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ABSTRACT

Two new methods; based on the Park Transformation,
are suggested for the derivation of the equations of equilibrium
“of three phase machines. The methods are demonstrated here by
application to the induction motor,

The author considers the following points advantageous:

1. The mathematics is presented systematically by means
of matrices and vectors, so that the complete derivation becomes
reprintable,

2.‘ Although the theory is based on idealization, all
physical quantities can be measured in a simple way,

3. Machine theory is tied in closely in a rigorous

manner with c¢ircuit theory and generalized mechanics,



INTRODUCTIOR

With the aid of the Park Transformation, a set of

differential equations can be obtained for the induction motor
- s

in terms of the well known direct and quadrature-axis componentsl’z’
Up s éoandVv&, (@. These equations are as compact as Park's equation
for the synéhronous machine.l+

Inrererence (1) DBrereton, Lewis and Young chose a velocity
for the direct- and quadrature-axes in such a manner that the electrical
quantities associated with these axes are related to the components
in the standard phasor diagram of the induction motor. In particular,
if, during a transient process, all quantities remain balanced, even
if they do change slowly in amplitude, V(Z®) +(g(t) will describe the
envelope of the individual phase currents. Such equations, then;,
have direct meaning to the electrical engineer,

This restriction of balance if applied Bnly to the three
input voltages is not unreasonable., Whenever the motor is connected
to a standard three-phase supply thé input voltages are bélanced for
all practical purposes., To arrive at Young's equations for the case
of a balanced‘input is so much simpler than for'thé general case,
(by means'of the Park Transformation), that it is considered
worth while to §utline this method in the present thesis, It will
be seen that du} to the construction of the motor no further

restriction has to be imposed for this simplified mathematical method,

# Superscripts indicate reference numbers in the Bibliography.
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The resulting equations cortain "speed-terms", and Kron5

showed that such terms come about if the non—Riemannian form of the

dynamical equations of lLagrange is employed. Kron discards the standard

form to begin with because one is confronted by rotating reference |

frames., It will be shown that it is possible to relate the better

known holonomic form for stationary reference frames to the result

as well, This shows no advantage over Kron's rigorously established

method, however, those not familiar with the finer logic of advanced

dynamics may find it easier to use.



Chapter I
The Fark Transformation for the Case

of Balanced Quantities

Abstract:

It is chown in this section that balanced sinusoidal phase
quantities, (such as‘currents, voltages, fluxes; etc.) if represented
vectorially, add up to form a rotating vector. A projection of this |
vector onto a rotating plane is the basis of the Park-transformation.
Balance implies that the three-phase quantities add to- zero; hence
an explicit statement of all three is redundant, This leads to a

reduction of the transformation matrix,

The three scalar quantities

palt) = R&) cos nt 1
b (t) = R&) cos (at - 21/s ) 2
ad  pe@) = P(t) cos(at+ 2m/y) 3

which could stand for currents in the stator of a synchronous machine
for instance, may be represented along the axes of a three-sided

symmetrical star (as shown in Fig. 1) and added vectorially, so that

I | . )

T

Ad

(out of the plane)

Rt

F'sc;.l
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the horizontal component becones:

Pe) = Puft)] cos (st + &) cos (- I+ cos(nt- 21\ cos (—5_;?\]
oy B(t)f-?%{l‘)[cos(;rt«»?—%) f—g——- cos (nt-%g-r)f_g]
or B (t)= "% B(t) ¢in ot

and the vertical component:

3

Pty = Po(t)[cos 2t +cos(st- %”f)c*os"l‘} cos ('t +2x ) costz?)]

ovr Pz('t)'—-.'%_’ BEt) cos. ot
Defining P(t) as ¢ P (%) +7 B (t) in which T and J are
horizontal and -vei'tical unit vectors. yieldss
Pl = 3 Pf) [ (- sinat)+ ] (cosat)
This vector can be represented in polar coordinates with the aid

A
of the unit vectors A and 3 . The magnitude of this vector is't hen

|Pl=2 R@)
2
and the associated angle & becomes.

- - [cos .n.’(‘.‘) ~ T _ a4 f=sinat
§ = tan (-—“"_‘sm at) = 7 -~ tan (-o:?s—}ﬁ‘)

or
d = L?f + aft)
The rate of change of which is § = 0 Yl
This implies that the magnitude of the vector P (t) is independent
of rotation and that it turns coﬁnterclockwise at a constant angular
velocity <= |
This i"s the basis for the Park Transformation. The phase
quantities are projected on a reference frame turning with a speed

o

#* ( ) means derivative re. ¢

L T
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equal to the angular frequency of the phase quantities when they
are balanced and‘sinusoidal. The components along the rotating
triad T-3'-% are then called P, along ¢', defining the
"direct-axis", and Py along 3’ or the "quadrature-axis",

To make it easier for an inverse of the transformation
to be taken, a third quantity B, is introduced which is proportional
to the algebfaic sum of p, , P, and . « The Park Transformation

would then be of the form:

] | T
P, (cosé cos (& -2T) Cos(d+2T) || py
ol e o . > 15
By |=[-sind -sin (§ - %’LT) -Sin (61—%_7)‘ Py,
_PSJ i ' | ' JLPe |

The rate of change d is equal to .« ; Park actually chose
different constants of proportionality (his D and Q quantities are
2/3 of the ones defined in eq. 15); furthermore, one could add
any constant angle to the argument ofithe sinusoids, without affecting
the result, |

Now, under the assumption that Pay Pp andp. are balanéed,
by which is meant:- ‘ |

Pa+ Py + pe =o‘ 16

certalnly; the dlfferentldl equatlons ‘of the partlcular device would
be dependent. The quantities, pq andlo&.w1ll be sufficient to
describe the behaviour of the machlneg Py will then always be
zero and only a second order matrix is needed as the transformation.

Substituting for pc in (15), one obta1n5°



~

Po| |cosd-cos(S+2T) cos (4 - _%J') cos(d + 2T} |l pa

—

Pa “|-sin d+sin (§+ Zé'ﬂ'x -sin(d - __%.T)q-sm(d'-s-gg'_rr) Pp.
or pp :ﬁ —S'lf'\((g‘z.:;r) Sin c{ pa
Pa reos(d- 2JTY eos d || py

In shorter notation, this becomesg

[ptr]=[a][pe)]

Important in the subsequent development is the inverse

-1
of the transforrration matrix IA(J )] , for which A, , the determinant

of [A(J)] , is given by:

A "—rSIV\( %)FCOSO +"I-5 S‘V\(J)V—COS(({—Z">

or

| AA=3[SH’1 d sin 2TT + cos d sin ?:_E]
or finally, i

_ 3143
‘ Ap 3%—_ .
This results in the invers‘e:
J)—i ces (; "S.H’\é—
A(S)] .
[ 3 cos(cf—m'r) ~sin(d - 2—%—”

A further important result, which will be utilized later, is that

(AaaT {pw]= ~[ac)] [ H]

which leads to the symbolism:

i%f@ﬂ“ﬂﬂ] [MJ]P&]

17
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The proof of this will be found in ippendix A.

