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Abstract

The emergence of parallel processing architectures and fast network computing have
opened new opportunities and challenges to apply these recent technologies to solve power
system problems. For the transient stability solution applied on parallel processing hard-
ware. a suitable algorithm has been developed to achieve high speed computation for large
systems. This new algorithm combines several techniques useful for parallel processing such
as : the W—matrix method for solving network equations, Bus Tearing for splitting large net-
work into smaller subsystems, Current Compensation for handling system admittance
changes, node re—ordering scheme to improve matrix sparsity, and a load-balancing parti-

tioning scheme for solving one subsystem on many processors operating in parallel.

The multiprocessing algorithm has been incorporated in a stand alone version of a High
Speed Transient Stability (HSTS) program. This computer program is aimed at implementa-
tions on existing hardware of parallel processing computers such as the Real Time Digital
Simulator (RTDS), Distributed Processing Systems (DPS), and other muitiprocessing com-

puters (multicomputers).

A mechanism that coordinates the scheduling of interdependent operations of a parallel
application is provided to run a program concurrently on separate processors. Although, spe-
cific implementations require specialized software to achieve fast communication, the basic
mechanism for synchronization is built in the HSTS program and is based on the Message

Passing Interface (MPI) software.

Two implementations of the HSTS program have been completed and tested to demon-
strate accuracy, efficiency, and computational speed of the proposed multiprocessing solu-
tion method. In the RTDS parallel processing implementation, it has been shown that solving
the transient stability problem can be performed faster if the system is partitioned for solving

on many processors operating in parallel instead of solving by one processor.




For large power systems, processing of large admittance matrices takes most of the com-
putation time. In the Distributed Processing System implementation it has been shown that
using the system splitting method computation time can be effectively reduced but at the ex-

pense of increasing communication time.

The high communication latency observed in the Local Area Networks may be elimi-
nated or at least significantly improved by the emerging fast network technologies. Altemna-
tive software and hardware tools have been designed by other researchers to synthesize
groups of computers into a high-performance environment. One such tool is the High Per-
formance Virtual Machine (HPVM) which, according to the report, can deliver a high—per-
formance message communication over high—speed networks with a bandwidth of 80 mega-
bytes per second and a latency under 11 microseconds using the Myrinet interconnect.

It is very probable that with the new technologies of fast network and high performance
computing, it will be possible to solve the transient stability problem for large systems in

real-time using the HSTS program on a scalable cluster of commodity computers.
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Chapter 1

Introduction

Power systems are becomning increasingly complex because of interconnection and fast
response of power plants with solid state controllers and the use of larger generating units.
These trends result in more productive use of transmission corridors and the system being
operated much closer to its stability limits. Transient stability simulation is widely needed
for dynamic analysis, but existing off-line transient stability programs require excessive
computer time for practical studies. Consequently, fast methods for assessing transient sta-

bility limits are required, preferably in real-time or even faster.

The emergence of parallel processing architectures and fast network computing have
opened new opportunities and challenges to apply these recent technologies to solve power
system problems. For the transient stability solution applied on parallel or distributed proces-
sing hardware, suitable algorithms must be developed if high speed is to be achieved for large
system sizes. Using those new algorithms implies modifications or even complete rewriting
of existing programs in which significant effort has been invested over the years [8]. In order
to make the most from the existing solution methods and the new technology, a variety of
approaches have been undertaken. One group of methods adapts the fastest sequential algo-
rithms for parallel implementations on special purpose parallel processing computers.
Another group of methods applies new algorithms that are written specifically for applica-

tions on the existing hardware of parallel processing computers.

There are no obvious parallelisms inherent in the mathematical structure of the power
system transient stability problem. Thus, for this specific problem, a parallel (or near—paral-
lel) formulation has to be found that is useful for constructing a parallel algorithm. This solu-

tion has to be implemented on a particular multiprocessing computer. The computational ef-
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ficiency of such an implementation is dependent on the suitability of the parallel architecture
to the parallel algorithm. Therefore, it is no longer meaningful to develop the best parallel

algorithm without reference to the target hardware architecture.

There are available various single processor software packages which run the traditional
stability program solution at, or near, real time for small or midsize systems. For solving
large power systems, one common trend is to adapt these standard solution methods and use
the commercially available multiprocessing hardware as their computational tools. High ef-
ficieacy is usually hard to reach because computation and communication takes too much
time during each caiculation time-step. For the solution of large scale power system net-
works, it is possible to substantially reduce the computation time if special purpose parallel

processing hardware and parallel programming were used.

There are various types of commercially available parallel processing computers : trans-
puters, shared—memory multi—processor computers, and distributed—memory parailel com-
puters like Hypercube [3] and the Real Time Digital Simulator (RTDS) [6]. The biggest chal-
lenge facing the use of parallel processing computers for the power system stability solution
in real-time is the communication and data exchange that may be very extensive for large
power system models. The RTDS has been successfully applied for real-time electromag-
netic transients simulations of power systems and it handles communication problems very
effectively. Therefore this parallel processing hardware has been chosen for a prototype im-
plementation of the proposed multiprocessing method for solving the transient stability

problem.

The main objective in this research project, is to develop a suitable algorithm for solving
power system transient stability problem on many processors operating in parallel. A com-
puter program using such an algorithm is aimed at implementations on existing hardware of
parallel processing computers such as the RTDS, Distributed Processing Systems (DPS’s),

and other multiprocessing computers (multicomputers).
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In order to achieve this goal, various solution methods were considered and examined
on single—processor workstation, computer networks, and on the RTDS. Those methods in-
cluded the Gauss—Seidel (GS) and Bergeron (BM) iterative algorithms as well as various
sparse techniques for the direct solution of network equations as described in Chapter 2.
Those methods were used for developing multiprocessing algorithms which were applied
in computer programs, implemented on available hardware, and tested for computational

speed.

In the first attempt, the network solution algorithm based on the iterative Gauss—Seidel
method was implemented on the RTDS for testing its performance in a parallel architecture.
Those tests indicated that the speed of solution significantly reduces as the size of the system
grows. Although this method is weil suited for parallel processing, it has poor convergence
oreven divergence (also reported by other researchers [5]) for larger network sizes, so it was

abandoned in favour of other methods.

In the second attempt, an alternative solution method was developed based on the con-
cept of a phasor-domain Bergeron line model [5,16]. This new network solution method still
possessed the localized benefits of the Gauss—Seidel method but the convergence problems
were improved to a certain extent. This method utilizes the concept of travelling waves in
transmission lines. However, some prolonged voltage oscillations and spurious overvoltages
were observed in system post—fault conditions using this approach. Those effects were
viewed as an inherent disadvantage of the Bergeron based iterative algorithm that may po-
tentially be further aggravated in larger systems and thus further work into this method was

also suspended.

Since convergence of both the GS and BM iterative techniques was found to take too
much time, the search for a suitable method for high speed transient stability solution was
re—directed to sparse matrix techniques, which in recent years have gained interest of many

research groups. For this reason, a new multiprocessing algorithm has been developed and
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incorporated in a stand alone version of the High Speed Transient Stability (HSTS) program

written in the 'C’ computer language which is described in Chapter 3.

This new algorithm combines several techniques useful for parallel processing applica-

tions which include the following methods :

LDU—decomposition and LDU-inverse for processing sparse matrices
W-matrix method for solving network equations (basic 2-step procedure)
Re-ordering scheme to minimize number of fill-ins in the W-matrices
Bus Tearing method for splitting large network into smaller subsystems

Current Compensation method for handling the changes of system admittances

mm g N ®w

Partitioning scheme for solving one subsystem on many processors operating in parallel.

The network solution applied in the HSTS program has been tested on selected small and
medium size test systems against the conventional, commercially available, stability pro-
grams such as BPA, PSS/E, and PSDS. Test results on workstations matched very closely
the steady—state and post—faults curves of other stability programs. The computational speed
was comparable with the speed of conventional stability programs, and promised significant
gains when executed in the multi-processor environments.

For the parallel processing implementations of the HSTS program, described in Chapter
4, two multiprocessor environments are considered : the Real Time Digital Simulator
(RTDS) parallel processing hardware and the Distributed Processing System (DPS) of the
Local Area Network (LAN) at the Manitoba HVDC Research Centre. Those implementa-
tions require specific adaptations to the original HSTS program for the specific hardware ar-
chitectures. The routines for compiling, downloading, initialization, communication and
running the program in a multiprocessor environment have to be included for both applica-
tions.

The implementation on RTDS required the program C version to be converted to a ver-
sion employing assembly code for the NEC processors used in the hardware. Also a program

on the workstation is required for downloading instruction and data, running, and uploading
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the results from the RTDS. In order to perform the transient stability solution on the RTDS
hardware for large system sizes, it is necessary to utilize many racks operating in parallel.
Due to limitations of the RTDS communication architecture a subsystem not larger than 500

buses can be processed on one rack.

The HSTS program implementation on Distributed Processing Systems was accom-
plished in more straightforward manner with addition only of the Message Passing Interface
(MPI) software required for communications between computers. Since only single—proces-
sor computers were present in the local area network (LAN), only the system splitting was
applied but not the partitioning scheme which was important for the RTDS implementation.
One subsystermn was assigned to each computer for collective solution using a cross—network
communication. In a cluster of commodity computers one processor is a master synchroniz-

ing the program execution on other worker processors.

Both implementations completed in this research work have demonstrated that a high
speed transient stability solution can be achieved with the proposed multiprocessing algo-
rithm providing that the hardware allows fast communication links. The HSTS has proven
to be a general, scalable, multiprocessing program that can be applied on integrated or dis-
tributed parallel processing systems. Communication latency is still a big obstacle in achiev-
ing a high performance on regular local area networks. However, it is just a matter of time
until a fast network technology becomes commonplace and today’s commodity systems will
perform as supercomputers at affordable price. Using a High Performance Virtual Machine
(HPVM) software, for example, a group of off-the-shelf computers has been synthesized
at the University of Illinois to deliver a peak performance of between 100 and 200 billion
floating—point operations per second. A high—performance message communication layer
can send messages between processors over high-speed Myrinet network delivering band-
width of 80 megabytes per second and a latency under 11 microseconds as reported by the

National Center for Supercomputing at the University of Illinois.
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Chapter 2

Transient Stability Problem

2.1 General Characteristic of Power System Problems

Power system stability can be defined as the property of a power system that enables it
to remain in a state of operating equilibrium under normal operating conditions and to remain

an acceptable state of equilibrium after being subjected to a disturbance [13].

Typically. the stability problem has been one of maintaining synchronous operation of
generators and other machines in a power system. Another concern is to maintain the stabil-
ity of voltages which may collapse even without loss of synchronism. The behavior of the
power system can be evaluated when it is subjected to small or large transient disturbances.
The system must be able to operate satisfactorily under these conditions and continue to sup-

ply the required amount of load.

The power system stability problem involves interaction between the electrical and me-
chanical systems. Under steady—state conditions, there is equilibrium between the input me-
chanical torque and the output electrical torque of each machine in the system and their angu-
lar speed remains constant. If the system is perturbed this equilibrium is upset, resulting in
acceleration or deceleration of the rotors of the machines according to the lows of motion
of a rotating body. The stability of the system depends on whether or not the deviations in

angular positions of the rotors result in sufficient restoring torques.

The two major categories of power system stability are rotor angle stability and voltage
stability. Rotor angle stability is the ability of interconnected synchronous machines of a
power system to remain in synchronism. Voltage stability is the ability of power system to

maintain steady acceptable voltages at all buses in the system [13]. The rotor angle stability
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phenomenon is usually classified under two categories : small-signal (small-disturbance)

stability and transient stability (severe transient disturbances).

The small-signal stability is mainly caused by insufficient damping of oscillations
which may appear in various modes :
a) local modes - (0.6-2.0 Hz) localized at one station or small part of the power system
b) interarea modes — (0.2-0.7 Hz) caused by groups of closely coupled machines being
interconnected by a weak ties.
c¢) control modes - associated with generating units and other controls
d) torsional modes - associated with the turbine—generator shaft system rotational
components
In Transient stability problems the power system is subjected to a severe transient distur-

bance and the response of power system is observed for selected set of contingencies.

There are many types of power system analyses such as : Power Flow, Transient Stabil-
ity, Short Circuit Calculations, and Electromagnetic Transients. The interconnected genera-
tion and transmission system is inherently large and any power system analysis problem for-
mulation tends to have thousands of equations. Analysis of such systems is one of the most

computationally intensive power system problem.

The most common analysis, the Power Flow, requires the solution of a large set of non—
linear algebraic equations approximately two for each system node. The usual algorithm of
an iterative matrix solution exploits the extreme sparsity of the underlying network connec-
tivity to gain speed and conserve storage. Parallel algorithms for handling dense matrices are
not competitive with the sequential sparse matrix methods, and since the pattern of sparsity

is irregular, parallel sparse matrix methods have been difficult to find [9].

The power flow describes the steady state condition of the power network and thus, the
formulation is a subset of several other important problems like the optimal power flow prob-
lem or transient stability problem. An effective parallelization of the power flow problem

would also help speed up these other solutions. Transient Stability requires the solution of
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differential equations (2 to 20 for each machine) that represent the dynamics of the rotating
machines and other devices such as HVDC converter controis or Static Var Compensators,
together with the algebraic equations that represent the connecting network. This set of dif-
ferential-algebratc equations typically exhibits different types of nonlinearities and various

numerical methods can be used to obtain a step—by-step time solution.

[t is the size of the above problems and the consequent solution times that encourages
the search for parallel processing approaches. Even before parallel computers became a po-
tential solution, the concept of decomposing a large problem to address the time and storage
problem in sequential computers has been more or less successfully applied to many of these
power system problems. Parallel computers can take advantage of these decomposition/ag-
gregation techniques but usually require a certain amount of adaptation.

Recently there is an on going effort to apply parallel computers to solve specific power
system problems. Most of those problems can be parallelized in large portions including the
required solution of the linear algebraic equation :

A'x=b
where matrix A is large and considerably sparse.

In this research work new methods and algorithms applicable to parallel computers for
solving transient stability problem are considered for implementations on RTDS and on Dis-
tributed Processing Systems. A significant speed up by parallel processing, in addition to the
usual efficiencies, will allow on-line transient stability analysis; a prospect that has spurred

research in this area.

2.2 Model of the Transient Stability Problem

For power system stability the behavior of power systems is usually described by two
sets of equations. The first, is a set of differential equations defining the dynamics of the

devices (loads, generators, exciters, governors, etc.) and the second, is a set of algebraic
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equations describing the electrical system through which the dynamic devices and the sys-

tem loads are connected.
These two equations can be written as :

X =F(X.V) (2.1)
Y'V=I(X\V) (2.2)
where X is a vector of state variables describing machine and load dynamics,
V s a vector of bus voltages,
I isa vector of bus current injections, and
Y is a matrix of network admittances

and F is a non-linear function of X and V.

In general, there are two basic approaches in the development of new algorithms for solv-

ing a set of differential equations (2.1) and a set of algebraic equations (2.2) :

A. Partitioned approach — the set of differential equations (2.1) is solved separately from
(2.2) by an integration method and iterated with the solution of the set of algebraic equa-

tions (2.2) at every time—step.

B.Simultaneous approach - set of equations (2.1) is discretized by methods such as the trap-
ezoidal rule and combined with equations (2.2) for solving together at each time—step us-

ing some Newton—like method.

Although the size of the problem is bigger in the second approach, the solution on single
processor computers can be reached faster because equation (2.1) can often be linearized
around the operating point and Jacobian matrix can be held constant unless the system under-
goes a significant change [2,9]. One variation of this approach is known as the Very DisHon-

est Newton (VDHN) method and is used by several research groups as reported in [41,36].

