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Abstract

A detailed mathematical model based on circuit approach has been devel-
oped for simulating inrush current for core type transformers. The model is capa-
ble of computing inrush current for various phase connection schemes under
different initial conditions. A three phase thyristor controlled switch has been
designed and constructed to be used in consistent recording of inrush current at
zero-crossing and positive going voltage. Also a method for determining the
zero-sequence permeance of the transformer was introduced.

The model can be applied to power transformers for inrush current investi-

gations which are necessary for designing system protection relays.
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Chapter 1

Introduction

During the initial energization of a transformer a transient current known as
magnetizing inrush current flows into the primary winding due to overfluxing the
transformer magnetic core temporarily. This current continues to flow until the
dc-component of the magnetic. flux dies out completely. The start-up of the trans-
former is not the only cause of inrush currents, after fault clearance fast voltage
recovery can also initiate inrush current in any transformer connected to the sys-
tem[1] [2L[3].

The magnitude of the inrush current depends on two major parameters:
the switch-in angle on the voltage cycle, and the total resistance in the primary
circuit.

For many years power transmission engineers have been concerned with
this phenomenon, not because this excessive current has the potential to damage

the system apparatus. but because it may confuse the protection relays by unneces-
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sary tripping. [t may also cause enough voltage drop to impair the function of other

equipments connected to the same system.

1.1  Literature Review

This phenomenon was first observed in 1892 [4], but according to Blum et
al [5] up to 1944 no information regarding which parameters may affect the inrush
current or how the inrush current can be affected by the design had been found in
the literature. The production of cold-rolled steel for transformer core resulted in
higher inrush currents as well as higher efficiency. This lead to more severe prob-
lems regarding the false tripping of protection relays, this stimulated interests in
this phenomenon [6][7][8]. Early efforts mostly involved the calculation for the
first peak of inrush current of a single phase transformer [9][10][11]. A biblio-
graphical review and historical background of this subject is presented by Hudson
[12].

Due to the complex behavior of the core, difficulty to record the inrush cur-
rent for power transformers, and unavailability of digital computers the problem of
inrush could not have been solved properly. Later however, digital computers

facilitated solving the problem.
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1.2  The Present Study

The purpose of this study is to develop a mathematical model for a
three-phase core type transformer. This model should be capable of simulating the
magnetizing inrush current for various initial conditions and winding connection
schemes. A 120V/600V, 10K VA three-phase core type transformer was provided
by the Electrical Engineering department of University of Manitoba to perform the
necessary tests. In order to record the inrush currents consistently, a three-phase
thyristor-controlled switch was constructed capable of switching in the trans-
former at zero-crossing and positive going voltage. The developed model was

implemented in MatLab and as of M-files.

1.3  Thesis Structure

The thesis is subdivided into 6 chapters and 4 appendices. In Chapter 2.
the problem of a single-phase transformer is discussed. The discussion includes
the analysis of magnetic core behavior, magnetic circuit as well as the electric cir-
cuit. Also the basic elements of core behavior including the non-linearity. satura-
tion and hysteresis are taken into considerations. It is shown, when computing the
inrush current, core losses are not major factors (especially for modern power
transformers). Therefore, the core is characterized only by its saturation behavior,

which greatly simplifies the core modeling. At the end of the chapter a complete
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solution for a single-phase transformer is presented.

Chapter 3 discusses the three-phase transformer. As an example to start
with, a null grounded star/delta core type transformer is discussed thoroughly. The
magnetic and electric circuits of a three-phase transformer is far more complicated
than those of a single phase transformer. Due to the core interconnections, in this
particular case the current in each phase depends on all magnetizing fluxes. The
difficulty arises when an attempt is made to express the current vector in terms of
the flux vector. The idea of P-matrix is used to deal with this problem. P-matrix
relates the derivatives of currents to those of the fluxes. Within the computation
steps. it is necessary to find system fluxes for specified system currents. This is
done by numerically solving the system of non-linear equations which character-
izes the magnetic circuit. The solution to the three-phase transformer is provided at
the end of the chapter.

Chapter 4 discusses the experimental setup for determining the core char-
acteristics and the zero-sequence permeance of the transformer under test.

Chapter 5 compares the predicted inrush current by the model for different
winding connections and different initial condition against the actual recorded cur-
rent. The results indicate a reasonable agreement between the model prediction

and the actual values based on the approximations made in the model.




Chapter 1 Introduction I.Farzadfar

Chapter 6 summarizes the work done and discusses the limits of validity of
the model and the source(s) of discrepancies.

Determination of P-matrix with complete steps can be found in
Appendix-A.
The solution to star/delta phase connection is presented in Appendix-B.
The diagram of the three-phase thyristor switch can be found in
Appendix-C.
And finally, the Appendix-D contains all the necessary codes to run the

program in MatLab.
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Chapter 2

Single Phase Transformer

In order to get an insight into the three phase transformer, it is beneficial to
pause and analyze the single-phase transformer. The basic principles apply to both
single-phase and three-phase transformers. Single-phase transformers lie in the
category of magnetically coupled circuits. In most cases it consists of two coils
known as secondary and primary windings, which are closely wound around a

closed end iron core as shown in the following

Prm

—— i — .
/ N\ i

J
- 4l N p 43 R
d b
Vi 511:?"1 280 L
N

el s

Fig.2.1: Core type single-phase transformer
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2.1 Magnetic Flux

By connecting the primary winding to a sinusoidal voltage source, a
time-varying magnetic flux is developed in the windings. This flux is composed of
two components. One is called a leakage flux and the other is known as linkage
Sflux or magnetizing flux.

The path of the leakage flux is mostly in the air. In contrast, the path of the
linkage flux lies entirely in the magnetic core and links both primary and second-
ary windings. Due to the constant permeability of the air the effect of leakage flux

can be modeled as a constant inductance.

2.2  Equivalent Circuits

When dealing with transformers two different circuits should be consid-
ered. One is the electric equivalent circuit the other being the magnetic equivalent
circuit. Magnetic circuit usually consists of a magnetomotive force and some iron
segments in series or in parallel or both. These iron segments are characterized by
their magnetic reluctance which is the counterpart of electric resistance in an elec-
tric circuit. The electric circuit provides magnetomotive force to the magnetic cir-
cuit which in turn drives the magnetic flux in the iron core. When modeling a
transformer a major difficulty is the solution of the magnetic circuits due to the

non-linearity of core characteristics.
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2.3  Analysis of the Electric Equivalent Circuit
To simplify matters, let us consider the single-phase transformer shown in

Fig. 2.2 with open secondary.

Fig.2.2: Electric equivalent circuit of a single-phase transformer

The primary winding is connected to a sinusoidal voltage source. Apply-

ing KVL to the primary circuit yields:

d
V=R-i+L;- Z+N d—(tp"' 2.1

where:
R = resistance of the primary winding (the voltage source is assumed ideal.).
L, = leakage inductance of primary winding.

[ = primary current.
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N = number of turns of primary.
¢,, = magnetizing flux.
N - @,, is called the primary linkage flux and is denoted as A . The Eqn. 2.1 can

be written as:

. di  d\

;= R. .at _ da 2.2
V=R-i+L, dt+dt 2-2)
A is a nonlinear function of the applied mmf and in general is expressed as:

A = h(F) (2.3)

Where F is the total mmf applied to the core.

2.4  Analysis of the Magnetic Circuit

When current i flows into the primary winding, it produces an mmf equal
to F = N-i. This is the magnetomotive force which drives the magnetizing flux
in the iron core, the amount of this fux depends on two quantities, the applied mmf
and the magnetic reluctance of the core. Using the Ampere s Law. it is straight for-

ward to show that the magnetizing flux can be expressed as:

Q,=p F (24)

B

P =

Where R and p are magnetic reluctance and permanence of the iron core respec-
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tively and have the following expressions.

=L ::M 2.5
ﬁ p,'A b p L ("”D)

Where L. A and y are the length, cross section and permeability of the iron core.

Eqn. 2.4 is analogous to the Ohm’s Law. The following table illustrates the

analogy between electric and magnetic quantities.

Electric Quantity | Magnetic Quantity

Electromotive Magnetomotive
force force
Current Flux
Resistance Reluctance
Conductance Permeance
. =£
R m = 5

Fig.2.3: Analogy between Electric circuit and Magnetic circuit

Fig. 2.4 illustrates the duality between these two circuits based on the

above analogy.

10
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, "
+ < N

EM R v MM f
Y Y

(a) Electric Circuit (b) Magnetic Circuit
Fig.2.4: Duality between electric and magnetic circuit

The magnetic reluctance of the iron is not constant because iron is a non-
linear magnetic material, therefore it’s reluctance varies with the applied mmf or
the flux in the core. In other words the flux being produced in the core by the

applied mmf is a nonlinear function as expressed in Eqn. 2.3

2.5 Core Characteristics

The relation between the magnetizing flux and the applied mmf'in an iron

core is a nonlinear relationship due to saturation and hysteresis.

2.5.1 Saturation Effect

Suppose that the iron core of a single-phase transformer is initially demag-
netized and the primary winding is connected to a dc source. By slowly increasing
the current from zero to a finite value, the flux in the iron core builds up. For

lower values of the exciting current, the iron core exhibits small reluctance. result-

1"
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ing a large amount of flux in the iron core. At higher values of current the ferro-
magnetic medium exhibits very high reluctance, which results in a small increase

in the flux. This phenomenon is called magnetic saturation and as mentioned ear-

lier. it is a significant aspect of the core characteristics. The plotof (A-f) is
called either the Anhysteric curve or saturation curve. The saturation curve is a

single-value and monotonic curve and mathematically is expressed by Equation:

A =R . (2.6)

Flux linkage(Waber.iurns)

& & o o o o

> b o M » b
1

o
o
T

-0.5 0 0.5 1
mmf (Ampere.turns) x10*

1)
o
L

Fig.2.5: A typical saturation curve

The slope of this curve is equal to the incremental inductance of the pri-
mary winding. On the other hand this s/ope is also proportional to the incremental

permeance of the iron core [13]. This curve can be divided into two regions, the

12
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linear region and the saturation region. In the linear region, the iron core exhibits
the highest permeance, whereas in the saturation region, the iron core shows the
lowest permeance. The iron core can be thought as a system which takes the mmf

as its input, and outputs the flux as shown in Fig. 2.6.

_MI_L_.I the iron core | __flux

Fig.2.6: Viewing the iron core as a system

This system is nonlinear since its gain depends on its input.

2.5.2 Hysteresis Effect
When the flux in the iron core is reversed, the operating point in the
(A—f) plane follows a different trajectory. In other words, at any instant the
operating point in the (A —f) plane, depends not only on the magnitude of the
flux or mmf but also depends on the immediate past history of the flux variation.
This phenomenon is called Aysteresis. As a result of hysteresis the plot of A ver-
sus F is no longer single-valued as depicted in Fig. 2.7. When an unloaded trans-

former is at the steady-state operation, the (A —f) plotis a symmetric loop and

consists of two trajectories known as rising and falling trajectories

13
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hysteraesis loop

0.5
0.4

% 03 /__’,//

f;'. 0.2 / /

§, 0.1 ——Jfalli ec

s o

«

£-01 £

302 . \ .