The following matrix definitions will be needed:

o [ e Taufafoo o
_ ‘Sf.n e -Sm(@—_a_) ]
"‘—-S‘&n(e-?:}l) Sin © .“"__ T ]‘
f 3 A(x) =[BE6)||AX)
and '\Fﬁ— -—Sln@ S}n(9+%%'_r)J[ J [ H :

It will be shown in Appendix A that the products (26) and (27) simplify

to the following useful results: l

| [B(e)][A(w)]P %:A (oweL

i

and

[raniae "= 4 [Al=-o)]

26

27

28

29:
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Chapter II

The Induction Motor

Abstract: Stanley's equations3 of a linearized and simplified

induction motor are put into a simpler form.,

In order to keep the physical principles as clear as
possible, consider an idealized machine with perfectly linear
behaviour and only one coil per phase. In both stator and rotor
the phases are Y-connected., This guarantees that all currents
add to zero and if, furthermore, no external voltages are applied
to the rotor, only the applied stator voltages need obey the
restriction mentioned in the introduction. Furthermore, let the
stator and rotor have perfect radial symmetry. It is known that,
under these conditions, sinusoidal currents are induced in the rotor
with angular frequency equal to the slip frequehcy L-~u, where <1
is the angular frequency imposed on the stator and w3 is the
angular velocity;of the rotor. This implies that a projection
is required of the rotor'phase—quant?ties on axesc] and ¢ that
rotate with speéd£L~udeith respect fo the rotor, Stanley3 made
his projections on axes fixed in thesstator° If this is done,
however, the direct- and quadrature-axis quantities are no longer
stationary in tﬁe steady-state, this being the case in Park's
development forithe synchronous machine and in Young's eqguations for
the induction m&toro Nevertheless, since Young does not develop

his result, butkmcrely'states what ié by no means obvious, Stanley's
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equations (before: the transformation is applied) will be used as
starting point, with the exception that (e will be set equal to
~(p~ta for the stator and Cc="Ca-e.for the rotor. Stanley's
assumption of sinusoidal variation of the mutual inductance between |
stator and rotor 'phases will also be employed here, since it is
Justified from the point-of-view that the actual variation with
angle may be expressed in a Fourier Séries of whick: the fundamental

may be considered a reasonable approximation. .

Fig., 2

-

Mpq is the mutual inductance betwéen phase A of the stator and
phase a of the rotor. The other mutjual inductances may be found by

inspection of Figo 3 which is a symbolic representation of Fig. 2.
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Stanley's differential equations, written in matrix form, ares
- >~ . JE . .
Ca R 6 ¢ 0 ©o o La
o
< © R oc/0C o o0 Lg
—e— ] = e - - —— ..'.....-...4..._.____._ o__.____ + :
€, o 0O . O{: v C © Cy
el |© © ¢} O r O Ly
ec | O O'OEEO o V_M":CJ
"ad ‘ rr | -~
i ‘ B+2 SHE&-2T
Le Ms Mg ;Mcos & Mcos| +27T) MCeS. € fgl)
-2 o) B4 2Ty
Ms Lg ; Ms :ﬁMCOS(g _32.‘) Mcos 8 Mcos(ay A5)
4 1 pac &
M My Ls --__:M.C_".Sﬁefzgﬂ i’\hco_sge-_%‘)- ;‘iﬂ\fii(_
M cos 8 Mcog(e—%l?r’lcos(eﬂ.gﬂ) : Qn M 4 Ma
M cos (e+%§1) Mcose Meos(0-2F) My A x W A
M cos(6-2) Meosfpral) Meos © bamy My Lo




The matrices are now partitioned along the broken lines.

out the third and sixth equation one obtains the following statements;

el LA "'j"{ Le Ms'Ms ba

g ‘B Ms lef’ls E‘i_- MCOS(G"?‘“) Mcos G iMcas 91—2’1)
-Gty
o
€a oyl la +df 8, ."’7/: Ca Meos®  Meosfe- ﬂ) Meos(6+
el Lad T by 24 'm b _ [ [Meos(pr2m) Meos enMcas(«a 2
o

A further partiticning is indicated in both (31) and (32).

Subsequently the matrices are partly recombined according to the

following examples

- e
! -
Ay G lQy || = Ay Qi |2 Qs ) [7X5
, -
qza OZZ: C‘23 —(i‘- ; Gz‘ q-,_l L& al3
-l
- i
Qg [‘-x’*\a‘ = —| Gy CI«H,(\,): Qg — Qg || X
Axz ePXY Qa3 —Q&; %

Equation (34) is inserted into (33).

and the square matrices are added to produce:

r
G, 4, G5 ||x a,-Qi3 QA =iy || 2
Qzy Gy Qaz || |7 |Gy ~Qa3 e Y | ' g
-

These operations are performed on (31) and (32), resulting in

(36) and (38).

’, The column matrix is factored

The symbols L and 2 stand for L —Myg

Mees & Mcos(9+2._:")| MCOS(G 27) [-'a

&.-.-—-.

and

i

¢

..;32'

33

34
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«0,‘,_ = M4 respectively, From now on it will be considered self-
understood that the operator aci_ operates on all matrices that
‘ : T
follow it in a product. Square brackets will be reserved for

matrices, round brackets for scalars,

r ST

R+LQL e ' 0+ 27 -51n & | (¢
€a |- dt . A ’\3 M d Sin(@+2] ) | ’a 2
€y, o . R+LE& t"B Sin 8 “Slh(g“% E(

or symbolically:

El=(rrcg[s]mzfoe)o ",
Mdtrn_x[B] is that of equation (26). The other matrices in (37)

are defined by (36).

Points @& , b~ and ¢ are ccnnected together; the

rotor equations become then:

Q

d PA1Y
T3 o ¢ (n(eﬂr Sin 6
Cal-0= Q Ny *IHEM S )
Sy 0 F’-!-ﬁg— Ll@, : -Stn O Sin(9+7-“

[E ] 0= (v+,& [A}J + Md; [g@e)][gs] ’ 50 V:\;



Chapter III

Application of the Transformation

Abstract: The results of Chapter I are applied to the simplified
form of Stanley's equations., The resulting differential equations

correspond to those proposed by Youngl.

