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ABSTRACT

The work in this‘thesis presents a preliminary study
on the application of Fourietr expansion to the:three-dimensional
elasto—ﬁlastic finite element stress analysis. 'Probléms of
axisymmetric solids subject to non-axisymmetric loads are attempted
by a‘;ombined Fourier _expanéion and finite element methbd.

'Based on fhe analyéis, two éomputer codes entitled " NLSTRS "
and "' NTEPSA " have been written to incorporate the elastic and
elastq-plastic material behavior respectively. It is found that .
this combined method affords a complete and accurate set of
solutions for the elastic analysis of axisymmetric solids. For
the elasto-plastic analysis, the method is somewhat restricted
from appliqations.of,general loading conditions because of the
tremendous amount of computer effort-involved in handling
mode-mixing problems. Hdwever, it is still a competitive method.
for problemé of non—axisymmetric loads which can be described

by limited number of modes.
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NOMENCLATURE _ |
[A] Transformation relatlng generalized coordlnate and nodal dis-
placements
[B]  Transformation relatlng stralns and dlsplacements
{b} Vector of generallzed coordinate

'[C 1, [Cp] [Cep] Elastic, plastic and elasto—plastlc matrix of material
‘ propertles respectively :

[D] Constitutive stress-strain matrices
E. Young's modulus of‘elasticity

;E' Plastic modulus

F General yield function

fv,fz,fe, Body force components in a cylindrical coordinate system

_G‘ Shear modulus

[G] Tfansfbrmation relating strains and generalized cbordinate

H' Slope of the stress-—tensorial—stfain curve

[h] Transformatlon relatlng nodal displacements and generallzed v
coordinate :

J2 .SeCOnd deviatoric stress invariant

X Work hardening parameter |

[K],[K]i. Stiffness matrix of a solid or one of its elements

IN] ‘Shape function, or interpolating function
{Q},{Q}gntvector of nodél loads of a solid or one of its elements
S,S! Boundary surface of a sblid or one of its elements

T Transpose of a vector or matrix

T2

t,t ,te 'Surface traction components in a c¢ylindrical coordinate system

“{u},{e},{o},{£f},{t} . Vector of displacements, strains, stresses,
: ' body forces and surface tractions respectively




UX,Uy  Horizontal and vertical displacement respectively

(w®  Vector of nodal displacements

u* uz,ue Displacement components in a cylindriéalrcoordinate system
AA Volume of é solid or one of its elements
»X,X? General functional of a solid or one of its eléments

4,8 Incremental amount |

{¢},{qﬁe' Vector of unknown functions or its nodéi values

- [¢] Coefficient matrix for generalized>coordinate model

'p Density of materials . |

o Coefficieﬁt of thermal expansion

v'  Poisson ratio

'aij vKronecker delta

dn ‘Prandtl“ReuSs material proportionality factor

€,0 Effective strain, effective stress

{e°}  Vector of initial strains
err ZZ 66 TZ .18 76

,e " e e T,e ,e”  Strain components in a cylindrical coordlnate
‘ ' system :
crr,gzzlqe?crz’gre,cz _ Stress components in a cylindrical coordinate
system
Oy -~ Auxiliary stress close to elasto-plastic transition (51gma

bi- 11near kink)

6ij;{q'} Vector of deviatoric stress components
Experlmentally determined yield stress in pure shear and in

T,,50
Y Y uniaxial ten51on test respectlvely

-{de} {de},{deP} Vector of incremental strain, incremental elastic
strain and 1ncrementa1 plastlc strain components




CHAPTER I

INTRODUCTION

1.1 Object of Study

bThé method of Finite Element Analysis has been widely used
in structurai engineering and many other engineering fields for almost
tWenty years [1]. Within the context of structufél mechanics,'thé
early work was mostly centered on the elastic analysis of two-
dimensioﬁal plane problems, plate bending, shells and three-dimensional
'problems [2]. HoWever;_as emphasis'has gradually been shifted to
ultimate-ldad analysis fbr efficient design, particullarly in tech-'
nologically advanced fields such as reactor vessel and aircraff design,
the incluSion of non-linear elasto-plastic analysis has become désirable.
Several two-dimensional elasto-plastic analysis computer codes and
examplesvhavé been published and good comparisons with analytical
-solutions or experimental resuits have been reportedl[S -7]. In
receﬁt years, some threé-diméﬁsional'elasto—plastic analysis compﬁter
codes.have‘élso been made available for use wherever the assumption of

planar modellis”invalid [8 - 10].

Many researchers have reported a tremendous increase in the
" amount of data prepafation,'computer core storage and computational
effort in a three-dimensional finite element analysis [11] over
two-dimensional analysis. The increase becomes even ﬁore»disf

proportionate for elasto-plastic analyses [8 - 10]. Fortunately,




‘many complex three-dimensional engineering structures in advanced

nuclear and aerospace industries are axisymmetric solids or shells
of revolution; nuclear pressure vessels, CANDU reactor fuel elements
‘and rocket nozzles are practical exampies of such structures. '
Structures of this type subjected only to axisymmetric loading can
be treated as tWo—dimensionél probiems because of the circumferential
.independénce of the'solutions. Furthermore, structures of this type
'SUbjecfed to non-axisymmetric ioading were also simplified,withiﬁ the
elastic rangé, by making use of the Fourier expahsion.method to
represent the circumferential dependence of solutions.[lz, 13]. A
-substantial saving in &ata preparation and computational effort can

 be achieved by using this technique.

To the present, hqwevér, the application of this combined
finite element and Fourier expansion méthod has not been reported
- feasible for the more complicated and interesting area of elasto;
plastic analysis. It is the object'ofAthis'thesié to studetheb
feasibilitY'of applying this ﬁethod to.elastp—plastic énalysis,'withv
the-aﬂtidipation»fhat this study will lead, in the near future, to

further dévelopment of thermo-mechanically coupled analysis.

1.2 Literature Review

‘The mbdern finite element method is generally recognized

to have briginated with an engineering group led by M.J. Turner at the




Boeing Company to work on aircraft structural dynamics problems [1].

Since theﬁ, many significant advances have been made to extend the".

method for handling structural problems ‘such as plate bending, thin |

" shells, three-dimensional structures and large-deflection and

stability problems [15].

It was not until 1960 that the initial inelastic finite

‘element formulations were published‘[lﬁ]} This early work used

initial strains in conjunction with the finite elemént method to account
-for materialknon-linearity. Another alternative appfoach to the
inelastic structural problem was reportéd 1ater, in 1965 [17]. The | ' ﬁ
.aPProach replacesvthe iterative calculations of the inifial—étraih _ $ v
épproach by a piecewise linear solution, through incremental stress-

strain relations.

‘The period from 1965 onwards may well be known as the golden
age of finite element development. .Many'éonference proceedings and
summary papers have been made public. 'Ambngrthem are the First

Conference on Matrix Méthods in Structural Mechanics held by the Air

Force Institute of Techhology at Wright-Patterson Air Force Base,
Dayton, Ohio in 1965 [2], the Second and Third Conferences held in - »

1968 and 1971 {2, 18] and the First and Second Japan-United States

Seminars on Matrix Méfhods of Structural Analysis and Design held

.in Tokyo and Berkeley, California in 1969 and 1972 [7; 19].

_Within the context of elasto-plastic finite element analysis,




- Yamada [20], Zienkiewicz [21] and Marcal and King [22] reported a.

genéral formulation of elasto-plastic work-hardening material behavior.
The derivation‘was based on the Von Mises yield criterion and the .
.Prandtl-Reuss incremental stress-strain relafionship. More recent
advanbés have”gone-in the direction of accelerating the analysis
procedure by employing different approaches to the problem. Among

them are the iterative, initial stresé, initial sfrain.and combined
methods [ 4,11,14,23 1. Many two-dimensional and threé-dimensional‘
computer programs utiliiing these methods have been reported in Refs.

[3-10].

| It was,around 1965 that the problems of axisymmetric structures
: attractéd attention by analysts. Wilson, Clough and others applied

‘the finite element method not only.to the'probiemvof elastic solidsb

of revolution subject to axisymmetric loadings, but also to the case

"of nbn-axisymmetric 1oading by making uée of the Fourier’expénsion
method [ 12,13;24,25 1. The cpmbinédvfinite_element and-Fburier'expansion
ﬁethod'was later applied to'mény other‘engineering problems, such as |
the " Finite Strip " method fdr-fhe elastic behavior of piates, box '
"girders, shells and folded plates [26],_and.the " Finite Prism " method
for eiastic bdx—bridges [27]. 'Othef analysts tried to improve aé¢uracy
and éfficiéncy_by using higher order elements,.quadrilaterals and

isoparametric elements [28 - 30].




Another atfempt has,aléo been made to improve the basic
accuracy of different elements for the method. In general this involves
the use of approximate integration technidues which disregard part
of the shear strain energy associated with pUre_bending modes, or
the presehce of the iﬁcompatible displacement modes at the elements
[6,A30]. However; to the best of the author's knoWledge, no atfempt

‘has been made to solve elasto-plastic problems by this method.




CHAPTER 11

THEORETICAL BACKGROUNDS

2.1 ‘Introduction of The Finite Element Method

Modern finite element theory had its recognizable beginnings -
- in the dlsplacement ( or stlffness ) method of structure analy51s The

initial steps were based on a completely logical exten51on of the stlffness

analysis procedure widely used for bar structures ( frames, trusses,
.etc. ) to écéommodate surface structures ( plates, shellé, etc. ) and
continua ( three-dimensional solids including solids or shells of Te-
volution ). The;structure ( two—dimensional or threejdimensional ) is
. divided into a finife number of discrete parts (.élements j and these

‘elements are interconnected at their apexes ( nodes ) to form an idealized

'_sfructure system as shown in Figure 1. A simple form of displacement
pattefn'applies to each element of the structure system and the virtual

| work‘of each element is calculated.accordingly. The equilibrium of
virtual work of the idealized structure system provides a-set of.linear :

algebraic equations called 'Stiffness Equation'. With the prescribed

boundary conditions, the stiffness equation can be solved to find the
| displacements at each node and the stresses and strains at each element

ofvthe idealized structure system [Ref. 14, pp. 16-32].

_ It was later discovered that this early work could be fully _
developed from the variational priﬁcipies-of elasticity [Ref. 14, pp. 33-

47]. This discovery has widened the applications of the finite element




‘method to other engineering problems to which the variational technique
'are‘prevailed. Typical examples are heat conduction, fluid flow, soil
and rock'mechaniés, and seepage problems. The variational process for

these problems is of course more general.

2.2 The Variational Approach of Finite Element Method

The general theory of variational approach is based on the

" postulation that the correct solution is the one minimizing some quantity

| X which.is defined by suitable integration of the unknown quantities [4}'

over the-wholé domain. Such a integfal quantity X is usually known as

a ”Functional” and may be expressed as [14]:

~ 3 - | 3 .
X = f £({8}, 2 toNaV + J g(le}, 35 (43...)d8 |
' B - (z-2-1)
whefe V is the domain of the region, S is part of its boundary which
‘the unknown function, {¢}, or its derivatives %i-{¢}-——— etc, exist.'
Let the region be divided_into discrete elements and be inter-

~ comnected at nodes as described before. A simple pattern is assumed to

correlate the unknown functidn'{¢} with its nodal values‘{¢}e, or:
. . - e ' » . . I.LC I.'l:,\: . ) A .
{¢} = [N]{¢} (2-2-2)

where [N] is usually called 'Shape function' which is a function of co- |
- ordinates only.
To minimize the functional X.with respect to the total number,

M, of the unknown nodal values {¢}e in the whole domain, a system of

|
i
i
L
|
L




equations:

(ax )
, [$]
JON

_ 3X  _ < X >
ae® 24}

1]
o

( 2‘- 2 - 3')

X

VG
L a{?}34/

is provided. Then a typical equation ( ZFZ—S)-may be expressed as:

| .
X ., _8X (2-2-4)

204Y;  a(e)]

where X°© is a typical "sub-functional" of each element. -
In a special case where ¥is a quadratic function of'{§f3and

its derivaties, the minimization (2-2-4) becomes:

e

X
3{¢}°
1

= KIS0+ (R = 0 (2-2-5)
; i v : ,

in which-[K]E and {F}i are matrices of constants of a typical element.

Now the minimization of equation (2-2-3) can be simply written

X - K+ B =0 (2-2-6)
3{¢}
in-which,
[K] =z [K]S

Cwm = mt C(2-2-7)




with summations over all elements. The approach actually yields a set

of linear algebraic equations which may be solved by typical computer

program.

2.3 Stiffness Equation of Elastic Axisymmetric Solids Subject to

Axisymmetric Loadings
In the context of structural mechanics, the '"functional',
© similar to X in equation ( 2-2-1), can be written as [Ref. 11,'pp. 59]:. |

X = f ) - weay - fw' owras (2-3-1)

~where {u} = displacement vector of the structure system
{f}
{t)

body forces vector

surface fractions vector

'V,S = respective volume and surface of the structure systém

T = = transpose of a vector quantity

i

and W({u}) = strain energy of the system

1/2 {sJT‘{c} a | (2-3-2)"
' Similaf.to_equation (,2-2—2 ), a simple pattern is assumed to correlate
the unknown displacement vector {u} with its nodal values {u}e in an

element, or:
{u} = [N] {u}® (2-3-3)

"Fér simplicity, the constant strain triangular torus element shown in
Figure 2 for an axisymmetric structure is adopted to demonstrate the

mathématical formulation. Details of derivation may be found in'Appendix
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I. It also should be noticed that because of the cirtumfereﬁtidl
indepehdence of solution, the assumed displacement péttern inclﬁdes only
the axial and fadial coordinates.