Integration methods for solving equations (2. 1) are known as explicit or implicit integra-
tion methods. In explicit methods (such as Euler, predictor—corrector or Runga—Kutta) the

state variable X at any time is computed from knowledge of variable values from previous
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time—steps by evaluating the value of function F(X,V). Implicit integration methods ( such
as the trapezoidal rule ) use interpolation for evaluating of the function between previous and
current points in time. The implicit method is preferred because it provides better numerical

stability [2.8].

The length of the integration time-step At is restricted by the characteristic of the differ-
ential equations. This characteristic is often described by stiffness which is measured by the
ratio of the largest to the smallest time constants of the system. Stiffness in a transient stabil-
ity simulation increases with modelling detail. In the overall system, not all the time
constants may be readily apparent. Thus the stiffness, may be hidden and can only be estab-
lished by computing the eigenvalues of the linearized system. Explicit integration methods

have weak numerical stability and for solving stiff systems they must use very small steps.

The equations are solved on a step—by-step basis to obtain the time response of the sys-
tem for the specified fault and switching conditions. To find the solution, the differential
equation (2.1) can be discretized to transform the differential equations into difference equa-

tions. Using the implicit trapezoidal rule,for example, the equation (2.1) will take form of:

Xi= X + (Av2)*[ F (X, V) +F (X1, V) ]

[n general, soiving the network equations (2.2) is to find the bus voltage vector V, which
is achieved through the equation :

V=Y1I(X)V) (2.3)

Discretized equations (2.1) can be solved in conjunction with network equations (2.2)
or they can be solved separately. In both cases some kind of iterative process is required for
solving the two sets of equations because the system state X and voltage V used in both equa-

tions depend on each other.

The step-by-step solution for system voltages and state variables is used in Transient
Stability to assess the ability of power systems to maintain synchronism when subjected to

severe transient disturbances. The resulting system response is an excursion of generator ro-
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tor angles influenced by the non-linear power—angle relationship included in equation (2.1).
Following the disturbance, usually a network fault, the state variable X cannot change
instantly, so the system response is deviation of machine rotor angles which can lead to either
an aperiodic drift in rotor angle or to an oscillatory instability. Provided there is enough
damping in the system. this perturbation should diminish, and operation at the equilibrium

angles be restored.

Typically, for partitioned solution with explicit integration method, the algebraic equa-
tions (2.2) are solved first to give system voltages V, currents I and the corresponding power
flows. Using the previous state X and and the current value of V the time derivative function
F(X.V) in equation (2.1) is computed and the solution of differential equations for new state
X is obtained using the selected integration method. The process of alternating solutions of
algebraic and differential equations is applied successively until the solution at the end of

each time—-step is reached.

Since the solution of differential equations requires values of state and network variables
(X.V) only from the previous step, the set of differential equations can be solved indepen-
dently which offers a great amount of programing flexibility important for parallel computa-
tions. However, since the network solution takes a considerable amount of solution time, the

overall gains achievable are very limited without parallelizing the network solution part.

2.3 Solution Methods for Parallel Processing

A wide range of approaches has been reported in the literature for conventional methods
of solving equations (2.1) and (2.2). More recently, various non—conventional methods have
also been developed to create better parallelism. Those methods are quite different from the
sequential algorithms used today on single processor computers. Thus, adapting any of them
for commercial applications requires significant investment in development of software and

special hardware for multiprocessing implementations.
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For this research project, various solution methods suitable for parallel processing have
been examined in order to determine which one is the most practical for implementation on
parallel or distributed processing systems. The partitioned approach is used in many produc-
tion—grade stability programs. For power system simulation in which time-steps are limited
by numerical stability, implicit methods like the trapezoidal rule are generally better suited

than the explicit methods but they provide variable accuracy.

The partitioned and simultaneous approaches can both be used in parallel computers if
proper problem decomposition is applied. Decomposition of the problem for parallel proces-
sing can be categorized in two general parallelization types :

A. Parallelization in space — decomposition of the system variables into smaller groups.

B. Parallelization in time - several time—steps solved simultaneously [15].

When the set of network equations (2.2) is decomposed, relaxation can be applied to dif-
ferential equations (2.1). For the method known as the Waveform Relaxation Method [37],
it was shown [33] that discrete version of (2.1) together with (2.2) can be decomposed to indi-
vidual system variables such as bus voltages, and solved simultaneously for all time—steps
by Pickard’s method. This can provide maximum parallelization in space and time but it re-

quires many iterations and thus convergence is slow.

The Newton—Raphson method is commonly used on single processor computers but a
variety of other methods have been developed to solve the network equations. The best
known are the Very Dishonest Newton (VDHN) [41], the SOR-Newton[41], the W-ma-
trix{30,38,43], and Coarse Grain Scheduling [42] methods for solving the algebraic equa-
tions, and the Waveform Relaxation or the Dynamic Partitioning methods for solving the
whole problem.

The methods for solving network algebraic equations are typically one of the two types:
direct or iterative as described below. Regardless of what type of network solution method
is used, another iterative process is required to combine the solution of differential set of

equations with the solution of the network algebraic equations.

21




2.3.1 Direct Methods

The fundamental problem of a network solution algorithm is the solution of a set of linear
algebraic equations given in a matrix form by :

A" x=b (2.4)
where matrix A is assumed to be large and sparse.

If the inverse of matrix A exists, then the general solution for an unknown vector X is
given by :

x=A""b (2.5)

For inverting a matrix, Gauss-Jordan elimination method [11] is about as efficient as any
other method. However, because matrix inversion is a computationally intensive process,

most of the modern direct methods do not explicitly compute the inverse for finding a solu-

tion.

One of the most effective methods for solving equation (2.4) on serial processors is the

triangular factorization used along with forward/backward substitution [9] described as fol-

lows :
triangular factorization : L-D-U =A (2.6)
forward substitution : L-y - 2.7
backward substitution : D-U-x =y (2.8)

where D is adiagonal matrix and L and U are unit—triangular matrices with ones on diagonal.

Fast solution methods are required for triangular factorization and substitutions because
typically they are repeatedly computed for a solution on each iteration. Many new algorithms
exploit available parallelism through reordering and partitioning of matrix A. Those algo-
rithms, however, are not developed for parallel processing so that a great deal of adaptation

is required for applications on parallel processing hardware.

The W-matrix method described in Section 2.4, overcomes the poor parallel characteris-

tics of the substitution scheme. This method generalizes the LDU algorithm by converting
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the substitution of (2.7) and (2.8) into matrix—vector multiplications without losing signifi-
cant sparsity. The matrix—vector multiplications applied in this method, are readily paralle-

lizable making a parallel LDU algorithm possible to develop.

2.3.2 Iterative Methods

For high speed simulation on multiprocessor computers, iterative and node—oriented
methods have been used. For these methods the matrix splitting concept is applied to solve
the network algebraic equation A° X = b. Matrix A is expressed as a sum of L. D, and U ma-
trices:

A=L+D+U (2.9)
where D is a diagonal matrix and L and U are triangular matrices with zeros on the diagonal.

For the Jacobi method, the n~th iteration step is given by :

D'x, =—(L+U)'xp1 +Db (2.10)
and the solution for x; is given by

Xp =-D 1" [(L+U) X +b]=-D!""(L+U)'x,; - D!"Db (2.11)

The matrix ~D~!- (L + U)) is the iteration matrix which, along with the additive term
-D~!*b, maps one set of x's into the next. The eigenvalues of the iteration matrix reflect the
factor by which the amplitude of a particular eigenmode of the undesired residual is sup-
pressed during one iteration [11]. For the relaxation to converge, all eigenvalue modulus
must be less than 1. The rate of convergence of the method is set by the rate of slowest—decay-
ing eigenmode, i.e., the factor with largest modulus which is called the spectral radius and
is denoted by ps. In principal, the spectral radius ps can be computed analytically for a given
iteration matrix and the number of iterations required to reduce the overall error by a given
factor is inversely proportional to the value of the spectral radius. Unfortunately, conver-
gence of the Jacobi method is strongly conditioned by the matrix characteristic and usually

requires many iterations. It is, however, a classical method dating back to the last century
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and although it is not practical because it converges too slowly, it sets the basis for under-

standing modern iterative methods.
In the Gauss—Seidel (GS) method matrix decomposition takes the following form:
(L+D)xq=-U'xp_;1+b (2.12)

The presence of the lower triangular matrix L on the left-hand side of the equation fol-
lows from the updating procedure which is to use the most recent x s as soon as they are com-
puted. The convergence of this method is twice as fast as the Jacobi method, but the large
number of iterations 1 1] leaves the method still impractical on a serial computers. However,
because the problem decomposes to single variables, it may still be useful for parallel proces-

sing [3].

More recently better algorithms were developed. One of such method is the Successive
Over-relaxation (SOR). It is derived from equation (2.12) by solving for x, and calculating

the rate of change:
Xn — Xn-1 =‘(L+D)—['[U'xn—l‘b]—xn—l
=—(L+D)!'[(L+D+U)x,-b]

-—~(L+D)!""[A*Xx, -b] (2.13)

The correction at iteration step n is defined in terms of residual vector & | and over-re-

laxation parameter © by :

Xa=Xp -0 (L+D)1-E,, (2.14)
where
Enl =A'Xp|-b (2.15)

and 0 <w <2 for the method to converge.

It was shown [11] that if py is a spectral radius of the Jacobi iteration, then the optimal

choice for o for the SOR method is given by :
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2
® = (2.16)

|+Vl+p21

The SOR method is hundreds or even thousands times faster than the Jacobi method if
the overrelaxation parameter is optimally chosen. The weak point of this method is that this

optimal value of @ is usually difficult to determine.

2.4 The Bergeron Method

One alternative iterative method developed by the author in this research, is called Ber-
geron Method (BM) and is based on the Bergeron line model which utilizes the concept of
travelling waves in a load flow and stability solution [16]. In its time—domain formulation,
this method is widely used in electromagnetic transients programs [1].

The traditionally used nominal t—circuits do not represent the travelling wave nature of
transmission lines and this discrepancy becomes larger as the length of line increases. The
distributed nature of the line parameters is automatically taken into account in the Bergeron
Line Model in which travelling waves are represented by a pair of Norton sources at each

line end as shown in Figure 2.1.

. Ik Irn
Terminal k Terminal m

Vi| Z S Jm CD Z: | Vm

Figure 2.1. Circuit of Bergeron Line Model.

This is the essence of this parallel algorithm. If subsystems of the overall network are
connected by transmission lines with travel times exceeding the simulation time-step, a local

subsystem is not affected by the happening in the remote subsystem

For a steady-state solution, line parameters are specified by line resistance R, series reac-

tance X=wL and shunt susceptance B=wC. When line length is d, the travel time is :
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t=d/v=YL+C=VXB/w
where v is the phase velocity.
For alossless line (R=0), the impedance Zc in Figure 2.1 is equal to the surge impedance:
Zo=VLIC ; Yo=1/Z 2.17)
and the propagation constant y and electrical length ¢ are :

y=joVLC=jp ; (2.18)

0=B+d

From the wave equation in the lossless case we derive the following two equations relat-
ing voltage and current phasors at both line ends :

VYo - Ik = Fpred® (2.19)

VYo — Im= Fyred® (2.20)

where Fy and Fy, are forward travelling waves and are defined as
F. = VieYo+ Ik 2.21)
Fn = VYo + I (2.22)

The above relationship applies not only in the steady-state but also in the transient state
when voltage Vi(t), Viu(t) and current Ix(t), I, (t) phasors are varying (quasi-statically) in

time.

The equivalent current source phasors Ji(t) and Ju(t) are determined at time t from the

past history at time t-t. Applying (2.19) and (2.20) to two—port equations at both line ends

we obtain :
Je(t) = —Fp(-1)*ei® (2.23)
Jn () = -Fc(t-1)sei® (2.24)

For travelling time t greater than the simulation time—step At, forward travelling waves
F and F, are stored in buffers and are interpolated between discrete points to find appropri-

ate values at time t—7. When the travelling time is smaller than the time—step, either the line
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is treated as a series branch or T is assumed to be equal to At and line susceptance is adjusted

to a new value :

Bpew =(@*AL)? / X (2.25)
In this case compensating reactances

Xcomp =0.5*( Brew — B) (2.26)
are placed at both line ends so that the overall line impedance is kept unchanged.

For line losses the distributed series resistance R is approximated by lumped resistances
and added at both ends of a lossless line (or in few places along the line). When the line is
divided in two sections, resistance R/4 is inserted at the end of each half-line section and the

line model is defined by the following [1] :

Zc =Zo+R/4 ; Yo =1/Z¢ (2.27)

Jx =—(A*Fy+ BsF)rei® (2.28)

Jn =—(A*Fq+ B*F)re i® (2.29)
where

Fi = VirYc + Hel (2.30)

Fr, = Vi*Yc + Help (2.31)

H =(Zo-R/4)/(Zo+R/4)
A =05+1-H)
B =05+1+H)

Although the line current sources in (2.28) and (2.29) are still defined by voltages from
the previous time—steps, as in the Gauss—Seidel method, the delay now represents the actual

time for the wave to propagate from one line end to the other.

In the Gauss—Seidel method, because lines are modelled in the form of lumped parameter
elements, no specific distinction between branches and lines is made. In the BM method,
however, only series branches (such as transformers, series capacitors, reactors or very short

lines) and all local loads are grouped in clusters’ for direct solution by inversion of small
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matrices. These clusters and all singular nodes are connected to each other with transmission
lines modelled by traveling waves as described above. Iteration in time, according to the
traveling wave phenomenon, is applied globally to the system and the network solution for
transients is computed until a new steady-state is reached and all standing waves in lines

are established. Intermediate time—steps are like iterations in the conventional approach.

The BM algorithm offers a maximum system decoupling by reducing the network admit-
tance matrix Y to a "close—to—diagonal’ matrix. Such a reduced matrix consists of only diag-
onal elements of bus equivalent shunt admittances or small diagonal sub—matrices of cluster
admittances. The network solution for bus voltages then becomes a matter of sequential pro-
cessing of individual nodes and clusters. In addition, this clustering reduces the need for in-
ter—cluster communication, an important aspect for implementation in a parallel processing

environment.

2.5 The W-matrix Method

The history of the W—matrix method [30,38,43] is rather short and only a little parallel
computer implementation experience has been acquired to fully assess its potential or to re-
veal its limitations for effective functioning in various parallel environments. One objective
for this project was to evaluate computational and communication costs of this method ap-

plied on selected parallel and distributed processing hardware.

The largest obstacle to obtain a high speed solution for the stability problem appears to
be the repetitive solution of the network equation which is basically the linear algebraic ma-

trix equation (2.4) that with the power system terminology has the following form :
Y ' V=I (2.32)

where: V- bus voltage vector
I - bus current injection vector

Y - network admittance matrix
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The objective is to solve the above equation as efficiently as possible. [n general, to solve
equation (2.32) an inverse of admittance matrix Y~! is required to calculate bus voltage vec-
tor by :

V=Y"'1I (2.33)
The matrix Y can be decomposed into factors L, D, and U as follows :

Y=L-D-U (2.34)

Matrices L and U are the lower and upper sparse unit—triangular matrices respectively,
and D is a diagonal matrix. For symmetric admittance matrix, we have U = LT.

With the assistance of sparse matrix techniques, the forward/backward substitution
method described by equations (2.6) — (2.8) works very efficiently on sequential (single pro-
cessor) computers. It is, however, very difficult for this algorithm to achieve high efficiency
on parallel computers because of the sequential nature of the forward and backward substitu-
tions. The parallel LDU algorithms usually can achieve high efficiency for factorization but
are much less powerful on substitutions [8].

