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Abstract

This thesis presents an analysis of a chaotic and chaotic-based frequency-modulated

signals, and demonshates the possibility of their use in wideband radar imaging systems.

The signals resolution capability and sidelobe disfibution on the range-Doppler plane are

assessed by the inspection of their ambiguity surface. Four deterministic, bounded, non-

linear, iterated maps are considered. Statistically independent samples with invariant

probability density function are obtained by randomizrng the initial condition of each

map. The resulting sequences, which have broadband frequency representations, are also

used to construct wideband, stochastic frequency-modulated signals. These chaotic and

chaotic-based frequency-modulated signals are ergodic and stationary. The

autocorrelation, spectrum, ffid the ambiguity surface associated with the signals are

characterized, as well as their chaotic behaviour using the Lyapunov exponent and

correlation dimension. The ambiguity surface of an FM signal generated vta a chaotic

map with uniform sample dishibution is demonstrated to be comparable to the ambiguity

function of a random FM signat and superior to that of a linear frequency-modulated

chirp. Finally the proposed new radar signals are compared to other traditional

wavefomts used in radar systems in terms of resolution, electronic counter-

countermeasures and multipath performance.

Index Terms- Ambiguity function, chaos, frequency modulation, iterated maps, -- --'
multipath effect, radar resolution, radar signal analysis, radar signal processing.
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Chapter I

Introduction

The work presented in this thesis ofFers a novel exploration in the area of radar signal

design. Historically, the search for new signals that in some way can improve the radar

performance has never stopped. Since the introduction of radar systems, developers had

tried to come up with new techniques and concepts to improve the performance of these

systems. Independently, the field of chaos has had a tremendous explosion during the last

hundred years. The exploration of chaos and its comprehension has resulted in many new

ideas and has brougþt new enrichments to numerous applications. Surprisingly, until
recently, very liule research had been done in order to use the suitable characteristic of
chaos into the field of radar imaging. The research presented in this thesis attempts to

assist in a novel quest for the combination of the fantastic world of chaos and the exciting

world of radar.

Radar or radio detection and ranging, is an electronic device used for the detection and

location of objects of interest. All radar systems obtain information about a target by
processing the received echo of the signal that was fransmitted. The features of the

hansmitted signal vary depending on the application requirements, and they have an

effect on target detection, measurement accuracy, resolution, ambiguities, and clutter

rejection [1].
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In the design of radar systems, one of the most important goals is the achievement of
hígh resolution, that is the ability to resolve closely located targets. In this aspect it is
well known that the range resolution of a systøn is directty related to the transmitted

s ignal bandwidth ll ;p.49 61, l2l.
Chaotic signals generated by iterated non-linear maps are characteristically wideband

[3]. This special feature has brought interest into the application of chaotic signals in a

variety of areas. In the context of communication theory the main interest is in exploiting

the aperiodic nature of chaos for the hansmission of information via broadband chaotic

signals [4]. Given that the power spectral density of chaotic signals is broadband they can

also be used to achieve high-resolution radar sensing and imagng.

The term chaos is utilized in classical articles to describe the statistical nature of
physical phenomena in which ergodicity applies [5], such as in the case of Brownian

motion. When observed over a finite or infinite interval of time, chaos phenomena vary

significantly for small initial condition fluctuations and appear unpredictable [6]. More

recently, chaos has been used to describe nonlinear deterministic phenomena and has

been extendedly studied in dynamical systems [7].

Chaos can be generated via non-linear fi¡nctions that produce statistically independent

samples with invariant probability density functions. Several chaotic expressions can be

considered to generate a radar signal. Among some of the well know discrete maps that

have been studied are the logistic, Bernoulli, congruent, circular, exponent, tent,

quadratic, Hénon and sine maps. kr principle, these chaotic wideband signals generated

by such maps can be synthesi zedvialow-order elechonic oscillators and circuits [8].
For a given energy level, high resolution is typically achieved by either decreasing the

pulse duration of the fransmitted signal or by modulation of a relatively long duration

transmitted signal ll;p.4931,1g;p.22l. By feeding chaotic signals to the input of a voltage-

controlled oscillator [10], a stochastic frequency-modulated (FM) sigral with fractal

features is generated. This chaotic-based FM (CBFM) signal is an ergodic and stationary

process with initial random phase. Recent work in the area of radar signal design

demonstrated the feasibility of tr¡¡o-dimensional imaging using an FM signal with normal

phase distribution [11], pseudo-noise with normal amplitude and uniform phase

distribution ll2l, and chaotic binaryphase coding [13].
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Chaotic and CBFM signals also present advantages in the field of electronic counter-

countermeasures (ECCM). The transmitted signals posses low probability of interception

(LPf and low probability of identification (LPId) due to their random appearance,

converting the radar into a masked, hard to detect system. At the same time, the

complexity of the signals allow the radar to perform well in unfriendly environments and

are robust against interference from noise, jamming, or another radar source. Undesired

multipath effects resulting from ground reflections and other reflections from

neighbouring objects can be reduced by the exploitation of the inherent wideband nature

of CBFM signals as well. Phase errors, caused by echoes fotlowing different paths, can

be reduced by increasing the bandwidth of the transmitted FM signal [r4].
In actual radar applications the target moves such that its echo signal has both time-

delay and Doppler-frequency shifts. One of the most important characteristic of a radar

system is the ability to estimate these shift values. The ambiguity function describes the

response of a radar particular range-velocity resolution cell to a point target, as the r¿mge

and velocity vary. The ambiguity function and its relationship to resolution were

originally introduced by Woodward [15] and since then, it has become a basic tool for

signal design and analysis. It can provide a measure of the radar system ability to

accurately estimate the range and velocity of a single target. The ambiguity function

provides the basis for a systematic search of the best waveform in a particular radar

application.

This thesis proposes the use of chaotic and CBFM signals for range-Doppler imaging

and uses the ambiguity firnction to qualitatively investigate the potential of such

waveform in a radar system. Chaotic and CBFM signals are of interest in synthetic

aperture radar applications for their inherent high range and Doppler resolution

capability, potential ease of synthesis, hansmission, and elechonic cotrnter-counter-

measurements p erformance.

The following chapters offler a det¿iled research of the topics presented in this

introduction. The objective is to demonshate the feasibility of the use of chaotic signals

as a new tool for high-resolution radar imaging. Chapter 2 presents a short review of key

concepts in the topic of radar imaging and chaos. Four chaotic maps selected for this

thesis are introduced. Theoretical aspects of chaos generation and evaluation are also

l4



presented in Chapter 2. Chapter 3 sets the bases for the signals further simulation and

testing and provides the analysis of the signals under study. In Chapter 4, the ambiguity

surfaces of the signals'are obtained and the results are discussed and examined for range-

Doppler resolution. The evaluation of the multipath operation and ECCM capabilities of
one of the CBFM signals are estimated, discussed and compared to traditional radar

signals. Finally, Chapter 5 provides conclusive remarks, discusses the possible impact

that the results can have in radar imaging and outlines further possible research topics.
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Chapter 2

Overview

2.1Radar

Since the earlybeginnings of history mankind has always dreamed of the possibility of
extending the capabilities of the human senses. Men have often thought about the idea of
seeing beyond the eyesight or through the dark. Nowadays, radar systems allow us to

accomplish part of this dream. Although it cannot act as a substitute for the human eye, a

radar can extend the vision by not only sensing through conditions that are beyond human

capabilities, but also by measuring the distance of objects far beyond the human eyesight.

These characteristics have made radar systems a very important tool in many modem

applications in se4 earth, air and space. Either being used as a navigation, surveillance or

meteorological tool, radars find applications in the civilian, military or scientific field.

BasicallS radar is used for the detection and location of objects of interest. All radar

systems obtain information about an object or target by processing a received echo of the

signal that was transmitted. A simplified radar system is shown in Figure 2.1. The system

consists of a hansmitting antenna emitting electromagnetic radiation generated by a

signal transmitter, a receiving antenna and an energy receiver. A portion of the

fransmitted energy hits the target and is re-radiated in all directions. Part of this enerry is

usually captured by the radar's receiving antenna and in this manner the target is

detected. The retumed signal, or echo from a target, is a modified version of the

hansmitted waveform. Changes in the waveform are caused in part by the parameters of
the target, which ideally and in the absence of noise, can be deduced by comparing the

16



received and hansmitted signals. The echo is collected by the antenna and is processed in

the receiver with the object to estimate the target parameters.

Radar

Antenna

Antenna

Fig. 2.1. Basic radar system.

The time difference between the transmitted and received signal is denoted by the

delay c The object of the radar receiver is to determine the value ø from the received

signal r(r), given that

r(t)=s(t-r)+r7 (2-r)

where s(r) represents the hansmitted signal ffid îl is the noise added to the signal through

the total fravel time. Noisy is usually assumed to be Gaussian. A copy of s(r) should be

available for comparison with r(t) atthe receiver. A constant frequency shift or Doppler

offset of the whole signal spectrum, proportional to the target radial velocity can also be

present in the received signal.

The distance or range from the radar to the target is determined by measuring the time

taken by the waveform to travel to and from the target. Given that the electromagnetic

energy travels at the speed of light c (299,792,458 m/s), the range is

(2-2)

+
Target

R=!,2'
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The Doppler effect can be described as the frequency shift of the signal reflected by a

moving target. The sift ais given by

(2-3)

where v, is the velocity between the radar and the target and 1" is the wavelength of the

hansmitted signal carrier.

In the design of radar systems, one of the most important goals is the achievement of
hígh resolution, that is the ability to resolve closely located targets, both, in the range and

in Doppler dimensions. The abilify of the measurement system to perform target

discrimination is related to the type of transmitted waveform and the detection process

implemented at the receiver. In this regard, it is well known that the system's range

resolution, lR, is directly related to the tuansmitted sígnal bandwídth,P, U6j by the

equation

2v-7)= '
x

AR= c

2p Q-4)

At the same time the Doppler resolution can be improved by increasing the carrier

frequency c/2t inequation (2-3),and the duration of the transmitted signal ll7,p.ll.

18



2.2Radar signals

The features of the fransmitted signal vary depending on application requirements and

have an eftect on target detection, measurement accuracy, resolution, ambiguities, and

clutter rejection. Since the appearance of radar systems, many signals have been proposed

for a variety of applications presenting different advantages and drawbacks. Single pulse,

constant frequency pulses, linear frequency modulation, h¡perbolic frequency

modulation, stepped frequency modulation, random frequency modulation, quasi-random

phase modulation, random phase-shift modulatior¡ and pure random signal are examples

of the different waveforms that have been used in radar systems over the last fifty years.

If diflerent ranges or time-shifts are to be distinguishable at the receiver, the

transmitted signal must have the properfy of being as different as possible from its time-

shifted received version. Similarly, this property should be present when the received

signal has a frequency shift due to targets motion.

Notwithstanding, the sensitivity of the radar can be made to depend only on the total

energy of the received signal provided that an optimum detection procedure is selected.

The matched filter receiver provides an optimum signal to noise ratio ouþut for radar

signals in the presence of noise [18,p.1]. The receiver cross-correlates the received

waveform with a suitable time-delayed version of the transmitted signal as described by

t* (t) = !, (r) s. (r -t) dr . Q-s)

The ouþut of the radar receiver slr), will peak to a maximum when t : Ttif a target is

present at -R : c'T¡ /2.If a threshold level is established at the ouþut of the receiver, a

target is said to be detected whenever a peak in ^Slr) is large enough to cross the

threshold. This threshold level usually helps to reduce false alarms created when spurious

peaks caused by noise appear in the signal, but at the same time, it may mask true

responses from weak targets.

19



2.Z.lLtnear trM chirp

One of the most coûtmon waveform used in today's radar systems is the linear FM

chþ. The signal allows the operation of the radar with the detection capability of a long

pulse but the resolution and accuracy of a short pulse. The fransmitted signal consists of a

rectangular pulse of const¿nt amplitude A and duration T. Tlne frequency of the

fransmitted pulse increases linearly form f1 to f2 over the duration of the pulse. The

received pulses have the same linear increase in frequency. The echoes are passed

through a compression filter at the receiver. The filter introduces a time lag that decreases

linearly with frequency at the same rate as the frequency of the echoes increases. When

the echoes emerge form the filter, they have been compressed in a shorter length,

I
approximately 

þ,where 
þ =.fz-fl,butwith greater amplitude ,[Br gp.4g6].T\eshape

of the compressed pulse is proportional to

Q-6)

Unfortunately the compressed ouþut waveform contains additional sidelobes other

than the main peak which corresponds to the true target position. These sidelobes are

usually small compared to the mainlobe, but they may mask the mainlobe of another

weak target reflection present in the received signal.

Linear FM compression is a mean of improving the range accuracy of a long band-

limited pulse by a certain amount, at the expense of a loss in Doppler accuracy of the

same order. The time and frequency characteristics of the compression waveform is

shown nFigare2.2

sin(øþt)

tlpt
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ßig.2.2, LÍnear frequency modulation pulse compression waveforms.
r) Amplitude of transmitted waveform; rr) Frequency of tansmitted wavefonn; ifi)
Time waveform described by i) and ir); ouþut of the pulse-compression filter at

recetver.

2.Z.2Random and noise modulation

Noise modulation radar systems operate by hansmitting a signal modulated by a lower

frequency noise source. Because of the inherent bandwidth of this f51pe of systems, good

resolution, accuracy and unambiguous measrtrements of target range and velocity can be

achieved.
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Most noise modulated radars operate under the principle of anticonelation [19]

T

r-R(O: 1 - limr-,- Jrtrl 
.s(t-c)dc

0

(2-7)

to estimate the target range, while the ouþut of a Doppler filters bank yields the target

velocity. A typicat anticorrelation block diagram is shown in Figure 2.3. T\e system

radiates energy that is modulated in frequørcy by a random function. If a target is close to

the antenna, the hansmitted and echoed signals will have a high correlation because the

transmitter does not have sufficient time to make a grcatchange in frequency. As a result,

the received waveform has approximately the same frequency characteristics of the signal

being generated at the hansmitter. For a targetlocated at a longer Íange, the time delay of
the echo is longer and there is a higher probability of a large change in the transmitted

signal. Usually a sample of the hansmitted signal is used as the local oscillator input in a

conventional mixer. The mixer ouþut has an instantaneous frequency (IF) equal to the

instantaneous frequency difference of the transmitted and retumed signals.

Fig.2.3. Basic noise modulated radar system.

As described by Horton [19], if the random noise function lI(/) is assumed to have a

Gaussian probability dishibution and the frequency deviation characteristic of the

hansmitter is linear, the transmitted signal will have a Gaussian probability with the same

mean value. The instantaneous frequency of the frequency-modulated signal isfi + f7t¡ :
f" + KN(t), where / is the carrier frequency and K is the modulation index.

Consequently, the echo signal has an instantaneous frequency fi + flt-ò :.f" + KN(t-t)
and the instantaneous frequency difference is

ItrI_
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4: f(t) -flt - c):KN(t) - KN(rc). (2-8)

It is assumed that Áfhas a Gaussian probability distribution with zero mean. Because

the mixer does not preserve the algebraic sign of the frequency difference, the ouþut is a

one-sided Gaussian dishibution with maximum at zero. The target range is then

determined by measuring the mean W ,which is directly related to the anticorrelation

tunction [19]

Itfl' - ! fQ),,{r-n(")}. Q-e)

Systems that are modulated with a periodic signal are subject to arnbiguities for targets

whose delays are larger than the repetition period of the sensing signal. In random and

noise modulation radars, the spectrum of the transmitted signal is not a harmonic series;

consequently they are less prone to the ambiguity problem. For military purposes, noise

modulation presents excellent ECCM capabilities including LPI and LPId, which are

needed in order to select the proper ECM jamming. Civilian applications benefit of the

strong electromagnetic compatibility (EMC) of random and noise radars to discriminate

against other contaminating radar signals.

