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ABSTRACT

The work in this thesis presents a prelirninary study

on the application of Fourief expansion to the three-dimensional

elasto-plastic finite element stress analysis. Problems of

axisynrnetric solids subject to non-axisyrmnetric loads are attempted

by a combined Fourier .erpansion and finite element method.

Based on the analysis, two computer codes entitled I' NLSTRS "

and " NTEPSA " have been written to incorporate the elastic and

elasto-plastic material behavior respectively. It is found that

this combined rnethod affords a complete and accurate set of

solutions for the elastic analysis of axisynrnetric solids. For

the elasto-plastic analysis, the nethod is sornewhat restricted

from applications of general loading conditions because of the

tremendous amount of conputer effort involved in handling

mode-mixing problens. Horyever, it is still a competitive rnethod

for problems of non-axisylrmetric loads which can be described

by limited nt¡nber of modes
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CFIAPTER I

INTRODUSTTON

1.1 Obje.ct of Study

The method of Finite Element Analysis has been widely used

in structural engineering and many other engineering fields for alnost : ': : ::

j: i.,t: :-l-:

i.-.-twenty years t1]. Within the context of structural nechanics, the '.'.,'.',
early work was nostly centered on the elastic analysis of two- 

'il'.'..¡t,.
dinensional plane problems, plate bending, shells and three-dinensional

.

lproblens lzl. However, as emphasis has graduarly been shifted to i

I

ultimate load analysis for efficient design, partic-ullarly in tech-

nologically advanced fields such as reactor vessel and. aircraft design,

tJre inclusion of non-linear elasto-plastic analysis has become desirable 
i

several two-dimensional elasto-plastic analysis conputer codes and

examples have been published and good comparisons with analytical ,

solutions or experimental results have been reported [3 - 7]. In
¡ .¡:,_.11.rr¡, 1.1t

recent years, some three-dimensional elasto-plastic analysis corputer 
,:',1,ì, 

'.'.

' ::.::.¡r :

codes have aJ.so been mad.e avail-able for use wherever the assr.nption of ;.,.,.i':,¡,'::,.
,:_ -: .1__1.: :.'

planar mod.el is invalid [8 - 10]

Many researchers have reported a tremendous increase in the

amount of data preparation, computer core storage and computational [i;'..:

effort in a three-<limensional finite element analysis tlll over

two-dimensional analysis. The increase becomes even more dis-

proportionate for elasto-plastic analyses t8 - 101. ForturateLy, :

:-.; :"
:.
i



Ítany complex three-dimensional engineering structures in advanced

nuclear and aerospace industries are axisynrnetric solids or shells

of revolution; nuclear pressure vessels, CANDU reactor fuel elements

and rocket nozzles are practical examples of such structures.

Structures of this type subjected only to axisynrnetric loading can

be treated as two-dimensional problems because of the circrmferential

independence of the solutions. Furthermore, structures of this type

sr-rbjected to non-axisynrnetric loading were also sinqrlified,within the

elastic range, by rnaking use of the Fourier expansion nethod to

represent the circrrnferential dependence of solutions [12, 13]. A

snbstantial saving ín data preparation and computational effort can

be achieved by using this teclurique

To the present, however, the application of this combined

finite element and Fourier expansion method has not been reported

feasíble for the more complicated and interesting area of elasto-

plastic analysis. It is the object of this thesis to study. the

feasibility of applying this nethod to elasto-plastic analysis, with

the anticipation that this study will lead, in the near future, to

further development of thermo-mechanically coupled analysis .

I.Z Literature Review

The modern finite element method is generally recognized

to have originated with an engineering grolæ led by M.J. Turner at the



3l

Boeing conpany to work on aircraft structural dynarnics problems t1].

since then, inany significant advances have been made to extend thel

nethod for handling structural problems such as plate bending, thin

she11s, three-dimensional- structures and large-deflection and

stability problems [15]

It was not until 1960 that the initial inelastic finite
element formulations r,iiere published t161. This early work used

initial strains in coujr.urction with the finite element nethod to accormt

for material non-linearity. Another alternative approach to the

inelastic structural problern was reported later, in 1965 [r7]. The

approach replaces the iterative calculations of the initial-strain
approach by a piecewise linear solution, through incremental stress-

strain relations

The period from 1965 onwards may well be lsrorn¡n as the golden

age of finite element development. Ir{any conference proceedings and

sunnary papers have been made .pr:blic. Anong them are the First

Conference on Matrix Methods in Structural Mechanics held by the Air

Force Institute of Technology at lrüright-Patterson Air Force Base,

Dayton, Ohio in 1965 [2], the Second and Third Conferences held in

1968 and 1971 [2, 1S] and the First and Second Japan-United States

Seminars on Matrix Methods of Structural Analysis and. Design held

in Toþo and Berkeley, California in 1969 and 1972 [7, 19].

.'.,,r' l

ÏIithin the context of elasto-plastic finite elenent analysis,



Yamada 1201, Zienkiewicz [21] and Marcal and King [ZZl reported a

general formulation of elasto-plastic work-hardening material behavior.

The derivation was based on the Von Mises yield criterion and the

Prandtl-Reuss incremental stress-strain relationship. More recent

advances have gone in the'direction of accelerating the analysis

procedure by enploying differerrt approaches to the problen. Among

them are the iterative, initial stress, initial strain and conbined

nethods [ 4,11 ,r4,23 f . Many two-d.irnensional and three-dinensional

corrputer progralns utilizing these methods have been reported in Refs.

I 3 - 10 l.

It r,.las around 1965 that the problems of axisynrnetric structures

attracted attention by analysts. wilson, clough and others applied

the finite element nethod. not only to the problem of elastic solidq

of revolution subject to axisyrrnetric loádings, but also to the case

of non-axisynrnetric loading by naking use of the Fourier erçansion

nethod | 12,13124,25 ]. The combined finite element and Fourier expansion

nethod was later applied to nany other engineering problems, such as

the " Finite Strip " method for the elastic behavior of plates, box

girders, shells and folded plates 1261, and.the tr Finite Prisn t'method

for elastic box-bridges 127J. Other analysts tried to inprove accuracy

and efficienq¡ by using higher order elernents, quadrilaterals and

isoparametric elements [28 - 30].



Another attempt has also been nade to inprove the basic

accuraÇy of different elements for the rnethod. ïn general this involves

the use of approximate integration tecluriques which disregard part

of the shear strain energy associated with pure bending nodesr or

the presence of the inconpatible displacenent modes at the elements

[6, 30]. However, to the best of the authorrs lcnowledge, no attempt

has been made to solve elasto-plastic problems by this method.



CFIAPTER II

THEORETICAL BACKGROTJNIDS

2.1 Introduction of The Finite Element Method

Modern finite elenent theory had its recognizable begirurings

in the displacement ( or stíffness ) rnethod of stnrcture analysis. The ,,j, ,,,
f,il,:,:¡,:,.,: ¡-:l

initial steps were based on a completely logical extension of the stiffness ," ,".
ll::-:j' :: .r'

analysis procedure widely uSed for bar structures ( franes, trusses, 
i.'¡.',,'1,'¡;..

etc. ) to acconrnodate surface stnrctures ( plates, shells, etc. ) and

continua ( three-dimer¡sional solids including solids or shells of re- 
,

i

volution ). The.stnrcture ( two-dimensional or three-dinensional ) is 
i

divided into a finite n¡nber of d.iscrete parts ( elernents ) and these

elements are interconnected at their apexes ( nodes ) to form an idealized.

structure system as shown in Figure 1. A simple form of displacement 
:

pattern applies to each elqnent of the stnrcture systøn and the virtual '
i

work of each elernent is calculated accordingly. The equilibriun of

virtual work of the idealized structure system provides a set of linear 1t".".' 
"''..'.

algebraic equations called "stiffness Equation". With the prescribed 1,,:,-,,r.:,,t,1'': _rJ 
: 

-:i'

boundary conditions, the stiffness equation can be solved to find the

displacements at each node and the stresses and strains at each element

of the idealized structure system [Ref . 14, pp. L6-321 
],,,,,",,,.,,

rt was later discovered that this early work could be fully 
l¡:'::il;'':;''

developed fron the variational principles of elasticity [Ref . 14, pp. g3-

471. This discovery has wid.ened the applications of the finite element l

iìr" :
.:jitl: l



nethod to other engineering problens to which the variational technique

are prevailed. Typical examples are heat conduction, fluid flow, soil

and rock mechanics, and seepage problens. The variational process for

these probløns is of course more general.

2.2 The Variational Approach of Finite Element Method

The general theory of variational- approach is based on the

postulation that the correct solution is the one ninimizing some quantity

X which is defined by suitable integration of the unlcrown quantities {{}
over the whole dornain. Such a integral quantity X is usually knov¡n as

a "Functional" and nay be expressed as [1a]:

* =-fur({o}, k rr}ldv +{ s({ö}, fo rol...)ds
(2-2-r)

where V is the domain of the region, S is part of its boundary which

the unknown function, {ó}, or its derivativ"t k {O}---- etc. exist.

Let the region be divided into discrete elements and be inter-

connected at nodes as described before. A simple pattern is assuned to
ê

correlate the unknoun function {ô} with its nodal values {0}", or:

{o}=[N]{O}e "rc,l'2'-z-z)

where [N] is usually called "Shape firnction" which is a firnction of co-

ordinates only.

To minimize the firnctional X with respect to the total ntunber,

M, of ttre unlcrown nodal values {ó}e itt the whole domain, a system of

:- "_,r ,:..;j.i ì.-_



equations:

ðx=
ð{ö}"

e
a{ó},

ðX (z-2-3)
a{o}!

âX

a{ô};

is provided. Then a typical equation ( 2-2-3) nay be expressed as:

âx =" ãx"_=).__-______-:_ (2_Z_4)
arolT â{ô}T

where Xe is a typical I'sub=functionalr' of each element.

In a special case where f it " 
quadratic firnction of iq]eand

its derivaties, the mininization (2-2-4) becones:

âx" = IKI: {ô}e + {F}1 = 0' 'f i 
- -1 (2-2-s)

ãX

=0

a{ó}Y
i

1n

AS:

which trlf and

Now the

jI= = [K] {O}e * {Fi = 0
a{0}"

{F}! are matrices of constants of a typical element.

minimízation of equation (2-2-3) can be sfunply written

(2-2-6)

IK]

{F}

= f, fKli

= r {F}l (2

i,:' .,,,'.
l

in which

2-7)



with srmnnations over all elements. The approach actually yields a set

of linear algebraic equations which may be solved by typical computer

pTograrn.

2.3 Stiffnes.s Equation óf ElaStic Axisynnnetric Solids Subject to

Axis)znrnetric Loadirigs

In the context of stmctural nechanics, the "functionalr', ;:,.:r,..
'.:

sinilar to X in equation ( 2-2-L ), can be written as [Ref . 11, pp. 59] : :. ;

''-.: -'. - - -, :

::: ::..::,: .

x=JÇ[tv{ui) - {uir{r}]dv--ft"tr.{ti ds (z - 3 - 1) :r'

where {u} = displacenent vector of the structure system

{f} = body forces vector
l

ttrfece frscfinnq i

V,S=respectivevo1u.neandsurfaceofthestn¡cturesysterr

T = transpose of a vector quantity

and W({u}) = strain energy of the system
T

=L/Z{e}' {o} (?-3-Z)'

Similar to equati on ( 2-2-2 ), a simple pattern is asst¡ned to correlate ;','' i'"i

. , ._ .: ::.:'

the unknown displacenent vector {u} with its nodal values {u}e in an ,..,,,,ì,r,
't:':.: '

element, or:

{u} = [N] {u}e ( 2 - 3 - 3 )
:_' l :

strain trianmrlar toms element shown in ]':.:'i'':"'For simplicity, the constant strain triangular torus element shor¡n in

Figure 2 for an axisynrnetric structure is adopted to demonstrate the

nathbnatical formulation. Details of derivation may be found in Appendix



,',,

I. rt also should. be noticed that because of the circunferential

independ.ence of solution, the assuned displacsnent pattern includes only

the axial and radial coord.inates.

The general Hooke's foumrla including the initial strains *

{ e }:' -o'-

10

{o} = [Ce] ({ e} - { eo})

and the straín-displacenent relationship:

(z-3:4)

(z-3-s){e} =

uâr
¡r
4z.
ðz

u
T'

Y

qh
èz

c
YY

ezz

óoe

yz * ðu,
ây

1n

AS:

the cylindrical coordinate systen sirnplify the strain energy term

I{({u}) = rl2 {.}T {oi (2-3-6)

= r/2 {riT[ce] ({e} _ {eo})

= {u}e e/zlBlrlc"l [B]{u}e - tBlr[ce]{.o})

in which [B] is a matrix of coordinates obtained by operating equation

( 2-3-5 ) on equation ( 2-3-3 ) and [Ce] is the material property matrix

relating stresses and strains during elastic deformation.

* initial strains are usually due to tønperature change, shrinkage,
crystal growth, etc.

l.; ::.

I r: _.:..:



I.t..._.....

11

:'
In analogy with equation (2-3-1), the ,' sub-functional ,,, X",

of a typical element can be expressed as :

xe= {u}{r G/zBlr tcel lBl {u}e - telrlc"l {eo} - lr¡]rtfl)¿v

- {u}e{ [r¡Jrttl ¿s

Minimization of Xe wíth respect to

the stiffiress equation :

tnTt"rT = {Q}T (2-3-8)

in which

(z-3-11 )

(2-3-7)

.r " for a truicaI element yields

tKli =1", [s]rlc"l [B]dv' (2-3-9)

{a}i =fu,[N]{r}dv' *Jr,tNl{tlæ, *Ju,ls]rlc"lrr"tg 
_ s _ 10 )

andvtrs' are the respectíve volune and surface of a typical torus

triangular element.

The total stiffness equation of the system

tKl {u}e = {Q}

be assembled in the same way as that in equation ( Z-Z-7 ).

