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Abstract 

The emergence of parallel processing architectures and fast network cornputing have 

opened new opportunities and challenges to apply these recent technologies to solve power 

system problems. For the transient stability solution applied on parallel processing hard- 

ware. a suitable algonthm has k e n  developed to achieve high speed computation for large 

sys tems. This new algon thm combines several techniques useful for parallel processing such 

as : the W-rnatrix method for solving network equations, Bus Tearing for splitting large net- 

work into smaller subsystems. Current Compensation for handling system admittance 

changes, node re-ordenng scherne to improve matrix spanity, and a load-balancing parti- 

tioning scheme for solving one subsystem on many processors operating in parallel. 

The multiprocessing algorithm has been incorporated in a stand alone version of a High 

Speed Transient Stability (HSTS) progarn. This cornputer prograrn is aimed at implementa- 

tions on existing hardware of parallel processing computen such as die Real Tirne Digital 

Simulator (RTDS), Distributed Processing Systems (DPS), and other rnultiprocessing com- 

pu ters (multicompu ters). 

A mechanism that coordinates the scheduling of interdependent operations of a parallel 

application is provided to run a prograrn concurrently on separate processon. Although. spe- 

cific implementations require specialized software to achieve fast communication, the basic 

mechanism for synchronization is built in the HSTS program and is based on the Message 

Passing Interface (MPI) software. 

Two irnplementations of the HSTS program have been completed and tested to demon- 

strate accuracy, eficiency, and computationd speed of the proposed multiprocessing solu- 

tion method. In the RTDS parallel processing implementation, it has been shown that solving 

the transient stability problem can be perfomed fater if the system is partitioned for solving 

on many processors operating in parallel instead of solving by one processor. 



For large power systems. processing of large admittance matrices takes most of the corn- 

putation time. In the Distnbuted Processing Systern implementation it has been shown that 

using the system splitting method computation time can be effectively reduced but at the ex- 

pense of increasing communication time. 

The high communication latency observed in the Local Area Networks may be elimi- 

nated or at least significantly improved by the emerging fast network technologies. Alterna- 

tive software and hardware tools have been designed by other researchers to synthesize 

groups of cornputers into a high-performance environment. One such tool is the High Per- 

formance Vinual Machine (HPVM) which. according to the report, c m  deliver a high-per- 

formance message communication over high-speed networks with a bandwidth of 80 mega- 

bytes per second and a latency under 1 1  microseconds using the 1Myrinet interconnect. 

It is very probable that with the new technologies of fast network and high performance 

cornputing. it will be possible to solve the transient stability problem for large systems in 

real-time using the HSTS program on a scalable cluster of commodity cornputers. 
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Chapter 1 

Introduction 

Power systems are becoming increasingly complex because of interconnection and fast 

response of power plants with solid state controllers and the use of larger generating units. 

These trends result in more productive use of transmission comdors and the system being 

operated much closer to its stability limits. Transient stability simulation is widely needed 

for dynamic analysis. but existing off-line transient stability progams require excessive 

computer time for practical studies. Consequently, fast methods for assessing transienr sta- 

bility limits are required, preferably in real-time or even faster. 

The emergence of parallel processing architectures and fast network computing have 

opened new opporninities and challenges to apply these recent technologies to solve power 

system problems. For the transient stability solution applied on parallel or distributed proces- 

sing hardware. suitable aigorithms must be developed if high speed is to be achieved for large 

system sizes. Using those new algorithms irnplies modifications or even complete rewriting 

of existing programs in which significant effort has been invested over the years [8]. In order 

to make the most from the existing solution methods and the new technology, a variety of 

approaches have k e n  undertaken. One group of methods adapts the fastest sequential algo- 

rithms for parallel implementations on special purpose parallel processing computers. 

Another group of methods applies new algorithms that are written specifically for applica- 

tions on the existing hardware of parallel processing computers. 

There are no obvious parallelisms inherent in the mathematical structure of the power 

system transient stability problem. Thus, for this specific problem, a parallel (or near-paral- 

lel) formulation has to be found that is useful for consmicting a parallel aigorithm. This solu- 

tion has to be implemented on a particular multiprocessing computer. The computational ef- 



ficiency of such art implementation is dependent on the suitability of the parallel architecture 

to the parallel algorithm. Therefore, it is no longer rneaningful to develop the best parallel 

algorithrn without reference to the target hardware architecture. 

There are available various single processor software packages which run the traditional 

stability prograrn solution at. or near. real time for srnaIl or midsize systems. For solving 

large power systerns. one common trend is to adapt these standard solution methods and use 

the commercially available mu1 tiprocessing hardware as their computational tools. Hig h ef- 

ficiexy is usually hard to reach because computation and communication takes too much 

time during each calculation time-step. For the solution of large scale power system net- 

works. it is possible to substantially reduce the computation time if special purpose parallel 

processing hardware and parallel programming were used. 

There are various types of commercially available parallel processing computers : tram- 

puters, shared-memory multi-processor computers, and distributed-memory paralle1 corn- 

puters like Hypercube [3] and the Real Time Digital Simulator (RTDS) @]. The biggest chal- 

lenge facing the use of parallel processing computers for the power system stability solution 

in reai-time is the communication and data exchange that may be very extensive for large 

power system models. The RTDS has been successfully applied for real-time electromag 

netic transients simulations of power systems and it handles communication problems very 

effectively. Therefore this parallel processing hardware has been chosen for a prototype irn- 

plementation of the proposed multiprocessing method for solving the transient stability 

problem. 

The main objective in this research project, is to develop a suitable algorithm for solving 

power system transient stability problem on many processors operating in parallel. A corn- 

puter prograrn using such an algorithm is aimed at implementations on existing hardware of 

parallel processing computers such as the RTDS, Distributed Processing Systems (DPS's). 

and other multiprocessing computers (multicomputers). 



In order to achieve this goal. various solution rnethods were considered and examined 

on single-processor workstation. computer networks, and on the RTDS. Those methods in- 

cluded the GaussSeidel (GS) and Bergeron (BM) iterative algorithms as well as various 

sparse techniques for the direct solution of network equations as described in Chapter 2. 

Those methods were used for developing multiprocessing algonthms which were applied 

in computer programs. implemented on available hardware, and tested for computational 

speed. 

In the first attempr. the network solution algorithm based on the i terative Gauss-Se ide1 

method was implemented on the RTDS for testing its perforiimnce in a parallel architecture. 

Those tests indicated that the speed of solution significantly reduces as the size of the system 

grows. Although this method is well suited for parallel processing, it has poor convergence 

or even divergence (also reported by other researchers [ 5 ] )  for larger network sizes, so it was 

abandoned in favour of other methods. 

In the second attempt. an alternative solution method was developed based on the con- 

cept of a phasor-domain Bergeron line mode1 [5,16]. This new network solution method still 

possessed the localized benefits of the Gauss-Seidel method but the convergence problems 

were improved to a certain extent. This method utilizes the concept of travelling waves in 

transmission lines. However, some prolonged voltage oscillations and spurious overvoltages 

were observed in system post-fault conditions using this approach. Those effects were 

viewed as an inherent disadvantage of the Bergeron based iterative algorithm that may po- 

tentially be further aggravated in larger systems and thus hrther work into this method was 

also suspended. 

Since convergence of both the GS and BM iterative techniques was found to take too 

much time. the search for a suitable method for high speed transient stability solution was 

re-directed to sparse matrix techniques. which in recent years have gained interest of many 

research groups. For this reason, a new multiprocessing algorithm has k e n  developed and 



incorporated in a stand alone version of the High Speed Transient Stability (HSTS) program 

written in the 'C' cornputer language which is described in Chapter 3. 

This new algorithm combines sevenl techniques useful for paralle1 processing applica- 

tions which include the following methods : 

A. LDU-decomposition and LDU-inverse for processing sparse matrices 

B. W-rnatrix method fr>r solving network equations (basic 2-step procedure) 

C. Re-ordering scheme to minimize number of fill-ins in the W-matrices 

D. Bus Tearing method for splitting large network into smaller subsystems 

E. Current Compensation method for handling the changes of system admittances 

F. Partitioning scheme for solving one subsystem on many processon openting in parallel. 

The network solution applied in the HSTS program has k e n  tested on selected small and 

medium size test systems against the conventional. commercially available. stability pro- 

g m s  such as BPA. PSSIE, and PSDS. Test results on workstations matched very closely 

the steady-state and post-faults curves of other stability programs. The computational speed 

was comparable with the speed of conventional stability programs, and promised signi ficant 

gains when executed in the multi-processor environments. 

For the parallel processing implementations of the HSTS prograrn, described in Chapter 

4. two multiprocessor environments are considered : the Real Time Digital Simulator 

(RTDS) parallel processing hardware and the Distributed Processing System (DPS) of the 

Local Area Network (LAN) at the Manitoba HVDC Research Centre, Those implementa- 

tions require specific adaptations to the original HSTS p r o m m  for the specific hardware ar- 

chitectures. The routines for compiling, downloading, initialization, communication and 

running the prograrn in a multiprocessor environment have to be included for both applica- 

tions. 

The implementation on RTDS required the program C version to be converted to a ver- 

sion employing assembly code for the NEC processors used in the hardware. Also a program 

on the workstation is required for downloading instruction and data, running, and uploading 



the results from the RTDS. In order to perfonn the transient stability solution on the RTOS 

hardware for large system sizes, it is necessary to utilize many racks openting in parallel. 

Due to limitations of the RTDS communication architecture a subsystem not larger than 500 

buses can be processed on one rack. 

The HSTS program implementation on Distributed Processing Systems was accom- 

plished in more straightfonvard manner with addition only of the Message Passing Interface 

(MPI) software required for communications between computers. Since only single-proces- 

sor computers were present in the local area network (LAN), only the system splitting was 

applied but not the partitioning scheme which was important for the RTDS implementation. 

One subsystem was assigned to each cornputer for collective solution using a cross-network 

communication. In a cluster of commodity computers one processor is a master synchroniz- 

ing the prognm execution on other worker processors. 

Both implementations completed in this research work have demons~ated that a high 

speed transient stability solution can be achieved with the proposed multiprocessing algo- 

rithm providing that the hardware allows fast communication links. The HSTS has proven 

to be a general, scalable, multiprocessing program that c m  be applied on integrated or dis- 

tributed pardlel processing systems. Communication latency is still a big obstacle in achiev- 

ing a high performance on regular local area networks. However, it is just a matter of time 

until a fast network technology becomes cornmonplace and today's commodity systems will 

perform as supercornputers at affordable price. Using a High Performance V i a 1  Machine 

(HPVM) software, for example, a group of off-the-shelf computers has been synthesized 

at the University of Illinois to deliver a peak performance of between 100 and 200 billion 

floating-point operations per second. A high-performance message communication layer 

can send messages between processors over high-speed Myrinet network delivenng band- 

width of 80 megabytes per second and a Iatency under 11 microseconds as reported by the 

National Center for S upercomputing at the University of Illinois. 



Chapter 2 

Tkansient Stability Problem 

2.1 General Characteristic of Power System Problems 

Power system stability can be defined as the property of a power system that enables it 

to remain in a state of operating equilibrium under normal operating conditions and to remain 

an acceptable state of equilibrium after k ing  subjected to a disturbance [13]. 

Typically. the stability problem has been one of rnaintaining synchronous operation of 

genentors and other machines in a power system. Another concem is to maintain the stabil- 

ity of voltages which may collapse even without loss of synchronism. The behavior of the 

power system c m  be evaluated when it is subjected to srna11 or large transient disturbances. 

The system must be able to operate satisfactorily under these conditions and continue to sup- 

ply the required amount of load. 

The power system stability problem involves interaction between the electncal and me- 

chanical systems. Under steady-state conditions, there is equilibrium between the input me- 

chanical torque and the output electrical torque of each machine in the system and their angu- 

lar speed remains constant. If the system is perturbed this equilibrium is upset, resulting in 

acceleration or deceleration of the rotors of the machines according to the lows of motion 

of a rotating body. The stability of the system depends on whether or not the deviations in 

angular positions of the rotors result in sufficient restoring torques. 

The two major categories of power system stability are rotor angle stability and voltage 

stability. Rotor angle stability is the ability of interconnected synchronous machines of a 

power system to remain in synchronism. Voltage stability is the ability of power system to 

maintain steady acceptable voltages at al1 buses in the system [13]. The rotor angle stability 



phenornenon is usually classi fied under two categories : small-signal (small-disturbance) 

stability and transient stability (severe transient disturbances). 

The small-signal stabifity is mainly caused by insufficient dûmping of oscillations 

which may appear in various modes : 

a) local modes - (0-62.0 Hz) localized at one station or small part of the power system 

b) interarea modes - (0.24.7 Hz) caused by groups of closely coupled machines being 

interconnected by a weak ties. 

C) control modes - associated with genenting units and other controls 

d) torsional modes - associated with the turbine-generator shaft system rotational 

componen ts 

In Transient stability problems the power system is su bjected to a severe transient distur- 

bance and the response of power system is observed for selected set of contingencies. 

There are m m y  types of power system analyses such as : Power Flow, Transient Stabil- 

ity, Shon Circuit Calculations, and Electromagnetic Transients. The interconnected genera- 

tion and transmission system is inherently large and any power system analysis problem for- 

mulation tends to have thousands of equations. Analysis of such systems is one of the most 

computationally intensive power system problem. 

The most common analysis, the Power Flow, requires the solution of a large set of non- 

linear algebraic equations approximately two for each system node. The usual algorithm of 

an iterative matrix solution exploits the extreme sparsity of the underlyinp network connec- 

tivity to gain speed and conserve storage. Parallel algorithms for handling dense matrices are 

not cornpetitive with the sequential sparse maaix methods, and since the pattern of sparsity 

is irregular, parailel sparse matrix methods have been dificult to find (91. 

The power flow describes the steady state condition of the power network and thus, the 

formulation is a subset of several other important problems like the optimal power flow prob- 

lem or transient stability problem. An effective parallelization of the power flow problem 

would aiso help speed up these other solutions. Transient Stability requires the solution of 



differential equations (2 to 20 for each machine) that represent the dynamics of the rotating 

machines and other devices such as HVDC converter controls or Siiitic Var Compensators, 

together with the algebnic equations that represent the connecting network. This set of dif- 

ferential-algebraic equations typically exhi bits different types of nonlinearities and various 

numerical methods can be used to obtain a stepby-step tirne solution. 

It is the size of the above problems and the consequent solution times that encourages 

the search for parallel processing approaches. Even before panllel computen became a po- 

tential solution. the concept of decornposing a large problem to address the time and storage 

problem in sequential computers has been more or less successfully applied to many of these 

power system problerns. Parallel computers c m  take advantage of these decomposition/ag- 

gregation techniques but usually require a certain arnount of adaptation. 

Recently there is an on going effort to apply paralle1 computers to solve specific power 

system problems. Most of those problems can be parallelized in large portions including the 

required solution of the linear algebraic equation : 

A g x = b  

where matrix A is large and considerably sparse. 

In this research work new methods and algorithms applicable to parallel computers for 

solving transient stability problem are considered for implementations on RTDS and on Dis- 

tributed Processing Systems. A significant speed up by parallel processing, in addition to the 

usual efficiencies, will allow on-line transient stability analysis; a prospect that has spuned 

research in this area. 

2.2 Mode1 of the Tkansient Stability Problem 

For power system stability the behavior of power systems is usually descnbed by two 

sets of equations. The fiat,  is a set of differential equations defining the dynamics of the 

devices (loads, pnerators, exciters, govemors. etc.) and the second, is a set of algebraic 



equations describing the electrical system through which the dynamic devices and the sys- 

tem loads are connected. 

These two equations can be written as : 

where I is a vector of state variables describing machine and load dynarnics. 

V is a vector of bus voltages, 

1 is a vector of bus current injections, and 

Y is a matrix of network admittances 

and F is a non-linear function of ,Y and V. 