The W-method was developed to overcome the poor parallel characteristics of the stan-

dard substitution schemes. This method is based on the fact that the inverse of admittance

matrix Y exists as the product of the inverses of factor matrices U, D and L according to :
Y-!=U-l-D!-L-! (2.35)
Unlike the inverse of a sparse matrix Y, which is full, the inverses of sparse triangular
factors L and U are also sparse, though less sparse than the factors themselves.
The solution of (2.32) in this case is obtained by a series of matrix multiplications, instead
of substitutions, and in the most primitive form utilizes (2.35) in a two—step process :
I' =D!-L-!-1 (2.36)
vV =Ul'r (2.37)
Each of the above matrix—vector multiplications are readily parallelizable. The chal-

lenge here is to decompose the above solution process into independent tasks and schedule

29




them on the processors in such a way as to reduce the communication and synchronization
overheads, and to achieve a minimal solution time. It has been recognized that an appropriate
reordering and partitioning schemes chosen for a specific hardware architecture can offer

significant gains in the computational speed of solving the network equations.

[nverses of L, D and U matrices are found beforehand. Changes in the admittance matrix
Y resulting from fault, switches, etc.. typically require repeated LDU decomposition and
LDU inversion of the system admittance matrices. However, admittance changes can also
be handled by techniques such as Current Compensation which do not involve expensive

matrix reinversions as described in Section 2.6.

For effective computation, some re—ordering method can be applied to Y to enhance the
sparsity of the inverse matrices L~! and U-!. Several algorithms were proposed to minimize
the number of elements in the inverse triangular factors {31,32.34]. A simple ordering

scheme is chosen for this method as described in Section 2.5.2.

2.5.1 Partitioning in W-matrix Method

The simplest W—matrix solution method for the algebraic equation (2.32) comprises
sparsity oriented LDU decomposition of the nxn system admittance matrix Y =L D-U and
LDU inverse expressed by Y-! = U-!-D-!-L-!. In those expressions, L and U are lower
and upper triangular matrices with unity elements in the diagonals and D is a diagonal matrix

as illustrated in Figure 2.2.

In order to derive more complex W-matrix solution methods, the unit lower triangle ma-

trix L is further decomposed to a product of a series elementary matrices L;; 1=1,2,...,n:

L=L;"L; ...-Ly,

Each elementary factor matrices L; is a modified identity matrix with the i—th column

replaced by the i-th column C; of the factor matrix L as illustrated in Figure 2.3.
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Figure 2.2. Sparsity Oriented LDU Inverse of the Admittance Matrix.
The inverse of lower triangular matrices L may then be found as a product of the inverse
elementary factor matrices L;~! :
L-'=L, ' ...-LyteL! (2.38)
The n—th elementary factor matrix is an identity matrix and can be omitted in the above

series matrix multiplications.

L, L; Lo

C 1 Gi 1 1

Figure 2.3. Matrix L Expanded as a Product of Elementary Factor Matrices.

The inverse elementary factor matrices L;~! can indeed be calculated in a very simple
manner because they are equal to the original elementary factor matrices L; with the off—
diagonal entries in column C; negated. A simple case of 3x3 matrix illustrating the inverse

matrix computation by (2.38) is given in the following example :
Example 2.1:
Let Y be a 3x3 symmetric admittance matrix. After factorization, Y =L “D- U in which

U=LL
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The lower triangle matrix L and the current injection I are given by :

1
L=}|a
c]b}ll

(]
oy
]

L can be expanded as a product of three elementary factor matrices : L = L, <L; ~L3

1 1 1 L, = identity matrix + 1—st column of mat
L=ja}l X 1 X 1 ) . .
p I K T L, = identity matrix + 2-nd column of ma
L, - L, = Ls L; = identity matrix I

The inverses elementary matrices denoted here by W, W1, and W3 are simply computed

by reversing signs of the off-diagonal elements in matrices L, L, and L3 respectively :

1
W, = L[‘l = |-a]l W, = Lz'l = 1 W; = Lyl = 1
- 1 ~-bl 1 1

The inverse of lower triangular matrix L is computed as a product of matrices W, by :

1 0 0
Li'=W3; Wy, W, = -a 1 0
ab—c -b 1

The above is the right inverse matrix because L- L-! is the identity matrix :

1 0 0
L‘L‘l = a-—a 1 H =1
c-ab+ab—c b-b 1

With the inverse factor matrix L-! computed by a series multiplication of inverse ele-
mentary matrices, solution of equation (2.32) requires numerous matrix multiplications

which in the above example would be given by :
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V=Y‘I'I=[U‘"D"°L" ].[ - [W;T'WZT'Wﬂ'D‘"W;'Wz' WI]'I=

1] |<| [ 1 d 1 1 1 1]
- 1}alx 1 X 1 X e X 1 b 1 xi-al 1 xf1
1 I 1 [ { 1 -bl1}] |- 1 1

The only non—zero elements or fillins used in computation of the inverse matrix L~! as
a product of inverse elementary matrices (2.38) are the negated elements of the original ma-
trix L. Because inverse elementary matrices consist exactly the same number of non-zero
elements as their originals. no extra fillins are involved in computation of the inverse triangu-
lar matrix L-'. The overall cost of solving equation (2.32), however, is also affected by the

number of series matrix multiplications involved in voltage computation.

To reduce the number of series matrix multiplications, groups of consecutive elementary
factor matrices L can be pre-multiplied together to form a partition, i.e. the product in equa-

tion (2.38) can be broken down into certain number of blocks as shown below :

L'=[Ly L' 1 e [ Loy " Lie™! 17 [ Loty e "Ly

w A w P AW,

A W-matrix is obtained by multiplying all of the elementary matrices within each parti-
tion and the inverse matrix can be computed as a product of those W—matrices W,
j=1,..p:

L' =W, .- Wy W, (2.39)
where

Wp = Ln—[ Tt Lkp—l P e s Was= L(k3_| )—l R Lkz"! W= L(kZ—I )_l R Ll'l

This is the most general procedure for factor matrix inversion. In the longest form, it in-
volves all the inverse elementary factor matrices, Wi = L;! and, although no additional fil-
lins are introduced in this case, it requires the maximum number of series matrix multiplica-

tions.
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In the shortest form it involves only one W—matrix, W = L-!. and although the inversion
of the whole sparse unit—triangular matrix L introduces new fillins, no series matrix multi-

plication is involved.

Partitioning of the upper triangular matrix U may be performed with W-matrices ob-
tained in a similar fashion. For a symmetric admittance matrix, U = LT and it can be com-

puted by :
Ul=W T-W,T- W, T (2.40)

The W-matrices in (2.39) and (2.40) usually remain very sparse, though fillins may be
introduced depending on the partitioning scheme used. The network solution can now be ex-

pressed by :
V =Y1I={U!"DUL-]I
=[W,T-W,T- W, T-D W, .- W W, | ] (2.41)

When each matrix W; is equal to the inverse of elementary factor matrix L;~!, then (2.41)
is merely an expression of conventional forward and backward substitution. We are free,
however, to combine the adjacent W matrices in any useful way. The W-matrix methed gen-
eralizes the solution phase of the LDU algorithm which in multiprocessor environments can

be utilized to gain computational speed.

Appropriate partitioning methods can maximize sparsity by reducing the number of fil-
lins in W—matrices. In a parallel processing environment, however, this does not necessarily
represent a significant saving in processing time because the series matrix multiplications
in voltage calculation (2.41) require exchange of results of each multiplication among pro-
cessors and this consumes a lot of communication time. Effective W-matrix partitioning
methods would have to consider not only the amount of computational effort measured by
the number of multiplication—addition operations associated with processing the fillins but
also take into account other factors such as communication associated with particular imple-

mentations of the solution algorithm.
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Because series matrix multiplications cost communication time. which is different in dif-
ferent parallel or distributed processing systems. the problem of optimization of processing
time in multiprocessor environment strongly depends on what hardware is used for solving
the stability problem. The strategy is either to minimize the number of partitions at the ex-
pense of increased number of fillins or to minimize the number of fillins at the expense of
increased number of partitions.

The factors which may affect the parallel efficiency of the W-matrix method include:
size of admittance matrix, number of fillins. number of partitions. structure of the factor ma-
trices and communication time between processors. Those are related issues and the best
compromise is the key in determining the parallel efficiency of the W—matrix method. For
implementation of the network solution by W—matrix on the RTDS. Distributed Processing

Systems (DPS) or other parallel processing hardware the following strategy is proposed :

A) A large system will be split into smaller subsystems, using a system splitting technique
described later in Section 2.6, one for each RTDS rack or each single or multiprocessor
computer in the DPS.

B) Subsystem admittance matrices will be LDU factorized. and sparsity maximized using
a node reordering method. The LDU inverse factor matrices will be computed for each
subsytem.

C) A procedure for partitioning the factor matrix will be implemented but only an elementary
W-matrix will be applied to each subsystem admittance matrix to reduce the number of
communication between processors.

Since at this stage phase—shifting transformers are not considered, the admittance matrix
Y is assumed symmetrical and the W-matrix is equal to the inverse of the subsystem
lower triangular factor matrix such that W = L-! and WT = U-! = [LT}-1.

D) Network equations will be solved in a two—step process executed for each subsystem :
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I =D!-W-I (2.42)

V =WT-T (2.43)

E) Parallelization of the network solution computation for processors on one RTDS rack or
one multicomputer in DSP will be done by assigning a certain number of rows of matrices
W and WT, a partition. to be processed on each processor according to a partitioning

scheme which will balance the processors workload.

The following is a brief description of the bus reordering and partitioning methods pro-

posed for high speed transient stability solution.

2.5.2 Node Reordering Scheme

For any sparse matrix Y = L-D-U, the inverse of its factors, U~! and L-! usually remains
sparse but in addition to the non—zero elements in factors L and U, new fillins are generated.
Fillins are unwelcome since they increase the computation required for the network solution
so that any method of minimizing their number is desirable.

Reordering, i.e. pivoting of rows and columns, is an effective tool of reducing the number
of fillins in the triangular factors L and U. Reordering has also been found useful in reducing
fillins in W-matrices when combined with proper partitioning scheme. It has been recog-
nized that a smart reordering and partitioning scheme is the key to the success of W-matrix
method.

Given the triangular factorization matrix L or U, new non-zero elements will be created
inits inverse L~! or U~!. The number of new non-zero elements, called "inverse fillins”, de-
pends on the ordering of the system nodes. The computation of factor matrices L, D, and U
is thus preceded by node re~ordering or ordering of rows and columns to minimize the num-

ber of non zero elements in their inverses.

Several effective schemes have been developed for determining near—optimal orders for
inverse fillins in LDU matrices. For this research work, a simple scheme proposed by Tinney

[32] has been chosen. This ordering scheme is based on counting the number of branches for
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each system node (or counting non—zero elements in rows of admittance matrix Y). Nodes
with fewer connections are put at the top of the new order list when the nodes with the most

connections (rows with most fillins) are placed at the bottom.

This scheme, although is not fully optimal, still preserves 10-20% sparsity of the in-

verses matrices L~! and U-! in the most typical cases.

Figure 2.4. Typical Sparse Matrix Density Distribution.

Many of the optimal ordering methods minimize the total number of fillins but the dis-
tribution of those fillins is very uneven. A typical example of sparsity distribution is illus-
trated in Figure 2.4.

Usually there are many buses at the top of the order list that correspond to rows in the
admittance matrix with only a few non-zero elements. As we go to the bottom of this list the
number of non zero elements increases very quickly and one bus from the bottom of the list
can be as expensive as hundreds of buses from the top. This obviously must be taken into
account when selecting the partitioning scheme which is supposed to balance loads on all

parallel processors involved in the computation.

2.5.3 Balancing Processor Workload — Average Weight Partitioning
Scheme
In the proposed W—matrix based solution algorithm, processing of one system node is

assumed to be assigned to one processor. [t means that all row—-times—column multiplications
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involved in bus voltage computation as well as solution of all differential equations
associated with node generators and loads will be solved on the same processor. Optimal or-
dering minimizes the total number of fillins but also results in very uneven distribution of
matrix sparsity. This uneven sparsity combined with random allocation of system generators
and loads results in a very different processing time requirement for the various system
buses. Therefore, assigning an equal number of buses to each processor will not be a very

efficient way of utilizing the processing time.

A more efficient method is to assign different number of busses to processors by taking
into account the bus connectivity, matrix sparsity. and complexity of differential equations.
For more optimal balancing of the processor’s workload. it is proposed that each system bus
i have attributed a weighting factor w; proportional to :

a) number of fillins in corresponding row of matrices L-! and U~!,

b) number and type of generators connected to this bus,

¢) number and type of loads connected to this bus,

d) other devices and events such as faults or switchings associated with this bus, and
€) communication time required to exchange data with other processors.

The total time of processing N buses on M processors is proportional to the total

N
weight factor : w= 2 wj
i1

which produces an average weight per processor to be equal to :

The average weight w, is used as a criterion for partitioning a given list of system buses.
This partitioning method groups consecutive nodes in the optimally ordered list of system
buses until the sum of their individual weights w; adds up as close to the average weight w,
as possible. Assigning each partition for processing on one processor should approximately

balance the workload.

This new method is later referred to as the Average Weight (AW) partitioning scheme.
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2.6 System Splitting by Bus Tearing Method

The set of aigebraic equations describing an electrical system is given by equation (2.32).
The size of this matrix equation is often in a range of few thousands. Even with the best spar-
sity elimination method, the problem size remains large and in addition, a full current injec-
tion array and the results of series multiplications by W-matrices must be exchanged be-
tween all processors participating in the network solution. The repetitive row—column
multiplications, as well as the inter-processor communications, consume the biggest
amount of processing time in these cases. In order to achieve a high speed solution of large
systems. network splitting is probably unavoidable.

To reduce the size of network matrix equation, the Bus Tearing Method can be applied
to split the system into smaller subsystems that are much easier to handle in a multiprocessor
environment.

By choosing some of the buses as tearing nodes (also called cut set nodes in some litera-
ture [34]), the network can be split into several smaller subsystem. The system admittance

matrix Y can be re—arranged so that the tearing buses are [ocated at the bottom as shown in

Figure 2.5.
Y X \'% = I
Y Yi: Vi I
Y Y2 Va I
° . . .
S R HEE
Yik | Yke Vi Ix
YufYo|eee| Y| Yu Vi I,

Figure 2.5. Bus Tearing Network Solution Equation.
Here the network is divided into k subsystems represented in the admittance matrix Y

by k square matrices Yj;;. These subsystems are interconnected through a set of interface
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buses which form the tearing subsystem represented by admittance matrix Y. Branch con-
nections between subsystems and the tearing buses form the upper and lower border matrices
Yi: and Y,; respectively.

An example of splitting a system of 505 buses into two subsystems grouping S system
zones is shown in Fig. 2.6. This mechanism for grouping system buses into subsystems is
based on the zone information which characterize a physical network. This, however pro-
duces a very uneven subsystem size which is not good for balancing the processor’s load.
A better mechanism developed in this project is based on network connectivity. A desired
number subsystems and one interface subsystem are formed by selecting a "seed™ bus for
each subsystem (which can be from different zones) and the successive adding of neighbor-
ing buses connected by branches. The subsystem domains grow like crystals which, after us-
ing all system buses. can exchange buses by taking or returning them to the interface group
until a balanced set of subsystem with minimized interface subsystem size is reached. The
results of this new subsystem splitting method are presented in Table | in which the interface

subsystem has index 0 and the desired number of subsystems is 1 to 6.

