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Abstract

This thesis presents an analysis of a chaotic and chaotic-based frequency-modulated
signals, and demonstrates the possibility of their use in wideband radar imaging systems.
The signals resolution capability and sidelobe distribution on the range-Doppler plane are
assessed by the inspection of their ambiguity surface. Four deterministic, bounded, non-
linear, iterated maps are considered. Statistically independent samples with invariant
probability density function are obtained by randomizing the initial condition of each
map. The resulting sequences, which have broadband frequency representations, are also
used to construct wideband, stochastic frequency-modulated signals. These chaotic and
chaotic-based frequency-modulated signals are .ergédic and stationary. The
autocorrelation, spéctrum, and the ‘ambiguity surface assbciated with the signals are
characterized, as well as their chaotic behaviour using the Lyapunov exponent and
correlation dimension. The ambiguity surface of an FM signal generated via a chaotic
map with uniform sample distribution is demonstrated to be comparable to the ambiguity

function of a random FM signal and superior to that of a linear frequency-modulated
| chirp. Finally the prbpose_d new radar signals are compared to other traditional
waveforms used in radar systems in terms of resolution, electronic counter-

countermeasures and multipath performance.

Index Terms— Ambiguity function, chaos, frequency modulation, iterated maps,——

‘multipath effect, radar resolution, radar signal analysis, radar signal processing.
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Chapter 1

Introduction

The work presented in this thesis offers a novel exploration in the area of radar signal
design. Historically, the search for new signals that in some way can improve the radar
performance has never stopped. Since the introduction of radar systems, developers had
tried to come up with new techniques and concepts to improve the performance of these
systems. Independently, the field of chaos has had a tremendous explosion during the last
hundred years. The exploration of chaos and its comprehension has resulted in many new
ideas and has brought new enrichments to numerous applications. Surprisingly, until
recently, very little research had been done in order to use the suitable characteristic of
chaos into the field of radar imaging. The research presented in this thesis attempts to
assist in a novel quest for the combination of the fantastic world of chaos and the exciting
world of radar.

Radar or radio detection and ranging, is an electronic device used for the detection and
location of objects of interest. All radar systems obtain information ébout a target by
processing the received echo of the signal that was transmitted. The features of the
transmitted signal vary depending on the applicatioh requirements, and they have an
effect on target detection, measurement accuracy, resolutibn, ambiguities, and clutter

rejection [1].
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In the design of radar systems, one of the most important goals is the achievement of
high resolution, that is the ability to resolve closely located targets. In this aspect it is
well known that the range resolution of a system is directly related to the transmitted
signal bandwidth [1;p.496], [2]. -

Chaotic signals generated by iterated non-linear maps are characteristically wideband
[3]. This special feature has brought interest into the application of chaotic signals in a
variety of areas. In the contéxt of communication theory, the main interest is in exploiting
the aperiodic nature of chaos for the transmission of information via broadband chaotic
signals [4]. Given that the power spectral density of chaotic signals is broadband they can
also be used to achieve high-resolution radar sensing and imaging.

The term chaos is utilized in classical articles to describe the statistical nature of
physical phenomena in which ergodicity applies [5], such as in the case of Brownian
motion. When observed over a finite or infinite interval of time, chaos phenomena vary
significantly for small initial condition fluctuations and appear unpredictable [6]. More
recently, chaos has been used to describe nonlinear deterministic phenomena and has
been extendedly studied in dynamical systems [7].

Chaos can be generated via non-linear functions that produce statistically independent |
samples with invariant probability density functions. Several chaotic expressions can be
considered to generate a radar signal. Among some of the well know discrete maps that
have been studied are the logistic, Bernoulli, congruent, circular, exponent, tent,
quadratic, Hénon and sine maps. In principle, these chaotic wideband signals generated
by such maps can be synthesized via low-order electronic oscillators and circuits [8].

For a given energy level, high resolution is typically achieved by either decreasing the
pulse duration of the transmitted signal or by modulation of a relatively long duration -
transmitted signal [1;p.493], [9;p.22]. By feeding.chaotic signals to the input of a voltage-
controlled oscillator [10], a stochastic frequency-modulated (FM) signal with fractal
features is generated. This chaotic-based FM (CBFM) signal is an ergodic and stationary
process with initial random phase. Recent work in the area of radar signal design
demonstrated the feasibility of two-dimensional imaging using an FM signal with normal
phase distribution [11], pseudo-noise with normal amplitude and uniform phase

distribution [12], and chaotic binary phase coding [13].
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Chaotic and CBFM signals also present advantages in the field of electronic counter-

countermeasures (ECCM). The transmitted signals posses low probability of interception
(LPD) and low probability of identification (LPId) due to their random appearance,
converting the radar into a masked, hard to detect system. At the same time, the
complexity of the signals allow the radar to perform well in unfriendly environments and
are robust against interference from noise, jamming, or another radar source. Undesired
multipath effects resulting from ground reflections and other reflections from
neighbouring objects can be reduced by the exploitation of the inherent wideband nature
of CBFM signals as well. Phase errors, caused by echoes following different paths, can
be reduced by increasing the bandwidth of the transmitted FM signal [14].
- In actual radar applications the target moves such that its echo signal has both time-
delay and Doppler-frequency shifts. One of the most important characteristic of a radar
system is the ability to estimate these shift values. The ambiguity function describes the
response of a radar particular range-velocity resolutioh cell to a point target, as the range
and velocity vary. The ambiguity function and its relationship to resolution were
originally introduced by Woodward [15] and since then, it has become a basic tool for
signal design and analysis. It can provide a measure of the radar system ability to |
accurately estimate the range and velocity of a single target. The ambiguity function
provides the basis for a systematic search of the best waveform in a particular radar
application.

This thesis proposes the use of chaotic and CBFM signals for range-Doppler imaging
and uses the ambiguity function to qualitatively investigate the potential of such
. waveform in a radar system. Chaotic and CBFM signals are of interest in synthetic .
eperture radar applications for their inherent high range and Doppler resolution
eapability, potential ease of synthesis, transmission, and electronic counter-counter-
measurements performance.

* The following chapters offer a detailed ‘reseérch of the topics presented in this
’ introduction. The objective is toi demonstrate the feasibility of the use of chaotic signals
“as a new tool for high-resolution radar imaging. Chapter 2 presents a short review of key
concepts in the topic of radar imaging and chaos. Four chaotic maps selected for this'

thesis are introduced. Theoretical aspects of chaos generation and evaluation are also
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presented in Chapter 2. Chapter 3 sets the bases for the signals further simulation and
testing and provides the analysis of the signals under study. In Chapter 4, the ambiguity
surfaces of the signals: are obtained and the results are discussed and examined for range-
Doppler resolution. The evaluation of the multipath operation and ECCM capabilities of
one of the CBFM signals are estimated, discussed and compared to traditional radar
signals. Finally, Chapter 5 provides conclusive remarks, discusses the possible impact

that the results can have in radar imaging and outlines further possible research topics.
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Chapter 2
Overview
| 2.1 Radar

Since the early beginnings of history, mankind has always dreamed of the possibility of
extending the capabilities of the human senses. Men have often thought about the idea of
seeing beyond the eyesight or through the dark. Nowadays, radar systems allow us to
accomplish part of this dream. Although it cannot act as a substitute for the human eye, a
radar can extend the vision by not only sensing through conditions that are beyond human
capabilities, but also by measuring the distance of objects far beyond the human eyesight.
These characteristics have made radar systems a very important tool in many modern
applications in sea, earth, air and space. Either being used as a navigation, surveillance or
meteorological tool,'radars find applications in the civilian, military or scientific field.
~ Basically, radar is used for the detection and location of objects of interest. All radar
systems obtain information about an object or target by processing a received echo of the
- signal that was transmitted. A simpliﬁed radar system is shown in Figure 2.1. The system
‘consists of a transmitting antenna emitting electromagnetic radiation generated by a
signal transmitter, a receiving antenna and an energy receiver. A portion of the
transmitted energy hits the target and is re-radiated in all directions. Part of this energy is
usually captured by the radar’s receiving antenna and in this manner the target is
detected. The returned signal, or echo from a target, is a modified version of the
transmitted waveform. Changes in the waveform are caused in part by the parameters of

the target, which ideally and in the absence of noise, can be deduced by comparing the
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received and transmitted signals. The echo is collected by the antenna and is processed in

the receiver with the object to estimate the target parameters.

Radar
Antenna

//‘/I/V/‘/Bi Transmitter
Target \[\[\1\1\97 Receiver

Antenna

Fig. 2.1. Basic radar system.

The time difference between the transmitted and received signal is denoted by the
delay 7. The object of the radar receiver is to determine the value 7 from the received

signal r(¢), given that
r(t)=sit-1)+n 2-1

where s(¢) represents the transmitted signal and 7 is the noise added to the signal through
the total travel time. Noisy is usually assumed to be Gaussian. A copy of s(#) should be
available fdr comparison with (¢) at the receiver. A constant frequency shift or Doppler
offset of the whole signél spectrum, proportional to the target radial velocity can also be
present in the received signal.

“The distarice or range from the radar to the target is determined by measuring the time
taken by the waveform to travel to and from the target. Given that the electromagnetic
energy travels at the speed of light ¢ (299,792,458 m/s), the range is

R=—, 4 2-2)
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- The Doppler effect can be described as the frequency shift of the signal reflected by a

moving target. The sift vis given by

v=—H= (2-3)

where v, is the velocity between the radar and the target and A is the wavelength of the
transmitted signal carrier. '

In the design of radar systems, one of the most important goals is the achievement of
high resolution, that is the ability to resolve closely located targets, both, in the range and
in Doppler dimensions. The ability of the measurement system to perform target
discrimination is related to the type of transmitted waveform and the detection process
implemented at the receiver. In this regard, it is well known that the system’s range
resolution, 4R, is directly related to the transmitted signal bandwidth,f3, [16] by the

equation

AR=——. (2-4)

At the same time the Doppler resolution can be improved by increasing the carrier

frequency ¢/A in equation (2-3), and the duration of the transmitted signal [17,p.7].
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2.2 Radar signals

The features of the transmitted signal vary depending on application requirements and
have an effect on target detection, measurement accuracy, resolution, ambiguities, and
clutter rejection. Since the appearance of radar systems, many signals have been proposed
for a variety of applications presenting different advantages and drawbacks. Single pulse,
constant frequency pulses, linear frequency modulétion, hyperbolic frequency
modulation, stepped frequency modulation, random frequency modulation, quasi-random
phase modulation, random phase-shift modulation, and pure random signal are examples
of the different waveforms that have been used in radar systems over the last fifty years.

If different ranges or time-shifis are to be distinguishable at the receiver, the
transmitted signal must have the property of being as different as possible from its time-
shifted received version. Similarly, this .property should be present when the received
signal has a frequency shift due to targets motion.

Notwithstanding, the sensitivity of the radar can be made to depend only on the total
energy of the received signal provided that an optimum detection procedure is selected.
The matched filter receiver provides an optimum signal to noise ratio output for radar
signals in the presence of noise [18,p.1]. The receiver cross-correlates the received

waveform with a suitable time-delayed version of the transmitted signal as described by

oo

sy ()= J.r(r)s*(r—t)dz'. (2-5)

o0

The output of the radar receiver su(f), will peak to a maximum when ¢ = T}if a target is
present at R = ¢T; /2. If a threshold level is established at the output of the receiver, a
target is said to be detected .whenever a peak in Sy(f) is large enough to cross the
threshold. This threshold level usually helps to reduce false alarms created when spurious
peaks caused by noise appear in the signal, but at the same time, it may mask btrue

responses from weak targets.
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2.2.1 Linear FM chirp

One of the most common waveform used in today’s radar systems is the linear FM
chirp. The signal allows the operation of the radar with the detection capability of a long
pulse but the resolution and accuracy of a short pulse. The transmitted signal consists of a
rectangular pulse of constant amplitude 4 and duration T. The frequency of the
transmitted pulse increases linearly form f; to f; over the duration of the pulse. The -
received pulses have the same linear increase in frequency. The echoes are passed
through a compression filter at the receiver. The filter introduces a time lag that decreases
linearly with frequency at the same rate as the frequency of the echoes increases. When

the echoes emerge _fbrm the filter, they have been compressed in a shorter length,

approximately %,Where B = f2-11, but with greater amplitude /ST [1,p.496]. The shape

of the compressed pulse is proportional to

sin (7ft) 2-6)
Bt

Unfortunately the compressed output waveform contains additional sidelobes other
than the main peak which corresponds to the true target position. These sidelobes are
usually small compared to the mainlobe, but they may mask the mainlobe of another
weak target reflection present in the received signal.

Linear FM compression is a mean of improving the range accuracy of a Iong band-

limited pulse by a certain amount, at the expense of a loss in Doppler accuracy of the
same order. The time and frequency characteristics of the compression waveform is

shown in Figure 2.2
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Fig. 2.2. Linear frequency modulation pulse compression waveforms.
i) Amplitude of transmitted waveform; if) Frequency of transmitted waveform; iii)
Time waveform described by i) and i); Output of the pulse-compression filter at
receiver.

2.2.2 Random and noise modulation

- Noise modulation radar systems operate by transmitting a signal modulated by a lower
frequency noise source. Because of the inherent bandwidth of this type of systems, good
' resolution, accuracy and unambiguous measurements of target range and velocity can be

achieved.
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Most noise modulated radars operate under the principle of anticorrelation [19]

1-R(9=1-lim,,_ Tjs(t)-s(t-f) dr 2-7)

0

to 'esﬁmate the targét range, while the output of a Doppler filters bank yields the target
velocity. A typical anticorrelation block diagram is shown in Figure 2.3. The system
: radiates energy that is modulated in frequency by a random function. If a target is close to
the antenna, the transmitted and echoed signals will have a high correlation because the
transmitter does not have sufficient time to make a great change in frequency. As a result,
the received waveform has approximately the same frequency characteristics of the signal
being generated at the transmitter. For a target located at a longer range, the time delay of
the echo is longer and there is a mgher probability of a large change in the transmitted
signal. Usually a sample of thé transmitted signal is used as the local oscillator input in a
conventional mixer. The mixer output has an instantaneous frequency (IF) equal to the

- instantaneous frequency difference of the transmitted and returned signals.

IF=
: Je + 1€
Noise FM N Power
source modulator 'l amplifier
- L e
. . Af
4—Discriminator |4 Limiter ¢ Mixer

Fig. 2.3. Basic noise modulated radar system.

