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Abstract

The object of this thesis was the design of a pulse frequency mod-
ulator for control system applications. Closed loop sysfems with type O
plants were considered. A mathematical analysis of the plant response
to a pulse train of arbitrary fixed frequency was presented to facilitate
the design. The resulting design was ftested on both regulator and non
regulator systems involving pIanTswof first to third order. Resultfs in-
dicate the modulator provides a well regulated response relatively insen-

sitive to plant parameter variations.
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Chapter |
INTRODUCT ION

There has been an increased interest in the use of pulse control
in recent years. This interest has been the result of a number of rea-
sons, among them being: improved signal to noise ratios over analogue
control lers, ease of physical implementation of the control element,
more efficient modulaTioﬁ of large power sources, and the ease of encod-
ing and decoding a pulse train into a digital signal for remote control
applications. |

The types of modulation schemes used in these pulse controllers
have been in general either pulse-amplitude (PAM), pulse-width(PWM),
pulse-position (PPM), pulse-frequency (PFM), or combinations of these
four. Of the four basic schemes, pulse-frequency modulation is the most
difficult to analfze because the sampling frequency is completely signal
dependent and the modulating process is in general highly nonlinear.
However, PFM does possess The advantages of uniform pulse size, and the

control is not limited by a pfeseT sampling or reference frequency.

1.1 Background

A great deal of interest in PFM was friggered by the discovery
(5) in physiological systems of the existance of pulse trains along
nerve fibers that possessed both logarithmic and direct relationships
between frequency and stimulus intensity. It was thought That because
the physiological system represents a high degree of perfection of feed-

back systems, PFM, being an important element in such a system, would



offer advantages also to fechnical feedback sysftems. Consequently,
various methods of modulating the pulse frequency were developed.

There are basically two types of PFM schemes in existance to date,
commonly known as PFM of the first and second kind. Systems emp loying
PFM of the first kind, are systems in which the value of the modulated
parameter Tn (time to next pulse, sampling interval) at the nTh instant
T = Tn’ depends only on the value of the modulating function o(t) at
that same instant: Tn = f(o(fn)) (see Figure 1.1). Clark (2) was
one of the first fto investigate this type of modulafion and proposed a
number of possible functions (f) to be applied to the sampled input
fO(Tn)). .The development of state fransition equations fof systems whose
plants had both rea} and imaginary roots was carried out.

A modified version of Liapunov's second method was used fo analyze
stability and show The exfsfence of a limit annulus for steady state op-

eration of certain systems.

Tn =f (G(in))

Tn T Tn

v
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Figure 1.1 PFM of the first kind



Pulse frequency modulators employing modulation of the second kind,
are schemes in which the modulated parameter p is determined by a cer-
+ain function on the modulator input o(t); p(+) = f (o(+), Z¥) (Figure

1.2).

reset
G (1) P(t) - M(1-e7%5) U,
— 1 F ——?!Ar—_ z* s

Figure 1.2 PFM of the second kind

Modulators of this type emit a pulse whenever the modulated par-
ameter p reaches a preset threshold (£A) and then a reset operation is
performed on p. The generalized functional law for PFM of the second

kind is described by the following equéTions:

Lt gp) = o) = Asgn(p) § ([p] - A) (1.1)
Z*¥ = sgn(p) & (|p] - A (1.2)

Referring to Equation (1.1), the case when g(p) is a continuous
odd nondecreasing function of p has been defined (15) as sigma-pulse
frequency modulation (ZPFM). This setting of g(p) corresponds fo The
passing of the modulating signal ékf) through a firstorder low pass

filter and emitting a pulse whenever the output reaches a preset thres-

hold. Pavlidis and Jury (5) have studied the use of this type of mod-



ulator in control systems and its suitability as a model for physiological
systems. The study in control systems included the dynamic response
analysis of the modulator and a Liapunov stability study of a feedback
system empléying a sigma-pulse frequency modulator. Their main concern,
however, was the investigation of sustained oscillations using a specially
developed quasi, describing function for the modulator.

IPFM systems with g(p) (Equation (1.1)) set equal fo zero are
known as integral pulse frequency modulation (IPFM) systems. Both Li (10)
and Meyer (11) have studied the application of IPFM to control systems,
investigating such fopics as transient response, stability, and the
effects of noise. Farrenkoph, Sabroff and Wheeler (3) applied an IPFM
system to space vehicle attitude control, and Murphy and West (2) have
studied its use in an outer loop around an existing system to obtain an
adaptive autopilot for military aircrafft. W

Limited work has been done in the area of optimal control systfems.
A study by Pavlidis (14) concerned the minimum time and fuel problem for
a PFM system, the derivation of the optimal confrol being achieved by
a heuristic argument. Onyshko and Noges (13) attacked the problem of
finding the optimal PFM control function for a system by means of
Pontryagin's Maximum Principfe and Dynémic Programming. However, the
actual design of an optimal pulse frequency modulator was not attempted,
as the design would depend on the specific system under consideration.

Various Russian authors (6), (7), (8), (9), (16), have made sig-
nificant confribufions in the area of stability of PFM control systems.
The majority of these studies involved PFM of the second kind and em-

ployed Liapunov stability analysis.



1.2 Motivation

PFM schemes of the first and second kind, although interesting
from an analytical point of view, are not in general practically applied
+o the modulation of control system error. When employed in this context,
i+ has been shown (2), (10), (11), (15), that the steady-state perform-
ance of the system is highly dependant on the modulator and plant par-
ameters, and usually'fakes the form of irregular oscillations. |1 is
possible to decrease the amplitude of these limit oscillations by appro-
priate settings of the modulator parametfers, but this results in poor
transient performance. These irregular steady-state oscillations are
primarily the result of the modulator over driving the plant in one
direction, and then compensating for this overcontrol by driving The
plant with pulses of the opposite polarity. This type of performance,
besides producing large steady state system error,'degrades the inherent
high power efficiency of pulse modulation through overcontrol of the
plant.

The typical performance of these PFM devices when used as control
system error modulators is not surprising when it is realized that they
were not developed with this object in mind. [IPFM was originally pro-
posed because it lent itself to mathematical analysis (11) and ZPFM’was
infroduced as a mathematical generalization of IPFM (15). PFM of the
first kind was developed because the author was interested in a pulse
frequency modulator which sampled the input signal (2).