The general Hooke's formula including the initial strains ¥

| v {e}:

{o} = [Ce] ({e} - {éo}) , .( 2 -3 -4 _)

and the strain-displacement relationship:

(e Y (3% )
YY I

zZZ 3z '
{e} = < =9 r (2-3-5)

. _ I
é’ee Y

€ _
k‘ YZJ L 9Z Y )
in the cylindrical coordinate system simplify the strain energy temm

as.: -

‘W({u}) 1/2 (e}’ (o} (2 - 3-6)

1/2 e} [C°] (e - {e )

w® (/20817 [ [BItu}® - [B]T[COIte })

in which [B] is a matrix of coordinates obtained»by operating equation
f(‘2-3-5 ) on equation ( 2-3-3 ) and [Ce] is the material property matrix
relating stresses and -strains dﬁring elastic deformation.

* initial strains are usually due to temperature change, shrinkage,
- crystal growth, etc.
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In analogy with,équation (2-3-1), the " sub-functional " Xe,

of a typical element can be expressed as :
x= %S (/2 e (B twy® - (BT [CONee ) - iTienay
S eed as - (2-3-7)

Minimization of X* with respect_to  u® for a typical element yields.

- the stiffness equafion :
e e _ e ' .
[K]i{u}i = {Q}i | (2-3-8)
vin which
e _ T e' 1‘ | .‘ ’
K1§ =S, BICTI Bl (2-3-9)

QS =jv,‘[N]'{f}dyv +js,[N]{t}dsv +jvy[B]T[Cé]{eo}(d\27'~"3 10 )

and v',s' are the respective volume and surface of a typical torus
triangular element. '
The total stiffness equation of the system
[K] {u}® = (@} (2-3-11)

may be assembled in the same way as that in equation ( 2-2-7 ).

2.4 - Elasto-plastic Analysis of Axisymmetric Solids subject to Axisymmetric
: Loadings | | '
v.Considerable amount of theories and computer codes ih the

area of elasto-plastic analysis has been reported in the past [2 to il]
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[23]. Among them the incremental strain methods are commonly ﬁsed., Thé
detail derivations of the method may be found in research reports éuch
as those by Ueda [31], Yamada [32], Gailagher [33] and Hsu [34]. This
method is basically a sfep~wise linear incfemental analysis to simulate
the elastofplaétic ﬁaterial behaviof{ If the existence of‘incfemental.

' étationarity of the functional (or potential energy in the case of

structural mechanics) similar to that of equation ( 2-2-6 ) is postulated,

the incremental stiffness equation of the structure system:

[K]f‘{Au}e = {4Q3, | (z-4-1)

may be obtained in a more or less straightforward manner. '{AQ}g and
A{Aulg in Equation ( 2-4-1) represgnt respectively the incremental load
- veétor and the increménfai displacement vector in a typical 16ading step
¢ -
>'Thus, for elastic situation the procedure is nothing but a
stepwise.Summation of the incremental elastic strains'{See} calculated
in_each.incrementalv1oadiﬁg step. Further, when the process reaches |

the situation that the stress level of one or some of the elemenf’is

above the yielding point, plastic material behavior should be taken
into account in the formulation of incremental stiffness equation ( 2-4-1 j.
The total strain at this step should include the plastic component {6}

or:

{se} = {8e°} + {8eF} (2-4-2)

To complete the analyéis,'it is necessary to have: (i) a '

yield criterion to acertain the state of stresses at which yielding
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is considered to'begin; (ii) a flow rule to explain the post-yielding
behavior of the material, (iii).a hardening rulé obtained from the.elasto-
plastic stress-strain relationéhip derived from material test. These
three requirements are described respectively in.the following:
(i) Yielding criterion: |

Of several proposed yield critera, hamely,the Tresca, Coulomb,
and Von Mises criteria [35], the latter usually fits the experimentél data
betfer and is considered to be the most préctical and reliable criterion.
F'It:sfates that yieid of materials is caused by the maximum distortion energy}

" For an isotropic material, the yielding surface may be expressed as:

.

- 2 _ 5 ) | —_ N
in which J2 = second deviatoric stress invariant
R 1 '
1/2 Gij Gij | |
oij' = deviatoric stress components
= 035 "% (i,j =1r,z,0 in cylindricai coordinate system)
o = 1/3 Gij o33 , )
= o - _ 1.0 (i#3)
.6ij Kronecker delta = { 1 (=)

and.ry,-dy = experimentally determihed,yield stress in pure shear gnd
in uniaxial tension test respectively. |
This criterion further implies that if the state of stress
| is such that F < 0, the material is in the elastic region, thét is,
{sePy = 0, and that if F = 6, a plastic state is attained and plastic
behavior has to be fakén into account. . No‘significance is>attached to

the casé ~F > 0.
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(ii) Flow Rule:

Generally, there are two major theories that describe the
‘plastic behavior of materials: the deformation (or Hencky) theory and

the incremental or flow theory [11]. The former assumes that thertotal

plastic strain components are related to the current stress and are 1ndependent
of loadlng path whlle the latter assumes that the incremental plastic
strain components are a function of the current stress, the strain increments,

and the stress increments, i.e :
. (2-4-4)

{dePy = (dPy ({o}, {de}, {do}, K) _ | ‘
where’nd"'denotes-an increment and K is the hardeningAparameter. Since the

plastic strain can not in general be independent of the loading path, the -
flow theory is considered more practiCal_in‘applicationsr

' Now, considering‘equation (2-4-2 ) in thevincrementel’form,'or:

| fde} = {de®) + {aPy *  (2-4-5)
in which: ' -

{de} = [D}{do} = [C°] Yido? (2-4-6)
The last two equations can be combined to give:

{do} = [Cej '({ds} - {deP) (2-4-17)

Which may be»dritten as:
(do} = [CP) (de) | (2-4-8)
“where [Cép] is called the elasto-plastic matrix and is expressed as:
[P = 1] ey S (z-a4 =

* for convenience, strain components in elasto-plastic analysis are in .
tensorial form, i.e. 1 Uy . du. rather than the engineering

Eij = 7-(5§5-7‘3Xi)’f0rm in elastic analysis.
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To obtain the elasto-plastic matrix‘[Cep], two sets of information
are needed: the slope (H') of the tangent to the effective stress-effective

plastic strain (o - ") diagram, otherwise known as the hardening co-

- efficient, and the "flow rule", or description of the differential changes s

in the plastic strain component {dePy aS»ekpresse& in equation ( 2-4-4 ).

With respéct to H', it is apparent from Figure 3 that:

H &P =ds (2-4-10)

in which effective stress o and effective plastic strain increment deP

are defined as:

E=(%oij 05 )1/2 | - (2-4-11)
! 2 2 2 . 2 2, . 2y,1/2
" [(o vy 0,0 * ("zz'_"ee) + (O.ee_cw) * 6(0,, * 9.y Ze)]

‘ 2 2 2

o [T 4P )2 P . P2 p . P2 p“. p° . p° .1/2
de* = ——-————3 [(de v de, )" + (dezz.d,eee) + (degg dst) + 6(deygdeze+de:¥e)]

(2-4- 12)

For the flow rule, the Prandtl Reuss representation w1th

isotropic hardenlng states that the plastic strain component 1ncrements

are proportional to the deviatoric stress componentsl(o”)[SZ], or:

deP) = (o'} I | (2-4-13)

invwhich dx = proportlonallty factor
(111) Hardening rule:

The ‘general yield criterion Wthh takes only the state
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15 )

of stress {c} and "hardening" parameter K* into account, is
F ({c}, K) =0 (2-4

and its differential form is :
Y oF .. '
dF'=,{55} {do} + SK'dK (2-4
or,expressing theihardening in terms of plastic strains ,
T oF (3K 1.+ p . j
{dq} +_5K7{_—P}{d€ }. (_2 -4

_ 9F
dF *.{554
d€ ‘
. Substituting equation (2-4-7), (2-4-13) into equation
(-2—4—17 ), one obtains: '
BT e o oF oK T o L
{5E} [CT1({de} - {o }dk) + SK-{;;?} {c"}¥d) =0 ( 2 f.4

Solving for dx using equation ( 2-4-18 ), the following i

obtained:

T.
A [ee] ded |
dx; T T (2"4
- (oF - ' _QE__QK '
{554 [C*1{o }, 5K {8 p}’{o }
£

Substituting dX into equation ( 2-4-13 ), one obtains :

{deP}

= {g'} d A
o 5p.T v
{o'}{ggJ [cel
- {de} C(2-4
in which: g g3 }T[ce]{ vy 2F K T (2-4
. _11'%W icn: "a—o_" (e} 5‘1-(- aep [¢]

* [Ref. 14, pp.v380] "work hardening'' material is represented by

- amount. of plastic work done during the plastic -deformation, or: _
o - 16)

&= (ola”y - (2-4

14 )

17 )

18 )

- 20)

- 21)

the
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Comparison between equation ( 2-4-20 ) and equation ( 2-4-7 ) yields:

T
[C°1¢o" 25y ]

[cP] = (2-4-22)
_ ‘ S '
The élasto—plastic matrix‘[Cep] can now be expressed as:
[c®Py = %] -1cP)
[C®1{o" HEEH[C®]
= ‘ (2-4-23)

[c®] -

Using definitions of F and K as shown in Equation . ( 274—3') and Equation

- ( 2-4-16 ), the follbwing can be obtained [21]:

- F o 4 B
{EEJ = < c;, a5 T, ZoYé, ché, Zgzé >
3F__21
k- - 3H
T - '
Ky T (2-4-21)
Bep. :

The elasticity matrix of the stress--tensorial-strain

relationship [Ce] is :

1-v

1-2v
) 1;v

T 1% S

€1 _ on
[c7) = 26 v v 1-v

1-2v 1-2v 1-2v
o o o 1
0 0 0 0 1
0 0 0 0 0 1(2-4-25)
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 Substitute Equation ( 2-4-24 ), ( 2-4-25 ) into Equation ( 2-4-21),

~( 2-4-22), the following may be obtained:

and

_4
>3

ZZ

1 1.
922 %00

1 1
[e)
922%26

o 1 \

zz%Tr

' '
0ZZ cyI‘Z

(3G + H') &7 (2-4-26)
(] (o't GE 1 c°] = 46
SYM!
2
1
%90
2
. ] 1 1
%00%z0 ze
o 'c ! o lo.! o 2
06%r %z6%r Cor
g 's ! qg! ' 5 'g ' ¢ ,2
66 rz Z@rz T T2 Tz
| (2-4-27)

where [UZzzr-..] is the symmetric deviatoric stress matrix given in

‘Equation (2-4-27).

Accbrdingly; [Cp] can be obtained as:

9
26— [Zzoe] _
[c,l = —= - & U] (2-4-28)
P 3G + H -




with

S
o

= 2=

2
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(2—4_-29)'

The elasto-plastic matrix [Cep] is now in a form with parameters of -

" material properties [Ce]; H' and state of stress

[c*P1 = 26 __

o, {¢°} only, or:

0'2
l1-v  “rr
1-2v S0
2
S o | . 1~
v o 1%z 1-v Y44 SYM
1-2v S 1-2v :
, 0 o
c"ci v o lg! 0'2
v rres _ 22686 -1-v 66
1-2v S 1-2v ER 1-2v
o} 0 o
o o} o_lo! o! o! 0'2
_ rr 78 _ 27 78 _e6ze 1  "z8
So SO S0 2 So
ol o] o! o! gl .o! o! o! '0'2
_ _rrer _ 27 8T ~_eser zg 6r 1 _ “or
S S S 'S 2 S
0 o} o o o}
| A\ | 1 t 1 1 | 1 t
_ “rr%rz _ 922% %0tz %26°rz Oergrz'l
| S.0 S0 SQ SO S0 2
(2-4=230)

In this analysis, experimentally determined elasto-piastic'

constitutive relations of ¢ and e are approximated by a generélized

family of continuous functions [36]:

where Oy =

;j'
i

Bt

" Ee

Ee

n1/n
1 ¥

(A-goy

+E'e

(2-4 - 31')

auxiliary'stress close to elasto-plastic transition (as shown

in Fig. 4).

a factor which determines abruptness of the transition

‘1limiting value of the slope of the.éxperimentélly determined

effective stress, o effective strain, e curve.




The value H',which was defined in Eq. ( 2-4-10 ) as:

_'do
H' = =
e
. %
may be approximated by:
1
H' = ——
s /50
PR S
30 80
+ 1
11
Et E
in which
. ' nt+l o,
B[] -}
. _dg (l—E—)ck | +E'e
t € | T n n+l
{1 + [ ET. = ,_J } e
(1--E-—)ok '+E'e : .

according to Equation ( 2 - 4 - 31 ).

®

- region and is valid in the elasto-plastic region only if the incremental

strain components are reasonably small.