In general. there are two basic qproaches in the development of ne w algori thms for solv- 

ing a set of differential equations (2.1 ) and a set of aIgebnic equations (2.2) : 

A. Partitioned approach - the set of differential equations (2.1 ) is solved separately from 

(2.2) by an integration method and iterated with the solution of the set of algebraic equa- 

tions (2.2) at every time-step. 

B .  Simultaneous approach - set of equations (2.1 ) is discretized by methods such as the trap- 

ezoidal rule and cornbined with equations (2.2) for solving together at each time-step us- 

ing some Newton-Iike method. 

Although the size of the problem is bigger in the second approach. the solution on single 

processor cornputers can be reached faster because equation (2.1) c m  often be linearized 

around the operating point and Jacobian matrix c m  be held constant unless the system under- 

goes a sigificant change [2,9]. One variation of this approach is known as the Very DisHon- 

est Newton (VDHN) method and is used by several research groups as reported in [41.36]. 

Integration methods for solving equations (2.1 ) are known as explicit or implicif integra- 

tion methods. In explicit methods (such as Euler, predictor-corrector or RungrtKutta) the 

state variable X at any time is compuied from knowledge of variable values from previous 



time-steps by evaluating the value of function F(X,V). Implicit integration methods ( such 

as the trapezoidal rule ) use interpolation for evaluating of the function between previous and 

current points in time. The implicit method is preferred because it provides better numerical 

stability [2.81. 

The length of the integration time-step At is restricted by the characteristic of the differ- 

ential equations. This characteristic is often described by stiffness which is measured by the 

ratio of the largest to the smallest time constants of the system. Stiffness in a transieni stabil- 

ity simulation increases with modelling detail. In the overall system, not al1 the time 

constants may be readily apparent. Thus the stiffness, may be hidden and c m  only be estab- 

lished by computing the eigenvalues of the linearized system. Explicit integration methods 

have weak numerical stability and for solving stiff systems they must use very small steps. 

The equations are solved on a stepby-step basis to obtain the time response of the sys- 

tem for the specified fault and switching conditions. To find the solution. the differential 

equation (2.1 ) c m  be discretized to transform the differeniial equations into difference equa- 

tions. Using the implicit trapezoidal rule,for exarnple. the equation (2.1) will take f o m  of: 

It= II-i + (At/2)*[ F ( X b V t )  + F ( X t - i , V k i ) ]  

In general, solving the network equations (2.2) is to find the bus voltage vector V. which 

is achieved through the equation : 

v = Y-' = 1 ( X,V ) (2.3) 

Discretized equations (2.1) can be solved in conjunction with network equations (2.2) 

or they can be solved separately. In both cases some kind of iterative process is required for 

solving the two sets of equations because the system state X and voltage V used in both equa- 

tions depend on each other. 

The stepby-step solution for system voltages and state variables is used in Transient 

Stability to assess the ability of power systems to maintain synchronism when subjected to 

severe m s i e n t  disturbances. The resulting system response is an excursion of generator ro- 



tor angles influenced by the non-linear power-angle relationship included in equation (2.1 ). 

Following the disturbance. usually a network fault. the state variable X cannot change 

instantly, so the system response is deviation of machine rotor angles which c m  lead to either 

an aperiodic drift in rotor angle or to an oscillatory instabiliiy. Provided there is enough 

damping in the system. this perturbation should dirninish. and opention at the equilibrium 

angles be restored. 

Typicall y, for partitioned solution with explicit in tegration method, the algebraic equa- 

tions (2.2) are solved fint to give system voltages V, currents 1 and the corresponding power 

flows. Using the previous state X and and the current value of V the time derivative function 

F(X.v) in equation (2.1 ) is computed and the solution of differential equations for new state 

X is obtained using the selected integration method. The process of altemating solutions of 

algebraic and differential equations is applied successively until the solution at the end of 

each time-step is reached. 

Since the solution of differential equations requires values of state and network variables 

(X,V) only from the previous step. the set of differential equations can be solved indepen- 

dently which offers a great amount of programing flexibility important for parallel computa- 

tions. However, since the network solution takes a considerable arnount of solution time, the 

overall gains achievable are very limited without parallelizing the network solution part. 

2.3 Solution Methods for Parallel Processing 

A wide range of approaches has been reported in the literanire for conventional methods 

of solving equations (2.1 ) and (2.2). More recently, various non-conventional methods have 

dso been developed to create better parallelism. Those methods are quite different from the 

sequential algorithms used today on single processor cornputers. Thus, adapring any of them 

for commercial applications requires significant investment in development of software and 

special hardware for multiprocessing implementations. 



For this tesearch project. various solution methods suitable for parallel processing have 

been examined in order to determine which one is the most practical for implementation on 

parallel or distributed processing systems. The partitioned approach is used in many produc- 

tion-grade stability propms. For power system simulation in which time-steps are lirnited 

by numerical stability. irnplicit methods like the trapezoidal mle are generally better suited 

than the explicit methods but they provide variable accuncy. 

The partitioned and simultaneous approaches can both be used in parallel cornputers if 

proper problem decomposition is applied. Decornposition of the problem for panllel proces- 

sing can be categorized in two pneral parallelization types : 

A. Parallelidon in space - decomposition of the system variables into smaller groups. 

B. Parallelizarion in time - several time-steps solved simultaneously [15j. 

When the set of network equations (2.2) is decomposed, relaxation can be applied to dif- 

ferential equations (2.1 ). For the method known as the Waveform Relaxation Method [37], 

it was shown [33] that discrete version of (2.1 ) together with (2.2) can be decomposed to indi- 

vidual system variables such as bus voltages. and solved simultaneously for a11 time-steps 

by Pickard's method. This cm provide maximum parallelization in space and time but it re- 

quires many iterations and thus convergence is slow. 

The Newton-Raphson method is commonly used on single processor cornputers but a 

variety of other methods have been developed to solve the network equations. The best 

known are the Very Dishonest Newton (VDHN) [4l], the SOR-Newton[41]. the W-ma- 

trix[30,38,43], and Coarse Grain Scheduling [42] methods for solving the algebraic equa- 

tions. and the Waveform Relaxation or the Dynamic Partitioning methods for solving the 

whole problem. 

The methods for solving network algebraic equations are typically one of the two types: 

direct or ilerafive as described below. Regardless of what type of network solution method 

is used, another iterative process is required to combine the solution of differential set of 

equations with the solution of the network algebraic equations. 



23.1 Direct Methods 

The fundamental problem of a network solution algorithm is the solution ofa set of linear 

algebraic equations given in a matrix form by : 

A D  x - b  

where matrix A is assumed to be large and sparse. 

If the inverse of matrix A exists. then the general solution for an unknown vecior x is 

given by : 

For inverting a matrix. Gauss-Jordan elimination rnethod [ 1 11 is about as efficient as any 

other method. However, because matrix inversion is a computationally intensive process, 

most of the modem direct methods do not explicitly cornpute the inverse for finding a solu- 

tion. 

One of the most effective methods for soiving equation (2.4) on senal processors is the 

triangular factonzation used along with forward/backward substitution [9] described as fol- 

lows : 

triangular factorization : L D U = A (2.6) 

forward substitution : L'y  = b (2.7) 

backwardsubstitution : D W * x  = y  (2.8) 

where D is a diagonal matrix and L and U are unit-viangular matrices with ones on diagonal. 

Fast solution methods are required for aiangular factorization and substitutions because 

rypicaily they are repeatedly computed for a solution on each iteration. Many new algonthms 

exploit available parallelism through reordering and partitioning of matrix A. Those algo- 

rithms, however, are not developed for parallel processing so that a great deal of adaptation 

is required for applications on parallel processing hardware. 

The W-mauix method descnbed in Section 2.4, overcomes the poor parallel characteris- 

tics of the substitution scheme. This method generalizes the LDU algorithm by converting 



the substitution of (2.7) and (2.8) into matrix-vector multiplications without losing signifi- 

cant sparsity. The rnatrix-vector multiplications applied in this method, are readily panlle- 

lizable making a parallel LDU algorithm possible to develop. 

23.2 Iterative Methods 

For high speed simulation on rnultiprocessor cornputers, iterative and node-onented 

methods have been used. For these methods the matrix splitting concept is applied to solve 

the network algebnic equation A* x = b. Matrix A is expressed as a sum af L. D. and U ma- 

trices: 

A -  L + D + U  (2-9) 

where D is a diagonal matrix and L and U are triangular matrices with zeros on the diagonal. 

For the Jacobi method. the n-th iteration step is piven by : 

and the solution for x, is given by 

X, =-D-'"[(L+U)g~,l + b ]  = - D ' * ( L + U ) * X , _ ~  - D-"b (2.1 1) 

The matrix -D-l ( L + U ) is the iteration matrir which, dong with the additive terni 

-D-lob. rnaps one set of x's into the next. The eigenvalues of the iteration rnatrix reflect the 

factor by which the amplitude of a particular eigenrnode of the undesired residual is sup- 

pressed during one iteration [i l] .  For the relaxation to converge, al1 eigenvalue modulus 

must be less than 1 .  The rate of convergence of the method is set by the rate of slowest+iecay- 

ing eigenrnode, Le., the factor with Iargest modulus which is called the spectral radius and 

is denoted by p,. In principal, the spectral radius p, can be computed analytically for a given 

iteration rnatnx and the number of iterations required to reduce the overall error by a given 

factor is inversely proportional to the value of the spectral radius. Unfortunately, conver- 

gence of the Jacobi method is strongly conditioned by the rnatrix characteristic and usually 

requires many iterations. It is, however, a classical method dating back to the 1 s t  century 



and although it is not practical because it converges too slowly, it sets the basis for under- 

standing modem itentive methods. 

In the GaussSeidel (CS) method matrix decomposition takes the following form: 

The presence of the lower triangular matrix L on the left-band side of the equation fol- 

lows from the updating procedure which is to use the most recent x's as soon as they are corn- 

puted. The convergence of this method is twice as fast as the Jacobi method, but the large 

number of iterations [ I  11 leaves the method still impractical on a serial computers. However. 

because the problem decomposes to single variables. it may still be useful for parailel proces- 

sing [3].  

More recentl y better algorithrns were developed. One of such method is the Successive 

Over-relaxation (SOR). It is derived from equation (2.1 2) by solving for x, and calculating 

the rate of change: 

The correction at iteration step n is defined in ternis of residud vectorE ,, and mer-re- 

ia.xahahon parameter o by : 

where 

E n -  = A o x w i - b  

and O c w < 2 for the rnethod to converge. 

It was shown [ I  I ]  that if p~ is a spectral radius of the Jacobi iteration. then the optimal 

choice for o for the SOR method is given by : 



The SOR method is hundreds or even thousands times F'ter than the Jacobi method if 

the overrelaxation parameter is optimally chosen. The weak point of this method is that this 

optimal value of o is usually difficult to determine. 

2.4 The Bergeron Method 

One alternative iterative method deveioped by the author in this research, is called Ber- 

geron Method (BM) and is based on the Bergeron line mode1 which utilizes the concept of 

travelling waves in a load flow and stability soiution [16]. In its time-domain formulation. 

this method is widely used in electromagnetic transients programs [ I  1. 

The traditionally used nominal rr-circuits do not represent the travelling wave nature of 

transmission lines and this discrepmcy becomes Iarger as the length of line increases. The 

distributed nature of the line parameters is automatically taken into account in the Bergeron 

Line Model in which travelling waves are represented by a pair of Norton sources at each 

line end as shown in Figure 2.1. 

Figure 2.1. Circuit of Bergeron Line Model. 

This is the essence of this parallei algorithm. If subsystems of the overall network are 

connected by transmission lines with travel times exceeding the simulation time-step, a local 

subsystem is not affected by the happening in the remote subsystem 

For a steady-state solution. line parameters are specified by line resistance R. series reac- 

tance X=oL and shunt susceptance Bac. When line length is d, the travel time is : 



where v is the phase velocity. 

For a lossless line (R-O). the impedance Zc in Figure 2.1 is equal to the surge impedance: 

z,=m ; Y o = l / L  (2.1 7) 

and the propagation constant Y and electrical iength $ are : 

From the wave equation in the lossless case we derive the following two equations relat- 

ing voltage and current phasors at both line ends : 

Vk*Yo - Ik = Fm* e-j$ (2.19) 

v,*Y, - 1, = ~ p e - J @  (2.20) 

where Fk and Fm are fonvard travelling waves and are defined as 

Fk = Vk*Yo + I k  

Fm = V,*Y(, + 1, 

The above relationship applies not only in the steady-srate but also in the transient state 

when voltage Vr(t), Vm(t) and current Ik(t), Im(t) phasors are varying (quasi-statically) in 

time. 

The equivalent current source phason Jk(t) and Jm(t) are deterrnined at tirne t frorn the 

past history at time t-r. Applying (2.19) and (2.20) to twwport equations at both line ends 

we obtain : 

Jk (t) = -Fm (t-T) * e-jQ (2.23) 

Jm (t) = -Fk (t-T) e -j@ (2.24) 

For travelling time s greater than the simulation time-step At, fonvard travelling waves 

Fi, and Fm are stored in buffers and are interpolated between discrete points to find appropn- 

ate values at time t-T. When the travelling time is smaller than the time-step, either the line 



is treated as a series branch or r is assurned to be equal to At and line susceptance is adjusted 

to a new value : 

Bmw = ( o * ~ t ) ~  / X  (2.25) 

In this case compensating reactances 

X,,, - 0 . w  B n w - B  

are placed at both line ends so that the overall line impedance is kept unchanged. 

For line losses the distributed series resistance R is approximated by lumped resistances 

and added at both ends of a lossless iine (or in few places dong the line). When the line is 

divided in two sections, resistance W 4  is inserted at the end of each half-line section and the 

line mode1 is defined by the following [ 1 ) : 

Zc = & + R / 4  ; Yc = I / Z c  (2 .27) 

Jk = -(A*Fk + B * F ~ ) * ~  -Jq (2.28) 

Jm = -(A*F, + B*Fk)*e -j$ (2.29) 

w here 

Fk = Vk*YC + H*Ik 

Fm = Vm*YC + H*Im 

H = ( L - R / 4 ) / ( Z o + R / 4 )  

A = OS*( I - H ) 

B = OS*( 1 + H ) 

Although the line current sources in (2.28) and (2.29) are still defined by voltages frorn 

the previous tirne-steps, as in the Gauss-Seidel method, the delay now represents the actual 

time for the wave to propagate frorn one line end to the other. 

In the GaussSeidel method, because lines are modetled in the form of lumped parameter 

elements, no specific distinction between branches and lines is made. In the BM method, 

however, only series branches (such as transfomiers, series capacitors, reaciors or very short 

lines) and al1 local loads are grouped in 'clusters' for direct solution by inversion of small 



matrices. These clusten and a11 singular nodes are connected to each other with transmission 

lines modelled by tnveling waves as described above. Iteration in time. according to the 

traveling wave phenornenon. is applied globally to the system and the network solution for 

transients is computed until a new steady-state is reached and al1 standing waves in lines 

are established. Intemediate tirne-steps are like iterations in the conventional approach. 

The BM algorithm offers a maximum system decoupling by reducing the network admit- 

tance matrix Y to a 'close-tdiagonal' matx-ix. Such a reduced matrix consists of only diag- 

onal elements of bus equivalent shunt admittances or small diagonal sub-matrices of cluster 

admittances. The network solution for bus voltages then becornes a matter of sequential pro- 

cessing of individual nodes and clusters. In addition, this clustenng reduces the need for in- 

ter-cluster communication. an important aspect for implementation in a paralle1 processing 

environment. 

2.5 The W-matrix Method 

The history of the W-rnatrix method [30,38.43] is rather short and only a little parallel 

computer implementation experience has been acquired to fully assess its potential or to re- 

veal its limitations for effective functioning in various parallel environments. One objective 

for this project was to evaluate computational and communication costs of this method ap- 

plied on selected parallel and distributed processing hardware. 