In view of the existing pulse frequency modulator's limitation
when used for control system error modulation, it was felt that there

was a need for a PFM element designed specifically‘for this task. The



resulting design would hopefully not display the short-comings of exist-
ing pulse freguency modulators, but rather: complement the natural ef-
ficiency of pulse modulation in controlling large power sources by con-
serving the control effort, minimize some pefformance index bgsed on the

steady state error (independent of plant parameters), and maintain accept-

able Transient performance.

1.3 Outline of Analysis

The objective of this investigation is fThe design of a PFM control
system error modulator which is efficient, minimizes a steady-state error
performance index, and maintains acceptable transient performance. The
only assumption made about the modulator (prior fo the design) is that
it emits identically shaped rectangular pulses of-either polariTy. Be-
cause the control. object, which the modulator is to precede, is assumed
to be a single-input-single-output |ineér~+ime invariant. plant, i1 was
5possible—#o use -a-heuristic approachffovfhe deéigg,of the modulator. For
The saké~of‘clarify and brevity oﬁly The fundamenTaT‘design techniques
and decisions -are presenfed.r B

Prior to the actual design of the modulator, it is necessary To
specify the characteristics of the system it is to be associated with.
This is accomplished in Chapter 2. The discussion of the exact nature
of the performance index to be minimized, the development of The open
loop system response leading to the modulator design and the design of
the prototype PFM modulator is presented in Chépfer 3.

Physical realization of the profotype modulator, final design mod-

ifications, and system simulation are presented in Chapter 4. The con-



clusions follow in Chapter 5.



Chapter 2
SYSTEM CONF | GURAT ION

2.1 Preliminary Remarks

The purpose of this study has been stated as being the design of
a PFM device To bevused +o modulate control system error, Figure 2.1.1.
I+ is well to realize in the early design stages of any system controller
that it is not possible to create a device which has universal applicabil-
ity, that controls every type of plant for every type of reference input.
This is especially true for nonlinear conTrollers,>+o which class PFM
belongs. Therefore, it was felt advisable fo precede the design of the
modulator with a specification of the system it is to be associated with.
In particular, specifications will be placed on +he nature of the ref-
erence input r, the form of the control u, and fhe plant G. These
specifications will be derived on the basis of physical limitations of
pulse modulation, stability arguments, and the design objecTives out-
lined in Section 1.3. They are not meant to be binding resfrictions on
the modulation's use, but rather are intended as a logical framework for

+he design to evolve from.

= PFM U G c

Y

Figure 2.1.1. PFM contfrol system



2.2 System Input

In Chapter 1 it was stafed that the modulator emits identically
shaped rectangular pulses of either polarity. An infegral part of The
modulator will therefore be some device which generates a pulse when
triggered to do so. A common property of any physical element that
produces pulses is the refractory period or dead time following the
emission of a pulse during which it is impossible for the pulse élemenf
to generate another pulse. This refracTofy period in general increases
as the amount of energy being carried by the pulse increases. Conse-
quently, there are intervals of fime following the initiation of each

_pulse during whicﬁ +he control function is not "controllable." That is,
once a pulse is initiated the control cannot be altered for a period of
time equal to the pulse width plus the dead Time.

In view of this, it would appear that a PFM controller would not
function well with systems for which the reference input was subject to
sudden changes. Therefore, the system input r will be restricted to be

of low-frequency, in parficular; Thefmodula+or wifl be- designed for regula-
tor systems, simplifying the deéigh préceduée somewhat. _
2.3 Control Signal .

One of the design objectives has been stated as being the conser-
vation of the control effort. |In order to realize this goal it will be
necessary to make some preliminary assumptions about the control object
or plant and determine the type of pulse control signal required by these
plants for.a regulated response.

The control object, a single-input-single-output linear time in-

variant plant, is assumed to exhibit a stable (i.e. bounded) response 1o



10

the unit pulse control signal. This will limit the plant to be either
of type 0 or type 1 having all poles situated in the left hand comp lex
plane. The type designation refers to fthe number of poles located at
the origin of this plane. As the plant response is being fed back and
. compared To the reference input, the plant is also required fo give a
net positive response fo a positive pulse input.

A type 1 plant, due to the pole at the origin, will exhibit a
non zero equilibrium state for a single pulse inpuf. [|f excited with n
pulses, the steady state response will be a constant equal to n times
the single pulse steady-state response. Due to this multiplicity of non
zero equilibrium sfafes, the type 1 plant is well suited to pulse con-
trol led regulation. These type 1 plants are quite adequately confrol-
led by PFM of the second kind.

I+ has been shown [1], [15], [17] that by appropriate setting of
the |PFM/ZPFM parameters with respect to type 1‘planT péramefers, The
system will exhibit zero steady-state error (i.e. perfect regulation)

IT was therefore felt to be not sufficiently rewarding to attempt to
improve on this performance. Consequently, fype O plants will be con-
sidered as the control objects in this study.

Type O plants exhibifvonly one equilibrium state, the origin.
Upon termination of excitation to these systems the response will vol-
untarily relax fto zero. Because of this fact, when these fypes of plants
are employed in pulsed regulator applicafion, they require a constant
pulse frequency input to maintain the response oscillating about The
reference input. The presence of both positive and negative pulses in

+he control signal, as is the case in PFM of the first and second kind,
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will quite likely only make the steady-state oscillatfions larger in mag-
ni+ude."lf would appear that the natural stability of these plants could
be used to advantage in conserving the control effort. The pulse mod-
ulator need only drive the plant with pulses of the same polarity as the
reference input to maintain the response at a non zero value. The pre-
sence of pulses of the opposite polarity is not required as the plant
will relax in this direction naTuraily. Consequent |y in the infer-
ests of conserving the control effort and reducing the magnitude of the

steady-state error, the confrol signal u will be restricted to be

pulses of the same polarity as the reference input.

2.4 Control Object

The type O plants applicable to this study can be further divided
into three categories as to whether the transfer function confainé dist-
inct, multiple or complex poles. For the case where the transfer func-
tion contains complex poles, the unit pulse response of the plant will
be oscillatory if these complex poles are dominant and lightly damped.
To maintain simplicity in the design of the modulator it was decided to
concentrate on the control of ﬁsfricfly stable" plants (non oscillatory
unit pulse response). Therefore, type O plants with; i) distinct
poles, .ii) multiple poles, and iii) non dominant complex poles, or
dominant heavily damped complex poles were considered when designing the
PFM element. As the latter class (iii) can in general be successfully
approximated by transfer functions involving only distinct or multiple

poles, it will not be included in the open loop response analysis of the

next chapter.



