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Anybody who has ever been seriously engaged in scientific work of any kind
realizes that over the entrance to the gates of the temple of science are written the words:
“Ye must have faith.”

- Maxwell Planck
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ABSTRACT

Oxidized low density lipoprotein (0xLDL) is a causative agent in the development
and progression of atherosclerosis. It is believed to act in part by stimulating proliferation
of cells in the vessel wall. The purpose of the first study was to test the hypothesis that
oxLDL induces proliferation through changes in the expression, distribution, and
activation of cell cycle proteins. Quiescent human fibroblasts and rabbit smooth muscle
cells were treated with 0, 10 or 50 pg/ml oxLDL for 24-48 hours. This resulted in
significant increases in total cell numbers at both concentrations of oxLDL, at both time
points, for both types of cells. Western blot analysis revealed that oxLDL-stimulated cell
proliferation was associated with significant increases in the expression of proteins that
regulate entry into and progression through the cell cycle (Cde 2, Cdk 2, Cdk 4, Cyclin
B1, Cyclin D1 and PCNA). Surprisingly, the expression of cell cycle inhibitors (p2 1"’
and p27°"") was stimulated by oxLDL as well but this was to a lesser extent than the
effects on cell cycle activating proteins. OxLDL also induced nuclear localization of all
cell cycle proteins examined. The similar effects of oxLDL on the translocation and
expression of both cell cycle activating and inhibitor proteins may explain the controlled
proliferative phenomenon observed in atherosclerosis as opposed to the more rapid
proliferative events characteristic of cancer.

Our next study tested the hypothesis that this mitogenic effect may be further
enhanced by the presence of cytokines and growth factors known to be present in the
atherosclerotic environment. Quiescent fibroblasts and smooth muscle cells were treated

with 10 or 50 pg/ml oxLDL in combination with serum for 24 or 48 hours. Surprisingly,
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these cells showed inhibited release from growth arrest and a significant reduction in the
number of cells completing the cell cycle (as compared to cells treated with serum alone).
This was not due to an induction of apoptosis. The anti-proliferative effects were not
closely associated with changes in the expression of cell cycle proteins. Instead, oxLDL
inhibited the translocation of cell cycle proteins Cdc 2, Cdk 2, Cdk 4, Cyclin A, Cyclin
B1, Cyclin D1 and PCNA into the nucleus, as compared to separate treatments with
serum alone. Kinase activation associated with specific cell cycle proteins was also
inhibited by oxLDL. These data demonstrate that oxLDL has a surprising inhibitory
effect on cell proliferation in the presence of serum that occurs by a mechanism involving
an inhibited import of cell cycle proteins into the cell nucleus.

The preceding studies were carried out under in vitro cell culture conditions. The
alterations in cell cycle proteins that may accompany atherosclerosis under in vivo
conditions, however, remain unclear. Therefore, our final study examined the presence of
cell proliferation within a primary atherosclerotic plaque. Identification of a change in the
expression of several cell cycle proteins and the activities of their related kinases would
provide valuable supportive evidence of mitotic activity in the atherosclerotic lesion.
Atherosclerotic aortic vessels from cholesterol-fed rabbits were analyzed for expression
of Cyclin A, Cdk 4 and PCNA. Activities of Cdk 4, Cdk 2 and Cdc 2 were also assessed.
Whole aortic extracts were generated from rabbits fed a cholesterol-supplemented diet for
8 weeks to induce modest plaque development, or 16 weeks to induce severe plaque
progression. At both time points, expression of Cyclin A, Cdk 4 and PCNA was
significantly elevated. All three cyclin dependent kinase activities were also increased.

There were no significant differences between early and late stage atherosclerosis. When

XIX



the plaques were selectively extracted from the 8 week aortic tissue and the non-plaque
tissue removed, a significantly higher expression level for Cyclin A, Cdk 4 and PCNA
was detected within the plaque. The tissue that contained no visible plaque had lower but
significantly elevated expression levels for the three cell cycle proteins. In summary, the
primary atherosclerotic plaque exhibits elevated expression levels and activities of
several cell cycle proteins. This would confirm carlier studies that the primary plaque is
in a mitotic state. Furthermore, cell proliferative activity appears to be similar in
moderate and severe atherosclerotic plaques and is even detected in the neighboring non-

atherosclerotic vascular tissue.
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CHAPTER 1: INTRODUCTION

1.1 Cell cycle proteins
L1L1 [Inducers

The eukaryotic cell division cycle is controlled by periodic changes in the activity
of cyclin dependent kinases (Cdks). Progression through the cell cycle depends on the
coordinated synthesis, activation, and degradation of a family of cyclins that act as
catalytic subunits of Cdks. Different cyclin/Cdk holoenzymes are activated at specific
phases of the cell cycle and exert their regulatory control by phosphorylating key proteins
involved in cell cycle progression (Figure 1). Passage through the first gap phase (G1)
requires both Cyclin D-dependent Cdk 4 and Cdk 6 and Cyclin E/Cdk 2 holoenzymes.
DNA synthesis (S phase) requires functional Cyclin A/Cdk 2 complexes. Following this,
Cyclin A/Cdc 2 and Cyclin B/Cdc 2 pairs are assembled and activated during the second
gap phase (G2) and mitosis (M phase) (71, 92, 96, 119, 165, 173, 181, 204). A complete
list of all identified cyclins and Cdks and their sites of action within the cell cycle is
shown in Table 1. An example of a change in Cyclin D1 nuclear fluorescence as a
function of the cell cycle in fibroblasts is shown in Figure 2.
1.1.2  Suppressors

The activity of these kinases is directed in part by inhibitors of Cdks. Two classes
of Cdk inhibitors (CKIs) exist. The first is the Cip/Kip family, which includes p21°',
p27°"" and p57. These CKIs regulate cell proliferation throughout the cycle. The second,
sometimes referred to as the INK4 proteins (inhibitors of Cdk 4/6) are active only at G1

and include p15, p16, p18 and p19 (83, 182, 221). A complete list of all identified CKIs



(CydlinA )
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Figure 1. The involvement of specific cell cycle proteins during different phases of the
cell cycle. Cyclin/Cdk complexes are shown adjacent to their points of action
in the cell cycle. Periodicity of CKls is indicated by bars outside cycle.



Figure 2. Confocal microscopic images illustrating nuclear fluorescence of Cyclin D1 in
quiescent and proliferating fibroblasts. Human fibroblasts were stained with
Cyclin D1 antibody and fluorescein isothiocyanate following A) 8 days in

serum-free medium and B) 6 days in serum-free medium followed by 1 day in
5% FBS.



Table 1. Cell cycle regulatory proteins and sites of action within the cell cycle

: Cell cycle
Proteins
G0-G1 G1-8 S G2 M
. B,F, A,
~ Cyclins C,D AE H X AE,B H A, B
Cdks 4,5,6 1,2,5,7 1,2,5 1,7 1
plS, p16, p18, p19, p21°PL, _ ' p21°°1 ' _
CKIs p27°P1 57 p21°P! p275P! 1557 p27" P! p57 p21°P! p21°P!
pRb, E2F, p107,
Others p33, pRb, p107, p130 pl30 E2F, PCNA p53 PCNA

Adapted from Li et al, Eur Heart J 1999:20,406-20.

eferences: (31, 66, 77, 99, 108, 114, 138, 157, 162, 178, 180, 194, 197, 200, 225, 239, 258, 262, 263)



and their sites of action within the cell cycle is shown in Table 1.

The retinoblastoma gene product (Rb) is also an important negative regulator of
proliferation (Figure 3). In the resting GO state, Rb is present in the unphosphorylated
form and is a potent inhibitor of cell cycle progression. Hypophosphorylated Rb binds to
the cell cycle regulatory transcription factor E2F, inhibiting its activity and so preventing
transcription of genes involved in the transition of cells from G1 to S phase, including
Cdc 2 and proliferating cell nuclear antigen (PCNA) (43, 257). Rb is phosphorylated by
Cyclin D/Cdk in response to growth factor stimulation and in this state permits cells to
traverse the G1/S checkpoint of the cell cycle and proliferate (50, 54). The Rb-related
proteins p107 and p130 contain a motif similar to one found in the p21°?' family which
enables binding and inhibition of Cdks, and are also able to repress E2F activity (246,
262, 270). Ultimately, all upstream cellular mitogenic signaling cascades are dependent
on G1 events, including the synthesis of D-type cyclins and their assembly with Cdk 4/6,
to progress through the cell cycle (258). Therefore, the cell cycle becomes a point of
convergence for all pathways affecting proliferation, relying on the Rb pathway to
coordinate information from both extracellular and intracellular sources (137).

p21°P! the 21kD protein product of the Wafl/Cipl gene, acts as a universal
nhibitor, able to bind to and inhibit Cdks at all stages of the cell cycle (264) (Figures 1
and 3). p21°?' monomers normally associate with active Cyclin D/Cdk complexes in
proliferating fibroblasts. Overexpression of p21°*" potently inhibits Cyclin D/Cdk kinase
activity and arrests cells in G1 (274). Therefore, one mechanism by which p21°®! inhibits
cell cycle progression may be by negatively regulating the Cyclin D/Cdk dependent

phosphorylation of Rb. A second means by which p21°?" effects negative control of the



DNA damage

Inactive Active Inactive

PCNA
Cyclin E
Cyclin A
Cdc 2
. pl07

it

Active Inactive DHFR
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TK
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Figure 3. Schematic illustration of the mechanisms by which p21°P" effects cell cycle
arrest. p21°*' is induced by p53. Binding of p21°?" to PCNA renders it inactive
and prevents DNA replication. Binding of p21°®' to Cyclin D/Cdk 4/6 prevents
phosphorylation of Rb. Hypophosphorylated Rb remains bound to transcription
factor E2-F, prohibiting entry into the cell cycle.



cell cycle may be by binding to and inhibiting the DNA polymerase cofactor PCNA,
preventing DNA replication (128). It is believed that different regions of the p21¢™'
protein are active in inhibiting Cdks and PCNA, so the two mechanisms for halting the
cell cycle are independent (139). Consistent with this hypothesis, recent evidence
indicates that adenovirus mediated overexpression of human p21°P! inhibits proliferation
of rat vascular smooth muscle cells (VSMCs) in vitro by inhibiting phosphorylation of
Rb and by formation of complexes between p21°?! and PCNA (35).

p21Cipl expression is also regulated by the tumor suppressor gene p53 (65) (Figure
3). p53 is induced in response to DNA damage (249). Phosphorylation of p53 by the S
and G2/M cyclin/Cdk complexes induces a conformational change, increasing its ability
to bind a target site within the promoter of the p21°"" gene (255). Transcription of p21¢"’
is activated and accumulation of p21¢™! protein results in a G1 block of the cell cycle. In
this way, p21°?' may carry out p53’s growth suppressive function (63, 140, 247).

Recent evidence suggests that p21°"’ may work to inhibit migration and adhesion
as well as proliferation. Cultured rabbit VSMCs transfected with p21°P' exhibited
decreased spreading, attachment and migration in response to platelet derived growth
factor (PDGF). p21°¥! effectively inhibited migration by preventing assembly and
disassembly of actin filaments. p21°”' has also been shown to alter the expression of
genes involved in cellular adhesion and translocation of adhesion molecules (73).
Adhesion to the extracellular matrix is required for Cyclin D1 and Cyclin A expression,
Cyclin E/Cdk 2 kinase activity, and Rb and p107 phosphorylation (9, 275). Thus,
suppression of vascular cell growth by p21°?' may result from an altered interaction with

the extracellular matrix.



p27""! which shares a region of homology with p21°?! complexes with Cyclin
E/Cdk 2 in cells growth arrested with either transforming growth factor B (TGF-B) or
contact inhibition (196, 218). The increase in p27"! levels is due in part to translational
upregulation and in part to decreased degradation (56). Unlike p21°*!, p275*! does not
associate with cyclin/Cdk complexes in proliferating cells. Ectopic overexpression of
p27"! in cultured VSMCs downregulated Cdk 2 activity and repressed transcription
from the Cyclin A promoter (42). Therefore, p27°*' may be a mediator of VSMC growth
arrest in vitro. Cellular changes normally associated with migration (such as alignment of
actin filaments and focal adhesions) were also inhibited in rat VSMC infected with a
retrovirus that overexpressed p27°P! (57). p27"*'-dependent migration blockade required
inactivation of Cdk/cyclin complexes (57). This effect may be mediated through the

accumulation of hypophosphorylated Rb and repression of E2F target genes (57).

1.1.3  Cell cycle protein involvement in the pathology of disease

Eukaryotic cells respond to pathologic stimuli in different ways at the molecular
level. Injury and stress may induce some cell types, including VSMCs, fibroblasts, and
lymphocytes, to proliferate. The same cells may undergo cell cycle arrest and apoptotic
death in response to more severe types of damage. While these responses serve an
adaptive function, dysregulation may become pathological. A well-characterized example
is cancer. One or more cell cycle regulatory components, either protooncogenes (cyclins,
Cdks) or tumor suppressors (Cdk inhibitors) are defective in nearly every type of tumor.
Mutations in protooncogenes or tumor suppressors tend to uncouple cells from

environmental signals and so the cell cycle continues to be pushed forward. Regardless of



extracellular cues, G1 cyclins are induced, overriding Cdk inhibitors and preventing cell
cycle arrest. The result is defective or abolished restriction point control. Deregulation by
anumber of molecular mechanisms has been documented, including gene amplification
(Cyclin D1, D2, E, Cdk 4, Cdk 6), chromosomal translocation or inversion (Cyclin D1),
mutations which cause activation (Cdk 4) or inactivation (Rb, p16, p57), inactivation by
protein-protein sequestration (Rb), aberrantly enhanced (p27°"'} or diminished (D
cyclins) protein degradation, or activation by proviral integration (D cyclins) (14, 220).
In the case of VSMCs, mature cells which are post-mitotic and express markers of
the differentiated phenotype at homeostasis can undergo phenotypic modulation in
response to several environmental stimuli (189). This change from “contractile” to
“synthetic” phenotype is necessary for both cell migration and proliferation to occur.
Changes at the level of gene expression cause cells to increase their production of
components of the extracellular matrix and synthetic organelles (such as rough
endoplasmic reticulum and free ribosomes). At the same time, expression of c-actin is
decreased. As a result of these changes, cells can no longer contract, but are capable of
division. Dysregulated cell proliferation in response to arterial injury plays a key role in
the development of atherosclerosis and restenosis (198, 215, 242). For this reason, an
understanding of the fundamental basis of vascular cell proliferation and migration is

crucial to an understanding of the pathogenesis of the disease.

1.2 Atherosclerosis
Atherosclerosis is a chronic inflammatory disease (206). It is a systemic disorder,

but the complications of the disease occur at focal sites in the circulatory system.



Atherosclerosis primarily affects the large and medium arteries, including the coronary,
carotid, basilar and vertebral arteries, and can also involve the aorta, iliac and femoral
arteries (129). It can lead to ischemia of the heart, brain, or extremities, resulting in
infarction (129). Ischemic heart disease, the leading cause of morbidity and mortality in
North America, Europe and Japan, is a direct consequence of atherosclerosis (1,27, 28).

Cardiovascular disease is the underlying cause of death for 1 in 3 Canadians ().
Risk conditions for cardiovascular disease include age, sex, and family history of the
disease. Modifiable risk factors include tobacco smoking, physical inactivity, obesity,
less than the recommended consumption of fruits and vegetables, high blood pressure,
and diabetes. Recent statistics indicate that 8 out of 10 Canadians have a least one of
these risk factors, and 1 out of 10 have three or more (1). As our population ages, the
incidence of cardiovascular disease is expected to grow.

Interventional procedures to treat cardiovascular disease, such as coronary artery
bypass grafting, angioplasty, valve surgery, pacemaker implantation and heart
transplantation, are on the rise (1). Similarly, the number of prescriptions for medication
to manage cardiovascular disease is also increasing (1). The total cost of cardiovascular
disease on the health care sector in Canada is estimated to be $18,472.9 million (1).

The process of atherogenesis begins in childhood, when “fatty streaks”, the first
clinical manifestation of the disease, are detectable in arteries (230) (Figure 4). These
early lesions can progress slowly over a period of decades in an asymptomatic manner,
but may also eventually cause stable symptoms such as angina pectoris or intermittent
claudification (129) (Figure 5). As the lesion develops, it may produce thrombotic

complications, leading to unstable coronary syndromes, thrombotic stroke, or critical
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Figure 4. Schematic illustration of the progression of an atherosclerotic plaque. From
top, left to right: normal healthy artery, injury to endothelium resulting in
beginning of “fatty streak”, advanced lesion, and thrombosis.
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Figure 5. Gross pathological specimen of human carotid plaque, examined under 40x
magnification. This advanced lesion was asymptomatic. A indicates an area of lipid

deposition. B indicates an area of calcification,
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limb ischemia (129).

