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ABSTRACT

Advanced transaction models have been the focus of research in the area of transaction
management. Examples of advanced transaction models include nested, multilevel, flex
transactions, etc. However, these models have their own shortcomings that can be

summarized as follows:

e Absence of a mechanism to specify and provide proper global integrity
constraints (dependencies) that determines the effects on global atomicity.

e Unsuitability of certain transaction models in multidatabase environments. For
example, ConTract model was developed for cooperative environments and are
thus not suitable for multidatabase environments.

e A means to characterize the amount of local autonomy affected. For instance,
Sagas do not address characterization of local autonomy.

e A mechanism to utilize the application semantics and execution dependencies.
For example, nested transactions do not explicitly address the use of semantics.

e A provision to support multiple transaction execution alternatives. Sagas and
ConTract are examples of those models that do not provide support for
functionally equivalent transactions.

e Scalability to Internet environments running advanced database applications.
Most of the transaction models presented in the literature do not address the

scalability issues.

This thesis presents a novel, and Internet-scalable implementation of a nested transaction
model that describes the pragmatic components required to remedy the above
shortcomings in the form of an abstract model. It shows that utilizing application
semantics and revealing partial results in an open nested, multidatabase transaction
environment aids in characterizing the dependencies among the child transactions. An
interface mechanism to characterize the level of autonomy at the underlying systems is

provided. Support for multiple transaction execution alternatives is also provided.
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“Begin at the beginning ", the king said. gravely, “and
go on till you come to the end; then stop.”

- Lewis Carroll, Alice in Wonderland

Chapter 1

Introduction and Preview

1.1 Motivation

The later part of the 20™ century observed a remarkable progress in technology pertaining
to information access and its use. Specifically, we observed the progress of the Internet
architecture and its use for commerce, and the extensive use of databases to serve the
commerce itself. The main reason for the progress in the expansion of Internet is the
sudden and vibrant explosion of its World Wide Web (WWW) facet. The reason for the
extensive use of databases is from the demands for repositories to store the huge amounts

of different types of data used by electronic commerce.

It is natural to believe that the combination of these emerging technologies would yield a
powerful means for information access. However, at this time, this is not the case. Why?
Could it be because Internet expansion is not as functional as we believe it to be? Could it
be because the databases that already exist are unsuitable as the vertebra that forms the

backbone for electronic commerce? Or is there another reason that the Internet



infrastructure is failing to reach its full potential? The expansion of the Internet is
undeniable. Unfortunately, it is limited by the inertia in the advancement of the
infrastructure that forms the backbone of the WWW. Most organizations that have the
potential to go online are unable to do so because of their own legacy systems. However,
the primary reason this combination is not powerful is because of the lack of proper
management of electronic transactions that execute in this environment. Since this is the
first genciation of electronic commerce, many of its participants are still in the
reengineering phase from the previous generation of non-electronic commerce. But once

this is complete, increased pressures will be placed on the Internet infrastructure.

The problem of transaction management in a multidatabase environment has been around
for a long time. This mission critical problem has been addressed by several researchers
working on both the concurrency control and reliability aspects, and the development of
extended transaction models (ETM). One possible scenario where transaction
management is required is an online information kiosk. These are interactive web pages
that guide the online shopper towards a collection of online stores carrying item(s) of
interest. Examples of such a collection of online stores are air ticket bookings or car
rentals. A traveler planning a tour could use the information provided by the kiosk. Other
situations where transaction management is required are online auctioning, e-business

web sites handling major financial transactions, efc.

There are many questions that arise when the transaction management problem in MDBS
is extended to address transaction management issues in an Internet environment such as

an information kiosk or e-business environments. The questions to be answered include:

e How to realize a multidatabase environment on WWW?

e What is the suitable advanced transaction model that can be used?

e How to enhance the parallelism of the transactions in such an environment?

e How to enhance the performance of transaction management systems that are

used in Internet business applications?



In this thesis an online tour booking application is used as an exemplar while addressing
the above questions. Clearly this application requires a distributed solution. Hence all the
information is stored in individual databases and can be accessed by online clients. We
use an extended transaction model for executing the transactions in this environment.
There are two models of particular interest to this work — Multilevel Transaction Model
[WS84][W86][W9I1] and Open Nested Transaction Model [WS92]. Both these are
broadly defined as nested transaction models. The former addresscs transaction
management issues in multi-layered systems while the latter addresses the problem of
enhancing the parallelism of concurrent transactions. Transactions in the MDBS
environment (considered in this thesis) are operations invoked by other transactions.
Hence, the choice of a nested transaction model will serve our needs well. We must
identify the dependencies between transactions (subtransactions) that exist in the nested
transaction. The underlying theory in identifying these dependencies is that the
transactions (subtransactions) can view the partial results of other transactions
(subtransactions) based on certain conditions specified by the application requirements.
Further, this choice of model will affect the concurrency control and recovery
mechanisms that exist in traditional transaction management systems. This work
contributes a (major) step in providing access to information in a multidatabase

environment through WWW.

In Section 1.2 we describe the issues involved in managing transactions in a
multidatabase environment. Section 1.3 discusses the fundamental research issues of this
thesis. Section 1.4 presents an overview of the contributions and describes the

organization of the rest of this thesis.

1.2 Transaction Management Issues In Multidatabases

A multidatabase system (MDBS) is an interconnection of several autonomous element
databases each with its own database management system (DBMS). A multidatabase
management system (MDBMS) is a software facility developed on top of these element
database management systems to provide the users access to any underlying element

database. The transaction management problem in MDBS is critical due to the



autonomous and heterogeneous nature of the preexisting legacy systems and their need to
support the ACID properties of transactions. Transactions in a MDBS are either local or

global depending on how and where they execute (see Figure 1.1).

Global transactions

Local
transactions

Figure 1.1 A Multidatabase Architecture

Due to the autonomous nature of the underlying systems in the MDBS, the local and
global transactions interfere with each other thereby producing undesirable situations or
inconsistent database states [BHG87]. A solution to coordinate the execution of global
transactions was not made available because the transactions in the MDBS see
inconsistent data during their execution. The following sections present the
characteristics of the MDB environment, properties of transactions, and the necessary and

sufficient conditions for proper transaction management in a MDBS.



1.2.1 Autonomy and Heterogeneity
An MDBS, as defined earlier, is an interconnection of multiple preexisting element
database systems. These database systems are autonomous and heterogeneous due to their

design, development and administration [BBE99].

Autonomy of the element database indicates the degree to which the DBMS can operate
independently without losing control over local data and transactions. Design,
communication, execution and association autonomies are the different aspects of
autonomy [SL90]. Due to this nature of the element databases (and hence their DBMS),

the MDBMS has no control over the following:

e Design of the element databases,

e Local execution schedules,

e Communication between the element databases, and

e Level to which certain functions/operations can be shared with the users of the

element databases.

Heterogeneity is another characteristic of the transaction management problem in a
MDRBS. It refers to the different data definitions, data models, access languages and
storage structures that each element database can have. The more dissimilar the two

systems are, the more difficult it is to manage that heterogeneity [BBE99].

1.2.2 Properties of transactions
A transaction is a sequence of read and write operations on a database. Transactions have

been characterized with the following properties [GR93]:

Atomicity: This property indicates that a transaction either executes to its completion or
does not execute at all. That is, a normally terminating transaction makes permanent

changes to the database. Otherwise, no changes are made permanent in the database.



Consistency: This refers to the correctness of a transaction. A correct transaction is a

program that moves the database from one consistent state to another.

Isolation: This property requires each transaction to see a consistent database at all times.
An executing transaction cannot reveal its results to other concurrent transactions before

it commits.

Durability: Durability ensures that once a transaction commits, its results are permanent

and cannot be lost from the database.

The atomicity and isolation properties support serializability of transaction management,
while the consistency and durability progerties ensure reliability. Traditionally, it is
believed that correctness of transactions can be guaranteed only if all these properties are

supported.

1.2.3 Necessary and Sufficient Conditions
The necessary and sufficient conditions for proper transaction management in a MDBS
are [B90]:

e All the local database management systems guarantee local synchronization
atomicity.

e If an operation of transaction 7T; occurs before 7> in a DBMS, then the same is
true for all other operations whether they conflict or not.

e The global transactions cannot be split and concurrently submitted to the same
DBMS.

e The MDBMS must be able to identify all objects referenced by all global
transactions.

e The MDBMS must be able to detect and recover from global deadlock.



1.3 Preview: Fundamental Research Issues

The challenges to transaction management in MDBSs are primarily due to the nature of
the MDBS architecture and the properties of the transactions. Both these factors raise a
number of issues. The rest of this section presents the key thesis element and an overview
of the key research issues that affect transaction management in a MDBS. Finally, an

outline of the proposed solution to these issues is provided.

1.3.1 Thesis of the Thesis

This thesis broadly addresses the transaction management problem in multidatabases.
Specifically, an open nested, multilevel transaction model is applied to a multidatabase
environment characterized by the autonomy of the underlying databases. A set of
dependencies existing between the transactions (subtransactions) in a nested structure of
transactions executing in an application-specific domain is identified. Concurrency
control aspects of the transactions executing within such a framework are studied.
Specifically, the intra-transaction parallelism of a transaction executing in such a
framework is studied. Further, it shows that by exploiting the dependencies identified, a
transaction can be processed in many different ways. Finally, an interface mechanism to

guarantee a high level of autonomy at the element databases is provided.

To exemplify the thesis, we use a sample application [E92] used to book tours (see Figure
1.2). It includes the booking of accommodation, air tickets, and car rental. The
accommodation transaction comprises subtransactions that are used to book a hotel,
motel, and/or hostel. The air ticket booking transaction comprises two transactions — one
to book a very basic ticket and the other to book a ticket based on the user’s carrier

preference. The car rental transaction is used to book cars based on the user’s preference.

1.3.2 Key Issues

In the past, there have been many contributions and proposals addressing transaction
management issues in a MDBS. All these contributions had their own motivation and
reasons. However, the key research issues in transaction management in a MDBS

addressed by this thesis are:



e Develop an extended transaction model to support transaction management in

application-specific MDB environments.

o Identify dependencies between transactions (subtransactions) executing in such

environments to study intra-transaction parallelism.

e To guarantee a high degree or autonomy at the underlying databases.

e To provide support for multiple, functionally equivalent, transaction execution

alternatives.

e [llustrate how these approaches can be applied to a more general-domain

environment.

Accommodation
Manager

Ticket
Manager

Rental
< > Manager
4 A
Notifications

&

b o o

I Accom. DB I

l Ticket DB I

Rental DB

Figure 1.2 Transaction Hierarchies For A Trip Booking Transaction

Extended Transaction Models

Multiple users access a database system concurrently to read and update its data. Such an

environment is prone to undesirable situations or inconsistent states if there is no proper



mechanism to interleave the transactions. Concurrency control is the mechanism that aids
the proper management of interleavings so there is no interference between transactional

operations of different users.

Several approaches have been proposed to enhance the functioning of the concurrency
control mechanism in a MDBS. In this thesis, we categorize the past approaches into
three generations. Though most of these efforts addressed the transaction management

issues in a distributed environment, the same solutions are applicable to the MDB

environments.

The first-generation approach was to provide a correctness criterion called serializability
{BHG87][MRB+92]. This required the scheduling of the transactional operations so that
the result of the execution of such a schedule produced the same output and had the same
effect on the database as some serial execution of the same operations. However, this
approach proved to be too stringent and needed to be relaxed. Further, this was
insufficient in the presence of failures. Hadzilacos [H88] proposed the consideration of
potential failures that could possibly occur in transaction processing environments. This
resulted in a theory of reliability as it relates to transaction management. Serializability
and reliability together form the first-generation solutions that address the transaction

management issues in heterogeneous distributed database environments.

The second-generation approach focused on relaxing serializability. Naturally, this
approach allowed some inconsistencies in the database resulting in tolerably undesirable
situations [DE89](B90](BO90]J{PL90][MRK+91][HB96]. Some methods even ignored
the integrity constraints of the underlying element databases [DE89]. Despite these
efforts, it was realized that the local autonomy in the element databases made it difficult
to apply traditional transaction management techniques to MDBSs. Apart from the
above-mentioned efforts, Garcia-Molina [G83], Lynch [L83], Farrag and Ozsu
[FO87)[FO89] address the concurrency control problem using the semantic knowledge of
transactions. Alonso et al. [AVA+94], Vingralek et al. [VHB+98], Schuldt et al. [SAS99]

attempt to unify the theory of concurrency control and recovery.



Notification -
Accommodation Ticket

Manager < Manager

Accom. DB Ticket DB

Figure 1.3 Revelation of Partial Results

Several works were proposed to address the inadequacies posed by the traditional
transaction processing concepts. Finally, much attention was devoted to the development
of application-specific transaction models. This resulted in nested transactions
[M81][M85], Sagas [GS87], multilevel transactions [W86][W91], etc. These models
fundamentally disagree with the notion that conflict serializability is the basic correctness
criterion. Though the concept of nesting the transactions proved to be an interesting
concept, it initially failed to address the autonomy of the element database systems.
However, nesting of transactions is useful because it allows controlled concurrency
within a transaction and localizes the potential failures. It was based on the nested
transaction model that other extended transaction models were proposed. The work
presented here uses a novel implementation of the nested transaction in a MDB
environment. In this environment, we observe that a transaction is decomposed into a set
of subtransactions. Each of these subtransactions is considered to be an operation in the
context of other transactions. The subtransactions at the lowest level in the nesting
interact with the element databases. The partial results of such interactions are used to

determine the execution of other transactions so that they need not wait until the entire

10



result is available. This referring to partial results is the motivation for identifying the

transactional execution dependencies.

