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Abstract

In a cryptographic system, a transmitter sends a message representing a source state to a
receiver. An opponent may overhear this message. Secrecy codes are cryptographic
systems where overhearing a message gives the opponent no information about the source
state. Authentication codes are cryptographic systems where overhearing one or more
messages makes it no easier for the opponent to send his or her own messge to the receiver
and have it considered authentic.

This thesis examines these structures. We look at combinitorial bounds on their size, and
some techniques for constructing authentication and secrecy codes close to optimal size.
We then explore how to implement these codes efficiently, which leads us into a search for

efficient algorithms for performing arithmetic operations over finite fields.
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Chapter 1 : Introduction

1.1 Aims and objectives

The aim of this thesis is to detail the state of the field of secrecy and authentication codes
with unconditional security.

Chapter 2 introduces us to the concept of a cryptosystem, and some of the
unconditionally secure codes that can be used in that system. In a cryptosystem, a
transmitter sends information to a receiver via a channel, into which an opponent may be
listening. A code is a collection of encoding rules (which the opponent may know). The
transmitter and receiver are given which encoding rule to use by the key source, and this
information is kept secret. A secrecy code is a code in which the opponent can get no
information about the source state (or information) being conveyed by overhearing one or
more messages in the channel. A code that is secure against an authentication attack is a
code in which the opponent can place messages into the channel, but has no added chance
of fooling the receiver into thinking that they are authentic by seeing zero or more
messages in the channel. We discuss codes that can provide both secrecy and
authentication properties simultaneously. Finally, we look at a code that provides perfect
disclosure whilst maintaining authentication properties (i.e. anyone listening into the
channel knows what information (source state) is being conveyed, but has no added
chance of faking a message by listening in to the channel). Chapter 2 goes on to prove
some bounds on the size of the codes needed to achieve the properties. The bounds are

proven independently of the probability distributions on the possible source states. We
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define the concept of an optimal code that achieves a certain level of secrecy or
authentication, which has the smallest number of encoding rules needed.

Chapter 3 details constructions of infinite classes of optimal and near-optimal codes from
combinatorial designs such as t-designs, Latin squares, transversal designs and
perpendicular arrays. The encoding rules can be written into an encoding array, which
we use to formalize their properties in terms of required combinations of messages in
rows and columns. This provides the link between combinatorial designs and the related
secrecy and authentication codes.

Chapter 4 is concerned with implementations. Making a code close to optimal is not
going to do us much good unless we can implement it efficiently. Typically, storing the
entire encoding array is infeasible, due to its large size. Using the algebraic structure of
the underlying combinatorial designs can make implementing the codes efficient in terms
of time and space. We write some algorithms, in a langnage that assumes that operations
in finite fields can be performed.

Chapter 5 is concerned with lower level implementations. Many of the codes in Chapter
4 are based on infinite classes of combinatorial structures computed using finite fields.
Therefore we implement these codes using arithmetic in the underlying field. Hence, the
algorithms that we choose to implement finite field arithmetic are important to the design
of the transmitter's and receiver's algorithms. Chapter 5 makes a foray into the literature
on finite field algorithms, in software and hardware, sequentially and in parallel, from the

straightforward approaches found in Knuth [37] to the sophistication of the Coppersmith-

Aldeman logarithm algorithm.

Chapter 6 ties all this together, and draws some conclusions about the nature and

effectiveness of the algorithms in Chapter 4 based on what was discovered in Chapter 5.



Chapter 2 : Optimal Codes

2.1 Shannon's Model of a Cryptosystem

In 1949, Shannon [57] developed the theory of Secrecy Codes. It was extended by
Simmons [58] to include Authentication Codes in 1982. The secrecy model contains
three participants, the transmitter, the receiver, and the opponent. The transmitter and the
receiver are connected by means of an open channel, into which the opponent may be
listening. The transmitter places messages (or cyphertext) into the channel, in order to
communicate a source state (or plaintext) to the receiver. The possible source states have
a probability distribution associated with them, which is known to the opponent. An
encoding rule (or key) is a one-to-one function from the set of source states, 8, to the set
of messages, M. E is the set of encoding rules. So, foree E andse S, e(s)e M.

The encoding rules must be one-to-one so that the messages may be uniquely decoded. A
code is a set of encoding rules. The encoding rules in that set are usually chdsen carefully
to give the code certain properties. The encoding array is an array whose rows are
indexed by the possible encoding rules and whose columns are indexed by the source
states. The entry in the row indexed by e and the column indexed by s is the message
e(s). The opponent may be assumed to know this array. Before any messages are sent,
the key source selects one of the encoding rules at random with a fixed (and known)
probability distribution on the rules and notifies the transmitter and the receiver of which

rule it has chosen by means of a secure channel. Simmons extends the model so that the



opponent can place messages in the channel as well as just read them, in an attempt to

fool the receiver. See Figure 2.1.

opponent
tr';lrllli{crzist)ter m B{ receiver
é i
———& secure channel
e
key source

Figure 2.1 Shannon's model of a cryptosystem.

In this discussion, k = |81 is reserved to mean the number of source states, v = IM.| the

number of messages and b = IE| the number of encoding rules. (These variables were
chosen because of the connection to balanced incomplete block designs which will
become apparent later ). So the encoding array is a b by k array, with v distinct entries.
For any encoding rule e, let p(e) be the probability that e is chosen by the key source.
Similarly, for any source state s, , we let p(s) be the (a prori) probability that the source
state is s. We require that for every encoding rule e, p(e) > 0, and for every source state s,
p(s) > 0. This is easy to achieve, by just deleting source states and encoding rules which
cannot occur from the respective sets 8 and E.

Example 2.1.1. Consider the following secrecy code.

The k = 3 source states are labelled sy, s3, s3.

The v =4 messages are 1, 2, 3, 4.

The b =4 encoding rules are labelled ey, e, €3, €4.



The key source selects each rule with probability i .

The encoding array is as follows.

S1 S2 S3
¢ 1 2 3
e 4 1 2
€3 3 4 1
eq 2 3 4

So, for example, if the key source sent encoding rule eg, and the transmitter wished to
communicate the source state s3, then a 2 would be placed in the channel.

Notice how each message occurs at most once in each encoding rule.

Theorem 2.1.2. In any code v =k,

Proof. Encoding rules are one-to-one functions, so e(s) # e(t), fors #t,s,te S. H

2.2 Secrecy

Cryptosystems are designed to achieve one of three types of security. Computational
security occurs when the opponent cannot get any information from the message in a
reasonable time because no method has yet been discovered to do so. Provable security
occurs when the task of extracting information from a message in the channel without
knowing which of the encoding rules was used can be shown to be equivalent to some
presumably difficult problem (for example, factoring a large number). Unconditional
security (called theoretical by Shannon), which our codes will achieve, occurs when the
opponent can obtain no information from the message, no matter what computational
resources he or she has available. This is the strongest form of security.

There is always a probability that the opponent may 'guess' the source state, so
unconditional security is defined in terms of probabilities. Conceptually, perfect secrecy

is when the probability that the transmitter is sending source state s € §, given that the



message m € L has been seen in the channel, is the same as the a proiri probability that
the source state is s. Multiple levels of perfect secrecy can be defined in the same way.
Suppose Lg distinct messages are seen in the channel, that is, there are no duplicate
messages. Suppose further that the same encoding rule is known to be used to encode
them. We consider the messages to be unordered, for mathematical simplicity. (See
Massey [44] for a discussion of ordered Lg-tuples of messages or Godlewski and Mitchell
{29] for a comparison of different possible definitions of unconditional security). Given
any Lg distinct source states, if the probability of these being the source states that
correspond to the messages (setwise) is the same as the a proiri probability that those are
the set of source states, then the code is said to be perfectly Lg-secret.

More formally, let P(x) be the probability that x happens, and let P(x | y) be the
probability that x occurs given that y has already occurred. We say that a code has
perfect Lg-fold secrecy if, for every L < Lg, and every set M of L messages observed in
the channel, and every set S of L source states, we have that P(S | M) = P(S).

Example 2.2.1. Consider the code of example 2.1.1, with encoding array

81 52 53
€1 1 2 3
€ 4 1 2
€3 3 4 1
€4 2 3 4

We now examine the secrecy level of this code.
Suppose that a 1 is seen in the channel. Then the probability that the source state being
transmitted is s is given by

p(s; 11 < B! Psg)P(si)

_ P(ey) P(s1)
P(e1) P(s1) + P(eg) P(s2) + Ples) P(s3)




_ 3 PG
T P(s1) + 3 P(s2) + 7 P(s3)

=P(s1).
Similarly, it can be shown that P(sp | 1) = P(sp) and P(s3 | 1) = P(s3).
So, seeing a 1 in the channel gives the opponent no information about the source state.
The same argument holds for seeing any of the other messages in the channel. That is,
the code in Example 2.1.1 has 1-fold secrecy.
To examine whether the code has 2-fold secrecy, suppose that the set of messages {1,2}
is seen in the channel (in some order). Suppose also that it is known that the same
encoding rule was used to create both the message 1 and the message 2.
Then that encoding rule was either e; or €3, and the source states encoded as {e1,e3} are
{81,852} or {s2,53). So P({sy,83} ! {e1,e2}) =0 P({sy,53)). So seeing 2 messages in the
channel (by the same encoding rule) gives the opponent some information about the
source states being transmitted. So the code in Example 2.1.1 does not have 2-fold

secrecy. It does have 3-fold secrecy, trivially.

2.3 Some Necessary Probability Definitions

A more formal language is needed in which to prove subsequent combinatorial bounds on
the size of the codes So in this section we redefine some of the concepts that we've been
looking at in statistical terms

Given an encoding rule e, define M(e) = {e(s): s € 8}, the set of all messages valid
under e.

For a set M of distinct messages, and an encoding rule e, define fe(M) = {s: e(s) € M},
the set of source states encoded by e to a message in M.

Give a set M of distinct messages, define EMM) = {ee E: M ¢ M(e)}, the set of

encoding rules under which all the messages in M are valid.



2.4 Authentication

Let us now consider the opponent's ability to place a message not yet seen into the
channel with the intention of having the receiver accept it as authentic. To guard against
such an attack, it is necessary to introduce redundancy into the code. If the opponent
observes Lo messages in the channel which were encoded using the same encoding rule,
and then adds a new message of his or her own, it is called a spoofing attack of level Ly.
The special case La =0 is called impersonation, and the case Ly =1 is called
substitution.

Let Pd; be the probability that the opponent can deceive the receiver with a spoofing
attack of level i (so that the opponent is using his or her best stategy). Now, there are k
source states, so any encoding rule contains k allowable messages, of the v possible. Ifi
of each have been seen in the channel, then it seems reasonable to expect that Pd; 2 t—: .
This is indeed true, as we prove in the following theorem.

Theorem 2.4.1. (Massey [44, p. 12]) In any authentication code with k source states and
v messages, Pdj 2 %—i .

Proof. Let M = {ml,mg,...,mi} be the i mcssages observed in the channel. For
me M \M, a message not already seen, define payoff (M,m) in the following way.

payoff(M,m)

= P(m is accepted as authentic | the messages in M have been seen in the channel)

P({m} w M is accepted)
P(M is accepted)

D PPS=tM)
_ e € E{{m}uM)

Y PePS=teM)
e € E(M)




>, T PE)P(S={e(M))
me M\M ©€ E{{m}uM)

So Epayoff (M,m) =

me M AM Y PEP(S=t.0M)
e € E(M)

(i) D POPS=LM)
e € E(M)

> PEPES=EM)
e E(M)

= k-1
This is true since each e e E(M) contains precisely k-i other valid messages besides those
in M, and hence corresponds to k-i of the messages in E(M). That is, there are k-i
‘unused' source states left, and each is encoded by e to some message e(m).
So the average payoff is% , and the opponents strategy is to choose the me M \ M,
whose payoff is greater than or equal to the average. B
So, for example, Pdg = lvi, and Pd; 2 5—}
A code (often called an authentication code) is La-fold secure against spoofing, or able to
withstand a spoofing attack of level Ly if PdL, =< , for all 0SL <La. the bound is
called the combinarorial bound, since it is independent of the probability distributions on

the source states and encoding rules.

Example 2.4.2. The code in Example 2.1.1 with encoding array

81 $2 83
€1 1 2 3
e 4 1 2
e3 3 4 1
e4 2 3 4

is O-fold secure against spoofing, since each of the messages 1, 2, 3, or 4 is accepted with
probability 3.

It is not 1-fold secure against spoofing in general.

-11-



Suppose that a 1 is seen in the channel, and a 2 is inserted. The 2 is accepted as genuine
if the encoding rule was e; or es.
The probability that the 2 is accepted is given by

Plej1 1) +Plex 1 1)

_ P(lles) Per)  P(l1ey) Pley)
P(1) P(1)

_ P(s1) P(ey) + P(sp) P(e)
= P(1)

) 3PGs1) + P(s2)
= Pls1) Pler) + PG2) Plep)+ P(s3) Pey)

= P(s1) + P(s2),

which does not equal % = % in general.

Similarly, the probability that 3 is accepted if a 1 has been seen is P(s;) + P(s3), and the
probability that 4 is accepted if a 1 has been seen is P(sp) + P(s3). So this code is 1-fold
secure against spoofing only if the source states are equiprobable. For more discussion
on equiprobable probability distributions on the source states, see §2.6.

Example 2.4.3. Consider the following authentication code.

The k = 3 source states are labelled s, s7, sa.

The v =4 messages are 1, 2, ... ,7.

The b = 21 encoding rules are labelled €y, ey, ..., e2;.

The key source selects each rule with probability 21—1 .

The encoding array is as follows.



S S2 S3
€1 1 2 4
e 4 1 2
€3 2 4 1
e4 2 3 5
es 5 2 3
es 3 5 2
ey 3 4 6
e 6 3 4
€y 4 6 3
€10 4 5 7
€11 7 4 5
€12 5 7 4
€13 5 6 1
€14 1 5 6
€15 6 1 5
€16 6 7 2
€17 2 6 7
18 7 2 6
€19 7 1 3
€20 3 7 1
€21 1 3 7

The rows of this code form a (7,3,1)-BIBD in which each row is expanded into a Latin
square of order 3. We examine the level of authentication of this code.

The code is 0-fold secure against spoofing, (or can resist an impersonation attack), since
every message is accepted with probability%— . This is so because each message occurs in
9 of the 21 encoding rules.

To determine whether the code is 1-fold secure against spooﬁné, suppose the opponent
sees a 1 in the channel and places a 2 in the channel. The probability that the 2 is

accepted as authentic is given by

13-



Pey 1 1) +Plea | 1) + Ples ! 1)

_P(le) Ples) P(lley) Pley)  P(11e3) Ples)
B P(1) P(1) P(1)

_ P(s1) P(ey) + P(sp) P(eg) + P(s3) P(e3)
P(1)

_ 5i¢P(s1) + Pls2) + Plss))
2(P(s1) +P(sp) +P(s3))

This result holds for any two messages since each pair of messages occurs in the same
number of rows, and within those rows, each of the pair occurs the same number of times
in each column. So the code is 1-fold secure against spoofing.

The code is not 2-fold secure against spoofing. If the set of messages {1,2) is seen in the
channel, then the encoding rule used was €1, e; or €3, and the message 4 is accepted with
probability 1, (i.e. all the time) not = = < as required.

It is often desirable to use a code that has both secrecy and authentication properties. An
(Ls, La)-code is a code that has perfect Lg-fold secrecy and is able to withstand a
spoofing attack of level La. The cases Lpo =Lg and Lg = Lg + 1 are the most widely
discussed, the former corresponding to the scenario in which the opponent can modify
existing messages, and the latter to the one in which the opponent can merely insert

messages.

2.5 Perfect Disclosure Codes

A code is said to be a perfect disclosure code if each message only corresponds to one
source state. More formally, for any two distinct encoding rules e; and e, and two
source state s; and sz, e1(s1) = e2(sy) implies that s; = s3. This means that for each

message m € M, valid under some encoding rule, there is a source state s € 8§ such that

p(slm)=1.

-14-



Theorem 2.5.1, (Stinson, [60, Theorem 5.1]) If a code has perfect disclosure then
Pdo>%. Moreover, if Pdg =%, then Pd; 2 ¥, for all i 2 0.
Proof. Pdg> % , by Theorem 2.4.1.

Suppose that Pdg = % Then if the code has perfect disclosure, there are exactly

y

k
observed in the channel. Consider a column C of the encoding array containing none of

messages encoding each source state. Let M = {mj,ma,...,m;} be the i messages

the messages in M. Define payoff(M,m) for each of the messages in column C as we did
in the proof of Theorem 2.4.1. Then

> payoff(M,m) = 1,
me C

since each encoding rule containing M has an entry in C. So the average payoff is % , and

hence Pd; 2 % ,foralli> 0. E
However, for some probability distributions, we can arrange Pd; <% for somei=1if we
let Pdg > % . Consider the following example.

Example 2.5.2. Consider the following perfect disclosure code, where k = 3, v =35, and

b = 4. The encoding rules are chosen equiprobably.

1
Let p(s1) =15, P(52) = P(53) = 55 -

51 82 83
el 1 2 4
ez 1 3 4
€3 1 2 5
e4 1 3 5

Notice that each message occurs only once in each row. Soif a 1 is seen in the channel,
the opponent knows that the source state being sent is sy, if a 2 or a 3 is seen, the source
state is sp, and if a 4 or a 5 is seen, then the source state is s3.

An impersonation attack (i.e. a spoofing attack of level 0) will always succeed if the

opponent places a 1 into the channel. Hence Pdp= 1.



Ifa 2, 3,4 or 5is seen in the channel, then a 1 placed in the channel will be automatically
be accepted as authentic. However, if a 1 is seen in the channel, then the probability that a
2 is accepted as authentic is
Ple1!l 1) +P(eat 1)
- P ley) Pler) P 1ep) Pley)

P(1) P(1)
_ P(s1) Pe1) + P(s1) Plep)
P(1)
_2PGD)
~ P(sy)
_1
=2

Similarly, the probability that 3 or 4 or 5 is accepted if a 1 is seen is % .
So Pdj =P(1) - P(success if a 1 seen) + P(2,3,4,0r 5) - P(success if 2,3,4,0r 5 seen)

9 1.2
=15 2%}
_11 _k
T2 T

We say that a perfect disclosure code is La-fold secure against spoofing or able to
withstand a spoofing attack of Level Ly if Pd; = % , .for all 0<i<La. (Compare to

authentication codes in §2.4.)
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Example 2.5.3. Consider the following perfect disclosure code, where k = 3, v=9 and

b =9. The encoding rules are chosen equiprobably.

S $2 33
€1 1 4 7
e 1 5 8
e3 1 6 9
4 2 4 9
es 2 5 7
es 2 6 8
e7 3 4 8
eg 3 5 9
€9 3 6 7

Notice that each message appears in only one column,

Each message appears in % of the equiprobable encoding rules, so Pdg = -;‘ .

Each pair of messages from different columns appears in precisely one of the
equiprobable encoding rules, so Pd; =§ . (This bound can, of course be proven more
formally by the same sort of probability calculations done in earlier examples.)

Pdj = 1, since choosing the unique message in the row containing the 2 messages seen in
the channel is automatically accepted.

So this perfect disclosure code is 1-fold but not 2-fold secure against spoofing.

2.6 Arbitrary and Specific Source State Probability Distributions

Theorem 2.6.1. (Stinson [60, Theorem 2.11]) Suppose a code C achieves perfect
Lg-fold secrecy for a given source distribution pg. Then C achieves perfect Lg-fold
secrecy for an arbitrary source distribution p1.

Proof. Let p be the probability distribution on the encoding rules. Let L < Lg. Let
S ¢ 8 be a set of L source states. Let Mc M be a set of L messages.

Since C is Lg-fold secret, po(S | M) = po(S).
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By Bayes' theorem, po(M) = pg(M | §), and

S p@pofeM) = D).
{e:McM(e)) {e:S=fc(M)}

We attempt to formulate the same equality for py.

So,  YpepfeM)=  YpiS): YpE)
{e:McM(e)} (ScSusi=L) (e:S=fe(M))

= YpiS - YpEpolfe(M)) (from above)
{ScSisi=Ly  (e:McMe))

=1- ZP(C)PO(fe(M)) (since Zp1(3) =1)
{e:McM(e)} {Sc8:ISI=L.)
= Ype)
{e:S5=fe(M)]

as required. B
This nice state of affairs unfortunately does not hold for authentication.
For example, consider the following code for k=3, v=7, b=7. It is secure against a

spoofing attack of order 1 if the each source state is equiprobable. (Note, in passing, the

similarities between this code and the projective plane of order two.)

3| ) 53
) 1 2 4
el 2 3 5
) 3 4 6
e3 4 5 0
€4 5 6 1
es 6 0 2
€6 0 1 3

Encoding rules are chosen equiprobably.
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If a 1 is seen in the channel, then 2 or 4 is accepted if the encoding rule is eg and the
original source state is s1, 5 or 6 is accepted if e4 and s3 occur, and 0 or 3 is accepted if eg

and sy occur.