‘As described by Horton [19], if the random noise function N(®) is assumed to have a
Gaussian probability distribution and the frequency deviation characteristic of the
transmitter is linear, the transmitted signal will have a Gaussian probability with the same
mean value. The instantaneous frequency of the frequency-modulated signal is o+t AD)=
fo + K-N(z), where f; is the carrier frequency and K is the modulation index.
Consequently, the echo signal has an instantaneous frequency £, + f{z-7) = fe + KN(t-7)

and the instantaneous frequency difference is
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A=) -f £ - T)=KN@) - KN(£7). 2-9)

It is assumed that 4f has a Gaussian probability distribution with zero mean. Because
the mixer does not preserve the algebraic sign of the frequency difference, the output is a

one-sided Gaussian distribution with maximum at zero. The target range is then
determined by measuring the mean lAf I , which is directly related to the anticorrelation

function [19]

i =.;.‘£ F@On {1-R(z)}. (2-9)

Systems that are modulated with a periodic signal are subject to ambiguities for targets
whose delays are larger than the repetition period of the sensing signal. In random and v
noise modulation radars, the spectrum of the transmitted signal is not a harmonic series;
consequently they are less prone to the ambiguity problem. For military purposes, noise
| modulation presents excellent ECCM capabilities including LPI and LPId, which are
needed in order to select the proper ECM jamming. Civilian applications benefit of the
strong electromagnetic compatibility (EMC) of random and noise radars to discriminate

against other contaminating radar signals.

2.3 Ambiguity function

The echo frdm a target is a modified version of the transmitted waveform. These
modiﬁcatiohs are due to the parameters of the target, which ideally and in the absence of
noise, can be deduced by comparing the returned and transmitted signals. The radar
return is assumed to be different form the transmitted signal in only:

- The time delay, which is proportional to the radial range of the target.
- - A spectral Doppler offset proportional to the tafget radial velocity. This offset is
positive for a target travelling towards the radar and negative if the target is travelling

away from the radar.
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Strictly spéaking, the assumption of constant Doppler shift is only an approximation
that is valid for radial velocities that are small compared to the propagation speed of the
transmitted energy. Additionally, the received signal is usually contaminated by noise
and the reflection is attenuated by a variety of reasons.

The ambiguity function describes the response of a system to a point target echo as the
target range and velocity vary. The ambiguity function and its relationship to resoluﬁon
were originally introduced by Woodward [20]. Since then it has become a basic tool for
signal design and analysis. In terms of the Doppler frequency v and time-delay 7 of the
signal s(2), the ambiguity function surface is defined by,

o 2

v o) =| [s@)-5" (¢ +7)-e*™dy (2-10)

—oo

where s*(7) is the complex conjugate of the transmitted signal. The ambiguity surface can
be viewed as a time-frequency correlation function of the signal, similar to equation (2-
5). It graphically indicates the accuracy and ambiguity afforded by the transmitted signal
in the time (i.e. target range) and Doppler (i.e. target velocity) domains. The peak valué
of the function occurs at 7= 0, v = 0, where signals are matched, and its value is equal to
twice the signal energy. The volume under the function is also constant and equal to the
squared value of twice the signal energy. It is important to understand that 7 and »
represent differences in range and velocity of points to be resolved, réther than actual
ranges and velocities.

The ideal ambiguity function would consist of a single two-dimensional delta function
centered at the origin. This single spike eliminates any ambiguities, and its infinitesimal
thickness at the origin permits the echo delay and frequency shift to be determined
simultaneouély with complete accuracy. It would also discriminate two or more targets,
no matter how closely together they are. Naturally the achievement of such an ideal
ambiguity function diagram is not possible. Feasible ambiguity surfaces are wider in their
mainlobe than a Dirac delta. This gives rise to resolution problems because the response
from two close targets can result in the inseparable fusion of their two mainlobes.

Similarly an ambiguity function with more sidelobes can result in ambiguities in
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detection and masking of weaker target responses. In géneral there are only three types of
ambiguity functions: the ridge, the ‘bed of nails’, and the thumbtack. The ridge is used
when the target velocity is unknown and is generated by processing a constant frequency
rate signal. The bed of nails is used when a speciﬁc area of the ambiguity surface is to be
free of sidelobes and is obtained by processing pulse trains. The inherent periodicity of
these signals causes the ambiguity function to presenf a series of peaks in the delay-
Doppler plane. The thumbtack ambiguity function is produced by pfocessing noise-like
signals. In this case there are no ambiguities since there is only one peak in the delay-
Doppler plane, but the single peak may bé too broad to satisfy the requirements of high
accuracy and resolution. ' '

‘The ambiguity surface provides the basis for a systé_matic search for the best waveform
for a particular rédar application. Radar performance in terms of the capability to resolve
target and clutter scatterers in range and velocity dimensions can be assessed by directly
examining the ambiguity surface in the range-velocity plane. Because of its paramount
importance in the assessment of signal performance in radar systems, the ambiguity
surface has become one of the main tools for radar analysis, and its magnitude has been
calculated for a variety of radar waveforms, including periodic pulse trains [1,p.487],
single frequency modulated pulses [21], linear FM chirp [17,p34], [22], step frequency
radar [23], Gaussian random noise [24], phase coded signals [25], and Chaotic phase
coded signals [26]. ’
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2.4 Chaos

Chaos is a term used to describe very complex behaviour observed on otherwise simple
systems. Chaotic behaviour appears random and unpredictable, even though the system in
- which the chaos is observed is perfectly described by a simple set of equations and no
noise is present. The épparent contradiction between randomness and determinism has
made chaos a fascinating field and one of the fastest growing areas of study in recent
years. |

Chaotic behaviour seems to be universal. It is present in mechanical oscillators,
electrical circuits, chcmical reactions, lasers, heat fluids and nerve cells, to mention a
- few. Even more importantly, the chaotic behaviour shows universal characteristics
independent of the particular system [27], [28]. In the field of mathematics, chaos refers
to the apparent randomness and unpredictability that occurs in non-linear deterministic
dynamical systems.

" Non-linear dynamics is concerned with the study of systems whose time evolution
equations are not linear. In general,. almost all real systenis are strictly non-linear, which
is one key reason why this branch of mathematics is important. The apparent randomness
in chaotic behaviour is in reality not random at all because its nature is dictated by the set
of equation describing the system. The non-linearity is the critical requirement for a
system to present chaos. Albeit all chaotic systems are non-linear, this does not guarantee
that all non-linear systems are chaotic. A non-linear system may have a stable response to
a certain input, but a slight variation on the input may cause an oscillatory or even
aperiodic re'sponse in the same system. This sensitivity to a control parameter and the
initial conditions are characteristic of chaotic systems. A prediction of the future state of
the system is impossible because a small error in the exact value of the current condition
Will have a great impact in future states. For some parameters, the apériodic dynamics are
,independent of the initial condition and all input or initial values introduced to the system
will lead to an aperiodic but bounded behaviour. A dynamical system that is sensitive
dependent to initial conditions, topologically dense set of periodic points, and-

topologically transitive is said to be chaotic [3], [29].
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2.4.1 Chaos in iterated maps

An iterated map is the simplest display of discrete non-linear systems that can present
chaotic behaviour. The idea of using iterated maps to study chaotic phenomena was first
~proposed by Henri Poincaré at the beginning of the 20th century [27].

A map associates a unique object to every point in a set. Therefore a map f: 4 = B
from 4 to B is a function, f such that for every a € 4, there is a unique object fla) € B.

An iterated map gives the value of a future state x,+; as a function of the current state x,,

Xnt1 =f(xn, D) (2-11)
where the value x, is a real or complex number, the time step n=0,1,2,...,N is an integer
number, and D is a control parameter. The set of values {xy, xj, ..., xy} is called orbit or
trajectory of the map. In order for an iterated map to display a chaotic behaviour, the
mapping function f has to be non-linear. In a chaotic iterated map, the behaviour of the
orbit will be extremely sensitive to the control parameter D and the initial condition x.
For some values of D in equation 2-11, the orbit may either diverge or converge to 0 or
any other value as the number of iteration iterations grows. As the parameter value varies,
- the behaviour of the orbit may present interesting characteristics, namely the
manifestation of oscillatory behaviour as the orbit is iterated. The appearance of period
| doubling [30,p.168] as the parameter D changes can be easily observed in a bifurcation
diagram like the one shown in Figure 2.4. The bifurcation diagram of a chaotic map is
obtained by seleéting 'ba random initial condition, iterating the map from a specific control
parameter and plotting the value of the trajectory points generated by the iteration
‘process. If the trajéctory settles in a single point, the bifurcation diagram will show only
one value at that specific control parameter value. If for another parameter value the
trajectory oscillates between two points, the bifurcation diagram will show 2 points at
that parameter value. The presence of chaos in a map can be appreciated by analysing

the bifurcation diagram of the iterate map.
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Fig. 2.4. Partial bifurcation diagram of chaotic map.

The bifurcation diagram shows the succession of period doubling produced in the map
trajectory as the control parameter D increases. If this behaviour of doubling continues,
chaos will occurs in the bands where the period is infinite, resulting in a uniform
distribution of points on the vertical axis. At this point, the aperiodic nature of the orbit is
independent of the initial condition and any initial value (except for fixed points) will
ylead to the chaotic behaviour. It is important to note that chaotic behaviour does not
impIy an unstable fes‘ponse; A chaotic orbit is always bounded, even though no point will
be ever repeated on the orbit. This kind of stability is sometimes called chaotic stability.

The analysis of the bifurcation diagram easily reveals the appearance of chaos in a map
or émy other system for which such a diagram can be computed. However, chaos can
arise in systems for which the calculation of the bifurcation diagram is not known, or
from a data series for which the generating equation is not known. Several statistics can

be used to indicate the possible presence of chaos and how chaotic a system is. The most
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important quantitative measures are the Lyapunov exponent and fractal dimensions.

These statistics can be helpful in distinguishing chaos from noise [7],[29].

2.4.2 Lyapunov exponent

One of the main characteristics of chaotic behaviour is the great dependence on initial
conditions. A small difference in two close initial conditions, will give raise to a large

trajectory difference after a few iterations. This condition can be easily appreciated in the

trajectories of the chaotic map presented in Figure 2.5.
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Fig. 2.5. Divergence of close trajectories in chaotic map.

The Lyapunov exponent is a number that describes the dynamics of the orbit; it gives a
notion of the divergence of nearby trajectories, presenting a method to quantify chaotic
behaviour. If two trajectories start off with a separation dj at time =0, and the system is

assumed to be chaotic, then the trajectories are expected to diverge so that their
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separation at time ¢ satisfies the expression
d(®)=d,e™. (2-12)

The parameter A; in equation (2-12) is called the largest Lyapunov exponent, first
Lyapunov exponent, Lyapunov number or simply, Lyapunov exponent. More
specifically, for an iterated map the separation d, grows as a function of the iteration
ﬁumber n. For a starting point xo in the trajectory and another neighboring point x, + £the

difference between the eVolving trajectories when the map is iterated » times is
dn=|f " @ote) -1 ()| v (2-13)

If the behaviour is chaotic the difference is expected to grow exponentially with n.

Then, equation (2-13) can be written as,

fl'__z lf(n)(xo +€)—f(n)(xo)l =

2 (2-14)
£ e
or taking the logarithms of equation (2-14);
™ (x, +&)— fP(x
%zllog(f €3 3 f ml} .19
n .

Letting £>0, the ratio on the right-hand side of equation (2-15) becomes the derivative
~ of fln) with respect to x. Additionally, by the chain rule, the derivative of £ can be
written as a product of  derivatives of f{x) evaluated at the successive trajectory points

X0, X1, X2, ..., Xz.; and therefore the Lyapunov exponent can be now written as,

A==t G @ ) (-16)

F@)...
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where f{x)=df/ dx. Equation (2-16) can finally be rewritten as

f '(x,.-l)l)} @21,

A =—Il;(ln f’(x0)|+1n| f(x,)|+...+1n

- Hence, accofdin'g to equation (2-17), the Lyapunov exponent can be calculated as the

average of the absolute value of the derivatives of the map function evaluated at the
trajectory points. If the Lyapunov exponent cannot be obtained analytically, and instead
is numerically calculated for a set of different trajebtories starting from different initial
points xy, the average is called the average Lyapunov exponent [7]. In cases where only
measured data is available, the average Lyapunov exponent can be approximated from
the slope of a semi-logarithmic plot showing the logarithm of the separation of two close

- values x; and x; in the data series with respect to the iteration value »
do=|x—x|, di=|%e1— %111, ..., @= | Xj4n— Xi4n]| (2-18)

If A; is found to be positive, either analytically or numerically, the trajectories in the
map diverge, and the map is said to be sensitive to the initial conditions. In contrast, if the
value of 4; is zero or negative the trajectories do not diverge or converge respectively. A
positive Lyapunov exponent quantifies the sensitive dependence to initial conditions and
is one of the most important indicators of chaos. A one-dimensional iterated map function
- has chaotic trajectories for a particular parameter if the average Lyapunov exponent is

positive for that specific parameter value.
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2.4.3 Fractal dimensions

Unlike the measure of the embedding or Euclidean dimension of an object (i.e. the
minimum number of coordinates needed to describe the points on an object), the fractal
dimension is a non-integer quantity. It is a quantitative numerical way of evaluating or
comparing the géometn'c and/or probabilistic complexity of objects. The fractal
dimension can be interpreted as the degree of irregularity of an object [29,ch.2,pp.29].
Fractal dimensions remain constant over a range of measuring scales and are often used
to quantify chaos. There are many fractal dimensions that can be used to quantify chaos;
the most cgjmmonly mentioned are the similarity, capacity, Minkowski, Gyration,
Hausdorff-Besicovich, information, correlation, variance and Renyi dimensions
‘[7,p.341], [29,ch.2],{30,p.289].

Most of these fractal dimensions are reIated in some way and they may even have the
same numerical value for certain conditions. Most dimensions can be organized into
categories. The first category measures only the geometry of the chaotic attractor.
: Examplés of these morphological dimensions are the similarity dimension and the
Hausdorff-Besicovih dimension. The second category not only considers geometry, but
also probabilistic and informational aspects of the object or set. They take into account
that a trajectory may visit a neighborhood more often than others. Examples of this
category are the information and correlation dimensions. Other fractal dimensions are
spectral [29,ch.2,pp.99] or variance-based [29,ch.2,pp.103] and can be classified into

separated categories.
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2.4.3.1 Correlation dimension

The correlation dimension Dc [7,p.354] is a fractal dimension based on the behaviour
of the correlation sum. It has been used to characterize chaotic attractors and has a
computational advantage because it uses the trajectory point to directly calculate the
dimensi()n value. Like all the fractal dimensions, the correlation sum involves
measurements at different scales. It is calculated by placing the multi-scale measuring
instrument in each point in the set. For each scale, the number of points inside the scaling
area are counted and these values are normalized by the total amount of points in the data
set. The procedure is repeated at all differeht scales for all points. For a N points

trajectory {xy, xj, ..., Xn.1}, the correlation sum is defined by,

1 N N
C(Rk)—m;jﬂz’j;#@(lek—'xi_xj 1) (2-19)

‘where © represents the Heaviside step function and defines the number of points within
the distance Ry, of the i point. The sum can also be written in terms of relative frequency

P; of pairs within the distance Ry [27,p.192],

CR)=Y P’ (2-20)

i=1

The correlation dimension Dc is then defined to as number that satisfies

C(R)= %:I_{}) R (2-21)
or
D, = lim °8¢&) (2-22)
k-0 logR, ‘
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In view of the fact that it is not possible to take the limit R;—0, in practice C(Ry) is
computed for some range of R; values and the points plotted in a log-log plot. The slope

of such plot is then considered to be the correlation dimension of the object.