Table 1 : System Splitting for the 505-bus Test System

Number of Subsystem Size
Subsystems 0 1 2 3 4 P p
1 0 505
2 13 246 246
3 20 160 165 | 160
4 34 118 118 117 118
5 32 94 93 95 96 95
6 36 78 79 79 78 77 78




Zone #1
Tearing Buses
Subsysten #0
3 buses
213
245 @ - - 473
290 @—
398
276 433
Subsystem #1 Subsystem #2
423 buses 274 79 buses
422 —@ 442
- Y1
Y= Y2
-

Figure 2.6. Zone Based Network Splitting Method for 505-bus Test System
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After splitting system buses into subsystems, the system admittance matrix Y is also di-
vided into four parts : the block diagonal matrix A, the interface admittance matrix Yy, and
the border matrices as B and BT. Similarly, the voltage and current vectors are divided into

two parts corresponding to subsystem and to interface buses :

Y Y. \Z! I
Y2 Y \£] I;
A == B = VS = [S =
® [ J L] [ )
® ® L ] [ ]
o ® [ [ ]
Ykk th Vk Ik
C=|Yu|Yo|eee| Y« Y Vi L

If the voltages at tearing buses V, were known, the bus voltages in a given subsystem
would not be directly dependent on current injections in other subsystems and could be

solved from the subsystem equation :
Yi'Vi =LYV, i=1.2,...k
Vl = [Yll ]_[.[[i_Yi[. vl ] 1= lv 2v "-k (2-44)

The following derivation shows how to find the bus tearing voltage vector V required
for solving the subsystem equations (2.44). Using partition matrices defined above, the net-

work equation (2.32) can be re—written as :

ERIR MR

From this we obtain the following two matrix equations :

A‘Vs"'B.Vt = Is (2.45)

C'Vi+Ye 'V, =1 (2.46)
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and we can derive V, from equation (2.45)
Vi=Al"[Ii-B'V, ]

Substitute (2.47) into (2.46) produces
C AV [L-B 'V ]+Ye V=1,
[Ye-C'A"B |"'V;=[[-C-Al"L

which can be written as a simple matrix equation

. ’
Y’[[ Vl= [ L

with matrix Y’ and vector I’y defined respectively by :

k
Yu=Yy-C-A"B = Yu—z Yti'Yii—[' YT

[,t=lt—C'A_l.IS=I[ ZYU “ I|

The Bus Tearing Procedure can now be described in the following four steps :

Step 1 : Interface admittance calculation

k
Y’u = Yu -2 Yui
i=l

where

Yui = Yy 'Yii'l ’ YTu' i=1,2,..k

Step 2 : Tearing bus current injection calculation

‘=I[ ZIU

where
Li=Yy L

Y=Yy Y i=1,2,..k

Step 3 : Tearing bus voltage calculation

Vi={ Yy ]—l ‘I’
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Step 4 : Subsystem voltages calculation
V, =[Y;i 7' i=1,2, ...k (2.57)
where the subsystem current injections I'; are modified by :

l'i = Ii - YT[i' Vt l = l, 2, ces k (2.58)

Using the two-step W-matrix technique for solving equation (2.57) leads to the following

modified Step 4 :
Step 4a : Intermediate serial matrix multiplication

I =D-"Li-'I'i=1,2,..k (2.59)
Step 4b : Subsystem voltages calculation

Vi=U"1I" =12 ..k (2.60)

All admittance matrices can be pre-calculated, partitioned and stored in appropriate pro-
cessor memories. Each subsystemi= 1,2, ...k is assumed to be solved on one multicomputer
(one rack on RTDS ). In order to minimize the number of communications, the computations
of interface current injections I'; and voltages V, can be done separately on each processor.
Typically, this is a problem of a very small size and the required computation will take less
time than the communication between processors required otherwise. When all processors
solve the interface voltages by themselves, the only information that needs to be exchanged
between multicomputers or RTDS racks are the amounts of the subsytem current injections

from subsystems to tearing buses I;; in Step 2.

Since the interface bus voltages are made locally known on each processor, current injec-
tions for the partition buses on each processors I'; can be updated. However, for the voltage
computation in Step 4 a full subsystem current vector is needed. This requires communica-
tion, but only among processors on the same multicomputer/ rack. One additional commu-
nication within each multicomputer / rack is also required between the Steps 4a and 4b for

exchanging the results of serial matrix multiplication.
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2.7 Handling Admittance Changes

There are three methods being used or considered for handling admittance changes in
the network solution algorithms most commonly applied in stability programs. Those meth-

ods are :

I. Re—computing the Y matrix inverse by LDU decomposition/inversion whenever an ad-
mittance change takes place.

~ this method is used in most off-line commercial stability programs.

2. Pre—calculating all necessary combinations of the inverse of matrix Y which may be
caused by changes during a simulation run and extracting the appropriate matrices from
memory when the change takes place.

~ this method is used in the RTDS simulator for electromagnetic transients.

3. Current Compensation method which converts changes in admittance matrix Y into equiv-
alent modifications of bus current injections L.

~ this method is reported in [14] and is used in the stability program from CRIEPI [21].

Each of the above methods requires certain amount of storage space and execution time.
The first method does not require much storage space but it is computationally very expen-
sive because the decomposition as well as the factor matrix inversion must be recomputed
and this process is hard to parallelize. The second method is just the opposite. It requires lots
of memory for storing whole inverse matrices for various combination of admittance change

but execution time is minimally affected.

The third method requires some extra storage and processing time as described in the fol-
lowing section. Due to the limited size of the DSP memory in the current architecture of the
RTDS, it is considered to be the best compromise to allow on-line admittance changes in this

parallel implementation of the High Speed Transient Stability program.
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2.7.1 Current Compensation Methods

The problem being considered here again is the solution of equation (2.32) for voltage
vector V when the admittance matrix changes due to switching or a fault so that the new equa-
tion is given by :

(Y+AY )'V=I (2.61)

where :
Y - is a sparse nxn network admittance matrix
AY - is a modification to it involving one or more network elements, and

I - is the current injection vector.

A direct solution of equation (2.61) normally requires matrix reinversion and is given by :
V =(Y+AY) "I (2.62)

The objective is to solve the above equation as efficiently as possible, preferably without
the necessity of matrix reinversion. Providing that the modification does not involve too
many elements and does not need to be permanently incorporated in the network equation,
the solution can be obtained more economically without repeating the expensive LDU fac-

torization and factor reinversion.

In order to derive such a method, modifications to the network admittance matrix in

equation (2.62) are written in a compact form as :

AY =M: 8y «MT (2.63)
where :
dy — mxm matrix consisting of the amounts of all admittance changes

M - nxm connection matrix consisting only the integers 0, 1, and -1

For a symmetric change of branch admittance between nodes i and k, an admittance
change of Ay is added to Yjj and Yy, and subtracted from Yjx and Yy; elements of the system

admittance matrix Y. The modification in this simple case can be expressed in two different
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manners : Branch Oriented Modification and Node Oriented Modification as described be-
low.

A. Branch-Oriented Modification

This representation is used only with symmetrical admittance matrices. For a single

branch admittance change between nodes i and k the admittance modification matrix AY is

given by :
M - 3y - MmT
AY = | | x|Ay]x +1 -1
i+l i k
k|-1

When m branches are modified simultaneously, 8y becomes an mxm diagonal matrix,

and M has m columns, each with entries +1 and -1 in the relevant positions. A shunt repre-
senting fault would have only the +1 entry.

B. Node-Oriented Modification

This is a more general representation which can also be used for non—symmetrical admit-

tance modifications. In this case a single branch admittance change between nodes i and k

in admittance modification matrix AY is given by :

M . Oy .

MT
AY=| .. | .. . Ay |—Ay IR 0 ..
i|+1] 0 —Ay| Ay . 0 +1 ..
i -
k{O|+]

Node-Oriented modification representation is chosen for handling the admittance

changes in the high speed transient stability algorithm because it is more general.
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Changes of branch and shunt elements which are applied simultaneously, can be com-

bined together, each contributing to one or two elements of the admittance change matrix dy.

In order to avoid computationally expensive matrix reinversion a method has been
derived which requires only the original inverse matrix Y~! for solving equation (2.61). This
method is known as the Current Compensation Method [14] and is fully equivalent to a
direct solution given by (2.62). It is derived from this equation by the following matrix trans-

formations :

V =(Y+AY ) I
=[(1+AY" Y ') Y]!I
=Y '-(1+AY Y1 let X=AY-Y!
=Y - 1+X) 1
=Y " 1+X)""[1+X-X]'T  where 1 +X-X]=1
=Y ' {1-1+X)" X1 let F=(1+X)!'X
=Y [1-F]I
Matrix F states the amount of current injection I that must be modified due to the admit-

tance change by AY. The formula for solving network equation (2.61) is now given by:
V =Y ! [I+AI] (2.64)
where Al =-F-I and
F =1+X)""'X=(1+AY Y- ) l-AY- Y

Computation of matrix F can be further simplified by substituting the definition (2.63)

for the admittance modification AY and further algebraic rearrangement to obtain :

F =M-c-MT-Y! (2.65)
where

c =[@y)y! +z]! (2.66)

z =MT-Y-I'M (2.67)




The general solution of equation (2.61) has now the following form :
V =(Y!-YI"M-c-MT-Y-1 )] (2.68)

Three main current compensation methods are derived from equation (2.68) by different

computational arrangements :

A. Post-compensation Method

V={1-Y"!"McMT}Y-I-] (2.68a)

B. Pre—compensation Method

V=Y1{1-Mc-MT Y- !} I (2.68b)

C. Mid—compensation Method : Y~! replaced by factors U~} -D~! - L-!
V=UT1{1-DtL!M-c-MT-U-! }-D!-L-!-1 (2.68¢)
The expression in the parentheses in the above equations is an nxn matrix representing

the compensation. Method B is convenient for use in combination with the W—-matrix net-

work solution. First current I is calculated from dynamic equations and then it is modified

by the current compensation method by the amountof A1 :
Al=-FI=-M-c-MT-Y-!"1 (2.69)

The W-matrix network solution is applied to the modified current injection I + Al in the
described earlier two—step calculation :

I'=D1"W-(I+AI) where W = L-!

V=WI-r

A variety of fault conditions can be modelled and corresponding matrices F can be pre—
calculated and stored for use during the simulation run. The initial inverse matrix Y-! is re-

quired for computation of matrix F. When a fault at bus i is applied, only i—th row of Y- is

used and for a branch switching between bus i and bus j, both i-th and j-th rows are used.

When the system admittance matrix is split by the Bus Tearing method, the required im-

pedances have to be collected from all subsystem matrices. In this case it is easier to use the
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physical meaning of impedance. In order to find the elements of i-th row of matrix Z = Y~!,
the physical meaning of impedance can be viewed as a system response to a unit injection
current at bus i, i.e. elements of i—th row of system impedance matrix is equal to the vector
of system bus voltages V when the current injection I is zero everywhere except for bus i

where it is equal to 1.0 :
V =Ut-D!-L-t ] where I=(00.1..000]T

When the systern is split by Bus Tearing Method, the above computation includes also
the intermediate steps for bus tearing computation and current injection modifications as de-

scribed earlier in the Bus Tearing procedure by equations (2.53) - (2.58).

If the admittance change is not known ahead of time, the compensation matrix F must
be computed on-line during the simulation run. For on-line computation of matrix F, a single
admittance change would require an amount of computation equivalent to one network solu-
tion for system voltages at fixed currents i.e. excluding the dynamic equation. An alternative
method for on-line computations of matrix re—inversion is also presented in the following

section.

2.7.2. Adjustment of the Inverse Matrix

If the admittance matrix modification involves too many elements or the change is per-
manent, it may be less expensive to apply a fast method for matrix re-inversion once rather
than apply the Current Compensation method continuously for all the following time-steps
of a simulation run. One alternative method for calculating the inverse matrix was proposed
by Sherman and Morrison [28,29] in 1949.

Computational effort for obtaining the inverse of a matrix would be reduced consider-
ably if the inverse could be transformed in a simple manner, corresponding to some specific
change in the original matrix. If one element is changing in the original matrix the resulting
changes in the elements of the new inverse can be computed from the old inverse as shown

below.
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Consider n—th order square matrix A and its inverse B = A~!. Also denote
a;j — elements of matrix A ;i,j=12,...n
bi; — elements of matrix B ;ij=12,...n
Suppose that the element ay has changed by an amount of Aajy so that the new value is :
Ap =ay +Aay
When the original matrix A changes to A’ = A + AA. the elements of new inverse matrix B’
can be computed based on the previous elements by :
Bij=bjj-by by  Gu; ij=12,..n (2.70)
where :
Gy = Aag / (1.0 + by - Aay) (2.71)
providing that 1.0 + by « Aayy is not equal to zero

Equations (2.70) are conveniently subdivided into three groups :

a)i=1I: Bij=b;;Hpy: j=12,....n (2.72)
b)j=1: Biy=by-Hy: i=12,..,n (2.73)
c) all others : Bjj=bjj—Bij"byj"Hy : Lj=12....n izl j=]J (2.74)
where : Hy=10/(1.0+ by Aay) (2.73)

[f two or more elements are to be changed, the new inverse can be found by successive

applications of the method.

Single change of one diagonal element :

Suppose that a diagonal element aj; has been changed by :
Ag=ag +08
Employ Sherman-Morrison to the original inverse B requires the following update :
Bij=bijj—bir *bj *Gu; ij=12,....n (2.76)
where :

Gu=06/(1.0+b"d) 2.77)
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Change of one diagonal element by § and one off-diagonal in the same row by -5

Suppose that a diagonal element aj; and an off-diagonal element ajj have been changed by:
Ap=ayg +9
Ag=apyg -9

Employ Sherman—Morrison to original inverse B requires the following update :
Bij = bij — ( byy—bi; )" b;j "Gy : j=12,...n

where :

Illustrative example :

When branch admittance is changed by Ay, four elements of the admittance matrix are af-
fected. For the branch between nodes k and m those elements are :
diagonal elements :
Akk = akk + A4y
Amm = aqmm + Ay
off—diagonal elements :
Agm = agm - Ay
Amk = amk — Ay
For a change of diagonal element Ay the equation takes the form :
Bjj = bjj — bik" byj" Gik; i,j=1.2,...n
where :
Gyk = Ay/ (1.0 + bk Ay)
Applying this formula once more for change of Aqnm produces :
Bij = bij — bik " bkj" Gkk + bim"bmj" Gmms ij=1.2,...n
where :

Gmm=Ay/(1.0+bym"Ay)

52



Chapter 3
High Speed Transient Stability
(HSTS) Program

3.1 HSTS Algorithm and Program Structure

For high speed transient stability solution of large systems a new algorithm has been de-
veloped and incorporated in the HSTS program written in the "C" computer language. The
original version of the HSTS program was aimed at running on single processor worksta-
tions, but because it was developed with parallel processing in mind, further implementa-
tions on the RTDS and the Distributed Processing Systems were implemented with minimal
modifications to the original program. This new algorithm combines several methods impor-
tant for parallel processing applications which include the following techniques as

introduced in the previous Chapter:

A. LDU—decomposition and LDU-inverse for processing sparse matrices,

W-matrix method for solving network equations (2-step procedure),

Re—ordering scheme to minimize number of fill-ins in the W—-matrices,

Bus Tearing method for system splitting the large network into smaller subsystems,

Current Compensation method for handling system admittance changes, and

mom o 0w

Partitioning scheme for solving one subsystem with many processors operating in
parallel.