20

(2-4-32)

(2-4-233)

vThe-apprdXimation of &P = d&r - dEe, is valid in the elastic or plastic




" CHAPTER III

ELASTIC ANALYSIS OF AXISYMMEIRIC STRUCTURES
SUBJECT TO NON-AXISYMMETRIC LOADINGS

3.1 Introduction

The technique of solvihé problems of soiids of~revolution or -
shells subject to aXisymmetric loadings has been demonstrated in Chépter ,
'vII. It happens, however, that in many situatiqns,sfructuresAof this |
kind are subjected tO‘ndnfaxisymmetric 1oadingé. Typical examples are
cylindrical pressure vessels horizohtally moﬁnfed, 1arge_pipélines,
CANDU type nuclear fuel elements,'etg.;all fall into this category.
‘Wilson and others [12, 13] have reported that combined finité element'and
Fourier .expansion method is capable of handling this»kind of problem-
~ within the elastic 1imit. ‘This method is not 1imitéd to structural
) problemé in thé general sense. The variational aﬁproach described.
below is applicable to other engineering probléms, forewhich the finite

element method can be used.

’3.2"StiffnﬁsS'EqUatiOn'of‘ElaStiC”Ax13ymmetric Solids Subject to Non-

axisymmetric Loadings

Consider first an axisymmetric solid as shown in Figure 5.
The solid is subjected to non-axisymmetric loading components {f} (body

forces) and {t} (surface tractions) which may be_ekpanded'in a Fourier




series as:

)

{t}

=< f =

\ j(r’z’e)

J (I‘,Z,S)

=<‘t} =

]

\

't

()

.tn Cr;z) .

n (r,z) °

CoSs né

Cos né }

cos né,

sin ne
J

22

(3-2-1)

Because of this non-axisymmetric 1oading situation,the displace-

ment solution to this problem is obviously no longer independent of the

circunferential coordinate: (8), and-:the circumferential.displacement (uej

associated with angular direction . must be considered in the general

case. . The displacement components are thus assumed to be:

{u}

]
(r,z,0)

of
n (r,z) °
= 5 du® cos nd
1y 'n (r,z) °
. u° '
(r,z,6) | n (r,z) ©

,

cos né

(3-2-2)
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k]

Accordingly, the strain-displacement relationship has to include terms

associated with the circumferential components, or:

{e}

£

(

€

ZZ
€

Tz
€

€

€

ITr

00

re

z0

)

(

aul -

or

su”

22

l __._aue +1_1_r_'
r 95 T
T A
au_ + 0

3z 3T
1_(8ur) Sue
T _39 ot
u® L1 au®
32 T ‘38

L (3-2-3)

)

Substitution of Eq. ( 3-2-2 ) into the above'equations yields:

e} =

B o™

- 9T

COos no
Ccos pe
cos né )
cos’ne

sin ne

sin no




" or

{e} = %

in which

el

n (r,2)
En (r,z);'
. (r.2)"
“n (r,z)’

®a (r,2) :

70

n (r,2)

.n ) (r,2) |

k =_{€n

COoSs no

COs nb

COS no

Cos né

sin né

sin nd

= 4

24

(3-2-4)

A(3-2-5)
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Within the elastic range, stress components are related to

strain componen‘ts by :
o} = [C°IHe)
or
€. COS nd
.g . COS nd

e En . COS nd

{c} =% [CTK ‘ : (3-2-6)
n _ _

En . COS nd

E,Irle. $in no
a 81719. sin né
. ' J

in which the stress components can be expressed as:

/

5 ;r(r',zb) . cos nf
_ ~Krz1z(r,z) . cos né |
Aot = .ﬁ‘ Gge(r,z) . cos nb ¢ - (3-2-7)
GII;Z(T,Z) . cos nb ' '
G;e(r,z) . sin n8
.\ Gie('r,z) . sin nG’)

with
wl G— }_ [C ]{ }
Now, con51der the functlonal of the elasticity problem for

a typical torus - element as that shown in Eq. ( 2-3-1 ), or:

x° j G {e} {o} - fu} {f})dV' - S ur' it} as' (3-2-8)
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in which V', S' are the vrespective volume and boundary surfaces of the

element and dV', dS' may be expressed as (r dr dz de),(de de) as shown

in Appendix I.

Substitute Eq. ( 3-2-1), ( 3-2-2 ), ( 3-2-4 ) and ( 3-2-6 )

into Eq. ( 3-2-8 ), one obtains:

27, .1
Xe =ﬁjzﬁ ((’i I%‘ .

/

f:; « COS nd

(le fIz1 « cos nd J)de
fg « sin nd

or:

[ f [
r)z)o

*COs

*COos

* COs

* COs

«sin

+sin

Irr
€

m

ZZ
€

m

66
>
m

T
Z. CcOos

* Cos
° COS

* COS

* sin

. sin

o

moe
me
SuP.

meé

mé

me

mé
moé
mo
mb

mé

LN

T

> )

g +sin

g~ +sin
n

f )
Grr * CoS nbé
n
62% « cos né ( 3\t
n T
00 u ° cos me
ey Ccos no , z )
@ L) - (3¢ u” * cos moy
1 g o % + cos nd m g‘
ne u ° sin mé
o:; - sin né \ J
oze + sin né
\ I J
T e \
u}r’l - cos m8 t; * cos e
u;l * cos mé )(;214 trzl « cos no p)dede
. 0 .
u?n + sin mo t - sinne
\ y,
)
noé
neé ¢ T/( )
T r
um-cos me fn- Ccos né
noé :
=< u;-cos me L < fle' cos no L]de rdr dz
no
ugl-sin me fg- sin né
neé \ \ J
noé
J




T
_—_—
o " um +« COS mev : tZ
- pION Z - t
o). (mn u? cos mo
: u]% - sin mo 9

sH
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COS nd
cos n8 ;) de de
sin no '
(3-2-9)

The following orthogonality relations of trigonometric functions:

2

1]
=

~j(2)“ (cos me) * (cos ne)de

jcz)“ (sin me) - (sin ne)'de

Il '
L —
o 3

and

(cos kme) *(sin ne)de 0

jzﬁ'
Jo
may be used to simplify X° as:
T L€ € A T
X" =n (Izljrjz (7 ey}
ey
“Ni%

1n which

and

ff(z

for m=n=20
m=n#¢#0
m#n

for m-=h7£0

m#nandm=n =0

f_of all m and n

[C%Hep} - U} (f Prdrdz - f L(u Yt 1de)

(3-2-11)

T T
} [c® ]{ p} - U} (£ Nrdrdz - S oyt pde

(3-2-12)
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" It should be noted thatrthis.simplification is possible only for the
case that'{sm},:{un}, {fn},'{tn} and [Ce] are circumferential«coordinatev
independent. .-

Equation ( 3-3-11 ) shows that functional X° is éctually the
sum of N sub-fantional Xne. Similar to Ed. ( 2-2-5 ), minimization of
beach sub—functioﬁal Xn? with respect to {un}e yields N set of stiffness

equations,-or;
| ,[Kn]{un}e ={F} n=1,2, ...N  (3- 3= 13)

and each stiffness equatioh ('2-3-13 ) may be solved to obtain the'dis—.
bplacement solution of eachiindividual mode n. The exact Solution of

the displacement components'{u}e, or stress components {c} may be spmmed
up. for all ﬁodes accofding’to,Eq; (v3—2—2 ) or ( 3-2—6 ) respectively.

Detailed formulation of the stiffness equation for a triangular torus

element is given in Appendix II.

3.3 Computer Code and Sample Problem

A rather.simple prégram code called ”NLSTRS",Uwhich'intludes |
bnly constant.strainAtriahgular and quadrilateral elements was developed
by the author to démonstrateithe validity of this combined finite element
and Fourier - expansion method. It is based on another code called
"ELSTRS", which is capable of handling plané problems, axisymmetric
Vstructures under axisymmetric loadings only. ’

The sample problem of a heavy beém with circular Cross—éection

.bent by its own weight is chosen to test the validity of the "NLSTRS"




29

code. Reasons for choosing this samplé problem are simply that the loading
situation includes only modé-1>body force and that the analytical éolution
of the broblem derived from theory of linear elasticity is availablé.
Computer results of the saﬁplevproblem showed gobd comparison with the -
analytical solutions given by Pearson's exact beam theory [37]. A detailed -
| deécription;of the -sample problem and solutions may be foﬁnd in Appendix

III.




CHAPTER IV

ELASTO-PLASTIC ANALYSIS OF AXISYMMETRIC STRUCTURES

SUBJECT TO NONﬁAXISYMMETRIC LOADINGS

4.1 Introduction‘

The technique of combined finite element and Fourier expansion
’method for describing the elastic behaviour of ax1symmetr1c solids subJect
to non-axisymmetric 1oad1ngs has been demonstrated in Chapter III
» Solutlons_of three-dimensional nature*_of this type-of problems can be
" obtained with'the'computational efforts comparable to those required for
”'plane problems. In this chapter, the feasibiiity of using this method

. for the non-linear elasto-plastic analysis will be described.

To begin the ana1y51s the assumption of the existence of
1ncremental stationarity of a functional ( or potential energy ) such as

postulated in Chapter II has to be maintained, or :

?(e JV, [1/2{A&} {ac} {Au} faf} ] dv*
e‘js,{Au¥T fat} as - (4-1 - 1)
md BF
dfau}

in which f{au} ,{Ag},fAs},{Af}-and.{At} are the'reSpective -

* Solutions that include three 1ndependent displacement components, six

8
independent stresses and strains components, i.e. ot s u? , u and

rr 7z 08 1z re z8 rr 2ZZ

G aG T LE 26 20 3G & sf se-e-€tc. ina cyli_ndrical coordinate system.
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incremental displacement, strain, stress, body force and surface traction

components.

‘Similar to Eq. (3-2-1) and (3-2-2) in Chapter III, the incremental
‘body force , surface traction and displacement components are also

assumed to be represented by a Fourier series, or :

ot

_ r ,
o Aff ﬁfn(r,Z)' cos nf
= Z = Z: 4 ’ -] -
{a £} Afe - 48f ¢, 5+ COS 18 f (4-1-2)
- aof (I’,Z,e) ) .
.Afn(r,z‘)f sin _ne/ |
( )
. A'tr At (r,2)° cos nb | | |
(at} = datPy = 2 {at? *+ cos no 4-1-3
At ,
(r,z,0) Ate « sin no
| N (r,z) )
and ' (T \ 6\
| sl au (. 2) ~cos nf. |
fau} = au b o= %mur-zl o ,.cosmnBgp (4-1-4)
. . o ‘ (r,z) -
| ' Au” | (r,z,0) Au6 « sin n@
V% (0,0 )

Accordingly, the strain-displacement relationship similar

to that of Eq. (3-2-3), (3-2-4) and (3-2-5) in incremental form may’

‘be expressed as :




/ ] ([
aett Ae:;r . cos nb
AEZZ Ae]iz . cosvne
| AcH® A_ege - €os-ng |
ISR SEPIP
{- } ' Aerz - iael? cos n o
Ac® | Ae;" . sinneg
AG?G o Aeze . sinneo
n
\ J \ y
( 3 ( r
T . a,(Aun)
AE ——
n or
2z | . -a(AuIzl)
A€ S LA
T n oz
P T
Sl | e . @)
L n , T o® T
{Ae'n}:.'< I = 9
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A
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(4-1-5)

- (4-1-6)

and the stress-strain relationsﬁip similar to that of Fq. (2-4-8)

ta.kés the foi‘m:

fas} -

( rr )
Y
2GS
ZZ

AG
AG—TZ

z0
RS

S I GE  X {Ae}




= ep
[c%P) g ¢

rT
Aen

77
Aen.
66
n
by
hal:]
n
yA:]

n

< Cos
. cos
Ag_ "+ COS
* COS
Ag "+ sin

Ag”7 ¢ sin

no

ne

ng

o= 2[C°P)
n

ne

ne

ne
/

I'T . cos né
n
“Z | cos ne
n
00 )
o | Cos ne
L (4-1-7)

rz.. cos né :
n
0 .

- sin ne
n
_Ze * sin nd |
n y,

in which [Cep] is in a form with parameters of material properties

[c®1, H'

, and state of stresses o, {o'}

4.2 Mode m1x1ng Characterlstlc

as shown in Eq. (2-4-30).

qubs’c11;ut1ng Eq. (4-1-2), (4-1-3), (4 1-4), (4-1-5), and

(4 1- 7) 1nto Eq

S

H

Au_ + cos mo

-4 Au cos mé

o B N3

Au

=]

- sin mp|

(4-1-1), functional X may be expressed as:
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Ae
m

Z
Aez
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AEGB
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Ae
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N e)-]
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- sin

C
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(S
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=

fou
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* sin noé
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* cos
* COS
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- sin
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It is clear that FEq. (4-2-1) is very similar to Eq, (3-2-9) except

the former is in incremental form. The only difference between these

two equations is that‘the'elaste-plastic matrix [ c® 1 is used in

LEq. (4-2-1) to account for the non-linear elasto-plastic material behavior,

'instead of [ c® ] in Eq (3-2-9) for elastic analysis.