In Chapter I the direct and quadrature quantities have

been related to the phase-quantities by the transformations[)&]'and[/&]

Rlh@le] S B[R]

for the stator, and for the rotor:

[pR ]=[A(&—6)][G>R] ; [@R]r[A(&@T[PR] 11

The need for the choice of the angle -8 s the time derivative of

0]

-~

which is Q.~w> , has been explained in Chapter II,
Expressing equations (37) and (39) in terms of (40)

and (41) produces:

[A(s>]"[ oJ= (R+ A [L ] M&k[peo] A -] [Le] 12
[A(J &) [Ex]=0= (rex s )[Atd-o] L ]wﬁ[aee)][A(J)]"[L]

As pointed out before, the transformatlonsEA] and[y\] are applicable

only if the given phase quantities are balanced, which is always the

éase for the currents, but for the voltages this is not necessarily

so. In this sence equation (42) is restricted, but not equation (43).
In order to get the equations in standard form (42) will

be multiplied by [A (5)]and (43) by EA (& -9)] yielding:

(oMol L]l mglpelasel T



and

0=[aw-e) (r+ 2 ) A-a] L] [A(S-elme o[ A)] "[1,] =[]

By (28) and (29) reSpectively (44) and (45) becomes

[es]-[aslm g [pwl L] - 2[ae] g [a@)] [ 1]

Ee]= O AW-O)(r+ 18 A g [+ 2 [Aw-6)] (M) Ate- B [ Ts]
.. A3 |

By the product rule for differentiation and the fact that AA™
is equal to the unit matrix equation (46) becomes:
[£.] = (Re L[]+ B@ISet (AT Yre Ml [Ta]+ 2 [ [ 1T
S at'L=s Heitar siV 2 gel Rl 2 at AR
Finally relationship (25) is applied to produce:
P ~y
[Es] =Re Ay [Lds [r] (L) NS [ T5]+ 3 m &[T+ 3 [A6)] (M) [AG)] [Te]
Again the scalars(L-n.\and (Ma)may be taken out of the position they
occupy in (49), leading to the standard result, which has been
obtained here by a very compact and easily applicable method, viz:
[Es]: (R~F L-G-l-.)[-]:s] ral” [15] + :)’- ™M i[IR] '*‘% M a* [IP-.]

In exactly the same fashion (47) becomes

[Ez]=0~(r+£d )[T ’]4'2(_&',.“}_)'4[1‘2]4'% Md LI ] +.3M(-0-- &) [TS}

where £ -u® equdls (d-8)-

In expanded form: (50) and (51) read:

=(R+ LO%AL‘D*_Q_LL‘Q + iM—"’—‘- lo - 3—“1‘1 tq

g = (R+ Ldtﬁ +-Q—L" %-Q’Mo{ Lci *3 M. g

and

eq=0=(r+28) 4 ~ (oo bfs'“‘M‘* bmF Mg

-

5

-~

-~

9

8

52 O

5

54

€q= ~(r+Qd)L¢1 +(&—W)Lq+’5 M4 (g ,ZM(&L L) 5E



This result is identical to the one stated by Young in reference (1).
According to the outline of Young's procedure (given in the 1961
edition of Fitzgerald and Kingsley™ ) it is likely that Young
applied the unrestricted Park Transformation. The present author
performed independently the procedure (utilizing the unrestricted
transformation) and produced eventually equations (53) to (56);
however, the length and complexity of the manipulations are so
forbidding that they cannot be reprinted here; in fact, for that
reason, they are not found anywhere in the literature. On the
other hand, the method that has been carried out in this chapter is
compact and easily’appliedq But, it must be kept in mind, that
even if these equations (53 to 56) are identical to Young's
equations, they can only be used, if the motor is f;d from a
balanced supply, for it has not been proved to the reader that they
hold true in a more general way, as well. The restriction leaves a
‘certainciegree of dissatisfaction. Yét, to accept Young's equations
takes an act of féith, which ds totally unsatisfactory in the
conventional spirit of science. |

A further; rather subtle, jﬁstification for the
restriction of balance is that the solution to a set of
differential equations in terms of difect— and quadrature-
components can be?interpreted (and this is generally done for the
synchronous machine) as an expression{for the envelope of the
sinusoidal‘variations in each phase, 'This is shown by equations (lO)
to (14), which can be rewrltten, accordlng to the discussion

following equatlop (14), in a manner given by



Pu) =1 Ppt) + 3 Po (%) 57
| P | =R +Pq () &
which by equatibn (11) equals -éz— Ps (t) . | Po(“t) is the
common enyelope of the phase-quantities.
Rty = %\/ B2 (t) + Pylt) 59

If the phase-quéntities are not balanced they cannot have a common
envelope, and the termsf%, and E& have-no longer #n obvious
physical interp}etation. Having performed the Park Transformation
under such conditions ohe has transformed a set of differential
equations (30) w1th direct physzcal meaning into another set of
differential equations with obscure physical meaning, although
there is still bhe advantage that a}l trigonometric terms have
been ellminated ‘

A further remark, regardlng the result, is that all
constants occur?ing in the equations can be measured by two open-
. circuit tests,rin which the rotor‘of the induction motor is held
stationary in éhy arbitrary positioﬁ and a constant, forward-sequence,

3-phase emf is applled to the stator and rotor in turn. For these

tests equation‘s (55) and (56) should be set equal to €4 O and €q ™ &

respectively. ;;{F‘or both tests Ly and all _gL('_) are zero. In the
first test-thei;otor currents are zTrQ;,for which_equations (535 té,;
| (56) result in. . 'f c N

| eo— Rép~a Lig

:RLQ'-F_D.LLJD” o | hl

< rt i e g




for the stator, and

ed: 2'23 ™M L2 ('.‘Q 62

eq‘ = -3— M Ly 63
for the rotor. all quantities in (60) to (63) are directly
proportiona]:.‘ to their respective rms-values. Equation (61) is
multiplied through byj and added to (60) to produces

E:D*-jeazR(dD—'fin)**—iLL(jjL'Q*'CD) 6L,
or '
Ee=R+jal)Is 65
and in the same way (62) and (63) become:
' 66

Er=123™MTs
The terms R,L and%-Mare found with the aid of a voltmeter,

ammeter and a wattmeter, and ¥ and L are found when a similar test

is applied to the rotor.
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Chapter IV

 The Result in Compact Form,

Abstract:s The differential equations are expressed in phasor and
vector form. The vector f ormulation permits a further contraction

with the aid of a "gradient"-operator,

As discussed earlier; the direct- and quadrature-axis
quantities are components of vectors; defined in roﬁating planes,
In two dimensions a complex number can also be utilized for the
representation of a vector. Let the complex number notation defining
a directed quantity carry no special symbolism but, the correSponding
vector notation carry an underlining bar, To carry this through,

equation (54) is multiplied by and added to (53) to obtain:

(estien) -RUiptjtg)= L Eo+jig)+jal (i Jrayr M (g fiqit i oy Ml i) 67
It has tacitly assumed that é’% (= © . Thisvis a
constraint on the operator é%f « If, for instance, eguation
(67) is to be regarded as a statement holding true within a rotating
plane in which ; is fixed, then the constraint onE%% demands that
this operator has to stand for the rate of change of the particular
vector it Operafes on as viewed fromfan observer turning with the
rotating plane. The constraint relationship

| ﬁ%(3)= 0 i 68

for the operatoré%- must be observed whether the rate of turning
of the plane in which 3 is fixed is physically meaningful or not.