The largest obstacle to obtain a high speed solution for the stability problem appears to 

be the repetitive solution of the network equation which is basicdly the linear algebraic ma- 

trix equation (2.4) that with the power system terminology has the following form : 

where : V - bus voltage vector 

1 - bus current injection vector 

Y - network admittance rnatrix 



The objective is to solve the above equation as effîciently as possible. In general. to solve 

equation (2.32) an inverse of admittance matrix Y-' is required to calculate bus voltage vec- 

tor by : 

v = y - l - I  (2.33) 

The rnatrix Y cm be decomposed into factors L, D, and U as follows : 

Y = L * D e U  (2.34) 

Matrices L and U are the lower and upper sparse unit-triangular matrices respectively, 

and D is a diagonal matrix. For symrnetric admittance matrix. we have U = L~. 

With the assistance of sparse matrix techniques, the forward/backward substitution 

method described by equations (2.6) - (2.8) works very eniciently on sequential (single pro- 

cessor) cornputen. It is. however, very dificult for this algorithm to achieve high efficiency 

on parallel cornputers because of the sequential nature of the fonvard and backward substitu- 

tions. The parallel LDU algorithms usually can achieve high efficiency for factorization but 

are much Iess powerful on substitutions [81. 

The W-method was developed to overcome the poor pxallel characteristics of the stan- 

dard substitution schernes. This method is based on the fact that the inverse of admittance 

matrix Y exists as the product of the inverses of factor matrices U, D and L according to : 

y-' = u-I p l  L-1 (2.35) 

Unlike the inverse of a sparse mairix Y, which is full, the inverses of sparse triangular 

factors L and U are also sparse, though less sparse than the factors themselves. 

The solution of (2.32) in this case is obtained by a series of matrix multiplications, instead 

of substitutions, and in the most primitive f o m  utilizes (2.35) in a two-step process : 

1' = p l  - L - 1  - 1  (2.36) 

V =u-1*IT (2.37) 

Each of the above maûix-vector multiplications are readily parallelizable. The chal- 

lenge here is to decompose the above solution process into independent tasks and schedule 



thern on the processors in such a way as to reduce the communication and synchronization 

overheads, and to achieve a minimal solution time. It has been recognized that an appropriate 

reordenng and partitioning schemes chosen for a specific hardware architecture c m  offer 

significant gains in the computational speed of solving the network equations. 

Inverses of L, D and U matrices are found beforehand. Changes in the admittance matrix 

Y resulting from faul t. swiiches, etc.. typicall y require repeated LDU decomposi tion and 

LDU inversion of the system admittance matrices. However. admittance changes c m  also 

be handled by techniques such as Current Compensation which do not involve expensive 

matrix reinversions as described in Section 2.6. 

For effective computation. some re-ordering method can be applied to Y to enhance the 

sparsity of the inverse matrices L-l and U-' . Several algonthms were proposed to minimize 

the number of elements in the inverse triangular factors 13 1.32.341. A simple ordering 

scheme is chosen for this method as described in Section 2.5.2. 

2.5.1 Partitioning in W-rnatrix Method 

The simplest W-mahx solution method for the algebraic equation (2.32) comprises 

sparsity oriented LDU decomposition of the nxn system admittance rnatrix Y = Lw Dm U and 

LDU inverse expressed by Y-' = U-I l - L-l. In those expressions, L and U are lower 

and upper triangular matrices with unity elements in the diagonals and D is a diagonal matrix 

as illustrated in Figure 2.2. 

In order to derive more complex W-matrix solution methods, the unit Iower triangle ma- 

uix L is further decomposed to a product of a series elernentary matrices Li ; i = I .  2, ..., n : 

L = L10L2'.*--Ln 

Each elementary factor matrices Li is a modified identity matrix with the i-th column 

replaced by the i-th column Ci of the factor matrix L as illustrated in Figure 2.3. 



Figure 2.2. Sparsity Oriented LDU Inverse of the Admittance Matnx. 

The inverse of lower uiangular matrices L rnay then be found as a product of the inverse 

elementary factor matrices Li-' : 

L-1 = L,-1 - ~ ~ - 1  L , - 1  (2.38) 

The n-th elementary factor matrix is an identity matrix and can be omitted in the above 

senes matrix multiplications. 

Figure 2.3. Matrix L Expanded as a Roduct of Elementary Factor Matrices. 

The inverse elementary factor matrices L,-' can indeed be calculated in a very simple 

manner because they are equal to the original elementary factor matrices Li with the off- 

diagonal entries in column Ci negated. A simple case of 3x3 matrix illustrating the inverse 

matrix cornputation by (2.38) is given in the following exarnple : 

Example 2.1 : 

Let Y be a 3x3 symmetric admittance matnx. After factonzation. Y = L D- U in which 

u = LT. 



The Iower triangle rnatrix L and the current injection I are given by : 

L cm be expanded as a product of three elernentary factor matrices : L = Li Lz L3 

~ 1 . ~ 1 .  Li = identity matrix + 1-st column of mah 
L =  a 1 

b 1 
Lz = identity matrix + 2-nd column of ma 

C 

LI L2 L3 L3 = identity matrix 1 

The inverses elementary matrices denoted here by W 1, W2, and W3 are simply computed 

by reversing signs of the off-diagonal elements in matrices L I .  Lz, and L3 respectively : 

The inverse of lower triangular matrix L is computed as a product of mairices Wi by : 

I*I 
ab-c -b 

The above is the right inverse matrix because L* L-1 is the identity matnx : 

With the inverse factor matrix L-l computed by a series multiplication of inverse ele- 

mentary matrices, solution of equation (2.32) requires numerous matrix multiplications 

which in the above example would be given by : 



The only non-zero elements or fillins used in computation of the inverse mairix L-' as 

a product of inverse elementary matrices (2.38) are the negated elements of the original ma- 

trix L. Because inverse elementary matrices consist exactly the same number of non-zero 

elements as their originals. no extra fillins are involved in computation of the inverse triangu- 

l x  matrix L-l. The overall cost of solving equation (2.32). however, is also affected by the 

number of series matrix multiplications involved in voltage computation. 

To reduce the numberof senes matrix multiplications. groups of consecutive elernentary 

factor matrices Li c m  be pre-multiplied together to f o m  apariition, Le. the product in equa- 

tion (2.38) c m  be broken down into certain number of blocks as shown below : 

A W-mauix is obtained by multiplyinp al1 of the elementary mavices within each parti- 

tion and the inverse mairix cm be computed as a product of those W-matrices Wj . 
j =  1, . . .p  : 

L-I = Wp0 ...O W2* Wl  (2.39) 

where 

w = L n '  . L ; 0 .  ; w = L - 1  . L ; W, = L(&[ ) -I  - ... L,-' 

This is the rnost general procedure for factor maûix inversion. In the longest form. it in- 

volves dl the inverse eiementq factor matrices, Wi = L,-' and, although no additional fil- 

lins are introduced in this case. it requires the maximum number of senes matrix multiplica- 

tions. 



In the shortest fom it involves only one W-matrix, W - L-l. and although the inversion 

of the whole sparse unit-triangular matrix L introduces new fillins. no series matrix multi- 

plication is involved. 

Partitioning of the upper triangular rnatrix U may be perforrned with W-matrices ob- 

tained in a simila. fashion. For a symmetnc admittance rnatrix, U = L~ and it can be corn- 

puted by : 

The W-matrices in (2.39) and (2.40) usually remain very sparse. though fillins may be 

introduced depending on the partitioning scheme used. The network solution can now be ex- 

pressed by : 

When each matrix W, is equal to the inverse of elementary factor matrix LI-'. then (2.41 ) 

is merely an expression of conventional forward and backward substitution. We are free. 

however. to combine the adjacent W matrices in any useful way. The W-matrix rnethod gen- 

eralizes the solution phase of the LDU algorithm which in multiprocessor environments can 

be utilized to gain computational speed. 

Appropriate partitioning methods can maximize sparsity by reducing the number of fil- 

lins in W-matrices. In a parallel processing environment. however. this does not necessarily 

represent a significant saving in processing tirne because the series matrix multiplications 

in voltage calculation (2.41) require exchange of results of each multiplication among pro- 

cessors and this consumes a lot of communication time. Effective W-matrix partitioning 

methods would have to consider not oniy the amount of computational effort measured by 

the number of multiplication-addition operations associated with processing the fillins but 

also take into account other factors such as communication associated with particula. imple- 

mentations of the solution algorithm. 



Because series matrix multiplications cost communication time. which is different in dif- 

ferent parallel or distributed processing systems. the problem of optirnization of processing 

time in multiprocessor environment strongly depends on what hardware is used for solving 

the stability problem. The strategy is either to minimize the number of partitions at the ex- 

pense of increased number of fillins or to minimize the number of fillins at the expense of 

increased number of partitions. 

The factors which may affect the parallel efficiency of the W-matrix method include: 

size of admittance rnatrix. nurnber of fiilins. number of partitions. structure of the factor ma- 

trices and communication time between processors. Those are related issues and the best 

compromise is the key in determining the parallel efficiency of the W-matrix method. For 

implementation of the network solution by W-rnatrix on the RTDS. Distributed Processing 

Systems (DPS) or other parallel processing hardware the following strategy is proposed : 

A) A large system will be split into smaller subsystems. using a system splitting technique 

described later in Section 2.6. one for each RTDS rack or each single or multiprocessor 

cornputer in the DPS. 

B) Subsystem admittance matrices will be LDU fxtorized. and sparsity maximized using 

a node reordering method. The LDU inverse factor matrices will be cornputed for each 

subsytem. 

C) A procedure forpartitioning the factor matrix will be implemented but only an elementary 

W-matrix will be applied to each subsystem admittance matrix to reduce the number of 

communication between processors. 

Since at this stage phase-shifting transfomers are not considered, the admittance matrix 

Y is assumed symrnetrical and the W-matrix is equal to the inverse of the subsystern 

lower tnangular factor matrix such that W = L-' and = U-' = [LT]-'. 

D) Network equations will be solved in a twwstep process executed for each subsystem : 



E) Parallelization of the network solution computation for processors on one RTDS rack or 

one mu1 ticompu ter in DSP will be done by assigning a certain number of rows of matrices 

W and W. a partition. to be processed on each processor according to a partitioning 

scheme w hich wi ll balance the processors workload. 

The following is a bief description of the bus reordenng and partitioning methods pro- 

posed for high speed transient stability solution. 

2.5.2 Node Reordering Scheme 

For any sparse matnx Y = L D -U, the inverse of i t s  factors. U-l and L-l usually remains 

sparse but in addition to the non-zero elements in factors L and U. new fillins are generated. 

Fillins are unwelcome since the y increase the computation required for the network solution 

so that any method of minimizing their number is desirable. 

Reordenng. Le. pivoting of rows and columns. is an effective tool of reducing the number 

of fillins in the triangular factors L and U. Reordering has also been found usefui in reducing 

fillins in W-matrices when combined with proper partitioning scheme. It has been recog- 

nized that a smart reordenng and partitioning scheme is the key to the success of W-rnatrix 

method. 

Given the triangular factorization rnatrix L or U, new non-zero elements will be created 

in its inverse L-l or U-l. The number of new non-zero elements, called "inverse fillins". de- 

pends on the ordering of the system nodes. The computation of factor matrices L, D. and U 

is thus preceded by node re-ordering or ordering of rows and columns to minimize the num- 

ber of non zero elements in their inverses. 

Several effective schemes have ken developed for determining near-optirnal orden for 

inverse fillins in LDU matrices. For this research work, a simple scheme proposed by Tinney 

[32] has been chosen. This ordering scherne is based on counting the number of branches for 



each system node (or counting non-zero elements in rows of admittance matrix Y). Nodes 

with fewer connections are put at the top of the new order list when the nodes with the most 

connections (rows with most fillins) are placed at the bottom. 

This scheme. although is not fully optimal, still preserves 10-208 sparsity of the in- 

verses matrices L-l and Vi in the most typical cases. 

Figure 2.4. Typical Sparse Matrix Density Distribution. 

Many of the optimal ordering methods minimize the total number of fillins but the dis- 

tribution of those fillins is very uneven. A typical example of sparsity distribution is illus- 

trated in Figure 2.4. 

Usually there are many buses at the top of the order list that correspond to rows in the 

admittance rnatrix with only a few non-zero elements. As we go to the bottom of this list the 

number of non zero elements increases very quickly and one bus from the bottom of the list 

can be as expensive as hundreds of buses from the top. This obviously must be taken into 

account when selecting the partitionhg scheme which is supposed to balance loads on al1 

parallel processors involved in the computation. 

2.5.3 Balancuig Processor Workload - Average Weight Partitionhg 

Scheme 

In the proposed W-matrix based solution algorithm. processing of one system node is 

assumed to be assigned to one processor. It means that d l  row-times-column multiplications 



involved in bus voltage cornputation as well as solution of al1 differential equations 

associated with node genentors and loads will be solved on the sarne processor. Optimal or- 

dering minimizes the total number of fillins but also results in very uneven distribution of 

matrix sparsity. This uneven sparsity combined with random allocation of system generators 

and loads results in a very different processing time requirement for the various system 

buses. Therefore. assigning an equal number of buses to each processor will not be a very 

efficient way of utilizing the processing time. 

A more efficient method is to assign different number of busses to processors by taking 

into account the bus connectivity. matrix sparsity. and complexity of differential equations. 

For more optimal balancing of the processor's workload. it is proposed that each system bus 

i have attributed a weighting factor wi proportional to : 

a) number of fillins in corresponding row of matrices L-' and U-'. 

b) number and type of generators connected to this bus, 

c) number and type of loads connected to this bus. 

d) other devices and events such as faults or switchinjs associated with this bus. and 

e) communication time required to exchange data with other processon. 

The total rime of processing N buses on M processon is proportional to the total 

N 

weight factor : W =  Z wi 
i- l 

which produces an average weight per processor to be equal to : 

The average weight w, is used as a criterion for paxtitioning a giv, en list of s! 

This partitioning method groups consecutive nodes in the optimally ordered list of system 

buses until the sum of their individual weights wi adds up as close to the average weight w, 

as possible. Assigning each partition for processing on one processor should approximately 

balance the workload. 

This new method is later referred to as the Average Weight (AW) partitioning scheme. 



2.6 System Splitting by Bus Tearing Method 

The set of algebraic equations descnbing an electncai system is given by equation (2.32). 

The size of this matrix equation is often in a range of few thousands. Even with the best spu- 

sity elimination method. the problem size remains large and in addition. a full current injec- 

tion array and the results of senes multiplications by W-matrices must be exchanged be- 

tween al1 processors participating in the network solution. The repetitive row-column 

multiplications, as well as the in ter-processor communications. consume the biggest 

arnount of processing tirne in these cases. In order to achieve a high speed solution of large 

systems. network splitting is probably unavoidable. 

To reduce the size of network matnx equation, the Bus Tearing Method can be applied 

to split the system into srnaller subsystems that are much easier to handle in a rnultiprocessor 

environment. 

By choosing some of the buses as tearing nodes (also cailed cut set nodes in some liten- 

ture [34]). the network cm be split into several smaller subsystem. The system admittance 

matrix Y cm be re-arranged so that the tearing buses are located at the bottom as shown in 

Figure 2.5. 

Figure 2.5. Bus Tearing Network Solution Equation. 

Here the network is divided into k subsystems represented in the admittance matrix Y 

by k square matrices Yii. These subsystems are interconnected through a set of interface 



buses which form the tearing subsystem represented by admittance matrix Y,,. Branch con- 

nections between subsystems and the tearing buses form the upper and lower border matrices 

Yi, and Yti respectively. 

An example of splitting a system of 505 buses into two subsystems grouping 5 system 

zones is shown in Fig. 2.6. This mechanism for grouping system buses into subsystems is 

based on the zone information which chancterize a physical network. This. however pro- 

duces a very uneven subsystem size which is not good for balancing the processor's load. 