Elastq:plaStic Arglysir of Axisynrnetric Solids subject to Axisyrrnetric

Loadings

Considerable amount of theories and conputer codes in the

area of elasto-plastic analysis has been reported in the past 12 to 111

may

2.4
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lÏ3l. Among then the incremental strain nethods are coÍtnonly used. The

detail derivations of the method may be fot¡nd in research reports such

as those by Ueda [31], Yamada [32], Gallagher [33] and Hsu [34]. This

nethod is basically a step-wise linear incremental analysis to simulate :,,,.:.,
.'.:. ''.::

the elasto-plastic material behavior. If the existence of increnental

stationarity of the firnctional (or potential energy in the case of

structural rnechanics) sirnilar to that of equation ( 2-2-6 ) is postulated, 
.,,,i,,.-,,

;' ' 
': '-tttt'

the incremental stiffness equation of the structure system: 
i, , ,,..

'',. '. 
t,',

;

nay be obtained in a more or less straightforward manner. {ÂQ}n and
:

{Au}, in Equation ( 2-4-1 ) represent respectively the incremental load(
i

vector a¡rd the incremental displace:nent vector in a typical loading step

e.

Thus, for elastic situation the procedure is nothing but a 
:

.a
stepwise sturmation of the incremental elastic strains {6ee} calculated

ì.

ineachincrementa11oadingstep.Further,whentheproceSSreaches

the situation that the stress level of one or some of the element is ii '.' ,',

;'., . '' '

above the yielding point, plastic material behavior should be taken 
,.,,,',:,,r.

into accornt in the formulation of incremental stiffness equation ( 2-4-I ).

The total strain at this step shoutrd include the plastic component {ôP}

or: i.,.,.,,,,
!i:':ir 1" --'

{ôe}={ôee}+{oePi (z-4-z)

To complete the analysis, it is necessary to have: (i) a

yield criterion to acertain the state of stresses at which yielding
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is considered to begin, (ii) a flow rule to explain the post-yielding

behavior of the material, (iii) a hardening rule obtained from the elasto-

plastic stress-strain relationship derived from material test. These

three requirements are described respectively in the following:

(i) Yielding criterion:

Of several proposed yield critera, narnelyrthe Tresca, Coulomb ,

and Von Mises criteria [35], the latter usually fits the expêrinental ð.uta

better and is considerecl to be the nost practical and reliable criterion.

It states that yield of materials is caused by the maximun distortion energy.

For an isotropic material, the yielding surface may be erpressed as:

F=J^ -rZ=J¡ u2 'y "2
TZ
-65y -0 (2 - 4 - 3)

in which J, = second deviatoric stress invariant

= L/2 orr' oij'

orr' = deviatoric stress comPonentsu
= oij - o, (iri = Trz,0 in cylindrical coordinate systen)

õ = I/3 ô., o.,-m LJ r.J

g.. = Kronecker delta = f g ç}fiìl-J t r l.r*JJ

and t--, o-- = experirnentally deterrnined yield stress in pure shear andv'v
in uniaxial tension test respectively.

This criterion further implies 'that if the state of stress

is such that F < 0, the material is in the elastic region, that is,

iOeP] = 0, and that if F = 0, a plastic state is attained and plastic,

behavior has to be taken into accotnt. No significance is attached to

thecase F>0
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(ii) Flow Rule:

Generally, there are two najor theories that describe the

plastic behavior of materials: the defornation (or Hencþ) theory and

the incremental or fLow theory t11]. The fonner assunes that the total
plastic strain components are related to the current stress and. are independent

of loading path, while the latter assumes that the incremental plastic

strain coÍIponents are a function of the current stress, the strain increments,

and the stress increments, ì..e :

(z_4_4),
{deP} = {deP} ({o}, {de}, {do}, K)

where "d" denotes an increment and K is the hardening païameter. Since the

plastic strain can not in general be independent of the loading path, the

flow theory is considered. more practical in applications

Now, considering equation ( 2-4-2 ) in the incremental form, or:

in which:

The last two

ôtf
{de}={de"}+{dey}

{de} = [D]{d.o} = [ce] 
-l{do}

equations can be combined to give:

(2-4-s)

(z-4-6)

{do} = [c"] ({de} - {¿eP})

which may be written as:

(z-4-7)

(z-4-e)

{do} = [c"P] {de} (2-4-8)

where [C"p] is called the elasto-plastic matrix and is expressed as:

lcuPl=[ce]-[cP]

* for convenience, strain components in elasto-plastic analysis are in
tensorial form, i.e. _ 1 .âri ðri., latheq than the engineering

tij = ä (5;i - #*),form in el-astic analysis.
lr-

l: -..^^,:,

l.j. . . ;l. i
l:..ì:
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To obtain the elasto-plastic matrix . [C"p] , two sets of information

are needed: the slope (H') of the tangent to the effective stress-effective

plastic strain Co - Jl diagrarn, otherr¡,¡ise known as the hardening co-

efficient, æd the "flow rule!'n or description of the differential changes ,,.,1,'.:

in the plastic strain cornoonent {dep} as expressed in equation ( 2-4-4 ).
With respect to H', it is apparent fron Figure 3 that:

Ht dãP = do
i,'::'.:.:::"(2- 4-10) i.,,,:

1...

...¡ fr': i:l

in which effective stress ã and effective plastic strain increment .d;P i,"'''

are defined as:

o = éorj' orj')t/' (2-4-11 )

= + la^,r-Õzz)z * (orr-oee)2 * (ooo-orr)z * 6Gr1 * orl * o"!lf/'

dP = 4- t(¿,Ï., -a,l)z * (ð,.1r"-a,f,u)2 * ca.fr-a"f ,)' * oça,{¿a.Prl.u.f,llf/'

(z-4-tz)
For the flow rule, the Prandtl-Reuss representation with

isotropic hardening states that the plastic strain component increments

aïe proportional to the deviatoric stress components, (o'') [32], or:

{drP} = {o'} dl (2-4-13)

in which dl = proportionality factor

(iii) Hardening rule:

The'general yield criterion which takes only the state

r'i:-::'

f:';i ir:'
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of stress {o} and 'hardening" parameter K* into account, is

F({o},K)-0 (z-4-L4)

and. its differential form is :

dF = ,#rt {do} + S ar ( z - 4 - ls )

or,expressing thelhardening in terns of plastic strains ,

dF = {€o!lo}r{do} +ffit$ltdep} (z - 4 - LT )

Substituting equation (2-4-7), (2-4-13) into equation

( Z-4-L7 ), one obtains:

rþrtc"l ({de}

Solving for dr

- {ot}dr) + #tþtt{o'}dÀ = o (z:4 - rB )

using equation ( Z-4-L8 ), the

tpoirlc"l icle Ì

obtained:

Substituting dÀ into

in which:

[Ref. L4, pp. 580]
amor¡rt of plastic
dK = {o}T{d.P}

dÀ

following is

(2-4-le)

r={#

',#rt rcel{o'} H

equation ( 2-4-13 ),

{dePl = {or} d r
^-T{o'}{þ [ce]

S

lcet{o'} - å*

¡-3f,1''1o' 1

âeP

one obtains :

{de}

1\rtro, l
òe

(z-4-20

(2-4-21

=,

T
ì.
J

)

)

'\n¡ork hardeningt' material is represented by the
work done during the plastic defonnation, or:

(2-4-L6



Conparison between equation ( 2-4-20 ) andequation ( 2-4-7 ) yi"f¿r:

T7

lcPl =
[ce1 {o, ttpotr tc" ]

S

The elasto-plastic matrix [Cep] can now be expressed as:

lc"Pl = [ce] -tcPl

rnêr [ce] {o' rtþ tce't
[\. J

S

âF 2 ,.t
ãK= - 3n

tþtt = {o}r

(2-4-22)

(2 - 4 - 23 ) 
'.1.,,.:-:..:

' i-'".,....:
1',.-...

,: :;.: :'
Using definitions of F and K as shounr in Equation ( 2-4-3 ) and Equation

( 2-4-L6 ), the follor^ring can be obtained lZLl:

t#l = . oi, o'r, oä, zoy'r, 2o^(ä, 2orä,

(z-4-24)

The elasticity matrix of the stress--tensorial-strêin

relationship [Ce] is :

[c"] = zG

1-v
FÑ

v l-vJ:- sYI,l.1-2v l.-21

uvl-v
T:Ñ TÑ Tã
0001

00001

00000

li ¡,..',.t,r
It.:::-::;r:ì:

(2 - 4 - 2s)



Substitute Equation ( 2-4-24 ), ( 2-4-25 ) into

( Z-4-ZZ ), the following rnay be obtained:

18

Equation ( Z-4-2T ),

s = å (sc + H') t (z-4-26)

lcel { ait r$ lT¡c"1 = 4Gz

and

atz
TT

otio rL

otiood

otio rå

otioei

otiori

where tP¡:'- I is the

Equation(2-4-27
Accordingly, [Cnl can

= 4 GZ If'-* l
synrnetric deviatoric stress

).

be obtained as:

9G
ZG'-----, tf^-.* ]

LO

otLZ

(z-4-27)

rnatrix given in

X

o'2
zz

orL oåe

o r)orå

o r)o e]

or) otl

SYl4¡

" å',

osåorð

oeåoei

o eåotl

orå2

o 
råo e]

oì€rL

o u]'

oeiotå

_2G-=-b
o

-1 i:il.-:¡-ì;: .,

lcpl =
3G+H'

¡n-'--* I ( Z -4-28)



with

The elasto-plastic

material properties

1-v
T:T

v
TÑ

U

(1 .#)

')
lu

l-v ozz

T:ã - S-
o

v or)oåe
IjZv --3 

'o
o tot
zz zE-_-T-

o
ot olzz eT---s-

o
õt õtzz Tz:_

S
o

(2-4-zs)

or:

7_J
^Ub =:õo5
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ofmatrix [C"p] is now in a form with parameters

[C"], H' and state of stress A {o'} on1y,

o'2
TT-s-
o

Õ fõt
TT ZZ--

otiodt
T:ñ - -T-

o
otioåe

S
o

ot olrr 0T- --s-
o

ot t!TT TZ- -s-
o

SYM.

,z
- (f 'I-v -0e

T-ñ - S-o.)
oåeoie 1 ";;-__s-z-s-

oo
oðeoåt o)eoåt 

1
SSZoo

o 
åeo |, o 

)eo |,
--_;i-_----_=-bboo

(z-4

lcePl = 2G

)
"å;- -s-

o
oðtoiz r--s- z

o

-30)

o'2 i
TZs-o;_l

In this analysis, experimentally determined elasto-plastic

constitutive relations of ã and ã are approximated by a generalized

fanily of continuous functions [36]:

i.r :, :; , l;/

r-:rì:-:.r - .:..:

where on =

n=

El=

E;Io= (2_4_3T)
{1 + ¡---=r--!9--1 }(t-Ë-)ãr +E 'ã

atrxiliary stress close to elasto-plastic transition (as shown

in Fig. 4).

a factor which determines abruptness of the transition

lfuniting value bf the slope of the experimentally determined

effective stress, ã effective strain, ã curve.

:. -tja.:
',. ,ì..1¡lL,:'
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The value H',which was defined in Eq. ( 2-4-10 ) as:

¡1, - do-
___p

de'
¡t

may be approxirnated by:

in which

according to Equation ( 2

Lrt - 1
___D¡ r /^de /dõ

=1_ _A
ðe àe"
-_ 

- -:-
âo âo

:1- ï-- -T
ET
"tL

n+l '-..E^Eil*[ ri te I *: I
G-Ë-);r +E'; E

(7,-4-32)

do
"t de

(2 -33)

The approxirnation of de'P = dF - dee is valid in the elastic or plastic

region and is valid in the elasto-plastic region only if the incremental

strain cotïponents are reasonably sma1L.

.:a:::..:

a.. ... ,

..l

.:.



CFIAPTER III

ELASTIC AMLYSIS OF,4ù(ISYI\MEIRIC STRUCTIJRËS

SUBJECT T0 I.¡0N-AXI$î4MEIRIC LOADINGS

3.L Introduction
;ì,,,,:..ì

The technique of solving problems of solids of revolution or . "''

shells subject to axisynunetric loadings has been demonstrated in Cþapter i,::.:,..'.
:j ::.., ::

II. It happens, however, that in rnany situationsrstructures of this

kind are subjected to non-axisynrnetric loadings. Tlpical examples are

cylindrical pressure vessels horizontally rnor.rrted, large pipelines , '

CANDU type nuclear fuel elements, etc.;a11 fal1 into this category.

Wilson and others lI2, 131 have reported that conbined finite element and.

:.-_^rt^^J:--^_^1.1^^fL._Ja:-.ÀL:-1-:_l^f_.^^L1^_Fourier expansion rnethod is capable of handling this kind of problern 
,

within the elastic limit. This method is not limited to structural

problems in the general sense. The variational approach described

below is applicable to other engineering problelns, for which the finite i.i.r.t: .:: ':'
i.|,,,,'¡ielement methOd can be used. 
:, ;: ¡,1

3.2 StiffnesS EQùatión of Elâstic AxiSynrnetric SolidS Subject to Non-

axisyinnetric Loadings

':::;t "'

Consider first an axisynrnetric solid as shown in Figure 5. ' '' "'

The solid is subjected to non-axisynrnetric loading components {f} (body

forces) and {t} (surface tractions) which may be expanded in a Fourier



)')

seri.es AS:

,r, =l

{t} =

f.r

f.z

f0

_L
n

;rrn (r,z)

-ztn (r,z)

^oTn (r rz)

(r rz)

(r rz)

(r rz)

=rÍ

(r,zro) 
" 

I

cos

cos

sin

*' *J

ao, ,r, I

,r" "J

trn

tzn

ten

(r ,z ro)

( 3 - 2 - L)

tr

tz

te

_L
n

(t rzro)

Because of this non-axisynrnetric loading situationrthe displace-

ment solution to this problem is obviously no longer independent of the

rrential displacenent (rr0)

associated with angþlar direction 9- mwt be considered in the general

case. îhe displacenent components are thus asst¡ned to be:

Tor, (t, r) ' cos no

zu- . cos n0î lT rz)

0u- s]-n n0n lT rz)

{t} (t, z,Ø)=

Tu

z
u

0
u

l

(3-2'2)



Accordingly, the strain-displacenent relationship has

associated with the circr¡nferential components, oï:

to
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include terms

(3-z-s)
0e

zz

TZ

âur
F-
ðúz
àz

1 .Auu. ut
rtãeJ*t

i*l * ar?
àz âr

1 ,auTr a,ro lro
_ f 

-l 

+ _ - _r'â0' ðr r
aue - L ,euz,
ðz ' r \ão-J

{e} =

l.- ì:,'.

re

z0
e

Substitution of Eq. ( 3-2-2 ) into the above equations yields:

r#r

^uZ(#)

(l (#) .

