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Abstract

In a cryptographic system, a Eansmitter sends a message representing a source state to a

receiver. An opponent may overhear this message. Secrecy codes are cryptographic

systems where overhearing a message gives the opponent no information about the source

state, Authentication codes are cryptographic systems where ove¡hearing one or more

messâges makes it no easier for the opponent to send his or her own messge to the receiver

and have it considered authentic.

This thesis examines these structures. We look at combinitorial bounds on their size, and

some techniques for constructing authentication and secrecy codes close to optimal size.

We then explore how to implement these codes efficiently, which leads us into a sea¡ch for

efficient algorithms for performing arithmetic operations over finite helds.
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Chapter 1 : Introduction

1.1 Aims and objectives

The aim of this thesis is to detail the state of the field of secrecy and authentication codes

with unconditional security.

Chapter 2 introduces us to the concept of a cryptosystem, and some of the

unconditionally secu¡e codes that can be used in that system. In a cryptosystenr, a

transmitte¡ sends information to a receiver via a channel, into which an opponent may be

listening. A code is a collection of encoding rules (which the opponent may know). The

transmitte¡ and receiver are given which encoding ¡ule to use by the key source, and this

information is kept secret. A secrecy code is a code in which the opponent can get no

information about the source state (or information) being conveyed by overhearing one or

more messages in the channel. A code that is secure against an authentication attack is a

code in which the opponent can place messages into the channel, but has no added chance

of fooiing the receiver into thinking that they are authentic by seeing zero or more

messages in the channel. We discuss codes that can provide both secrecy and

authentication propenies simultaneously. Finally, we look at a code that provides perfect

disclosure whilst maintaining authentication properties (i.e. anyone listening into the

channel knows what information (source state) is being conveyed, but has no added

chance of faking a message by listening in to the channel). Chapter 2 goes on to prove

some bounds on the size of the codes needed to achieve the properties. The bounds are

proven independently of the probability distributions on the possible source states. We
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define the concept of an optimal code that achieves a ce¡tain level of secrecy or

authentication, which has the smallest number of encoding rules needed.

Chapter 3 details constructions of infinite classes of optimal and near-optimal codes fi on.r

combinato¡ial designs such as t-designs, Latin squares, transversal designs ancl

perpendicular arrays. The encoding ¡ules can be written into an encoding array, which

we use to formalize thefu properties in terms of required combinations of messages in

rows and columns. This provides the link between combinatorial designs and the related

secrecy and authentication codes.

Chapter 4 is concerned with implementations. Making a code close to optimal is nor

going to do us much good unless we can implement it efficiently. Typically, storing the

entire encoding array is infeasible, due to its large size. Using the algebraic structure of

the underlying combinatorial designs can make implementing the codes efficient in ter.ms

of time and space. We write some algorithms, in a ianguage that assumes that operarions

in finite fields can be performed.

Chapter 5 is concemed with lower level implementations. Many of the codes in Chapter

4 are based on infinite classes of combinatorial structures computed using finite fields.

Therefore we implement these codes using arithmetic in the underlying field. Hence, the

algorithms that we choose to implement finite field arithmetic are important to the design

of the Eansmitter's and receiver's algorithms. Chapter 5 makes a foray into the literature

on finite field algorithms, in software and hardware, sequentially and in parallel, fr.om the

straightforward approaches found in Knuth [37] to the sophistication of the Coppersmith-

Aldeman logarithm algorithm.

Chapter 6 ties all this together, and draws some conclusions about the nature and

effectiveness of the algorithms in Chapter 4 based on what was discovered in Chapter 5.
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opponent can place messages in the channel as well as just read them, in an âttempt to

fool the receiver. See Figure 2.1.

In this discussion, k = 18l is reserved to mean the number of source states, v = lJnL I the

number of messages and b = lÈl the number of encoding rules. (These variables we¡e

chosen because of the connection to balanced incomplete block designs which will

become apparent later ). So the encoding array is a b by k array, with v distinct entr.ies.

For any encoding rule e, let p(e) be the ptobability rhar e is chosen by the key source.

Similarly, for any source srate s, , we let p(s) be the (a prori) probability thar the source

state is s. We require that for every encoding rule e, p(e) > 0, and for every source stare s,

p(s) > 0. This is easy to achieve, by just deleting source stâtes and encoding rules which

cannot occur from the respective sets E and E.

Example 2.1.1. Consider the following secrecy code.

The k = 3 source states are labelled s1, s2, s3.

The v = 4 messages ate l, 2, 3, 4.

The b = 4 encoding rules are labelled eL ez, e3, e4.

secure channel

Figure 2.1 Shannon's model of a cryptosystem.
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The key source selects each rule with probability 
å .

The encoding array is as follows.

1

4

3

2

2

1

4

3

3

2

1

4

So, for example, if the key source sent encoding rule e2, and the transmitter wished to

communicate the source state s3, then a 2 would be placed in the channel.

Notice how each message occurs at most once in each encoding rule.

Theorem 2,1,2. In any code v > k.

Proof. Encoding rules are one-to-one functions, so e(s) + e(t), for s + t, s,t e E. I

2,2 Secrecy

Cryptosystems are designed to achieve one of three types of security. Computational

security occurs when the opponent cannot get any information from the message in a

reasonable time because no method has yet been discovered to do so. Provable security

occurs when the task of extracting information from a message in the channel without

knowing which of the encoding rules was used can be shown to be equivalent to some

presumably difficult problem (for example, factoring a large number). tJnconditional

security (called theoretical by Shannon), which our codes will achieve, occurs when the

opponent can obtain no information from the message, no matter what computational

resources he or she has available. This is the strongest form of security.

There is always a probability that the opponent may '|guess' the source state, so

unconditional security is defined in terms of probabilities. conceptually, perfect secrecy

is when the probability that the transmitter is sending source state s e S, given that the

el

e2

e3

e4
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message m e Î1. has been seen in the channel, is the same as the a proiri probability that

the source state is s. Multiple levels of perfect secrecy can be defined in the same way.

Suppose L5 distinct messages e seen in the channel, that is, there are no duplicate

messages. Suppose fu¡ther that the same encoding rule is known to be used to encode

them. We consider the messages to be unordered, for mathematical simplicity. (See

Massey [44] for a discussion of ordered L5-tuples of messages or Godlewski and Mitchell

[29] for a comparison of diffe¡ent possible definitions of unconditional security). Given

any L5 distinct source states, if the probability of these being the source states that

correspond to the messages (setwise) is the same as the a proiri probability that those are

the set of source states, then the code is said to be perfectly Ls-secret.

More formally, let P(x) be the probability that x happens, and let P(x I y) be the

probability that x occurs given that y has already occurred. We say that a code has

perfect Lg-fold secrecy ifl, for every L ( L5, and every set M of L messages observed in

the channel, and every set S ofL source states, we have that P(S I M¡ = p15;.

Example 2.2,1. Consider the code of example 2.1.1, with encoding array

e2 l4
2

1

4

J

3

2

I
4

We now examine the secrecy level of this code.

Suppose that a I is seen in the channei. Then the probability that the source state being

transmined is s1 is given by

Pfr,lll=rys#@

e4
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l nr"l

fn1s1¡ + åptrzl + åpfr¡l

= p(sr).

Similarly, it can be shown that P(s2 I 1) = e1t¡ and P(s3 I 1) = pltr;.

So, seeing a 1 in the channel gives the opponent no information about the source state.

The same argument holds for seeing any of the other messages in the cha¡nel. That is,

the code in Example 2.1.1 has 1-fold secrecy.

To examine whethe¡ the code has 2-fold secrecy, suppose that the set of messages { I ,2 }

is seen in the channel (in some order). Suppose also that it is known that the same

encoding rule was used to create both the message 1 and the message 2.

Then that encoding rule was either e1 or e2, and the source states encoded as {e1,e2} are

{s1,s2} or {sz,s:}. So P({sr,s¡} I {er,ez}) = 0 + P({st,s3)). So seeing 2 messages in the

channel (by the same encoding rule) gives the opponent some information about the

sotrrce states being transmitted. So the code in Example 2.1.1 does not have 2-fold

secrecy. It does have 3-fold secrecy, trivially.

2.3 Some Necessary Probability Definitions

A more formal language is needed in which to prove subsequent combinatorial bounds on

the size of the codes So in this section we redefine some of the concepts that we've been

looking at in statistical terms

Given an encoding rule e, define M(e) = {e(s): s e E ), the set of all messages vclid

under e.

For a set M of distinct messages, and an encoding rule e, define f"(M) = {s: e(s) e M},

the set of source states encoded by e to a message in M.

Give a set M of distinct messages, define E(M) = [ee E: M c M(e)], the set of

encoding rules under which all the messages in M are valid.
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2,4 Authentication

Let us now consider the opponent's ability to place a message not yet seen into the

channel with the intentíon of having the receiver accept it as authentic. To guard against

such an attack, it is necessary to introduce redundancy into the code. If the opponent

observes L4 messages in the channel which were encoded using the same encoding rule,

and then adds a new message of his or her own, it is ca-lled a spoofing attack of level L¡.

The special case L4 = 0 is called impersonation, and the case L¡ = 1 is called

substitution.

Let Pdi be the probability that the opponent can deceive the ¡eceiver with a spoofing

attack of level i (so that the opponent is'using his or her best stategy). Now, there are k

source states, so any encoding rule contains k allowable messages, of the v possible. If i

of each have been seen in the channel, then it seems reasonable to expect that Pd¡ > H.

This is indeed true, as \{e prove in the following theorem.

Theorem 2.4,1. (Massey V4,p. 121) ln any authentication code with k sou¡ce states and

v messages, Pdi > TÌ .

Proof. Let M = {m1,m2,...,mi) be the i messages observed in the channel. For

m e 1vt \ M, a message not already seen, define payoff (M,m) in the following way.

payoff(M,m)

= P(m is accepted as authentic I the messages in M have been seen in the channel)

þ1.¡e1s=i"1rra;;
ee E((m)uM)

)r1"¡e1s=r"1na¡¡
e e E(M)

P({m) uM is accepted)
P(M is accepted)

-10-



I IP(e)P(s=fe(M)

So )lavoff(tø,m¡ =
m e ll\M ee E([m]uM)

Ip(")p(s=r"(u)
e E E(M)

1r<-¡ )r1e¡ris=re(M))
e e EO'l)

me Tf, \M

)r1"¡n1s=r"1rra¡¡
e e E(M)

= k-i.

This is rue since each e e E(M) contains precisely k-i other valid messages besides those

in M, and hence corresponds to k-i of the messages in E(M). That is, there are k-i

'unused'source states ieft, and each is encoded by e to some message e(m).

So the average payoff isfi , and the opponents strategy is to choose the m € 1{, \ M,

whose payoff is greater than or equal to the average. I
So, for example, Pd¡ > 5, and Pdr > El.

A code (often called an authentication code) is L¡-lold secure against spoofing, or able to

withstand a spoofing attack of level L¡ if Pdr =Ïl , a, all 0 < L < L4. the bound is

called the combinatorial bound, since it is independent of the probability disrributions on

the source states and encoding rules.

Example 2.4.2. The code in Example 2.1.1 with encoding array

e2 l4
2

I

4

3

3

2

1

4

is O-fold secure against spoofing, since each of the messages 1,2,3, or 4 is accepted with

probabiliry |.
It is not l-fold secure against spoofing in general.



Suppose that a 1 is seen in the channel, and a 2 is inserted.

if the encoding rule was e1 or e2.

The probability that the 2 is accepted is given by

The 2 is accepted as genuine

P(erl1)+P(e2 l1)

- P(l le¡) P(er) , P(l leùP(ez)=---ÞO-' P(Ð

P(s1) P(er) + P(sz) P(ez)
P(1)

lPGl) + P(s2))

ffi
= P(sr) + P(s2),

which does not equal LJ = ! in general.

Similarly, the probability that 3 is accepted if a i has been seen is P(s1) + P(s3), and the

probability that 4 is accepted if a t has been seen is P(s2) + P(s3). So this code is 1-fold

secure against spoofing only if the source states are equiprobable. Fo¡ more discussion

on equiprobable probabiliry distributions on the source states, see 92.6.

Example 2.4.3. Consider the following authentication code.

The k = 3 source states a¡e labelled st, s2, s3.

Thev =4 messages ue l,2, ... ,'1.

The b = 21 encoding rules are labelled eb e2, ... , e2r.

The key source selects each rule with probability | .

The encoding array is as follows.



10

ll
e

e

et9

e20

ezl

124
4t2
241
235
523
352
346
634
463
457
745
574
561
156
615
672
267
726
713
371
137

e13

eÁ

el6

en

e

The ¡ows of this code form a (7,3,I)-BIBD in which each row is expanded into a Latin

square of order 3. We examine the level of authentication of this code.

The code is O-fold secure against spooñng, (or can resist an impersonation attack), since

every message is accepted with probabilityf . This is so because each message occurs in

9 of the 21 encoding rules.

To determine whethe¡ the code is i-fold secure against spoohng, suppose the opponent

sees a 1 in the channel and places a 2 in the channel. The probability that the 2 is

accepted as authentic is given by

-13-



P(el I 1) +P(e2 I 1) + P(e3 I 1)

P(l ler) P(er) P(l leÐ P(ez) , P(l le¡) P(e¡)= 11¡ ' P(Ð '--](1)-

fiP(s1)+P(s)+P(s3))

fP(s1)+P(s2)+P(s3))

t2k-r
3 6 v-l '

This ¡esult holds fo¡ any t!,vo messages since each pair of messages occurs in the same

number of ¡ows, and within those rows, each of the pair occu¡s the same number of times

in each column. So the code is l-fold secure against spoofing.

The code is not 2-fold secure against spoofing. If thesetof messages {1,2) is seen in the

channel, then the encoding rule used was et, e2 or e3, and the message 4 is accepted with

probability 1, (i.e. all the time) not 
v¿!2 = ] as required.

It is often desi¡able to use a code that has both secrecy and authentication properties. An

(Ls, Le)-code is a code that has perfect Ls-fold secrecy and is able to withstand a

spoofing attack of level L4. The cases L¡ = LS and L4 = LS + 1 are the most widely

discussed, the former corresponding to the scenario in which the opponent can modify

existing messages, and the latter to the one in which the opponent can merely insert

messages.

2.5 Perfect Disclosure Codes

A code is said to be a perfect disclosure code if each message only corresponds to one

source state. More formally, for any two distinct encoding rules e1 and e2, and two

source state sl and s2, e1(s1) = e2(s2) implies that s1 = s2. This means that for each

message m eT-1,, valid under some encoding rule, there is a sou¡ce state s e S such that

P(s lm) = l.

-14-



Theorem 2,5.1. (Stinson, [60, Theorem 5.1]) If a code has perfect disclosure then

Pdo > I . Moreover, if Pdo = ! , then Pd¡ > f , for all i > 0,

Proof. Pd¡ >f , by Theorem 2.4.1.

Suppose that Pdg = !. Then if the code has perfect disclosu¡e, there are exactly

f, 
messages encoding each source state. Let M = (m1,m2,...,mi) be the i messages

observed in the channel. Consider a column C of the encoding array containing none of

the messages in M. De{ine payoff(M,m) for each of the messages in column C as we did

in the proof of Theorem 2.4.1. Then

)navoff(M,m) = t,
me C

since each encoding rule containing M has an entry in C. So the average payoff is & 
, and

hence Pdi > f, for all i 2 0. f
However, for some probability distributions, we can arrange Pd¡ a! fo, ,o-" i > 1 if we

let Pd¡ > I . Consider the following example.

Example 2.5.2. Consider the following perfect disclosure code, where k = 3, v = 5, and

b = 4. The encoding rules are chosen equiprobably.

Let p(si) =ft, nGÐ = ntsr) = fi.

Notice that each message occurs only once in each row. So if a 1 is seen in the channel,

the opponent kno'ws that the source state being sent is sl, if a2 or a 3 is seen, the source

state is s2, and if a 4 or a 5 is seen, then the source state is s3.

An impersonation attack (i.e. a spoofing attack of level 0) will always succeed if the

opponent places a 1 into rhe channel. Hence Pdo = 1.

er ll 2 4

ez 11 3 4

e3 11 2 5

-15-



If a2,3,4 or 5 is seen in the channel, then a 1 placed in the channel will be automatically

be accepted as authentic. However, if a 1 is seen in the channel, then the probability that a

2 is accepted as authentic is

P(e1 I 1) + P(e2 I 1)

P(l ler) P(er) P(l le2) P(e2)- P(1) P(1)

åot"l=TGil

I
2',

Similarly, the probability that 3 o¡ 4 or 5 is accepted if a 1 is seen is j .

SoPdl =p11¡.P(success if a I seen) + P(2,3,4,or 5)'P(success if 2,3,4,or 5 seen)

9t 2
r0220'
11 k

-20-v'

We say that a perfect disclosure code is L¡-fold secure against spoofing or able to

wìthstand a spoofing anack of kvel L¿if Pd¡ =f , for all 0<i<L4. (Compare to

authentication codes in $2.4.)

P(sr) P(er) + P(s1) P(e2)

-16-



Example 2.5,3. Consider the following perfect disclosure code, where k = 3, v = 9 and

b = 9. The encoding rules are chosen equiprobably.

Notice that each message appears in only one column.

.l ^, I
Each message appears in i of the equiprobable encoding rules, so Pd{ = å 

.

Each pair of messages from different columns appears in precisely one of the

equiprobable encoding rules, so p¿r =å . $his bound can, of course be proven more

formally by the same sort of probability calculations done in earlier examples.)

Pd2 = 1, since choosing the unique message in the row containing the 2 messages seen in

the channel is automatically accepted.

So this perfect disclosure code is 1-fold but not 2-fold secure against spoofing.

2.6 Arbitrary and Specific Source State Probability Distributions

Theorem 2.6.1. (Stinson [60, Theo¡em 2.11]) Suppose a code C achieves perfect

L5-fold secrecy for a given source distribution p6. Then C achieves perfect L5-fold

secrecy for an arbitrary source disribution p1.

Proof. Let p be the probability distribution on the encoding rules. Let L < L5. Let

S cE be a set ofL source states. Let MçTL be a set of L messages.

Since C is L5-fold sec¡et, ps(S I M) = ps(S).



By Bayes' theorem, p6@) = p6(M I S), and

)n(e)ro(fJM)) = Ip("1.
Ie:MeM(e)] (e:S=f"(M))

We attempt to formulate the same equality for p1.

(since fnr(S) = tl
(sgS:lsl=U

So, )r(e)nr(fe(M)) = )ri(S) . )n(e)
(e:MeM(e)ì {scS:lsl=L} {e:s=fe(M)}

= fnr(s) ' )n(e)no(fe(M)) (from above)

{ScE;lSl=L} (e:McM(e))

= 1' lp(e)ps(f,(M))
Ie:MEM(e)]

= IP("1
Ie:S=["(M)]

as required. I

This nice state of affai¡s unfortunately does not hold for authentication.

For example, consider the following code for k=3, v=7, b=7. It is secure against a

spoofing attack of order 1 if the each source state is equiprobable. (Note, in passing, the

similarities between this code and the projective plane of order two.)

Encoding rules a¡e chosen equiprobably.

- 18-



If a 1 is seen in the channel, then 2 or 4 is accepted if the encoding rule is eg and the

original source state is st, 5 or 6 is accepted if e4 and s3 occur, and 0 or 3 is accepted if e6

and s2 occur.

If P(s1) = P(s2) = P(s3) = +, then the probability of deception tr 
+ = I .

For example, if a 1 was seen in the channel, then p(eg) = p(e4) = p(rd =å . Then any

message other than 1 is accepted with probability l.
Suppose, howeve¡, that P(s1) ), anaP(s2) = plsr¡ = ]. ffren the optimal substiturion

strategy is as follows.

If 0 < x I 6 is seen in the channel, then P(e*- 1) = j , where x- 1 is taken modulo 7. So

choose one of the other messages valid under e¡-1. This messages is accepted with

probability j. For example, ifa 1is seen in the channel, then P(e6) =j, so 2 or4 is

accepted with probability j.

So under this optimal stategy, the probability of deception t, 
å 
t I .

So the code is not 1-fold secure against spoofing for an arbitrary source distribution.

2.7 Combinatorial Bounds and Optimal Codes

It is important to keep the number b of encoding rules in a code relatively small. This

minimizes the amount of secret information that the key source must send to the

Eansmitter and receiver, and that must subsequently be kept guarded. It is clear that in

o¡der to be able to communicate a rule, log2b bits of information must be sent.

We develop combinatorial bounds on b, that is, bounds independent of the probabiliry

distributions on the source states and encoding rules. A code is considered optimal if b is

'as small as possible', a concept that will be formalized forthwith.

The rest of this section deals with establishing these bounds.

