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Abstract

In this thesis, the effects of surface-mounted V-shaped ribs and spanwise system ro-

tations on fully-developed turbulent square duct flows were investigated using the

particle image velocimetry (PIV) measurement, large-eddy simulation (LES) and di-

rect numerical simulation (DNS). The PIV measurements were conducted in a water

channel, and three different angled V-shaped (60◦, 45◦ and 30◦) and perpendicular

(90◦) ribs were considered. As a complement for the PIV experiments, LES was also

used to simulate the measured cases under the same experimental conditions. To

perform LES, a parallel finite volume method (FVM) code adopting the generalized

curvilinear coordinate system was developed. The first- and second-order moments

of the turbulence flows obtained from LES were validated against the PIV measure-

ment data. Both the PIV and LES results showed that strong secondary flows in the

pattern of a pair of counter-rotating streamwise-elongated vortices exist in all three

V-shaped rib cases. The impacts of rib geometry on turbulent coherent structures

were investigated using vortex identifiers, temporal autocorrections, spatial two-point

autocorrelations, and velocity spectra. To study the effects of system rotations on

turbulent square duct flows, DNS was performed for the turbulent flows confined

within a square duct subjected to at a wide range of spanwise system rotations. The

DNS was conducted using a modified open-source parallel spectral-element method

(SEM) code. The influences on turbulent duct flows by the system rotation were

investigated by analyzing the transport equations of Reynolds stresses and vorticity

correlations. Turbulent structures under different system rotations were also system-

atically studied using the energy spectra, autocorrelations of vorticity fluctuations,

and linear stochastic estimation. It was observed that in response to the system rota-

tion, secondary flows appear as streamwise counter-rotating vortices. At sufficiently

high rotation numbers, a Taylor-Proudman region appears and complete laminar-

ization is almost reached near the top and sidewalls. It was also observed that the
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Coriolis force dominates the transport of Reynolds stresses and turbulent kinetic en-

ergy, and forces the spectra of streamwise and vertical velocities to synchronize within

a wide range of streamwise length scales.
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Chapter 1

Introduction

1.1 Background and motivation

Turbulent flow in a closed duct is commonly encountered in engineering applications,

such as internal cooling passages and heat exchangers. In closed ducts with low aspect

ratios, the complex dynamical interactions between the turbulent boundary layers de-

veloped over four walls impose significant challenges to a good understanding of the

underlying physics. Moreover, in many industrial applications, the associated turbu-

lent flow confined in closed ducts can be further disturbed by some case-dependent

factors, such as riblets, system rotations, etc. For example, turbine blades typically

work at high temperatures with fast rotation speeds, and riblets are commonly used in

the internal cooling passages to enhance cooling effects. Overall, turbulent duct flows

with the influences of riblets and/or system rotations are commonly encountered in

engineering applications, yet academic research is lacking in this area. Therefore, the

goal of this thesis was to conduct a systematic investigation of the effects of riblets

and system rotations, individually, on turbulent duct flows. In the author’s opinion,

this thesis is a necessary step towards a good understanding of the even more complex

1
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physics underlying turbulent flows and heat transfer in ducts with riblets and system

rotations simultaneously, such as flows inside the internal cooling passages of turbine

blades.

1.2 Literature review

In this section, a review of relevant previous studies is presented and used to explain

the choices of the tested conditions/parameters in this thesis.

1.2.1 Turbulent heat transfer in a closed duct with different

shaped ribs mounted on surfaces

Heat transfer in a duct with surface-mounted riblets is influenced by several geo-

metrical parameters, including aspect ratio, blockage ratio, pitch-to-height ratio, and

shape (transverse, inclined or V-shaped) of the ribs (see a review by Hans et al. [1]).

Han et al. [2] pioneered the experimental investigation of the effects of rib inclina-

tion on the skin-friction and heat transfer coefficients in a duct with aspect ratio 12.

They observed superior heat transfer effects with ribs inclined at 45◦ compared with

transverse ribs for a given streamwise pressure gradient. Later, Han and Park [3]

studied the combined effects of rib inclination (90◦, 60◦, 45◦ and 30◦) and channel

aspect ratio. They concluded that the best heat transfer performance in a square

duct (i.e., aspect ratio is 1.0) occurred for the 60◦ inclined rib case. Han et al. [4]

further studied the effects of rib configuration on the heat transfer performance in a

square duct. Their results showed that the 60◦ and 45◦ V-shaped ribs generate higher

heat transfer augmentation than other rib configurations, an important result that

was later confirmed by other researchers [5, 6].
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From the above literature survey, it is noticed that the 60◦, 45◦ and 30◦ V-shaped

ribs pointing in the upstream direction were often used in the studies of enhanced

heat transfer. It is also noticed that these research works [5, 2, 3, 4, 6] have focused

primarily on the study of overall heat transfer enhancement. Given the fact that V-

shaped ribs have many important applications in heat and fluid flow devices, such as

turbine blade cooling systems and enhanced-performance heat exchangers, a detailed

study of the turbulent flow field is necessary for an in-depth understanding of the

flow physics and for future designs of these devices. In view of this, a systematic

comparative study of turbulent duct flows disturbed by four rib angles ( 90◦, 60◦, 45◦

and 30◦) pointing in the upstream direction was performed in this thesis.

1.2.2 Turbulent flows confined within stationary and smooth

ducts

In the literature, pressure-driven turbulent flows within stationary (non-rotating)

ducts have been studied extensively using both experimental and numerical methods.

Melling and Whitelaw [9] measured turbulent flows in a rectangular duct using a

laser-Doppler velocimetry, which avoided the probe interference in the flow as with

a hot-wire anemometer. Based on their measurement data, they were able to assess

the performance of several turbulence models using the a priori method and made

further suggestions on the modelling of the transport process of Reynolds stresses in

the context of duct flows. Gavrilakis [10] conducted a DNS study of a fully-developed

turbulent flow confined within a square duct for Reynolds number 150 (defined as

Reτ = uτδ/ν, based on the wall friction velocity uτ and half duct height δ). They

observed long streamwise length scales and revealed the influence of the streamwise

computational domain size on the precision of the obtained turbulent statistics. Huser

and Biringen [11] simulated the fully-developed turbulent flow in a square duct for
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Reτ = 300 using a hybrid spectral and high-order finite-difference method. They

studied the budget balance for the transport equation of streamwise vorticity, and

demonstrated the interactions of turbulence structures on two intersecting walls. In

their follow-up research, Huser et al. [12] further investigated the transport equations

for Reynolds stresses and indicated that linear turbulence models could not well pre-

dict the turbulent anisotropy. However, Zhang et al. [13] conducted DNS of turbulent

square duct flow up to Reτ = 600 and pointed out that the grid resolution used by

Huser and Biringen [11] and Huser et al. [12] was insufficient. By conducting a series

of DNS with different streamwise computational domain sizes at different Reynolds

numbers, Uhlmann et al. [14] concluded that a minimal streamwise period of around

190 wall units (ν/uτ ) was required to sustain turbulence in a square duct. In addi-

tion, they demonstrated that secondary flow possessed an intimate connection with

the buffer layer coherent structures. Pinelli et al. [15] performed DNS of turbulent

flows in a square duct over a range of Reynolds numbers. They studied the scal-

ing properties of mean flow and showed that high velocity streaks tended to locate

in the corner area. Recently, Vinuesa et al. [18] conducted DNS for fully-developed

turbulent flows in ducts with different aspect ratios at Reτ = 180. They related the

sidewall boundary layers with secondary flows in the form of streamwise vortices, and

observed a non-monotonic trend of skin friction as the aspect ratio increases.

Different mechanisms have been proposed to explain the physics underlying sec-

ondary flows in turbulent square duct flows. Brundrett and Baines [7] measured

Reynolds stresses and three mean velocity components of the turbulent flow in a

square duct using a hot-wire anemometer. By analyzing the transport equation for

the streamwise vorticity, they concluded that secondary flows were generated by the

gradients of Reynolds stresses in the cross-stream plane. This research finding of

Brundrett and Baines [7] was later confirmed by Madabhushi and Vanka [8] using

large-eddy simulation (LES). Galletti and Bottaro [17] proposed to connect secondary
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flows with streamwise vortices for the optimal disturbance, which evoke the largest

energy growth. Uhlmann et al. [16] related the secondary flow pattern of a pressure-

driven flow in a square duct to the traveling-wave solutions of the Navier-Stokes

equations. By investigating the probability density function of different streamwise

vortices, Pinelli et al. [15] concluded that the secondary flows were statistical portrait

of the most probable positions of streamwise vortices in the corner region.

1.2.3 On the effects of surface-mounted ribs to turbulent

duct flows

Compared with turbulent flows confined within stationary and smooth ducts, rel-

atively fewer researches have been devoted to turbulent duct flows with surface-

mounted ribs, owing to the more complex flow physics involved. Bonhoff et al. [19]

studied turbulent flows and heat transfer in a square duct with 45◦ inclined ribs using

both particle image velocimetry (PIV) and Reynolds-average Navier-Stokes (RANS)

approaches. By comparing against their experimental results, they concluded that

the Reynolds stress model (RSM) generated a better prediction accuracy than other

tested turbulence models. Ooi et al. [21] conducted simulations for turbulent flow

and heat transfer in a square duct with transverse ribs mounted on one wall us-

ing different RANS turbulence models. They attributed the poor accuracy of the

resulted heat transfer coefficient to the failure of predicting correct secondary flow

structures. Sewall et al. [22] and Labbé [23] demonstrated that large-eddy simulation

(LES) can well predict the dominant flow physics, such as first- and second-order

turbulent statistics and the heat transfer coefficient, in a duct with transverse ribs in

comparison with the experimental results. Gao and Sundén [24] performed particle

image velocimetry (PIV) measurements for turbulent flows within a high-aspect-ratio

(8) duct with inclined and V-shaped ribs mounted on one wall. They observed strong
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alterations of secondary flows by different shaped ribs, which was conjectured to be

responsible for the enhanced heat transfer performance by non-perpendicular ribs.

Tachie and Shah [25] studied turbulent flow in a rectangular duct (aspect ratio is

3.3) with perpendicular and inclined ribs on both walls using a PIV system (this PIV

system was also used in this thesis). They observed that the distributions of mean

velocity and Reynolds stresses in the core region are altered by the inclined ribs.

In view of the above literature review, secondary flow in a closed duct can be

greatly enhanced by inclined or V-shaped ribs compared with perpendicular ribs,

however its impacts on turbulent motions have not been systematically studied yet.

Additionally, the strong disturbance induced by non-perpendicular ribs make the in-

volved turbulent flows more complex and imposes significant challenges on the associ-

ated numerical simulations. Therefore, in this thesis, turbulent duct flows disturbed

by surface-mounted V-shaped ribs were studied using both PIV and LES approaches.

As such, the PIV experiments can provide benchmark data to validate the LES re-

sults, and LES can serve as a complement for PIV thanks to its much richer data.

1.2.4 On the effects of system rotations to turbulent duct

flows

Compared with the number of studies on rotating turbulent plane channel flows [94,

92, 97, 101, 102], relatively fewer numerical investigations of rotating duct flows have

been reported in the literature. Speziale [26] studied laminar flows in spanwise rotat-

ing rectangular ducts. He observed that the patterns of secondary flow were influenced

by both the aspect ratio and rotation number and a Taylor-Proudman (TP) region

occurred at a sufficiently high system rotation speed. Belhoucine et al. [27] simulated

turbulent duct flows subjected to spanwise rotation using a RANS approach based on

an explicit algebraic Reynolds stress model. Their results showed that the predicted
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root-mean-squares (RMS) of velocity fluctuations agreed well with those predicted by

DNS. Pallares and Davidson [28] conducted a LES study of a fully-developed turbu-

lent flow in a spanwise rotating square duct using a localized dynamic SGS model.

Their results showed that system rotation had a significant impact on the pattern of

secondary flows in the corners of the duct and reduced the overall turbulence level. In

their follow-up study, Pallares and Davidson [29] simulated turbulent heat transfer in

rotating square ducts using LES based on an one-equation dynamic SGS model. Pal-

lares et al. [30] further studied the pressure drop and heat transfer rates in a square

duct flow at high rotation numbers for 0 ≤ Roτ ≤ 20 (defined as Roτ = 2Ωδ/uτ

where Ω denotes the spanwise rotating speed). They formulated an analytic model

to estimate the velocity and friction coefficient on the two side walls. Recently, Dai

et al. [31] conducted a DNS study of a spanwise rotating square duct flow. Through

a careful examination of the budget balance of the mean momentum equations, they

demonstrated the influence of secondary flows on turbulence statistics at different

rotation numbers.

Based on the literature review for the turbulent square duct with spanwise rota-

tion, it was noticed that a detailed study on the influence of large-scale secondary

flows on the generation of small-scale turbulent structures is still lacking in literature,

and the associated physical mechanisms are not yet well understood. The challenges

come from a thorough understanding of the interaction of the two Coriolis force com-

ponents with the four boundary layers of the duct, variation of turbulence level (or,

tendency of laminarization) with the rotation number, and changes in the secondary

flow patterns in response to the strength of the Coriolis force. Therefore, this the-

sis conducted DNS for turbulent duct flows subjected to a wide range of spanwise

rotation speeds.
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1.3 Objectives

Major objectives of this thesis are summarized as follows:

1. Develop, optimize and validate a finite volume method (FVM) code based on

the generalized curvilinear coordinate system for DNS and LES of turbulent

flows. This objective is to provide a suitable tool to numerically study the

effects of different shaped ribs on turbulent duct flows.

2. Systematically investigate the effects of V-shaped ribs on turbulent duct flows.

Specifically, this objective is to understand the influences of V-shaped ribs on

secondary flow, Reynolds stresses and coherent structures in turbulent duct

flows.

3. Systematically investigate the effects of system rotation on turbulent duct flows.

This objective is to understand the interactions of the Coriolis force with tur-

bulent structures at different length scales.

4. Provide detailed benchmark data of turbulent duct flows disturbed by surface-

mounted ribs and system rotations.

1.4 Outlines of the thesis

The remainder of this thesis is organized as follows:

• In Chapter 2, the detailed numerical algorithm of the FVM code is presented.

A DNS of turbulent channel flow at Reτ = 180 was conducted using the FVM

code, and the results are validated against Kim et al. [32].

• In Chapter 3, the PIV experiments on turbulent duct flows over different angled

V-shaped ribs are presented. (Chapter 3 has been published in Fang et al. [33].)
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• In Chapter 4, the LES study of turbulent duct flows over different angled V-

shaped ribs is presented. The LES results were validated by comparing the first-

and second-order moments against the PIV experiments. (Chapter 4 has been

published in Fang et al. [34].)

• In Chapter 5, the DNS study of turbulent square duct flows subjected to a wide

range of rotation numbers is presented. (Chapter 5 has been published in Fang

et al. [35].)

• In Chapter 6, by further utilizing the database generated in Chapter 5, the

streamwise elongated roll cells in a spanwise rotating square duct were investi-

gated in a deeper manner.

• In Chapter 7, major conclusions of this thesis and the recommended future

works are presented.

• In Appendix A, an uncertainty analysis for the PIV experiments is presented.

• In Appendix B, a detailed description of the implementation of the algebraic

multi-grid (AMG) solver using the Portable, Extensible Toolkit for Scientific

Computation (PETSc) library is presented. Portions of the source codes are

provided with abundant explanatory comments.

• In Appendix C, a detailed mathematical description for the numerical algorithm

of the SEM code is presented. This appendix could be used as a condensed

textbook for beginners to learn about SEM.

• In Appendix D, the transport equation of entropy 〈ω′
iω

′
j〉 in a rotating reference

frame is presented.



Chapter 2

Finite Volume Method

In order to conduct LES for V-shaped rib cases for Chapter 4, a computer code has

been developed based on an existing finite-volume method (FVM) code. Significant

modifications have been made to the code, which include an introduction of a general-

ized curvilinear grid system and an implementation of an algebraic multi-grid (AMG)

solver for the pressure correction equation. The FVM code was also designed to be

easy to maintain and implement additional functionalities, such as simulating scalar

fields over different shaped ribs in either infinitely-wide channels or closed ducts.

Given the substantial changes to the code, it is, in effect, a new computer code. This

chapter presents the key steps of the numerical discretization used by the FVM code

developed in this thesis. The implementation of the AMG solver can be found in

Appendix B.

In order to simulate turbulent flows over non-orthogonal V-shaped ribs, the gov-

erning equations are solved based on a generalized curvilinear coordinate system

(ξ1, ξ2, ξ3), which take the following form for an incompressible flow

1

J

∂
(
βk
i ūi

)

∂ξk
= 0 , (2.1)

10
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∂ūi

∂t
+

1

J

∂

∂ξk

(
βk
j ūiūj

)
=− 1

Jρ

∂
(
βk
i p̄
)

∂ξk
− 1

ρ
Πδ1i

+
ν

J

∂

∂ξp

(
1

J
βp
jβ

q
j

∂ūi

∂ξq

)
− 1

J

∂
(
βk
j τij
)

∂ξk
,

(2.2)

where ūi, p̄, ν, ρ and δij represent the resolved velocity, resolved pressure, kinematic

viscosity, density and Kronecker delta, respectively, and Π denotes the imposed con-

stant streamwise mean pressure gradient. In the above equations, βi
j and J denote

the cofactor and Jocobian (determinant) of tensor ∂xi/∂ξj , respectively. The above

governing equations are expressed using tensor notations, and the streamwise (x),

vertical (y) and spanwise (z) coordinates are denoted using xi for i = 1, 2 and 3,

respectively. Correspondingly, the velocity components ū, v̄ and w̄ are denoted using

ūi (for i = 1, 2 and 3, respectively).

2.1 Coordinate transformation

The relation between derivatives in the curvilinear (ξi) and Cartesian (xi) coordinate

systems can be formulated as

∂

∂xi
=

∂ξj
∂xi

∂

∂ξj
. (2.3)

Because all the stored variables are located at the centroids of adopted non-orthogonal

control volumes, ∂/∂ξj can be calculated using the finite difference approach whereas

∂/∂xj can only be quantified using Eq. (2.3). Therefore, the transformation tensor

∂ξj/∂xi needs to be quantified for each control volume using the following relation

[
∂ξj
∂xi

]
=

[
∂xi

∂ξj

]−1

=
1

J
βj
i . (2.4)

As such, Eq. (2.3) can be evaluated as

∂

∂xi
=

1

J
βj
i

∂

∂ξj
. (2.5)
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However, it should be noted that if Eq. (2.5) is directly used to discretize terms (such

as continuity and momentum convection terms) of a divergence form, the conservation

law is broken in FVM. Therefore, Eq. (2.5) is further derived into another form as

∂B

∂xi
=

1

J
βj
i

∂B

∂ξj
=

1

J

(
∂βj

i B

∂ξj
− B

∂βj
i

∂ξj

)
=

1

J

∂βj
i B

∂ξj
, (2.6)

where B represents the differentiated variable. To make the above equation valid, it

requires that ∂βj
i /∂ξj = 0. Without losing generality, ∂βj

1/∂ξj = 0 can be proven as

follows

∂(βj
1)

∂ξj
=
∂(β1

1)

∂ξ1
+

∂(β2
1)

∂ξ2
+

∂(β3
1)

∂ξ3

=
∂

∂ξ1

(
∂x2

∂ξ2

∂x3

∂ξ3
− ∂x2

∂ξ3

∂x3

∂ξ2

)
+

∂

∂ξ2

(
∂x2

∂ξ3

∂x3

∂ξ1
− ∂x2

∂ξ1

∂x3

∂ξ3

)
+

∂

∂ξ3

(
∂x2

∂ξ1

∂x3

∂ξ2
− ∂x2

∂ξ2

∂x3

∂ξ1

)

= 0 .

(2.7)

It is worth mentioning that the value of J is exactly the spatial volume of the control

volume. As such, 1/J in Eq. (2.6) remains a constant during the integration pro-

cedure in each control volume, and therefore, the divergence form can be recovered

by Eq. (2.6). Table 2.1 summarizes the coordinate transformation of terms in the

continuity and momentum equations. Thus, Eqs. (2.1) and (2.2) have been proven.

2.2 Spatial discretization

To discretize Eqs. (2.1) and (2.2), the computation domain is divided into body-

fitted control volumes. Figure 2.1 shows the schematic of a control volume used in

this thesis. In the figures, ‘P’ denotes the centroid of the depicted control volume, and
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Term Cartesian Curvilinear

Velocity divergence
∂ūj

∂xj

1
J

∂(βj
i ūi)

∂ξj

Temporal derivative ∂ūi/∂t ∂ūi/∂t

Convection
∂ūiūj

∂xj

1
J

∂
∂ξk

(
βk
j ūiūj

)

Pressure gradient −1
ρ

∂p̄
∂xi

− 1
Jρ

∂(βk
i p̄)

∂ξk

Viscosity ν ∂2ūi

∂xj∂xj

ν
J

∂
∂ξp

(
1
J
βp
jβ

q
j
∂ūi

∂ξq

)

SGS stresses −∂τij
∂xj

− 1
J

∂(βk
j τij)
∂ξk

Driving force Π Π

Table 2.1: Coordinate transformation of terms in the continuity and momentum

equations.

z

y
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P
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n
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w
sw se
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(a) 3-D view

z W

α

NENW

s

SW SE

N

S

EPw

ne

sw

nnw

e

se

x

ξ1

ξ3

(b) 2-D view

Figure 2.1: Schematic of a control volume, its centroid, faces, edges and neighbors in

different views. The rib angle is marked as α.

the upper-case letters ‘W’, ‘E’, ‘S’, ‘N’, ‘B’ and ‘T’ denote the centroids of the west,

east, south, north, bottom and top neighbor control volumes, respectively. The lower-

case letters ‘w’, ‘e’, ‘s’, ‘n’, ‘b’ and ‘t’ denote the west, east, south, north, bottom and

top faces of the control volume, respectively. In the simulations of V-shaped rib cases,

the projection of the control volume on to the x-z plane is of a parallelogram shape
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(see Fig. 2.1(b)). Particularly, the curvilinear coordinates ξ1 and ξ2 are parallel with

the Cartesian coordinates x and y, respectively, and the angle between the ξ3 and z

axes is determined by the angle of V-shaped ribs (see Fig. 2.1(b)). The north-west,

north-east, south-west and south-east edges of the control volume are marked as ‘nw’,

‘ne’, ‘sw’ and ‘se’, respectively, in Fig. 2.1. In the curvilinear coordinate system (ξi),

the control volume is defined of a unit length in all three directions.

In this thesis, a collocated grid system is used, and all the physical variables

(velocity components and pressure) are stored at the centroids of control volumes.

As such, interpolations are needed to approximate the values at faces and edges

of control volumes. In this thesis, an arithmetic average is used to calculate the

interpolations, e.g., ūe ≈ (ūP + ūE)/2 and p̄sw ≈ (p̄P + p̄S + p̄SW + p̄W )/4. In other

words, the variation of grid spacing in the computation domain is carefully controlled

to be small and is neglected during the interpolation process. This is to avoid the

violation of energy conservation induced by the linear interpolation in non-uniform

grids [36, 37].

The integration of Eq. (2.1) within a control volume can be written as

∫ ∫ ∫

V

1

J

∂(βj
i ūi)

∂ξj
dξ1dξ2dξ3 =

1

J

(
β1
i ūi|ew + β2

i ūi|ns + β3
i ūi|tb

)
= 0 , (2.8)

with the help of the divergence theorem, where V denotes the control volume space

in the curvilinear coordinate system. In order to further understand the physical

meaning of Eq. (2.8), Fig. 2.2 illustrates the projections of one face (as an example,

the east face is chosen here) of a control volume onto different Cartesian planes. The
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x

z

β1
1

u3

e

β3
1

β2
1

y

u1

u2

(a) 3-D view

y

ξ2

AB

z

A

B

C
D

AD

CD

BC
ξ3

(b) Projection onto the y-z plane

Figure 2.2: Schematic of the projections of the east face of a control volume onto

different Cartesian planes. In the right figure, ‘A’, ‘B’, ‘C’ and ‘D’ mark the four

vertices of the projected quadrilateral in the y-z plane, and ‘AD’, ‘AB’, ‘CD’ and

‘BC’ mark the middle points of the corresponding edges.

value of β1
1 on the east face is calculated as follows

β1
1 |e =

(
∂x2

∂ξ2

∂x3

∂ξ3
− ∂x2

∂ξ3

∂x3

∂ξ2

)

e

≈(yBC − yAD)(zCD − zAB)− (yCD − yAB)(zBC − zAD)

=
1

4
[(yB + yC − yA − yD)(zC + zD − zA − zB)

−(yC + yD − yA − yB)(zB + zC − zA − zD)]

=
1

2
(yAzB + yBzC + yCzD + yDzA − yBzA − yCzB − yDzC − yAzD)

= the area of the quadrilateral ABCD in Fig. 2.2(b) .

(2.9)

For the last step, the shoelace formula [38] is used. In analogy to Eq. (2.9), the values

of β1
i with i = 1, 2 and 3 evaluated on the east (or west) face represent the area of the

projections of the east (or west) face onto the y-z, x-z and x-y planes, respectively.

The physical meanings of β2
i and β3

i can be understood in a similar manner. With

these derivations, it is now easy to understand that term β1
i ūi|e in Eq. (2.8) with
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i = 1, 2 and 3 represent the volumetric fluxes on the east face contributed by ū1, ū2

and ū3, respectively (see Fig. 2.2(a)). As such, the mass flux through each face of the

control volume can be derived as

mw = ρβ1
i ūi|w

me = ρβ1
i ūi|e

ms = ρβ2
i ūi|s

mn = ρβ2
i ūi|n

mb = ρβ3
i ūi|b

mt = ρβ3
i ūi|t .

(2.10)

With the physical meaning of βj
i explained above, it is easy to understand that the

diagonal components of tensor βj
i are always nonzero and in V-shaped rib cases, one

additional nonzero component appears as β1
2 .

With the above analysis, the nonlinear convection term can be straightforwardly

discretized as
∫ ∫ ∫

V

1

J

∂

∂ξk

(
ρβk

j ūiūj

)
dξ1dξ2dξ3

≈ 1

J

(
ρβ1

j ūiūj|ew + ρβ2
j ūiūj |ns + ρβ3

j ūiūj|tb
)

=
1

J
(meūi|e −mwūi|w +mnūi|n −msūi|s +mtūi|t −mbūi|b) .

(2.11)

For the above equation, it is clear that meūi|e represents the momentum flux on the

east face, and mass fluxes (me, mw, mn, ms, mt and mb) that satisfy Eq. (2.8) (mass

conservation) naturally enforce the momentum conservation.

The pressure gradient term in Eq. (2.2) can be discretized as

∫ ∫ ∫

V

∂p̄

∂xi
dx1dx2dx3 =

∫ ∫ ∫

V

1

J

∂(βj
i p̄)

∂ξj
dξ1dξ2dξ3

=
1

J

(
β1
i p̄|ew + β2

i p̄|ns + β3
i p̄|tb
)

,

(2.12)



CHAPTER 2. FINITE VOLUME METHOD 17

With the physical meaning of βj
i explained above, β1

i p̄|e represents the force in the xi

direction induced by the pressure exerted on the east face of control volumes, and so

on for other terms.

The viscous term in Eq. (2.2) can be discretized as

∫ ∫ ∫

V

ν
1

J

∂

∂ξp

(
1

J
βp
jβ

q
j

∂ūi

∂ξq

)
dξ1dξ2dξ3 =

ν
1

J

[
1

J
β1
jβ

q
j

∂ūi

∂ξq

∣∣∣∣
e

w

+
1

J
β2
jβ

q
j

∂ūi

∂ξq

∣∣∣∣
n

s

+
1

J
β3
jβ

q
j

∂ūi

∂ξq

∣∣∣∣
t

b

]
=

ν
1

J

[
1

J
β1
jβ

1
j

∂ūi

∂ξ1

∣∣∣∣
e

w

+
1

J
β2
jβ

2
j

∂ūi

∂ξ2

∣∣∣∣
n

s

+
1

J
β3
jβ

3
j

∂ūi

∂ξ3

∣∣∣∣
t

b

]
+

ν
1

J

[
1

J
β1
jβ

2
j

∂ūi

∂ξ2

∣∣∣∣
e

w

+
1

J
β2
jβ

1
j

∂ūi

∂ξ1

∣∣∣∣
n

s

+
1

J
β3
jβ

1
j

∂ūi

∂ξ1

∣∣∣∣
t

b

]
+

ν
1

J

[
1

J
β1
jβ

3
j

∂ūi

∂ξ3

∣∣∣∣
e

w

+
1

J
β2
jβ

3
j

∂ūi

∂ξ3

∣∣∣∣
n

s

+
1

J
β3
jβ

2
j

∂ūi

∂ξ2

∣∣∣∣
t

b

]
.

(2.13)

In this thesis, the derivatives in the third last brackets in Eq. (2.13) are discretized

employing the second-order finite difference method using the adjacent control vol-

umes, e.g., ∂ūi/∂ξ1|e ≈ ūi,E − ūi,P . As for the derivatives in the last two brackets of

Eq. (2.13), they need to be first evaluated at the centroids of control volumes, and

then interpolated to the desired faces, e.g., ∂ūi/∂ξ3|e ≈ (ūi,S+ ūi,SE− ūi,N − ūi,NE)/4.

In this thesis, the SGS stress term ∂τij/∂xj is treated explicitly using the finite

difference method. Specifically, tensor τij is updated at the beginning of each time

step, and ∂τij/∂xj is calculated for each control volume using the chain rule shown in

Eq. (2.5). As such, ∂τij/∂xj is treated as one extra body force. Eventually, the semi-

discretized momentum equation in the curvilinear coordinate system can be expressed
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as

Jρ
∂ūi

∂t
+meūi|e −mwūi|w +mnūi|n −msūi|s +mtūi|t −mbūi|b

= −β1
i p̄|ew − β2

i p̄|ns − β3
i p̄|tb

+ µ

(
1

J
β1
jβ

1
j

∂ūi

∂ξ1

∣∣∣∣
e

w

+
1

J
β2
jβ

2
j

∂ūi

∂ξ2

∣∣∣∣
n

s

+
1

J
β3
jβ

3
j

∂ūi

∂ξ3

∣∣∣∣
t

b

)

+ µ

(
1

J
β1
jβ

2
j

∂ūi

∂ξ2

∣∣∣∣
e

w

+
1

J
β2
jβ

1
j

∂ūi

∂ξ1

∣∣∣∣
n

s

+
1

J
β3
jβ

1
j

∂ūi

∂ξ1

∣∣∣∣
t

b

)

+ µ

(
1

J
β1
jβ

3
j

∂ūi

∂ξ3

∣∣∣∣
e

w

+
1

J
β2
jβ

3
j

∂ūi

∂ξ3

∣∣∣∣
n

s

+
1

J
β3
jβ

2
j

∂ūi

∂ξ2

∣∣∣∣
t

b

)

+ Jρfi ,

(2.14)

where fi = −Πδ1i − ∂τij/∂xj is the total body force including the streamwise driving

pressure gradient and SGS stresses. In the above equation, Jρ gives the mass in

a control volume, and therefore term Jρ∂ūi/∂t denotes the temporal derivative of

momentum in the xi direction within a control volume. As such, in accordance to the

previous analysis for each term, Eq. (2.14) governs the momentum conservation law

in a control volume.
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2.3 Temporal discretization

An explicit two steps Runge-Kutta (RK) scheme is used to discretize the temporal

derivative. For the first sub-step, Eq. (2.14) is further evaluated as

Jρ
ū∗
i − ūi

∆t
+meūi|e −mwūi|w +mnūi|n −msūi|s +mtūi|t −mbūi|b

= −β1
i p̄|ew − β2

i p̄|ns − β3
i p̄|tb

+ µ

(
1

J
β1
jβ

1
j

∂ūi

∂ξ1

∣∣∣∣
e

w

+
1

J
β2
jβ

2
j

∂ūi

∂ξ2

∣∣∣∣
n

s

+
1

J
β3
jβ

3
j

∂ūi

∂ξ3

∣∣∣∣
t

b

)

+ µ

(
1

J
β1
jβ

2
j

∂ūi

∂ξ2

∣∣∣∣
e

w

+
1

J
β2
jβ

1
j

∂ūi

∂ξ1

∣∣∣∣
n

s

+
1

J
β3
jβ

1
j

∂ūi

∂ξ1

∣∣∣∣
t

b

)

+ µ

(
1

J
β1
jβ

3
j

∂ūi

∂ξ3

∣∣∣∣
e

w

+
1

J
β2
jβ

3
j

∂ūi

∂ξ3

∣∣∣∣
n

s

+
1

J
β3
jβ

2
j

∂ūi

∂ξ2

∣∣∣∣
t

b

)

+ Jρfi .

(2.15)

Here, ū∗
i denotes an updated preliminary velocity fields. Eq. (2.15) can be expressed

in a more compact manner as follows

ū∗
i = Hi −

∆t

Jρ

(
β1
i p̄|ew + β2

i p̄|ns + β3
i p̄|tb
)

, (2.16)

where Hi denotes all the explicit terms except for the pressure terms in Eq. (2.15). In

this thesis, the momentum interpolation approach [39] is used to evaluate the mass

flux. Specifically, each term of Eq. (2.16) is interpolated and shifted by half a control

volume to relate the pressure stored at centroids of adjacent control volumes, so that

the check-board pressure solution is avoided. Consider me as an example, which can

be approximated as

me = ρβ1
i ūi|e = ρβ1

i Hi|e −
∆t

J

(
β1
i β

1
i p̄|EP + β1

i β
2
i p̄|nese + β1

i β
3
i p̄|eteb

)
. (2.17)

Mass fluxes through other faces can be straightforwardly expressed in similar ways.

As explained in the last section, the only nonzero components of βj
i in V-shaped rib



CHAPTER 2. FINITE VOLUME METHOD 20

Method Reτ Lx × Ly × Lz Nx ×Ny ×Nz

Spectral method [32] 180 4πδ × 2δ × 2πδ 128× 128× 128

Current FVM 180 4πδ × 2δ × 2πδ 192× 128× 192

Table 2.2: Numerical setup for the turbulent channel flow at Reτ = 180.

cases (the perpendicular rib case can be treated as a special case of V-shaped rib

cases) are β1
1 , β

2
2 , β

3
3 and β1

2 . Therefore, in this thesis, Eq. (2.17) can be further

simplified as

me = ρβ1
1H1|e + ρβ1

2H2|e −
∆t

J

(
β1
1β

1
1 p̄|EP + β1

2β
1
2 p̄|EP + β1

2β
2
2 p̄|nese

)
. (2.18)

As such, p̄E , p̄P , p̄S, p̄N , p̄SE and p̄NE (see Fig. 2.1(b)) are needed to calculated me.

Similarly, p̄W , p̄P , p̄S, p̄N , p̄SW and p̄NW are needed to calculated mw. Except for the

east and west faces, the mass fluxes on other faces only involve the pressure at two

adjacent control volumes. Therefore, the coefficient matrix of the pressure correction

equation in V-shaped rib cases possesses 11 nonzero diagonal bands (coefficients for

the ‘P’, ‘W’, ‘E’, ‘S’, ‘N’, ‘B’, ‘T’, ‘SE’, ‘NE’, ‘SW’ and ‘NW’ control volumes, respec-

tively). This irregular matrix equation for the pressure correction is solved by the

Portable, Extensible Toolkit for Scientific Computation (PETSc) library [40, 41, 42]

using an algebraic multi-grid (AMG) solver. The details on the implementation of

the AMG solver for the FVM code is given in Appendix B.