2.5 Investigated chaotic maps

There are many known non-linear equations or systems that can present chaos.
Howéver, besides non-linearity, the complete list of requirements that guarantee chaos
has not been discovered. The four non-linear maps studied in this project are the logistic,v
Bernoulli, tent, aﬁd quadratic maps. All four maps can be considered classic in the area of
chaos and have been studied in the last couple of decades.

Figures 2.6, 2.8, 2.10 and 2.12 show the bifurcation diagrams of the logistic, Bernoulli,
tent and quadratic maps respeétively. The diagrams show the succession of period-
doubling produced as the control parameter D increases in each map. Chaos occurs in the
bands where the points seem to be distributed at random (i.e. infinite periodicity). For
each value of D, the system is first iterated 2000 times in order to avoid any transitory
conditions and then the successive values of x are plotted for a few hundred iterations.
Notice that for several values of D, periodic behaviour reappears within the chaotic range
for the quadratic maps.

Figures 2.7, 2.9, 2.11 and 2.13 show the time series of the iterated maps in the chaotic
-region. The samples were generated using an arbitrary initial condition xy. Notice that the
samples ldok unsystematic, similar to noise, But never exceed the appropriate bounded
range. |

Table 2.1 summarizes the parameters used in the bifurcation diagram of each of the
four maps and indicates the selected parameter value for operation in the chaotic range.

‘The values of the control parameter D will be held constant throughout this thesis.

34



TABLE 2.1
Chaotic maps and respective control parameter value.

Map Range Control parameter D

Logistic [1,4] 4
Bernoulli [1,2] 2

Tent [1,2] 2
Quadratic [0,%4] Va

2.5.1 Logistic map

Probably the best know iterated map that presents chaotic behaviour is the logistic
equation. Originally intended to model population growth in discrete time intervals, it has
been widely studied because of its simplicity and parametric control. The Jlogistic

equation is fully described by
Xpe1=Dx,(1-x,) (2-23)
where xo € [0,1] and D represents the growth constant which at the same time acts as the

bifurcation control parameter. Notice that the quadratic term introduces the non-linear

element required for chaotic behaviour.
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2.5.2 Bernoulli map

The Bernoulli shift map or modulo 2 map is given by-

Dx,+1/2 for x,<0

= 224
i Dx,-1/2  for x,>0 (2-24)

where xp € [-%, 4]. The map presents a discontinuity at 0, and the conditional term

introduces the non-linearity in the system.

Value of the trajectory points X,

Control parameter D

Fig. 2.8. Bifurcation diagram of Bernoulli map.

37



@
n

o
-
—
——
|

e o
N w
1 1

1 1

e
-
T

~ Trajectory points Xn
o
1
p———

)
-
T

o
N
1

o
w

(o]
kS
T
o

, )

t ' I [ 1
20 40 60 80 100 120 140 160 180 200
Iteration number n :

&
o

Fig. 2.9. Chaotic trajectory of Bernoulli map for D=2,

2.5.3 Tent map

The tent map has similar properties to the closely related Bernoulli map, and is defined

as
Xur1=1/2-D i | (2-25)

for xp € [-%, Y. In the tent map, the non-linearity is introduced by the absolute value

- operator.
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254 Quadratic map
The quadratic map is given by |
Xor1 =D -4 (x, ) (2-26)
where xg € [-%4, %]. The name quadratic obeys to the nature of the non-linearity in

equation (2-26). However the map presented in this thesis is only a special case of many

quadratic maps known to present chaotic behaviour.
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Chapter 3

Signal analysis

3.1 Analysis of chaotic signals
3.1.1 Ergodicity of chaotic signals

For any discrete signal d(n) to be ergodic in the mean, the following equality must be
satisfied: '
E{dm)} =(dn)) (3-1)

where (-) denotes a time average over the interval 0 < n < N as N— oo, The signal d(n) is
ergodic in the autocorrelation if both the ensemble mean and the time mean of the

product d(n)-d" (n+m) are the same, i.e.
R(m,n) =E {dn) - d' (n+m) } = {d(n) - d'(n+m) ). (3-2)

When a formal veﬁﬁcation of (3-1) and (3-2) cannot be achieved, a experimental study
of the signal distribution can .be utilized [31]. Figure 3.1 shows that the histograms of the
chadtic signals described in section 2.5 approach their density regardless of whether thev
histogram is obtained from either a single realization of N samples or from the #™ sample
of an experimental ensemble. The histograms on the right side of Figure 3.1 were
obtained by processing 100,000 samples of a Single realization of x(#) with random initial
value xo using equations (2-23), (2-24), (2-25), and (2-26). The histograms on the left
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were obtained froin the 1,000® sample of 100,000 realizations of x(n) with an arbitréry

initial condition xy drawn from a uniform distribution in the appropriate range. Each

initial condition was used to generate a signal x(n) of length 1,100 where the first 100

values of x(n) were dropped in order to avoid transients and to assure that the chaotic

model had evolved on its attractor.
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The ergodicity in the mean of x is apparent in these examples. The experimental form
of the distﬁbutions, and the total error between histograms are summarized in Table 3.1.

Ergodicity in iterated chaotic maps is a characteristic derived from the fransitive
property [29] of chaos. In a chaotic map, an initial point x, after a sufficiently long
number of iterations will produce points within the map interval that will be arbitrarily
close to any other point. As a consequence, sequences obtained from different initial
conditions are not .Very different statistically from each other in a long run. The
assumption of statioﬁarity is also valid for chaotic sequences and can be easily verified
experimentally by comparing the ensemble distribution of samples for different iteration
times (e.g. the histograms in the left side of figure 3.1 are identical to histograms
generated with the 350th sample of 100,000 realization).

3.1.2 Autocorrelation and power spectrum of chaotic signals

When dealing with wide sense stationary signals, the power spectral density S(f) of the
chaotic signal is merely the Fourier Transform of the signal autocorrelation R(m). It is
possible to roughly estimate both the autocorrelation and the spectruni of the signal from
a single realization of the chaotic signal [13]. Howeuver, it is preferable to lower the
variance of the autocorrelation or spectrum by utilizing traditional approaches such as the
correlogram or periodogram t32], [33].

_F'or'_nthis analysis, M signal realizations of each chaotic'map were generated with
uniform random initial condiﬁdn Xg. The biased time autocorrelation Ry(m) was then
computed for each realization and the average bin by bin autocorrelation calculated.
Subsequently the discrete-time Fourier Transform (DFT) was performed for the resulting

average to obtain the spectral estimate

D(f) = DFT { 1/Mi Ri(m)}. (3-3)

i=1
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Figure 3.2 shows the averaged autocorrelations of the chaotic maps on a decibel scale.
The fapid decorrelation of the chaotic signal x is evident. In all instances, the
autocorrelation estimate approaches a delta with normalized sidelobe level (SLL) of the

order of N7,

i i
o8 [

0 4]

g g
O [}
o ‘o
= =
B . B

E-10 g-10

-15 15

-10 -5 0 5 10 ~10 -5 0 5 10
Delay Delay
iii iv
a 3

0 o

g s g s
QO 2]
k=] h=]
2 2
a =4

5-10 E-10

=15 - =15

-10 -5 0 5 10 -10 -5 0 5 10
Delay Delay

Fig. 3.2. Averaged autocorrelation of chaotic sequences.
i) logistic map; ii) Bernoulli map; #ii) tent map; iv) quadratic map.

The power sp'éctra obtained using equation (3-3) are depicted in Figure 3.3. The spectra
~ are not surprisin_gly wideband, similar to those generated by white noise. Notice that the
Bernoulli map is the only sequence that does not present a completely flat spectrum,
instead the density resembles a low pass signal with a slope of 1/f characteristic of
pinkish noise [29] at higher frequencies. The results shown in Figures 3.2 and 3.3 are

summarized in Table 3.1.
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TABLE 3.1
Statistical and spectral properties of selected maps.

Map  Distribution Histogram error Sidelobe level Power spectral density

Logistic  Arc Sine 1.8% N7 Uniform (White)
Bernoulli  Uniform 1.85% N7 Low pass (White-Pink)
Tent  Uniform 1.11 % N Uniform (White)

Quadratic ArcSine  19% N2 Uniform (White)

3.1.3 Chaos quantification

In order to have a measurement of the “amount of chaos” generated with the iterated
maps, a series of calculations were performed to obtain an insight on the signal’s
complexity. These measurements can be used latter to classify the signals in terms of
their chaotic properties. Figure 3.4 presents the pseudo phase space plots for the chaotic
- signals. The plots are obtained by plotting adjacent points x, and x,+; in a two-
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dimensional space. The plot is not a true phase space representation because only one
variable is described in the two axes. These plots show the deterministic nature of the

signals by revealing their inner structure. No random signal will ever present a defined

pattern in a phase space plot.
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Fig. 3.4. Pseude-phase space of chaotic sequences.
i) logistic map; i7) Bernoulli map; iii) tent map; iv) quadratic map.

3.1.3.1 Lyapunov exponent of chaetic signals

To characterize the signal’s sensitivity to initial conditions, the Lyapunov exponent
was calculated using equation (2-17). It is possible to obtain explicitly the value of the

exponent for all maps. For the parameters selected in Table 2.1 all maps present a
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divergence of close traj ectories described by a Lyapunov exponent of In(2) [7,p.192]. The
result is obvious in the case of the Bernoulli and tent map, where the derivative of the
map function is a constant equal to 2 (except for the discontinuity at O), as confirmed by
the plots in Figure 3.4. The same result is not so obvious for the logistic and quadratic

maps; however it can be verified numerically by implementing equation (2-17).
3.1.3.2 Correlation dimension of chaotic signals

For completeness the signals were tested from an information perspective by
comparing their fractal correlation dimension Dc. By using the definition of correlation
dimension given in equation (2-22), it was found that realizations of the Bernoulli and
tent maps had essentially the same correlation dimension. The logistic and quadratic
maps had similar values, which are shown in Table 3.2. Notice that maps with uniform
distribution have higher D¢ dimensionality than maps that follow an arcsine distribution.
This indicates that the distribution of the points in the map is the determining factor when
computing the correlation dimension, rather than the spectral characteristics of the
sequence. Figure 3.5 illustrates the log-log plots from which the correlation dimensions
were obtained. The plots present the relation between the correlation sum C; and radial
size Ry , also know as volume element (VEL) [29,pp.29]. The slope m of such relation is
the correlation dimension for that object. The largest the valué of D¢ is, the more
complex the signal is. A random signal with uniform probability density function would
have a correlation dimension close to 2 (i.e. similar to those values obtained for the
Bernoulli and tent maps). This would indicate the signal is almost as complex as a surface
[7], [29,Ch.2]. '

TABLE 3.2
Chaos quantification in selected maps.

Map  Correlation dimension Lyapunov exponent

Logistic - 1.8421 In(2)
Bemoulli 1.9594 In(2)

Tent 1.9519 In(2)
Quadratic 1.8427 In(2)
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Fig. 3.5. Correlation dimension plots for selected chaotic sequences.
i) logistic map; i) Bernoulli map; iii) tent map; iv) quadratic map.
The slope m of the relation is considered the correlation dimension.

- Table 3.2 presents chaos quantification based on the Lyapunov exponent and
correlation dimension. From these results, as well as those presented in Table 3.1, is clear
that the chaotic maps can be classified based on the probabiiity density function of their
trajectories and the correlation dimension. This division however does not prevent the
four chaotic maps from having identical sensitivity to initial conditions. At the same time,

the 1eVe1 of chaos does not seem to be affected by the spectral shape of the data sequence.
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3.2 Analysis of CBFM signals
Let x (nAt)’ be the discrete version of a chaotic function x(¢) such that
x[(ptDAt ] =xpe1=g [ x(ndf) ] N )]

forn=0, 1, ... where A¢ represents the sampling interval and g(-) is a nonlinear map with
range [-%4, 14]. The sequence of samples { xg xj, ..., X, } generated by equation,‘(3-4)
exhibits fractal behavior, as shown in section 3.1.3.2. The initial condition x; is a random
variable with probability density function p(xy), range [-%, %], zero mean, and variance
o . Randomizing xy ensures that X, is a stochastic process with stationary mean. The

immediate objécﬁve is to produce an ergodic baseband FM signal with complex envelope
s(f) = A exp [ J2rKX(?) ] (3-5)

where A is the amplitude of the signal, X is its modulation index, and

X0 = j x(7) dt (3-6)

0
Notice that K-x(?) is the instantaneous (i.e. momentary) frequency f{¢) of the signal s(¥).
Given that the power of the FM signal is constant, the energy contained in the
obs,er}vatio'nb interval is 4T}, spread over the frequency band

| Consequently, applying equation (2-4) the range resolution is given by

AR= —=—, (3-8)
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The discrete version of the FM signal s(t) is given by

s(ndf) = A exp [ j27K X(nAf) ]

=Aexp (j27K ) xp At +j27Kxg Af) . (3-9)

k=1

In order to avoid undersampling (i.e. aliasing) of the expression in equation (3-9), the

sampling rate must satisfy the Nyquist criterion
Js 2 2K Xmax. (3-10)

Substituting f; = 2K X pay and X, = % in equation (3-9) yields

s(m)y=Aexp (j2r Y, xi+j27mxg ). (3-11)

k=1

- According to the central limit theorem [34], X(r) evolves into a Gaussian variable with
zero mean and variance (n+1)4t-6,* for increasing n. The density function of cos[27zX(n)]
converges to the arc-sine density [35]. Therefore, the density function of subsequent
samples {Re[s(n+1)],..., Re[ s(n+m)]} will have. the same density form and differ only in
the variance. '

Figure 3.6 presents the chaotic-based FM (CBFM) signals generated using equation (3-

11). All 'seqﬁences appear erfatib, as expected due to the chaotic nature of the modulated
signal (1e the>messagek signal).
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Fig. 3.6. CBFM signals.
i) logistic-based FM signal; i7) Bernoulli-based FM signal; iii) tent-based FM signal;
iv) quadratic -based FM signal.

3.2.1 Ergodicity of CBFM signals

Sample number n

200

- The generated signals Re{s(¢)} were tested for ergodicity by comparing the histograms

of single and multiple signal realizations as was done for the chaotic signals in section
3.1.1. Figure 3-7 illustrates the histograms of CBFM signals. The right plot shows the
histogram of 100,000 values of a single realization of Re{s(n)}. Notice that the histogram
takes on the shape of an arc-sine density. ’I‘hé left plots in Figure 3-7 presents the
histogram of the 100™ sample of 100,000 realizations of Re {s(n)}.
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Clearly, the time and ensemble sample distributions are similar, indicative of the

ergodicity of the signals. Table 3.3 summarizes the statistical properties of the generated

CBFM signals.

TABLE 3.3
Statistical properties of CBFM signals.