Theo¡em 2.7.1 deals with the bound on the number of encoding rules required for a code

to have secrecy properties.
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Theorem 2.7.1, (Stinson [60, Theorem 2.1]) In a code that achieves perfect L5-fold

secrecy,

o 
= 
(':)

Proof, Consider a code, C, that achieves perfect L5-fold secrecy. Let e be an encoding

rule of C. Let M(e) be the set of messages valid under e. Let M1 be a subset of M(e)

containing Lg messages. Let S1 beanysetof LS source states. If there is no encodin g

rule e1 such that Sl = f"r(Ivl(e)) then p(S1 lM1) = 6 ¡ O15t¡, conuadicting perfect L5-fold

secrecy. So there is an encoding rule for every M1 c M(e). There must be at least (Å)
encoding rules in orde¡ to achieve this. I
In Theo¡em 2.7.2, we establish a bound on the number of encoding rules required for

authentication codes. This bound is valid for both equiprobable and arbitrary source state

probability disributions.

Theorem 2,7.2. (Massey [aa]) In an authentication code that is L4-fold secure against

spoofìng (and regardless of the source state probability distribution),

. - G;.')D2t' k \-'
\l-¡,+r,/

Proof. Let e e E be an encoding rule. Let McM(e) be a set of i < LA messages. Let

x e Jvtr \ M. Suppose there is no rule g e É under which all the messages in the set

Mu{x) a¡e valid. Then, as in the proof of Theorem 2.4.1,

L payoff(M,m) = t<-i.

me J'f, \M

Now payoff(M,g) = 0, so there is some message y € Jv[ \M such that payoff(M,y) > 4,
contradicting L¡-fold security against spoofing.

So every L¡+1-subset of messages is valid under at leâst one encoding rule. That is,

o('^1.') 
= ('J.') r
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Theorems 2.7 .3 and 2.7 .4 develop bounds on the numb€r of encoding rules required for

codes that have both secrecy and authentication properties.

Theorem 2.7.3. (Stinson [61, Theorem 2]) In a (L5, Ls-1)-code, O 
= (,_i)

Proof. læt e be an encoding rule of the code. Let M E M(e) be a subset of messages,

lMl = i < L5-1. Let x be a message not in M. Suppose that there is no encoding rule

under which M u {xJ is valid. Then, since

) PaYoff(M,m) = t<-i,

me 1{. \M

and payoff(M,x) = 0, then there is some message y e ll, tM such that payoff(M,y) > li,
contradicting (L5-1)-fold security against spoofing. So every L5-subset of messages, M,

is valid under at least one encoding rule.

In o¡der to achieve perfect Lg-fold secrecy, the messages in M must be al encoding of

each of the ({) nositfr L5-subsets of sou¡ce states. So M is a va-lid set of messages

under at least (f,) encoains rures.

We count pairs of the form (e,M), where e is an encoding rule, lMl = Ls, and M c M(e).

If e is chosen frst, then each of the b choices for e generates ([) *.r,ug.r, on. fo,

each L5-subset of source states encoded. The number of such pairs is exactfV O ([).
Conversely, suppose that M is chosen fi¡st There are (ir) nossiUfe subsets M, and at

t"*t (Å) choices for e given M. so we get o(r:) 
= (JrXr:) that is, b > G"r) .

Theorem 2.7,4. (Stinson [60, Theorem 4.1]) In a (L5, L5)-code valid for an arbitrary

source state probability distribution, b > (Jr) H
Proof. As in the proof of theorem 2.7 .2, every set of L5 + 1 messages is valid under at

ieast one encoding rule. As in theorem 2.7 .3, every set of LS messages is the encryption

of every possible set of Lg sotrrce states.

Letee E be an encoding rule. Let M c M(e) be a setof ilL5 messages. Let

S = fe(M). Suppose that p(S) = i - e, where e is a smail positive real number.
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Put E = {e: {e(s): se S) = M), the set of encoding rules that encode the sou¡ce states in S

to the messages in M. Because we have Lg-fold security against spoofing, for all xe M,

there exists an eeE under which x is valid. So lEl > ff.
Count triples of the form (e,S,M), where e is an encoding rule, S is a set of L5 source

states, M is a set of Lg messages and e(S) = M. Choosing any e and any S there is a

unique M, Ci"i"C {r:) riples. Choosing any M, and any S, there are at teast ff
encoding rules e such that e(S) = M. So there are at least (JsXå) ff u-ilt"r. H"n."

o(ri) r (r:XÅ) ff, as required. !
Finally, Theorem 2.7.5 establishes a bound on the number of encoding rules required for

perfect disclosure codes to have authentication capabilities.

Theorem 2.7.5. (Stinson [60, Theorem 5.2]) I¡r a code which has perfect disclosure and

Pdi =T, foro I i < L, rhen b r (;)t.t .

Proof. We prove the following assertion.

Assertion. Every set of messages M, lMl = n, such that no two messages in M

correspond to the same source state, is valid under at least one encoding rule.

When n = 0, it is clear that every message is valid under at least one encoding rule, since

otherwise Pd¡ t !. So the âssertion holds for n = 0.

Assume that the assertion holds for all n S i, where 0 I i I L.

Then the assenion holds for all n = i+1, that is for every set of i messages corresponding

to different source states, since Pd¡ = 
! 

.

So by induction on n, the assertion is true for all n = L+1.

Hence b t (i)t-t,as required. t
If a code meets, with equality, the approp¡iate bound for b above, then it is refened to as

optiïtal.
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2.8 Preview of codes construcfed

The following table outlines the optimal and neff optimal (L5,La)-codes that we will

construct, implement and analyze in terms of time and storage required.

Note that q is reserved to represent a prime power unless otherwise specified.

1

2

3

1

1

I
)

0

1

2

1

1

)
2

any lnteger

any odd integer

q+l, q = 3 mod 4

q

q+1

q+1, q is a Mersenne prime.

q, q is a Fermat prime.

k>v
q=1mod2k

ú+t
q2

q2+q+1

q2+ I
q2+2q+l

optimal

optimal

3 times optimal

optimâl

optimal

2 times optimal

optimal

Also, discussed are the follo\rying Lg-fold secrecy codes:

(1) the optimal 1-fold secrecy code with k and v arbitrary integers,

(2) the optimal 2-fold secrecy code with q source states and q messâges,

where q is odd,

and the following perfect disclosure codes:

(i) the code witrr ff source states, having $| *rrrur", and qd encoding

rules, fo¡ which Pd¡ = Pd1 =1,

(2) the optimal code with q+1 source states and q2+q messages, where Pd¡ =

for 0Si<(t-1),t<q.

t
q
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Chapter 3 : Constructions for Optimal and

Near-optimal Codes

3.1 Motivation

Combinato¡ial designs can be used to construct infinite cìasses of optimal and

near-optimal codes. We look at the types of designs needed, and in so doing formalize

the structures of the encoding arrays for secrecy and authentication codes. For more

information on the designs used we recommend Hughes and Piper [35], Beth, Jungnickel

and Lenz [11] or Sreet and Street [65]; or for cyclic designs, Baumert [6]. Projective

and affine planes a¡e discussed in Batten [5], Dembowski [22] and Hirschfeld [34].

3.2 Constructions for Perfect L5-fold Secrecy Codes

Perpendicular arrays can be used to construct optimal perfectly L5-fold secrecy codes.

APerpendicular.ArayPA¡(t,k,v) ts a),(T) by k array A of the symbols {1,...v} which

satisfies the following properties.

(i) every row of A contains k distinct symbols.

(ii) for every t columns of A, a¡d for any t distinct symbols, there are

precisely À rows r ofA such that the t given symbols all occur in ¡ow r

in the t given columns.

We need the following propeny of perpendicular arrays.



Theorem 3.2,1, (Kramer, Kreher, Rees and Stinson [38 Theorem 1.1]) If 0 < t' < t and

(Ð 
= 

(i), then a PAtr(t,k,v) is also a PA¡,,(t',k,v), where À¡' = +p Hence
(;)

(¡) or"ia* r,(;.1).

Proof. Let A be a PA¡(t,k,v). Number the columns 1 to k. Let S' be a set of any t'

(distinct) symbols. For any set T' of t' distinct columns, define I(I') to be the number of

rows of A in which the t' symbols in the columns in I a¡e the symbols in S'. Now, for

any set T of t columns, we get the follorving equation.

I rttl = À(l:,1)
TsT, lT'l=t'

In this way *" e", (f) equations in (f) unmo*nr o(i) t (Í),t,can be shown that

the system has a unique solufion for every T', that is,

Consequently, A is a PAXr(t',k,v), with Xr as defined above. f
Note. We note that if k > 2t-1 then (Ð t (þ) for all 0 ( t' ( t.

We can construct secrecy codes from perpendicular arrays in the following manner.

Theorem 3.2.2. (S tinson [60, Theorem 2.3]) If there exists a PA1(t,k,v), where k 2 2t- 1 ,

then there is a perfect t-fold secrecy code fo¡ k source states with v messages and À (i)
encoding rules.

Proof. læt A bea PAl(t,k,v). For each row r = (xt, ..., x¡) of A, defi¡e an encoding rule

e¡ by e(s) =xs, where l lslkis a source state. Weuseeach encoding rule with

I
probability . 7"r .

^\,,1
To prove that this is a perfect t-fold secrecy code, we prove that we have perfect t'-fold

secrecy for all 0 < t' < L
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Let 0 < t' < t. Since k2 Zt-r, (Ð t (i)' hence A is a PA1,(t',k,v) by Theorem 3.2. 1.

Therefore, any set of t' messages corresponds equaJly often to every set of t' source states,

Let S¡ be a set of t' source states, and M1 be a set of t' messages.

Now, using the notation of chapter 2,

p(Sr I Mr) (by Bayes' Theorem)

*or"l
= - :' trta-"t,

[er Mr s M(e)]

¡
- o! P(sr)

l^
D'

= P(Sr).

Hence we have perfect t'-fold secrecy, and that completes the proof. I
Note: The secrecy code constructed in Theorem 3.2.2 above is optimal if and only if

1,= l andk=v.

We go on to show the equivalence of optimal secrecy codes and perpendicular arrays

withÀ= l andk=v.

Theorem 3.2.3. (Stinson [60, Theorem 2.4], the case L5 = 1 is due ea¡lier to Shannon

[51, page 681]) If there exists an optimal L5-fold secrecy code for k source states, then

there exists a PAlGs,k,k).

Proof. Let eg be an encoding ruie. Let M1 be a set of L5 messages, such that

M1 c M(ea). Let 51 be a set of L5 source states. As in the proof to Theorem 2;1 .l,there

is at ieast one encoding rule e1 such that 51 = f"r(Mt). Since the code is optimal,

b =\BM\COI(r,I-s)), and er is unique. Hence M1 g M(e) for all encoding rules e. Now,

thereare ([)Aff*""tr-5-subsetsof r]remessagesM(e¿),eachof whicho..utrin ([)
encoding rules. Conversely, each of the (å) encoding rules contains ([) oinr*"t
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L5-subsets of messages. Therefore M(eg) = M(e) for every encoding rule e. So the

encoding array is a PA1(L5,k,k) on the symbols M(ø). ¡
The next couple of results establish the existence of some 1-fold and 2-fold secrecy

codes, (and the associated perpendicular arrays).

Theorem 3.2.4. (Stinson [60, Theorem 2.5]) For positive integers k, there exists a

PAr(1,k"k).

That is, for all such k, there exists an optimal 1-secret code for k source states.

Proof. Any Latin square of order k is a PAt(l,k,k). A Latin square of order k always

exists. For example, take the row 0, 1, ... , k-l and develop it modulo k. Code 4.1 in

chapter 4 is an implementation of this code. I
Theorem 3.2.5. (Mullin, Schellenberg, van Rees and Vanstone [50, Corollary 2.5]) For

all odd prime powers q, there exists a PA1(2,q,q). That is, fo¡ all such q, there exists an

optimal code for q source states having perfect 2-fold secrecy.

Proof, This construction is outlined as code 4.2 in chapter 4. I
Some constructions for t-fold secrecy codes whe¡e t ) 3 come from l-homogeneous

permutation groups.

A permutation group has degree niî it acts on a set S, lsl = n.

A permutation group is t-homogeneous if for all t-subsets S1,S2 of S, there are exactly the

same number of permutations 7r e C such that (S1)n = 52.

The number of such r must b" *.
\t/

Examples 3.2.6. (Biggs and White [13]) The symmetric group S¡ on the set (1, ..., n]

consists of all permutations of that set. This group is t-homogeneous on [1, ..., n), for

any 0 < t < n. There are precisely t!(n-0! distinct permutations that map one given t-set

of elements onto another given t-set of elements.



The altemating group A¡ on the set {1, ..., n} consists of all even permutations of that set.

(A permutation is even if it can be achieved by exchanging an even number of pairs of

elements.) this group is (n-2)-homogeneous on{1, ..., n). There are precisely (n-2)!

distinct permutations that map one given (n-2)-set of elements onto another given

(n-2)-set of elements.

For all prime powers q, the projective general linear group PGL(2,q) is 3-homogeneous

on the (q+1) points of PG(1,q). There are precisely 6 distinct peÍnutations that map a

given 3-set of elements to another given 3-set of eiements.

Theorem 3.2,7. (Stinson and Teirlinck [64, Theorem 3.1]) If G is a t-homogeneous

permutation group of degree n, then there exists a PAtr(t,n,n) where

" lcl

(T)

Hence the¡e exists a t-code fo¡ n source states with n messages and lGl encodìng rules.

Proof. Write down the permutations of G as the encoding array. I
Examples 3.2.8.

(Biggs and White [13]) As in Example 3.2.6, iî q is a prime power, PGL(2,q) is a

3-homogeneous permutations group that yields a PAo(3,q+l,q+1), and hence a 3-fold

secrecy code that has q+l source stâtes, q+1 messages, (q-1)q(q+1) encoding rules which

is 6 times the optimal number. S¡ yields a PArl(n-Ðl(t,n,n) for any 1 < t < n, and An yields

a PAin-z¡¡(n-2,n,n), neither of which yield codes with close to the optimal number of

encoding rules.

So let's look at a couple of groups thât generate optimal or close to optimal codes.

(Stinson and Teirlinck [64, Lemma 3.4]) AGL(1,8) and AI-L(I,32) are 3-homogeneous

permutation groups, where lAcl-(l,8)l = (å) *o lAlL(1,32)l = ('i) See Beth,

Jungnickel and Lenz [11j. Hence there exists PAI(3,8,8) and PA1(3,32,32) and the

associated optimal 3-fold secrecy codes.
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(Stinson [6i, Theorem 2.6]) PGL(2,8) au:,d, PfL(2,32) are 4-homogeneous pennutation

groups that yield a Pfu(4,9,9) and a PA4(4,33,33) respectively. That is, they yield codes

that have four times the optimal number ofencoding rules and perfect 4-fold secrecy.

Theorem 3.2.9. (Stinson and Teirlinck [64, Lemma 3.5]) If q = 3 mod 4 is a prime

power, then there exists a PA3(3,q+1,q+1), and hence a code with perfect 3-fold secrecy,

^3^q+1 source states and )f encoding rules, which is three times the optimal number.

Proof. The group PSL(2,q) is 3-homogeneous of degree q+1 if q is a prime number and

q = 3 mod 4. Apply theorem 3.2.7 to getaPA3(3,q+1,q+1), as required. This is code 4.3

from chapter 4. I

3.3 Constructions for (L5,Lg-l)-codes

We need our perpendicular arrays to have an extra prope¡ty to construct codes with the

additional property of authentication .

A PAf(t,k,v), A, ìs an authentication PA and denoted APAl(t,k,v) ii for all t' ( t- I and

for any t'+1 distinct symbols x¡ (1 S i I t'+1) we have that amongst all the rows of A

which contain the symbols xi (1 I i < t'+1), the t' symbols xi (1 < i < t') occur equally

often in a-ll possible subsets of t' columns.

Theorem 3.3.1. (Stinson [61, page 16]) An APA¡(t,k,v) is also an APA1,,(I',k,v), for all

r'< r. Hence ([) ai"ia', rr.t(r},). .
Note. If k ) 2t+1, a PAl(t,k,k) is also an APAX(,k,k).

Theorem 3.3.2. (Stinson [61, Theorem 3.3]) If an APAl(t,k,v) exists, then there is a

(t,t-i)-code with k source states, v messages, a"d X(i) encoding rules.

Proof. Let A be an APA¡(t,k,v). A code is constructed as in the proof to rheorem 3.2.2.

Suppose that the opponent observes the distinct messages x¡, 1 < i < t' in the channel, for

some t',0<t'<t, and then sends the message xt'+t, where xf+l * xi, 1<ilt'. The

chance of sucessful deception is calculated to be
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I p(")p(ttr,...,s¡) = (fE(x1),...,f/xr)Ì)
(e: xi€ M(e), i = 1,2,...,i+l)

I p(e) p((sr, .,. ,st,) = {f.(x1),... , f.(xi)})
{e: xi€ M(e), i = 1,2,...,t')

I pt(rr,... ,q,) = {f"(x1),..., g(x¡)})
f e: x, e Mle). i = 1.2,...t'+1ì

I p({tr,... ,s¡} = [f"(x1),... , f"(x¡)])
(e: x¡ e M(e), i = 1,2,...,t')

r,",(..1,)

(Í)

I p((tr, ... ,5,,) = {f"(x1), .,, , f"(x¡,) })
{e: xi e M(e),i= 1,2,,..,t'}

_ t"' (,,1,)- i' (l)

(r'-r) (t'l)=õo
k-f
v-t' '

t"f =#ur theorem 3.2.1.)

(as p(e) is constant.)

(the PA is an APA)

L-fr
That is, Pd¡ = ì, as required. I

Note. This code is optimal if and only if À = 1.

Theorem 3.3.3. (Stinson [63, Theorem 3.4]) For all positive integers v, and all positive

integers k < v, there is an APAl(1,k,v), and hence an optimal (i,0)-code with k source

states and v messages.

Proof. This is code 4.4 described in chapter 4. I
Examples 3.3.4.

There is an APAl(2,3,v) if and only if v)7 is odd (Stinson [60] and Stinson and

Teirlinck [64]).
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There is an APAr(2,5,v) if and only if v = 1 or 5 mod 10, v > 1 1, v * 15 (Lindner and

Stinson [37]).

Theorem 3.3.5. (Granville, Moisadis and Rees t30l) If k is odd and Q = 1 mod 2k is a

prime power, then there exists an APA1(2,k,q), and hence an optimal (2,1)-code with k

source states and q messages.

Proof. This is code 4.5 from chapter 4. I
Example 3.2.8 told us how to consm¡ct the following perpendicular arrays from multiply

transitive groups; PAr(3,8,8), PA Á3,32,32), PA4(4,9,9) and Pfu(4,33,33).

We apply theorem 3.3.1 to get the following examples.

Examptes 3.3.6. (Stinson [60, Theorem 3.7])

There is an APAl(3,8,8) and a¡ APAr(3,32,32).

There is an APA¿(4,9,9) and an APfu(4,33,33).

Theorem 3.3.7, (Stinson [60, theorem 3.7]) If q= 3 mod 4 is a prime power, q> 7, then

there is an APA3(3,q+1,q+1), and hence a (3,Z)-code with q+l source states, q+l

messages and th¡ee times the optimal number of encoding rules.

Proof. We constructed a PA3(3,q+1,q+1) in theorem 3.2.9. If q > 7 then lve can apply

theorem 3.3.i. This is code 4.6 from chapter 4. I
Having an authentication code with the same number of messages as encoding rules

doesn't really do us much good, since a successful deception is automatically assured. So

we use the trick in the following theorem to expand our codes.

Theorem 3.3.8. (Stinson and Teirlinck [64, Theorem 3.2]) If there is a t-design

S1'(t,k,v) and an APAl(t,k,k) then there is also an APAtrf'(t,k,v).

Proof. Each block in the t-design S¡'(t,k,v) is a set of k elements. An APAl(t,k,k) is

constructed on each block. The union of all the rows from all the APAl(t,k,k) is an

APAX¡(t,k,v). I
So we find some t-designs with small À. Some of these are discussed by Hughes and

Piper in [35], and Beth, Jungnickel and lrnz in [11].



An inversive geometry is a 3-design S1(3,q+1,qd+l).

Theorem 3.3.9. (Beth, Jungnickel and Lenz tl1l) If q is a prime power and d is a

positive integer, then an inversive geometry S1(3,q+1,qúr1) exists.

Proof, See Beth, Jungnickel and lænz [11], fo¡ a formal proof, or code 4.7 in chapter4

fo¡ an outline of the construction of the inve¡sive geometry. I
Theorem 3.3,10. (Stinson and Teirlinck [64, Theorem 3.5]) If q = 3 mod 4 is a prime

power, q > 7, and d is a positive integer, there is an APA¡(3,q+1,qda1¡, and hence a

(3,2)-code with q+1 source states, qd+1 messages, and th¡ee times the oprimal number of

encoding rules.

Proof. Let the lines of the inversive geometry S1(3,q+1,q+1) be blocks. There is a

PA3(3,q+1,q+1) (by theorem 3.2.9). We combine these using theorem 3.3.8. See code

4.7 in chapter 4 for an outline of the construction. I
In Examples 3.3.6 we showed an APAr(3,8,8) and an APAI(3,32,32). Combining these

with the projective geometries Sr(3,8,8) and Sl(3,32,32) we get the following.

Examples 3.3.11. (Stinson and Teirlinck [64]) Ifd is a positive integer, there exists an

APAI(3,8,7d+1) and an APAr(3,32,31d+1), and hence an optimal (3,2)-codes with 8

sottlce states and 7d+1 messages and 31 sou¡ce states and 3id+1 messages.

