
$ Thesîs

Ps"esented to

the Fnc.u Ì ty of G racluate Stud i es enc{ Reãearch

Tí're l.ln i vers i ty of Men i toh-:

ln Per iial Fulfîlìment

çrf the nequ ï reme;tts f,or the negree

l4as te n r¡f, Sci er¡ce

ñn fçm:.ut'en Scíence

b),

R. J. Bcrnf ord

f4ay 19VT-.

The thes i s rles ar i bes a

of Al bertâ Gas Trunk [- î ners

pnognams and întegnate ehem

mode " Tl're package eons i s ts

ÂBSTRAET

(i)

pa,ekage of prognams ,¿hich enables users

Sr.rpervi sony Control System to develop

into the system ïn an on-Tîne background

of fhnee ïndependent progrãms:

YJ"i!JI - u^,rh i eh pnov i des the s tandard c.¡t i I i ty f,unct ions

such as:

- Tistîng eands otr tãpe,

- aopying carrls to tðpe)

- ed i t i ng sorlrce tâpes

whïch ,are rîeçessary for the pneparation and
..

updating of sollrce prÐgrâms.

whi eh essembles ¡rnngnsms wri tten în XDS Synrbol

Assembler lang{Jðge (prep4ned by [lTtl-lTV) ônto

maehine eode for the TnS 9ZC.

eI

(i¡) sYMßnt..

(îîî) ru3gfs rvhieh troads the maehine eode (pnodueed by SYMB0I)

and íntegrates ¡t into the Supervisony System.

A brief history of the evolution of Alberta Gas Trunk Liners

Supervisory System ís given rvith a view to demonstratïng the justifïcation

and urgency of the package.

The appendices contain examples of use of the package within the

environment of Aìberta Gas Trurnk Line's Supervisory System.

ttr

I wish to express my sincere thanks

supervisor, for his advice and assistance

to me in the preparation of this thesis-

ACKN0ì¡1LE DGEMENTS

Special thanks to Dr. S. R. Clark (Victoria) for his interest,

comments, and infinite Patience.

I would also like to thanl< l4rs. J. Hauser for her help in typing

this thesis.

to Professor J, h/ells, mY

which have been essential

IV

Acknowl edgements

Table of Figures

TABLE OF CONTENTS

CHAPTER

I H i story of Al berta Gas Trunk L i ners Supe
Control System ..

l. I 0rigînal System

1.2 System Upgrading

I .3 Program Development

Design Philosophy ...

2.1 I ntegration wi th Existi ng System

2.1.1 Executíve .

2.1.2 l/0 System....

2.2 Access to Programs

2.3 User I nterface

2..4 Error Anaìysis

2.5 Statistics

2.6 0perator lntervention .

Page

tt

iv

X

rv i sory
I

I

l1

6

12

12

l2

t7

27

27

29

3o

3l

THI\PT E R

3 urility .. .:...
3. I Abstract

3.2 User I nterface.

3-2.I

3.2.2

3.2.3

3 '2'Lt

3.2.5

3.3 Command

3.3. I

3.3.2

3.3.3

Command I nput Dev i ce . .

Source I nput Devi ce .. .

Updated 0utput Devi ce. .

List Output Device

Operator Message Device

Language

General ...

Ana I yze r

Syntax Descrïption

3.3.3.1 Blocked 8Y....

3.3.3.2 Commands From

3.3.3.3 CoPY

3.3.3. 4 e n¿

3.3.3.5 L¡st Commands.

3.3.3.6 List

3.3.3. / Pase

3.3.3. B Pause

3.3.3.9 Reverse

vi

Page

33

33

33

33

35

36

36

3B

39

39

43

4B

49

5o

5o

5r

51

5\

54

55

55

3.3.3. l0 Rewi nd . .

3.3.3.11 Sequence.

3'3'3'12 SkîP
3.3.3. l3 Tabs At

3.3.3. l4 rx

3.4 Program Size and Run-Time

4 Symbo I

4. I Abstract

4.2 General Description

4.3 Extens i ons

4.3. I Overlays

4.3.2 Syrnbo I Tab I es

4.3.3 Global Definitions

4.3.4 Loader I nformat i on

Statistics

vii

Page

56

56

56

57

57

5B

4.3.5 Program Statistics.

l+.3.6 Assembly 0ptions

4 .3 .6 .l Rewî nd

4.3.6,2 List Errors

\.3.6.3 List Al I ..
t+.3.6.4 No List

4.3.6.5 No Bo

t+.3 .6.6 B0

t+.3 .6.7 G0 . .

59

59

59

67

68

72

75

7B

7B

79

79

79

79

79

79

Bo

BO

4.3.6.8

4.3.6 .9

Standard Bi nary4.4

4.5 Program Size and

LOADER

5.1 Abs tract

5.2 Object i ves

5.2.1 Diagnostic and Loading lnformat

5.2.2 Complete or Partial Load

5.2.3 No Restrictîons on Program Size

"Delta Records"

Langu age

Run-Time Stati sti cs

5.2.4 Mu I tÌ ple lnput Tapes

5.2.5 System Securî ty

5.3 Method ...;.

5.3.1 General ...

5.3 .2 Hand I i ng B i na ry Records

5.3.3 Resolving External References

5.3.4 Load Address Map

vi ii

Page

Bo

80

B2

83

5.4 User Commands

5.4.1 General ..'

5.4.2 Specifîc Commands ..

5.4.2.1 Rewind

5,4.2.2 New System

86

B6

B6

B6

87

87

B8

Bg

90

90

93

98

ì01

103

105

t05

t05

t05

5.5

Conclusions and Further Developments

6.1 Uti I ¡ ty Development

6 .Z- Symbo I Deve lopment

6.3 Loader Development

Run-Tîrne Statîstics

APPEND I X

I Use of the Package

IX

Page

r06

r06

106

r06

106

RE FE REN CES

r0B

lil

ll2

il3

il4

129

F I GURE

l. I November 1967 Conf iguration

1.2 January 1972 Conf igurat

2.1 Executive

2.2 Card Read Hand ler

2.3.1 Read Magnetic TaPe

2.4.1 \,Jrite Magnetic Tape

TABLf OF"FIGURES

3.1

3.2

3.3

3.4

3.5.1

4. I

\.2

4.3

4.t+

5. r

5.2

5.3

eL

qI

Typewri ter I nput

Print 0utput

Ut¡ I ¡ty Control ler.

Ana I yze r

Copy/Skip/and Líst

Symbol Controller .

on

Overlay Handler ...

PAGE

Search RAD Resident SYmbo

Purge RAD Resident SYmbol

2

5

t4

t9

2l

24

3Lt

37

4z

44

52

66

7o

7LI

77

9r

9\

95

q6

96

Loader Control ler .

Delta Record Handler

Data Record l-land ler

POP Reference and Definition Handler

External Reference and Definition Hand er

FIGURE

5.5 End Record Handler

5.6 Resolving External Refe

5.7 Sort Algori thm

Al , I Console Typewri ter [/0

Al.2 Generate Coreload

Al.3 Test Assembly

Al .4 Update

Al.5 Test Assembly

Al.6 Final Assembly

ren ces

Al .7. I Load

PAGE

XI

99

100

r04

il5

r r6

117

I t9

120

121

123

cllAPr.ER I

HISTORY OF ALBERTA GAS TRUNK LINE'S SUPERVISORY CONTROL SYSTEM

I.I ORIGINAL SYSTEM

ln May of 1966 Alberta Gas Trunk Line contracted Automatic Electric

(Canada) Limited to provide a computer controlled Supervisory System to

faci litate centralized control and monitoring of Alberta Gas Trunk Line's

pipeìine system.

The initial system design was undertaken by Automatic Electric in

cooperation with Alberta Gas Trunk Line; Automatic Electric provided the

hardware and software expertise while Alberta Gas Trunk Line provided

the applications objectives. This was the first such system designed

and built by Automatic Electric; they planned to develop Alberta Gas Trunk

Line's system as a prototype and to market the system as a supervisory

package with their CONITEL 2100 communications hardurare, Because the

system had considerable market potential, Automatic Electric spent a good

deal of time and expense incorporating sophisticated programming techniques

which normally would not have been justified on a system of this size.

After spending five to six man yeârs developing the system, Automatic

Electric Management abandoned plans for marketing the system and advised

their personnel to complete and deliver Alberta Gas Trunk Line's system.

The original system ¡ s i I lustrated in figure l. l.

- l-

XD5 92o

gK 24 Btf r{oeos

BUFFER

PÀÎÊR TAPE
RËND ç.R

NlTH ìNYERLACE

?t PER TÀPE

PurrcH

[r.hÞ

laul K 2{.ßt't
t^l Þ RÞ$

5e u¿c¡'er c
PÊr,¡ß \T Ê R

t luDtu 'Si
Ti¡?ÈW atteßS

Figure l.l

Ltt+e Buçpgt¿,

November 1967 conf iguration

ii
I

êotlrtuN \cÀTìõNs

Lrt.tE s To

FIELÞ REnÐTËS
(sr)

As a direct result of the cooperative approach to system design

and Automatic Electricrs subsequent business decisions, Alberta Gas

Trunk Line received a Supervisory System wíth the following properties:

(i) The system was overdesigned in the "Supervisory" area.

The executive and operating system were considerably more

sophisticated and complex than requi red.

(i ¡) The system was underdesigned in the "Applications" area.

The applications programs were an unsuccessful attempt at

satisfying Alberta Gas Trunk Linets Gas Control requi re-

ments due to a large extent to the fact that Alberta Gas

Trunk Line had not analyzed their system requirements

adequately prior to speci fying the system. The requi rements

of the Supervisory System are sti ll growing and changing as

experience with the system leads to a better understand¡ng

of the functions it must perform.

(ii¡) The system was almost completely neglected in thetrsupportrt

area. Such essential support programs as uti I ity routines,

assemblers, loaders, debugging aids, test routines, and

simulators were general ly ignored or were far below standard.

The obvïous reason for this inconsistency was Automatic

Electricrs decision not to market the system commercial ly.

Because support software is typically the last developed it

4

was the fi rst area to suffer from Automatic Electricrs

haste to complete the project. The less obvious explanation

for neglect in this area was Alberta Gas Trunk Liners lack

of experience, and their inabi lity to forecast the programming

changes necessary to keep pace with expansion and growth in

the pipel ine system.

1.2 SYSTEM UPGRAD I NG

The initial system did not permit in-house program development

and updating since such peripherals as card reader, line printer, and

magnet¡c têpe drives were not purchased. The first system update, done

ín the fall of 1968, was taken to Chicago and completed with the

faci I ities and staff suppl ied by Automatic Electric.

Although of a minor nature, the first update did demonstrate that

an alternative to travelling to Chicago and using Automatic Electric

staff and equipment had to be developed. Alberta Gas Trunk Line

proceeded to expand the system to enable in-house program development

and system updating. The hardware was upgraded as i I lustrated in figure

1.2.

Alberta Gas Trunk Line had considered maintenance of the Supervisory

System as requiring only extensions in the applications area - e.g.

adding a new stat¡on or changing the format of an existing station and/or

i ts associated reports. AÌberta Gas Trunk Line had fai led to apprecíate

that the system would have to evolve in overall structure as it was used,

and as Gas Control developed new techniques centered around the real-

XÐS lzo
lb t< 24 tsrr

NoRDS

Buçrrn

PTT,PER TTTPË

RËÀÞLR

PAPER TI"PI:
Pu ¡tc t\

Y ßurrgn -
WITH INTFRL&CË,

RAD
6sE \(24 Brr

V-¡ORÞ 5

mDgEL \Ê'

PE TJ R,\TË f\

D\SPLA.y
A $'\Þ

CoNTR ÞL
Car.¡$oLE

¡1¡6, TÀpE

D¡.rvËT

Figure 1.2

LtNs ßurçeq

January 1972 conf i guration

CoMrr,.¡N rcAftoNS
LINES TO

F\ÈLÞ ßEI"IùTES

(.es)

time system. Experienced programmers were required to undertalce the

program development as existíng staff did not have a programming

background. Coincident with the purchase of the additional hardware,

new programming staff were hired - of which the author was one.

1.3 PROGRAM DEVELOPMENT

The f¡rst task vras to evaluate the present system and to update

it since it had not been updated in approximately a year. The changes

in the applications programs were extensîve, as a large number of new

meter and compressor stat¡ons had been I'patched in" over the year

through the l/O typewriter. The maintenance programmers responsible

for the modifications had eîther transferred to other departments or

had left the company, leaving the programming group with an unfamïliar

and poorly documented system.

Although the line prínter had been purchased for off-line program

development, its speed relative to the typewriters made ¡t imperative

to incorporate ¡t into the real-time system, and to rebuild all system

reports for the prínter. vI rtual ly al I system reports had to be

redesigned and rewritten since the existing reports had been written for

3o inch logging typewriters and had to be reoriented to 120 character

I i nes.

An investigation of the existing software and hardware for

program development proved to be most discouraging:

(¡) There were no key punches or key punch operators on

site - all programs had to be written on coding sheets

and sent out for key punching. This required a three

to four day turn-around for the modification of a few

ca rds .

(¡ ¡) f fru existing sof tware for program development was "of f -

line", and very inefficient. To compound the problenr,

Gas Control was becoming more dependent on the Supervisory

System and a conflict of interest rapidìy developed.

An evaluation of the system support software i ì lustrated

severe inadequacies which had to be corrected before efficient

program development could be possible. The software provided

cons i sted of the fol lowi ng three programs , al I off- I i ne:

(¡) An EDITOR program u/ritten in F0RTRAN I I and sti ll

containing several Ibugs". The program was extremely

slow and provided a restricted set of commands designed

specifically for tape editing.

(¡ ¡) An ASSE|IBLER program which was the XDS supplied SYMBOL

Assembler with minor modifications made by Automat¡c

Electric. The SYMB0L assembler itself operated as

specified by XDS, the problems being:

- All symbol tables u,ere core resident. l/¡th the size of

our Supervisory System and the number of global symbols,

the core available for symbol table expansion was inadequate

with the existing data base design. lt uras necessary to

segment the system and load only the essential symbol tables

for each individual system tape in order to keep within

available core. Assemblies had to be set up several times,

with a consequent loss of time, in order to eliminate as

much redundant i nformati on as poss i b I e.

- There was no provision for "conditional test assemblies".

(¡ï¡) A LOADER written by Automatic Electric which operated as

specified but which was far below standards which should

have been expected. lt was admittedly designed for the

¡n¡ t¡al hardware confîguration of paper tape input of object

code and typeìn,riter listing of the final symbol table (Load

Address M"p). The programmer-analyst utilized the computer

console (lights, push buttons, and toggles) as the user

interface rather than the input/output typewriter. lt was

.impossible to use the program without a detai led I ist of

program halts and a program listing. 0utput of the r|LOAD

ADDRESS MAPI was not sorted and therefore was very difficult

to search visually for a specific item.

It was clear that support software had to be developed in order

for program development and system updating to take place. Priorities

had to be established since any delay for extensive support program

development would be intolerable to a system so badly in need of revision.

Due to the condition of the system and our unfamiliarity with it,

an iterative approach to system updating was adopted. The majority of

the computer time was spent on editing and listing tapes with an infrequent

assembly to indicate the remaining "bugs" to be eliminated. The initial

improvements made in the support software area were as follows:

(¡) A minor modification was made to the assembler,

permítting the user to specify options necessary

for "test assembl ies" e.g. I ist al I or I Îst errors
'

binary output (of object code) or no binary output.

The typical assembly time for rrtest assemblies" was

reduced considerably by not requi ring a complete I isting.

(ii¡ An off-line UTILITY package tryas developed to replace

the tape editor written in FORTRAN. The package was

programmed in SYMBOL and was therefore able to take

advantage of hardware features not available to F0RTRAN'

e.g. tape scan features, continuous tape reading, etc.

The significant result of this UTILITY package, aside

from the tremendous saving in time, was the experience

gained which formed the basis for the present on-line

version developed and incorporated into this thesis.

