
NOTE TO USERS

This reproduction is the best copy available.

A DISSERTATION

SUBMI~TED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

THE U N N E R S ~ OF MANITOBA

WINNIPEG, MAN~OBA, CANADA

MARCH 200 1

National Libraiy I * m of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques
395 Weüinglon Street 395, rue Wellin@cm
OtmwaON KlAON4 OttawaON KlAON4
CaMda CaMda

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES
* * * X i

COPYRIGHT PERMISSION PAGE

Transaction Execution Dependencies in a Multidatabase Environment

BY

Prasanni Govindankutty

A ThesidPracticum submitted to the Faculty of Gnduate Studies of The University

of Manitoba in partial filfiliment of the requirements of the degree

of

Master of Science

Prasanna Govindankutty O2001

Permission has been granted to the Library of The University of Manitoba to lend or sel1
copies of this thesis/pncticum, to the National Libnry of Cinada to microfilm this thesis and
to lend or sel1 copies of the film, and to Dissertations Abstracts International to publish an
abstract of this thesis/prrcticum.

The author reserves other publication rightq and neither this thesis/practicum nor extensive
extracts from it may be printed or otherwise reproduced witbout the author's written
permission.

Tu Kama2 with love.. .

Advanced transaction models have k e n the focus of research in the area of transaction

management. Exarnples of advanced transaction models include nested, mu1 tilevel, flex

transactions, etc. However, these models have their own shortcomings that can be

summarized as follows:

Absence of a mechanism to specify and provide proper global integrity

constraints (dependencies) that determines the effects on global atomicity.

Unsuitability of certain transaction models in multidatabase environments. For

example, ConTract model was developed for cooperative environments and are

thus not suitable for multidatabase environments.

A means to characterize the amount of local autonomy affected. For instance,

Sagas do not address characterization of local autonomy.

A mechanism to utilize the application semantics and execution dependencies.

For example, nested transactions do not explicitly address the use of semantics.

A provision to support multiple transaction execution alternatives. Sagas and

ConTract are examples of those models that do not provide support for

functionaily equivalent transactions.

Scalability to Inteniet environments running advanced database applications.

Most of the transaction models presented in the literature do not address the

scalability issues.

This thesis presents a novel, and Internet-scalable irnplementation of a nested transaction

model that describes the pragmatic components required to remedy the above

shortcomings in the form of an abstract modef. It shows that utilizing application

semantics and revealing partial results in an open nested, multidatabase transaction

environment aids in charactenzing the dependencies arnong the child transactions. An

interface mechanism to characterize the level of autonomy at the underlying systems is

provided. Support for multiple transaction execution alternatives is also provided.

It was by chance that 1 waiked into Professor Ken Barker's office the first tirne. A fine

resource for research ideas and a great source of help in lot of matters, Ken is the coolest

supervisor 1 could have wished for. 1 thank him very much for al1 his suppon in different

kinds of matters during the course of my graduate program.

1 thank my examining cornmittee, comprising Professor Sylvanus Ehikioya from

Computer Science, and Professor Bob McLeod from Electrical Engineering. 1 very much

appreciate their insights into the materiai presented in this dissertation.

Thanks are due to Jose at TRLabs, Winnipeg for his help and support even after 1 moved

to Calgary during the course of my program. The TRLabs Scholarship supported most

part of the research presented here. Thanks very much to T u b s as an organization for

providing the much-needed money when 1 was living the life of a grad student - the

poorest animai on the face of the planet!

I thank everyone at the offices of the Departments of Computer Science at the U of M,

and the U of C for al1 the admin support they extended during this program - especially

for sending my pay slips to Calgary promptly!

Being a lazy bag that I am, 1 had to be motivated tirne and again. A great deal of gratitude

goes to Papps, Chechi, Uma aunty, Prabhu, and Punita for their constant "prodding" so 1

finish my Masters soon.

Most implementation ideas for this thesis stemmed from my discussions with Juraj, either

over coffee at Second Cup in Kensington, or over pints of beer at the Grad Lounge.

Though we were slackers when it came to running, we were pretty serious in al1 these

discussions. 1 owe you one buddy!

Thanks to Wendy for her Company when it came to beers at Calgary pubs, Whoppers at

Burger King, and occasional movie nights. Of course, this came with some deep

discussions on ferninism that 1 honestly enjoyed!

I'rn grateful to Kish and Jiten for their friendship while in Winnipeg, and otherwise. A

big "thank you" to Binny for k i n g a good friend and supporting me in rnany different

ways.

This section would be incomplete if 1 do not thank rny family. 1 owe bigtime to my

brothers, mom and sisters-in-law for ail the support, patience, and perseverance they have

shown from across the seas. I must also thank my young nephew and nieces for their

sweet conversations over phone. It meant a world of difference during stressful times.

You d l have enriched my life!

A final word - If 1 did forget to mention anybody's narne on this, its probably because 1

wrote this after a couple of drinks! It is not intentional.

... INTRODUCTION AND PREvIJZW 1

1.1 MOTIVATION ... 1

1.2 TRANSACTION MANAGEMENT ISSUES IN MULTIDATABASES 3

1.2.1 Autonorny and Heterogeneity .. 5

.. 1.2.2 Properties of transactions - 5

1.2.3 Necessary and Sufficient Conditions .. 6
1 -3 PREVTEW: FUNDAMENTAL RESEARCH ISSUES ... 7

1.3.1 Thesis of the Thesis ... 7

.. 1.3.2 Key Issues 7

1.4 CONTRBUTIONS AND S T R U C ~ E OF THESIS ... 13

2.1.1 Definitions ... 17

2.2 TRANSAC~ON MANAGEMENT ... 18

2.3 CONC WRRENCY CONTROL AND REL~ABILITY ... 19

2.3.1 First-generation Solutions .. 19

2.3.2 Second-generation Solutions .. -24

2.4 ADVANCED TRANSACTION MODELS / FORMALISM ... 33

2.4.1 Nested Transaction Mode1 .. 34

2.4.2 Multilevel Transaction Mode1 .. 3 6

.. 2.4.3 Sagas 38

2.4.4 Flex Transaction Model ... 40

2.4.5 ConTract Transaction Mode1 .. -42

2.4.6 ACTA ... 42

2.5 LEADING OPEN QUESTIONS .. 45

2.6 SUMMARY .. 47

FIGURE 1.1 MULTIDATABASE A R C H I T E ~ R E ... 4

....... FIGURE 1.2 TRANSACTION HIERARCHIES FOR A TRIP BOOKING TRANSACTION .. 8

FIGURE 1.3 REVELATION OF PARTIAL RESULTS .. 10

FIGURE 1 . 4 SUBTRANSACTIONAL DEPENDENCIES ,. ... 12

FIGURE 2.1 DDBS ENVIRONMENT (COURTESY: [0 ~ 9 9]) ... 16

FIGURE 2.2 A MULTIDATABASE A R C H ~ C T U R E ... 17

FIGURE 2.3 A TRAMFER TRANSACTION ... 20

FIGURE 2.4 NESTED TRANSACTION MODEL .. 35

FIGURE 2.5 CONCURRENT EXECUTIONS OF MULTILEVEL TRANSACTIONS (COURTESY: [WS92]) 36

FIGURE 2.6 CONCURRENT EXECUTIONS OF OPEN NESTED TRANSACTIONS (COURTESY: [WS92]) 37

FIGURE 2.7 DIMENSIONS OF THE ACTA FRAMEWORK (COURTESY: [CR94]) .. 43

FIGURE 3.1 TRANSACTION MODEL ARCHITECTURE .. 50

FIGURE 3.2 EXAMPLE NESTING ILLUSTRATING POSITIONUUG OF SUBTRANSACTION MANAGERS 51

FIGURE 3.3 AN ~ U S T R A T I O N OF EXECUTION DEPENDENCY .. 59

FIGURE 4.1 TRANSACTION MODEL AND EXAMPLE TRANSACTION EXECUTION ... 67

FIGURE 4.2 DEPENDENCY DATABASE AT ACCOMMODATION MANAGER ... 7 2

FIGURE 4.3 DEPENDENCY DATABASE AT CAR RENTAL MANAGER ... 72

"Begin at the beginning ". the king said. gravely. "and
g o on tif1 you corne tu rhe end; then stop. "

- Lewis Carroll. Alice in Woriderland

Chapter 1

Introduction and Preview

1.1 Motivation

The later part of the 20'~ century observed a remarkable progress in technology pertaining

to information access and its use. Specifically, we observed the progress of the Internet

architecture and its use for commerce, and the extensive use of databases to serve the

commerce itself. The main reason for the progress in the expansion of Internet is the

sudden and vibrant explosion of its World Wide Web (WWW) facet. The reason for the

extensive use of databases is frorn the demands for repositories to store the huge amounts

of different types of data used by electronic commerce.

It is natural to believe that the combination of these emerging technologies would yield a

powerfûl means for information access. However, at this time, this is not the case. Why?

Could it be because Internet expansion is not as functional as we believe it to be? Could it

be because the databases that already exist are unsuitable as the vertebra that forms the

backbone for electronic commerce? Or is there another reason that the Internet

infrastructure is failing to reach its full potential? The expansion of the Internet is

undeniable. Unfortunately, it is limited by the inertia in the advancernent of the

infrastructure that forms the backbone of the WWW. Most organizations that have the

potential to go online are unable to do so because of their own legacy systems. However,

the primary reason this combination is not powerful is because of the lack of proper

management of electronic transactions that execute in this environment. Since this is the

first gencdon of electronic commerce, many of its participants are still in the

reengineering phase from the previous generation of non-electronic commerce. But once

this is complete, increased pressures will be placed on the Intemet infrastructure.

The problem of transaction management in a multidatabase environment has been around

for a long time. This mission critical problem has been addressed by several researchers

working on both the concurrency control and reliability aspects, and the development of

extended transaction models (ETM). One possible scenario where transaction

management is required is an online information kiosk. These are interactive web pages

that guide the online shopper towards a collection of online stores carrying itern(s) of

interest. Examples of such a collection of online stores are air ticket bookings or car

rentals. A traveler planning a tour could use the information provided by the kiosk. Other

situations where transaction management is required are online auctioning, e-business

web sites handIing major financiai transactions, etc.

There are many questions that arise when the transaction management problem in MDBS

is extended to address transaction management issues in an Internet environment such as

an information kiosk or e-business environments. The questions to be answered include:

How to realize a multidatabase environment on WWW?

What is the suitable advanced transaction mode1 that can be used?

How to enhance the parallelism of the transactions in such an environment?

How to enhance the performance of transaction management systems that are

used in Intemet business applications?

In this thesis an online tour booking application is used as an exemplar while addressing

the above questions. Clearly this application requires a distributed solution. Hence al1 the

information is stored in individual databases and can be accessed by online clients. We

use an extended transaction model for executing the transactions in this environment.

There are two models of particular interest to this work - Multilevel Transaction Model

wS84][W86]p9 11 and Open Nested Transaction Model [WS92]. Both these are

broadly defined as nested transaction models. The former addresscs transaction

management issues in multi-layered systems while the latter addresses the problem of

enhancing the parallelism of concurrent transactions. Transactions in the MDBS

environment (considered in this thesis) are operations invoked by other transactions.

Hence, the choice of a nested transaction mode1 wiIl serve our needs well. We must

identify the dependencies between transactions (subtransactions) that exist in the nested

transaction. The underlying theory in identifying these dependencies is that the

transactions (subtransactions) can view the partial results of other transactions

(subtransactions) based on certain conditions specified by the application requirements.

Further, this choice of model will affect the concurrency control and recovery

mechanisms that exist in traditional transaction management systems. This work

contributes a (major) step in providing access to information in a multidatabase

environment through WWW.

In Section 1.2 we describe the issues involved in managing transactions in a

multidatabase environment. Section 1.3 discusses the fundamental research issues of this

thesis. Section 1.4 presents an ovemiew of the contributions and describes the

organization of the rest of this thesis.

1.2 Transaction Management Issues In Multidatabases

A multidatabase system (MDBS) is an interconnection of several autonomous element

databases each with its own database management system (DBMS). A multidatubase

management system (MDBMS) is a software facility developed on top of these element

database management systems to provide the users access to any underlying element

database. The transaction management problem in MDBS is critical due to the

autonomous and heterogeneous nature of the preexisting legacy systems and their need to

support the ACID properties of transactions. Transactions in a MDBS are either local or

global depending on how and where they execute (see Figure 1.1).

Global transactions

Figure 1.1 A Multidatabase Architecture

Due to the autonomous nature of the underlying systems in the MDBS, the local and

global transactions interfere with each other thereby producing undesirable situations or

inconsistent database states [BHG87]. A solution to coordinate the execution of global

transactions was not made available because the transactions in the MDBS see

inconsistent data during their execution. The following sections present the

characteristics of the MDB environment, properties of transactions, and the necessary and

sufficient conditions for proper transaction management in a MDBS.

1.2.1 Autonomy and Heterogeneity

An MDBS, as defined eariier, is an interconnection of multiple preexisting element

database systems. These database systems are autonomous and heterogeneous due to their

design, development and administration [BBE99].

Aittonomy of the element database indicates the degree to which the DBMS can operate

independently without losing control over local data and transactions. Design,

communication, execution and association autonomies are the different aspects of

autonomy [SL90]. Due to this nature of the element databases (and hence their DBMS),

the MDBMS has no control over the following:

Design of the element databases,

Local execution schedules,

Communication between the element databases, and

Level to which certain functionsloperations can be shared with the users of the

element databases.

Heterogeneify is another characteristic of the transaction management problem in a

MDBS. It refers to the different data definitions, data rnodels, access languages and

storage structures that each element database c m have. The more dissirnilx the two

systems are, the more difficult it is to manage that heterogeneity PBE991.

1.2.2 Properties of transactions

A transaction is a sequence of read and write operations on a database. Transactions have

been charactenzed with the following properties [GR93]:

Atomieüy: This property indicates that a transaction either executes to its completion or

does not execute at d l . That is, a normally terrninating transaction makes permanent

changes to the database. Othenvise, no changes are made permanent in the database.

Consistency: This refers to the correctness of a transaction. A correct transaction is a

prograrn that moves the database frorn m e consistent state to another.

Isolation: This property requires each transaction to see a consistent database at al1 times.

An executing transaction cannot reveal its results to other concurrent transactions before

it commits.

Durabifiiy: Durability ensures that once a transaction commits, its results are permanent

and cannot be lost from the database.

The atomicity and isolation properties support seriaiizability of transaction management,

while the consistency and durability prorjerties ensure reliability. Traditionally, it is

believed that correctness of transactions can be guaranteed only if al1 these properties are

supported.

1.2.3 Necessary and Suf'ficient Conditions

The necessary and sufficient conditions for proper transaction management in a MDBS

are [B90]:

Al1 the local database management systems guarantee local synchronization

atomici ty.

If an operation of transaction Tl occurs before T2 in a DBMS, then the same is

true for a11 other operations whether they conflict or not.

The global transactions cannot be split and concurrently subrnitted to the same

DBMS.

The MDBMS must be able to identify ail objects referenced by al1 global

transactions.

The MDBMS must be able to detect and recover from global deadlock.

1.3 Preview : Fundarnen ta1 Research Issues

The challenges to transaction management in MDBSs are prirnarily due to the nature of

the MDBS architecture and the properties of the transactions. Both these factors raise a

number of issues. The rest of this section presents the key thesis element and an overview

of the key research issues that affect transaction management in a MDBS. Finally, an

outline of the proposed solution to these issues is provided.

1.3.1 Thesis of the Thesis

This thesis broadly addresses the transaction management problern in multidatabases.

Specifically. an open nested, multilevel transaction mode1 is applied to a multidatabase

environment characterized by the autonomy of the underlying databases. A set of

dependencies existing between the transactions (subtransactions) in a nested structure of

transactions executing in an application-specific domain is identified. Concurrency

control aspects of the transactions executing within such a framework are studied.

Specifically, the intra-transaction parallelism of a transaction executing in such a

framework is studied. Further, it shows that by exploiting the dependencies identified, a

transaction c m be processed in many different ways. Finally, an interface mechanism to

guarantee a high level of autonomy at the element databases is provided.

To exemplify the thesis, we use a sample application [E92] used to book tours (see Figure

1.2). It includes the booking of accommodation, air tickets, and car rental. The

accommodation transaction comprises subtransactions that are used to book a hotel,

motel, and/or hostel. The air ticket booking transaction comprises two transactions - one

to book a very basic ticket and the other to book a ticket based on the user's carrier

preference. The car rental transaction is used to book cars based on the user's preference.