Map Points distribution Histogram error

Logistic-based FM Arc Sine
Bernoulli-based FM Arc Sine

Tent-based FM Arc Sine
Quadratic-based FM Arc Sine

1.59 %
1.42 %
131%
1.46 %

3.2.2 Autocorrelation and power spectrum of CBFM signals

Let consider algebraic expressions of equation (3-4) that yield statistically independent

samples with ergodic behavior and probability density function p(x,) = p(x,.;) for n>1

[31]. The ergodic theorem guarantees that the sequence s(n) is a stationary stochastic

process [35]. Let p(x,, ..., x,) denote the multivariate density of the set (x,, ..

the autocorrelation function of the CBFM signals is given by

R(m,n)=E {s(n)-s*(n-l-m) }

= E_{A'exp[iZﬂ( Xot ... Fx,)] A-exp[-j27z( Xot oo T Xpam )] }

= A*E { exp[j2m Xo ..+ ) 27 XoF .. Fnsm )]}

=A*E { expl-727( X1t .. FXntm )1}

=4° I P, eeesX tm ) €XPLT 27 Xt 1t oo Tt )] Ao o Xt

form>0.

., Xz). Then

(3-12)
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Assuming that the samples are statistically independent,

PCor X1y oves Xntmeds Xwtm) = PCY PGED), +v. POE 1) PCE ) (3-13)

- and equation (3-12) can be written as
R(m,n) = 4> .f ’p(xo) s PO ) €XP[F 27 Gt F woe F Xptm )] Ao ... A, (3-14)
whiéh further simplifies to
R(mn)=A* J. P ne1) oo PO nim ) €XPF27 (X ps + oo + X ntm)] Ants oo Wbt (3-15)
The above expression can be written in terms of the characteristic function
Cr (aj = f D(xe)-exp[527x g a] dxy. (3-16)
’fhen by combining equations (3-15), and (3-16) evaluated at o = 1,

R(m) = 4 g Ck(1)=42C™(1) (3-17)

for m > 0. It s clear that R(0) = 4% |

 Equation (3-17) relates the autocoﬁelaﬁon function directly to the probability density
function of the modulated signal. The autocorrelation function R(m) can be calculated for
the two probability density functions that apply to selected chaotic maps. |
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- Case 1. Uniform density: p(x,) = 1 for -J2 <x, < 7.

This type of chaos can be generated via the Bernoulli and tent map. The characteristic

function Cy(a) at a = 1, is obtained as

CG(D)= ,[ rect[-Y2,%]-exp[-f27x o] dxi = sinc(Va 27m1) (3-18)

Thus,
| C™ (1) = sinc™(D)= sin™(%) / z™ (3-19)

Equation (3-19) becomes 0 for m>1. Therefore, the autocorrelation function for the

maps with uniform distribution is a weighted discrete delta
R(m) = 4% 6(m). (3-20)

Notice that the discrete Fourier transform of (3-20) yields a white spectral density over
the interval [0, f;].

Case 2. Arc sine density: p(x,) = ! for—-% <x,<%.

”J(%-Fxn)(%“xn)

Th1s represents a situation of chaos generated via a logistic or quadratxc map. For this

case, it can be shown that [37]
C)=Jm) (3-21)
This yield an autocorrelation of s(f) given by

R(m) =4[ Jy() ™ (3-22)
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where J,(*) is the ordinary Bessel function of zeroth order. From equation (3-22) it
follows that the first sidelobe has a relative magnitude of 0.3042 (-10.4 dB). Subsequent
sidelobes decay rapidly as the lag number m increases.

The autocorrelation results obtained for cases I and II clearly showed that the behaviour
of the autocorrelation is dependent upon the choice of p(x,), which is directly related to
the selected chaotic map. In fact such selection will also affect the shape of the
correspondiﬂg spectrum. According to Woodward’s theorem [35],[38] the normalized
power spectral density of a wideband FM signal (baseband representation) can be roughly
approximated by '

S(H) =~ 2z4? p. 2f). (3-23)

An interesting corollary to (3-23) is that the autocorrelation of the wideband signal s(¥)
has approximately the shape of the characteristic function of p, (x). For instance,
assuming uniform x in the range [-%2, %], equation (3-23) predicts a uniform (white) FM
~ spectrum
S() = 2n4> (3-24)

for - % <f<'%. The inverse discrete-time Fourier Transform (IDFT) of equation (3-23)
is the delta given in expression (3-20), which is associated with an uncorrelated random
variable.
From the previous analysis one may expect that in the case of the uniform distribution
p(x), the estimate of S(f) is apprdximately white over the band of interest and that the
. coﬁesponding autocorrelation estimate is characterized by a narrow mainloBe and
_extremely low sidelqbes. For the arc sine distribution, the power spectral density is
Aunb_ounded near the edges of the frequency range. This may cause the estimate of S(f) to
exhibit high ﬁ'équency spillover, which makes it susceptible to alias as the bandwidth of
the stochastic process approaches the sampling rate. This has the potential of impacting
the sidelobe structure of the autocorrelation estimate for small |m|. It is preferable then to
limit the range of x, and hence its variance, so that the normalized sidelobe level of the

autocorrelation estimate approaches the theoretical calculated value [ J,(7) ] b,
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To verify the previous results, the CBFM signals were simulated and the
autocorrelation and power spectrum were calculated for each FM signal. To achieve high
range resolution, the autocorrelation of the FM signal must be characterized by a sharp
mainlobe at the origin. An additional desirable feature is for the sidelobes of the
autocorrelation to be shallow and die out rapidly with increasing time lags. Figure 3.8
shows both the time autocorrelation and ensemble autocorrelation of s(n) fér the four
maps. The time autocorrelation was obtained by dividing a single signal realization of
N=1500 samples into M=50 segments, performing the unbiased time-autocorrelation of
each segment, and averaging the response of each delay bin (Figure 3.8, left side). In
contrast, the ensemble autocorrelation wés calculated by generating the time-
autocorrelation of 50 signal réalizations of 30 samples each, and averaging the response
for each delay bin (Figure 3.8, right side). The initial condition xo was uniformly
distributed between —% and %. For the Bernoulli CBFM, the first sidelobe of the
autocorrelation estimate appeared at 20log(N° v %) dB. In contrast, for the tent CBFM the
first sidelobe was quite high at —7.5 dB. In the case of the logistic and quadratic CBFM,
the first sidelobe was at the theoretical value of —10.4 dB. For large |m], all five chaotic
signal had sidelobes of the order of N'2.
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Fig. 3.8. Averaged autocorrelation of CBFM signals.
Time (a) and ensemble (b) autocorrelations of i) logistic-based FM signal; ii)
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Figure 3.9 shows the spectrum of s(n) obtained via (3-3) for each map, averaging 100
realizations of the FM spectrum sampled at the Nyquist rate. As expected, the Bernoulli
CBFM spectrum is close to the ideal white case. In contrast, the tent CBFM spectral
density exhibits magnitude fluctuations over a 10 dB range. Figure 3.9 also shows that
the logistic and quadratic CBFM spectra approximate an arc sine distribution near the

centre of the spectral band. Similar behaviour was observed for the tent map.
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. Fig. 3.9. Power spectra of CBFM signals.
: i) loglstlc-based FM signal; ii) Bernoulli-based FM signal; iii) tent-based FM signal;

iv) quadmtlc -based FM signal.

3.2.3 Chaos quantification in CBFM signals

Similarly to the analysis done for the chaotic signals in section 3.1.3, the CBFM signals
were tested to determine their chaotic behaviour. Figure 3.10 shows the two-dimensional
phase-space reconstruction obtained for each FM signal. Contrary to the chaotic map
signals, the CBFM signals do not present a clear pattern when reconstructed in this space,

60



except for the Bernoulli CBFM. Even though the lack of pattern is expected in the plots
due to the complex relation between iterates S, and S,+1 as given by equation (3-11), the
result was expected to be consistent in all maps. The phase-space plot suggests that the
Bernoulli CBFM ftrajectories may be those of a chaotic process projected to a low

dimensional space.
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Fig. 3.10. Two-dimensional pseudo-phase space representation of CBFM signals.
i) logistic-based FM signal; i) Bernoulli-based FM signal; iii) tent-based FM signal;
iv) quadratic -based FM signal.

To further investigate this possibility, a three-dimensional phase-space of the Bernoulli
and tent maps is presented in Figure 3.11. It is clear that to perfectly reconstruct the
- trajectory of the CBFM, a higher dimensional space is required. By comparison,
equations (2-23) — (2-26) present a clear relation between successive points x, and X+,
whereas in the CBFM signal described by equation (3-11) this relationship has the form
of

5,0 =exp(j2zx,,)s, (3-25)
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which suggests that the space spaces dimension is a function of the iteration number 7. In
any case the difference in the result obtained from the Bernoulli based FM signal, with

respect to the rest of the CBFM signals is remarkable.

Real{s(n-2))

Real[s(n-1)] 1A Real[s(n)]

Real{s(n-2)]

Real[s(n-1)] Real[s(n)]

Fig. 3.11. Three-dimensional pseudo-phase-space representation of CBFM
signals.
i) Bernoulli-based FM signal; ii) tent-based FM signal
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3.2.3.1 Lyapunov exponent of CBFM signals

To characterize the divergence of close trajectories for each CBFM signal, the
Lyapunov exponent was calculated numerically. The éxponent was obtained from a
logarithmic plot of the differences described by equation (2-18). The value for 4; can be
estimated from the slope m of a semi-logarithm plot. The Bernoulli CBFM case is
illustrated in Figure 3.12. The calculated Lyapunov exponent values are summarized in
Table 3.4. The results suggest that the logistic, tent, and quadratic-based FM signals are
random and not chaotic, because the Lyapunov exponent of such signals is 0 (i.e. pure
random signals result in 4;=0). This indicates that nearby trajectories does not diverge
exponentially as the time index n increases, but it remains constant in average at any
time. Yet again the Bernoulli-based FM signal presents a different behaviour, and a

positive Lyapunov exponent, suggesting chaotic behaviour.
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‘Flg 3.12. Logarithmic plot of the divergence of close trajectories and Lyapunov
exponent estimation in Bernoulli-based FM signal.
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3.2.3.2 Correlation dimension of CBFM signals

For completeness and to further determine the level of complexity present in the CBFM
signals, the corresponding correlation dimensions values were estimated. The results are
shown in Table 3.4. All signals presented practically the same D¢ value, which is
accounted by a common probability density function common for all CBFM signals.
Notice how the values are similar to those obtained for chaotic signals with an arc-sine

-distribution (i.e. logistic and quadratic maps) in Table 3.2.

TABLE 3.4
Chaos quantification for CBFM signals
Signal Lyapunov exponent (app.) Dc value (app.)
Logistic CBFM 0 1.832
Bernoulli CBFM 0.2132 1.829
Tent CBFM 0 ' 1.831
Quadratic CBFM 0 1.828
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3.3 Analysis of random FM signal

Because of the obvious sirhilarit_y between chaotic signals and noise, a cdmparison
between CBFM signals and a random FM signal is mandatory. The analysis in section 3.2
was also performed for a theoretical FM signal generated with random noise. In this case

the input to the FM modulator is a random signal with Gaussian density function.

3.3.1 Autocorrelation and power spectrum of random FM signal

Let recall from equation (3-17) that the autocorrelation function is directly related to the
probability density function of the message signal, and that for the Gaussian noise case

the probability density function is given by

2

)= L expl-2 . (3-26)

2no 2 o,

X

The random variable x, in equation (3-26) is not bounded, so 02 < Y is used to limit the

spread of x and to avoid aliasing. The characteristic function (3-16) for a = 1 is [35];

ca) = exp[—(z—”;f-)— 1 (3-27)

From equation (3-17), it is easy to show that the autocorrelation of the Gaussian FM

(GFM) signal is given by

270, )2 |m] |

R(m) =A? exp[—( (3-28)

which decays exponentially with m. Figure 3.1.3 shows and confirms equation (3-28).

These plots are the time and ensemble autocorrelation of the GFM signal s(n). The time
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and ensemble autocorrelation were obtained with the same procedure used for the CBFM
signals in section 3.2.2. Notice that the time and ensemble autocorrelations are almost
identical for the GFM case; however the width of the mainlobes are wider than those of
the CBFM signals. This will result in a poorer resolution capability for radar imaging.
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Fig. 3.13. Average autocorrelation of GFM signal.
Time (a) and ensemble (b) autocorrelations

In the case of GFM, the spectrum obeys Woodward’s theorem and presents a Gaussian
bell shape that tapers down at a rate that depends on o;2. The spectrum, calculated via
equation (3-3), is shown in Figure 3.14.
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Fig. 3.14. Calculated power spectral density of GBFM signal.
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3.3.2 Chaos gquantification in random FM signal

It is a well known fact that the GFM signal is not a chaotic waveform, but a random
signal. To further illustrate that property and in order to compare the results to those
obtained with chaotic and chaotic-based signals, the plot in Figure 3.15 presents the
pseudo-phase space reconstruction for the random FM signal. The random distribution of
points is evident. Unlike the cases for chaotic and the Bernoulli-based FM signal, no
pattern (other than an arcsine distribution characteristic of an FM signal) is present in the

phase space plot.
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Fig. 3.15. Three-dimensional pseudo-phase space representation of GFM signal.