_ auil _ auå( az ' âr

. cos ne

. cos ne

cos ne

. cos n0

' S]-Il fIO

{e} = T

n

ufi
r)

(+

I ,uäb )

,.auk âu$
t+ltâe ' âr

ratfi** âz
. sin n0
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or

{e} = xn

in which

ïr¿ , ,. cosn lr rz)

zze.cosn lT rz)

ee
ê ¿ r. COSn lT,z)

TZe ¿ \. COSn lr rz)

ï0e , .. s1nn lr,z)
zeE . sl_nn lT rz)

(3-2-4)

(3-z-s)

n0

ne

n0

n0

ne

n0

ãurn
âr

àuzn
Yz

. âue urr r--nr * n
rtâe/ r

aurn
ðz

i,,i,:

r_: _l00
c

n

TZ
e
n

r0
e
n

ze
en

= {e }n

Ê
ãu-.n+-
âr

ðuz
(r#)

àuz.n
âr

ruT

I (#)

äuenl

-+-
àzr

ue
_nr

. ìi1!:

(r rz)
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. cos n0

. cos n0

. cos n0

. cos n0

. sin ng

. sin n0
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related to

(3 - 2

(3-2-7)

areWithin the

strain components by

or

elastic range, stress components

:

{o} = [ce]{.}

rrtn . cos

zzç. . cos-n

-00E.COSn

TZç . cos

,.t0. sin-n

g'0. sinn

_rrln (r,z)
'-ZZ
on (rrz)
_0eÖn (r, z)
-TZon (r, z)

-rêon (r, z)
z0sn (rrz)

{o} = Ic"

in which the stress components can be expressed as:

6)
ne

ne

v

n

with 
[6,r] = tc"l{%}.

Nornr, consider the functional of the elasticity problern for

a typical torus element as that shown in Eq . ( 2-3-l ), or:

xe =f,[]rrtTro] - {u}r{r})dv' --f,iu}r{t} ds' ( 3 - 2 - s )



the respective volune and boundary surfaces of the

nay be expressed as (r dr dz do) , (dr. dg) as shown

26

( 3-2-Z ), ( s-Z-A ) and ( 3-2-6 )

)'(å )-(å

' cos n0

' cos n0

' cos n0

' cos ne

. sin n0

' sin n0

.o, *ulT

.o, *uf)
,ir, *rJ

rT
on

zz
on

ee
o
n
TZ

o
n
re

o
n
z0

on

in which V', Sr are

element and dVr, dsl

in Appendix I.
Substitute

into Eq. ( 3-2-8 ),

r
." =j,j"Í,',uul 

:

I

( s-z-7 ),
obtains:

.o, *oì T

cos mo

cos me

cos mo

sin m0

sin rnO
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TZ
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úÍ"

The following orthogonality

(cos rno) '(cos

J3' (sin rne) .(sin

(3-2-e)
trigonometric furctions :

for m=n=0
m,= n f 0

nln

for n=nl0
mlnandm=n=0

for all n and n

l,
2n I";''o'*ul (ti'",aå1;g.ïi:j 

tt
' cos ne

. cos n0

. sin n0

de dr,

ns of

lz.

1;

lîT
lo

lzn)o

relatio

ne)dg =

ne)de =

and

J3' (ccjs ne)'(sin ne)de =

may be used to sinplify X" "r,

(3 - 2 11 )

( r. forn=o
'J 

= I " nlo
l

and

xen = JrlrÇ r,,rir ¡ce1 {.,r} {urr}T{frr} )rdrdz - lutnriT{trr}dn

.r.:!

:,,i:-;: ì:. :

rl:rl.: :r

:'

:

ì

xe = I q[rIr(| t'rrtrlceltrr,Ì - i,rrrlT{frr})rdrdz -{rurrlT{trr}dø)

.ô
=nxX"ln n

in which

(5-2-rz)
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It should be noted that this sirnplification is possible only fot afr"

and [Ce] are circunferential-coordinate"case that {er}, {rrr}, {fn}, {tn}

independent.

Equation ( 3-3-LL ) shows that finctional Xe is actually the

strn of N sub-firnctional \e. Similar to Eq, ( 2-2-5 ), minimization of

each sub-functional X-" with respect to {urr}e yields N set of stiffness-n-
equationsr ori

lKrrl{urrie = {Frr} fl = 1, 2, ... N ( 3 - 3 - 13 )

and each stiffness equation ( Z-3-L3 ) rnay be solved to obtain the dis-

placenent solution of each individual node n. The exact solution of

the displacement components {u}e, or stress components {o} nay be si¡mned 
,
]

up for all nodes according to Eq. ( 3-2-2 ) or ( 3-2-6 ) respectively. l

Detailed formulation of the stiffness equation for a triangular torus
l

element is given in Appendix II

3.3 ConÞuter Code ând SarnÞle Prdblem ;

A rather simple progrârn code called "NLSTRS", which includes ;.:.:.,,
i'::.:'j:

only constant strain triangular and quadrilateral elements was developed 
i,.,:r,..,

by the author to demonstrate the validity of this conbined finite element 
:r: .'

ancl Fourier expansion nethod. It is based on another code called.

'TELSTRS", which is capable of handling plane problems, axisymmetric . l

¡'..,.'¡..:',
i.:::.'''.::structures under axisynrnetric loadings only.

The sannple problen of a heavy bean with circular cross-section

bent by its own weight is chosen to test the validity of the "NLSTRS"

f..¡:rtr. i.

:
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code. Reasons for choosing this sarnple problen are simply tbat the.loading

situation includes only node 1 body force and that the analytical solution

of the problen derived from theory of linear elasticity is available.

Computer results of the sample problen showed good cornparison with the

arøLytical solutions given by Pearsonrs exact beam theory [37]. A detailed

description of the sample problen and solutions may be found in Appendix

III.

i i'.,n r.



CFIq,PTER IV

EI,ASTO-PLASTIC AMLYSIS OF AXISYI\4METRIC STrurcTTJRES

SI]BJEfT TO NON-AXI$N\4METRIC LOADINGS

4.1 Introduction

e technique of conbined finite elenent and Fourier eripansion 
', 
, ,',

nethod for describing the elastic behaviour of axisynrnetric solids subject 
t'

to non-axisynrnetric loadings has been demonstrated in Chapter III. ;'"':l';

Solutions of three-dimensional nature* of this t)npe of problems can be 
:

obtained with the conputational efforts conparable to those required for ,

p14nq problems. In this chapter, the feasibility of using this nethod

for the non-linear elasto-plastic analysis will be described

To begin the analysis, the ass,unption of the existence of

incremental stationarity of a fi.urctional ( or potential energy ) such as

;

postulated in Chapter II has to be mai.ntained, or :

x" =J,,r,tllz{Â€,f,þG} :Íor}r lar} I dv'

(4-1-1)

and AF

-=u

è{au}

respectivein which fau) ,fotl, {^s},[af] and fat] are the

* Solutions that include three independent displacement components, six

independent stresses and strains conponents, i.ê. uT, ar', .r0 ,rrd

. Jr,{a.'}r f at} ds'

6tt, ,é' ,6-00,d",ole,é0, {t,Fr",....etc. in a q¡lindrical coordinate syster.n. i:j;i,ij



displacement, strain, stress, bocþ force and surface tractionincrenental

cornponents.

Si¡nilar to

body force

asstrnecl to

Eq. (3-Z-Ð and (3-2-2) in CIrapter

, surface traction ancl displacement

be represented by a Fourier series,

f,l¡i
)æ'

[^';

cos n0
lT rz)

cos n0
lT rz)

(r rz)' sin no

III, the incremental

components are also

or:

(4-L-?)

(4-1-3)
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that of Eq. (3.2-3),

expressecl as :
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= )^,"'f =tl^.'

l^i'Jo,,;,[*:

(r
laun ¡rrz)

s-I za <^u.n J n (r,z)
,,oi oro( n (r,z)

the strain-di

(3-Z-4) and

cos
(r rz)'

. cos
(r 

'z)
' sin

(r rz)

n0

n0

n0

and

=

(r,

=H
lo"u

' cos n0

. cos n0

. sin n0

(4-1-4)

splacement

(5-2-s) in

relationship sirnilar

incremental form nayto

be
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and the stress-strai¡ relationship

takes the fonn: 
fo."r, ì
| -r, 

I
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{as}= J*:: I = r

laclo I

|."o'u J

similar to that of Fq. (Z-4-8)
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= tcePl I"n

odt. cos no

zz

^d-. 
cos n0

Àroo. cos nen

odt' cos no

o{'. sin no

LJe' sin nen

= åtcepl

arÏT . cos non
L.zz cos nen

Aroo ' cos nen
-TZAe ' cos n0n
Arro ' sin non

L.zo sin non

(4-L-7)

in which [C"P] is in a form with paraneters of material pïoperties

[Ce] , H' , and state of stresses ã, {ot} as shown in Eq. (2-44A) 
'

4.2 Mode-nixing Characteristic

,(4- 1- s)

;sed as:

ao, ,,el

cos ne I

cos ne I
ao, te f

,i" 
"o 

I
sin ne 

J

f ¡.rtI 'm

cnn] *i
I o,rutm

-cubstituting Eq. (4-L-Z) , (4-1-3) , (4-1-4) ,

-7) into rq.' (4-t-1), functional. Xe may be expres
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(4- 1

wê-
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l^

il1l,ï:::l.j
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It is clear that liq. (4-2-L) is very similar to Eq. (3-2-9) except

the former is i¡ incremental form. The only clifference betv¡een these

ttvoequationsisthatthee1asto-p1asticmatrix[C"p]isusedin

Dq. (4-2-I) to accot¡rt for the non-linear elasto-plastic naterial behavior,

instead of I Ce ] in Eq. (3-2-g) for elastic analysis.

It shoulcl be noted that the elasto-plastic rnatrix I C"p ] i'

here is actua1.ly circunferential coorclinate clependent because some, 
i

of its Dararneters,such as the deviatoric stress components f S'] i

and.theeffectivestressG,'"rya1ongtlrecircr.unferentia1coordinate.

which

mâde it possible to sinplify Eq. (3-2-9) into a sun of sub-furctionals of

se¡arate ntocles is not anplicable in this case. Separation of various

modes in the formtrlation has thus becone a problem.

l

4.s sirylifigtig of llre lrSÞlem ì'

- fue to the compl_exity of the mode-rnixing character of the

problem, the analysis is norv aimerl at the rather simple case of

structures subject only to mode 1, non-axisynunetric loads in acldition

to the axisyrunetric loads of mode 0. Simply-supported beams of circular

cross-section bent by their ovm weight such as CAlrIfU reactor fuel

elements, heavy pipelinesror the I'l\fuki's problem t' ( canted rigicl

punch on a half-space ) t30l are typical problems of this kind.
i_ : .:: , :.: -.

as:

The increnental loacling components first may be erpressed
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{"f i = fofo}
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4.4 tfoge:Iixing _SliÊQLe:s Equat&n

To han<lle the mode-mixing characteristic

in the matrix forn
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] tt" respectively the bocly
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¡or fo") = t+1ft,r) f ¡) (4-4-1)

It should be notecl that { t j is now a 18 x 1 colurn vector instead

of a 9 x 1 vector in ChaPter III

By a similar process given in Appendices II and III, the

nodal incremental clisplacernent components may be correlated to {o"}

by:
i.:'.r-:..:t .a':.-'.:

ç ìelaul =

f ¡i =

{""} =

1 f bi

l-1fo,r)" =

lA

lA thlfo"]"
thus,

and

Substituting

relationship
rr

Á.€

oe"
o Goo

r0ae

ze
A€

= t É 1 (r,z)t h I [^u] "
(4-4-2)

(4-4-1) into Eq. (3-2-3), the strain-displacenent

be ex¡lressed as

I o o o o o o o ocosoo o o o o o tl
0 o 0 0 1 0 0 0 0 0 0 0coss0 o 0 0 

I

t zJro o o o o osff'æS% o oS.*SJ
0t/zot/z 0 0 0 0 0 ocosoþscos{ao 0 0 0l
o o o o o o o o-#i$ffo o o-#t#l
o o o o o o o o t r-##ãi$t osrrøj

t + r(r,r) [b]
t N I (r,z) f"")"

Eq.

nay

0

0

{"e}=l ^.,rf 
=

tlr

0

0

0

i.:.i ::-l

l.ì :.: .:

br

b.z

b9

fi
bå

bô

= t G I (r,z) Ib] (4-4.3)
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or = tGl(r,z) thl fo,tle

= ,Ìet B l(r,r).|ror)" (4-4-4)
,.:..-t-_.i...