2.5 Summary

The system for which the PFM control element is to be designed
has been defined to be of the regulator class involving type O plants.
Furthermore, a pulse sign control law relating to the sign of the refer-

ence input (r) has also been determined.

12



Chapter 3
CONTROL STRATEGY

As yet, the design objectives have only been stated in general
terms: 1o minimize a performance index of the steady-state error, to
maintain acceptable transient performance, and to conserve the control
effor+; The decision to make the signs of the emitted pulses correspond
to the sign of the reference input has somewhat ensured the latter. In
order to realize the other objectives, it will be necessary to closely
define what these objectives are, and also determine on what properties

of the system error to operate.

3.1 Performance Specifications

System performance specfications normally include references To
both the transient and steady-state system response to a specific refer-
ence input signal, usually a unit step. In general, it is found impos-
sible to satisfy stringent specifications of both the fransient and
steady-state response simultaneously. Consequently, one set of speci f-
ications is usually given priority, and the setting of this priority is
of course dependent on the inTénded use of the system. The system for
which the pulse frequency modulator is to be designed is a regulator
system and therefore the steady-state performance specifications are of
primary importance.

Steady-state performance specifications are normally a function
of the magnitude of the steady-state system error. A performance index

for the PFM system based on this quantity would be indicative of the
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"goodness" of the system, however, the minimum value of this index wou | d
fluctuate with changes in plant or pulse parameters. What is desired,
is a steady-state performance index the minimum value of which is inde-
pendent of these parameters. A modulator which is designed To minimize
such an index would then function equally well with all plants of the
al lowed class.

The-index which was chosen is one which is a measure of The dif-
ference between the minimum and maximum values of the steady-state error

oscillations.

P=lle | -1ley;,[Tast>e (3.1.1)

The minimum of This "minimax" index (P=0) would indicate a mean value
of zero for the maximum and minimum of the steady-state error oscillations
(i.e. symmetric excursions of the plant response from the reference
input).

Upon examination of the standard transient response specifications
it is found that the majority of them are inapplicable to the sysfem
under consideration here. For instance, the commonly used transient
response error performance indexes (integral square-error (ISE), integral-
of time-multiplied square-error (ITSE), efc.) all increase without bound
if the steady-state system error is non zero. This is the case for the
PFM type 0 plant regulator system as it will exhibit steady-state
oscillations. The transient solution Time specifications (delay time,
maximum overshoot, settling time, etc.) are equally hard to apply to

the nonlinear system. The one solution time specification which is
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readily apparent in any system is the rise time. This is defined as the
+ime required for the system error to achieve ifs first zero. As the
steady-state performance is of primary importance, the PFM system will
be required to exhibit as short a rise Time as the satisfaction of the

steady-state specifications will allow.

3.2 Open Loop Response

In order to achieve a modulator design which satisfies the design
objectives it is necessary fo know the nature of the information avail-
able to the modulator. Since the modulator is to be designed for a reg-
ulator system, the modulator input,which is the system error, is direct-
ly related to the system response. Obtaining the plant response to a
train of positive rectangular pulses of arbitrary fixed frequency will
therefore give an.indication of the modulator input signal. In addition,
an attempt is made to find the pulse frequency or period. T which will
result in a "minimax" response. This 'T can later be used as a compar-
ison against the modulator action which is still to be designed. The
type 0 plants applicable to this systemhave been fimited To two cases,
distinct and multiple poles. In this study, the pulse width, although
finite, is assumed to be small in comparison To the smallest plant Time
constant. Consequently, for second and higher order plants, the pulses
will be approximated by impulses, easing the analysis. First order plants,

however, will bedealtwith in a straight forward manner.



3.2.1 G(s) Containing Distinct Poles

In this section first order, and second and higher order plants

are dealtwith separately.

First Order Plant
A first order plant G(s) = — (3.2.1)

is to be excited by a control function of The form

ut)

"
=

nT < ¥ f_nT + T

0 nT + 1 <t <(n+1) T . (3.2.2)

1l

n=20,1, 2,

That is, U(t) consists of a Train of rectangular.pulses of magnitude M

and width T, which occur every T seconds.

The general open: loop system and excitation is illustrated in Figure
3.2.1.
C
U . . =
(a)
u(t)
M
ety o L
T P Foi
LI | 1
T T+T nT nT+T

(b)
Figure 3.2.1 (a) Open loop system

(b) Control function u

16
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The plant response resulting from an excitation of this form will
be:

for nT <t <nT+rT

A(T-nT) M A(t-nT)
+ = e -

3 | (3.2.3)

C(t) = C(nTe FY g (
and for nT + 1T <t < (n+ DT
e = cametTL Mg AT (AT (3.2.4)

where C(nT) is the magnitude of the plant response at the time of the
n+h pulse initiation.

The fransition equation giving the value of the response at the
beginning of one pulse period in terms of the response value at the be-

ginning of the previous period is obtained by substifuting T = (ntT

into Equation (3.2.4).

AT

Cln+1)T) =c(nT) &' + AT (1-e™AT

ge (l-e ) (3.2.5)

>l=

Displaying the total response in graphical form, it would appear

as in Figure 3.2.2.

/N

() M

u(t) \/\
A g
/\

T T 2T 3T

Figure 3.2.2 Open loop response, first order plant




As can be seen from this figure the maximum values of the re-
sponse occur at the Times t =nT + T

and are

M AT

CnT + ) = CnD) & + 9 (e - D (3.2.6)

The minimum values of the response occur at the times t = nT and
have the values C(nT).

In the limit as time approaches infinity (i.e. steady-state), these
maxima and minima tend to constant values. For the minima, in the steady

state,

C((n+1)T) = C(nT) (3.2.7)

Using this equality in Equation 3.2.5. resulfs in an expression
for the minimum value of the plant response in terms of the plant and

pulse parameters.