D frt
< =

If P(s1) = P(s3) = P(s3) =7 , then the probability of deception is

For example, if a 1 was seen in the channel, then p(ep) = p(es) = ples) =% . Then any
message other than 1 is accepted with probability % .

Suppose, however, that P(s) =1 , and P(s2) = P(s3) = % . Then the optimal substitution
strategy is as follows.

If 0 £x £6 is seen in the channel, then P(ey.1) =% , where x-1 is taken modulo 7. So
choose one of the other messages valid under ex.;. This messages is accepted with
probability % . For example, if a 1 is seen in the channel, then P(egp) =-é- , 802 or 4 is

accepted with probability % .

So under this optimal strategy, the probability of deception is %—> % .

So the code is not 1-fold secure against spoofing for an arbitrary source distribution.

2.7 Combinatorial Bounds and Optimal Codes

It is important to keep the number b of encoding rules in a code relatively small. This
minimizes the amount of secret information that the key source must send to the
transmitter and receiver, and that must subsequently be kept guarded. It is clear that in
order to be able to communicate a rule, logyb bits of information must be sent.

We develop combinatorial bounds on b, that is, bounds independent of the probability
distributions on the source states and encoding rules. A code is éonsidered optimal if b is
'as small as possible’, a concept that will be formalized forthwith.

The rest of this section deals with establishing these bounds.

Theorem 2.7.1 deals with the bound on the number of encoding rules required for a code

to have secrecy properties.
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Theorem 2.7.1. (Stinson [60, Theorem 2.1}) In a code that achieves perfect Lg-fold
secrecy,

b> (Q‘S)
Proof. Consider a code, C, that achieves perfect Lg-fold secrecy. Let € be an encoding
rule of C. Let M(e) be the set of messages valid under e. Let M be a subset of M(e)
containing Lg messages. Let S; be any set of Lg source stétes. If there is no encoding
rule e such that §1 = fe, (M(e)) then p(S3 | My) = 0 # p(S1), contradicting perfect Lg-fold
secrecy. So there is an encoding rule for every My € M(e). There must be at least (Ii(s)
encoding rules in order to achieve this. #
In Theorem 2.7.2, we establish a bound on the number of encoding rules required for
authentication codes. This bound is valid for both equiprobable and arbitrary source state
probability distributions.
Theorem 2.7.2. (Massey [44]) In an authentication code that is L 5-fold secure against

spoofing (and regardless of the source state probability distribution),

v
o Ltan)
(LA+1)
Proof. Lete e E be an encoding rule. Let MCM(e) be a set of i < L4 messages. Let
x € M \M. Suppose there is no rule g € E under which all the messages in the set

Mu{x} are valid. Then, as in the proof of Theorem 2.4.1,

2. payoff(M.m) = k-i.
me M \M
Now payoff(M,g) =0, so there is some message y € M \ M such that payoff(M,y) > 5—1
contradicting L A-fold security against spoofing.

So every La+1-subset of messages is valid under at least one encoding rule. That is,

b(L:ﬂ) > (L:+1)-
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Theorems 2.7.3 and 2.7.4 develop bounds on the number of encoding rules required for
codes that have both secrecy and authentication properties.

Theorem 2.7.3. (Stinson [61, Theorem 2]) In a (Lg, Lg-1)-code, b > (L"S).

Proof. Let e be an encoding rule of the code. Let M < M(e) be a subset of messages,
IMl =i<Lg-1. Let x be a message not in M. Suppose that there is no encoding rule
under which M v {x} is valid. Then, since

Y payoff(M,m) = ki,
me M \M
k-i

and payoff(M,x) = 0, then there is some message y € L \ M such that payoff(M,y) > v’
contradicting (Lg-1)-fold security against spoofing. So every Lg-subset of messages, M,
is valid under at least one encoding rule.

In order to achieve perfect Lg-fold secrecy, the messages in M must be an encoding of
each of the (I{(s) possible Lg-subsets of source states. So M is a valid set of messages
under at least (l!-(s) encoding rules.

We count pairs of the form (e,M), where e is an encoding rule, IMI = Lg, and M ¢ M(e).
If e is chosen first, then each of the b choices for e generates (If(s) messages, one for
each Lg-subset of source states encoded. The number of such pairs is exactly b (Ij(s)
Conversely, suppose that M is chosen first There are (IYS) possible subsets M, and at
least (fs) choices for e given M. So we get b(fs) 2 (Tjs)(fs) thatis,b2 (L‘;) |

Theorem 2.7.4. (Stinson [60, Theorem 4.1]) In a (Lg, Lg)-code valid for an arbitrary

v-Lg
k-Lg”’

Proof. As in the proof of theorem 2.7.2, every set of Lg + 1 messages is valid under at

source state probability distribution, b (;S

least one encoding rule. As in theorem 2.7.3, every set of Lg messages is the encryption
of every possible set of Lg source states.
Let e € E be an encoding rule. Let M  M(e) be a set of i < Lg messages. Let

S = fe(M). Suppose that p(S) =1 - g, where € is a small positive real number.
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Put E = {e: {e(s): se §] = M}, the set of encoding rules that encode the source states in S

to the messages in M. Because we have Lg-fold security against spoofing, for all xg M,

. . . . -L
there exists an e E under which x is valid. SolEl = ;Tg )

Count triples of the form (e,S,M), where ¢ is an encoding rule, S is a set of Lg source

states, M is a set of Lg messages and e(S) = M. Choosing any e and any S there is a

v-Lg
k-Lg

encoding rules e such that (S) = M. So there are at least (Ijs)(llfs) % triples. Hence

b(fs) > (gs)(li(s) iz‘%ﬁ , as required. H

Finally, Theorem 2.7.5 establishes a bound on the number of encoding rules required for

unique M, giving b(fs) triples. Choosing any M, and any §, there are at least

perfect disclosure codes to have authentication capabilities.

Theorem 2.7.5. (Stinson [60, Theorem 5.2]) In a code which has perfect disclosure and
Pdi =K, for0<i<L, thenb> (¥) .

Proof. We prove the following assertion.

Assertion. Every set of messages M, IMI = n, such that no two messages in M
correspond to the same source state, is valid under at least one encoding rule.
When n = (), it is clear that every message is valid under at least one encoding rule, since
otherwise Pdg > % . So the assertion holds forn = 0.

Assume that the assertion holds for all n <1, where 0 €i < L.

Then the assertion holds for all n = i+1, that is for every set of i messages corresponding
to different source states, since Pd; =—l§ .

So by induction on n, the assertion is true for all n = L+1.

Hence b > G)Lﬂ, as required. B

If a code meets, with equality, the appropriate bound for b abové, then it is referred to as

optimal.
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2.8 Preview of codes constructed

The following table outlines the optimal and near optimal (Lg,L 4)-codes that we will
construct, implement and analyze in terms of time and storage required.

Note that q is reserved to represent a prime power unless otherwise specified.

Lg La k v b

1 0 any integer k>v optimal

2 1 any odd integer q=1mod 2k optimal

3 2 q+1,q=3 mod 4 q2+1 3 times optimal
1 1 q q2 optimal

1 1 g+l q2+q+1 optimal

2 2 | g+1, qis a Mersenne prime. q2+1 2 times optimal
2 2 q, q is a Fermat prime. q2+2q+1 optimal

Also, discussed are the following Lg-fold secrecy codes:
(1) the optimal 1-fold secrecy code with k and v arbitrary integers,
(2) the optimal 2-fold secrecy code with q source states and g messages,
where q is odd,
and the following perfect disclosure codes:
(1) the code with g;;li source states, having qﬁ?:;ll)- messages and qd encoding
rules, for which Pdg=Pd; = i ,

1

(2) the optimal code with g+1 source states and q2+q messages, where Pd; = 1

for 0L1<(t-1),t<q.
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Chapter 3 : Constructions for Optimal and

Near-optimal Codes

3.1 Motivation

Combinatorial designs can be used to construct infinite classes of optimal and
near-optimal codes. We look at the types of designs needed, and in so doing formalize
the structures of the encoding arrays for secrecy and authentication codes. For more
information on the designs used we recommend Hughes and Piper [35], Beth, Jungnickel
and Lenz [11] or Street and Street [65]; or for cyclic designs, Baumert [6]. Projective

and afﬁne; planes are discussed in Batten [5], Dembowski [22] and Hirschfeld [34].
3.2 Constructions for Perfect Lg-fold Secrecy Codes

Perpendicular arrays can be used to construct optimal perfectly Lg-fold secrecy codes.
A Perpendicular Array PAj(tk,v)isa l(‘:) by k array A of the symbols {1,...v} which
satisfies the following properties.
(i) every row of A contains k distinct symbols.
(ii) for every t columns of A, and for any t distinct symbols, there are
precisely A rows r of A such that the t given symbols all occur in row r
in the t given columns.

We need the following property of perpendicular arrays.
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Theorem 3.2.1. (Kramer, Kreher, Rees and Stinson [38 Theorem 1.1]) If 0 €' <t and
v-f
M(it)
t
()

(l:) > (?), then a PAy(t,k,v) is also a PAj.(t' k,v), where Ay = . Hence

(L) divides A 72).
Proof. Let A be a PA)(t,k,v). Number the columns 1 to k. Let S' be a set of any t'
(distinct) symbols. For any set T' of t' distinct columns, define I(T") to be the number of
rows of A in which the t' symbols in the columns in T are the symbols in §'. Now, for
any set T of t columns, we get the following equation.
‘ V-t
=D,
In this way we get (1:) equations in (?) unknowns. If (]:) 2 Gc) it can be shown that
the system has a unique solution for every T, that is,
)
(THY=24 N
()
Consequently, A is a PAy (t'k,v), with Ay as defined above. &
Note. We note that if k = 2t-1 then C() 2 (r) forall0<t' <t.
We can construct secrecy codes from perpendicular arrays in the following manner.
Theorem 3.2.2. (Stinson [60, Theorem 2.3]) If there exists a PA)(t,k,v), where k 2 2t-1,
then there is a perfect t-fold secrecy code for k source states with v messages and A (:’)
encoding rules.
Proof. Let A be a PAj(t,k,v). For each row r = (xy, ..., Xk) of A, define an encoding rule

er by er(s) = x5, where 1 <s <k is a source state. We use each encoding rule with
1
robabili .
TEEEAG)

To prove that this is a perfect t-fold secrecy code, we prove that we have perfect t'-fold

secrecy forall0<t' <t
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Let0<t' <t Since k2 2t-1, (lt() > (if), hence A is a PAy.(t' k,v) by Theorem 3.2.1.
Therefore, any set of t' messages corresponds equally often to every set of t' source states.
Let S be a set of t' source states, and M be a set of t' messages.

Now, using the notation of chapter 2,

_ pM; 1Sy pS1)
s

> ple) plie(M1))
[e: M1 ¢ M(e)}

(by Bayes' Theorem)

X p(s1)

1
b A
=p(S1).

Hence we have perfect t'-fold secrecy, and that completes the proof. B

Note: The secrecy code constructed in Theorem 3.2.2 above is optimal if and only if
A=landk=v.

We go on to show the equivalence of optimal secrecy codes and perpendicular arrays
withA=1landk=v.

Theorem 3.2.3. (Stinson [60, Theorem 2.4], the case Lg = 1 is due earlier to Shannon
[51, page 681]) If there exists an optimal Lg-fold secrecy code for k source states, then
there exists a PA1(Ls.k,k).

Proof. Let eg be an encoding rule. Let M;j be a set of Ls messages, such that
M;j < M(eg). Let S1 be a set of Lg source states. As in the proof to Theorem 2.7.1, there
is at least one encoding rule e1 such that Sy = fe,(M1). Since the code is optimal,
b =\BM\\COI1(k,Ls)), and e is unique. Hence M < M(e) for all encoding rules e. Now,
there are (Ii) different Lg-subsets of the messages M(ep), each of which occurs in (llfs)

encoding rules. Conversely, each of the (;s) encoding rules contains (f;) different
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Lg-subsets of messages. Therefore M(eg) = M(e) for every encoding rule e. So the

encoding array is a PAj(Lg.k,k) on the symbols M(eg). &
The next couple of results establish the existence of some 1-fold and 2-fold secrecy
codes, (and the associated perpendicular arrays).

Theorem 3.2.4. (Stinson [60, Theorem 2.5]) For positive integers k, there exists a
PA1(Lk k).

That is, for all such k, there exists an optimal 1-secret code for k source states.

Proof. Any Latin square of order k is a PA1(1,k,k). A Latin square of order k always
exists. For example, take the row 0, 1, ... , k-1 and develop it modulo k. Code 4.1 in
chapter 4 is an implementation of this code. B

Theorem 3.2.5. (Mullin, Schellenberg, van Rees and Vanstone [50, Corollary 2.5]) For
all odd prime powers q, there exists a PA1(2,q,q). That is, for all such g, there exists an
optimal code for q source states having perfect 2-fold secrecy.

Proof. This construction is outlined as code 4.2 in chapter 4. B

Some constructions for t-fold secrecy codes where t =3 come from t-homogeneous
permutation groups.

A permutation group has degree n if it acts on a set S, IS! =n.

A permutation group is r-homogeneous if for all t-subsets S1,5; of S, there are exactly the

same number of permutations T € G such that (S1)n = S».

The number of such T must be 161

N
()

Examples 3.2.6. (Biggs and White [13]) The symmetric group Sy on the set {1, ..., n}
consists of all permutations of that set. This group is t-homogeneous on {1, ..., n}, for
any 0 < t<n. There are precisely t!(n-t)! distinct permutations that map one given t-set

of elements onto another given t-set of elements.
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The alternating group Ay on the set {1, ..., n} consists of all even permutations of that set.
(A permutation is even if it can be achieved by exchanging an even number of pairs of
elements.) this group is (n-2)-homogeneous on{1, ..., n}. There are precisely (n-2)!
distinct permutations that map one given (n-2)-set of elements onto another given

(n-2)-set of elements.

For all prime powers q, the projective general linear group PGL(2,q) is 3-homogeneous
on the (q+1) points of PG(1l,q). There are precisely 6 distinct permutations that map a
given 3-set of elements to another given 3-set of elements.

Theorem 3.2.7. (Stinson and Teirlinck [64, Theorem 3.1]) If G is a t-homogeneous

permutation group of degree n, then there exists a PAj(t,n,n) where

Gl

(%)
Hence there exists a t-code for n source states with n messages and IGl encoding rules.
Proof. Write down the permutations of G as the encoding array. #
Examples 3.2.8.
(Biggs and White [13]) As in Example 3.2.6, if q is a prime power, PGL(2,q) is a
3-homogeneous permutations group that yields a PAg(3,q+1,q+1), and hence a 3-fold
secrecy code that has q+1 source states, g+1 messages, (q-1)q(g+1) encoding rules which
is 6 times the optimal number. Sp, yields a PAgm-pi(t,n,n) for any 1 <t<n, and A, yields
a PA(n.2)1(n-2,n,n), neither of which yield codes with close to the optimal number of
encoding rules.
So let's look at a couple of groups that generate optimal or close to optimal codes.
(Stinson and Teirlinck [64, Lemma 3.4]) AGL(1,8) and AI'L(1,32) are 3-homogeneous
permutation groups, where IAGL(1,8)! = (§) and IATL(1,32)1 = (). See Beth,
Jungnickel and Lenz [11]. Hence there exists PA1(3,8,8) and PA(3,32,32) and the

associated optimal 3-fold secrecy codes.

8-



(Stinson [61, Theorem 2.6]) PGL(2,8) and PI'L(2,32) are 4-homogeneous permutation
groups that yield a PA4(4,9,9) and a PA4(4,33,33) respectively. That is, they yield codes
that have four times the optimal number of encoding rules and perfect 4-fold secrecy.
Theorem 3.2.9. (Stinson and Teirlinck [64, Lemma 3.5]) If g = 3 mod 4 is a prime
power, then there exists a PA3(3,g+1,q+1), and hence a code with perfect 3-fold secrecy,
q+1 source states and g-";j encoding rules, which is three times the optimal number.
Proof. The group PSL(2,q) is 3-homogeneous of degree q+1 if q is a prime number and
g =3 mod 4. Apply theorem 3.2.7 to get a PA3(3,q+1,q+1), as required. This is code 4.3

from chapter 4. &

3.3 Constructions for (Lg,Lg-1)-codes

We need our perpendicular arrays to have an extra property to construct codes with the
additional property of authentication .

A PA)(tk,v), A, is an authentication PA and denoted APA)(tk,v) if, for all t' <t-1 and
for any t'+1 distinct symbols x; (1 €1 <t'+1) we have that amongst all the rows of A
which contain the symbols x; (1 <i<t'+1), the t' symbols x; (1 <1<t") occur equally
often in all possible subsets of t' columns.

Theorem 3.3.1. (Stinson [61, page 16]) An APA;(t,k,v) is also an APA) (' k,v), for all
t' <t Hence (]f) divides Kt“i(l'f-l)' [

Note. If k 2 2t+1, a PA;j(t,k,k) is also an APAj(t.k k).

Theorem 3.3.2. (Stinson [61, Theorem 3.3]) If an APA;(t,k,v) exists, then there is a
(t,t-1)-code with k source states, v messages, and K(:) encoding rules.

Proof. Let A be an APA)(t.k,v). A code is constructed as in thé proof to theorem 3.2.2.
Suppose that the opponent observes the distinct messages xj, 1 <i <t'in the channel, for
some t', 0 <t'<t, and then sends the message xy4+1, where xpy1 # X4, 1 £1<t. The

chance of sucessful deception is calculated to be
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3 0@ {51, oo s5t) = (ox)s e Eelxe)))
{e: x; € M(e), i=1.2,.,t'+1}

> D) 51, o S = (Folx1)s o fox)])
{e:x;e M(e),i=1.2,.,1"

D PUSL, oo a5} = (oKD o s Eelx)])
_ {e:x; € M(e),i=1,2,..,'+1}

D p({s1, e 86} = (FoxD)s o s Folxe)))
{e: x; € M(e), 1= 1,2...,1")

A+l (t'f—l)

k
- (‘) (the PA is an APA)

> DSt e 52} = (EoXD)s s Fe()])
{e:x; € M(e)i= 12,1}

(as p(e) is constant.)

t-D A, : '
= —‘k”— (as HL % by theorem 3.2.1.)
(v_t!) (z‘) l['
_kt
Tyt

That is, Pdy = V%t: , as required. &

Note. This code is optimal if and only if A = 1.

Theorem 3.3.3. (Stinson [63, Theorem 3.4]) For all positive integers v, and all positive
integers k <, there is an APA;(1,k,v), and hence an optimal (1,0)-code with k source
states and v messages.

Proof. This is code 4.4 described in chapter 4. B

Examples 3.3.4.

There is an APA1(2,3,v) if and only if v2>7 is odd (Stinson [60] and Stinson and

Teirlinck [64]).
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There is an APA1(2,5,v) if and only if v=1 or 5 mod 10, v2 11, v # 15 (Lindner and
Stinson [37]).

Theorem 3.3.5. (Granville, Moisadis and Rees [30]) Ifkisodd and q=1 mod 2k is a
prime power, then there exists an APA1(2,k,q), and hence an optimal (2,1)-code with k
source states and q messages.

Proof. This is code 4.5 from chapter 4, H

Example 3.2.8 told us how to construct the following perpendicular arrays from multiply
transitive groups; PA1(3,8,8), PA1(3,32,32), PA4(4,9,9) and PA4(4,33,33).

We apply theorem 3.3.1 to get the following examples.

Examples 3.3.6. (Stinson [60, Theorem 3.7])

There is an APA1(3,8,8) and an APA(3,32,32).

There is an APA4(4,9,9) and an APA4(4,33,33).

Theorem 3.3.7. (Stinson [60, theorem 3.7]) If q = 3 mod 4 is a prime power, q 2 7, then
there is an APA3(3,q+1,q+1), and hence a (3,2)-code with g+1 source states, q+1
messages and three times the optimal number of encoding rules.

Proof. We constructed a PA3(3,g+1,q+1) in theorem 3.2.9. If g = 7 then we can apply
theorem 3.3.1. This is code 4.6 from chapter 4. #

Having an authentication code with the same number of messages as encoding rules
doesn't really do us much good, since a successful deception is automatically assured. So
we use the trick in the following theorem to expand our codes.

Theorem 3.3.8. (Stinson and Teirlinck [64, Theorem 3.2]) If there is a t-design
Sai(t.k,v) and an APA)(t,kk) then there is also an APA(t.k,v).

Proof. Each block in the t-design Sa'(t,k,v) is a set of k elemeﬁts. An APA)(t,k k) is
constructed on each block. The union of all the rows from all the APAj)(t,kk) is an
APA) (tkv). B

So we find some t-designs with small A. Some of these are discussed by Hughes and

Piper in [35], and Beth, Jungnickel and Lenz in [11].
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An inversive geometry is a 3-design S1(3,g+1,qd+1).

