# FLEXURAL STIFFNESS OF RECTANGULAR COMPOSITE STEEL-CONCRETE 

 COLUMNSBY

TIMO K. TIKKA

A Thesis
Submitted to the Faculty of Graduate Studies in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

Department of Civil Engineering University of Manitoba

Winnipeg, Manitoba

```
October, 1991
```

The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, Ioan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

# FLEXURAL STIFFNESS OF RECTANGULAR COMPOSITE 

## BY

TIMO K. TIKKA


#### Abstract

A thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements of the degree of

\section*{MASTER OF SCIENCE}

\section*{(c) 1991}

Permission has been granted to the LIBRARY OF THE UNIVER. SiTY OF MANITOBA to lend or sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or sell copies of the film, and UNIVERSITY MICROFILMS to publisi an abstract of this thesis.


The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

## ACKNOWLEDGEMENTS

The author would like to acknowledge the financial assistance of the Natural Sciences and Engineering Research Council of Canada through Dr. S.A. Mirza's operating grant. The guidance provided by Dr. S.A. Mirza throughout the work of the study was greatly appreciated.

This thesis is dedicated to my wife Camilla and my sons Villiam and Aleksandar for their support, love and sacrifice which sustained me through the two years of this study.


#### Abstract

The ACI Building Code and the CSA Code A23.3 for the design of concrete structures permit a moment magnifier approach for design of slender composite beam-columns in which a structural steel shape is encased in concrete. The AISC LRFD Specifications for the design of Structural steel Buildings utilize the interaction equations for steel beamcolumns by converting the slender composite beam-column crosssection into an equivalent steel column with modified crosssection properties.

Both ACI and CSA approaches are strongly influenced by the effective flexural stiffness (EI) of the column which varies due to cracking, creep, and nonlinearity of the concrete stress-strain curve. A procedure was developed to obtain an effective flexural stiffness from the AISC interaction equations that is comparable to the ACI and CSA $E I$. However, the EI expressions given by the ACI and CSA Building Codes and the comparable AISC EI are quite approximate when compared with values of $E I$ obtained from moment, curvature, and axial load relationships. This study was undertaken to determine the influence of a full range of variables on EI of slender composite beam-columns subjected to single axis bending about the major axis or minor axis of an encased structural steel shape. To study the full range of variables, 11880 composite beam-columns bending about the


major axis and 11880 composite beam-columns bending about the minor axis, each with a different combination of variables, were used to generate the stiffness data. The EI expressions were then statistically developed for use in slender composite column design. Two design equations are proposed in this report.

## TABLE OF CONTENTS

Page
1.0 INTRODUCTION ..... 1
2.0 THEORETICAL BEAM-COLUMN STIFFNESS AND STRENGTH ..... 6
2.1 Determining the Theoretical Flexural ..... 8 Stiffness
2.1.1 Development of Theoretical Stiffness ..... 10 Equation
2.2 Determining the Cross-Section and Column ..... 13 Strength
2.3 Cross-Section Discretization ..... 15
2.3.1 Discretization for Major Axis Bending ..... 17
2.3.2 Discretization for Minor Axis Bending ..... 20
2.4 Cross-Section Strength ..... 23
2.5 Slender Beam-Column Strength ..... 30
2.6 Material Stress-Strain Curves ..... 36
2.6.1 Stress-Strain Curves for Concrete ..... 37
2.6.2 Stress-Strain Curves for Steel ..... 41
2.7 Residual Stresses in Structural Steel ..... 43
3.0 COMPARISON OF THEORETICAL MODEL TO EXPERIMENTAL ..... 48 RESULTS
3.1 Comparison of Theoretical Strength of ..... 51 Columns Subjected to Major axis Bending to Experimental Results
3.2 Comparison of Theoretical Strength of ..... 65 Columns Subjected to Minor Axis Bending to Experimental Results
V
4.0 ACI AND AISC FLEXURAL STIFFNESSES ..... 89
4.1 ACI Code Effective Flexural Stiffness ..... 89
4.2 AISC-LRFD Code Effective Flexural Stiffness ..... 89
4.2.1 AISC Axial Load-Bending Moment ..... 90 Relationship
4.2.2 Computation of AISC Effective ..... 99 Flexural Stiffness
5.0 EVALUATION OF EFFECTIVE STIFFNESS FOR BEAM- ..... 103 COLUMS SUBJECTED TO MAJOR AXIS BENDING
5.1 Description of Beam-Columns Studied ..... 103
5.2 Examination of ACI and AISC Stiffnesses ..... 110
5.3 Development of Proposed Design Equations ..... 114 for Short-Term EI
5.3.1 Variables Used for Regression ..... 114 Analysis
5.3.2 Regression Analysis ..... 119
5.3.3 Proposed Design Equations ..... 126
5.4 Analysis of Stiffness Data ..... 127
5.4.1 Overview of Stiffness Ratio ..... 127 Statistics
5.4.2 Effect of Variables on Stiffness ..... 135 Ratios
5.4.3 Stiffness Ratios Produced by Proposed ..... 165 Design Equations for Usual Columns
5.5 Theoretically Calculated Critical Buckling ..... 176 Load
5.6 Another Look at the AISC Effective Stiffness ..... 180
vi
6.0 EVALUATION OF EFFECTIVE STIFFNESS FOR BEAM- ..... 185 COLUMNS SUBJECTED TO MINOR AXIS BENDING6.1 Description of Beam-Columns studied185
6.2 Examination of $A C I$ and AISC Stiffnesses ..... 192
6.3 Development of Proposed Design Equations ..... 196 for Short-Term EI
6.3.1 Variables Used for Regression ..... 197 Analysis
6.3.2 Regression Analysis ..... 202
6.3.3 Proposed Design Equations ..... 209
6.4 Analysis of Stiffness Data ..... 210
6.4.1 Overview of Stiffness Ratio ..... 210 statistics
6.4.2 Effect of Variables on Stiffness Ratios ..... 220
6.4.3 Stiffness Ratios Produced by Proposed ..... 249 Design Equations for Usual Columns
6.5 Theoretically Calculated Critical Buckling ..... 260 Load
6.6 Another Look at the AISC Effective Stiffness ..... 263
7.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS ..... 270
7.1 Summary ..... 270
7.2 Conclusions Related to Composite Beam-Columns ..... 271 Bending About the Major Axis
7.3 Conclusions Related to Composite Beam-Columns ..... 272 Bending About the Minor Axis
7.4 Recommendations ..... 274
LIST OF SYMBOLS ..... 275
LIST OF REFERENCES ..... 279
APPENDIX A ..... 283

## 1 - INTRODUCTION

The ACI Building Code (1989) and the CSA Code A23.3 for the Design of Concrete Structures for Buildings (1984) permit a moment magnifier approach for design of slender composite beam-columns in which a structural steel shape is encased in concrete. The AISC-LRFD Specifications (AISC Code 1986) for the design of Structural Steel Buildings utilize the interaction equations for steel beam-columns by converting the slender composite beam-column cross-section into an equivalent steel column with modified cross-section properties.

The ACI and CSA approach uses the axial load obtained from a first-order elastic analysis and a magnified moment that includes the second-order effect caused by the lateral displacement of the column. The ACI and CSA methods are strongly influenced by the effective stiffness (EI) of the column which varies due to cracking, creep, and the nonlinearity of the concrete stress-strain curve. The EI expressions given by the ACI Building Code (ACI 318-89 Equation 10-14) and the CSA Code (CSA CAN3-A23.3-M84 Equation 10-16) are identical and are reproduced here as Equation 1.1.

$$
\begin{equation*}
E I=\frac{\left(E_{C} I_{g} / 5\right)}{1+\beta_{d}}+E_{S} I_{S S} \tag{1.1}
\end{equation*}
$$

in which $E_{C}$ equals the elastic modulus for concrete; $I_{g}$ equals the moment of inertia for the gross concrete cross-section; $E_{s}$ equals the elastic modulus of steel; $I_{s s}$ equals the moment of inertia of the structural steel section taken about the axis
of bending; and $\beta_{d}$ equals the ratio of maximum factored dead (or sustained load) to maximum total factored load and is always taken as positive. For short term loads, $\beta_{d}$ equals zero and Equation 1.1 becomes:

$$
\begin{equation*}
E I=\frac{E_{C} I_{g}}{5}+E_{S S} I_{S S} \tag{1.2}
\end{equation*}
$$

The ACI Building Code also utilizes the expression for reinforced concrete columns for determining EI (ACI 318-89 Equation 10-9) shown here as Equation 1.3.

$$
\begin{equation*}
E I=\frac{0.4 E_{c} I_{g}}{\left(1+B_{d}\right)} \tag{1.3}
\end{equation*}
$$

Again, $\beta_{d}$ is equal to zero for short term loads and Equation 1.3 becomes Equation 1.4.

$$
\begin{equation*}
E I=0.4 E_{C} I_{g} \tag{1.4}
\end{equation*}
$$

Equation 1.4 was not included as part of this study because it neglects the flexural stiffness of the encased structural steel shape ( $E_{S} I_{s S}$ ) that will in many instances exceed the flexural stiffness calculated from Equation 1.4.

The expression given by the ACI Building Code and CSA Code (Equation 1.2) does not include the effective stiffness contributed by longitudinal reinforcing steel. The Commentary on the $A C I$ Building Code states that complete interaction between the steel core, the concrete, and any longitudinal. reinforcing steel should not be assumed. The commentary on the ACI Building Code also says that "because of probable
separation at high strains between the steel core and the concrete, longitudinal bars will be ineffective in stiffening cross sections even though they would be useful in sustaining compression forces." An examination of test results collected and analyzed as part of this study showed that this assumption is not valid. This is especially a very conservative assumption for cases where the EI of the properly confined longitudinal reinforcing steel exceeds that of the encased steel section.

The AISC-LRFD Specifications (AISC Code 1986) for the design of Structural Steel Buildings does not compute the effective flexural stiffness (EI) of a composite beam-column as do the ACI Code and CSA Code. A procedure, described in detail in Chapter 4, was developed to obtain effective flexural stiffness from the AISC interaction equations. The AISC EI so computed is comparable to the ACI EI.

The understanding of slender column behaviour has expanded during the past 15 to 20 years and analytical procedures have become available to accurately model slender composite beam-column stiffness and strength. However, no studies have been completed to critically examine the effective flexural stiffness of composite beam-columns. Mirza (1990) conducted a study on the effective flexural stiffness of reinforced concrete beam-columns.

This study was undertaken to determine the influence of a full range of variables on the effective flexural stiffness
of slender composite beam-columns bending about the major axis and bending about the minor axis. In this study 11880 rectangular beam-columns were analyzed for bending about each axis, each with a different combination of specified values of variables. These beam-columns were used to generate the stiffness data. EI expressions were then statistically developed for use in slender composite column designs. The composite columns studied were bent in symmetrical single curvature in braced frames subjected to short term loads. The moment magnifier approach specified in the ACI Building Code was developed for this type of column. The effects of different end restraints, loading conditions and lateral supports are accounted for in the ACI Code through the use of effective length factor ( $k$ ), equivalent uniform moment diagram factor $\left(C_{m}\right)$, and sustained load factor ( $\beta_{d}$ ).

The columns studied are graphically represented in Figure 1.1, and are similar to those investigated by Mirza (1990) for slender reinforced concrete columns. These columns were chosen because the errors in $k, C_{m}$, and $\beta_{d}$ would not affect the accuracy of the $E I$ expressions derived in the later part of this report.

Figure 1.1 - Type of columns studied (Mirza 1990).

## 2- THEORETICAL BEAM-COLUMN STIFFNESS AND STRENGTH

Two computer programs were used to analyze the theoretical strength and stiffness of composite beam-columns. One program for analyzing beam-columns bending about the major axis, the other for bending about the minor axis. A computer program previously developed at Lakehead University by Mirza (1989) and revised by Skrabek and Mirza (1990) was further revised and then tested for use in this study. The changes implemented into the program for use in this study were: a) ability to analyze theoretical beam-column strength for bending about the minor axis (the original program was developed for major axis bending only); b) computation of the theoretical effective stiffness $E I$ of a beam-column, from the theoretically calculated strength, by applying the secantmodulus approach (the approach was similar to the one used by Mirza(1990) for reinforced concrete beam-columns). A brief flow chart of the computation procedure employed is show in Figure 2.1.

The entire program consists of a main driver program, a theoretical strength subroutine and a stiffness subroutine. The main driver reads input, initiates the parametric study of input data, calls the theoretical strength subroutine and the stiffness subroutine, and saves the required output data for later use. The theoretical strength subroutine computes the theoretical strength of the composite cross section and slender column with the help of 20 other subroutines. Using


Figure 2.1 - Flow chart of computation procedure.
the secant-modulus approach, the stiffness subroutine calculates the theoretical effective stiffness from the cross section and slender column interaction diagrams developed by the theoretical strength subroutine.

The theoretical strength subroutine (theoretical model) and related subroutines are discussed in this chapter along with the subroutine which was developed for determining the theoretical effective stiffness.

### 2.1 DETERMINING THE THEORETICAL FLEXURAL STIFFNESS

In reviewing previous work no references were found that presented a method for evaluating the theoretical flexural stiffness of composite beam-columns.

Mirza (1990) presented a method for evaluating the theoretical flexural stiffness of rectangular reinforced concrete columns. Using the bending moment relationship (secant formula) for a pin-ended slender column subjected to equal and opposite end moments, given by Timoshenko and Gere (1961), and the equation for Euler's buckling strength, Mirza was then able to establish theoretical flexural stiffness, EI.

A method identical to that developed by Mirza (1990) for determining the effective flexural stiffness of slender reinforced concrete columns subjected to short term loads is applied in this study for determining the effective flexural stiffness of slender composite columns. Equation 2.1 is specified by the ACI and CSA codes to establish the effective
flexural stiffness of slender composite columns subjected to short term loading.

$$
\begin{equation*}
E I=0.2 E_{C} I_{g}+E_{S} I_{S S} \tag{2.1}
\end{equation*}
$$

In the above equation, $E_{C}$ is the modulus of elasticity for concrete, $I_{g}$ is the moment of inertia for the gross concrete cross section, $E_{S}$ is the modulus of elasticity for steel, and $I_{s s}$ is the moment of inertia of the structural steel shape about the centroidal axis of the composite cross-section. The equation does not directly account for any stiffness contributed by the reinforcing steel. This plus the use of a constant value of the coefficient 0.2 to compute the column $E I$ introduce inaccuracies into the equation. Consequently, Equation 2.1 neglects the effects of cracking of the concrete, nonlinearity of the concrete stress-strain curve and other factors. Therefore, a modified version of this expression is proposed.

$$
\begin{equation*}
E I=\alpha_{c} E_{c}\left(I_{g}-I_{s s}\right)+\alpha_{s s} E_{s} I_{s s}+\alpha_{r s} E_{s} I_{r s} \tag{2.2}
\end{equation*}
$$

in which $\alpha_{c}, \alpha_{s s}$ and $\alpha_{r s}$ are dimensionless reduction factors (effective stiffness factors) for concrete, structural steel and reinforcing steel, and $I_{r s}$ is the moment of inertia of reinforcement about the centroidal axis of the cross-section. The effective flexural stiffness $E I$ is equated to the theoretically computed stiffness using the procedure described in Section 2.1.1. The effective stiffness factors $\alpha_{C}, \alpha_{S S}$ and $\alpha_{r s}$ are then determined using multiple linear regression,
which is explained fully in Chapter 5 and 6. Note the effective stiffness factor for concrete $\alpha_{c}$ is dependent on a number of variables which are also described in Chapter 5 and 6.

### 2.1.1 Development of Theoretical Stiffness Equation

The secant formula given by Timoshenko and Gere (1961) describes the bending moment relationship for a pin-ended slender column subjected to equal and opposite end moments.

$$
\begin{equation*}
M_{C}=M_{2} \sec \left(\frac{\pi}{2} \sqrt{\frac{P_{u}}{P_{C}}}\right) \tag{2.3}
\end{equation*}
$$

where $M_{C}$ is the design bending moment including second-order effects, $M_{2}$ is the applied end moment calculated from elastic analysis, $P_{u}$ is the axial load acting on the column, and $P_{c}$ is Euler's buckling strength described by Equation 2.4.

$$
\begin{equation*}
P_{C}=\frac{\pi^{2} E I}{\ell^{2}} \tag{2.4}
\end{equation*}
$$

in which $E I$ is the effective stiffness and $\ell$ is the unsupported height of the column. Rearranging Equation 2.3, solving for $P_{C}$, and simplifying yields:

$$
\begin{equation*}
P_{C}=\frac{\pi^{2} P_{u}}{4\left[\operatorname{arcsec}\left(\frac{M_{C}}{M_{2}}\right)\right]^{2}} \tag{2.5}
\end{equation*}
$$

Equating Equations 2.4 and 2.5 and solving for $E I$ gives the following expression:

$$
\begin{equation*}
E I=\frac{P_{u} \ell^{2}}{4\left[\operatorname{arcsec}\left(\frac{M_{C}}{M_{2}}\right)\right]^{2}} \tag{2.6}
\end{equation*}
$$

Then for the purpose of analysis, $M_{C}$ is replaced by the crosssection bending moment capacity $M_{C S}$, and $M_{2}$ is replaced by the overall column bending moment capacity $M_{c o l}$, so that Equation 2.6 becomes:

$$
\begin{equation*}
E I=\frac{P_{u} \ell^{2}}{4\left[\operatorname{arcsec}\left(\frac{M_{C S}}{M_{C O L}}\right)\right]^{2}} \tag{2.7}
\end{equation*}
$$

This expression gives the theoretical effective flexural stiffness of a pin-ended slender column subjected to equal end moments causing single curvature bending. The terms $P_{u}, M_{C O L}$ and $M_{C S}$ used in the equation were obtained from the column axial load-bending moment interaction diagram (Figure 2.2) computed by the program described in Section 2.4 and 2.5. The stored value of $M_{C O L}$ and $P_{u}$, for each desired eccentricity ratio $e / h$, were used directly in the equation. The value of $P_{u}$ was then used, using Lagrangian interpolation, to determine a value of $M_{C S}$ from the stored cross-sectional axial loadbending moment interaction diagram and corresponded to the desired axial load $P_{u}$. The procedure is documented in the literature (Mirza 1990).


Figure 2.2 - Schematic cross-section and column axial loadbending moment interaction diagrams.

### 2.2 DETERMINING THE CROSS-SECTION AND COLUMN STRENGTH

The theoretical model used in the study for determining the cross section and slender column strength is the same as that used by Skrabek and Mirza (1990). Skrabek and Mirza give a detailed review of the techniques and assumptions that have been used by Basu (1967) and others in previous studies of composite beam-columns.

A summary of the description presented by Skrabek and Mirza for the theoretical strength model was adopted for use in this study and portions of their work are included unaltered in this Section plus in Sections 2.3.1, 2.4, 2.5, 2.6, and 2.7. A detailed description of the theoretical strength subroutine is given by Skrabek and Mirza (1990).

The theoretical strength program computes the moment, curvature, axial load ( $M-\phi-P$ ) relationship for the crosssection using a strain compatibility solution, discussed in Section 2.4. The capacity of the member (beam-column) was calculated by solving for the maximum eccentricity for which equilibrium could be maintained between the ends and midheight of the beam-column. The procedure used to calculate the beam-column strength is discussed in Section 2.5 .

The assumptions regarding the loading and the end conditions of the beam-columns are given in Figure 1.1. The assumptions used in determining the theoretical strength are as follows:
(a) strains between concrete and steel are compatible and no
slip occurs;
(b) strain is linearly proportional to the distance from the neutral axis;
(c) deflections are small such that curvatures can be calculated as the second derivative of the deflection;
(d) shear stresses are small and their effect on the strength can be neglected;
(e) effects of axial shorting are negligible;
(f) residual stresses in the rolled steel section exist;
(g) the column is perfectly straight before loading;
(h) the column cross-section is symmetric about the major and minor axis; and
(i) failure does not take place by local or torsional buckling.

Assumptions (a) and (b) were required for the strain compatibility solution of the cross-section $M-\phi-P$ relationship. Assumption (c) was needed for the calculation of length effect due to the secondary moments. Assumptions (d) and (e) were used to simplify the calculations. Assumption (f) acknowledges the existence of residual stresses in the rolled steel section and is discussed in Section 2.7. Assumption (g) was based on Wakabayashi's (1976) observation that the encasement of the steel section in the concrete will negate any detrimental effects of initial camber of the steel section. Assumption (h) simplified the cross-section $M-\phi-P$ calculations since discretization of only one-quarter of the
cross-section was required to model the entire cross-section. Assumption (i) was valid since a review of test data in the literature did not indicate any failure by local or torsional buckling. This assumption was also made by Bondale (1966 $a, b, c)$ and would seem to be particularly valid where rectangular hoops along with surrounding concrete stiffen the compression flange of the steel section. Further assumptions directly related to the stress-strain curve for individual materials are discussed in Sections 2.6 and 2.7.

### 2.3 CROSS-SECTION DISCRETIZATION

The cross-section of a composite column consists of three materials (concrete, structural steel and reinforcing steel), each possessing a unique stress-strain relationship. The concrete was subdivided into three distinct types: unconfined, partially confined and highly confined, with each of these concrete types having different stress-strain characteristics. The rolled steel section was separated into the web and the flanges to account for the differences in their stress-strain characteristics. Therefore, six different stress-strain curves are used to represent the materials in the crosssection shown in Figure 2.3.

Skrabek and Mirza (1990) point out that discretizing between the three areas of concrete realizes the beneficial effects that increased confinement has on concrete strength and ductility.


Figure 2.3 - Material types in composite cross-section.

### 2.3.1 Discretization for Major Axis Bending

The cover concrete outside the lateral ties was considered to be unconfined. The concrete inside the periphery of the ties but outside the flanges of the steel section was assumed to be partially confined. The concrete within an assumed parabola and between the web and flanges of the steel section was assumed to be highly confined. This is indicated in Figure 2.3. The assumed parabola had a vertex intersecting the edge of the web at the mid-depth of the steel section when the flange overhang was less than one-quarter of the steel section depth between the flanges. The vertex of the parabola at the mid-height of the steel section was, otherwise, taken at a distance from the web $d_{\text {vert }}$. The term $d_{\text {vert }}$ depended on the flange width $b$, flange thickness $t$, depth of steel section $d$, and web thickness $w$ as indicated by Equation 2.8.

$$
\begin{align*}
& d_{\text {vert }}=\frac{b-w}{2}-\frac{d-2 t}{4}  \tag{2.8}\\
& d_{\text {vert }} \geq 0.0
\end{align*}
$$

The distance, parallel to the major axis, from the edge of the web to parabola $w_{h c-1}($ Figure 2.4) for an elemental slice was computed by Equation 2.9.

$$
\begin{equation*}
w_{h c-1}=d_{v e r t}+\left[\frac{\left(\frac{b-w}{2}-d_{v e r t}\right) d_{p C-1}^{2}}{\left(\frac{d-2 t}{2}\right)^{2}}\right] \tag{2.9}
\end{equation*}
$$

in which $d_{p c-1}$ is measured perpendicular to the major axis from


$$
\begin{aligned}
& \text { * ELEMENT THICKNESS VARIES TO ENSURE THAT } \\
& \text { ELEMENT BOUNDRY COINCIDES WITH MATERIAL BOUNDRY } \\
& \text { Figure } 2.4 \text { - Discretization of composite one-half cross- } \\
& \text { section used for theoretical strength subroutine for beam- } \\
& \text { columns subjected to bending about the major axis of the steel } \\
& \text { section. }
\end{aligned}
$$

the plastic centroid of the composite cross-section to the centroid of the element.

The steel section was subdivided into two areas, the web and the flanges, to account for the differences in yield strengths of the two elements reported by Galambos and Ravindra (1978), and Kennedy and Gad Aly (1980).

To calculate the $M-\phi-P$ relationship the computer numerically integrates the forces throughout the crosssection. To accomplish this the program discretizes the cross-section into a finite number of strips parallel to the major axis. Each strip, if required, is then further discretized to account for the various material properties contained within the strip. The thickness of the strip perpendicular to the major axis is determined by the number of strips requested, an input to the program. The width of each material within a given strip is automatically calculated. Fifty elemental strips for the entire cross-section were used for the computer simulations described in Chapter 5 .

To account for varying stresses due to residual stresses along the width of the flange, the flange is discretized into 20 equal width elements perpendicular to the major axis. The initial strain in each element due to residual stresses is calculated with subsequent strains being added algebraically to each element. The discretization for a typical 1/2-section for major axis bending of a composite cross-section is shown in Figure 2.4.

### 2.3.2 Discretization for Minor Axis Bending

The procedure for discretization for minor axis bending is similar to that of the major axis bending with some differences.

As was in the case of major axis bending, the cover concrete, outside the lateral ties, was considered to be unconfined. The concrete inside the periphery of the ties but outside the flanges of the steel section was assumed to be partially confined. The concrete within an assumed parabola and between the web and flanges of the steel section was assumed to be highly confined. This is shown in Figure 2.3. The assumed parabola had a vertex intersecting the edge of the web at the mid-depth of the steel section when the flange overhang was less than one-quarter of the steel section depth between the flanges. The vertex of the parabola at the midheight of the steel section was, otherwise, taken at a distance from the web $d_{\text {vert }}$ which depended on the flange width $b$, flange tip thickness $t_{1}$, depth of steel section $d$, and web thickness w as indicated by Equation 2.10.

$$
\begin{align*}
& d_{\text {vert }}=\frac{b-w}{2}-\frac{d-2 t_{1}}{4}  \tag{2.10}\\
& d_{\text {vert }} \geq 0.0
\end{align*}
$$

The distance, parallel to the minor axis, from the edge of the flange at the tapered end to the parabola $W_{h c-2}$ (Figure 2.5) for an elemental slice was computed by Equation 2.11.

Figure 2.5 - Discretization of composite one-half crosssection used for theoretical strength subroutine for beamcolumns subjected to bending about the minor axis of the steel section.

$$
\begin{equation*}
w_{h c-2}=\frac{d}{2}-t_{f I}-\sqrt{\frac{\left(d_{p c-2}-d_{v e r t}-\frac{w}{2}\right)\left(\frac{d}{2}-t_{1}\right)^{2}}{\left(\frac{b-w}{2}-d_{v e r t}\right)}} \tag{2.11}
\end{equation*}
$$

in which $d_{p c-2}$ is measured perpendicular to the minor axis from the plastic centroid of the composite cross-section to the centroid of the element. The flange thickness $t_{f 1}$ at centroid of the desired element varies to take account for tapered flanges and is determined by Equation 2.12 .

$$
\begin{equation*}
t_{f 1}=t_{2}-\left(d_{p c-2}-\frac{w}{2}\right]\left(\frac{t_{2}-t_{1}}{\frac{b-w}{2}}\right] \tag{2.12}
\end{equation*}
$$

in which $t_{2}$ is the thickness of the flange at the web-flange juncture.

Tapered flanges were not included as part of the study of effective flexural stiffness described in Chapter 6. It was necessary, however, to include the effect of tapered flanges for the calibration of the computer model because the majority of physical tests gathered from available literature were for tapered flanges.

The steel section was subdivided into two areas, the web and the flanges, to account for the differences in yield strengths of the two elements reported by Galambos and Ravindra (1978), and Kennedy and Gad Aly (1980).

To calculate the $M-\phi-P$ relationship the computer numerically integrates the forces throughout the crosssection. To accomplish this the program discretizes the
cross-section into a finite number of strips parallel to the minor axis. Each strip, if required, is then further discretized to account for the various material properties contained within the strip. The thickness of the strip perpendicular to the minor axis is determined by the number of strips requested, an input to the program. The width of each material within a given strip is automatically calculated. Fifty elemental strips for the entire cross-section were used for the computer simulations described in Chapter 6.

To account for varying stresses due to residual stresses along the width of the web, the web is discretized into 20 equal width elements perpendicular to the minor axis. The initial strain in each element due to residual stresses is calculated with subsequent strains being added algebraically to each element. The discretization for a typical 1/2-section for minor axis bending of a composite cross-section is shown in Figure 2.5.

### 2.4 CROSS-SECTION STRENGTH

To determine cross-section strength, which is represented by an axial load-bending moment ( $P-M$ ) interaction diagram, the relationship between bending moment, curvature and axial load $(M-\phi-P)$, similar to the one shown in Figure 2.6, was established. The maximum moment from the moment-curvature relationship (Figure 2.6) for a given axial load level represents one point on the cross-section $P-M$ interaction


For Axial Load $P_{1}$ :

$$
\left.\begin{array}{rl}
\varnothing_{1}- & \text { yielding of flange in tension zone } \\
\varnothing_{2}- & \text { spalling of concrete cover begins } \\
\varnothing_{3}- & \text { concrete cover spalled off } \\
- & \text { strain-hardening initiated in tension } \\
& \text { region of flange }
\end{array}\right\} \begin{aligned}
\varnothing_{4}- & \text { rupture of tension flange } \\
M_{1}- & \text { maximum bending moment } \\
& \text { (strain-hardening neglected) } \\
M_{2}- & \text { maximum bending moment } \\
& \text { (strain-hardening considered) }
\end{aligned}
$$

Figure 2.6 - Schematic $M-\phi-P$ relationships for composite cross-section.
diagram. To accurately define the interaction diagram (Figure 2.7), approximately 48 points ( 48 axial load levels) were needed for both the major axis bending (Figure $2.7(a)$ ) and the minor axis bending (Figure $2.7(\mathrm{~b})$ ). To determine the $M-\phi-P$ relationship, the maximum axial load level which can be applied to a cross-section at its plastic centroid (pure compression capacity) was first established. This defined the range of axial load to be examined. An iterative technique was employed to determine the pure axial load capacity by incrementing the strain from the lowest strain at peak stress, obtained from the stress-strain relationships for the six material types, to the highest strain at peak stress and calculating the load at each strain level. The maximum axial load calculated during the iterative process was taken as the cross-section concentric axial load capacity, thus establishing the point on the $P-M$ interaction diagram that corresponds to zero bending moment.

The distance DNA between the neutral axis and the plastic centroid, shown in Figure 2.8, must be known to determine the $M-\phi-P$ relationship. By using a strain compatibility solution for a given curvature $\phi$ and depth of neutral axis $D N A$, the equilibrium forces of axial load $P$ and bending moment $M$ can be calculated.

An iterative procedure was used to create a matrix of $P$ versus $D N A$ values. By assuming a starting curvature, and holding this value constant, the depth of the neutral axis DNA


Figure 2.7 - Schematic composite cross-section and column axial load-bending moment ( $P-M$ ) interaction diagrams for beamcolumns subjected to bending about the (a) major axis and (b) minor axis of the steel section.


Figure 2.8 - Strain gradient in composite cross-section in which bending takes place about the major or minor axis of the steel section.
was varied and the corresponding axial force calculated. Linear interpolation and the extended Newton-Raphson technique (Kikuchi, Mirza and MacGregor 1978) was used to converge to the correct $D N A$ value for each desired axial force. The bending moment corresponding to the curvature, neutral axis position and the axial force was then calculated.

The curvature was then incremented creating a new matrix of $P$ versus DNA values and new bending moment calculated. The curvature was incremented until the concrete cover on the compressive side of the cross-section had spalled off to ensure that the maximum bending moment for the desired axial force was obtained.

However, when strain hardening was considered at low axial load levels (less than 20 percent of the pure compression capacity), the maximum bending moment occurred at very high curvature values long after the spalling of the concrete. For these cases, the tension flange of the steel section was monitored at each curvature increment and if rupture of the tension flange was imminent, no further points were calculated for that axial load level. It should be noted that the effect of strain hardening was only used for the comparison of theoretical model to experimental results discussed in Chapter 3.

This procedure, outlined in Figure 2.9, created the required $M-\phi-P$ relationship. The data when plotted is similar to the data plotted in Figure 2.6. When the moment versus


Figure 2.9 - Flow chart for computation of $M-\phi-P$ relationships for composite cross-section.
curvature diagrams were completed for all of the desired axial load levels, the maximum bending moment for each axial load level is stored. These bending moments paired with the corresponding axial loads form the $P-M$ interaction diagram (Figure 2.7). The program then proceeds to the slender column subroutine for lengths greater than zero.

### 2.5 SLENDER BEAM-COLUMN STRENGTH

The bending moment capacity of a beam-column at a given axial load level is lower than the capacity of the crosssection. A beam-column of length $\ell$ deflects laterally when subjected to an eccentric axial load and is subjected to additional moment at its mid-height. A column bending in single curvature under equal end eccentricities was modeled in this study (Figure 1.1). Therefore, secondary moments at the mid-height caused by the axial load acting through additional eccentricity become significant in slender columns and control the maximum applied end moment.

In order to construct the slender beam-column $P-M$ interaction diagram, the program calculates the maximum end moment corresponding to the desired axial load level. To be stable the internal forces at the mid-height of the beamcolumn and the ends must be in equilibrium with the applied external forces. As the end eccentricity is increased for the given axial load, there is a corresponding increase in lateral
deflection and secondary moment until the material at midheight fails. The long column bending moment capacity is the bending moment acting at the ends of the column at failure.

The concentric load capacity of a slender column was not utilized in examining the flexural stiffness of a beam-column. However, for the comparison of experimental results to theoretical results, described in Chapter 3 , the concentric load capacity was determined.

Therefore, just as for the cross-sectional strength, the concentric axial load capacity for the slender column was calculated first in the development of the $P-M$ interaction diagram. The tangent modulus theory, used by Wakabayashi (1976) and Basu (1967), was used to calculate this load. The use of the tangent modulus theory requires the assumption that no initial camber exists in the steel section, because the theory can only be applied to columns that are perfectly straight.

A concentrically loaded slender column fails by buckling before the material strength is exceeded. The ultimate buckling stress for a column of homogeneous material is given by the tangent buckling formula shown in Equation 2.13.

$$
\begin{equation*}
f_{c r}=\frac{\pi^{2} E_{t}}{(k \ell / r)^{2}} \tag{2.13}
\end{equation*}
$$

Substituting 1.0 for the effective length factor $k$, and the square root of the moment of inertia divided by the area $(V I / A)$ for the radius of gyration $r$, Equation 2.13 can be
rewritten as:

$$
\begin{equation*}
P_{c r}=f_{c r} A=\frac{\pi^{2}}{\ell^{2}} E_{t} I \tag{2.14}
\end{equation*}
$$

where $P_{C r}$ is the column buckling load.
Equation 2.14 must be applied independently to the six materials present in a composite column, each material possessing independent stress-strain curves. The sum of all six tangent buckling strengths gives the tangent buckling load for the column. Wakayabashi (1976) proposed a similar procedure. To account for the six independent materials, Equation 2.14 takes the following form:

$$
\begin{equation*}
P_{C r}=\sum_{i=1}^{i=6}\left(f_{C r_{i}} A_{i}\right)=\frac{\pi^{2}}{\ell^{2}} \sum_{i=1}^{i=6}\left(E_{t_{i}} I_{i}\right) \tag{2.15}
\end{equation*}
$$

An iterative technique was used to solve Equation 2.15 because the tangent elastic modulus of an element is a function of the stress in the element. This was accomplished by adjusting the axial strain in the column until the load calculated by each side of Equation 2.15 was less than 1 pound (4.45 N) . Thus establishing the point on the slender column $P-M$ interaction diagram that corresponds to the maximum concentric load and zero bending moment.

The method for establishing the points other than the pure compression capacity on the slender beam-column $P-M$ interaction diagram determines the maximum end eccentricity sought for each desired axial load level and is described as
follows:
(a) Assume a mid-height deflection of the column.
(b) Find the end curvature which corresponds to the desired deflected shape.
(c) Find the bending moment corresponding to the end curvature from the cross-section $M-\phi-P$ relationships and calculate the end eccentricity.
(d) Add the end eccentricity to the assumed mid-height deflection and calculate a new bending moment at the midheight of the column.
(e) If the bending moment calculated in (d) is less than the maximum bending moment from the cross-section $M-\phi-P$ relationship, increase the mid-height deflection and repeat the process starting from item (a). If the bending moment calculated in (d) is greater than the maximum bending moment from the cross-section $M-\phi-P$ relationship, the end eccentricity calculated in item (d) from the previous iteration is used to compute the maximum end bending moment.

To represent the deflected shaped of a pin-ended column, a fourth order parabola suggested by Quast (1970) was used. The mid-height deflection is given by Equation 2.16

$$
\begin{equation*}
\Delta_{m}=\frac{\ell^{2}}{10}\left(\phi_{m}+\frac{\phi_{e}}{4}\right) \tag{2.16}
\end{equation*}
$$

where $\phi_{m}$ and $\phi_{e}$ are the curvatures at mid-height and the column ends, respectively; $\ell$ is the length of the column; and
$\Delta_{m}$ is the mid-height deflection of the column as shown in Figure 1.1.

The total mid-height eccentricity $e_{t}$ is the sum of the assumed mid-height deflection $\Delta_{m}$ from Equation 2.16 and the end eccentricity e as shown in Equation 2.17.

$$
\begin{equation*}
e_{t}=e+\Delta_{m} \tag{2.17}
\end{equation*}
$$

Substitution of Equation 2.16 into 2.17 and rearranging to solve for the end eccentricity yields Equation 2.18.

$$
\begin{equation*}
e=e_{t}-\left(\frac{\ell^{2}}{10}\right)\left(\phi_{m}+\frac{\phi_{e}}{4}\right) \tag{2.18}
\end{equation*}
$$

The mid-height eccentricity $e_{t}$ can be calculated by dividing the mid-height bending moment by the axial load as shown in Equation 2.19.

$$
\begin{equation*}
e_{t}=\frac{M_{m}}{P} \tag{2.19}
\end{equation*}
$$

Substitution of Equation 2.19 into 2.18 gives the simple relationship between the end eccentricity (e), mid-height moment $\left(M_{m}\right)$, the mid-height curvature $\left(\phi_{m}\right)$ and the end curvature $\left(\phi_{e}\right)$ as shown in Equation 2.20.

$$
\begin{equation*}
e=\left(\frac{M_{m}}{P}\right)-\left(\frac{\ell^{2}}{10}\right)\left(\phi_{m}+\frac{\phi_{e}}{4}\right) \tag{2.20}
\end{equation*}
$$

The program uses Equation 2.20 and the cross-section $M-\phi-$ $P$ relations previously calculated to solve for a combination of end eccentricity, mid-height deflection and mid-height curvature that are in equilibrium. Figure 2.10 outlines the


Figure 2.10 - Flow chart for computing slender column $M-\phi-P$ relationships.
procedure. Values for the mid-height curvature are incremented from a minimum value (the smallest curvature from the cross-section $M-\phi-P$ relationship corresponding to desired axial load) until a maximum end bending moment is calculated. For each mid-height curvature value assumed, values of the end curvature are tested and incremented from the minimum value until an equilibrium combination is found. The largest curvature that can be attained at mid-height is the one that corresponds to the maximum moment from the $M-\phi-P$ diagram for the axial load. Once all possible mid-height curvatures have been investigated, the largest end bending moment calculated becomes one point on the slender beam-column $P-M$ interaction curve. The process is then repeated to complete the entire slender beam column $P-M$ interaction curve.

### 2.6 MATERIAL STRESS-STRAIN CURVES

A composite beam-column is represented by six different materials, each characterized by a distinct stress-strain relationship as indicated earlier in Section 2.3. Three of the six materials are unconfined, partially confined and highly confined concrete. The flange and web of the rolled steel shape account for two more of the material types. The longitudinal reinforcing steel makes up the sixth material present in the cross-section. The six materials are shown in Figure 2.3.

### 2.6.1 Stress-Strain Curves for Concrete

The distinction between the concrete areas, defined in Section 2.3 , recognizes the differences inherent in the stress-strain relationship due to the confining action of the rectangular lateral ties, the longitudinal reinforcing steel bars and the rolled steel section. Concrete confinement increases both compressive strength of concrete and ductility. Park, Priestly and Gill (1982) , Sheikh and Uzemeri (1982), and Sheikh and Yeh (1986) developed methods to determine the beneficial effects of increased compressive strength and ductility of concrete for reinforced concrete columns. Methods to determine the effect of confinement on the concrete tensile stress-strain relationship are not available. Therefore, identical tensile stress-strain relations for all types of concrete confinements was assumed. The stress-strain relationships presented in this Section are based on static loading conditions.

Based on the recommendation of Skrabek and Mirza (1990) and the findings of Llewellyn (1986), a modified version of the Kent and Park (1971) curve (Figure 2.11) for unconfined concrete was used to describe the stress-strain relationship for concrete outside the perimeter of the lateral ties in this study. Equation 2.21 represents the curve between the origin and the peak stress, and the descending branch of the curve between the peak stress and the stress at ultimate strain is described by Equation 2.22.


Figure 2.11 - Unconfined concrete compressive stress-strain relationship used in theoretical strength subroutine.


Figure 2.12 - Partially confined concrete compressive stressstrain relationship used in theoretical strength subroutine.

$$
\begin{gather*}
f_{c}=f_{c}^{\prime}\left[\frac{2 \epsilon_{c}}{\epsilon_{0}}-\left(\frac{\epsilon_{c}}{\epsilon_{0}}\right)^{2}\right]  \tag{2.21}\\
f_{c}=f_{c}^{\prime}\left[1-z\left(\epsilon_{c}-\epsilon_{0}\right)\right] \tag{2.22}
\end{gather*}
$$

where
and $\quad \epsilon_{50 u}=\frac{3+\epsilon_{o} f_{c}^{\prime}}{f_{c}^{\prime}-1000}$

For SI conversion replace 3 by 0.0207 MPa and 1000 by 6.895 MPa. The strain at the peak stress ( $\epsilon_{0}$ ) was allowed to vary as a function of the concrete strength (Equation 2.23) rather than a constant value of 0.002 suggested by Kent and Park (1971).

$$
\begin{equation*}
\epsilon_{o}=\frac{2 f_{c}^{\prime}}{E_{C}} \tag{2.23}
\end{equation*}
$$

For partially confined concrete Skrabek and Mirza (1990) investigated the Modified Kent and Park Curve (Park, Priestly and Gill 1982), and the Sheikh - Uzumeri Curve (1982) for their applicability to composite columns and found them to produce similar results. The Modified Kent and Park Curve (Figure 2.12) was used in this study to model the partially confined concrete in the composite cross-section, as was used by Skrabek and Mirza (1990). The Modified Kent and Park Curve assumes that the degree of confinement is a function of the
concrete cylinder strength $f^{\prime}{ }_{c}$, the vertical spacing of the ties $s_{h}$, the ratio of volume of lateral ties to volume of concrete core $\rho_{s}$, and the yield strength of the horizontal ties $f_{y h}$. The ascending portion of the curve between the origin and the peak stress is described by Equation 2.24 while Equation 2.25 describes the descending branch of the curve.

$$
\begin{equation*}
f_{c}=K f_{c}^{\prime}\left[\frac{2 \epsilon_{c}}{K \epsilon_{o}}-\left(\frac{\epsilon_{c}}{K \epsilon_{o}}\right)^{2}\right] \tag{2.24}
\end{equation*}
$$

where $\quad K=1+\frac{\rho_{s} f_{y h}}{f_{c}^{\prime}}$

$$
\begin{equation*}
f_{c}=K f_{c}^{\prime}\left[1-Z\left(\epsilon_{c}-K \epsilon_{o}\right)\right] \geq 0.2 K f_{c}^{\prime} \tag{2.25}
\end{equation*}
$$

where $\quad Z=\frac{0.5}{\epsilon_{50 u}+\epsilon_{50 h}-K \epsilon_{0}}$
and $\quad \epsilon_{50 u}=\frac{3+K \epsilon_{o} f_{c}^{\prime}}{f_{c}^{\prime}-1000}$
and $\quad \epsilon_{50 h}=\frac{3}{4} \rho_{s} \sqrt{\frac{h^{\prime \prime}}{s_{h}}}$

In the equation above, $h^{\prime \prime}$ is the out to out width of the lateral ties. For SI conversion replace 3 by 0.0207 MPa and 1000 by 6.895 MPa .

The Modified Kent and Park Curve used by Skrabek and Mirza to model the heavily confined concrete between the web
and flanges of the rolled steel shape was also used in this study. The peak stress in the heavily confined concrete was assumed to be maintained at all strains beyond the peak stress. Figure 2.13 describes the assumed stress-strain curve for heavily confined concrete.

The tensile stress-strain curve used in this study is shown is Figure 2.14. A linear stress-strain relationship from the origin to the modulus of rupture was assumed with the elastic modulus for tension assumed equal to the modulus of elasticity in compression. The work of Skrabek and Mirza (1990) shows that this simple model suggested by Park and Pauley (1975), and Mirza and MacGregor (1989) was sufficient.

### 2.6.2 Stress-Strain Curves for Steel

An elastic-plastic stress-strain curve was assumed to describe the behaviour of both the structural steel and the longitudinal reinforcing steel. Strain-hardening was not included for the study of stiffness described in Chapter 5 and 6 , but was included for calibration of the strength model described in Chapter 3. The stress-strain curve for compression was assumed to be the same as that for tension.

A second order parabola was used to describe the strainhardening portion of the stress-strain curve. At ultimate strain the slope of the strain hardening curve was assumed to be equal to zero.

The variables used by the program to describe the stress-


Figure 2.13 - Heavily confined concrete compressive stressstrain relationship used in theoretical strength subroutine.


Figure 2.14 - Concrete tensile stress-strain relationship used in theoretical strength subroutine.
strain curve for structural steel shown in Figure 2.15 are the elastic modulus $E_{s}$, the yield stress $f_{y s}$, the strain at the onset of strain hardening $\epsilon_{\text {sstrn }}$, the initial tangent slope of the strain hardening curve $E_{s s t r n}$, and the ultimate stress $f_{u s}$.

The variables used by the program to describe the stress strain curve for reinforcing steel shown in Figure 2.16 are the elastic modulus $E_{r}$, the yield stress $f_{y r}$, the strain at the onset of strain hardening $\epsilon_{\text {rstrn }}$, the ultimate stress $f_{u r}$, and the ultimate strain $\epsilon_{u r}$.

### 2.7 RESIDUAL STRESSES IN STRUCTURAL STEEL

Residual stresses are due to uneven cooling of component parts during the manufacturing process. Skrabek and Mirza (1990) found that the work of LaChance and Hays (1980), Virdi and Dowling (1973), and Mirza (1989) made it evident that residual stresses can significantly vary the strength of $a$ composite beam-column. For this reason the effect of residual-stresses was accounted for in this study.

A detailed analysis by Skrabek and Mirza (1990) determined that using Young's (1971) model (Equation 2.26) to predict the residual stresses at the flange tips combined with the model by Galambos (1963) (Equation 2.27 ) to predict the residual stresses at the flange-web juncture provides the best overall prediction of measured values reported by Beedle and Tall (1960).


Figure 2.15 - Structural steel stress-strain relationship in tension or compression used in theoretical strength subroutine.


Figure 2.16 - Reinforcing steel stress-strain relationship in tension or compression used in theoretical strength subroutine.

$$
\begin{gather*}
\sigma_{r f t}=-24,000\left(1-\frac{A_{\mathrm{w}}}{1.2 A_{f}}\right)  \tag{2.26}\\
\sigma_{r f \mathrm{w}}=-\sigma_{r f t}\left[\frac{b t}{b t+W(d-2 t)}\right] \tag{2.27}
\end{gather*}
$$

A linear distribution was assumed for the residual stresses. In Equation $2.26 \sigma_{r f t}$ is the residual stress at the tips of the flanges, $A_{w}$ is the area of the web, and $A_{f}$ is the area of both flanges of the steel section. In Equation $2.27 \sigma_{r f w}$ is the residual stress at the flange web juncture, $b$ is the flange width, $t$ is the flange thickness (average thickness for tapered flanges), $w$ is the web thickness and $d$ is the depth of the structural steel shape. For $S I$ conversion of Equation 2.26, replace 24,000 psi by 165 MPa .

Using a trial and error method, described below, the program calculates the required residual stress at the middepth of the web to maintain force equilibrium of the steel section:
(a) Determine the net force in the flanges due to residual stresses.
(b) Determine whether the mid-depth of the web is in tension or in compression in order to achieve equilibrium.
(c) Calculate the mid-depth residual stress assuming a triangular stress distribution in the web (Figure $2.17(\mathrm{a})(\mathrm{i})$ or $2.17(\mathrm{~b})(\mathrm{i})$ ).
(d) If the residual stress computed in (c) exceeds 50 percent of the web yield stress, try a trapezoidal distribution
$\sigma_{r w}$ INCREASES FROM $0.5 f_{y}$ EACH
CYCLE THROUGH (i) TO (iii) UNTIL
EQUILIBRIUM IS REACHED.

(a) TENSILE RESIDUAL STRESS AT MID-DEPTH OF WEB

(i)
(ii)
(iii)
(b) COMPRESSIVE RESIDUAL STRESS AT MID-DEPTH OF WEB

Figure 2.17 - Residual stress distribution in wide flanged steel shapes used in theoretical strength subroutine.
(Figure $2.17(\mathrm{a})(\mathrm{ii})$ or $2.17(\mathrm{~b})(\mathrm{ii})$ ) assuming a value of 50 percent of the web yield stress as the mid-depth stress. Increase the zone of mid-depth stress to a maximum of 90 percent of the web depth (Figure $2.17(\mathrm{a})(\mathrm{iii})$ or $2.17(\mathrm{~b})(\mathrm{iii})$ or until equilibrium is achieved.
(e) If equilibrium is not reached in (d) increase the middepth stress by another 5 percent of the web yield stress and repeat with the trapezoidal distribution for the web residual stresses.

Item (e) is repeated until equilibrium is achieved. This procedure balanced the residual stresses in the steel section before the residual stress in the web reached yield stress level. The theoretical program can be used with or without the above-noted residual stresses in the rolled steel section depending what is desired. For this study, however, the residual stresses were included in the analysis of strength as indicated earlier.

## 3-COMPARISON OF THEORETICAL MODEL TO EXPERIMENTAL RESULTS

To test the accuracy of the theoretical model, the ultimate strengths predicted by the theoretical subroutine were compared to the ultimate strengths of physical experimental test results gathered from published literature. No new tests were conducted for this study. The load cases studied for major and minor axis bending are examined individually and are discussed in detail in the Section 3.1 and 3.2. Data gathered for examination for bending about major and minor axis of the steel section included concentric loading, eccentric loading causing bending about an axis, and pure bending about an axis for columns with slenderness ratios $\ell / h$ (length to overall concrete cross-section depth) ranging from 2.0 to 45.0 .

Problems which were encountered while interpreting the experimental results for some of the test data gathered from available literature are summarized below:

1) The specified length of some specimens was unclear, especially when haunches were used at the ends of the column. This pertains to tests conducted by Stevens (1965).
2) Information regarding the reinforcement was in some cases insufficient with respect to quantity, position, and yield strength. This pertains to tests conducted by. Stevens (1965) and Bondale (1966).
3) The way the concrete strength was determined from cubes
was unclear for some test results (cube tested parallel or perpendicular to the direction of casting). This pertains to tests conducted by Stevens (1965), Bondale (1966), Procter (1967), Janss and Anslijn (1974), Janss and Piraprez (1974), Roik and Mangerig (1987), and Roik and Schwalbenhofer (1988).
4) Test specimens were in some cases very small. This pertains to tests conducted by Stevens (1965) and Bondale (1966).

For some of the physical tests, 4-inch, 6-inch and 8-inch cube specimens were tested to establish concrete strength, instead of the "standard" 6-inch diameter by 12-inch high cylinders. In these cases the strength reported was converted to an equivalent cylinder strength.

Many different factors for obtaining and equivalent cylinder strength from cube strength have been employed by other authors over the years. Roderick and Rogers (1969) and Roderick and Loke (1974) utilized Equation 3.1 recommended by Evans (1943).

$$
\begin{equation*}
f_{c}^{\prime}=1.035 u-700 \tag{3.1}
\end{equation*}
$$

in which both the cube strength (u) and the cylinder strength ( $f^{\prime}{ }_{C}$ ) are in pounds per square inch. Virdi and Dowling (1973) reported a factor of 0.64 for converting the strength of a 6inch cube to an equivalent cylinder. Furlong (1976) appears to have used 0.8 times the 4 -inch cube strength to obtain an
equivalent 6-inch cylinder strength. May and Johnson (1978) applied a factor of 0.76 for obtaining an equivalent cylinder strength from a 6-inch cube. Roik and Bergmann (1989) used 0.83 times the 4 -inch cube strength and 0.85 times the 8 -inch cube strength to obtain an equivalent 6-inch cylinder strength.

Eight physical tests on columns by Bondale (1966), four for major axis bending and four for minor axis bending, that were used in this study were also compared by Basu (1967) to his theoretical model. Basu's work indicated that if a ratio of the 4 -inch cube strength to 6-inch cylinder strength is taken as 0.80 as opposed to 0.67 , it will change the tested to theoretical strength ratio by approximately 10 percent for the eight columns tested by Bondale.

It was decided that two equations would be used, when necessary, to obtain an equivalent cylinder strength from a given cube. Equation 3.2 , which is based on the statistical theory of brittle fracture of solids (Bolotin 1969), as reproduced by Mirza, Hatzinikolas and MacGregor (1979), is utilized to account for the difference in strength due to volume difference of a cube with respect to a 4-inch cube.

$$
\begin{equation*}
f=f_{0}\left[0.58+0.42\left[\frac{v_{0}}{v}\right)^{\frac{1}{3}}\right] \tag{3.2}
\end{equation*}
$$

In Equation $3.2, f_{0}$ and $v_{0}$ represent the concrete strength and volume of a 4-inch cube, and $f$ and $v$ are the concrete strength and volume of a cube of the desired size (6-inch in this
study). L'Hermite's equation (1955) (Equation 3.3) reproduced by Neville (1973) was then applied to convert the 6 -inch cube strength to that of an equivalent 6 -inch diameter by 12 -inch long cylinder.

$$
\begin{equation*}
f_{c}^{\prime}=\left(0.76+0.2 \log \left(\frac{f_{c u}}{2840}\right)\right) f_{c u} \tag{3.3}
\end{equation*}
$$

in which $f_{c u}$ is the 6-inch cube specimen strength and $f^{\prime}{ }_{c}$ represents the 6-inch cylinder strength in psi. For SI units replace 2840 psi with 19.6 MPa .

In a number of cases only the nominal values for the strength of the structural steel and reinforcing steel were reported with the physical test data. In most cases, however, actual tests were performed to determine the yield strength of the structural steel and the reinforcing steel.

### 3.1 COMPARISON OF THEORETICAL STRENGTH OF COLUMNS SUBJECTED TO MAJOR AXIS BENDING TO EXPERIMENTAL RESULTS

The accuracy of the theoretical model for columns subjected to major axis bending was initially checked against 81 physical tests gathered from Bondale (1966), May and Johnson (1978), Morino et al. (1984), Procter (1967), Suzuki et al. (1983), Roik and Mangerig (1987), and Roik and Schwalbenhofer (1988). Sixteen more physical tests of columns subjected to major axis bending were located since the completion of the work by Skrabek and Mirza (1990). Five of the physical tests were eventually excluded from the
comparison for reasons that will be discussed later in this section.

A brief description of the 81 physical tests used for the comparison of tested to theoretical strength for columns subjected to major axis bending is given in Table 3.1. Included with the information on material properties and specimen configuration shown in Table 3.1 is the ratio of tested to calculated ultimate strengths (strength ratio) for each of the 81 beam-column specimens. A strength ratio was taken as the ratio of the bending moment strengths for $e / h=\infty$, and the ratio of the axial load capacities for $e / h<\infty$. Detailed descriptions of material properties and specimen configuration for each beam-column are given in Table A1 of Appendix A. The plot of tested strength against the theoretical strength (Figure 3.1) indicates that the magnitude of error increases proportionally with an increase in strength, which is expected since the percentage of error remains relatively constant.

