partition without jeopardizing the
operation of foreground programs. Because the amount of RAD memory
available is without practical limitation, (almost 500K words), RAD

was substituted for core by using overlaying.

An overlay handler was built which utilizes an overlay area of
five sectors (320 words), overlaying this area with new program segments
as they are required. The table size represents an area large enough to
perform the required functions without excessive overlay overhead and

not so large as to limit the amount of core available to the rest of SYMBOL.

69

The overlay handler is flow charted in figure 4.2, The
handler contains the following features which increase its flexibility

and speed:

(i) The overlay handler maintains a ''pushdown stack'' of
return addresses to provide restoration of the last
overlay segment when the current segment is released.
This technique permits one overlay to call another but

is not yet used in this implementation.

(ii) To decrease overhead, overlay segments are not ''saved'
when one overlay calls another i.e. overlays are '‘read
only''. Data storage to be saved must be defined as part

of the non-overlaid program area.

(iii) Overlays may have multiple entry points, permitting
several logically related functions to be grouped into
a single overlay. The handler recognizes that subsequent
calls are to the same overlay segment and will not perform

RAD transfer for each call.

Parts of SYMBOL have been overlaid according to the following

table:

Figure 4.2

OVER Ly 70

D\)EM:_D\AJ‘7

L e
v ST;:/’g RELEASE

STACK RN
RETURN ADDRESS
JEEN /
CURRErIT OVUR LAY

ADDRESS

o

18
RESTORE

REG\STERS

H

_OF ONERLAY S
o O R

TSRE N

ﬁEGr\STE?;S/

.Go To ENTRY LN)\\}

GeT

LAGST OVERWY
FRU™M

RAD

L ore
RLOIETE RS

Retugw

Overlay Handler

71

OVERLAY FUNCTIONS PERFORMED

] User command decoder and analyzer -

(see Section 4.3.6.).

2 Directives DED and DEC.
3 Directive Copy.
b End of pass one - outputs external

definitions, freezes MNEMONIC table, outputs

POPS, and initializes for pass two.

5 End of pass two - outputs literals and
external references, outputs END and outputs

program statistics.

6 Purges MNEMONIC, LABEL, REFERENCE and
LITERAL tables at end of pass two and on
initial loadings, and initializes for pass

one.

7 Directives EQU, OPD, FORM, AORG, ORG, BSS,

DATA, BCD, TEXT, and FORM references.

8 Qutputs job statistics and signs off.

72

Overlay seven is a good example of point (iii); minimizing
RAD transfers by grouping related logic modules. Those directives
analyzed by overlay seven are the most common; once the overlay is
input no more RAD transfers are necessary until a different overlay

is required e.g. end of pass.

L,3.2. SYMBOL TABLES

To provide enough symbol table storage space to assemble
Alberta Gas Trunk Line's Supervisory System requires that some tables

be RAD resident rather than entirely core resident as in the XDS version.

The LABEL, REFERENCE, and LITERAL tables are RAD resident and the
number of entries they are able to hold is a function of the amount of
RAD allocated to each table. The MNEMONIC table is left core resident
in order to minimize assembly times. Reference to figure 4.1 will
demonstrate that the MNEMONIC table is searched for all op-codes during
both pass one and pass two. Since searching the MNEMONIC table constitutes
a large proportion of the overhead for pass one, significant efficiency

is gained by having the table core resident.

A1l entries in the MNEMONIC table are sorted according to their
symbolic identifiers in order that a binary search technique can be

employed to make new entries or to find a given entry.

/3

Each RAD resident symbol table is constructed of {(n + 1)
segments of three sectors (192 words) each, where n is a prime number.
The search algorithm is flow charted in figure 4.3. The first four
characters of the symbol are arithmetically hashed by dividing by n,
giving a remainder to be used as a starting segment number for the
symbol search. Each segment is searched linearly until the given
symbol or a spare entry is found. The search will continue from segment
to segment until the last (n + 1) segment is searched. The last (n + 1)
segment is an overflow segment since division by n can give a maximum
remainder of n-1 (segment n). The number of '"collisions' (symbols
hashing to the same segment) is kept to a minimum by keeping n as large
a prime as possible. RAD transferring is minimized by sacrifing RAD
storage for a ''random' hashing algorithm and therefore a lower table

packing density.

All references to the RAD tables are made through common '‘search''
and "move'' routines and all use the same buffer area in core. The handler
which sets up the RAD transfers to input and output segments minimize
overhead by saving ''current'' table segments only if it is indicated that
the segment has been modified since it was input to '‘transient core''.
Those segments of SYMBOL which change the contents of the symbol tables
are charged with the responsibility of indicating to the handler that the

RAD segment is modified and therefore must be saved.

RETVLRN,.
(Foun oD

£

E&\.l_f\..

SEARLY

5
SEGHMERNTE Hat Yy
OF Sy MmeoLac

1IDENT\F ER

Cev
\SECHMERT'

FROW
RAD

i

:[_’-4—1

24

LoCcATION 4 T

SPARE

LOCATIDN & [T

A

RETUVRN,
NOT FoupnN B
K

ONERTLOW

s et
SEGt1ENTT

~

LOCATLON @=—
ONER FL.OW

Figure 4.3

Search RAD Resident Symbol Tables

>—y T I+

SEGM ENTe—

Toeerments L

7h

75

4.3.3. GLOBAL DEFINITIONS

Global definitions are defined within the context of this
system to be those labels and mnemonics which, once entered into
their respective tables, remain until SYMBOL is released. Reference
to figure 4.1 will illustrate that all user defined symbols are purged
only on initial load; for the remainder of the assembly only the local

symbols are purged at the end of each program.

This facility to declare global op-codes and labels provides
users with a powerful method of inter-program communication. The data
base has been constructed using a two dimensional array concept with
the first co-ordinate being the table name and the second co-ordinate the
relative table location. Global labels allow users to define elements of
a structure as global and to refer to the relative table locations
symbolically in subsequent programs. Considerable memory is saved in the
applications programs packing several relative table address into single
computer words using FORM definitions -~ the addresses of which cannot be

resolved using the ''external reference'' scheme of inter-program communication.

Global labels are defined by prefixing the label field with a
slash (/). The user may define a label to be global with the definition
or on a line subsequent to the definition of the label. A set of labels
may be defined to be global by listing them following the first symbol and
separated by commas. A single slash in the first character position of the

line defines all labels in the line to be global.

76

Operation codes are also defined to be global by prefixing
the label field with a slash. The symbol can be declared global
only in the definition line-multiple or delayed definitions are not

possible.

A1l global entries in the symbol tables are tagged to indicate
that they are not to be purged at the end of each program. The
addresses of global labels are relocated to their absolute execution
addresses and the]abel is made absolute so that the loader will not
incorrectly relocate references to these addresses. All subsequent
references to a global label will contain an absolute execution address

rather than a relative table address.