= s / | rising trajegtory
0.4 "/’//

(4}

-0.
-1000 -500 0 500 1000
mmfdrop (Amp_turns)

Fig.2.7: A steady-state hysteresis loop for a 10 KVA commercial transformer

The area of the loop is proportional to the energy loss per cycle and this
energy is dissipated in the core as heat. When the transformer is operating under
the transient-state, the rising and falling trajectories are no longer symmetrical and
the (A -f) plane can get much more complicated.

Fig. 2.8 is an oscilloscope trace of flux versus current for a 10-KVA distri-
bution transformer core. [t clearly shows that at each point of flux reversal a new

rising trajectory is assumed.

14
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of] ™

Fig. 8. Minor loops with common upper limit (Oscilloscope traces).

Fig.2.8: Subtrajectories of a core characteristics under transient condition [14], p.2209

2.5.3 Eddy-Current Effect

Another source of loss in the iron core is the eddy-current. This loss is due

to the fact that circulating currents are induced in the iron core due to the

time-varying flux and these currents produce an IilzR loss in the iron called
eddy-current loss. Previous studies have revealed that eddy-currents are an almost
linear phenomenon and can be modeled as an equivalent current flowing into a
linear resistance in parallel with the primary or the secondary winding
[14][11][15]). The eddy-current effect broadens the steady-state hysteresis loop

(increases the area of the loop). Fig. 2.9 illustrates this effect for a 5-KVA distribu-

15
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tion single-phase transformer

0.2 Wh./div

0.2 A/div

Fig.2.9: 60-hertz hysteresis loop of a 5-KVA transformer

2.6 Modeling the Core Characteristics

[n modeling the core characteristics, three effects should be considered:

i The saturation effect

ii The hysteresis effect

iii The eddy- current effect

Among these quantities the saturation effect is the most important one. Itis

also easy to model due to being a single-valued function. The criteria for dealing

16
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with the other two remaining effects depend on the purpose of modeling the core
characteristic. In the previous chapter it was said that the purpose of this thesis is
to develop a computer program. This program should be capable of predicting the
magnetizing inrush current for a three-legged, three-phase, and a core type power
transformer for various winding connection schemes.

Even though modeling the hysteresis effect is the most difficult and chal-
lenging its effect is less significant for modern transformers with grain-oriented
silicon iron core. For these transformers, the eddy-current and hysteresis loss are
comparable in size[14].

Fig. 2.10 depicts the pure hysteresis loop for a modern power autotrans-
former and it is interesting evidence for the fact that hysteresis loss is negligible

for modern power transformers.

17
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a3 i a3 o o 1 3 1 s
MMF : Anger-Tems s10*

Figure 3: DC ém-MMF Loop for a 500 MVA
765/345/34.5 KV Single Phase Autotransformer

Fig.2.10: Pure hysteresis loop for a 500-MVA power autotransformer [16], pI918.

For the purpose of investigation of the magnetizing inrush current in
power transformers, the core characteristics can be adequately represented by the
saturation effect. In other words when dealing with magnetizing inrush current in
power transformers, the core characteristics can be represented by saturation
curve, similar to that shown in Fig. 2.5. When studying phenomena such as fer-
roresonance or subharmonic oscillations, it would not be a valid assumption to

consider only the saturation aspect of the core characteristics.

18
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2.7 Complete Solution for a Single-Phase Transformer
The electrical description of the single-phase transformer is formulated in

terms of Eqn. 2.2. The magnetic description is formulated in Eqn. 2.3 (saturation

curve). The term % in Eqn. 2.3 can be expressed in terms of the primary current.

Taking the derivative of both sides of Eqn. 2.3 with respect to time yields:

dh _ d\ dF dn _  dF .7
di _ dF dt dar P -
where
dh
= dr 2.
P IF 2.8)

is proportional to the permeance of the iron core. This permeance is equal to the
slope of the saturation curve and can be found either analytically or numerically at
any operating point by making use of Eqn. 2.3. Substituting Eqn. 2.6 back to the

Eqn. 2.2 yields:

di dF

V= R-i+L,-a—lt-+p-a—{ (2.9)

Considering the fact that the total applied mmfis F = N-i , Eqn. 2.7 will be:

V=rR-i+L, - Zsp.N.& (2.10)

dt dt

19
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Solving this equation for di yields:

dr

di 1 .

— = | ———— |- (V-R- 2.
dr (L,+N-p) (V-&-1 10

This equation is in standard form for numerical integration. At each com-
putation step using the initial value of current and permeance (recalling that per-
meance is a function of current) the next value of current is obtained. Then based
on the computed current at the previous stage. the new value for permeance and
accordingly the next value of current would be found and so on. Fig. 2.11 shows

this procedure.The time step must be sufficiently small.

in-!
— o | F-=
di I ) .
—_— = .—-—-V-R.
r (L,+N-p ( 0 .
L

Fig.2.11: One computational step in finding the current
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2.8 Remanent Flux

One of the initial conditions that affects the magnetizing inrush current is
the remanent flux in the iron core, the other one being the source phase angle at the
instant of energizing the transformer. Therefore any transformer model should take
the remanent flux into account as the initial condition of the magnetic state. This is
not straight -forward if the core characteristic model does not include hysteresis.
This problem can be circumvented by considering an additional temporary dc mmf’
which produces the initial remanent flux.

Suppose that the remanent flux is ¢, and we would want to know how
much dc-current can produce this flux. Using the saturation curve:
Ay = h(F}) where F, = N- i,
The above equation can be rearranged as:
Ay—h(N-ip) =0 (2.12)

The above is a nonlinear equation which can be easily solved for the current i, i.e:

iy = G—,)-h'l(ko) @2.13)

This much imposed initial current would produce the prescribed remanent flux.
After one computational time-step, the saturation curve reverts to a symmetrical

characteristic.
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Chapter 3

Three Phase Transformer

[n this chapter the three-phase core type transformer will be analyzed.
Since the purpose of the present study is computing the magnetizing inrush cur-
rent. it is assumed that the secondaries are unloaded and delta connected. Although
the basic principles apply to both a bank of three single-phase transformers and a
three-phase transformer, treating the three-phase transformer is much more com-
plicated. In the case of the bank of three transformers, the flux in each transformer
is solely a function of current of that transformer, while in the three-phase trans-
former. the flux in each core is a function of all currents in all windings due to the
interconnection of cores of different phases. The following figure shows a

three-phase core type transformer with two windings.
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secondary

primary

Fig. 3.1: Core type three-phase transformer

In the following, the electrical and magnetic equivalent circuit of the
unloaded. core type three-phase, 4-wire star / delta transformer will be discussed.
The complete solution for the above transformer will be presented by the end of

this chapter.

3.1 Electric Equivalent Circuit for 4-wire Star/Delta Transformer

In Fig. 3.2, the transformer is connected to a three-phase supply via four
wires. The secondary is connected in delta. The resistances r,, r, and r. in
series with the ideal voltage source represent the connection cable, the primary
winding, and the source resistance. The inductances L,, L, and L, are the

source. connection cable and primary leakage inductances. L is the secondary

leakage inductance of each winding and r; accounts for secondary resistances.
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Finally r, and L, represent the neutral return resistance and inductance.

Fig. 3.2: Star/delta connected transformer

Applying KVL to the above circuit yields four differential equations.

: Lo di, d,, .. . a
vV, = ra-zu+re~(1a+zb+lc)+La-Et- +Le--‘-i-;(la+£b+lc)+;1—;
. . di, d,. . . ., d
V, = "b"b"”'e‘(‘a“"b*’c)"'Lb'a; +L8-E(ta+tb+zc)+-d—t
(3.1
di
VC=rc-fc+re—(ia+ib+ic)+Lc-2;c+Le-%(ia+ib+ic)+Z—i"
: diy d\, d\, di
0-3-rs-zd+3-Ls-E +n-($ +3? +$)

Eqn. 3.1 can be written in matrix form.
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_ . di dA 29
V = R-i+L -‘E +C —d—t (J.-)
Where:
v, (r,+r,) r, r, 0 -I 00
V= v, R = r, (rp+r,) r, 0 c=1010
c re re (rc+re) 0 0 0 l
| 0] 0 0 0 (3-r,) nnn
x (L,+L) L, L, 0o | i |
2= k: [ - L, (L,+L,) L, 0 ;o |B
A L, L, (L.+L,) O i
E 0 0 0 (3-L iy

C is the coefficient matrix and n is the turn ratio of the windings. where

N
n= 172 . In Eqn. 3.2, the current vector i and the magnetic flux vector A. are the
1

two unknowns. Since the flux is a function of the current, only one of the two
variables is independent. This function is a property of the magnetic circuit as well
as the core saturation characteristics of the transformer under analysis.

The following approach presents a method of expressing the flux deriva-
tives in terms of current derivatives, incorporating the concept and a method of

determining the “P matrix". The approach will lead to solving Eqn. 3.2 for the cur-
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rent vector. This approach is based on the earlier works, mostly that of the Nakra

and Barton {13].

3.2 Magnetizing Flux as a Function of Total Mmfs

A three-phase transformer consists of three segments of iron namely /imbs
a. b and ¢ which are interconnected in a manner illustrated in Fig. 3.1. Two coils
are wound around each limb and constitute a winding set (usually referred to as
primary and secondary). Current flow in these coils provides an mmjfto the core of
that winding. Since the three limbs are interconnected, the applied mmf to each
limb drives the flux in all three limbs. In other words each of the mmf's contribute
to the flux in every segment of the core. As a result the flux in each core (expressed
in terms of primary linkage flux for convenience) is a function of the three ner
mmfs.

A, = h(F,F,F)

A, = hy(FF,, F.) (3.3)
A’c = h3(Fa’Fb’ Fc)

Fa =Nl’ia—N2'id

Fﬂ = Nl'ic-‘Nz’id

Where F,. F, and F_ are the net mmfs applied to limbs a, b and c respectively.
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N, and N, are the primary and secondary number of turns. Taking the derivative

of both sides of Eqn. 3.3 with regard to time, yields:

d\, 9\, dF, O\, dF, oA, dF,
dt " JF, & 'OoF, &t 'oF, dt
d\, 3\, dF, Ok, dF, A\, dF,
4t T 3F, 4 TOF, dt TOF. @
d\., o\, dF, 3\  dF, Ok dF,
dt T JF, d TIF, & ToF, dt
This can also be written in matrix form:
Y T T A
di dF, aF, IF ] |77
d\,| - |97, ok, dA,| _|dF,
dr aF, oF, OdF) |a
d\| |oa, oA, ar| |dF.
dr | |oF, OF, dF] {dr |
Or in a matrix notation,
dA _ p dF
T

where P stands for “P-matrix” and its elements are partial derivative.