One example of a transaction where the partial results can be useful is in a trip booking
transaction. In Figure 1.3, we show part of the trip booking transaction shown in Figure
1.2. Consider a trip booking transaction that states that an accommodation may be
booked if some kind of ticket, an economy ticket or a first-class ticket, is available. The
ticket manager spawns the subtransactions for economy and first-class tickets. The
outcome of the subtransactions is passed on to the ticket manager. Now, if the economy
ticket subtransaction executes and produces a result before the first-class ticket
transaction, then the ticket manager immediately lets the accommodation manager know
of the result. It does not wait for the outcome (success or failure) of the first-class ticket
subtransaction. This lets the accommodation manager spawn the accommodation booking
subtransactions without having to wait for any other results from the ticket manager. This
type of execution of subtransactions within a transaction enables us to realize the intra-

transaction parallelism desired.

Identifying Transactional Dependencies

Another research issue we deal with is the identification of the different kinds of
dependencies in an application-specific transaction model. In the case of nested
transactions or long-lived multilevel transactions, it can be observed that there is a strong
contention for resources among the individual transactions. In such environments,
transactions waste a lot of time by waiting for other transactions to finish utilizing the
resources they hold. For example, a transaction may have to wait until its sibling’s
children are in the precommit stage before it can utilize (read/write) their results. Such a
nested structure of transactions takes a hierarchical form, where a root transaction has

child transactions, which in turn could have children or be a flat transaction.
This thesis argues that a subtransaction can read/write the partial results of another

subtransaction that belongs to a totally different parent at any level in the nesting. In such

a nested structure, there is less time wasted contending for resources, thereby increasing
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the performance. However, the challenge is to identify (the strengths of) the dependencies
between the transactions so as to enforce the correct usage of the precommitted results.
Hence, based on (the strengths of) the dependencies, the transaction would execute
differently. This thesis identifies such dependencies between the subtransactions and
categorizes them based on the manner in which they are going to be used. The
identification of such dependencies paves the way to study the concurrency control
(parallelism) aspects within a transaction. In the environment considered in this thesis,

such parallelism is realized at different levels of the transaction model.

Subject Observer | Dependency

Econ. Tic | Acc. Mgr. Sufficient
Accommodation Ticket

Manager Manager

NN

| Accom. DB I | Ticket DB I

Figure 1.4 Subtransactional Dependencies

Notification

Consider a scenario where the dependency relationship at the ticket manager is as shown
in the table (execution dependency database) in the top, right corner, of Figure 1.4. The
first column in the table indicates the notifying subtransaction (subject). That is, the
subtransaction that reveals the results. The second column contains the subtransaction

that is to be notified (observer). That is, the subtransaction that refers to the revealed
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result. The third column contains the (strength of) execution dependency. In this case, we
choose that the availability of an economy ticket is just sufficient for the accommodation
manager to start any or all of its subtransactions. Hence, upon the positive outcome of the
ticket transaction (availability of an economy ticket), the ticket manager checks its
dependency database and notifies the accommodation manager about its results. The
accommodation manager takes it from there and spawns its subtransactions. The
dependencies could broadly be either strong or weak, and based on that appropriate
subtransactions are invoked. A complete treatment of such dependencies is the topic of

Chapter 3.

1.4 Contributions and Structure of Thesis

In this thesis, we analyze the problems posed by the above issues and implement a
solution to address them. This requires the application of a nested transaction model to a
typical MDB environment and the capture of dependencies between the subtransactions.
Such dependencies are utilized to study the concurrency control aspects within a
transaction executing in the framework considered. Due to the nature of the MDB
environment and the properties of transactions, there is no single cure-all for the
problems mentioned and issues identified above. Specifically, there is no single
combination of dependencies that could address the problem. We recognize this and aim
at providing a very generic form of transaction management that could result in different
processing of the same transaction depending on the combination of dependencies. The
thesis is exemplified by the exploitation of the sample application that is used to book
online tours. Throughout this thesis we use the same application to explain the different
components of this thesis. This application uses the inputs from the user for booking a
very basic tour that includes the booking of accommodation, air ticket and car rental. A
multidatabase environment is created using a commercial database system. The
implementation of the transaction interacts with this environment in the process of
booking the tour. The interactions are controlled by the specification of the execution
dependencies among several transactions (subtransactions). The results of these
transactions vary with the specification of the execution dependencies. The

implementation of the subtransaction managers provides an interface mechanism that
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characterizes the autonomy level of the underlying system. It must be noted that the
implementation of this thesis provides an abstract framework that can be effectively
utilized by other advanced database applications, such as, online auctioning, information

kiosks, etc.

The rest of this dissertation is organized as follows: Chapter 2 provides the necessary
background and related work in the area of transaction management. Chapters 3 and 4
form the core of this thesis. Chapter 3 discusses the transactional (subtransactional)
dependencies. An application of the new paradigm is presented in Chapter 4. This chapter
provides the illustration of an application executing within the abstract transaction
framework presented in this dissertation. It also includes a discussion on utilizing the

framework to support a more general domain of database applications.

Finally, in Chapter 5, we present a summary of our work and contributions. We present a
discussion about the general lessons learned from applying the nested transaction model
to a MDBS environment and utilizing the transactional (subtransactional) execution
dependencies that exist between them. We conclude Chapter S5, and this dissertation by

providing an outline of future research directions.
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History is the witness that testifies to the passing of time;
it illumines reality, vitalizes memory, provides guidance
in daily life, and brings us tidings of antiquity.

- Cicero 106-43 BC

Chapter 2
Background and Related Work

This chapter introduces the reader to the necessary background and related research work
in transaction management in multidatabase systems. Section 2.1 provides an
introduction to multidatabase architecture. In Section 2.2, we discuss transaction
management in multidatabase systems. Sections 2.3 and 2.4 present the three generations
of research in this area. The leading open research questions are the subject of discussion

in Section 2.5. Section 2.6 concludes this chapter with a summary.

2.1 Multidatabase Architecture

Businesses around the world rely on a very wide range of information sources to conduct
their everyday chores. These sources of information are usually databases whose size and
structure depends on the size and type of the business. These databases grow with the
businesses and hence the information is accessed from several nodes. Each node uses a
copy of the whole database. The existing data is distributed geographically based on
specific needs. Such a distribution of data results in a situation where the same data is

stored in dissimilar platforms and dissimilar languages access them. Though these
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dissimilarities pose problems, they enable the sharing of information among
geographically distributed databases and users. A user of these databases believes only a
single centralized database is accessed. Such databases are called distributed database

systems.

A distributed database system (DDBS) is an information system composed of a
networked collection of multiple databases that are logically interrelated (see Figure 2.1).
A distributed database management system (DDBMS) is a software facility that permits

the management of the DDBS and makes the distribution transparent to the users [OV99].

Site 1 l

Site 2

Site 5§

Communication
Network

Figure 2.1 DDBS Environment (Courtesy: [()V99])

A multidatabase system (MDBS) is a special case of the distributed database system. It is
an interconnection of multiple databases that are characterized by autonomy and
heterogeneity. A multidatabase management system (MDBMS) is a software facility that
coordinates access to the underlying databases. Figure 2.2 depicts a high-level

architecture of a multidatabase system.
The MDBMS is the core component of multidatabase architecture. This is responsible for

the correct execution of the transactions submitted to it. Each participating database has

its own database management system called the local database management system
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(LDBMS). This is responsible for the correct execution of the local transactions submitted
to it. The MDBMS has no control over the execution of transactions at the element
databases. Hence the element databases are characterized by some degree of autonomy.
Further, each of these databases may have their own data model and access languages.

Hence these databases may also be characterized by heterogeneity.

Global transactions

Local
transactions

Figure 2.2 A Multidatabase Architecture

2.1.1 Definitions: [BE99]

This section provides a brief description of the key definitions used throughout the

balance of this thesis.
MDBS: An MDBS is composed of a set of local databases (LDB = (LDB;, LDB,, ...

LDB,}), with each managed by its own corresponding local database management system
(LDBMS = (LDBMS; LDBMS,, ... LDBMS,}). B
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Local Transactions: A set of transactions submitted to LDBMS; (LT; = {LT‘,~, LT, ...
LT";}) is called local transactions. LDBMS; is responsible for all the local transactions

submitted to it. l

Global Transactions: A set of transactions submitted to the MDBMS (GT = (GT,, GT,,
... GT,}) is called global transactions. B

Each of these global transactions (GT;) is decomposed into a set of global

subtransactions.

Global subtransactions: A set of transactions obtained from the decomposition of a
global transaction. GTj = (GST";;, GST?j, ... GST "™}, where each GST is submitted to
its corresponding LDBMS. The superscripts in the above set identify the LDBMSs. l

2.2 Transaction Management

Guaranteeing correct execution of transactions over the MDBS has been the focus of
research over the past 15 years. Initial research in this area yielded multidatabase
management systems, while lately the focus has been on addressing transaction
management issues in specific application domains. Nevertheless, the questions framed in
the initial stages of transaction management research have not yet been answered

completely.

Figure 2.2 presented an architectural model of multidatabase systems with the depiction
of local and global transactions. Transactions submitted to the MDBMS are called global
transactions. These are decomposed into global subtransactions that are then directed to
specific databases where the corresponding data is located. Transactions posed directly
against the local databases are local transactions. These transactions execute under the
control of the local DBMS. Hence the MDBMS has no control over them. This lack of
control poses a key challenge to transaction management in a MDBS. Traditionally

transactions are characterized by a need to support the ACID properties.
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MDBS transaction management is particularly challenging due to the autonomous nature
of the components in the environment. There are different types of autonomies identified
by various researchers [SL90][B94]. Further, transaction management is complicated by
the heterogeneous nature of the element databases. Several solutions have been proposed
to address the problem with these issues. Earlier research focused on the heterogeneous
nature of the environment while later the focus shifted towards the autonomous nature of
the underlying system [BE99]. However, research in these two areas led to several
solutions that address the transaction management issues in MDBSs. Lately, the focus is
on providing transaction models based on application domains. This led to the
development of several transaction models, a discussion of which is available in

Elmagarmid’s work [E92].

2.3 Concurrency Control and Reliability

Past research considered the transaction management problem in two orthogonal
dimensions — serializability [BHG87]{MRB+92] and reliability [H88]. Serializability
serves as a cofrectness criterion to the concurrency control algorithms executing in fault-
free environments. It is supported by the atomicity and isolation properties of
transactions. Reliability, in addition to serializability, is a correctness criterion for
concurrency control algorithms executing in fault-prone environments. It guarantees the
execution of transactions and persistence of their results. Reliability is guaranteed by the
consistency and durability properties of transactions. The concurrency control algorithms
are implemented using locking or timestamp ordering concepts [BHG87]. This section
presents the various correctness criteria proposed in the past. It is divided into two
sections that deal with the first-generation and second-generation solutions, respectively.
The results discussed here have their own versions of concurrency control algorithms

broadly based on either locking concepts or timestamp ordering concepts.

2.3.1 First-generation Solutions
The notion and development of transaction models supporting serializability form the
first generation of research in this area [BHG87]. The primary objective is to achieve

global serializability. When two or more transactions execute concurrently, operations of
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one transaction may execute between the operations of another transaction. This
execution, known as interleaved execution, may lead to incorrect behavior in the
transactions. This eventually leads to undesirable outcomes or inconsistent database
states. This is called the inrerference problem [BHG87]. It can be avoided by not
allowing the transactions to interleave at all. The resulting execution where no two
transactions interleave with each other is called a serial execution. The transaction
system must ensure the execution occurs so that all the operations of one transaction
precede all the operations of another transaction. However, from the user’s perspective
both transactions execute atomically. For example, consider a banking transaction

involving the transfer of money from one account to another, as shown in Figure 2.3(a).

Begin Transaction Transfer Begin Transaction Transfer
Start; Start;
Withdraw (1234, $100); Withdraw (1234, $100);
Deposit (4321, $100); Withdraw (1234, $200);
Commit; Deposit (4321, $100);
End Transaction Commit;

End Transaction

Figure 2.3(a) Figure 2.3(b)

Figure 2.3 A Transfer Transaction

The transfer transaction involves two operations — withdraw() and deposit(), each of
which receive the account number and amount as parameters. Let the account number
from which the money is transferred be 1234 and the account to which it is transferred be
4321. Let the initial amount in account 1234 be $200. The result of the execution of the
transaction shown in Figure 2.3(a) would be a debit of $100 from account 1234. Hence
the balance in it becomes $100. Suppose there is a withdraw operation (of another
transaction) occurring on the same account number for $200. The transaction appears as
shown in Figure 2.3(b). Its execution resuits in debiting an account that is already in an
undesirable state (negative money!). A similar situation occurs to the credited account if,

for example, a withdraw operation occurs on it before the transfer transaction commits.
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Serializability

Bermnstein er al. [BHG87] describes three forms of serializability namely, Conflict
Serializability, View Serializability and Final-state Serializabiliry. Serializability theory
presents the concurrent execution of a set of transactions using the concept of histories. A
history is comprised of a set of read and/or write operations. These operations may or
may not be conflicting. Two operations are conflicting if they operate on the same data
item and at least one of them is a write operation. There are two types of histories in a
multidatabase environment— local and global — representing the execution at the local and

global levels of the MDBS architecture respectively (see Figure 2.2 on Page 17).

According to conflict serializability theory, an execution is serializable if it is conflict
equivalent to a serial execution of the same transaction. A history comprising such an
execution is called a conflict serializable history. The histories are analyzed by
representing their executions in the form of a directed graph called a serialization graph.
The nodes of a serialization graph are the transactions and its edges define the ordering of
the operations of the transactions. The serializability theorem states that a history is
serializable iff its serialization graph is acyclic. Two histories are said to be equivalent if
both are defined over the same set of transactions, both have the same operations, and

they order the conflicting operations of non-aborted transactions in the same way.

View serializability is defined in the same terms as conflict serializability. Hence, a
history is said to be view serializable, if it is view equivalent to some serial history.
However, these two serializabilities are totally different. Bernstein et al. [BHG87] shows
that a conflict serializable history is contained in view serializable. For all practical
purposes earlier research used conflict serializability instead of view serializability as the
concurrency control correctness criterion because of the requirement to maintain the

ACIDity of concurrent transactions.
The concurrency control methods are generally classified into two types — optimistic and

pessimistic. Optimistic methods assume that, not many transactions conflict with each

other whereas pessimistic methods believe that, most of the transactions conflict with
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each other [OV99]. The functional differences between these methods lies in when they

synchronize the execution of concurrent transactions.