3.4 Constructionsfor(Lg,Lg)-codes

We can combine a perpendicular aray and a t-design to construct a code that has the

same authentication level and secrecy level.

Theorem 3.4.1. (Stinson [60, Theorem 4.2]) If there exist a PAI(t,k,k) and a

(t+1)-design S¡'(t+l,k,v) whe¡e k> 2ç1, then the¡e is a (t,Ð-code for k source states, for

an arbitrary source state probability distribution, having v messages t"o lP(i)
encoding rules.

Proof. Each block in the (t+1)-design Sl(t+1,k,v) is a set of k elements. A PAr(t,k,k) is

constructed on each of these blocks. The union of all the rows from all the PAl(t,k,k) is a
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PAp(t,k,v). Now k > 2t-1, and hence the resulting code has perfect t-fold secrecy. Also,

the number of encoding rules is cfea.fV ff(i) .

So, it remains to verify that the code is t-fold secure against spoofrng. Nowk> 2t-i, so

the PAl(t,k,k) is also an APAl(t,k,k), as we remarked earlier. Then the code is

(l)-secure against spoofing , by theorems 3.3.2 and 3.3.8. So, to prove that the code is

t-fold secure against spoofing, suppose the opponent observes the distinct messages xi,

I < i < t, in the channel. Suppose that the opponent places the further distinct message

x1a1 in the cha¡nel. Then, by a similar argument to the proof of theorem 3.3.2, it can be

shown that the chance of sucessful deceptio" U I = fi . Hence, Pd1 = 
-U. 

¡
Note that the code constructed in theorem 3.3.1 above is optimal if and only if À = À' = 1.

We use this construction in the following theorems to construct infinite classes of optimal

(1,1)-codes and near-optimal (2,2)-codes (for an arbitrary source state probability

distribution).

Theorem 3.4.2. (Stinson [63, Corollary 3.11]) If there exists a S1(2,k,v), (i.e. a

(v,k,1)-BIBD), then there also exists an optimal (1,1)-code for an arbiuary source srate

distribution., with v source states a¡d v messages.

Proof. Theo¡em 3.2.4 states that aPAl(1,k,k) exists for all k. I
The infinite classes of S1(2,k,v) that spring most readily to mind a¡e the affine geomerries

Sr(2,q,qd) and the projective geometries Sr(2,q+f ,ru'¡, for all prime powers q and all

positive integers d. This leads us to theorems 3.4.3 and,3.4.4 below.

Theorem 3.4.3. (Stinson [60, Theorem 4.4]) For all prime powers q and all positive

integers d, there exists an optimal (1,l)-code for an arbitrary source state probability

distribution, with q source states and qd messages.

Proof. We take the lines of the affine geometry of order q and dimension d as blocks.

We expand each block into a PA1(1,k,k), which we have shown exists (see theorem

3.2.4). This is code 4.8 in chapter4. I
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Theorem 3.4.4. (Stinson [60]) For all prime powers q and all positive integers d , there

exists an optimal (1,1)-code for an arbitrary source state probability distribution, with q+1

source states and {f .essag"r.q-r

Proof, We take the lines of the projective geometry of order q and dimension d as

blocks. We expand each block into a PAI(1,k,k), which we have shown exists (see

theorem 3.2.4). This is code 4.9 in chapter 4.

To construct (2,2)-codes we need the concept of an orthogonal array.

An orthogonal array OA(k,v) is a v2 by k array, A, of the symbols { 1, ... ,v), such that

for any t columns c1,..., ct of A, and for any t distinct symbols x1,..., xr,

there is a unique row r ofA such that xi occurs in column c¡ ofrow r, for

1<i<t.

Now, for any prime power q, an OA(q,q) can be constructed from the affine plane of

order q, with the property that for each element o of GF(q), there is a ¡ow that contains cr

repeated q times. If these q rows are deleted, a PA2(2,q,q) remains. This constmction is

exemplified in code 4.9 in chapter 4.

The following constructions for (2,2)-codes require finite fields GF(n) and GF(n-l) and

so use Fermat and Mersenne primes.

Theorem 3.4.5. (Stinson [60, Theorem 4.5]) For any Mersenne prime q, there is a

(Z,2)-code for an arbitrary source state probability distribution with q+l sou¡ce srates and

(ggUSXdl.essages. 
This code has twice the optimal number of encoding rules.q-l

Proof. We know that a Sl(3,q+1,qd+1) exists. We also know that an OA(q+1,q+1) can

be constructed from the affine plane of order q+i. Apply lheorem 3.4.1. This

construction is outlined as code 4.9 in chapter 4. I
Theorem 3.4.6. (Stinson [60, Theorem 4.6]) For any Fermat prime q, there is a

(2,2)-code for an arbitrary source state probability distribution with q source srares and

(q-t)d+t messages. This code is optimal.

Proof. There is a PA1(2,q,q) and an S1(3,q,(q-l)d+i). Apply theorem 3.4.1. a
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Note. This may not be an infìnite class of codes, since only a finite number of Fermat

primes are known.

3.5 Constructions for Perfect Disclosure Codes

We construct optimal perfect disclosure codes using transversal designs.

A transversal desig¿ TDI(t,k,n) is a triple (X, G, A), where X is a set of kn polnts, G is a

partition of X into k groups of n points each, and A is a set of Int å/ocks each of which

meets each group in a point, such that every t-subset of points from distinct groups occurs

in exactly l, blocks.

Theorem 3.5,1. (Stinson [60, Theorem 5.3], the special case t=2 and X, = 1 is due to

Brickell t16l) If there exists a transve¡sal design TD¡(t,k,n), then there exists a perfect

disclosu¡e code for k source states, having kn messages and Ànt blocks, and for which

p¿i = * ( = f ), tor O < i < t-1. The code is optimal if and only if l, = 1.

We have a partial converse to theorem 3.5.1, that gives us a transversal design

corresponding to every optimal perfect disclosure code.

Theorem 3.5.2. (Stinson, [60, Theorem 5.4]) Suppose we have an optimal perfect

disclosure code for k source states, v messages ana (i)t encoding rules. Suppose funher

that,inthiscode,Pd¡=ffor0<i<t-1. Then, there exists a transversal design TD1(t,k,n),

where n = Ë.

Proof. Now, every set M of t messages corresponding to distinct source states appears in

at least one encoding rule, as in the proof to theorem 2.7.5. Since the code is optimal, M

must appear in exactly one encoding rule. Thus we have a TD1(t,k,n), where n = Ë. f
Theorem 3.5.3. (Ilanani [31, Lemma 3.5]) If q is a prime power and t < q is an integer,

there is a TD1(t,q+l,q+1), and hence an optimal perfect disclosure code with q+1 source

states and q2+q+1 messages, and for which Pdt = 
å 

= T,for 0l i I ç1.

Proof. This is code 4.11 in chapter 4. I
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The code guaranteed by theorem 3.5.2 allows us to use the same encoding rule up to q-1

times (as opposed to the two or three fimes our other infinite classes of codes allowed us).

Theorem 3,5.4. (Stinson [63, Theorem 3.7]) If q is a prime power and d > 2 is an

^d
integer, there is a TDoa-2(2, #, 01, and hence a perfect disclosure code with d* rou...

.,.r"r, {p -"ssages and qd encoding rules, and for which Pd¡ = 1¡o, i = 0 and i = 1.

Proof. This is code 4.12 in chapter 4. I
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Chapter 4 : Implementations

4.1 Motivation

Optimat and near-optimal secrecy and authentication codes a¡e good in theory, but if they

cannot be implemented efficientiy, then the effort to make the number of encoding rules

as small as possible is somewhat wasted. Storing an enti¡e encoding array for a code is

not going to be possible once the code gets large. However, we also have to ensure that

the time taken to encode source states and decode messages does not become too large.

This chapter outlines pseudo-code algorithms for the infinite classes of codes that were

found in Chapter 3.

4.2 Finite Field Ärithmetic

These implementations are going to use finite field arithmetic, so we include here a very

brief note on operations in GF(pn), the finite (or Galois) field of characteristic p and

degree n. We assume he¡e that the reader is familiar with the definition of a frnite field,

and that it always has a prime power order. GF(p), where p is prime, can be constructed

by considering the a¡ithmetic operations modulo p. GF(pn) can be considered as a

n-tuple of elements of GF(p). GF(pn) is most commonly (but not always, see chapter 5)

considered as the set of polynomials with coefficients in GF(p) modulo some nth degree

polynomial i¡reducible over GF(p). Every finite field has a generator o, such that every

element of the field except the zero element can be represented as a power of cr. If x is an

element of GF(q), then xq'l = 1, the multiplicative identity. So every non-zero element
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could also be considered as a power of c, between 0 and q-2. Every element except 0 has

a multiplicative inverse. So addition, subtraction, multiplication and non-zero division

a¡e all defined. From multiplication we define exponentiation in the obvious way. We

also define a ñnite logarithm in the following ma¡ner. If cr is a primitive element of the

GF(q), and x is any non-zero element of GF(q), then the logarithm of x to the base q,,

logsx is the power (between 0 and q-1) to which o must be raised to get x. In other

words, the following two statements are equivalent for x and c as defined above and the

integer y, 0l y ( q-1:

logsx = Y

and x = GY.

Example 4.1, Consider the finile field GF(23). The elements can be represented as (0,1)

polynomials modulo f(x) = x3+x+1. The element s, where f(o) = g, is a generator of the

field. The element 0 is not a power of cr, but the rest of the field is demonstrated in the

table below.

1

x

x2

x+1

x2+x

x2+x+l

x2+1

0

1

2

3

4

5

6

Then, for example, logs(x2+x) = 4.

Another thing we wish to do in finite fields is select a random element from an

equiprobable distribution. Each element would be therefore be selected with probability

-Lq'
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Also, we need to be able to impose an ordering on the elements of a finite field. This can

be done in a number of ways. To order elements over GF(p), represented as integers

modulo p, it is probably easiest to orde¡ the field 0, 1, 2, ...,p-l, although the field could

also be ordered 0, crO, tx,l, ..., a!-2, where a is a primitive element. To order the elemenrs

of GF(pn), when we have an ordering of GF(p), and each element of GF(pn) is

represented as an orde¡ed n-tuple of elements of GF(p) with respect to some basis, we

could order the n-tuples lexicographically. Else we could order GF(pn) as powers of a

primitive element.

Example 4.1. (part 2). Suppose we have the ordering 0, 1 on GF(2), and we wish to

order GF(8), as above.

Then, the lexicographic ordering is 0, 1, x, x+ 1, x2, xz+I,x2+x, x2+x+ 1.

Or, as ordered 3-tuples with respect to the basis (o2, s, 1):

(0,0,0), (0,0, 1), (0, 1,0), (0, 1, 1), (1,0,0), (1,0, 1), (1, 1,0), (1, 1, 1).

Alternatively, if ordered by powers of the generating element c,, the ordering is as per the

table above.

See chapter 5 for a detailed look at algorithms, costs and running times of finite field

operations.

A final technical note before we begin: all random elements are chosen from an

equiprobable distribution unless otherwise specifi ed.

Code 4.1

An optimal code having perfect l-fold secrecy, k source states, k messages and k

encoding rules, for any integer k,

See Code 4.4, the (1,O)-code, and put v = k.



Code 4.2

An optimal code for q source states, q -.r.ug.r,$ encoding rules and perfect

2-fold secrecy where q is an odd prime power.

Let GF(q) have primitive element p.

The encoding array is made up of the rows

x x+Bn x+Pn+l x+Pn+2

for each xe GF(q), and each O 
= 

n 
= f .

x+Ên+q-2

The source states are numbe¡ed 0 to q-1, and the messages are elements of GF(q).

Example 4.2. Conside¡ Q = 5. Then Ê = 2 is a primitive element of GF(5). The

encoding array is as follows. lVe index the encoding rules by x and n.

encoding rule

xn
source sute

7

0

0

I

I
2

2

J

0

I

0

1

0

1

0

01243
02431
t2304
13042
234r0
24103
34021
30214
40132
41320

3I
40
4l

or equivalendy, the two rows corresponding to x = 0 developed modulo 5
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Algorithm 4.2.

The key source,

Step I
Choose a random n. O < n <S."2

Step 2.

Choose a ¡andom x, xe GF(q).

Step 3.

Send (n,x) to the transmitter and the receiver by a secure channel.

rhe number of bits sent by the key source is lloezq'l* [rræ (f)ì = loc, (+) bi,r,

which is approximately log2b bits or about 2 bits ofkey for every bit of message.

The transmitter (sending source state i).

Step 1.

If i = 0 then message := x.

else message '= x+Bn+(i-l).

Step 2.

Send message to receiver via an open channel.

The receiver.

Step 1.

If the message is not an element of GF(q) then reject the message.

If message = x then the source state is 0.

If the message * x then the source state is

[(logp(message-x) - n) mod (q-1)] + 1.
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Code 4.3

A perfect 3-fold secret code with q+1 source states ând *t#* encoding rules,

which is úhree times the optimal number, where q = 3 mod 4 is a prime porver.

This is the (3,2) code , i.e. code 4.6.

Code 4.4

An optimal (l,0)-code with k source stâtes, v messâges and v encoding rules, where k

and v are integers, wifh v à k.

The encoding array is the row

012,..k-l
developed modulo v.

The source states are numbered from 0 to k-l and the messages are integers between 0

and v-1.

Example 4,3. When k = 4 and v =7 we get

Notice that each possible message occurs once in each colum¡.

e0

e1

e2

e3

e4

e5

%
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Algorithm 4.4.

The key source.

Step l.
Select a random integer n,0 S n < v-1.

Step 2.

Send n to transmitter and receiver via a secure channel.

The¡e a¡e ftogzvl = llogeU'l ¡its sent by the key source, or about 1 bit of key for every bit

of message.

The transmitter (sending source state i).

Step 1.

message ;= (i+n) mod v.

Step 2.

Send message to receiver by open channel.

The receiver.

If message is not an element of {0, ... ,v- 1} then reject message.

Step 1.

1 ;= (message-n) mod v.

Step 2.

If 0 < x < k-1 then the source state is x else reject the message.
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Code 4,5

An optimal (2,1) code with k source states, q messages ana $ encoding rules,

where k is odd and Q = 1 mod 2k a prime power,

Let B be a primitive element of GF(q),
9:f

Let c¡ = Þ 
k, akth root of unity.

The encoding array has as its rows

{o + pxcrY o + Bxcrl+Y crl + pxcG-1)+r

for all o¡e GF(q), all integers x such that 1

0<ylk-1.

Without using a explicitly, the row becomes,
(q-l)v (o-l Xl +y)

o*p**tÏ- o*p**"-iÌ'

< * < f, and all integers y such that

(q_l Xß_r )t¿)
^x+.-^---..ÌJ... (t)+Þ l(

Example 4.5. When k = 3 and g=13, we note flrst that 3 is odd and that 13 is a prime

congfuent to l mod 6. þ=Zisageneratorof GF(13), ando=Êa=3. The adding of co

causes the development mod q, and the changing y values, with x and ro held consrant

causes the rotation of the rows.

The encoding array consists of each of the following rows developed mod 13.

1

1

I

2

)
2

0

1

2

0

1

,,

2

6

5

4

12

10

65
52
26
t2 10

104
412
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Notice that, in this case, {2,6,5} and 14,10,12\ are a pair of complementary difference

sets, so that the resulting array is a cyclic BIBD with l. = 1, with each row expanded into

a Latin square. This happens wheneverf = 2, since the two x values conespond to

quadratic residues and quadratic non-residues. For S = 1, the "sta¡ter row" is a

difference set, and the resulting array is also a cyclic BIBD with î, = 1, with each row

expanded into a Latin square.

Älgorithm 4.5.

The key source.

Step I.
Choose a random integer x, t < x <S.

Step 2.

Choose a random y,0 < y < k-1.

Step 3.

Choose a random coe GF(q).

Step 4.

Send (x, y, o) to Íansmitter and receiver via secure channel.

rhe key sou¡ce transmits [r's, (S)1 . flogrkl + ltogrql = ,"e, (9") = tos2b bits, or

about 2 bits of key for every bit of message.
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The transmitter (sending source state i).

Step 1.
o-1 - ..

^-ïv+r)+xmessage:=O+Px "

Step 2.

Send message to receiver via a secu¡e channel.

The receiver.

If the message is not in GF(q) then reject message.

Step l.
If message = o then reject message.

Step 2.

temp := (logp(message-o) - x) mod (q-1).

Step 3.

If f; OivlOes temp exactly (that is, if ptemP E the subfield

then source 
"u," 

i. (ff - v) moa t
else reject the message.

Code 4.6

A (3,2)-code with q+l source sfates, q+l messages anO 
(stp 

encoding rules,

which is three times the optimal number, where q = 3 mod 4 is a prime power.

The construction utilizes PSL(2,q), the special linear group on q+l points, GF(q)u{".}.

Note that PSL(2,q) is a 3-homogeneous permutation group. Note also that

^3^lPsl-(2,q)l=f.

The permutations of PSL(2,q) written as the rows of an array, form a (3,2)-code.

These permutations can be defined on GF(q) u {""} by the mappings
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âx+b* - liå, ad-bc is a non-zero square in GF(q),

for each a, b, c, d in CF(q), with sensible rules about co.

More specifically, when c * 0, if x = f , tnen x -e oo, and if x = "", then x -+ 3 
.

If c = 0, then oo -) ôo, that is, "" is fixed.

Note that the mappings defined by (a,b,c,d) and (ka,kb,kc,kd) are the same for any

k e GF(q) \ {0). Also, if a = 0, then b + 0. So the elements of PSL(2,q) are mappings

defined by (1,b,c,d), where d-bc is a non-zero square, and (0,1,c,d), whe¡e -c is a non-zero

square. To choose a non-zero square equiprobably, an element of GF(q) \ {0) is chosen

equiprobably, and squared. The source states are numbered from 0 to q and the messages

are elements of GF(q) u {".}.

Example 4.6. For q = 3 *" t"t

in PS

0

0

0

1

1

1

2

2

I

1

1

1

0

1

)
0

1

)
0

I

2

2

)
2

1

1

1

1

7

0

1

0

2

0

1

2

Note that every unordered triple occurs the same number of times in each set of three

columns. Within those riples, each unordered pair occuß in precisely one of the three

possible pair of columns. Note also that the probability of a successful impersonation

attack is ! = 1, and the probability of a sucessful substitution &l = 1. So the code fulfills

012æ
02ooI
0""12
120."
)æ01
oo102
201oo

021
10oo2

210
loo20
21 0
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the conditions for authentication, but a spoofing or impersonation attack is always

successful.

Algorithm 4.6.

The key source,

Step l.
Chose a random real number r, 0 < r < 1, from a uniform

distribution.

Ifr<f=then
q+.1

a:=0.
b:= 1.

d := a random element of GF(q).

m := a random element of GF(q\{0}.
c:=-m2,

lf¡>l=thenq+l

a:=1
b := a random element of GF(q).

c := a random element of GF(q).

m := a random element of GF(q\(0 ).
d:=m2+bc.

Step 2.

Send (a,b,c,d) to transmitter and receiver via a secure channel.

Number of bits sent is 3[log2ql+1, o¡ about 3 bits of key for every bit of message. This is

only slightly more than the llog2bì = 3log2q bits required if the number of the encoding

rule was ransmitted.
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The transmitter (sending source state i).

Step 1.

lf i = q then ¡ç ¡= oo, elso x := the ith element of GF(q).

Step 2.

If c = 0 and x = "" then mêsSâge i= oo.

If c = 0 and x *." then."rrug" ,= f.
If c +0 and x = oo then message := 3.

If c * 0 and x = I then message := oo.

If c * 0 and x * "" and x +d then *essage :=4{.
Step 3.

Send message to receiver via an open channel.

The receiver.

Sten l. I x := qE(rne$cgÐ.1
c(mesege)-a'

Ifc = 0 and message = oo then x := oo.

If c = 0 and message r 0 then x:= E(4T@ 
.

If c + 0 and message = "" then x:= ! .
c

If c * 0 and messase + oo or ê then * ,= !!(49!$ëd ." c c(message)-a

If c + 0 and messase = 
4then x := oo.

Step 2.

If x = "" then source state is q.

If x * o" then the source state is j, where x is the jth element of
GF(q).
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Code 4,7

A (3,2)-code with q+l source states, qd+1 messages, and (qd+l)qd(qd-l) encoding

rules which is six times the optimal number where q is a prime power and d is any

positive integer.

Let GF(qd) have primitive element p.

dl
Then there is a subfield, GF(q) with primitive element B +l = cr. Ir makes sense,

therefore, to talk about adding or multiplying elements from these two different fields

together.

In theorem 3.3.10 we promised a code with th¡ee times the optimal number of encoding

rules. Its encoding array is based on the set of blocks of an inversive plane,

S1(3,q+1,qd+1). Each block is expanded into a APA3(3,q+1,q+1) by writing the

permutations of PSL(2,q) acting on each block.