Substitution of Eq. (4-1-7), (4-3-1) , (4-3-Z), (4-4-2) 
i' 

-

and (4-4-3) into Eq. (4-1-1) and rnini¡nization of 2Ce rvith respect

to incremental clisplacement conponents {ou}e gives a stiffness equation 
ir,i,.i,t,,:

similar to that of Eq. (I-8) : ':
'

:i'!r";-r

qtf ,f,io roltl cup] t R lclerdrclz ) f ^'''] "
i:1'.:- ::

= ( r rer 
^¡lr f rl rdr<tzd o * Irfr¡;otntrI c"]fe.] (rdrdzde)

) riz)0 L''

¡ .2Í :.I$'t N lr f"t) dl'do (4-4-s)

in which I Cup ] is given in Eq. (2-4-30)

Itshou1c1benotedthatthefirstintegrands,[B1T[C"p]tB]invo1ve
'

very complicated frnctions of the circunferential coordinate. Integration

al-ong the circtrnferential direction has to be carriecl out ntunerically. 
t,, ,.:, ,.

The elements of this combined rnatrix are given in Appendix IV. " : : 
'.

4. 5 Cilcunlercntlal JÉegretion ScheLe

Integration of the stif,fness matrix over the circu.nferential

clirection is carríed out by the Gaussian quadrature nethod in this thesis.

A suitable selection of the total nunber of Gaussian points is, of course,

a corrpromlse or accuracy and conputing effort. The method itself states

that :

I r,j . ..':;:.
l:i:'r ':' ':



,li.r[rÍrt 
n ]t[ c"P ]t B I rclrclz ) ds

¡L=4rl ouf rf, ( t B lrl c"plt B l )(0r) rdrcrz I (4-s-1) 
:1,,,,-k

. I ;;..: ...:.: ;:.

in which Ak are the rveig,hting factors of Gaussian quadrature, N is

the total nt¡nber of Gaussian points evaluatecl, 0k are the individual

Gaussi4n points along the circunferential clirection ancl the integrand ,:,,it.i. 
',:':. . ::'

t B lt[ c"P ]l B I is a 18 x 18 matrix, rvhich has to be formulated :.
: -:.:;:;..];..-¡

term-by-term before the integration. The detailed formulation of i:''rrrji::'l

t B lT[ c"p ]t B I may be fowrd in Appendix IV.

4. 6 SLegigl Dlsgu:sion on_the_Circumfgrentigl lgtgJ¿ragon_Schene

for the Stiffness l.latrix

The integration of the stiffness matrix of Eq. (4-5-1)

along the circunferential <lirection is carriecl out by the Gaussian

qua<lrature method a.s clescribed above. The method. evaluates lr"irrut

of the integrand ¡n]T¡CeP¡ ¡n1 only at those selectecl Gaussian

points 0U. It is quite clear that the integration schene is

actually an approximating processrnot only fron tþe mathenatical point

of view (i.e. evaluate integration by stmrnation ), but also fron the

material behavior point of view. The parameters of the non-linear

elasto-plastic naterial behavior such as H', õ , fc'}, etc., are

evaluated only at those selectecl N Gaussian points 0 ¡. As a

matter of fact, the decision in selecting the total nt-unber of Gaussian
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points determines the integration accuraqr

and naterial behaviour points of view.

fron both the mathenatical

.:t': i -
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CI{APTER V

CO,IPI.]TER CODE AND CÀSE STTITJIES

5.1 Coinputer. Code " IIIIPS^ rr

A conputer cocle by the name of " NTEPSA " l'/as developed to

incorporate the theory describecl in Chapter fV. furother code

l'NI,STRS,,describedear1ierinChapterIIIforthee1asticana1ysis

rvas usecl as the basis for this clevelopment . Sinulation of the non-

linear elasto-plastic material behavior rvas acldecl to this netr¡ cocle

usin¡¡ the stepwise linear incremental method as clescribecl in Chapter

II ( for r.¡hich ¿rnother code rf TEPSA tt is available for the elasto-

plastic analysis of âxisynunetric structures trnder axisynunetric loads

I 3 ] ). As clescribecl in Chapter IV, the present analysis is airned

at problems of axisynmetric stnrctures subject to mocle 1 non-

axisynmetric loads only, in addition to the axisynrnetric loads of

mode 0
.

It should also be noted that a total nunber of nine Gaussian

points rvere usecl in this cocJe for the integration procedure along the

cirq¡nferential rlirection. ft was, of course, a comproinise between

the integration accuracy and computing effort.

5.2 Salple_PloÞlern_

The problem of a simplv supported heavy tube( 4" O.D.13" I.D.'

16" long ) bent by its ovrn rr'eight is chosen as a sample problen.
l.irr,¡:..]:..l.l !
ill::li.:.irr.:i., i 'r r' .'::11 - a:ì' . :

f ::.:-: .'ir:::r'.i. 1
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This problem is alnost the same as the sample problern of a hear4¡

bean described in Appencl.ix III for the elastic analysís. The

reason for choosing a trrbe instead of a beam in this elasto-plastic

analysis lvas that a tube needs fewer nodes and elements in the finite

elenent discretization, ancl thus reduces the cornputing effort.

In the present analysis, a finite element cliscretization consisting

18 ¡rodes and 8 elements was usecl. The detailed configuration of

the tube and its cliscretization are shown in Figure 11.

The loacling condition of the sample problem consists of

only mocle 1, non-axisynrnetric load as describecl ia Appendix III.

Llowever, in order to demonstrate the node-mixing characteristic ,

an increnental longituclinal tensile force was inposed at both encls

.of the tube to account for the axisyrunetric loacl ( rnode 0 ) . Thus,

the sanrple problem is essentially just like a heav,v ttrbe tnd.ergoing

a tensile test horizontally. The solutions of the sagging and

bending stress of the tube clue. to its own weight at various stress

states during the tensile test are the main interest, besides the

axisyrunetric solutions of longitudinal elongation, tensile stress ::'

ancl strain. It should also be noted that other problens such as a

heavy tube horizontally nnotrrted urcler internal or external pressure

( e.g. large gas pipelines or CANDU fuel elenents' for exanple )

are relevent sanrple problens as well



i :::::a::i-l:_'-:ï;'ll;:::ìl-i.:::a?..::l:;:.:a-r:a i-:i:llr:lii:iir''.ii..li;.1::.;:
i¡ì':::t:l:r:j:: 1,:l::':

5.3 Verification of Conputer Code " NTEPSA "

Generally, verification of a new computer code is done

by comparing the output obtained from the code with experinental

daia, analytical solutions, or solutions obtained from an established.

conputer code, for various sample problems. However, in the present

analysis, only a specified category of problems ( axisynrnetric solids

subject to mode zero and. mod.e one loads ) is intended and no ex-

perimenta| ðata, analytical solutions, oï solutions obtained from

an established computer code for this kind of probleilìs aïe available

to the author. Verification of " NTEPSA " can only be done, for the

time being, by comparing the outputs from the code for the above

sanple problen witå outputs from two of its base codes 'r NLSTRS I'

and.'f TEPSA ". As described before, " NLSIRS " i.s a co<le for the

elastic analysis of axisylnnetric structures subj ect to non-

axisynrnetric loading by the combined finite element and Fourier

expansion nethod; Verification of the " NLSTRS " code may be formd

in Appendix III ( or Table 1 for easy reference ). The other base

code " TEPSA'r is a code for the elasto-plastic analysis of axisynrnetric

structures subject to axisynrnetric loading by the linear incremêntal

method, which Ïias been verified in nany puþlications, such as Ref. [3].

The results of the verification are described as follow :

(i) Verification of " NTEPSA " witå " NLSTRS rr

42

;'..r:i.:.
r:t-:

l-'1 .

ilÌär\.-!, ur", ".'is7ÀF,,

r"lgpp.pif,S

\ìr
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lìlithin the elastic range of material behavior, solutions

of suitable sample problems obtained from both cocles should be identical.

The sample problem of a hear4r tube described in this chapter was

calculated hy both codes. The material properties of the tube were

assi¡gred. to be :

ll = 0.?8 x 108 -----Yotng's lr{oclulus

f = 0.33

The density of tlte tube, f , was assignecl to be 22.5¡ 50, and 100
a.

lbf/inj respectively at three nrns. Conrputer outputs of saggings

and bencling stresses from both codes have been tabulated ín Table 2.

It shotvs excellent agreement between the solutions obtained fron

both cocles. Solutions obtained by simple hearn theory are also indicatecl

in this Table for reference.

(ii) Verification of " NIEPSA " with " TIIPSA rr

It is quite clear that code I' NTEP-SA " shoulcl yiel<l the same

results on the elasto-plastic analysis as code I TEPSA fr for problems

which involve only axisynmetric loa<ls. The sar.rple problem describecl

in this chapter is a suitable one if the clensity of the tube naterial
a

becomes negligible ( e.g. 0.0001 lbf/ini ). Sol.utions of axial

strain, axial stress and radial deformation from both co<les have

been tabulated in Table 3. Goocl agreenent of solutions from both codes

is also attained. lv{aterial- properties used for inptrt to the ccnputations

-----Poissonrs ratio

ñlÌ.1:. ],i4,,
i1Ì¡.t11ìr.ê1,,i1'
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were :

E = 0.28 x 108 psi Yor.urg's nodults

V = 0"33 Poissonrs ratio

6r= 401000. psi

Ef = 401000. psi

5U= 411000. psi sigma bi-linear kink

n = 5. stress poü¡er

for both co<les.

5.4 Cpse gtucly :$r Elasto-plastigAlal¿sis oÍ the Sample Problêm

b¿ '! ItrTEPSA ". Code

Thebehaviorofasinp1ysupportedtubesubjectto1ongitur1ina1

tensile force which sags due to its ovin weight was assessed by the 
I

,,NTEPSA,,code.Thediscretizationofthefinitee1ementnode1

remained the sane as sholn in Figure 11. The elasto-plastic naterial i,.,,;,,,.,.,.,,
. 

:. .:..,,_ . r j:::j;

behavior was illustrated in Figure 12, or by the follorving paraneters: ¡::.,,,¡,,,,,;
i-.: ::: _-¡:-::ì::

' l: t.t:t: l,:::t.t,'

[ = 0.28 X 108 psi -------Young'.s motlulus

V = 0.33 -------Poisson I s ratio

6-¡ 401000. psi -------yield stress : 
,,r.,,,:

E'= 40,000. psi -------as)¡mptot modulus

Çk= 40,000. psi -------sigma bi-linear kink 
!

'I

n = 5. -------stress power

. 1,i.,. .. l,
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according to Fq. (2-4-31)

As described before, the main purpose of this case

study is to assess the vali<lity of the combi¡ed finite element

and Fourier ex¡ransion method for the elasto-plastic analysis

of axisynrnetric stnrctures strbject to non-axisymnetric foadings.

The following inforrnation on the deformation of the tube due to

the non-axisylrunetric loads are of nain interest.

he tube due to the(i) The raclial and tangential cleformations of t
non-axrsyrmetric load at 3.94% effective strain as shor^n in

Figure 13.

(ii) The sagging of the tube along longitudinal clirection at various

angular positions at 3,94% effective strain as shorvn in Figure

14.

(iii¡ The deforned shape of the mid-span cross-section of the tube

at 3.94% effective strain as shor,n in Figure 15, It should be

noticecl that the deformations have been exaggerated in the fígrre.

(iv) The sag¡¡ing of the tube at various states of stress ( or strain )

is shorvn in Figure 16. The figrre inclicates that the sagging

of the tube accelerates when the elastic linit of the naterial is

exceeded.



CHAPTER VI

DISCUSSION AND CONCLUSIONS

6.1 Discussion

Although the present "NTEPSA" code has been indirectly verified

by two special loading situations from two of its base codes "NLSTRS,

and "TEPSA" as described in Chapter V, the validity of the elasto-

plastic version of the code for the general loading situation has not

yet been verified directly. Direct verification of the code for general

application can be achieved if experimentaL ðata or solutions obtained

from an established three-dimensional elasto-plastic finite element

progftun are available" Unfortu¡,ately, these data are not accessible-

to the author for the time being" Hence a ful1 verification of this

code was not possible at this time"

The analysis and the "Ì,,ITEPSA" code described in this thesis

are intended to be a preliminary study of the combined finite element

and Fourier expansion method for the elasto-plastic analysis of axi-

synrnetric stnrctures subject to general non-axisyrrnetric loadings. It
is important at this stage to assess whether further research activity

in this area should be recolnnended.

As mentioned earlier, the nain advantage of the application

of this combined finite elenent and Fourier expansion nethod over the i,,=,,'',3,,

general three-dimensional finite element method is in the potential

savings in computer input data, computing effort and storage.

Con.nrarison between these tvlo appr'oaches'can be demonstrated by the

sarnple problen illustrated in Fig.11. Information, including the
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total nunber of nodes and elements required, in the size of the overall

stiffness natrix and the total n¡nber of integrations by using the

Gaussian quadrature scheme for both rnethods, is tabulated in Tables 3

and 4 for direct cornparison. It should be noted that, for a three-

dirnensional finite elenent progïam, every toroidal element used in the

present analysis has to be divided into a nurber of hexahedral elements.

In Table 4 anð, Table 5, a total of nine such elements would be needed

for a three-dfunensional finite element analysis

In Table 4, ít can be seen that the " NLSTRS " code (i.e.,

the conbined finite element and Fourier elpansion method for elastic

analysis ) can achieve a five times saving in the amornt of required

input data, an eighty-one times saving in the amolrrt of required storage

and a ninety-six times saving in the amount of required computing

ettort

In Table 5, it also can be seen that the " NTEPSA " code

(i.e., the combined finite element and Fourier expansion rnethod for

elasto-plastic analysis ) can achieve a five tïnes saving in the amount

of required input ðata, a twenty times saving in the amor¡nt of required

storage and a three tirnes saving in the amotu-rt of required computing

effort.

Referring to Tables 4 and 5, a considerable saving is

achieved by both " NLSTRS " and " NTEPSAfT codes. However, it also

reveals a drastic decrease in the savings of storage a¡d computing

effort required for the elasto-plastic analysis. The savings may

become less if more modes are included in the analysis. Table 6
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reveals that the amount of required computing effort is even more for
the combind finite elenent and Fourier expansion method if four mod.es

are included. Nevertheless, the saving in the amormt of input data

and the corputing effort required to solve the stiffness equation (

because of the smaller size of stiffness matrix ) still make the method

more conpetitive over the general three-dimensional finite element

nethod, provided that four or five loading modes can satisfactorily

represent the loading situation of the problem.