Reliability

Research on serializability as the correctness criterion typically assumes that the
transaction processing occurs in a fault-free or fault-tolerant environment [H88].
Practically this is not the case because there are numerous sources of failures. Examples
include transaction, system, or media failures as reported by Gray [{G81]. Hence the
assumption that all the transactions would complete correctly and produce a consistent

state cannot be substantiated.

A transaction failure occurs if the transaction is interrupted before all its operations are
processed. Consider the transfer transaction example shown in Figure 2.3(a) on Page 20.
Suppose the transaction fails after the withdraw operation but before the deposit
operation. This will result in an inconsistent database state because the money withdrawn
is recorded while the deposit is not recorded (lost money!). Such transactions must be
aborted thereby undoing all the operations. This is 2 major focus of the reliability aspect

of transaction management.

A system failure occurs due to system crashes or loss of information from the volatile
storage media. In such unforeseen circumstances, the transaction execution must be
aborted and the effects of the committed transactions must be undone. In some cases, the
states of the transactions are saved so that, on recovery, the transactions could be rolled
back to a previous correct state. When a portion of the stable storage media is lost, a
media failure occurs. These are the other areas that are addressed by the reliability

mechanisms.

Based on the notion that serializability is an insufficient correctness criterion in a fault-
prone environment, Hadzilacos [H88] proposed a correctness criterion that has three

dimensions to it. An execution is correct if, at any time,
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1) the committed transactions have been processed in a serializable fashion (Commit
serializable®),

2) any uncommitted transaction can be aborted without invalidating the semantics of
committed ones (Recoverable), and

3) the “correct” database state can always be reconstructed from information stored

in stable storage (Resilient)

Commit serializability is a modification of traditional serializability applied only to the
committed transactions in an execution. This requires the committed transactions in an
execution be serializable. It ignores the transactions that are obliterated and hence applies
serializability only to those that committed or run to completion. This notion can be

applied to conflict and view serializability.

The Recoverability notion states that the abortion of the uncommitted transactions does
not affect the semantics of the committed transactions. This notion is closely associated
with the durability property of transactions. The results of all committed transactions
must be made permanent while those of the uncommitted (aborted) transactions must be
obliterated. Recoverability has a direct application when cascading aborts need to be
addressed. Cascading aborts occur when a transaction refers to the results of a transaction
that has aborted. Though the recoverability notion is evidently powerful it can be

observed that it is stringent too.

Resiliency refers to the ability of the system to reconstruct the database to a correct state
by using the information stored in the stable storage in case of a system failure. This
works when a system failure occurs but not for a media failure. However resiliency
depends on the choice of the storage media. For instance, if the environment depends on
the information in the volatile storage for its reliability (correctness), resiliency

algorithms utilize the volatile storage to restore the database to a consistent state. But in

* ‘Commit Serializable', ‘Recoverable’ and ‘Resilient’ are the terms used in [H88]
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most cases, reliability information is stored in the stable storage since it survives system

failures.

Bemstein et al. [BHGB87] describes reliability using histories. They formulate three types

of histories — recoverable (RC), avoids cascade aborts (ACA) and strict (ST).

A history is recoverable if each transaction commits after the commitment of all

transactions from which it read.

A history avoids cascade aborts if a transaction reads only those values that are written

by any committed transaction or by itself.

A history is strict if a data item can be written only after the transaction that previously

wrote into it terminates (either commits or aborts).

The concept of recoverability by Hadzilacos [H88] is related to the concepts of RC and
ACA presented by Bernstein er al. [BHG87] Further, RC, ACA, and ST are similar to
commit-serializability discussed by Hadzilacos. Bemstein er al. describes the above in

terms of prefix commit-closed property.

It is evident from Bemnstein er al. [BHG87] and Hadzilacos [H88] that the correctness
criterion for the concurrency control algorithms must consider not only serializability, but
also recoverability. Most research that followed either ignored the reliability aspects or
attempted to unify the theory of concurrency control and recovery. This thesis assumes
the environment to be fault-free and hence we too are not concerned about the reliability

aspects of transaction management.

2.3.2 Second-generation Solutions
It was found that many computer applications required a less stringent form of
concurrency control mechanism than the one supported by conflict serializability. This

resulted in several works addressing the concurrency control issue by relaxing the notion
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of conflict serializability through the exploitation of serializability at the global and local
levels [DE89]1[B90}{BO90]{PL90][MRK+91][HB96). Garcia-Molina [G83], Lynch
[L83], and Farrag and Ozsu [FO89] address the concurrency control problem using the
semantic knowledge of transactions. Alonso ef al. [AVA+94], Vingralek et al.
[VHB+98], and Schuldt et al. [SAS99] attempt to unify the theory of concurrency control

and recovery.

Quasi Serializability

Du and Elmagarmid [DE89] introduced Quasi Serializability (QSR) as a correctness
criterion for concurrency control in heterogeneous database systems. This was primarily
based on the notion that a heterogeneous database system is hierarchical in nature due to
the autonomy of element databases and thus maintaining global serializability is very
difficult. The objective of the effort was to provide a correctness criterion for global
concurrency control. Further, it realized that two global transactions that do not reference
common data items could also conflict. These conflicts are called indirect conflicts. QSR

assumes at most one subtransaction executes at each local site.

The correctness of an execution in QSR is based on the notion of a quasi-serial history. A
quasi-serial history indicates that only the global transactions are executed in a serial

fashion. A history is quasi-serial if:

1) all the local histories are (conflict) serializable, and
2) there exists a total order of all global transactions so that for every two global
transactions, G; and G;j, G; precedes G; in the order and all G;’s operations precede

G;’s operations in all the local histories in which they appear.
A history is quasi-serializable if it is (conflict) equivalent to a quasi-serial history. All the

local histories in a quasi-serializable history are serializable. Additionally, global

transactions are executed in a serializable fashion.
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The QSR histories are characterized using Quasi Serialization Graphs (QSG). The Quasi
Serializability theorem states that a global history is quasi-serializable iff all the local

histories are (conflict) serializable and the QSG for that global history is acyclic.

The environment model considered by Du and Elmagarmid guaranteeing QSR is

restricted as follows:

1) It must not have any intersite integrity constraints.
2) A global transaction executing in a site is independent of its execution at other

sites.

Multidatabase Serializability .

Barker and Ozsu [BO90] introduced Multidatabase Serializability (MDBSR). This work
is similar to Du and Elmagarmid’s [DE89] QSR because both these approaches consider
serializability at local and global levels. MDBSR captures serializations at the local
histories and the history of transactions that are not completely contained at a single
DBMS. This work is different from QSR because it considers the importance of the
reliability aspects of transaction management and hence considers transaction
management more completely than QSR. The central aspect of this study is that
heterogeneity is orthogonal to autonomy at the element database level. MDBSR considers
complete local autonomy. As a direct consequence of the assumption about local
autonomy, there are no value dependencies between data stored in different databases.
Barker and Ozsu do not consider any replication of data whatsoever.

The correctness of the execution of transactions is based on the notion of a MDBSR

history. A history is MDB-serial if (similar to QSR-serial):

1) all the local histories are (conflict) serializable, and
2) there exists a total order of all global transactions so that for every two global
transactions, G; and G;, G; precedes G; in the order and all G;’s operations precede

G;'s operations in all the local histories in which they appear.
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A MDBSR history is considered to be MDB-Serializable iff they are defined over the
same set of transactions and they order conflicting non-aborted operations the same way

(BO9O].

The MDB-serial histories are analyzed using a variant of the serialization graph by
Bernstein et al. [BHG87]. It is called the Multidatabase Serializability Graph (MSG).
The Multidatabase Serializability theorem states that a history is MDB-Serializable iff
it’s MSG is acyclic [BO90].

Epsilon Serializability

Pu and Leff [PL90][PL91][PL92] proposed Epsilon Serializability (ESR) as a correctness
criterion for concurrency control. This is a generalization of traditional serializability for
specific application domains. The purpose of this correctness criterion is to explicitly
allow a limited amount of inconsistency in transaction processing. The algorithms
guaranteeing ESR are called the Divergence Control (DC) methods [WYP97]. These are
the equivalents of concurrency control methods ensuring traditional serializability.
The Epsilon Transactions (ET) [P91] are classified into queries ( QET ), updates ( UE) and
regular transactions. The QH s have read operations while any ET with at least one write
operation is a UFT. The transaction processing system identifies the difference between an
initial database state («) and a final database state (w) after the execution of the E7s. This
difference is denoted by & which is the amount of inconsistency. If the value is greater
than ‘O’ or equal to an arbitrary value ‘e’ (this is the limit), then an ESR log (history) is
created. This is equivalent to the SR log (history) of traditional serializability.

A history in this framework is called an ET-wise ESR log. The algorithms take two units
called import and export units as their inputs. A QF7 imports some inconsistency, while a
UET exports some inconsistency. If the limits of the inconsistency imported (ImpLimir)
and exported (ExpLimit) are greater than zero, the database may degenerate and become

inconsistent with no bounds. The following table classifies the ETs:
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ImpLimit = 0 ImpLimit > 0

ExpLimit =0 QFr

Transaction

ExpLimit > 0 UET Unbounded
Inconsistency

Table 2.1 Epsilon Transaction Classifications

The DC algorithms employ inconsistency counters to detect the inconsistencies. An
extension of the two-phase commit algorithm, the DC algorithm either allows or

disallows the ETs to proceed depending on the import/export inconsistency counters.

The advantages of ESR are [P91]:

1) It is a general framework, applicable to a wide range of application semantics,
2) It is upward compatible, since it reduces to conflict serializability when e = 0,
and

3) It has a large number of efficient supporting algorithms.

ESR, as mentioned earlier, is only suitable for environments that tolerate a limited
amount of data inconsistency. Further, the database state space must have all the
properties of a metric space. Hence this is suitable only for numerical data items, and not
string data items. Though the authors claim that ESR can be extended to support string
data items the literature does not cite any such example. Since ESR finds application in
environments where a certain amount of inconsistency is tolerated, the amount of

inconsistency must be known in advance.

Ramamritham and Pu [RP95] formally characterize ESR. A quantification of the

inconsistency bounds imported by the ET is presented. They also examine how to ensure

28



that only epsilon serializable histories are produced. Finally, they examine how the

inconsistency read by an ET percolates to the results of the query.

Two-level Serializability
Mehrotra et al. [MRK+91] introduce two-level serializability (2LSR) as a correctness
criterion for concurrency control in heterogeneous distributed database environments. It

attempts to relax global serializability.

2LSR requires the projection of the global schedule on the set of global transactions to be
serializable and each of the local schedules to be serializable as well. The environment
model considered here is the result of the integration of various preexisting databases.
Though these databases do not have any integrity constraints when considered
individually, their integration introduces intersite integrity constraints. This makes it
different from the environment model considered by Du and Elmagarmid [DE89]. Since
2LSR requires the projection of a global schedule on a set of global transactions to be
serializable and each of the local schedules to be serializable, it can be shown that 2LSR
schedules are not always serializable [CR99]. 2LSR schedules preserve database
consistency by exploiting the knowledge about the nature of the intersite integrity
constraints. Partitioning the data items into two disjoint sets namely, global and local data
items, aids in exploiting this knowledge. Hence, 2LSR schedules preserve database
consistency only in certain environment models where the intersite integrity constraints

are known.

Transaction Processing Using Semantics

While serializability is the correctness criterion guaranteeing database consistency in the
presence of syntactic information, it can be weakened to enhance the level of concurrency
when semantic information is available. This is the motivation for research proposed by
Garcia-Molina [G83], Lynch [L83], and Farrag and Ozsu [FO89]. However, not all
applications have the semantic information of transactions. Hence, transaction processing

using semantics is not possible in all applications.
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Garcia-Molina [G83] proposed the notion of semantically consistent schedules and
sensitive transactions to address the problem of transaction processing in distributed
databases. A sensitive transaction outputs the data that are seen by the users and those
data must be based on a consistent database state. A schedule is classified as semantically
consistent schedule if its execution transforms the database state to a consistent state and
all the sensitive transactions obtain a consistent view of the database. The transactions are
classified into a collection of disjoint classes (compatibility sets). All the transactions that
belong to the same class are categorized, as compatible transactions while the rest are
incompatible transactions. The compatible transactions can interleave arbitrarily while
the incompatible transactions cannot. This allows two extreme levels of interleaving
among the transactions. The users specify the semantics by designing their own
transaction processing mechanisms wherein they incorporate the necessary knowledge
for interleaving the actions of the transactions without violating consistency. Since this is
a cumbersome process for the user, Garcia-Molina suggests the use of a transaction
processing system that accepts the “rules” of the most common semantically consistent

schedules.

Lynch [L83] weakens the notion of serializability by permitting controlled interleaving
among transactions. This weaker notion of correctness criterion is referred to as
multilevel atomicity. Multilevel atomicity supports different views of atomicity for the
same transaction when viewed by different transactions. This finds use in environments
where the transaction processing is inherently hierarchical, possibly due to the

hierarchical nature of the organization.

A set of operations is grouped together to form a transaction unit. This grouping is done
for at least three different purposes: (1) to make the operations of a transaction (a logical
unit) persistent, (2) define atomicity and thereby serializability, and (3) use the grouping
as a unit of recovery. Lynch argues the use of different units for each purpose mentioned
above. First, the logical unit must be as large as possible. Since this poses a strong
serializability requirement, another mechanism is superimposed on the transaction

mechanism to define atomicity. Hence, the second argument is: the unit of atomicity must
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be as small as possible for maximum concurrency. Third, the unit of recovery can be
anywhere in between. Lynch uses the concept of breakpoints between such long

transactions as the point where other transactions interleave.

For example, consider a money transfer transaction in a banking application [L83].
Transfer transactions might be allowed to interleave arbitrarily with other transfer
transactions. However, a different type of transaction, for instance, an audit transaction
that returns the total amount in an account, cannot interleave between the transfer
transactions. That is, the entire audit transaction gets an atomic view of the entire transfer
transaction and vice versa. Hence, a transfer transaction will have a set of breakpoints for

other transfer transactions and another set of breakpoints for audit transactions.