Purging of symbol tables requires a purge routine to remove all
locally defined symbols and shift the table to remove all gaps. Purging
of the MNEMONIC table, which is core resident, is accomplished by
deleting all local user defined symbols and recalculating the table
boundary parameters used by the binary search algorithm. Because of the
hashing algorithm employed for RAD tables (section 4.3.2), it is necessary
to re-hash all global symbols to ensure that they are left at the lowest
possible address in the lowest possible segment. The purge routine for

RAD resident tables is flow charted in figure 4.4,

\
AN

SEGLT)— NULL 4y

o 77
@P\ GE REMOVE OLD ENT\Z‘{

rSegt
FRoM CRot
R D
A4

RAD
GLoBAL «— =1
L

GET i
i >/‘5EG' < Ce¥

SEG

L3 GM\:NV

GLOGAL +— o /556(3)\ v ~ Sroeg seo(z)

GloBAL+ L ; chmﬁ/ {HSR vT ‘F.c;mno\
i -~ P (lOCi*H\N
Y\Jz SEG?
N ~_ - .
SEG (F)yenut

Y

)] / .,
H - ~
e T) LN WASHEDN

SeG?

J<—T+ L

s CEG< SEG+L

(RETURN)

Figure 4. b Purge RAD Resident Symbol Tables

78

L,3.L4. LOADER INFORMATION

A1l source records containing a delta (A) in character position
one are considered to contain information for the loader and are listed

and output during pass two.
Each '"delta record" must have the following format:

Hn ¥-- 1 to 7 blanks --% NAME 4¢-- 1 to 7 blanks --# BIAS

where,

n is the coreload priority,
NAME is the 1 to 6 character coreload name,

BIAS is an optional octal execution bias (for overlays).

Each coreload must begin with a '"delta record" in order to
provide the loader with a base address for execution relocation. A
coreload may consist of several programs (assembled relative to location

0) but can have only one ''delta record" preceding each coreload.

L.3.5.PROGRAM STATISTICS

The following statistics are maintained for each program assembled

and are output following the program listing:

(i) total assembly time (from real-time clock),
(ii) program size (maximum location used),
(iii) number of LABELS, LITERALS, and REFERENCES in the symbol

tables.

Each line of statistics is headed by an asterisk (*) so that
it will be output when the user requests the "list errors' option

(see Section 4.3.6).

ho3.6 ASSEMELY OPTIQUS

SYMEOL provides the facility to rewind tapes and to specify

the mode of output Tirom the assembler from the console typewriter.

Using the netation described in Section 3.3.3, the following
commands are available through the 1/0 typewriter to control the

assembly process,

b.3.6.1 REWIND sz}
{
.

This command will rewind tape one ($1) or tape two (B0).
4,3.6.2 LIST ERRORS

This command instructs SYMROL to list only tagged statements

(Section 4.2). This is the default listing mode of SYMBOL.
L,3,6.3 LIST ALL

‘his command instructs SYMBOL to list all statements.
£.3.6.4 10 LIST

This command instructs SYMBOL to suppress all list output.
h.3.6.5 KO BO

This command instructs SYMBOL to suppress all binary output.

This is the default binary output mode of SYMBOL.

80

4,3.6.6 BO

This command instructs SYMBOL to produce binary output

of object code.
4.3.6.7 GO

This command instructs SYMBOL to continue with the next

operation.
4.3.6.8 TX

This command is used to ''sign off'"' or release the SYMBOL

program,
L.,3.6.9 ''DELTA RECORDS"

Any record with a delta (&) in character position one is
considered to be loader information and is output directly to the

binary output tape.

Each command may be input individually or several may be
combined in the same‘command, separated by commas. Each command is
analyzed and executed interpretively and therefore transfer commands,
(GO or TX), must occur last in a sequence. The analyzer will request
new commands until a transfer command is sensed. Blanks are ignored

except as delimiters, allowing '"free form' input.

81

Error analysis consists of the message '"'SYNTAX ERROR' output when
analysis fails. Because commands are analyzed and executed
interpretively, all commands preceding the error will have been

executed.

The user is able to input commands and change assembly mode

(see figure 4.1) in only two instances:
(i) On initial loading.

(ii) When an end-section (double EOF) has been sensed,
indicating the end of this '"batch'' of assemblies. The
user can request SYMBOL to continue (GO) if there is
more input to assemble; he can specify new output modes;

or he can sign off (TX).

End-sections are used to delimit assemblies where the options
are constant. Segmentation is necessary when designing global table
descriptions (no binary output and no listing), and when the source

must be input from several tapes.

The ability to specify the output of the assembler allows
users to perform '‘test assemblies'', listing only error lines until all
syntactic "'bugs'' are eliminated. Test assemblies which use the default
modes of output (list errors and no binary output) have become a standard

phase of program development.

82

L4 STANDARD BINARY LANGUAGE

XDS has specified a ''standard binary language'' for the 9 -
series computers with the intention that the language be both
computer and medium independent. The subset output by the assembler

will be described briefly.

The first word of each record is a control word which provides

sufficient information for the LOADER to handle the record. The

control word specifies:

(i) The type of record.
(i1) The number of words in the record (word count).

(i11)A check-sum for detecting longitudinal parity errors.
The following types of records may be output by SYMBOL:
(i) Data records which contain:

- The relative load address of the block of data.

- The block of instructions or constants to be loaded,
i.e. the program.

- The flags indicating whether load relocation and/or

POP relocation should be applied to the data words.

83

(ii) External References and Definitions which contain:

- The | to 6 characters of the symbol.
- If reference, the address of the last referance
to the symbol.

- If definition, the address (value) of the symbol.

(iii) POP Referaences and Definitions which contain:

- The 1 to 6 characters of the symbol.
~ The temporary sequence rumber used for the POP for
this program.

- If definition, the origin of ths POP routine.

(iv) End records which contain:
- The last word address used by the program, i.e. the
length of the program,
- The transfer address if used (ignored by the LOADER

in this application),

L,5 PROGRAM SIZE AND RUN-TIME STATISTICS

The present version of SYMBOL consists of 4700 source

10

records and renuiras 375008 words of memory, allocated as follows:

Program and constants 614008 words
Buffer araas ?008 words
Overlay area 5008 words

Core BOGOOS words (LK)
Overlays 33008 words
Tables 2&?008 words

RAD 2?5008 words (12K)

TOTAL MEMORY 375008 woerds (16K)

The eore resident MNEMONIT ¢able car be exterded %o hold 50 user-

defined operation codes (FORMS, 0OPD'S and POPS) before overflowing.