1.3.2 Key Issues

In the ps t , there have been many contributions and proposals addressing transaction

management issues in a MDBS. Ail these contributions had their own motivation and

reasons. However, the key research issues in transaction management in a MDBS

addressed b y this thesis are:

Develop an extended transaction mode1 to support transaction management in

application-specific MDB environments.

ldentify dependencies between transactions (subtransactions) executing in such

environments to study intra-transaction parallelism.

To guarantee a high degree of autonomy at the underlying databases.

To provide support for multiple, functionally equivalent, transaction execution

alternatives.

illustrate how these approaches can be applied to a more general-domain

environment.

1

-
Accommodation Ticket Rental

Manager b Manager 4 b Manager

A 4

Notifications

Ticket DB €3
Figure 1.2 Transaction Hierarchies For A Trip Booking Transaction

Extended Transaction Models

Multiple users access a database system concurrently to read and update its data. Such an

environment is prone to undesirable situations or inconsistent States if there is no proper

mechanism to interleave the transactions. Concurrency control is the mechanism that aids

the proper management of interleavings so there is no interference between transactional

operations of different users.

Several approaches have been proposed to enhance the functioning of the concurrency

control mechanism in a MDBS. In this thesis, we categorize the past approaches into

three generations. Though most of these efforts addressed the transaction management

issues in a distributed environment. the same solutions are applicable to the MDB

environments.

The first-generation approach was to provide a correctness criterion called serializabiliry

[BHG87][MRB+92]. This required the scheduling of the transactional operations so that

the result of the execution of such a schedule produced the same output and had the sarne

effect on the database as some serial execution of the same operations. However, this

approach proved to be too stringent and needed to be relaxed. Further, this was

insufficient in the presence of failures. Hadzilacos rH881 proposed the consideration of

potential failures that could possibly occur in transaction processing environments. This

resulted in a theory of reliability as it relates to transaction management. Senalizability

and reliability together form the first-generation solutions that address the transaction

management issues in heterogeneous distributed database environrnents.

The second-generation approach focused on relaxing serializability. Naturally, this

approach allowed some inconsistencies in the database resulting in tolerably undesirable

situations [~ ~ 8 9 J [B~o] BO~O][PL~O] [MRK+9 1][HB96]. Some rnethods even ignored

the integnty constraints of the underlying element databases [DE89]. Despite these

efforts, it was reaiized that the local autonomy in the element databases made it difficult

to apply traditional transaction management techniques to MDBSs. Apart from the

above-mentioned efforts, Garcia-Molina [G83]. Lynch [L83], Farrag and 0zsu

~ 0 8 7] ~ 0 8 9] address the concurrency control problem using the semantic knowledge of

transactions. Alonso et al. [AVA+94], Vingralek et al. [VHB+98], Schuldt et al. [SAS991

attempt to unify the theory of concurrency control and recovery.

Ticket DB el

Notification

Figure 1.3 Revelation of Partial Results

Accommodation
Manager

Several works were proposed to address the inadequacies posed by the traditional

transaction processing concepts. Finally, much attention was devoted to the development

of application-specific transaction rnodels. This resulted in nested transactions

[Mg t] [M85], Sagas [G S S î] , multilevel transactions w86] w9 11, etc. These models

fundamentall y disagree with the notion that conflict serializability is the basic correctness

criterion. Though the concept of nesting the transactions proved to be an interesting

concept, it initidly failed to address the autonomy of the element database systems.

However, nesting of transactions is useful because it allows controlled concurrency

within a transaction and localizes the potential failures. It was based on the nested

transaction mode1 that other extended transaction models were proposed. The work

presented here uses a novel implementation of the nested transaction in a MDB

environment. In this environment, we observe that a transaction is decomposed into a set

of subtransactions. Each of these subtransactions is considered to be an operation in the

context of other transactions. The subtransactions at the lowest level in the nesting

interact with the element databases. The partial results of such interactions are used to

detemùne the execution of other transactions so that they need not wait until the entire

Ticket
Manager

result is available. This refemng to partial results is the motivation for identifying the

transactional execution dependencies.

One example of a transaction where the partial results can be useful is in a trip booking

transaction. In Figure 1.3, we show part of the trip booking transaction shown in Figure

1.2. Consider a trip booking transaction that States that an accommodation may be

booked ifsome kind of ticket, an economy ticket or a first-class ticket, is available. The

ticket manager spawns the subtransactions for economy and first-class tickets. The

outcome of the subtransactions is passed on to the ticket manager. Now, if the economy

ticket subtransaction executes and produces a result before the first-class ticket

transaction, then the ticket manager immediately lets the accommodation manager know

of the result. It does not wait for the outcome (success or failure) of the first-class ticket

subtransaction. This lets the accommodation manager spawn the accommodation booking

subtransactions without having to wait for any other results from the ticket manager. This

type of execution of subtransactions within a transaction enables us to realize the intra-

transaction parallelism desired.

Identifying Transactional Dependencies

Another research issue we deal with is the identification of the different kinds of

dependencies in an application-specific transaction model. In the case of nested

transactions or long-lived multilevel transactions, it can be observed that there is a strong

contention for resources arnong the individual transactions. In such environments,

transactions waste a lot of time by waiting for other transactions to finish utilizing the

resources they hold. For example, a transaction may have to wait until its sibling's

children are in the precommit stage before it can utilize (readwrite) their results. Such a

nested structure of transactions takes a hieratchical forrn, where a root transaction has

child transactions, which in turn could have children or be a fiat transaction.

This thesis argues that a subtransaction can read/write the partial results of another

subtransaction that belongs to a totally different parent at any level in the nesting. In such

a nested structure. there is less time wasted contending for resources, thereby increasing

the performance. However. the challenge is to identify (the strengths of) the dependencies

between the transactions so as to enforce the correct usage of the precommitted results.

Hence, based on (the strengths of) the dependencies, the transaction would execute

differently. This thesis identifies such dependencies between the subtransactions and

categorizes them based on the manner in which they are going to be used. The

identification of such dependencies paves the way to study the concurrency control

(parallelism) aspects within a transaction. In the environment considered in this thesis,

such parallelism is realized at different levels of the transaction model.

1 Subjec! 1 Observer 1 Dependency (
Econ. Tic

Ticket DB €5

Acc. Mgr.

Notification
+

Figure 1.4 Subtraasactional Dependencies

Accommodation
Manager

Consider a scenario where the dependency relationship at the ticket manager is as shown

Ticket
Manager

in the table (execution dependency database) in the top, right corner, of Figure 1.4. The

first column in the table indicates the notiwing subtransaction (subject). That is, the

subtransaction that reveals the results. The second column contains the subtransaction

that is to be notified (observer). That is, the subtransaction that refers to the revealed

result. The third column contains the (strength of) execufion dependency. In this case, we

choose that the availability of an economy ticket is just su@kienr for the accommodation

manager to start any or al1 of its subtransactions. Hence, upon the positive outcome of the

ticket transaction (availability of an economy ticket), the ticket manager checks its

dependency database and notifies the accommodation manager about its results. The

accommodation manager takes it from there and spawns its subtransactions. The

dependencies could broadly be either suong or weak, and based on that appropriate

subtransactions are invoked. A complete treatrnent of such dependencies is the topic of

Chapter 3.

1.4 Contributions and Structure of Thesis

In this thesis, we analyze the problems posed by the above issues and implement a

solution to address them. This requires the application of a nested transaction mode1 to a

typical MDB environment and the capture of dependencies between the subtransactions.

Such dependencies are utilized to study the concurrency control aspects within a

transaction executing in the framework considered. Due to the nature of the MDB

environment and the properties of transactions. there is no single cure-al1 for the

problems mentioned and issues identified above. Specifically, there is no single

combination of dependencies that could address the problem. We recognize this and aim

at providing a very generic form of transaction management that could result in different

processing of the same transaction depending on the combination of dependencies. The

thesis is exemplified by the exploitation of the sample application that is used to book

online tours. Throughout this thesis we use the sarne application to explain the different

components of this thesis. This application uses the inputs from the user for booking a

very basic tour that includes the booking of accommodation, air ticket and car rentai. A

multidatabase environment is created using a commercial database system. The

implementation of the transaction interacts with this environment in the process of

booking the tour. The interactions are controlled by the specification of the execution

dependencies arnong several transactions (subtransactions). The results of these

transactions vary with the specification of the execution dependencies. The

implementation of the subtransaction managers provides an interface mechanism that

characterizes the autonomy level of the underlying system. It must be noted that the

implementation of this thesis provides an abstract framework that c m be effectively

utilized by other advanced database applications, such as, online auctioning. information

kiosks, etc.

The rest of this dissertation is organized as follows: Chapter 2 provides the necessary

background and related work in the area of transaction management. Chapters 3 and 4

fonn the core of this thesis. Chapter 3 discusses the transactional (subtransactional)

dependencies. An application of the new paradigm is presented in Chapter 4. This chapter

provides the illustration of an application executing within the abstract transaction

framework presented in this dissertation. It also includes a discussion on utilizing the

framework to support a more general domain.of database applications.

Finally, in Chapter 5, we present a summary of our work and contributions. We present a

discussion about the general lessons learned from applying the nested transaction mode1

to a MDBS environment and utilizing the transactional (subtransactional) execution

dependencies that exist between them. We conclude Chapter 5, and this dissertation by

providing an outline of future research directions.

History is the witness thut tesrifies to the passing of rime;
it illumines reality. vitdizes memoq. provides guidance

in daily life. and brîngs us tidings of antiquir)..

- Cicero 106-43 BC

Chapter 2

Background and Related Work

This chapter introduces the reader to the necessary background and related research work

in transaction management in multidatabase systems. Section 2.1 provides an

introduction to multidatabase architecture. In Section 2.2, we discuss transaction

management in multidatabase systems. Sections 2.3 and 2.4 present the three generations

of research in this area. The leading open research questions are the subject of discussion

in Section 2.5. Section 2.6 concludes this chapter with a surnrnary.

2.1 Muitidatabase Architecture

Businesses around the world rely on a very wide range of information sources to conduct

their everyday chores. These sources of information are usually databases whose size and

structure depends on the size and type of the business. These databases grow with the

businesses and hence the information is accessed from several nodes. Each node uses a

copy of the whole database. The existing data is distributed geographically based on

specific needs. Such a distribution of data results in a situation where the same data is

stored in dissimilar platforms and dissimilar languages access them. Though these

dissimilarities pose problems, they enable the sharing of information among

geographically distributed databases and users. A user of these databases believes only a

single centraiized database is accessed. Such databases are called distnbuted database

systems.

A distributed database system (DDBS) is an information system composed of a

networked collection of multiple databases that are logically interrelated (see Figure 2.1).

A distributed database management system (DDBMS) is a software facility that permits

the management of the DDBS and rnakes the distribution transparent to the users [0~99].

Site 1 L-i
Communication

Figure 2.1 DDBS Environment (Courtesy: [0 ~ 9 9])

A muIti&tabase systern (MDBS) is a specid case of the distributed database system. It is

an interco~ection of multiple databases that are characterized by autonomy and

heterogeneity . A multidatabase management systern (MDBMS) is a software facility that

coordinates access to the underlying databases. Figure 2.2 depicts a high-level

architecture of a multidatabase systern.

The MDBMS is the core component of multidatabase architecture. This is responsible for

the correct execution of the transactions submitted to it. Each participating database has

its own database management system called the local datubase management system

(LDBMS). This is responsible for the correct execution of the local transactions submitted

to it. The MDBMS has no control over the execution of transactions at the element

databases. Hence the element databases are charactenzed by some degree of autonomy.

Further, each of these databases may have their own data mode1 and access languages.

Hence these databases rnay also be characterized by heterogeneity.

Global transactions

Figure 2.2 A Multidatabase Architecture

2.1.1 Defïnitions: [BE991

This section provides a brief description of the key definitions used throughout the

balance of this thesis.

M m : An MDBS is composed of a set of local databases (LDB = {LDB,. D B Z , ...
LDBJ), with each managed by its own correspondhg local database management system

(LDBMS = {LDBMSl, LDBMS, . . . D B M S J) . I

Local Trunsaciions: A set of transactions submitted to LDBMSi (LTi = {LT'~, LPi, ...
Lfij ') is called local transactions. LDBMSi is responsible for al1 the local transactions

submitted to it. 1

Global Transactions: A set of transactions submitted to the MDBMS (GT = {GT!, GT2,

. . . GT,}) is called global transactions. 1

Each of these global transactions (GTj) is decomposed into a set of global

subtransactions.

Global subtransacrions: A set of transactions obtained froni the decomposition of a

global transaction. G q = {GST',,. G S T * ~ ~ . . . GST imjp), where each GST is submitted to

its corresponding LDBMS. The superscripts in the above set identify the LDBMSs.

2.2 Transaction Management

Guaranteeing correct execution of transactions over the MDBS has been the focus of

research over the past 15 years. Initial research in this area yielded rnultidatabase

management systems, while lately the focus has been on addressing transaction

management issues in specific application domains. Nevertheless, the questions framed in

the initial stages of transaction management research have not yet been answered

completely .

Figure 2.2 presented an architectural mode1 of rnultidatabase systems with the depiction

of local and global transactions. Transactions submitted to the MDBMS are called global

transactions. These are decomposed into global subtransactions that are then directed to

specific databases where the corresponding data is located. Transactions posed directly

against the local databases are local trcznsuctions. These transactions execute under the

control of the local DBMS. Hence the MDBMS has no control over them. This lack of

control poses a key challenge to transaction management in a MDBS. Traditionally

transactions are characterized by a need to support the ACID properties.

MDBS transaction management is particularly challenging due to the autonomous nature

of the components in the environment. There are different types of autonomies identified

by various researchers [SL90][B94]. Further, transaction management is complicated by

the heterogeneous nature of the element databases. Several solutions have been proposed

to address the problem with these issues. Earlier research focused on the heterogeneous

nature of the environment while later the focus shifted towards the autonomous nature of

the underIying system [BE99]. However, research in these two areas led to several

solutions that address the transaction management issues in MDBSs. Lately, the focus is

on providing transaction models based on application domains. This led to the

development of several transaction models, a discussion of which is available in

Elmagarmid' s work [E92].

2.3 Concurrency Control and Reliability

Past research considered the transaction management problem in two orthogonal

dimensions - serializability [BHG87][MRB+92] and reliabiliq [H88]. Serializability

serves as a correctness criterion to the concurrency control algorithms executing in fault-

free environments. It is supported by the atomicity and isolation properties of

transactions. Reliability, in addition to serializability, is a correctness criterion for

concurrency control algorithms executing in fault-prone environments. It guarantees the

execution of transactions and persistence of their results. Reliability is guaranteed by the

consistency and durability properties of transactions. The concurrency control algorithms

are implemented using locking or tirnestamp ordering concepts PHG871. This section

presents the various correctness criteria proposed in the past. It is divided into two

sections that deai with the first-generation and second-generation solutions, respectively.

The results discussed here have their own versions of concurrency control dgorithms

broadly based on either locking concepts or timestamp ordenng concepts.

2.3.1 First-generation Solutions

The notion and development of transaction models supporting serializability forrn the

fust generation of research in this area PHG871. The prîmary objective is to achieve

global serializability. When two or more transactions execute concurrently, operations of

one transaction rnay execute between the operations of another transaction. This

execution, known as interleaved execution, may Iead to incorrect behavior in the

transactions. This eventually leads to undesirable outcornes or inconsistent database

States. This is called the inferfierence problern [BHG87]. It can be avoided by not

allowing the transactions to interleave at dl. The resulting execution where no two

transactions interleave with each other is called a serial execution. The transaction

system must ensure the execution occurs so that al1 the operations of one transaction

precede al1 the operations of another transaction. However, from the user's perspective

both transactions execute atornically. For example, consider a banking transaction

involving the transfer of money from one account to another, as s h o w in Figure 2.3(a).

Begin Transaction Transfer
S tart ;
Withdraw (1234, $100);
Deposit (432 1, $ f 00);
Commit:

End Transaction

Figure 2.3(a)

Begin Transaction Transfer
S m ;
Withdraw (1234, $100);
Withdraw (1234, $200);
Deposit (432 1, $100);
Commit;

End Transaction

Figure 2.3(b)

Figure 2.3 A Transfer Transaction

The transfer transaction involves two operations - withdraw() and deposit(), each of

which receive the account number and amount as parameters. Let the account number

from which the money is transferred be 1234 and the account to which it is transferred be

4321. Let the initial amount in account 1234 be $200. The result of the execution of the

transaction shown in Figure 2.3(a) would be a debit of $100 from account 1234. Hence

the balance in it becomes $100. Suppose there is a withdraw operation (of another

transaction) occumng on the same account number for $200. The transaction appears as

shown in Figure 2.3(b). Its execution results in debiting an account that is dready in an

undesirable state (negative money!). A similar situation occurs to the credited account if,

for example. a withdraw operation occurs on it before the transfer transaction commits.