-AT
C (T = Mg HT =e ) (3.2.8)
min A (1 - eAT )
n >

Substituting this value for Cm‘

|n(nT) into Equation 3.2.6. results

in an expression.for the steady-state maximum in terms of these same

parameters

AT :
e (e = Qe =D (3.2.9)
max A AT

(1 -e )
n >

In order to zero the regulator system performance index, Equation

3.1.1., the system response must satisfy the relation,
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Cmax * Cmin
- >0 - r(t) (3.2.10)

For a unit step reference input r(+) = 1.0 and by substifuting
Equations 3.2.9 and 3.2.8 into Equation 3.2.10, an expression for the

pulse period required to "minimax"the system error is obtained

AT
20+ Mg. (1 -¢e" ) (3.2.11)

22 + Mg (1 - e'lT)

T = Ln [

1
A
For example, for a plant of the form

_ 1 '
G(s) = 537 (3.2.12)

subject to a pulse train with the parameters

M = 5.0 wunits
(3.2.13)

—
]

0.025 seconds

the pulse period required for a minimax response is found to be, T
0.062509 seconds.

nTh Order Plant

For an nTh order plant containing distinct poles the plant-

transfer function can be expressed in the partial fraction form.

_Ns) 9
) =psy T s (3.2.14)
where
_ N(s)
9 T Tdb(s) (3.2.15)
ds s = A
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The general open loop system representation of Figure 3.2.1.(a)

can then be replaced by that of Figure 3.2.3.

1 X
5-7\]
U 1 X3
S - M»
|
I
1
b
1
i
1
1 Xm
S$-2m

Figure 3.2.3 Distinct poles

Employing the impulse approximation, the plant response C fo an

excitation U of the form,‘

U(H) = (M) 8 (+=nT) , (3.2.16)
n=20,1, 2,
will be for nT <+t < (n'+ T,
m m A, (t=-nT)
ct) = T g x (1) = I g G (nT)+ Mo)e (3.2.17)

where The xi(nT) are the values of the state variables X; at the times
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nT . The distinction between nT and nT+ is required as the X, are
discontinuous at the moments of impulse application.

Provided that the impdlse period T is greater than the largest
natural frequency of the plant, the response, C(t) will appear as in

Figure 3.2.4.

4

c) 1
u

111111

0 T 2T 3T 4T

Figure 3.2.4 n+h order distinct, impulse response

In order to obtain an analytic expression for the fmpulse period
T required to "miﬁimax" the response, an expression for the steady-
state maxima and minima is necessary.

Assuming the peak values of the response occurs in the interpulse
period, the maxima are found by setting the first derivative of Equation
(3.2.17) to zero.

m AL (=0T

C(H) = 0 = % g, O (nT) + MDe b . (3.2.18)
i=1 :
Separation of the residues 9; into positive and negative compon-

ents as follows,
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9, = 9 for all g; >0 r components

9, (gi) for all g; <0 s components

results in an expression for the fimes of peak values of the response.'

-
TCA | g (X (nT)+MT)).

(t-nT) = _ Ik 1 (3.2.20)
T A, - % A s .
.7 Kk m{|x.] g, (X. (nT)+MD))
J K o N

In this expression the XJ, XJ are the eigenvalues and The state
variables corresponding to the gj. The Ak and Xk have a similar re-

lationship wiTh the 9y
The expression for the maximum of the steady-state response is

then obtained by substituting (3.2.20) into Equation (3.2.17).

n(|n |9, (X, (nTY + MDY M
mo K RkOK Th. - IX
Crax (NT)- = iE1 9; (Xi(nT) +MT)[1T ] ik k
n - o (A ]g. (X, (nT) + MD)
N RV RN
(3.2.21)

in this expression, the Xi(nT) are the values of the state var-
iables at the time nT as n = «. As the minimums of the response oc-
cur at the times of impulse application, these values are also The min-
imum values.

In order to obtain a relationship between these minimum values
of these state variables and the plant and pulse parameters, it is con-
venient to employ the Z +transform as it gives an expression for the
plant response at the impulse times. Employing the final value theorem

in Z transform form results in an expression forithe values of these
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state variables as follows,

_ T

Xi(nT) = T (3.2.22)
1 - e’

n + o

Therefore the minimum value of the plant response- C in the

steady state will be

_ Mt
Coin (0T = 2 5 X (3.2.23)

n—+ o t-e

As with the first order plants, These values for Cmax(3.2.21)
and Cmin(3'2’23) may be substituted into Equation 3.2.10 with . r(f) a
unit step, and the impulse period T required to minimax the unit step
regulator sysTem response can be found. This requifes the search for
roots of a high order polynomial in e-T. '

For example, when a second order plant of The:form

6(s) = ——— (3.2.24)
(S+1)(5+2)

is excited by a train of unit impulses, the pulse period required for

"minimax" is found to be T = 0.549 seconds.

3.2.2 Multiple Poles
The response of a plant containing one multiple pole of order r
is examined in the section. The plant transfer function can be expressed

in partial fraction form as fol lows,
(3.2.25)

Nesy 91 9 .o % S L
D(S) r—1 (S-x,) © (S=x
r+1)

=
(S—kI) (S-A1) 1

G(S) =
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where B
i~1 iy
g, = —1— &[5 8 eny (3.2.26)
(i-1! ds
i=1,2. . .r
and
g = N(S)
| d _D(S) s = .
ds i
i =r+l, . . .m (3.2.27)

The general open loop system representation of Figure 3.2.1(a)

can Then be replaced by that of Figure 3.2.5.

Figure 3.2.5 Multiple pole
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If the plant is excited by a train of impulses T seconds apart

and weight Mr, then the plant response will be; for nT <1 < (n+1)T

A, (t=-nT)
X (P = O T) + X, (T (f=nT)) !
D) (3.2.27)
(+-nT)
+oMT (r=i
=1, 2, r-1
and
A, (F=nT) _
X, (1) = (X (nT) + M) e : (3.2.28)

i=r, r+1 ... m

The values Xi(nT) are the magnitudes of the state variables at
The Times * = nT.
The plant response C(t) will be equal fo fthe sum of these state

variables multiplied by their associated residues,

m :
ctt)y = ¥ g, XI(T) (3.2.29)

and will appear very similar to the response of the n+h order distinct
plant, Figure 3.2.4.