The decomposition of the network admittance matrix Y, into factors L, D, and U is a pure-
ly sequential computation and is very difficult to parallelize as mentioned in the previous
chapters. In the proposed method, this decomposition is conducted off-line by the host com-

puter before the actual simulation run begins. For handling the admittance change during
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simulation run, the Current Compensation method is applied which does not require matrix
decomposition or inversion but instead uses the pre~computed matrix F as described in Sec-

tion 2.7.1.

The network solution, without system splitting, is simply a multiplication of large sparse
matrices by a vector. When full matrices are used in computation. this problem by its nature
is perfectly straightforward for parallel processing with each row—column multiplication im-
plemented on separate vector processors. However, with large system admittance matrices
we have to utilize the sparsity to improve computation efficiency. The LDU-decomposition
with a re—ordering scheme to minimize fill-ins in W—matrices produces uneven distribution
of sparsity in the admittance matrix i.e. processing of one row is more expensive than the
other. In addition, there are aiso differential equations associated with different system nodes
so that the work load may differ even more from one bus to the other. The Average Weight

Partitioning scheme described in section 2.5.3 can be applied to balance the processor load.

Since effective parallel processing compilers do not yet exist, the HSTS program is ge-
nerically structured to allow application on most common parallel or distributing processing
systems. This program is modularized and can be easily reconfigured and implemented on
different types of parallel processing computers, including the RTDS. Logic is placed in the
program so that it can be compiled by the "C” compilers available on single processor com-

puters and executed in a multiprocessor environment either parallel or distributed.

The complete HSTS algorithm with flowcharts is presented below :

HSTS Algorithm :

Step 1 : Initial Calculation (not parallelized, executed on the host computer)

The HSTS program residing on a host workstation computer reads and interprets the data
file which is assumed to be in the PSS/E stability program data format and performs the fol-

lowing tasks to initialize data for each processor participating in the parallel processing :
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1a) Split the system into R subsystems one for each RTDS rack or multicomputer

1b) Form R subsystem admittance matrices Yj;, i = I, ... R and interface matrices Yy .Yy .
i=1,..R

lc) Apply reordering scheme and LDU decomposition to produce triangular and diagonal
matrices L; , D; , U; for each subsystem i =1, ... R.

Id) Compute LDU inverses and W-matrices W; = L;"! and WT = U

1d) Calculate admittance matrices Yy;.Y i . i=1, ... Rand Y, required for System Splitting

by Bus Tearing and defined by :

Yui= Yo i " YTy = Y4 W T-D; - Wi YT, as of eq. (2.52)

Yi=Ys'Yi' =Yi WiT'D;-* W, as of eq. (2.55)
k

Yu= Yu- )> Y_lti as of eq. (2.51)

=l

le) Compute Z[[ = [ Y’u ]—[ - L(_] 'Dt_l 'U[—[
1 f) Partition sub—systems using Average Weight partitioning scheme to balanced workload

to P processors on each RTDS rack or network multicomputer.

1g) Initialize processor Local and Global Data Memories

Step 2 : Current Injections to Subsystem Buses

Each processor solves its own partition of subsystem buses and calls dynamic models
to integrate the associated differential equations. The resulting current injection for their
nodes are then fed into the appropriate buses in the following order :
2a) Solve system differential equations using previous state vector X and the most recent bus

voltages Vj to obtain new current injections I; to system buses,
2b) Update currents for non-linear loads, DC links and other system devices,

2c) Apply Current Compensation using pre—computed matrix F if system admittance change

took place.
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Step 3 : Current Injections to Interface Subsystem

The original current injections to the interface buses, due to generators and other devices
connected to them, must also be updated by the injections due to the overall effect of subsys-
tems that they are connected to.
3a) Compute the amount of current injections I; to tearing buses due to the subsystem cur-

rents I;:
Li=Y' [ as of eq. (2.54)

3b) Transfer the amount of current injections I;; to each processor solving the subsystem for

local computation of interface bus voltages.

Step 4 : Tearing Bus Voltages

Each processor computes all tearing bus voltages locally in order to reduce communica-

tion costs.

4a) Read the amounts of current injections I; from other processor to tearing buses
4b) Update current injections to tearing buses

k
I' = I[—leu as of eq. (2.53)

4c) Compute tearing bus voltages ( solving equation 2.48 )

Vi=Zy T as of eq. (2.56)

Step 5 : Subsystem Current Injections

Since voltages V, are computed locally by each processor, the system current injections

for buses within each processor partition can be updated without communication.

5a) Compute the amount of current injections I';; to subsystem buses from the interface
buses:

[ie= YTV, as of eq. (2.58)
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5b) Update subsystem current injections :

I'i=L-TI'y as of eq. (2.58)

5¢) Transfer current injections I'; to each processor in the same rack / multicomputer.

Step 6 : Subsystem Voltage Computation - Part I.

6a) Compute the intermediate product of series matrix multiplication in W-matrix solution:
I, =D;,-'"W;- I'; as of eq. (2.59)

6b) Transfer intermediate product I"; to each processor in the same rack / multicomputer.

Step 7 : Subsystem Voltage Computation — Part I1.

7a) Compute subsystemn voltages from the second part of series matrix multiplication :

Vi =WT-I;" as of eq. (2.60)
7b) Upload subsytem voltages V; to host computer for monitoring

A flow chart for the algorithm implementation in the HSTS program is presented below.
Shown in Figure 3.1 is Part A of the HSTS program flowchart. This initialization part is
executed before entering the Time Loop and consists of reading and interpreting the input

data files as well as forming all matrices and arrays required for the solution algorithm.

For parallel or distributed processing systems this is an integral part of the HSTS Compil-
er which generates Download File for each processor involved in the stability solution. The
format of this file is different for different implementations but in each case it consists
mapped memory contents necessary for each processor to perform the assigned task com-

putations.

When running the program on a single processor workstation, the download files are not
generated and this part is immediately followed by the solution part performed on the same
computer. The solution part consisting of solving all system differential and algebraic equa-
tions is embraced by the Time Loop. The convergence of the differential-algebraic network

solution is achieved by repeating the computations a few times within the Iteration Loop.
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==

Read Power Flow & Stability Data

'

System Splitting by Bus Tearing Yii.Yy.i=1....kand Yy

!

Node Re—-ordering

!

LDU Decomposition Li.D;i=1,..k.Y%

'

Matrix Inversion Wi=Li ' D! i=l...kand [ Y'y |
Partitioning Processor Load—-balancing scheme

- { - Fmj — Current Compensation
Matrix Pre-computation Yy .Y, i=l, ... k - Interface

!

Iniualization

!

/
Download Files

Initialize generators, exciters,
governors and loads

Figure 3.1.High Speed Transient Stability Program — Part A : HSTS Compiler.

System Splitting, Node Ordering, LDU Decomposition and Inverse.

There are two types of computations involved in the solution part. One type is performed
only occasionally when system events take place and other is the routine computation of cur-

rents and voltages. The solution is thus divided into two parts :

Part B : System Admittance Change

Part C: Network Solution Methods

Part B is executed only when events such as faults, switchings or other system operation
changes take place. This part is shown in Figure 3.2 One full network solution has to be per-
formed every time system admittance is changed. Current compensation computation is ini-

tialized and it is continuously applied in Part C for the duration of an event.
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_
Download Files

'

Start Time Loop:t=0

‘ Yes

Current Compensation

s Y ‘

Bus Tearing Voltages

'

Subsystem Voltages

Time Loop )

No
——Qlults or System Operations>

AY;—> ALi=F ;' [;
I'i=L-XI
Vi=[ Y’y 7117
I =D 1 W;- I
Vi =WT-h- s

Figure 3.2. High Speed Transient Stability Program - Part B : HSTS Solution.

System Admittance Change.

Part C begins with Pre—calculations block which initializes the Iteration Loop. The repet-
itive solution of the network differential and algebraic equations is performed within the It-
eration Loop until either a termination criterion is met or the maximum number of iterations
is reached. Since this part is repeated many times during a simulation run, computational ef-

ficiency takes the highest priority. The flowchart for this part is shown in Figure 3.3.

One rack of RTDS processors is equivalent to a multicomputer consisting P processors.
The looping for processing the tasks by processors j= 1, ..., Pon racks i= I, ...,R shown in
the chart, are targets for parallelization in the multiprocessor environment. The number of

buses on each processors will be determined by the partitioning scheme which balances the

processor workload.
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I 1 Memory
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a“ Transfer 0 I :i=1.2...R
| ] L ]
t+=At|| [+=1 i+=1 j+=1 Bus Tearing Currents Ljj:j=1.2....P
] L ) Lij=Yyi I Communication
*: Transfer 1 . i=1,2,..R
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=1 4= Bus Tea.nn‘g V(?ltage
Yes V= Y; a I
<’I’ﬁ v Injection Currents Iyij=1,2...P
es [oim YTV L ———
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< Lma d . R
No “_ﬁnsfcr 2 Piii=12....
Y
i E1 - 1 I": =Dy~ e W, I’ Fijj=12....P
: *; ‘H: j =i T by v Communication
'_: Transfer 3 I":i=1,2,...R
| [ ]
i += 1 ja=1 Subsystem Voltages Vijsj=1.2,...P
7 Vij = WT - Ii” Communication
End ]

Figure 3.3. High Speed Transient Stability Program — Part C : HSTS Solution.

W-matrix & Current Compensation Network Solution Method.
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Communication links are different in nature for the RTDS and the Distributed Processing
Systems. For RTDS, the exchange of information among processors on the same rack are
made via the Virtual Distributed Shared Memory which is transparent to all processors on
the same rack and also its IRC part is also made transparent to processors on other racks. For
the Distributed Processing Systems communication between processors requires cross—net-

work links.

3.2 HSTS Validation Tests on Workstation and PC

The network solution applied in the HSTS program has been tested on a selected 505-bus
test system against the conventional stability programs such as BPA, PSS/E, and PSDS. The
test system consists of 505 busses, 704 branches , 435 transformers, 52 generators. and 126
loads of various types.

In the test. a three phase 2—cycle solid fault was applied to bus 344 with varying damping
factor D. The same tests were performed with HSTS and BPA stability programs. The BPA
program could be run only on UNIX Workstation, where the HSTS program was run on both
the UNIX workstation and the PC computers. System splitting was applied in HSTS cases

to observe its effect on execution time.

Simulation results using the HSTS program match closely the steady-state and post—
fault curves of other stability programs. Plots for selected 4 bus voltages and for 4 machine
angles for the BPA and HSTS cases are shown in Figures 3.4 and 3.5. A very good agreement
between the two programs can be observed for system bus voltages. Some differences in the
post fault swing curves are observed which are due to differences in dynamic model repre-
sentations. Similar differences were also observed between BPA and PSS/E or PSDS results
and thus they are considered to be acceptable. Since the dynamic modelling was not a prima-

ry objective for this research, this matter was not investigated further.
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Figure 3.4. BPA and HSTS Comparison — System Bus Voltages.
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Figure 3.5. BPA and HSTS Comparison — Machine Angles.
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Table 2 : BPA Execution Time on UNIX Workstation

BPA Execution Time
Case Average Time-step Total
| subsystem 162.5 msec 195 sec

Table 3 : HSTS Execution Time on UNIX workstation

HSTS—UNIX Execution Time
Cases Min. per time—step | Max. per time-step Total
| subsystem 23.1 msec 590.2 msec 76.3 sec
2 subsystems 15.4 msec 381.3 msec 50.8 sec
3 subsystems 16.7 msec 416.5 msec 55.0 sec
4 subsystems 16.3msec 409.7 msec 54.3 sec
S subsystems 15.8 msec 393.0 msec 52.1 sec
6 subsystems 20.9 msec 535.6 msec 68.9 sec

Table 4 : HSTS Execution Time on PC (without MPI communication )

HSTS-PC Execution Time
Cases Min. per time-step| Max. per time-step Total

I subsystem 12.2 msec 330.1 msec 43.0 sec
2 subsystems 9.3 msec 247.6 msec 34.8 sec
3 subsystems 8.5 msec 222.9 msec 32.5 sec
4 subsystems 8.9 msec 233.3 msec 33.8 sec
5 subsystems 9.3 msec 244.2 msec 36.0 sec
6 subsystems 10.7 msec 281.8 msec 41.0 sec

Simulation cases : S05-bus test system, 6—second run, time-step At = 5 msec




Execution
Time [ sec ]

v OO sra 0O HSTS-UNIX B HSTS-PC

200

150

100

S0 H - - 0] - -|

3 4 5 6
Number of Subsystems

Figure 3.6. Total Execution Time of a 6—second Simulation Run for BPA and HSTS

Transient Stability Programs Solving 505-bus Test System

The execution times for BPA and HSTS cases were measured. The CPU time comparison
for a 6~second simulation run with a time—step At = Sms on the Sparc2 UNIX workstation
and the 200MHz Pentium PC are presented in Tables 2—4 and Figure 3.6. The HSTS program
takes approximately 25% of the time required by the BPA program on the same Sparc2
workstation machine. Further reduction of approximately 40% is achieved by running the
HSTS program on a 200MHz Pentium PC. It can also be observed that the system splitting
itself produces computational savings because the LDU inverse is applied to smaller subsys-
tem matrices and results in less fillins that improves the overall system matrix sparsity. Those
gains, however, can be overwhelmed by the amount of extra work required to process inter-

face buses which generally increase in number as the number of subsystems grows.
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Chapter 4

HSTS Program Implementations

In this Chapter. parallel implementations of the High Speed Transient Stability (HSTS)

program are discussed.

4.1 Parallel Processing for Power System Problems

The following definition of parallel computer was given by Ian T. Foster [10] and is used
here because it is broad enough to include parallel supercomputers that have hundreds or

thousands of processors, networks and workstations and multiple—processor workstations:

A Parallel Computer is a set of processors that are able to work cooperatively to solve
a computational problem.

The need for faster computers is driven by the demands of both computation—-intensive
and data—intensive applications and the problem of transient stability solution of large power
system networks falls in these categories. The performance of the fastest computers in the
market is growing exponentially with a factor of about 10 in every five years. The perfor-
mance of a computer depends directly on the time required to perform a basic operation and
the number of these basic operations that can be performed concurrently. The time to perform
a basic operation is ultimately limited by processor 'clock cycle’ time which is decreasing
rapidly but for recent computers it is already approaching physical limits (such as due to the
speed of light). To circumvent these limitations new strategies are being developed by the
Very Large Scale Integration (VLSI) complexity theory to utilize internal concurrency in
a chip.

These new strategies, however, are expensive because in order to decrease the processing
time T by a certain factor, the total area A of a chip must be increased by the square of that

factor [10] ie. the product AT? remains approximately constant. This AT? result means that
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not only is it difficult to build individual components that operate faster, it may not even be
desirable to do so. For example, if we have an area n2A of silicon to use in a computer, we
can either built n2 components, each of size A performing an operation in time T, or built a
single component of size n2A performing the same operation in time T/n. The system of n2

components is potentially n times faster than the single component.

A variety of techniques used to overcome the performance limitations on a single com-
puter include: Pipelining (different stages of several instructions execute concurrently) and
Multiple Function Units (several multipliers, adders, etc., are invoked by a single instruc-
tion stream).

Another important trend in computing is the enormous increase in the capability of net-
works that connect computers. By the end of the 1990s, bandwidth in excess of 10 Gbits per
second is expected to be commonplace. This trend makes it feasible to develop applications
that use physically distributed resources as if they were part of the same computer.

Although Distributed Computing differs from Parallel Computing the basic task of de-
veloping programs that can run on many processors is common for both. Programs for multi—
processing can share processor resources, data code and devices. The fundamental require-
ments for parallel software includes : concurrency. scalability, locality and modularity.
These properties are briefly discussed below.