The calculated mean, coefficient of variation and coefficient of skewness for strength ratios of all beam-column specimens listed in Table 3.1 are shown in Table 3.2. The statistical analysis shown in Table 3.2 was subdivided into two categories, based on the slenderness ratio ( $\ell / h$ ). The columns with an $\ell / h$ less than 6.6 are assumed to be short columns and long columns are assumed to have $\ell / h$ greater than or equal to 6.6. The data was further categorized into four

Table 3.1 - Specimen Configuration for Composite Columns Subjected to Bending about the Major Axis used for Ratio of Test to Calculated Ulitimate Strength

| Author | Col. Desig. | $\begin{gathered} h \\ \text { (in.) } \end{gathered}$ | $\begin{gathered} b \\ \text { (in.) } \end{gathered}$ | $\begin{aligned} & f^{\prime}{ }_{c} \\ & (\mathrm{psi}) \end{aligned}$ | $\rho_{\text {ss }}$ | Prs | $\frac{\rho_{s s}{ }^{f} y s s}{f_{c}^{\prime}}$ | $\ell / h$ | e/h | Tested Strength | Theor. Strength | Strength Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bondale (1966) | RS 60.3 | 6.00 | 3.75 | 4506 | 0.0653 | 0.0062 | 0.649 | 10.0 | 0.500 | 55.8 | 47.0 | 1.188 |
|  | RS 80.2 | 6.00 | 3.75 | 4382 | 0.0653 | 0.0062 | 0.667 | 13.3 | 0.333 | 70.1 | 55.8 | 1.257 |
|  | RS 100.1 | 6.00 | 3.75 | 4260 | 0.0653 | 0.0062 | 0.687 | 16.7 | 0.167 | 92.3 | 72.9 | 1.265 |
|  | RS 120.0 | 6.00 | 3.75 | 4700 | 0.0653 | 0.0062 | 0.622 | 20.0 | 0.000 | 107.1 | 115.3 | 0.929 |
| May \& Johnson (1978) | RC1 | 7.87 | 7.87 | 4308 | 0.0745 | 0.0028 | 0.727 | 8.1 | 0.112 | 301.2 | 282.2 | 1.067 |
|  | RC3 | 7.87 | 7.87 | 3390 | 0.0745 | 0.0028 | 0.924 | 8.1 | 0.136 | 305.7 | 239.1 | 1.279 |
|  | RC4 | 7.87 | 7.87 | 5191 | 0.0745 | 0.0028 | 0.603 | 14.8 | 0.197 | 191.1 | 217.9 | 0.877 |
| Morino et al. (1984) | A4-90 | 6.30 | 6.30 | 3060 | 0.0870 | 0.0036 | 1.481 | 5.8 | 0.250 | 166.5 | 121.4 | 1.372 |
|  | B4-90 | 6.30 | 6.30 | 3393 | 0.0870 | 0.0036 | 1.302 | 14.4 | 0.250 | 114.6 | 104.0 | 1.102 |
|  | C4-90 | 6.30 | 6.30 | 3379 | 0.0870 | 0.0036 | 1.177 | 21.7 | 0.250 | 93.9 | 83.0 | 1.131 |
|  | D4.90 | 6.30 | 6.30 | 3074 | 0.0870 | 0.0036 | 1.474 | 28.9 | 0.250 | 64.7 | 63.5 | 1.019 |
|  | A8-90 | 6.30 | 6.30 | 4872 | 0.0870 | 0.0036 | 0.953 | 5.8 | 0.469 | 118.1 | 98.6 | 1.197 |
|  | B8-90 | 6.30 | 6.30 | 4829 | 0.0870 | 0.0036 | 0.957 | 14.4 | 0.469 | 94.0 | 84.3 | 1.114 |
|  | C8-90 | 6.30 | 6.30 | 3567 | 0.0870 | 0.0036 | 1.305 | 21.7 | 0.469 | 68.0 | 62.5 | 1.089 |
|  | D8-90 | 6.30 | 6.30 | 3321 | 0.0870 | 0.0036 | 1.399 | 28.9 | 0.469 | 50.1 | 49.2 | 1.020 |
| Procter (1967) | S1 | 11.00 | 8.00 | 4722 | 0.0484 | 0.0000 | 0.432 | 2.2 | 0.000 | 470.4 | 522.9 | 0.900 |
|  | S2 | 11.00 | 8.00 | 4722 | 0.0484 | 0.0000 | 0.432 | 2.2 | 0.000 | 481.6 | 522.9 | 0.921 |
|  | S3 | 12.00 | 8.00 | 5407 | 0.0520 | 0.0000 | 0.410 | 2.0 | 0.000 | 698.9 | 642.1 | 1.088 |
|  | S4 | 12.00 | 8.00 | 5407 | 0.0520 | 0.0000 | 0.410 | 2.0 | 0.000 | 703.4 | 642.1 | 1.095 |
|  | 1 | 11.25 | 8.00 | 4722 | 0.0473 | 0.0000 | 0.422 | 11.7 | 0.533 | 132.2 | 127.7 | 1.035 |
|  | 2 | 11.25 | 8.00 | 4722 | 0.0473 | 0.0000 | 0.422 | 11.7 | 0.800 | 87.4 | 87.4 | 1.000 |
|  | 3 | 11.25 | 8.00 | 4722 | 0.0473 | 0.0000 | 0.422 | 11.7 | 0.000 | 470.4 | 508.0 | 0.926 |
|  | 4 | 11.25 | 8.00 | 4722 | 0.0473 | 0.0000 | 0.422 | 11.7 | 0.533 | 143.4 | 127.7 | 1.122 |
|  | 5 | 11.25 | 8.00 | 5407 | 0.0473 | 0.0000 | 0.369 | 11.7 | 0.800 | 91.8 | 90.5 | 1.015 |
|  | 6 | 12.00 | 8.00 | 5407 | 0.0520 | 0.0000 | 0.410 | 11.0 | 0.750 | 129.9 | 114.1 | 1.138 |
|  | 7 | 12.00 | 8.00 | 5407 | 0.0520 | 0.0000 | 0.410 | 11.0 | 0.500 | 199.4 | 168.6 | 1.183 |
|  | 8 | 12.00 | 8.00 | 5407 | 0.0520 | 0.0000 | 0.410 | 11.0 | 0.000 | 560.0 | 613.6 | 0.913 |
|  | 9 | 11.25 | 8.00 | 6007 | 0.0473 | 0.0000 | 0.332 | 11.7 | 0.267 | 268.8 | 243.5 | 1.104 |
|  | 10 | 11.25 | 8.00 | 6007 | 0.0473 | 0.0000 | 0.332 | 11.7 | 0.267 | 250.9 | 243.5 | 1.030 |
|  | 11 | 12.00 | 8.00 | 6007 | 0.0520 | 0.0000 | 0.369 | 11.0 | 0.000 | 533.1 | 658.5 | 0.810 |
|  | 12 | 12.00 | 8.00 | 6007 | 0.0520 | 0.0000 | 0.369 | 11.0 | 0.250 | 315.8 | 290.9 | 1.086 |
| Suzuki et al. (1983) | LH-000-C | 8.27 | 8.27 | 4785 | 0.0290 | 0.0021 | 0.274 | 2.9 | 0.000 | 380.0 | 366.4 | 1.037 |
|  | LH-020-C | 8.27 | 8.27 | 4785 | 0.0290 | 0.0021 | 0.274 | 2.9 | 0.000 | 374.3 | 429.4 | 0.872 |
|  | LH-040-C | 8.27 | 8.27 | 4785 | 0.0290 | 0.0021 | 0.274 | 2.9 | 0.000 | 374.3 | 398.0 | 0.940 |
|  | LH-100-C | 8.27 | 8.27 | 4785 | 0.0290 | 0.0021 | 0.274 | 2.9 | 0.000 | 385.8 | 379.2 | 1.017 |
|  | RH-000-C | 8.27 | 8.27 | 4858 | 0.0546 | 0.0021 | 0.624 | 2.9 | 0.000 | 547.0 | 462.7 | 1.182 |
|  | RH-020-C | 8.27 | 8.27 | 4858 | 0.0546 | 0.0021 | 0.624 | 2.9 | 0.000 | 561.4 | 523.7 | 1.072 |
|  | RH-040-C | 8.27 | 8.27 | 4858 | 0.0546 | 0.0021 | 0.624 | 2.9 | 0.000 | 521.1 | 493.4 | 1.056 |
|  | RH-100-C | 8.27 | 8.27 | 4858 | 0.0546 | 0.0021 | 0.624 | 2.9 | 0.000 | 521.1 | 475.2 | 1.097 |
|  | HT60-000-C | 8.27 | 8.27 | 4858 | 0.0600 | 0.0021 | 1.035 | 2.9 | 0.000 | 598.8 | 562.8 | 1.064 |
|  | HT60-020-C | 8.27 | 8.27 | 4858 | 0.0600 | 0.0021 | 1.035 | 2.9 | 0.000 | 656.4 | 674.0 | 0.974 |
|  | HT60-040-C | 8.27 | 8.27 | 4858 | 0.0600 | 0.0021 | 1.035 | 2.9 | 0.000 | 662.2 | 639.2 | 1.036 |
|  | HT60-100-C | 8.27 | 8.27 | 4858 | 0.0600 | 0.0021 | 1.035 | 2.9 | 0.000 | 627.6 | 611.8 | 1.026 |
|  | HT80-000-C | 8.27 | 8.27 | 4858 | 0.0633 | 0.0021 | 1.480 | 2.9 | 0.000 | 716.9 | 626.3 | 1.145 |
|  | HT80-020-C | 8.27 | 8.27 | 4858 | 0.0633 | 0.0021 | 1.480 | 2.9 | 0.000 | 734.2 | 797.3 | 0.921 |
|  | HT80-040-C | 8.27 | 8.27 | 4858 | 0.0633 | 0.0021 | 1.480 | 2.9 | 0.000 | 728.4 | 759.4 | 0.959 |
|  | HT80-100-C | 8.27 | 8.27 | 4858 | 0.0633 | 0.0021 | 1.480 | 2.9 | 0.000 | 711.1 | 721.0 | 0.986 |

Table 3.1 - Continued

| Author | Col. Desig. | $\begin{gathered} h \\ \text { (in.) } \end{gathered}$ | $\begin{gathered} b \\ \text { (in.) } \end{gathered}$ | $\begin{aligned} & { }^{\prime}{ }^{\prime} \\ & \text { (psi) } \end{aligned}$ | $\mathrm{P}_{\text {ss }}$ | $P_{\text {rs }}$ | $\frac{\rho_{s s}{ }^{f} y s s}{f_{c}}$ | $\ell / h$ | e/h | Tested Strength | Theor. Strength | Strength Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Suzuki et al. (1983) | HT80-000-CB | 8.27 | 8.27 | 4423 | 0.0423 | 0.0021 | 1.060 | 2.9 | 0.874 | 110.4 | 104.0 | 1.061 |
|  | HT80-020-CB | 8.27 | 8.27 | 4423 | 0.0423 | 0.0021 | 1.060 | 2.9 | 1.062 | 110.4 | 108.7 | 1.016 |
|  | LH-000-B | 8.27 | 8.27 | 4292 | 0.0290 | 0.0021 | 0.306 | 2.9 | inf. | 27.4 | 27.8 | 0.988 |
|  | LH-020-B | 8.27 | 8.27 | 4597 | 0.0290 | 0.0021 | 0.286 | 2.9 | inf. | 29.4 | 32.1 | 0.916 |
|  | LH-040-B | 8.27 | 8.27 | 4524 | 0.0290 | 0.0021 | 0.290 | 2.9 | inf. | 28.2 | 30.1 | 0.939 |
|  | LH-100-8 | 8.27 | 8.27 | 4365 | 0.0290 | 0.0021 | 0.301 | 2.9 | inf. | 28.2 | 28.0 | 1.008 |
|  | RH-000-B | 8.27 | 8.27 | 4858 | 0.0546 | 0.0021 | 0.624 | 2.9 | inf. | 48.9 | 52.1 | 0.940 |
|  | RH-020-B | 8.27 | 8.27 | 4858 | 0.0546 | 0.0021 | 0.624 | 2.9 | inf. | 54.5 | 56.9 | 0.958 |
|  | RH-040-8 | 8.27 | 8.27 | 4858 | 0.0546 | 0.0021 | 0.624 | 2.9 | inf. | 53.3 | 45.5 | 1.171 |
|  | RH-100-B | 8.27 | 8.27 | 4858 | 0.0546 | 0.0021 | 0.624 | 2.9 | inf. | 50.9 | 52.3 | 0.974 |
|  | HT60-000-B | 8.27 | 8.27 | 4814 | 0.0600 | 0.0021 | 1.045 | 2.9 | inf. | 68.8 | 73.4 | 0.937 |
|  | HT60-020-B | 8.27 | 8.27 | 4814 | 0.0600 | 0.0021 | 1.045 | 2.9 | inf. | 79.2 | 79.7 | 0.993 |
|  | HT60-040-B | 8.27 | 8.27 | 4814 | 0.0600 | 0.0021 | 1.045 | 2.9 | inf. | 77.2 | 76.2 | 1.013 |
|  | HT60-100-8 | 8.27 | 8.27 | 4814 | 0.0600 | 0.0021 | 1.045 | 2.9 | inf. | 72.0 | 75.9 | 0.949 |
|  | HT80-000-B | 8.27 | 8.27 | 4771 | 0.0633 | 0.0021 | 1.507 | 2.9 | inf. | 93.5 | 98.8 | 0.946 |
|  | HT80-020-B | 8.27 | 8.27 | 4771 | 0.0633 | 0.0021 | 1.507 | 2.9 | inf. | 104.2 | 105.3 | 0.989 |
|  | HT80-040-B | 8.27 | 8.27 | 4771 | 0.0633 | 0.0021 | 1.507 | 2.9 | inf. | 101.0 | 102.8 | 0.983 |
|  | HT80-100-B | 8.27 | 8.27 | 4771 | 0.0633 | 0.0021 | 1.507 | 2.9 | inf. | 97.9 | 99.6 | 0.983 |
| Roik Mangeri (1987) | 23 | 11.81 | 11.81 | 6570 | 0.0868 | 0.0050 | 0.517 | 16.7 | 0.300 | 526.3 | 442.3 | 1.190 |
|  | 24 | 11.81 | 11.81 | 6570 | 0.0868 | 0.0050 | 0.517 | 16.7 | 0.500 | 368.3 | 324.8 | 1.134 |
|  | 25 | 11.81 | 11.81 | 6570 | 0.0868 | 0.0050 | 0.517 | 26.7 | 0.300 | 377.8 | 314.4 | 1.202 |
|  | 26 | 11.81 | 11.81 | 6570 | 0.0868 | 0.0050 | 0.517 | 26.7 | 0.500 | 200.9 | 238.6 | 0.842 |
| Roik Schwal'r (1988) | V11 | 11.02 | 11.02 | 6351 | 0.0434 | 0.0079 | 0.230 | 12.4 | 0.571 | 171.7 | 169.6 | 1.012 |
|  | V12 | 11.02 | 11.02 | 6351 | 0.0434 | 0.0079 | 0.230 | 12.4 | 0.214 | 366.3 | 373.3 | 0.981 |
|  | V13 | 11.02 | 11.02 | 6786 | 0.0434 | 0.0079 | 0.215 | 12.4 | 0.357 | 322.9 | 272.7 | 1.184 |
|  | V21 | 11.02 | 11.02 | 6786 | 0.0495 | 0.0079 | 0.333 | 12.4 | 0.357 | 338.2 | 321.8 | 1.051 |
|  | V22 | 11.02 | 11.02 | 5365 | 0.0495 | 0.0079 | 0.421 | 12.4 | 0.571 | 213.8 | 201.7 | 1.060 |
|  | V23 | 11.02 | 11.02 | 5365 | 0.0495 | 0.0079 | 0.421 | 12.4 | 0.214 | 437.2 | 388.9 | 1.124 |
|  | V31 | 11.02 | 11.02 | 5902 | 0.0996 | 0.0079 | 0.555 | 12.4 | 0.357 | 384.1 | 383.3 | 1.002 |
|  | V32 | 11.02 | 11.02 | 5902 | 0.0996 | 0.0079 | 0.555 | 12.4 | 0.214 | 506.9 | 501.2 | 1.011 |
|  | V33 | 11.02 | 11.02 | 5699 | 0.0996 | 0.0079 | 0.575 | 12.4 | 0.571 | 294.3 | 280.8 | 1.048 |
|  | V41 | 11.02 | 11.02 | 5699 | 0.1441 | 0.0079 | 0.796 | 12.4 | 0.357 | 477.7 | 422.9 | 1.130 |
|  | V42 | 11.02 | 11.02 | 6119 | 0.1441 | 0.0079 | 0.926 | 12.4 | 0.571 | 344.9 | 359.6 | 0.959 |
|  | V43 | 11.02 | 11.02 | 6119 | 0.1441 | 0.0079 | 0.995 | 12.4 | 0.214 | 614.9 | 650.6 | 0.945 |

NOTE : For e/h = inf., strength is given in kip-ft ( 1 kip-ft $=1.356 \mathrm{kN}-\mathrm{m}$ ).
For all other values of e/h, the strength is shown in kips ( $1 \mathrm{kip}=4.448 \mathrm{kN}$ ).
$\mathrm{b}=$ width of the concrete cross-section parrallel to the axis of bending;
$h=$ depth of the concrete cross-section perpendicular to the axis of bending.

The term $f_{y s s}$ was taken as the web yield strength for computing the $\rho_{s s} f_{y s s} /{ }^{\prime}{ }^{\prime}{ }_{c}$ ratio. The strain-hardening of both steels was included in the analysis.

* Excluded from final analysis.


For $\mathrm{e} / \mathrm{h}=$ inf., the strength is plotted in kip-ft.
For all other values of e/h, the strength is shown in kips.

Figure 3.1 - Comparison of tested strength to theoretical strength for beam-columns subjected to bending about the major axis of the steel section.

Table 3.2- Statistical Analysis of Ratios of Tested to Calculated Strength of all Composite beam-column specimens subjected to major axis bending (Strain-harding included).

| Column Type (1) | (2) | all $\mathrm{e} / \mathrm{h}$ <br> (3) | $0<=e / h<=0.2$ <br> (4) | $0.2<\mathrm{e} / \mathrm{h}<1$ <br> (5) | $0<=e / h<1$ <br> (6) | $\mathrm{e} / \mathrm{h}=\mathrm{inf} .$ (7) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Short } \\ & (\ell / h<6.6) \end{aligned}$ | No. | 40 | 20 | 4 | 24 | 16 |
|  | Mean | 1.02 | 1.02 | 1.16 | 1.04 | 0.98 |
|  | CV | 9.52 | 8.24 | 13.78 | 10.54 | 5.93 |
|  | Skew | 1.39 | 0.01 | 0.32 | 0.92 | 2.05 |
| $\begin{gathered} \text { Long } \\ (\ell / h=>6.6) \end{gathered}$ | No. | 41 | 8 | 33 | 41 | 0 |
|  | Mean | 1.06 | 1.01 | 1.08 | 1.06 | - |
|  | CV | 10.51 | 17.65 | 8.18 | 10.51 | - |
|  | Skew | -0.14 | 0.55 | -0.24 | -0.14 | - |
| All $\mathrm{e} / \mathrm{h}$ | No. | 81 | 28 | 37 | 65 | 16 |
|  | Mean | 1.04 | 1.02 | 1.09 | 1.06 | 0.98 |
|  | CV | 10.23 | 11.31 | 9.09 | 10.48 | 5.93 |
|  | Skew | 0.52 | 0.49 | 0.35 | 0.25 | 2.05 |

Table 3.3- Statistical Analysis of Ratios of Tested to Calculated Strength of all Composite beam-column specimens subjected to major axis bending for which strength ratio was less than or equal to 1.2 (Strain-hardening included).

| $\begin{gathered} \text { Column } \\ \text { Type } \\ \text { (1) } \\ \hline \hline \end{gathered}$ | (2) | all e/h (3) | $0<=\mathrm{e} / \mathrm{h}<=0.2$ <br> (4) | $0.2<\mathrm{e} / \mathrm{h}<1$ (5) | $0<=e / h<1$ (6) | $\mathrm{e} / \mathrm{h}=\mathrm{inf}$ $(7)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Short } \\ (\ell / h<6.6) \end{gathered}$ | No. | 39 | 20 | 3 | 23 | 16 |
|  | Mean | 1.01 | 1.02 | 1.09 | 1.03 | 0.98 |
|  | CV | 7.85 | 8.24 | 8.64 | 8.43 | 5.93 |
|  | Skew | 0.66 | 0.01 | 0.29 | 0.07 | 2.05 |
| Long$(\ell / h=>6.6)$ | No. | 37 | 6 | 31 | 37 | 0 |
|  | Mean | 1.04 | 0.92 | 1.07 | 1.04 | - |
|  | CV | 9.31 | 9.21 | 7.58 | 9.31 | - |
|  | Skew | -0.46 | 0.48 | -0.45 | -0.46 | - |
| All $\ell / \mathrm{h}$ | No. | 76 | 26 | 34 | 60 | 16 |
|  | Mean | 1.03 | 1.00 | 1.07 | 1.04 | 0.98 |
|  | CV | 8.71 | 9.32 | 7.57 | 8.94 | 5.93 |
|  | Skew | 0.06 | 0.02 | -0.38 | -0.28 | 2.05 |

ranges of end eccentricity ratio (e/h) as described in Table 3.2 .

The mean value for the ratio of tested to theoretical ultimate strength was 1.04 with a coefficient of variation of 10.23 percent when all 81 specimens were considered (Table 3.2 - Column 3). This is comparable with the mean value of 1.04 and coefficient of variation of 10.4 percent obtained by Skrabek and Mirza (1990) for 63 specimens analyzed by an earlier version of the same program. It is also comparable to a mean value of 1.04 and a coefficient of variation of 10.4 percent obtained by Virdi and Dowling (1973) for their analysis of 8 biaxially loaded composite columns.

Significant differences in the statistics for the four different ranges of end eccentricity ratio (Table 3.2 Columns 4,5,6, and 7) were noticed for certain cases. Long columns with low eccentricity ratios (e/h greater than or equal to zero and less than or equal to 0.2 ) have a greater coefficient of variation ( 17.65 percent) than the overall coefficient of variation (10.23 percent). For short columns with an intermediate eccentricity ratio (e/h greater than 0.2 and less than 1.0), the mean value (1.16) and the coefficient of variation ( 13.78 percent) obtained are both greater than the overall mean (1.041) and coefficient of variation (10.23).

It was decided, after successively removing data with relatively high strength ratios and recalculating the statistics, that the physical tests with a strength ratio
greater than 1.20 would not be included in the statistical analysis. Using this criteria, a total of five columns were removed from the statistical analysis: RS 80.2 and RS 100.1 from Bondale, RC3 from May and Johnson, A4-90 from Morino et al., and No. 25 from Roik and Mangerig. The strength ratio plotted against $e / h, \ell / h, \rho_{s S}$ and $\left(\rho_{S S}+\rho_{r s}\right)$ in Figures 3.2, $3.3,3.4$ and 3.5 , respectively, shows the relative location of the removed data with respect to the remaining data. Removing the five columns from the statistical analysis results in a marked improvement in the mean values and coefficient of variation for each of the $e / h$ ranges as well as for the overall statistics, except for the case of pure bending (e/h $=\infty)$. This can be seen by comparing the values in Table 3.3 to those shown in Table 3.2.

Column 6 in Table 3.3, where $e / h$ ranges from zero to 1.0 , is of specific interest since eccentricity ratios ranging from 0.05 to 1.0 were used to study the effective flexural stiffness (EI) of composite columns described in Chapter 5 and 6. Here, whether the columns are short, long or all lengths combined, the mean value and the coefficient of variation do not differ significantly. Based on the mean value and coefficient of variation determined for 60 columns with all $\ell / h$ included (Table 3.3 Column 6), a mean value of 1.04 and a coefficient of variation of 9 percent are recommended to describe the model error for beam-columns bending about the major axis of the steel section when $e / h \leq 1.0$.


Figure 3.2 - Effect of $e / h$ on strength ratios for beam-columns subjected to bending about the major axis of the steel section.


Figure 3.3 - Effect of $\ell / h$ on strength ratios for beam-columns subjected to bending about the major axis of the steel section.


Figure 3.4-Effect of $\rho_{s s}$ on strength ratios for beam-columns subjected to bending about the major axis of the steel section.


Figure 3.5 - Effect of ( $\rho_{S S}+\rho_{r S}$ ) on strength ratios for beamcolumns subjected to bending about the major axis of the steel section.

Pure bending (Column 7 in Table 3.3), where $e / h=\infty$, gives the lowest coefficient of variation (5.93 percent) compared to the other e/h ranges. The lower coefficient of variation is, probably, a result of the following:

1) The variation in concrete strength does not affect the pure bending strength as significantly as the strength under pure axial load or combined axial load and bending.
2) The laboratory test procedure for pure bending is not prone to as much experimental error as are those for axially loaded columns and columns subjected to axial load and bending.

The calculated ultimate strength considering the effect of strain hardening (Table 3.1) was compared to the calculated ultimate strength when strain hardening effect was not included (Table A2, Appendix A). Strain hardening was found to increase the predicted strength by about 20 percent for cases of pure flexure only and had little or no affect on the calculated strength of the remainder of the beam-column specimens.

The probability distribution of the strength ratios calculated for the sixty specimens (e/h $\leq 1.0$ ) is plotted on a normal probability paper in Figure 3.6 and is compared to a normal probability distribution using a suggested mean value of 1.04 and coefficient of variation of 9 percent. The data can be assumed to be normally distributed since the data closely follows the normal curve.


Figure 3.6 - Probability distribution of strength ratios
(test/theory $\leq 1.20$ ) of composite beam-column specimens
(Table 3.1 ) bending about the major axis with $0 \leq e / h \leq 1.0$.

### 3.2 COMPARISON OF THEORETICAL STRENGTH OF COLUMNS SUBJECTED TO MINOR AXIS BENDING TO EXPERIMENTAL RESULTS

The accuracy of the theoretical model for columns subjected to bending about the minor axis was initially checked against 164 physical tests from Stevens (1965), Bondale (1966), May and Johnson (1978), Janss and Anslijn (1974), Janss and Piraprez (1974), Roderick and Loke (1974), Morino et al. (1984), Roik and Mangerig (1987), and Roik and Schwalbenhofer (1988).

Table 3.4 outlines the material properties and specimen configurations, and gives ratio of tested to calculated ultimate strength (strength ratio) for the 164 specimens studied. A strength ratio was taken as the ratio of the bending moment strengths for $e / h=\infty$, and the ratio of the axial load capacities for $e / h<\infty$. Detailed descriptions of material properties and specimen configuration for each beamcolumn specimen are given in Table A3 of Appendix A. Figure 3.7 plots the tested strength of all 164 columns against the calculated theoretical strength.

The calculated mean, coefficient of variation and coefficient of skewness for strength ratios of all beam-column specimens listed in Table 3.4 are shown in Table 3.5. The statistical analysis shown in Table 3.5 was subdivided into two categories based on to the slenderness ratio $(\ell / h)$. The columns with $\ell / h$ less than 6.6 are assumed to be short columns and long columns are assumed to have $\ell / h$ greater than or equal

Table 3.4- Specimen Configuration for Composite Columns Subjected to Bending about the Minor Axis used for Ratio of Tested to Calculated Ultimate Strength.

| Author | Col. Desig. | $\begin{gathered} b \\ \text { (in.) } \end{gathered}$ | $\begin{gathered} \mathrm{h} \\ \text { (in.) } \end{gathered}$ | ${ }^{f^{\prime}{ }_{c}}{ }_{(\mathrm{psi})}$ | $\rho_{\text {ss }}$ | $\rho_{\text {rs }}$ | $\frac{\rho_{s s} f_{y s s}}{f_{c}^{\prime}}$ | $\ell / h$ | e/h | Tested Strength | Theor. Strength | Strength Ratio |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stevens | CV2 | 7.00 | 6.50 | 1115 | 0.1291 | 0.0000 | 4.175 | 12.6 | 0.115 | 134.4 | 98.0 | 1.3714 |  |
| (1965) | CV3 | 7.00 | 6.50 | 1900 | 0.1291 | 0.0000 | 2.450 | 12.6 | 0.115 | 161.3 | 110.6 | 1.4586 |  |
|  | CV4 | 7.00 | 6.50 | 2491 | 0.1291 | 0.0000 | 1.869 | 12.6 | 0.115 | 179.2 | 122.4 | 1.4636 |  |
|  | CV5 | 7.00 | 6.50 | 3058 | 0.1291 | 0.0000 | 1.523 | 12.6 | 0.115 | 201.6 | 134.5 | 1.4989 |  |
|  | CV6 | 7.00 | 6.50 | 3672 | 0.1291 | 0.0000 | 1.268 | 12.6 | 0.123 | 228.5 | 142.6 | 1.6025 |  |
|  | AE1 | 7.00 | 6.50 | 2046 | 0.1291 | 0.0000 | 2.275 | 4.3 | 0.154 | 165.8 | 137.4 | 1.2065 |  |
|  | AE2 | 7.00 | 6.50 | 2679 | 0.1291 | 0.0000 | 1.738 | 7.1 | 0.154 | 163.5 | 135.6 | 1.2056 |  |
|  | AE3 | 7.00 | 6.50 | 2566 | 0.1291 | 0.0000 | 1.814 | 12.6 | 0.154 | 141.1 | 105.9 | 1.3321 |  |
|  | AE4 | 7.00 | 6.50 | 2906 | 0.1291 | 0.0000 | 1.602 | 18.2 | 0.154 | 118.7 | 88.5 | 1.3409 |  |
|  | AE5 | 7.00 | 6.50 | 2305 | 0.1291 | 0.0000 | 2.020 | 23.7 | 0.154 | 98.6 | 63.2 | 1.5588 |  |
|  | AE6 | 7.00 | 6.50 | 2010 | 0.1291 | 0.0000 | 2.317 | 7.1 | 0.000 | 291.2 | 257.0 | 1.1333 |  |
|  | AE7 | 7.00 | 6.50 | 2083 | 0.1291 | 0.0000 | 2.235 | 7.1 | 0.077 | 224.0 | 176.8 | 1.2673 |  |
|  | AE8 | 7.00 | 6.50 | 2157 | 0.1291 | 0.0000 | 2.158 | 18.2 | 0.077 | 161.3 | 108.5 | 1.4860 |  |
|  | AE9 | 7.00 | 6.50 | 1467 | 0.1291 | 0.0000 | 3.174 | 23.7 | 0.231 | 78.4 | 44.6 | 1.7563 |  |
|  | AE10 | 7.00 | 6.50 | 1900 | 0.1291 | 0.0000 | 2.450 | 23.7 | 0.308 | 72.8 | 42.2 | 1.7263 | * |
|  | AE11 | 7.00 | 6.50 | 2305 | 0.1291 | 0.0000 | 2.020 | 16.6 | inf. | 20.9 | 19.4 | 1.0760 |  |
|  | FE1 | 16.00 | 12.00 | 2083 | 0.0996 | 0.0041 | 1.580 | 15.0 | 0.000 | 985.6 | 814.6 | 1.2099 | * |
|  | FE2 | 16.00 | 12.00 | 2268 | 0.0996 | 0.0041 | 1.451 | 15.0 | 0.000 | 1055.0 | 846.1 | 1.2470 | * |
|  | FE3 | 16.00 | 12.00 | 2083 | 0.0996 | 0.0041 | 1.580 | 15.0 | 0.083 | 672.0 | 479.5 | 1.4016 |  |
|  | FE4 | 16.00 | 12.00 | 1936 | 0.0996 | 0.0041 | 1.699 | 15.0 | 0.167 | 486.1 | 331.9 | 1.4645 | * |
|  | FE5 | 16.00 | 12.00 | 2454 | 0.0996 | 0.0041 | 1.341 | 15.0 | 0.167 | 515.2 | 365.7 | 1.4089 |  |
|  | FE6 | 16.00 | 12.00 | 2231 | 0.0996 | 0.0041 | 1.475 | 15.0 | 0.250 | 360.6 | 278.6 | 1.2943 |  |
|  | FE7 | 16.00 | 12.00 | 2231 | 0.0996 | 0.0041 | 1.475 | 15.0 | 0.333 | 295.7 | 234.9 | 1.2587 | * |
|  | FE8 | 16.00 | 12.00 | 2342 | 0.0996 | 0.0041 | 1.405 | 15.0 | 0.417 | 262.1 | 206.1 | 1.2717 |  |
|  | FE9 | 16.00 | 12.00 | 2268 | 0.0996 | 0.0041 | 1.451 | 15.0 | 0.500 | 230.7 | 178.9 | 1.2897 | * |
|  | FE10 | 16.00 | 12.00 | 2604 | 0.0996 | 0.0041 | 1.264 | 15.0 | 0.583 | 199.4 | 168.4 | 1.1836 |  |
|  | FE11 | 16.00 | 12.00 | 2529 | 0.0996 | 0.0041 | 1.301 | 15.0 | 0.667 | 168.0 | 149.9 | 1.1211 | * |
|  | FE12 | 16.00 | 12.00 | 2529 | 0.0996 | 0.0041 | 1.301 | 10.0 | inf. | 131.4 | 128.6 | 1.0219 |  |
|  | B1 | 5.00 | 3.50 | 2120 | 0.0674 | 0.0000 | 1.310 | 13.1 | 0.000 | 82.9 | 64.7 | 1.2802 | * |
|  | B2 | 5.00 | 3.50 | 1467 | 0.0674 | 0.0000 | 1.894 | 18.3 | 0.000 | 61.2 | 42.6 | 1.4352 | * |
|  | B3 | 5.00 | 3.50 | 1827 | 0.0674 | 0.0000 | 1.520 | 23.4 | 0.000 | 64.1 | 38.0 | 1.6881 | * |
|  | B4 | 5.00 | 3.50 | 1610 | 0.0674 | 0.0000 | 1.725 | 28.6 | 0.000 | 44.4 | 27.6 | 1.6070 | * |
|  | 85 | 5.00 | 3.50 | 2083 | 0.0674 | 0.0000 | 1.334 | 33.7 | 0.000 | 51.5 | 25.0 | 2.0649 | * |
|  | B6 | 5.00 | 3.50 | 1791 | 0.0674 | 0.0000 | 1.551 | 38.9 | 0.000 | 36.7 | 18.4 | 1.9922 |  |
|  | B7 | 5.00 | 3.50 | 2305 | 0.0674 | 0.0000 | 1.205 | 44.0 | 0.000 | 34.5 | 17.0 | 2.0244 | * |
|  | A1 | 7.00 | 6.50 | 1900 | 0.1291 | 0.0000 | 2.861 | 1.4 | 0.000 | 358.4 | 304.0 | 1.1791 |  |
|  | A2 | 7.00 | 6.50 | 1682 | 0.1291 | 0.0000 | 3.231 | 7.1 | 0.000 | 313.6 | 259.2 | 1.2099 | * |
|  | A3 | 7.00 | 6.50 | 1900 | 0.1291 | 0.0000 | 2.861 | 12.6 | 0.000 | 322.6 | 239.7 | 1.3456 | * |
|  | A4 | 7.00 | 6.50 | 2046 | 0.1291 | 0.0000 | 2.656 | 12.6 | 0.000 | 302.4 | 246.2 | 1.2282 | * |
|  | A5 | 7.00 | 6.50 | 1864 | 0.1291 | 0.0000 | 2.917 | 18.2 | 0.000 | 293.4 | 200.7 | 1.4623 |  |
|  | A6 | 7.00 | 6.50 | 2216 | 0.1291 | 0.0000 | 2.453 | 23.7 | 0.000 | 235.2 | 164.3 | 1.4314 | * |
|  | RE1a | 7.00 | 6.50 | 2010 | 0.1291 | 0.0000 | 2.814 | 18.2 | 0.000 | 300.2 | 214.7 | 1.3978 | * |
|  | RE1b | 7.00 | 6.50 | 1791 | 0.1291 | 0.0000 | 3.158 | 18.2 | 0.000 | 280.0 | 206.5 | 1.3558 | * |
|  | RE2a | 7.00 | 6.50 | 1900 | 0.1291 | 0.0000 | 2.976 | 18.2 | 0.000 | 275.5 | 217.4 | 1.2676 | * |
|  | RE2b | 7.00 | 6.50 | 2305 | 0.1291 | 0.0000 | 2.453 | 18.2 | 0.000 | 268.8 | 230.9 | 1.1640 | * |
|  | RE3a | 7.00 | 6.50 | 2231 | 0.1291 | 0.0043 | 2.535 | 18.2 | 0.000 | 313.6 | 271.9 | 1.1535 | * |
|  | RE3b | 7.00 | 6.50 | 1900 | 0.1291 | 0.0043 | 2.976 | 18.2 | 0.000 | 277.8 | 260.2 | 1.0674 | * |
|  | RE4a | 7.00 | 6.50 | 1973 | 0.1291 | 0.0000 | 2.866 | 18.2 | 0.000 | 271.0 | 209.5 | 1.2937 | * |
|  | RE4b | 7.00 | 6.50 | 1827 | 0.1291 | 0.0000 | 3.095 | 18.2 | 0.000 | 284.5 | 204.1 | 1.3936 | * |

Table 3.4 - Continued


## Table 3.4 - Continued

| Author | Col. Desig. | $\begin{gathered} \mathbf{b} \\ \text { (in.) } \end{gathered}$ | $\begin{gathered} h \\ \text { (in.) } \end{gathered}$ | $\begin{aligned} & f^{\prime}{ }_{c} \\ & (p s i) \end{aligned}$ | $\rho_{s s}$ | $\rho_{r s}$ | $\frac{\rho_{s s} f_{y s s}}{f^{\prime}{ }_{c}}$ | $\ell / h$ | e/h | Tested Strength | Theor. Strength | Strength Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Janss | 13.1 | 12.60 | 8.27 | 5574 | 0.0497 | 0.0067 | 0.352 | 11.6 | 0.190 | 269.1 | 277.3 | 0.9703 |
| Ansilin | 13.2 | 12.60 | 8.27 | 5207 | 0.0497 | 0.0067 | 0.377 | 11.7 | 0.190 | 234.0 | 264.6 | 0.8845 |
| (1974) | 13.3 | 12.60 | 8.27 | 5094 | 0.0497 | 0.0067 | 0.386 | 11.7 | 0.190 | 229.5 | 259.5 | 0.8846 |
| Janss | 1 | 12.60 | 8.27 | 4724 | 0.0497 | 0.0067 | 0.426 | 16.6 | 0.000 | 606.8 | 515.2 | 1.1779 |
| Piraprez | 3 | 12.60 | 8.27 | 4724 | 0.0497 | 0.0067 | 0.426 | 6.1 | 0.000 | 591.3 | 628.1 | 0.9414 |
| (1974) | 5 | 12.60 | 8.27 | 5161 | 0.0497 | 0.0067 | 0.390 | 16.6 | 0.000 | 617.9 | 544.3 | 1.1352 |
|  | 7 | 12.60 | 8.27 | 5161 | 0.0497 | 0.0067 | 0.390 | 6.1 | 0.000 | 646.4 | 665.6 | 0.9713 |
|  | 9 | 12.60 | 8.27 | 5534 | 0.0497 | 0.0067 | 0.364 | 16.6 | 0.000 | 428.0 | 568.8 | 0.7524 |
|  | 11 | 12.60 | 8.27 | 5534 | 0.0497 | 0.0067 | 0.364 | 6.1 | 0.000 | 461.3 | 697.6 | 0.6612 |
|  | 13 | 12.60 | 8.27 | 4992 | 0.0497 | 0.0067 | 0.403 | 20.4 | 0.000 | 419.2 | 478.9 | 0.8753 |
|  | 15 | 12.60 | 8.27 | 5110 | 0.0497 | 0.0067 | 0.394 | 20.4 | 0.000 | 441.2 | 484.5 | 0.9107 |
|  | 17 | 12.60 | 8.27 | 5043 | 0.0497 | 0.0067 | 0.399 | 20.4 | 0.000 | 437.0 | 481.4 | 0.9077 |
|  | 19 | 12.60 | 8.27 | 4741 | 0.0497 | 0.0067 | 0.425 | 11.8 | 0.000 | 575.8 | 599.4 | 0.9606 |
|  | 23 | 12.60 | 8.27 | 4573 | 0.0497 | 0.0067 | 0.440 | 11.8 | 0.000 | 600.1 | 586.3 | 1.0236 |
|  | 27 | 12.60 | 8.27 | 4108 | 0.0497 | 0.0067 | 0.490 | 11.8 | 0.000 | 551.7 | 549.4 | 1.0042 |
|  | 2 | 9.45 | 9.45 | 4724 | 0.0747 | 0.0079 | 0.622 | 14.5 | 0.000 | 518.6 | 521.3 | 0.9949 |
|  | 4 | 9.45 | 9.45 | 4724 | 0.0747 | 0.0079 | 0.622 | 5.3 | 0.000 | 522.9 | 615.4 | 0.8496 |
|  | 6 | 9.45 | 9.45 | 5161 | 0.0747 | 0.0079 | 0.570 | 14.5 | 0.000 | 538.4 | 549.2 | 0.9805 |
|  | 8 | 9.45 | 9.45 | 5161 | 0.0747 | 0.0079 | 0.570 | 5.3 | 0.000 | 545.0 | 646.8 | 0.8426 |
|  | 10 | 9.45 | 9.45 | 5534 | 0.0747 | 0.0079 | 0.531 | 14.5 | 0.000 | 481.1 | 572.6 | 0.8401 |
|  | 12 | 9.45 | 9.45 | 5534 | 0.0747 | 0.0079 | 0.531 | 5.3 | 0.000 | 503.1 | 660.6 | 0.7616 |
|  | 14 | 9.45 | 9.45 | 4992 | 0.0747 | 0.0079 | 0.589 | 17.8 | 0.000 | 403.9 | 479.1 | 0.8431 |
|  | 16 | 9.45 | 9.45 | 5110 | 0.0747 | 0.0079 | 0.575 | 17.8 | 0.000 | 533.9 | 484.1 | 1.1029 |
|  | 18 | 9.45 | 9.45 | 5043 | 0.0747 | 0.0079 | 0.583 | 17.8 | 0.000 | 472.3 | 481.3 | 0.9812 |
|  | 21 | 9.45 | 9.45 | 4741 | 0.0747 | 0.0079 | 0.620 | 10.3 | 0.000 | 573.8 | 593.5 | 0.9667 |
|  | 25 | 9.45 | 9.45 | 4573 | 0.0747 | 0.0079 | 0.643 | 10.3 | 0.000 | 547.2 | 580.9 | 0.9420 |
|  | 29 | 9.45 | 9.45 | 4108 | 0.0747 | 0.0079 | 0.716 | 10.3 | 0.000 | 448.0 | 545.2 | 0.8217 |
|  | 20 | 12.60 | 8.27 | 4741 | 0.0497 | 0.0067 | 0.425 | 11.7 | 0.190 | 269.1 | 248.0 | 1.0852 |
|  | 24 | 12.60 | 8.27 | 4573 | 0.0497 | 0.0067 | 0.440 | 11.7 | 0.190 | 231.8 | 241.5 | 0.9598 |
|  | 28 | 12.60 | 8.27 | 4108 | 0.0497 | 0.0067 | 0.490 | 11.7 | 0.190 | 236.0 | 224.3 | 1.0521 |
|  | 22 | 9.45 | 9.45 | 4741 | 0.0747 | 0.0079 | 0.620 | 10.2 | 0.167 | 264.8 | 275.5 | 0.9614 |
|  | 26 | 9.45 | 9.45 | 4573 | 0.0747 | 0.0079 | 0.643 | 10.2 | 0.167 | 218.5 | 269.5 | 0.8106 |
|  | 30 | 9.45 | 9.45 | 4108 | 0.0747 | 0.0079 | 0.716 | 10.2 | 0.167 | 280.1 | 251.4 | 1.1143 |
| Roderick | SE 1 | 8.00 | 7.00 | 3690 | 0.0525 | 0.0000 | 0.603 | 12.0 | 0.000 | 273.0 | 268.1 | 1.0184 |
| \& Loke | SE 2 | 8.00 | 7.00 | 4280 | 0.0525 | 0.0000 | 0.520 | 12.0 | 0.057 | 211.0 | 211.2 | 0.9993 |
| (1974) | SE 3 | 8.00 | 7.00 | 3910 | 0.0525 | 0.0000 | 0.569 | 12.0 | 0.114 | 129.0 | 139.7 | 0.9235 |
|  | SE 4 | 8.00 | 7.00 | 3880 | 0.0525 | 0.0000 | 0.551 | 12.0 | 0.000 | 264.0 | 275.3 | 0.9591 |
|  | SE 5 | 8.00 | 7.00 | 3710 | 0.0525 | 0.0000 | 0.576 | 12.0 | 0.057 | 195.0 | 188.4 | 1.0349 |
|  | SE 6 | 8.00 | 7.00 | 3280 | 0.0525 | 0.0000 | 0.730 | 12.0 | 0.114 | 108.0 | 122.1 | 0.8844 |
|  | SE 7 | 8.00 | 7.00 | 4200 | 0.0525 | 0.0000 | 0.491 | 12.0 | 0.214 | 88.0 | 88.3 | 0.9967 |
|  | SE 8 | 8.00 | 7.00 | 4140 | 0.0525 | 0.0000 | 0.500 | 12.0 | 0.000 | 290.0 | 285.8 | 1.0148 |
|  | SE 9 | 8.00 | 7.00 | 4580 | 0.0525 | 0.0000 | 0.453 | 17.1 | 0.029 | 201.0 | 213.6 | 0.9409 |
|  | SE10 | 8.00 | 7.00 | 4310 | 0.0525 | 0.0000 | 0.480 | 17.1 | 0.057 | 135.0 | 168.1 | 0.8031 |
|  | SE11 | 8.00 | 7.00 | 3250 | 0.0525 | 0.0000 | 0.690 | 17.1 | 0.114 | 88.0 | 92.2 | 0.9547 |
|  | SE12 | 8.00 | 7.00 | 4280 | 0.0525 | 0.0000 | 0.485 | 17.1 | 0.214 | 67.0 | 70.2 | 0.9543 |
|  | SE13 | 8.00 | 7.00 | 3070 | 0.0263 | 0.0000 | 0.368 | 12.0 | 0.000 | 180.0 | 192.9 | 0.9333 |
|  | SE14 | 8.00 | 7.00 | 2890 | 0.0263 | 0.0000 | 0.391 | 12.0 | 0.057 | 116.0 | 134.0 | 0.8659 |
|  | SE15 | 8.00 | 7.00 | 3810 | 0.0263 | 0.0000 | 0.296 | 12.0 | 0.114 | 108.0 | 126.3 | 0.8551 |

Table 3.4 - Continued

| Author | Col. Desig. | $\begin{gathered} \mathrm{b} \\ \text { (in.) } \end{gathered}$ | $\begin{gathered} \mathrm{h} \\ \text { (in.) } \end{gathered}$ | $\begin{aligned} & f^{\prime} c \\ & (p s i) \end{aligned}$ | $\rho_{\text {ss }}$ | ${ }^{\rho} \mathrm{rs}$ | $\frac{\rho_{s s}{ }^{f} y s s}{f^{\prime}{ }_{c}}$ | $\ell / h$ | e/h | Tested Strength | Theor. Strength | Strength Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Morino et al. (1984) | A4-90 | 6.30 | 6.30 | 3060 | 0.0870 | 0.0036 | 1.481 | 5.8 | 0.250 | 113.0 | 88.4 | 1.2791 |
|  | B4-90 | 6.30 | 6.30 | 3393 | 0.0870 | 0.0036 | 1.302 | 14.4 | 0.250 | 83.6 | 69.1 | 1.2090 |
|  | C4-90 | 6.30 | 6.30 | 3379 | 0.0870 | 0.0036 | 1.177 | 21.7 | 0.250 | 61.7 | 52.4 | 1.1773 |
|  | D4-90 | 6.30 | 6.30 | 3074 | 0.0870 | 0.0036 | 1.474 | 28.9 | 0.250 | 46.4 | 37.1 | 1.2502 |
|  | A8-90 | 6.30 | 6.30 | 4872 | 0.0870 | 0.0036 | 0.953 | 5.8 | 0.469 | 77.4 | 66.7 | 1.1608 |
|  | B8-90 | 6.30 | 6.30 | 4829 | 0.0870 | 0.0036 | 0.957 | 14.4 | 0.469 | 59.5 | 53.7 | 1.1068 |
|  | C8-90 | 6.30 | 6.30 | 3567 | 0.0870 | 0.0036 | 1.305 | 21.7 | 0.469 | 39.7 | 36.8 | 1.0779 |
|  | D8-90 | 6.30 | 6.30 | 3321 | 0.0870 | 0.0036 | 1.399 | 28.9 | 0.469 | 30.3 | 28.2 | 1.0759 |
| Roik Mangerig (1987) | 7 | 11.81 | 11.81 | 6570 | 0.0868 | 0.0050 | 0.517 | 10.0 | 0.100 | 1023.1 | 789.0 | 1.2967 |
|  | 8 | 11.81 | 11.81 | 6570 | 0.0868 | 0.0050 | 0.517 | 10.0 | 0.300 | 502.0 | 406.4 | 1.2352 |
|  | 9 | 11.81 | 11.81 | 6570 | 0.0868 | 0.0050 | 0.517 | 16.7 | 0.100 | 824.6 | 587.6 | 1.4034 |
|  | 10 | 11.81 | 11.81 | 6570 | 0.0868 | 0.0050 | 0.517 | 16.7 | 0.300 | 410.9 | 316.3 | 1.2989 |
|  | 11 | 11.81 | 11.81 | 6570 | 0.0868 | 0.0050 | 0.517 | 26.7 | 0.100 | 455.0 | 334.8 | 1.3588 |
|  | 12 | 11.81 | 11.81 | 6570 | 0.0868 | 0.0050 | 0.517 | 26.7 | 0.300 | 223.9 | 206.8 | 1.0827 |
| Roik Schwal'r (1988) | V102 | 11.02 | 11.02 | 5956 | 0.0495 | 0.0079 | 0.370 | 12.6 | 0.357 | 252.2 | 236.3 | 1.0674 |
|  | V111 | 11.02 | 11.02 | 6015 | 0.0495 | 0.0314 | 0.358 | 12.6 | 0.357 | 394.9 | 347.9 | 1.1351 |
|  | V112 | 11.02 | 11.02 | 6015 | 0.0495 | 0.0314 | 0.358 | 12.6 | 0.214 | 565.9 | 478.7 | 1.1822 |
|  | V113 | 11.02 | 11.02 | 6015 | 0.0495 | 0.0314 | 0.358 | 12.6 | 0.000 | 1032.8 | 1069.1 | 0.9660 |
|  | V121 | 11.02 | 11.02 | 6015 | 0.0434 | 0.0314 | 0.251 | 12.6 | 0.571 | 256.1 | 237.7 | 1.0772 |
|  | V122 | 11.02 | 11.02 | 6015 | 0.0434 | 0.0314 | 0.251 | 12.6 | 0.714 | 182.9 | 196.6 | 0.9305 |
|  | V123 | 11.02 | 11.02 | 6015 | 0.0434 | 0.0314 | 0.251 | 12.6 | 0.357 | 345.4 | 333.2 | 1.0367 |

NOTE : For $\mathrm{e} / \mathrm{h}=\mathrm{inf} .$, strength is given in kip-ft ( $1 \mathrm{kip}-\mathrm{ft}=1.356 \mathrm{kN}-\mathrm{m}$ ).
For all other values of e/h, the strength is shown in kips ( 1 kip $=4.448 \mathrm{kN}$ ).
$\mathrm{b}=$ width of the concrete cross-section parrallel to the axis of bending;
$h=$ depth of the concrete cross-section perpendicular to the axis of bending.
The term $f_{y s s}$ was taken as the web yield strength for computing the $\rho_{s s} f_{y s s}{ }^{\prime} f_{c}{ }_{c}$ ratio.
The strain-hardening of both steels was included in the analysis.

* Excluded from final analysis.


For $\mathrm{e} / \mathrm{h}=$ inf., the strength is plotted in kip-ft.
For all other values of e/h, the strength is shown in kips.

Figure 3.7 - Comparison of tested strength to theoretical strength for beam-columns subjected to bending about the minor axis of the steel section.

Table 3.5- Statistical Analysis of Ratios of Tested to Calculated Strength of all Composite beam-column specimens subjected to minor axis bending (Strain-hardening included).

| Column Type (1) | (2) | all e/h (3) | $0<=e / h<=0.2$ | $\begin{equation*} 0.2<\mathrm{e} / \mathrm{h}<1 \tag{6} \end{equation*}$ | $0<=e / h<1$ | $\mathrm{e} / \mathrm{h}=\mathrm{inf} .$ <br> (7) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gather*} \text { Short }  \tag{5}\\ (\ell / h<6.6) \end{gather*}$ | No. | 15 | 13 | 2 | 15 | - |
|  | Mean | 1.00 | 0.96 | 1.22 | 1.00 | - |
|  | CV | 18.43 | 17.73 | 6.86 | 18.43 | - |
|  | Skew | -0.09 | 0.02 | 0.00 | -0.09 | - |
| Long$(\ell / h=>6.6)$ | No. | 149 | 119 | 28 | 147 | 2 |
|  | Mean | 1.12 | 1.10 | 1.18 | 1.12 | 1.05 |
|  | CV | 22.87 | 24.40 | 15.92 | 23.00 | 3.65 |
|  | Skew | 1.19 | 1.22 | 1.62 | 1.17 | 0.00 |
| All $\ell / \mathrm{h}$ | No. | 164 | 132 | 30 | 162 | 2 |
|  | Mean | 1.11 | 1.09 | 1.19 | 1.11 | 1.05 |
|  | CV | 22.77 | 24.25 | 15.41 | 22.88 | 3.65 |
|  | Skew | 1.18 | 1.25 | 1.62 | 1.17 | 0.00 |

to 6.6. The data was further categorized into four ranges of end eccentricity ratio (e/h) as described in Table 3.5.

The mean value for the ratio of tested to theoretical ultimate strength was 1.11 with a coefficient of variation of 22.77 percent when all 164 specimens were considered (Table 3.5 - Column 3). These values do not correlate to the mean value of 1.04 and coefficient of variation of 10.23 percent obtained for the 81 beam-column specimens subjected to the major axis bending and analyzed in the section 3.1.

A review of the strength ratios in Table 3.4 shows Stevens' test data to be overly conservative with a wide variation in strength ratios ranging from 1.04 to 2.06. A parametric study of the data was then carried out using different variables. The purpose was to compare the strength ratios obtained from Stevens' data to those obtained for the data of the other authors. Figures 3.8, 3.9, 3.10, and 3.11 plot the strength ratios for Stevens' data and the rest of the data against $e / h, \ell / h, f^{\prime}{ }_{c}$, and $\rho_{s s} f_{y s s} / f^{\prime}{ }_{c}$, respectively, where $\rho_{s s}=$ the structural steel ratio, and $f_{y s s}=$ the yield strength of the structural steel. Comparisons of Figures 3.8 (a) and (b), 3.9(a) and (b), 3.10(a) and (b), and 3.11(a) and (b) indicate that Stevens' data is consistently different from the others. Stevens' 54 specimens alone gave a mean value of 1.36 and a coefficient of variation of 17.09 percent. This is significantly different from a mean value of 0.98 and a coefficient of variation of 14.34 percent obtained for the


Figure 3.8 - Effect of $e / h$ on strength ratios for (a) Stevens' data and (b) data of other authors.


Figure 3.9 - Effect of $\ell / h$ on strength ratios for (a) Stevens' data and (b) data of other authors.


Figure 3.10 - Effect of $f^{\prime} c$ on strength ratios for (a) Stevens' data and (b) data of other authors.


Figure 3.11 - Effect of $\rho_{s s^{\prime}} f_{y s s} / f^{\prime}{ }_{c}$ on strength ratios for (a) Stevens' data and (b) data of other authors.
remaining 110 specimens.
Basu (1966) used 26 of Stevens' column specimens (CV, AE, and FE series in Table 3.4) and found that using a factor of 0.8 instead of 0.67 to obtain equivalent cylinder strength from a 4 -inch cube gave 10 percent better agreement with his theoretical model. Roderick and Rogers (1969) on the other hand, analyzed Stevens' twelve specimens from FE series (Table 3.4) and suggested that the yield strength of $32.9 \mathrm{ksi}(227$ MPa) reported by Stevens' for the 12 -inch by 6-inch structural steel section is somewhat low in comparison to the nominal yield strength of $35.8 \mathrm{ksi}(247 \mathrm{MPa})$ specified for that section.