Lynch allows many possible interleavings between the range specified by Garcia-Molina.
That is, between one extreme where it allows only serializable interleavings and the other
extreme where the interleavings are unconstrained. The steps of a transaction occurring
between two breakpoints always occur atomically at least from the user’s perspective.
However, if there are breakpoints only in the beginning and end of the transaction, then
this reduces to the requirement of traditional serializability. Many other cases are also
possible depending on where the breakpoints occur. By using breakpoints instead of
compatibility sets, several levels of compatibilities among transactions are defined. This
structures the levels of compatibilities in a hierarchical manner where the interleavings at

a higher level encompasses those at the lower levels.

Farrag and Ozsu [FO89] use the concept of breakpoints and exploit the use of semantics
for transaction processing. This work differs from Garcia-Molina’s in that, it does not use
the compatibility sets. It differs from Lynch’s because it does not require the
interleavings to be hierarchical. They specify the notion of consistency by describing the
allowable interleavings among the transactions that are safe to execute and then ensuring
that each schedule thus produced is equivalent to a correct schedule. The allowable
interleavings are specified at each breakpoint depending on the application needs. This

supports the concept of multilevel atomicity [L83]. However, it is different because the
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interleavings specified at one level does not include the interleavings specified at the

lower levels. Hence, it does not require the interleavings to be hierarchical.

Farrag and Ozsu introduce a new class of schedules called relatively consistent (RC)
schedules. An RC schedule has an acyclic precedence graph (serialization graph). A
topological sort of that graph yields a correct schedule. This class of schedules contains
both serializable and nonserializable schedules. A lock-based concurrency control

mechanism is presented that produces only RC schedules.

Though considering the semantics of transactions for transaction processing is an
interesting concept, there are problems associated with it [G83]. First, it is difficult for
the transaction processing mechanism to identify the schedules that are semantically
consistent. Even if the transaction processing mechanism is provided with the
information about the consistency constraints, there is no way for it to know the semantic
consistency of the schedules before running them on the database. Second, it may be
impossible to obtain the results of a semantically consistent schedule with any schedule
that is serializable. Further, this may be undesirable to some users. Third, the user has to

specify the consistency constraints to the transaction processing system.

Unifying Models

While there are research efforts in the area of providing concurrency control correctness
criterion, a different school of thought is attempting to unify the theories of correctness
criteria and reliability [SWY93][AVA+94][LHL97]{SAS99]. This theory unifies
atomicity and isolation into a common framework to avoid the shortcomings when
considering them as orthogonal problems. Schek et al. [SWY93] and Alonso et al.
[AVA+94] introduce the notion of (prefix-) expanded serializability and (prefix-)
reducibility for their unified model of correctness criterion. Lee et al. [LHL97] introduce
a unified approach to global concurrency control and recovery in the MDBS
environment. Similar to other works in this area, Lee et al. [LHL97] do not consider the
problems of serializability and reliability as two orthogonal concepts. They propose the

notion of rigid conflict serializability (R-SR) that ensures serializability in a distributed,
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fault-free system. They address the recovery aspect of correctness criteria in a fault-prone

system by developing a context-sensitive and late redo recovery scheme.

One of the more recent works in this area is by Schuldt er al [SAS99]. This work applies
the unified theory to address the transaction process management problem where not all
the activities are compensatable and where more generalized transaction properties are
applicable. An example of such a transaction processing system is Computer Integrated
Manufacturing (CIM) [SAS99]. The unified theory of concurrency control and recovery
finds its application in the areas of electronic commerce, workflow systems, and other
systems that involve many subsystem-level processes that are also transactional. In this
thesis, concurrency control and recovery are considered as orthogonal problems and we
focus on the concurrency control aspects. Hc;nce, we do not delve further into the unified

theory of concurrency control and recovery.

2.4 Advanced Transaction Models / Formalism

The first- and second-generation approaches mainly aimed at providing correctness
criterion for a generalized transaction management system. These approaches gave way
to numerous results that are still being used in many transactional environments. For
example, conflict serializability is still the most used correctness criterion in all
commercial transaction managers. Due to the various environments encountered, there
exists a need for advanced transaction models, which will increase as e-business grows.
These environments have motivated the development of extended or advanced
transaction models. We refer to this phase of research as the third-generation approach.
The following are some reasons why advanced transaction models and new correctness

criteria have been proposed [WS92]:

1) To provide better support for long-lived activities in advanced database
applications. For example, the daily batch update transactions in a banking
application or an insurance claims transaction.

2) To relax the classical ACID paradigm thereby providing more flexibility as to

when updates are made visible to concurrent transactions. Most advanced
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applications require a less restrictive mechanism of transaction management. For
instance, in a trip-booking application, strict ACID properties could have adverse
effects on the performance of the application.

3) To capture more semantics of transactional operations in advanced applications.
Capturing semantics of the application aids in better management of the
transactions. For example, in long-lived transactions, capturing the semantics of
the application enables the transactions to access the needed resources with less
contention.

4) To enhance (inter-/intra-) transaction parallelism. Extending the concepts of
transactions based on the application requirement aids in enhancing the
concurrency aspects of the transactions.

5) To deal with multiple autonomous subsystems in a federated environment. For
example, a nested transaction model can be easily mapped onto a MDB

environment characterized by its autonomy.

Most MDBSs use the concurrency control and recovery algorithms mentioned in Section
2.3 (specifically, the first- and second-generation results). However, with the advent of
advanced transaction models, an imperative need to apply these models to the MDBS was
realized. Many such transaction models have been applied to MDB environments with
varying degrees of success [BE99]. This section presents an overview of past research in

the area of advanced transaction models.

2.4.1 Nested Transaction Model

This was the first advanced transaction model proposed [R78][M81]{M85]. A nested
transaction is one that is divided into subtransactions each of which are either divided
further or is composed of only atomic operations (see Figure 2.4). This modeling of
transactions gives rise to a hierarchy of transactions comprising a top-level transaction,
subtransactions and leaf level transactions. The transactions at the leaf level are flat
transactions and they are the only ones that interact with the data sources [M81][M85].
The higher-level transactions organize the transaction execution flow to invoke the

subtransactions. The subtransactions’ execution is made visible only to the parent after

34



the subtransactions reach their precommit stage. The siblings can never access the
changes made by other subtransactions. The subtransactions do not necessarily adhere to
the ACID paradigm unlike the top-level transaction. Hence, the subtransactions may be
atomic, isolated and consistent but not durable until the top-level transaction commits.
Further, the subtransactions commit only after the top-level transaction commits. Until
then, they remain in the precommit stage waiting for the top-level transaction to commit.
If the top-level transaction aborts for some reason, all the work done by the
subtransactions are aborted as well. Hence the durability of the subtransaction is observed

only upon the commitment of the top-level transaction. Such a nested model is called a

closed nested transaction model.

Top-Level Tr.

Subtransactions

Leaf-Level Tr.

Figure 2.4 Nested Transaction Model

Most advanced models are based on the principles of the nested transaction model
introduced by Reed [R78]. The nested transaction model introduced by Moss [M81]
[M8S] addresses its application in distributed computing and hence is of great importance
to research in the area of transaction management. When this model is applied to a MDB
environment it is observed that the global transaction and the global subtransactions of an
MDBS superimpose the top-level transaction and subtransactions of a nested transaction
respectively. If it is a failure-prone MDB environment, then the nested transactions must

provide recovery mechanisms through, for instance, compensating transactions.
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The nested transaction model is appealing in many ways. The division of a transaction

into subtransactions provides the following advantages:

1) Enhances modularity of the transaction,
2) Enhances intra-transaction parallelism, and

3) Localizes potential failures.

The application of this model to an MDBS provides interesting insights and is an area

under constant research.

2.4.2 Multilevel Transaction Model

Multilevel transactions are special cases of nested transactions in which operations at a
particular level are implemented by operations of some lower level of abstraction
[W86][WI1]. A multilevel transaction in a system with n levels Ly, L,, ... Li.j), is defined
as a tree of height n+ such that all leaf nodes are at the same level, Ly. The nodes of the
tree are called actions that represent executions of level-specific operations [WS92].
Whenever two transactions commute, their execution sequence does not matter. Such
situations that occur among the subtransactions are captured by multilevel transactions
using a layered hierarchy. That is, multilevel transactions are nested transactions in a

layered database environment.

T, T,

L,
Withdraw (a) Withdraw (b) Deposit (c) Deposit (c)
R (a) R (b) Wa) Wa) W) W) R (c) W(c) R(c) W(c) Lo

Figure 2.5 Concurrent Executions of Multilevel Transactions (Courtesy: {WS92])
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In a multilevel transaction as shown in Figure 2.5, a concurrency control mechanism is
needed at all levels so that each higher level (non-conflicting) operation is executed in an
indivisible manner. However, the conflicts among operations at the lower levels have to
be addressed. The goal of the L;-level concurrency control is to isolate the L.,
subtransactions from each other. Hence, the high-level operations are executed as
subtransactions that usually follow a general concurrency control strategy. Recovery is
made possible using compensating transactions. For example, in Figure 2.5, aborting T-
after T, has committed requires two compensating transactions — withdraw (c) and
Deposit (b). A method of multilevel recovery requires that the transactions are atomic and
persistent and the subtransactions are atomic as well [WS92]. Further, during a restart, a
redo must be performed at the bottom level L,. The compensating transaction can be
executed in the same framework as concurrency control by treating them as additional

regular expressions.

This model finds suitable application in an MDBS because it offers a high degree of
autonomy to the element databases and provides global consistency [BE99]. Though the
application of this model to MDBS is interesting, defining commutativity of the

subtransactions in such an environment is difficult.

T, T,

%

Withdraw (a) Withdraw (b) Deposit (c) Deposit (c)
R (a) W(a) R(b) W(b) R (c) W(c) R (c) Insert (y) Wic) Insert (x)

Figure 2.6 Concurrent Executions of Open nested Transactions (Courtesy: [WS92])
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An open nested transaction (see Figure 2.6) is a generalization of the multilevel

transaction. The difference between the two is that the former allows the transaction tree

to have different nesting depths.

The open nested transaction model is different from Moss’ [M81][M85] nested
transaction model because they make the partial results of subtransactions visible to other
top-level transactions before their parents commit. Clearly, the open nested transaction
model relaxes the ACID paradigm. The isolation property of the transactions is relaxed
by exploiting the semantics of the operations and by specifying which transactions are
“open” and which ones are “closed”. In an open nested transaction model, atomicity is
achieved by using compensating transactions. The persistence of a subtransaction in an

open nested transaction is undone by invoking compensating subtransactions.

The open nested transaction model finds use in extensible databases, federated databases,
OO databases, and in exploiting transactions in operating systems. An important
application, however, is that of exploiting intra-transaction parallelism where,
concurrency control and recovery aspects are applied to the subtransaction executing

within a top-level transaction.

2.4.3 Sagas

Sagas [GS87] address the delay problems that occur during the execution of long-lived
transactions (LLT). LLTs hold on to the database resources for relatively long periods
thereby delaying the execution of shorter and more common transactions. This may be
due to the transaction accessing a large number of database objects or they have lengthy
computations, or both. Examples of such transactions include transactions that produce
monthly account statements in banks, transactions that process claims at an insurance
company, etc. The other problem caused by LLTs is the increase in the transaction abort
rate. Deadlocks occur due to the size of the LLT and the number of objects it accesses.

These deadlocks eventually result in the abortion of transactions.
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Sagas refer to a LLT that can be broken into a collection of subtransactions that can be
interleaved in any way with other transactions. Each such subtransaction is a real
transaction and hence they preserve database consistency. However, all the transactions
in a saga are related to each other and must be executed as a (non-atomic) unit. The
DBMS guarantees that either all the transactions in a saga are successfully completed, or
compensating transactions are executed to amend a partial execution. Partial executions
are undesirable and they must be undone. This type of processing allows a smaller unit of
granularity. That is, whenever a portion of the transaction (subtransaction) is completed,
the resources held by it are released. This significantly increases the concurrency in the

case of lock-based concurrency control algorithms.

Sagas require compensating transactions to support recovery mechanisms due to their
open nature. For each subtransaction in a saga, there must be a compensating
subtransaction. They support forward recovery (aborting) and backward recovery
(compensating) mechanisms. The isolation property is violated due to the revelation of
partial results. The arbitrary interleaving of the subtransactions can sometimes violate the

consistency property.

When sagas are applied to MDBSs, local autonomy is not severely violated because each
element database sees each subtransaction as a local transaction managed by the element
DBMS. Providing compensating transactions is a major difficulty in the case of sagas.
Hence, sagas are useful in compensatable environments. They cannot be applied in
scenarios where a transaction is irreversible, such as drilling holes. Nevertheless, sagas
are appealing to compensatable MDB environments because they have minimal effects

on the autonomy of the element databases.

Garcia-Molina et al. [GGK+91] provides a generalization of sagas called the nested
sagas. For example, the activities in a data processing application can be implemented as
nested sagas. In such applications, each subtransaction (saga) is treated as an independent
activity that is further divided into its own sequence of steps and compensations. Any

step ‘X’ in such an activity “thinks” that each of its subactivities are a collection of steps.
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Further, an activity at a higher level may “think™ that the activity ‘X’ is composed of

several steps. Hence, aborts are propagated both up and down the tree of nested sagas.

2.4.4 Flex Transaction Model

The Flex transaction model [ELL+90] specifically addresses the transaction management
issues in a MDB environment. It identifies the challenges posed by the autonomy of the
underlying system and provides an extended transaction model with the following

features:

e allows composition of flexible transactions,
e supports the concept of mixed transactions, and

e incorporates the temporal aspects of transaction processing.

Flexible transactions are based on the concept that a global transaction can be frequently
completed successfully in more than one way. This implies that the global transaction is
decomposed into a set of functionally equivalent subtransactions. For example, in a tour
booking application, two transactions that book an air ticket on two different carriers to
the same destination are said to be functionally equivalent. The global air ticket
transaction can have different subtransactions that can accomplish the same task in
different ways. The processing of the transaction continues even if one of the alternatives

(subtransactions) fails. Such composition of transactions is called flexible transactions.