It is conventioﬁal to give such operators different symbols such as
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&t
viewed from all reference frames, barring relativistic principles,

(2{_} or (i ) . However, the rate of change of a scalar is the same
dat ) :

For example the quantities fp and C'a are two such scalars,

Now, it is seen in figure 3 that, due to the pafticular
projections employed, the D-axis and the d-axis always coincide,
A simple definition for a complex plane would be to choose a
phasor | such that it always lies along both the Q-axis and the
q-axis. Iet such a ) be denoted by \g_q , which then, turns with
angular velocity. (- with respect tq the stator windings and <1-u*
with respect to the rotor windings. By the constraint relationship
(68) on the operator ag’l__ » this operator denotes the rate of change
observed by an observe:- turning with the rotating plane. ILet this
d  be denoted by(a%) o (68) is then in particularg

dt a-q . )
(4 (ia- )= o 69
dt JB-q L

Equation (67) defines the following phasor-symbolss

@Ry vg= () (Lo 30 e rlamg 2 (L2 )

For the rotor one would obtain similarly:

"7

e ~{Sy (R 7 2 M 0)F Joq (med (@i ¥ M) 7

In view of the meaning of the operatoztg__} and in the light of the
discussion at the beginning of Chapter I, (70) and (71) degenerate

in the steady state i.e. (E\__E\ >~ 0 to the well known
dtiq

equations which lead to the equivalent circuit of the induction
motoré.
In two-dimensional problems complex numbers and vectors

can serve the same purpose. The notation will be different R
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but the physical interpretation will be unchanged. In order to

write (70) and (71) in vector notation it is necessary to "translate"
:3 rotates a phasor by an angle of

3
&

the meaning of the operatori
Since all vectors in (70)

I in the counterclockwise direction.

—

2.
A
and (71) are coplanar the cross-product ﬁgx Lg will produce thg same

effect as 3 1:5 .

A ;
&k is defined by:
,i X
\—21\ = | 72
® o= ¢
-/k N O a LsR 73

With the vector notation the following two statements are identical

to (70) and (71):

R T R
-\ . i Y \
qrﬂz(d,d{\a_q(l%}gv{ +3M i) v lnmw) Rex(Le +3 ML o

~—~—

It is not necessary to define the vectors U andf;sm any further

than that they ‘fare, in fact the same "arrows" occurring in (70)

and (71).
It is customary8 to define angular velocity axial vectors,
In

The direction of rotation is defined by the cork-screw rule.

this case then the angular velocity of the rotating field is

; ~
£ = /Qe S 76
and that of the rotor
? A
Wy = -‘&, > 77

and that of the field with respect to the rotor windings:
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0. - = j\t (-—“—-~""y3 78

According to the discussion on page 133 in Goldstein8 which results

in his formula (4-102)

(fi.) = Q_c_\,_\ + L X 79
dt |4 pace At Jwody

it is possible to generalize this relationship to changing the
operator fvrom one rotating coordinate system turning with velocity
L. to another rotating with w¥ |
Let (79) hold true for the relationb etween the rotor
windings and a Newtonian reference frame., w¥™ is the angular
velocity of the.rotor with respect to the stator or the Newtonian

reference frame. Let the following notation represent equation (79):

(Bl
dtlils dti/r "
Similarly: |
el A) + |
(‘d‘t) ( at - Z X | g1
-Subtracting (80) from (8l) one obtains:
(;l) =( 4 AN (o ~u2) X 82
d'i Q"ﬂ :

Direct application of equations (81) Eand (82) allows a representation

of equations (7l+) and (75) in the fori'm:

—

"l’%:(d )‘(LL MLR) e

and

Wa e.(j%\g ('Q 2'}'3 MLS> 81,



These equations represent four statements of Faraday's law

in vector form. They would have beon directly obtained if in

chapter III(%: [A(é;ﬂ" andc%.: [ Ald,- 9)]"' had been taken as zero,

in other words if the projections had been performed onto

stationary axes from stationary coils for the stator, and §,-é held
constant for all@ for the rotor., Such a procedure would have been
equivalent to a simple introduction of generalized coordinates

(see Goldstein pp 10 - 12). It must be pointed out that the constraint

relationships

CA“"L.B"’*‘ Lle =0 —> qatqp + e -¢, =0 85

and
86

Cfa +L:G- +L1L = O0—> Qa 4"qgr-€— q,c ~C7_= O

are holonomic (Goldstein: equation 1-35). For the reader not
‘acquainted with mechanics it is worth noting that the branch to
mesh t ransformation in circuit theory is a change to a particular
form of generalized coordinates and velocities: the mesh currents.

To the reader acquainted with circuit theory and
classical mechanics it may be of interest that because the mesh
nethod is equivalent to generalizedfmechanics it can be independently
verified that the transpose of the liaesh transformation is the
matrix premultiiplying the branch-—voitage matrix in Kirchoff's

voltage la.w9s

[ ] = [BT[ (] oF s Z;g—L""—" G for all 4= 87

St
w8 Jlu]=o0 | N
’ )
The general element ﬂirm of the matrix [B] is defined by:
3G-m = '.3__(24"
D lm

with atl other q held constant. 89
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According to Goldstein (1-46) page 17 a generalized force is found

Qqr
=5 Rt %
3

C“' all othe q held consteut

by

The "cancellation of the dots" (ref. 10, p 413, 15.107) states:

or _ Br!-
Wi A | all erker Gand q held constant. 91

so that (90) may be rewritten in terms of (91)
. YA 92
Qi=10: F; 3
) q;
This becomes after translation into the ideas of total emf around &

mesh M, emf sources in a branch L~ » mesh currents and branch currents:

=7 g

all pthey LM cengtant

This may be written out in matrix form for all the meshes defined

by equation (87); |

o] =[5 ][ec]=[a5.]le]

Now, the matrlx[ m]ls evidently the transpose of the matrix
’ [8 = %h—m ] . Therefore (94) can be rewritten
[e-F [ i)
Now Kirchhoff'is \voltage law (equation 88) states that (95) is
exactly the way;the mesh emf must be founds
0=[8][w]=[®[3.00 ]+ [8][es]
All this has no%direct bearing cn equations (83) 'and (84) other

than that those:s; equations im component form represent also,

93

94

95

96



though less familiar generally, a way of choosing generalized

coordinates, They form the basis of Kron's "primitive.machine"7

b4

although Kron states immediately equations (74) and (75)

(ref 7, pp 118 to 122),

To understand equatibn (84) consider the following

arrangement fér the rotor:

Fig. 4

A A
For the sake of simplicity, the fixed triad ‘?"A .y was chosen
R s . . AN A T
arbitrarily to coincide instantaneously with ¢ -3 =% . There
are two fictitious coils fixed in the rotor., A flux-linkage vector
A sweeps through these coils with angular velocity - w ¥
in the steady state, and induces in them according to equation (&L4)

the voltages

d : :
V&= ¢ (! Lgy + 3’2. M cs‘} -
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and

_ ‘e 'g L] :
vﬁz..&c{?(jbma—zm gsz) 98

At any other instant the fixed t riad may elther be redef:med or C <7
and csz may be r eplaced by CS'L and fs j 1n (97) and (98),

Since (97) and (98) are scalar equations it is no longer necessary

to write the differential operator as (m)R 'All the sgalar quantities :
vary sinusoidally in the steady s tate as in equation 10, A further
remark céncerning equation (84)) is this: The equation might be

written as either

V=I5 +7 v = (4 )R(JQ[?)‘E #P ] v IM[T 4 4] icﬂ) 99

or

» - » oA
,Uf( "2))/”!2: J ’Viez“ ‘—‘) ('Q['L\”‘ra +] ‘tez]"% M[A 2 3 JJ) 100

(Using l a.s a definition for l si ) or any other choice of axes
for that matter, However, only equation (100) can be decomposed into
component form dlrectly, since only(d) an d(z() A“are 2ero, Which
way, however, ?”and T are fixed omentarily is arbitrary, so that

trere are still infinitely many possn.ble ways of :Lnterpretlng equation

(100).
Finally let the operator
) 3 Y
o R v = ek,
t;(-d . . él"i « ., QLK‘ o« s ' QLRL ' ’
g, ol tatpla ERyy Ly ylsy LRiyLs) sy

be defined by the symbol, VR - This, obviousiy, has the properties

of a "gradient",
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Similarly, defines

= 02
0 ’ = e+ v s 1
Qi QL‘Q ALg,

P2 +3‘:) S 3,3_
S,
and now, consider the function ¥ (whatevei* its physical significance
may be) given bys |

} s s “ .q S . ¢ / e ‘45

90.-;_21-[-!-% Ltgt 3 MLs 4r *—5{2_‘8 tr 103
Then evidently (83) and (84) canbe written as

Yy = E?E\)s(VS‘F) - 104

Vo :(c%)a (\’?R‘F} | 105

Equation (104) and (105) are a stateme’nt of equations 53 to 56,

These equations hold true for the vector quantities occurring in
(103) and it is immaterial how one chooses thé relative positions
of the triads along which one wishes to express the components of

each vector,
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. Chapter V

An Aliernate Method

Abstract: The differential equations (104) and (105) will be

derived from energy considerations.#

In Appendix B it is shown that the ﬁagnetic energy stored
in the induction-motor is equal to |
Te =5 ¢
where {0 is given by equation (103),‘
There exists a more or less intuitive way of Abtaining equation
' (106) quickly. For this consider equations (70) and (71) in

the steady states

‘ A ° 3 [}
es-leLS :Ja_%_ﬁ_(LLS +7‘2‘f MLR) 107
and
._Y-I: pandy :S (__(L“L’C")(/Q ° ~— ii M ('n }
R Q-9 br 2 s 108
Multiply (108) through by -§ = -{_‘5:__:3_ to obtains
Y- 3 L] L] a
“g Lg ::AQ-C] ,Q_'(,,QLe-L-,%:MLs\ ‘ 109

(107) and (109) may be represented by an #quivélent circuits

R L~3m -2
—_— AT T N

€5 Cg %— M (L;

—

Py

((:xnc] vlar frequency )

34 .

In order to understand this chapter the reader will have to study
either reference 8 or 10. It is beyond the scope of this thesis to
develop this background here,
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Anyone familiar with machine thebry recognizes this ecircuit
immediately. It ié an equivalent circuit for the imduction motor in
the steady state. To the inachines engineer the .inductors designated
by the symbols jL-%ggetc.ihave meaning as such, and they form

the starting point for many theoretical studies, The preceeding
symbolism will be retained, with the assumption that L. “4§§i , etc,
are well known, even if generally a different symbolism is gmployed,

The T-network of the three inductors shown in Fig. 5 is

in turn equivalent to the transformer shown in Fig. 6.

Flg. 6

M e
o L‘Z

e

The average magnetic energy stored iﬁ this network may be

9.

written in the form

l\-
V?
°
ke

‘..
00000 ~

. . ie g
{L$ LR] L %M (’S
o5

The network of Fig. 5 is usually employed to find the stored energyll.
But it has to be remembered that the resulting expression always

has to be multiplied by scme constant of proportionality. Iet the
total magnetic energy stored in the machine be 113 . Then the

relationship between Te,ar‘d Tm is
Te=k To 111

The immediate task is now to find the constant of proportionality.
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It is known that if a balanced three-phase system is
represented as a single-phase system then thé “currents and volt ages
in the single phase system must haveV 2 times ﬁhe actual valuga in
order to give numerically correct values for energy and power,

Equation (11) states '

50 in turn equalsVZ times the effective value per phase, é.e.‘d’:gj

times the effective value for the 3-phase system, Hence one

‘ “31’2' 3 L
le'i 3 ,jlsew.l” /4 llse%

But Te will be‘given by some functional relationship, F ,

can s tates

112

involving the effective current valuess

Te = F(Lse%‘) LeeJ;@) ; 113
By (112) this becomes ‘ o
— 2 z ;
Te = F(12 ¢ , 13 &) 11,
Equation (11) is given as: '
T‘M =Ty (s, Cr ) 115

or by (111):

Te = ‘»(ka(fs%‘rz) . 116

Equation (110) is quadratic in (4 and Cp, so that (116) may be

rewritten as

Te = Ton (1K &5, Tk () 117

Equations (114) and (117) imply that the functional relationships are

the same in both relations and that the comstuant of proportionality
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\'( is equal to % .

k = 3: 118
If equation (110) is expanded one obtains finally:

TM:J'Z_.S‘LL-LS +—M(L (25 +lg )+ Llrtr } 119
This in tuI_'n becomes:
. . o ' . M S A3
Tmz%L(‘%*- LQZ)"L%_M(“D‘A‘**LQ‘C\} '%"“Q(Ld +0q%) 120

and in vector notation may be stated in the form

’ . 3 . L s . .
TM:._%LQS 055 +EM Lo Lte +J?—_'£.I$Ra£R L2l
Hence, it follows by equation (103) that
= = Z__
T-yv\ LP and Te 2 (P 122

This is the total average magnetic energy s tored in the machine in the
steady state. That equation (122) holds under transient conditions
and instantaneously as well, is shown by the rigorous proof in Appendix B.
Whether the vectors in (122) are expressed in terms of
rotating or stationary coordinates does not matter, since vectors
are invariant urder transformation., However, when (122) is used
for the "kineti(v:-energy" furc tion in the Lagrangian formulation
(Ref. 8, Chapter 1 or Ref. 10, pp 418, 419) care has to be taken
with regard to the operator/. i}
S:.ncekthe present energy function onlydepends on currents,
i.e, the 67 s , the term 91 in equation 15,11;1; of reference 10 may