It should be noted that the elasto plastlc matrix [ cP ]

- here is actually c1rcumferent1a1 coordinate dependent because some

’:of its parameters,such as the deviatoric Stress components . {(i'}

and the effective stress G ,vary along the»circumferential coordinate,
Tﬁe orthogonality characteristics-éf the tfigonometric functions which
made it p0551b1e to 51mp11fy Eq. (3-2~ 9) into a sum of sub- functlonals of
separate modes is not appllcable in this case. Separation of various

modes in the formulation has thus become a problem.

4.3 Simplification of the Problem

Due to the complex1ty of the mode—m1x1ng character of the
‘problem, the analysis is now almed at the rather 51mp1e case of 4
’structures subject only to mode 1, non-axisymmetric 1pads in addition
to the axisymmetric loads ﬁf mode.O. Simply-suppofted beams of.circulart
cross-section beﬁt by their own weight such as CANDU reactor fuel
: elements, heevy pipelines,or;the " Muki's problem " ( canted rigid

punch on a half-space ) [30] are typical problems of this kind.

By -The incremental loading components first may be expressed

~ as :




faf} =fof } + of

\
and ‘ ' '
o : fAt

fat} =fat } +qat

\

rAfr « COSH

'Afi .'siné

1
zZ -
] cosoe
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.« COS€e|

o

s COosSB =

=y

Ati .sin@
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Qe ONOR
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at
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(4-3-2)
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in whichv{Afo} -, {At.o} and -fAfl} ’{Atl} are respectively the body

force and surface traction of mode 0 and mode 1.

The incremental displacenient components may be assumed as :

o

' fau}‘ ={Auo},+<Au

au

Ay

+ COS 9\

» COSQp =

FnN =H

¢ sind
y,

= O

o=

O o

T

A
b
yA 1
+ Aul .« COSH
[} o
Au1 , SIn €

4.4 Mode-mixing Stiffness Equation

.« cosB

(4-3-3)

“To handle the mode-mixing characteristic , {su} is expressed

in the matrix form

{AuO}

{Aul}' E
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0001rz000000000000
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or  fau) = (gl v} WD)

It should be noted that { b} js now a 18 x 1 column vector instead

ofa 9x1 vector in Chapter III.

By a similar process given in Appendices II and III, the.

nodal incremental displacement components may be correlated to.ﬂau}

fau}®= [Aa1{b}
thus, - 1, . .
b} = [A]17fau}® =[h]fau}®
and |

|1}

[(P 1(r,z) {b} N [(F ](r,z)[ h ] fauj ©
[N 1y g fou)” | 4-4-2)

fau)

Substituting Fq. (4-4-1) into Eq. (3-2-3), the strain-displacement

relationship may be expressed as

=

. e N o \f
(a€™) {01 0 0 000 00 0c00 0 0 0 0 0 0 bl.\
a€®* {00000 1-00 0000 08O 0 0 0.lb,
1 .60 ' ' -
(‘Aé_ |r1zro 000 0 o—mcosezcﬁseo 0 0% asGZ"’ﬂ 5-9}
Tl ae™| o o20%20 00 0 0 0 cosgh0cosq20 0 0 0 |||
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or

(6T gp (1] faud ©

[B 1(p g fou}° (4-4-4)

. Substitution of Eq. (4-1-7), (4-3-1), (4-3-2), (4-4-2)
"~ and (4-4-3) intd Eg. (4-1-1) and minimizationvof'ﬁte with respect
-~ to incremental displacement components {au}® gives a stiffness equation

similar to that of Eq. (I-8) :

(};J;jsm Uﬂqi c®P] [ B Jderdrdz ) fAu} €

= [ofafo" 00T €] raraado + £ f LRBITL O} (rdrdzde)

o an ' ;
' T ' ' v e
ot fo TN fat) apde - (4-4-5)
in which [ C®P ] 1is given in Eq. (2-4-30).
It should be noted that the first integrands , [B]T[-Cep] [ B] inﬁolve
very éomplicated functions of the circumferential coordinate. Integration

along the circumferential direction has to be carried out numerically.

~ The elements of this combined matrix are given in'Appendix'IV;

4,5 Circumferential Integration Scheme

Integration of the'stiffness matrix over the circumferential
direction is carried out by the Gaussian quadrature method in this thesis;
.A suitable selecfionidf the total number of Gaussian points is, of course,
a compromise of accuracy and éomputing éffort. The method‘itself states

_,that :
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o1 B |
0 Jefy [B1TLCPI0B] rardz ) do
-%'[A ' ([B]T[cep' B drd 4-5-1)
T %=1 'k_jr[Z E ][ 1 )(Qk)rrcz] (_-).

.1n which Ak are the weighting factors of Gaussian quadrature, N is
the total number of Gaussian pomts evaluated Bk are the individual
.Gauss'.lan pomts along the c1rcumferent1a1 direction and the 1ntegrand
[ B ] [ CEp 1l B 1 ,1s a18 x 18 matrlx, which has to be fomulated
- term-by-term before the integration. The detailed formulétion of

[ B ] [ c*P JI{ B ] may be found in Appendix 1IV.

4.6 Special Dlscussmn on the Circumferential Integratlon Scheme

for the S’tlffness Matrlx

The integration of the stiffness matrix of Eq. (4-5-1)
along the c1rcwnferent1a1 direction is carried out by the (‘au551an _
quad_rature method as described above. - The method evaluates values
of theintegrénd [B]T’[Cep] [B] only at those selected Gaussian
points 6. . | It is quite clear that the integration scheme is
“actually an approxmatmg process,not only from the mathematical po:Lnt
of view (1.e‘ evaluate integration by summation ), but also from the
matefial behavior point of view. The parameters of the non-linear |
 elasto-plastic materiel behavior such as H', & , {¢'}, etc., are
‘ evaiuated only at those selected N Gaussian points 6 K As a

‘matter of fact, the decision in selecting the total number of Gaussian




39

points determines the integration accuracy from both the mathematical

and material behaviour points of view.




CHAPTER V

COMPUTER CODE AND CASE STUDIES

5.1 Computer Code " NTEPSA "

A computer code by the name of " NTEPSA'” was developed to

incorporate the theory describedin Chapter IV. Another code

" NLSTRS ' described earlier in Chapter III for the elastic analysis

‘was ‘used as the basis for this development . Simulétion of the non-
iinear elasto-plaétic material behavior was added to this new code

'using the stepwise linear incremental method és described in Chapter .
II.( for which another code " TEPSA " is available for the elasto-

» plastic analysis 6f_axisymmetri¢ structures under}axiSjmmetrié loadg»

[ 31). As described in Chaptef 1V, the pfesént analysis is aimed

at problems of axisymmetric structures subject to mode 1 non-
- axisymmetric 1oads'on1y, in addition to the axisymmetric loads of

mode 0.:

It should also be noted that a total number of nine Gaussian

points were used in this code for the integration procedure along the -
circumferential direction. It was, of course, a compromise between

the integration accuracy and computing effort.

5.2 Sample Problem

The prqblemvof‘a simply supported heavy tube( 4" 0.D.,3" I.D.,.

16" long ) bent by its own weight is chosen as a sample problem,
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" This prbblem is almost the same as the samplé préblem of a heavy
beam described in Appendix IiI for the elastic analysis. The
reason for choosing a tube instead of a beam in this elasto—plastic
analysisvwas that a tube needs fewer nodes and eléments in the finite
element‘discretizatibn, and- thus veduces the computing effoft.

‘In the present analysis, a finite element discrefization consisting

- 18 nodes and 8 elements was used. The detailed configuration of

the tube and its discretization are shown in Figure 11.

| The loading condition of the sémple problem consists 6f

only mode 1, non-axisymmetric load as described in Appendix I11.
HoweVer; in order to demonstrate the mode-mixing gharactefistic‘,
an‘incremental,longithdinal tensile force was imposed at both ends
of ﬁhe tubé fo accouht‘for the axisymmetric load ( mode 0 ). Thus,
the sampie probiem is esSentially just like a heavy tube undergoing.
‘a tensile test horizontally. The solutions of the sagging and
bending stress of the tube due to its own weight at various stress
states dﬁfing the tensile test are,thé main interest, besides the
axisymmetrié solutions of longitudinal elongétioh; tenéile stress

and strain. It should also bé noted that other problems such as a
"-heavy tube horizontaliy mountedAunder internal or external pressure
( e;g.- large gas pipelines 6r CANDU fuel elements, for example )

are relevent sample problems.as well.
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5.3 Verification of Computer Code " NTEPSA "

Generally, verification of a new computer code is done
by comparing.the output obtained from the code with experimentél
data, analytical solutioﬁs, or solutions obtained from .an established
computer code, for various samplé problems. However; in the‘present
analysis, only a specified category of problems ( axisymmetric solids
. subject to mode iero,and.mode one loads ) is intended and no ex-
perimentéivdata; analytical solutions, or solﬁtions obtained from
an-estéblished computéf code for this kind of_probléms are_availablé |
- to the author. Verification of '" NTEPSA " can only be dbﬁe, for the
time being, by comparing the outputs from the code:for'the above |
sémple problem with'outputs from two of its base codes " NLSIRS "
and " TEPSA "". As described before, " NLSIRS " is a code for the
elastic analysis of axisymmetfic structures subject to non-
axisyﬁmetric loading by the'éombinedjfinite element and Fourier
'“eXpansion method." Verification of the " NLSTRS " code may be found

in;Appendix IIT ( or Table 1 for easy reference ). The other base

code " TEPSA " is a code for the elasto-plastic analysis of axisymmetricA

structures subject to ax1symmetr1c loading by the linear incremental
| method, which has been verified in many publications, such as Ref. [3]

The. results of thelverlflcatlon are described as follow :

(i) Verification of ' NTEPSA " with "' NLSTRS "

LY
\\\
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Witﬁin the elastic range of material'behavior,‘ solutions
of suifabie sample pfdblems obtained from both codes should be'identiéal.
The sample problem-of a heavy tube described in this chapfer ﬁas
Calculétedvhy.both codes. The material properties of the tube wefe
assigned to be :

0,28 x 1T Young's Modulus

' E
.f3= 0.33 - Poisson's ratio

‘The,density of the tube, f9; WQs‘aésigned‘to be 22,5, 50, and 100
' lbf/in? féépectively at three runs. 'Computer outputs of-saggings
‘ and'benaing:streSSes from both codes have been tabulated in Table 2.
i It shows excellent agreement between the solutions obtained from
both codes. SolUtions obtained.by simple.beam thedry are aiso indicated -

iﬁ-this Table for reference.

(ii) Verification of " NTEPSA " with ' TEPSA " .

If is quite clear that code ' NTEPSA " should yield the same -
results on the elasto-plastic aﬁalysis.as code "‘TEPSA " for problems
which involve only axisymmetric ioads. The'sémple problem described
in this chapter is'a suitable one if the density of the tube‘material
| becomes négligible ( e.ge 0.0001 1bf/in§ ). ”Solutidns'of axial
strain;-akial-Stress éndvradial deformation from both codes have
been tabulated in Table 3. - Good agreement of solutions from both cddes_

is also attained. Material properties used for input to the computations




for bhoth codes.

a4

were &
E = 0.28 x 10° psi  =-m-ee- Young's modulus
L/;‘O,Ssv ------- Poisson's ratio
6;;v40,000;.psi ------- yield stress
E'= 40,000. psi = -=-=--- aéymptot. modﬁlu
G&f 41,000, psi =~ ~-=-=-- _sigmé bi-linear kink
n=5  -=---a- streésvpower

5.4 Case Study - An Elasto-plastic Analysis of the Sample Problém

by ' NTEPSA ' Code .

The.behaVior of a simply supported tube subject to longitudinal

tensile force which sags due to its own weight was assessed by the

" NTEPSA " code. The discretization of the finite element model

_ remained the same as shown in Figure 11. The elasto-plastic material

behavior was illustrated in Figure 12, or by the fdlldwing parameters:

E=0.28 %108
V = 0,33
G;} 4o,oon
E'= 40,000.
G,= 40,000.
n= s

-=---=--Young's modulus

psi
S emme—-— Poisson's ratio
psi  =------yield stress
psi ------- asymptot modulus
psi ~=-----sigma biflinegr kink

------- stress power
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according to Fq. (2-4-31).

As described before, the main purpose of this case
Study ié to_aééess the validity of the combined finite element
and Fourier expahsiqn method for the elasto-plastic analysis
of éxisymmetri; structures subject.to non-axisymmetric loadings.,
The’following information,onbthe deformation of the tube due to

_the non-axisymmetric loads ‘are of main interest.

(i) The radial and tangential deformations of the tube due to the
* non-axisymmetric load at. 3.94% effective strain as shown in

Figure 13.

.(ii) The sagging of the tube along longitudinal direction at various
angular positions at 3.94% effective strain as shown in Figure

14.

' (iii) The deformed shape of the mid-span cross-section of the tube
at 3,94% effective Sfrain as shown in Figure 15. It should be

noticed that the deformations have been exaggerated in the figure.

(iv) TheASaggihg‘of’the tube at various states of stress ( or strain )
is shown in Figure 16. The figure indicates that the sagging
of the tube accelerates when the elastic limit of the material is -

exceeded.