It is not necessary that all the subtransactions execute completely for the correct
completion of the global transaction. This implies that atomicity at the global level is
violated. However, the global subtransactions execute in an atomic fashion. The
specification of the transaction execution alternatives implies the specification of the
violation of atomicity. This specification must fit into the execution dependency existing
among the subtransactions. These dependencies determine the legal execution order of
the subtransactions and hence need to be specified when specifying a global transaction.
Two types of dependencies exist — positive and negative dependency. These dependencies

are actually the global integrity constraints used to maintain global consistency.
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A positive dependency exists between two subtransactions t; and f,, if ¢; waits for the

results of 1> before it starts.

A negative dependency exists between two subtransactions ¢; and r; if ¢, waits for 2> to
execute and fail. This is useful in cases where the results of 7, are preferred over the

results of z;.

Mixed transactions are a combination of compensatable and non-compensatable
transactions. A compensatable transaction is one for which a corresponding transaction
can be specified which semantically undoes the effects of the committed transaction. This
results in the violation of the isolation property. However, this results in enhanced
concurrency, because this concept allows the global transaction to reveal its partial results
to other transactions before it commits. A non-compensatable transaction is one for
which a compensating transaction cannot be specified. For instance, a transaction that
drills a hole or fires a missile cannot be undone after it commits. Flex transaction model
allows the processing of both compensatable (open nested transactions) and non-
compensatable (traditional flat transactions) transactions. In other words, it allows the

processing of mixed transactions.

Due to the autonomous nature of the underlying system, the local database management
systems decide on when to submit the global subtransactions. For instance, a bank
transaction involving two banks in two different time zones could be processed at two
different times [ELL+90]. In such cases, the temporal aspects of transaction processing
must be taken into consideration. Flex transaction model does exactly that by associating
a temporal predicate with each subtransaction. The temporal predicate indicates the time
when the subtransaction should be executed. Other than this, the MDB environment has
another temporal aspect to it — transaction completion time. This is the time within which
a particular transaction must be completed. Flex transaction model uses these aspects of

transaction processing in implementing the transaction scheduling mechanism.
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Apart from its application in MDB environments, Flex is also applicable in CAD/CAM
and CASE databases.

2.4.5 ConTract Transaction Model

Reuter [R89] describes a model for managing long-lived complex transactions in
traditional transaction processing systems. A global transaction is divided into
subtransactions (a sequence of steps) that are capable of defining how control must flow
among themselves. Forward recovery and backward recovery mechanisms are suggested.
Forward recovery suggests that the state information of all the transactions must be
maintained. A compensating mechanism is required to support backward recovery. Due
to its open nested structure the problems of sagas express themselves in this model as

well.

The ConTract model is unsuitable in a MDB environment because it affects local
autonomy to a large extent. The model is suitable only to those MDB environments in
which:

1) all participating DBMSs can save the state information, and

2) the global transactions can be decomposed to global subtransactions and only a
single global subtransaction is required at each participating element database,
and whose visible two-phase commit can communicate the state information back

to the MDBMS to ensure recovery.

Both these environments may eventually be realized, but they will not be true of all
foreseeable MDBSs [BE99].

246 ACTA

Chrysanthis and Ramamritham [CR90] [CR91] [CR94] propose AC7A as a
comprehensive transaction framework that facilitates the formal description of properties
of extended transaction models. The need for a framework was realized due to the lack of

functionality and efficiency of traditional models in complex applications. Examples of

42



such complex applications include, CAD/CAM, software development environments,
object-oriented databases, stock trading databases, erc. Efficiency refers to the throughput
demands placed on these systems, while functionality refers to the applicability of certain
transactions in certain environments. For instance, the traditional transaction models were
developed for short-lived transactions executing in competitive environments, while
current applications require long-lived, interactive transactions running in collaborative
environments. The simplest form of complex transactions executing in complex

applications are Moss’ nested transactions [M81][M85].

The semantics of transaction interactions are expressed in terms of transactions’ effects
on the commit and abort of other transactions and on objects’ state and concurrency

status (See Figure 2.7).

The ACTA framework also allows for specifying the structure and the behavior of
transactions as well as for reasoning about the concurrency and recovery properties of
transactions. The structure of the transaction refers to the nesting structure of a

transaction, and the behavior refers to the operations invoked by a transaction.

Effects
On Transactions On Objects
Intertransaction View of Conflict Set Delegation
Dependency Transaction of

Transaction

Figure 2.7 Dimensions of the ACTA framework (Courtesy: [CR94])

The behavior of a transaction processing system is determined by the behavior of the
transactions executing in it and the objects manipulated by these transactions. In ACTA,
the interactions among the transactions are expressed in terms of the transactions’ effects

on other transactions and the transactions’ effects on the objects they access.
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The effects of a transaction on other transactions are captured using the dependencies that
exist among these transactions. There are two possible dependencies — commit and abort,
collectively known as completion dependencies. A complete treatment of dependencies is

available in [CR94].

A commit dependency between two transactions, A and B, indicates that A cannot commit

until B either commits or aborts. The reverse may not be always true.

An abort dependency between two transactions, A and B, indicates that A must abort if B
aborts. However, it does not imply that A must commit if B commits and B must abort if

A aborts.

Transaction effects on objects are captured by the introduction of a View Ser and an
Access Set, and by the concept of delegation. Each object is characterized by its state and
status. The state of the object is represented by its contents. This changes when a
transaction accesses the object and modifies its contents. The status of an object is
represented by the synchronization information associated with the object. It changes
when a transaction performs an operation on the object. These concepts affect the

visibility and other ACID properties.

Every transaction is associated with a set of objects that contains all the objects
potentially accessible to the transaction. This set is called the View Set. This restricts the

effects of the transactions on objects.

The objects already accessed by the transaction are contained in another set, called the
Access Set. The objects accessed in the View Set become the members of the Access Set.
These objects continue to be accessible to the transaction. The objects in the View Set are

accessed by a transaction based on the concurrency control status of the object.
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A transaction may delegate responsibility for finalizing its effects on some of the objects
in its Access Set to another transaction. This is done by removing the objects from the
Access Set of the first transaction (delegator) and adding them into the Access Set of the

second transaction (delegatee). This process is called delegation.

Finally, the ACTA formalism can be used to show the correctness of a particular

specification of a transaction model.

2.5 Leading Open Questions

Sections 2.3 and 2.4 presented several research efforts in the area of transaction
management, concurrency control and recovery in multidatabase systems. Each
generation of research provides solutions that address several issues of transaction
management. The first-generation of research primarily dealt with systems classified as
‘traditional transaction processing systems’. The solutions provided were suitable to
those environments that are ideal where there are no performance requirements or failures
occurring. However, such ideal systems rarely exist. Hence, the application of the results
from the first-generation research finds little use when applied to specific domains.
However, those results laid the foundation for further research and are still considered to

be important.

The second-generation realized the need for more efficient methods of transaction
management. This gave raise to few dimensions of research where the conservative
approaches are enhanced by either relaxing the constraints in the environment or
modifying the environment itself. For example, most researchers felt the need to relax the
correctness criteria for concurrency control and ACID properties of transactions. These
efforts paved the way to several results that attempted to relax global serializability. The
highlight however was finding that semantic knowledge of transactions aids in enhanced
transaction management. However, the problem of providing semantic information to

transaction processing system still exists.
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The third-generation of research realized the necessity of extending the existing
transaction models so that they can fit a particular problem domain. Several transaction
models were proposed, each based on a specific application domain. Each model has its
own concurrency control and recovery methods. Almost all transaction models are
broadly based on the nested transaction model [R78]{M81]{M8S]. The application of
semantic knowledge in such transaction models helps in leveraging the efficiency of such
models. However, the specification of semantics still remains a problem. Most of these
transaction models have been developed for traditional transaction processing systems or
distributed database systems. The application of such systems to a MDBS is an
interesting research area. Nested transaction model provides interesting results when
applied to an MDBS. Sagas could be applied to MDB environments, but only to those
that are compensatable. This is also the case for most of the transaction models that have
a flavor of open nested-ness in them. In compensatable environments, providing
compensating transactions to support backward recovery is a difficult task. We do not use
sagas in our environment because of the nature of the transactions executing in our
environment. Sagas are attractive if the transactions are primarily long-lived and
compensatable as is the ConTract model: ConTract is not a solution to the MDB
environment considered in this thesis because it violates the autonomy of the element
databases. Flex transactions [ELL+90] are very interesting to this thesis. Qur goal of
providing multiple (transaction) execution alternatives is similar to their approach.
However, as we explain our paradigm, the differences between the models become

evident (see Chapters 3 and 4).

With the knowledge of several research efforts in the area of transaction management in

MDBS, we identify the following problems:

1) Development of transaction models suitable to address the transaction
management issues in a MDBS that is used as a back-end in an Internet
environment for specific application domains, and then generalizing the same,

2) Automatic generation of the semantic information of the transaction (specifically)

and the application (broadly),
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3) Exploiting transactional dependencies to enhance the concurrent execution of
transactions,

4) Development of a correctness criterion for concurrency control in such transaction
models,

5) Modifying the MDB environment at the operational level to support the
transaction model and associated concurrency and recovery methods,

6) Characterizing the local autonomy interface, and

7) Development of standards for transaction processing in Internet environment.

2.6 Summary

This chapter started with the discussion on the multidatabase architecture and transaction
management problem. Section 2.3 discussed the various approaches to the transaction
management problem. The discussion covered the first- and second-generation research
efforts. Section 2.4 provided the third-generation research efforts that attempt to develop
application-based transaction models. Based on the background material and related work
discussed in Sections 2.3 and 2.4, Section 2.5 outlines the various leading research

problems in the area of transaction management.

We observe that the past research efforts do not address the entire range of issues
identified. We use the material discussed in this chapter as a platform for our work.
Chapter 3 discusses the transaction execution dependencies identified in our model

followed by a discussion of the results from our experiments with it.
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The significant problems we face cannot be solved ar the
same level of thinking we were at when we created them.

- Albert Einstein

Chapter 3

Transaction Model and Execution
Dependencies

This chapter describes our transaction model and transaction execution dependencies.
Although Ehikioya and Barker [EB97] provide a formal treatment of execution
dependencies using the concept of causality, it is more mathematical than how we treat
them here. We start with the introduction and description of the model followed by a
discussion on execution dependencies. We formally define the execution dependencies
followed by a discussion describing how to exploit them within the framework of our
transaction model to enhance intra-transaction parallelism and provide multiple

transaction execution alternatives.

The research goal is to develop a transaction model and identify the execution
dependencies in it to provide enhanced intra-transaction parallelism thereby producing
multiple transaction execution alternatives. The requirement for an advanced transaction
model exists for all the reasons explained in Chapter 2. Intra-transaction parallelism is of
high importance in any transaction processing environment that uses any form of nested
transaction model. Most business applications can be mapped into a multidatabase

architecture at the data source level. This illustrates the autonomy problem inherent in
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such systems. Care must be taken to preserve the autonomy of such systems. Any
application running on such systems must be developed so it does not violate the

autonomy at the element databases.

Present day applications involving transaction processing require the system to be
tolerant to subtransaction failures. That is, the MDBS transaction must not fail
completely just due to the failure of a part (subtransaction) of it. This requirement is
experienced in many environments that provide a choice for achieving a general *“global”
goal. For instance, an air ticket reservation system helps a travel agent book the same
ticket on multiple carriers. This implies that the system uses multiple transactions, all

with the same objective, that is, to book an air ticket to the same destination.

Section 3.1 introduces our transaction mddel. In Section 3.2 we discuss execution
dependencies. A discussion of exploiting the execution dependencies within the
framework of our transaction model to enhance intra-transaction parallelism is presented
in Section 3.3. It also discusses multiple execution alternatives. This chapter is once again

concluded with a summary.

3.1 Transaction Model: Description

Chapter 2 introduced the reasons why advanced transaction models are needed. Keeping
those reasons in perspective, we develop a transaction model (see Figure 3.1) suitable to
serve a certain domain of applications. Recall the primary requirements of an advanced

transaction model from Chapter 2 (Page 33).

An advanced transaction model must provide better support for long-lived activities. It
must also provide mechanisms to relax the ACID paradigm thus helping to capture the
semantics of the operations. These requirements also yield (inter-/intra-) transaction
parallelism. Further, they provide support to transactions executing in a federated

database environment.
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In addition to the above reasons, present day applications require multiple :lternatives for
transaction execution to minimize the effects of subtransaction failures. We attempt to
relax the ACID paradigm of transactions to implement an open nested transaction model
in a MDB environment. Further, at an operational level, we realize a multi-layered
architecture. This becomes evident as we describe our model.

Execution Dependency Database
Root Transaction

‘ Subject | Observer | Dependency
L1
J
L2 Tl T2 T3
Manager Manager Manager
L T31
<3 -

LDBI1 LDB2

Figure 3.1 Transaction Model Architecture

Our transaction model is a nested transaction one defined over a MDB environment. The

subtransactions reveal their partial results and hence we have an open nested transaction
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model. While this model uses an MDB environment as the underlying source, its
implementation uses layered architecture of databases and subtransaction managers to

characterize the autonomous interface to the underlying systems (see Figure 3.1 on Page

50).

Figure 3.1 shows a generalized nested transaction model of nesting depth, n=3. The root
transaction has three subtransactions each of which has subtransactions. The
subtransactions at L; also act as managers denoted with the name of the transaction,
suffixed by ‘Manager’. For example, the manager at a subtransaction arbitrarily named
T2 is denoted as ‘T2Manager’. Each subtransaction is an object with two roles -
‘subtransaction’ and ‘subtransaction manager’. The managers exist just below the root
level though they can exist anywhere between there and just above the leaf transactions.
For example, suppose a nested transaction has ‘n’ levels. The levels are numbered so the
smallest ordinal is the root and the largest ordinal is the leaf. The transaction would

appear as shown in Figure 3.2.