(3-5)

(3.6)

(3.7)
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N, N,
aF, aF, dF,
po | A, A, 3.8)

3F, oF, oF

a o

dA dA dA

c C [

oF, dF, dF

a

Eqn. 3.4 can also be arranged as:

Fl [N O 0-Ny| |F
I
Fl=|0N 0-N)|-|"
{
F, 0 0 N, -N,y| |°€
d
- - (3.9)
ia
. N, 0 0 —N,
F=M-i i=|" M=|o0oN, 0-n,
‘e 0 0 N, -N,
d
The following is the result of combining Eqn. 3.7 and Eqn. 3.9:
dd _ p p. & (3.10)

dt ~ dt
Eqn. 3.10 leads the way to solve the three-phase transformer problem. It
relates the flux and current derivatives to each other. This is exactly what we were

looking for to solve the Eqn. 3.2. Combining Eqn. 3.2 and Eqn. 3.10 results in:
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Cpiiy i (p A di
V=R-i+L-3+C (PMdJ

@3.11)
V=R-i+(L+C-P-M)-%
d:
The last equation can be rearranged as:
Z-’;=(L+c.p~M)"-(V-x-i) (.12)

This matrix equation is in standard form for integration. The fourth order
Runge-Kutta method is employed to numerically solve this system of equations.
This method is known to be the most accurate one for the solution of differential

equations.

33 Geometry of the Three Phase Transformer’s Core

A core type transformer consists of three cores, each carrying a set of phase
windings, these cores are interconnected in a manner shown in Fig. 3.3. Itis
observed that the center limb is shorter than the outer limbs. Therefore under the
same magnetic state (i.e. the same flux density), the center limb exhibits less reluc-
tance than the outer ones. This is implying that the steady-state peak value of the
three magnetizing currents will not be the same even if the supply is balanced

(which it usually is). Hence, the asymmetry in the core geometry leads to asymme-




Chapter 3 Three-phase transformer \.Farzadfar

try in the magnetizing currents. In fact, the peak value of the center limb’s current
is smaller than those of the outer limbs. In this regard, there is a difference

between the three-phase and the bank of three single-phase transformers.

Fig. 3.3: Geometry of the three-phase core type transformer

Before analyzing the magnetic circuit. the followings need to be consid-

ered.

[i] Each core by itself is a magnetic element and like any other
circuit element, it is characterized by a functional relation
between its input and the output which is usually called the
characteristic curve. Any characteristic curve is a physical
property of the element. The characteristic curve for an iron
core can be assumed as the (A - f) curve. (discussed in the

preceding chapter).
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[ii]  Like any other, a magnetic circuit consists of both active
and passive elements. The active elements are the net

applied mmfs. (this is the input.)

[iii] While the characteristic curve describes an individual ele-

ment, the KVL and KCL describe the topology of the circuit.

[ivl  Once the characteristic, the circuit topology, and the input

(inputs) are given, the circuit can be solved.

Fig. 3.4 demonstrates the similarities between a magnetic circuit element and its
electric counterpart. v represents the voltage drop across the resistor, while “f™

represents the mmyf drop across the iron core.
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Circuit element Characteristic Slope of the
curve curve
is

—\v ‘_) + > R-l

Resistor (Conductance)

?
—{ R
-\f_-) + —p m—l

(Permeance)

an iron core

Fig. 3.4: Comparison between a magnetic element (iron core) and an electric element(resistor)

34 Magnetic Equivalent Circuit of the Three Phase Transformer
As one of the computational steps toward solving the three-phase trans-
former. it is necessary to find the magnetizing flux in each limb for a given set of

mmfs. This has to be done by solving the magnetic circuit.
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F, I Magnetic Circuit ‘ . 9,

Fig. 3.5: Input and ouitput of the magnetic circuit

The magnetic equivalent circuit of a three-phase transformer is shown
below. It consists of three nonlinear elements, one linear magnetic element. and
three mmfs. The linear element is the zero-sequence flux path in the air. This

magnetic equivalent circuit is the same for all possible winding connection

schemes.
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Fig. 3.6: the equivalent magnetic circuit of the three-phase core type transformer

F,, F, and F_ are the net or effective mmf applied by each winding to the
corresponding core, and are given by Eqn. 3.9. f_, f, and f_. are the mmf drop
across each limb is analogous to the voltage drop across the resistor. P,,, P, and
P_ are the permeances of the corresponding cores.

Under balanced voltage conditions, the sum of the three magnetizing
fluxes (i.e. @,, ¢, and@,) is zero. However, under unbalanced operations, the
sum is no longer zero. The net sum will emerge out of the transformer and flow

into the many continuously distributed paths in the air between the upper and

lower part of the transformer. To simplify calculations, it is assumed that these
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paths are concentrated around the center limb and its permeance is designated as
by P, . The zero-sequence permeance is constant since the permeability of the air
is constant.
Applying KCL to node “b” of the circuit in Fig. 3.6 the following is
obtained:
A +A +A . +A; =0 (3.13)
Applying KVL to the three loops abe —e’b’a’. be—e’b’ and che—e’b’c’

results in the following:

F,=fo~Sfo
Fy=f,~fo (3.14)
Fc = fc_fO

The mmf drop across the zero-sequence path is a linear function of the flux; there-

fore:

fr = =2 (3.15)

Combining the above with the two previous equations we get:
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F =fa+i~(la+lb+l¢)
Po

a

F, =fb+;)l—‘(}.a+kb+kc) (3.16)
0

F =j;,+i-(7\.a+lb+kc)
Po

Recall that, A, A, A_ are characteristics of the corresponding cores which are

generally expressed as (nonlinear) functions of the mmf drops.

A‘a = hl(fa)
A, = hi(fy) Q3.17
A= h(f)

Putting Eqn. 3.16 and Eqn. 3.17 together we’ll get:
1
HI(fa’fb’fc’ Fa’p()) = fa +; ° [h[(fa) +h2(fb) +h3(fg)] '—Fa = 0
0

Hyf o forfon Foo Do) = fi+ ;’; Wy, +holFy) + iy (F)] —F, = 0 (3.18)

i
S

H.i’(fa’fb’fc’ Fa’PO) = fc'*';% ' [hl(fa)+h2(fb)+h3(fc)] “FC

This system of non-linear equation is in standard form for solving numeri-
cally for the three unknowns (f,,, f, and f,). Back substituting of these mm/

drops into the Eqn. 3.17 yields the fluxes.

The Newton-Raphson method was employed to solve the above set of non-linear

equations.
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3.5 Determination of the P-Matrix

Recall that the currents are found by numerically integrating the Eqn. 3.12.
[n order to do this, at each computational step the P-Matrix should be evaluated
first. The P-Matrix is defined by Eqn. 3.8. The diagonal elements of this matrix are
the incremental inductances of the primary windings (self inductance), whereas the
off diagonal elements represent the incremental mutual inductances, between

windings. [n order to evaluate this matrix, both sides of Eqn. 3.16 have to be dif-

ferentiated with regard to F,,, F, and F_. This would produce nine equations.

After significant algebraic manipulation, the nine unknowns (the nine elements of
the P-matix) can be obtained. The detailed derivation of the P-Matrix can be found

in Appendix A. The result is as follows:

Po-(Py+p.+pg) =Py Pp) —(Pq-P.)
(P, Pp) Py (P.+P,+Pg) =Py -P.)
- =Py P.) —(Py-P.) P (PatPy+Po)|  (3.19)
(py+Pp+P.+Pg)

oA
where p; is the permeance of the core i, (i = a, b, ¢) and is defined as:p; = !

9

where it is found directly by differentiating the core characteristics.
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3.5.1 Bank of Three Single Phase Transformers

A bank of three single-phase transformers is a special case of the
three-phase transformer. Since the magnetic circuits of the three phases are com-
petely separated from one another, the P-Matrix consists of only the diagonal ele-
ments. [n other words. there is no mutual inductances between the primary
windings. When solving a bank of three-single-phase transformers, it is only
required to replace the permeance of each limb with that of each transformer core.
and to set the off-diagonal elements in the p-Matrix along with the zero-sequence

permeance to zero as shown below.

P=lo 5 o0 (3.20)

3.6 The Diagram of Solution Procedures

It is useful to review the whole procedure of solving the three-phase trans-
former in a block diagram. This is shown in block diagram in Fig. 3.7. Details of
the MatLab program are given in appendix E. [n particular, the 4th and 5th order
Runge-Kutta integration routine with an adaptive time-step in the order of micro

second is used.
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P Magnetic Circuit
i=M-F b > Solver Routine
c

L

/o

ﬁ T _lxa A, | AL
A, = hi(f)) T ¥

Tests on the

—P)

Transformer dia
;\.2 = h,(f 2) df a
v —
Fitting Curve |- r7‘3 = - » 4,
to Mag. Data > dh,
—pho =Po Sy ar.

JP a P b 14 c

L+ DR

P .
P-Matrix > z—:z(L+C-P'M)_1-(V—R-i) —>

N
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Fig. 3.7: One computation step towards solving the three-phase transformer
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Chapter 4

Electric and Magnetic Parameters
Measurement

The transformer under test was a /0-KVA, 120 V/600 V three-limb core
type which was provided by the Department of Electrical Engineering at the Uni-
versity of Manitoba. The measurement procedures covered both electrical and
magnetic parameters. Electrical parameters include the winding resistances and
leakage-inductances. Magnetic parameters are the (A - f) curves for the three

limbs and the zero-sequence permeance.

4.1 Electrical Parameters of the Three Phase Transformer

The copper resistance was measured by applying a dc-voltage and record-
ing the current in each coil. Since the values agreed within +/ %, they were aver-
aged for the primary winding resistances and for the secondary winding

resistances. In measuring the leakage inductances the conventional short circuit
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test was carried out by applying a 60-Hz low voltage to the high-voitage side of
the transformer. Also it was assumed that the per-unit leakage inductances of pri-
mary and secondary of each winding were the same. This is a valid assumption for

a well designed transformer [17].

4.1.1 Source Impedance

[t was assumed that the three-phase source was ideal, since the impedance
of the cables connecting the transformer to the source was found to be negligi-
bie. Therefore the only impedance that will appear between the ideal source and
the transformer will be the impedance of the thyristor-controlled switch. Fig. 4.1

shows the measured electrical parameters for this transformer.

. Leakage
Resistance .
inductance of turns
Q) o
primary 0.11 35%10”" 75
secondary | 5 73 87410~ 375 J
source 0 1 0 - I

Fig. 4.1: Electrical parameters of the tested transformer
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4.2 Measurement of the Core Characteristic

The magnetic characteristic of each core is the functional relation between
the flux and the mmf drop across it. In Chapter 2 it was concluded that when mod-
eling the transformer for simulating the inrush current it was adequate to represent
the core characteristics by the saturation curve. The procedure of obtaining the sat-
uration curve consisted of exciting one of the coils which are wound around the
core by a slow-varying dc-current, and then measuring the flux developed in that
core. The flux measurement can be done by integrating the induced voltage across
a coil (usually called the search coil) which is linked by the magnetic flux. then it
is multiplied by the turn ratio in order to get the linkage flux of the primary.

[n the test. the secondary winding was chosen as the search coil. Also it
was found more reliable to integrate the induced voltage by software rather than
hardware. The hardware integration incorporates operational amplifiers which are

normally associated with the drift problem.

4.3 Core Characteristics of a Three Phase Transformer

Referring to Fig. 3.3, the core of a three-phase transformer consists of three
branches. The outer limbs are identical but the center limb is shorter. [t is assumed
that these three cores are made of the same magnetic material and have the same

uniform cross-sections. In other words, the per-unit characteristic is the same for
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all three branches. Suppose that this per-unit characteristic is given as:
A= h(H @.1)
Then the characteristics of each core is found by multiplying this per-unit

mmf drop by the length of that core in the above equation.