Atherosclerotic lesion development is a complex process, involving cell growth,
migration, inflammation, growth factor and cytokine secretion and extracellular matrix
production. Atherosclerosis has traditionally been considered to be the result of a
“response to injury”’, where the initial insult is any damage to the endothelium which
eventually results in the proliferation of VSMCs (94, 207). The initial injury to the
endothelium may be caused by shear stress, mechanical injury, inflammatory cells, or
biological agents in the bloodstream. A critical step in this process may be the oxidation
of low density lipoproteins (LDL) within the vessel wall and the subsequent participation

of oxidized LDL (oxLDL) in the progression of the disease (231, 261).

1.3 Oxidized low density lipoprotein

Elevated levels of plasma LDL cholesterol lead to an increased movement of LDL into
the vessel wall, where it becomes entrapped in the subendothelial space (Figure 6). Here
it is known to become oxidatively modified in response to reactive oxygen intermediates
and various cellular enzymes (190). LDL which has undergone modifications such as
oxidation has a predilection for uptake through the scavenger receptor (232). OxLDL is
taken up by scavenger receptors on VSMC, fibroblasts, and macrophages in the intima of
the blood vessels in an unregulated process leading to the formation of lipid-engorged
foam cells (Figure 7). This is believed to be a critical event in the atherosclerotic process
(17, 191). The accumulation of oxLDL has been documented in atherosclerotic plaques,

both in humans and animal models (268). A number of studies have demonstrated that
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Figure 7. Fluorescent microscopic images illustrating foam cells migrating from an
atherosclerotic plaque. Top panel: initial migration of lipid-laden cells from

tissue. Middle panel: Macrophage foam cells. Lower panel: VSMC foam cells.

Cholesterol crystals are also evident in the middle and lower panels.
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circulating oxLDL in the plasma is associated with the clinical manifestations of
atherosclerosis, such as coronary artery disease (101-103, 134, 245). More recently, this
relationship has also been demonstrated for subclinical atherosclerotic changes in the
carotid and femoral arteries (107). The amount of oxL.DL and degree of oxidation is
likely to be low during early stages of atherosclerosis. Under these conditions, effects are
mainly proinflammatory (18, 72, 159). As the disease progresses, increased accumulation
of oxLDL causes cytotoxic effects leading to plaque destabilization and rupture (116,
192). Growing evidence suggests that oxLDL is a likely candidate for involvement in the
pathological cell growth associated with atherosclerosis. However, to date the effect of

oxLDL on cell cycle protein expression has not been examined.

1.3.1 Proliferation

The ability of oxLDL to induce proliferation in a variety of cells is well
established. Mildly oxidized LDL exerts a concentration dependent stimulation of
proliferation in cultured human SMCs (233), rabbit VSMCs (39, 121), bovine VSMCs
(11), murine macrophages (22, 89, 148, 210), human fibroblasts (22) and human
endothelial cells (EC) (141). The mitogenic effect of oxLDL on these cells is several
times that of native LDL, indicating the specificity of the response to oxLDL. As further
evidence to support this observation, the antioxidant butylated hydroxytoluene (BHT)
inhibits LDL oxidation and its proliferative effects on SMC (11). In humans, circulating
oxLDL is associated with intima-media thickness and plaque occwrence (107). This
suggests that the proliferation of vascular cells observed in response to oxLDL i1 vitro is

pathologically relevant,
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Cellular proliferation is dependent upon the induction of cell cycle proteins,
including cyclins and cyclin-dependent kinases (96). OxLDL has not yet been linked to
changes in cell cycle protein expression or distribution. However, preliminary
experiments from our laboratory indicate that exposure of serum-starved rabbit VSMC
and human fibroblasts to mildly oxidized LDL results in movement into the cell cycle,
associated with a significant increase in the level of Cyclin B1. This increase is
accompanied by a redistribution of Cyclin B1 from the cytoplasm to the nucleus (Figure
8), further implicating the involvement of 0xLDL in mitogenesis. Expression of cell cycle

proteins occurs in response to intracellular signals that activate transcription factors.

L3.2  Transcription factors

Changes in gene expression must occur in order for the cell to enter the cell cycle
and begin the process of proliferation. Signals received by cell surface receptors are
relayed to the nucleus, where transcription factors integrate these signals and mediate
responses. OxLDL can affect proliferation in the vasculature through an action on various
transcription factors, resulting in an alteration of gene expression.

Activator protein-1 (AP1), composed of members of the Jun and Fos families, is
induced by growth factors and cytokines (reviewed in (8)). Binding sites for AP1 are

important in transcriptional regulation of tumor necrosis factor-a. (TNFot) and

interleukin-1p (TL-1B) (8). AP1 binding activity is controlled by the redox state of the
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Figure 8. Increased nuclear fluorescence of Cyclin B1 in fibroblasts treated with oxLDL.
Cyclin B1 is believed to be required for completion of the M phase of the cell

cycle. (A) Control (no oxLLDL). (B) 10 ug/ml oxLLDL for 24 hours. All cells
were maintained in serum-free media for 5 days preceding treatment.

18



cell and is stimulated by oxidative stress and oxygen radicals (16, 195). OxLDL induces
AP1 activation in fibroblasts, SMC (155) and human vascular EC (45). This effect, due in
part to lipid peroxidation products, does not require de novo protein synthesis and is
partially inhibited by the antioxidants a-tocopherol and N-acetylcysteine. OxLDL alters
AP1’s activity through a post-translational modification of both ¢-Fos and ¢-Jun subunits
(155).

The STATS (signal transducers and activators of transcription) are a family of
transcription factors activated by both janus activated kinase (JAK) and tyrosine
phosphorylation in response to engagement of various cytokine receptors. OxLDL and its
lipid extracts enhances STAT1 and STAT3 binding in human EC. The increase in
binding parallels an increase in the intracellular level of lipid peroxidation and the level
of reactive oxygen species, suggesting that STAT binding activity is also dependent on
the redox state of the cell. Consistent with this hypothesis, STAT binding is inhibited by
vitamin E and partially inhibited by N-acetylcysteine (153).

OxLDL and its lipid extracts also induces activation of the oxidative stress
transcription factor nuclear factor kappaB (NF-«B) in fibroblasts, SMC (154), human
THP-1 monocytic cells (24) and human coronary artery EC (104, 126). NF-kB plays a
critical role in proliferation, migration and inflammation (reviewed in (163)). Activated
NF-«B is also found in human atherosclerotic lesions (24). Activation in monocytic cells
is inhibited by the antioxidant/H,O, scavenger pyrrolidine dithiocarbamate (24), while
activation in fibroblasts and SMC is partially inhibited by vitamin E (154). OxLDL also
induces degradation of inhibitor kappaB (IkappaB) protein in human coronary artery EC,

which is attenuated with y-tocopherol (126).
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The response of NF-kB to oxLDL is, however, specific to cell type. OxLDL
decreases NF-«B binding to DNA in in vitro-activated T lymphocytes, inhibiting
proliferation. Levels of the active form of TkappaBa are unchanged in these cells (32).
Alterations in TkappaBo and B degradation result in delayed or reduced kappaB binding
activity in macrophages pretreated with oxLDL; consequently, cytokine gene expression
is inhibited or delayed (91). OxLDL also suppresses lipopolysaccharide (LPS) -induced

binding of macrophage extracts to a NF-kB sequence oligonucleotide (104, 219).

1.3.3  Inflammatory response/cytokines

The immune/inflammatory response has recently been suggested to be a key
component of the atherogenic process. A positive correlation between circulating oxLDL
levels and C-reactive protein (CRP, a sensitive marker for inflamxmation and infection)
has been observed in humans (103). Similarly, plasma oxLDL levels were positively
associated with TNFa levels in humans (107). OxLDL itself is immunogenic and
stimulates antibody production (212). OxLDL-containing immune complexes taken up by
receptors on human macrophages lead to transformation into foam cells and activation
and release of cytokines (106). Cytokines are thought to play a crucial role in
atherogenesis. For example, IL-1f induces SMC proliferation (130), and mRNA levels
for IL-1PB (174), TNFo. (243) and IL-6 (217) are elevated in atherosclerotic plaques.
OxLDL stimulates the release of IL-8 by human THP-1 monocytic cells (240) and a
protein component of the oxLDL particle stimulates the production of IL-1¢t by rabbit
arterial macrophage-derived foam cells (133). Multiple components of oxLDL have been

reported to induce IL-1B release by mononuclear cells (241), however, the concentrations
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of oxLDL used in these experiments were in the cytotoxic range, raising the possibility
that the observed IL-1B release may have been due to apoptosis of the cells. Treatment of
murine macrophages with low doses of oxLDL stimulates the proliferative actions of
granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-
stimulating factor (M-CSF), although proliferation was not dependent on GM-CSF or M-
CSF production (89). OxLDL also enhances mRNA levels and protein release of GM-
CSF in murine macrophages (21). This effect is inhibited by the protein kinase C (PKC)
inhibitor calphostin C (21). OxLDL-induced murine macrophage growth was found to
require specific uptake of the oxLDL component lysophosphatidylcholine (LPC) by
scavenger receptors by Biwa et al. (21), although Martens et al. report that the
proliferative effect of oxLDL could be mimicked using an oxidatively modified protein
(148). Biwa et al. report that the oxLDL-induced growth of macrophages is significantly
inhibited by anti-GM-CSF antibodies (21). Growth is also inhibited by replacing the
medium at 24 hours. Since GM-CSF levels are basal at this time, another cytokine may
be involved at later phases. Therefore release of GM-CSF may have a priming role in
conjunction with other cytokines in oxLDL-induced murine macrophage growth (21).
Cytokine release in response to oxLDL can influence cellular function at several
levels. Interferon-y (IFNy) (176), IL-4 (105), GM-CSF and TNFq are all reported to
influence expression of the classical scavenger receptors and CD36 (53). The lectin-like
oxLDL receptor can also be upregulated by TNFo. in macrophages (171). IL-4 (105) and
M-CSF both stimulate expression of peroxisome proliferator activator receptor y, a
nuclear receptor transcriptionally activated by oxLDL and its lipid components, in

macrophages and monocytic cell lines (203). This suggests a feedback loop: cytokine
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release in response to 0xLDL leads to upregulation of oxLDL, receptors and hence
increased uptake of oxLDL.

Immune responses to oxLDL appear to be specific for different cell types. For
example, oxLDL inhibits IL-2 production and IL-2 receptor expression in i vitro-
activated T lymphocytes (32). OxLDL also inhibits release of TNFo (90), IL-1B and IL-6
by macrophages (69), and TNFa, IFNy and IL-12 by mitogen-stimulated peripheral

blood mononuclear cells (144).

1.3.4 Growth factors/second messengers

Growth factors mediate intercellular communication by activating cell surface
receptors linked to second messenger pathways. Complex cell functions such as
proliferation are generally stimulated by combinations of these signals. OxLDL can
influence this process both by stimulating the production and release of growth factors
and by causing an increased sensitivity to the effects of these growth factors.

Platelet-derived growth factor (PDGF)-A (13) and PDGF surface receptors (208)
are expressed by SMC from human plaques. Preincubation of SMC with either native or
oxLDL can enhance the responsiveness of cells to exogenous PDGF. Mitogenic effects
disappear if cells are treated with superoxide dismutase (233), again suggesting a role for
oxygen derivatives as second messengers. OxLDL can also increase the production of
PDGF, PDGF A-chain mRNA and expression of PDGFo and B-receptors in SMC (233)
but it inhibits the generation of PDGF B chain by macrophages (143) and EC (70).

OxLDL, 4-hydroxynonel and LPC can upregulate mRNA expression and protein

secretion of the EC specific mitogen and angiogenic factor VEGF (vascular endothelial
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growth factor) in a monocytic cell line. This effect is time and dose dependent. VEGF
immunoreactivity has been detected in subendothelial macrophage-rich regions of human
early atherosclerotic lesions (199).

OxLDL induces the release of fibroblast growth factor-1 (FGF-1) from FGF-1
transfected mouse NIH-3T3 cells and rabbit SMC in a concentration dependent manner.
FGF-1 released in response to oxLDL does not require de novo synthesis and is
suggested to be mediated by sublethal and transient changes in membrane permeability
(7). Similarly, LPC transiently influences membrane permeability, which may be related
to FGF-2 release. Neutralizing antibody against FGF-2 significantly inhibits oxLDL and
LPC-induced DNA synthesis in SMC (33).

Incubation of human macrophages (120) and rabbit SMC (10) with oxLDL leads
to an increase in ceramide, a lipid mediator involved in stress-induced signaling,
Incubation of SMC with oxLDL increases activities of both acidic and alkaline
ceramidases and sphingosine kinase. Inhibitors of these enzymes abrogate the mitogenic
effect of oxLDL (10). OxLDL also stimulates biosynthesis of lactosylceramide (LacCer).
LacCer stimulates proliferation of VSMC in vitro and mediates TNFa-induced NF-xB
expression in EC via a redox-dependent transcription pathway. LacCer also activates
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which produces
superoxide (37).

Increases in intracellular Ca** have been associated with the initiation of
transcription, translation and post-translational regulation (19). Addition of oxLDL to rat
(259) or rabbit VSMC (151) or murine macrophages (152) induces an increase in

intracellular free Ca®*. This Ca”" is likely released from internal stores (151, 152). It has
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been suggested that cell cycle Ca®" transients are mediated by increases in intracellular
inositol triphosphate (IP3) (46). OxLDL activated phosphoinositide turnover in rabbit
VSMC which was blocked by phospholipase C inhibitors (151). In macrophages,
oxLDL-induced phosphoinositide turnover was blocked by inhibitors of receptor-
mediated endocytotic processes (202). These actions on intracellular Ca** may be
associated with the proliferative effects of oxLDL. Therefore, in addition to the direct
effects of the growth factors released in response to oxLLDL, oxLDL enhances the

responsiveness of cells to other growth factors and cytokines.

1.3.5 Engzymes involved in mitogenesis

Mitogen-activated protein kinases (MAPK) are stimulated by a wide range of
stresses and extracellular signals, which may in turn activate receptor tyrosine kinases or
G-protein coupled receptors, initiating phosphorylation cascades. OxLDL strongly
evokes phosphorylation and activation of p38 MAPK in rat VSMC in a time and dose
dependent manner (115). Activated MAPK is translocated to the nucleus within 15
minutes after exposure to oxLDL (115). The activation of MAPK is not mediated by
classical scavenger receptors and is not affected by tyrosine kinase inhibitors (115).
OxLDL appears to activate MAPK through a phospholipase C and G-protein dependent
action (115).

OxLDL also affects other components of the MAPK pathway. OxLDL stimulated
p42/p44 (extracellular signal-regulated kinase ERK2/ERK 1) MAPK activity in baboon
(123) and rat VSMC (44). These effects were time and dose dependent, and the active

component was a lipid-based moiety. The stimulation appears to involve PKC, since
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pretreatment with phorbol ester blocked MAPK activation (123). OxLDL immune
complexes also induce ERK2 MAPK phosphorylation in THP-1 macrophage-like cells in
a time and dose dependent manner. Nuclear translocation of the phosphorylated ERK2
markedly increases after stimulation and cholesterol loading results in longer
phosphorylation times (106). However, ERK2 MAPK activation in an oxLDL-treated
human monocytic line requires scavenger receptor uptake but is independent of PKC or
G-protein activation (55).

Sustained activation of PKC is essential for long term cellular responses such as
proliferation and differentiation. OXLDL induces activation of membrane PKC in murine
macrophages. Pertussis toxin reduces oxLDL-induced growth in these cells by 50% (33,
152). OxLDL also differentially affects levels of individual PKC isoenzymes (74).
Polyinosinic acid exhibited a concentration-dependent inhibition of the oxLDL-induced
PKC activation, suggesting scavenger receptor interactions are critical to PKC activation
(48).

OxLDL and its lipid peroxidation product 4-hydroxynonenal can increase tyrosine
phosphorylation and consequent activation of several receptors (including the epidermal
growth factor receptor) and their signaling pathways (235). Increased protein tyrosine
phosphorylation is accompanied by a two-fold increase in phosphatidylinositol 3-kinase
(PI 3-kinase) activity in phorbol ester pretreated THP-1 human monocytic-like cells. PI
3-kinase phosphorylates the inositol ring of IP; and is thought to be involved in cell
proliferation. Two different PI 3-kinase inhibitors can reduce oxLDL stimulated growth
of murine macrophages by 40-50% (149). PI 3-kinase and its downstream effector, Akt,

also play a key role in cell survival (60). OxLDL has been shown to activate the PI 3-
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kinase/Akt signaling cascade in rat cultured VSMC (44). Inhibition of PI 3-kinase or Akt
partially blocked activation of p42/p44 MAPK in response to oxLDL as well. This
suggests that induction of MAPK by oxLDL is mediated in part through the activation of
the PI 3-kinase/Akt pathway (44).