3321 Lyapunov exponent of random FM signal

Similarly, the characteristic Lyapunovv exponent of the random FM signal was
‘estim'a'ted‘using equation (2-18). As it was expected, the reSulting value is zero. This
indicates that nearby trajectories do not diverge exponentially as the time index n
increases, but it remains constant in average at any time. The absence of a positive

Lyapunov exponent also indicates that the signal is not chaotic in the sense that it is not

sensitive to initial conditions.
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TABLE 3.5
Chaos quantification for GFM signal

Signal Lyapunov exponent (app.) Dc value (app.)
GFM 0 1.8375

3.3.2.2 Correlation dimension of random FM signal

Finally, a calculation of the correlation dimension gave an insight of the “level of
complexity” of the random FM signal. The D¢ value was calculated form the logarithm
plot in Figure 3.16. The calculated value for the correlatibn dimension of the GFM signal
was 1.8375, which is very close to the values obtained for the CBFM signal. This result
indicates that all signals have the same amount of complexity, from an information point

of view.
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Figure 3.16. Correlation dimension plot of GFM.
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| Chapter 4 |

Results and evaluation

4.1 Ambiguity functions

The ambiguity function was used in this section as a tool to evaluate the performance
of the chaotic and CBFM signals in terms of their capability to resolve target and clutter
scatters in the range and velocity dimensions. In order to more precisely estimate the
signals capabilities in terms of radar imaging resolution, an ensemble average of the
discrete ambiguity function }(m, w) [39] was calculated for all the chaotic and CBFM
signals:

M N

E{xm )} = I/MY. Y. [s{n)ys (ntm)e’™ ] 4-1)

i=l  n=0

where m is the lag index, N is the total number of samples in the signal, M is the number
of signal realizations, w is the Doppler angular frequency stepped in increments dow =

2z
N’
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4.1.1 Ambiguity functions of chaotic signals

Figure 4.1 shows the ambiguity functions of the chaotic maps listed in section 2.5. In
each instance, the result presented is the average of the ambiguity surface obtained by
processing M=100 signal realizations. The ambiguity surface of each chaotic map
resembles the ideal discrete delta except for a plateau of self-noise. Notice that each
surface has a prominent peak emerging from the plateau with minor sidelobes off the
main axes. For all cases, except the Bernoulli map, the sidelobes in the range direction
are non-existent. The Bernoulli case presents higher sidelobes attributed to the spectral

characteristic illustrated in Figure 3-3.
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Fig. 4.1. Ambiguity surfaces of chaotic signals.
i) logistic map; if) Bernoulli map; iii) tent map; iv) quadratic map.
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4.1.2 Ambiguity function of CBFM signals

The ambiguity surface of each of the four CBFM also resembles’ the discrete delta
except for a plateau of self-noise on which it rests. Figure 4.2 shows the resulting
_ambiguity surfaces. The location of the spurious sidelobes depends on the initial random
-phase of the chosen map. On average, sidelobes on the range-Doppler plane have a
relative magnitude of 10logl0(1/N) with respect to the main peak. For the Bernoulli
CBFM signal, the sidelobes along the range delay axis are practically nonexistent. In the
case of the tent CBFM, the highest range delay sidelobes occur at —7.5 dB. For all cases,
including the logistic and quadratic CBFM signals, the behaviour of the sidelobes on the
range delay axis near the origin is that of IR(m)]z.
i
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Fig. 4.2. Ambiguity surfaces of CBFM signals.

i) logistic-based FM signal; ii) Bernoulli-based FM signal; iii) tent-based FM signal;
iv) quadratic-based FM signal.
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Along the Doppler axis, all the surfaces showed in Figures 4.1 and 4.2 feature sidelobes
that match the spectrum of a boxcar window ehvelope. The sidelobes adjacent to the
main response peak at —13dB can be easily lowered via windowing. However this would
result in a wider mainlobe that decreases the Doppler precision.

From the analysis and results presented in Chapter 3 and section 4.1, it can be said that
the use of chaotic and CBFM signal for radar imaging is feasible and even advantageous.
- An ideal signal for radar imaging is a signal with infinite bandwidth and whose ambiguity
“function is the delta function in the delay-Doppler plane. The chaotic and CBFM signals

were proven to closely approximate these ideal characteristics. When dealing with the
chéotic signals, it was demonstrated that the maps generate wideband spectrums and
delta-like autocorrelation functions that also result in a delta-like ambiguity function.
From the results in this project, it was clear that the sequence generated from the logistic,
tent, and quadratic maps present near-optimal characteristic for radar imaging. The
results obtained by using the Bernoulli map were not as remarkable as the ones obtained
from the rest of the maps. The analysis in this investigation showed that the Bernoulli
map has a pink noise (e.g P(f) = 1/f) frequency representation that makes it unique among
the rest of the studied maps, even though the chaotic parameters (e.g. correlation
dimension and Lyapunov exponent) were similar to the ones obtained for the rest of the
maps.

The analysis and experimentation in this thesis proved that the CBFM signals also
produced nearly ideal results in the spectral, autocorrelation and ambiguity function
context. For a practical radar signal generation, it was preferred to work with FM signals
because of their ease of generation and transmission. An FM signal allows an easier
bandwidth control and in cbnsequence, antenna design and power conservation. To
convert the discrete time chaotic'maps into a more suitable way of radar imaging without
loosing the ideal characteristic presented by the chaotic signals, the chaotic sequences can
be input to an FM modulator and a chaotic-based FM signal with chaotic instantaneous
frequency can be created.

Comparative results of the CBFM signals proved that the Bernoulli-based signal,
outperformed the logistic, tent, and quadratic cases, and was the only waveform that

preserved the chaotic nature of the un-modulated chaotic signal. In other words, the
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signal, although modulated, shows as pattern in the phase space and has a positive
Lyapunov exponent confirming the chaotic behaviour of the Bernoulli CBFM signal.
Because of the uniqueness of the Bernoulli CBFM signal, and its closeness to the ideal
properties desired in a radar imaging context, a more detailed characterization was

performed and the results are presented in the next sections.

4.2 Multipath performance of Bernoulli CBFM

Radar systéms often suffer the adverse effects of multipath propagation. This
phenomenon occurs when the received echo contains components which have traveled
from the transmitter to the target and back to the receiver via multiple propagation paths
with different delay times. The reflection of radar signals from the ground can have a
number of effects on target detection and tracking accuracy. Multipath propagation can
be specially destructive in cases like ground penetrating radar (GPR), where the antenna
is very close to the ground and the arriving signal can be sensed by the antenna after it
has been reflected several times by the ground or nearby rocks. Figure 4.3 illustrates two

simplified scenarios of multipath propagation in radar and GPR.
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Fig. 4.3. Multipath scenarios.
' i) Radar system; #i) Ground penetrating radar.

-Diagram i) in Figure 4.3 shows that the energy radiating from the antenna reaches the
target via two separate paths. One is the direct line-of-sight path from points A to B in the
diagram and the other is the path reflected from the surface of the ground traveling points
A-M-B. An echo arrives at the radar along the same two paths. The magnitude of the

resultant echo signal will depend on the amplitudes and relative phase differences
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between the direct and the reflected path. The reflection coefficient form the surface may
be considered as a complex quantity pe’¥. The real part p describes the change in
amplitude, while arguinent wdescribes the phase change in the reflected signal.

The direct method to avoid multipath errors is to use an antenna with a sufficiently
narrow beam width that it does not illuminate the surface or any other object except the
target of interest. This requires a very large antenna that can generate a directional beam.
For very short pulses it is possible to separate the direct return and the delayed multipath
return. However, this is often not practical, as the range resolution needed to separate the
‘returns requires the use of a few nanoseconds pulse width. The pulse echo at the shorter
.range is the direct signal and corresponds to the true target range. The echo at a longer
range is the scattered signal and appears as a ghost target. In some applications the
appearance of these false targets is a serious problem, but in others, the time separation
between the two signals can be used to measure the altitude of the target [1,p.502]. A
more practical solution is the use of a signal that presents frequency agility. A fast change
in frequency alters the phase relationship between the direct and the reflected signals. The
constant change in frequency avoids the signal spectrum to be cancelled.

For wideband signals, multipath propagation results in a rapid fading of the received
signal envelope and a spread in Doppler shift in the received spectrum [40,p.535]. The
effect of multipath propagation can be estimated if there is a characterization of the
impulse response of the transmission channel. If the multipath channel is assumed to be a

bandpass channel, the received complex envelope of the signal 7 (¢) can be expressed as,
f(t):% [5(e-2)i(z;t)ar @2

where 5(f) and % (%?) are the complex envelopes of the transmitted signals and the
channel impulse response, réspectively. For analytical purpoées, and because the received
sigﬂal in a multipath channel consists of a series of attenuated, time-delayed phase shifted
replicas of the transited signal, the baseband impulse response of a multipath channel can

be expressed as
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F(wt)=Y a (c) el (2710, () 4+ (m0) 1- 8(z-5,(d) (@)

i=0

where a{7f) and 7(f) are the real amplitudes and excess delays of the i multipath
component at time ¢, respectively. The phase term ¢ in equation (4-3) represents the
phase shift due to free space propagation of the i multipath component plus additional
phasé shifts encountered in the channel. For short periods of time (at least the duration of
the signal transmission and reception) the channel # can be model as a linear time
invariant system or at least considered wide sense stationary over this scale. Then the

channel impulse response may be simplified as

N-1

h(z)=2a-explj 6,1 8(z-7,). (4-4)
i=0

The impulse response % (7) may be modeled as a zero-mean complex Gaussian process.

Because the envelope |ﬁ (7)| is Rayleigh distributed, the channel is referred as a Rayleigh
fading channel [41,p.172]. The Rician distribution is observed when, in addition to the
multipath éomponents, there exists a direct path between the transmitter, the target and
the receiver (i.e., a term without any random phase needs to be added to equation (4-4)).
In such case the channel is referred as a Rician fadiﬁg chqnnel [41,p.173].

To evaluate the multipath performance of the Bernoulli CBFM signal, a Rician fading
channel was used to characterize radar environments like the ones shown in Figure 4.3. In
those cases it is assumed that there is a direct line of sight from the radar to the target and
additional multipath propagations with longer delays superimpose to the direct signal.
Several parameters were considered during the multipath analysis. The effect of the
bandwidth of the transmitted signal, the number of extra paths in the transmission and the
amplitude of the directly reflected signal were varied during the simulations. Figure 4.4
presents the averaged cross-correlation functions of the transmitted and received signal,
when the originally transmitted signal is a Bernoulli CBFM signal bandpass filtered at
cut-off normalized frequencies of 0.05 and 0.45 times the sampling frequency, and

transmitted through a Rician fading channel. The signal was bandpass filtered to
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represent a more realistic situation in which it is not possible to occupy the complete
signal spectrum. This limitation is evident because any electronic equipment will be
affected by interference at the moment a radar survey is performed. The filtration also
allows controlling the bandwidth of the signalv and will facilitate an unbiased comparison
with other bandlimited signals (e.g. linear FM chirp). The cross-correlation function was
obtained by first transmitting 100 different Bernoulli CBFM signals over 100 different
Rician fading channels, calculating the cross-correlation with the received signals and
then calculating the average of these correlations bin by bin. Figure 4.4 shows the
averaged cross-correlations results for different length fading channels. The distinct
lengths represent the different number of multiple paths present in the channel.

The effect caused by the signal traveling longer paths is clearly shown by the
correlations in Figures 4.4. The delayed replicas of the signal cause the correlation to
present a main peak at zero delay and a constant value during the extended time the
replicas are arriving to the rec.:eiverT Even though multipath propagation causes the level
of the sidelobe to rise, the main peak is perfectly detectable and no ambiguities appear in

the waveform correlation.
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Fig. 4.4. Performance of Bernoulli CBFM in multipath environment.
Averaged correlations between transmitted and received bandlimited CBFM signal
in a i) two paths; i) four paths; iii) twelve paths; iv) twenty five paths scenario.
Cut-off frequencies: [0.05 0.45] of f;, Direct reflection coefficient: 0.7.

- Figure 4.5 illustrate the effect of the direct reflection coefficient in a radar detector
operating in a four paths environment. The direct reflection coefficients accounts for the
percentage of the signalv received through the direct path between the radar antenna and
the target. The remaining percentage is distributed among the 4 indirect paths. The
averaged cross-correlations in Figure 4.5 were obtained applying the same methodology
used in Figure 4.4, but un this case the varying parameter been the reflection coefficient.

The Variation’ of the reflection coefficient has a great impact in the received signal
detection and information extraction. From the plots in Figure 4.5, it can be seen that
when the value of the coefficient is lowered, the main peak becomes less distinguishable
until it reaches a point where the delayed signal that traveled through other paths can
mask the direct wave. This effect can be observed in Figure 4.5.
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Fig. 4.5. Performance of Bernoulli CBFM in multipath environment at several
direct reflection coefficients.
Averaged correlations between the transmitted and received bandlimited CBFM
. signal in a four paths environment with direct reflection coefficient of i) 1; if) 0.7; iii)
0.5; iv) 0.3.
Cut-off frequencies: [0.05 0.45] of £,.

Finally, a characterization on the effect of the bandwidth of the transmitted signal in the
multipath environment was obtained simulating the transition of signals with different
baseband support. The Bernoulli CBFM signals were filtered before transition over the
Rician fading channel, and the received signal cross-correlated with the replica stored in
the recéiver. Figure 4.6 presents the results obtained by setting bandwidths of 80%, 60%,
40% and 20% of the sampling frequency.
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Fig. 4.6. Performance of different bandlimited Bernoulli CBFM signals in
multipath environment.

Averaged correlations between transmitted and received different bandlimited
CBFM signal in a four paths environment i) [0.05 0.45] of £;; if) [0.10 0.40] of £; iii)
[0.15 0.35] of £; iv) [0.20 0.30] of f; cut-off frequencies.

Direct reflection coefficient: 0.7.

Figure 4.6 shows that the reduction of the bandwidth in the transmitted signals results
in noisier and even ambiguous target detection. As the frequency content of the signal is
reduced, the interaction of delayed replicas causes a stronger deformation. From the
results shown in Figure 4.4 — 4.6 it is clear that the Bernoulli CBFM signal performs well
over multipath environments, in the sense that the presence of the target can be detected
clearly in ali but the extreme cases of the figures. It is obvious that a signal with the wider
fre‘quencylyspectrum is preferred in a multipath environment. Optimal performance over
multipath propagation will be obtained when there is a direct line of sight between the
radar source and the target, and when the reflection from the targets is large compared

with the indirect reflection form signals traveling different indirect paths.
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4.3 ECCM and noise performance of Bernoulli CBFM

In a real life environment, radar sysfems must operate under non-ideal circumstances.
The presence of noise contamination is a guaranteed condition that cannot be avoided, or
reduced completely. In military applications, or in any other hostile environment, the
radar may be even subjected to deliberate interference or jamming by the enemy. These
- interferences may appear as extraneous responses in the radar receiver that may resemble
real targets, or even saturate a part of the radar display [42]. The purpose of jamming is to
deteriorate the operation of the radar by electronic countermeasures (ECM) of confusion.
A repeater jammer operates by ﬁrsf: identifying the radar signal and successfully
predicting and replicating such a signal. Any repetitive or periodic signal is especially
susceptible to jamming because of its ease of identification. Thus the enemy can
construct a good estimate of the parameters of the signals and use it to jam the radar with
replicas [43]. Some methods used to alleviate enemy interference relay in filtering of the
jamming signal or in a simple dilution of the enemy signal by increasing the transition
power. However, the risk of radar jamming is always present and imposes the use of
electronic counter-countermeasures (ECCM) during system design. An efficient method
to combat ECM is the use of a complex radar waveform that is not easily detected and/or
identified, making it impossible for the jamfner to duplidate and retransmit.

The chaotic nature of the Bernoulli CBFM signal clearly suggests its goods capabilities
as an ECCM. Bernoulli CBFM signals appear random, their noise-like nature makes them
hard to detect and predict. Even in the case the enemy is able to detect the presehce ofa
radar sigh‘al, the characterization of the waveform is a very complex task that will require
extensive recourses to be implemented in real time. The sensitive dependence to initial
conditions, characteristic of chaotic systems, guaranties that any replica produced by the
jammer will differ from the transmitted signal. As the original signal propagates, and
even during interception by the jammer, many noise sources modify the signal. These
changes, as small as they are, will lead to tremendous errors if the signal is to be
reconstructed by iteration. In addition, if the initial condition used to generate the chaotic
series is changed at the transmitter, every CBFM signal will be completely different to

the previous one. In the case a recorded waveform is re-transmitted by the jammer, the
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radar will suffer little interference, because CBFM signals with different initial condition
- have no correlation.