The initial block of the S1(3,q+1,qd+i) is GF(q)u{""}. Each block of S1(3,q+1,qd+l) is

the image of this initial block under an element of PGL(2,qd), the general linear group on

qd + 1 elements. That is, the permutations of CF(qd)v{."}, defined by

ex+fx -+ffi,
Each block is obtained from (q-1)q(q+1) different permutations, since PGL(2,q) is the

subgroup of PCL(2,qd) that fixes GF(q)u{""}. So to choose a block, a permutarion in

PGL(2,qd) is chosen from an equiprobable distribution. Nore that (e,f,g,h) generares rhe

same permutation as (øe,øf,c,g,oh), o€ GF(qd)\{0J. Note also lhat if e = 0, then f * 0.

So the permutations in PGL(2,q) can be wriuen as (1,f,g,h), for h + fg, and (0,1,g,h), for g

+0.

However, if we pick a base block {0, 1, ..., q-1, ""}with a fixed ordering and ler our

encoding rules be indexed by the appropriate (e,f,g,h) then we run into a problem. Each

e,f,g,he GF(qd), eh-fg + 0.
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of the (q-1)q(q+i) permutations that define a given block will define it in a different

order. Fortunately, ail is not lost. We can still construct a code with six times the optimal

number of encoding rules, which has the added advantage of being easy to implemenr.

(No-one wants to have to sort each block.) The set of permurations of PGL(2,qd) is the

set of blocks of S1(3,q+1,qd+1), with each block expanded into an APA6(3,q+1,qd+ 1).

This is so because PGL(2,qd) is sharply 3-transitive, so that each ordered 3-tuple of

elements occurs precisely once in each (ordered) set of th¡ee columns.

Choosing a random encoding rule, then, is a random permuration from PCL(2,qd), of

GF(qa¡u1""¡.

Algorithm 4.7.

The key source.

Step 2. {Define a pennutation, ry, to give a block of

S1(3,q+1,qd+1) J

Choose a random real number r, 0 < ¡ < 1, from a uniform

distribution.

Ifrci:,then
q"-1

e:=0.
f := 1.

g := a random elemenr of GF(qd^{O }.
h := a random element of CF(qd).

Ifr>i-.thenq"'t'
e :-- 1.

f := a random element of GF(qd).

g := a random element of GF(qd).

h := a random element of GF(qd\{bc).
Step 4.

Send (e,f,g,h) to Eansmitter and receiver via a secure channel.
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The number of bits sent is 3ldlogzql + 1 = togzb, or 3 bits of key for every bit of

message.

The trânsmitter (sending source state i).

Step 1. {Find the ith element of the initial block. )

Ifi=qthenx:=o".
If i = 9-1 then x := 0.

If i +q,andi*q-l then x := the ith element of GF(q).

Step2.(message'= ffi.t
If c = 0 and x = "" then message := ôo.

If c = 0 and x + oo then -rrrug, ,= f.
If c + 0 and x = oo then message := 

q.

If c *0 and x = !then messase := oo.

If c + 0 and x + - a¡d x + 
g 

t¡en message := "^*,f .c - gx+h

Step 3.

Send message to receiver by an open channel
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The receiver.

Steo l. { * 
'= 

$(gçrse4Ð.l
g(message)-e'

If c = 0 and message = oo then x := oo.

If c = 0 and message* o th.n *,=&@T@.
Ifc + 0 and message = "" then *'= - 

*.
If c * 0 and messase = 9 ¡þsn ¡ ;= "".-c
If c + 0 and message * oo and message + | then *'= $Sd'-----'-' g(message)c

Step 2.

If xe GF(q)u("") then reject message.

Step 3.

If x = "o then source state is q.

If x * ." then the source state is j, whe¡e x is the jth element of
GF(q).

Code 4.8

An optimal (l,l)-code with q source states, q2 messages and q2(q+1) encoding rules,

where q is a prime power.

Let GF(q) have primitive element B. The encoding array is based on rhe affine plane of

order q. Each block of the affine plane is expanded into a Latin square by a series of

cyclic shifts.To consruct an affine plane, consider GF(q)XGF(q) = {(o,p) I ø,Be GF(q) }.

Take lines of slope o, for every cre GF(q). More specifically, each line is a set

{(x,y) | y = gx+Þ}, 0e cF(q). Add the lines of slope "", {(x,y) I x = B}, for each B.

Our messages are (a,B) pairs, (where o,Be GF(q)).

Example 4.8.1. Consider GF(3) = (0,1,2).

Then GF(3)XGF(3) = {(0,0),(0,1),(0,2),(1,0),(1,1) ,(r,2),(2,0),(2,1),(2,2)).

We abbreviate (a,b) to ab for ease of reading.
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The lines of the affine plane a¡e enumerated in the table below.

00,10,20

01,11,2i

02,12,22

00,tt,22

01,12,20

02,10,2r

æ,12,21

01,r0,22

02,11,20

00,01,02

10,11,12

20,21,22

The points in each block of AG(2,q) need some ordering so we can apply a series of

cyclic shifts to them to get a Latin square. The lines with slope oe GF(q) are ordered by

the first element of the pair where some ordering is defined on GF(q). The blocks of

slope "" are ordered by the second element (since the first elements are all the same).

Example 4.8.2. Consider PG(2,3) (over GF(3)). læt cF(3) be ordered 0, i, 2. Then the

block with slope 2 through 11 is ordered 02, 11,20. The block of slope "" through 1l in

PG(2,3) as in Example 4.8.1 is o¡dered 10, 11, 12.

Each block gives rise to q tows in the encoding array.

Example 4,8.3. Consider PG(2,3) as constructed in Example 4.8.1.

The 3 rows determined by the block 02, 11,20 are

We select the block by choosing coefficients in the equation ox1+px2+y= Q.

The transmitte¡ calculates message = (xl,x2) which lies on the line ox¡+Bx2+y = 0

To send source state s¡, where 0 < i < q-1, we do the following.

If p * 0 then x1 := the (i+n mod q)th element of GF(q),

. -d.x, - Y
and xZ := --þ- .

02

t1
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If p=Qús¡¡1 ;= Ï,

and x2 := the (i+n mod q)th element of GF(q).

Algorithm 4.8.

The key source.

Step 1.

Choose a random real number r, 0 < r < 1, from a uniform

distribution.

Step 2.

Ifr<l- thendoSten2a,q+l

Step 2a.

c[:= 0,

B:=1,

T := a random element of GF(q).

If r > l= then do Steo 2b.q+l

Step 2b.

0:= I,

B := random element of GF(q),

y := random element of GF(q).

Step 3.

Choose a random integer n, 0l n I q-i.

Step 4.

Send (o,p,1,n) to transmitter and receiver.

The key sou¡ce sends fflog2ql + 1 = logzb bits of key, or 1.5 bits of key for every bit of

message.



The transmifter (sending source state i).

Step 1.

j := i+n mod q.

groupj := the jth element of GF(q).

Step 2.

If B + 0 then x1 := groupj,
. -dxr-v

anrl xr := ----# -'þ
Ifß=0then *,:=-1.

d'

and x2 := groupj.

message ¡= (x1,x2).

Step 3.

Send message to receiver via an open channel.

The receiver.

If message is not of the form (x1,x2), where x1,x2 e GF(q), then

reject message.

Step l.
Ifox1 + px2 + y + 0 then reject message.

If clxl +Bx2+T=0 a¡d Ê = 0 then groupj := x2.

Ifoxl + Bx2 + Y= 0 and B + 0 then groupj := x1.

Step 2.

Retrieve j, where groupj is the jth element of GF(q).

Source state is (-n) mod q.
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Code 4.9

An optimal (l,l)-code wifh q+l source states, q2+q+1 messages and (q2+q+1)(q+1)

encoding rules, where q is a prime power.

The encoding array is a projective plane whose blocks a¡e expanded into Latin squares,

by choosing an arbitrary order of points on each block and rotating cyclically.

First constructíon for PG(2,q).

A projective plane can be constructed as an extension of an affine plane. Consider

GF(q) X GF(q) = { (o,0) I c,Be GF(q) }. Take lines of slope ø, for every cre GF(q), thar is,

a set {(x,y) I y = ex+0 }, for each Êe GF(q). Add the lines of slope "", namely

{(x,y) I x = pi, for each p. This is the affine plane.

To each of these paraliel classes of lines (lines of the same slope), we adjoin a point ".o

(or."-). We add a line through these '""' points, (."a, oeGF(q)u{.")). Our messages

are (o,B) pairs, (where o,Êe GF(q)), together with the symbols ""o for ce GF(q), and ."-.

Example 4.9.1. For example, consider GF(3) = {0,1,2).

rhen GF(3)XGF(3) = {(0,0),(0,1),(0,2),(1,0),(1,1) ,(1,2),(2,0),(2,r),(2,2)) .

We abb¡eviate (a,b) to ab for ease of reading.

The lines of the affine plane are in the table b€low.

00,10,20

01,11,21

02,r2,22

æ,11,22

01,12,20

02,t0,21

00,r2,2r

0r,t0,22

02,rt,20

00,01,02

10,1i,12

20,2r,22
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We aff,rx a point -¡ to all lines of slope 0, ool to those of slope 1, oo2 to those of slope 2

and oo- to those of slope "". The '."' points are then connected.

This gives us the following blocks:

00 10 20 c"o

01 11 2I coo

02 12 22 ooo

00 11 22 ool

01 21 20 oor

02 10 2l oor

00 12 21 *z
01 10 22 æ2

02 11 20m
00 01 02

i0 11 12

20 21 22 6*
c.0 ool *2

The points in each block of PG(2,q) need some ordering so we can apply a series of

cyclic shifts to them to get a Latin square. First order the points of GF(q). The lines with

slope c e GF(q) are ordered by the first element of the pak, with ."o last.

Example 4.9.1. (Part 2) For example, in PG(2,3) (over GF(3)),if GF(3) is ordered 0, 1,

2, the block with slope 2 through 11 is ordered 02, 11,20, o.2. The blocks of slope "" are

ordered by the second element, with ""- last. For example, the block of slope ." through

11 in PG(3) as above is ordered 10, 11,12, ""- The '."' line is ordered by subscript. In

PG(3) as above, the ordering of this line is -0, æ1, æ2, æ-.

Each block becomes q+1 rows in the encoding array.
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Example 4.9.1. (Part 3)

afe

For example, the 4 rows arising from the block 02, 11,20, -z

source state

t2
row I
tow 2

row 3

row 4

02 11 20

11 20 *z
Z0 Ø2 0Z

æ2 02 11

*2
02

11

20

Algorithm 4.9.1

The key source.

Step l. fChoose a random line of PG(2,q)]

Choose a ¡eal numbe¡ r, 0<¡< 1 from a uniform distribution.

If r <;l;, then line := inf, (the line through the'."'s).
q-+q+l

If r > ¡]; ,then cr := a random element of GF(q)u {"" ),q'+q+1

(the slopeJ,

Ifa=""then

B := a random element of GF(q),

y:= 0.

If cr, * "o then

p:=0,
y:= a random element of GF(q).

((B,y) is a point on the line. )

¡ne := (c¿,F,T).

Step 2. {Pick a random row of the Latin square,

i.e. a cyclic shift. )

n := a random integer, 0 < n < q.

Step 3.

Tra¡smit (line,n) to transmitter and receiver via a secure channel.
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The number of bits sent by the key source is about 1+3log2(q+1) (since we need I bit to

represent the line inf, llog2(q+1)ì to ."p..r"nt o, hogr(q+l)l to represenr P or y,

depending on what o is, and llog2(q+1)ì to represent n), or 2 bits of key for every bit of

message. The number of bits sent is not much more than the hog2bì = 3log2(q+1)

required to specify the encoding rule.

The transmitter (sending source state i).

Step 1.

j := (i+n) mod (q+1)

Step 2.

(message is the jth element of the block chosen by the key source.)

If line = inf is received from the key source then

meSSAge := c.0rh etemenr of cF(q)) .

If slope is ae GF(q) then

message := (ith element of CF(q), conesponding point

on the line).

If slope is oo then message ¡= (p, jth element of GF(q)).

Step 3.

Transmit message to receiver via an open channel.
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The receiver.

If the message is not an element of
GF(q)XGF(q)u(".",xe GF(q)u{"") ) then reject message.

Case l
line = inf is received f¡om the key source.

Unless the message is in (""", xeGF(q)u{""}}, reject message.

If message is..¡ and x is the jth element of GF(q) then the source

state is (i-n) mod (q+1).

If message is ""*.then the source state is q+1-n

Case 2.

(.", Ê, y ) is ¡eceived from the key source.

If message is an element of (-", xe GF(q)) reject message.

If message is oô-, then source state is q+1-n.

If message is (p,tl),for some ¡r,qe GF(q), then if ¡t+B, reject

message.

Else note j, where q is the jth element of GF(q).

Source state is C-n) mod (q+1)

Case 3.

(o, Þ, T n ) is received from the key source.

If message is an element of (".*, xe GF(q)u{."} }, then if x+a

reject message. If x = q, then source state is (- n) mod (q+1).

If the message is (p,q),for some p,ne GF(q), then if q-y * o(p-p)

then reject message. Else the point lies on the line and source state

is (-n) mod (q+1) where ¡r is the jth element of GF(q).

Second construetion for PG(2,q).

PG(z,q) can be consÍucted using Singer's theorem. That is, conside¡ GF(q3) with

primitive element p and identify it with tGF(q)13. Then the points of PG(2,q) are the

1-dimensional subspaces of tGF(q)13. A line of PG(2,q) is the kemel of a linea¡

functional from [GF(Q]3 to GF(q). We choose one whose kemel is easy to recognize:
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L:(o,y,ô) -+ ô. The kemel of L is the block represented by (1,c1,0), a,e GF(q) and the

point (0,1,0). We inte¡pret these representative points as powers of B and develop rhe

powers modulo q2+q+1. We note that any two tepresentatives of a 1-dimensional

subspace are scalar multiples of one another. That is, if (a,b,c) and (d,e,f.¡ are

representatives of the same 1-dimensional subspace, then there is a constant l,eGF(q)

such that a= l"d, b= l.e, and c = Àf. That is, (a,b,c) = (0,0,À) (d,e,f), and

(0,0,1,) = Bn(qaq+l), for some integer n.

Example 4.9.4. For example, GF(27) = GF(33) is generated by p, a root of x3+2x+1.

The kemel ofthe linear functional L:(o,y,õ) -+ ô is represented by

(1,0,0) (1,1,0) (1,2,0) and (0,1,0).

p2 pro p4 B

Now q2 +q+1 = 13, so the projective plane of order 3 is the row

2 l0 4 1 developed modulo 13.

We number the source states from 0 to q.

Algorithm 4.9.2.

The key source.

Step l
Choosen,0ln(q2+q.
Step 2.

Choosex,0Sx(q.
Step 3.

Transmit (n,x) to ransmitter and receive¡.

The numbe¡ of bits sent by the key source is llog2(q2+q+t¡l + llog2(q+1¡ì which is

ltogzbl orllogzb'l + 1, about 1.5bitsof key forevery bitof message.
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The transmitter (sending source state i).

Step I
If (i+x) mod q+ 1 = q then P := (0,1,0)

else P := (1, ith element of GF(q),O).

messâge ;= (logp(P)+n) mod (q2+q+1).

Step 2.

Send message to receiver via an open channel.

The receiver.

If the message is not an element of {0, ... , q2+q} then reject

message.

Step 1.

p := B(message-n) 
mod (qzrq+l).

Step 2.

If P is not of the form (pl,pz,O) then reject message.

If p1 = 6 then i := (q-x) mod q+1.

else retrieve j tom ff , the jth element in CF(q).

i := 0-x) mod q+I.

Code 4.10

A (2,2)-code rvith q+1 source states, qd+l messages 
"nO 

d+TGlt encoding rules

which is two times the optimal number, where q is a Mersenne prime and d is any

integer.

Let GF(qd) have primitive element B. 
d=!

Then a, the primitive element of GF(q) is Êq-l .
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The encoding array is constructed from the inversive plane of order q, S1(3,q+1,qd+1).

Each block is expanded into q(q+1) rows of the encoding array by using an orthogonal

anay OA(q+1,q+i), created from the affine plane of order q+l, noting that q+1 is a prime

power. To construct the OA(q+1,q+1), let the points in AC(2,q+1) be

GF(q+l )XGF(q+ 1 ).The lines are

y=mx+c form,ce GF(q+l)

x=d forde GF(q+l).

The lines y = c ând x = d a¡e used as a ¡eference grid and hence ignored.

The lines y = nìx + c, me GF(q+1\[0J, ce GF(q+1) a¡e used to determine entries in the

OA(q+l,q+l). The entry in the xth column of the row indexed by (m,c) is y = ¡¡¡ 1 
".

The source states are numbered f¡om 0 to q and the messages are in GF(qd)u{""}.

The initiai block of the S r(3,q+1,qd+l) is GF(q)u{""}. Each block of S 1(3,q+1,qd+l) 15

the image of this initial block under an element of PGL(2,qd), the general linear group on

qd + 1 elements, consisting of the permutations of GF(qd¡u {""), defined by

ex+fx + ffi' e,f,g,heGF(qd), eh-fg * o.

Each block is generated by (q-1)q(q+1) different permutations, since PGL(2,q) is the

subgroup of PGL(2,qd) that fixes GF(q)u{""}. In order to choôse a block equiprobably, a

permutation in PGL(2,qd) is chosen equiprobably. Note that (e,f,g,h) generates the same

permutation as (oe,of,ag,ah), se GF(qd\{0}. Note also that if e = 0, then f * 0. So the

permutations are (1,f,g,h), for h * fg, and (0,1,g,h), for g * 0.

However, this leaves us with the same problem that we had in Code 4.7. However, our

solution here is not as simple, since mereiy listing the permutations of PGL(2,qd¡ that act

on GF(q)u{""} leads us to a code with (q-1) times the optimal number of encoding rules

(as compared to twice the optimal number in code 4.7.)

So we are faced with imposing some other order on the elements of a block.

We could calculate the entire block and then sort it - that means O(q) freld operations in

the encoding and decoding stages. Altematively, we could choose one set (e,f,g,h) for

-64-



each block beforehand and store it on some cheap serially-accessed device (for example

magnetic tape). Then, all the key sou¡ce needs to do is to choose an integer x between 1

*d (*:H# 
, and access the the xth reco¡d (e,f,g,h) on the tape. The amount of

storage required fo¡ each record is (1 + 3dlog2q) bits (since e is 0 or 1), which gives us

the roral amount of srorage required as 
(qd- l)qd(q5Ð!l-3-dlos'zq) 

= o(qd-3dlogzÐ bits.

The slow step is left in the key source calculation, rather when ou¡ operatives are out in

the field eansmining information. So we adopt this solution.

Algorifhm 4.10.

The key source.

Step 1. (Choose a block of the inversive plane. )

Choose a random integer x, 0 s x < 4+þ+!.
(q- l)q(q+ l)

Access the xth precalculated entry (e,lg,h) on the tape.

Step 2, {Choose a row of the orthogonal array. }

m ;= a ¡andom element of GF(q+1\(0).

c := a random element of GF(q+l).

Step 3.

Send (e,f,g,h,m,c) to transmitter ard receiver via a secure channel.

The number of bits sent by the key source is t + 3fdlog2ql + 2flogz(q+1).'l, approximately

(3d+2)log2q, or about 3 bits of key for every bit of message. The number of bits sent is

not much more than the llog2bl - (3d-1)log2q required to specify the encoding rule.
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The transmitter (sending source state i).

Step 1.

groupi := the ith element of GF(q+l).

Step 2.

y := ( m(groupi) + c ) in GF(q+l).

Step 3.

Note k, where y is the kth element of GF(q+1).

Ifk*qthen
groupk := the kth element of GF(q).

if groupk + - Þ rh"n rnrrrug", = 9H*4-Ðl*, (in cF(qd)).
I " gGroupl(J + h "

ifgroupk=-h then message:= oô.
g

¡¡¡ = q then

if g * 0 then message := 9, 1in Crlqd¡¡.

if g = Q ¡¡tn message := oo.

Step 4.

Send message to receiver via an open channel.
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The receiver.

Step 1.

If message = - then groupk := 
- h, {in Cnlqo¡¡.

If messaee = 9 ¡þs¡ sr6¡¡k ;= .".

If message * "", and message + | then groupk := *#+ .c - , g(message) - e

Step 2.

If groupk e GF(q)u{""} then reject message.

If groupk = co 1|¡e¡ lç ;= q.

If groupk e CF(q) then note k, where groupk is the kth element of

GF(q).

Sfep 3.

y := the kth element of GF(q+l).

Step 4.

groupi :=ry, (in GF(q+l))

Step 5.

source state is i, where $oupi is the ith element of GF(q+l).

Code 4.11

An optimal perfect disclosure code for q+l source states, q2+q messages and qt

encoding rules, where Pd¡ =! ç6¡ 0 < i < (t-f). q is a prime power and t < q,

l-et GF(q) have primitive element p. The messages a¡e elements of {0, ..., qJXGF(q), and

the source states are numbered 0 to q. The perfect disclosure is apparent because the fìrst

coordinate of the message is the source state numþr. The encoding array has rows

(0,ûo) (r,crr-r) 
[r,,1",) tr,>=r-t) [rà",0,',r)

for every t-tuple (c¡,o1, ... ,or-l), c4e GF(q).
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Example 4.11. When Q = 3 and t = 2, there are 4 source states, 12 messages, and 9

encoding rules.