Figure 3.10 (a) shows that the concrete strength $f^{\prime}{ }_{c}$ for almost all of Stevens' specimens is less than 3000 psi. This indicates an apparent problem either with obtaining an equivalent cylinder strength using Equation 3.2 and 3.3 or with the cube test data reported by Stevens. The latter is suspected to contribute to the problem, because Equation 3.2 and 3.3 were used to convert the cube strength to the cylinder strength for many of the remaining specimens and gave reasonable results.

Other problems that were encountered in determining the material properties and cross-section configuration for the test specimens reported by Stevens' data are summarized below:

1) The specified length of some of the specimens was unclear.
2) Information regarding the reinforcement was insufficient with respect to quantity, position, and yield strength.
3) The way the concrete strength was determined from cubes was unclear (cube tested parallel or perpendicular to the direction of casting).
4) Two sets of concrete cubes were cast, one set stored with the beam-column specimens and the other stored in water, gave significantly different results.

Stevens' data indicates that the theoretical model is quite conservative. More favourable results could have been obtained if the water stored cube strengths were multiplied by a factor of 0.8 to obtain an equivalent cylinder strength rather than using the approximately 0.67 times the strength obtained from the cubes stored with the test specimens. Consequently, it was decided that it would be acceptable not to use Stevens' data in this study, with the exception of the two tests in pure flexure (AE11 and FE12 in Table 3.4). Flexural tests results were retained because the strength is not as significantly affected by concrete strength and unsupported length as is in the case of beam-columns subjected to combined axial load and bending. A plot of tested strength versus theoretical strength for the remaining 112 specimens is shown in Figure 3.12 .

The statistics for strength ratios of the remaining 112 specimens resulted in a mean value of 0.98 and a coefficient of variation of 14.23 percent (Table 3.6 - Column 3). This


For $\mathrm{e} / \mathrm{h}=$ inf., the strength is plotted in kip-ft.
For all other values of $\mathrm{e} / \mathrm{h}$, the strength is shown in kips.

Figure 3.12 - Comparison of tested strength to theoretical strength for beam-columns subjected to minor axis bending other than those tested by Stevens in which $e / h \leq \infty$.

Table 3.6- Statistical Analysis of Ratios of Tested to Calculated Strengths for Composite beam-columns subjected to minor axis bending other than those tested by Stevens in which $\mathrm{e} / \mathrm{h}<$ inf. (Strain-hardening included).

| Column Type (1) | (2) | all e/h (3) | $0<=e / h<=0.2$ <br> (4) | $0.2<\mathrm{e} / \mathrm{h}<1$ (5) | $0<=e / h<1$ <br> (6) | $\mathrm{e} / \mathrm{h}=\mathrm{inf} .$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Short } \\ (\ell / h<6.6) \end{gathered}$ | No. | 11 | 9 | 2 | 11 | - |
|  | Mean | 0.93 | 0.87 | 1.22 | 0.93 | - |
|  | CV | 18.57 | 12.29 | 6.86 | 18.57 | - |
|  | Skew | 0.48 | -0.58 | 0.00 | 0.48 | - |
| Long$(\ell / h=>6.6)$ | No. | 101 | 79 | 20 | 99 | 2 |
|  | Mean | 0.99 | 0.95 | 1.11 | 0.99 | 1.05 |
|  | CV | 13.73 | 13.20 | 9.05 | 13.85 | 3.65 |
|  | Skew | 0.48 | 0.86 | 0.00 | 0.51 | 0.00 |
| All $\ell / \mathrm{h}$ | No. | 112 | 88 | 22 | 110 | 2 |
|  | Mean | 0.98 | 0.95 | 1.12 | 0.98 | 1.05 |
|  | CV | 14.23 | 13.35 | 9.14 | 14.34 | 3.65 |
|  | Skew | 0.43 | 0.77 | -0.07 | 0.46 | 0.00 |

Table 3.7-Statistical Analysis of Ratios of Tested to Calculated Strengths for Composite beam-column specimens subjected to minor axis bending for which the strength ratio ranged from 0.8 to 1.2 (Strain-hardening included).

| Column Type (1) | (2) | all e/h (3) | $0<=e / h<=0.2$ | $0.2<\mathrm{e} / \mathrm{h}<1$ <br> (5) | $0<=e / h<1$ (6) | $\mathrm{e} / \mathrm{h}=\mathrm{inf} .$ <br> (7) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Short } \\ (\ell / h<6.6) \end{gathered}$ | No. | 8 | 7 | 1 | 8 | - |
|  | Mean | 0.94 | 0.91 | 1.16 | 0.94 | - |
|  | CV | 11.02 | 6.70 | - | 11.02 | - |
|  | Skew | 0.88 | 0.09 | - | 0.88 | - |
| Long$(\ell / h=>6.6)$ | No. | 87 | 71 | 14 | 85 | 2 |
|  | Mean | 0.97 | 0.95 | 1.07 | 0.97 | 1.05 |
|  | CV | 9.26 | 8.46 | 7.26 | 9.30 | 3.65 |
|  | Skew | 0.26 | 0.32 | -0.21 | 0.30 | 0.00 |
| All $\ell / \mathrm{h}$ | No. | 95 | 78 | 15 | 93 | 2 |
|  | Mean | 0.97 | 0.95 | 1.07 | 0.97 | 1.05 |
|  | CV | 9.39 | 8.38 | 7.30 | 9.42 | 3.65 |
|  | Skew | 0.32 | 0.36 | -0.30 | 0.37 | 0.00 |

compares reasonably well with the mean value of 1.04 and $a$ coefficient of variation of 10.23 percent obtained for strength ratios of 81 beam-column specimens subjected to major axis bending and analyzed in the Section 3.1. This also compares with the mean value of 1.04 and coefficient of variation of 10.4 percent obtained by Virdi and Dowling (1973) for eight biaxially loaded composite columns.

Differences in statistics for the four different ranges of end eccentricity ratio (Table 3.6 Columns 4, 5, 6, and 7) and the overall statistics (Table 3.6 Column 3) are significant for some cases. For short columns with low to intermediate eccentricity ratios (Columns 4, 5 and 6 in Table 3.6), the mean value and coefficient of variation fluctuate considerably for each range of end eccentricity ratio. Long columns with intermediate eccentricity ratios (Column 5 in Table 3.6) have a much higher mean value than the overall mean value.

It was decided that all data with a strength ratio greater than 1.20 or less than 0.8 be excluded from the final analysis. This is consistent with what was done for the calibration of the theoretical model for beam-columns subjected to major axis bending and described in section 3.1. Using this criteria, a total of 17 specimens were removed from the final statistical analysis: RS 60.3 from Bondale; 3.2, 8.1, 8.2 and 8.3 from Janss and Anslijn; 9, 11 and 12 from Janss and Piraprez; A4-90, B4-90 and D4-90 from Morino et al.;
and all 6 beam-column specimens from Roik and Mangerig. All tests from Roik and Mangerig were excluded since five out of six of these tests were outside the limits of 0.8 and 1.2 . The strength ratios plotted against $e / h, \ell / h, \rho_{s s}$, and $\rho_{s s}+\rho_{r s}$ in Figures $3.13,3.14,3.15$ and 3.16 , respectively, show the relative locations of the excluded data with respect to the remaining data. The resulting statistics in Table 3.7 of the remaining 95 specimens shows a marked improvement in the mean value and coefficient of variation for each of the e/h ranges as well as for the overall statistics over the values shown in Table 3.6.

Column 6 in Table 3.7 , where $e / h$ ranges from zero to 1.0 , is of specific interest since eccentricity ratios ranging from 0.05 to 1.0 were used to study the effective flexural stiffness (EI) of composite columns described in Chapters 5 and 6. Here, whether the columns are short, long or all lengths combined, the mean value and the coefficient of variation do not differ significantly. Based on the mean value and coefficient of variation, determined for 93 columns with all $\ell / h$ included (Table 3.7 Column 6), a mean value of 1.0 with a coefficient of variation of 10 percent are recommended to describe the model error for beam-columns bending about the minor axis of the steel section when $e / h \leq$ 1.0.

Pure bending (Column 7 in Table 3.7), where $e / h=\infty$, gives the lowest coefficient of variation ( 3.65 percent)


Figure 3.13 - Effect of $e / h$ on strength ratios for beamcolumns subjected to bending about the minor axis of the steel section.


Figure 3.14 - Effect of $\ell / h$ on strength ratios for beamcolumns subjected to bending about the minor axis of the steel section.


Figure 3.15 - Effect of $\rho_{s s}$ on strength ratios for beamcolumns subjected to bending about the minor axis of the steel section.


Figure 3.16 - Effect of $\left(\rho_{s s}+\rho_{r s}\right)$ on strength ratios for beam-columns subjected to bending about the minor axis of the steel section.
compared to the other e/h ranges. This is the same trend exhibited by beam-columns subjected to pure bending about the major axis described in Section 3.1.

The calculated ultimate strength considering the effect of strain-hardening was compared to the calculated ultimate strength when strain hardening was not included. Strain hardening was found to have no affect on the calculated strength of the beam-columns when $e / h<\infty$. Strain hardening had some effect on the strength of beam-columns subjected to pure bending. The resulting calculated ultimate bending strength without the effect of strain-hardening for each of Stevens' two beam-columns, AE11 and FE12, are 17.63 kip-ft and 127.4 kip-ft, respectively.

The probability distribution of the strength ratios calculated for the 93 specimens $(e / h \leq 1.0)$ is plotted on a normal probability paper in Figure 3.17 and is compared to a normal probability distribution using the suggested mean value of 1.00 and coefficient of variation of 10 percent. The data can be assumed to be normally distributed since the data closely follows the normal curve.


## 4-ACI AND AISC FLEXURAL STIFENESSES

### 4.1 ACI CODE EFFECTIVE FLEXURAL STIFFNESS

Equation 4.1 is specified by the ACI Building Code (1989) and CSA Code A23.3 (1984) to determine the effective flexural stiffness of slender composite columns subjected to short term loading.

$$
\begin{equation*}
E I=0.2 E_{C} I_{g}+E_{S} I_{s S} \tag{4.1}
\end{equation*}
$$

In the above equation, $E_{C}$ is the modulus of elasticity for concrete, $I_{g}$ is the moment of inertia for the gross concrete cross section, $E_{S}$ is the modulus of elasticity for steel, and $I_{s s}$ is the moment of inertia of the structural steel shape taken about the centroidal axis of the composite crosssection.

### 4.2 AISC-LRFD CODE EFFECTIVE FLEXURAL STIFFNESS

The AISC LRFD-Specification (AISC Code 1986) for the design of Structural Steel Buildings does not compute the effective flexural stiffness (EI) of a composite beam-column as does the ACI code. The procedure, described in detail later in this section, was developed to obtain effective flexural stiffness from the AISC interaction equations. The $A I S C$ EI so computed is comparable to the $A C I E I$ and theoretical EI.

First, the equations given in the AISC Code (1986) were rearranged to establish axial load-bending moment ( $P-M$ ) relationships for slender beam-column strength and cross-
section strength. The bending moment from each of the two interaction diagrams for a given axial load level was then computed and used to determine the AISC moment magnification factor, similar to the one described in the ACI code. Finally, the moment magnification equation, given in the $A C I$ Building Code, was rearranged to solve for AISC EI. The procedure outlined above simply uses the ACI moment magnifier approach in reverse order and the AISC interaction equations for composite columns.

### 4.2.1 AISC Axial Load-Bending Moment Relationship

The AISC Code (Chapter H) limits the strength interaction for structural steel members subjected to combined axial load and bending moment according to Equation 4.2 and 4.3.

For $\frac{P_{u}}{\phi_{C} P_{n}} \geq 0.2$

$$
\begin{equation*}
\frac{P_{u}}{\phi_{c} P_{n}}+\frac{8}{9}\left(\frac{M_{u x}}{\phi_{b} M_{n x}}+\frac{M_{u Y}}{\phi_{b} M_{n y}}\right) \leq 1.0 \tag{4.2}
\end{equation*}
$$

For $\frac{P_{u}}{\phi_{C} P_{n}}<0.2$

$$
\begin{equation*}
\frac{P_{u}}{2 \phi_{c} P_{n}}+\left(\frac{M_{u x}}{\phi_{b} M_{n x}}+\frac{M_{u y}}{\phi_{b} M_{n y}}\right) \leq 1.0 \tag{4.3}
\end{equation*}
$$

The modifications required in these equations to obtain the strength interaction for composite columns are described later
in this section. Essentially, Equations 4.2 and 4.3 can be used to describe the axial load-bending moment interaction relationship for a beam-column of any length $\ell$.

In Equations 4.2 and $4.3, P_{u}$ is the required compressive strength in kips; $P_{n}$ is the nominal compressive strength in kips for a column of length $\ell$ determined in accordance with Section E2 of the AISC Code; $M_{u}$ is the required flexural strength calculated including the second order effects; $M_{n}$ is the nominal flexural strength of the cross section; $\phi_{C}$ and $\phi_{b}$ are resistance factors for compression and bending. In this study the major and minor axis bending cases were each considered separately and the resistance factors were set equal to 1.0. Equation 4.2 and 4.3 take the following form:

$$
\begin{array}{ll}
\text { For } \frac{P_{u}}{P_{n}} \geq 0.2 & \frac{P_{u}}{P_{n}}+\frac{8}{9}\left(\frac{M_{u}}{M_{n}}\right) \leq 1.0 \\
\text { For } \frac{P_{u}}{P_{n}}<0.2 & \frac{P_{u}}{2 P_{n}}+\left(\frac{M_{u}}{M_{n}}\right) \leq 1.0 \tag{4.5}
\end{array}
$$

Schematic P-M interaction curves resulting from Equations 4.4 and 4.5 for bending about one axis are given in Figure 4.1.

The nominal compressive strength $\left(P_{n}\right)$ for a steel column is defined in Chapter $E$ (Section E2) of the AISC Code as:

$$
\begin{equation*}
P_{n}=A_{g} F_{C r} \tag{4.6}
\end{equation*}
$$

For $\lambda_{C} \leq 1.5 \quad F_{C r}=\left(0.658^{\lambda_{c}^{2}}\right) F_{y}$


## BENDING MOMENT

Figure 4.1 - Schematic cross-section and column axial loadbending moment ( $P-M$ ) interaction diagrams developed from AISC interaction equations for beam-columns bending about one axis of the steel section.

$$
\begin{array}{ll}
\text { For } \lambda_{C}>1.5 & F_{C r}=\left[\frac{0.877}{\lambda_{C}^{2}}\right] F_{Y} \\
\text { and } & \lambda_{c}=\frac{K \ell}{r \pi} \sqrt{\frac{F_{y}}{E}} \tag{4.9}
\end{array}
$$

in which $A_{g}$ is the gross cross section area of the steel member, in. ${ }^{2} ; F_{y}$ is the specified yield strength, ksi; $E$ is the modulus of elasticity, ksi; $K$ is the effective length factor, which was taken equal to 1.0 for this study; $\ell$ is the unbraced length, inches; and $r$ is the governing radius of gyration about the plane of buckling, inches.

For structures designed on the basis of first-order elastic analysis, Equation 4.10 is used (in lieu of secondorder analysis) to obtain the required flexural moment ( $M_{u}$ ) that accounts for the second-order effects of column length and lateral translation.

$$
\begin{equation*}
M_{u}=B_{1} M_{n t}+B_{2} M_{\ell t} \tag{4.10}
\end{equation*}
$$

where $B_{1}$ is a moment magnifier to account for second-order length effects and is described by Equation 4.11 and $M_{n t}$ is the required flexural strength (kip-in.) in a member assuming no lateral translation of the frame.

$$
\begin{equation*}
B_{1}=\frac{C_{m}}{1-\frac{P_{u}}{P_{e}}} \geq 1.0 \tag{4.11}
\end{equation*}
$$

The product of the moment magnifier $B_{2}$ and $M_{l t}$, the required flexural strength for the member due to lateral translation of
the frame, were equal to zero because lateral translation was not considered in this study. In Equation 4.11, the coefficient $C_{m}=0.6-0.4\left(M_{1} / M_{2}\right)$ accounts for end moment conditions for compression members braced against lateral translation. $M_{1} / M_{2}$ is the ratio of the smaller bending moment to the larger bending moment acting at opposite ends of the unbraced length and in the plane of bending being considered. For single curvature bending, $M_{1}$ and $M_{2}$ are equal and opposite and, therefore, $C_{m}$ becomes equal to 1.0. Finally, $P_{e}$ is defined by the equation:

$$
\begin{equation*}
P_{e}=\frac{A_{g} F_{y}}{\lambda_{C}^{2}} \tag{4.12}
\end{equation*}
$$

In the present form, Equations 4.2 through 4.12, described above are for structural steel beam-columns. To obtain the design strength of a composite beam-column, the AISC Code modifies the properties of the structural steel according to the following provisions:
(a) Replace $A_{g}$ with $A_{s}$, the area of the gross steel shape.
(b) Replace $r$ with $r_{m}$, the greater of the radius of gyration of the steel shape or 0.3 times the overall depth of the composite section in the plane of buckling.
(c) Replace $F_{y}$ with a modified yield stress $F_{m y}$ and replace $E$ with a modified modulus of elasticity $E_{m}$, as describedby Equations 4.13 and 4.14 .

$$
\begin{gather*}
F_{m y}=F_{y}+c_{1} F_{y r}\left(A_{r} / A_{S}\right)+c_{2} f_{C}^{\prime}\left(A_{C} / A_{S}\right)  \tag{4.13}\\
E_{m}=E+c_{3} E_{C}\left(A_{C} / A_{S}\right) \tag{4.14}
\end{gather*}
$$

in which $A_{C}$ is the area of concrete, in. ${ }^{2} ; A_{r}$ is the area of the longitudinal reinforcing bars, in. ${ }^{2}$; $A_{s}$ is the area of the steel section, in. ${ }^{2} ; E$ is the modulus of elasticity for steel, ksi; $E_{C}$ is the Modulus of elasticity for concrete calculated as $57000 \sqrt{f_{c}^{\prime}}, \mathrm{ksi} ; F_{y}$ is the specified yield strength of the steel shape, ksi; $F_{y r}$ is the specified yield strength of the longitudinal reinforcing bars, ksi; $f^{\prime}{ }_{c}$ is the specified compressive strength of the concrete, ksi; and coefficients $c_{1}, c_{2}$ and $c_{3}$ are equal to $0.7,0.6$, and 0.2 respectively.
(d) The nominal flexural strength $\left(M_{n}\right)$ is calculated using Equation 4.15 described in Chapter I (Section I4) of the AISC Code.
$M_{n}=M_{p}=Z F_{y}+\frac{1}{3}\left(h_{2}-2 C_{r}\right) A_{r} F_{y r}+\left(\frac{h_{2}}{2}-\frac{A_{w} F_{y}}{1.7 f_{C}^{\prime} h_{1}}\right) A_{w} F_{y}$
This is an approximate formula obtained from the plastic stress distribution for the composite section. In Equation 4.15, $A_{w}$ is the web area of the encased steel shape, in. ${ }^{2} ; Z$ is the plastic section modulus of the steel section, in. ${ }^{3} ; c_{r}$ is the average distance from the compression face to longitudinal reinforcement in that face and distance from tension face to longitudinal
reinforcement in the face, inches; $h_{1}$ is the width of the cross section parallel to the axis of bending, inches; and $h_{2}$ is the depth of the cross section perpendicular to the axis of bending, inches.

Substituting Equation 4.10 and then Equation 4.11 into Equations 4.4 and 4.5 yields:

$$
\text { For } \frac{P_{u}}{P_{n}} \geq 0.2
$$

$$
\begin{equation*}
\frac{P_{u}}{P_{n}}+\frac{8}{9}\left(\frac{M_{n t}}{M_{n}\left(1-\frac{P_{u}}{P_{e}}\right)}\right) \leq 1.0 \tag{4.16}
\end{equation*}
$$

For $\frac{P_{u}}{P_{n}}<0.2$,

$$
\begin{equation*}
\frac{P_{u}}{2 P_{n}}+\left(\frac{M_{n t}}{M_{n}\left(1-\frac{P_{u}}{P_{e}}\right)}\right) \leq 1.0 \tag{4.17}
\end{equation*}
$$

Instead of generating a series of values to determine the $P-M$ relationship and then interpolating for a desired end eccentricity ratio (e/h), a closed form solution was used. In the present form, Equations 4.16 and 4.17 cannot be readily solved using simple algebraic manipulation since each equation has two unknowns, $M_{n t}$ and $P_{u}$. Knowing the value of end eccentricity (e) from the desired e/h ratio, the term $P_{u}$ times $e$ was substituted for $M_{n t}$ into Equations 4.16 and 4.17, leaving each equation with only one unknown variable $\left(P_{u}\right)$ in

Equation 4.18 and 4.19.

For $\frac{P_{u}}{P_{n}} \geq 0.2$

$$
\begin{equation*}
\frac{P_{u}}{P_{n}}+\frac{8}{9}\left(\frac{P_{u} e}{M_{n}\left(1-\frac{P_{u}}{P_{e}}\right)}\right)=1.0 \tag{4.18}
\end{equation*}
$$

For $\frac{P_{u}}{P_{n}}<0.2$

$$
\begin{equation*}
\frac{P_{u}}{2 P_{n}}+\left(\frac{P_{u} e}{M_{n}\left(1-\frac{P_{u}}{P_{e}}\right)}\right)=1.0 \tag{4.19}
\end{equation*}
$$

Both sides of Equations 4.18 and 4.19 were then multiplied by (1 $-P_{u} / P_{e}$ ) to give:

For $\frac{P_{u}}{P_{n}} \geq 0.2$

$$
\begin{equation*}
\frac{P_{u}}{P_{n}}-\frac{P_{u}^{2}}{P_{n} P_{e}}+\frac{8}{9} \frac{P_{u} e}{M_{n}}=1.0-\frac{P_{u}}{P_{e}} \tag{4.20}
\end{equation*}
$$

For $\frac{P_{u}}{P_{n}}<0.2$

$$
\begin{equation*}
\frac{P_{u}}{2 P_{n}}-\frac{P_{u}^{2}}{2 P_{n} P_{e}}+\frac{P_{u} e}{M_{n}}=1.0-\frac{P_{u}}{P_{e}} \tag{4.21}
\end{equation*}
$$

Rearranging Equations 4.20 and 4.21, gathering terms of $P_{u}$ and multiplying through by -1.0 results in the following
expressions:

For $\frac{P_{u}}{P_{n}} \geq 0.2$

$$
\begin{equation*}
\left(\frac{1}{P_{n} P_{e}}\right) P_{u}^{2}+\left(-\frac{1}{P_{n}}-\frac{8}{9} \frac{e}{M_{n}}-\frac{1}{P_{e}}\right) P_{u}+(1.0)=0 \tag{4.22}
\end{equation*}
$$

For $\frac{P_{u}}{P_{n}}<0.2$

$$
\begin{equation*}
\left(\frac{1}{2 P_{n} P_{e}}\right) P_{u}^{2}+\left(-\frac{1}{2 P_{n}}-\frac{e}{M_{n}}-\frac{1}{P_{e}}\right) P_{u}+(1.0)=0 \tag{4.23}
\end{equation*}
$$

in which $e$ is calculated from the desired $e / h$ ratio and is an input to Equations 4.22 and $4.23 ; P_{n}, P_{e}$ and $M_{n}$ are values that can be readily determined using the equations stated earlier and the given cross-section properties and column length. Equations 4.22 and 4.23 are in the form of a general quadratic equation: $a x^{2}+b x+c=0$, where $x=P_{u}$ and $a, b$ and $c$ are the constants indicated within parentheses in Equations 4.22 and 4.23. The solution for a general quadratic equation shown below was then used to determine $P_{u}$ :

$$
\begin{equation*}
P_{u}=x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{4.24}
\end{equation*}
$$

Equation 4.24 gives two solutions due to the plus and minus signs used in the numerator of the equation. It wasdetermined that the minus sign gives the correct solution because the other solution (with a plus sign) for $P_{u}$ is
greater than the pure axial load capacity of the cross-section ( $\ell=0$ ).

Equations $4.22,4.23$ and 4.24 were used to solve for the axial load $P_{u}$ for each desired eccentricity for a slender column. $M_{n t}\left(M_{c o l}\right)$ was then taken equal to $P_{u}$ times e. To maintain consistency with the terms in Section $2.1, M_{c o l}$ was used to represent the overall slender column bending moment capacity and $M_{C S}$ to represent the cross-section bending moment capacity. $P_{u}$ was then substituted into either equation 4.16 or 4.17 depending on the ratio of $P_{u} / P_{n}$, the column length was set equal to zero, $M_{C S}$ was used to replace $M_{n t}$, and the equation was rearranged to solve for $M_{C S}$. Note that for a cross-section (column of length zero) $P_{e}$ tends to infinity. Therefore, $P_{u} / P_{e}$ becomes zero, making the solution a matter of simple algebra.

### 4.2.2 Computation of AISC Effective Flexural Stiffness

To facilitate a direct comparison to the ACI method of determining the effective flexural stiffness, it was determined that an equivalent moment magnification factor, similar to the one utilized by the ACI Code, could be computed from the interaction diagrams and formulation described in Section 4.2.1.

The ACI magnified factored moment $M_{C}$ is defined by

$$
\begin{equation*}
M_{c}=\delta_{b} M_{2 b}+\delta_{s} M_{2 s} \tag{4.25}
\end{equation*}
$$

Equation 4.25 is identical to Equation 4.10 taken from the

AISC Code. In Equation $4.25, \delta_{b}$ is a moment magnifier to account for second-order length effects as computed from Equation $4.26 ; M_{2 b}$ is the moment resulting from gravity loads. The product of the moment magnifier $\delta_{s}$ and $M_{2 s}$, the moment resulting from lateral loads, was equal to zero because lateral loads were not considered in this study.

$$
\begin{equation*}
\delta_{b}=\frac{C_{m}}{1-\frac{P_{u}}{\phi P_{c}}} \geq 1.0 \tag{4.26}
\end{equation*}
$$

In Equation $4.26, C_{m}$ is the equivalent uniform moment diagram factor and is equal to $0.6-0.4\left(M_{1 b} / M_{2 b}\right) ; M_{1 b} / M_{2 b}$ is the ratio of smaller bending moment to larger bending moment acting at opposite ends of the unbraced length and in the plane of bending being considered. For single curvature, $M_{1 b}$ and $M_{2 b}$ are equal and opposite and $C_{m}$ becomes equal to 1.0. $P_{u}$ is the factored axial load; $\phi$ is the resistance factor which was taken equal to 1.0 in this study; and $P_{C}$ is defined by:

$$
\begin{equation*}
P_{C}=\frac{\pi^{2} E I}{\left(k \ell_{u}\right)^{2}} \tag{4.27}
\end{equation*}
$$

in which $\ell_{u}$ is the unsupported length of the column and $k$ is the effective length factor taken equal to 1.0 for the type of beam columns considered.

Substituting into Equation $4.25, M_{C O I}$ for $M_{2 b}, M_{C S}$ for $M_{C}$, and $\delta_{b}$ from Equation 4.26, and setting $C_{m}=1.0, \phi=1.0$, and $\delta_{s} M_{2 s}=0$ gives the following expression:

$$
\begin{equation*}
M_{C S}=\left(\frac{1}{1-\frac{P_{u}}{P_{C}}}\right) M_{C O I} \tag{4.28}
\end{equation*}
$$

Equation 4.28 was rearranged to solve for $P_{C}$ (Equation 4.29).

$$
\begin{equation*}
P_{C}=\frac{P_{u}}{\left(1-\frac{M_{C O 1}}{M_{C S}}\right)} \tag{4.29}
\end{equation*}
$$

Equating Equation 4.27 to Equation 2.29 , setting $k=1.0$, and then solving for $E I$ gives the effective flexural stiffness for the AISC Code:

$$
\begin{equation*}
E I=\frac{P_{u} \ell_{u}^{2}}{\pi^{2}\left(1-\frac{M_{C O I}}{M_{C S}}\right)} \tag{4.30}
\end{equation*}
$$

The terms $P_{u}, M_{C O L}$ and $M_{C S}$ were obtained from the closed form solution to the column axial load-bending moment interaction diagrams, shown in Figure 4.2 and explained in Section 4.2.1. A short computer program was written to compute the $E I$ employing the procedure outlined in this Section and Section 4.2.1.


Figure 4.2 - Schematic cross-section and column axial loadbending moment interaction diagrams used to develop an equivalent AISC flexural stiffness.

# 5 - EVALUATION OF EFFECTIVE STIFFNESS FOR BEAM-COLUMNS <br> SUBJECTED TO MAJOR AXIS BENDING 

### 5.1 DESCRIPTION OF BEAM-COLUMNS STUDIED

In an attempt to study the full range of variables, 11880 composite beam-columns were used to evaluate the theoretical stiffness of beam-columns bending about the major axis. Each column had a different combination of the specified properties. The specified nominal concrete strengths $f^{\prime}{ }_{C}$, the structural steel yield strengths $f_{y s s}$, the reinforcing steel ratios $\rho_{r s}$, the structural steel ratios $\rho_{s s}$ and the size of structural steel shapes used in this study are listed in Table 5.1. The values shown in the table represent the practical ranges of these variables used in the construction industry. The overall concrete cross-section had a size of 22 inches by 22 inches; the details of the cross-section are given in Figure 5.1.

The ACI and AISC Code requirements for composite columns influenced the selection of the cross section parameters used in this study. For composite beam-columns neither the ACI nor the AISC Code specifies a maximum amount for the structural steel core. However, the AISC Code states that to qualify as a composite column the structural steel ratio ( $\rho_{s s}$ ) must be greater than or equal to 4 percent. The ACI Building code requires that a minimum of 1 percent to a maximum of 8 percent of longitudinal reinforcing $\left(\rho_{r s}\right)$ be included with the

Table 5.1 - Specified properties of composite beam-columns studied*

| Properties | Specified Values | Number of Specified Values |
| :---: | :---: | :---: |
| $f^{\prime}{ }_{c}, \mathrm{psi}$ | 4000; 5000; 6000; 8000 | 4 |
| $f_{\text {yss }}, \mathrm{psi}$ | 36000; 44000; 50000 | 3 |
| $\rho_{\text {rs }}$, \% | 1.09; 1.96; 3.17 | 3 |
| structural steel | section  $\rho_{\text {ss }}, \%$ <br>    <br> W12 $\times 170$ 10.33 <br> W12 $\times 120$ 7.29 <br> W12 x 72 <br> W10 4.36  <br> W10 112 6.80 <br> W8 6 67 | 6 |
| $\ell / h$ | 10; 15; 20; 25; 30 | 5 |
| $e / h$ | $\begin{gathered} 0.05 ; 0.1 ; 0.2 ; 0.3 ; 0.4 ; 0.5 \\ 0.6 ; 0.7 ; 0.8 ; 0.9 ; 1.0 \end{gathered}$ | 11 |

* Total number of columns equals ( $4 \times 3 \times 3 \times 6 \times 5 \times 11=11880$ with each column having a different combination of specified properties shown above. All columns had a cross section size of $22 \times 22$ in. with lateral ties conforming to ACI 318-89 Clause 10.14.8.

Note: $1.0 \mathrm{in} .=25.4 \mathrm{~mm} ; 1000 \mathrm{psi}=6.895 \mathrm{MPa}$.

| STEEL SECTION |  |  |  |  | LONGITUDINAL REINFORCING |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Designation | $\begin{array}{r} \mathrm{A}_{\mathrm{ss}} \\ \left(\text { in. }^{2}\right) \end{array}$ | $d_{s s}$ <br> (in.) | $b_{f}$ <br> (in.) | $\rho_{\mathrm{ss}}$ <br> (\%) | $Y$ <br> (in.) | Max. bar dia. for $Z=1.0 \mathrm{in}$. | Max. bar dia. for lap | Cor Bar Dia. (in.) | ner Re <br> No. <br> Req. | bars <br> Clear Dist. $Z$ (in.) | Add'l <br> Bar <br> Dia. <br> (in.) | ebars <br> No. <br> Req. | Total Area of Rebars $\left(\text { in. }^{2}\right)$ | $P_{r s}$ |
| $\begin{gathered} \text { W } 12 \times 170 \\ (W 310 \times 253) \end{gathered}$ | 50.0 | 14.03 | 12.57 | 10.33 | 1.99 | 1.90 | 1.72 | $\begin{aligned} & 1.693 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 1.342 \\ & 2.167 \\ & 2.465 \end{aligned}$ | $\begin{aligned} & 1.000 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{gathered} 15.32 \\ 9.48 \\ 5.28 \end{gathered}$ | $\begin{aligned} & 3.17 \\ & 1.96 \\ & 1.09 \end{aligned}$ |
| $\begin{gathered} \text { W12 } \times 120 \\ \text { (W310 } \times 179 \text { ) } \end{gathered}$ | 35.3 | 13.12 | 12.32 | 7.29 | 2.44 | 2.20 | 1.84 | $\begin{aligned} & 1.693 \\ & 1.000 \\ & 0.750 \end{aligned}$ | 4 4 4 | $\begin{aligned} & 1.706 \\ & 2.540 \\ & 2.841 \end{aligned}$ | $\begin{aligned} & 1.000 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{gathered} 15.32 \\ 9.48 \\ 5.28 \end{gathered}$ | $\begin{aligned} & 3.17 \\ & 1.96 \\ & 1.09 \end{aligned}$ |
| $\begin{gathered} \text { W12 } \times 72 \\ \text { W310 } \times 107) \end{gathered}$ | 21.1 | 12.25 | 12.04 | 4.36 | 2.88 | 2.60 | 1.98 | $\begin{aligned} & 1.693 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $4$ | $\begin{aligned} & 2.097 \\ & 2.934 \\ & 3.236 \end{aligned}$ | $\begin{aligned} & 1.000 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{gathered} 15.32 \\ 9.48 \\ 5.28 \end{gathered}$ | $\begin{aligned} & 3.17 \\ & 1.96 \\ & 1.09 \end{aligned}$ |
| $\begin{gathered} W 10 \times 112 \\ \text { W250 } \times 167) \end{gathered}$ | 32.9 | 11.36 | 10.41 | 6.80 | 3.32 | 3.30 | 2.80 | $\begin{aligned} & 1.693 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{array}{r} 3.002 \\ 11.521 \\ 11.823 \end{array}$ | $\begin{aligned} & 1.000 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{gathered} 15.32 \\ 9.48 \\ 5.28 \end{gathered}$ | $\begin{aligned} & 3.17 \\ & 1.96 \\ & 1.09 \end{aligned}$ |
| $\begin{gathered} W 10 \times 68 \\ (W 250 \times 101) \end{gathered}$ | 20.0 | 10.40 | 10.13 | 4.13 | 3.80 | 3.70 | 2.94 | $\begin{aligned} & 1.693 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 3.427 \\ & 4.263 \\ & 4.565 \end{aligned}$ | $\begin{aligned} & 1.000 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{gathered} 15.32 \\ 9.48 \\ 5.28 \end{gathered}$ | $\begin{aligned} & 3.17 \\ & 1.96 \\ & 1.09 \end{aligned}$ |
| $\begin{gathered} W 8 \times 67 \\ (W 200 \times 100) \end{gathered}$ | 19.7 | 9.00 | 8.28 | 4.07 | 4.50 | 4.60 | 3.86 | $\begin{aligned} & 1.693 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 4.581 \\ & 5.417 \\ & 5.719 \end{aligned}$ | $\begin{aligned} & 1.000 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{gathered} 15.32 \\ 9.48 \\ 5.28 \end{gathered}$ | $\begin{aligned} & 3.17 \\ & 1.96 \\ & 1.09 \end{aligned}$ |



Figure 5.1 - Details of composite column cross-section for columns subject to bending about the major axis.
structural steel core. Difficulty in lap splicing the reinforcing bars reduces the maximum limit of $\rho_{r s}$ to about 3 to 4 percent when a relatively large structural steel core is encased. The reinforcing steel ratio is, therefore, usually expected to range from 1 to 3 percent. Even three percent reinforcing steel will restrict $\rho_{s s}$ to a maximum of about 10 percent, giving a range of $\rho_{s s}$ about 4 to 10 percent. The AISC Code (Chapter I, Section I2) specifies that $f{ }^{\prime}{ }_{c}$ be restricted to range from 3000 psi to 8000 psi and that the maximum yield strength for structural steel and reinforcing bars shall not exceed $55,000 \mathrm{psi}$ in calculating the strength of the column. The ACI Building Code, on the other hand, specifies that $f^{\prime}{ }_{c}$ shall not be less than 2500 psi (Clause 10.14.8.1) and that the design yield strength of the structural steel shall not exceed 50,000 psi (Clause 10.14.8.2), but no restriction is placed on the design yield strength of the reinforcing steel. With these requirements in mind, the strengths for concrete and structural steel shown in Table 5.1 were selected. The yield strength of the reinforcing bars was taken as 60 ksi for all of the cross section arrangements, because this represents the standard strength of reinforcing bars used in the construction industry. Figure 5.1 shows the cross section arrangements that were used in this study.

Utilizing six different sizes of structural steel shapes. (Figure 5.1) provided the means to study the effect of concrete cover over the structural steel section. The ratio
of the depth of the structural steel shape to the depth of the concrete cross-section $d_{s s} / h$ was used as an index for concrete cover over structural steel.

Table 5.1 shows that eleven end eccentricity ratios e/h ranging from 0.05 to 1.0 were used. This is consistent with the findings of Mirza and MacGregor (1982) that, for reinforced concrete buildings, e/h usually varies from 0.1 to 0.65. Five slenderness ratios $\ell / h$ were chosen to represent the range of $\ell / h$ for columns in braced frames designed in accordance with ACI 318-89 Clause 10.11.

As the purpose of this study is to simulate the actual stiffness $E I$ of beam-columns described by nominal crosssectional properties, the specified nominal values for material strength and cross-sectional properties will not provide an accurate estimation of $E I$. Mean values established by Skrabek and Mirza (1990) corresponding to the nominal specified properties were, therefore, used to compute the theoretical stiffness for each column. Table 5.2 lists the mean values corresponding to the specified nominal values. The short-term theoretical effective flexural stiffness $E I$ for each of the 11,880 columns studied was computed using Equation 2.7 , the cross-section and slender column interaction diagrams described in Section 2.2, and the mean values of the variables specified in Table 5.2. The simulated column stiffness data were then statistically analyzed for examining the current ACI column stiffness, the equivalent AISC column

Table 5.2 - Mean Values of Variables Used for Computing Theoretical Strength and Stiffness.
(a) Concrete

| Nominal Strength $\mathrm{f}^{\prime}{ }_{c}$ (psi) | Mean Values |  |  |
| :---: | :---: | :---: | :---: |
|  | Compressive Strength $f_{c}$ (psi) | Modulus of Rupture $f_{r}$ (psi) | Elastic Modulus $E_{c}$ (ksi) |
| 4,000 | 3,388 | 445 | 3,260 |
| 5,000 | 4,013 | 485 | 3,537 |
| 6,000 | 4,641 | 523 | 3,795 |
| 8,000 | 5,904 | 591 | 4,263 |

(b) Structural Steel Strength*

| Nominal <br> Strength <br> $\mathrm{f}_{\mathrm{y}}$ (psi) | Mean Values |  |
| :---: | :---: | :---: |
|  | Static Yield Strength |  |
|  | $\begin{gathered} \text { Web } \\ f_{y s w}(p s i) \end{gathered}$ | Flange $f_{y s f}$ |
| 36,000 | 39,240 | $0.95 \mathrm{f}_{\mathrm{ysW}}$ |
| 44,000 | 47,960 | $0.95 \mathrm{f}_{\mathrm{ysw}}$ |
| 50,000 | 54,500 | $0.95 \mathrm{f}_{\mathrm{YSW}}$ |

(c) Residual Stresses in Structural Steel

| Steel Shape | Flange Tip (psi) | Flange - web <br> Juncture (psi) |
| :---: | :---: | :---: |
| W12 $\times 170($ W310 $\times 253)$ | $-18,367$ | 11,792 |
| W12 $\times 120($ W310 $\times 179)$ | $-17,983$ | 11,267 |
| W12 $\times 72($ W310 $\times 107)$ | $-17,896$ | 11,152 |
| W10 $\times 112($ W250 $\times 167)$ | $-18,576$ | 12,089 |
| W10 $\times 68($ W250 $\times 101)$ | $-18,384$ | 11,816 |
| W8 $\times 67($ W200 $\times 100)$ | $-18,465$ | 11,931 |

* Note: Modulus of Elasticity for Structural Steel, $E_{s}=29,000 \mathrm{ksi}$

Table 5.2 - continued
(d) Structural Steel Dimensions

|  | Section <br> Depth <br> d | Flange <br> Width <br> b | Flange <br> Thickness <br> t | Web <br> Thickness <br> w |
| :---: | :---: | :---: | :---: | :---: |
| Ratio of Actual to <br> Specified Dimensions | 1.000 | 1.005 | 0.976 |  |

(e) Reinforcing Steel

| Nominal Strength <br> $\mathbf{f}_{y}(\mathrm{psi})$ | Static Yield <br> Strength $\mathrm{f}_{\mathrm{ys}}(\mathrm{psi})$ | Elastic Modulus <br> $\mathrm{E}_{\mathrm{s}}(\mathrm{ksi})$ |
| :---: | :---: | :---: |
| 60,000 | 66,800 | 29,000 |

(f) Deviation of Overall Beam-Column Dimensions
from Nominal Specified Dimensions

| Length (in.) | 0.0 |
| :--- | :---: |
| Cross-Section Depth (in.) | +0.06 |
| Cross-Section Width (in.) | +0.06 |
| Concrete Cover to Lateral Ties (in.) | +0.33 |
| Spacing of Lateral Ties (in.) | 0.0 |

stiffness, and for developing the proposed design equations for $E I$.

### 5.2 EXAMINATION OF ACI AND AISC STIFFNESSES

The ACI Building Code and the comparable AISC Code equivalent flexural stiffnesses (Equation 4.1 and 4.30 described in Chapter 4) were compared with the theoretical EI data generated for all of the 11,880 composite columns subjected to bending about the major axis of the steel section. The nominal values of variables shown in Table 5.1 and Figure 5.1 were used for computing the ACI and AISC EI values. Note the theoretical $E I$ values were computed using the mean values of variables shown in Table 5.2.

The histograms in Figure 5.2 show the ratios of theoretical $E I$ to design $E I$ ( $E I_{t h} / E I_{\text {des }}$ ). The results shown in Figure 5.2 (a) were computed based on $E I_{\text {des }}$ taken equal to the ACI EI equation (Equation 4.1) and those shown in Figure $5.2(b)$ were based on $E I_{\text {des }}$ set equal to AISC $E I$ expression (Equation 4.30). Figure 5.2 that includes data for all $\rho_{r s}$ values (1.09, 1.96, 3.17 percent) indicates that relatively high mean stiffness ratios and coefficients of variation (CV) are obtained from both the $A C I$ and AISC equations (mean value $=1.39, C V=22.8$ percent; and mean value $=1.45, C V=22.8$ percent for Equations 4.1 and 4.30 , respectively). This means. that the ACI and AISC equations on the average predict conservative EI values which are about 40 percent lower than


Figure 5.2 - Frequency histogram comparing ACI and AISC stiffness equations with theoretical results for all columns bending about major axis.
the theoretically predicted values.
The ACI equation, however, does not account for differences in the reinforcing steel ratio $\rho_{r s}$. A second comparison showing only the data where $\rho_{r s}=1$ percent was plotted in Figure 5.3 for both the ACI and AISC stiffnesses. Mean values of 1.21 and 1.26 were obtained for ACI and AISC, respectively, along with coefficients of variation similar to those in Figure 5.2. This significant change in mean value indicates that the ACI and AISC design equations were most likely calibrated for the minimum required reinforcement ratio. This also appears to confirm the general belief that ACI and AISC equations are, in most cases, on the safe side. For a significant number of columns studied, however, both the ACI and AISC EI deviated substantially from the corresponding theoretically computed EI. This is because the ACI and AISC design equations do not include all the parameters that affect the stiffness of slender columns. The ACI equation does not account for the longitudinal reinforcing steel whereas the AISC design equations modify the properties of a composite column to that of an "equivalent steel" column in which cracking of the concrete is not considered.

It is evident from Figures 5.2 and 5.3 and the related discussions that there appears to be a need for modification in the existing $\overline{A C I}$ stiffness equation and AISC strength interaction equations used for the design of composite beamcolumns.


Figure 5.3 - Frequency histogram comparing ACI and AISC stiffness equations with theoretical results for columns bending about major axis where $\rho_{r s}=1.09$ percent.

## 5.3 <br> DEVELOPMENT OF PROPOSED DESIGN EQUATIONS FOR SHORT-TERM EI

Mirza (1990) among others pointed out that the effective flexural stiffness of a slender reinforced concrete column is significantly affected by cracking along its length and inelastic actions in the concrete and reinforcing steel. This is also expected for a composite column although to a lesser degree, because the structural steel core is expected to stiffen the concrete cross-section. However, the inelastic actions within the encased structural steel shape affect the overall stiffness of a composite column. $E I$ is then represented by a complex function of a number of variables that cannot be readily transformed into a unique and simple analytical solution. The objective in this study is to develop simple equations for the $E I$ of composite columns, similar to the ones that were produced by Mirza (1990) for reinforced concrete columns. Multiple linear regression analysis was chosen to evaluate $E I$ from the generated theoretical stiffness data.

### 5.3.1 Variables Used for Regression Analysis

The variables used in this study were divided into two major groups: (A) variables that affect the contribution of concrete to the overall effective stiffness; and (B) variables that influence the contribution of structural and reinforcing steel to the overall effective stiffness of a composite beam-
column.
Group A consists of five subgroups, similar to those described by Mirza(1990): (1) end eccentricity ratio e/h or $P_{u} / P_{0}$ (subgroup $X_{1}$ ), in which $P_{u}$ is the factored axial load acting on the slender column and $P_{0}$ is the pure axial load capacity of the cross-section; (2) slenderness ratio $\ell / h$ or $\ell / r$ (subgroup $X_{2}$ ), where $r$ is the radius of gyration calculated according to the ACI Building Code Equation (10-13) reproduced here as Equation 5.1 ; (3) steel index $\rho_{s S}$, or $\rho_{r s}$, or $\rho_{g}=\left(\rho_{S S}+\rho_{r s}\right)$, or $\rho_{r s} / \rho_{S S}$, or $\rho_{S S} f_{Y S S} / f^{\prime}{ }_{C}$, or $\rho_{r s} f_{y r s} / f^{\prime}{ }_{C}{ }^{\prime}$ or $\left(\rho_{s s} f_{y s s}+\rho_{r s} f_{y r s}\right) / f^{\prime}{ }_{c}\left(\right.$ subgroup $\left.X_{3}\right)$, where $\rho_{g}$ is the total steel ratio and $f_{y r s}$ is the specified yield strength of the reinforcing steel; (4) stiffness index $I_{r s} / I_{s s}$, or $I_{s s} / I_{g}$, or $I_{r s} / I_{g}$, or $\left(I_{s s}+I_{r s}\right) / I_{g}$ (subgroup $X_{4}$ ) where $I_{g}=$ the moment of inertia of the gross concrete cross-section neglecting structural and reinforcing steel; and (5) concrete cover index $d_{S S} / h$ (subgroup $X_{5}$ ) where $d_{S S}$, the depth of the structural steel section, is divided by the overall depth of the composite cross-section perpendicular to the axis of bending being considered.

$$
\begin{equation*}
r=\sqrt{\frac{\left(E_{C} I_{g} / 5\right)+E_{S} I_{S S}}{\left(E_{C} A_{g} / 5\right)+E_{S} A_{S S}}} \tag{5.1}
\end{equation*}
$$

In Equation 5.1, $A_{g}$ equals the area of the gross concrete cross-section neglecting structural and reinforcing steel and $A_{s s}$ equals the gross cross-sectional area of the structural
steel section. The Group A variables are listed in Table 5.3.
Group B, on the other hand, consists of two variables, $E_{S} I_{s s}$ and $E_{s} I_{r s}$, that were considered to have a significant affect on the overall effective stiffness of a composite column.

Mirza and MacGregor (1989) found that for reinforced concrete slender columns the variables in the first and second subgroup of group A are important in the study of the strength and behaviour of slender columns. Mirza (1990) verified this in his analysis of the flexural stiffness of rectangular reinforced concrete columns. The third subgroup variables of Group A took into consideration the influence of the quantity of steel in proportion to the area of concrete cross-section. The fourth subgroup was intended to examine the effects of relative stiffnesses of steel and concrete. The fifth and final subgroup of Group $A$ was included to investigate the effect of concrete cover to the structural steel shape on column stiffness.

The variables within an individual subgroup of Group $A$ were considered as dependent variables, while variables between the subgroups were taken as independent variables. For example, $e / h$ was considered dependent on $P_{u} / P_{o}$ but was taken independent of variables related to slenderness ratio, steel index, stiffness index, and concrete cover index. The variables of Group $B$ were always considered independent variables. A maximum of one variable from any of the chosen
Table 5.3 - Variable combinations used for regression analysis - Major Axis Bending


* $\mathrm{S}_{\mathrm{e}}$ was computed for the constant $\alpha_{\mathrm{k}}$.
subgroups of Group A was, therefore, used for a particular regression analysis of the theoretical stiffness data. When one variable from each subgroup of Group $A$ and both variables from Group $B$ are included into the regression analysis, Equation 2.2 becomes:

$$
\begin{align*}
& E I=\left(\alpha_{k}+\alpha_{1} X_{1}+\alpha_{2} X_{2}+\alpha_{3} X_{3}+\alpha_{4} X_{4}\right. \\
& \left.\quad+\alpha_{5} X_{5}\right) E_{C}\left(I_{g}-I_{s S}\right)+\alpha_{s s} E_{S} I_{s s}+\alpha_{r s} E_{s} I_{r s} \tag{5.2a}
\end{align*}
$$

in which $\alpha_{k}$ is a constant (equivalent to the intercept of a simple linear equation). The remaining $\alpha$ values are dimensionless reduction factors corresponding to independent variables $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, E_{s} I_{s s}$ and $E_{s} I_{r s}$. $X_{1}$ through $X_{5}$ represent one variable chosen from each of the subgroups (i.e. end eccentricity ratio, slenderness ratio, steel index, stiffness index, and concrete cover index) in Group A.

The combination of Group A variables used for different regression analyses are given in Table 5.3. Group B variables were included in all regression analyses shown in Table 5.3. The prediction accuracy for a particular regression equation was based on the standard error $S_{e}$, a measure of sampling variability, and the multiple correlation coefficient $R_{C}$, an index of relative strength of the relationship. The smaller the value of $S_{e}$ the smaller the sampling variability of the regression equation. An $R_{C}$ value equal to zero signifies no correlation, and $R_{C}= \pm 1.0$ indicates 100 percent correlation. $R_{C}$ values greater than +1.0 and less than -1.0 are not possible. The calculated values of $S_{e}$ and $R_{c}$ for each
regression analysis are also given in Table 5.3. To reduce the relative magnitude of the standard error $S_{e}$, both sides of Equation 5.2 a were divided by $E_{C}\left(I_{g}-I_{S S}\right)$ to "normalize" the equation. This also allowed the $S_{e}$ obtained in this study to be compared to the $S_{e}$ obtained by Mirza (1990) for reinforced concrete columns. The normalized version of Equation 5.2a is:

$$
\begin{align*}
\frac{E I}{E_{C}\left(I_{g}-I_{s S}\right)}= & \alpha_{k}+\alpha_{1} X_{1}+\alpha_{2} X_{2}+\alpha_{3} X_{3}+\alpha_{4} X_{4}+\alpha_{5} X_{5} \\
& +\alpha_{s s} \frac{E_{s} I_{s S}}{E_{C}\left(I_{g}-I_{s S}\right)}+\alpha_{r s} \frac{E_{s} I_{r s}}{E_{C}\left(I_{g}-I_{s S}\right)} \tag{5.2b}
\end{align*}
$$

Note that $S_{e}$ in this study was computed for $\alpha_{k}$.

### 5.3.2 Regression Analysis

Table 5.3 shows the $S_{e}$ and $R_{C}$ values calculated for 25 regression equations. The insignificant changes in $S_{e}$ and $R_{C}$ for the first thirteen variable combinations indicate that variables other than those used in combination 13 (e/h and $\ell / h$ ) do not significantly influence the $E I$ of slender columns. A correlation analysis confirmed that this was due to the fact that the variables in subgroups $X_{3}$ and $X_{4}$ were included explicitly or implicitly in the format of the regression equations, Equations 5.2a and 5.2b.

Variable combinations 13 to 16 involving $e / h, P_{u} / P_{o}, \ell / h$, and $\ell / r$ proved that $e / h$ and $\ell / h$ are the most significant pair of variables from Group $A$ influencing $E I$. The ratios $\ell / h$ and$\ell / r$ are obviously correlated, however, $\ell / h$ is much simpler to compute. A correlation analysis of the variables used in
combinations 13 to 16 , including the Group $B$ variables, confirmed Mirza's observation indicating that: (a) no correlation exists between $e / h$ and $\ell / h$ (or $\ell / r$ ) ratios; (b) there is some correlation between $P_{u} / P_{0}$ and $\ell / h$ (or $\ell / r$ ) ratios; and (c) a strong correlation exists between $P_{u} / P_{0}$ and $e / h$ ratios. This means that $e / h$ and $\ell / h$ (or $\ell / r$ ) are independent variables and $P_{u} / P_{o}$ is dependent on $e / h$.

Finally, combinations 17 through 25 show that when only one of the variables in Group $A$ was combined with the two variables in Group B, $e / h$ is the most significant variable from Group A.

In summary, the lowest $S_{e}$ and highest $R_{C}$ values among the regression equations concerning two variables and one variable from Group A, combined with the two variables from Group B, were obtained for variable combinations 13 and 17, respectively. The resulting regression equations are:

$$
\begin{align*}
E I=(0.313+0.00334 \ell / h- & 0.203 \mathrm{e} / \mathrm{h}) E_{C}\left(I_{g}-I_{S S}\right)  \tag{5.3}\\
& +0.792 E_{s} I_{s S}+0.788 E_{s} I_{r s}
\end{align*}
$$

$$
\begin{align*}
& E I=(0.379-0.203 \mathrm{e} / \mathrm{h}) E_{C}\left(I_{g}-I_{S S}\right) \\
&+0.792 E_{S} I_{s S}+0.788 E_{S} I_{r s} \tag{5.4}
\end{align*}
$$

Equations 5.3 and 5.4 are similar in format to regression Equations 5.5 and 5.6 developed by Mirza (1990) for reinforced concrete columns.

$$
\begin{gather*}
E I=(0.294+0.00323 \ell / h-0.299 \mathrm{e} / \mathrm{h}) E_{C} I_{g}+E_{s} I_{r s}  \tag{5.5}\\
E I=(0.358-0.299 \mathrm{e} / \mathrm{h}) E_{C} I_{g}+E_{s} I_{r s} \tag{5.6}
\end{gather*}
$$

Both sets of equations show that with an increase in e/h ratio there is a corresponding decrease in EI for a column. This is because an increase in $e / h$ means a corresponding increase in bending moment and tension stresses at the outer fibre, resulting in more cracking of the column. The coefficient of 0.203 associated with $e / h$ in Equations 5.3 and 5.4 for composite columns is about $2 / 3$ of that in Equations 5.5 and 5.6 for reinforced concrete columns. This is due to the structural steel shape in composite columns interrupting the continuity of the cracks that remain unarrested in reinforced concrete columns. Equations 5.3 and 5.5 indicate that for an increase in $\ell / h$ ratio there is an increase in EI. Mirza (1990) suggests that this is because in a longer column the cracks are likely to be more widely spaced with more concrete in between the cracks contributing to the EI of the column. The coefficients of 0.792 and 0.788 related to $E_{s} I_{s s}$ and $E_{s} I_{r s}$, respectively, in Equations 5.3 and 5.4 indicate "softening" of structural and reinforcing steel. This is the result of elastic-plastic nature of the stresses developed in the structural steel and the reinforcing steel at ultimate load.