(¡¡i) The LOADER was modified to permit binary input of object

code from magnetíc tape but was otherwise left virtually

intact. Very little downtime was required for system

loading at this point, and the time necessary to redesign

and reprogram the L0ADER could not be spared.

ln spite of the significant improvements in the support programs'

the first major update took in excess of six months to complete! The

hardships suffered by Gas Control for that period are incalculable -

because of program development they were without the Supervisory System

for an averêge of three to four hours a day. The emergency backup system

proved to be inadequate and was rarely used.

t0

At this point Management was approached with the proposäl that

the author be given the necessary time and assistance to develop as

a thesis top¡c a package of programs which would enable "on-line"

program preparêtíon and system updating. Management was easi ly

convinced of the necessity of such a package and guaranteed their

coope rat i on .

ìl

This chapter outlines the common areas of

arising as a consequence of the package being

operating system and the same users.

2.1 INTEGRATION WITH THE EXISTING SYSTEM

CHAPTER 2

DES I GN PH I LOSOPHY

Because the package is designed for an existing environment, the

interface with the operating system is critical, and will be described

ïn some detaî I for those areês whÎch requï re specîal attention.

2.1.1 EXECUTIVE

The real-time executive is a standard multiprogramming executive

enrploying simple round robin scheduì îng. The executive al locates the

remaining core memory not used by the core resident operating system to

four program parti tions associated wi th job priori tíes according to the

fol lowing table:

'PRIORITY FUNCTION

design phi losophy

designed for the same

I

2

?

4

Data retrieval and system scan.

System calculations and report formatting.

0utput of summary reports (background).

Background jobs such as:

- program patching and inspection,

- system simulation,

- program development and system updating.

-,12-

The executive algorithm is flow charted in figure 2.1. The

queueing scheme is FlF0 and no job swapping takes place. 0nce a job

comes to the head of its job queue, it remaïns the only active job

in that priority unti I it is completed or otherwise released. Lower

priority programs are effectively blocked from the system untí I a

higher priority job requests l/0 and waits for the l/0 to finish.

l,/hen a job is completed, the executive drops to the next lower priority

to prevent blocking of jobs when a high priority queue builds up.

Although the executive determines "when" jobs are to be run,

other portions of the operating system initiate the jobs by attaching

them to their job queues. Jobs are linked to theÎr job queues when

any of the following external stimuli are sensed:

(i) Line Buffer lnterrupt - b/hich saves each block of data

13

from a remote stat¡on and gueues the data processing

routine when the data is complete i.e. information from

each remote ís sent as several "blocks", each causing an

interrupt to the CPU from the line buffer.

(¡ ¡)pusn Button !¡_t_e¡rt¡pl - l^rh¡ch queues a program to analyze

the cause for the interrupt and to execute the desired

funct i on.

F*G.rõ*l
I ey rNrsqRur.T i

I ulruuer<s i-
\---=--

Exç,cur rvE

lh**r -*=rl
I wser'r JoB I

I .ou.u=o l-

\------'-

trl <- I

('** C\DEUE LÑ

?T) I

0oB QuEu €:Lr'l

I lr

oß Q,$ÊuË
UJÀ\Trñ I'

û.uEuEs

THIS I3TRST

c nuu!

NJ
I SET r\cr\.lsj i

lq*çus B$ç,\i) q
i

I rr.q.s"t cf..LL ¡

+r-"__''---'a/ Reeue911

Reser Q\JEuç
G'us9 Ard Þ

Fîgure 2. I

cÞREr.ÕÊ..Þ

Execu t i ve

Lox r>

Ree rgreRs

coß.ELO ÀD

Í.eLç¡çs

CORELÞÀÞ

(¡ I ¡) User Reeuests -

typewni ters ðre analyzecl,

Externa ! i ç"rtenrupts câuse the execqrt i rre to restart i ts

lnop at prionîty nne since the ínterrupt may have qr.leued

a hiaher prîorityjob than the one being exeeuted when the

î ntennupt ncc:r"+Rrecf ,

I ntegnat îon cf the package r,vi th the exeeut ive pnesents no dt f f ¡ eu I ty

sinee ¡t is rlesigned to handle suah -iobs at user request (¡ ¡ ¡) " nn

îni tial eonsirJeration is to ensure that adequate rnemory is avaî lable"

It wns ¡rossible to allonate only 4K words of cone fiìemory to priority four

wîthout seniously degnading f-he operãtîon of foneEround jobs. Expeniençe

with tlle XDS SYMBOI. assemblen índicated that auxi lîary storage would be

necessôry to supplement the I imited core avaí lable" RAD str:rage provided

the loqÍeal solLrt¡on because of îts arrai labi I i ty {SOOK) and i ts f ast

access tíme.

The c¡nly cone resîdent strs;çtirs"es ir¡ the system are:

þJhiah queue jobs as commands fnom the t/0

,¡5

(i) the exeeutíveo

(li¡ the t/0 systern,

(¡ ¡ î)the interrL¡pt handlers,

(;r) the system POP Ìîbrany"

All other information resides on the RAD în structures known

as co_Ie_!ea!å. This structure has been created to provide a means of

referencing RAD structure by name, with the SYMB0LIC reference being

assigned a RAD address at load time. The scheme is analogous to that

provided by SYMBOL for inter-program communication of SYMBOLIC core

locations, i.e. external definitions and external references which are

associated at load time. A coreload definition is created by prefixing

a group of source programs with a "delta recordrrwhich provides the

L0ADER with the SYMBOLIC name and execution bias to be used (see

Sections 4.3.4 and 5.3 for a further description of delta records).

All programs between delta records are cons¡dered to be part of the

previous coreload and therefore the length of the coreload can be

determined by the LOADER. The RAD address associated with a coreload

requires a complete word (24 b¡ts) to represent it as l4 b¡ts are

required for the starting RAD address and B bits are required for the

length (in 64 word "sectors").

r6

The LOADER relocates all information to its execution address

determined from the "priority" supplied in the delta record. Dynamic

program relocation is prohib¡t¡ve because of the absence of base-

dí sp I acement address i ng.

2"1.2 INPUT/OUTPUT SYSTEM

The objective of providing an l,/0 system in a real-time

envi ronment îs primari ly to provide a schedul ing mechanísm which wi I I

maximize throughput by overlapping processing and l/0. Providîng a

standardized and eff icient package al lor^rs the appl ications programmer

to take full advantage of the capabilities of the peripherals without

becoming involved with the special ized techniques of l/0 programming.

Absence of interlace hardware on one of the two l/0 channels

makes overlapping of l/0 and processing an impossib¡ lîty for the

"higher speed" devices on this channel for the fol lowing reasons:

(i) Once l/O is begun the CPU must be able to transfer

information at the rate of the device or a transfer

error wi ll occur. The physical rate of movement of the

device general ly determines the minimunl rate of transfer.

t7

(i i¡ The absence of an interlace to synchronize block data

transfers makes it necessary for the CPU to word transfer

information on this channel.

(iii¡ The operating system is not re-entrant and therefore

disables the interrupt system when performing "system"

functions. The interrupt system is disabled for sufficiently

long periods to cause a transfer error as în (¡) above for
I'h igher speedil devices.

The above considerations

interrupt system and dedicate

as card reader, line printer,

was incorporated into the l/0

programs but handlers for the

lesser demand, ì¡rere i ncl uded

The handlers to be described are those in UTILITY as they are

representative of those provÍded in each of the programs.

malce it necessary to disable the

the CPU to the device for such peripherals

and magnetic tape. A line printer handler

system because i t was requi red by so many

magnetîc tapes and card reader, being in

only in the programs requi ring them.

The handler flow charted in figure 2.2 reads eighty column

BCD cards from the card reader. Feed check and validity errors cause

a message to be output to the user, requiring him to restart the job

to reread the card. A time-out routine is incorporated to produce

messages to the user at regular intervals if the card reader is not

ready.

(¡) cARD READER

IB

(i¡) MAGNETIc TAPE

all records are fixed length card images to utilize a continuous read

(or wri te) technique. Overhead is decreased considerably by requi ring

only a single read (or write) to dispose of several records in a buffer

area, without stopping and starting for each inter-record gap as is

conventional. The gap is read (or written) but the tape is given a

The magnetic tape handlers take advantage of the fact that

{----

I

I

I

i

I

I

I

I

I

I
t._-_._

fl-ç
ÊR
9E(",

REno crìRÐ

tdÊl
Fc
u9

DISA{\LE '\
te.)'TìER !r,;I Þl-S i

lVAurorTy CttËC

Rçnp I WtÊ.Ê

I9

figure 2.2 Card Read Handler

Rerufqß!

conrmand to continue before it has had time to stop and become not

ready.

The buffering scheme saves considerably on overhead since the

têpe is moved only when the buffer area becomes empty (or full),

The number of records that can be handled by one read (or write) is

a function of:

(i) the burl=fer size,

(ii¡ the number of records per block (blocking factor),

(i ¡¡)ttre maximum time the ínterrupt systern can be disabled

without losing information from the line buffer.

The handlers employ a time-out routine to produce messages to the

user at regular intervals if the tape unÍt is not ready.

READ

The magnetic tape read handìer is flow charted in figure 2.3.1.

Each call to the handler wîll return the next record fronl the read

buffer; the tape is physically read only when the buffer area becomes

empty.

20

I^/R I TE

The magnetic tape write handler

Each cal I to the handler wi I I store

tape i s phys i ca I ly wri tten on ly when

i s flow charted i n fi gure 2.4. ì .

the record in the write buffer; the

the buffer area becomes full.

14A GNET\ C

lrùr-ERRufTS tF '\,

f-û.Pe 4 e¡rrruruÈu,//
BUFFËR
E t,t?ly 1

-il-"'*),
(ENÞ.SÊCT

Resçr
COUN

E$Þ-lÀPË.

D

tgup oc rl.pÈ'

RESËT ÈOF

r.1È E9

^GË

,Figure 2.3.t Read Magnetic Tape

I

I

RËTußñ3
(N op-mr

REpr¡.¡Þ

;i.;"\
FoR

rlÉËR

v
/ RË'1u-R.N \GL/

1it

,___l-____
/ erbe \
_ï:/

YT

--Gìù*- l.r-tz-
'<ôÞ

RErRY<- 5

'*"er-i¿î
Ë-ñÞ - \ÀtE
START TÀPÈ

c
4.5,r

t\ [Þ

w

AÞvANCE

ßLcct¿.ç r*
ßurrc-- a

P-Þ

22

G

N

t.-r'\--lvNT

<>P?

ÀÞ\NNc€
wû 0-Þ

AÞÞfL,ë g}

RÞÊ.RR

2.\.4

\
Y

.4"

àì\Y
(
-r¡le.-

Y

Ê9-ç.oe

N

\

SToP
'l-APg

Figure 2.3.2

i ¡ñcß,et4çr{r EoFI cou-r.¡re a

lse,r eoF__.

Y

srE tÞ-TAPt

rhv

erei)J

c BLocì(LÉ$6r\{
g.ç.nont

STÖ P

TAPE

Auvnxcg
9t-ccK9 rx

BuFr ee

Er Ë (\¡Tr

SET EììÞ-ïAPE

RR'jß?-

R-pe.r-r<

KETL(ßN
'ïo

E* ËCu.rrVç

rNìCRG\\r'lç \ç

Ku1r"tr,r.t
10

EY€(u'r\\lE

(AgLË

'rAFF *cìtPr

Àù\ÀN ct
ßtc tì(t trJ

lSuFFcr<

23

Re,ft,¡r- P'crr'.¡-J

Etnrtus !

(utey

v1¡tç Ê{ AÞ

EF.P*O&tl

ßLo tl(rË ñ6TH

E(ßOßv

Figure 2.3.3

VAtT
ÉoR

uç,,rR

rNrtKf-\(tfS lF
rnee l, cdnrsHEu

Þ\(-^rsL.E

RÈtrÞ

CoPrl Rt c c('-P
'-to

13urFFe t.-

SEQr)Ênr(
F<crq

N PUTT

,qÞÞ rNcREl'ì.EÞT
-lo L^gT

SEQue.ucE

24

K Ettt P.tl

ß t¡ r.l rC

s EC.UE*úcË
Nur.¡ ßÊ R

ÞLo ct(
truuu?

\Ê

ßt\FFÉ R

Figure 2.\.1 l,/rite Magnetic Tape

V\, Atï
Foß

\F,t.R

RE\JIND

lpo'of--T¡eÊ"

D\gÀÈLE \
lNrÉßf.\ìPTS tt:

Tlr'?Êq cl\f\Ntrl=L
FRE.E

SEf ÊÌJÞ-1-AFE

v FttÊ
PRcrËrre¡r

25

gçT uP
FoÈ Ns.*-f

gLOCK

ËQÞ-
T/. PE.?

RE-VJR\TE+ Z

f{çrrttr.¡l

les=t EúÞ-TAPE

s-r ¡.rT TAf s

Figure 2.\.2

SÉT c5ufiFee.
É tl Pry

Rt-rr"t R-u
T9

Ey e crnrve

KË1 Tì RÑ
'10

liyrcutrvr,

D \9trßLË
I NTLR.Rut,'\ I tF
'\l\t ì: q ci\1.ñrJÈ u

26

E.ß Àç E
B to ¿r<

REVÊR9E

Ra**t'4*.*-
Êer,lerte -- I

/ ÞtgAß te '\
trlTL-ÊQ.rtFT5 tF \

Figure 2,4.3

r APe. {, cttlr.:r.reu

TÀlÊ \¡RrlE
ERR.oRT

[ut"*" -\,
1())

14S h
ìN1'ÈRRut'iE \F

fiÎe i CH^rlr¡eu

E/-Eculrve

t,

Each program is requested by typing its call letters - UTILITY,

SYMB0L, or LOADER - as a standard request through eîther l/0 typewriter.

The program will be loaded only if no other jobs are active în that

príority; otherwise a message is output advising the user to try later

rather than queue the job to its job queue. Since the user must be

available to provide the options requested by the program, it may not

be practical for him to wait for the job to come to the head of the

job queue îf a long job (e.S. a simulation) is already in progress in

prior¡ty 4.

ACCESS TO PROGRAMS

2.3 USER I NTERFACE

The software and hardware forming the user înterface were chosen

wíth the following primary consideratîons:

The physical size of the Supervisory System in source form

(IOO,OOO records) dictated very early that all source would be kept on

magnetic tape and revisions only (i...updates) would be input from the

card reader. RAD storage is used whenever possible because of faster

access and because RAD l/0, being on the interlaced channel, can be

overlapped with processing. Any large amounts of prînted output are

routed to the line printer in preference to the typewriter.

27

(i) Devi ce Speed and Avai labi I i ty

The design of the l/0 system makes it necessary to ensure

externêl ly that conflicts over use of peripherals do not occur.

Conventional l/0 in this system is not spooled but queued directly

to the device queue and ínput (or output) as soon as possible

(ftfO¡. Because more than one priority may be competing for use

of the line printer, it îs necessary to reserve the printer for the

job Ìn progress and not permit other prïorities to share the device.

Background jobs are required to set a "reserve printeril flag if they

must use the printer and to reset this flag when they are finîshed.

The l/0 system aborts all other requests for the printer as though

they never occurred unti I the flag is reset. Background jobs are

given this priority because their output is normally of relatively

long duration and because all system output isrron demand'r and can

be requested again when the background job is completed. See Section

2.6 for a means of allowing urgent reports when a background job ís

in progress.

(i i ¡ Rea l- ti me Envi ronment

2B

The programs are to be run asrrbackground'r jobs which implies

that they cannot interfere with or delay the "foreground" task of

moni toring and control I îng the pipel ine. Al I instances where the progrêm

is required to wait for status to change in order to proceed (".g. device

ready, user input) are in a "wait loop" which returns control to the

.executive between tests, al lowing other jobs to use thís non product'ive

t ime.

(¡ii) user

Use of the system is on an "open shop" basis where each

programmer is responsible for running his own job. The primary user

of the package is the maintenance programmer whose responsibilities

include rout¡ne system updating and maintenance. Al I communication

betr¡reen the program and the user (e. g. error messages, user requests,

and user input) must be specific and unambiguous since the user is

neither an experienced programmer nor an operator.