CHAPTER VI

DISCUSSION AND CONCLUSIONS

6.1 Discussion

Although the present "NIEPSA" code has been indirectly verified
by two special loading situations from two of its base codes 'NLSTRS"
and "TEPSA" as described in Chapter V, the validity of the elasto-
plastié version of the code for the general loading situation has not
yet been verified directly. Direct verification of the code for general
application can be achieved if experimental data or solutions obtained
from an established three—dimensional‘elasto~plastic finite element
program are available. Unfortunately, these data are not accessible.
to the author for the time being. Hence a full verification of this
code was not possible at this time.

The analysis and the "NTEPSA'" code described in this thesis
are intended to be a preliminary study of the combined finite element
and Fourier expansion method for the elasto-plastic analysis of axi-
symmetric structures subject to general non-axisymmetric loadings. It
is important at this stage to assess whether further research activity
in this area should be recommended.

As mentioned earlier, the main advantage of the application
of this combined finite element and Fourier expansion method over the
general three-dimensional finite element method is in the potential
savings in computer input data, computing effort and storage.
Comparison between these two approaches tan be demonstrated by the

sample problem illustrated in Fig.1ll. Information, including the
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“total nunber of nodes andvelements required, in the size of the overall
stiffness matrix and the total nmumber of integrations by using the
Gaussian quadrature scheme for both methods, is tabulated in'Tablés 3

and'4.for direct comparison. ‘It should‘be noted that, for a three-

dimensional finite élement program, every toroidal element used in the
 present analysis has to be divided iﬁto_a humber of hexahedral elements.

'In'Tablé 4 and Tabié 5, a total ofvnine such elements would be needed -
for a three-dimensional finite element analyéis.

In Tébie 4, it can be seen that the " NLSIRS " code (i.e.,

the combined fiﬁite element and Fourier expansion method for elastic
analysis ) can achieve a five timesbsaving ihvthe amount-éf required

_inpﬁt data, an eighfy—one times saving in the amount‘of required storage
and a ninety-six times saving in the amount of required computing
effort. I |

In Table 5, it also can be seen that the "' NTEPSA " code

(i.e., the combined finite element and Fourier‘expansion,meﬁhod for

elaéto-plaéfic analysis ') Can'achieve‘a five times saving in the amount

: pf required input data, a twenty times'saving;in-the amount of required

_ Storage and a three timés saving in the amount of required computihg |

effort. - | | |

. Referring to Tables 4 and 5, a considerable saving is
achieved by both " NLSTRS ' and ' NTEPSA ' codes. Howevef, it-also
reveals a drastic decrease in the savings of storage and computing -
effort required for the elasto-plastic analysis. The savingé may

betome less if-more modes are included in the analysis. Table 6
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reveals that the amount.of required computing effort is even more for
the comblnd finite element and Fourier expansion method 1f four modes
are 1nc1uded Nevertheless the saving 1n the amount of input data
and the computing effort requlred to solve the st1ffness~equatlon (
‘because of the smaller size of stiffness matrlx ) st111 make the method
more compet1t1ve over the general three dimensional finite element
method, provided that four or five'loading modes can satisfactorily
‘represent the loading situation of the problem.

The above comparison didnot include the effort required forv
thevthermalbanalysis. While almost all three;dimentional thermal
analysis codes have been based on the finite differeneevmethod because

iof its effectiveness, the combined finite element and Fourier expansion
approach has already been established [12]. It is believed that the
gain in using the nresent method for coupled thermoelasto-plastic
‘:analy51s over an equivalent three d1mens1onal finite element anaty51s
:lwould be even more phenomenal

Be51des the above mode—m1x1ng limitation, there are two other
| main factors which may also affect the fea51b111ty of the appllcatlon
of the comblned finite element anf Fourier expansion method. One of
the factors is the convergence of solutions with the mesh Size of the ﬂ
finite element discretization. The other is the integration accuracy
of the Gaussian quadrature scheme used in the " NTEPSA " code.

In’Table 7, solutions of the’sagging for the sample problem

illustrated in Fig.ll-a by ' NTEPSA " code, using three finite element

discretizations of different mesh sizes, have been tabulated for oomparison.

These three finite element discretizations are illustrated in-Fig.ll—b;
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L}

Fig. 17-a and 17-b. It can be seen that the solution for the eight-
element discretization ( shown in Fig. 11-b )} and that for the sixtéen-
element discretization ( shown in Fig. 17-b ) are very close. It appears
that the solution does converge with the mesh size of the discretization
and the rather simple finite element discretization as shown in Fig. 11-b
is able to represent the structural behavior of the sample problem
satisfactorily.

As for the integration accuracy of the Gaussian quadrature
scheme, many references such as Ref. [14] are available for assessing
the required Gaussian integration points to obtain satisfactory accuracy
of integration over a plane triangular element. However, in the "NTEPSA" -
code, integrands of elements of the stiffness matrix ( as shown in
Appendix IV ) are circumferential coordinate dependent. Integration
of these elements over the circumferential coordinate has to be specially
discussed. Referring to Appendix IV, it can be seen that these integrands

can be classified into three categories, namely,

-
1

1 al/(blcosze + bzcos 6 sin e + b3sin26):

-
i}

. 2 . .2
2 (alcose + a251ne)/(b1cos g + bzcos @ sin ¢ + b3 sin”e)

I3

(alcosze + azsinze + assin 9 cos e)/(blcosze + bzcos ® sin 6 + bssinze)

where ajs 3y, aé, bl’ b2’ b3 are various constants for various integrands.
In Table 8, it can be seen that the Gaussian quadrature scheme with nine

integration points appeared -to give reasonably accurate results, e.g.

3

to the order of 10~ for the integrand I, .
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6.2 Conclusions

From the analysis and case studies described in this thesis,
it may be concluded that: .
(1) Within the elastic 1imit, the combined finite element and Fourier
expansion method has proved to be capable @f solving problems of
- axisymmetric structures subjéct to non-axisymmetric loadings. |
Compared_ to the simple beam theory, the method affords a compléte and
_accurate set .of three—dimensioﬁal displacement,strain and stress
solutions. This method achieves a‘five times saving in the amount
of required input data when it is‘éompared with a general three-
' dimensional finite elemeht program, an eightY—one times saving
in the amount Qf required storage and a.ninety—six times savingv
in the amount of required-computing effort.
(2) For the elasto-plastic analysis, tﬁe mode-mixing éhafacteristic
of the method somewhat_restricts.practica1 app1icatiOn of the
method for general loading conditions. Four or five loading
modes‘appears to be the limitihg factor of this method when
combeting with a general three—diménsional F.E. elasto-plastic
finite elemént prbgram. | | |
(3) Thé~Case‘study of a simpiy su@ported tube subject to 1ongitudina1
‘tensile loads sagging ﬁnder its own weight with the ' NTEPSA ™ code -
reveals an increasing sagging of the tube-as_the material behavior
of the tube goes through the elasto—plastic,region ( as shown in
Figure 16 ),-'As.expected, tﬁe tube cross-sectiqn no longer was‘

round- ( as shown inﬁFiguré 14 and 15 ) after deformation.
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The "induced sagging" of the tube by the effect of material
plasticity may be predicted by idealized plastic'simple beam théory,
but solutions of the deformed cross-sections of -the tube can only
be obtained by this combined finite element and Fourier expanéidn

method or a three-dimensional elasto-plastic finite element method.

It should be noted that,in both "NLSTRS" and "NTEPSA' codes, rota-

tions are not considered to be degrees of freedom in the analysis;
Both codes are thus valid only for small strain problems It

should also be noted that ,although '"NTEPSA" code has been 1nd1rect1y

~ verified by two of 1t5'base codes ,"'NLSTRS" and "TEPSA",direct

Verificatioh of the code with experimental data or solutions

obtained from a verified three-dimensional elasto-plastic finite

element program is recommended.
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- APPENDIX T
Stiffness of Torus Elements

Detailed Formulation of The Stiffness Eqﬁation of a Constant

. ‘Strain Triangular Torus Element under Axisymmetric Loading :

Because of the characteristics of axisymmetry of the element
géometry and loadings, the displacement components for the element -

may be assumed to be independent of the circumférential coordinate,

“i.e.

{11} . ur(r,z)' _ b1 + b2r + bsz.
Ju} =1 r z 0 0 O0f:D = [ ] b. _
{ } o ,bl 96(r,z)v{ :} (I-1)
00 0 1 r z]} b2 L
. 3
b
4
- b
51 -
bﬁj

in the matrix and vector forms, in which [ ], { ' } represent

matrix and vector respeétivély and bl’ b2’ cenves b6 ‘are arbitary

constants,

The nodal values of this assumed displacement pattern at nodes

'I, J, K as shown in Figure 2, may be expressed'as :




. {u}é =v[A]{g}'

Inversion of Eq. (I-2) yields :

in which
' [h] = [A]'l =‘.)é_.lle'Jv.zk-v.rkzJ
' z; - zk-
er rJ

3oy - 25) 4Ty

Ue,1 2 Y2 W 1 1, Zi\
e e N

1Y%, » Y% g = 1 T zJ
e e

urv,K R uz‘,K \1 Ty Zk,

SINORE NG

‘Zk’)»+ rk(z_'i' - zJ
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(1-4)

~ The pattern ( or usually refered as " interpolatioh function ')

~ which was assumed in Eq. (2-3-35 to correlate the displacement

vector {u} with its nodal values {u}e

) = [Ben) 1)
 (Bew) ) {“}e_’

is obtained by




~or simply-

tu} - [N(r,z)J {“}é |

i (v,0] - (Beal?]

Substitute Eq. (I—l)' ‘into Eq. (293—5) of the strain-displacement

relation, .one obtains :

i€y “

.
oY
¥

or in matrix form as :

ERGES

(01 0 0 0

(G(r,Z)] { b} |

6

'bl.

b

(1-6)

,T * bgz

ot ¢ o o T o
N Ut B N

= (el [h]{“ e

RN 1t
WJ.'Lth.‘ [B(r,z)] =.[G_.(I‘,'Z)] [h) :

(I-7)
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The stiffness equation of a typlcal element as shown in

Eq. (2-3-8), (2-3-9), and (2-3-10), or :
e ) u© - oo OF (£} v
/ () (c ]{e Javi « SN {e) ast (a-8)
 may ﬁoW be established as A: |
h]T,/ (C(r z)] [ ]( (r, z)J av! [h]) {u}

[h]T / [¢(r Z)] }av + [n] / [G(r z):[[c J{% jave
(h]Tj [¢(r z) d%' _ - (;_9)

N The integrands in the first integral of Eq. (I-9), after expansions,

. take the» form :

3_ 11 l 1 U I | : 1. - ]
233 !r(c31+c33) ‘2¢33" t034 00 P ) a2
_-__..'____ __l_ T O
| )
1€11%%137¢33 :17(013“333) o .
|
1g ! !
| HCy HC 40y, lo |0yt | Cyptay
[61%Tc* )= | 4 E iV(C' N :
A | 'lr2 33" r 734 | |
I . ' l I , ] .
i 3 1 2
l J+Ca3)+c44 T PP
R B T Iy s
L :JEym_me_tr_maDL _____ A R R
| o
ot : bt S S
i ——l—__-__‘l_r--'-_i—'-"_f—-—
_ I o rooC
! ! : i ! 22
L ) . 1 L}




(ii) Numerical Integration of Integrands over the Volume V' and

‘Boundary Surface S' of a Triangular Torus Element :

4The stiffness-eqﬁation (1-9) involves.integration of
certain integrands ovér,the-volume V' and boundafy surface
S' ofa typicai triangular torus element as shown in Fig. 2.
The foliowing types of integrations have to be calculated in

the finite element analysis :

I, =j/_’._f(f,z) v ' (1-10a)
I =.ﬂ;, g(r,z) ds - (I-10b)

TheSe'integralsbmay'be expressed in the cylindrical coordinate
system as : |

.11 ’v};J/;/A; £(r,z) (1 d; dz dQ ) =2{J;Q[;f(r,%)(?d¥dz)

(I-11a)

S T :
'12 = ‘.,A;Cjé g(r,z) der;io = 27;!?(réz) dl. (I-11b)
in which duﬁ' represents increment. of path length along the
~ element boundary of the fiﬁite ¢1ement grid on the ¥ - z plahe;
- Equation (I;llb)~may_be simply approximated as
.Iz = § .‘(T,Z) 2'
in which g (r,z) is the algebraic average of g(r,?) ~along

boundary VAR
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. Exact ir}tegration bf Eq. (I.-ll‘a) is possiblle but is both tedioﬁ‘s
and time consumming. In this thesis, the Gaussian quadratui‘e
riumericél iﬁfegiat_ion scheme is used. The scheme uses n “Gaussian
- points " and arrives at a summation expres.éion with appropriate |
weighting coeffici’ents at eacﬁ Gaussian point, or : | |

n

L.y

i=1 j=1

NDetails of the scheme may be found in many references such as

“Ref. [14].
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APPENDIX TII

Stiffness of a Torus Element Subject to

Non-axisymmetric Load
Detailed Formulation of the Stiffness Equation of a Constant Strain

Triangular Torus Element under Non-axisymmetric Loadings :

~Similar to Eqs.(2-3-8), (2-3-9), and (273-10),vthe stiffness

- equation for the problem is

(—/i/{ [Pér [C ][B (rdrdz ) ){lﬂk _ji}f-[ ]{ (rdrdz)
AR o i1

Assuming that the displacement components {un} for mode n

are given by :

on
=
=

{un}.('r,z).—, u | =[1rz000000
z \ 0001rz000
' 0000001rz

(II-Z)

<
)
=

MU‘
=

[
<>
o
N
=

c'ag‘\?*ésrusr
5 =903 5

=1

‘{u“} () [¢(r?z)] {*n




Similar to Eq. (I-2), the nodal values of the displacement components

n

':{un}e ‘may be related to b as :.