The RAD resident LABEL ¢able can hold a maximum of 2400 labels
if hashing is completely random., Because the search algorithm is
Meireular” (figure 4.3), packing densities in excess of 75% (1800
labels) are to be exnected befnre overflow. As the number of labels
anproachss the 75% densi®y, the searching of the table will become

mush lass afficient because of the RAD transferring required.

Bh

85

The efficiency can be improved by increasing the number of RAD .
segments allocated to the table. The RAD resident REFERENCE and
LITERAL tables can each hold a maximum of 512 entries. Additional

capacity can be achieved in the same manner as the LABEL table jf

required.
The average run-time statistics are as follows:

Complete Assembly (listing and binary output):

95 - 105 statements/minute.

Test Assembly (no listing and no binary output):

450 - 500 statements/minute.

Purging of Symbol tables at the end of each program requires
10 - 15 seconds and will decrease the number of statements/minute by
that amount. Overhead for purging becomes more noticeable and makes
SYMBOL proportionately less efficient when the batch includes many

short programs.

CHAPTER §
LOADER
5.1 ABSTRACT
The LOADER program provides an on-line means of loading XDS 920
object programs in standard binary language format, grouping the
programs into ''coreload' modules on the RAD, and integrating them into

Alberta Gas Trunk Line's Supervisory System,

5.2 OBJECTIVES

Although the primary requirement is to load the object code
produced by SYMBOL, several features have been stressed to increase the

user control and utility of LOADER.

5.2.1 DIAGNOSTIC AND LOADING INFORMATION

The LOADER program provides detailed diagnostic output to the user
during the load in order that he may easily diagnose and correct errors
caused by illegal object code formats (& records), duplicate definitions,
and unresolved references. Diagnostic messages are designed and formatted
to provide the maximum available information regarding the exact cause and
location of the error: coreload name, relative location, and reference to
the specific cause of the error are given in all cases. Except for
catastrophic errors, such as persistent tape read error, the LOADER will
continue with the remainder of the Ioad, forcing the user to diagnose the

reason for the error before integrating the program (s) into the system.

- 86 -

.87

The LOADER provides detailed output of all global definitions

as a LOAD ADDRESS MAP. All definitions are sorted and output both

alphabetically and by address to provide the user a visual means of
determining the execution address of object code when the system is

loaded and in operation.

5.2.2.COMPLETE OR PARTIAL LOAD

System maintenance and updating procedures require that the
entire system be updated and reloaded regularly to maintain an integrated
system. Modifications must be implemented between updates which do not
justify a complete reload. These applications programs invariably refer
symbolically to the system data base, reduiring addresses from the

definition table prepared at load time.

The LOADER allows users to load an entire system (see Section 5.4.2.2)
and, by retaining the global definitions table, to add or replace programs
in an existing system. All symbolic references to system locations are

resolved automatically by referencing the permanent definitions table.

5.2.3.NO RESTRICTIONS ON PROGRAM SIZE

The LOADER avoids program and system size restrictions by using
RAD for all expandable storage tables. The illusion of ''virtual memory"
is achieved by using small core buffer areas in conjunction with RAD

handlers which co-ordinate the transfer of segments to and from core.

88

The global definitions table is constructed and accessed in a
manner analogous to the RAD resident tables of SYMBOL (See Section
4.3.2). A three sector (192 word) buffer area in core is overlaid by
a handler which accesses any table location as though the entire table

were core resident.

The program being loaded is generated directly to RAD in single
sector (64 word) segments. Two single sector core buffer areas are
accessed by handlers for input and output, performing RAD transfers only
when sector boundaries are detected. The entire load is first loaded to
a contiguous area of temporary RAD, requiring a femporary area slightly

larger than the final total system size.

5.2.4 MULTIPLE INPUT TAPES

The Supervisory System is maintained on several source tapes,
each terminated with an end-section mark. It is convenient to segment
the system and to assemble each tape independently because of time
considerations, producing several binary output tapes each ending with

an end-section mark.,

The LOADER recognizes end-section marks output by SYMBOL as
indicating the end of a segment of binary information, possibly the
end of information on the tape. Control is returned to the user at each
end-section mark (see figure 5.1) in order that the LOADER can be

instructed further (see Section 5.4). The user may use this feature to

89

load any system or segment of the system from as many individual
tapes as desired, provided the last program on any binary tape is

followed by an end-section mark.

5.2.5 SYSTEM SECURITY

The LOADER provides system security primarily by forcing the
user to become involved with the operation; by requiring that he specify
and initiate all potentially destructive operations. System security
is especially important in view of the fact that the LOADER operates in
a background mode in a real-time environment. All possible measures must
be taken to ensure that the user does not accidentally destroy or overwrite

any segment of the active system.
The following specific measures are employed:

(i) The user is required to specify through the input typewriter
the starting permanent RAD address of the program or system
being loaded. The LOADER echoes this address and the user

must confirm it before the LOADER will proceed.

(ii) The LOADER advises the user of all end-section marks read
from the input tape (Section 5.2.4). The user must initiate

any further action by the LOADER,

(i17)The LOADER will not transfer the load from temporary to

permanent RAD unless the user requests the transfer.

Although definitely not ''fail safe', the precautionary measures
incorporated into the LOADER are effective in that they force the user

to monitor and initiate every critical phase of the loading procedure.
5.3 METHOD

5.3.1 GENERAL

The LOADER controller which determines the sequence of operations
performed is flow charted in figure 5.1. Once the user has specified
the starting permanent RAD address for the load, the LOADER performs

the load in three passes:

Pass One (i) reads the binary information from magnetic tape,

(i1) builds the definitions table of POPS, external
definitions, and coreload names,

(iii) relocates information according to the priority
of the coreload,

(iv) translates all POP references to their final
sequence numbers,

(v) stores the program, followed by its external
references, on temporary RAD.

Pass one is repeated for each program until the user

specifies that the last end~section read is the end of the load

(Section 5.4.2.4), at which time pass two is initiated.

e

(FROC.ES&\¢

PAS

PAS

Figure 5.1

|
|
[
'
|
t
!
§
1
[

N — = m— o —

SN

LOADER

WAT Foll \
USER

91

REQWE €1,
Boie, & NErfy

PERYIANENT
RAD ALDRLRS

bl
N

~
C.OMV’H\N L/

Res owv E—\‘\
Poe
LINKAGE S

Y END-SELTIoN

|
|

L

RLeR
ComMrianD

RELOLVE
Y wi -

RefeRemce s

VAT F-D\"‘s\ Go

PRANT
LoadD ADDRESS
AR

VR[;A\‘,M} T
TRANSEER TO

[PERIIANENT RAD

WAT FeR

..._.......-_._..__..-.._.___...31

PASS 3

(] m e o

ColD
START

¢ HALT
A

TRANSFER, /
fRowm TemPeRary

T PERE) ANLN
RAD

WSER
COMMAND

lLoader Controller

92

Pass Two (i) reads the binary information from temporary RAD,
(ii) resolves external references by searching the
definitions table generated in pass one,
(iii)purges external references from the end of each
program,
(iv) stores the programs back on temporary RAD,
(v) outputs the external definitions table to the

printer.