A better mechanism developed in this project is based on network connectivity. A desired 

nurnber subsystems and one interface subsystem are formed by selecting a "seed" bus for 

each subsystem (which can be from different zones) and the successive adding of neighbor- 

ing buses connected by branches. The subsystem domains grow like crystals which. after us- 

hg  dl system buses. c m  exchange buses by taking or retuming them to the interface group 

until a balanced set of subsystem with minimized interface subsystem size is reached. The 

results of this new subsystem splitting method are presented in Table 1 in which the interface 

subsystem has index O and the desired number of subsystems is 1 to 6. 

Table 1 : System Splitting for the 505-bus Test System 



Zone #1 

Figure 2.6. Zone Based Network Splitting Method for 505-bus Test System 
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After splitting system buses into subsystems. the system admittance matrix Y is also di- 

vided into four parts : the biock diagonal matrix A, the interface admittance rnatrix Y ,  and 

the border matrices as B and B ~ .  Similarly. the voltage and current vecton are divided into 

two parts corresponding to subsystem and to interface buses : 

If the voltages at tearing buses V, were known. the bus voltages in a given subsystem 

would not be directly dependent on current injections in other subsystems and could be 

solved from the subsystem equation : 

(S. 44) 

The following denvation shows how to find the bus tearing voltage vector Vt required 

for solving the subsystem equations (2.44). Using partition matrices defined above, the net- 

work equation (2.32) can be re-written as : 

Frorn this we obtain the following wo matrix equations : 



and we can denve V, from equation (2.45) 

v , - A - I - [ I , - B * v ,  ] 

Substitute (2.47) into (2.46) produces 

c-A- '* [ I , -B*v ,  ] + y t t 0 v t = r t  

[ Y ~ ~ - C ~ A - ' * B  ] * v , =  I ~ - c - A - " I ~  

which c m  be written as a simple matrix equation 

YYtt* V, = I', 

with matrix Y',, and vector I't defined respectively by : 

The Bus Tearing Procedure can now be described in the following four steps : 

Step 1 : Interface admittance calculation 

where 

Step 2 : Tearing bus current injection calculation 

Step 3 : Tearing bus voltage calculation 

v, -[ Y',t ]-' ' I', 



Step 4 : Subsystem voltages calculation 

Vi = [ Yii 1-' I q i  i = I, 2, ... k 

where the subsystem current injections I'i are modified by : 

I'i = Ii - yTli* vt i - 1, 2, ... k 

Using the two-step W-matrix technique for solving equation (2.57) leads to the following 

rnodified Step 4 : 

Step 4a : Intermedi~!~ serial matrix multiplication 

Step 4b : Subsystem voltages calculation 

AI1 admittance matrices can be pre-calculated. partitioned and stored in appropriate pro- 

cessor memones. Each subsystem i = 1.2, ... k is assurned to be solved on one multicomputer 

( one rack on RTDS ). In order to minimize the number of communications. the computations 

of interface current injections I', and voltages V, can be done separately on each processor. 

Typically, this is a problem of a very small size and the required computation will take less 

tirne than the communication between processon required othenvise. When al1 processors 

solve the interface voltages by themselves, the only information that needs to be exchanged 

between multicomputers or RTDS racks are the arnounts of the subsytem current injections 

from subsystems to tearing buses Iti in Step 2. 

S ince the interface bus voltages are made locally known on each processor, current injec- 

tions for the partition buses on each processors I'i can be updaied. However, for the voltage 

computation in Step 4 a full subsystem current vector is needed. This requires communica- 

tion, but only arnong processors on the same multicomputer / rack. One additional commu- 

nication within each multicomputer / rack is also required between the Steps 4a and 4b for 

exchanging the results of serial matrix multiplication. 



2.7 Handling Admittance Changes 

There are three meihods being used or considered for handling admittance changes in 

the network solution algorithms most commonly applied in stability prognms. Those meth- 

ods are : 

1. Re-computing the Y matrix inverse by LDU decomposition/inversion whenever an ad- 

mittance change takes place. 

- this method is used in most off-line commercial stability programs. 

2. Pre-calculating al1 necessary combinations of the inverse of matrix Y which may be 

caused by changes dunng a simulation mn and extracting the appropriate matrices from 

memory when the change takes place. 

- this method is used in the RTDS simulator for electromagnetic transients. 

3. Curent Compensation rnethod which converts changes in admittance mauix Y into equiv- 

aient modifications of bus current injections 1. 

- this method is reported in [14] and is used in the stability program from CRIEPI [2 11. 

Each of the above methods requires certain amount of storage space and execution time. 

The first method does not require much storage space but it is computationally very expen- 

sive because the decomposition as well as the factor matrix inversion must be recomputed 

and this process is hard to parallelize. The second method is just the opposite. It requires lots 

of memory for storing whole inverse matrices for various combination of admittance change 

but execution time is minimally affected. 

The third method requires some extra storage and processing time as described in the fol- 

lowing section. Due to the limited size of the DSP memory in the current architecture of the 

RTDS, it is considered to be the best compromise to allow on-line admittance changes in this 

parallel implementation of the High Speed Transient Stability program. 



2.7.1 Current Compensation Methods 

The problem king considered here again is the solution of equation (2.32) for voltage 

vector V when the admittance matrix changes due to switching or a fault so that the new equa- 

tion is given by : 

( Y + A Y ) ' V = I  (2.6 1 ) 

where : 

Y - is a sparse n ~ n  network admittance matxix 

AY - is a modification to it involving one or more network elements. and 

1 - is the current injection vector. 

A direct solution of equation (2.6 1)  normally requires matrix reinversion and is piven by : 

The objective is to solve the above equation as efficiently as possible. preferably without 

the necessity of matrix reinvenion. Providing that the modification does not involve too 

many elements and does not need to be permanently incorporated in the network equation, 

the solution can be obtained more economically without repeating the expensive LDU fac- 

torization and factor reinversion. 

In order to derive such a method, modifications to the network admittance matrix in 

equation (2.62) are written in a compact form as : 

AY = M + - M T  

where : 

6y - m m  matrix consisting of the amounts of al1 admittance changes 

M - n m  connection matrix consisting only the integers O, 1, and -1 

For a symmetric change of branch admittance between nodes i and k, an admittance 

change of Ay is added to Yii and Ykk, and subtracted €rom Yik and Yki elernents of the system 

admittance matrix Y. The modification in this simple case can be expressed in two different 



manners : Branch Oriented Modification and Node Orien ted Modification as described be- 

Iow. 

A. Branch-Oriented Modification 

This representation is used only with symrnetrical admittance matrices. For a single 

branch admittance change between nodes i and k the admittance modification matrix AY is 

given by : 

AY = 

f 

k 

When m branches are modified simultaneously. 6y becornes an mxm diagonal rnatrix, 

and M has m columns, each with entries + I  and -1 in the relevant positions. A shunt repre- 

senting fault would have only the + I  entry. 

B. Node-Oriented Modification 

This is a more general representation which can also be used for non-symmetrkal admit- 

tance modifications. In this case a single branch admittance change between nodes i and k 

in admittance modification matrix AY is given by : 

Node-ûriented modification representation is chosen for handling the admittance 

changes in the high speed transient stability aigorithm because it is more general. 



Changes of bnnch and shunt elements which are applied simultaneously, cm be com- 

bined together, each contributing to one or two elements of the admittance change matrix 6y. 

In order to avoid computationally expensive matrix reinversion a method has been 

derived which requires only the original inverse matrix Y-' for solving equation (2.6 1 ). This 

method is known as the Current Compensation Method [14] and is fully equivalent to a 

direct solution given by (2.62). It is derived from this equation by the following mauix bans- 

formations : 

V = ( Y + AY ) - I  -1 

= [(I + AY-Y-' ) = Y  I - ~ - I  

= y-' (1 + AY-  y-')-' -1 let X=AY.Y-~ 

=Y-' *(1+9)-'-1 

=Y-' *(l+X)-Io[1+X-11.1 where [ l + X - ? C l - I  

= Y - l  - [  1-(l+x)-~-x]*I k t  F=(I+x)-l-x 

=Y-' - [ l - F I - I  

Matrix F States the amount of current injection 1 that must be rnodified due to the admit- 

tance change by AY. The fomula for solving network equation (2.6 1 ) is now given by: 

v = Y-'*[I+Ax] 

where AI = -F 1 and 

F =( i  +x)-l0x =(I+AY.Y-[)-~.AY-Y-' 

Computation of matrix F can be further simplified by substituting the definition (2.63) 

for the admittance modification AY and further algebraic rearrangement to obtain : 



The general solution of equation (2.6 1 ) has now the following form : 

v =(y-' - y - l - ~ * ~ = ~ f - y - l  ) = I  (2.68) 

Three main current compensation methods are derived from equation (2.68) by different 

computational arrangements : 

C. Mid-compensation Method : Y-' replaced by factors U-' ~ D - I  L-l 

v = u - I = { ~  - D - ~ . L - I . M - ~ - M T . u - I  ) .D-I.L-I-I  (2.68~) 

The expression in the parentheses in the above equations is an riln matrix representing 

the compensation. Method B is convenient for use in combination with the W-matrix net- 

work solution. First current 1 is caiculated from dynamic equations and then it is modified 

by the current compensation method by the arnount of A 1  : 

The W-matrix network solution is applied to the modified current injection 1 + AI in the 

described earlier twwstep calculation : 

l ' = D 1 * W * ( l + ~ I )  where W = L-l 

V = W * I '  

A variery of fault conditions can be modelled and corresponding matrices F can be pre- 

calculated and stored for use dunng the simulation run. The initial inverse matrix Y-' is re- 

quired for computation of matrix F. When a fault at bus i is applied, oniy i-th row of Y-! is 

used and for a branch switching between bus i and bus j, both i-th and j t h  rows are used. 

When the system admittance matrix is split by the Bus Tearing method, the required im- 

pedances have to be collected from al1 subsystem matrices. In this case it is easier to use the 



physical meaning of irnpedance. In order to find the elements of i-th row of matrix Z - Y-'. 
the physical meaning of impedance cm be viewed as a system response to a unit injection 

current at bus i .  i.e. elements of i-th row of systern impedance matrix is equal to the vector 

of system bus voltages V when the current injection 1 is zero everywhere except for bus i 

where it is equal to I .O : 

w here I = [ O O... 1 ... O O O]' 

When the system is split by Bus Tearing ~Method, the above cornputation includes also 

the intermediate steps for bus tearing computation and current injection modifications as de- 

scribed earlier in the Bus Tearing procedure by equations (2.53) - (2.58). 

If the admittance change is not known ahead of tirne. the compensation matrix F must 

be computed on-line during the simulation run. For on-line computation of matrix F, a single 

admittance change would require an amount of cornputation equivalent to one network solu- 

tion for system voltages at fixed currents i.e. excluding the dynamic equation. An alternative 

rnethod for on-line computations of matrix re-inversion is also presented in the following 

section. 

2.7.2. Adjustment of the Inverse Matrix 

If the admittance rnatrix modification involves too many elements or the change is per- 

manent, it may be less expensive to appl y a fast method for matrix re-inversion once rather 

han apply the Current Compensation method continuously for al1 the following time-steps 

of a simulation mn. One alternative method for calculating the inverse matrix was proposed 

by Sherman and Momson [28,29] in 1949. 

Computational effort for obtaining the inverse of a matrix would be reduced consider- 

ably if the inverse could be transformed in a simple manner, corresponding to some specific 

change in the original matrix. If one element is changing in the original matrix the resulting 

changes in the elements of the new inverse can be computed from the old inverse as shown 

below. 



Consider n-th order square rnavix A and its inverse B = A-'. Also denote 

aij - elements of matrix A ; i.j = 1.2. ..., n 

bu - elements of matrix B ; i,j = 1,2, .... n 

Suppose that the element au has chsged by an arnount of Aau so that the new value is : 

Au = au + Aau 

When the original matrix A changes to A' = A + AA. the elements of new invene matrix B' 

can be computed based on the previous elements by : 

Bij = bij - buo bIj G u  ; i.j = 1.2. .... n 

where : 

Gu = A a u / (  l.O+ b u e A a u )  

providing that I .O + bu Aau is not equal to zero 

Equations (2.70) are conveniently subdivided into three groups : 

a ) i = I :  B I j = b i j ~ H u ~  j-1.2. .... n (2.72) 

b ) j =  J :  B d = b i l 0 H U ;  i=1,2, ..., n (2.73) 

C) al1 others : Bij = bij - B ~ J *  brjm H u ; i.j= 1.2 ..... n. i + I . j # J  (2.74) 

w here : Hu = 1.01 ( 1.0 + bu0Aau) (2.75) 

If two or more elements are to be changed. the new inverse c m  be found by successive 

applications of the method. 

Single change of one diagonal element : 

Suppose that a diagonal element a11 has k e n  changed by : 

AII - arI + 6 

Employ Sherman-Morrison to the original inverse B requires the following update : 

Bij = bij - biI b ~ j  GII ; i * ~  = 1,2, ..., n (2.76) 

where : 

Gr - G /  ( l.O+ brrg6)  (S. 77) 



Chan~e of one diagonal element bv 6 and one off-diagonal in the same row bv -6: 

Suppose that a diagonal element al1 and an off-diagonal element have k e n  changed by: 

Ali = al1 + G 

Au-au - 6  

Employ Sherman-iMomson to original inverse B requires the following update : 

Bij = bij - ( biJ - bi1 1. bIj GI1 ; i.j = 1.2, .... n 
w here : 

Grr = 6 1 [ 1.0 + ( bil - b1j ) * 6  1 

Illustrative exam~le  : 

When bnnch admittance is changed by Ay, four elements of  the admittance rnatrix are af- 

fected. For the branch between nodes k and m those elements are : 

diagonal elements : 

Akk " akk + AY 

Amrn = amrn + AY 

off-diagonal elements : 

Akm ' akrn - AY 
Amk = amk - Ay 

For a change of diagonal element Akk the equation takes die form : 

Bq - bij - bik' bkj' Gkk ; i j  = 1.2, ..., n 

where : 

G k k = A y /  ( I.O+ b k k œ h y )  

Applying this formula once more for change of A,, produces : 

Bij = bij - bik ' bkj ' Gkk + bim bmj ' Gmm ; i,j = 1.2, ..., n 

where : 

G m m = A y / (  1.0+ bmm0Ay) 



Chapter 3 

High Speed Transient Stability 

(HSTS) Program 

3.1 HSTS Algorithm and Program Structure 

For high speed transient stability solution of large systems a new algonthm has been de- 

veloped and incorporated in the HSTS program written in the 'Co cornputer Ianguage. The 

original version of the HSTS progrm was aimed at mnning on single processor worksta- 

tions. but because it was developed with parallel processing in mind, funher implementa- 

tions on the RTDS and the Distributed Processing Systems were implemented with minimal 

modifications to the original program. This new algonthm combines several methods impor- 

tant for parallel processing applications which include the following techniques as 

introduced in the previous Chapter 

A. LDUdecomposition and LDU-inverse for processing sparse matrices. 

B. W-matrix method for solving network equations (2-step procedure). 

C. Re-ordering scheme to minimize number of fili-ins in the W-matrices, 

D. Bus Tearing method for system splitting the large network into smaller subsystems, 

E. Current Compensation method for handling system admittance changes. and 

F. Partitioning scheme for solving one subsystem with many processors operating in 

parallel. 

The decomposition of the network admittance matrix Y. into factors L, D, and U is a pure- 

ly sequentid computation and is very dificult to parallelize as rnentioned in the previous 

chapten. In the proposed method, this decomposition is conducted off-line by the host corn- 

puter .before the actual simulation mn begins. For handling the admittance change during 



simulation mn. the Current Compensation rnethod is applied which does not require matrix 

decomposition or inversion but instead uses the pre-computed matrix F as described in Sec- 

tion 2.7.1. 

The network solution. without system splitting, is simply a multiplication of large spane 

matrices by a vector. When full matrices are used in cornputation. this problem by its nature 

is perfectly stnightfonvard for paralle1 processing witheach row<olumn multiplication im- 

plemented on sepante vector processors. However, with large system admittance matrices 

we have to utilize the sparsity to improve computation efficiency. The LDU-decomposition 

with a re-ordering scheme to minimize fill-ins in W-matrices produces uneven distribution 

of sparsity in the admittance matrix Le. processing of one row is more expensive than the 

other. In addition. there are also differential equations associated with different system nodes 

so that the work load may differ even more from one bus to the other. The Average Weight 

Partitioning scheme described in section 2.5.3 cm be applied to balance the processor load. 