Activation of phospholipase D results in the generation of phosphatidic acid,
which can elicit a wide variety of biological responses, including DNA synthesis. OxLDL
can enhance phospholipase D activation in both rabbit SMC (177) and murine
macrophages (80). In both cell types, exposure to the phosphatase inhibitor sodium
orthovanadate enhances oxLDL-mediated phospholipase D activation, but pretreatment
with the tyrosine kinase inhibitor genistein attenuates the effect (177). OxLDL-induced
phospholipase D activation is independent of PKC and Ca®" in both cell types. In murine
macrophages, pertussis toxin decreases phospholipase D activation in response to

oxLDL, while PAF receptor antagonists cause inhibition (80).

1.3.6 Future directions

While ample evidence exists to support the contention that oxLDL promotes a
proliferative response in a variety of cell types, several issues have yet to be clarified.
The first issue concerns whether oxLDL is a mitogen itself, or whether it acts by
increasing sensitivity to other mitogens. The presence of other mitogens in the media can
be eliminated by using serum-deprived cells and changing the media every 24 hours in
order to prevent a response to oxLDL~induced growth factor or cytokine release.

Experiments from our own laboratory under these conditions resulted in a significant
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increase in the number of VSMC, suggesting that oxLDL has mitogenic properties in and
of itself.

A second issue concerns the component(s) of oxLDL responsible for the
mitogenic effects. Several studies have isolated components of oxLDL associated with
cell growth. For example, Heery et al. (93) found that PAF-like oxidized phospholipids
were responsible for oxLDL-induced growth in bovine and rat VSMC. However, Martens
ot al. (148) identified modified apoB100 as the active mitogenic component of 0xLDL in
their experiments using murine macrophages. Other studies point to lipid peroxidation
products and other components of the oxLLDL molecule as capable of inducing specific
effects, such as release of VEGF (199) or activation of MAPK (123). The results of these
experiments are difficult to interpret given the diversity in experimental conditions (cell
type, method and extent of LDL oxidation, concentration of oxLDL in the media,
duration of exposure, etc.).

The final issue to be addressed concerns the signal transduction pathway
employed by oxLDL in generating the proliferative response. It would appear that the
effects of oxLDL are mediated both by interaction with cell surface receptors and
signaling mechanisms initiated by components of oxLDL following internalization. A
number of studies have investigated the participation of specific enzymes (e.g. MAPK,
PKC, PI 3-kinase), second messengers (e.g. Ca’*, reactive oxygen intermediates), growth
factors (e.g. GM-CSF) and receptors (e.g. scavenger receptor, FGF receptor). Again, it is
difficult to draw conclusions given the wide variety of models used. While no enzymatic
pathway emerges as the clear route by which oxLDL exeits its proliferative effects,

activation of any of these enzymes may result in the formation or activation of factors
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that feed into other pathways. OxLDL appears to induce a generalized cellular activation
involving multiple receptors and pathways. Cell type may determine the predominant
route by which the mitogenic response is mediated. Clearly, the growth-promoting effects
of oxLDL are consistent with its proposed role in atherosclerosis and further implicate
this lipoprotein as a critical component in atherosclerotic disease of the coronary and

carotid circulations.

1.4 The involvement of cell cycle proteins in atherosclerotic and restenotic cell

proliferation

To date there has been only limited investigation into the role of cell cycle

proteins in the pathology of vascular disease (23, 127, 175). The majority of this work
has been focused on models of restenosis. Balloon injury to arteries elicits a well-
characterized response (185). Tissue remodeling in injured arteries involves migration of
medial SMCs to the intima, followed by intimal cell proliferation and extracellular matrix
synthesis (111, 131). Of particular importance is the arrest of cell growth seen after the
initial proliferative response. The inhibition of VSMC replication may be the result of
multiple mechanisms, including p53 activation, induction of Cdk inhibitors, or the

binding of Rb to transcription factors.

1.4.1 Preclinical models
Diez-Juan et al. found that p27-*'-deficient mice fed a high cholesterol diet
remained normocholesterolemic and did not develop atherosclerotic lesions (58).

However, inactivation of one or two p27"?! alleles accelerated atherosclerosis in
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apolipoprotein E-null mice (compared with apolipoprotein E-null mice with intact alleles)
(58). This suggests that p27*"' may provide some protection against diet-induced
atherogenesis (58).

Endogenous p27°"' was downregulated immediately following balloon injury in a
porcine femoral model (238). Expression was upregulated in later phases of arterial
remodeling associated with a decline in cell proliferation and concomitant with an
increase in procollagen and TGF-p synthesis. Expression of p16 was observed shortly
after injury but was not at later time points. Constitutive expression of p27°"!, but not
pl6, was observed in control arteries (238).

In a rat model of arterial injury, an upregulation and activation of Cdk 2 and
Cyclins E and A was observed between 1 and 2 days post-injury (256). This was
correlated with PCNA expression up to 10 days post-injury, declining after 18 days. Cdk
2 and Cyclin E expression was seen in medial VSMCs 36 hours after injury, then became
undetectable in the media and confined to the luminal surface of the intima. Basal p21°"'
expression was not observed in uninjured vessels (256).

Yang et al. (265) found that termination of intimal cell growth after angioplasty in
porcine arteries was associated with the induction of endogenous p21°?!. This increase in
expression was associated with a decline in intimal cell proliferation, from one day post-
injury when less than 5% of intimal VSMCs expressed p21°P!, to three weeks post-injury
when p21°! expression was present in the majority of VSMCs. In normal, uninjured
porcine arteries, p21°P! expression was undetectable by immunostaining or Western blot
analysis (265).

A summary of therapeutic manipulation of cell cycle proteins in animal models is
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Table 2. Therapeutic manipulation of cell cycle proteins in animal models

Oligodeoxynucleotide (ODN} therapy

Gene

Cdc 2 + PCNA
Cdc 2 + PCNA
PCNA
Cdk 2
Cde 2
Cdk2+Cdc2
Cdk 2
Cdc2
Cyclin B1+ Cdc 2
Cdk 2
E2F

Viral therapy
Gene

p2 1 cipl
p27kip1
p2 Icipl
pRb
pRb
p275P! p16
p53

ODN

antisense
antisense
antisense
antisense
antisense
antisense
antisense
antisense
antisense
antisense
decoy

Vector

adenoviral
adenoviral
adenoviral
adenoviral
adenoviral
adenoviral
HV]

Species

rabbit
rat
rat
rat
rat
rat
rat
rat
rat

mouse
rat

Species

porcine
rat
rat
rat
porcine
rabbit
rabbit

Vessel

jugular vein graft
carotid artery
carotid artery
carotid artery
carotid artery
carotid artery
carotid artery
carotid artery
carotid artery
coronary artery
carotid artery

Vessel

ileofemoral artery
carotid artery
carotid artery
carotid artery
femoral artery
carotid artery
carotid artery

Neointimal inhibition

>90%

>50%
80%
60%
40%
85%
55%
47%
78%
54%
74%

Neointimal inhibition

37%
49%
46%
50%
47%
60%
80%

References: (3, 34, 35, 42, 145, 156, 167-170, 222, 236, 265, 269)
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outlined in Table 2. Overexpression of p21°P! by adenoviral gene transfer in the model
employed by Yang et al. reduced the extent of intimal hyperplasia post-angioplasty by
about 37%. The pattern of p21°"! expression was inversely related to the time course of
cellular proliferation (265). Previous studies using adenoviral vectors for p21°®! protein
have shown a 46% reduction of intimal thickening in rat arteries, with the human p21°¥!
protein expressed in >70% of medial SMC in the rat carotid artery (34).

Chen et al. (42) observed induction of endogenous p27*"*! protein in the injured
arterial wall of rat at late time points after angioplasty. Using the same model,
overexpression of p27*! by adenovirus gene transfer reduced neointima formation by
49% (42). Therefore, termination of intimal cell growth following angioplasty may
involve more than one Cdk inhibitor.

A unique strategy was employed by McArthur et al., who created a novel fusion
protein of the CKIs p27°*! and p16 (156). Introduced into the balloon-injured carotid
arteries of cholesterol-fed rabbits by adenovirus, this p27**'-p16 chimera inhibited
neointimal hyperplasia by 60% vs. a control virus (156). The chimera virus was more
effective than either of the parental genes in reducing intimal thickening (156).

Upstream regulators have also proven to be effective targets. Localized infection
of the arterial wall with an adenovirally encoded constitutively active non-
phosphorylatable form of Rb significantly reduced medial VSMC proliferation and
restenosis in both rat carotid and porcine iliac models of balloon angioplasty (35).
Transfection with a phosphorylation-competent Rb also inhibited neointimal thickening

(223).
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Several studies indicate that low dose irradiation reduced neointimal formation
after balloon injury or stenting in both rabbits and pigs, presumably by activating p53
(95, 251, 252). p53 also suppresses transcription of protooncogenes such as c-fos and c-
jun, which are frequently present at high levels during the early stages following vascular
injury (79). p53 overexpression via the hemagglutinating virus of Japan/liposome-
mediated gene transfer method reduced neointimal thickening in balloon injured rabbit
carotid arteries by 80%, growth arresting VSMCs at G1 or G2/M (269).

The expression of several genes involved in cell cycle regulation has been
successfully targeted with antisense oligonucleotides in vivo. Suppression of neointimal
thickening using this approach has been demonstrated in the rat carotid artery balloon
injury model using antisense oligonucleotides to Cyclin B1, Cdc 2, Cdk 2, and PCNA, as
well as combinations, such as Cdc 2 kinase with PCNA or Cdk 2 kinase (3, 168-170, 222,
228). Transfection into injured arteries resulted in a reduction of neointimal formation by

up to 85% (see Table 2) (168).

1.4.2 Human specimens

Expression of various cell cycle proteins in primary and restenotic human
atherectomy specimens has been assessed by immunostaining. Numerous studies indicate
little or no evidence of proliferation using PCNA as an indicator (26, 82, 183). However,
Wei et al. (256) report Cdk 2 and Cyclin E expression in PCNA-positive VSMCs in
restenotic but not primary lesions. Similarly, O’Sullivan et al. (188) found that VSMCs
within in-stent restenotic tissue expressed significantly higher levels of both Cyclins A

and E, and significantly lower levels of p27""!, relative to normal coronary arteries.

32



Another study using in-stent restenotic tissue found levels of Cyclin D1 to be correlated
with neointimal hyperplasia (in the early stages following stenting), and levels of p27*!
to be associated with later stages, when proliferation is reduced (211).

It has been shown by several groups that p53 is present in the nuclei of SMCs,
ECs, and macrophages in human atherosclerotic tissue. Ihling et al. (109) demonstrated
that pS3 often colocalized with p21°P’, suggesting a coordinated response of both
proteins. These same cells were negative for the proliferation marker Ki-67, providing
further evidence for the role of p53 and p21°*! in inhibiting cellular proliferation. Control
tissue had very low levels of p53 and p21°"' and no positive staining for Ki-67 (109). A
second study by IThling et al. found that, in plaques from patients undergoing carotid
endarterectomy, cells expressing Cyclin E were simultaneously positive for p27<*! (1 10).
Quantitative analysis revealed that upregulation of these cell cycle proteins was
associated with an upregulation of TGFS receptor 11, suggesting a link between
inflammation and cell cycle control (110).

Tanner et al. (238) observed p27-™! expression in non-replicating cells of both
control and atherosclerotic vessels. The degree of p21°*! expression was correlated with
the severity of the disease in the specimen. p16 was not observed in control or diseased
tissue (238). Braun-Dullaeus et al. (26) found that p27"! levels were significantly
decreased in both primary and in-stent restenotic lesions, relative to control aorta, internal
mammary artery and carotid artery thrombendarterectomy specimens. In this study, levels
of PCNA and Cdk 2 were low in both types of specimens, but p21°?" levels were

significantly higher in restenotic lesions compared with primary lesions (26).
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L5 Targeting the cell cycle for the treatment of vascular proliferative disease

As our understanding of the cell cycle and its role in vascular disease develops,
new treatment strategies targeting the cell cycle are emerging (20, 64, 67, 112). Because
atherosclerosis has such a long incubation period, and because the precise time of the
initial injury to the vessel is unknown, most of the treatments currently in development
are proposed for other vasculoproliferative therapeutic indications (such as in-stent
restenosis or bypass graft failure). Regardless, information gained from the study of cell
cycle inhibitors for these conditions may provide valuable insight into potential
application of this therapeutic strategy to atherosclerosis. Cell cycle inhibition may be

achieved through pharmacological agents, irradiation, or gene therapy.

1.5.1 Pharmacological agents

The development of pharmacological cell cycle inhibitors is focused on agents
that will inhibit the cell cycle (i.e. a “cytostatic” mechanism) as compared to killing the
cell (i.e. a cytotoxic mechanism). Several drugs currently on the market meet this
criterion. For example, a number of pharmacological agents already in use to treat
cardiovascular disease (such as non-steroidal anti-inflammatory drugs and statins) have
recently been found to also have anti-proliferative activity via specific effects on cell
cycle proteins (30, 184).

Another drug already in clinical use is rapamycin, a macrocyclic triene aﬁtibiotic.
It has been used as an immunosuppressant to prevent transplant rejection, but it has also
been shown to prevent proliferation of VSMC (186). Rapamycin’s antiproliferative effect

was found to be due to an increase in levels of p277!, resulting in a block in cell cycle
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progression at G1 (150). The use of rapamycin was observed to be effective in preventing
neointimal hyperplasia and reducing arteriopathy in both a porcine balloon angioplasty
model (75) and a rat femoral artery allograft model (85). A rapamycin-eluting stent was
developed and first tested in a porcine angioplasty model (237). This stent (BX
Velocity™) has since been used in several clinical trials (201, 226), including the SIRIUS
(SIRolImUS-eluting stent in de novo native coronary lesions) (172) and RAVEL
(RAndomized study with the sirolimus-eluting Velocity balloon-Expandable stent in the
treatment of patients with de novo coronary artery Lesions) (166) trials (Table 3). Thus
far the stents have proven successful in preventing restenosis at one year (100, 227).

A second cell cycle-inhibiting drug that has been used for the prevention of
restenosis is paclitaxel (Taxol). Paclitaxel promotes polymerization of microtubules,
preventing disassembly of the mitotic spindle and effectively inhibiting cell division
(214). Cells are arrested at GO/G1 and G2/M (59). This drug, which has primarily been
used in the treatment of cancer, is cytotoxic (254). In vivo local administration of
paclitaxel has been effective in preventing neointimal hyperplasia in a rat model of
balloon angioplasty (224), as well as both rabbit (61, 98) and pig (97) stent models.
Several clinical trials have demonstrated the efficacy of paclitaxel-coated stents in
humans, including the EvaLUation of pacliTaxel-Eluting Stents (ELUTES) and
TAXUS™ trials (117) (Table 3). However, it appears that there is a late “rebound”
phenomenon in these patients, after the drug in the stent has been exhausted (132, 248).
Similar to paclitaxel, docetaxel is another microtubule polymerizing agent capable of cell
cycle ihibition (76). This drug has been tested and found effective in a rabbit model of

balloon angioplasty (266).
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Losartan is an angiotensin II receptor antagonist that is administered orally for the
treatment of hypertension. Preliminary evidence suggests that it may also be useful in
preventing restenosis, however doses required to achieve this result cannot be given
orally (260). To circumvent this problem, losartan was mixed with surgical fibrin glue
and applied directly to the adventitial surface of balloon-injured porcine saphenous
arteries (164). This strategy proved effective, with neointimal area decreased by 82%
(164).

Recent drug development has focused on specific inhibitors of Cdks. Flavopiridol,
which targets the ATP-binding sites on Cdks, is one example (84). This drug is taken
orally, and has been shown to reduce neointimal formation in a rat carotid model of
balloon angioplasty (209). CVT-313 is a purine analog that inhibits Cdk 2 (29). Local
administration of this drug also reduced neointimal thickening in a rat carotid model of

balloon angioplasty (29).

1.5.2  Irradiation

The use of § or 7y radiation on newly-stented arteries is another strategy to prevent
restenosis. Also called “brachytherapy”, this treatment causes DNA damage and
subsequent upregulation of p53 (25, 216). P53 then promotes p21°?'-induced growth
arrest at G1 (25, 216). Evidence from clinical trials suggests that this therapeutic strategy
is effective for in-stent restenosis (86, 250). However, regions proximal and distal to the
stent occasionally restenose (the “candy-wrapper effect”) (4). Rates of late stage

thrombosis are also higher in these patients (51).
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Table 3. Clinical trials utilizing anti-proliferative therapy with cell cycle targets for

restenosis

Trial

Intervention

Therapy

# of
Patients

Primary
endpoint

Angiographic
restenosis (%)

RAVEL

SIRIUS

TAXUS 1

ASPECT

ELUTES

TAXUS II

TAXUS IV

PREVENT

AVAIL

Stent

Stent

Stent

Stent

Stent

Stent

Stent

CABG

Balloon
catheter

Rapamycin

Rapamycin

Paclitaxel

Paclitaxel

Paclitaxel

Paclitaxel

Paclitaxel

E2F decoy

c-myc antisense ODN

238

1100

61

177

192

536

1314

41

57

in-stent late
luminal loss by
quantitative
angiography at
12 months
cardiac death,
myocardial
infarction, or
target vessel
failure at 9
months
diameter
stenosis by
angiography at 6
months
diameter
stenosis by
angiography at 6
months

binary restenosis
rate
in-stent lesion
volume by
intravascular
ultrasound

target vessel
revascularizatio
n at 9 months
>75% stenosis
by
ultrasonography
at 12 months
diameter
stenosis by
angiography at 6
months

29

Adapted from Ferguson et al, Cell Cycle 2003;2(3):211-9.