Algorithm 4.11.

The key source,

Step 1.

For every integerj, 0 <j < t-i,
û,¡ := a random element of GF(q).

Step 2.

Send (ao,u,t, ... ,qt-t) to transmitter and ¡eceiver by secure

channel.

The number of bits sent is thog2ql = logzb, or about I Uits ot key for every bit of

message,

20 30

2t 31

22 32

2t 32

22 30

20 31

22 31

20 32

21 30

00

00

00

01

01

01

02

02

02
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The transmitter (encoding source state i).

Step 1.

If i = 0 then message := (O,crO).

If i = 1 then message ¡= (1,9t_t),

If i e {0,1 } rhen messase,= 

[ 
t,-i",Eto 

)
Step 2.

Send message to receiver via open chalnel.

The receiver.

Step 1.

Put (m1,m2) = message.

Step 2.

If m1 = g and m2 * a¡, then reject message.

If m1 = | and m2 * o¡-1, then reject message.
r-l

If m1e {0,1 }and m2 + )a¡B(mr-2)j then reject message.
j=0

Step 3.

If the message is acceptable then the source state is m1.

Code 4.12

A perfect disclosure code with ff rour.u states, hav¡ng Ú{l 
-essages and qd

encoding rules, for which Pdg = Pd1 = 
1 .

We construct a transversal design TDqa-z f2,ff,Ð.

To do this we consider the projecive geometry PC(d,q) where the points are equivalence

classes of (d+ l)-dimensional vectors over GF(q) excluding the zero vector. The
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equivalence classes are defined by (xt,xz, ... ,xd+l) - (yt,yz, ... yrl+l) if there exists a

À e GF(q\{0} such that xn = Àyn, for all n e {1, ... ,d+1}.

We choose a point k = (1,0,0, ... ,0), representing the one-dimensional subspace that it

generates. We choose a hyperplane H not containing k fo¡ ease of ¡ecognizing elements,

say H= {(xt,xz,...,x¿a¡) lx1 =0}. The colum¡s of ou¡ tra¡sve¡sal design are indexed

by the lines in PG(d,q) through k. Since a line inte¡sects any hyperplane in exactly one

point, we ca¡ index these lines by the elements of H. The rows of our transversal design

are indexed by the hyperplanes of PG(d,q) which do not contain k, that is, by those

c[lxl + ct2x2 + cx,3x3 + ... + c¿..1x¿a1 =0,

where c1 +0, andc¡e GF(q), forall i e { 1, ... ,d+1 }.

Since any multiple of the coordinate vector produces the same li¡e, we set o'l = 1, and the

rest of the crn are arbitrary.

The source state is represented by an integer i, where 1 < i < 
qd-l
q-l '

There is an intrinsic lexicographical ordering on H (determined by the ordering on

cF(q))'

That is,

the first qd-l points are (0,1,x3,xa,x5, ... ,xd+r),

the next qd-2 points are (0,0,i,v,x5, ... ,xd-t),

the next qd'3 points are (0,0,0,1,xs, ... ,xd-l),

up to the last point , (0,0, ... ,0,1).

We shall consider this order imposed, and refer to H = [hi , I < i < + ]. Given i we canq-r

talk about h¡, and given h¡e H, we can talk about i.

The entry in the ith column of the row of the transversal design indexed by the

hyperplane G is the point on the line through k and hi that lies on G. This point is the

message sent to communicate source state i.

The hyperplane G is selected with defining equation

xt + aZxZ + ü,3x3 + ... + C,¿a1x¿..1 = 0.
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Let the point of intersection between this plane and the indexing line be l,k + ph¡, for

some l"pe GF(q). Then the point is (X,¡r(h)2,p(hÐ:, ... ,p(hù¿*l), where (h;)¡ is the jth

coordinate of h¡. Since it lies on G,

d+l

So if )cr¡(hil¡ = 0 then set 1. = 0, p = 1.

/d+l ¡i
Elseputl,= 1, F= - | :zuttrrl: I .

[:=z )

This ensures a leading i.

Example 4.12. Consider d = 2 and q = 3.

Then we have 4 source states,9 encoding rules and 12 messages.

We consider PG(2,3) over GF(3) and further abbreviate (a,b,c) to abc.

Then k = 100, H = {hr=010, hz=011, h¡=012, h¿=00i}. The array becomes

À+

100
101
102
110
111
112
r20
t21
122

010 0i1

010 r22

010 111

120 122

t20 111

120 01i

110 111

110 01 I
1i0 122

0r2 001

rt2 102

121 101

r2r 001

012 t02
r12 001

112 001

12t 102

0t2 101

Note that the messâges in one column do not occu¡ in any other coìumn. Each message

in a column occr¡rs the same number of times in that column, and any pair of messages

from distinct columns occurs precisely once in a row of the array.

-71-



Algorithm 4.12.

The key source.

Step 1. (Choose a random hyperplane. )

Ctl := I
For all i e [2, ... ,d+1],

o¡ := a random element of GF(q).

Step 2.

Send (cr2,rl3, ... ,c[d+l) to transmitter and receiver via a secure

channel.

There are dflog2ql = log2b bits sent by the key source, or about 1 bit of key for every bit

of message.

The transmitter (encoding source state i).

Step 1.

k = (1,0,0, ... ,0).

Step 2.

Find h1 and let (h)¡ be thejth coordinate of h¡.

Step 3.
d+l

If )ø¡(hil¡ = 0 then message = h¡,

rdJ.l \r
else message = k - I àol(hill I .hi.

\j=2 )
Step 4.

Send message to receiver.
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The receiver.

If message is not a (d+l)-tuple of elements in GF(q), whose first

non-zero coordinate is a 1, then reject message.

Step 1.

Let mj be the jth coordinate of the message.
d+l

If )cr¡m¡ + 0 then reject message.
j=2

Step 2.

If m1 =1 then m1 := 0 (equivalent to message = message - k),

"¡ 
'= (1st non-ze¡o coordinate of message)-l.message,

else elt := message. (the first entry of message is a 1 )

Step 3.

Retrieve i from h¡ = elt, noting that elt is some hi, since its leading

non-zero element is a 1.
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Chapter 5 :

Arithmetic Operations in Finite Fields

5.1 Motivation

The efficiency of the algorithms presented in the last chapter is dependent upon the

performance ofthe algorithms that a¡e employed to perform finite field a¡ithmetic. So, in

orde¡ to discuss the efficiency of the algorithms in Chapter 4, (in terms of time and space

requirements), we need to explore finite field operations in some detail. In most

applications, these would be the finite fields GF(2n), for various values of n, usually less

than about 103, although other finite fields, especia-lly GF(p), where p is a prime, (in

particular a Mersenne or Fermat prime), must also be considered. We explore methods of

facilitating these arithmetic operations. We need to be able to add, multiply, divide (or

take inverses), exponentiate and take (finite) logarithms with respect to some primitive

eiement, and generate a random element (from an equiprobable distribution of all

elements in the field). For a detailed discussion of the theory of finite fields, see Lidl and

Niedeneiter [41] or McBliece [47], although most of the relevant properties will be

mentioned as needed.



5.2 The Traditional Approach

The traditional approach to finite field algorithms is worth examining, both for

motivation, and because it is still very useful, especially when the size of the field that

we're worHng over is relatively small.

A polynomial basis for a field GF(pn) over GF(p) is a basis of the form

{1, a, a2,..., û,n-1), where c is an element of the field GF(pn), and the elements l, s., o?,

..., qn'l are linearly indepen dent. 'fl,e minimal polynomial lor o, is the monic polynomial

f(x) of least degree such that f(a) -- 0. This f(x) is ineducible over GF(p) (by necessity),

and is called the generating polynomial of the field. A field GF(pn) with a polynomial

basis can be constructed by starting with a generating polynomial f(x) of degree n, and

considering the elements of GFþn) as ¡esidue classes of polynomials with coefficients in

GF(p) modulo f(x).

This section examines the usual techniques for field operations when the elements of the

field are represented as coordinate vectors with respect to a polynomial basis. We discuss

GF(2n), which is constructed as the residue classes of the ring of polynomials over GF(2)

with respect to some irreducible nth degree polynomial f(x).

That is, GF(2n) is the quotient ring GF(2)[x]/(f(x)), where GF(2)[x] is the ring of

polynomials over GF(2), and (f(x)) is the ideal generated by f(x).

In section 5.2, unless otherwise stated,

n-1 n-l n-1

s = laixi, F = I¡i*iand y= !c1xii=0 i=0 i=0

a¡e elements of GF(2n).
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5.2,1 Addition in a Polynomial Basis

To add two elements of GF(2n) represented as coo¡dinate vectors with respect to a

polynomial basis, the coordinates of the elements are simply added modulo 2 ("exclusive

or"ed). The following adds cr and B to get 1.

Algorithm traditional addition.

for i := 0 to n-l do

ci := ai + b¡ mod 2.

If cr, and p are elements of GF(pn) then we simply perform the addition modulo p.

The algorithm can be performed as a loop, or, if mo¡e than one processor is available, the

additions modulo 2 can be performed in parallel. It is also easy to build special purpose

hardware to perform the additions.

Figure 5.1 is the logic diagram for the sequential adder. It uses 1 exclusive or gate and

adds in time O(n), and the parallel adder uses O(n) gates and adds in time O(1).

Legend

o
tr

Exclusive Or Gate.

Register.

Figure 5.2 is an example

and adds in time O(1)

Figure 5.1. Serial adder.

of a parallel adder over GF(16).
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Figure 5.2. A Parallel Adder over GF(24).

To deal with addition in a poiynomial basis in GF(pn), where p * 2, we note that n

additions in GF(p) need to be performed, and these may be performed in serial or parallel.

To perform an addition modulo a prime p, we note that we are adding two log2p bit

integers and subtracting zero or p (a fixed logzp bit integer.) This takes at most two log2p

bitwise additions (noting that a bitwise addition and a subtraction are the same). So the

addition takes O(nlog2p) operations on one processor, or O(logzp) operation on n

processors.

5.2.2 Multiplication in a Polynomial Basis

To multiply two elements, we note that a multiplication by x is a cyclic shift, with

xn replaced by f(x) - xn. So we need an adaptation of a shift register with a feedback loop

that replaces higher powers of x. We examine this by looking at an example, multiplying

-77 -



two elements of GF(16) in which the generafing polynomial is f(x) = x4 + x + 1, and the

polynomial basis is { 1, ô, ô2, õ3}, where õ is a root of f(x). To multiply cB = I we load

the bits bi into registers Bi, so that 80, 81, 82 and 83 contain the bits of B, and the

registers 84, 85 and 86 are zero Thus the register B is a shift register. The bit a¡ is

placed into the register A in clock cycle i. The answer c¡ is in register Ci after n = 4 clock

cycles. Each adder ouçuts the sum of its two or three inputs, and takes one or two

exclusive or gates to implement (in general O(n) gates). So in this way, we can multiply

in time O(n) using O(nz) gates. The left hard side of this ci¡cuit is dependant upon which

f(x) is chosen as the generating polynomial of the field.

Legend.

þ And gate.

fl ooo",.

@ Reøister.

Figure 5.3. A polynomial basis multiplier ove¡ GF(24).
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Brickell [i9] develops an algorithm to handle multiplication in GF(p) for prime p, (that

is, modulo p) in log2p + 7 clock pulses. Combining this and the above algorithm gives us

an algorithm for multiplication in GF(pn) thât takes time O(n logp).

Mastrovito [45] discusses this algorithm for multiplication in the field GF(2n). He claims

that for 557o of the fields GF(2n), 2 I n ( 1000, we can chose the generating polynomial

for the field to be a trinomial, so that in these cases, the adders in the above circuit all

need but two Xor gates..

To implement this idea in VLSI see Rirer and Mehlhorn [27], Laws and Rushforth [39],

Norris and Simmons [51], Wang et al [73], or Zak and Hwa¡g [74], but their results a¡e

outside the scope of this document.

5.2.3 Exponentiation - Repeated Squaring

Firstly we note that to calculate the exponential c,e, it is always possible to multiply a by

itself e times. If 0 < e < 2n-2, this takes O(2n) multiplications, and there is an obvious

vast improvement - using repeated squaring. If e is an integer such that 0 < e < 2n-2,

then we can express e in its binary form as

n-l
¿=\ai}í,ai e [0,1).

i=0

n-l
Then for any element cr of GF(2n), se = ffoar2t .

i=0

This computation requires m- 1+n multiplications (m- 1 multiplications of dissimilar

terms, and n squarings), where m =Ëui i, the Hamming weight of (the number of ones

in) the binary representation of ,. iIu, m = n- 1 in the worst case (where, for example,

e=2r - 2), and m =å on average.

Repeated Squaring is also useful in GF(pn), where p is prime. This algorithm takes O(n)

multþlications in GF(p).

-79-



In GF(2n), however, we know that squaring is a linea¡ operation, so that \rye can express

the square of some element

n-l
y = f cixi where c is the vector of coefficients,

i=0

as a matrix expression Sc. S is a binary n by n matrix whose entries depend on the

specific generating polynomial chosen. Mastrovito [45] shows that if the generating

polynomial is a trinomial, then this mat¡ix can be realised in less than Çtì g.t"t.

5.2.4 Inverses - Euclid's Algorithm

If o e GF(2n\{0) is any non-zero element of the Galois field, then there is a unique

elementle GF(2n^{0} suchthatol=1. This yis called the inverse of øinGF(2n).

If the elements of GF(2n) are represented by the coordinate vectors of a polynomial basis,

then \pe can use the extended Euclidean division algorithm for polynomials to find

inverses in the f,ield. That is, let u(x) be a generating polynomial for GF(2n) ove¡ GF(2).

Let s be a root of u(x) that generates a polynomial basis fo¡ GF(2n) over GF(2). Given

v(x) e GF(2n\{0), we find inv(x) such that there is an a(x) e GF(2n) which satisfies

v(x) inv(x) + u(x) a(x) = 1. Note that u(x) is i¡¡educible of degree n, and v(x) has degree

less than n, so gcd(u(x),v(x)) = 1, and hence inv(x) must exist. Euclid's algorithm, or

synthetic division of polynomials, is as follows.
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Algorithm Euclid's Inverse.

Input: v(x) e GF(2n\{0).

ouçut: v'l1x¡ e GF(2n\{0}.

Step 0. (initialization )

u'(x) := 0

u"(x) := u(x)

v'(x) := 1

v"(x) : =v(x)
Step 1.

Whilev"(x)*0do
q(x) := div(u"(x),v"(x))

temp'(x) := v'(x)

temp"(x) := v"(x)

v'(x) := u'(x) - v'(x) q(x)

v"(x) := u"(x) - v"(x) q(x)

u'(x) := temp'(x)

u"(x) := temp"(x)

Step 2.

v-l(x) := u'(x).

Algorithm Euclid's Inverse calls another algorithm, called div which performs

polynomial division. Note that the de$ee of the polynomial 0 is -"" by convention. We

let the sequence of degrees of the successive v"(x) be

m = n0, nl, n2, ... , nr, -oo, where n¡> 0.

Then in iteration i, for 0 I i < t, a polynomial of degree n¡-1 is divided by one of degree n¡,

(where, for ease of expression, we call n = n(-l)).
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Algorithm div.
ni-l

Input: u(x) = )u¡,x.¡ , uni_r=1i
J=U

ni
v(x)=.1-v¡,x¡,vn¡=1.

J=0
ni-l-ni

Ouçut: q(x) = :,qi,xi ,
j=0-

where u(x) - q(x).v(x) = 0 or deg (u(x)

Step l.
For k := ni-1-n¡ downto 0 do

Qk := uni+k

Forj := n¡+k-l downto k do

uj := uj _ qkvj_k.

- q(x).v(x)) < n¡.

The number of a¡ithmetic operations required for algorithm div is essentially proportional

to n¡-1(n¡n1¡-1¡+1) (Knuth [37]).

K¡uth [37] derives the average complexity for the algorithm Euclid's Inverse over all

independently and uniformly distributed (monic) polynomials u(x) of degree n and v(x)

of de$ee m. He calculates that we need a rotal of 2n2 +9n+24 - fr = O(nz) fUinatyl

ope¡ations, on average, to find an inverse using that algorithm.

This average is not taken over precisely the polynomials that adse in our problem, since

u(x) is any polynomial, as opposed to a chosen irreducible one. It is actually an

interesting question to ask if it is possible to choose an i¡reducible polynomial u(x), so as

to minimize the average complexity of Euclid's division algorithm, but it is not one that

shall be discussed here. The restriction of u(x) to i¡reducibles should not make any

significant dìfference to the asymptotic behavior of the running time.

Euclid's algorithm does not lend itself well to LSI and VLSI implementation, since it is

somewhat irregular. (It doesn't seem to have many repeatable steps at the hardware level.)
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There have been a few reasonably sucessful attempts, for example Zak and Hwang [74],

develop a systolic aÍay for polynomial division that wo¡ks in time O(n).

Over GF(p), Euclid's algorithm takes O(n2) field operations, on average to compute an

inverse in GF(pn).

5.2.5 Logs - Tables

Given a generator o of GF(2n), and x a non-zero element of GF(2n), we define logox, the

disc¡ete logarithm of x with respect to o, to be the number y, 0 < y < 2n-1, such that

x = qJ in GF(2n). This is regarded as a 'difficult' problem, and cryptosystems have been

developed that rely on the fact that it is infeasible to calculate finite logarithms. The

traditional method is that of a table look-up, storing each element as a power of c and as

a vector of coordinates. If this table is stored (and it has the usually unacceptable size of

O(n2n)), it can also be used to facilitate multiplication.

Alternatively, we could use the powers of the primitive element c, as the primary

representation of the element of the field. This makes multiplication easy. To perform

additions, we store a table of Zech's logarithms. TheZech's log of an integer i, 0 < i < 2n-

2, is z(i),0 < z(i) < 2n-2, where i 1¡¡i = qz(i). Then cri + cd = si+z(i-j). This table also

has the size O(n2n), which is infeasible to store when n is large.

For example, consider GF(23) generared by cr where f(x) = ¡3-'**1 and f(o) = 0. Then

the following table presents each eìement of GF(23) as a vector of coordinates and a

power of c, and gives the Zech's logarithm of that power.
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5.3 Fast Fourier Transforms

Before we leave polynomial bases there are a couple of more sophisticated techniques

worth examining. In this section and the next we examine the way these work. First, we

examine the Fourier transform, Finite Fourier Transforms appear to be adaptable to

perform multiplication in Galois fields (see Brassard And Bratley [17, Chapter 9], and

Pollard [55]). A Fourier transform changes polynomials to n-tuples of points lying on the

polynomial, which can then be manipulated more easily before being converted back.

Let us consider first this transformation, as outlined in Brassa¡d and Bratley [17].

For convience, let m be a power of2. Let a = (ao,4r,..., am.r) be an m-tuple of elentents

in the field GF(q), where ml(q-1). Define p¿(x) = an,,-txm-l * ... * alxl +40 be the

polynomial whose coefficients are the vector a. Suppose o is some constant element of
m

GF(q) such that co2 = -1. This element must exist. The disuete Fourier transfornt of a

with respect to rrl is the m-tuple

F,(a) = (p¿(1), pa(co), ..., p"(c¡n-1)).

At first glance, it appears the the tra¡sformation takes O(m2) operations to perform, but

by using an algorithm called the Fast Fourier Transform (or just FFT), we can reduce

this to O(m logm) operations.

z(i\

0

3

6

1

5

4

2
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The algorithm is not that difficult to understand. Basically, it is a divide- and-conquer

method. We need a little more notation before we begin.

Put t = T. Then define the following two t-tuples:

b= (ao, a2, ..., am-2) (a¡ where i is even)

a¡d s = (a1, a3, ..., am-t) (a¡ where i is odd)

Then we get the following equalities:

pb(x2)+xp.(x2)=pu(x)

and pb(cP) + copc(or2) = pa(cu).

put a, = c¡2; then

p5(a) + cop.(a) = pa(co),
tm

Now, o2 = ¡¡t = 6¡2 = -1. So we can talk about Fo(b) and Fo(c), as Fourier transfo¡ms.

Also, crt = 1 and ot = -1, so fo¡ any i,0 < i < t,

0.1¡¡t+i¡ =p¡(ai) - oip"(ri).

So we now have a method of breaking a Fourie¡ transform down into two Fourier

t¡ansfroms thât ffe half the size, and recombining them to get our original.

This leads us to the following algorithm to compute the fast Fourier transform, which

needs O(mlogm) space over GF(q).
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Algorithm FFT (m,a,r¡)

Input: m, a power of 2

a = (ao, al, ..., am_t) 
s

o e GF(q) such that r¡2 = -1.

Ouçut: Fr(a) = (F.(a)o, F (a)r, ..., Fo(a)m-l).

Step 1. If m= l then set F6¡(a)g = a6 and halt. If m+ l then proceed.

Step 2, {initialization }

,t= l,
þ = (b6, b1, ..., b¡-1) := (ao, az, ..., a^-z)

c = (co, cr, ..., ct-l) := (ar, a¡, ..., am-r)

Step 3. {recursionJ

Fú)(b) = FFr (i,b,0P)

Fto(c) = rPt {i' c' t'9¡

Step 4. {recombination )

G:= 1.

for i := 0 to t-1 do

{ø = ¡ri¡

F.(a)¡ := F.(b)¡ + aFr(c)¡.

