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Abstract

We consider a simple metapopulation model with explicit movement
of individuals between patches, in which each patch is either a source or a
sink. We prove that, similarly to the case of patch-occupancy metapopu-
lations with implicit movement, there exists a threshold number of source
patches such that the population potentially becomes extinct below the
threshold and established above the threshold. In the case where the
matrix describing the movement of populations between spatial locations
is irreducible, the result is global; further, assuming a complete mobility
graph with equal movement rates, we use the principle of equitable par-
titions to obtain an explicit expression for the threshold. Brief numerical
considerations follow.

1 Introduction

The problem of source-sink dynamics has been present in the ecology literature
for some time, essentially originating with the pioneering work of Levins [29].
The idea is that species exist in habitats (often called patches) that can be of
quite diverse qualities. These varying qualities mean that some of the habitats
are favourable to species that live there, while others are not. The former are
called sources, while the latter are sinks. Typically, sinks need an influx of
individuals for a population to persist there. Of importance in this setting
are the consequences for survival of the population as a whole. Source-sink
dynamics have been investigated in a variety of contexts. For instance, [16]
considers an extended prey-predator model inspired by marine ecosystems, [12]
considers plant ecosystems. Refer to [11, 17, 33] and references within for more
detail.
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From a theoretical point of view, the question of heterogeneous landscapes
has been widely studied in order to characterise the effect of colonisation and ex-
tinction rates of patches on the persistence of metapopulations; see [17]. These
studies are based on the Levins model, in which the rate of change of the num-
ber of extant local populations is explicitly described. Levins-type models are
typically patch occupancy models: state variables count the number (or propor-
tion) of patches that are occupied by the species of interest. In these models,
movement is implicit : spatial coupling is described through (typically) nonlin-
ear terms accounting for the effect of populations at other spatial locations on
the local population. In the case of such models, [17] study a variety of cases.
They prove in particular that there is a threshold ratio of good to bad qual-
ity patches, i.e., a fraction of suitable patches, such that the overall population
persists above the threshold and becomes extinct below.

Another type of metapopulation models are those with explicit coupling.
Contrary to those models with implicit coupling, they describe the actual (ex-
plicit) movement of individuals between spatial locations [20, 28] and are thus
easier to parametrise in instances where movement data is available [5]; the
abundance of both human and animal movement data available currently has
made these models popular. Theoretical work on source-sink metapopulation
systems with explicit movement is less advanced and has proceeded mainly along
two axes. Low dimensional cases of two or three patches have been studied in
great detail; see, e.g., [4, 23]. On the other hand, large dimensional versions
with N patches have typically been considered numerically; see, e.g., [38]. Ana-
lytical work on a system of N patches is carried out in [2] and [31]; in the latter,
patches have prey-predator models. Closely related work in [37] considers a sys-
tem comparable to the one here but without a focus on source-sink dynamics,
i.e., patches are allowed to have somewhat individual dynamics but there is no
requirement for some to be sources and others to be sinks.

In the present paper, similar results to those of [17] in the patch-occupancy
with implicit movement case are obtained for the explicit movement case. Here,
we explore an explicit model to highlight how the the threshold between source
and sink patches is impacted by local populations (especially intrinsic growth
rates) and movement between patches (migration matrix).

The present work follows [35], where a simple metapopulation model with
explicit movement for source-sink dynamics on N patches is considered for a
single species. It is established numerically in [35] that there exists a thresh-
old number of source patches in the system below which the system goes to
a state with no population and above which the population becomes endemic.
The model of [35] considers that movement is dependent on pressure, i.e., the
direction of movement can change as a function of the difference in suitability
of connected locations. This is in the same vein as, for instance, [34], where
movement is a function of habitat quality.

We confirm analytically the result of [35] in a simplified setting with no
dependence of movement on crowdedness. This simplification allows us to high-
light the most important component underlying the process at hand: the rela-
tive number of source and sink patches determines the possibility for the global
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coupled system to sustain a population. In the case of a strongly connected
movement digraph with movement equal whenever it happens, we use the prin-
ciple of equitable partitions to derive an explicit formula for the threshold. Brief
numerical considerations follow the analytical work. Relationship with existing
work in the context of patch occupancy model is highlighted in Section 5.

2 The model

We consider a simplification of the model of [35]. Assume that there are N > 0
patches, with S ≥ 0 source patches and N −S ≥ 0 sink patches. For simplicity,
we assume that patches are ordered with all source patches first. While there
is no real loss of generality in that assumption, we emphasise here that the
assumption effectively specifies that, when changing from a model with S source
patches to a model with S + 1 source patches, all of the former source patches
are retained in the new model with S + 1 source patches. Example 1 below
points out another feature associated with our assumption on the ordering.

The model takes the form

P ′i = Pigi(Pi) +

N∑
j=1

mijPj , i = 1, . . . , N, (1a)

where, in source patches, the per capita growth rate is

gi(Pi) = ri

(
1− Pi

Ki

)
, i = 1, . . . , S (1b)

and in sink patches, it is

gi(Pi) = −ri, i = S + 1, . . . , N, (1c)

where ri > 0 for i = 1, . . . , N and Ki > 0 for i = 1, . . . , S. The model is
considered with initial conditions Pi(0) ≥ 0 for all i = 1, . . . , N . To avoid a

trivial problem, it is further assumed that
∑N
i=1 Pi(0) > 0. The parameter

ri > 0 is both the growth rate in the case of source patches and the death
rate in the case of sinks; Ki > 0 is the carrying capacity of source patches.
The movement rates mij are nonnegative for i 6= j and represent the rate at
which individuals in patch j move to patch i, with mij = 0 if there is no direct
movement from j to i. The term mii accounts for movement out of patch
i = 1, . . . , N and takes the form

mii = −
N∑
j=1

mji.

This allows us to write movement in the compact form in (1a). It also is useful
to write the system in matrix form. The general form is

P′ = G(P)P +MP, (2)
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where P = (P1, . . . , PN )T ,

G(P) = diag (g1(P1), . . . , gN (PN ))

and

M =


−
∑N
j=1mj1 m12 · · · m1N

m21 −
∑N
j=1mj2 · · · m2N

mN1 mN2 · · · −
∑N
j=1mjN

 . (3)

We callM the movement matrix of system (1). To emphasise that there are two
types of patches, we also consider a “split” form. To formulate it, first define

Ps = (P1, . . . , PS)T and Pt = (PS+1, . . . , PN )T .