ﬁr
nI

uf
nJ

of
nk

;.Vor | {unse‘

Inverse (II-3)

{bo}

u: u /1 T z T b b b
nl nl i i In 4n m

w“ooou 1 r. z b b b,
nJ nJ(= j 3 “2n Sn - “8n
7

Unk Unk \1 Tx -zk;, b3n b6n b9n

- [a] {bn} o a3
, . one obtains : | ‘ :

‘-_é‘ v [-h ] {un}e

with S
()
._I_/I'.Zk- I‘kZ-
TN IE K]
Z.- 2
j k
ka T. 4
0 rjzk- rkzj
| 0 zJ- Zk
0 - T
0 -
0
0
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and A = ri( zj- 23 ) + rj( 21”25 ) + rk( zi-'zj-) » (11-4)

Matrix (N] may be now formulated by

[N ] - [Sb(r,zﬂ_[h]' : ' (11-5)
Substitute Eq. (II-2) into Eq. (3-2-3) of the strain-displacement
' _r‘elation, one obtains P a

;o ' & 8 N

‘ frrY._ : _
{‘en}-ven-.o_l»o» o 0 0 0 0 offby
1€z o o 0o o o 1 o o offPnm
J'€g9 \ 1/r 1 1/; 00 0 n/r n nr/r| b3n
N\ rz | 0' 0 1 o 0 0 0 0 0 b4n
€n ' S ‘ 5n |
6:;9 |n/r -n -nz/r 0 0 0 -l/r 0 -z/r b6n
. ) : b.
|, - - N -nr/z K n
, Len ) L 0 0 | 0 n/r ~-n nr/z .0 0.' 1/ bg
: 5 n
' b

S

el (o)

Matrix [Bn] may now be formulated by

[Bn]_’[cn-‘]'(r,z.)[h] L 11-9

Finally, integrands [G ]T [Ce] [G ] ' in the stiffness
. S n n . M
, ‘(r’z) , (r,2) o

- equation, after expansion, takes the form :

| [G“]‘b 7-’. [Cé] [GnJ (r,z) =




-~

: nz(1;2v)+2[1-v)n2(1-2v)+2 z(nz(l-Zv)+2(1—v)) : 0 o 0" v . n(3-4v) . n(l-v) | o onz(3-4v)
; - 1-2 1-2v)+2) ~ o - 3.2 -
2+ n(z V? z(n (zr V) ) . 0 ‘ 0" 2 . ncz___r__l)_ - n nzch‘_z\))
~22 (% (1-20)+201:3)) |
B | D) vz nz(3-4v) nz(l-v) - nzé(3-4v)
L d-2v) TS 2 ‘ T 22 T 2
= ~ 2r 2r
~ . .
S Tn%1i2v) nf-2v) nlz(i-av) S |
: 7 T 5 0- 0 -n(1-2v)
2r0 > J o 2r 2r
(n +1)2 (1) n ;(1-2\)) o o o a(l-2v)
) ~ \I’ '—'—T—'—_
’ A~
A nzz2 (1-2v) (l+v)~. nv nz(4v-1)
4 2. T nv 2r
2n% (1-v)+71-2v) n®(1-v) 2(20% (1-v)+(1-2v))
2 2 S~ T iy 2
 SYMETRY T DS o . T’ _
| n"(1-v) ~ nz(l-v)
~ \ T - .
2,52
z°(2n" (1-v)+(1-2v)), (1-2v)
i 2 2~ 2
T N :
_ . o~
™~
I ) ~

89
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APPENDIX 1III
Sample Problem of a Heavy Beam with Circular

Cross-section Bent by Tts Own Weight

A Uranium rod (4" 0.D., 16" long ) simply supported at‘both
ends is bent by its own weight ( as shown in Fig.6-a ). The material

properties of Uranium metal are assigned as :

E = 2.8 X 10 psi -~--Young's modulus
= 0.33 - ~-=-Poisson's ratio '
=0 in/in.F  ----Thermal expansion Coeff.

22.5 1bf/in§ ~---Density

(i) ~ Analytical solution :

Pearson [37]»reported an analytical.solution to this sample

problem. In his work, he solved the governing'equilibrium;eqUations :

267" L™ L a06%% , oFF o

or 136 +az +‘ T _.+gpame =
ré 8. z0 0

o6~ 30"6 d 2 : ‘ .

or +,ra6 +ag *;r -gPsin B =0

26?2 3
or a0 - 3z . A

e

‘under the boundary conditions :




(1)

(2)

)

&)

(5)

6
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Surface traction on rod surface except both end sections vanishes:

G’rr = 0 at r=a
0"rz = 0 B at r'= a
O’rﬂ = 0 at r=a

Vertical shift is symmetry about -z = £/2 at the z-axis :

(' 20

FE )r=v0,z='e/2' 0

- Where’ Uy = ~ul cose"+ u° sin @ vertical shift

Longitudinal shift is symmetric about z =4 /2 at the z-axis :

o =0 o at r=0, z=472
The vertical displacements at the centre of both end -se_ctions '
vanish : |

'IIY_'—"O 4 at'r=0, z=0 and z =0

The horizontal displecements at the centre of both end sections

vanish :
=0 at r=0, z=0 and z =~
Where U = o' sin® +u? cose

The total vertical shear over each of the end sections equals.to

one half of the total load :

2T 8 : : :
»}0 Jo (-ﬁ"zr cosf +6';6. sin@ Jrdrd® =1/21t§22f. at z=0 and 2=0 .
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(7) The total horlzontal shear over each of the end sections vanlshes :

2!
jf (6,, sin@+G,,cos0 )rdrd® =0 at z=0 and 2= 4

(8) The 1‘:2?[(:;11’ tracfion ovér each of the end sections vanishes :
a . _ ‘
6’ . .= : ‘ ={} . =
v JOJ/O - rdrd @ | 00 at z=0 and z {f

(9) The bending moment at each of the end sections vanishes :

£1 . » _ |
J OL (;zz r sinBrdrd®= 0 ... horizontal bending moment '
j J r cos@rdrd@ = 0 ... vertical bending moment

‘at z=0 -and z=Z»

The solution of displacement components and 6; . of Pearson's
paper may be found in Figure 7, 8, 9, .and 10 in comparison with the

~ finite element ‘solution and simple lqgém: $olution.

(i'i) Finite element method :

' The loading situation in this problem is simply the mode 1,‘

~ i.e. the gravity of the rod, or :
fy + cos 6

.'<fZ?='4f§-cose>>

o 0 .
\f | \f1-51n6J
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_— r _ .0 _ i ‘ z._
with £ = £ fg » and. £ =10

No surface traction is employed. .The finite element model is shown in
Figurev54b; jwith the following boundary conditions :
-(1') Rod. surface except the end sections is free of traction.

(2')  Longitudinal displacement is symmetrical about theimid-span :

u’ .= 0 at =z =£/2

(3" Ldngitudinal displacement ( u” )'vénishes at the ecentre axis. -
| ( This is a Well-known;fequirement of‘Bérnéuili's theory.in '
which he‘aséumed.the‘iongitudinal displacement to be proportional
to the radial distance from the neutral axis for éach.cross—

section; or the famous " plane remains plane ' hypothesis. )

. r : . . . . .
(4') u - and u? vanish on terminal cross-sections.

Béundary condition (4') is obviously not consistent with
boundary'ﬁonditions ©, (1), (8), and (9) used in thq analytical
approach (i). in the finite element approach; only nodal force, nodal .
displaccment and element surface‘traction coﬁponents are inputed as-
boundary conditions; thé;fotal_shear, total traction and total bending.
moment on any section of the‘Boqhdary Surface usually are not taken |
into cénsideratiOn in.fbrming the stiffness équation. Experience showed'
that for prdblems of simply supported beam,Athe'inrplane'displacement
compaonents on terminal cross-sections are relatively émall in comparison

with those on the off-ends region ( about one thousandth of the value on
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the cross-section 0.5" off the end sections ). ‘Thus, condition (4')
is coﬁsidered to be feasonable'assumption.
It has to be noted that in this analysis, rotation is not

‘taken into consideration as one of the degrees of freedom. It is true

* that this analysis is valid for small rotation problems only.

(did) Simple beam theory :

In the simple beam fheory, the sample‘prpblem is approximated
- by a simple beam of the same length simply suppdrtéd at both ends. The
- weight of the beam is approximated by a uniform load distributed over

the whole length and 1is giVeh by

JQJ"#IDA =)P7[r§

in which T, is the radlus of the beam in 1nches .and ’/9 is the density

of the beam materlal in 1bf/1n3

Solutlon to the above 51mp1e beam problem is available in many
stress ana1y51s handbooks. Solutlonsvof deflection ( or sagging ) S

~‘and bending stress Gfb can be written as (38) :

=N

. -lwz
_8”24E ~zjz -
.;.i_\/lﬁ ‘ ' =
©max 384 IT et z=d)2
' 2
o.M T 2 _Z
Cp="F= tW(5-% )
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- (0% dpax = —Lw—é ‘ at z =4 /2

maEr8

In which W total weight of the beam = w[ = fﬂlrgé '

E = Young's modulus of beam material
‘1 = moment of inertia of the beam cross-section
- M = bending moment at various position.

2
W -2g)
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APPENDTX TV
INTEGRANDS OF THE MODE-MIXING .
STIFFNESS MATRTYX
(MOD% .ZERO AND MODE ONE ONLY)

NOTE _ : :
(I) BECAUSE OF SYMMETRY, ONLY THE UPPER ,
} TRIANGULAR PART OF THE MATRIX TS PRINTED
(II) A=CO0S(9) '
B=STIN (©)
(TTT) XI(1)=1.
S XT(2)=1/R ;
XI(3)=1/R*%2
XI(4)=7/R
XT(5)=2/R%%*2
XTI (6)=ZH%2/RH*2 .
(IV) pS(r,Jy FOR 1,3=1,2,3,4,5,6 APR THE
‘ ELASTO~PLASTIC MATRIX, [C®P) , AS SHOWN
¥ EQ. {2-4-30) TN CHAPTER II.

"1ST ROW ELEMENTS

FCT=DS(3,3) *XT(3) .

FCT= (DS (3,1) +DS (3, 3)) *XI (2)
FCT=DS (3,3) *XI(5)+DS(3,U) *XI (2)
FCT=0,0

FCT=DS (3,4) *X1(2)
FCT=DS(3,2)*XI(2)

FCT=-DS (3,5) *XI(3)

FCT=0.0

FCT==DS (3,5) *XT (5) +DS (3, 6)*VI(2) ,

FCT=DS (3,3) *XI (3) *A-DS (3,5) *XT (3) *B

FCT=(DS(3,1)+DS (3,3)) *XI(2) ¥*A-DS(3, 5)*?1(2)*3 o
FCT=NS (3, 3) *XT (5) ¥A+DS (3,4) #XI (2) *A-DS(3,5) *XI (5) *B
FCT=-DS (3,6) *XT (3) *B

FCT=DS (3, 4) *XT (2) ¥A-DS (3, 6)*XI(2)*B

FCT=D0S (3,2) *XT (2) *A=DS {3, 6) %Y T (5) *R

FCT=DS (3,3) #XI (3) *A-DS (3,5) *XI (3) *B

FCT=DS (3,3) *XI(2) *A . ’ N
FCT=DS (3,3) ¥XT (5) *A- 03(3 5)*xr(5)*u+03(3 n)*xx(z)*e

ZND,ROW ELEMENTS

FCT=(DS (1,1) +DS {1,3) +DS(3,1) +DS (3,3} ) *XT (1) .
FCT=(DS(1,3) +DS (3, 3)) *XI (4)+(D5 (1, B)+DS (3,4))¥XT (1)
FCT=0.0 :

FCT=(DS (1, u)+DS(3,u))#x1(T)
FCT=(DS({1,2)+DS (3,2)) *XTI (1)

¢
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207 FCT=-DS (1, S)*KI(Z)—DS(?,))*YI(Z)