Theorem 3.3.9. (Beth, Jungnickel and Lenz [11]) If q is a prime power and d is a
positive integer, then an inversive geometry S1(3,q+1,qd+1) exists.

Proof. See Beth, Jungnickel and Lenz [11], for a formal proof, or code 4.7 in chapter 4
for an outline of the construction of the inversive geometry. H

Theorem 3.3.10. (Stinson and Teirlinck {64, Theorem 3.5]) If q = 3 mod 4 is a prime
power, q =7, and d is a positive integer, there is an APA3(3,q+1,q9+1), and hence a
(3,2)-code with g+1 source states, qd+1 messages, and three times the optimal number of
encoding rules.

Proof. Let the lines of the inversive geometry S1(3,9+1,q+1) be blocks. There is a
PA3(3,g+1,g+1) (by theorem 3.2.9). We combine these using theorem 3.3.8. See code
4.7 in chapter 4 for an outline of the construction. B

In Examples 3.3.6 we showed an APA(3,8,8) and an APA;(3,32,32). Combining these
with the projective geometries S1(3,8,8) and 51(3,32,32) we get the following.

Examples 3.3.11. (Stinson and Teirlinck [64]) If d is a positive integer, there exists an
APA;(3,8,79+1) and an APA{(3,32,319+1), and hence an optimal (3,2)-codes with 8

source states and 7d+1 messages and 31 source states and 319+1 messages.

3.4 Constructions for (Lg,Lg)-codes

We can combine a perpendicular array and a t-design to construct a code that has the
same authentication level and secrecy level.

Theorem 3.4.1. (Stinson [60, Theorem 4.2]) If there exist a PA)(t,k,k) and a
(t+1)-design Sy-(t+1.k,v) where k = 2t-1, then there is a (t,t)—codé for k source states, for
an arbitrary source state probability distribution, having v messages and &k(v{—ll(‘:)
encoding rules.

Proof. Each block in the (t+1)-design Sy:(t+1,k,v) is a set of k elements. A PA)(t,kk) is

constructed on each of these blocks. The union of all the rows from all the PA)(tk.k) is a
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PA)(t,k,v). Now k = 2t-1, and hence the resulting code has perfect t-fold secrecy. Also,

the number of encoding rules is clearly ﬁk(:—tl(‘;) .

So, it remains to verify that the code is t-fold secure against spoofing. Now k 2 2t-1, so
the PAy(t,k,k) is also an APAj(t,k,k), as we remarked earlier. Then the code is
(-1)-secure against spoofing , by theorems 3.3.2 and 3.3.8. So, to prove that the code is
t-fold secure against spoofing, suppose the opponent observes the distinct messages x;,
1 <£i<t, in the channel. Suppose that the opponent places the further distinct message
Xt+1 in the channel. Then, by a similar argument to the proof of theorem 3.3.2, it can be
shown that the chance of sucessful deception is % = %—: . Hence, Pd; = t—: . B8

Note that the code constructed in theorem 3.3.1 above is optimal if and only if A =A' = 1.

We use this construction in the following theorems to construct infinite classes of optimal
(1,1)-codes and near-optimal (2,2)-codes (for an arbitrary source state probability
distribution).

Theorem 3.4.2, (Stinson [63, Corollary 3.11]) If there exists a S;(2,k,v), (i.e. a
(v.k,1)-BIBD), then there also exists an optimal (1,1)-code for an arbitrary source state
distribution., with v source states and v messages.

Proof. Theorem 3.2.4 states that a PA1(1,k,k) exists for all k. &

The infinite classes of S1(2,k,v) that spring most readily to mind are the affine geometries
$1(2,9,9% and the projective geometries 51(2,q+1,9%{:—lli), for all prime powers q and all

positive integers d. This leads us to theorems 3.4.3 and 3.4.4 below.

Theorem 3.4.3. (Stinson [60, Theorem 4.4]) For all prime powers q and all positive
integers d, there exists an optimal (1,1)-code for an arbitrary source state probability
distribution, with q source states and qd messages. |

Proof. We take the lines of the affine geometry of order q and dimension d as blocks.
We expand each block into a PA(1,k,k), which we have shown exists (see theorem

3.2.4). This is code 4.8 in chapter 4. H
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Theorem 3.4.4. (Stinson [60]) For all prime powers q and all positive integers d , there
exists an optimal (1,1)-code for an arbitrary source state probability distribution, with g+1
source states and 9% messages.
Proof. We take the lines of the projective geometry of order q and dimension d as
blocks. We expand each block into a PA1(1,k,k), which we have shown exists (see
theorem 3.2.4). This is code 4.9 in chapter 4.
To construct (2,2)-codes we need the concept of an orthogonal array.
An orthogonal array OA(k,v) is a v2 by k array, A, of the symbols {1, ... ,v}, such that
for any t colummns cy,..., ¢y of A, and for any t distinct symbols x1,..., X,
there is a unique row 1 of A such that x; occurs in column ¢; of row r, for
1<i<t.
Now, for any prime power g, an OA(q,q) can be constructed from the affine plane of
order q, with the property that for each element o of GF(q), there is a row that contains o
repeated q times. If these q rows are deleted, a PA2(2,q,q) remains. This construction is
exemplified in code 4.9 in chapter 4.
The following constructions for (2,2)-codes require finite fields GF(n) and GF(n-1) and
so use Fermat and Mersenne primes.
Theorem 3.4.5. (Stinson [60, Theorem 4.5]) For any Mersenne prime q, there is a
(2,2)-code for an arbitrary source state probability distribution with q+1 source states and
ngﬂlg)—(gﬂl messages. This code has twice the optimal number of encoding rules.
Proof. We know that a Sl(3,q+1,qd+1) exists. We also know that an OA(q+1,q+1) can
be constructed from the affine plane of order g+1. Apply theorem 3.4.1. This
construction is outlined as code 4.9 in chapter 4. & |
Theorem 3.4.6. (Stinson [60, Theorem 4.6]) For any Fermat prime ¢, there is a
(2,2)-code for an arbitrary source state probability distribution with q source states and

(q-1)d+1 messages. This code is optimal.

Proof. There is a PA1(2,g,q) and an $1(3,q,(q-1)d+1). Apply theorem 3.4.1. H
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Note. This may not be an infinite class of codes, since only a finite number of Fermat

primes are known.

3.5 Constructions for Perfect Disclosure Codes

We construct optimal perfect disclosure codes using transversal designs.

- A transversal design TD) (t,k,n) is a triple (X, G, A), where X is a set of kn points, G is a
partition of X into k groups of n points each, and A is a set of Ant blocks each of which
meets each group in a point, such that every t-subset of points from distinct groups occurs
in exactly A blocks.

Theorem 3.5.1. (Stinson [60, Theorem 5.3], the special case t =2 and A =1 is due to
Brickell [16]) If there exists a transversal design TDj(t,k,n), then there exists a perfect
disclosure code for k source states, having kn messages and An! blocks, and for which
Pdj =1 (=%),for 0<i<t1. The code is optimal if and only if A = 1.

We have a partial converse to theorem 3.5.1, that gives us a transversal design
corresponding to every optimal perfect disclosure code.

Theorem 3.5.2. (Stinson, {60, Theorem 5.4]) Suppose we have an optimal perfect
disclosure code for k source states, v messages and G)t encoding rules. Suppose further
that, in this code, Pd; = % for 0 <1< t-1. Then, there exists a transversal design TD(t,k,n),
where n = i’- .

Proof. Now, every set M of t messages corresponding to distinct source states appears in
at least one encoding rule, as in the proof to theorem 2.7.5. Since the code is optimal, M
must appear in exactly one encoding rule. Thus we have a TDy(t,k,n), where n = E . B8
Theorem 3.5.3. (Hanani [31, Lemma 3.5]) If q is a prime powér and t < q is an integer,
there is a TD1(t,q+1,g+1), and hence an optimal perfect disclosure code with q+1 source
states and q2+q+1 messages, and for which Pd;j = é = % ,for0<i<t-1.

Proof. This is code 4.11 in chapter 4. H
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The code guaranteed by theorer 3.5.2 allows us to use the same encoding rule up to g-1
times (as opposed to the two or three times our other infinite classes of codes allowed us).

Theorem 3.5.4. (Stinson [63, Theorem 3.7}) If q is a prime power and d = 2 is an

d. . . qd-
integer, there is a TDgd.2(2, 9('1—11 , q), and hence a perfect disclosure code with %—11 source
d. . . . .
states, 9%1-1) messages and qd encoding rules, and for which Pd; = é fori=0andi=1.

Proof. This is code 4.12 in chapter 4. B
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Chapter 4 : Implementations

4,1 Motivation

Optimal and near-optimal secrecy and authentication codes are good in theory, but if they
cannot be implemented efficiently, then the effort to make the number of encoding rules
as small as possible is somewhat wasted. Storing an entire encoding array for ar code is
not going to be possible once the code gets large. However, we also have to ensure that
the time taken to encode source states and decode messages does not become too large.

This chapter outlines pseudo-code algorithms for the infinite classes of codes that were

found in Chapter 3.

4.2 Finite Field Arithmetic

These implementations are going to use finite field arithmetic, so we include here a very
brief note on operations in GF(p"), the finite (or Galois) field of characteristic p and
degree n. We assume here that the reader is familiar with the definition of a finite field,
and that it always has a prime power order. GF(p), where p is prime, can be constructed
by considering the arithmetic operations modulo p. GF(p") can be considered as a
n-tuple of elements of GF(p). GF(p®) is most commonly (but not always, see chapter 5)
considered as the set of polynomials with coefficients in GF(p) modulo some nth degree
polynomial irreducible over GF(p). Every finite field has a generator o, such that every
element of the field except the zero element can be represented as a power of . If x is an

element of GF(q), then x4-1 = 1, the multiplicative identity. So every non-zero element
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could also be considered as a power of o between 0 and g-2. Every element except O has
a multiplicative inverse. So addition, subtraction, multiplication and non-zero division
are all defined. From multiplication we define exponentiation in the obvious way. We
also define a finite logarithm in the following manner. If o is a primitive element of the
GF(q), and x is any non-zero element of GF(q), then the logarithm of x to the base o,
logyx is the power (between 0 and q-1) to which o must be raised to get x. In other
words, the following two statements are equivalent for x and ¢ as defined above and the
' integery,0 <y <qg-1:
logex =y

and x=al.

Example 4.1. Consider the finite field GF(23). The elements can be represented as {0,1)
polynomials modulo f(x) = x3+x+1. The element o, where () = 0, is a generator of the

field. The element 0 is not a power of «, but the rest of the field is demonstrated in the

table below.
ol i
1 0
X 1
x2 2
x+1 3
x24x 4
x24x+1 5
x241 6

Then, for example, logg(x2+x) = 4.
Another thing we wish to do in finite fields is select a random element from an

equiprobable distribution. Each element would be therefore be selected with probability
1

q°
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Also, we need to be able to impose an ordering on the elements of a finite field. This can
be done in a number of ways. To order elements over GF(p), represented as integers
modulo p, it is probably easiest to order the field 0, 1, 2, ..., p-1, although the field could
also be ordered 0, o, ol, ..., o2, where ot is a primitive element. To order the elements

of GF(p"), when we have an ordering of GF(p), and each element of GF(p") is
represented as an ordered n-tuple of elements of GF(p) with respect to some basis, we
could order the n-tuples lexicographically. Else we could order GF(p™) as powers of a
primitive element.

Example 4.1. (part 2). Suppose we have the ordering 0, 1 on GF(2), and we wish to
order GF(8), as above.

Then, the lexicographic ordering is 0, 1, x, x+1, x2, x2+1,x2+x, x24x+1.

Or, as ordered 3-tuples with respect to the basis (02, o, 1):

0,0,0),(0,0,1),0,1,0), (0, 1, 1), (1,0,0), (1,0, 1), (1, 1, 0), (1, 1, 1).

Alternatively, if ordered by powers of the generating element @, the ordering is as per the
table above.

See chapter 5 for a detailed look at algorithms, costs and running times of finite field
operations.

A final technical note before we begin: all random elements are chosen from an

equiprobable distribution unless otherwise specified.

Code 4.1

An optimal code having perfect 1-fold secrecy, k source states, k messages and k

encoding rules, for any integer k.

See Code 4.4, the (1,0)-code, and put v = k.
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Code 4.2

An optimal code for q source states, q messages,f"%:Q encoding rules and perfect

2-fold secrecy where q is an odd prime power.

Let GF(q) have primitive element f3.
The encoding array is made up of the rows

X x+p0 X+ x4 fgmt2 x+BH2
for each xe GF(q), and each 0 <n < 953

The source states are numbered 0O to g-1, and the messages are elements of GF(q).

Example 4.2. Consider ¢ = 5. Then B = 2 is a primitive element of GF(5). The

encoding array is as follows. We index the encoding rules by x and n.

encoding rule source state
X n 0 1 2 3 4
0 0 0 1 2 4 3
0 1 0 2 4 3 1
1 0 1 2 3 0 4
1 1 1 3 0 4 2
2 0 2 3 4 1 0
2 1 2 4 1 0 3
3 0 3 4 0 2 I
3 1 3 0 2 1 4
4 0 4 0 1 3 2
4 1 4 1 3 2 0

or equivalently, the two rows corresponding to x = 0 developed modulo 5.
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Algorithm 4.2,

The key source.

Step 1

Choose arandomn, 0 <n < 953
Step 2.

Choose a random x, xe GF(q).

Step 3.
Send (n,x)} to the transmitter and the receiver by a secure channel.

- 2.
The number of bits sent by the key source is f logzq_I + |—10g2 (92—1)_1 ~ logy (93—‘1) bits,

which is approximately logsb bits or about 2 bits of key for every bit of message.

The transmitter (sending source state i).
Step 1.
If i = 0 then message :=x.
else message := x+B+0-1),
Step 2.

Send message to receiver via an open channel.

The receiver.

Step 1.

If the message is not an element of GF(q) then reject the message.
If message = x then the source state is 0.

If the message # x then the source state is
[(logg(message-x) - n) mod (g-1)] + 1.
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Code 4.3

A perfect 3-fold secret code with q+1 source states and (gﬂlgm_il encoding rules,

which is three times the optimal number, where q = 3 mod 4 is a prime power.

This is the (3,2) code , i.e. code 4.6.

Code 4.4

An optimal (1,0)-code with k source states, v messages and v encoding rules, where k

and v are integers, with v 2 k.

The encoding array is the row
¢ 1 2 k-1
developed modulo v.
The source states are numbered from 0 to k-1 and the messages are integers between 0
and v-1.

Example 4.3. When k =4 and v =7 we get

0 1 2 3
€0 0 1 2 3
€1 1 2 3 4
() 2 3 4 5
e3 3 4 5 6
e4 4 5 6 0
€5 5 6 0 1
e 6 0 1 2

Notice that each possible message occurs once in each column.
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Algorithm 4.4,

The key source.

Step 1.

Select a random integern, 0 £ n < v-1.

Step 2.

Send n to transmitter and receiver via a secure channel.

There are [ logyv | =[logob | bits sent by the key source, or about 1 bit of key for every bit

of message.

The transmitter (sending source state i).
Step 1.

message := (i+n) mod v.

Step 2.

Send message to receiver by open channel.

The receiver.

If message is not an element of {0, ... ,v-1] then reject message.
Step 1.

X := (message-n) mod v.

Step 2.

If 0 < x <k-1 then the source state is x else reject the message.
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Code 4.5

An optimal (2,1) code with k source states, ¢ messages and 9192'—1—1 encoding rules,

where k is odd and g = 1 mod 2k a prime power.

Let 3 be a primitive element of GF(g).
gl
Let oo =B k| a kth root of unity.

The encoding array has as its rows

o+ o+paltY o + frofDry

for all we GF(q), all integers x such that 1 £x < %i(—l, and all integers y such that
0<y<k-1.
Without using o explicitly, the row becomes,

(g-)y (q-1)(1+y) -1)((k-1)+
0)+BX+ k o)+|3x+ k o)+Bx+ k

Example 4.5. When k = 3 and q=13, we note first that 3 is odd and that 13 is a prime
congruent to 1 mod 6. P =2 is a generator of GF(13), and o = B4 = 3. The adding of ®
causes the development mod q, and the changing y values, with x and ® held constant
causes the rotation of the rows.

The encoding array consists of each of the following rows developed mod 13.

X y IOWS

1 0 2 6 5
1 1 6 5 2
1 2 5 2 6
2 0 4 12 10
2 1 12 10 4
2 2 10 4 12



Notice that, in this case, {2,6,5} and {4,10,12} are a pair of complementary difference
sets, so that the resulting array is a cyclic BIBD with A = 1, with each row expanded into
a Latin square. This happens whenever%f = 2, since the two x values correspond to
quadratic residues and quadratic non-residues. For ‘]2% = 1, the "starter row" is a

difference set, and the resulting array is also a cyclic BIBD with A = 1, with each row

expanded into a Latin square.

Algorithm 4.5.

The key source,
Step 1.

Choose a random integer x, 1 <x < gl

S o
Step 2.

Choose arandom y, 0 <y <k-1.

Step 3.

Choose a random we GF(q).

Step 4.
Send (x, y, @) to transmitter and receiver via secure channel.

The key source transmits rlog2 (%f)-l + rlogzk] + l_logz(ﬂ ~ log, ((Ll;ﬂ) = logyb bits, or

about 2 bits of key for every bit of message.
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The transmitter (sending source state i).
Step 1.
Bgi;—l(y+i)+x

message i=® +
Step 2.
Send message to receiver via a secure channel.

The receiver.
If the message is not in GF(q) then reject message.

Step 1.

If message = w then reject message.

Step 2.

temp ;= (logﬁ(message-(n) - x) mod (g-1).
Step 3.

If gk_l divides temp exactly (that is, if B*®™P e the subfield

then source state is (Mz—TEl - y) mod k

else reject the message.

Note that PSL(2,q) is a 3-homogeneous permutation group.

A (3,2)-code with g+1 source states, g+1 messages and (9”—1)5;&9'—11 encoding rules,

which is three times the optimal number, where q = 3 mod 4 is a prime power.,

The construction utilizes PSL(2,q), the special linear group on g+1 points, GF(q)U{e

3
IPSL2,g)t = T4

The permutations of PSL(2,q) written as the rows of an array, form a (3,2)-code.

These permutations can be defined on GF(q) w {ee} by the mappings
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ax+b

cxrd ad-be is a non-zero square in GF(q),

for each a, b, ¢, d in GF(q), with sensible rules about .

More specifically, when ¢ # 0, if x =, then x — oo, and if x = oo, then x — 2.

If ¢ = 0, then oo — oo, that is, <o is fixed.

Note that the mappings defined by (a,b,c,d) and (ka,kb,kc,kd) are the same for any
k e GF(Q)\ {0}. Also, if.a =(, then b = 0. So the elements of PSL(2,q) are mappings
defined by (1,b,c,d), where d-bc is a non-zero square, and (0,1,c,d), where -c is a non-zero
square. To choose a non-zero square equiprobably, an element of GF(q)\ {0} is chosen
equiprobably, and squared. The source states are numbered from 0 to q and the messages
are elements of GF(q) U {eo}.

Example 4.6. For q =3 we get

permutation in PSL(2,q)
1 2

PR T T S C RO o e

—o = BB R e e e OO e
BN RN R OO = O e
o T o B s =T % R T e [ =W

— 2 N O O S~ § N8N

R — g

O O O ks = e el e e e = e ey
T o = -, o = 8

Note that every unordered triple occurs the same number of times in each set of three
columns. Within those triples, each unordered pair occurs in precisely one of the three
possible pair of columns. Note also that the probability of a successful impersonation

attack is %= 1, and the probability of a sucessful substitution if—l = 1. So the code fulfills
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the conditions for authentication, but a spoofing or impersonation attack is always

successful.

Algorithm 4.6.

The key source.

Step 1.

Chose a random real numberr, 0 <r < 1, from a uniform
distribution.

Hr< ql? then

a:=0.

b:=1.

d := a random element of GF(q).

m := a random element of GF(q)\{(}.
c:=-m2

Ifr> 1 then
g+l

a:=1
b := a random element of GF(q).
¢ :=a random element of GF(q).
m := a random element of GF{q)\{0}.
d:=m2 + be.
Step 2.
Send (a,b,c,d) to transmitter and receiver via a secure channel.

Number of bits sent is 3|—10g2q-l+1, or about 3 bits of key for every bit of message. This is
only slightly more than the I—loggb-] =~ 3log,q bits required if the number of the encoding

rule was transmitted.
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The transmitter (sending source state ).

Step 1.

If i = q then x := oo, else x := the ith element of GF(qg).
Step 2.

If ¢ = 0 and x = o then message := co.

If ¢ = 0 and x # o then message = axT“’ .

If ¢ #0 and x = oo then message := g .

Ifc#0and x = g then message := oo,

ax+b

Ifc#Oandx#ooandx#gthenmessage = .
c cx+d

Step 3.
Send message to receiver via an open channel.

The receiver.