A, = h(f-1)
A, = h(f-1}) (4.2)
A, = h(f-1)

Where [, [, and [, are the length of the three cores (mean path values.) Eqn. 4.2

implies that the core characteristic measurement has to be done for only one of the

branches. but in doing this two problems emerge:
i None of these branches is detachable

ii Even if they were detachable they would not be suitable for

the test since the flux path would not be limited to the iron

core. Fig. 4.2 illustrates this point.
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ﬂlD.’ in the r=——=F%= <
iron path = - 2:\\ \ o in the
. t9y  air path
| /5/,/
o :E 'E,/

Fig. 4.2: flux path for an excited iron segment

This figure clearly shows that in order to obtain the magnetic characteristic
of an iron, the iron must constitute a closed path, otherwise the magnetic character-
istic of the air will dominate. Now, let’s consider the three-phase transformer
shown in Fig. 3.1. Suppose that limb “a” is excited by applying current to its pri-
mary winding. The flux in this limb will not follow a single closed path, rather it
branches out between the other two limbs. In order to establish a single closed path
either the center limb or the right most limb should be eliminated. Since it is
impossible to do this physically, one has to force the flux in one of these two limbs
to zero. As shown in Fig. 4.3 applying two equal and opposite mmf's to the outer

limbs will force the flux in the center limb equal zero.
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Fig. 4.3: Eliminating the effect of center limb

In practice the two outer limbs might not be perfectly identical. and hence
the flux in the center limb might be slightly larger than zero. In this case the pri-
mary of the center limb can be short circuited. Since the winding resistance is very
small. the inductive component of the induced current will dowinate 2nd estab-
lishes a flux in the center limb that a/most equals and opposite to the original

non-zero one. The following figure illustrates this point.
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(a) Impact of outer limbs on the center limb (b) Phasor diagrams
Fig. 4.4: Analysis of the induced current in the center limb when it is short circuited

In part (a) of Fig. 4.4 the left circuit is an equivalent circuit of the outer
limbs and the right one is the center limb when its primary is short circuited. When

the outer limbs are not perfectly identical then the net flux driven in the center limb
(@, ) would be slightly larger than zero. It is hoped that by shorting the primary

terminals of the center limb. an opposing flux would be developed in the center
limb which would counterbalance the non-zero flux. As shown in the phasor dia-
gram this is true only if the winding resistance of the center limb is zero. The
induced current has two components, one is the resistive current and the other the
inductive component. If saturation is not encountered (in the center limb) then due
to having relatively large inductance, the inductive component of the induced cur-
rent will dominate and this will establish a counter flux which almost cancels out

the original non-zero flux in the center limb. If saturation is encountered then the
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inductive component of the current no longer dominates and the developed flux
cannot completely oppose the non-zero one.
Once the combined magnetic characteristic is found for the outer limbs.

the characteristic for any of the three limbs can be found by using Eqn. 4.2.

4.4 Measurement Procedures

Experimental setup used for measuring the core characteristics of the
three-phase transformer is in Fig. 4.4 the primary windings of phase “a " and phase
“c” were connected in series so that their corresponding flux in the outer limbs aid
and in the center limb cancel each other. A variable dc voltage source used to drive
current into the primaries in series. The secondaries of the outer limbs were also
connected in series to serve as a search coil. A two-channel digital data acquisition
equipment was used to digitize and store the voltage and current data in a file.
Later on using software the data of the sampled voltage was appropriately scaled
and integrated in order to yield the flux. Since the time interval between two subse-
quent samples was very small, the trapezoidal rule was used for integration. A
sampling resistor of value of 1QQ was used to sample the current. This current was
multiplied by the number of primary turns to get the mmf drop. By varying the dc
source the current was increased from zero to +30 amperes and then decreased

back to zero.
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F———— - — 1
Ll L 11 v
* Ky S 5 Digital .
L data acqui-
#:] sition
y2v
| M —— — — 4
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Rsampling 2
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- +
Variable ’% IV(];
dc supply
vi vnl a
Digital ]
data acqui- N, n
Sition i
* S * Ay

Fig. 4.5: Experimental setup for obtaining the core characteristics of the three-phase
transformer

Fig. 4.6 shows the plot of the actual sampled current and induced voltage

versus time for the above setup.
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Fig. 4.6: Sampled current and search coil voltage for setup in Fig. 4.5

As mentioned earlier, flux measurement was done by numerically integrat-

ing the induced voltage across the secondary windings. This flux (in terms of the
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primary linkage flux) is plotted in Fig. 4.7 And finally this flux is plotted as

(=] o
[3,) o
g

(=]
»

Fiux linkage (Weber.turns)
o Q
n w

o
-

e

o 0.2 04 0.6 0.8 1
Time {sec.)

Fig. 4.7: Flux measurement for setup in Fig. 4.5

function of the applied mmf in Fig. 4.8.
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Fig. 4.8: Flux-mmf plot for each outer limbs in Fig. 4.5 setup
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This is half of the dc-hysteresis loop for outer limbs. Due to symmetry the
other half can be easily found just by changing the sign of both flux and mmf drop.

This plot reveals that the residual flux s @,,, = %2 = 3.33x 107 Weber.

4.5 60-Hz. AC Hysteresis Loop

Using the same setup as illustrated in Fig. 4.5 and applying the winding’s
rated ac voltage, measurement for the steady-state hysteresis loop was carried out.
The loop can give some idea about the size of core losses due to hysteresis and

eddy currents. Fig. 4.9 shows the steady-state hysteresis loop for limb ~a”.

hysteresis loop for limb “a*

0.5
0.4F
03
g.2r
0.arfp

Flux {Weber.luins)
(=]

01F
0.2r
031
-04r

— "

05 : - —
-1s -10 -5 0 5 10 15

Current (Ampere)

Fig. 4.9: 60-Hertz steady-state hysteresis loap for outer limbs

The area of the loop accounts for the core loss per cycle. This area was

51



Chapter 4

Measurements I.Farzadfar

Joule

. In other words the total power
cycle

numerically calculated and it was almost /

loss in this core was about 60 Watts . Since the voitage of each phase is /20 ¥, this
much power accounts for an equivalent current of //2 4. This current is less than 5
percent of the steady-state magnetizing current and less than 0.5 percent of the first
peak of the magnetization inrush current, therefore it is a reasonable approxima-

tion to ignore the core losses and represent the core characteristic by only the satu-
ration curve. For modern power transformers, as it was discussed in chapter 2. this

approximation is definitely valid since the area of the loop is almost zero.

4.6 Curve Fitting

Fig. 4.8 depicts the core characteristic experimentally obtained for limbs
“a” and “c”. This curve is almost a single-valued one. An eight-piece curve was
experimentally fitted to this magnetic data in order to serve as the expression for
the magnetic characteristic. For the center limb the same equation was used the
only difference being that the mmf drop was multiplied by the ratio of center limb
length to outer [imb length. The following expression shows the equation for the

fitted curve for the outer limbs.
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Fig. 4.10 shows the plot of both the actual data and the plot of the fitted

curve superimposed over each other. The agreement between them is good.

Fig. 4.10: plot of fitted curve superimposed on the plot of actual magnetic data for limb “a”
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4.7 Zero-Sequence Permeance Measurement

Under steady-state operation, the sum of magnetizing fluxes in the three
limbs is zero. However in the transient-state, this sum is no longer zero. This
non-zero flux which emerges out and flows into the air surrounding the trans-
former is usually called the zero-sequence flux. Although the zero-sequence path
is continuously distributed between the upper and lower parts of the transformer, it

is assumed that this flux is concentrated around the single path between the upper

and lower nodes (b, b ). This assumption will greatly simplify the magnetic circuit
and decreases the number of related equations. It might introduce a slight discrep-
ancy between the computed value and the measured value of currents. Since the
permeability of air is constant, the zero-sequence flix is a linear function of the

applied mmf.

4.7.1 Experimental Setup

In order to create the zero-sequence flux, the primary windings of the three
limbs are connected in series in a manner that the three applied mmfs were of the
same polarity and magnitude as shown in Fig. 4.11. This would force the magne-
tizing flux in the three limbs to have the same direction. At the center node these

fluxes add up, emerging out of the transformer and flowing into the surrounding
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air. The secondary winding of the center limb was chosen to serve as a search coil.
The current in the primary circuit was slowly increased form zero to almost 30

Amperes. then decreased back to zero.

Digital

S - data acquisition
Channel 2

Variable
dc-supply

Digital
data acquisi-
tion

Fig. 4.11: Setup for determining the zero-sequence permeance

The time-varying flux in the center limb develops a voltage across its sec-

ondary winding. This voltage and the primary current was digitally recorded.
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These data are plotted in Fig. 4.12.
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(c) measured flux in the center limb in the setup of Fig. 4.11

Fig. 4.12: Plot of magnetic data recorded in the setup of Fig. 4.11
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According to Fig. 4.12 the flux in the center limb is very similar to the
applied mmf. This implies that the derived flux and the applied mmf are propor-
tional to each other. In other words the center limb and consequently the other
limbs operate in the linear region of their characteristics. This is true since the
maximum developed flux in the center limb (part (c)) is less than 0.09 weber.turns.
This corresponds to the region of linear operations in the saturation curve (see Fig.

4.8 or Fig. 4.10. The following plot verifies this point.

2000+

1500

1000 |

Applied mmf (Ampeare.lurns)

500

-8.02 "} 0.02 0.04 0.06 0.08 0.1
Flux in the center limb (Weber.turns)

Fig. 4.13: Plot of applied mmf vs. the center limb’s flux

The plot is almost identical to a straight line with the following expression:

F = 28000 -}, 4.3)
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4.7.2 Computation Part
Using the measured linkage flux (A, ) and the applied mmf (F) in the

setup of Fig. 4.11, it is possible to determine the zero-sequence permeance as it
follows. The magnetic circuit of the three-phase transformer is redrawn in Fig.
4.14 for convenience. Since the three applied mmfs are identical in magnitude and

direction. they behave as a single mmf which drives the flux in the air.

Fig. 4.14: Magnetic circuit of the core-type three-phase transformer

Referring to Fig. 4.14 and considering the fact that the three externally

applied mmf’s are equal, it is concluded that the three mmf drops must be equal.
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Writing KVL for loop be —e’b” and KCL for node b yields:

F-f, =
(4.4)
Ap+A, +A,+A. =0
Since the characteristic of the air is linear:
Ay
fo=— (4.5)
0 Po
Combining Eqn. 4.4 and Eqn. 4.5:
(A +A,+4))
Po= —F—F— (4.6)
0 F - fb

The mmf drop across the center limb (f}, ) is much smaller than the applied mmf

(F). Therefore Eqn. 4.6 can be written as:

_ (Mg + A, +A)

Po F (4-7)

F has already been found as a linear function of A, (see Eqn. 4.3) and so the

above equation can be re-written as:

(Ag+ A, +A))
Po = 280001, (48)
All of the three limbs operating in the linear region are made of the same material

and carry the same mmf. Therefore, it is concluded that the flux in each limb must

be inversely proportional to the length of each limb, so:
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A A l
2= =5 (4.9)
P P
l, R _
But T (the ratio of mean path values) was measured as 0.33

a
This means that:

A'a = xc = 0.35 * lb (4.[0)
Substituting this equation back into Eqn. 4.8 results in:

(0.35 - Ay + A, +0.35-1,) -5 Wb
Py = 330007, = 6.07x 107 - == 4.11)

The same result was obtained when the Eqn. 4.6 and the non-linear equa-

tion f,(A,) —f,(A,) = O were numerically solved.
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Chapter 5

Comparison of the Actual
and
Computed Inrush Currents

The only way to judge the validity of a model is to compare the experimen-
tal results and the predicted outcomes of the model under the given conditions. In
this chapter the actual inrush current and the computed ones will be compared for
different connection schemes and Initial conditions. The initial condition for each
case of comparison consists of the switch-in angle of the supply voltage and the
remanent flix in each limb of the transformer. In Chapter 1 it was mentioned that a
three-phase thyristor switch was constructed to control the switch-in angle on the
voltage cycle. This switch energizes the transformer consistently at the instant of
positive-going and zero-crossing of phase “a”. Fig. 5.1 shows the voltage of phase

“a™ as well as the voltage applied to transformer at the instant of which the switch

is turned on.
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Fig. 5.1: The instant of switching on the voltage cycle

The initial flux for each limb and case was established as listed:

(iii) A variable three-phase supply was connected to the trans-

former and set to the rated voltage.