Serializability

Bernstein et al. [BHG87] describes three forms of serializability narnely, Conflict

Serializability, View Serializability and Final-state Serializability. Serializability theory

presents the concurrent execution of a set of transactions using the concept of histories. A

history is comprised of a set of read and/or write operations. These operations rnay or

may not be conflicting. Two operations are confïicting if they operate on the same data

item and at least one of them is a write operation. There are two types of histories in a

rnultidatabase environment- local and global - representing the execution at the local and

global levels of the MDBS architecture respectively (see Figure 2.2 on Page 17).

According to conflict serializability theory, an execution is serializable if it is conflict

equivalent to a serial execution of the same transaction. A history compnsing such an

execution is called a concflict serializable history. The histories are analyzed by

representing their executions in the form of a directed graph called a serialization graph.

The nodes of a serialization graph are the transactions and its edges define the ordering of

the operations of the transactions. The serializability theorern States that a history is

serializable 1 f l its serialization graph is acyclic. Two histones are said to be equivalent if

both are defined over the sarne set of transactions, both have the sarne operations, and

they order the conflicting operations of non-aborted transactions in the sarne way.

View serializability is defined in the same terrns as conflict serializability. Hence, a

history is said to be view serializable, if it is view equivalent to some senal history.

However, these two seriaiizabilities are totally different. Bernstein et al. [BHG87] shows

that a conflict seridizable history is contained in view serializable. For al1 practical

purposes earlier research used conflict seriaiizability instead of view serializability as the

concurrency control correctness critenon because of the requirement to maintain the

AClDity of concurrent transactions.

The concurrency control methods are generaily classified into two types - optimistic and

pessimistic. Optimistic methods assume that. not many transactions conflict with each

other whereas pessimistic methods believe that, rnost of the transactions conflict with

each other [0 ~ 9 9] . The functional differences between these methods lies in when they

synchronize the execution of concurrent transactions.

Reliability

Research on serializability as the correctness criterion typically assumes that the

transaction processing occurs in a fault-free or fault-tolerant environment [H88].

Practically this is not the case because there are numerous sources of failures. Examples

include transaction, systern, or media failures as reported by Gray jG811. Hence the

assumption that al1 the transactions would complete correctly and produce a consistent

state cannot be substantiated.

A transaction failure occurs if the transaction is interrupted before al1 its operations are

processed. Consider the transfer transaction example shown in Figure 2.3(a) on Page 20.

Suppose the transaction fails after the withdraw operation but before the deposit

operation. This will result in an inconsistent database state because the money withdrawn

is recorded while the deposit is not recorded (lost money!). Such transactions must be

aborted thereby undoing al1 the operations. This is a major focus of the reliability aspect

of transaction management.

A system failure occurs due to system crashes or loss of information from the volatile

storage media. In such unforeseen circumstances, the transaction execution must be

aborted and the effects of the cornmitted transactions must be undone. In sorne cases, the

States of the transactions are saved so that, on recovery, the transactions could be rolled

back to a previous correct state. When a portion of the stable storage media is lost, a

media failure occurs. These are the other areas that are addressed by the reliability

mechanisms.

Based on the notion that seridizability is an insufficient correctness criterion in a fault-

prone environment, Hadzilacos [H88] proposed a correctness critenon that has three

dimensions to it. An execution is correct if, at any time,

1) the committed transactions have been processed in a serializable fashion (Cornmir

serializable'),

2) any uncornmitted transaction can be aborted without invalidating the semantics of

cornmitted ones (Recoverable), and

3) the "correct" database state c m always be reconstructed from information stored

in stable storage (Resilient)

Cornrnif serializabiliry is a modification of traditional serializability applied only to the

cornmitted transactions in an execution. This requires the committed transactions in an

execution be setializable. It ignores the transactions that are obliterated and hence applies

seriaiizability only to those that committed or run to completion. This notion can be

applied to conflict and view serializability.

The Recoverability notion States that the abortion of the uncommitted transactions does

not affect the semantics of the committed transactions. This notion is closely associated

with the durability property of transactions. The results of al1 committed transactions

must be made permanent while those of the uncommitted (aborted) transactions must be

obliterated. Recoverability has a direct application when cascading aborts need to be

addressed. Cascading aborts occur when a transaction refers to the results of a transaction

that has aborted. Though the recoverability notion is evidently powerful it can be

observed that it is stringent too.

Resiliency refers to the ability of the system to reconstnict the database to a correct state

by using the information stored in the stable storage in case of a system failure. This

works when a system failure occurs but not for a media failure. However resiliency

depends on the choice of the storage media. For instance, if the environment depends on

the information in the volatile storage for its reliability (correctness), resiliency

algorithms utilize the volatile storage to restore the database to a consistent state. But in

'Commit Serializable', 'Recoverable' und 'Resilient' are rhe r e m used in [H88]

rnost cases, reliability information is stored in the stable storage since it survives system

failures.

Bemstein et al. [BHG87] describes reliability using histones. They formulate three types

of histories - recoverable (RC), avoids cascade aborts (ACA) and strict (ST).

A history is recoverable if each transaction cornmits after the cornmitment of al1

transactions from which it read.

A history avoids cascade aborts if a transaction reads only those values that are wntten

by any cornrnitted transaction or by itself.

A history is strict if a data item c m be wntten only after the transaction that previously

wrote into it terminates (either commits or aborts).

The concept of recoverabilii-y by Hadzilacos rH881 is related to the concepts of RC and

ACA presented by Bemstein et al. mHG87) Further, RC, ACA, and ST are similar to

commit-serializabilicy discussed by Hadzilacos. Bernstein et al. describes the above in

ternis of prefi commit-closed property .

It is evident from Bernstein et al. [BHG87] and Hadzilacos [Ha81 that the correctness

criterion for the concurrency control algonthms must consider not only senalizability, but

also recoverability. Most research that followed either ignored the reliability aspects or

attempted to uni@ the theory of concurrency control and recovery. This thesis assumes

the environment to be fault-free and hence we too are not concerned about the reliability

aspects of transaction management.

2.3.2 Second-generation SoIutions

It was found that many computer applications required a less stringent form of

concurrency control mechanism than the one supported by conflict serializability. This

resulted in several works addressing the concurrency control issue by relaxing the notion

of conflict serializability through the exploitation of serializability at the global and local

leveis [DE89][B90]@3090][PL90][MRK+9 1] [~ ~ 9 6] . Garcia-Molina [G83], Lynch

[L83], and Farrag and 0zsu [~089] address the concurrency control probiem using the

semantic knowledge of transactions. Alonso et al. [AVA+94], Vingralek et al.

[VHB+98], and Schuldt et al. [SAS991 attempt to unify the theory of concurrency control

and recovery.

Quasi Serializability

Du and Elmagannid [DE891 introduced Quasi Serializability (QSR) as a correctness

criterion for concurrency control in heterogeneous database systems. This was primarily

based on the notion that a heterogeneous database system is hierarchical in nature due to

the autonorny of element databases and thus maintaining global serializability is very

difficult. The objective of the effort was to provide a correctness criterion for global

concurrency control. Further, it realized that two global transactions that do not reference

cornmon data items could also conflict. These conflicts are called indirect conflicts. QSR

assumes at most one subtransaction executes at each local site.

The conectness of an execution in QSR is based on the notion of a quasi-serial history. A

quasi-serid history indicates that only the global transactions are executed in a serial

fashion. A history is quasi-serial if:

1) al1 the local histories are (conflict) sefializable, and

2) there exists a total order of ail global transactions so that for every two global

transactions, Gi and G,, Gi precedes Gj in the order and dl Gi's operations precede

Gj's operations in al1 the local histories in which they appear.

A history is quasi-serializable if it is (confiict) equivalent to a quasi-serial history. Al1 the

local histones in a quasi-senalizable history are serializable. Additionally, global

transactions are executed in a serializable fashion.

The QSR histones are characterized using Quasi Serializatiort Graphs (QSG). The Quasi

Serializability theorem States that a global history is quasi-serializable ifi al1 the local

histories are (conflict) serializable and the QSG for that global history is acyclic.

The environment mode1 considered by Du and Elmagarrnid guaranteeing QSR is

restricted as follows:

1) It must not have any intersite integrity constraints.

2) A global transaction executing in a site is independent of its execution at other

sites.

Multidatabase Serializability

Barker and Ozsu [BO901 introduced Multidatabase Serializability (MDBSR). This work

is sirnilar to Du and Elmagarmid's [DE891 QSR because both these approaches consider

serializability at local and global levels. MDBSR captures serializations at the local

histories and the history of transactions that are not completely contained at a single

DBMS. This work is different from QSR because it considers the importance of the

reliability aspects of transaction management and hence considers transaction

management more completety than QSR. The central aspect of this study is that

heterogeneity is orthogonal to autonomy at the element database level. MDBSR considers

complete local autonomy. As a direct consequence of the assumption about local

autonomy, there are no value dependencies between data stored in different databases.

Barker and 0zsu do not consider any replication of data whatsoever.
4

The correctness of the execution of transactions is based on the notion of a MDBSR

history. A history is MDB-serial if (sirnilar to QSR-serial):

1) al1 the local histories are (conflict) serializable. and

2) there exists a total order of al1 global transactions so that for every two global

transactions. Gr and Gj, Gi precedes G, in the order and al1 Gi's operations precede

G,'s operations in al1 the local histories in which they appear.

A MDBSR history is considered to be Mm-Serialitable i f l they are defined over the

same set of transactions and they order conflicting non-aborted operations the same way

[BO~O] .

The MDB-serial histories are analyzed using a variant of the senaiization graph by

Bernstein et al. [BHG87]. It is called the Multidatabase Serializability Graph (MSG).

The Muifidarabase Serializability thearem States that a history is MDB-Serializable iff

it 's MSG is acyclic [BO~O].

Epsilon Serializability

Pu and Leff [PL90][PL9 1][PL92] proposed Epsilon Serializability (ESR) as a correctness

criterion for concurrency control. This is a generaiization of traditional serializability for

specific application domains. The purpose of this correctness criterion is to explicitly

allow a limited arnount of inconsistency in transaction processing. The algorithms

guaranteeing ESR are called the Divergence Control (DC) rnethods [WYP97]. These are

the equivalents of concurrency control methods ensuring traditional serializability.

The Epsilon Transactions (ET) [P91] are classified into queries (Q ~) . updates (um) and

regular transactions. The Q% have read operations while any ET with at least one wnte

operation is a uET. The transaction processing systern identifies the difference between an

initial database state (u) and a final database state (w) after the execution of the ETs. This

difference is denoted by E, which is the arnount of inconsistency. If the value is greater

than 'O' or equal to an arbitrary value 'e' (this is the limit). then an ESR log (history) is

created. This is equivalent to the SR log (history) of traditional serializability.

A history in this frarnework is calied an ET-wise ESR log. The algonthms take two units

called import and export units as their inputs. A imports some inconsistency, while a

urn exports some inconsistency. If the b i t s of the inconsistency imported (ImpLirnii)

and exported (ExpiLimit) are greater than zero. the database may degenerate and become

inconsistent with no bounds. The following table classifies the ETs:

ExpLimit = O

Table 2.1 Epsilon Transaction Classifications

ExpLimit > O

The DC algorithms employ inconsistency counters to detect the inconsistencies. An

extension of the two-phase commit algorithrn, the DC algorithm either allows or

disallows the ETs to proceed depending on the importlexport inconsistency counters.

Transaction

The advantages of ESR are [P9 11:

Q ~ '

un

1) It is a generai frarnework. applicable to a wide range of application semantics.

2) It is upward compatible. since it reduces to conflict serializability when e J O,

and

3) It has a large number of efficient supporting aigorithms.

Unbounded

Inconsistency I

ESR, as mentioned earlier, is only suitable for environments that tolerate a limited

amount of data inconsistency. Further, the database state space must have ail the

properties of a metric space. Hence this is suitable only for numerical data items, and not

string data items. Though the authors claim that ESR can be extended to support string

data items the literature does not cite any such example. Since ESR finds application in

environments where a certain amount of inconsistency is tolerated, the amount of

inconsistency must be known in advance.

Ramamritham and Pu [RP95] formally charactenze ESR. A quantification of the

inconsistency bounds imported by the ET is presented. They also examine how to ensure

that only epsilon seridizable histories are produced. Finally. they examine how the

inconsistency read by an ET percolates to the results of the query.

Two-level Serializability

Mehrotra et al. [MRK+9 11 introduce two-level serializability (SLSR) as a correctness

criterion for concurrency control in heterogeneous distnbuted database environments. It

attempts to relax global serializabiiity.

ZLSR requires the projection of the global schedule on the set of global transactions to be

senalizable and each of the locd schedules to be serializable as well. The environment

model considered here is the result of the integration of various preexisting databases.

Though these databases do not have any integrity constraints when considered

individually, their integration introduces intersite integrity constraints. This makes it

different from the environment model considered by Du and Elmagarrnid [DE89]. Since

ZLSR requires the projection of a global schedule on a set of global transactions to be

serializable and each of the local schedules to be serializable, it can be shown that 2LSR

schedules are not always serializable [CR99]. 2LSR schedules preserve database

consistency by exploiting the knowledge about the nature of the intersite integrity

constraints. Partitioning the data items into two disjoint sets namely. global and local data

items, aids in exploiting this knowledge. Hence, 2LSR schedules preserve database

consistency only in certain environment models where the intersite integrity constraints

are known.

Transaction Processing Using Semantics

While senalizability is the correctness criterion guaranteeing database consistency in the

presence of syntactic information, it can be weakened to enhance the level of concurrency

when semantic information is available. This is the motivation for research proposed by

Garcia-Molina [G83], Lynch [L83]. and Farrag and 0zsu [~089]. However. not al1

applications have the semantic information of transactions. Hence, transaction processing

using semantics is not possible in dl applications.

Garcia-Molina [G83] proposed the notion of sernantically consistent schedules and

sensitive transactions to address the problem of transaction processing in distributed

databases. A sensitive transaction outputs the data that are seen by the users and those

data must be based on a consistent database state. A schedule is classified as semantically

consistent schedule if its execution transforrns the database state to a consistent state and

al1 the sensitive transactions obtain a consistent view of the database. The transactions are

classified into a collection of disjoint classes (compatibility sets). Al1 the transactions that

belong to the same class are categorized, as compatible transactions while the rest are

incompatible transactions. The compatible transactions can interleave arbitraily while

the incompatible transactions cannot. This allows two extreme levels of interleaving

among the transactions. The users specify the semantics by designing their own

transaction processing mechanisms wherein they incorporate the necessary knowledge

for interleaving the actions of the transactions withou t violating consistency. S ince this is

a cumbersome process for the user, Garcia-Molina suggests the use of a transaction

processing system that accepts the "rules" of the most common semantically consistent

schedules.

Lynch [L83] weakens the notion of serializability by permitting controlled interleaving

among transactions. This weaker notion of correctness criterion is referred to as

multilevel atumiciîy. Multilevel atomicity supports different views of atomicity for the

same transaction when viewed by different transactions. This finds use in environments

where the transaction processing is inherently hierarchical, possibly due to the

hierarchical nature of the organization.

A set of operations is grouped together to form a transaction unit. This grouping is done

for at least three different purposes: (1) to make the operations of a transaction (a logical

unit) persistent, (2) define atornicity and thereby serializability, and (3) use the grouping

as a unit of recovery. Lynch argues the use of different units for each purpose mentioned

above. First, the logical unit must be as large as possible. Since this poses a strong

serializability requirement. another mechanism is superimposed on the transaction

mechanism to define atomicity. Hence, the second argument is: the unit of atomicity must

be as small as possible for maximum concurrency. Third, the unit of recovery can be

anywhere in between. Lynch uses the concept of breakpoints between such long

transactions as the point where other transactions interleave.

For example, consider a money transfer transaction in a banking application [L83].

Transfer transactions might be allowed to interleave arbitrarily with other transfer

transactions. However, a different type of transaction, for instance, an audit transaction

that retums the total amount in an account, cannot interleave between the transfer

transactions. That is, the entire audit transaction gets an atornic view of the entire transfer

transaction and vice versa. Hence, a transfer transaction will have a set of breakpoints for

other transfer transactions and another set of breakpoints for audit transactions.