Step 1. { x:—mgs—agg’l.}

c(message)-a
If ¢ = 0 and message = o then X := oo,

If ¢ = 0 and message # 0 then x:= b;d@?—sggg .

If ¢ # 0 and message = oo then x:= Ed .

b-d(message)

If ¢ # 0 and message # oo or 2 then x := .
c c(message)-a

If ¢ # 0 and message = g then X 1= co,

Step 2.

If x = oo then source state is q.

If x # o then the source state is j, where x is the jth element of
GF(q).
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Code 4.7

A (3,2)-code with q+1 source states, g9+1 messages, and (g9+1)q4(qd-1) encoding
rules which is six times the optimal number where q is a prime power and d is any

positive integer.

Let GF(qd) have primitive element p.
Then there is a subfield, GF(q) with primitive element {3% = . It makes sense,
therefore, to talk about adding or multiplying elements from these two different fields
together.
In theorem 3.3.10 we promised a code with three times the optimal number of encoding
rules. Its encoding array is based on the set of blocks of an inversive plane,
S1(3,q+1,q9+1). Each block is expanded into a APA3(3,q+1,q+1) by writing the
permutations of PSL(2,q) acting on each block.
The initial block of the S1(3,q+1,qd+1) is GF(q)uL{e}. Each block of S1(3,q+1,qd+1) is
the image of this initial block under an element of PGL(2,q%), the general linear group on
qd + 1 elements. That is, the penﬁutations of GF(qd)U{eo}, defined by

- gi‘%, e,f,g,he GF(qd), eh-fg # 0.
Each block is obtained from (g-1)q(q+1) different permutations, since PGL(2,q) is the
subgroup of PGL(2,q%) that fixes GF(q){e}. So to choose a block, a permutation in
PGL(2,q49) is chosen from an equiprobable distribution. Note that (e,f,g,h) generates the
same permutation as (oe,of,0g,0cth), ae GF(qQé\{0}. Note also that if e = 0, then f # 0.
So the permutations in PGL(2,q) can be written as (1,f,g,h), for h # fg, and (0,1,g,h), for g
# 0.

However, if we pick a base block {0, 1, ..., g-1, eo}with a fixed ordering and let our

encoding rules be indexed by the appropriate (e,f,g,h) then we run into a problem. Each
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of the (q-1)q(q+1) permutations that define a given block will define it in a different
order. Fortunately, all is not lost. We can still construct a code with six times the optimal
number of encoding rules, which has the added advantage of being easy to implement.
(No-one wants to have to sort each block.) The set of permutations of PGL(Z,qd) is the
set of blocks of 31(3,q+1,qd+1), with each block expanded into an APA5(3,q+1,qd+1).
This is so because PGL(2,q9) is sharply 3-transitive, so that each ordered 3-tuple of
elements occurs precisely once in each (ordered) set of three columns,

Choosing a random encoding rule, then, is a random permutation from PGL(2,qd), of

GE(ghu (e},

Algorithm 4.7,

The key source.

Step 2. {Define a permutation, y, to give a block of
S13,q+1,qd+1) }

Choose a random real number 1, 0 <1 < 1, from a uniform

distribution.

Ifr< (—1-33, then

e:=0.
f:=1.
g := a random element of GF(qd\{0}.
h := a random element of GF(qd).
1
Ifr> qd—-l’ then

e:=1
f := a random element of GF(qd).
g := a random element of GF(q9).
h := a random element of GF(qd)\{bc).
Step 4.
Send (e,f,g,h) to transmitter and receiver via a secure channel.
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The number of bits sent is 3rdlog2q] + 1 = logyb, or 3 bits of key for every bit of

message.

The transmitter (sending source state i).

Step 1.{Find the ith element of the initial block.}

If i = q then x = oo

Ifi=q-1thenx:=0.

Ifi #q,andi#g-1 then x := the ith element of GF(q).

. ex+f
Step 2.{message := xih .
If c =0 and x = e then message := oo.
If ¢ = 0 and x # oo then message := 9’—;—“5

If ¢ # 0 and x = oo then message = i.

Ifc#0andx = g then message 1= oo.

ex+f
gx+h’

If ¢ # 0 and x # o and x;tgthen message =

Step 3.
Send message to receiver by an open channel
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The receiver.

Step 1. { X = f'h!message? }

" g(message)-e ©
If ¢ = 0 and message = oo then x := oo,

If ¢ = 0 and message = 0 then x :=m§§5—ag§l .

If ¢ # 0 and message =eo then x :="

o =

If ¢ #0 and message = z-then X =00,

If ¢ # 0 and message # oo and message # = then x := f-h(message)
g g(message)-¢

Step 2.

If x¢ GF(q)U{ec} then reject message.

Step 3.

If x = oo then source state is q.
If x # oo then the source state is j, where x is the jth element of
GF(q).

Code 4.8

An optimal (1,1)-code with q source states, q2 messages and q3(q+1) encoding rules,

where ( is a prime power.,

Let GF(q) have primitive element B. The encoding array is based on the affine plane of
order q. Each block of the affine plane is expanded into a Latin square by a series of
cyclic shifts.To construct an affine plane, consider GF(q)XGF(q) = {(c.,8) | &t,Be GF(q)}.
Take lines of slope o, for every ooe GF(q). More specifically, each line is a set
{(x,y) Iy = ax+B}, Be GF(q). Add the lines of slope oo, {(x,y) | x = B}, for each B.

Our messages are (0,3) pairs, (where o,pe GF(q)).

Example 4.8.1. Consider GF(3) = {0,1,2}.

Then GE(3)XGF(3) = {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)}.

We abbreviate (a,b) to ab for ease of reading.
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The lines of the affine plane are enumerated in the table below.

slope 0 slope 1 slope 2 slope oo
00,10,20 00,11,22 00,12,21 00,01,02
01,11,21 01,12,20 01,10,22 10,11,12
02,12,22 02,10,21 02,11,20 20,21,22

The points in each block of AG(2,q) need some ordering so we can apply a series of
cyclic shifts to them to get a Latin square. The lines with slope ae GF(q) are ordered by
the first element of the pair where some ordering is defined on GF(q). The blocks of
slope o are ordered by the second element (since the first elements are all the same).
Example 4.8.2. Consider PG(2,3) (over GF(3)). Let GF(3) be ordered 0, 1, 2. Then the
block with slope 2 through 11 is ordered 02, 11, 20. The block of slope o through 11 in
PG(2,3) as in Example 4.8.1 is ordered 10, 11, 12.

Each block gives rise to q rows in the encoding array.

Example 4.8.3. Consider PG(2,3) as constructed in Example 4.8.1.

The 3 rows determined by the block 02, 11, 20 are

row 1 02 11 20
Tow 2 11 20 02
row 3 20 02 11

We select the block by choosing coefficients in the equation cx+Bxp+y = 0.

The transmitter calculates message = (x1,x2) which lies oh the line ox+Pxo+y=0.
To send source state sj, where 0 <i < g-1, we do the following,.

If B # 0 then x1 := the (i+n mod @)th element of GF(qg),

and x7 :=-Ot;>§;1_
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If B = O then X1 := g

and x2 := the (i+n mod q)th element of GF(q).

Algorithm 4.8.

The key source,

Step 1.

Choose a random real numberr, 0 <r < 1, from a uniform
distribution.

Step 2.

Ifr< qi—l then do Step 2a.

Step 2a.

a:=0,

B:=1,

Y := a random element of GF(q).
Ifr> ?iiiT then do Step 2b.

Step 2b.

o:=1,

B :=random element of GF(q),

v :=random element of GF(q).
Step 3.
Choose a random integer n, 0 <n < g-1.
Step 4.
Send (ct,B,y,n) to transmitter and receiver.

The key source sends 3 logaq | + 1 = logsb bits of key, or 1.5 bits of key for every bit of

message.
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The transmitter (sending source state i).
Step 1.

j:=1i+n mod q.

groupj := the jth element of GF(q).

Step 2.
If B # 0 then x := groupj,
and x7 := %{,

If B =0 then x; :='§,
and X7 := groupj.
message = (X1,X2).
Step 3.
Send message to receiver via an open channel.

The receiver.
If message is not of the form (x1,x2), where x1,x2 € GF(q), then
reject message.

Step 1.
If oxy + Bxp + y# 0 then reject message.

If oxy + Px2 +y=0 and B = 0 then groupj := x3.

If oxy + Bx2 +y=0 and B # 0 then groupj := xj.
Step 2.

Retrieve j, where groupj is the jth element of GF(q).
Source state is (j-n) mod q.
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Code 4.9

An optimal (1,1)-code with q+1 source states, q2+q+1 messages and (q2+q+1)(q+1)

encoding rules, where q is a prime power.

The encoding array is a projective plane whose blocks are expanded into Latin squares,

by choosing an arbitrary order of points on each block and rotating cyclically.

First construction for PG(2,q).

A projective plane can be constructed as an extension of an affine plane. Consider
GF(q) X GF(q) = {(o,B) | o,pe GF{q)}. Take lines of slope o, for every o.e GF(q), that is,
a set {(x,y)!y=oax+B}, for each Be GF(q). Add the lines of slope o, namely
{(x,y) | x = B}, for each B. This is the affine plane.

To each of these parallel classes of lines (lines of the same slope), we adjoin a point ooy
(or o0,). We add a line through these 'eo’ points, {oog, e GF(q)u{ee} ). Our messages
are (o,B) pairs, (where o3& GF(q)), together with the symbols e, for ae GF(q), and <e...
Example 4.9.1. For example, consider GF(3) = {0,1,2}.

Then GF(3)XGF(3) = {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2) }.

We abbreviate (a,b) to ab for ease of reading.

The lines of the affine plane are in the table below.

slope 0 slope 1 slope 2 slope eo
00,10,20 00,11,22 00,12,21 00,01,02
01,11,21 01,12,20 01,10,22 10,11,12
02,12,22 02,10,21 02,11,20 20,21,22



We affix a point oop to all lines of slope 0, oo} to those of slope 1, oo, to those of slope 2

and oo, to those of slope co. The 'e' points are then connected.

This gives us the following blocks:

00
01
02
00
01
02
00
01
02
00
10
20

=20

The points in each block of PG(2,q) need some ordering so we can apply a series of
cyclic shifts to them to get a Latin square. First order the points of GF(q). The lines with
slope o € GF(q) are ordered by the first element of the pair, with eoy last.

Example 4.9.1. (Part 2) For example, in PG(2,3) (over GF(3)),if GF(3) is ordered 0, 1,
2, the block with slope 2 through 11 is ordered 02, 11, 20, oo5. The blocks of slope o are
ordered by the second element, with oo, last. For example, the block of slope o through
11 in PG(3) as above is ordered 10, 11, 12, oo, The 'e' line is ordered by subscript. In

PG(3) as above, the ordering of this line is eog, o017, 0og, oo,

10
11
12
11
21
10
12
10
11
01
11
21

°91

20
21
22
22
20
21
21
22
20
02
12
22

o2

Each block becomes g+1 rows in the encoding array.
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Example 4.9.1. (Part 3) For example, the 4 rows arising from the block 02, 11, 20, oo

are
source state
0 1 2 3
row 1 02 11 20 ooy
row 2 11 20 009 02
row 3 20 00p 02 11
row 4 00y 02 11 20
Algorithm 4.9.1

The key source.

Step 1.{Choose a random line of PG(2,q)}

Choose a real number r, O<r<1 from a uniform distribution.
Ifr<

1 i =1 - oo
gl then line := inf, (the line through the ''s).

Ifr= ﬁ ,then & := a random element of GF(q)u{ee},
{the slope},
If o = oo then
B := a random element of GF(q),
v := 0.
If o # oo then
B:=0,
v := a random element of GF(q).
{((B,y) is a point on the line.}
line := (a,B,7).
Step 2.{Pick a random row of the Latin square,
i.e. a cyclic shift. }
n :=arandom integer, ) <n<q.
Step 3.
Transmit (line,n) to transmitter and receiver via a secure channel.

-50-



The number of bits sent by the key source is about 1+3log,(q+1) (since we need 1 bit to
represent the line inf, rlogg(q+l)-| to represent o, rlogz(q+1)-l to represent B or v,
depending on what « is, and rlogz(q+1)_| to represent n), or 2 bits of key for every bit of

message. The number of bits sent is not much more than the l—ioggb] = 3log,(q+1)

required to specify the encoding rule.

The transmitter (sending source state i).
Step 1.
j = {(i+n) mod (g+1)
Step 2.
(message is the jth element of the block chosen by the key source.)
If line = inf is received from the key source then
IMESSAZE 1= *(jth element of GF(q)) -
If slope is ae GF(q) then
message := (jth element of GF(q), corresponding point
on the line).
If slope is oo then message := (B, jth element of GF(q)).
Step 3.
Transmit message to receiver via an open channel.

-60-



The receiver.

If the message is not an element of

GF(q)XGF(q)\u{eo,xe GF(q) {0} ] then reject message.

Case 1.

line = inf is received from the key source.

Unless the message is in {eoy, x€ GF(q)\{<0} }, reject message.

If message is oo and x is the jth element of GF(q) then the source
state is (j-n) mod (g+1).

If message is eo.then the source state is q+1-n

Case 2.

(oo, B, v) is received from the key source.

If message is an element of {eo4, xe GF(q)} reject message.

If message is ee.., then source state is g+1-n.

If message is (1,n),for some y,ne GF(q), then if p=f, reject
message.

Else note j, where 1} is the jth element of GF(q).
Source state is (j-n) mod (q+1)

Case 3.
(¢, B, v, n ) is received from the key source.

If message is an element of {eoy, xe GF(q)U{eo} }, then if xzq
reject message. If x = o, then source state is (- n) mod (q+1).

If the message is (1t,n),for some p,ne GF(q), then if n-y # o(u-P)
then reject message. Else the point lies on the line and source state
is (j-n) mod (q+1) where u is the jth element of GF(q).

Second construction for PG(2,q).

PG(2,q) can be constructed using Singer's theorem. That is, consider GF(q3) with

primitive element B and identify it with [GF(q)]3. Then the points of PG(2,q) are the
1-dimensional subspaces of [GF(q)]3. A line of PG(2,q) is the kernel of a linear

functional from [GF(q)]® to GF(g). We choose one whose kernel is easy to recognize:
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L:(o,y,8) — 6. The kernel of L is the block represented by (1,0,0), ae GF(q) and the
point (0,1,0). We interpret these representative points as powers of 3 and develop the
powers modulo g2+q+1. We note that any two representatives of a 1-dimensional
subspace are scalar multiples of one another. That is, if (a,b,c) and (d,e,f) are
representatives of the same 1-dimensional subspace, then there is a constant Ae GF(q)
such that a = Ad, b = Ae, and ¢ = Af. That is, (a,b,c) = (0,0,A) (d,e,f), and
(0,0,A) = Br@*4+D), for some integer n.
Example 4.9.4. For example, GF(27) = GF(3%) is generated by B, a root of x3+2x+1.
The kernel of the linear functional L:(a,y,0) — & is represented by
(1,00) (1,1,00 (1,2,0) and (0,1,0).
Bz B B B
Now g2 +q+1 = 13, so the projective plane of order 3 is the row
2 10 4 1 developed modulo 13.

We number the source states from ( to q.

Algorithm 4.9.2,

The key source.

Step 1.

Choose n, 0 < n < q2+q.

Step 2.

Choose x, 0 <x <q.

Step 3.

Transmit (n,x) to transmitter and receiver.

The number of bits sent by the key source is [ log,(q2+q+1) | + riogz(qﬂﬂ which is
rloggb_] or| logzb-| + 1, about 1.5 bits of key for every bit of message.
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The transmitter (sending source state i).
Step 1
If (i+x) mod q+1 = q then P := (0,1,0)

else P := (1, ith element of GF(q),0).
message := (logg(P)+n) mod (q2+q+1).
Step 2.
‘Send message to receiver via an open channel.

The receiver.
If the message is not an element of {0, ..., g2+q} then reject
message.
Step 1.
P:= B(message-n) mod (qZ+q+1).
Step 2.
If P is not of the form (p1,p2,0) then reject message.
If py =0 then i := (g-x) mod q+1.
else retrieve j from g—f , the jth element in GF(q).

i:=(j-x) mod q+1.

Code 4.10
4, Nad(qo-
A (2,2)-code with q+1 source states, qd+1 messages and gg—ﬂ)éfi(g—l)— encoding rules

which is two times the optimal number, where ¢ is a Mersenne prime and d is any

integer,

Let GF(q%) have primitive element f.
-1
Then «, the primitive element of GF(q) is B4 .



The encoding array is constructed from the inversive plane of order q, S1(3,q+1,q9+1).
Each block is expanded into g(q+1) rows of the encoding array by using an orthogonal
array OA(qg+1,q+1), created from the affine plane of order q+1, noting that q+1 is a prime
power. To construct the OA(gq+1,q+1), let the points in AG(2,q+1) be
GF(q+1)XGF(g+1).The lines are

y=mx+c¢ form,c e GF(g+1)

x=d ford e GF(g+1).
The lines y = ¢ and x = d are used as a reference grid and hence ignored.
The lines y = mx + ¢, me GF(q+I)\{0}, ce GF(q+1) are used to determine entries in the
OA(g+1,g+1). The entry in the xth column of the row indexed by (m,c) is y = mx + c.
The source states are numbered from O to q and the messages are in GF(qd)u{eo).
The initial block of the S1(3,q+1,q%+1) is GF(q)u{ee}. Each block of S$1(3,q+1,qd9+1) is
the image of this initial block under an element of PGL(2,q9), the general linear group on
qd + 1 elements, consisting of the permutations of GF(qd)u{eo), defined by

- ;—:; e,f,g.he GF(qd), eh-fg = 0.

Each block is generated by (g-1)q(q+1) different permutations, since PGL(2,q) is the
subgroup of PGL(2,q9) that fixes GF(q)\J{~}. In order to choose a block equiprobably, a
permutation in PGL(2,q9) is chosen equiprobably. Note that (e,f,g,h) generates the same
permutation as (ote,of,0.g,0th), e GF(gd\{0}. Note also that if e = 0, then £ # 0. So the
permutations are (1,f,g,h), for h # fg, and (0,1,g,h), for g # 0.
However, this leaves us with the same problem that we had in Code 4.7. However, our
solution here is not as simple, since merely listing the permutations of PGL(2,q9) that act
on GF(g)u{eo} leads us to a code with (q-1) times the optimal nﬁmber of encoding rules
{as compared to twice the optimal number in code 4.7.)
So we are faced with imposing some other order on the elements of a block.
We could calculate the entire block and then sort it - that means O(q) field operations in

the encoding and decoding stages. Alternatively, we could choose one set (e,f,g,h) for
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each block beforehand and store it on some cheap serially-accessed device (for example
magnetic tape). Then, all the key source needs to do is to choose an integer x between 1

(q8-Dgdgd+1)
and (qil)q (q:ll) , and access the the xth record (e,f,g,h) on the tape. The amount of

storage required for each record is (1 + 3dlogyq) bits (since ¢ is O or 1), which gives us

(@d-Dad(qd+1)(1+3dlog,a)  _ . 4.3 _
(@-)a(a+1) = O(q“~dlogaq) bits.

The slow step is left in the key source calculation, rather when our operatives are out in

the total amount of storage required as

the field transmitting information. So we adopt this solution.

Algorithm 4.10.

The key source.
Step 1. {Choose a block of the inversive plane.}

ggd_ l)gd(gd+ 1)
(g-Dglg+1)

Access the xth precalculated entry (e,f,g,h) on the tape.
Step 2. {Choose a row of the orthogonal array.)

Choose a random integer x, 0 < x <

m := a random element of GF(g+IN\0}.

c := a random element of GF(q+1).

Step 3.

Send (e,f,g,h,m,c) to transmitter and receiver via a secure channel.

The number of bits sent by the key source is 1 + 3 dlogaq | + 2 Toga(q+1) ], approximately

(3d+2)logaq, or about 3 bits of key for every bit of message. The number of bits sent is

not much more than the [ logob | = (3d-1)log,q required to specify the encoding rule.
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The transmitter (sending source state i).

Step 1.

groupi := the ith element of GF(q+1).

Step 2.

y := ( m(groupi) + ¢ ) in GF(g+1).

Step 3.

Note k, where y is the kth element of GF(gq+1).
If k # q then

groupk := the kth element of GF(q).

K+f .
A+ (in GF(@).

if groupk # ° b then message ;=
g
if groupk =" b then message 1= oo,
g
If k = q then
if g # 0 then message := g , (in GF(g%)).

if g =0 then message := oo,
Step 4.
Send message to receiver via an open channel.
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The receiver,
Step 1.
If message = oo then groupk ="~ 2 , (in GF(q9)).

If message =-§- then groupk := ee,

If message # oo, and message # £ then groupk := f- h(message)
g g(message) - ¢

Step 2.

If groupk ¢ GF(q)ru{eo} then reject message.

If groupk = eo then k :=q.

If groupk € GF(q) then note k, where groupk is the kth element of
GF(q).