For composite columns $S_{e}=0.050$ and $R_{C}=0.964$ were obtained for Equation 5.3. This compares to an $S_{e}=0.058$ and $R_{C}=0.86$ reported by Mirza (1990) for Equation 5.5. For the second composite column equation (Equation 5.4) $S_{e}$ equals. 0.056 and $R_{C}$ equals 0.955 . The corresponding values reported by Mirza for Equation 5.6 were 0.061 and 0.84 .

A scatter diagram (Figure 5.4) shows the values of $E I$ computed from Equations 5.3 and 5.4 plotted against the corresponding theoretical $E I$. Regression $E I$ from Equation 5.3 is shown in Figure 5.4 (a), and Figure 5.4 (b) is for Equation 5.4. Both equations exhibit reasonable correlation with the theoretical $E I$ values when compared to the line of unity labelled as $45^{\circ}$ line. Equation 5.3 produced somewhat, but not very significantly, better results.

The histograms and related statistical data for the ratio of theoretical $E I$ to regression $E I$ ( $E I_{t h} / E I_{r e g}$ ) developed from all the columns studied ( $n=11,880$ ) are virtually identical for Equations 5.3 and 5.4, as shown in Figure 5.5. $E I_{r e g}$ in Figure 5.5(a) was taken from Equation 5.3 and that in Figure 5.5(b) from Equation 5.4. Both equations give mean values of 1.00. The coefficient of variation (CV) for Equation 5.3 is 0.075 and 0.080 for Equation 5.4. This represents a very significant improvement when compared to mean values of 1.39 and 1.45 shown in Figure 5.2 for the $A C I$ and AISC stiffness equations, respectively, and CV of 0.228 obtained for both ACI and AISC equations.

The histograms and statistical data for the columns where the longitudinal reinforcement ratio $\left(\rho_{r s}\right)$ is one percent ( $n=3960$ ), shown in Figure 5.6, again indicates that the two equations give almost the same results. Both equations give mean values of 0.99. The $C V$ for Equation 5.3 is 0.088 and 0.091 for Equation 5.4. This still represents a very


Figure 5.4 - Comparison of selected regression equations with theoretical data for all columns bending about major axis.


Figure 5.5 - Frequency histograms comparing selected regression equations with theoretical data for all columns bending about major axis.

## 125



Figure 5.6 - Frequency histograms comparing selected regression equations with theoretical data for columns bending about major axis where $\rho_{r s}=1.09$ percent.
significant improvement over the mean values of 1.21 and 1.26 , and the coefficients of variation of 0.202 and 0.229 obtained from the ACI and AISC stiffness equations shown in Figure 5.3.

### 5.3.3 Proposed Design Equations

Equations 5.7 and 5.8, proposed for design use, were simplified from Equations 5.3 and 5.4.

$$
\begin{align*}
& E I=\left[(0.27+0.003 \ell / h-0.2 e / h) E_{C}\left(I_{g}-I_{S S}\right)\right. \\
&  \tag{5.7}\\
& \left.+0.8 E_{S}\left(I_{S S}+I_{r S}\right)\right] \geq E_{S} I_{S S} \\
& E I=\left[(0.3-0.2 e / h) E_{C}\left(I_{g}-I_{S S}\right)\right.  \tag{5.8}\\
& \\
& \left.+0.8 E_{S}\left(I_{S S}+I_{r S}\right)\right] \geq E_{S} I_{S S}
\end{align*}
$$

These compare to Equations 5.9 and 5.10 suggested by Mirza (1990) for reinforced concrete columns.

$$
E I=\left[(0.27+0.003 \ell / h-0.3 \mathrm{e} / \mathrm{h}) E_{C} I_{g}+E_{S} I_{r s}\right] \geq E_{S} I_{r s}
$$

$$
\begin{equation*}
E I=\left[(0.3-0.3 e / h) E_{C} I_{g}+E_{s} I_{r s}\right] \geq E_{S} I_{r s} \tag{5.10}
\end{equation*}
$$

At $\ell / h$ of 10 , Equations 5.7 and 5.8 yield the same results. For values of $\ell / h>10$, Equation 5.8 is more conservative than Equation 5.7. However, Equation 5.8 is less conservative than Equation 5.7 for $\ell / h<10$. For very large $e / h$ ratios (e/h> 1.5 in Equation 5.8), a lower limit of $E_{s} I_{s s}$ is used for both equations to insure that the effective stiffness of the composite column is at least equal to that of the encased structural steel shape.

Histograms and statistical data were prepared using the proposed design equations for all the columns studied
( $\mathrm{n}=11880$ ). The histograms for the ratios of theoretical $E I$ to design $E I\left(E I_{t h} / E I_{d e s}\right)$ are plotted in Figure 5.7. $E I_{\text {des }}$ in Figure 5.7 (a) was taken from Equation 5.7 and that in Figure 5.7(b) from Equation 5.8. As expected, Figure 5.7 indicates that the stiffness ratios ( $E I_{t h} / E I_{d e s}$ ) for Equation 5.8 (Figure 5.7 (b)) are more conservative than those for Equation 5.7 (Figure 5.7(a)).

The histograms and statistical data prepared for the columns having one percent reinforcing steel ( $n=3960$ ), using the proposed design equations, are shown in Figure 5.8. The results are similar to those obtained for the data plotted in Figure 5.7.

### 5.4 ANALYSIS OF STIFFNESS DATA

5.4.1 Overview of Stiffness Ratio Statistics

An overview of the stiffness ratio ( $E I_{t h} / E I_{d e s}$ ) statistics computed for different design equations are given in Table 5.4 for all data and in Table 5.5 for beam-columns having a reinforcing steel ratio of one percent. To calculate the stiffness ratio of a column, $E I_{t h}$ was taken as the computed theoretical stiffness and $E I_{\text {des }}$ was calculated from Equations 5.7, 5.8, 4.1 and 4.30. Equations 5.7 and 5.8 are the proposed design equations, Equation 4.1 is the $A C I$ design equation, and Equation 4.30 is the stiffness expression developed from the AISC strength interaction curves.

Tables 5.4 and 5.5 give the coefficient of variation,


Figure 5.7 - Frequency histograms comparing proposed design equations with theoretical data for all columns bending about major axis.


Figure 5.8 - Frequency histograms comparing proposed design equations with theoretical data for columns bending about major axis where $\rho_{r s}=1.09$ percent.

Table 5.4 - Stiffness Ratio Statistics for Different Design Equations for all Beam-Columns Subjected to Major Axis Bending

| Group Number <br> (1) | Slenderness Ratio $\ell / h$ (2) | Eccentricity Ratio e/h (3) | Proposed Equations |  | ACl <br> Eq. 4.1 <br> (6) | $\begin{gathered} \text { AISC } \\ \text { Eq. } 4.30 \\ (7) \end{gathered}$ | Number of Columns (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Eq. 5.7 <br> (4) | Eq. 5.8 (5) |  |  |  |
| (a) Coefficient of Variation |  |  |  |  |  |  |  |
| A1 | 10 | $0.05 \cdot 1.0$ | 0.095 | 0.095 | 0.224 | 0.277 | 2376 |
| A2 | 15 |  | 0.068 | 0.072 | 0.227 | 0.251 | 2376 |
| A3 | 20 |  | 0.063 | 0.067 | 0.228 | 0.223 | 2376 |
| A4 | 25 |  | 0.071 | 0.072 | 0.226 | 0.198 | 2376 |
| A5 | 30 |  | 0.079 | 0.079 | 0.225 | 0.181 | 2376 |
| A6 | 10-30 |  | 0.077 | 0.083 | 0.228 | 0.228 | 11880 |
| B1 | 10 | $0.1-0.7$ | 0.077 | 0.077 | 0.222 | 0.233 | 1512 |
| B2 | 15 |  | 0.065 | 0.067 | 0.219 | 0.212 | 1512 |
| B3 | 20 |  | 0.051 | 0.052 | 0.206 | 0.184 | 1512 |
| B4 | 25 |  | 0.045 | 0.042 | 0.194 | 0.166 | 1512 |
| B5 | 30 |  | 0.046 | 0.039 | 0.187 | 0.155 | 1512 |
| B6 | 10-30 |  | 0.062 | 0.060 | 0.206 | 0.193 | 7560 |

(b) Mean Stiffness Ratio

|  |  |  |  |  |  |  |  |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| A1 | 10 | $0.05-1.0$ | 1.073 | 1.073 | 1.309 | 1.445 | 2376 |
| A2 | 15 |  | 1.088 | 1.119 | 1.370 | 1.440 | 2376 |
| A3 | 20 |  | 1.088 | 1.149 | 1.407 | 1.433 | 2376 |
| A4 | 25 |  | 1.073 | 1.163 | 1.423 | 1.441 | 2376 |
| A5 | 30 |  | 1.056 | 1.174 | 1.434 | 1.477 | 2376 |
| A6 | $10-30$ |  | 1.076 | 1.136 | 1.389 | 1.447 | 11880 |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| B1 | 10 | $0.1-0.7$ | 1.075 | 1.065 | 1.358 | 1.527 | 1512 |
| B2 | 15 |  | 1.061 | 1.118 | 1.407 | 1.518 | 1512 |
| B3 | 20 |  | 1.039 | 1.121 | 1.423 | 1.487 | 1512 |
| B4 | 25 |  | 1.017 | 1.124 | 1.427 | 1.473 | 1512 |
| B5 | 30 |  | 1.051 | 1.106 | 1.408 | 1.498 | 1512 |
| B6 | $10-30$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |


| Group Number <br> (1) | Slenderness Ratio $\ell / h$ (2) | Eccentricity Ratio e/h (3) | Proposed Equations |  | ACl <br> Eq. 4.1 <br> (6) | AISC <br> Eq. 4.30 <br> (7) | Number of Columns (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Eq. 5.7 <br> (4) | Eq. 5.8 <br> (5) |  |  |  |
| (c) Five-Percentile |  |  |  |  |  |  |  |
| A1 | 10 | 0.05-1.0 | 0.900 | 0.900 | 0.930 | 0.865 | 2376 |
| A2 | 15 |  | 0.975 | 0.996 | 0.981 | 0.890 | 2376 |
| A3 | 20 |  | 0.995 | 1.047 | 1.016 | 0.931 | 2376 |
| A4 | 25 |  | 0.976 | 1.063 | 1.040 | 1.000 | 2376 |
| A5 | 30 |  | 0.948 | 1.067 | 1.057 | 1.080 | 2376 |
| A6 | 10-30 |  | 0.959 | 0.993 | 0.998 | 0.941 | 11880 |
| B1 | 10 | 0.1-0.7 | 0.936 | 0.936 | 0.956 | 1.002 | 1512 |
| B2 | 15 |  | 0.977 | 0.999 | 1.010 | 1.029 | 1512 |
| B3 | 20 |  | 0.987 | 1.040 | 1.046 | 1.056 | 1512 |
| B4 | 25 |  | 0.967 | 1.057 | 1.070 | 1.095 | 1512 |
| B5 | 30 |  | 0.935 | 1.062 | 1.086 | 1.143 | 1512 |
| B6 | 10-30 |  | 0.958 | 0.996 | 1.027 | 1.069 | 7560 |
| (d) One-Percentile |  |  |  |  |  |  |  |
| A1 | 10 | 0.05-1.0 | 0.787 | 0.787 | 0.848 | 0.764 | 2376 |
| A2 | 15 |  | 0.923 | 0.939 | 0.905 | 0.795 | 2376 |
| A3 | 20 |  | 0.967 | 1.013 | 0.950 | 0.824 | 2376 |
| A4 | 25 |  | 0.943 | 1.036 | 0.975 | 0.875 | 2376 |
| A5 | 30 |  | 0.911 | 1.047 | 0.993 | 0.972 | 2376 |
| A6 | 10-30 |  | 0.894 | 0.898 | 0.910 | 0.812 | 11880 |
| B1 | 10 | 0.1-0.7 | 0.883 | 0.883 | 0.877 | 0.859 | 1512 |
| B2 | 15 |  | 0.938 | 0.951 | 0.930 | 0.881 | 1512 |
| B3 | 20 |  | 0.961 | 1.003 | 0.970 | 0.923 | 1512 |
| B4 | 25 |  | 0.934 | 1.031 | 0.999 | 0.980 | 1512 |
| B5 | 30 |  | 0.902 | 1.042 | 1.017 | 1.054 | 1512 |
| B6 | 10-30 |  | 0.915 | 0.935 | 0.933 | 0.920 | 7560 |

## 132

Table 5.5- Stiffness Ratio Statistics for Different Design Equations for Beam-Columns Subjected to Major Axis Bending for which $\rho_{r S}=1.09$ percent.

| Group Number <br> (1) | Slenderness Ratio l/h (2) | Eccentricity Ratio e/h (3) | Proposed Equations |  | ACl <br> Eq. 4.1 <br> (6) | AISCEq. 4.30$(7)$ | Number of Columns (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Eq. 5.7 <br> (4) | $\text { Eq. } 5.8$ (5) |  |  |  |

(a) Coefficient of Variation

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | 10 | $0.05-1.0$ | 0.094 | 0.094 | 0.186 | 0.280 | 792 |
| A2 | 15 |  | 0.071 | 0.075 | 0.194 | 0.257 | 792 |
| A3 | 20 |  | 0.075 | 0.077 | 0.202 | 0.229 | 792 |
| A4 | 25 |  | 0.087 | 0.086 | 0.205 | 0.196 | 792 |
| A5 | 30 |  | 0.096 | 0.093 | 0.208 | 0.169 | 792 |
| A6 | $10-30$ |  | 0.086 | 0.091 | 0.202 | 0.229 | 3960 |
|  |  |  |  |  |  |  |  |
|  |  |  | $0.1-0.7$ | 0.079 | 0.079 | 0.185 | 0.228 |
| B1 | 10 |  | 0.071 | 0.072 | 0.180 | 0.206 | 504 |
| B2 | 15 |  | 0.061 | 0.060 | 0.162 | 0.170 | 504 |
| B3 | 20 |  | 0.057 | 0.050 | 0.146 | 0.137 | 504 |
| B4 | 25 |  | 0.058 | 0.046 | 0.136 | 0.116 | 504 |
| B5 | 30 |  | 0.071 | 0.064 | 0.163 | 0.177 | 2520 |
| B6 | $10-30$ |  |  |  |  |  |  |

(b) Mean Stiffness Ratio

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | 10 | $0.05-1.0$ | 1.083 | 1.083 | 1.143 | 1.249 | 792 |
| A2 | 15 |  | 1.093 | 1.129 | 1.195 | 1.249 | 792 |
| A3 | 20 |  | 1.089 | 1.159 | 1.227 | 1.244 | 792 |
| A4 | 25 |  | 1.073 | 1.176 | 1.245 | 1.252 | 792 |
| A5 | 30 |  | 1.054 | 1.189 | 1.258 | 1.287 | 792 |
| A6 | 10.30 |  | 1.078 | 1.147 | 1.214 | 1.256 | 3960 |
|  |  |  |  |  |  |  |  |
|  |  |  | 1.077 | 1.077 | 1.196 | 1.326 | 504 |
| B1 | 10 | $0.1-0.7$ | 1.057 | 1.110 | 1.232 | 1.318 | 504 |
| B2 | 15 |  | 1.032 | 1.121 | 1.241 | 1.293 | 504 |
| B3 | 20 |  | 1.008 | 1.129 | 1.243 | 1.282 | 504 |
| B4 | 25 |  |  | 1.113 | 1.247 | 1.298 | 504 |
| B5 | 30 |  |  |  |  | 1.304 | 2520 |
| B6 | $10-30$ |  |  |  |  |  |  |

Table 5.5. continued

| Group Number | Slenderness Ratio l/h (2) | Eccentricity Ratio e/h (3) | Proposed Equations |  | ACl <br> Eq. 4.1 <br> (6) | AISCEq. 4.30(7) | Number of Columns (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) |  |  | Eq. 5.7 <br> (4) | Eq. 5.8 <br> (5) |  |  |  |

(c) Five-Percentile

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | 10 | $0.05-1.0$ | 0.913 | 0.913 | 0.878 | 0.785 | 792 |
| A2 | 15 |  | 0.978 | 1.005 | 0.931 | 0.812 | 792 |
| A3 | 20 |  | 0.984 | 1.048 | 0.966 | 0.849 | 792 |
| A4 | 25 |  | 0.954 | 1.061 | 0.993 | 0.902 | 792 |
| A5 | 30 |  | 0.923 | 1.063 | 1.012 | 0.994 | 792 |
| A6 | $10-30$ |  | 0.946 | 1.003 | 0.950 | 0.842 | 3960 |
|  |  |  |  |  |  |  |  |
|  |  |  | 0.944 | 0.944 | 0.907 | 0.883 | 504 |
| B1 | 10 | $0.1-0.7$ | 0.976 | 1.004 | 0.957 | 0.921 | 504 |
| B2 | 15 |  | 0.973 | 1.040 | 0.995 | 0.952 | 504 |
| B3 | 20 |  | 0.944 | 1.050 | 1.018 | 1.012 | 504 |
| B4 | 25 |  | 0.912 | 1.052 | 1.034 | 1.069 | 504 |
| B5 | 30 |  | 0.942 | 1.003 | 0.971 | 0.957 | 2520 |
| B6 | $10-30$ |  |  |  |  |  |  |

(d) One-Percentile

|  |  |  |  |  |  |  |  |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| A1 | 10 | $0.05-1.0$ | 0.786 | 0.786 | 0.802 | 0.732 | 792 |
| A2 | 15 |  | 0.923 | 0.939 | 0.873 | 0.761 | 792 |
| A3 | 20 |  | 0.959 | 1.013 | 0.927 | 0.802 | 792 |
| A4 | 25 |  | 0.928 | 1.034 | 0.952 | 0.846 | 792 |
| A5 | 30 |  | 0.897 | 1.039 | 0.973 | 0.939 | 792 |
| A6 | $10-30$ |  | 0.896 | 0.910 | 0.869 | 0.773 | 3960 |
|  |  |  |  |  |  |  |  |
|  |  |  | 0.888 | 0.888 | 0.837 | 0.784 | 504 |
| B1 | 10 | $0.1-0.7$ | 0.930 | 0.959 | 0.893 | 0.825 | 504 |
| B2 | 15 |  | 0.947 | 1.005 | 0.934 | 0.873 | 504 |
| B3 | 20 |  | 0.925 | 1.029 | 0.972 | 0.947 | 504 |
| B4 | 25 |  | 0.891 | 1.036 | 0.993 | 1.032 | 504 |
| B5 | 30 |  | 0.906 | 0.942 | 0.892 | 0.860 | 2520 |
| B6 | $10-30$ |  |  |  |  |  |  |

mean, five-percentile and one-percentile values for each of the different design equations. For statistical analysis, the beam-columns studied are divided into two groups: Group A includes all columns and Group $B$ includes only the columns with usual $e / h$ values ( $0.1 \leq e / h \leq 0.7$ ). The statistics provided within each of these groups are based on subgroups that were taken according to $\ell / h$ ratio but also include the statistics for the overall sample.

After reviewing Tables 5.4 and 5.5 the following observations are made:
(1) The coefficients of variation for the proposed design equations are considerably lower and remain relatively constant compared to those for the ACI or AISC equations.
(2) The mean stiffness ratios for the ACI and AISC equations tend to be significantly more conservative than those for the proposed design equations.
(3) A comparison of Table 5.4 (for all data) and Table 5.5 (for beam-columns having one percent reinforcing steel) shows that the mean, five-percentile and one-percentile stiffness ratios for the ACI and AISC equations are subjected to greater variations due to $\rho_{r s}$ than are those for the proposed design equations.
(4) All of the design equations gave five-percentile and onepercentile values that, in most cases, exceeded 0.86 and 0.8, respectively. The AISC expression, however, in a majority of cases resulted in five-percentile and one-
percentile values less than those obtained for Equation 5.7, Equation 5.8 and the ACI equation (Equation 4.1). Figure 5.9 shows the cumulative frequency distribution of stiffness ratios $\left(E I_{t h} / E I_{d e s}\right)$ for the different design equations plotted on normal probability paper. The curves in Figure 5.9 represent the data for all 11,880 columns studied. The curves for Equation 5.7, Equation 5.8 and the ACI equation (Equation 4.1) follow one another fairly closely from 0.1percentile to 10 -percentile values of stiffness ratio, whereas the AISC expression (Equation 4.30) is somewhat less conservative in this region. However, both the ACI and AISC expressions become progressively more conservative than either of the proposed design equations as the percentile values increase, as indicated by Figure 5.9.

### 5.4.2 Effect of Variables on Stiffness Ratios

The effects that each of the variables listed in Table 5.3 has on the mean, five-percentile, and one-percentile values of stiffness ratios ( $E I_{t h} / E I_{\text {des }}$ ) obtained from the proposed design equations (Equations 5.7 and 5.8), ACI equation (Equation 4.1) and AISC equation (Equation 4.30) were examined in detail.

Figures 5.10, 5.11 and 5.12 examine the effect of $e / h$ on mean, five-percentile, and one-percentile (minimum in case of Figure 5.12) stiffness ratios. Figure 5.10 is plotted for all data $(\mathrm{n}=11,880)$, Figure 5.11 includes beam-columns having


[^0]

Figure 5.10-Effect of end eccentricity ratio on stiffness ratio for different design equations for all columns bending about major axis ( $n=1080$ for each e/h ratio equal to 0.05 , $0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9$ and 1.0).

138


Figure 5.11 - Effect of end eccentricity ratio on stiffness ratio for different design equations for columns bending about major axis where $\rho_{r s}=1.09$ percent ( $n=360$ for each e/h ratio equal to $0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8$, 0.9 and 1.0).

139


Figure 5.12 - Effect of end eccentricity ratio on stiffness ratio for different design equations for columns bending about major axis where $\rho_{r s}=1.09$ percent and $\ell / h=10$ ( $\mathrm{n}=72$ for each e/h ratio equal to $0.05,0.1,0.2,0.3,0.4,0.5,0.6$, $0.7,0.8,0.9$ and 1.0).
$\rho_{r s}=1$ percent $(\mathrm{n}=3960)$, and Figure 5.12 considers beamcolumns with $\rho_{r s}=1$ percent and $\ell / h=10(n=792)$. Minimum values in place of one-percentile values are used for Figure 5.12 because each e/h ratio represents only 72 beam-columns. An examination of these figures indicates that proposed design equations (Equations 5.7 and 5.8 ) produce mean, fivepercentile and one-percentile values that are relatively constant for the entire range of $e / h$ studied. The ACI and AISC expressions produce stiffness ratios that varied with $e / h$. This is because neither equation uses $e / h$ as a variable. The mean stiffness ratios for the ACI equation appear to be overly conservative at low e/h ratios, however, the ACI stiffness ratio does closely follow the five-percentile and one-percentile stiffness ratios produced by the proposed stiffness equations. Mirza (1990) pointed out that, for establishing safety in design equations, the five-percentile and one-percentile values are more important than the mean value. The proposed design equations and the ACI equation gave mean, five-percentile and one-percentile (or minimum in case of Figure 5.12) values that exceeded $1.0,0.86$ and 0.80 , respectively, for most e/h ratios shown in Figures 5.10, 5.11 and 5.12. The AISC expression (Equation 4.30), on the other hand, is more conservative than the other equations for the five-percentile and one-percentile values at low e/h but these values drop below 0.86 and 0.80 at high e/h. Figure 5.12 shows that for beam-columns having $\rho_{r s}=1$ percent and
$\ell / h=10$, the mean stiffness ratio for the AISC expression is less that 1.0 when $e / h>0.7$.

Figure 5.13 illustrates the effect of the axial load ratio ( $P_{u} / P_{0}$ ) on the stiffness ratios resulting from different design equations. The axial load ratio was not a controlled variable in this study, i.e. there are as many different axial load ratios as the number of beam-columns studied. This required grouping of stiffness ratios into a number of ranges of $P_{u} / P_{o}$ values. The statistics for stiffness ratios in each range of $P_{u} / P_{o}$ values were then determined. Grouping the stiffness ratios according to axial load ratio resulted in having a significantly different number of columns in each of the ranges of $P_{u} / P_{0}$. For example, less columns were grouped in the range of 0.7 to $0.9 P_{u} / P_{0}(n=285)$ than in the range of 0.2 to $0.25 P_{u} / P_{0}(n=1648)$. The ranges of $P_{u} / P_{0}$ ratios were set at $0.05-0.1,0.1-0.15,0.15-0.2,0.2-0.25,0.25-0.3$, $0.3-0.35,0.35-0.4,0.4-0.5,0.5-0.6,0.6-0.7,0.7-0.9$. The mean $P_{u} / P_{0}$ ratio for each range is plotted against the mean, five-percentile and one-percentile stiffness ratios for each corresponding range. Figure 5.13 shows that the mean stiffness ratios for the ACI and AISC equations tend to be again more conservative than for the proposed design equations. This is expected since there is a strong correlation between $P_{u} / P_{o}$ and e/h. At $P_{u} / P_{o}$ ratio greater than 0.7, the mean, five-percentile and one-percentile stiffness ratios for the proposed design equations are slightly less

142


Figure 5.13 - Effect of axial load ratio on stiffness ratio for different design equations for all columns bending about major axis ( $n$ varies for each $P_{u} / P_{0}$ ratio; total $n=11,880$ ).
than 1.0, 0.86, and 0.80, respectively. Figures 5.14 and 5.15 show that by excluding the values of $P_{u} / P_{o}$ for beam-columns where either $e / h$ equals 0.05 or $\ell / h$ equals 10 eliminates the values of $P_{u} / P_{0}$ greater than 0.7 . This is expected because high $P_{u} / P_{o}$ occurs at very low $e / h$ or $\ell / h$ ratios.

An examination of Figure 5.16 concerning slenderness in terms of $\ell / h$ ratio indicates that there is no significant difference in the five-percentile and one-percentile stiffness ratios for the four design equations. Relatively constant but different values of mean, five-percentile and one-percentile stiffness ratios were obtained for all four design equations, even though only Equation 5.7 includes $\ell / h$ as a variable. This suggests that $\ell / h$ is not as significant as initially considered. The AISC expression, however, yields the lowest five-percentile and one-percentile values when $\ell / h \leq 25$. The mean value for the ACI and AISC stiffness expressions are again more conservative than the proposed design equations.

Figure 5.17 shows the effect of slenderness using $\ell / r$ ratio. The ACI expression for radius of gyration (Equation 5.1) was used to determine $r$. One hundred and twenty different values of $\ell / r$ for 11,880 beam-columns studied necessitated the grouping of $\ell / r$ into ranges. The ranges of $\ell / r$ ratio were set at $30-40,40-50,50-60,60-70,70-80,80-$ 90, 90-100, 100-110, 110-140. The mean $\ell / r$ ratio for each range is plotted against the mean, five-percentile and onepercentile stiffness ratios for each corresponding range,


Figure 5.14 - Effect of axial load ratio on stiffness ratio for different design equations in which columns bending about major axis with $e / h=0.05$ not included ( $n$ varies for each $P_{u} / P_{0}$ ratio; total $\left.n=10,800\right)$.

145


Figure 5.15 - Effect of axial load ratio on stiffness ratio for different design equations in which columns bending about major axis with $\ell / h=10$ not included ( $n$ varies for each $P_{u} / P_{0}$ ratio; total $n=9,504$ ).

146


Figure 5.16 - Effect of slenderness ratio ( $\ell / h$ ) on stiffness. ratio for different design equations for all columns bending about major axis ( $n=2376$ for each $\ell / h$ ratio equal to 0.05 , $0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9$ and 1.0).

147


Figure 5.17 - Effect of slenderness ratio $(\ell / r)$ on stiffness ratio for different design equations for all columns bending about major axis ( $n$ varies for each range of $\ell / r$ ratio; total n = 11,880).
similar to what was done to study the effect of $P_{u} / P_{0}$. The apparent zig-zag nature of the plots in Figure 5.17 for the ACI equation is, probably, caused by grouping of $\ell / r$ and due to the fact that the contribution of reinforcing steel to beam-column stiffness is not included in Equation 4.1. For the AISC expression, even though the area of the reinforcing steel is included in computing the equivalent cross-section properties, the full effect of the reinforcing steel is not accounted for in determining the nominal axial load capacity of a beam-column. The mean, five-percentile and onepercentile stiffness ratios appear to follow the trends stated previously for $\ell / h$ ratio.

The effect of longitudinal reinforcing steel in terms of $\rho_{r s}$ is shown in Figure 5.18. The stiffness ratios for the ACI and AISC expressions increase proportionally with the reinforcing steel ratio. This is because the ACI expression (Equation 4.1) does not account for the effect of reinforcing steel. This also suggests that the AISC expression does not properly account for the effect of reinforcing steel.

Figure 5.19 shows the effect of structural steel in terms of $\rho_{s s}$ on the stiffness ratios. Figure 5.20 shows the effect of $\rho_{s s}$ on stiffness ratios of beam-columns having reinforcing steel of only one percent. Both figures indicate that the ACI and AISC expressions are more susceptible to the effect of $\rho_{5 S}$ than the proposed equations. This influence is due to the proportion of stiffness the reinforcing steel contributes to

149


Figure 5.18 - Effect of longitudinal reinforcement ratio on stiffness ratio for different design equations for all columns bending about major axis ( $n=3960$ for each $\rho_{r s}$ ratio equal to $1.09,1.96$ and 3.17 percent).


Figure 5.19 - Effect of structural steel ratio on stiffness ratio for different design equations for all columns bending about major axis ( $n=1980$ for each $\rho_{\text {ss }}$ ratio equal to 4.07 , $4.13,4.36,6.80,7.29$ and 10.33 percent).

151


Figure 5.20 - Effect of structural steel ratio on stiffness ratio for different design equations for columns bending about major axis where $\rho_{r s}=1.09$ percent ( $\mathrm{n}=660$ for each $\rho_{\text {ss }}$ ratio equal to $4.07,4.13,4.36,6.80,7.29$ and 10.33 percent).
the overall stiffness in relation to the stiffness contributed by the structural steel section. For example, three steel shapes with significantly different moments of inertia were used to give a structural steel ratio of approximately 4 percent ( actual values $4.07,4.13$ and 4.36 percent). This means when the ACI equation is used, a composite column containing a steel section with a relatively small moment of inertia gives a more conservative result than a column with a stiffer steel section.

Figure 5.21 concerning the effect of gross steel ratio $\rho_{g}$ confirms the inconsistency of the ACI and AISC expressions for determining EI. Fluctuations appearing in the stiffness ratios for the proposed design equations are quite minor compared to the irregularities resulting from the ACI and AISC equations. This observation is also true for the effect of $\rho_{r s} / \rho_{s s}$ (ratio of reinforcing steel to structural steel) as indicated by Figure 5.22. In both figures, all four design equations produced mean, five-percentile and one-percentile values of stiffness ratios that for most cases exceeded 1.0, $0.86,0.80$, respectively.

Figures 5.23, 5.24 and 5.25 examine the effects of the structural steel index $\rho_{s S} f_{y s S} / f^{\prime}{ }_{c}$, the reinforcing steel index $\rho_{r s} f_{y r s} / f^{\prime}{ }_{c}$ and the gross steel index $\left(\rho_{s s} f_{y s s}+\rho_{r s} f_{y r s}\right) / f^{\prime}{ }_{c}$. Figures 5.23, 5.24, and 5.25, respectively, represent 72,12 , and 216 possible combinations of the related steel index. This resulted in stiffness ratios in Figures 5.23 and 5.25

153


Figure 5.21 - Effect of gross steel ratio on stiffness ratio. for different design equations for all columns bending about major axis ( $\mathrm{n}=660$ for each $\rho_{g}=\left(\rho_{r s}+\rho_{5 s}\right.$ ) ratio equal to 5.16, $5.22,5.45,6.03,6.09,6.32,7.24,7.30,7.53,7.89,8.38$, $8.76,9.25,9.97,10.46,11.42,12.29$ and 13.50 percent).

154


Figure 5.22 - Effect of $\rho_{r s} / \rho_{s s}$ ratio on stiffness ratio for different design equations for all columns bending about major axis $\left(\mathrm{n}=660\right.$ for each $\rho_{r s} / \rho_{S S}$ ratio equal to $0.106,0.150$, $0.160,0.190,0.250,0.264,0.268,0.269,0.288,0.306,0.434$, $0.449,0.466,0.474,0.481,0.726,0.766$ and 0.788$).$


Figure 5.23 - Effect of structural steel index on stiffness ratio for different design equations for all columns bending about major axis ( $n$ varies for each $\rho_{s s} f_{y s s} / f^{\prime}{ }_{c}$ range; total $\mathrm{n}=11,880$ ).


Figure 5.24 - Effect of reinforcing steel index on stiffnessratio for different design equations for all columns bending about major axis ( $n=990$ for each $\rho_{r s} f^{f r s} / f^{\prime}{ }_{c}$ equal to 0.082 , $0.109,0.131,0.147,0.164,0.196,0.235,0.237,0.294,0.317$, 0.380 and 0.475 ).

157


Figure 5.25 - Effect of gross steel index on stiffness ratio for different design equations for all columns bending about major axis ( $n$ varies for each $\left(\rho_{s s} f_{y s s}+\rho_{r s} f_{y r s}\right) / f^{\prime}{ }_{c}$ range;
total $n=11,880)$. total $\mathrm{n}=11,880$ ).
being plotted for ranges of $\rho_{S S} f_{Y S S} / f^{\prime}{ }_{c}$ and $\left(\rho_{s s} f_{y s s}+\rho_{r s} f_{y r s}\right) / f^{\prime}{ }_{c}$, each range with a different number of stiffness ratios for statistical calculations. The ranges for $\rho_{s S^{\prime}} f_{y s s} / f^{\prime}{ }_{c}$ plotted in Figure 5.23 were set at $0.20-0.25,0.25-$ $0.35,0.35-0.45,0.45-0.55,0.55-0.65,0.65-0.75,0.75-0.85$, $0.85-0.95,0.95-1.05,1.05-1.15,1.15-1.25,1.25-1.35$; and those for $\left(\rho_{s s} f_{y s s}+\rho_{r s} f_{y r s}\right) / f^{\prime}{ }_{c}$ plotted in Figure 5.25 were set at $0.2-0.3,0.3-0.4,0.4-0.5,0.5-0.6,0.6-0.7,0.7-0.8,0.8-$ $0.9,0.9-1.00,1.00-1.10,1.10-1.20,1.20-1.30,1.30-1.40$, $1.40-1.50,1.50-1.60,1.60-1.80$. The mean steel index for each range is plotted against the mean, five-percentile and one-percentile stiffness ratios for each corresponding range. These figures show that the fluctuations in stiffness ratios for the proposed design equations are subtle compared to the fluctuations occurring for the ACI and AISC expressions.

The effects of $I_{r s} / I_{s s}, I_{s s} / I_{g}, I_{r s} / I_{g}$ and $\left(I_{s s}+I_{r s}\right) / I_{g}$ on stiffness ratios ( $E I_{t h} / E I_{\text {des }}$ ) are respectively shown in Figures $5.26,5.27,5.28$, and 5.29. The trends shown in these figures are similar to those discussed for Figures 5.18 to 5.25 related to the steel indices. This is particularly true when Figure 5.21 is compared to Figure 5.26 and 5.29, and Figure 5.18 to Figure 5.28. As expected, Figures 5.27 and 5.28 indicate that the ACI equation is more conservative when the moment of inertia of the steel section is relatively small. or when the moment of inertia of reinforcing steel is relatively large compared to the moment of inertia of the

159


Figure 5.26 - Effect of $I_{r s} / I_{s s}$ ratio on stiffness ratio fordifferent design equations for all columns bending about major axis ( $\mathrm{n}=660$ for each $I_{r s} / I_{s s}$ ratio equal to $0.17,0.26,0.29$, $0.39,0.45,0.46,0.50,0.67,0.70,0.78,0.81,1.02,1.16$, $1.22,1.39,1.77,2.11$ and 3.06).


Figure 5.27 - Effect of $I_{s s} / I_{g}$ ratio on stiffness ratio for different design equations for all columns bending about major axis ( $\mathrm{n}=1980$ for each $I_{s s} / I_{g}$ ratio equal to $0.014,0.020$, $0.031,0.037,0.055$ and 0.085 ).

161


Figure 5.28 - Effect of $I_{r s} / I_{g}$ ratio on stiffness ratio for different design equations for all columns bending about major



Figure 5.29 - Effect of $\left(I_{S S}+I_{r s}\right) / I_{g}$ ratio on stiffness ratio for different design equations for all columns bending about major axis $\left(\mathrm{n}=660\right.$ for each $\left(I_{s s}+I_{r s}\right) / I_{g}$ ratio equal to 0.028 , $0.034,0.039,0.0447,0.0449,0.051,0.055,0.057,0.061$, $0.063,0.069,0.073,0.079,0.080,0.097,0.099,0.109$
$0.127)$
gross cross-section.
Figure 5.30 examines the effect of $d_{S S} / h$ (ratio of depth of structural steel section to the overall depth of the composite cross section) on stiffness ratios. As expected, the results are somewhat similar to those obtain from Figure 5.27 plotted for the effect of $I_{s s} / I_{g}$. The proposed design equations produce practically constant values of mean, fivepercentile and one-percentile stiffness ratios over the entire range of $d_{S S} / h$ plotted, while the ACI and AISC equations are subject to variations for different values of $d_{s s} / h$.

The following can be summarized from the data plotted in Figures 5.10 to 5.30 and the related discussions:
(1) The proposed design equations (Equations 5.7 and 5.8) were not significantly affected by any of the variables investigated, while the ACI and AISC expressions (Equations 4.1 and 4.30) were significantly affected by most of these same variables.
(2) The ACI design equation produced results that are compatible to the results of the proposed design equations for the five-percentile and one-percentile stiffness ratios plotted against many of the variables. This is particularly apparent when considering the affect of $e / h$ and $\ell / h$, the variables used in the proposed design expressions.
(3) The AISC equation, in many cases, gives the most conservative results for mean stiffness ratios and the

164


Figure 5.30 - Effect of $d_{s S} / h$ ratio on stiffness ratio for different design equations for all columns bending about major axis ( $n=1980$ for each $d_{s s} / h$ ratio equal to $0.41,0.47,0.52$, $0.56,0.60$ and 0.64).
least conservative values for the five-percentile and one-percentile stiffness ratios.

### 5.4.3 Stiffness Ratios Produced by Proposed Design Equations for Usual Columns

For composite beam-columns, neither the ACI Code nor the AISC Code sets an upper limit on the amount of structural steel. However, the AISC Code states that to qualify as a composite column the structural steel ratio ( $\rho_{S S}$ ) must be greater than or equal to 4 percent. The ACI Building code requires that a minimum of 1 percent to a maximum of 8 percent of longitudinal reinforcing ( $\rho_{r s}$ ) be included with the structural steel core. Difficulty in lap splicing the reinforcing bars reduces the maximum limit of $\rho_{r s}$ to about 3 percent when a relatively large structural steel core is encased. The reinforcing steel ratio is, therefore, usually expected to range from 1 to 3 percent. Even three percent reinforcing steel will restrict $\rho_{S S}$ to a maximum of about 10 percent, giving the $\rho_{\text {ss }}$ range of about 4 to 10 percent. Mirza and MacGregor (1982) determined that the end eccentricity ratio for columns in reinforced concrete buildings usually ranged from 0.1 to 0.65 . Therefore, the usual columns in this study were defined as those for which $e / h=0.1,0.2,0.3$, $0.4,0.5,0.6$, or 0.7 , and $\rho_{s s}=4.2$ (actual values $=4.07$, $4.13,4.36$ ) 7.0 (actual values of $6.80,7.29$ ), or 10.3 (actual value $=10.33$ ) percent, and $\rho_{r s}$ equal to 1.09, 1.96,
or 3.17 percent.
Figures 5.31 (a) to (e) examine the variations in mean and minium values of the stiffness ratios with respect to e/h computed from Equation 5.7 and plotted for $\ell / h=10,15,20$, 25 and 30 , respectively. The number of values available for plotting each point were 36,72 and 108 for $\rho_{S S}=10.3,7.0$ and 4.2 percent, respectively. The one-percentile values were not plotted in these figures because the minimum values represented $2.8,1.4$ and 0.93 percentiles. The mean stiffness ratios exceeded 1.0 for most of the columns for all $\ell / h$, while the minimum values exceeded 0.8 in all cases. Only for $\ell / h$ $=10$ and $\rho_{s s}=10.3$ percent and for $\ell / h=30$ and $\rho_{s s}=4.2$ percent, the mean stiffness ratio were less than 1.0. This indicated by Figures 5.31 (a) to (e).

Equation 5.8 is identical to Equation 5.7 for $\ell / h=10$, and becomes more conservative as $\ell / h$ increases. This becomes evident by Figures 5.31(f), (g), (h), and (i) plotted for Equation 5.8.

The following conclusions appear to be valid for columns with e/h $=0.1$ to $0.7, \rho_{s s}=4.2$ to 10.3 percent, $\rho_{r s}=1.1$ to 3.2 percent, and $\ell / h=10$ to $30:$
(1) The mean and minimum stiffness ratios for Equation 5.7 or 5.8 may be taken as 1.0 and 0.8 , respectively;
(2) The proposed design equations (Equations 5.7 and 5.8) are not subject to significant variation due to $e / h, \rho_{s s}$ or e/h ratios.


Figure $5.31(a)$ - Stiffness ratios obtained from proposed design equations, Eq. (5.7) or (5.8), for usual columns bending about major axis with $\ell / h=10$ (for each combination of $e / h$ and $\rho_{s s}$ ratios plotted $n=108$ for $\rho_{s s}=4.2$ percent, $n=72$ when $\rho_{S S}=7.0$ percent and $n=36$ when $\rho_{S S}=10.3$ percent).


Figure 5.31(b) - Stiffness ratios obtained from proposed design Equation (5.7) for usual columns bending about major axis with $\ell / h=15$ (for each combination of $e / h$ and $\rho_{s s}$ ratios plotted $n=108$ for $\rho_{s s}=4.2$ percent, $n=72$ when $\rho_{s s}=7.0$ percent and $\mathrm{n}=36$ when $\rho_{s s}=10.3$ percent).


Figure 5.31(c) - Stiffness ratios obtained from proposed design Equation (5.7) for usual columns bending about major axis with $\ell / h=20$ (for each combination of $e / h$ and $\rho_{5 S}$ ratios plotted $n=108$ for $\rho_{s S}=4.2$ percent, $n=72$ when $\rho_{s s}=7.0$ percent and $n=36$ when $\rho_{S S}=10.3$ percent).


Figure 5.31(d) - Stiffness ratios obtained from proposed design Equation (5.7) for usual columns bending about major axis with $\ell / h=25$ (for each combination of $e / h$ and $\rho_{S S}$ ratios plotted $n=108$ for $\rho_{s s}=4.2$ percent, $n=72$ when $\rho_{s s}=7.0$ percent and $n=36$ when $\rho_{s s}=10.3$ percent).


Figure $5.31(e)$ - Stiffness ratios obtained from proposed design Equation (5.7) for usual columns bending about major axis with $\ell / h=30$ (for each combination of $e / h$ and $\rho_{s s}$ ratios plotted $n=108$ for $\rho_{s s}=4.2$ percent, $n=72$ when $\rho_{s s}=7.0$ percent and $n=36$ when $\rho_{s s}=10.3$ percent).


Figure 5.31(f) - Stiffness ratios obtained from proposed design Equation (5.8) for usual columns bending about major axis with $\ell / h=15$ (for each combination of $e / h$ and $\rho_{s s}$ ratios plotted $n=108$ for $\rho_{S S}=4.2$ percent, $n=72$ when $\rho_{S S}=7.0$ percent and $n=36$ when $\rho_{s s}=10.3$ percent).


Figure 5.31(g) - Stiffness ratios obtained from proposed design Equation (5.8) for usual columns bending about major axis with $\ell / h=20$ (for each combination of $e / h$ and $\rho_{s s}$ ratios plotted $\mathrm{n}=108$ for $\rho_{s S}=4.2$ percent, $\mathrm{n}=72$ when $\rho_{s s}=7.0$ percent and $n=36$ when $\rho_{s s}=10.3$ percent).


Figure 5.31(h) - Stiffness ratios obtained from proposed design Equation (5.8) for usual columns bending about major axis with $\ell / h=25$ (for each combination of $e / h$ and $\rho_{s s}$ ratios plotted $\mathrm{n}=108$ for $\rho_{s s}=4.2$ percent, $\mathrm{n}=72$ when $\rho_{S S}=7.0$ percent, and $\mathrm{n}=36$ when $\rho_{S S}=10.3$ percent).


Figure $5.31(i)$ - Stiffness ratios obtained from proposed design Equation (5.8) for usual columns bending about major axis with $\ell / h=30$ (for each combination of $e / h$ and $\rho_{S S}$ ratios plotted $\mathrm{n}=108$ for $\rho_{S S}=4.2$ percent, $\mathrm{n}=72$ when $\rho_{S S}=7.0$ percent . and $\mathrm{n}=36$ when $\rho_{s s}=10.3$ percent).

### 5.5 THEORETICALLY CALCULATED CRITICAL BUCKLING LOAD

The ratio of axial load acting on the column to critical buckling load, given as $P_{u} / P_{C I}$, is used by ACI (Equation 4.26) and AISC (Equation 4.11) to evaluate the second order effects of slenderness.

The frequency histogram and statistics shown in Figure 5.32 and Table 5.6 represent the critical load ratio $P_{u(t h)} / P_{c r(t h)}$ for 10800 columns with e/h ranging from 0.1 to 1.0. $P_{u(t h)}$ is the computed theoretical axial load capacity and $P_{C r(t h)}$ is calculated by substituting the computed theoretical effective flexural stiffness $E I_{t h}$ in Equation 2.4, yielding:

$$
\begin{equation*}
P_{c r(t h)}=\frac{\pi^{2} E I_{t h}}{\ell^{2}} \tag{5.11}
\end{equation*}
$$

Table 5.6 lists the mean value of 0.326 , standard deviation of 0.177 and coefficient of variation of 0.544 for the range of critical load ratios shown in Figure 5.32. The critical load ratios of $0.4,0.5,0.6,0.7$ and 0.8 represent the 68th, 83rd, 92nd, 97th, and 99.9th percentiles, respectively, as indicated in Figure 5.32.

For design purposes, it is proposed that the mean value plus one standard deviation, 0.5 , be used as the upper limit for $P_{u} / P_{C r}$. This means that 83 percent of the beam-columns used for plotting Figure 5.32 would be considered practicalcolumns. The suggested upper limit of 0.5 for $P_{u} / P_{C r}$ is plotted in Figures 5.33(a) and 5.33(b) to examine the effects


Table 5.6 - Statistics for critical load ratio $P_{u(t h)} / P_{c r(t h)}$



Figure 5.33 - Effect of (a) end eccentricity ratio and (b) slenderness ratio on critical load for all columns bending about the major axis other than those for which $e / h=0.05$.
of $e / h$ and $\ell / h$ on $P_{u(t h)} / P_{C r(t h)}$. Figures 5.33(a) and 5.33(b) indicate that some columns with low $e / h$, high $\ell / h$, or both have $P_{u(t h)} / P_{c r(t h)}$ ratio greater than the suggested upper limit. This means that the suggested upper limit would control the design of very slender columns in lower storeys of high-rise buildings.

### 5.6 ANOTHER LOOK AT THE AISC EFFECTIVE STIFFNESS

The somewhat low stiffness ratios ( $E I_{t h} / E I_{d e s}$ ) obtained in some cases for the AISC expression (Equation 4.30) raised some concerns. This prompted a further examination of the AISC interaction equations.

A comparison of the ratios of the theoretical ultimate strength $P_{u(t h)}$ to the AISC ultimate strength $P_{u(A I S C)}$ was undertaken to assess the accuracy of the AISC interaction equations (Equation 4.16 and 4.17) used for predicting the beam-column strength. Figure 5.34(a) plotted from the data for all beam-columns studied shows that the probability distribution of the strength ratios yield a mean value of 1.31, coefficient of variation of 0.14 , and one-percentile value of 1.01 . This is clearly an improvement over the probability distribution properties of the stiffness ratios (mean value $=1.45$, coefficient of variation of 0.23 , and onepercentile value $=0.81$ ) obtained from the same beam-column data and shown in Figure 5.2(b).

For the strength ratio data shown in Figure 5.34(b) for


Figure 5.34 - Frequency histogram for ratio of theoretical ultimate strength to AISC ultimate strength for columns bending about the major axis: (a) $\rho_{r s}=1.09,1.96$ and 3.17 percent; and (b) $\rho_{r s}=1.09$ percent.
beam-columns having only 1 percent of reinforcing steel, the mean value of 1.25 , coefficient of variation of 0.14 , and onepercentile value of 0.99 were obtained. Again, this is a considerable improvement over the comparable values (1.26, 0.23, and 0.77) shown in Figure 5.3(b) for stiffness ratios.

The above-noted differences in strength ratios and stiffness ratios are expected since the stiffness of a composite beam-column is more susceptible to concrete cracking and material nonlinearities than its strength.

Figures 5.35 and 5.36 show the strength ratios plotted against $e / h$ for all the data and for data from beam-columns having $\rho_{r s}$ of 1 percent. Both figures show mean, fivepercentile and one-percentile values above $1.0,0.86$, and 0.80 , respectively.

From the data plotted in Figure 5.34, 5.35, and 5.36 and the related discussion, it is concluded that the AISC method produces safe design for composite beam-columns subjected to bending about the major axis of the steel section.


Figure 5.35 - Effect of end eccentricity ratio on ratio of theoretical ultimate strength to AISC ultimate strength for columns bending about the major axis ( $n=1080$ for each e/h ratio equal to $0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8$, 0.9 and 1.0).

184


Figure 5.36 - Effect of end eccentricity ratio on ratio of theoretical ultimate strength to AISC ultimate strength for columns bending about the major axis where $\rho_{r s}=1.09$ percent ( $\mathrm{n}=360$ for each $e / h$ ratio equal to $0.05,0.1,0.2,0.3,0.4$, $0.5,0.6,0.7,0.8,0.9$ and 1.0).

# 6 - EVALUATION OF EFFECTIVE STIFFNESS FOR BEAM-COLUMNS SUBJECTED TO MINOR AXIS BENDING 

### 6.1 DESCRIPTION OF BEAM-COLUMNS STUDIED

To obtain a parametric study equivalent to the study of major axis bending, 11880 composite beam-columns were used to evaluate the theoretical stiffness of columns bending about the minor axis. Each column had a different combination of the specified properties. The specified nominal concrete strengths $f^{\prime}{ }_{c}$, the structural steel yield strengths $f_{y s s}$, the reinforcing steel ratios $\rho_{r s}$, the structural steel ratios $\rho_{s s}$ and the size of structural steel shapes used in this study are listed in Table 6.1. The values shown in the table represent the practical ranges of these variables used in the construction industry. The overall concrete cross-section had a size of 22 inches by 22 inches; the details of the crosssection are given in Figure 6.1.

The ACI and AISC Code requirements for composite columns influenced the selection of the cross section parameters used in this study. For composite beam-columns neither the ACI nor the AISC Code specifies a maximum amount for the structural steel core. However, the AISC Code states that to qualify as a composite column the structural steel ratio ( $\rho_{S S}$ ) must be greater than or equal to 4 percent. The ACI Building code. requires that a minimum of 1 percent to a maximum of 8 percent of longitudinal reinforcing $\left(\rho_{r s}\right)$ be included with the

Table 6.1 - Specified properties of composite beam-columns studied*

| Properties | Specified Values | Number of Specified Values |
| :---: | :---: | :---: |
| $f^{\prime}{ }_{c}, \mathrm{psi}$ | 4000; 5000; 6000; 8000 | 4 |
| $f_{\text {yss }}$, psi | 36000; 44000; 50000 | 3 |
| $\rho_{\text {rs }},{ }^{\text {q }}$ | 1.09; 1.96; 3.17 | 3 |
| structural steel | section  $\rho_{\text {ss }}, \%$ <br> W12 x 170 10.33 <br> W12 120 7.29 <br> W12 72 4.36 <br> W10 112 6.80 <br> W10 68 4.13 <br> W8 x 67 | 6 |
| $\ell / h$ | 10; 15; 20; 25; 30 | 5 |
| $e / h$ | $\begin{gathered} 0.05 ; 0.1 ; 0.2 ; 0.3 ; 0.4 ; 0.5 \\ 0.6 ; 0.7 ; 0.8 ; 0.9 ; 1.0 \end{gathered}$ | 11 |

* Total number of columns equals ( $4 \times 3 \times 3 \times 6 \times 5 \times 11$ =) 11880 with each column having a different combination of specified properties shown above. All columns had a cross section size of 22 x 22 in. with lateral ties conforming to ACI 318-89 Clause 10.14.8.

Note: $1.0 \mathrm{in} .=25.4 \mathrm{~mm} ; 1000 \mathrm{psi}=6.895 \mathrm{MPa}$.

| STEEL SECTION |  |  |  |  | LONGITUDINAL REINFORCING |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Designation | $\begin{gather*} A_{s s} \\ \left(\text { in. }^{2}\right) \end{gather*}$ | $b_{f}$ <br> (in.) | $d_{s s}$ <br> (in.) | $\rho_{\mathrm{ss}}$ <br> (\%) | Y <br> (in.) | Max. bar dia. for $\mathrm{Z}=1.0 \mathrm{in}$. | Mex. bar dia. for lap | $\begin{aligned} & \mathrm{Cc} \\ & \mathrm{Bar} \\ & \mathrm{Dia.} \\ & \text { (in.) } \end{aligned}$ | ner R <br> No. Req. | bars <br> Clear Dist. $Z$ (in.) | Add'\| <br> Bar Dia. <br> (in.) | ebars <br> No. Req. | Total Area of Rebars $\left(i n .^{2}\right)$ | $\rho_{r s}$ |
| $\begin{gathered} W 12 \times 170 \\ (W 310 \times 253) \end{gathered}$ | 50.0 | 14.03 | 12.57 | 10.33 | 1.99 | 1.90 | 1.72 | $\begin{aligned} & 1.693 \\ & 1.000 \\ & 0.750 \end{aligned}$ | 4 4 4 | $\begin{aligned} & 1.342 \\ & 2.167 \\ & 2.465 \end{aligned}$ | $\begin{aligned} & 1.000 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{gathered} 15.32 \\ 9.48 \\ 5.28 \end{gathered}$ | $\begin{aligned} & 3.17 \\ & 1.96 \\ & 1.09 \end{aligned}$ |
| $\begin{gathered} W 12 \times 120 \\ (W 310 \times 179) \end{gathered}$ | 35.3 | 13.12 | 12.32 | 7.29 | 2.44 | 2.20 | 1.84 | $\begin{aligned} & 1.693 \\ & 1.000 \\ & 0.750 \end{aligned}$ | 4 4 4 | $\begin{aligned} & 1.706 \\ & 2.540 \\ & 2.841 \end{aligned}$ | $\begin{aligned} & 1.000 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{gathered} 15.32 \\ 9.48 \\ 5.28 \end{gathered}$ | $\begin{aligned} & 3.17 \\ & 1.96 \\ & 1.09 \end{aligned}$ |
| $\begin{gathered} W 12 \times 72 \\ (W 310 \times 107) \end{gathered}$ | 21.1 | 12.25 | 12.04 | 4.36 | 2.88 | 2.60 | 1.98 | $\begin{aligned} & 1.693 \\ & 1.000 \\ & 0.750 \end{aligned}$ | 4 4 4 | $\begin{aligned} & 2.097 \\ & 2.934 \\ & 3.236 \end{aligned}$ | $\begin{aligned} & 1.000 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{aligned} & 15.32 \\ & 9.48 \\ & 5.28 \end{aligned}$ | $\begin{aligned} & 3.17 \\ & 1.96 \\ & 1.09 \end{aligned}$ |
| $\begin{gathered} W 10 \times 112 \\ (W 250 \times 167) \end{gathered}$ | 32.9 | 11.36 | 10.41 | 6.80 | 3.32 | 3.30 | 2.80 | $\begin{aligned} & 1.693 \\ & 1.000 \\ & 0.750 \end{aligned}$ |  | $\begin{gathered} 3.002 \\ 11.521 \\ 11.823 \end{gathered}$ | $\begin{aligned} & 1.000 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{gathered} 15.32 \\ 9.48 \\ 5.28 \end{gathered}$ | $\begin{aligned} & 3.17 \\ & 1.96 \\ & 1.09 \end{aligned}$ |
| $\begin{gathered} W 10 \times 68 \\ \text { W250 } \end{gathered}$ | 20.0 | 10.40 | 10.13 | 4.13 | 3.80 | 3.70 | 2.94 | $\begin{aligned} & 1.693 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 3.427 \\ & 4.263 \\ & 4.565 \end{aligned}$ | $\begin{aligned} & 1.000 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{gathered} 15.32 \\ 9.48 \\ 5.28 \end{gathered}$ | $\begin{aligned} & 3.17 \\ & 1.96 \\ & 1.09 \end{aligned}$ |
| $\begin{gathered} W 8 \times 67 \\ (W 200 \times 100) \end{gathered}$ | 19.7 | 9.00 | 8.28 | 4.07 | 4.50 | 4.60 | 3.86 | $\begin{aligned} & 1.693 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 4.581 \\ & 5.417 \\ & 5.719 \end{aligned}$ | $\begin{aligned} & 1.000 \\ & 1.000 \\ & 0.750 \end{aligned}$ | $\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{aligned} & 15.32 \\ & 9.48 \\ & 5.28 \end{aligned}$ | $\begin{aligned} & 3.17 \\ & 1.96 \\ & 1.09 \end{aligned}$ |



Figure 6.1 - Details of composite column cross-section for columns subject to bending about the minor axis.
structural steel core. Difficulty in lap splicing the reinforcing bars reduces the maximum limit of $\rho_{r s}$ to about 3 to 4 percent when a relatively large structural steel core is encased. The reinforcing steel ratio is, therefore, usually expected to range from 1 to 3 percent. Even three percent reinforcing steel will restrict $\rho_{s S}$ to a maximum of about 10 percent, giving a range of $\rho_{\text {sS }}$ about 4 to 10 percent. The AISC Code (Chapter I, Section I2) specifies that $f{ }^{\prime}{ }_{c}$ be restricted to range from 3000 psi to 8000 psi and that the maximum yield strength for structural steel and reinforcing bars shall not exceed $55,000 \mathrm{psi}$ in calculating the strength of the column. The ACI Building Code, on the other hand, specifies that $f{ }^{\prime}{ }_{c}$ shall not be less than 2500 psi (Clause 10.14.8.1) and that the design yield strength of the structural steel shall not exceed $50,000 \mathrm{psi}(C l a u s e ~ 10.14 .8 .2)$, but no restriction is placed on the design yield strength of the reinforcing steel. With these requirements in mind, the strengths for concrete and structural steel shown in Table 6.1 were selected. The yield strength of the reinforcing bars was taken as 60 ksi for all of the cross section arrangements, because this represents the standard strength of reinforcing bars used in the construction industry. Figure 6.1 shows the cross section arrangements that were used in this study.