The above comparison didnot include the effort required for
the thermal analysis. Ittrile almost al-l three-dinentional therrnal

analysis codes have been based on the finite difference method because

of its effectiveness, the combined finite element a¡rd Fourier erpansion

approach has already been established [12]. rt is believed that the

gain in using the present method for çoupled thermoelasto-plastic

.analysis over an equivalent three-djmensional finite elernent analysis

would be even more phenomenal.

Besides the above mode-nixing limitation, there are two other

main factors which may also affect the feasibility of the application

of the conbined finite element anf Fourieï elpansion nethod. one of

the factors is the convergence of solutions with the nesh size of the

finite element discretization. The other is the integration accuracy

of the Gaussian quadrature scheme used in the " NITEPSA " code.

In Table 7, solutions of the sagging for the sample problem

illtrstrated in Fig.11-a by " NTEPSA " code, using three finite element

discretizations of d.ifferent mesh sizes, have been tabulated for comparison.

Ïhese three finite element discretizations are illustrated in Fig.ll-b,
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Fig: 17-a and 17-b. It can be seen that the solution for the 
"lgf,t-

element discretization ( shoim in Fig. 11-b ) and that for the sixteen-

element discretization ( shown in Fig. L7-b ) are very close. It appears

that the solution does converge with the mesh size of the discretization ,',,,1.,

and the rather simple finite element discretization as shown in Fig. 11-b

is able to represent the structural behavior of the sample problem

satisfactorily. ',.;,'
).i..:. :.::;.,:i ..

As for the integration accr)racy of the Gaussian quadrature 
',

scheme, many references such as Ref . t14] are available for assessing i'i't.t'.

the required Gaussian integration points to obtain satisfactory accuracy

ofintegrationoVerap1anetriangu1are1ement.However,inthe''NTEPSA''

code, integrands of elements of the stiffness matrix ( as shown in 
i

Appendix IV ) are circr¡nferential coordinate dependent. Integration

of these elements over the circtrnferential coordinate has to be specially

discussed. Referring to Appendix IV, it can be seen that these integrandt 
;

:

can be classified into three categories, namely,

) 7 l'"t'''-'I, = ar/ (brcos"e + bzcos o sin o + brsin"e). 
i..:;.ì,:::
i..
1',,.,1'.:,,,"

I, = (arcoso + arsíno)/(brcos2e + brcos 0 sin o + bs sinzo) ,,,','
.'-'.' : :

17)?I, = (arcosoo * arsin'e + a3sin o cos o)/(brcos"o + brcos 0 sin 0 + bjsin-O)

where 
^L, ^2, ^3, 

bI, bZ, b, are various constants for various integrands. 
,..i;ri

In Table I, it can be seen that the Gaussian quadrature scheme with nine

integration points appeared-to give reasonably accurate results, e.g.

to the order of t0-3 for the integrand I, .

:.rlÌ:,:''J.:i::iì
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6.2 Conclusions

From the analysis and case studies described in this thesis,

ít may be concluded that: 
,"''ir"''1"

(1) Within the elastic limit, the combined finite element and Fourier

expansion nethod. has proved to be capable of solving problems of

axisyrrnetric stnrctures strbject to non-axisynrnetric loadings.
ir,.';i,,,,,1- ,

Conpared to the simple bearn theory, the method affords a conplete and ,.",:l':" .''r''

accurate set of three-dimensional displacementrstrain and stress ll.i';,'':,,:.
j;1:1:;.,:r'.:,:,':

solutions. This nethod achieves a five tines saving in the amount

of required input data when it is compared with a general three-

--^--;ñ ^- ^; ^L -i-ndimensional finite element program, an eighty-one times saving

intheâmor:ntofrequiredstorageandaninety-sixtimessaving

in the amornt of required cornputing effort.
ì

(2) For the elasto-plastic analysis, the node-mixing characteristic

of the nethod somewhat restricts practical. application of the

nethod for general loading conditions. Four or five loading

modes appears to be the lirniting factor of this nethod when r=i;:, 
'

::. :: I _-

conpeting with a general three-dimensional F.E. elasto-plastic 'i,u'.,',..,',-,

':t;: t:_'_ :.' 
'

finite element progr¿lm.

---t-:^-L ¿^ a^--:¿(3) The case study of a simply supported tube subject to longitudinal

tensile loads sagging r:nder its ov¡n weight with the " NTEPSA " code : ...j..:::Ì :ì:i::r.: .i.':

reveals an increasing sagging of the tube as the naterial behavior i"'""' 
" "'

of the tube goes through the elasto-plastic region ( as shor^n in

Figure 16 ), As expected, the tube cross-sectio¡ no longer was

round ( as shovn in Figure 14 and 15 ) after deformation. '

: iitt't¡'t:*
i.'.;ij .,:j,r,.:,....
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The "induced sagging" of the tube by the effect of material

plasticity may be predicted by idealized plastic simple beam theory,

but solutions of the deformed cross-sections of the tube can only

be obtained by this combined fi¡ite element and Fourier expansion

nethod or a three-djmensional elasto-plastic finite element method.

(4) It should be noted that,in both "NLSTRS'| and'TNIEPSA" codes, rota-

tions are not considered to be degrees of freedon in the analysis.

Both codes are thus valid only for sma11 strain problens; It

should also be noted that,although 'I,IIEPSA" code has been indirectly

verified by two of its base codes,"NLSTRS" and 'TEPSAT',direct

verification of the code with experinental data or solutions

obtained from a verified three-dimensional elasto-plastic finite

elenent program is recorrnended.

i- -...:- .:..-
i .: :i:.:::. I ",I :- .:.. .t i, .
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leaf blank to correct numbering

i':::ì:'...:'_',
il-::: ':'::_

:.......

i::',:: .::i: r::,



53

REFERENCES

tll Tt¡rner, M. J; , Clough, R. W., Ilartin, H. C., æd Topp, L. J.,

" Stiffness and Deflection Aralysis of Conplex Structures",

Journal of Aeronautical Science 23, pp. 805-823,(1956).

l2l Proceedings of the Wright-Patterson Conferences on lvfatrix Methods

in Structural Analysis, First Conference (1951) and Second'

Conference (1968), Dayton, Ohio.

[3] Hsu, T. R., BertelsrA. W. M., Arya,8., and Bangrjee, S.,

"Application of the Finite Element Method to the Non-linear

Analysis of Nuclear Reactor Fuel Behavior" in Computational

Methods in Nonlinear Mechanics ed. by J. T. Od.en et al,

TICOM Press (Ig74), pp. 531-540

[4] Nayak, G. C. and Zienkiewicz, O. C., t'Elsato-plastic Stress Analysis,

A Generalization for Various Contitutive Relations Including

Strain Softing'I, Int. J. Nr.un. Meth. Engng 5, pp. 113:115 G}TZ).

t5] "Thermal Structural Analysis.Progratn - A Surrrey S Evaluation",

HoLd as part of the Third Annual Pressure Vessels and Piping

Conference, and 27th Annual Petroletrn-Mechanical Eng. Conference,

Sep. (1972), New Oreans , La.

t6] Fenves, Perrone, Robinson and Schnobrich, rf Nr.unerical and Conputer

Methods in Structural Mechanics ", Academic Press, N. Y. and

London, (1973).



t."'

l7J Gallagher, R. H., Yarnada Y., and Oden, J. T. (eds.) " Recent Advances

irr Matrix Methods in Structural Analysis & Desigr ", First Japan-

United States Seminar on Matrix Methods of Structural Analysis

and Design, Toþo, 1969.

[S] Gr-rpta, A. K. , Mohraz, B. and Sclrrobrich, W. C., "Elasto-plastic

Analysis of Three-d.imensional Structures Using the Isoparametric

Element rt, Report No. UILU-ENG-71-2020, Univ. of I11., Urbana,

I11., (1971).

tgl LeUf , N., lularcal, P. V., ând Rice, J. R., " Progress in Three-dimensional

Elastic-plastic Stress Analysis for Fracture Mechanics "rJ.Nucl

Eng. Design , 17, pp. 64-75 C1971)

[10] o,u"r, D. R. J., and Salonen, E. M. ," Three-dimensional Elasto-ptrastic
:.

Finite Elenent Analysis ", International Journal for Nt-¡m. Methods

/'^ÉÉ\Eng. Vo1. 9, pp. 209-218 (1975)

[11]Desai,C.S.,andAbe1,J.F.,''IntÏoductiontotheFiniteE1ement
,,'., ,..',' ' t. :t :

Method - A Ntmrerical Method dor Engineering Analysis ", Van Nostrand ij,ri::...
i r: ___ :-ì

'' 

"_" ":t"Reirrhold Corpany, N. Y. (1972), pp: 285-302. 1;,,,q,,11

[12] Wilson, E. L., " Structural Analysis of Axisylnnetric Solids "TAIAA

J. Vol. 3, No. 12 (Dec. 1965)

[13] Percy, J. H., Píam, T. H. H., Klein, S., and Navaratna, D. R.,

" Application of the Matrix Displacement Method to Linear Elastic

Analysis of Shells of Revolution 'f, AIAA J. Vol. 3, No. 11

(Nov. 1965)

54



55

t14] Zienkiewicz, O. C,, 'The Finite Elenent lr{ethod in Engineering

Sciencê", McGrarv-tlill, London, Ergland.

[15] ]4artin, H. C., md Carey, G. F., " Introduction to Finite Element

Analysis j Theory and Application ", McGraw-Hill press, N. Y.,

(1e73)

[16] Padlog, J; , Huff , R. D., md Holloway, G. F. , 'i The Inelastic

Mechanical Stressing Conditions'r, Be1l Aerosystems Co. Rept.

I4PADD TR60- 27L, (L960) .

lfTl Swedlow, J; L., and Yang, W. H.: Stiffness Analysis of Elastic-

plastic Plates, Grad. Aeron. Lab., Calif . Inst. Technol.S\465-

10, (1965) .

Pope, G., " A Discrete Element Method for Analysis of Plane Elastic

-plastic Stress Problems'!, Roy. Aeron. Estab. TR65028, (1965).

t18l Proc. 3rd Conf. Matrix Methods Struct. Mech., Wright-Patterson AFB,

Ohio, (Oct.1971)

l19l Oden, J T , Clough, R. W., ffid Yamamoto, Y. (eds.), 'r Advances

in Computational Methods i¡ Structural Mechanics and Design I'

Proc. 2ird United states-Japan seminar Matrix Methods of

Struct. Analysis and Design, Calif., (Aug. Ig72), Univ' of

Alabam press , (Lg72)

::.d,.i,:

r.¡: r
i :':.'-



56

I20l Yamada, Y., " Recent Advances in Matrix Methods of Structural

Analysis and Desigtr ", PP. 283-3L6, Reference [7].

[21] Zienkiewicz, O. C., Valliappan' S. and King, I. P., I'Elasto-

plastic Solutions of Engineering Problems rlnitial

Stresst, Finite Element Approach fr, Int. J. nun. Meth.

Engng Vol. 1, Fp. 75'=100, (1969)

lZZl Marcal, P. V. and King, I. P., rr Elastic-plastic Analysis

of Tho-dimensional Stress Systems by the Finite Element

Method 1', Int. J. Meth. Sci., Pergamon press Ltd.,

(1967), Vol. 9, pp. 143-155.

l23l Boyle, E, F. and Jennings, 4., " Accelerating the Convergence

of Elasto-plastic Stress Analysis ", Int. J. nun. Meth.

Engng, pp. 232-235, Vol. 6, (7972).

l24l Clough, R. W. and Rashid, Y., " Finite Element Analysis of

Axisynrnetric Solids ", Journal of ASCE, Engineering

Mechanical Division, Vol. 91, No. EM-l (1965).

l25l D,mham, R, S. and Nickell, R. E., " Finite Efement Analysis

f Axisylnnetric Solids with Arbitrary Loadings ",

Structural Engineering Lab. Repoft 67-6, University of

Calif., BerkeleY (1967)

126l as Reference [1], PP. 263.



57

lZZl Zienkiewicz, o. C. and Too, J. J. M., 'i The Finite prism in

Analysis of Thick SimpJ,y Supported Bridge Boxes ",
Proc. fnstn. Civ. Engrs, L972, 53 (Sep.), pp. I47-L72

(1s72)

tZ¡l Doherty, W. P. and Wilson, E. L., ild Taylor, R. L. , ', Stress

Analysis of Axisynunetric Solids Utilizing Higher Order

Quadrilateral Finite Elements ", Structural Engineering
:

Lab. Report 69-3, Llniverstiy of Calif., Berkely (1969)

lZgl Zienkiewicz, O. C., " Isoparametric and Allied Nuunerically

Integrated Elements rr, Int. Symp. on Nt-ul. and Cornputer

lr{ethods in Struct. lrfech., lfiiversity of lllinois,
Urbana,1971.

[SO] Ricardo Nicolau del Roure, " Evalution of Low Order Axisymnetric 
i
i

Finite Elements with Fourier Loadings '1, IrÍaster Thesis, 
i

Dept. of Civil Eng., the Lhiv. of Texas, at Austin.

[Sf] Ueda, Y. and Yamakana, T,, " Thermal Nonlinear Behaviour of

Stn¡ctures ", appeared in the Symposir¡n Volt¡le of Ref.

19 , pp. 375,-39?,.

l"SZl Yama<la, Y. and Yoshimura N. and Sakurai, f ., t' Plastic Stress-

strain }4atrix a¡rd lts Application for the Solution of

Illastic-Plastic Problems by the Finite Element Method "

Int. J. of l{ech. Sci., Perganon Press, Vol. 10, 1968,

pp. 343-354

l''.:r.i.
1,...

i: iìJri.:'4".r,,



58

[ 33]

[ 34]

I ss1

[ 36]

t õ71

Cøllagher, R. II., " Computational lt'lethods in l'tr¡clear Reactor

Stnrctural Design for t{igh Ternperature Application :

.An Interpretive Repor¿ rt, Oak Ridge National Lab.,

Report ORNL 4756, (Feb. 1973)

Hsu, T. R., Bertels, A. W. lu{., Banerjee, S., Ðd l{arrison, W. C.