Recall that, by assumption, ordering of patches is with source patches first. If
S = 0 or S = N , the corresponding vector Ps or Pt, respectively, is vacuous.
Then,

P′s = Gs(Ps)Ps +MsPs +MstPt, (4a)

P′t = −DtPt +MtPt +MtsPs, (4b)

where

Gs(Ps) = diag

(
r1

(
1− P1

K1

)
, . . . , rS

(
1− PS

KS

))
and

Dt = diag(rS+1, . . . , rN ).

The matrices Ms, Mt, Mst and Mts describe movement within and between
source and sink patches. They are obtained by writing the movement matrix
M in block form as

M =

(
Ms Mst

Mts Mt

)
. (5)

As a consequence, the matrix Ms is S × S, Mt is (N − S) × (N − S), Mst is
S × (N − S) and Mts is (N − S)× S.

3 Mathematical analysis

In what follows, we work our way towards a proof of the following theorem.

Theorem 1. There exists a unique critical interval Sint ⊂ (0, N) ⊂ R such that
if the number of source patches is S < min(Sint), the population-free equilibrium
(PFE) (P1, . . . , PN ) = (0, . . . , 0) of System (1) is locally asymptotically stable
and if S > max(Sint), the PFE is unstable.

If, additionally, the digraph of patches is strongly connected, then Sint re-
duces to a single point, Sc, and the PFE is globally asymptotically stable in
the case that S < Sc; in the case that S > Sc, there is a unique component-
wise positive equilibrium P∗ that is globally asymptotically stable with respect to
RN+ \ {0}.
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Note that even in the reducible case, Sint could be reduced to a single point
(we show later in Figure 2 a numerical example where this is the case). Also,
values of the number S of source patches are in N, but min(Sint),max(Sint), Sc ∈
R. So, in practice, if min(Sint), max(Sint) or Sc ∈ R \N, stability properties of
the equilibria might not be established for one or several values of S.

3.1 Matrix preliminaries

Before proceeding further, let us give a few definitions and notations that are
used in the remainder of this work.

The vector 1 is the vector of all ones, I is the identity matrix and J is the
matrix of all ones; sizes are indicated only if omission leads to ambiguities. For a
vector or matrix A, we write A ≥ 0 to indicate that all entries are nonnegative,
A > 0 when entries are nonnegative and that there exists at least one nonzero
entry; the notation A� 0 means that A is entry-wise positive. Furthermore, if
A and B are vectors or matrices of compatible sizes, we write A ≥ B, A > B
and A� B if A−B ≥ 0, A−B > 0 and A−B � 0, respectively.

A matrix A = [aij ] has the Z sign-pattern or is a Z-matrix if aij ≤ 0 for all
i 6= j. A matrix A is essentially nonnegative if −A has the Z sign-pattern. A
matrix A is a nonsingular M-matrix, or a matrix of class K, if it has the Z sign-
pattern and satisfies any of the equivalent conditions in [9, Theorem 6.2.3], [14,
Theorem 5.1] or [24, Theorem 2.5.3]. The matrix is an M-matrix or is of class
K0 if it has the Z sign-pattern and satisfies any of the equivalent conditions in
[14, Theorem 5.2.1]. By [14, Theorem 5.3], K ⊂ K0, with A ∈ K0 also in K if
and only if A is nonsingular.

Finally, given a matrix A ∈Mn, the spectrum σ(A) is the set of eigenvalues
of A, the spectral abscissa (or stability modulus) of A is

s(A) = max{<(λ) : λ ∈ σ(A)}

and the spectral radius of A is

ρ(A) = max{|λ| : λ ∈ σ(A)}.

3.2 Properties of the movement matrix

The matrix (3) and diagonal perturbations of (3) provide the backbone to much
of the analysis. Their main properties are summarised in the following results.
Proofs of some parts of these result are given in [5] and the references therein.
Very similar results are provided by [36, Corollary 4.3.2], which does not involve
M-matrices.

Lemma 2. Consider the movement matrixM given by (3). Then the following
hold true.

1. 0 is an eigenvalue of M corresponding to the left eigenvector 1T .

2. −M is a singular M-matrix.
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3. 0 = s(M) ∈ σ(M).

4. If M is irreducible, then s(M) has multiplicity 1.

Proof. See [5].

We now consider the effect of perturbations of the movement matrix by
means of addition of diagonal matrices. In the following statement, diag(D)
refers to the diagonal entries of diagonal matrix D.

Proposition 3. Consider the movement matrix M given by (3). Let D be a
diagonal matrix. Then the following hold true.

1. s(M+ dI) = d for all d ∈ R.

2. s(M + D) ∈ σ(M + D) and is associated to an eigenvector v > 0. If,
additionally, M is irreducible, then s(M + D) has multiplicity 1 and is
associated to v� 0.

3. If diag(D)� 0, then D−M is a nonsingular M-matrix and (D−M)−1 >
0.

4. If M is irreducible and diag(D) > 0, then D −M is an irreducible non-
singular M-matrix and (D −M)−1 � 0.

Proof. 1. From Lemma 2(3), s(M) = 0. Therefore, using a “spectrum shift”
[25, Problem 1.2.P8], s(M+ dI) = d.
2. These are direct consequences of applying the Perron-Frobenius Theorem to
the essentially nonnegative matrix M+D.
3. Define d = mini=1,...,N dii. By the assumption that diag(D) � 0, d > 0.
Then −M ≤ dI − M ≤ D − M. From [14, Theorem 5.2.5], dI − M is an
M-matrix. Since s(M) = 0, using a “spectrum shift” [25, Problem 1.2.P8], all
eigenvalues of dI−M have real parts larger than d, so dI−M is a nonsingular
M-matrix. In turn, [14, Theorem 5.1.1(4)] implies that D−M is a nonsingular
M-matrix and [14, Theorem 5.1.1(11)] leads to the conclusion.
4. Suppose that M is irreducible. Let d = maxi=1,...,N dii > 0. Then D −M
is irreducible and diagonally dominant with all columns k = 1, . . . , N such that
dkk = d satisfying the strict diagonal dominance requirement. (Other columns
with nonzero entries in D also satisfy the requirement.) As a consequence, [39,
Theorem 1.11] implies that D−M is nonsingular and inverse positivity follows
from [14, Theorem 5.2.10].

Note that −M is also the Laplacian matrix of a directed graph. As such,
finer estimates of the location of eigenvalues are available; see, e.g., [1]. However,
the main concern here is with the spectral abscissa, so this is not needed.

