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Advanced transaction models have k e n  the focus of research in the area of transaction 

management. Exarnples of advanced transaction models include nested, mu1 tilevel, flex 

transactions, etc. However, these models have their own shortcomings that can be 

summarized as follows: 

Absence of a mechanism to specify and provide proper global integrity 

constraints (dependencies) that determines the effects on global atomicity. 

Unsuitability of certain transaction models in multidatabase environments. For 

example, ConTract model was developed for cooperative environments and are 

thus not suitable for multidatabase environments. 

A means to characterize the amount of local autonomy affected. For instance, 

Sagas do not address characterization of local autonomy. 

A mechanism to utilize the application semantics and execution dependencies. 

For example, nested transactions do not explicitly address the use of semantics. 

A provision to support multiple transaction execution alternatives. Sagas and 

ConTract are examples of those models that do not provide support for 

functionaily equivalent transactions. 

Scalability to Inteniet environments running advanced database applications. 

Most of the transaction models presented in the literature do not address the 

scalability issues. 

This thesis presents a novel, and Internet-scalable irnplementation of a nested transaction 

model that describes the pragmatic components required to remedy the above 

shortcomings in the form of an abstract modef. It shows that utilizing application 

semantics and revealing partial results in an open nested, multidatabase transaction 

environment aids in charactenzing the dependencies arnong the child transactions. An 

interface mechanism to characterize the level of autonomy at the underlying systems is 

provided. Support for multiple transaction execution alternatives is also provided. 
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"Begin at the beginning ". the king said. gravely. "and 
g o  on tif1 you corne tu rhe end; then stop. " 

- Lewis Carroll. Alice in Woriderland 

Chapter 1 

Introduction and Preview 

1.1 Motivation 

The later part of the 20'~ century observed a remarkable progress in technology pertaining 

to information access and its use. Specifically, we observed the progress of the Internet 

architecture and its use for commerce, and the extensive use of databases to serve the 

commerce itself. The main reason for the progress in the expansion of Internet is the 

sudden and vibrant explosion of its World Wide Web (WWW) facet. The reason for the 

extensive use of databases is frorn the demands for repositories to store the huge amounts 

of different types of data used by electronic commerce. 

It is natural to believe that the combination of these emerging technologies would yield a 

powerfûl means for information access. However, at this time, this is not the case. Why? 

Could it be because Internet expansion is not as functional as we believe it to be? Could it 

be because the databases that already exist are unsuitable as the vertebra that forms the 

backbone for electronic commerce? Or is there another reason that the Internet 



infrastructure is failing to reach its full potential? The expansion of the Internet is 

undeniable. Unfortunately, it is limited by the inertia in the advancernent of the 

infrastructure that forms the backbone of the WWW. Most organizations that have the 

potential to go online are unable to do so because of their own legacy systems. However, 

the primary reason this combination is not powerful is because of the lack of proper 

management of electronic transactions that execute in this environment. Since this is the 

first gencdon  of electronic commerce, many of its participants are still in the 

reengineering phase from the previous generation of non-electronic commerce. But once 

this is complete, increased pressures will be placed on the Intemet infrastructure. 

The problem of transaction management in a multidatabase environment has been around 

for a long time. This mission critical problem has been addressed by several researchers 

working on both the concurrency control and reliability aspects, and the development of 

extended transaction models (ETM). One possible scenario where transaction 

management is required is an online information kiosk. These are interactive web pages 

that guide the online shopper towards a collection of online stores carrying itern(s) of 

interest. Examples of such a collection of online stores are air ticket bookings or car 

rentals. A traveler planning a tour could use the information provided by the kiosk. Other 

situations where transaction management is required are online auctioning, e-business 

web sites handIing major financiai transactions, etc. 

There are many questions that arise when the transaction management problem in MDBS 

is extended to address transaction management issues in an Internet environment such as 

an information kiosk or e-business environments. The questions to be answered include: 

How to realize a multidatabase environment on WWW? 

What is the suitable advanced transaction mode1 that can be used? 

How to enhance the parallelism of the transactions in such an environment? 

How to enhance the performance of transaction management systems that are 

used in Intemet business applications? 



In this thesis an online tour booking application is used as an exemplar while addressing 

the above questions. Clearly this application requires a distributed solution. Hence al1 the 

information is stored in individual databases and can be accessed by online clients. We 

use an extended transaction model for executing the transactions in this environment. 

There are two models of particular interest to this work - Multilevel Transaction Model 

wS84][W86]p9 11 and Open Nested Transaction Model [WS92]. Both these are 

broadly defined as nested transaction models. The former addresscs transaction 

management issues in multi-layered systems while the latter addresses the problem of 

enhancing the parallelism of concurrent transactions. Transactions in the MDBS 

environment (considered in this thesis) are operations invoked by other transactions. 

Hence, the choice of a nested transaction mode1 wiIl serve our needs well. We must 

identify the dependencies between transactions (subtransactions) that exist in the nested 

transaction. The underlying theory in identifying these dependencies is that the 

transactions (subtransactions) can view the partial results of other transactions 

(subtransactions) based on certain conditions specified by the application requirements. 

Further, this choice of model will affect the concurrency control and recovery 

mechanisms that exist in traditional transaction management systems. This work 

contributes a (major) step in providing access to information in a multidatabase 

environment through WWW. 

In Section 1.2 we describe the issues involved in managing transactions in a 

multidatabase environment. Section 1.3 discusses the fundamental research issues of this 

thesis. Section 1.4 presents an ovemiew of the contributions and describes the 

organization of the rest of this thesis. 

1.2 Transaction Management Issues In Multidatabases 

A multidatabase system (MDBS) is an interconnection of several autonomous element 

databases each with its own database management system (DBMS). A multidatubase 

management system (MDBMS) is a software facility developed on top of these element 

database management systems to provide the users access to any underlying element 

database. The transaction management problem in MDBS is critical due to the 



autonomous and heterogeneous nature of the preexisting legacy systems and their need to 

support the ACID properties of transactions. Transactions in a MDBS are either local or 

global depending on how and where they execute (see Figure 1.1). 

Global transactions 

Figure 1.1 A Multidatabase Architecture 

Due to the autonomous nature of the underlying systems in the MDBS, the local and 

global transactions interfere with each other thereby producing undesirable situations or 

inconsistent database states [BHG87]. A solution to coordinate the execution of global 

transactions was not made available because the transactions in the MDBS see 

inconsistent data during their execution. The following sections present the 

characteristics of the MDB environment, properties of transactions, and the necessary and 

sufficient conditions for proper transaction management in a MDBS. 



1.2.1 Autonomy and Heterogeneity 

An MDBS, as defined eariier, is an interconnection of multiple preexisting element 

database systems. These database systems are autonomous and heterogeneous due to their 

design, development and administration [BBE99]. 

Aittonomy of the element database indicates the degree to which the DBMS can operate 

independently without losing control over local data and transactions. Design, 

communication, execution and association autonomies are the different aspects of 

autonomy [SL90]. Due to this nature of the element databases (and hence their DBMS), 

the MDBMS has no control over the following: 

Design of the element databases, 

Local execution schedules, 

Communication between the element databases, and 

Level to which certain functionsloperations can be shared with the users of the 

element databases. 

Heterogeneify is another characteristic of the transaction management problem in a 

MDBS. It refers to the different data definitions, data rnodels, access languages and 

storage structures that each element database c m  have. The more dissirnilx the two 

systems are, the more difficult it is to manage that heterogeneity PBE991. 

1.2.2 Properties of transactions 

A transaction is a sequence of read and write operations on a database. Transactions have 

been charactenzed with the following properties [GR93]: 

Atomieüy: This property indicates that a transaction either executes to its completion or 

does not execute at d l .  That is, a normally terrninating transaction makes permanent 

changes to the database. Othenvise, no changes are made permanent in the database. 



Consistency: This refers to the correctness of a transaction. A correct transaction is a 

prograrn that moves the database frorn m e  consistent state to another. 

Isolation: This property requires each transaction to see a consistent database at al1 times. 

An executing transaction cannot reveal its results to other concurrent transactions before 

it commits. 

Durabifiiy: Durability ensures that once a transaction commits, its results are permanent 

and cannot be lost from the database. 

The atomicity and isolation properties support seriaiizability of transaction management, 

while the consistency and durability prorjerties ensure reliability. Traditionally, it is 

believed that correctness of transactions can be guaranteed only if al1 these properties are 

supported. 

1.2.3 Necessary and Suf'ficient Conditions 

The necessary and sufficient conditions for proper transaction management in a MDBS 

are [B90]: 

Al1 the local database management systems guarantee local synchronization 

atomici ty. 

If an operation of transaction Tl occurs before T2 in a DBMS, then the same is 

true for a11 other operations whether they conflict or not. 

The global transactions cannot be split and concurrently subrnitted to the same 

DBMS. 

The MDBMS must be able to identify ail objects referenced by al1 global 

transactions. 

The MDBMS must be able to detect and recover from global deadlock. 



1.3 Preview : Fundarnen ta1 Research Issues 

The challenges to transaction management in MDBSs are prirnarily due to the nature of 

the MDBS architecture and the properties of the transactions. Both these factors raise a 

number of issues. The rest of this section presents the key thesis element and an overview 

of the key research issues that affect transaction management in a MDBS. Finally, an 

outline of the proposed solution to these issues is provided. 

1.3.1 Thesis of the Thesis 

This thesis broadly addresses the transaction management problern in multidatabases. 

Specifically. an open nested, multilevel transaction mode1 is applied to a multidatabase 

environment characterized by the autonomy of the underlying databases. A set of 

dependencies existing between the transactions (subtransactions) in a nested structure of 

transactions executing in an application-specific domain is identified. Concurrency 

control aspects of the transactions executing within such a framework are studied. 

Specifically, the intra-transaction parallelism of a transaction executing in such a 

framework is studied. Further, it shows that by exploiting the dependencies identified, a 

transaction c m  be processed in many different ways. Finally, an interface mechanism to 

guarantee a high level of autonomy at the element databases is provided. 

To exemplify the thesis, we use a sample application [E92] used to book tours (see Figure 

1.2). It includes the booking of accommodation, air tickets, and car rental. The 

accommodation transaction comprises subtransactions that are used to book a hotel, 

motel, and/or hostel. The air ticket booking transaction comprises two transactions - one 

to book a very basic ticket and the other to book a ticket based on the user's carrier 

preference. The car rental transaction is used to book cars based on the user's preference. 

1.3.2 Key Issues 

In the ps t ,  there have been many contributions and proposals addressing transaction 

management issues in a MDBS. Ail these contributions had their own motivation and 

reasons. However, the key research issues in transaction management in a MDBS 

addressed b y this thesis are: 



Develop an extended transaction mode1 to support transaction management in 

application-specific MDB environments. 

ldentify dependencies between transactions (subtransactions) executing in such 

environments to study intra-transaction parallelism. 

To guarantee a high degree of autonomy at the underlying databases. 

To provide support for multiple, functionally equivalent, transaction execution 

alternatives. 

illustrate how these approaches can be applied to a more general-domain 

environment. 

1 

- 
Accommodation Ticket Rental 

Manager b Manager 4 b Manager 

A 4 

Notifications 

Ticket DB €3 
Figure 1.2 Transaction Hierarchies For A Trip Booking Transaction 

Extended Transaction Models 

Multiple users access a database system concurrently to read and update its data. Such an 

environment is prone to undesirable situations or inconsistent States if there is no proper 



mechanism to interleave the transactions. Concurrency control is the mechanism that aids 

the proper management of interleavings so there is no interference between transactional 

operations of different users. 

Several approaches have been proposed to enhance the functioning of the concurrency 

control mechanism in a MDBS. In this thesis, we categorize the past approaches into 

three generations. Though most of these efforts addressed the transaction management 

issues in a distributed environment. the same solutions are applicable to the MDB 

environments. 

The first-generation approach was to provide a correctness criterion called serializabiliry 

[BHG87][MRB+92]. This required the scheduling of the transactional operations so that 

the result of the execution of such a schedule produced the same output and had the sarne 

effect on the database as some serial execution of the same operations. However, this 

approach proved to be too stringent and needed to be relaxed. Further, this was 

insufficient in the presence of failures. Hadzilacos rH881 proposed the consideration of 

potential failures that could possibly occur in transaction processing environments. This 

resulted in a theory of reliability as it relates to transaction management. Senalizability 

and reliability together form the first-generation solutions that address the transaction 

management issues in heterogeneous distributed database environrnents. 

The second-generation approach focused on relaxing serializability. Naturally, this 

approach allowed some inconsistencies in the database resulting in tolerably undesirable 

situations [ ~ ~ 8 9  J [B~o]  BO~O][PL~O] [MRK+9 1][HB96]. Some rnethods even ignored 

the integnty constraints of the underlying element databases [DE89]. Despite these 

efforts, it was reaiized that the local autonomy in the element databases made it difficult 

to apply traditional transaction management techniques to MDBSs. Apart from the 

above-mentioned efforts, Garcia-Molina [G83]. Lynch [L83], Farrag and 0zsu 

~ 0 8 7 ] ~ 0 8 9 ]  address the concurrency control problem using the semantic knowledge of 

transactions. Alonso et al. [AVA+94], Vingralek et al. [VHB+98], Schuldt et al. [SAS991 

attempt to unify the theory of concurrency control and recovery. 
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Figure 1.3 Revelation of Partial Results 
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Several works were proposed to address the inadequacies posed by the traditional 

transaction processing concepts. Finally, much attention was devoted to the development 

of application-specific transaction rnodels. This resulted in nested transactions 

[Mg t ] [M85], Sagas [ G S S î ]  , multilevel transactions w86] w9 11, etc. These models 

fundamentall y disagree with the notion that conflict serializability is the basic correctness 

criterion. Though the concept of nesting the transactions proved to be an interesting 

concept, it initidly failed to address the autonomy of the element database systems. 

However, nesting of transactions is useful because it allows controlled concurrency 

within a transaction and localizes the potential failures. It was based on the nested 

transaction mode1 that other extended transaction models were proposed. The work 

presented here uses a novel implementation of the nested transaction in a MDB 

environment. In this environment, we observe that a transaction is decomposed into a set 

of subtransactions. Each of these subtransactions is considered to be an operation in the 

context of other transactions. The subtransactions at the lowest level in the nesting 

interact with the element databases. The partial results of such interactions are used to 

detemùne the execution of other transactions so that they need not wait until the entire 

Ticket 
Manager 



result is available. This refemng to partial results is the motivation for identifying the 

transactional execution dependencies. 