References: (2, 117, 146, 166, 172)
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1.5.3 Gene therapy

As outlined in section 1.4.1, many different gene therapy strategies have been
employed to target the cell cycle in preclinical models of vasculoproliferative disease. To
date, however, only two have reached clinical trials in humans.

In the PREVENT study (PRoject of Ex-vivo Vein graft ENgineering via
Transfection), saphenous vein grafts were pre-treated in a pressurized solution of E2F
decoy nucleotides before implantation (146) (Table 3). These grafts showed increased
patency at one year relative to untreated grafts (146).

In the AVAIL ftrial, c-myc antisense oligonucleotides (Resten-NG®) were
delivered by balloon catheter to the site of angioplasty and stent placement (2).
Preliminary results indicate that low doses of c-mye antisense oligonucleotides were
effective in preventing restenosis in these patients (2) (Table 3).

As our understanding of the involvement of cell cycle proteins in cardiovascular
disease grows, potential new targets for gene therapy may be identified. For example, a
recent study by Gonzalez et al. (81) identified a single nucleotide polymorphism in the
human p27?! gene (-838C>A), which was associated with a significantly increased risk
of myocardial infarction. This study, which compared the genotypes of 180 patients who
had suffered an episode of myocardial infarction to 250 healthy controls, found that
carriers of the -838A polymorphism had an almost twofold risk of suffering an episode of
myocardial infarction compared to controls (81). This finding may have important

implications for future gene therapies.
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1.5.4 Future directions

Much has been learned in the last decade about the role of cell cycle proteins in
pathological cell growth. However, their participation in proliferative atherosclerotic
disease remains poorly understood. Little is known of the expression of the entire family
of cell cycle proteins in normal as well as atherosclerotic arteries, what factors regulate
their expression under normal and disease conditions, and most importantly, which
proteins change during the critical initial proliferative phase of atherosclerosis. This
knowledge will be crucial to direct therapy efficiently for restenotic and atherosclerotic
disease in the future.

To date, drug and treatment development efforts have focused on
vasculoproliferative diseases with well-characterized, local, rapid growth responses (such
as restenosis or coronary artery bypass graft failure). In contrast, atherosclerosis is a
chronic, systemic disease, and so will prove more difficult to treat effectively by any of
the strategies described. However, understanding patterns of cell cycle protein expression

and activation in atherosclerosis is a critical first step towards this goal.
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CHAPTER 2: HYPOTHESES AND OBJECTIVES

Three separate hypotheses concerning the role of cell cycle proteins in
atherosclerosis are tested in this thesis:

1. OxLDL has mitogenic properties and is capable of inducing changes in the
expression, activation, and distribution of cell cycle proteins. The objectives of this
study are:

1.1. To characterize changes in the cell cycle of cultured vascular cells in response to
oxLDL, serum and growth factors. This will be accomplished using both flow
cytometry (to track movement through the cycle) and hemacytometer counts (to
mark completion of the cycle).

1.2. To determine if exposure of cultured vascular cells to varying levels of oxLDL
induces changes in expression, activation, or distribution of cell cycle proteins.
This will be achieved using Western blotting, kinase assays, and
immunocytochemical methods.

1.3. To delineate pathways by which oxLDL mediates its effects within the cell by
investigating the role of MEK 1/2, PLC, PI 3-kinase and the scavenger receptor.
This will be accomplished using pharmacological inhibitors of these pathways, as
well as a receptor blocker.

2. The response to 0xLDL is dependent upon the metabolic state of the cell, and is
influenced by the presence of other mitogens or growth factors in the media. The

objectives of this study are:
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2.1.

2.2.

2.3.

To characterize changes in the cell cycle of cultured vascular cells in response to
oxLDL and serum in combination. This will be accomplished using both flow
cytometry (to track movement through the cycle) and hemacytometer counts (to
mark completion of the cycle).

To determine if exposure of cultured vascular cells to varying levels of oxLDL
in combination with serum induces changes in expression, activation, or
distribution of cell cycle proteins. This will be achieved using Western blot
analysis, kinase assays, and immunocytochemical methods.

To delineate pathways by which oxLDL in combination with serum mediates its
effects within the cell by investigating the role of PLC/A,, PKC, PI 3-kinase and
MAPK. This will be accomplished using pharmacological inhibitors of these

pathways.

The stimulation of vascular cell proliferation that occurs during primary

atherosclerosis is mediated by changes in the expression and activation of specific

cell cycle proteins. The objectives of this study are:

3.1.

3.2.

To compare patterns of cell cycle protein expression and activation in vascular
tissue from an animal model of atherosclerosis, using Western blot analysis and
kinase assays.

To relate the progression of atherosclerosis (as measured by plaque formation) to
changes in cell cycle protein expression and activity in aortas from an animal

model of atherosclerosis.
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3.3. To determine if non-atherosclerotic aortic tissue in an atherogenic environment
exhibits changes in cell cycle protein expression and activity, using Western blot

analysis and kinase assays.
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CHAPTER 3: METHODS

3.1 Animal protocol

Male albino New Zealand white rabbits were given free access to food and water
in the St. Boniface Research Centre animal care facility. Anaesthesia was induced by
administration of 5% halothane in 2 L/min oxygen, followed by 3% halothane in 2 L/min
oxygen by face mask. The animals were sacrificed with a dose of 1 ml/kg body weight of
10:1 {vol:vol) ratio of ketamine (100 mg/ml) to xylazine (100 mg/ml). In order to prevent
blood coagulation, 0.2 ml of sodium heparin stock (1,000 i.n./ml) was added to the
euthanasia cocktail. The rabbits received 3 ml of the euthanasia cocktail through the
marginal ear vem. Aortae from animals fed the control diet were removed immediately.
Cardiac puncture was performed on cholesterol-fed animals to obtain biood for

lipoprotein isolation. Aortae from these animals were removed after blood collection.

3.2 Cell culture

An established fibroblast cell line from human neonatal foreskin was a kind gift
from the laboratory of Dr. Michelle Alfa.

Primary cultures of VSMCs were generated by explant techniques (213). The
thoracic aorta from a male New Zealand White rabbit (2.5 to 3 kg body weight) was
isolated and cleaned of connective tissue, excess fat and adherent blood cells. The
endothelial layer was gently scraped off. The aorta was then cut into 2- to 3-mm sections
and transferred to a culture dish with growth medium. This medium consists of 20% FBS

in DMEM and 5% antibiotic-antimycotic (Gibco-BRL). The explants were incubated in a
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humidified incubator equilibrated with 5% CO, and maintained at 37°C. After initial
miigration, the aortic sections were allowed to proliferate for another 7 days before they
were transferred to a new culture dish. VSMCs from the second phase of migration were
used in our experiments. For all experiments, VSMCs from the first or second passage
were used.

Confluent cultures of human neonatal fibroblasts and rabbit VSMC were
trypsinized with trypsin-EDTA (Gibco BRL) and seeded at 500,000 cells per 100 mm x
20 mm dish. Following 24 hours in DMEM supplemented with 5% FBS, cells were
washed twice with phosphate buffered saline (PBS). The media was replaced with serum-
free DMEM supplemented with transferrin (5 pM), selenium (1 nM), ascorbate (200 puM)
and insulin (10 nM) for 6 days in order to induce growth arrest. Cells were then incubated
with this medium and 10 or 50 pg cholesterol/ml LDL or oxLDL for various time points
for up to 48 hours (for experiments involving starved cells). For experiments involving
fed cells, cells were incubated with 10 or 50 pg cholesterol/m! LDL or oxLLDL in
combination with FBS (5% for fibroblasts, 10% for VSMC) for 24 or 48 hours. LDL was
oxidized with a Fe-ADP free radical generating system. The method and the
characteristics of the minimally modified oxLDL are reported in detail elsewhere (88,
151). Typically, this preparation of oxLDL exhibits a modest increase in electrophoretic
mobility, a ~20% depletion of vitamin E, and a ~30% increase in malondialdehyde
(MDA) content (151). Cholesterol concentrations were assessed prior to oxidation and
these concentrations were used for both native LDL and oxLDL-treated groups. Protein
concentrations were unchanged throughout the course of the experiments. Cultures were

maintained at 37°C in humidified 5% CO, and medium was replaced every 24 hours,
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Freshly prepared oxLLDL was also replaced on a daily basis. Control cells were

maintained in an identical media (in the absence of oxLDL) for the same period of time.

3.2.1 Use of enzyme inhibitors and receptor blockers

For experiments involving inhibitors, cells were pretreated for 15 minutes with
either 25 M polyinosinic acid (Sigma) (121), 20 pM LY294002 (Sigma) (149), 50 uM
NCDC (Sigma) (151), 4 pM PD98059 (Calbiochem) (118), 200 nM calphostin C (Sigma)
(152), or 3 uM U73122 (Sigma) (118) before exposure to oxLDL. These concentrations

were maintained in the media for the duration of the experiments.

3.2.2 Measurement of lactate dehydrogenase (LDH) activity

To demonstrate that the concentrations of oxLDL utilized in these experiments
were not toxic, LDH release into the culture medium was assayed as an indicator of cell
damage according to the method of Bergmeyer (87). Briefly, cells treated as described
were maintained in phenol-free DMEM (Gibco BRL). Aliquots of media were collected
daily and frozen at —20°C for the assay. Frozen aliquots were thawed and 50 pl of each
sample was mixed with 100 ul of Tris buffer (1 M, pH 8.5) and 25 pl 0.1 M L-lactate
solution. After a 5 minute incubation in a 37°C water bath, 100 pl of color reagent (7.5
mM nicotinamide adenine dinucleotide (NAD), 4 mM 2-(p-iodophenyl)-3-(p-
nitrophenyl)-5-phenyltetrazolium chloride (INT), and 1.6 mM phenazine methosulphate
(PMS) solution) were added. The test tubes were mixed and incubated for another 5
minutes in a 37°C water bath, before 2.5 ml of 0.1 N hydrochloric acid was mixed into

each tube. Optical density was measured at 500 nm within 20 minutes. A blank
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containing all components of the substrate solution (replacing 11 mM oxalate and 5.4
mM EDTA for the media) was used against the samples. No significant differences were
observed in levels of LDH release between oxLDL treated cells and untreated controls
over 24 or 48 hours for either 10 or 50 pg/ml oxLLDL (data not shown). Furthermore, we
could detect no significant increases in the release of LDH after cells were incubated with

any of the drugs, either alone or in combination with oxLDL.

3.2.3 Use of growth factors and cytokines

For experiments involving growth factors, aFGF (Sigma) and bFGF (Sigma) were
used at concentrations of 50 nM and 10 nM, respectively. TGF-B1 (Sigma) was used at a
concentration of 5 nM. These concentrations were maintained in the media for the

duration of the experiments.

3.2.4 Preparation of lipoprotein-depleted serum

Lipoprotein-depleted serum (LPDS) was prepared as described by Auge et al.
(11). Briefly, serum was warmed at 56°C for 2 hours. Sodium azide was added (1 g/100
ml serum) and density was equilibrated at 1.21 g/ml with potassium bromide. The serum
was then placed into 37 ml tubes for the ultracentrifuge vertical rotor Vti50 (Beckman).
Tubes were centifuged for 16 hours at 4°C, at 40,000 rpm. The supernatant (containing
total lipoproteins) was removed, as well as half of the liquid between supernatant and
bottom of the tube (which could be contaminated by free fatty acids). The lipoprotein-
depleted serum was then dialyzed in 0.9% NaCl, 3 times with at least 40 times volume of

LPDS. The LPDS was then tested for lipoprotein or free fatty acid content.
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3.3 Plasma lipoprotein isolation and oxidation
3.3.1 Isolation

LDL (density 1.019-1.063 g/ml) was prepared by sequential ultracentrifugation of
the plasma male albino New Zealand rabbits fed a 0.5% cholesterol supplemented diet, as
described (135, 151). Blood was collected in 5 ml vacutainer tubes containing 7.5 mg
EDTA. The plasma was separated from blood cells by centrifugation at 3,000 rpm for 20
minutes at 4°C. Dithiobisnitrobenzoic acid (1.5 mM), phenylmethylsulfonyl fluoride
(PMSF) (2 mM), thimerosal (0.08 mg/ml) are added to the plasma after separation of the
blood cells to inhibit lecithin-cholesterol acyl transferase, proteolysis and bactericides,
respectively. Plasma lipoproteins were isolated by a serial ultracentrifugation technique.
Plasma was centrifuged at 38,000 rpm in a Ti70 rotor (Beckman) at 4°C. Afier 24 hours
of centrifugation, the top layer (consisting of chylomicrons (density < 0.996 g/ml), and
very low density lipoprotein (VLDL; density < 1.0063 g/ml) was removed. The density
of the remaining plasma was adjusted to 1.019 g/ml with the addition of NaCl, using the
equation: NaCl g = plasma volume x 0.11698. Low density lipoprotein (LDL; density
1.019 - 1.063 g/ml) was then isolated by centrifugation at 43,000 rpm for another 24
hours. EDTA (0.1 mM) is added throughout the isolation to prevent oxidation of LDL.
The LDL fraction is extensively dialyzed against 0.15 M NaCl, 0.1 mM EDTA (pH 7.4),
sterile filtered (0.2 um pore size) and stored at 4°C. The protein content of LDL was
determined by Lowry’s method (136) and cholesterol (free and esterified) was measured

enzymatically as described. The absence of LDL oxidation during isolation or prior to its
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use in experiments was determined by an absence of MDA reactive products (68) and

oxidized cholesterol (124).

3.3.2 Oxidative modification

The EDTA content of the native LDL was reduced prior to the oxidative
modification. LDL was oxidized with a Fe-ADP free radical generating system (88). The
Fe-ADP system will generate a variety of free radicals including superoxide anions,
hydrogen peroxide and hydroxyl radicals (88). In a typical experiment, 1 mg/ml LDL was
incubated at 37°C for 3 hours with freshly prepared 0.05 mM Fe and 0.5 mM ADP in
sterile filtered 150 mM NaCl, pH 7.4. The same concentrations of Fe and ADP added to

control cells in the absence of LDL had no effect (data not shown).

3.3.2.1 Thiobarbituric acid reactive substances (TBARS) assay

The extent of oxidation was determined by measuring MDA content (68). Briefly,
a 1 ml aliquot of 0.375% thiobarbituric acid, 15% trichloroacetic acid, and 0.25 N HCI
was added to the LDL and heated for 15 minutes at 100°C. A pink chromogen developed,
and its absorbance was measured at 535 nm. Freshly diluted malondialdehyde bis-
dimethyl acetal 1,1,3,3-tetramethoxypropane was used as a reference standard, and

thiobarbituric acid reactive substances were measured as nmol MDA/mg protein.

3.4 Cell cycle analysis by flow cytometry
Following exposure to 0, 10 or 50 ug/m! oxLDL for 2, 6, 12, 24 and 48 hours,

cells were trypsinized, fixed in ice-cold 100% ethanol, and treated with RNase A (500
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U/ml in 1.12% sodium citrate) for 15 minutes at 37°C. DNA was stained with propidium
iodide (5% solution in 1.12% sodium citrate) for 30 minutes at room temperature in the
dark. Samples were analyzed on a Becton Dickinson FacsCalibur flow cytometer. The
percentage of cells in each phase of the cell cycle was estimated using CellQuest

software.

3.5 Measurement of cell numbers
For quantification of the number of cells in culture following treatments, cells
were trypsinized and counted in a hemacytometer. For each condition and time point, a

minimum of 18 fields were counted.

3.6 Immunocytochemistry

Cells were seeded onto glass coverslips and maintained as described above. After
oxLDL treatment, cells were fixed in 50% acetone/50% methanol for 3 minutes. A
blocking solution of wash buffer (10 mM Tris pH 7.5, 100 mM NaCl, 0.1% Tween 20)
plus 10% skim milk powder was used before antibody treatments. Cells were then
immunostained with primary antibodies to Cdc 2, Cdk 2, Cdk 4, Cyclin A, Cyclin B,
Cyclin D1, p21°™', p27X"! p53 and Rb (Transduction Laboratories), Cyclin E sc-481
(Santa Cruz) and PCNA (Sigma) according to the directions of the manufacturer.
Following incubation with primary antibody for 1 hour at room temperature, coverslips
were rinsed repeatedly with wash buffer before incubation with a secondary antibody

conjugated to fluorescein isothiocyanate (FITC) (Sigma) for an additional hour at room
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temperature in the dark. Nuclear staining was done using 50 mM Hoescht No. 33258 in

PBS. Coverslips were mounted on slides using Fluorsave reagent (Calbiochem).