2.4 Validation based on turbulent plane channel

flow

The new FVM code has been validated based on the classical benchmark test case

of a turbulent plane channel flow at Reτ = 180 and the results are compared against

the DNS data of Kim et al. [32]. DNS is conducted using the FVM code by switching
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Figure 2.3: Schematic of the computational domain for the turbulent plane channel

flow.

y+

〈u
〉+

100 101 1020.0

5.0

10.0

15.0

20.0 DNS by spectral method
DNS by current FVM

(a) 〈u〉

y+

〈u
′u

′〉+
,〈

v′
v′〉

+
,〈

w
′w

′〉+

0 50 100 150
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0 DNS by spectral method
DNS by current FVM
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Figure 2.4: Comparison of wall-normal profiles of mean velocity and Reynolds normal

stresses (from top to bottom, 〈u′u′〉, 〈w′w′〉 and 〈v′v′〉, respectively) against the DNS

results by Kim et al. [32].

off the SGS stress term in the momentum equation, i.e. τij = 0 in Eq. (2.2). The

schematic of the computational domain for the turbulent plane channel flow is shown

in Fig. 2.3, where Lx, Ly and Lz denote the computational domain sizes in the x, y

and z directions, respectively. No-slip boundary condition was used at two walls, and

flow periodicity was imposed in both the streamwise (x) and spanwise (z) directions.

The numerical setup parameters are summarized in Tab. 2.2, where Nx, Ny and Nz
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represent the number of grids in the x, y and z directions, respectively. Note that,

as shown in Tab. 2.2, although the computational domain is kept the same as that

in Kim et al. [32], the number of grids used for performing the present DNS is 1.5

times of those in Kim et al. [32] in both x and z directions. Figure 2.4 compares the

profiles of mean velocity and Reynolds normal stresses against DNS results by Kim

et al. [32]. From the figures, a good agreement between the results by the current

FVM code and the spectral method is apparent. Based on the above results, it is

concluded that the FVM code developed in this thesis have been validated and can

be used for both DNS and LES simulations.



Chapter 3

Experimental study of

highly-disturbed turbulent flow in

a square channel with V-shaped

ribs on one wall

In this chapter, an water-channel experiment is designed and conducted based on a

planar PIV system to investigate the turbulent flow in a square duct with angled (30◦,

45◦ and 60◦) V-shaped ribs mounted on one wall. The duct flow with perpendicular

(90◦) ribs is also considered and used as a reference case for the purpose of compar-

isons. Measurements of the 2-D velocity fields are performed using a planar PIV in a

water channel. This chapter is organized as follows: experimental set-up is described

in Section 3.1, including the geometry of different rib configurations, test channel

and the coordinate system in this research; the periodicity of the turbulent flows in

the measurement section is validated in Section 3.3.1; subsequently, the mean veloc-

ity, vorticity and shear patterns are reported and analyzed in Sections 3.3.2-3.3.4,

23
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Figure 3.1: Schematic of the test section and rib configuration (not to scale). Angle

of the rib inclination α = 90◦, 60◦, 45◦ and 30◦; spanwise locations of measured planes

P0, P1 and P2.

respectively; the turbulent statistics and structures are discussed in Sections 3.3.5

and 3.3.6, respectively; finally, the major conclusions of this research are presented

in Section 3.4.

3.1 Experimental Set-up

Experiments on V-shaped rib roughened square duct flows were performed in a water

tunnel. Fig. 3.1 shows a schematic of the test section and the coordinate system used

in this chapter. The internal width (Lz), height (Ly) and length (Lx) of the test section

are 60 mm, 60 mm and 2500 mm, respectively, as illustrated in the figure. Therefore,

the aspect ratio (Lz/Ly) of the test section is 1.0. The test section consists of four

walls forming a closed duct and equally spaced ribs are glued on the bottom wall.

In total, four types of angled ribs were tested for α = 90◦ (perpendicular rib case,

all V-shaped ribs reduce to straight bars that are aligned in the spanwise direction),

60◦, 45◦ and 30◦. For all test cases, the cross section of the ribs is a square with the

side length being h = 6 mm, which gives a blockage ratio h/Ly = 0.1. The pitch is
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W = 48 mm, thus, the pitch-to-height ratio is W/h = 8.0. The ribs on the bottom

wall extend from the inlet to the outlet of the entire test section (45 ribs in total), so

that the rough surface is long enough to ensure fully developed flow.

As shown in Fig. 3.1, I use x, y and z (or x1, x2 and x3) to represent the stream-

wise, vertical and spanwise coordinates, and the corresponding instantaneous velocity

components are denoted by u, v and w (or u1, u2 and u3), respectively. The origin

of x is chosen at the leeward side of the 33rd rib in the channel midspan plane. All

the measurements were conducted in the region between the 33rd and 34th ribs. The

origins of y and z are set at the bottom wall surface and midspan plane, respectively.

The Reynolds number is defined using the 2-D bulk mean velocity (Ub) obtained in

the channel midspan and channel height Ly, and its value is Re = 13000, 13600, 12400

and 11500 for the 30◦, 45◦, 60◦ and 90◦ rib cases, respectively. Since V-shaped ribs

obstruct the camera view of the PIV system, the experimental data for some regions

(depending on the rib inclination angle) below the rib height is unreliable. Besides,

the velocity below the rib height is significantly reduced and features recirculating

flow patterns. Thus, the contribution due to the bulk flow below the rib height is

negligible. Therefore, the definition of Ub used in this chapter is actually the bulk

mean velocity above ribs in the channel midspan plane, i.e.

Ub
def
=

1

(Ly − h)×W

∫ Ly

h

∫ W

0

〈u〉 |z=0 dxdy (3.1)

Here, the operator 〈·〉 represents ensemble-averaging. As such, 〈u〉 is the ensemble-

averaged streamwise velocity and the corresponding velocity fluctuation can be ob-

tained through decomposition u′ = u− 〈u〉.

A planar PIV system was used to measure 2-D velocity fields in (x-y) planes

parallel to the side walls. As shown in Fig. 3.1, measurements were conducted at the

channel midspan (P0) and two off-center x-y planes (P1 and P2). Planes P1 and P2

are 10 mm and 20 mm away from the midplane P0, respectively. In other words, the
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values of z/h are 0.0, 1.7 and 3.3 (z/Lz are 0.00, 0.17 and 0.33) for planes P0, P1

and P2, respectively. As described above, all the measurements were conducted in

the region between the 33rd and 34th ribs. The measured section is approximately

1.5 m away from the inlet and 1.0 m away from the outlet of the square channel.

The water flow was seeded with 10µm fluorescent polymer particles (Rhodamine

B) which had a specific gravity of 1.19 and refractive index of 1.48, and illuminated

using a New Wave Solo Nd:YAG double-pulsed laser that emitted green light of

120 mJ/pulse at 532 nm wavelength. The fluorescent seeding particles absorbed

green laser light and emitted orange light at 570 nm wavelength. The scattered light

from the particles was captured by a 12-bit charge-couple device camera with 2048

pixel × 2048 pixel array and fitted with an orange filter. The use of the fluorescent

particles in combination with an orange filter minimized surface glare at the interface

between the working fluid (water) and the ribs. In each measurement plane, the

laser sheet was shot from the top of the channel and the field of view was set to

63 mm × 63 mm. Based on a convergence test, 4000 image pairs were acquired in

each measurement plane and post-processed to obtain the vector maps of the velocity

field using DynamicStudio version 3.40. Interrogation area (IA) sizes of ∆x×∆y =

32 pixels × 32 pixels with 50% overlap, were used to post-process the data. This

corresponded to 32.5 pixel/mm and the ratio of vector spacing to rib height was

∆y/h = 0.082.

A notation of the form αiPj is used to concisely describe each case. As illustrated

in Fig. 3.1, α and P denote the angle of rib inclination and measurement plane,

respectively. For example, α45P0 represents the measurement in plane P0 for the 45◦

rib case.
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3.2 Measurement uncertainty

Following the American Institute of Aeronautics and Astronautics (AIAA) standard

established by Coleman and Steele [43] and the procedures outlined by Keane and

Adrian [44], Prasad et al. [45] and Forliti et al. [46], the measurement uncertainty

for the PIV experiments was estimated by analyzing the bias, precision and sampling

errors (see Appendix A for a detailed description). The PIV system was carefully

setup to minimize the measurement errors introduced by seeding particles, sub-pixel

displacement bias, particle response to fluid motion, laser sheet positioning, the effect

of velocity gradient, etc. Owing to the large number of samples (4000), the precision

errors for the mean velocities were estimated to be negligible compared to the corre-

sponding bias error. The uncertainty of the mean velocities at 95% confidence level

was less than 0.8% of streamwise mean velocity and 4.5% of vertical mean velocity.

The uncertainties for RMS of velocity fluctuation and Reynolds shear stresses were

estimated to be 2.2% and 3.2%, respectively.

3.3 Results and discussion

To keep the discussion concise, the results for the 45◦ rib case are used to represent

the V-shaped rib cases whenever the same qualitative results are observed in all the

V-shaped rib cases. In addition, as the 60◦ rib case possesses the maximal area that

can be captured by the camera below the rib height, it is used to compare against

the perpendicular rib case when the regions below the rib height are discussed.
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Figure 3.2: Profiles of 〈u〉 and urms = 〈u′u′〉1/2 at the leeward face of the 33rd and

34th ribs for measurement α45P0 (for clarity, only about 8% of the measured points

are shown).

3.3.1 Flow periodicity

The confirmation of streamwise flow periodicity of the measured flow field is crucial,

since this will generalize the analysis and conclusions in this chapter. In addition,

a periodical flow condition in the streamwise direction will eliminate the ambiguity

of the inlet and outlet boundary conditions for potential numerical simulations of

the experiments in this chapter. To validate the flow periodicity, Fig. 3.2 shows the

profiles of 〈u〉 and urms = 〈u′u′〉1/2 at the leeward face of the 33rd and 34th ribs

for measurement α45P0. To facilitate the visual comparison, only about 10% of the

measured points are plotted in these profiles. It can be seen that the results at the

same relative location of two different ribs overlap very well. Different variables in

all the measured planes of all the other cases can be observed with the same pattern,

thus not repeated here. Coletti et al. [47] confirmed flow periodicity before the 6th

rib for a similar geometry as the current perpendicular rib case at a Reynolds number

of 15000. Sewall et al. [22] conducted large eddy simulation (LES) for a similar case

using a laminar symmetric plug flow as the inlet boundary condition and predicted
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that it was close to fully developed turbulent flow after 7th rib. The distance between

the measurement region and the inlet of the square channel in the current experiments

is more than twice the development length measured by Coletti et al. [47].

3.3.2 Mean velocity pattern

Streamlines of the mean velocity and contours of the mean velocity magnitude in

plane P0 for the 90◦ and 60◦ rib cases are plotted in Fig. 3.3. The solid line at the

very top represents the actual top wall of the channel, and the solid line slightly lower

than that represents the boundary of the measurement region. Due to the obstruc-

tion of the ribs, the region below the rib height cannot be completely captured by

the camera for the V-shaped rib cases. The obstructed area below the rib height

increases as the rib angle α decreases. In other words, the measurable area below the

60◦ rib height is broader than those in the 45◦ and 30◦ rib cases. Therefore, results

in the 60◦ rib case are shown here to demonstrate the V-shaped rib cases, where the

obstructed area below rib height is marked by dashed lines. As seen in Fig. 3.3(a),

two distinct recirculation regions occur in the cavity between two adjacent ribs in the

perpendicular rib case. This observation is similar to the results reported in previous

experimental and numerical studies of 2-D turbulent boundary layer over periodic

transverse rib roughness [25, 48]. The reattachment length in the center x-y plane in

this case is observed to be approximately 4.0h. This value is close to (4.3± 0.3)h,

3.85h, 4h, 4.8h reported by Tachie and Shah [25], Coletti et al. [47], Sewall et al. [22]

and Leonardi et al. [48], respectively, for different aspect ratio channels, Reynolds

numbers and pitch-to-height ratios (W/h). It appears that the reattachment length

is not significantly influenced by these parameters when W/h is larger than 6. In

response to the rib geometry and the recirculation zone, streamlines in the perpen-

dicular rib case possess alternating convex and concave curvature in the region close
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(a) 90◦ rib case (b) 60◦ rib case

Figure 3.3: Streamlines and contours of velocity magnitude U =
(
〈u〉2 + 〈v〉2

)1/2
in

plane P0.

to ribs, and the streamline curvature becomes less distinct above y/h = 2.5. Stream-

wise homogeneity of the mean flow is observed in the region above y/h = 4 and the

maximum mean velocity magnitude is located near the half channel height.

It is clearly shown in Fig. 3.3(b) that the streamlines at the channel midspan of the

60◦ rib case are tilted downward throughout the entire channel height. Consequently,

the high momentum flow is convected towards the ribs, therefore, the maximum mean

velocity magnitude in the 60◦ rib case is observed near the rib crest (−0.5 < x/h < 3.0,

1.0 < y/h < 2.0). Due to the obstruction of the V-shaped ribs, no clear separation

bubble behind ribs can be captured by the camera, thus the reattachment length

for the V-shaped rib cases cannot be determined in the present experimental study.

Note that the streamlines near the upstream surface of the 60◦ rib stop suddenly

on the rib surface. Based on continuity, it can be deduced that these streamlines

diverge from the channel midspan towards the side walls below the rib height, rather

than forming a corner vortex as for the perpendicular rib case. As a consequence,

persistent streamline curvature near the ribs is observed for the V-shaped rib cases.
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Figure 3.4: Profiles of 〈u〉 and 〈v〉 at x/h = 1.0 in plane P0 for different rib cases (for

clarity, only about 10% of the measured points are shown).

Fig. 3.4 compares the profiles of mean streamwise velocity 〈u〉 and mean vertical

velocity 〈v〉 at x/h = 1.0 in plane P0 for different rib cases. As explained above, due to

the obstruction created by the V-shaped ribs to the camera’s view, the experimental

data below rib height may be unreliable, thus profiles are only plotted above ribs.

For the sake of clarity, only 8% of the measured points are plotted with symbols

in Fig. 3.4. From Fig. 3.4(a), it is observed that the maximum value of 〈u〉 in the

perpendicular rib case occurs slightly above the half channel height at y/h = 5.7 due

to larger resistance on the bottom wall, whereas for the V-shaped rib cases it occurs

at about y/h = 1.3. As seen in Fig. 3.4(b), for the V-shaped rib cases, the value of

〈v〉 is negative above the ribs and the magnitude increases monotonically as the rib

angle decreases from 90◦ to 30◦. With these observations, it is clear that mean flow

fields are significantly influenced by the V-shaped ribs.

To investigate the spanwise variation of the mean flow, Fig. 3.5 illustrates the

vertical profiles of 〈u〉 for the 90◦ and 45◦ rib cases at x/h = 4.0 in different mea-

surement planes. Similar patterns are observed in different V-shaped rib cases, thus

only results for the 45◦ rib case are shown as representative of other cases. As seen
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Figure 3.5: Spanwise variation of 〈u〉 profiles at x/h = 4.0 in different rib cases (for

clarity, only about 10% of the measured points are shown).
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Figure 3.6: Spanwise variation of 〈v〉 profiles at x/h = 4.0 in different rib cases (for

clarity, only about 10% of the measured points are shown).

in Fig. 3.5(a), in the perpendicular rib case, the value of 〈u〉 above the ribs decreases
and the vertical location of the maximum value shifts towards the top wall as the

sidewall is approached. In contrast, the magnitude of 〈u〉 increases in the region

1.5 < y/h < 4.5, as the sidewall is approached for the 45◦ rib case.

Fig. 3.6 shows the spanwise variation of the vertical profile of 〈v〉 with respect to

P0, P1 and P2 locations for the 90
◦ and 45◦ rib cases. To facilitate visual comparison,
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Figure 3.7: Schematic of large scale longitudinal counter-rotating vortice pair in a

cross-stream plane for V-shaped rib cases.

the same scale is used in Fig. 3.6(a) and 3.6(b). It is evident that the magnitude

of 〈v〉 for the 45◦ rib case is much higher than that in the perpendicular rib case.

For the 45◦ rib case, the value of 〈v〉 above the ribs is negative in planes P0 and P1,

but becomes positive for plane P2. This distribution of 〈v〉 indicates a large-scale

secondary flow in the pattern of streamwise elongated roll cells. Considering the

geometrical symmetry about plane P0, these roll cells appear as a pair of large-

scale longitudinal counter-rotating vortices in the cross-stream plane, as illustrated

in Fig. 3.7.

3.3.3 Mean vorticity pattern

The observation in Section 3.3.2 indicates the existence of strong secondary flow in

the pattern of a pair of streamwise counter-rotating vortices for the V-shaped rib

cases. These two large scale vortices introduce streamline curvature and additional

mean shear, which further impact the turbulent motions. Therefore, it is necessary

and of interest to investigate the mean vorticity patterns for different rib cases.
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(a) 90◦ rib case (b) 60◦ rib case

Figure 3.8: Negative spanwise mean vorticity 〈ω3〉 in plane P0 for different rib cases.

Contours of positive 〈ω3〉 are clipped.

To obtain further insight about the mean vorticity pattern for the V-shaped

rib cases, Fig. 3.8 shows the contours of negative spanwise mean vorticity 〈ω3〉 (=

∂〈v〉/∂x − ∂〈u〉/∂y) in plane P0 for the 90◦ and 60◦ rib cases. To facilitate visual

comparison, contours of positive 〈ω3〉 are removed in the figures. As seen in the fig-

ures, the strongest spanwise vorticity occurs at the rib crests in both cases. In the

perpendicular rib case, negative 〈ω3〉 prevails in the region below y/h = 5.5, which is

consistent with the location of the maximum mean velocity in Fig. 3.4(a), except for

the region immediately behind ribs. On the other hand, negative 〈ω3〉 in the 60◦ rib

case is confined to y/h ≤ 1.4, and the strongest vorticity region extends from the rib

crest to very close to the windward face of the next rib. Due to the strong negative

〈v〉 induced by the secondary flows for the V-shaped rib cases, high momentum flow is

convected towards ribs. As a consequence, the spanwise mean vorticity in the region

near the ribs (below y/h = 1.4) is augmented for the V-shaped rib cases compared to

the perpendicular rib case.

In order to further understand the generation mechanism and the interaction be-
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tween different components of the mean vorticity alluded to above for the V-shaped

rib cases, the transport equations for the square of the mean streamwise vorticity

1
2
〈ω1〉 〈ω1〉 and mean spanwise vorticity 1

2
〈ω3〉 〈ω3〉 are considered, which can be writ-

ten as follows,

〈uj〉
∂ 1

2
〈ω1〉 〈ω1〉
∂xj

= P1MM + P1MT + I1 +D1 (3.2)

〈uj〉
∂ 1

2
〈ω3〉 〈ω3〉
∂xj

= P3MM + P3MT + I3 +D3 (3.3)

The first terms (P1MM and P3MM) on the right hand side (RHS) of Eq. 3.2 and Eq. 3.3

are the stretching or compression of the mean vorticity by the mean strain rate, which

can be written, respectively, as follows,

P1MM = 〈ω1〉 〈ωj〉 〈s1j〉 (3.4)

P3MM = 〈ω3〉 〈ωj〉 〈s3j〉 (3.5)

where sij = 1
2
(∂ui/∂xj + ∂uj/∂xi) is the strain rate tensor. The remaining of the

terms on the RHS of Eq. 3.2 and Eq. 3.3 are the turbulent vorticity production (P1MT

and P3MT ), vorticity-velocity interaction (I1 and I3), viscous (both diffusion and

dissipation) term (D1 and D3) respectively. Refer to Tennekes and Lumley [49] pp. 86

for details.

The half channel at z < 0 is chosen as the first control volume to be analyzed.

Based on the evidence from Fig. 3.3(b), streamlines below the rib height move along

V-shaped ribs towards the sidewall. In this process, the fluid passes a convergent path

created by the V-shaped ribs and sidewall. As a consequence, the momentum of the

fluid near the rib increases. Therefore, a negative valued 〈s13〉 is generated near the

channel midspan in the vicinity of the V-shaped ribs (y/h < 5.0 for the 45◦ rib case as

shown in Fig. 3.5(b)). From Fig. 3.6(b), a negative ∂ 〈v〉 /∂z is observed above ribs for

V-shaped rib cases. Therefore, the streamwise vorticity 〈ω1〉 (= ∂ 〈w〉 /∂y−∂ 〈v〉 /∂z)
is positive in the half channel for z < 0. From Fig. 3.8(b), a strong negative 〈ω3〉
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is observed in the region very close to ribs (y/h < 1.4) for the V-shaped rib cases.

Therefore, with reference to Eq. 3.4, the interaction between 〈ω1〉 and 〈ω3〉 generates
positive contribution for 1

2
〈ω1〉 〈ω1〉 by P1MM in V-shaped ribs. In other words,

V-shaped ribs provide a production source for the streamwise vortex in this control

volume. As the formed large scale streamwise mean vortex generates a downward

mean flow near the channel midspan, an induced flow is directed to the convergent

flow path generated by the sidewall and upstream surface of the V-shaped ribs. This

further increases 〈s13〉 and makes the vorticity source self-sustainable. As for the half

channel at z > 0, with opposite 〈s13〉 and 〈ω1〉, a similar production term exists. In

such a way, two counter-rotating large scale vortices develop for the V-shaped rib

cases. It is also interesting to note that the generation mechanism described above

is due to the quasi-inviscid interaction of mean shear and mean vorticity [50], and,

therefore, can be categorized as Prandtl’s first kind of secondary flow.

Special attention needs to be paid to 〈ω3〉, since it is related to the primary shear

(∂ 〈u〉 /∂y). The variation of this mean vorticity component is not as obvious as the

streamwise mean vorticity, thus it has been overlooked in some previous papers [24,

19, 20, 25, 51, 52]. In the transport equation for 1
2
〈ω3〉 〈ω3〉, the same source term

(〈ω1〉 〈ω3〉 〈s13〉) due to the mean flow exists in P3MM . It is now evident that the

generation of streamwise mean vorticity by geometrical skewness is accompanied by

the alteration of spanwise mean vorticity (Fig. 3.8(b)), so that the source term due to

the mean flow is self-sustainable. The distribution of 〈ω3〉 is also related to streamline

curvature, and the sensitivity of turbulent motions to the streamline curvature is

one order of magnitude higher than its direct mechanism [50]. In the region above

the V-shaped ribs, combining the streamline curvature illustrated in Fig. 3.3(b) and

positive 〈ω3〉 in region above y/h = 1.4 in Fig. 3.8(b), it can be concluded that

the streamlines near the channel midspan for the V-shaped rib cases are of convex

curvature, i.e. the angular momentum of the mean flow increases in the direction of
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the effective radius, which is in the −y direction.

The mechanism underlying the differences in the mean flow patterns for different

rib geometry can be understood from the perspective of mean vorticity production.

In the perpendicular rib case, the value of 〈s13〉 is observed to be of opposite sign to

that for the V-shaped rib cases (see Fig. 3.5). Therefore, P1MM works as a suppression

mechanism for the mean streamwise vorticity in this case. Besides, the magnitude of

〈s13〉 is believed to be very small near the ribs in this case, as no obvious variation

of 〈u〉 in the spanwise direction is observed in Fig. 3.5(a) under y/h = 2.0. Without

the large scale mean vortices in streamwise directions, no strong secondary flow and

streamlines curvature occur in the core region above the ribs in the perpendicular rib

case, which is very different from the V-shaped rib cases in terms of the mean shear.

3.3.4 Mean shear pattern

Since the production of turbulent kinetic energy (TKE) Pk = −
〈
u′
iu

′
j

〉
〈Sij〉 is achieved

by the interaction between the Reynolds stresses and mean shear rates, the property

of mean shear in highly-disturbed turbulent flows is of particular interest. The ori-

entation and magnitude of the principal stretch determines which turbulent vortices

are enhanced (or suppressed) and how intense it is. The most energetic turbulent

vortices are those whose principal axes are roughly aligned with that of the mean

strain rate. Being strained by the mean shear, this kind of vortex can absorb energy

more effectively from the mean flow and maintain a good correlation between different

velocity fluctuation components [49]. Moin and Kim [53] investigated the existence

of the hairpin structure in a turbulent channel flow using LES, and observed that the

maximum distribution of the inclination angle of vorticity in the outer region occurs

at about 45◦ to the streamwise direction. They concluded that because the mean

strain rate is inclined at 45◦ to the streamwise direction, the stretching of vorticity is
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highest in this direction and vorticity oriented at 135◦ is rapidly destroyed. This view-

point is consistent with the prediction by Tennekes and Lumley [49] (see pp. 41) and

the observation by Blackburn et al. [54] using direct numerical simulation (DNS). In

Section 3.3.3, I have shown the redistribution of 〈ω3〉 for the V-shaped rib cases. This

will obviously impact the primary shear (∂ 〈u〉 /∂y). Therefore, an understanding of

the mean shear pattern will facilitate the investigation regarding the highly-disturbed

turbulent motions in the current study.

In order to investigate the orientation of the mean strain rate, all components of

the velocity gradient tensor (denoted as Aij = ∂ui/∂xj) are needed. From the present

measured data, only derivatives of 〈u〉 and 〈v〉 in the x-y plane can be calculated di-

rectly. According to the continuity relation ∂ui/∂xi = 0, 〈A33〉 can be calculated with

−〈A11〉 − 〈A22〉. 〈u〉 and 〈v〉 are symmetric about plane P0, while 〈w〉 is antisymmet-

ric. Hence, 〈A13〉, 〈A23〉, 〈A31〉 and 〈A32〉 are all 0 in plane P0. Therefore, the mean

strain rate tensor 〈sij〉 in plane P0 can be calculated as

〈sij〉 =




〈A11〉 1
2
(〈A12〉+ 〈A21〉) 0

1
2
(〈A12〉+ 〈A21〉) 〈A22〉 0

0 0 −〈A11〉 − 〈A22〉


 (3.6)

The principal stretch can be found by calculating the eigenvalues of 〈sij〉, and the

principal axes are the corresponding eigenvectors. Since 〈sij〉 is a real symmetric ma-

trix, its eigenvectors are orthogonal to each other. It is evident from Eq. 3.6 that the

z axis is one of the principal axis in all cases, and the magnitude of the corresponding

eigenvalue is found to be relatively small compared with the other two eigenvalues.

This is related to the small magnitude of ∂ 〈w〉 /∂z compared with ∂ 〈u〉 /∂x and

∂ 〈v〉 /∂y in plane P0. The other two eigenvalues are opposite real numbers (denoted

as S and −S), which are associated with stretching and compressing, respectively,

and the corresponding eigenvectors are perpendicular to each other. I denote the
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Figure 3.9: Mean shear patterns at x/h = 1.0 for different rib cases (for clarity, only

about 10% of the measured points are shown).

eigenvector associated with the positive eigenvalue as the stretch axis. The inclina-

tion angle (θ) of the principal axis of 〈sij〉 with respect to the streamwise direction

is defined as the angle between the stretch axis and x axis at [−90◦, 90◦], considering

the opposite axis is still the principal axis.

The profiles of θ and the magnitude of the principal stretch (S) in plane P0 at

x/h = 1.0 for different rib cases are plotted in Fig. 3.9. The results for the 45◦ rib

case are used to represent those for the V-shaped rib cases. As seen in Fig. 3.9(a),

the value of θ for the perpendicular rib case is close to either 45◦ or −45◦, and the

sign changes at the location of the maximum value of 〈u〉 (Fig. 3.4(a)). It indicates

that the primary shear rate (∂ 〈u〉 /∂y) is dominant in the region 1 < y/h < 9 in

the perpendicular rib case. This result is similar to that in a turbulent channel flow

over smooth walls, therefore, I expect that the turbulent mechanisms (production

and structures) near the channel midspan in this case are similar to a 2-D channel

flow. On the other hand, the value of θ for the 45◦ rib case is negative above the

ribs and its magnitude varies significantly with respect to the distance away from

the rib roughened bottom wall. In particular, the value of θ is observed to be close
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to 0◦ and −90◦ in the region 1.0 < y/h < 3.0 and 6.5 < y/h < 8.5, respectively.

Therefore, it can be deduced that the primary shear for the V-shaped rib cases is no

longer dominant above ribs. From Fig. 3.9(b), it is clearly shown that the strength

(magnitude) of the principal stretch (S) is suppressed by the V-shaped ribs above the

ribs compared with that in the perpendicular rib case. Note that the principal stretch

in the region 3 < y/h < 9 is observed to be close to 0 for the 45◦ rib case. Since

the production of TKE relies on the mean shear rate, the almost vanished principal

stretch indicates that it is close to a decaying turbulent flow in this region. In both

cases shown here, the maximum principal stretch appears close to the ribs (about

y/h = 1.4), but with different inclinations with respect to the streamwise direction.

Although the previous analysis for the V-shaped rib cases is primarily on the

channel midspan, the results in Sections 3.2− 3.4 can also give some clues about the

situation in the off-center regions. In Fig. 3.6(b), the value of 〈v〉 changes sign between

plane P1 and P2, thus it can be predicted that the core of the large scale streamwise

vortices is located between plane P1 and P2. Besides, no significant variation of 〈u〉
and 〈v〉 between plane P0 and P1 is observed in Fig. 3.5(b) and Fig. 3.6(b). There-

fore, I suggest that at least one third of the channel width possesses similar mean

flow patterns as discussed for plane P0. With the results and analysis presented in

Sections 3.2− 3.4, the impact of the distinct mean velocity, vorticity and shear pat-

terns in highly-disturbed turbulent flows to the turbulent motions is readily being

investigated.

3.3.5 Statistics of turbulent motions

The Reynolds shear stress −〈u′v′〉 is essential to the maintenance of turbulent mo-

tions. In a 2-D smooth turbulent channel flow, the production of 〈u′u′〉 is mainly con-

tributed by −〈u′v′〉. Energy is transferred from 〈u′u′〉 to 〈v′v′〉 by the pressure-strain
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Figure 3.10: Vertical profiles of Reynolds shear stress, −〈u′v′〉, in plane P0 at different

streamwise locations (for clarity, only about 10% of the measured points are shown).

redistribution, which further interacts with the primary shear to generate −〈u′v′〉. In
such a way, a self-sustained system is formed and the levels of the Reynolds stresses

are elevated by each other until being limited by the viscous dissipation mechanism.

Based on the previous observations that the mean velocity profiles and primary shear

patterns for the perpendicular rib case are closer to those in 2-D turbulent flows, it is

reasonable to believe that the self-sustained mechanism depicted above is similar in

these two cases. However, owing to the non-dominant primary shear for the V-shaped

rib cases (Fig. 3.9), this self-sustained mechanism must be significantly altered. The

Reynolds shear stress is reported first to investigate the turbulent motions in these

highly-disturbed turbulent flows over V-shaped ribs.

Fig. 3.10(a) compares the vertical profiles of the Reynolds shear stress −〈u′v′〉
for different rib cases at x/h = 1.0 in the region above ribs. From this figure, the

magnitude of −〈u′v′〉 around y/h = 2.0 in the perpendicular rib case is significantly

larger than that near the smooth top wall. In other words, the Reynolds shear stress

−〈u′v′〉 is enhanced by the perpendicular ribs, which has also been noted by Tachie

and Shah [25] in 2-D turbulent flows over transverse ribs. It is interesting to observe



CHAPTER 3. EXPERIMENT STUDY OF EFFECTS OF V-SHAPED RIBS 42

(a) 90◦ rib case (b) 60◦ rib case

Figure 3.11: Turbulent eddy viscosity νt in plane P0 for different rib cases.

that the values of −〈u′v′〉 near the V-shaped ribs (1.2 < y/h < 3) are all smaller than

those near the smooth top wall, and furthermore, they are also significantly smaller

than the value for the perpendicular rib case. In particular, the profile of −〈u′v′〉 for
the 60◦ rib case is almost a vertical straight line with a small magnitude in the region

1.2 < y/h < 9.5.

The Reynolds-averaged Navier-Stokes (RANS) simulation is still the most widely

used numerical approach to simulate turbulent flows in industrial applications due to

its simplicity and low cost. In RANS, turbulent models based on an eddy viscosity

concept have experienced great development and are currently extensively utilized.

In these models, some local scales and/or turbulent properties are either evaluated

by solving additional equations or assigned according to empirical knowledge, such as

Spalart-Allmars and k-ε models. Subsequently, the eddy viscosity (νt) is prescribed

by these local scales and/or turbulent properties using dimensional analysis. Despite

many attempts to adjust the expression for the eddy viscosity for different cases, the

value of νt is usually set as positive in these turbulence models, although this is not

always correct in different turbulent flows.
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The feasibility of RANS using an eddy viscosity type turbulence model for the

studied cases can be roughly assessed by checking the sign of the eddy viscosity

(νt). According to the definition, the value of νt in plane P0 is quantified as νt =

−0.5 〈u′v′〉 / 〈s12〉, and its contours are compared in Fig. 3.11 for two different rib

cases. (A complete definition of eddy viscosity should be νt,ij = −0.5
〈
u′
iu

′
j

〉
/ 〈sij〉

without the Einstein summation convention.) It is observed in Fig. 3.11(a) for the

perpendicular rib case that negative νt appears near the region where maximal 〈u〉
occurs (y/h ≈ 6.0, see, Fig. 3.4(a)). Near this region, because the value of mean

shear is close to zero (see, Fig. 3.9(b)), sharp change of νt in the vertical direction

is detected. From the perspective of turbulence modelling, the influence of negative

νt on the modeled Reynolds stresses with RANS constitutive expression 2νt 〈sij〉 is

negligible, owning to the small magnitude of mean shear in this region (y/h ≈ 6.0). In

contrast, as seen in Fig. 3.11(b) for the 60◦ rib case, large area of negative νt is detected

close to the rib crest (1.0 < y/h < 3.0). Near this region, strong inhomogeneity of

mean flow exists (see, Fig. 3.3(b)), therefore, the mean strain rate cannot be neglected.

As a consequence, it would be inappropriate to model Reynolds stresses by 2νt 〈sij〉
for this case while imposing the positive νt. Based on the above analysis, it can be

concluded that the dominant turbulent behaviors for the V-shaped rib cases cannot be

well captured by RANS using turbulence models of the eddy viscosity type, and other

numerical methods, such as LES, must be chosen for potential numerical investigation.

The area below the rib height that can be captured by the camera decreases as the

rib inclination angle decreases. In the 60◦ rib case, about half of the regions below the

rib height can be seen by the camera, thus it can be used to further investigate the

turbulent motions in this region for the V-shaped rib cases. Fig. 3.10(b) illustrates

the profiles of −〈u′v′〉 for the 60◦ and 90◦ rib cases at x/h = 4.0 including regions

below the rib height. As seen in the figure, the value of −〈u′v′〉 for the V-shaped rib

case switches from positive to negative near the top of the ribs (y/h = 1.0). As shown



CHAPTER 3. EXPERIMENT STUDY OF EFFECTS OF V-SHAPED RIBS 44

〈u ′u ′〉 / Ub
2

y
/h

0.00 0.05 0.10
1.0

4.0

7.0

10.0
α30P0

α45P0

α60P0

α90P0

(a) Profiles of 〈u′u′〉

〈v ′v ′〉 / Ub
2

y
/h

0.00 0.02 0.04
1.0

4.0

7.0

10.0
α30P0

α45P0

α60P0

α90P0

(b) Profiles of 〈v′v′〉

Figure 3.12: Profiles of Reynolds normal stresses at x/h = 1.0 in plane P0 for different

rib cases (for clarity, only about 10% of the measured points are shown).

in Fig. 3.4(a), the mean velocity gradient ∂〈u〉/∂y switches its sign around the rib top

(where 〈u〉 reaches its maximum value). As a consequence, the dominant production

term for −〈u′v′〉, i.e. −〈v′v′〉 ∂ 〈u〉 /∂y, switches sign around the rib top as well.

This well explains the sign-switching pattern of −〈u′v′〉 observed in Fig. 3.10(b). It

is also interesting to observe that the magnitude of −〈u′v′〉 below the rib height is

significantly larger than that above ribs for the 60◦ rib case.