F.(a)¡1i := Fr(b); - oF,(c)¡.

Ct := tto.

So, now we have the tool needed to convert efficiently polynomiaìs of degree m-1 to

m-tuples of points lying on the polynomial. Let's discuss conversions in the other

direction.

Let "y be an element of GF(q) such that

(Ð "t*1
(iÐ fl=1

m-1

and (iü) >oji= 0, for all 1 I i I m.
j=0
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Then y is called a principal mth root of uniry.

Let m be a power of 2. Then the following results hold. 
!

Theorem 5.3.1. co is a principle mth root of unity if andonlyif co2 =-1. I
Theorem 5.3.2, If olis a principle mth root of unity then c¡-l = rllm-1. E

Theorem 5.3.3. If i+1+...+1 (m times) + 0 then ro0, c0i, ..., om-1 a¡e all distinct. These

are all the principal mth roots of unity. I
Define m = 1+1+...+i (m times) in our field GF(q).

Theorem 5,3,4. The following statements are equivalent.

(Ð m-l exisrs in GF(q).

(iÐ 1+1+...+1 (m times) + 0 in GF(q)

(iii) if q = pn, p prime, then p does not divide m, that is, p + 2. a

Let a = (ao, ar, ..., a--1) be an m-tuple of elements of the field GF(q), where q is not a

power of 2, and let co be a primitive mth root of unity. Then the inverse Fourier

transþrm of a with respect to o is the m-tuple

F.-t(a) = (m-lpu(1), t¡-lp.(ç¡-l), ..., m-lpa(o-(n-l)).

Then the following theorem holds, and is possible to prove by substituting in rhe

definitions of the Fourie¡ transforms.

Theorem 5.3.5. F'-r(F'(a)) =F (F.-l(a)) =0. I
This leads us to the following algorithm.

Algorithm FFTinv

Input: m, a power of 2

¿ = (¿a, a1, ..., a¡1-1)

ol e GF(q) such that cu is a primitive mth root of unity.

ouçut: p-1.(¿) = (F-1.(a)0, F-lr(a)1, ..., F'lr,:(a)n-l).

Step l. p-1.(a) = m-lFFT(m,¿, ú)m-1).
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If we are working over a field of characteristic 2, then the algorithms FFT and FFTinv

can be modified so that m is a power of some other number, (presumably 3, as it is the

next smallest). This means that the exponentiations are not merely shifts in base two

representation, but this should not affect the asymptotic running time of the algorithm

(see Pollard [55] for a detailed explanation of the changes that need to be made for the

cases where m a power of a small prime, whe¡e m is "highly composite", and where m is

"not highly composite").

This leaves us only with the question of manipulating the Fourier transforms of the

polynomials. If a(x)b(x) = c(x), and m and r¡ ate as above, then Fr(c)1 = Fc,:(a)i Fc,(b)i,

f¡om the definition of the Fourier transform.

So we have the following algorithm to multiply two elements of GF(pn).

Algorithm FFTmultiply

Input: a = (ao, ar, ..., an-t).

þ = (bs, b1, ..., hl r).
o e GF(pn) such that o is a primitive mth root of unity.

Output: ç = (ca, c1, ..., cn-1).

Stepl, Precomputation,

Find m such that m is a power of 2 and m > 2n.

Pad a and b with zeros to get m-tuples.

Find ro e CF(pn) such that o is a primitive mth root of unity.

Step 2. A := FFT(m,a,o¡).

B:=FFT(m,b,<o).

Step 2. C¡ := A¡Bi, for all 0l i I m-1.

Step 3. d:= P¡¡¡nu1r,6,cor.

Step 4. Reduce d modulo g(x) (the generating polynomial) to get c.

Steps 1 to 3 can be performed in O(n logn) field operations in GF(p).

-88-



However, computing step 4 with the algorithm div discussed in section 5.2.4 takes O(n2¡

field operations. So we need a more efficient algorithm for dividing a polynomial of

degree 2n-2 by one of degree n. If the irreducible generating polynomial has only a very

few terms (for instance if it is a trinomial)then the algorithm div in section 5.2.4 would

only take O(nlogn) field operations in GF(p). So, if a suitable generating polynomial

exists, the algorithm can be executed in O( n logn) field operation in GF(p).

Now, to add or subtract two polynomials, the Fourier transforms of those polynomials are

merely added or subtracted. This is not a particularly efficient thing to do for itself, but if

we have an equation involving additions, subtractions and multiplications, then we need

only transform the domain once in each di¡ection.

Reif [56, $2.2] discussed the parallel adaptation of the above algorithm. To multiply d

polynomials together we compute the Fast Fourier Transform for each polynomial in

parallel, and then compute, in parallel, the products obtained in step 2 of the algorithm

FFT multiply. Then the inverse transform is performed. This reduces the time required

for steps I to 3 to O(log(dn)) = O(logd + logn) using O(dn) gates. This is somewhat

bette¡ than the naive method of multiplying two polynomials together, which takes time

O(logd logn) with the same order of magnitude number of gates.

The other thing we'd like to be able to do in the Fourier rransformed domain (and don't

appear to be able to) is to divide polynomials (modulo the generating polynomial g(x)), or

to find inverses by dividing our polynomial into the polynomial f(x) = 1. This does not

seem to be something that can be done efficiently. This algorithm is purely for addition

and multiplication.
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5.4 A Parallel Algorithm for Exponentiation.

We can use the idea of a Fourier transform to develop a¡ efficient parallel algorithm for

exponentiating field elements represented as the sum of elements of a polynomial basis.

Von zur Gathen [69] adapts Eberly's algorithm "Iterated Product of Polynomials" [25] to

exponentiate in GF(2n) in time O(logn) and using space polynomial in n.

We wish to raise
n-1

a(x) = )u1xi
i=0

to the power e, where 0 < e < 2n- 1.

n-1

Let e= )e¡2, e¡ e {0,1}.
j=0

n-l
Then [a(x)] e = f[a(x¡e;zj lthe same as our algorithm for repeated squaring)

j=0
n-l /n-l re;2J

=il lI"'-'¡'
j=o \i=0 )

Now, noting that squaring is linea¡ in GF(2n), and (ut)2 = ui,we get
n-l /n-l \-.

la(x)le =[lLu¡*iz'¡r
j=o [i=o )

so that [a(x)] e is the product of the polynomials
n-l

Iuixiz¡ for all 0 < j ( n- 1, e¡ * 0.
i=0

So our algorithm has three steps, as follows:
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Algorithm Parallel Bxponentiate
n-l

Input: a(x) = )u¡xi
i=0

n-l
e= )e¡1, e¡e {0,1}

j=0

f(x), the generating polynomial of the field.

Output: [a(x)] e mod f(x)
n-l

Step 1. Calculate pj(x) = )u¡xi2j for every j in paraìlel, 0 < j < n-1, e¡ =1.
i=0

Step 2. Find [a(x)] e by multiplying together p¡(x) calculated in Step 1.

Step 3. Reduce [a(x)] e mod f(x).

Now, Step I can be performed efficiently provided that xi2'has already been calculated

for each 0l i I n-l and each 0 <j < n-1. Then, for each j we need to add (up to) n

polynomials each of degree (up to) n-1. If we perform this addition for each coefficient

in parallel, it takes time O(logn) if we have O(n2) gates.

Step 3 can be performed efficiently provided that xk has already been calculated for

n ( k ( n2-n. We note that [a(x)] e has degree at most n2-n, a¡d that the powers of x less

than n are elements ofour basis. This step, then involves adding (up to) n2-n polynomials

of degree at most n-1. We do this for each coefficient in parallel and take time

o(1og(n2)) = o(logn) with o(n3) gates.

Step 2 is calculated using a variant of the Fast Fourier Transform. We need to be able to

choose n2+1 distinct elements of the underlying field. Unfortunately, our underlying

field is GF(2), so we need to work in an extension field of GF(2), say GF(2r), where

2r > n2+7. So we choose ¡ to be about 2log2n. Step 2, then, is implemented as follows.

Assume that n2+1 constants T0, yl, .,., yn-t a¡e chosen from GF(2r).
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Algorithm Step 2.

Step 2a. For all 0 < k < n2 and all p¡(x) in parallel, catculate p,(1ç)

Step 2b. For all 0 < k < n2 in parallel, calculate g(Ð = flpi(t*)
J

Step 2c. Interpolate the n2+1 points to get the coeff,icients of g(x).

To calculate p¡($ in Step 2a, we need to add (up to) n field elements. To do this in time

O(logn), we merely add the coefficients in parallel, as in Step l. We do this for (up to)

n3 things in parellel, so we need O(n4) gates.

In Step 2b, we need to multiply (up to) n field elements in CF(2r). This can be done in

time O(logn) only if multiplication in GF(2r) can be done in constant time. This is

achieved by storing a multiplication table of elements of GF(2r). Note that this table will

have about n2 entries, and hence need storage O(n2logn).

In Step 3b, we need to do an interpolation. This is achieved by precomputing the enrries

of the inverse of the Vandermonde matrix V(To, Yr, ..., |¡z) of order n2+i defined by

V(þ,yl,...,Tnz)¡= (^f.r)it,forl<i,j<n2+1. Thenthecoefficientsg0,gl,...,g¡zofg(x)

are computed in parallel by the matrix multiplication

So the algorithm takes fime O(logn) if we precompute

(Ð a multiplication table in GF(2r)

(iÐ xi2j mod f(x) for each 0 I i I n- 1 andeach0<j <n-1,

(iii) xk mod f(x) for each n < k < n2-n,

and (iv) the entries of the inverse of the Vandermonde matrix V(yo, yr,...,'y¡z) of order

n2+1 defined by V(To, Tr, ...,ynÐ¡ = (yt-t) t, for I I ij I n2+1.

ß
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The amount of storage required in O(n4logn) and we need O(n4) gates.

5.5 Dual Bases

Before dual bases can be examined, we need to define the concept of a tace. If

1e GF(2n), then the trace of lisdefinedas r(y) --y +f*...*fn-t. Trace is a linear

operator on GF(2n), considered as a vector space over GF(2). That is, tr(1) e GF(2), for

all Y e GF(2n), and tr(1+ô ) = r(y) + r(ô), for all ïô e GF(2n). Also, rr(ï) = s¡f i¡, 
ror

1 S i S n-l.

Let (cri) and {Pil be bases for GF(2n)/GF(2). Then {cr¡} and {Êi} a¡e dual bases if

tr(cx,iBj) = ô¡¡, where ô¡ is the Kroneker delta (that is, ôi¡ = 1 if i =j, and 8¡ = 0,

otherwise). Dual bases are a useful way to represent elements of GF(2n), if multiplication

is to be performed efficiently (by a process due to Berlekamp [8]), and a¡e discussed in

McEliece t461. If {o¡} is a basis, a dual basis exists and is unique, (see Lidl and

Niedeneiter [4i].)

McEliece presents Berlekamp's bit serial multiplication algorithm as follows.

Suppose that y € GF(2n). Then y = (trace(Ïfu), trace(yB1), ... ,trace(yBn-1)) with respect

to the basis {oil, and conversely, y= (trace(p¿), nace(1u1), ... ,trace(1rn-1)) rvith respect

to the basis ( B¡) .

We call {ai} the primal basis, and {þ) the dual basis. Let û¡ = si ¡.. each i, and for

some primitive element s. That is, Iet {o1} be a polynomial basis. Then multiplying any

element x by o is easy in the dual coordinate system, as follows.

Let x = xn-lÊn-r +... + x1B1 + xgBg.

n-1

Now gx = ltrlxoi*l)Bi.
i=0

Then xi = f¡ix¡¡i¡.

So crx¡ = 1¡1¡¿¡6¡i¡ = 1¡1*oi+t¡ = xi+1, for 0 ( i < n-2.

-93-



n-1

Also, if f(z) = ff¡ri is the minimal polynomial for s, then
i=0

øxn-1 = Tr(xsn)

r n-l \
= rJ xIr,ai II H. I

Ii=0 )
n-l

= lt¡trlxoi)
i=0

n-1

= )f¡xi.
i=0

So multiplication by cr, is simply a cyclic shift, with xn-r = T¡(xsn). Figure 5.4 represents

a circuit that multiplies x by the constant cl, where x is represented in the primal basis,

and in which representation the ith bit is loaded into the register Xi. The gates in the top

of the figure calculate Tr(xon), and the ith bit of xs is contained in the register Xi after

one clock cycle. If we tap the register Xi, the bits of xai appear serially. That is, after the

kth clock cycle, Xi contains the kth component of xûi in dual coordinates.

Figure 5.4. A "multiply by cr" circuit in GF(2n).

Example 5.5.1. Suppose GF(8) has f() = 73ar*1 as a generating polynomial, and a

basis {1, cr,, cr2}, where c is a primitive element of the field and f(o) = g.

The dual basis of {1, o, cr2} is { 1, o,2, u,}.

Now ox2 = Tr(xø3) = Tr(xg + x) = Tr(xø) + Tr(x) = ¡1 -¡ ¡g.

Gates to calculate Tr(xcrn)
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That is, if x = xo + xlû,2 + x2cr then Gx = xl + xzuz + (x1 + xg¡g, so the "gates to

calculate Tr(xc.n¡ " in figure 5.4 become the gate at the top of figure 5.5.

Figure 5.5 represents a circuit to perform bit-serial multiplication in GF(8) as outlined in

Example 5.5. 1 . Now x (in duai coordinates) is loaded into registers 0, 1, and 2, and after

one clock pulse, ox is contained in those registers.

Figure 5.5. A "multiply by a" circuit in GF(8)

We can extend our multipliers to handle any specific constant. We consider the contents

of register i at time t. We note that after t shifts, the shift register contaíns xc.t. So, after

0 shifts, register i will contain Tr(xai). After 1 shift, register i will contain Tr(x6ri+1), and

after t shifts, register i contains Tr(xcri+t). Now any element of GF(2n) can be written as a

sum of elements of the primal basis. If we load the registers with i, initially, sum the

registers corresponding to terms in that sum, then we will get the coefficients of the

product (in the dual basis) serially.

For example, in GF(8) as above, suppose that we want to multiply by cr4. We note that

a4 = a2+ ü. So we adapt the circuit in figure 5.5 to become figure 5.6. We load x into

registers 0, 1 and 2 at clock = 0, and after i shift cycles, the output is the ith component of

cr4x, in the dual coordinate system. That is, if x = x0+ x¡ø2 + x2c[, then after 0 shifts,

x1+x2 is output, after 1 shift , xg+x1+x2, and after 2 shifts xg+x1 is ourput.
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Figure 5.6. A "multiply by oa" circuit in GF(8)

This provides us with the motivation behind the multiplier. Instead ofhaving a constant

"hardwi¡ed" into the ci¡cuit, the multiplicand is loaded into a register, and the elements of

the shift register corresponding to the terms used to express the multiplicand as a sum of

elements of the primal basis are added to produce the serial output. Thât is, the ith

coo¡dinate of the product is I f(c¡lx) , where y is )ar. So, to multiply the element y

expressed in the primal basis by the element x expressed in the dual basis, a circuit is

constructed to the specifications of Figure 5.7. The coordinates of y are placed in the

(static) Register A, the coordinates of x in the Shift Register B, in their respective bases.

Again, the gates at the top of the diagram calculate Tr(xcrm), a¡d the adder calculates the

(mod 2) sum of its n inputs. The ith bit of the product xy, in the dual coordinate system,

is the result of the adder after the ith clock cycle.
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Gates to calculate Tr(xon)

Shift Register B

Figure 5.7. A dual basis multiplier over GF(2n).

Lets look back at the held in Example 5.5.1. We wish to multiply x = x0 + x1ø2 + x2o

(in dual coordinates) by y = y0 + ylcr + yzd,z (iil primal coordinates). We multiply x by

the values yg, y1a, and y2a2 and add these to get the answer, the bits of which are output

serially in dual coordinates. See Figure 5.8.
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Legend.

þ ona tu,"

lÐ eoa",

f] Resister.

@ Xorgate.

x-register
(dual coordinates)

y-register
(primaÌ coordinates)

Figure 5.8. A dual basis multiplier over GF(8).

This multiplier contains O(n) gates and performs a multiplication in time O(nlogn) - there

are n bits ouçut, and the adder ca¡ have depth logn. However, the ea¡lie¡ bits ( Jan

be used before the multiplication is completely f,rnished. That is, if the next uperation

that the product is used for is something in which the bits a¡e input serially, that process

can begin after only I shift cycle. However, if the next operation is the same type of

multiplication, (say we were exponentiating by repeated squaring) then we need all the

bits before we carr begin and we have essentially no time saving.

The only problem that has not yet been addressed is the issue of converting f¡om one

basis to another. This can be partially solved by precalculating the dual basis

representation of the constant 1, and loading this into Register A, in Figure 5.7. Then to

calculate the dual basis representation of any element B represented in the primal basis,

merely multiply B by the dual basis 1. This takes time O(nlogn), and can be performed

on the existing hardware. To convert the dual basis element B back into the primal basis,
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however, is not as simple, since the dual basis is not necessarily a polynomial one, If

T e GF(2n), then 1= (trace(Tpo), trace(1p1), ... ,trace(1p¡-1)) with respect to the basis

{ot}. So in order to express B in terms of {o¡}, we need circuitry to calculate n Eaces.

This takes O(n2) gates, in general, and time O(logn). A better approach may be to do a

straight matrix conversion from one basis to the other. If this matrix can be contrived to

be sparse, the necessary number of gates may be reduced.

So what we do is look for polynomial bases whose duals are merely permutations, or

whose duals are simple linear combination of the primal basis elements. In Example

5.5.1, the dual basis contained exactly the same elements as the primal basis, and hence it

is an easy job to ¡ewi¡e the circuit so the only one basis is represented. Seefigure5.9.

Legend.

D
E
T
@

And gate.

Adder.

Register.

Xor gate.

x-register
(dual coordinates)

y-register
(duaJ coordinates)

Figure 5.9. A dua.l basis multiplier over GF(8) with conversion.

Morii and Kasaha¡a [48] discuss the quesfion of converting from a dual of a polynomial

basis back to that basis. They modify the bit-serial multiplier above, and call it the
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generalized bit-serial multiplier (CBSM). The GBSM uses a pair of bases, a polynomial

basis and a basis that can be chosen arbirarily in a class of 2n-1 elements. By choosing

such a basis wisely, there may be a simple transform between the bases. Indeed, when

the primitive polynomial is a trinomial (that is, has only three terms) the transform turns

out to be a simple cyclic permutation.

They proceed as follows. Fo¡ a fixed nonzero element B e GF(2n), and arbitrary element

x e GF(2n), define the quantities x¡ = 1¡1p¡¿ix) for i = 0,1, ...,2n-2 a¡d denote x = (xi)i.

Now, x = Tx, where r = (etj), eU = Tr(Püi+j), for ij = g, 1, ..., m-1.

The basis e = {cro, al, az, ..., cr¡-1} is said to be a permutation du¿l to the basis

B = {Ê0, Êr, Ê2,..., Bn-1}if the matrix (fr1ø¡p¡)) is apermutation matrix.

Then the quantities x¡ play the role of the dual coordìnates in the previous scheme. This

B can be chosen to be optimal easily in the case that the generating polynomial for the

primai basis A is a trinomial. Indeed, B is chosen so that T is a back circulant

permutation matrix (that is, one "1" per column in a matrix in which every entry in each

back diagonal is identical) and that T-l = T. Then, Íhe coefficients of the primal basis

may be obtained from the dual basis by a cyclic shift.

Lemma 5.5.1, (Wang and Blake [72,1-nmma 1]) There exists an element B e GF(2n)

such that B = tB, Bo, Bo2,..., Bcrn-t¡ is permutation dual to A = {1,a,ø2,..., on-l} if

and only if the minimal polynomial of o is a trinomial.

Proof, We outline the sufficiency proof only. Firstly note that if B e GF(2n) is non-zero,

and ifA is a basis, then B is also one. Suppose that the minimal polynomial of o is the

trinomial xn + xk + 1, for some 1 < k < n-1. Since A is a basis, we can choose a unique B

such that Tr(Bc¿k-r¡ = 1,and Tr(Bgi¡ =0, for alli+k-1. Then Tis a back circulant

permutâtion matrix, as required. I
It should be noted here that not every finite field GF(2n) can be generated by an element

whose minimal polynomial which is a trinomial. Wang and Blake [72] go on to develop

another form of the matrix T that is not as elegant as the trinomial case but always works
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and results in a fairly efficient multiplication scheme. T is contrived to be a lower

triangular matrix whose entries along the back diagonals are equal. They develop an

explicit form for the inverse of T and use this to perform the basis conversions.

Also, many of these results may be extended to the general case of GF(qn) over GF(q).

5.6 Normal Bases

A normal Døsis is one of the form tþ,þ2,þ4,P8,..., 92''), (as opposed to rhe more

commonly discussed polynomial basis) for some B in GF(2n). P is referred to as the

generator of the normal basis. A normal basis in the field GF(2n) can be shown to exist

for all n. ln fact, a primitive normal basis (one in which all elements are primitive) exists

for every finite field, (see Lenstra and Schoof [40]).