(iv) Flexibi lity

It was knourn that areas of the specific programs would undergo

nunìerous revisîons and improvements before the user requirements were

sat¡sfied. Al I programs were segmented and bui lt as modules which can

be indivïdually modífied or replaced. Command decoders are constructed

so that the syntax of the commands can be changed wíthout restructuring

and reprogramning the assocíated decoding and analysis logic.

29

2.4 ERROR ANALYS I S

Error analysis is performed at two

(¡) At the program level

Diagnostic messages output as a result of detecting operational

and logic errors during execution are detai led and specific.

The programs are wri tten to t!:ap as rnany errors as possïble

levels in each ol'the programs:

and to force the user to correct the problem before

proceeding. All error messages have been designed and

formatted to provide the user with the maximum available

information in order that he may debug the problem inter-

actively.

Diagnostic output as a result of detecting syntact¡c

errors in user ìnput is over-simpl ified and provides no

specific îndicatíon of the reason for the error other than

the message'TSYNTAX ERRORrr.

The simpl ici ty of the command language structures permi ts

this approach since the user is able to visually detect almost all

errors wi th no d ¡ ff ¡ cu I ty.

2.5 STAT I STJ CS

Each program in the package provides statistics output when the

job is released, giving job time in hours, minutes, and seconds and

total program usage (sínce the last system load) in hours and minutes.

These statistÎcs are useful for estimating programming activity and

for projecting system time requi red for future projects. The format

of this line can be seen in the examples in the appendix.

(¡i) At the user level

30

2:6

It is frequently necessary to delay or abort the job once it

has started for either of the following reasons:

OPERATOR INTERVENTION

unnecessary.

(¡¡) Gas Control may require a report and cannot wait for the

job to finish.

Three commands are available through the l/0 typewriter which

accomp I i sh the necessary i nterventi on:

(¡) Errors are discovered which make continuÏng the job

HOLD - which causes the background program to

buffer, skip a page, release the printer, and

to be released or restarted.

gltl-N-UE- - which causes the

and continue from the poÎnt

3l

RELEASE - which causes the background

skip a page, release the printer, and

sys tem.

These commands are input to the system command decoder which

operates in a foreground priority and therefore will take precedence

over the background job. The commands alter only the "reserve printerrr

background job to reserve the printer

of interruption.

empty i ts pr i nt

wait for the job

job to empty its l/0 buffers,

release the job from the

flag whích the background job must test to

described. Requesting the commands when no

has no effect on the rest of the system.

initiate the action

background job is active

32

clJAPrËL 3

UTILITY

3.I Ary
The UTILITY program Provides an

standard uti ì i ty functions necessary

updat i ng. Such funct i ons as :

(i) listing cards / tape,

(¡¡) copying card / typewriter / tape input to tape'

(¡i¡) editing tape with changes from cards / typewriter,

are typical of those imPlemented.

USER I NTERFACE3.2

The user interface consists of five

devices accord¡ng to the fol lowing:

on-line means of performing the

for program preparation and

3.2.1

Thi s function handles i nPut

including new source records. This

default to the card reader but can

the typewri ter.

COMMAND I NPUT DEV I CE (C I O¡

The handler incorporated for reading

Section 2.1.2 and is flow charted in figure

funct i ons ass i gned to I /0

Although typewriter l/0 is handled by the l,/0 system, the

handler flow charted in fígure 3.1 is required to perform the

foì lowing functions on each input I ine:

-"33-

of al I user

function is

be ass i gned

commands,

ass i gned by

by the user to

cards is described in

2.2.

TYPE v., n rrc-R
INIPUT

GeT urse
FRÐ T,\

IoS\ ç

IN \TIA L\?E
-fo

CHARP,CïLR I
I

CcñvÊ- PJr

To cÂßa
BLÀNK

ct\r\P\À(_\ËR

SHrrr euo
OF

L\ñÉ

STA.CË?

34

F,\Þ TO
Î'AQ, wr'rrt Þu.t.ete

Figure 3. I

/\Þun¡lcE
Tt ¡¡erl
ÌkAf{AcTË

Type.wri ter lnput

PÀù \.r rrH
ßLÀN\<$'lo
CoUr mñ ot'o

Lrr.lE -1 o O
LONGT

R ETutn r'l

Al I typewriter spaces are converted to card blanks

for compatib¡ lity with card input.

All records containing tabs are reconstructed to full

80 character îmages. The SYMB0L tab list will be used

by default (columns B, 16,36, and 73), unless a tab

list is assigned by the user.

All records are padded with blanks to a full B0

3.2.2 SoURCE INPUT DEVICE (SlD

characters.

- Detection of a "delete'r character wiII delete the Iine

and request the next.

This functíon handles input of all source information to be updated.

This function is unconditionally assigned to magnetic tape unít one and

is referred to as the "lNPUT taper'. The device is not referenced when

generating a new program from the CID as there are no records "to be

updated".

35

The handler provided for reading magnetic tape is described in

Section 2.1.2 and flow charted in figure 2.3.1. lf a blocking factor is

not specified, the handler assumes one record per block (unblocked). lf

the blocking factor on the input tape is greater than the specified (or

default) blocking factor, a ublock length erroril wi ll be detected and an

appropriate message wi ll be output to the user.

3.2.3.

This functîon handles output of al I source

is uncondîtionally assigned to magnetic tape unit

as the "0UTPUT tape". The device is referenced ín

program îs being generated.

UPDATED OUTPUT DEVICE (UOO)

The handler provided for wri ting magnetic tape ís described in

Section 2.1.2 and flow charted in figure 2.4.1. lf a blocking factor Îs

not specified, the handler will write one record per block (unblocked).

3.2. t+

This function handles listing of all commands as they are executed

and all specific listing reguests. This function is normally assigned

to the line printer and can be changed only by changing the devïce assign-

ment in the I/0 system.

LIST OUTPUT DEVICE (LOD)

records.

two and i s

a I I cases

Although the line printer output is handled by the l/0 system, the

handler flow charted in figure 3.2 is required to perform the following

functions on each record to be prínted:

36

This function

referred to

where a

It strips the trai ling blanks from each record, packs

several records into a buffer area, and outputs the buffer

area to the RAD for future output by the printer. UTILITY

can thus cont¡nue processing without having to wait for the

I ine to be printed.

îRr sr
LI ÑE

\T.l \T\l'\L\l.t_ To
LÀ.S.\, t,J O RD
tÑ L, I+lE

Cø14 PurE
LIAJE
LE îJôTìi

----:4

Itr rTtALrl_É
To FrRgT

Cllt\RÊcTLP.

37

AÞVt'rJ Cs
'l.o ñ€-\LT

C Èr\R r\ cT Ë

havg Èc.c(

r woRÞ

ee-l- *tjt\
RÈÞ

Buçree

Frñì5ììED

ourPqT
ßrtçrEÀ

-t-o RAÞ

Figure 3.2

Rt cr¡e çr
cultsuT'Io
PRlNTtrIC

Print 0utput

7t-,'R0 ßttç¡=eF.
LÊ u(atl

9-IDRE
Lr\)b: rh)

guFÉL

All carr¡age return codes imbedded in the output line

are translated to the printable character\. Besides

not being printable, carriage return codes are used by

the l,/0 system to indicate end-of-line and would cause

an erroneous line advance.

An identification tag is attached to the beginning of

each output líne indicating the type of record being

printed. These tags form an"edi t trai l'r for possible

future bench checking. An index is provided as an

3 .2.5

argument in each call to the handler to indicate the

tag to be appended. See Section 3.3. I for a descriptiorr

of the tags provided.

This function handles the output of all error messages and requests

for operator intervention. The function is normal ly assigned to the

console l/0 typewriter and can be changed only by changing the device

assignment in the l/0 system. Non-terminal error messages are also

output to the LOD to complete therredit traiI" when the CID is assigned to

the card reader.

OPERATOR MESSAGE DEVICE

3B

No handler is required ín UTILITY as all output is queued to the

l/0 system and handled like any other l/0 request.

(o¡lo)

3.3

The command language forms the nucleus of the UTILITY program

and to be successful must provide a l=unctîonal and flexible interface

between the user and the program.

COMMAND LANGUAGE

3.3.1 GËNERAL

All records input from the CID are considered to be UTILITY

commands, either EXPLICIT or lMPLlClT.

(¡) EXPLrcrr_

Expl ici t commands state specifïcal ly what function is

required and are recognized by having an equals symbol (=)

in character posi tion one of the input record. A rigorous

description of all explicit commands is given in Section 3.3.3.

39

(¡¡) rmplr_crr

lmplicit commands do not state specifically the function

to be performed but imply action to be taken. They are

characterized by not having an equals symbol (=) in character

position one.

lmplicit commands are those source records from the CID

which are to be wrítten to the OUTPUT tape (UOn1. They may

requíre positioning of the INPUT and OUTPUT tapes, depending

on whether or not a sequence number is given in positions 73

to B0 of the record.

SEQUENCE GIVEN impl ies tu/o operations before the record is copïed

to the UOD:

- All records with sequence numbers less than the given sequence

number are copied from the SID to the U0D.

- All subsequent records are skipped until a sequence number is

read from the SID which ìs greater than the given sequence number.

By providing a sequence number equal to an existing sequence number on

the SlD, the record from the CID will replace the original. 0therwise

the record from the CID will be inserted between the two records having

sequence numbers lower and higher than that given.

SEQUENCE NOT GIVEN does not require positioning of the lI'IPUT and

0UTPUT tapes. The new source record is copied directly to the UOD at

the current pos í tion.

All commands are listed on the LOD by default after execution by

UTILITY. This I istìn9 may be suppressed by the user if desi red. Al I

commands are listed with an identifîcation tag in character posïtions

one through eight according to the following table:

4o

TYPE OF COMMAND

expl ¡c¡ t

implicit, replacing

an existing record

impl icit, not replacing

an exi st i ng record

I DENTI FI ER

COMAND

i mp I î ci t, no sequence

given

All listings of implicit commands also

assigned to this record on the OUTPUT tape,

correct faulty insertions of source records

updated program.

REPLAC

4r

The Iisting of all commands as they are executed provides a complete

"edit trail" which is useful for bench checking and for detecting reasons

for incorrect updates.

I NSERT

The UTILITY control program is flow charted in figure 3.3.

contain the sequence number

giving the facility to

wí thout re- I i st i ng the

i.e. blank

Ð\\T1\tT
TO

LOÞ

Y

IJT\ L IT)
C Dr'¡ÎßoLt-ER

(eser<v Ë

Pß,rut ER

Ql-11'1,'.NÞa
FRo r.r

{:ì.,¡RÑËß'

Grver.r I

IuÞur
oNË

C ARÞ

oPy'çL+t_u

.auerttc -r)

42

(s ettuer.rcr)

EtPutc rr
cÐtrtr ¡wp'j

Colr rr lr.r>r?

OI^.TPr¡T-

T'Q

LOD

Figure 3.3 Uti ì ¡ ty Controì ler

3.3.2 "ANALYZER

A command analyzer is

accord i ng to the i r syn tact ¡ c

required program module when

The prerequisites for the analyzer are:

(i) lt must allow complete flexibility in structuring of

individual commands.

provi ded to

definitions

the comrnand

(i¡) lt must permit the syntactic definitions of statements in

the language to be changed without requiring extensive

rep rog rammi ng .

decode al I "expl i ci t"

and transfer control

has been analyzed.

Error analysis and fast turnaround are not major considerations

since UTILITY ìs a background job and is intended to be used inter-

actively from the l/0 typewriter.

A version of the analyzer developed by Cheatham and Sattley tl]

is used by UTILITY to analyze commands. (See Figure 3.4.).

43

commands

to the

The analJzer may be defined as the algorithm which performs the

recognition of allowable input strings in the language by using an

encodement of the syntax specification as data. The

of a language is a concise and compact representation of the structure of

the language, i.e. a set of "grammar rules" în table form for forming

allowable statements in the language.

syntacti c specif i cation

Jlo!=! rn'
REC09: R.ecognizer r,ihi ch returns rtsuccess" or "Fai lure' '.

GEl.l_ER: Generation rout¡ne - null îf not a "Generating" structure.
SOURCË:Syntacti c type beíng analyzed.

GgAL: First component of syntactic type.

CllA¡, Character position in the input string.
GlN: Generated paranreter list pointer.

GcAu<.- Ftkçr
COHO ONE Ñ.I O F

50u RcÉ

Souf'cfr.{- Êtf3f¡'(
c0r1f c;¡¡ \:t¡ 1 cF

Gc/. L

-FA-cK

(oÄt, 9 eu nce,

Go*t+-'Sr¿.rc¡,.of i

HÀR t G¿rt

eltr\K+- I
GEn+- o

44

," Gq¡.u À
TF.¿t1tN r. r1

Rrrt -exl

Y

5 u ccc99

[RE_ccg

L¡þ51Á.ct(

Gotrl ù. !Or,.{ccÉ

Figure 1.4 Analyzer

çoþ"ßcE,
ßtsQ$\RÈÞ

lîãËF---i
I ALTr-Êr.,Àrç. ÕG I

I so'1n.ti-J

Soirnce ÞEF N
ComFLetL2.-

so\\eËe- NFt-\'
qot,tf o.{ eNT

ñ

Y

AT.f LRUA Tg.
f,HÈ&r- }.N

r5

beF'sl

UÐ9TÀCì(
Go,tbç or4ßcE,
q[/,9 r, G È].)

t g y ruT/.r
E eß C,C

KEru R¡l

The function of the analyzer is to take each source statement

and, by reference to the encoded syntax specification tables, to

"predict'¡ how the statement is constructed. The construction is

verified by exhausting as many possîbil¡ties as necessary to find an

alìowable construction. Exhausting all possibilities indicates that

the statement is not made up of allowable strings in the language and

is syntactically invalid. A history is kept of the allowable strings

which formed the statement, to be used after transferring control to

the required program module.

This "history'takes the form of object code generation in a

conventional compi ler appl i cation but in this case consists of a

'rparameter listil of components of the stâtement. Each command in the

language is an independent entity, the largest construction being a

rrstatement" rather than a "program". 0nce the statement has been

analyzed and the parameter lïst generated, the required modules of

UTILITY are executed to perform the requested function.

There are two classes of strings or syntactíc types in the

structural definition of the language:

45

(¡) termînal types - By definition, terminal types are the

single characters of the source alphabet since it is from

these basi c components that al I val id strings are generated.

(i i¡ defined type: - Defîned types äre defined in terms of

other defined types or terminal types. Two conditions

must be satisfíed for the syntax specification to be

co r rect :

- Any defined type occurring as a component of any

definitíon must be defined in some other defini tion

(completeness).

The ANALYZER uses a routïne called the RECOGNIZER to detect terminal

types ín the input string. Rather than recognizing only terminal

characters, the RECOGNIZER is desîgned to detect the larger set consisting

of those defíned types which are defined strictly in terms of terminal

characters. l^/hen the ANALYZER determines from the syntactic definitions

that one of these "terminal types'r should exist at this point in the input

string, ìt requests the RECOGNIZER to determine its presence or absence.

The RECOGNIZER is capable of recognizing five different "terminal

types'r :

- Every defined type must ultimately be constructed

entirely out of terminal characters (connectedness).

46

(î) A CARRIAGE RETURN character which indicares rhe end of the

s tatement.

(ii¡ A SLASH (/) character which indïcates rhe start of the

comment field and therefore the end of the statement to

be analyzed (see Section 3.3.3).

(i ii¡ A CO¡!M{ (,) character r^rhich is used as a del imirer in

certain statements.

(¡v) A

(

NUMBER which is defined

0-9)oftotal length

(v) A NAME which is defined to be any string of alphabetic

characters (A - Z) of total length not greater than eight

characters. The RECOGNIZER îs asked by the ANALYZER if a

"speci fi c¡' name exi sts; the RECOGN IZER checks the name

recognîzed against a I Ìst of keywords before returning

success or fai lure.

The ANALYZER uses a 'rpushdown stack" to faciIitate its "goal

directedrrparse of the statement. Each non-terminal or'rdefined type't

is stacked until the ANALYZER either satisfies that definition or the

definition fai ls. The stack forms a tree structure of those definitions

sti I I being examined. Successful analysis of a statement occurs only if

the complete statement has been analyzed and the stacl(is empty.