Once the definitions table has been output the user
must initiate the transfer to permanent RAD. The user has the opportunity
to check all diagnostic and definitions output and abort the load if

errors must be resolved before integrating the load into the system,

Pass Three(i) reads the binary information from temporary RAD,

(ii) transfers the programs to permanent RAD.

Because pass three may be replacing segments of a running
system, the system is disabled and a resident RAD handler does all RAD
transferring. |f the load was not a complete system, control is returned
to the user who can initiate another load or sign off. |f the LOAD was
a complete system the LOADER halts, allowing the user to save the system

on magnetic tape and then initiate the ''cold start' procedure.

5.3.2 HANDLING BINARY RECORDS

The LOADER contains independent handiers to deal with each of

the five possible different ypes of records:

(i) DELTA RECORDS

The delta record handler is flow charted in figure 5.2.
Its function is to analyze the delta records described in section L4.3.5h
and to establish the priority, name, and overlavy bias for the coreload
to follow. The handler also enters the previous coreload name and

address into the definitions table.

(ii) DATA RECORDS

The data record handler is flow charted in figure 5.3. Data
records contain the actual instructions and constants of the program and
as such may have load relocation and/or POP relocation anplied to any of
the data words. The load relocation (execution bias) is determined by
the previous delta record. The POP translation table will have been
generated prior to reading the data records since POP reference and
definition records arethe first output from SYMBOL. This table will be
accessed to convert all temporary POP sequence numbers to their final

sequence numbers.

(i1 1)EXTERNAL REFERENCES AND DEFINITIONS

The handler for external references and definitions is

flow charted in figure 5.4, External definitions are inserted with

Figure 5.2

Relemos

-

{ TLAEGAL A q.._"i. Ree D?\i? oRr
’ EECoR DY b AFTER Y l\&“3 ;
N !

DELVTA }

e

S first ™

i

////?ST
\ECOVSJ
~,
it J
e
Fut =R LASYT \
COARLOAD HAME,
% A DRERESS /

N
S, (S

WAITIAUTEE &,

CORELOAD

'Y_‘—“'ﬂ.
KerPaENE N
»Y"%iiﬁ"i"\’\ 2L /
o 8 REeorsy

A \&
\?R\?\a
Y

X

SOV, -

—

Pmoﬂﬁy$~\
CUARACTER
L2

oREE N

NEST FELD
%t

OF & RECURD/

Delta

Fon N ¥

/\ RETURN }

L

e

e

EXE CUTION Bip Sk
PRIDRYEY RrAST:

ONERLY BIRD

B

CNERLBN RARS e
NEXT FLELD

COKEU:AD NANE o |

MELT A ELD

Record Handler

oF ‘&' Pz s

Figure 5.3

[. DPATA
LS. */ A
RETRIENE

Lonp A um» "y

g .
PA‘J WiTH N Mﬁ‘;}\

BURTES To
wew orteny

L

Rmm eva\

/fw\@ ~
© ifnvtigﬂ/

wﬁm—w WORD ¢
tm*ﬁuTnn&B\Am

PIETA ,«4—-—~
N 0 o _—‘7\

S S

|

Po N
REApontiond

N &2 -K 4 -"\
TRANSLATED
PoP NuMeER

RETYURRN

Data Record Handler

e o,
A DV{?X?\!‘ [=y \
TO NERY

Y
NeRD

Figure 5.4

INSERT
I®TO
DEFIW TSN

TABLE

TSR N A
REFEREMCES &
VEF a0 NS

96

G)L—F:“h

—-
NsERYT
e
CEFtIVTIONS
T (\E:L‘C_
/ ADVANQC N

R ETWRN u\\m-& hpqﬁ-——ﬁ)
\ \HERT n'mi/

External Reference and Definition Handler

—5op
forERTCES &
DERMIWMATIONS

M
CDEFIYT r;;:\/
Theted”

4

R
N

X

TN

£F 7

\T,/'

v DMM xca rE X
/N WHQ -

M-,v‘" y/ \‘:‘V
REME: (Ratm /_._,,...._

ke Sy
M Q{\L \ v, Ry \
DaF'# /*‘ TRALIMDY
TASLE /

.

e s,

._\\\ l//""‘ T
CFntsvEn :>:‘/** RETURN

A

POP Reference and Definition Handler

97

their (core) execution addresses directly into the definitions

table. External references cannot be resolved until pass two since

the definitions table will not be complete until all programs have

been read. During pass two all external references are output to
temporary RAD following the last data word of the program and preceding
the '"end" record. The loader maintains a header for each program which
forms part of the program output to temporary RAD. The starting address
of unsatisfied references is one of the words of information stored in
the header.

The LOADER handles duplicate definitions differently for a
complete system load than a partial load. During a complete load the
address of the first occurrence of the definition is retained whereas
in a partial load the last occurrence is retained, since the user might

be intentionally replacing an externally defined item.

(iv) POP REFERENCES AND DEFINITIONS

The handler for POP references and definitions is flow charted
in figure 5.4, POP references and definitions are output by SYMBOL
before pass two in order that the LOADER can build a translation table for
assigning permanent POP sequence numbers before the data records are read.
SYMBOL assigns all POPS temporarily as though they were local to the

program, starting the sequence numbers at 0 and extending upwards as

98

required. The POP reference and definition output allows the

LOADER to associate the global use of POP mnemonics with their
temporary and permanent sequence numbers, and to build a translation
table for the program being loaded. Duplicate POP definitions are
treated like duplicate external definitions for a complete or partial

load.

(v) END RECORDS
The handler for end records is flow charted in figure 5.5.

The last word address of the program given in the end record (section
L.L) provides the length of the program and is used to update the core-
load length, the origin of the next program, and the starting address
of unsatisfied references in the program header. |f the last word
address given is not the same as the current location, the LOADER pads
to the new origin with zeroes. The POP translation table is cleared in

preparation for the start of the next program.

5.3.3. RESOLVING EXTERNAL REFERENCES

External references are not resolved until pass two when the
definitions table is complete. Each external reference entry gives
the address of the last location to reference that symbol and all
references are chained to the reference location preceding it until the
first reference with an address of 0, which terminates the chain.