2.3 Ambiguity function

The echo from a target is a modified version of the transmitted waveform. These

modifications are due to the parameters of the target, which idealty and in the absence of
noise, can be deduced by comparing the retumed and hansmitted signals. The radar

return is assumed to be different form the transmitted signal in only:

- The time delay, which is proportional to the radial range of the target.

- A spectral Doppler offset proportional to the target radial velocity. This ofßet is
positive for a target havelling towards the radar and negative if the target is ffavelling

away from the radar.
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Strictly speaking, the assumption of constant Doppler shift is only an approximation

that is valid for radial velocities that are small compared to the propagation speed of the

transmitted energy. Additionally, the received signal is usually contaminated by noise

and the reflection is attenuated by a variety of reasons.

The ambiguity function describes the response of a system to a point target echo as the

target range and velocity vary. The ambiguity fi.mction and its relationship to resolution

were originally introduced by Woodward [20]. Since then it has become a basic tool for

signal design and analysis. In tenns of the Doppler frequency o and time-delay øof the

signal s(t),the ambiguity function surface is defined by,

lr@,u)l' = 
lj,u, 

's'(t +r). "-"" o,l' Q-t0)

where s*(r) is the complex conjugate of the bansmitted signal. The ambiguity strrface can

be viewed as a time-frequency correlation function of the signal, similar to equation (2-

5). It graphically indicates the accuracy and ambiguity afforded by the transmitted signal

in the time (i.e. target range) and Doppler (i.e. target velocity) domains. The peak value

of the function occurs at î: 0, u:0, where signals are matched, and its value is equal to

twice the signal energy. The volume under the function is also constant and equal to the

squared value of twice the signal energy. It is important to understand that t and a

represent differences in range and velocity of points to be resolved, rather than actual

ranges and velocities.

The ideal ambiguity function would consist of a single two-dimensional delta function

centered at the ori$n. This single spike eliminates any ambiguities, and its infinitesimal

thickness at the origin permits the echo delay and frequency shift to be determined

simultaneously with complete accuracy. It would also discriminate two or more targets,

no matter how closely together they are. Naturally the achievement of such an ideal

ambiguity function diagram is not possible. Feasible ambiguity surfaces are wider in their

mainlobe than a Dirac delta. This gives rise to resolution problems because the response

from two close targets can result in the inseparable fusion of their two mainlobes.

Similarty an ambiguity function with more sidelobes can result in ambiguities in
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detection and masking of weaker target responses. In general there are only three types of
ambiguity functions: the ridge, the 'bed of nails', and the thumbtack. The ridge is used

when the target velocity is unknown and is generated by processing a constant frequency

rate signal. The bed of nails is used when a specific area of the ambiguity surface is to be

free of sidelobes and is obtained by processing pulse trains. The inherent periodicity of
these signals causes the ambiguity function to present a series of peaks in the delay-

Doppler plane. The thumbtack ambiguity function is produced by processing noise-like

signals. In this case there are no ambiguities since there is only one peak in the delay-

Doppler plane, but the single peak may be too broad to satisfy the requirements of high

accuracy and resolution.

The arnbiguity surface provides the basis for a systematic search for the best waveform

for a particular radar application. Radar performance in terms of the capability to resolve

target and clutter scatterers in range and velocity dimensions can be assessed by directly

examining the ambiguity surface in the range-velocity plane. Because of its paramount

importance in the assessment of signal performance in radar systems, the ambiguity

surface has become one of the main tools for radar analysis, and its magnitude has been

calculated for a variety of radar waveforms, including periodic pulse trains 11,p.4871,

single frequency modulated pulses [21], linear FM chirp ll7,p34l,1221, step frequency

radar 1231, Gaussian random noise [24], phase coded signals 1251, and Chaotic phase

coded signals [26].
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2.4 Chaos

Chaos is a term used to describe very complex behaviour observed on otherwise simple

systems. Chaotic behaviour appe¿ìrs random and unpredictable, even though the system in

which the chaos is observed is perfectly described by a simple set of eq-uations and no

noise is present. The apparent contadiction between randomness and determinism has

made chaos a fascinating field and one of the fastest growing areas of study in recent

years.

Chaotic behaviour seems to be universal. It is present in mechanical oscillators,

elecfrical circuits, chemical reactions, lasers, heat fluids and nerve cells, to mention a

few. Even more importantl¡ the chaotic behaviour shows universal characteristics

independent of the particular system 1271, lz}l.In the field of mathematics, chaos refers

to the apparent randomness and unpredictability that occurs in non-línear determínístic

dynamícal systems.

Non-linear dynamics is concemed with the study of systems whose time evolution

equations are not linear. In general, almost all real systems are strictly non-linear, which

is one key reason why this branch of mathematics is important. The apparent randomness

in chaotic behaviour is in reality not random at all because its nature is dictated by the set

of equation describing the systern. The non-linearity is the critical requirement for a

system to present chaos. Albeit all chaotic systems are nonJinear, this does not guarantee

that all non-linear systems are chaotic. A nonlinear system may have a stable response to

a certain input, but a slight variation on the input may cause an oscillatory or even

aperiodic response in the same syston. This sensitivity to a control parameter and the

initial conditions are characteristic of chaotic systems. A prediction of the future state of
the system is impossible because a small error in the exact value of the current condition

will have a greatimpact in future states. For some parameters, the aperiodic dynamics are

independent of the initial condition and all input or initial values inhoduced to the system

will lead to an aperiodic but bounded behaviour. A dynamical system that is sensitive

dependent to inítial conditions, topologically dense set of periodic points, and

topologically transítíve is said to be chaoticl3l,l29l.
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2.4.1Chaos in iterated maps

An iterated map is the simplest display of discrete non-linear systems that can present

chaotic behaviour. The idea of using iterated maps to study chaotic phenomena was first

proposed by Henri Poincaré at the beginning of the 2}thcentury 1271.

A map associates a unique object to every point in a set. Therefore a map f : A ) B

from A to.B is a function,/ such that for every a e A, there is a unique oblectfla) e B.

An iterated map gives the value of a future state x,+r as a function of the current state x,

x n+t:.f(x r, D) (2-1t)

where the value x, is a real or complex number, the time step n:Q 1,2,...,N is an integer

number, and D is a control parameter. The set of values {x0, xr,..., r¡¿} is called orbít or

trajectory of the map. In order for an iterated map to display a chaotic behaviour, the

mapping function/has to be non-linear. In a chaotic iterated map, the behaviour of the

orbit will be extremely sensitive to the conhol parameter D and the initial condition x¿.

For some values of D in equation 2-ll, the orbit may either diverge or converge to 0 or

any other value as the number of iteration iterations grows. As the parameter value varies,

the behaviour of the orbit may present interesting characteristics, namely the

manifestation of oscillatory behaviour as the orbit is iterated. The appearance of period

d.oublíng [30,p.168] as the parameter D changes can be easily observed in a bifurcation

díagram like the one shown in Figure 2.4. T\ebifurcation diagram of a chaotic map is

obtained by selecting a random initial condition, iterating the map from a specific control

parameter and plotting the value of the frajectory points generated by the iteration

process. If the hajectory settles in a single point, the bifurcation diagram will show only

one value at that specific control parameter value. If for another parameter value the

tajectory oscillates between two points, the bifurcation diagram will show 2 points at

that parameter value. The presence of chaos in a map can be appreciated by analysing

the bifurcation diagram of the iterate map.
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The bifurcation diagram shows the succession of period doubling produced in the map

tajectory as the contol parameter D increases. If this behaviour of doubling continues,

chaos will occurs in the bands where the period is infinite, resulting in a uniform

distribution of points on the vertical axis. At this point, the aperiodic nature of the orbit is

independent of the initial condition and any initial value (except for fixed points) will
lead to the chaotic behaviour. It is important to note that chaotic behaviour does not

imply an unstable response. A chaotic orbit is always bounded, even though no point will
be ever repeated on the orbit. This kind of stability is sometimes called chaotíc stability.

The analysis of the bifrircation diagram easily reveals the appearance of chaos in a map

or any other system for which such a diagram can be computed. However, chaos can

arise in systems for which the calculation of the bifurcation diagram is not known, or

from a data series for which the generating equation is not known. Several statistics can

be used to indicate the possible presence of chaos and how chaotic a system is. The most

0.150.1
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important quantitative measures are the Lyapunov exponent and fractal dimensions.

These statistics can be heþful in distinguishing chaos from noise l7l,l}gl.

2.4.2 Ly apunov exponent

One of the main characteristics of chaotic behaviour is the great dependence on initial

conditions. A small difference in trvo close initial conditions, will give raise to a large

trajectory difference after a few iterations. This condition can be easily appreciated in the

hajectories of the chaotic map presented in Figure 2.5.

20 25
Iteration number n

Fig. 2 Divergence of close trajectories in chaotic map.

The Lyapunov exponent is a number that describes the dynamics of the orbit; it gives a

notion of the divergence of nearby hajectories, presenting a method to quantiff chaotic

behaviour. If two trajectories start off with a separation ds at time t:0, and the system is

assumed to be chaotic, then the trajectories are expected to diverge so that their

c
x

c
oq
ðo
oo
E!-

lÍ
iii
i¡iiliiÍ¡

ljl
ll :
rl !
rt Irl :¡,tl

r1

a
I
I
I
¡
¡
I
I
I
¡
I
I
I
I
t
!
I
¡
I
I
I
I
¡
I
I
I
¡
¡
I
¡
I

tI
hll
ft
al
ll
lr
!r
ll
lI
,r
,t
tt
lr
¡li!¡r
lr
lt
l¡
It

t
I
I
I
¡

--'h=o'2

- h=0.200002

t¡
úI

29



separation at time r satisfies the expression

d(t¡ - do"A' . (2-12)

The parameter Å"¡ in equation (2-12) is called the largest Lyapunov exponent, first

Lyapunov exponent, Lyapunov number or simply, Lyapunov exponent. More

specifically, for an iterated map the separation dn grows as a function of the iteration

number n. For a starting point x¿ in the hajectory and another neighboring point x6 * ethe

difflerence between the evolving trajectories when the map is iterated z times is

d n = l¡(n) @ s+ e) - f(ò (*o) l. Q-13)

If the behaviour is chaotic the difference is expected to grow exponentially with n.

Then, equation (2-13) can be written as,

d, _l_f 
@ (xo + e) - f(,\ @)l : 

"^,te

or taking the logarithms of equation(249;

Q-ts)

Letting e)0, the ratio on the right-hand side of equation (2-15) becomes the derivative

of fln) with respect to x. Additionally, by the chain rule, the derivative of ¡@l can be

written as a product of n derivatives offix) evaluated at the successive hajectory points

x0, xr, x2, ..., xn-1 4Íd therefore the Lyapunov exponent can be now written as,

Q-t4)

(2-16)o = i^rlr' &)ll.F' @)1. . .l f ' t*,-,)l)
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wheref(x):df / dx. Equation Q-16) can finallybe rewritten as

À, = *ú"f'(*o)l+ tnl/'(x, )l*...+ nl/'(*,,-,)l). (2-t7).

Hence, according to equation (2-77), the Lyapunov exponent can be calculated as the

average of the absolute value of the derivatives of the map function evaluated at the

trajectory points. If the Lyapunov exponent cannot be obtained analytically, and instead

is numerically calculated for a set of different hajectories starting from different initial

points x6, the average is called the average Lyapunov exponent t7]. In cases where only

measured data is available, the average Lyapunov exponent can be approximated from

the slope of a semi-logarithmic plot showing the logarithm of the separation of two close

values x¡ and.rr' in the data series with respect to the iteration valve n

d6: lx¡- x¡|, dt: lx¡+r - xi+rl, ..., dr: lx¡+r- xr+nl (2-18)

If )¿ is found to be positive, either analytically or numerically, the tajectories in the

map diverge, and the map is said to be sensitive to the initial conditions. In conhast, if the

value of .X¿ is zeÍo oÍ negative the trajectories do not diverge or converge respectively. A

positive Lyapunov exponent quantifies the sensitive dependence to initial conditions and

is one of the most important indicators of chaos. A one-dimensional iterated map function

has chaotic trajectories for a particular parameter if the average Lyapunov exponent is

positive for that specific parameter value.
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2.4.3 Fr actal dimensions

Unlike the measure of the embedding or Euclidean dimension of an object (i.e. the

minimum number of coordinates needed to describe the points on an object), the fractal

dimension is a non-integer quantity. It is a quantitative numerical way of evaluating or

comparing the geometric and/or probabilistic complexity of objects. The fracta|

dimension can be interpreted as the degree of inegularity of an object 129,ch.2,pp.291.

Fractal dimensions remain constant over a range of measuring scales and are often used

to quanti$r chaos. There are many fractal dimensions that can be used to quantiff chaos;

the most commonly mentioned are the similarity, capacity, Minkowski, Gyration,

HausdorËBesicovich, information, correlatioq variance and Renyi dimensions

17,p.3 411, 129,ch.21,[3 0,p.289].

Most of these fractal dimensions are related in some way and they may even have the

same numerical value for certain conditions. Most dimensions can be organized into

categories. The fust category measures only the geomehy of the chaotic atffactor.

Examples of these morphological dimensions are the símilarity dímension and the

HausdorffBesicovíh dimension. The second category not only considers geometry, but

also probabilistic and informational aspects of the object or set. They take into account

that a hajectory may visit a neighborhood more often than others. Examples of this

category are the inþrmatíon and cotelation dimensions. Other fractal dimensions are

spectral 129,ch.2,pp.991 or variance-based f29,ch.2,pp.l03l and can be classified into

separated categories.
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2.4,3.1 Correlation dimensÍon

The correlation dimensi on D¿ l7 ,p.3541is a fractal dimension based on the behaviour

of the correlation sum. It has been used to characterize chaotic attractors and has a

computational advantage because it uses the hajectory point to directly calculate the

dimension value. Like all the fractal dimensions, the correlation sum involves

measìrements at different scales. It is calculated by placing the multi-scale measuring

instument in each point in the set. For each scale, the number of points inside the scaling

aïeaaÍe counted and these values are normalizedbythe total amount of points in the data

set. The procedure is repeated at all different scales for all points. For a N points

trajectory {x0, *L ..., xg-r}, the correlation sum is defined by,

where @ represents the Heaviside step function and defines the number of points within

the distance,R¿ of the iú point. The sum can also be written in terms of relative frequency

P¡ ofpairs within the distance R¡,127,p.192f,

(2-20)

The correlation dimension Dc is then defined to as number that satisfies

c(R)= ll$^,.* Q-21)

c(&) = *fuå,å,", Ro-l *, - *, l)

D. = límlogc(&) ." &_ro log&

N

c(&) -21'
t=l

Q-te)

Q-22)

or
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In view of the fact that it is not possible to take the limit R¿10, in practice C(rR¿) is

computed for some range of ,R¿ values and the points plotted in a logJog plot. The slope

of such plot is then considered to be the correlation dimension of the object.