5.6,1 Multiplying in a Normal Basis - the Basic Approach

n-l n-l n-1

Suppose a = )¿,Bzi, b = !6,Bzi ¿n¿ c = fs¡Bzi are elements of GF(2n).
i=0 i=0 id)

So (ag,a1, ...,a¡-1) and (bo,bl,...,bn-l) are the coordinate vectors for a and b in GF(2n)

with respect to a normal basis, N = (P,P2,B4,Ps, ... ,82''' ). Let c = ab.

Define l.¡ by

n-l n-1

.o = I )À¡a¡u¡.
i=0 j=0

Now, À¡¡ is the coefficient of B in the normal basis representation of B2i*2j, so the

coefficient of B2k in B2i*k+2j*L - (Êtt J 

¡'* is also \. (Since raising something to ùe 2k

is merely shifting it cyclically k places). Hence we calculate that

n-1 n-1

ck = > fÀi¡ai*r.b¡*r,
i=0 j=0

fo¡ each 0 S k S n, where the subscripts are taken modulo n.

Let À = (1,1¡) , ttte matrix of multiplication coefficients.
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To calculate any coordinate of c then, we cyclically shift the vectors representing a and b

and use the matrix X, to calculate the bilinear form for cr.

So we can implement a multiplier with two cyclic shift registers for a and b, a¡d a

gate-axay realizing the matrix À, and an adder for the summation process. See

Figure 5.10.

Figure 5. 10 A normal basis multiplier

Example 5.6.1. Consider the field GF(8). Let cr be an element of GF(8) such that

a3 = a2+1. Then {g, oZ, û4} is a normal basis fo¡ GF(8). The marrix 1", as defined

above is as follows

z0 1 0r

^=i;llJ

Cyclic Shift register B
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Note that the (i j)th element of À is the jth coordinate of G2r+ I. This multiplier is

demonstrated in figure 5. i 1.

Example 5.6.2. Consider GF(25) generated by f(x) = x5+x2+1. Consider a primitive

elementcrsuchthatf(cr)=¡. PutP=cr3. Then(p,p2,p4,88,816) isanorma.lbasisfo¡

GF(2s). The conesponding l. is

./0 1 0 0 0\
lnt"nl

l.=l l r r o r I1,n,,, I

\tttoo/
and could be hardwi¡ed into a simila¡ circuit.

Lege

@

E
tr

nd.

Xor gate.

Adder.

Register.

Figure 5.11.
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This is sometimes called a Massey-Omura multiplier (see Massey [44]).

À contains O(n2) gates on average. In $5.6.2, we discuss a way to reduce this to O(n)

gates in some cases using Optimal Normal Bases. There must be log2n levels of Xor

gates in the summation of the n terms, so the multiplication takes time O(nlogn).

If we have n processors (i.e., n copies of the gates realizing M and the adder), then we can

replace the shift registers A and B by static registers. Connect the jth bit of the register to

the (-i)th corresponding input of the processor calculating c¡. (taking the (j-i) mod n). In

this way all the bits of the product are produced in parallel. So, if n processors are used,

the algorithm takes time O(logn). The n processors (sets of gates) are identical, so n

identical chips could be used (this is good - it cuts down on development cost).

Beth [9] discusses the case where a normal basis is also a polynomial basis, and

introduces an algorithm to expedite multiplication in this case. However, this basis is

also an optimal normal basis, an idea that is explored in $5.6.2, so that the techniques

developed there may be used, These are actually more efficient than the polynomial

normal basis techniques.

5,6.2 Optimal Normal Bases

To expedite multiplication in GF(2n), when the elements are represented as coordinate

vectors of a normal basis, Mullin, Onyszchuk, Vanstone and Wilson [49] inrroduce the

concept of an optimal normal basis.

Consider rhe matrix 1,, defined in $5.6.1, above. Let CN = l{fijll},¡=1}l 61 1¡"

number of ones in the matrix À, for the normal basis N. The number of operations

needed to multiply in GF(2n), or altematively, the number of gates required in a hardwa¡e

implementation increases as C¡ gets bigger, therefore, it would be nice to have a small

value for C¡. Clearly C¡ < n2 for aÌl normal bases N.

Theorem 5.6.1. C¡ > 2n-i.

Proof. Iæt d = (do,dr, ...,dn-1) = 8.p2".
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Then d¡ = (0,.

for each k, where the 1 in the first vector is in the (n-k)th position, and the one in the

second vector is in the (c-k)th position. That is, d¡ = \-r<¡1c-r¡. 1rt ¡ = (\-r¡c-t¡ ), the

matrix which has as ¡ows the coordinates of 8.82" for each i=0,..n-1. Then D has

precisely the number of 1 entries as 1,.

Next we note that trace(p) = 0 + 92 + ... + 82"'t is a linear operator, and hence is equal to

0 o¡ 1. Now {P, P2,..., B2*'} is a basis, so that the sum Þ * F2*...+ Þ2"'' *0, ,o

trace(P) = 1.

So the sum of the rows of D is B (Ê * P' *... * P2*' ) = p trace(B) = B. So there are an

even number of ones in every column of D except the one corresponding to the

coefficients of B. D does not have a column containing only zeros since

{8,P2,84,P8,...,82"''}isabasis. SoDhasatleast2n-1 onesinit. SoC¡>2n-l. l
If C¡ = /¡-i for some basis N, then N is referred to as an optimal normal basís. \n an

optimaì normal basis, the complexity of a multiplication is O(n).

Optimal normal bases do not always exist. GF(2n) has an optimal normal basis if one of

the following holds:

(a) n+l is a prime and 2 is primitive in GF(n+1).

(b) 2n+1 is a prime and 2 is primitive in GF(2n+1).

or (c) 2n+1 = 3 mod 4 is a prime and 2 generates the quadratic residues mod 2n+1.

In case (a), the basis consists of the non-unit (n+1)st roots of unity in GF(2n). Incases(b)

and(c),thebasisisgeneratedbVþ=y+f,wherelisaprimitive(2n+1)strootofunity

in GF(22n).

Mullin, Onyszchuk, Vanstone, and Wilson [49] describe the above constructions in

greater detail and conjecture that the above three conditions are the only ones under
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which an optimal normal basis in GF(2n) exists. They also include a list of numbers n <

1200 for which an optimal normal basis is known to exist, that is, which satisfy one of

fhese conditions, and have done a computer sea¡ch through all normal bases of each

CF(2n) for n < 30, and found no other optimâl normal bases besides types (a), (b), and

(c). Optimal normal bases have more than mere academic and asymptotic efficiency.

Actual chips have been built to exploit their properties.

Optimal normal bases also exist for certain GF(pn). In particular, if n+1 is a prime and p

is primitive in GF(n+1), then GF(pn) has an optimal normal basis consisting of the non-

unit (n+1)st roots of unity in GF(n+1).

5.6.3 Duals of Normal Bases

Geiselmann and Gollmann [28] derive several serial input / parallel output architectures

for multiplication of elements in a normal basis and the dual of the normal basis that are

analogous to standard polynomial basis multipliers. These multipliers decompose the

multiplication uv so that the factor v may be entered serially (starting with eithe¡ the most

or the least significant bit), and in which any bit of the product uv is available only at the

end of the computation. Jungnickel, Menzies, and Vanstone [36] prove that a self-dual

normal basis for GF(2n) over CF(2) exists when n = 0 mod 4, so the conversion between

one basis and the other in that case is not a problem, as it was in $5.5. However, the

combination of dual basis and normal basis techniques does not yield the same efficient

designs as in the case of the dual of a polynomial basis (the complexity of the multiplier

is about O(n2¡¡.

5.6.4 Exponentiating in a Normal Basis

If elements of a finite field are represented as coordinate vectors with respect to a nomtal

basis, then squaring an element is simply a cyclic shift of that coo¡dinate vector. So ir
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takes one clock cycle and will hence be ignored in time calculations. So to perform an

exponentiation in GF(2n) utilizing the properties of a normal basis, it seems logical to use

repeated squaring. That is, if
n-l

e=)a¡2i,aie (0,1),
i=0

n-1

then se = flc(at2 in GF(2n).
i=0

This computation requires m-1 multiplications, where * = Ëui is the Hamming weight

of (the number of ones in) the binary representation of e. rhi* m = n- 1 in the lvorst case,

(where, for example, e =2n - 2), and m = | on average.

Agnew, Mullin and Vanstone [2] improve the above method somewhat by selecting a

positive integer k and wdting e as the sum of powers of 2k. ffrat ls, for a = [il,
d-l

" = )U¡ZH , where bi is a binary k-tuple.
i=0

The equal values of bi are collected together, so

e = !olX,(ro) , where ol runs over all non-zero binary k-tuples
ú)

and î.(co) = Ic,,rzot , for some Ci,o e {0,1 }.
i=0

Then ge = oXror(to) = fl(oco;rtr'rl .

(r)

So the algorithm can be summarized as follows.

Algorithm Exponentiate.

Stage I.
compute ûo, 1<o<2k-1.
Stage IL multiply (oo)r(o¡ together.
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Stage I is further refined by Stinson [62] as follows.

Algorithm Stage I.

Step 1. c,l = o

Step 2. for <o := 2to}k-l do
(e*

If ro is even th.n a, ,= [g2.,J

If r¡ is odd then c¿o := c¿o- l c¿.

{a cyclic shift ! l

So then, to calculate û,o for 1 < o < 2k-1, by the algorithm Stage I takes at most 2k-1-1

field multiplications. This gives the worst case complexity of the algorithm

Exponentiate as M(k) = Ztt-t * [i'l - 2 multiplications.

Example 5.6.3. Suppose e = 1'499rc= 101110110112, andk = 2 then

s = (1) 210 +(1) 28 + (1+2) 26+ (t) 2a + (2) 22 +(1+2) 20

= (1) (210 + 28 + 2a) +(z) (22) + (1+2) (26 + 2\.

so for co = 1, ¡.(o) = 210 ¡ 28 a 24 .

ø=2,?,.(a)=22.

t¡ = 3, I(co) =26 a2o .

Hence cre = 1o¡2101o¡281o¡2a çæ¡22ça¡*çc'¡20

So to calculate s1499 ¡akss 5 (field) multiplications.

To make this algorithm highly parallel, the following def,rnition is needed.

Suppose that we have at reast f|l processors and we wish to multiply m objects

together. If they are multiplied together in pairs, after one round there are [ ]l oU¡ects

remaining. If rhis process is iterated, the m objects can be multiplied in hogzml ¡ounds.

This process is called binary fan-in multiplication. If we only have p < | fJ nro."trot,

available to multiply the m objects, then the obvious adaptation of binary fan-in

multiplication tur.., [{el - log2p6 + I rounds, where ps = LrogrpJ.¡rp¡
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If we have [t_l nr*rsorr, where s = [ ¡.l, ,n* we can perform Stage II in ltog2sl

rounds.

Stage I is a little more complicated. If we have (k-¡2u-z processors, then the algorithm

would take k rounds if each c¿o is calculated simultaneously using binary fan-in

multiplication. However, we can improve this.

Algorithm Parallel Stage I.

Step l. Compute tro fo¡ 1 < o) <D-1,.

Sfep 2. For each ro, 1 < ú) < zL-j-t, nn¿ (st)z
{cyclic shifts)

Step 3. Multiply all terms found in Step 1

by all terms found in Step 2.

This algorithm takes time llogzkl on P(k) = (D - t¡pu'i - 1) processors.

If k is even,
/k r2

then P(k) =lzz - r) ,

and if k is odd,
/ k+l \,/ k-l \

thenP(k) =lrT t\zz -t)

So if we have available rn.- [;l,lttl ] 
p¡ocessors, then the algorithm Exponentiate can

be performed in S(k) = hogzkl * ltogrrl rounds of multiplications. We note that

Ltog2nl .s(t)<llogznl. SoinsteadofbeinginterestedinksuchthatS(k)isminimal,

we are instead concemed with finding k such that the number of processors required is

minimal.

Ifk is log2n - log2log2n, then

rralt¡ is o(*;jr¡*"),

a¡d the number of processors required for the algorithm Parallel Stage II is also
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o('*r-'å""*)
Much improvement may be made if we have 2k processo¡s, for some ,u . 

Lå_.l. 
Then the

algorithm takes T(k) = llogztl . LiJ - k-1 rounds.

Some values for M(k), S(k), the minimum number of processors for S(k), and T(k) are

tabulated in Appendix 2 for various values of n.

5,6.5 A Normal Basis Inverse

Any non-zero element c¿ of GF(2n) has an inverse

n-l

a.t = &^ -z =oå'' = fior, .

i=l

This can be computed in n - 2 multiplications in a normal basis using repeated squaring.

Agnew, Mullin, and Vanstone [2] propose the following method to reduce this.

Suppose that n-1 = gh, for some integers g and h. Then

Now y= c,2 is calculated "f¡ee". Then ^=ft- 
1)takesg-1 multiplications to calculate.

h-l
\icci

Also o-l - o i=0 takes h-1 multiplications to calculate.

So computing cr-l takes g+ h - 2 multiplications. This process may be iterated if g is -

aa
composite. So if n-1 = Jlpi is the prime factorization of n-1 then we require ( In) - a

i=l i=l
steps.

Example 5.6.4. For example, in GR1236l),

4

23€'0 - 1 = ptz - ¡\2tzi, since 360 = 72.5.
i=0

2

272 - | = pz+ - ¡\22+i,since72 = 24.3.
i=0

E \ ,2r-1¡$2r,¡
2n-t - 1=2Eh - r=(28- t)l l2ci lando-r = ot-z=çoz¡\' i=0

[i=0 )
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2

224 - I =12a - t¡)2si, since 24 = 8.3.
i=0

28 - 1 = ç22 - DQz + 1)(24 + l), since 8 = 2'2.2.

So raising any element to the power 2361 - 2 takes

0 multiplications to square,

3 multiplications to raise the result to 28 - 1 ,

z
2 multiplications to raise the ¡esult to )28i ,

i=0

2

2 multiplications to raise the resul t to \zui ,

i=0

4

and 4 multiplications to raise the result to !272i ,
i=0

for a total of 11 multiplication steps.

Compared this to the 360 multiplications required to calculate an inverse using repeated

squaring.

Algorithm (n-1) Small Primes Inverse.

Input: g e GF(2n\{0}.

Output: g-l e GF(2n\{0}.

Given: n-1 = flp¡ is the prime factorization of n-1.
i=1

Step 0. {initialization. }

g-1 := Raise(a,g).

(n-1) Small Primes Inverse calls the recursive algorithm Raise.
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Algorithm Raise.

Input: a, a non-negative integer,

cr e GF(2n\(0).

Ouçut: p e GF(2n\{0}.

Step 1. {terminating case)

If a=0thenP=cr. End.

Step 2. {recursive call }
a-1

k:= IIpi
j=1

¡.1 .,
.ilK
i.¡

ï:=c[
p := Raise(a- 1,'y)

The algorithm can be modified when n-1 does not factor into only small primes. We frnd

an x such that m-x factors into small primes. Then 2m-l - I = 2x-1(2m-x - 1) + 2x-l - 1.

ab
Let m-x = f[p¡ and x-l = flqi.i=1 i=l -

ab
So we compute cx,- I in Lpi + Lqi - a- b+ l multiplication steps.

i=l i=l -

Example 5,6.5. For example, in GF12r219¡,

2t279 _ | = 261224.s3 - Ð + 26 - 1.

Noting that 224 - I = (212 + 1)(26 + lX23 + DQ3 - \ requires 5 multiplications to

evaluate,

52

)22ai contributes 52 multiplications,
i=0

26 - 1= ç23 + DQ3 - 1) requires 3 multiplications,

and we need one multiply to put it all together, o-1 is computed in 61 multiplications.

This is equal rc (2 + 2 + 2 + 3 + 53) - 5 + (2 + 3) - 2 + 1, as expected.

Note that this algorithm seems inherendy sequential.
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Algorithm (n.x) Small Primes Inverse

Input: g e GF(2n^(0).

Ouçut: g-1 e GF(2n\{0}.

Given: an integer x > 1.

a
n-x = llpi is the prime factorization of n-x.

i=l
b

x-1 = IIqi is the prime factorization of x-l.
i=l

Sfep 0. (initialization. )

g-l := (Raise(a,g))2"-l.Raisex(b,g)

This algorithm requires Raise again, and a Raisex very much like Raise, but with b

replacing a and q¡ replacing p¡.

5.6,6 Divide and Conquer - Another Normal Basis Inversion

Consider the scheme proposed by Itoh, Teechai and Tsujii, (originally in Japanese, so as

quoted in [2]).

( ^-1 m-l

I Q2 - I)(22 + 1), when m is odd,
Note that 2t-'- 1={

I ^ m-2 m-2

t 2*-' + (2 2 - I)(2 2 + 1), when m is even.

Fo¡ m odd then, we require one multiply to compute o2t-t-1,
m-l

given that we have comput eÅ ú' -l 
.

For m even, we require two multiplications to compute cr2t-1-1,
n.2

given that we have comput ed ú' -1.

Using this procedure recursively, it is a simple inductive proof to show that the number of

multiplications required to find a¡ inverse in GF(2n) (that is, to raise an element to 2n-2 )

is log2(n-1) + d - 2, where d is the Hamming weight of the binary representation of n- 1.



Example 5.6.6. For example,

2360 _ I =12t80 _ 1¡12180 + 1¡

2180-1=pel-1¡pn+\

2e0 - 1= e45 - De4s + Ð

245 - | =244 ¡ 1222 - \e22 + t)

Zzz _ 1= 12tt _ 1¡1Ztt + t¡

2tr - 1 =2r0 ¡ 12s - tX25 + 1)

2s-1=24+Q2-DQz+Ð

22_t=(2+I)

So raising anything to the 2361 - 2 , and hence finding an inverse in GF(2361) takes 1l

operations using this algorithm (since there are 11 addition signs in the final expression

¡62361 -2.

We summarize the algorithm as ITT inverse, as follows.

Algorithm ITT Inverse.

Input: g e GF(2n^{0}.

Output: g-1 e GF(2n\{0}.

Step 0. {initialization }

B-1 = ftT Raise (g,n-1).

ITT Inverse needs a recursive algorithm ITT Raise to make it work.
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Algorithm ITT Raise.

Input: i, a positive integer,

a, e GF(2n\{0}.

Output: B e GF(2n\(0).

Step l. {terminating case}

Ifi=lthenB:=ø. End.

Step 2. (recursive call) 
i

If i is even rhen B := c2-'2.ITT naise(i,cr2ll).
,]

If i is odd then B := rut Raise$,o2'+1¡

5.7 New Algorithms to Find Discrete Logarithms

Given a generator o of GF(2n), and x a non-zero element of GF(2n), we define logox, the

discrete logarithm of x with respect to o, to be the number y, 0 < y < 2n-1, such that

x = sY in GF(2n). Many heurisric and probabilistic algorithms have been proposed to

calculate log¿x for a fixed a and arbitrary x, with va¡iable results in terms of efficiency.

The most successful logarithm algorithms a¡e discussed.

5.7.1 The Index-Calculus Algorithm

ln 1979, Aldeman proposed the frrst sub-exponential time log algorithm, the index-

calculus algorithm. This was improved by Coppersmith [21] in 1984 to one that runs in
/ 3,-\

time O[ec{ nloeä 
J where c is a small constant. We present the algorithm as it applies to

GF(2n), but it can be modified to work for any Galois field.

The index-calculus algorithm is a probabilistic method. It relies on setting up a data base

of logarithms for some subset of S of GF(2n\{0), whe¡e the elements of S have some

reasonably easy to determine propefty, and then using heuristics to reduce the element of

which the logarithm is being found to a combination of elements of S.
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Let GF(2n) be considered as the ring of polynomials modulo some ineducible g(x) over

GF(2). Let f(x) be a generator of the multiplicative group GF(2n^{0}. We note that

polynomials over GF(2) are easy to factor. Algorithms are known that factor a

polynomial of degree m over GF(2) in time O(m). S is usually chosen to be the set of all,

(or most) irreducible polynomials over GF(2) with degree less than some number m.

Algorithm Index-Calculus

Input: o e GF(2n^{0)

Ouçut: a = logpo.

Stage I. Compute the logarithms of all the elements in S.

Stage tr, Reduce the element o to a combination of elements in S.

Combine the logarithms of these elements to calculate a.

We describe the standard algorithm without the Coppersmith va¡iations first, and then

sketch an outline of those changes.

Algorithm Stage I.

Step 1 Choose a random s, 1< s < 2n-1.

Step 2, Set c¡x = Fs (mod f(x)).

If o* factors into ineducibles from S, then insert

r = )bu1o*¡logpu (mod 2n-1)
veS

into the set of congnrences to solve

Step 3. If we have determined mo¡e than lSl congnrences then

continue to Step 4, else return to Step 1.

Step 4. Solve the set of congnrences to determine loggv,

for each v in S.
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Note that 2n-l may not be prime, in which case the congruences a¡e solved for each prime

power divisor and then combined using the Chinese Remainder Theorem. This would

actually speed up the computation since smaller primes are being worked with, so we

assume for algorithm analysis purposes that 2n- i is prime.