Because the first r-1 state variables (Equation 3.2.27) contain
time multiplied exponentials, it is much more difficult to develope gen-
eral analytic expressions for the maxima, minima, and desired steady-
state regulation pulse period T as was done in the first order and n+h
order distinct cases. As this theoretical T is only used as a check
against the modulator action, and is not a design factor, it was decided

to be not sufficiently rewarding to develop an expression for this
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theoretical T.

3.3 Modulator Design, Control Strategy

The control s+fa+egy governing the signs of the emitted pulses
has already been determined as being in direct correspondence with the
sign of the reference input. The pulse frequency or emission time con-
trol law remains fo be formulated. A reasonable approach to the deter-
mination of the pulse emission time is, as is done in PFM of the
second kind, to use a threshold device which is activated when some
function of the error signal reaches a threshold level (see Figure 3.3.1).
Design of the modulator then consists of determining the functions to be
applied fto the system error to achieve the design objectives. Specifically,
the design will require deye!oping a Threshold level filter (TLF), an
error filter (EF). and a threshold device (TD) such that the regulator

system error is "minimaxed".

reset
___JL_‘______I | sgn(n
I
| TLF |
|
E.>_l_l TD [ Z JPE|—Ys
| EF 5 I|
l

Figure 3.3.1 Block diagram of the modulator
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By examining the open loop response curves presented in the pre-
vious section (Figures 3.2.2 and 3.2.4), it is seen fthat the plant pulse
train response is characterized by ifs envelope. Minimization of The
performance index equation 3.1.1 requires the modulator to emit pulses.
such that the steady-state response envelope is centred on the reference
input and constant. For the pulse frequency modulator fo accomplish this,
it will require information not only on the system error, but also in-
formation about the steady-state error envelope. It was decided, there-
fore, to develop a threshold level filter set fo some function of the
error envelope, and to set the efror filter for unity transmission. The
modulator design problem therefore reduces to one of choosing fhe correct
threshold level envelope and threshold device functions to achieve the
Mminimax" critferia.

Wheanhe PFM closed loop system is operating correctly, the error
envelope in the steady-state should be symmetric about the zero axis.
This would imply that, as the response'minimums occur at the moments of
pulse/impulse application, a threshold level equal to the mean value of
the error envelope magnitude (2S in Figure 3.3.2) would maintain this
envelope in its steady-state position. The emiission of a pulse/impulse
when the system error is equal to the threshold level (s) should force
the error below its zero axis by a amount equal to what it was above.
For the fransient sftage of the response it will be necessary to emit
pulses if the error is greater than or equal fo this threshold level and
if a negative reference input is applied, This will read less than or

equal to.
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Figure 3.3.2 Steady-state threshold

Rather than design two modulators to cover the cases of positive and
negative reference inputs, it was decided to modulate the error signal

by the sign of the reference input.
i.e. E = sgn (r) (r-c) (3.3.1)
Then the threshold level filter (TLF in Figure 3.3.1) equation will be,

S = [Emax(m) - Emin(w)]/ 2.0 (3.3.2)

The error filter (EF) relation calls for unity transmission

p = E (3.3.3)

and the threshold device (TD) equation is

Z = 1 1f E>S

(3.3.4)
0 otherwise

I

(a Z equal To 1 would initiate the emission of a pulse).

A modulator operating on this control strategy should minimax the
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steady - state error provided that +the impulse approximation is valid,

and E (®) and E . (») are available to the modulator.
max min

Obtaining Emax(w) and Emin(w) is actually quite a simple matter
if the system is in ;he steady-state. These values occur when the re-»
sponse velocity changes sign, an easily defermined phenomenon. For the
system to operate correctly from zero initial conditions, however, these
steady-state values are required prior to being in the sfeady state.

For the modulator to accomplish this, the following reasoning is employed.
The magnitude of the error envelope during any particular inferpulse
interval is a function of the unit pulse response of the plant, plus the
plant response to the initial conditions of state at the time of pulse
application. When the system is in the steady - stafe, these initial
conditions of state are identical for every pulse interval and‘The envel-
ope will remain at a constant value. It would appear that the magnitude
of the error envelope in the transient stage of the response could be
used as an estimate of its own steady ; state value. Inaccuracies of
estimation result only from differing initial conditions of state at the
time of pulse emission. As the system approaches the steady - state,
these differences should vanish and the estimate become exact (see

Figure 3.3.3). Consequently, the threshold level equation (3.3.2) need
only be made recursive in nature to arrive ata solution to this problem.

i.e.

Si+1 = [max Ei(T) - min Ei(T)]/Z.O (3.3.5)

Th

In This Equation Si+1 is the threshold level for the i+l
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pulse, and is a function of the system error during the time of the i+h

pulse Ei(T).

Because the threshold level filter requires the extremum values
of the response, it will be necessary to block the threshold device from
triggering a pulse until the system response has peaked. Therefore the

threshold device Equation 3.3.4 will be modified to,

z

1 if Ei(T) Z_Si+ If min Ei(f) has occured

1

0 otherwise (3.3.6)

When a pulse of non negligible width is used to drive an nTh

order distinct plant, the plant response will not be instantaneous (the
minimum of the response will not occur at the moment of pulse initiation,
Figure 3.3.4). Unless the threshold level filter takes this delay in
action into account, The mean value of the steady-state error envelope
will be offset from zero by an amount equal to the delay. The magnitude

of the delay will be,

E(fi) - main(+) (3.3.7)
The delay compensated threshold level Equation 3.3.5 will then become,
Siyq = ECF)) - maxE, () + [maxE, (1) - minE.(1)]/2.0 (3.3.8)

When there is no delay in the plant pulse response, E(fi) will
be equal tfo main(T) and the equation réduces to that of (3.3.5).