One example of a transaction where the partial results can be useful is in a trip booking 

transaction. In Figure 1.3, we show part of the trip booking transaction shown in Figure 

1.2. Consider a trip booking transaction that States that an accommodation may be 

booked ifsome kind of ticket, an economy ticket or a first-class ticket, is available. The 

ticket manager spawns the subtransactions for economy and first-class tickets. The 

outcome of the subtransactions is passed on to the ticket manager. Now, if the economy 

ticket subtransaction executes and produces a result before the first-class ticket 

transaction, then the ticket manager immediately lets the accommodation manager know 

of the result. It does not wait for the outcome (success or failure) of the first-class ticket 

subtransaction. This lets the accommodation manager spawn the accommodation booking 

subtransactions without having to wait for any other results from the ticket manager. This 

type of execution of subtransactions within a transaction enables us to realize the intra- 

transaction parallelism desired. 

Identifying Transactional Dependencies 

Another research issue we deal with is the identification of the different kinds of 

dependencies in an application-specific transaction model. In the case of nested 

transactions or long-lived multilevel transactions, it can be observed that there is a strong 

contention for resources arnong the individual transactions. In such environments, 

transactions waste a lot of time by waiting for other transactions to finish utilizing the 

resources they hold. For example, a transaction may have to wait until its sibling's 

children are in the precommit stage before it can utilize (readwrite) their results. Such a 

nested structure of transactions takes a hieratchical forrn, where a root transaction has 

child transactions, which in turn could have children or be a fiat transaction. 

This thesis argues that a subtransaction can read/write the partial results of another 

subtransaction that belongs to a totally different parent at any level in the nesting. In such 

a nested structure. there is less time wasted contending for resources, thereby increasing 



the performance. However. the challenge is to identify (the strengths of) the dependencies 

between the transactions so as to enforce the correct usage of the precommitted results. 

Hence, based on (the strengths of) the dependencies, the transaction would execute 

differently. This thesis identifies such dependencies between the subtransactions and 

categorizes them based on the manner in which they are going to be used. The 

identification of such dependencies paves the way to study the concurrency control 

(parallelism) aspects within a transaction. In the environment considered in this thesis, 

such parallelism is realized at different levels of the transaction model. 

1 Subjec! 1 Observer 1 Dependency ( 
Econ. Tic 

Ticket DB €5 

Acc. Mgr. 

Notification 
+ 

Figure 1.4 Subtraasactional Dependencies 

Accommodation 
Manager 

Consider a scenario where the dependency relationship at the ticket manager is as shown 

Ticket 
Manager 

in the table (execution dependency database) in the top, right corner, of Figure 1.4. The 

first column in the table indicates the notiwing subtransaction (subject). That is, the 

subtransaction that reveals the results. The second column contains the subtransaction 

that is to be notified (observer). That is, the subtransaction that refers to the revealed 



result. The third column contains the (strength of) execufion dependency. In this case, we 

choose that the availability of an economy ticket is just su@kienr for the accommodation 

manager to start any or al1 of its subtransactions. Hence, upon the positive outcome of the 

ticket transaction (availability of an economy ticket), the ticket manager checks its 

dependency database and notifies the accommodation manager about its results. The 

accommodation manager takes it from there and spawns its subtransactions. The 

dependencies could broadly be either suong or weak, and based on that appropriate 

subtransactions are invoked. A complete treatrnent of such dependencies is the topic of 

Chapter 3. 

1.4 Contributions and Structure of Thesis 

In this thesis, we analyze the problems posed by the above issues and implement a 

solution to address them. This requires the application of a nested transaction mode1 to a 

typical MDB environment and the capture of dependencies between the subtransactions. 

Such dependencies are utilized to study the concurrency control aspects within a 

transaction executing in the framework considered. Due to the nature of the MDB 

environment and the properties of transactions. there is no single cure-al1 for the 

problems mentioned and issues identified above. Specifically, there is no single 

combination of dependencies that could address the problem. We recognize this and aim 

at providing a very generic form of transaction management that could result in different 

processing of the same transaction depending on the combination of dependencies. The 

thesis is exemplified by the exploitation of the sample application that is used to book 

online tours. Throughout this thesis we use the sarne application to explain the different 

components of this thesis. This application uses the inputs from the user for booking a 

very basic tour that includes the booking of accommodation, air ticket and car rentai. A 

multidatabase environment is created using a commercial database system. The 

implementation of the transaction interacts with this environment in the process of 

booking the tour. The interactions are controlled by the specification of the execution 

dependencies arnong several transactions (subtransactions). The results of these 

transactions vary with the specification of the execution dependencies. The 

implementation of the subtransaction managers provides an interface mechanism that 



characterizes the autonomy level of the underlying system. It must be noted that the 

implementation of this thesis provides an abstract framework that c m  be effectively 

utilized by other advanced database applications, such as, online auctioning. information 

kiosks, etc. 

The rest of this dissertation is organized as follows: Chapter 2 provides the necessary 

background and related work in the area of transaction management. Chapters 3 and 4 

fonn the core of this thesis. Chapter 3 discusses the transactional (subtransactional) 

dependencies. An application of the new paradigm is presented in Chapter 4. This chapter 

provides the illustration of an application executing within the abstract transaction 

framework presented in this dissertation. It also includes a discussion on utilizing the 

framework to support a more general domain.of database applications. 

Finally, in Chapter 5, we present a summary of our work and contributions. We present a 

discussion about the general lessons learned from applying the nested transaction mode1 

to a MDBS environment and utilizing the transactional (subtransactional) execution 

dependencies that exist between them. We conclude Chapter 5, and this dissertation by 

providing an outline of future research directions. 



History is the witness thut tesrifies to the passing of rime; 
it illumines reality. vitdizes memoq. provides guidance 

in daily life. and brîngs us  tidings of antiquir).. 

- Cicero 106-43 BC 

Chapter 2 

Background and Related Work 

This chapter introduces the reader to the necessary background and related research work 

in transaction management in multidatabase systems. Section 2.1 provides an 

introduction to multidatabase architecture. In Section 2.2, we discuss transaction 

management in multidatabase systems. Sections 2.3 and 2.4 present the three generations 

of research in this area. The leading open research questions are the subject of discussion 

in Section 2.5. Section 2.6 concludes this chapter with a surnrnary. 

2.1 Muitidatabase Architecture 

Businesses around the world rely on a very wide range of information sources to conduct 

their everyday chores. These sources of information are usually databases whose size and 

structure depends on the size and type of the business. These databases grow with the 

businesses and hence the information is accessed from several nodes. Each node uses a 

copy of the whole database. The existing data is distributed geographically based on 

specific needs. Such a distribution of data results in a situation where the same data is 

stored in dissimilar platforms and dissimilar languages access them. Though these 



dissimilarities pose problems, they enable the sharing of information among 

geographically distributed databases and users. A user of these databases believes only a 

single centraiized database is accessed. Such databases are called distnbuted database 

systems. 

A distributed database system (DDBS) is an information system composed of a 

networked collection of multiple databases that are logically interrelated (see Figure 2.1). 

A distributed database management system (DDBMS) is a software facility that permits 

the management of the DDBS and rnakes the distribution transparent to the users [0~99]. 

Site 1 L-i 
Communication 

Figure 2.1 DDBS Environment (Courtesy: [ 0 ~ 9 9 ] )  

A muIti&tabase systern (MDBS) is a specid case of the distributed database system. It is 

an interco~ection of multiple databases that are characterized by autonomy and 

heterogeneity . A multidatabase management systern (MDBMS) is a software facility that 

coordinates access to the underlying databases. Figure 2.2 depicts a high-level 

architecture of a multidatabase systern. 

The MDBMS is the core component of multidatabase architecture. This is responsible for 

the correct execution of the transactions submitted to it. Each participating database has 

its own database management system called the local datubase management system 



(LDBMS). This is responsible for the correct execution of the local transactions submitted 

to it. The MDBMS has no control over the execution of transactions at the element 

databases. Hence the element databases are charactenzed by some degree of autonomy. 

Further, each of these databases may have their own data mode1 and access languages. 

Hence these databases rnay also be characterized by heterogeneity. 

Global transactions 

Figure 2.2 A Multidatabase Architecture 

2.1.1 Defïnitions: [BE991 

This section provides a brief description of the key definitions used throughout the 

balance of this thesis. 

M m :  An MDBS is composed of a set of local databases (LDB = {LDB,. D B Z ,  ... 
LDBJ), with each managed by its own correspondhg local database management system 

(LDBMS = {LDBMSl, LDBMS, . . . D B M S J ) .  I 



Local Trunsaciions: A set of transactions submitted to LDBMSi (LTi = {LT'~,  LPi, ... 
Lfij ' )  is called local transactions. LDBMSi is responsible for al1 the local transactions 

submitted to it. 1 

Global Transactions: A set of transactions submitted to the MDBMS (GT = {GT!, GT2, 

. . . GT,}) is called global transactions. 1 

Each of these global transactions (GTj) is decomposed into a set of global 

subtransactions. 

Global subtransacrions: A set of transactions obtained froni the decomposition of a 

global transaction. G q  = {GST',,. G S T * ~ ~  . . . GST imjp), where each GST is submitted to 

its corresponding LDBMS. The superscripts in the above set identify the LDBMSs. 

2.2 Transaction Management 

Guaranteeing correct execution of transactions over the MDBS has been the focus of 

research over the past 15 years. Initial research in this area yielded rnultidatabase 

management systems, while lately the focus has been on addressing transaction 

management issues in specific application domains. Nevertheless, the questions framed in 

the initial stages of transaction management research have not yet been answered 

completely . 

Figure 2.2 presented an architectural mode1 of rnultidatabase systems with the depiction 

of local and global transactions. Transactions submitted to the MDBMS are called global 

transactions. These are decomposed into global subtransactions that are then directed to 

specific databases where the corresponding data is located. Transactions posed directly 

against the local databases are local trcznsuctions. These transactions execute under the 

control of the local DBMS. Hence the MDBMS has no control over them. This lack of 

control poses a key challenge to transaction management in a MDBS. Traditionally 

transactions are characterized by a need to support the ACID properties. 



MDBS transaction management is particularly challenging due to the autonomous nature 

of the components in the environment. There are different types of autonomies identified 

by various researchers [SL90][B94]. Further, transaction management is complicated by 

the heterogeneous nature of the element databases. Several solutions have been proposed 

to address the problem with these issues. Earlier research focused on the heterogeneous 

nature of the environment while later the focus shifted towards the autonomous nature of 

the underIying system [BE99]. However, research in these two areas led to several 

solutions that address the transaction management issues in MDBSs. Lately, the focus is 

on providing transaction models based on application domains. This led to the 

development of several transaction models, a discussion of which is available in 

Elmagarmid' s work [E92]. 

2.3 Concurrency Control and Reliability 

Past research considered the transaction management problem in two orthogonal 

dimensions - serializability [BHG87][MRB+92] and reliabiliq [H88]. Serializability 

serves as a correctness criterion to the concurrency control algorithms executing in fault- 

free environments. It is supported by the atomicity and isolation properties of 

transactions. Reliability, in addition to serializability, is a correctness criterion for 

concurrency control algorithms executing in fault-prone environments. It guarantees the 

execution of transactions and persistence of their results. Reliability is guaranteed by the 

consistency and durability properties of transactions. The concurrency control algorithms 

are implemented using locking or tirnestamp ordering concepts PHG871. This section 

presents the various correctness criteria proposed in the past. It is divided into two 

sections that deai with the first-generation and second-generation solutions, respectively. 

The results discussed here have their own versions of concurrency control dgorithms 

broadly based on either locking concepts or timestamp ordenng concepts. 

2.3.1 First-generation Solutions 

The notion and development of transaction models supporting serializability forrn the 

fust generation of research in this area PHG871. The prîmary objective is to achieve 

global serializability. When two or more transactions execute concurrently, operations of 



one transaction rnay execute between the operations of another transaction. This 

execution, known as interleaved execution, may Iead to incorrect behavior in the 

transactions. This eventually leads to undesirable outcornes or inconsistent database 

States. This is called the inferfierence problern [BHG87]. It can be avoided by not 

allowing the transactions to interleave at dl. The resulting execution where no two 

transactions interleave with each other is called a serial execution. The transaction 

system must ensure the execution occurs so that al1 the operations of one transaction 

precede al1 the operations of another transaction. However, from the user's perspective 

both transactions execute atornically. For example, consider a banking transaction 

involving the transfer of money from one account to another, as s h o w  in Figure 2.3(a). 

Begin Transaction Transfer 
S tart ; 
Withdraw (1234, $100); 
Deposit (432 1, $ f 00); 
Commit: 

End Transaction 

Figure 2.3(a) 

Begin Transaction Transfer 
S m ;  
Withdraw (1234, $100); 
Withdraw (1234, $200); 
Deposit (432 1, $100); 
Commit; 

End Transaction 

Figure 2.3(b) 

Figure 2.3 A Transfer Transaction 

The transfer transaction involves two operations - withdraw() and deposit(), each of 

which receive the account number and amount as parameters. Let the account number 

from which the money is transferred be 1234 and the account to which it is transferred be 

4321. Let the initial amount in account 1234 be $200. The result of the execution of the 

transaction shown in Figure 2.3(a) would be a debit of $100 from account 1234. Hence 

the balance in it becomes $100. Suppose there is a withdraw operation (of another 

transaction) occumng on the same account number for $200. The transaction appears as 

shown in Figure 2.3(b). Its execution results in debiting an account that is dready in an 

undesirable state (negative money!). A similar situation occurs to the credited account if, 

for example. a withdraw operation occurs on it before the transfer transaction commits. 



Serializability 

Bernstein et al. [BHG87] describes three forms of serializability narnely, Conflict 

Serializability, View Serializability and Final-state Serializability. Serializability theory 

presents the concurrent execution of a set of transactions using the concept of histories. A 

history is comprised of a set of read and/or write operations. These operations rnay or 

may not be conflicting. Two operations are confïicting if they operate on the same data 

item and at least one of them is a write operation. There are two types of histories in a 

rnultidatabase environment- local and global - representing the execution at the local and 

global levels of the MDBS architecture respectively (see Figure 2.2 on Page 17). 

According to conflict serializability theory, an execution is serializable if it is conflict 

equivalent to a serial execution of the same transaction. A history compnsing such an 

execution is called a concflict serializable history. The histories are analyzed by 

representing their executions in the form of a directed graph called a serialization graph. 

The nodes of a serialization graph are the transactions and its edges define the ordering of 

the operations of the transactions. The serializability theorern States that a history is 

serializable 1 f l  its serialization graph is acyclic. Two histones are said to be equivalent if 

both are defined over the sarne set of transactions, both have the sarne operations, and 

they order the conflicting operations of non-aborted transactions in the sarne way. 

View serializability is defined in the same terrns as conflict serializability. Hence, a 

history is said to be view serializable, if it is view equivalent to some senal history. 

However, these two seriaiizabilities are totally different. Bernstein et al. [BHG87] shows 

that a conflict seridizable history is contained in view serializable. For al1 practical 

purposes earlier research used conflict seriaiizability instead of view serializability as the 

concurrency control correctness critenon because of the requirement to maintain the 

AClDity of concurrent transactions. 