(iv)  The transformer limbs were demagnetized by gradually

reducing the voltage down to zero.
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v) Primaries of the outer limbs were connected in series with
regard to appropriate polarity such that when connected to a
dc-source, the resulting fluxes were added up in the center
limb. The dc-current was raised to 30 Amperes. As a result

the center limb was magnetically saturated.

Computations showed that the first peak of inrush current for the trans-
former under test can reach as high as 500 Amperes. Three 600 amperes (rms) CTs
where chosen for measuring the inrush currents. Direct measurements revealed
that the CTs are not completely faithful to the current waveforms simply because
they are ac-coupling devices. In other words they can’t detect the decaying
dc-component of the inrush current. It is for this reason that the idea of using CT's
was almost disregarded. Three resistors with the value of /€ were connected in
series with the primary windings to serve as current samplers. Smaller values
could not be used because of excessive noise at low currents. The side effect of
using the resistors was that they reduce the peak of inrush current down to almost
25 percent of its actual value. In the following, the plot of actual currents and that
of the computed currents for different windings connection schemes is depicted. [n

the following plots all the currents actually start from zero.
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5.1 4-Wire Star/Star (Without Secondaries Loading.)

v, 3-phase
—-_.—-@-— Thyristor
V. switch

Fig. 5.2: Setup for sampling the inrush currents for the case of 4-wire star/star
Supply voltages:
V, = 120-J2-sin(2r- 60 -t +6,)

v, = 120-ﬁ-sin(21t-60-t+90—2—;—t)

<
]

120-./§-sin(21t-60't+00—£3—“)

Initial Conditions: 6, =0
Ay =02 (Wb - turns)
lbo = -04 (Wg - turﬂS)

Ao =02 (Wb - turns)
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Fig. 5.3: Comparison of the actual and computed inrush currents for 4-wire star/star

NOTE: All currents artificially shifted.
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5.2  4-Wire Star/Closed Delta (Without Secondaries Loading.)

3-phase
Thyristor

switch

V(l
Vh
VL

Fig. 5.4: Setup for sampling the inrush currents for the case of 4-wire star/closed delta

Supply Voltages:
V, = 120- J2 -sin(2x- 60 - 1 +6,)

v, = 120~,,/§-sin(21t-60-t+90-2—_;5)

V. = 120-J§-sin(21t-60vt+90—4%t)

Initial Conditions: 8, =0
Ay =02 (Wb - turns)
Ay = ~0.4 (Wb - turns)

Ao=02 (Wb - turns)
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Fig. 5.5: Comparison of actual and computed inrush currents for 4-wire star/closed delta

NOTE: All

currents artificially shifted.
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5.3  Star/Star (Without Secondaries Loading.)

Vu

v, 3-phase S
_5_@_‘ Thyristor -

v, switch s

Fig. 5.6: Setup for sampling the inrush currents for the case of star/star
Supply Voltages:
V, = [20- 2 -sin(2n- 60 -t +6))
V, = 120- /3- sin(21t—60— t+90—2—;—t)
4-r

V. = 120-~/§~sin(21t-60~t+90-——3—')

[nitial Conditions: 0, =0
Ay =02 (Wb - turns)
Ay = 0.4 (Wb - turns)

Ao =02 (Wb - turns)
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(b) Computed inrush currents

Fig. 5.7: Comparison of actual and computed inrush current for star/star

NOTE: All currents artificially shifted.
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5.4 Star/Closed-Delta (Without Secondaries Loading.)

v, 3-phase
_—T—-@— Thyristor
V. switch

Fig. 5.8: Setup for sampling the inrush currents for the case of star/closed delta

Supply Voltages:

V, = 120- J2 -sin(2R - 60 - t + 8))

=
I

120-J§—sin(21c-60-t+90—2%t)

V.=120-.2- sin(2n~60- t+90—4%)
[nitial Conditions: 6, =0
Ay =02 (Wb - turns)

A.bo = 0 (Wﬁ’turns)

Ao = -0.2 (Wb - turns)
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(b) Computed inrush currents

Fig. 5.9: Comparison of actual and computed inrush currents for star/closed delta

NOTE: All currents artificially shifted.

[al



Chapter 5

Comparison I.Farzadfar

5.5 4-Wire Star/Star (Steady-State, Without Secondaries Loading.)
This case compares the actual magnetizing current and the computed one for the

steady -state operation of the transformer.

-
v, 3-phase
H: :)__ Thyristor
V. switch
I

Fig. 5.10: Setup for sampling the magnetizing currents for the case of 4-wire star/star

Supply Veltages:
V, = 120- J2-sin(2r-60 -t +6,)
V, = 120- J2 - si 2.n
p, = 120 - J2 - sin 21c'60~t+90--—3—

v, = 120-./§-sin(21t-60-t+90—4%[)
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Fig. 5.11: Comparison of actual and computed magnetizing currents for 4-wire star/star

NOTE: All currents artificially shifted.
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Chapter 6

Summary & Conclusions

A detailed mathematical model for computing the magnetizing inrush cur-
rent fora three-phase core type transformer has been developed. The model takes
the nonlinearity and the saturation aspect of the core characteristic into account. [t
can be applied to any single-phase or three-phase core type power transformer.
Provided that the core characteristics of each limb in terms of the saturation curve
and the zero-sequence permeance of the transformer, and the electrical parameters
are accurately determined. This model is satisfactorily capable of predicting the
inrush current for cases of 4-wire star/delta and star/delta with floating null phase
connection schemes for a 10-KVA commercial transformer. The model also con-
siders the initial conditions which would be the initial phase on the voltage cycle
and the remanent flux in each limb. The basic idea of how to analyze a single
phase transformer was discussed in Chapter 1. The idea was based on dividing the

task into the electric equivalent and the magnetic circuit. A complete solution to a
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single-phase transformer was presented at the end.

6.1 Summary

The following list summarizes the work presented through the course of

this project:

()

(if)

(iii)

A detailed treatment of the single-phase transformer includ-
ing analysis of the magnetic and electric equivalent circuits.
as well as discussion on the different aspects of core charac-

teristics and core modeling.

A thorough discussion of the three-phase core type trans-
former with the star/delta phase connections. The discussion
included analysis of magnetic circuit. The relatively compli-
cated magnetic circuit was broken down into three non-lin-
ear circuit elements. This approach lead the way to relate
the derivatives of flux vectors to those of current vectors.
The complete solution for the three-phase transformer was

presented at the end of chapter 3.

A method to determine the permeance of the
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zero-sequence path was discussed in detail.

(iv)  Various tests on the 10-KVA core type three-phase trans-

former were carried out in order to determine:

* The core characteristics for each of the three limbs.

» The zero-sequence path permeance.

» Recording the inrush currents for various phase connec-
tion schemes and initial remanent flux in order to be

compared with the computed ones.

(v) Design and construction of a three-phase thyristor switch
capable of consistently energizing the three-phase trans-

former at the instant of zero-crossing and positive-going.

(vi)  Implementation of the transformer model by developing a
computer program written in MatLab Language in terms of

M-files and computing the inrush currents for different situ-

ations.
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6.2 Conclusions

The comparison between the actual inrush currents and computed currents
show that:

(a) - There is a good agreement between the actual currents and the
computed ones in case of a 4-wire star/delta configuration.

(b) - There is a reasonable agreement between the actual currents
and the computed ones in case of the star/delta configuration.

(c) - The resemblance between the actual and computed current
wave forms in the steady-state operations is good but not identi-
cal. The peak value of the computed currents is however a bit
smaller than that of the actual currents. The discrepancy is due
to the total core losses (including the eddy current and hystere-
sis) which was completely ignored in the model.

(d) - For the higher values of currents the agreement between the
actual currents and the computed currents is not expected to be
as good as at lower current levels. This is because not enough
magnetizing current was used (30 Amperes) when obtaining
the saturation curve. The peak of inrush is much higher than 30

Amperes. The saturation curve was only obtained for maxi-
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rate as possible.

mum magnetizing current of 30 Amperes. The saturation curve
was extrapolated beyond this value. It is a known fact that in a
deep saturation a small deviation in the slope results in a large

deviation in the current.

(e) - The assumption of the zero-sequence path concentrated around

the center limb is an approximation, so it is not completely
accurate. A part of the accuracy was compromised to simplify
and reduce the number of equations involved in the magnetic

circuit.

(f) - Direct measurement and computation of inrush current

revealed that the switching angle on the voltage cycle has a
larger effect on the magnitude of the inrush current than the

remanent flux.

Given the saturation curve, the electrical parameters of the transformer it is
possible to solve the problem of inrush current for a three-phase transformer. [t is

critical to determine the saturation curve in the region of deep saturation as accu-
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APPENDIX-A

Determination of P-Matrix

[n chapter 3 it was discussed that by taking derivative of both sides of Eqn.
3.16 the elements of P-matrix can be evaluated, for convenience this equation is
reproduced here.

F,=f+L (0 +h,+1)
Po

F, =f,,+;’--(xa+x,,+kc) (A1)
0

F. =fc+—l—-(la+lb+lc)
Po

Taking derivative of both sides three times with respectto F,, F, and F_ pro-

duces nine equations as follows.
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OF, ¥, | [0, ak, A
3F, = 3F, T p, |aF, T 3F, " oF,

aF, o, 1 [oh, oh, A

3F, = 3F, ' p, |dF, oF, oF,

aF. of. 1 [, oA, oA,
9F, = 3F, ' p, |3F,  oF, ' 3F,

3F, o, 1 [, ar, oA,

aF, = 3F, ' p, |3F, oF, dF,

9F, o, 1 [, A, O]

jull} A2
3F, ~ 9F, py |3F, OF, oF, A-2)

aF, . | [oh, oA, oA
3F, ~ 9F,  p, |3F, 9F, oF,

9F, o, | [, oA, O,
JF. = 3F, " p, |3F, T 3F, " 3F,

OF, o, 1 [, an, 3]
3F. = 3F. T p, |3F.TSF. T oF.