To study the effects of different angled ribs on the turbulent kinetic energy (TKE),

Fig. 3.12 plots the profiles of the measured Reynolds normal stresses (i.e. 〈u′u′〉 and
〈v′v′〉) at x/h = 1.0 in plane P0 for different rib cases. As seen from the figures, both

〈u′u′〉 and 〈v′v′〉 in the perpendicular rib case are enhanced in the region 1 < y/h < 6

compared with the value near the smooth top wall. However, no noticeable enhance-

ment of the Reynolds normal stresses by the V-shaped ribs can be observed, which is

consistent with the observation of −〈u′v′〉 in Fig. 3.10(a). In fact, it can be seen in

Fig. 3.12(a) that 〈u′u′〉 near the bottom wall (1.2 < y/h < 5.0) for the 60◦ rib case is

even smaller than that near the top wall.

To further understand the suppression mechanism of turbulent intensity for the
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V-shaped rib cases, the governing equation for the Reynolds stress is considered

〈uk〉
∂ 〈uiuj〉
∂xk

= Pij +Dij +Πij + ǫij (3.7)

where the four terms on RHS are production term, turbulent diffusion term, pressure-strain

redistribution term and turbulent dissipation term, respectively. The production term

is of particular interests, which can be written as

Pij = −〈u′
iu

′
k〉

∂ 〈uj〉
∂xk

−
〈
u′
ju

′
k

〉 ∂ 〈ui〉
∂xk

(3.8)

Due to the constraint of the planar PIV system, only two components of turbulence

fields can be measured. Considering the geometric symmetry, both ∂ 〈u〉 /∂z and

∂ 〈v〉 /∂z are zero in plane P0, thus the production terms for 1
2
〈u′u′〉 and 1

2
〈v′v′〉 (1

2

is added to simplify the expression) can be expressed as

P11 = −〈u′u′〉 ∂ 〈u〉
∂x︸ ︷︷ ︸

P11−n

−〈u′v′〉 ∂ 〈u〉
∂y︸ ︷︷ ︸

P11−s

(3.9)

P22 = −〈u′v′〉 ∂ 〈v〉
∂x︸ ︷︷ ︸

P22−s

−〈v′v′〉 ∂ 〈v〉
∂y︸ ︷︷ ︸

P22−n

(3.10)

In Section 3.4, I demonstrated that the primary shear (∂ 〈u〉 /∂y) above the ribs is

no longer dominant for the V-shaped rib cases, and the corresponding inclination

and magnitude of the principal stretch is significantly altered by extra mean shears

for these flows. Since special attention is deserved for the extra mean shear when

studying turbulent motions [55], the production terms P11 and P22, which are part

of the production term for the TKE, are further split into contributions from the

Reynolds normal stress and Reynolds shear stress components, as shown in Eqs. (3.9)

and (3.10). As such, the terms P11−n and P11−s represent the production of TKE due

to the Reynolds normal stress 〈u′u′〉 and Reynolds shear stress −〈u′v′〉, respectively.
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Figure 3.13: Profiles of production terms for the Reynolds normal stresses in plane

P0. Terms P11−n, P11−s, P22−s and P22−n are defined in Eqs. (3.9) and (3.10) (for

clarity, only about 10% of the measured points are shown).

Obviously, P11−s is the production by the primary shear, and the other terms are

relevant to the extra shears.

The profiles of the four terms in Eqs. (3.9) and (3.10) at different streamwise

locations for the 90◦ and 45◦ rib cases are plotted in Fig. 3.13. Note that the scale for

the x coordinate (i.e. P/(U3
b /h)) in Fig. 3.13(a) is 20 times of that in Fig. 3.13(b),

which leads to the conclusion that turbulent production levels above the ribs for

the V-shaped rib cases are much lower than that for the perpendicular rib case. As

illustrated in Fig. 3.13(a), the production term P11−s generated by the primary shear

rate is dominant for the perpendicular rib case, which always produces a positive
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contribution to TKE in the streamwise direction in the present flow. In contrast, for

the 45◦ rib case shown in Fig. 3.13(b), the value of P11−s is almost negligible, which

is a consequence of the significant suppression of the primary shear rate (Fig. 3.9(b))

and −〈u′v′〉 above the ribs (Fig. 3.10). Negative-valued P11−n are also observed

at x/h = 0 (the leeward face of the rib) in the 45◦ rib case. This is because the

maximum 〈u〉 occurs slightly higher than the rib in the downstream location of the

ribs (Fig. 3.3(b)), and ∂ 〈u〉 /∂x at the rib height near the leeward face of the ribs is

positive as a consequence.

It is interesting to observe in Fig. 3.13(b) that the production of 1
2
〈u′u′〉 and

1
2
〈v′v′〉 for the 45◦ rib case is primarily contributed by the interaction between the

extra mean shear and itself, i.e. P11−n and P22−n, respectively. Furthermore, the

terms P11−n and P22−n tend to possess opposite signs, which is consistent with the

observation when studying the mean shear pattern in Section 3.3.4: the magnitude of

∂ 〈w〉 /∂z is relatively small in plane P0 compared with that of ∂ 〈u〉 /∂x or ∂ 〈v〉 /∂y.
With this evidence, I estimate ∂ 〈u〉 /∂x ≈ −∂ 〈v〉 /∂y. Furthermore, with relatively

negligible P11−s and P22−s, the net production by P11 and P22 for the TKE for the

V-shaped rib cases can be approximated by

P11 + P22 ≈ P11−n + P22−n ≈ (〈u′u′〉 − 〈v′v′〉) ∂ 〈v〉
∂y

(3.11)

The suppressed turbulent intensity for the V-shaped rib cases can also be un-

derstood from the perspective of streamline curvature. Townsend [56] analytically

proved that the direction of energy interchange between mean flow and turbulent

motions (i.e. stable or unstable) depends on the type of curvature, which is also

confirmed by subsequent numerical and experimental research (see the review by Pa-

tel and Sotiropoulos [55]). Gillis and Johnston [57] experimentally studied turbulent

boundary layers over a convex wall and observed that the Reynolds shear stress and

TKE are quite sensitive to streamline curvature. In particular, they observed that
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Figure 3.14: Profiles of Reynolds stresses 〈u′u′〉 at different spanwise locations (for

clarity, only about 10% of the measured points are shown).

−〈u′v′〉 is reduced throughout the turbulent boundary layer, and vanished rapidly

for cases of large curvature. Besides, TKE is also decreased across the entire turbu-

lent boundary layer as the convex curvature increases. These results are consistent

with the observations near the channel midspan for the V-shaped rib cases, since

the streamlines near the channel midspan for the V-shaped rib cases possess convex

curvature as explained in Section 3.3.3.

In order to further investigate these highly-disturbed 3-D turbulent flows, the

spanwise variation of the turbulent motions needs to be studied. Fig. 3.14 shows the

profiles of 〈u′u′〉 at different spanwise locations for the 90◦ and 45◦ rib cases. Only

〈u′u′〉 in the 45◦ rib case is shown here, since similar trends can be observed for

the other two Reynolds stresses in all V-shaped rib cases. The streamwise locations

of these profiles in different x-y planes are along the rib inclination and at one rib

height distance away. In other words, for the 45◦ rib case, the streamwise locations

(x/h) of plotted profiles in planes P0, P1 and P2 are 1.0, 2.2 and 3.4, respectively. As

seen in the figures, the Reynolds stress 〈u′u′〉 in the perpendicular rib case increases

in the region 4.0 < y/h < 9.0 and decreases in the region 1.5 < y/h < 4.0 as
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Figure 3.15: Spanwise variation of Reynolds stress ratio 〈u′u′〉 / 〈v′v′〉 for different rib
cases at x/h = 1.0 (for clarity, only about 10% of the measured points are shown).

the sidewall is approached, whereas that in V-shaped rib case increase in the region

above ribs (y/h > 1). Based on the results and analysis in the previous section,

it is known that the turbulent intensity above the ribs is enhanced and suppressed

by the perpendicular and V-shaped ribs near the channel midspan, respectively. The

results shown in Fig. 3.14 indicate that the effect (either enhancement or suppression)

generated by the ribs is reduced as the sidewall is approached. Tachie and Shah [25]

observed a similar trend in a high aspect ratio channel flow over inclined ribs.

The anisotropy of turbulent flows is always of great interest from a numerical

simulation point of view. To study the large-scale anisotropy of turbulent motions,

Fig. 3.15 illustrates profiles of the ratio between 〈u′u′〉 and 〈v′v′〉 for different rib

cases. As shown in the figures, the ratio 〈u′u′〉 / 〈v′v′〉 for the perpendicular rib case

are significantly larger than 1.0, whereas for the 45◦ rib case this ratio is much closer

to 1.0. Note that in the region 1.5 < y/h < 4.0 for the 45◦ rib case on plane P0

and P1, this ratio is even smaller than 1.0, which was also observed by Gillis and

Johnston [57] in turbulent flows over convex curvature walls. This is consistent with

the small magnitude of production for 〈u′u′〉 and larger positive production for 〈v′v′〉
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Figure 3.16: Isopleths of streamwise two-point auto-correlation function R11 (x, y)

centered at (x/h, y/h) = (1.0, 1.2) for different rib cases. Outermost contour is 0.5;

increment is 0.1. Inclinations of upstream and downstream R11 are marked by dashed

lines.

in this region of the 45◦ rib case shown in Fig. 3.13(b). The results indicate that the

turbulence above the V-shaped ribs is more isotropic compared with the perpendicular

rib case. In addition, with reference to Eq. 3.11, the isotropy of the turbulent motions

for the V-shaped rib cases indeed suppresses their turbulent intensity and vice versa.

It can also be observed in Fig. 3.15 that the variation in the profiles between P0

and P1 for the perpendicular rib case is obviously larger than that for the V-shaped

rib case, especially in the region 1.2 < y/h < 5.5, which is also observed in Fig. 3.14.

It is evident that the effect of the sidewall is rapidly felt as the location departs from

the channel midspan for the perpendicular rib case, whereas that for the V-shaped rib

cases is less pronounced between plane P0 and P1 in despite the existence of strong

secondary flows. This suggests that the turbulent statistics shown in plane P0 can

also be used to represent the flow in the center third of the channel for the V-shaped

rib cases at the studied Reynolds number.
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3.3.6 Turbulent structures

The two-point auto-correlation of velocity fluctuations is a useful tool to infer turbu-

lent structures and eddies [56]. Fig. 3.16 shows the two-point correlation R11 (x, y) in

plane P0 for the 90◦ and 45◦ rib cases. Here, R11(x, y) is defined as

R11(x, y) =

〈
u′(x, y)u′

ref

〉
√〈

u′ (x, y)2
〉√〈

u′
ref

2
〉 (3.12)

where u′
ref is the velocity fluctuation at the reference point and (x, y) is the relative

position to the reference point. Following Coletti et al. [47], the reference point

is chosen at (x/h, y/h) = (1.0, 1.2). The outermost contour level is at 0.5 and the

increment between two adjacent levels is 0.1. The size of the isopleths shown in

the figures can be interpreted as turbulent length scales. As seen in Figs. 3.16(a)

and 3.16(b), the extension of the isopleths in both the x and y directions for the

perpendicular rib case are larger than those for the 45◦ rib case. This is consistent

with the observation from Fig. 3.10 and Fig. 3.12 that the turbulent intensity is

suppressed for the V-shaped rib cases above the ribs. The result, i.e. extension and

shape, for the current perpendicular rib case is similar to the observation by Coletti

et al. [47].

The results of the two-point auto-correlation from the experiments can also give

some useful suggestions for potential numerical simulation. It is observed that R11

in both cases cannot reach 0 before x/h = 3.5 or even x/h = 7.0 (not shown here).

Therefore, it would be inappropriate to conduct simulations (using either DNS or

LES) for the Reynolds numbers (11500−13000) studied in this chapter with only one

rib in the computational domain. By doing so, the phase differences of the strong

turbulent vortices generated at different ribs may not be well resolved.

The angle of the inclination of R11 is associated with the average inclination of

the hairpin packets [58]. Volino et al. [58] proposed to use a least-squares fit to the
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points farthest away from the reference point at contour levels 0.5, 0.6, 0.7, 0.8 and

0.9 both upstream and downstream. They observed 13.2◦ ± 2.5◦ and 15.8◦ ± 3.3◦

inclination angle on the smooth and rough wall, respectively, in the near-wall region.

In this study, I determine the inclination angles for the upstream and downstream

R11 isopleths individually, which are marked by two dashed lines in the figures. In

Fig. 3.16(a), the inclination angles of the upstream and downstream R11 in the per-

pendicular rib case are almost parallel at about 3◦. It is interesting to note that the

upstream and downstream R11 for the 45◦ rib case is of opposite inclination angle

(−20◦ and 18◦, respectively) with respect to the streamwise direction. This indicates

that for the V-shaped rib cases, turbulent structures at the reference point are more

correlated to the flow motions above the reference point. In fact, from Fig. 3.4(b), it

is evident that the mean vertical velocity 〈v〉 is negative above the ribs, indicating an

apparent downwash flow toward the ribs.

To further investigate the generation of turbulent motions for different rib cases,

the conditional averaged Reynolds shear stress −〈u′v′〉 is calculated based on the

quadrant events, i.e., Q1 (for u′ > 0 and v′ > 0), Q2 (for u′ < 0 and v′ > 0), Q3 (for

u′ < 0 and v′ < 0) and Q4 (for u′ > 0 and v′ < 0). Quadrant decomposition can give

information about the source of enhancement (or suppression) of turbulent motions,

and thus offer insight to the turbulent coherent structures [59]. Within the four types

of events, Q2 and Q4 are of special interest, since they are dynamically related to the

hairpin structure. It is known that the Q2 event is generated by the outward motion

of the hairpin head and the low momentum near-wall fluid pumped up by its vortex

legs, which is also associated with the near-wall streaks [60].

Figure 3.17 shows the profiles of each event at x/h = 1.0 in plane P0 for the 90
◦ and

45◦ rib cases. Here, only events for which |u′v′| ≥ 2.0 urmsvrms are counted. Note that

for the events near the bottom and top wall have opposite physical interpretations.

To be more specific, ejection and sweep events near the bottom wall are associated
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Figure 3.17: Quadrant decomposition at x/h = 1.0 in plane P0 for different rib cases

(for clarity, only about 10% of the measured points are shown).

with Q2 and Q4, respectively, whereas those near the top wall are associated with

Q3 and Q1, respectively. As seen from Fig. 3.17(a), in the perpendicular rib case,

the sweep event (Q4) in the region 1 < y/h < 4 is slightly decreased in comparison

with that near the smooth top wall, whereas the ejection event (Q2) is significantly

increased in the region 1 < y/h < 7. Kim et al. [32] analyzed DNS data of a chan-

nel flow using quadrant decomposition and observed that the contributions to the

Reynolds shear stress are dominated by sweep and ejection events below and above

y+ ≈ 12, respectively. The results shown in Fig. 3.17(a) indicate that the generation

mechanism of turbulent intensity near the channel midspan of the perpendicular rib

case is similar with smooth channel flows, which was also concluded by Tachie and

Shah [25] for 2-D turbulent flows over transverse ribs. On the other hand, for the

45◦ rib case, no outstanding event can be observed, all four event contributions are

almost of the same magnitude as illustrated in Fig. 3.17(b), which is consistent with

the suppression of the Reynolds shear stress by the V-shaped ribs. It is also inter-

esting to note that in both cases Q1 and Q3 near the bottom wall and Q2 and Q4

near the top wall are comparable. Kim et al. [32] also shown a similar result in fully
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developed turbulent channel flow. This is due to the fact that there is no associated

dynamic structure to distinguish these events (Q1 and Q3 near the bottom wall; Q2

and Q4 near the top wall).

With the evidence from the R11 distribution and quadrant decomposition, it can

be deduced that the vortex shedding by the V-shaped ribs cannot efficiently penetrate

into the core flow as for the perpendicular rib case. As seen in Fig. 3.6 and Fig. 3.12,

the magnitude of 〈v′v′〉 is much larger than that of 〈v〉2 for the perpendicular rib case,

whereas the opposite occurs for the V-shaped rib cases. Therefore, the self-induction

mechanism [61, 60] elevates the vortex shed from the perpendicular rib further away

from the bottom wall, and introduces dynamic coherence in the core flow. For the

V-shaped rib cases, the strong downwash by the mean flow significantly suppresses the

vortex penetration above ribs. The inclined rib geometry can introduce a streamwise

component of vortex shedding for the V-shaped rib cases. However, since the mean

shear above the V-shaped ribs is of opposite direction to that for the perpendicular

rib case (Fig. 3.9(a)), any vortices with a positive inclination with respect to the

streamwise direction will be compressed (suppressed) by mean shear in the outer

layer, rather than being stretched (enhanced) as for the perpendicular rib case. In

other words, the turbulent intensity above the ribs is relatively less associated with

motions near the bottom wall, and the turbulent vortices over the V-shaped ribs are

squeezed below the rib height.

The value of λci (swirling strength) can be used to identify the swirling motions in

instantaneous turbulent flows without being obscured by shear or convection velocity,

which is defined as the absolute value of the imaginary part of the eigenvalues for

the instantaneous velocity gradient tensor [60]. Fig. 3.18 shows the instantaneous

contours of negative valued λciωz |ωz| (retrograde swirling) in plane P0 for the 90
◦ and

60◦ rib cases. With reference to the velocity fluctuation vectors plotted in the figures,

swirling strength does quite well in detecting vortical cores. As seen in Fig. 3.18(a),
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Figure 3.18: Detection of retrograde swirling motions by negatively-valued swirling

strength (λciωz |ωz| < −9× 10−3U2
b /h

2) for different rib cases. A clear boundary for

the 90◦ rib case is marked by a dashed line.

retrograde swirling motions in the perpendicular rib case are clustered around y/h =

1, which is similar to the observation by Coletti et al. [47]. A clear boundary of

retrograde swirling is observed in the perpendicular rib case, which is marked using a

dashed line in Fig. 3.18(a). This boundary inclines with streamwise direction at about

26◦. By using Galilean decomposition for a similar geometry at a higher Reynolds

number, Wang et al. [62] observed a similar pattern but with a smaller inclination

angle (20◦). In contrast to the 90◦ rib case, as seen in Fig. 3.18(b), retrograde swirling

motions in the 60◦ rib case are clearly confined to the region under and near the rib

height (specifically, below y/h = 1.5). Spanwise vortical structure can correlate

velocity fluctuation u′ and v′ and generate Reynolds shear stress −〈u′v′〉. Therefore,
the results shown in Fig. 3.18 are consistent with the profiles of −〈u′v′〉 illustrated in

Fig. 3.10.

The turbulent velocity field can be projected onto a space, the dimension of which

is denoted as M , spanned by some basis functions to extract information in different
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scales, i.e.

un =
M∑

i=1

ani φ
i (3.13)

where un represents the nth realization of a turbulent field, φi represents the ith

basis function and the corresponding coefficient is denoted by ani . For a measurement

with N samples and each sample consisting of M simultaneous measured variables,

a matrix notation can be employed to express Eq. 3.13 as

U = AΦ (3.14)

where U is an N ×M matrix constructed from the experiment data, A is an N ×M

matrix constructed from coefficients ani , and each column of Φ is the corresponding

basis function φi.

From a CFD point of view, the basis function φi is usually chosen as a Fourier

series, Legendre polynomials, or Chebyshev polynomials in the spectral method [63].

From a signal processing perspective, Fourier series and wavelet are probably the most

straightforward basis functions (some research works are also devoted to introduce

wavelet in CFD, such as Stefano and Vasilyev [64]). These basis functions are pre-

determined with respect to their mathematical properties (especially orthogonality),

yet lack a clear physical interpretation. In contrast, the basis function of POD is de-

fined during post processing so that the optimum approximation is achieved for each

M . Therefore, the basis functions of POD can be interpreted as certain persistent

turbulent structures. The first few basis functions are of particular interest since they

represent the most energetic turbulent structures.

In the present chapter, the so-called ‘snapshot POD’ proposed by Sirovich [65]

is used. A detailed description about the algorithm and some relevant concepts are

presented by Meyer et al. [66], which is essentially a singular value decomposition



CHAPTER 3. EXPERIMENT STUDY OF EFFECTS OF V-SHAPED RIBS 57

x / h

y
/h

0.0 2.0 4.0 6.00.0

2.0

4.0

6.0

8.0

10.0

(a) Mode 1

x / h
y

/h

0.0 2.0 4.0 6.00.0

2.0

4.0

6.0

8.0

10.0

(b) Mode 2

x / h

y
/h

0.0 2.0 4.0 6.00.0

2.0

4.0

6.0

8.0

10.0

(c) Mode 3

x / h

y
/h

0.0 2.0 4.0 6.00.0

2.0

4.0

6.0

8.0

10.0

(d) Mode 4

Figure 3.19: Basis functions of POD in the 90◦ rib case.
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Figure 3.20: Basis functions of POD in the 60◦ rib case.

(SVD) technique [67]. The SVD of matrix U can be expressed as

U = WΣVT (3.15)

where W is an N×N orthogonal matrix, V is an M×M orthogonal matrix, and Σ is

a positive-definite diagonal matrix with the same rank as U (usually N , because the

number of samples N is usually much smaller than M). The diagonal components

of Σ are organized in a descending order, and are defined as the ‘energy’ of the

corresponding basis function. The coefficient and basis function matrices in Eq. 3.14

can be calculated simply by A = WΣ and Φ = VT .

POD based on measured 4000 realizations of the fluctuating velocity field is used to
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extract some coherent structures for different rib cases. Fig. 3.19 and Fig. 3.20 show

the first 4 modes of the basis functions for the 90◦ and 60◦ rib cases, respectively. In

order to make the figures clear, only 25% of the measured points are shown in each

direction, and vectors are normalized by lengths. The percentage of energy for the

first 4 modes in the perpendicular rib case are 17.3%, 5.5%, 3.5% and 2.6% (28.9% in

total), respectively; those for the 60◦ rib case are 4.0%, 2.1%, 1.9% and 1.6% (9.6%

in total), respectively. Evidently, the fraction of energy held by the first four modes

for the V-shaped rib cases is much lower than that for the perpendicular rib case.

This can be attributed to the wider range of length scales induced by the strong

disturbance created by the V-shaped ribs in comparison with the perpendicular rib

case. Sen et al [68] compared the eigenvalue spectrum of POD for smooth and rough

walls, and also concluded that disturbance induced by roughness tends to lead to a

slower convergence rate.

As seen in Fig. 3.19 (a)-(b), as the mode increases, vortical structures in the

perpendicular rib case become more populated, smaller and closer to the bottom

wall. This can be understood as follows: the most energetic turbulent eddy motions

are triggered by the perpendicular ribs, and as they move away from the bottom

wall, their length scale increases due to convection, mixing and dissipation. As shown

in Fig. 3.20(a) for the 60◦ rib case, the flow field seems to be uniform with obvious

downward motions in the region away from the ribs and several distinct vortices

can be observed below the rib height (in the region which can be captured by the

camera). As shown in Fig. 3.20(b), the flow pattern revealed by mode 2 indicates

that there exists a distinct downward inclined line (formed by vectors with opposite

orientations) that slices the entire channel height into two parts. Furthermore, larger

and fewer vortices can still be observed below the rib height in comparison with those

exhibited in mode 1. As the mode continues to increase, the vortices below the rib

height disappear and more eddy structures appear near the dividing line shown in
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mode 2, indicating that the line and eddy motions around it are persistent for the

V-shaped rib cases.

The POD results for the V-shaped rib cases demonstrate that the most energetic

spanwise vortices are relatively confined below the rib height (y/h < 1.2), which is

consistent with the observation in Fig. 3.18(b). The less energetic vortices above

the ribs observed in Fig. 3.20 (b)-(d) do not possess any preferential direction, which

pattern is in obvious contrast with that shown in Fig. 3.19 for the perpendicular

rib case. This is associated with the highly-disturbed mean flows for the V-shaped

rib cases. As illustrated in Fig. 3.9, for the V-shaped rib cases, the strength of the

mean shear is relatively weaker for in the perpendicular rib case and the inclination

of its principal axis varies significantly along the vertical direction. Therefore, the

mean shear for the V-shaped rib cases cannot efficiently organize turbulent eddies

such that dynamical coherence occurs above ribs. Furthermore, the superposition of

these nonaligned turbulent vortices cannot efficiently form any energetic turbulent

eddies that correlate different velocity fluctuation components to further generate

TKE (in conjunction with the mean shear rate through the TKE production term).

Consequently, the suppressed turbulent intensity above the V-shaped ribs is expected.

3.4 Summary and conclusions

The highly-disturbed turbulent flows in a square duct with a bottom wall roughened

by V-shaped ribs are studied using PIV. In the comparative study, four cases with

different rib inclination angles are systematically tested. The statistics of the first

and second order moments are studied in terms of velocity, vorticity, shear rate and

Reynolds stresses. Coherent flow structures are analyzed using multiple tools, includ-

ing two-point auto-correlation coefficient, quadrant decomposition, swirling strength,

and POD.
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The measurement data clearly show that strong secondary flows are induced by

the V-shaped ribs, which appear as a pair of large-scale streamwise counter-rotating

vortices in the cross-stream directions. The mechanism underlying the generation of

these large-scale secondary flow structures lies in the interaction between different

mean vorticity components associated with geometrical skewness. Near the channel

midspan, high momentum velocity is convected very close to the rib crest; negative

mean spanwise vorticity is confined below the rib height; convex streamline curvature

is observed above the ribs; the angle between the principal axis of the mean strain

rate and the streamwise direction above the rib height is opposite to that for the

perpendicular rib case.

It is observed that turbulent intensity near the channel midspan is suppressed

above V-shaped ribs, while strong turbulent motions are confined below the rib

height. Investigations of individual production terms of the measured Reynolds nor-

mal stresses show that the main contribution to TKE, for the V-shaped rib cases,

comes from the interaction between the extra mean shear rate and Reynolds normal

stresses, rather than the primary shear and Reynolds shear stress as for the perpen-

dicular rib case. The ratio between different components of the Reynolds normal

stresses shows that it is more isotropic above the V-shaped ribs compared to the

perpendicular rib case.

An analysis based on the two-point auto-correlation coefficient shows that near

wall turbulent structures are strongly affected by secondary flows for V-shaped rib

cases. The turbulent motions above the V-shaped ribs are less associated with the

vortex shedding over the ribs compared with the perpendicular rib case. The ejection

event is significantly suppressed above the ribs for the V-shaped rib cases, which

is opposite to the perpendicular rib case. The results on swirling strength further

indicate that spanwise swirling motions are mainly concentrated below the rib height

in V-shaped rib cases. Through POD analysis, it is shown that for the V-shaped
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rib cases turbulent vortices above the ribs do not possess any preferential direction,

and therefore, the superposition of these vortices cannot form any energetic turbulent

eddies that correlate different velocity fluctuation components to effectively generate

Reynolds stresses.

Owing to the complexity of the flow and limited by current planar PIV, many

interesting questions on the highly-disturbed turbulent flows of V-shaped rib cases

remain unanswered. Further numerical investigations using large-eddy simulation are

therefore desired, which are currently being conducted as an extension of this project.



Chapter 4

Large-Eddy Simulation of

Turbulent Flow and Structures in a

Square Duct Roughened with

Perpendicular and V-shaped Ribs

In this chapter, a comparative study of V-shaped and perpendicular (transverse) rib-

roughened duct flows is conducted using LES. The numerical results are validated

against with the acquired PIV experimental data in Chapter 3. The objective of

this chapter is to refine the investigation of the physical mechanisms underlying the

organized secondary flows and their effects on turbulence statistics and structures.

The remainder of this chapter is organized as follows. In Section 4.1, the governing

equations, numerical algorithms and test cases are described. In Section 4.2, the

LES predictions of the mean flows and turbulence statistics in various rib cases are

validated against the experimental data, and the effects of rib geometries on turbulent

flow structures are investigated using multiple tools such as vortex identifiers, two-

62
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Figure 4.1: Computational domain, coordinates and grid system. In order to make the

Figs. 4.1(a) and (b) readable, only 0.5% of grid points are shown. The rib inclination

angle (denoted as α) is set to 45◦, 60◦ and 90◦ in this study. The origin of the vertical

coordinate (y = 0) is located at the geometrical center of the cross-stream plane of

the square duct.

point correlation functions and energy spectra. Finally, in Section 4.3, major findings

of this research work are summarized.
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4.1 Test cases and numerical algorithm

4.1.1 Test cases

Figure 4.1 shows the geometry of the computational domain and body-fitted mesh

used in the simulations. The streamwise, vertical and spanwise coordinates are de-

noted using x, y and z, respectively. Periodically repeated V-shaped ribs are mounted

on the bottom wall of a closed duct. The origin of the coordinate system is placed at

the leeward face of the first rib in the streamwise direction, and at the geometrical

center of the duct in the cross-stream plane. Both cross-sections of the duct and ribs

are square-shaped. The side length of the duct is 2δ and the rib height h is 10% of

the duct height (i.e., h = 0.2δ). The streamwise period of ribs is lp = 1.6δ, which

gives a pitch-to-height ratio of lp/h = 8. Three different V-shaped ribs are studied

with the inclination angle set to α = 90◦, 60◦ and 45◦. For the α = 90◦ case, the

‘V-shaped’ ribs degenerate to transverse ribs, aligned in the spanwise direction. The

90◦ case is popular in the literature, and following the usual convention, it will also

be referred to as the perpendicular rib case hereafter.

The computational domain consists of three rib periods and its size is Lx × Ly ×
Lz = 4.8δ × 2δ × 2δ in the x, y and z directions, respectively. All of the numerical

simulations are conducted based on 330× 176× 180 body-fitted grid points. In order

to make the figure readable, only 0.5% of the grid points are illustrated in Fig. 4.1.

The mesh is refined near all solid walls. As seen in Fig. 4.1(c), in order to well resolve

the complex flow physics in the near-rib region, 30 grid points are used to cover both

the rib width (in the x-direction) and the rib height (in the y-direction).

The flow is fully-developed in the streamwise direction and is driven by a mean

streamwise pressure gradient. The nominal Reynolds number is fixed at Reb =

Ubδ/ν = 5, 000, where Ub denotes the streamwise bulk mean velocity and is defined
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as

Ub =

∫ δ

−δ

∫ δ

−δ

∫ Lx

0

〈ū〉Hdxdydz

/∫ δ

−δ

∫ δ

−δ

∫ Lx

0

Hdxdydz . (4.1)

Here, H is a step function, with the value of H = 0 inside ribs and H = 1 otherwise.

Furthermore, in order to compare LES and experimental results, in the following

analysis, the bulk mean velocity in the central x-y plane (Ubc) is also used as the

velocity scale for non-dimensionalization, which can be expressed as

Ubc =

(∫ δ

−δ

∫ Lx

0

〈ū〉Hdxdy

/∫ δ

−δ

∫ Lx

0

Hdxdy

)∣∣∣∣
z/δ=0

. (4.2)

This is necessary to validate the results because the 3-D bulk mean velocity (Ub) can-

not be directly measured using the planar PIV system. In the current simulations, the

Reynolds number based on Ubc and half duct height δ (Rebc = 2δUbc/ν) is calculated

to be 10, 800, 11, 000 and 11, 800 for the 90◦, 60◦ and 45◦ rib cases, respectively, which

are close to the measured values in the last chapter. Periodic boundary conditions

are imposed at the inlet and outlet boundaries of the computational domain. No-slip

boundary conditions are applied to all solid surfaces.

4.1.2 Numerical algorithm

The filtered governing equations for continuity and momentum in a general curvilinear

coordinate system are expressed in Eqs. (2.1) and (2.2). In the filtered momentum

equation, due to the filtering operation on the convection term, the so-called SGS

stresse tensor τij = uiuj − ūiūj appears in Eq. (2.2) and needs to be modelled in

order to close the governing equations. In this paper, the dynamic Smagorinsky

model (DSM) [69] is employed to model the SGS stresses, viz.,

τ ∗ij = τij −
τkk
3
δij = −2CS∆̄

2
∣∣S̄ij

∣∣ S̄ij , (4.3)

where ∆̄ is the filter size at the grid level determined as the cubic root of control

volume, and
∣∣S̄ij

∣∣ =
(
2S̄ijS̄ij

)1/2
represents the norm of the resolved strain rate tensor
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defined as S̄ij = (∂ūi/∂xj+∂ūj/∂xi)/2. The model coefficient CS can be dynamically

calibrated using the least-squares approach, viz.,

CS = − LijMij

MijMij
, (4.4)

where Lij = ˜̄uiūj − ˜̄ui˜̄uj and Mij = αij − β̃ij , with αij = 2 ˜̄∆
2 ∣∣∣˜̄Sij

∣∣∣ ˜̄Sij and βij =

2∆̄2
∣∣S̄ij

∣∣ S̄ij . In the above equations, filtered quantities at the grid level are denoted

using an overbar, while filtered quantities at the test-grid level associated with the

dynamic procedure are denoted using a tilde. The coefficient CS is filtered to remove

spurious fluctuations and then clipped to be positive to ensure the stability of the

simulation. In order to perform the dynamic procedure, the ratio between the filter

sizes at the test-grid and grid levels is set to ˜̄∆/∆̄ = 2.

A finite volume method (FVM) is used for discretizing the governing equations

based on a body-fitted collocated grid system. The computational code is developed

using FORTRAN 90/95 programming language and parallelized following the message

passing interface (MPI) standard. A second-order central difference scheme is used

for the spatial discretization of both the convection and viscous terms. The second-

order Runge-Kutta scheme is utilized for time integration. In other words, a second-

order accuracy is achieved with respect to both spatial and temporal discretizations.

Within each sub-step of the Runge-Kutta scheme, a fractional-step method [70] is

implemented and a pressure correction equation is solved using the parallel algebraic

multigrid solver BoomerAMG [71] provided by the PETSc library [40, 41, 42]. The

time step is fixed to 2× 10−4δ/Ub, and the resultant Courant-Friedrichs-Lewy (CFL)

number is approximately 0.2. The momentum interpolation method of Rhie and

Chow [39] is used to establish the relation between the cell-face mass flux and the

pressure in adjacent control volumes in order to prevent the ‘checkerboard’ effect in

the pressure field typical of a collocated grid system. A detailed description about

this FVM code is provided in Chapter 2.
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Each simulation was started by running with zero velocity initialization to obtain

a laminar flow solution. After that, artificial perturbations were added to trigger

turbulence and the simulation was continued for an extended time period of 62.5 flow-

through time (i.e., 300δ/Ub) until the turbulent flow field became fully developed and

statistically stationary. Then, turbulence statistics were collected in a time period

of over approximately 50 flow-through time (i.e., 240δ/Ub). In the analysis of the

resolved turbulent flow field, the resolved instantaneous velocity ūi is decomposed

as ūi = 〈ūi〉 + ū′′
i , where 〈ūi〉 denotes mean velocity averaged over time and three

rib pitches, and ū′′
i represents the resolved velocity fluctuations. During the process

of gathering statistics, it is observed that the convergence rate is apparently slower

in the perpendicular rib case compared to the V-shaped rib cases. This is because

the temporal scales are much larger in the perpendicular rib case in comparison with

the V-shaped rib case (which will be demonstrated in Section 4.2.4). In view of

this, the spanwise symmetry is applied to the calculation of the flow statistics in the

perpendicular rib case. All the simulations were conducted using WestGrid (Western

Canada Research Grid) supercomputers. For each simulated case, the computation

was carried out with 220 cores using approximately 300,000 CPU hours.

4.2 Results and discussion

4.2.1 Examination of grid resolutions

To carefully evaluate the grid resolution used to perform LES, the Kolmogorov length

scale is calculated, which is defined as η = (ν3/ε)
1/4

. Following De Stefano and

Vasilyev [72], the total dissipation rate is estimated as the summation of viscous and

SGS dissipation rates, i.e., ε ≈ εvis + εsgs. The viscous and SGS dissipation rates are

defined as εvis = ν〈∂ū
′′

i

∂xj

∂ū′′

i

∂xj
〉 and εsgs = −〈τ ′′ijS̄ ′′

ij〉, respectively. To demonstrate the
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(a) 90◦ rib case (b) 45◦ rib case

Figure 4.2: Contours of the ratio of the SGS dissipation (εsgs) to the total dissipation

(ε) in the central plane (at z/δ = 0) for different rib cases.