2.5 Investigated chaotÍc maps

There are many known non-linear equations or systems that can present chaos.

However, besides non-linearity, the complete list of requirements that guarantee chaos

has not been discovered. The four non-linear maps studied in this project are the logistic,

Bernoulli, tent, and quadratic maps. All four maps can be considered classic in the area of
chaos and have been studied in the last couple of decades.

Figures 2.6,2.8,2.10 and2.l2 show the bifurcation diagrams of the logistic, Bemoulli,

tent and quadratic maps respectively. The diagrams show the succession of period-

doubling produced as the conhol parameter D increases in each map. Chaos occurs in the

bands where the points seem to be distributed at random (i.e. infinite periodicity). For

each value of D, the system is first iterated 2000 times in order to avoid any transitory

conditions and then the successive values of x are plotted for a few hundred iterations.

Notice that for several values of D, periodic behaviour reappears within the chaotic range

for the quadratic maps.

Figures 2.7,2.9,2.11 and 2.13 show the time series of the iterated maps in the chaotic

region. The samples were generated using an arbihary initiat condition x¿. Notice that the

samples look unsystematic, similar to noise, but never exceed the appropriate bounded

range.

Table 2.1 summarizes the parameters used in the bifurcation diagram of each of the

four maps and indicates the selected parameter value for operation in the chaotic range.

The values of the contuol parameterD will be held constant throughout this thesis.
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TABLE 2.1
Chaotic maps and respective control parameter value.

Map Range Control pararneterD
Logistic |,41 4
Bernoulli 11,21 2

Tent U,zl 2

Quadratic 10,%l %

2.5.1 Logistic map

Probably the best know iterated map that presents chaotic behaviour is the logistic

equation. Originally intended to model population groqth in discrete time intervals, it has

been widely studied because of its simplicity and parametric control. The logistic

equation is fully described by

x n+I:D x r( I -x ") (2-23)

where r¿ e [0,1] and D represents the growth constant which at the same time acts as the

bifurcation control parameter. Notice that the quadratic tenn introduces the non-linear

element required for chaotic behaviour.
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2.5.2Bernoulli map

The Bernoulli shift map or modulo 2 map is given by

þr x,10
þr rn )0 (2-24)

where x¡ e l-Yz, %1. T\e map presents a discontinuity at 0, and the conditional term

introduces the non-linearity in the systøn.
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2.5.3 Tent map

The tent map has similar properties to the closely related Bemoulli map, and is defined

xn+r:ll2-Dlx"l (2-2s)

inhoduced by the absolute valuefor x¿ e l-Yr,

operator.

%l.In the tent map, the non-linearity is
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2.5.4 Quadratic map

The quadratic map is given by

xn*r:D-4(xr)2 Q-26)

where xs e l-Yz, %| \\e n¿tme quadratic obeys to the nature of the non-linearity in

equation Q-26). However the map presented in this thesis is only a special case of many

quadratic maps known to present chaotic behaviour.
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cx
ø
E
õo
èo
o
o
E
oE
o
o:õ

0.1

0

-0.'t

-0.2

-0.3

-0.4

-0.5
0

-''/"t \ _______.¡

40



0.5

0.4

0.3

0.2

0.1
c
x
o
c
oÀ
Èo
o0.F
F -0.1

4.2

4.3

4.4

-0.5 80 100 't20
Iteration number n

Fìg.2.13. Chaotic trajectory of quadratic map for D:Yz.

41



Chapter 3

Signal analysis

3.L Analysis of chaotic signals

3.L.1 Ergodicity of chaotic signals

For any discrete signal d(n) to be ergodic in the mean, the following equality must be

satisfied:

E{d(n)}: (d(n)) (3-1)

where (.) denotes a time average over the interval 0 < n1 ]/ as l/+ oo. The signal d(n) ís

ergodic in the autocorrelation if both the ensemble mean and the time mean of the

product d(fi.ï@+m) are the same, i.e.

R(m,n) :E {d(n) . î1r+*)} : ( d(fi . [@+m)). (3-2)

When a formal verification of (3-1) and (3-2) cannot be achieved, a experimental study

of the signal diskibution can be utilized [31]. Figure 3.1 shows that the histograms of the

chaotic signals described in section 2.5 approach their density regardless of whether the

histogram is obtained from either a single realization of i/samples or from the zú sample

of an experimental ensemble. The histograms on the right side of Figure 3.1 were

obtained by processing 100,000 samples of a single realization of x(n)with random initial

value.x0 using equations (2-23), (2-24), (2-25), and Q-26). The histograrns on the left
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were obtained from the 1,000th sample of 100,000 realizations of x(n) with an arbitrary

initial condition x¿ drawn from a uniform dishibution in the appropriate range. Each

initial condition was used to generate a signal x(n) of length 1,100 where the first 100

values of x(n) were dropped in order to avoid hansients and to assure that the chaotic

model had evolved on its attractor.
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The ergodicity in the mean of x is apparent in these exarnples. The experimental form

of the disfributions, and the total error between histograms are summ arizedin Table 3.1.

Ergodicity in iterated chaotic maps is a characteristic derived from the transitive

property l29l of chaos. In a chaotic map, an initial point x¿ after a sufñciently long

number of iterations will produce points within the map interval that will be arbiharily

close to any other point. As a consequence, sequences obtained from difFerent initiat

conditions *" oot very different statistically from each other in a long run. The

assumption of stationarity is also valid for chaotic sequences and can be easily verified

experimentally by comparing the ensemble dishibution of samples for different iteration

times (e.g. the histograms in the left side of figure 3.1 are identical to histograms

generated with the 350th sample of 100,000 realization).

3.L.2 Autocorrelation and power spectrum of chaotic signals

When dealing with wide sense stationary signals, the power spectral density,s(/) of the

chaotic signal is merely the Fourier Transform of the signal autocorrelation R(z). It is
possible to roughly estimate both the autocorrelation and the spectrum of the signal from

a single realization of the chaotic signal [13]. However, it is preferable to lower the

variance of the autocorrelation or spectrum by utilizing traditional approaches such as the

correlogram or periodogram [32], [33].

For this analysis, M signal realizations of each chaotic map were generated with

uniform random initial condition x6. The biased time autocorrelation R¡(m) was then

computed for each realization and the avercge bin by bin autocorrelation calculated.

Subsequently the discrete-time Fourier Transform (DFT) was performed for the resulting

ayera1eto obtain the spectral estimate

M

D(í)=DFT { IIMZ R¡@)}.
i=l

(3-3)
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Figure 3.2 shows the averaged autocorrelations of the chaotic maps on a decibel scale.

The rapid decorrelation of the chaotic signal .r is evident. h all instances, the

autocorrelation estimate approaches a delta with norrnalized sidelobe level (SLL) of the

order of NI/2.
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The power specha obtained using equation (3-3) are depicted in Figure 3.3. The specha

ar€ not surprisingly wideband, similar to those generated by white noise. Notice that the

Bemoulli map is the only sequence that does not present a completely flat spectum,

instead the density resembles a low pass signal with a slope of I/f characteristic of
pinkish noise [29] at higher frequencies. The results shown in Figures 3.2 and 3.3 are

summarized in Table 3.1.
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TABLE 3.1
Statistical and spectral properties of selected maps.

Map Distribution Histogram error Sidelobe level Power spechal density
Logistic Arc Sine
Bemoulli Uniform

Tent Uniform

Quadratic Arc Sine

l.g o/o

r.8s %
r.t|%
1.9 %

Nt/¿
Nr/2
Nr/2
Nr/2

Uniform (White)
Low pass (White-Pink)

Uniforrn (White)
Uniform (White)

3.1.3 Chaos quantification

In order to have a measurement of tre "amount of chaos" generated with the iterated

maps, a series of calculations were performed to obtain an insight on the signal's

complexity. These measurements can be used latter to classiff the signals in terms of
their chaotic properties. Figure 3.4 presents the pseudo phase space plots for the chaotic

signals. The plots are obtained by plotting adjacent points xn and xn+r iÍL a two-
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dimensional space. The plot is not a true phase space representation because only one

variable is described in the two axes. These plots show the deterministic nature of the

signals by revealing their inner sfructure. No random signal will ever present a defined

pattern in a phase space plot.

Fig. 3.4. Pseudo-phase space of chaotic sequences.
r) logistic map; ir) Bernoulli map; rïi) tent map; Ð quadratic map.

3.1.3.1 Lyapunov exponent of chaotic signals

To characterize the signal's sensitivity to initial conditions, the Lyapunov exponent

was calculated using equation (2-17).It is possible to obtain explicitly the value of the

exponent for all maps. For the parameters selected in Table 2.t all maps present a

0

5n

ls

0\¡
lll
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divergence of close trajectories described by a Lyapunov exponent of tn(2) [7,p.192]. T=lte

result is obvious in the case of the Bernoulli and tent map, where the derivative of the

map function is a constant equal to 2 (except for the discontinuity at 0), as confirmed by

the plots in Figure 3.4. The same result is not so obvious for the logistic and quadratic

maps; however it can be verified numericallyby implementing equation (z-17).

3.1.3.2 Correlation dimension of chaotÍc signals

For completeness the signals were tested from an information perspective by

comparing their fractal correlation dimension Dc. By using the definition of correlation

dimension given in equation Q-22), it was found that rcalizations of the Bernoulti and

tent maps had essentially the same conelation dimension. The logistic and quadratic

maps had similar values, which are shown in Table 3.2. Notice that maps with uniform

distribution have higher Ds dimensionality than maps that follow an arcsine distribution.

This indicates that the distribution of the points in the map is the determining factor when

computing the correlation dimension, rather than the spectral characteristics of the

sequence. Figure 3.5 illushates the log-log plots from which the correlation dimensions

were obtained. The plots present the relation between the correlation sum Ctrand radial

size.R¿, also know as volume element (VEL) 129,pp.291. The slope m of such relation is

the correlation dimension for that object. The largest the value of Ds is, the more

complex the signal is. A random signal with uniform probability density function would

have a correlation dimension close to 2 (i.e. similar to those values obtained for the

Bemoulli and tent maps). This would indicate the signal is almost as complex as a surface

[7],129,Ch.21.

TABLE 3.2
Chaos quantification in selected maps.

Vup Correlation dimension Lyapunov exponent
Ingistic

Bemoulli
Tent

Quadratic

1.8421
1.9s94
1.95t9
1.8427

ln(2)
rn(z)
ln(2)
1n(2)
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Fig. 3.5. Correlation dimension plots for selected chaotic sequences.
r) logistic map; ii) Bernoulli lrrap1' iii) tent map; iv) quadratic map.

The slope m of the relation is considered the correlation dimension.

Table 3.2 presents chaos quantification based on the Lyapunov exponent and

correlation dimension. From these results, as well as those presented in Table 3.1, is clear

that the chaotic maps can be olassified based on the probability density function of their

frajectories and the correlation dimension. This division however does not prevent the

four chaotic maps from having identical sensitivity to initial conditions. At the same time,

the level of chaos does not seem to be affected by the spectral shape of the data sequence.
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3.2 Analysis of CBFM signals

Iret x (nht) be the discrete version of a chaotic function x(r) such that

xl(n+I)Átf = x,+t: glx(nÁt)l (3-4)

fot n : 0, l, .. . where /f represents the sampling interval and g(.) is a nonlinear map with

range l-Yz,Yzl. The sequence of samples {x0, *r, ..., xn } generated by equationQ-a)

exhibits fractal behavior, as shown in section 3.1.3.2. The initial condition x¿ is a random

variable with probability density function p(xù, range l-yr, yrf, zero mean, and variance

o'2. Rattdomizing r¿ onslrrÊs that xn is a stochastic process with stationary mean. The

immediate objective is to produce an ergodic baseband FM signal with complex envelope

s(t): A exp lj2xKX(t)l

whereA is the amplitude of the signal, Kis its modulation index, and

(3-s)

x(t): x(t) dt
Tl

J
0

Notice that K.x(t) is the instant¿neous (i.e. momentary) frequencyfir) of the signal s(r).

Given that the power of the FM signal is constant, the enerry contained in the

observation interval is A2T¡, spread over the frequencyband

(3-6)

(3-7)K.x^¡r<.f < K.x^*.

Consequently, applytng equation Q-$tberange resolution is given by

/R:C-C2p 2K
(3-8)
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The discrete version of the FM signal s(t) is given by

s(nAt): A exp lj2td< X(nAt)l

: A exp (j2td<t x¡Af + j2tKxoAt) .

k=l

In order to avoid undersampling (i.e. aliasing) of the expression

sampling rate must satisff the Nyquist criterion

f'/ZK'x^^'

Substituting fr: 2K.x ** ând xmax: Vz in eqtation (3-9) yields

s(n) : A exp (j2 øl n+ j2 nxs ).
k=l

(3-e)

in equation (3-9), the

(3-10)

(3-1 1)

According to the central limit theorem 1341, X(n) evolves into a Gaussian variable with

zero mean and variance (n+Iþt.o] for increasingn. The density function of crosl2rX(n)]

converges to the arc-sine density [35]. Therefore, the density function of subsequent

samples {Re[s(n +/)],..., Re[ s(n+m)]) will have the same density form and differ only in

the variance.

Figure 3.6 presents the chaotic-based FM (CBFM) signals generated using equation (3-

11). All sequences appear erratic, as expected due to the chaotic nature of the modulated

signal (i.e. the message signal).
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Fig.3.6. CBFM signals.
i) logistic-based FM signal; ii) Bernoulli-based FM signal; ifi) tent-based FM signal;

iv) quadratic -basedFM sþal.

3.2.1 Ergodicity of CBFM signals

The generated signals Re{s(r)} were tested for ergodicity by comparing the histograms

of single and multiple signal realizations as was done for the chaotic signals in section

3.1.1. Figure 3-7 illushates the histograms of CBFM signals. The right plot shows the

histogram of 100,000 values of a single realization of Re{s(n)}. Notice that the histogram

takes on the shape of an arc-sine density. The left plots in Figure 3-7 presents the

histogram of the 100ü sample of I 00,0 00 rcalizations of Re {s(n)} .
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Clearly, the time and e,nsernble sample distibutions are similar, indicative of the

ergodicity of the signals. Table 3.3 summarizes the statistical properties of the generated

CBFM signals.

TABLE 3.3
Statistical properties of CBFM signals.