Utilizing six different sizes of structural steel shapes. (Figure 6.1) provided the means to study the effect of concrete cover over the structural steel section. The ratio
of the depth of the structural steel shape to the depth of the concrete cross-section $d_{s s} / h$ was used as an index for concrete cover over structural steel.

Table 6.1 shows that eleven end eccentricity ratios e/h ranging from 0.05 to 1.0 were used. This is consistent with the findings of Mirza and MacGregor (1982) that, for reinforced concrete buildings, e/h usually varies from 0.1 to 0.65. Five slenderness ratios $\ell / h$ were chosen to represent the range of $\ell / h$ for columns in braced frames designed in accordance with ACI 318-89 Clause 10.11.

As the purpose of this study is to simulate the actual stiffness $E I$ of beam-columns described by nominal crosssectional properties, the specified nominal values for material strength and cross-sectional properties will not provide an accurate estimation of EI. Mean values established by Skrabek and Mirza (1990) corresponding to the nominal specified properties were, therefore, used to compute the theoretical stiffness for each column. Table 6.2 lists the mean values corresponding to the specified nominal values.

The short-term theoretical effective flexural stiffness $E I$ for each of the 11,880 columns studied was computed using Equation 2.7, the cross-section and slender column interaction diagrams described in section 2.2, and the mean values of the variables specified in Table 6.2. The simulated column stiffness data were then statistically analyzed for examining the current ACI column stiffness, the equivalent AISC column

Table 6.2 - Mean Values of Variables Used for Computing Theoretical Strength and Stiffness.
(a) Concrete

| Nominal Strength $f_{c}{ }_{c}$ (psi) | Mean Values |  |  |
| :---: | :---: | :---: | :---: |
|  | Compressive Strength $f_{c}$ (psi) | Modulus of Rupture $f_{r}$ (psi) | Elastic Modulus $\mathrm{E}_{\mathrm{c}}$ (ksi) |
| 4,000 | 3,388 | 445 | 3,260 |
| 5,000 | 4,013 | 485 | 3,537 |
| 6,000 | 4,641 | 523 | 3,795 |
| 8,000 | 5,904 | 591 | 4,263 |

(b) Structural Steel Strength*

| Nominal Strength $f_{y}$ (psi) | Mean Values |  |
| :---: | :---: | :---: |
|  | Static Yield Strength |  |
|  | $\begin{gathered} \text { Web } \\ f_{y s W}(p s i) \end{gathered}$ | Flange $f_{y s f}$ |
| 36,000 | 39,240 | $0.95 \mathrm{f}_{\mathrm{ysw}}$ |
| 44,000 | 47,960 | $0.95 \mathrm{f}_{\text {ysw }}$ |
| 50,000 | 54,500 | $0.95 \mathrm{f}_{\mathrm{ysw}}$ |

(c) Residual Stresses in Structural Steel

| Steel Shape | Flange Tip (psi) | Flange - web <br> Juncture (psi) |
| :---: | :---: | :---: |
| W12 $\times 170$ (W310 $\times 253$ ) | $-18,367$ | 11,792 |
| W12 $\times 120($ W310 $\times 179)$ | $-17,983$ | 11,267 |
| W12 $\times 72($ W310 $\times 107)$ | $-17,896$ | 11,152 |
| W10 $\times 112($ W250 $\times 167)$ | $-18,576$ | 12,089 |
| W10 $\times 68($ W250 $\times 101)$ | $-18,384$ | 11,816 |
| W8 $\times 67($ W200 $\times 100)$ | $-18,465$ | 11,931 |

[^1]Table 5.2 - continued
(d) Structural Steel Dimensions

|  | Section <br> Depth <br> d | Flange <br> Width <br> b | Flange <br> Thickness <br> $t$ | Web <br> Thickness <br> w |
| :---: | :---: | :---: | :---: | :---: |
| Ratio of Actual to <br> Specified Dimensions | 1.000 | 1.005 | 0.976 | 1.017 |

(e) Reinforcing Steel

| Nominal Strength <br> $f_{y}(p s i)$ | Static Yield <br> Strength $f_{y s}(p s i)$ | Elastic Modulus <br> $E_{s}(\mathrm{ksi})$ |
| :---: | :---: | :---: |
| 60,000 | 66,800 | 29,000 |

(f) Deviation of Overall Beam-Column Dimensions
from Nominal Specified Dimensions

| Length (in.) | 0.0 |
| :--- | :---: |
| Cross-Section Depth (in.) | +0.06 |
| Cross-Section Width (in.) | +0.06 |
| Concrete Cover to Lateral Ties (in.) | +0.33 |
| Spacing of Lateral Ties (in.) | 0.0 |

stiffness, and for developing the proposed design equations for $E I$.

Note that the specified nominal values listed in Table 6.1 and the mean values for material properties and cross section descriptions listed in Table 6.2 are the same as those given in Chapter 5. The only difference between the columns described in Chapters 5 and 6 is the 90 degree rotation of the axis of bending.

### 6.2 EXAMINATION OF ACI AND AISC STIFFNESSES

The ACI Building Code and the comparable AISC Code equivalent flexural stiffnesses (Equation 4.1 and 4.30 described in Chapter 4) were compared with the theoretical EI data generated for all of the 11,880 composite columns subjected to bending about the minor axis of the steel section. The nominal values of variables shown in Table 6.1 and Figure 6.1 were used for computing the ACI and AISC EI values. Note the theoretical $E I$ values were computed using the mean values of variables shown in Table 6.2 .

The histograms in Figure 6.2 show the ratios of theoretical $E I$ to design $E I$ ( $\left.E I_{t h} / E I_{\text {des }}\right)$. The results shown in Figure 6.2 (a) were computed based on $E I_{\text {des }}$ taken equal to the ACI EI equation (Equation 4.1) and those shown in Figure $6.2(\mathrm{~b})$ were based on $E I_{\text {des }}$ set equal to AISC $E I$ expression (Equation 4.30). Figure 6.2 that includes data for all $\rho_{r s}$ values (1.09, 1.96, 3.17 percent) indicates that relatively


Figure 6.2 - Frequency histogram comparing ACI and AISC stiffness equations with theoretical results for all columns bending about minor axis.
high mean stiffness ratios and coefficients of variation (CV) are obtained from the ACI equation (mean value $=1.69, C V=$ 24.3 percent for Equation 4.1). This means that the ACI equation on the average predicts conservative $E I$ values, which are about 70 percent lower than the theoretically computed values, but the ACI EI values deviate substantially from the corresponding theoretically computed values for a significant number of columns studied. The AISC expression, on the other hand, gives a mean value that is much closer to 1.0 than the ACI, but also gives a large coefficient of variation and extremely low one-percentile value ( mean value $=1.10$; $C V=$ 32.4 percent; and one-percentile $=0.540$ for Equation 4.30).

A second comparison showing only the data where $\rho_{r s}=1$ percent was plotted in Figure 6.3 for both the ACI and AISC stiffnesses. Mean values of 1.42 and 0.91 were obtained for ACI and AISC, respectively, along with coefficients of variation similar to those in Figure 6.2. This significant change in mean value indicates that the ACI and AISC design equations were most likely calibrated for the minimum required reinforcing steel ratio. This also appears to confirm the general belief that $A C I$ equation is, in most cases, on the safe side. For the AISC, however, a mean stiffness ratio less than 1.0 in Figure $6.3(\mathrm{~b})$ and extremely low one percentile values ( 0.540 and 0.507 ) in Figures $6.2(\mathrm{~b})$ and $6.3(\mathrm{~b})$ indicate that the AISC design expression gives non-conservative results for a large number of cases. Mirza (1990) pointed out that


Figure 6.3 - Frequency histogram comparing ACI and AISC stiffness equations with theoretical results for columns bending about minor axis where $\rho_{r s}=1.09$ percent.
for establishing safety into design equations the onepercentile value is more important than the mean value.

Note the ACI and AISC design equations do not include all the parameters that affect the stiffness of slender columns. The ACI equation does not account for the longitudinal reinforcing steel whereas the AISC design equations modify the properties of a composite column to that of an "equivalent steel" column in which cracking of the concrete is not considered.

It is evident from Figures 6.2 and 6.3 and the related discussions that there appears to be a need for modification in the existing ACI stiffness equation and AISC strength interaction equations used for the design of composite beamcolumns.

### 6.3 DEVELOPMENT OF PROPOSED DESIGN EQUATIONS FOR SHORT-TERM EI

Mirza (1990) among others pointed out that the effective flexural stiffness of a slender reinforced concrete column is significantly affected by cracking along its length and inelastic actions in the concrete and reinforcing steel. This is also expected for a composite column although to a lesser degree, because the structural steel core is expected to stiffen the concrete cross-section. However, the inelastic actions within the encased structural steel shape affect the
overall stiffness of a composite column. $E I$ is then represented by a complex function of $a$ number of variables that cannot be readily transformed into a unique and simple analytical solution. The objective in this study is to develop simple equations for the $E I$ of composite columns subjected to bending about the minor axis of the steel section. These equations are similar to the ones that were produced in Chapter 5 and those developed by Mirza (1990) for reinforced concrete columns. Multiple linear regression analysis was chosen to evaluate $E I$ from the generated theoretical stiffness data.

### 6.3.1 Variables Used for Regression Analysis

The variables used in this study were divided into two major groups: (A) variables that affect the contribution of concrete to the overall effective stiffness; and (B) variables that influence the contribution of structural and reinforcing steel to the overall effective stiffness of a composite beamcolumn.

Group A consists of five subgroups, similar to those described by Mirza(1990): (1) end eccentricity ratio e/h or $P_{u} / P_{o}$ (subgroup $X_{1}$ ), in which $P_{u}$ is the factored axial load acting on the slender column and $P_{0}$ is the pure axial load capacity of the cross-section; (2) slenderness ratio $\ell / h$ or $\ell / r$ (subgroup $X_{2}$ ), where $r$ is the radius of gyration
calculated according to the ACI Building Code Equation (10-13) reproduced here as Equation 6.1 ; (3) steel index $\rho_{s s}$, or $\rho_{r s}$, or $\rho_{g}=\left(\rho_{S S}+\rho_{r S}\right)$, or $\rho_{Y S} / \rho_{S S}$, or $\rho_{S S} f_{Y S S} / f^{\prime}{ }_{C}$, or $\rho_{r S} f_{Y Y S} / f^{\prime}{ }_{C}{ }^{\prime}$ or $\left(\rho_{s S} f_{y S S}+\rho_{r s} f_{y r s}\right) / f_{c}\left(\right.$ subgroup $\left.X_{3}\right)$, where $\rho_{g}$ is the total steel ratio and $f_{y r s}$ is the specified yield strength of the reinforcing steel; (4) stiffness index $I_{r s} / I_{s s}$, or $I_{s s} / I_{g}$, or $I_{r s} / I_{g}$, or $\left(I_{s s}+I_{r s}\right) / I_{g}\left(\operatorname{subgroup} X_{4}\right)$ where $I_{g}=$ the moment of inertia of the gross concrete cross-section neglecting structural and reinforcing steel; and (5) concrete cover index $d_{S S} / h$ (subgroup $X_{5}$ ) where $d_{S S}$, the depth of the structural steel section, is divided by the overall depth of the composite cross-section perpendicular to the axis of bending being considered.

$$
\begin{equation*}
r=\sqrt{\frac{\left(E_{c} I_{g} / 5\right)+E_{s} I_{s S}}{\left(E_{C} A_{g} / 5\right)+E_{S} A_{S S}}} \tag{6.1}
\end{equation*}
$$

In Equation 6.1, $A_{g}$ equals the area of the gross concrete cross-section neglecting structural and reinforcing steel and $A_{s s}$ equals the gross cross-sectional area of the structural steel section. The Group A variables are listed in Table 6.3.

Group B, on the other hand, consists of two variables, $E_{S} I_{s S}$ and $E_{s} I_{r s}$, that were considered to have a significant affect on the overall effective stiffness of a composite column.

Mirza and MacGregor (1989) found that for reinforced concrete slender columns the variables in the first and second
Table 6.3-Variable combinations used for regression analysis - Minor Axis Bending

| Variable Combination Number <br> (1) | Group "A" Variables |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Standard Error | Multiple Correlation Coefficient $R_{c}$ <br> (20) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{X}_{1}$ <br> End <br> Eccentricity <br> Ratio |  | Ratio$\qquad$ |  | $\begin{gathered} x_{3} \\ \text { Steel } \\ \text { Index } \\ \hline \end{gathered}$ |  |  |  |  |  |  |  |  |  |  | $\mathrm{X}_{5}$ Concrete Cover Index |  |  |
|  | e/h <br> (2) | $\left\|P_{u} / P_{o}\right\|$ <br> (3) | (4) | e/r <br> (5) | $\rho_{\mathrm{ss}}$ <br> (6) | $\rho_{r s}$ <br> (7) | $\rho_{\mathrm{g}}$ <br> (8) | $\begin{aligned} & \frac{\rho_{r s}}{\rho_{s s}} \\ & (10) \end{aligned}$ | $\begin{gathered} \frac{\rho_{\mathrm{ss}}{ }^{f} y s \mathrm{ss}}{} \\ \mathrm{f}^{\prime}{ }_{\mathrm{c}} \\ (111) \end{gathered}$ | $\frac{\mathrm{P}_{r s} \mathrm{f}_{\mathrm{frs}}}{{ }^{\prime}{ }^{\prime}{ }^{2}}$ <br> (12) | $(11)+(12)$ <br> (13) | $\begin{aligned} & { }_{{ }_{\mathrm{I}}^{\mathrm{Irs}}} \\ & (14) \end{aligned}$ | $\xrightarrow{\mathrm{I}_{\text {ss }}}$ | $\underset{\mathrm{I}^{\text {r }}}{\mathrm{I}_{\mathrm{g}}}$ | $\|$$I_{\text {rs }}+I_{s s}$ <br> $\mathrm{I}_{\mathrm{g}}$ <br> c <br> $(17)$ | $\begin{gathered} \mathrm{d}_{\mathrm{ss}} /{ }^{\prime} \\ (18) \end{gathered}$ |  |  |
| 1 | X |  | X |  |  |  |  | x |  |  |  |  |  | x |  | $x$ |  |  |
| 2 | X |  | X |  |  |  |  | X |  |  |  |  |  | x |  |  | 0.047 | 0.912 |
| 3 | X |  | x |  |  |  |  | X |  |  |  | X |  |  |  |  | 0.048 | 0.909 |
| 4 | + |  | X |  |  |  |  | X |  |  |  |  | x |  |  |  | 0.047 | 0.912 |
| 5 | $\frac{\mathrm{x}}{\mathrm{X}}$ |  | - |  |  |  |  | X |  |  |  |  |  |  | X |  | 0.047 | 0.912 |
| 7 | X |  | X |  | X |  |  | X |  |  |  |  |  |  |  |  | 0.048 | 0.908 |
| 8 | X |  | X |  |  | X |  |  |  |  |  |  |  |  |  |  | 0.048 | 0.910 |
| 9 | X |  | X |  |  |  | X |  |  |  |  |  |  |  |  |  | 0.047 | 0.911 |
| 10 | X |  | X |  |  |  |  |  | X |  |  |  |  |  |  |  | ${ }_{0}^{0.047}$ | 0.917 |
| 11 | X |  | X |  |  |  |  |  |  | X |  |  |  |  |  |  | 0.047 | 0.911 |
| 12 | X |  | X |  |  |  |  |  |  |  | X |  |  |  |  |  | 0.048 | 0.911 |
| 13 | X |  | X |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.048 | 0.908 |
| 14 | - |  |  | X |  |  |  |  |  |  |  |  |  |  |  |  | 0.048 | 0.908 |
| 15 |  | X | X |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.049 | 0.903 |
| 17 | X |  |  | X |  |  |  |  |  |  |  |  |  |  |  |  | 0.049 | 0.903 |
| 18 |  | X |  |  |  |  |  |  |  | $\bigcirc$ |  |  |  |  |  |  | 0.050 | 0.901 |
| 19 |  |  | X |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.061 | 0.847 |
| 20 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |  | 0.079 | 0.124 |
| 21 |  |  |  |  |  | X |  |  |  |  |  |  |  |  |  |  | 0.080 | 0.724 0.719 |
| 22 |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  |  | 0.080 | 0.715 |
| 23 |  |  |  |  |  |  |  |  |  |  |  |  | X |  |  |  | 0.080 | 0.720 |
| 24 |  |  |  |  |  |  |  |  |  |  |  |  |  | X |  |  | 0.080 | 0.719 |
| 25 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | X | 0.080 | 0.716 |

subgroup of group A are important in the study of the strength and behaviour of slender columns. Mirza (1990) verified this in his analysis of the flexural stiffness of rectangular reinforced concrete columns. The third subgroup variables of Group A took into consideration the influence of the quantity of steel in proportion to the area of concrete cross-section. The fourth subgroup was intended to examine the effects of relative stiffnesses of steel and concrete. The fifth and final subgroup of Group $A$ was included to investigate the effect of concrete cover to the structural steel shape on column stiffness.

The variables within an individual subgroup of Group A were considered as dependent variables, while variables between the subgroups were taken as independent variables. For example, $e / h$ was considered dependent on $P_{u} / P_{o}$ but was taken independent of variables related to slenderness ratio, steel index, stiffness index, and concrete cover index. The variables of Group $B$ were always considered independent variables. A maximum of one variable from any of the chosen subgroups of Group A was, therefore, used for a particular regression analysis of the theoretical stiffness data. When one variable from each subgroup of Group A and both variables from Group $B$ are included into the regression analysis, Equation 2.2 becomes:

$$
\begin{align*}
& E I=\left(\alpha_{k}+\alpha_{1} X_{1}+\alpha_{2} X_{2}+\alpha_{3} X_{3}+\alpha_{4} X_{4}\right. \\
& \left.\quad+\alpha_{5} X_{5}\right) E_{C}\left(I_{g}-I_{s S}\right)+\alpha_{s S} E_{s} I_{s S}+\alpha_{r s} E_{s} I_{r s} \tag{6.2a}
\end{align*}
$$

in which $\alpha_{k}$ is a constant (equivalent to the intercept of a simple linear equation). The remaining $\alpha$ values are dimensionless reduction factors corresponding to independent variables $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, E_{s} I_{s s}$ and $E_{s} I_{r s}$. $X_{1}$ through $X_{5}$ represent one variable chosen from each of the subgroups (i.e. end eccentricity ratio, slenderness ratio, steel index, stiffness index, and concrete cover index) in Group A.

The combination of Group A variables used for different regression analyses are given in Table 6.3. Group B variables were included in all regression analyses shown in Table 6.3.

The prediction accuracy for a particular regression equation was based on the standard error $S_{e}$, a measure of sampling variability, and the multiple correlation coefficient $R_{C}$, an index of relative strength of the relationship. The smaller the value of $S_{e}$ the smaller the sampling variability of the regression equation. An $R_{C}$ value equal to zero signifies no correlation, and $R_{C}= \pm 1.0$ indicates 100 percent correlation. $\quad R_{C}$ values greater than +1.0 and less than -1.0 are not possible. The calculated values of $S_{e}$ and $R_{C}$ for each regression analysis are also given in Table 6.3. To reduce the relative magnitude of the standard error $S_{e}$, both sides of Equation 6.2 a were divided by $E_{C}\left(I_{g}-I_{s s}\right)$ to "normalize" the Equation. This also allowed the $S_{e}$ obtained in this study to be compared to the $S_{e}$ obtained by Mirza (1990) for reinforced. concrete columns. The normalized version of Equation 6.2 a is shown in Equation 6.2b.

$$
\begin{align*}
\frac{E I}{E_{C}\left(I_{g}-I_{s S}\right)}= & \alpha_{k}+\alpha_{1} X_{1}+\alpha_{2} X_{2}+\alpha_{3} X_{3}+\alpha_{4} X_{4}+\alpha_{5} X_{5} \\
& +\alpha_{s s} \frac{E_{s} I_{s s}}{E_{C}\left(I_{g}-I_{s S}\right)}+\alpha_{r s} \frac{E_{S} I_{r s}}{E_{C}\left(I_{g}-I_{s S}\right)} \tag{6.2b}
\end{align*}
$$

Note that $S_{e}$ in this study was computed for $\alpha_{k}$.

### 6.3.2 Regression Analysis

Table 6.3 shows the $S_{e}$ and $R_{C}$ values calculated for 25 regression equations. The insignificant changes in $S_{e}$ and $R_{C}$ for the first thirteen variable combinations indicate that variables other than those used in combination 13 (e/h and $\ell / h)$ do not significantly influence the $E I$ of slender composite columns. A correlation analysis confirmed that this was due to the fact that the variables in subgroups $X_{3}$ and $X_{4}$ were included explicitly or implicitly in the format of the regression equations, Equations 6.2 a and 6.2 b .

Variable combinations 13 to 16 involving $e / h, P_{u} / P_{o}, \ell / h$, and $\ell / r$ proved that $e / h$ and $\ell / h$ (or $\ell / r$ ) are the most significant pair of variables from Group A influencing $E I$. The ratios $\ell / h$ and $\ell / r$ are obviously correlated, however, $\ell / h$ is much simpler to compute. A correlation analysis of the variables used in combinations 13 to 16 , including the Group B variables, confirmed Mirza's observation indicating that: (a) no correlation exists between $e / h$ and $l / h$ (or $\ell / r$ ) ratios; (b) there is some correlation between $P_{u} / P_{o}$ and $\ell / h$ (or $\ell / r$ ) ratios; and (c) a strong correlation exists between $P_{u} / P_{o}$ and $e / h$ ratios. This means that $e / h$ and $\ell / h$ (or $\ell / r$ ) are
independent variables and $P_{u} / P_{o}$ is dependent on $e / h$.
Finally, combinations 17 through 25 show that when only one of the variables in Group A was combined with the two variables in Group $B, e / h$ is the most significant variable from Group A.

In summary, the lowest $S_{e}$ and highest $R_{c}$ values among the regression equations concerning two variables and one variable from Group A, combined with the two variables from Group B, were obtained for variable combinations 13 and 17, respectively. The resulting regression equations are:

$$
\begin{align*}
E I=(0.334+0.00185 \ell / h- & 0.204 e / h) E_{C}\left(I_{g}-I_{S S}\right)  \tag{6.3}\\
& +0.808 E_{S} I_{S S}+0.732 E_{S} I_{r S} \\
E I=(0.371-0.204 e / h) E_{C}( & \left.I_{g}-I_{S S}\right) \\
& +0.808 E_{S} I_{S S}+0.732 E_{S} I_{r S} \tag{6.4}
\end{align*}
$$

Equations 6.3 and 6.4 are similar in format to regression Equations 5.3 and 5.4 developed for beam-columns subjected to major axis bending (Chapter 5) and Equations 6.5 and 6.6 developed by Mirza (1990) for reinforced concrete columns.

$$
\begin{gather*}
E I=(0.294+0.00323 \ell / h-0.299 \mathrm{e} / \mathrm{h}) E_{C} I_{g}+E_{S} I_{r S}  \tag{6.5}\\
E I=(0.358-0.299 \mathrm{e} / \mathrm{h}) E_{C} I_{g}+E_{S} I_{r S} \tag{6.6}
\end{gather*}
$$

Equations 6.3 to 6.6 show that with an increase in e/h ratio there is a corresponding decrease in $E I$ for a column. This is because an increase in $e / h$ means a corresponding increase in bending moment and tension stresses at the outer fibre, resulting in more cracking of the column. The coefficient of
0.204 associated with $e / h$ in Equations 6.3 and 6.4 for composite columns is about $2 / 3$ of that in Equations 6.5 and 6.6 for reinforced concrete columns. This is due to the structural steel shape in composite columns interrupting the continuity of the cracks that remain unarrested in reinforced concrete columns. Equations 6.3 and 6.5 indicate that for an increase in $\ell / h$ ratio there is an increase in EI. Mirza (1990) suggests that this is because in a longer column the cracks are likely to be more widely spaced with more concrete in between the cracks contributing to the $E I$ of the column. The coefficients of 0.808 and 0.732 related to $E_{s} I_{s s}$ and $E_{s} I_{r s}$, respectively, in Equations 6.3 and 6.4 compare to the values of corresponding coefficients obtained for Equations 5.3 and 5.4 (Chapter 5 for columns subjected to major axis bending). These coefficients indicate "softening" of structural and reinforcing steel. This is the result of elastic-plastic nature of the stresses developed in the structural steel and the reinforcing steel at ultimate load.

For composite columns $S_{e}=0.048$ and $R_{C}=0.908$ were obtained for Equation 6.3. This compares to an $S_{e}=0.050$ and $R_{C}=0.964$ obtained for Equation 5.3 for columns subjected to major axis bending and $S_{e}=0.058$ and $R_{C}=0.86$ reported by Mirza (1990) for Equation 6.5. For the second composite column equation (Equation 6.4) $S_{e}$ equals 0.050 and $R_{c}$ equals. 0.901 . The corresponding values for Equation 5.4 were 0.056 and 0.955 and those reported by Mirza (1990) for Equation 6.6
were 0.061 and 0.84 .
A scatter diagram (Figure 6.4) shows the values of $E I$ computed from Equations 6.3 and 6.4 plotted against the corresponding theoretical EI. Regression $E I$ from Equation 6.3 is shown in Figure 6.4 (a), and Figure 6.4 (b) is for Equation 6.4. Both equations exhibit reasonable correlation with the theoretical $E I$ values when compared to the line of unity labelled as $45^{\circ}$ line. Equation 6.3 produced somewhat, but not very significantly, better results.

The histograms and related statistical data for the ratio of theoretical $E I$ to regression $E I$ ( $E I_{t h} / E I_{r e g}$ ) developed from all the columns studied $(\mathrm{n}=11,880)$ are virtually identical for Equations 6.3 and 6.4, as shown in Figure 6.5. EI reg in Figure 6.5(a) was taken from Equation 6.3 and that in Figure 6.5(b) from Equation 6.4. Both equations give mean values of 1.00. The coefficient of variation (CV) for Equation 6.3 is 0.095 and 0.097 for Equation 6.4. This represents a very significant improvement when compared to mean values of 1.69 and 1.10 and $C V$ of 0.243 and 0.324 shown in Figure 6.2 obtained for $A C I$ and AISC equations, respectively.

The histograms and statistical data for the columns where the longitudinal reinforcement ratio $\left(\rho_{r s}\right)$ is one percent ( $\mathrm{n}=3960$ ), shown in Figure 6.6, again indicates that the two equations give almost the same results. Both equations give mean values of 0.99 . The $C V$ for Equation 6.3 is 0.114 and 0.117 for Equation 6.4. This still represents a very


Figure 6.4 - Comparison of selected regression equations with theoretical data for all columns bending about minor axis.


Figure 6.5 - Frequency histograms comparing selected regression equations with theoretical data for all columns bending about minor axis.


Figure 6.6 - Frequency histograms comparing selected regression equations with theoretical data for columns bending about minor axis where $\rho_{r s}=1.09$ percent.
significant improvement over the mean values of 1.42 and 0.91 , and the coefficients of variation of 0.236 and 0.334 obtained from the ACI and AISC stiffness equations shown in Figure 6.3.

### 6.3.3 Proposed Design Equations

Equations 6.7 and 6.8 , proposed for design use, were simplified from Equation 6.3 and 6.4 and were chosen to be identical to Equation 5.7 and 5.8 (Chapter 5) proposed for composite beam-columns subjected to bending about the major axis.

$$
\begin{align*}
& E I=\left[(0.27+0.003 \ell / h-0.2 e / h) E_{C}\left(I_{g}-I_{S S}\right)\right.  \tag{6.7}\\
& \\
& \left.+0.8 E_{S}\left(I_{S S}+I_{r S}\right)\right] \geq E_{S} I_{S S} \\
& E I=\left[(0.3-0.2 e / h) E_{C}\left(I_{g}-I_{S S}\right)\right.  \tag{6.8}\\
& \\
& \left.+0.8 E_{S}\left(I_{S S}+I_{r S}\right)\right] \geq E_{S} I_{S S}
\end{align*}
$$

These compare to Equations 6.9 and 6.10 suggested by Mirza (1990) for reinforced concrete columns.

$$
\begin{gather*}
E I=\left[(0.27+0.003 \mathrm{l} / \mathrm{h}-0.3 \mathrm{e} / \mathrm{h}) E_{C} I_{g}+E_{s} I_{r s}\right] \geq E_{S} I_{r s}  \tag{6.9}\\
E I=\left[(0.3-0.3 \mathrm{e} / \mathrm{h}) E_{C} I_{g}+E_{s} I_{r s}\right] \geq E_{S} I_{r s} \tag{6.10}
\end{gather*}
$$

At $\ell / h$ of 10 , Equations 6.7 and 6.8 yield the same results. For values of $\ell / h>10$, Equation 6.8 is more conservative than Equation 6.7. However, Equation 6.8 is less conservative than Equation 6.7 for $\ell / h<10$. For very large $e / h$ ratios ( $e / h>$ 1.5 in Equation 6.8), a lower limit of $E_{s} I_{s S}$ is used for both equations to insure that the effective stiffness of the composite column is at least equal to that of the encased
structural steel shape.
Histograms and statistical data were prepared using the proposed design equations for all the columns studied ( $n=11880$ ). The histograms for the ratios of theoretical $E I$ to design $E I$ ( $\left.E I_{t h} / E I_{d e s}\right)$ are plotted in Figure 6.7. $E I_{\text {des }}$ in Figure 6.7(a) was taken from Equation 6.7 and that in Figure 6.7(b) from Equation 6.8. As expected, Figure 6.7 indicates that the stiffness ratios ( $E I_{t h} / E I_{d e s}$ ) for Equation 6.8 (Figure 6.7 (b)) are more conservative than those for Equation 6.7 (Figure 6.7(a)).

The histograms and statistical data prepared for the columns having one percent reinforcing steel ( $n=3960$ ), using the proposed design equations, are shown in Figure 6.8. The results are similar to those obtained for the data plotted in Figure 6.7.

### 6.4 ANALYSIS OF STIFFNESS DATA

### 6.4.1 Overview of Stiffness Ratio Statistics

An overview of the stiffness ratio ( $E I_{t h} / E I_{d e s}$ ) statistics computed for different design equations are given in Table 6.4 for all data and in Table 6.5 for beam-columns having a reinforcing steel ratio of one percent. To calculate the stiffness ratio of a column, $E I_{t h}$ was taken as the computed theoretical stiffness and $E I_{\text {des }}$ was calculated from Equation 6.7, 6.8, 4.1 and 4.30. Equations 6.7 and 6.8 are the proposed design equations, Equation 4.1 is the $A C I$ design


Figure 6.7 - Frequency histograms comparing proposed design equations with theoretical data for all columns bending about minor axis.


Figure 6.8 - Frequency histograms comparing proposed design equations with theoretical data for columns bending about minor axis where $\rho_{r s}=1.09$ percent.

Table 6.4-Stiffness Ratio Statistics for Different Design Equations for all Beam-Columns Subjected to Minor Axis Bending

|  | Slenderness Ratio e/h (2) | Eccentricity Ratio e/h (3) | Proposed Equations |  | ACl <br> Eq. 4.1 <br> (6) | AISCEq. 4.30(7) | Number of Columns (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Eq. 6.7 <br> (4) | Eq. 6.8 <br> (5) |  |  |  |
| (a) Coefficient of Variation |  |  |  |  |  |  |  |
| A1 | 10 | 0.05-1.0 | 0.107 | 0.107 | 0.223 | 0.365 | 2376 |
| A2 | 15 |  | 0.085 | 0.089 | 0.237 | 0.349 | 2376 |
| A3 | 20 |  | 0.088 | 0.093 | 0.243 | 0.320 | 2376 |
| A4 | 25 |  | 0.098 | 0.102 | 0.247 | 0.299 | 2376 |
| A5 | 30 |  | 0.109 | 0.111 | 0.252 | 0.281 | 2376 |
| A6 | 10-30 |  | 0.101 | 0.104 | 0.243 | 0.324 | 11880 |
| B1 | 10 | $0.1-0.7$ | 0.090 | 0.090 | 0.220 | 0.334 | 1512 |
| B2 | 15 |  | 0.075 | 0.076 | 0.221 | 0.310 | 1512 |
| B3 | 20 |  | 0.059 | 0.059 | 0.210 | 0.276 | 1512 |
| B4 | 25 |  | 0.055 | 0.052 | 0.203 | 0.255 | 1512 |
| B5 | 30 |  | 0.057 | 0.053 | 0.199 | 0.242 | 1512 |
| B6 | 10-30 |  | 0.079 | 0.069 | 0.211 | 0.286 | 7560 |

(b) Mean Stiffness Ratio

| A1 | 10 | 0.05-1.0 | 1.110 | 1.110 | 1.606 | 1.086 | 2376 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A2 | 15 |  | 1.115 | 1.158 | 1.684 | 1.098 | 2376 |
| A3 | 20 |  | 1.092 | 1.175 | 1.709 | 1.088 | 2376 |
| A4 | 25 |  | 1.062 | 1.183 | 1.721 | 1.100 | 2376 |
| A5 | 30 |  | 1.036 | 1.192 | 1.734 | 1.140 | 2376 |
| A6 | 10-30 |  | 1.083 | 1.164 | 1.691 | 1.103 | 11880 |
| B1 | 10 | $0.1-0.7$ | 1.081 | 1.081 | 1.659 | 1.140 | 1512 |
| B2 | 15 |  | 1.073 | 1.111 | 1.708 | 1.139 | 1512 |
| B3 | 20 |  | 1.041 | 1.115 | 1.711 | 1.121 | 1512 |
| B4 | 25 |  | 1.007 | 1.114 | 1.708 | 1.122 | 1512 |
| B5 | 30 |  | 0.978 | 1.116 | 1.710 | 1.147 | 1512 |
| B6 | 10-30 |  | 1.036 | 1.107 | 1.699 | 1.134 | 7560 |


|  | Table 6.4 - | continued |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Group Number <br> (1) | Slenderness Ratio $\ell / h$ (2) | Eccentricity Ratio e/h (3) | Propo Equat Eq. 6.7 (4) | Eq. 6.8 <br> (5) | ACl <br> Eq. 4.1 <br> (6) | $\begin{aligned} & \text { AISC } \\ & \text { Eq. } 4.30 \\ & (7) \end{aligned}$ | Number of Columns (8) |
| (c) Five-Percentile |  |  |  |  |  |  |  |
| A1 | 10 | 0.05-1.0 | 0.927 | 0.927 | 1.121 | 0.585 | 2376 |
| A2 | 15 |  | 0.977 | 1.005 | 1.159 | 0.606 | 2376 |
| A3 | 20 |  | 0.971 | 1.037 | 1.186 | 0.636 | 2376 |
| A4 | 25 |  | 0.941 | 1.046 | 1.198 | 0.671 | 2376 |
| A5 | 30 |  | 0.904 | 1.049 | 1.212 | 0.715 | 2376 |
| A6 | 10-30 |  | 0.937 | 1.002 | 1.174 | 0.636 | 11880 |
| B1 | 10 | 0.1-0.7 | 0.932 | 0.932 | 1.156 | 0.643 | 1512 |
| B2 | 15 |  | 0.966 | 0.992 | 1.212 | 0.669 | 1512 |
| B3 | 20 |  | 0.965 | 1.031 | 1.234 | 0.698 | 1512 |
| B4 | 25 |  | 0.931 | 1.040 | 1.243 | 0.725 | 1512 |
| B5 | 30 |  | 0.893 | 1.043 | 1.252 | 0.758 | 1512 |
| B6 | 10-30 |  | 0.927 | 0.990 | 1.221 | 0.699 | 7560 |
| (d) One-Percentile |  |  |  |  |  |  |  |
| A1 | 10 | 0.05-1.0 | 0.863 | 0.863 | 1.039 | 0.505 | 2376 |
| A2 | 15 |  | 0.941 | 0.966 | 1.066 | 0.523 | 2376 |
| A3 | 20 |  | 0.952 | 1.012 | 1.110 | 0.552 | 2376 |
| A4 | 25 |  | 0.914 | 1.027 | 1.140 | 0.586 | 2376 |
| A5 | 30 |  | 0.865 | 1.020 | 1.155 | 0.632 | 2376 |
| A6 | 10-30 |  | 0.890 | 0.927 | 1.087 | 0.541 | 11880 |
| B1 | 10 | 0.1-0.7 | 0.884 | 0.884 | 1.047 | 0.545 | 1512 |
| B2 | 15 |  | 0.932 | 0.956 | 1.102 | 0.576 | 1512 |
| B3 | 20 |  | 0.948 | 1.007 | 1.146 | 0.608 | 1512 |
| B4 | 25 |  | 0.903 | 1.022 | 1.181 | 0.647 | 1512 |
| B5 | 30 |  | 0.853 | 1.012 | 1.197 | 0.683 | 1512 |
| B6 | 10-30 |  | 0.885 | 0.932 | 1.122 | 0.597 | 7560 |

## 215

Table 6.5- Stiffness Ratio Statistics for Different Design Equations for Beam-Columns Subjected to Minor Axis Bending for which $\rho_{r s}=1.09$ percent.

| Group Number | Slenderness Ratio $\ell / h$ (2) | Eccentricity Ratio e/h (3) | Proposed Equations |  | ACl <br> Eq. 4.1 <br> (6) | $\begin{aligned} & \text { AISC } \\ & \text { Eq. } 4.30 \\ & \text { (7) } \end{aligned}$ | Number of Columns (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) |  |  | Eq. 6.7 <br> (4) | Eq. 6.8 <br> (5) |  |  |  |

(a) Coefficient of Variation

|  |  |  |  |  |  |  |  |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| A1 | 10 | $0.05-1.0$ | 0.105 | 0.105 | 0.198 | 0.371 | 792 |
| A2 | 15 |  | 0.097 | 0.100 | 0.222 | 0.363 | 792 |
| A3 | 20 |  | 0.110 | 0.112 | 0.237 | 0.334 | 792 |
| A4 | 25 |  | 0.124 | 0.125 | 0.248 | 0.309 | 792 |
| A5 | 30 |  | 0.138 | 0.136 | 0.258 | 0.287 | 792 |
| A6 | $10-30$ |  | 0.120 | 0.119 | 0.236 | 0.334 | 3960 |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| B1 | 10 | $0.1-0.7$ | 0.091 | 0.091 | 0.197 | 0.336 | 504 |
| B2 | 15 |  | 0.084 | 0.084 | 0.190 | 0.305 | 504 |
| B3 | 20 |  | 0.074 | 0.071 | 0.173 | 0.260 | 504 |
| B4 | 25 |  | 0.070 | 0.066 | 0.161 | 0.224 | 504 |
| B5 | 30 |  | 0.075 | 0.069 | 0.157 | 0.203 | 504 |
| B6 | $10-30$ |  |  | 0.094 | 0.077 | 0.176 | 0.270 |

(b) Mean Stiffness Ratio

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | 10 | $0.05-1.0$ | 1.130 | 1.130 | 1.355 | 0.899 | 792 |
| A2 | 15 |  | 1.122 | 1.173 | 1.413 | 0.910 | 792 |
| A3 | 20 |  | 1.092 | 1.190 | 1.435 | 0.903 | 792 |
| A4 | 25 |  | 1.059 | 1.202 | 1.449 | 0.910 | 792 |
| A5 | 30 |  | 1.029 | 1.214 | 1.463 | 0.945 | 792 |
| A6 | $10-30$ |  | 1.086 | 1.182 | 1.423 | 0.913 | 3960 |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| B1 | 10 | $0.1-0.7$ | 1.098 | 1.098 | 1.414 | 0.944 | 504 |
| B2 | 15 |  | 1.030 | 1.116 | 1.436 | 0.936 | 504 |
| B3 | 20 |  | 0.991 | 1.114 | 1.432 | 0.919 | 504 |
| B4 | 25 |  | 0.959 | 1.117 | 1.429 | 0.922 | 504 |
| B5 | 30 |  | 1.030 | 1.112 | 1.428 | 0.949 | 504 |
| B6 | $10-30$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

Table 6.5- continued

| Group Number | Slenderness Ratio l/h (2) | Eccentricity Ratio e/h (3) | Proposed Equations |  | ACl | AISC | Number of |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) |  |  | Eq. 6.7 <br> (4) | Eq. 6.8 <br> (5) | Eq. 4.1 <br> (6) | Eq. 4.30 <br> (7) | Columns <br> (8) |

(c) Five-Percentile

| A1 | 10 | 0.05-1.0 | 0.958 | 0.958 | 1.050 | 0.521 | 792 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A2 | 15 |  | 0.982 | 1.019 | 1.092 | 0.546 | 792 |
| A3 | 20 |  | 0.959 | 1.037 | 1.126 | 0.576 | 792 |
| A4 | 25 |  | 0.922 | 1.041 | 1.154 | 0.605 | 792 |
| A5 | 30 |  | 0.876 | 1.035 | 1.171 | 0.655 | 792 |
| A6 | 10-30 |  | 0.918 | 1.016 | 1.112 | 0.570 | 3960 |
| B1 | 10 | 0.1-0.7 | 0.949 | 0.949 | 1.073 | 0.574 | 504 |
| B2 | 15 |  | 0.972 | 1.006 | 1.124 | 0.600 | 504 |
| B3 | 20 |  | 0.954 | 1.032 | 1.173 | 0.638 | 504 |
| B4 | 25 |  | 0.916 | 1.035 | 1.197 | 0.675 | 504 |
| B5 | 30 |  | 0.866 | 1.022 | 1.210 | 0.700 | 504 |
| B6 | 10-30 |  | 0.903 | 1.005 | 1.152 | 0.627 | 2520 |

(d) One-Percentile

| A1 | 10 | 0.05-1.0 | 0.908 | 0.908 | 1.003 | 0.476 | 792 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A2 | 15 |  | 0.948 | 0.978 | 1.041 | 0.493 | 792 |
| A3 | 20 |  | 0.942 | 1.016 | 1.077 | 0.515 | 792 |
| A4 | 25 |  | 0.887 | 1.018 | 1.108 | 0.545 | 792 |
| A5 | 30 |  | 0.840 | 1.000 | 1.132 | 0.598 | 792 |
| A6 | 10-30 |  | 0.873 | 0.955 | 1.044 | 0.507 | 3960 |
| B1 | 10 | 0.1-0.7 | 0.901 | 0.901 | 1.020 | 0.506 | 504 |
| B2 | 15 |  | 0.934 | 0.963 | 1.066 | 0.528 | 504 |
| B3 | 20 |  | 0.940 | 1.007 | 1.120 | 0.576 | 504 |
| B4 | 25 |  | 0.880 | 1.011 | 1.152 | 0.622 | 504 |
| B5 | 30 |  | 0.834 | 0.996 | 1.179 | 0.649 | 504 |
| B6 | 10-30 |  | 0.866 | 0.948 | 1.061 | 0.549 | 2520 |

equation, and Equation 4.30 is the stiffness expression developed from the AISC strength interaction curves.

Tables 6.4 and 6.5 give the coefficient of variation, mean, five-percentile and one-percentile values for each of the different design equations. For statistical analysis, the beam-columns studied are divided into two groups: Group A includes all columns and Group $B$ includes only the columns with usual e/h values ( $0.1 \leq e / h \leq 0.7$ ). The statistics provided within each of these groups are based on subgroups that were taken according to $\ell / h$ ratio but also include the statistics for the overall sample.

After reviewing Tables 6.4 and 6.5 the following observations are made:
(1) The coefficients of variation for the proposed design equations are considerably lower and remain relatively constant compared to those for the ACI or AISC equations.
(2) The mean stiffness ratios for the ACI equation tend to be significantly more conservative than those for the proposed design equations and for the AISC expression.
3) The AISC expression mean stiffness ratio for columns with 1 percent reinforcing steel is less than 1.0 for all subgroups of $\ell / h$ in both groups of $e / h$.
(4) A comparison of Table 6.4 (for all data) and Table 6.5 (for beam-columns having one percent reinforcing steel). shows that the mean, five-percentile and one-percentile stiffness ratios for the ACI and AISC equations are
subjected to greater variations due to $\rho_{r s}$ than are those for the proposed design equations.
5) The proposed design equations and the ACI equation gave five-percentile and one-percentile values that in all cases exceeded 0.86 and 0.8 , respectively. The AISC expression, on the other hand, resulted in fivepercentile and one-percentile values that were in all cases significantly less than 0.86 and 0.8 , respectively. Figure 6.9 shows the cumulative frequency distribution of stiffness ratios ( $E I_{t h} / E I_{d e s}$ ) for the different design equations plotted on normal probability paper and represents the data for all 11,880 columns studied. The curves for Equations 6.7 and 6.8 follow one another. The ACI equation (Equation 4.1) produces more conservative results than the proposed design equations, whereas the AISC expression (Equation 4.30) is less conservative than the proposed design equations for 50 percent of the columns studied. In fact, the AISC expression produces very low stiffness ratios for a significant number of beam-columns studied, as indicated by Figure 6.9.


[^2]
### 6.4.2 Effect of Variables on Stiffness Ratios

The effects that each of the variables listed in Table 6.3 has on the mean, five-percentile, and one-percentile values of stiffness ratios ( $E I_{t h} / E I_{d e s}$ ) obtained from the proposed design equations (Equations 6.7 and 6.8), ACI equation (Equation 4.1) and AISC equation (Equation 4.30) were examined in detail.

Figures 6.10, 6.11 and 6.12 examine the effect of $e / h$ on mean, five-percentile, and one-percentile (minimum in case of Figure 6.12) stiffness ratios. Figure 6.10 is plotted for all data ( $n=11,880$ ), Figure 6.11 includes beam-columns having $\rho_{r s}=1$ percent ( $n=3960$ ), and Figure 6.12 considers beamcolumns with $\rho_{r s}=1$ percent and $\ell / h=10(\mathrm{n}=792)$. Minimum values in place of one-percentile values are used for Figure 6.12 because each e/h ratio represents only 72 beam-columns. An examination of these figures indicates that proposed design equations (Equations 6.7 and 6.8 ) produce mean, fivepercentile and one-percentile values that are relatively constant for the entire range of $e / h$ studied. The ACI and AISC expressions produce stiffness ratios that varied with $e / h$. This is because neither equation uses $e / h$ as a variable. The mean, five-percentile and one-percentile stiffness ratios for the ACI equation appear to be overly conservative at low e/h ratios when compared to the stiffness ratios produced by the proposed stiffness equations. Mirza (1990) pointed out that, for establishing safety in design equations, the five-

221


Figure 6.10 - Effect of end eccentricity ratio on stiffness ratio for different design equations for all columns bending about minor axis ( $n=1080$ for each e/h ratio equal to 0.05 , $0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9$ and 1.0).


Figure 6.11 - Effect of end eccentricity ratio on stiffness ratio for different design equations for columns bending about minor axis where $\rho_{r s}=1.09$ percent ( $n=360$ for each e/h ratio equal to $0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8$, 0.9 and 1.0).


Figure 6.12 - Effect of end eccentricity ratio on stiffness. ratio for different design equations for columns bending about minor axis where $\rho_{r s}=1.09$ percent and $\ell / h=10$ ( $n=72$ for each e/h ratio equal to $0.05,0.1,0.2,0.3,0.4,0.5,0.6$, $0.7,0.8,0.9$ and 1.0).
percentile and one-percentile values are more important than the mean value. The proposed design equations and the $A C I$ equation gave mean, five-percentile and one-percentile (or minimum in case of Figure 6.12) values that exceeded 1.0, 0.86 and 0.80 , respectively, for most $e / h$ ratios shown in Figures 6.10, 6.11 and 6.12. The AISC expression (Equation 4.30), on the other hand, is less conservative than the other equations for the five-percentile and one-percentile values at almost all values of $e / h$ and these values are less than 0.86 and 0.80 for $e / h \geq 0.2$.

Figure 6.13 illustrates the effect of the axial load ratio ( $P_{u} / P_{0}$ ) on the stiffness ratios resulting from different design equations. The axial load ratio was not a controlled variable in this study, i.e. there are as many different axial load ratios as the number of beam-columns studied. This required grouping of stiffness ratios into a number of ranges of $P_{u} / P_{o}$ values. The statistics for stiffness ratios in each range of $P_{u} / P_{o}$ values were then determined. Grouping the stiffness ratios according to axial load ratio resulted in having a significantly different number of columns in each of the ranges of $P_{u} / P_{0}$. For example, less columns were grouped in the range of 0.7 to $0.9 P_{u} / P_{o}(\mathrm{n}=212)$ than in the range of 0.2 to $0.25 P_{u} / P_{o}(n=1128)$. The ranges of $P_{u} / P_{o}$ ratios were set at $0.05-0.1,0.1-0.15,0.15-0.2,0.2-0.25,0.25-0.3$, $0.3-0.35,0.35-0.4,0.4-0.5,0.5-0.6,0.6-0.7,0.7-0.9$. The mean $P_{u} / P_{0}$ ratio for each range is plotted against the mean,


Figure 6.13 - Effect of axial load ratio on stiffness ratio for different design equations for all columns bending about minor axis ( $n$ varies for each $P_{u} / P_{0}$ ratio; total $n=11,880$ ).
five-percentile and one-percentile stiffness ratios for each corresponding range. Figure 6.13 shows that the mean, fivepercentile and one-percentile stiffness ratios for the ACI equation continue to be more conservative than those for the proposed design equations. The AISC stiffness values for five-percentile and one-percentile are less than 0.86 and 0.80, respectively, for $P_{u} / P_{o}<0.4$. This is expected since there is a strong correlation between $P_{u} / P_{o}$ and $e / h$. Figure 6.14 and 6.15 show that by excluding the values of $P_{u} / P_{o}$ for beam-columns where either $e / h$ equals 0.05 or $\ell / h$ equals 10 eliminates the values of $P_{u} / P_{0}$ greater than 0.7 . This is expected because high $P_{u} / P_{o}$ occurs at very low $e / h$ or $\ell / h$ ratios.

An examination of Figure 6.16 concerning slenderness in terms of $\ell / h$ ratio shows relatively constant but different values of mean, five-percentile and one-percentile stiffness ratios obtained for all four design equations, even though only Equation 6.7 includes $\ell / h$ as a variable. This suggests that $\ell / h$ is not as significant as initially considered. The AISC expression, however, yields the lowest five-percentile and one-percentile for all values of $\ell / h$. The mean, fivepercentile and one-percentile stiffness ratios for the ACI stiffness expression are again more conservative than the proposed design equations.

Figure 6.17 shows the effect of slenderness using $\ell / r$ ratio. The ACI expression for radius of gyration (Equation


Figure 6.14 - Effect of axial load ratio on stiffness ratio for different design equations in which columns bending about minor axis with $e / h=0.05$ not included ( $n$ varies for each $P_{u} / P_{0}$ ratio; total $\mathrm{n}=10,800$ ).


Figure 6.15 - Effect of axial load ratio on stiffness ratio for different design equations in which columns bending about minor axis with $\ell / h=10$ not included ( $n$ varies for each $P_{u} / P_{0}$ ratio; total $n=9,504$ ).


Figure 6.16 - Effect of slenderness ratio ( $\ell / h$ ) on stiffness ratio for different design equations for all columns bending about minor axis ( $n=2376$ for each $\ell / h$ ratio equal to 0.05 , $0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9$ and 1.0).


Figure 6.17 - Effect of slenderness ratio ( $\ell / r$ ) on stiffness ratio for different design equations for all columns bending about minor axis ( $n$ varies for each range of $\ell / r$ ratio; total $\mathrm{n}=11$,880).
6.1) was used to determine $r$. One hundred and twenty different values of $\ell / r$ for 11,880 beam-columns studied necessitated the grouping of $\ell / r$ into ranges. The ranges of $\ell / r$ ratio were set at $40-50,50-60,60-70,70-80,80-90,90-$ 100, 100-110, 110-140. The mean $\ell / r$ ratio for each range is plotted against the mean, five-percentile and one-percentile stiffness ratios for each corresponding range, similar to what was done to study the effect of $P_{u} / P_{0}$. The apparent zig-zag nature of the plots in Figure 6.17 for the $A C I$ equation is, probably, caused by grouping of $\ell / r$ and due to the fact that the contribution of reinforcing steel to beam-column stiffness is not included in Equation 4.1. For the AISC expression, even though the area of the reinforcing steel is included in computing the equivalent cross-section properties, the full effect of the reinforcing steel is not accounted for in determining the nominal axial load capacity of a beam-column. The mean, five-percentile and one-percentile stiffness ratios appear to follow the trends stated previously for $\ell / h$ ratio. The effect of longitudinal reinforcing steel in terms of $\rho_{r s}$ is shown in Figure 6.18. The stiffness ratios for the ACI and AISC expressions increase proportionally with the reinforcing steel ratio. This is because the ACI expression (Equation 4.1) does not account for the effect of reinforcing steel. This also suggests that the AISC expression does not properly account for the effect of reinforcing steel.

Figure 6.19 shows the effect of structural steel in terms

232


Figure 6.18 - Effect of longitudinal reinforcement ratio on stiffness ratio for different design equations for all columns bending about minor axis ( $\mathrm{n}=3960$ for each $\rho_{r s}$ ratio equal to $1.09,1.96$ and 3.17 percent).