6



3.3 Existence of a threshold Sc

In this section, we prove the first part of Theorem 1. We do this in several steps.
In block format, the Jacobian matrix of (4) takes the form

J(Ps,Pt) =

(
G′s(Ps)Ps + Gs(Ps) +Ms Mst

Mts −Dt +Mt

)
, (6)

where G′s(Ps) is the term by term derivative of the birth function matrix, i.e.,

G′s(Ps) = diag(− r1
K1

, . . . ,− rS
Ks

).

So, at the PFE, denoting JPFE := J(0, 0) and Ds = diag(r1, . . . , rS),

JPFE =

(
Gs(0) +Ms Mst

Mts Mt −Dt

)
=

(
diag(r1, . . . , rS) +Ms Mst

Mts Mt −Dt

)
= (diag(r1, . . . , rS)⊕ diag(−rS+1, . . . ,−rN )) +M.

Thus,
JSPFE =M+ (Ds ⊕−Dt), (7)

where, in the matrix Ds ⊕−Dt = diag(r1, . . . , rS ,−rS+1, . . . ,−rN ), there are S
positive entries and N − S negative entries. To make the balance of positive
and negative terms apparent, we use the notation JSPFE.

In order to conduct the analysis, we need a way to continuously change
values in the matrix. For S = 0, . . . , N − 1, denote

JS,εPFE =M+ diag(r1, . . . , rS , ε,−rS+2, . . . ,−rN ), (8)

where ε ∈ [−rS+1, rS+1] is in the (S + 1)th position in the diagonal matrix. We
then have

J
S,−rS+1

PFE = JSPFE and J
S,rS+1

PFE = JS+1
PFE .

It is also useful to be able to refer to S as a continuous variable, even if this is
an abuse of notation when referring to the number of source patches. In this
case, for ζ ∈ [0, N ], we consider

JζPFE = Jξ,εPFE, with ξ = bζc, ε = 2(ζ − bζc)ri − ri, (9)

where i = bζc + 1 if ζ < N and i = N when ζ = N . In the sequel, we use the

notation JSPFE to indicate that S ∈ [0, N ] and Jξ,εPFE to specify an integer value
ξ with offset ε.

We can now proceed with the proof of the first part of Theorem 1. First, we
prove the following.

Lemma 4. Let r = min
i=1...N

{ri}. Then, when S = 0, s(J0
PFE) ≤ −r < 0, whereas

s(JNPFE) ≥ r > 0 when S = N .
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Proof. If S = 0, then

J0
PFE =M+ diag(−r1, . . . ,−rN ).

From Proposition 2(3), s(M) = 0. Note that this follows from using the Gersh-
gorin Theorem, where forM, all Gershgorin disks are left of the imaginary axis
and tangent to origin of the complex plane. Then the centres of the Gershorin
disks ofM+diag(−r1, . . . ,−rN ) are shifted left by r1, . . . , rN while the radii re-
main the same. As a consequence, the closest disk(s) to the origin of the complex
plane have centre(s) −r and thus s(M+ diag(−r1, . . . ,−rN )) ≤ −r < 0.

If S = N , then
JNPFE =M+ diag(r1, . . . , rN ).

For i = 1, . . . , N , define ei = ri − r ≥ 0, then

JNPFE =M+ rI + diag(e1, . . . , eN ),

where, by Proposition 3(1), s(M+ rI) = r > 0.
First, assume M is irreducible. Then JNPFE is an irreducible essentially

nonnegative matrix and, since JNPFE ≥ M + rI, it follows from [36, Corollary
4.3.2(3)] that s(JNPFE) ≥ s(M + rI) = r, with the inequalities being strict if
there exists at least one ei > 0.

Now assume thatM is reducible. Then there exists a permutation matrix P
such that PTMP is block upper triangular with irreducible blocks on the diag-
onal. Call C the number of such blocks, i.e., the number of strong components
in the digraph of patches. For i = 1, . . . , C, denote n(i) the number of patches
in strong component i and k(1), . . . , k(n(i)) their indices. By abuse of notation,
denote Mii the corresponding diagonal block in the reduced form of M.

Applying the permutation matrix P to JNPFE gives a block upper triangular
matrix PTJNPFEP with, for i = 1, . . . , C, the n(i)×n(i) diagonal blocksMii+Ei
being irreducible and with

Ei = rI + diag
(
ek(1), . . . , ek(n(i))

)
.

Fix i = 1, . . . , C and let v be a positive right eigenvector ofMii+Ei correspond-
ing to the spectral abscissa s1 and w be a positive left eigenvector of Mii + rI
corresponding to the spectral abscissa s2. Then

s1w
Tv = wT (Mii + rI + diag(ek(1), . . . , ek(n(i)))v

= wT (Mii + rI)v + wT diag(ek(1), . . . , ek(n(i)))v

= s2w
Tv + wT diag(ek(1), . . . , ek(n(i)))v

≥ s2wTv,

the inequality being strict if at least one of the ek(j), j = 1, . . . , n(i), is positive.
Hence s1 ≥ s2, i.e., s(Mii + Ei) ≥ s(Mii + rI). This is true for all diagonal
blocks. Now, since PTJNPFEP is block upper triangular,

s(JNPFE) = s(PTJNPFEP ) = max{s(M11 + E1), . . . , s(MCC + EC)}.
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As PT (M+ rI)P is also block upper triangular,

r = s(M+ rI) = max{s(M11 + rI), . . . , s(M11 + rI)}.

As a consequence, s(JNPFE) ≥ r > 0.

Thus, Sc necessarily lies in the open interval (0, N). The following lemma is
of interest and the method of proof of the second assertion is used again later.