Map Points dishibution Histogram error
Logistic-based FM Arc Sine 1.59 %

Bernoulli-based FM Arc Sine 1.42%
Tent-based FM Arc Sine 1.31%

Quadratic-based FM Arc Sine 1.46 %

3.2.2 Autocorrelation and power spectrum of CBFM signals

Let consider algebraic expressions of equation (3-a) that yield statisticalty independent

samples with ergodic behavior and probability density function p(xn) : p@"-ù for n> 1

[31]. The ergodic theorem guarantees that the sequence s(n) is a stationary stochastic

process [35]. Let p(lo, ..., xn) denote the multivariate density of the set (xo, ..., xr). Then

the autocorrelation function of the CBFM signals is given by

R(m'n): E {s(n)'s.1n+*¡ ¡

: E {r4. exp li 2 td x"+ ...+x, )1. A. expl-j 2 td xo* ... * x,¡^ )f \

: A2 E { expli2tdxo* ...*x,) -j2d,xo*...+x,*, )l}

= ¿'B {expl-j2tdxn¡1*...*¡n*,n )]}

f: A2 I p(xo,...,x ,+^).expf-j2d,xn+t+ ...*xn+m )] drr.. .dxr¡^ (3-12)
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Assuming that the samples are statistically independent,

P(xo, xt,..., xn*m-L xn+n) -- P@o), p@ù, ... p(x ,+^-t), P@ ,+*) (3-13)

and equation (3-12) can be writte,n as

R(m,n):A'I p@")...p(xn+^).expl-j27r(xn+t+... + xn*^)Jdxo...dx,¡^, (3-14)

which further simplifies to

î
R(m,n): A2 I p(x ,*t) ... p(x n**).expl-j2n(x n+r * ... * x r**)l drn+t ... dxn+*. (3-15)

The above expression can be written in tenns of the characteristic function

C*(a) : ! p@o).expl-j2 tw ¡al dxø

Then by combining equations (3-15), and (3-16) evaluated at a: l,

(3-16)

(3-t7)R(m): A2 fl ck e): A2 c^ (r)

for m> 0. It is clear that A(0) :72.

Equation (3-17) relates the autocorrelation function directþ to the probability density

function of the modulated signal. The autocorrelation function R(m) canbe calculated for

the two probability density functions that apply to selected chaotic maps.
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Cøse 7. Uniform density:p(.rr): I for -Yz<xn<Yz.

This type of chaos can be generated via the Bernoulli and tent map. The characteristic

firnction C*(a) ata:1, is obtained as

Cr Q): f rect[- %,Yz].expl-j2m t aJdx¿: sinc( % 2m) (3-18)

Thus,

e (1): sinc*(n): stn^(tò / ø* (3-19)

Equation (3-19) becomes 0 for nÈ|. Therefore, the autocorrelation function for the

maps with uniform distribution is a weighted discrete delta

R(m): 'n2 a6¡. (3-20)

Notice that the discrete Fourier transform of (3-20) yields a white spectral density over

the interval [0,f].

Case 2. Arc sine density:p(x,):
%.+ *,)(/r- *,)

for -%1xn1Yz.

This represents a situation of chaos generated via a logistic or quadratic map. For this

case, it can be shown that [37]

Cúl): Jo( tr)

This yield an autoc¡rrelation of s(r) given by

(3-21)

(3-22)R(m) : ¿z I J"(n) ll^l
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where ./,(') is the ordinary Bessel function of zeroth order. From equation (3-22) it

follows that the first sidelobe has a relative magnitude of 0.3042 (-10.4 dB). Subsequent

sidelobes decay rapidly as the lag number m increases.

The autocorrelation results obtained for cases I and tr clearly showed that the behaviour

of the autocorrelation is dependent upon the choice of p(xn), which is directly related to

the selected chaotic map. In fact such selection will also afFect the shape of the

corresponding spectrum. According to Woodward's theorem [35],[38] the normalized

power spectral density of a wideband FM signal (baseband representation) can be roughly

approximated by

s(f)= 2ú'p'(2?rfl. (3-23)

An interesting corollary to (3-23) is that the autocorrelation of the wideband signal s(r)

has approximately the shape of the characteristic function of p, (x). For instance,

assuming uniform x in the range l-%, yr\, equation (3-23) predicts a uniform (white) FM

spectrum

S(f): 2rA2 (3-24)

for - lz S.f < Yr. The ínverse discrete-time Fourier Transform (IDFT) of equation (3-23)

is the delta given in expression (3-20), which is associated with an uncoffelated random

variable.

From the previous analysis one may expect that in the case of the uniform dishibution

p(x), the estimate of ^S(fl is approximately white over the band of interest and that the

corresponding autocorrelation estimate is characterized by a n¿urow mainlobe and

exkemely low sidelobes. For the arc sine distribution, the power spectral density is

unbounded near the edges of the frequency range. This may cause the estimate of ,S(l) to

exhibit high frequency spillover, which makes it susceptible to alias as the bandwidth of
the stochastic process approaches the sampling rate. This has the potential of impacting

the sidelobe structure of the autocorrelation estimate for small lml.It is preferable then to

limit the range of x, and hence its variance, so that the normalized sidelobe level of the

autocorrelation estimate approaches the theoretical calculated value lJ"Qr)1fu|.
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To v€riry the previous results, the CBFM signals were simulated and the

autocorrelation and power spectrum were calculated for each FM signal. To achieve high

range resolution, the autocorrelation of the FM signal must be chaructenzed by a sharp

mainlobe at the origin. An additional desirable feature is for the sidelobes of the

autocorrelation to be shallow and die out rapidly with increasing time lags. Figure 3.8

shows both the time autocorrelation and ensemble autocorrelation of s(n) for the four

maps. The time autocorrelation was obtained by dividing a single signal realization of

i/:1500 samples into M:50 segments, perforrning the unbiased time-autocorrelation of

each segment, and averaging the response of each delay bin (Figure 3.8, Ieft side). kr

conüast, the ensemble autocorrelation was calculated by generating the time-

autocorrelation of 50 signal rcalizations of 30 samples each, and averaging the response

for each delay bin (Figure 3.8, right side). The initial condition x6 wâs uniformly

distributed between -% and %. For the Bernoulli CBFM, the first sidelobe of the

autocorrelation estimate appeared at 201og(Mt") dB. ln contrast, for the tent CBFM the

first sidelobe was quite high at -7.5 dB. h the case of the logistic and quadratic CBFM,

the first sidelobe was at the theoretical value of -10.4 dB. For large lml, all five chaotic

signal had sidelobes of the order ofÀfr/2.
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Figure 3.9 shows the spectrum of s(z) obtained via (3-3) for each map, averaging 100

realizations of the FM speckum sampled at the Nyquist rate. As expected, the Bemoulli

CBFM spectrum is close to the ideal white case. In contrast, the tent CBFM spectual

density exhibits magnitude fluctuations over a 10 dB range. Figure 3.9 also shows that

the logistic and quadratic CBFM spectra approximate an arc sine disfribution near the

cenhe of the spectal band. Similar behaviour was observed for the tent map.
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Fig.3.9. Power spectra of CBFM signals.
r) logistic-based FM signal; ir) Bemoulli-based FM signal; fÍr) tent-based FM sigual;

ru) quadratic -based FM simal.

3.2.3 Chaos quantification in CBFM signals

Similarly to the analysis done for the chaotic signals in section 3.l.3,the CBFM signals

were tested to determine their chaotic behaviour. Figure 3.10 shows the two-dimensional

phase-space reconstruction obtained for each FM signal. Contrary to the chaotic map

signals, the CBFM signals do not present a clear pattern when reconstructed in this space,
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except for the Bemoulli CBFM. Even though the lack of pattern is expected in the plots

due to the complex relation between iterates ,S, and Sr+r ¿rs given by equation (3-11), the

result was expected to be consistent in all maps. The phase-space plot suggests that the

Bemoulli CBFM trajectories may be those of a chaotic process projected to a low

dimensional space.
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r) logistic-based FM sþal; ii) Bernoulli-based FM sigrral; rTi) tent-based FM signal;

fv) quadratic -based FM sigual.

To further investigate this possibility, a three-dimensional phase-space of the Bernoulli

and tent maps is presented in Figure 3.11. It is clear that to perfectly reconstruct the

trajectory of the CBFM, a higher dimensional space is required. By comparison,

equations Q'23) - (2-26) present a clear relation between successive points x, aÍLd xr¡1,

whereas in the CBFM signal described by equation (3-11) this relationship has the form

of

(3-2s)

u
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sn+r = exp(j2ttxn*r)s,
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which suggests that the space spaces dimension is a function of the iteration number z. In

any case the difference in the result obtained from the Bemoulli based FM signal, with

respect to the rest of the CBFM signals is remarkable.

Fig. 3.11. Three-dimensional pseudo-phase-space representation of CBFM
signals.

Ð Bernoulli-based FM signal; ii) tent-based FM signal
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3,2,3.1Lyapunov exponent of CBFM signals

To characterize the divergence of close hajectories for each CBFM signal, the

Lyapunov exponent was calculated numerically. The exponent was obtained from a

logarithmic plot of the differences described by equation (2-18). The value for .X,t can be

estimated from the slope m of a semi-logarithm plot. The Bernoulli CBFM case is

illustrated in Figure 3.12. The calculated Lyapunov exponent values are summarized in

Table 3.4. The iesults suggest that the logistic, tent, and quadratic-based FM signals are

random and not chaotic, because the Lyapunov exponent of such signals is 0 (i.e. pure

random signals result in 2r:g¡. This indicates that nearby üajectories does not diverge

exponentially as the time index n increases, but it remains constant in average at any

time. Yet agaín the Bernoulli-based FM signal presents a different behaviour, and a

positive Lyapunov exponent, suggesting chaotic behaviour.
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Fig. 3.12. Logarithmic plot of the divergence of close trajectories and Lyapunov
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3.2.3.2 Correlation dimension of CBFM signals

For completeness and to further deterrnine the level of complexitypresent in the CBFM

signals, the corresponding correlation dimensions values were estimated. The results are

shown in Table 3.4. All signals presented practically the same Dç value, which is

accounted by a common probability density function common for all CBFM signals.

Notice how the values are similar to those obtained for chaotic signals with an arc-sine

dishibution (i.e. logistic and quadratic maps) in Table 3.2.

TABLE 3.4
Chaos quantification for CBFM signals

Signal Lyapunov exponent (app.) Dç value (app.)

Logistic CBFM
Bernoulli CBFM 0.2132

Tent CBFM

Quadratic CBFM 0

1.832
1.829
1.831

r.828
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3.3 Analysis of random trM signal

Because of the obvious similarity between chaotic signals and noise, a comparison

between CBFM signals and a random FM signal is mandatory. The analysis in section 3.2

was also performed for a theoretical FM signal generated with random noise. In this case

the input to the FM modulator is a random signal with Gaussian density function.

3.3.1 Autocorrelation and power spectrum of random FM signal

Let recall from equation (3-17) that the autocorrelation function is directly related to the

probability density function of the message signal, and that for the Gaussian noise case

the probability density function is given by

P(x,): ffi"*rrræ, (3-26)

(3-27)

The random variable x, in equation (3-26) is not bounded, so o? < Y, ís used to limit the

spread ofx and to avoid aliasing. The characteristic function (3-16) for a: I is [35];

c(t): 
"*p¡-(2o!')' ,.

From equation (3-17), it is easy to show that the autocorrelation of the Gaussian FM

(GFM) signal is givenby

(3-28)

which decays exponentially with m. Figxe 3.1.3 shows and confinns equation (3-2S).

These plots are the time and ensemble autocorrelation of the GFM signal s(n). The time

27To,2
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and ense,lnble autocorrelation were obtained with the same procedure used for the CBFM

signals in section 3.2.2. Notice that the time and ense,mble autocorrelations are almost

identical for the GFM case; however the width of the mainlobes are wider than those of

the CBFM signals. This will result in a poorer resolution capability for radar imagng.

-15 -15
-10 -10

Fig.3.13. Average autocorrelation of GFM signal.
Time (a) and ensemble (b) autocorrelations

In the case of GFM, the spectrum obeys Woodward's theorem and presents a Gaussian

be|l shape that tapers down at arate that depends ott ø2. The spectrum, calculated via

equation (3-3), is shown in Figure 3.14.
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3.3.2 Chaos quantification Ín random FM signal

It is a well known fact that the GFM signal is not a chaotic waveform, but a random

signal. To further illusffate that property and in order to compare the results to those

obtained with chaotic and chaotic-based signals, the plot in Figure 3.15 presents the

pseudo-phase space reconstruction for the random FM signal. The random distribution of

points is evident. Unlike the cases for chaotic and the Bernoulli-based FM signal, no

pattern (other than an arcsine disfribution characteristic of an FM signal) is present in the

phase space plot.

Fig. 3.15. Three'dimensional pseudo-phase space representation of GFM signal.

3.3.2.1lyapunov exponent of random FM signal

Similarly, the characteristic Lyapunov exponent of the random FM signal was

estimated using equation (2-18). As it was expected, the resulting value is zero. This

indicates that nearby hajectories do not diverge exponentially as the time index n

increases, but it remains constant in average at any time. The absence of a positive

Lyapunov exponent also indicates that the signal is not chaotic in the sense that it is not

sensitive to initial conditions.
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TABLE 3.5
Chaos quantification for GFM signal

Signal Lyapunov exponent (app.) Dc value (app.)

GFM 0 1.837s

3.3.2.2 Correlation dimension of randomFM signal

Finatly, a calculation of the correlation dimension gave an insight of the "level of

complexity'' of the random FM signal. The Dc value was calculated form the logarithm

plot in Figure 3.16. The calculated value for the correlation dimension of the GFM signal

was 1.8375, which is very close to the values obtained for the CBFM signal. This result

indicates that all signals have the same amount of complexity, ûom an information point

of view.
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Figure 3.16. Correlation dimension plot of GFM.
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Chapter 4

Results and evaluation

4.1 Ambiguity functions

The ambiguity function was used in this section as a tool to evaluate the performance

of the chaotic and CBFM signals in terms of their capability to resolve target and clutter

scatters in the range and velocity dimensions. In order to more precisely estimate the

signals capabilities in terms of radar imaging resolution, an ensemble average of the

discrete ambiguity function Ám, o) [39] was calculated for all the chaotic and CBFM

signals:

M

E {Ám, r0) } = I/MZ
r=l

ls¡(n).si@+m).e-i'n 1

lVI
n=0

(4-1)

where z is the lag index, Nis the total number of samples in the signal, Mis the number

of signal realizations, ø is the Doppler angular frequency stepped in increments lat :
2tr
¡r'
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4.1.1 Ämbiguity functions of chaotic signals

Figwe 4.1 shows the ambiguity functions of the chaotic maps listed in section 2.5.In

each instance, the result presented is the average of the arnbiguity surface obtained by

processing M:100 signal realizations. The ambiguity surface of each chaotic map

resembles the ideal discrete delta except for a plateau of selÊnoise. Notice that each

surface has a prominent peak emerging from the plateau with minor sidelobes off the

main axes. For all cases, except the Bernoulli map, the sidelobes in the range direction

are non-existent. The Bernoulli case presents higher sidelobes athibuted to the spectral

characteristic illushated in Figure 3-3.

Fig. 4.1. Ambiguity surfaces of chaotic signals.
l) logistic map; i) Bernoulli map; ii) tent map; iv) quadratic map.
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4.1.2 Ambigurty function of CBFM signals

The ambiguity surface of each of the four CBFM also resembles the discrete delt¿

except for a plateau of self-noise on which it rests. Figure 4.2 shows the resulting

ambiguity surfaces. The location of the spurious sidelobes depends on the initial random

phase of the chosen map. On average, sidelobes on the range-Doppler plane have a

relative magnitude of 101og10(l/N) with respect to the main peak. For the Bemoulli

CBFM signal, the sidelobes along the range delay axis are practically nonexístent. In the

case of the tent CBFM, the highest range delay sidelobes occur at -7 .5 dB. For all cases,

including the logistic and quadratic CBFM signals, the behaviour of the sidelobes on the

range delay axis near the origin is that of lrR(z)12.