47

to be êny string of numeric characters

not greater than eight characters.

3.3.3 SYNTAX DESCRIPTT0N

NOTAT I ON

To illustrate and

the fol lowing notational

(¡) Parenthesis (rounded brackets) will be used to enclose

parameters which are optional, i.e. they may be left out

if'not requîred.

describe the formats of "explicit" commands,

conventions wi I I be used:

(ii¡ Brackets (squared brackets) will be used to enclose a set

of parameters of which one must be chosen.

(iii¡ A and B will be used to represent sequence numbers.

(¡v)

(u)

N will be used to represent a repetition counter.

4B

All other words used are keywords and appear in context as

they would in an actual statement.

The fol lowing words, wí th thei r associated defini tions, appear

as keywords in the command language:

TERM I NOLOGY

(¡) INPUT refers to the SID (tape l).

(ii¡ 0UTPUT refers to the UOD (tape 2).

(iii¡ RECORD refers to an B0 character (20 word) BCD card image"

(iv) BL0cK refers

fol lorved by

(v) FILE refers to one or more BLOCKS on magnetic tape

fol lovrecl by an end-f i le (fOf) nark.

to one or more RECORDS on magnetic tape

an i nter-record gap.

(vi) SECTI0N refers to one or more FILES on magnetïc tape

fol lowed by an end-fi le (fof) mark.

All explicit commands must begin with an = in column one, but

otherwise are "free form". Each command may be conrmented if desired

by following the command wi th a slash (/) , fol lowed by ary string of

characters the user wishes. Using the notation defined, the general

forrn of an explicit command is:

= cor"{r"tAND (/ cot4l.lENT)

There are l4 "expl icit" UTILITY commands avai lable to the user.

The syntax and function of each will be described ïn Sections 3.3.3.1

throush 3.3.3.14.

4g

3.3.3.1
Irrunuil
[oureurJ

BLOCKED BY N

This conrmand is used to set the bloclcing factor for the INPUT

and 0UTPUT tapes where ilt',lrrrepresents the nunlber of records per block.

Default blocking factor is one record per block, i.e. unblocked.

A "b Iock

factor specified

maximurn blocking

wr i te tl¡e b lock

the buffer size.

3.3.3 .2

length error" wi I I be output if the INPUT blocking

is less than the âctual INPUT blocl<ing factor. The

factor is determined by the time Ît takes to read/

and ís limited to twenty-f¡ve records per bìock by

This conrmand is

or card reader (cnnos).

COMMAND (S) FROM

50

3.3.3.3

used to assign the CID to the typewriter (fW)

Default înput is from the card reader.

c0PY (nr¡o r- r sr)

[ì\r I
þo*o (ril

A

A TI.IRU B

TIlRU B

f-nrcono (s) I
* lr,ru (s) I

3 l¡,rrn o* (r)-.J

Thi s command copies, ancl optional ly I ists, the specîfied

recorcls from the SID to the U0D. lf a start¡ng sequence nunber is

not giyen, copying begins rvÍth the next record in the buffer. lf a

starting Sequence nunlber is given, the routine skips all recordS

p reced i ng that record .

The routìne flow charted in figure 3.5.ì is used to copy/skip

list all records from the designated tape.

3.3.3.4

This command will write a single end-f ile (gtlo f lLE) or double

end-f i le (eilo sfcf to¡¡) mark to the U0D.

END

5l

3.3.3.5

fonu
(s) I

lsecrroru (t!

This command is used to enable or disable the listîng of records

from the ClD. Default is to list commands.

(Do Nor L I ST COMI4AN D (S)

REAù

Rrcoe>

coPy,ÉKr?,
ANÞ

LI ST
€CTl oh,¡S

WR r'iÉ

RÈcl)RÞ

crey lsrctry
L\çT

Rt cr'tr

Re¡tu cAR.Þ f-l

1?gcnr'-p

-$ -Ë
Pur¡gg 3

Renr a ot*
(uoenru)

Figure 3.5.1 Copy, Skip' and List

OltTPLTT
TO

LOÞ

Ëos

ÉcoRÞ

KEÂÞ

Rt¿ce,

,.r'---'l- -***\' Rer,,,Rñ- \Å '4---.

'=lY?il^!-/

'k.cF/'E os
R[AÞ

53

UÊ. tT
FOR

uJ9sR

c0?y / eK re

LtST
Rt:(.oÉÞ

Figure 3,5.2

çrc'f'l / ^'/ fi.E AÞ

Rstoß

Rcn r-Rr,,t

"(ruoRnru)

cof.¡frrtr
LtST
E C.Ð

3.3 .3.6 LIST

I

I-o
I

lnrHnus
I

I rHnu n

i_
i þrcono (s) I
I *

|
,,,-, (s)

I

i L'u"'o* ('ü

i orrrn (s)

CARD (s)

Thi s command rvi I ì I i st the speci fied records from the indi cated

input device. Default input for listing tapes is INPUT (StO). lf a

starting sequence nunnber is not given, listing stârts with the next

record in the buffer. I'List deltas" wíll list all records with a delta

(A) i n character pos i tion one. "Del ta records" contai n LOADER

infornation ancl del imit coreloads on source tapes (see Section 4.3.4).

"List cards" will list all cards from the card reader until a card is

read with a 0 - B - 5 punch in column one.

(rnom ["rtlf
þutortJ

54

The routîne flow charted in figure 3.5.ì is used to copylskÎp/list

all records from the designated input tape.

3.3 .3 .7 PAGE

This command causes a page skip on the LOD.

3.3.3.8 PAUSE

This command causes uTlLlTY to pause ancl to wait for the

user to input a command on the typewriter to restart ¡t. The command,

contplete \^/ith comment, is output to the OMD and the user is requested

to restart UTILITY or to release it. This command is normalìy used for

changing SID tapes so that other active coreloads can use the time the

operator takes to mount the taPe.

3.3.3.9 REVERSE

This command is used to reverse the specified tape the amount

requested or to the load point marker, whichever occurs first. lf the

load point marker, unexpected end-fi le, or unexpected end-section are

read, a message is output on the Ol'lD and UTIL ITY proceeds.

55

lì*trrl
þ,,,,f

The user must be aware that this command applies to movement

of the tape and not to the current record addressed in the buffer area.

Because of the buffering of input and output, the user must reverse at

least one more buffer than actual sequence nunlbers would indicate

þror*
(s) I

lrrrr
(s)

I

þrcr ror,r (tI

3.3.3..l0 Rt\.JlND

(ournul) .

Thi s cornmand wi I I

3.3.3. I I SEQUENCE

lir,,prr I
le,,,,i

reur i nd

This command determines the method of sequencÎng of all

records output to the UOD. From A BY B gives a starting sequence

(n) and increment (g) ; FR0l'1 INPUT ind i cates that no resequencing

should take place, i.e. as read from the slD; OFF will blank all

tape one (INPtJT) or tape

lì*o'

[.,

sequence nunrbers. Def au ìt sequenci ng is FR0Ì4 lllPuT.

5{,

3.3.3.12 SKIP (nno ltsr)

f-n

t
BY

NPUT

-;l

I

A

A TI-IRU B

T}IRU B

lirro*o ts) I
*

lr,,-,
(s)

t

þe cr tor,r (sU

(rnoH Ir'.'uilf
þrttri

This command skips, and optionally lists, the specífied

records from the indicated tape. Default input for skipping tapes

is INPUT (SlD). lf a starting sequence number is not gïven, skipp¡ng

starts fronl the next record in the buffer. lf a starting sequence

number is given and skipping is FROM INPUT, the routine copies all

preceding records from the SID to the UOD.

The routine flow charted in figure 3.5.1 is used to copy/skip,/

list all records from the designated input tape.

3.3.3.13 TAB (S) AT Tl , T2, , TN

This command is used to set internal tabs for reconstruct¡ng

typewriter input of commands. T, to Tr' are the character positions of

the tabs. Default tabs are at columns 8, 16, 36, and lJ for SYMB0L.

A maximum of ten tabs are permitted.

57

3.3.3. t4 rx

This command is used to rrsign off" or release UTILITY.

3.4

The present version

source records and occupies

as fol lows:

PROGRAM SIZE AND RUN.TIME STATISTICS

Program and Constants 5510g words

Buffer Areas 22508 words

7ßq words (4t<¡

of UTILITY consists

77608 words of core

Run-time statistîcs are as fol lows:

5B

of 2500,0

memory, al located

(i) Read Magnetic Tape:

(¡¡) \,Irite Magnetic Tape:

(¡ i i) Lîne Printer ListÌng:

(iu) Reading Cards :

2300

2300

125

r50

2500 records/minute (unblocked)

2500 records/minute (unblocked)

I 50 records/mi nute

175 recordslmi nute

SYMBOL

4. I ABSTRACT

The SYMB0L program

source programs written in

code for the XDS 920.

CIIAPT"ER 4

The basic assembler ìs the off-l ine SYMB0L assembler suppl ied

by XDS, extended and modîfied to meet the requirements and operating

environment of Alberta Gas Trunl< Line's Supervisory System.

provi des an on- I ine means of trans lating

XDS assembler language SYMB0L Înto mäch¡ne

SYMBOL wi ll be described on ê macro scale only; furtlrer

ínformation concern ing the syntax and serïantics of the XDS SYI'180L

language can be found in the XDS reference manuals [4], [5], [6],

and ll1.

4.2 GENERAL DESCRI PT I ON

The SYMBOL assembler performs the

(¡) lt reads source statements

one (unblocked).

(¡i) lt translates these source

language into machine code

fol lowing functíons:

from magnetic tape unit

statements frorn XDS SYMB0L

for the XDS 920.

-59-

(¡¡i) lt outputs the machine code to magnetic tape unit two

in XDS standard bînary language.

(iv) lt produces a listing of the source and object code on

the line printer for future reference.

SYMBOL performs these functions by defining and referencing

four tables as ît analyzes each statement:

The mnemonÎc table defines all operation code symbols

recognized by the assembler. Besides the standard 920 instruction list,

the table is expanded during assembly to contaÎn the user-defined operation

codes (from OPD and FORM statements) and all undefined 0P codes which are

consi dered to be external ly resolvable programmed operators (pOpS) .

Each entry in the table contains the fol lowing information:

(¡) MNEMONIC TABLE

60

one to six charêcters of the symbol,

type of operand field to fol low,

whether standard op-code or user defined,

how to decode and use the operand field if the op-code

is user-def ined or a SYI'180L r!directive",

whether the op-code is "local" or "global" (see Section 4.3,3),

the op-code to be used in the assembled instruction.

(¡i) LABEL TABLE

The I abe I tab le defi nes a I I

by the program being assembled. The table

with the addition of each label recognîzed

Each entry in the table contains the fol lowing information:

- one to six characters of the label,

- whether its address is relocatable or absolute,

- whether it is "local" or "globa|',

- whether it is "external'r or not,

- the value (address) of the label.

(iÎ¡) LITERAL TABLE

labels which may be referenced

ïs developed during assembly

as statements are processed.

The literal table defines all constants in the program

which are referenced by value rather than by name. L¡terals are assigned

sequentically as they are recognized to a "literal pool" which starts at

the next relative location past the last word used by the program

i ns truct i ons.

6t

Each entry ín the table

- value of the literal,

- r^rhethe r the va I ue i s

- the relative location

object prog ram.

contains the fol lowing informatîon:

relocatable or absolute,

the literal wi ll occupy in the

The reference table

the program which are not found in

to exist in some context external

(iv) REFERENCE TABLE

Each entry in the table

- one to six characters

- the relatÎve location

this symbol.

To allow the loader to resolve these rrexternal references", alI

data words referencing this symbol arerrchaîned" with the address portion

of the last reference location containing the address of the second last

reference and so on until the first reference location where the address

portion i s zero.

defi nes those symbol i c references wi thi n

the lal¡el table and which are assumed

to the progran.

contains the fol lowing information:

of the symbol,

of the last data word to reference

SYMBOL is a two pass assembler, back spacing to the start of the

program and re-reading the source statements for pass two.

62

PASS I (i) Source I ines are read and a location counter ïs maintained

for defining labels.

Label l=ields are analyzed and the labels are entered into

the LABEL table.

Operation codes are analyzed and if not defined they are

entered i nto the MNEMOi.I I C tab I e as POPr s.

(¡i)

(ii¡)

,(iv¡ 0nly operand f ields of 'rdi rectives" are analyzed since

they may cause the location counter to be incremented

as a functïon of thei r operand fields.

At the end of pass one all external labels and POPS are output

to the binary output device (magnetic tape two) to provide loader

information for bui ldíng global label and mnemonic tables. Al I entries

to the MNEMONIC and LABEL tables must be made during pass one. The

program reverses the symbolic input tape to the first record of the

progrêm in preparatîon for pass tt¡Jo.

PASS 2 (i) Source I ines are cornpletely processed and both object

code and a I isting are generated.

(¡i) References to symbols not in the LABEL table are entered

63

into the REFERENCE table.

(i i¡)Lîterals are processed and entries are made in the LITERAL

tab I e.

At the end of pass two all literals and references are output

and listed. Once the table areas have been purged of all local definitions

(see Sectíon 4.3.3.), SYMBOL is readied to accept the next program.

.SYMB0L will contînue assembling

(double E0F) is read. The operator must

or to sign off. The SYMBOL controller is

SYMB0L provides error detection

four single character diagnosti c flags in

output listîng.

The foì lowing table describes the meanTng of these flags.

I_149_

D

programs untÏ I an end-sect îon

then reques t SYI'I80L to cont i nue

flow charted i n figure 4. I .

by the appearance of up to

columns one - four of the

6\

ERROR.

DUPL I CATE

4!].!gi
Duplicate defini tion or

Al I references take the

the first definition.

EXP RESS I ON

I NSTRUCT I ON

I I legal expression in operand field.

0perand interpretation terminated.

LABEL

OVE RFLOII

lnstruction mnemomic not defined.

Treated as împlicït P0P reference.

I I legal symbol in label fîeld.

Symbol table overflow. The

assembly continues but the definitÌon

is NOT made.

reference.

value of

FLAG

P

ERRoI

PARENTHE S I S

, AcT I 0ll

Too many parenthesis levels or

unequal number of left and right

pa ren thes i s .

0perand interpretation is terminated.

0perand expression involves the

illegal use of one or more

re locatab I e i tems. The correct,

but non-relocatable, value of the

expression is deternlined and output.

Significant bits were lost due to

lel=t-hand truncation in inserting

a value into a specific fÎeld. The

value ïs truncated modu 1o 2n vrhere

the field size is rrnrr bits.

RELOCAT IOI.I

65

TRUN CAT I ON

UNDEFINED A reference has been made to an

undefined symbol in the address

field. Zero is substituted for the

undef i ned va I ue.

EXTERNAL An external address reference has

been made (r"rh ich may or ntay not be i n

error).

iílà'
I hilP Lrì' f r]i<

P¡çc, a
sçr-

v.Jf" \r r=oR

u.sÈR

Àt)\A,r{LË

Lo ui'it0r.l
c.c\r¡'tì L R

Cc\1f'ì Nil

W f- r'\r:
Eoc¡

.r0 8,0,

Lrs\-
ß.o. A¡lÞ

tñl r\tALÌaE \
FOR

PA!q I

9 0uR.cç

f{EAÞ

RËCORÞ

66

ßr rJkÊ.)

otjlPrN

Pr-o tsçE

Lô.gE L

Pf,ocL.-ç

Slrt'urEur

trrruoi

N

À5$it

COLLE LT

oF- e oùe

f rgure rt.l

ÞÉFrr¡Ë
À9

POF

PwRcrÉ
ÀLL

I
,LO c¡rS\

REc-onÞ

l'1N El'Ì tlN rC

Symbol Control ler

Ërüt)
ßtc pt¡.