Step 3.

y := the kth element of GF(q+1).

Step 4.

groupi := =¥, (in GF(g+1))

Step 5.
source state is i, where groupi is the ith element of GF(q+1).

Code 4.11
An optimal perfect disclosure code for q+1 source states, q2+q messages and gt

encoding rules, where Pd; = % for 0 <i < (t-1). gisa prime powerand t<gq.

Let GF(q) have primitive element . The messages are elements of {0, ..., q} XGF(q), and
the source states are numbered 0 to q. The perfect disclosure is apparent because the first

coordinate of the message is the source state number. The encoding array has rows

-1 t-1 1-1
O,00)  (Low1) (2 D0 J [ 3, o ] (q > 03p(a-2i J
i pr g

for every t-tuple (0,04, ... ,04-1), ke GF(Q).
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Example 4.11. When q = 3 and t = 2, there are 4 source states, 12 messages, and 9

encoding rules.

2
S

encoding array
10 20 30
11 21 31
12 22 32
10 21 32
11 22 30
12 20 31
10 22 31
11 20 32

02 12 21 30

sS822288%8

[ O L T o= R e R
B o= O = O R e D

Algorithm 4.11.

The key source.
Step 1.
For every integer j, 0 <j <t-1,
¢ := a random element of GF(q).
Step 2.
Send (ap,01, ... ,04-1) to transmitter and receiver by secure

channel.

The number of bits sent is t| loggq-] = logab, or about é— bits of key for every bit of

message.
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The transmitter (encoding source state i).
Step 1.

If i = 0 then message := (0,00).

If i = 1 then message := (1,04-1).

1
Ifig {0,1) then message := [i , > 0B ]
=0

Step 2.
Send message to receiver via open channel.

The receiver.

Step 1.

Put (mj,my) = message.

Step 2.

If m; = 0 and mp # 04, then reject message.

If mj = 1 and my # oy-1, then reject message.
t-1

If mpe {0,1}and mp # Zajﬁ(ml’2)j then reject message.
=0

Step 3.

If the message is acceptable then the source state is mj.

Code 4.12

d, . d,
A perfect disclosure code with q(;ll— source states, having qigcl;l_ll messages and qd

encoding rules, for which Pdg=Pdy = % .

d.
We construct a transversal design TDgd-2 (2,9—1,q).
q q-i

To do this we consider the projective geometry PG(d,q) where the points are equivalence

classes of (d+1)-dimensional vectors over GF(q) excluding the zero vector. The
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equivalence classes are defined by (x1,X2, ... ,Xd+1) ~ (Y1,¥2, ... Yd+1) if there exists a
A € GF(g\{0} such that x; = Ayp, forallne {1, ... d+1}.
We choose a point k = (1,0,0, ... ,0), representing the one-dimensional subspace that it
generates. We choose a hyperplane H not containing k for ease of recognizing elements,
say H = {(x1,x2, ... ,Xd+1) | x1 =0}. The columns of our transversal design are indexed
by the lines in PG(d,q) through k. Since a line intersects any hyperplane in exactly one
point, we can index these lines by the elements of H. The rows of our transversal design
are indexed by the hyperplanes of PG(d,q) which do not contain k, that is, by those

01X] + 02X2 + 03X3 + ... + Og+1Xd+1 =0,
where o) 20, and ¢; € GF(qQ), forallie {1,...,d+1}.
Since any multiple of the coordinate vector produces the same line, we set o1 = 1, and the
rest of the a, are arbitrary.

d
The source state is represented by an integer i, where 1 <1< Qq_}l .

There is an intrinsic lexicographical ordering on H (determined by the ordering on
GF(q)).

That is,

the first qd-1 points are (0,1,x3,X4,X5, ... ,Xd+1),

the next q4-2 points are (0,0,1,x4,X5, ... ,Xd-1),

the next q4-3 points are (0,0,0,1,xs, ... ;)Xd-1)s

up to the last point , (0,0, ... ,0,1).

We shall consider this order imposed, and referto H= {h; , 1 i < % }. Giveni we can
talk about hj, and given hje H, we can talk about i.

The entry in the ith column of the row of the transversal ‘design indexed by the
hyperplane G is the point on the line through k and hj that lies on G. This point is the
message sent to communicate source state i.

The hyperplane G is selected with defining equation

X1 + 09X2 + 03X3 + ... + Og+1Xde1 = 0.
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Let the point of intersection between this plane and the indexing line be Ak + [thj, for
some A,lie GF(q). Then the point is (A,pu(hy)2,1u(hy)3, ... 1ilhi)d+1), where (hy)j is the jth

coordinate of h;. Since it lies on G,

d+1
At Zaj(hi)j} 0.
=2

d+l .
Soif ) ojth))j=0thensetA=0,p=1.
i=2

d+1 -1
ElseputA=1,u=-| Yajthi)j| .
=2
This ensures a leading 1.
Example 4.12. Considerd =2 and q = 3.
Then we have 4 source states, 9 encoding rules and 12 messages.

We consider PG(2,3) over GF(3) and further abbreviate (a,b,c) to abc.
Then k = 100, H = {h1=010, hy=011, h3=012, h4=001}. The array becomes

o] O O3 hp hy hj hy4
1 0 0 010 011 012 001
1 0 1 010 122 112 102
1 0 2 010 111 121 101
1 1 0 120 122 121 001
1 1 1 120 111 012 102
1 1 2 120 011 112 001
1 2 0 110 111 112 001
1 2 1 110 011 121 102
1 2 2 110 122 012 101

Note that the messages in one column do not occur in any other column. Each message
in a column occurs the same number of times in that column, and any pair of messages

from distinct columns occurs precisely once in a row of the array.
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Algorithm 4.12,

The key source.
Step 1. {Choose a random hyperplane.}
op:=1
Forallie (2,.. ,d+1},
o := a random element of GF(q).
Step 2.
Send (00,03, ... ,0d+1) to transmitter and receiver via a secure

channel.

There are d[ Ioggq-l = logyb bits sent by the key source, or about 1 bit of key for every bit

of message.

The transmitter (encoding source state i).
Step 1.

k =(1,0,0, ... ,0).

Step 2. ,
Find h; and let (hj); be the jth coordinate of h;.

Step 3.
d+1

If Zaj(hi)j = () then message = h;,
=2

d+1 1
clse message =k - (Zaj(hi)j] ;.
=2
Step 4.
Send message to receiver.
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The receiver.

If message is not a (d+1)-tuple of elements in GF(q), whose first
non-zero coordinate is a 1, then reject message.

Step 1.

Let mj be the jth coordinate of the message.
d+1

If Za}-mj # 0 then reject message.
=2

Step 2.
If m; =1 then mj := 0 (equivalent to message = message - k),
elt := (1st non-zero coordinate of message)-l-message,
else elt ;= message. (the first entry of messageisal)
Step 3.
Retrieve i from h; = elt, noting that elt is some h;, since its leading

non-zero element is a 1.
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Chapter 5 :

Arithmetic Operations in Finite Fields

5.1 Motivation

The efficiency of the algorithms presented in the last chapter is dependent upon the
performance of the algorithms that are employed to perform finite field arithmetic. So, in
order to discuss the efficiency of the algorithms in Chapter 4, (in terms of time and space
requirements), we need to explore finite field operations in some detail. In most
applications, these would be the finite fields GF(2"), for various values of n, usually less
than about 103, although other finite fields, especially GF(p), where p is a prime, (in
particular a Mersenne or Fermat prime), must also be considered. We explore methods of
facilitating these arithmetic operations. We need to be able to add, multiply, divide (or
take inverses), exponentiate and take (finite) logarithms with respect to some primitive
element, and generate a random element (from an equiprobable distribution of all
elements in the field). For a detailed discussion of the theory of finite fields, see Lidl and
Niederreiter [41] or MCEliece [47], although most of the relevant properties will be

mentioned as needed.
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5.2 The Traditional Approach

The traditional approach to finite field algorithms is worth examining, both for
motivation, and because it is still very useful, especially when the size of the field that
we're working over is relatively small.

A polynomial basis for a field GF(p") over GF(p) is a basis of the form

{1, o, a2, ..., an-1}, where o is an element of the field GE(p"), and the elements 1, o, 02,
..., 0f-1 are linearly independent. The minimal polynomial for o, is the monic polynomial
f(x) of least degree such that f(a) = 0. This f(x) is irreducible over GF(p) (by necessity),
and is called the generating polynomial of the field. A field GF(p™) with a polynomial
basis can be constructed by starting with a generating polynomial f(x) of degree n, and
considering the elements of GF(p") as residue classes of polynomials with coefficients in
GF(p) modulo f(x).
This section examines the usual techniques for field operations when the elements of the
field are represented as coordinate vectors with respect to a polynomial basis. We discuss
GF(2™M), which is constructed as the residue classes of the ring of polynomials over GF(2)
| with respect to some irreducible nth degree polynomial f(x).
That is, GF(2") is the quotient ring GFQ2)[x]J/(f(x)), where GF(2)[x] is the ring of
polynomials over GF(2), and (f(x)) is the ideal generated by f(x).

In section 5.2, unless otherwise stated,
n-1 n-1 n-1 _
o= Zaixl, B= Zbixl and Y= Zcixl
i=0 i=0 i=0

are elements of GF(2™).
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5.2.1 Addition in a Polynomial Basis

To add two elements of GF(2") represented as coordinate vectors with respect to a
polynomial basis, the coordinates of the elements are simply added modulo 2 ("exclusive

or"ed). The following adds o and B to get v.

Algorithm traditional addition.
fori:=0ton-1do
cj :=aj + bj mod 2.

If o and P are elements of GF(p™) then we simply perform the addition modulo p.

The algorithm can be performed as a loop, or, if more than one processor is available, the
additions modulo 2 can be performed in parallel. It is also easy to build special purpose
hardware to perform the additions.

Figure 5.1 is the logic diagram for the sequential adder. It uses 1 exclusive or gate and

adds in time O(n), and the parallel adder uses O(n) gates and adds in time O(1).

a.
| Al Legend
@ Exclusive Or Gate.
Al Register.
b;
—p=1 Bl

Figure 5.1. Serial adder.

Figure 5.2 is an example of a parallel adder over GF(16). It uses O(n) exclusive or gates

and adds in time O(1)
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A3

\ N Nl C3 _$3

B3 B2 B1 BO

%’03 %bz #bl %bo

Figure 5.2. A Parallel Adder over GF(2%).

To deal with addition in a polynomial basis in GF(p"), where p # 2, we note that n
additions in GF(p) need to be performed, and these may be performed in serial or parallel.
To perform an addition modulo a prime p, we note that we are adding two logop bit
integers and subtracting zero or p (a fixed logop bit integer.) This takes at most two logap
bitwise additions (noting that a bitwise addition and a subtraction are the same). So the
addition takes O(nlogyp) operations on one processor, or O(logyp) operation on n

Processors.
5.2.2 Multiplication in a Polynomial Basis

To multiply two elements, we note that a multiplication by x is a cyclic shift, with
xM replaced by f(x) - x?. So we need an adaptation of a shift register with a feedback loop

that replaces higher powers of x. We examine this by looking at an example, multiplying
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two elements of GF(16) in which the generating polynomial is f(x) = x* + x + 1, and the
polynomial basis is {1, 8, 82, 83}, where & is a root of f(x). To multiply af =y, we load

the bits b; into registers Bi, so that BO, B1, B2 and B3 contain the bits of B, and the
registers B4, B5 and B6 are zero Thus the register B is a shift register. The bit a; is
placed into the register A in clock cycle i. The answer c; is in register Ci after n = 4 clock
cycles. Each adder outputs the sum of its two or three inputs, and takes one or two
exclusive or gates to implement (in general O(n) gates). So in this way, we can multiply
in time O(n) using O(n2) gates. The left hand side of this circuit is dependant upon which

f(x) is chosen as the generating polynomial of the field.

Legend.
D And gate.
aq .
A Z Adder.

CO " e,
BO)| -—”; > »Z A| Register.
v Cl | et
BII ""“bal—) @.Z@f\_—.—__ﬂ
Y — Cs—§ N
B2 2> | e [l —
v ——9%_/

C3 @“"—‘Z W\ g\
B3 T
j > -

4
B4 L x=x+1
¥ >/
? >—8=_J
3,42

e ; > x0=x2+x

Figure 5.3. A polynomial basis multiplier over GF(2%).
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Brickell [19] develops an algorithm to handle multiplication in GF(p) for prime p, (that
is, modulo p) in logop + 7 clock pulses. Combining this and the above algorithm gives us
an algorithm for multiplication in GF(p") that takes time O(n logp).

Mastrovito [45] discusses this algorithm for multiplication in the field GF(2"). He claims
that for 55% of the fields GF(2m), 2 < n < 1000, we can chose the generating polynomial
for the field to be a trinomial, so that in these cases, the adders in the above circuit all
need but two Xor gates..

To implement this idea in VLSI see Rirer and Mehlhorn [27], Laws and Rushforth [39],
Norris and Simmons {51], Wang et al [73], or Zak and Hwang [74], but their results are

outside the scope of this document.

5.2.3 Exponentiation - Repeated Squaring

Firstly we note that to calculate the exponential o, it is always possible to multiply o by
itself e times. If 0 < e < 2%-2, this takes O(2") multiplications, and there is an obvious
vast improvement - using repeated squaring. If e is an integer such that 0 <e < 2"-2,

then we can express e in its binary form as

n-1
e= ZaiZi ,a e {0,1).

i=0
n-1 )
Then for any element o of GF2P), a¢ = | o2 .
i=0

This computation requires m-1+n multiplications (m-1 multiplications of dissimilar
terms, and n squarings), where m =I§a; is the Hamming weight of (the number of ones
in) the binary representation of e. 'i‘:l(l)us m = n-1 in the worst cése {where, for example,
e=2"-2), and m =% on average.

Repeated Squaring is also useful in GF(p"), where p is prime. This algorithm takes O(n)

multiplications in GF(p).
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In GF(2™), however, we know that squaring is a linear operation, so that we can express

the square of some element

n-1
Y= Zcixi where ¢ is the vector of coefficients,
i=0

as a matrix expression Sc. S is a binary n by n matrix whose entries depend on the
specific generating polynomial chosen. Mastrovito [45] shows that if the generating

polynomial is a trinomial, then this matrix can be realised in less than r%m—| gates.

5.2.4 Inverses - Euclid's Algorithm

If o € GF2™M\{0} is any non-zero element of the Galois field, then there is a unique

element Y& GF(2™\{0] such that oty = 1. This yis called the inverse of o in GF(2").

If the elements of GF(2") are represented by the coordinate vectors of a polynomial basis,
then we can use the extended Euclidean division algorithm for polynomials to find
inverses in the field. That is, let u(x) be a generating polynomial for GF(2") over GF(2).
Let ¢ be a root of u(x) that generates a polynomial basis for GF(2") over GF(2). Given

v(x) € GF(2™M\{0}, we find inv(x) such that there is an a(x) € GF(2") which satisfies

v(x) inv(x) + u(x) a(x) = 1. Note that u(x) is irreducible of degree n, and v(x) has degree
less than n, so ged(u(x),v(x)) = 1, and hence inv(x) must exist. Euclid's algorithm, or

synthetic division of polynomials, is as follows.
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Algorithm Euclid's Inverse,
Input: v(x) € GE(2")\{0].
Output: v'1(x) e GR2™\{0}.

Step 0. {initialization}

w'(x):=0
u'(x) ;= u(x)
vi(x) =1
v'(x) : =v(x)
Step 1.

While v'(x) # 0 do
qx) 1= div(u"(x),v"(x))
temp'(x) = v'(x)
temp"(x) := v'(x)
vi(x) =u'(x) - v'(x) q(x)
v'(x) :=u"(x) - v'(x) q(x)
u'(x) = temp'(x)
u"(x) :=temp"(x)

Step 2.

vil(x) = u'(x).

Algorithm Euclid's Inverse calls another algorithm, called div which performs
polynomial division. Note that the degree of the polynomial 0 is -0 by convention. We
let the sequence of degrees of the successive v"(x).be

m = ng, N, N2, ... , N, -0, where n; = 0.
Then in iteration i, for 0 <1 <t, a polynomial of degree nj.1 is divided by one of degree n;,

(where, for ease of expression, we call n = n¢1)).

-81-



Algorithm div.
N
Input: u(x) = XujXj , un;.1=1;
=0
n
v(x) = XvjXj, vp=1.
j=0

nj-1-nj

Output: q(x) =  ¥.q;.Xj ,
=0

where u(x) - q(x).v(x) = 0 or deg (u(x) - q(x).v(x)) < n;.

Step 1.
For k :=nj.1-nj downto 0 do
Qk = Unj+k
For j ;= nj+k-1 downto k do

Uj := U - gkVj-k-

The number of arithmetic operations required for algorithm div is essentially proportional
to nj.1(nj-n(i-1y+1) (Knuth [37]).
Knuth [37] derives the average complexity for the algorithm Euclid's Inverse over all

independently and uniformly distributed (monic) polynomials u(x) of degree n and v(x)

of degree m. He calculates that we need a total of 2n2 + 9n + 24 - 3 O(n2) (binary)

2 T

operations, on average, to find an inverse using that algorithm.

This average is not taken over precisely the polynomials that arise in our problem, since
u(x) is any polynomial, as opposed to a chosen irreducible one. It is actually an
interesting question to ask if it is possible to choose an irreducible polynomial u(x), so as
to minimize the average complexity of Euclid's division algorithm, but it is not one that
shall be discussed here. The restriction of u(x) to irreducibles should not make any
significant difference to the asymptotic behavior of the running time.

Euclid's algorithm does not lend itself well to LSI and VLSI implementation, since it is

somewhat irregular. (It doesn't seem to have many repeatable steps at the hardware level.)
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There have been a few reasonably sucessful attempts, for example Zak and Hwang [74],
develop a systolic array for polynomial division that works in time O(n).
Over GF(p), Euclid’s algorithm takes O( nz) field operations, on average to compute an

inverse in GF(p").

5.2.5 Logs - Tables

Given a generator o of GF(2"), and x a non-zero element of GF(2"), we define logyx, the
discrete logarithm of x with respect to o, to be the number y, 0 <y <2%-1, such that
x = o¥ in GF(2"). This is regarded as a 'difficult’ problem, and cryptosystems have been
developed that rely on the fact that it is infeasible to calculate finite logarithms. The
traditional method is that of a table look-up, storing each element as a power of & and as
a vector of coordinates. If this table is stored (and it has the usually unacceptable size of
O(n2™), it can also be used to facilitate multiplication.

Alternatively, we could use the powers of the primitive element o as the primary
representation of the element of the field. This makes multiplication easy. To perform
additions, we store a table of Zech's logarithms. The Zech's log of an integeri, 0 €1 <2
2, is z(i), 0 < z(i) < 2M-2, where 1 + o = 0%0). Then od + o = ai*2(-)). This table also
has the size O(n2"), which is infeasible to store when n is large.

For example, consider GF(23) generated by o where f(x) = x3-+x+1 and f(o) =0. Then
the following table presents each element of GF(23) as a vector of coordinates and a

power of o and gives the Zech's logarithm of that power.
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o | i | o)
000 | » | 0
100 0 | «
010 | 1 3
001 | 2 6
110 | 3 1
011 | 4 5
11| s 4
101 | 6 2

5.3 Fast Fourier Transforms

Before we leave polynomial bases there are a couple of more sophisticated techniques
worth examining. In this section and the next we examine the way these work. First, we
examine the Fourier transform. Finite Fourier Transforms appear to be adaptable to
perform multiplication in Galois fields (see Brassard And Bratley [17, Chapter 9], and
Pollard {55]). A Fourier transform changes polynomials to n-tuples of points lying on the
polynomial, which can then be manipulated more easily before being converted back.
Let us consider first this transformation, as outlined in Brassard and Bratley {17].
For convience, let m be a power of 2. Let a = (ap, aj, ..., am.1) be an m-tuple of elements
in the field GF(q), where m | (g-1). Define pa(x) = am_lxm'I + ...+ a}xl + ap be the
polynomial whose coefficients are the vector a. Suppose ® is some constant element of
GF(q) such that 0)% = -1. This element must exist. The discrete Fourier transform of a
with respect to @ is the m-tuple

Fof@) = (pa(L), pa(®), .., pa(@™ ).
At first glance, it appears the the transformation takes O(m?2) operations to perform, but

by using an algorithm called the Fast Fourier Transform (or just FFT), we can reduce

this to O(m logm) operations.
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The algorithm is not that difficult to understand. Basically, it is a divide-and-conquer
method. We need a little more notation before we begin.
Putt = gl Then define the following two t-tuples:

b = (ag, ag, ..., m-2) (a; where 1 is even)
and ¢ =(ay, a3, ..., A1) {(a; where 1is odd)
Then we get the following equalities:

Pu(x2) + xpc(x2) = pa(x)
and  pp(@?) + 0p(©?) = pa(w).
Put o = ®2; then

: ph(on) + (:)npc(a) = Pa(®),

Now, o2 = ot =02 =-1. So we can talk about Fo(b) and Fy(c), as Fourier transforms.
Also,ot=1land wt=-1,soforanyi,0 i<t

pa(0¥) = py(cr) - wipc(od).
So we now have a method of breaking a Fourier transform down into two Fourier
transfroms that are half the size, and recombining them to get our original.
This leads us to the following algorithm to compute the fast Fourier transform, which

needs O(mlogm) space over GF(q).