208 FCT=0.0 _

209 PCT=-(DS({1,5) +DS(3,5)) *¥YI (4) % (DS(1,6)+DS(3,6)) *XT(1)

210 TCT=(DS {1,3) +DS (3,3)) *XT(2) *A-(DS(1,5) +D5(3,5) ) #XI (2) *B

211 FCT= ((D§(1,1)+DS(1 3)+0S(3,1) +DS(3,3)) *A-(DS(3,5) +DS (1,5)) *B) *X T (1
1)

212 FCT= (DS (1,3) +DS (3,3) ) *XI(4) *A+ (DS (1, ) +DS (3,4) ) *A*XI (1) - (DS (1, ))+D;“*ﬂ
1S(3, 5))*YI(U)*P S

213 FCT=-(DS(1,6) +DS (3,6) ) *¥T (2) *R

214 FCT=((DS(1,%)+DS(3,4))*A-(DS(1,6)+DS (3,6))%B) *XI (1)

215 PCT=(DS (1,2)+DS (3,2)) ®*A*XT {1) = (DS (1,6) +DS(3,6) ) *X1 (4) *B

216 FCT=(DS(1,3)+DS (3,3))*XT (2) *A- (DS (1, 5)+D5 (3, 5))*XI(2)*B

217 FCT=(DS(1,3) +DS (3,3)) *A*XI (1) :

218 FCT=(DS (1,3) +DS (3,3)) *XT (4) *A- (DS (1, 5) +D5 (3, 5))*x1(u)*n+(ns(1 6)+D
1S(3,6)) *B*YI (1) :

3IRD ROW ELEMENTS -

303 TCT=05(3, 3)*YI(S)+D§(3 U)*YI(M)+D?(U 3)*YI(U)+DS(4 u)*w1(1)

308 FCT=D.O

305 FCT=DS(3,0) *XT(U) +DS (8, 8) %XT (1)

306 FCT=DS(3,2)*XT(H)+DS(Q,2)#XT(1)J

307 FCT=-DS(3,5) *¥T (5)-DS (4,5)*XTI (2)

308 FCT=0.0

309 FCT=-DS (3, 5) *XI(6) +DS(3, 6)*x1(u)~D (u, 5)*YI(U)+DS(U 6) *YT (1)

310 FCT=(DS(3,3) *A=DS (3,5) #P) *X T (5) + (DS (#,3) *A-DS (4,5) *B) *XT (2)

311 FCT=(NS (3,1) *A+D3 (3, 3) *A-DS (3, 5)*R)*XI(U)+(DS(4 1)*A+D (8,3)*A-Ds(
14,%) %B) *YT (1) o

312 vCT= NS (3, 3)*xr(6)*n+nq(3 4y *XT (4) #A-DS (3, J)*YI(6)*B+D5(U 2)*xr(u)*; .
TA+DS (HB,0) *A%YT (1) -DS (4,5) *VT (4) %P . ;

313 FCT=-DS(3,6) *XI (5) *B-DS (#,6) *XT (2) *B

3T FCT=(NS{3,UY*R=-DS(3,6) *D) %X T (4) +(DS (4,U) *A- DS(U 6) *¥B) *XT (1)

315 FCT=DS(3,2) XTI (U4) *A- Dq(z 6)*%1(6)*n+05(u 2) ¥*A%XI(1)-DS (4, 6)*vr(u)*
18 !

316 FCT~(DS(3 3)*A ns (3, 5) ¥Ry &XT (5) + (DS (4,3) *A-DS (4, 3)*8)*XT(2)

317 FCT=DS (3, ?)*YI(U)*A+D§(M 3) ®ARYT ()

318 FCT=(DS (3,3) *A- 05(3,))*“)*YI(6)+D;(3 6)*XT(U)*B+(DJ(U 3) *A- DS(u S) -

' 1*8)*YI(Q)+D§(U 6)*XT(1)*° v

QTH’BOW BLFHMENTS

400 FCT=0.0

418 FCT=0.0
STH ROW ELEMENTS

505 FCT=DS (U,4) *XT (1) : , : ; - : .
506 FCT=DS(H#,2) *XT (1) : o .
507 FCT=-DS (4,5)*XT (2)

508 PCT=0.0 , .

509 FCT=-DS(4,5)*XT (4) +DS (4,6) *XT (1)




T 510

511
512
513
514
515
516
517
518

606
607
608
609
610
611
612
613
614
615
616
617
518

© 707
708

709
710
AR

712

713

714
715
716
717
718

800

818

909"

910

FCT= (DS (4, 3)*n DS (4,5) *R) *XI (2)

FCT= (DS (4, 1) *A+DS (4, 3) *A=-DS (4, §) %B) *¥T (1)

FCT= (DS (#,3) *A-DS (4,5) *B) *X T (4) +DS (4 ,4) *XT (1) *A
FCT=-DS (4,6) *XT (2) *R .

PCT=(DS (4,4) *A-DS (4,6) *R) *X T (1)

FCT=DS (4, 2) *A%XI (1) -DS (4,6) *XT (1) *P

PCT={DS (4,3) *A=DS (4,5) *P) *XT (2)

FCT=DS (%, 3) *XT (1) *A

vCT—(nq(u 3) *A-DS (4,5) *B) *XI (4) +DS (4, 6)*YT(1)*B

6TH ROW BLEMENTS
FCT=DS (2,2) *XI (1)

FCT=-DS (2,5) *XI (?)
FCT=0.0

rCT==DS (2, 5)*YI(U)+n§(7 6) *YT (1)

TCm= (DS (2,3) *A=-DS (2, 5) *¥B) #XT (2)

FCT= (DS (2, 1) *A+DS (2, 3) *A-DS(2,5) *3) *XI (1)

FCT= (DS (2,3) *A-DS (2, 5)*8)*XI(Q)+D“( L) XARXTI (1)
FCT==DS (2,6) *BXYI (2)

2CT= (DS (2,4)*%A~DS (2, 6) *R) *XI (1)

FCT=DS (2, 2)*A*YI(1)-Dw(2 R) *BEYT (4)

FCT= (DS (2,3) *A-DS (2 5)*8)*YI(2)
FCT=DS (2,3) *A*XI (1)

rCT= (DS (2, 3) *A-DS (2, 5)*8)*XI(M)+D§(2 6)*B*XI(1)_

TTH R()Wv_ ELEM FNTS

FCT=DS {5,5) *XT (3)
FCT=0.0

FCT=DS (5,5) *XT [5) =05 (5,6) *XT (2)

FCT=(DS (5,5) ¥*B=DS (5, 3) *A) *XI (3) | '
FCT= (DS (5,5) *B=DS {5, 1) ¥A=DS (5, 3) *A) ¥ XI (2)

FCT=- (DS (5, %)*A¥D‘(R'%)*R)*XI(5)-DS(5,&)*A*XI(2}.

FCT=DS (5, 6) *B*X T {3)

FCT= (DS (5,6) *B-DS (5, u)*ﬂ)*xr(v)

PCT=DS (5, 6) *B*xXI {5) =DS (5, 2) *A*XI (2)

FCT={DS (5,5) *B=DS (5, 3) *A) *XI (3)

TCT=-DS (5,3) *A*¥XI (2) .

FCT= (DS (5,5) *B=DS (5, 3) ¥A) *YI (5) Dq(b 6)*P*XI(2)

8TH, ROW EL I:.'“‘ENT“

FCT=0.0

FCT=0.0

9TH ROW FRLEMENTS

FCT=DS (5,5) *¥XI {6) - (DS (5,6) +DS (6,5) ) *XI (4)+DS (6,6) *XI (1)
FCT=(-DS {5, 3) *A+DS (5, 5) *R) *XT {5) + (DS (6,3) *A~DS (6,5) ¥B) *XI(2)




1918 FCT= (DS (3,3)*A*%2-DS (3, 5) *A*8-DS5(5, 3) ¥A*B+D5 (5, 5)*8**2)*x1(5)+(09
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911 FCT=- (DS (5, 1) *A+DS (5, 3) *A-DS (5 5) *[) *XT (4) + (DS (6,1) ¥A+DS (6, 3) ¥A-D<
1(6,5) *B) *XI (1)

912 FCT=-(DS(5,3) *A-DS (5, b)*R)*XI(6)+(DS(6 3) *A- Do(6 5) ¥B~DS (5, #) *A) %X

. 1T(8)+DS (6,4)*A*XT (1)

" 913 FCT=DS (5,6) *B%YTI (5) =DS (6,6) ¥BXXT (2) _

914 FCT=- (DS (5,4) *A-DS (5,6) *B) *XT () + (DS (6, 1) *A-DS (6,6) *B) *XI (1) -

915 FCT=DS (5,6) *BXYT (6) ~ (DS (5,2) ¥A+DS (6,6) *D) *XI (4) +DS (6,2) ¥*A*X I (1)

916 FCT=(- D9(5 3) *A+DS (5, 5)*“)*XT(5)+(“9(6 3) *A=DS (6,5) *B) ¥YI (2) .

917 FCT=-DS (5,3) ®A*XI (4) +NS (H,3) *A*XT (1)

Y18 FCT=(DS (5, %)*n DS (5, 3) *A) *XI-(6) + (DS (5, 3)*A DS(6 5) *xB-DS (5, 6)*R)*X}
1(u)+0 (h,6h) XBXXT (1)

1OTH ROW ELEMFENTS

1010 FCT=(DS(3,3)*A-D5(3,5) *B) *A*XT {3) - (DS (5,3) *A-DS (5, 5) ¥B) *B¥X T (3)

1011 TCT=(DS (3,1) *A+DS (3, 3) *A-DS (3, S)*n)*A*VI(?)~(DS(5 1) *A+DS (5, 3) *A~

o S(5,5) *B) *R*¥XT (2) s

_1012 FCT= (DS (3,3) *A*%2-DS (3,5) *A*D= DC(),S)*A*B+DS(5 5)*B**2)*XI(5)+(DS*
13,4)*¥A-DS (5, 1) *0) ¥ A*XT (2) .

1013 FCT=(NS (Y,6) *B=DS (3,6) *A) *2*YT (3).

1014 FCT=(DS (3,4) *A*%2-0S (3, 6) *A*R-DS (5, 4) *A*B+DS (5, 6)*8**2)*?*(2)
71015 FCT=(DS (5,6) *B=-DS (3, 6) *A) *3%XI (5) + (NS (3, 2) ¥A-DS (5, 2) *B) *A*XT(2)
1016 FCT=(DS(3,3) ¥A%x*2-nS5 (3,5) *A%*R-DS(5, 3) *A*B+DS (5,5) ¥*B**2) *XT (3)

1017 FCTE(DS(3,3) *A-DS (5, 3) *B) *A*X1 (2)

13, 6)*‘—DS(5 6)*8)*R*YT(2)
11TH ROW ErEdFNms

1111 FC“=((( (1 1) +DS 3)+D“(? 1)) %A~ (DS (1, %)+DS(3 5))*8)*A (0S5, 1)
B 1K+US(5,3)*A D5 (5, 5)*5)*8)*%1(1) o
1112 PCT=((DS(1,3) +DS(3,3)) *A**2~- (DS (1,5) +DS (3, 5))*A*B+DS(5 5) *B**2-DS

15,3) *R*B)*XT (4) +((NS (1,4) +DS(3,4) ) *A-DS (5,4) ¥B) ¥A*XI (1)

1113 PCT=(DS(5,6) *B**2- (DS (1,H) +D5(3,h)) *¥A*R) *¥I (2) x

1114 FCT=((DS (1,4) *A=DS (1,6) ¥N+DS (3, 4) *A-DS (3,6) *B) *A- (DS (5, u)*A DS (5,
1) *BYy*®B) *XT (1) :
1115 FCT=((DS (1, 2) +DS (3,2)) ¥A=DS (5, 2) *B) *A%¥T (1) + (DS (5, 6) ¥B~ (DS (1,6) +D/*
1(3,5)) *A) ¥B*XI (4) . P
1116 FCT=((DS (1,3) *A-DS (1,5) *B+DS(3, 3) *A-DS (3, 5) *B) ¥A- (DS (5,3) ¥A-DS (5,

1) %B) *B) *XT (2)

1117 FCT=({DS(1,3) +DS (3,3)) *A-DS (5, 3) *B) * A%y T (1) .
1118 TCT=((DS (1, 3)+DS (3,3)) *A**2- (DS (1,5) +DS (3,5) +DS (5, 3))*A*B+DS(S 5) .
1R%%2) %X T (4) +.((DS (1,6) +15 (3,6)) *A-DS (5, 6)*n)*B*x1(n

12TH ROW ELEMENTS

1212 FCT= (DS (3,3) *A%*2-DS (3,5) *A%*B-DS (5, 3)*A*B+Da(9 5) ¥B**2) XX T (6) + (DS

13,4) *A**2-DS (5, 4)*A*B+D§(M 3)*A**2 DS (4, 5)*A*B)*XI(“)+D§(Q,U)*A**

, 2*%1(1) . |
1213 PCT=(DS (5, 6) *B=-DS (3, 6) *A) *B*XI (5) -DS (4, £) *A%B¥XT (2)

1214 PCT= (DS (3,4) *A%*2-DS (3,6) *A*B- Dq(),u)*A*B+D$(5 6)XRH#2) *XT (4) + (DS

14,0y % A=DS (It ,6) ¥R) *AXYT (1) .