Lemma 5. 1. For all S ∈ (0, N) ⊂ R,

J0
PFE < JSPFE < JNPFE. (10)

2. JSPFE is an increasing function of S, in the sense that

∀S1, S2 ∈ [0, N ] ⊂ R such that S1 < S2, JS1

PFE < JS2

PFE. (11)

Proof. 1. Let S ∈ (0, N) be fixed. Using (9), this gives a pair (ξ, ε) ∈
{0, . . . , N} × [−ri, ri], for i = 1 . . . N , such that JSPFE = Jξ,εPFE. We have

Jξ,εPFE − J
0
PFE =M+ diag(r1, . . . , rξ, ε,−rξ+2, . . . ,−rN )

−M− diag(−r1, . . . ,−rN )

= diag(2r1, . . . , 2rξ, ε+ rξ+1, 0, . . . , 0)

> 0,

since ε ∈ [−rξ+1, rξ+1]. Computing JNPFE − J
ξ,ε
PFE at the other endpoint works

similarly, giving (10).
2. Use (9) again to obtain two pairs (ξ1, ε1) and (ξ2, ε2), where, by the

assumption S1 < S2, ξ1 ≤ ξ2. First, assume that ξ1 < ξ2. Then

Jξ2,ε2PFE − J
ξ1,ε1
PFE = diag(r1, . . . , rξ2 , ε2,−rξ2+2, . . . ,−rN )

− diag(r1, . . . , rξ1 , ε1,−rξ1+2, . . . ,−rN )

= diag(0, . . . , 0, rξ1+1 − ε1, 2rξ1+2, . . . , 2rξ2 , ε2 + rξ2+1, 0, . . . , 0)

> 0

since ε1 ∈ [−rξ1+1, rξ1+1], and ε2 ∈ [−rξ2+1, rξ2+1]. Now assume ξ1 = ξ2.
Then, since S1 < S2, we find that ε1 < ε2 and the diagonal matrix in the
subtraction Jξ2,ε2PFE −J

ξ2,ε1
PFE takes the form diag(0, . . . , 0, ε2− ε1, 0, . . . , 0) > 0. So

(11) holds.

Proposition 6. IfM is irreducible, the spectral abscissa s(JSPFE) is an increas-
ing function of S ∈ [0, N ] ⊂ R. If M is reducible, the spectral abscissa s(JSPFE)
is a nondecreasing function of S ∈ [0, N ] ⊂ R.

Proof. First, assumeM is irreducible. Then, by Lemma 5 and the fact thatM
is irreducible (and thus so is JSPFE), [36, Corollary 4.3.2(3)] gives the result.

Now, assume that M is reducible. Then there exists a permutation matrix
P such that PTMP is block upper triangular. Consider S ∈ [0, N ] ⊂ R and
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use (9) to obtain a corresponding pair (ξ, ε) ∈ {0, . . . , N}× [−rξ, rξ]. Apply the

same permutation to Jξ,εPFE, giving

PTJξ,εPFEP =


M11 + E1 M12 · · · M1N

0 M22 + E2

. . .

0 · · · 0 MCC + EC

 ,

where C is the number of strong components in the digraph of patches and

E1 ⊕ · · · ⊕ EC = PT diag(r1, . . . , rξ, ε,−rξ+2, . . . ,−rN )P

with the matrix on the right hand side having ε as (ξ + 1)th diagonal entry.
As in the proof of Lemma 4, we have denoted Mii the diagonal blocks in the
reduced form of M.

For j = 1, . . . , C, each of the matrices Mjj is irreducible; C − 1 of the
matrices Ej are diagonal with entries −ri and ri on the diagonal (with some
having only −ri, some having only ri and some having both types of entries).
The remaining Ej matrix is diagonal, with potentially −ri and ri as the others,
but also ε. Let us call η ∈ {1, . . . , C} the index of the strong component
containing the matrix with ε.

As a consequence, for all j = 1, . . . , C, Mjj + Ej are irreducible essentially
nonnegative matrices, with only matrix Mηη +Eη having an ε added to one of
its diagonal entries.

As PTJξ,εPFEP is block upper triangular, we have

s(PTJξ,εPFEP ) = max {s(M11 + E1), . . . , s(MCC + EC)} .

Except for Mηη + Eη, all matrices Mii + Ei have fixed spectral abscissa.
Concerning matrix Mηη + Eη, it is clear that the reasoning in the proof of
Lemma 5(2) carries through and thus,

∀ε1, ε2 ∈ [−rξ+1, rξ+1], ε1 < ε2 =⇒ Jξ,ε1PFE < Jξ,ε2PFE.

Hence s(Jξ,εPFE) is the maximum of a set of C functions, C − 1 of which are
constant in ε and one of which is increasing in ε. It now follows that s(JSPFE) is
a nondecreasing function of S, as desired.

We are now in a position to prove the first part of Theorem 1.

Proof (first part of Theorem 1). As JSPFE is an essentially nonnegative matrix,
its spectral abscissa s(JSPFE) is an eigenvalue. Eigenvalues of JSPFE depend
continuously on S [25, Theorem 2.4.9.2]. By Lemma 4, s(J0

PFE) < 0 and
s(JNPFE) > 0, so by the Intermediate Value Theorem, there exists at least one
point Sc ∈ (0, N) such that s(JS

c

PFE) = 0. In the case where M is irreducible,
s(JSPFE) is increasing by Proposition 6 and as a consequence, Sc is unique. In
the case where M is reducible, s(JSPFE) is nondecreasing, therefore there exists
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an interval Sint, possibly reduced to a single point, such that s(JSPFE) = 0 for
all S ∈ Sint.

The usual criteria for local asymptotic stability and instability of equilibria
then imply the first part of Theorem 1 for S < Sc and S > Sc (irreducible case)
or S < min(Sint) and S > max(Sint) (reducible case).

Example 1. Here we consider a small order example that illustrates how, when
the movement matrix is somewhat heterogeneous, the ordering of its rows and
columns can affect the value of Sc. Specifically let M be given by

M =

−4 0 1
0 −4 1
4 4 −2

 ,

and for convenience suppose that r = 1. It is straightforward to verify that
the spectral abscissa of M + diag(1, 1,−1) is negative (since the characteristic
polynomial has all coefficients positive), and since the spectral abscissa ofM+
diag(1, 1, 1) is positive, we deduce that Sc ∈ (2, 3).

Next let M̂ be given by

M̂ =

−2 4 4
1 −4 0
1 0 −4

 ,

and observe that M̂ is permutationally similar to M. A computation reveals
that the spectral abscissa of M̂+ diag(1,−1,−1) is positive (since the constant
term of the characteristic polynomial is negative), so that Sc ∈ (0, 1) in this

case. Thus we see that while the two movement matrices M and M̂ carry the
same information, our ordering convention that puts all source patches first is
influential on the corresponding threshold number Sc.

Example 2. Consider the reducible movement matrix

M =


−2 1 1 1 1
0 −4 1 0 0
0 1 −4 0 0
1 1 1 −2 1
1 1 1 1 −2


and suppose ri = 1 for i = 1, . . . , 5. Then we find s(J2

PFE) = s(J3
PFE) =

s(J4
PFE) = 0, so Sint ⊇ [2, 4]. Thus, clearly, in the reducible case, Sint can be

an interval.