-85-



Algorithm FFT (m,a,w)
Input:  m, a power of 2

a= (3.0, als AREE] al’ﬂ*l)

o € GF(qg) such that w2 =-1.
Output: Fﬁ)(a) = (F(ﬁ(a)(}s F(l)(a)la ey Fm(a)m-l)-

Step 1. If m =1 then set Fy(a)y = ap and halt. If m # 1 then proceed.
Step 2. ({initialization}
m

ti= o

5
b = (bg, by, ..., br.1) :=(ag, a2, ..., am2)
¢ = (g, C1, +..y C.1) := (a1, a3, ..., 8m-1)

Step 3.  {recursion)

Fo(b) = FFT (%, b, 0?)
Fy(c) = FFT (5, ¢, 07)

Step4. {recombination]}

=1
fori:=0tot-Ido
(o= ol
Fy(a)i 1= Fo(b)i + 0Fu(C)i.
Fo(@)wi = Fy(b)i - aF(c);.
o = o,

So, now we have the tool needed to convert efficiently polynomials of degree m-1 to
m-tuples of points lying on the polynomial. Let's discuss conversions in the other
direction.

Let vy be an element of GF(q) such that

@ y=l
i) ym=1
m-1
and (i) Y @i=0,foralll<i<m.
=0
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Then vy is called a principal mth root of unity.
Let m be a power of 2. Then the following results hold.

=-1

Theorem 5.3.1. ® is a principle mth root of unity if and only if @

Theorem 5.3.2. If o is a principle mth root of unity then o1 = @m-1,
Theorem 5.3.3. If 1+1+...+1 (m times) # 0 then @9, w!, ..., @M1 are all distinct. These
are all the principal mth roots of unity. &
Define m = 1+1+...4+1 (m times) in our field GF(q).
Theorem 5.3.4. The following statements are equivalent.

(i) m!exists in GF(q).

(i) 1+1+..+1 (mtimes) # 0 in GF(q)

(iii) if q =p", p prime, then p does not divide m, thatis,p=2. B
Let a = (ag, a1, ..., 4m-1) be an m-tuple of elements of the field GF(q), where q is not a
power of 2, and let ® be a primitive mth root of unity. Then the inverse Fourier
transform of a with respect to @ is the m-tuple

Fol(2) = (mr1pa(1), mrlpa(@1), ..., mlpg(er®D)).
Then the following theorem holds, and is possible to prove by substituting in the
derfinitions of the Fourier transforms.
Theorem 5.3.5. F1(Fy(a)) = Fu(Ful(a) =0. B

This leads us to the following algorithm.

Algorithm FFTinv
Input:  m, a powerof 2

a = (ag, a, ..., 4m-1)
o € GF(q) such that @ is a primitive mth root of unity.

Output:  F1y(a) = (F1y(a)o, Flo(@), - Flo@n-1)-

Step1l. F-lya)=m1FFT(m,a, om1).
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If we are working over a field of characteristic 2, then the algorithms FFT and FFTinv
can be modified so that m is a power of some other number, (presumably 3, as it is the
next smallest). This means that the exponentiations are not merely shifts in base two
representation, but this should not affect the asymptotic running time of the algorithm
(see Pollard [55] for a detailed explanation of the changes that need to be made for the
cases where m a power of a small prime, where m is "highly composite", and where m is
"not highly composite”).

This leaves us only with the question of manipulating the Fourier transforms of the
polynomials. If a(x)b(x) = c(x), and m and @ are as above, then Fy(c); = Fy(a); Fu(b),
from the definition of the Fourier transform.

So we have the following algorithm to multiply two elements of GF(p").

Algorithm FFTmultiply
Input: a = (ag, a1, ..., An-1 1
b = (bo, by, ..., bn-1).
w € GF(p") such that w is a primitive mth root of unity.
Output: ¢ =(Cg, Cf, s Cn-1)-
Step 1.  Precomputation.
Find m such that m is a power of 2 and m 2 2n.
Pad a and b with zeros to get m-tuples.
Find w € GF(p") such that w is a primitive mth root of unity.
Step2. A :=FFT(m,a,n).
B = FFT(m,b,w).
Step2. C;:=ABj, forall0<i<m-1.
Step 3. d:=FFTinv(m,C,w).
Step 4.  Reduce d modulo g(x) (the generating polynomial) to get c.

Steps 1 to 3 can be performed in O(n logn) field operations in GF(p).
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However, computing step 4 with the algorithm div discussed in section 5.2.4 takes O(n2)
field operations. So we need a more efficient algorithm for dividing a polynomial of
degree 2n-2 by one of degree n. If the irreducible generating polynomial has only a very
few terms (for instance if it is a trinomial)then the algorithm div in section 5.2.4 would
only take O(nlogn) field operations in GF(p). So, if a suitable generating polynomial
exists, the algorithm can be executed in O( n logn) field operation in GF(p).

Now, to add or subtract two polynomials, the Fourier transforms of those polynomials are
merely added or subtracted. This is not a particularly efficient thing to do for itself, but if
we have an equation involving additions, subtractions and multiplications, then we need
only transform the domain once in each direction.

Reif [56, §2.2] discussed the parallel adaptation of the above algorithm. To multiply d
polynomials together we compute the Fast Fourier Transform for each polynomial in
parallel, and then compute, in parallel, the products obtained in step 2 of the algorithm
FFT multiply. Then the inverse transform is performed. This reduces the time required
for steps 1 to 3 to O(log(dn)) = O(logd + logn) using O(dn) gates. This is somewhat
better than the naive method of multiplying two polynomials together, which takes time
O(logd logn) with the same order of magnitude number of gates.

The other thing we'd like to be able to do in the Fourier transformed domain (and don't
appear to be able to) is to divide polynomials (modulo the generating polynomial g(x)), or
to find inverses by dividing our polynomial into the polynomial f(x) = 1. This does not
seem to be something that can be done efficiently. This algorithm is purely for addition

and multiplication.
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5.4 A Parallel Algorithm for Exponentiation.

We can use the idea of a Fourier transform to develop an efficient parallel algorithm for
exponentiating field elements represented as the sum of elements of a polynomial basis.
Von zur Gathen [69] adapts Eberly's algorithm "Iterated Product of Polynomials" [25] to
exponentiate in GF(2") in time O(logn) and using space polynomial in n.

We wish to raise

n-1 )
a(x) = Zuixi
i=0
to the power e, where 0 < e <201,
n-1
Let e = Zej2§, ¢je {0,1}.
j=0
n-1 ‘
Then [a(x)] © = I_Ia(x)aj21 (the same as our algorithm for repeated squaring)
=0
n-1 /m-1 CJ2J
=I1| X
=0 1i=0

Now, noting that squaring is linear in GF(2®), and (u;)? = uj,we get

n-1 rn-1 e
lac1e =1 (meiz’]

j=0 }:0
so that [a(x)] © is the product of the polynomials

n-1
> upxi? forall0<j<n-1,¢j#0.
o

So our algorithm has three steps, as follows:

-90-



Algorithm Parallel Exponentiate
n-1
Input:  a(x) = Zuixi
i=0
n-1 ‘
e= chZi, eie {0,1}
=0
f(x), the generating polynomial of the field.
Output: fa(x)] © mod f(x)
n-1
Step 1. Calculate pj(x) = Y.ujxi? for every j in parallel, 0 <j < n-1, ej=1.
i=0
Step 2. Find [a(x)] ® by multiplying together pj(x) calculated in Step 1.
Step 3. Reduce [a(x)] ® mod f(x).

Now, Step 1 can be performed efficiently provided that x12 has already been calculated
for each 0<i<n-1 and each 0 £j<n-1. Then, for each j we need to add (up to) n
polynomials each of degree (up to) n-1. If we perform this addition for each coefficient
in parallel, it takes time O(logn) if we have O(n2) gates.

Step 3 can be performed efficiently provided that xK has already been calculated for
n <k <n2-n. We note that [a(x)] © has degree at most n2-n, and that the powers of x less
than n are elements of our basis. This step, then involves adding (up to) n2-n polynomials
of degree at most n-1. We do this for each coefficient in parallel and take time
O(log(n?)) = O(logn) with O(n3) gates.

Step 2 is calculated using a variant of the Fast Fourier Transform. We need to be able to
choose n2+1 distinct elements of the underlying field. Unfortunately, our underlying
field is GF(2), so we need to work in an extension field of GF(2), say GF(2"), where
2T > n2+1. So we choose r to be about 2logyn. Step 2, then, is implemented as follows.

Assume that n2+1 constants g, ¥1, ..., ¥n-1 are chosen from GF(27).

-01-



Algorithm Step 2.

Step 2a. For all 0 <k <n? and all pj(x) in parallel, calculate pj(Yk)
Step 2b. For all 0 <k <n? in parallel, calculate g(yx) = Hpj('yk)

J
Step 2c. Interpolate the n2+1 points to get the coefficients of g(x).

To calculate pj(i) in Step 2a, we need to add (up to) n field elements. To do this in time
O(logn), we merely add the coefficients in parallel, as in Step 1. We do this for (up to)
n3 things in parellel, so we need O(n#) gates.

In Step 2b, we need to multiply (up to) n field elements in GF(2). This can be done in
time O(logn) only if multiplication in GF(2") can be done in constant time. This is
achieved by storing a multiplication table of elements of GF(2F). Note that this table will
have about n? entries, and hence need storage O(nZlogn).

In Step 3b, we need to do an interpolation. This is achieved by precomputing the entries
of the inverse of the Vandermonde matrix V(Yg, Y1, ..., Yn2) of order n2+1 defined by

VY0, Y15 o Yo2)ij = (}‘,_1 )j"l, for1<i,j< n2+1. Then the coefficients 20, &1, ---» En2 of g(x)

are computed in parallel by the matrix multiplication

£0 g(v0)

&1
g(y1)
= V(Y0 Y1, - ¥n2)"! :

gn? g(Mn2)
So the algorithm takes time O(logn) if we precompute
(i) a multiplication table in GF(2")
(i) x1? mod f(x) foreach 0 <i<n-1andeach0<j<n-1,
(iii) xKmod f(x) for each n <k < n2-n,
and (iv) the entries of the inverse of the Vandermonde matrix V(yg, Y1, ..., Yn2) of order

n2+1 defined by V(yo, 11, ..., Yn2)ij = (’yi_l)j'l, for 1 <i,j <n2+1.
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The amount of storage required in O(n*logn) and we need O(n%) gates.

5.5 Dual Bases

Before dual bases can be examined, we need to define the concept of a trace. If
ve GF(@2M), then the trace of y is defined as r(y) =y + 72 +...+ 'an-l' Trace is a linear
operator on GF(2"), considered as a vector space over GF(2). That is, tr(y) € GF(2), for
all ye GF(2M), and tr(y+8 ) = r(y) + (d), for all v,d € GF(2"). Also, tr(y) = tr(}'zi), for
1<i<n-l.

Let {o} and {Bj} be bases for GF(2M/GF(2). Then {o;} and {B;} are dual bases if
tr(aiBj) = 8ij, where 8j; is the Kroneker delta (that is, §jj=1if i =}, and 8;j= 0,
otherwise). Dual bases are a useful way to represent elements of GF(2"), if multiplication
is to be performed efficiently (by a process due to Berlekamp {8]), and are discussed in
McEliece [46]. If {a;} is a basis, a dual basis exists and is unique, (see Lidl and
Niederreiter [41].)

MC¢Eliece presents Berlekamp's bit serial multiplication algorithm as follows.

Suppose that ye GF(2W). Then vy = (trace(yBo), trace(yB1), ... ,trace(yB,-1)) with respect
to the basis {ati}, and conversely, ¥ = (trace(yog), trace(yoy), ... ,trace(Yoy.1)) with respect
to the basis {B;}.

We call (¢} the primal basis, and {B;} the dual basis. Let o4 = ol for each i, and for
some primitive element . That is, let {0} be a polynomial basis. Then multiplying any

element x by o is easy in the dual coordinate system, as follows.

Let x = xp.1Bn-1 + ... + x1B1 + x0B0.

n-1
Now ox = ZTr(xai+1)Bi.
i=0

Then xj = Tr(xod).

So oxj = Tr(oxod) = Tr(xoitl) = x;41, for 0<i < n-2.
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n-1
Also, if f(z) = Zfizi is the minimal polynomial for ¢, then
i=0

Oxp-1 = Tr{xan)

n-1
=T xz f ol
i=0

n-1

So multiplication by o is simply a cyclic shift, with xp.1 = Tr(xc). Figure 5.4 represents
a circuit that multiplies x by the constant ¢, where x is represented in the primal basis,
and in which representation the ith bit is loaded into the register Xi. The gates in the top
of the figure calculate Tr(xa"), and the ith bit of x is contained in the register Xi after
one clock cycle. If we tap the register Xi, the bits of xo appear serially. That is, after the

kth clock cycle, Xi contains the kth component of xoi in dual coordinates.

Gates to calculate Tr(xa)

Ll X1-1 e oo X2 X1 X0

Figure 5.4. A “multiply by o circuit in GE(2").

Example 5.5.1. Suppose GF(8) has f(z) = z3+z+1 as a generating polynomial, and a

basis {1, o, 02}, where ¢ is a primitive element of the field and f(ct) = 0.
The dual basis of {1, a, a2} is {1, a2, or].

Now oxg = Tr(xe3) = Tr(xo + x) = Tr(xa) + Tr(x) = x1 + x.
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That is, if x = xg + X102 + x20 then ox = X + x202 + (x| + X))o, so the "gates to
calculate Tr(xa™) " in figure 5.4 become the gate at the top of figure 5.5.

Figure 5.5 represents a circuit to perform bit-serial multiplication in GF(8) as outlined in
Example 5.5.1. Now x (in dual coordinates) is loaded into registers 0, 1, and 2, and after

one clock pulse, ax is contained in those registers.

i
2 1 0

Figure 5.5. A "multiply by o" circuit in GF(8)

We can extend our multipliers to handle any specific constant. We consider the contents
of register i at time t. We note that after t shifts, the shift register contains xat. So, after
0 shifts, register i will contain Tr(xad). After 1 shift, register i will contain Tr(xod+1), and

after t shifts, register i contains Tr(xoi*t). Now any element of GF(2") can be written as a
sum of elements of the primal basis. If we load the registers with 1, initially, sum the
registers corresponding to terms in that sum, then we will get the coefficients of the
product (in the dual basis) serially.

For example, in GF(8) as above, suppose that we want to multiply by o4, We note that
o4 = o2+ 0. So we adapt the circuit in figure 5.5 to become figure 5.6. We load x into
registers 0, 1 and 2 at clock = 0, and after i shift cycles, the output is the ith component of
o4x, in the dual coordinate system. That is, if x = x0+ x302 + xp¢, then after 0 shifts,

x1+x2 is output, after 1 shift , xp+x1+x2, and after 2 shifts xg+x is output.
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Figure 5.6. A "multiply by o#" circuit in GF(8)

This provides us with the motivation behind the multiplier. Instead of having a constant
"hardwired" into the circuit, the multiplicand is loaded into a register, and the elements of
the shift register corresponding to the terms used to express the multiplicand as a sum of
elements of the primal basis are added to produce the serial output. That is, the ith
coordinate of the product is Z Ti{0dx) , where y is Zoﬂ. So, to multiply the element y
expressed in the primal basis by the element x expressed in the dual basis, a circuit is
constructed to the specifications of Figure 5.7. The coordinates of y are placed in the
(static) Register A, the coordinates of x in the Shift Register B, in their respective bases.
Again, the gates at the top of the diagram calculate Tr(xa™), and the adder calculates the
(mod 2) sum of its n inputs. The ith bit of the product xy, in the dual coordinate system,

is the result of the adder after the ith clock cycle.
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Gates to calculate Tr(xo™)

é A A é clock =1

- Shift Register B

Register A

Figure 5.7. A dual basis multiplier over GF(2™).

Lets look back at the field in Example 5.5.1. We wish to multiply x = xg + x102 + x20.
(in dual coordinates) by y = yg + y10. + y20.2 (in primal coordinates). We multiply x by
the values yo, y1¢, and y202 and add these to get the answer, the bits of which are output

serially in dual coordinates. See Figure 5.8.
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Legend.

:> And gate.
> Adder.

Register.

Xor gate.

2
x-register
(dual coordinates)
= product
(dual coordinates)
y-Tegister
(primal coordinates) T 0

Figure 5.8. A dual basis multiplier over GF(8).

This multiplier contains O(n) gates and performs a multiplication in time O(nlogn) - there
are n bits output, and the adder can have depth logn. However, the earlier bits ¢ ocan
be used before the multiplication is completely finished. That is, if the next operation
that the product is used for is something in which the bits are input serially, that process
can begin after only 1 shift cycle. However, if the next operation is the same type of
multiplication, (say we were exponentiating by repeated squaring) then we need all the
bits before we can begin and we have essentially no time saving.

The only problem that has not yet been addressed is the issue of converting from one
basis to another. This can be partially solved by precalculating the dual basis
representation of the constant 1, and loading this into Register A, in Figure 5.7. Then to
calculate the dual basis representation of any element B represented in the primal basis,
merely multiply B by the dual basis 1. This takes time O(nlogn), and can be performed

on the existing hardware. To convert the dual basis element B back into the primal basis,
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however, is not as simple, since the dual basis is not necessarily a polynomial one. If
v e GF(2"), then y = (trace(yBp), trace(yB1), ... ,trace(yBy-1)) with respect to the basis
{aj}. So in order to express B in terms of {aj}, we need circuitry to calculate n traces.
This takes O(n?) gates, in general, and time O(logn). A better approach may be to do a
straight matrix conversion from one basis to the other. If this matrix can be contrived to
be sparse, the necessary number of gates may be reduced.

So what we do is look for polynomial bases whose duals are merely permutations, or
whose duals are simple linear combination of the primal basis elements. In Example
5.5.1, the dual basis contained exactly the same elements as the primal basis, and hence it

is an easy job to rewire the circuit so the only one basis is represented. See figure 5.9.

Legend.

) And gate.
Z Adder.

Register.

Xor gate.

x-Tegister - =1
(dual coordinates) N -

N Z —=- product

E (dual coordinates)
y-register

(dual coordinates) b} 1 0

Figure 5.9. A dual basis multiplier over GF(8) with conversion.

Morii and Kasahara [48] discuss the question of converting from a dual of a polynomial

basis back to that basis. They modify the bit-serial multiplier above, and call it the
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generalized bit-serial multiplier (GBSM). The GBSM uses a pair of bases, a polynomial
basis and a basis that can be chosen arbitrarily in a class of 2"-1 elements. By choosing
such a basis wisely, there may be a simple transform between the bases. Indeed, when
the primitive polynomial is a trinomial (that is, has only three terms) the transform turns
out to be a simple cyclic permutation.

They proceed as follows. For a fixed nonzero element € GF(2"), and arbitrary element
x € GF(2M), define the quantities x; = Tr(Boix) fori =0, 1, ..., 2n-2 and denote X = (Xj);.
Now, x = Tx, where T = (gj), &jj = Tr(Bai+)), for,j=0, 1, .., m-1.

The basis A = {ag, o1, ®2, ..., Cn.1} is said to be a permutation dual to the basis
B = {Bo, B1, B2, s Bp-1} if the matrix (Tr(aiﬁj)) is a permutation matrix.

Then the quantities xj play the role of the dual coordinates in the previous scheme. This
B can be chosen to be optimal easily in the case that the generating polynomial for the
primal basis A is a trinomial. Indeed, P is chosen so that T is a back circulant
permutation matrix (that is, one "1" per column in a matrix in which every entry in each
back diagonal is identical) and that T-! = T. Then, the coefficients of the primal basis
may be obtained from the dual basis by a cyclic shift.

Lemma 5.5.1. (Wang and Blake [72, Lemma 1]) There exists an element B e GF(2™")
such that B = {B, Ba, Ba2, ..., Ba-1} is permutation dual to A = {1, o, &2, ..., a1} if
and only if the minimal polynomial of o is a trinomial.

Proof. We outline the sufficiency proof only. Firstly note that if B € GF(2") is non-zero,
and if A is a basis, then B is also one. Suppose that the minimal polynomial of « is the
trinomial xM + xK + 1, for some 1 <k €£n-1. Since A is a basis, we can choose a unique 8
such that Tr(Bak-1) =1, and Tr(Bal) =0, for alli#k-1. Thén T is a back circulant
permutation matrix, as required. H

It should be noted here that not every finite field GF(2") can be generated by an element
whose minimal polynomial which is a trinomial. Wang and Blake [72] go on to develop

another form of the matrix T that is not as elegant as the trinomial case but always works
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and results in a fairly efficient multiplication scheme. T is contrived to be a lower
triangular matrix whose entries along the back diagonals are equal. They develop an
explicit form for the inverse of T and use this to perform the basis conversions.