(a) 90◦ rib case (b) 45◦ rib case

Figure 4.3: Contours of the ratio of the grid size to the Kolmogorov length scale

(∆̄g/η) in the central plane (at z/δ = 0) for different rib cases.

SGS model effects, Fig. 4.2 plots the contours of εsgs/ε in the central x-y plane for the

90◦ and 45◦ rib cases. As seen in the figure, for both cases, the value of εsgs/ε above

the rib height is generally less than 10%. The peak value of εsgs/ε appears below the

rib height is approximately 23% and 42% for the 90◦ and 45◦ rib cases, respectively.
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To develop a better understanding of the level of the SGS dissipation rate in this rib-

roughened wall shear flow, it is useful to compare the peak value of εsgs/ε observed

here with those in the LES studies of Vreman [73] on turbulent plane channel flows and

of Meyers and Sagaut [74] on homogeneous isotropic turbulence. In these two reported

LES studies, the peak value of εsgs/ε typically reaches up to 50–90%. This implies

that the current numerical simulation represents fine-resolution LES. Figure 4.3 shows

contours of the ratio of the grid size to the Kolmogorov length scale (∆̄g/η) in the

central plane for two different rib cases. Here, grid size ∆̄g is defined as the maximal

dimension of a grid cell in all three directions, i.e., ∆̄g = max(∆̄x, ∆̄y, ∆̄z). In all the

current simulations, the value of ∆̄g/η never exceeds 30 over the entire computational

domain. As shown in Fig. 4.3, the maximum of ∆̄g/η occurs between two adjacent

ribs below the rib height, which is approximately 20. At this location, the strong

shear layer created by the upstream rib approaches the bottom wall immediately

after the recirculation bubble (which will be demonstrated later Section 4.2.2). In

order to evaluate the grid resolution used in this research, it is beneficial to compare

the current peak value of ∆̄g/η with those of other LES studies. For instance, in the

LES of turbulent plane channel flows conducted at Reτ = 395 and 590 by Nicoud et

al. [75], the streamwise grid resolution is approximately five times coarser than that

required for DNS, which leads to an estimate of ∆̄g/η ≈ 50. In contrast, the value

of ∆̄g/η shown in Fig. 4.3 here is smaller than 20, further confirming the previous

analysis of Fig. 4.2 that the current LES is performed with a fine-grid resolution.

4.2.2 Mean velocities

Figure 4.4 compares the predicted vertical profiles of 〈ū〉 against the experimental

data [33] in the central and off-center x-y planes located at (x/δ, z/δ) = (0.2, 0.0)

and (x/δ, z/δ) = (0.8, 0.67), respectively. In the figure presentations, the results



CHAPTER 4. LES STUDY OF EFFECTS OF V-SHAPED RIBS 70

〈u〉 / Ubc

y
/δ

-0.5 0.0 0.5 1.0 1.5
-1.0

-0.5

0.0

0.5

1.0

V45 Exp.
V45 LES
V60 Exp.
V60 LES
V90 Exp.
V90 LES

Reverse flow

(a) Central vertical plane

〈u〉 / Ubc

y
/δ

-0.5 0.0 0.5 1.0 1.5
-1.0

-0.5

0.0

0.5

1.0

V45 Exp.
V45 LES
V60 Exp.
V60 LES
V90 Exp.
V90 LES

(b) Off-central vertical plane

Figure 4.4: Comparison of the vertical profiles of 〈ū〉 against PIV measurement

data for different rib cases in the central and off-central vertical planes located at

(x/δ, z/δ) = (0.2, 0.0) and (x/δ, z/δ) = (0.8, 0.67), respectively. For clarity, only 30%

of the measured data are plotted. Note that the measured data below rib height (i.e.,

y/δ ≤ −0.8) is unavailable.

associated with three test cases (for α = 90◦, 60◦ and 45◦) are denoted using V90,

V60 and V45, respectively. As seen in Fig. 4.4, although the vertical profiles of the

non-dimensionalized mean streamwise velocity 〈ū〉/Ubc acquired from LES are in gen-

eral agreement with the experimental results, small differences exist. Specifically, as

shown in Fig. 4.4(b), in the off-center plane at z/δ = 0.67, the magnitude of 〈ū〉 is

slightly underpredicted in the center of the channel around y/δ = 0. As indicated

in Fig. 4.4(a), it is clear that there is a recirculation region (featuring a negatively-

valued streamwise velocity 〈ū〉) in the leeward region of the rib below the rib height.

As the flow passes over the rib crest (at y/δ = −0.8), a boundary layer briefly de-

velops and soon separates from the rib top surface, forming a strong shear layer at

about the same elevation. It is also interesting to observe in Fig. 4.4 that the max-

imal value of 〈ū〉 in the two V-shaped rib cases occurs very close to the rib height
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(y/δ = −0.8). In contrast, as shown in Fig. 4.4(a), in the perpendicular rib case, the

maximal value of 〈ū〉 occurs approximately at y/δ = 0.1, a location that is slightly

above the channel center. From Fig. 4.4, it is evident that in both the central and

off-center vertical planes, the strength of the shear layer created by the rib top surface

(indicated by the strength of the vertical gradient of the mean streamwise velocity

∂〈ū〉/∂y at y/d = −0.8) is drastically enhanced in the two V-shaped (V45 and V60) rib

cases in comparison with the perpendicular (V90) case. The differences in the strength

of the mean vertical velocity gradient in different rib cases will further lead to differ-

ences in the turbulence kinetic energy (TKE) production rate (and consequently, the

distribution of TKE), which will be analyzed later in Section 4.2.3.

Figure 4.5 compares the contours of the mean streamwise velocity 〈ū〉 superim-

posed with in-plane streamlines in the central plane (located at z/δ = 0) for different

rib cases. From the figure, it is clear that a large recirculation region is present im-

mediately behind the rib (indicated using ‘A’ in Fig. 4.5) in each test case. From

Fig. 4.5(a), the reattachment length in the perpendicular rib case is observed to be

4.2h, which is close to the value of 4.0h from the PIV experiments [33] and 4h-6h

reported by Leonardi et al. [48] based on their DNS study of turbulent flows over

transverse k-type roughnesses at Reynolds number 4, 200. For the 60◦ and 45◦ rib

cases shown in Fig. 4.5(b) and (c), the reattachment lengths are observed to be 3.8h

and 2.7h, respectively. As such, it is concluded that the reattachment length decreases

monotonically as the rib angle decreases. This is because as the rib angle decreases,

the recirculation bubble behind the rib is squeezed more towards the leeward face of

the V-shaped rib by the downdraft of mean flow (indicated by the downwards inclined

streamlines in Figs. 4.5(b) and (c)), which convects the high momentum from the core

region to the ribbed wall. Besides the large (primary) recirculation bubble ‘A’ im-

mediately behind the rib, there presents a secondary recirculation bubble (indicated

using ‘B’ in Fig. 4.5) on the windward side of the rib. By comparing Figs. 4.5(a)-(c),
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(a) 90◦ rib case (b) 60◦ rib case

(c) 45◦ rib case

Figure 4.5: Contours of the mean streamwise velocity 〈ū〉 superimposed with in-plane

streamlines in the central x-y plane (located at z/δ = 0) for different rib cases.

it is interesting to observe that the size of the secondary recirculation bubble ‘B’

decreases as the rib angle decreases. In particular, as shown in Fig. 4.5 (c), for the

45◦ rib case, the secondary recirculation bubble almost vanishes, which is in sharp

contrast to the pattern of the perpendicular rib case exhibited in Fig. 4.5(a). In the

perpendicular rib case, the flow impinges onto the windward face of the rib causing
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(a) 90◦ rib case (b) 60◦ rib case

(c) 45◦ rib case

Figure 4.6: Contours of the mean streamwise velocity 〈ū〉 superimposed with in-plane

streamlines in the cross-stream (y-z) plane at x/δ = 0.2 for the different rib cases.

the flow to become stagnant, creating a recirculation flow pattern. The pattern of the

primary and secondary recirculation bubbles (‘A’ and ‘B’ behind the upstream rib

and before the downstream rib, respectively) is the most apparently expressed in the

perpendicular rib case. However, in the two V-shaped rib cases, this streamwise im-

pinging effect is substantially attenuated simply because the flow is diverted sideways

by the sharp angled ribs resulting in cross-stream flows under the rib height.
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Figure 4.6 shows the contours of the mean streamwise velocity 〈ū〉 superimposed

with time-averaged streamlines in a cross-stream (y-z) plane for different rib cases.

From the figure, it is evident that strong secondary flows in the pattern of a pair of

large symmetrical streamwise-elongated vortices exist in all three rib cases. By com-

paring Fig. 4.6(a) with (b) and (c), it is interesting to observe that the highest-level

of streamwise momentum is concentrated in the upper half channel (for y/δ > 0.0) in

the perpendicular rib case. This is constant with the observation of turbulent plane

channel flows featuring two-dimensional (2-D) roughness elements (such as transverse

square- or circular-shaped bars, for which, a periodic boundary condition can be ap-

plied in the spanwise direction) mounted on one of the two walls [48, 76, 77]. In

these flows with 2-D roughness elements [48, 76, 77], the roughness increases the drag

and, as a consequence, the maximum of velocity is typically shifted towards the side

without roughness. However, as shown in Figs. 4.6(b) and (c), the maximum 〈ū〉
occurs close to the rib crest (around y/δ = −0.8) in the two V-shaped rib cases.

This is because the strength of the secondary flows (as a result of rib geometry and

confinement of the duct, where spanwise homogeneity is absent) is much stronger in

the V-shaped rib cases than in the perpendicular rib case. This feature is consistent

with the previous analysis of Fig. 4.5 in the sense that the downwash of the mean flow

in the central region induced by large streamwise-elongated vortices is much stronger

in the V-shaped rib cases than in the perpendicular rib case. It is also interesting

to observe that in contrast to the secondary flow pattern of the perpendicular rib

case shown in Fig. 4.6(a), Figs. 4.6(b) and (c) clearly show that the streamlines of

the large-scale streamwise-elongated vortices in the V-shaped rib cases start on the

windward face of the ribs, indicating that the rib alignment angle has a profound

influence on the secondary flow pattern in the cross-stream plane.

In order to compare the strength of secondary flows of different rib cases (shown

previously in Fig. 4.6) in a more precise manner, the spanwise profiles of mean veloc-
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Figure 4.7: Spanwise profiles of 〈ū〉, 〈v̄〉 and 〈w̄〉 at position (x/δ, y/δ) = (0.2,−0.5).

Owing to spanwise symmetry, only one half of the duct is plotted.

ities are plotted in Fig. 4.7. Owing to spanwise symmetry, only one half of the duct

is plotted (for 0 ≤ |z/δ| ≤ 1). From Fig. 4.7(a), it is clear that in comparison with

the perpendicular rib case, the value of 〈ū〉 in the V-shaped rib cases is larger in the

region away from the sidewalls (|z/δ| ≤ 0.8). As seen in Figs. 4.7(b) and (c), the mag-

nitudes of cross-stream velocities 〈v̄〉 and 〈w̄〉 in the V-shaped rib cases are obviously
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(a) 90◦ rib case (b) 60◦ rib case

(c) 45◦ rib case

Figure 4.8: Contours of skin friction coefficient Cf for two different rib cases.

larger than those in the perpendicular rib case, and the value of 〈v̄〉 switches sign near

|z/δ| = 0.5, where the vortex cores are located (see Figs. 4.6(b) and (c)). Note that

the maximum of 〈v̄〉 near the sidewalls is up to 70% and 110% of Ub in the 60◦ and

45◦ rib cases, respectively. As such, in the V-shaped rib cases, the low-streamwise-

momentum flow near the sidewalls (0.5 < |z/δ| < 1) is convected upwards and the

high-streamwise-momentum flow near the central region (|z/δ| < 0.5) is convected

downwards. This well explains the relative strength of 〈ū〉 shown in Fig. 4.7(a) for

different rib cases. From Fig. 4.7, it is concluded that the secondary flows in the

V-shaped rib cases are significantly stronger than that in the perpendicular rib case,

and affect considerably the spatial distribution of mean velocities.

To further understand the mean flow pattern below the rib height, Fig. 4.8 com-
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pares the skin friction coefficient, Cf = τw/(ρU
2
b /2), for the 90◦ and 45◦ rib cases.

Here, τw = µ
[
(∂〈ū〉/∂y)2 + (∂〈w̄〉/∂y)2

]1/2
y=0

represents the local skin friction stress.

From Fig. 4.8(a), it is clear that owing to the presence of the two sidewalls, the value

of Cf varies significantly in the region very close to (within 0.3δ from) the sidewalls.

However, the Cf value is rather uniformly distributed in the spanwise direction in

the central region (for −0.7 < z/δ < 0.7). Also as seen in Fig. 4.8(a), for the per-

pendicular rib case, the highest value of Cf occurs around x/δ = 0.4 and 1.35. These

two streamwise positions coincide with the cores of the two recirculation bubbles near

the windward and leeward faces of the perpendicular ribs shown in Fig. 4.5(a). This

also indicates that the recirculation bubbles observed in Fig. 4.5(a) are not strongly

affected by the sidewalls in the central region (for −0.7 < z/δ < 0.7). In contrast to

the perpendicular rib case, for the V-shaped rib case, it is evident from Figs. 4.8(b)

and (c) that spanwise homogeneity in the Cf is absent due to the presence of the

angled ribs.

From the previous analysis of streamline patterns displayed in Figs. 4.5 and 4.6, it

is understood that in the V-shaped rib cases, the mean flow carrying high streamwise

momentum in the channel center is downwashed by a strong secondary flow towards

the ribbed wall, which further enhances the streamwise and vertical speeds of the

mean flow in the inter-rib region under the rib height (see Figs. 4.7(a) and (b)).

Subsequently, diverted by the sharp-angled ribs, the accelerated flow rushes over the

rib from the channel center to the sidewalls, significantly increasing the value of Cf

on both leeward and windward surfaces of the V-shaped rib. From Fig. 4.8, it is also

interesting to see that the level of Cf is apparently larger in the 45◦ rib case than in

the 60◦ rib case. This is because as the rib angle decreases, the strength of secondary

flow increases (see Fig. 4.7) and consequently, the high streamwise momentum is more

effectively downwashed to generate a higher skin friction near the bottom wall. From

this discussion, it can be concluded that in comparison with the perpendicular rib
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Table 4.1: Friction and form drags per unit volume normalized with 1
2ρU

2
b /δ (at Reb =

5, 000) for different rib cases. Values in the brackets indicate the percentage of drag with

respect to the total drag.

Case Friction drag Form drag Imposed force (−Π)

90◦ 0.014 (32%) 0.030 (68%) 0.044

60◦ 0.018 (18%) 0.082 (82%) 0.100

45◦ 0.024 (23%) 0.080 (77%) 0.104

case, owing to the presence of sharp-angled ribs and strong secondary flows (which

induce flow impingement towards the ribbed wall), the magnitude of Cf is drastically

increased and its spatial distribution is significantly altered in the V-shaped rib cases.

Because the Cf value is tightly coupled with the Nusselt number, it is expected that

the higher momentum flow created by the V-shaped ribs near the ribbed wall will

further lead to an enhanced heat transfer effect. This explains the fundamental

fluid dynamics underlying the application of V-shaped ribs to high-performance heat

exchangers.

From Fig. 4.8, it is observed that the magnitude of Cf in the V-shaped rib case

is significantly enhanced in comparison with that in the perpendicular rib case. To

further understand this phenomenon, Table 4.1 compares the predicted values of the

friction and form drags of different rib cases under the same test condition with

the Reynolds number fixed at Reb = 5, 000. The friction and form drags are due

to the viscous effect and the pressure difference between the windward and leeward

faces of a rib, respectively. From the table, it is clear that the friction drag increases

monotonically (from 0.014 to 0.024) as the rib angle decreases (from 90◦ to 45◦). This

is because as the rib angle decreases, the strength of secondary flows is enhanced which

induce stronger downwash of high streamwise momentum to the ribbed wall, further



CHAPTER 4. LES STUDY OF EFFECTS OF V-SHAPED RIBS 79

(a) 90◦ rib case (b) 60◦ rib case

(c) 45◦ rib case

Figure 4.9: Contours of non-dimensionalized resolved mean pressure (〈p̄〉/(1
2
ρU2

b ))

below rib height at y = −0.9 for different rib cases. To effectively visualize the

pressure differences in the contour plots, the reference pressure is set such that the

minimal value of 〈p̄〉 is zero. The dashed lines mark the isopleth of 〈p̄〉/(1
2
ρU2

b ) = 0.1.

resulting in stronger wall friction over the rib crest and bottom wall, a conclusion that

is consistent the previous analysis of the Cf value based on Fig. 4.8. It is interesting

to observe in Table 4.1 that the values of the form drag in the 45◦ and 60◦ rib cases are

close to each other, which are more than twice that in the perpendicular rib case. To

further investigate the effects of rib geometry on the form drag, Fig. 4.9 compares the

non-dimensionalized resolved mean pressure field (or, the resolved pressure coefficient,

Cp = 〈p̄〉/(1
2
ρU2

b )) below the rib height at y/δ = −0.9 for three different rib cases.

Two interesting features can be observed. Firstly, the level of 〈p̄〉 near the windward
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face of a rib increases drastically as the rib angle decreases from 90◦ to 45◦. This

is consistent with the previous observation that higher streamwise-momentum flow

is convected towards the rib crests due to the increasingly stronger secondary flow

as the rib angle decreases. Consequently, as the higher streamwise-momentum flow

impinging upon the windward face of a V-shaped rib, a higher pressure region is

formed. Secondly, by comparing Figs. 4.9(a)-(c), it is evident that as the rib angle

decreases from 90◦ to 45◦, the size of the low pressure region on the leeward side

(typically associated with the recirculation flow bubble) decreases. To facilitate this

discussion, the example of the low pressure region corresponding to Cp < 0.1 is used,

which is enclosed by a dashed isopleth in the figure. As shown in Fig. 4.9(a), this low

pressure region extends across the entire spanwise domain on the leeward side of the

perpendicular ribs. In contrast, as shown in Figs. 4.9(b) and (c), the spanwise size

of this low pressure region reduces significantly to |z/δ| < 0.6 in the two V-shaped

rib flow cases. These two interesting features, i.e., a higher pressure on the windward

side and a lower pressure on the leeward side of the V-shaped ribs, result in a sharp

increase in the form drag in a V-shaped rib flow. This also explains the form drag

difference between the perpendicular and V-shaped rib flow cases shown previously

in Table 4.1. Furthermore, as seen in Fig. 4.9(c), the low pressure region as enclosed

by the dashed isopleth (corresponding to Cp = 0.1) is detached from the leeward face

of the ribs in the 45◦ rib case. This necessarily leads to a greater pressure level on

the leeward face of the 45◦ rib. For this reason, although the pressure level on the

windward face of the ribs is stronger in the 45◦ rib case than in the 60◦ rib case, the

form drag, as a result of the pressure difference between the windward and leeward

faces of the ribs, is comparable in these two V-shaped rib configurations. The results

shown in Table 4.1 clearly indicate that both friction and form drags are sensitive

to the rib angle. Furthermore, for all three rib cases, the pitch-to-height ratio of the

ribs is 8, which can be considered in general as k-type roughnesses [48, 78]. From the
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table, it is clear that the form drag is much larger than the friction drag in all three

rib cases, an observation that is consistent with the conventional theory of the k-type

rough-wall boundary layer (see e.g., the DNS study of turbulent boundary-layer flow

over a surface roughened with transverse square-shaped ribs conducted by Leonardi

et al. [48], Burattini et al. [79] and Ikeda and Durbin [80]).

4.2.3 Second-order flow statistics

To further validate the present LES results, Fig. 4.10 compares the LES predictions of

the resolved Reynolds stresses against the PIV measurement data [33]. As seen from

the figure, the agreement between the predicted and measured values is reasonable in

the region above the rib height. Note that due to the obstruction of V-shaped ribs

to the camera system, reliable measurement data were not available near the bottom

wall below the rib height (for −1 < y/δ ≤ −0.8) in the PIV experiment [33]. As is

evident from Figs. 4.10(a)-(c), in comparison with their profiles within the upper half

duct (close to smooth top wall for 0.0 < y/δ < 1.0), the Reynolds stress levels are

augmented within the lower half duct (close to the ribbed wall for −1.0 < y/δ < 0.0)

in the perpendicular rib case. In contrast, in the V-shaped rib cases (V45 and V60),

the enhancement on the Reynolds stresses is mostly confined within a small region

around the rib height (located at y/δ = −0.8).

Figure 4.11 compares the spatial distribution of the resolved TKE (k = 〈ū′′
i ū

′′
i 〉/2)

in a y-z plane (located at x/δ = 0.2) for two different rib cases. The 60◦ rib case

exhibits a qualitatively similar result as the 45◦ rib case, thus, it is not shown here to

keep the discussion concise. From Fig. 4.11(a), it is clear that for the perpendicular

rib case, the highest TKE levels are primarily concentrated in the region immediately

above the rib crest, which is a direct consequence of the strong shear layer developed

over the top surface of the rib (see Fig. 4.4). As seen in Fig. 4.11(b), in comparison
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(c) Reynolds shear stress 〈ū′′v̄′′〉

Figure 4.10: Comparison of the vertical profiles of the resolved Reynolds stresses

against PIV measurement data at point (x/δ, z/δ) = (0.2, 0.0) for the different rib

cases. For clarity, only 30% of the measured data are plotted. Note that the measured

data below rib height (i.e., y/δ ≤ −0.8) is unavailable.

with the perpendicular rib case, the size of the high TKE region immediately above

the rib is significantly reduced, whereas two additional spots with high TKE levels

appear near the two sidewalls (located at z/δ = ±1). Figure 4.12 further compares
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(a) 90◦ rib case (b) 45◦ rib case

Figure 4.11: Spatial distribution of resolved TKE (k) in the y-z plane at x/δ = 0.2

for the perpendicular and 45◦ rib cases.

(a) 90◦ rib case (b) 45◦ rib case

Figure 4.12: Spatial distribution of resolved TKE (k) in the x-z plane at half rib

height (y/δ = −0.9) for the perpendicular and 45◦ rib cases.

the TKE distribution in the x-z plane at half rib height (y/δ = −0.9) for two dif-

ferent rib cases. From Fig. 4.12, it is seen that the TKE level in the V-shaped rib

case is significantly higher than that in the perpendicular rib case. Furthermore, it

is interesting to observe from Fig. 4.12(b) that high TKE levels are primarily con-

centrated near the leeward side of the V-shaped rib. From Figs. 4.11 and 4.12, it is

shown that both the TKE level and its spatial distribution in the V-shaped rib case
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Figure 4.13: Spanwise profiles of resolved Reynolds normal stresses at (x/δ, y/δ) =

(0.2,−0.5) for the perpendicular and 45◦ rib cases. Owing to spanwise symmetry,

only one half of the duct is demonstrated.

are significantly different from those in the conventional perpendicular rib case. Due

to the angled ribs in the V-shaped rib case, the TKE produced in the near-rib region

is convected sideways and upwards by the secondary flow, interacting intensely with

the boundary layers over the two sidewalls, and creating highly turbulent spots on

both the windward and leeward sides of the angled rib near the sidewalls.

To further investigate the effects of ribs on turbulence statistics, Fig. 4.13 com-

pares the spanwise profiles of resolved Reynolds normal stresses for two different rib

cases. Owing to spanwise symmetry, only one half of the duct is demonstrated. As

seen in Fig. 4.13(a) for the perpendicular rib case, the magnitude of 〈ū′′ū′′〉 is sig-

nificantly higher than those of the other two Reynolds normal stress components in

the cross-stream direction and its maximal value occurs at z/δ ≈ ±0.3. These two

peak locations are symmetrical in the spanwise direction, and relate to the secondary

flows in the cross-stream plane shown vividly in Figs. 4.11(a) and 4.12(a). From

Fig. 4.13(a), it is evident that among all three Reynolds normal stress components,
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Figure 4.14: Spanwise profiles of resolved Reynolds shear stresses at (x/δ, y/δ) =

(0.2,−0.5) for the perpendicular and 45◦ rib cases. Owing to spanwise symmetry,

only one half of the duct is demonstrated.

〈ū′′ū′′〉 makes the largest contribution to the TKE in the perpendicular rib case. In

contrast, as shown clearly in Fig. 4.13(b), for the V-shaped rib case, no such domi-

nant component of TKE is observed in the spanwise direction, as all three Reynolds

normal stress components are comparable in terms of their magnitudes. Furthermore,

it is observed that in the region close to the sidewall (for 0.8 < |z/δ| < 1.0), the value

of 〈v̄′′v̄′′〉 becomes even larger than that of 〈ū′′ū′′〉 in the V-shaped rib case. Also,

the turbulent intensities near the sidewall are much higher than those in the central

region (for |z/δ| < 0.5), a pattern that is in sharp contrast to the profiles of the

perpendicular case shown in Fig. 4.13(a). In the V-shaped rib case, the TKE level

is suppressed in the duct center and enhanced near the sidewalls, which is consistent

with the observation of the spatial distribution of TKE in Figs. 4.11(b) and 4.12(b).

Figure 4.14 shows the spanwise profiles of resolved Reynolds shear stresses at

the same location as in Fig. 4.13. Clearly, due to the presence of the ribs and four

walls of the square-shaped channel, the Reynolds shear stress profiles exhibit a com-
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plex pattern. From Fig. 4.14(a), it is clear that for the perpendicular rib case, the

magnitude of 〈ū′′v̄′′〉 is significantly larger than other Reynolds shear stresses in the

region away from the sidewalls (|z/δ| < 0.8). The enhanced turbulent shear stress

component 〈ū′′v̄′′〉 further interacts with the mean strain rate through the dominant

TKE production term −2 〈ū′′v̄′′〉 ∂ 〈ū〉 /∂y and transfers energy from the mean flow

to the 〈ū′′ū′′〉 component. This also explains the ‘coincidence’ that in Fig. 4.13(a)

and 4.14(a), the magnitudes of 〈ū′′ū′′〉 and 〈ū′′v̄′′〉 peak at the same spanwise location

(|z/δ| ≈ 0.3). As seen in Fig. 4.14(b), for the 45◦ rib case, the magnitudes of all three

Reynolds shear stresses are suppressed in the central region (|z/δ| < 0.5) and signifi-

cantly enhanced near the sidewalls, a pattern that is consistent with the distributions

of Reynolds normal stresses observed previously in Fig. 4.13(b). This indicates that

the most energetic vortices induced by V-shaped ribs are concentrated near the side-

walls and do not possess any preferential directions. Given the observation that in the

channel center (for |z/δ| < 0.5), the three normal components of Reynolds stresses

are of a similar magnitude and three shear components of Reynolds shear stresses are

trivial (shown clearly in Figs. 4.13(b) and 4.14(b), respectively), it is interesting to

conclude that the turbulent flow field tends to be locally isotropic in V-shaped rib

cases. This interesting property of V-shaped rib flows that turbulence is locally quasi-

isotropic is not preserved in the perpendicular rib case. In fact, from Figs. 4.13(a)

and 4.14(a), it is clear that turbulence in the perpendicular case is anisotropic because

the Reynolds normal and shear stresses are apparently dominated by the 〈ū′′ū′′〉 and
〈ū′′v̄′′〉 components, respectively. It is well understood that a flow over a rough wall

tends to be more isotropic than that over a smooth wall in general [81, 82, 83]. In a

smooth-wall boundary layer, the flow physics are dominated by the strong wall shear

stresses. In contrast, owing to the disturbances from the roughness elements in a

rough-wall boundary layer, the strong wall anisotropic effects are much attenuated.

Furthermore, the results indicate that for rib-roughened wall-bounded flows, the rib
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(a) 90◦ rib case (b) 45◦ rib case

Figure 4.15: Iso-surfaces of the swirling strength λci plotted at 5% of its maximal

value around the ribs, colored with y/δ.

geometry has a significant influence on turbulence in terms of its degree of isotropy. In

comparison with the perpendicular rib case, the disturbances generated by V-shaped

ribs are stronger and, as a result, the flow tends to be more isotropic.

4.2.4 Turbulent flow structures

Thus far, secondary flows in the cross-stream plane and their influences on flow statis-

tics have been studied. To further understand the mechanisms underlying the effects

of rib angle on the turbulent flow field, coherent structures are investigated in this

section. This includes a comparative study of the instantaneous vortices using the

λci criterion, spatial two-point autocorrelation of fluctuating velocities, temporal au-

tocorrelations of velocity fluctuations, and energy spectra.

To study the effects of rib angle on vortex shedding, iso-surfaces of the swirling

strength λci proposed by Zhou et al. [60] are plotted in Fig. 4.15 for two different rib

cases. In order to effectively demonstrate the elevation of the flow structures, the iso-

surfaces are colored using non-dimensionalized elevation y/δ. As seen from Fig. 4.15,
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in comparison with the perpendicular rib case, energetic vortical structures near the

central x-y plane for the V-shaped (45◦) rib case are concentrated in the leeward

region of the ribs. This is because of the organized large-scale secondary flows (see

Figs. 4.5 and 4.6), which carry highly energetic turbulent eddies from the core region

of the duct to the ribbed wall, and then rush into the sidewalls along the angled ribs.

This observation is consistent with the experimental results [33]. Furthermore, as

clearly shown in Fig. 4.15(b), in the V-shaped rib case, vortical structures near the

two sidewalls are populated above the rib height, a pattern that is consistent with

the high levels of TKE shown previously in Fig. 4.11.

It is well-known that near-wall steaks represent an important physical feature of

a turbulent boundary-layer flow. The streaky structures are typically associated with

streamwise elongated turbulent vortices, which form the legs of hairpin structures in

the near-wall region [60]. In addition, the instability of low-speed streaks is of great

significance in the generation of near-wall coherent structures [84, 85]. Studies of near-

wall streaks have been primarily concentrated on turbulent boundary-layer flow over

a flat plate in the literature [85, 86]. In the following, the study of near-wall stream-

wise elongated structures is extended to the boundary layer over a plate roughened

by sparsely-spaced ribs (which represent k-type roughness elements). Furthermore,

the influences of rib inclination angle on the near-wall streamwise elongated struc-

tures are investigated. Figures 4.16 and 4.17 compare the contours of instantaneous

resolved streamwise velocity fluctuations (ū′′) in two x-z planes below and above the

rib height for the 90◦ and 45◦ rib cases, respectively. As seen in Fig. 4.16(a), for

the perpendicular rib case, no apparent low-speed streamwise elongated structures

can be observed below the rib height due to the geometric constraint of the ribs. In

contrast, as shown in Fig. 4.16(b), in the region slightly above the perpendicular ribs,

the existence of streamwise elongated structures is apparent. The relatively high-

speed and low-speed streamwise elongated structures (as indicated by blue and red
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(a) Below the rib height (y/δ = −0.9) (b) Above the rib height (y/δ = −0.7)

Figure 4.16: Contours of instantaneous resolved streamwise velocity fluctuation (ū′′)

field in two x-z planes below (y/δ = −0.9) and above (y/δ = −0.7) rib height for the

90◦ rib case.

(a) Below the rib height (y/δ = −0.9) (b) Above the rib height (y/δ = −0.7)

Figure 4.17: Contours of instantaneous resolved streamwise velocity fluctuation (ū′′)

field in two x-z planes below (y/δ = −0.9) and above (y/δ = −0.7) rib height for the

45◦ rib case.

coloured contours, respectively) alternate in the spanwise direction. This indicates

the existence of streamwise elongated turbulent vortices above the rib height. In their

DNS study of turbulent channel flow with perpendicular ribs, Ashrafian et al. [87]

also observed streamwise elongated structures in the region above the rib height.

From Figs. 4.17(a) and (b), it is evident that for the 45◦ rib case, no apparent

streamwise elongated structures are present either below or above the rib height.

By comparing Figs. 4.16 and 4.17, it is evident that V-shaped ribs can significantly
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alter near-wall flow structures in terms of their patterns and sizes. Specifically, in

the region slightly above the ribs, the streamwise scales of the flow structures are

much shorter in the 45◦ rib case in comparison with those elongated structures of

the perpendicular case shown in Fig. 4.16(b). Furthermore, as shown in Fig. 4.17,

the streamwise and spanwise length scales of the flow structures (as indicated by the

contours of resolved streamwise velocity fluctuations) are of a similar order in the

45◦ rib case. In view of this, it would be more appropriate to refer to these small

flow structures as ‘turbulent packets’ (instead of streaks) in the V-shaped rib case.

This is an interesting observation, which is consistent with the previous conclusion

based on analysis of Figs. 4.13 and 4.14 that turbulence tends to be locally isotropic

in a V-shaped rib case, whereas tends to anisotropic in a perpendicular rib case. By

comparing Figs. 4.17(a) and (b), it is also interesting to observe that for the V-shape

rib case, turbulent packets are populated in the leeward region under the rib height,

whereas above the rib height, they are populated near the sidewalls. This pattern of

turbulent packets in the V-shaped rib case is consistent with the spatial distribution

of TKE shown in Figs. 4.12(b) and 4.11(b) in the sense that high levels of TKE are

also mainly concentrated in the leeward region below the rib height and near the two

sidewalls above the rib height.

One of the fundamental characteristics of a rib-roughened wall flow is that as the

flow passes over a square rib, a small boundary layer starts to form very briefly over the

rib top surface, which soon separates from it, producing a strong shear layer around

the rib height in the downstream region and creating a lower pressure recirculation

zone on the leeward side of the rib. Furthermore, associated with the strong shear

layer generated by the rib top surface, there are also vortices shedding from the rib top

surface into the downstream region. Indeed, the flow physics around the rib height

are rich and interesting. In order to investigate the flow structures downstream of

the rib top surface, the spatial two-point correlation function of velocity fluctuations
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Figure 4.18: Comparisons of two-point autocorrelation Rs
11(x/k, y/k) against PIV

measurement data for two different rib cases. The increment between two adjacent

isopleths is 0.1 for both PIV and LES results.

can be studied, which is defined as

Rs
ij(x, y) =

〈ū′′
i (x, y)ū

′′
j (xref , yref)〉√

〈ū′′
i (x, y)

2〉〈ū′′
j (xref , yref)2〉

. (4.5)

Here, (xref , yref) are the coordinates of the reference point, and superscript ‘s’ de-

notes a spatial correlation. Figure 4.18 compares the two-point autocorrelation func-

tion Rs
11(x/h, y/h) against the PIV measurement data for the 90◦ and 45◦ rib cases.

Following Coletti et al. [47] and Fang et al. [33], the reference point is chosen at

(xref/h, yref/h) = (1, 1.2) to sensitize the vortex shedding events over the rib crest.

As seen in Fig. 4.18, the shape and extension of the plotted two-point autocorrelation

is well predicted by LES in both the 90◦ and 45◦ rib cases. Furthermore, it is ob-

served that given the same range (0.5-1.0) of the isopleth values, the spatial coverage

of plotted Rs
11 isopleths is apparently larger in the perpendicular rib case than in the

V-shaped rib case. This indicates that the length scales of turbulent flow structures

are larger in the perpendicular rib case than in the V-shaped rib case in the region

above the rib height, a result that is fully consistent with the previous analysis of

Figs. 4.16(b) and 4.17(b).

Initially, simulations were conducted using a computational domain of only one
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Figure 4.19: Streamwise profiles of spatial autocorrelations of different velocity fluc-

tuations for two different rib cases.

rib period with different grid resolutions, which all eventually led to reasonable agree-

ments between LES and PIV results in terms of the profiles of the mean velocities

and Reynolds stresses. However, understanding that fully-validated first- and second-

order statistical moments may not be sufficient to justify the choice of the computa-

tional domain sizes, the spatial auto-correlations were further examined. This exercise

suggested to extend the streamwise domain length from the initial one rib period to

the current three rib periods for LES. Figure 4.19 compares the streamwise profiles

of three spatial autocorrelations of velocity fluctuations for the perpendicular and

V-shaped rib cases. From Figs. 4.19(a) and (b), all three correlations becomes trivial

at the boundaries of the computational domain, indicating that the streamwise com-

putational domain size used in LES is sufficiently large to resolve properly large-scale

energy-containing turbulent structures in the region near the ribs.