3.6.1 Confocal microscopy

Changes in the distribution of cell cycle proteins were observed using a Bio-Rad
600 UV-confocal microscope running COMOS 7.0a software, attached to a Nikon
Diaphot 300 with a 40x oil immersion planapochromat Fluor objective (N.A. 1.3). To
visualize the FITC fluorophore, the VHS filter block was used; the UVHS filter was used
to visualize Hoescht staining. The FITC fluorescence was obtained by exciting the cells
with a 488 nm laser line and the emission was collected at 520 nm. The Hoescht No.
33258 fluorescence was obtained by exciting the nuclei with a 351 nm laser line and the
emission was collected at 450 nm. For each experiment, cells were viewed at 3%
transmission, with black levels set at 5.2 and gain at 7.5. Images of cells were Kalman
filtered 3 times. Images were processed using Confocal Assistant 4.02. Nuclear
fluorescence was quantified using Molecular Dynamics Imagespace sofiware, v.3.2.1.
Background reactivity was checked in the presence of preimmune sera or in the absence

of primary antibody. For each experiment, multiple fields of cells were visualized.

3.7 Apoptosis assay

Apoptotic cells were detected using an ApoDETECT Annexin V-FITC Kit

(Zymed). Cells were visualized by confocal microscopy.
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3.8 Protein assay

Protein content was determined using the modified Lowry assay (136).

3.9 Preparation of cell extracts and Western blot analysis

Cells treated as described above were washed twice with PBS and lysed with SDS
lysis buffer (62.5 mM Tris-HCI [pH 7.6], 100 mM NaCl, 1% SDS, 1 mM PMSF, 21uM
leupeptin). Protein concentrations of each sample were determined using the modified
Lowry assay (136). Samples were diluted using 2x sample buffer (375 mM Tris-OH, 4%
SDS, 20% glycerol, 10% B-mercaptoethanol, 0.04% bromophenol blue, pH 8.8), and
denatured by heating to 100°C for 5 minutes. For each sample, 50 g total protein was
fractionated by SDS-PAGE (Bio-Rad Protean II system) in a gradient gel (3 - 15%) with
a 4% stacking gel for 4 hours at 550 mV, 80 mA (constant current). Running buffer
contained 0.025 mM Tris-HCI, 0.192 mM glycine, and 0.1% SDS. Gels were calibrated
using prestained molecular weight markers (Gibco BRL). Following electrophoresis, gels
were incubated in Towbin’s buffer (25 mM Tris-OH, 192 mM glycine, 20% methanol,
pH 8.3) for 15 minutes. Nitrocellulose membranes (Gibco BRL) were pre-soaked in the
same buffer prior to transfer. Transfer onto nitrocellulose membrane was performed using
a BioRad apparatus for 75 minutes at 50 V (constant voltage). Following completion of
transfer, equal loading of lanes was confirmed by staining with Ponceau S stain (Sigma)
for 5 minutes. After removing Ponceau stain with several washes using wash buffer, the
membrane was then placed in blocking buffer for an hour at room temperature on a
multi-mixer. Antibody treatments were performed according to the manufacturer’s

instructions. Primary antibodies were typically diluted in 1% blocking buffer and
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incubated with the membranes on a multi-mixer for one hour at room temperature or
overnight at 4°C. Membranes were then washed five times (15 minutes per wash) in wash
buffer and antibody reactions were detected using horseradish peroxidase-conjugated
secondary antibodies according to the manufacturer’s instructions. Secondary antibodies
were typically diluted in 1% blocking buffer and incubated with the membranes on a
multi-mixer for one hour at room temperature or overnight at 4°C. Reactions were
detected with enhanced chemiluminescent detection reagents (Pierce). Densitometry was
performed on a BioRad GS-670 Imaging Densitometer. For Western blots of rabbit tissue
samples, antibodies PCNA (Sigma), Cyclin A (Abcam), Cdk 4 (BD Transduction

Laboratories) and PARP (BD PharMingen) were used.

3.10 Assay of kinase activity

Immunoprecipitation of Cdk 4 was carried out by adding 1 ug Cdk 4 antibody
(Transduction Laboratories) to 200 pg total cell lysate, 250 pl 2x immunoprecipitation
buffer (2% Triton X-100, 300 mM NaCl, 20 mM Tris [pH 7.4], 2 mM EDTA, 2 mM
EGTA [pH 8.0], 0.4 mM sodium orthovanadate, 0.4 mM PMSF, 1% NP-40), and H,0 to
a final volume of 500 pul. The immunoprecipitation reaction was carried out overnight at
4°C with gentle rotation. The next day, 20 ul 50% protein G agarose beads (Calbiochem)
were added, and the sample was incubated at 4°C with gentle rotation for 30 minutes. The
beads were collected by centrifugation (1 minute at 7,000 rpm, 4°C) and the supernatant
was removed. The bead pellet was washed with 1x immunoprecipitation buffer,
centrifuged (4 minutes at 14,000 rpm, 4°C), and the supernatant discarded. The washing

step was repeated twice more using 1x immunoprecipitation buffer, and a final wash was
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done using kinase reaction buffer (40 mM HEPES [pH 7.4], 10 mM MgCl,, I mM DTT,
2 mM EDTA [pH 8.0]). Following the last wash, the bead pellet was resuspended in 30
pl of kinase reaction buffer plus 0.2 uCi/ul [y-**P]ATP (specific activity 3,000 Ci; 111
TBg/mM) and the kinase substrate (0.01 pg/pl GST-pRb (Santa Cruz)). The reaction was
carried out for 30 minutes at 30°C and stopped by the addition of 4x SDS-PAGE loading
buffer. Samples were then loaded onto a 10% gel and separated by SDS-PAGE. The gel
was stained with Coomassie Brilliant Blue R-250 stain to confirm equal amounts of
kinase substrate in each sample, and then destained and dried. Phosphorylated substrate
was visualized by autoradiography and quantitated by densitometry. Immunoprecipitation
reactions for Cdc 2 and Cdk 2 were carried out using an identical protocol, but with 0.2

pg/pl histone H1 (Gibco BRL) used as the kinase substrate in place of GST-pRb.

3.11 IP; assay

Cells treated as described were washed with PBS, scraped down and
homogenized. The D-myo-inositol 1,4,5-triphosphate (IP3) content of the homogenate
was measured using a radioisotopic assay kit (Amersham) according to manufacturer's

instructions.

3.12 Animal model of atherosclerosis

Male albino New Zealand white rabbits (2.5-3.0 kg) were used. These animals do
not generate atherosclerotic lesions on a normal chow diet. In order to elevate the serum
cholesterol levels and induce atherosclerotic lesions in these rabbits, a diet supplemented

with 0.5% cholesterol was fed to these animals (Purina Test Diets). Rabbits in these
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experiments were maintained on regular rabbit chow (control) or a 0.5% cholesterol diet

(treated) for 8 or 16 weeks.

3.13 Quantification of plaque in aortas

Aortas were harvested, cleaned, cut open lengthwise and into sections, and
photographed using a Nikon Coolpix 995 camera. Photographs were digitized and
amount of plaque was quantified using Molecular Dynamics Imagespace software,

v.3.2.1.

3.14 Preparation of tissue samples

Approximately 0.4 g wet weight of rabbit aortic tissue was chopped finely and
added to a tube containing 1 ml of modified RIPA buffer [50 mM Tris-HCI (pH 7.4), 1%
NP-40, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF, aprotinin 1 uM, leupeptin 1 uM,
pepstatin 1 uM]. Homogenization was performed with a Polytron Homogenizer for 1
minute. The homogenate was ultracentrifuged for 30 minutes at 100,000 xg and the
supernatant was removed. The pellet was further subjected to nuclear protein extraction
using NER (Nuclear Extraction Reagent), purchased from Pierce. 250 pl of NER was
added to each tube. The tube was vortexed for 15 seconds to resuspend the pellet, then
placed on ice for 10 minutes. The tube was vortexed again and returned to ice, repeating
this process every 10 minutes for a total of 40 minutes. The tube was then centrifuged at
16,000 xg in a microfuge for 10 minutes. The supernatant was removed and added to the

original supernatant. The combined supernatants were mixed thoroughly and assayed for
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protein concentration using the modified Lowry assay (136). All samples were kept on

ice throughout the experiments, and all centrifugations were performed at 4°C.

3.15 Data analysis

Values were calculated with standard errors of the mean (SEM). Results were
analyzed by one-way ANOVA followed by a Student-Newman-Keuls or Dunnett’s post-
hoc test. The statistics were computed with the program SigmaStat. A value of P < 0.05

was considered significant.

55



CHAPTER 4: RESULTS

4.1 Experiments using quiescent cultured vascular cells

Though the cell cycle represents the final common pathway of all mitogenic
signaling cascades, there has been no evidence to date linking oxLDL to the induction of
cell cycle proteins. Furthermore, the pattern of expression of cell cycle proteins and the
upstream signaling pathway by which they are induced in the progression of vascular
disease has not been elucidated. The purpose of the present study, therefore, was to
determine if oxLDL is capable of inducing proliferation in quiescent cells, to identify if
oxLDL is capable of altering the expression and distribution of specific cell cycle
proteins, and finally to identify the signaling pathways involved in the mitogenic

response.

4.1.1 Proliferation of vascular cells following exposure to oxLDL

The ability of oxLDL to stimulate entry of cells into the cell cycle was first
analyzed by flow cytometry (Figure 9). Cells maintained in starvation medium (no
oxLDL) for 24 hours remained at approximately 92-95% G0/G1 arrested. In contrast,
cells treated with 10 or 50 pg/ml oxLDL had substantial decreases in the proportion of
cells in GO/G1 over time. For example, after treatment with 10 pg/ml oxLDL, 91, 93, 82
and 78% of cells were in GO/G1 at 2, 6, 12 and 24 hours. After treatment with 50 pg/ml
oxLDL, 89, 91, 74 and 72% of the cells remained in G0/G1. Therefore, oxLLDL released
cells from growth arrest in a time and dose dependent manner.

The ability of oxLDL to stimulate proliferation was then assessed by total cell
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Figure 9. OxLDL stimulates cell cycle entry in quiescent fibroblasts. Cells were
maintained in serum-free media for 6 days before oxLLDL treatment. DNA
synthesis was assessed by propidium iodide staining using a FACsCalibur flow
cytometer. The proportion of cells in GO /G1 following exposure to 0, 10 or 50
rg/ml oxLDL for 24 or 48 hours is expressed as a percentage of control,
SEM.
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numbers (Figure 10). Treatment of cells with 0, 10, and 50 pg/ml oxLDL for 24 or 48
hours resulted in significant increases in the numbers of both fibroblasts and smooth
muscle cells. At least 995 cells were counted for each treatment and time point. Exposure
to 10 pg/ml oxLDL resulted in increases of 39% at both 24 and 48 hours in fibroblasts.
The same concentration of oxLDL increased VSMC numbers by 25% and 27% at 24 and
48 hours respectively. Exposure of fibroblasts to 50 pg/ml oxLDL increased cell numbers
by 59% at 24 hours and 40% at 48 hours, while VSMC numbers increased by 55% (24
hours) and 33% (48 hours) under the same conditions. Treatment of both types of cells
with native LDL did not result in the same magnitude of change in cell numbers at either
concentration or time point.

For comparative purposes, we examined the effects of exposing quiescent
fibroblasts to bFGF (data not shown). Over 24 hours of exposure, fibroblast cell numbers
increased 39.4% to 10 pg/ml oxLDL and 33.6% to 10 ng/ml bFGF. Over 48 hours of
exposure time, fibroblast cell numbers increased 38.7% to 10 pug/ml oxLDL and 86% to
10 ng/ml bFGF. Thus, oxLDL appears to possess a mitogenic activity similar to bFGF for
24 hours exposure times but does not induce as sustained a proliferative effect over 48
hours.

To evaluate the possible role of the scavenger receptor in the proliferative
mechanism of oxLDL, the scavenger receptor blocker polyinosinic acid was used. At a
concentration of 25 pg/ml, polyinosinic acid effectively inhibited the mitogenic action of
oXLDL on serum-starved fibroblasts (Figure 11). The PI 3-kinase inhibitor LY294002 (at
a concentration of 20 pg/ml) also prevented oxLDL-induced proliferation, as did the PLC

inhibitor NCDC (used at a concentration of 50 pg/ml). The MEK 1/2 inhibitor PD98059
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Figure 10. Increase in total number of cells following exposure of quiescent fibroblasts
and VSMC to oxLDL. Mean number of cells per field, as counted using a
hemacytometer, is expressed as a percentage of control, + SEM (*p<0.05).
Data represents at least 4 independent experiments. A minimum of 1046 cells
were counted per treatment. In some cases, the SEM bars are too small to
resolve on this figure,
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Figure 11. Effect of inhibitors on cell numbers in fibroblasts exposed to oxLDL. Cell
numbers are expressed as a mean per field + SEM (*p<0.05). Cells were
pretreated with inhibitors alone for 15 minutes before exposure to oxLDL in
combination with the inhibitors for 24 hours. Data represents at least 4
independent experiments. A minimum of 112 cells were counted per
treatment.
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(used at a concentration of 4 pg/ml), while effective in preventing growth in response to
10 pg/ml oxLDL, did not prevent growth in response to 50 pg/ml oxLDL. In each
experiment, cells treated with the inhibitor in the absence of oxLDL showed no evidence
of increased LDH release as compared to cells maintained in starvation medium (Figure
11).

Because the PLC signaling pathway appeared to be involved in the proliferative
action of oxLDL, we speculated that the signaling molecule IP; might also play a role.
Fibroblasts were treated with 0 or 50 ug/ml oxLDL in the presence or absence of 50
ug/ml NCDC for 24 hours. Treatment of fibroblasts with 50 pg/ml oxLDL resulted in a
significant increase in IP; levels (Figure 12). This increase was prevented by NCDC

treatment.

4.1.2  Cell cycle protein expression following exposure to oxLDL

Western blot analysis was used in order to determine if oxLDL could induce
changes in total cellular levels of cell cycle proteins. Expression of the cell cycle proteins
was examined in whole cell extracts of fibroblasts exposed to 10 and 50 pg/ml oxLDL
for 24 and 48 hours. Total cellular levels of PCNA were significantly increased at both
concentrations and time points with respect to controls (Figure 13a). Exposure to 10
pg/ml oxLDL resulted in an increase of 39% over control at 24 hours and 34% over
control at 48 hours. Higher concentrations of oxLDL caused similar effects. Surprisingly,
the expression of a cell cycle inhibitor, p27*?!, was also induced by oxLDL treatment

(Figure 13b). Exposure of cells for 24 hours to 10 and 50 ug/ml oxLDL resulted in
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Figure 12. IP; content in oxLDL-treated cells. Fibroblasts were treated with 0 or 50
ng/ml oxLDL in the presence or absence of 50 pg/ml NCDC for 24 hours.
Data represents 4 independent experiments. IP; content is expressed as
pmol/mg protein, £ SEM (*p<0.05 vs. all other treatments).
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increases in expression of 36% and 47% over control. Longer exposure times did not
change expression. Not all cell cycle proteins were affected by oxLDL treatment. No
significant changes in the expression of Cdk 4 were observed (Figure 13c).

The effects of oxLDL on both cell cycle activators and inhibitors in Figure 13
prompted us to examine other representative proteins in greater depth. We examined
Cyclin D1 and p21°¥! expression at earlier time points (6-48 hours) after exposure of
cells to oxLDL (Figure 14). These targets were chosen because of their importance in
regulating the cell cycle. Cyclin D1 is the first cyclin necessary for movement of the cells
from a growth-arrested state into the cell cycle, and p21°P' is a potent inhibitor of cell
proliferation throughout the entire cycle (83). Expression of Cyclin D1 increased over
control as early as 6 hours after exposure to 10 pg/ml oxLDL. Maximal effects were
observed at 24 hours followed by a sharp decline in expression at 48 hours. Although the
effects of oxLDL on p21°¥! expression followed a similar pattern, the induction in
expression was delayed and less pronounced. Following exposure to a higher [oxLDL}]
(50 pg/ml) for 24 hours, total cellular levels of p21°P' were also significantly increased
by 20% over control (data not shown).