Figure 6.19 - Effect of structural steel ratio on stiffness ratio for different design equations for all columns bending about minor axis ( $n=1980$ for each $\rho_{s s}$ ratio equal to 4.07, $4.13,4.36,6.80,7.29$ and 10.33 percent).
of $\rho_{s s}$ on the stiffness ratios. Figure 6.20 shows the effect of $\rho_{s s}$ on stiffness ratios of beam-columns having reinforcing steel of only one percent. Both figures indicate that the ACI and AISC expressions are more susceptible to the effect of $\rho_{s s}$ than the proposed equations. This influence is due to the proportion of stiffness the reinforcing steel contributes to the overall stiffness in relation to the stiffness contributed by the structural steel section. For example, three steel shapes with significantly different moments of inertia were used to give a structural steel ratio of approximately 4 percent (actual values $4.07,4.13$ and 4.36 percent). This means when the ACI equation is used, a composite column containing a steel section with a relatively small moment of inertia gives a more conservative result than a column with a stiffer steel section. Figures 6.19 and 6.20 also indicate that the ACI equation is more conservative and the AISC equation is less conservative than the proposed equations over the entire range of $\rho_{\text {ss }}$ at mean, five-percentile and onepercentile levels.

Figure 6.21 concerning the effect of gross steel ratio $\rho_{g}$ confirms the inconsistency of the ACI and AISC expressions for determining EI. Fluctuations appearing in the stiffness ratios for the proposed design equations are quite minor compared to the irregularities resulting from the ACI and AISC equations. This observation is also true for the effect of $\rho_{r s} / \rho_{s s}$ (ratio of reinforcing steel to structural steel) as


Figure 6.20 - Effect of structural steel ratio on stiffness ratio for different design equations for columns bending about minor axis where $\rho_{r s}=1.09$ percent ( $n=660$ for each $\rho_{S S}$ ratio equal to $4.07,4.13,4.36,6.80,7.29$ and 10.33 percent).


Figure 6.21 - Effect of gross steel ratio on stiffness ratiofor different design equations for all columns bending about minor axis ( $n=660$ for each $\rho_{g}=\left(\rho_{r s}+\rho_{S S}\right)$ ratio equal to 5.16, $5.22,5.45,6.03,6.09,6.32,7.24,7.30,7.53,7.89,8.38$, $8.76,9.25,9.97,10.46,11.42,12.29$ and 13.50 percent).
indicated by Figure 6.22. In both figures, the ACI and proposed design equations produced mean, five-percentile and one-percentile stiffness ratios that exceeded $1.0,0.86,0.80$, respectively. The AISC expression followed the usual trend of being non-conservative in most cases.

Figures 6.23, 6.24 and 6.25 examine the effects of the structural steel index $\rho_{s s} f_{y s s} / f^{\prime}{ }_{c}$, the reinforcing steel index $\rho_{r s} f_{y r s} / f^{\prime}{ }_{c}$ and the gross steel index ( $\rho_{s s} f_{y s s}+\rho_{r s} f_{y r s}$ )/f'c. Figures 6.23, 6.24, and 6.25, respectively, represent 72, 12, and 216 possible combinations of the related steel index. This resulted in stiffness ratios in Figures 6.23 and 6.25 being plotted for ranges of $\rho_{s s} f_{y s s} / f^{\prime}{ }_{c}$ and ( $\left.\rho_{s s} f_{y s s}+\rho_{r s} f_{y r s}\right) / f^{\prime}{ }_{c}$, each range with a different number of stiffness ratios for statistical calculations. The ranges for $\rho_{s s} f_{y s s} / f^{\prime}{ }_{c}$ plotted in Figure 6.23 were set at $0.20-0.25,0.25-$ $0.35,0.35-0.45,0.45-0.55,0.55-0.65,0.65-0.75,0.75-0.85$, $0.85-0.95,0.95-1.05,1.05-1.15,1.15-1.25,1.25-1.35$; and those for ( $\rho_{s S^{\prime}} f_{y s s}+\rho_{r s} f_{y r s}$ )/f'c plotted in Figure 6.25 were set at $0.2-0.3,0.3-0.4,0.4-0.5,0.5-0.6,0.6-0.7,0.7-0.8,0.8-$ $0.9,0.9-1.00,1.00-1.10,1.10-1.20,1.20-1.30,1.30-1.40$, 1.40-1.50, 1.50-1.60, 1.60-1.80. The mean steel index for each range is plotted against the mean, five-percentile and one-percentile stiffness ratios for each corresponding range. These figures show that the fluctuations in stiffness ratios for the proposed design equations are subtle compared to the fluctuations occurring for the ACI and AISC expressions.


Figure 6.22 - Effect of $\rho_{r s} / \rho_{s s}$ ratio on stiffness ratio for: different design equations for all columns bending about minor axis ( $\mathrm{n}=660$ for each $\rho_{r s} / \rho_{s s}$ ratio equal to $0.106,0.150$, $0.160,0.190,0.250,0.264,0.268,0.269,0.288,0.306,0.434$, $0.449,0.466,0.474,0.481,0.726,0.766$ and 0.788 ).


Figure 6.23 - Effect of structural steel index on stiffness ratio for different design equations for all columns bending about minor axis ( $n$ varies for each $\rho_{s s} f_{y s s} / f^{\prime}{ }_{c}$ range; total $\mathrm{n}=11,880$ ).

240


Figure 6.24 - Effect of reinforcing steel index on stiffness ratio for different design equations for all columns bending about minor axis ( $n=990$ for each $\rho_{r s} f_{y r s} / f^{\prime}{ }_{c}$ equal to 0.082, $0.109,0.131,0.147,0.164,0.196,0.235,0.237,0.294,0.317$, 0.380 and 0.475 ).

241


Figure 6.25 - Effect of gross steel index on stiffness ratio for different design equations for all columns bending about minor axis ( $n$ varies for each $\left(\rho_{s s} f_{y s s}+\rho_{r s} f_{y r s}\right) / f^{\prime}{ }_{c}$ range; total $\mathrm{n}=11,880$ ).

The effects of $I_{r s} / I_{s s}, I_{s s} / I_{g}, I_{r s} / I_{g}$ and $\left(I_{s s}+I_{r s}\right) / I_{g}$ on stiffness ratios ( $E I_{t h} / E I_{\text {des }}$ ) are respectively shown in Figures 6.26, 6.27, 6.28, and 6.29. The trends shown in these figures are similar to those discussed for Figures 6.18 to 6.25 related to the steel indices. This is particularly true when Figure 6.21 is compared to Figures 6.26 and 6.29 , and Figure 6.18 to Figure 6.28. As expected, Figures 6.27 and 6.28 indicate that the ACI equation is more conservative when the moment of inertia of the steel section is relatively small or when the moment of inertia of the reinforcing steel is relatively large compared to the moment of inertia of the gross cross-section.

Figure 6.30 examines the effect of $d_{s s} / h$ (ratio of depth of structural steel section to the overall depth of the composite cross section) on stiffness ratios. As expected, the results are somewhat similar to those obtain from Figure 6.27 plotted for the effect of $I_{s s} / I_{g}$. The proposed design equations produce practically constant values of mean, fivepercentile and one-percentile stiffness ratios over the entire range of $d_{s s} / h$ plotted, while the ACI and AISC equations are somewhat subjected to variations for different values of $d_{s s} / h$.

The following can be summarized from the data plotted in Figures 6.10 to 6.30 and the related discussions:
(1) The proposed design equations (Equations 6.7 and 6.8) were not significantly affected by any of the variables

243


Figure 6.26 - Effect of $I_{r s} / I_{s s}$ ratio on stiffness ratio for different design equations for all columns bending about minor axis ( $\mathrm{n}=660$ for each $I_{\text {rs }} / I_{\text {ss }}$ ratio equal to $0.53,0.80,0.93$, $1.17,1.40,1.42,1.61,2.04,2.06,2.41,2.47,3.11,3.52$, $3.59,4.26,5.44,6.21$ and 9.39).

244


Figure 6.27 - Effect of $I_{s s} / I_{g}$ ratio on stiffness ratio for different design equations for all columns bending about minor axis ( $\mathrm{n}=1980$ for each $I_{s s} / I_{q}$ ratio equal to $0.005,0.007$, $0.010,0.012,0.018$ and 0.026$\}$.


Figure 6.28 - Effect of $I_{r s} / I_{g}$ ratio on stiffness ratio for different design equations for all columns bending about minor axis ( $\mathrm{n}=3960$ for each $I_{r s} / I_{g}$ ratio equal to $0.014,0.025$, 0.043 ).


Figure 6.29 - Effect of ( $\left.I_{s s}+I_{r s}\right) / I_{g}$ ratio on stiffness ratiofor different design equations for all columns bending about minor axis ( $\mathrm{n}=660$ for each $\left(I_{s s}+I_{r s}\right.$ )/I ratio equal to 0.019 , $0.021,0.024,0.026,0.029,0.0318,0.0319,0.035,0.037$, $0.041,0.042,0.047,0.049,0.051,0.053,0.055,0.061$ and 0.069 ).

247


Figure 6.30 - Effect of $d_{s S} / h$ ratio on stiffness ratio for different design equations for all columns bending about minor axis ( $\mathrm{n}=1980$ for each $d_{s s} / h$ ratio equal to $0.38,0.46,0.47$, $0.55,0.56$ and 0.57).
(Equations 4.1 and 4.30) were significantly affected by most of these same variables.
(2) The ACI design equation produced results that are consistently more conservative than the results of the proposed design equations for the mean, five-percentile and one-percentile stiffness ratios plotted against all of the variables.
3) The AISC equation gives stiffness ratios that are in many cases less conservative than those obtained for the proposed and ACI design equations. This is particularly valid for five-percentile and one-percentile values.
4) A comparison of plots for columns subjected to minor axis bending to the plots for columns subjected to major axis bending (Chapter 5) shows that the shape of the plotted curves for each of the four design equations remained essentially the same. It appears that the stiffness ratios obtained for the $A C I$ equation became more conservative and the values obtained for the AISC expression became less conservative when columns were subjected to bending about the minor axis of the steel section.

### 6.4.3 Stiffness Ratios Produced by Proposed Design <br> Equations for Usual Columns

For composite beam-columns, neither the ACI Code nor the AISC Code sets an upper limit on the amount of structural steel. However, the AISC Code states that to qualify as a composite column the structural steel ratio ( $\rho_{s s}$ ) must be greater than or equal to 4 percent. The ACI Building code requires that a minimum of 1 percent to a maximum of 8 percent of longitudinal reinforcing ( $\rho_{r s}$ ) be included with the structural steel core. Difficulty in lap splicing the reinforcing bars reduces the maximum limit of $\rho_{r s}$ to about 3 percent when a relatively large structural steel core is encased. The reinforcing steel ratio is, therefore, usually expected to range from 1 to 3 percent. Even three percent reinforcing steel will restrict $\rho_{s s}$ to a maximum of about 10 percent, giving the $\rho_{s s}$ range of about 4 to 10 percent. Mirza and MacGregor (1982) determined that the end eccentricity ratio for columns in reinforced concrete buildings usually ranged from 0.1 to 0.65 . Therefore, the usual columns in this study were defined as those for which $e / h=0.1,0.2,0.3$, $0.4,0.5,0.6$, or 0.7 , and $\rho_{s s}=4.2$ (actual values $=4.07$, 4.13, 4.36), 7.0 (actual values of $6.80,7.29$ ), or 10.3 (actual value $=10.33$ ) percent, and $\rho_{r s}$ equal to $1.09,1.96$, or 3.17 percent.

Figures 6.31 (a) to (e) examine the variations in mean and minium values of the stiffness ratios with respect to $e / h$


Figure 6.31(a) - Stiffness ratios obtained from proposed design equations, Eq. (6.7) or (6.8), for usual columns bending about minor axis with $\ell / h=10$ (for each combination of $e / h$ and $\rho_{s s}$ ratios plotted $n=108$ for $\rho_{s s}=4.2$ percent, $n=72$. when $\rho_{s S}=7.0$ percent and $\mathrm{n}=36$ when $\rho_{S S}=10.3$ percent).


Figure 6.31(b) - Stiffness ratios obtained from proposed design Equation (6.7) for usual columns bending about minor. axis with $\ell / h=15$ (for each combination of $e / h$ and $\rho_{s,}$ ratios plotted $n=108$ for $\rho_{S S}=4.2$ percent, $n=72$ when $\rho_{S S}=7.0$ percent. and $n=36$ when $\rho_{s s}=10.3$ percent).


Figure 6.31(c) - Stiffness ratios obtained from proposed design Equation (6.7) for usual columns bending about minor axis with $\ell / h=20$ (for each combination of $e / h$ and $\rho_{s s}$ ratios plotted $n=108$ for $\rho_{s s}=4.2$ percent, $n=72$ when $\rho_{s s}=7.0$ percent and $\mathrm{n}=36$ when $\rho_{s s}=10.3$ percent).


Figure 6.31(d) - Stiffness ratios obtained from proposed design Equation (6.7) for usual columns bending about minor axis with $\ell / h=25$ (for each combination of $e / h$ and $\rho_{s s}$ ratios plotted $\mathrm{n}=108$ for $\rho_{s S}=4.2$ percent, $\mathrm{n}=72$ when $\rho_{\text {SS }}=7.0$ percent, and $n=36$ when $\rho_{s s}=10.3$ percent).


Figure 6.31(e) - Stiffness ratios obtained from proposed design Equation (6.7) for usual columns bending about minor axis with $\ell / h=30$ (for each combination of $e / h$ and $\rho_{\text {SS }}$ ratios plotted $n=108$ for $\rho_{s s}=4.2$ percent, $\mathrm{n}=72$ when $\rho_{S S}=7.0$ percent and $n=36$ when $\rho_{s s}=10.3$ percent).
computed from Equation 6.7 and plotted for $\ell / h=10,15,20$, 25 and 30 , respectively. The number of values available for plotting each point were 36,72 and 108 for $\rho_{s s}=10.3,7.0$ and 4.2 percent, respectively. The one-percentile values were not plotted in these figures because the minimum values represented $2.8,1.4$ and 0.93 percentiles. The mean stiffness ratios exceeded 1.0 for most of the columns for all $\ell / h$, while the minimum values exceeded 0.8 in all cases. Only for $\rho_{s s}$ equal to 10.3 percent and $e / h$ equal to 0.2 to 0.4 were the mean stiffness ratios consistently less than 1.0. This indicated by Figures $6.31(a)$ to (e).

Equation 6.8 is identical to Equation 6.7 for $\ell / h=10$, and becomes more conservative as $\ell / h$ increases. This becomes evident by Figures 6.31(f), (g), (h), and (i) plotted for Equation 6.8.

The following conclusions appear to be valid for columns with e/h $=0.1$ to $0.7, \rho_{s s}=4.2$ to 10.3 percent, $\rho_{r s}=1.1$ to 3.2 percent, and $\ell / h=10$ to $30:$
(1) The mean and minimum stiffness ratios for Equation 6.7 or 6.8 may be taken as 1.0 and 0.8 , respectively;
(2) The proposed design equations (Equations 6.7 and 6.8) are not subject to significant variation due to $e / h, \rho_{s s}$ or e/h ratios.


Figure 6.31(f) - Stiffness ratios obtained from proposed design Equation (6.8) for usual columns bending about minor. axis with $\ell / h=15$ (for each combination of $e / h$ and $\rho_{s s}$ ratios plotted $\mathrm{n}=108$ for $\rho_{S S}=4.2$ percent, $\mathrm{n}=72$ when $\rho_{S S}=7.0$ percent and $n=36$ when $\rho_{s s}=10.3$ percent).


Figure 6.31(g) - Stiffness ratios obtained from proposed design Equation (6.8) for usual columns bending about minor. axis with $\ell / h=20$ (for each combination of $e / h$ and $\rho_{s s}$ ratios plotted $\mathrm{n}=108$ for $\rho_{s, S}=4.2$ percent, $\mathrm{n}=72$ when $\rho_{s s}=7.0$ percent. and $n=36$ when $\rho_{s s}=10.3$ percent).


Figure 6.31(h) - Stiffness ratios obtained from proposed design Equation (6.8) for usual columns bending about minor. axis with $\ell / h=25$ (for each combination of $e / h$ and $\rho_{S S}$ ratios plotted $n=108$ for $\rho_{s S}=4.2$ percent, $n=72$ when $\rho_{s s}=7.0$ percent. and $n=36$ when $\rho_{S S}=10.3$ percent).


Figure 6.31(i) - Stiffness ratios obtained from proposed design Equation (6.8) for usual columns bending about minor axis with $\ell / h=30$ (for each combination of $e / h$ and $\rho_{s S}$ ratios plotted $\mathrm{n}=108$ for $\rho_{s s}=4.2$ percent, $\mathrm{n}=72$ when $\rho_{s s}=7.0$ percent and $\mathrm{n}=36$ when $\rho_{s s}=10.3$ percent).

### 6.5 THEORETICALLY CALCULATED CRITICAL BUCKLING LOAD

The ratio of axial load acting on the column to critical buckling load, given as $P_{u} / P_{c r}$, is used by ACI (Equation 4.26) and AISC (Equation 4.11) to evaluate the second order effects of slenderness.

The frequency histogram and statistics shown in Figure 6.32 and Table 6.6 represent the critical load ratio $P_{u(t h)} / P_{C r(t h)}$ for 10800 columns with e/h ranging from 0.1 to 1.0. $P_{u(t h)}$ is the computed theoretical axial load capacity and $P_{c r(t h)}$ is calculated by substituting the computed theoretical effective flexural stiffness $E I_{t h}$ in Equation 2.4, yielding:

$$
\begin{equation*}
P_{C r(t h)}=\frac{\pi^{2} E I_{t h}}{\ell^{2}} \tag{6.11}
\end{equation*}
$$

Table 6.6 lists the mean value of 0.335 , standard deviation of 0.179 and coefficient of variation of 0.535 for the range of critical load ratios shown in Figure 6.32. The critical load ratios of $0.4,0.5,0.6,0.7$ and 0.8 represent the 66th, 82nd, 89th, 96th, and 99.7th percentiles, respectively, as indicated in Figure 6.32.

For design purposes, it is proposed that the mean value plus one standard deviation, 0.5 , be used as the upper limit for $P_{u} / P_{C r}$. This means that 82 percent of the beam-columns used for plotting Figure 6.32 would be considered practical columns. This compares to the value obtained for the columns subjected to major axis bending (Chapter 5). The suggested


Table 6.6 - Statistics for critical load ratio $P_{u(t h)} / P_{c r(t h)}$

upper limit of 0.5 for $P_{u} / P_{c r}$ is plotted in Figures 6.33(a) and 6.33(b) to examine the effects of $e / h$ and $\ell / h$ on $P_{u(t h)} / P_{c r(t h)} \cdot$ Figures $6.33(\mathrm{a})$ and $6.33(\mathrm{~b})$ indicate that some columns with low $e / h$, high $\ell / h$, or both have $P_{u(t h)} / P_{c r(t h)}$ ratio greater than the suggested upper limit. This means that the suggested upper limit would control the design of very slender columns in lower storeys of high-rise buildings.

### 6.6 ANOTHER LOOR AT THE AISC EFFECTIVE STIFFNESS

The somewhat low stiffness ratios ( $E I_{t h} / E I_{d e s}$ ) obtained in some cases for the AISC expression (Equation 4.30) raised some concerns. This prompted a further examination of the AISC interaction equations.

A comparison of the ratios of the theoretical ultimate strength $P_{u(t h)}$ to the AISC ultimate strength $P_{u(A I S C)}$ was undertaken to assess the accuracy of the AISC interaction equations (Equation 4.16 and 4.17) used for predicting the beam-column strength. Figure 6.34(a) plotted from the data for all beam-columns studied shows that the probability distribution of the strength ratios yield a mean value of 1.23, coefficient of variation of 0.19 , and one-percentile value of 0.803 . This is clearly an improvement over the probability distribution properties of the stiffness ratios (mean value $=1.10$, coefficient of variation of 0.32 , and onepercentile value $=0.540$ ) obtained from the same beam-column data and shown in Figure 6.2(b).


Figure 6.33 - Effect of (a) end eccentricity ratio and (b) slenderness ratio on critical load for all columns bendingabout the minor axis other than those for which $e / h=0.05$.


Figure 6.34 - Frequency histogram for ratio of theoretical ultimate strength to AISC ultimate strength for columns bending about the minor axis: (a) $\rho_{r s}=1.09,1.96$ and 3.17 percent; and (b) $\rho_{r s}=1.09$ percent.

For the strength ratio data shown in Figure 6.34(b) for beam-columns having only 1 percent of reinforcing steel, the mean value of 1.18 , coefficient of variation of 0.21 , and onepercentile value of 0.765 were obtained. Again, this is a considerable improvement over the comparable values (0.91, 0.33 , and 0.507 ) shown in Figure $6.3(\mathrm{~b})$ for stiffness ratios.

The above-noted differences in strength ratios and stiffness ratios are expected since the stiffness of a composite beam-column is more susceptible to concrete cracking and material nonlinearities than its strength.

Figures 6.35 and 6.36 show the strength ratios plotted against $e / h$ for all the data and for data from beam-columns having $\rho_{r s}$ of 1 percent. Figure 6.35 shows mean, fivepercentile and one-percentile greater than or equal to 1.0 , 0.86 , and 0.80 , respectively. However, Figure 6.36 shows the five-percentile and one-percentile values to be somewhat less than 0.86 and 0.80 , respectively, when $e / h>0.2$. The data plotted in Figures 6.35 and 6.36 do not include the effect of resistance factors for compression and bending ( $\phi_{C}, \phi_{b}$ ) specified by the AISC Code. Introduction of $\phi_{C}$ and $\phi_{b}$ factors will partially offset the understrength indicated by fivepercentile and one-percentile values in Figure 6.36. However, it is unlikely that $\phi_{C}$ and $\phi_{b}$ will fully offset this understrength.

From the data plotted in Figure 6.34, 6.35, and 6.36 and the related discussion, it is concluded that the AISC method


Figure 6.35 - Effect of end eccentricity ratio on ratio of theoretical ultimate strength to AISC ultimate strength for columns bending about the minor axis ( $n=1080$ for each e/h ratio equal to $0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8$, 0.9 and 1.0).


Figure 6.36 - Effect of end eccentricity ratio on ratio of theoretical ultimate strength to AISC ultimate strength for columns bending about the minor axis where $\rho_{r s}=1.09$ percent ( $n=360$ for each $e / h$ ratio equal to $0.05,0.1,0.2,0.3,0.4$, $0.5,0.6,0.7,0.8,0.9$ and 1.0).
produces a safe design for most of the composite beam-columns subjected to bending about the minor axis of the steel section. The matter of concern are the AISC beam-columns in which $\rho_{r s}$ is 1 percent.

## 7 - SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

### 7.1 SUMMARY

This study presents a statistical evaluation of the parameters that affect flexural stiffness $E I$ of slender composite beam-columns (structural steel shapes encased in concrete) subjected to short-term loading. The columns studied were pin-ended with equal load eccentricities acting at both ends. To study the full range of variables, 11880 composite beam-columns were used to evaluate the flexural stiffness of beam-columns bending about the major axis of the encased structural steel shape and 11880 composite beamcolumns were used to evaluate the flexural stiffness of beamcolumns bending about the minor axis of the encased structural steel shape.

Various combinations of the specified concrete strength, the longitudinal steel ratio, the specified structural steel strength, the structural steel ratio, the slenderness ratio, and the end eccentricity ratio were used to study the effects of these variables on EI of composite beam-columns.

Based on the statistical evaluations of the parameters affecting $E I$, the most dominant variables were selected and placed into equation form (Equation 5.7, 5.8, 6.7 and 6.8). Note that Equations 5.7 and 5.8 for beam-columns bending about the major axis in Chapter 5 are identical to Equations 6.7 and. 6.8 for beam-columns subjected to minor axis bending described in Chapter 6. The ACI EI expression (ACI 318-89 Eq. 10-14)
and a computed AISC EI equation (Equation 4.30) were compared to the theoretically computed $E I$ and to the proposed design equations (Equation 5.7 and 5.8 or 6.7 and 6.8 ).

### 7.2 CONCLUSIONS RELATED TO COMPOSITE BEAM-COLUMNS BENDING ABOUT THE MAJOR AXIS

From the discussions, tables and plots given in Chapter 5 for beam-columns subjected to bending about the major axis, the following conclusions seem to be valid:
(1) The mean, five-percentile and one-percentile stiffness ratios for the $A C I$ and AISC equations are subject to greater variations due to $\rho_{r s}$ than are those for the proposed design equations.
(2) The proposed design equations (Equations 5.7 and 5.8) were not significantly affected by any of the variables investigated, while the ACI and AISC expressions (Equation 4.1 and 4.30) were significantly affected by most of these same variables. The overall coefficients of variations related to the proposed stiffness equations were about one-third of those for the ACI and AISC stiffness expressions.
(3) The ACI design equation produced results that are similar to the results of the proposed design equations for the five-percentile and one-percentile stiffness ratios for. many of the variables.
(4) The AISC equation, in many cases, gives the most
conservative results for mean stiffness ratios and the least conservative values for the five-percentile and one-percentile stiffness ratios.
(5) The mean and minimum stiffness ratios for Equation 5.7 or 5.8 may be taken as 1.0 and 0.8 , respectively, for columns with $e / h=0.1$ to $0.7, \rho_{s s}=4.2$ to 10.3 percent, $\rho_{r s}=1.1$ to 3.2 percent, and $\ell / h=10$ to 30 .
(6) There is no significant difference between the results of Equations 5.7 and 5.8.
(7) For the critical load ratio $P_{u} / P_{C r}$, this study shows that 83 percent of the columns studied with $e / h$ ranging from 0.1 to 1.0 fall below the value of 0.5 .
(8) Even though the stiffness ratios $E I_{t h} / E I_{A I S C}$ raised some concerns with respect to the AISC expression for stiffness, the strength ratios $P_{u(t h)} / P_{u(A I S C)}$ seem to show that the AISC method produces safe design for composite beam-columns subjected to bending about the major axis.

### 7.3 CONCLUSIONS RELATED TO COMPOSITE BEAM-COLUMNS BENDING ABOUT THE MINOR AXIS

From the discussions, tables and plots given in Chapter 6 for beam-columns subjected to bending about the minor axis, the following conclusions seem to be valid:
(1) The mean, five-percentile and one-percentile stiffness. ratios for the $A C I$ and AISC equations are subject to greater variations due to $\rho_{r s}$ than are those for the
proposed design equations.
(2) The proposed design equations (Equations 6.7 and 6.8) were not significantly affected by any of the variables investigated, while the ACI and AISC expressions (Equation 4.1 and 4.30) were significantly affected by most of these same variables. The overall coefficients of variation for the proposed stiffness expression were in the order of $30-40$ percent of those related to the ACI and AISC stiffness equations.
(3) The ACI design equation produced results that are consistently more conservative than the results of the proposed design equations for the mean, five-percentile and one-percentile stiffness ratios for all of the variables investigated.
(4) The mean and minimum stiffness ratios for Equation 5.7 or 5.8 may be taken as 1.0 and 0.8 , respectively, for columns with $e / h=0.1$ to $0.7, \rho_{s S}=4.2$ to 10.3 percent, $\rho_{r s}=1.1$ to 3.2 percent, and $\ell / h=10$ to 30 .
(5) There is no significant difference between the results of Equations 6.7 and 6.8.
(6) For the critical load ratio $P_{u} / P_{C r}$, this study shows that 82 percent of the columns studied with e/h ranging from 0.1 to 1.0 fall below the value of 0.5 .
(7) Even though the AISC stiffness ratios $E I_{t h} / E I_{A I S C}$ were. consistently non-conservative, the strength ratios $P_{u(t h)} / P_{u(A I S C)}$ seem to show that the AISC method should
produce safe design for most of the composite beamcolumns subjected to bending about the minor axis. However, there is a concern regarding the AISC approach with respect such columns when $\rho_{r s}=1$ percent.

### 7.4 RECOMMENDATIONS

For design purposes Equation 5.8 or 6.8 is recommended in determining the flexural stiffness of composite beam-columns for final (more accurate) designs. The ACI expression (Equation 4.1) may be used as a substitute, particularly for initial sizing of members. A critical load ratio $P_{u} / P_{C r}$ equal to 0.5 is suggested as upper limit to control the design of slender columns. This value will be useful in the initial sizing of the members.

The AISC expression (Equation 4.30) and the strength ratio $P_{u(t h)} / P_{u(A I S C)}$ seem to show problems with regard to some composite beam-columns bending about the minor axis of the encased structural steel section. Further analysis of the AISC interaction equations is recommended.

## LIST OF SYMBOLS

| $b$ | flange width of structural steel section. |
| :---: | :---: |
| $b_{f}$ | width of structural steel section taken parallel to the axis of bending. |
| d | depth of structural steel section. |
| $d_{s s}$ | depth of structural steel section taken perpendicular to the axis of bending. |
| $d_{\text {vert }}$ | distance from the web to vertex of the parabola taken at the mid-height of the steel section. |
| $e$ | end eccentricity of axial load at column ends. |
| $e / h$ | end eccentricity ratio. |
| $\Delta_{m}$ | deflection of slender column at mid-height. |
| $e_{t}$ | total eccentricity of axial load at mid-height of slender column. |
| $f^{\prime}{ }_{c}$ | specified strength of concrete. |
| $f_{r}$ | modulus of rupture of concrete. |
| $f_{y s s}$ | specified yield strength of structural steel. |
| $f_{C r}$ | critical buckling stress. |
| $f_{y r}$ | static yield strength of reinforcing steel. |
| $f_{y s}$ | static yield strength of structural steel. |
| $f_{u s}$ | static ultimate strength of structural steel. |
| $f_{u r}$ | static ultimate strength of reinforcing steel. |
| h | overall depth of composite section taken perpendicular to the axis of bending. |
| $k$ | effective column length factor (equal to 1.0 in this study). |
| $\ell$ | column length. |
| $r$ | radius of gyration. |
| $r_{m}$ | modified radius of gyration (AISC). |


| $t$ | flange thickness of structural steel section. |
| :---: | :---: |
| $t_{1}$ | thickness of flange tip of structural steel section. |
| $t_{2}$ | thickness of flange at web-flange juncture of structural steel section. |
| w | web thickness of structural steel section. |
| $A_{C}$ | area of concrete. |
| $A_{r}$ | area of longitudinal reinforcing steel (AISC). |
| $A_{f}$ | area of one flange of structural shape (bt). |
| $A_{\text {w }}$ | area of web of structural steel shape (w(d-2t)). |
| $A_{g}$ | gross area of cross-section. |
| $A_{S S}$ | area of structural steel section. |
| $C_{m}$ | factor related to actual bending moment diagram to an equivalent uniform bending moment diagram (taken equal to 1.0 in this study). |
| DNA | perpendicular distance from plastic centroid of column to neutral axis (see Figure 2.8). |
| $E I$ | effective flexural stiffness of slender composite column. |
| $E$ | modulus of elasticity of structural steel (AISC). |
| $E_{C}$ | initial tangent modulus of elasticity of concrete. |
| $E_{m}$ | modified modulus of elasticity of structural steel section (AISC). |
| $E_{S}$ | modulus of elasticity of structural steel. |
| $E_{t}$ | tangent modulus of elasticity of element. |
| $E_{r s t r n}$ | initial tangent modulus of strain-hardening curve of reinforcing bars. |
| $E_{\text {sstrn }}$ | initial tangent modulus of strain-hardening curve. of structural steel. |
| $E_{r}$ | modulus of elasticity of reinforcing steel. |
| $F_{Y}$ | yield stress for structural steel section (AISC). |


| $F_{m y}$ | modified yield stress for structural steel section (AISC). |
| :---: | :---: |
| $I$ | moment of inertia. |
| $I_{g}$ | gross moment of inertia of cross-section. |
| $I_{r s}$ | moment of inertia of reinforcing steel taken about the centroidal axis of the composite cross-section. |
| $I_{s s}$ | moment of inertia of structural steel section taken about the centroidal axis of the composite crosssection. |
| M | bending moment. |
| $M_{C O 1}$ | overall column bending moment capacity. |
| $M_{C S}$ | cross-section bending moment capacity. |
| $M_{\ell t}$ | required flexural strength for member due to lateral translation. |
| $M_{m}$ | bending moment at mid-height of slender column. |
| $M_{n}$ | nominal flexural strength. |
| $M_{n t}$ | required flexural strength assuming no lateral translation. |
| $M_{u}$ | ultimate flexural strength. |
| $M-\phi-P$ | moment, curvature, axial load relationship. |
| $P$ | axial load. |
| $P_{n}$ | nominal compressive strength. |
| $P_{u}$ | ultimate compressive strength. |
| $z$ | ```plastic section modulus of structural steel section.``` |
| $\alpha_{C}$ | effective stiffness factor for concrete. |
| $\alpha_{r s}$ | effective stiffness factor for longitudinal reinforcing steel. |
| $\alpha_{s S}$ | effective stiffness factor for structural steel section. |


| $\beta_{d}$ | absolute value of the ratio of maximum factored <br> dead load moment the maximum factored total load <br> moment (taken equal to 0.0 in this study). |
| :--- | :--- |
| $\delta_{b}$ | moment magnification factor for second-order length <br> effects. |
| $\delta_{s}$ | moment magnifier for lateral loads (taken equal to <br>  |
| $\epsilon_{c}$ | strain in concrete. |

## LIST OF REFERENCES

ACI 318-89. 1989. Building code requirements for reinforced concrete. American Concrete Institute, Detroit, MI.

AISC (1986). "Load and Resistance Factor Design Specification for Structural Steel Buildings." American Institute of Steel Construction, Chicago, Illinois.

Basu, A.K. (1967). "Computation of failure loads of composite columns." Procedures Institution of Civil Engineers (London), 36 (March): 557-578.

Beedle, L.S., and Tall, L. (1960). "Basic column strength." Journal of the Structural Division ASCE, 86 (ST7): 139-173.

Bolotin, V.V. (1969). "Statistical methods in structural mechanics," translated by Samuel Aroni. Holden-Day Inc. San Francisco, California.

Bondale, S. (1966a). "Column theory with special reference to composite columns." The Consulting Engineer, July: 72-77.

Bondale, S. (1966b). "Column theory with special reference to composite columns." The Consulting Engineer, August: 43-48.

Bondale, S. (1966C). "Column theory with special reference to composite columns." The Consulting Engineer, September: 6870.

CSA. (1984). Design of concrete structures for buildings - a national standard of Canada. CAN3-A23.3-M84, Canada Standards Association, Ottawa, Ont.

Evans, R.H. (1943). "The Plastic Theories for the ultimate strength of reinforced concrete beams." Journal of the Institution of Civil Engineers, London, Vol. 21: 98-121.

Furlong, R.W. (1976). "AISC column logic makes sense for composite columns, too." Engineering Journal, American Institute of Steel Construction, First Quarter, 13(1): 1-7.

Galambos, T.V. (1963). "Inelastic lateral buckling of beams." Journal of the Structural Division ASCE, 89 (ST5): p. 217242.

Galambos, T.V., and Ravindra, M.K. 1978. "Properties of steelfor use in LRFD." Journal of the Structural Division ASCE, 104 (ST9): 1459-1468.

Janss, J., and Anslijn, R. (1974). "Le calcul des charges ultimes des colonnes métalliques enrobés de béton." Rapport C.R.I.F., MT 89, Bruxelles.

Janss, J., and Piraprez, E. (1974). "Le calcul des charges ultimes des colonnes métalliques enrobés de béton leger." Rapport C.R.I.F., MT 100, Bruxelles.

Kennedy, D.L.J., and Gad Aly, M. (1980). "Limit states design of steel structures - performance factors." Canadian Journal of Civil Engineering, 7: 45-77.

Kent, D.C., and Park, R. (1971). "Flexural members with confined concrete." Journal of the Structural Division ASCE, 97 (ST7): 1968-1990.

Kikuchi, D.K., Mirza, S.A., and MacGregor, J.G. (1978). "Strength Variability of Bonded Prestressed Concrete Beams." Structural Engineering Report no. 68, University of Alberta, Edmonton, Alberta.

LaChance, L., and Hays, C.O. (1980). "Accuracy of Composite Section Nonlinear Solutions." Journal of the Structural Division ASCE, $106(S T 11):$ 2203-2219.

L'Hermite, R. (1955). "Idées actualles sur la technologie du béton." Documentation Technique du Bâtiment et des Travaux Publics, Paris.

Llewellyn, S. (1986). "Parametric study of the strength of composite columns." B.Eng. thesis, School of Engineering, Lakehead University, Thunder Bay, Ontario.

May, I.M., and Johnson, R.P. (1978). "Tests on restrained composite columns." The Structural Engineer, 56B(2): 21-27.

Mirza, S.A., Hatzinikolas, M., and MacGregor, J.G. (1979c). "Statistical descriptions of strength of concrete." Journal of the Structural Division ASCE 105(ST6): 10221-1037.

Mirza, S.A., and MacGregor, J.G. (1982). "Probabilistic study of strength of reinforced concrete members." Canadian Journal of Civil Engineering, 9(3): 431-448.

Mirza, S.A., and MacGregor, J.G. (1989). "Slenderness and strength reliability of reinforced concrete columns." American Concrete Institute Structural Journal, 86(4): 428-. 438.

Mirza, S.A. (1989). "Parametric study of composite column strength variability." Journal Constructional Steel Research, 14: 121-137.

Mirza, S.A. (1990). "Flexural stiffness of rectangular reinforced concrete columns." American Concrete Institute Structural Journal, 87(4): 425-435.

Morino, S., Matsui, C., and Watanabe, H. (1984). "Strength of biaxially loaded SRC columns." Composite and Mixed Construction, American Society of Civil Engineers: 241-253.

Neville, A.M. (1973). "Properties of Concrete." 2nd Edition, John - Wiley and Sons Inc., New York: p. 686.

Park, R., Priestly, M.J.N., and Gill, W.D. (1982). "Ductility of square-confined concrete columns." Journal of the Structural Division ASCE, 108(ST4): 929-950.

Park, R., and Pauley, T. (1975). "Reinforced concrete structures." John Wiley and Sons.

Procter, A.N. (1967). "Full size tests facilitate derivation of reliable design methods." The Consulting Engineer, 31(8): 54-60.

Quast, U. (1970). "Geeignete vereinfachungen fur die losung des traglastproblems der ausmittig gedruckten prismatischen stahbetonstutze mit rechtekcquerschnitt." Dr.-Ing. Dissertation, Fakultat fur Bauwesen at Technischen Universität Carlo-Wilhelmina, Braunschweig, FRG.

Roderick, J.W., and Loke, Y.O. (1974). "Pin-ended composite columns bent about the minor axis." Sydney University, Australia, Civil Engineering Labs, Report No. R-254: p. 35.

Roderick, J.W., and Rogers, D.F. (1969). "Load carrying capacity of simple composite columns." Journal of the Structural Division, Proceedings of the ASCE, 95(ST2): 209228.

Roik, K., and Bergmann, R. (1989). "Harmonisation of the European Construction Codes - Report on Eurocode 4." Report EC4/6/89, Ruhr-Universität Bochum, Germany.

Roik, K., and Mangerig, I. (1987). "Experimentelle Untersuchungen der Tragfähigkeit von einbetonierten Stahlprofilstützen unter desonderer Berücksichtigung des Langzeitverhaltens von Beton." Bericht zu P102, Studiengesellschaft für Anwendungstechnik von Eisen und Stahl e.V., Düsseldorf.

Roik, K.H., and Schwalbenhofer, K. (1988). "ExperimentelleUntersuchungen zum plastischen Verhalten van Verbundstützen." Bericht zu P125, Studiengesellschaft für Anwendungstechnik von Eisen und Stahl e.V., Düsseldorf.

Sheikh, S.A., and Uzumeri, S.M. (1982). "Analytical model for concrete confinement in tied columns." Journal of the Structural Division ASCE, 108(ST12): 2703-2721.

Sheikh, S.A., and Yeh, C.C. (1986). "Flexural behaviour of confined concrete columns." American Concrete Institute Journal, 83(3): 389-404.

Skrabek, B.W., and Mirza, S.A. (1990). "Strength reliability of short and slender composite steel-concrete columns." Civil Engineering Report Series. No. CE-90-1, Lakehead University, Thunder Bay, Ontario.

Stevens, R.F. (1965). "The strength of encased stanchions." National Building Studies, Research Paper 38, Ministry of Technology Building Station, London.

Suzuki, T., Takiguchi, K., Ichinose, T., and Okamoto, T. (1983). "Effects of hoop reinforcement in steel and reinforced concrete composite sections." Third South Pacific Regional Conference on Earthquake Engineering. Wellington, New Zealand.

Timoshenko, S.P., and Gere, J.M. (1961). "Theory of elastic stability." 2nd Edition, McGraw - Hill Book Co., New York: p. 541.

Virdi, K.S., and Dowling, P.J. (1973). "The ultimate strength of composite columns in biaxial bending." Procedures Institution of Civil Engineers (London), 56 (May): 251-272.

Virdi, K.S., and Dowling, P.J. (1982). "Composite columns in biaxial loading." Axially Compressed Structures, Stability and Strength, edited by R. Narayanan. Applied Science Publishers, London: 129-147.

Wakabayashi, M. (1976). "A proposal for design formulas of composite columns and beam-columns." Second International Colloquium on Stability of Structures, Tokyo: 65-87.

Young, B.W. (1971). "Residual stresses in hot rolled sections." Report CUED/C-Struct/TR.8. Dept. of Engineering, University of Cambridge.

## APPENDIX A

Table A1 - Specimen Configuration for Columns Bending About the Major Axis

| Author | Col. Desig. | $\begin{gathered} h \\ \text { in. } \end{gathered}$ | $\begin{gathered} \mathrm{b} \\ \mathrm{in} . \end{gathered}$ | Steel Profile | Long. Reinf. | $\begin{aligned} & \mathrm{A}_{\mathrm{ss}} \\ & \mathrm{in}^{2} \end{aligned}$ | $\begin{gathered} A_{c} \\ \text { in. } \end{gathered}$ | $\begin{aligned} & A_{r s} \\ & \text { in. }^{2} \end{aligned}$ | Vol'met' Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bondale (1966) | RS 60.3 | 6.00 | 3.75 | 4'x1.75"@5\# | 4-0.21* | 1.47 | 20.89 | 0.14 | 0.00644 |
|  | RS 80.2 | 6.00 | 3.75 | $4^{*} \times 1.75{ }^{\text {¢ }}$ ¢ ${ }^{\text {\# }}$ | 4-0.21" | 1.47 | 20.89 | 0.14 | 0.00644 |
|  | RS 100.1 | 6.00 | 3.75 | $4 \mathrm{C} \times 1.75$ "@5\# | 4-0.21" | 1.47 | 20.89 | 0.14 | 0.00644 |
|  | RS 120.0 | 6.00 | 3.75 | 4'x1.75"@5\# | 4-0.21* | 1.47 | 20.89 | 0.14 | 0.00644 |
| May \& Johnson (1978) | RC1 | 7.87 | 7.87 | $152 \times 152$ UC23 | 4-Y6 | 4.62 | 57.21 | 0.18 | 0.00190 |
|  | RC3 | 7.87 | 7.87 | $152 \times 152$ UC23 | 4-Y6 | 4.62 | 57.21 | 0.18 | 0.00190 |
|  | RC4 | 7.87 | 7.87 | 152X152 UC23 | 4-Y6 | 4.62 | 57.21 | 0.18 | 0.00190 |
| Morino et al. (1984) | A4-90 | 6.30 | 6.30 | H100x100x6x8 | $4-6 \mathrm{~mm}$ | 3.45 | 36.08 | 0.14 | 0.00258 |
|  | B4-90 | 6.30 | 6.30 | H100x $100 \times 6 \times 8$ | 4.6 mm | 3.45 | 36.08 | 0.14 | 0.00258 |
|  | C4-90 | 6.30 | 6.30 | H100x $100 \times 6 \times 8$ | $4-6 \mathrm{~mm}$ | 3.45 | 36.08 | 0.14 | 0.00258 |
|  | D4-90 | 6.30 | 6.30 | H100x100x6x8 | $4-6 \mathrm{~mm}$ | 3.45 | 36.08 | 0.14 | 0.00258 |
|  | A8-90 | 6.30 | 6.30 | H100x $100 \times 6 \times 8$ | $4-6 \mathrm{~mm}$ | 3.45 | 36.08 | 0.14 | 0.00258 |
|  | B8-90 | 6.30 | 6.30 | H100x $100 \times 6 \times 8$ | $4-6 \mathrm{~mm}$ | 3.45 | 36.08 | 0.14 | 0.00258 |
|  | C8-90 | 6.30 | 6.30 | H100x $100 \times 6 \times 8$ | 4.6 mm | 3.45 | 36.08 | 0.14 | 0.00258 |
|  | D8-90 | 6.30 | 6.30 | H100x100x6x8 | $4-6 \mathrm{~mm}$ | 3.45 | 36.08 | 0.14 | 0.00258 |
| Procter (1967) | S1 | 11.00 | 8.00 | 7"x4"@14.5\# |  | 4.26 | 83.74 |  |  |
|  | S2 | 11.00 | 8.00 | $7{ }^{\text {"x4"@14.5\# }}$ |  | 4.26 | 83.74 |  |  |
|  | S3 | 12.00 | 8.00 | 8"x4"@17\# |  | 5.00 | 91.00 |  |  |
|  | S4 | 12.00 | 8.00 | 8"x4"@17\# |  | 5.00 | 91.00 |  |  |
|  | 1 | 11.25 | 8.00 | 7"x4"@14.5\# |  | 4.26 | 85.74 |  |  |
|  | 2 | 11.25 | 8.00 | 7"x4"@14.5\# |  | 4.26 | 85.74 |  |  |
|  | 3 | 11.25 | 8.00 | 7"x4"@14.5\# |  | 4.26 | 85.74 |  |  |
|  | 4 | 11.25 | 8.00 | 7"x4"@14.5\# |  | 4.26 | 85.74 |  |  |
|  | 5 | 11.25 | 8.00 | 7"x4*@14.5\# |  | 4.26 | 85.74 |  |  |
|  | 6 | 12.00 | 8.00 | 8"x4"@17\# |  | 5.00 | 91.00 |  |  |
|  | 7 | 12.00 | 8.00 | 8"x4"@17\# |  | 5.00 | 91.00 |  |  |
|  | 8 | 12.00 | 8.00 | 8"x4"@17\# |  | 5.00 | 91.00 |  |  |
|  | 9 | 11.25 | 8.00 | 7"x4"@14.5\# |  | 4.26 | 85.74 |  |  |
|  | 10 | 11.25 | 8.00 | 7"x4"@14.5\# |  | 4.26 | 85.74 |  |  |
|  | 11 | 12.00 | 8.00 | 8"x4"@17\# |  | 5.00 | 91.00 |  |  |
|  | 12 | 12.00 | 8.00 | 8"x4"@17\# |  | 5.00 | 91.00 |  |  |
| Suzuki et al. <br> (1983) | LH-000-C | 8.27 | 8.27 | H150×100×3.2×4.5 | $4-6 \mathrm{~mm}$ | 1.98 | 66.23 | 0.14 | 0.00000 |
|  | LH-020-C | 8.27 | 8.27 | H150×100×3.2×4.5 | $4-6 \mathrm{~mm}$ | 1.98 | 66.23 | 0.14 | 0.00232 |
|  | LH-040-C | 8.27 | 8.27 | H150×100×3.2×4.5 | $4-6 \mathrm{~mm}$ | 1.98 | 66.23 | 0.14 | 0.00116 |
|  | LH-100-C | 8.27 | 8.27 | H150x100x3.2×4.5 | $4-6 \mathrm{~mm}$ | 1.98 | 66.23 | 0.14 | 0.00046 |
|  | RH-000-C | 8.27 | 8.27 | H150x100x6x9 | $4-6 \mathrm{~mm}$ | 3.74 | 64.48 | 0.14 | 0.00000 |
|  | RH-020-C | 8.27 | 8.27 | H150x100x6x9 | $4-6 \mathrm{~mm}$ | 3.74 | 64.48 | 0.14 | 0.00232 |
|  | RH-040-C | 8.27 | 8.27 | H150x100x6x9 | $4-6 \mathrm{~mm}$ | 3.74 | 64.48 | 0.14 | 0.00116 |
|  | RH-100-C | 8.27 | 8.27 | H150×100x6x9 | $4-6 \mathrm{~mm}$ | 3.74 | 64.48 | 0.14 | 0.00046 |
|  | HT60-000-C | 8.27 | 8.27 | H150x100×8×8 | $4-6 \mathrm{~mm}$ | 4.10 | 64.11 | 0.14 | 0.00000 |
|  | HT60-020-C | 8.27 | 8.27 | H150x100x8×8 | $4-6 \mathrm{~mm}$ | 4.10 | 64.11 | 0.14 | 0.00232 |
|  | HT60-040-C | 8.27 | 8.27 | H150x100x8×8 | $4-6 \mathrm{~mm}$ | 4.10 | 64.11 | 0.14 | 0.00116 |
|  | HT60-100-C | 8.27 | 8.27 | H150×100×8×8 | $4-6 \mathrm{~mm}$ | 4.10 | 64.11 | 0.14 | 0.00046 |
|  | HT80-000-C | 8.27 | 8.27 | H150x100×8×8 | 4.6 mm | 4.32 | 63.89 | 0.14 | 0.00000 |
|  | HT80-020-C | 8.27 | 8.27 | H150×100×8×8 | $4-6 \mathrm{~mm}$ | 4.32 | 63.89 | 0.14 | 0.00232 |
|  | HT80-040-C | 8.27 | 8.27 | H150x $100 \times 8 \times 8$ | $4-6 \mathrm{~mm}$ | 4.32 | 63.89 | 0.14 | 0.00116 |
|  | HT80-100-C | 8.27 | 8.27 | H150×100×8×8 | 4 -6mm | 4.32 | 63.89 | 0.14 | 0.00046 |

Table A1 - Specimen Configuration for Columns Bending About the Major Axis

| Author | Col. <br> Desig. | $\begin{aligned} & \mathrm{I}_{\text {ss }} \\ & \text { in. } \end{aligned}$ | $\begin{gathered} \mathrm{I}_{c} \\ \text { in. } \end{gathered}$ | $\begin{aligned} & I_{r s} \\ & \text { in. } \end{aligned}$ | Fy web | Fy flange | f'c psi | Fy Reinf. | $\rho_{\text {ss }}$ | $\rho^{\text {rs }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bondale (1966) | RS 60.3 | 3.66 | 63.05 | 0.79 | 44800 | 44800 | 4506 | 60000 | 0.0653 | 0.0062 |
|  | RS 80.2 | 3.66 | 63.05 | 0.79 | 44800 | 44800 | 4382 | 60000 | 0.0653 | 0.0062 |
|  | RS 100.1 | 3.66 | 63.05 | 0.79 | 44800 | 44800 | 4260 | 60000 | 0.0653 | 0.0062 |
|  | RS 120.0 | 3.66 | 63.05 | 0.79 | 44800 | 44800 | 4700 | 60000 | 0.0653 | 0.0062 |
| May \& Johnson (1978) | RC1 | 30.34 | 289.12 | 0.87 | 42050 | 41630 | 4308 | 60000 | 0.0745 | 0.0028 |
|  | RC3 | 30.34 | 289.12 | 0.87 | 42050 | 41630 | 3390 | 60000 | 0.0745 | 0.0028 |
|  | RC4 | 30.34 | 289.12 | 0.87 | 42050 | 41630 | 5191 | 60000 | 0.0745 | 0.0028 |
| Morino et al. <br> (1984) | A4-90 | 9.30 | 121.08 | 0.83 | 52055 | 42485 | 3060 | 56115 | 0.0870 | 0.0036 |
|  | B4-90 | 9.30 | 121.08 | 0.83 | 50750 | 41615 | 3393 | 56115 | 0.0870 | 0.0036 |
|  | C4-90 | 9.30 | 121.08 | 0.83 | 45675 | 44660 | 3379 | 56115 | 0.0870 | 0.0036 |
|  | D4-90 | 9.30 | 121.08 | 0.83 | 52055 | 42485 | 3074 | 56115 | 0.0870 | 0.0036 |
|  | A8-90 | 9.30 | 121.08 | 0.83 | 53360 | 43935 | 4872 | 56115 | 0.0870 | 0.0036 |
|  | B8-90 | 9.30 | 121.08 | 0.83 | 53070 | 45095 | 4829 | 56115 | 0.0870 | 0.0036 |
|  | C8-90 | 9.30 | 121.08 | 0.83 | 53505 | 44225 | 3567 | 56115 | 0.0870 | 0.0036 |
|  | D8-90 | 9.30 | 121.08 | 0.83 | 53360 | 43790 | 3321 | 56115 | 0.0870 | 0.0036 |
| Procter (1967) | S1 | 37.48 | 849.85 |  | 42112 | 42112 | 4722 |  | 0.0484 | 0.0000 |
|  | S2 | 37.48 | 849.85 |  | 42112 | 42112 | 4722 |  | 0.0484 | 0.0000 |
|  | S3 | 53.62 | 1098.38 |  | 42560 | 42560 | 5407 |  | 0.0520 | 0.0000 |
|  | S4 | 53.62 | 1098.38 |  | 42560 | 42560 | 5407 |  | 0.0520 | 0.0000 |
|  | 1 | 37.48 | 911.74 |  | 42112 | 42112 | 4722 |  | 0.0473 | 0.0000 |
|  | 2 | 37.48 | 911.74 |  | 42112 | 42112 | 4722 |  | 0.0473 | 0.0000 |
|  | 3 | 37.48 | 911.74 |  | 42112 | 42112 | 4722 |  | 0.0473 | 0.0000 |
|  | 4 | 37.48 | 911.74 |  | 42112 | 42112 | 4722 |  | 0.0473 | 0.0000 |
|  | 5 | 37.48 | 911.74 |  | 42112 | 42112 | 5407 |  | 0.0473 | 0.0000 |
|  | 6 | 53.62 | 1098.38 |  | 42560 | 42560 | 5407 |  | 0.0520 | 0.0000 |
|  | 7 | 53.62 | 1098.38 |  | 42560 | 42560 | 5407 |  | 0.0520 | 0.0000 |
|  | 8 | 53.62 | 1098.38 |  | 42560 | 42560 | 5407 |  | 0.0520 | 0.0000 |
|  | 9 | 37.48 | 911.74 |  | 42112 | 42112 | 6007 |  | 0.0473 | 0.0000 |
|  | 10 | 37.48 | 911.74 |  | 42112 | 42112 | 6007 |  | 0.0473 | 0.0000 |
|  | 11 | 53.62 | 1098.38 |  | 42560 | 42560 | 6007 |  | 0.0520 | 0.0000 |
|  | 12 | 53.62 | 1098.38 |  | 42560 | 42560 | 6007 |  | 0.0520 | 0.0000 |
| Suzuki et al. (1983) | LH-000-C | 12.55 | 375.09 | 1.73 | 45240 | 45661 | 4785 | 48430 | 0.0290 | 0.0021 |
|  | LH-020-C | 12.55 | 375.09 | 1.73 | 45240 | 45661 | 4785 | 48430 | 0.0290 | 0.0021 |
|  | LH-040-C | 12.55 | 375.09 | 1.73 | 45240 | 45661 | 4785 | 48430 | 0.0290 | 0.0021 |
|  | LH-100-C | 12.55 | 375.09 | 1.73 | 45240 | 45661 | 4785 | 48430 | 0.0290 | 0.0021 |
|  | RH-000-C | 22.68 | 364.96 | 1.73 | 55477 | 48503 | 4858 | 48430 | 0.0546 | 0.0021 |
|  | RH-020-C | 22.68 | 364.96 | 1.73 | 55477 | 48503 | 4858 | 48430 | 0.0546 | 0.0021 |
|  | RH-040-C | 22.68 | 364.96 | 1.73 | 55477 | 48503 | 4858 | 48430 | 0.0546 | 0.0021 |
|  | RH-100-C | 22.68 | 364.96 | 1.73 | 55477 | 48503 | 4858 | 48430 | 0.0546 | 0.0021 |
|  | HT60-000-C | 23.06 | 364.58 | 1.73 | 83781 | 83781 | 4858 | 48430 | 0.0600 | 0.0021 |
|  | HT60-020-C | 23.06 | 364.58 | 1.73 | 83781 | 83781 | 4858 | 48430 | 0.0600 | 0.0021 |
|  | HT60-040-C | 23.06 | 364.58 | 1.73 | 83781 | 83781 | 4858 | 48430 | 0.0600 | 0.0021 |
|  | HT60-100-C | 23.06 | 364.58 | 1.73 | 83781 | 83781 | 4858 | 48430 | 0.0600 | 0.0021 |
|  | HT80-000-C | 24.17 | 363.48 | 1.73 | 113651 | 113651 | 4858 | 48430 | 0.0633 | 0.0021 |
|  | HT80-020-C | 24.17 | 363.48 | 1.73 | 113651 | 113651 | 4858 | 48430 | 0.0633 | 0.0021 |
|  | HT80-040-C | 24.17 | 363.48 | 1.73 | 113651 | 113651 | 4858 | 48430 | 0.0633 | 0.0021 |
|  | HT80-100-C | 24.17 | 363.48 | 1.73 | 113651 | 113651 | 4858 | 48430 | 0.0633 | 0.0021 |