Lynch allows many possible interleavings between the range specified by Garcia-Molina.

That is, between one extreme where it allows only serializable interleavings and the other

extreme where the interleavings are unconstrained. The steps of a transaction occurring

between two breakpoints always occur atomically at least from the user's perspective.

However, if there are breakpoints only in the beginning and end of the transaction, then

this reduces to the requirement of traditional serializability. Many other cases are also

possible depending on where the breakpoints occur. By using breakpoints instead of

compatibility sets, several levels of compatibilities among transactions are defined. This

structures the levels of compatibilities in a hierarchical rnanner where the interleavings at

a higher level encompasses those at the lower levels.

Farrag and 0zsu ~ 0 8 9 1 use the concept of breakpoints and exploit the use of semantics

for transaction processing. This work differs from Garcia-Molina's in that, it does not use

the compatibility sets. It differs from Lynch's because it does not require the

interleavings to be hierarchical. They specify the notion of consistency by descnbing the

dlowable interleavings among the transactions that are safe to execute and then ensuring

that each schedule thus produced is equivalent to a correct schedule. The allowable

interleavings are specified at each breakpoint depending on the application needs. This

supports the concept of multilevel atomicity [L83]. However, it is different because the

interleavings specified at one level does not include the interleavings specified at the

lower levels. Hence, it does not require the interleavings to be hierarchicd.

Farrag and 0zsu introduce a new class of schedules called relatively consistent (RC)

schedules. An RC schediile has an acyciic precedence graph (serialization graph). A

topological sort of that graph yields a correct schedule. This class of schedules contains

both serializable and nonserializable schedules. A lock-based concurrency control

mechanism is presented that produces only RC schedules.

Though considering the semantics of transactions for transaction processing is an

interesting concept, there are problems associated with it [G83]. First, it is difficult for

the transaction processing mechanism to identify the schedules that are semantically

consistent. Even if the transaction processing mechanism is provided with the

information about the consistency constraints, there is no way for it to know the semantic

consistency of the schedules before running them on the database. Second, it rnay be

impossible to obtain the results of a semantically consistent schedule with any schedule

that is senalizable. Further, this may be undesirable to some users. Third, the user has to

specify the consistency constraints to the transaction processing system.

Unifying Models

While there are research efforts in the area of providing concurrency control correctness

criterion, a different school of thought is attempting to unify the theones of correctness

criteria and reliability [S WY93][AVA+94] [LHL97] [SAS99]. This theory unifies

atornicity and isolation into a common framework to avoid the shortcomings when

considering them as orthogonal problems. Schek et al. [SWY93] and Alonso et al.

[AVA+94] introduce the notion of (prefix-) expanded serializability and (prefix-)

reducibility for their unified mode1 of correctness critenon. Lee et al. [LHL97] introduce

a unified approach to global concurrency control and recovery in the MDBS

environment. Similar to other works in this area, Lee et al. LHL971 do not consider the

problems of serializability and reliability as two orthogonal concepts. They propose the

notion of rigid conficf serialimbility (R-SR) that ensures serializability in a distributed,

fault-free system. They address the recovery aspect of correctness critena in a fault-prone

system by developing a cantext-sensitive and late redo recovery scheme.

One of the more recent works in this area is by Schuldt et al [SAS99]. This work applies

the unified theory to address the transaction process management problern where not al1

the activities are compensatable and where more generalized transaction properties are

applicable. An exarnple of such a transaction processing system is Computer Integrated

Manufacturing (CM) [SAS99]. The unified theory of concurrency control and recovery

finds its application in the areas of elecuonic commerce, workflow systems, and other

systems that involve rnany subsystem-level processes that are also transactionai. ln this

thesis, concurrency control and recovery are considered as orthogonal problems and we

focus on the concurrency control aspects. Hence, we do not delve further into the unified

theory of concurrency control and recovery.

2.4 Advanced Transaction Models / Formalisrn

The first- and second-generation approaches rnainly aimed at providing correctness

criterion for a generalized transaction management system. These approaches gave way

to numerous results that are still being used in many transactional environments. For

exarnple, conflict serializability is still the most used correctness criterion in al1

commercial transaction managers. Due to the various environrnents encountered, there

exists a need for advanced transaction models, which will increase as e-business grows.

These environments have motivated the development of extended or advanced

transaction models. We refer to this phase of research as the third-generation approach.

The following are some reasons why advanced transaction models and new correctness

criteria have been proposed WS921:

1) To provide better support for long-lived activities in advanced database

applications. For exarnple, the daily batch update transactions in a banking

application or an insurance claims transaction.

2) To relax the classical ACID paradigm thereby providing more flexibility as to

when updates are made visible to concurrent transactions. Most advanced

applications require a less restrictive mechanism of transaction management. For

instance, in a trip-booking application, strict A C D properties could have adverse

effects on the performance of the application.

3) To capture more semantics of transactional operations in advanced applications.

Capturing semantics of the application aids in better management of the

transactions. For example, in long-lived transactions, capturing the semantics of

the application enables the transactions to access the needed resources with less

contention.

4) To enhance (inter-/intra-) transaction parallelism. Extending the concepts of

transactions based on the application requirement aids in enhancing the

concurrency aspects of the transactions.

5) To deal with multiple autonomous subsystems in a federated environment. For

exarnple, a nested transaction model can be easily mapped ont0 a MDB

environmen t characterized by i ts autonomy .

Most MDBSs use the concurrency control and recovery algorithrns mentioned in Section

2.3 (specifically, the first- and second-generation results). However, with the advent of

advanced transaction models, an imperative need to apply these models to the MDBS was

realized. Many such transaction models have been applied to MDB environments with

varying degrees of success [BE99]. This section presents an overview of past research in

the area of advanced transaction models.

2.4.1 Nested Transaction Mode1

This was the fmt advanced transaction model proposed [R78][M8 1][M85]. A nested

transaction is one that is divided into subtransactions each of which are either divided

further or is composed of only atomic operations (see Figure 2.4). This modeling of

transactions gives rise to a hierarchy of transactions comprising a top-level transaction,

subtransactions and Ieaf level transactions. The transactions at the leaf level are flat

transactions and they are the only ones that interact with the data sources [M81][M85].

The higher-level transactions organize the transaction execution flow to invoke the

subtransactions. The subtransactions' execution is made visible only to the parent after

the subtransactions reach their precommit stage. The siblings cm never access the

changes made by other subtransactions. The subtransactions do not necessarily adhere to

the AClD paradigm unlike the top-level transaction. Hence, the subtransactions may be

atomic, isolated and consistent but not durable until the top-level transaction commits.

Further, the subtransactions commit only after the top-level transaction commits. Until

then, they remain in the precommit stage waiting for the top-level transaction to commit.

If the top-level transaction aborts for some reason, dl the work done by the

subtransactions are aborted as well. Hence the durability of the subtransaction is observed

only upon the cornmitment of the top-level transaction. Such a nested model is called a

closed nesred transaction model.

Top-Level Tr.

Subtransactions

Leaf-Level Tr.

Figure 2.4 Nested Transaction Mode1

Most advanced models are based on the principles of the nested transaction model

introduced by Reed [R78]. The nested transaction mode1 introduced by Moss [Mg11

[Ml351 addresses its application in distributed computing and hence is of great importance

to research in the area of transaction management. When this model is appfied to a MDB

environment it is observed that the global transaction and the global subtransactions of an

MDBS superimpose the top-level transaction and subtransactions of a nested transaction

respectively. If it is a failure-prone MDB environment, then the nested transactions must

provide recovery mechanisms through, for instance, compensating transactions.

The nested transaction model is appealing in many ways. The division of a transaction

into subtransactions provides the following advantages:

1) Enhances modularity of the transaction,

2) Enhances intra-transaction parallelism, and

3) Localizes potential failures.

The application of this model to an MDBS provides interesting insights and is an area

under constant research.

2.4.2 Multilevel Transaction Mode1

Multilevel transactions are special cases of nested transactions in which operations at a

particular level are implemented by operations of some lower level of abstraction

[W86][W91]. A multilevel transaction in a system with n levels Lo, LI. ... L1,+ is defined

as a tree of height n+ l such that al1 leaf nodes are at the same level, Lo. The nodes of the

tree are cailed actions that represent executions of level-specific operations [WS92].

Whenever two transactions cornmute, their execution sequence does not rnatter. Such

situations that occur arnong the subtransactions are captured by multilevel transactions

using a layered hierarchy. That is, multilevel transactions are nested transactions in a

layered database environment.

Withdra w (a) Withdraw (6) Deposit (c) Deposit (c)

Figure 2.5 Concurrent Executions of Multilevel Transactions (Courtesy: [WS92])

In a multilevel transaction as shown in Figure 2.5. a concurrency control mechanism is

needed at dl levels so that each higher level (non-conflicting) operation is executed in an

indivisible manner. However, the conflicts arnong operations at the lower levels have to

be addressed. The goal of the Li-level concurrency control is to isolate the Lli+l,

subtransactions from each other. Hence, the high-level operations are executed as

subtransactions that usually follow a general concurrency control strategy. Recovery is

made possible using compensating transactions. For example, in Figure 2.5, aborting TL>

after T, has committed requires two compensating transactions - withdraw (c) and

Deposit (6). A method of multilevel recovery requires that the transactions are atomic and

persistent and the subtransactions are atomic as well [WS92]. Further. during a restart, a

redo must be performed at the bottom level Lo. The compensating transaction can be

executed in the sarne framework as concurrency control by treating them as additional

regular expressions.

This mode1 finds suitable application in an MDBS because it offers a high degree of

autonomy to the element databases and provides global consistency [BE99]. Though the

application of this mode1 to MDBS is interesting, defining commutativity of the

subtrmsactions in such an environment is difficult.

(a) (b) DK Deposif (c)

R (a) W(a) R (b) W(b) R (4 Wfc) R I c) Insert (y) W(c) Insert (x)

Figure 2.6 Concurrent Executions of Open nested Transactions (Courtesy: [WS92])

An open nested transaction (see Figure 2.6) is a generalization of the multilevel

transaction. The difference between the two is that the former allows the transaction tree

to have different nesting depths.

The open nested transaction model is different from Moss' [M81][M85] nested

transaction model because they make the partial results of subtransactions visible to other

top-level transactions before their parents commit. Clearly, the open nested transaction

model relaxes the ACID paradigm. The isolation property of the transactions is relaxed

by exploiting the semantics of the operations and by specifying which transactions are

"open" and which ones are "ctosed". in an open nested transaction model, atomicity is

achieved by using compensating transactions. The persistence of a subtransaction in an

open nested transaction is undone by invoking compensating subtransactions.

The open nested transaction model finds use in extensible databases, federated databases,

00 databases, and in exploiting transactions in operating systems. An important

application, however, is that of exploiting intra-transaction parallelism where,

concurrency control and recovery aspects are applied to the subtransaction executing

within a top-level transaction.

2.4.3 Sagas

Sagas [GS87] address the delay problems that occur during the execution of long-lived

transactions (LLT). LLTs hold on to the database resources for relatively long periods

thereby delaying the execution of shorter and more comrnon transactions. This may be

due to the transaction accessing a large number of database objects or they have lengthy

computations, or both. Examples of such transactions include transactions that produce

monthly account statements in banks, transactions that process claims at an insurance

Company, etc. The other problem caused by LLTs is the increase in the transaction abort

rate. Deadlocks occur due to the size of the LLT and the number of objects it accesses.

These deadlocks eventually result in the abortion of transactions.

Sagas refer to a LLT that can be broken into a collection of subtransactions that can be

interleaved in any way with other transactions. Each such subtransaction is a real

transaction and hence they preserve database consistency. However, al1 the transactions

in a saga are related to each other and must be executed as a (non-atomic) unit. The

DBMS guarantees that ei ther al1 the transactions in a saga are successfully completed, or

compensating transactions are executed to arnend a partial execution. Partial executions

are undesirable and they must be undone. This type of processing allows a srnalier unit of

granularity. That is, whenever a portion of the transaction (subtransaction) is completed,

the resources held by it are released. This significantly increases the concurrency in the

case of lock-based concurrency contro1 algorithms.

Sagas require compensating transactions to support recovery mechanisms due to their

open nature. For each subtrmsaction in a saga, there must be a compensating

subtransaction. They support forward recovery (aborting) and backwnrd recovery

(compensating) mechanisms. The isolation property is violated due to the revelation of

partial results. The arbitrary interieaving of the subtransactions can sometimes violate the

consistency property.

When sagas are applied to MDBSs, local autonomy is not severely violated because each

element database sees each subtransaction as a local transaction managed by the element

DBMS. Providing compensating transactions is a major difficulty in the case of sagas.

Hence, sagas are useful in compensatable environments. They cannot be applied in

scenarios where a transaction is irreversible, such as drilling holes. Nevertheless, sagas

are appealing to compensatable MDB environrnents because they have minimal effects

on the autonomy of the element databases.

Garcia-Molina et al. [GGK+91] provides a generdization of sagas called the nested

sagas. For example, the activities in a data processing application can be implemented as

nested sagas. In such applications, each subtransaction (saga) is treated as an independent

activity that is further divided into its own sequence of steps and compensations. Any

step 'X' in such an activity "thinks" that each of its subactivities are a collection of steps.

Further, an activity at a higher level may "think" that the activity 'X' is composed of

several steps. Hence, aborts are propagated both up and down the tree of nested sagas.

2.4.4 Flex Transaction Mode1

The Flex transaction mode1 [ELL+90] specificaily addresses the transaction management

issues in a MDB environment. It identifies the chdlenges posed by the autonomy of the

underlying system and provides an extended transaction mode1 with the following

features :

allows composition of flexible transactions,

supports the concept of mixed transactions, and

incorporates the temporal aspects of transaction processing.

Flexible transactions are based on the concept that a global transaction can be frequently

completed successfully in more than one way. This implies that the global transaction is

decomposed into a set of functionally equivalent subtransactions. For example, in a tour

booking application, two transactions that book an air ticket on two different carriers to

the same destination are said to be functionally equivalent. The global air ticket

transaction can have different subtransactions that c m accomplish the same task in

different ways. The processing of the transaction continues even if one of the alternatives

(subtransactions) fails. Such composition of transactions is calledflexible transactions.

It is not necessary that al1 the subtransactions execute completely for the correct

completion of the global transaction. This implies that atomicity at the global level is

violated. However, the global subtransactions execute in an atomic fashion. The

specification of the transaction execution alternatives implies the specification of the

violation of atomicity. This specification must fit into the execution dependency existing

among the subtransactions. These dependencies determine the legal execution order of

the subtransactions and hence need to be specified when specifying a global transaction.

Two types of dependencies exist - positive and negative dependency. These dependencies

are actually the global integrity constraints used to maintain global consistency.

A positive dependency exists between two subtransactions t l and t l , if t , waits for the

results of tz before it starts.

A negative dependency exists between two subtransactions tl and t2 if t , waits for to

execute and fail. This is useful in cases where the results of 21 are preferred over the

results of t l .

Mixed transactions are a combination of compensatuble and non-compensatable

transactions. A compensatable transaction is one for which a corresponding transaction

can be specified which semantically undoes the effects of the committed transaction. This

results in the violation of the isolation property. However, this results in enhanced

concurrency, because this concept allows the global transaction to reveal its partial results

to other transactions before it comrnits. A non-compensatable transaction is one for

which a compensating transaction cannot be specified. For instance, a transaction that

drills a hole or fires a missile cannot be undone after it cornmits. Flex transaction model

allows the processing of both compensatable (open nested transactions) and non-

cornpensatable (traditionai flat transactions) transactions. In other words, it allows the

processing of mixed transactions.

Due to the autonomous nature of the underlying system, the local database management

systems decide on when to submit the global subtransactions. For instance, a bank

transaction involving two banks in two different time zones could be processed at two

different times [ELL+90]. In such cases, the temporal aspects of transaction processing

rnust be taken into consideration. Flex transaction model does exactly that by associating

a temporal predicate with each subtransaction. The temporal predicate indicates the time

when the subtransaction should be executed. Other than this, the MDB environment has

another temporal aspect to it - transaction cornpletion t h e . This is the time within which

a paaicular transaction must be completed. Fiex transaction model uses these aspects of

transaction processing in implementing the transaction scheduling mechanism.

A p m from its application in MDB environments. Flex is also applicable in CADKAM

and CASE databases.