Cdc 2, Cdk 2 and Cyclin B1 were difficult to detect in control cells (Figure 15).
However, by 24 and 48 hours following exposure to oxLDL, the levels of these proteins
clearly increased. Both 10 and 50 pg/ml oxLDL induced significant changes in
expression of all of these proteins. However, because of the low levels of expression in
the control cells, it was not possible for us to quantitate this increase. The results depicted

in Figure 15 are representative of several experiments (n=4).
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Figure 14. Expression of Cyclin D1 and p21°?" in quiescent fibroblasts following
exposure to oxLDL. Data is representative of at least 3 independent
experiments for each protein and time point. Densitometric comparisons of
expression in cells exposed to 50 pg/ml oxLDL for 6, 12, 24 and 48 hours are
expressed as a percentage of control, + SEM *p<0.05 indicates significant
difference from respective untreated values.
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Figure 15. Increased expression of Cdc 2, Cdk 2 and Cyclin B1 in fibroblasts following
exposure to oxLDL. 50 pg of protein was loaded in each well. Bands from
Western blots are representative of 3 independent experiments. Because
control expression was minimal, quantification via densitometric
comparisons could not be completed in a reliable fashion.
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4.1.3 Cell cycle protein distribution following exposure to oxIL.DL

Cellular distribution of cell cycle proteins was then studied in cells exposed to 10
and 50 pg/ml oxLDL for 24 and 48 hours. Translocation into the nucleus is a key step in
the activation of cyclin/cyclin-dependent kinase complexes (83). Nuclear levels of PCNA
were significantly higher than controls in fibroblasts treated with 50 pg/ml oxLLDL for 24
hours (38% over control) (Figure 16). Forty-eight hours of 10 and 50 pg/ml oxLDL
treatment elevated nuclear levels of PCNA by 92% and 124% over control, respectively
(p <0.05).

At the 24 hour time point, nuclear levels of Cyclin D1 were significantly
increased at both 10 and 50 pg/ml oxLDL, by 49% and 45% respectively as compared to
control (Figure 17). By 48 hours, levels of nuclear Cyclin D1 had risen by 119% (10
pg/ml oxLDL) and 221% (50 pg/ml oxLDL) versus control.

Similar comparisons were made for the cell cycle proteins Cde 2, Cdk 2, Cdk 4, Cyclin
A, Cyclin B1, Cyclin E, p21°"!, p275"! p53 and Rb (Table 4). Following 24 hours of
exposure to 10 pg/ml oxLDL, significant increases in nuclear levels of Cdc 2 and Cdk 4
were noted. After 48 hours of exposure to 10 pg/ml oxLDL, significant increases were

kPl Twenty-four hours of

observed in nuclear levels of all cell cycle proteins but p27
exposure to 50 ng/ml oxLDL induced significant increases in nuclear levels of every cell
cycle protein examined but Cyclin B1. Exposure to 50 pg/ml oxLDL for 48 hours
resulted in significant increases in nuclear levels of all cell cycle proteins but Cyclin B1
and Cyclin E. Therefore, these data suggest that exposure of fibroblasts to oxLDL

induces increases in nuclear levels of Cdc 2, Cdk 2, Cdk 4, Cyclin A, Cyclin B1, Cyclin

D1, Cyclin E, p21°?!, p275?! p53, PCNA and Rb.
p
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Figure 16. Increased nuclear fluorescence of PCNA in fibroblasts following 48 hours of
50 pg/ml oxLDL treatment. A) Cells treated with 0 pg/ml oxLDL stained
with primary antibody to PCNA and secondary antibody to FITC. B) Cells
treated with 0 pig/ml oxLDL stained with secondary antibody to FITC (no
primary antibody). C) Cells treated with 50 pg/ml oxLDL stained with
primary antibody to PCNA and secondary antibody to FITC. D) Cells treated
with 50 pg/ml oxLDL stained with secondary antibody to FITC (no primary
antibody). Magnification = 400x. A comparison of nuclear fluorescence in
cells exposed to 0, 10 or 50 pg/ml oxLDL for 24 or 48 hours, expressed as a
percentage of control,  SEM (*p<0.05). N=3 for each condition and time
point.
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Figure 17. Increased nuclear fluorescence of Cyclin D1 in fibroblasts following 48 hours
of 50 pg/ml oxLDL treatment. A) Cells treated with O ptg/ml oxL.DL stained
with primary antibody to Cyclin D1 and secondary antibody to FITC. B) Cells
treated with O pg/ml oxLDL stained with secondary antibody to FITC (no
primary antibody). C) Cells treated with 50 pg/m! oxLDL stained with
primary antibody to Cyclin D1 and secondary antibody to FITC. D) Cells
treated with 50 pg/ml oxLDL stained with secondary antibody to FITC (no
primary antibody). Magnification = 400x. A comparison of nuclear
fluorescence in cells exposed to 0, 10 or 50 pg/ml oxLDL for 24 or 48 hours,
expressed as a percentage of control, + SEM (*p<0.05). N=4 for each
condition and time point.
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Table 4. Increased nuclear fluorescence of cell cycle proteins following
exposure of quiescent fibroblasts to oxLDL.

10 pg/ml oxLDL S0 pg/ml oxL.DL

24 h 48 h 24h 48 h
Cdc 2 1124£2% 131+ 2% 127 + 2% 122 + 3*
Cdk 2 101 + 4 163 + 8* 139 £ 10% 206 + 8*
Cdk 4 110+£2% 175+ 7* 110 + 2% 146 + 3%
Cyclin A 1155 201 £ 15% 174+ 9% 192+ 11%*
Cyclin B1 98 + 3 273 + 17* 96 + 1 118+2
Cyclin E 100 +2 107 £ 2% 123 + 2% 98 + 1
p21°P! 1032 248 £ 16% 128+ 4* 131 & 4%
p27KP! 99 +2 96 + 2 108 + 2% 108 + 3*
p53 95 + 3 124 + 4% 174 + 6* 111 + 4%
Rb 93+ 2 113 + 4% 112 + 3% 118 + 3%

Mean increases in nuclear fluorescence of cell cycle proteins, expressed
as a percentage of control £ SEM (*p<0.05). Results are from at least 3
independent experiments. In each experiment, a minimum of 95 cells
were counted.



4.1.4 Kinase activation following exposure to oxLDL

Although translocation of cell cycle proteins into the nucleus suggests the
activation of cyclin/cyclin-dependent kinase complexes, it is not direct proof of such
activation. We examined the Cdk 4 kinase activity following oxLDL exposure as a
representative marker of kinase activation under our experimental conditions. Exposure
of cells to 50 pg/ml oxLDL for 24 hours resulted in a significant increase of 20% in Cdk

activity in comparison to control cells (Figure 18).

71



120 1

100

fa<)
@
1

.9
[=]
1

Kinase activity (% of control)
3
1

3]
[=]
1

0 10 50
foxLDL] (pg/ml)

Figure 18. Increased kinase activity of Cdk 4 in fibroblasts following exposure to
oxLDL. Upper figure: Representative autoradiograph showing Cdk 4
activity (with GST-pRb as a substrate) in whole cell extracts from
fibroblasts treated with 0, 10 or 50 pg/ml oxLDL for 24 hours. Lower
graph: Densitometric comparison of Cdk 4 activity, expressed as a
percentage of control, SEM (*p<0.05). N=4 for each condition and time
point.
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4.2 Experiments using proliferating cultured vascular cells

Changes in the expression of a number of cell cycle proteins in the vessel wall
during atherosclerosis or restenosis have been identified and are thought to represent
critical cellular events that determine the proliferative potential of the cells during these
pathological states (42, 109, 238, 256, 265, 272). Recently, however, this hypothesis has
been challenged (78, 82, 183). Some studies report minimal evidence in favor of an
accelerated cell proliferation in plaques, despite the presence of an atherogenic
environment that would be expected to stimulate cell proliferation (82, 183). Therefore,
instead of a stimulation of cell proliferation during atherosclerosis, other plausible
mechanisms have been proposed (i.e. inhibited apoptosis) (78). It is also possible,
however, that mitogenic factors like oxLDL may not have been studied optimally in past
studies to define their proliferative potential. Previous investigations have studied the
effects of oxLDL in isolation, however, in an in vivo atherosclerotic environment,
vascular cells are exposed to oxLDL in the presence of a multitude of cytokines and
growth factors. The proliferative action of oxLDL under these circumstances has not
been defined. The purpose of the present study, therefore, was to elucidate the effects of
oxLDL on cell proliferation in the presence of a variety of growth factors and cytokines
found in serum. To obtain mechanistic insights, the effects of oxLDL on cell cycle

proteins in this atherosclerotic environment were a focus for our study.
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4.2.1 Proliferation of vascular cells following exposure to oxLDL in combination
with serum
The effect of oxLDL on entry of cells into the cell cycle was analyzed by flow cytometry
(Figure 19). Cells kept in serum-free medium for 5-6 days remained in a growth-arrested
state (90-95% in GO0/G1). The addition of serum to the medium caused these cells to
move out of GO/G1 and progress through the cell cycle. Only 31% of cells maintained in
5% FBS (no oxLDL) for 24 hours remained in G0/G1. In contrast, cells treated with 5%
FBS and 10 or 50 pg/ml oxLDL had significantly higher proportions of cells remaining
in GO/G1 over time. For example, at 24 hours, cells treated with 10 pg/m! oxLDL were
06% arrested and cells treated with 50 pg/ml oxLDL were 78% arrested. Therefore,
oxLDL inhibited the release of cells from growth arrest in a time and dose dependent
manner.

Total cell numbers were assessed to demonstrate that the effects of oxLDL
resulted in inhibited movement through the complete cell cycle. Exposure to 10 or 50
pg/ml oxLDL in combination with serum for 24 or 48 hours resulted in significant
decreases in the numbers of fibroblasts (Figure 20). To determine if this effect was cell
type-specific, VSMC were exposed to an identical experimental protocol, The same
qualitative effect was observed. In order to determine if this was specific to oxLDL,
native LDL was also tested. Treatment of both fibroblasts and VSMCs with native LDL
resulted in an increase rather than a decrease in cell number at both concentrations and
time points (Figure 20).

In order to determine if the decrease in cell numbers was due to cell death via

apoptosis, annexin V staining was evaluated in cells treated with serum and oxLDL. No
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Cell cycle entry in fibroblasts treated with serum and oxLDL. In cells

maintained as described, DNA synthesis was assessed by propidium iodide

staining using a FACsCalibur flow cytometer. The proportion of cells in
G0/G1 following exposure to 0, 10 or 50 pg/ml oxLDL is expressed as a
percentage of serum-starved control £ SEM (*p < 0.05).
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Figure 20. Decrease in total number of cells following exposure of fibroblasts and
VSMC to oxLLDL or native LDL in combination with serum. Cells were
maintained in serum-free media for 6 days before oxLDL or native LDL and
serum treatment. Data represents total number of cells as counted using a
hemacytometer, = SEM (*p < 0.05) Error bars are too small to resolve given
the large N.
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apoptotic cells were observed in either the serum-treated group in the presence or absence
of oxLDL over 48 hours, as assessed by annexin V staining (Figure 21). Conversely, cells
treated with H,O, displayed clear evidence of apoptosis, including positive staining for
annexin V.

For comparative purposes, we examined the effects of exposing quiescent
fibroblasts to growth factors (aFGF, bFGF and TGF-B1) or lipoprotein-depleted serum in
combination with oxLDL. Treatment with either bFGF or TGF-B1 in combination with
oxLDL produced a significant increase in cell number, while aFGF plus serum
diminished cell growth to an extent similar to serum (see Table 5). Lipoprotein-depleted
serum in combination with oxLDL had no effect (cell numbers increased by 6% in
combination with 10 pg/ml oxLDL, and 4% in combination with 50 pg/ml oxLDL. These
increases were not significant.)

In order to ascertain the mechanism(s) involved in oxLDL’s inhibitory effect on
cell growth, a number of pharmacological inhibitors of selected signaling pathways were
employed. The PI 3-kinase inhibitor LY294002 (used at a concentration of 20 pg/ml),
and the PKC inhibitor calphostin C (at a concentration of 200 ng/ml) both failed to
prevent the reduction in cell proliferation in response to oxLDL (Figure 22). However,
treatment with the PLC/A, inhibitor U73122 (used at a concentration of 3 pg/ml)
effectively reversed the oxLDL-induced inhibition of proliferation (Figure 20). Treatment
with U73122 also blocked growth in response to native LDL plus serum (cell numbers
were increased by 8% and 3% over control with 10 and 50 pg/ml native LDL,
respectively. These increases in cell number were not significant.) In the experiments

using LY294002, calphostin C and U73122, cells treated with the inhibitor in the absence
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Figure 21. Representative confocal images of annexin V staining in VSMC treated with:
10% serum and no oxLDL for 48 hours, 10% serum and 10 pg/ml oxLDL for
48 hours, 10% serum and 50 pg/ml oxLDL for 48 hours, and 1 mM hydrogen
peroxide for 30 minutes. Annexin V staining is indicated in green; Hoescht
staining is indicated in red. Cells were maintained in serum-free media for 6
days preceding treatment.
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Table S. Change in cell number following exposure of quiescent
fibroblasts to oxLDL in the presence of growth factors.

10 pg/ml oxLLDL S0 pg/ml oxLDL

bFGF 110 £ 6 162 + 15%
TGFB1 107 +5 145 + 5%
aFGF 93+ 4 80 + 2%

Mean changes in cell number, expressed as a percentage of
control (serum-starved cells) = SEM (*p<0.05). Results are
from at least 6 independent experiments. In each experiment,
a minimum of 60 cells were counted.
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Figure 22, Effect of inhibitors on cell numbers in fibroblasts exposed to oxLDL in the
presence of serum. Cell numbers are expressed as mean per field, + SEM (*p
<0.05). Cells were pretreated with inhibitors alone for 15 minutes, before
exposure to oXLDL in combination with serum and the inhibitors for 24 hours.
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of oxLDL showed no evidence of increased LDH release as compared to cells maintained
in starvation medium. Because U73122 has also been reported to inhibit MAP kinase, the
activation of ERK1 and ERK2 was evaluated in U73122-treated cells. Western blots of
extracts from cells treated with serum and oxLDL in combination with U73122 showed
that ERK1/ERK?2 activation (as detected using a monoclonal antibody to phospho-
p44/p42 MAP kinase) was completely abolished in U73122-treated cells relative to

controls (Figure 23).

4.2.2  Cell cycle protein expression following exposure to oxLDL in combination with

serum

Cell cycle proteins regulate the cell’s progression through the cell cycle.
Therefore, oxLDL may be inhibiting serum-induced proliferation through a specific
effect on the expression or distribution of these proteins in the cell. Expression of cell
cycle proteins was examined by Western blot analysis. At the 24 hour time point in
fibroblasts treated with serum + 10 pg/ml oxLDL (when cell numbers were reduced by
16% and the percentage of cells leaving G0/G1 was decreased by 35%), only the
expression of Cdk 4 was significantly decreased relative to control (Figure 24). In the
presence of 50 j1g/ml oxLLDL, when cell numbers were reduced by 22% and the
percentage of cells leaving GO/G1 was decreased by 47%, total cellular levels of Cdc 2,
Cdk 4, Cyclin B1 and PCNA were significantly decreased relative to controls, while
levels of Cyclin D1 were unchanged (Figure 24). By 48 hours, when cell numbers were

reduced by 20%, serum + 10 pg/ml oxLDL had no effect on the expression of any cell

cycle protein (Figure 24). After treatment with serum + 50 ug/mi oxLDL, when cell
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Figure 23. Densitometric comparison of expression of phospho-p44/p42 in serum-treated
fibroblasts following exposure to oxLDL for 24 hours, in the presence or
absence of U73122. Signal was not detectable in U73122-treated cells.
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numbers were reduced by 27%, the levels of Cdc 2, Cdk 2, Cdk 4, Cyclin B1 and PCNA
were significantly reduced relative to controls, while levels of Cyclin D1 were again

unchanged (Figure 24).