Table A1 - Specimen Configuration for Columns Bending About the Major Axis
continued

| Author | Col. Desig. | $\frac{\rho_{s s}{ }^{f} y s s}{f^{\prime}{ }_{c}}$ | $\begin{gathered} \ell \\ \text { in. } \end{gathered}$ | $\ell / h$ | $\begin{gathered} \text { e } \\ \text { in. } \end{gathered}$ | e/h | Tested Strength | Theor. Strength | Strength Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bondale (1966) | RS 60.3 | 0.649 | 60.0 | 10.0 | 3.00 | 0.500 | 55.8 | 47.0 | 1.1880 |
|  | RS 80.2 | 0.667 | 80.0 | 13.3 | 2.00 | 0.333 | 70.1 | 55.8 | 1.2572 |
|  | RS 100.1 | 0.687 | 100.0 | 16.7 | 1.00 | 0.167 | 92.3 | 72.9 | 1.2653 |
|  | RS 120.0 | 0.622 | 120.0 | 20.0 | 0.00 | 0.000 | 107.1 | 115.3 | 0.9286 |
| May \& Johnson (1978) | RC1 | 0.727 | 63.5 | 8.1 | 0.88 | 0.112 | 301.2 | 282.2 | 1.0674 |
|  | RC3 | 0.924 | 63.5 | 8.1 | 1.07 | 0.136 | 305.7 | 239.1 | 1.2787 |
|  | RC4 | 0.603 | 116.7 | 14.8 | 1.55 | 0.197 | 191.1 | 217.9 | 0.8771 |
| Morino et al. <br> (1984) | A4-90 | 1.481 | 36.4 | 5.8 | 1.57 | 0.250 | 166.5 | 121.4 | 1.3719 |
|  | B4-90 | 1.302 | 90.9 | 14.4 | 1.57 | 0.250 | 114.6 | 104.0 | 1.1020 |
|  | C4-90 | 1.177 | 136.4 | 21.7 | 1.57 | 0.250 | 93.9 | 83.0 | 1.1313 |
|  | D4-90 | 1.474 | 181.9 | 28.9 | 1.57 | 0.250 | 64.7 | 63.5 | 1.0189 |
|  | A8-90 | 0.953 | 36.4 | 5.8 | 2.95 | 0.469 | 118.1 | 98.6 | 1.1968 |
|  | B8-90 | 0.957 | 90.9 | 14.4 | 2.95 | 0.469 | 94.0 | 84.3 | 1.1144 |
|  | C8-90 | 1.305 | 136.4 | 21.7 | 2.95 | 0.469 | 68.0 | 62.5 | 1.0889 |
|  | D8-90 | 1.399 | 181.9 | 28.9 | 2.95 | 0.469 | 50.1 | 49.2 | 1.0196 |
| Procter <br> (1967) | S1 | 0.432 | 24.0 | 2.2 | 0 | 0.000 | 470.4 | 522.9 | 0.8997 |
|  | S2 | 0.432 | 24.0 | 2.2 | 0 | 0.000 | 481.6 | 522.9 | 0.9211 |
|  | S3 | 0.410 | 24.0 | 2.0 | 0 | 0.000 | 698.9 | 642.1 | 1.0885 |
|  | S4 | 0.410 | 24.0 | 2.0 | 0 | 0.000 | 703.4 | 642.1 | 1.0955 |
|  | 1 | 0.422 | 132.0 | 11.7 | 6 | 0.533 | 132.2 | 127.7 | 1.0347 |
|  | 2 | 0.422 | 132.0 | 11.7 | 9 | 0.800 | 87.4 | 87.4 | 0.9997 |
|  | 3 | 0.422 | 132.0 | 11.7 | 0 | 0.000 | 470.4 | 508.0 | 0.9259 |
|  | 4 | 0.422 | 132.0 | 11.7 | 6 | 0.533 | 143.4 | 127.7 | 1.1224 |
|  | 5 | 0.369 | 132.0 | 11.7 | 9 | 0.800 | 91.8 | 90.5 | 1.0154 |
|  | 6 | 0.410 | 132.0 | 11.0 | 9 | 0.750 | 129.9 | 114.1 | 1.1383 |
|  | 7 | 0.410 | 132.0 | 11.0 | 6 | 0.500 | 199.4 | 168.6 | 1.1827 |
|  | 8 | 0.410 | 132.0 | 11.0 | 0 | 0.000 | 560.0 | 613.6 | 0.9126 |
|  | 9 | 0.332 | 132.0 | 11.7 | 3 | 0.267 | 268.8 | 243.5 | 1.1039 |
|  | 10 | 0.332 | 132.0 | 11.7 | 3 | 0.267 | 250.9 | 243.5 | 1.0303 |
|  | 11 | 0.369 | 132.0 | 11.0 | 0 | 0.000 | 533.1 | 658.5 | 0.8096 |
|  | 12 | 0.369 | 132.0 | 11.0 | 3 | 0.250 | 315.8 | 290.9 | 1.0859 |
| Suzuki et al. (1983) | LH-000-C | 0.274 | 23.6 | 2.9 | 0.00 | 0.000 | 380.0 | 366.4 | 1.0373 |
|  | LH-020-C | 0.274 | 23.6 | 2.9 | 0.00 | 0.000 | 374.3 | 429.4 | 0.8716 |
|  | LH-040-C | 0.274 | 23.6 | 2.9 | 0.00 | 0.000 | 374.3 | 398.0 | 0.9403 |
|  | LH-100-C | 0.274 | 23.6 | 2.9 | 0.00 | 0.000 | 385.8 | 379.2 | 1.0173 |
|  | RH-000-C | 0.624 | 23.6 | 2.9 | 0.00 | 0.000 | 547.0 | 462.7 | 1.1823 |
|  | RH-020-C | 0.624 | 23.6 | 2.9 | 0.00 | 0.000 | 561.4 | 523.7 | 1.0720 |
|  | RH-040-C | 0.624 | 23.6 | 2.9 | 0.00 | 0.000 | 521.1 | 493.4 | 1.0563 |
|  | RH-100-C | 0.624 | 23.6 | 2.9 | 0.00 | 0.000 | 521.1 | 475.2 | 1.0967 |
|  | HT60-000-C | 1.035 | 23.6 | 2.9 | 0.00 | 0.000 | 598.8 | 562.8 | 1.0640 |
|  | HT60-020-C | 1.035 | 23.6 | 2.9 | 0.00 | 0.000 | 656.4 | 674.0 | 0.9739 |
|  | HT60-040-C | 1.035 | 23.6 | 2.9 | 0.00 | 0.000 | 662.2 | 639.2 | 1.0359 |
|  | HT60-100-C | 1.035 | 23.6 | 2.9 | 0.00 | 0.000 | 627.6 | 611.8 | 1.0259 |
|  | HT80-000-C | 1.480 | 23.6 | 2.9 | 0.00 | 0.000 | 716.9 | 626.3 | 1.1447 |
|  | HT80-020-C | 1.480 | 23.6 | 2.9 | 0.00 | 0.000 | 734.2 | 797.3 | 0.9208 |
|  | HT80-040-C | 1.480 | 23.6 | 2.9 | 0.00 | 0.000 | 728.4 | 759.4 | 0.9592 |
|  | HT80-100-C | 1.480 | 23.6 | 2.9 | 0.00 | 0.000 | 711.1 | 721.0 | 0.9863 |

Table A1 - Specimen Configuration for Columns Bending About the Major Axis

| Author | Col. Desig. | $\begin{gathered} h \\ \text { in. } \end{gathered}$ | $\begin{aligned} & \text { b } \\ & \text { in. } \end{aligned}$ | Steel <br> Profile | Long. Reinf. | $\begin{aligned} & \mathrm{A}_{\mathrm{ss}} \\ & \mathrm{in}^{2} \end{aligned}$ | $\begin{gathered} A_{c} \\ \text { in. } \end{gathered}$ | $\begin{aligned} & \mathrm{A}_{\mathrm{rs}} \\ & \mathrm{in}^{2} \end{aligned}$ | Vol'met' Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Suzuki et al. (1983) | HT80-000-CB | 8.27 | 8.27 | H150x100×5 $\times 5$ | $4-6 \mathrm{~mm}$ | 2.89 | 65.32 | 0.14 | 0.00000 |
|  | HT80-020-CB | 8.27 | 8.27 | H150x100x5x5 | $4-6 \mathrm{~mm}$ | 2.89 | 65.32 | 0.14 | 0.00232 |
|  | LH-000-B | 8.27 | 8.27 | H150x100x3.2×4.5 | $4-6 \mathrm{~mm}$ | 1.98 | 66.23 | 0.14 | 0.00000 |
|  | LH-020-B | 8.27 | 8.27 | $\mathrm{H} 150 \times 100 \times 3.2 \times 4.5$ | $4-6 \mathrm{~mm}$ | 1.98 | 66.23 | 0.14 | 0.00232 |
|  | LH-040-B | 8.27 | 8.27 | $\mathrm{H} 150 \times 100 \times 3.2 \times 4.5$ | $4-6 \mathrm{~mm}$ | 1.98 | 66.23 | 0.14 | 0.00116 |
|  | LH-100-B | 8.27 | 8.27 | H150x100×3.2×4.5 | $4-6 \mathrm{~mm}$ | 1.98 | 66.23 | 0.14 | 0.00046 |
|  | RH-000-B | 8.27 | 8.27 | H150×100×6×9 | $4-6 \mathrm{~mm}$ | 3.74 | 64.48 | 0.14 | 0.00000 |
|  | RH-020-B | 8.27 | 8.27 | $\mathrm{H} 150 \times 100 \times 6 \times 9$ | $4-6 \mathrm{~mm}$ | 3.74 | 64.48 | 0.14 | 0.00232 |
|  | RH-040-B | 8.27 | 8.27 | H150x100×6×9 | $4-6 \mathrm{~mm}$ | 3.74 | 64.48 | 0.14 | 0.00116 |
|  | RH-100-B | 8.27 | 8.27 | H150x100x6x9 | $4-6 \mathrm{~mm}$ | 3.74 | 64.48 | 0.14 | 0.00046 |
|  | HT60-000-B | 8.27 | 8.27 | H150x100x8x8 | $4-6 \mathrm{~mm}$ | 4.10 | 64.11 | 0.14 | 0.00000 |
|  | HT60-020-B | 8.27 | 8.27 | H150x100x8×8 | $4-6 \mathrm{~mm}$ | 4.10 | 64.11 | 0.14 | 0.00232 |
|  | HT60-040-B | 8.27 | 8.27 | H150x100x8×8 | $4-6 \mathrm{~mm}$ | 4.10 | 64.11 | 0.14 | 0.00116 |
|  | HT60-100-B | 8.27 | 8.27 | H150x100x8×8 | $4-6 \mathrm{~mm}$ | 4.10 | 64.11 | 0.14 | 0.00046 |
|  | HT80-000-B | 8.27 | 8.27 | H150x100x8×8 | $4-6 \mathrm{~mm}$ | 4.32 | 63.89 | 0.14 | 0.00000 |
|  | HT80-020-B | 8.27 | 8.27 | H150x100x8×8 | $4-6 \mathrm{~mm}$ | 4.32 | 63.89 | 0.14 | 0.00232 |
|  | HT80-040-B | 8.27 | 8.27 | H150x100x8x8 | $4-6 \mathrm{~mm}$ | 4.32 | 63.89 | 0.14 | 0.00116 |
|  | HT80-100-B | 8.27 | 8.27 | H150x100x8×8 | $4-6 \mathrm{~mm}$ | 4.32 | 63.89 | 0.14 | 0.00046 |
| Roik <br> Mangerig <br> (1987) | 23 | 11.81 | 11.81 | HE200B | 4-12mm | 12.11 | 126.69 | 0.70 | 0.00293 |
|  | 24 | 11.81 | 11.81 | HE200B | 4-12mm | 12.11 | 126.69 | 0.70 | 0.00293 |
|  | 25 | 11.81 | 11.81 | HE200B | 4-12mm | 12.11 | 126.69 | 0.70 | 0.00293 |
|  | 26 | 11.81 | 11.81 | HE200B | 4-12mm | 12.11 | 126.69 | 0.70 | 0.00293 |
| Roik Schwal'r (1988) | V11 | 11.02 | 11.02 | HE120B | $4-14 \mathrm{~mm}$ | 5.27 | 115.30 | 0.95 | 0.00283 |
|  | V12 | 11.02 | 11.02 | HE120B | 4-14mm | 5.27 | 115.30 | 0.95 | 0.00283 |
|  | V13 | 11.02 | 11.02 | HE120B | 4-14mm | 5.27 | 115.30 | 0.95 | 0.00283 |
|  | V21 | 11.02 | 11.02 | HE160A | $4-14 \mathrm{~mm}$ | 6.01 | 114.55 | 0.95 | 0.00283 |
|  | V22 | 11.02 | 11.02 | HE160A | $4-14 \mathrm{~mm}$ | 6.01 | 114.55 | 0.95 | 0.00283 |
|  | V23 | 11.02 | 11.02 | HE160A | $4-14 \mathrm{~mm}$ | 6.01 | 114.55 | 0.95 | 0.00283 |
|  | V31 | 11.02 | 11.02 | HE200B | $4-14 \mathrm{~mm}$ | 12.11 | 108.46 | 0.95 | 0.00283 |
|  | V32 | 11.02 | 11.02 | HE200B | $4-14 \mathrm{~mm}$ | 12.11 | 108.46 | 0.95 | 0.00283 |
|  | V33 | 11.02 | 11.02 | HE200B | $4-14 \mathrm{~mm}$ | 12.11 | 108.46 | 0.95 | 0.00283 |
|  | V41 | 11.02 | 11.02 | HE180M | $4-14 \mathrm{~mm}$ | 17.52 | 103.05 | 0.95 | 0.00283 |
|  | V42 | 11.02 | 11.02 | HE180M | $4-14 \mathrm{~mm}$ | 17.52 | 103.05 | 0.95 | 0.00283 |
|  | V43 | 11.02 | 11.02 | HE180M | $4-14 \mathrm{~mm}$ | 17.52 | 103.05 | 0.95 | 0.00283 |

*     - Volumetric Ratio for transverse reinforcement

$$
p^{*}=\frac{2\left(b^{*}+d^{*}\right) A}{b^{\prime \prime} d^{\prime \prime} s} ; \quad \begin{aligned}
& b^{\prime \prime}-\text { outside width of transverse reinforcing } \\
& d^{\prime \prime}-\text { outside depth of transverse reinforcing } \\
& \text { A - area of bar } \\
& s-\text { spacing of reinforcing }
\end{aligned}
$$

| Author | Col. Desig. | $\begin{aligned} & \mathrm{I}_{\text {ss }} \\ & \text { in. } \end{aligned}$ | $\begin{gathered} \mathrm{I}_{\mathrm{c}} \\ \text { in. }{ }^{4} \end{gathered}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{rs}} \\ & \text { in. }{ }^{4} \end{aligned}$ | Fy web | Fy flange | f'c psi | Fy Reinf. | $\rho_{\text {ss }}$ | $\rho_{\text {rs }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Suzuki et al. <br> (1983) | HT80-000-CB | 16.77 | 370.87 | 1.73 | 110809 | 110809 | 4423 | 48430 | 0.0423 | 0.0021 |
|  | HT80-020-CB | 16.77 | 370.87 | 1.73 | 110809 | 110809 | 4423 | 48430 | 0.0423 | 0.0021 |
|  | LH-000-B | 12.55 | 375.09 | 1.73 | 45240 | 45661 | 4292 | 48430 | 0.0290 | 0.0021 |
|  | LH-020-B | 12.55 | 375.09 | 1.73 | 45240 | 45661 | 4597 | 48430 | 0.0290 | 0.0021 |
|  | LH-040-B | 12.55 | 375.09 | 1.73 | 45240 | 45661 | 4524 | 48430 | 0.0290 | 0.0021 |
|  | LH-100-B | 12.55 | 375.09 | 1.73 | 45240 | 45661 | 4365 | 48430 | 0.0290 | 0.0021 |
|  | RH-000-B | 22.68 | 364.96 | 1.73 | 55477 | 48503 | 4858 | 48430 | 0.0546 | 0.0021 |
|  | RH-020-B | 22.68 | 364.96 | 1.73 | 55477 | 48503 | 4858 | 48430 | 0.0546 | 0.0021 |
|  | RH-040-B | 22.68 | 364.96 | 1.73 | 55477 | 48503 | 4858 | 48430 | 0.0546 | 0.0021 |
|  | RH-100-B | 22.68 | 364.96 | 1.73 | 55477 | 48503 | 4858 | 48430 | 0.0546 | 0.0021 |
|  | HT60-000-B | 23.06 | 364.58 | 1.73 | 83781 | 83781 | 4814 | 48430 | 0.0600 | 0.0021 |
|  | HT60-020-B | 23.06 | 364.58 | 1.73 | 83781 | 83781 | 4814 | 48430 | 0.0600 | 0.0021 |
|  | HT60-040-B | 23.06 | 364.58 | 1.73 | 83781 | 83781 | 4814 | 48430 | 0.0600 | 0.0021 |
|  | HT60-100-B | 23.06 | 364.58 | 1.73 | 83781 | 83781 | 4814 | 48430 | 0.0600 | 0.0021 |
|  | HT80-000-B | 24.17 | 363.48 | 1.73 | 113651 | 113651 | 4771 | 48430 | 0.0633 | 0.0021 |
|  | HT80-020-B | 24.17 | 363.48 | 1.73 | 113651 | 113651 | 4771 | 48430 | 0.0633 | 0.0021 |
|  | HT80-040-B | 24.17 | 363.48 | 1.73 | 113651 | 113651 | 4771 | 48430 | 0.0633 | 0.0021 |
|  | HT80-100-B | 24.17 | 363.48 | 1.73 | 113651 | 113651 | 4771 | 48430 | 0.0633 | 0.0021 |
| Roik <br> Mangerig <br> (1987) | 23 | 136.94 | 1467.77 | 16.99 | 39150 | 39150 | 6570 | 60900 | 0.0868 | 0.0050 |
|  | 24 | 136.94 | 1467.77 | 16.99 | 39150 | 39150 | 6570 | 60900 | 0.0868 | 0.0050 |
|  | 25 | 136.94 | 1467.77 | 16.99 | 39150 | 39150 | 6570 | 60900 | 0.0868 | 0.0050 |
|  | 26 | 136.94 | 1467.77 | 16.99 | 39150 | 39150 | 6570 | 60900 | 0.0868 | 0.0050 |
| Roik <br> Schwal'r <br> (1988) | V11 | 20.76 | 1191.28 | 18.55 | 33655 | 33655 | 6351 | 60900 | 0.0434 | 0.0079 |
|  | V12 | 20.76 | 1191.28 | 18.55 | 33655 | 33655 | 6351 | 60900 | 0.0434 | 0.0079 |
|  | V13 | 20.76 | 1191.28 | 18.55 | 33655 | 33655 | 6786 | 60900 | 0.0434 | 0.0079 |
|  | V21 | 40.12 | 1171.92 | 18.55 | 45675 | 45675 | 6786 | 60900 | 0.0495 | 0.0079 |
|  | V22 | 40.12 | 1171.92 | 18.55 | 45675 | 45675 | 5365 | 60900 | 0.0495 | 0.0079 |
|  | V23 | 40.12 | 1171.92 | 18.55 | 45675 | 45675 | 5365 | 60900 | 0.0495 | 0.0079 |
|  | V31 | 136.94 | 1075.10 | 18.55 | 32886 | 32886 | 5902 | 60900 | 0.0996 | 0.0079 |
|  | V32 | 136.94 | 1075.10 | 18.55 | 32886 | 32886 | 5902 | 60900 | 0.0996 | 0.0079 |
|  | V33 | 136.94 | 1075.10 | 18.55 | 32886 | 32886 | 5699 | 60900 | 0.0996 | 0.0079 |
|  | V41 | 179.71 | 1032.33 | 18.55 | 31465 | 31465 | 5699 | 60900 | 0.1441 | 0.0079 |
|  | V42 | 179.71 | 1032.33 | 18.55 | 39295 | 39295 | 6119 | 60900 | 0.1441 | 0.0079 |
|  | V43 | 179.71 | 1032.33 | 18.55 | 42239 | 42239 | 6119 | 60900 | 0.1441 | 0.0079 |

Table A1 - Specimen Configuration for Columns Bending About the Major Axis
continued

| Author | Col. Desig. | $\frac{\rho_{s s}{ }^{f} y s s}{} f_{c}$ | $\begin{aligned} & \ell \\ & \text { in. } \end{aligned}$ | $\ell / h$ | $\begin{gathered} \text { e } \\ \text { in. } \end{gathered}$ | e/h | Tested Strength | Theor. Strength | Strength Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Suzuki et al. (1983) | HT80-000-CB | 1.060 | 23.6 | 2.9 | 7.22 | 0.874 | 110.4 | 104.0 | 1.0612 |
|  | HT80-020-CB | 1.060 | 23.6 | 2.9 | 8.78 | 1.062 | 110.4 | 108.7 | 1.0156 |
|  | LH-000-B | 0.306 | 23.6 | 2.9 | inf. | inf. | 27.4 | 27.8 | 0.9877 |
|  | LH-020-B | 0.286 | 23.6 | 2.9 | inf. | inf. | 29.4 | 32.1 | 0.9162 |
|  | LH-040-B | 0.290 | 23.6 | 2.9 | inf. | inf. | 28.2 | 30.1 | 0.9386 |
|  | LH-100-B | 0.301 | 23.6 | 2.9 | inf. | inf. | 28.2 | 28.0 | 1.0083 |
|  | RH-000-B | 0.624 | 23.6 | 2.9 | inf. | inf. | 48.9 | 52.1 | 0.9397 |
|  | RH-020-B | 0.624 | 23.6 | 2.9 | inf. | inf. | 54.5 | 56.9 | 0.9578 |
|  | RH-040-B | 0.624 | 23.6 | 2.9 | inf. | inf. | 53.3 | 45.5 | 1.1710 |
|  | RH-100-B | 0.624 | 23.6 | 2.9 | inf. | inf. | 50.9 | 52.3 | 0.9736 |
|  | HT60-000-B | 1.045 | 23.6 | 2.9 | inf. | inf. | 68.8 | 73.4 | 0.9372 |
|  | HT60-020-B | 1.045 | 23.6 | 2.9 | inf. | inf. | 79.2 | 79.7 | 0.9934 |
|  | HT60-040-B | 1.045 | 23.6 | 2.9 | inf. | inf. | 77.2 | 76.2 | 1.0127 |
|  | HT60-100-B | 1.045 | 23.6 | 2.9 | inf. | inf. | 72.0 | 75.9 | 0.9488 |
|  | HT80-000-B | 1.507 | 23.6 | 2.9 | inf. | inf. | 93.5 | 98.8 | 0.9459 |
|  | HT80-020-B | 1.507 | 23.6 | 2.9 | inf. | inf. | 104.2 | 105.3 | 0.9895 |
|  | HT80-040-B | 1.507 | 23.6 | 2.9 | inf. | inf. | 101.0 | 102.8 | 0.9830 |
|  | HT80-100-B | 1.507 | 23.6 | 2.9 | inf. | inf. | 97.9 | 99.6 | 0.9826 |
| Roik Mangerig (1987) | 23 | 0.804 | 196.9 | 16.7 | 3.54 | 0.300 | 526.3 | 442.3 | 1.1900 |
|  | 24 | 0.804 | 196.9 | 16.7 | 5.91 | 0.500 | 368.3 | 324.8 | 1.1340 |
|  | 25 | 0.804 | 315.0 | 26.7 | 3.54 | 0.300 | 377.8 | 314.4 | 1.2017 |
|  | 26 | 0.804 | 315.0 | 26.7 | 5.91 | 0.500 | 200.9 | 238.6 | 0.8420 |
| Roik Schwal'r (1988) | V11 | 0.416 | 136.2 | 12.4 | 6.30 | 0.571 | 171.7 | 169.6 | 1.0124 |
|  | V12 | 0.416 | 136.2 | 12.4 | 2.36 | 0.214 | 366.3 | 373.3 | 0.9812 |
|  | V13 | 0.389 | 136.2 | 12.4 | 3.94 | 0.357 | 322.9 | 272.7 | 1.1842 |
|  | V21 | 0.444 | 136.2 | 12.4 | 3.94 | 0.357 | 338.2 | 321.8 | 1.0509 |
|  | V22 | 0.562 | 136.2 | 12.4 | 6.30 | 0.571 | 213.8 | 201.7 | 1.0599 |
|  | V23 | 0.562 | 136.2 | 12.4 | 2.36 | 0.214 | 437.2 | 388.9 | 1.1243 |
|  | V31 | 1.028 | 136.2 | 12.4 | 3.94 | 0.357 | 384.1 | 383.3 | 1.0020 |
|  | V32 | 1.028 | 136.2 | 12.4 | 2.36 | 0.214 | 506.9 | 501.2 | 1.0114 |
|  | V33 | 1.065 | 136.2 | 12.4 | 6.30 | 0.571 | 294.3 | 280.8 | 1.0481 |
|  | V41 | 1.540 | 136.2 | 12.4 | 3.94 | 0.357 | 477.7 | 422.9 | 1.1295 |
|  | V42 | 1.434 | 136.2 | 12.4 | 6.30 | 0.571 | 344.9 | 359.6 | 0.9592 |
|  | V43 | 1.434 | 136.2 | 12.4 | 2.36 | 0.214 | 614.9 | 650.6 | 0.9451 |

NOTE : For e/h = inf., strength is given in kip-ft ( 1 kip-ft $=1.356 \mathrm{kN}-\mathrm{m}$ ). For all other values of e/h, the strength is shown in kips ( $1 \mathrm{kip}=4.448 \mathrm{kN}$ ).
$b=$ width of the concrete cross-section parrallel to the axis of bending;
$h=$ depth of the concrete cross-section perpendicular to the axis of bending.

The term ${ }_{y}$ yss was taken as the web yield strength for computing the $\rho_{\text {ss }}{ }^{f} y_{y s}{ }^{\prime f}{ }^{\prime}$ c ratio. The strain-hardening of both steels was included in the analysis.

Table A2 - Specimen Configuration for Major Axis Bending
Ratio of Test to Calculated Ultimate Strength - STRAIN HARDENING NOT INCLUDED

| Author | Col. Desig. | $\begin{aligned} & \mathrm{h} \\ & \text { in. } \end{aligned}$ | $\begin{gathered} \mathrm{b} \\ \text { in. } \end{gathered}$ | f'c psi | ${ }^{\text {ss }}$ | $\rho_{\text {rs }}$ | $\frac{\rho_{s s}{ }^{f} y s s}{f^{\prime}{ }_{c}}$ | $\ell / h$ | $\mathrm{e} / \mathrm{h}$ | Tested Strength | Theor. Strength | Strength Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bondale (1966) | RS 60.3 | 6.00 | 3.75 | 4506 | 0.0653 | 0.0062 | 0.649 | 10.0 | 0.500 | 55.8 | 47.0 | 1.1880 |
|  | RS 80.2 | 6.00 | 3.75 | 4382 | 0.0653 | 0.0062 | 0.667 | 13.3 | 0.333 | 70.1 | 55.8 | 1.2572 |
|  | RS 100.1 | 6.00 | 3.75 | 4260 | 0.0653 | 0.0062 | 0.687 | 16.7 | 0.167 | 92.3 | 72.9 | 1.2653 |
|  | RS 120.0 | 6.00 | 3.75 | 4700 | 0.0653 | 0.0062 | 0.622 | 20.0 | 0.000 | 107.1 | 115.3 | 0.9286 |
| May \& Johnson (1978) | RC1 | 7.87 | 7.87 | 4308 | 0.0745 | 0.0028 | 0.727 | 8.1 | 0.112 | 301.2 | 282.2 | 1.0674 |
|  | RC3 | 7.87 | 7.87 | 3390 | 0.0745 | 0.0028 | 0.924 | 8.1 | 0.136 | 305.7 | 239.1 | 1.2787 |
|  | RC4 | 7.87 | 7.87 | 5191 | 0.0745 | 0.0028 | 0.603 | 14.8 | 0.197 | 191.1 | 217.9 | 0.8771 |
| Morino et al. (1984) | A4-90 | 6.30 | 6.30 | 3060 | 0.0870 | 0.0036 | 1.481 | 5.8 | 0.250 | 166.5 | 121.4 | 1.3719 |
|  | B4-90 | 6.30 | 6.30 | 3393 | 0.0870 | 0.0036 | 1.302 | 14.4 | 0.250 | 114.6 | 104.0 | 1.1020 |
|  | C4-90 | 6.30 | 6.30 | 3379 | 0.0870 | 0.0036 | 1.177 | 21.7 | 0.250 | 93.9 | 83.0 | 1.1313 |
|  | D4-90 | 6.30 | 6.30 | 3074 | 0.0870 | 0.0036 | 1.474 | 28.9 | 0.250 | 64.7 | 63.5 | 1.0189 |
|  | A8-90 | 6.30 | 6.30 | 4872 | 0.0870 | 0.0036 | 0.953 | 5.8 | 0.469 | 118.1 | 98.6 | 1.1968 |
|  | B8-90 | 6.30 | 6.30 | 4829 | 0.0870 | 0.0036 | 0.957 | 14.4 | 0.469 | 94.0 | 84.3 | 1.1144 |
|  | C8-90 | 6.30 | 6.30 | 3567 | 0.0870 | 0.0036 | 1.305 | 21.7 | 0.469 | 68.0 | 62.5 | 1.0889 |
|  | D8-90 | 6.30 | 6.30 | 3321 | 0.0870 | 0.0036 | 1.399 | 28.9 | 0.469 | 50.1 | 49.2 | 1.0196 |
| Procter <br> (1967) | S1 | 11.00 | 8.00 | 4722 | 0.0484 | 0.0000 | 0.432 | 2.2 | 0.000 | 470.4 | 522.9 | 0.8997 |
|  | S2 | 11.00 | 8.00 | 4722 | 0.0484 | 0.0000 | 0.432 | 2.2 | 0.000 | 481.6 | 522.9 | 0.9211 |
|  | S3 | 12.00 | 8.00 | 5407 | 0.0520 | 0.0000 | 0.410 | 2.0 | 0.000 | 698.9 | 642.1 | 1.0885 |
|  | S4 | 12.00 | 8.00 | 5407 | 0.0520 | 0.0000 | 0.410 | 2.0 | 0.000 | 703.4 | 642.1 | 1.0955 |
|  | 1 | 11.25 | 8.00 | 4722 | 0.0473 | 0.0000 | 0.422 | 11.7 | 0.533 | 132.2 | 127.7 | 1.0347 |
|  | 2 | 11.25 | 8.00 | 4722 | 0.0473 | 0.0000 | 0.422 | 11.7 | 0.800 | 87.4 | 87.4 | 0.9997 |
|  | 3 | 11.25 | 8.00 | 4722 | 0.0473 | 0.0000 | 0.422 | 11.7 | 0.000 | 470.4 | 508.0 | 0.9259 |
|  | 4 | 11.25 | 8.00 | 4722 | 0.0473 | 0.0000 | 0.422 | 11.7 | 0.533 | 143.4 | 127.7 | 1.1224 |
|  | 5 | 11.25 | 8.00 | 5407 | 0.0473 | 0.0000 | 0.369 | 11.7 | 0.800 | 91.8 | 90.5 | 1.0154 |
|  | 6 | 12.00 | 8.00 | 5407 | 0.0520 | 0.0000 | 0.410 | 11.0 | 0.750 | 129.9 | 114.1 | 1.1383 |
|  | 7 | 12.00 | 8.00 | 5407 | 0.0520 | 0.0000 | 0.410 | 11.0 | 0.500 | 199.4 | 168.6 | 1.1827 |
|  | 8 | 12.00 | 8.00 | 5407 | 0.0520 | 0.0000 | 0.410 | 11.0 | 0.000 | 560.0 | 613.6 | 0.9126 |
|  | 9 | 11.25 | 8.00 | 6007 | 0.0473 | 0.0000 | 0.332 | 11.7 | 0.267 | 268.8 | 243.5 | 1.1039 |
|  | 10 | 11.25 | 8.00 | 6007 | 0.0473 | 0.0000 | 0.332 | 11.7 | 0.267 | 250.9 | 243.5 | 1.0303 |
|  | 11 | 12.00 | 8.00 | 6007 | 0.0520 | 0.0000 | 0.369 | 11.0 | 0.000 | 533.1 | 658.5 | 0.8096 |
|  | 12 | 12.00 | 8.00 | 6007 | 0.0520 | 0.0000 | 0.369 | 11.0 | 0.250 | 315.8 | 290.9 | 1.0859 |
| Suzuki et al. (1983) | LH-000-C | 8.27 | 8.27 | 4785 | 0.0290 | 0.0021 | 0.274 | 2.9 | 0.000 | 380.0 | 366.4 | 1.0373 |
|  | LH-020-c | 8.27 | 8.27 | 4785 | 0.0290 | 0.0021 | 0.274 | 2.9 | 0.000 | 374.3 | 429.4 | 0.8716 |
|  | LH-040-C | 8.27 | 8.27 | 4785 | 0.0290 | 0.0021 | 0.274 | 2.9 | 0.000 | 374.3 | 398.0 | 0.9403 |
|  | LH-100-C | 8.27 | 8.27 | 4785 | 0.0290 | 0.0021 | 0.274 | 2.9 | 0.000 | 385.8 | 379.2 | 1.0173 |
|  | RH-000-C | 8.27 | 8.27 | 4858 | 0.0546 | 0.0021 | 0.624 | 2.9 | 0.000 | 547.0 | 462.7 | 1.1823 |
|  | RH-020-C | 8.27 | 8.27 | 4858 | 0.0546 | 0.0021 | 0.624 | 2.9 | 0.000 | 561.4 | 523.7 | 1.0720 |
|  | RH-040-C | 8.27 | 8.27 | 4858 | 0.0546 | 0.0021 | 0.624 | 2.9 | 0.000 | 521.1 | 493.4 | 1.0563 |
|  | RH-100-C | 8.27 | 8.27 | 4858 | 0.0546 | 0.0021 | 0.624 | 2.9 | 0.000 | 521.1 | 475.2 | 1.0967 |
|  | HT60-000-C | 8.27 | 8.27 | 4858 | 0.0600 | 0.0021 | 1.035 | 2.9 | 0.000 | 598.8 | 562.8 | 1.0640 |
|  | HT60-020-C | 8.27 | 8.27 | 4858 | 0.0600 | 0.0021 | 1.035 | 2.9 | 0.000 | 656.4 | 674.0 | 0.9739 |
|  | HT60-040-C | 8.27 | 8.27 | 4858 | 0.0600 | 0.0021 | 1.035 | 2.9 | 0.000 | 662.2 | 639.2 | 1.0359 |
|  | HT60-100-C | 8.27 | 8.27 | 4858 | 0.0600 | 0.0021 | 1.035 | 2.9 | 0.000 | 627.6 | 611.8 | 1.0259 |
|  | HT80-000-C | 8.27 | 8.27 | 4858 | 0.0633 | 0.0021 | 1.480 | 2.9 | 0.000 | 716.9 | 626.3 | 1.1447 |
|  | HT80-020-C | 8.27 | 8.27 | 4858 | 0.0633 | 0.0021 | 1.480 | 2.9 | 0.000 | 734.2 | 797.3 | 0.9208 |
|  | HT80-040-C | 8.27 | 8.27 | 4858 | 0.0633 | 0.0021 | 1.480 | 2.9 | 0.000 | 728.4 | 759.4 | 0.9592 |
|  | HT80-100-C | 8.27 | 8.27 | 4858 | 0.0633 | 0.0021 | 1.480 | 2.9 | 0.000 | 711.1 | 721.0 | 0.9863 |

Table Continued

| Author | Col. <br> Desig. | $\begin{gathered} h \\ \text { in. } \end{gathered}$ | $\begin{aligned} & b \\ & \text { in. } \end{aligned}$ | f'c <br> psi | $\rho_{\text {ss }}$ | $\rho_{\text {rs }}$ | $\frac{\rho_{s s} f_{y s s}}{f^{\prime}{ }_{c}}$ | $\ell / h$ | e/h | Tested Strength | Theor. Strength | Strength Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Suzuki et al. (1983) | HT80-000-CB | 8.27 | 8.27 | 4423 | 0.0423 | 0.0021 | 1.060 | 2.9 | 0.874 | 110.4 | 102.1 | 1.0809 |
|  | HT80-020-CB | 8.27 | 8.27 | 4423 | 0.0423 | 0.0021 | 1.060 | 2.9 | 1.062 | 110.4 | 104.8 | 1.0528 |
|  | LH-000-B | 8.27 | 8.27 | 4292 | 0.0290 | 0.0021 | 0.306 | 2.9 | inf. | 27.4 | 23.3 | 1.1760 |
|  | LH-020-B | 8.27 | 8.27 | 4597 | 0.0290 | 0.0021 | 0.286 | 2.9 | inf. | 29.4 | 23.9 | 1.2317 |
|  | LH-040-B | 8.27 | 8.27 | 4524 | 0.0290 | 0.0021 | 0.290 | 2.9 | inf. | 28.2 | 23.7 | 1.1932 |
|  | LH-100-B | 8.27 | 8.27 | 4365 | 0.0290 | 0.0021 | 0.301 | 2.9 | inf. | 28.2 | 23.4 | 1.2080 |
|  | RH-000-B | 8.27 | 8.27 | 4858 | 0.0546 | 0.0021 | 0.624 | 2.9 | inf. | 48.9 | 44.8 | 1.0931 |
|  | RH-020-B | 8.27 | 8.27 | 4858 | 0.0546 | 0.0021 | 0.624 | 2.9 | inf. | 54.5 | 45.9 | 1.1873 |
|  | RH-040-B | 8.27 | 8.27 | 4858 | 0.0546 | 0.0021 | 0.624 | 2.9 | inf. | 53.3 | 45.5 | 1.1710 |
|  | $\mathrm{RH}-100-\mathrm{B}$ | 8.27 | 8.27 | 4858 | 0.0546 | 0.0021 | 0.624 | 2.9 | inf. | 50.9 | 45.2 | 1.1265 |
|  | HT60-000-B | 8.27 | 8.27 | 4814 | 0.0600 | 0.0021 | 1.045 | 2.9 | inf. | 68.8 | 69.8 | 0.9865 |
|  | HT60-020-B | 8.27 | 8.27 | 4814 | 0.0600 | 0.0021 | 1.045 | 2.9 | inf. | 79.2 | 73.1 | 1.0823 |
|  | HT60-040-B | 8.27 | 8.27 | 4814 | 0.0600 | 0.0021 | 1.045 | 2.9 | inf. | 77.2 | 72.3 | 1.0677 |
|  | HT60-100-B | 8.27 | 8.27 | 4814 | 0.0600 | 0.0021 | 1.045 | 2.9 | inf. | 72.0 | 71.5 | 1.0069 |
|  | HT80-000-B | 8.27 | 8.27 | 4771 | 0.0633 | 0.0021 | 1.507 | 2.9 | inf. | 93.5 | 83.3 | 1.1224 |
|  | HT80-020-B | 8.27 | 8.27 | 4771 | 0.0633 | 0.0021 | 1.507 | 2.9 | inf. | 104.2 | 91.1 | 1.1437 |
|  | HT80-040-B | 8.27 | 8.27 | 4771 | 0.0633 | 0.0021 | 1.507 | 2.9 | inf. | 101.0 | 89.3 | 1.1312 |
|  | HT80-100-B | 8.27 | 8.27 | 4771 | 0.0633 | 0.0021 | 1.507 | 2.9 | inf. | 97.9 | 87.2 | 1.1217 |
| Roik Mangeri (1987) | 23 | 11.81 | 11.81 | 6570 | 0.0868 | 0.0050 | 0.517 | 16.7 | 0.300 | 526.3 | 442.3 | 1.1900 |
|  | 24 | 11.81 | 11.81 | 6570 | 0.0868 | 0.0050 | 0.517 | 16.7 | 0.500 | 368.3 | 324.8 | 1.1340 |
|  | 25 | 11.81 | 11.81 | 6570 | 0.0868 | 0.0050 | 0.517 | 26.7 | 0.300 | 377.8 | 314.4 | 1.2017 |
|  | 26 | 11.81 | 11.81 | 6570 | 0.0868 | 0.0050 | 0.517 | 26.7 | 0.500 | 200.9 | 238.6 | 0.8420 |
| Roik Schwal'r (1988) | V11 | 11.02 | 11.02 | 6351 | 0.0434 | 0.0079 | 0.230 | 12.4 | 0.571 | 171.7 | 169.6 | 1.0124 |
|  | V12 | 11.02 | 11.02 | 6351 | 0.0434 | 0.0079 | 0.230 | 12.4 | 0.214 | 366.3 | 373.3 | 0.9812 |
|  | V13 | 11.02 | 11.02 | 6786 | 0.0434 | 0.0079 | 0.215 | 12.4 | 0.357 | 322.9 | 272.7 | 1.1842 |
|  | V21 | 11.02 | 11.02 | 6786 | 0.0495 | 0.0079 | 0.333 | 12.4 | 0.357 | 338.2 | 321.8 | 1.0509 |
|  | V22 | 11.02 | 11.02 | 5365 | 0.0495 | 0.0079 | 0.421 | 12.4 | 0.571 | 213.8 | 201.7 | 1.0599 |
|  | V23 | 11.02 | 11.02 | 5365 | 0.0495 | 0.0079 | 0.421 | 12.4 | 0.214 | 437.2 | 388.9 | 1.1243 |
|  | V31 | 11.02 | 11.02 | 5902 | 0.0996 | 0.0079 | 0.555 | 12.4 | 0.357 | 384.1 | 383.3 | 1.0020 |
|  | V32 | 11.02 | 11.02 | 5902 | 0.0996 | 0.0079 | 0.555 | 12.4 | 0.214 | 506.9 | 501.2 | 1.0114 |
|  | V33 | 11.02 | 11.02 | 5699 | 0.0996 | 0.0079 | 0.575 | 12.4 | 0.571 | 294.3 | 280.8 | 1.0481 |
|  | V41 | 11.02 | 11.02 | 5699 | 0.1441 | 0.0079 | 0.796 | 12.4 | 0.357 | 477.7 | 422.9 | 1.1295 |
|  | V42 | 11.02 | 11.02 | 6119 | 0.1441 | 0.0079 | 0.926 | 12.4 | 0.571 | 344.9 | 359.6 | 0.9592 |
|  | V43 | 11.02 | 11.02 | 6119 | 0.1441 | 0.0079 | 0.995 | 12.4 | 0.214 | 614.9 | 650.6 | 0.9451 |

NOTE : FOr e/h = inf., strength is given in kip-ft ( $1 \mathrm{kip}-\mathrm{ft}=1.356 \mathrm{kN}-\mathrm{m})$.
For all other values of e/h, the strength is shown in kips ( $1 \mathrm{kip}=4.448 \mathrm{kN}$ ).
$b=$ width of the concrete cross-section parrallel to the axis of bending;
$h=$ depth of the concrete cross-section perpendicular to the axis of bending.

The term $f_{y S s}$ was taken as the web yield strength for computing the $\rho_{S S}{ }^{f} y_{S S} /{ }^{\prime \prime}{ }_{c}$ ratio.

Table A3 - Specimen Configuration for Columns Bending About the Minor Axis

| Author | Col. Desig. | $\begin{gathered} \mathrm{b} \\ \text { in. } \end{gathered}$ | $\begin{gathered} h \\ \text { in. } \end{gathered}$ | Steel <br> Profile | Long. Reinf. | $\begin{aligned} & \mathrm{A}_{\mathrm{ss}} \\ & \text { in. } \end{aligned}$ | $\begin{gathered} A_{c} \\ \text { in. } \end{gathered}$ | $\begin{aligned} & \mathrm{A}_{\mathrm{rs}} \\ & \mathrm{in} .2 \end{aligned}$ | Vol'met' Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stevens | CV2 | 7.00 | 6.50 | 5"x4.5"@20\# |  | 5.87 | 39.63 |  |  |
| (1965) | CV3 | 7.00 | 6.50 | 5"x4.5"@20\# |  | 5.87 | 39.63 |  |  |
|  | CV4 | 7.00 | 6.50 | $5^{\text {"x }} 4.5$ ¢@20\# |  | 5.87 | 39.63 |  |  |
|  | CV5 | 7.00 | 6.50 | 5"x4.5"@20\# |  | 5.87 | 39.63 |  |  |
|  | CV6 | 7.00 | 6.50 | 5"x4.5"@20\# |  | 5.87 | 39.63 |  |  |
|  | AE1 | 7.00 | 6.50 | 5"x4.5"@20\# |  | 5.87 | 39.63 |  |  |
|  | AE2 | 7.00 | 6.50 | 5 "x4.5"@20\# |  | 5.87 | 39.63 |  |  |
|  | AE3 | 7.00 | 6.50 | 5"x4.5'@20\# |  | 5.87 | 39.63 |  |  |
|  | AE4 | 7.00 | 6.50 | 5"x4.5"@20\# |  | 5.87 | 39.63 |  |  |
|  | AE5 | 7.00 | 6.50 | 5"x4.5'@20\# |  | 5.87 | 39.63 |  |  |
|  | AEE | 7.00 | 6.50 | 5"x4.5"@20\# |  | 5.87 | 39.63 |  |  |
|  | AE7 | 7.00 | 6.50 | 5 " $\times 4.5$ "@20\# |  | 5.87 | 39.63 |  |  |
|  | AE8 | 7.00 | 6.50 | 5"x4.5"@20\# |  | 5.87 | 39.63 |  |  |
|  | AE9 | 7.00 | 6.50 | 5"x4.5"@20\# |  | 5.87 | 39.63 |  |  |
|  | AE10 | 7.00 | 6.50 | $5{ }^{\text {² }} \times 4.5$ @ @ $20 \#$ |  | 5.87 | 39.63 |  |  |
|  | AE11 | 7.00 | 6.50 | $5 \mathrm{5} \times 4.5 \mathrm{C}$ @20\# |  | 5.87 | 39.63 |  |  |
|  | FE1 | 16.00 | 12.00 | 12"x8"@65\# | 4-0.5" | 19.13 | 172.09 | 0.79 | 0.0028 |
|  | FE2 | 16.00 | 12.00 | 12"x8"@65\# | 4-0.5' | 19.13 | 172.09 | 0.79 | 0.0028 |
|  | FE3 | 16.00 | 12.00 | 12"x8"@65\# | 4-0.5" | 19.13 | 172.09 | 0.79 | 0.0028 |
|  | FE4 | 16.00 | 12.00 | $12^{\prime \prime} \times 8^{\prime \prime}$ @65\# | 4-0.5" | 19.13 | 172.09 | 0.79 | 0.0028 |
|  | FE5 | 18.00 | 12.00 | $12^{\prime \prime} \times 8^{\prime @} 65{ }^{\text {a }}$ | 4-0.5" | 19.13 | 172.09 | 0.79 | 0.0028 |
|  | FE6 | 16.00 | 12.00 | $12^{\text {a }} \times 8^{\prime \prime}$ @65\# | 4-0.5" | 19.13 | 172.09 | 0.79 | 0.0028 |
|  | FE7 | 16.00 | 12.00 | $12^{\prime \prime} \times 8^{\prime \prime}$ @ 6 \# | 4-0.5* | 19.13 | 172.09 | 0.79 | 0.0028 |
|  | FE8 | 16.00 | 12.00 | $12^{\prime \prime} \times 8^{\prime \prime}$ @ 6 \# | 4-0.5" | 19.13 | 172.09 | 0.79 | 0.0028 |
|  | FE9 | 16.00 | 12.00 | 12"x8"@65\# | 4-0.5* | 19.13 | 172.09 | 0.79 | 0.0028 |
|  | FE10 | 16.00 | 12.00 | 12 "x8"@65\# | 4-0.5* | 19.13 | 172.09 | 0.79 | 0.0028 |
|  | FE11 | 16.00 | 12.00 | 12'x8"@65\# | 4-0.5 | 19.13 | 172.09 | 0.79 | 0.0028 |
|  | FE12 | 16.00 | 12.00 | $12 \times \times 8^{\text {"@65\# }}$ | 4-0.5" | 19.13 | 172.09 | 0.79 | 0.0028 |
|  | B1 | 5.00 | 3.50 | 3"x1.5"@4\# |  | 1.18 | 16.32 |  |  |
|  | B2 | 5.00 | 3.50 | $3 \times 1.5$ @ $04 \#$ |  | 1.18 | 16.32 |  |  |
|  | B3 | 5.00 | 3.50 | $3^{\times 1} \times 1.5^{\text {n @ }}$ 4\# |  | 1.18 | 16.32 |  |  |
|  | B4 | 5.00 | 3.50 | 3"x1.5"@4\# |  | 1.18 | 16.32 |  |  |
|  | 85 | 5.00 | 3.50 | 3"x1.5"@4\# |  | 1.18 | 16.32 |  |  |
|  | B6 | 5.00 | 3.50 | 3"x1.5"@4\# |  | 1.18 | 16.32 |  |  |
|  | B7 | 5.00 | 3.50 | 3"x1.5"@4\# |  | 1.18 | 16.32 |  |  |
|  | A1 | 7.00 | 6.50 | 5"x4.5"@20\# |  | 5.87 | 39.63 |  |  |
|  | A2 | 7.00 | 6.50 | $5^{*} \times 4.5$ @ $20 \#$ |  | 5.87 | 39.63 |  |  |
|  | A3 | 7.00 | 6.50 | 5"x4.5"@20\# |  | 5.87 | 39.63 |  |  |
|  | A4 | 7.00 | 6.50 | 5"x4.5"@20\# |  | 5.87 | 39.63 |  |  |
|  | A5 | 7.00 | 6.50 | 5 "x4.5"@20\# |  | 5.87 | 39.63 |  |  |
|  | A6 | 7.00 | 6.50 | 5"x4.5"@20\# |  | 5.87 | 39.63 |  |  |
|  | RE1a | 7.00 | 6.50 | $5 \mathrm{5} \times 4.5$ "@20\# |  | 5.87 | 39.63 |  |  |
|  | RE1b | 7.00 | 6.50 | 5 " $\times 4.5$ "@20\# |  | 5.87 | 39.63 |  |  |
|  | RE2a | 7.00 | 6.50 | $5^{\text {n }} \times 4.5$ ¢@20\# |  | 5.87 | 39.63 |  | 0.0057 |
|  | RE2b | 7.00 | 6.50 | 5 "x4.5"@20\# |  | 5.87 | 39.63 |  | 0.0057 |
|  | RE3a | 7.00 | 6.50 | 5"x4.5"@20\# | 4-1/4" | 5.87 | 39.43 | 0.20 | 0.0057 |
|  | RE3b | 7.00 | 6.50 | $5^{\text {² }} \times 4.5$ "@20\# | 4-1/4* | 5.87 | 39.43 | 0.20 | 0.0057 |
|  | RE4a | 7.00 | 6.50 | 5 "x4.5"@20\# |  | 5.87 | 39.63 |  |  |
|  | RE4b | 7.00 | 6.50 | 5"x4.5"@20\# |  | 5.87 | 39.63 |  |  |