Since effective paralle1 processing compilers do not yet exist. the HSTS program is ge- 

nerically structured to allow application o n  most common parallel or distributing processing 

systerns. This program is modularized and c m  be easily reconfigured and implemented on 

different types of parallel processing cornputers, including the RTDS. Logic is placed in the 

program so that it cm be compiled by the "C" compilers available on single processor com- 

puters and executed in a muItiprocessor environment either parallel or disuibuted. 

The complete HSTS algorithm with flowcharts is presented below : 

I HSTS Algorithm : 

S  te^ 1 : Initial Calculation h o t  ~arallelized. executed on the host cornputer) 

The HSTS program residing on a host workstation computer reads and interprets the data 

file which is assumed to be in the PSS/E stability program data format and performs the fol- 

lowing tasks to initiaiize data for each processor participating in the parallel processing : 



1 a) Split the system into R subsystems one for each RTDS rack or multicomputer 

I b) Form R subsystem admittance matrices Yii . i = 1. ... R and interface matrices Ytt .Yt i ,  

i = 1. ... R 

Ic) Apply reordering scheme and LDU decomposition to produce triangular and diagonal 

matrices Li , Di , Ui for each subsystem i = 1 ,  ... R. 

Id) Compute LDU inverses and W-matrices Wi = Li-' and wT = Ut-' 

1 d) Calculate admittance matrices Y Ni .Y . i=  1. ... R and Y tt required for S ystem Spli tting 

by Bus Tearing and defined by : 

k 

Y',, = Y[( - x Ytti 
i- 1 

as of eq. (2.52) 

as of eq. (2.55) 

as of eq. (2.5 1 ) 

le) Compute Zt, = [ Y'[[ 1-1 , L t l  Dt -I Ut-[ 

I f) Partition sub-systems using Average Weight partitioning scheme to balanced workload 

to P processors on each RTDS rack or network multicompu ter. 

lg) Initialize processor Local and Global Data Mernories 

Step 2 : Current Injections to Subsvstem Buses 

Each processor solves its own partition of subsystem buses and calls dynarnic models 

to integrate the associated differential equations. The resulting current injection for their 

nodes are then fed into the appropriate buses in the following order : 

2a) Solve systern differential equations using previous state vector X and the most recent bus 

voltages Vi to obtain new current injections Ii to system buses, 

2b) Update currents for non-linear loads. DC links and other system devices, 

2c) Apply Current Compensation using pre~omputed matrix F if system admittance change 

took place. 



S t e ~  3 : Cutrent Iniections tu Interface Subsvstem 

The original current injections to the interface buses, due to genentors and other devices 

connected to ihem, must also be updated by the injections due to the ovenll effect of subsys- 

tems that they are connected to. 

3a) Compute the arnount of current injections Iti to tearing buses due to the subsystem cur- 

rents Ii: 

Iti = Y'ic* Ii as of eq. (2.54) 

3b) Transfer the amount of current injections Ici to each processor solving the subsystem for 

local computation of interface bus voltages. 

S t e ~  4 : Tearing Bus Volîqes 

Each processor cornputes al1 tearing bus voltages locally in order to reduce communica- 

tion costs. 

43) Read the arnounts of current injections Iti from other processor to tearing buses 

4b) Update current injections to tearing buses 

4c) Compute tearing bus voltages ( solving equation 2.48 ) 

v, = ztt rt 

as of eq. (2.53) 

as of eq. (2.56) 

Step 5 : Subsvstem Current Iniections 

Since voltages V, are computed locally by each processor, the system current injections 

for buses within each processor partition can be updated without communication. 

5a) Compute the amount of current injections IVit ro subsystem buses from the interface 

buses: 

IVit  = yTti vt as of eq. (2.58) 



5b) Update subsystem current injections : 

ITi  Ii - IIit as of eq. (2.58) 

Sc) Transfer current injections 1'; to each processor in the same rack / multicornputer. 

S t e ~  6 : Subsytern Voltage Computation - Part 1. 

6a) Compute the intermediate product of senes matrix multiplication in W-matrix solution: 

1". - Di- !*  W,*I* .  
I - I as of eq. (2.59) 

6b) Transfer intermediate product IWi to each processor in the sarne rack I multicomputer. 

S t e ~  7 : Subsvstem Voltage Cornputarion - Part II.  

7a) Cornpute subsysiem voltages from the second part of series matrix multiplication : 

vî = wiT0 riw as of eq. (2.60) 

7b) Upload subsytem voltages V, to host computer for monitoring 

A Elow chart for the algorithm implementation in the HSTS program is presented below. 

Shown in Figure 3.1 is Part A of the HSTS program flowchart. This initialization part is 

executed before entering the Time Loop and consists of reading and interpreting the input 

data files as well ris forming al1 matrices and arrays required for the solution algorithm. 

For parallel or distributed processing systems this is an integral part of the HSTS Compil- 

er which generates Download File for each processor involved in the stability solution. The 

format of this file is different for different implementations but in each case it consists 

mapped rnernory contents necessary for each processor to perform the assigned task corn- 

putations. 

When runnjng the program on a single processor workstation, the download files are not 

genented and this part is irnmediately followed by the solution part performed on the sarne 

computer. The solution part consisting of solving al1 system differential and algebraic equa- 

tions is embraced by the T h e  Loop. The convergence of the differential-algebraic network 

solution is achieved by repeating the computations a few times within the Iteration Loop. 
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Figure 3.1. High Speed Transient Stability Program - Part A : HSTS Compiler. 

System Splitting, Node Ordering, LDU Decomposition and Inverse. 

There are two types of computations involved in the solution part. One type is perfonned 

only occasionally when system events take place and other is the routine computation of cur- 

rents and voltages. The solution is thus divided into two parts : 

Part B : 

Part C : 

System Admittance Change 

Network Solution Methods 

Part B is executed only when events such as faults, switchings or other system operation 

changes take place. This part is shown in Figure 3.2 One full network solution has to be per- 

formed every time system admittance is changed. Current compensation computation is ini- 

tialized and it is continuously applied in Part C for the duration of an event. 
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Figure 3.2. High Speed Transient Stability Program - Part B : HSTS Solution. 

System Admittance Change. 

Part C begins with Pre-calculations block which initializes the Iteration Loop. The repet- 

itive solution of the network differential and algebraic equations is performed within the It- 

eration Loop until either a termination cnterion is met or the maximum number of iterations 

is reached. Since this part is repeaied many times during a simulation run. computational ef- 

ficiency takes the highest priority. The flowchart for this part is shown in Figure 3.3. 

One rack of RTDS processors is equivalent to a multicomputer consisting P processors. 

The looping for processing the tasks by processors j = 1. ..., P on racks i= 1. .... R shown in 

the chart, are targets for parallelization in the multiprocessor environment. The number of 

buses on each processors will be detennined by the partitioning scheme which balances the 

processor workload. 
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Figure 3.3. High Speed Transient Stability Program - Part C : HSTS Solution. 

W-matrix & Current Compensation Network Solution Method. 



Communication links are different in nature for the RTDS and the Disfribu ted Processing 

Systems. For RTDS. the exchange of information among processors on the same rack are 

made via the Virtual Distributed Shared Memory which is transparent to al1 processon on 

the sarne rack and also its IRC part is also made transparent to processors on other racks. For 

the Distributed Processing Systems communication between processors requires cross-net- 

work links. 

3.2 HSTS VaIidation Tests on Workstation and PC 

n i e  network solution applied in the HSTS program has been tested on a selected 505-bus 

test systern against the conventional stability programs such as BPA. PSS/E. and PSDS. The 

test system consists of 505 busses, 704 branches ,435 transformers, 52 generators. and 126 

loads of various types. 

In the test. a three phase Z-cycle solid fault was applied to bus 344 with varying damping 

factor D. The same tests were perfonned with HSTS and BPA stability programs. The BPA 

program could be run only on UNIX Workstation, where the HSTS program was run on both 

the UNIX workstation and the PC computers. System splitting was applied in HSTS cases 

to observe its effect on execution time. 

Simulation results using the HSTS program match closel y the steady-state and post- 

fault curves of other stability prograns. Plots for selected 4 bus voltages and for 4 machine 

angles for the BPA and HSTS cases are shown in Figures 3.4 and 3.5. A very good agreement 

between the two prograrns can be observed for system bus voltages. Some differences in the 

post fault swing curves are observed which are due to differences in dynamic model repre- 

sentations. Sirnilar differences were also observed between BPA and P S S E  or PSDS results 

and thus they are considered to be acceptable. Since the dynamic modelling was not a prima- 

ry objective for this research, this matter was not investigated further. 
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Table 2 : BPA Execution Time on UNIX Worksbtion 

BPA 
Case 

I 1 subsystem 

Execution Time 1 
Average Time-step 1 To tri1 

162.5 msec 

- 

195 sec 

Table 3 : HSTS Execution Time on UNIX workstation 

HSTS-UNIX 
Cases 

1 subsystem 

2 subsystems 

3 subsystems 

4 subsystems 

5 subsystems 

6 subsystems 

Execution Time 

23.1 msec 

1 5.4 msec 

16.7 msec 

Table 4 : HSTS Execution Time on PC (without MPI communication ) 

Total Min. per time-step 

1 6.3msec 

15.8 msec 

20.9 msec 

1 

Max. per tirne-step 

590.2 msec 

38 1.3 msec 

416.5 msec 

--- - - 

1 subsystem 12.2 msec 330.1 msec 43.0 sec 

2 subsystems 9.3 msec 247.6 msec 34.8 sec 

3 subsystems 8.5 msec 222.9 msec 32.5 sec 

4 subsystems 8.9 msec 233.3 msec 33.8 sec 

5 subsystems 9.3 msec 244.2 msec 36.0 sec 

76.3 sec 

50.8 sec 

55.0 sec 

409.7 msec 

393.0 msec 

535.6 msec 

HSTS-PC 
Cases 

1 6 subsystems 

54.3 sec 

52.1 sec 

68.9 sec 

10.7 m e c  1 281.8 msec 1 

Execution Time 

4 1 .O sec 

Simulation cases : 505-bus test system, &second run, time-step At - 5 msec 

Total Min. per time-step Max. per time-step 
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Figure 3.6. Total Execution Time of a &second Simulation Run for BPA and HSTS 

Transient Stability Programs Solving 505-bus Test System 

The execution times for BPA and HSTS cases were measured. The CPU time cornparison 

for a &second simulation run with a time-step At = 5ms on the Sparcî U N I '  workstation 

and the 200MHz Pentium PC are presented in Tables 2-4 and Figure 3.6. The HSTS program 

takes approximately 25% of the time required by the BPA program on the same Sparc2 

workstation machine. Further reduction of approximately 40% is achieved by running the 

HSTS program on a 200MHz Pentium PC. It can also be observed that the system splitting 

itself produces computational savings because the LDU inverse is applied to smaller subsys- 

tem matrices and results in less fillins that improves the overall system mauix sparsity. Those 

gains, however, can be ovenvhelmed by the amount of extra work required to process inter- 

face buses which generally increase in number as the number of subsystems grows. 



Chapter 4 

HSTS Program Implementations 

In this Chapter. parallel implementations of the High Speed Transient Stability (HSTS) 

program are discussed. 

4.1 Parallel Processing for Power System Problems 

The following definition of parallel computer was given by Ian T. Foster [1  O] and is used 

here because it is broad enough to inchde parallel supercornputers that have hundreds or 

thousands of processors, networks and workstations and multiple-processor workstations: 

A Parallel Cornputer is a set of processors that are able to work cooperatively to solve 

a cornputdonal problem. 

The need for faster computers is driven by the demands of both computation-intensive 

and data-intensive applications and the problem of transient stability solution of large power 

system networks falls in these categories. The performance of the fastest computers in the 

market is growing exponentially with a factor of about 10 in every five years. The perfor- 

mance of a computer depends directly on the time required to perforrn a basic operation and 

the number of these basic operations that can be perfomed concurrently. The time to perform 

a basic operation is ultimately limited by processor 'dock cycle' time which is decreasing 

rapidly but for recent computers it is aiready approaching physical limits (such as due to the 

speed of light). To circumvent these limitations new strategies are k ing developed by the 

Very Large Scale Integration (VLSI) complexity theory to utilize interna1 concurrency in 

a chip. 

These new strategies, however, are expensive because in order to decrease the processing 

time T by a certain factor, the total area A of a chip must be increased by the square of that 

factor [IO] ie. the product  AT^ remains approximately constant. This AT* result means that 



not only is it difficult to build individual components that opente faster. it may not even be 

desirable to do so. For example, if we have an area n 2 ~  of silicon to use in a computer. we 

c m  either built n2 components. each of size A performing an opention in time T. or built a 

single component of size n 2 ~  performing the same opention in time Th. The system of n2 

components is potentiall y n times faster than the single component. 

A variety of techniques used to overcome the performance limitations on a single corn- 

puter include: Pipelining (different stages of several instructions execute concurrently) and 

Multiple Funcfion Units (several multipliers. adders. etc.. are invoked by a single instruc- 

tion strearn). 

Another important trend in computing is the enormous increase in the capability of net- 

works that connect computers. By the end of the 1990s. bandwidth in excess of 10 Gbits per 

second is expected to be cornmonplace. This trend makes it feasible to develop applications 

that use physically distributed resources as if they were part of the sarne computer. 

Although Distributed Cornputirtg differs from Parallel Computing the basic task of de- 

veloping programs that c m  run on many processors is common for borh. Prognms for multi- 

processing c m  share processor resources, data code and devices. The fundamental require- 

ments for parallel software includes : concurrency. scalability. locality and rnodulananiy. 

These propenies are bnefly discussed below. 

Concurrency, which refers to the sharing of resources in the same time frame. becomes 

a fundamental requirement for algori thms and programs for multiple processors located not 

only inside each computer but also across a network. 

Prograrns for parallel computing may expenence substantial increase in processor count 

over the lifetirne of the target hardware. Therefore, scalability. or resilience to increasing 

processor count, becomes another important feature for protecting software investments. 



A basic model used to represent a single machine is the von Neumann Cornputer. This 

model comprises a central processing unit (CPU) connected to a storage unit (Memory) as 

shown in Figure 4.1. 

-y==+ 
3.8645 

Memory 

Data 

Figure 4.1. The von Neumann Computer. 

The CPU executes a stored program that specifies a sequence of read and write opera- 

tions on various type of dufa stored in the memory. This simple model has proved remarkably 

robust for many years. 

Figure 4.2. Idealized Parallel Mode1 of Multicomputer. 

A parallel machine model or Multicomputer comprises of a number of von Neumann 

cornputen. or nodes, linked by an Interconnecting Network as shown in Figure 4.2. Each 

cornputer executes its own program, accesses local memory and may send and receive rnes- 

sages over the network. Messages are used to communicate with other cornputers and to read 

and write remote mernories. 



Accesses to local memory are less expensive than accesses to remote memory. That is. 

read and w ~ t e  are less costly than send and receive. This property is called Iocalify and is 

the third fundamental requirement for parallel software. 

While it is possible to program a single node computer in terrns of sequential instmctions. 

modular design techniques are applied for panllel programming rnodels. Complex pro- 

gnrns are constructed from simple components and components are structured in terrns of 

higher-level abstractions such as data structures. iterative loops or procedures. Parallel pro- 

cessing introduces additional sources of complexity that deal with the probtem of how to 

manage the execution of many processors and coordinate inter-processor interactions. In 

this context modulanVy becomes the fourth fundamental requirement for parallel software. 