4.2.3  Cell cycle protein distribution following exposure to oxLDL in combination

with serum

Due to the seeming discrepancy between the expression of the cell cycle proteins
(Figure 24), the movement of the cells into the cycle (Figure 19) and the decrease in cell
number (Figure 20), a change in the cellular localization of these proteins was
investigated as another potential mechanism for the observed effects of oxLDL.
Representative results are shown for Cyclin D1 distribution in Figure 25. After 48 hours,
nuclear levels of Cyclin D1 were increased after serum treatment. However, this cange in
localization was inhibited by both 10 and 50 pg/ml oxLDL plus serum as compared to
serum alone (Figure 25). This effect was in stark contrast to that seen with oxLDL
treatment of cells in the absence of serum (Figure 25). Nuclear fluorescence was
quantitated over a number of experiments to obtain an objective measurement of the
redistribution of Cyclin D1. These measurements were also made for other cell cycle
proteins including Cdc 2, Cdk 2, Cdk 4, Cyclin A, Cyclin B1 and PCNA (Figure 26).
Following 24 hours of exposure to 10 pg/ml oxLDL, significant decreases in nuclear
levels of Cde 2, Cyclin A, Cyclin D1 and PCNA were noted. After 48 hours of exposure

to 10 pg/ml oxLDL, significant decreases were observed in nuclear levels of Cdk 4,

Cyclin A, Cyclin D1 and PCNA. Twenty-four hours of exposure to 50 pg/ml oxLDL

induced significant decreases in nuclear levels of Cdc 2, Cyclin D1 and Cyclin A.
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Figure 25. Representative confocal micrographs showing nuclear fluorescence of Cyclin
D1 in fibroblasts following 48 hours of: (upper panel) no oxLDL in the
presence of 5% serum, 10 pg/ml oxLDL in the presence of 5% serum, and 50
pg/ml oxLDL in the presence of 5% serum, (lower panel) no oxLDL under
starvation conditions, 10 pug/ml oxLDL under starvation conditions, 50 pg/ml
oxLDL under starvation conditions.
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Figure 26. Nuclear fluorescence of Cde 2, Cdk 2, Cdk 4, Cyclin A, Cyclin B1, Cyclin D1
and PCNA in fibroblasts exposed to serum and 0, 10 or 50 pug/ml oxLDL for
24 or 48 hours, expressed as a percentage of starved control values (first bar
on graph). Data represent mean values £ SEM (¥*p < 0.05 vs. starved control,
#p < 0.05 vs. serum-treated control). All cells were maintained in serum-free
media for 6 days preceding treatment. At least 3 independent experiments
were performed for each protein.
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Exposure to 50 pg/ml oxLDL for 48 hours resulted in significant decreases in nuclear
levels of Cde 2, Cdk 2, Cdk 4, Cyclin A, Cyclin D1, Cyclin B1 and PCNA. Therefore,
these data demonstrate that exposure of cells to oxLDL in the presence of serum results
in decreases in nuclear levels of Cyclin D1, Cdc 2, Cdk 2, Cdk 4, Cyclin A, Cyclin Bl
and PCNA. In contrast, nuclear levels of PCNA were increased in fibroblasts and VSMC

treated with native LDL and serum, though the increases (up to 6%) were not significant.

4.2.4 Kinase activity following exposure to oxLDL in combination with serum

The cytoplasmic retention of cell cycle proteins suggests that the cyclin/cyclin-
dependent kinase complexes are inactive. We directly examined Cdc 2, Cdk 2 and Cdk 4
kinase activity under our experimental conditions. Exposure of cells to 10 pg/ml oxLDL
for 24 hours resulted in a 23% decrease in Cdk 2 activity in comparison to control cells
(Figure 27), while exposure of cells to 50 ng/ml oxLLDL for 24 hours resulted in a 14 %
decrease in Cdc 2 activity. Kinase activity of Cdk 4 was unchanged in oxLDL-treated

cells as compared to controls.
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Figure 27. Decreased kinase activity of Cdc 2 and Cdk 2 in serum-treated fibroblasts
following exposure to oxLDL. Upper figure: representative autoradiographs
showing Cdc 2 activity (left) and Cdk 2 activity (right) with histone H1 as a
substrate in whole cell extracts from fibroblasts treated with 0, 10 or 50 pg/ml
oxLDL for 24 hours. Lower graphs: densitometric comparisons of Cdc 2 and

Cdk 2 activity, expressed as a percentage of control = SEM (*p < 0.05). N=3
for each condition and time point.
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4.3 Experiments using atherosclerotic rabbit vessels

Numerous studies have demonstrated that cell cycle proteins are induced in the
balloon-injured vessels of animal models of restenosis (3, 42, 168-170). However, the
information on cell proliferation in conditions of restenosis is not necessarily transferred
to a situation of primary atherosclerosis. To date there have been few comparable studies
focused on identifying cell proliferation in conditions of primary atherosclerosis and no
studies focused on the response of cell cycle proteins in a model of primary
atherosclerosis. Several studies have documented increased thymidine labeling in plaques
from atherosclerotic animals (158, 205, 229). This suggested that the plaque region was
rich in mitotic activity. More recently, Orekhov and coworkers (187) found a significant
increase in PCNA positive cells in lipid rich atherosclerotic plaques and concluded that
cell proliferation is stimulated in atherosclerosis. However, Marek et al. (147) and
Pickering et al. (193) found little evidence of cell proliferative activity using PCNA as a
marker of proliferation in the atheroma. Furthermore, others have advanced the
hypothesis that decreased cell death through apoptosis rather than increased cell
proliferation may be responsible for the growth of an atherosclerotic plaque (78). A more
comprehensive examination of the expression of several different cell cycle proteins
would be important supportive evidence that cell proliferation was increased in a primary
atherosclerotic plaque. An augmentation in the related cell cycle dependent kinase
activity would also be significant supportive evidence of mitotic activity in the plaque.

The purpose of the present study, therefore, was to determine if alterations in the
expression of cell cycle proteins and the activity of their related kinases occur in a model

of primary atherosclerosis. In addition, it was hypothesized that cell cycle protein
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expression may be more accelerated during the early stages of plaque development and
then taper off during the later stages of plaque formation in an animal model of

atherosclerosis.

4.3.1 Plaque formation in aortas of cholesterol-fed rabbits

A high cholesterol diet was employed for two different durations to induce a
moderate and a more severe atherosclerotic plaque formation in the aortae of the rabbit.
Atherosclerotic plaque formation was assessed through analysis of digital photos of the
aortas (Figure 28). A total of 59 aortas were examined. Animals fed a 0.5% cholesterol
diet for 8 or 16 weeks developed significant amounts of plaque in their aortas, compared
to animals fed a regular chow diet. Eight weeks of cholesterol feeding resulted in plaque
coverage of 36.2% of the aorta, while 16 weeks of feeding resulted in 78.8% plaque

coverage (Figure 28). No animals in the control group developed plaque in their aortas.

4.3.2  Cell cycle protein expression in aortas of cholesterol-fed rabbits

To evaluate the status of cell proliferation during the development of the plaque,
total protein lysates of aortic tissue from each treatment group were analyzed by Western
blotting for the expression of cell cycle proteins. Levels of PCNA were significantly
increased in aortas of rabbits fed the cholesterol diet. PCNA expression was increased by
43.9% after 8 weeks versus control, and by 52.0% versus control after 16 weeks of
dietary intervention (Figure 29). There was no significant difference between PCNA
levels in the 8 week aortas as compared to the 16 week aortas, Similarly, expression of

Cdk 4 and Cyclin A were also significantly increased in aortas of cholesterol-fed rabbits.
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Figure 28. Sections of rabbit aortas showing amount of plaque build-up as a function of
weeks of cholesterol feeding. From top to bottom: control, 8 weeks, 16 weeks.
Graph shows comparison of the amount of the amount of plaque in the aortas
(n= at least 12 aortas per group), expressed as a percentage of the total area, +
SEM, *p<0.05 vs. control, #p<0.05 vs. 8 weeks.
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Figure 29. Representative autoradiograms from Western blots showing PCNA, Cdk 4,
and Cyclin A expression in aortas from control, 8 week and 16 week
cholesterol-fed rabbits. 50 ug of protein was loaded in each well.
Densitometric analysis of at least n=6 autoradiograms for each protein.

Expression is shown as a percentage of control, = SEM, *p<0.05 vs. control.
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Cdk 4 levels were increased by 18.9% in 8 week aortas and 26.0% in 16 week aortas,
while Cyclin A expression was increased 57.4% at 8 weeks and 76.7% at 16 weeks
(Figure 29). There were no significant differences between expression levels at 8 and 16
weeks for either Cdk 4 or Cyclin A.

The levels of smooth muscle a-actin were also assessed by Western blotting in
total protein from the aortic tissue of rabbits from each treatment group to determine its
expression relative to that of the cell cycle proteins. Expression of smooth muscle a-actin
decreased significantly in both 8 and 16 week aortas (Figure 30). The loss of smooth
muscle o-actin may have been a result of accelerated apoptosis in smooth muscle cells in
the aortas of cholesterol-fed rabbits. Therefore, PARP (a marker for apoptosis)
expression was evaluated in protein from the aortas of animals from each treatment group
by Western blot analysis. Although PARP is a marker of early apoptosis, it is reasonable
to expect that apoptosis is a continuing process within the tissue, and that an increase in
PARP expression would be detectable were apoptosis occurring. No staining for PARP
was evident in any of the tissue samples (data not shown). This was not due to a lack of
sensitivity in the assay, because a band was present in cultured rabbit vascular smooth
muscle cells that were UV-irradiated to induce apoptosis (data not shown).

The amount of plaque differed significantly between 8 and 16 week cholesterol-
fed aortas (Figure 28). However, the entire aorta was used for the expression work. Thus,
the samples from the animals fed the diet for 8 weeks contained less plaque than the
vessels obtained from the animals fed the diet for 16 weeks. The results, therefore, could
be viewed as biased and an unfair comparison of expression within the plaque at the two

stages of atherosclerosis. It may be a more appropriate comparison to examine expression
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Figure 30. Representative autoradiogram from Western blot showing smooth muscle a-
actin expression in aortas from control, 8 week and 16 week cholesterol-fed
rabbits. The blot was also stained with Ponceau stain to show that lanes were
loaded equally. 50 pg of protein was loaded in each well.,
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levels of cell cycle proteins specifically from plaque regions in both groups to obtain a
better, unbiased analysis of cell proliferation in early and late plaque development,
without the confounding influence of the vessel that did not contain any visible plaque.
Plaque tissue was carefully dissected away from areas without plaque. This was
particularly time-consuming, difficult and generated relatively little tissue in the 8 week
aortic samples where approximately 65% of the vessel wall did not contain visible
evidence of plaque formation. Because the 16 week samples contained even less tissue
without plaque (~20%), we could not complete expression work in non-plaque tissue in
this group. The plaque and non-plaque areas of these aortas were homogenized separately
and total protein from each was used for Western blots. Expression levels of PCNA, Cdk
4 and Cyclin A were evaluated in these samples. Levels of Cyclin A were increased by
71.5% in the plaque portions of 8§ week aortas versus control (Figure 31). As expected,
Cyclin A expression was not stimulated as much in the non-plaque regions. However,
interestingly, the levels of Cyclin A in non-plaque areas of § week aortas were
significantly increased (by 36.4%) over controls. Similar qualitative effects were
observed for the other cell cycle proteins. For example, in the plaque areas PCNA
expression was elevated by 40.7% over controls and by 25.9% in non-plaque areas
(p<0.05). Levels of Cdk 4 were also significantly increased by 56.5% over control in
plaques found within 8 week aortas. Non-plaque areas had Cdk 4 levels 23.1% greater

than control (p<0.05).

4.3.3 Kinase activity in aortas of cholesterol-fed rabbits

Increased expression of cell cycle proteins would suggest that cell proliferation
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Figure 31. Representative autoradiogram from Western blot showing Cyclin A, PCNA
and Cdk 4 expression in rabbit aortas from control, and 8 week plaque and 8
week non-plaque areas from aortas of cholesterol-fed rabbits. 50 pg of protein
was loaded in each well. Densitometric analysis of autoradiograms (n=4).
Expression is shown as a percentage of control, + SEM, *p<0.05 vs. control.
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has been induced. However, in order to confirm this, the activity of cyclin dependent
kinases was examined. Activities of Cdk 4, Cdk 2 and Cdc 2 were assessed in protein
extracts from aortas of control and cholesterol-fed rabbits (Figure 32). Cdk 4 activity was
significantly increased in both 8 and 16 week aortas relative to controls (26.8% and
24.4% above control, respectively). Activity of Cdk 2 was elevated by 40.2% in 8 week
aortas, and 16.4% in 16 week aortas. Finally, Cdc 2 activity increased by 51.7% at 8
weeks and 58.7% at 16 weeks of cholesterol feeding, as compared to aortas from control
animals. Levels of activity did not differ significantly between 8 and 16 weeks in

cholesterol fed aortas for any of the cyclin dependent kinases studied.
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Figure 32. Representative autoradiograms from kinase assays showing Cdk 4, Cdk 2, and
Cdc 2 activity in rabbit aortas from control, 8 week and 16 week cholesterol-
fed. Densitometric analysis of at least n=4 autoradiograms for each kinase.

Activity is shown as a percentage of control, + SEM, *p<0.05 vs. control.
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CHAPTER 5: DISCUSSION

3.1 Oxidized low density lipoprotein stimulates cell proliferation through a general
induction of cell cycle proteins

OxLDL induced a significant increase in the total number of cells in culture, in
the absence of any other cytokines or growth factors. Therefore, this study identifies
oxLDL as a compound capable of inducing proliferation in the absence of any other
mitogenic factors. The mitogenic action of oxLDL was similar to bFGF but did not
maintain as large or as sustained a proliferative effect as bFGF. This mitogenic effect was
specific to oxidized LDL (native LDL did not have the same magnitude of effect) and
showed time and dose dependency. The effect was not dependent upon cell type, as both
fibroblasts and VSMC responded in a similar manner. We may safely conclude that
oxLDL acts as an independent mitogen, as shown by others previously (36, 149).
Although this finding is not physiologically significant, it does identify oxLDL’s
mitogenic potential.

The present investigation has also identified several components of the cellular
signaling pathway associated with the proliferative effects of oxLDL. We have identified
both cell surface and intracellular sites of action. The scavenger receptor blocker
polyinosinic acid prevented oxLDL-induced increases in cell number. This suggests that
oxLDL induces its proliferative action through an interaction with the scavenger receptor.
If so, one would suspect that the receptor stimulation would lead to activation of an
infracellular signaling pathway. Signaling pathways previously linked to the activation of

the scavenger receptor include the PI 3-kinase pathway (142) and the MAP kinase
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pathway (49). Our data would suggest that the PI 3-kinase pathway appears to be
involved in the proliferative effects of oxLDL. This is consistent with results reported
previously (149). The PLC pathway and the intracellular signaling molecule IP; also
appear to be involved. The association of oxLLDL, proliferation and PLC has not been
identified previously. However, lysophosphatidylcholine (LPC) (a component with
0oxLDL) has been identified as an activator of PLC (15). The observation that PD98059, a
selective MEK1/2 inhibitor, was less effective in blocking proliferation in response to
higher concentrations of oxLDL is somewhat surprising, given that numerous studies
have shown activation of the MAPK pathway following exposure to oxLDL (38, 55, 115,
123). However, it is possible that the inhibition by PD98059 of the MAPK pathway is
incomplete and the activation by higher concentrations of 0xLDL simply overwhelms the
inhibitory effect. Furthermore, activation of MEK 1/2 does not necessarily imply its
involvement in growth (244). Similarly, the inability of PD98059 to block oxLDL’s
mitogenic effect does not rule out the participation of other members of the MAPK
family (115).

The most important and surprising observation in the present study is that oxLDL
induced the simultaneous induction of both cell cycle activators and suppressors. In a
state where cell proliferation is stimulated, one would have expected an increased
expression of proteins responsible for the activation of the cell cycle and/or and inhibition
of cell cycle inhibitory proteins. This is the case in other conditions of rapid cell
proliferation like cancer or in development. Malignant cell growth is typically
characterized by high levels of one or more cell cycle inducers, and low levels (or a

complete absence) of functional cell cycle inhibitors (220). However, this seemingly
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contradictory situation has previously been observed in other disease states, such as liver
regeneration (5). It has been hypothesized that, by activating both inducers and inhibitors
simultaneously, the cell effectively regulates its own growth. More recently, p53 and
p21°?! (both of which would be expected to be downregulated under growth conditions)
were observed to be upregulated in quiescent VSMC stimulated with serum (161). P53
was proposed to be acting as a “growthostat” in these cells, upregulating p21°®' so as to
prevent inappropriate proliferation (161). Induction of p21°? serves to regulate the rate
of progression through G1, whereas p27*"' modulates Cdk 2 activity before and after S
phase (35). The cell cycle will proceed forward (presumably due to an imbalance of
inducers over inhibitors), but high levels of inhibitors ensure that it may be shut down
rapidly in response to changes in the cellular environment. This cooperation between cell
cycle regulators is proposed to lead to a precisely controlled type of growth (5). This
observation of a controlled proliferative response due to a generalized induction of all
cell cycle proteins is consistent with the slower, non-malignant cell growth typical of an
atherosclerotic or restenotic plaque. The time dependency that we observed is consistent
with this observation and further demonstrates that the expression of activators and
inhibitors of the cell cycle are not exactly “simultaneous™. The induction of a cell cycle
activator like Cyclin D1 occurred faster and to a greater degree than the induction of an
inhibitory protein like p21°?'. One may conclude, therefore, that the p21°®! expression
represents an adaptive response that may regulate the initial proliferative effects.