L,
Managers at L»

—_— L

Managers at L;

e o L;

Managers at L,,.},
q Linn
L,

Figure 3.2 Example Nesting INustrating Positioning of Subtransaction Managers

The subtransaction managers could be anywhere between L; and L., inclusive, as
shown using dark arrows in Figure 3.2. The rationale behind placing subtransaction

managers at those levels is to maintain the autonomy of the underlying system as much as
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possible. It is observed that if the managers are at a lower level, closer to the leaf
transactions, then the amount of autonomy violation is more than when the manager is at
a higher level, closer to the root transaction. Each subtransaction manager has a database
of execution dependencies that its subtransactions have with others within a MDBS
transaction. For instance, consider the managers shown in Figure 3.1 on Page 50. It can
be seen that the managers are at L. These could have been positioned at any of the other
levels in the transaction model too. However, it can be observed that if the managers
were at a level lower than the current level, then the autonomy of the databases is
violated to a larger extent than when they are above the current level. The reason for this
violation is the amount of communications between the managers at the underlying
systems in the former case than their management systems in the latter. Execution

dependencies are discussed in Section 3.2.

The database at the subtransaction managers contains information about the
subtransactions that are (execution) dependent and the type (strength) of dependency
between them. After a subtransaction produces a partial result, it notifies its parent
(subtransaction manager) about the same. The subtransaction manager looks into the
execution dependency database to check for the dependencies its subtransaction has with
other subtransactions. Based on the dependency it shares with other subtransactions, the
corresponding subtransaction managers are notified of the partial result. On receiving the
notification, the subtransaction managers at the receiving end spawn their
subtransactions. Meanwhile the notifying subtransaction may have executed all its
subtransactions (if any) to completion and the availability of all those results are also
notified to other subtransactions based on the information in the execution dependency
database. This process repeats until the root transaction’s objective (“global” goal) is

accomplished semantically.

Letting other subtransactions know of partial results violates the isolation property of a
transaction. Conversely, the violation of the isolation property implies the use of the
principles of an open nested transaction model. However, the intra-transaction parallelism

is enhanced for the same reason. The concept of managers yields multi-layered database
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architecture above the MDB environment. The execution dependency database contains
the information about the subtransactions participating in the dependency relationship
and the type (strength) of dependency. This allows one or more subtransactions to
observe one or more other subtransactions until the latter produces a necessary (partial)
result. The former set of subtransactions is called observers while the latter set of
subtransactions is called subjects. The notification is sent to the observers based on the
type of dependency existing between them. These dependencies (See Section 3.2) are the

global integrity constraints and are implemented only at the subtransaction levels.

Definition 3.1
Observers: A set of subtransactions observing another set of subtransactions whose
(partial) results could be of potential use to execute its own atomic operations or their

subtransactions. B

Definition 3.2
Subjects: A set of subtransactions observed by another set of subtransactions so the
formers (partial) results have potential use to the latter to execute its own atomic

operations or their subtransactions. B

For example, given a MDBS transaction 7, with 4 subtransactions ST/, $72, S73, and
ST4 contributing towards achieving a “global” objective. If S7/ and ST3 are (execution)
dependent on the partial results of ST2 and ST4, then:

1) Observers = (ST1, ST3)
2) Subjects = {ST2, ST4}

Note that the observers may also behave as subjects and vice versa in the context of other
subtransactions based on application semantics. The violation of autonomy is minimal
when the constraints are closer to the root level and more when they are closer to the leaf
level. Hence, based on the specification of the global transaction, different transaction

executions can be realized with varying degrees of autonomy violation. It is observed that
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the autonomy violation increases as the subtransaction managers are moved toward the
leaf transactions. The positioning of the subtransaction manager defines the interface that

characterizes the autonomy of the underlying MDB environment.

Our transaction model is broadly based on the open nested transaction model. However,
at an operational level we observe multi-layered architecture comprising execution
dependency databases and subtransaction managers over the MDB environment. The
concept of subtransaction managers characterizes the violation of autonomy of the
MDBS architecture. Partial results are exposed due to the openness of the transaction
model. This results in the violation of the isolation property thereby relaxing the ACID

model.

3.2 Execution Dependencies

Advanced transaction models are designed to cater to specific application requirements in
a distributed database system. When these models are applied to MDB environments, the
characteristics of the MDBS add to the complexity of the transaction management.
Specifically, the autonomy of the element databases affects the execution of a MDBS
transaction. Execution dependencies extend the semantics of the transaction model to
enhance intra-transaction parallelism thereby providing multiple execution alternatives
when a part of the MDBS transaction fails. This is similar to the flexible transactions in
Elmagarmid’s Flex transaction model [ELL+90]. The transaction in the Flex model is a
two-level nested transaction whereas in our model the transaction could have an arbitrary
number of nesting levels. However, the similarity in these approaches is the provision of
multiple execution alternatives using functionally equivalent subtransactions, and

maintaining a high degree of autonomy at the underlying systems.

Certain applications require extensive use of semantics to ensure the successful

completion of the MDBS transaction. The reasons are:

1) to enhance parallelism within a transaction,
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2) the application may require the use of multiple choices of execution to achieve a
global objective, and
3) the subtransactions may fail to produce a certain expected result (for example, an

air ticket reservation in a particular airline).

The above reasons are the motivations for the development of our transaction model.
Further, these motivate us to find the execution dependencies existing among the
subtransactions to enable us to enhance the intra-transaction parallelism. We are also
required to categorize the dependencies based on the application requirement. At the
same time, the MDBS characteristics require us to maintain the degree of autonomy at
the element databases at the highest level. All these reasons lead us to characterize

execution dependencies into three types: F, N and B as defined in Definition 3.3.

The ‘F’ dependency takes the highest priority over the ‘N’ and ‘B’ dependencies if they
all exist among the same set of observers and subjects. In the absence of ‘F’ dependency,
‘N’ dependency is superior to the ‘B’ dependency. They are useful when they provide
results that add more meaning to the semantics of the MDBS transaction. One example is
when an economy air ticket is upgraded to a business class ticket in an air ticket
transaction. This does not change the semantics of the air ticket transaction. The failure of
the transactions that have a ‘B’ dependency also does not affect the semantics of the
MDBS transaction. For example, suppose the booking of a window seat in a preferred
carrier fails but there is some other seat available in the same carrier. The air ticket
transaction’s semantics of booking a ticket to a particular destination on that particular

carrier are still valid.

Definition 3.3:

Execution Dependency: An execution dependency (ED) exists between a subject
subtransaction and an observer subtransaction of a global transaction based on a
dependency that is sufficient, necessary, or bonus. Thus ED is defined as a triple as

follows:

ED = (S, O, D}
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where,
S is a subject subtransaction,
O is an observer subtransaction, and,
D is a dependency from the set {F, N, B}

where,

F is sufficient,
N is necessary,
B is bonus. |

The sufficient dependency (F) between subject and observer subtransactions indicates that
the (partial) results of the former is just sufficient to trigger the latter’s execution.
However, the necessary dependency (N) between subject and observer subtransactions
indicates that the (partial) results of the former is necessary to trigger the latter’s
execution. The bonus dependency (B) is utilized in enhancing the semantics of the
application. However, as mentioned earlier, the sufficient dependency takes priority over
the necessary and bonus dependencies in case of concurrent executions to enhance the
intra-transaction parallelism. Similarly, the necessary dependency takes priority over the
bonus dependency when both exist between the same set of subject and observer

subtransactions.

The execution dependency information is available in the execution dependency database
at the subtransaction managers of our transaction model. This information is used for two

purposes:

1) to enhance the intra-transaction parallelism in an MDBS transaction through the
extension of transaction semantics, and

2) to provide multiple execution alternatives to achieve the global objective of a
MDBS transaction.
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Depending on the type (strength) of dependency, the MDBS transaction execution flows
differently. Multiple execution alternatives are automatically realized in this model.
Hence a MDBS transaction can be successfully completed through the execution of

various sets of its subtransactions with enhanced intra-transaction parallelism.

Example 3.1

Consider an online client booking an accommodation as part of his trip. He might want to
reserve accommodation only if he has an air ticket. Hence the constraint for the execution
of the accommodation transaction is the successful completion of the air ticket
transaction. This implies an execution dependency between air ticket transaction (subject)
and accommodation transaction (observer). For this example, let us assume that the air
ticket transaction executed successfully. There are different types of accommodation the
client could request. For instance, he could reserve a hotel, motel or hostel. Based on the
clients’ requirements, there are multiple transaction execution alternatives available. That

is, he could either book a hostel or a motel if the hotel subtransaction fails.

The client spawns the trip transaction. The accommodation and air ticket transactions are
the subtransactions of the trip transaction. According to the semantics of the trip
transaction, the execution of the accommodation subtransaction depends on the
successful completion of the air ticket subtransaction. On successful completion of the air
ticket subtransaction, it notifies the accommodation subtransaction of the same. At this
point the accommodation subtransaction spawns its subtransactions (hotel, motel and
hostel subtransactions). If the hotel subtransaction fails, and the functionally equivalent
motel or hostel subtransaction returns a positive result, then the trip is booked based on

what is available (provided the client is also happy with the booking!). .

The execution dependencies are present in the subtransaction manager’s lookup database.
All the subtransactions look up their execution dependency database after they obtain a
partial result from their children. That is, a subtransaction that has a partial result notifies
the dependent subtransactions based on the information in the lookup database at their

manager. If all three dependencies exist between the same observer and different
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subjects, the subjects first notify the observers with which they have an ‘F’ dependency.
The observer starts to execute just after it receives the notification from the subjects’
managers. An ‘F’ dependency is given priority to decrease the wait time of the observer
subtransaction. This directly enhances the intra-transaction parallelism in a MDBS
transaction. Each observer subtransaction is either subdivided, or is a flat transaction. All
the subtransactions of the observers provide muitiple transaction execution alternatives.
That is, any execution of the observers’ subtransactions yields results that satisfy a
common goal (maintains the semantics) of their parent transaction. For instance, an air
ticket subtransaction could have subtransactions; one each for an economy ticket and a
first class ticket. Both these subtransactions provide a common goal of booking a ticket to

the same destination (this is specific to the application).

Identifying these dependencies aid us in two ways as is evident from the preceding

discussion:

1) To use them in enhancing the intra-transaction parallelism, and
2) To provide multiple execution alternatives by extending the semantics of the

application.

The exploitation of semantics and the dependencies to enhance intra-transaction
parallelism affects the ACID model and the autonomy of the element databases. However
through the use of subtransaction managers, we maintain a high degree of autonomy.
This, in fact, can be tuned based on the needs by shifting the subtransaction managers
either upward in the hierarchy to achieve higher degree of autonomy (useful in MDBS) or
downward in the hierarchy to achieve a lower degree of autonomy (useful in general

distributed database systems).

3.3 Discussion

The execution dependencies are specified at the start of the MDBS transaction. These
dependencies are stored in the appropriate subtransaction managers based on

participating subtransactions. It is stored in the lookup database along with the observer
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and subject subtransactions. The managers are present at the subtransaction levels only.

The positioning of the subtransaction manager decides the characterization of the

autonomy interface of the underlying MDBS architecture.

Execution Dependency Database

Root Transaction

¢ Subject | Observer | Dependency
21 Ti N
L1 Root
122 Tl F
I —1
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L2 TI frcation T2
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Figure 3.3 An [llustration of Execution Dependency

Consider the transaction illustrated in Figure 3.3. The root transaction has two
subtransactions 7/ and T2. T! has three flat subtransactions 771, T12 and T13. T2 is

divided into two subtransactions 72/ and 722. The subtransaction managers are present

at level L2 where the subtransactions T/ and 72 are present. The execution dependency
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database is present at the subtransaction managers. Actually, each of these
subtransactions plays two roles at the same time — ‘subtransactions’ and ‘subtransaction
managers'. The subtransaction managers use the execution dependency database. The
execution dependency database has information about its subtransactions and the

dependency it shares with other subtransactions in the hierarchy.

Figure 3.3 shows the execution dependency information available at T2Manager. It
shows that subtransaction T2/ is the subject of observer T/ with a dependency ‘N’ and
T22 is the subject of observer T/ with a dependency ‘F’. From the definitions of
dependencies it can be said that T/ executes if it receives the partial result (722) from
T2Manager. This is because an ‘F' dependency takes priority if there is such a
dependency between the same observer and different subjects in the execution
dependency database. However, in the absence of an ‘F’ dependency, ‘N’ dependency
takes priority, if one exists. Suppose 72 starts executing 72/ and 722. Once it receives
results from 722 before T2/ executes to its completion, the T72Manager looks up the
execution dependency information and notifies 7/Manager about the available partial
result. This is because the dependency information specified states that 722 results are
just sufficient for T1 to execute. Now 71 spawns T11, TI2 and T/3 and waits for the
results from either of these and notifies the corresponding subtransaction, or the root (in
this case) about the available result. However, the 72/ results are also passed on to
TIManager by T2Manager, which by then would have started executing its
subtransactions. This enhances the intra-transaction parallelism. Since the subtransaction
managers are implemented closer to the root transaction, autonomy at the element
databases is preserved. The concepts of subtransaction managers and that of subjects and
observers are implementecd using design pattern techniques [GHJ+95]. The notification
mechanism has been implemented at the subtransaction manager level at which they
notify the corresponding subtransaction managers depending on the information available

in the execution dependency database (see Figure 3.3).

Gamma et al. [GHJ+95] define design patterns as descriptions of communicating objects

and classes that are customized to solve a general design problem in a particular context.



A design pattern names, abstracts, and identifies the key aspects of a common design
structure that make it useful for creating reusable object-oriented design with each pattern
focusing on a particular issue. This thesis presents a specific application of the design
pattern techniques. This specific example could be generalized so that template code
could be produced to assist in the design of other nested transaction applications. For
example, the trip booking application is just an example to demonstrate the application of
design pattern techniques. The template of this application could be extended to capture

other nested applications, such as, auctioning systems, information kiosks, ezc.