The concurrency control methods are generaily classified into two types - optimistic and 

pessimistic. Optimistic methods assume that. not many transactions conflict with each 

other whereas pessimistic methods believe that, rnost of the transactions conflict with 



each other [ 0 ~ 9 9 ] .  The functional differences between these methods lies in when they 

synchronize the execution of concurrent transactions. 

Reliability 

Research on serializability as the correctness criterion typically assumes that the 

transaction processing occurs in a fault-free or fault-tolerant environment [H88]. 

Practically this is not the case because there are numerous sources of failures. Examples 

include transaction, systern, or media failures as reported by Gray jG811. Hence the 

assumption that al1 the transactions would complete correctly and produce a consistent 

state cannot be substantiated. 

A transaction failure occurs if the transaction is interrupted before al1 its operations are 

processed. Consider the transfer transaction example shown in Figure 2.3(a) on Page 20. 

Suppose the transaction fails after the withdraw operation but before the deposit 

operation. This will result in an inconsistent database state because the money withdrawn 

is recorded while the deposit is not recorded (lost money!). Such transactions must be 

aborted thereby undoing al1 the operations. This is a major focus of the reliability aspect 

of transaction management. 

A system failure occurs due to system crashes or loss of information from the volatile 

storage media. In such unforeseen circumstances, the transaction execution must be 

aborted and the effects of the cornmitted transactions must be undone. In sorne cases, the 

States of the transactions are saved so that, on recovery, the transactions could be rolled 

back to a previous correct state. When a portion of the stable storage media is lost, a 

media failure occurs. These are the other areas that are addressed by the reliability 

mechanisms. 

Based on the notion that seridizability is an insufficient correctness criterion in a fault- 

prone environment, Hadzilacos [H88] proposed a correctness critenon that has three 

dimensions to it. An execution is correct if, at any time, 



1) the committed transactions have been processed in a serializable fashion (Cornmir 

serializable'), 

2) any uncornmitted transaction can be aborted without invalidating the semantics of 

cornmitted ones (Recoverable), and 

3) the "correct" database state c m  always be reconstructed from information stored 

in stable storage (Resilient) 

Cornrnif serializabiliry is a modification of traditional serializability applied only to the 

cornmitted transactions in an execution. This requires the committed transactions in an 

execution be setializable. It ignores the transactions that are obliterated and hence applies 

seriaiizability only to those that committed or run to completion. This notion can be 

applied to conflict and view serializability. 

The Recoverability notion States that the abortion of the uncommitted transactions does 

not affect the semantics of the committed transactions. This notion is closely associated 

with the durability property of transactions. The results of al1 committed transactions 

must be made permanent while those of the uncommitted (aborted) transactions must be 

obliterated. Recoverability has a direct application when cascading aborts need to be 

addressed. Cascading aborts occur when a transaction refers to the results of a transaction 

that has aborted. Though the recoverability notion is evidently powerful it can be 

observed that it is stringent too. 

Resiliency refers to the ability of the system to reconstnict the database to a correct state 

by using the information stored in the stable storage in case of a system failure. This 

works when a system failure occurs but not for a media failure. However resiliency 

depends on the choice of the storage media. For instance, if the environment depends on 

the information in the volatile storage for its reliability (correctness), resiliency 

algorithms utilize the volatile storage to restore the database to a consistent state. But in 

'Commit Serializable', 'Recoverable' und 'Resilient' are rhe r e m  used in [H88] 



rnost cases, reliability information is stored in the stable storage since it survives system 

failures. 

Bemstein et al. [BHG87] describes reliability using histones. They formulate three types 

of histories - recoverable (RC), avoids cascade aborts (ACA) and strict (ST). 

A history is recoverable if each transaction cornmits after the cornmitment of al1 

transactions from which it read. 

A history avoids cascade aborts if a transaction reads only those values that are wntten 

by any cornrnitted transaction or by itself. 

A history is strict if a data item c m  be wntten only after the transaction that previously 

wrote into it terminates (either commits or aborts). 

The concept of recoverabilii-y by Hadzilacos rH881 is related to the concepts of RC and 

ACA presented by Bemstein et al. mHG87) Further, RC, ACA, and ST are similar to 

commit-serializabilicy discussed by Hadzilacos. Bernstein et al. describes the above in 

ternis of prefi commit-closed property . 

It is evident from Bernstein et al. [BHG87] and Hadzilacos [Ha81 that the correctness 

criterion for the concurrency control algonthms must consider not only senalizability, but 

also recoverability. Most research that followed either ignored the reliability aspects or 

attempted to uni@ the theory of concurrency control and recovery. This thesis assumes 

the environment to be fault-free and hence we too are not concerned about the reliability 

aspects of transaction management. 

2.3.2 Second-generation SoIutions 

It was found that many computer applications required a less stringent form of 

concurrency control mechanism than the one supported by conflict serializability. This 

resulted in several works addressing the concurrency control issue by relaxing the notion 



of conflict serializability through the exploitation of serializability at the global and local 

leveis [DE89][B90]@3090][PL90][MRK+9 1 ] [ ~ ~ 9 6 ] .  Garcia-Molina [G83], Lynch 

[L83], and Farrag and 0zsu [~089] address the concurrency control probiem using the 

semantic knowledge of transactions. Alonso et al. [AVA+94], Vingralek et al. 

[VHB+98], and Schuldt et al. [SAS991 attempt to unify the theory of concurrency control 

and recovery. 

Quasi Serializability 

Du and Elmagannid [DE891 introduced Quasi Serializability (QSR) as a correctness 

criterion for concurrency control in heterogeneous database systems. This was primarily 

based on the notion that a heterogeneous database system is hierarchical in nature due to 

the autonorny of element databases and thus maintaining global serializability is very 

difficult. The objective of the effort was to provide a correctness criterion for global 

concurrency control. Further, it realized that two global transactions that do not reference 

cornmon data items could also conflict. These conflicts are called indirect conflicts. QSR 

assumes at most one subtransaction executes at each local site. 

The conectness of an execution in QSR is based on the notion of a quasi-serial history. A 

quasi-serid history indicates that only the global transactions are executed in a serial 

fashion. A history is quasi-serial if: 

1) al1 the local histories are (conflict) sefializable, and 

2) there exists a total order of ail global transactions so that for every two global 

transactions, Gi and G,, Gi precedes Gj in the order and dl Gi's operations precede 

Gj's operations in al1 the local histories in which they appear. 

A history is quasi-serializable if it is (confiict) equivalent to a quasi-serial history. Al1 the 

local histones in a quasi-senalizable history are serializable. Additionally, global 

transactions are executed in a serializable fashion. 



The QSR histones are characterized using Quasi Serializatiort Graphs (QSG). The Quasi 

Serializability theorem States that a global history is quasi-serializable ifi al1 the local 

histories are (conflict) serializable and the QSG for that global history is acyclic. 

The environment mode1 considered by Du and Elmagarrnid guaranteeing QSR is 

restricted as follows: 

1) It must not have any intersite integrity constraints. 

2) A global transaction executing in a site is independent of its execution at other 

sites. 

Multidatabase Serializability 

Barker and Ozsu [BO901 introduced Multidatabase Serializability (MDBSR). This work 

is sirnilar to Du and Elmagarmid's [DE891 QSR because both these approaches consider 

serializability at local and global levels. MDBSR captures serializations at the local 

histories and the history of transactions that are not completely contained at a single 

DBMS. This work is different from QSR because it considers the importance of the 

reliability aspects of transaction management and hence considers transaction 

management more completety than QSR. The central aspect of this study is that 

heterogeneity is orthogonal to autonomy at the element database level. MDBSR considers 

complete local autonomy. As a direct consequence of the assumption about local 

autonomy, there are no value dependencies between data stored in different databases. 

Barker and 0zsu do not consider any replication of data whatsoever. 
4 

The correctness of the execution of transactions is based on the notion of a MDBSR 

history. A history is MDB-serial if (sirnilar to QSR-serial): 

1) al1 the local histories are (conflict) serializable. and 

2) there exists a total order of al1 global transactions so that for every two global 

transactions. Gr and Gj, Gi precedes G, in the order and al1 Gi's operations precede 

G,'s operations in al1 the local histories in which they appear. 



A MDBSR history is considered to be Mm-Serialitable i f l  they are defined over the 

same set of transactions and they order conflicting non-aborted operations the same way 

[BO~O] . 

The MDB-serial histories are analyzed using a variant of the senaiization graph by 

Bernstein et al. [BHG87]. It is called the Multidatabase Serializability Graph (MSG). 

The Muifidarabase Serializability thearem States that a history is MDB-Serializable iff 

it 's MSG is acyclic [BO~O]. 

Epsilon Serializability 

Pu and Leff [PL90][PL9 1][PL92] proposed Epsilon Serializability (ESR) as a correctness 

criterion for concurrency control. This is a generaiization of traditional serializability for 

specific application domains. The purpose of this correctness criterion is to explicitly 

allow a limited arnount of inconsistency in transaction processing. The algorithms 

guaranteeing ESR are called the Divergence Control (DC) rnethods [WYP97]. These are 

the equivalents of concurrency control methods ensuring traditional serializability. 

The Epsilon Transactions (ET) [P91] are classified into queries ( Q ~ ) .  updates (um) and 

regular transactions. The Q% have read operations while any ET with at least one wnte 

operation is a uET. The transaction processing systern identifies the difference between an 

initial database state (u) and a final database state ( w )  after the execution of the ETs. This 

difference is denoted by E, which is the arnount of inconsistency. If the value is greater 

than 'O' or equal to an arbitrary value 'e' (this is the limit). then an ESR log (history) is 

created. This is equivalent to the SR log (history) of traditional serializability. 

A history in this frarnework is calied an ET-wise ESR log. The algonthms take two units 

called import and export units as their inputs. A imports some inconsistency, while a 

urn exports some inconsistency. If the b i t s  of the inconsistency imported (ImpLirnii) 

and exported (ExpiLimit) are greater than zero. the database may degenerate and become 

inconsistent with no bounds. The following table classifies the ETs: 



ExpLimit = O 

Table 2.1 Epsilon Transaction Classifications 

ExpLimit > O 

The DC algorithms employ inconsistency counters to detect the inconsistencies. An 

extension of the two-phase commit algorithrn, the DC algorithm either allows or 

disallows the ETs to proceed depending on the importlexport inconsistency counters. 

Transaction 

The advantages of ESR are [P9 11: 

Q ~ '  

un 

1) It is a generai frarnework. applicable to a wide range of application semantics. 

2) It is upward compatible. since it reduces to conflict serializability when e J O, 

and 

3) It has a large number of efficient supporting aigorithms. 

Unbounded 

Inconsistency I 

ESR, as mentioned earlier, is only suitable for environments that tolerate a limited 

amount of data inconsistency. Further, the database state space must have ail the 

properties of a metric space. Hence this is suitable only for numerical data items, and not 

string data items. Though the authors claim that ESR can be extended to support string 

data items the literature does not cite any such example. Since ESR finds application in 

environments where a certain amount of inconsistency is tolerated, the amount of 

inconsistency must be known in advance. 

Ramamritham and Pu [RP95] formally charactenze ESR. A quantification of the 

inconsistency bounds imported by the ET is presented. They also examine how to ensure 



that only epsilon seridizable histories are produced. Finally. they examine how the 

inconsistency read by an ET percolates to the results of the query. 

Two-level Serializability 

Mehrotra et al. [MRK+9 11 introduce two-level serializability (SLSR) as a correctness 

criterion for concurrency control in heterogeneous distnbuted database environments. It 

attempts to relax global serializabiiity. 

ZLSR requires the projection of the global schedule on the set of global transactions to be 

senalizable and each of the locd schedules to be serializable as well. The environment 

model considered here is the result of the integration of various preexisting databases. 

Though these databases do not have any integrity constraints when considered 

individually, their integration introduces intersite integrity constraints. This makes it 

different from the environment model considered by Du and Elmagarrnid [DE89]. Since 

ZLSR requires the projection of a global schedule on a set of global transactions to be 

serializable and each of the local schedules to be serializable, it can be shown that 2LSR 

schedules are not always serializable [CR99]. 2LSR schedules preserve database 

consistency by exploiting the knowledge about the nature of the intersite integrity 

constraints. Partitioning the data items into two disjoint sets namely. global and local data 

items, aids in exploiting this knowledge. Hence, 2LSR schedules preserve database 

consistency only in certain environment models where the intersite integrity constraints 

are known. 

Transaction Processing Using Semantics 

While senalizability is the correctness criterion guaranteeing database consistency in the 

presence of syntactic information, it can be weakened to enhance the level of concurrency 

when semantic information is available. This is the motivation for research proposed by 

Garcia-Molina [G83], Lynch [L83]. and Farrag and 0zsu [~089]. However. not al1 

applications have the semantic information of transactions. Hence, transaction processing 

using semantics is not possible in dl applications. 



Garcia-Molina [G83] proposed the notion of sernantically consistent schedules and 

sensitive transactions to address the problem of transaction processing in distributed 

databases. A sensitive transaction outputs the data that are seen by the users and those 

data must be based on a consistent database state. A schedule is classified as semantically 

consistent schedule if its execution transforrns the database state to a consistent state and 

al1 the sensitive transactions obtain a consistent view of the database. The transactions are 

classified into a collection of disjoint classes (compatibility sets). Al1 the transactions that 

belong to the same class are categorized, as compatible transactions while the rest are 

incompatible transactions. The compatible transactions can interleave arbitraily while 

the incompatible transactions cannot. This allows two extreme levels of interleaving 

among the transactions. The users specify the semantics by designing their own 

transaction processing mechanisms wherein they incorporate the necessary knowledge 

for interleaving the actions of the transactions withou t violating consistency. S ince this is 

a cumbersome process for the user, Garcia-Molina suggests the use of a transaction 

processing system that accepts the "rules" of the most common semantically consistent 

schedules. 

Lynch [L83] weakens the notion of serializability by permitting controlled interleaving 

among transactions. This weaker notion of correctness criterion is referred to as 

multilevel atumiciîy. Multilevel atomicity supports different views of atomicity for the 

same transaction when viewed by different transactions. This finds use in environments 

where the transaction processing is inherently hierarchical, possibly due to the 

hierarchical nature of the organization. 

A set of operations is grouped together to form a transaction unit. This grouping is done 

for at least three different purposes: (1) to make the operations of a transaction (a logical 

unit) persistent, (2) define atornicity and thereby serializability, and (3) use the grouping 

as a unit of recovery. Lynch argues the use of different units for each purpose mentioned 

above. First, the logical unit must be as large as possible. Since this poses a strong 

serializability requirement. another mechanism is superimposed on the transaction 

mechanism to define atomicity. Hence, the second argument is: the unit of atomicity must 



be as small as possible for maximum concurrency. Third, the unit of recovery can be 

anywhere in between. Lynch uses the concept of breakpoints between such long 

transactions as the point where other transactions interleave. 

For example, consider a money transfer transaction in a banking application [L83]. 