(Section 4.2). The algorithm flow charted in figure 5.6 for resolving

Figure 5.5

EnD

REREVE
Mlast worp
ADDRELS'

SANE Fowr
YWA Revs

SYST
CRibIN ©OF
PELT PRGN,

!

mf\ﬁ)mﬁ
CORELOAD
LEwGTH

UPbate
PROLRA 11
LEN GTY

PAD W LTH
ZERDESL TO
NEW ORrLLIN

p

v

TCURN

RETURN

- End Record Handler

99

/7 Ree

DL E

ExTeERNAL
CertREN LS

RETR\RVE
NEyT

\ \TEw

100

Tsearch “\\ o
DEF LTI OA
TARLE

4 : 4
-) ! Y /
/ STCRE W L’N\
% ETW RN ADDRESS
Vi N LEORE

e TAerE

MATLALLR G
{er
NEVC PASS

VJJNRE&G L\!‘f:))/

v
REFERINGE

NPT
o AR
frown RAD

T AL— NYTH AR

-
SR N, R
STARE

g

NYAx = 0

N LT AR~ CORE(T)

Figure 5.6 Resolving External References

FILL REF

WODR 2

101

external references uses a core table holding ''n'' entries and makes

a complete pass backwards through all sectors (since the program is
RAD resident) which contain external references. By keeping track of
the next largest RAD address referenced by any entry in the reference
chains, the algorithm is able to trade a slight increase in core
manipulations for a significant decrease in RAD transferring. As each
sector is input, all external references in this sector are resolved
before going on to the next largest sector referenced. The procedure
is repeated for the next ''’n'' unresolved references and so on until all
references have been resolved. The obvious technique of resolving all
references in a single chain beforevgoing to the next would require all
sectors having references to more than one external symbol to be input

and output as many times as there are different external symbols.

5.3.4. LOAD ADDRESS MAP

The load address map output at the end of pass two provides

the following information for each external symbolic name:

(i) The RAD or core address of the definition.

(ii) The priority if the entry is a coreload name.

(iii)The final POP sequence number if the entry is a POP.

(iv)A duplicate tag if the definition has been duplicated.
The POP output is separated from the coreload and external

definitions in the listing (see example in appendix).

102

All entries in the definitions table have been made with
the hashing algorithm described in section 4.3.2 and are known to be
randomly distributed. The output from the reference table is sorted

in two ways:

(i) In ascending order by address where core&RAD.
(ii) In ascending order alphabetically using the collating

sequence:

b 0 K 14 ===~ 9L AL BL---- X <YL

The standard sort techniques (e.g. ''bubble'" sort) which require

physical rearrangement of the table are not feasible for two reasons:

(i) The number of RAD transfers would be prohibitive.
(ii) The reference table is a hash table used for the life of
the system and must be left in the format dictated by the

hash algorithm.

The sort algorithm employed is flow charted in figure 5.7. The
technique used is similar in theory to that described in section 5.3.3.
A core table with a capacity of ''n'" entries is loaded with the ''n'"
smallest elements in the table by making a complete pass through the
RAD table. This procedure is repeafed with subsequent passes by ignoring
all elements not larger than the largest element from the last pass until

all elements have been sorted. If there are "x' elements in the tablev

103

having ''y'' segments, this sort algorithm will require |x/n|y

RAD transfers for a complete sort.

5.4 USER COMMANDS

Figure 5.1 illustrates that the user is requested to instruct

the LOADER to take a specified course of action in the following instances:

(i) Immediately upon loading the program. The user may not
wish to load programs but may want only an output of the

definitions table (section 5.4.2.5).

(ii) After each end section is read. The user must instruct the
LOADER to either continue with the next tape or indicate that

all progréms have been loaded.

(iii)After the load has been performed and before transferring

it from temporary to permanent RAD.

Although the user is also requested at the start of the
load to input the starting permanent RAD address to be used, this is
not considered to be a command in the general sense. The LOADER will

accept only an octal number in this case and none of the commands to be

described in this section.

Figure 5.7

LASTR— — D

SR

104

LAS V= COMLME

A

tt\‘il

SEGCHMENT —t—
FARST OF
TAGLE

b

CLEAR

PNP UT
'SEGHMENT ¢

| f RE.‘ JUREN XY

.7 A

FrRovM RAG

L

OF LASY & \.;M?,o\.

Kernsmm. v oo s

" TN
OWTEuT

N
Devin m_n/

T L

SEG g N o
Stene T L

CouLnt
S\jtagor.

N

INGERY
AW TO

Sort Algorithm

105

5.4.1 GENERAL

The command analyzer is analogous to that used in the assembler
(section 4.3.6). Commands may be input individually or several in the
same statement separated by commas. Each command is executed
interpretively until a transfer of control (GO, END, or TX) is

executed.

Error analysis consists of the message ''SYNTAX ERROR' output
when analysis fails. Because commands are executed interpretively, all

commands preceding the error will have been executed,

5.4.2 SPECIFIC COMMANDS

5.4.2.1 REWIND

This command rewinds magnetic tape unit two.

5.4.2.2 NEW SYSTEM
This command is to be used only when loading a completely
new system as it causes the LOADER to purge the external
definitions table at the start of the load. The LOADER
also uses the first definition in cases of duplicate
definitions when this option is invoked. Default is

add to system if this option is not requested.

106

5.4.2.3 GO

This command causes the LOADER to continue with the

present operation, i.e. return to the calling location.
5.4.2.4 END

This command causes the LOADER to begin pass two and

is allowed only following an ''end record' from tape.
5.4.2.5 DUMP

This command initiates the listing of the LOAD ADDRESS
MAP (definitions table), and should be required only
when multiple copies are required as the LOAD ADDRESS

MAP is output automatically with each load.

5.4.2.6 TX

This command releases the LOADER after producing job

statistics on the 1/0 typewriter.

5.5 PROGRAM SI1ZE AND RUN-TIME STATISTICS

The present version of the LOADER consists of 2100, source

10

records and requires 77008 words of core memory, allocated as follows:

107

Program and Constants 46008 words
Buffer Areas 31008 words
Core 77008 words (4K)

A variable amount of '‘temporary' RAD is used, amounting to a

maximum of 1/10 more than the present system size (or 200K).

The run-time statistics are variable, depending on the tape
density, the number of coreloads, and the number of tapes. The present
complete system requires approximately twenty minutes to load,
including all delays as a result of having to wait for the user to

mount tapes (maximum of two to three minutes delay).

CHAPTER 6

CONCLUSIONS AND FURTHER DEVELOPMENTS

According to a recent survey conducted by Control Engineering
[8], only 38% of users of on-line real-time systems are able to
assemble programs on-line. The necessity of an on-line program
development package for this application can be better appreciated if
it is realized that Alberta Gas Trunk Line has several ''uncommon'

characteristics:

(i) Computer control of gas transmission facilities is an infant
industry and as such does not have access to proven techniques for
utilizing Supervisory Systems. New procedures and applications must he
researched, developed, imp]emeﬁted, and imprbved within the company; an
approach which requires considerable computer time for program development

and testing.