ß,o, r.}.,f>
LLIT

Þrß,tcrrr¡È

EfË-flEfrCÊS

ß,o, ArJÞ
Lttr

Lt\ E n. Â\"-q

| ç,oct-..í
DTRECT\\g

'SYMB0L makes no attempt to indicate the position in the

source line where the error occurred. Despíte the simplicity of the

flag fields (single character) , they are suffi cíently exhaustive to

make most errors immedîately obvious. There are few enough so that

the user quickly becomes fami liar with their ïnterpretatïon and rarely

has need for a cross referencing tabìe.

The INSTRUCTI0N flag (1) and the EXTERITIAL flag (:") may or

may not lndicate an actual error. To provide symbol íc inter-program

communication, SYIIBOL treats al I references to undefined op-code mnemonics

and undefined labels as though they will be <lefíned externally by other

programs êt load time.

4.3

Al though SYMBOL

of the assembler suppl ied

t /ere necessary to satisfy

I nterfaci ng wi th

AS:

EXTENS I ONS

67

is basical ly the stand alone off-l ine version

by XDS, several modifications and extensions

the requi rements of Alberta Gas Trunk Line.

(i) Development of a resident l/0 package to handle source

input from magnetic tape unît one, binary output on magnetic

tape unit two, listing on the line printer, and operator

messages to the console typewriter. The package was

developed to satisfy specific user and operating system

the Supervisory System requ i red such changes

requi rements and is simi lar to the paclcage described in

Section 2.1.2.

(i i) Ensuring that the system executive could not alter hardware

indicators (overflow), via the interrupt system, which are

used and tested i n SYI'{BOL to detect truncation and overf low

errors.

SYMBOL wi I I assemble al I val ¡d statements in the XDS assembler

language SYMBOL as well as specific extension to be discussed in

sections 4.3.3 and l¡.3.4.

4.3.1 ovERLAYS

It was possible to al locate a maximum of 4Y, 24 bi t words of

core memory to the priority four partition wíthout jeopardizing the

operation of foreground programs. Because the amount of RAD memory

avaî lable is without practical I imi tation, (almost 5001(words) , RAD

was substituted for core by using overlaying.

An overlay handler was built which utilízes an overlay area of

fîve sectors (320 words), overlaying this area with new program segments

as they are requìred. The table size represents an area large enough to

perform the required functions wîthout excessive overlay overhead and

not so large as to limit the amount of core avai lable to the rest of SYI'180L.

68

The overlay handler is flow charted in figure 4.2. The

handler contaÌns the following features which increase ¡ts flexibi lity

and speed:

(¡) The overlay handler maintains a "pushdown stack" of

return addresses to provïde restoration of the last

overlay segment when the current segment is released.

This technique permits one overlay to call another but

is not yet used in this implementation.

(¡i) To decrease overhead, overlay segments are not "saved¡'

when one overlay calls another i.e. overlays are "read

only". Datê storage to be saved must be defined as part

of the non-overlaid program area.

69

(i i i¡ Overlays may have multiple entry points, permÎtting

several logical ly related functions to be grouped into

a single overlay. The handler recognizes that subsequent

calls are to the same overlay segment and will not perform

RAD transfer for each call.

table:

Parts of SYMBOL have been overlaïd according to the following

OvuR t-r,y

STfre\('i-

sTr.e. K \
g.Ì\IR1.) l\ÞÞ?-E..T

I.NÞ
C\r{.ßtrtl OvL-K

^DÞRL99

ENTT.Y-

o 9Tt c',<

DV ef.truoNr

70

Ge-t pe,^¡
Drltl<t-n y

FÉ OI,1

R* >

REur ¡.gE

ßE9T c,ß E

RÊc \ç-re f-<9

Go To e-r'tray (ru)
oF o!LKr-A

Figure 4.2

l-:.r.d
0¡I9TA CK

LAçT

Rçtu.Rr.J

0verlay llandler

l)l

RLçlOf.É

Rtûrgtt ns

Lr.5T oVERtt"y
FRD Ì\

RAù

0vE RL$Y

I User command decoder and analyzer

(see Sect ion 4 .3.6.) .

Di rectives DED and DEC.

Di rectïve Copy.

FUNCTI ONS PERFORMED

End of pass one - outputs external

defini tions , freezes MNEMON I C table, outputs

P0PS, and initializes for pass two.

End of pass tr^/o - outputs líterals and

external references, outputs END and outputs

program statistics.

71

Pu rges MNEMON I C , LABEL , REFERENCE and

LITERAL tables at end of pass two and on

initial Ioadings, and initializes for pass

one.

Directives EQU, 0PD, F0RM, A0RG, 0RG, BSS,

DATA, BCD, TEXT, and FORM references.

0utputs job statistics and signs off.

gverlay seven is a good example of poînt (iii); minimîzing

RAD transfers by grouping related logic modules. Those di rectives

analyzed by overlay seven are the most common; once the overlay is

input no more RAD transfers are necessary until a different overlay

i s requ i red e. g. end of pass.

4.3 .2.

To provide enough symbol table storage space to assemble

Alberta Gas Trunk Linets Supervisory System requi res that some tables

be RAD resident rather than entirely core resident as in the XDS version.

SYMBOL TABLES

The LABEL, REFERENCE, and LITERAL tables are RAD resídent and the

nunrber of entrîes they are able to hold is a function of the amount of

RAD allocated to each table. The MNEM0NIC table is left core resident

in order to mìnimîze assembly times. Reference to figure 4.1 will

demonstrate that the MllEt40NlC table îs searched for alI op-codes during

both pass one and pass two. Since searching the MNEMONIC table constitutes

a large pr.oportion of the overhead for pass one, signifîcant efficiency

is gained by having the table core resident.

7z

All entrÎes in the MNEMONIC

symboì ic identifiers in order that

employed to make neh, entries or to

table are sorted according to their

a binary search technigue can be

find a given entry.

Each RAD resident symbol table is constructed of (n + l)

segments of three sectors (l9Z words) each, where n ìs a prime number.

The search algorithm îs flow charted in figure 4.3. The first four

characters of the symbol are aríthmetical ly hashed by dividing lry n,

giving a remainder to be used as a startíng segment number for the

symbol search. Each segment is searched I inearly unti I the gîven

symbol or a spare entry is found" The search will contînue from segment

to segment untîl the last (n + l) segment îs searched. The last (n + l)

segment is an overflow segment since division by n can give a maximum

remaînder of n-l (segment n). The number of "collisions" (symbols

hashing to the same segment) is kept to a minimum by keepïng n as large

a prime as possible. RAD transferring is rninîmized by sacrifing RAD

storage for a "random" hashing algorithm and therefore a lower table

pack i ng dens î ty.

All references to the RAD tables are made through common "search"

and "moverrroutïnes and all use the same buffer area in core. The handler

which sets up the RAD transfers to input and output segments minimize

overhead by saving "currentil table segments ojrly if ¡t is indicated that

the segment has been modîfied since ït was input to "transient core".

Those segments of SYMB0L whîch change the contents of the symbol tables

are chargecl with the responsib¡l¡ty of indicating to the handler that the

RAD segment is modified and therefore must be saved.

73

S EnB.ci\

l-'-";¡\ta::L-l
"*y.--l-

SEG$Ei¡'ç+- HÀS H

ùF s Y 11ßÞ Lr ç-

I DEN'| \F\ Ë F.

LocA\\oñ -r.- f

Ger
r SEetl EËTt

Ffl.ovr

RAÞ

S ?ÀRE

L0cATrDr.J4- r

J]",- T

7t+

SEGtre¡rrL'¡

ovE?-çLa$

RE-TuRÑ.

ì1ßO L

Lo¿ATr0Ú'f-
OVEr\F-LohJ

tr.¡19H Ët>
SËô11EñT1

Figure 4.1

IN IçH EÞ

1-À rlue ?

Search RAD Resident SYmbol Tables

-f<- f * t

SE6}1EUT<-

9EG'¡r Eñ.I-+ I

A.l.l. cLoBAL DEFtNtrtoNS

Global definitions are defined withïn the context of this

system to be those labels and mnemonics which, once entered into

thei r respective tables, remain unti I SYMB0L is released. Reference

to figure 4.1 will illustrête that all user defined symbois are purged

only on initial load; for the remainder of the assembly only the local

symbols are purged at the end of each program.

Thís faci I i ty to declare global op-codes and labels provides

users with a powerful method of inter-program communication. The data

base has been constructed using â two dimensional array concept with

the first co-ordinate being the table name and the second co-ordinate the

relative table location. Global labels al low users to define elements of

a structure as global and to refer to the relative table locations

symbol ical ly in subsequent programs. Consïderable memory îs saved in the

applications programs packing several relative table address into single

computer words usÌng F0Rl4 definítions - the addresses oF whích cannot be

resolved using therrexternal reference" scheme of inter-program communication.

Global labels are defined by prefixing the label field with a

slash (/). The user may define a label to be global wîth the definition

or on a line subsequent to the definition of the label. A set of labels

may be defined to be global by listing them following the first symbol and

separated by commas. A single slash in the first clraracter position of the

I îne defines al I labels in the I ine to be gìobal.

75

Operation codes are also defined to be global by prefixing

the label field with a slash. The symbol can be declared global

only ín the definition I ine-multiple or delayed definitions are not

possible.

All global entrÎes În the symbol tables are tagged to ¡ndicate

that they are not to be purged at the end of each program. The

addresses of global labels are relocated to thei r absolute execution

addresses and the label is made absoìute so that the loader will not

incorrectly relocate rel=erences to these addresses. Al I subsequent

references to a global label wil I contain an absolLrte execution address

rather than a relative table address.

Purging of symbol tables requïres a purge rout¡ne to remove all

locally defined symbols and shift the table to remove all gaps. Purging

of the MNEMONIC table, which is core resident, is accomplished by

deleting al I local user defined symbols and recalculating the table

boundary parameters used by the binary search algorithm. Because of the

hashing algorithm employed for RAD tables (section 4.3.2), ¡t is necessary

to re-hash all global symbols to ensure that they are left at the lorvest

possible address in the lor¡rest possible segment. The purge routine for

RAD resident tables is flow charted Ìn figure 4.4.

76

SECr*- L

Ger
r'L\:'

Fßo¡r
RAD

I

II

GuD ß¡r,- +- i

GIsÞAL+ L j

Guoßnue -1 i

S16¿$<-- r\.luLL
ì

¡-<- ï+ t

S EG tg)É-ñrrr

gEcd- Src+L

l.¡5tt ED\-

r[r5tlÈD

ç Ée?

EG?

,,- SgG \
la

5T.GHÈÞT-

FÍgure 4.lr

9EG t1 E ù1-

\N\çHE

;ãÃ Rct\'-\

TAÉLE

fqR Sç,C'(J)
.4,3

Purge RAD Resident Synrbol Tables

Rçtu nt'l

4.1 .t+.

Al I source records contaîning a delta (A) in character posi tion

one are considered to contain information for the loader and are listed

and output during pass tt^/o.

LOADER INFORMATION

Each rrdelta record'r must have the fol lowing format:

whe re ,

An {--- 1 to 7

n i s the core load priori ty,

NAME is the I to 6 character coreload name,

BIAS is an optional octal execution bias (for overlays).

Each coreload must begin with a "delta record'r in order to

provide the loader wi th a base address for execution relocation. A

coreload may consíst of several programs (assembled relative to location

0) but can have only one'rdelta record" preceding each coreload.

4.3.5. PRocRA¡{ srATt sil cs

blanks --+ NAME +--

7B

The fol lowi ng statisti cs are mai ntai ned for each program assembled

and are output fol lowi ng the program I i sti ng:

1 to 7 blanks --Þ tslAS

(¡) total assembly time (from real-time clock),

(i ¡) program s i ze (maxîmum location used) ,

(¡ ¡ i) number of LABELS, LITERALS, and REFERENCES in the symbol

tables.

Each line of statîstics is headed by an asterisk ('t) so that

it w¡ll be output when the user requests therrlist errors" opt¡on

(see Sectîon /r.3.6) .

rr. j"6 l$l¿:-!J_ g.ii-!!i,ii

ÍìYiii0L ¡: r-cvï ci,i,s ti¡e

the. irocle. o1' oui.pu t Ii'oil the

Usirrl.¡ the nctation desc:r'il;ecl in Secr.ir¡n 3.3.3, tire follo'"'ing

conriir¡,lncis arcr ¿ìvai'i¿bìc: t,irrougl¡ lhe l/O typer,.rrÌter to c:ontrol the

as si:rnl:r 1 5r p rocess .

t+ "3 .6 " t, Rti/ I ilD

feciiii:',, ¡¡ revrinci tapes and to specif¡'

as:;errrb lerr f ron the cr:nsole typerr,vriter.

Th is cornni¿:nd

1r,3.6,2 LIST ERRORS

Th is cornnland

(Section lr.2). This

11.3.6.3 LIST ALL

[']
L'oj
rvi ll

79

rer.¡incl ta¡re one (S l) or tape two (nO) .

h.3.(,.4 ì.Jo t.rsr

l-his conlr:r¡:rnci instructs; SYI'1flOL to suppress ¿rll list output.

h.j.6.5 Ìio Bo

irrstructs SYt'iß01 to list only taggecJ statements

is tlre cJefault listiriç.¡ mocie oF SYI'iROL.

T'lris connranrJ instructs SYtltiOL to list all stêltemen':s.

Tlris conui¿nd instructs SYl4tjOL to suppress all binary output.

This is tire clel=atrlt binary olrtput rirocle c;f SYliß01.

lt.l.A.d B0

Thîs command instructs SYMBOL to produce binary output

of object code.

4.3.6.7 c0

Thîs command instructs SY¡'lB0L to contïnue with the next

ope rat i on.

4.3.6.8 rx

This command is

p rog rarn.

4.3.6.9 "D81TA REcoRDS"

Any record wi th

considered to be loader

binary output tape.

BO

used to'rsign off" or release the SYI'|B0L

Each command may be input individually or several may be

combined in the same.command, separated by commas. Each command is

analyzed and executed interpretively and therefore transfer commands,

(CO or TX), must occur last in a sequence. The analyzer will request

new commands untïl a transfer command is sensed. Blanks are ignored

except as del imiters, al lowing I'f ree form" input.

a delta (A) in character position one is

ïnformation and is output di rectly to the

E.rror analys is cons ists of the message I'SYNTAX ERROR'r output when

analysis fai ls. Because commands are anêlyzed and executed

înterpretively, al I commands preceding the error wÌ I I have been

executed.

The user ís able to input commands and change assenlbly mode

(see figure 4.1) ïn only tvro înstances:

(¡) on initial loading.

(i ¡) V/hen an end-section (double E0F) has been sensed,

i nd i cat i ng the end of th i s "batch" of assemb I Ì es. The

user can request SYMBOL to continue (eO¡ if there ïs

more input to assemble; he can specify new output modes;

or he can sign off (fX).

End-sections are used to del imît assembl ies where the options

are constant. Segmentation is necessary when desÌgning global table

descriptions (no binary output and no listing), and when the source

must be input from several tapes.

The ability to specîfy the output of the assembler allows

users to perform "test assemblies", listing only error lines until all

syntactic "bugs" are el iminated. Test assembl ies which use the default

modes of output (list errors and no binary output) have become a standard

phase of program development.

BI

4. t+

XDS has specified a "standard binary

series computers with the intention that the

computer and rnedîum independent. The subset

wi I I be descrïbed briefly.

STANDARD BINARY LANGUAGE

The first word of each record

sufficient information for the L0ADER

control word speci fi es:

(¡) The type of record.

(i i) The number of words in the record (word count-) .

(i i i ¡A check-sum for detecting longî tudi nal pari ty errors.

The following types of records may be output by SYMBOL:

I anguage"

I anguage

output by

B2

for the 9 -

be both

the assembler

is a control word which

(¡) Data records which contain:

to handle the record. The

The relatîve load address of the block of data.

The block of instructions or constants to be loaded,

i.e. the program.

The flags indicating whether load relocation and/or

POP relocation should be appl ied to the data words.

provides

(;¡)

- The I to 6 ehanactens of the symbol.

- l.f nef ee'ence, the adrJress of the last refere!ìne

to the symbol.

- [f def i ni t íon, the atjdress (va tue) of the s]/mbol .

{i ¡ ¡} POP References ancl Def initions urhich eontain:

E.xterna 1 Ref ene¡lces and Def i n í t íor¡s wh i ch eonta ín :

Ihe I g:e¡ 6 eharacters of, the symbol .