From Fig. 4.19(a), it is clear that in the perpendicular rib case, the value of Rs
11

can be as high as 0.24 at a distance 0.8δ away (half pitch) from the reference point.

Furthermore, Rs
11 decays much more slowly than Rs

22 and Rs
33 with the increasing
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distance from the reference point. The is an interesting observation, which is consis-

tent with the previous conclusion based on the analyses of Figs. 4.13(a), 4.14(a), 4.16

and 4.18(a) that in the perpendicular rib case, the turbulent flow field tends to be

locally anisotropic, and there exist dominant streamwise elongated structures. Both

the quantitative results shown in Fig. 4.19(a) and the qualitative results shown pre-

viously in Fig. 4.16(b) indicate that the streamwise length scale of the streamwise

elongated structures in the region above the rib height can be larger than the rib

pitch in the perpendicular rib case. By comparing Fig. 4.19(b) with Fig. 4.19(a), it

is evident that all three autocorrelations for the V-shaped rib case decrease faster

than does Rs
11 of the perpendicular rib case as the distance from the reference point

increases. Furthermore, as shown in Fig. 4.19(b), the decaying rates of Rs
11, R

s
22 and

Rs
33 are similar (to be exact, it is interesting to observe that Rs

33 has a slightly slower

decaying rate among all three autocorrelations). This indicates that in comparison

with the perpendicular case, the sizes of turbulent structures are significantly reduced

and the flow becomes locally quasi-isotropic in the 45◦ rib case. This observation is

consistent with the previous analysis of the characteristics of the V-shaped rib flow

field in terms of turbulent stresses shown in Figs. 4.13(b) and 4.14(b) and turbulent

flow structures demonstrated in Figs. 4.17(b) and 4.18(b).

Thus far, the turbulent length scales have been analyzed in the perpendicular and

V-shaped rib cases. To further investigate the temporal scales of turbulent motions

in these cases, temporal autocorrelation function can be studied, which is defined as

Rt
ij(t) =

〈ū′′
i (t)ū

′′
j (tref)〉√

〈ū′′2
i 〉〈ū′′2

j 〉
. (4.6)

Here, tref represents the reference time origin, and superscript ‘t’ denotes the temporal

correlation. Figure 4.20 compares the temporal autocorrelations of all three velocity

components for the perpendicular and V-shaped rib cases. As seen in Fig. 4.20(a),

for the perpendicular rib case, the autocorrelation function Rt
11 shows the slowest
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Figure 4.20: Temporal autocorrelations for different rib cases.

decaying rate compared to Rt
22 and Rt

33. This characteristic of temporal scales of

turbulent flow structures is consistent with that of spatial scales shown in Fig. 4.19(a).

Both spatial and temporal autocorrelations clearly indicate that for the perpendicular

case, turbulence length scales are much larger in the streamwise direction than in the

vertical and spanwise directions. As such, the turbulent flow field tends to be locally

anisotropic, dominated by energetic streamwise velocity fluctuations and fostering

large-scale streamwise elongated structures in the region above the rib height. In

contrast to the perpendicular rib case, as shown in Fig. 4.20(b), the magnitudes of all

three temporal autocorrelations for the 45◦ rib case are of a similar order, which all

decay faster than Rt
11 of the perpendicular case shown in Fig. 4.20(a). This indicates

that the length scales of turbulent eddies are of a similar order in all three directions,

and turbulence tends to be quasi-isotropic in the 45◦ rib case. Due to the strong

secondary flows induced by the angled ribs, the flow becomes highly turbulent in the

45◦ rib case and the sizes of turbulent eddies are much reduced in comparison with

those in the perpendicular case, especially in the streamwise direction. A perusal of

Fig. 4.20(b) further indicates that the decaying rate of Rt
33 is slightly slower than the
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Figure 4.21: Energy spectra for the 90◦ and 45◦ rib cases. Solid lines indicate the

energy-containing region.

other two autocorrelations (of streamwise and vertical directions), a feature that is

fully consistent with the spatial autocorrelation of the V-shaped rib case shown in

Fig. 4.19(b). Both Figs. 4.19(b) and 4.20(b) show that although the length scales

of turbulent eddies are similar in all three directions around the reference point,

the spanwise scales are slightly larger than the streamwise and vertical scales in a

V-shaped rib case. This is because of the “channeling effect” of the V-shaped ribs,

which divert flow from the domain center towards the sidewalls and facilitate spanwise

turbulent motions.

Up to this point, turbulent flow structures have been studied in the physical space,

based on the λci criterion, two-point corrections, and spatial and temporal autocor-

relations. In the following, turbulent flow structures are further investigated in the

spectral space. Specifically, the temporal spectra of the perpendicular and V-shaped

rib flows will be examined, and the result of spectral analysis will be compared with

those obtained from analysis of two-point and autocorrelations at the same reference

point for (xref/h, yref/h) = (1.0, 1.2). To demonstrate the distribution of resolved
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TKE (k) with respect to temporal scales, both pre-multiplied energy spectra and

energy spectra are plotted in Fig. 4.21 for two different rib cases. To ensure that

the most energetic temporal scales are well captured, the time window used for per-

forming Fourier transform is kept at 10δ/Ub and 3δ/Ub for the perpendicular and

V-shaped rib cases, respectively. This particular choice is consistent with the obser-

vation in Fig. 4.20 that turbulent flows possess larger time scales in the perpendicular

rib case than in the V-shaped rib cases, especially in the streamwise direction. To

facilitate the comparative study, the energy-containing range is defined based on the

scales possessing pre-multiplied energy spectra that are higher than 70% of the peak

value. It is interesting to see in Fig. 4.21(a) that the smallest time scale (the lower

temporal threshold) of the energy-containing range (bounded by solid lines a1 and

b1) is very close in the perpendicular and V-shaped rib cases, whereas the largest

time scale (the upper temporal threshold) of the energy-containing range (bounded

by solid lines a2 and b2) in the perpendicular rib case is much larger than that in the

45◦ rib case, an observation that is consistent with the previous analysis of Fig. 4.20.

In other words, the large time scales of turbulent motions in the perpendicular rib case

are mainly determined by the more energetic turbulent motions in the low frequency

range. The corresponding energy-containing ranges are shown in the velocity spectra

in Fig. 4.21(b) using a logarithmic scale. In Fig. 4.21(b), the energy spectrum and

frequency have been properly non-dimensionalized using TKE and Ub/δ such that

the area under each curve (obtained by performing integration with respect to the

non-dimensionalized frequency) is unity. From Fig. 4.21(b), the −5/3 spectrum slope

characteristic of the inertial subrange [49] is observed around or higher than the upper

threshold of the energy-containing range. Based on Fig. 4.21, it is concluded that the

energy spectrum is strongly influenced by the rib geometry, as the level of the energy

spectra is apparently higher in the V-shaped rib case than in the perpendicular rib

case.
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4.3 Summary and conclusions

A comparative study of V-shaped and perpendicular rib-roughened duct flows has

been conducted using LES. The Reynolds number based on the bulk mean velocity

is fixed at Reb = 5, 000 in all test cases and the numerical results obtained are

validated by comparing the first- and second-order statistical moments of the velocity

field and two-point autocorrelation function of velocity fluctuations against the PIV

measurement data acquired for the same test cases [33]. Although both V-shaped

and perpendicular rib elements produce significant disturbances to the flow field, the

effects of these two types of rib elements are different in terms of the distribution of

the mean streamwise velocity, secondary flows, TKE, coherent flow structures, friction

and form drags, and spectral properties of the energy containing eddies.

In the perpendicular rib case, the flow impinges streamwise upon the windward

face of the rib, causing the flow to become stagnant and creating a recirculation

flow pattern. The pattern of the primary and secondary recirculation bubbles (on

the leeward and windward sides of a rib, respectively) is the most apparent in the

perpendicular case. However, in a V-shaped rib case, this streamwise impinging effect

is substantially attenuated, as the flow is diverted sideways by the sharp angled ribs

under the rib height. As a result, it is interesting to observe that the size of the

secondary recirculation bubble decreases as the rib angle decreases.

Owing to the existence of the ribs, large-scale secondary flows are induced in the

cross-steam directions, which further intensely interact with the four boundary layers

developed over the four walls of the duct. In a cross-stream plane, secondary flows

appear in the pattern of a pair of large symmetrical streamwise-elongated vortices in

both V-shaped and perpendicular rib cases. However, the downwash of the mean flow

from the central region towards the ribbed wall induced by large streamwise-elongated

vortices is much stronger in a V-shaped rib case than in the perpendicular rib case.
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As a result, the highest-level of the mean streamwise momentum is concentrated in

the upper half channel (for y/δ > 0.0) in the perpendicular rib case, but close to the

rib crest (around y/δ = 0.8) in a V-shaped rib case. Furthermore, the magnitude

of the skin friction coefficient Cf is significantly enhanced in the V-shaped rib case

compared to that in the perpendicular rib case. Also, given the same Reynolds

number tested, the form drag in the V-shaped rib cases is more than twice of that

in the perpendicular rib case. This dramatic difference in the form drag between

the V-shaped and perpendicular rib cases is caused by the differences between the

pressure fields and flow structures associated with these two types of ribs.

The TKE level and its spatial distribution are significantly different between the

perpendicular and V-shaped rib cases. In the perpendicular case, the highest TKE

level occurs in the region immediately above the rib crest. However, in the V-shaped

rib cases, the highest TKE levels are primarily concentrated near the leeward side

of the rib. Guided by the angled rib, the TKE produced in the V-shaped rib region

is convected sideways and upwards by the secondary flow, creating highly turbulent

spots on both the windward and leeward sides of the angled rib near the two vertical

sidewalls.

It is interesting to observe that turbulence tends to be locally quasi-isotropic in

a V-shaped rib case whereas locally anisotropic in the perpendicular rib case. The

most energetic eddies induced by V-shaped ribs are concentrated near the sidewalls

and do not possess any preferential directions. As a consequence, all three normal

components (as well as all three shear components) of the Reynolds stresses are

comparable in terms of their magnitudes, which all peak near the sidewalls (for 0.8 <

|z/δ| < 1.0) and become trivial in the central region (for |z/δ| < 0.5). As such,

in the V-shaped rib cases, the TKE level is suppressed in the duct center and is

significantly enhanced near the sidewalls (contributed by all three Reynolds normal

stresses). In contrast, in the perpendicular case, turbulence is apparently locally
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anisotropic because the TKE of the flow is primarily attributed to the streamwise

velocity fluctuations (i.e., 〈ū′′ū′′〉), whereas among the three Reynolds shear stress

component, 〈ū′′v̄′′〉 dominates, especially in the duct center.

One of the major efforts of this research is the investigation of the coherent flow

structures of this complex flow based on the 3-D instantaneous velocity data produced

by the fine-resolution wall-resolved LES. In the perpendicular rib case, no apparent

low-speed streamwise elongated structures can be observed below the rib height due

to the geometric constraint from the ribs, however, elongated structures are prevalent

in the region above the ribs. In the V-shaped rib case, no apparent streamwise

elongated structures present either below or above the rib height. In the region above

the V-shaped ribs, turbulent packets are populated near the two sidewalls, whereas

in the region below the rib height, turbulent packets are populated in the leeward

region. The streamwise and spanwise length scales of these turbulent packets are very

similar, further confirming that turbulence tends to be locally isotropic in a V-shaped

rib case.

The study of spatial two-point autocorrelations and temporal autocorrelations in-

dicate that the turbulent vortices near the V-shaped ribs are significantly different

than those in the perpendicular rib case in terms of spatial and temporal scales.

Specifically, in the perpendicular rib case, both the temporal and spatial scales of

turbulence are much larger in the streamwise direction than in the vertical and span-

wise directions in the region above the rib height, which confirms that the turbulent

flow field is dominated by energetic streamwise velocity fluctuations, facilitating the

formation of large-scale streamwise-elongated structures in the region above the rib

height. In contrast, in the V-shaped rib case, the magnitudes of all three temporal

autocorrelations (as well as all three spatial two-point autocorrelations) are of a sim-

ilar order, indicating that both the temporal and spatial scales of turbulent eddies

are similar, facilitating the formation of turbulent packets. It is concluded that the
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energy spectrum is sensitive to the rib geometry. The level of the energy spectra

is considerably higher in the V-shaped rib case than in the perpendicular rib case.

Furthermore, it is interesting to observe that although the smallest time scale of the

energy-containing range is very similar in the perpendicular and V-shaped rib cases,

the largest time scale of the energy-containing range is much larger in the perpendic-

ular rib case than in the V-shaped rib cases.



Chapter 5

Direct numerical simulation of

turbulent flow in a spanwise

rotating square duct at high

rotation numbers

Turbulent flows in a duct or a pipe subjected to a system rotation of the reference

frame represent a challenging topic in engineering with important applications in

rotary machinery, turbo-machinery and rotating heat exchangers. In response to the

Coriolis forces, large scale secondary flows are typically induced in rotating flows,

which then dramatically alter the flow structures and physics, and impose significant

challenges on the predictive accuracy of the numerical methods.

In this chapter, the aim is to test a wide range of rotation numbers (varying

from Roτ = 0 to 27) in this DNS study. The four high rotation numbers tested,

i.e. Roτ = 21.0, 24.0, 26.0 and 27.0, are among the highest in the current literature.

The characteristics of the flow field will be compared against those of non-rotating

101
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Figure 5.1: Computational domain and coordinate system.

flows, and the nearly full laminarization state at very high rotation numbers will

be investigated. Furthermore, the effects of the Coriolis force on the primary and

secondary mean flow structures, and on large- and small-scale turbulence structures

will be examined in both physical and spectral spaces. Through a budget analysis of

the transport equation of Reynolds stresses, the influences of system rotation on the

transfer of the energy between different velocity fluctuating components will be also

studied.

The remainder of this chapter is organized as follows. In Section 5.1, the test cases

and numerical algorithm are described. In Section 5.2.1, the mean flow patterns at

different rotation number are investigated. In Section 5.2.2, turbulence statistics and

the transport equations of Reynolds stresses are discussed. In Section 5.2.3, the effects

of system rotation on the turbulent structures are analyzed. Finally in Section 5.3,

major conclusions of this chapter are summarized.

5.1 Test cases and numerical algorithm

5.1.1 Test case and computational domain

Figure 5.1 shows the computational domain and coordinate system of the test case.

The cross-sectional area of the square duct is 2δ × 2δ. The closed duct rotates coun-
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(b) Pre-multiplied energy spectra

Figure 5.2: Comparison of two-point auto-correlation coefficients and pre-multiplied

energy spectra at point (y/δ, z/δ) = (−0.75, 0.00) for different streamwise computa-

tional domain sizes Lx at Roτ = 2.5. The range of wavelength resolved by Dai et

al. [31] is indicated in the figure for the purpose of comparison. The small dashed

box shows the difference in resolved wavelength between Lx = 20πδ and 30πδ.

terclockwise around the z-axis at a fixed angular speed Ω. In the rotating frame, two

Coriolis forces, 2Ωv and −2Ωu, appear in the x and y directions, respectively. Fully

developed turbulent flow is simulated by imposing periodic boundary conditions at

the inlet and outlet of the duct. No-slip boundary condition is applied to all four

solid walls. To focus on the investigation of rotating effects on turbulence statistics

and flow structures, the Reynolds number is fixed to Reτ = 150, and a wide range of

rotation numbers are considered for Roτ = 0.0 (non-rotating), 0.25, 0.5, 2.5, 4.5, 9.0,

12.0, 18.0, 21.0, 24.0, 26.0 and 27.0.

In the literature, there some debates on the proper choice of the streamwise compu-

tational domain size Lx for simulating a turbulent duct flow with and without system

rotations. The central issue focuses on properly capturing the largest scales of turbu-

lent eddies in the primary and secondary flow motions using a sufficiently long duct.
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For instance, Pallares and Davidson [28] and Pallares et al. [30] performed LES to

investigate spanwise rotating square duct flows at a fixed Reynolds number Re = 150

with varying rotation numbers. The streamwise domain sizes in these two studies

were set to Lx = 4πδ and 12δ, respectively. Recently, Dai et al. [31] performed DNS

study of similar flow cases to those of Pallares and Davidson [28], and set the value of

Lx to 8πδ. In order to decide the proper streamwise size for DNS study of a square

duct flow with and without system rotations, two-point auto-correlation coefficients

have been commonly used to ensure that domain size is large enough to include the

largest scales of turbulent motions. To this purpose, it is often recommended in the

literature that two-point auto-correlation coefficients become vanishingly small over

half of the domain size. However, Gavrilakis [10] pointed out that choice of the mini-

mum streamwise domain size based on the two-point auto-correlation coefficients can

be unreliable. Although the lower-order turbulence statistics (such as the bulk mean

velocity) can still be well predicted even if the streamwise computational domain size

is insufficient [88], higher-order turbulence statistics and velocity spectra can be con-

siderably different. Based on a thorough comparative study of a non-rotating duct

flow with different streamwise domain sizes for Lx = 8πδ, 16πδ and 20πδ, Gavrilakis

was able to demonstrate that although the two-point auto-correlations have already

become close to zero for Lx > 4πδ, the maximum root-mean-squares (RMS) of the

streamwise velocity fluctuations resulted from DNS with Lx = 8πδ and 16πδ are 6%

and 2% lower than that with Lx = 20πδ, respectively.

In order to determine the streamwise domain size for the current research, a

precursor DNS has been conducted to compare the suggested domain size (Lx = 20πδ)

by Gavrilakis [10] with an even longer length of 30πδ at Roτ = 2.5. The reason that

the Roτ = 2.5 case is chosen is because the largest streamwise scales are observed

at this particular rotation number among the 12 rotation numbers tested in this

research (which will be addressed later in Section 5.2.3). Figure 5.2 compares the
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two-point auto-correlation coefficients and pre-multiplied energy spectra for the two

streamwise domains tested in the precursor runs. Here, kx denotes the wavenumber

of the streamwise direction. As seen in Fig. 5.2(a), the magnitude of Ruu and Rvv

becomes very close to zero for x/δ ≥ 4π. If solely based on the criterion of two-point

auto-correlation coefficient, one may conclude that Lx = 8πδ would be sufficient

to capture large scales of turbulence, as employed by Dai et al. [31] in their DNS

study. However, as is evident in Fig. 5.2(b), a further refined study based on the

spectra indicates that a considerable amount (about 70% of the peak value) of energy

is still held by scales larger than 8πδ. Therefore, it is indeed unreliable to choose

the minimum streamwise domain size Lx solely based on two-point auto-correlation

coefficients, which conclusion is consistent with that of Gavrilakis [10]. The difference

in the wavelengths between the two streamwise domain sizes (i.e., Lx = 20πδ and

30πδ) tested is framed using the dashed box in Fig. 5.2(b). It is clear that the

difference in the resolved turbulent kinetic energy between these two scenarios is

minimum. In view of this, in the current DNS study, the streamwise computational

domain is set to Lx = 20πδ following the suggestion of Gavrilakis [10].

In total, 960 × 129 × 129 grid points (in the streamwise, vertical and spanwise

directions, respectively) are used to perform the current DNS based on a spectral-

element method [89]. The y-z plane of the duct is subdivided into 16×16 rectangular

elements. Within each element, 8th-order Gauss-Lobatto-Legendre Lagrange inter-

polants are used in both y and z directions (which correspond to 129 grids along each

cross-section direction of the duct). The maximum values of y+ and z+ of the first

grid off the walls are below 0.4 in all tested cases.
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5.1.2 Governing equations and numerical algorithm

The continuity and momentum equations for incompressible flow with respect to a

spanwise rotating reference frame can be written as

∂ui

∂xi
= 0 , (5.1)

∂ui

∂t
+ uj

∂ui

∂xj

= −δ1iΠ− 1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

+ 2ǫij3Ωuj , (5.2)

where ui, ρ, p and ν represent the velocity, density, pressure and kinematic viscosity

of the fluid, respectively, Π is the imposed constant mean pressure gradient in the

streamwise direction, and Ω is a constant system angular speed around the z-axis. In

Eq. (5.2), δij and ǫijk denote the Kronecker delta and Levi-Civita symbol, respectively.

In this chapter, tensor notations are also used. As such, coordinates x, y and z

correspond to x1, x2 and x3, and the three velocity components u, v and w are also

denoted as u1, u2 and u3, respectively.

The DNS is performed using an open-source code so-called “Semtex” made avail-

able to the research community by Blackburn and Sherwin [89]. The detailed de-

scription about the numerical algorithm is provided in Appendix C. This code is de-

veloped using C++ and FORTRAN programming languages, and parallelized using

message passing interface (MPI) libraries. All physical quantities are expanded into

the spectral space using Fourier series in the streamwise direction. The quadrilateral

spectral-element method is used for discretization in the cross-stream (vertical and

spanwise) directions following Karniadakis and Sherwin [90]. The high-order splitting

method developed by Karniadakis et al. [91] is used for the time integration. More

specifically, an intermediate velocity is obtained in the first substep by advancing the

convection and body-force (Π and Coriolis force) terms using an explicit backward-

time differencing scheme. The incompressibility constraint is enforced using a pressure

correction method during the second substep. In the final substep, viscous diffusion
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terms are advanced implicitly. In both substeps for pressure-correction and viscous

diffusion, weak forms of Helmholtz equations based on the Galerkin formulation are

solved for each wavenumber using a direct solver.

For each DNS run, 300 instantaneous flow fields over 35 large-eddy turnover times

(LETOTs) are stored for post-processing. Here, a LETOT is defined as δ/uτ . The

computations are performed on WestGrid (Western Canada Research Grid) super-

computers and approximately 4 TB data have been generated. In order to maintain

the precision in the physical analysis of the flow field, a spectral accuracy is also

maintained during post-processing of the obtained data.

In this chapter, the instantaneous velocity u is decomposed as u = 〈u〉+u′, where

a pair of angular brackets 〈·〉 represent an averaging operation over both time and

the homogeneous streamwise (x) direction.

5.2 Results and discussions

5.2.1 Mean flow

Figure 5.3 compares the mean velocity fields of four different rotation numbers. Owing

to the geometrical symmetry of the domain about central vertical plane (z = 0),

only one half of the duct is displayed for each rotation number. As seen from the

figures, in the cases of Roτ = 4.5 and Roτ = 18.0, a Taylor-Proudman (TP) region

(featuring ∂ 〈u〉 /∂z ≈ 0, i.e. the mean streamwise velocity does not vary along the

axis of rotation) appears in the center (−0.5 < z/δ < 0.5) of the duct, which is

consistent with the observation of Speziale [26] in his study of a laminar flow in a

fast rotating duct. As illustrated using in-plane streamlines in Fig. 5.3, the secondary

flow in the pattern of streamwise counter-rotating roll cells is very sensitive to the

rotation number. In particular, at Roτ = 18.0, only one pair of counter-rotating
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(a) (b)

Figure 5.3: Mean velocity field at different rotation numbers in the y-z plane.

vortex can be observed in the y-z plane. Because the value of 〈v〉 in the TP region is

negative, the Coriolis force in the streamwise direction (2Ω〈v〉) is negative and acts

as an additional resistance to the streamwise momentum [28, 31]. As a consequence,

as shown in Fig. 5.4, the bulk mean velocity decreases monotonically as the rotation

number increases. This characteristic of rotating square duct flows is in sharp contrast

to the observation of Grundestam et al. [92] that the bulk mean velocity increases as

the rotation number increases in a spanwise rotating plane channel flow.

The existence of secondary flow necessarily alters the friction velocities at different

walls. Figure 5.5 compares the friction velocities at four walls and shows how they

vary as a function of the rotation number. In the figure, symbols ut
τ , us

τ and ub
τ

represent the friction velocities at the top, side and bottom walls, respectively. From

the figure, it is clear that as the rotation number increases, the value of us
τ and

ut
τ monotonically increases and decreases, respectively. On the other hand, a local

maximal peak of ub
τ is observed between Roτ = 0.5 and 2.5. It is interesting to note

that as the rotation number increases from 0 to 0.5, the value of ut
τ drastically (in

comparison with the trends of us
τ and ub

τ ) decreases to as low as 0.67uτ . This very
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Figure 5.6: Vertical (at z/δ = 0) and spanwise (at y/δ = 0) profiles of 〈u〉 for different
rotation numbers. Dashed lines mark the 2Ω-slope. Arrow marks the monotonic

variation of the rotation number for Roτ = 0, 0.25, 0.5, 2.5, 4.5, 9.0, 12.0, 18.0 and

27.0.

low wall-shear stress level has a significant impact on the boundary layer and flow

structures close to the top wall.

Figure 5.6 plots the vertical (at z/δ = 0) and spanwise (at y/δ = 0) profiles of 〈u〉
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for different rotation numbers. As is evident from both figures, the magnitude of 〈u〉
decreases monotonically as the rotation number increases. This is consistent with the

observations in Fig. 5.4 that the bulk mean velocity Ub decreases monotonically as

the rotation number increases. From the previous studies [93, 94, 95], it is known for

spanwise rotating channel flows that the mean streamwise velocity gradient d〈u〉/dy
is close to 2Ω in the core region of the channel. This implies that the mean velocity

profile is linear in the center of the channel, which features zero-vorticity (because

d〈u〉/dy − 2Ω ≈ 0) neutral stability [96, 95]. In sharp contrast to the mean flow be-

havior in a spanwise rotating plane channel flow, as shown in Fig. 5.6(a), no apparent

2Ω-slope region is observed in all spanwise rotating duct flows under testing. As is

clear from the figure, the 2Ω-slope region (marked using dashed lines) is significantly

shortened due to the presence of the two side walls in duct flows. From Fig. 5.6(a),

it is interesting to observe that the mean vertical velocity profile 〈u〉+ is symmetrical

for a non-rotating flow (for Roτ = 0). As the rotating number increases, the profile

becomes increasing asymmetrical, and the location of peak value shifts increasingly

towards the bottom wall. In fact, due to the presence of strong secondary flows in

the cross-stream directions, the fluid at the peak location is downwashed towards

the bottom wall of the duct. However, as the rotation number continues to increase,

the magnitude of 〈u〉+ drops significantly and the profile tends to become symmet-

rical again. This can be attributed to the fact that at a very high rotation number

(for Roτ = 27), the flow is almost fully laminarized. The current observation of

quasi-symmetrical vertical profiles of 〈u〉+ at very high rotation numbers is consistent

with the pioneering numerical study of Speziale [26]. It is also interesting to see in

Fig. 5.6(b) that a TP region (which features a constant mean streamwise velocity

in the spanwise direction) starts to appear in the center of the duct as soon as the

system rotation is imposed. Furthermore, the spanwise extension increases monoton-

ically as rotation number increases. For instance, at Roτ = 2.5, 12 and 27, the TP
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(a) (b)

Figure 5.7: Contours of non-dimensionalized TKE (k+ = k/u2
τ) in the y-z plane at

different rotation numbers. Contours corresponding to low TKE levels (k+ < 0.15)

are clipped to highlight turbulent regions.

region spans within −0.7 < z/δ < 0.7, −0.8 < z/δ < 0.8 and −0.9 < z/δ < 0.9,

respectively.

5.2.2 Turbulence statistics

Figure 5.7 plots the contours of turbulent kinetic energy (TKE) k = 〈u′
iu

′
i〉/2 for four

of the twelve rotation numbers tested. In comparison with the non-rotating case, the

level of TKE near the top wall and side walls decreases as Roτ increases. At higher

rotation numbers for Roτ = 4.5 and 18.0, the effects of Coriolis force are significantly

enhanced, and as a result, complete laminarization (indicated by vanishingly small

TKE) is almost reached near the top wall and side walls. In particular, the level of

TKE for Roτ = 18.0 is significantly lower than those for other rotation numbers, and

the flow is very close to a fully laminar state. This observation is analogous to the

conclusion of Grundestam et al. [92] in their DNS study of a rotating plane channel

flow at Reτ = 180, in which a complete laminarization is reached at Rob = 2Ωδ/Ub =
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Figure 5.8: Vertical profiles of Reynolds stresses at z/δ = 0. Arrow marks the

monotonic variation of the rotation number for Roτ = 0, 0.25, 0.5, 2.5, 4.5, 9.0, 12.0

and 18.0.

3.0.

Figure 5.8 compares the vertical profiles of Reynolds stresses (〈u′u′〉, 〈v′v′〉, 〈w′w′〉
and 〈u′v′〉) at z/δ = 0 for different rotation numbers ranging from Roτ = 0 to 18.

The magnitude of Reynolds stresses for the higher rotation numbers are even smaller

than the Roτ = 18.0 case thus not plotted here. From Fig. 8, it is apparent that

Reynolds stresses near the top wall are suppressed as the rotation number increases.
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In particular, for Roτ ≥ 2.5, all the plotted Reynolds stress components become

vanishingly small in the region 0.3 < y/δ < 1.0. This indicates that turbulent flows

near the top wall are laminarized for Roτ ≥ 2.5. As seen in Fig. 5.5, at Roτ = 2.5, the

friction velocity at the top wall (ut
τ ) is less than 60% of uτ , and the corresponding Retτ

is less than 90. At such a low Reynolds number, intense turbulent motions cannot

sustain in the near-wall region, and therefore, a nearly complete laminarization is

reached near the top wall forRoτ ≥ 2.5. From Fig. 5.8, the laminarized region near the

top wall expands as the rotation number increases in response to the enhanced Coriolis

force. However, it is interesting to observe that in contrast to the flow behavior near

the top wall of the duct, in the vicinity of bottom wall, the Reynolds stresses no

longer varies monotonically as the rotation number increases. In particular, the local

maximal value of 〈v′v′〉 near the bottom wall increases as Roτ increases from 0.25 to

4.5, and decreases as Roτ continues to increase beyond 4.5. The maximal magnitude

of 〈u′v′〉 near the bottom wall occurs at Roτ = 2.5.

To better understand the effects of system rotation on the trends of turbulence

statistics discussed above, the transport equation of Reynolds stresses 〈u′
iu

′
j〉 is further

considered here, which reads

Hij − Pij − Πij + εij −Dij − Cij = 0 . (5.3)

Here, Hij, Pij , Πij , εij, Dij and Cij represent the convection, production, pressure-

strain, viscous dissipation, diffusion (consisting of turbulent, pressure and viscous

diffusion effects) and Coriolis production terms, respectively, which are defined as

Hij = 〈uk〉
∂〈u′

iu
′
j〉

∂xk
, (5.4)

Pij = −〈u′
iu

′
k〉
∂〈uj〉
∂xk

− 〈u′
ju

′
k〉
∂〈ui〉
∂xk

, (5.5)

Πij =
2

ρ
〈p′s′ij〉 , (5.6)
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Table 5.1: Non-zero components of the Coriolis production terms Cij

ij 11 22 12

Cij 4Ω〈u′v′〉 −4Ω〈u′v′〉 −2Ω (〈u′u′〉 − 〈v′v′〉)

εij = 2ν

〈
∂u′

i

∂xk

∂u′
j

∂xk

〉
, (5.7)

Dij = −
∂〈u′

iu
′
ju

′
k〉

∂xk

− 1

ρ

∂

∂xk

(
〈p′u′

j〉δik + 〈p′u′
i〉δjk

)
+ ν

∂2〈u′
iu

′
j〉

∂xk∂xk

, (5.8)

Cij = −2Ω
(
〈u′

iu
′
k〉ǫkj3 + 〈u′

ju
′
k〉ǫki3

)
. (5.9)

In the above equations, s′ij = (∂u′
i/∂xj + ∂u′

j/∂xi)/2 represents the strain-rate tensor

defined based on the fluctuating velocities. To facilitate the following analysis, non-

zero components of Cij are listed in Tab. 5.1. From the table, it is clear that the

values of C11 and C22 are opposite numbers (i.e., C11 = −C22). This indicates an

important function of the Coriolis force that it transfers energy between the 〈u′u′〉
and 〈v′v′〉 components. It is also clear that the off-diagonal component C12 (i.e.,

−2Ω (〈u′u′〉 − 〈v′v′〉)) serves as an additional (compared with the non-rotating case

in which Ω ≡ 0) source term for the transport of Reynolds shear stress 〈u′v′〉.

Figure 5.9 compares the vertical profiles of the budget terms of 〈u′u′〉, 〈v′v′〉 and
〈u′v′〉 at z/δ = 0 for non-rotating (Roτ = 0) and rotating (Roτ = 2.5) cases. As

expected, as clearly shown in Figs. 5.9(b), 5.9(d) and 5.9(f), all the terms are trivial

within the upper half duct (0 < y/δ < 1.0). This is because the flow near the top

wall is laminarized (see, Fig. 5.8). From the partially magnified figure in Fig. 5.9(b),

it is observed in the region −0.9 < y/δ < −0.3 that the magnitude of C11 becomes

larger than that of pressure-strain term Π11. This indicates that the Coriolis term

transfers energy to 〈v′v′〉 at a faster rate than does the pressure-strain mechanism.

Note that in Fig. 5.9(d), near the bottom wall (−0.9 < y/δ < −0.3), the Coriolis term

C22 (= −C11) is the dominant mechanism for 〈v′v′〉 to gain energy. This is in clear

contrast to the non-rotating case, where pressure-strain is the dominant mechanism
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Figure 5.9: Vertical profiles of the budget terms of 〈u′u′〉, 〈v′v′〉 and 〈u′v′〉 at z/δ = 0

for non-rotating (Roτ = 0) and rotating (Roτ = 2.5) cases. All the budget terms are

non-dimensionalized using u3
τ/δ.
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to obtain energy for 〈v′v′〉 as shown in Fig. 5.9(c). It is also interesting to note in

Fig. 5.9(d) that despite the existence of secondary flow (featuring non-trivial values

of 〈v〉), the production term P22 (i.e., −2
〈
u′
2u

′
j

〉
∂ 〈u2〉 /∂xj) for 〈v′v′〉 does not make

significant contributions to the budget balance of 〈v′v′〉. This mechanism for 〈v′v′〉
is significantly different from that for 〈u′u′〉, as it is clear from Fig. 5.9(c), that the

production term P11 is a dominant source for 〈u′u′〉.

From Fig. 5.9(e), it is evident that for the non-rotating case, the production rate

P12 and pressure strain Π12 are the dominant terms in the budget balance of the

Reynolds shear stress component 〈u′v′〉 in Eq. (5.3). However, from the partially en-

larged subfigure in Fig. 5.9(f), it is seen that the magnitude of the Coriolis production

term C12 is larger than that of Π12 in the region −0.9 < y/δ < −0.7. In other words,

owing to the system rotation effects, the Coriolis force has a significant impact on the

transport of 〈u′v′〉. From Figs. 5.9(b), 5.9(d) and 5.9(f), it is observed that other than

the laminarized flow near the top wall, system rotation also significantly alters the

turbulent mechanism near the bottom wall. Specifically, in an appreciable portion

of the remaining turbulent region near the bottom wall, the Coriolis term transfers

energy from 〈u′u′〉 to 〈v′v′〉 at rate 4Ω〈u′v′〉, and contributes to the generation of

〈u′v′〉 at a rate proportional to (〈u′u′〉 − 〈v′v′〉) (see, Tab. 5.1). In view of this, it is

clear that spanwise system rotation tends to reduce the difference between 〈u′u′〉 and
〈v′v′〉 through the Coriolis production term.

5.2.3 Turbulent structures

In order to demonstrate the effects of system rotation on turbulent coherent struc-

tures, Fig. 5.10 compares the iso-surfaces of vertical velocity fluctuations of the non-

rotating (Roτ = 0) and rotating (Roτ = 2.5) cases. Only the central half width

(z/δ ∈ [−0.5, 0.5]) of the duct is shown here in order to reduce the visual effects of
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(a) Roτ = 0 (b) Roτ = 2.5

Figure 5.10: Iso-surfaces of instantaneous vertical fluctuating velocity component for

v′ = 1.5uτ for the non-rotating (Roτ = 0) and rotating (Roτ = 2.5) cases. The

contours are colored with vertical location y/δ. In order to clearly illustrate the flow

structures, only a portion of the domain (with streamwise length 4πδ and within

central half width for z/δ ∈ [−0.5, 0.5]) is shown.

structures originated from the two side walls. As seen in Fig. 5.10(a), the plotted iso-

surfaces are populated near both the bottom and top walls for the non-rotating case.