Lacking detailed information concerning the signal characteristics of the radar, the best
| jamming signal is white Gaussian noise covering the bandwidth of the radar receiver to
be interfered. The effect is the same as an increase in the receiver noise figure. If the
jammer power is sufficiently large, the entire display can be filled with noise. In real
applications not only deliberate interference occurs, but also inherent natural interference
caused by ambient noise and background radiation. In order to demonstrate the
performance of the Bernoulli CBFM signal under intentional (ECM) or fortuitous
interference, simulated echoed returns degraded by noise were generated using there
different random variables distribution functions: normal, Rayleigh and uniform.

The simulations were performed for several signal-to-noise (signal-to-interference)
ratios (SNR), which were calculated as the ratio between the power of the transmitted
signal and the power of the interfering signal. The analysis was done by correlating the
corruptéd received signals with replicas of the transmitted waveform stored as reference.
An example is shown in Figure 4.7. The image shows the correlation of a noise-free echo,
and the effect noise causes in the correlation plot when the received signal is affected by
Gaussian noise at a SNR of —10 dB.
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Fig. 4.7. Sample correlation between noise contaminated Bernoulli CBFM and
original transmitted signal, compared with autocorrelation of the original signal.
Simulated noise is Gaussian with a SNR of -10dB

The cross-correlation between reference and interfered signal is clearly polluted when
compared with the autocorrelation obtained by processing the ideal noise-free signal. The
location of the target is still determined without ambiguity, but sidelobes of considerable
magnitude appear near the mainlobe. These lobes may mask weak reflections from real
targets. To clarify the effect of deliberated or fortuitous interference in the imaging
process, a radar image was constructed from a simulated target function. Figure 4.8
presents the comparative results of radar images geherated by assembling range profiles
into a two-dimensional image matrix. The figure shows the images obtained by an
interference free Bernoulli CBFM waveform (Figure 4.8 i ) and by the same signal when
the interference signal has a Gaussian (Figure 4.8 ii ), uniform (Figure 4.8 iii ) and
Rayleigh (Figure 4.8 iv ) distribution at a —10 dB SNR. The deterioration of the images
can be detected visually, however, a more objective measurement is preferred when
comparing the results. To better assess the degradation of the images, the relative
difference between the ideal interference-free and the received image was calculated as a
percentage. The percentage was obtained by dividing the absolute differences between

the received and expected images over the magnitude values of the expected or ideal
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image. The pixels outside the area of the target (i. e. background clutter) were not
considered for the calculation of the percentage. This percentage has not physical
meaning other than a difference measurement between the’ images. The averaged
difference percentage for fifty simulations of the Bernoulli CBFM at different SNR are
shown in Table 4.1. For each simulation the initial condition for the Bernoulli CBFM was

chosen randomly from a uniform distribution.

Crossitange

‘Crossrange

Range * Range

Fig. 4.8. Simulated radar images generated by ideal and noise contaminated
Bernoulli CBFM signals.
i) Ideal noise-free image, SNR= oo dB; i) with Gaussian interference signal, SNR=
-10 dB, iii) with Uniform interference signal, SNR= -10 dB, iv) with Rayleigh
interference signal, SNR=-10 dB. ‘
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TABLE 4.1
Interference induced difference percentage for various SNR and distributions in
received Bernoulli CBFM signal.

SNR Interference signal

Gaussian Rayleigh Uniform

5 145079 14.4081 14.3978

0 27.5045 27.3361 28.3246

-5 56.3006 57.9740 58.2528
-10  127.662 128.978 129.068
-12 191.359 188.254 182.807
-15 333.662 338.781 328.803
-20 955.445 951.473 952.651

From the percentages shown in the table, it can be inferred that the type of distribution
followed by the interference signal has little effect in the final image, being the SNR the
important parameter that determines the level of corruption in the image. The results for
the Gaussian interference case in Table 4.1 were also plotted against the SNR in Figure
4.9. An exponential relationship between the error and the SNR was observed. Similar
plots were obtained for the other two distributions. For all three cases, the target function
was visually recognizable in the image when the SNR level is higher than —~12 dB.
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Fig. 4.9. Interference-induced difference percentage in received Bernoulli
CBFM signal contaminated by Gaussian noise at various SNR.
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4.4 Comparative study against FM chirp and random FM signals

The analysis, simulated experiments, and results presented in this thesis have
demonstrated that the use of CBFM signals generated from Bernoulli sequences is not
only viable but that it also presents desirables characteristics in terms of resolution,
multipath propagation and ECCM. To further evaluate the advantages of the CBFM
waveform a comparative study against commonly used linear FM (LFM) chirp and
random modulated signal was performed in terms of resuiting ambiguity functions,
multipath propagation and interference robustness. The results obtained in this section
allow better estimation of the superiority of one waveform over another, at least in the

considered environments.

4.4.1 Ambiguity functions of FM chirp and random FM signal
The ambiguity function is the basic tool to evaluate and compare radar waveforms in

terms of their capability to resolve target and clutter scatters in the range and velocity

dimensions. The ambiguity function of a linear FM chirp described by
c(t) =exp(jart*) for 0<t < T, 4-5)

is found by inserting Equation (4-5) into (2-9), which yields [17,p.35], [22]:

%(7,0) = exp(~jor* )'exp(-j(v+2a21)'(T_t) ]-(v+22a7)-sin(”+22“7(T—lzI)), 47|

| x(7,0)=0 elsewhere.

(4-6)
The shape of the ambiguity diagram is a tilted ellipse, centered at the origin with a

width of 1/8 ‘in the range plane and 1/7 height in the Doppler axis. The general shape of
the surface is shown in Figure 4.10. The narrower the width of the ambiguity function in
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a givén direction, the higher the accuracy and resolution of the range and Doppler
measurements. The accuracy along the mayor axis of the ellipse, in a chirp ambiguity

surface, is poor and can generate ambiguities along the diagonal of the delay-Doppler

plane.
Doppler
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Fig. 4.10. Contour of the ambiguity surface of a linear FM chirp.

Figure 4.11 illustrates the computed surface of a LFM waveform, the image contrast
the resolution and unambiguity with the one obtained by Bernoulli CBFM signals
previously shown in Figure 4.2. The elliptical shape of the ambiguity surface can easily
observed in the figure, notice that this shape does not guarantee the unambiguous
determination of range and Doppler of two targets that lie in the diagonal of the delay-
Doppler plane.
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Fig. 4.11. Ambiguity surface of LFM chirp.
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For comparison, the average ambiguity surface of the Bernoulli CBFM was also
contrasted to that of the noise modulated Gaussian FM (GFM signal) in Figure 4.12. The
ambiguity surface of the GFM signal was obtained by applying equation (4-1) for A=100
realizations of signals, this is the same procedure utilized when the CBFM ambiguity
surface was calculated. During the generation of the GFM, the variance of the phase was
set to mach the power of the Bernoulli map. (With this choice, the requirement of 6;> < %
is satisfied, and thﬁs the Nyquist sampling rate obeyed) For GFM, sidelobes of the
ambiguity surface along the range-delay axis fluctuated around -10log10(N). The same
observation applied to the Bernoulli CBFM case. Range delay resolution (defined by the
—3dB points of the autocorrelation) was essentially the same for GFM and Bernoulli
CBFM case, except for a wider mainlobe, result of the exponential decay of the
autocorrelation function described by equation (3-28). Uniike the case of the LFM signal,
the ambiguity diagram of the GFM signal allows the unambiguous determination of the

target’s range and velocity.

Doppler.
AP [¢B)

Délay:

Fig. 4.12. Ambiguity surface of Gaussian FM waveform.

87



4.4.2 Multipath performance of linear FM chirp and noise modulated signal.

To evaluate the multipath performance of LFM and the noise modulated GFM, the
simulations presented in section 4.2 were repeated for the two new signals, and the results
compared to those obtained for the Bernoulli CBFM case.

Figure 4.13 presents the averaged cross-correlation function of the transmitted and
received signal, when the originally transmitted signals are bandpass filtered at cut-off
- frequencies of 0.05 and 0.45 times the sampling frequéncy, and transmitted through a
Rician fading channel. The figure presents the resulting averaged cross-correlations for
the Bernoulli-based CBFM (denoted as BFM in the figures), the linear FM chirp signal
(LFM) and the noise modulated Gaussian FM (GFM). The cross-correlation functions -
were obtained by first transmitting 100 different Bernoulli CBFM, LFM and GFM
signals over 100 different Rician fading channels, calculating the cross-correlation with
the received signals and then calculating the average of these correlations bin by bin. The

cross-correlations in Figure 4.13 are shown for different length fading channels.
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Fig. 4.13. Comparison of Bernoulli CBFM (BFM), linear FM (LFM) and
Gaussian FM (GFM) performance in multipath environment.
Average correlations between transmitted and received signals in a i) two paths; ii)
four paths; iii) twelve paths; iv) twenty five paths scenario.
Cut-off frequencies: [0.05 0.45] of f;, Direct reflection coefficient: 0.7. -
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The effect caused by addition of signals traveling longer paths is clearly shown by the
correlétions in Figures 4.13. As for the case of the Bernoulli FM, the delayed replicas of
the signal cause the correlation to present a main peak at zero delay and a relatively
constant value during delay times equivalent to distinct number of paths present in the
propagation environment. The results in Figure 4.13 demonstrated that Bernoulli CBFM
and linear FM signals, perform equivalently and both are superior to Gaussian FM
waveforms that present wider cross-correlation mainlobes and higher sidelobes.

Figure 4.14 compares the waveforms under study and present the effect the direct

reﬂection coefficient has in a radar detector operating in a four paths environment.
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Fig. 4.14. Comparison of Bernoulli CBFM (BFM), linear FM (LFM) and
Gaussian FM (GFM) performance in multipath environment with several
, ; reflection coefficients.
Average correlations between transmitted and received bandlimited signals in a four
paths environment with direct reflection coefficient of i) 1; i) 0.7; iii) 0.5; iv) 0.3.
Cut-off frequencies: [0.05 0.45]. '

Once again, the trends observed for ihe Bernoulli CBFM in section 4.2, were followed
by linear FM and the Gaussian FM signals. Similarly, the results obtained by linear FM
signals are very close to those of the Bernoulli CBFM. The autocorrelations obtained for
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the GFM case, indicate that there is a considerable interference by the superimposition of
replicas of the transmitted signal traveling different paths.

Finally, the comparative results in Figure 4.15, present the effect that bandwidth
-reduction has on the transmitted signal operating in the multipath environment. The
studied radar signals were filtered before transmission over the Rician fading channel,
and the received echo cross-correlated with the replica stored in the receiver. Figure 4.15
presents the results obtained by setting bandwidths of 80%, 60%, 40% and 20% the
original signal’s bandwidth.
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Fig. 4.15. Comparison of Bernoulli CBFM (BFM), linear FM (LFM) and
~Gaussian FM (GFM) performance when bandwidth is reduced.
Averaged correlations between the transmitted and received different bandlimited
signals in a four paths environment i) [0.05 0.45]; i) [0.10 0.40]; iii) [0.15 0.35]; iv)
[0.20 0.30] cut-off frequencies.
Direct reflection coefficient: 0.7.

As the frequency content of the signal is reduced, the interaction of delayed signal
replicas causes a stronger signal deformation. At the same time, as the bandwidth of the
transmitted signals is reduced, the shapes of the cross-correlations approximate each
other, independently of the originally transmitted signal. Indicating that a reduction of the

signals bandwidth causes the performance of the Bernoulli, linear and Gaussian FM
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signals to approximate. The result can be interpreted by relating the multipath
performance of a signal to its bandwidth content. The Bernoulli CBFM and the linear FM
signal have essentially the same frequency content (i.e. white spectrum in the filtered
band), this results in similar cross-correlations in a multipath environment. When the
signals are filtered around the central frequency, not only the spectrum of the Bernoulli
CBFM and the linear FM remain similar, but also the spectrum of the Gaussian FM
signal approximates a white spectrum in the passband. When the frequency content of the
- signals is reduced enough, like in the last plot of Figure 4.15, the cross-correlations,
obtained by processing Bernoulli CBFM, linear FM and Gaussian FM signals, are
similar. This result, however, is not desired, because the reduction of the bandwidth in the

transmitted signal also deteriorates its performance in the multipath environment.

4.4.3 ECCM and noise performance of FM chirp and random FM signal

The different nature of linear and Gaussian FM signals results in different ECCM
capabilities. While the inherent randomness in the noise modulated signal causes the
Gaussian FM signal [44], [45] to be very hard to detect, identify and reproduce, the well
defined oscillatory nature of a linearly modulated FM signal can be more easily detected
and reproduced by a jammer system [43]. In terms of ECCM, the low probability of
interception and identification offer the Gaussian FM, as well as the Bernoulli CBFM
signal, a considerable advantage over the linear FM signal.

"-By considering a jammer system that attempts to interfere with the radar by
tr‘ans}mittihg‘a»noise signal, not only the ECCM capabilities of the radar signal can be
assessed, but also the effects noise produces in the signal. To characterize the effect
‘produced by intentional or natural noise contamination in the linear FM and Gaussian FM
sigrials, simulated echoes degraded by noise were generated using normal, Rayleigh and
uniform distributions. The simulations were performed for several SNR as described in
section 4.3. A radar image (illustrated in Figure 4.8 i) was constructed from a simulated
target, the relative difference between the ideal interference-free and the received image

was calculated as a percentage. The averaged difference percentage, for 50 simulations of
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Bernoulli CBFM, linear FM and Gaussian FM signals at different SNR are shown in
Table 4.2.

TABLE 4.2
Interference-induced difference errors for various distributions in received
Bernoulli CBFM, Linear chirp FM and Gaussian FM signals.

BFM - LFM GFM
SNR Gaussian Rayleigh Uniform Gaussian Rayleigh Uniform Gaussian Rayleigh Uniform
S 14.5079 14.4081 14.3978 12.5128 12.3218 12.4817 18.7764 18.8022 18.7172
0 27.5045 27.3361 28.3246 23.8056 23.6370 23.7299 35.4122 35.5563 34.9591
-5 56.3006 57.9740 58.2528 49.3926 50.1740 50.3993 69.1281 69.7708 70.4239
-10 127.662 128.978 129.068 114.481 114.382 114.189 164.872 159.579 159.799
-12 191.359 188.254 182.807 166.492 161.701 158.691 218.446 215.166 220.677
-15 333.662 338.781 328.803 301.212 294.622 296.738 389.855 383.644 394.708
-20 955.445 951.473 952.651 857.780 862.521 832.423 1232.1 12284 1217.4

From the percentages shown in the table, it can be inferred that the type of distribution
followed by the interference signal has little effect in the final image, being the SNR the
important parameter that determines the level of corruption in the image. Figure 4.16
shows the plot of the difference percentage as a function of the SNR for the studied
signals, when the interfering noise follows a Gaussian distribution. The plot reveals that
the linear FM signal is less affected by interfering noise, followed by the CBFM signal;
finally, the noise modulated waveform presented the maximum corruption by noise.