Also, many of these results may be extended to the general case of GF(q") over GF(q).

5.6 Normal Bases

A normal basis is one of the form {B, B2, B, B8, ..., [32]1']], (as opposed to the more

commonly discussed polynomial basis) for some B in GF(2"). [ is referred to as the
generator of the normal basis. A normal basis in the field GF(2") can be shown to exist
for all n. In fact, a primitive normal basis (one in which all elements are primitive) exists

for every finite field, (see Lenstra and Schoof [40]).

5.6.1 Multiplying in a Normal Basis - the Basic Approach

n-1 n-1
Suppose a = Za,B2' b= Zblﬁz and ¢ = chﬁ2 are elements of GF(2).
i=0 i=0 i=0

So (ag,ay, ...,ap-1) and (bg,b1, ...,bp-1) are the coordinate vectors for a and b in GF(2"h)
* with respect to a normal basis, N = {B,B2,p%,85, ... ,[32”1 }. Letc=ab.

Define Ajj by

n-1n-1

i=0j=0
Now, Ajj is the coefficient of P in the normal basis representation of B21+2J, so the

k
K, oj+k i9\2 . . - :

coefficient of [32 BZH +2* (leﬂj) is also Aj;. (Since raising something to the 2k
is merely shifting it cyclically k places). Hence we calculate that

n-1n-1
Ck = Z Z?»ijai+kbj+k,
i=0 j=0
for each 0 £ k < n, where the subscripts are taken modulo n.

LetA = (lij) , the matrix of multiplication coefficients.
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bk
bk+1

So Ck = (Ak,Ak+1s k1) A |, foreachk.

b1;-1
To calculate any coordinate of ¢ then, we cyclically shift the vectors representing a and b
and use the matrix A to calculate the bilinear form for cg.
So we can implement a multiplier with two cyclic shift registers'for aand b, and a
gate-array realizing the matrix A and an adder for the summation process. See

Figure 5.10.

clock =1 I . Cyclic Shift register B

o] ISR -
<
| S
2
“
&
I Ci
g A Yy
=
[ 7]
L
3
U.———& I
BN B

Figure 5.10 A normal basis multiplier.

Example 5.6.1. Consider the field GF(8). Let o be an element of GF(8) such that
a3 = o2+1. Then {o, o2, o4} is a normal basis for GF(8). The matrix A, as defined

above is as follows
010
A=]101
011
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Note that the (i,j)th element of A is the jth coordinate of 021 This multiplier is
demonstrated in figure 5.11.

Example 5.6.2. Consider GF(25) generated by f(x) = x3+x2+1. Consider a primitive
element o such that f(o) =0. Put B = a3. Then {B, B2, B4, B8, B16} is a normal basis for

GF(25). The corresponding A is
01000

01110

A=[ 11101
10111

11100

and could be hardwired into a similar circuit.

Legend.

Xor gate.
Z Adder.

AD | Register.

Figure 5.11.
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This is sometimes called a Massey-Omura multiplier (see Massey [44]).

A contains O(n?) gates on average. In §5.6.2, we discuss a way to reduce this to O(n)
gates in some cases using Optimal Normal Bases. There must be logon levels of Xor
gates in the summation of the n terms, so the multiplication takes time O(nlogn).

If we have n processors (i.e., n copies of the gates realizing M and the adder), then we can
replace the shift registers A and B by static registers. Connect the jth bit of the register to
the (j-i)th corresponding input of the processor calculating cj. (taking the (j-1) mod n). In
this way all the bits of the product are produced in parallel. So, if n processors are used,
the algorithm takes time O(logn). The n processors (sets of gates) are identical, so n
identical chips could be used (this is good - it cuts down on development cost).

Beth [9] discusses the case where a normal basis is also a polynomial basis, and
introduces an algorithm to expedite multiplication in this case. However, this basis is
also an optimal normal basis, an idea that is explored in §5.6.2, so that the techniques
developed there may be used, These are actually more efficient than the polynomial

normal basis techniques.
5.6.2 Optimal Normal Bases

To expedite multiplication in GF(2"), when the elements are represented as coordinate
vectors of a normal basis, Mullin, Onyszchuk, Vanstone and Wilson [49] introduce the
concept of an optimal normal basis.

Consider the matrix A, defined in §5.6.1, above. Let CN = I{(i,j) | ?tij =1) | be the
number of ones in the matrix A, for the normal basis N. The number of operations
needed to multiply in GF(2), or alternatively, the number of gates required in a hardware
implementation increases as Cn gets bigger, therefore, it would be nice to have a small
value for Cy. Clearly Cn € n2 for all normal bases N.

Theorem 5.6.1. Cn 2 2n-1.

Proof. Letd = (dg,dy, ....dn-1) = B.B%.

-104-



Then dy = (0,....0,1,0,....0) A

P e e B

0

for each k, where the 1 in the first vector is in the (n-k)th position, and the one in the
second vector is in the (c-k)th position. That is, dx = A(k)ck). LetD = (M—k)(c-k) ) the
matrix which has as rows the coordinates of B.Bzc for each 1=0,..n-1. Then D has
precisely the number of 1 entries as A.
Next we note that trace(B) = B + B2 + ... + B2 is a linear operator, and hence is equal to
0 or 1. Now {B, B?, ..., {32"'1} is a basis, so that the sum B + P2 + ... + an'l #0, so
trace(f3) = 1.
So the sum of the rows of D is 3 (B + B2+ BZM ) =B trace(P) = B. So there are an
even number of ones in every column of D except the one corresponding to the
coefficients of . D does not have a column containing only zeros since
{B.B2B4,B8, ... B2} is a basis. So D has at least 2n-1 onesin it . So Cy=2n-1. H
If Cn = 2n-1 for some basis N, then N is referred to as an optimal normal basis. In an
optimal normal basis, the complexity of a multiplication is O{n).
Optimal normal bases do not always exist. GF(2™) has an optimal normal basis if one of
the following holds:

(a) n+1 is a prime and 2 is primitive in GF(n+1).

(b) 2n+1 is a prime and 2 is primitive in GF(2n+1).
or (c)2n+1=3mod 4 is a prime and 2 generates the quadratic residues mod 2n+1.
In case (a), the basis consists of the non-unit (n+1)st roots of unity in GF(2"). In cases (b)
and (c), the basis is generated by B =y + ¥2, where ¥ is a primitive (2n+1)st root of unity
in GE(22m)
Mullin, Onyszchuk, Vanstone, and Wilson [49] describe the above constructions in

greater detail and conjecture that the above three conditions are the only ones under

-105-



which an optimal normal basis in GF(2™) exists. They also include a list of numbers n <
1200 for which an optimal normal basis is known to exist, that is, which satisfy one of
these conditions, and have done a computer search through all normal bases of each
GF(2") for n <30, and found no other optimal normal bases besides types (a), (b}, and
(c). Optimal normal bases have more than mere academic and asymptotic efficiency.
Actual chips have been built to exploit their properties.

Optimal normal bases also exist for certain GF(p"). In particular, if n+1 is a prime and p
is primitive in GF(n+1), then GF(p") has an optimal normal basis consisting of the non-

unit {n+1)st roots of unity in GF{n+1).
5.6.3 Duals of Normal Bases

Geiselmann and Gollmann [28] derive several serial input / parallel output architectures
for multiplication of elements in a normal basis and the dual of the normal basis that are
analogous to standard polynomial basis multipliers. These multipliers decompose the
multiplication uv so that the factor v may be entered serially (starting with either the most
or the least significant bit), and in which any bit of the product uv is available only at the
end of the computation. Jungnickel, Menzies, and Vanstone [36] prove that a self-dual
normal basis for GF(2™) over GF(2) exists when n =0 mod 4, so the conversion between
one basis and the other in that case is not a problem, as it was in §5.5. However, the
combination of dual basis and normal basis techniques does not yield the same efficient
designs as in the case of the dual of a polynomial basis (the complexity of the multiplier

is about O(n?)).

5.6.4 Exponentiating in a Normal Basis

If elements of a finite field are represented as coordinate vectors with respect to a normal

basis, then squaring an element is simply a cyclic shift of that coordinate vector. So it
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takes one clock cycle and will hence be ignored in time calculations. So to perform an
exponentiation in GF(2") utilizing the properties of a normal basis, it seems logical to use

repeated squaring. That is, if

n-1
e= ZaiZi ,a € {0,1},
i=0

n-1
then of = Haaiz‘ in GE(2M).
i=0
. + . k) - 3 n-l 13 . .
This computation requires m-1 multiplications, where m = }a; is the Hamming weight
i=0
of (the number of ones in) the binary representation of €. Thus m = n-1 in the worst case,

(where, for example, e =2" - 2), and m =g— on average.

Agnew, Mullin and Vanstone [2] improve the above method somewhat by selecting a

positive integer k and writing e as the sum of powers of 2K, Thatis, ford = rg—l

d-1
e= ZbiZki , where bj is a binary k-tuple.
i=0

The equal values of bj are collected together, so

e= Zml(m) , where @ runs over all non-zero binary k-tuples
o

- d-1 . .
and A{w) = ZCi,uﬂk‘ , for some Cj € {0,1}.
i=0

Then o = aZcol(u)) = H(aw)l(fﬂ) )
o

So the algorithm can be summarized as follows.

Algorithm Exponentiate.

Stage 1.

compute ¢t®, I <@ < 2K 1,

Stage II. multiply (a"’)M“)) together.
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Stage I is further refined by Stinson [62] as follows.

Algorithm Stage 1.
Stepl. al=q
Step 2. form:= 2to2XK-1do

1))
If o is even then o® := (052)2 {a cyclic shift !}
If @ is odd then o® = a1 @,

So then, to calculate o® for 1 < o < 2K-1, by the algorithm Stage I takes at most 2k-1g
field multiplications. This gives the worst case complexity of the algorithm
Exponentiate as M(k) = 2k-1 + rg—| - 2 multiplications.
Example 5.6.3. Suppose e = 149919 = 10111011011, and k =2 then
e =(1)2104(1) 28 + (142) 26+ (1) 2% + (2) 22 +(1+2) 20
=(1) (210 + 28 + 2% +(2) 22) + (1+42) (26 + 20).

Sofor =1, M) =219 +28 + 24,

®=2,Mo)=22.

®=3,Aw)=26+20,
Hence 0 = ()22 (02 (02) 2 (c3)?(03)2
So to calculate 011499 takes 5 (field) multiplications.
To make this algorithm highly parallel, the following definition is needed.
Suppose that we have at least I_'pz—_] processors and we wish to multiply m objects
together. If they are multiplied together in pairs, after one round there arel— ‘-;—-[ objects
remaining. If this process is iterated, the m objects can be multiplied in I—loggm‘] rounds.
This process is called binary fan-in multiplication. If we only have p < L%J processors
available to multiply the m objects, then the obvious adaptation of binary fan-in

multiplication takes l— m—'sﬂ_! - logzpo + 1 rounds, where pg = l_loggpl
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If we have L%_J processors, where s = I_ .;{], then we can perform Stage I in I-lOggS‘]

rounds.

Stage I is a little more complicated. If we have (k-1)2%2 processors, then the algorithm
would take k rounds if each o® is calculated simultaneously using binary fan-in

multiplication. However, we can improve this.

Algorithm Parallel Stage 1.
Step 1. Compute ot® for 1 € @ < 2)-1. .
Step 2. For each 0®, 1 < o <2%-1, find (o)?
{cyclic shifts)
Step 3. Multiply all terms found in Step 1

by all terms found in Step 2.

This algorithm takes time I— logzk_| on P(k) = (2,j - 1)(2“‘j - 1) processors.

If kis even,

k
then P(k) = (22 - 1)2,

and if k is odd,

ktl kil
thenP(k)z(Zz -1j2°2 -1)

So if we have available max {[_%_],P(k)} processors, then the algorithm Exponentiate can
be performed in Stk) = rloggk—I + rloggs] rounds of multiplications. We note that

Llogan] < S(k) <[ logon |. So instead of being interested in k such that S(k) is minimal,

we are instead concerned with finding k such that the number of processors required is
minimal.

If k is logon - logalogon, then
- n
Mik) is O(logzn - logylogyn )’

and the number of processors required for the algorithm Parallel Stage 11 is also
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n
O(logzn - log,logyn ) ’
Much improvement may be made if we have 2¥ processors, for some 2% < L%_J Then the
algorithm takes T(k) = logok | +| % | + -1 rounds.
Some values for M(k), S(k), the minimum number of processors for S(k), and T(k) are

tabulated in Appendix 2 for various values of n.

5.6.5 A Normal Basis Inverse

Any non-zero element ¢ of GF(2") has an inverse

This can be computed in n - 2 multiplications in a normal basis using repeated squaring.
Agnew, Mullin, and Vanstone [2] propose the following method to reduce this.
Suppose that n-1 = gh, for some integers g and h. Then

onl_o1=08h_1=(28- I)CEZg‘Jandal—az 2=(02)
i

i=0

(28- 1)(Zzg‘)

Now v = o2 is calculated "free". Then @ = Y(zg -1 takes g-1 multiplications to calculate.
h-1
2%
Also ol =w =0 takes h-1 multiplications to calculate.
So computing ¢! takes g+ h - 2 multiplications. This process may be iterated if g is -
a
composite. So if n-1 = [[p; is the prime factorization of n-1 then we require (Zp,) -a
i=1 i=1

steps.

Example 5.6.4. For example, in GE(2361),

4
23601 =(272- 1)) 272 since 360 = 72'5.
i=0

2
272.1=0%.1)) 2% since 72 =24-3.
i=0
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2
2241 =(28- 1)) 28, since 24 = 8.3,
i=0

281 =022- 122+ D4 + 1), since 8=2:22.
So raising any element to the power 2361 - 2 takes
0 multiplications to square,

3 multiplications to raise the result to 2.1,

2
2 multiplications to raise the result to 2281 ,
i=0
2 -
2 multiplications to raise the result to 2224‘ ,
i=0
4

and 4 multiplications to raise the resuit to Z272i ,
i=0

for a total of 11 multiplication steps.
Compared this to the 360 multiplications required to calculate an inverse using repeated

squaring.

Algorithm (n-1) Small Primes Inverse.

Input: g € GF2™\{0}.

Output: g'l € GF2"\{0}.
a

Given: n-1 = []pj is the prime factorization of n-1.
i=1

Step 0. {initialization.}

gl := Raise(a,g).

(n-1) Small Primes Inverse calls the recursive algorithm Raise.
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Algorithm Raise.

Input: a, a non-negative integer,
o e GFQ2"™\{0).

Output: B e GFQ2™"\O0]}.

Step 1. {terminating case)

If a=0then B =o. End.

Step 2. {recursive call}
a

-1
k:= [Ipi
=1
a-i .
¥
1=0
Yi=0

B := Raise(a-1,y)

The algorithm can be modified when n-1 does not factor into only small primes. We find
an x such that m-x factors into small primes. Then om-1_ 1 = px-leom-x _ 1y 4 ox1_1
a b
Let m-x = []pj and x-1 = []g;.
i=1 i=1
a b
So we compute ol in ¥p; + Ygj - a- b+ 1 multiplication steps.
i=1 i=1
Example 5.6.5. For example, in GF(21279),
21279_ 1= 26(224.53_ D+ 26 -1
Noting that 24 1= (212 + 1)(26 + 1)(23 + 1)(23 - 1) requires 5 multiplications to

evaluate,

52
2224‘ contributes 52 multiplications,
i=0

. 1=23+1D23- 1D requires 3 multiplications,
and we need one multiply to put it all together, o-! is computed in 61 multiplications.
Thisisequalto 2+2+2+3+53)-5+ (2 +3)-2+ 1, as expected.

Note that this algorithm seems inherently sequential.
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Algorithm (n-x) Small Primes Inverse
Input: g € GFQ2™\0}.
Output: gt € GF(2"™\(0}.

Given: an integer x 2 1.
a
n-x = []pj is the prime factorization of n-x.
i=1
b I3 L] . .
x-1 = [Iq; is the prime factorization of x-1.
i=1

Step 0. {initialization.}
o'l = (Raise(a,g)2" Raisex(b,g)

This algorithm requires Raise again, and a Raisex very much like Raise, but with b

replacing a and qj replacing p.
5.6.6 Divide and Conquer - Another Normal Basis Inversion

Consider the scheme proposed by Itoh, Teechai and Tsujii, (originally in Japanese, so as

quoted in [2]).

m-1 m-1
o (22 -1)22 +1), whenmis odd,
Note that 27 -1 =

5 m-2 m-2
2™ 4+ (22 -1)(22 +1), when mis even.
-1
For m odd then, we require one multiply to compute o2
m-1

given that we have computed o 21

. v e m-1
For m even, we require two multiplications to compute o -l

m-2

given that we have computed a2? -1,
Using this procedure recursively, it is a simple inductive proof to show that the number of
multiplications required to find an inverse in GF(2") (that is, to raise an element to 2"-2 )

is loga(n-1) + d - 2, where d is the Hamming weight of the binary representation of n-1.
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Example 5.6.6. For example,

2360 . 1 = (2180 1)(2180 4 1)

2180 1 = (290 1H(2%0 + 1)

290 1 =02%- 1P+ 1)

245 1=2M 422 124+ 1)

222 1=l pells

2111 =20, 2525+ 1)

25-1=24402-122+ 1)

22.1=02+1)
So raising anything to the 236! - 2 | and hence finding an inverse in GF(2301) takes 11
operations using this algorithm (since there are 11 addition signs in the final expression
for 2361 .2,

We summarize the algorithm as ITT inverse, as follows.

Algorithm ITT Inverse.
Input: g € GF(2M\{0}.
Output: g1 € GF(2"\{0}.
Step 0. {initialization}

g'I =1ITT Raise (g,n-1).

ITT Inverse needs a recursive algorithm ITT Raise to make it work.
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Algorithm ITT Raise.
Input: 1, a positive integer,
o e GF2M\N0).
Output: 3 e GFQ™)\(0}.
Step 1. {terminating case}
Ifi=1then P := 0. End.
Step 2. {recursive call)
If i is even then B := a2 “ITT Raise(},02"*))
i-1

Ifi s odd then B := ITT Raise(Sh02” +1)

5.7 New Algorithms to Find Discrete Logarithms

Given a generator o of GF(2™), and x a non-zero element of GF(2"), we define logyx, the
discrete logarithm of x with respect to @, to be the number y, 0 <y < 2"-1, such that
x = oY in GF(2"). Many heuristic and probabilistic algorithms have been proposed to
calculate logyx for a fixed o and arbitrary x, with variable results in terms of efficiency.

The most successful logarithm algorithms are discussed.

5.7.1 The Index-Calculus Algorithm

In 1979, Aldeman proposed the first sub-exponential time log algorithm, the index-
calculus algorithm. This was improved by Coppersmith [21] in 1984 to one that runs in
time O(ecm) where ¢ is a small constant. We present the algorithm as it applies to
GF(2™), but it can be modified to work for any Galois field.

The index-calculus algorithm is a probabilistic method. It relies on setting up a data base
of logarithms for some subset of S of GEF(2")\{0}, where the elements of S have some
reasonably easy to determine property, and then using heuristics to reduce the element of

which the logarithm is being found to a combination of elements of S.
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Let GF(2™) be considered as the ring of polynomials modulo some irreducible g(x) over
GF(2). Let f(x) be a generator of the multiplicative group GF(2")\{0}. We note that
polynomials over GF(2) are easy to factor. Algorithms are known that factor a
polynomial of degree m over GF(2} in time O(m). S is usually chosen to be the set of all,

(or most) irreducible polynomials over GF(2) with degree less than some number m.

Algorithm Index-Calculus

Input: oo € GF2™\{0}

Output: a = loggor.

StageI.  Compute the logarithms of all the elements in S.

Stage H. Reduce the element o to a combination of elements in S.

Combine the logarithms of these elements to calculate a.

We describe the standard algorithm without the Coppersmith variations first, and then

sketch an outline of those changes.

Algorithm Stage L.
Step 1. Choose arandoms, 1 <s <2"-1.
Step 2. Set o* = B% (mod f(x)).
If a* factors into irreducibles from S, then insert
s= Y by(o¥loggy  (mod 2M-1)

ves
into the set of congruences to solve
Step 3. If we have determined more than ISI congruences then
continue to Step 4, else return to Step 1.
Step 4.  Solve the set of congruences to determine loggy,

foreach vin S.
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Note that 2"-1 may not be prime, in which case the congruences are solved for each prime
power divisor and then combined using the Chinese Remainder Theorem. This would
actually speed up the computation since smaller primes are being worked with, so we
assume for algorithm analysis purposes that 2-1 is prime.