Transfer transactions might be allowed to interleave arbitrarily with other transfer 

transactions. However, a different type of transaction, for instance, an audit transaction 

that retums the total amount in an account, cannot interleave between the transfer 

transactions. That is, the entire audit transaction gets an atornic view of the entire transfer 

transaction and vice versa. Hence, a transfer transaction will have a set of breakpoints for 

other transfer transactions and another set of breakpoints for audit transactions. 

Lynch allows many possible interleavings between the range specified by Garcia-Molina. 

That is, between one extreme where it allows only serializable interleavings and the other 

extreme where the interleavings are unconstrained. The steps of a transaction occurring 

between two breakpoints always occur atomically at least from the user's perspective. 

However, if there are breakpoints only in the beginning and end of the transaction, then 

this reduces to the requirement of traditional serializability. Many other cases are also 

possible depending on where the breakpoints occur. By using breakpoints instead of 

compatibility sets, several levels of compatibilities among transactions are defined. This 

structures the levels of compatibilities in a hierarchical rnanner where the interleavings at 

a higher level encompasses those at the lower levels. 

Farrag and 0zsu ~ 0 8 9 1  use the concept of breakpoints and exploit the use of semantics 

for transaction processing. This work differs from Garcia-Molina's in that, it does not use 

the compatibility sets. It differs from Lynch's because it does not require the 

interleavings to be hierarchical. They specify the notion of consistency by descnbing the 

dlowable interleavings among the transactions that are safe to execute and then ensuring 

that each schedule thus produced is equivalent to a correct schedule. The allowable 

interleavings are specified at each breakpoint depending on the application needs. This 

supports the concept of multilevel atomicity [L83]. However, it is different because the 



interleavings specified at one level does not include the interleavings specified at the 

lower levels. Hence, it does not require the interleavings to be hierarchicd. 

Farrag and 0zsu introduce a new class of schedules called relatively consistent (RC) 

schedules. An RC schediile has an acyciic precedence graph (serialization graph). A 

topological sort of that graph yields a correct schedule. This class of schedules contains 

both serializable and nonserializable schedules. A lock-based concurrency control 

mechanism is presented that produces only RC schedules. 

Though considering the semantics of transactions for transaction processing is an 

interesting concept, there are problems associated with it [G83]. First, it is difficult for 

the transaction processing mechanism to identify the schedules that are semantically 

consistent. Even if the transaction processing mechanism is provided with the 

information about the consistency constraints, there is no way for it to know the semantic 

consistency of the schedules before running them on the database. Second, it rnay be 

impossible to obtain the results of a semantically consistent schedule with any schedule 

that is senalizable. Further, this may be undesirable to some users. Third, the user has to 

specify the consistency constraints to the transaction processing system. 

Unifying Models 

While there are research efforts in the area of providing concurrency control correctness 

criterion, a different school of thought is attempting to unify the theones of correctness 

criteria and reliability [S WY93][AVA+94] [LHL97] [SAS99]. This theory unifies 

atornicity and isolation into a common framework to avoid the shortcomings when 

considering them as orthogonal problems. Schek et al. [SWY93] and Alonso et al. 

[AVA+94] introduce the notion of (prefix-) expanded serializability and (prefix-) 

reducibility for their unified mode1 of correctness critenon. Lee et al. [LHL97] introduce 

a unified approach to global concurrency control and recovery in the MDBS 

environment. Similar to other works in this area, Lee et al. LHL971 do not consider the 

problems of serializability and reliability as two orthogonal concepts. They propose the 

notion of rigid conficf serialimbility (R-SR) that ensures serializability in a distributed, 



fault-free system. They address the recovery aspect of correctness critena in a fault-prone 

system by developing a cantext-sensitive and late redo recovery scheme. 

One of the more recent works in this area is by Schuldt et al [SAS99]. This work applies 

the unified theory to address the transaction process management problern where not al1 

the activities are compensatable and where more generalized transaction properties are 

applicable. An exarnple of such a transaction processing system is Computer Integrated 

Manufacturing (CM) [SAS99]. The unified theory of concurrency control and recovery 

finds its application in the areas of elecuonic commerce, workflow systems, and other 

systems that involve rnany subsystem-level processes that are also transactionai. ln this 

thesis, concurrency control and recovery are considered as orthogonal problems and we 

focus on the concurrency control aspects. Hence, we do not delve further into the unified 

theory of concurrency control and recovery. 

2.4 Advanced Transaction Models / Formalisrn 

The first- and second-generation approaches rnainly aimed at providing correctness 

criterion for a generalized transaction management system. These approaches gave way 

to numerous results that are still being used in many transactional environments. For 

exarnple, conflict serializability is still the most used correctness criterion in al1 

commercial transaction managers. Due to the various environrnents encountered, there 

exists a need for advanced transaction models, which will increase as e-business grows. 

These environments have motivated the development of extended or advanced 

transaction models. We refer to this phase of research as the third-generation approach. 

The following are some reasons why advanced transaction models and new correctness 

criteria have been proposed WS921: 

1) To provide better support for long-lived activities in advanced database 

applications. For exarnple, the daily batch update transactions in a banking 

application or an insurance claims transaction. 

2) To relax the classical ACID paradigm thereby providing more flexibility as to 

when updates are made visible to concurrent transactions. Most advanced 



applications require a less restrictive mechanism of transaction management. For 

instance, in a trip-booking application, strict A C D  properties could have adverse 

effects on the performance of the application. 

3) To capture more semantics of transactional operations in advanced applications. 

Capturing semantics of the application aids in better management of the 

transactions. For example, in long-lived transactions, capturing the semantics of 

the application enables the transactions to access the needed resources with less 

contention. 

4) To enhance (inter-/intra-) transaction parallelism. Extending the concepts of 

transactions based on the application requirement aids in enhancing the 

concurrency aspects of the transactions. 

5 )  To deal with multiple autonomous subsystems in a federated environment. For 

exarnple, a nested transaction model can be easily mapped ont0 a MDB 

environmen t characterized by i ts autonomy . 

Most MDBSs use the concurrency control and recovery algorithrns mentioned in Section 

2.3 (specifically, the first- and second-generation results). However, with the advent of 

advanced transaction models, an imperative need to apply these models to the MDBS was 

realized. Many such transaction models have been applied to MDB environments with 

varying degrees of success [BE99]. This section presents an overview of past research in 

the area of advanced transaction models. 

2.4.1 Nested Transaction Mode1 

This was the fmt advanced transaction model proposed [R78][M8 1 ][M85]. A nested 

transaction is one that is divided into subtransactions each of which are either divided 

further or is composed of only atomic operations (see Figure 2.4). This modeling of 

transactions gives rise to a hierarchy of transactions comprising a top-level transaction, 

subtransactions and Ieaf level transactions. The transactions at the leaf level are flat 

transactions and they are the only ones that interact with the data sources [M81][M85]. 

The higher-level transactions organize the transaction execution flow to invoke the 

subtransactions. The subtransactions' execution is made visible only to the parent after 



the subtransactions reach their precommit stage. The siblings cm never access the 

changes made by other subtransactions. The subtransactions do not necessarily adhere to 

the AClD paradigm unlike the top-level transaction. Hence, the subtransactions may be 

atomic, isolated and consistent but not durable until the top-level transaction commits. 

Further, the subtransactions commit only after the top-level transaction commits. Until 

then, they remain in the precommit stage waiting for the top-level transaction to commit. 

If the top-level transaction aborts for some reason, dl the work done by the 

subtransactions are aborted as well. Hence the durability of the subtransaction is observed 

only upon the cornmitment of the top-level transaction. Such a nested model is called a 

closed nesred transaction model. 

Top-Level Tr. 

Subtransactions 

Leaf-Level Tr. 

Figure 2.4 Nested Transaction Mode1 

Most advanced models are based on the principles of the nested transaction model 

introduced by Reed [R78]. The nested transaction mode1 introduced by Moss [Mg11 

[Ml351 addresses its application in distributed computing and hence is of great importance 

to research in the area of transaction management. When this model is appfied to a MDB 

environment it is observed that the global transaction and the global subtransactions of an 

MDBS superimpose the top-level transaction and subtransactions of a nested transaction 

respectively. If it is a failure-prone MDB environment, then the nested transactions must 

provide recovery mechanisms through, for instance, compensating transactions. 



The nested transaction model is appealing in many ways. The division of a transaction 

into subtransactions provides the following advantages: 

1) Enhances modularity of the transaction, 

2) Enhances intra-transaction parallelism, and 

3) Localizes potential failures. 

The application of this model to an MDBS provides interesting insights and is an area 

under constant research. 

2.4.2 Multilevel Transaction Mode1 

Multilevel transactions are special cases of nested transactions in which operations at a 

particular level are implemented by operations of some lower level of abstraction 

[W86][W91]. A multilevel transaction in a system with n levels Lo, LI. ... L1,+ is defined 

as a tree of height n+ l such that al1 leaf nodes are at the same level, Lo. The nodes of the 

tree are cailed actions that represent executions of level-specific operations [WS92]. 

Whenever two transactions cornmute, their execution sequence does not rnatter. Such 

situations that occur arnong the subtransactions are captured by multilevel transactions 

using a layered hierarchy. That is, multilevel transactions are nested transactions in a 

layered database environment. 

Withdra w (a) Withdraw (6)  Deposit (c)  Deposit (c )  

Figure 2.5 Concurrent Executions of Multilevel Transactions (Courtesy: [WS92]) 



In a multilevel transaction as shown in Figure 2.5. a concurrency control mechanism is 

needed at dl levels so that each higher level (non-conflicting) operation is executed in an 

indivisible manner. However, the conflicts arnong operations at the lower levels have to 

be addressed. The goal of the Li-level concurrency control is to isolate the Lli+l, 

subtransactions from each other. Hence, the high-level operations are executed as 

subtransactions that usually follow a general concurrency control strategy. Recovery is 

made possible using compensating transactions. For example, in Figure 2.5, aborting TL> 

after T, has committed requires two compensating transactions - withdraw (c) and 

Deposit (6). A method of multilevel recovery requires that the transactions are atomic and 

persistent and the subtransactions are atomic as well [WS92]. Further. during a restart, a 

redo must be performed at the bottom level Lo. The compensating transaction can be 

executed in the sarne framework as concurrency control by treating them as additional 

regular expressions. 

This mode1 finds suitable application in an MDBS because it offers a high degree of 

autonomy to the element databases and provides global consistency [BE99]. Though the 

application of this mode1 to MDBS is interesting, defining commutativity of the 

subtrmsactions in such an environment is difficult. 

(a) (b) DK Deposif (c) 

R (a) W(a) R (b) W(b) R (4 Wfc) R I c )  Insert ( y )  W(c) Insert (x) 

Figure 2.6 Concurrent Executions of Open nested Transactions (Courtesy: [WS92]) 



An open nested transaction (see Figure 2.6) is a generalization of the multilevel 

transaction. The difference between the two is that the former allows the transaction tree 

to have different nesting depths. 

The open nested transaction model is different from Moss' [M81][M85] nested 

transaction model because they make the partial results of subtransactions visible to other 

top-level transactions before their parents commit. Clearly, the open nested transaction 

model relaxes the ACID paradigm. The isolation property of the transactions is relaxed 

by exploiting the semantics of the operations and by specifying which transactions are 

"open" and which ones are "ctosed". in an open nested transaction model, atomicity is 

achieved by using compensating transactions. The persistence of a subtransaction in an 

open nested transaction is undone by invoking compensating subtransactions. 

The open nested transaction model finds use in extensible databases, federated databases, 

00 databases, and in exploiting transactions in operating systems. An important 

application, however, is that of exploiting intra-transaction parallelism where, 

concurrency control and recovery aspects are applied to the subtransaction executing 

within a top-level transaction. 

2.4.3 Sagas 

Sagas [GS87] address the delay problems that occur during the execution of long-lived 

transactions (LLT). LLTs hold on to the database resources for relatively long periods 

thereby delaying the execution of shorter and more comrnon transactions. This may be 

due to the transaction accessing a large number of database objects or they have lengthy 

computations, or both. Examples of such transactions include transactions that produce 

monthly account statements in banks, transactions that process claims at an insurance 

Company, etc. The other problem caused by LLTs is the increase in the transaction abort 

rate. Deadlocks occur due to the size of the LLT and the number of objects it accesses. 

These deadlocks eventually result in the abortion of transactions. 



Sagas refer to a LLT that can be broken into a collection of subtransactions that can be 

interleaved in any way with other transactions. Each such subtransaction is a real 

transaction and hence they preserve database consistency. However, al1 the transactions 

in a saga are related to each other and must be executed as a (non-atomic) unit. The 

DBMS guarantees that ei ther al1 the transactions in a saga are successfully completed, or 

compensating transactions are executed to arnend a partial execution. Partial executions 

are undesirable and they must be undone. This type of processing allows a srnalier unit of 

granularity. That is, whenever a portion of the transaction (subtransaction) is completed, 

the resources held by it are released. This significantly increases the concurrency in the 

case of lock-based concurrency contro1 algorithms. 

Sagas require compensating transactions to support recovery mechanisms due to their 

open nature. For each subtrmsaction in a saga, there must be a compensating 

subtransaction. They support forward recovery (aborting) and backwnrd recovery 

(compensating) mechanisms. The isolation property is violated due to the revelation of 

partial results. The arbitrary interieaving of the subtransactions can sometimes violate the 

consistency property. 

When sagas are applied to MDBSs, local autonomy is not severely violated because each 

element database sees each subtransaction as a local transaction managed by the element 

DBMS. Providing compensating transactions is a major difficulty in the case of sagas. 

Hence, sagas are useful in compensatable environments. They cannot be applied in 

scenarios where a transaction is irreversible, such as drilling holes. Nevertheless, sagas 

are appealing to compensatable MDB environrnents because they have minimal effects 

on the autonomy of the element databases. 

Garcia-Molina et al. [GGK+91] provides a generdization of sagas called the nested 

sagas. For example, the activities in a data processing application can be implemented as 

nested sagas. In such applications, each subtransaction (saga) is treated as an independent 

activity that is further divided into its own sequence of steps and compensations. Any 

step 'X' in such an activity "thinks" that each of its subactivities are a collection of steps. 



Further, an activity at a higher level may "think" that the activity 'X' is composed of 

several steps. Hence, aborts are propagated both up and down the tree of nested sagas. 

2.4.4 Flex Transaction Mode1 

The Flex transaction mode1 [ELL+90] specificaily addresses the transaction management 

issues in a MDB environment. It identifies the chdlenges posed by the autonomy of the 

underlying system and provides an extended transaction mode1 with the following 

features : 

allows composition of flexible transactions, 

supports the concept of mixed transactions, and 

incorporates the temporal aspects of transaction processing. 