In a parallel programming model mechanisms are needed that allow concurrency and 

locality and that facilitate development of scalable and modular programs. Certain abstrac- 

tions are needed that are simple to work with and that match the architectural model of the 

multicomputer. For this purpose two abstractions fit these requirements particularly well : 

the task and the channel. These abstract terrns permit discussion about concurrency, locality, 

and communication in a machine-independent fashion and provide a basis for the rnodular 

construction of parallel programs. 

Pmllel computation consists of many tasks that can be executed concurrently. A task 

encapsulates a sequential program and local memory (virtual von Neumann machine) and 

a set of inports and outports define its interface to its environment. Tasks can perforrn basic 

operations like reading and writing or sending and receiving messages. Outport-inport pairs 

can be connected by message queues forming communication channels between tasks. 

The multicornputer parallel machine rnodels using the tasWchannel progrmming ap- 

proach are widely used in paralle1 algorithm design, analysis, and implementation. Tasks 

can be mapped to physical processors in various ways. One or more tasks can be rnapped to 

a single processor. In parallel programrning model. channel indicates that computation in 



one task requires data in another task (data dependency) in order to proceed with the task 

execution. 

In spite of the rapid progress made in hardware technology for building a new generation 

of computers to date. it is still very difficult and painful to program computers for parallel 

processing. Few shared-memory computers such as the Balance and Alliant have resident 

compilers for limited set of languages ( FORTRAN or C ) which can convert software to pa- 

rallelized execution modules with no effort on the part of the user. Since conventional pro- 

gnms are often not written with parallelism in mind. gains c m  only be slightly greater than 

1 .O regardless of the number of processors used. In order to achieve significant gains by pa- 

rallelization. modem software development must concem itself with issues of concurrency. 

scalability. locality. and modularity as discussed earlier. 

Software deve lopment for paralle1 processing on the existing compu ters is currentl y very 

time consuming due to lack of parallel programing tools. debuggers. and effkient parallel 

compilers. Program code must be broken down into parallel tasks manually and distributed 

to each processor. Synchronization of al1 processes and al1 data communication is under pro- 

grammer control. The code developed in such a manual way is thoroughiy optimized by tak- 

ing advantage of pxallelisrn. which may not be visible to an unsophisticated compiler. Typi- 

cally. a program developed for one processor is not transparent to other local memory 

machine because language extensions have not been standardized. 

Parallel processing hardware architecture considers two general system classes : 

a) Single Instruction Multiple Data (SIMD) class of machines with shared or local memory. 

SIMD class includes vector processors such as the Cray. iBM 3090lVF and also MPP. 

Connection Machine, etc. 

b) Multiple Instruction Multiple Data (MIMD) class of machines with shared or local 

memory. 

MIMD class with local memory includes Distributed Processing Systems and such ma- 



chines as the iPSC and NCube. MIMD class with shared memory includes the BBN But- 

terfiy. Balance. Encore. Alliant FX-8. etc. 

MIMD class inciudes also specialized architectures such as those designed for neural 

networks, tnnsputers and the paraIIel vector processors which use more than one vector 

pipeline simultaneously. Distributed Processing Systems are an important subclass of 

MIMD machines. 

Algonthm development includes the design and analysis of new numencal and symbolic 

methods to match existing or new architectures. It also involves testing algorithrns to ensure 

accuracy and evaluation of algorithrns performances. The performance of many parallei ap- 

plications depends criticaily on the quality of the partitioning scheme used for decornposing 

calculation tasks across the processon of a parallel cornputer. Application performance is 

directly linked to the progress of the slowest partitioned part of the calculation and to whether 

al1 partitions are the same in tems of storage size and work load. Identifying and implement- 

ing the appropriate partitioning algorithm is crucial to ensuring high processor performance. 

The parallel processing algorithm may begin to show its limitations with increasing 

problem cornplexity by requiring a great deal of execution tirne or not providing accunte 

results. n i e  number of instructions in a program seagnent. or a grain. can be used as a sirn- 

plest measure of computational intensity. Grain size or granuiariîy is commonly described 

as fine. medium. and course depending on the processing levels involved. 

Latency is a time measure of the communication overhead incurred between machine 

subsystems. There are different types of latencies : 

- rnemory laioncy - time required by a processor to access the memory, 

- broadcast iuîency - time required for a processor to send a message to other processors, 

- synchron4ation latency - time required for two processors to synchronize each other. 

Computational granularity and communication latency are closely related and they both 

affect parallelization performance. By balancing eganularity and latency, one can achieve 

better performance of a cornputer system. Various latencies are attributed to machine archi- 



tecture. implementation technology. and communication patterns involved. The latency cm 

in fact impose a limiting factor on the scalability of the machine size. 

The complexity of an algorithm for solving complex problems on a computer is deter- 

mined by the execution time and the storage space required. The execution fime of a parallel 

program is defined as the tirne that elapses from when the first processor starts executing a 

problem solving program to when the last processor completes the execution. During execu- 

tion. each processor spends a certain amount of tirne for computing, communicating, or id- 

h g .  The ideal performance of a computer system demands a perfect match between ma- 

chine capability and prograrn chancteristics. The testing of parallel algorithms must be done 

on actual parallel machines because complex parallel architectures and communication 

schemes are dificult to simulate on a sequential machines. 

In more complex algorithm with variable amounts of work per tasks and unstmctured 

communication patterns. efficient agglomeration and mapping strategies may not be ob- 

vious to the programmer. In these cases. optimization can be imbedded in the algorithm by 

apply ing the loa&balancing or task-scheduling methods. 

For a specific problem, such as the transient stability, the program must be designed to 

maximize the use of processing power of the computational hardware on which it is going 

to be executed. The HSTS program is desipned as a general multiprocessing program that 

can be implemented on various computer architectures. In order to use the processing power 

efficiently certain prograrn adjustments must be made to suit adequately to a given hardware. 

In the following Sections, two implementations of the HSTS program are described. The 

parallel and distributed processing implementations are different. so that the nature of pro- 

gram adjustment will also be different. 

4.2 HSTS Implementation on Real Time Digital Simulator (RTDS) 

In the followinp section. a parallel implementation of the HSTS program on the RTDS 

hardware is described. 



4.2.1 The Real Time Digital Simulator (RTDS) Hardware 

The RTDS is a special purpose computer [6] designed primarily to perform power system 

electromagnetic transient simulations. Parallel processing techniques were applied in order 

to achieve the necessary computiition speed required for continuous real-tirne operation. 

Real-time operation, is achieved when al1 of the calculations required within a single time- 

step can be compieted within the chosen time-step. 

The RTDS is divided into units of hardware re ferred to as rack, with each rack housing 

iwenty printed circuit boards. Eighteen of those boards are identical and contain two digital 

signal processors and associated extemal hardware. These are the Tandem Processor Cards 

(TPC). One board within each rack is the Workstation Interface Card (WIC) and is used to 

communicate with a host computer workstation over an Ethemet based local area network. 

The final board contained within a rack is the Inter-rack Communication Card (IRC) and 

is used to communicate with other racks cornprising the RTDS. Figure 4.3 illustrates the 

RTDS hardware architecture. 
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Figure 4.3. RTDS Hardware Architecture. 



The TPC may be viewed as a pair of processors (two DSPs) with various banks of intemal 

and extemal memory as shown in Figure 4.4 The RTDS hardware uses the NEC pPD7724û 

processor which has two interna1 banks of memory (RAMO and RAiM 1)  each containing 5 12 

words. 

Periphenls 1 

I 
Local Data 

Memow 
28K words 

word - 32 bits 

1 
Global Dam Global Data Local Data 

Mcrnory blemory Memory 
4K words 4K words 28K words . 

1 
Figure 4.4. TPC Memory Banks. 

Neither internai RAM bank rnay be directly accessed from the Backplane. Processor in- 

Instruction 
Memory 
X worcls 

temal memory banks RAMO and RAM 1 are initially loaded from extemal mernory and are 

subsequently addressed intemally by the processor on each board. 

Numerous cubicles, each containing up to four RTDS racks rnay be interconnected to 

fonn a large power system simulator. In theory, the number of racks comprising a RTDS is 

unlimited, although there is a hardware limitation in that a single rack may be directly inter- 

connected to at most four other racks. By replacing one processor card with a second inter- 

rack communications card. however, the restriction rnay be relaxed so that one rack rnay be 

interconnected to at most eight others. 
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A significant effort was put into the developrnent of various levels of software in order 

to ensure that the RTDS was user fnendly- Foi transient stability simulation. the power sys- 
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tem mode1 is entered from data files in a standard PSSE like format. A Gnphical User Inter- 

face sirnilar to the PSCADIEMTDC program can be developed for commercial version of 

the HSTS prognm. 

A compiler interprets the power system mode1 and generates data files. Combined data 

files and the executable code fonn download files for the processors comprising the RTDS. 

A combined operator's console and data acquisition system is available via software mn- 

ninz on the host cornputer workstation. While a simulation is mnning, the user is able to in- 

teract with the RTDS. and also data generated by the RTDS may be captured and plotted on 

the host workstation. Since the operator's console and data acquisition system are inte- 

grated. it is possible to capture data showing the response to a user initiated disturbance. 

4.2.2 HSTS Implementation on RTDS 

The biggest obstacle in obtaining real-time transient stability solution appem to be the 

repetitive solution of a large size network matrix equation Y V = 1. The HSTS algorithm 

was developed to deal with this problem in the multi-processor environment. System size 

reduction by Bus Tearing method and sparsity utilization by W-rnatrix were adapted to over- 

corne the compu tationall y-intensive solution probiems. Partitionhg scheme was also devel- 

oped to balance the workload of the RTDS processors. 

The W-matrix method applied on the RTDS may reach two types of limitations : 

A. Tirne limitation : the total time required for the network solution and communication be- 

tween processors should be completed in the real-time within every time-step of 5-1 O 

msec. 

B. Memory limitation : the probiem size assigned to each DSP for parallel processing must 

fit within the size of memory blocks associated with the processors of the RTDS hard- 

ware. 



n i e  time in limitation A is the maximum of the execution times of the 36 processors with- 

in one RTDS rack required for a single-step computation. This time depends on : 

- total problem size ( number of system buses, and number dynamic models involved ) 

- density of admittance matrix and type of system models required for simulation mn 

- error m q i n  and the maximum number of iterations allowed in the iteration loop 

- size of a problem assigned to each DSP ( number of buses and dynamic models in a parti- 

tion ) 

Balancing processor workload is essential in this issue and equal-size partitioning nor- 

mally will not suffice because of the uneven density of system admittance matrices and dy- 

namic equations applied at various system buses. One method for balancing processor work- 

load was proposed in section 2.5.3 

The network solution algorithm based on the W-matrix Method and associated library 

of phasor domain rnodels were originally programmed in "C" computer language as a stand 

alone program for use on a single processor workstation computers. Compiling "C" pro- 

grams for parallel computers is done intemally and requires no effort for pre-prograrnming 

and code preparation. Although the NEC assembly code must be genented for the specific 

application on the existing hardware of RTDS, the reference software in "C" will be univer- 

sa1 for any other possible application on commercially available parallel processing cornput- 

ers including future versions of the EKDS. 

In order to run the High Speed Transient Stability prograrn on the RTDS parallel cornput- 

er, the "C" version is translated into a NEC code (assembly language) required by the 

PD77240 digital signal processors (DSP) used in the hardware. This cm be done either us- 

ing the C-NEC compiler or by manuai translation of the C-coded prograrn to a NEC-assem- 

bly language program. Since the compiler produced very inefficient code, some of the most 

critical functions had to be translated manually to form an extended HSTS NEC-Library as 

shown in Figure 4.5. 
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Figure 4.5. Implernentation of the HSTS Program on RTDS. 

It is also necessary to have adown-loading compiler program installed on a host comput- 

er for loading the NEC code and system data into the RTDS. The main assignrnent for the 

down-loader is CO read and interpret al1 system specifications and to group appropriate data 

and instruction words into hexadecirnal files for each indi v'idual digital signai processor in- 

volved in a simulation run on RTDS. 



Memory Considerations : 

For limitation B, the memory blocks of each individual DSP in the RTDS shown in Fig- 

ure 3.4 are considered to be : 28K of External Data Memory (EXM), 1 K of Intemal Data 

Memory( RAMO & RAM 1 ), and 4K of Global Data Memory (BP) for backplane commu- 

nications ( within which 4x256 words is reserved for inter-rack communications ). 

The network solution by W-matrix method requires the following complex corn- 

putations: 

1' = D-l W. I where W = L-l 

V = WT= 1' where Wlf= U-l 

To perform the twestep network solution computations both complex arrays I and 1'. 

which are of the full system size. must be transferred to each DSP via Backplane Mernory. 

The solution vector V is also complex and of the full system size but it doesn't have to be 

broadcast because dynarnic equations and bus voltages are solved on the same processors. 

Systern splitting by Bus Tearing method applied in the proposed solution method can re- 

duce problem size to a smaller subsytem size. The length of arrays I and 1' that need to be 

transferred are also reduced to subsystem size. 

Since Global Data Memory size is 4K. only a maximum of 2K complex values can be 

broadcast and therefore the maximum number of system buses for processing on one RTDS 

rack can not exceed 2,000 buses. This allows an average 55-bus partition for each of DSP 

on the 36 processor rack. 

The network solution requires storage of arrays and matrices in the Local Data Memory 

(EXM) and transfer data through Global Data Memory (BP) as shown in Figure 4.4. To eval- 

uate memory requirements we consider, for example, the number of system buses N = 500, 

partition size M = 55, and the density of the W-matrix d = 10%. The amounts of memory 

space (not including the data for dynamic model) is calculated as follows : 



Global Data Memory ( Back~lane BP : 

Transfer O - current vector 1 : 2xN = 1,000 5 4K 

Transfer 1 - working vector 1' : 2xN= 1.000 5 4K 

Transfer 3 - voltage vector V : 2xN = 1,000 4 4K 

curent vector 1 : 2xN 

working vector 1' : 2xN 

voltage vector V : 2xN 

triangular W rnatrix : 

sparse admittances 2x(d*OS*MxN) 

row index m y  : M 

column index array : d*OS*MxN 

triangular wT matrix : 

sparse admittances 2x(d*OS*MxN) 

row index array : M 

column index a m y  : d*O.S*MxN 

diagonal Pt matrix : 2xM 

The total memory requirement for storing a 55-bus partition on a single DSP is approxi- 

mately 9K which is less than the limit of 28K for the Local Data Memory, and leaves about 

19K for other data such as fault, machines, loads, exciters and govemors of al1 buses as- 

signed to a single DSP. 

Another memory limitation cornes from the size of the Instruction Memory which for 

the RTDS processors is equal to 8K. The size of instruction data is given by the size of the 

hexadecimal NEC translation of the RTDS program and is the same for each processor. If 

the code exceeds 8K, the processor may have to be "specialized" to receive only the code 



for specific type of computation like network solution. generator equations. non-linear load 

equation, and so on. 

In order to perform transient stability solutions on the RTDS hardware by the W-matrix 

method for large systems. it is necessary to utilize many racks. As far as the memory is con- 

cemed. subsystems of 2.000 buses could be performed on one rack with an average 55-bus 

partition assigned to each DSP. However. due to limitations of the RTDS communication ar- 

chitecture, which limi ts the t ist of broadcasts to 4K, this number must be reduced to around 

500 buses per rack. 

To allow processing of large systems on the RTDS hardware the HSTS Algorithm de- 

scribed in Chapter 3 is considered. The seven-step procedure is reviewed here to address the 

RTDS specific problems associated with this implementation. 

Al1 data for RTDS processors is partitioned and pre<alculated in Step 1. Current injec- 

tions to system buses are initialized and are updated by dynamic models in Step 2 and 3 for 

voltage calculations in the network solution algorithm. 

According to this algorithm the computation of Tearing Bus Voltages V, in Steps 3 & 4 

is not parallelized and is solved locally by each processor. The calculations of subsystern cur- 

rent injections Ii in Step 5 and bus voltages Vi in Steps 6 & 7 are stmctured for parallel pro- 

cessing as shown below. 