The use of a pulse frequency modulator operating by the control
laws given above (Equations 3.3.1, 3.3.6, and 3.3.8) to drive any plant
of the admissible class, should "minimax" the steady - state regulator

system error (set the performahce index fo zero).
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Chapter [V
MODULATOR REALIZATION AND SYSTEM SIMULATION

4.1 Physical Realization of Control Strategy

The only component of any complexity in the modulator will be the
threshold level filter, described by Equation (3.3.8). It will require
+he use of three memory elements plus a device which defects response
extrema. The memory functions are easily realized by the use of sample
and hold (S/H) devices which, due to recent advancements in hybrid
linear integrated circuits, are inexpensive, fast, and accurate. To
control the S/H devices (logic 1 places them in the track mode, 0 in
the hold mode) fo retain the maxima and minimé; a device sensitive to the
rate of change of the modulated system error (E) is required. The use
of a differentiator for This purpose was rejected as these devices are
quite noise sensitive. The comparator (CE), delay line (DELAY) circuit
of Figure 4.1.1 was thought to be more reliable. The output of The
comparator (y) assumes a logic value of 1 if the error is increasing,
and is 0 otherwise. The signal y is fed info negaf?ve and positive
edge triggered flipflops (FF] and FF2 respectively) to obtain the required
S/H control signals (b1 and bz)} These memory elements are thereby
programmed to track and hold the signal E. Upon initiation of a pulse
(z=1) the flipflops are reset to logic 1 allowing the signal to be
tracked again. The signal z also causes the third S/H, device to
track and hold the value of the error at the time of pulse initiation
(E(Ti)). The threshold level Sit1 is obtained by a few simple oper-

ations on the outputs of these three sample and hold devices. The
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Figure 4.1.1 Device fto indicate sgn(dE)
: dt

E(t;)
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)l S/Hj >

Figure 4.1.2 Threshold level filter
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Figure 4.1.3 Threshold level filter Timihg diagram

Figure 4.1.4 Threshold device and pulse element
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block diagram of the threshold level filter and the timing diagram of the
associated variables appears in Figures 4.1.2 and 4.1.3.

The threshold device relation (Equation 3.3.6) is implemented by
the use of the comparator,AND gate configuration Figure 4.1.4. The

comparator output A assumes a logic 1 if E(T) Z.S; This signal

+1°

A is then ANDed with the complement of b, To ensure that no pulse is

2
emitted before minEi(T) has occurred; The output of the AND gate z
is the signal which causes the actual pulse element (P.E.) fo initfiate
a pulse of magnitude M, width T and polarity sgn(r). At The same
Time the signal 2z resets the threshold level filter.

The complefe PFM  prototype and regulator system appears in

Figure 4.1.5.

4.2 Modification of the Protfotype

During the course of simulation trials of the prototype PFM reg-
ulator system it was found that.under certain conditions of pulse size
and plant parameters the system would not display the required zero of

the performance index. For example, for the plant G(s) = > ! 2’

s™+2(.707)5s+5

when the pulse parameters were set at M = 300.0 units and T = 0.02
seconds, the regulator system response was as shown in Figure 4.2.1. As
can be seen, although the modulator was not designed for plants with
complex poles, the steady-state error is "minimaxed" as required. How-
ever, when the pulse magnitude was set at M = 150.0 units, the system
response, illustrated in Figure 4.2.2, did not provide the required

zero of the performance index, but rather, remained locked into the
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irregular oscillation shown. This phenomena was also seen fo occur when
the pulse magnitude was set at M = 200.0 wunits and M = 100.0 units,
but failed fo occur when M = 500.0 units.

I+ was reasoned that these irregular oscillations occurredbecause
there was too sharp a transition between the envelope magnitude in the
transient stage of the response, and its desired steady-state value.

The emission of a pulse is controlled through the threshold level by The
system output, but the system response fo a single pulse can be quite
sensitive to the rate of change of the system output.

Refering to Figure 4.2.2, in the transient stage of The response
(point (a) in Figure), the plant is pulsed when its response velocity is
near zero, consequently, the effect of these pulses is relatively large.
In the transition feoom the fransient to the steady - state stage of the
response, point b, the threshold level is such that the plant is not
pulsed until well affer the response has peaked. The response velocity
at this point is quite large in magniTUde and when the small pulses are
used (M = 100, 150, 200) their effect on the response envelope is signif-
icantly less then the previous pulse's. As a result, the estimated
threshold level is quite small, and the plant is pulsed as soon as the
plant response peaks, point c. As this latest pulse occurs when the
response velocity is again near zero, it has a greater. effect on The en-
velope magnitude. The estimate of the threshold level is *heﬁ raised,
causing the next pulse to be emitted when the response velocity is
again significantly large. Consequently, the threshold level cycles
between a large and a small value which never converge.

By inspection of the system response, it appeared that a threshold
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level value lying between these ftwo extremes would be more appropriate.
Therefore, a threshold level which was the average of the current estimate

of the threshold level, s.

pq = BT - (maxE, (+) + minE. (1)) and the

‘ Sitsin
previous threshold level Sy, was employed (i.e. s = (—-§~————0.

I+ should be emphasized that this average does not affect the original
steady-state design conditions as in the steady-state s; will be equal
To 3‘i+1'

This modification to the control strategy only required a slight
change in the existing physical realizafioﬁ of the .modulator. The mod-
ified system appears in Figure 4.2.3 and the added elements appear in
the dashed box.

This modified prototype was then Qsed to drive the plant

G(s) = 7 1 > with pulses of magnitude M = 150.0 units and
s +2(.707)5s+5

T = 0.02 seconds. The system response is illustrated in Figure 4.2.4,
and, as can be seen the system displays a "minimaxed" response. Compar-
ing this response with that of the unmodified system Figure 4.2.2, it
is also seen that the rise time of the response is largely unaffected.
The modified system has a rise time of 1;055 seconds and the original

system has a rise Time of 1.025 seconds.

4.3 Simulation Resulfts

The complete PFM control system of Figure 4.2.3 was simulated
_on a digital computer by means of the IBM S$/360 Continuous Sysfem Modeling
Program (S/360 CSMP). The simulation results fall info three categories.

The first section presents system responses when excited by a unit step
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41

input. The systems involve type 0 plants from first to third order.
A few examples of [IPFM controlled sysfems are presented for comparison
purposes.

In the second section the system input is allowed fo vary with
Time, *o be specific r(t) is set equal to sine(g'f). The response of
systems involving plants of first and second order is shown.

The‘fiﬁal section presents the unit step regulator system response
when a first order plant's gain and pole position are allowed to vary
with time. Here again an example of an [IPFM controlled system is pre-

sented for comparison purposes.