2.4.5 ConTract Transaction Model

Reuter IR893 describes a model for managing long-lived complex transactions in

traditional transaction processing systems. A global transaction is divided into

subtransactions (a sequence of steps) that are capable of defining how control must flow

among themselves. Foward recovery and backward recovery mechanisms are suggested.

Forward recovery suggests that the state information of al1 the transactions must be

maintained. A compensating mechanism is required to support backward recovery. Due

to its open nested structure the problems of sagas express themselves in this mode1 as

well.

The ConTract model is unsuitable in a MDB environment because it affects local

autonomy to a large extent. The model is suitable only to those MDB environments in

which:

1) ail participating DBMSs can Save the state information, and

2) the global transactions can be decomposed to global subtransactions and only a

single global subtransaction is required at each participating element database,

and whose visible two-phase commit cm comrnunicate the state information back

to the MDBMS to ensure recovery.

Both these environrnents may eventually be realized, but they will not be true of ail

foreseeable MDBSs [BE99].

2.4.6 ACTA

Chrysanthis and Rarnamritham [CR901 [CR911 [CR941 propose ACTA as a

comprehensive transaction framework that facilitates the forma1 description of properties

of extended transaction models. The need for a frarnework was realized due to the Iack of

functionality and efficiency of traditional rnodels in complex applications. Examples of

suc h complex applications include, C ADIC AM, software development environments,

object-oriented databases. stock trading databases, etc. Efficiency refers to the throughput

demands placed on these systerns, while functionality refers to the applicability of certain

transactions in certain environments. For instance, the traditional transaction models were

developed for short-lived transactions executing in cornpetitive environments, while

current applications require long-lived, interactive transactions running in collaborative

environments. The simplest form of complex transactions executing in complex

applications are Moss' nested transactions [M8 1][M85].

The semantics of transaction interactions are expressed in terms of transactions' effects

on the commit and abort of other transactions and on objects* state and concurrency

status (See Figure 2.7).

The ACTA framework also allows for specifying the structure and the behavior of

transactions as well as for reasoning about the concurrency and recovery properties of

transactions. The structure of the transaction refers to the nesting structure of a

transaction, and the behavior refers to the operations invoked by a transaction.

On Transactions O n Ob-jects

Intertransaction
Depedency

View of Conflict Set Delegation
Transaction of

Transaction

Figure 2.7 Dimensions of the ACTA framework (Courtesy: [CR94])

The behavior of a transaction processing system is determined by the behavior of the

transactions executing in it and the objects manipulated by these transactions. In ACTA,

the interactions arnong the transactions are expressed in terms of the transactions' effects

on other transactions and the transactions' effects on the objects they access.

The effects of a transaction on other transactions are captured using the dependencies that

exist among these transactions. There are two possible dependencies - commit and abort,

collectively known as completion dependencies. A complete treatment of dependencies is

available in [CR94].

A cornmir dependency between two transactions, A and B, indicates that A cannot commit

until B either commits or aborts. The reverse may not be always m e .

An abort dependency between two transactions, A and B, indicates that A must abort if B

aborts. However, it does not imply that A must commit if B cornrnits and B must abort if

A aborts.

Transaction effects on objects are captured by the introduction of a View Set and an

Access Set, and by the concept of delegation. Each object is characterized by its state and

status. The state of the object is represented by its contents. This changes when a

transaction accesses the object and modifies its contents. The status of an object is

represented by the synchronization information associated with the object. It changes

when a transaction perfoms an operation on the object. These concepts affect the

visibility and other ACID properties.

Every transaction is associated with a set of objects that contains al1 the objects

potentially accessible to the transaction. This set is cailed the View Set. This restricts the

effects of the transactions on objects.

The objects already accessed by the transaction are contained in another set, cailed the

Access Set. The objects accessed in the View Set become the rnembers of the Access Set.

These objects continue to be accessible to the transaction. The objects in the View Set are

accessed by a transaction based on ihe concurrency control status of the object.

A transaction may delegate responsibility for finalizing its effects on some of the objects

in its Access Set to another transaction. This is done by rernoving the objects from the

Access Set of the first transaction (delegator) and adding them into the Access Set of the

second transaction (delegatee). This process is called delegation.

Finally, the ACTA formalism can be used to show the correctness of a particular

specification of a transaction model.

2.5 Leading Open Questions

Sections 2.3 and 2.4 presented several research efforts in the area of transaction

management, concurrency control and recovery in multidatabase systems. Each

generation of research provides solutions that address several issues of transaction

management. The first-generation of research pnmarily dealt with systems classified as

'traditional transaction processing systems'. The solutions provided were suitable to

those environments that are ideal where there are no pedormance requirements or failures

occumng. However, such ideal systerns rarely exist. Hence, the application of the results

frorr, the fmt-generation research finds little use when applied to specific domains.

However, those results laid the foundation for further research and are still considered to

be important.

The second-generation realized the need for more efficient methods of transaction

management. This gave raise to few dimensions of research where the conservative

approaches are enhanced by either relaxing the constraints in the environment or

modifjhg the environment itself. For exarnple, most researchers felt the need to relax the

correctness cntena for concurrency control and ACID properties of transactions. These

efforts paved the way to several results that attempted to relax global serializability. The

highlight however was finding that semantic knowledge of transactions aids in enhanced

transaction management. However, the problem of providing semantic information to

transaction processing system still exists.

The third-generation of research realized the necessity of extending the existing

transaction models so that they c m fit a particular problem domain. Severd transaction

models were proposed, each based on a specific application domain. Each model has its

own concurrency control and recovery rnethods. Almost al1 transaction models are

broadly based on the nested transaction model [R78][M81][M85]. The application of

semantic knowledge in such transaction models helps in leveraging the efficiency of such

models. However, the specification of semantics still remains a problem. Most of these

transaction models have been developed for traditional transaction processing systems or

distributed database systems. The application of such systems to a MDBS is an

interesting research area. Nested transaction model provides interesting results when

applied to an MDBS. Sagas could be applied to MDB environments, but only to those

that are compensatable. This is also the case for most of the transaction models that have

a flavor of open nested-ness in them. In compensatable environments, providing

compensating transactions to support backward recovery is a difficult task. We do not use

sagas in our environment because of the nature of the transactions executing in Our

environment. Sagas are attractive if the transactions are primarily long-lived and

compensatable as is the ConTract model. ConTract is not a solution to the MDB

environment considered in this thesis because it violates the autonomy of the element

databases. Flex transactions [ELL+90] are very interesting to this thesis. Our goal of

providing multiple (transaction) execution alternatives is similar to their approach.

However, as we explain our paradigm, the differences between the models become

evident (see Chapters 3 and 4).

With the knowledge of several research efforts in the area of transaction management in

MDBS, we identify the following problems:

1) Development of transaction models suitable to address the transaction

management issues in a MDBS that is used as a back-end in an Intemet

environment for specific application domains. and then generalizing the same.

2) Automatic generation of the semantic information of the transaction (specifically)

and the application (broadly),

3) Exploiting transactional dependencies to enhance the concurrent execution of

transactions,

4) Development of a correctness criterion for concurrency control in such transaction

models,

5) Modifying the MDB environment at the operational level to support the

transaction model and associated concurrency and recovery methods,

6) Characterizing the local autonomy interface, and

7) Development of standards for transaction processing in Internet environment.

This chapter started with the discussion on the multidatabase architecture and transaction

management problem. Section 2.3 discussed the various approaches to the transaction

management problem. The discussion covered the fmt- and second-generation research

efforts. Section 2.4 provided the third-generation research efforts that attempt to develop

application-based transaction models. Based on the background matenal and related work

discussed in Sections 2.3 and 2.4, Section 2.5 outlines the various leading research

problems in the area of transaction management.

We observe that the past research efforts do not address the entire range of issues

identified. We use the materid discussed in this chapter as a platfonn for Our work.

Chapter 3 discusses the transaction execution dependencies identified in our model

followed by a discussion of the results from Our experiments with it.

The significanr problems we face cannor be solved ut the
sanie level of thinkiftg rve were at when we created riiem.

- Alben Einstein

Chapter 3

Transaction Mode1 and Execution
Dependencies

This chapter describes our transaction mode1 and transaction execution dependencies.

Although Ehikioya and Barker [EB97] provide a forma1 treatment of execution

dependencies using the concept of causality, it is more mathematical than how we treat

them here. We start with the introduction and description of the mode1 followed by a

discussion on execution dependencies. We formally define the execution dependencies

followed by a discussion descnbing how to exploit them within the frarnework of our

transaction model to enhance intra-transaction parallelism and provide multiple

transaction execution alternatives.

The research goal is to develop a transaction model and identify the execution

dependencies in it to provide enhanced intra-transaction parallelism thereby producing

multiple transaction execution alternatives. The requirement for an advanced transaction

model exists for al1 the reasons explained in Chapter 2. htra-transaction parallelism is of

high importance in any transaction processing environment that uses any form of nested

transaction model. Most business applications can be mapped into a multidatabase

architecture at the data source level. This illustrates the autonomy problem inherent in

such systems. Care must be taken to preserve the autonomy of such systems. Any

application running on such systems must be developed so it does not violate the

autonomy at the element databases.

Present day applications involving transaction processing require the systern to be

tolerant to subtransaction failures. That is, the MDBS transaction must not fail

completely just due to the failure of a part (subtransaction) of it. This requirement is

experienced in many environments that provide a choice for achieving a generd "global"

goal. For instance, an air ticket reservation system helps a travel agent book the same

ticket on multiple carriers. This implies that the system uses multiple transactions, al1

with the same objective, that is, to book an air ticket to the same destination.

Section 3.1 introduces Our transaction model. In Section 3.2 we discuss execution

dependencies. A discussion of exploiting the execution dependencies within the

framework of our transaction model to enhance intra-transaction parallelism is presented

in Section 3.3. It also discusses multiple execution alternatives. This chapter is once again

conciuded with a sumrnary.

3.1 Transaction Model: Description

Chapter 2 introduced the reasons why advanced transaction models are needed. Keeping

those reasons in perspective, we develop a transaction model (see Figure 3.1) suitable to

serve a certain domain of applications. RecalI the primary requirements of an advanced

transaction model from Chapter 2 (Page 33).

An advanced transaction model must provide better support for long-lived activities. It

must aiso provide mechanisms to relax the ACID paradigm thus helping to capture the

semantics of the operations. These requirements also yield (inter-/intra-) transaction

parallelism. Further, they provide support to transactions executing in a federated

database environment.

In addition to the above reasons, present day applications require multiple alternatives for

transaction execution to minirnize the effects of subtransaction failures. We attempt to

relax the ACID paradigrn of transactions to irnplement an open nested transaction model

in a MDB environment. Further, at an operational level, we realize a multi-layered

architecture. This becomes evident as we descnbe Our model.

Execution Dependency Dahbase
Root Transaction

Figure 3.1 Transaction Mode1 Architecture

Our transaction model is a nested transaction one defined over a MDB environment. The

subtransactions reveal their partial results and hence we have an open nested transaction

rnodel. While this mode1 uses an MDB environment as the underlying source, its

implementation uses layered architecture of databases and subtransaction managers to

characterize the autonomous interface to the underlying systems (see Figure 3. I on Page

50).

Figure 3.1 shows a generalized nested transaction mode1 of nesting depth. n=3. The root

transaction has three subtransactions each of which has subtransactions. The

subtransactions at L2 aiso act as managers denoted with the name of the transaction,

suffixed by 'Manager'. For example, the manager at a subtransaction arbitrarily named

7ï is denoted as '72Manager'. Each subtransaction is an object with two roles -

'subtransaction ' and 'subtransaction manager'. The managers exist just below the root

level though they can exist anywhere between there and just above the leaf transactions.

For example, suppose a nested transaction has 'n' ievels. The levels are numbered so the

smallest ordinal is the root and the largest ordinal is the leaf. The transaction would

appear as shown in Figure 3.2.

Managers at Lz

Managers ut LJ

II)

Managers ut L.,,., , -
Figure 3.2 Example Nesting nlustrating Positioning of Subtransaction Managers

The subtransaction managers could be anywhere between L2 and L(..,, inclusive. as

shown using dark arrows in Figure 3.2. The rationale behind placing subtransaction

managers at those levels is to maintain the autonomy of the underlying system as much as

possible. It is observed that if the managers are at a lower level, closer to the ieaf

transactions, then the amount of autonomy violation is more than when the manager is at

a higher level, closer to the root transaction. Each subtransaction manager has a database

of execution dependencies that its subtransactions have with others within a MDBS

transaction. For instance, consider the managers shown in Figure 3.1 on Page 50. It cm

be seen that the managers are at L2. These could have been positioned at any of the other

levels in the transaction model too. However, it can be observed that if the managers

were at a level lower than the current level, then the autonomy of the databases is

violated to a larger extent than when they are above the current level. The reason for this

violation is the amount of communications between the managers at the underlying

systems in the former case than their management systems in the latter. Execution

dependencies are discussed in Section 3.2.

The database at the subtransaction managers contains information about the

subtransactions that are (execution) dependent and the type (strength) of dependency

between them. After a subtransaction produces a panid result, it notifies its parent

(subtransaction manager) about the same. The subtransaction manager looks into the

execution dependency database to check for the dependencies its subtransaction has with

other subtransactions. Based on the dependency it shares with other subtransactions, the

corresponding subtransaction managers are notified of the partial result. On receiving the

notification, the subtransaction managers at the receiving end spawn their

subtransactions. Meanwhile the notiQing subtransaction may have executed al1 its

subtransactions (if any) to completion and the availability of al1 those results are also

notified to other subtransactions based on the information in the execution dependency

database. This process repeats until the root transaction's objective ("global" goal) is

accomplished semantically.

Letting other subtransactions know of partial results violates the isolation property of a

transaction. Conversely, the violation of the isolation property implies the use of the

principles of an open nested transaction model. However, the intra-transaction parallelism

is enhanced for the same reason. The concept of managers yields multi-layered database

architecture above the MDB environment. The execution dependency database contains

the information about the subtransactions participating in the dependency relationship

and the type (suength) of dependency. This allows one or more subtransactions to

observe one or more other subtransactions until the latter produces a necessary (partial)

result. The former set of subtransactions is cdled observers while the latter set of

subtransactions is called subjects. The notification is sent to the observers based on the

type of dependency existing between them. These dependencies (See Section 3.2) are the

global integrity constraints and are irnplernented only at the subtransaction levels.

Definition 3.1

Observers: A set of subtransactions observing another set of subtransactions whose

(partial) results could be of potential use to execute its own atomic operations or their

subtransactions. 1

Definition 3.2

Subjects: A set of subtransactions observed by another set of subtransactions so the

formers (partial) results have potential use to the latter to execute its own atomic

operations or their subtransactions. m

For example, given a MDBS transaction T, with 4 subtransactions STI, ST2, ST3, and

ST4 contributing towards achieving a "global" objective. if STI and ST3 are (execution)

dependent on the partial results of Sn and ST4, then:

1) Observers = {STI, ST3}

2) Subjects = /Sn, ST4)

Note that the observers may also behave as subjects and vice versa in the context of other

subtransactions based on application sernantics. The violation of autonorny is minimal

when the constraints are closer to the root level and more when they are doser to the leaf

level. Hence, based on the specification of the global transaction, different transaction

executions can be realized with varying degrees of autonomy violation. It is observed that

the autonomy violation increases as the subtransaction managers are moved toward the

leaf transactions. The positioning of the subtransaction manager defines the interface that

characterizes the autonomy of the underlying MDB environment.

Our transaction model is broadly based on the open nested transaction model. However,

at an operational level we observe multi-layered architecture comprising execution

dependenc y databases and subiransaction managers over the MDB environment. The

concept of subtransaction managers characterizes the violation of autonomy of the

MDBS architecture. Partial results are exposed due to the openness of the transaction

model. This results in the violation of the isolation property thereby relaxing the ACID

model.

3.2 Execution Dependencies

Advanced transaction models are designed to cater to specific application requirements in

a distributed database system. When these models are applied to MDB environments, the

characteristics of the MDBS add to the complexity of the transaction management.

Specifically, the autonomy of the element databases affects the execution of a MDBS

transaction. Execution dependencies extend the semantics of the transaction model to

enhance intra-transaction parallelism thereby providing multiple execution alternatives

when a part of the MDBS transaction fails. This is similar to the flexible transactions in

Elmagarrnid's Flex transaction model ELL+90]. The transaction in the Flex model is a

two-level nested transaction whereas in Our model the transaction could have an arbitrary

number of nesting levels. However, the similarity in these approaches is the provision of

multiple execution alternatives using functionally equivalent subtransactions, and

maintaining a high degree of autonomy at the underlying systems.