An increase in the expression of cell cycle proteins does not necessarily mean that
functional changes exist. Translocation of cell cycle proteins into the nucleus is thought

to activate cyclin/cyclin-dependent kinase complexes (83). Movement of cell cycle
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proteins into the nucleus would, therefore, represent strong indirect evidence in support
of an activation of the cell cycle. In the present study, the increases in the total levels of
these proteins, as determined by Western blot analysis, were generally accompanied by
increases in the levels of cell cycle proteins in the nucleus. Increases in the total cellular
levels of these proteins, as determined by Western blot analysis, were generally
accompanied by increases in the levels of cell cycle proteins in the nucleus. One
surprising observation obtained in the present study concerns the simultaneous induction
by oxLDL of both cell cycle inducers and suppressors. Nuclear localization of the cell
cycle inducers Cde 2, Cdk 2, Cdk 4, Cyclin A, Cyclin B1, Cyclin D1, Cyclin E and
PCNA were all significantly increased with respect to controls following oxLDL
treaiment. Direct analysis of Cdk 4 activity confirmed the hypothesis that the kinase
complexes were not only importing into the nucleus but that they were active and
associated with the proliferative event. Consistent with the expression data, the cell cycle
inhibitors p21°P!, p27""!, p53 and Rb were all found in greater concentrations in the
nucleus of the cell. These data are consistent with the hypothesis that oxLLDL is inducing
a proliferative event by increasing the expression and nuclear translocation of both
inhibitors and activators of the cell cycle.

The mechanism responsible for the movement of cell cycle proteins into the
nucleus of the cell by oxLLDL is unclear from the results of the present study. Several
possibilities exist based upon previously published reports. It may occur through a PLC
or PI 3-kinase pathway as indicated above. However, no study has yet examined the
potential for these pathways to regulate nuclear protein import. Alternatively, two other

studies have demonstrated that nuclear protein import is sensitive to oxidative reactions

102



and LPC (52, 234). LPC is a major by-product of the oxidation of LDL and has
proliferative action (33). It is possible that its entry into the cell may have altered nuclear
translocation of the cell cycle proteins. This awaits further experimentation.

In summary, oxLDL was capable of inducing proliferation in fibroblasts and
smooth muscle cells in the absence of other added mitogens. We may conclude that
oxLDL is an independent mitogenic factor. Under some conditions, oxLDL can be
cytotoxic. OxLDL was not cytotoxic under any of the conditions used in the present
study. The mitogenic effect of oxLDL occurred through an interaction of the oxLDL with
scavenger receptors on the cell surface and an augmentation of intracellular signaling
through the PI 3-kinase and PLC pathways. The stimulation was accompanied by a
significant increase in the total cellular expression of cell cycle proteins, as well as a re-
distribution of the cell cycle proteins into the nucleus of the cell. Our results provide the
first demonstration that a known atherogenic lipoprotein, oxLDL, can induce changes in
cell cycle protein distribution and expression characteristic of a controlled, adaptive
response to a chronic pathological condition. These effects may play an important role

during the early proliferative phases of atherosclerotic and restenotic vascular disease.
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5.2 Oxidized low density lipoprotein retards the growth of proliferating cells by
inhibiting translocation of cell cycle proteins

The purpose of the present study was to determine the mitogenic potential of
oxLDL when the cells were under the simultaneous mitogenic influence of other growth
factors and cytokines in serum. That oxLDL reduced, rather than amplified, the
proliferative response of cells to serum was unexpected (11, 22, 39, 273). However, the
observation that oxLDL functions to inhibit cell proliferation is not entirely without
precedent. OxLDL has been shown by Henry’s laboratory to inhibit cell proliferation by
altering the expression of mitogens (40, 41). Similarly, prostaglandin E2 has been
previously described by Yau et al. as a compound that stimulates quiescent cells and
inhibits growing ones (267). In the present study, three lines of evidence support our
observation of an inhibitory effect of oxLDL on cell proliferation. First, oxLDL reduced
the total number of serum-treated fibroblasts entering the cell cycle. Second, oxLLDL
reduced the total number of cells completing the cell cycle in serum-treated cultures.
Third, oxLDL caused a decrease in nuclear levels of cell cycle proteins in serum-treated
cells. These effects were not specific to cell type: both fibroblasts and VSMC exhibited
similar responses.

This inhibition of proliferation was not due to cell death. While oxLDL. has been
shown to induce apoptosis (22), no apoptotic cells were observed under the present
experimental conditions, nor did LDH levels increase after any experimental intervention
(data not shown). This would argue strongly against cell death by necrosis. In addition,
although oxLDL inhibited the proliferative effects of serum, cell numbers continued to

increase, although not nearly as fast as in the absence of oxLDL. The most likely
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conclusion, therefore, is that oxLDL slowed the proliferative response through an effect
on the cell cycle, not through an induction of cell death.

We focused our research, therefore, upon the cell cycle to understand the
mechanism responsible for the observed inhibition of proliferation by oxLDL. The
expression of cell cycle proteins in cells treated with oxLDL and serum was inconsistent
with the observed decreased entry into the cell cycle and reduction in cell number. For
example, expression of Cyclin D1 (required for movement out of G0/G1 into the cell
cycle) was unchanged in cells treated with all [oxLDL] and at all time points despite a
time and dose-dependent inhibition of release from growth arrest and a significant
reduction in cell numbers. In addition, although 10 pug/ml oxLDL reduced cell numbers at
24 and 48 hours by 16% and 20% respectively, the expression of only one cell cycle
protein was altered. This does not argue in favor of a strong association between cell
cycle protein expression and growth under our conditions.

Alternatively, the functional ability of the cell cycle proteins depends upon their
translocation to the nucleus. A dramatic reduction in the nuclear levels of all cell cycle
proteins was observed in cells treated with oxLDL plus serum as compared to serum
alone. All cell cycle proteins were affected, although the effects were dependent upon the
concentration of and the duration of exposure to oxLDL. Significantly, the nuclear
translocation of Cyclin D1 was consistently inhibited by 10 pg/ml oxLDL. The nuclear
import of other proteins critical for progression through the cell cycle (Cdc 2, Cdk 4,
Cyclin A, and PCNA) was also inhibited by 10 pug/ml oxLDL in a manner consistent with
growth arrest. The failure of the cell cycle proteins to enter the nucleus would necessarily

result in the formation of fewer active cyclin/cyclin-dependent kinase complexes. Cdc 2
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and Cdk 2 kinase activities were significantly reduced in cells treated with oxLDL in
combination with serum, as compared to cells treated with serum alone. Together these
data point to an inhibition in the nuclear translocation of cell cycle proteins as a key
mechanism for the attenuated proliferative effects of oxLDL.

The surprising observation that oxLDL in combination with serum results in a
diminished, rather than enhanced, proliferative response would seem to conflict with
published observations by Auge and colleagues (11). In their experiments, the
combination of oxLDL and serum produced an enhanced proliferative response in
cultured bovine aortic smooth muscle cells. In their experiments, the combination of
oxLDL and serum produced an enhanced proliferative response in cultured bovine aortic
smooth muscle cells. However, the growth promoting effects of serum are known to vary
considerably as a function of its composition. This can vary depending upon the batch
obtained and the company that produces it. Auge and co-workers have used a
lipoprotein-depleted serum (11). Thus, their serum may be different than ours not only in
its lipid composition but also in many other undefined constituents (i.e. aFGF, etc.) In
our investigations into the specific components of serum that may be interacting with
0oxLDL, we found that aFGF (but not bFGF or TGF-p1) inhibited cell growth when given
in combination with oxLDL. Interestingly, the recent findings of Ananyeva et al. (6)
suggest that oxLDL complexes with aFGF and inhibits its growth-promoting function in
vitro. Thus aFGF may be responsible, at least in part, for the diminished growth seen in
cells treated with serum plus oxLDL.

The mechanism whereby the oxLDL-mediated inhibition of nuclear translocation

occurs is unclear. However, it is possible that the MAP kinase pathway is involved.
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OxLDL can stimulate MAP kinase activity (52, 115, 123). Whereas the MAP kinase
pathway is commonly associated with cell growth (52, 115, 123), it is also clear that
chronic activation (hours) of the MAP kinase cascade results in an inhibition of DNA
synthesis, cell cycle progression and Cdk 2 activity (244). Chronic activation of MAP
kinase would be expected under our experimental conditions. MAP kinase activation can
inhibit or stimulate nuclear protein import (52, 234). This may occur through an
alteration in Ran cycling that would be expected to alter the import of any protein into the
nucleus (52). Therefore, oxLLDL-induced activation of MAP kinase would inhibit the
nuclear import of cell cycle proteins. We tested this possibility directly with the use of
drugs that inhibit MAP kinase activity. Unfortunately, both of the commonly used
blockers of the MAP kinase pathway that we employed (PD98059 and SB203580) were
cytotoxic under our extended experimental conditions (data not shown). However,
U73122 1s an effective blocker of PLC, which is known to be upstream of the MAP
kinase pathway (115). U73122 restored cell proliferation to control levels and negated
the inhibitory effects of oxLDL (Figure 22), while completely knocking out ERK1/ERK2
activity (Figure 23). Therefore, it is reasonable to argue that the oxLDL-induced
stimulation of the MAP kinase pathway (which has already been shown to inhibit DNA
synthesis (244), reduce Cdk 2 activity (244), and depress the import of marker proteins
into the nucleus (52)) was inhibited by U73122 and this resulted in a restoration of the
cellular proliferative response. We cannot discount the possibility that U73122 is
inhibiting other pathways downstream of PLC. We may conclude that the depressed cell
cycle protein translocation induced by oxLDL occurs at least in part via activation of the

MAP kinase pathway. At present it is unknown whether the effects of aFGF on oxLDL
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are mediated through the MAP kinase signaling pathway. Further investigation into this
possibility may be the subject of a future study.

The findings of this paper challenge prevailing notions about the role of oxLDL in
atherogenesis. OxLDL has been suggested to participate in the development of
atherosclerosis partly by promoting the growth of vascular cells (39, 121, 207). However,
most studies investigating proliferative activity in human atherectomy tissue have found
little evidence for active cell replication (typically <1%) (82, 183) despite the presence of
oxLDL in the vascular environment (125, 268). Clinically significant stenoses take
several decades to develop. In the complex environment in which these plaques are
formed, factors that negatively modulate the proliferative response of vascular cells (or at
least slow its progression) must come into play to explain the relatively slow cell growth
in atherosclerosis. Apoptosis may be one factor (78), but the present experiments
demonstrate that oxLDL itself can negatively modulate the response of cells under some
conditions. Its action in vivo may be far more complex than originally anticipated and
may alter dramatically dependent upon the proliferative state of the vasculature and the

mitogenic environment.
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3.3 Cell cycle protein expression and kinase activity is augmented in
atherosclerotic rabbit vessels

Proliferation of cells within the vascular wall has long been assumed to be an
important component of the atherosclerotic process (94, 207). Cell proliferation would
necessarily involve an upregulation of the components of the cell cycle machinery. The
present investigation demonstrates for the first time that both the expression of cell cycle
proteins (Figure 29) and the activity of their related kinases (Figure 32) were elevated in
the aortas of cholesterol-fed rabbits. This would strongly support the hypothesis that cell
proliferation was stimulated in the vessel wall during atherosclerosis. This conclusion
would support the work of Orekhov and co-workers (187) but is in opposition to the work
of Marek and colleagues (147) and Pickering et al. (193). Previous studies have used
PCNA as the sole marker of cell proliferation. Using PCNA as the only marker of cell
proliferation has limitations that may lead to false positive values (147). We used several
different cell cycle proteins that are induced at different points within the cell cycle as
markers of cell cycle progression. This avoids the concern that false positive results may
be obtained from cells entering and exiting the cell cycle at different times. In addition,
the measurement of kinase activity avoids any fixation or antibody artifacts associated
with PCNA (147) that may have produced inaccurate results. The activities of all of these
cell cycle kinases were elevated within the atherosclerotic vessels. This lends further
strong support to the contention that cell proliferation is stimulated within the
atherosclerotic vessel wall. The decrease in smooth muscle c-actin in both the 8 and 16
week cholesterol-fed animals (Figure 30) is also consistent with a change in the

phenotype of the vascular smooth muscle cells from a contractile state to a proliferative
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one (189, 242). Furthermore, the decreased expression of a-actin in the same tissue used
to detect increases in cell cycle protein expression demonstrates the specificity of the
changes in protein expression in the developing plaque.

In the present study, we employed the cholesterol-fed New Zealand white rabbit
as a model for primary atherosclerosis. When maintained on a 0.5% cholesterol diet,
these rabbits consistently develop plaques in their aortas and the duration of the dietary
intervention can be used to manipulate the severity of the atheroma. Eight weeks on the
0.5% cholesterol-supplemented diet resulted in moderate plaque development, and a 16
week dietary intervention induced more severe plaque formation. Our initial results using
the entire vessel to obtain cell extracts demonstrated that the expression of cell cycle
proteins was similar during the early and late stages of atherogenesis. This was
surprising. We had expected to detect augmented cell proliferation during the early stages
of atherosclerosis. However, it was possible that the results in the 8 week samples were
biased by a greater “contamination” of the vessels with tissue that did not contain any
plaque. If expression was normal in the area of the vessel that was not infiltrated by the
plaque, this would effectively dilute the values and artificially produce lower expression
values. Therefore, areas of visible plaque in 8 week aortas were separated from non-
plaque areas and analyzed independently. Expression of the cell cycle proteins was
consistently greater in the plaque than it was in the neighboring sections of the vessel that
did not contain a plaque. It was, however, similar in the plaque-containing samples from
the 8 week vessels to that found in the later stage atherosclerotic plaques in aortae from
rabbits that underwent the 16 week dietary intervention. This would suggest that cell

cycle protein expression remains relatively constant from moderate to more severe stages
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of atherosclerosis. Interestingly, non-plaque areas of early stage atherosclerotic aortas
also expressed higher levels of cell cycle protein than control samples. It would appear
that these “pre-atherosclerotic” areas may be initiating cell proliferation as a first step in
the generation of a plaque.

The mechanism responsible for the augmentation of cell proliferation during
atherosclerosis is likely complex and multi-factorial. Vascular cell proliferation has been
shown to be induced by bFGF (12), aFGF (6), insulin-like growth factor (179), vascular
endothelial growth factor ( 199), native LDL (273), oxidized LDL (33, 273),
lysophosphatidylcholine (33), adrenomedullin (113), ATP and ADP (253), via
phospholipase D (177), MAP kinase activation (122, 160), and phosphatidylinositol 3-
kinase activation (62) to identify just a few. Therefore, the mechanisms responsible for
inducing cell cycle protein expression and the related kinase activity in the present study
may be any one or more of these factors. For example, oxLDL can increase the
expression and activation of cell cycle proteins in vascular cells (273). The status of the
cell within the cell cycle may also influence the response of cell cycle proteins to
mitogens like oxidized LDL (271). The precise mechanism that induces cell cycle
expression in vivo in atherosclerosis may prove to be exceedingly difficult to separate out
and clearly identify. However, this should not detract from its significance. Strategies that
target specific cell cycle proteins have proven valuable in restenosis (47) and may be
worthy of study in primary atherosclerosis now that we are cerfain that they are altered in
the atherosclerotic lesion.

The present investigation provides the first evidence that several cell cycle

proteins have an elevated expression and activation in atherosclerotic lesions of
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cholesterol-fed rabbits. These data strengthen the contention that cell proliferation is
augmented during plaque initiation and development. This investigation also
demonstrates that the augmentation of cell proliferation is independent of the stage of the
atherosclerotic plaque. Interestingly, even the area of the atherosclerotic vessel that does
not contain visible plaque formation appears to be in the process of initiating cell
proliferation. Our results provide important new insights into the involvement of cell

cycle proteins and cell proliferation in the process of primary atherogenesis.
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CHAPTER 6: CONCLUSIONS

1. OxLDL is an independent mitogen for quiescent vascular cells, and exerts its
proliferative effect through a pathway involving the scavenger receptor, PI 3-
kinase and PLC.

2. OxLDL-stimulated proliferation in quiescent vascular cells is accompanied by
increases in the expression and nuclear translocation of cell cycle proteins, as well
as the activity of their related kinases.

3. The simultaneous upregulation of both cell cycle inducers and inhibitors in
oxLDL-treated quiescent vascular cells suggests a controlled, adaptive type of
growth consistent with the development of a primary atherosclerotic plaque.

4. OxLDL inhibited the proliferative response of vascular cells to serum, through a
mechanism involving the PLC pathway.

5. The reduced vascular cell growth in cells treated with a combination of oxL.DL
and serum was associated with a reduction in nuclear translocation of cell cycle
proteins.

6. OxLDL had differential effects on vascular cell growth in the presence of other
growth factors, suggesting that oxLDL may positively or negatively modulate
proliferation depending on the local cellular environment.

7. Cell cycle protein expression and activation were elevated in aortae from

cholesterol-fed rabbits compared with controls.
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8. The increased cell cycle protein expression and activation in atherosclerotic rabbit
aortae was associated with a decrease in SM a-actin, consistent with the change
from a contractile to synthetic VSMC phenotype during proliferation.

9. The expression and activity of cell cycle proteins did not differ between whole
aortae from animals with early and late stage atherosclerotic disease, but was
more concentrated in early stage plaques.

10. Tissue with no visible plaque in early stage atherosclerotic vessels expressed
increased levels of cell cycle proteins compared with controls, suggesting that this
tissue was “pre-atherosclerotic™ and that the initial stages of proliferation had

already begun.
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