Flexible transactions are based on the concept that a global transaction can be frequently 

completed successfully in  more than one way. This implies that the global transaction is 

decomposed into a set of functionally equivalent subtransactions. For example, in a tour 

booking application, two transactions that book an air ticket on two different carriers to 

the same destination are said to be functionally equivalent. The global air ticket 

transaction can have different subtransactions that c m  accomplish the same task in 

different ways. The processing of the transaction continues even if one of the alternatives 

(subtransactions) fails. Such composition of transactions is calledflexible transactions. 

It is not necessary that al1 the subtransactions execute completely for the correct 

completion of the global transaction. This implies that atomicity at the global level is 

violated. However, the global subtransactions execute in an atomic fashion. The 

specification of the transaction execution alternatives implies the specification of the 

violation of atomicity. This specification must fit into the execution dependency existing 

among the subtransactions. These dependencies determine the legal execution order of 

the subtransactions and hence need to be specified when specifying a global transaction. 

Two types of dependencies exist - positive and negative dependency. These dependencies 

are actually the global integrity constraints used to maintain global consistency. 



A positive dependency exists between two subtransactions t l  and t l ,  if t ,  waits for the 

results of tz before it starts. 

A negative dependency exists between two subtransactions tl and t2 if t ,  waits for to 

execute and fail. This is useful in cases where the results of 21 are preferred over the 

results of t l .  

Mixed transactions are a combination of compensatuble and non-compensatable 

transactions. A compensatable transaction is one for which a corresponding transaction 

can be specified which semantically undoes the effects of the committed transaction. This 

results in the violation of the isolation property. However, this results in enhanced 

concurrency, because this concept allows the global transaction to reveal its partial results 

to other transactions before it comrnits. A non-compensatable transaction is one for 

which a compensating transaction cannot be specified. For instance, a transaction that 

drills a hole or fires a missile cannot be undone after it cornmits. Flex transaction model 

allows the processing of both compensatable (open nested transactions) and non- 

cornpensatable (traditionai flat transactions) transactions. In other words, it allows the 

processing of mixed transactions. 

Due to the autonomous nature of the underlying system, the local database management 

systems decide on when to submit the global subtransactions. For instance, a bank 

transaction involving two banks in two different time zones could be processed at two 

different times [ELL+90]. In such cases, the temporal aspects of transaction processing 

rnust be taken into consideration. Flex transaction model does exactly that by associating 

a temporal predicate with each subtransaction. The temporal predicate indicates the time 

when the subtransaction should be executed. Other than this, the MDB environment has 

another temporal aspect to it - transaction cornpletion t h e .  This is the time within which 

a paaicular transaction must be completed. Fiex transaction model uses these aspects of 

transaction processing in implementing the transaction scheduling mechanism. 



A p m  from its application in MDB environments. Flex is also applicable in CADKAM 

and CASE databases. 

2.4.5 ConTract Transaction Model 

Reuter IR893 describes a model for managing long-lived complex transactions in 

traditional transaction processing systems. A global transaction is divided into 

subtransactions (a sequence of steps) that are capable of defining how control must flow 

among themselves. Foward recovery and backward recovery mechanisms are suggested. 

Forward recovery suggests that the state information of al1 the transactions must be 

maintained. A compensating mechanism is required to support backward recovery. Due 

to its open nested structure the problems of sagas express themselves in this mode1 as 

well. 

The ConTract model is unsuitable in a MDB environment because it affects local 

autonomy to a large extent. The model is suitable only to those MDB environments in 

which: 

1) ail participating DBMSs can Save the state information, and 

2) the global transactions can be decomposed to global subtransactions and only a 

single global subtransaction is required at each participating element database, 

and whose visible two-phase commit cm comrnunicate the state information back 

to the MDBMS to ensure recovery. 

Both these environrnents may eventually be realized, but they will not be true of ail 

foreseeable MDBSs [BE99]. 

2.4.6 ACTA 

Chrysanthis and Rarnamritham [CR901 [CR911 [CR941 propose ACTA as a 

comprehensive transaction framework that facilitates the forma1 description of properties 

of extended transaction models. The need for a frarnework was realized due to the Iack of 

functionality and efficiency of traditional rnodels in complex applications. Examples of 



suc h complex applications include, C ADIC AM, software development environments, 

object-oriented databases. stock trading databases, etc. Efficiency refers to the throughput 

demands placed on these systerns, while functionality refers to the applicability of certain 

transactions in certain environments. For instance, the traditional transaction models were 

developed for short-lived transactions executing in cornpetitive environments, while 

current applications require long-lived, interactive transactions running in collaborative 

environments. The simplest form of complex transactions executing in complex 

applications are Moss' nested transactions [M8 1][M85]. 

The semantics of transaction interactions are expressed in terms of transactions' effects 

on the commit and abort of other transactions and on objects* state and concurrency 

status (See Figure 2.7). 

The ACTA framework also allows for specifying the structure and the behavior of 

transactions as  well as for reasoning about the concurrency and recovery properties of 

transactions. The structure of the transaction refers to the nesting structure of a 

transaction, and the behavior refers to the operations invoked by a transaction. 

On Transactions O n  Ob-jects 

Intertransaction 
Depedency 

View of Conflict Set Delegation 
Transaction of 

Transaction 

Figure 2.7 Dimensions of the ACTA framework (Courtesy: [CR94]) 

The behavior of a transaction processing system is determined by the behavior of the 

transactions executing in it and the objects manipulated by these transactions. In ACTA, 

the interactions arnong the transactions are expressed in terms of the transactions' effects 

on other transactions and the transactions' effects on the objects they access. 



The effects of a transaction on other transactions are captured using the dependencies that 

exist among these transactions. There are two possible dependencies - commit and abort, 

collectively known as completion dependencies. A complete treatment of dependencies is 

available in [CR94]. 

A cornmir dependency between two transactions, A and B, indicates that A cannot commit 

until B either commits or aborts. The reverse may not be always m e .  

An abort dependency between two transactions, A and B, indicates that A must abort if B 

aborts. However, it does not imply that A must commit if B cornrnits and B must abort if 

A aborts. 

Transaction effects on objects are captured by the introduction of a View Set and an 

Access Set, and by the concept of delegation. Each object is characterized by its state and 

status. The state of the object is represented by its contents. This changes when a 

transaction accesses the object and modifies its contents. The status of an object is 

represented by the synchronization information associated with the object. It changes 

when a transaction perfoms an operation on the object. These concepts affect the 

visibility and other ACID properties. 

Every transaction is associated with a set of objects that contains al1 the objects 

potentially accessible to the transaction. This set is cailed the View Set. This restricts the 

effects of the transactions on objects. 

The objects already accessed by the transaction are contained in another set, cailed the 

Access Set. The objects accessed in the View Set become the rnembers of the Access Set. 

These objects continue to be accessible to the transaction. The objects in the View Set are 

accessed by a transaction based on ihe concurrency control status of the object. 



A transaction may delegate responsibility for finalizing its effects on some of the objects 

in its Access Set to another transaction. This is done by rernoving the objects from the 

Access Set of the first transaction (delegator) and adding them into the Access Set of the 

second transaction (delegatee). This process is called delegation. 

Finally, the ACTA formalism can be used to show the correctness of a particular 

specification of a transaction model. 

2.5 Leading Open Questions 

Sections 2.3 and 2.4 presented several research efforts in the area of transaction 

management, concurrency control and recovery in multidatabase systems. Each 

generation of research provides solutions that address several issues of transaction 

management. The first-generation of research pnmarily dealt with systems classified as 

'traditional transaction processing systems'. The solutions provided were suitable to 

those environments that are ideal where there are no pedormance requirements or failures 

occumng. However, such ideal systerns rarely exist. Hence, the application of the results 

frorr, the fmt-generation research finds little use when applied to specific domains. 

However, those results laid the foundation for further research and are still considered to 

be important. 

The second-generation realized the need for more efficient methods of transaction 

management. This gave raise to few dimensions of research where the conservative 

approaches are enhanced by either relaxing the constraints in the environment or 

modifjhg the environment itself. For exarnple, most researchers felt the need to relax the 

correctness cntena for concurrency control and ACID properties of transactions. These 

efforts paved the way to several results that attempted to relax global serializability. The 

highlight however was finding that semantic knowledge of transactions aids in enhanced 

transaction management. However, the problem of providing semantic information to 

transaction processing system still exists. 



The third-generation of research realized the necessity of extending the existing 

transaction models so that they c m  fit a particular problem domain. Severd transaction 

models were proposed, each based on a specific application domain. Each model has its 

own concurrency control and recovery rnethods. Almost al1 transaction models are 

broadly based on the nested transaction model [R78][M81][M85]. The application of 

semantic knowledge in such transaction models helps in leveraging the efficiency of such 

models. However, the specification of semantics still remains a problem. Most of these 

transaction models have been developed for traditional transaction processing systems or 

distributed database systems. The application of such systems to a MDBS is an 

interesting research area. Nested transaction model provides interesting results when 

applied to an MDBS. Sagas could be applied to MDB environments, but only to those 

that are compensatable. This is also the case for most of the transaction models that have 

a flavor of open nested-ness in them. In compensatable environments, providing 

compensating transactions to support backward recovery is a difficult task. We do not use 

sagas in our environment because of the nature of the transactions executing in Our 

environment. Sagas are attractive if the transactions are primarily long-lived and 

compensatable as is the ConTract model. ConTract is not a solution to the MDB 

environment considered in this thesis because it violates the autonomy of the element 

databases. Flex transactions [ELL+90] are very interesting to this thesis. Our goal of 

providing multiple (transaction) execution alternatives is similar to their approach. 

However, as we explain our paradigm, the differences between the models become 

evident (see Chapters 3 and 4). 

With the knowledge of several research efforts in the area of transaction management in 

MDBS, we identify the following problems: 

1) Development of transaction models suitable to address the transaction 

management issues in a MDBS that is used as a back-end in an Intemet 

environment for specific application domains. and then generalizing the same. 

2) Automatic generation of the semantic information of the transaction (specifically) 

and the application (broadly), 



3) Exploiting transactional dependencies to enhance the concurrent execution of 

transactions, 

4) Development of a correctness criterion for concurrency control in such transaction 

models, 

5) Modifying the MDB environment at the operational level to support the 

transaction model and associated concurrency and recovery methods, 

6) Characterizing the local autonomy interface, and 

7) Development of standards for transaction processing in Internet environment. 

This chapter started with the discussion on the multidatabase architecture and transaction 

management problem. Section 2.3 discussed the various approaches to the transaction 

management problem. The discussion covered the fmt- and second-generation research 

efforts. Section 2.4 provided the third-generation research efforts that attempt to develop 

application-based transaction models. Based on the background matenal and related work 

discussed in Sections 2.3 and 2.4, Section 2.5 outlines the various leading research 

problems in the area of transaction management. 

We observe that the past research efforts do not address the entire range of issues 

identified. We use the materid discussed in this chapter as a platfonn for Our work. 

Chapter 3 discusses the transaction execution dependencies identified in our model 

followed by a discussion of the results from Our experiments with it. 



The significanr problems we face cannor be solved ut the 
sanie level of thinkiftg rve were at when we created riiem. 

- Alben Einstein 

Chapter 3 

Transaction Mode1 and Execution 
Dependencies 

This chapter describes our transaction mode1 and transaction execution dependencies. 

Although Ehikioya and Barker [EB97] provide a forma1 treatment of execution 

dependencies using the concept of causality, it is more mathematical than how we treat 

them here. We start with the introduction and description of the mode1 followed by a 

discussion on execution dependencies. We formally define the execution dependencies 

followed by a discussion descnbing how to exploit them within the frarnework of our 

transaction model to enhance intra-transaction parallelism and provide multiple 

transaction execution alternatives. 

The research goal is to develop a transaction model and identify the execution 

dependencies in it to provide enhanced intra-transaction parallelism thereby producing 

multiple transaction execution alternatives. The requirement for an advanced transaction 

model exists for al1 the reasons explained in Chapter 2. htra-transaction parallelism is of 

high importance in any transaction processing environment that uses any form of nested 

transaction model. Most business applications can be mapped into a multidatabase 

architecture at the data source level. This illustrates the autonomy problem inherent in 



such systems. Care must be taken to preserve the autonomy of such systems. Any 

application running on such systems must be developed so it does not violate the 

autonomy at the element databases. 

Present day applications involving transaction processing require the systern to be 

tolerant to subtransaction failures. That is, the MDBS transaction must not fail 

completely just due to the failure of a part (subtransaction) of it. This requirement is 

experienced in many environments that provide a choice for achieving a generd "global" 

goal. For instance, an air ticket reservation system helps a travel agent book the same 

ticket on multiple carriers. This implies that the system uses multiple transactions, al1 

with the same objective, that is, to book an air ticket to the same destination. 

Section 3.1 introduces Our transaction model. In Section 3.2 we discuss execution 

dependencies. A discussion of exploiting the execution dependencies within the 

framework of our transaction model to enhance intra-transaction parallelism is presented 

in Section 3.3. It also discusses multiple execution alternatives. This chapter is once again 

conciuded with a sumrnary. 

3.1 Transaction Model: Description 

Chapter 2 introduced the reasons why advanced transaction models are needed. Keeping 

those reasons in perspective, we develop a transaction model (see Figure 3.1) suitable to 

serve a certain domain of applications. RecalI the primary requirements of an advanced 

transaction model from Chapter 2 (Page 33). 

An advanced transaction model must provide better support for long-lived activities. It 

must aiso provide mechanisms to relax the ACID paradigm thus helping to capture the 

semantics of the operations. These requirements also yield (inter-/intra-) transaction 

parallelism. Further, they provide support to transactions executing in a federated 

database environment. 



In addition to the above reasons, present day applications require multiple alternatives for 

transaction execution to minirnize the effects of subtransaction failures. We attempt to 

relax the ACID paradigrn of transactions to irnplement an open nested transaction model 

in a MDB environment. Further, at an operational level, we realize a multi-layered 

architecture. This becomes evident as we descnbe Our model. 

Execution Dependency Dahbase 
Root Transaction 

Figure 3.1 Transaction Mode1 Architecture 

Our transaction model is a nested transaction one defined over a MDB environment. The 

subtransactions reveal their partial results and hence we have an open nested transaction 



rnodel. While this mode1 uses an MDB environment as the underlying source, its 

implementation uses layered architecture of databases and subtransaction managers to 

characterize the autonomous interface to the underlying systems (see Figure 3. I on Page 

50). 

Figure 3.1 shows a generalized nested transaction mode1 of nesting depth. n=3. The root 

transaction has three subtransactions each of which has subtransactions. The 

subtransactions at L2 aiso act as managers denoted with the name of the transaction, 

suffixed by 'Manager'. For example, the manager at a subtransaction arbitrarily named 

7ï is denoted as '72Manager'. Each subtransaction is an object with two roles - 

'subtransaction ' and 'subtransaction manager'. The managers exist just below the root 

level though they can exist anywhere between there and just above the leaf transactions. 