Theoretical Basis for a Transient Thermal Elasto-

plastic stress Analysis of Nuclear Reactor Fuel Elenents"

t{friteshell }fuclear Research Establíshment, Report ¡fCl-

5233, Atonic Energy of Canada, (July, 1976).

Popov, E" P., il Introduction to Mechanics of solids ", Englervoocl

Cliffs, Prentice-tlall (196S)

as Ref. þ41 , pp. zs-30.

Pearson, karl, 'r On The Flexure of Heavy Beams Subjected to Continuous

Systems of Loadrr, Quarterly Journal of Fure and Applied

Îr{athematics, Vol. 24 & 3I, 1889, pp.63.

Roark, Raymond J., " Formulas for Stress and Strain ", l{cGrar^r-Hi11

Book Company, 1965, pp106',

[38]

!"_."_.,.:.:_.x'1,':'-')¡r. :::

i-:::'; :'¡'"r¡t



59

APPENDIX I

Stiffness of Torus Elements

(i) Detailed Formulation of The Stiffness Equation of a Constant

Strain Triangular Torus Element under Axisynunetric Loading :

Because of the characteristics of æcisynrnetry of the element

geonetry anrl loadi:rgs, the displacement components for the element

t.l,may be asstmed to be independent of the circt¡nferential coordinate,

i. e.

rt.. :
i..!

:-

t"l =

{"}

{:;:.:: } {

[:;;:::J

bl *

b4*

lft]rpnr

brr + brz

brr + b.z

or

{ o} 
(ï-1)

in the matrix and vector forms, in which

natrix ancl vector respectively and bl, b

constants.

(. l,
2' "q

t ) rePresent

.., b6 are arbitary

I'he nodal values of this asst¡ned displacement pattern at nodes

I, J, K as shotvn in Figure 2, may be expressed as :

.¡::;l



'i:i:,:';.,:!::;:'::*:::ì::!í;:::,iXjãijì,:i:j.:il-i!rjt-;lii-:,;:::.i j- iÍ-:j.:i::r:;::i:.:r::ì:::.:j:ii::;riiji,i.i::::ii

G-z)

(r-3)
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:ll{::::}

1

I

ettrr

eurrJ

ettrK

eur rr

e,,,J

eu" 
rK

r.
1

r.
J

rk

or

{"}" = fnJto
Inversion of Ëq. (I-2)

to) = [oJ-'{
in rvhich

[r) = [oJ-t =

Ì

yields :

ue] = f r' )t""]

i"lIl

Z,- T'2. f.Z.' T. Z,K Kl K]- 1 K

-2. z. -2.KK]-

-r. r.-r,
llK

T.Z. -1l

Zz-
1

r.
J

(r-4)

and Å = rjQU - rì +ri(2, - tk ) + r*(zi -

= lØe,,,J [n) {" }"

t:.:

ì;,;:

I ..1

I
7

"j)

The pattern ( or usually refered as " interpolation function ")

rvlrich r{as assumed in Eq. (2-3-3) to correlate the <lisplacement

vector { rJ v¡ith its noclal values ["] " is obtained by

{'} = [ør,,,1) tn]
(r-s)
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or sirnply

{"} = F,,,,il {"}"
rvith [*,',r,] [ø,',rJIn]

substitute Eq. (I-1) into Eq.

relation, one ol¡tains :

= f è'"-

(2-3-5) of the strain-displacement

+ bz'r * bS,

r
bs*bs

(r-6)

[6] = Ê*rr

,_ZZ

C*0e

TZ

b2

b6

b1

or in matrix form

{e} = (o
I

lo
Ir
lr
I

Io

= l-tct,rl]
= [ttt,rlJ
= [n ] ["]"

[utr,rl ]

as:

100
000
L,, Or
010

0

0

0

1

bt
bz

b-J
b4

b-
5

b6

lbl
t'l I

uì"

= f G{t,rl]
[')

;

i

i:!1..! -'ri

with

(r-7)
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The stiffness equation of a typical

Eq. (Z-S-s¡ , (2-3-9), and (2-5-10), or

s[", tnlt [."J [l J uu') [' ] " = Ju,

element as shown in

:

t-ï trJ av'

The inte,grands

take the form :

r (n)'J,, It,',,jI I dJ(t,',,j au' ( h) )' [ "]u

= (nT -fr,(f r,,,t) I rÌ clv'| . þf -[, (.,,,,t[.Jt6ldu'
. úl' J,,(Qo,,t){t} as'

i¡ the first integral of Eq.

lr
L^

r itg¿
t-
I

I

ct4*ct4

'.,i]

f:_ .i

i::

i.,.,¡1 .: i:,rrr:-: .::,;
t:-:::ì. : : ":,Ii: -.:r:- :::',j

[c]r[cn] [c]

I

L

I

I

I

I

I

I

I

I

I

I

l-
L
I

I

i-
I

I

¡

I

I

r
I

I
I

?yr*"+q ? zr*",,,

_ 9___
c4z. c+4

* lu,I r]t [ .Tfeo¡ av' /,,[n ]t I t] as' (r-s)

may nor{ be established as :

33 llc.rr*rr> t7rr* 
*ro : t

t-
I l-
itrr{r¡*c¡¡ Ë(crs*ts:) I

Ill
r *c¡t 

'*ct4*t34 . I o

T-:-----l -
t ¿1 *?r" I

| 112"33' rt"34 ¡

tlt

(r-e)

(I-9), after expansions,

iu
I t"32
+-
I

I

', 'rr*'3,

czz
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(ii) Nunerical Integration of Integrands over the Volune Vt and

Bounclary Surface Sr of a Triangular Torus Element :

The stiffness equation (I-9) involves inte¡gation of ji.,,' .' '',

certain intcgrands over the volt¡ne Vt and botndary surface

St of a typical triangular torus elenent as shown in Fi.q. Z-

The following types of integrations have to lie calculated in .,,,,;,,¡::,,,,,,,,'

trre finite element analysis : 
1"t.'"'tr'1"¡11'11

i :l: -:":"' :': " "
r :,; ; ::. :r : :..:..:.j.. 
i.;i-::..:-_:;..t..r.,(.It = Ju, fft,z) clv' (I-loa)

rz = fr, g(t,z) clsr (I-lob) 
;

l

These integrals may be èxpressecl in the cylindrical coorclinate 
i

system as :

11 = -[rf;J, r(r,z) ( r <1r rtz dQ ) =r{r.frr(r,z)(rclrclz)
(I - 11a)

rz I, l, s(r,z) c12' d0 = zyfse,r) d{' (I-11b)

. ,: t:..::.. ._....
I

in rvhich d tr- represents increment. of path length along the 
i:,,i','.t, 

t:,,.,
' it :-:: ' :: 

--t;

el.ement boundary of the finite elenent gricl on lhe t - z plane. ;.' :'.,¡ì '.,,',',"

Eçation ('I-11b) may be sinply approximated as

rz = g G,z)L' t '" 'i:'':: ' 
: :'

lì ': "-Ëif 
;'tìlìri":"

in r^¡hich g (r,z) is the algebraic avera¡¡e of g(rrz) along

bowñary .('
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Exact integration of Eq. (I-11a) is possible but is both tedious

and time consuuning. In this thesis, the Gaussian quarlrature

nt¡nerical integration scheme is usecl. The scheme uses n tGaussia¡r

points " anrcl arrives at a strmnation expression with appropriate

weighting coefficients at each Gaussian point, or :

r2 ,Uij f (r,,zi)

Ref. [14].

scherne may be fourd in nany references such as

nn=f z
i=l j=l

,.;,r _i,ì :I "r.i:ì-
i:i. ., rir.
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APPENDIX II

Stiffness of a Tonrs Element Strbject to

Non-axisYnmetric Load

Detailecl Formulation of the Stiffness Equation of a Constant Strain

Triangular Torls Element under Non-axisyrmet.ric Loadings :

.similar to Eqs. (2-3-8) , (2-3-g), ffid (2-3-10) , the stiffnéss

equation for the problem is

lf,J ( t',J [c]trJ ( r dr dz ) ) { "l' =.[;l[-]t"tt (rdrdz)

.-l;I t'J tcl{qÎl ( rdrdz ) .I,l*){t"} aø ' (Ir-1)

for each mocle rl .

Assr.uning that the displacernent components {"ni for node n

are given by :

f'"1 ,' ', 
= 

{

ïì l;;:::::::ì
ül L;'ooo ot'rz)

bln
b

¿̂n
b3n

b4r,

b-
5n

b-
bn

b-tn
b8r,

b9n

(rI-2)

or t"'l o"ì= Vr',rl {(r rz)
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Similar to Eq. (I-2), the nodal valtres of the displacement conponents

{"J" may be related to b' as :

r
%r

ru-ru
r

unK

zu-NI

z
unJ

z
unK

u-nt

unJ

u..nÁ
:ll

b4r,

b5n

b.
on

b-tn

b8r,

b9n{lï

r.
1

I,

i'

I

1 r.
J

tk

(rr- 3){d" = [n] {0"}

fnverse (II-3), . one obtains '.

= (n] {"J"
rvith

OT

o ì,j 0 0 rUzr-rrzU 0 0 ,t"j-rjri: 
^ li,::,,,,,:- 0 ,k-rí 0 0 ,i-rj ? : l'0 0 ti-rk 0 0 tj-ti -0 o 

l.:,,,'.,.
rizy.- tkzi 0 0 rkzi- îizk 0 '0 rrzj- , jri : tt"j-"k - 0 0 ,k-ri 0 0 ,i-rj I Itt-tj 0 0 ti-rk 0 0 t:-Ii 0 

I0 riz¡-rkzj0 0 rUzr-rtzn0 ? r*j-.rjzilr,,,, 
,

0 ,-j-tk - 0 tk-zi 0 0 zr-z, ll',0 tt-tj 0 0 ri-tk 0 rr-rt 
)

J

l
frk

ib

Ir,

uk

fJ

h

j

T.Z,lK
J

'k
0

0

0

0

0

0

i.a:¡:' .: ,
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and À = rr( rj- rk) * rj ( zk- zí

lvfatrix ( * I may be now forrnulatecl by

[- ] = [ø,,,,1[n]
Substitute Eq. (II-2) into Eq.

relation, one obtains :

(rr- s)

(3-2-3) of the strain-displacenent

) + rt( zr- zi) (rr-+¡

b1r,

b
¿̂n

b-
JN

b4r,

b-
5n

b-
on

b-ln
b8r,

b9n

terïil

ìtil

0

0

rlr
0

-n/t

0

0

0

0

0

0

-n

100
000
LIlz 

9

010
-n -nz/r 0

0 0 -n/r

00
10
0 n/r

00
0- .L/r

-nr/z 0

00
00
nrrr/
00
o -z/

01

(rr-6)

in the stiffness

ot { €,.,} =

lvfatrix [t"]

It"],,,,,{oJ

[o'J =

Finally,

may nor{ be formulated by

tt' ] r",,¡ [nJ

integrand' [.Jir,", [."J [t'lr",,l
:equation, after erçansion, takes the forn

Ic')

t:':.

IÌ:.

[c,) \Y, z¡ -(c") t,zt



nz (L-zv)+z(L-v)nz (t-zv)+2 ,çn2

\ 2x ^2T'-", r'(1- zv) zçn¿ çL-zv)+21
L ¿,7-- ) )- zo (nu Ll'2v) +2 fL-v) I

2r2
¡ (1-2v) - -'-z-

0.

0
v
r
2v

SY¡,IMETRY

!_t3-4!)_
2rZ

n (3.2v )
2r

n(1-v)
r

l. i.1,
',; i.'l.,. .al

nz(3-4v)
ztZ

nz(3-Zv)-T-
)

nz'(3-4v)
^2zT

-n (1- 2v)
2r

-n(L- 2v)
?

z (zn2 (t-v) + (t- zv) )

.zrZ

..,L.^ L

2.-n ztl-vJ
r"

2r

ot
@
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APPEMIX III

Sample Problen of a Hear4¡ Bean with Circular

Cross-section Bent by Its Oum Weight

A Uranir¡n rod (4" 0.D.,.16" Long ) srmply supported at both

ends is bent by its ovmweight ( as.shov¡r in Fig.6-a ). The naterial

properties of Uranir.un netal are assigned as :

7
E = 2.8 X 10' psi

= 0.33

= 0 in/in.F
2

= 22.5 lbf/ini

(i) Analytical solution :

----You'rg's modulus

----Poissonts ratio

- -- -Thermal e4pansion Coeff.

-- - -Density

-0

Pearson [37] reported an analytical solution to this sanple

problen. In his work, he solved the governing equilibrir¡n equations :

ã6rr . à610-ar *-ãã-

è6-10 àde
ðt * taõ-

è6¿r a#e
ar*tæ

èz

i:.:
l:.:'

- àort - d--øoo*T*--;- +gfcos 0 =0

-20 ¡T0
- dd .1ç- -glsin0 =0

.¿éz .ét
";;*r

trnder the boundary conditions :
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(1) Surface traction on rod surface except both encl sections vanistres:

tr, = Q at T=a

Ír, = Q at r=a

lt¡ = Q at r=a

(Z) Vertical shift is synrnetry about " = l¡Z at the z-axis :

-'Jy'( # )r=0, ,=a¡z = o

A

lrJhere UI = -ur cos 0 * t.r0 sin ff ... vertical shift

(3) Longitudinal shift is synunetric about , = 4 /Z at the z-axis :

U'= g at f =0, ,=4¡2

(4) The vertical displacements at the centre of both end sections

vanish :

IIY = Q at r=0, z=0 ancl z=0

(5) The horizontal clisplecements at the centre of both end sections

vanish :

# = Q at r=0, Z= 0 and ,=l

Ithere tÈ = ur sin 0 * uo cos 0

(6) The total vertical shear over each of the end sections equals.to

one half of the total load :

Í:l: (-úrcoss +Çs sino )rdrdo =r/2ßaz|f,at z=0 and z=l-
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the end sections vanishes

0 at z=0. urd ,= {

over each of the end sections vanishes

= 0 at z=0 artd z= (,

each of the end sections vanishes :

sin 0 rdrdO = 0 .. . horizontal bending nonent

cosQ rdrd0 = Q ,.. vertical bending noment

¿

The total horizontal shear over each of
ùILra

) J, 
(6", sino + f .coso )rdrdo =

The total traction
Ptr"
I I 6 rdrclO

) úo zz

The bending moment at
ÈtLr^

on, =) )oç,,,
êtùa

*, =) Jol,'
at z=0 and z=

(7)

(8)

(e)

¡.

l.:.

i

;

i i.:., ::...:. i +i

t-.-...