Concurrency, which refers to the sharing of resources in the same time frame, becomes
a fundamental requirement for algorithms and programs for multiple processors located not

only inside each computer but also across a network.

Programs for parallel computing may experience substantial increase in processor count
over the lifetime of the target hardware. Therefore, scalability, or resilience to increasing

processor count, becomes another important feature for protecting software investments.
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A basic model used to represent a single machine is the von Neumann Computer. This
model comprises a central processing unit (CPU) connected to a storage unit (Memory) as

shown in Figure 4.1.

:.__ Name
— 2.8931
Program - 33643 Data
CPU Memory

Figure 4.1. The von Neumann Computer.

The CPU executes a stored program that specifies a sequence of read and write opera-
tions on various type of data stored in the memory. This simple model has proved remarkably

robust for many years.
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Figure 4.2. Idealized Parallel Model of Multicomputer.

A parallel machine model or Multicomputer comprises of a number of von Neumann
computers, or nodes, linked by an Interconnecting Network as shown in Figure 4.2. Each
computer executes its own program, accesses local memory and may send and receive mes-
sages over the network. Messages are used to communicate with other computers and to read

and write remote memories.

68



Accesses to local memory are less expensive than accesses to remote memory. That is.
read and write are less costly than send and receive. This property is called locality and is

the third fundamental requirement for parallel software.

While it is possible to program a single node computer in terms of sequential instructions,
modular design techniques are applied for parallel programming models. Complex pro-
grams are constructed from simple components and components are structured in terms of
higher-level abstractions such as data structures, iterative loops or procedures. Parallel pro-
cessing introduces additional sources of complexity that deal with the problem of how to
manage the execution of many processors and coordinate inter—processor interactions. In

this context modularity becomes the fourth fundamental requirement for parallel software.

In a parallel programming model mechanisms are needed that allow concurrency and
locality and that facilitate development of scalable and modular programs. Certain abstrac-
tions are needed that are simple to work with and that match the architectural model of the
multicomputer. For this purpose two abstractions fit these requirements particularly well :
the task and the channel. These abstract terms permit discussion about concurrency, locality,
and communication in a machine—independent fashion and provide a basis for the modular
construction of parallel programs.

Parallel computation consists of many tasks that can be executed concurrently. A task
encapsulates a sequential program and local memory (virtual von Neumann machine) and
a set of inports and outports define its interface to its environment. Tasks can perform basic
operations like reading and writing or sending and receiving messages. Outport—inport pairs
can be connected by message queues forming communication channels between tasks.

The multicomputer parallel machine models using the task/channel programming ap-
proach are widely used in parallel algorithm design, analysis, and implementation. Tasks
can be mapped to physical processors in various ways. One or more tasks can be mapped to

a single processor. In parallel programming model. channel indicates that computation in
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one task requires data in another task (data dependency) in order to proceed with the task

execution.

In spite of the rapid progress made in hardware technology for building a new generation
of computers to date, it is still very difficult and painful to program computers for parallel
processing. Few shared—memory computers such as the Balance and Alliant have resident
compilers for limited set of languages (FORTRAN or C ) which can convert software to pa-
rallelized execution modules with no effort on the part of the user. Since conventional pro-
grams are often not written with parallelism in mind. gains can only be slightly greater than
1.0 regardless of the number of processors used. In order to achieve significant gains by pa-
rallelization, modern software development must concern itseif with issues of concurrency,

scalability. locality. and modularity as discussed earlier.

Software development for parallel processing on the existing computers is currently very
time consuming due to lack of parallel programing tools, debuggers, and efficient parallel
compilers. Program code must be broken down into parallel tasks manually and distributed
to each processor. Synchronization of all processes and all data communication is under pro-
grammer control. The code developed in such a manual way is thoroughly optimized by tak-
ing advantage of parallelism, which may not be visible to an unsophisticated compiler. Typt-
cally, a program developed for one processor is not transparent to other local memory
machine because language extensions have not been standardized.

Parallel processing hardware architecture considers two general system classes :
a) Single Instruction Multiple Data (SIMD) class of machines with shared or local memory.

SIMD class includes vector processors such as the Cray, IBM 3090/VF and also MPP,

Connection Machine, etc.

b) Multiple Instruction Muitiple Data (MIMD) class of machines with shared or local
memory.

MIMD class with local memory includes Distributed Processing Systems and such ma-
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chines as the iPSC and NCube. MIMD class with shared memory includes the BBN But-

terfly, Balance, Encore, Alliant FX-38, etc.

MIMD class includes also specialized architectures such as those designed for neural
networks, transputers and the parallel vector processors which use more than one vector
pipeline simultaneously. Distributed Processing Systems are an important subclass of

MIMD machines.

Algorithm development includes the design and analysis of new numerical and symbolic
methods to match existing or new architectures. It also involves testing algorithms to ensure
accuracy and evaluation of algorithms performances. The performance of many parallel ap-
plications depends critically on the quality of the partitioning scheme used for decomposing
calculation tasks across the processors of a parallel computer. Application performance is
directly linked to the progress of the slowest partitioned part of the calculation and to whether
all partitions are the same in terms of storage size and work load. Identifying and implement-
ing the appropriate partitioning algorithm is crucial to ensuring high processor performance.

The parallel processing algorithm may begin to show its limitations with increasing
problem complexity by requiring a great deal of execution time or not providing accurate
results. The number of instructions in a program segment, or a grain, can be used as a sim-
plest measure of computational intensity. Grain size or granularity is commonly described

as fine, medium, and coarse depending on the processing levels involved.

Latency is a time measure of the communication overhead incurred between machine
subsystems. There are different types of latencies :
— memory latency — time required by a processor to access the memory,
- broadcast latency — time required for a processor to send a message to other processors,

- synchronization latency — time required for two processors to synchronize each other.

Computational granularity and communication latency are closely related and they both
affect parallelization performance. By balancing granularity and latency, one can achieve

better performance of a computer system. Various latencies are attributed to machine archi-
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tecture, implementation technology, and communication patterns involved. The latency can

in fact impose a limiting factor on the scalability of the machine size.

The complexity of an algorithm for solving complex problems on a computer is deter-
mined by the execution time and the storage space required. The execution time of a parallel
program is defined as the time that elapses from when the first processor starts executing a
problem solving program to when the last processor completes the execution. During execu-
tion. each processor spends a certain amount of time for computing, communicating, or id-
ling. The ideal performance of a computer system demands a perfect match between ma-
chine capability and program characteristics. The testing of parallel algorithms must be done
on actual parallel machines because complex parallel architectures and communication

schemes are difficult to simulate on a sequential machines.

In more complex algorithms with variable amounts of work per tasks and unstructured
communication patterns, efficient agglomeration and mapping strategies may not be ob-
vious to the programmer. In these cases. optimization can be imbedded in the algorithm by

applying the load-balancing or task-scheduling methods.

For a specific problem, such as the transient stability, the program must be designed to
maximize the use of processing power of the computational hardware on which it is going
to be executed. The HSTS program is designed as a general multiprocessing program that
can be implemented on various computer architectures. In order to use the processing power
efficiently certain program adjustments must be made to suit adequately to a given hardware.
In the following Sections, two implementations of the HSTS program are described. The
parallel and distributed processing implementations are different, so that the nature of pro-

gram adjustment will also be different.

4.2 HSTS Implementation on Real Time Digital Simulator (RTDS)

In the following section, a parallel implementation of the HSTS program on the RTDS

hardware is described.
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4.2.1 The Real Time Digital Simulator (RTDS) Hardware

The RTDS is a special purpose computer [6] designed primartly to perform power system
electromagnetic transient simulations. Parallel processing techniques were applied in order
to achieve the necessary computation speed required for continuous real-time operation.
Real-time operation, is achieved when all of the calculations required within a single time—

step can be completed within the chosen time-step.

The RTDS is divided into units of hardware referred to as racks, with each rack housing
twenty printed circuit boards. Eighteen of those boards are identical and contain two digital
signal processors and associated external hardware. These are the Tandem Processor Cards
(TPC). One board within each rack is the Workstation Interface Card (WIC) and is used to
communicate with a host computer workstation over an Ethernet based local area network.
The final board contained within a rack is the Inter-rack Communication Card (IRC) and
is used to communicate with other racks comprising the RTDS. Figure 4.3 illustrates the

RTDS hardware architecture.
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TPC: Tandem Processor Card
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up to 4 racks Local Area Network Channel  IRC: [nter—rack Communication Card

Figure 4.3. RTDS Hardware Architecture.
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The TPC may be viewed as a pair of processors (two DSPs) with various banks of internal
and external memory as shown in Figure 4.4 The RTDS hardware uses the NEC uPD77240
processor which has two internal banks of memory (RAMO and RAM1) each containing 512

words.

Connection io Backplane

1
Local Data Global Data Global Data Local Data
Memory Memory Memory Memory
28K words 4K words 4K words 28K words
Instruction Instruction
Memory Memory
8¥ words 8K words
| |
,I_ ToCesso RS, Data . I!OC_ .esso
RAMO 1  RaMI T | Memory [ | RAM!I RAMO
512 words S12words |- 2K words 512 words 512 words
1 1
Peripherals word = 32 bits Peripherals

Figure 4.4. TPC Memory Banks.

Neither internal RAM bank may be directly accessed from the Backplane. Processor in-
ternal memory banks RAMO and RAMI are initially loaded from external memory and are

subsequently addressed internally by the processor on each board.

Numerous cubicles, each containing up to four RTDS racks may be interconnected to
form a large power system simulator. In theory, the number of racks comprising a RTDS is
unlimited, although there is a hardware limitation in that a single rack may be directly inter-
connected to at most four other racks. By replacing one processor card with a second inter—
rack communications card, however, the restriction may be relaxed so that one rack may be

interconnected to at most eight others.

A significant effort was put into the development of various levels of software in order

to ensure that the RTDS was user friendly. For transient stability simulation, the power sys-
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tem model is entered from data files in a standard PSS/E like format. A Graphical User Inter-
face similar to the PSCAD/EMTDC program can be developed for commercial version of

the HSTS program.

A compiler interprets the power system model and generates data files. Combined data

files and the executable code form download files for the processors comprising the RTDS.

A combined operator’s console and data acquisition system is available via software run-
ning on the host computer workstation. While a simulation is running, the user is able to in-
teract with the RTDS, and also data generated by the RTDS may be captured and plotted on
the host workstation. Since the operator’s console and data acquisition system are inte-

grated, it is possible to capture data showing the response to a user initiated disturbance.

4.2.2 HSTS Implementation on RTDS

The biggest obstacle in obtaining real-time transient stability solution appears to be the
repetitive solution of a large size network matrix equation Y * V = L. The HSTS algorithm
was developed to deal with this problem in the multi-processor environment. System size
reduction by Bus Tearing method and sparsity utilization by W—matrix were adapted to over-
come the computationally—intensive solution problems. Partitioning scheme was also devel-

oped to balance the workload of the RTDS processors.
The W-matrix method applied on the RTDS may reach two types of limitations :
A. Time limitation : the total time required for the network solution and communication be-

tween processors should be completed in the real-time within every time-step of 5-10

msec.

B. Memory limitation : the problem size assigned to each DSP for parallel processing must
fit within the size of memory blocks associated with the processors of the RTDS hard-

ware.
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The time in [imitation A s the maximum of the execution times of the 36 processors with-
in one RTDS rack required for a single-step computation. This time depends on :
— total problem size ( number of system buses, and number dynamic models involved )
— density of admittance matrix and type of system models required for simulation run
— error margin and the maximum number of iterations allowed in the iteration loop
~size of a problem assigned to each DSP ( number of buses and dynamic models in a parti-
tion )

Balancing processor workload is essential in this issue and equal-size partitioning nor-
mally will not suffice because of the uneven density of system admittance matrices and dy-
namic equations applied at various system buses. One methaod for balancing processor work-

load was proposed in section 2.5.3

The network solution algorithm based on the W-matrix Method and associated library
of phasor domain models were originally programmed in "C" computer language as a stand
alone program for use on a single processor workstation computers. Compiling "C" pro-
grams for parallel computers is done internally and requires no effort for pre-programming
and code preparation. Although the NEC assembly code must be generated for the specific
application on the existing hardware of RTDS, the reference software in "C” will be univer-
sal for any other possible application on commercially available paralle! processing comput-

ers including future versions of the RTDS.

In order to run the High Speed Transient Stability program on the RTDS parallel comput-
er, the "C” version is translated into a NEC code (assembly language) required by the
uPD77240 digital signal processors (DSP) used in the hardware. This can be done either us-
ing the C-NEC compiler or by manual translation of the C—coded program to a NEC-assem-
bly language program. Since the compiler produced very inefficient code, some of the most
critical functions had to be translated manually to form an extended HSTS NEC-Library as

shown in Figure 4.5.
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Figure 4.5. Implementation of the HSTS Program on RTDS.

[tis also necessary to have adown—loading compiler program installed on a host comput-
er for loading the NEC code and system data into the RTDS. The main assignment for the
down-loader is to read and interpret all system specifications and to group appropriate data
and instruction words into hexadecimal files for each individual digital signal processor in-

volved in a simulation run on RTDS.
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Memory Considerations :

For limitation B, the memory blocks of each individual DSP in the RTDS shown in Fig-
ure 3.4 are considered to be : 28K of External Data Memory (EXM), IK of Internal Data
Memory( RAMO & RAM1), and 4K of Global Data Memory (BP) for backplane commu-

nications ( within which 4x256 words is reserved for inter-rack communications ).

The network solution by W-matrix method requires the following complex com-
putations:

I'=D1-W-1I where W = L-!

V=WT-I where WT= U-!

To perform the two—step network solution computations both complex arrays [ and I',
which are of the full system size, must be transferred to each DSP via Backplane Memory.
The solution vector V is also complex and of the full system size but it doesn't have to be

broadcast because dynamic equations and bus voltages are solved on the same processors.

System splitting by Bus Tearing method applied in the proposed solution method can re-
duce problem size to a smaller subsytem size. The length of arrays I and I" that need to be

transferred are also reduced to subsystem size.

Since Global Data Memory size is 4K, only a maximum of 2K complex values can be
broadcast and therefore the maximum number of system buses for processing on one RTDS
rack can not exceed 2,000 buses. This allows an average 55-bus partition for each of DSP
on the 36 processor rack.

The network solution requires storage of arrays and matrices in the Local Data Memory
(EXM) and transfer data through Global Data Memory (BP) as shown in Figure 4.4. To eval-
uate memory requirements we consider, for example, the number of system buses N = 500,
partition size M = 55, and the density of the W—matrix d = 10%. The amounts of memory

space (not including the data for dynamic model) is calculated as follows :
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Global Data Memory ( Backplane BP ) :

Transfer O — current vector I : 2xN = 1,000 <4K
Transfer | — working vector I' : 2xN= 1,000 < 4K
Transfer 3 — voltage vector V: 2xN = 1,000 < 4K

Local Data Memory ( External EXM ) :

current vector I : 2xN = [,000
working vector I" : 2xN = [,000
voltage vector V : 2xN = 1,000
triangular W matrix :

sparse admittances 2x(d*0.5*MxN) = 2,750

row index array : M = 55

column index array : d*0.5*MxN = 1,375
triangular WT matrix :

sparse admittances 2x(d*0.5*MxN) = 2,750

row index array : M = 55

column index array : d*0.5*MxN = 1,375
diagonal D~! matrix : 2xM = 110

The total memory requirement for storing a S5—bus partition on a single DSP is approxi-
mately 9K which is less than the limit of 28K for the Local Data Memory, and leaves about
19K for other data such as fault, machines, loads, exciters and governors of all buses as-
signed to a single DSP.