(ii) The growth rate of the pipeline facilities is very rapid
and requires constant updating of the Supervisory programs to keep pace

with expansion.

(iii)The system is on-line 2L hours a day and is required to scan
the pipeline at least every fifteen minutes. Although the effect of major
changes often takes hours to observe, a response fimevof five to ten
minutes is considered necessary for initiating stabilizing action in the

event of ''upset conditions''.

- 108 -

109

(iv) The emergency backup system is so ineffective as to be
considered useless except in '‘panic situations''. [t does not provide
sufficient information display and control capabilities to replace the

on-line system while program development is carried out.

Statistics kept for the package over a sixty day period indicate

that usage averages 1.5 hours per day, allocated as follows:

UTILITY 45%
SYMBOL 50%
LOADER 5%

The allocation varies considerably with job mix since an increase
in "new' programs results in an increase in ''test assemblies'' for
each update by UTILITY. The proportion of time used by the UTILITY
program will increase over that used by SYMBOL in periods of increased

program development.

UTILITY has been in use for over a year while SYMBOL and LOADER
have been in use for only three months at the date of this writing.
Extrapolating the statistics for UTILITY back for a year gives a
conservative total usage for the package to date of three hundred to
four hundred hours. Downtime for program development has been virtually
eliminated by the package, giving a tangible increase in system
availability of over 6% per day (1.5 hours). Updating and program
development are also more efficient since ;he user is assured that he

can run and debug his job interactively and at his convenience.

110

Emphasis is gradually being shifted towards the “applicatfons”
programming area (e.g. simulations, trend analysis, optimization,
closed loop control, and Management Information Systems), as the process of
data gathering and display becomes more reliable and accessible. It
is expected that program development will increase sharply as users
become more aware of the numerous possibilities and capabilities of

the system.

Use of the package can be extended over the life of the CPU,
which has a remarkable record of reliability for the past six years.
The CPU could not '‘conveniently' be replaced in less than two years and
will probably be in use for up to five years if reliability does not
become a problem. Size and speed are not immediate concerns since
the foreground task of monitoring and controlling the system requires
only 20 to 30% of the system time and leaves 450K words of RAD storage

available for future development.

In spite of the fact that the present demands on the package are
well within design limitations, there are general areas of improvement

which would considerably increase throughput:

(i) Interlace on the W 1/0 channel (Buffer) would allow
overlapping of 1/0 and processing for the devices attached
to it and would make designing |/0 handlers for the card

reader and magnetic tapes more economic.,

(i)

(iii)

11

Faster card reader and line printer would increase through-
put since the programs are presently almost completely 1/0

bound.

Redesign of the 1/0 system around spooling of 1/0 by job
(i.e. priority) in conjunction with (i) and (ii) would
eliminate waiting for 1/0 in most applications. RAD could
be used as the intermediate storage medium and all
references to specific I/Q devices could be made indirectly
to the designated area on the RAD. Conflicts arising over

use of common peripherals would be virtually eliminated.

There are also specific areas in each of the programs which are

scheduled for further development:

6.1 UTILITY DEVELOPMENT

(1)

Addition of commands to permit editing and updating of
binary output (object) tapes using coreload names and/or
end-sections as editing boundaries. This feature would
provide the ability to replace single programs on a binary
tape and to reload the system without having to re-assemble

the entire tape.

112

6.2 SYMBOL ,DEVELOPMENT

(i)

(i)

Modify pass one to output source records to RAD and
re-read from RAD rather than from magnetic tape for pass

two.

Modify the 1/0 package to allow the user to select the
source input device (i.e. cards or magnetic tape) rather

than fixing it to magnetic tapes.

(iii)Allow the user to select the command input device (i.e.

(iv)

(v)

(vi)

cards or typewriter) so that assemblies can be ''batched"
and signed off automatically with input from cards or magnetic

tape.

Provision for an optional version which uses a RAD resident
MNEMONIC table which will allow more than the present fifty

user-defined operation code symbols.

Provision for dumping global symbol tables (which are common
to most application programs) to magnetic tape for subsequent

input to other assemblies,

Provision to select the program (s) to be assembled (by
specifying sequence start and end) from a batch of programs on

a single tape.

113

6.3 LOADER DEVELOPMENT

(i) Modification to have all '"'new'' entries to the definitions
table tagged and purged from the table if the programs

are not transferred to permanent RAD.

(ii) Default dump of the LOAD ADDRESS MAP which prints only the

"new'' definitions as in (i).

(iii) Provision for a version which does not require temporary
RAD storage in the event the system grows to require over

half of the RAD installed.

The fact that the author is familiar with the Supervisory System
and has served as analyst, programmer, and user of the package, has
been essential to its success in providing the services described.

As the Supervisory System changes and users become more demanding,

the package will also have to change to meet the new requirements.

in conclusion, the package as described is performing a very essential
service, and has been well received by all connected with the operation

and upkeep of the Supervisory System,

APPENDIX |

USE OF THE PACKAGE

The appendix demonstrates the typical use of the package
by following the development of a: program (coreload) from generation

onto magnetic tape through loading it into the system.

Figure Al.1 illustrates the console typewriter 1/0, segmented

as the 1/0 applies to each of the six separate jobs.

JOB (1)
This job represents generating the program from cards to magnetic

tape. The output from UTILITY is given in figure Al.2.

JOB (2)

This job represents the first''test assembly' to detect syntax
errors which can be caught by the assembler. The default options of
SYMBOL are invoked and produce the listing given in figure Al.3. This

test assembly illustrates two errors:

(i) The call to WAIT appears before the 1/0 has been requested.
(ii) A keypunching error in record 180 has created a POP reference

to LDR rather than the legitimate mnemonic LDX.

A visual check of the remainder of the output shows that there

are four legal external references and three legal POP references.

- 114 -

L*ly °4nbig

0/1 491 1amadA) alosﬁog

UTHLITY L
%% LIART 2 1233 JTILITY ¢8/24/29 TU 988/24 t
vy
$Yi30L)
REUIND S1,G0
REMIND S1,TX \ 2.
*Q LAART 2 1234 SYABOL 34/8d9/27 TO 313/53
4
\
UTILITY
\ 3.
W) AART 2 1234 UTILITY ¢$/08/11 To 998/25
A
SY:30L
REWIHD S1,G0
REVINO SI1,TX 4.
2L AART 2 1235 SYABOL §¥/4d/25 TO g11/¢%
SYM3OL
REWIND S1,3EWIND B89,L1ST ALL,BO,GO
REWIND 81, REWIHD B8O, TX 5.
R UIART 2 1236 SYABOL #9/du/u9 TO J11/461
LOADER h
REWIHD, HEW SYSTEN, GO
IPUT PERANENT RAD ADDRESS 28044
PELIAHENT RAD ADDRESS # Jou263488
Gu
EHD-SECTION READ >~ 6
REWIHID, END
QEADY TU TRANSFER TU FIHAL QAD GO
TX

WR2LART 2 1237 LOADER 9p/A1/03 TO 941/23

alt

121360

21y ®4nb1y

peo(240) @lelaudy

COMMAND=
COMMANDs=s
ah

REWIND 8UTPUT
SEQUENCE FRSM 10 BY 10

SAMPLE

» SAMPLE CORELBAD T6 DEMBNSTRATE THE TYPICAL USE 8F THE BN=LINE

*
*

JEBWA

START

TABLG

D126
TABLE

CBMMAND=
COMMAND=
COMMAND=

LBADING A CBRELBAD.