The solution of displacenent components and Çr, of Pearsonrs

paper rnay be found in Figure 7, 8, 9, and 10 in comparison with the

finite element solution anrl sirnple b-eam'solution.

(ii) Finite element nethocl :

The loading situation in this problen is sirnply the mode 1,

i.e. the gravity of the rod, or :

fr'I I tî. .o, e''|l..t l.: I1ç' l= 1*.cosof

l:,i f i :";J
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'with ti = tf = fs,and ff = o

No surface traction is employed. .The finite element model is shown in

Figure 5-b, with the following boundary conditions :

(1t) Rod surface except the end sections is free of traction.

(Z') Longiturlinal clisplacernent is synrnetrical about the nicl-span :

u' = o at ,={/z ,,.,,.,:,,,,
!:.i':.. '.'-:'_j:.i,
ì:;:iii 

"ì 
:': ; ' :': ::

(5') Longitudinal displacement ( r'rt ) va¡rishes at the centre axis.
i( This is a r^¡ell-larorur requirement of Bernoullif s theory in
:

which he assr¡necl the longitudinal displacenent to be proportional 
,

i

the radial distance fron the neutral axis for each cross-

section;orthefamous''p1aneremainsp1arre''hypothesis.,)
i

!(4') ur and u0 vanish on terminal cross-sections 
I

I

I

Bourdary condition (4t) is obviously not consistent with 
l

boundary conditions (6), (7), (8), and (9) usecl in the analytical i,,-,.,,,,,:

approach (i). In the finite element approach, only noclal force, nodal ,.'t.t,,,.'.,

displaccment and element surface traction components are inputed as : '.t'"'t".tt"""

botrn<lary conclitions; the total shear, total traction and total bencling

noment on any section of the boundary surface usually are not taken
....:... ...

into consicleration in forming the stiffness equation. Ex¡rerience shotved 
!i.,;1fr,..,l:j.'-...l"',' '.t'

thatforprolr1emsofsirnp1ysupportedbeam,thein-p1ane,disp1acement

components on terrninal cross-sections are relatively snall in comparison

rvith those on the off-encls region ( about one thousandth of the value on

r:::1r:raral: 1: r.j ii::;:
I r .ii r¡i :':: n :¿i

, i .::i..'.r' :'

t::
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the cross-section 0.5" off the end sections ). Thus, condition (4t)

is considerecl to be reasonable assr4uption.

It has to be noted that in this analysis, rotation is not ,:,¡,,,;,,,

taken into consicleration as one of the degrees of f-reedom. It is true

that this analysis is valirl for small rotation problens only.
':

- ---_-:,.,(iii) Sirnple beam theory : ' ,'i,'i,'i
i.,"ti:",' ' ;

In the simple bean theory, the sanple problem is approximated ,,,,.j,::,.i

--+L ^:**1.. ^,.- 
;t:::'i':::

by a sirnple beam of the same length simply supportecl at both ends. Ttre

weight of the beam is approximated by a uniform load distributed. over 
ì

the whole length and is given byrJ¿i¿v]

:':
a(^) =fA =ffrr|

in which r^ is the radius of the beam in inches urd f is the density 
loz, 
l

of the beam material in lbf/in1 
',

Solution to the above simple beam problem is available in many 
::,.: :: :.,

stressarra1ysisha¡rdbooks.So1utionsofdef1ection(orsagging)5

ancl bending stress 6O can be written as ( Sa) : j 
.,,'',,ì'

n -I¡ozò =äË (!.3 - z'lzz * z3 )

r -s -.t,3br* =33f,ffi at " =-{/z

r<' I\{r I 2

o b =î= twc+-i )
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(6u )ro =:** at , =,¡f lz

In rvhich W

E

I

T{

total rveight of the beam = u.l, =f nr'"(

Yourgts nodulus of bearn material

moment of inertia of the beam cross-section

bending moment at various position

-_z=W(+'íz-l
.v

-li r:-: ...;
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APPNNDTX TV

INTE(;R ANDS OF Tt{E $ODO-.MIXING
STTFFNESS M ¡\TRTX

(lloD:l ZDRo ÀND IoDE 0l¡E oNI.Y)

NOTE :
(I) BIICÀlt5E OF SYllt{liTRY, ONLY Ttlll tlPPEIl

TRIÀNGULÀR PÀRT OF TIIE i'I ÀTRI X TS PRINlED
(II) À=CoS (g)

B= SI N (O)
(rrï) xr(1)--1.

ii [3\=\ii*+?
vt art r 

-r 
/nXI (41=Z/R

XI (5) =7'/?'tt*2
Xf (61=Z**2/R\'+2

(rv) 
i:Íló31,iîl,lå'; l;í;i; "tlaá'r 

olunl"Sno,,*

TN EQ. ( 2-4-30) Tr¡ CflitPTIiR rr. 
'

. 1ST ROti ELEMENTS

1 01 FCT=DS ( l, 3) *Xf ( 3)
1oZ FCT= (DS (3,1 ) +Ds (l, l) ) *XI (2)
103 FCT=DS (Jr3) r.Xr (5) +DS (3,q) *Kr (2)
1 04 FCT=0.0
105 FCT=DS (3 ,4) *XÍ (2')
106 FCT=DS (., ,2\'rXI (2)
10'/ FCT=-DS (1,5) *xI (3)
1 0U FCT=0.0
109 FCT=-DS (3,5) +TT (5) +DS (3,6¡ *rr (2)
1 iC FCT=DS (3r3) +Xtl3¡ *¡-DS (3,5¡'*¡T (j¡ *B
111 FCT= (DS (3,1) +DS (3,3) ) *XI (2) tA-DS (3,5) *Xt (2) *B
112 FCT=|')S (.J,3) '.Xt (5) tÄ +llS (3,4¡ *XI (2) v¡A-DS (3,5) *XI (5¡ *3
113 FCT=-DS (3,61'¡XI (3) *g
1 14 FCT=DS ( 3, U¡ 'x¡ç1
115 FCT=DS(3,2¡*xt
116 FCT=DS (.'1,31 *1¡

2) *n- DS ( 3,-6) +XI (2) t 3
2) r,¡-DS (3,6¡ *1ï (5) *n
.ì¡ *¡-DS (.1,$¡*¡J (3) *n

i,:..'a.

1 17 I'CT=DS (3, 3) *XI ( 2) *tt
11B FCT=ÐS (.Jr3) *Xt (5) *À-DS (3,5) *xT (5) +,B+DS (3,6) +Xf (2) +B

2N nr now EtE I1ENTS

202 FCT- (DS (1,1) +DS (1,3) +DS ( 1,1) +DS (3,3))',¡TI l1)
201 FCT= (DS (1,3) +DS (3,3) ) *XI (4) + (DS (1,1¡¡ +DS (3,fl) )tXI (1)

. 204 É'CT=0.0
205 FCT= (DS (1'lt) +DS (.1,t¡¡ ) *fT (1)

,. ?06 fCT= (DS(1,2)+DS (3r'2)) {.XT(1)
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214
215
216
21'l
21s
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2O'l FCT=-DS (1 ,5) *X T l2l -DS ( I r 5r) *.:1¡ 12,
2 }sl FCT= 0. 0
2O') FCr=- (DS (1,5) +Dsì (3,5)) *rI (41+ (DS (1,6) +nf; (1,6) ) *XI(1)
210 !lCT=(Ds ('l ,3) +DS (3,3)) +XT(2) *l-(ns(1,5) *ns(3,5) )*xt (21 *s
211 FCT=((DS(1r1)+DS(1,3)+r¡Sl.l,1)+DS(1,3))*n-(DS(3,5)+DS(1,5)¡*R)*XI(1

1)
212 FCT= (DS (1,3) +DS (3,3) ) *XI (r{) +À+ (DS ( 1,4) +DS (3,8) ) #À*Xr (1) - (DS (1,5) +D

1 s (3,5) ) *xI ( 4) *n
FCT=- (Df; (1,6) +nf; (3,6) ) *TT (21*¡t
FCT= ( (DS (1,4) +DS (3,4) ) *^- (DS (1 ,6) +¡tS (.1,6) ) *B) *XI ( 1)

(l)s (1 ,6) +Ds (3,6) ) *r1 (4) ,*g
(r.ts ( 1 ,5) +D:ì (3,5) ) +xr (2) *B

FCT= (nS (1,2\ +Dfì (J,'2\ I +A*{f (1) -
FCT=(DSì(1,3) +DS (1,3) )*XT(2) *À-
FCT= (DS (i ,.1) +DS (3,l) ) *A *XI ( 1)
FCr= (DS (1,3) +DS (3,_l) ¡ *,XT l4l *À: (DS (1,5) +ns 13,5) I *xr (4) *n+ (DS (1,6) +D1s(1,6))*R*xI(1)

ln D ROl,f ELEt-tEN,rÍì

J() ì ç'CT--)S ( 1,3) +XI'(6) +ns (3,4) *XI (4¡+OS (tr r 3') *XI (4) +DS (4,4) *ì(I (1)
3 0rr FcT=r). 0
305 çC'l-ÐS (.ì, t¡¡ *YI (4) +lS (4,lll *Xf (1)
J06 9CT=DS (3,2) *XI (4) +OS (4,2) +yT (1)
.l}'l FCT=-DS (3,5) *YT (5) -DS (4,5¡ +tç1 q2¡
3 09 9CT=0.0
-j09 PCT=-'?S (3,5) *XI (6) +DS (3, tr)+XI (4) -DS (4,5) *Xt (4) +OS (4,6) '|.{I (1)
.110 FCT=(DS (3,3)*.I\-DS (3,5) *Pl *XI (5) +(DS (r1,3)*/\-DS (a,5)+Lì) *yI (21

:t"12

313
llrt
J 15

FCT= (nS (ì,4¡ +¡-DS (-J,6\.+n) *KI (4) +(DS (4,4) *^-DS (4,fr) *n) *XT (1)
FCT=DS (:J,2l txXt (4) *n-DS (3,6¡ *f I (6) ',(R+DS (tJ,2) *À*XI (1) -DS (4r6)

1B
*YI(4)*

316 FCT=(DS (3,3) *À-DS (3,5) *n) nXT (5) + (!S (4,3) *A-DS (4,5,) *B) *XT.(21
317 FCT=DS (lr3) +XI1tt¡ rt¡1+DS (tl,3) v¡À/¡II(1)
318 FCT=(DS(3,31*^-DS(3r5)*p)*XI(6)+D:;(3,6) '¡XT(4)*R+(DS(4,3)*Â-DS(4r5)1*B) *TI (4) +DS (4,6) *XI (1¡ *.o,

4TH NOfl 4LFflIlNTS

q 00 FCT=0. 0
a

4 1B FCT=0.0

H noI,l EI,Er'tENTS

505 FCT=ns (4,4) *YT ( 1 I
506 5CT=DS(4,2) *XI(1)
507 FCT=-DS (4,5) *XI (2)
5 r){J FCT= 0 . 0
509 FCT=-nS (4r5) *Xr (q) +ns (4,6) *xI ( 1)

1-. :'

r:ì .,: , :

:::: :.ïl'
: lr'i):.
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510 FCT= (DS (4,3) *It- DS (4 ' 5) *B) *XI (2)
5i1 FCT= (Ds (4,1) *¡\+DS (tl,3) *À-Ds (4,5) rtR) *xr (1)
512 FCT= (DS 1t¡,3) *l\-DS 1t1 ,5) *B) '{'XI (tt) +DS (4,¿t) *XT ( 1) *¡
513 FCT=-DS (4,f') *XT (2) *R
514 !'CT= (DS (4,4) *À-DS (4 '6) 

*F) *KI (1)
515 FCT=DS (4,2) {'ÀtrXr (1) -Df; (4,6) *XI (t}) *p
516 !'CT= (D S (4,3) *A-DS (4,5) *P) +ÍI (2)
517 F'cT--DS (rt,3) *Xr ( 1) *¡1
51tl FCT- (DS (4,3) *À-DS (4,5¡ }|'Bl *KI (tt) +nS (4,6) *Xf (1) +g

6TH NOfd ETEIIENTS

606 I?CT=D:-(2,2)*'ïI(1) r':::j:
i.l,.,,i, ..''ìl

60-l FCT=-DS (2,5) tXI (2) ,

60U FCT=0.0 ,. ,.,,

60() r¡CT=-DS (2 15) *XI (4¡ +[r.S (2r61t¡XT ( 1] !.-.,,,;,,;:'¡i610 FC'= (ÐS (2,3) #l\-nS (2,51+Pì *XT (2)
61 1 FCT= (DS (2, 1) *À+ DS (2, .3) *À-D:;'(2 ,5) * 3) *XI ( 1) 

:

612 FCT= (DS (2,3) {'À-DS (2 ,51*B) *XI (4) +Ds (Z ,Ul * ¡\*XI (-1) 
,

8i,i l:i=ìB: \tr,:ì,,TÏ:;j,,1,,^,*n) ,"xr (1) i

615 FCT=1S (2,21 *i\*XI (1).OS (2t 6) on*XI l¿l) 
l

i616 FCT= (DS (2,3) *i1- DS (2,5¡ *n) *XT (2) 
:

117 i9.1=?l J?r :rl 
ollx II 1L

61u FCT=(DS (2,.3) *À-DS (2,5)*B) *XI(4) +DS(2,6) *¡t1XI (1) 
l

7T H R0'J EL EI'I F'NTSRO'J EL ET.T F NTS 
i

707 FCT=DS (5,5) *Yf (3)
170!] FCT=0.0
709 îCT=D:ì(5,5) *XI(5)-DS (5'(tl *XT(21
710 FCT= (DS (5,5) *ß- DS (5 

' 3) * lì) *XI (3)
'l 1'l I'CT= (ÐS (5,5) *R-DS (5,'!) *À-DS (')r J) *À) * XI (2)
'l 12 FCT=- (DS (5,.1) *¡ +Dlì (5,5) *n) *XI (5) -DS (r:,4) *^+XI (2)
'l 13 FCT--DS ( 5, 6) {'R*Y T ( 3)
'l'14 FCT= (ÐS (5,6)*B-ÐS (5,4) *n) *XI(2)
'115 FCT=DS (5,6) *'3*XI (5) -llS (5,2¡ tr[*II (2)
716 FCT= (DS (5,5) *n-DS (5, J) *¡\) *XI (3)
711 lrcT=-.DS (5,3) *A*XI (2)
71tì FCT- (ÐS (5,5) fß-DS (5,3) *A) *lI (5) -DS (5'fi) *f'rr¡1 12¡

fJTII ROI.l ET.E¡,IE}ITS

fl00 FCT=0.0
.a

r¡ i8 FCT=0. o

9TH ROÍ,I NLEHENTS
' t 

i l'¡;ti":'':':t"i':
909 rcT=DS(5,5) {.rI(6)-(nS(5.,fi)+DS(tr,5) )*Xl(tt)+nS;(6,6)*xI(1) : 

,

910 FCT= (-DS (:tr.l) -*¡+DS (5' 5¡ *¡t1 *XI I.rr) + (nS (6,3) *A=DS (fir5) xB)*XI (2)
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911 FCT=- (DS (5, 1) *I\+DS (5,3) *Â-ÐS (5,5) *R) +XT (tt) + (DS (6,1) *ÀtDS (6' 3) *¿\-D:
1(6,5)*B)*XI(1)

e12 FCT=- (DS (5,-31 +À-DS (5,5) *'n) *XI (6) + (nS (6' l) *lt-DS ((r,5)+U-DS (5,4) *^) +I
1 I (4) +DS 16,ul*n*Ír (1)

913FCT=DS(5'6)*3*}'I(5)-DS((l,6)'|.R*XI(2)
914 FCT=- (DS (5,4) +À-DS (5,6) *B) *XI1r¡) + (DS (6, t¡¡ Ëit-DS (6,6) f B) +XI (1) 

,

915 FCT=DS (5,6) {( B*XI (6) - (ÐS (5 ,21*^+DS (6,6¡tt 8) *XI (A) +DS (6 ,21 + À*X I(1)
9 16 PCT= (-DS (5r.Ì) ;rn+DS (5,5¡ *n) *Xt (5) + ('lS (6r 3) *À-DS (6,5) *tl) *YI (2)
917 FCT=-DS (ir,3) *À*Tr (4) +n.S (6,3)*À*XI (1)
91fJ FCT= (-DS (5,5) *n-DS (5,3) *^) *:(I (6) + (DS (6rl) *À-DS (6,51*B-DS (5,6) *Rl *Xl

1 (4) +DS (6 ,61 *B*X I ( 1 )

1 OT II ROf{ EI, EIf T'I{TS

1010 FC.T= (DS (3,3) *À-Ds (3,5) *B) *n+TI (3) - (DS (5 '1011 IICT= (nS (3,1¡-*¡+ÐS (3,3¡ xF.-DS (1,5).t'ì) +À*YI
1fì(5,5) *R)r's*XI(2)

t.,.

I

3) *¡i-DS (5,5) *ts) *B'r.XT(3) 
i,,.,

(2) - (DS (5,1)*A+DS (5' l) +A-!,,.:,
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1 
^*fI 

(4 ) +nS (4 ,21 *¡** 2*yT (11
1216 !¡CT= (D S (--Ì,3 ) *n **2.-Dfì (1,5) *ll*.n-DS (5,3¡ *I\*R+DS (5,5) *B**2) *XI (5)1¿t,3) *¡-DS (4,5) *F) +A{.KI (2)
1¿17 rCT= (DS (:J,3) *À-DS (5, _t) +ß) *À*tI (rt) +flS (4, 3) *À**2*XI ( l)1218 FCr'=(DS(.1,3)*I\**2-DS(j,5!*jt+n-dS(5,3)+¡.*'n*OS(5r5)*si*2)*XI(6)

1 3 ' 6 ) * À * B - DS ( 5 
' 6 ) * B * * 2 + D s ( 4 , 3 ) * ¡t * * 2 - D s 1r¡ , 5 ) * ¿ i g i * i<r I ,¡ ¡ * o s t q , 6 í2rI(1)

13TII ROh' EI,Et'tENTS

131 J çcT=DS (6r6) *3,r*2*Xï (l)
ll11 FCT= (DS (6,6) *ll-DS (6,4') *A) *B*rr (2)
13 i5 FCT= (DS (6,t') *B*Xr (5) -D:ì (6,2j *A*yi (2) ) *R1316 r¡cT= (DS (6,5)*n-DS (6,3) *Àl *B*f I (3)
1.t1 l FCT=-DS (6, .J) */r'¡ B*TT (2)
'l J 1.lJ FCT=- (DS (6, 3) *It-DS (6, S) *R) *XI l5) {.8-DS (çr,61+B**( 2*y.f el

15TH ROi.¡ SLEHENTS

15 15 FCT=DS ('¿, ?-l /¡¡\r(* 2*X I ( 1)
1 (6)

+(DS(

+ (DS (
*¡t*BÌ(

: ai:
l: - _:

i,,-.:: :

14TII ROH ELEMENTS

1!.1-,: i!i= !?s f',,4) *À**2-ns (q i !l i,\ *B-Ds (6, 4) *À*n+Ds (6, e j*B**2) *rr ( 1)14'15 FCT= (DS (4,21 *À-DS (6,21*B) *i\*yI (1) + (!s (r,6)*R_OS t4,6) *À) *g*XI(4) 
i1tt16 i'CT= (DS (4,3) *.4**2-DS (4,5) *À*rÌ-DS (,;31 *ni.B-DS tO, Sl *B**2) *XI (2) 
l141'l FCr= (DS (4,3) *À-DS (6,31 *n) +t*XI (1) 
i1418 FCT='(DS(4,3)*À*#2-DS(4,5)*A*B-DS (6,3)*n,¡B+DS(6,5){<B*}¡2}+xt(ll)+(Ds(i

"14,6) *'¡-DS (6 ,61* B) +n*xT ( 1l

1516 FCT= (DS (2r-3) *i\-DS (2,51+F) *t\*XI (2) - (n.c (6, J) *À-DS (6r 5) *B) *B*'f I (5)1^?17 lrCT=Dlì 12,31 *,1s* zlrK,t (1) -DS (6, :J) *A*F*XI l4)151S FCT=(DS(2,37ts¡1**2-DS(2,5)*B*À-DS(6,fr)*¡**2)*XI(4)+DS(2,6)*À*B+XI(1
1) + (DS (6,5) *R-DS (6,3) *it) *l3rXf (,t,) ' : .' 

[,,,,r-.,,

l6TII ROf/ ELEIIENTfì
):
i . ,',,.,,'
l::':.:-:

't.t .trl

lfi 16 F(lr= (DS (:J,3) *À**.2-DS (1, 5)
161'l FCT= (DS (3,3)'.À*rt2-DS (5,3)
16 lfJ 9CT= (DS (3,3) */\*+2-D.s (3, 5)

1.1,6) *n-DS (5,6) + B) t.B*XT (2ì

*À*B-rrs (5,3) *A*B+DS (5 r 5) t^B+f 2) *XI (-j)
ïlliìl;li{';\r.r\*B+DS (s,5) *r+*2) *xr(s) + (D.s (

17TH ROl,I ELE¡lENTSr\vr þuL.tt tlly: J

17 1'7 FCT=DS (3, 3) *^**2*xI (1)
1'l1rl' FCT= (DS (3,3) tA**2-DS (-3,5) *.[*B] r¡ïT (4) +nS (.3,6),r.À*B*XI (l)

1 IJTII NO}Í EL IiI,I ENT

1tì00 FCT= (DS (3,3) +^trtß2-DS (J r.,l *./I*D-DS (5 ,3)'rlt*B+DS (5r 5) *8,¡*2) *Xf (6) + (DS (13,6)*¡\*ß-DS(5,6)*B*'rl+f)S(6, j)*A*B-i,S1n,5)*B**2)o'Xf.'irtl-i,riOräí .;;;i2*xr (1)



80TABLE 1

NLSTRS PEARSON'S SOIU.

SIMPLE BEAT,I

THEORY

P

1bf
-a-..=

.J
1n

ô

_710"in
ob

ps1

6

-7l0"in

ob

psi

ô

-z10 -in
ob

psi

22.5 0.739 I273 0.742 126s 0.686 r260

50 .0 L.642 2829 1.650 2808 L.370 2520

100 .0 3.284 56s8 3.300 5615 2;740 5040

Comparison of the sagging and bending stress solutions of the sanple
problem in Appendix III for three tube materials of different densities
(q i: the sagging at point A and ðO is the bending stress at point B

of Figure 6.) r

TABLE 2

NTEPSA NLSTRS
SIMPLE BEAI\4

TTIEORY

p

1bf
-71n

ô

_710"in
ob

psi

0

10"in
ob

psi

6

10"in
ob

psl

22.5 0 .531 790 0.531 790 0.439 806

50 .0 l. .180 1750 1.179 17s0 0.880 I6L3

100. 2.359 3500 2.358 3500 t.760 3226

Comparison
problem in
densities
at point B

of the sagging and
Chapter V, 5.2 (i)

(o is the sagging at
of Figure 11.)

bending stress solutions of the sanple
for thiee tube naterials of different
point A and ôO'is the binding stress
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TABTE 3

NTEPSA TEPSA

p

ksi

zz
e

_')I0 ' in/in

zz
o

ksi

Tu

10-in
zz

Ç

_1
10 ' in/in

zz
:

ks1

Tu
-z10 "in

z0 ^0 0 .1* 20.0 0.4716 0 .07 20.0 0.47L6

35 .0 0.1 35 .0 1 .0608 0 .14 35 .0 1.0619

39 .5 0.3 39 .5 2.1482 0.27 39 .5 2.1862

40 .0 0.4 40.0 4.0000 0.47 40 .0 4.2408

40.s 1.0 40.4 9.3237 1.0s 40.4 10:067

4t.7 2.4 4L.4 23.906 2.67 4r.6 26.239

43.2 4.3 42.7 42.69 4,78 4s.0 47.28

Comparison of the axial strain, stress and radial displaçgment solutions
of the sample problern in Chapter V, 5.2 (ii) (¿zz and ooo is respectively
the axial strain, axial Stress at point B and ur is the radial displace-.
ment at point A of Fip¡:re 11).

i-;.':.'.:1..¡i.-:',...:,

|' ...:'-.:'.., :1:'..ì
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TABLE 4

Corrparison of computing Effort between NLSTRS code and an
equivalent 3-D elasticity F.E. prograrn.

TABLE 5

Conparison of computing effort between NTEPSA code and an
equivalent 3-D thermal elasto-plastic F.E. prograrn.

NLSTRS 3'Dimension F.E.

Total
nodes 18 t62

Total
elements I 72

Stiffness
natrix size 54x54 486 x 486

Total 10.
Integration

points 23,329 2,239 ,4gg

NïEPSA-Z mode 3-Dimension F.E.

Total
nodes 18 16z

Total
elements I 72

Stiffness
matrix size 108 X 108 486 x 486

fntegration
points 839 ,808 2,239 ,Lgg
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TABLE 6

Conbined F.E
*¿ È""ti"r-"rçãLio" 3-D F.E.

Total
nodes 18 L62

Total
elements I 72

Stiffness
matrix size L62 x L62 485 x 486

Integration
points 3,359 ,232 2,239 1488



84

TABLE 7

MODEL

Solutions of sagging at Point A
code for three different finite
loading stages.

( see Fig. 11 ) obtained by 'TttrTEPSA"
elernent discretizations at various

'.'.

4 element 8 element 16 elenent

P(ksi) l(zl ô(10 - in) .(%)
_7

ô(10 " in) .(%) ô(10 " in)

0 0 .002 0.486 0 .002 0 .531 0.002 0.533

39 0.201 2.L49 0.204 3.705 0.203 3.62L

39 .8 0.273 2.790 0.3r2 7 .482 0.307 6 .986

40.7 0.46s 3.L76 7.L4 9.747 0 .988 8.923

4r.7 0.796 3.311 2.22 10.58 2.02 9 .856

43.2 L.026 s.394 3.94 11.31 3.79 10 .86



TABTE 8

Integration resultS of I' TZ,
scheme with 7, 9, 12, L6, 24,

l.:. . : -:.

l,;,.,:l
:.::'

IS by gaussian quadrature

32 íntegration points.

lr.J:; ì,.: itì
l::,:ri':--

i::
- t. t -. .,
I:::-:..-.

It rz I.
5

7 2 .8s60 0.2717 x 10-1 3.5410

9 2.8492 0.8879 x 10-3 3.492L

T2 2.8490 0.4361 x 10-3 3.5043

1ó 2 .8488 -0.1002 x t0-4 3.5040

7.4 2 .8488 0.4422 x 10-5 3.5040

32 2.8488 0.24gg x 10-5: 3. s040
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Figure 17 Finite Element Discretization of One

of The Tube ( as shown in Fig. 11-a
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