Regulator System With Unit Step Input

a) Trial 1 (Figure 4.3.1)

S+; , pulse parameters, M= 5.0

units T = 0.025 seconds, dead Time = 0.05 seconds. The plant and pulse

First order plant G(s) =

parameters are the same as those used in Chapter 3 ‘o calculate the
theoretical pulse period T required for minimax. The experimental T
was found to be 0.0625 seconds as opposed fo The theoretical value of
0.062509 seconds. The difference between these ftwo values was attributed
to the effect of the fixed step size of the independent variable used in
the computer program.

b) Trial 2 (Figure 4.3.2)°

L _ 1
Second order plant, distinct poles G(s) = (ot ) (at2) pulse

parameters; M = 50.0 units, T = 0.02 seconds, dead time = 0.05 seconds.
The plant parameters are the same as those used in the second order example

of Chapter 3, and the pulse area of 1 approximates the unit impulse.
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T = 0.02
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The T experimental was found to be 0.505 seconds as opposed to the
theoretical value of 0.549 seconds. The discrepancy between these two
values was attributed to the effect of the pulse, impulse approximation.
Another simulation was run with the pulse parameters set at M = 100.0
units, T = 0.01 seconds, dead time = 0.05 seconds. In this case the
T experimental was found to be 0.52 seconds.

c) Trial 3 (Figure 4.3.3)

Second order plant, multiple pole G(s) = _—_j_ff— . Pulse

(s+5)
parameters; M = 50.0 units, T = 0.2 seconds, dead time = 0.05 seconds.

d) Trial 4 (Figure 4.2.4)

Second order plant, complex poles G(s) = > ! 5 -
s +2(.707)5s+5
Pulse parameters; M = 150.0 units, T = 0.02 seconds, dead time = 0.05
seconds. The result of this simulation has already been discussed in
Section 2 of this chapter.

e) Trial 5 (Figure 4.3.4)

. - . P 1 M
Third order plant, distinct poles G(s) = (s+1) (s+2) (s+3)

44

Pulse parameters; M = 500.0 units, T = 0.02 seconds, dead Time = 0.05
seconds.
f) Trial 6 (Figure 4.3.5)
Third order plant, multiple poles G(s) = -“"——Jff—__— .
(s+10)"(s+3)
Pulse parameters; M = 5000.0 units, T = 0.02 seconds, dead time = 0.05
seconds.
g) Trial 7 (Figure 4.3.6)
Third order plant, complex poles G(s) = 5 1 >
(s7+2(0.5)55+57) (s+8)
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Pulse parameters; M = 500.0 units, T = 0.2 seconds, dead time = 0.05
seconds.

h) Trials 8 and 9 (Figures 4.3.7 and 4.3.8 respectively)

Pulse

IPFM controlled first order plant  G(s) = s+;

parameters; M = 5.0 units, T = 0.02 seconds, deadtime = 0.002 seconds.
Figure 4.3.7 shows the system response when the IPFM threshold level (A)
is set at 0.001 wunits, and Figure 4.3.8 illustrates the response
when the threshold level (A) is reduced to 0.0005 units. Note the ir-
regular oscillations which occur when the threshold level is reduced to
the lower value. These are the same plant and pulse parameters (except
for dead ftime) as were used in trial 1, Figufe 4,3.1.
i) Trials 10 and 11 fFigures 4.3.9 and 4.3.10 respectively)

. s _ 1
IPFM controlled third order distinct plant G(s) = (s¥1) (s+2) (s13) °

Pulse parameters ; M = 500.0 units, T = 0.02 seconds, dead time = 0.05
seconds. Figure 4.3.9 illustrates the response for an IPFM threshold
level of 0.001 units, and Figure 4.3.10 illustrates the response for a
level of 0.5 units. The plant and pulse parameters used in this trial

are identical to those used in trial 5, Figure 4.3.4.

Sinusoidal Response, r(f) = sine (%-f)

a) Trial 1 (Figure 4.3.11)

1
(S+2)°

units, T = 0.02 seconds, dead time = 0.05 seconds.

First order plant G(s) = Pulse parameters; M = 5.0
b) Trial 2 (Figure 4.3.12)

.. =1
Second order plant, distinct poles G(s) (52 (1) °
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Pulse parameters M = 75.0 units, T = 0.02 seconds, dead time = 0.05
seconds.

c) Trial 3 (Figure 4.3.13)

Second order plant, complex poles G(s) = > ! 5 -

s™+2(.707)5s+5

Pulse parameters; M = 100.0 unifts, T = 0.02 seconds, dead ftime = 0.05

seconds.

Parameter Variations
a) Trial 1 (Figure 4.3.14)
First order plant G(s) =,—L<, k = 1.0 + 0.4 sine (43f)
(s+2)’ : : 30
Pulse parameters; M= 5.0 units, T = 0.02 seconds, dead time = 0.002
seconds.

b) Trial 2 (Figure 4.3.15)

1 ~ 1
(sta) > 2 7 0.5+0.2sine(2m 1/3)

11

First order plant G(s)

0.002

Pulse parameters; M = 5.0 units, T = 0.02 seconds, dead fTime
seconds.

c) Trial 3 Figure 4.3.16)

|PFM controlled first order plant .G(s) =

1
0.5 + 0.2sine(2m+/3 ) Pulse parameters; M = 5.0 units, T = 0.02 seconds,

(st+a) ’

dead time = 0.002 seconds.

These are identical pulse and plant parameters as were used in the
previous trial (2). The plant pole position varies about S = -2.0. The
|PFM threshold level of 0.001 was used as for this value, and the same

pulse parameters, the plant G(s) = E%E exhibited a stable, well regulated
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response (trial 8 of the regulator response trials, Figure 4.3.7).

4.4 Discussion of Results

For regulator system, type 0O plant applications the PFM device
developed in the work provides a "minimaxed" system response if the
modulator parameters,pulse height and pulse width, are of sufficient
magnitude to drive the plant to the desired reference level. This is
demonstrated in the simulation results Figure 4.2.4 andFigures 4.3.1 to
4.3.6 which involve the regulation of type O plants of up to third
order having distinct, multiple and lightly damped complex poles. |f the
modulator parameters, pulse height and pulse width are larger than the
minimum required, the modulator will still maintain "minimax" and the
modulator will have an "operating cushion" to be used in the event that
the plant experiences any parameter variations or the reference input
changes.

The effect of plant parameter variations on system response is
illustrated in the simulation results of Figures 4.3.14 and 4.3.15,
Here it is seen that the modulator has maintained "minimax" despite a
40% change in the magnitude of the plant gain (Fig. 4.3.14) and a 27%
change in the plant pole ﬁosifion (Fig. 4.3.15).