RBRG
RES
PZE
PZE
BCD
LDX
LDA
STA
LDA
EAX
BRU
EAX
BRU
LDR
LDP
FLM
STD
LDA
STA
LDA
EAX
BRU
EAX
BRU
BRU
DATA
PZE
DATA
DED
EQU
END

END SECTIBN

0
20
START

8, SAMPLE
JOBWA
212
TABLQA+5
aTABLQ
$+2
WALIT
$+2
1838YS
=TABLE
1,2
D126
5.2
s1x/15
TABLQA+1
=TABLQ
$+2
188YS
$+2
WAIT
RELEAS
$,0,TABLE»O1000
WD

0,0
126
$43

REWIND BUTPUT

TX

PREBGRAM DEVELOPMENT PACKAGE FBR GENERATING» UPDATINGs AND

SYSTEM WOBRK AREA

ADDRESS BF FIRST INSTRUCTIGN
ADDRESS OF WERK AREA FBR THE J08B
CBREL.BAD NAME .

RAD ADDRESS 8F TABLE
FIRST WBRD ADDRESS GF 1/0 WBRK AREA
WAIT FBR [/8 T8 FINISH

REQUEST INPUT 8F RAD TABLE

TABLE(5)=TABLE(1)#126/TABLE(3)
178 FUNCTIGN

REQUEST BUTPUT 8F RAD TABLE

WAIT FBR 1/8 TB FINISH
RELEASE JBB

WAITING 1/8 FLAG FBR THIS PRIGRITY

FIRST WBRD ADDRESS 8F TABLE AREA

ZEND OF INFGRMATION 8N TAPE

00000010
00000020
00000030
00000040
00000050
000C0060
00000070
00000080
00000090
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180

00000190

00000200
00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000280
00000290
00000300
00000310
00000320
00000330
00000340
00000350

91l

€*1y 24nbB14

Alquassy ‘Aqsel

X & ¥ K resererw ¥ %

€0035
00037
00040
00041
00042
00043
00050
00052
00053
00060
00052
00050
00060
00053

01 00000
01 00000
01 Q0066
00 00001
03 00063
00005
01 00037
01 00035

01 00000 .

QOO0 Wr W 0OoO
o
M)

00 0C000

RELEAS

15
17
18
19
20
21
26
23
29
31

ah

SAMPL.E
BRU
BRU
LDR
LDP
FLM
STD
BRU
BRU
BRU
PZE

#xx 00/00/19 ELAPSED TIME, MAXIMUM LBCATIBN =
5 SYMBOLS »

* % #*

3 L ITERALS »

4 REFS

WAIT
188YS
=TABLE
1,2
D126
5,2 77
188YS
WALT
RELEAS
WD’

00067

5

WAIT FBR I/6 T8 FINISH
REQUEST INPUT BF RAD TABLE

TABLE(S)=TABLE(1)#126/TABLE(3)
REQUEST BUTPUT B8F RAD TABLE

WAIT FOR 1/8 T8 FINISH

RELEASE JB8

WAITING [/8 FLAG FBR THIS PRIBRITY

00000010
00000150
00000170
00000180
00000190
00000200
00000210
00000260
00000280
00000290
‘00000310

L1l

J08 (3)
This j

in JOB (2).
(i)
(ii)
(iii)
(iv)

J0B_ (k)

This j

that the update was successful,

that the er

ob is an update by UTILITY to correct the errors detected

Four functions are to be performed:

The call to WAIT is deleted.

The call to WAIT is inserted in the correct position.

The record with the keypunching error is replaced.

The remainder of the program is copied to the OUTPUT tape.
The output from the job is illustrated in figure Al.4. The
first record of the "insert'' contains two sequence numbers;
the right most being the sequence number punched on the CID
source record (implicit command), and the left most being
the final sequence number assigned to the record on the

OUTPUT tape.

ob is a test assembly on the output from JOB (3) to verify

rors have in fact been corrected and the program is free of

visible errors.

Jo8 (5)

This job is the final assembly, complete with listing and binary

output. The listing of the complete program as output by SYMBOL is

given in figure Al.6

118

The output in figure Al.5 demonstrates

g1y @4nB1y

o1epdn

CAMMAND =
CBMMAND=
CBMMAND =
C8MMAND=
INSERT

REPLAC

CBMMAND=
COBMMANDs
CBMMAND =
COEMMAND =

REWIND INPUT

REWIND QUTPUT

SEQUENCE FRBM 10 BY 10
SKIP 140 THRU 150

EAX $+2
BRU WAIT
LDX =TABLE

CBPY 1 SECTIGN
REWIND INPUT
REWIND 8UTPUT
TX

WAIT FBR 1/6 T6 FINISH

00000160
00000170
00000180

00000171
00000180

6Ll

G'ly 24nb1y

Ajquessy 31s9}

® K K £ reteare x X

#x% 00/00/18 ELAPSED TIME,
3 LITERALS »
& A

* %
»

00035
00037
00041
00042

" 00043

000590
00052
00053
00060
00052
00050
00060
00053

QOO0OWHrWOO

01
01
00
02
01
01
01
01
00
WALT
188YS
WD
RELEA

00000
00000
00001
00063
00005
00035
00037
00000
00000

S

S SYMBBLS »

1
15
17
19
20
21
26
28
29
31

“

a4

v SAMPLE

BRU
BRU
LDP
FLM
STD
BRY
BRU
BRU
PZE

MAXIMUM LOCATION =
~ % REFS

188YS
WALT
1,2
Diz26
5,2
16SYS
WAIT
RELEAS
WD '

00067

REQUEST INPUT 8F RAD TABLE
WAIT FBR 1/6 T8 FINISH

TABLE(S)=TABLE(1)}#126/TABLE(3)
REQUEST BUTPUT B6F RAD TABLE

WAIT FBR I/8 T8 FINISH

RELEASE J8B

WAITING /8 FLAG FBR THIS PRIQRITY

00000010
00000150
00000170
00000190
00000200
00000210
00000260
00000280
00000290
00000310

ocl.