Certain applications require extensive use of semantics to ensure the successful

completion of the MDBS transaction. The reasons are:

1) to enhance parallelism within a transaction,

2) the application may require the use of multiple choices of execution to achieve a

global objective, and

3) the subtransactions may fail to produce a certain expected result (for exarnple, an

air ticket reservation in a particular airline).

The above reasons are the motivations for the development of Our transaction mode].

Further, these motivate us to find the execution dependencies existing among the

subtransactions to enable us to enhance the intra-transaction parallelism. We are also

required to categorize the dependencies based on the application requirement. At the

same time, the MDBS characteristics require us to maintain the degree of autonomy at

the element databases at the highest level. Al1 these reasons lead us to characterize

execution dependencies into three types: F, N and B as defined in Definition 3.3.

The 'F* dependency takes the highest priority over the 'N* and ' B * dependencies if they

al1 exist arnong the same set of observen and subjects. In the absence of 'F* dependency,

' N p dependency is superior to the 'B' dependency. They are useful when they provide

results that add more meaning to the semantics of the MDBS transaction. One exarnple is

when an economy air ticket is upgraded to a business class ticket in an air ticket

transaction. This does not change the semantics of the air ticket transaction. The failure of

the transactions that have a 'B' dependency also does not affect the semantics of the

MDBS transaction. For example, suppose the booking of a window seat in a preferred

carrier fails but there is some other seat available in the same carrier. The air ticket

transaction's semantics of booking a ticket to a particular destination on that particular

carrier are still vdid.

Definition 3.3:

Execution Dependency: An execution dependency (ED) exists between a srrbject

subtransaction and an observer subtransaction of a global transaction based on a

dependency that is suficien?, necessary, or bonus. Thus ED is defined as a triple as

follows:

where,

S is a subject subtransaction,

O is an observer subtransaction, and,

D is a dependency from the set {F , N, BI

where,

F is sufficient,

N is necessary,

B is bonus.

The suficient dependency (F) between subject and observer subtransactions indicates that

the (partial) results of the former is just sufficient to trigger the latter's execution.

However, the necessary dependency (N) between subject and observer subtransactions

indicates that the (partial) results of the former is necessary to tngger the latter's

execution. The bonus dependency (B) is utilized in enhancing the semantics of the

application. However, as mentioned earlier, the sufficient dependency takes priority over

the necessary and bonus dependencies in case of concurrent executions to enhance the

hua-transaction parallelism. Similarly, the necessary dependency takes priority over the

bonus dependency when both exist between the same set of subject and observer

subtransactions.

The execution dependency information is available in the execution dependency database

at the subtransaction managers of Our transaction model. This information is used for two

purposes:

1) to enhance the intra-transaction parallelism in an MDBS transaction through the

extension of transaction semantics, and

2) to provide multiple execution alternatives to achieve the global objective of a

MDBS transaction.

Depending on the type (strength) of dependency, the MDBS transaction execution flows

differentiy. Multiple execution alternatives are automatically realized in this model.

Hence a MDBS transaction can be successfully completed through the execution of

various sets of its subtransactions with enhanced intra-transaction parallelism.

Example 3.1

Consider an online client booking an accommodation as part of his trip. He rnigtit want to

reserve accommodation only if he has an air ticket. Hence the constraint for the execution

of the accommodation transaction is the successful completion of the air ticket

transaction. This implies an execution dependency between air ticket transaction (subject)

and accommodation transaction (observer). For this example, let us assume that the air

ticket transaction executed successfuHy. There are different types of accommodation the

client could request. For instance, he could reserve a hotel, motel or hostel. Based on the

clients' requirements, there are multiple transaction execution alternatives available. That

is, he could either book a hostel or a motel if the hotel subtransaction fails.

The client spawns the trip transaction. The accommodation and air ticket transactions are

the subtransactions of the trip transaction. According to the semantics of the trip

transaction, the execution of the accommodation subtransaction depends on the

s~ccessful completion of the air ticket subtransaction. On successful completion of the air

ticket subtransaction, it notifies the accommodation subtransaction of the sarne. At this

point the accommodation subtransaction spawns its subtransactions (hotel, motel and

hostel subtransactions). If the hotel subtransaction fails, and the functionaily equivalent

motel or hostel subtransaction retums a positive result, then the trip is booked based on

what is available (provided the client is also happy with the booking!). rn
The execution dependencies are present in the subtransaction manager's lookup database.

Ail the subtransactions look up their execution dependency database after they obtain a

partial result from their children. That is, a subtransaction that has a partial result notifies

the dependent subtransactions based on the information in the lookup database at their

manager. If al1 three dependencies exist between the sarne observer and different

subjects, the subjects first notify the observers with which they have an 'F' dependency.

The observer starts to execute just after it receives the notification from the subjects'

managers. An 'F' dependency is given priority to decrease the wait time of the observer

subtransaction. This directly enhances the intra-transaction parallelism in a MDBS

transaction. Each observer subtransaction is either subdivided, or is a flat transaction. Al1

the subtransactions of the observers provide muitiple transaction execution dternatives.

That is, any execution of the observers' subtransactions yields results that satisfy a

cornmon goal (maintains the semantics) of their parent transaction. For instance, an air

ticket subtransaction couId have subuansactions; one each for an economy ticket and a

first class ticket. Both these subtransactions provide a common goal of booking a ticket to

the same destination (this is specific to the application).

Identifying these dependencies aid us in two ways as is evident from the preceding

discussion:

1) To use them in enhancing the intra-transaction parallelism, and

2) To provide multiple execution alternatives by extending the semantics of the

application.

The exploitation of semantics and the dependencies to enhance intra-transaction

parallelism affects the AClD mode1 and the autonomy of the element databases. However

through the use of subtransaction managers, we maintain a high degree of autonomy.

This, in fact. can be tuned based on the needs by shifting the subtransaction managers

either upward in the hierarchy to achieve higher degree of autonomy (useful in MDBS) or

downword in the hierarchy to achieve a lower degree of autonomy (useful in generd

distributed database s ystems).

3.3 Discussion

The execution dependencies are specified at the start of the MDBS transaction. These

dependencies are stored in the appropriate subtransaction managers based on

participating subtransactions. It is stored in the lookup database dong with the observer

and subject subtransactions. The managers are present at the subtransaction levels only.

The positioning of the subtransaction manager decides the charîcterization of the

autonomy interface of the underlying MDBS architecture.

Execution Dependency Database
Root Transaction

Violarion

Subject Observer

T21 Tl

T22 Tl

Isolation

Dependency

N

F

Figure 3.3 An iilustration of Execution Dependency

Consider the transaction illustrated in Figure 3.3. The root transaction has two

subtransactions Tl and ï2. TI has three flat subtransactions T I I , Tl2 and TI3. IZ is

divided into two subtransactions R I and 222. The subtransaction managers are present

at level L2 where the subtransactions TI and ï2 are present. The execution dependency

database is present at the subtransaction managers. Actually, each of these

su btransactions plays two roles at the sarne time - 'subtransactioris ' and 'subtransaction

managers'. The subtransaction managers use the execution dependency database. The

execution dependency database has information about its subtransactions and the

dependency it shares with other subtransactions in the hierarchy.

Figure 3.3 shows the execution dependency information available at RManager . It

shows that subtransaction RI is the subject of observer TI with a dependency 'N' and

'122 is the subject of observer Tl with a dependency 'F'. From the definitions of

dependencies it can be said that TI executes if it receives the partial result (722) from

m a n a g e r . This is because an 'F' dependency takes priority if there is such a

dependenc y between the sarne observer and different subjects in the execution

dependency database. However, in the absence of an 'F' dependency, 'N' dependency

takes priority, if one exists. Suppose 72 starts executing 721 and 7î2. Once it receives

results from ï î 2 before 721 executes to its completion, the ï2Manager looks up the

execution dependency information and notifies TlManager about the available partial

result. This is because the dependency information specified States that 122 results are

just suflcient for TI to execute. Now TI spawns T U , Tl2 and T l 3 and waits for the

results from either of these and notifies the corresponding subtransaction, or the root (in

this case) about the available result. However, the 721 results are aiso passed on to

TlManager by ï ï M a n a g e r , which by then would have started executing its

subtransactions. This enhances the intra-transaction parallelism. Since the subtransaction

managers are implemented closer to the root transaction, autonomy at the element

databases is preserved. The concepts of subtransaction managers and that of subjects and

observers are implemented using design pattern techniques [GHJ+95]. The notification

mechanism has been implemented at the subtransaction manager level at which they

notify the corresponding subtransaction managers depending on the information available

in the execution dependency database (see Figure 3.3).

Gamma et al. [GHJ+95] define design patterns as descriptions of communicating objects

and classes that are custornized to solve a general design problem in a particular context.

A design pattem names, absrracts, and identifies the key aspects of a cornrnon design

structure that make it useful for creating reusable object-onented design with each pattem

focusing on a particular issue. This thesis presents a specific application of the design

pattern techniques. This specific example could be generalized so that template code

could be produced to assist in the design of other nested transaction applications. For

exarnple, the trip booking application is just an example to demonstrate the application of

design pattem techniques. The template of this application could be extended to capture

other nested applications, such as, auctioning systems, information kiosks, rie.

In our transaction model, the communicating objects are the observer and subject

subtransactions. Their communication relaxes the ACID model by exploiting the

openness of the nested transaction model. This, in effect, enhances the parallelism of

subtransactions executing within the MDBS transaction. The nesting level at which the

subtransaction managers are placed decides the autonomy of the underlying systems. It is

observed that our model is a combination of the open nested transaction model (because

the subtransactions reveai their partial results) and multilevel transaction mode1 (because

of the multi-layered database design realized at an operational level due to the presence

of the execution dependency database at the subtransaction managers).

The chapter began with the introduction of Our advanced transaction model. It discussed

the use of subtransaction managers and the execution dependency databases. Section 3.2

presented the execution dependencies. We also presented the representation of the

execution dependencies in the subtransaction managers. Section 3.3 presented a

discussion about the use of execution dependencies within the framework of our

transaction model. Chapter 4 discusses the use of execution dependencics and

exemplifies the new transaction paradigm using a sample application.

An invasion of amies cal1 be resisred, but no? an idea
whose rime has corne.

- Victor Hugo

Chapter 4

An Application of New Paradigm

This chapter starts with an analysis of the transaction management problem in

multidatabases frorn the perspective of application semantics. Section 4.1 presents the

problem analysis. In Section 4.2 we present an overview of Our transaction model.

Section 4.3 introduces an example to illustrate the application of the new paradigm. The

illustration explains how our transaction rnodel is utilized in executing the transactions of

the application. Further, it explains how multiple transaction execution alternatives are

facilitated. Section 4.4 presents a cornparison of the new paradigm with the conventional

models. The chapter details the observations made, and provides insights about this

methodology, before it ends with a summary.

4.1 Problem Analysis

This section analyzes the transaction management problem from the perspective of

application semantics.

As mentioned in earlier chapters, the transaction management problem in a MDBS is a

cntical and challenging problem. The objective is to address the concurrency and

reliability issues in transaction execution. This is coupled with rnaintaining autonorny

among the heterogeneous databases that participate in the MDBS federation. This thesis

attempts to enhance the intra-transaction parailelisrn available in an open nested

transaction environment. The open nested transaction executes in a MDB environrnent.

This thesis characterizes the autonomy among several databases at the source level. We

exploit the application semantics to identify the dependencies among the several

subtransactions in the nested transaction. This thesis also presents a transaction execution

framework that provides multiple transaction execution alternatives.

A nested transaction is one where the objective of a transaction is achieved in steps

(subtransactions) thereby maintaining paralielism and localizing potential failures.

However, in such transactions the ACID properties are maintained just as in a flat

transaction. In open nested transaction, the ACID properties are relaxed because partial

results of the subtransactions are revealed. This enables the system to exploit the

application semantics to enhance the intra-transaction parallelism. In this thesis, since our

focus is on the concurrency issues, we do not discuss the reliability issues. hterested

readers are referred to Chapter 2, which includes a discussion on the reliability aspect of

transaction management. The exploitation of the semantic information of the application

andor their transactions opens interesting opportunities to address the transaction

management problem.

A nested transaction submitted to the MDBMS is divided into several subtransactions.

These subtransactions are submitted to the various LDBMS in the MDBS. The databases

are characterized by autonorny at the data source level. This implies that the

subtransactions cannot reveal their partial results to other subtransactions. Introducing

subtransaction managers circumvents this problem. They are responsible for

communicating the necessary results to other subtransactions. Hence, this requires an

implementation of an interface that characterizes the level of autonomy the system offers.

The concept of subtransaction managers is explained in the context of an application in

the following sections.

The implementation described in this dissertation assumes the underiying systems to be

homogeneous. However, it c m be observed that the solution can be extended to a

heterogeneous environment as is discussed in the future work section of Chapter 5.

4.2 Our Transaction Mode1

An advanced transaction model wa-, presented earlier. This mode1 is broadly based on

Moss' [Mg11 [MW] nested transaction model and Weikum's [W90] multilcvel

transaction model. The purpose of this rnodel is to serve advanced applications where

concurrent transactions are cornmon. Our rnodel uses an open nested transaction with

layered database architecture at an operational level. The underlying system of this model

is a multidatabase environment. The transaction model characterizes the autonomy of the

underlying MDBS through an interface, made of subtransaction managers and execution

dependency databases, that c m be moved either up or down in the layered architecture of

the transaction model.

The transactions in the paradigm presented here are open nested and hence can reveal

their partial results. Since intra-transactional concurrency is an issue addressed by this

thesis, we develop a mechanism by which the transactions cornmunicate with each other

to reveal their partial results. The concept underlying the communication between the

transactions is broadly based on behaviorai design patterns [GHJ+95]. The

communication between the transactions is based on the (execution) dependency dictated

by the application semantics.

The concepts of transaction processing expressed by this thesis can be generalized to

various application environments. The transaction mode1 presented here finds use in

several business environments that can be mapped into multidatabase environments in

which the underlying systems require a high degree of autonomy. Exampies of such

application environments include trip planning, auctioning web sites, information kiosks,

etc.

The paradigm presented here utilizes the concept of nested transactions with

subtransactions cooperating to achieve a global objective. The implernentation of the

mode1 has components that comrnunicate to relax the ACID requirements at the

subtransaction levels. These components provide a frarnework that can be utilized to

customize a particular application running in a MDB environment demanding a high

degree of autonomy. The components have two roles namely, subjects or observers (see

Definitions 3.1 and 3.2 on Page 53). Based on the role of the components, they

comrnunicate with other cornponents using the concepts of behavioral design patterns.

This process of communication involves the components subscribing to one or more

components as observers. The application sernantics and execution dependencies

determine the execution of transactions. The transaction execution alternatives are

determined based on the application sernantics.

For example, in an auctioning web site, suppose a transaction is required to bid and buy a

wine goblet used by King George V. The subtransactions of this global transaction in the

context of Our transaction model could be one that bids, another that buys and the last one

that verifies the credit of the bidder before the item is auctioned. In the context of our

transaction model, these subtransactions couid be encapsulated into the components in

the framework presented here. Based on the application semantics, the execution

dependency database is populated at the sub~ansaction managers. The knowledge of the

dependencies and the semantics of the transaction execute the transaction to achieve the

global objective of buying the wine goblet. The subtransactions act as subjects and

observers in the process of execution thereby enhancing the intra-transaction ~xallelism.

Multiple transaction execution alternatives are also possible. For example, after the

bidding, when the subtransaction checks for the credit of the bidder, it could possibly

check several credit card databases and utilize the one the bidder prefers, or the one that

has credit (depending on application sernantics).

Another exarnple would be a customer looking for a particular kind of mountain bike in

an Information Kiosk. The processes of identifying the store that carries the bike. buying

the bike, and verifying the credit of the customer before selling the bike could be

represented as a nested transaction in Our framework. Ail the above processing could be

represented as subtransactions. As mentioned earlier, multiple parallel transaction

execution is possible in this case as weli. For instance, the preferred bike could be

available at various stores on the kiosk. The customer could be provided with various

alternatives based on his requirements (depending on application semantics). Ehikioya

and Walowetz [EW99] present a forma1 specification for such e-commerce applications.

The concept of maintaining the autonomy of the underlying systems is evident in the

above applications. For example, if the credit checking subtransaction has subtransactions

of its own, the nesting depth of the entire transaction increases. Now based on the

autonomy requirement, the subtransaction managers of this particuiar application could

be placed either closer to the root transaction or to the leaf transactions. The violation of

autonomy is higher in the latter. Hence the subtransaction managers of the nested

transaction act as an interface to maintain the autonomy of the underlying systerns. The

execution dependency databases are present at the subtransaction managers, which dong

with the managers, provide a layered architecture.