Fig.4.2. Ambiguity surfaces of CBFM signals.
r) logistic-based FM signal; ii) Bernoulli-based FM signal; iii) tenrbased FM signal;

iv) quadratic-based FM simal.
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Along the Doppler axis, all the surfaces showed in Figures 4.1 and 4.2 feature sidelobes

that match the spectrum of a boxcar window envelope. The sidelobes adjacent to the

main response peak at -13d8 can be easily lowered via windowing. However this would

result in a wider mainlobe that decreases the Doppler precision.

From the analysis and results presented in Chapter 3 and section 4.1, itcan be said that

the use of chaotic and CBFM signat for radar imagrng is feasible and even advantageous.

An ideal signal for radar imagng is a signal with infinite bandwidth and whose ambiguity

function is the delta fi¡nction in the delay-Doppler plane. The chaotic and CBFM signals

were proven to closely approximate these ideal characteristics. When dealing with the

chaotic signals, it was demonstrated that the maps generate wideband spectrums and

delta-like autoc¡rrelation functions that also result in a delta-like arnbiguity function.

From the results in this project, it was clear that the sequence generated from the logistic,

tent, and quadratic maps present near-optimal characteristic for radar imaging. The

results obtained by using the Bernoulli map were not as remarkable as the ones obtained

from the rest of the maps. The analysis in this investigation showed that the Bemoulli

map has a pink noise (e.g P(f): |f) frequency representation that makes it unique among

the rest of the studied maps, even though the chaotic parameters (e.g. correlation

dimension and Lyapunov exponent) were similar to the ones obtained for the rest of the

maps.

The analysis and experimentation in this thesis proved that the CBFM signals also

produced nearly ideal results in the spectral, autocorrelation and ambiguity function

context. For a practical radar signal generation, it was prefened to work with FM signals

because of their ease of generation and transmission. An FM signal allows an easier

bandwidth control and in consequence, antenna design and power conservation. To

convert the discrete time chaotic maps into a more suitable way of radar imaging without

loosing the ideal characteristic presented by the chaotic signals, the chaotic sequences can

be input to an FM modulator and a chaotic-based FM signal with chaotic instantaneous

frequency can be created.

Comparative results of the CBFM signals proved that the Bernoulli-based signal,

ouþerformed the logistic, tent, and quadratic cases, and was the only waveform that

preserved the chaotic nature of the un-modulated chaotic signal. In other words, the
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signal, although modulated, shows as pattern in the phase space and has a positive

Lyapunov exponent confirming the chaotic behaviour of the Bemoulli CBFM signal.

Because of the uniqueness of the Bemoulli CBFM signal, and its closeness to the ideal

properties desired in a radar imaging context, a more detailed charactenzation was

performed and the results are presented in the next sections.

4.2 Muttipath performance 6f Se¡¡6ulli CBFM

Radar systems often suffer the adverse effects of multipath propagation. This

phenomenon occurs when the received echo contains components which have haveled

from the hansmitter to the target and back to the receiver via multiple propagation paths

with different delay times. The reflection of radar signals from the ground can have a

number of effects on target detection and tracking accuracy. Multipath propagation can

be specially destructive in cases like ground penehating radar (GPR), where the anterura

is very close to the ground and the arriving signal can be sensed by the antenna after it
has been reflected several times by the ground or nearby rocks. Figure 4.3 illushates two

simplified scenarios of multipath propagation in radar and GPR.

Direct wave Target

Radar

h

h:
ltn
A,

t) i;i

o*"u"1,*;å*,"*iJ:träiiî"iÏåil*u*
Diagram / in Figure 4.3 shows that the energy radiating from the antenna reaches the

target via two separate paths. One is the direct tine-of-sight path from points A to B in the

diagram and the other is the path reflected from the surface of the ground haveling points

A-M-B. An echo arrives at the radar along the same two paths. The magnitude of the

resultant echo signal will depend on the amplitudes and relative phase difÊerences

lli -y'a
Target
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between the direct and the reflected path. The reflection coefficient form the surface may

be considered as a complex quantity N'. Th" real part p describes the change in

amplitude, while argument ¡/rdescribes the phase change in the reflected signal.

The direct method to avoid multipath errors is to use an antenna with a sufficiently

narrow beam width that it does not illuminate the surface or any other object except the

target of interest. This requires a very large antenna that can generate a directional beam.

For very short pulses it is possible to separate the direct return and the delayed multipath

return. However, this is often not practical, as the range resolution needed to separate the

returns requires the use of a few nanoseconds pulse width. The pulse echo at the shorter

range is the direct signal and corresponds to the true target range. The echo at a longer

range is the scattered signal and appears as a ghost target. In some applications the

appearance of these false targets is a serious problem, but in ottrers, the time separation

between the two signals can be used to measure the altitude of the target [1,p.502]. A

more practical solution is the use of a signal that presents frequency agility. A fast change

in frequency alters the phase relationship between the direct and the reflected signals. The

constant change in frequency avoids the signal spectrum to be cancelled.

For wideband signals, multipath propagation results in a rapid fading of the received

signal envelope and a spread in Doppler shift in the received spectrum [40,p.535]. The

effect of multþath propagation can be estimated if there is a charactenzation of the

impulse response of the hansmission channel. If the multipath channel is assumed to be a

bandpass channel, the received complex envelope of the signal i (t) canbe expressed as,

,U)--+TuQ-c)ñ(r;t)ar (4-2)

where 5(r) and h(ct) are the complex envelopes of the transmitted signals and the

channel impulse response, respectively. For analytical pu{poses, and because the received

signal in a multipath channel consists of a series of attenuated, time-delayed phase shifted

replicas of the transited signal, the baseband impulse response of a multþath channel can

be expressed as
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where a{,tt) and qQ) are the real amplitudes and excess delays of the lú multþath

component at time /, respectively. The phase term fi in equation (4-3) represents the

phase shift due to free space propagation of the lú multipath component plus additional

phase shifts encountered in the channel. For short periods of time (at least the duration of

the signal transmission and reception) the channel h can be model as a linear time

invariant system or at least considered wide sense stationary over this scale. Then the

channel impulse response maybe simplified as

/V-t

ñ (r; t) =2 o, (r; t).exp[ j (zn ¡r, (t) * ø, (r;t)) ] . 6 (r - r, (t))
i=0

/V-l

i,1r¡=Zo,.expu 0,I . 6(c-c,).
i=0

(4-3)

(4-4)

The impulse response ñ14 *uybe modeled as a zero-mean complex Gaussian process.

Because the envelop elñ.@lis Rayleigh dishibuted, the channel is referred as a Rayleigh

fading channel l4l,p.l72l. The Rician distribution is observed when, in addition to the

multipath components, there exists a direct path between the transmitter, the target and

the receiver (i.e., a term without any random phase needs to be added to equation (a-a)).

In such case the channel is referred as a Ricianfading channel l4l,p.l73l.
To evaluate the multipath performance of the Bernoulli CBFM signal, a Rician fading

channel was used to charactenze radar environments like the ones shown in Figure 4.3. In

those cases it is assumed that there is a direct line of sight from the radar to the target and

additional multipath propagations with longer delays superimpose to the direct signal.

Several parameters were considered during the multipath analysis. The efflect of the

bandwidth of the hansmitted signal, the number of extra paths in the transmission and the

amplitude of the directly reflected signal were varied during the simulations. Figure 4.4

presents the averaged cross-correlation functions of the hansmitted and received signal,

when the originally hansmitted signal is a Bemoulli CBFM signal bandpass filtered at

cut.off normalized frequencies of 0.05 and 0.45 times the sampling frequency, and

transmitted through a Rician fading channel. The signal was bandpass filtered to
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represent a more realistic situation in which it is not possible to occupy the complete

signal spectrum. This limitation is evident because any electronic equipment will be

affected by interference at the moment a radar survey is perfomred. The filtration also

allows controlling the bandwidth of the signal and will facilitate an unbiased comparison

with other bandlimited signals (e.g. linear FM chirp). The cross-correlation function was

obtained by first transmitting 100 dififlerent Bernoulli CBFM signals over 100 different

Rician fading channels, calculating the cross-correlation with the received signals and

then calculating the average of these correlations bin by bin. Figure 4.4 shows the

averaged cross-correlations results for different length fading channels. The distinct

lengths represent the different number of multþle paths present in the channel.

The effect caused by the signal traveling longer paths is clearly shown by the

correlations in Figures 4.4. The delayed replicas of the signal cause the correlation to

present a main peak at zerc delay and a constant value during the extended time the

replicas are arriving to the receiver. Even though multipath propagation causes the level

of the sidelobe to rise, the main peak is perfectly detectable and no ambiguities appear in

the waveform correlation.
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Fig.4.4. Performance of Bernoulli CBFM in multipath env¡ronment.
Averaged conelations between tansmitted and received bandlimiæd CBFM signal
in a r) two paths; ii) four paths; iir) twelve paths; Ð twenty five paths scenario.

Cut-offfrequencies: [0.05 0.45] of f,, Direct reflection coefficient: 0.7.

Figure 4.5 illushate the efÊect of the direct reflection coefficient in a radar detector

operating in a four paths environment. The direct reflection coefficients accounts for the

percentage of the signal received through the direct path between the radar antenna and

the target. The remaining percentage is dishibuted among the 4 indirect paths. The

averaged cross-coûelations in Figure 4.5 were obtained applytng the same methodology

used in Figure 4.4,butun this case the varying parameter been the reflection coefficient.

The variation of the reflection coefficient has a grcat impact in the received signal

detection and inforrration extraction. From the plots in Figure 4.5, it can be seen that

when the value of the coefficient is lowered, the main peak becomes less distinguishable

until it reaches a point where the delayed signal that fraveled through other paths can

mask the direct wave. This effect can be observed in Figure 4.5.
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signal in a four paths environment with direct reflection coefficient of i) 1 ; ü) 0.7; iü)

cut-otr freqÏijJr"],lr30.rr 0.451 of f, .

Finatly, a characterization on the effect of the bandwidth of the transmitted signal in the

multipath environment was obtained simulating the transition of signals with different

baseband support. The Bernoulli CBFM signals were filtered before transition over the

Rician fading channel, and the received signal cross-correlated with the replica stored in

the receiver. Figure 4.6 presents the results obtained by setting bandwidths of 80%o, 60%o,

40% and2ÙVo of the sampling frequency.
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Averaged correlations befween tansmitted and received different bandlimited
CBFM signal in a four paths environment Ð [0.05 0.45] of f,; tÐ [0.10 0.40] of f,; ttÐ

[0.15 0.35] of f,; Ð [0.20 0.30] of f, cut-offfrequencies.
Direct reflection coefficienÍ 0.7.

Figure 4.6 shows that the reduction of the bandwidth in the transmitted signals results

in noisier and even arnbiguous target detection. As the frequency content of the signal is

reduced, the interaction of delayed replicas causes a shonger deformation. From the

results shown in Figure 4.4 - 4.6it is clear that the Bernoulli CBFM signal performs well

over multipath environments, in the sense that the presence of the target can be detected

clearly in all but the exheme cases of the figures. It is obvious that a signal with the wider

frqquency spectrum is preferred in a multipath environment. Optimal perforrnance over

multipath propagation will be obtained when there is a direct line of sight between the

radar source and the target, and when the reflection from the targets is large compared

with the indirect reflection form signals traveling different indirect paths.
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4.3 ECCM and noise performance of Bernoulli CBXM

In a real life environment, radar systems must operate under non-ideal circumstances.

The presence of noise contamination is a guaranteed condition that cannot be avoided, or

reduced completely. In military applications, or in any other hostile environment, the

rudar may be even subjected to deliberate interference or jamming by the enemy. These

interferences may appear as exhaneous responses in the radar receiver that may resemble

real targets, or even saturate a part of the radar display 1421. The purpose ofjamming is to

deteriorate the operation of the radar by elecfronic counterrneasures (ECM) of confusion.

A repeater jammer operates by first identifuing the radar signal and successfully

predicting and replicating such a signal. Any repetitive or periodic signal is especially

susceptible to jamming because of its ease of identification. Thus the enemy can

construct a good estimate of the parameters of the signals and use it to jam the radar with

replicas [43]. Some methods used to alleviate enemy interference relay in filtering of the

jamming signal or in a simple dilution of the enemy signal by increasing the hansition

power. However, the risk of radar jamming is always present and imposes the use of
electronic counter-countermeasures (ECCM) during system design. An efficient method

to combat ECM is the use of a complex radar waveform that is not easily detected and/or

identified, making it impossible for the jammer to duplicate and retransmit.

The chaotic nature of the Bernoulli CBFM signal clearly suggests its goods capabilities

as an ECCM. Bernoulli CBFM signals appear random, their noiseJike nature makes them

hard to detect and predict. Even in the case the enemy is able to detect the presence of a

radar signal, the characterization of the waveform is a very complex task that will require

extensive recourses to be implemented in real time. The sensitive dependence to initial

conditions, characteristic of chaotic systerns, guaranties that any replica produced by the

jammer will diffler from the transmitted signal. As the original signal propagates, ffid

even during interception by the jammer, many noise sources modiff the signal. These

changes, as small as they are, will lead to tremendous effors if the signat is to be

reconstructed by iteration. In addition, if the initial condition used to generate the chaotic

series is changed at the transmitter, every CBFM signal will be completely different to

the previous one. In the case a recorded waveform is re-transmitted by the jammer, the
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radar will suffler little interference, because CBFM signals with different initial condition

have no correlation.

Lacking detailed information conceming the signal characteristics of the radar, the best

jamming signal is white Gaussian noise covering the bandwidth of the radar receiver to

be interfered. The effect is the same as an increase in the receiver noise figure. If the

jammer power is sufficiently large, the entire display can be filled with noise. In real

applications not only deliberate interference occurs, but also inherent natural interference

caused by ambient noise and background radiation. In order to demonsfrate the

perfonnance of the Bemoulli CBFM signal under intentional (ECM) or fortuitous

interference, simulated echoed returns degraded by noise were generated using there

difflerent random variables distribution functions: norrral, Rayleigh and uniform.

The simulations were performed for several signal-to-noise (signal-to-interference)

ratios (SNR), which were calculated as the ratio between the power of the transmitted

signal and the power of the interfering signal. The analysis was done by correlating the

comrpted received signals with replicas of the transmitted waveform stored as reference.

An example is shown in Figure 4.7.The image shows the correlation of a noise-free echo,

and the effect noise causes in the correlation plot when the received signal is affected by

Gaussian noise at a SNR of -10 dB.
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Eig.4.7. Sample correlation between noise contamin¿1s¿ $s¡¡6rrlli CBFM and
original transmitted signal, compared with autocorrelation of the original signal.