3.4 Boundedness of solutions

Before we proceed with the case of an irreducible movement matrix, we must
establish boundedness of solutions. First, remark that it is clear that solutions to
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(1) exist for all t ≥ 0 and remain nonnegative for nonnegative initial conditions.
Thus, RN+ is invariant under the flow of (1).

Recall the Jacobian matrix at an arbitrary point given by (6). Clearly, this
matrix has nonnegative off-diagonal entries. As a consequence, system (1) is
cooperative.

Proposition 7. Solutions to (1) are bounded.

Proof. Recall that a logistic equation can also be written in the form

P ′i = biPi − diPi − ciP 2
i ,

where bi, di and ci are, respectively, the birth, death and competition induced
death rates. Setting ri = bi − di and Ki = (bi − di)/ci then gives the logistic
equation used earlier. We have(

N∑
i=1

Pi

)′
=

S∑
i=1

(
biPi − diPi − ciP 2

i

)
−

N∑
i=S+1

riPi

≤
S∑
i=1

(
bPi − dPi − cP 2

i

)
,

where b = maxi=1,...,S{bi}, d = mini=1,...,S{di} and c = mini=1,...,S{ci}. Be-
cause, by assumption, Ki > 0 for all i = 1, . . . , S, it is reasonable to assume
that the same is true of ci (otherwise the system would not be limited by com-
petition). Hence c > 0. As a consequence, defining r̃ = b−d and K̃ = (b−d)/c,
we have (

N∑
i=1

Pi

)′
≤

S∑
i=1

r̃Pi

(
1− Pi

K̃

)
.

Since (1) is cooperative in the positive orthant and parameters are positive, it
follows that for t ≥ 0,

N∑
i=1

Pi(t) ≤
S∑
i=1

K̃Pi(0)

Pi(0) + (K̃ − Pi(0))e−r̃t
.

Thus, as t→∞,
N∑
i=1

Pi(t) ≤ SK̃.

As a consequence, since the positive orthant is invariant under the flow of (1),
solutions to (1) are bounded.

3.5 Case of an irreducible movement matrix

Now assume that the movement matrix is irreducible, or, equivalently, that the
digraph of patches is strongly connected. The global stability of the PFE when
S < Sc and existence and global stability of a (strongly) positive equilibrium
when S > Sc then follow from [22, Theorem 6.1].

12



Proof (second part of Theorem 1). In the case of (1), the condition in [22, The-
orem 6.1] that the Jacobian matrix JS be strictly antimonotone is not satisfied,
since P1 < P2 does not imply that JSP1

> JSP2
in the case of vectors P1,P2

with first S entries equal to zero and other entries positive, instead leading to
JSP1

= JSP2
.

However, it is possible to use the method of proof of [22, Theorem 6.1]
conclusively. All other assumptions of that result are satisfied: in the case that
M is irreducible, (1) is strongly monotone (by [22, Theorem 1.7]); the origin is
an equilibrium; all solutions in RN+ are bounded (by Proposition 7). Therefore,
as in the proof of [22, Theorem 6.1], there exists an equilibrium P∗ � 0.

Strict antimonotonicity is then used to show uniqueness of P∗. Indeed,
antimonotonicity of the vector field F of the system under consideration implies
that, if P∗ is a nonzero equilibrium of F , then, letting z be in the open line
segment having endpoints 0 and P∗, there holds that F (z) > 0, which is then
used to conclude. Let us show that F (z) > 0 is indeed the case for (1). As in the
proof of [22, Theorem 6.1], define, for each i = 1, . . . , N , the map gi : [0, 1]→ R,
gi(s) = Fi(sP

∗). Then gi(0) = gi(1) = 0. Hence, for i = S + 1, . . . , N ,

gi(s) = −risP ∗i +

N∑
j=1

mijsP
∗
j =

riP ∗i +

N∑
j=1

mijP
∗
j

 s = 0.

However, for i = 1, . . . , S,

gi(s) = ri

(
1− sP ∗i

Ki

)
sP ∗i +

N∑
j=1

mijsP
∗
j .

Clearly,

g′′i (s) = −2riP
∗2
i

K
< 0, i = 1, . . . , S.

As a consequence, for i = 1, . . . , S, gi(s) > 0 for s ∈ (0, 1). Thus, when S > 0,
F (z) > 0 for all z in the open interval from 0 to P∗. The remainder of the
proof of [22, Theorem 6.1] holds and as a consequence, so do the conclusions of
[22, Theorem 6.1]. Thus, all solutions of (1) limit either to zero or to a unique
P∗ � 0. From the first part of Theorem 1, this implies the result in terms of
Sc when S > 0.

Finally, the case S = 0 is simple. Indeed, consider the evolution of the total
population in this case. We have(

N∑
i=1

Pi

)′
= −

N∑
i=1

riPi < 0,

since at least one of the Pi(0) > 0. As a consequence, the total population in
the system tends to zero and by the invariance of RN+ , limt→∞ Pi(t) = 0 for all
i = 1, . . . , N . This concludes the proof of Theorem 1.
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In the irreducible case, we can also express the threshold using a basic re-
production number. We have the following.

Proposition 8. Suppose the movement matrix M is irreducible. Define the
basic reproduction number

R0 = ρ
((
Ms +Mst(Dt −Mt)

−1Mts

)−1Ds) , (12)

where Ms,Mt,Mst,Mts are defined as in (5), Ds and Dt are defined as in
Section 3.3. Then

s(JSPFE) < 0 ⇐⇒ R0 < 1 and s(JSPFE) > 0 ⇐⇒ R0 > 1. (13)

Proof. Write (7) as
JSPFE =M+ D̃s − D̃t,

where D̃s = Ds ⊕ 0N−S×N−S and D̃t = 0S×S ⊕ Dt. Let −α be the spectral
abscissa of M+ D̃s − D̃t. From Proposition 3(2), there is a vector v� 0 such
that

(M+ D̃s − D̃t)v = −αv.

In other words,
αv = (D̃t −M)v − D̃sv.

By the assumption of irreducibility of M, it follows from Proposition 3(4) that
D̃t −M is an irreducible nonsingular M-matrix and (D̃t −M)−1 � 0. Then

α
(
D̃t −M

)−1
v = v −

(
D̃t −M

)−1
D̃sv,

with the matrix (D̃t − M)−1D̃s > 0. As a consequence, from the Perron-
Frobenius Theorem, the spectral radius of (D̃t −M)−1D̃s is an eigenvalue and
is associated to a nonnegative eigenvector. Let u be such an eigenvector, nor-
malised so that uTv = 1. Then

αuT
(
D̃t −M

)−1
v = uTv

(
1− ρ

{(
D̃t −M

)−1
D̃s
})

.