9* 1y 24nb1]

Ajquassy [eulq4

* SAMPLE COBRELBAD T8 DEMONSTRATE THE TYPICAL USE 8F THE ONw»LINE
» PROBGRAM DEVELBPMENT PACKAGE FBR GENERATING» UPDATINGs AND

1 a4 SAMPLE
2
3
4 LBADING A CHREL8AD
00000 5 RBRG 0
00000 6 RES 20
c0024 © 00 00030 7 PZE START
00025 O 00 00000 8 JOBWA PZE
00026 12622144 9 BCD 8, SAMPLE
00027 47432512
00030 0 71 00025 10 START LDX JOBWA
00031 2 76 00002 11 LDA 2,2
00032 0 35 00061 12 STA TABLO+5
00033 0 76 00065 13 _ LDA *TABLG
00034 0 77 00036 14 EAX $+2
* 00035 0 01 00000 15 BRU 185YS
: 00036 0 77 00040 16 EAX $42
* 00037 0 01 00000 17 BRU WALT
00040 O 71 00066 18 LDX * TABLE
! 00041 3 00 00001 19 LDP 152
1 00042 .1 02 000563 20 FLM D126
1 00043 3 01 00005 21 STD 5,2
00044 O 76 00067 22 LDA =1%/15
00045 0 35 00055 23 “STA TABLG+1
00046 0 76 00065 24 LDA *TABLG
00047 0 77 00051 25 EAX $+2
» 00050 0 01 00035 26 BRU 18sYS
0051 O 77 00053 27 EAX $42
* 00052 0 01 00037 28 BRU WALT
» 00053 0 01 00000 29 - BRU RELEAS
00054 00000054 30 TABLG DATA $,0 TABL.E» 01000
00055 00000000
00056 00000070
00057 00001000
* 00060 O 00 00000 31 PZE WD
00061 00000000 32 DATA 0,0
00062 00000000
00063 00000007 33 D126 DED 1260
00064 37400000
00000070 34 TABLE EQU $+3
35 END
00065 00000054
00066 00000070
00067 00100000
00052 WAIT
00050 1ASYS
00060 WD
00053 RELEAS
wx% 00/00/38 ELAPSED TIME, MAXIMUM LBCATIBN s 00067
o 5 SYMBBLS s 3 LITERALS » 4 REFS

SYSTEM WBRK AREA .

ADDRESS BF FIRST INSTRUCTIGN
ADDRESS OF WBRK AREA FB8R THE J6B
CBRELOAD NAME

RAD ADDRESS OF TABLE)
FIRST WBRD ADDRESS 8F 1/6 WORK AREA

REQUEST INPUT OF RAD TABLE
WAIT FBR 1/8 TO FINISH

TABLE(S)=TABLE(1)*126/TABLE(3)
1/8 FUNCTIBN
REQUEST 8UTPUT BF RAD TABLE

WAIT FBR 1/8 T6 FINISH
RELEASE J88

WAITING 1/8 FLAG FBR THIS PRIBRITY

FIRST WBRD ADDRESS 8F TABLE AREA

00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090

00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
00000200
00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000280
00000290
00000300

00000310
00000320

00000330

00000340
00000350

iet

122

JOB (6)

This job is the loading of the binary output from JOB (5)
and integrating it into the system. The NEW SYSTEM option is requested
to make the coreload independent and to keep the output of the LOAD
ADDRESS MAP as brief as possible. Figures Al.7.1 through Al.7.5 give

the output from the LOADER.

Figure A1.7.1 lists all external references as unresolved since the
coreload was loaded as an independent system and therefore did not have

access to the external definitions table of the existing system.

Figures A1.7.2 and Al.7.3 give the sorted output of the POP table.
The eight digit octal number associated with each POP gives the

following information (from left to right):

BIT CONTENTS

0

1 if POP definition

1 1 if POP reference

2 - 8 POP sequence number

9 - 23 Origin of POP routine

A1l POPS in this load are references only since the executive,
containing the POP library, has not been loaded. This would normally
constitute a program error since it would be known that there are

references to POPS which are not defined.

<

*ly @4nbiy

L

peo

24MAR72

SAMPLE
SAMPLE
SAMPLE
SAMPLE

1237 UNRESSLVED REFERENCES

UNRESHLVED REFERENCE
UNRESAL.VED REFERENCE
UNRESBLVED REFERENCE
UNRESBLVED REFERENCE

WALT
188YS
WD
RELEAS

AT 00052
AT 00050
AT 00060
AT 00053

ect

AT L] eJnB!H

24MAR72

FLM

1237

20200000

SYSTEM POPS(BY ADDRESS)

STD 20100000

LoP

20000000

hel

€ L1V 9-1"5!3

24MAR72

FLM -

1237

20200000 *

8YSTEM PSPS(ALPHABETICALLY)
LDP 20000000 ° STD

20100000

YA

WLty oanb iy

24MAR72 1237

4 SAMPLE 40120000

EXTERNAL DEFINITIONS(BY ADDRESS)

9zl

§tLU1y eunbig

24MAR72

A

“SAMPLE

1237 EXTERNAL DEFINITIBNS(ALPHABETICALLY)

P

40120000* °°

Lzl

128

Figures Al.7.4 and Al1.7.5 give the sorted output of the
definitions table. The sorting in this case is meaningless since
there is only one definition. The digit "4' preceding the coreload
name SAMPLE is the priority of the coreload, while the 8 digit octal

number associated with it contains the following (from left to right):

BIT CONTENTS'
0 = 1 if RAD address

1 -8 length (in sectors) if RAD address
9 always = 0 (unused)

10 - 23 RAD/core address of definition.

The address 40120000 indicates that it is a RAD table of length

1 sector (less than 64 words) starting at RAD ADDRESS 20000.

kL,

REFERENCES

. Cheatham, T.E., and Sattley, K.

Syntax Directed Compiling

In:

Rosen, S. (Ed.) Programming Systems and Languages

McGraw Hill (1967), 264-297.

. Martin, J. Programming Real-Time Computer Systems

Prentice - Hall Inc. (1965).

. Martin, J. Design of Real-Time Computer Systems

Prentice - Hall Inc. (1967).

Xerox Data Systems XDS 920 Computer Reference

Manual (1965).

. Xerox Data Systems XDS Symbol and Meta-Symbol

Publication Number 900506G (1969).

. Xerox Data Systems XDS 900 Series Symbol

Technical Manual

Publication Number 900688C (1967).

129

130

7. Xerox Data Systems XDS 920/930 Computer

Programmed Operators Technical Manual

Publication Number 900020F (1967).

8. Kompass, E.J., A Survey of On-Line Control Computer Systems

Control Engineering (January 1972) 52-56.

9. Malia, T.C. and Dickson, G.W.

Management Problems Unique to On-Line Real-Time Systems

AF1PS Proceedings Volume 37 (1970) FJCC.