~1z15 FCT—(DS(b 6)*8 DS (3, 6)*A)*B*YI(6)+(DQ(? 2)*A-DS (4,6) *B-DS (5, 2) *B)
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TARYT (4)+DS (4,2) XA%k2%YT (1) o

1216 PCT=(DS (3,3) ¥A*%2-DS (3,5) ¥AXR=DS (5, 3) *A*B+DS (5, 5) #B**2) XL (5) + (DS (
13,3)*A“DS(Q,S)*H)*A*XI(Z) . : '

1217 7CT= (DS (3,3) #A=DS (5, 3) *B) *A*XT (U) +DS (4, 3) %A% 2%XT (1)

1218 FCT=(DS(3,3) ¥A**2-DS (3,5) ¥A*R=DS (5, 3) *A¥R+DS (5,5) %B*%2) ¥XI (6) + (DS (
13,6)*A*B-ns(5,6)*B**2+Ds(u,B)*A**z—Ds(u,S)*A*B)*XI(u)+DS(u,6)*A*B*g-;

13TH ROW ELEMENTS

1313 PCT=DS (h,R) ¥R**2%XT (3)

1318 FCT=(DS (6,6) *B-DS (6, 4) *A) *B*YT (2)

1315 FCT=(DS (6,6) *BXXI (5) ~DS (6,2)%A%*YI (2)) *R

1316 PCT=(NS (6,5) *R-DS (6,3) *A) «B*YT (3)

1317 FCT=-DS (6,3) *A*B*XT (2) }

1318 FCT:-(DS(6,3)*A—DS(&,G)*B)*XI(b)*B—DS(6,6)*B**2*XI(2)

14TH ROW ELEMENTS

1414 FCT=(DS(H,U)*A**Q-DS(8;6)*A*B-DS(6,U)*A*B+DS(6,6)*B**2)*YI(1)

1415 FCT=(DS (4,2) *A~DS (6, 2) *B) ¥A*YT (1) + (DS (F,6) *B-DS (4, 6) *A) *B*X I (1)

1816 FCT= (DS (4,3) *A*%2-DS (4,5) *A*3-DS (6, 3) *AXB-DS (6, 5) *B**2) *XT (2)

1417 FCT=(DS (4,3) *A-DS (6, 3) ¥R) %1 XTI (1) ; o

1418 FCTtme(u,3)*A**z-os(u,sy*A*B—DS(s,3)*A*B*DS(6,5)*B**2)*XI(u)+(DS(
-~ 11,6) ¥A-DS (6,5) *B) *R*XT (1) : o ‘

15TH ROW ZLEMENTS

1515 FcT=ns(z,2)*A*#z*xr(d)—(bS(z,ﬁ)+05(6,2y)*A*B*x1(u)+DS(6,6)*B**2*XI
Co1ey . AR S
1516 FCT=(DS(2,3) ¥A-DS (2, 5) ¥P) ¥A*XI (2) = (DS (6, 3) *A-DS (6, 5) ¥B) *B*X T(5)
1517 FCT=DS (2,3) ¥ A¥%2%XT (1) =DS (6, 3) *AXR® LT (1) o ,
1518 FCT=(DS(2,3) *A*#2-D5 (2,5) *BXA-DS (6, 6) *N**2) #XT (4) +DS (2,6) *A*B+X I (1
1) + (DS (6,5) ¥B-DS (6, 3) *A) XBXYT (f) S ; - . o

16TH ROW ELEMENTS

1616 FCTﬁ(DS(3,3)*A*#Z-DS(3,5)*A*B-DS(5,3)*A*B+DS(5,5)*8**2)*XT(3)
1617 FCT= (DS (3,3) *A%%2-DS (5, 3) *A*B) #XT (2) - , : '

1618 ?CT=(Ds(3,3)*A**2-DS(3,5)*A*B-Ds(5,3)*A*B+DS(5,5)*B*#2)*xr(5)+(DS(
' 13,6) ¥A-DS (5,6) *B) *BXLT (2} - : .

17TH ROW ELEMENTS

1717 FCT=DS (3,3) *A*%2%XT (1) . . :
1718 FCT=(DS(3,3)*A**2~DS(3,S)*A*B)*XT(U)+DS(3,6)*A*B*XI(1)

18TH ROW ELEMENT
1800_FCT=(DS(3,3)*A**Z-DS{B,RY*A*B-DS(S,B)*A*B+DS(5,S)*B**Z)*XI(6)+(DS(;

13,6) XR*B~DS (5,6) *B*%24DS (6, 3) *A*B-DS (6,5) ¥B**2) *XI (4) +DS (6, 6) *p%*2
2*XT (1) : : ' ‘ o




- of Flgure 6.)

TABLE 1 . ' 80

| SIMPLE BEAM
NLSTRS PEARSON'S SOLU. THEORY
o 8 % § SN ' § Sy
112050 | psi 0¥ in| psi |10 | psi
in : ) o

22.5 | 0.739 | 1273 | o0.742 | 1263 | 0.686 | 1260

50.0| 1.642 | 2820 | 1.650 | 2808 ~| 1.370 - | 2520

100.0 | 3.284 | 5658 . | 3.300 | 5615 | 2:740 | 5040

Comparison of the sagging and bending stréss solutions of the sample
‘problem in Appendlx III for three tube materials of different densities
(6 is the sagging at p01nt A and Gb is the bending stress at point B

TABLE 2

| | SIMPLE BEAM
 NIEPSA _NLSTRS - | THEORY -

o 6 ' % . 8 O ‘ §. ;' %

- =% |107° in | psi 107 in psi 1077 in 'psi>

22.5 0.531 790 | 0.531 790 0.4395 806

- 50.0 1.180. 1750 - 1.179 1750 0.880 | 1613

100. | 2.359 | 3500 2.358_> 3500 1.760 A3226 ‘

Comparlson of the sagging and bendlng stress solutions of the samnle )
problem in Chapter V, 5.2 (i) for three tube materials of dlfferent
densities (8 is the sagging at point A and Gb is the binding stress

at point B of Flgure 11.) _ '
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TABLE 3
NIEPSA ~ TEPSA
p’ : ' Eiz- | oZZ of 22 ' 522 o
ksi  |107%in/in | ksi | 107 in [107? in/in ksié 10—3in
'i szo;o E ,, 0.1% E 20.65 0.4716 | 0.07 '; zo.og 0.47i6
35.0 ; 0 ,VE'. 35.0: ~1.0608§ 0.14 i 35.0{ 1.0619
130.5 ;f 03 -39.5; | 2.1482? 'o.z7v f' 39.55 ' 2.1862
40.0vf, .' 0.4 __;2 .40.02 : 4.oooo§ 0.7 é  40.0§A 412468
. 40.5‘? 1.0 i 40145 9.3237?, - 1.05 : 40.45. 16;067
: 41.7~§ '2.4‘ f | 41f4f 23.906 g 2.67 f, ‘41;6? 26.239 |
43.2 i 43 ; v442,7§‘~4z.69v ; - 4.78 B 43ﬁo§ 47.28

Comparison of the axial strain, stress and radial dlsplacement solutlons
of the sample problem in Chapter V,. 5.2 (ii) (eZZ and o*% is respectively
‘the axial strain, axial stress at point B and u' is the radial dlsplace—
ment at po:mt A of Figure 11). ~




TABLE 4
NLSTRS 3-Dimension F.E.
Total
nodes 18 162
- Total
elements 8 72
Stiffness _ :
matrix size 54 x 54 486 x 486
Total 10.
Integration e
_ p01nts ; - 23,328 : 2,239, 488

' Comparlson of computing Effort between NLSTRS code and an

equivalent 3-D elast1c1ty F.E. program.

TABLE 5
NTEPSA-2 mode - 3-Dimension F.E.
Total ‘ .
nodes 18 162
Total . :
_ elements . .8 172 -
Stiffnéss
matrix size 108 x 108 486 x 486
Integration
points | 839,808 2,239,188

- Comparison of computing effort between NTEPSA code and an

equivalent 3-D. thermal elasto-plastic F.E, program.
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" TABLE 6

83

Combined F.E.

and Fourier expansion | 3-D F.E.
'Totél
nodes 18 162
Total oo :
8 72

485 x 486

Ihtegration .
~ points

. 222392488:.
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TABLE 7
MODEL: ‘ 4 element _ 8 element 5’ - 16 element
P(ksi) e(®) |s(07? inj' % 1501073 in) EQ) s(1of3 in)
0 ,; 0.00Z | ,0.486 o lo.002 | 0.5m % 'Q.oozf 0.533
% |oao | 2.1494 ;_ 0.204 | 3.705 g 0205 | 3.1
:».39,8' 0.273 412.790>;: o.sizf | 7.482'; 03307:»_ 6.986
1 40.7 03455; - 3.176 E 1.14 é 9.747‘€' 0.988 8.923
41,7A _0?796‘ 3311 2,22_? ",10.58i ; ;2.02 ;‘ 9.856
. i%3.2;‘»1.oési “ 3.394"5 3.94 é 11.31 ; 3.79 é - 10.86

- Solutions of sagging at Point A ( see Fig. 11 ) obtained by '"NIEPSA"
code for three different finite element discretizations at various
loading stages. '




TABLE 8

I, I, I,
7 2.8560 0.2717 x 10'% , 3.5410
9 : 2.8492 0.8879 x 1073 | 3.4021
1z'f :2,3490 0.4361 x 10’3 - 3.5043
16 2.8488 ?, -0.1002.x 107 | 3.5040
| 24'f_ 28088 | 0.422x 1070 | 3.5040
32 §. _2.8488_ | 0.2499 x iof?l

3.5040

Integration results of I I,, Iz by gaussian quadrature

1’

- 'scheme with 7, 9, 12, 16, 24, 32 integration points.




" Surface trection

{t)

\

Stress field ={O‘}
Strain field ={6}
. Displacement field={U}
Body force ={f}

T Element stress ={c‘}
Eiement strain ={6}
Nodcl displacement ={u}

Figure 1 Discretization of a Solid Body
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Fig., 3 ELffective Stress'— Effective Plastic Strain Curve
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Figure 4 Polynomial Approximation of Stress-Strain Relations
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Fir, Z)
oV

plan view

(a)

(b)

Fig. 5 (a) An Axisymmetric Solid Subject to Non-axisymmetric
Loads '

(b) Finite Element Discretization of The Solid
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Figure 6 (a) A SimélY'Supported Beam Bent by Its Own Weight-.

(b) Finite Element Discretization of One Quarter
Region of The Beam




Analytical Solution

X Finite Element Solution, 6 = 0

© Finite Element Solution, 6 =60°
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Figure 7 Radial Displacement v.s. Logitudinal Distance from Mid-span
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Tangential Displacement ( 10" 3inches )
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Analytical Solution
* Finite Element Solution, 8 = 0°

° Finite Element Solution, 6 =60°

{ Solution by Simple Beam Theory Not
Given )
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Figure 8 Tangential Displacement v.s. Longitudinal Distance from Mid-span
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Longitudinal Displacement ( 10™° inches )
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* Analytical Solution

ur ) . .l .
N o Finite Elemet Solution
( Solution by Simple Beam
Theory Not Given )
0.3 +
z=8"',0=0"
021
o.l ¢+
- 0.0 + } t 4 »=
0.0 0.5 * 1.O 1.5 2.0

Radial Distance ( inches )

Figure 9 Logitudinal Displacement v.s. Radial Distance. from
Center Axis ( at quartér-span.and'end section )




0.0

Longitudinal Stress ( ksi )

Analytical Solution z= 0.1'" ,6=0

Finite Element Solution, 8 = 0%

Finite Element Solution, © = 60°

Solution by Simple Beam Theory

1.0 1.5 2.0

Radial Distance ( inches )

Figure 10 Longitudinal Stress, G;Z , V.s. Radinal Distance from

" Center Axis ( at cross-sections near mid-span and quarter span)
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' (b)

A at r=2", z=0", @=0°
B at r=1.75", z=0, 8=0"

Figure 11 fa) A $imply Supported Tube Bent by Its Own Weight

(b) Finite Elemet Discretization of One Quarter Region
of The Tube '
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Figure 12 Effective Stress - Effective Strain Relationship Curve
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13} | o * at Section 1 - 1 , point A

12 ] |
- : ut 2 Section 2 - 2 , point B
" 5y at Section 1 - 1, point A '
'§o 10 [0 = Sgction™R - 2, point B
8 ' '
B i t . .
- C u; at Section 3 - 3 , point C
:FH ‘ g L at Section 3 - 3,pod 2 3 4
=5

A ' ' — '+—|—+—1——

Ve
, v A B C iD
vy 2 3 4
, |
U at Section 4 - 4 , point D

o

Non-axisymmetrical Radial Displacement

Displacement, utlz ( 107 inches )

Angular Position , &

Figure 13 Radial § Tangential Displacement along Clrcmferentlal Direction at Various Sections
of The Tube at E = 3.94%
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Figure 15 Deformed Shape of The Mid-span cross-section of The

Tube at & nax - 3.94%




€ D
3.94%  43.2 ksi
1.14%5  40.7 ksi

0.31%  39.8 ksi
0.20% 39.0 ksi’
0.00% 0.0 ksi

I
Llal)
. @p\

'UI§>‘ o] RURE
foQ*'v'

+ P A 6 %X

note ; p is the longitudinal
traction imposed on
both end sections of
the tube ’

‘Sagging at The Outter Surface of The Tube at © = 0°

az

2 3 4 - 5

_ | LongitﬁdinallDis;ance from Mid-span (inches)

Figure 16 -Sagging .of The~.outer_8urface’of The Tube at 8 = 0°along Logitudinal
' . Direction at Various States of Strain ‘
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Figure 17 - Finite Element Discretization of One Quarter Region
of The Tube (gas shown in Fig. 1l-a )
(a) with 4 Elements and 10 Nodes
(b) with 16 Elements and 34 Nodes