OF. o 1 [on, or, oA,
aF. = 3F. ' p, |3F. 3F. " 3F,
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Using chain rule,

¥, o, A,
dF, ~ di, oF,

and considering the following identities:

dF; -
arj
d i g
a.n a—I‘-J: - L3
S _ |
andalso —a—f';'—;;

then Eqn. A.2 is rearranged as:

where m.n=a,b.c

ifi =j

ifi#j

where m =a, b. ¢
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Py 1

a

a

a

This again can be simplified as following.

o, A,

dA, |

'aF JF,

oA,

BF

oA, |

aF aF

o,

BF

ar, |

'aF JF,

(07, ax

aF

ax

[, o,

dA. |

po |9F, *oF, an

A, A,

aA, ]

po |9F, *oF, ar,,

o, ah,

dA.

'|3F, " aF, ap,,

'aF JF.

o, A,

BF

ar, ]

’aF oF,

o, Ak,

BF

oA,

'aF JF,

aF

(A3)
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1 ar, 9, Ok,
(+ )8F+3F aF, ~ Po

8_7\,0_ (1+ )ax,, dA, -0
JF, 3F, Y oF,
an
(A4)
oA, oA, A
(“ ) an+aF,, a7, = °

dA, [ po) A, A,

aF, *\' *p,) aF, T aF, = Po
A, o, o\ oA,

) an, o, N _
(‘“ )aF *3F.T3F.
N, (, M, M _
(15 st ar
an, A, poY A,
aF. " aF. (1 —,,)'a—zi""’

These three sets of equations can be written in matrix form.
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- 7 [
Po -2
(1 +;&) 1 1 aFa
p I Po
I (1 +-‘l) I =19
pa dF,
0
i I (1 + —’-’2) .
i paj \9F
L 4
[ i -87\. ]
Po a
I (1 +£’2) ;|- = |, (A3)
pa JF, 0
I I (1 + @) A |
A pa _an_
- 1 o,
(1 + @) I i SF
pa c
oA 0
! (1 +5’-’1) I bl =10
pa JF,
Py
I I (1 + 32) oA,
R pal |oF,

Solving for partial derivative vectors:
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al T 1!
aFa (I + -p-g—) 1 1
a pa p

0

Pl = (1+22) 1 | o

JoF , pa 0

dA. | I I (1 + ’-’2)

or| L pa

al T 1!

g Po ) ;

oF, (I +pa 1l ,

Ryl = (1 +59) I “|po (A.6)

dF, pa 0

A | I i (1 + @)

an_ _ pa

E I

-2 Py

3F (1 +E) I I .

Mol = | (1+22) 0

aF, pa p
0

k. I I (1 + @)

3F| L pa

Fortunately all these sets of matrix equations have the same inverse matrix. Let’s

donate the coefficient matrix as K, then the above can be re-written as:
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N,
dF,

Po
aA !
bl =K -|p
aF,

0
N,

JoF a
N,
doF,

0
Ml = k-, (A7)
JF

b 0
.,
IF,
N,
oF,

0
alb - K‘l . 0
oF,

Po
.,
9F |
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(1 + @-) ! I
pa
K=| | (1 + 5’2) I (A-8)
pa
! ! (1 " p—”-)
| pa

The inverse of this matrix is found as follows.

K' = I_IK_I ()" (A.9)

Where |K]| is the determinant and C ;j are the cofactors of the matrix K. These

cofactors are found as:

Po(Py +P-+DPp) P P
Cn= e o8 Cp = "(‘9) Cp;= '(;Q)

<~

Py P, c b
+p +
Czl = "(p—o) C22 = pO(pc pa pO) C23 = —C—O) (A.IO)
c Pe Pa a
P (4 Po(p, +Pp+Po)
C; :-(;9) C32 =_(52) Cy; = 0\Fgq .b 0
b a Pa Py
The determinant of this matrix is equal to:
2
(P, +p,+p.+
K] = (Pg)” - (P, +py+p.+Pg) ALl

Pa Py Pc

Based on Eqn. A.10, the (C ,-j)T is equal to:
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T
(C,'j) =

Po(pp +p.+pg)

i
@

)

Pc"Pq

5

Therefore the inverse of K is the following:

)
)

Po(Pa + Py + Py)

Pa Py

Po(py + .+ Dp) Po Po
Py Pc "(—c) '(p,,)
@) Po(P:+Pat Pg) _(.gg )
D, Pe Py a
_(@ ) _(l_’g ) Po(Py+Pp+Pg)
1 Py a Pa Py i
1

[(pof (P, +p,+p, +po)}

Pa Py Pc

(A.12)

And finally back substitution of Eqn. A.12 into Eqn. A.7 yields the elements of

P-matrix.

91



Appendix: A Determination of P-Matrix i.Farzadfar
e | Pa(py+P.+Po)
dF, PatPptP-*+Pg
oaA,| _ ~(Pg " Pp)
IF,|  |Pa*+Pp+P.+Po
oA —(P,-p.)
aFa [Pa ¥t Pp¥ PPy
A, =P, Py)
OFy[  |p,+Py+p.+Pp
i&i = |Ps(Pc*Pa+Py) (A.13)
dF, Pa+Py+P-+Pg
dA, =(Py - P.)
an PatPp+ P+ Py
dA, =P P.)
9F ] Pa+Pp*+P-*Po
oA, | _ —(Py-P.)
oF,|  |Pa+Py+P.+Po
oA, Pc(Pa+ Py + Py)
oF, (PatPptP-*Po

The three vectors on the left-hand side are the three column of the P-matrix i.e.
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an, o, o
9F, oF, oF

A, A, A,
JF, 9F, oF.

or

PPy ¥pP.+Pg) (P, DPp) —(p, - P.)
=P, Py)  Pp(P.+Pa+py)  —(pp-P.)
=(p,-p.) =Py -pP.) PPy +Py+Py)
pP= a b a b 0 (A.14)
(pa +pb+pc+p0)

Where p; is the permeance of limb “i*(i = a, b, ¢) and p,, is that of

zero-sequence path. The diagonal elements of the P-matrix indicate the self-induc-
tances of primaries (incremental) while the off-diagonal elements represent the
mutual-inductances (incremental) between those windings. It would not be sur-
prising if we see a pattern in the matrix. In fact the only element which introduces
asymmetry is the center limb. If the permeance of the three limbs were equal, the

P-matrix would have been completely symmetrical (like the case of bank of three

transformers.) L
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Appendix-B

Star/Delta Electric Equivalent Circuit

Fig. B.1: Electric equivalent circuit of star/delta connection

ry, ry rz = line + source resistance

L, L, L; = line + source inductance
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Iy r. = primaries winding resistance

L,.L,L. = primaries leakage resistance
ry = secondaries winding resistance
L, = secondaries leakage inductance

Applying the KVL to the primary and secondary circuit yields three differ-
ential equations:

di

. . " di,, . dA,
V.-V, = (’:“”'u)"u’(’:""h)"b*(['l*”-a)'j,‘ —(L3+Lb)-2; +

dt ~dr

di di. dh, di_
V,-V. (r,+rd)-ib—(r2+rb)-i‘,+(L,+La)-d—l{b—(Lz-c-Lb)-ail‘+-—b ¢ (B.1)

¢ dt  dr
. di, " dh, dA.
0 = (’d*"'d“*”a)".1+(LJ+L4"'L,.1)'7,' +n-a-; +n-a-£ +"'Z{7
Applying KCL to primaries:

i +ip+i =0 (B.2)

Combining eqn. B.2 and eqn. B.1 results in the following.

) ) i, i, d\, dA,
Vu_Vb = (r!+rd)~:u—(r._,+rb)-lb+(L,+La)'E -(Lg'*[-b)"‘i‘! "’EI‘ "2?
' i di, di, d\, dA,
vV,-V.= (rj+ru)"u+(r2+rj+rb+rc)'lb+([‘3+[‘c)'Z -(L2+Lb+Lj+L()-‘-ﬁ +2; T

dA, dA, dA,

0= . did a b (4
= (’d*”d""’d)".z*’(Ld*Ld*’Ld)‘g; +n-‘Tl +n-¢—{; -t-n-Z

The above equations can be writen in matrix notation.

V=R.i+L-Z_f+C»Z—?' (B.3)
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where:

(r,+r,) ~(ry+ry) 0 V,-V,
R = (ry+r.) (ry+ry+r,+r.) 0 V= V,-V.
0 0 (ry+r +ry) 0
(L,+L) -(L,+Ly,) 0 i,
L=|,+0)Ly+L+L,+L) 0 i=|i (B.4)
1~1 0 L
C=lo1 A=,
nnan A

C

. . d). dh, dh .\
In chapter 3 it was discussed that the vector :_:t = ( a b

dt dt dr
expressed in terms of P-matrix and the applied mmfs.

dA dF -
Z = P'a-r (B.D)

In this case the applied mmfs are expressed in terms of currents as follows.

F,=N-(i,+n-iy)
Fy=N-(iy+n-iy)
F.=N-(i,+n-iy)

Substuting for {. form eqn. B.2:
F,=N-(i,+n-iy)
Fy = N-(ig+n-i)

F.= N-(=iyj~iy+n-iy)

This can be writen in matrix form as:
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1 0n| (i
F:N- 0 I nf- ib
-1 -In iy
[n matrix notation:
F=M.-
! On & (B.6)
M=N~':0 1,,:| = [J
-l -In id_l

Combining eqn. B.3, eqn. B.5 and eqn. B.6 will yield the following.
v-R.i-L%.cpm®
dr dt
This can be rearranged as:
di -1 .
m:(Li.C-P-M) (V-R-b (B.7)

This equation is in standard form for numerical integration.
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Appendix-C

Delta/Delta Electric Equivalent Circuit

The following delta/delta connected transformer can be easily converted to
an equivalent Star/Delta connected one by using the conventional transform. Fig.

C.2 shows the transformer circuit after the transformation.

Fig. C.I Delta/Delta connected transformer
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Fig. C.2 The Star/Delta equivalent circuit, after delfa to star transform

Once the equivalent Star/Delta transformer is found, it can be solved by the
routine which has already been developed for this configuration. The C matrix for

this case is found as:

L_L
NERNE]
C=lo L _L
NERINE
ln n n
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Appendix-D

Schematic Diagram of the
3-Phase Thyristor Switch
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IN2222
MOC3011 Mocioll MOC3011 =
A [:]4 316 [ja, 3 ¢4 36
2 r’@ R, R, r’@
lm D2 D2
R, Ry R,
N
SCk !\J\ scr g SR S scRE 5k SCR ?
DZI R; D2X Ry D2R Ry

Fig. D.1: Schematic diagram of the three-phase thyristor-controlled switch
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D.1 List of components:
(1) LF351 = BIFET OPERATIONAL AMPLIFIER
) MOC3011 = OPTO COUPLER AND TRIAC DRIVER

(3)  74HC74 = POSITIVE-EDGE TRIGGERED FLIP-FLOP
WITH PRESET AND CLEAR

4)  LM7802 = POSITIVE VOLTAGE REGULATOR
(5)  LM7902 = NEGATIVE VOLTAGE REGULATOR
(6)  2N2222 = NPN TRANSISTOR

(7) SCR=SKK

(8) DI =1N900

(9) D2 =1N4002

(10) Cl=100 nF

(11)  C2=1000 uF/16V

(12) C3=10 pF/16V

(13) C4=10 nF

(14) R=10KQ

(15) R1=270 Q

(16) R2=56 Q

(17) R3=12KQ
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Appendix-E

MatLab files

[n this section the program codes which are written in MatLab will be pre-
sented. The whole program is broken into smaller sections and each section uti-
lizes both the built-in and the developed functions in terms of MatLab M-files. The
routine which integrates the system of differential equations constitutes the body
of the program. This system of equation describes the electrical equivalent circuit
of the transformer. Within this main program the necessary functions are called.
These functions include both the magnetic circuit solver routine and functions

which contain the input electrical and magnetic parameters.
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E.l

Null Grounded Star/Delta Connection Functions

E.I.1 Main Routine

function [tout,lout,xout}=solve YND(yp,tratio)
%
%This function Solves the differential equations for 4-wire

%star/delta three-phase transformer. This function is the modified
%version of the built in function "diff45" in matlab M-files.
%diff integrates a system of ordinary differential equations using
%4th and 5th order Runge-Kutta formulas.