For example, suppose a nested transaction has 'n' ievels. The levels are numbered so the 

smallest ordinal is the root and the largest ordinal is the leaf. The transaction would 

appear as shown in Figure 3.2. 

Managers at Lz 

Managers ut LJ 

II) 

Managers ut L.,,., , - 
Figure 3.2 Example Nesting nlustrating Positioning of Subtransaction Managers 

The subtransaction managers could be anywhere between L2 and L(..,, inclusive. as 

shown using dark arrows in Figure 3.2. The rationale behind placing subtransaction 

managers at those levels is to maintain the autonomy of the underlying system as much as 



possible. It is observed that if the managers are at a lower level, closer to the ieaf 

transactions, then the amount of autonomy violation is more than when the manager is at 

a higher level, closer to the root transaction. Each subtransaction manager has a database 

of execution dependencies that its subtransactions have with others within a MDBS 

transaction. For instance, consider the managers shown in Figure 3.1 on Page 50. It cm 

be seen that the managers are at L2. These could have been positioned at any of the other 

levels in the transaction model too. However, it can be observed that if the managers 

were at a level lower than the current level, then the autonomy of the databases is 

violated to a larger extent than when they are above the current level. The reason for this 

violation is the amount of communications between the managers at the underlying 

systems in the former case than their management systems in the latter. Execution 

dependencies are discussed in Section 3.2. 

The database at the subtransaction managers contains information about the 

subtransactions that are (execution) dependent and the type (strength) of dependency 

between them. After a subtransaction produces a panid result, it notifies its parent 

(subtransaction manager) about the same. The subtransaction manager looks into the 

execution dependency database to check for the dependencies its subtransaction has with 

other subtransactions. Based on the dependency it shares with other subtransactions, the 

corresponding subtransaction managers are notified of the partial result. On receiving the 

notification, the subtransaction managers at the receiving end spawn their 

subtransactions. Meanwhile the notiQing subtransaction may have executed al1 its 

subtransactions (if any) to completion and the availability of al1 those results are also 

notified to other subtransactions based on the information in the execution dependency 

database. This process repeats until the root transaction's objective ("global" goal) is 

accomplished semantically. 

Letting other subtransactions know of partial results violates the isolation property of a 

transaction. Conversely, the violation of the isolation property implies the use of the 

principles of an open nested transaction model. However, the intra-transaction parallelism 

is enhanced for the same reason. The concept of managers yields multi-layered database 



architecture above the MDB environment. The execution dependency database contains 

the information about the subtransactions participating in the dependency relationship 

and the type (suength) of dependency. This allows one or more subtransactions to 

observe one or more other subtransactions until the latter produces a necessary (partial) 

result. The former set of subtransactions is cdled observers while the latter set of 

subtransactions is called subjects. The notification is sent to the observers based on the 

type of dependency existing between them. These dependencies (See Section 3.2) are the 

global integrity constraints and are irnplernented only at the subtransaction levels. 

Definition 3.1 

Observers: A set of subtransactions observing another set of subtransactions whose 

(partial) results could be of potential use to execute its own atomic operations or their 

subtransactions. 1 

Definition 3.2 

Subjects: A set of subtransactions observed by another set of subtransactions so the 

formers (partial) results have potential use to the latter to execute its own atomic 

operations or their subtransactions. m 

For example, given a MDBS transaction T, with 4 subtransactions STI, ST2, ST3, and 

ST4 contributing towards achieving a "global" objective. if STI and ST3 are (execution) 

dependent on the partial results of Sn and ST4, then: 

1)  Observers = {STI,  ST3} 

2) Subjects = /Sn, ST4) 

Note that the observers may also behave as subjects and vice versa in the context of other 

subtransactions based on application sernantics. The violation of autonorny is minimal 

when the constraints are closer to the root level and more when they are doser to the leaf 

level. Hence, based on the specification of the global transaction, different transaction 

executions can be realized with varying degrees of autonomy violation. It is observed that 



the autonomy violation increases as the subtransaction managers are moved toward the 

leaf transactions. The positioning of  the subtransaction manager defines the interface that 

characterizes the autonomy of the underlying MDB environment. 

Our transaction model is broadly based on the open nested transaction model. However, 

at an operational level we observe multi-layered architecture comprising execution 

dependenc y databases and subiransaction managers over the MDB environment. The 

concept of subtransaction managers characterizes the violation of autonomy of the 

MDBS architecture. Partial results are exposed due to the openness of the transaction 

model. This results in the violation of the isolation property thereby relaxing the ACID 

model. 

3.2 Execution Dependencies 

Advanced transaction models are designed to cater to specific application requirements in 

a distributed database system. When these models are applied to MDB environments, the 

characteristics of the MDBS add to  the complexity of the transaction management. 

Specifically, the autonomy of the element databases affects the execution of a MDBS 

transaction. Execution dependencies extend the semantics of the transaction model to 

enhance intra-transaction parallelism thereby providing multiple execution alternatives 

when a part of the MDBS transaction fails. This is similar to the flexible transactions in 

Elmagarrnid's Flex transaction model ELL+90]. The transaction in the Flex model is a 

two-level nested transaction whereas in Our model the transaction could have an arbitrary 

number of nesting levels. However, the similarity in these approaches is the provision of 

multiple execution alternatives using functionally equivalent subtransactions, and 

maintaining a high degree of autonomy at the underlying systems. 

Certain applications require extensive use of semantics to ensure the successful 

completion of the MDBS transaction. The reasons are: 

1) to enhance parallelism within a transaction, 



2) the application may require the use of multiple choices of execution to achieve a 

global objective, and 

3) the subtransactions may fail to produce a certain expected result (for exarnple, an 

air ticket reservation in a particular airline). 

The above reasons are the motivations for the development of Our transaction mode]. 

Further, these motivate us  to find the execution dependencies existing among the 

subtransactions to enable us to enhance the intra-transaction parallelism. We are also 

required to categorize the dependencies based on the application requirement. At the 

same time, the MDBS characteristics require us to maintain the degree of autonomy at 

the element databases at the highest level. Al1 these reasons lead us to characterize 

execution dependencies into three types: F, N and B as defined in Definition 3.3. 

The 'F* dependency takes the highest priority over the 'N* and ' B *  dependencies if they 

al1 exist arnong the same set of observen and subjects. In the absence of 'F*  dependency, 

' N p  dependency is superior to the 'B' dependency. They are useful when they provide 

results that add more meaning to the semantics of the MDBS transaction. One exarnple is 

when an economy air ticket is upgraded to a business class ticket in an air ticket 

transaction. This does not change the semantics of the air ticket transaction. The failure of 

the transactions that have a 'B' dependency also does not affect the semantics of the 

MDBS transaction. For example, suppose the booking of a window seat in a preferred 

carrier fails but there is some other seat available in the same carrier. The air ticket 

transaction's semantics of booking a ticket to a particular destination on that particular 

carrier are still vdid. 

Definition 3.3: 

Execution Dependency: An execution dependency (ED) exists between a srrbject 

subtransaction and an observer subtransaction of a global transaction based on a 

dependency that is suficien?, necessary, or bonus. Thus ED is defined as  a triple as 

follows: 



where, 

S is a subject subtransaction, 

O is an observer subtransaction, and, 

D is a dependency from the set {F ,  N, BI 

where, 

F is sufficient, 

N is necessary, 

B is bonus. 

The suficient dependency (F) between subject and observer subtransactions indicates that 

the (partial) results of the former is just sufficient to trigger the latter's execution. 

However, the necessary dependency (N) between subject and observer subtransactions 

indicates that the (partial) results of the former is necessary to tngger the latter's 

execution. The bonus dependency (B) is utilized in enhancing the semantics of the 

application. However, as mentioned earlier, the sufficient dependency takes priority over 

the necessary and bonus dependencies in case of concurrent executions to enhance the 

hua-transaction parallelism. Similarly, the necessary dependency takes priority over the 

bonus dependency when both exist between the same set of subject and observer 

subtransactions. 

The execution dependency information is available in the execution dependency database 

at the subtransaction managers of Our transaction model. This information is used for two 

purposes: 

1) to enhance the intra-transaction parallelism in an MDBS transaction through the 

extension of transaction semantics, and 

2) to provide multiple execution alternatives to achieve the global objective of a 

MDBS transaction. 



Depending on the type (strength) of dependency, the MDBS transaction execution flows 

differentiy. Multiple execution alternatives are automatically realized in this model. 

Hence a MDBS transaction can be successfully completed through the execution of 

various sets of its subtransactions with enhanced intra-transaction parallelism. 

Example 3.1 

Consider an online client booking an accommodation as part of his trip. He rnigtit want to 

reserve accommodation only if he has an air ticket. Hence the constraint for the execution 

of the accommodation transaction is the successful completion of the air ticket 

transaction. This implies an execution dependency between air ticket transaction (subject) 

and accommodation transaction (observer). For this example, let us assume that the air 

ticket transaction executed successfuHy. There are different types of accommodation the 

client could request. For instance, he could reserve a hotel, motel or hostel. Based on the 

clients' requirements, there are multiple transaction execution alternatives available. That 

is, he could either book a hostel or a motel if the hotel subtransaction fails. 

The client spawns the trip transaction. The accommodation and air ticket transactions are 

the subtransactions of the trip transaction. According to the semantics of the trip 

transaction, the execution of the accommodation subtransaction depends on the 

s~ccessful completion of the air ticket subtransaction. On successful completion of the air 

ticket subtransaction, it notifies the accommodation subtransaction of the sarne. At this 

point the accommodation subtransaction spawns its subtransactions (hotel, motel and 

hostel subtransactions). If the hotel subtransaction fails, and the functionaily equivalent 

motel or hostel subtransaction retums a positive result, then the trip is booked based on 

what is available (provided the client is also happy with the booking!). rn 
The execution dependencies are present in the subtransaction manager's lookup database. 

Ail the subtransactions look up their execution dependency database after they obtain a 

partial result from their children. That is, a subtransaction that has a partial result notifies 

the dependent subtransactions based on the information in the lookup database at their 

manager. If al1 three dependencies exist between the sarne observer and different 



subjects, the subjects first notify the observers with which they have an 'F'  dependency. 

The observer starts to execute just after it receives the notification from the subjects' 

managers. An 'F' dependency is given priority to decrease the wait time of the observer 

subtransaction. This directly enhances the intra-transaction parallelism in a MDBS 

transaction. Each observer subtransaction is either subdivided, or is a flat transaction. Al1 

the subtransactions of the observers provide muitiple transaction execution dternatives. 

That is, any execution of the observers' subtransactions yields results that satisfy a 

cornmon goal (maintains the semantics) of their parent transaction. For instance, an air 

ticket subtransaction couId have subuansactions; one each for an economy ticket and a 

first class ticket. Both these subtransactions provide a common goal of booking a ticket to 

the same destination (this is specific to the application). 

Identifying these dependencies aid us in two ways as is evident from the preceding 

discussion: 

1) To use them in enhancing the intra-transaction parallelism, and 

2) To provide multiple execution alternatives by extending the semantics of the 

application. 

The exploitation of semantics and the dependencies to enhance intra-transaction 

parallelism affects the AClD mode1 and the autonomy of the element databases. However 

through the use of subtransaction managers, we maintain a high degree of autonomy. 

This, in fact. can be tuned based on the needs by shifting the subtransaction managers 

either upward in the hierarchy to achieve higher degree of autonomy (useful in MDBS) or 

downword in the hierarchy to achieve a lower degree of autonomy (useful in generd 

distributed database s ystems). 

3.3 Discussion 

The execution dependencies are specified at the start of the MDBS transaction. These 

dependencies are stored in the appropriate subtransaction managers based on 

participating subtransactions. It is stored in the lookup database dong with the observer 



and subject subtransactions. The managers are present at the subtransaction levels only. 

The positioning of the subtransaction manager decides the charîcterization of the 

autonomy interface of the underlying MDBS architecture. 

Execution Dependency Database 
Root Transaction 

Violarion 

Subject Observer 

T21 Tl  

T22 Tl 

Isolation 

Dependency 

N 

F 

Figure 3.3 An iilustration of Execution Dependency 

Consider the transaction illustrated in Figure 3.3. The root transaction has two 

subtransactions Tl and ï2. TI has three flat subtransactions T I I ,  Tl2  and TI3.  IZ is 

divided into two subtransactions R I  and 222. The subtransaction managers are present 

at level L2 where the subtransactions TI and ï2 are present. The execution dependency 



database is present at the subtransaction managers. Actually, each of these 

su btransactions plays two roles at the sarne time - 'subtransactioris ' and 'subtransaction 

managers'. The subtransaction managers use the execution dependency database. The 

execution dependency database has information about its subtransactions and the 

dependency it shares with other subtransactions in the hierarchy. 

Figure 3.3 shows the execution dependency information available at RManager .  It 

shows that subtransaction RI is the subject of observer TI with a dependency 'N' and 

'122 is the subject of observer Tl with a dependency 'F'. From the definitions of 

dependencies it can be said that TI executes if it receives the partial result (722) from 

m a n a g e r .  This is because an 'F' dependency takes priority if there is such a 

dependenc y between the sarne observer and different subjects in the execution 

dependency database. However, in the absence of an 'F' dependency, 'N' dependency 

takes priority, if one exists. Suppose 72 starts executing 721 and 7î2. Once it receives 

results from ï î 2  before 721 executes to its completion, the ï2Manager looks up the 

execution dependency information and notifies TlManager about the available partial 

result. This is because the dependency information specified States that 122 results are 

just suflcient for TI to execute. Now TI spawns T U ,  Tl2 and T l 3  and waits for the 

results from either of these and notifies the corresponding subtransaction, or the root (in 

this case) about the available result. However, the 721 results are aiso passed on to 

TlManager by ï ï M a n a g e r ,  which by then would have started executing its 

subtransactions. This enhances the intra-transaction parallelism. Since the subtransaction 

managers are implemented closer to the root transaction, autonomy at the element 

databases is preserved. The concepts of subtransaction managers and that of subjects and 

observers are implemented using design pattern techniques [GHJ+95]. The notification 

mechanism has been implemented at the subtransaction manager level at which they 

notify the corresponding subtransaction managers depending on the information available 

in the execution dependency database (see Figure 3.3). 

Gamma et al. [GHJ+95] define design patterns as descriptions of communicating objects 

and classes that are custornized to solve a general design problem in a particular context. 



A design pattem names, absrracts, and identifies the key aspects of a cornrnon design 

structure that make it useful for creating reusable object-onented design with each pattem 

focusing on a particular issue. This thesis presents a specific application of the design 

pattern techniques. This specific example could be generalized so that template code 

could be produced to assist in the design of other nested transaction applications. For 

exarnple, the trip booking application is just an example to demonstrate the application of 

design pattem techniques. The template of this application could be extended to capture 

other nested applications, such as, auctioning systems, information kiosks, rie. 