Thus

α > 0 ⇐⇒ ρ

{(
D̃t −M

)−1
D̃s
}
< 1

and

α < 0 ⇐⇒ ρ

{(
D̃t −M

)−1
D̃s
}
> 1.

From the structure of D̃s, the spectral radius of (D̃t −M)−1D̃s is the spectral
radius of (

D̃t −M
)−1
[11]
Ds,
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where (D̃t −M)−1[11] is the (1,1) block in (D̃t −M)−1. Writing M as (5), we

have by the formula for the inverse of a 2× 2 block matrix that(
D̃t −M

)−1
[11]

= (−Ms −Mst(Dt −Mt)
−1Mts)

−1.

Clearly,

ρ
(
(−Ms −Mst(Dt −Mt)

−1Mts)
−1Ds

)
= ρ

(
(Ms +Mst(Dt −Mt)

−1Mts)
−1Ds

)
,

giving the result.

We note in passing that the matrix
(
Ms +Mst(Dt −Mt)

−1Mts

)−1Ds of
(12) has all negative entries.

Similarly to what happens with metapopulation models in mathematical epi-
demiology [5], we have an expression for R0 that cannot be evaluated explicitly
but is easy to obtain numerically once parameters are fixed.

3.6 Case of irreducible homogeneous movement

Suppose that the movement graph is complete and migration rates all equal
m. Furthermore, assume that growth rates in source patches all equal rs and
death rates are equal to rt in all sinks. Then the threshold Sc can be computed
explicitly.

Proposition 9. Let the movement digraph be complete and movement rates be
such that mij = m for all i, j = 1, . . . , N , i 6= j. Assume that S ∈ {1, . . . , N−1},
that for i = 1, . . . , S, ri = rs and that for i = S + 1, . . . , N , ri = rt. Then

Sc =
mNrt − rsrt
m(rs + rt)

. (14)

The proof uses the principle of equitable partitions; see [15, Section 9.3]. An
equitable partition splits a graph G into cells Ci, i = 1, . . . , `, such that, for a
given vertex u in cell Ci, the number of neighbours in cell Cj is a constant bij
and does not depend on u.

Proof. The Jacobian matrix at the PFE can be written as

JSPFE =

(
mJ−NmI + rsI mJ

mJ mJ−NmI− rtI

)
, (15)

where, in each block, matrices I and J have dimensions making them compatible
with the operations.

Consider (15) as the adjacency matrix of a digraph G. Suppose that, through
a partition π, we split G into two cells, {Si}i=1,...,S (sources) and {Ti}i=S+1,...,N

(sinks). The characteristic matrix of π is then the N × 2-matrix

C =

(
1S 0S

0N−S 1N−S

)
. (16)
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Then, computing JSPFE1, we find

JSPFE1 =

(
rs1S

−rt1N−S

)
. (17)

It follows that the column space of C is JSPFE-invariant, so by [15, Lemma 9.3.2],
π is equitable. As π is equitable, it follows from [15, Theorem 9.3.1] that the
quotient matrix BSPFE can be directly computed using the characteristic matrix
C,

BSPFE = (CTC)−1CTJSPFEC. (18)

Thus,

BSPFE =

(
mS −mN + rs m(N − S)

mS −(mS + rt)

)
. (19)

From [15, Theorem 9.3.3], the characteristic polynomial of BSPFE divides the
characteristic polynomial of JSPFE, i.e., σ(BSPFE) ⊂ σ(JSPFE).

Furthermore, since BSPFE is essentially nonnegative, by the Perron-Frobenius
Theorem, there exists a unique component-wise positive eigenvector vp such
that BSPFEvp = λpvp = s(BSPFE)vp. From [15, Theorem 9.3.1], we have that
JSPFEC = CBSPFE. Thus,

JSPFECvp = CBSPFEvp = λpCvp

and therefore, Cvp is an eigenvector of JSPFE that is also component-wise pos-
itive. Since the only component-wise positive eigenvector of JSPFE is the one
corresponding to s(JSPFE), we have that s(JSPFE) = s(BSPFE).

To compute Sc, recall that Sc is the value of S where the PFE loses local
asymptotic stability, i.e., where s(JSPFE) = s(BSPFE) = 0. So consider (19). We
have tr(BSPFE) = −mN + rs − rt and

det(BSPFE) = −mS(rs + rt)− rsrt +mNrt. (20)

If rs − rt > mN, then tr(BSPFE) > 0 and necessarily the spectral abscissa of
BSPFE is positive whenever S ≥ 1. On the other hand if tr(BSPFE) ≤ 0 then the
stability of BSPFE is governed by the determinant. In that case, the stability
changes when

Sc =
mNrt − rsrt
m(rs + rt)

.

In the special case where rs = rt = r, we have

Sc =
N

2
− r

2m
. (21)

4 Numerical considerations

We make some brief numerical remarks here. In what follows, matrix M is
constructed as follows. First, we create a pattern matrix Mp that contains the
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digraph structure we want to impose: complete, path, ring, Barabasi-Albert,
etc. We then create a values matrix Mv in which entries take values following
some scheme explained later in specific examples. The movement matrix M
itself is the Hadamard product M = Mp ◦ Mv in which diagonal entries are
then set to obtain the zero column sums property.
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Figure 1: Situation that prevails when N = 50 with a complete digraph of
patches and movement rates taken all equal to 0.05; see text for details. Effect
of varying S ∈ [0, N ] on the spectral abscissa s(JSPFE).

In Figure 1, the digraph is complete, making the movement matrix irre-
ducible, entries inMv all equal 0.05 and the total number of patches is N = 50.
The spectral abscissa s(JSPFE) of JSPFE as a function of S is shown. We observe
that while the PFE is initially stable when S is small, as S increases, there is a
value Sc of S for which the PFE loses stability. As r increases, that threshold
Sc decreases. The value of Sc for a given curve is where the curve intersects
the horizontal axis. Now focus on an individual curve in Figure 1 and observe
that, as indicated by [10], perturbation of the diagonal leads to convex changes
in the spectral abscissa on each sub-interval.

In Figure 2, we see the effect of increasing S from 0 to 5 (with N = 50),
for several values of r, in the case of a Barabasi-Albert digraph, which is not
strongly connected. Here, contrary to the case in Example 2, although the
movement matrix is reducible, Sint is reduced to a single point for most values
of r, although we do observe piecewise constant values of the spectral abscissa.