174
/0

%INPUT:

%yp - the matrix of the system of differential equations
% which describes the electrical circuit of the 4-wire

% star/delta transformer.

%

%tratio - this is the transformer secondary to primary "turn ratio”
% when the secondary is closed tratio=5.

% when the secondary is open tratio=0.

%

%OUTPUT:

Yotout - Returned integration time points (column-vector).
%Jout - Returned solution for currents, one solution
%column-vector per tout-value.

%The result can be displayed by: snapshot(tout, Iout).

%xout - Returned solution for fluxes, one solution
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%column-vector per tout-value.
%The result is displayed by: snapshot(tout, xout).
% The Fehlberg coefficients:

cle
alpha=[1/4 3/8 12/13 1 1/2]’;
beta=f[ I 0 0 0 0 0)4
[ 3 9 0 0 0 0)32
[1932 -7200 7296 O O 0]/2197
[ 8341 -32832 29440 -845 0 0}/4104
[-6080 41040 -28352 9295 -5643 0)/20520];
gamma = [ [902880 0 3953664 3855735 -1371249 277020]/7618050
[-2090 0 22528 21970 -15048 -27360]/752400]';
pow = 1/5;

% initialization
cycle=1/60;

tfinal=0.093;

h =cycle/1000: % time step=(1/500)th 0f a 60_hertz cycle.
t =0;

[M.Cl]=matrix Y4(tratio);

[phase.x0]=initial; % [mports the [nitial values.

x =x0(:)

fa0=feval('fal’,x0(1));

fbO0=feval('fb1'.x0(2));

fcO=feval(‘fcl',x0(3));

F=[fa0 fb0 fc0];

[0=[fa0 fb0 fcO 0]/75S;
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f = zeros(length(I),6);
k=1:

tout(k) =t;

xout(k.:) = x0;
[out(k.:) =I0;

jam(k)=sum(x0);

% The main loop

tol = 1e-8;% tol - The desired accuracy.

p2=6e-5;

while (t < tfinal) & (t + h>1t)
if t + h > tfinal, h = tfinal - t; end

[x.nj=nonl2(F,u,p2);
P=Pmatrix(x.p2);

U=Xj3

% Compute the slopes.

temp=feval(yp,t.I,P,tratio);
f(:.1) = temp(:);
forj=1:5
temp = feval(yp, t+h*alpha(j), [+h*f*beta(:j), P,tratio);
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f:g+1) = temp(:);
end

% Estimate the error and the acceptable error.
delta = norm(h*f*gamma(:,2),'inf');
tau = tol*max(norm(l,'inf’),1.0);

%~—————Update the solution only if the error is acceptable

if delta <= tau

t=t+h;
dI =h*f*gamma(:,1);

I=I +dI; % new [

k =k+l1;
tout(k) =t;
xout(k.:) = x;
F=M*I[;
[out(k,:) = (L.";

end
%

fluxes=x.";
currents=I;
elapsed_time=t;
time_step=h;

home, elapsed_time, time_step,currents,fluxes,n
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% Update the step size.
if delta ~=0.0
h = min(5*h, 0.8*h*(tau/delta)"pow);
end
end %(end of while)
if (t < tfinal)

disp('Singularity likely.")
t

end

tout = tout(1:k);

[out = lout(1:k.:);

xout = xout(1:k,:);

snapshot(tout.lout);

FhkkkEERRkk
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E.1.2 Electric Circuit and Parameters

function yp=IPYND(tL P.tratio)

o/

79

%This function is a matrix which describes the electrical
%circuit of the 4-wire star/delta three-phase transformer.

%
%INPUT:

%t- Time

%I- Current vector.

%P- p-matrix.

%tratio - Secondary to primary turns ratio
% for closed delta set "tratio" to 5

% for open delta set "tratio” to zero.

% L-Matrix.

11=0; 12=l1; 13=l1; %source inductance.

le=0;  %line inductance for null connection.
la=1.295e-4;Ib=la;lc=la; = %primary leakage inductance.
1a2=3.24e-3;1b2=la2;Ic2=la2; %secondary leakage inductance.
I11=l1+le+la; 112=le; 113=le; 114=0;

R1=le; 122=12+lb+le; [23=le; 124=0;

131=le; 132=le; 133=[3+Ic+le; 134=0;

141=0; 142=0; 143=0; 144=la2+1b2+Ic2;
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L=[ 111 112 13 14]
(21 122 123 124]
131 132 133 134]
[41 142 143 144] J;

% R-Matrix:

r1=0.87+0.1;r2=rl;r3=rl; %source + cable resistance

ra=0.106;rb=ra;rc=ra; %copper resistance of primaries.

ra2=2.73;rb2=ra2;rc2=ra2; %copper resistance of secondaries.

re=0; %resistance of the null connector wire.
rll=rl+ret+ra;ri2=re; rl3=re; rl4=0;
r2l=re: r22=r2+rbtre; r23=re; r24=0;
r31= re: r32=re; r33=3+rctre; 34=0;
r4dl= 0: r42=0; rd43=0; rdd4=ra2+rb2+rc2;
R=[ [rlIl rl12 rl3 ri4d]
[r21 r22 r23 r24j
[r31 32 r33 r34]
[r4] r42 rd43 r44] |;

%
[M.C]=matrixY4(tratio); % coefficient matrices.
V=Vynd(t); % the vector of the three-phase voltages.
A=L+C*P*T;

B=V-R*[;

yp=A\B;

T T
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E.1.3 Supply Voltage Vector

function V=Vynd(t)

o/

4l

%This function is the source voltage vector for 4-wire
star/delta configuration.

%

%INPUT:

%  -initial phase angle for phase "a" in degree,

% t -time in seconds.
%OUTPUT:
%V  -voltage vector for YN/D configuration

[phase.x0]=initial;
ph=phase*(pi/180);%(degree to radian conversion.)
vm=120%sqrt(2);%(maximum voltage in VOLTS.)
w=2*pi*60; %/(angular speed for 60 Hz. in Rad./sec.)
va=vm*sin((w*t)+ph) ;
vb=vm*sin((w*t)+ph-2*pi/3) ;
ve=vm*sin((w*t)+ph-4*pi/3) ;
V=[ [va]

[ vb ]

[ ve ]

[ 0*t] }

end
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E.1.4 Coefficient Matrices

Sunction [M,C|=matrixY4(n)

oz
/0

%This function is just the matrix of coefficients used in
%the electrical circuit description (in chapter 3) for the
%null grounded star/delta transformer.

(174

/0

% INPUT:
% n  -turns ratio

% for open delta set nto 0
% for closed delta setnto 5

N=75:

k=n;

c=[ [1 0 0]
[0 1 0]
[0 0 1]
[k k k11l

M=[ [l 0 0 Kk
[0 1 0 Kk
[0 0 1 k] I*N;

o e e e e e de de ok e
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E.2

Magnetic Circuit Solver Routine

function [X,n]=nonl2(F,u,p2)

o/

79

%This function solves a nonlinear system of equations which
%describes the magnetic circuits of the 3-phase transformer.
%the Newton-Raphson method is employed.

%
%INPUT:

%F- Applied mmfs vector to the three limbs of the

% transformer.

%u- Initial guess for flux linkages.

%p2- Permeance of the zero-sequence path.

%

%OUTPUT:

%X- the linkage flux vector.

%un- Number of iterations needed to converge to the solution
% useful for checking the stability of the calculations.

%

x=1*u; % Initial guess for flux linkage.
Dx=[1 2 3];

h0=[0 0 0];

n=0;

k=1.0e-8;% the desired tolerance.

while norm(Dx)>=k
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ya=der('fal',x(1)); % derivatives of the saturation curves.

yb=der('fb1",x(2));
yc=der('fc1'.x(3));
5[ [(U/p2ytya  1/p2 1/p2 ]
[ 1/p2  (1/p2)+yb /p2 ]
[ 1/p2 1/p2 (1/p2)+yc ] ]; % the Jakobian

s=(1/p2)*( x(1) +x(2) +x(3));

hi=fal(x(1))+s -F(1); % the system of three equations
h2= tb1(x(2))+s -F(2); % which describe the magnetic circuit
h3= fcI(x(3))+s -F(3); % of the three phase transformer.
h=[h1 h2 h3];

dh=h0-h;

Dh=(dh)’;

dx=N\Dh;

Dx=(dx)’;

x=x+Dx;

n=n+l;

end

X=x:

ek kkkkkdp
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E3 Star/Delta Connection Functions
E.3.1 Main Routine

function [tout, iout,xout] = solve YD(yp,tratio)

o/
4t

%This function Solves the differential equations for

%star/delta three-phase transformer. This function is the modified
%version of the built in function "diff45" in matLab M-files.

% diff” integrates a system of ordinary differential equations using
%4th and 5th order Runge-Kutta formulas.

0/,

FA)

%INPUT:

%ypp - the matrix of the system of differential equations
% which describes the electrical circuit of the

% star/delta transformer.

%

Y%tratio - this is the transformer secondary to primary "turn ratio”
% when the secondary is closed tratio=5.

% when the secondary is open tratio=0.

%

%OUTPUT:

Y%tout - Returned integration time points (column-vector).
%Jout - Returned solution for currents, one solution
%column-vector per tout-value.

%The result can be displayed by: snapshot(tout, Iout).