In our transaction model, the communicating objects are the observer and subject 

subtransactions. Their communication relaxes the ACID model by exploiting the 

openness of the nested transaction model. This, in effect, enhances the parallelism of 

subtransactions executing within the MDBS transaction. The nesting level at which the 

subtransaction managers are placed decides the autonomy of the underlying systems. It is 

observed that our model is a combination of the open nested transaction model (because 

the subtransactions reveai their partial results) and multilevel transaction mode1 (because 

of the multi-layered database design realized at an operational level due to the presence 

of the execution dependency database at the subtransaction managers). 

The chapter began with the introduction of Our advanced transaction model. It discussed 

the use of subtransaction managers and the execution dependency databases. Section 3.2 

presented the execution dependencies. We also presented the representation of the 

execution dependencies in the subtransaction managers. Section 3.3 presented a 

discussion about the use of execution dependencies within the framework of our 

transaction model. Chapter 4 discusses the use of execution dependencics and 

exemplifies the new transaction paradigm using a sample application. 



An invasion of amies  cal1 be resisred, but no? an idea 
whose rime has corne. 

- Victor Hugo 

Chapter 4 

An Application of New Paradigm 

This chapter starts with an analysis of the transaction management problem in 

multidatabases frorn the perspective of application semantics. Section 4.1 presents the 

problem analysis. In Section 4.2 we present an overview of Our transaction model. 

Section 4.3 introduces an example to illustrate the application of the new paradigm. The 

illustration explains how our transaction rnodel is utilized in executing the transactions of 

the application. Further, it explains how multiple transaction execution alternatives are 

facilitated. Section 4.4 presents a cornparison of the new paradigm with the conventional 

models. The chapter details the observations made, and provides insights about this 

methodology, before it ends with a summary. 

4.1 Problem Analysis 

This section analyzes the transaction management problem from the perspective of 

application semantics. 

As mentioned in earlier chapters, the transaction management problem in a MDBS is a 

cntical and challenging problem. The objective is to address the concurrency and 



reliability issues in transaction execution. This is coupled with rnaintaining autonorny 

among the heterogeneous databases that participate in the MDBS federation. This thesis 

attempts to enhance the intra-transaction parailelisrn available in an open nested 

transaction environment. The open nested transaction executes in a MDB environrnent. 

This thesis characterizes the autonomy among several databases at the source level. We 

exploit the application semantics to identify the dependencies among the several 

subtransactions in the nested transaction. This thesis also presents a transaction execution 

framework that provides multiple transaction execution alternatives. 

A nested transaction is one where the objective of a transaction is achieved in steps 

(subtransactions) thereby maintaining paralielism and localizing potential failures. 

However, in such transactions the ACID properties are maintained just as in a flat 

transaction. In open nested transaction, the ACID properties are relaxed because partial 

results of the subtransactions are revealed. This enables the system to exploit the 

application semantics to enhance the intra-transaction parallelism. In this thesis, since our 

focus is on the concurrency issues, we do not discuss the reliability issues. hterested 

readers are referred to Chapter 2, which includes a discussion on the reliability aspect of 

transaction management. The exploitation of the semantic information of the application 

andor their transactions opens interesting opportunities to address the transaction 

management problem. 

A nested transaction submitted to the MDBMS is divided into several subtransactions. 

These subtransactions are submitted to the various LDBMS in the MDBS. The databases 

are characterized by autonorny at the data source level. This implies that the 

subtransactions cannot reveal their partial results to other subtransactions. Introducing 

subtransaction managers circumvents this problem. They are responsible for 

communicating the necessary results to other subtransactions. Hence, this requires an 

implementation of an interface that characterizes the level of autonomy the system offers. 

The concept of subtransaction managers is explained in the context of an application in 

the following sections. 



The implementation described in this dissertation assumes the underiying systems to be 

homogeneous. However, it c m  be observed that the solution can be extended to a 

heterogeneous environment as is discussed in the future work section of Chapter 5. 

4.2 Our Transaction Mode1 

An advanced transaction model wa-, presented earlier. This mode1 is broadly based on 

Moss' [Mg11 [MW] nested transaction model and Weikum's [W90] multilcvel 

transaction model. The purpose of this rnodel is to serve advanced applications where 

concurrent transactions are cornmon. Our rnodel uses an open nested transaction with 

layered database architecture at an operational level. The underlying system of this model 

is a multidatabase environment. The transaction model characterizes the autonomy of the 

underlying MDBS through an interface, made of subtransaction managers and execution 

dependency databases, that c m  be moved either up or  down in the layered architecture of 

the transaction model. 

The transactions in the paradigm presented here are open nested and hence can reveal 

their partial results. Since intra-transactional concurrency is an issue addressed by this 

thesis, we develop a mechanism by which the transactions cornmunicate with each other 

to reveal their partial results. The concept underlying the communication between the 

transactions is broadly based on behaviorai design patterns [GHJ+95]. The 

communication between the transactions is based on the (execution) dependency dictated 

by the application semantics. 

The concepts of transaction processing expressed by this thesis can be generalized to 

various application environments. The transaction mode1 presented here finds use in 

several business environments that can be mapped into multidatabase environments in 

which the underlying systems require a high degree of autonomy. Exampies of such 

application environments include trip planning, auctioning web sites, information kiosks, 

etc. 



The paradigm presented here utilizes the concept of nested transactions with 

subtransactions cooperating to achieve a global objective. The implernentation of the 

mode1 has components that comrnunicate to relax the ACID requirements at the 

subtransaction levels. These components provide a frarnework that can be utilized to 

customize a particular application running in a MDB environment demanding a high 

degree of autonomy. The components have two roles namely, subjects or observers (see 

Definitions 3.1 and 3.2 on Page 53). Based on the role of the components, they 

comrnunicate with other cornponents using the concepts of behavioral design patterns. 

This process of communication involves the components subscribing to one or more 

components as observers. The application sernantics and execution dependencies 

determine the execution of transactions. The transaction execution alternatives are 

determined based on the application sernantics. 

For example, in an auctioning web site, suppose a transaction is required to bid and buy a 

wine goblet used by King George V. The subtransactions of this global transaction in the 

context of Our transaction model could be one that bids, another that buys and the last one 

that verifies the credit of the bidder before the item is auctioned. In the context of our 

transaction model, these subtransactions couid be encapsulated into the components in 

the framework presented here. Based on the application semantics, the execution 

dependency database is populated at the sub~ansaction managers. The knowledge of the 

dependencies and the semantics of the transaction execute the transaction to achieve the 

global objective of buying the wine goblet. The subtransactions act as subjects and 

observers in the process of execution thereby enhancing the intra-transaction ~xallelism. 

Multiple transaction execution alternatives are also possible. For example, after the 

bidding, when the subtransaction checks for the credit of the bidder, it could possibly 

check several credit card databases and utilize the one the bidder prefers, or the one that 

has credit (depending on application sernantics). 

Another exarnple would be a customer looking for a particular kind of mountain bike in 

an Information Kiosk. The processes of identifying the store that carries the bike. buying 

the bike, and verifying the credit of the customer before selling the bike could be 



represented as a nested transaction in Our framework. Ail the above processing could be 

represented as subtransactions. As mentioned earlier, multiple parallel transaction 

execution is possible in this case as weli. For instance, the preferred bike could be 

available at various stores on the kiosk. The customer could be provided with various 

alternatives based on his requirements (depending on application semantics). Ehikioya 

and Walowetz [EW99] present a forma1 specification for such e-commerce applications. 

The concept of maintaining the autonomy of the underlying systems is evident in the 

above applications. For example, if the credit checking subtransaction has subtransactions 

of its own, the nesting depth of the entire transaction increases. Now based on the 

autonomy requirement, the subtransaction managers of this particuiar application could 

be placed either closer to the root transaction or to the leaf transactions. The violation of 

autonomy is higher in the latter. Hence the subtransaction managers of the nested 

transaction act as an interface to maintain the autonomy of the underlying systerns. The 

execution dependency databases are present at the subtransaction managers, which dong 

with the managers, provide a layered architecture. 

4.3 An Example Application: Trip Booking 

An advanced transaction rnodel provides better support for application-specific 

environments. It also provides mechanisms to relax the ACID paradigm thus helping to 

capture the semantics of the application. It enhances the parallelism of the execution of 

transactions. The goal of this thesis is to provide a framework to execute an open nested 

transaction, in a MDB environment. The framework must have provisions for exploiting 

the dependencies between the subtransactions. Based on the dependencies identified, it 

must provide multiple transaction execution alternatives. Further, the framework must 

have provisions for maintaining a high degree of autonomy at the underlying systems in 

the MDB environment. This section explains the concepts of Our transaction mode1 using 

an application with nested transaction execution as shown in Figure 4.1. 
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Figure 4.1 Transaction Mode1 and Example Transaction Execution 

A trip booking application [E92] is considered in this thesis to explain the concepts 

introduced in Chapter 3. A trip booking consists of at least three steps - booking air 

tickets, renting a car, and reserving an accommodation. The air ticket is either an 

economy or a first class ticket. Similarly, the accommodation is reserved either in a hotel, 

motel, or hostel. Our mot transaction is the trip transaction with three subtransactions that 

book air tickets, car rental and accommodation, respectively. Further, these 



subtransactions have subtransactions of their own. For instance, the air ticket 

subtransaction has subtransactions that book either an economy or a first class ticket. 

The underlying environment of the trip booking application is an MDB environment. It 

has three autonomous databases that have information about air ticket, car rental and 

accommodation availabilities. Hence each subtransaction interacts with only the 

corresponding database. For instance, the accommodation subuansaction interacts only 

with the database that contains information about the hotel, motel and hostel. Figure 4.1 

shows the nested transaction in our application and the different databases with which it 

interacts. The execution dependency database is shown at each nesting level. This figure 

is similar to the general one presented earlier in Chapter 3. A particular transaction 

execution scenario is presented here to expiain the various cornmunications that occur 

between the subtransactions. This example captures the various concepts described in this 

thesis. 

The objective of the transaction in the trip booking application is to book a trip based on 

the customer's preferences. Further, it must enable multiple outcornes from the execution 

of the transaction. The transaction model per se captures the application semantics. The 

model enhances the intra-transaction parailelisrn by ailowing the subtransactions to view 

the partial results of other subtransactions based on the captured application semantics. 

In Figure 4.1 the different subtransactions a; level L2 have been called subtransaction 

managers. The positioning of these managers is cnticai to the characterization of the 

autonomy interface. The higher the level at which these managers are placed, the more 

autonomous is the underlying system. Since the trip transaction has three subtransactions 

at L2, it can be observed that there are three managers. These managers are the 

subtransaction managers and may or may not have their own subtransactions. Each of 

these managers has a structure called an execution dependency database that stores 

dependency information among the subtransactions. Figure 4.1 also shows such a 

dependency database at the car rental manager. These databases and their managers 

provide a layered architecture to the transaction mode1 at an operational level. The 



dependency information is populated in these databases by capturing the application 

semantics. This happens when the transaction starts executing. The subtransaction 

managers play the roles of subjects and observers (defined in Chapter 3 - Definitions 3.1 

and 3.2 on Page 53). Based on the outcome of the subject and the dependency it has with 

the observer, the subject communicates the information (Le., reveals its results) to its 

observer(s). For instance, suppose the booking of an airline ticket is dependent on renting 

a car. The application semantics imply that there is a (execution) dependency between the 

rental and air ticket transaction. This inforrnation is stored in the execution dependency 

database at the car rental manager. The car rental transaction executes against the car 

rental database to find if there is a car rental as per the request. Based on the result of the 

transaction and the dependency information, the car rental manager communicates the 

information about the availability of the car rental to the air ticket manager. In this case, 

the car rentai transaction is the subject and the air ticket transaction is the observer. Now, 

based on the result the air ticket manager gets from the car rental manager. the former 

starts executing its subtransactions or does whatever is necessary to maintain the 

application semantics. 

4.3.1 An Example Scenario 

In this section we present an example scenario to illustrate the concepts behind execution 

dependencies, the communications that occur between the subtransaction managers, and 

transaction execution alternatives. A discussion on how the application and transaction 

semantics are translated into execution dependencies is also presented. Further, how these 

dependencies are used in producing multiple transaction execution alternatives is 

discussed. 

The example includes a customer interested in planning a trip from Calgary to New York 

to attend a business meeting. However, at the same time there is a World Congress on 

Women's Issues being held in New York. His trip would include booking air tickets, 

renting a car and reserving an accommodation in New York. He specifies his preferences 

as far as these bookings and reservations are concemed. The entire trip transaction occurs 

based on the customer's preferences. At the sarne time he would also appreciate the best 



alternatives he has to make this trip despite the expected overbooking of air tickets, 

accommodation and/or car rentals due to the World Congress. 

Suppose the customer prefers to fly first class. However, under the given circumstances, 

an economy ticket would also serve the purpose. Further, assume he collects frequent 

flyer miles in Air Canada and hence prefers that carrier. He prefers a hotel or motel 

accommodation while he is in New York, but a hostel is unacceptable. As far as the car 

rentai is concened he only wants a sedan. Since he is an Avis-Advantage member he 

prefers Avis for car rental. 

Further he specifies that he would like to book the ticket only if there is a car rental 

available. He aiso specifies that booking an air ticket does not necessarily depend on the 

type of accommodation available. He specifies that the air ticket may be booked if there 

is either a hotel or motel accommodation available. Further, he does not want to rent the 

car until he gets an accommodation reserved as per his specification. In essence, the 

semantics of this specification is that he wants to rent a car only if he has an 

accommodation confirmed. Further, he  wants to book the air ticket either if he gets a car 

rental as per his specifications, or if he has an accommodation (hoteUrnotel). 

In short, this describes the transaction's semantics and is used as an exampIe of the 

expressive power of this model. 

The above specifications suggest the following dependencies among the subtransactions 

that book the air tickets, reserve accommodation, and rent a car. 

1. The car rental subtransaction depends on the successful completion of the 

accommodation subtransaction. In other words, only if the accommodation 

subtransaction yields a positive outcome does the car rental subtransaction start 

executing. 

2. The subtransaction booking the air ticket is dependent on the successful completion 

of the car rental subtransaction. At the same time, it is not so strongly dependent on 



the completion of the accommodation subtransaction. In other words, the air ticket 

subtransaction starts executing if either the car rental or the accommodation 

subtransaction succeeds. 

The strengths of the dependencies identified above differ based on the specification. 

The above specifications are translated into execution dependencies at an operational 

level when the transaction starts executing. The execution dependency databases located 

at each subtransaction manager level are populated with these dependencies. These 

dependencies differ in strengths and hence they populate the dependency database 

accordingly. This ensures the various transaction processing alternatives. At this point, 

the subtransaction managers identify every other subtransaction manager as a subject 

and/or an observer. For instance, the air ticket manager is an observer of the car rentd 

and the accommodation subtransaction managers. Thus, the car rental and 

accommodation subtransaction managers are the subjects of air ticket subtransaction 

manager. Similarly, the accommodation subtransaction manager is a subject of the car 

rentai subtransaction manager. In other words, the car rental subtransaction manager is an 

observer of the accommodation subtransaction manager. 