Similar results were obtained for the other two distributions.
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' Fig. 4.16. Interference-induced difference percentage in received waveforms
contaminated by Gaussian noise for various SNR.
BFM, Bernoulli CBFM; LFM, linear FM; GFM Gaussian FM
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Chapter 5

Conclusion

This thesis presented the analysis of a set of novel radar signals and investigated their
favourable capabilities for high-resolution imaging. The work presented in this thesis
offers a novel exploration in the area of radar signal design by utilizing the concept of
chaos to improve the performance of radar systems. The main advantage of the proposed
signals is that they combine the broad bandwidth of classical radar signals, required for
high range resolution, with the noise-like appearance of random signals, needed for
range-Doppler resolution and ECCM.

The chaotic and CBFM signals introduced in this investigation proved to be ergodic
and demonstrated nearly optimal characteristics for their use in high-resolution radar.
Broadband spectrums and narrow autocorrelation functions, required for high resolution
ranging, were obtained for the chaotic and CBFM signal. The ambiguity surfaces of such
signals resulted in thumbtack functions in the delay-Doppler plane, thus allowing
unambiguous range and velocity estimation.

A comparative examination of the ambiguity surfaces showed that the Bernoulli
CBFM signal outperformed the rest of the CBFM signals and that its ambiguity surface
was comparable to the ones obtained from the non-modulated chaotic signals. An
| analysis based on the chaos detection and quantification demonstrated that the Bernoulli
CBFM signal differs form the logistic, tent and quadratic CBFM cases by being the only
modulated signal that preserved chaotic behaviour. The results from two chaotic metrics
confirmed that the behaviour of the Bernoulli CBFM signal is unique among the four
initially proposed CBFM signals.
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A more detailed analysis of the Bernoulli CBFM signal revealed its satisfactory
performance in multipath propagation and noise contaminated environments. The signal
proved to be resistant to deterioration by additive noise and self-interference caused by
delayed replicas. A comparative study demonstrated that the performance of the
Bernoulli CBFM is comparable to that of the linear FM chirp, considering the two
adverse environments. However, the ECCM characteristic of the Bernoulli CBFM are
clearly superior to the ones obtained by an oscillatory signal like the linear FM chirp. The
same study also showed that the Bernoulli CBFM signal is superior to the randomly
modulated GFM signal in multipath and noise affected environments.

From the analysis and results presented in thesis, it can be said that the use of chaotic,
CBFM, and specially the Bernoulli CBFM signal, is not only feasible but also
advantageous in the field of high-resolution radar imaging. Further work will be required
in the study of the CBFM signal and its complete characterization. The properties of the
Bernoulli CBFM should be further studied and understood. The final goal of this research
tQpic should be the complete design, implementation and final construction of a radar

system based on the proposed signals.
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Appendix A

List of acronyms
AF Ambiguity function
BFM Bernoulli frequency modulated
- CBFM Chaotic-based frequency modulated
DFT Discrete Fourier transform
- ECCM Electronic counter-counter-measures
ECM Electronic counter measures
EMC Electromagnetic compatibility
FM Frequency modulated or frequency modulation
GFM Gaussian-based frequency modulated
GPR Ground penetrating radar
IF Instantaneous frequency
LFM Linear frequency modulated or modulation
LPI Low probability of interception
LPId Low probability of identification
- RADAR Radio detection and range
SLL Sidelobe level
SNR Signal to noise ratio
VEL Volume element
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Appendix B
List of symbols

* Complex conjugate

Orms Root mean squared value

Time average

Slope of linear FM instantaneous frequency
Bandwidth

Ambiguity function

Difference

Range resolution

m%m&hac

Distance between two points in a sequence (Error)
XD Dirac delta

Phase value
~ Additive noise

‘Wavelength

Lyapunov exponent, first Lyapunov exponent, largest Lyapunov exponent

RPN

Doppler frequency
Frequéncy (rad/s)
Carrier frequency (rad/s)
The Heaviside function

3y © & & ¢<©

Pi number
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0]

‘gshwé«“

N()

(@)
F(?)

Amplitude value of reflection coefficient
Standard deviation

Time delay

Angle between the ground and target

Phase value of the reflection coefficient

Speed of light

Decibel

Initial separation between two points in a sequence
Separation between two points in a sequence at a given time
Control parameter in chaotic iterated maps
Expectation operator

A non-linear function

Instantaneous lowest frequency

Instantaneous maximum frequency

Carrier frequency

Sampling frequency

Complex envelope of channel impulse response
Index number

The imaginary unit.

Bessel function of the zero™ order

Discrete delay time

Modulation index

Discrete delay time

Total number of signal realizations

Discrete time

Total number of samples in discrete signal
Noise signal

Range

Received radar signal

Complex envelope of the received signal
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R(7)
Ry
Re{}
(%)
su(?)

5(t)

Vr
X0
Xn

Xn+1

Correlation function

Radio of the volume element at the present scale

Real value

Transmitted radar signal

Output of the radar receiver, cross correlation between the received and
transmitted radar signals

Complex envelope of the transmitted signal

Time

Time at which the target is detected

Relative velocity between the radar and the target

Initial condition

Discrete signal at present discrete time

Discrete signal at next discrete time

Cumulative of discrete signal
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Appendix C
MATLAB®O Simulations cbde

Chaotic sequences and CBFM signals generator
Logistic, Bernulli, Tent, Quadratic,
[fmlogis, fmbernu, fmten, fmgua, fmcong, fmranl=
Chaos (B,m,P,K) generates length m chaotic sequences and
FM signals using the modulation index B.
Xn=cos (2*pi*B*cumsum (MAP (2 :m) *Dt) +2*pi *B*MAP (1) *Dt) ;

If P=1 the sequences are plotted.

function [fmlogis, fmbernu, fmten, fmgua, fmran, fs]=chaos(B,m,P,K)

1)

if m<2
error ('The length of the sequence {(m) has to be greater than

end

n=[0:m-1]; ' : %$Senquences length

logis=zeros(1,m); $Matrix initialization
 bernu=logis; $Matrix initialization

ten=logis; . $Matrix initialization

qua=logis; $Matrix initialization

ran=logis;

Logistic Map generator

logis(1l)=rand(1)-1/2; $logis(0) (- [-1/2,1/2]

for i=2:m
logis(i)=(4~1e-7)*((1/2)"2-1logis (i~-1)"2)-1/2;

end %logis (- [-1/2,1/2]
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Bernulli Map generator

‘bernu(l)=rand(1)-1/2; $bernu(0) (- [-1/2,1/2]
for i=2:m
if bernu(i-1)<0
bernu(i)=(2-1e-9) *bernu(i-1)+1/2;

else
bernu(i)=(2-1e-9) *bernu(i-1)-1/2;
" end
end $bernu (- [-1/2,1/2]
Tent Map generator
ten(l)=rand(1)-1/2; $ten (0) (- [-1/2,1/2]

for i=2:m
ten(i)=1/2-(2-1le-7) *abs(ten(i-1)});
end $ten (- [-1/2,1/2]

Quadratic Map generator

qua(l)=rand(1)-1/2; $qua(0) (- [-1/2,1/2]
for i=2:m

qua(i)=(.5-1le-7)-4*qua(i-1)"2;
end $qua (- [-1/2,1/2]

Random Map generator

ran=rand{l,m)-1/2; $ran (- [-1/2,1/2]

FM Signals
Xn=cos (2*pi*B*cumsum (MAP (2 :m) *Dt) +2*pi*B*MAP (1)) ;
B= modulation index

fc=0;

fs=K* (B*(1/2) +fc); $Sampling rate >=2*B*max (MAP)
Dt=1l/fs;

fmlogis=exp (j*2*pi*B*cumsum(logis*Dt)); $Logistic FM signal
fmbernu=exp (j*2*pi*B*cumsum(bernu*Dt) ) ; %$Bernoulli FM signal
fmten=exp (j*2*pi*B*cumsum(ten*Dt)) ; $Tent FM signal
fmqua=exp (j*2*pi*B*cumsum(qua*Dt)) ; %$Quadratic FM signal
fmran=exp (j*2*pi*B*cumsum(ran*Dt)) ; $Random FM signal
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2.

% Bifurcation diagrams of the Logistic, Bernoulli, tent, quadratic

% Input: none

%%%%%% Logistic %%%%%

figure (1)

Npre = 2000; %$Preiterations (to avoid transients)
Nplot = 500; % Ploted points

Resolution=0.002; % R-Resoltion

x = zeros{Nplot,1l);

for r = 0:Resolution/2:4.0,
x(1l) = rand(1)-1/2;
for n = 1l:Npre,
x(1) = r*x(1)*(1-x(1));%-x(1)"2);%-.5;

end,
for n = 1:Nplot-1,
X(n+l) = r*x(n)*(l-x(n));%-x(1)*2);%~-.5;
end,
plot{r*ones(Nplot,1l), x, 'k.', 'markersize', 2);
hold on;
end,

title('Bifurcation diagram of the logistic map');

Xlabel ('D', 'FontAngle', 'Italic'); ylabel('x n');
set(gca, 'xlim', [2.5 4.0]);
hold off;

%$%%% Bernoulli

figure(2)

. X = zeros(Nplot,1);
for r = 1:Resolution:2,
x(1) = rand(1l)-.5;

for n = 1l:Npre,

if x(1)<0
x{(1l)=r*x(1)+1/2;
else
x(1l)=r*x(1)-1/2;
end
end,
for n = 1:Nplot-1,
if x(n)<0
X (n+l)=r*x(n)+1/2;
else
x{(n+l)=x*x(n)-1/2;
end
end,
plot (r*ones(Nplot,1), x, 'k.', 'markersize', 2);
hold on;
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end,
title('Bifurcation diagram of the Bernoulli map');

xlabel('xr'); ylabel('x_n');
$set(gca, 'xlim', [1 21);
hold off;

%$%%% Tent

figure(3)

X = zeros(Nplot,1l);
for r = 1:Resolution:2,
x(1l) = rand(1)-.5;
for n = 1:Npre,
x(1y=1/2-r*abs(x(1));
end,
for n = 1:Nplot-1,
x(n+l)=1/2-r*abs (x(n));

end,
plot{r*ones (Nplot,1l), x, 'k.', 'markersize', 2);
hold on;
end,
title('Bifurcation diagram of the tent map');
xlabel('r'); vylabel('x_n');
%set (gca, 'xlim', [1 21);
hold off;

%$%%% Quadratic

figure(4)
x =zeros (Nplot,1l);
for r = 0:Resolution/5:0.5,
x(1l) = rand(1l)-.5;
for n = 1l:Npre,
x(1)=r-4*x(1)"2;
end,
for n = 1:Nplot-1,
x{n+l)=r-4*x(n)"2;
end,
plot (r*ones (Nplot,1l), x, 'k.', ‘'markersize', 2};
‘hold on;
~end,
‘title('Bifurcation diagram of the quadratic map');
xlabel('r'); vylabel('x n');
$set (gca, 'xlim', [1 21);
hold off;

3.

% Chaotic signals ensemble autocorrelations

% Input: MM= number of signals

% mm= length of the signals

% uses maps.m to generate the chaotic signals

% Output: Plot of the ensemble and averaged signals autocorrelation
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il

MM=50; % Number of signals
mm=30; % Length of signal

mlogis=zeros (MM, 59);
mbernu=mlogis;
mten=mlogis;
ngqua=mlogis;
msine=mlogis;

for kk=1:MM
$ [fmlogis, fmbernu, fmten, fmqual=chaosmaps (2,501+m, 0) ;
maps

fml=logis (501:501+mm) ;
fmb=bernu (501 :501+mm) ;
fmt=tent (501:501+mm) ;
fmg=qua (501 :501+mm) ;

fms=sine(501:501+mm) ;

xcl=fftshift (ifft(£ft(fml,2*mm-1) . *conj (£ft (fml, 2*mm-1))));
xcb=fftshift (ifft (£ft (fmb,2*mm-1) .*conj (fft (fmb, 2*mm-1))}));
xct=fftshift (ifft (£ft (fmt,2*mm-1).*conj (fft (fmt, 2*mm-1))));
xcqg=fftshift (ifft (fft (fmqg, 2*mm-1) . *conj (fft (fmg, 2*mm-1))));
xcs=fftshift (ifft(£ft (fms,2*mm-1) . *conj (fft (fms,2*mm-1))));

mlogis (kk, : ) =abs(xcl) ';%/max (abs (xcl));
mbernu (kk, : ) =abs (xcb) ' ; $/max (abs (xcb) ) ;
mten (kk, : ) =abs (xct) '; $/max (abs (xct) ) ;
mqua (kk, : ) =abs (xcq) ' ; $/max (abs (xcq) ) ;
msine({kk, :)=abs (xcs) ';

end

mlogis=mean (mlogis) ;
mbernu=mean (mbernu) ;
mten=mean (mten) ;
mgua=mean (mqua) ;
msine=mean (msine) ;

figure (1)
subplot (221)
plot(—mm+l:mm~l,20*log10(mlogis/max(mlogis)),'k','LineWidth',Z)
title('i_a', 'FontName', 'times new

roman', 'FontAngle', 'Italic', 'FontWeight', 'Bold', 'FontSize',12)

% xlabel('Delay’')

ylabel ('Amplitude [dB]')

axis([-10 10 -15 0}1)

subplot (222)
plot(-mm+1:mm-1,20*loglo(mbernu/max(mbernu)),'k',’LineWidth',Z)
title('ii_a', 'FontName', 'times new
roman', 'FontAngle', 'Italic', ‘FontWeight', 'Bold', 'FontSize*,12)
xlabel ('Delay"')
yvlabel (‘Amplitude [dB]')
axis([-10 10 -15 0])
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figure (1)
subplot (223)
plot (-mm+1:mm-1,20%*1logl0 (mten/max (mten)), 'k', 'LineWidth', 2)
title('iii_a', 'FontName', 'times new
roman', 'FontAngle', 'Italic', 'FontWeight', 'Bold', 'FontSize',12)
% xlabel ('Delay’')
ylabel ('Amplitude [dB]‘')
axis([-10 10 -15 01)

subplot (224)
plot (-mm+1l:mm-1,20*%1ogl0 (mqua/max(mqua)), 'k', 'LineWidth', 2)
title('iv_a', 'FontName', 'times new
roman', 'FontAngle', 'Ttalic', 'FontWeight', 'Bold', 'FontSize',12)
% xlabel('Delay’')
ylabel ('Amplitude [dB]')
axis([-10 10 -15 01)

4.

% Autocorrelation for the chaotic signals.