Com~utation of Tearin~ Bus Voltages ( S t e ~ s  3 & 4 of the HSTS Al 

Suppose that the Tearing Bus subsystem consists of Nt nodes and each subsystem Ni 

nodes respectively. The matrix Y'ù = Yii-1 required for computation of the current in- 

jections to the interface subsystem Iti is pre-calculated according to the formula (2.55) and 

is stored in spane fom on each processor memory for local computations. The computation 

of current injections I', and voltages V, repeated on each processor may cost less time than 

the communicating between processors required othenvise. 
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Figure 4.6. Computation of Currents Injections to Tearing Buses. 

The admittance matnx Y',, for the interface subsystem and its inverse are pre-calculated 

in the algorithm Step 1. Although bus tearing voltage calculation problem is of a small size, 

the sparsity of the interface admittance matrix can still be utilized and the LDü decom- 

position and LDU inverse perfomed in the same manner as for any other subsystem admit- 

tance matnx. W matrix W, = [L',J-~ is also formed and the subsystem network equation is 

solved by : 

Figure 4.7. Cornputation of the Tearing Bus Voltages. 



Parallel Comoutation of Subsystern Current Iniections ( Step 5 of the Algorithm 1 

Each rack computes i is  own injection current m y  IVi required for subsystem bus volt- 

age calculations on each processor. The partitioning scheme. however. assigns a certain 

number of busses to be solved on one processor so that the update of current injections c m  

also be perfomed only for those buses and the results exchanged among al1 processors on 

the same RTDS rack. 

First the current injections I i  to subsystem buses are updated by the solution of differen- 

tial equations. The original subsystem current injections Ii are then rnodified by the arnount 

of I'it which accounts for the effect of al1 bus tearing voltages V,on this subsystem. Partition- 

ing is also npplied to matrix yTti so that the matrix-vector multiplication yTIi Ti is per- 

formed only for a few rows on each processor as illustrated in Figure 4.8. Partitions of the 

border interface matrix yTti are stored as sparse and the vector multiplication here is of a 

type: sparse row times full column. 

DSP # l  

O 

O 

DSP #j 

0 rn 
O 

DSP #P 

Figure 4.8. Parailel Computation of Subsystem Injection Currents. 



Modified injection current a m y  I', is put together and broadcasted via Backplane 

iMemory BP to each processor on the same rack for paralle1 computation of subsystem bus 

voltages Vin 

Parallel Com~utation of Subsvstem Bus Voltages I S t e p p  

For the reasons explained in section 2.4, only one W-rnauix is used for each subsystem 

admittance matrix on one RTDS rack. Partitioning scheme divides W-matrices Wi and FVTi 

into P layers so that a certain number of row-column multiplications involved in the network 

solution equation is computed on each processor as illustrated in Figure 4.9. 

DSP #1 

DSP #j 

DSP #P 

Figure 4.9. Parailel Solution of Subsystem Equations on One RTDS Rack. 

For Ni nodes in subsystem i, Mj bus voltages are computed on processor j by solving one 

partition of subsystem matrix equation : 

Vb = wTij~ij-' wij * I'i 
This involves the following twestep W-rnatrix calculation : 

ITVij = Di, - 1  Wij I y i  

vij = wijT Ii" 



The unit-triangular sub matrices Wij and wijT are stored in the sparse fom and the vec- 

ton I'i and I"i as full vector. The vector multiplication here is of a type : sparse row times 

full coiumn. 

The intemediate products of the twwstep matnx multi~lication Ieqij are exchanged 

among processors via the Globai Data Memory (BP). 

This part is probably the most computationally intensive part of the network solution al- 

gorithm and it is also repeated many times within the Time and Iteration Loops of the HSTS 

program. Coding should thus be done as efficiently as possible. For the NEC instruction data 

the vector multiplication for this part is coded rnanually and included in the HSTS NEC-Li- 

b m y  of basic functions. 

Communication : Inter- roce essor and Inter-rack Data Transfers 

A complete solution for each time or iteration step is achieved in a few stages by making 

use of back-plane (BP) or inter-rack (IRC) communications. Four transfers are required to 

complete one network solution : three inter-processor transfers on the same rack and one 

in ter-rack trans fer. 

First bus voltages frorn the 1 s t  time-step solution (which are known locally by each pro- 

cessor) are used for solving dynarnic equations of machines and loads. Current injections to 

system buses are updated and if admittance change took place then current compensation is 

also added to these current injections. Each DSP cornputes cunent injections I'ij to those 

buses which are assigned to be processed as one partition group. These updated Croup of cur- 

rent injections are put together in BP to form a hiIl subsystem current injection array which 

is passed back to each DSP in Transfer O as shown in Figure 4.10. 

By applying the subsystem-t-interface admittance matrix Y'ti, the modifications to in- 

terface current injections Iti due to each subsystem are computed and put together in the top 

256 locations of BP which is used for the IRC communication. Blocks of current modifica- 

tions from each rack are received in inter-rack Tkansfer 1 and they are put at BP locations 



800.900. AOO. and BO0 respectively for 4 other connected racks according to a communica- 

tion map. 

to other Racks 

Transfer O Transfer 1 

from other 
Rac ks 

via IRC 

1 Rack #3 

[ Rack #J 

Transfer 2 Transfer 3 

Figure 4.10. Transfers of Variables via Backplane Mernory 

In the next stage the modified interface current injections I', are computed and using the 

LDU inverse of the interface admittance rnatrix Z,, = LI-' *Dt-I Ut-' tearïng bus voltages 

V, are computed on each DSP separately so that no transfer of data is required. 

The tearing bus voltages V, and the interface admittance rnatrix Yti are used to compute 

modifications to the subsystem current injections Iit using the admittance matrix Yti. The 

modified subsystem current injection array I'i is put together in BP From injections I'ij up- 

dated on each DSP and exchanged arnong processors in Transfer 2. 



A full modified current injection array I V i  is needed for the first part of subsystem bus 

voltage computation IVi = D~-' * Wi * I'i . One more time partition part of vector IqVij is put 

together in BP in Transfer 3 and the last part of the voltage computation Vi = Ui-' * IWi is 

now comple ted. 

New bus voltages are used in the next step solution of system dynamic equations as de- 

scribed above. Since differential equations associated with a group of buses will be pro- 

cessed on the same DSP, the bus voltages can be stored locally only and no add i tional transfer 

between processors to exchange these voltages is required. The program returns to the top 

of the Iteration Loop, or if the itentions are finished, to the top of Time Loop to proceed with 

the next time-step computation. 

Additional broadcasts may be required for the selected variables that are observed and 

need be uploaded to the host computer for plotting, monitoring or filing. 

4.2.3 RTDS Test Results 

The network solution part of the HSTS program including the W-rnatrix network solu- 

tion method and the Current Compensation method for handling the admittance change was 

tested on one RTDS rack consisting of 36 processors. A 505-bus system was solved using 

various number of processon. The execution time for one computational cycle with one it- 

eration was measured by observing the processor vansfer request flags on the Dolch Logic 

Analyzer. The execution times as a function of nurnber of processors used on a single RTDS 

rack are presented in Table 5 and also plotted in Figure 4.1 1. 

The RTDS test results indicate thai the most gains are achieved when using 5 to 20 pro- 

cessors. For more than 30 processors very small gains in execution time are observed. A full 

rack consisting 36 processors is therefore not an optimal number of processors to be used 

for parallel solution of a 5Oû-bus system. 



This results can be explained in terms of granulûnty or grain size for this 505-bus prob- 

lem. Since one system admittance matnx was used (one rack RTDS applied). the lower trian- 

gular sparse factor matrix L after node re-ordering consists of long (505 elements). very 

dense (almost full)  rows. These rows represents the smallest grain for processing on one pro- 

cessor causing that coarse grain size in this case. It would be probably better to split the test 

system into two or more subsysterns. to reduce the grain size. and solve each subsystem on 

separate racks even with iess than a full rack of processon. 

Table 5 : HSTS Speed as a Function of RTDS Size 

Number of 
Processors 

1 20 1 20.8 msec 

Execution Tirne 
( one iteration) 

S .  

1 O 

15 

41.8 msec 

28.1 msec 

23.6 msec 

One alternative task assignment scheme for one RTDS rack m q  be to split the system 

such that one subsystem cm be assigned to a TPC cards, and partition each subsystem for 

solving by 2-3 processor on one card ( 2 NEC or 3 SHARC processors). Such a scheme 

should improve the use of RTDS processing power but some program rescnictunng and 

transfer re-scheduling would have to be applied. 

25 

30 

36 

19.5 msec 

1 8.6 msec 

17.7 msec 



Execution 
Tirne [ mec ] 

Nurnber of RTDS Processors 

Figure 4.1 1. One-step Execution Time on V ' o u s  RTDS Size 

4.3 HSTS Implementation on Distributed Processing Systerns (DPS) 

Distributed Processing System is a type of multiple processor system which involves 

networks of cornputers that may not be close geogaphically. It is the most general form of 

parallel processing because it involves many different type of processors which may execute 

different programs, asynchronous communication channels with wide range of speeds, and 

architectures which are unique for each network. 

Distributed Processing implies that processing will occur on more than one processor in 

order for a solution to be completed. Various topologies for Distributed Processing Systems 

c m  be designed. These topologies can be either static or dynamic. Stafic nehvorks are 



formed wi th point-to-point direct connections which will not change durhg program execu- 

tion. Dynamic networks are implernented with switched channels, which are dynamically 

configured to match the communication demand in paraIlel processing programs. 

In this project static networks of comrnodity computers connected through an Ethemet 

are considered. The configuration is a master-slaves scenario, with one computer freely se- 

lected as a central controller distributing and collecting data from the other nodes in the clus- 

ter. A mechanism that coordinates the scheduling of interdependeni operations of a parallel 

application is required to run a program concurrently on sepante processors. A general mod- 

el of a Distributed Processing Systems (DPS) or Multicomputer is shown in Figure 4.12. 

Figure 4.12. Mode! of a Message-Passing Multicomputer. 

The DPS mode1 consists of multiple computers interconnected by a message-passing 

network. Each computer consists of a processor (P). local rnemory (M), and disks or UO pe- 

ripherals. The message-passing interconnection network provides point-t-point connec- 

tions among the computers which can have various configurations : mesh, ring, toms, or hy- 

percube. Al1 local memones M are pnvate and are accessible only by local processors. The 



Message Passing Interface Network, however. enables processon to communicate data for 

exchanging through the network. 

Computational cilgorithms are traditionally executed sequentially on single processor 

computen. Unlike conventional sequential programs. the computations performed by Dis- 

tributed Processing Systems do no( yield a linear sequence of events. The inter-relationship 

between the events performed in distributed systems requires distributed synchronization. 

In the HSTS program. this is accomplished by synchronous alignment of the sendo and 

blocking receiveo instruction pairs between distri buted and the central processors. 

Message-passing programming is appl ied to develop programs for applications on Dis- 

tnbuted Processing Systerns. In panllel programming, there are many different languages 

and programing tools. each suitable for different classes of problem. Example systems are: 

Compositional C++ (CC++). FORTRAN M (FM). High Performance FORTRAN (HPF). 

and the Message Passing interface (MPI). Implementation of the HSTS program on Distnb- 

uted Precessing Systems is based on the Message Passing Interface ( MPI ) libraq of func- 

tions and macros that c m  be used in C. FORTRAN. and C++ programs [18]. The ;MPI was 

developed in 1993-1 994 and is one of the first standards for programming parallel proces- 

sors. MPI is acomplex system which comprises at present 129 functions of numerous panm- 

4.3.1 Message Passing Interface (MPI) 

kW1 provides functions essential for communication between processes. This commu- 

nication is based on the concept of comrnunicaior which is a collection of processes that can 

send messages to each other. The actual message-passing in programs is carried out by 

'Send' and 'Receive' functions which consists envelops ( general data about receiver and 

sender ) and the data itself. 

Collective c o m m u n i ~ ~ o n  can be made between two processors ( point-to-point) or 

among more then two processon. When a single process sends the same date to every process 



the communication is called broadcast. There rue also avaiiable various communication 

modes such as : standard. bunered. synchronous, and rcady which cm be used for specific 

purposes. 

One programming environment for MPI development is provided by the MPICH for 

Windows NT software. This implementation, called MPICHMT. ailows processes to corn- 

municate with each other either via shared rnemory or via the network depending on where 

the receiving process is Iocated. For this research work a public domain and freely available 

MPICWNT implementation developed at the Mississippi State University is used. An alter- 

native UNIX implementation is the MPVLAiM developed at the Ohio Supercornpu t ing 

Centre. 

MPICH operates on both lntel architecture and DEC Alpha platforms and is supporting 

a range of multiprocessing system configurations. An mpirun program is provided for pre- 

cess startup. Processes can be run on a default set of nodes and the process placement c m  

be controlled by use of configuration files. The system devices are integrated into MPICH 

in an optimal way to bring high performance for the messaging system. 

With MPICWNT. a dedicated cluster of cornputers on an existing network can act as one 

parallel cornputer solving one compute-intensive problem. The Microsoft Visual Studio en- 

vironment and Digital Visual FORTRAN are supported which offers extensive capabilities 

to support debugping for parallel progmming. 

In MPI programming, the processes involved in the execution of a parallel program are 

identified by a sequence of non-negative integers called ranks. When the program is corn- 

piled and mn with more than one processors the process is as fo1lows : 

1. A copy of the sarne executable program is placed on each processor, 

2. Each processor receives its own data required to perform al1 assigned tasks. 

3. Processes execute different instructions according to processor ranks. 



The above is based on the Single Instruction Multiple Data (SIMD) paradigm in which 

the effect of different programs running on different processors (MIMD) is obtained by tak- 

ing branches within a single prognm on the ba i s  of process nnk. A process cm find out its 

own rank (MyRank) by calling the function : 

MPI-Cornm-rank(MPI-COMM-WORLD. &MyRank): 

The path of execution for communication functions is selected on the basis of this rank. 

A multicomputer is specified as a simple list of machine names in a file for which MPI 

applications must be synchronized so that a11 processes locate each other before user code 

is entered. A simple SIiMD application can be specified on the mpirun cornmand line while 

more complex configuration is descnbed in a separate file. called an application scheme. 

Six basic MPI functions that are most frequently used for paralle1 programming are : 

MPI-Ini t - to initiate MPI computation 

MPI-Finalire - to terminate MPI computation 

MPI-Comm-size - to determine number of processors in MPI process group 

MPI-Comm-rank - to determine my processor identifier 

MPI-Send - to send a message 

MPI-Recv - to receive a message 

Al1 but the firsc two functions take a conzrnunicafor as an argument. A communicator 

identifies the process group and context with respect to which the operation is to be per- 

formed. For the basic program the only comrnunicator needed is MPI-COMM-WORLD. 

It is predefined in MPI and consists of al1 the processes involved in a cornputation. 

The actual message-passing is carried on by the functions MPI-Send and MP1-Recv. In 

order for the message to be successfully communicated. the system must append some in- 

formation to the data that the application program wishes to transmit. This additional in- 

formation forms the enveiope of the message which consists of the receiver rank, the sender 

rank, the tag, and the communicator. 



4.3.2 HSTS Implementation on DPS 

As emphasized in the previous sections. because the High Speed Transient Stability 

(HSTS) prognm was developed with parallel implementation in mind. the implementation 

on Distributed Processing Systems (DPS) or iMulticomputer requires a minimal adaptation. 

A fully scalable multiprocessing version of the HSTS C-language program is applied in this 

implementation. The partitionhg scheme. which was important for parallei processors on 

each RTDS rack. is included in the program but not used unless multiprocessor computers 

are available in the network. Communication. which was based on the Virtual Distributed 

Shared Mernory data exchange. is now replaced with the MPI-based cross-network mes- 

sase passing routines. 

S ince effective paralle1 processing compilers do not yet exist. the HSTS program is je- 

nerically structured to allow application on rnost common parallei or distributing processing 

systems using a single processor compiler. This prognm is modularized and can be automat- 

ically recontigured to specific computer hardware architectures. 