In contrast, for the rotating case, the plotted iso-surfaces are clearly confined near the

bottom wall. This is because the flow near the top wall is laminarized at Roτ = 2.5

(see, Fig. 5.8). Furthermore, the streamwise extent of the coherent structures in the

Roτ = 2.5 case is clearly longer than that in the non-rotating case. This indicates

that the streamwise length scales of energetic turbulent motions have been increased

by the imposed system rotation. The analysis based on Fig. 5.10 is qualitative, and in

the following context, these interesting observations is further investigated in a more

precise manner based on pre-multiplied energy spectra.

Figure 5.11 shows the non-dimensionalized pre-multiplied energy spectra of stream-

wise and vertical velocity fluctuations (kxφuu and kxφvv, respectively) for different

rotation numbers at a point near the bottom wall in the central vertical plane. From

Fig. 5.11(a), it is clear that as the rotation number increases, the energy level of

turbulence as indicated by kxφuu decreases monotonically, implying that the turbu-
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Figure 5.11: Pre-multiplied energy spectra of streamwise and vertical velocity fluc-

tuations as a function of wavelength λ, for different rotation numbers at point

(y/δ, z/δ) = (−0.75, 0.0) in the central vertical plane of the domain.

lent motions are suppressed and the flow becomes laminarized. Furthermore, the

non-dimensionalized streamwise length scale corresponding the most energetic eddies

varies at the same order of magnitude as the half duct height (i.e., O(λ/δ) = 1).

It is interesting to see in Fig. 5.11(b) that the variation in the profiles of kxφvv is

not completely monotonic as the rotation number increases. Specifically, the energy

held by small scales (smaller than the wavelength of the peak value) as indicated by

kxφvv decreases monotonically as the rotation number increases. This results in a

suppression of the viscous dissipation rate ε22 (see, Figs. 5.9(c) and 5.9(d)), as it is

the small scales that dominate the contribution to that viscous dissipation (propor-

tional to k2
x). A careful perusal of Fig. 5.11(b) indicates that the energy held by the

large-scale (larger than the wavelength of the peak value) turbulent motions increases

as Roτ increases from 0.5 to 2.5, and peaks between Roτ = 2.5 and 4.5. Furthermore,

the length scales associated with the peak values of kxφvv increase by an order in

their magnitudes (from O(λ/δ) = 1 to 10). This is consistent with the observation
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Figure 5.12: Pre-multiplied velocity spectra kxφuu, −kxφuv and kxφvv as a function

of wavelength λ, for two different rotation numbers at point (y/δ, z/δ) = (−0.75, 0.0)

in the central vertical plane of the domain.

from Fig. 5.10 that the coherent structures indicated by the streamwise scales of v′ in

the Roτ = 2.5 case are larger than in the non-rotating case. As the rotation number

further increases from 4.5 to 18, both the peak value and the associated wavelength

decrease, clearly indicating a process of breaking up of turbulent structures from large

to small scales as the Coriolis effects become stronger.

To further investigate the non-monotonic behavior of kxφvv as the rotation number

increases, Fig. 5.12 compares the pre-multiplied velocity spectra kxφuu, −kxφuv and

kxφvv at the same location as for the rotating and non-rotating cases presented in

Fig. 5.11. Note that instead of kxφuv, −kxφuv is plotted in Fig. 5.12 to facilitate the

comparison against the positively-valued energy spectra kxφuu and kxφvv. As shown in

Fig. 5.12(a), for the non-rotating case, the wavelength associated with the peak values

of kxφuv is clearly different from that of kxφvv by approximately 3δ (as labeled in the

figure). In contrast, it is seen from Fig. 5.12(b) that with the imposed system rotation

(for Roτ = 2.5), both pre-multiplied velocity spectra kxφvv and −kxφuv peak at the
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Figure 5.13: Pre-multiplied spectra of kxφuu and budget terms in Eq. (5.3) as

a function of wavelength λ, for different rotation numbers at point (y/δ, z/δ) =

(−0.75, 0.0) in the central vertical plane of the domain. All the budget terms are

non-dimensionalized using u3
τ/δ.

same wavelength, which is one order of magnitude larger than that of the non-rotating

case shown in Fig. 5.12(a). This interesting observation can be explained as follows.

Since 〈u′u′〉 extracts energy from the mean flow through the production term P11 (see,

Fig. 5.9(b)), which is proportional to 〈u′v′〉 (according to Eq. (5.3)), kxφuu tends to

peak at the same wavelength as −kxφuv. Because both C11 and C22 (which is equal

to −C11) are proportional to 〈u′v′〉 (see, Tab. 5.1), the strength distributions of C11

and C22 among different length scales are also proportional to that of 〈u′v′〉. In other

words, the pre-multiplied spectra of kxC11(kx) and kxC22(kx) also peak at the same

wavelength as for −kxφuv. In addition, as explained previously using Fig. 5.9(d),

the Coriolis production term C22 is the dominant mechanism for 〈v′v′〉 to acquire

energy in the region close to the bottom wall (for −0.9 < y/δ < −0.3). Therefore,

it is expected that kxφvv and kxC22(kx) (and therefore, −kxφuv) peak at the same

wavelength at Roτ = 2.5. As such, system rotation tends to force the magnitudes of
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kxφuu, −kxφuv and kxφvv to peak at the same wavelengths of coherent flow structures.

To provide deeper physical insights into Fig. 5.12 and develop a better under-

standing of the above analysis, pre-multiplied spectra of budget terms in Eq. (5.3)

are compared in Fig. 5.13 for both the non-rotating and rotating cases. Note that

−kxΠ11(kx) and −kxC11(kx) are plotted here to better compare their values with other

positively-valued spectra. As seen in Fig. 5.13, the wavelengthes associated with the

peak value of the dissipation spectrum kxε11(kx) and that of the energy spectrum

kxφuu are not distinctively separated, both of which are of the order of δ. It is also in-

teresting to see that the spectrum of the pressure-strain rate kxΠ11(kx) peaks around

the same wavelength as the dissipation spectrum. In consequence, the energy transfer

through the pressure-strain term is the strongest within the dissipation range, which

mechanism can enhance turbulence isotropy at small scales. As seen in Fig. 5.13(a),

energy spectrum kxφuu and production rate spectrum kxP11(kx) are very well synchro-

nized at large scales (for 2 < λ/δ < 20π), and both peak approximately at λ/δ = 4.

This indicates that although there are many terms involved in the transport equation

of the Reynolds stresses, at these large scales, the turbulent production term makes a

direct contribution to the growth of the streamwise RMS velocity. From Fig. 5.13(b),

it is observed that the magnitude of −kxC11(kx) is only slightly smaller than that of

kxP11(kx). This indicates that the rate of energy transfer from 〈u′u′〉 to 〈v′v′〉 through
the Coriolis force is comparable to that of energy extraction from the mean flow to

〈u′u′〉 through the production term. In other words, due to the system rotation, the

Coriolis force acts to drain energy from 〈u′u′〉 to 〈v′v′〉 at a considerable rate. This

physical mechanism well explains the previous observation in Fig. 5.12 that the level

of kxφuu is much reduced while that of kxφvv is much enhanced in the rotating case.

By comparing Fig. 5.12(b) with Fig. 5.13(b), it is also interesting to observe that

−kxC11(kx) peaks at the same wavelength as kxφvv, which further confirms the above

analysis that it is the Coriolis term that acts as the dominant energy source for 〈v′v′〉.
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5.3 Summary and conclusions

Fully developed turbulent flow in a square duct subjected to spanwise system rotation

for a wide range of rotation numbers has been studied using DNS. The effects of

system rotation on the mean flow, turbulence statistics and transport of Reynolds

stresses are investigated in both physical and spectral spaces. With the aid of the

velocity spectra and spectra of the budget terms in the transport equation of Reynolds

stresses, the turbulent flow structures for the rotating and non-rotating cases are

compared and analyzed.

In response to the Coriolis force and its interaction with the four boundary layers of

the duct, secondary flows appear as large counter-rotating streamwise vortices in the

cross-stream directions and a Taylor-Proudman (TP) region occurs in the center of a

rotating duct. The secondary flow pattern is very sensitive to the rotation number. In

the non-rotating case (for Roτ = 0.0), four pairs of counter-rotating vortices appear

in the cross-stream plane (one pair in each corner of the duct). However, as the

rotation number Roτ increases to 18 and above, only one pair of counter rotating

vortex can be observed in the entire cross-stream plane. It is observed that the TP

region extends significantly as the rotation number increases. It is also noticed that

the wall-shear level on the top wall is significantly reduced even at a small rotation

number. The flow near the top wall becomes increasingly laminarized as the rotation

number increases. The Coriolis force induced by the system rotation serves as an

additional resistance to the streamwise mean momentum. As a consequence, the

bulk mean velocity decreases as the rotation number increases.

The investigations of turbulent structures indicate that both the magnitude and

associated wavelength of the most energetic streamwise velocity fluctuations decrease

monotonically as the rotation number increases. In contrast, the energy spectrum

of vertical velocity fluctuations exhibits a more complex trend as the rotation num-
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ber increases. In particular, both its magnitude and associated wavelength peak

at Roτ = 2.5, indicating that the streamwise turbulent flow structures become the

most energetic and the largest at Roτ = 2.5. By further investigating the spectra

of the budget terms in the transport equation of Reynolds stresses, it is shown that

in contrast to the non-rotating case, the imposed system rotation tends to force the

pre-multiplied spectra of kxφuu, kxφvv and −kxφuv to peak at the same wavelength.

Through a detailed physical analysis in both physical and spectral spaces, it is shown

that as a consequence of system rotation, the Coriolis force acts to transfer energy

from 〈u′u′〉 to 〈v′v′〉 at a considerable rate that is of the same magnitude as the tur-

bulent production rate (which drains energy from the mean flow to power velocity

fluctuations). As a result, the level of kxφuu becomes much reduced while that of

kxφvv becomes much enhanced in a rotating case in comparison with a non-rotating

case.



Chapter 6

On the streamwise elongated roll

cells in a spanwise rotating square

duct at high rotation numbers

In the previous chapter, the analysis about the effects of system rotation on the

coherent structures in a spanwise rotating square duct was limited to Roτ ≤ 2.5. In

this chapter, streamwise elongated counter-rotating roll cells, also known as Taylor-

Görtler (TG) vortices, will be thoroughly investigated using the DNS method. A

wide range of rotation numbers will be considered, ranging from Roτ = 0 to 18.

This chapter is organized as follows. In Section 6.1, the roll cell structures away

from sidewalls are systematically analyzed in terms of their spanwise spacing, and

the effects on the production of entropy, etc. In Section 6.2, the interaction of roll cell

structures with sidewalls are investigated. Finally, in Section 6.3, major conclusions

of this chapter are summarized.

124
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Figure 6.1: Spanwise profiles of 〈u〉 at different vertical locations for different rotation
numbers.

6.1 Structures in the Taylor-Proudman region

Figure 6.1 plots the spanwise profiles of 〈u〉 at different vertical locations for differ-

ent rotation numbers. From Fig. 6.1(a), a Taylor-Proudman (TP) region (featuring

almost zero variation of mean velocities in the rotating axis) appears at a very small

rotation number (Roτ = 0.5) at the half duct height and its spanwise extension

increases as Roτ increases. It is interesting to see in Fig. 6.1(b) that close to the bot-

tom wall (at y/δ = −0.9), a TP region appears at a relatively high rotation number

(Roτ ≥ 9.0). According to Fig. 5.8, turbulence is still maintained at y/δ = −0.9 for

cases of 18.0 ≥ Roτ ≥ 9.0.

Figure 6.2 compares the pre-multiplied velocity spectra kxφvv at different rotation

numbers in a x-z plane located at y/δ = −0.9 to investigate the spanwise variation

of turbulence structures. This particular vertical location is chosen because the mag-

nitude of 〈v′w′〉, which reflects the spanwise inhomogeneity, peaks near point (y/δ,

z/δ)=(0.9, ±0.9) for the Roτ = 12.0 case, which will be shown later. Compared with

Figs. 6.2(a) and (b), it is interesting to see in Fig. 6.2(c) that the spanwise varia-
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Figure 6.2: Pre-multiplied velocity spectral kxφvv/u
2
τ in a x-z plane at y/δ = −0.9 at

different rotation numbers.

tion of kxφvv in the Roτ = 12 case is mostly concentrated very close to the sidewalls

(0.8 < |z/δ| < 1.0), leaving the energy spectra in the central region exhibiting a

quasi-homogeneous pattern in the spanwise direction. Based on this observation, it is

expected that the pattern of turbulence structures does not vary significantly in the

spanwise direction until very close to the sidewalls in the Roτ = 12.0 case. According

to Figs. 6.1(b) and 6.2, at sufficiently high rotation numbers, both the variations of

mean velocities and turbulence structures are small in the rotating axis direction in

the TP region. Therefore, in this section, the coherent structures in the TP region are

investigated while assuming a quasi-spanwise-homogeneity and ignoring the sidewall



CHAPTER 6. ROLL CELLS IN SPANWISE ROTATING SQUARE DUCT 127

y / δ

ω
1

,r
m

s
δ

/u
τ

-1.0 -0.5 0.0 0.5 1.0
0.0

5.0

10.0

15.0

20.0

25.0

30.0

4.5

0.25

Roτ=0

0.5

18.0
2.59.012.0

(a) ω1,rms

y / δ

ω
2

,r
m

s
δ

/u
τ

-1.0 -0.5 0.0 0.5 1.0
0.0

10.0

20.0

30.0

40.0

Roτ

Roτ=0

0.25

0.5

(b) ω2,rms

y / δ

ω
3

,r
m

s
δ

/u
τ

-1.0 -0.5 0.0 0.5 1.0
0.0

20.0

40.0

60.0

0.5

Roτ

Roτ=0

0.25

(c) ω3,rms

Figure 6.3: Vertical profiles of RMS of different vorticity fluctuation components at

different rotation numbers. Arrow marks the monotonic variation with Roτ increases

as 0.0, 0.25, 0.5, 2.5, 4.5, 9.0, 12.0 and 18.0.

effects.

Figure 6.3 shows the vertical profiles of root-mean-square (RMS) of vorticity fluc-

tuations (i.e., ωi,rms = 〈ω′
iω

′
i〉1/2, where ωi = ǫijk∂uk/∂xj is the vorticity) for different

rotation number cases. From the figures, the RMS values of vorticity fluctuations

near the top wall (y/δ = 1.0) are very sensitive to the system rotation. For instance,

even at a very small rotation number Roτ = 0.5, the values (local maximal) of ω1,rms
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Figure 6.4: Vectors of streamwise averaged cross-stream fluctuation velocities (w′,v′)

based on one instantaneous flow field at different rotation numbers. The isopleths of

ω1,rmsδ/uτ = 15, which is approximately 85% of the second peak values of ω1,rmsδ/uτ

away from the bottom wall in Fig. 6.3(a), are marked using a blue solid curve.

and ω3,rms at the top walls become more than 6 times smaller than those of the non-

rotating case. It is also interesting to notice that as the rotation number increases,

both levels of ω2,rms and ω3,rms monotonically decrease in general, whereas the second

peak of ω1,rms near the bottom wall remain stable (which is approximately 18) for a

wide range of rotation numbers (4.5 ≤ Roτ ≤ 18) and the associated vertical position

also remains stable (for y/δ ≈ −0.8).

Figure 6.4 shows vectors of streamwise averaged cross-stream fluctuation velocities

(w′,v′) based on one instantaneous flow field at different rotation numbers. In the

figures, isopleths of ω1,rms at 85% of the second peak values of ω1,rms away from the

bottom wall in Fig. 6.3(a) are marked. From Fig. 6.4, the spanwise variation of marked

isopleths for −0.5 ≤ z/δ ≤ 0.5 in the Roτ = 12.0 case is apparently smaller than that

in the Roτ = 2.5 case. This is consistent with the analysis for Figs. 6.1 and 6.2 that

as the TP region occurs near the bottom wall at Roτ = 12.0, the turbulent flow also

becomes quasi-spanwise-homogeneous away from the sidewalls. It is interesting to

observe in Fig. 6.4 that streamwise vortices exist near the marked isopleths. This

observation supports the conclusion made by Kim et al. [32] for turbulent plane
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Figure 6.5: Typical contours of instantaneous ω′
1 and ω′

2 superimposed with vectors

of fluctuation velocities (w′, v′) at different rotation numbers.

channel flows, that the second peak of ω1,rms away from the wall was associated with

the cores of streamwise vortices. It is well known that the streamwise elongated roll

cells occur in the spanwise rotating plane channel flow [93, 92, 97]. The observation

from Fig. 6.3 indicates that in the spanwise rotating square duct flows, streamwise

elongated roll cells also exist and their positions are closely related to ω1,rms. In view

of this, the observation in Fig. 6.3(a) that the value of the second peak away from

the bottom remains stable for 4.5 ≤ Roτ ≤ 12.0 reflects the presence of roll cell

structures.

Figure 6.5 plots the typical contours of instantaneous ω′
1 and ω′

2 around stream-
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wise elongated roll cells, which can be identified based on the vectors of fluctuation

velocities (w′, v′) at different rotation numbers. As seen in Figs. 6.5(a) and (c),

vortical cores of the roll cells are associated with large magnitudes of ω′
1. It is also in-

teresting to see in Figs. 6.5(b) and (d) that large magnitudes of ω′
2 occur between the

counter-rotating votices. This observation can be explained as follows. In the region

between the counter-rotating vortices of a roll cell structure, the near-wall low-speed

fluid is pumped up (v′ > 0) and consequently generates negatively-valued u′, which

is commonly known as an ejection event [60] featuring u′ < 0 and v′ > 0. As such,

positively-valued (negatively-valued) ∂u′/∂z occurs on the right (left) side of the

ejection event (shown as the region with upward vectors between counter-rotating

vortices in the figures). Furthermore, the magnitude of ∂w′/∂x is expected to be

much smaller than that of ∂u′/∂z for streamwise elongated structures. Therefore,

areas with positively-valued and negatively-valued ω′
2 (= ∂u′/∂z − ∂w′/∂x) appear

on the right and left sides of the ejection event, respectively. As such, it is concluded

that the ejection even features large magnitudes of ω′
2, which is consistent with the

observation of Jiménez et al. [98].

To explicitly show the streamwise elongation of the roll cells observed in Fig. 6.4,

Fig. 6.6 compares the contours of instantaneous streamwise (ω′
1) and vertical (ω′

2)

vorticity fluctuation in the x-z plane at y/δ = −0.75. Note that only 15δ out of

20πδ of the streamwise domain is plotted here. In this particular plane positioned

at y/δ = −0.75, the second peak of ω1,rms appears away from bottom wall for the

plotted cases (see Fig. 6.3). As such, the streamwise elongated roll cells are directly

associated with large magnitudes of ω′
1 and ω′

2 in accordance with the previous analysis

for Fig. 6.5. As seen in Fig. 6.6, the areas with negatively-valued and positively-valued

ω′
1 and ω′

2 in the rotating cases are typically attached side by side and elongate in

the streamwise direction. Furthermore, the areas with large magnitudes of ω′
1 and

ω′
2 exhibit strikingly similar patterns in the Roτ = 2.5 and 12.0 cases. According to
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Figure 6.6: Contours of one instantaneous streamwise and vertical vorticity fluctua-

tion fields in the x-z plane at y/δ = −0.75 for different rotation number cases. Solid

and dashed isopleths in (a) are valued at +20 and −20, respectively. Solid and dashed

isopleths in (b) are valued at +10 and −10, respectively.

Fig. 6.5, the plotted isopleths ω′
1 and ω′

2 well depict the counter-rotating streamwise

elongated roll cell structures. As seen in Fig. 6.6, the streamwise extension of roll

cells in the Roτ = 2.5 is longer than that in other plotted cases. This is consistent

with the observation in the last chapter that the largest streamwise turbulent scales

are observed at Roτ = 2.5.

To further quantify the spanwise size of the observed streamwise roll cells in
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Figure 6.7: Horizontal profiles of autocorrelation of different vorticity fluctuations

with the reference point chosen at (y/δ, z/δ) = (−0.75, 0).

Fig. 6.6, the autocorrelation of vorticity fluctuations can be studied, which can be

written (without summation convention) as

Rωi(x,∆x) =
〈ω′

i(x)ω
′
i(x +∆x)〉

〈ω′
i(x)ω

′
i(x)〉

. (6.1)

Figure 6.7 compares the horizontal profiles of the autocorrelation of vorticity fluc-

tuations with the reference point chosen at (y/δ, z/δ) = (−0.75, 0) for the different

rotation number cases. The positions of the minimal (negatively-valued) autocorrela-

tion is of a special physical meaning. In accordance with Fig. 6.5, the displacement of

the minimum of Rω1 and Rω2 from the reference point reflects the spanwise spacing

between neighboring vortex cores (which consists of a pair of counter-rotating stream-

wise roll cells) [99] and the spanwise width of the ejection event, respectively. From

Fig. 6.7, compared with the other two cases, the minimum values of Rω1 and Rω2

reach the largest magnitudes at Roτ = 12. This indicates the common occurrence of

streamwise counter-rotating vortices. It is also interesting to note in Fig. 6.7 that,

compared with the non-rotating case, the locations of minimal negatively-valued cor-

relation are closer to the reference point with a system rotation. In particular, Rω2
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Figure 6.8: Vertical profiles of quadrant decomposition of 〈u′v′〉 at different rotation
numbers in the central plane of the duct (at z/δ = 0).

reaches the minimum value approximately 0.1δ away from the reference point, which

is half of that in the non-rotating case (≈ 0.23δ). By calculating the local Kolmogorov

length scale (defined as η = (ν3/ε)1/4), it is further noticed that the distance between

the minimum of Rω2 to the reference point is 5η and 18η at Roτ = 12 and Roτ = 0,

respectively. In other words, the spanwise width of the ejection event in the middle of

streamwise roll cells is reduced to the order of Kolmogorov length scale at Roτ = 12.
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To further understand the ejection event at high rotation numbers, Fig. 6.8 com-

pared the vertical profiles of the quadrant decompositions [59] for 〈u′v′〉 at different
rotation numbers in the middle-plane (z/δ = 0). In the figure, quadrant events are

denoted as: 〈u′v′〉1 (for u′ > 0 and v′ > 0), 〈u′v′〉2 (for u′ < 0 and v′ > 0), 〈u′v′〉3
(for u′ < 0 and v′ < 0) and 〈u′v′〉4 (for u′ > 0 and v′ < 0). As such, 〈u′v′〉2 and

〈u′v′〉4 correspond to the ejection and sweep events, respectively. Note that only

events with |u′v′| > 2urmsvrms are taken into account here. As seen in Fig. 6.8(a), for

the non-rotating case, both ejection and sweep events contribute to the generation of

Reynolds shear stress 〈u′v′〉 and ejection events are dominant in the region away from

wall (for y/δ > −0.9). These observations are consistent with the analysis of Huser

and Biringen [11]. In contrast to the non-rotating case, as seen in Figs. 6.8(b) and

(c), for the Roτ = 2.5 and 12.0 cases, 〈u′v′〉2 is apparently much larger than the other

quadrant components in the region away the bottom wall (for y/δ > −0.95). Specifi-

cally, the ratio between the peak values of 〈u′v′〉2 and 〈u′v′〉4 in the non-rotating case

is 2.0, but increases to 12.8 and 14.0 at Roτ = 2.5 and 12.0, respectively. In other

words, ejection event is enhanced by system rotation, which is consistent with the

observation by Johnston et al. [93] in their experimental study of a spanwise rotat-

ing turbulent plane channel flow. Based on the analysis of Fig. 6.7(b), the spanwise

width of ejection event is much reduced by system rotation. With a narrower fluid

passage between the counter-rotating vortices, the pumping-up effect is expected to

be enhanced.

To further understand the effects of system rotation on the dynamics of roll cell

structures, the governing equation for the vorticity field in the non-inertial rotating

reference frame is considered, which reads

∂ωi

∂t
+ uj

∂ωi

∂xj
= ν

∂2ωi

∂xj∂xj
+ ωj

∂ui

∂xj
+ 2Ω

∂ui

∂x3
. (6.2)

Clearly, the interaction between the flow vorticity and system rotation is reflected by
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〈ω′
iω

′
j〉 〈ω′

1ω
′
1〉 〈ω′

2ω
′
2〉 〈ω′

iω
′
i〉/2

PSij 2Ω〈ω′
1
∂u′

∂z
〉 2Ω〈ω′

2
∂v′

∂z
〉 Ω

[
〈ω′

1
∂u′

∂z
〉+ 〈ω′

2
∂v′

∂z
〉
]

Table 6.1: Production term (PSij) of 〈ω′
iω

′
j〉 due to system rotation.

the last term in Eq. (6.2). Based on the above equation, it is straightforward to derive

the production term (PSij) of 〈ω′
iω

′
j〉 due to system rotation as listed in Table 6.1

(see Appendix B for the complete transport equation). In the above discussion, it

has been shown that the roll cell structures in the rotation cases are closely related

to the quantities ω′
1 and ω′

2 (see Fig. 6.5). From Table 6.1, both PS11 and PS22 are

also associated on ω′
1 and ω′

2. Therefore, the dynamic connection between PS11 and

PS22 with roll cell structures needs to be investigated. Furthermore, by analyzing

the production term (PSii) of entropy (〈ω′
iω

′
i〉/2), the destabilization mechanism of

system rotation on roll cell structures can be further explained.

In order to study the dynamics of roll cell structures under a system rotation, a

variation of linear stochastic estimation (LSE) approach proposed by Adrian [100] is

utilized, which is written as

〈g′|E〉 = 〈g〉LSEE . (6.3)

Here, g′ and E represent estimated turbulent variable and targeted event, respec-

tively. 〈g〉LSE is the estimated coefficient corresponding to the chosen event E. By

minimizing the mean-square error of the estimation, 〈g〉LSE can be calculated as

〈g〉LSE(∆x) =
〈E(x)g′(x +∆x)〉

〈E(x)E(x)〉 . (6.4)

In the original LSE approach proposed by Adrian [100], the estimated variable was

fluctuating velocity field, i.e., g′ = u′
i. Here, LSE is further used to the entrophy

and its production terms PSij associated with roll cell structures, i.e., g′ = ω′
1ω

′
1,

g′ = 2Ωw′
1
∂u′

∂z
, g′ = 2Ωw′

2
∂v′

∂z
, etc.
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(a) 〈ω′

1
ω′

1
〉LSE (b) PS11,LSE

(c) 〈ω′

2
ω′

2
〉LSE (d) PS22,LSE

Figure 6.9: Contours of 〈ω′
1ω

′
1〉LSE, PS11,LSE, 〈ω′

2ω
′
2〉LSE and PS22,LSE at Roτ = 12.0

superimposed with vectors (〈w〉LSE, 〈v〉LSE). Values of 〈ω′
1ω

′
1〉LSE and 〈ω′

2ω
′
2〉LSE

(PS11,LSE and PS22,LSE) are divided by a positive constant such that the peak value

of 〈ω′
1ω

′
1〉LSE (PS11,LSE) is 1.0.

Based on the analysis of Fig. 6.8, the roll cell structures at high rotation number

promote the ejection event 〈u′v′〉2, which peaks around y/δ = −0.8 and -0.85 for

Roτ = 2.5 and 12.0, respectively. Therefore, the targeted event (E) is chosen as the

ejection event at the reference point (z/δ, y/δ)=(0.0, -0.8), which can be quantified

as

E =




|u′v′| if u′ < 0, v′ > 0 and u′v′ > 2urmsvrms

0 otherwise .
(6.5)

Note in the above equation that only ejection events with u′v′ > 2urmsvrms are ac-

counted.

Figure 6.9 plots the contours of 〈ω′
1ω

′
1〉LSE, PS11,LSE, 〈ω′

2ω
′
2〉LSE and PS22,LSE

superimposed with vectors of (〈w〉LSE, 〈v〉LSE) forRoτ = 12.0. Note that the values of
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(a) Roτ = 2.5 (b) Roτ = 12.0

Figure 6.10: Contours of PSii,LSE for Roτ = 2.5 and 12.0 superimposed with vectors

(〈w〉LSE, 〈v〉LSE). Values of PSii,LSE are divided by a positive constant, so that the

maximal value of PS11,LSE is 1.0.

〈ω′
1ω

′
1〉LSE and 〈ω′

2ω
′
2〉LSE (PS11,LSE and PS22,LSE) are divided by a positive constant

so that the peak value of 〈ω′
1ω

′
1〉LSE (PS11,LSE) is 1.0. As expected, the ejection event

is associated with a pair of counter-rotating vortices, a pattern that is consistent with

the streamwise elongated roll cell structures. It is interesting to observe in Fig. 6.9(b)

that the roll cell structures can generate positive production rate for 〈ω′
1ω

′
1〉 by system

rotation between the depicted counter-rotating vortices, where 〈ω′
1ω

′
1〉LSE is significant

(see Fig. 6.9(a)). In other words, system rotation tends to enhance to the streamwise

vortices. This observation is consistent with the analysis of Fig. 6.5. Specifically,

positively-valued (negatively-valued) ∂u′/∂z occurs on the right (left) side of the

ejection event, where ω′
1 is also positive (negative). Therefore, ω′

1∂u
′/∂z is positive

near the ejection event. Wu and Kasagi [102] also made a similar analysis of a

single streamwise vortex tube to explain the positive production of 〈ω′
1ω

′
1〉 induced

by spanwise rotation. The evidence shown in Fig. 6.9(a) clearly indicates that the

production of 〈ω′
1ω

′
1〉 due to system rotation requires a pair of counter-rotating vortices

to generate an ejection event. As seen in Fig. 6.9(d), negative production of 〈ω′
2ω

′
2〉

is exerted by system rotation in the region of the ejection event, where 〈ω′
2ω

′
2〉LSE

reaches the maximum value. In other words, through the roll cell structure, system

rotation tends to suppress the strength of ω′
2. This can be explained as follows.
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According to Fig. 6.5, positively-valued (negatively-valued) ∂v′/∂z occurs on the left

(right) side of the ejection event, where ω′
1 is negative (positive). Therefore, ω

′
2∂v

′/∂z

is positive in the region of an ejection event.

In Fig. 6.9, it is observed that in the rotating reference frame, roll cell structures

can generate positive and negative production rates for 〈ω′
1ω

′
1〉 and 〈ω′

2ω
′
2〉, respec-

tively. The contribution of roll cell structures to the overall production rate (PSii) of

the entropy (〈ω′
iω

′
i〉/2) is therefore of crucial importance, because it directly indicates

the destabilization/stabilization effect of system rotation on the turbulent flows. Fig-

ure 6.10 plots PSii,LSE for Roτ = 2.5 and 12.0. It is observed that positively-valued

PSii,LSE appears in the region of an ejection event. This indicates that the roll cell

structures can interact with system rotation and generate positive contribution to

〈ω′
iω

′
i〉/2. Compared with Fig. 6.10(a) for the Roτ = 2.5 case, the level of PSii,LSE

is relatively smaller at Roτ = 12.0. This indicates that as rotation number increases

up to a sufficiently high value (Roτ ≥ 12.0), the enhancement of 〈ω′
1ω

′
1〉 (quantified

by positively-valued PS11,LSE) and suppression of 〈ω′
2ω

′
2〉 (quantified by negatively-

valued PS22,LSE) by roll cell structures are almost counterbalanced, as the turbulent

intensity reduces.

6.2 Structures in the corner

In a turbulent plane channel flow, only one Reynolds shear stress (i.e., 〈u′v′〉) is

non-zero. In contrast, for the turbulent flow in a closed duct, Reynolds shear stress

〈v′w′〉 can also be non-zero, reflecting the inhomogeneity in the cross-stream direc-

tions. Therefore, the pattern of 〈v′w′〉 is investigated to better understand the effects

of sidewalls on the turbulent flow. Figure 6.11 compares the distributions of 〈v′w′〉 in
the corner for different rotation numbers. Although system rotation decreases the tur-

bulent levels in general (see Figs. 5.7 and 5.8), it is interesting to observe in Fig. 6.11
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Figure 6.11: Contours of 〈v′w′〉/u2
τ in the corner for different rotation numbers. The

increment between two adjacent isopleths is 0.025. The diagonal line is marked by a

dash-dot line as a reference.

that the maximal magnitude of 〈v′w′〉 remains stable as rotation number increases.

Furthermore, as indicated by the isopleths at −0.125 (the innermost isopleths), the

peak location of 〈v′w′〉 approaches the left-bottom corner (i.e., (y/δ, z/δ)=(-1, -1))

along the marked diagonal line as the rotation number increases.

In the previous section, the existence of streamwise elongated roll cell structures in

the TP region (away from sidewalls) at different rotation numbers (see Figs. 6.4, 6.6

and 6.9) has been demonstrated. Particularly, it has been shown that the strength

(indicated by the second peak value of ω1,rms away from wall in Fig. 6.3(a)) of the

roll cell structures is not trivial at high rotation numbers. In view of this, it can

be inferred that the large magnitudes (compared with that in the non-rotating case)

of 〈v′w′〉 is closely related to the roll cell structures at high rotation numbers. To

further explain, Fig. 6.12 shows the typical streamwise variation of turbulent vortices

at the corner for Roτ = 12.0. From Fig. 6.6, it was observed that the roll cell

structures in the TP region approach the sidewalls, a feature that is consistent with
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Figure 6.12: Instantaneous cross-stream velocity fluctuation vectors (w′, v′) super-

imposed with isopleths of streamwise vorticity fluctuation ω′
1δ/uτ for Roτ = 12 at

different streamwise locations. Positively- and negatively-valued ω′
1 are plotted using

solid blue and dashed red isopleths, respectively. For the isopleths, the increment is

10 and the magnitude of theinnermost isopleth in subfigure (a) is 60. The vectors

are scaled with an identical magnitude-to-length ratio in these four sub-figures. v′w′
i

marks the quadrant events in the neighborhood of point (y/δ, z/δ) = (−0.9,−0.9),

where 〈v′w′〉 reaches its maximal magnitude (see Fig. 6.11(b)).
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Figure 6.13: Quadrant decomposition of 〈v′w′〉 along the diagonal line for the non-

rotating and rotating cases. Only events of |v′w′| > 2vrmswrms are accounted.

that shown in Fig. 6.12(a). From Fig. 6.12(a), it is clear that as the left vortex

(indicated by negatively-valued ω′
1) approaches the corner, the symmetry of the two

counter-rotating vortices is broken and the ejection between two vortices becomes

inclined away from the sidewall. As seen in Fig. 6.12(b), due to induction by the

sidewall, the left vortex tends to be elevated away from the bottom wall. Meanwhile,

the right vortex (with marked positively-valued ω′
1) grows in size to keep the ejection

between vortices such that positive TKE production is sustained. From Figs. 6.12(c)

and (d), the left vortex is quickly dissipated in the region away from the sidewalls,

leaving the right vortex occupying a large area of the corner. Without the ejection

event to sustain the roll cell structures (see the previous analysis of Figs. 6.9 and 6.10),

the remaining vortex in Fig. 6.12(d) disintegrates rapidly.