The teryporâry seorrenee nr.¡mber c¡seri for the POP fon

this program"

lf definition, the r¡niqín of The POP routine,

(;v) Elrd records whieh eontain:

- 1'he last wonci arJdress usecl by the pnogram, i"e" the

length cf the progr.?m.

- The transfer addness If userJ (ignored by the LOADER

in this application)"

83

4.5

The present vension of SYMBOI çcnsisïs

¡"ecr:nds and reqr"rí reE 375ll0U w*rds of memoRy,

PROGRAM SIZE AND RUN.TI¡48 STAT'ISTICS

ef 470010 sou rce

al Ior.;ated as fol lows:

Fn*aram and cclnstants

Br.¡ffen âF€nlS

0'verley ãre,g

Otre n I ays

Tab ! es

6400g ouords

701)* r,rnnds

-- llþ,r,erds
lOnf)CIÂ t¡rcrrJç (4f ¡eore

Th*, ec''re nesiCent Ml,lf,M0Nlfi table nen he extencle<J tn hold 50 tlr,ol'-

ciefined r¡fler"atîo,r cocles {pOR¡qS,0PD'S anct PCIPS) befc,ne overflowing"

3 300g ur<trds

tlltB j^'"'ou

RAD 275008 i{nrds (t Zr.)

The RAll r.e.-riclent q-ABEt- table can !'l+ld "¡ maxímr,s.m of 2400 labeXs

fif hashing i s completely ranrJom,, Becattse the search algori thm i s

'f c¡"û-c\¡Ìen'" {f iEure 4"3), paeking densitíes ãn exeess of 75"A (tgnn

Tahelç) ;rre t$ he expeetecl befçre overflcw. As t.he n*mber of ÏaheÏs

ãpDr)"or.-rrches the 752 densisy, the seaoching cf the table t.rill becnne

rnrrrh less ef f icîent becauçe of the RAD tnansfenning requí red.

,B'I

TnrAe. ¡,lFM0RY 375n08 '^rcrris (t6o.¡

The efficiency can be improved by increasing the number of RAD

segments allocated to the table. The RAD resident REFERENCE and

LITERAL tables can each hold a maximum of 512 entries. Additional

capacity can be achieved in the same mênner as the LABEL table if

requ i red.

The average run-time stati sti cs are as fol lows:

Complete Assembly (l¡sting and binary output):

95 - l05 statements/minute.

Test Assembly (no I i sti ng and no bi nary output) :

4¡o - 500 statements/mÎnute.

Purging of Symbol tables at the end of

l0 - l5 seconds and will decrease the number of

that amount. Overhead for purging becomes more

SYMB0L proportîonately less efficient urhen the

short programs.

B¡

each program requires

statements/mi nute by

noticeable and makes

batch i ncl udes rnanY

CHAPTER 5

L-OADER

5. I 4!!rRAcL

The LOADER program provides an on-line means of loading XDS 920

object programs in standard binary language format, grouping the

progrêms into "coreload" modules on the RAD, and integrating them into

Alberta Gas Trunk Liners Supervisory System.

5.2 0BJECTI VtS

Although the primary

p rodu ced by SYlvlB0 L , s eve ra I

user control and uti I i ty of

5.2.1 DIAGNoSTlC AND LOADtNG INF0RMATt0N

The LOADER program provides detai led diagnostic output to the user

during the load in order that he may easily dïagnose and correct errors

caused by i I legal object code formats (A records) , dupl i cate defínï tions,

and unresolved references, Diagnostic messages are designed and form¿¡tted

to provide the maximum available information regarding the exact cause and

location of the error: coreload name, relative location, and reference to

the specific cause of the error are given in all cases. Except for

catastrophic errors, such as persistent tape read error, tlre LOADER will

continue with the remaínder of the load, forcing the user to diagnose the

reason for the error before integratirrg the program (s) into the system.

requirement ¡s to load the object code

features have been stressed to increase the

LOADE R.

-86-

The LOADER

as a LOAD ADDRESS

alphabetically and by address to provide the user ê visual means

determining the execution address of object code urhen the system

loaded and in operation.

5.2.2.C0MPLETE 0R PARTTAL LoAD

provides detai led output of

MAP. Al I defini tions are

System maintenance and updating procecjures require that the

entire system be updated and reloaded regularly to maintain an ¡ntegrated

system. Modifications must be implemented between updates which do not

justify a complete reload. These appl ications programs învariably refer

symbolícally to the system data base, requiring addresses from the

defi ni tion table prepared at load time.

The LOADER allows users to load an entire system (see Section 5.\.2.2)

and, by retaining the global definitîons table, to add or replace programs

in an existing system. All symbolîc references to system locations are

resolved automatically by referencing the permanent definitions table.

5.2.3.N0 RESTRICTt0NS 0N PRoGRAM StZE

all global definitions

sorted and output both

B7

of

IS

The LOADER avoids program and system size restrictions by

RAD for all expandable storêge tables. The illusion of'tvirtual

is achieved by using small core buffer areas in conjunction with

handlers which co-ordinate the transfer of segments to and from

uslng

memory"

RAD

core.

The global definitions table is constructed and accessed in a

manner analogous to the RAD resident tables of SYMBOL (See Section

4.1.2). A three sector (192 word) buffer area in core is overlaid by

a handler which accesses any table location as though the entire table

were core resïdent.

The program being loaded is generated directly to RnD in single

sector (64 word) segments. Two single sector core buffer areas are

accessed by handlers for input and output, performing RAD transfers only

when sector boundaries are detected. The entire load ís first loaded to

a contiguous area of temporary RAD, requiring a temporary area slÎghtly

larger than the final total system s'íze.

5.2.t+ MULTIPLE INPUT TAPES

The Supervisory System is maintained on several source tapes'

each terminated with an end-section mark. It is convenîent to segment

the system and to assemble each tape independently because of time

considerations, producing several binary output tapes each ending with

an end-section mark.

The LOADER recognizes end-section marks output by SYMBOL as

indicating the end of a segment of binary information, possibly the

end of information on the tape. Control is returned to the user at each

end-section mark (see figure 5.1) in order that the LoADER can be

¡nstructed further (see Section 5.4). The user may use this feature to

BB

,load any system or segment

tapes as des i red, prov ided

fol lowed by an end-section

5.2.5 SYSTEM SECURTTY

The LOADER provides system security primarily by forcing the

user to become involved w¡th the operation; by requiring that he specify

and i ni tiate al I potential ly destructive operations. System securi ty

is especially ¡mportant in vieur of the fact that the LOADER operates in

a background mode in a real-time envïronment. All possible measures must

be taken to ensure that the user does not accidentally destroy or overwrite

any segment of the active system.

The following specific measures are employed:

of the system from as many individual

the last program on any binary tape is

ma rl< .

(ì) The user is requïred to specîfy through the înput typewriter

the starting permanent RAD address of the program or system

being loaded. The LOADER echoes this address and the user

must confirm it before the LOADER will proceed.

B9

(¡¡) fne LOADER advises the user of all end-section marl<s read

from the input tape (Section 5.2.4). The user must initiate

any further action by the LOADER.

(¡¡¡)The LoADER will not transfer the load from temporâry to

permanent RAD unless the user requests the transfer.

Although definitely notrrfail safer', the precautionary measures

incorporated into the L0ADER are effective in that they force the user

to monîtor and initiate every critical phase of the loading procedure.

5.3 METHOp

5.3.1 GENERAL

The LOADER controller which determines the sequence of operatîons

performed ìs flow charted ïn figure 5.1. Once the user has specïfied

the stêrting permanent RAD address for the load, the L0ADER performs

the load in three passes:

Pass One (î) reads the bî nary information from magneti c tape,

(ii) builds the defînitions table of POPS, external

definitions, and coreload names,

(¡ i i) relocates înformation according to the priori ty

of the coreload,

(iv) translates al I P0P references to thei r final

sequence numbers,

(u) stores the progrêm, follor,ved by its external

90

references, on temporary RAD.

Pass one is repeated for each program until the user

specîfies that the last end-section read is the end of the load

(Section 5.4.2.4), at which time pass tt¡ro is initiated.

I

I

I
I

I

I

I

I

I
I

it

vlrrT FoÊ.
ÉSh R

C.ct{f,rÀr{()

REer"lu s"t2

:tììf;, { Vf Ér{ry

PRccçsç

I

I

I

I

I
I

I

I

I

.\i
À

I

I

I

I

I

I

f

I

I

I

I

I

SS

I

I

I

I

I

I
I

I

t

I

I

I

I

I

I
I

v

FEÈleAN E.r.)T

Þ fi Þt: f.l-S

o

9l

e Eh, t>*9tCltc

þt\rT Fo f{
uçtr*e-

Cr¡nrr Ar'r o

PÀ

Ä
Ì

t

I
I
f

I

R E9 ÞL.V E

F¡r tËr r¿ r u
ßf-çeRe-¡l c-r, t

R ç9 ÞLVÉ
POP

L\Ñ I(A GÉì

Pßr¡lt
Lorù /.ÞùRF-ç5

Figure l. I

rrAP

E}E C.LJT\V

Loader Control ler

Élt*y r?
i

TRANTFÈK To , I

lÉf.r1r.N FNT RAÞJ

H-nlT

PÀSS 3

ut"ñ For\
lr9ER

C_9l.ì1.1 A N t)

v.Ec r)T\vE

MNNTTER
Rgrl TLnpep.Àey

To Pex'¡A*t¡r

JoS çrÀrtlTtct :

Pass Two (¡) reads the binary information from temporary RAD,

(ii) resolves external references by searching the

definitions table generated in pass one,

(iii¡purges external references from the end of each

p rog râm ,

(iv) stores the programs back on temporary RAD,

(v) outputs the external defini tions table to the

pri nter.

0nce the cJefinitîons table has been output the user

must initiate the transfer to permanent RAD. The user has the opportunity

to check all dîagnostic and definitions output and abort the load if

errors must be resolved before integrating the load into the system.

Pass Three(î)

92

Because pass three may be replacing segments of a running

system, the system is disabled and a resident RAD handler does all RAD

transferring. lf the load was not a complete system, control is returned

to the user who can initiate another load or sign off. lf the LOAD was

a complete system the LOADER halts, allowing the user to save the system

on magnetic tape and then ini tiate the "cold startil procedure.

(ii) transfers the programs to permanent RAD.

reads the bînary information from temporary RAD,

5.3.2

The LOADER contains independent handlers to deal with each of

the five possîble different ypes of records:

HANDLING BINARY RECORDS

The delta record handler

I ts function is to analyze the delta

and to establ ish the prîori ty, name,

to follow. The handler also enters

address into the definitions table.

(¡¡) DATA REcORDS

(ï) DELTA RECORDS

The data record handler is flow charted in figure 5.3. Data

records contain the actual instructions and constants of the program and

as such ntay have load relocation and/or POP relocation aoplied to any of

the data words. The load relocation (execution bias) is determined by

the previous delta record. The POP trênslation table will have been

generated prior to reading the data records s!nce POP reference and

def inition records aÞthe f irst output f rom SYMBOL. This table wi ll be

accessed to convert all temporary POP sequence numbers to their final

sequence numbers.

(i i ¡) EXTERNAL REFERENcES AND DEFt N tl 0Ns

ís flow charted in figure 5.2.

records described in sectíon 4.3.4

and overlav bias for the coreload

the previous coreload name and

93

The handler for external

flow charted in figure 5.4. External

references and

definitíons are

definitions is

i nserted wi th

9tl

;"'Jf" o u-\
q*o"-,ut)t/

\ç-"ruÊN)

l__-___,
:UTt DN g\Ag*-,
)Rrlv ßrAS.h:
.\.i,.,.1 ßt F\ I ì

I

:5___._
.fiy t'.rtr"S'í- :

s. trr gL]Þ
ì

-...----*--.-¡N1

l¡: t-¡,r11¿^'T
')

x-*-L _.
T.-Tß.\1TVË \
X\ Í:t i:L.Þ)tot

lr,sc, rr.'.r/

(t(ç''n
__-_1

[rl-erirn
I PRrop,rq

[-¡yu=tru
*_---_¡

lc'leRuly

LÌÏ':
N,

---'1 ,.r.1'-
..T1-nr-r,
l\:'\ I

f-r,w¡
'- " P/ uE^t t'

\.gptatl

T---
I_t-

I oveaLJtl Brhs,'.',.-

L__* _

-\
PF

t_¡
I

/*;,
\ cri¡e
_l=2

/ it*R(çr,r
þir

q-}]

d;;;
¡lE*r't

N_-__

,/E \
uLÞ I
:C<¡RÞ'

"¡x.T)

NAfq-c (d--

:i_

.t€v
l-li¡

RE(

T-
X

[¡a,

))Iú
-Y-
,DN

tfl €

-l_

I
I

.l

Delta RecorC tlandlerÍ-:igure 5.2

/ itl, ç.1rr,i
-".

(?rR.p¡-r, -Í-o ';\/
\$JËñ oRr,¡'¡rV

+___ _

[.ÐÀÞ l',D$íriR;s

Rç-rRi eve\
ÞiiTA

95

:l:l ò4

\l)
¡si

¡¡çRtr¡-l=" il ÐeÞ i

rt Ë+F.íl¡rrr¡l Ër¡¡s

¡il8Ètr<î
ì-ßf\N$Lf\T\Êp

Figure 5.3

f æ^-¡.-w r.ut\E

ÞAft\ çJO{ìÞ

Data Record llandler

tlñs.HED
AÞ\îrñCE \ \'T'e l'.,\Ë'J-T

Ilqr Ru

Z:çrtËn'sî* \
f REÍ=eÍ'.Ërr¡¿çS 4ì
\ uerrsirnu*s, /

' .--..----dr.---.--.-.
,/ Rernr evsr

ST'oRç rr,l
R AT)

ß u rr-çr¡

lì! EÏ,7
trrr.1

Ë 6f=P.U¡¡

Rç'rueNr

External Reference and Defi ni tion Hanc{ler

96

-Tuigg--'..,
r"r¡{l lQ '\á

ÞÉF\ll \rì tlN /.*
't-Asì*ç.

Ê.FËERÌIT,ICE5 Ë

ÞEFrr.l rTtoh{ 5,

I

___.- _:{,___-' ?rcwup \
Nç{T. ITFH

.9

.-t- lll '--.-

---{
}F.çtr! i1'r trN >

\r+'sLçJ--
\\Y'l _

Yü

Figure 5.4

-,.tls'"t'-.tt¡-\.-ne.,ij-,--
i

r.r
'1 "

)t/

P0P Reference and Def inition llandìer

AS'' .- 3ïÐ
TIrS LÎ: /,

their (core) execution addresses directly into the definitions

table. External references cannot be resolved unti I pass two since

the defînitions table will not be complete until all programs have

been read. During pass two all external references are output to

temporary RAD following the last data word of the program and preceding

the'rendil record. The loader maintains a header for each program which

forms part of the program output to temporary RAD. The starting address

of unsatisfied references is one of the words of information stored în

the header.

The LOADER handles dupl icate definÌtions differently for a

complete system load than a part¡al load. During a complete load the

address of the fîrst occurrence of the defînition is retained whereas

in a partial load the last occurrence is retained, since the user might

be intentionally replacing an externally defined item.

97

The handler for POP references and definitions ïs flow charted

în figure 5.4. POP references and definitions are output bv SYMB0L

before pass two in order that the L0ADER can build a translation table for

assigning permanent POP seguence numbers before the data records are read.

SYMBOL assigns all POPS temporarily as though they were local to the

program, start¡ng the sequence numbers at 0 and extending upwards as

(¡u) p0p REFERENcES AND DEFlNrrt0Ns

requ¡red. The POP reference and definition output allows the

L0ADER to associate the global use of POP mnemonics with theír

temporary and permanent sequence numbers, and to build a translation

table for the progrâm being loaded. Duplicate POP defïnitions are

treated I ike dupl îcate external definitions for a complete or part¡al

load.

(u) E¡lo_.nE_Ço8oå

The handler for end records is flow charted in figure 5.5.