4.3 An Example Application: Trip Booking

An advanced transaction rnodel provides better support for application-specific

environments. It also provides mechanisms to relax the ACID paradigm thus helping to

capture the semantics of the application. It enhances the parallelism of the execution of

transactions. The goal of this thesis is to provide a framework to execute an open nested

transaction, in a MDB environment. The framework must have provisions for exploiting

the dependencies between the subtransactions. Based on the dependencies identified, it

must provide multiple transaction execution alternatives. Further, the framework must

have provisions for maintaining a high degree of autonomy at the underlying systems in

the MDB environment. This section explains the concepts of Our transaction mode1 using

an application with nested transaction execution as shown in Figure 4.1.

Root Trarisaction
Execufwn Dependency Database

Database Database Database

Figure 4.1 Transaction Mode1 and Example Transaction Execution

A trip booking application [E92] is considered in this thesis to explain the concepts

introduced in Chapter 3. A trip booking consists of at least three steps - booking air

tickets, renting a car, and reserving an accommodation. The air ticket is either an

economy or a first class ticket. Similarly, the accommodation is reserved either in a hotel,

motel, or hostel. Our mot transaction is the trip transaction with three subtransactions that

book air tickets, car rental and accommodation, respectively. Further, these

subtransactions have subtransactions of their own. For instance, the air ticket

subtransaction has subtransactions that book either an economy or a first class ticket.

The underlying environment of the trip booking application is an MDB environment. It

has three autonomous databases that have information about air ticket, car rental and

accommodation availabilities. Hence each subtransaction interacts with only the

corresponding database. For instance, the accommodation subuansaction interacts only

with the database that contains information about the hotel, motel and hostel. Figure 4.1

shows the nested transaction in our application and the different databases with which it

interacts. The execution dependency database is shown at each nesting level. This figure

is similar to the general one presented earlier in Chapter 3. A particular transaction

execution scenario is presented here to expiain the various cornmunications that occur

between the subtransactions. This example captures the various concepts described in this

thesis.

The objective of the transaction in the trip booking application is to book a trip based on

the customer's preferences. Further, it must enable multiple outcornes from the execution

of the transaction. The transaction model per se captures the application semantics. The

model enhances the intra-transaction parailelisrn by ailowing the subtransactions to view

the partial results of other subtransactions based on the captured application semantics.

In Figure 4.1 the different subtransactions a; level L2 have been called subtransaction

managers. The positioning of these managers is cnticai to the characterization of the

autonomy interface. The higher the level at which these managers are placed, the more

autonomous is the underlying system. Since the trip transaction has three subtransactions

at L2, it can be observed that there are three managers. These managers are the

subtransaction managers and may or may not have their own subtransactions. Each of

these managers has a structure called an execution dependency database that stores

dependency information among the subtransactions. Figure 4.1 also shows such a

dependency database at the car rental manager. These databases and their managers

provide a layered architecture to the transaction mode1 at an operational level. The

dependency information is populated in these databases by capturing the application

semantics. This happens when the transaction starts executing. The subtransaction

managers play the roles of subjects and observers (defined in Chapter 3 - Definitions 3.1

and 3.2 on Page 53). Based on the outcome of the subject and the dependency it has with

the observer, the subject communicates the information (Le., reveals its results) to its

observer(s). For instance, suppose the booking of an airline ticket is dependent on renting

a car. The application semantics imply that there is a (execution) dependency between the

rental and air ticket transaction. This inforrnation is stored in the execution dependency

database at the car rental manager. The car rental transaction executes against the car

rental database to find if there is a car rental as per the request. Based on the result of the

transaction and the dependency information, the car rental manager communicates the

information about the availability of the car rental to the air ticket manager. In this case,

the car rentai transaction is the subject and the air ticket transaction is the observer. Now,

based on the result the air ticket manager gets from the car rental manager. the former

starts executing its subtransactions or does whatever is necessary to maintain the

application semantics.

4.3.1 An Example Scenario

In this section we present an example scenario to illustrate the concepts behind execution

dependencies, the communications that occur between the subtransaction managers, and

transaction execution alternatives. A discussion on how the application and transaction

semantics are translated into execution dependencies is also presented. Further, how these

dependencies are used in producing multiple transaction execution alternatives is

discussed.

The example includes a customer interested in planning a trip from Calgary to New York

to attend a business meeting. However, at the same time there is a World Congress on

Women's Issues being held in New York. His trip would include booking air tickets,

renting a car and reserving an accommodation in New York. He specifies his preferences

as far as these bookings and reservations are concemed. The entire trip transaction occurs

based on the customer's preferences. At the sarne time he would also appreciate the best

alternatives he has to make this trip despite the expected overbooking of air tickets,

accommodation and/or car rentals due to the World Congress.

Suppose the customer prefers to fly first class. However, under the given circumstances,

an economy ticket would also serve the purpose. Further, assume he collects frequent

flyer miles in Air Canada and hence prefers that carrier. He prefers a hotel or motel

accommodation while he is in New York, but a hostel is unacceptable. As far as the car

rentai is concened he only wants a sedan. Since he is an Avis-Advantage member he

prefers Avis for car rental.

Further he specifies that he would like to book the ticket only if there is a car rental

available. He aiso specifies that booking an air ticket does not necessarily depend on the

type of accommodation available. He specifies that the air ticket may be booked if there

is either a hotel or motel accommodation available. Further, he does not want to rent the

car until he gets an accommodation reserved as per his specification. In essence, the

semantics of this specification is that he wants to rent a car only if he has an

accommodation confirmed. Further, he wants to book the air ticket either if he gets a car

rental as per his specifications, or if he has an accommodation (hoteUrnotel).

In short, this describes the transaction's semantics and is used as an exampIe of the

expressive power of this model.

The above specifications suggest the following dependencies among the subtransactions

that book the air tickets, reserve accommodation, and rent a car.

1. The car rental subtransaction depends on the successful completion of the

accommodation subtransaction. In other words, only if the accommodation

subtransaction yields a positive outcome does the car rental subtransaction start

executing.

2. The subtransaction booking the air ticket is dependent on the successful completion

of the car rental subtransaction. At the same time, it is not so strongly dependent on

the completion of the accommodation subtransaction. In other words, the air ticket

subtransaction starts executing if either the car rental or the accommodation

subtransaction succeeds.

The strengths of the dependencies identified above differ based on the specification.

The above specifications are translated into execution dependencies at an operational

level when the transaction starts executing. The execution dependency databases located

at each subtransaction manager level are populated with these dependencies. These

dependencies differ in strengths and hence they populate the dependency database

accordingly. This ensures the various transaction processing alternatives. At this point,

the subtransaction managers identify every other subtransaction manager as a subject

and/or an observer. For instance, the air ticket manager is an observer of the car rentd

and the accommodation subtransaction managers. Thus, the car rental and

accommodation subtransaction managers are the subjects of air ticket subtransaction

manager. Similarly, the accommodation subtransaction manager is a subject of the car

rentai subtransaction manager. In other words, the car rental subtransaction manager is an

observer of the accommodation subtransaction manager.

The example illustrated here has dependencies between the subtransactions that book air

tickets, reserve accommodation, and rent a car. The dependency database at the

accommodation and car rental subtransaction managers is shown in Figures 4.2 and 4.3,

respectively. These dependencies are deduced from the specifications set for the trip

transaction execution. The transaction is divided into three subtransactions - to book an

air ticket, reserve an accommodation and rent a car. Each of these subtransactions may be

further divided to achieve the desired result. For instance, the accommodation transaction

is further divided to obtain a reservation in a hotel, motel or hostel. Similarly the air ticket

subtransaction could be further divided to book either an economy or a first class ticket.

In this example, al1 the dependency databases are present in nesting level L2 (see Figure

4.1, Page 67). Hence al1 the subtransactions at that level are referred to as subtransaction

managers. For instance, the air ticket subtransaction is referred to as an air ticket

manager. These managers play the role of subjects and/or observers depending on the

transaction execution. The transaction execution is controlled by the dependency

information stored in the dependency databases.

Subject 1 Observer I Dependency I
Accommodation ~ a n a g e r 1 Car Renral Manager 1- Necessary I

1

Accommodation Manager 1 Air Ticket Manager l Suficien t I
Figure 4.2 Dependency Database at Accommodation Manager

I Subject I Observer I Dependency I
I I

Car Renral Manager 1 Air Ticket Manager I Necessary I
Figure 4.3 Dependency Database at Car Rental Manager

in Our exarnple, it is evident from the specifications that the accommodation

subtransaction must successfully complete so that the other subtransactions can execute.

Though al1 the subtransactions are sirnultaneously submitted, the rental and the ticket

subtransactions wait until the accommodation subtransaction completes successfully and

receive notification of the same. Hence the accommodation subtransaction is a subject

from the perspectives of air ticket and car rental subtransactions. In other words, the air

ticket and car rental subtransactions are observers of the accommodation subtransaction.

It is evident from the dependency database at the car rental manager that the air ticket

transaction is necessarily (N) dependent on the successful completion of the rental

transaction. Similarly, the dependency database at the accommodation manager shows

that the rental transaction is necessarily (N) dependent. while the air ticket transaction is

only sufJicciently (F) dependent, on the accommodation subtransaction. This implies that

the air ticket manager starts executing the air ticket subtransaction as soon as it receives

the notification from the accommodation manager. It does not wait for the car rental

manager's notification though the air ticket subtransaction has a necessary-type

dependency with the car rental subtransaction. This is because in our transaction mode1

the sufficient-type dependency takes priority over any other type of dependency (see

discussion on Execution Dependencies in Chapter 3).

As mentioned above the various subtransactions execute with respect to the dependency

they have with other subtransactions. Ln addition, al1 the other transaction execution

aiternatives are also pursued to provide the user with a wide range of results. For

instance, though the custorner prefers hotel or motel, our transaction model runs the hotel,

motel, and hostel subtransactions, and provides him with al1 the results available. This is

useful when a particular transaction execution fails but some other execution provides an

equivalent result. Similarly, suppose there are no seats available in the first class due to

the World Congress on Wornen's Issues. However if there are seats in the economy class,

then those results are presented to the customer. Now he could use these results to book

his tour. Though the customer prefers only a first class ticket, he rnight be willing to go

on the trip on an economy ticket based on his "necessity" rather than his "preference",

under the given circumstances.

4.4 A Cornparison With Conventional Transaction Models

The advanced transaction models proposed in the past have been suitable for certain

application domains. However, each mode1 has its shortcornings. This thesis discusses the

shortcomings of the earlier models only with respect to the concurrency aspect of

transaction management. Further, it takes into account the ACID properties of the

transactions executing within the frarneworks of those models. The suitability of these

models in an MDBS is also discussed wherever applicable.

A closed nested transaction mode1 rules out the possibility of relaxing A C D properties

because of the subtransactions. The subtransactions execute in a "closed" fashion and

hence do not reveal partial results. This results in less concurrency arnong

su btransactions. An open nested transaction model enhances the parailelism among the

subtransactions. In this model, al1 the subtransactions reveal their results to other

subtransactions. This results in violation of the isolation property. In other words, the

ACID properties are relaxed. However, past research indicates that when this model is

applied as such to an MDB environment, it does not help in maintaining the autonomy of

the underlying system. The transaction model presented in this thesis is a variation of an

open nested model with additionai features. Our model extracts the application semantics

and accordingly relaxes the ACID property. At the same time, it allows the

characterization of the autonomy interface of the underlying MDB environment by

appropriately utilizing the application semantics in the form of execution dependencies

and subtransaction managers.

Sagas address the delays in transaction processing due to the long-lived nature of the

transactions. A long-lived transaction can be expressed as a saga if it can be written as a

sequence of transactions that can be interleaved with other transactions. Partial

executions are undesirable and they must be undone.

When sagas are applied to MDBSs, local autonomy is not severely violated because each

element database sees each subtransaction as a local transaction managed by the element

DBMS. This finds application only in environments where long-lived, compensatable

transactions execute. Providing compensating transactions is a major dificulty in the case

of sagas. They cannot be applied in scenarios where a transaction is irreversible, such as

drilling holes. Nevertheless, sagas are appealing to compensatable MDBS environments

because they affect the autonomy of the underlying systems minimally.

A saga only permiis two levels of nesting unlike the nested transaction presented in this

thesis. Sagas also compromise on the atomicity at the top level thereby allowing other

sagas to view their partial results unlike the nested transaction model presented here

which maintains the atomicity at the global level. Further. sagas do not provide multiple

transaction execution alternatives as the model presented here does.

The Flex transaction model is the closest match to the model presented in this thesis. It

identifies and addresses the challenge of maintaining the autonomy of the underlying

systems in a MDB environment. Specifically designed for MDB environments, this

transaction model shares our goal of providing multiple transaction execution alternatives

based on execution dependencies. It decomposes a global transaction into several

functiondly equivalent subtransactions as our rnodel does. However, Our model identifies

and presents a broader range of execution dependencies than the Flex transaction model,

which identifies only two extreme types of dependencies namely, positive and negative

dependencies.

Flex transaction mode1 has provisions for the execution of both compensatable and non-

compensatable transactions. This thesis assumes reliability and hence does not explicitly

contribute provisions for compensatable transactions. However, by taking into account

the dynamics of both the environrnent and transaction processing, we can easily extend

this work to address compensatable transactions.

Apart from the specific shortcomings mentioned above, none of the models appear to be

scalable to run applications in the MDB environments in the Internet. The

implementation of our paradigm is readily scalable to MDB environments in the Intemet.

In summary, the shortcornings of the various models are:

Absence of a mechanism to specify and provide proper global integrity

constraints (dependencies) that determines the effects on the global atornicity,

Unsuitability of certain transaction models in MDB environrnents,

A means to characterize the arnount of local autonomy affected,

A mechanism to exploit the application semantics and thereby provide multiple

transaction execution alternatives, and

Scalability to lnternet environments that run advanced database applications.

A brief discussion of the concepts that address the above issues is deferred to Chapter 5.

This chapter presented the anaiysis of the transaction management problem in

multidatabases. A discussion of our transaction model was presented and the concepts

underlying the mode1 were revisited in Section 4.2. Section 4.3 introduced an application

to illustrate the ideas underlying our transaction model. Findly, we presented a

cornparison of the transaction paradigm presented here with the conventional models.

Chapter 5 presents the conclusion and sumrnary of the various concepts discussed in this

dissertation and sets some future research directions.

in my end is my beginning.

- T. S. Eliot. Four Quarters.

Chapter 5

Conclusions and Future Work

This dissertation concludes with a summary of its contributions and directions for future

work.

5.1 Summary of Contributions

This thesis identifies the following problems that affect the management of nested

transactions in multidatabase systems. An implementation of a nested transaction model

that describes the pragmatic componenis required to realize the foliowing features in the

form of an abstract model was presented.

Absence of a mechanism to identify and exploit dependencies among subtransactions.

Conventional transaction models lack a mechanism by which they can identify and

exploit dependencies in an application running in a MDB environment. Today, in

most applications, the execution of transactions is directed by application semantics.

A mechanism to identify the application semantics and exploit the sarne c m enhance

the parallelism of transaction processing. The lack of such a mechanism affects the

concurrency aspects of transaction management.

Lack of a mechanism to maintain the autonomy of the underlying systems.

Though there have been numerous proposais to address transaction management in

distributed systems, many of those models have found little use when applied to

multidatabase systems. This is due to the severe effects they have on the autonomy of

the underlying systems in a MDB environment. The maintenance of autonomy to the

best maximum level is imperative when addressing the transaction management

problem in a MDBS.

Absence of a mechanism to cornrnunicate partial results arnong subtransactions

thereby increasing parallelism.

Most advanced transaction models are generalizations of the nested transaction

model. The transactions in these generalizations usually attempt to relax the AClD

paradigm by allowing partial results to be exposed to their subtransactions. However,

a better mechanism to implement such visibility rules is important to enhance the

parallelism of transaction execution in a MDBS. The crux is when it becomes

important that the autonomy of the underlying systems must also be maintained in

addition to the maintenance of a proper visibility mechanism.

Lack of a mechanisrn to produce multiple transaction execution alternatives.

The advanced transaction models proposed in the past produce transaction execution

that strictly adheres to the requirement of the end user. However, in most current day

applications, it is important that there be multiple transaction execution alternatives so

that even if the results of one execution is unsatisfactory, the user can choose from

other alternatives presented by the system.