2q
?
be ommitted. Therefore, the eauation simplifies to:

i(ﬁegal)_' 3ri Lo,
at v 99y SQ(; £ 13

By the rule of "the cancellation of the dots"
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dry L3 =
- L :BT"’ = C(f‘f
39p  99p

one may rewrite (123) in these terms. Let all three rotor currents

124

N , ‘:_g_ and (. form a vector ,4_ such as the column matrix on the

right hand side of equation (15) , and all three rotor flux linkages

a vector .21; o The left-hand-side of equation (15) contains the

direct- and quadrature-axis quantities, which we understand to be
defined along rotating axes, but only by virtue of the statement directly
beneath equation (15). The same verbal statement would have to be

given along with the inverse of the Park Transformation. Equation

(124) defires the elements of the imverse of the Park Transformation
C}’L‘p together with the verbal statement that the rate of change of
d-0isn-uw>. If the statement is not given and the angle §-8

is taken to be stationary, then the Park Transformation for the rotor
defines the quantities shown in Fig. 4. In the development of equation
(123) in ref. 8 or 10 it is pointed out that when the various partial
derivatives are taken time is also to be held constant. For this
reason, then, we choose the quantities ., g, for the rotor and
similarly (s, and C'sz for the stator as generalized velocities,

The elements of the inverse transformation for the rotor are given
byi:_l;__ which is the inverse of the Park Transformation with the
ang%,émg’.e held constant, Then, when applying (123) to the rotor only,"

the summation sign drops out[é;%. ] and (123) become s;

Csin
d (:;Teﬁ):)_t,_ A =3i .da
dt ¥ iz Br i Slpq dt 2




3{2&_ cannot, off hand, be ident;fied with a ?ector forn of
Faraday's law for the actual rotor-coils, Th; reference system

| in which t he operator d’E'LC is a measure of the rate of change must

be specified, Obviously, Faraday's law only ?olds ifé%E signifies
the rate of change as seen from the rotor coils, Hence, if (125)

is written as

(# (Lﬂ—"fﬂ'))ﬂ (E
dt/r \ 3ipia 3‘—12('7_. dt/r

only then can the term( d\ 7\ be identified w::.th’lr the voltage

dt

vector for the rotorg

S

f"
o

o= 127

Y

23
: i A
Now, according to the discussion following equation (100), (—C‘%\E)R‘* and
d JS are zero. 5So, equation 126 may be fwritten‘explicitly, after
At e f A : -
i "
having multiplied through by ¢ and "j)\, i.e. having converted the

"ve@tor"( ) ( ; 33 from a column-matrix into the more

conventional form, :

(%) («\\\éTe>: t\\ .£° .’_l..f;;:_Z‘“Qu L2
and

(54_ (,ns QTQ): 3\% ;_.,; 01."%’:":.'3\“@-7_ b
dr ;- LRy 2 l-‘;zz - ?

The Q's are the so-called generalized forces,

Addition of (128) and (129) results in: ,

$ » —

(c(i:‘t) (VRTQ) pad T &\,‘*‘3\ Qz — QR 130

One would similarly obtaing "
d Te) = Q .
<J€>& (V e) =S | : 131

Equations (130) and (131) show that by means of the operators VR
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and ¥V one can use the vecétor quantities in Te directly as quasi-

generalized velocities. This idea can be extenc?iked to the general

case when %_I. A0 by defi}xing a gradient for {;he q's , in a

similar mam?:r to definitiiﬁns (lOl)‘and (102)." So far, it is

known what Te stands for in terms of known machine-constants.

The Q'scan be determined iintwo ways: by the principle of virtual

work or by their definitior; (equations (128) and (129)). The first

method is 'simpler , but not; particularly rigorous and general, The

‘second method sheds some additional light on the Park Transformation, and

is therefore also carried o’ut in appendix B, |
Qsand Q gare irelated to the virtual work® by the

equationss \,

| dTe =Rs .6\3‘5* gk'dﬁK [ 132

In this equation the dg‘sarfe defined bys

dTe= Qs L dt +Quq, Lgd'tt

133
Equation (133) may be rewritten in terms of the electric power
flowing into the system of coils
=dTe = Qs s +@r *¢
P dT R~ 134

or by equation (112): ;
- ‘} . ¢ * e L . | .
P~Qz Qs ésew*‘!% Ax v{?;Re,q_ 135
which implies:

'\F’: Qs = s eff ' 136

But, it is known that in a balanced 3-phase sysétem




Vs ers , :.ﬁ &eﬁ-,/’“c\sg 37
holds true. And in general, for a sinusoid one has
Ve - U7 ~
Sefs. phase '““"‘“—,L[E‘? : 138
where Vs is ‘the amplitude, which in turn is related to 73
by the inverse Park Transformation or equation (11)
- 2 |
Ve = 3| 139

We obtain finally:

"1\ 2
‘\E{ Qg = (ﬁ)(ﬁ>§- ¥ 140

or

l 2 :
Q, = 7Y% 141

and similarlys

. ,
Qrp= % % . 14,2

Substituting (141) and (142) into (130) and (131), and keeping in

mind equation (122) we get:

(). (=0

144

), (e

This puts equations (104) and (105) on a physical basis, and therefore,
working backwards it is possible to arrive at Young's equations

without trigonometric manipulations starting from the well known



equivalent steady-state circuit of the induction motor. This
inherently demands that ali transients be slow enough so that the
electrical quantities may be always considered approximately sinusoidal.
This restriction is used in setting up equations (110) and (141).

It will be shown in appendix B that this restriction is not necessary.
It should furthermore be noted that the ordinary form of

lagrange's équations for "stationary" reference frames was used,
Evidently, the stator is statiamry but not the rotor. Inreference

8 and 10 the equations are derived by establishing first a general
kinematical relationship, equation (123), which holds whether the
reference frame is stationary or not. Subsequent identification with
Newton's second’law demands that the reference frame be stationary,
this is not necessarily the case for identification with Faraday's
law, which has been pointed out in détail in the discussion following

equation (125).
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‘Chapter VI

;The Torque Relationship

Abstract: It is‘: necessary to introduce a different set of generalized
coordinates, with the aid of which the torque relationship is

deduced,

For the determination of the torque it is necessary to
augment the relationship for the magnétic energy stored in the
system, Te , by the mechanical energy stored in the inertia, J .

The total "kinetic" energy then becomess

| T=Te *3% J w> 11;5 |
t29 will be a generalized velocity and the generalized coordinate
associated wi@htﬂ?is € , the angular displacement of the rotor.
For the remaining‘velocities, (4 and ‘€7 cannot be chosen, since the
contain implicitiy, through the Park Transformation, the angle & .