The last word address of the program given in the end record (section

4.4) provides the length of the program and is used to update the core-

load length, the origin of the next program, and the starting address

of unsatisfied references in the program header. lf the last word

address given is not the same as the current location, the LOADER pads

to the neb, origÍn with zeroes. The POP translation table is cleared in

preparation for the start of the next program.

9B

5.3.3. RESOLVING EXTERNAL REFERENCES

External references are not resolved until pass two when the

defïnÎtions table is complete. Each external reference entry gives

the address of the last location to reference that symbol and all

references are chained to the reference location preceding it until the

fîrst reference with an address of 0, lvhich terminates the chain.

(Sectîon 4.2). The algorithm flow charted in figure 5.6 for resolving

RËtç<tçVÉ
t Lr.çt w oe-p

J AUE ç.o e

Fw t\ Rr. Fs

OR\G(N of:

99

U?DATE

Y,T PÊIC..

L\fÞA'\'Ë
CoPç¡,¡-"¡p

LÈ!,rGT{

LI P Þ}.TE

PRobn¡. rn

¡sw 6'lrl

Figure 5.5

,.¡EW

ORtorU

POP TE,\ÞItATË

c I E*.r\

P^ù !c rTtt
ZEQDÊç .1

O

End Record llandler

ÑEVJ OR\bIN

R- ËTt) RN

Rrrç,¡au=
NL\LT
\TEll

F\LR ÉI=

Fr rurçrttp?

N

------V-------sEJlRctl
ÞEç ìu \l t ÞA

TABLÉ

t4¡,¡(.<-. AÞoÊ.r-ç!

lN\-It ÀL\? (;
l- crR

u çv'r P ¡.91

SrcRË uflv,
ÂÌ¡Þ ßt i5

ìN L-cR.Ë

rUrrRt!oL!ÈÞ /

100

Reree-ttu{

A

ÌlÀ{{- trv..Ít1À

N)ql!Àx.+- 0

i<--r+ t

FI LRE.F

..FrurStri O\

Figure

PA9': ?

5.6

FR o rn RÀÞ

Resolving ExternaI References

N r'I14 ÀÈ4- Cô0.8

crß E(f){-
ìJËW Lìñ\(.

.c-OKE
1 AßLE

RETufl."¡

otr
C\-l^tìt

Þ LLfr E

EN'l Ry

external references uses a core table holding "n'r entries and makes

a complete pass backwards through all sectors (sïnce the program is

RAD resident) which contain external references. By keepîng track of

the next largest RAD address referenced by any entry in the reference

chains, the algor¡thm is able to trade a sliqht increase in core

manipulations for a significant decrease in RAD transferring. As each

sector is input, all external references in this sector are resolved

before going on to the next largest sector referenced. The procedure

is repeated for the next "n" unresolved references and so on until all

references have been resolved. The obvious technique of resolvîng all

references in a single chain before going to the next would require all

sectors having references to more than one external symbol to be input

and output as many times as there are different external symbols.

5.3.4. LOAD ADDRESS MAP

The load address map output at the end of pass two provídes

the following information for each external symbolic name:

l0l

(i) The RAD or core address of the definition.

(i¡) fne priority if the entry is a coreload name.

(iii¡The final POP sequence nunrber if the entry is a pOp.

(¡v)A duplicate tag if the definition has been duplicated.

The POP output is separated from the coreload and externar

definitions in the I isting (see example ín appendix).

All entrîes in the definitions table have been made with

the hashing algorithm described in section 4.3.2 and are known to be

randomìy dîstributed. The output from the reference table is sorted

i n two ways:

(i) ln ascending order by address where core<RAD.

(i i) ln ascendÌng order alphabetical ly using the col lating

sequence:

The standard sort techniques (e.g. "bubble" sort) which requi re

physîcal rearrangement of the table are not feasible for two reasons:

b< 0 < l<

(i) The number of RAD transfers would be prohibitive.

(¡¡) ff,e reference table îs a hash table used for the life of

the system and must be left in the format dictated by the

hash algorithm.

102

The sort algorithm employed is flow charted in figure 5.7. The

technique used is similar in theory to that described in section 5.3.3.

A core table with a capacity of "n" entries is loaded with the "nrl

smallest elements in the table by making a complete pass through the

RAD table. This procedure is repeated with subsequent passes by ignoring

all elements not larger than the largest element from the last pass until

all elements have been sorted. lf there are "x" elements în the table

havîng rlyrr segnrents,

RAD transfers for a

5.\

Figure 5.1 illustrates that the user Ts requested to ínstruct

the LQADER to take a specifíed course of action in the following instances:

USER COMMANDS

thi s sort algori thm wi I I

complete sort.

(i) lmmediately upon loadïng the program. The user may not

wish to load programs but may h/ant only an output of the

def ini tions table (section 5 .4.2.5) .

(ii) nfter each end section is read. The user must instruct the

LOADER to either continue wïth the next tape or indicate that

all programs have been loaded.

requ i re lx/nlv

(iii¡After the load has been performed and before transferring

it from temporary to permanent RAD.

Although the user is also requested at the start of the

load to input the starting permanent RAD address to be used, this is

not considered to be a command in the general sense. The LOADER will

accept only an octal number in this case and none of the commands to be

described in this section.

103

Ln5r<-

SEG\1 EhjT 4-
FiÉ5-î- oË

l-^f3 LÉ

CLË ÁR
ç gRT
TÀt, uç

INPLIT

'5eGrrç ¡¡r'
FRr)t'1 RnP

LAST.T- Ûü"LNì tr
i

ô F \-À5T :i i; trUe L i

OtL'i l LrT

ÞLçtN,'it'..,

sÈGr'ìt.NT +*-
I

SÈGr1r.NT t L I

CoLLûI Ê
irJlT gsç

Figure 5.7

l !r i5$ cì

IN 9qRT
\N TA

I-A ß\ E

Sort Algori thm

l-tÉlsrlfÞ-
i eCr,restf

5.4. I GENERAL.

The command analyzer is analogous to that used in the assembler

(section 4.3.6) . Commands may be input individual ly or several in the

same statement separated by commas. Each command is executed

interpretively until a transfer of control (CO, END, or TX) is

executed.

Error analysis consists of the message'rSYlrlTAX ERRORil output

when analysis fai ls. Because commands are executed interpretively, al I

commands preceding the error will have been executed.

5.\.2 SPECIFIC COMMANDS

5.4.2.1 REl,/lND

This command rewinds magnetic tape unit two.

5.4.2. 2 NEI,J SYSTEM

This command is to be used only when loading a completely

new system as it causes the LOADER to purge the external

definitions table at the start of the load. The LOADER

also uses the first definition in cases of duplicate

definitions when this option îs invoked. Default is

add to sy.sIg4 if this option is not requested.

105

5.4.2.3 G0

This command causes the

present operat ion, Î . e.

5.4 .2.4 END

This command causes the LOADER to begin pass two and

is allowed only following an "end record" from tape.

5.\.2.5 DUMP

Thís command initiates the I ísting of the L0AD ADDRESS

MAP (¿et¡nitions table), and should be required only

when multiple copies are required as the LOAD ADDRESS

MAP is output automatically with each load.

5.4.?-.6 rx

LOADE R

re tu rn

to

to

continue with the

the cal I ing location.

106

5.5

The present

records and requires

This command releases the LOADER after producing job

statistics on the l/0 typewriter.

PROGRAM SIZE AND RUN-TII4E STATISTICS

version of the

7700g words of

LOADER consists of 210010 source

core memory, âllocated as follows:

A variable amount of "tentporary'r RAD is used, amounting to

maximum of l/10 more than the present system size (or 200K).

Program and Constants

Buffer Areas

Core

The run-time statistîcs are variable, depending on the

density, the number of coreloads, and the number of tapes. The

complete system requires approximately twenty minutes to load,

including all delays as a result of having to urait for the user

mount tapes (maximum of two to three minutes delay).

4600, words

3100g words

77008 words (4t<)

107

tape

present

to

cHRpleR 6

CONCLUS IONS AND FURTI-IER DEVELOPI,IENTS

According to a recent survey conducted by Control Engineering

[8], only 3BZ of users of on-line real-time systems are able to

assemble programs on-l ïne. The necessity of an on-l ine program

development paclcage for this application can be better appreciated if

¡t is realized that Alberta Gas Trunk Line has several "uncommon"

characteristics:

(i) Computer control of gas transmission faci I ities is an infant

¡ndustry and as such does not have access to proven techniques for

uti I izing Supervisory Systems. New procedures and appl ications must be

researched, developed, implemented, and impràved vuithin the company; an

approach which requires considerable computer tíme for program development

and testing.

(ii) ffre growth rate of the pipelïne facîlities is very rapid

and requires constant updatíng of the Supervisory programs to keep pace

wi th expans i on.

(iii)fhe system is on-line 24 hours a day and is required to scan

the pipel ine at _la?s:L every f if teen minutes. Although the effect of major

changes often takes hours to observe, a response time of five to ten

minutes is consîdered necessary for initiating stabi I izing action in the

event of ilupset conditions".

- 108 -

l0g

(iv) The emergency backup system is so íneffectîve as to be

considered useless except ïn "paníc situations". I t does not provide

suffícient information display and control capabi litïes to replace the

on-line system whi le program development is carrïed out.

Statistics kept for the package over a sixty day period indïcate

that usage averages 1.5 hours per day, allocated as follows:

The allocation varies considerably with job mix since an increase

in "new" programs reSults in an inCfeaSe in "test aSsembìieSil for

each update by UTILITY. The proportion of time used by the UTILITY

program will ìncrease over that used by SYMB0L in perîods of increased

program development.

UTILITY has been in use for over a year while SYMBOL and L0ADER

have been in use for only three months at the date of this writÎng.

Extrapolating the statistics for UTILITY back for a year gÌves a

conservative total usage for the package to date of three hundred to

four hundred hours. Downtime for program development has been virtually

eliminated by the package, giving a tangible increase in system

avai labi I ity of over 6% per day (1.5 hours). Updating and program

development are also more efficient since the user is assured that he

can run and debug hìs job interEctively and at his convenience.

UTILITY

SYM BOL

LOADE R

45'4

50'1,

5'Á

I l0

Emphasis is gradual ly being shÎfted towards the "applications"

programming area (".g. simuletíons, trend analysís, optimization,

closed loop control, and Management lnformation Systems), as tlre process of

data gatherîng and display becomes more rel iable and accessible. lt

is expected that program development rvill increase sharply as users

become more awâre of the numerous possibi I ities and capabi I ities of

the system.

tJse of the package can be extended over the life of the CPU,

which has a remarkable record of rel iabi I ì ty for tlre past six years.

The CPU could notrrconveniently" be replaced in less than two years and

wî ll probably Lre in use for up to f ive years if reliabi I i ty does not

become a problem. Size and speed are not immediate concerns since

the foreground task of monitoring and controlling the system requires

only 20 to 30% of the system time and leaves 4501(words of RAD storage

avai lable for future development.

ln spite of the fact that the present demands on the package are

well within design limitations, there are general areas of improvement

which would considerably increase throughput:

(¡) lnterlace on the t'/ l/0 channel (suff er) would al low

overlapping of l,/0 and processing for the devices attached

to ¡t and would make designing l/0 handlers for the card

reader and magnetic tapes more economic.

(¡í) Faster card reader and

put since the programs

bound.

(i¡¡) Redesign of the l/0 system around spoolîng of l/0 by job

(î... priority) in conjunctïon with (¡) and (ii) would

el iminate vraitîng for l/0 in most applications. RAD could

be used as the intermediate storage medium and all

references to specifîc l,/0 devices could be made indirectìy

to the designated area on the RAD. Conflicts arising over

use of common peripherals would be vi rtual ly el iminated.

ill

I i ne prî nter woul d i ncrease through-

are presently almost completely l/0

There are also specific areas in each of the programs which are

scheduled for further development:

6. r urll rII_lEVELOIllg!\]l

(i) Add ¡ t ion of commands to

binary output (object)

end-sections as edi tíng

provide the abi I i ty to

tape and to reload the

the entire tape.

permit editing and updating of

tapes using coreload names and/or

boundaries. This feature would

replace single programs on a binary

system r^rithout having to re-assemble

6.2 SYMBOL . DEVELOPMENT

(i) Modïfy pass one to output source records to RAD and

re-read from RAD rather than from magnetic tape for pass

two,

(i i¡ Modify the l,/0 package to al low the user to select the

source ìnput device (i.e. cards or magnetic tape) rather

than fixing it to magnetic tapes.

(¡íi)Allow the user to select the

cards or typewriter) so that

and s igned off automatî ca I ly

tape.

(iv) Provision for an optional versïon which uses a RAD resident

MNEMONIC table which wi I I al low more than the present f¡fty

user-def ined operation code symbols.

llz

(u) Provisîon for dumping global symbol tables (which are common

to most applîcation programs) to magnetic tape for subsequent

i nput to other assemb I i es.

command input device (i.u.

assembl ies can be "batched'l

with input from cards or magnetic

(vi) Provisîon to select the program (s) to be assembled (by

specifying sequence start and end) from a batch of programs on

a si ngle tape.

6.3 LOADER DEVELOPMENT

(¡) Modification to have all "new" entries

table tagged and purged from the table

are not transferred to permanent RAD.

(¡ì) Default dump of the L0AD ADDRESS ¡lAP which prints only the

"new" definitions as in (ï).

(¡ i ¡) Provision for a version which does not requi re temporary

RAD storage in the event the system grows to require over

half of the RAD insral led.

The fact that the author is familîar with the Supervisory System

and has served as analyst, programmer, and user of the package, has

been essential to its success in providing the services descrîbed.

As the Supervisory System changes and users become more demanding,

the package will also have to change to meet the new requîrenlents.

ln conclusion, the package as described is. performing a very essential

service, and has been well received by all connected with the operation

and upkeep of the Supervisory System.

to

lf

the definitions

the programs

I t3

The appendix demonstrates the typical use of the package

by following the development of a,program (coreload) from generation

onto magnetic tape through loading ¡t ínto the system.

Figure Al. I i I lustrates the console typewri ter t/0, segmented

as the l/0 applîes to each of the six separate jobs.

APPEND I X I

USE OF THE PACI(AGE

JoB (r)

This job represents generatîng the program from cards to magnetic

tape. The output from UTILITY is given in figure A1.2.

JoB (z)

This job represents the firstrrtest assembly" to detect syntax

errors which can be caught by the assembler. The default options of

SYMBOL are invoked and produce the listing given În figure 41.3. This

test assemb ly i I I ustrates two errors:

(i) The call to ltfAlT appears before the l/0 has been requested.

(¡i) A keypunching error in record lB0 has created a PQP reference

to LDR rather than the legitimate mnemonic LDX.

A visual check of the remainder of

are four legal external references

the

and

- il4 -

output shows that there

three legal P0P references.

Tl

(o
c
-t
o

cl
o
J(¡
o
o
-{
ro
o
ã
:.
.t
o
-I

o

u'il Lt tY

-::*24¡lA¡17
2 I23t UTI LI]'Y tJ'J/ ûø/ 2e -tù

øøB/

sY;{30 L
iì,Ei/l;10 SlrG0
iìEiJlilD sl,TX

*';.24;4Ä'il7 2 L234 sYirB0L J,,J/ çí1/ 27 TO '1Ll/

UTI LITY

ìkr'r2 qilAiì 7 2 L234 uTt LrTY t1;,1/ tltl/ 11 T0

SY;IJOL
;ìEiJlilD Sl/GC
tìEiití'¡J sl,-t-x

z:<-:< l\,.llt¡11'l I L235 SY;lBOL ÐiJ/'JII25 10

S Yr,i3 0 L
ltEi,t lÌtJ s¡,;ìEiilÌ¡iJ ßc,LlsT ALL,B0,G0
,{EiJl ilD Sl ¿,ìEtJl ilJ ùirTX

:'.'rk24ilArì72 t23f) sY;4BoL t|"J/ øil h9 To

LOADE,(

'lEijl ilù¿ ilEil SYS-l-Ei l, G0

litpuT pEt¡iA;.lEliT ,tAD AD);ìEss ztllli
PE;ìJ,lAíIEI{T:ìAD AJD;IESS # iJú2ç'1'JI
GÙ
EitD-sEcTl0i,l ,iEAl)
iìEiJlrlJ¡ EllC
i{EADY T.J -TIìANSFE¡I TJ F Ii¡AL ,{AD GO

TX

'f,
,r)

,l'
'1,.