The structures shown in Fig. 6.12 can also be used to further analyze the gen-

eration of Reynolds shear stress 〈v′w′〉 due to the inhomogeneity of the corner. To

this end, 〈v′w′〉 is further decomposed into 〈v′w′〉1 (for v′ > 0 and w′ > 0), 〈v′w′〉2
(for v′ < 0 and w′ > 0), 〈v′w′〉3 (for v′ < 0 and w′ < 0) and 〈v′w′〉4 (for v′ < 0



CHAPTER 6. ROLL CELLS IN SPANWISE ROTATING SQUARE DUCT 142

and w′ > 0). Figure 6.13 compares the profiles of 〈v′w′〉i along the diagonal line

for the non-rotating and rotating cases. As marked by v′w′
i in Fig. 6.12, as the two

counter-rotating vortices pass the corner from the bottom to the sidewalls, the region

associated with the peak magnitude of 〈v′w′〉 (around (y/δ, z/δ) = (−0.9,−0.9)) ex-

periences v′w′
2, v

′w′
1 and v′w′

4 events sequentially. Due to the geometrical symmetry

along the diagonal lines in the non-rotating case, the diagonal profiles of 〈v′w′〉2 and

〈v′w′〉4 are very close in Fig. 6.13(a) (these two profiles would collapse if the sam-

pling time was sufficiently long). In contrast, from Fig. 6.13(b), the magnitude of

〈v′w′〉4 in the region −0.9 < z/δ < −0.7 is significantly larger than that of 〈v′w′〉2
at Roτ = 12. Therefore, it can be concluded that in the rotating case for Roτ = 12,

〈v′w′〉4 makes the dominant contribution to 〈v′w′〉 in the vicinity of (−0.9,−0.9). As

seen Fig. 6.13(b), 〈v′w′〉3 possesses the smallest magnitude in the plotted region. This

is consistent with the observation in Fig. 6.12 that no apparent 〈v′w′〉3 event can be

observed along the diagonal line.

6.3 Summary and conclusions

In this chapter, the DNS database generated in the previous chapter is used to system-

atically investigate the roll cell structures in a square duct at high rotation numbers.

Due to the presence of sidewalls, secondary flow in the pattern of large scale

counter-rotating vortices is induced by system rotation. A TP region appears, featur-

ing that the mean streamwise velocity does not vary along spanwise direction (axis of

rotation), as rotation number becomes sufficiently high (Roτ ≥ 9.0). It was interest-

ing to observe that turbulent statistics, such as energy spectra, also remain stable in

the TP region. This indicates a quasi-spanwise-homogeneous turbulent flow near the

bottom wall at high rotation numbers in the TP region. At high rotation numbers,

streamwise elongated roll cell structures appears in the TP region and are critical for
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the maintenance of turbulence. In the center of two counter-rotating vortices (roll cell

structures), ejection event occurs and makes the dominant contribution to Reynolds

shear stress 〈u′v′〉. It was also observed that the existence of roll cell structures is

essential to generate entropy. Specifically, within the roll cell structures, the level of

〈ω′
1ω

′
1〉 and 〈ω′

2ω
′
2〉 is sustained by the streamwise vortices and the ejection events, re-

spectively. In order to further understand the underlying effect of system rotation on

coherent structures at high rotation numbers, the linear stochastic estimation (LSE)

approach is extended to evaluate the production rate of entropy by roll cell structures.

The results indicate that in the region of ejection event between the counter-rotating

vortices, system rotation tends to enhance 〈ω′
1ω

′
1〉 and suppress 〈ω′

2ω
′
2〉. These effects

get closer to counterbalance as rotation number increases. As the roll cell structure

meanders and interact with the sidewalls, one streamwise vortice of the roll cell struc-

tures deviates away from the bottom wall and eventually the other streamwise vortice

disintegrates. Overall, at high rotation numbers, the roll cell structure appears in the

TP region (away from the sidewalls) near bottom wall and vanishes in the corner

region.



Chapter 7

Conclusions and future works

7.1 Conclusions

In this thesis, three research tools (PIV, LES and DNS) were used to study turbulent

square duct flows influenced by two factors: surface-mounted ribs and system rotation.

For the numerical simulations of LES and DNS, two numerical algorithms, FVM and

SEM, were employed, which are described in details in Chapter 2 and Appendix C,

respectively. In this section, the technical details of the three adpoted research tools

are presented, and the turbulent mechanisms underlying the influences by ribs and

system rotations on the turbulent square duct flows are summarized.

7.1.1 Summary of the PIV experiments

To conduct experimental measurements of turbulent flow in a square duct with dif-

ferent shaped ribs, a square duct and different shaped riblets made of acrylic were

designed. The post-processing code written with MATLAB (the MathWorks Inc.)

was customized and redeveloped. The experimental measurements using the PIV

144
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system on rib-roughened square duct flows was performed in a water channel. The

planar PIV system was used to measure 2-D velocity fields in three different planes

parallel to the sidewalls. For each measurement plane, both the laser sheet and cam-

era needed to be carefully aligned and re-calibrated.

The PIV system used in this thesis is the same as Tachie and Shah [25], and

some important system setup are summarized as follows. The water flow was seeded

with 10µm fluorescent polymer particles (Rhodamine B) which had a specific gravity

of 1.19 and refractive index of 1.48, and were illuminated using a New Wave Solo

Nd:YAG double-pulsed laser that emitted green light of 120 mJ/pulse at 532 nm

wavelength. The fluorescent seeding particles absorbed green laser light and emit-

ted orange light at 570 nm wavelength. The scattered light from the particles was

captured by a 12-bit charge-couple device camera with a 2048 pixel × 2048 pixel

array and was fitted with an orange filter. The use of the fluorescent particles in

combination with an orange filter minimized surface glare at the interface between

the working fluid (water) and the ribs. In each measurement plane, the laser sheet

was shot from the top of the channel and the field of view was set to 63 mm × 63

mm. Based on a convergence test, 4000 image pairs were acquired in each measure-

ment plane and post-processed to obtain the vector maps of the velocity field using

DynamicStudio version 3.40. Interrogation area (IA) sizes of ∆x×∆y = 32 pixels ×
32 pixels with 50% overlap, were used to post-process the data. This corresponded

to 32.5 pixel/mm and the ratio of vector spacing to rib height was ∆y/h = 0.082.

7.1.2 Summary of the LES method

A parallel in-house FVM code, written with FORTRAN, was developed, optimized

and validated to conduct LES for turbulent flows in a square duct with different

shaped ribs mounted on the bottom wall. A generalized curvilinear grid system was
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implemented in the FVM code. An algebraic multi-grid (AMG) solver for the pressure

correction equation was implemented. This FVM code has been validated by compar-

ing with its DNS results with Kim et al. [32] for a turbulent channel flow. In addition,

this FVM code has also been successfully used in the LES study of highly-disturbed

turbulent duct flows with surface-mounted V-shaped ribs (Chapter 4). Overall, the

developed FVM code is efficient and capable of simulating turbulent flows in com-

plex geometries using both the DNS and LES approaches. Therefore, Objective 1 in

Section 1.3 has been fulfilled.

The FVM code used a body-fitted collocated grid system for discretizing the gov-

erning equations. A second-order central difference scheme is used for the spatial dis-

cretization of both the convection and viscous terms. The second-order Runge-Kutta

scheme is utilized for time integration. In other words, second-order accuracy is

achieved with respect to both spatial and temporal discretizations. Within each sub-

step of the Runge-Kutta scheme, a fractional-step method [70] is implemented and

a pressure correction equation is solved using the parallel algebraic multigrid solver

BoomerAMG [71] provided by the Portable, Extensible Toolkit for Scientific Com-

putation (PETSc) library [40, 41, 42]. The momentum interpolation method of Rhie

and Chow [39] is used to establish the relation between the cell-face mass flux and

the pressure in adjacent control volumes in order to prevent the ‘checkerboard’ effect

in the pressure field typical of a collocated grid system. The dynamic Smagorinsky

model (DSM) [69] was employed to model the SGS stresses.

7.1.3 Summary of the DNS method

An open-source code (‘Semtex’) [89] implementing the spectral-element method (SEM)

was customized and redeveloped. Several post-processing codes were developed for

this SEM code. The implemented post-processing approaches include Reynolds stresses,
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energy spectrum, linear stochastic estimation (LSE), proper orthogonal decompo-

sition (POD), different vortex identifiers and spatial/temporal correlations. Addi-

tionally, the transport equations for the mean velocity 〈ui〉, mean temperature 〈θ〉,
Reynolds stresses 〈u′

iu
′
j〉, turbulent heat flux 〈u′

iθ
′〉, TKE 〈u′

iu
′
i〉/2, mean vorticity

〈ω′
i〉 and second-order vorticity moments 〈ω′

iω
′
j〉 were calculated.

This SEM code was developed using C++ and FORTRAN programming lan-

guages, and parallelized using message passing interface (MPI) libraries. All physical

quantities are expanded into the spectral space using Fourier series in the streamwise

direction. The quadrilateral spectral-element method is used for discretization in

the cross-stream (vertical and spanwise) directions following Karniadakis and Sher-

win [90]. The high-order splitting method developed by Karniadakis et al. [91] is

used for the time integration. More specifically, an intermediate velocity is obtained

in the first substep by advancing the convection and body-force (Π and Coriolis

force) terms using an explicit backward-time differencing scheme. The incompress-

ibility constraint is enforced using a pressure correction method during the second

substep. In the final substep, viscous diffusion terms are advanced implicitly. In both

substeps for pressure-correction and viscous diffusion, weak forms of the Helmholtz

equations based on the Galerkin formulation are solved for each wavenumber using a

direct solver.

7.1.4 Summary of the effects of different angled V-shaped

ribs on turbulent square duct flows

In order to investigate the effects of V-shaped ribs on turbulent square duct flows

(Objective 2 in Section 1.3), a set of PIV experiments were designed to measure the

velocity fields of fully developed turbulent duct flows over surface-mounted different

angled (90◦, 60◦, 45◦ and 30◦) V-shaped ribs. However, it was realized that the
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data obtained by the planar PIV system on three planes may not be sufficient to

well understand the highly-disturbed turbulent flows over V-shaped ribs. Therefore,

LES was further used to simulate the turbulent duct flows over surface-mounted

different angled V-shaped ribs with the same parameters (rib geometries, pitch-to-

height ratios, Reynolds numbers, etc.) as the PIV experiments. As such, the PIV

experiments can provide benchmark data to validate the LES results, and LES can

serve as a complement for PIV thanks to its much richer data. Moreover, the database

provided by the PIV measurements in Chapter 3 can be useful for future validations of

numerical algorithm, SGS models, RANS models, etc. for turbulent flows in complex

geometries (see Objective 4 in Section 1.3).

In Chapters 3 and 4, the effects of different angled V-shaped ribs on turbulent

square duct flows were investigated using the PIV and LES approaches, respectively,

and the flow physics were systematically analyzed using a wide range of techniques.

Specifically, the statistics of the first- and second-order moments are studied in terms

of velocity, vorticity, shear rate and Reynolds stresses. Coherent flow structures

are analyzed using multiple tools, including two-point auto-correlation coefficient,

quadrant decomposition, swirling strength, POD and energy spectrum.

In the cross-section plane, secondary flows appear in the pattern of a pair of large

symmetrical streamwise-elongated vortices in both the V-shaped and perpendicular

rib cases. However, the downwash of the mean flow from the central region towards

the ribbed wall induced by large streamwise-elongated vortices is much stronger in

a V-shaped rib case than in the perpendicular rib case. As a result, the highest-

level of the mean streamwise momentum is concentrated in the upper half channel

(for y/δ > 0.0) in the perpendicular rib case, but close to the rib crest (around

y/δ = 0.8) in a V-shaped rib case. Furthermore, the magnitude of the skin friction

coefficient Cf is significantly enhanced in the V-shaped rib case compared to that in

the perpendicular rib case. Also, for the same Reynolds number, the form drag in
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the V-shaped rib cases is more than twice of that in the perpendicular rib case.

The TKE level and its spatial distribution are significantly different between the

perpendicular and V-shaped rib cases. In the perpendicular case, the highest TKE

level occurs in the region immediately above the rib crest. However, in the V-shaped

rib cases, the highest TKE levels are primarily concentrated near the leeward side

of the rib. Guided by the angled rib, the TKE produced in the V-shaped rib region

is convected sideways and upwards by the secondary flow, creating highly turbulent

spots on both the windward and leeward sides of the angled rib near the two vertical

sidewalls.

It is interesting to observe that turbulence tends to be locally quasi-isotropic in

a V-shaped rib case whereas locally anisotropic in the perpendicular rib case. The

most energetic eddies induced by V-shaped ribs are concentrated near the sidewalls

and do not possess any preferential directions. As a consequence, all three normal

components (as well as all three shear components) of the Reynolds stresses are

comparable in terms of their magnitudes, which all peak near the sidewalls (for 0.8 <

|z/δ| < 1.0) and become trivial in the central region (for |z/δ| < 0.5). As such,

in the V-shaped rib cases, the TKE level is suppressed in the duct center and is

significantly enhanced near the sidewalls (contributed by all three Reynolds normal

stresses). In contrast, in the perpendicular case, turbulence is apparently locally

anisotropic because the TKE of the flow is primarily attributed to the streamwise

velocity fluctuations (i.e., 〈ū′′ū′′〉), whereas among the three Reynolds shear stress

component, 〈ū′′v̄′′〉 dominates, especially in the duct center.

In the perpendicular rib case, no apparent low-speed streaks can be observed be-

low the rib height due to the geometric constraint from the ribs, however, elongated

streaky structures are prevalent in the region above the ribs. In the V-shaped rib

case, no apparent streaky structures present either below or above the rib height. In
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the region above the V-shaped ribs, turbulent packets are populated near the two

sidewalls, whereas in the region below the rib height, turbulent packets are populated

in the leeward region. The streamwise and spanwise length scales of these turbu-

lent packets are very similar, further confirming that turbulence tends to be locally

isotropic in a V-shaped rib case.

The study of spatial two-point autocorrelations and temporal autocorrelations in-

dicate that the turbulent vortices near the V-shaped ribs are significantly different

than those in the perpendicular rib case in terms of spatial and temporal scales.

Specifically, in the perpendicular rib case, both the temporal and spatial scales of

turbulence are much larger in the streamwise direction than in the vertical and span-

wise directions in the region above the rib height, which confirms that the turbulent

flow field is dominated by energetic streamwise velocity fluctuations, facilitating the

formation of large-scale streamwise-elongated streaky structures in the region above

the rib height. In contrast, in the V-shaped rib case, the magnitudes of all three

temporal autocorrelations (as well as all three spatial two-point autocorrelations) are

of a similar order, indicating that both the temporal and spatial scales of turbulent

eddies are similar, facilitating the formation of turbulent packets. It was observed

that the energy spectrum is sensitive to the rib geometry. The level of the energy

spectra is considerably higher in the V-shaped rib case than in the perpendicular rib

case. Furthermore, the largest temporal scale of the energy-containing range is much

larger in the perpendicular rib case than in the V-shaped rib case, indicating that the

large scales of turbulence in the perpendicular rib case are mostly determined by the

more energetic turbulent motions of relatively low frequencies.
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7.1.5 Summary of the effects of system rotations on turbu-

lent square duct flows

In order to investigate the effects of system rotation on turbulent square duct flows

(Objective 3 in Section 1.3), fully developed turbulent flow in a square duct subjected

to spanwise system rotation for a wide range of rotation numbers has been studied

using DNS in this thesis. To the best knowledge of the author, the grid resolution

and computation domain size used this DNS study are the best in the literature

for the simulated Reynolds number, and this study is also the first to observe fully

laminarization for rotating square duct flows. Moreover, a highly-accurate SEM code

was used in this research. Therefore, the high-fidelity database generated by this

DNS study is valuable to the community (see Objective 4 in Section 1.3).

The effects of system rotation on the mean flow, turbulence statistics and transport

of Reynolds stresses are investigated in both physical and spectral spaces. The coher-

ent structures at different rotation numbers are studied using multiple approaches,

including velocity spectra, spectra of the budget terms in the transport equation of

Reynolds stresses and linear stochastic estimation (LSE).

In response to the Coriolis force and its interaction with the four boundary layers of

the duct, secondary flows appear as large counter-rotating streamwise vortices in the

cross-stream directions. At a sufficiently high rotation number, a Taylor-Proudman

(TP) region occurs in the center of duct, and its extension increases as the rotation

number further increases. It was also noticed that the wall-shear level on the top wall

is significantly reduced even at a small rotation number. The flow near the top wall

becomes increasingly laminarized as the rotation number increases. The Coriolis force

induced by the system rotation serves as an additional resistance to the streamwise

mean momentum. As a consequence, the bulk mean velocity decreases as the rotation

number increases.
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The investigations of turbulent structures indicated that both the magnitude and

associated wavelength of the most energetic streamwise velocity fluctuations decrease

monotonically as the rotation number increases. In contrast, the energy spectrum

of vertical velocity fluctuations exhibits a more complex trend as the rotation num-

ber increases. In particular, both its magnitude and associated wavelength peak at

Roτ = 2.5, indicating that the streamwise turbulent flow structures become the most

energetic and the largest at Roτ = 2.5. By further investigating the spectra of the

budget terms in the transport equation of Reynolds stresses, it was shown that in

contrast to the non-rotating case, the imposed system rotation tends to force the

pre-multiplied spectra of kxφuu, kxφvv and −kxφuv to peak at the same wavelength.

Through a detailed physical analysis in both physical and spectral spaces, it was

demonstrated that as a consequence of system rotation, the Coriolis force acts to

transfer energy from 〈u′u′〉 to 〈v′v′〉 at a considerable rate that is of the same mag-

nitude as the turbulent production rate (which drains energy from the mean flow to

power velocity fluctuations). Consequently, the level of kxφuu becomes much reduced

while that of kxφvv becomes much enhanced in a rotating case in comparison with a

non-rotating case.

It was interesting to observe that turbulent statistics, such as energy spectra,

also remain stable in the TP region. This indicated a quasi-spanwise-homogeneous

turbulent flow near the bottom wall at high rotation numbers in the TP region.

At high rotation numbers, streamwise-elongated roll cell structures appears in the

TP region and are critical for the maintenance of turbulence. In the center of two

counter-rotating vortices of the roll cell structures, ejection events occur and make the

dominant contribution to Reynolds shear stress 〈u′v′〉. It was also observed that the

existence of roll cell structures is essential to generate entropy. Specifically, within

the roll cell structures, the level of 〈ω′
1ω

′
1〉 and 〈ω′

2ω
′
2〉 is sustained by the stream-

wise vortices and the ejection events, respectively. In order to further understand
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the underlying effect of system rotation on coherent structures at high rotation num-

bers, the linear stochastic estimation (LSE) approach was extended to evaluate the

production rate of entropy by roll cell structures. The results indicated that in the

region of ejection event between the counter-rotating vortices, system rotation tends

to enhance 〈ω′
1ω

′
1〉 and suppress 〈ω′

2ω
′
2〉. These effects get closer to counterbalance as

the rotation number increases. As the roll cell structure meanders and interact with

the sidewalls, one streamwise vortex of the roll cell structures deviates away from the

bottom wall and eventually the other streamwise vortex disintegrates. Overall, at

high rotation numbers, the roll cell structure appears in the TP region (away from

the sidewalls) near bottom wall and vanishes in the corner region.

7.2 Some speculations and suggestions on turbu-

lent heat transfer enhancement

From the introduction section, this thesis is related to the commonly-encountered

turbulent heat transfer within a square duct under the influences of surface-mounted

ribs and system rotations in industrial applications. With the systematic investiga-

tions of the effects of ribs and system rotations on turbulent square duct flows in this

thesis, some speculations on the associated turbulent heat transfer are expressed in

this section.

As seen in the literature [2, 3, 4, 5, 6], V-shaped ribs are typically mounted on the

surface where the heat transfer needs to be enhanced. Three physical mechanisms

are speculated to contribute to heat transfer enhancement by V-shaped ribs. (1)

As seen in Fig. 4.8, the levels of skin friction coefficient Cf on the bottom walls of

V-shaped rib cases are significantly larger than that in the perpendicular rib case.

According to the conventional analogy between velocity and temperature wall laws in
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the viscous sublayer (∂〈T 〉/∂n ≈ Pr∂〈u〉/∂n, where Pr is the Prandtl Number), high-

levels of molecular heat transfer (or conduction) are therefore expected on the bottom

wall mounted with V-shaped ribs. (2) As reported in both Chapters 3 and 4, large

values of turbulent intensity are confined below the rib height near the central region.

Therefore, it is anticipated that turbulent heat fluxes (〈u′
iT

′〉) can also be significantly

enhanced near the bottom wall by V-shaped ribs. (3) The strong secondary flow

(mean velocity) may also help to convect the heat transferred through the bottom

wall to the entire cross section. Overall, the secondary flows in the pattern of counter-

rotating streamwise vortices are critical to the heat transfer enhancement. This is

because without the impingement created by the secondary flows on the bottom wall

in the central region, either large valued Cf on the bottom wall or high-levels of

turbulent intensity below rib height cannot be resulted, thus the mechanisms (1) and

(2) described above will not exist.

Based on the above speculations, the following suggestions are made to the design

of surface-mounted ribs for heat transfer enhancement:

1. V-shaped ribs in low-aspect-ratio ducts can generate better heat transfer than

that in high-aspect-ratio ducts, which is consistent with the observations by

Han and Park [3]. In a high-aspect-ratio duct, turbulent flows are approximately

spanwise-homogeneous in the central region and the strength of secondary flows

is expected to be weak. Consequently, the downwash effects by the vertical mean

velocity near the central region may not be sufficient to create high levels of skin

friction on the bottom wall.

2. In low-aspect-ratio ducts, (symmetrical) V-shaped ribs can generate better heat

transfer than (asymmetrical) inclined ribs, which is consistent with the obser-

vations by Han et al. [4]. For inclined ribs, the secondary flows consist of one

streamwise vortex occupying the entire cross section. As such, the high levels
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Figure 7.1: A recommended arch-shaped rib configuration.

of streamwise momentum may not be able to be convected close to the bot-

tom wall to create the large magnitudes of skin friction coefficient. In other

words, symmetrical riblets are preferred, so that secondary flows in the form of

counter-rotating streamwise vortices can be generated.

3. In low-aspect-ratio ducts, V-shaped ribs pointing in the upstream direction can

generate better heat transfer than that pointing in the downstream direction.

With V-shaped ribs pointing in the downstream direction, the circulation direc-

tion of the secondary flow will be reversed and large-magnitude of Cf or TKE

are not expected near the bottom wall. Thus, the heat transfer on the bottom

wall cannot be enhanced.

4. A recommended arch-shaped rib configuration is plotted in Fig. 7.1. As seen in

the figure, the left half side (z < 0) of the windward face of the arch-shaped rib

consists of two tangent arches. Compared with V-shaped ribs, the arch near the

center creates less impingement to the upcoming high-streamwise-momentum

flow downwashed from the central region. As for the arch close to sidewalls, it
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tends to form a narrower convergent flow path with sidewalls to induce higher

momentum below the rib height. As such, stronger skin frictions on the bottom

wall and stronger secondary flows are expected with the rib configuration shown

in Fig. 7.1. With the speculations explained above, a higher heat transfer rate

may ensue.

7.3 Future works

To continue the research works of this thesis, the following topics are suggested:

1. Additional rib angles between 90◦ and 60◦ can be investigated to better un-

derstand the transition of flow physics (such as drags and Reynolds stresses)

with the variation of rib geometry. As explained in Section 1.2.1, the over-

all heat transfer enhancement by the 60◦, 45◦ and 30◦ V-shaped ribs was

extensively investigated without much attention on the associated turbulent

flows [5, 2, 3, 4, 6]. In Chapters 3 and 4 of this thesis, significant differences on

the turbulent flows between the 90◦ and 60◦ rib cases were first observed in the

literature. One prospective refinement of this thesis can be achieved by inves-

tigating additional rib angles such as 80◦ and 70◦, so that the bifurcation point

between the perpendicular and V-shaped rib cases can be better captured.

2. The PIV experiments of turbulent duct flows over V-shaped ribs can be further

refined by using a tomographic PIV (tomo-PIV) system. In this thesis, a planer

PIV system was used to measure the highly-disturbed turbulent flows with

strong secondary flows. It is interesting to assess the measurement error by

comparing with the 3-D three-components flow measurements from the tomo-

PIV system. Furthermore, with tomo-PIV, the interactions between turbulent

boundary layers over the top and bottom walls can be analyzed.
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3. The LES study of turbulent duct flows over V-shaped ribs can be further refined

by DNS. To this end, a grid refinement is required. Specially, according to

Fig. 4.3, the grid sizes within the recirculation bubbles behind ribs needs to be

reduced by five times. To better capture the turbulent structures near the top

wall, five rib periods are also recommended in the computation domain. Overall,

the computation cost of DNS at the same Reynolds number is estimated to be

six times of the current LES study.

4. Heat transfer in turbulent duct flows with V-shaped ribs mounted on one wall

can be further investigated using the current FVM code. As such, the spec-

ulations written in Section 7.2 can be examined. Specifically, the transport

equation of mean temperature can be studied, so that the mechanisms of heat

transfer enhancement can be clarified.

5. Heat transfer in turbulent duct flows with the recommended arch-shaped ribs

(see Fig. 7.1) mounted on one wall can be investigated using the current FVM

code.

6. The combined effects of surface-mounted ribs and system rotations on turbulent

flows and heat transfer in a square duct can be investigated. As presented in this

thesis, both V-shaped ribs and system rotation can generate secondary flows in

turbulent duct flows. The combined effects of both factors on turbulent heat

transfer are still unknown, but of significant interests in industrial applications,

such as turbomachinery.

7. The effects of different blockage ratios of V-shaped ribs on turbulent duct flows

can be studied.

8. Turbulent flows in closed ducts with different aspect ratios can be further stud-

ied using the SEM code.
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9. Heat transfer in a square duct subjected to different system rotations can be

further investigated.

10. The FVM code developed in this thesis uses an explicit temporal scheme and

only allows a very small time step (with CFL < 0.1). An implicit time marching

for the viscous term can potentially increase the time step.

11. A total variation diminishing (TVD) scheme can be implemented in the FVM

code to study the dispersion of a passive scalar released from a point source.

12. The SEM code is only parallel in the direction where the Fourier transformation

applies. As a consequence, in the case that a large number of elements need to

be used in the inhomogeneous directions, the SEM code is very slow. Therefore,

it would be useful to make the SEM code parallel in multiple directions.
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[43] H. W. Coleman, and W. G. Steele. Engineering application of experimental

uncertainty analysis. AIAA J., 33(10):1888–1895, 1995.

[44] R. D. Keane, and R. J. Adrian. Theory of cross-correlation analysis of PIV

images. Appl. Sci. Res., 49:191–215, 1992.



BIBLIOGRAPHY 164

[45] A. K. Prasad, R. J. Adrian, C. C. Landreth, and P. W. Offutt. Effect of reso-

lution on the speed and accuracy of particle image velocimetry interrogation.

Exp. Fluids, 13:105–116, 1992.

[46] D. J. Forliti, P. J. Strykowski, and K. Debatin. Bias and precision errors of

digital particle image velocimetry. Exp. Fluids, 28:436–447, 2000.

[47] F. Coletti, T. Maurer, T. Arts, and A. D. Sante. Flow field investigation in

rotating rib-roughened channel by means of particle image velocimetry. Exper.

Fluids, 52:1043–1061, 2012.

[48] S. Leonardi, P. Orlandi, R. J. Smalley, L. Djenidi, and R. A. Antonia. Direction

numerical simulation of turbulent channel flow with transverse square bars on

one wall. J. Fluid Mech., 491:229–238, 2003.

[49] H. Tennekes, and J. L. Lumley. A First Course in Turbulence. MIT, Cambridge,

MA, 1972.

[50] P. Bradshaw. Turbulent secondary flows. Annu. Rev. Fluid Mech., 19:53–74,

1987.

[51] A. Murata, and S. Mochizuki. Effect of centrifugal buoyancy on turbulent heat

transfer in an orthogonally rotating square duct with transverse or angled rib

turbulators. Int. J. Heat Mass Trans., 44:2739–2750, 2001.

[52] P. Promvong, W. Jedsadaratanachai, S. Kwankaomeng, and C. Thianpong. 3d

simulation of laminar flow and heat transfer in V-baffled square channel. Int.

Comm. Heat Mass Trans., 39:85–93, 2012.

[53] P. Moin, and J. Kim. The structure of the vorticity field in turbulent channel

flow. part 1. analysis of instantaneous fields and statistical correlations. J. Fluid

Mech., 155:441–464, 1985.



BIBLIOGRAPHY 165

[54] H. M. Blackburn, N. N. Mansour, and B. J. Cantwell. Topology of fine-scale

motions in turbulent channel flow. J. Fluid Mech., 310:269–292, 1996.

[55] V. C. Patel, and F. Sotiropoulos, Longitudinal curvature effects in turbulent

boundary layers. Prog. Aerospace Sci., 33:1–70, 1970.

[56] A. A. Townsend. The Structure of Turbulent Shear Flow. Cambridge University

Press, Cambridge, MA, 1976.

[57] J. C. Gillis, and J. P. Johnston. Turbulent boundary layer flow and structure on

a convex wall and its redevelopment on a flat wall. J. Fluid Mech., 135:123–153,

1983.

[58] R. J. Volino, M. P. Schultz, and K. A. Flack. Turbulence structure in rough-

and smooth-wall boundary layers. J. Fluid Mech., 592:263–293, 2007.

[59] J. M. Wallace. Quadrant analysis in turbulence research: History and evolution.

Annu. Rev. Fluid Mech., 48:131–158, 2016.

[60] J. Zhou, R. J. Adrian, S. Balachandar, and T. M. Kendall. Mechanisms for

generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech.,

387:353–396, 1999.

[61] C. R. Smith. A synthesized model of the near-wall behavior in turbulent

boundary layer. In Proc. 8th Symp. of Turbulence, 299–325, University of

Missouri-Rolla, Rolla, Missouri, 1984.

[62] L. Wang, J. Hejcik, and B. Sunden. PIV measurement of separated flow in

a square channel with streamwise periodic ribs on one wall. ASME J. Fuids.

Engng., 129:834–841, 2007.



BIBLIOGRAPHY 166

[63] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral Meth-

ods: Evolution to Complex Geometries and Applications to Fluid Dynamics.

Springer-Verlag, Heidelberg, 2007.

[64] G. De Stefano, and O. V. Vasilyev. Wavelet-based adaptive large-eddy simula-

tion with explicit filtering. J. Comp. Phys., 238:240–254, 2012.

[65] L. Sirovich. Turbulence and the dynamics of coherent structures. part I: Co-

herent structures. Q. Appl. Maths., 45(3):561–571, 1987.

[66] K. E. Meyer, J. M. Pedersen, and O. Özcan. A turbulent jet in crossflow anal-
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Appendix A

Measurement uncertainty

A detailed uncertainty analysis of the PIV measurements is presented in this ap-

pendix.

A.0.1 The sources of measurement errors

Measurement error is the difference between the measured value of a quantity and its

true value. Due to the inherent limitations of measurement system and procedure,

measurement error cannot be avoided and an uncertainty is utilized to quantify the

error. The uncertainty error in experimental measurements consists of the bias (B)

and precision (P ) errors. The bias error (also known as the systematic error) is

associated with the error introduced by the measurement system and procedure, such

as the camera resolution and the calibration of field of view. In other words, the

bias error always occurs with the same value, when the measurement system and

procedure remain the same. The precision error (also known as the random error) is

contributed by the scatter of measured data and is of random nature.

With PIV technique, measurement errors can be introduced by seeding particles,

171
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sub-pixel displacement bias, particle response to fluid motion, laser sheet positioning,

the effect of velocity gradient, etc. In order to minimize errors in PIV measurement,

various strategies have been used in this thesis. The 10µm fluorescent polymer parti-

cles (Rhodamine B), which have a specific gravity of 1.19 and refractive index of 1.48,

were chosen as the seeding particles, so that the particles can faithfully follow the flow

motion and have a good light scattering ability. The interrogation area (32 pixels × 32

pixels with 50% overlap) was chosen to be as small as possible to improve the spatial

resolution, but large enough to contain sufficient number of particles. Following the

recommendation by Willert and Gharib [103], the time interval between two adjacent

pulses of the laser was chosen such that the maximal particle displacement was less

than one quarter of the interrogation area. An adaptive cross-correlation algorithm

was employed to determine the particle displacement between successive images to

minimize the errors induced by velocity gradient [44]. To minimize the sub-pixel dis-

placement bias error, the Gaussian peak-fitting algorithm [46] was used to find the

peak location of cross-correlation between image pairs to sub-pixel accuracy.

A.0.2 The estimation of bias errors

The instantaneous velocity in PIV system is calculated using

ui =
∆siL0

∆tL1
, (A.1)

where ∆si is the particle displacement between image pairs, L0 is the width of the

field of view, ∆t is the time interval between image pairs, and L1 is the width of the

digital image. To determine the associated bias error, the root-sum-squares (RSS) of

the elementary bias limits based on the sensitivity coefficients given in Eq. (A.1) is

utilized

B2
ui
= η2∆si

B2
∆si

+ η2L0
B2

L0
+ η2∆tB

2
∆t + η2L1

B2
L1

. (A.2)
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Table A.1: Bias error of the local streamwise mean velocity (u1) at (x, y, z)=(1.0, 1.2, 0.0)

in the perpendicular rib case

Variable Magnitude B η

∆s1 (pixel) 9.166× 100 1.271× 10−2 1.770× 10−2

L0 (m) 6.300× 10−2 5.000× 10−4 2.571× 100

∆t (s) 1.740× 10−3 1.000× 10−7 −9.307× 10+1

L1 (pixel) 2.048× 10+3 5.000× 10−1 −7.910× 10−5

u1 (m/s) 0.162

Bu1
/u1 0.8%

Table A.2: Bias error of the local vertical mean velocity (u2) at (x, y, z)=(1.0, 1.2, 0.0) in

the perpendicular rib case

Variable Magnitude B η

∆s2 (pixel) −2.829× 10−1 1.271× 10−2 1.770× 10−2

L0 (m) 6.300× 10−2 5.000× 10−4 −7.940× 10−2

∆t (s) 1.740× 10−3 1.000× 10−7 2.873× 100

L1 (pixel) 2.048× 10+3 5.000× 10−1 2.441× 10−6

u2 (m/s) -0.005

Bu2
/u2 4.5%

In the above equation, η is the generic form of sensitivity coefficients defined using

partial derivatives, for example, η∆si = ∂ui/∂∆si = L0/(∆tL1).

The bias errors for the streamwise and vertical mean velocities are estimated at

the location (x, y, z)=(1.0, 1.2, 0.0) in the perpendicular rib case. This location,
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which is also set as the reference point to calculate the two-point autocorrelation in

Chapter 3, is chosen because the vortex shedding from the rib crest induces small

yet strong vortical structures in the near region and therefore imposes significant

difficulties to acquire accurate PIV measurement. In other words, the bias errors in

the entire field of view are expected to peak at location (x, y, z)=(1.0, 1.2, 0.0).

The estimations of the bias errors at the chosen location are shown in Tables A.1

and A.2. In the table, the bias limits of ∆si and ∆t were provided by the PIV system

manufacturer, and that of L0 is obtained from the calibration procedure.

A.0.3 The estimation of precision errors

The precision error is estimated as

P =
Tσ√
N

, (A.3)

where T is the confidence coefficient and takes the value of 2 for a 95% confidence level

as suggested by Holman [104], N is the sample size and σ is the standard deviation.

To calculate the precision error, the samples (4000 image pairs) were sub-divided into

8 sets and mean velocities were calculated using each set. The values of precision

errors for the streamwise and vertical velocities at the location (x, y, z)=(1.0, 1.2,

0.0) in the perpendicular rib case were calculated to be 0.06% and 0.7%, respectively.

Compared to the bias errors shown in Tables A.1 and A.2, the precision errors are

apparently negligible.

A.0.4 The estimation of total errors

The total uncertainty (E) is defined as the RSS of the bias and precision errors as

E =
√
B2 + P 2 . (A.4)
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As such, the total uncertainties of the streamwise and vertical mean velocities at the

location (x, y, z)=(1.0, 1.2, 0.0) in the perpendicular rib case are 0.8% and 4.5%,

respectively.

Following the suggestion by Casarsa and Giannattasio [105], compared to the

turbulent fluctuations, the effects of measurement errors on the higher-order statistics

are negligible due to the averaging procedure for the random errors. However, the

sampling error induced by the limited number of samples must be evaluated. This is

because compared to the mean velocities, the higher-order statistics require relatively

more samples to converge. Following Casarsa and Giannattasio [105], the sampling

errors of second-order statistics can be computed as

εurms
=

S[urms]

urms
=

T√
2N

, (A.5)

ε〈u′v′〉 =
s[〈u′v′〉]
〈u′v′〉 =

T√
N

, (A.6)

where ε· and s[·] denote relative sampling error and the estimated standard deviation,

respectively. By substituting N = 4000 into the above equations, the values of εurms

and ε〈u′v′〉 were calculated to be 2.2% and 3.2%, respectively.