Table A3-Specimen Configuration for Columns Bending About the Minor Axis

| Author | Col. Desig. | $\begin{aligned} & \mathrm{I}_{\text {ss }} \\ & \text { in. }{ }^{4} \end{aligned}$ | $\begin{gathered} \mathrm{I}_{\mathrm{c}} \\ \text { in. } .^{4} \end{gathered}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{rs}} \\ & \text { in. }^{4} \end{aligned}$ | Fy web | $\begin{gathered} \text { Fy } \\ \text { flange } \end{gathered}$ | f'c Col. Stored ** | f'c Water Stored | Fy Reinf. | $\rho_{\text {ss }}$ | $\rho_{\text {rs }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stevens | CV2 | 6.58 | 153.62 |  | 36060 | 36060 | 1115 | 1012 |  | 0.1291 | 0.0000 |
| (1965) | CV3 | 6.58 | 153.62 |  | 36060 | 36060 | 1900 | 2083 |  | 0.1291 | 0.0000 |
|  | CV4 | 6.58 | 153.62 |  | 36060 | 36060 | 2491 | 2982 |  | 0.1291 | 0.0000 |
|  | CV5 | 6.58 | 153.62 |  | 36060 | 36060 | 3058 | 3983 |  | 0.1291 | 0.0000 |
|  | CV6 | 6.58 | 153.62 |  | 36060 | 36060 | 3672 | 4414 |  | 0.1291 | 0.0000 |
|  | AE1 | 6.58 | 153.62 |  | 36060 | 36060 | 2046 | 2379 |  | 0.1291 | 0.0000 |
|  | AE2 | 6.58 | 153.62 |  | 36060 | 36060 | 2679 | 2792 |  | 0.1291 | 0.0000 |
|  | AE3 | 6.58 | 153.62 |  | 36060 | 36060 | 2566 | 2830 |  | 0.1291 | 0.0000 |
|  | AE4 | 6.58 | 153.62 |  | 36060 | 36060 | 2906 | 3020 |  | 0.1291 | 0.0000 |
|  | AE5 | 6.58 | 153.62 |  | 36060 | 36060 | 2305 | 2491 |  | 0.1291 | 0.0000 |
|  | AE6 | 6.58 | 153.62 |  | 36060 | 36060 | 2010 | 2379 |  | 0.1291 | 0.0000 |
|  | AE7 | 6.58 | 153.62 |  | 36060 | 36060 | 2083 | 2379 |  | 0.1291 | 0.0000 |
|  | AE8 | 6.58 | 153.62 |  | 36060 | 36060 | 2157 | 2342 |  | 0.1291 | 0.0000 |
|  | AE9 | 6.58 | 153.62 |  | 36060 | 36060 | 1467 | 1682 |  | 0.1291 | 0.0000 |
|  | AE10 | 6.58 | 153.62 |  | 36060 | 36060 | 1900 | 2120 |  | 0.1291 | 0.0000 |
|  | AE11 | 6.58 | 153.62 |  | 36060 | 36060 | 2305 | 2305 |  | 0.1291 | 0.0000 |
|  | FE1 | 65.18 | 2219.20 | 15.92 | 33031 | 33031 | 2083 | 2641 | 60000 | 0.0996 | 0.0041 |
|  | FE2 | 65.18 | 2219.20 | 15.92 | 33031 | 33031 | 2268 | 3020 | 60000 | 0.0996 | 0.0041 |
|  | FE3 | 65.18 | 2219.20 | 15.92 | 33031 | 33031 | 2083 | 2717 | 60000 | 0.0996 | 0.0041 |
|  | FE4 | 65.18 | 2219.20 | 15.92 | 33031 | 33031 | 1936 | 2231 | 60000 | 0.0996 | 0.0041 |
|  | FE5 | 65.18 | 2219.20 | 15.92 | 33031 | 33031 | 2454 | 2792 | 60000 | 0.0996 | 0.0041 |
|  | FE6 | 65.18 | 2219.20 | 15.92 | 33031 | 33031 | 2231 | 2641 | 60000 | 0.0996 | 0.0041 |
|  | FE7 | 65.18 | 2219.20 | 15.92 | 33031 | 33031 | 2231 | 2529 | 60000 | 0.0996 | 0.0041 |
|  | FE8 | 65.18 | 2219.20 | 15.92 | 33031 | 33031 | 2342 | 2792 | 60000 | 0.0996 | 0.0041 |
|  | FE9 | 65.18 | 2219.20 | 15.92 | 33031 | 33031 | 2268 | 2566 | 60000 | 0.0996 | 0.0041 |
|  | FE10 | 65.18 | 2219.20 | 15.92 | 33031 | 33031 | 2604 | 2830 | 60000 | 0.0996 | 0.0041 |
|  | FE11 | 65.18 | 2219.20 | 15.92 | 33031 | 33031 | 2529 | 2754 | 60000 | 0.0996 | 0.0041 |
|  | FE12 | 65.18 | 2219.20 | 15.92 | 33031 | 33031 | 2529 | 2830 | 60000 | 0.0996 | 0.0041 |
|  | B1 | 0.13 | 17.73 |  | 41200 | 41200 | 2120 | 2417 |  | 0.0674 | 0.0000 |
|  | B2 | 0.13 | 17.73 |  | 41200 | 41200 | 1467 | 1538 |  | 0.0674 | 0.0000 |
|  | B3 | 0.13 | 17.73 |  | 41200 | 41200 | 1827 | 2454 |  | 0.0674 | 0.0000 |
|  | B4 | 0.13 | 17.73 |  | 41200 | 41200 | 1610 | 1574 |  | 0.0674 | 0.0000 |
|  | B5 | 0.13 | 17.73 |  | 41200 | 41200 | 2083 | 2083 |  | 0.0674 | 0.0000 |
|  | B6 | 0.13 | 17.73 |  | 41200 | 41200 | 1791 | 1610 |  | 0.0674 | 0.0000 |
|  | B7 | 0.13 | 17.73 |  | 41200 | 41200 | 2305 | 2046 |  | 0.0674 | 0.0000 |
|  | A1 | 6.58 | 153.62 |  | 42100 | 42100 | 1900 | 2046 |  | 0.1291 | 0.0000 |
|  | A2 | 6.58 | 153.62 |  | 42100 | 42100 | 1682 | 1973 |  | 0.1291 | 0.0000 |
|  | A3 | 6.58 | 153.62 |  | 42100 | 42100 | 1900 | 2417 |  | 0.1291 | 0.0000 |
|  | A4 | 6.58 | 153.62 |  | 42100 | 42100 | 2046 | 2231 |  | 0.1291 | 0.0000 |
|  | A5 | 6.58 | 153.62 |  | 42100. | 42100 | 1864 | 2120 |  | 0.1291 | 0.0000 |
|  | A6 | 6.58 | 153.62 |  | 42100 | 42100 | 2216 | 2342 |  | 0.1291 | 0.0000 |
|  | RE1a | 6.58 | 153.62 |  | 43800 | 43800 | 2010 |  |  | 0.1291 | 0.0000 |
|  | RE1b | 6.58 | 153.62 |  | 43800 | 43800 | 1791 |  |  | 0.1291 | 0.0000 |
|  | RE2a | 6.58 | 153.62 |  | 43800 | 43800 | 1900 |  |  | 0.1291 | 0.0000 |
|  | RE2b | 6.58 | 153.62 |  | 43800 | 43800 | 2305 |  |  | 0.1291 | 0.0000 |
|  | RE3a | 6.58 | 152.52 | 1.1 | 43800 | 43800 | 2231 |  | 60000 | 0.1291 | 0.0043 |
|  | RE3b | 6.58 | 152.52 | 1.1 | 43800 | 43800 | 1900 |  | 60000 | 0.1291 | 0.0043 |
|  | RE4a | 6.58 | 153.62 |  | 43800 | 43800 | 1973 |  | 60000 | 0.1291 | 0.0000 |
|  | RE4b | 6.58 | 153.62 |  | 43800 | 43800 | 1827 |  | 60000 | 0.1291 | 0.0000 |



| Author | Col. Desig. | $\begin{gathered} b \\ \text { in. } \end{gathered}$ | $\begin{gathered} h \\ \text { in. } \end{gathered}$ | Steel <br> Profile | Long. Reinf. | $\begin{aligned} & \mathrm{A}_{\mathrm{ss}} \\ & \text { in. }^{2} \end{aligned}$ | $\begin{aligned} & A_{c} \\ & \text { in. } \end{aligned}$ | $\begin{aligned} & A_{r s} \\ & \text { in. } 2 \end{aligned}$ | Vol'met' Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stevens <br> (1965) | FA1 | 16.00 | 12.00 | 12"x8*@65\# |  | 19.13 | 172.87 |  |  |
|  | FA2 | 16.00 | 12.00 | $12^{\prime \prime} \times 8^{\prime}$ @65\# |  | 19.13 | 172.87 |  |  |
|  | FA3 | 16.00 | 12.00 | 12"x8"@65\# |  | 19.13 | 172.87 |  |  |
|  | FA4 | 16.00 | 12.00 | $12^{\text {"x }}$ 8*@65\# |  | 19.13 | 172.87 |  |  |
|  | FA5 | 16.00 | 12.00 | 12"x8"@65\# |  | 19.13 | 172.87 |  |  |
| Bondale (1966) | RW 60.3 | 6.00 | 3.75 | $4^{n} \times 1.75^{\prime} @ 5 \#$ | 4-0.21* | 1.47 | 20.89 | 0.14 | 0.00644 |
|  | RW 80.2 | 6.00 | 3.75 | 4"x1.75"@5\# | 4-0.21" | 1.47 | 20.89 | 0.14 | 0.00644 |
|  | RW 100.1 | 6.00 | 3.75 | 4'x1.75"@5\# | 4-0.21" | 1.47 | 20.89 | 0.14 | 0.00644 |
|  | RW 120.0 | 6.00 | 3.75 | $4 \mathrm{l} \times 1.75$ "@5\# | 4-0.21" | 1.47 | 20.89 | 0.14 | 0.00644 |
| May (1978) | RC5 | 7.87 | 7.87 | 152X152 UC23 | 4-Y6 | 4.62 | 57.18 | 0.20 | 0.0018 |
| Janss Anslijn (1974) | 1.1 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 1.2 | 9.45 | 9.45 | HE140B | 4-12mm | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 1.3 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 2.1 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 2.2 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 2.3 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 3.1 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 3.2 | 9.45 | 9.45 | HE140B | 4-12mm | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 3.3 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 4.1 | 9.45 | 9.45 | HE140B | 4-12mm | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 4.2 | 9.45 | 9.45 | HE140B | 4-12mm | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 4.3 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 5.1 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 5.2 | 9.45 | 9.45 | HE140B | 4-12mm | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 5.3 | 9.45 | 9.45 | HE140B | 4-12mm | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 6.1 | 9.45 | 9.45 | HE140B | 4-12mm | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 6.2 | 9.45 | 9.45 | HE140B | 4-12mm | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 6.3 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 7.1 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 7.2 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 7.3 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 8.1 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 8.2 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 8.3 | 9.45 | 9.45 | HE140B | 4-12mm | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 9.1 | 12.60 | 8.27 | IPE220 | 4-12mm | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 9.2 | 12.60 | 8.27 | IPE220 | 4-12mm | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 9.3 | 12.60 | 8.27 | IPE220 | $4-12 \mathrm{~mm}$ | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 10.1 | 12.60 | 8.27 | IPE220 | $4-12 \mathrm{~mm}$ | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 10.2 | 12.60 | 8.27 | IPE220 | $4-12 \mathrm{~mm}$ | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 10.3 | 12.60 | 8.27 | IPE220 | $4-12 \mathrm{~mm}$ | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 11.1 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 11.2 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 11.3 | 9.45 | 9.45 | HE140B | 4-12mm | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 12.1 | 9.45 | 9.45 | HE140B | 4-12mm | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 12.2 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 12.3 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |

Table A3-Specimen Configuration for Columns Bending About the Minor Axis

| Author | Col. Desig. | $\begin{aligned} & \mathrm{I}_{\mathrm{ss}} \\ & \mathrm{in}^{4}{ }^{4} \end{aligned}$ | $\begin{gathered} \mathrm{l}_{c} \\ \text { in. } \end{gathered}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{rs}} \\ & \text { in. } \end{aligned}$ | Fy web | Fy flange | $f^{\prime} c$ Col . Stored ** | $\begin{gathered} \hline f \text { f'c } \\ \text { Water } \\ \text { Stored } \end{gathered}$ | Fy Reinf. | $\rho_{s s}$ | ${ }^{\text {r }}$ S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stevens (1965) | FA1 | 65.18 | 2238.82 |  | 32900 | 32900 | 1864 | 2231 |  | 0.0996 | 0.0000 |
|  | FA2 | 65.18 | 2238.82 |  | 32900 | 32900 | 2010 | 2342 |  | 0.0996 | 0.0000 |
|  | FA3 | 65.18 | 2238.82 |  | 32900 | 32900 | 1755 | 2417 |  | 0.0996 | 0.0000 |
|  | FA4 | 65.18 | 2238.82 |  | 32900 | 32900 | 1973 | 2604 |  | 0.0996 | 0.0000 |
|  | FA5 | 65.18 | 2238.82 |  | 32900 | 32900 | 1973 | 2454 |  | 0.0996 | 0.0000 |
| Bondale (1966) | RW 60.3 | 0.19 | 67.09 | 0.22 | 44800 | 44800 | 4665 |  |  | 0.0653 | 0.0099 |
|  | RW 80.2 | 0.19 | 67.09 | 0.22 | 44800 | 44800 | 5557 |  |  | 0.0653 | 0.0099 |
|  | RW 100.1 | 0.19 | 67.09 | 0.22 | 44800 | 44800 | 4488 |  |  | 0.0653 | 0.0099 |
|  | RW 120.0 | 0.19 | 67.09 | 0.22 | 44800 | 44800 | 3927 |  |  | 0.0653 | 0.0099 |
| May (1978) | RC5 | 30.34 | 288.17 | 1.82 | 42050 | 41615 | 5278 |  | 60000 | 0.0745 | 0.0294 |
| Janss Anslijn (1974) | 1.1 | 13.21 | 641.23 | 9.80 | 41383 | 41383 | 6014 |  | 31900 | 0.0747 | 0.0079 |
|  | 1.2 | 13.21 | 641.23 | 9.80 | 41383 | 41383 | 5517 |  | 31900 | 0.0747 | 0.0079 |
|  | 1.3 | 13.21 | 641.23 | 9.80 | 39672 | 39672 | 5263 |  | 31900 | 0.0747 | 0.0079 |
|  | 2.1 | 13.21 | 641.23 | 9.80 | 42514 | 42514 | 5263 |  | 31900 | 0.0747 | 0.0079 |
|  | 2.2 | 13.21 | 641.23 | 9.80 | 42514 | 42514 | 4507 |  | 31900 | 0.0747 | 0.0079 |
|  | 2.3 | 13.21 | 641.23 | 9.80 | 42514 | 42514 | 5517 |  | 31500 | 0.0747 | 0.0079 |
|  | 3.1 | 13.21 | 641.23 | 9.80 | 40035 | 40035 | 5957 |  | 31900 | 0.0747 | 0.0079 |
|  | 3.2 | 13.21 | 641.23 | 9.80 | 40035 | 40035 | 6014 |  | 31900 | 0.0747 | 0.0079 |
|  | 3.3 | 13.21 | 641.23 | 9.80 | 40035 | 40035 | 5263 |  | 31900 | 0.0747 | 0.0079 |
|  | 4.1 | 13.21 | 641.23 | 9.80 | 40035 | 40035 | 5263 |  | 31900 | 0.0747 | 0.0079 |
|  | 4.2 | 13.21 | 641.23 | 9.80 | 40035 | 40035 | 4507 |  | 31900 | 0.0747 | 0.0079 |
|  | 4.3 | 13.21 | 641.23 | 9.80 | 40035 | 40035 | 5574 |  | 31900 | 0.0747 | 0.0079 |
|  | 5.1 | 13.21 | 641.23 | 9.80 | 55028 | 55028 | 4870 |  | 31900 | 0.0747 | 0.0079 |
|  | 5.2 | 13.21 | 641.23 | 9.80 | 55028 | 55028 | 5277 |  | 31900 | 0.0747 | 0.0079 |
|  | 5.3 | 13.21 | 641.23 | 9.80 | 55028 | 55028 | 4982 |  | 31900 | 0.0747 | 0.0079 |
|  | 6.1 | 13.21 | 641.23 | 9.80 | 72805 | 72805 | 4870 |  | 31900 | 0.0747 | 0.0079 |
|  | 6.2 | 13.21 | 641.23 | 9.80 | 72805 | 72805 | 5277 |  | 31900 | 0.0747 | 0.0079 |
|  | 6.3 | 13.21 | 641.23 | 9.80 | 72805 | 72805 | 4996 |  | 31900 | 0.0747 | 0.0079 |
|  | 7.1 | 13.21 | 641.23 | 9.80 | 70818 | 70818 | 4968 |  | 31900 | 0.0747 | 0.0079 |
|  | 7.2 | 13.21 | 641.23 | 9.80 | 70818 | 70818 | 5291 |  | 31900 | 0.0747 | 0.0079 |
|  | 7.3 | 13.21 | 641.23 | 9.80 | 70818 | 70818 | 4996 |  | 31900 | 0.0747 | 0.0079 |
|  | 8.1 | 13.21 | 641.23 | 9.80 | 72515 | 72515 | 5263 |  | 31900 | 0.0747 | 0.0079 |
|  | 8.2 | 13.21 | 641.23 | 9.80 | 72515 | 72515 | 6014 |  | 31900 | 0.0747 | 0.0079 |
|  | 8.3 | 13.21 | 641.23 | 9.80 | 72515 | 72515 | 5957 |  | 31900 | 0.0747 | 0.0079 |
|  | 9.1 | 4.93 | 581.46 | 6.97 | 39527 | 39527 | 4507 |  | 31900 | 0.0497 | 0.0067 |
|  | 9.2 | 4.93 | 581.46 | 6.97 | 39527 | 39527 | 5957 |  | 31900 | 0.0497 | 0.0067 |
|  | 9.3 | 4.93 | 581.46 | 6.97 | 39527 | 39527 | 5291 |  | 31900 | 0.0497 | 0.0067 |
|  | 10.1 | 4.93 | 581.46 | 6.97 | 70818 | 70818 | 5263 |  | 31900 | 0.0497 | 0.0067 |
|  | 10.2 | 4.93 | 581.46 | 6.97 | 70818 | 70818 | 4968 |  | 31900 | 0.0497 | 0.0067 |
|  | 10.3 | 4.93 | 581.46 | 6.97 | 70818 | 70818 | 4982 |  | 31900 | 0.0497 | 0.0067 |
|  | 11.1 | 13.21 | 641.23 | 9.80 | 41528 | 41528 | 5390 |  | 31900 | 0.0747 | 0.0079 |
|  | 11.2 | 13.21 | 641.23 | 9.80 | 41528 | 41528 | 5574 |  | 31900 | 0.0747 | 0.0079 |
|  | 11.3 | 13.21 | 641.23 | 9.80 | 41528 | 41528 | 4772 |  | 31900 | 0.0747 | 0.0079 |
|  | 12.1 | 13.21 | 641.23 | 9.80 | 70673 | 70673 | 5390 |  | 31900 | 0.0747 | 0.0079 |
|  | 12.2 | 13.21 | 641.23 | 9.80 | 70673 | 70673 | 5207 |  | 31900 | 0.0747 | 0.0079 |
|  | 12.3 | 13.21 | 641.23 | 9.80 | 70673 | 70673 | 4772 |  | 31900 | 0.0747 | 0.0079 |

Table A3 - Specimen Configuration for Columns Bending About the Minor Axis
continued

| Author | Col. Desig. | $\frac{\rho_{s s} f^{\prime} y s s}{f^{\prime}{ }_{c}}$ | $\begin{gathered} \ell \\ \text { in. } \end{gathered}$ | $\ell / h$ | $\begin{gathered} \text { e } \\ \text { in. } \end{gathered}$ | e/h | Tested Strength | Theor. Strength | Strength Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stevens (1965) | FA1 | 1.759 | 36 | 3.0 | 0.00 | 0.00 | 1070.7 | 899.4 | 1.1905 |
|  | FA2 | 1.631 | 72 | 6.0 | 0.00 | 0.00 | 1008.0 | 912.8 | 1.1044 |
|  | FA3 | 1.868 | 108 | 9.0 | 0.00 | 0.00 | 943.0 | 817.3 | 1.1539 |
|  | FA4 | 1.661 | 144 | 12.0 | 0.00 | 0.00 | 954.2 | 807.0 | 1.1825 |
|  | FA5 | 1.661 | 180 | 15.0 | 0.00 | 0.00 | 949.8 | 738.5 | 1.2861 |
| Bondale (1966) | RW 60.3 | 0.627 | 60.0 | 16.0 | 3.00 | 0.800 | 17.9 | 14.9 | 1.2019 |
|  | RW 80.2 | 0.526 | 80.0 | 21.3 | 2.00 | 0.533 | 21.7 | 19.1 | 1.1370 |
|  | RW 100.1 | 0.652 | 100.0 | 26.7 | 1.00 | 0.267 | 20.8 | 20.8 | 1.0030 |
|  | RW 120.0 | 0.745 | 120.0 | 32.0 | 0.00 | 0.000 | 52.9 | 53.0 | 0.9969 |
| May (1978) | RC5 | 0.594 | 112.6 | 14.3 | 0.79 | 0.100 | 185.5 | 231.2 | 0.8021 |
| Janss Anslijn (1974) | 1.1 | 0.514 | 168.5 | 17.8 | 0.00 | 0.000 | 483.3 | 528.9 | 0.9139 |
|  | 1.2 | 0.560 | 168.5 | 17.8 | 0.00 | 0.000 | 489.8 | 506.8 | 0.9665 |
|  | 1.3 | 0.563 | 168.3 | 17.8 | 0.00 | 0.000 | 470.0 | 491.5 | 0.9563 |
|  | 2.1 | 0.603 | 137.2 | 14.5 | 0.00 | 0.000 | 527.4 | 564.9 | 0.9336 |
|  | 2.2 | 0.704 | 136.7 | 14.5 | 0.00 | 0.000 | 489.8 | 517.9 | 0.9458 |
|  | 2.3 | 0.575 | 136.9 | 14.5 | 0.00 | 0.000 | 580.3 | 581.6 | 0.9978 |
|  | 3.1 | 0.502 | 98.0 | 10.4 | 0.00 | 0.000 | 591.3 | 680.8 | 0.8685 |
|  | 3.2 | 0.497 | 97.5 | 10.3 | 0.00 | 0.000 | 503.1 | 685.2 | 0.7342 |
|  | 3.3 | 0.568 | 98.0 | 10.4 | 0.00 | 0.000 | 527.4 | 634.0 | 0.8318 |
|  | 4.1 | 0.568 | 50.7 | 5.4 | 0.00 | 0.000 | 573.8 | 658.3 | 0.8715 |
|  | 4.2 | 0.663 | 50.5 | 5.3 | 0.00 | 0.000 | 556.0 | 604.2 | 0.9201 |
|  | 4.3 | 0.536 | 49.3 | 5.2 | 0.00 | 0.000 | 617.9 | 618.0 | 0.9997 |
|  | 5.1 | 0.844 | 137.4 | 14.5 | 0.00 | 0.000 | 529.7 | 585.6 | 0.9045 |
|  | 5.2 | 0.778 | 137.1 | 14.5 | 0.00 | 0.000 | 591.3 | 611.3 | 0.9673 |
|  | 5.3 | 0.825 | 137.2 | 14.5 | 0.00 | 0.000 | 556.0 | 592.9 | 0.9378 |
|  | 6.1 | 1.116 | 168.3 | 17.8 | 0.00 | 0.000 | 529.7 | 517.0 | 1.0244 |
|  | 6.2 | 1.030 | 168.3 | 17.8 | 0.00 | 0.000 | 485.3 | 541.0 | 0.8971 |
|  | 6.3 | 1.088 | 168.3 | 17.8 | 0.00 | 0.000 | 558.2 | 524.6 | 1.0642 |
|  | 7.1 | 1.064 | 137.4 | 14.5 | 0.00 | 0.000 | 556.0 | 624.1 | 0.8908 |
|  | 7.2 | 0.999 | 137.4 | 14.5 | 0.00 | 0.000 | 589.1 | 648.3 | 0.9086 |
|  | 7.3 | 1.058 | 137.3 | 14.5 | 0.00 | 0.000 | 578.0 | 626.6 | 0.9225 |
|  | 8.1 | 1.029 | 97.8 | 10.4 | 0.00 | 0.000 | 547.2 | 759.3 | 0.7207 |
|  | 8.2 | 0.900 | 98.2 | 10.4 | 0.00 | 0.000 | 531.7 | 816.8 | 0.6509 |
|  | 8.3 | 0.909 | 98.0 | 10.4 | 0.00 | 0.000 | 573.8 | 812.9 | 0.7058 |
|  | 9.1 | 0.436 | 137.3 | 16.6 | 0.00 | 0.000 | 514.1 | 497.1 | 1.0342 |
|  | 9.2 | 0.330 | 137.3 | 16.6 | 0.00 | 0.000 | 569.3 | 592.9 | 0.9601 |
|  | 9.3 | 0.371 | 137.2 | 16.6 | 0.00 | 0.000 | 463.3 | 549.6 | 0.8430 |
|  | 10.1 | 0.669 | 137.2 | 16.6 | 0.00 | 0.000 | 518.6 | 579.1 | 0.8956 |
|  | 10.2 | 0.709 | 137.2 | 16.6 | 0.00 | 0.000 | 609.1 | 557.6 | 1.0923 |
|  | 10.3 | 0.707 | 137.1 | 16.6 | 0.00 | 0.000 | 531.7 | 559.2 | 0.9508 |
|  | 11.1 | 0.575 | 135.9 | 14.4 | 1.57 | 0.167 | 251.6 | 257.9 | 0.9755 |
|  | 11.2 | 0.556 | 135.9 | 14.4 | 1.57 | 0.167 | 264.8 | 262.9 | 1.0072 |
|  | 11.3 | 0.650 | 135.9 | 14.4 | 1.57 | 0.167 | 240.5 | 240.1 | 1.0018 |
|  | 12.1 | 0.979 | 135.7 | 14.4 | 1.57 | 0.167 | 264.8 | 271.9 | 0.9739 |
|  | 12.2 | 1.013 | 135.7 | 14.4 | 1.57 | 0.167 | 251.6 | 243.7 | 1.0321 |
|  | 12.3 | 1.106 | 136.0 | 14.4 | 1.57 | 0.167 | 222.8 | 253.3 | 0.8796 |

Table A3-Specimen Configuration for Columns Bending About the Minor Axis

| Author | Col. Desig. | $\begin{gathered} \text { b } \\ \text { in. } \end{gathered}$ | $\begin{gathered} \mathrm{h} \\ \text { in. } \end{gathered}$ | Steel <br> Profile | Long. Reinf. | $\begin{aligned} & A_{s s} \\ & \text { in. } \end{aligned}$ | $\begin{gathered} A_{c} \\ \text { in. }{ }^{2} \end{gathered}$ | $\begin{aligned} & A_{r s} \\ & \text { in. }{ }^{2} \end{aligned}$ | Vol'met' Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Janss | 13.1 | 12.60 | 8.27 | IPE220 | 4-12mm | 5.18 | 98.28 | 0.70 | 0.00192 |
| Anslijn | 13.2 | 12.60 | 8.27 | IPE220 | 4-12mm | 5.18 | 98.28 | 0.70 | 0.00192 |
| (1974) | 13.3 | 12.60 | 8.27 | IPE220 | 4-12mm | 5.18 | 98.28 | 0.70 | 0.00192 |
| Janss | 1 | 12.60 | 8.27 | IPE220 | 4-12mm | 5.18 | 98.28 | 0.70 | 0.00192 |
| Piraprez | 3 | 12.60 | 8.27 | IPE220 | 4-12mm | 5.18 | 98.28 | 0.70 | 0.00192 |
| (1974) | 5 | 12.60 | 8.27 | IPE220 | $4-12 \mathrm{~mm}$ | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 7 | 12.60 | 8.27 | IPE220 | 4-12mm | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 9 | 12.60 | 8.27 | IPE220 | $4-12 \mathrm{~mm}$ | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 11 | 12.60 | 8.27 | IPE220 | 4-12mm | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 13 | 12.60 | 8.27 | IPE220 | 4-12mm | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 15 | 12.60 | 8.27 | IPE220 | $4-12 \mathrm{~mm}$ | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 17 | 12.60 | 8.27 | IPE220 | 4-12mm | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 19 | 12.60 | 8.27 | IPE220 | $4-12 \mathrm{~mm}$ | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 23 | 12.60 | 8.27 | IPE220 | $4-12 \mathrm{~mm}$ | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 27 | 12.60 | 8.27 | IPE220 | $4-12 \mathrm{~mm}$ | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 2 | 9.45 | 9.45 | HE1408 | 4-12mm | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 4 | 9.45 | 9.45 | HE140B | 4-12mm | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 6 | 9.45 | 9.45 | HE140B | 4-12mm | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 8 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 10 | 9.45 | 9.45 | HE140B | 4-12mm | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 12 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 14 | 9.45 | 9.45 | HE140B | 4-12mm | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 16 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 18 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 21 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 25 | 9.45 | 9.45 | HE140B | 4-12mm | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 29 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 20 | 12.60 | 8.27 | IPE220 | 4-12mm | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 24 | 12.60 | 8.27 | IPE220 | $4-12 \mathrm{~mm}$ | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 28 | 12.60 | 8.27 | IPE220 | $4-12 \mathrm{~mm}$ | 5.18 | 98.28 | 0.70 | 0.00192 |
|  | 22 | 9.45 | 9.45 | HE140B | 4-12mm | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 26 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
|  | 30 | 9.45 | 9.45 | HE140B | $4-12 \mathrm{~mm}$ | 6.67 | 81.91 | 0.70 | 0.00205 |
| Roderick | SE 1 | 8.00 | 7.00 | 4"x3"@10\# |  | 2.94 | 53.06 |  |  |
| Loke | SE 2 | 8.00 | 7.00 | 4"x3"@10\# |  | 2.94 | 53.06 |  |  |
| (1974) | SE 3 | 8.00 | 7.00 | 4*x3"@10\# |  | 2.94 | 53.06 |  |  |
| Australia | SE 4 | 8.00 | 7.00 | 4"x3"@10\# |  | 2.94 | 53.06 |  |  |
|  | SE 5 | 8.00 | 7.00 | 4"x3"@10\# |  | 2.94 | 53.06 |  |  |
|  | SE 6 | 8.00 | 7.00 | 4*x3"@10\# |  | 2.94 | 53.06 |  |  |
|  | SE 7 | 8.00 | 7.00 | 4"x3"@10\# |  | 2.94 | 53.06 |  |  |
|  | SE 8 | 8.00 | 7.00 | 4"x3"@10\# |  | 2.94 | 53.06 |  |  |
|  | SE 9 | 8.00 | 7.00 | 4*x3*@10\# |  | 2.94 | 53.06 |  |  |
|  | SE10 | 8.00 | 7.00 | 4"x3"@10\# |  | 2.94 | 53.06 |  |  |
|  | SE11 | 8.00 | 7.00 | 4"x3"@10\# |  | 2.94 | 53.06 |  |  |
|  | SE12 | 8.00 | 7.00 | 4"x3"@10\# |  | 2.94 | 53.06 |  |  |
|  | SE13 | 8.00 | 7.00 | $4^{4 \times 1.75 " @ 5 \#}$ |  | 1.47 | 54.53 |  |  |
|  | SE14 | 8.00 | 7.00 | 4"x1.75"@5\# |  | 1.47 | 54.53 |  |  |
|  | SE15 | 8.00 | 7.00 | 4"x1.75"@5\# |  | 1.47 | 54.53 |  |  |

Table A3-Specimen Configuration for Columns Bending About the Minor Axis

| Author | Col. Desig. | $\begin{aligned} & \mathrm{I}_{\text {ss }} \\ & \text { in. } \end{aligned}$ | $\begin{gathered} { }^{1} c \\ \text { in. } \end{gathered}$ | $\begin{aligned} & { }^{\mathrm{I}} \text { rs } \\ & \text { in. } \end{aligned}$ | Fy web | Fy flange | f'c Col. Stored ** | f'c Water Stored | Fy Reinf. | $\rho_{s s}$ | $\rho_{\text {rs }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Janss | 13.1 | 4.93 | 581.46 | 6.97 | 39527 | 39527 | 5574 |  | 31900 | 0.0497 | 0.0067 |
| Anslijn | 13.2 | 4.93 | 581.46 | 6.97 | 39527 | 39527 | 5207 |  | 31900 | 0.0497 | 0.0067 |
| (1974) | 13.3 | 4.93 | 581.46 | 6.97 | 39527 | 39527 | 5094 |  | 31900 | 0.0497 | 0.0067 |
| Janss | 1 | 4.93 | 581.46 | 6.97 | 40528 | 40528 | 4721 |  | 31900 | 0.0497 | 0.0067 |
| Piraprez | 3 | 4.93 | 581.46 | 6.97 | 40528 | 40528 | 4721 |  | 31900 | 0.0497 | 0.0067 |
| (1974) | 5 | 4.93 | 581.46 | 6.97 | 40528 | 40528 | 5158 |  | 31900 | 0.0497 | 0.0067 |
|  | 7 | 4.93 | 581.46 | 6.97 | 40528 | 40528 | 5158 |  | 31900 | 0.0497 | 0.0067 |
|  | 9 | 4.93 | 581.46 | 6.97 | 40528 | 40528 | 5531 |  | 31900 | 0.0497 | 0.0067 |
|  | 11 | 4.93 | 581.46 | 6.97 | 40528 | 40528 | 5531 |  | 31900 | 0.0497 | 0.0067 |
|  | 13 | 4.93 | 581.46 | 6.97 | 40528 | 40528 | 4990 |  | 31900 | 0.0497 | 0.0067 |
|  | 15 | 4.93 | 581.46 | 6.97 | 40528 | 40528 | 5108 |  | 31900 | 0.0497 | 0.0067 |
|  | 17 | 4.93 | 581.46 | 6.97 | 40528 | 40528 | 5040 |  | 31900 | 0.0497 | 0.0067 |
|  | 19 | 4.93 | 581.46 | 6.97 | 40528 | 40528 | 4738 |  | 31900 | 0.0497 | 0.0067 |
|  | 23 | 4.93 | 581.46 | 6.97 | 40528 | 40528 | 4571 |  | 31900 | 0.0497 | 0.0067 |
|  | 27 | 4.93 | 581.46 | 6.97 | 40528 | 40528 | 4105 |  | 31900 | 0.0497 | 0.0067 |
|  | 2 | 13.21 | 641.23 | 9.80 | 39382 | 39382 | 4721 |  | 31900 | 0.0747 | 0.0079 |
|  | 4 | 13.21 | 641.23 | 9.80 | 39382 | 39382 | 4721 |  | 31900 | 0.0747 | 0.0079 |
|  | 6 | 13.21 | 641.23 | 9.80 | 39382 | 39382 | 5158 |  | 31900 | 0.0747 | 0.0079 |
|  | 8 | 13.21 | 641.23 | 9.80 | 39382 | 39382 | 5158 |  | 31900 | 0.0747 | 0.0079 |
|  | 10 | 13.21 | 641.23 | 9.80 | 39382 | 39382 | 5531 |  | 31900 | 0.0747 | 0.0079 |
|  | 12 | 13.21 | 641.23 | 9.80 | 39382 | 39382 | 5531 |  | 31900 | 0.0747 | 0.0079 |
|  | 14 | 13.21 | 641.23 | 9.80 | 39382 | 39382 | 4990 |  | 31900 | 0.0747 | 0.0079 |
|  | 16 | 13.21 | 641.23 | 9.80 | 39382 | 39382 | 5108 |  | 31900 | 0.0747 | 0.0079 |
|  | 18 | 13.21 | 641.23 | 9.80 | 39382 | 39382 | 5040 |  | 31900 | 0.0747 | 0.0079 |
|  | 21 | 13.21 | 641.23 | 9.80 | 39382 | 39382 | 4738 |  | 31900 | 0.0747 | 0.0079 |
|  | 25 | 13.21 | 641.23 | 9.80 | 39382 | 39382 | 4571 |  | 31900 | 0.0747 | 0.0079 |
|  | 29 | 13.21 | 641.23 | 9.80 | 39382 | 39382 | 4105 |  | 31900 | 0.0747 | 0.0079 |
|  | 20 | 4.93 | 581.46 | 6.97 | 40528 | 40528 | 4738 |  | 31900 | 0.0497 | 0.0067 |
|  | 24 | 4.93 | 581.46 | 6.97 | 40528 | 40528 | 4571 |  | 31900 | 0.0497 | 0.0067 |
|  | 28 | 4.93 | 581.46 | 6.97 | 40528 | 40528 | 4105 |  | 31900 | 0.0497 | 0.0067 |
|  | 22 | 13.21 | 641.23 | 9.80 | 39382 | 39382 | 4738 |  | 31900 | 0.0747 | 0.0079 |
|  | 26 | 13.21 | 641.23 | 9.80 | 39382 | 39382 | 4571 |  | 31900 | 0.0747 | 0.0079 |
|  | 30 | 13.21 | 641.23 | 9.80 | 39382 | 39382 | 4105 |  | 31900 | 0.0747 | 0.0079 |
| Roderick | SE 1 | 1.32 | 227.35 |  | 42400 | 42400 | 3690 |  |  | 0.0525 | 0.0000 |
| Loke | SE 2 | 1.32 | 227.35 |  | 42400 | 42400 | 4280 |  |  | 0.0525 | 0.0000 |
| (1974) | SE 3 | 1.32 | 227.35 |  | 42400 | 42400 | 3910 |  |  | 0.0525 | 0.0000 |
| Australia | SE 4 | 1.32 | 227.35 |  | 40700 | 40700 | 3880 |  |  | 0.0525 | 0.0000 |
|  | SE 5 | 1.32 | 227.35 |  | 40700 | 40700 | 3710 |  |  | 0.0525 | 0.0000 |
|  | SE 6 | 1.32 | 227.35 |  | 45600 | 45600 | 3280 |  |  | 0.0525 | 0.0000 |
|  | SE 7 | 1.32 | 227.35 |  | 39300 | 39300 | 4200 |  |  | 0.0525 | 0.0000 |
|  | SE 8 | 1.32 | 227.35 |  | 39400 | 39400 | 4140 |  |  | 0.0525 | 0.0000 |
|  | SE 9 | 1.32 | 227.35 |  | 39500 | 39500 | 4580 |  |  | 0.0525 | 0.0000 |
|  | SE10 | 1.32 | 227.35 |  | 39400 | 39400 | 4310 |  |  | 0.0525 | 0.0000 |
|  | SE11 | 1.32 | 227.35 |  | 42700 | 42700 | 3250 |  |  | 0.0525 | 0.0000 |
|  | SE12 | 1.32 | 227.35 |  | 39500 | 39500 | 4280 |  |  | 0.0525 | 0.0000 |
|  | SE13 | 0.32 | 228.34 |  | 43000 | 43000 | 3070 |  |  | 0.0263 | 0.0000 |
|  | SE14 | 0.32 | 228.34 |  | 43000 | 43000 | 2890 |  |  | 0.0263 | 0.0000 |
|  | SE15 | 0.32 | 228.34 |  | 43000 | 43000 | 3810 |  |  | 0.0263 | 0.0000 |

Table A3-Specimen Configuration for Columns Bending About the Minor Axis
continued

| Author | Col. Desig. | $\frac{\rho_{s s}{ }^{f} y s s}{f^{\prime}{ }_{c}}$ | $\begin{gathered} \ell \\ \text { in. } \end{gathered}$ | $\ell / h$ | $\begin{gathered} \text { e } \\ \text { in. } \end{gathered}$ | e/h | Tested Strength | Theor. Strength | Strength Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Janss | 13.1 | 0.352 | 96.3 | 11.6 | 1.57 | 0.190 | 269.1 | 277.3 | 0.9703 |
| Anslijn | 13.2 | 0.377 | 96.6 | 11.7 | 1.57 | 0.190 | 234.0 | 264.6 | 0.8845 |
| (1974) | 13.3 | 0.386 | 96.3 | 11.7 | 1.57 | 0.190 | 229.5 | 259.5 | 0.8846 |
| Janss | 1 | 0.427 | 136.9 | 16.6 | 0.00 | 0.000 | 606.8 | 515.2 | 1.1779 |
| Piraprez | 3 | 0.427 | 50.2 | 6.1 | 0.00 | 0.000 | 591.3 | 628.1 | 0.9414 |
| (1974) | 5 | 0.391 | 136.9 | 16.6 | 0.00 | 0.000 | 617.9 | 544.3 | 1.1352 |
|  | 7 | 0.391 | 50.2 | 6.1 | 0.00 | 0.000 | 646.4 | 665.6 | 0.9713 |
|  | 9 | 0.364 | 136.9 | 16.6 | 0.00 | 0.000 | 428.0 | 568.8 | 0.7524 |
|  | 11 | 0.364 | 50.2 | 6.1 | 0.00 | 0.000 | 461.3 | 697.6 | 0.6612 |
|  | 13 | 0.404 | 168.3 | 20.4 | 0.00 | 0.000 | 419.2 | 478.9 | 0.8753 |
|  | 15 | 0.394 | 168.3 | 20.4 | 0.00 | 0.000 | 441.2 | 484.5 | 0.9107 |
|  | 17 | 0.400 | 168.3 | 20.4 | 0.00 | 0.000 | 437.0 | 481.4 | 0.9077 |
|  | 19 | 0.425 | 97.5 | 11.8 | 0.00 | 0.000 | 575.8 | 599.4 | 0.9606 |
|  | 23 | 0.441 | 97.5 | 11.8 | 0.00 | 0.000 | 600.1 | 586.3 | 1.0236 |
|  | 27 | 0.491 | 97.5 | 11.8 | 0.00 | 0.000 | 551.7 | 549.4 | 1.0042 |
|  | 2 | 0.623 | 136.9 | 14.5 | 0.00 | 0.000 | 518.6 | 521.3 | 0.9949 |
|  | 4 | 0.623 | 50.2 | 5.3 | 0.00 | 0.000 | 522.9 | 615.4 | 0.8496 |
|  | 6 | 0.570 | 136.9 | 14.5 | 0.00 | 0.000 | 538.4 | 549.2 | 0.9805 |
|  | 8 | 0.570 | 50.2 | 5.3 | 0.00 | 0.000 | 545.0 | 646.8 | 0.8426 |
|  | 10 | 0.532 | 136.9 | 14.5 | 0.00 | 0.000 | 481.1 | 572.6 | 0.8401 |
|  | 12 | 0.532 | 50.2 | 5.3 | 0.00 | 0.000 | 503.1 | 660.6 | 0.7616 |
|  | 14 | 0.589 | 168.3 | 17.8 | 0.00 | 0.000 | 403.9 | 479.1 | 0.8431 |
|  | 16 | 0.576 | 168.3 | 17.8 | 0.00 | 0.000 | 533.9 | 484.1 | 1.1029 |
|  | 18 | 0.583 | 168.3 | 17.8 | 0.00 | 0.000 | 472.3 | 481.3 | 0.9812 |
|  | 21 | 0.621 | 97.5 | 10.3 | 0.00 | 0.000 | 573.8 | 593.5 | 0.9667 |
|  | 25 | 0.643 | 97.5 | 10.3 | 0.00 | 0.000 | 547.2 | 580.9 | 0.9420 |
|  | 29 | 0.716 | 97.5 | 10.3 | 0.00 | 0.000 | 448.0 | 545.2 | 0.8217 |
|  | 20 | 0.425 | 96.8 | 11.7 | 1.57 | 0.190 | 269.1 | 248.0 | 1.0852 |
|  | 24 | 0.441 | 96.8 | 11.7 | 1.57 | 0.190 | 231.8 | 241.5 | 0.9598 |
|  | 28 | 0.491 | 96.8 | 11.7 | 1.57 | 0.190 | 236.0 | 224.3 | 1.0521 |
|  | 22 | 0.621 | 96.8 | 10.2 | 1.57 | 0.167 | 264.8 | 275.5 | 0.9614 |
|  | 26 | 0.643 | 96.8 | 10.2 | 1.57 | 0.167 | 218.5 | 269.5 | 0.8106 |
|  | 30 | 0.716 | 96.8 | 10.2 | 1.57 | 0.167 | 280.1 | 251.4 | 1.1143 |
| Roderick | SE 1 | 0.603 | 84 | 12.0 | 0.000 | 0.000 | 273.0 | 268.1 | 1.0184 |
| Loke | SE 2 | 0.520 | 84 | 12.0 | 0.400 | 0.057 | 211.0 | 211.2 | 0.9993 |
| (1974) | SE 3 | 0.569 | 84 | 12.0 | 0.800 | 0.114 | 129.0 | 139.7 | 0.9235 |
| Australia | SE 4 | 0.551 | 84 | 12.0 | 0.000 | 0.000 | 264.0 | 275.3 | 0.9591 |
|  | SE 5 | 0.576 | 84 | 12.0 | 0.400 | 0.057 | 195.0 | 188.4 | 1.0349 |
|  | SE 6 | 0.730 | 84 | 12.0 | 0.800 | 0.114 | 108.0 | 122.1 | 0.8844 |
|  | SE 7 | 0.491 | 84 | 12.0 | 1.500 | 0.214 | 88.0 | 88.3 | 0.9967 |
|  | SE 8 | 0.500 | 84 | 12.0 | 0.000 | 0.000 | 290.0 | 285.8 | 1.0148 |
|  | SE 9 | 0.453 | 120 | 17.1 | 0.200 | 0.029 | 201.0 | 213.6 | 0.9409 |
|  | SE10 | 0.480 | 120 | 17.1 | 0.400 | 0.057 | 135.0 | 168.1 | 0.8031 |
|  | SE11 | 0.690 | 120 | 17.1 | 0.800 | 0.114 | 88.0 | 92.2 | 0.9547 |
|  | SE12 | 0.485 | 120 | 17.1 | 1.500 | 0.214 | 67.0 | 70.2 | 0.9543 |
|  | SE13 | 0.368 | 84 | 12.0 | 0.000 | 0.000 | 180.0 | 192.9 | 0.9333 |
|  | SE14 | 0.391 | 84 | 12.0 | 0.400 | 0.057 | 116.0 | 134.0 | 0.8659 |
|  | SE15 | 0.296 | 84 | 12.0 | 0.800 | 0.114 | 108.0 | 126.3 | 0.8551 |

Table A3-Specimen Configuration for Columns Bending About the Minor Axis

| Author | Col. Desig. | $\begin{gathered} \mathrm{b} \\ \text { in. } \end{gathered}$ | $\begin{gathered} h \\ \text { in. } \end{gathered}$ | Steel Profile | Long. Reinf. | $\begin{aligned} & \mathrm{A}_{\mathrm{ss}} \\ & \mathrm{in}^{2} . \end{aligned}$ | $\begin{aligned} & A_{c} \\ & \text { in. } \end{aligned}$ | $\begin{aligned} & A_{r s} \\ & \text { in. }{ }^{2} \end{aligned}$ | Vol'met' Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Morino et al. (1984) | A4-90 | 6.30 | 6.30 | H100x100x6x8 | $4-6 \mathrm{~mm}$ | 3.45 | 36.08 | 0.14 | 0.00258 |
|  | B4-90 | 6.30 | 6.30 | H100x100x6x8 | 4.6 mm | 3.45 | 36.08 | 0.14 | 0.00258 |
|  | C4-90 | 6.30 | 6.30 | H100x $100 \times 6 \times 8$ | $4-6 \mathrm{~mm}$ | 3.45 | 36.08 | 0.14 | 0.00258 |
|  | D4-90 | 6.30 | 6.30 | H100x100×6x8 | $4-6 \mathrm{~mm}$ | 3.45 | 36.08 | 0.14 | 0.00258 |
|  | A8-90 | 6.30 | 6.30 | H100x100x6x8 | $4-6 \mathrm{~mm}$ | 3.45 | 36.08 | 0.14 | 0.00258 |
|  | B8-90 | 6.30 | 6.30 | H100x100×6x8 | $4-6 \mathrm{~mm}$ | 3.45 | 36.08 | 0.14 | 0.00258 |
|  | C8-90 | 6.30 | 6.30 | H100x100×6x8 | $4-6 \mathrm{~mm}$ | 3.45 | 36.08 | 0.14 | 0.00258 |
|  | D8-90 | 6.30 | 6.30 | H100x100x6x8 | $4-6 \mathrm{~mm}$ | 3.45 | 36.08 | 0.14 | 0.00258 |
| Roik <br> Mangerig <br> (1987) | 7 | 11.81 | 11.81 | HE200B | $4-12 \mathrm{~mm}$ | 12.11 | 126.69 | 0.70 | 0.00293 |
|  | 8 | 11.81 | 11.81 | HE200B | $4-12 \mathrm{~mm}$ | 12.11 | 126.69 | 0.70 | 0.00293 |
|  | 9 | 11.81 | 11.81 | HE200B | $4-12 \mathrm{~mm}$ | 12.11 | 126.69 | 0.70 | 0.00293 |
|  | 10 | 11.81 | 11.81 | HE200B | $4-12 \mathrm{~mm}$ | 12.11 | 126.69 | 0.70 | 0.00293 |
|  | 11 | 11.81 | 11.81 | HE200B | $4-12 \mathrm{~mm}$ | 12.11 | 126.69 | 0.70 | 0.00293 |
|  | 12 | 11.81 | 11.81 | HE200B | $4-12 \mathrm{~mm}$ | 12.11 | 126.69 | 0.70 | 0.00293 |
| Roik <br> Schwal'r <br> (1988) | V102 | 11.02 | 11.02 | HE160A | 4-14mm | 6.01 | 114.55 | 0.95 | 0.00283 |
|  | V111 | 11.02 | 11.02 | HE160A | $4-28 \mathrm{~mm}$ | 6.01 | 111.69 | 3.82 | 0.00283 |
|  | V112 | 11.02 | 11.02 | HE160A | $4-28 \mathrm{~mm}$ | 6.01 | 111.69 | 3.82 | 0.00283 |
|  | V113 | 11.02 | 11.02 | HE160A | $4-28 \mathrm{~mm}$ | 6.01 | 111.69 | 3.82 | 0.00283 |
|  | V121 | 11.02 | 11.02 | HE120B | $4-28 \mathrm{~mm}$ | 5.27 | 112.43 | 3.82 | 0.00283 |
|  | V122 | 11.02 | 11.02 | HE120B | $4-28 \mathrm{~mm}$ | 5.27 | 112.43 | 3.82 | 0.00283 |
|  | V123 | 11.02 | 11.02 | HE120B | $4-28 \mathrm{~mm}$ | 5.27 | 112.43 | 3.82 | 0.00283 |
|  |  | * Volumetric ratio for transverse reinforcement |  |  |  |  |  |  |  |
|  |  | $p^{\prime}=\frac{2\left(b^{n}+d^{\prime \prime}\right) A}{b^{n} d^{n} s} ;$ |  |  | $b^{\prime \prime}$ - outside width of transverse reinforcement <br> $d^{\prime \prime}$ - outside depth of transverse reinforcement <br> A - area of bar <br> s-spacing of reinforcing |  |  |  |  |

Table A3 - Specimen Configuration for Columns Bending About the Minor Axis

| Author | Col. Desig. | $\begin{aligned} & \mathrm{I}_{\text {ss }} \\ & \text { in. }^{4} \end{aligned}$ | $\begin{gathered} { }^{\mathrm{I}_{c}} \\ \text { in. } \end{gathered}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{rs}} \\ & \text { in. }{ }^{4} \end{aligned}$ | Fy web | $\begin{gathered} \text { Fy } \\ \text { flange } \end{gathered}$ | f'c Col. Stored $\star \star$ | $\begin{gathered} \hline \text { f'c } \\ \text { Water } \\ \text { Stored } \end{gathered}$ | Fy Reinf. | ${ }^{\rho}$ ss | $\rho_{\text {rs }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Morino et al. (1984) | A4-90 | 3.22 | 127.16 | 0.83 | 52055 | 42485 | 3060 |  | 56115 | 0.0870 | 0.0036 |
|  | B4-90 | 3.22 | 127.16 | 0.83 | 50750 | 41615 | 3393 |  | 56115 | 0.0870 | 0.0036 |
|  | C4-90 | 3.22 | 127.16 | 0.83 | 45675 | 44660 | 3379 |  | 56115 | 0.0870 | 0.0036 |
|  | D4-90 | 3.22 | 127.16 | 0.83 | 52055 | 42485 | 3074 |  | 56115 | 0.0870 | 0.0036 |
|  | A8-90 | 3.22 | 127.16 | 0.83 | 53360 | 43935 | 4872 |  | 56115 | 0.0870 | 0.0036 |
|  | B8-90 | 3.22 | 127.16 | 0.83 | 53070 | 45095 | 4829 |  | 56115 | 0.0870 | 0.0036 |
|  | C8-90 | 3.22 | 127.16 | 0.83 | 53505 | 44225 | 3567 |  | 56115 | 0.0870 | 0.0036 |
|  | D8-90 | 3.22 | 127.16 | 0.83 | 53360 | 43790 | 3321 |  | 56115 | 0.0870 | 0.0036 |
| Roik <br> Mangerig <br> (1987) | 7 | 48.05 | 1556.66 | 16.99 | 39150 | 39150 | 6570 |  | 60900 | 0.0868 | 0.0050 |
|  | 8 | 48.05 | 1556.66 | 16.99 | 39150 | 39150 | 6570 |  | 60900 | 0.0868 | 0.0050 |
|  | 9 | 48.05 | 1556.66 | 16.99 | 39150 | 39150 | 6570 |  | 60900 | 0.0868 | 0.0050 |
|  | 10 | 48.05 | 1556.66 | 16.99 | 39150 | 39150 | 6570 |  | 60900 | 0.0868 | 0.0050 |
|  | 11 | 48.05 | 1556.66 | 16.99 | 39150 | 39150 | 6570 |  | 60900 | 0.0868 | 0.0050 |
|  | 12 | 48.05 | 1556.66 | 16.99 | 39150 | 39150 | 6570 |  | 60900 | 0.0868 | 0.0050 |
| Roik Schwal'r (1988) | V102 | 14.80 | 1197.25 | 18.55 | 44515 | 44515 | 5956 |  | 60900 | 0.0495 | 0.0079 |
|  | V111 | 14.80 | 1150.57 | 65.23 | 43529 | 43529 | 6015 |  | 60900 | 0.0495 | 0.0314 |
|  | V112 | 14.80 | 1150.57 | 65.23 | 43529 | 43529 | 6015 |  | 60900 | 0.0495 | 0.0314 |
|  | V113 | 14.80 | 1150.57 | 65.23 | 43529 | 43529 | 6015 |  | 60900 | 0.0495 | 0.0314 |
|  | V121 | 7.64 | 1157.73 | 65.23 | 34757 | 34757 | 6015 |  | 60900 | 0.0434 | 0.0314 |
|  | V122 | 7.64 | 1157.73 | 65.23 | 34757 | 34757 | 6015 |  | 60900 | 0.0434 | 0.0314 |
|  | V123 | 7.64 | 1157.73 | 65.23 | 34757 | 34757 | 6015 |  | 60900 | 0.0434 | 0.0314 |

Table A3-Specimen Configuration for Columns Bending About the Minor Axis
continued

| Author | Col. Desig. | $\frac{\rho_{s s}{ }^{f} y s s}{f^{\prime}{ }_{c}}$ | $\begin{gathered} \ell \\ \text { in. } \end{gathered}$ | $\ell / h$ | $\begin{gathered} \mathrm{e} \\ \text { in. } \end{gathered}$ | e/h | Tested Strength | Theor. Strength | Strength Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Morino et al. <br> (1984) | A4.90 | 1.481 | 36.4 | 5.8 | 1.575 | 0.250 | 113.0 | 88.4 | 1.2791 |
|  | B4-90 | 1.302 | 90.9 | 14.4 | 1.575 | 0.250 | 83.6 | 69.1 | 1.2090 |
|  | C4-90 | 1.177 | 136.4 | 21.7 | 1.575 | 0.250 | 61.7 | 52.4 | 1.1773 |
|  | D4-90 | 1.474 | 181.9 | 28.9 | 1.575 | 0.250 | 46.4 | 37.1 | 1.2502 |
|  | A8-90 | 0.953 | 36.4 | 5.8 | 2.953 | 0.469 | 77.4 | 66.7 | 1.1608 |
|  | B8-90 | 0.957 | 90.9 | 14.4 | 2.953 | 0.469 | 59.5 | 53.7 | 1.1088 |
|  | C8-90 | 1.305 | 136.4 | 21.7 | 2.953 | 0.469 | 39.7 | 36.8 | 1.0779 |
|  | D8-90 | 1.399 | 181.9 | 28.9 | 2.953 | 0.469 | 30.3 | 28.2 | 1.0759 |
|  |  |  |  |  |  |  |  | 218.5 | 269.5 |
| Roik <br> Mangerig <br> (1987) | 7 | 0.517 | 118.1 | 10.0 | 1.181 | 0.100 | 1023.1 | 789.0 | 1.2967 |
|  | 8 | 0.517 | 118.1 | 10.0 | 3.543 | 0.300 | 502.0 | 406.4 | 1.2352 |
|  | 9 | 0.517 | 196.9 | 16.7 | 1.181 | 0.100 | 824.6 | 587.6 | 1.4034 |
|  | 10 | 0.517 | 196.9 | 16.7 | 3.543 | 0.300 | 410.9 | 316.3 | 1.2989 |
|  | 11 | 0.517 | 315.0 | 26.7 | 1.181 | 0.100 | 455.0 | 334.8 | 1.3588 |
|  | 12 | 0.517 | 315.0 | 26.7 | 3.543 | 0.300 | 223.9 | 206.8 | 1.0827 |
| Roik <br> Schwal'r <br> (1988) | V102 | 0.370 | 139.2 | 12.6 | 3.937 | 0.357 | 252.2 | 236.3 | 1.0674 |
|  | V111 | 0.358 | 139.2 | 12.6 | 3.937 | 0.357 | 394.9 | 347.9 | 1.1351 |
|  | V112 | 0.358 | 139.2 | 12.6 | 2.362 | 0.214 | 565.9 | 478.7 | 1.1822 |
|  | V113 | 0.358 | 139.2 | 12.6 | 0.000 | 0.000 | 1032.8 | 1069.1 | 0.9660 |
|  | V121 | 0.251 | 139.2 | 12.6 | 6.299 | 0.571 | 256.1 | 237.7 | 1.0772 |
|  | V122 | 0.251 | 139.2 | 12.6 | 7.874 | 0.714 | 182.9 | 196.6 | 0.9305 |
|  | V123 | 0.251 | 139.2 | 12.6 | 3.937 | 0.357 | 345.4 | 333.2 | 1.0367 |

NOTE : For e/h = inf., strength is given in kip-ft ( 1 kip-ft $=1.356 \mathrm{kN}-\mathrm{m}$ ). For all other values of e/h, the strength is shown in kips ( 1 kip $=4.448 \mathrm{kN}$ ).
$\mathrm{b}=$ width of the concrete cross-section parrallel to the axis of bending;
$h=$ depth of the concrete cross-section perpendicular to the axis of bending.

The term $f_{y s s}$ was taken as the web yield strength for computing the $\rho_{s s}{ }^{f} y_{y s s} / f_{c}$ ratio. The strain-hardening of both steels was included in the analysis.


[^0]:    Figure 5.9 - Probability distribution of stiffness ratios 4) sṭxe dọ̣eu znoqe 6uțpuəq sumntos tie tof eұep woxf pə7nduo: $=$

[^1]:    * Note: Modulus of Elasticity for Structural Steel, $\mathrm{E}_{\mathrm{s}}=29,000 \mathrm{ksi}$

[^2]:    Figure 6.9 - Probability distribution of stiffness ratios
    