In the HSTS program the computation for solving the problem and the data operated on 

by this computation are decomposed into small tasks. For effective decomposition of a tran- 

sient stability problem a power system is split into a desired number of subsystems one for 

each computer (or multicomputer) in the network. 

Al1 basic tasks are designed to perfonn the 7-step HSTS algorithm described in Chapter 

3. A tusk assignment scheme, which is a method of allocating problem tasks to processors. 

is included in the initialization part of the HSTS program. Proper communication required 

to coordinate task execution is also designed in the general HSTS program structure as 

shown in Figure 4.13. 

The EXM[k] ; k = 1.2, .... K in Figure 4.13 represent the partitioned data blocks which 

are sent to network computers at the beginning of a simulation run. 
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Figure 4.1 3. HSTS Prograrn Structure for Mu1 tiprocessing Implementations 



The Manager / Worker task assignment scheme is applied for implementing the HSTS 

program on Distributed Processing Systems as shown in Figure 4.14. In this scheme acentral 

manager task is given responsibility for problem decomposition and task allocation. This 

manager task is assigned to the Root Processor rank O. Each workerprocess. which is proces- 

sor of rank greater than O. repeatedly executes a problem task assigned by the manager. This 

task can be either to perform part of the HSTS solution or it cm be a task totally different 

in nature such as the interface to the EMTDC/PSCAD program also shown in Figure 4.14. 

I Socket 
Communication 
Channel 

Manager I HSTS 
Root Process : Rank O 1 

Figure 4.14 Manager/Worker Task-scheduling Scheme for HSTS Implementation on DP 

The main task for a worker processor is to perform a solution of one partition of a subsys- 

tem problem. If K worker processors are Iocated on K single-processor cornputers the sim- 

plest method for task assignment is to split the power system into K subsystem and assign 

a subsystem i to a processor which rank is equal to i ( MyRank = i ). 

After finishing their tasks workers report to the manager by sending messages consisting 

of essential results required by other workers to continue their task computations. Manager 

receives al1 the messages and sends back collective messages io al1 workers. The manager 

also collects the final solution results, once every simulation time-step, and either stores 



them in output files or displays selected quantities using a GUI interface such as the RunTime 

of the PSCAD prognm. 

In the DPS implementation. communication must be done through the network and thus 

the communication Iatency will typically be larger than in the RTDS implementation unless 

fast network software and hardware are used. When one subsystem is solved by one comput- 

er. the requirement for dataexchange between processors is similar to the inter-rack commu- 

nication (IRC) in the RTDS implernentations : one communication per iteration for the sub- 

system current injections to interface buses is required for the local computation of tearing 

bus voltages. Sirnilx communication is also required during events such as switchings or 

system faults when subsystem current compensations must be exchanged. The size of these 

communication messages is small because it is proportional to a small number of interface 

buses or busses affected by admittance change in the first and second cases respectively. 

Message-prtssing programming models are by default nondeterministic which means 

that the arriva1 of messages sent from processors A and B to a third process C .  is not defined. 

It is the programer's responsibility to ensure that the messages reach their destinations in de- 

terministic order when this is required. MPI provides a mechanism to create communication 

channels for point-to-point communication that allow constmction ofdeterministic models. 

However, for the two Gather-Broadcast type of communication shown in Figure 4.13 the 

order of receiving messages is not critical as long as the message tags contain the information 

of where the received message came from. The manager can constmct the collective mes- 

sages for worken, based on the task assignment map which is also used at the beginning of 

a simulation run to distribute the partitioned data to al1 processors. 



4.3.3 DPS Test Results 

The HSTS multiprocessing solution method has been tested on a 100 MHz Ethemet LAN 

which connects UNIX. Windows '3.1. '95. and NT-based machines. Transient stability 

solution for a 505-bus test system was performed on selected homogeneous cluster of 7 Win- 

dows NT cornputers. First. the whole system was solved on one machine. and then the system 

was split into k = 2. .... 6 subsystems and solved on k+ 1 machines with one computer acting 

as a manager. 

The main purpose of those tests was to demonstrate that the proposed rnultiprocessing 

solution method could produce significant speedups in the cornputational time. There is al- 

ways certain amount of communication time associated with data exchanges required to per- 

form such a solution. This amount of time depends on the type of network and the specialized 

hardware applied for fast communication. This aspects were not studied in this research 

work because they require expensive computer network upgrades. 

In order to validate the method. the total computation and total communication times 

were observed separately dunng a &second simulation run on each machine in a cluster se- 

lected for the HSTS solution. The test results are presented in Table 6 and corresponding 

gnphs are presented in Figures 4.15 and 4.16. 

It crin be observed that the computation time is reduced h m  almost .CO seconds for one 

machine to the range of. simulation time for clusters of 6 and 7 machines. It can also be ob- 

served that the workload for workers (machines 1-6) is approximately baianced. 



Table 6 : HSTS Execution Tirne on DPS (with MPI Communication) 

Execution Time HSTS 
Cases 

Process 
Rank Compu tation Communication Total* 

- - 

39.7 sec 
1 subsystem / 

1 machine 0.1 sec 39.8 sec 

2 subsystem / 
3 machines 6.5 sec 

1 2.6 sec 
1 4.0 sec 

94.4 sec 
88.3 sec 
86.9 sec 

100.9 sec 
100.9 sec 
100.9 sec 

3 subsystem i 
4 machines 6.3 sec 

8.3 sec 
7.8 sec 
7.9 sec 

142.1 sec 
140.1 sec 
140.6 sec 
140.5 sec 

1 48.4 sec 
1 48.4 sec 
148.4 sec 
148.4 sec 

4 subsystem i 
5 machines 6.00 sec 

7.26 sec 
5.47 sec 
6.47 sec 
5.34 sec 

387.6 sec 
356.5 sec 
388.3 sec 
357.2 sec 
389.9 sec 

393.6 sec 
393.7 sec 
393.8 sec 
393.7 sec 
393.4 sec 

5 subsystem / 
6 machines 6.25 sec 

5.95 sec 
4.80 sec 
5.22 sec 
4.72 sec 
5.40 sec 

602.5 sec 
602.9 sec 
604.0 sec 
604.1 sec 
604.1 sec 
603.4 sec 

608.7 sec 
608.8 sec 
608.5 sec 
609.4 sec 
608.8 sec 
608.8 sec 

6 subsystem 1 
7 machines 5-82 sec 

6.01 sec 
4.57 sec 
5.70 sec 
4.22 sec 
5.33 sec 
4.61 sec 

529.5 sec 
529.4 sec 
530.8 sec 
529.6 sec 
53 1.2 sec 
529.9 sec 
530.9 sec 

535.3 sec 
535.4 sec 
535.3 sec 
535.3 sec 
535.4 sec 
535.3 sec 
535.5 sec 

Simulation cases : 505-bus test system. &second run, time-step At = 5 msec 
* Exciuding the initiakation time which averages approximately 3.5 sec. 
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Figure 4.15. Processor 's Total Computation Time on Various DPS Cluster Sizes. 

In Figure 1.15, for cases with more than one processor. the first column representing the 

computation tirne of the root processor rank O is different than columns of the other proces- 

sors. This is because in those cases manager processor does not participate directly in the 

solution process and thus its load is different and normally not balanced with the worker pro- 

cessors. 

It cm also be observed that, as the number of subsystems grows. problem granularity 

rnakes it more dificult to balance the processor load. 
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Figure 4.16. Processor's Total Communication Time on Various DPS Cluster Sizes. 



Chapter 5 

Conclusions and Recommendations 

n i e  main objective of this research work was to achieve a high speed stability solution 

which could be applied on parallel or distnbuted processing hardware platforms such as the 

RTDS and Distributed Processing System of Local Area Networks. 

Various methods were considered and tried out on different cornputer hardware. Two it- 

erative network solution algorithms based on the Gauss-Seidel and the Bergeron rnethods 

were developed and examined for convegence and computational speed. Although both 

solution methods readiiy fit into the parallel architecture. they generally suffer from corn- 

putational inefficiency caused by the jnherent slowness of convegence of the iterative net- 

work solution process for large system sizes. Therefore. a direct solution approach has been 

chosen in this research work for developing an algorithm for high speed stability solution. 

The achievements are sumrnarized and concIusions and recommendations are presented in 

this Chapter. 

5.1 Major Contributions 

The following is a surnmary of the major contributions which have been accomplished 

in this research work : 

A. ~Multiprocessing algorithm for high speed transient stability solution 

In order to achieve high speed transient stability solution for large systems, a new rnulti- 

processing algorithm has been developed in this thesis. This algorithm combines several 

techniques useful for parallel processing applications which include the following : 

LDU4ecomposition and LDU-inverse for processing sparse matrices 

W-matrix method for solving network equations 



Re-ordering scheme to minimize number of fill-ins in the W-matrices 

Bus Tearing method for splitting large network into smaller subsystems 

Cument Compensation rnethod for handling the changes of system admittances 

Partitioning scheme for solving one subsystem on rnany processors operating in 

panllel. 

A very important feature of thjs new algorithm is the scalability achieved in two levels 

of parallelization. Firstly. the large stability problem is decomposed into smaller subsystem 

problriiis using the System Splitting by Bus Tearing method. Each subsystem can be solved 

relatively independently on one multicomputer with minimal communication requirements 

because only a few connecting nodes are needed to tie the subsystem solutions together. 

The second level of parallelization is achieved by applying the load-balancing partition- 

ing scheme to solve subsystem problems by processors of a mu1ticomputer. Since this paral- 

le1 processing requires more intensive data exchange between processors. the communica- 

tion should be done via shared memory such as found on a RTDS rack. 

This two-level parallelization scheme allows a very flexible method of adjusting the 

solution method to various cornputing network architectures including parallel and distrib- 

uted processing network configurations. 

B. High Speed Transient Stability (HSTS) multiprocessing program 

A stand alone version of the High Speed Transient Stability (HSTS) program has been 

written in 'C' cornputer langage for applications on single processor cornputers ( U N E  and 

PC) and for establishing a "template source code" for implementations on parallel and dis- 

tributed processing hardware. Power system models developed in other projects at the iMan- 

itoba HVDC Research Centre are included in the dynarnic part of the HSTS Program and 

parallelized in order to perform a complete solution of the transient stability problem. Those 

models include Classical and Detailed S ynchronous Machines. Exciten, Power S ystem S ta- 

bilizers, Governors, Non-linear Loads, Multi-terminal DC Links and various Faults. 



Proper inter-process communication routines are developed for the RTDS and Distrib- 

u ted Processing S ystem implementations. This communication must provide both the cross- 

network and inter-processor data exchange which is accomplished by applying the Message 

passing Interface (MPI) communication software. 

C. Parallel processing irnplementation of the HSTS program 

A basic version of the HSTS program (network solution and system admittance change) 

has been implemented on the RTDS for evaluation of the proposed network solution merhod 

in a parallel processing environmen t. The load-balancing parti tioning scheme is the main 

mechanism that aliows the parallel solution in this implementation. 

The execution time for solving the 505-bus test system rneasured for various nurnber 

of processors applied in a single RTDS rack. has shown that signihcant gains can be achieved 

when up to 20 processors are applied. Granularity of the problem causes the gains to saturate 

and the execution time to level off around 17 msec for one complete netwok solution corn- 

putational cycle. 

Alternative methods for the HSTS program implernentations on future versions of the 

RTDS hardware (racks of cards consisting 3 SHARC processors) considers the assigrnent 

of one subsystem to 3-6 processors so that more chan one subsystem can be solved on one 

RTDS rack. This should better utilize the RTDS processing power for solving the stability 

problem. 

D. Distributed processing implementation of the HSTS program 

A distributed processing implementation of the HSTS program on a Local Area Network 

has been completed to examine program flexibility to adjust to various network configura- 

tion. The proposed method considers various number of cornputers and various nurnber of 

processors on each computer that can be involved in a collective solution process. 

It was demonstrated that solving the problem on a network of distributed processon cm 

effectively reduce cornputational ùme but at the expense of increasing communication time. 



It is believed that the emerging fast network technologies cm soon eliminate the high com- 

munication latency and allow high-speed or even real-time transient stability solution of 

large scale systems on a scafable cluster of comrnodity cornputers. 

5.2 General Conclusions 

The proposed rnultiprocessing algorithm implernented in the HSTS program deals with 

the fundamental requirement for parallel software very effective1 y. The concurrency re- 

quirement is accomplished by converting the general matrix solution into parailel. indepen- 

dent tasks that can be executed concurrent1 y on many processors. For the sculability require- 

ment, the twdevel  partitioning and task assignment schernes form a powerful mechanism 

for effective problem decomposition appropriate for various computer architectures and 

available network resources. The requirement of localify is one of the prime concerns in the 

proposed method. The data dependencies and communication requirements are minimized 

by assigning to one processor a group of system buses along with dynamic devices connected 

to those buses. iModularity of the HSTS program is rnaintained at various program levels. 

At the bottorn level, there are primitive functions for basic operations such as cornplex vector 

and matrix muitiplications. At higher levek are the basic program modules which are used 

to construct program funct ions performing dynamic and network solutions. admittance 

change. current compensation and other program blocks. 

The main goal in developing a parallel algorithm is to rnaximize its parallelism and 

to minimize the data dependencies between the parailei parts. The uade-off here is that more 

parallelism involves more processors, which may require more data sharïng and thus more 

communication time. The algorithm applied in the HSTS program handles those problems 

very effectively and, although more extensive tests are still needed, the basic tests performed 

for this research work confirm that. The nurnber of inter-processor communications per 

computational cycle. as well as the message lengths, are minirnized due to a special combina- 

tion of techniques applied in the solution method. 



5.3 Future Recommendations for Speed Improvements 

After a more detailed analysis of the HSTS execution process, some additional savings 

in computation and communication times can be achieved by further optimization of the pro- 

gram parallelization. SoIving of the interface subsystem. for example. can be assigned to the 

host cornputer (manager) and the dynamic solution for the interface buses c m  be performed 

in parallel to similar computations for subsystem busses performed by other computers 

(workers). The interface bus voltages c m  be computed by the manager and returned to the 

remote processors for local updates of the current injections and voltage computritions. In 

this case. the overhead time due to the repetitive computations of the interface subsystem on 

each processor, can be reduced. 

The main problem for distributed processing remains the cross-network communica- 

tion. For solving the high communication latency problem. an upgrade of hardware is neces- 

sary. High Performance Computing and Fast Network technologies must be utilized to 

achieve a better performance on a Local Area Network. Recently, rnany research groups re- 

port on achieving a high computational speed using the fast network techniques. 

One software tool designed to synthesize groups of computers into a high-performance 

environment has been developed by Professor Andrew Chien at the University of Illinois and 

is calfed the High Performance Virtual Machine (HPVM). Using a High Performance Vinu- 

al Machine (HPVM) software, a group of off-the-sheif cornpurers can be synthesized to de- 

liver a peak performance of between 100 and 200 billion floating-point opentions per se- 

cond. A high-performance message communication layer. the Illinois Fast Messages (FM), 

c m  send messages between processors over high-speed networks delivering bandwidth of 

just under 80 megabytes per second and a latency under 1 1 microseconds using the Myrinet 

interconnect. A variety of of Application Programming Interfaces (API's) has been built on 

the top of FM and includes the MPI used in the HSTS prograrn. 



The HVPM and Myrinet interconnect are viewed by the author as one of the most promis- 

ing platform for the HSTS irnplernentation which can elirninate the large communication 

overhead observed in the regular LAN. A much more expensive alternative would be to ap- 

ply HSTS on High Performance Computers such as the 2600 MultiComputer Senes deliv- 

ered by the Computer Signal Processing & Imaging (CSPI). This system consists of 6 cards. 

each incorporating four 200 MHz PowerPC processing elements interconnected by an 

8-pon crossbar switch. CSPI uses Myrinet high speed (gigabytes per second) packet corn- 

munication and packed routing technology to implement a switched network solution. It also 

supports the MPI for multiprocessor convol and inter-processor communication. 
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