Another memory limitation comes from the size of the Instruction Memory which for
the RTDS processors is equal to 8K. The size of instruction data is given by the size of the
hexadecimal NEC translation of the RTDS program and is the same for each processor. If

the code exceeds 8K, the processor may have to be “specialized™ to receive only the code
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for specific type of computation like network solution, generator equations, non-linear load

equation, and so on.

In order to perform transient stability solutions on the RTDS hardware by the W—matrix
method for large systems, it is necessary to utilize many racks. As far as the memory is con-
cerned. subsystems of 2,000 buses could be performed on one rack with an average 55-bus
partition assigned to each DSP. However, due to limitations of the RTDS communication ar-
chitecture, which limits the list of broadcasts to 4K, this number must be reduced to around

500 buses per rack.

To allow processing of large systems on the RTDS hardware the HSTS Algorithm de-
scribed in Chapter 3 is considered. The seven—step procedure is reviewed here to address the

RTDS specific problems associated with this implementation.

All data for RTDS processors is partitioned and pre—calculated in Step 1. Current injec-
tions to system buses are initialized and are updated by dynamic models in Step 2 and 3 for

voltage calculations in the network solution algorithm.

According to this algorithm the computation of Tearing Bus Voltages Vin Steps 3 & 4
is not parallelized and is solved locally by each processor. The calculations of subsystem cur-
rent injections I; in Step 5 and bus voltages V; in Steps 6 & 7 are structured for parallel pro-

cessing as shown below.

Computation of Tearing Bus Voltages ( Steps 3 & 4 of the HSTS Algorithm )

Suppose that the Tearing Bus subsystem consists of N; nodes and each subsystem N;
nodes respectively. The matrix Y’y = YT, Yi~! required for computation of the current in-
jections to the interface subsystem I;; is pre—calculated according to the formula (2.55) and
is stored in sparse form on each processor memory for local computations. The computation
of current injections I', and voltages V,repeated on each processor may cost less time than

the communicating between processors required otherwise.
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Figure 4.6. Computation of Currents Injections to Tearing Buses.

The admittance matrix Y, for the interface subsystem and its inverse are pre—alculated
in the algorithm Step 1. Although bus tearing voltage calculation problem is of a small size,
the sparsity of the interface admittance matrix Y can still be utilized and the LDU decom-
position and LDU inverse performed in the same manner as for any other subsystem admit-

tance matrix. W matrix W, = [L',]™! is also formed and the subsystem network equation is

solved by :

Nt

Figure 4.7. Computation of the Tearing Bus Voltages.
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Parallel Computation of Subsystem Current Injection tep S of the Algorithm

Each rack computes its own injection current array I'; required for subsystem bus volt-
age calculations on each processor. The partitioning scheme. however, assigns a certain
number of busses to be solved on one processor so that the update of current injections can
also be performed only for those buses and the results exchanged among all processors on

the same RTDS rack.

First the current injections I; to subsystem buses are updated by the solution of differen-
tial equations. The original subsystemn current injections I; are then modified by the amount
of I'; which accounts for the effect of all bus tearing voltages V,on this subsystem. Partition-
ing is also applied to matrix YT so that the matrix—vector multiplication YT,V is per-
formed only for a few rows on each processor as illustrated in Figure 4.8. Partitions of the
border interface matrix YT; are stored as sparse and the vector multiplication here is of a

type: sparse row times full column.

Ylu Vt = Il[ I;
DSP #1 YT Liey I;
! eos e [ 12 ] e
- X Vt = _ +
DSP #j {- )
oo Nr >0 s
T
P 4P Y I; , I;
DSP# WP oy ur L; N
4
Uil .. EEE| ... Dp
Nt

Figure 4.8. Parallel Computation of Subsystem Injection Currents.
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Modified injection current array I'; is put together and broadcasted via Backplane

Memory BP to each processor on the same rack for parallel computation of subsystem bus
voltages V;.

Parallel Computation of Subsystem Bus Voltages ( Step 6 & 7 of the Algorithm )

For the reasons explained in section 2.4, only one W—matrix is used for each subsystem
admittance matrix on one RTDS rack. Partitioning scheme divides W—matrices W; and WT,
into P layers so that a certain number of row—column multiplications involved in the network

solution equation is computed on each processor as illustrated in Figure 4.9.

V; = wiT* Di—l * W, % I';
DSP#1 | V1| = \Dil—[ Wi
DSP #i .
DSP#P | Vip| = Wpl Dip\
Mp NixMp s

Figure 4.9. Parallel Solution of Subsystem Equations on One RTDS Rack.

For Nj nodes in subsystem i, M; bus voltages are computed on processor j by solving one
partition of subsystern matrix equation :
Vij= WDy ' Wi * Iy
This involves the following two—step W—matrix calculation :
Iy = Dij’[ ~Wij-I’i

Vij = WT-I”
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The unit-triangular sub matrices W;; and WijT are stored in the sparse form and the vec-
tors I'; and I'; as full vector. The vector multiplication here is of a type : sparse row times

full column.

The intermediate products of the two—step matrix multiplication I'j; are exchanged

among processors via the Global Data Memory (BP).

This part is probably the most computationally intensive part of the network solution al-
gorithm and it is also repeated many times within the Time and Iteration Loops of the HSTS
program. Coding should thus be done as efficiently as possibie. For the NEC instruction data
the vector multiplication for this part is coded manually and included in the HSTS NEC-Li-

brary of basic functions.

Communication : Inter—processor and Inter-rack Data Transfers

A complete solution for each time or iteration step is achieved in a few stages by making
use of back—plane (BP) or inter—rack (IRC) communications. Four transfers are required to
complete one network solution : three inter—processor transfers on the same rack and one

inter—rack transfer.

First bus voltages from the last time—step solution (which are known locally by each pro-
cessor) are used for solving dynamic equations of machines and loads. Current injections to
system buses are updated and if admittance change took place then current compensation is
also added to these current injections. Each DSP computes current injections I'jj to those
buses which are assigned to be processed as one partition group. These updated group of cur-
rent injections are put together in BP to form a full subsystem current injection array which

is passed back to each DSP in Transfer 0 as shown in Figure 4.10.

By applying the subsystem-to—interface admittance matrix Yy, the modifications to in-
terface current injections I; due to each subsystem are computed and put together in the top
256 locations of BP which is used for the IRC communication. Blocks of current modifica-

tions from each rack are received in inter-rack Transfer 1 and they are put at BP locations
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Figure 4.10. Transfers of Variables via Backplane Memory

In the next stage the modified interface current injections I’y are computed and using the

LDU inverse of the interface admittance matrix Zy = L' «D,~! - U,~! tearing bus voltages

V. are computed on each DSP separately so that no transfer of data is required.

The tearing bus voltages V; and the interface admittance matrix Yy; are used to compute

modifications to the subsystem current injections I using the admittance matrix Yy. The

modified subsystem current injection array I’; is put together in BP from injections I';; up-

dated on each DSP and exchanged among processors in Transfer 2.
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A full modified current injection array I'; is needed for the first part of subsystem bus
voltage computation I"'; = D;~! * W; = I'; . One more time partition part of vector I"; is put

together in BP in Transfer 3 and the last part of the voltage computation V; = Ui lsI7 is

now completed.

New bus voltages are used in the next step solution of system dynamic equations as de-
scribed above. Since differential equations associated with a group of buses will be pro-
cessed on the same DSP, the bus voltages can be stored locally only and no additional transfer
between processors to exchange these voltages is required. The program returns to the top
of the Iteration Loop, or if the iterations are finished, to the top of Time Loop to proceed with

the next time-step cornputation.

Additional broadcasts may be required for the selected variables that are observed and

need be uploaded to the host computer for plotting, monitoring or filing.

4.2.3 RTDS Test Results

The network solution part of the HSTS program including the W-matrix network solu-
tion method and the Current Compensation method for handling the admittance change was
tested on one RTDS rack consisting of 36 processors. A 505~bus system was solved using
various number of processors. The execution time for one computational cycle with one it-
eration was measured by observing the processor transfer request flags on the Dolch Logic
Analyzer. The execution times as a function of number of processors used on a single RTDS

rack are presented in Table 5 and also plotted in Figure 4.11.

The RTDS test results indicate that the most gains are achieved when using 5 to 20 pro-
cessors. For more than 30 processors very small gains in execution time are observed. A full
rack consisting 36 processors is therefore not an optimal number of processors to be used

for parallel solution of a 500—-bus system.
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This results can be explained in terms of granularity or grain size for this 505-bus prob-
lem. Since one system admittance matrix was used (one rack RTDS applied), the lower trian-
gular sparse factor matrix L after node re—ordering consists of long (505 elements). very
dense (almost full) rows. These rows represents the smallest grain for processing on one pro-
cessor causing that coarse grain size in this case. It would be probably better to split the test
system into two or more subsystems, to reduce the grain size, and solve each subsystem on

separate racks even with less than a full rack of processors.

Table 5 : HSTS Speed as a Function of RTDS Size

Number of Execution Time
Processors ( one iteration)

5 41.8 msec

10 28.1 msec

15 23.6 msec

20 20.8 msec

25 19.5 msec

30 18.6 msec

36 17.7 msec

One alternative task assignment scheme for one RTDS rack may be to split the system
such that one subsystem can be assigned to a TPC cards, and partition each subsystem for
solving by 2-3 processor on one card ( 2 NEC or 3 SHARC processors). Such a scheme
should improve the use of RTDS processing power but some program restructuring and

transfer re—scheduling would have to be applied.
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Figure 4.11. One-step Execution Time on Various RTDS Size

4.3 HSTS Implementation on Distributed Processing Systems (DPS)

Distributed Processing System is a type of multiple processor system which involves
networks of computers that may not be close geographically. It is the most general form of
parallel processing because it involves many different type of processors which may execute
different programs, asynchronous communication channels with wide range of speeds, and

architectures which are unique for each network.

Distributed Processing implies that processing will occur on more than one processor in
order for a solution to be completed. Various topologies for Distributed Processing Systems

can be designed. These topologies can be either static or dynamic. Stafic networks are
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formed with point—to-point direct connections which will not change during program execu-
tion. Dynamic networks are implemented with switched channels, which are dynamically

configured to match the communication demand in parallel processing programs.

In this project static networks of commodity computers connected through an Ethernet
are considered. The configuration is a master—slaves scenario, with one computer freely se-
lected as a central controller distributing and collecting data from the other nodes in the clus-
ter. A mechanism that coordinates the scheduling of interdependent operations of a parallel
application is required to run a program concurrently on separate processors. A general mod-

el of a Distributed Processing Systems (DPS) or Multicomputer is shown in Figure 4.12.

Z |

M

Message—passing
Interconnection
Network

2|
< |7

o
<>

Figure 4.12. Model of a Message—Passing Multicomputer.

The DPS model consists of multiple computers interconnected by a message—passing
network. Each computer consists of a processor (P), local memory (M), and disks or /O pe-
ripherals. The message—passing interconnection network provides point—to—point connec-
tions among the computers which can have various configurations : mesh, ring, torus, or hy-

percube. All local memories M are private and are accessible only by local processors. The
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Message Passing Interface Network, however. enables processors to communicate data for

exchanging through the network.

Computational algorithms are traditionally executed sequentially on single processor
computers. Unlike conventional sequential programs, the computations performed by Dis-
tributed Processing Systems do not yield a linear sequence of events. The inter-relationship
between the events performed in distributed systems requires distributed synchronization.
[n the HSTS program, this is accomplished by synchronous alignment of the send() and

blocking receive() instruction pairs between distributed and the central processors.

Message—passing programming is applied to develop programs for applications on Dis-
tributed Processing Systems. In parallel programming, there are many different languages
and programing tools, each suitable for different classes of problem. Example systems are:
Compositional C++ (CC++). FORTRAN M (FM). High Performance FORTRAN (HPF),
and the Message Passing Interface (MP!). Implementation of the HSTS program on Distrib-
uted Precessing Systems is based on the Message Passing Interface ( MPI ) library of func-
tions and macros that can be used in C, FORTRAN, and C++ programs [18]. The MPI was
developed in 1993-1994 and is one of the first standards for programming parallel proces-
sors. MPI is a complex system which comprises at present 129 functions of numerous param-

eters and variants.

4.3.1 Message Passing Interface (MPI)

MPI provides functions essential for communication between processes. This commu-
nication is based on the concept of communicator which is a collection of processes that can
send messages to each other. The actual message—passing in programs is carried out by
'Send’ and 'Receive’ functions which consists envelops ( general data about receiver and

sender ) and the data itself.

Collective communication can be made between two processors ( point—to—point) or

among more then two processors. When a single process sends the same date to every process
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the communication is called broadcast. There are also available various communication
modes such as : standard, buffered, synchronous, and ready which can be used for specific

purposes.

One programming environment for MPI development is provided by the MPICH for
Windows NT software. This implementation, called MPICH/NT, allows processes to com-
municate with each other either via shared memory or via the network depending on where
the receiving process is located. For this research work a public domain and freely available
MPICH/NT implementation developed at the Mississippi State University is used. An alter-
native UNIX implementation is the MPI/LAM developed at the Ohio Supercomputing
Centre.

MPICH operates on both Intel architecture and DEC Alpha platforms and is supporting
a range of multiprocessing system configurations. An mpirun program is provided for pre-
cess startup. Processes can be run on a default set of nodes and the process placement can
be controlled by use of configuration files. The system devices are integrated into MPICH
in an optimal way to bring high performance for the messaging system.

With MPICH/NT, a dedicated cluster of computers on an existing network can act as one
parallel computer solving one compute—intensive problem. The Microsoft Visual Studio en-
vironment and Digital Visual FORTRAN are supported which offers extensive capabilities
to support debugging for parallel programming.

In MPI programming, the processes involved in the execution of a parallel program are
identified by a sequence of non—negative integers called ranks. When the program is com-

piled and run with more than one processors the process is as follows :

I. A copy of the same executable program is placed on each processor,
2. Each processor receives its own data required to perform all assigned tasks,

3. Processes execute different instructions according to processor ranks.
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The above is based on the Single Instruction Multiple Data (SIMD) paradigm in which
the effect of different programs running on different processors (MIMD) is obtained by tak-
ing branches within a single program on the basis of process rank. A process can find out its
own rank (MyRank) by calling the function :

MPI_Comm_rank(MPI_COMM_WORLD. &MyRank);

The path of execution for communication functions is selected on the basis of this rank.

A multicomputer is specified as a simple list of machine names in a file for which MPI
applications must be synchronized so that all processes locate each other before user code
is entered. A simple SIMD application can be specified on the mpirun command line while

more complex configuration is described in a separate file. called an application scheme.

Six basic MPI functions that are most frequently used for parallel programming are :
MPI_Init - to initiate MPI computation
MPI_Finalize — to terminate MPI computation
MPI_Comm_size - to determine number of processors in MPI process group
MPI_Comm_rank — to determine my processor identifier
MPI_Send - to send a message

MPI_Recv — o receive a message
All but the first two functions take a communicator as an argument. A communicator
identifies the process group and context with respect to which the operation is to be per-
formed. For the basic program the only communicator needed is MPI_COMM_WORLD.

It is predefined in MPI and consists of all the processes involved in a computation.

The actual message—passing is carried on by the functions MPI_Send and MPI_Recv. In
order for the message to be successfully communicated. the system must append some in-
formation to the data that the application program wishes to transmit. This additional in-
formation forms the envelope of the message which consists of the receiver rank, the sender

rank, the tag, and the communicator.