ø'rB/ 25J

Ì,liw úr)

'l,.

lfl/,fi)

,rrrr]'

\tr

':.';<24;.lAtl7 2 I2i7 LCADEn ",J,t/ tL/ 0J T0

12136 0

':n
(o

-.¡
o

l\)

G)
o
a
o
-¡
OJó
o
cl
o
-T
o
o
OJ

o-

C0MMAI'lD.
C0MMANDT

a4
t
*
*

000000 1 0
000000?0
00000030
00000040
00000c50
000c0060
00000070
00000c80
00000c90
00000 1 00
00000 1 1 0
00000 1 20
00000 I 30
00000 I 4 0
00000 1 50
00000 1 ó0
000001 70
00000 1 8 0
00000 1 90
00000200
000002 1 0
00000220
00000230
00000e40
00000 2 5 0
00000260
00000270
00000280
00000290
00000300
000003 1 0
00000320
00000330
00000340
00000350

REWIND OUTPUT
SENUENCE FRÐM 10 BY 10
SAi.4PLE

SA|'4PLE CBREL0AD T0 DEMBNSTRATE fHE TYPICAL USE 0F THE ON-LINE
PRBGRAM DEVELOPI'IENT PACKAGE F9R GENERATINGT UPDATINGI AND

L0^DING A CBREL0AD.
RORG O

RES
PZE

JBBWA PZE
BCD

START LDX
LDA
STA
LDA
EAX
BRU
EAX
BRU
LDR
LDP
FL.r'1

STD
LDÂ
STÂ
LDA
EAX
BRU
EAX
BRU
BRU

IABLO DATA
PZE
DATA

D1?6 DED
TABLE EOU

END

20
START

8.r SAMPLE
J0B1/,JA
2t?
TABLO+5
: TÁBLO
$+2
t¡\lAIT
$+2
I BSYS
t TABLE
L¡2
DL26
5t2
tI*/15
TABLO+1
çTABLO
$+2
I BSYS
$+2
t¡iAIT
RELEAS
$¡ 0¡ TABLE¡ 01000
WD

0¡0
L?6 t
$+3

SYSTEM I.IORK AREA
ADDRESS OF FIRST INSTRUCTIsN
ADDRESS OF l^lBRK AREA FOR lHE JOB
CBREI8AD NAME

RAD ADDRESS BF TABLE
FIRST WERD ADDRESS OF I/O hJORK AREA

t.¿AIT FBR I/O T8 FIN¡SH

REOUESf INPIr,T OF RAD TABLE

ì

TABLE (5) çTABLE (1 I r126lTÀBLE (3 I

I/O FUNCÏIBN

REOUEST BUTPUT 8F RAD TABLE

l,lAIT FOR I/O TO FTNISH
RELEASE JOB

I^IAITING I/8 FLAG FOR THIS PRIORITY

FIRST þJORD ADDRESS OF TABLE AREA

CEHMAND.
CO MH AND ¡
C0MMAI'lDr

END SECT¡ON /END EF INFORMATTON ON TAPE
REI,I I ND OUTPUT
TX

o\

' 1 a4
* C0035 0 01 00000 15
r 00037 0 01 00000 t7
I 0004c 1 01 00066 18
I 00041 3 00 00001 79
I 00042 1 03 00063 ?O
I 00043 3 02 00005 2r
* 00050 0 01 00037 26
r C0C52 0 01 00035 ?8
r 00053 0 01 00000 ?9
r 00060 O OO OCOOO 31

00052 14A I T
00050 lôsYS
0006c l,lD
OOO53 RELEAS

*** OO,/C0/ 19 ELAPSED T I ME¡ MAX I MUM

r+r 5 SYMBOLS , r,¡, 3 IITERALS r

SAMPLE
BRU
BRU
t_DR
LDP
FLM
STD
BRU
BRU
BRU
PZE

l¡JAIT
¡ BSYS
s TABLE
!t2
DL26
5t?
I OSYS
t.lAIT
RELEAS
wD'

000000 1 0
00000 1 50
00000 1 70
000001 80
00000 1 90
00000200
000002 1 0
00000260
000002E0
00000290
000003 I 0

I,JAIT FBR I/O
RECUEST INPUT

.¡

IO FINISH
8F RAD TABLE

.'r
(o
c
1
o

\^J

-.{o
Uì

,-
Ul
o
o
3
o-

TABLE (5) TTABLE I L t *126/f ABLE (3)
RECUEST OUTPUT OF RAD TABLE
WAIT FOR I/O TO F¡NISH
RELEASÊ .JOB
I,{AITING ¡/O FLAG F6R THIS PRIPR¡1Y

L0CAT¡0N ¡ 00067
4 REFS

!

Joålå)_

This job is an update by UTILITY to correct the errors detected

in JOB (Z). Four functÏons are to be performed:

(¡) The call to r'/AlT is deleted.

(i i1 The call to t^/AlT is înserted in the correct position.

(i ii¡ The record with the keypunchïng error is replaced.

(iv¡ The remainder of the program is copied to the OUTPUT tape.

The output from the job is illustrated in fîgure 41.4. The

first record of the I'insertil contains two sequence numbers;

the right most beîng the sequence number punched on the CID

source record (implicít command), and the left most being

the final sequence number assigned to the record on the

OUTPUT tape.

!!å_(4)_

This job is a test assembly on the output from JOB (3) to verify

that the update was successful, The output in fígure Al.! demonstrates

that the errors have i n fact been corrected and the program i s free of

visîble errors.

IìB

JoB (¡)

This job is the

output. The I isting

given in figure Al.6

fînal assembly, complete wi th I i sting and binary

of the complete program as output by SYMBOL is

CEMI"IAND' REl,l I ND I NPUT
C8M¡1AND¡ REW JND 9UTPUT
CBI'41'4AND" SECUENCE FRBM 10 BY 10

.-r CBI'4MA¡.IDr SKIP 140 THRU 150

-'
I I.¡SERT EAX g+2

C BRU HA¡ T

; REPLAE LOX 'TABLE'- C8|'4MANDr CBPY 1 SECT I0N
>- CBI,IMAND¡ REW I ND I NPUT
. COMMAND¡ REWIND OUTPUT'r coMÈtAND. Tx

l,{A¡T F8R T/O TO FINISH
00000160 00000171
000001 70
00000180 00000180

c
!
o-
IU
t+
lD

'.o

,.n

(o
C
I
o

\tr

-to(¡
a+

UI
(¡
o
3(t

l.

144
l 00035 0 01 00000 15
r 00037 0 01 00000 17
I 00041 3 00 00001 t9
I 00042 1 02 00063 20
I 00043 3 01 00005 2t
ì 0005c 0 01 00035 26
r 00052 0 01 00037 28
r 00053 0 01 00000 ?9
I 00060 0 00 00000 ' 31

00052 r,tA I T
00050 I 9sYs
00060 \,JD

OOO53 RELEAS
r*t 0O/OO/18 ELAPSED TIME¡ MAXIMUM
i 5 SYMBOLS t 3I"ITERALS r
t¿tx

SAMPLE
BRU
BRU
LDP
FLM
STD
BRU
BRU
BRU
PZE

I BSYS
t,JAIT
Lt2
Dt26
5tZ
I OSYS
l.lAIT
REIEAS
r^rD

0000Ó0 1 0
00000 1 50
00000 1 70
000001 90
00000200
000002 1 0
00000e60
00000e80
00000290
000003 I 0

REOUEST INPUT OF RAD TABLE
l,{AIT FBR I/O TO FINISH

TABLE (5) ¡TABLE (LI *tQ$¡1 ¡BLE (3)
REGUEST OUÍPUT OF RAD TABLE
I{AIT F8R I/g TO FINISH
RELEASE JOB
t.lAlT¡NG ¡/0 FLAG F8R THIS PRIBRITY

L0CATI0N r 000ó7
4 REFS

l'.Jo

1 ô4
2+
3r
4*
5
6
7
8 JOBHA
9

?0
START

8r SAMPLE

JOBl,JA
É.t¿
T ABLO+ 5
¡ TABLO
$+2
I OSYS
$+2
t,lAIl
I TABLE
Lt2
DL26
5t2
.t*/15
T ABLO+ T

I TABLO
$+2
I OSYS
$+2
l,JAIT
RELEAS
$¡ Q¡ TABLE¡ 01000

t,JD

0¡0

T?6,

$+3

000000 1 0
000000e0
00000030
00000040
00000050
00000060
00000070
00000080
00000090

000001 00
000001 10
00000 t 20
000c0 1 30
000001 40
00000 1 50
00000 1 60
000001 70
000001 80
00000 1 90
00000200
00 0002 1 0
00 0002 20
00000230
00000240
00000250
00000260
00000270
00000280
00000290
00000300

000003 1 0
00000320

00000330

000003¡t0
00000350

SA¡4PLE
SAMPLE CSRELSAD TE DEMBNSTRATE THE TYPICAL USE OF THE SNTLINE

PRBGRAM DEVELOPI'4ENT PACKAGE FOR GENERATJNG¡ UPDATINGI AND

LSADING A CBRELSADT
RBRG O

.'n
(o
c
-f
o

o\

ll
:l
OJ

tn
(/)
o
=o-

00000
00000
c0024 0 00 00030
00025 0 00 00000
0c026 t?6?2144
00027 4743?512
00030 0 71 00025
00031 ¿ 76 00002
00032 0 35 00061
00033 0 76 00065
00034 0 77 00036

r 00035 0 01 00000
0c036 0 77 00040

r 00037 0 01 00000
00040 0 71 000ó6

t 00041 3 00 00001
I 00042 1 02 00063
¡ 00043 3 01 00005

00044 0 76 04067
00045 0 35 00055
0004ó 0 76 00065
00047 0 77 00051

r 00050 0 01 00035
c0051 0 77 00C53

r 00052 0 01 C0037
r 00053 0 01 00000

00054 0c000054
00055 00000000
00056 00000070
00057 0c001000

r 00060 0 00 00000
00061 000000c0
00062 00000000
00063 00c000c7

_ 00064 37400000
00000070

RES
PZE
PZE
BCD

SYSTEM t,lsRK AREA
ADDRESS SF FIRST TNSIRUCTION
ADDRESS OF WERK AREA F8R THE JOB
CORELOAD NAME

RAD ADDRESS OF TABLE
FTRST I4ORD ADDRESS OF I/O I.IORK AREh

REOUEST JNPUT OF RAD TABLE

l.lAIl FOR I/O TO FINTSH

TABLE (5 } TTABLE I TI *L?6/1 ABLE (3 ¡

I/B FUNCT¡ON

REOUESÎ OUTPUT OF RAD TABLE

hIAII FBR I/O TO FINISH
RELEASE JOB

HATTING I/O FLAG FOR THIS PRIORITY

FIRST I,'IORD ADDRESS OF TABLE AEEA

10 START LDX
L1, LDA
T? STA
13 LDA
14 EAX
15 BRU
16 EAX
L7 BRU
18 LDX
T9 LDP
20 FLM
?T SfD
?E LDA
?3 'STA
24 LDA
25 EAX
26 BRU
?7 EAX
28 BRU
?9 BRU
30 TABLA DATA

PZE
DAIA

DT?6 DED

TABLE EGU
END

00065 00000054
00066 00000070
00067 00100000
00052 hlA I T
OOO5O I ÊSYS
00060 l4D

OOO53 RELEAS
t OQ/OO/38 ELAPSED TIME¡ MAXIMUH LOCATI0N . 00067
**r SSYHBÐLSt 3 LITERALS¡ 4REFS

31
32

33

34
35

t\)

-JoB (6)

This job is the loading of the binary output from JOB (S)

and integrating it into the system. The NE\,{ SYSTEI'I opt¡on is requested

to make the coreload independent and to keep the output of the L0AD

ADDRESS l"lAP as brief as possible. Figures Al.7.l through Al .7.S gíve

the output from the LO^,DER.

Figure Al.7,l lists all external references as unresolved since the

coreload was loaded as an independent system and therefore did not have

access to the external definitions table of the exísting system.

Fígures A1.7.2 and Al.7.J give the sorted output of the POP table.

The eight digit octal number associated with each POP gives the

fol lovring information (from left to rìght):

122

BIT

0

I

¿- o

9-23

All P0PS Ìn this load are references

containing the POP library, has not been

constitute a program error since it would

references to P0PS whïch are not defined.

CONTENTS

= I if POP defínítîon

= I ¡f POP reference

P0P sequence number

Origïn of POP routine

only since the executive,

loaded. This would normal ly

be known that there are

24MAR7E T?37 UNRESBLVED REFERENCES

SAI.4PLE UNRESÛLVED REFERENCE I,{AIT AT OOO52
. ..N SAMPLE UNRESSLVED REFERENCE I8SYS AT OOOSO

,:. SAMPLE UNRESBLVED REFERENCE t,|lD AT OOO6O

Ë SAMPLE UNRESBLVED REFERENCE RELEAS AT OOO53

d

.{

t-
o
OJ
o-

t.J
\-À,

?4MAR72 L?37 SYSIEM PBPS(BY ADDRESS)

FLH eOaOOOOO STD 2O1OOOOO LDP 2OOOOOOO
':n

(O
C
-T',o

-{
' l\)

ì\¡
_L-

24t1^R72 L237 SYSTEM pOpS (AL;HABEï I CALLY
'. FLM ' 2O2OOOOO' " LDP 20OOOOOO STD 2OIIOOOO

l\)\tt

24I1AR7? T237 EXTERNAL DEFIN¡TTONS(BY ADDRESS)

4 SAT.IPLE 40120000
:-Il
(o-. -'¡
o

\t
.r

N)
cf\

?4t!^R72 1237 ExTERNAL DEFIN¡T¡gNS(ALPHABETICALLY)

4 4 'SAMPLE 40120000' ' ¡

' 'irl
to
C
-1'o
>
-{
LN

f.J.{

Figures Al .7.4 and Al .7. ! g ïve

definitions table. The sorting in

there is only one definïtion. The

name SAMPLE is the priority of the

number associ ated wi th i t conta i ns

l2B

the sorted output of the

this case is meaningless since

digi t "4" precedíng the coreload

coreload, whi le the B digit octal

the fol lorving (f rom lef t to right):

CONTENTS.

- I if RAD address

length (¡n sectors) ¡f RAD address

alurays = 0 (unused)

RAD/core address of definítion.

BtI

0

r-B
9

lo-23

The address 40120000 indicates that

sector (less than 64 words) starting at

it is a RAD table of length

RAD ADDRESS 2OOOO.

t. Cheatham, T.8., and Sattley, K.

Syntax Di rected Compî I ing

ln:

Rosen, S. (ra.)

McGraw Hi I I

RE FE REN CES

2. Mart i n,

Programming Systems and Languages

J. Programmîng Real-Time Computer Systems

Prenrì ce - flal I lnc. (1965) .

J. l.1artin, J. Design of Real-Time Computer Systems

0961) " 264-297.

Prenrice - l-iall lnc. (1967).

h.

t'29

Xerox Data Systems

Manual (1965).

5. Xerox Data Systems XDS

XDS 920 Computer Reference

Publ ication Number 900506c (1969).

6. Xerox Data Systems XDS 900 Series Symbol

Technîcal Manual

Symbol and Meta-Symbol

Publ ì cation Number 9006BBC (1967) .

7. Xerox Data Systems

Programmed Operatorilechni cal Manual

Publ i catîon Ì'lumber 90O02oF (1967) .

orJ. l(ompass, E.J., A Survey of 0n-Line Control Computer Systems

Control Engineering (January 1972) 52-56.

XDS 920/930 Computer

9, Malîa, T.C. and Dickson, G.1^'|.

Managemelt Prob-leLs_Uniq_ue to 0n-Line Real:Time Systems-

AFIPS Proceedings Volume 37 (lgZo) FJCC.

130