Let us, therefore, choose instead for the rotor two |
mesh-currentsg 642) and Qké@are a particularly convenient choice.

It is shown in appendix B, that the e xpression for Te holds no
matter what the time relationship of the currents is: La
and 4‘5. do not have to be sinusoidall

For all practical purposes %e can leave Te in the old form
and simply think of ¢y and i% to beffunctions of & , ta and (,,

the functional relationship being givén by
¢ Ca |
“ :[A(J—Q)] “l 6

t? : Ly



In particular equation (145) becomes:

T(LD,Lq,LmLL_w‘ ¢,t) =4 L(LD ‘f‘Lq ) *M[L.D ‘d(%,%) e)+

The electrical relations have already been established

in Chapter V. Hence only the following equation has to be

evaluated:
d (37T ) 2T - Qe 148
d‘t c)b.} Q e

is the generalized force, in this case evidently the externally
applied torque in the direction of w'-less any possible friction.
The partial derivatives 2 and 2 imply that all
aw xe
quantities appearing in the bracket of T(io)iml:o, Q,U{Q)t')eﬁxcept of
course, U¥ and & respectively, must be held constant, and no others.

Evidentally 3:; becomes s:‘unply\\uy s the angular momentum.

JT is evaluated by the well known rule for partial derivatives:

.a—_—é )

3T- [ET(LD,LQ,Ld,Lq  uht) [3% ] FT L

1e 3 la 36 |¢, Ly, L= const. 3dg 36 19
or 9T = Mo, w0 D0 |42 8|y 4 Co 34

36 L”—éu' ;97] 3[°‘ge+ 13e 0

where 3¢y and (g are found by the definition of Lo & l:q , vizs

e AT ; 9
._3.;_ i‘d - _3_'_.. - . LQ’
38|, g 6 [A (4 e)]} {y 151
9

By inspection of equation (18), with d replaced by d-e , it is seen

that when%é of every term in A(&*E) is taken a new four element
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matrix results. Comparison with A(d-8reveals that if the order

of the equations in (151) is reversed anddl4 is multiplied through
NYE)

by -1, then the right hand side of (1€) is reproduced. This is

similar to the proof of (25) in Appendix A and yields:

9 L“ = [AUs-0)] ?“E ba

BY:S 152
Hence, (152) results ing
BLld = {4 153
36 .
and 3 . ,
¢ (_3 - '
he b ; 154
so that, equation (150) becomes
’_5_—[:: M[LQ L’d“ip Lq] 155
a6

This result can also be produced by a more or less intuitive
argunent :

Consider T in the form of dot-products of vectors
T"“—%‘:ng—is'és “‘%M LsrLr *‘—\éii—a’(—*—z’}“’% Ny 156
The vector (p is defined in terms of the rotor position © .

Then 3 e |
36 157

may be thought of in terms of a virtual displacement given to the

vector {, as shown in Fig. 7.

Fig, 7 L, “k clLia
_l:R’f' 0(,£R The length of the vector

o _ég is given by
| [ iel= | el o]
and the direction is given by that of the cross-product:
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-
/A is a unit vector hav:mg the direction of d & L

OGL.R may bs then expressed as /‘1; ‘ d -‘:R and

__,_L_ = ld«( g‘ \L'_K“O(,G‘—:_ /l::‘j;/b\ = /& X Q'-Q,‘_(_:R\:jz\)l_{{q
de s 6 TCal

Assuming that d ‘a P ,C.g 1'3 correct
) :

we obtain dlg T o
EE = JPE X‘ER : 160

2
A A

,.AI_: M-‘;sﬂ’f‘_i'-ll +~gv R',___&:: M!:s‘/gl"ig“‘ﬁ(ék'/pax E_R)
kY 38 3 30 3
or . o o i r . .

BT MA Lexls=Miy {0 = M (Lo ta = tp (q)

Y N
or, alternatively,

Mk fgxls = M| Lef|Es | 5in = 165

where & 1is the torque angle, the angle by which the phasor L';z
lags the phasor l-gs . This is the most conventional way of stating
internally developed torque. Equation (lb8) may now be written

explicitly ass d (Juws) = M T LR xis = Qe 164
dt ;

G)w = externally applied torque - (friction + windage)

e, Bp=7T- [K S%m(u&) + Busv] - 165
This results then in the fifth differential equation governing ‘

159
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the behaviour of the motor:

J dw ,,_Buy+k%c(>rn(w)= M[LQ cd——cpcc“].;@v »
dt
The other four equations are equations (53) through (56).

The solution of these five equations cannot be carried out in
general terms, because they are all non-linear and, therefore, the
solution tohpne particular input cannot be related to the solution
to any other input, even one proportional to the first input.

The author believes that the derivation of these equations
gains its value mainly from the fact that some aspects of the intimate
relationship bet&een the disciplinesgof electrical machines; circuit

theory and classical mechanics have 6een demonstrated,
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Appendix A

A.1 PROOF OF EQUATION (25)

Differentiating equation (23) one obtains:

~sin d -cos &
—%[A(S)] 3 _io:(&ﬂ.) M;:(J*@) [D((_()] 167

| {_c_{_ [AU )] 3 [pD)])= ,_,_{c! [A] g P(t)] [D@V )][ P(t)] 168

When [P] is changed to. [P ] ‘defined by.equations (24) and

I

(25), the the columns 1n[D:lmust be interchanged and the resulting
first column in [D] must be multiplied by -1, if the statement
(168) is to remain unchanged. Comparison of (167) with (23) shows
that this manipulation within the matrix[D]has reproduced the

matrix [A] , which proves equatlon (25).

A,2 PROOF OF EGUATION (28)

C°ﬁéide’r first { [B(e)] + [B (—9)]} [ Al a)]"

[8(9)] [B(—- ] =3 {SW\ (9+ ZTF)-—-SIV\ (o- ?-TT)} e

Q
\"‘ O
=203 % ces

L6G

:

80 that the first statement becomess

{ [8(93] + [8(;6)] E [A(o()]q: 2 COS":‘ cos 8  —3ImxCos 1 .

: : e
CQS(«‘—%S-)COSB —-Sm(&zg)cu)tj
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Now use of the trigonometric identities

2 cose cos O = cos (x-8)+ cos (=+9)

171
and 2 Sink cos B = $in (o\ -8) +Stn (d\.—l—Q)
and forming two matrices out of (170) results in
cos (-8) —sin{x-e) cos(A+0) — i (% @)

_ R _ _ ~ _ —2.‘_
cos(a-p-2T)  -sin(«-&-2) co§(ok+e 2T) Sinfotre-20)

= :%_ A (x-8) * 32_ Nee+0) 172

By a similar manipulation the reader may satisfy himself that also
the following statement also holds true:

{[Bee] - prol] [a)]” = 3 Altxr0) -3 A" (x-0) 173

Addition of (172 and (173 results ing

[Bo)] [a0] =3 & (are) 174
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Appendix B

B.1 PROOF THAT DQUATION (106) HOLDS ALSO FOR NON-SINUSOIDAL

PHASE~CURRENTS .