Simulated noise is Gaussian with a SNR of -10d8

The cross-correlation between reference and interfered signal is clearly polluted when

compared with the autocorrelation obtained by processing the ideal noise-free signal. The

location of the target is still determined without ambiguity, but sidelobes of considerable

magnitude appear near the mainlobe. These lobes may mask weak reflections from real

targets. To clariff the effect of deliberated or fortuitous interference in the imaglng

process, a radar image was constructed from a simulated target function. Figure 4.8

presents the comparative results of radar images generated by assembling range profiles

into a two-dimensional image matrix. The figure shows the images obtained by an

interference free Bernoulli CBFM waveform (Figure 4.8 i) and by the same signal when

the interference signal has a Gaussian (Figure 4.8 ii ), uniform (Figure 4.8 íii ) and

Rayleigh (Figure 4.8 iv ) dishibution at a -10 dB SNR. The deterioration of the images

can be detected visually, however, a more objective measurement is preferred when

comparing the results. To better assess the degradation of the images, the relative

difference between the ideal interference-free and the received image was calculated as a

percentage. The percentage was obtained by dividing the absolute differences between

the received and expected images over the magnitude values of the expected or ideal
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image. The pixels outside the area of the target (i. e. background clutter) were not

considered for the calculation of the percentage. This percentage has not physical

meaning other than a difference measurement between the images. The averaged

difference percentage for fifty simulations of the Bemoulli CBFM at different SNR are

shown in Table 4.1. For each simulation the initial condition for the Bernoulli CBFM was

chosen randomly from a uniform disfribution
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TABLE 4.1
Interfrcrenceinduced.tlffå:åiçäfifi 

t$;;:iii:,slvRanddistributionsin

sNR o",,,,HTlii;'åi*å1.,_
14.5079 14.4081 14.3978
27.s045 27.3367 28.3246
s6.3006 57.9740 s8.2s28
127.662 128.978 129.068
197359 188.254 182.807

333.662 338.781 328.803

95s.Ms 95t.473 952.651

From the percentages shown in the table, it can be infened that the type of distribution

followed by the interference signal has little eflect in the final image, being the SNR the

important parameter that determines the level of comrption in the image. The results for

the Gaussian interference case in Table 4.1 were also plotted against the SNR in Figure

4.9. An exponential relationship between the error and the SNR was observed. Similar

plots were obtained for the other two dishibutions. For all three cases, the target function

was visuallyrecognizable in the image when the SNR level is higher than-12 dB.

Fig. 4.9. Interference-induced difference percentage in received Bs¡¡srlli
CBFM signal contaminated by Gaussian noise at various SNR.
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4.4 Coml,arative study against FM chirp and random trM signals

The analysis, simulated experiments, and results presented in this thesis have

demonshated that the use of CBFM signals generated from Bernoulli sequences is not

only viable but that it also presents desirables characteristics in terms of resolution,

multipath propagation and ECCM. To further evaluate the advantages of the CBFM

waveform a comparative study against commonly used linear FM (LFM) chirp and

random modulated signal was performed in terms of resulting ambiguity frrnctions,

muttipath propagation and interference robusbress. The results obtained in this section

allow better estimation of the superiority of one waveform over another, at least in the

considered environments.

4.4.1 Ambiguity functions of FM chirp and random FM signal

The a:nbiguity function is the basic tool to evaluate and compare radar waveforms in

terms of their capability to resolve target and clutter scatters in the range and velocity

dimensions. The ambiguity function of a linear FM chirp described by

c(t)=exP(¡at2) for o1 t 1 T,

is found by inserting Equation (4-5) into Q-g),which yields |7,p.351,1221:

(4-s)

z(c,u)= exp(-idc) "*p(-iþ+2"!)'(r 
-ù).(*) ,^(ry(r- t,t)), t <trt

y(t,u)=g elsewhere.

(4-6)

The shape of the ambiguity diagram is a tilted ellipse, centered at the origin with a

width of llp in the range plane and tlT height in the Doppler axis. The general shape of

the surface is shown in Figure 4.10. The naffower the width of the ambiguity function in
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a given direction, the higher the accuracy and resolution of the range and Doppler

measurements. The accuracy along the mayor axis of the ellipse, in a chirp ambiguity

surface, is poor and can generate ambiguities along the diagonal of the delay-Doppler

plane.

Fig. 4.10. Contour of the ambiguity surface of a linear FM chirp.

Figure 4.11 illushates the computed surface of a LFM waveform, the image contrast

the resolution and unambiguity with the one obtained by Bernoulli CBFM signals

previously shown in Figure 4.2. The elliptical shape of the ambiguity surface can easily

observed in the figure, notice that this shape does not guarantee the unambiguous

determination of range and Doppler of two targets that lie in the diagonal of the delay-

Dopplerplane.
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4.11. Ambiguity surface of LF'M chirp.
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For comparison, the average ambiguity surface of the Bernoulli CBFM was also

contrasted to that of the noise modulated Gaussian FM (GFM signat) in Figure 4.12.T\e

ambiguity surface of the GFM signal was obtained by applying equation (a-1) for M:100

rcalizalons of signals, this is the same procedure utilized when the CBFM ambiguity

surface was calculated. During the generation of the GFM, the variance of the phase was

set to mach the power of the Bemoulli map. (With this choice, the requirem ent of o*2 < lt
is satisfied, ffid thus the Nyquist sampling rate obeyed) For GFM, sidelobes of the

ambiguity surface along the range-delay axis fluctuated around -101og10(Àf. The same

observation applied to the Bemoulli CBFM case. R¡nge delay resolution (defined by the

-3dB points of the autocorrelation) was essentially the same for GFM and Bernoulli

CBFM case, except for a wider mainlobe, result of the exponential decay of the

autocorrelation function described by equation (3-28). Unlike the case of the LFM signal,

the arnbiguity diagram of the GFM signal allows the unambiguous determination of the

target's range and velocity.
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Fig.4.l2. Ä.mbiguity surface of Gaussian FM waveform.
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4.4.2Multipath performance of linear FM chirp and noÍse modulated signal.

To evaluate the multipath performance of LFM and the noise modulated GFM, the

simulations presented in section 4.2 were repeated for the two new signals, and the results

compared to those obtained for the Bernoulli CBFM case.

Figure 4.13 presents the averaged cross-correlation function of the fransmitted and

received signal, when the originally transmitted signals are bandpass filtered at cut-off

frequencies of 0.05 and 0.45 times the sampling frequency, and transmitted through a

Rician fading channel. The figure presents the resulting averaged cross-coffelations for

the Bernoulli-based CBFM (denoted as BFM in the figures), the linear FM chirp signal

(LFM) and the noise modulated Gaussian FM (GFM). The cross-coffelation functions

were obtained by first hansmitting 100 different Bemoulli CBFM, LFM and GFM

signals over 100 different Rician fading channels, calculating the cross-correlation with

the received signals and then calculating the average of these correlations bin by bin. The

cross-correlations in Figure 4.13 areshown for different length fading channels.
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The effect caused by addition of signals haveling longer paths is clearly shown by the

correlations in Figures 4.13. As for the case of the Bemoulli FM, the delayed replicas of

the signal cause the correlation to present a main peak at zerc delay and a relatively

constant value during delay times equivalent to distinct number of paths present in the

propagation environment. The results in Figure 4.13 demonshated that Bernoulli CBFM

and linear FM signals, perform equivalently and both are superior to Gaussian FM

waveforms that present wider cross-conelation mainlobes and higher sidelobes.

Figure 4.14 compares the waveforms under study and present the effect the direct

reflection coefficient has in aradar detector operating in a four paths environment.
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Fig.4.14. Comparison of Bernoulli CBFM (BFIVÐ,linear FM (LFM) and
Gaussian FM (GFM) performance in multipath environment with several

reflection coefficients.
Average correlations between transmitted and received bandlimiûed sþals in a four
paths environment with direct reflection coefficient of r) t; íl0.7; üi) 0.5; Ð 0.3.

Cut-off frequencies: [0.05 0.45].

Once again, the trends observed for the Bernoulli CBFM in section 4.2, werefollowed

by linear FM and the Gaussian FM signals. Similarly, the results obtained by linear FM

signals are very close to those of the Bemoulli CBFM. The autocorrelations obtained for
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the GFM case, indicate that there is a considerable interference by the superimposition of

replicas of the transmitted signal traveling different paths.

Finally, the comparative results in Figure 4.15, present the efifect that bandwidth

reduction has on the üansmitted signal operating in the multipath environment. The

studied radar signals lryere filtered before tansmission over the Rician fading channel,

and the received echo cross-correlated with the replica stored in the receiver. Figure 4.15

presents the results obtained by setting bandwidths of 80%, 600/0, 40yo and 20%o the

original signal's bandwidth.
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Fig.4.15. Comparison of Bernoulli CBI'M (BFIVÐ,linear FM (LFM) and
Gaussian FM (GFM) performance when bandwidth is reduced.

Averaged correlations between the tansmitted and received different bandlimited
signals in a four paths environment Ð t0.05 0.a51; Ð [0.10 0.40]; rÐ t0.15 0.351; Ð

[0.20 0.30] cut-off frequencies.
Direct reflection coefficient: 0.7.

As the frequency content of the signal is reduced, the interaction of delayed signal

replicas causes a stronger signal deformation. At the same time, as the bandwidth of the

transmitted signals is reduced, the shapes of the cross-correlations approximate each

other, independently of the originally hansmitted signal. Indicating that a reduction of the

signals bandwidth causes the performance of the Bernoulli, linear and Gaussian FM
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signals to approximate. The result can be interpreted by relating the multipath

performance of a signal to its bandwidth content. The Bernoulli CBFM and the linear FM

signal have essentially the same frequency content (i.e. white spectrum in the filtered

band), this results in similar cross-correlations in a multipath environment. When the

signals are filtered around the cenhal frequency, not only the spectrum of the Bernoulli

CBFM and the linear FM remain similar, but also the spectrum of the Gaussian FM

signal approximates a white spectrum in the passband. When the frequency content of the

signals is reduced enough, like in the last plot of Figure 4.15, the cross-coffelations,

obtained by processing Bernoulli CBFM, linear FM and Gaussian FM signals, are

similar. This result, however, is not desired, because the reduction of the bandwidth in the

transmitted signal also deteriorates its performance in the multipath environment.

4.4.3 ECCM and noise performance of FM chirp and random FM signal

The different nature of linear and Gaussian FM signals results in difFerent ECCM

capabilities. While the inherent randomness in the noise modulated signal causes the

Gaussian FM signal 1441,l451to be very hard to detect, identiff and reproduce, the well

defined oscillatory nature of a linearly modulated FM signal can be more easily detected

and re,produced by a jammer system [43]. In terms of ECCM, the low probabilify of

interception and identification offer the Gaussian FM, as well as the Bernoulli CBFM

signal, a considerable advantage over the linear FM signal.

:By considering a jammer system that attempts to interfere with the radar by

fransmitting a noise signal, not only the ECCM capabilities of the radar signal can be

assessed, but also the effects noise produces in the signal. To characterize the effect

produced by intentional or natural noise contamination in the linear FM and Gaussian FM

signals, simulated echoes degraded by noise were generated using normal, Rayleigh and

uniform distibutions. The simulations were performed for several SNR as described in

section 4.3. A radar image (illushated in Figure 4.8 i) was constructed from a simulated

target, the relative difference between the ideal interference-free and the received image

was calculated as a percentage. The averaged difference percentage, for 50 simulations of
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Bemoulli CBFM, linear FM and Gaussian FM signals at different SNR are shown in

Table4.2.

TABLF 4.2
rnterference-induced difference errors for various distributions Ín received

Bernoulli CBFM' Linear chirp FM and Gaussian 
''M 

signals.

SNR Gaussian

BFM
Rayleigh

GFM
Rayleigh UniformUniform Gaussian Uniform Gaussian

LFM
Rayleigh

5

0

-5
-10

,12
-15
-20

14.5079
27.5045
56.3006
127.662

tgt.359
333.662
9s5.445

14.408t
27.3361
57.9740
728.978
188.254
338.781

951.473

14.3978
28.3246
58.2528
129.068
182.807

328.803

952.65r

t2.5128
23.8056
49.3926
tt4.48r
166.492
301.212

857.780

12.3218
23.6370
50.r740
114.382
t6t.70t
294.622
862.521

12.4817
23.7299
50.3993

t14.t89
158.691

296J38
832.423

18.7764
35.4122
69.t28t
164.872

2t8.446
389.855
1232.1

18.8022
35.5563

69.7708
159.579
215.166

383.644
1228.4

18.7172
34.9591
70.4239
159.799
220.677
394.708
t217.4

From the percentages shown in the table, it can be inferred that the type of distribution

followed by the interference signal has little effect in the final image, being the SNR the

important parameter that determines the level of comrption in the image. Figure 4.16

shows the plot of the difference percentage as a function of the SNR for the studied

signals, when the interfering noise follows a Gaussian distribution. The plot reveals that

the linear FM signal is less affected by interfering noise, followed by the CBFM signal;

finally, the noise modulated waveform presented the maximum comrption by noise.

Similar results were obtained for the other two distributions.
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Chapter 5

Conclusion

This thesis presented the analysis of a set of novel radar signals and investigated their

favourable capabilities for high-resolution imaging. The work presented in this thesis

oflers a novel exploration in the area of radar signal design by utilizing the concept of

chaos to improve the performance of radar systems. The main advantage of the proposed

signals is that they combine the broad bandwidth of classical radar signals, required for

high range resolution, with the noiseJike appearance of random signals, needed for

range-Doppler resolution and ECCM.

The chaotic and CBFM signals introduced in this investigation proved to be ergodic

and demonstrated nearly optimal characteristics for their use in high-resolution radar.

Broadband spectrums and na¡row autocorrelation functions, required for high resolution

ranging, were obtained for the chaotic and CBFM signal. The ambiguity surfaces of such

signals resulted in thumbtack functions in the delay-Doppler plane, thus allowing

unambiguous range and velocity estimation.

A comparative examination of the ambiguity surfaces showed that the Bemoulli

CBFM signal ouþerformed the rest of the CBFM signals and that its ambiguity surface

was comparable to the ones obtained from the non-modulated chaotic signals. An

analysis based on the chaos detection and quantification demonstrated that the Bemoulli

CBFM signal diflers form the logistic, tent and quadratic CBFM cases by being the only

modulated signal that preserved chaotic behaviour. The results from two chaotic mehics

confirmed that the behaviour of the Bernoulli CBFM signal is unique among the four

initially proposed CBFM signals.

94



A more detailed analysis of the Bernoulli CBFM signal revealed its satisfactory

performance in multþath propagation and noise contaminated environments. The signal

proved to be resistant to deterioration by additive noise and self-interference caused by

delayed replicas. A comparative study dêmonstrated that the performance of the

Bernoulli CBFM is comparable to that of the linear FM chirp, considering the two

adverse environments. However, the ECCM characteristic of the Bernoulli CBFM are

clearly superior to the ones obtained by an oscillatory signal like the linear FM chirp. The

same study also showed that the Bernoulli CBFM signal is superior to the randomly

modulated GFM signal in multþath and noise affected environments.