The example illustrated here has dependencies between the subtransactions that book air 

tickets, reserve accommodation, and rent a car. The dependency database at the 

accommodation and car rental subtransaction managers is shown in Figures 4.2 and 4.3, 

respectively. These dependencies are deduced from the specifications set for the trip 

transaction execution. The transaction is divided into three subtransactions - to book an 

air ticket, reserve an accommodation and rent a car. Each of these subtransactions may be 

further divided to achieve the desired result. For instance, the accommodation transaction 

is further divided to obtain a reservation in a hotel, motel or  hostel. Similarly the air ticket 

subtransaction could be further divided to book either an economy or a first class ticket. 

In this example, al1 the dependency databases are present in nesting level L2 (see Figure 

4.1, Page 67). Hence al1 the subtransactions at that level are referred to as subtransaction 

managers. For instance, the air ticket subtransaction is referred to as an air ticket 



manager. These managers play the role of subjects and/or observers depending on the 

transaction execution. The transaction execution is controlled by the dependency 

information stored in the dependency databases. 

Subject 1 Observer I Dependency I 
Accommodation ~ a n a g e r  1 Car Renral Manager 1- Necessary I 

1 

Accommodation Manager 1 Air Ticket Manager l Suficien t I 
Figure 4.2 Dependency Database at Accommodation Manager 

I Subject I Observer I Dependency I 
I I 

Car Renral Manager 1 Air Ticket Manager I Necessary I 
Figure 4.3 Dependency Database at Car Rental Manager 

in Our exarnple, it is evident from the specifications that the accommodation 

subtransaction must successfully complete so that the other subtransactions can execute. 

Though al1 the subtransactions are sirnultaneously submitted, the rental and the ticket 

subtransactions wait until the accommodation subtransaction completes successfully and 

receive notification of the same. Hence the accommodation subtransaction is a subject 

from the perspectives of air ticket and car rental subtransactions. In other words, the air 

ticket and car rental subtransactions are observers of the accommodation subtransaction. 

It is evident from the dependency database at the car rental manager that the air ticket 

transaction is necessarily (N) dependent on the successful completion of the rental 

transaction. Similarly, the dependency database at the accommodation manager shows 

that the rental transaction is necessarily (N) dependent. while the air ticket transaction is 

only sufJicciently (F) dependent, on the accommodation subtransaction. This implies that 

the air ticket manager starts executing the air ticket subtransaction as soon as it receives 

the notification from the accommodation manager. It does not wait for the car rental 

manager's notification though the air ticket subtransaction has a necessary-type 

dependency with the car rental subtransaction. This is because in our transaction mode1 



the sufficient-type dependency takes priority over any other type of dependency (see 

discussion on Execution Dependencies in Chapter 3). 

As mentioned above the various subtransactions execute with respect to the dependency 

they have with other subtransactions. Ln addition, al1 the other transaction execution 

aiternatives are also pursued to provide the user with a wide range of results. For 

instance, though the custorner prefers hotel or motel, our transaction model runs the hotel, 

motel, and hostel subtransactions, and provides him with al1 the results available. This is 

useful when a particular transaction execution fails but some other execution provides an 

equivalent result. Similarly, suppose there are no seats available in the first class due to 

the World Congress on Wornen's Issues. However if there are seats in the economy class, 

then those results are presented to the customer. Now he could use these results to book 

his tour. Though the customer prefers only a first class ticket, he rnight be willing to go 

on the trip on an economy ticket based on his "necessity" rather than his "preference", 

under the given circumstances. 

4.4 A Cornparison With Conventional Transaction Models 

The advanced transaction models proposed in the past have been suitable for certain 

application domains. However, each mode1 has its shortcornings. This thesis discusses the 

shortcomings of the earlier models only with respect to the concurrency aspect of 

transaction management. Further, it takes into account the ACID properties of the 

transactions executing within the frarneworks of those models. The suitability of these 

models in an MDBS is also discussed wherever applicable. 

A closed nested transaction mode1 rules out the possibility of relaxing A C D  properties 

because of the subtransactions. The subtransactions execute in a "closed" fashion and 

hence do not reveal partial results. This results in less concurrency arnong 

su btransactions. An open nested transaction model enhances the parailelism among the 

subtransactions. In this model, al1 the subtransactions reveal their results to other 

subtransactions. This results in violation of the isolation property. In other words, the 

ACID properties are relaxed. However, past research indicates that when this model is 



applied as such to an MDB environment, it does not help in maintaining the autonomy of 

the underlying system. The transaction model presented in this thesis is a variation of an 

open nested model with additionai features. Our model extracts the application semantics 

and accordingly relaxes the ACID property. At the same time, it allows the 

characterization of the autonomy interface of the underlying MDB environment by 

appropriately utilizing the application semantics in the form of execution dependencies 

and subtransaction managers. 

Sagas address the delays in transaction processing due to the long-lived nature of the 

transactions. A long-lived transaction can be expressed as a saga if it can be written as a 

sequence of transactions that can be interleaved with other transactions. Partial 

executions are undesirable and they must be undone. 

When sagas are applied to MDBSs, local autonomy is not severely violated because each 

element database sees each subtransaction as a local transaction managed by the element 

DBMS. This finds application only in environments where long-lived, compensatable 

transactions execute. Providing compensating transactions is a major dificulty in the case 

of sagas. They cannot be applied in scenarios where a transaction is irreversible, such as 

drilling holes. Nevertheless, sagas are appealing to compensatable MDBS environments 

because they affect the autonomy of the underlying systems minimally. 

A saga only permiis two levels of nesting unlike the nested transaction presented in this 

thesis. Sagas also compromise on the atomicity at the top level thereby allowing other 

sagas to view their partial results unlike the nested transaction model presented here 

which maintains the atomicity at the global level. Further. sagas do not provide multiple 

transaction execution alternatives as the model presented here does. 

The Flex transaction model is the closest match to the model presented in this thesis. It 

identifies and addresses the challenge of maintaining the autonomy of the underlying 

systems in a MDB environment. Specifically designed for MDB environments, this 

transaction model shares our goal of providing multiple transaction execution alternatives 



based on execution dependencies. It decomposes a global transaction into several 

functiondly equivalent subtransactions as our rnodel does. However, Our model identifies 

and presents a broader range of execution dependencies than the Flex transaction model, 

which identifies only two extreme types of dependencies namely, positive and negative 

dependencies. 

Flex transaction mode1 has provisions for the execution of both compensatable and non- 

compensatable transactions. This thesis assumes reliability and hence does not explicitly 

contribute provisions for compensatable transactions. However, by taking into account 

the dynamics of both the environrnent and transaction processing, we can easily extend 

this work to address compensatable transactions. 

Apart from the specific shortcomings mentioned above, none of the models appear to be 

scalable to run applications in the MDB environments in the Internet. The 

implementation of our paradigm is readily scalable to MDB environments in the Intemet. 

In summary, the shortcornings of the various models are: 

Absence of a mechanism to specify and provide proper global integrity 

constraints (dependencies) that determines the effects on the global atornicity, 

Unsuitability of certain transaction models in MDB environrnents, 

A means to characterize the arnount of local autonomy affected, 

A mechanism to exploit the application semantics and thereby provide multiple 

transaction execution alternatives, and 

Scalability to lnternet environments that run advanced database applications. 

A brief discussion of the concepts that address the above issues is deferred to Chapter 5. 

This chapter presented the anaiysis of the transaction management problem in 

multidatabases. A discussion of our transaction model was presented and the concepts 



underlying the mode1 were revisited in Section 4.2. Section 4.3 introduced an application 

to illustrate the ideas underlying our transaction model. Findly, we presented a 

cornparison of the transaction paradigm presented here with the conventional models. 

Chapter 5 presents the conclusion and sumrnary of the various concepts discussed in this 

dissertation and sets some future research directions. 



in  my end is my beginning. 

- T. S. Eliot. Four Quarters. 

Chapter 5 

Conclusions and Future Work 

This dissertation concludes with a summary of its contributions and directions for future 

work. 

5.1 Summary of Contributions 

This thesis identifies the following problems that affect the management of nested 

transactions in multidatabase systems. An implementation of a nested transaction model 

that describes the pragmatic componenis required to realize the foliowing features in the 

form of an abstract model was presented. 

Absence of a mechanism to identify and exploit dependencies among subtransactions. 

Conventional transaction models lack a mechanism by which they can identify and 

exploit dependencies in an application running in a MDB environment. Today, in 

most applications, the execution of transactions is directed by application semantics. 

A mechanism to identify the application semantics and exploit the sarne c m  enhance 



the parallelism of transaction processing. The lack of such a mechanism affects the 

concurrency aspects of transaction management. 

Lack of a mechanism to maintain the autonomy of the underlying systems. 

Though there have been numerous proposais to address transaction management in 

distributed systems, many of those models have found little use when applied to 

multidatabase systems. This is due to the severe effects they have on the autonomy of 

the underlying systems in a MDB environment. The maintenance of autonomy to the 

best maximum level is imperative when addressing the transaction management 

problem in a MDBS. 

Absence of a mechanism to cornrnunicate partial results arnong subtransactions 

thereby increasing parallelism. 

Most advanced transaction models are generalizations of the nested transaction 

model. The transactions in these generalizations usually attempt to relax the AClD 

paradigm by allowing partial results to be exposed to their subtransactions. However, 

a better mechanism to implement such visibility rules is important to enhance the 

parallelism of transaction execution in a MDBS. The crux is when it becomes 

important that the autonomy of the underlying systems must also be maintained in 

addition to the maintenance of a proper visibility mechanism. 

Lack of a mechanisrn to produce multiple transaction execution alternatives. 

The advanced transaction models proposed in the past produce transaction execution 

that strictly adheres to the requirement of the end user. However, in most current day 

applications, it is important that there be multiple transaction execution alternatives so 

that even if the results of one execution is unsatisfactory, the user can choose from 

other alternatives presented by the system. 



Our research analyzed the above problems andor chailenges and addressed them using a 

novel implementation of an open nested transaction in a multidatabase environment 

characterized with complete autonomy. The implementation provides a framework that 

c m  be utilized by several advanced database applications. 

Execution Dependencies: The application and transaction semantics are 

translated into dependencies existing among subtransactions. Such dependencies 

are cailed execution dependencies because they direct the execution of 

transactions. This thesis identifies three different types of execution dependencies 

based on the application and transaction semantics in advanced database 

applications. They are necessary, suflcient and bonus execution dependencies. 

These dependencies are the global integrity constraints of the transaction 

processing system. The definitions and details of the various dependencies are 

discussed in Chapter 3. 

Autonomy Interface: The underlying system considered in this thesis is a 

multidatabase system. It is characteristic of a multidatabase environment to be 

autonomous. Hence, it becomes important to maintain the level of autonomy 

maximally. This thesis addresses the issue through the concept of execution 

dependency database at various subtransaction managers. The execution 

dependency database at a subtransaction consists of the various execution 

dependencies it has with other subtransactions. It is based on the dependencies in 

the execution dependency database that the transaction executes in certain specific 

ways. This acts as an autonomy interface because, the higher the level of this 

interface in a nesting, the more autonomous is the underlying system, and vice 

versa. The execution dependency databases at the subtransaction managers are 

populated dynamically and hence, at an operational level, the transaction mode1 

has a layered architecture. 

Subjects and Observen: ACIDity in a transaction is relaxed by allowing the 

exposure of partial results to relevant subtransactions. This has been successfully 



shown in many open nested transaction models. However, this affects the 

autonorny of the underlying system if the system under consideration is a MDBS. 

This thesis addresses the issue by borrowing the concepts of behaviorat design 

patterns. Specificaily, it identifies the subtransaction managers and based on the 

execution dependency available at these managers, it dynarnically categorizes the 

subtransaction managers as subjects and observers. Any subtransaction manager 

can pIay both these roles as long as the transaction processing adheres to the 

application and transaction semantics. Hence, based on the dependency 

information at a subtransaction manager's execution dependency database, it 

cornmunicates the results to al1 other subtransaction managers that have been 

dynamically included as its observers. This is an effective way of communicating 

information among the subtransactions whereby multiple observers of a 

subtransaction get to know the results of a subtransaction k ing  observed. 

Multiple Transactions, Same Global Objective: The utilization of the execution 

dependencies and the concepts of subjects and observers yield a transaction 

execution that satisfies the application semantics specified. However, the 

paradigrn developed in this thesis produces multiple outcomes for the sarne global 

objective using functionally equivalent subtransactions thereby widening the 

range of choice of the outcomes. This helps in situations where even if one 

execution fails, the user can rely on the various alternatives the system produces. 

5.2 Future Directions 

There are several interesting directions in which the work presented in this dissertation 

can proceed. The future work suggested here is based on this work coupled with 

directions to address the general problem of transaction management with respect to 

Internet and other wireless technologies. 

Reliability and Heterogeneity: In this dissertation we have investigated the various 

aspects of transaction management in multidatabase systems. However, we assumed 

transaction management from the perspective of cornpletely reliable systerns. Though the 



assumption is valid from the perspective of acadernic research, it is not the case with 

systems in the real world. Sirnilarly, we have considered a homogeneous system to 

demonstrate the paradigm presented in this dissertation. Recommendations for future 

work include the enhancement of the mode1 presented in this dissertation by considering 

a heterogeneous environment with reliability problems. 

Scalabiiity to Distributed Internet Applications: The transaction paradigm presented 

in this dissertation addresses the transaction management problem in multidatabase 

systems. Though its implementation is readily scalable to Internet environments, we 

believe that such scalability could come with additional problems. This could be due to 

the tmly distributed nature of the Internet environment characterized with total autonomy 

and a high level of heterogeneity. Such environments pose interesting problems that can 

be addressed using the fundamental principles of transaction management in traditional 

environments coupled with the new principles of transaction management in tmly 

electronic environments. This is a highly potential area because the distributed 

environments today are fully Intemet-enabled or are in the process of k i n g  enabled. 

Application in Wireless Environments: An interesting direction for future work would 

be in the area of mobile databases and wireless transaction management. Most 

applications today are developed with the consideration for potential use in wireless 

environments or on wireless devices. Though these applications are in their early stage, 

the day is not far when transactional aspects would be incorporated into such devices. A 

study about the feasibility of our paradigm in such environments could be a direction of 

hiture work. This would bring in a whole new world of opportunities in the 'at anytirne, 

from anywhere' concept of wireless transaction research. An example of this area is the 

new paradigrn in the online business world of m-commerce (mobile-commerce). This area 

of research would pose a lot of technicd challenges made interesting due to the wireless 

nature of the environments. Hence, we recornmend this area be investigated as part of the 

future work. 



I f  I have seen farther. it is by standing on tiie shoulders of Gianrs. 

- Sir Isaac Newton. lerrer to Sir Robert Hooke, Feb. 5. 1676. 
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