If Step 4 is done with straight Gaussian elimination it takes O(tStr) steps, but if the fact

that the set of congmences is a spaße system is exploited, then the time can be ¡educed to

O(tStz). The number of irreducible polynomials over GF(2) of degree less than m is
ôm+1

approximately L, so Step 4 takes time

oll41l2l
[m )

The polynomials s* behave like random polynomials. Define p(k,m) to be the

probability that a polynomial over GF(2) of degree k has all its irreducible factors of

degree less rhan m. Then the running time of the first three steps of Stage f is ffi .

Odlyzko, in his definitive survey paper [52] analyses p(k,m) in terms of N(k,m), where

N(k,m) is the number of polynomials over GF(2) of degree k which have all its

i¡reducible facto¡s of degree less than m, He determines the recurrence relation

N(0,0) = 1,

N(k,O) = 0, if k+0,

N(k,m) = 0, if k,0 and rÈ0'

and for all n,m>0,
m

N(n,m) = I )lr.-.u,t-t)(*'f)-t).
k=l r)l 

I 99

He then goes on to determine that, if nlm < m < nltr, then

N(n,m) -+ 2n(u){t+ott))å as n -+ oo,

so that p(n,m) -+ (u)tt+of 
tlç 

in the same range.

Odlyzko [52] also has a tabulation of p(n,m) for small values of n and m.



This gives us the average running time of (the unmodified version of) Stage I as

oþ.(;)*-'zz-).

Algorithm Stage IL
Input: c e GF(2n^{01

Output: a = logpo,

Step 1. Choose a random s, 1<s <2n-1.

Step 2. Set cr* = cÊs (mod f(x)). (deg o* I n)

If cr* factors into ineducibles from S. then

u= )bu1cr*¡logpu -t
veS

else repeat from Step 1.

(mod 2n- 1)

The probability that s* will factor as required is

n

lz-fin-t,m¡,
k=l 1 gg

which is asymptotically equivalent to p(n,m) as n -) oo, if n1@ < m < n1m, lsee Odtyzko

t52l). So the expected running time of Stage II is

I - /n \(l+o(l))å
P(n,m) \m.,r

There a¡e ways to speed up this algorithm. Blake, Fuji-Hara, Mullin, and Vanstone [14]

replace factoring o* in each stage by finding two polynomials w1 and w2 such that

q,* = s and the de$ee of each wi is aboutrl . This is done using information gained by

applying the extended Euclidean algorithm. Each w¡ is then factored as in the standard

algorithm. This adaptation is faster than the standard version by a factor of about Zå,

which is a great practical saving, but not an asymptotic one.
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Other improvements are discussed in Odlyzko [52], The one that has had the greatest

impact is the Coppersmith algorithm, presented by Coppersmith [21], and analyzed in

great detail by Odlyzko.

The Coppersmith algorithm begins by choosing the generating polynomial f(x) in such a

way that f(x) = ¡n + f(x), where the degree of f(x) is small. It relies on the factorization

of two polynomiats of degree Ii4

Algorithm Coppersmith Stage I.

step l. Choose a real number k > 0 such that 2k is "*", ffi
n:=l-fi_l+t.

Choose B such that B is about hlõc^
Step 2. Choose u1(x) and u2(x), relatively prime and of

degree less than B.

w1 := u1(x)xh + u2(x)

w2 := (w1(x))2k mod(f(x))

If w1 and w2 have all their linea¡ factors in S, then we

get a linear equation in logpv, for the v in S.

Step 3. Repeat Step l and Step 2 until we have slightly more

than lSl equations.
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Algorithm Coppersmith Stage II.
Step 1. Construct successive o* as above, until one is found whose

ineducible factors u¡ are all of degree arn, = hã"*
(or alternatively, until the Blake et al modification produces

w1 and w2 with irreducibles u¡ of degree < m1).

Step 2. Choose a positive real number k such that 2k i, uUoot {S
a := []J +t.

Choose B such that B is about ?filog2n-

Step 2. Choose v1(x) of degree I B, find a relatively prime v2(x) of

degree < B, such that u¡1x) divides w1(x), where

w1 := v1(x)xd + v2(x)

w2 := (w1(x))2k mod(f(x))

If w1 and w2 factor into polynomials of low degree,

then find the logarithms of these factors using the

algorithm Stage II, above, else repeat Step 2.

We note that w2 = y 11¡2k1*d2k-nf¡1x¡ + v2(x), so that the degrees of both w1 and w2 are
/?\

O\n',).there are improvements to the Coppersmith algorithm that speed up the first

stage some constant number of times, and are outlined in Odlyzko [52] but these

improvements do not affect the asymptotic running time of the algorithm.

5,7 .2 The Pohlig-Hellman Algorithm

If p is a prime such that p-1 has only smâll prime facto¡s, then there is an algorithm that

can compute logarithms in GF(p) in time O(logzp). It was first published by Pohlig and

Hellman in 1978 [54], who credit the earlie¡ independent discovery to Ronald Silve¡.

The algorithm was later generalized to the field CF(q) where q is any prime power and

q-l has only small prime factors (see Odlyzko [52] or van Tilborg [67] for a fairly good
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description). Let GF(q) = CF(pn), for some prime p. Let pn - i = IIO,*, where pi are

distinct primes. If r1,...,ry are any real numbers with 0 < 11 < f ,Èl logarirhms over

GF(pn) can be calculated in time

lk \
ol lni(rog2q + pil{i(1+los2plt)) l,l.i=l ')

using

Ík \
oln )1r+pir¡ |I i=r )

bits of memory, provided that a precalculation requiring time

/k \
oll(p¡+og2p¡'+ n) |

[i=1 )
is performed.

For example, if the time taken fo¡ the algorithm is proportional to.lma*, whele max the

largest prime factor of pn-1, and the amount of storage required is also proportional to

fiat
To sketch an outline of the algorithm, let B be a primitive element of GF(pn), and let x be

any non-zero element of GF(pn). The aim is to fi¡d y = logpx, that is, where, Pv = x. The

algorithm can be summarized as follows.

Al gorithm Pohlig-Hellman.

Input: x, B, n, where we want to find togpx in GF (2n).
k

2n-t=!ntm.
i=1

ri , the weight used in the step corresponding p1ni, 0 < ri < 1.

Stepl, For 1<i <k determine y mod p¡nr. 
k

Step 2. Use the Chinese Remainder Theorem to find y mod fp¡ni.
i=1
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Which leaves the problem of determining y mod p1ni, for each i. We put

n-1

y = f,b¡piJ (mod nint),
j=0

and set about determining b¡. To find bg, calculate

s:l s:l / s:l\Þo
u ='o' = Bt" = [pÐ, sincey=bemodp¡.

Note that a can only be one of pi elements. S", o = B*. The baby steps-giant steps

technique pioneered by Shanks is used to find b6 given a = c,bo. Given a real number r,

0<r< 1, find u = [1p1)tl. fnen there must be a unique pair of integers c and d,

0Sdlu-1,0<c<E,suchthaty=cu+d. So then ¿ = Bbo ¡1s¿.. that û,-cua = crd. So

crd is precomputed for each d, 0 < d < u-1, and these values ate then sorted. This step

can be done in o({{pil2tosznÐ).

Compute aû,-cu fo¡ c = 0, 1, ... {ul to lf_J if necessary), and check each resulr for a march

with the crd values. There a¡e

o((Pt1-)

of these act-cu to be computed. So once bg has been found, set

S:1
(xB-uo)ri2 = e¿br, ¿nd irerare.

It is easy to see that if q-l has a large prime factor, the Pohlig-Hellman algorithm

becomes infeasible in terms of precalculation time and storage requirements.
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Algorithm determine ! mod p¡nl.

Input: x, B, n, where we want to find logpx in GF (2n).

pi'ni

ri, determines the size-storage tradeoff in the computation.

Step la, {initialization }
S:-1

4 ¡= ¡Pi
S:l

c,;= pPi

, 
'= [1pil,]

] i= ¡¿-u
j:=o
Step lb. {precomputation )

for0<dlu-l find ad.

So¡t these.

Step lc. {frnd b¡ = lsgr¿¡

forO<c< lP l.
LUJ'

calculate af
if af = crd for any calculated in Step lb, then bj := cu +d

and go to Step ld.
Step ld. {iterate}
j := j+1

ifj = ¡1¡ 1¡"n go to Step le.
_S-1

else a := (xB-uo)o)t and go to step lc.

Step 1e. {summaryi
n-1

y := )u¡(pilt (mod (pÐnt),
j=0

Various steps of the Pohlig-Hellman algorithm can be executed in parallel. If we have k

processors, where there are k distincr primes dividing q-1, and letting ri = j, for all i, then

the algorithm can be performed in time O(log22q + rfp log22q log2p), where
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P=max Ip¡11<i<k) is the largest prime dividing q-1, with a precalcularion of time

O(log2q + 1fP log2P) using memory O(k rfP log2Ð. For more details of the derivation of

these numbers, see von Tilborg [67] and adapt his theorems to the multiprocessor case.

5,8 Generating Random Elements

The most obvious way to select a random element of GF(q) from an equiprobable

distributionistoselectarandomintegerr,0<r<q,andifr=qthentherandomelemenr

is 0, else the random element is ctr, where ø is a fixed primitive element of GF(q). Then

the complexity of finding a random element is the complexity of exponentiating.

Alternatively, if GF(q) = CF(pn), for some prime p is represented as an n-vecror of

elements of GF(p) with respect to some basis, then an alte¡nate approach is to choose n

¡andom elements of GF(p), that is n inregers between 0 and p-1 (inclusive). This

algorithm has complexity O(n).

5,9 Comparisons and Conclusions

Many of the most efficient algorithms that have been discussed only work in specific

fields. For example, the Pohlig-Hellman logarithm algorithm and the efficient normal

basis multipliers (the optimal normal bases and the self-dual normal bases). Appendix 2

shows that it is reasonable to discuss a case where both may be implemented for the

same field.

The following table summarizes the algorithms for manipulation of elements in the finite

fields GF(2n) that have been discussed in this chapter.
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add

add

multiply

multiply

exponent

inverses

logarithm

multiply

exponent

multiply

multiply

multiply

multiply

multiply

exponent

exponent

inverse

exponent

logarithm

logarithm

logarithm

random

¡andom

O(n2n)

o(1)

O(nalogn)

o(n)
o(n2)

o(n3)

o(n)
o(n2)

"(#)

traditional

parallel

traditional

traditional

t¡aditional

repeated squaring

Euclid

Table lookup

FFT

von zur Cathen

self-dual basis

normal basis

parallel normal

optimal normal

parallel ONB

divide & conquer

parallel d & c

normal basis

divide & conquer

index-calculus

Pohlig-Heilman

parallel P-H

exponentiation

lexicographical

o(n)

o(1)

o(n)

o(n)

O(n) mults
o(n')
o(n)

O(nlogn)

O(logn)

o(n)
o(n)

o(1)

o(n)
o(1)

"(ü)
O(logn)

o(P)

O(logn)
/ 3'-\

o[ec{ntodnJ oG.fi-"dt

rements

polynomial basis

polynomial basis, trinomial

generating polynomial

polynomial basis

polynomiai basis, trinomial

generating polynomial

polynomial basis

self-dual basis

normal basis

normal basis

optimal normal basis

optimal normal basis

normal basis

normal basis

normal basis, 2n- t has

largest prime factor P.

normal basis.

2n-1 has only small prirne

factors.

2n- 1 has k small prime

factors.

time

o(n)

o(n)

as exp.

o(n)

o(i)
o(n)

o(n2)

o(n)
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The following table summarizes the complexities of the (single processor) algorithms to

perform operations in GF(pn), where p 2 3.

irements

add

multiply

exponent

inve¡ses

logarithm

multiply

multiply

multiply

multiply

exponent

inverse

logarithm

logarithm

random

random

t¡aditional

traditional

repeated squaring

Euclid

Table lookup

FFT

self-dual basis

normal basis

optimal normal

basis

divide & conquer

normal basis

index-calculus

Pohlig-Hellman

exponentiâtion

lexicographical

o(""i-"'"*")

O(nlogp)

O(nlogp)

O(n) mults

o(n2togp)

o(n)

O(nlognlogp)

O(nlogp)

O(nlogp)

O(nlogp)

"(ffi)
O(Plogp)

O(nlogp)

as exp.

o(n)

polynomial basis

polynomial basis

polynomial basis

self-dual basis.

normal basis

optimal normal basis.

normal basis

normal basis, pn-1 has

largest prime factor P.

L1 has only small prime

factors.
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The following table summarizes the complexity of the most efficient algorithm to

perform each operation in GF(2n), for a single processor, and the mulriprocessor cases.

add

multiply

exponent

togarithm

inverse

random

o(n)

o(n)

"(ü)
o(n)

"(#)
"(#)

o(1)

o(1)
O(logn)

o(n)

O(1ogn)

O(logn)

The following table summarizes the complexity of the most efficient algorithm to

perform each operation in GF(pn), (for a single processor).

add

multiply

exponent

logarithm

inverse

random

O(nlogp)

O(nlogp)

"(#)
O(n2logp)

"(#)
"(#)



Chapter 6 : Conclusions

The following table summarizes the field operations required for the algorithms in

Chapter 4.

4.2.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.t.

4.9.2.

4.t0.

GF(q)

none.

GF(q)

GF(q)

GF(q)

GF(qd)

GF(q)

GF(q)

GF(q)

GF(s3)

GF(q)

cr(qdl

GF(q+1)

GF(q)

cF(qd)

I

1

1

1

i

1

1

1

1

1

2

2t

6

4

4

1

2

11

4

4

3

2

3

4

)

2t

2d

4

1

2t

2d

2

t

d
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The following table summarizes the complexity for the algorithms in Chapter 4 which

may be implemented over GF(q) where g = 2n for the single and multiprocessor case as

outlined in $5.9.

Algorithm 4.10 is listed only for the operations in GF(q+l), where q+l = 2n.

o(n +ffi4.7

4.8

4.9.1

4.9.2

4.10

4.t1

4.12

o(n)

o(n)

o(n)

o(n)

"(#)
"(#)

O(n + lognd)

o(n)
o(n)
o(n)

o(n)

O(tlogn)

O(dlogn)

The following table summa¡izes the complexity for the algorithms in Chapter 4 which are

implemented over GFþn), where p * 2. In algorithm 4.10, operations are performed over

GF(p), GF(pd), and GF(2n), and logp is O(n)

4.2

4.5

4.6

4.to

o(n2togp)

o(n2togp)

o(n2logp)

o(a'zn)
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Appendix 1 :

The best Choice of Irreducible generating

Polynomial for GF(2n), 2 < n< 16

When multiplications are performed in a field represented as coefficients of a polynomial

basis, the algorithm is mo¡e efficient if the generating polynomial has as few terms as

possible. Mastrovito [45] lists the following table for the best generating polynomial for

GF(2n), fo¡ small n.

powers of x in the

2

J

4

5

6

7

I
9

10

11

12

13

14

15

t6

2,t,0

3,1,0

4,1,,0

5,2,0

6,3,0

7,1,0

8,7,5,1,0

9,1,0

10,3,0

11,2,0

t2,3,0

13,7,6,1,0

14,5,0

15,1,0

16,11,6,5,0
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Appendix 2 :

Optimal Normal Bases and Pohlig-Hellman

logarithms: Can we have both in GF(2n)?

Two of the most efficient finite field algorithms rhar were discussed in Chapter 5 only

work in GF(2n) for certain values of n. Optimal normal bases exist when n+l is a prime

and 2 is primitive in GF(n+l), when 2n+1 is a prime and 2 is primitive in GF(2n+1), or

when 2n+1 is a prime congruent to 3 modulo 4 and 2 generates the quadratic residues

mod 2n+1. Luckily finding which of the small inreger n (n < 1000) satisfy rhese rarher.

complicated conditions is tabulated for us by Mullin, Onyszchuk, Vanstone and Wilson

[49]. The Pohlig-Hellman algorithm is efficient when 2n-1 has no large prime facrors.

Brillhart, Lehmer, Selfridge, Tuckerman and Wagstaff [20] list the prime facro¡s of 2n-1

for many values of n. So if we are to justify the claim that both algorithms can be used

on ce¡tain Galois fields of characteristic 2, then the task remains to compa¡e and corelate

these two lists of numbe¡s.

We note also, that in implementing the (1,l)-code constnrcted using PG(q), we needed

field operations in PG(q3) as well as those in GF(q), and in implementing the (3,2)-code

and the (2,2)-code we used both GF(q) and GF(qd). So a sea¡ch is also conducted for

small n and 3n which both satisfy the above two conditions. Actually, since 2n- 1 divides

2dn-1, i¡ 2dn-1has only small prime factors, so too does 2n- 1. Some of the work in the

precalculation stage ofthe Pohlig-Hellman algorithm need not be duplicated for the

second.
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Small values of n, (n < 1000), for which an optimal normal basis exists for GF(2n), and

for which 2n- 1 has only small prime factors.

Note: d is the numbe¡ of decimal digits in the largest prime facto¡ of 2n- 1.

C before a number signif,res that it is the number of digits in a number that is known

to be composite but for which the factorization is not known.

4

6

12

18

)9

36

52

60

66

70

72

8i
90

100

105

148

172

210

230

243

268

270

1

1

2

2

3

3

4

4

6

6

5

8

I
6

6

9

t3

7

16

t9
t3

15

273

292

299

3t6
323

326

348

354

372

388

411

420

429

438

441

460

470

483

495

s40

546

558

20

22

c60

24

c80

24

t7

t9
T9

26

c63

1,6

c63

28

c59

2I

35

c62
c70
c80

30

48

585

586

615

618

645

56s8

660

4726

774

810

820

828

852

876

930

940

i060

61108

11 16

1r22

1t70

c78

c'17.C89

c89

c62
c88

8.C81

c90
5.C63

c56.C76

c60
49

40

34

32

65

35

56.C63

70.c78

48

c92

c78
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Small values of n, (n < 400) for which GF(2n) and GF(23n) have optimal normal bases

and 23t - | = (2n - D(*î +2n + 1) has only small prime factors.

Note: d is the number of decimal digits in the largest prime factor of 23n- i.

C befo¡e a number signifies that it is the number of digits in a number that is known

to be composite but for which the factorization is not known.

)
4

6

t2
30

35

60

70

81

90

t46
180

186

270

292

338

372

378

398

6

t2
18

36

90

105

180

ztÙ

243

270

438

540

s58

810

876

1014

1116

tt34
1,194
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Examples.

GFQ2I\ has an optimal normal basis.

2210 - t = 32 . 72 . 11 . 3t . 43 . 7 t . r27 . 151 . 2t1 . 28t, 331 . 337 .5419 . 29191 .

86171 . 106681 .122921 .152041 .664441 .1564921.

GflZzo¡ has an optimal normal basis, also.

270 - 1 = 3 . 1 1 . 31 . 43 . 7 r . tz7 . 2gt . 9617 | . tz2gzt.

Note that, as expected,270 - 1 divides 2210 - l.

So the Pohlig - Hellman logarithm algorithm can be used on both, and the first part of the

precalculation step for GF(2210) is the precalcularion step for GF(270).

Similarly,

GF(2180) and GF(260) both have optimal normal bases,

260 - | =32.52 .i. 11 . 13. 3t .41 .6r .15r .33t . r32r.

2180 - | = 1260 - \ . 3 . 19 . 37 . 73 . t09. 181 . 631 . 2331t .54001 . 18837001 .

29247661..



Appendix 3 : Values of M(k), S(k), and

T(k), for Exponentiating in a Normal Basis

In $5.5.4, we calculated the value M(k) = Z"t * lll - 2 as the worsr case complexity for

the algorithm Exponentiate. If we have available

o,* 
{¡;-1,ntul} 

processors,

then the algorithm Exponentiate can be performed in S(k) = lfogztl * hogrr] rounds of

muitiplications.

Much improvement may be made if we have 2k processors, for some Zo . LiJ. Then the

algorithm takes T(k) = ltogztl + []l + k-1 rounds.

For n = 210 we compute

So M(k) is minimized when k = 6 and the number of processors required for S(k) when

k=7.



For n = 216 we compute

7

8

9

t0

t1

t2

9630

8318

7535

7064

6980

7508

8

13

¿3

39

66

116

201

355

639

4681

4096

3641

3277

2979

3969

17

16

t7

t7

t7

M(k) is minimized byk = 11 and the number of processors required for S(k) byk = 11.

Values of k which minimize M(k) and T(k) for various values of n whe¡e n is a power of
2.

1.6

32

64

r28

256

512

1024

2048

4096

5

6

6

7

8

10

11

t2
12

3

5

9

16

26

49

85

r46

256
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A look at T(k), for various values of k such that the numbe¡ of processors required for.

T(k) is less than that for S(k5), where n is a power of two.

n k needed

16 2

3

4

I
6

6

32 2

3

4

8

8

'7

64 2

5

4

8

T2

I
128 2

3

4

I
20

11

256 2

3

4

4

I
16

Jt)

16

11

512 2

J

4

.5

4

8

16

32

68

¿t

15

12

1024 2

3

4

5

6

4

8

16

32

64

t32
48

¿3

15

t2
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