From the analysis and results presented in thesis, it can be said that the use of chaotic,

CBFM, and specially the Bemoulli CBFM signal, is not only feasible but also

advantageous in the field of high-resolution radar imaging. Further work will be required

in the study of the CBFM signal and its complete charactqization. The properties of the

Bernoulli CBFM should be further studied and understood. The final goal of this research

topic should be the complete design, implementation and final construction of a radar

system based on the proposed signals.
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AppendixA

List of acronyms

AF embiguity function

BFM Bernoulli frequencymodulated

CBFM Chaotic-based frequencymodulated

DF"f Discrete Fourier transfonn

ECCM Elechonic counter-counter-measwes

ECM Electronic counter measures

EMC Electromagnetic compatibility

FM Frequencymodulated or frequencymodulation

GFM Gaussian-based frequencymodulated

GPR Ground penehating radar

IF Instantaneous frequency

LF'M Linear frequencymodulated or modulation

LPI Low probabilityof interce,ption

LPId Low probability of identification

RADAR Radio detection and range

SLL Sidelobe level

SNR Signal to noise ratio

VEL Volume element
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AppendixB

List of symbols

* Complex conjugate

0r., Root mean squared value

( ) Time avenage

a Slope of linear FM instantaneous frequency

p Bandwidth

I Ambiguity function

A Difference

ÁR Range resolution

e Distance between two points in a sequence (Error)

4t) Dirac delta

ø Phase value

rt Additive noise

.X" 'Wavelength

fu Lyapunov exponent, first Lyapunov exponent, largest Lyapunov exponent

u Doppler frequency

o Frequency(radls)

(4 Carrier frequency (radls)

O The Heaviside function

7T Pi number

r02



p Amplitude value of reflection coefficient

o Standard deviation

î Time delay

€ Angle between the ground and target

V Phase value of the reflection coefficient

c Speed of light

dB Decibel

do Initial separation between two points in a sequence

d, Separation between two points in a sequence at agiven time

D Confrol parameter in chaotic iterated maps

E{ } Expectation operator

f A nonlinear function

rt lnstantaneous lowest frequency

f, Instantaneous maximum frequency

f" Carrier frequency

f, Sampling frequency

n(Ð Complex envelope of channel impulse response

t Index number

j The imaginary urrit.

Jo Bessel function of the zeroth order

k Discrete delay time

K Modulation index

m Discrete delaytime

M Total number of signal realizations

n Discrete time

¡/ Total number of samples in discrete signal

N(t) Noise signal

l? Range

r(t) Received radar signal

7 (t) Complex envelope of the received signal
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R(î) Correlation function

Rr Radio of the volume element at the present scale

Re{} Real value

s(t) Transmitted radar signal

s6{t) Ouþut of the radar receiver, cross correlation between the received and

hansmitted radar signals

^í(t) Complex envelope of the hansmitted signal

t Time

Tt Time at which the target is detected

vr Relative velocitybetween the radar and the target

xs Ilritial condition

xn Discrete signal at present discrete time

xn+r Discrete signal at next discrete time

X Cumulative of discrete signal
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Appendix C

MATLAB@ Simulations code

1.

8--------
I Chaotíc sequences and CBFM sigmals generator
I Logistic, Bernulli, Tent, QuadraLic,
8--------
I [fmlogis, fmbernu, fmten, fmgua, fmcong, fmran]=
I Chaos(B,m,P,K) generates lengLh m chaotic sequences and
I FM signals using the modulaLion index B.
I xn=cos (2*pi*B*cumsum(MAp(2:m) *Dt) *2*pl*B*I4Ap(1) *Dt) ;
I
I If P=1 the sequences are plotted.

funct,ion Ifmlogis, fmbernu, fmLen, fmqua, fmran, fs] =s¡¿.r (8,m, p,K)

if m<2
error('The lengLh of the sequence (m) has Lo be greater than

l_')
end

n=[0:m-1], *senquences length
logis=zeros (1,m) i ZMatrix initializaLion
bernu=logis; tMaLrix initialization
ten=logis ì tMatrix initialization
qua=logrís ¡ tMatrix initialization
ran=logis;

I -------
I Logist.ic Map generat.or

logis (1) =rand (1) -1-/2, Zlogis (0) (- l-a/2,1/21
for i=2:m

logis (i) = (4-1e-7) * ( (1/2) ^2-Logis (i-1) ^2) -1-/2¡
end 81ogis (- t-1/2,I/2)

I -------
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I -------

I Bernullí Map generator

bernu(1)=rand(L)-L/2i Zbernu(0) (- l-1-/2,L/21
for i=2:m

if bernu(i-1)<0
bernu(i) = (2-Le-9)*bernu (i-!) +t/2¡

else
bernu (i) = (2-1e-9) *bernu (í-L¡ -1¡2,

end
end Ebernu (- l-L/2,1-/21

I -------
I Tent Map generator

ten(1-)=rand. (L)-L/zì Sten(0) (- l,-t/2,t/21
for i=2:m

ten (i) =t/2- (2-Le-7 ) *abs (ten (i-1) ) ;
end tten (- l-t/2,I/21

I -------
I Quadratic Map generator

qua(1)=rand(L)-L/2t ZSua(O) (- t-I/2,L/21
for i=2:m

qua (i) = ( . 5-Le-7) -4*gua (í-ll ^2 ¡
end Sgua (- l-L/2,A/21

I -------
I Random Map generator

ran=rand (L,m1 -t/2 r Sran (- t-L/z ,t/21
I -----*-

I PlotLing the last 1-00 samples of the Generated Sigmals

& -------
I FM Sig¡nals
I xn=cos (2*pi*B*cumsum(MAp (2 :m) *DL) +2*pi*B*MAP (1) ) ;
I B= modulation index
' fc=O ì

f s=K* (B* (t/2¡ +fc) , ZSamp1ing rabe >=2*B*max(MAp)
ÐE=L/fs;

fmlogis=e>ç ( j*2*pi*B*cumsum(logis*Dt) ) ; Slogist,íc FM signal
fmbernu=e>rp(j*2*pi*B*cumsum(bernu*DL) ) ; SBernoulli FM signal
fmten=elq)(j*2*pi*B*cumsum(ten*Dt) ); 8Tent. FM sigmal
fmqua=oç ( j *2 *pi *B*cumsum ( gua*Dt. )

f mran=exIr ( j *2 *pi *B *cumsum ( ra¡r*Ðt )

; SQuadratic FM signal
, ZRandom fu sigrnal
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,

I Bifurcation diagrams of the Logistic, Bernoulli, t,ent, guadratic
'

I fnput: none

888888 Losístic 8889t
f i$rre (L )

Npre = 2000¡ SPreiterations(t.o avoid transients)
Nplot = 500; I ploted points
Resolution=O.002 i Z R-Resoltion

x = zeros(Nplot, j_);

for r = 0:Resolution/2:4.0,
x (1) = rand (Ll -t/2¡
for n = l:Npre,

x(1) = r*x(1) * (1-x(l-) ) ;8-x(1) ^2) ¡t-.5¡
end,
for n = 1:Np1oL-1,
x(n+L) = r*x(n) *(1-x(n) ) ;8-x(L) ^2) ¡8-.5¡

end,
plot (r*ones (Nplot,l-) , x¡ 'k. ' , 'markersize, , 2l ;
hold on;

end,

title('Bifurcat,ion diagram of the logistic map,);
xIabel ('Ð' , 'FontAngle' , 'Italic') ; ylabel (,x_n,) ;
set(gca, 'xlim', 1.2.5 4.01);
hold off;

88tt Bernoul]i

f igiure (2 )

x = zeros (Np10t, 1_ ) ;
for r = 1:Resolution:2,

x(1-) = rand(1)-.5;
for n = l-:Npre,

if x(1)<0
x(1)=¡*1(tl +L/2¡

else
x(1)=r*x (l) -L/2¡

end
end,
for n = 1:Nplot-1,

if x (n) <0
x(n+1) =¡*¡ (n) +I/2¡

else
x(n+1)=r*x (n) -I/2¡

end
end,

p1ot. (r*ones (Npfot,l) , x, 'k. ' , 'markersize' , 2) ¡
hold on;
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end,
title('Bifurcation diagram of the Bernoull-i map');
xIabe1 ('r') ; y1abe1 ('x_n') i
Sset(gca, 'xlim' , Ll 2l');
hold off;

8888 Tent.

fign¡re (3 )

x = zeros (Np10t, L) ;
for r = 1:ResoLution:2,

x (1) = rand (1) -.5;
for n = l-:Npre,

x(1-l=1¡2-r*abs (x(1) ) ;
end,
for n = 1:Np1ot-1,

x(n+1) =7/2-r*abs (x(n) ) ;
end,

plot(r*ones (Nplot ,L) , x, 'k. ' , 'markersize' , 2) ;
hold on;

end,
tit.le('Bífurcation diagram of the tent map');
xlabel('r' ) ; ylabel('x_n' ) i
SseL(g,ca, 'xlim' , lt 2ll ¡
hold off;

88tt Quadratic

f ignrre (4)
x =zeros(Nplot,,L);
for r = 0:Resolution,/S:0.5,

x (l-) = rand (1) - .5;
for n = 1:Npre,

x( j-) =¡-4*x(t) ^2¡
end,
for n = 1:Nplot-1,

x(n+1)=r-4*x(n)^2;
end,

plot(r*ones(Nplot,1) , x, 'k.', 'markersize', 2) ¡
hold on;

end,
title('Bífurcation diagram of the quadratic map');
xlabel ('r')i ylal¡el ('x_n');
Sset (gca, 'xlim' , lt 2l) ¡
hold off;

J.

I Chaotic signals ensemble autocorrelations

I Input: MM= number of sigmals
I mm= length of the sigrrals
I uses maps.m to generate the chaotic sigrnals
I Output: Plot of the ense¡nlcle and averaged sigrnal-s autocorrelation

108



MM=50 ì z Number of sigmals
mm=30, Z Length of sigrral

mlogis=zeros (MM,59) ;
mbernu=mlogis;
mÈen=mlogis;
mgua=mlogis;
msine=mlogtis;

f or kk=l-:MM

Z Ifmlogis, fmbernu, fmLen, fmqua] =chaosmaps (2,501-+m,0) ;
maps

fml=logis ( 501- : 501+mm) ;
fmb=bernu (501- : 501+mm) ;
fmt=tent ( 50L : 501+mm) ;
fmq=qua ( 501 : 501-+mm) ;
fms=sine ( 50L : 501-+¡nm) ;

xcl=fftshift. (ifft (fft (fml, 2*mm-1) . *conj (fft (fm1, 2*mm-1)
xcb=fftshift (ifft (ffL (fmb, 2*mm-1) . *coni (fft (fmb, 2*mm-1)
xct=fftshift ( ifft ( fft. ( fmt, 2 *mm-1 ) . *conj ( fft ( fmt,2*mm-1 )
xcq=fftshift (ifft (fft. (fmq, 2*mm-l_) . *conj (fft (fmq, 2*mm-1)
xcs=fft.shift (ífft (fft (fms, 2*mm-J_) . *conj (fft (fms, 2*mm-1)

mlogis (kk, : ) =abs (xc1) ' ;8/max (abs (xcl-) ) ;
mbernu (kk, : ) =abs (xcb) ' ,'zlmax (abs (xcb) ) ;
mten(kk, : ) =abs (xct) ';8,/max(abs (xct.) ) ;
mqua (kk, : ) =abs (xcq) ' ; 8,/max (abs (xcq) ) ;
msine (kk, : ) =abs (xcs) ' ;

end

mlogris=mean (m1ogís ) ;
mbernu=mean(mbernu) ;
mten=mean (mten) ;
mqua=mean (mgua) ;
msine=mean(msíne) ;

f ignrre ( 1)
subplot (22L)
p1ot, ( -mm+1 : mm-1, 2 0 *1o9L0 (mlogis/max (mlogis ) ),' k',, Linewidth,
title(' i_a','Font,Name',' times nehr

rom¿lll'' , 'FonLAngl€' , ' It.alic ' , , Fontweight , , ,Bold.' , ,FonLSi ze, , L2)
I xlabel('Delay')
ylabel ('Amplitude [dB] ')
axis ( t-10 1-0 -1-5 0l )

subplot. (222 )

plot ( -mm+1 : mm-l-, 2 0 *1og10 (mbernu/max (mbernu) ) , 'k' , 'Linewid.th't.itle(' ii_a",FonLName"' times new
roman',' FontAngl€,,' Italic','Fontweight.','Bol-d.',' FontSize,,l-Z)
xlabeL ( 'Delay' )

y1abe1 ('Amplitude [dB] ')
axis ( [-].0 1-0 -L5 0l )

,2)

,2)
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fisure (1)
subploL (223 )

plot ( -mm+1 : mm- 1, 2 0 *1og10 (mten,/max (mLen) ),' k,,, LineWid.Eh,, 2l
tit.le(, iíi_a,,'FontNarne',' times nevr

roman' , ' FonLAngl€' , ' Italic ' , ' Fonthleight , , 'Bold' , ' Fontsiz e, , L2)
I x1abe1('Ðelay')
yIabel ('Amplitude [dB] ,)

axis( [-]-0 1-0 -15 0l )

subplot (224)
plot ( -mm+l- : mm- 1, 2 0*1og10 (mqua,/max (mgua) ),' k',, LíneWid tr]n,, 2)
title(' iv_a',,FontName',' tímes new

roman',' FonLAnglê',, It.alíc,,,Fontl^Ieight',' Bold',' FontSize,,!2)
I xlat'eL ( 'Delay' )

ylabel('Amplitude [dB], )

axis ( [-1-0 ].0 -1s 0l )

4.

I Aut.ocorrelation for the chaot.ic sigrnals.

I uses function chaoso t.o generate the sigmal, the sígnals are
segrmented
I and a averaged auLocorrelation is obtained. from the segments
autocorrelations

I Output: Autocorrelation plots

Ifmlogis, fmbernu, fmten, fmqua, fmcong, fmran, fs] -chaos (2,L500,0,2) ¡

h=floor(length(fmlogis) /301 ¡ tNumber of posible averages

corrlogis=zeros (1,59) ; tCorrelat.ion matrix initial_ization
corrbernu=zeros (j_,59) t ZCorrelation matrix initialization
corrten=zeros (1 ,59) ¡ tCorrelatíon matrix inítializat.ion
corrçfua=zeros (1 ,591 ; tCorrelation matrix initialízation (

for g=1:h SFor each posible average

if g*30+31>length(fmlogis) tFor the final average of 60
ambiguity functions

break gEnd cycle
end

corrlogiísLemp-xcorr( [zeros (]_,30) (fmlogis (30* (S-1) +l_:30* (g-
l-)+30)) zeros(L,30) l,'unbiased.,); gCal-culate aut.ocorelation
function of the next 30 samples (Logistic)

corrbernutemp=¡s6¡r ( [ zeros ( i-, 3 0 ) fmbernu ( 3 0* ( g- i- ) +1 : 3 0 * ( g-1 ) +3 0 )
zeros (L,30) l, ,unbiased'); tCal_culate autocorelat.ion function
of the next. 30 samples (Bernulli)

corrt.entemp=xcorr ( [ zeros ( ]-, 3 0 ) fmten ( 3 0 * (S-1 ) +l- : 3 0 x ( g- j- ) +3 0 )zeros(l-,30) l, 'unbiased'),. gCalculate autocorelat,ion
function of the next 30 samples (Tent)
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corrquatemp=xcorr ( [ zeros ( 1, 3 0 ) fmqua ( 3 0* (s-1 ) +1 : 3 0 * ( g- ]- ) +3 0 )
zeros(L,30) l,'unbiased'); SCalculate autocorelation
function of the next 30 samples (Quadratic)

corrlogis=corrlogis+ (corrlogistemp ( 61 : 119 ) ) ;
SAdd Èhe new values to the previous ones

corrbernu=corrbernu+ ( corrbernutemp ( 61: 119 ) ) ;
SAdd the new values to the previous ones

corrten=corrLen+ (corrtentemp ( 61- : 1-l-9 ) ) ;
8Àdd the new values to the previous ones

corrçnr.a=corrqua+ (corrquatemp (6L: l-19) ) ;
SAdd the new values to the previous ones

end
subplot (22L)
plot (20*1o910 (abs (corrlogis) /max (abs (corrlogris) ) ) )
subplot (222 )

ploL (20*1o910 (abs (corrbernu) /max(abs (corrbernu) ) ) )

subplot ( 223 )

plot (20*1o910 (abs (corrten) /max(abs (corrten) ) ) )
subplot (224)

plot (20*logl-0 (abs (corrqua) /max(al¡s (corrqua) ) ) , 'Linetrlidth' ,2)

5.