% Uses function chaos() to generate the signal, the signals are
segmented

% and a averaged autocorrelation is obtained from the segments
autocorrelations

% Output: Autocorrelation plots

[fmlogis, fmbernu, fmten, fmqua, fmcong, fmran, fsl=chaos(2,1500,0,2);

h=floor (length(fmlogis) /30); $Number of posible averages

corrlogis=zeros(1,59); %Correlation matrix initialization
corrbernu=zeros(1,59); %Correlation matrix initialization
corrten=zeros(1,59); %Correlation matrix initialization
corrgua=zeros (1,59); %Correlation matrix initialization
for g=1:h %For each posible average

if g*30+31>length(fmlogis) %For the final average of 60

ambiguity functions
break %$End cycle
end

corrlogistemp=xcorr([zeros(1,30) (fmlogis (30* (g-1)+1:30*(g-
1)+30)) zeros(1,30) ], 'unbiased'); %$Calculate autocorelation
function of the next 30 samples (Logistic)

corrbernutemp=xcorr ( [zeros (1,30) fmbernu (30* (g-1)+1:30*% (g-1) +30)
zeros{1,30) ], ‘'unbiased'); %Calculate autocorelation function
of the next 30 samples (Bernulli)

corrtentemp=xcorr ([zeros(1l,30) fmten(30*(g-1)+1:30*(g-1)+30)
zeros(1,30) 1, 'unbiased'); %$Calculate autocorelation
function of the next 30 samples (Tent)
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corrquatemp=xcorr([zeros(1l,30) fmqua(30*(g-1)+1:30*(g-1)+30)
zeros(1,30) ], ‘unbiased'); %$Calculate autocorelation

function of the next 30 samples (Quadratic)

corrlogis=corrlogis+ (corrlogistemp(61:119));
$Add the new values to the previous ones
corrbernu=corrbernu+ (corrbernutemp (61:119) ) ;
$Add the new values to the previous ones
corrten=corrten+ (corrtentemp(61:119));
%Add the new values to the previous ones
corrgua=corrqua+ (corrquatemp (61:119) ) ;
%Add the new values to the previous ones

end

subplot(221)

plot (20*1ogll (abs (corrlogis) /max (abs (corrlogis))))

subplot (222)

plot(20*1ogl0 (abs (corrbernu) /max (abs (corrbernu) ) ) )
subplot (223)

pth(ZO*loglO(abs(corrten)/max(abs(corrten))))
subplot (224)
plot (20*%1logl0 (abs (corrqua) /max (abs (corrqua)) ), 'Linewidth’

S.

% Chaotic based FM signal Spectral estimation
% by autocorrelation averaging and Fourier transform

% Input: None
% Output: Plot of the signal's power spectrums

M=500; $ number of signals
m=128; % length
for k=1:M

[fmlogis, fmbernu, fmten, fmqua, fmsine]=chaos(2,501+m,0,2);

fml=fmlogis(501:501+m) ;
- frbh=fmbernu(501:501+m) ;
fmt=fmten (501:501+m) ;
fmg=fmqua (501:501+m) ;
fms=fmsine (501:501+m) ;

xcl=fftshift(fft(fml));
xcbh=fftshift (fft (fmb));
xct=fftshift (£ft(fmt));
xcg=fftshift (££t (fmqg));
xcs=fftshift(fft (fms));

logis(k, :)=abs (xcl) ; $/max(abs (xcl));
bernu (k, : ) =abs (xcb) ; $/max (abs (xcb) ) ;
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ten(k, :)=abs (xct) ;%¥/max(abs(xct) ) ;
qua(k, : ) =abs (xcq) ; $/max (abs (xcq) ) ;
sine(k, :)=abs (xcs) ;% /max (abs (xcq) ) ;

end

logis=mean(logis);
bernu=mean (bernu) ;
ten=mean (ten);
qua=mean (qua) ;
sine=mean (sine) ;

plot(~.5:1/128:.5,20*1logl0(logis/max(logis)), 'k', 'LineWidth', 2)
title('i', 'FontName', 'times new

roman', 'FontAngle', 'Italic', 'FontWeight', 'Bold', 'FontSize',12)

xlabel ('Normalized frequency')

vlabel ('Amplitude [dB]')

axis([-.5 .5 -15 01)

set (gca, 'xtick', [-.5:.2:51)

gprint( 1, ‘'-djpeg', 'figll0a‘');close

6.

% Lyapunov exponent calculation

% Input: Input signal should be save in the variable x (as vector)

% Output: Plot of the distance Dn with respect to n (Slope
calculation)

N=30; % Number of initial points

n=25; % Maxim length to dispaly

i=zeros (N,n);
d=i;
i(:,1)=1l+ceil(rand(1l,N)*100)"';

for m=1:N

[0, index]=min(abs{[x(1:1i(m,1)-2) inf inf inf
%x(i(m,1)+2:1length(x))]1-x(i(m,1))));

j=index (1) -i(m,1);

‘A(m,l:n)=i(m,1):i(m,1)+ (n-1);

‘d(m, :)=abs (x(i(m,:)+j)-x(i(m,:)));

ly(m, :})=log( d(m,:));%/d(m,1) );
end

LY=sum(ly,1)/m;

range=[2:10]; % Slope calculation range
X=1:n;

a= [ones(size((range))) ; (range)l' \(LY(range))':

% Linear regression
Y=[ones (size(X)) ; X]'*a; $ Linear fit
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plot(X,LY, ‘ko')

title('Lyapunov exponent', 'FontWeight', 'Bold!')
xlabel ('Iteration number [n}')

vlabel ('Log(d_n)')

axis tight $ LogLog Plot

hold on

plot (X, (Y), 'k:") % Fitted line
legend({'m = ',num2str(a(2))],4)

plot ((range), (Y(range)), 'k-')

hold off

7.

% Correlation fractal dimension calculation

% Input: Input signal shduld be save in the variable x (as vector)
% Output: Plot of the correlation sum CR with respect to R (Slope
calculation)

xRange=max (x) -min (x) ;
N=length (x) ;

k=0:20;
R=xRange./1.5.%k;
NiR=zeros (length(k) ,N);

for k=1l:length(k)
for i=1:N
Jj=[1:i-1 i+1:N];
NiR(k,i)=length(find(R(k)>=abs(x(i)-x(J))))+NiR(k,1);
end
end

PiR=NiR/ (N-1) ;
CR=1/N*sum(piR, 2);

range={4:20]; % Slope calculation range

X=1log(R); % X values for regression
-a= [ones(size(X(range))) ; X(range)]l' \(log(CR(range)'))’';

% Linear regression
Y=[ones(size(X)) ; X]1'*a; % Linear fit

loglog(R,CR, ‘ko")}

title('Correlation Dimension D_C plot', 'FontWeight', 'Bold!')
xlabel ('Vel size [r_kl1')

ylabel ('Correlation [C_k]')

axis tight % LogLog Plot

hold on

loglog(exp(X) ,exp(Y), 'k: ') % Fitted line
legend(['m = ', num2str(i+a(2))].,2)

loglog(exp (X(range) ) ,exp (¥ (range)), 'k-')

hold off
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‘ 8‘
$ Chaotic FM signals ensemble ambiguity functions

% Input: M= number of signals

% m= length of the signals

% K= Doppler stpes

% uses chaos.m to generate the chaotic FM signals

% Output: The averaged signals ambiguity function in the varibales
ambi {map]
% use plotingg.m to plot

M=30;
m=128;
K=256;

- [x,tau,xi]=ambi{ones (m,1),-m/2:.5:m/2,K);

mlogis=zeros(size(x));
mbernu=mlogis;
mten=mlogis;
mgua=mlogis;
msine=mlogis;
gaus=mlogis;
sigma=1/sqrt(12);

for k=1:M
[fmlogis, fmbernu, fmten, fmgua, fmsine]=chaos(2,501+m,0,2);

fml=fmlogis(501:501+m) ;
fmb=fmbernu(501:501+m) ;

Emt=fmten (501:501+m) ;

fmg=fmqua (501 :501+m) ;

fms=fmsine (501:501+m) ;

fmgaus=exp (j*2*pi*cumsum(sigma*randn(l,m)));

xcl=ambi(fml',-m/2:.5:m/2,K);
xcb=ambi (fmb',-m/2:.5:m/2,K);
" xct=ambi (fmt',-m/2:.5:m/2,K);
xcg=ambi (fmg*', -m/2:.5:m/2,K) ;
"xcs=ambi (fms',-m/2:.5:m/2,K);
xgs=ambi (fmgaus',-m/2:.5:m/2,K) ;

mlogis=mlogis+abs (xcl) /max (max{abs(xcl)));
“mbernu=mbernu+abs (xcb) /max (max (abs (xcb) ) ) ;
mten=mten+abs (xct) /max (max (abs(xct)));
mqua=mqua-+abs (xcq) /max (max (abs (xcq) ) ) ;
msine=msine+abs (xcs) /max (max (abs (xcs))) ;
gaus=gaus+abs (xgs) /max (max (abs (xgs)) ) ;

end
mlogis=(mlogis) /M;

mbernu= (mbernu) /M;
mten= (mten) /M;
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mqua= (mqua) /M;
msine= (msine) /M;
gaus=gaus/M;

ambilogis=abs (mlogis).”"2;
ambibernu=abs (mbernu) . *2;
ambiten=abs (mten) .”2;
ambigua=abs {mqua) . 2;
ambisine=abs (msine) ."2;
ambigaus=abs (gaus) . 2;

9.

% Multipath propagation environment

% Input: m Length of the signal, delays Number of replicas
% . coef Value of direct reflection coefficient

% [£0 £1] Cut off frequencies
%
%

M Number of realization
Output: Plot of the cross correlation function

function [] = multipath(m,delays, coef, £0,f1,M)
for (k=1:M),
[fmlogis, fmbernu, fmten, fmqua, fmran, fs]=chaos(2,m,0,2);

n=1:m;

beta = (f1-f0).*{(m.~(-1));

ch = exp(j*2*pi * ( beta./(2).*(n.”(2)) + £0.*n )); %Chirp
generation
[B,A]l=cheby2 (6,20, [f0 £1]+.5); %$Bandpass filter

[H,Fl=fregz(B,A, 'twosided');

filfm=filter (B, A, fmbernu) ;
filch=filter(B,A,ch);
filran=filter(B,A, fmran) ; $Filtered signals

h=[coef normrnd(0,1,1,delays)/5+j*normrnd(0,1,1,delays)/5];
$Rician channel

X=conv (filfm,h)/2;

X(m+l:end)=[];

Y=conv(filch,h)/2;

Y(m+l:end)={[];

Z=conv{filran,h)/2;

Z(m+l:end)=[]; $recieved signals

autofm=abs (xcorr (X, filfm));
$ifft(conj (£t (£filfm)) . *£fc (X)) ;
autoch=abs (xcoxrr (Y, filch));

autoran=abs (xcorr(Z, filran)); % Signals
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crosscorrelations

frm(k, :)=20*1logl0 (autofm/max (autofm) ) ;

chi (k, : )=20*1ogl0 (autoch/max (autoch) ) ;

rando (k, : )=20*1ogl0 (autoran/max (autoran)) ; % Correlation
absolute value

end

plot(-length(X)+1i:length(X)-1,mean(fm,1), k")

hold on
plot(-length(Y)+1l:length(Y)-1,mean{chi,1),':k', 'Linewidth',2)
plot(-length(z)+1l:length(Z)-1,mean(rando, 1), '--k")

legend('BFM', 'LFM', 'GFM', 1)
axis([-1 10 -15 01)

xlabel ('Delay [k1')

.yvlabel ('Amplitude [dB]')
hold off

return

10.

% Noisy propagation environment

% Input: m Length of the signal, SNR Signal to noise ratio
% [£0 £1] Cut off frequencies
% M Number of realization
% Output: Difference percentage in image
function [fm] = noisy(m, SNR, £0,f1l,6M)
for (k=1:M),

[fmlogis, fmbernu, fmten, fmqua, fmran, fs]l=chaos(2,m,0,2);
n=1:m;

"beta = (£1-£f0).*(m."~(~-1));
ch = exp(j*2*pi * ( beta./(2).*(n.~(2)) + £0.%*n )); $Chirp
generation

[B,A]l=cheby2 (6,20, [f0 f1]+.5);
[H,Fl=freqz (B,A, 'twosided') ; $Bandpass filter

filfm=real (filter (B, A, fmbernu));
filch=real (filter(B,A,ch));

filran=real (filter(B,A, fmran)); $Filtered signals
" noisyfml=awgn (filfm, SNR, 'measured’) ; %Gaussian

noisyfm2=adduniform(£ilfm, SNR) ; $Uniform

noisyfm3=addrayl (£ilfm, SNR) ; $and Rayleigh

addition to CBFM
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noisychl=awgn(filch, SNR, 'measured’); $Gaussian

noisych2=adduniform(£ilch, SNR); gUniform
noisych3=addrayl (£ilch, SNR) ; %and Rayleigh
addition LFM
noisyranl=awgn(filran, SNR, 'measured’'); %Gaussian
noisyran2=adduniform(filran, SNR}; gUniform
noisyran3=addrayl (filran, SNR) ; %$and Rayleigh

addition GFM

autofm=abs (xcorr (filfm) ) /max (abs (xcorr (filfm)});
autoch=abs (xcorr (filch) ) /max (abs (xcorr(filch)));
autoran=abs (xcorr (filran) ) /max(abs (xcorr (filran)));
$Signals autocorrelations

autofm1=abs(xcorr(filfm,noisyfml))/max(abs(xcorr(filfm)));
autofm2=abs(xcorr(filfm,noisyfmZ))/max(abs(xcorr(filfm)));
autofm3=abs (xcorr (filfm,noisyfm3) ) /max (abs (xcorr (filfm)));
$CBFM xcorrelations

autochl=abs(xcorr(filch,noisychl))/max(abs(xcorr(filch)));
autoch2=abs(xcorr(filch,noisych2))/max(abs(xcorr(filch)));
autoch3=abs(xcorr(filch,noisychB))/max(abs(xcorr(filch)));
$LFM xcorrelations

autoranl=abs (xcorr (filran,noisyranl) ) /max(abs (xcorr (filran)));
autoran2=abs(xcorr(filran,noisyranZ))/max(abs(xcorr(filran)));
autoran3=abs(xcorr(filran,noisyran3))/max(abs(xcorr(filran)));
$GFM xcorrelations

fml(k,:)=sum(abs(autofm1(190:210)—autofm(190:210)))/sum(autofm);
fm2(k,:)=sum(abs(autofm2(190:210)—autofm(l90:210)))/sum(autofm);
fm3(k,:)=sum(abs(autofm3(190:210)—autofm(l90:210)))/sum(autofm);

$CBFM diff. percentage
chl(k,:)=sum(abs(autochl(190:210)—autoch(190:210)))/sum(autoch);
ch2(k,:)=sum(abs(autoch2(190:210)—autoch(190:210)))/sum(autoch);
ch3(k,:)=sum(abs(autoch3(190:210)—autoch(190:210)))/sum(autoch);
$LFM diff. percentage
ranl (k, :) =sum{abs (autoranl (190:210) -
autoran(190:210)) ) /sum(autoran) ;
ran2 (k, : ) =sum(abs (autoran2 (190:210) -
autoran(190:210)) ) /sum(autoran) ;
ran3 (k, : ) =sum(abs (autoran3 (190:210) -~
autoran(190:210))) /sum{autoran) ;

%$GFM diff. percentage

end
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