Our research analyzed the above problems andor chailenges and addressed them using a

novel implementation of an open nested transaction in a multidatabase environment

characterized with complete autonomy. The implementation provides a framework that

c m be utilized by several advanced database applications.

Execution Dependencies: The application and transaction semantics are

translated into dependencies existing among subtransactions. Such dependencies

are cailed execution dependencies because they direct the execution of

transactions. This thesis identifies three different types of execution dependencies

based on the application and transaction semantics in advanced database

applications. They are necessary, suflcient and bonus execution dependencies.

These dependencies are the global integrity constraints of the transaction

processing system. The definitions and details of the various dependencies are

discussed in Chapter 3.

Autonomy Interface: The underlying system considered in this thesis is a

multidatabase system. It is characteristic of a multidatabase environment to be

autonomous. Hence, it becomes important to maintain the level of autonomy

maximally. This thesis addresses the issue through the concept of execution

dependency database at various subtransaction managers. The execution

dependency database at a subtransaction consists of the various execution

dependencies it has with other subtransactions. It is based on the dependencies in

the execution dependency database that the transaction executes in certain specific

ways. This acts as an autonomy interface because, the higher the level of this

interface in a nesting, the more autonomous is the underlying system, and vice

versa. The execution dependency databases at the subtransaction managers are

populated dynamically and hence, at an operational level, the transaction mode1

has a layered architecture.

Subjects and Observen: ACIDity in a transaction is relaxed by allowing the

exposure of partial results to relevant subtransactions. This has been successfully

shown in many open nested transaction models. However, this affects the

autonorny of the underlying system if the system under consideration is a MDBS.

This thesis addresses the issue by borrowing the concepts of behaviorat design

patterns. Specificaily, it identifies the subtransaction managers and based on the

execution dependency available at these managers, it dynarnically categorizes the

subtransaction managers as subjects and observers. Any subtransaction manager

can pIay both these roles as long as the transaction processing adheres to the

application and transaction semantics. Hence, based on the dependency

information at a subtransaction manager's execution dependency database, it

cornmunicates the results to al1 other subtransaction managers that have been

dynamically included as its observers. This is an effective way of communicating

information among the subtransactions whereby multiple observers of a

subtransaction get to know the results of a subtransaction k ing observed.

Multiple Transactions, Same Global Objective: The utilization of the execution

dependencies and the concepts of subjects and observers yield a transaction

execution that satisfies the application semantics specified. However, the

paradigrn developed in this thesis produces multiple outcomes for the sarne global

objective using functionally equivalent subtransactions thereby widening the

range of choice of the outcomes. This helps in situations where even if one

execution fails, the user can rely on the various alternatives the system produces.

5.2 Future Directions

There are several interesting directions in which the work presented in this dissertation

can proceed. The future work suggested here is based on this work coupled with

directions to address the general problem of transaction management with respect to

Internet and other wireless technologies.

Reliability and Heterogeneity: In this dissertation we have investigated the various

aspects of transaction management in multidatabase systems. However, we assumed

transaction management from the perspective of cornpletely reliable systerns. Though the

assumption is valid from the perspective of acadernic research, it is not the case with

systems in the real world. Sirnilarly, we have considered a homogeneous system to

demonstrate the paradigm presented in this dissertation. Recommendations for future

work include the enhancement of the mode1 presented in this dissertation by considering

a heterogeneous environment with reliability problems.

Scalabiiity to Distributed Internet Applications: The transaction paradigm presented

in this dissertation addresses the transaction management problem in multidatabase

systems. Though its implementation is readily scalable to Internet environments, we

believe that such scalability could come with additional problems. This could be due to

the tmly distributed nature of the Internet environment characterized with total autonomy

and a high level of heterogeneity. Such environments pose interesting problems that can

be addressed using the fundamental principles of transaction management in traditional

environments coupled with the new principles of transaction management in tmly

electronic environments. This is a highly potential area because the distributed

environments today are fully Intemet-enabled or are in the process of k i n g enabled.

Application in Wireless Environments: An interesting direction for future work would

be in the area of mobile databases and wireless transaction management. Most

applications today are developed with the consideration for potential use in wireless

environments or on wireless devices. Though these applications are in their early stage,

the day is not far when transactional aspects would be incorporated into such devices. A

study about the feasibility of our paradigm in such environments could be a direction of

hiture work. This would bring in a whole new world of opportunities in the 'at anytirne,

from anywhere' concept of wireless transaction research. An example of this area is the

new paradigrn in the online business world of m-commerce (mobile-commerce). This area

of research would pose a lot of technicd challenges made interesting due to the wireless

nature of the environments. Hence, we recornmend this area be investigated as part of the

future work.

I f I have seen farther. it is by standing on tiie shoulders of Gianrs.

- Sir Isaac Newton. lerrer to Sir Robert Hooke, Feb. 5. 1676.

Bibliography
G. Alonso, R. Vingralek, D. Agrawal, Y. Breitbart, A. El Abbadi, H-J.
Schek, G. Weikum, "Unifying Concurrency Control and Recovery of
Transactions", Information Systems Vol. 19, No. 1, pp. 101-1 15. 1994.

K. Barker, "Transaction Management on Multidatabase Systems", Ph.D.
Thesis, Deparimen t of Computing Science, University of Alberta,
Edmonton, Alberta, Canada, 1990.

K. Barker, "Quantification of Autonomy on Multidatabase Systems",
Journal of Systems Integration, 4, 1994. Pg.: 1.51 - 169.

P.A. Bernstein, V. Hadzilacos, N. Goodman, "Concurrency Control and
Recovery in Database Systems", Addison- Wesley, 1987.

K. Barker, M.T. ~ s z u , "Concurrent Transaction Execution in
Multidatabase Systems", Proc. Of COMPSAC' 90. The 14" Annunl
International Cornputer Software and Applications Conference, 1990. Pg.:
282 - 288.

K. Barker, A. Elmagarmid, "Transaction Management in Multidatabase
Systems: Current Technologies and Fomalisms", in Collection,
"Management of Heterogeneous and Autonomous Database Systems",
Morgan Kaufmann Publishers, 1999. (Edited by: A. Elmagannid, M.
Rusinkiewicz, and A. Sheth)

A. Bouguettaya, B. Benetallah, A. Elmagannid, "An Overview of
Multidatabase Systems: Past and Present", in Collection, "Managemenr of
Heterogeneous and Autonomous Database Systems". Morgan Kaufmann
Publishers, 1999. (Ediîed by : A. EImagannid. M. Rusinkie wicz. and A.
Sheth)

Y. Breitbart, A. Silberschatz, G.R. Thompson, "Reliable Transaction
Management in a Multidatabase System", Proc. Of ACM-SIGMOD
International Conference On Management of Data, 1990, Pg.: 215 - 294.

P. Chrysanthis, K. Ramamritham, "ACTA: A Framework for Specifying
and Reasoning about Transaction Structure and Behavior", Proc. Of the
A CM SIGMOD international Con ference On Management of Data, 1 990,
Pg.: 194 - 203.

P. Chrysanthis, K. Rarnamritham, "A Formalism for Extended Transaction
Models". Proc. Of the 1 Th International Conference on Ver- Large
Databases, 1991, Pg.: 103 - 112.

P. Chrysanthis. K. Ramamritham, "Synthesis of Extended Transaction
Models Using ACTA", ACM Transactions on Database Sysrems, Vol. 19,
No.3, 1994, Pg.: 450 - 491.

P. Chrysanthis, K. Ramamritham, "Correctness Criteria and Concurrency
Control", in Collection, "Management of Heterogeneous and Autonomous
Database Systems", Morgan Kaufmann Publishers, 1999. (Edited by: A.
Elmagamid, M. Rusinkiewicz, and A. Sheth)

W. Du, A. Elmagarmid, "Quasi-serializability - a Correctness Cnterion for
Global Concurrency in InterBase", Proc. Of the 1 9 International
Conference on Very Large Databases, Amsterdam, 1989, Pg.: 347 - 355.

A. Elmagarmid (Ed.) "Database Transaction Models for Advanced
Applications", Morgan Kaufniann Publishers, 1992.

S.A. Ehikioya, K. Barker, "A Formai Specification Strategy for Electronic
Commerce", Proc. Of IDEAS' 97. The International Database
Engineering and Applications Symposium, Montreal, 1997, Pg.: 201 -
210.

A. Elmagannid, Y. Leu, W. Litwin, M. Rusinkiewicz, "A Multidatabase
Transaction Mode1 for InterBase", Proc. Of the 161h International
Conference on Very Lnrge Data Bases, 1990, Pg.: 507 - 51 8.

A. Elmagarmid, M. Rusinkiewicz, A. Sheth (Ed.) "Management of
Heterogeneous and Autonomous Database Systems", Morgan Kaufmann
Publishers, 1999.

S.A. Ehikioya, T. Walowetz, "A Focmal Specification of Transaction
Systems in Distributed Multi-Agents Systems", Proc. Of the ISCA. 14"
International Conference, Cuncun, 1999, Pg. : 378 - 383.

A.A. Farrag, M.T. ozsu, "Using Semantic Knowledge of Transactions to
Increase Concurrency", ACM Transactions on Datubase Systems, Vol. 24,
NO. 4, 1 989, Pg. : 503 - 525.

J.N. Gray, "The Transaction Concept: Virtues and Limitations", Proc. Of
the P international Conference on Vety Large Data Bases, 1981, Pg.:
144 - 154.

H. Garcia-Molina, "Using Semantic Knowledge for Transaction
Processing in a Distributed Database", ACM Transactions on Database
Systems, Vol. 8, No. 2, 1983, Pg. : 186 - 213.

[GGK+91] H. Garcia-Molina, D. Gawlik, J. Klein, K. Kleissner, K. Salem, "Modeling
Long-Running Activities as Nested Sagas", i E E Data Engineering
Bulletin, Vol. 14, 1991, Pg. : 14 -18.

[GR931 J.N. Gray, A. Reuter, Transaction Processing: Concepts and Techniques.
Morgan Kaufniann Publishers, 1993.

[GS87] H. Garcia-Molina, K. Salem, "Sagas", Proc. Of the ACM-SIGMOD
Annual Conference, 1987, Pg.: 249 - 259.

[GHJ+95] E. Gamma, R. Helm, P. Johnson, J. Vlissides, "Design Patterns: Elements
of Reusable Object-Oriented Software", Addison- Wesley, 1995.

rH881 V. Hadzilacos, "A Theory of Reliability in Database Systems", Journal of
the ACM, Vol. 35, No. 1, 1988, Pg.: I S I - 145.

lm871 T. Haerder, K. Rothermel, "Concepts of Transaction Recovery in Nested
Transactions", Proc. Of ACM-SIGMOD, CA, 1987, Pg.: 234 - 248.

KR931 M. Kamath, K. Ramamriiham, "Performance Charactenstics of Epsilon
Serializability with Hierarchical hconsistency Bounds", Proc. Of the qh
International Conference Of Data Engineering, Austria, IEEEE Cornputer
Society, 1993, Pg. : 587 - 594.

N. Lynch, "Multi-level Atomicity - A New Correctness Criterion for
Database Concurrency Control", ACM Transactions on Database Systems,
Vol. 8, N0.2, 198.3, Pg. : 484 - 502.

D.B. Lomet, "MLR: A Recovery Method for Multi-level Systems", Proc.
Of ACM-SIGMOD International Conference On Management of Data,
1992, Pg.: I85 - 194.

CLHL971 S. Lee, C. Hwang, W. Lee, "A Uniform Approach to Global Concurrency
Control and Recovery in Multidatabase Environment", Proc. Of the Sixth
international Conference on Information and Knowledge Management,
1997, Pg.: 51 - 58.

J.E.B. Moss, "Nested Transactions: An Approach to Reliable Distributed
Computing". M. I. T Report, MITLCSZTR-260, M I Loboru tory of
Computer Science, 198 1.

J.E.B. Moss, "Nested Transactions: An Approach to Reliable Distributed
Cornputing", MIT Press, 1985.

S. Mehrotra, R. Rastogi, H.F. Korth, A. Silberschatz, "Non-Serializable
Executions in Heterogeneous Distributed Database Systems", Proc. Of the
First hternational Conference on Parailel and Distributed Systems, 1991.

S. Mehrotra, R. Rastogi, Y. Breitbart, H.F. Korth, A. Silberschatz, "The
Concurrency Control Problem in Multidatabases: Characteristics and
Solutions", Proc. Of ACM-SIGMOD International Conference on
Management of Data, 1992, Pg.: 288 - 297.

M.T. ozsu, P. Valduriez, "Principles of Distributed Database Systems,
2/eW,PrenticeHall,1999. .

C. Pu, "Generalized Transaction Processing with Epsilon Serializability",
P m Of 41h International Workshop on High Peq5omnce Transaction
Systems, I 991.

C. Pu, A. Leff, "Epsilon Serializability", Technical Report CUCS-054-90,
Dept. of Computer Science, Columbia University, 1996.

C. Pu, A. Leff, "Replica Control in Distributed Database Systems: An
As ynchronous Approach", Proc. Of ACM-SIGMOD International
Conference On Management of Data, CO, 1992, Pg.: 377 - 386.

C. Pu, A. Leff, "Autonomous Transaction Execution with Epsilon
Serializabiliîy", Proc. Of RIDE Workshop on Transaction and Query
Processing, AZ lEEE Computer Society, Pg. : 2 -2 1.

R. Reed, "Naming and Synchronization in a Decentralized Computer
S ystem", M.I. T Report, MITnCSflR-205, MIT, kiboratory of Computer
Science, 1978.

A. Reuter, "Contract: A Means For Extending Control Beyond
Transaction Boundaries", Proc. Of the niird International Workshop on
High Per$onnance Transaction System, 1989.

K. Rama-tham, P.K. Chrysanthis, "A Taxonomy of Correctness Criteria
in Database Applications", VLDB Journal, Vol. 5, No. 2, 2996, Pg.: 85 -
9 7.

M. Rusinkiewicz, W. mas, T. Tesch, J. Wasch, P. Muth, "Towards a
Cooperative Transaction Model - The Cooperative Activity Model", Proc.
Of the 21" Conference of Very h r g e Data Bases, 1995, Pg.: 194 - 205.

K. Ramamritharn, C. Pu, "A Formal Characterization of Epsilon
Serializabili t y", IEEE Transactions on Kno wledge and Data Engineering,
Vol. 7, No. 6, 1995, Pg.: 997- 1007.

H. Schuldt, G. Alonso, H-J. Schek, "Concurrency Control and Recovery in
Transactional Process Management", Proc. Of the ACM Symposium on
Principles of Database System (PODS 99), 1999, Pg.: 316 - 326.

A. Sheth, J. Larson, "Federated Database Systems for Managing
Distributed Heterogeneous, and Autonomous Databases ", ACM
Computing Surveys, Vol. 22. No. 3, IWO, Pg. : 183 - 236.

H.-J. Schek, G. Weikum, H. Ye, "Towards a Unified Theory of
Concurrency Control and Recovery", Proc. Of the ACM Symposium on
Principles of Da fabase Systems (PODS 93). 1993Pg. : 300 - 31 1.

R. Vingrdek, H. Hasse, Y. Breitbart and H.-J. Schek, "UniSing
Concurrency Control And Recovery of Transactions With Semantically
Rich Operations", Journal of Theoretical Cornputer Science 190 (1998)
pg. 363-396, 1998.

G. Weikum, "A Theoretical Foundation of Multi-level Concurrency
Control", Proc. Of 51h ACM-SIGACT-SIGMOD Symposium on Principles
of Database Systems, 1986, Pg. : 3 1 - 42.

G. Weikum. C. Hasse. P. Broessier, P. Muth, "Multi-level Recovery",
Proc. Of gh ACM-SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Sys~ems, 1990, Pg. : 109 - 123.

G. Weikum, "Pnnciples and Realization Strategies of Multilevel
Transaction Management", A CM Transactions on Database Systems, VOL
16, NO. 1, 1991, Pg.: 132 - 180.

K. W u , P.S. Yu, C. Pu, "Divergence Control Algorithms for Epsilon
Serializability", IEEE Transactions on Knowledge and Data Engineering.
Vol. 9, NO. 2, 1997, Pg.: 262 - 274.

G. Weikum, H. J. Schek, "Concepts and Applications of Multilevel
Transactions and Open Nested Transactions", in Collection, "Database
Transaction Models for Advanced Applications", Morgan Kau@nn
Publishers, 1 992. (Edited by: A. Elmagannid)