In our transaction model, the communicating objects are the observer and subject
subtransactions. Their communication relaxes the ACID model by exploiting the
openness of the nested transaction model. This, in effect, enhances the parallelism of
subtransactions executing within the MDBS transaction. The nesting level at which the
subtransaction managers are placed decides the autonomy of the underlying systems. It is
observed that our model is a combination of the open nested transaction model (because
the subtransactions reveal their partial results) and multilevel transaction model (because
of the multi-layered database design realized at an operational level due to the presence

of the execution dependency database at the subtransaction managers).

3.4 Summary

The chapter began with the introduction of our advanced transaction model. It discussed
the use of subtransaction managers and the execution dependency databases. Section 3.2
presented the execution dependencies. We also presented the representation of the
execution dependencies in the subtransaction managers. Section 3.3 presented a
discussion about the use of execution dependencies within the framework of our
transaction model. Chapter 4 discusses the use of execution dependencics and

exemplifies the new transaction paradigm using a sample application.
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An invasion of armies can be resisted, but not an idea
whose time has come.

- Victor Hugo

Chapter 4
An Application of New Paradigm

This chapter starts with an analysis of the transaction management problem in
multidatabases from the perspective of application semantics. Section 4.1 presents the
problem analysis. In Section 4.2 we present an overview of our transaction model.
Section 4.3 introduces an example to illustrate the application of the new paradigm. The
illustration explains how our transaction model is utilized in executing the transactions of
the application. Further, it explains how multiple transaction execution alternatives are
facilitated. Section 4.4 presents a comparison of the new paradigm with the conventional
models. The chapter details the observations made, and provides insights about this

methodology, before it ends with a summary.

4.1 Problem Analysis

This section analyzes the transaction management problem from the perspective of

application semantics.

As mentioned in earlier chapters, the transaction management problem in a MDBS is a

critical and challenging problem. The objective is to address the concurrency and
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reliability issues in transaction execution. This is coupled with maintaining autonomy
among the heterogeneous databases that participate in the MDBS federation. This thesis
attempts to enhance the intra-transaction parallelism available in an open nested
transaction environment. The open nested transaction executes in a MDB environment.
This thesis characterizes the autonomy among several databases at the source level. We
exploit the application semantics to identify the dependencies among the several
subtransactions in the nested transaction. This thesis also presents a transaction execution

framework that provides multiple transaction execution alternatives.

A nested transaction is one where the objective of a transaction is achieved in steps
(subtransactions) thereby maintaining parallelism and localizing potential failures.
However, in such transactions the ACID properties are maintained just as in a flat
transaction. In open nested transaction, the ACID properties are relaxed because partial
results of the subtransactions are revealed. This enables the system to exploit the
application semantics to enhance the intra-transaction parallelism. In this thesis, since our
focus is on the concurrency issues, we do not discuss the reliability issues. Interested
readers are referred to Chapter 2, which includes a discussion on the reliability aspect of
transaction management. The exploitation of the semantic information of the application
and/or their transactions opens interesting opportunities to address the transaction

management problem.

A nested transaction submitted to the MDBMS is divided into several subtransactions.
These subtransactions are submitted to the various LDBMS in the MDBS. The databases
are characterized by autonomy at the data source level. This implies that the
subtransactions cannot reveal their partial results to other subtransactions. Introducing
subtransaction managers circumvents this problem. They are responsible for
communicating the necessary results to other subtransactions. Hence, this requires an
implementation of an interface that characterizes the level of autonomy the system offers.
The concept of subtransaction managers is explained in the context of an application in

the following sections.
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The implementation described in this dissertation assumes the underlying systems to be
homogeneous. However, it can be observed that the solution can be extended to a

heterogeneous environment as is discussed in the future work section of Chapter 5.

4.2 Our Transaction Model

An advanced transaction model was presented earlier. This model is broadly based on
Moss’ [M81] [M8S] nested transaction model and Weikum’s [W90] multilevel
transaction model. The purpose of this model is to serve advanced applications where
concurrent transactions are common. Our model uses an open nested transaction with
layered database architecture at an operational level. The underlying system of this model
is a multidatabase environment. The transaction model characterizes the autonomy of the
underlying MDBS through an interface, made of subtransaction managers and execution
dependency databases, that can be moved either up or down in the layered architecture of

the transaction model.

The transactions in the paradigm presented here are open nested and hence can reveal
their partial results. Since intra-transactional concurrency is an issue addressed by this
thesis, we develop a mechanism by which the transactions communicate with each other
to reveal their partial results. The concept underlying the communication between the
transactions is broadly based on behavioral design patterns [GHIJ+95]. The
communication between the transactions is based on the (execution) dependency dictated

by the application semantics.

The concepts of transaction processing expressed by this thesis can be generalized to
various application environments. The transaction model presented here finds use in
several business environments that can be mapped into multidatabase environments in
which the underlying systems require a high degree of autonomy. Examples of such
application environments include trip planning, auctioning web sites, information kiosks,

elc.



The paradigm presented here utilizes the concept of nested transactions with
subtransactions cooperating to achieve a global objective. The implementation of the
model has components that communicate to relax the ACID requirements at the
subtransaction levels. These components provide a framework that can be utilized to
customize a particular application running in a MDB environment demanding a high
degree of autonomy. The components have two roles namely, subjects or observers (see
Definitions 3.1 and 3.2 on Page 53). Based on the role of the components, they
communicate with other components using the concepts of behavioral design patterns.
This process of communication involves the components subscribing to one or more
components as observers. The application semantics and execution dependencies
determine the execution of transactions. The transaction execution alternatives are

determined based on the application semantics.

For example, in an auctioning web site, suppose a transaction is required to bid and buy a
wine goblet used by King George V. The subtransactions of this global transaction in the
context of our transaction model could be one that bids, another that buys and the last one
that verifies the credit of the bidder before the item is auctioned. In the context of our
transaction model, these subtransactions could be encapsulated into the components in
the framework presented here. Based on the application semantics, the execution
dependency database is populated at the subtransaction managers. The knowledge of the
dependencies and the semantics of the transaction execute the transaction to achieve the
global objective of buying the wine goblet. The subtransactions act as subjects and
observers in the process of execution thereby enhancing the intra-transaction parallelism.
Multiple transaction execution alternatives are also possible. For example, after the
bidding, when the subtransaction checks for the credit of the bidder, it could possibly
check several credit card databases and utilize the one the bidder prefers, or the one that

has credit (depending on application semantics).
Another example would be a customer looking for a particular kind of mountain bike in

an Information Kiosk. The processes of identifying the store that carries the bike, buying
the bike, and verifying the credit of the customer before selling the bike could be

65



represented as a nested transaction in our framework. All the above processing could be
represented as subtransactions. As mentioned earlier, multiple parallel transaction
exccution is possible in this case as well. For instance, the preferred bike could be
available at various stores on the kiosk. The customer could be provided with various
alternatives based on his requirements (depending on application semantics). Ehikioya

and Walowetz [EW99] present a formal specification for such e-commerce applications.

The concept of maintaining the autonomy of the underlying systems is evident in the
above applications. For example, if the credit checking subtransaction has subtransactions
of its own, the nesting depth of the entire transaction increases. Now based on the
autonomy requirement, the subtransaction managers of this particular application could
be placed either closer to the root transaction or to the leaf transactions. The violation of
autonomy is higher in the latter. Hence the subtransaction managers of the nested
transaction act as an interface to maintain the autonomy of the underlying systems. The
execution dependency databases are present at the subtransaction managers, which along

with the managers, provide a layered architecture.

4.3 An Example Application: Trip Booking

An advanced transaction model provides better support for application-specific
environments. It also provides mechanisms to relax the ACID paradigm thus helping to
capture the semantics of the application. It enhances the parallelism of the execution of
transactions. The goal of this thesis is to provide a framework to execute an open nested
transaction, in a MDB environment. The framework must have provisions for exploiting
the dependencies between the subtransactions. Based on the dependencies identified, it
must provide multiple transaction execution alternatives. Further, the framework must
have provisions for maintaining a high degree of autonomy at the underlying systems in
the MDB environment. This section explains the concepts of our transaction model using

an application with nested transaction execution as shown in Figure 4.1.
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Figure 4.1 Transaction Model and Example Transaction Execution
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A trip booking application [E92] is considered in this thesis to explain the concepts
introduced in Chapter 3. A trip booking consists of at least three steps — booking air
tickets, renting a car, and reserving an accommodation. The air ticket is either an
economy or a first class ticket. Similarly, the accommodation is reserved either in a hotel,
motel, or hostel. OQur root transaction is the trip transaction with three subtransactions that

book air tickets, car rental and accommodation, respectively. Further, these
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subtransactions have subtransactions of their own. For instance, the air ticket

subtransaction has subtransactions that book either an economy or a first class ticket.

The underlying environment of the trip booking application is an MDB environment. It
has three autonomous databases that have information about air ticket, car rental and
accommodation availabilities. Hence each subtransaction interacts with only the
corresponding database. For instance, the accommodation subtransaction interacts only
with the database that contains information about the hotel, motel and hostel. Figure 4.1
shows the nested transaction in our application and the different databases with which it
interacts. The execution dependency database is shown at each nesting level. This figure
is similar to the general one presented earlier in Chapter 3. A particular transaction
execution scenario is presented here to explain the various communications that occur
between the subtransactions. This example captures the various concepts described in this

thesis.

The objective of the transaction in the trip booking application is to book a trip based on
the customer’s preferences. Further, it must enable multiple outcomes from the execution
of the transaction. The transaction model per se captures the application semantics. The
model enhances the intra-transaction parallelism by allowing the subtransactions to view

the partial results of other subtransactions based on the captured application semantics.

In Figure 4.1 the different subtransactions ai level L2 have been called subtransaction
managers. The positioning of these managers is critical to the characterization of the
autonomy interface. The higher the level at which these managers are placed, the more
autonomous is the underlying system. Since the trip transaction has three subtransactions
at L2, it can be observed that there are three managers. These managers are the
subtransaction managers and may or may not have their own subtransactions. Each of
these managers has a structure called an execution dependency database that stores
dependency information among the subtransactions. Figure 4.1 also shows such a
dependency database at the car rental manager. These databases and their managers

provide a layered architecture to the transaction model at an operational level. The
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dependency information is populated in these databases by capturing the application
semantics. This happens when the transaction starts executing. The subtransaction
managers play the roles of subjects and observers (defined in Chapter 3 — Definitions 3.1
and 3.2 on Page 53). Based on the outcome of the subject and the dependency it has with
the observer, the subject communicates the information (i.e., reveals its results) to its
observer(s). For instance, suppose the booking of an airline ticket is dependent on renting
a car. The application semantics imply that there is a (execution) dependency between the
rental and air ticket transaction. This information is stored in the execution dependency
database at the car rental manager. The car rental transaction executes against the car
rental database to find if there is a car rental as per the request. Based on the result of the
transaction and the dependency information, the car rental manager communicates the
information about the availability of the car rental to the air ticket manager. In this case,
the car rental transaction is the subject and the air ticket transaction is the observer. Now,
based on the result the air ticket manager gets from the car rental manager, the former
starts executing its subtransactions or does whatever is necessary to maintain the

application semantics.

4.3.1 An Example Scenario

In this section we present an example scenario to illustrate the concepts behind execution
dependencies, the communications that occur between the subtransaction managers, and
transaction execution alternatives. A discussion on how the application and transaction
semantics are translated into execution dependencies is also presented. Further, how these
dependencies are used in producing multiple transaction execution alternatives is

discussed.

The example includes a customer interested in planning a trip from Calgary to New York
to attend a business meeting. However, at the same time there is a World Congress on
Women’s Issues being held in New York. His trip would include booking air tickets,
renting a car and reserving an accommodation in New York. He specifies his preferences
as far as these bookings and reservations are concerned. The entire trip transaction occurs

based on the customer’s preferences. At the same time he would also appreciate the best
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alternatives he has to make this trip despite the expected overbooking of air tickets,

accommodation and/or car rentals due to the World Congress.

Suppose the customer prefers to fly first class. However, under the given circumstances,
an economy ticket would also serve the purpose. Further, assume he collects frequent
flyer miles in Air Canada and hence prefers that carrier. He prefers a hotel or motel
accommodation while he is in New York, but a hostel is unacceptable. As far as the car
rental is concerned he only wants a sedan. Since he is an Avis-Advantage member he

prefers Avis for car rental.

Further he specifies that he would like to book the ticket only if there is a car rental
available. He also specifies that booking an air ticket does not necessarily depend on the
type of accommodation available. He specifies that the air ticket may be booked if there
is either a hotel or mote] accommodation available. Further, he does not want to rent the
car until he gets an accommodation reserved as per his specification. In essence, the
semantics of this specification is that he wants to rent a car only if he has an
accommodation confirmed. Further, he wants to book the air ticket either if he gets a car

rental as per his specifications, or if he has an accommodation (hotel/motel).

In short, this describes the transaction’s semantics and is used as an example of the

expressive power of this model.

The above specifications suggest the following dependencies among the subtransactions

that book the air tickets, reserve accommodation, and rent a car.

1. The car rental subtransaction depends on the successful completion of the
accommodation subtransaction. In other words, only if the accommodation
subtransaction yields a positive outcome does the car rental subtransaction start
executing.

2. The subtransaction booking the air ticket is dependent on the successful completion

of the car rental subtransaction. At the same time, it is not so strongly dependent on
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the completion of the accommodation subtransaction. In other words, the air ticket
subtransaction starts executing if either the car rental or the accommodation

subtransaction succeeds.

The strengths of the dependencies identified above differ based on the specification.

The above specifications are translated into execution dependencies at an operational
level when the transaction starts executing. The execution dependency databases located
at each subtransaction manager level are populated with these dependencies. These
dependencies differ in strengths and hence they populate the dependency database
accordingly. This ensures the various transaction processing alternatives. At this point,
the subtransaction managers identify every other subtransaction manager as a subject
and/or an observer. For instance, the air ticket manager is an observer of the car rental
and the accommodation subtransaction managers. Thus, the car rental and
accommodation subtransaction managers are the subjects of air ticket subtransaction
manager. Similarly, the accommodation subtransaction manager is a subject of the car
rental subtransaction manager. In other words, the car rental subtransaction manager is an

observer of the accommodation subtransaction manager.