Notice that values of Sc observed in Figure 2 are relatively small. This is
due in part to the ordering of vertices used, as the R iGraph package used to
generate the Barabasi-Albert digraph typically places vertex 1 at the “center”.
Although our mathematical results are established without loss of generality by
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Figure 2: Effect of varying S and r on the spectral abscissa s(JSPFE). Here,
the total number of patches is N = 50 and S varies between 0 and 5. The
underlying graph is an directed Barabasi-Albert graph.

arbitrarily ordering vertices, Example 1 shows that in practice, the nature of
the graph influences Sc. In order to explore this in more detail, we proceed to
a numerical experiment whose results are shown in Figure 3. For legibility and
computational efficiency, we pick two digraphs with N = 10 vertices. The one in
Figure 3a is of Barabasi-Albert type, while the one in Figure 3b is of Erdős-Rényi
type. Nonzero movement rates are all taken as mij = 0.005 and all ri = 0.01.
For both digraphs, we then consider permutations of vertex labels, proceeding
as follows. Denote (1, . . . , 10) the 10-tuple of vertices for the digraphs shown
in Figures 3a and 3b. Then, for instance, (1, . . . , 8, 10, 9) are digraphs obtained
when the labels of vertices 9 and 10 are interchanged. Violin plots of values
of Sc when all 10! = 3, 628, 800 such permutations are considered are shown in
Figure 3c. Clearly, the structure of the connection digraph influences the range
of values of Sc and even, for a given digraph, so does the ordering of vertices.

Figure 4a shows the value of Sc as a function of mij and r. In this case, the
digraph of patches is assumed to be complete (and therefore strongly connected,
meaning the movement matrix is irreducible). The total number of patches is
N = 50. All movement rates are equal and this common value is varied on the
x-axis, while the growth/death rate varies on the y-axis. Because movement
rates are all equal and the movement matrix is irreducible, we are in the case
of Section 3.6. The most favourable situation in terms of population survival
thus happens when movement rates are low and growth/death rates are high.
When movement rates are high, persistence of the population requires a very
high birth/death rate or to have at least half of the patches as sources.
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(a) Barabasi-Albert digraph
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(b) Erdös-Rényi digraph
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(c) Values of Sc

Figure 3: Two non-strongly connected 10-vertices digraphs of Barabasi-Albert
(a) and Erdős-Rényi (b) type and violin plot of the corresponding ranges of
values of Sc when all permutations of vertices are considered (c); see text for
details. All nonzero mij = 0.005 and all ri = 0.01. In the violin plots, the black
rectangle shows the interquartile range, the white dot within the black rectangle
is the median and the light gray outer shape is a kernel density plot.
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Figure 4: Effect of variations of mij and r on the critical number Sc in the
case where N = 50. (a) Complete digraph. (b) One-directional ring. Note that
colour scales vary between the two figures.

Figure 4b, on the other hand, assumes that patches form a one-directional
ring, i.e., 1 → 2 → · · · → N → 1. Because the movement digraph is not
complete, the result of Section 3.6 does not hold. In this case, persistence of
the population (i.e., existence of P ∗ � 0) is much more likely than in the case
of Figure 4a, since a large fraction of the (mij , r) quadrant has Sc < 1. Note
that in both cases, we observe that Sc ≤ 25 = N/2. This can be confirmed
analytically in the case of Figure 4a, since in the limit, when r = 0, it follows
from (21) that Sc = N/2. So in this case, population persistence is assured if
over half of the patches are sources.

In all cases studied above, we have assumed that ri = r for all i = 1, . . . , N .
To investigate the relative roles of the growth and death rates, let us now assume
that ri = rs, i = 1, . . . , S and ri = rt, i = S+ 1, . . . , N . The same configuration
as in Figure 4a is considered, with the N = 50 patches forming a complete
digraph. Movement rates are held equal at the value m = 0.01. The result
is shown in Figure 5. Here, Sc can take values much larger than N/2; for
instance, the largest value of Sc in Figure 5 is ' 49.8 and is reached when
(rs, rt) = (0.001, 0.5). Indeed, with small values of rs, it takes a lot of source
patches in order for the population to persist. When rt is large, further changes
to rt do not change the value of Sc much; for very large values of rt, the level
lines of Sc become essentially parallel to the rt axis (not shown). On the other
hand, when rt is small, changes in rt have much more influence.

5 Relation with existing work

While the topic of persistence in metapopulations with explicit movement is
quite novel in the sense it is approached here, there is a rich history of the
topic in other contexts. We briefly present here some of these works, making
the distinction between deterministic and stochastic approaches. Note that we
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Figure 5: Effect of varying rs and rt on the spectral abscissa s(JSPFE), in the
case of a complete digraph of N = 50 patches. Red lines are located, from left
to right, where Sc equals 49, 40, 25, 10 and 1, respectively.

focus here on models for a single species; work is much more abundant for prey-
predator or competition models, but this is outside the scope of the present
work.

5.1 Deterministic approach

Levins considers in [29] a metapopulation model in which the rate of change of
the number of local populations N is as follows

N ′ = βN

(
1− N

T

)
− µN, (22)

where β is the immigration rate between patches, T denotes the total number
of patches and µ is the extinction rate of local populations.

Normalising (22) to have that P is the fraction of occupied patches, [17]
studies the following model:

P ′ = βP (h− P )− µP,

where h is the fraction of suitable patches. This model exhibits a threshold
behaviour [17]: if h < µ/β, then the PFE is globally asymptotically stable and
if h > µ/β, then there exists a unique nontrivial equilibrium P ∗ that is globally
asymptotically stable. Thus, the population persists if there are enough suitable
patches; it goes extinct otherwise. The work [17] considers multiple variations
on the above model. Of particular interest here is the following model for the
(discrete) distributions n of patch qualities and p of number of occupied patches:
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n′ = Γn (23a)

p′ = C(t)(n− p)−Dp + Γp, (23b)

where Γ is the matrix of rates of change in patch qualities, D = (µ1, . . . , µm)
and

C(t) =

m∑
i=1

βipi(t).

Note that Γ has exactly the same structure as our movement matrix M, al-
though its interpretation is quite different. Clearly, if Γ is irreducible, then
n→ n? � 0 as t→∞, so (23) can be written as

p′ = C(t)(n? − p)−Dp +Mp, (24)

so it is likely that with some adaptation, the method used here could be used
on (24).