Consider equations (30). It may be represented as

& R o ||94 d Lss  Lsz || ¥s

175

~ The curly bracket, contains a statement of the flux linkages. Premulti-
N i 3y :
plications by —é- [.S s 19, ] of this braket gives the magnetic
energy s tored in the system, whether the currents are sinusoidal

or not, provided the system is linear so that:

ﬁ i
} } ») &
Te =% [&s),g Ag ] —fjs— -:*-g;sg- e
Z 'st ! fRR §E ' 176

This matrix product is now partitioned to produce:
) - ) ) ) !

Each product is a scalar so that its transpose is equal to itself.
The transpose of the 3rd term is equal to the second term since we

have

[ Lo d] =[0I % ]= [T [ G (0]

(177) may bhen be rewritten in the form
¥ y
Te=F 3" Py 3¢ + 2 La de *5 30 Zrr & 179

By the inverse of equation (15) the rh2se quantities may be expressed




|

i
+

2T =2, o] | M (L is [[PUT] da]

" The product 'P({ :fss Pj(:f)may'ba changed intos
~ | i : N ‘:, o - -
LeMs | 00 A
PO o Mg 0 Mg

in the direct- and quadrature-axis quantities to give:
Te=4 I P8 Fas PUOTs +Ts PUE £q PlE0) Tk

+4 T, P (§-8)Xre PT'(4-6) VR : 180
Iet this define the quantities: : - o '
Te=T+T2+7 181

Ll - : i o
© ' The inverse of equation (15) ,@9, becomest

cos & —sind 5
- Pld) = %— cos(d- 2T) “5“"(5"3'%‘-\ 3 182
cos(§+2F)  ~sinldeam) 3 |

It may be noted that the following relationship exists between the

Park Transformatzfon and its inverse by comparison of equations (15)

and (182)s | ' 6 o O
P ((f)’j :: % P — “5 o © : 0‘
: 1 }

Because of the constraint given by Kirchoff's current law the

i

zero-sequence components are missings| ° e
Is;[LD,LQ\O] ; l{?l;;-::""

: } . .
and since in the e xpression for T . T_s premultiples equation (183)

4

all terms involviing the second matrix of; (183) are zero so that we éét
i - ' - o o
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or

(Ls=Mg) PLE) U PIET" + Mg P D(4)™ 187
where 74 is the unit matrix and 4~ is defined on comparison of
(187) with equation (186), Since three sinusoids of equal magnitude
spaced '2;-%7 rgdians apart add to zero 2 P(d )-'becomes
T 0 o 3/2" r.(::- @] {
VP '=%e o %=|0 o 1 |=1) 4

i

o o ¥| |o o |
> - e
and similarly 7 Te o o
P(J)WE o =3

O,
. o o LS
3 I results in zero. 3
By definition of 1{ , the unit matrix:

PO U PE = P(HPE)! =

189
It follows that 27, , simplified to ,
. .-' * 2 _ L N
?.Tn:?s‘(Ls MS>LD +% (Ls 'Ms\,gﬁ 190
or | | V
Bl L% 4L Lo
—Z‘T;“'ZLLD +2 LLQ 191
quite similarly we would obtain:
=1 (
Tz may be wmtton asg | r Lod
2z ,
O

, 4 -
The rows and 'columr;]s of P@ﬂ and ?(6'*6) that contribute nothing are

o



eoolib

omitted to gives

_. | r .
TZ:[I:D £ (—%‘) CDf, & Cos(‘é~?{§) Cas(é}zé}'){fm] %COS(J—B) :F% sin(d-9 Lo
_$\‘n€' cf ~Sin (J‘-?:EU ) —sin (d.*-%“) %cos(é—eﬂg):«% 3 (d-07 L"i

| .
.% C°5(d"e*§3r)|"%‘sm(é—eﬂ_g)

194
Let the following symbolism be defined by (194):
) : ~t
To= To (3) P Lsr PlI-0)7 Tx 195

When the product P(d) ¢ sr is evaluated it is useful to keep in
mind the double angle relationships (1.71). PJ) Lsp becomes
by the definition of £sr in equation (30) after some relatively

simple manipulations ;

Now P{d-8)and P (L -8)" are still inverse matrices, although

the originals have been deleted by a row and a column respectively:

; 1 O > - o
C - - :
?(J-—@)P(&f"e) ';l}./L"‘l;,) l] . 197
However, this particular order of multiplication is necessary. -
T, becomes then
P 2‘ ? .3. ' : °
=5 Iy sMUTe | . 198
or 1 '
D =D e n | |
—ZrTzu;»‘zM(CDC&+L@§Lq) : 195
It follows from eguations (191), (192) and (199) that equation (106)

is verified, viz:

2 Te*‘,\P; R S T B 200

't

2
3

R R T
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B.2 PROOF OF EQUATIONS (141) AND (14-).

By equations (128) and (129) the for the rotor are
given by: 7
- . 4 - ) : , . -y o~
Q, d Lo 3l e || A
Al i‘z" ' él.\R. AQ:RI 201
= A
QL é l:cL' 8 £ g é.llg—
LR, Cpa dipy]| Ve
! . i ‘ Al
The relationship between ,{-_ and Cgl,—‘,_ is given by the inverse
Park Transformation with ¢ ~@ to be held stationary.
ta, | -, ‘ e,
=[peg-o]"| £ P (d-0) | te
o lresor i = B N
. : R
Lc v 4]

The elements of 'Pﬂ!d‘— ©) are given by the definition:of P~ (d-0) .

viz. equation (194) or alternatively by:

- 9 " . 1rF N
La ol q %__*L« L
iy | = ‘ o - ; 203
d 9 Lg _:)_i,_g.; LRy
s : L' .
| e ": 'R\ dtea P
. 3 L ; y j
= 3 le
-;) L R‘ éLRz
It follows that 201 may be written as
Ay e
o :[P? (&e)r% 204
& o g,
Ve
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By equation (183) we have
)
-\
[P (&—G)] = ?‘g P(d-€) 205
By the definition of P(d-©) which is the Park Transformation
without a statement about any possible zero-sequency one obtains
. Vi e
P (J~e)] | -
JUIGE S = 20
[ ' 12 VRa2 6
ne '
The voltages do not have to be sinusoidal or balanced, It follows

that (204) may be written as

Gl 2|V
- 3 207
Q, e .

AN

On multiplication of the first row by £ the second row by J

and subsequent agldiﬁion the final result is

TS U Y o
: (';3“_’3-”"_ I 208
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