%xout - Returned solution for fluxes, one solution
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%column-vector per tout-value.
%The result is displayed by: snapshot(tout, xout).
% The Fehlberg coefficients:
cle
alpha=[1/4 3/8 12/13 1 1/2];
beta=[[ 1| 0 O O O 0)y4
[ 39 0 0 0 0)32
[ 1932 -7200 7296 O O 0}/2197
[ 8341 -32832 29440 -845 0 0]/4104
[-6080 41040 -28352 9295 -5643 0}/20520 ]';
gamma = [ [902880 0 3953664 3855735 -1371249 277020}/7618050
[-2090 0 22528 21970 -15048 -27360]/752400 J';

pow = 1/5;

% initialization
cycle=1/60:

tfinal=0.093;

h = cycle/500; % time step=(1/500)th Of a 60_hertz cycle.
t=0;

[M.C]=matrix Y 3(tratio);

[phase,x0]=initial; % Imports the I[nitial values.

x =x0(:)

fa0=feval('fal’,x0(1));

fb0=feval('fol’,x0(2));

fcO=feval('fcl',x0(3));

F=[fa0 b0 fc0];

[0=[fa0 fb0 0}/75;
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f = zeros(length(I),6);
k=1;

tout(k) =t;

xout(k.:) = x0;

lout(k,:) =I0;
jam(k)=sum(x0);
le(k,:)=-lout(k,1)-lIout(k,2);

% The main loop

tol = le-8:% tol - The desired accuracy.

p2=6e-5:

while (t < tfinal) & (t + h > t)
if ¢t + h > tfinal, h = tfinal - t; end

[x.n]=nonl2(F,u,p2);
P=Pmatrix(x.p2);
u=Xx;
% Compute the slopes.

temp=feval(yp.t,L,P,tratio);
f(:,1) = temp(:);
forj=1:5
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temp = feval(yp, t+h*alpha(j), [+h*f*beta(:,j), P,tratio);
f(j+1) = temp(:);

end

% Estimate the error and the acceptable error.

delta = norm(h*f*gamma(:,2),'inf');

tau = tol*max(norm(l,'inf"),1.0);

%w——————-Update the solution only if the error is acceptable
ifdelta<=ta
=t+h;
dl =h*f*gamma(:,1);
[ =[ +dI; % new [
k=k+1;
tout(k) =t;

xout(k.:) = x:

F=M*I;
[out(k.:) = (1.");
[e(k.:)=-lout(k,1)-Iout(k,2);

end

o/

/U

fluxes=x.";
currents=I[;
elapsed_time=t;

time_step=h;
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home, elapsed_time, time_step,currents,fluxes,n

%pause;
% Update the step size.
if delta~=0.0

h = min(5*h, 0.8*h*(tau/delta) pow);

end

end %(end of while)

if (t < tfinal)
disp('Singularity likely.")
t

end

tout = tout([:k);

Iout = [out(1:k.:);

xout = xout(!:k,:);

iout(1:k,1)=lout(1:k,1);

iout( 1:k.2)=lout(1:k,2);

iout(1:k,3)=lc(1:k,:);

iout(1:k,4)=lout(1:k,3);

snapshot(tout,iout);

ok kokkkkk
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E.3.2 Electric Circuit and Parameters

function [p=IPYD(t,[,P,tratio)
%
%This function is a Matrix which describes the electrical
% circuit of the star/delta three-phase transformer.

LA

4"

%INPUT:

%t- Time

%I- Current vector.

%P- p-matrix.

Ylfratio - Secondary to primary turns ratio
% for closed delta set "tratio” to 5

% for open delta set "tratio" to zero.

% L-Matrix
11=0; 12=I1; 13=lt; %source inductance.
la=1.295e-4; Ib=la; Ic=la; %primaries leakage inductances.

la2=3.24e-3;Ib2=la2; Ic2=la2; %secondries leakage inductances.
It1=l1+la; [12=-(12+Ib); 113=0;

R1=13+lc; [22=12+13+Ib+lc; 123=0;

131=0; 132=0; 133=(la2+lb2+Ic2);

L=[ (111 112 113 ]
21 122 123 ]
[31 132 133 ]1;
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% R-Matrix:
rs=0+0.1;

ri=rs; r2=rs; r3=rs; %source + cable resistance

ra=0.106; rb=ra; rc=ra %copper resistance of primaries.
ra2=2.73; rb2=2.73; rc2=2.73; %copper resistance of secondaries.
rll=rl+ra; rl2=-(r2+rb); r13=0;
r21=r3+rc: r22=r2+r3+rbtrc; r23=0;
r31=0: r32=0; r33=(ra2+rb2+rc2);
R=[ [rll rl2 ri3 ] '

[r21 22 23 ]

[r31 32 33 ] J;

%
[M.C]=matrixY 3(tratio);
V=Vyd(t);

%
A=L+C*P*T;
B=V-R*l;
[p=A\B;

(222222222 3
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E.3.3 Supply Voltage Vector

function V=Vyd(t)
%

%This function is the source voltage vector for 4-wire star/delta

%configuration.
%
%INPUT:

% -initial phase angle for phase "a" in degree.

% t -time in seconds.
%OUTPUT:
%V  -voltage vector for YN/D configuration.

[phase,x0]=initial;
ph=phase*(pi/180);%(degree to radian conversion.)
vm=120*sqrt(2);%(maximum voltage in VOLTS.)
w=2*pi*60; % (angular speed for 60 Hz. in Rad./sec.)
va=vm*sin({w*t)+ph) :
vb=vm*sin((w*t)+ph-2*pi/3) ;
ve=vm*sin((w*t)+ph-4*pi/3) ;
V=[ [(va-vb)]

[(vb-ve)]

[0 1]

end
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E.3.4 Coefficient Matrices
function [M.C]=matrixY3(n)
%
% This function is just the matrix of coefficients used in

% the electrical circuit description for the star/delta transformer.
%
% INPUT:

% n -turns ratio

%  foropendeltasetnto0

% for closed deltasetnto 5

N=75:
k=n:
C=[ [ -1 0]
[0 1 -1]
[k k k] I;
=L (1 0 k]
[0 1T k ]
[-1 -1 kI PN
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E4 P-matrix

function P=Pmatrix(x,p2)

VA
/0

%this function calculates the p matrix.

o/

/79

%INPUT:

%x-flux linkage vector.

%p2-permeance of the zero-sequence permeance.
%OUTPUT:

%P-the p-matrix

%

ya=der(‘fal’,x(1));
yb=der('tb1'.x(2));
ye=der('fcl'.x(3));
pa=l/ya;
pb=1/yb;
pc=l/yc;
ps=pa+pb+pc+p2;

P=[ [+pa*(pb+pc+p2) -pa*pb -pa*pc ]
[-pa*pb +pb*(patpctp2) -pb*pc ]
[-pa*pc -pb*pc  +pc*(patpb+p2)] 1/ps;

Rk gk ik kk
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E.S

Plot Routine

function snapshot(t,y.k1,k2)

[74

/0

%This function plots a snapshot of the calculated flux
%and current vector versus time by specifying the beginning

% and ending of the time interval.

(74

/0

%INPUT:

%t-Time

%y-the quantity to be plotted (i.e. flux or current vector.)
%k I -start of the time interval.

%k2-end of the time interval.

I=length(t);

if nargin<3 kl=1; k2=l; end
ifkl<=l & k2<=]
Y=y(kl:k2.:);
T=t(k1:k2)-0.025;

plot(T, Y(:.1)-100,'r-")

hold on

plot(T, Y(:.2)+100,'g-")

hold on
plot(T,Y(:,3)+300,'c-")

elseerror(""k" or "1" out of the computed range')
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end

xlabel('Time (second)")
ylabel ('Inrush currents (Ampere)’)

kR kkkkk
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E.6 Core Characteristics
E.6.1 Core Characteristics for Limb “a”

function u=fal(x)
%

% This function fits an 8-piece curve into the magnetic data

% which was experimentally obtained for limb *“a”

yl=52%x;

y2=5.2+(52*%(x-0.1)).*(exp(10.3*(x-.1)));

y3= 674.6266+(8.8080e+003*(x-0.45)).*(exp(6.123*(x-.45)));
y4=1.8246e+003+(2.1417e+004*(x-0.53)).*(exp(k*(x-.53))):
y5= 52*x;

y6=-5.2+(52*(x+0.1)).*(exp(-10.3*(x+.1)));
y7=-674.6266+(8.8080e+003*(x+0.45)).*(exp(-6.123*(x+.45)));
y8=-1.8246e+003+(2.1417e+004*(x+0.53)).*(exp(-k*(x+.53))):

if x>=0 & x<+0.1 y=yl
elseif x>=.1 & x<0.45 y=y2
elseif x>=45 & x<0.53 y=y3
elseif x>=0.53 y=y4
elseif x>=-0.1 & x<0 y=y5
elseif x>=-045 & x<-0.1 y=y6
elseif x>=-0.53 & x<-0.45 y=y7
elseif x<-0.53 y=y8

end
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E.6.2

u=l*y;

Core Characteristics for Limb “b”

function u=fbl(x)

(74

79

% This function fits an 8-piece curve into the magnetic data
% which was experimentally obtained for limb “b”

%
k=14;

yl=52%x;

y2=5.2+(52*(x-0.1)).*(exp(10.3*(x-.1)));

y3= 674.6266+(8.8080e+003*(x-0.45)).*(exp(6.123*(x-.45)));
y4=1.8246e+003+(2.1417e+004*(x-0.53)).*(exp(k*(x-.53)));
yS5=52*x;

y6=-5.2+(52%(x+0.1)).*(exp(-10.3*(x+.1)));
y7=-674.6266+(8.8080e+003 *(x+0.45)).*(exp(-6.123*(x+.45)));
y8= -1.8246e+003+(2.1417e+004*(x+0.53)).*(exp(-k*(x+.53))):

if x>=0 & x<+0.1 y=yl
elseif x>=.1 & x<0.45 y=y2
elseif x>=45 & x<0.53 y=Yy3
elseif x>=0.53 y=y4
elseif x>=-0.1 & x<0 y=y5
elseif x>=-0.45 & x<-0.1 y=y6
elseif x>=-0.53 & x<-0.45 y=y7
elseif x<-0.53 y=y8

end
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u=0.35*y;

E.6.3 Core Characteristics for Limb “¢”

function u=fci(x)
%
% This function fits an 8-piece curve into the magnetic data

% which was experimentally obtained for limb *“c”

o/

Al

k=14;

yl=52%x;

y2=5.2+(52%(x-0.1)).*(exp(10.3*(x-.1)));

y3= 674.6266+(8.8080e+003*(x-0.45)).*(exp(6.123*(x-.45)));
y4= 1.8246e+003+(2.1417e+004*(x-0.53)).*(exp(k*(x-.53)));
y5=52%*x;

y6= -5.2+(52*(x+0.1)).*(exp(-10.3*(x+.1)));
y7=-674.6266+(8.8080e+003*(x+0.45)).*(exp(-6.123*(x+.45)));
y8=-1.8246e+003+(2.1417e+004*(x+0.53)).*(exp(-k*(x+.53)));

if x>=0 & x<+0.1 y=yl
elseif x>=.1 & x<045 y=y2
elseif x>=45 & x<0.53 y=y3
elseif x>=0.53 y=y4
elseif x>=-0.1 & x<0 y=Yy5
elseif x>=-0.45 & x<-0.1 y=y6
elseif x>=-0.53 & x<-0.45 y=y7
elseif x<-0.53 y=y8

end

129



Appendix: E

MatLab Files |.Farzadfar

E.7

u=1*y;

Integrator

function [tout,flux]=integ(V)
%
%This function was used to determine the flux by

%integrating the voltage across the search coil.
%since the time interval between voltage samples
%very small the Trapezoidal rule was used.
%INPUT:

%V - The developed voltage across the search coil.
%OUTPUT: flux.

%
name=[yp ".txt'];

eval(['load ' name] );
a=eval([yp]);
t0=a(l.1);

t=a(:.1)-t0;
volt=(1/5)*a(:.2);
fx=0;

for k=1:length(1)-1;
u=(volt(k)+volt(k+1))/2;
d=t(k+1)-t(k);
fix=fx+u*dt;
flux(k)=fx;
tout(k)=t(k);
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end

plot(tout, flux.'w")
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