The example illustrated here has dependencies between the subtransactions that book air
tickets, reserve accommodation, and rent a car. The dependency database at the
accommodation and car rental subtransaction managers is shown in Figures 4.2 and 4.3,
respectively. These dependencies are deduced from the specifications set for the trip
transaction execution. The transaction is divided into three subtransactions - to book an
air ticket, reserve an accommodation and rent a car. Each of these subtransactions may be
further divided to achieve the desired result. For instance, the accommodation transaction
is further divided to obtain a reservation in a hotel, motel or hostel. Similarly the air ticket
subtransaction could be further divided to book either an economy or a first class ticket.
In this example, all the dependency databases are present in nesting level L2 (see Figure
4.1, Page 67). Hence all the subtransactions at that level are referred to as subtransaction

managers. For instance, the air ticket subtransaction is referred to as an air ticket
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manager. These managers play the role of subjects and/or observers depending on the
transaction execution. The transaction execution is controlled by the dependency

information stored in the dependency databases.

Subject Observer Dependency
Accommodation Manager Car Rental Manager Necessary
Accommodation Manager Air Ticket Manager Sufficient

Figure 4.2 Dependency Database at Accommodation Manager

Subject Observer Dependency

Car Rental Manager Air Ticket Manager Necessary

Figure 4.3 Dependency Database at Car Rental Manager

In our example, it is evident from the specifications that the accommodation
subtransaction must successfully complete so that the other subtransactions can execute.
Though all the subtransactions are simultaneously submitted, the rental and the ticket
subtransactions wait until the accommodation subtransaction completes successfully and
receive notification of the same. Hence the accommodation subtransaction is a subject
from the perspectives of air ticket and car rental subtransactions. In other words, the air
ticket and car rental subtransactions are observers of the accommodation subtransaction.
It is evident from the dependency database at the car rental manager that the air ticket
transaction is necessarily (N) dependent on the successful completion of the rental
transaction. Similarly, the dependency database at the accommodation manager shows
that the rental transaction is necessarily (N) dependent, while the air ticket transaction is
only sufficiently (F) dependent, on the accommodation subtransaction. This implies that
the air ticket manager starts executing the air ticket subtransaction as soon as it receives
the notification from the accommodation manager. It does not wait for the car rental
manager’s notification though the air ticket subtransaction has a necessary-type

dependency with the car rental subtransaction. This is because in our transaction model
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the sufficient-type dependency takes priority over any other type of dependency (see

discussion on Execution Dependencies in Chapter 3).

As mentioned above the various subtransactions execute with respect to the dependency
they have with other subtransactions. In addition, all the other transaction execution
alternatives are also pursued to provide the user with a wide range of results. For
instance, though the customer prefers hotel or motel, our transaction model runs the hotel,
motel, and hostel subtransactions, and provides him with all the results available. This is
useful when a particular transaction execution fails but some other execution provides an
equivalent result. Similarly, suppose there are no seats available in the first class due to
the World Congress on Women'’s Issues. However if there are seats in the economy class,
then those results are presented to the customer. Now he could use these results to book
his tour. Though the customer prefers only é first class ticket, he might be willing to go
on the trip on an economy ticket based on his “necessity” rather than his “preference”,

under the given circumstances.

4.4 A Comparison With Conventional Transaction Models

The advanced transaction models proposed in the past have been suitable for certain
application domains. However, each model has its shortcomings. This thesis discusses the
shortcomings of the earlier models only with respect to the concurrency aspect of
transaction management. Further, it takes into account the ACID properties of the
transactions executing within the frameworks of those models. The suitability of these

models in an MDBS is also discussed wherever applicable.

A closed nested transaction model rules out the possibility of relaxing ACID properties
because of the subtransactions. The subtransactions execute in a “closed” fashion and
hence do not reveal partial results. This results in less concurrency among
subtransactions. An open nested transaction model enhances the parallelism among the
subtransactions. In this model, all the subtransactions reveal their results to other
subtransactions. This results in violation of the isolation property. In other words, the

ACID properties are relaxed. However, past research indicates that when this model is

3



applied as such to an MDB environment, it does not help in maintaining the autonomy of
the underlying system. The transaction model presented in this thesis is a variation of an
open nested model with additional features. Our model extracts the application semantics
and accordingly relaxes the ACID property. At the same time, it allows the
characterization of the autonomy interface of the underlying MDB environment by
appropriately utilizing the application semantics in the form of execution dependencies

and subtransaction managers.

Sagas address the delays in transaction processing due to the long-lived nature of the
transactions. A long-lived transaction can be expressed as a saga if it can be written as a
sequence of transactions that can be interleaved with other transactions. Partial

executions are undesirable and they must be undone.

When sagas are applied to MDBSs, local autonomy 1is not severely violated because each
element database sees each subtransaction as a local transaction managed by the element
DBMS. This finds application only in environments where long-lived, compensatable
transactions execute. Providing compensating transactions is a major difficulty in the case
of sagas. They cannot be applied in scenarios where a transaction is irreversible, such as
drilling holes. Nevertheless, sagas are appealing to compensatable MDBS environments

because they affect the autonomy of the underlying systems minimally.

A saga only permits two levels of nesting unlike the nested transaction presented in this
thesis. Sagas also compromise on the atomicity at the top level thereby allowing other
sagas to view their partial results unlike the nested transaction model presented here
which maintains the atomicity at the global level. Further, sagas do not provide multiple

transaction execution alternatives as the model presented here does.

The Flex transaction model is the closest match to the model presented in this thesis. It
identifies and addresses the challenge of maintaining the autonomy of the underlying
systems in a MDB environment. Specifically designed for MDB environments, this

transaction model shares our goal of providing multiple transaction execution alternatives
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based on execution dependencies. It decomposes a global transaction into several
functionally equivalent subtransactions as our model does. However, our model identifies
and presents a broader range of execution dependencies than the Flex transaction model,
which identifies only two extreme types of dependencies namely, positive and negative

dependencies.

Flex transaction model has provisions for the execution of both compensatable and non-
compensatable transactions. This thesis assumes reliability and hence does not explicitly
contribute provisions for compensatable transactions. However, by taking into account
the dynamics of both the environment and transaction processing, we can easily extend

this work to address compensatable transactions.

Apart from the specific shortcomings mentioned above, none of the models appear to be
scalable to run applications in the MDB environments in the Internet. The

implementation of our paradigm is readily scalable to MDB environments in the Internet.
In summary, the shortcomings of the various models are:

e Absence of a mechanism to specify and provide proper global integrity
constraints (dependencies) that determines the effects on the global atomicity,

¢ Unsuitability of certain transaction models in MDB environments,

e A means to characterize the amount of local autonomy affected,

¢ A mechanism to exploit the application semantics and thereby provide multiple
transaction execution alternatives, and

e Scalability to Internet environments that run advanced database applications.

A brief discussion of the concepts that address the above issues is deferred to Chapter 5.

4.5 Summary

This chapter presented the analysis of the transaction management problem in

multidatabases. A discussion of our transaction model was presented and the concepts
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underlying the model were revisited in Section 4.2. Section 4.3 introduced an application
to illustrate the ideas underlying our transaction model. Finally, we presented a
comparison of the transaction paradigm presented here with the conventional models.
Chapter S presents the conclusion and summary of the various concepts discussed in this

dissertation and sets some future research directions.
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In my end is my beginning.

- T. S. Eliot, Four Quartets.

Chapter 5
Conclusions and Future Work

This dissertation concludes with a summary of its contributions and directions for future

work.

5.1 Summary of Contributions

This thesis identifies the following problems that affect the management of nested
transactions in multidatabase systems. An implementation of a nested transaction model
that describes the pragmatic componems required to realize the following features in the

form of an abstract model was presented.

e Absence of a mechanism to identify and exploit dependencies among subtransactions.
Conventional transaction models lack a mechanism by which they can identify and
exploit dependencies in an application running in a MDB environment. Today, in

most applications, the execution of transactions is directed by application semantics.

A mechanism to identify the application semantics and exploit the same can enhance
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the parallelism of transaction processing. The lack of such a mechanism affects the

concurrency aspects of transaction management.

Lack of a mechanism to maintain the autonomy of the underlying systems.

Though there have been numerous proposals to address transaction management in
distributed systems, many of those models have found little use when applied to
multidatabase systems. This is due to the severe effects they have on the autonomy of
the underlying systems in a MDB environment. The maintenance of autonomy to the
best maximum level is imperative when addressing the transaction management
problem in a MDBS.

Absence of a mechanism to communicate partial results among subtransactions

thereby increasing parallelism.

Most advanced transaction models are generalizations of the nested transaction
model. The transactions in these generalizations usually attempt to relax the ACID
paradigm by allowing partial results to be exposed to their subtransactions. However,
a better mechanism to implement such visibility rules is important to enhance the
parallelism of transaction execution in a MDBS. The crux is when it becomes
important that the autonomy of the underlying systems must also be maintained in

addition to the maintenance of a proper visibility mechanism.

Lack of a mechanism to produce multiple transaction execution alternatives.

The advanced transaction models proposed in the past produce transaction execution
that strictly adheres to the requirement of the end user. However, in most current day
applications, it is important that there be multiple transaction execution alternatives so
that even if the results of one execution is unsatisfactory, the user can choose from

other alternatives presented by the system.
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Our research analyzed the above problems and/or challenges and addressed them using a

novel implementation of an open nested transaction in a multidatabase environment

characterized with complete autonomy. The implementation provides a framework that

can be utilized by several advanced database applications.

Execution Dependencies: The application and transaction semantics are
translated into dependencies existing among subtransactions. Such dependencies
are called execution dependencies because they direct the execution of
transactions. This thesis identifies three different types of execution dependencies
based on the application and transaction semantics in advanced database
applications. They are necessary, sufficient and bonus execution dependencies.
These dependencies are the global integrity constraints of the transaction
processing system. The definitions and details of the various dependencies are

discussed in Chapter 3.

Autonomy Interface: The underlying system considered in this thesis is a
multidatabase system. It is characteristic of a multidatabase environment to be
autonomous. Hence, it becomes important to maintain the level of autonomy
maximally. This thesis addresses the issue through the concept of execution
dependency database at various subtransaction managers. The execution
dependency database at a subtransaction consists of the various execution
dependencies it has with other subtransactions. It is based on the dependencies in
the execution dependency database that the transaction executes in certain specific
ways. This acts as an autonomy interface because, the higher the level of this
interface in a nesting, the more autonomous is the underlying system, and vice
versa. The execution dependency databases at the subtransaction managers are
populated dynamically and hence, at an operational level, the transaction model

has a layered architecture.

Subjects and Observers: ACIDity in a transaction is relaxed by allowing the

exposure of partial results to relevant subtransactions. This has been successfully
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shown in many open nested transaction models. However, this affects the
autonomy of the underlying system if the systemn under consideration is a MDBS.
This thesis addresses the issue by borrowing the concepts of behavioral design
patterns. Specifically, it identifies the subtransaction managers and based on the
execution dependency available at these managers, it dynamically categorizes the
subtransaction managers as subjects and observers. Any subtransaction manager
can play both these roles as long as the transaction processing adheres to the
application and transaction semantics. Hence, based on the dependency
information at a subtransaction manager’s execution dependency database, it
communicates the results to all other subtransaction managers that have been
dynamically included as its observers. This is an effective way of communicating
information among the subtransactions whereby multiple observers of a

subtransaction get to know the results of a subtransaction being observed.

Muitiple Transactions, Same Global Objective: The utilization of the execution
dependencies and the concepts of subjects and observers yield a transaction
execution that satisfies the application semantics specified. However, the
paradigm developed in this thesis produces multiple outcomes for the same global
objective using functionally equivalent subtransactions thereby widening the
range of choice of the outcomes. This helps in situations where even if one

execution fails, the user can rely on the various alternatives the system produces.

5.2 Future Directions

There are several interesting directions in which the work presented in this dissertation

can proceed. The future work suggested here is based on this work coupled with

directions to address the general problem of transaction management with respect to

Internet and other wireless technologies.

Reliability and Heterogeneity: In this dissertation we have investigated the various

aspects of transaction management in multidatabase systems. However, we assumed

transaction management from the perspective of completely reliable systems. Though the
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assumption is valid from the perspective of academic research, it is not the case with
systems in the real world. Similarly, we have considered a homogeneous system to
demonstrate the paradigm presented in this dissertation. Recommendations for future
work include the enhancement of the model presented in this dissertation by considering

a heterogeneous environment with reliability problems.

Scalability to Distributed Internet Applications: The transaction paradigm presented
in this dissertation addresses the transaction management problem in multidatabase
systems. Though its implementation is readily scalable to Internet environments, we
believe that such scalability could come with additional problems. This could be due to
the truly distributed nature of the Internet environment characterized with total autonomy
and a high level of heterogeneity. Such environments pose interesting problems that can
be addressed using the fundamental principles of transaction management in traditional
environments coupled with the new principles of transaction management in truly
electronic environments. This is a highly potential area because the distributed

environments today are fully Internet-enabled or are in the process of being enabled.

Application in Wireless Environments: An interesting direction for future work would
be in the area of mobile databases and wireless transaction management. Most
applications today are developed with the consideration for potential use in wireless
environments or on wireless devices. Though these applications are in their early stage,
the day is not far when transactional aspects would be incorporated into such devices. A
study about the feasibility of our paradigm in such environments could be a direction of
future work. This would bring in a whole new world of opportunities in the ‘at anytime,
Jrom anywhere’ concept of wireless transaction research. An example of this area is the
new paradigm in the online business world of m-commerce (mobile-commerce). This area
of research would pose a lot of technical challenges made interesting due to the wireless
nature of the environments. Hence, we recommend this area be investigated as part of the

future work.
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If | have seen farther. it is by standing on the shoulders of Giants.

- Sir Isaac Newton, letier to Sir Robert Hooke, Feb. 5, [676.
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