Other notable work on the topic are [18, 19, 21, 26]. Note that in the work of
[17] as well as in most Levins-type metapopulations, the nontrivial equilibrium
P ∗ may be nonnegative. Thus, there can be persistence of the population overall
without persistence of all local populations. This differs from our work, in
which we find that there exists a strongly positive globally asymptotically stable
equilibrium; see Theorem 1.

This difference is to a large extent due to the different scales of the prob-
lems being modelled by both types of approaches. Levins-type models assume
that the number of patches is large enough that ordinary differential equations
counting the number of patches in various states can be used. In this sense, they
describe an ecosystem at the mesoscale. Metapopulation models with explicit
movement, on the other hand, make an explicit description of each individual
patch. As such, while they can be used for any number of patches, they are
much more useful as a tool to consider properties on a smaller scale.

Metapopulation models with explicit movement are a little more recent than
patch-occupancy models; they can be traced to the work of [28]. This was fol-
lowed by some work in [20] and others. However, to the best of our knowledge,
in discrete space with explicit population movement, only [2] provides a compa-
rable result establishing the existence of a critical number of patches in order for
the population to persist. (Most other works consider prey-predator or compe-
tition settings.) The model in [2] is obtained by discretising a one-dimensional
reaction-diffusion equation. Adapting notation to ours here, it takes the form,
for i = 1, . . . , N ,

P ′i = f(Pi)Pi +mi,i+1(Pi+1 − Pi) +mi,i−1(Pi−1 − Pi)., (25)

In order to satisfy a zero Dirichlet boundary condition in the original partial
differential equation, it is imposed that P0 = PN+1 = 0. It is assumed that for
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all Pi, sup f(Pi) = r > 0, so all patches except for the extremities are, in effect,
sources. Then [2] finds that the population goes extinct if

r < 2

(
m+m cos

(
πN

N + 1

))
,

where 2m = mini{mi,i+1 +mi,i−1} and m = maxi{mi,i+1,mi,i−1}. Also, there
is a critical patch number Nc such that N < Nc implies that the population
becomes extinct. Under specific model assumptions, Nc can also be a sharp
threshold, with the population becoming extinct for N < Nc and persistent for
N > Nc. Compare this with Theorem 1; there, if all patches are sources, then
persistence is assured. The difference originates in the patches P0 and PN+1

used in [2]. Indeed, suppose that outflow towards these patches occurs at too
high a rate. Then if the growth rate of the population in the system is not
large enough, growth cannot compensate for this loss and the population goes
extinct. As the model considered here is a closed system, this situation does not
occur. We can however mimic the situation in [2] by considering patches in a
line graph with the two extremities being sinks with ri values extremely large.
In this case, we find (not shown) values of Sc very close to N .

In [2], some considerations are also given about a more general model that
uses the same hypotheses on the growth of populations but a more general
movement network comparable to the one in the present paper. A thorough
mathematical analysis of that model is conducted in [37].

5.2 Stochastic approach

Stochastic investigations have considered the effects of environmental stochas-
ticity on metapopulation persistence. Using the concept of geometric mean fit-
ness, many studies propose a persistence condition defined as a function of the
geometric mean of growth rates [8, 27, 30, 32]. Models used in these studies as-
sume that dispersal occurs through individuals entering a common migrant pool.
Early results propose to spread the risk arising from environmental stochasticity
using a uniform dispersal in order to maximise the geometric mean [27]. More
recently, [7, 8] propose the same modelling framework using a finite number of
patches. They derive a critical number of patches below which the population
goes extinct. Figure 2 in [8] and Figure 6 in [7] are similar to those obtained in
the present study (Figures 1 and 2) and differ only in terms of the metric used.

In [13], it is observed that ideal-free dispersers occupy multiple patches in
spatially heterogeneous environments provided environmental fluctuations are
sufficiently strong and sufficiently weakly correlated across space. In contrast,
for populations dispersing through diffusion and living in similar environments,
intermediate dispersal rates maximise their stochastic growth rate. They also
obtain an exact continuous counterpart to the critical number obtained in [8].

In [6], an individual-based model is used to study the respective effects of
demography and dispersal when the environment is fluctuating. The authors
propose a criterion for persistence, by studying the motion of a single random
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disperser until it returns to its initial position. They also provide a metric to
assess the long term growth rate by using large deviations for the path of the
random disperser. Such techniques provide criteria for persistence that depend
on the demography of the population, as provided in the present study.

6 Discussion

The focus of this paper is the proof of existence of a threshold number Sc of
source patches in a metapopulation source-sink model, such that the population-
free equilibrium (PFE) is locally asymptotically stable below the threshold and
unstable above it. In the case where the movement matrix is irreducible, we
confirm that the threshold distinguishes between extinction of the population
and its persistence at a positive globally asymptotically stable equilibrium. Fur-
thermore, we provide an expression for the threshold Sc when the movement
digraph is complete and all movement rates are equal. Finally, some numerical
investigations of the properties of the system are carried out.

Our model is a simplification of the model in [35]. Movement rates that we
have denoted mij here, take in [35] the form

aij
Rij

max{0, p(Pj)− p(Pi)},

where p(Pi) is the “pressure”, defined as p(Pi) = Pi/Ki, and Rij is the “resis-
tance” of the link j → i, which the authors assume for instance to be a function
of the distance between patches. Thus, in [35], at the PFE, there is no move-
ment structure at all in the model. Because establishing a threshold requires
working close to the PFE, we keep the formulation as in (1), which we consider
to be the limit of the model in [35] when Pi → 0. In the case of the model of
[35], or in other source-sink systems where movement depends on population
densities, e.g., [3, 34], the situation becomes more complex as one moves away
from the population-free equilibrium.

The dynamical systems part of the analysis carried out here would not hold
in some of the models where movement flow can be reversed by a change in
the densities in origin and destination patches. In particular, the case where
the underlying movement matrix is not pattern-symmetric, in the sense that
mijmji = 0 6=⇒ mij = mji = 0, could generate more complicated dynamics
and would be worthy of further investigation. In the case where the movement
matrix is pattern symmetric, a reversal of the direction of flow is mitigated
by the fact that it happens concurrently to an equivalent reversal along the
reverse arc and thus only the cases where mij and mji vary widely are likely
to generate more complicated dynamics. As previously mentioned, such flow
reversals occur as one moves away from the PFE and thus the linear algebraic
part of our arguments here would likely still hold. With some work, it should
also be possible to extend the results here to cases where the dynamics in patches
is more generic.
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