System response to a time varying (sinusoidal) reference input
is illustrated in Figures 4.3.11, 4.3.12 and 4.3.13, for plants of first,
second and third order, respectively. Here it is demonstrated that the
system is capable of tracking low frequency reference inputs but is sub-
ject to crossover distortion when the plant poles are real valued (Figures

4.3.11 and 4.3.12).
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In order to place the performance of the designed modulator in
perspective to that of an established PFM device a number of examples of
comparable systems confrolled by an |PFM device are presented (Figures
4,3.7, 4.3.8, 4.3.9, 4.3.10, 4.3.16). |PFM was chosen for the comparison
as, of the standard types of PFM, it is the most straight forward to use.
The "minimaxing" of the steady-state error is an optimum response and,
the parameters of standard PFM modulators have to be adjusted or optim-
ized to approach this response. |PFM, having only one parameter to
optimize, (the pulse height and width are set to the same values as used
in the designed modulator for comparable confrol situations) were con-
sequently chosen over the other forms of PFM.

Figures 4.3.7 and 4.3.8 show the system response when the IPFM
threshold is slightly above and slightly below the optimum value. 1t
can be seen that the IPFM system response can be made to approach the
"minimaxed" response of the designed modulator if the IPFM threshold
level is chosen carefully. Depending on the degree to which this para-
meter diverges from the optimum value, irregular oscillations (Fig. 4.3.8)
or even extreme oscillations (Fig. 4.3.9) can result.

The dependence of the optimum IPFM threshold level on a plant's
parameters is illustrated in the example of Fig. 4.3.16. Here, the
plant pole varies about the nominal value of -2. The IPFM threshold level
and the pulse parameters were set to the same values used in the example
of Fig.(4.3.7 (i.e. gave a stable response for the plant G(s) = g&zﬂ.
It is seen that the dependence of optimum [IPFM threshold level on plant
parameters results in an irregular response which contrasts sharply with

the "minimaxed" response of the same plant driven by the designed modulator,



Fig. 4.2.15.
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Chapter V
CONCLUS IONS

The design of a PFM device to be used in the modulation of con-
trol system error is presented in this study. The device was required
to complement the natural high power efficiency of pulse modulation by
conserving the control effort, minimize some performance index of the
steady-state error (independent of plant parameter values), and maintain..
acceptable transient performance. For physical and stability reasons
the modulator design was directed towards regulafér control systems
involving type 0 plants. Upon examination of the simulation results,
certain conclusions can be drawn:

a) For regulator systems the modulator will "minimax" the steady-
state system errdr relatively independent of plant or pulse parameter
values. |t accoﬁplishes this using only single signed pulses, thereby
conserving the control effort. As to the fransient performance, thi's
is difficult to evaluate as both the magnitude of the steady-state error
and the system rise time are directly dependent on the pulse size. The
modulator does achieve as short a rise time as the satisfaction of the
steady-state specification allows.

b) The performance of the modulator in non regulator systems is
somewhat limited. The system will be able to track the reference input
provided the rate of change of this signal is low. Recall that the
modulator relies on the natural system (plant) decay to bring the response
back in the direction of zero, and that the fixed pulse size places

an ubper limit on the response movement in the opposite direction. Also,
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when dealing with type 0 distinct and multiple pole plants, there will
always be a certain amount of cross over distortion.

In summary, the designed modulator is an efficient, physically
realizable device which will "minimax" the steady-state error of regu-
lator systems with type O plants. |t is easily employed in systems,
requiring only the setting of the pulse parameters. Large pulses will
decrease the transient system rise time, but will élso increase the
magnitude of the steady-state error. As the modulator Thfeshold level
is obtained from information gained from the system error, the modulator
displays "adaptive" qualities. Consequeﬁfly, the modulator recommends
itself to systems in which plant parameter variafioné are expected, and

systems where the reference input is slowly varying.
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CSMP System Simulation

CSMP [conTinuous system modelling program] is an application -

oriented input language program that accepts problems expressed in the

form of an analogue block diégram. The program includes a basic set of
functional blocks (much like an analogue computer) with which the com-
ponent of a continuous system may be represented, and accepts application-
oriented statements for defining the connections between these functional
blocks. A fixed format is provided for printing and print-plotting at
selected increments of the independent variable. A typical CSMP simulation

‘program of the PFM control system is shown in Fig. 1.



XX¥XX¥CONT INUOUS SYSTEM MODELING PROGRAM***%

*X% VERSION 1.3 ¥¥¥

INITIAL
PARAMETER K1=0.5,K2=0.5,XP=0.02,YP=0.002,1Cl=0.0,1C2=0.0
PARAMETER C2=50.0
CONSTANT P1=1.0607,P2=1.4142
CONSTANT K3=1.02,K4-2.45,R=1.0
DYNAMIC
NOSORT ,
Y=PULSE (XP,T1)
ST=NOT(Y)
C11=ZHOLD(ST,R)
C1=INSW(C11,-C2,C2)
A2=COMPAR(E,A1)
ZT1=ZHOLD(T1,E)
T1=X*A2¥X4
ED=DELAY (1,0.005,E)
X4=COMPAR(E,ED)
X41=NOT (X4)
X31=FONSW(ZH1,0.0,0.0,X41)
ZH1=RST(0.0,T1,X31)
Z1=ZHOLD(ZH1,ED)
X3=FCNSW(SH2,0.0,0.0,X4)
ZH2=RST(0.0,Y,X3)
Z2=7HOLD(ZH2,E)
A1=AT1-(S14+Z2)%0.5
TRD=0.25-Y
DT=MODINT(ICI,TRD,1.0,1.0)
X=COMPAR(DT, YP)
U=C1¥Y
C=CMPXPL(IC1,1C2,P1,P2,U)
SGNR=INSW(R,=1.0,1.0)
E=SGNR* (R-C)
METHOD ADAMS
TIMER DELT=0.0005,F INTIM=15.0,0UTDEL=0. 005
PRTPLT C(U,ED,Z2)

END

STOP

OUTPUTS INPUTS PARAMS INTEGS + MEM BLKS FORTRAN DATA CDS
33(580) 78(1400) 15(400) 3+ 1= 4(300) 30(600) 8
END JOB

Figure 1 CSMP  Simulation Program
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