Appendix B

Implementation of AMG solver

using PETSc

In this thesis, the PETSc library is used to solve the pressure correction equation.

With the employment of PETSc, changing the solver in the FVM code can be as

simple as changing one line of command. After testing all possible solvers provided

by PETSc, the BoomerAMG [71] solver shows the best convergent rate and is thus

chosen in this FVM code. The PETSc solver consists of 3 major components: setup of

solver, initialization of coefficient matrix and solver calculation within each iteration.

B.0.1 Setup of the AMG solver

The following code with abundant comments shows how to setup a solver in PETSc,

which manages the allocations of parallel matrix (A) and vectors (x and b) and is

called only once before time marching.

!1. Create Matrix A

CALL MatCreate(PETSC_COMM_WORLD ,A,ierr)

CALL MatSetSizes(A,MFIEP ,MFIEP ,PETSC_DECIDE ,PETSC_DECIDE ,ierr)

! Set A to be a MFIEP × MFIEP square matrix,

! where MFIEP is the freedom of degree of pressure field

176
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CALL MATSETTYPE(A,MATMPIAIJ ,IERR)

! Set A to be a parallel matrix

IF(IFVGRID.EQ.1) THEN

! Preallocate memory for A. Note that in the case of

! V-shaped grids , A has 11 nonzero diagonal bands

CALL MatMPIAIJSetPreallocation(A,11,PETSC_NULL_INTEGER , &

6,PETSC_NULL_INTEGER ,ierr)

ELSE

CALL MatMPIAIJSetPreallocation(A,7,PETSC_NULL_INTEGER , &

6,PETSC_NULL_INTEGER ,ierr)

ENDIF

CALL MatSetFromOptions(A,ierr)

CALL MatSetUp(A,ierr)

CALL MatGetOwnershipRange(A,Istart,Iend ,ierr)

! Returns the range of matrix rows (from Istart to Iend) owned

! by current processor

! 2. Create parallel vectors b and x, where Ax=b is solved

CALL VecCreateMPI(PETSC_COMM_WORLD ,MFIEP ,PETSC_DECIDE ,b,ierr)

CALL VECSETTYPE(b,VECMPI,IERR)

CALL VecSetFromOptions(b,ierr)

CALL VecDuplicate(b,x,ierr)

CALL VecGetOwnershipRange(b,Istart,Iend ,ierr)

! 3. Creates the default Krylov subspace preconditioner (KSP) context.

CALL KSPCreate(PETSC_COMM_WORLD ,ksp ,ierr)

CALL KSPGetPC(ksp ,pc ,ierr)

! 4. Set BoomerAMG as the preconditioner

call PCHYPRESetType(pc ,’boomeramg’,ierr)

call PetscOptionsSetValue(’-pc_hypre_boomeramg_max_levels ’, &

’8’,ierr) ! Set levels of smoothing for AMG

! 5. Set the tolerance for convergence

dtol = PETSC_DEFAULT_DOUBLE_PRECISION

maxits = 100 ! Set Max iteration steps here

CALL KSPSetTolerances(ksp ,rtol ,abtol ,dtol ,maxits,ierr)

! 6. Choose KSP solver

call KSPSetType(ksp ,KSPGMRES ,ierr)

! 7. Finish setting up KSP

CALL KSPSetFromOptions(ksp ,ierr)
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B.0.2 Initialization of coefficient matrix

The following code sets up the nonzero components in the sparse coefficent matrix

A. With the current two-step Runge-Kutta scheme, the pressure correction needs to

be solved twice in each time step. The coefficient matrices for these two solutions of

pressure correction differ by a constant ratio. To avoid filling up matrix A repeatedly

for each calculation, I use a constant coefficient matrix in the solver and adjust the

final solution by multiplying a constant.

CALL MATZEROENTRIES(A,ierr) ! Initialize A with zero

DO II=Istart ,Iend -1 ! loop for the rows belong to this processor

! FGID returns the local id according to the global id

! GID returns the global id according to the local id

IDL = FGID(II -OFFSET(MYID)) ! Local id of this control volume

IM = GID(IDL -1 ) ! Global id of west neighbor

IP = GID(IDL+1 ) ! Global id of east neighbor

JM = GID(IDL -NI ) ! Global id of south neighbor

JP = GID(IDL+NI ) ! Global id of north neighbor

KM = GID(IDL -NIJ) ! Global id of bottom neighbor

KP = GID(IDL+NIJ) ! Global id of top neighbor

IEN = GID(IDL+1+NI) ! Global id of east -north neighbor

IES = GID(IDL+1-NI) ! Global id of east -south neighbor

IWN = GID(IDL -1+NI) ! Global id of west -north neighbor

IWS = GID(IDL -1-NI) ! Global id of west -south neighbor

! Calculate the coefficient for this control volume Ap

AP = F(ISAW+IDL) + F(ISAE+IDL) + &

F(ISAN+IDL) + F(ISAS+IDL) + &

F(ISAT+IDL) + F(ISAB+IDL) - F(ISSP+IDL) - VAP(IDL)

! Give warning if Ap is close to zero

IF(AP.LT.SMALL) WRITE, MYID ,II ,IDL ,AP ,’AP WRONG !!!’

! Set (II, II) component in A with Ap ( diagonal compoent)

v=AP

CALL MATSETVALUES(A,1,II ,1,II ,v,INSERT_VALUES ,IERR)

! Set (II, IM) component in A with Aw

IF(IM.NE.-1) THEN

!GID=-1 indicates west neighbor is not field cells

v=-F(ISAW+IDL)-VAW(IDL)

CALL MATSETVALUES(A,1,II ,1,IM,v,INSERT_VALUES ,IERR)

ENDIF

! Set (II, IP) component in A with AE

IF(IP.NE.-1) THEN

!GID=-1 indicates east neighbor is not field cells

v=-F(ISAE+IDL)-VAE(IDL)

CALL MATSETVALUES(A,1,II ,1,IP,v,INSERT_VALUES ,IERR)
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ENDIF

! Set (II, JM) component in A with AS

IF(JM.NE.-1) THEN

!GID=-1 indicates south neighbor is not field cells

v=-F(ISAS+IDL)-VAS(IDL)

CALL MATSETVALUES(A,1,II ,1,JM,v,INSERT_VALUES ,IERR)

ENDIF

! Set (II, JP) component in A with AN

IF(JP.NE.-1) THEN

!GID=-1 indicates north neighbor is not field cells

v=-F(ISAN+IDL)-VAN(IDL)

CALL MATSETVALUES(A,1,II ,1,JP,v,INSERT_VALUES ,IERR)

ENDIF

! Set (II, KM) component in A with AB

IF(KM.NE.-1) THEN

!GID=-1 indicates bottom neighbor is not field cells

v=-F(ISAB+IDL)

CALL MATSETVALUES(A,1,II ,1,KM,v,INSERT_VALUES ,IERR)

ENDIF

! Set (II, KP) component in A with AT

IF(KP.NE.-1) THEN

!GID=-1 indicates top neighbor is not field cells

v=-F(ISAT+IDL)

CALL MATSETVALUES(A,1,II ,1,KP,v,INSERT_VALUES ,IERR)

ENDIF

IF(IFVGRID.EQ.1) THEN

! If V-shaped grid is used , four more nonzero bands in A

IF(IEN.NE.-1) THEN

!GID=-1 indicates east -north neighbor is not field cells

v= -VAEN(IDL)

CALL MATSETVALUES(A,1,II ,1,IEN ,v,INSERT_VALUES ,IERR)

ENDIF

IF(IES.NE.-1) THEN

!GID=-1 indicates east -south neighbor is not field cells

v= -VAES(IDL)

CALL MATSETVALUES(A,1,II ,1,IES ,v,INSERT_VALUES ,IERR)

ENDIF

IF(IWN.NE.-1) THEN

!GID=-1 indicates west -north neighbor is not field cells

v= -VAWN(IDL)

CALL MATSETVALUES(A,1,II ,1,IWN ,v,INSERT_VALUES ,IERR)

ENDIF

IF(IWS.NE.-1) THEN

!GID=-1 indicates west -south neighbor is not field cells

v= -VAWS(IDL)

CALL MATSETVALUES(A,1,II ,1,IWS ,v,INSERT_VALUES ,IERR)

ENDIF

ENDIF

ENDDO
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! Assemble coefficient matrix A

CALL MATASSEMBLYBEGIN(A,MAT_FINAL_ASSEMBLY ,IERR)

CALL MATASSEMBLYEND(A,MAT_FINAL_ASSEMBLY ,IERR)

CALL MATSETOPTION(A,MAT_NEW_NONZERO_LOCATIONS ,PETSC_FALSE ,ierr)

B.0.3 Calling the AMG solver

The following code is called by each substep of the Runge-Kutta scheme to solve for

the pressure correction. Note that the solution is multiplied by a constant value for

different substeps of the Runge-Kutta scheme.

! 1. Build vector b

DO II=Istart ,Iend -1

IDL=FGID(II-OFFSET(MYID))

v=F(ISSU+IDL)

CALL VECSETVALUES(b,1,II,v,INSERT_VALUES ,IERR)

ENDDO

CALL VECASSEMBLYBEGIN(b,IERR)

CALL VECASSEMBLYEND(b,IERR)

! 2. Assemble ksp

CALL KSPSetOperators(ksp ,A,A,SAME_NONZERO_PATTERN ,ierr)

! 3. Solve the equation Ax=b

CALL KSPSolve(ksp ,b,x,ierr)

! 4. Get the solution

DO II=ISTART ,IEND -1

IDL=FGID(II-OFFSET(MYID))

CALL VecGetValues(x,1,II,v,ierr)

F(ISPP+IDL)=v*RK_COE1(1)/ RK_COE1(IRK)

! Multiply the solution by a constant to account

! for the difference in the coefficient matrices of

! different sub -steps in Runge -Kutta

ENDDO



Appendix C

Spectral-Element Method

This thesis used a spectral-element method (SEM) code called ‘Semtex’. SEM is

capable of dealing with complex geometry while maintaining a spectral accuracy. Over

the past two decades, with the appearance of advanced solvers for irregular matrix

equation, SEM has become a new trend for the CFD community. In my opinion,

SEM will dominate the future of CFD for both the compressible and incompressible

flows.

Although Semtex has already been developed for more than two decades, I would

like to understand it before using it, instead of treating it as a ‘magic black box’.

Therefore, I learned the theory about SEM from the materials recommended in the

last section and read through the entire code. After getting familiar with Semtex, I

added the Coriolis forces in the momentum equation and made the code write the in-

stantaneous fields into binary files for post-processing. Several standalone codes were

written to do post-processing using the files containing instantaneous flow field. The

implemented post-processing approaches include Reynolds stresses, energy spectrum,

linear stochastic estimation, proper orthogonal decomposition, different vortex iden-

tifiers and spatial/temporal correlations. Furthermore, the budget terms in transport
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equations for the mean velocity, mean temperature, Reynolds stresses, turbulent heat

flux, TKE, mean vorticity and second-order vorticity moments are also calculated.

This appendix gives the details of temporal and spatial discretizations in Semtex.

For an even more comprehensive study of SEM, refer to the books recommended at

the end of this thesis.

C.1 Time-splitting Algorithm

The continuity and momentum equations for incompressible flow can be written as

∇ · u = 0 , (C.1)

∂u

∂t
+N(u) = −1

ρ
∇p+ ν∇2u+ f . (C.2)

In the above equation, N(u) represents the nonlinear convective term and can be

expressed in several different forms as follows

N(u) = u · ∇u , (C.3)

N(u) = ∇ · (uu) , (C.4)

N(u) =
1

2
[u · ∇u+∇ · (uu)] , (C.5)

N(u) = (∇× u)× u+
1

2
∇(u · u) , (C.6)

which are called the convective, divergence, skew-symmetric and rotational forms,

respectively. The different forms of N(u) are identical in the continuous mathematics,

but possess significantly different properties after discretization. For a low-order

spatial scheme, such as the finite volume and finite difference methods, the divergence

form is commonly used in order to guarantee the momentum conservation. For a

spectral accurate spatial scheme, the results with all four forms are almost identical
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when the de-aliasing technique is employed. However, de-aliasing can be expensive to

implement and is usually not activated for the fine enough grid resolution. Among all

four forms of the nonlinear term, the skew-symmetric form is the most tolerable for

the aliasing error but is also the most expensive to compute. For the SEM code used

in this thesis, the nonlinear term is calculated using the convective and divergence

forms alternatively, which is commonly known to be a good compromise between

stability and computational cost [106].

A time-splitting scheme is used to decouple the velocity and pressure, which con-

sists of three sub-steps as follows

u∗ − un

∆t
=

Je−1∑

q=0

βq

[
N(un−q) + fn−q

]
, (C.7)

u∗∗ − u∗

∆t
= −1

ρ
∇pn+1 , (C.8)

un+1 − u∗∗

∆t
= ν∇2un+1 . (C.9)

Here, βq are some chosen weights for Je-order scheme. u∗ and u∗∗ are intermedi-

ate velocity fields defined in Eqs. (C.7) and (C.8). There is no boundary condition

applied in the first sub-step. For the second sub-step, u∗∗ is imposed to satisfy the

incompressible constraint, which is achieved by solving

1

ρ
∇2pn+1 = ∇ ·

(
u∗

∆t

)
, (C.10)

with subjected boundary condition

1

ρ

∂pn+1

∂n
= n ·

Je−1∑

q=0

βq

[
N(un−q)− ν∇× (∇× un−q)

]
. (C.11)

In the third sub-step as Eq. (C.9), the prescribed velocity boundary conditions are

imposed.
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C.2 Spatial discretization

C.2.1 Weighted residual method

For the 3D simulation using Semtex, all variables are expanded into the spectral

space using Fourier series in one homogeneous (assuming z) direction and the quadri-

lateral spectral-element method based on Gauss-Lobatto-Legendre (GLL) Lagrange

interpolants is used to define the functional space in other (assuming x and y) di-

rections. The quadrilateral element is mapped into the canonical domain (ξ, γ) ∈
[−1, 1] × [−1, 1] using the so-call ‘iso-parametric projection’. As such, Eqs. (C.10)

and (C.9) can be further written as

1

ρ

[
∇2

xyp̂
n+1 − k2

z p̂
n+1
]
= ∇ ·

(
û∗

∆t

)
, (C.12)

∇2
xyû

n+1 − (
1

ν∆t
+ k2

z)û
n+1 = − û∗∗

ν∆t
, (C.13)

respectively, with the Laplace operator in x-y directions defined as ∇2
xy = ∂2/∂x2 +

∂2/∂y2. Here, kz denotes the wavenumber in z direction and (̂·) represents the Fourier
component.

Both Eqs. (C.13) and (C.12) can be unified as the two-dimensional Helmholtz

equation

∇2u− λu+ f = 0 , (C.14)

where λ is a real positive constant. Hereafter, the subscript in ∇xy is omitted for

convenience. In the weighted residual approach, the residual of Eq. (C.14) is required

to be orthogonal to some chosen trial function v, i.e.
∫

Ω

(∇2u− λu+ f)vdΩ = 0 . (C.15)

The above equation can be further derived as
∫

Ω

∇u∇vdΩ+ λ

∫

Ω

uvdΩ =

∫

Ω

fvdΩ+

∮

∂Ω

hvd∂Ω , (C.16)
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where h denotes the prescribed Neumann boundary condition. The integrations in

the above equation can be calculated by parts as

Ne∑

e=1

(∫

Ωe

∇u∇vdΩ + λ

∫

Ωe

uvdΩ−
∫

Ωe

fvdΩ−
∮

∂Ωe

hvd∂Ω

)
= 0 , (C.17)

where Ne denotes the total number of elements.

C.2.2 Discretization in a 1D segment

Till now, the problem is reduced to how to discretize each of the integrations in

Eq. (C.17). In order to answer this question, I would like to introduce some important

concepts in 1D SEM.

A general continuous function u(ξ) ∈ [−1, 1] can be expressed using a variational

form as

u(ξ) =

N∑

i=0

uiΨi(ξ) , (C.18)

where Ψi(ξ) and ui denote the nodal base functions and the associated coefficients,

respectively. As illustrated in Fig. C.1, Ψi(ξ) ∈ [−1, 1] is the Lagrange polynomial

satisfying Ψi(ξj) = δij . Here, ξj, j = 0, · · · , N are the GL quadrature points, which

correspond to the zeros of (1− ξ2)L′
N(ξ) with L′

N (ξ) being the Legendre polynomial

of order N .

With the pre-defined base functions, any linear operators on u(ξ) can be natu-

rally discretized. The Gaussian quadrature rule is used to calculate the numerical

integration as

∫ 1

−1

u(ξ)dξ =

N∑

i=0

ui

∫ 1

−1

Ψi(ξ)dξ =

N∑

i=0

wiui = ŵTu . (C.19)

where wi =
∫ 1

−1
Ψi(ξ)dξ represents the quadrature weight for the i-th base function.

Matrices ŵ = [w0, · · · , wN ]
T and u = [u0, · · · , uN ]

T are introduced to simply the

expression.
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Figure C.1: Six-order GLL interpolants on the canonical domain ξ ∈ [−1, 1].

The spatial derivative at ξj can be computed as

∂u(ξj)

∂ξ
=

N∑

i=0

ui
∂Ψi(ξj)

∂ξ
= D̂u , (C.20)

where D̂ = [∂Ψi(ξj)/∂ξ] is the differentiation matrix.

For Galerkin weighted residual method, the trial functions are chosen as the same

as the base functions, i.e., vj = Ψj(ξ). As such,

(u, vj) =

N∑

i=0

ui

∫ 1

−1

Ψi(ξ)Ψj(ξ)dξ . (C.21)

which can be further derived as (using the Gaussian quadrature rule and property of

Ψi(ξj) = δij),

(u, vj) =

N∑

i=0

ui

N∑

k=0

wkΨi(ξk)Ψj(ξk) =

N∑

i=0

ui

N∑

k=0

wkδikδjk = ujwj = vT
j Ŵu .

(C.22)

Here, Ŵ = Îŵ with Î being the unity matrix of rank N + 1, which is called mass

matrix. vj represents the j-th trial function in the same variational form as Eq. (C.18).



APPENDIX C. SPECTRAL-ELEMENT METHOD 187

In other words, each component of vj is 0, except for the j-th row being unity, i.e.,

vj = [0, · ·, 1, · ·, 0]T . As such, the inner product with all the trail functions can

be compactly expressed using a matrix denotation as

(u, v) = Ŵu . (C.23)

In the above equation, the relation [v̂0, · · · , v̂N ]
T = Î is used.

To discretize (∇u,∇v) in Eq. (C.17), its 1D counter-part is derived as follows,

(
∂u

∂ξ
,
∂vj
∂ξ

) = (D̂u, D̂vj) = (D̂vj)
TŴD̂u = vT

j D̂
TŴD̂u . (C.24)

Therefore,

(
∂u

∂ξ
,
∂v

∂ξ
) = D̂TŴD̂u . (C.25)

The last term in Eq. (C.17) can be calculated as

∫

∂Ωe

hvjdτ =

∫ 1

−1

hvj
∂τ

∂ξ
dξ =

N∑

i=0

wihiΨj(ξi)
∂τ

∂ξ
(ξi) = wjhj

∂τ

∂ξ
(ξj) . (C.26)

where τ represents the tangential direction. Therefore,

∫

∂Ωe

hvdτ = Bh , (C.27)

where B = diag(w0
∂τ
∂ξ
(ξ0), · · · , wN

∂τ
∂ξ
(ξN)) and h = [h0, h1, · · · , hN ]

T . ∂τ/∂ξ can be

calculated as

∂τ

∂ξ
=

√(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

. (C.28)

C.2.3 Discretization in a general quadrilateral element

Figure C.2 shows a general curved element with four boundaries described by fA, fB,

fC and fD, respectively, which are usually chosen as linear or circular functions. The



APPENDIX C. SPECTRAL-ELEMENT METHOD 188

ξ2

χ1(ξ1, ξ2)= f C (ξ1)

ξ1

χ1(ξ1, ξ2)= f A (ξ1)

χ1(ξ1, ξ2)= f B (ξ2)

χ1(ξ1, ξ2)= f D (ξ2)

Figure C.2: A general curved element with four boundaries described by fA, fB, fC

and fD, respectively. χ1 is the coordinate (x, y).

mapping from (ξ1, ξ2) to (x, y) are achieved using a linear blending function

χ1(ξ1, ξ2) = 1−ξ2
2

fA(ξ1) +
1+ξ2
2

fC(ξ1) +
1−ξ1
2

fD(ξ2) +
1+ξ1
2

fB(ξ2)

−1−ξ1
2

1−ξ2
2

fA(−1)− 1+ξ1
2

1−ξ2
2

fA(1)

−1−ξ1
2

1+ξ2
2

fC(−1)− 1+ξ1
2

1+ξ2
2

fC(1)

(C.29)

In a quadrilateral spectral-element, a function u(x, y) are mapped into u(ξ1, ξ2),

which is represented as

u(ξ1, ξ2) =

N∑

i=0

N∑

j=0

uijΨi(ξ1)Ψj(ξ2) . (C.30)

Here, Ψi(ξ) are base functions using GLL interpolants as illustrated in Fig. C.1.

The derivatives can be naturally calculated as

∂u(ξ1, ξ2)

∂ξ1
=

N∑

i=0

N∑

j=0

uij
∂Ψi(ξ1)

∂ξ1
Ψj(ξ2) = D1u , (C.31)
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∂u(ξ1, ξ2)

∂ξ2
=

N∑

i=0

N∑

j=0

uijΨi(ξ1)
∂Ψj(ξ2)

∂ξ2
= D2u . (C.32)

where D1 = D̂ ⊗ Î and D2 = Î ⊗ D̂ with ⊗ being the Kronecker product operator

and u = [u00, u10, · · · , uN0, u01, u11, · · · , uNN ]
T .

To evaluate derivatives with respect to x and y, the chain rule needs to employed,

which is written as
∂

∂x
=

∂ξ1
∂x

∂

∂ξ1
+

∂ξ2
∂x

∂

∂ξ2
, (C.33)

∂

∂y
=

∂ξ1
∂y

∂

∂ξ1
+

∂ξ2
∂y

∂

∂ξ2
. (C.34)

The transformation tensor can be calculated as




∂ξ1
∂x

∂ξ1
∂y

∂ξ2
∂x

∂ξ2
∂y


 =




∂x
∂ξ1

∂x
∂ξ2

∂y
∂ξ1

∂y
∂ξ2



−1

=
1

J




∂y
∂ξ2

∂y
∂ξ1

∂x
∂ξ2

∂x
∂ξ1


 , (C.35)

where J = ∂x/∂ξ1∂y/∂ξ2 − ∂x/∂ξ2∂y/∂ξ1 is the transformation Jacobian (determi-

nant of the matrix in the middle of the above equation). Differentiation matrix with

respect to x and y can be written as

Dx = Λ

(
∂ξ1
∂x

)
D1 + Λ

(
∂ξ2
∂x

)
D2 , (C.36)

Dy = Λ

(
∂ξ1
∂y

)
D1 + Λ

(
∂ξ2
∂y

)
D2 . (C.37)

Here, function Λ (fij) returns a matrix of rank (N+1)2 with the diagonal components

being the vector fij .

The 2D integration in general quadrilateral element can be transformed into that
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in the canonical element as follows

∫
Ω
u(x, y)dxdy =

∫
Ωst

u(ξ1, ξ2)Jdξ1dξ2

=
∑N

i=0

∑N
j=0 uij

∫ 1

−1

∫ 1

−1
J(ξ1, ξ2)Ψi(ξ1)Ψj(ξ2)dξ1dξ2

=
∑N

i=0

∑N
j=0 uij

∑N
p=0wp

∫ 1

−1
J(ξ1p, ξ2)Ψi(ξ1p)Ψj(ξ2)dξ2

=
∑N

i=0

∑N
j=0 uij

∑N
p=0wp

∑N
q=0wqJ(ξ1p, ξ2q)Ψi(ξ1p)Ψj(ξ2q)

=
∑N

i=0

∑N
j=0 uij

∑N
p=0wp

∑N
q=0wqJ(ξ1p, ξ2q)δipδjq

=
∑N

i=0

∑N
j=0 uijwiwjJij

= wTu ,

(C.38)

where Ωst denotes the standard canonical domain [−1, 1] × [−1, 1]. Vector w =

[w0w0J00, w1w0J10, · · · , wNwNJNN ]
T .

The trial function is chosen as the same as the base functions, i.e.,

vmn = Ψm(ξ1)Ψn(ξ2) with m, n = 0, 1, 2, · · ·N . (C.39)

As such, the number of trial equations is the same as the degree of freedom and Eq.

(C.17) is closed.

(u, vmn) =
∑N

i=0

∑N
j=0 uij

∫ 1

−1

∫ 1

−1
J(ξ1, ξ2)Ψi(ξ1)Ψj(ξ2)Ψm(ξ1)Ψn(ξ2)dξ1dξ2

=
∑N

i=0

∑N
j=0 uij

∑N
p=0

∑N
q=0 J(ξ1p, ξ2q)wpwqδipδmpδjqδnq

= vT
pqWu .

(C.40)

where W = Iw with I being the unity matrix of rank (N + 1)2. vpq is a vector with

the pq-th component 1 and otherwise 0. As such,

(u, v) = Wu (C.41)

(∇u,∇v) = (∂u
∂x
, ∂v
∂x
) + (∂u

∂y
, ∂v
∂y
)

= (Dxu,Dxv) + (Dyu,Dyv)

= DT
xWDxu+DT

yWDyu

=
(
DT

xWDx +DT
yWDy

)
u .

(C.42)
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Therefore, the local elemental linear operator can be written as
∫

Ωe

∇u∇vdΩ+ λ

∫

Ωe

uvdΩ =
(
DT

xWDx +DT
yWDy + λW

)
u ≡ Aeu , (C.43)

where DT
xWDx + DT

yWDy and W are usually referred to as stiffness and mass

matrices, respectively.

C.2.4 Global operations

The assembly matrix G are defined to find the local ul from the global degree of

freedom ug as

ul = Gug . (C.44)

Finally, the left hand side of Eq. (C.16) can be discretized as
∫

Ω

∇u∇vdΩ+ λ

∫

Ω

uvdΩ = GT (Ae ⊗ Ie)Gug , (C.45)

where Ie represents a unity matrix of rank the same as the number of total element

number. Similarly, ∫

Ω

fvdΩ = GT (We ⊗ Ie)fe , (C.46)

∮

∂Ω

hvd∂Ω = GT (Be ⊗ Ie)he . (C.47)

Thus, the final system becomes Agug = bg, where

Ag = GT (Ae ⊗ Ie)G , (C.48)

bg = GT (We ⊗ Ie)fe +GT (Be ⊗ Ie)he . (C.49)

To apply the Dirichlet boundary condition, ug = [uu
g ,u

D
g ]

T , where the superscripts

(·)u and (·)D denote the unknown and Dirichlet degree of freedom. As such, the final

system can be further written as

A AD

0 ID




u

u
g

uD
g


 =


b

u
g

bD
g


 , (C.50)
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thus the following linear equation needs to be solved

Auu
g = bu

g −ADuD
g ≡ b . (C.51)

C.3 Linear solver

For both the pressure and viscous substeps, a 2D Helmholtz equation in the form of

Eq. (C.51) needs to be solved for each wavenumber. It should be noted that the matrix

A for the viscous substep is strongly diagonal dominant, owing to the large value of

1/(ν∆t). As a consequence, an iterative preconditioned conjugate gradient (PCG)

solver using a Jacobian preconditioner suffices. However, the Jacobian preconditioner

for the matrix A in the pressure substep works very poorly. Therefore, a (either

geometric and algebraic) multigrid solver is commonly chosen for solving the pressure

equation iteratively, such as the algebraic multigrid solver used for the FVM in this

thesis. It should be noted that Semtex is parallel in the Fourier direction, and each

2D Helmholtz equation is solved sequentially (in the current processor). As such, a

(non-iterative) direct solver is possible to avoid the complex multigrid implementation

for the pressure equation.

C.3.1 Iterative solver for the viscous substep

A basic iterative solver for solve Auu = b can be written as

uu
k+1 = uu

k +P−1(b−Auu
k) for k = 0, 1, 2, · · · , (C.52)

where P is a preconditioning matrix. To ensure a fast convergence rate, P is required

to be as close as A and easy to invert. Here, a Jacobian preconditioner is used for

the viscous substep, i.e. P ≡ diag(A).
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The PCG starts with an intial guess uu
0 and executes the following steps:

1. r0 = b−Auu
0 , z0 = P−1r0, w0 = z0 and j = 0,

2. αj = (rj, zj)/(Awj, wj),

3. uu
j+1 = uu

j + αjwj,

4. rj+1 = rj − αjAwj,

5. zj+1 = P−1rj+1,

6. βj = (rj+1, zj+1)/(rj, zj),

7. wj+1 = zj+1 + βjwj,

8. If not converged, j = j + 1 and go back to step 2.

9. Converged.

For the PCG iterative solver, the matrix A is never formed. Awj is actually

calculated by applying operator Ae in each local element and globally assembled

afterward.

C.3.2 Direct solver for the pressure substep

Although a direct solver can avoid the use of multigrid solver, a direct invert of matrix

A requires extensive usage of memory and further leads to a high computational cost.

For instance, for the DNS of square duct in this thesis, A is of rank 1272 and its full

inverse matrix A−1 requires to a storage of 2.6×108 real numbers. To avoid this huge

requirement of memory, a so-called static condensation technique is employed. The

static condensation further split uu into element interior degree of freedom uu
i and

element boundary degree of freedom uu
b . As such, Auu = b can further written as


Ab Ac

AT
c Ai




u

u
b

uu
i


 =


bb

bi


 . (C.53)
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With simple manipulation,

Ab −AcA

−1
i AT

c 0

AT
c Ai




u

u
b

uu
i


 =


bb −AcA

−1
i bi

bi


 . (C.54)

Thus, the boundary unknowns can be directly solved by

uu
b =

(
Ab −AcA

−1
i AT

c

)−1 (
bb −AcA

−1
i bi

)
, (C.55)

where the storage requirement of
(
Ab −AcA

−1
i AT

c

)−1
is significantly lower than that

of A−1. The interior unknowns can be solved locally by

uu
i = A−1

i bi −A−1
i AT

c u
u
b . (C.56)

C.4 Comparison with FVM and FDM approaches

At this point, it is worthwhile expressing my opinions about the advantages of SEM

compared to the FVM or FDM approaches. High-order (higher than second-order)

FVM/FDM can be achieved by fitting arbitrary polynomials spanning several neigh-

bor control volumes/grids [107, 108]. As such, the function space used at different

locations are different for FVM and FDM. Consequently, the chain and product rules

of differentiation cannot be preserved in FVM and FDM. Moreover, the risk of Gibbs

oscillation occurring at the boundaries is high, which will destabilize the simulation

eventually. For second-order FVM/FDM, only one neighbor control volume/grid is

used to interpolate and therefore the function spaces used at the adjacent grids are the

same. This is why the second-order FVM/FDM is still the most common numerical

scheme used by the general CFD codes, despite of the extensive high-order numer-

ical schemes proposed over the last two decades. SEM naturally fixes the function

spaces used at different locations and by carefully choosing quadrature nodes, avoids

the Gibbs oscillation at boundaries. The spectral accuracy and preserved chain and
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product rules of differentiation in SEM guarantees that the analytic manipulation of

governing equations can be well represented in the discretized form. As such, the

governing equations for Reynolds stresses and vorticity enstrophy are well balanced

in the SEM simulation.

Another advantage of Galerkin SEM is on the treatment of boundary condition.

In the FVM and FDM methods, the governing equations at boundaries are usually

discarded and replaced with the fixed boundary conditions. However, the Galerkin

method applies the governing equations and enforces the prescribed boundary condi-

tions at the boundaries simultaneously. This property is extremely important for the

linear stability analysis, such as the solution of the Orr-Sommerfeld equation.

C.5 Recommended books to learn SEM

This appendix only serves as a brief description for the SEM code used in this the-

sis. For a comprehensive description of the general multidimensional SEM, refer to

[109, 110, 63, 90]. Concentrated on the spectral methods in a single domain, Canuto

et al. [110] explained different approaches based on Fourier series, Chebyshev and

Legendre polynomials, as well as their combinations with the Galerkin, collocation

and tau methods. This book is very useful for simulation of turbulence in a domain

of simple geometries, such as the isotropic and plane-channel flows. Particularly, for

the standard Fourier-Chebyshev spectral methods used for simulating turbulent plane

channel flows, Canuto et al. [110] demonstrated how to construct semi-tridiagonal ma-

trix equation, which can be efficiently solved using Gaussian elimination, in the wall-

normal direction. Canuto et al. [63], Deville et al. [109] and Karniadakis and Sher-

win [90] were all devoted to the spectral-element method for general multidimensional

complex geometries. Specifically, Karniadakis and Sherwin [90] was more inclined on

the modal base functions (such as that used in Nektar++: http://www.nektar.info/),
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whereas Canuto et al. [63] and Deville et al. [109] focused on nodal base functions

(such as that used in Semtex and Nek5000: https://nek5000.mcs.anl.gov/). Deville et

al. [109] particularly discussed how to vectorize and parallelize the implementation of

SEM, which explained the extraordinary efficiency and scalability of Nek5000. The

manuals for Semtex, Nektar++ and Nek5000 codes can also provide a shortcut of

knowing the state-of-the-art of SEM in the context of CFD.



Appendix D

The transport equation of 〈ω′iω′j〉 in

a rotating reference frame

The transport equation for 〈ω′
iω

′
j〉 in the non-inertial refernce frame with angular

speed Ω can be written as

CWij − PRgrad
ij − TTij − V Tij + V Dij − PRmsr

ij

− PRfsr
ij − PRmix

ij − PRbst
ij − PRbrt

ij = 0 ,
(D.1)

with the terms defined as

CWij = 〈uk〉
∂〈ω′

iω
′
j〉

∂xk
, (D.2)

PRgrad
ij = −〈u′

kω
′
i〉
∂〈ωj〉
∂xk

− 〈u′
kω

′
j〉
∂〈ωi〉
∂xk

, (D.3)

TTij = −
∂〈u′

kω
′
iω

′
j〉

∂xk
, (D.4)

V Tij = ν
∂2〈ω′

iω
′
j〉

∂xk∂xk
, (D.5)

V Dij = 2ν

〈
∂ω′

i

∂xk

∂ω′
j

∂xk

〉
, (D.6)

PRmsr
ij = 〈ω′

iω
′
k〉〈sjk〉+ 〈ω′

jω
′
k〉〈sik〉 , (D.7)
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PRfsr
ij = 〈ωk〉〈s′jkω′

i〉+ 〈ωk〉〈s′ikω′
j〉 , (D.8)

PRmix
ij = 〈ω′

iω
′
ks

′
jk〉+ 〈ω′

jω
′
ks

′
ik〉 , (D.9)

PSij = 2Ω〈 ∂u
′
i

∂x3

′

ω′
j〉+ 2Ω〈

∂u′
j

∂x3

′

ω′
i〉 . (D.10)

In the above equations, CWij , TTij, V Tij and V Dij represent the convection, turbu-

lent diffusion, viscous diffusion and viscous dissipation terms, respectively. PRgrad
ij

reflects the production mechanism due to mean vorticity gradient. PRmsr
ij and PRfsr

ij

represent the production (or removal) rate of 〈ω′
iω

′
j〉 due to stretching (or squeezing)

of turbulent vorticity by mean strain rate and fluctuating strain rate, respectively.

PRmix
ij is the production (or removal) rate due to turbulent stretching of turbulent

vorticity. Finally, PSij is the production term due to system rotation.