If Step 4 is done with straight Gaussian elimination it takes O(ISI3) steps, but if the fact
that the set of congruences is a sparse system is exploited, then the time can be reduced to
O(ISiZ). The number of irreducible polynomials over GF(2) of degree less than m is
approximately %ﬁ, so Step 4 takes time

o)
m

The polynomials o* behave like random polynomials. Define p(k,m) to be the

probability that a polynomial over GF(2) of degree k has all its irreducible factors of

ISt
p(n,m)

QOdlyzko, in his definitive survey paper [52] analyses p(k,m) in terms of N(k,m), where

degree less than m. Then the running time of the first three steps of Stage I is

N(k,m) is the number of polynomials over GF(2) of degree k which have all its
irreducible factors of degree less than m. He determines the recurrence relation

N(@,0) =1,

N(k,0) =0, if k=0,

N(k,m) = 0, if k,0 and m=0,
and for all n,m>0,

N(n,m) = i ZN(n-rk,k-l)(f”(f)“).

k=1 =l
. 99

He then goes on to determine that, if n!% <m <n®, then

n

N(n,m) — 2“(?)(1m(1))m as n — oo,

(1+o(1)>

so that p(n,m) — (%) in the same range.

QOdlyzko [52] also has a tabulation of p(n,m) for small values of n and m.
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This gives us the average running time of (the unmodified version of) Stage I as

0(2‘“ (i?n—)% + 22‘“).

Algorithm Stage II.
Input: @ € GF(2")\{0]}
Output: a = logpo.
Step 1. Choose arandoms, 1 <s<2P-1.
Step 2.  Set o* = aff® (mod f(x)). (deg ¢* < n)
If o factors into irreducibles from S, then
a= va(a*)logﬁv -8 (mod 20-1)

vesS

else repeat from Step 1.

The probability that o* will factor as required is

n
ZZ‘kp(n-k,m),
k=1
1 99
which is asymptotically equivalent to p(n,m) as n — oo, if n!% <m <n'®, (see Odlyzko

[52)). So the expected running time of Stage II is

e (i)(”"“”i _
There are ways to speed up this algorithm. Blake, Fuji-Hara, Mullin, and Vanstone [14]
replace factoring o* in each stage by finding two polynomials w; and wy such that
of = ‘—wv-;— and the degree of each wj 1s aboui% . This is done using information gained by
applying the extended Euclidean algorithm. Each wj is then factored as in the standard
n

algorithm. This adaptation is faster than the standard version by a factor of about 2m,

which is a great practical saving, but not an asymptotic one.
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Other improvements are discussed in Odlyzko [52]. The one that has had the greatest
impact is the Coppersmith algorithm, presented by Coppersmith [21], and analyzed in
great detail by Odlyzko.

The Coppersmith algorithm begins by choosing the generating polynomial f(x) in such a
way that f(x) = xM + f'(x), where the degree of f'(x) is smail. It relies on the factorization

3
of two polynomials of degree VnZ2.

Algorithm Coppersmith Stage 1.

3
Step 1. Choose a real number k >0 such that 2K is about ‘\} 102 g
15
h = |_§"k. +1.

Choose B such that B is about m

Step 2. Choose ui(x) and up(x), relatively prime and of
degree less than B.
wi = up(x)xt +ua(x)
wy = (w100 mod(f(x))
If w1 and wy have all their linear factors in S, then we
get a linear equation in loggyv, for the vin S.

Step 3. Repeat Step 1 and Step 2 until we have slightly more

than IS| equations.
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Algorithm Coppersmith Stage IL.

Step 1.

Step 2.

Step 2.

Construct successive o as above, until one is found whose

3
irreducible factors uj are all of degree < mj = VnZlogn.
(or alternatively, until the Blake et al modification produces
w1 and wo with irreducibles u; of degree < m;j).

3
Choose a positive real number k such that 2K is about 4/ % .

d :=L%‘E_J +1.

Choose B such that B is about W
Choose vi(x) of degree < B, find a relatively prime vo(x) of
degree < B, such that ujx) divides wi(x), where

w1 = vi(x)xd + vo(x)

wy = (W1(x)> mod(f(x))
If w1 and wo factor into polynomials of low degree,
then find the logarithms of these factors using the
algorithm Stage I1, above, else repeat Step 2.

We note that wy = vi(x2Xxd2%nf)(x) + vo(x), so that the degrees of both wq and wa are
O( ) There are improvements to the Coppersmith algorithm that speed up the first
stage some constant number of times, and are outlined in Odlyzko [52) but these

improvements do not affect the asymptotic running time of the algorithm.

5.7.2 The Pohlig-Hellman Algorithm

If p is a prime such that p-1 has only small prime factors, then there is an algorithm that
can compute logarithms in GF(p) in time O(logyp). It was first published by Pohlig and
Hellman in 1978 [54], who credit the earlier independent discovery to Ronald Silver.
The algorithm was later generalized to the field GF(q) where g is any prime power and

g-1 has only small prime factors (see Odlyzko [52] or van Tilborg [67] for a fairly good

-120-




k

description). Let GF(q) = GF(p"), for some prime p. Letp" -1 = Hpi“i, where p; are
i=1
distinct primes. If ry,...,rx are any real numbers with 0 <1; £ 1 then logarithms over

GF(p™" can be calculated in time
k
O(Zni(logzq + pil’“(1+iogzpi“))],
i=1
using
k
O[n Y (1+pff)
i=1
bits of memory, provided that a precalculation requiring time

k
O[Z (piflogpi® + n))
i=1
is performed.

For example, if the time taken for the algorithm is proportional to vVmax, where max the

largest prime factor of p"-1, and the amount of storage required is also proportional to

Y max.

To sketch an outline of the algorithm, let {3 be a primitive element of GF(p™), and let x be
any non-zero element of GF(p"). The aim is to find y = loggx, that is, where, ¥ = x. The

algorithm can be summarized as follows.

Algorithm Pohlig-Hellman.
Input: x, B, n, where we want to find loggx in GF (2).

k
1= Ypm

i=1
1j , the weight used in the step corresponding pi, 0 <r; < 1.
Step 1. For 1 <i<k determine y mod p;™,
k
Step 2. Use the Chinese Remainder Theorem to find y mod Zpini.

i=1
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Which leaves the problem of determining y mod p;™, for each i. We put

n-1
y = 3 bipil (mod pi™),
j=0
and set about determining bj. To find by, calculate

gl gl ralpo
a=xbi = Bypi = ({3 Pi | | since y = bg mod pj.
al
Note that a can only be one of p; elements. Set o = B, The baby steps-giant steps

technique pioneered by Shanks is used to find bg given a = ob0. Given a real number r,
0<r<1, find u = I_(pi)r—l. Then there must be a unique pair of integers ¢ and d,
0<d<u-1,0<¢c< I:l—i , such that y = cu + d. So then a = BP0 means that o-Ua = od. So
ad is precomputed for each d, 0 <d < u-1, and these values are then sorted. This step
can be done in O(((pj)zlogzpi)).
Compute aoCU forc =0, 1, ... (up to LEJ if necessary), and check each result for a match
with the od values. There are

o((pp')
of these ao."C! to be computed. So once bg has been found, set

q-1
(xBb0)pi? = o1, and iterate.

It is easy to see that if g-1 has a large prime factor, the Pohlig-Hellman algorithm

becomes infeasible in terms of precalculation time and storage requirements.
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Algorithm determine y mod p;ni,
Input: x, 3, n, where we want to find loggx in GF (21).
Pl
rj, determines the size-storage tradeoff in the computation.

Step 1a. {initialization}

g-1
a:=xPi

g-1
o := BPi
=[]
rY — a"u

Step 1b. {precomputation}

for 0 £d < u-1 find od.

Sort these.

Step 1c. {find b; =logya)
B

for0<c< LU_J,

calculate ay°
if ay¢ = od for any calculated in Step 1b, then bj := cu +d
and go to Step 1d.
Step 1d. {iterate}
ji=j+l
if j = nj then go to Step 1e.
gL
elsea ;= (xﬁ'bo)(pi)j and go to Step 1c.

Step le. {summary}

n-1
y = Y bi(ppi (mod (pp™),
j=0

Various steps of the Pohlig-Hellman algorithm can be executed in parallel. If we have k
processors, where there are k distinct primes dividing q-1, and letting 1; = % for all i, then

the algorithm can be performed in time O(logz2q + VP loga2q log,P), where
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P =max {pjl 1 <i<k]) is the largest prime dividing g-1, with a precalculation of time
O(logoq + VP logyP) using memory Ok VP logyq). For more details of the derivation of

these numbers, see von Tilborg [67] and adapt his theorems to the multiprocessor case.

5.8 Generating Random Elements

The most obvious way to select a random element of GF(q) from an equiprobable
distribution is to select a random integerr, 0 <1 < q, and if r = q then the random element
is 0, else the random element is of, where o is a fixed primitive element of GF(q). Then
the complexity of finding a random element is the complexity of exponentiating.

Alternatively, if GF(q) = GF(p"), for some prime p is represented as an n-vector of
clements of GF(p) with respect to some basis, then an alternate approach is to choose n
random elements of GF(p), that is n integers between 0 and p-1 (inclusive). This

algorithm has complexity O(n).
5.9 Comparisons and Conclusions

Many of the most efficient algorithms that have been discussed only work in specific
fields. For example, the Pohlig-Hellman logarithm algorithm and the efficient normal
basis multipliers (the optimal normal bases and the self-dual normal bases). Appendix 2
shows that it is reasonable to discuss a case where both may be implemented for the
same field.

The following table summarizes the algorithms for manipulation of elements in the finite

fields GF(2") that have been discussed in this chapter.
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operation algorithm time space special requirements
add traditional O(n) o)
add parallel O(1) O(n)
traditional
multiply traditional O(n) O(n?) polynomial basis
multiply traditional O(n) O(n) polynomial basis, trinomial
generating polynomial
exponent | repeated squaring | O(n) mults
inverses Euclid O(nz) polynomial basis
logarithm | Table lookup O(n) On2™
multiply FFT O(nlogn) O(1) polynomial basis, trinomial
generating polynomial
exponent | von zur Gathen O(logn) O(m#logn) polynomial basis
multiply self-dual basis O(n) O(n) self-dual basis
multiply normal basis O(n) O(n?) normal basis
multiply | parallel normal O(1) o) normal basis
multiply | optimal normal On) On) optimal normal basis
multiply parallel ONB O(1) On?) optimal normal basis
exponent | divide & conguer O(I—O%H) normal basis
exponent | paralleld & c O(logn) O(i—;;) normal basis
inverse normal basis oP) normal basis, 2™-1 has
largest prime factor P,
exponent | divide & conquer| Of{logn) normal basis.
logarithm { index-calculus O(e‘ﬁ];io?“) O(e cifn—iogz_n)
logarithm | Pohlig-Hellman O(n) 2™1 has only small prime
factors.
logarithm parallel P-H O(n) Ok) 2"-1 has k small prime
factors.
random | exponentiation as exp.
random | lexicographical O(n)
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The following table summarizes the complexities of the (single processor) algorithms to

perform operations in GF(p™), where p > 3.

operation algorithm time special requirements
add traditional O(nlogp)
multiply traditional O(nlogp) polynomial basis
exponent | repeated squaring |  O(n) mults
inverses Euclid O(nlogp) polynomial basis
logarithm | Table lookup On)
multiply FFT O(nlognlogp) polynomial basis
multiply | self-dual basis O(nlogp) self-dual basis.
multiply normal basis O(nlogp) normal basis
multiply | optimal normal O(nlogp) optimal normal basis.
basis
exponent | divide & conquer O(%(;gng) normal basis
inverse normal basis O(Plogp) normal basis, p™1 has
largest prime factor P.
logarithm | index-calculus O(ecm
logarithm | Pohlig-Hellman O(nlogp) 2"-1 has only small prime
factors.
random | exponentiation as exp.
random | lexicographical O(n)
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The following table summarizes the complexity of the most efficient algorithm to

perform each operation in GF(2"), for a single processor, and the multiprocessor cases.

operation single processor multiple processor
add O(n) o)
multiply O(n) o
exponent O (I_onéﬁ) O(logn)
logarithm O(n) Omn)
inverse 0 (ror;—n) O logn)
n
random O (@) O(logn)

The following table summarizes the complexity of the most efficient algorithm to

perform each operation in GF(p™), (for a single processor).

operation complexity
add O(nlogp)
multiply O(nlogp)
exponent O(ﬂgl—(’gﬂ)
P logn
logarithm O(n2logp)
2
. n“logp
mverse O( ]20 an )
n“logp
random O( ogn )
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Chapter 6 : Conclusions

The following table summarizes the field operations required for the algorithms in
Chapter 4.

Algorithm field exp | log | add | mult | rand | inv

4.2. GF(qQ) 1 1 2 1

4.4. none.

4.5. GF(q) 1 1 2 1

4.6. GF(q) 1 1 1 2 3

4.7. GF(q) 1 1

GF(q9) 1 6 11 3

4.8. GF(q) 1 1 4 4 2 1
49.1. GF(q) 1 1 4 4 3
4.9.2. GF(q) 1 1 1 1

GF(@d) | 1 1
4.10. GF(q) 1 1
GF(q9) 4 4 2
GF(q+1) | 2 2 2 1 2 1
4.11. GF(q) 2t 2t 2t t

4.12. GF(q%) 2d 2d d 2
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The following table summarizes the complexity for the algorithms in Chapter 4 which

may be implemented over GF(q) where q = 2" for the single and multiprocessor case as

outlined in §5.9,

Algorithm 4.10 is listed only for the operations in GF(q+1), where g+1 = 21,

Algorithm | Single processor complexity | Multiprocessor complexity
nd
4.7 o(n + o O(n + lognd)
4.8 O(n) O(n)
49.1 O(n) O(n)
49.2 O(n) O(m)
4.10 O(n) O(n)
nt
4.11 0 Egi) O(tlogn)
nd
4.12 0 i}%ﬁ) O(dlogn)

The following table summarizes the complexity for the algorithms in Chapter 4 which are
implemented over GF(p"), where p # 2. In algorithm 4.10, operations are performed over
GF(p), GF(pd), and GF(2"), and logp is O(n)

Algorithm Complexity
42 O(n2logp)
4.5 O(nZlogp)
4.6 O(n2logp)
4.10 0(d%n)
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Appendix 1 :
The best Choice of Irreducible generating
Polynomial for GF(2"),2<n <16

When multiplications are performed in a field represented as coefficients of a polynomial
basis, the algorithm is more efficient if the generating polynomial has as few terms as
possible. Mastrovito [45] lists the following table for the best generating polynomial for

GE(2M), for small n.

n powers of x in the
generating polynomial.

2 2,1,0
3 3,1,0
4 4,1,0
5 5,2,0
6 6,3,0
7 7,1,0
8 8,7,5,1,0
9 9,1,0
10 10,3,0
11 11,2,0
12 12,3,0
13 13,7,6,1,0
14 14,5,0
15 15,1,0
16 16,11,6,5,0
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Appendix 2 :
Optimal Normal Bases and Pohlig-Hellman
logarithms: Can we have both in GF(2")?

Two of the most efficient finite field algorithms that were discussed in Chapter 5 only
work in GF(2") for certain values of n. Optimal normal bases exist when n+1 is a prime
and 2 is primitive in GF(n+1), when 2n+1 is a prime and 2 is primitive in GF(2n+1), or
when 2n+1 is a prime congruent to 3 modulo 4 and 2 generates the quadratic residues
mod 2n+1. Luckily finding which of the small integer n (n < 1000) satisfy these rather
complicated conditions is tabulated for us by Mullin, Onyszchuk, Vanstone and Wilson
[49]. The Pohlig-Hellman algorithm is efficient when 2"-1 has no large prime factors.
Brillhart, Lehmer, Selfridge, Tuckerman and Wagstaff [20] list the prime factors of 2"-1
for many values of n. So if we are to justify the claim that both algorithms can be used
on certain Galois fields of characteristic 2, then the task remains to compare and correlate
these two lists of numbers.

We note also, that in implementing the (1,1)-code constructed using PG(q), we needed
field operations in PG(q3) as well as those in GF(q), and in implementing the (3,2)-code
and the (2,2)-code we used both GF(q) and GF(q%). So a search is also conducted for
small n and 3n which both satisfy the above two conditions. Actually, since 2™1 divides
24n.1 if 2401 has only small prime factors, so too does 2"-1. Some of the work in the
precalculation stage of the Pohlig-Hellman algorithm need not be duplicated for the

second.
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Small values of n, (n < 1000), for which an optimal normal basis exists for GF(2"), and
for which 2"-1 has only small prime factors.
Note: d is the number of decimal digits in the largest prime factor of 2-1.

C before a number signifies that it is the number of digits in a number that is known

to be composite but for which the factorization is not known.

n d n d n d

4 1 273 20 585 C78

6 1 292 22 586 C77.C89
12 2 299 C60 615 C89
18 2 316 24 618 C62
28 3 323 C80 645 C88
36 3 326 24 5658 8.C81
52 4 348 17 660 Co0
60 4 354 19 4726 5.C63
66 6 372 19 774 C56.C76
70 6 388 26 810 C60
72 5 411 C63 820 49
81 8 420 16 828 40
50 8 429 C63 852 34
100 6 438 28 876 32
105 6 441 C59 930 65
148 9 460 21 940 35
172 13 470 35 1060 56.C63
210 7 483 Co2 61108 70.C78
230 16 495 C70 1116 48
243 19 540 C80 1122 Co2
268 13 546 30 1170 C78
270 15 558 48
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Small values of n, (n < 400) for which GF(2") and GF(23“) have optimal normal bases
and 230 - 1 = (2" - )220 420 4 1) has only small prime factors.
Note: d is the number of decimal digits in the largest prime factor of 230-1.

C before a number signifies that it is the number of digits in a number that is known

to be composite but for which the factorization is not known.

n 3n d

2 6 1

4 12 2

6 18 2
12 36 3
30 90 8
35 105 6
60 180 8
70 210 7
81 243 19
90 270 15
146 438 28
180 540 C80
186 558 48
270 810 C60
292 876 32
338 1014 94
372 1116 48
378 1134 98
398 1194 C113
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Examples.

GF(2210) has an optimal normal basis.

2210-1=32,72,11.31.43.71.127.151.211.281.331.337 .5419 . 29191 .
86171 . 106681 . 122921 . 152041 . 664441 . 1564921.

GF(270) has an optimal normal basis, also.

270-1=3.11.31.43.71.127.281.86171 . 122921.

Note that, as expected, 270 - 1 divides 2210 - 1.
So the Pohlig - Hellman logarithm algorithm can be used on both, and the first part of the

precalculation step for GF(2219) is the precalculation step for GF(270).

Similarly,

GF(2180) and GF(260) both have optimal normal bases.

260-1=32.52,7.11.13.31.41.61.151.331.1321.

2180.1=(260-1).3,19.37.73.109.181.631.23311.54001 . 18837001 .
25247661.
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Appendix 3 : Values of M(k), S(k), and

T(k), for Exponentiating in a Normal Basis

In §5.5.4, we calculated the value M(k) = 2kK-1 + I—E—l - 2 as the worst case complexity for

the algorithm Exponentiate. If we have available

max {L—;—J,P(k)} Processors,

then the algorithm Exponentiate can be performed in S(k) = l— 10g2k~| + [_loggs-| rounds of

multiplications.

Much improvement may be made if we have 2K rocessors, for some 2k<| £ | Then the
P y p 5

algorithm takes T(k) = rlogzk_l + LESEJ + k-1 rounds.

Forn =210 we compute

k M(k) S(k) processors for S(k)
5 219 11 102

6 201 11 85

7 209 11 105

So M(k) is minimized when k = 6 and the number of processors required for S(k) when

k=17.
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For n = 216 we compute

k M(k) Sk) processors for S(k)
7 9630 17 4681
8 8318 16 4096
9 7535 17 3641
10 7064 17 3277
11 6980 17 2979
12 7508 17 3969

M(k) is minimized by k = 11 and the number of processors required for S(k) by k = 11,

Values of k which minimize M(k) and T(k) for various values of n where n is a power of

2.

n km M(kn) ks Sks) processors for S(k)
16 3 8 3 5 3
32 3 13 3 6 5
64 4 23 4 6 9
128 4 39 4 7 16
256 5 66 5 8 26
512 6 116 5 10 49
1024 6 201 6 11 85
2048 7 355 7 12 146
4096 8 639 8 12 256
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A look at T(k), for various values of k such that the number of processors required for

T(k) is less than that for S(kg), where n is a power of two.

n k processors needed T(k)
16 2 4 6
3 8 6
32 2 4 8
3 8 7
64 2 4 12
3 8 8
128 2 4 20
3 8 11
256 2 4 36
3 8 16
4 16 11
512 2 4 68
3 8 27
4 16 15
5 32 12
1024 2 4 132
3 8 48
4 16 23
5 32 15
6 64 12
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n k processors needed Tk)
2048 2 4 260
3 8 91

4 16 39

5 32 21

6 64 15

7 128 13

4096 2 4 516
3 8 176

4 16 71

5 32 34

6 64 20

7 128 15
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