I Chaotic based FM sigmal Spectral estimat.ion
I by autocorrelaÈion averaging and Fourier transform

I Input.: None
I Output: Plot of the sigmal's power spectrums

M=500; I number of sigmals
m=l-28 ¡ * length

for k=1:M

I fmlogis, fmbernu, fmLen, fmqua, fmsine] =chaos ( 2 , 5 Ol-+m, 0 ,2) ¡

fml=fmlogís (50L : 501-+m) ì
fmb=fmbernu ( 50L : 501-+m) ;
fmt=fmten ( 501- : 501+m) i
fmq=¡**a ( 501-: 501-+m) ;
fms=fmsine (50i- : 501+m) ;

xcl=ffrshifr. ( f fr. (fml) ) ;
xcb=fftshift (fft (fmb) ) í
xct=fftshift (fft (fmt) ) i
xcq=ff¿"¡ift (fft (fmq¡ ¡ t
xcs=fftshifr ( f fr. ( fms) ) ;

logis (k, : ) =abs (xcI) ;8,/max(abs (xc1) ) ;
bernu (k, : ) =aL's (xcb) ; 8/max (abs (xcb) ) ;
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ten (k, : ) =abs (xct) ;8/max (al¡s (xct) ) ;
gua (k, : ) =abs (xcq) ; 8/max (al¡s (xcq) ) ;
sine(k, : ) =abs (xcs) ;8/max(abs (xcq) ) ;

end

logris=mean ( logis ) ;
bernu=mean (bernu) ;
ten=mean (ten) ;
qua=meanlqua);
sine=mean (sine) ;

plot ( - . 5 z L / 1"28: . 5, 20*1o910 ( logis/max ( logis ) ),' k',' LineWidÈh', 2 )
title(' i 

"'FontName"'times 
new

roman',' FonLAnglê',' Italic',' Fontl^leight','Bo1d',' Fontsize',72)
xlabel ('Normalized. frequency' )

y1abe1 ('Amplitude [dB] ')
axis([-.5 .5 -1-5 0])

set(g'ca,'xtick', [-. 5: .2 : 5] )
Sprint ( 1, '-djpeg' , 'figl-Oa') ;close

6.

I Lyapunov e>qgonent calculation

I Input: Input sigmal should be save in Èhe vari¡hle x (as vecLor)
I Output: Plot of the disLance Dn with respecL Lo n (Slope
calculation)

N=30; t Number of inítial point.s
n=25¡ I Maxim length to dispaly

i=zeros (N,n¡ ;
d=i;
i (: , i-)=l-+ceil (rand(1-,N) *1-00) ' ;

for m=l-:N
ld0, indexl =min (abs ( [x ( 1 : i (m, 1) -2 )

x(i (m, Ll +2 :length(x) ) I -x(i (m, 1) ) ) ) ;
j=index(1) -i (m,1) ;
Í (m, 1:n) =i (m,1) : i (m, l-) + (n-1) ;
d(m, : )=abs (x(i (m, : )+j ) -x(i(m,: ) ) );
lY(m, :)=16gt( d(m, :) ) ;8/d(m,1) ) ;

end

LY=sum(1y, 1)/m;

inf inf inf

range= [2: ]-01 ;
X=L:n;

* Slope calculation rangre

a= [ones(size((range) )) ; (ra¡rge)]' \(Ly(range)),;
I Linear regression

Y- [ones (size (X) ) i X] ' *a; I Linear f it
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plot (X, LY, 'ko' )

title('Lyapunov exponent','FonLvüeight','Bold' )

xlabel ('Iterat,ion number [n] ' )

ylabeI ( 'Log (d_n) ' )

axis tight I LogLog Plot

hold on
plot(X, (Y),'k:') I Fitted line
legend( ['m =',num2str (a(2) I J, 4)
plot( (range), (Y(range) ),'k-')
hold off

7.

I Correlation fractal dímension calculatíon

I Input: Input sigrnal should be save in the variabl-e x (as vector)
I Output: PloL of the correlation sum CR wíth respecL Lo R (Slope
calculation)

xRange=max (x) -min (x) ;
N=length(x);
k=0 :20;
R=xRange. /L.5.^k¡
NiR=zeros (length(k) ,N) ;

for k=1:length(k)
f or i=l-:N

j= [1: i-L i+1:N] ;
NiR(k, i) =lengLh(find(R(k) >=abs (x(i) -x(j ) ) ) ) +NiR(k, i) ;

end
end

piR=NiR/ (N-1) ;
CR=1,/N*sum(piR,2);

rarrge=14220); I Slope calculaLion range

I X values for regiressionx=1og (R) ;
a= [ones(size(X(rangre) ) ) ; X(range) ]' \(1og(CR(range)' ) )' ;

I Linear regression
Y- lones (size (X) ) ; X] ' *a; I Linear f it

log1og (R, CR, 'ko' )

title('Correlation Dimension D_C plot','Fontweight','Bo1d' )

xlabel ('Ve1 síze [r-k] ')
yl-abel ( 'Correlation [C_k] ' )

axis tight I Loglog Plot

hold on
loglog(e>ç(x),exp(Y),'k:') I Fitted line
leg'end( ['m =',num2str (1+a(2) ) J,2)
1og1og (e>ç (x (range) ) , exp (Y (range) ) , 'k- ' )

hold off
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8.
t Chaotic FM sigrnals ensenrlcle ambiguity functions

I fnput: M= number of sigrnals
I m= length of the sigmals
I K= Ðoppler stpes
I uses chaos.m to generate Lhe chaotic FM signals
I Output: The averaged sigmals ambigruity function in the varibales
a¡nbi [map]
I use plotingg.m Lo plot

M=30;
m=l-28;
K=256;

[x, Lau,xii =¿¡¡51 (ones (m, 1) , -m/2: .5:m/2,K) ;

mlogis=zeros (size (x) ) ;
mbernu=mlogis;
mt,en=mlogiis;
mqua=mlogis;
msine=mlogfís;
gaus=mlogis;
sigma=1/sqrL(L2) i

for k=1:M

Ifmlogís, fmbernu, fmLen, fmgua, fmsine] =chaos (2, 501+m, 0,2) ¡

fml=fmlogis ( 501- : 501+m) ;
fmb=fmbernu ( 501 : 501+m) ;
fmt=fmt.en ( 501- : 501-+m) ;
fmg=¡¡o*" ( 501- : 501-+m) ;
fms=fmsine ( 501-: 501-+m) ;
fmgaus=e>ç ( j *2*pi*cumsum (sigrma*randn (1, m) ) ) ;

xcl=ambi (fml ' , -m/2; .5 zm/2 ,K) ¡
xcb=ambi (fmb', -m/2 ; .5 :m/2,K\ ¡
xct=arnbi (fmL' , -m/22 .5zm/2,K) ¡
xcq=ambi (fmq' , -m/22 .5zm/Z,K) ¡
xcs=anibi (fms' , -m/2: .5:m/2,K| ;
xgs=arnbi (fmgaus, ,-fr/2: .5zm/2,K) ¡

mlogis=mlogris+abs (xcl),/max (max (abs (xcl ) ) ) ;
mbernu=mbernu+ahs (xcb) /max(max(abs (xcb) ) ) ;
mten=mten+abs (xct),/max(max(abs (xct) ) ) ;
mqua=mç¡rra+abs (xcq) /max (max (abs (xcS) ) ) ;
msine=msine+abs (xcs)/max(max(abs (xcs) ) ) ;
çJaus=gaus+abs (xgs) /max(max(abs (xgs) ) ) ;

end

mlogis= (mlogís) /M;
mbernu= (mbernu) /M;
mLen= (mten) /M;
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rTrÇ[11â.= (mgua) /M;
msine= (msine) /M;
gaus=gaus/M;

ambilogis=abs (mlogis ) . ^2 ;
ambibernu=abs (mbernu) . ^ 2 ;
ambiten=abs (mÈen) . ^2;
ambiqua=abs (mqua) . ^2 ;
ambisine=abs (msine) . ^2 ¡
anibigaus=abs ( gaus I . ^2 ¡

9.

I Multipath propagation environment

I Input: m IJength of the sigrnal, delays Number of replicas
% coef Value of direct reflect.ion coefficient
I tfO f1l CuÈ off frequencies
I M Number of realization
I OuLput: Plot of the cross correlation function

function tl = multipath(m,delays, coef, f0, fl-,M)

for (k=1:M),

Ifmlogis, fmbernu, fmten, fmqua, fmran, fs] =s¡¿.r (2,m, 0,2) ;
n=l-:m;

beta = (f1-f0) .*(m.^(-1) ) ;
ch = exp(j*2*pi * ( beta./(2).*(n.^(2)) + f0.*n )); SChirp

generation

lB,A¡=s¡.by2(6,20,lf.0 fl-l+.5); EBandpass fílter
IH, F] =f reqz (8, A, ' twosided' ) ;

f ilfm=f ilter (8, A, fmbernu) ;
filch=filter (8,4, ch) ;
fí1ran=fíIter(8,À, fmran) ; SFiltered sigmals

h= [coef normrnd.(0, 1, 1, delays) /S+j*normrnd (0, 1, 1, delays) /5] ;
SRician channel

X=conv(filfm,h) /2¡
X(m+l-:end)=[];
Y=conv(filch,hl /2;
Y(m+l-:end)=[];
Z=corlv (filran,h) /2¡
Z(m+L:end)=[]; Srecieved signals

autofm=abs (xcorr (X, f ilfm) ) ;
8ifft. (conj (fft (filfm) ) . *fft (X) ) ;
autoch=abs (xcorr (Y, filch) ) ;
autoran=abs(xcorr(Z,fíLran)) ¡ I Sigmals
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crosscorrelations

fm(k, : ) =20*1o910 (autofm/max(autofm) ) ;
chi (k, : ) =20*1og10 (auLoch./max(autoch) ) ;
rando(k, :)=29*1o910(autoran/max(autoran) ) ; t Correlation

absolute value

end

ploL ( -length (X) +1 : length (X) -1, mean ( fm, 1 ) , 'k' )

hold on
plot ( -length (Y) +L : length (Y) -1, mean ( chi, 1 ),' : k',' Linewidth', 2't
plot (-lengLh (z') +t: length (zl -t,mean (rando, t),' --k' )

legend('BFM','LFM','GFM', L)
axis ( [-L 1-0 -L5 0 j )

xlabel ('Delay [k] ')
ylabel('Amplitude [dB]' )

hold off

return

10.

I Noisy propagation environment

I Input: m LengLh of the sigrnal , SNR Sigrnal to noise ratio
I tfO f1l Cut off frequencies
I M Number of realization
I Output: Ðifference percentage in image

funcLion ¡tm] = noisy(m, SNR, f 0, f 1,M)

for (k=1:M),

Ifmlogis, fmbernu, fmten, fmgua, fmran, f s] -chaos (2,m,0,2) ;
n=1:m;

bera = (f 1-f 0) . * (m. ^ (-1) ) ;
ch = e>çÞ(j*2*pi * ( beta./ (21 . *(n.^(2) ) + fO.*n )); SChirp

generation

[B,A] =ç¡sby2 (6,20, lf} f l-l +.5) ;
IH, F ¡ =¡¡"qz (8 ,4, ' Lwosided' ) ; SBandpass filter

filfm=real (filter(8,4, fmbernu) ) ;
f ilch=real ( f ilt.er (B, A, ch) ) ;
filran=real (filter(8,À, fmran) ) ; SFiltered sigmals

noísyfm1=awçfn (f ilfm, SNR, 'measured.' ) ;
noisyfm2 =adduni f orm ( f ilfm, SNR) ;
noisyfm3=addrayl (filfm, SNR) ;

&Gaussian
8Uníform
Sand Rayl-eigh
addiLion to CBFM
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noisychl=awgrn ( f ilch, SNR, 'measured' ) ;
noisych2=adduniform ( filch, SNR) t
noisych3=addraYl (filch, SNR) ;

noísyranl=awçfn ( f ilran, SNR, 'measured' ) ;
noisyran2 =addunif orm ( f iIran, SNR ) ;
noisyran3=addrayl ( filran, SNR) ;

autoranl=abs (xcorr ( filran, noisyranl )

auLoran2=a,l¡s (xcorr ( f i1ran, noisyran2 )

auÈoran3=abs (xcorr ( filran, noisyran3 )

SGFM xcorrelations

SGaussian
SUniform
Sand Rayleigh
addition LFM

SGaussian
EUniform
Sand Rayleigh
addiEion GFM

auLofm=abs (xcorr(fitfm) ) /max(abs (xcorr(filfm) ) ) ;
autoch=abs (xcorr(filch) ) /max(abs (xcorr(filch) ) ) ;
autoran=a]¡s (xcorr ( filran) ) /max (abs (xcorr ( filran) ) ) ;
8Sígrnals auLocorrelations

autofml=abs (xcorr(filfm,noisyfml) ) /max(abs (xcorr(f ilfm) )

autofm2=abs (xcorr ( filfm, noísyfm2 ) ) /max (abs (xcorr ( filfm) )

autofm3=abs (xcorr ( f i1fm, noísyfm3 ) ) /max (abs (xcorr (f ilfm) )

SCBFM xcorrelations

autochl=abs (xcorr(filch,noisychl) ) /max(abs (xcorr(filch) ) ) ;

auLoch2=abs (xcorr (filch,noisych2 ) ) /max(abs (xcorr (filch) ) ) ;
autoch3=abs (xcorr ( filch, noisych3 ) ) /max (abs (xcorr ( filch) ) ) ;

SLFM xcorrelations

)¡
);
);

=sum(abs (autofml- (190:2L0) -autofm (190 :21-0) ) ) /sum(autofm) ;

=sum(abs (autofm2 (190:21-0) -auUofm(1-90:210) ) ) /sum(autofm) ;

=sum(abs (autofm3 (1-90 : 210) -autofm(l-90 : 21-0) ) ) /sum(autofm) ;

/max (abs (xcorr ( f ilran)
,/max (abs (xcorr ( f ilran)
/max (abs (xcorr ( f ilran)

fml (k, :

fm2 (k, :

fm3 (k, :

TCBFM diff. Percentage

ch1 (k, : ) =su¡n(abs (autochl (190:210) -autoch (l-90:21-0) ) ) /sum(autoch) ;

ch2 (k, : ) =sum(abs (autoch2 (1-90:21-0) -autoch (190:210) ) ) /sum(autoch) ;

ch3(k,:)=sum(abs(autoch3(1-90:21-0)-autoch(l-90:21-0)))/suin(autoch);

SLFM diff. Percentage

ranl (k, : )=surn(abs (autoranl
autoran (l-90:21-0) ) ) /sum(autoran) ;

ran2 (k, : ) =sum(abs (autora¡2
autoran (1-90:210) ) ) /sum(autoran) ;

ran3 (k, : ) =sum(abs (autoran3
autoran (1-90 : 210 ) ) ) /sum(autoran) ;

(190:2L0') -

(190:2L01-

(190:2L0) -

end

SGFM diff. percentage
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