92




4.3.2 HSTS Implementation on DPS

As emphasized in the previous sections, because the High Speed Transient Stability
(HSTS) program was developed with parallel implementation in mind. the implementation
on Distributed Processing Systems (DPS) or Multicomputer requires a minimal adaptation.
A fully scalable multiprocessing version of the HSTS C-language program is applied in this
implementation. The partitioning scheme, which was important for parallel processors on
each RTDS rack. is included in the program but not used unless multiprocessor computers
are available in the network. Communication. which was based on the Virtual Distributed
Shared Memory data exchange. is now replaced with the MPI-based cross—network mes-
sage passing routines.

Since effective parallel processing compilers do not yet exist. the HSTS program is ge-
nerically structured to allow application on most common parallel or distributing processing
systems using a single processor compiler. This program is modularized and can be automat-
ically reconftigured to specific computer hardware architectures.

In the HSTS program the computation for solving the problem and the data operated on
by this computation are decomposed into small tasks. For effective decomposition of a tran-
sient stability problem a power system is split into a desired number of subsystems one for
each computer (or multicomputer) in the network.

All basic tasks are designed to perform the 7—step HSTS algorithm described in Chapter
3. Atask assignment scheme, which is a method of allocating problem tasks to processors,
is included in the initialization part of the HSTS program. Proper communication required
to coordinate task execution is also designed in the general HSTS program structure as
shown in Figure 4.13.

The EXM[K] ; k= 1.2, ..., K in Figure 4.13 represent the partitioned data blocks which

are sent to network computers at the beginning of a simulation run.
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Figure 4.13. HSTS Program Structure for Multiprocessing Implementations
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The Manager / Worker task assignment scheme is applied for implementing the HSTS
program on Distributed Processing Systems as shown in Figure 4.14. [n this scheme a central
manager task is given responsibility for problem decomposition and task allocation. This
manager task is assigned to the Root Processor rank 0. Each worker process. which is proces-
sor of rank greater than 0, repeatedly executes a problem task assigned by the manager. This
task can be either to perform part of the HSTS solution or it can be a task totally different

in nature such as the interface to the EMTDC/PSCAD program also shown in Figure 4.14.

PSCAD/EMTDC
Socket
Communication
Channel
Manager HSTS
& Root Process : Rank O
MPI
Communication
Links
Workers HSTS HSTS HSTS
Rank | Rank i Rank K

Figure 4.14. Manager/Worker Task—scheduling Scheme for HSTS Implementation on DP

The main task for a worker processor is to perform a solution of one partition of a subsys-
tem problem. If K worker processors are located on K single—processor computers the sim-
plest method for task assignment is to split the power system into K subsystem and assign

a subsystem i to a processor which rank is equal toi ( MyRank =1).

After finishing their tasks workers report to the manager by sending messages consisting
of essential results required by other workers to continue their task computations. Manager
receives all the messages and sends back collective messages to all workers. The manager

also collects the final solution results, once every simulation time-step, and either stores
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them in output files or displays selected quantities using a GUl interface such as the RunTime
of the PSCAD program.

In the DPS implementation, communication must be done through the network and thus
the communication latency will typically be larger than in the RTDS implementation unless
fast network software and hardware are used. When one subsystem is solved by one comput-
er, the requirement for data exchange between processors is similar to the inter—rack commu-
nication (IRC) in the RTDS implementations : one communication per iteration for the sub-
system current injections to interface buses is required for the local computation of tearing
bus voltages. Similar communication is also required during events such as switchings or
system faults when subsystem current compensations must be exchanged. The size of these
communication messages is small because it is proportional to a small number of interface

buses or busses affected by admittance change in the first and second cases respectively.

Message—passing programming models are by default nondeterministic which means
that the arrival of messages sent from processors A and B to a third process C. is not defined.
It is the programer 's responsibility to ensure that the messages reach their destinations in de-
terministic order when this is required. MPI provides a mechanism to create communication
channels for point—to—point communication that allow construction of deterministic models.
However, for the two Gather—Broadcast type of communication shown in Figure 4.13 the
order of receiving messages is not critical as long as the message tags contain the information
of where the received message came from. The manager can construct the collective mes-
sages for workers, based on the task assignment map which is also used at the beginning of

a simulation run to distribute the partitioned data to all processors.
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4.3.3 DPS Test Results

The HSTS multiprocessing solution method has been tested ona 100 MHz Ethernet LAN
which connects UNIX, Windows 3.1, '95, and NT-based machines. Transient stability
solution for a 505-bus test system was performed on selected homogeneous cluster of 7 Win-
dows NT computers. First. the whole system was solved on one machine, and then the system
was splitinto k = 2. .... 6 subsystems and solved on k+1 machines with one computer acting
as a manager.

The main purpose of those tests was to demonstrate that the proposed multiprocessing
solution method could produce significant speedups in the computational time. There is al-
ways certain amount of communication time associated with data exchanges required to per-
form such a solution. This amount of time depends on the type of network and the specialized

hardware applied for fast communication. This aspects were not studied in this research

work because they require expensive computer network upgrades.

In order to validate the method, the total computation and total communication times
were observed separately during a 6—second simulation run on each machine in a cluster se-
lected for the HSTS solution. The test results are presented in Table 6 and corresponding

graphs are presented in Figures 4.15 and 4.16.

[t can be observed that the computation time is reduced from almost 40 seconds for one
machine to the range of simulation time for clusters of 6 and 7 machines. It can also be ob-

served that the workload for workers (machines 1-6) is approximately balanced.
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Table 6 : HSTS Execution Time on DPS (with MPI Communication)

HSTS Process Execution Time
Cases Rank Computation | Communication Total*
| subsystem /
I machine 1 39.7 sec 0.1 sec 39.8 sec
2 subsystem /
3 machines 0 6.5 sec 94 .4 sec 100.9 sec
1 12.6 sec 88.3 sec 100.9 sec
2 14.0 sec 86.9 sec 100.9 sec
3 subsystem /
4 machines 0 6.3 sec 142.1 sec 148.4 sec
I 8.3 sec 140.1 sec 148.4 sec
2 7.8 sec 140.6 sec 148.4 sec
3 7.9 sec 140.5 sec 148.4 sec
4 subsystem /
5 machines 0 6.00 sec 387.6 sec 393.6 sec
l 7.26 sec 386.5 sec 393.7 sec
2 5.47 sec 388.3 sec 393.8 sec
3 6.47 sec 387.2 sec 393.7 sec
4 5.34 sec 389.9 sec 394.4 sec
5 subsystem /
6 machines 0 6.25 sec 602.5 sec 608.7 sec
1 5.95 sec 602.9 sec 608.8 sec
2 4.80 sec 604.0 sec 608.8 sec
3 5.22 sec 604.1 sec 609.4 sec
4 4.72 sec 604.1 sec 608.8 sec
5 5.40 sec 603.4 sec 608.8 sec
6 subsystem /
7 machines 0 5.82 sec 529.5 sec 535.3 sec
1 6.01 sec 529.4 sec 535.4 sec
2 4.57 sec 530.8 sec 535.3 sec
3 5.70 sec 529.6 sec 535.3 sec
4 4.22 sec 531.2 sec 535.4 sec
S 5.33 sec 529.9 sec 535.3 sec
6 4.61 sec 530.9 sec 535.5 sec

Simulation cases : 505-bus test system, 6—second run, time—step At = 5 msec
* Excluding the initialization time which averages approximately 3.5 sec.
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Figure 4.15. Processor's Total Computation Time on Various DPS Cluster Sizes.

In Figure 4.15, for cases with more than one processor, the first column representing the
computation time of the root processor rank 0 is different than columns of the other proces-
sors. This is because in those cases manager processor does not participate directly in the
solution process and thus its load is different and normally not balanced with the worker pro-

Cessors.

It can also be observed that, as the number of subsystems grows, problem granularity

makes it more difficult to balance the processor load.
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Chapter 5

Conclusions and Recommendations

The main objective of this research work was to achieve a high speed stability solution
which could be applied on parallel or distributed processing hardware platforms such as the

RTDS and Distributed Processing System of Local Area Networks.

Various methods were considered and tried out on different computer hardware. Two it-
erative network solution algorithms based on the Gauss—Seidel and the Bergeron methods
were developed and examined for convergence and computational speed. Although both
solution methods readily fit into the parallel architecture, they generally suffer from com-
putational inefficiency caused by the inherent slowness of convergence of the iterative net-
work solution process for large system sizes. Therefore. a direct solution approach has been
chosen in this research work for developing an algorithm for high speed stability solution.
The achievements are summarized and conclusions and recommendations are presented in

this Chapter.

5.1 Major Contributions

The following is a summary of the major contributions which have been accomplished

in this research work :

A. Multiprocessing algorithm for high speed transient stability solution

In order to achieve high speed transient stability solution for large systems, a new multi-
processing algorithm has been developed in this thesis. This algorithm combines several
techniques useful for parallel processing applications which include the following :

® [DU-decomposition and LDU-inverse for processing sparse matrices

® W-matrix method for solving network equations
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Re-ordering scheme to minimize number of fill-ins in the W-matrices
Bus Tearing method for splitting large network into smaller subsystermns

Current Compensation method for handling the changes of system admittances

Partitioning scheme for solving one subsystem on many processors operating in

parallel.

A very important feature of this new algorithm is the scalability achieved in two levels
of parallelization. Firstly. the large stability problem is decomposed into smaller subsystem
problems using the System Splitting by Bus Tearing method. Each subsystem can be solved
relatively independently on one multicomputer with minimal communication requirements

because only a few connecting nodes are needed to tie the subsystem solutions together.

The second level of parallelization is achieved by applying the load-balancing partition-
ing scheme to solve subsystem problems by processors of a multicomputer. Since this paral-
lel processing requires more intensive data exchange between processors, the communica-

tion should be done via shared memory such as found on a RTDS rack.

This two-level parallelization scheme allows a very flexible method of adjusting the
solution method to various computing network architectures including parallel and distrib-

uted processing network configurations.

B. High Speed Transient Stability (HSTS) multiprocessing program

A stand alone version of the High Speed Transient Stability (HSTS) program has been
written in "C’ computer language for applications on single processor computers (UNIX and
PC) and for establishing a "template source code™ for implementations on parallel and dis-
tributed processing hardware. Power system models developed in other projects at the Man-
itoba HVDC Research Centre are inciuded in the dynamic part of the HSTS Program and
parallelized in order to perform a complete solution of the transient stability problem. Those
models include Classical and Detailed Synchronous Machines, Exciters, Power System Sta-

bilizers, Governors, Non-linear Loads, Multi-terrninal DC Links and various Faults.
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Proper inter~process communication routines are developed for the RTDS and Distrib-
uted Processing System implementations. This communication must provide both the cross—
network and inter—processor data exchange which is accomplished by applying the Message

passing Interface (MPI) communication software.

C. Parallel processing implementation of the HSTS program

A basic version of the HSTS program (network solution and system admittance change)
has been implemented on the RTDS for evaluation of the proposed network solution method
in a parallel processing environment. The load-balancing partitioning scheme is the main
mechanism that allows the parallel solution in this implementation.

The execution time for solving the 505-bus test system measured for various number
of processors applied in a single RTDS rack. has shown that significant gains can be achieved
when up to 20 processors are applied. Granularity of the problem causes the gains to saturate
and the execution time to level off around 17 msec for one complete network solution com-
putational cycle.

Alternative methods for the HSTS program implementations on future versions of the
RTDS hardware (racks of cards consisting 3 SHARC processors) considers the assignment
of one subsystem to 3—6 processors so that more than one subsystem can be solved on one
RTDS rack. This should better utilize the RTDS processing power for solving the stability

problem.

D. Distributed processing implementation of the HSTS program

A distributed processing implementation of the HSTS program on a Local Area Network
has been completed to examine program flexibility to adjust to various network configura-
tion. The proposed method considers various number of computers and various number of

processors on each computer that can be involved in a collective solution process.

[t was demonstrated that solving the problem on a network of distributed processors can

effectively reduce computational time but at the expense of increasing communication time.
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It is believed that the emerging fast network technologies can soon eliminate the high com-
munication latency and allow high—speed or even real-time transient stability solution of

large scale systems on a scalable cluster of commodity computers.

5.2 General Conclusions

The proposed multiprocessing algorithm implemented in the HSTS program deals with
the fundamental requirement for parallel software very effectively. The concurrency re-
quirement is accomplished by converting the general matrix solution into parailel, indepen-
dent tasks that can be executed concurrently on many processors. For the scalability require-
ment, the two—level partitioning and task assignment schemes form a powerful mechanism
for effective problem decomposition appropriate for various computer architectures and
available network resources. The requirement of locality is one of the prime concemns in the
proposed method. The data dependencies and communication requirements are minimized
by assigning to one processor a group of system buses along with dynamic devices connected
to those buses. Modularity of the HSTS program is maintained at various program levels.
At the bottom level, there are primitive functions for basic operations such as complex vector
and matrix multiplications. At higher levels are the basic program modules which are used
to construct program functions performing dynamic and network solutions, admittance

change, current compensation and other program blocks.

The main goal in developing a parallel algorithm is to maximize its parallelism and
to minimize the data dependencies between the parallel parts. The trade—off here is that more
parallelism involves more processors, which may require more data sharing and thus more
communication time. The algorithm applied in the HSTS program handles those problems
very effectively and, although more extensive tests are still needed, the basic tests performed
for this research work confirm that. The number of inter—processor communications per
computational cycle, as well as the message lengths, are minimized due to a special combina-

tion of techniques applied in the solution method.
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5.3 Future Recommendations for Speed Improvements

After a more detailed analysis of the HSTS execution process, some additional savings
in computation and communication times can be achieved by further optimization of the pro-
gram parallelization. Solving of the interface subsystem. for example, can be assigned to the
host computer (manager) and the dynamic solution for the interface buses can be performed
in parallel to similar computations for subsystem busses performed by other computers
(workers). The interface bus voltages can be computed by the manager and returned to the
remote processors for local updates of the current injections and voltage computations. In
this case. the overhead time due to the repetitive computations of the interface subsystem on
each processor, can be reduced.

The main problem for distributed processing remains the cross—network communica-
tion. For solving the high communication latency problem. an upgrade of hardware is neces-
sary. High Performance Computing and Fast Network technologies must be utilized to
achieve a better performance on a Local Area Network. Recently, many research groups re-

port on achieving a high computational speed using the fast network techniques.

One software tool designed to synthesize groups of computers into a high—performance
environment has been developed by Professor Andrew Chien at the University of [llinois and
is called the High Performance Virtual Machine (HPVM). Using a High Performance Virtu-
al Machine (HPVM) software, a group of off-the—shelf computers can be synthesized to de-
liver a peak performance of between 100 and 200 billion floating—point operations per se-
cond. A high—performance message communication layer, the Illinois Fast Messages (FM),
can send messages between processors over high—speed networks delivering bandwidth of
just under 80 megabytes per second and a latency under |1 microseconds using the Myrinet
interconnect. A variety of of Application Programming Interfaces (API’s) has been built on

the top of FM and includes the MPI used in the HSTS program.
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The HVPM and Myrinet interconnect are viewed by the author as one of the most promis-
ing platform for the HSTS implementation which can eliminate the large communication
overhead observed in the regular LAN. A much more expensive alternative would be to ap-
ply HSTS on High Performance Computers such as the 2600 MultiComputer Series deliv-
ered by the Computer Signal Processing & Imaging (CSPI). This system consists of 6 cards,
each incorporating four 200 MHz PowerPC processing elements interconnected by an
8—port crossbar switch. CSPI uses Myrinet high speed (gigabytes per second) packet com-
munication and packed routing technology to implement a switched network solution. [t also

supports the MPI for multiprocessor control and inter—processor communication.
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