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Abstract 

The interaction of electromagnetic waves with biological tissue is investigated. 

Two problems in particular are studied. The first is three-dimensional scattering from 

biological tissue taking into consideration its dispersive nature. The other problem that is 

investigated is the three-dimensional reconstruction of the dielectric properties of a body 

from the scattered field data resulting fiom interrogation with electromagnetic waves. 

The symmetric condensed node transmission line matrix method (SCN TLM) is 

used to study three-dimensional scattering fiom biological tissue. To sirnulate the 

dispersive nature of biological tissue, a second order Debye equation approximation of 

the permittivity in the fiequency domain is used in a modified TLM technique. In this 

technique, the scattering matrix is independent of the dielectric properties of the medium, 

which are accounted for via lumped equivalent networks or sources comected to the 

nodes. These equivalent sources are calculated at each time step and included in the 

scattering procedure of the TLM. To check the validity and accuracy of the modified 

TLM technique for dispersive homogeneous and nonhomogeneous dielectric bodies, 

some of the results of the numerical simulations are compared to those obtained 

analytically. Assuming a nondispersive nature of biological tissue, the nondispersive or 

stub-loaded SCN TLM method is used to obtain the near field data and hence the specific 

absorption rate (SAR) distribution. The results of both cases are compared. The rnodified 

TLM technique is then applied to a nonhomogeneous and geometrically complex 



dispersive dielectric body, which is the human head. 

To estimate the complex permittivities of three-dimensional inhomogeneous 

dielectric bodies, the unrelated illumination method is used. This method, which has been 

tested before with two-dimensional bodies, is extended to handle three-dimensional 

inhomogeneous dielectric bodies. The method utilizes the method of moments (MoM) to 

discretize the nonlinear integral equation, which relates the scattered field data and the 

complex pennittivity. Yet, it differs fiorn the other reconstruction techniques in that the 

way of acquiring information helps overcoming the ill-posedness nature of the problem. 

This is maintained by the proper arrangement of the polarization and the direction of the 

incident eIectric fields airning to illuminate the body with a group of unrelated incident 

fields. Numerical simulations are carried out to assess the method and to test its 

robustness in the presence of measured data uncertainties. 

i i i  
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CHAPTER 1 

Introduction 

1.1 Introduction: 

The increased usage of high frequency devices by the society for a variety of 

purposes has made it imperative to be able to quanti@ the absorption of electromagnetic 

energy in the human body. Such knowledge is indispensable if one is to either selectively 

apply electromagnetic waves for therapeutic purposes or deterrnine if the electromagnetic 

fields emitted by a device are harmful. Because ethical considerations make 

electromagnetic exposure of humans for experimental purposes difficult, it is necessary to 

develop realistic cornputer or engineering models. Cornputer simulations could then be 

carried out to obtain the required information [l]. 

Most of nature's phenornena can be modeled using mathematical models. Models 

in general are used to establish a relationship between the input to a system and the 

output of the system 121. Models allow for better understanding of the system response as 

well as the possibility of investigating the effects of various parameters involved on the 

system output. In order to build a model, the domain, whether it is frequency or time 

domain, at which the problem will be solved has to be chosen. In addition, a certain 



mathematical formulation has to be adopted. Both of these points are usually related to 

the problem under consideration and the information or data required as an output of the 

used model. Numerical techniques are essentially mathematical models that make use of 

the availability and advances in the high-speed computer technology. 

1.2 Domain-Classification of Numerical Techniques: 

There are severaI classification schemes for numerical techniques. One criterion 

for classification is the domain in which the actual physical problem is defined. If the 

problem is defined in the time domain, then the method is described as a time domain 

method. In this case, the computational domain is both space and time dependent. 

Altematively, the fiequency domain may be chosen, leading to the fiequency domain 

methods. In this case the computational domain is only space dependent as the problem is 

solved at a single frequency. The time domain formulation is suitable for studying 

transients or obtaining the response over a wide frequency range. The latter c m  be 

obtained using Fourier transformation of the tirne domain information. The fiequency 

domain formulation is used for studying the steady state response at a single fiequency. 

The choice of the domain is usually based on the efficiency of handling a particular 

problem. 

To investigate electromagnetic field problems, techniques belonging to both the 

fiequency and time dornain have been used. For most antenna applications and radar 

cross section analysis, fiequency domain results are usually required. For certain 

electromagnetic compatibility (EMC) problems, the transient response may be required. 

Also, the nature of the material parameters affects the choice of the solution domain. The 



time domain formulation is preferred for problems that include nonlinear materials. On 

the other hand frequency dependant or dispersive materials, although require the use of 

convolution in time domain modeling, are easily treated using frequency domain 

formulation. 

1.3 Formulation-Classification of Numerical Techniques: 

The starting point in modeling electromagnetic field problems is usually 

Maxwell's equations, which provide the basis for studying various electromagnetic 

phenornena. Two kinds of mathematical formulations can be used to describe 

electromagnetic field problems based on the foim in which Maxwell's equations are 

given. These are the integral equation formulation and the differential equation 

formulation. 

1.3.1 Integral Equation Formulation Based Techniques: 

The integral equation formulation can be used to solve open problems and treat 

complex geometries. The appropriate selection of a Green's function for the problem 

under consideration is the starting point for the integral equation formulation. The 

formulation reduces the problem into an integral equation in terrns of unknown currents 

and these Green's functions. This usually results in a system with a dense matrix 

equation. Assuming a time hannonic variation, the integral equation can be formulated in 

the fkequency domain. The method of moments (MoM) [3 J and the geometrical theory of 

difiaction (GTD) [4] are considered the leading methods in the integral equation 



fiequency domain formulation. The method of moments is used to discretize the integral 

equation thus allowing for a numerical solution for the problem at a single fiequency. For 

fiequencies above the resonance range, the geometrical theory of diffraction may be used. 

The integral equation can also be formulated in the tirne domain [5] .  In such a case, it 

allows for the study of transients in the system. The integral equation formulation c m  

further be divided into surface integral equation formulation and volume integral 

equation formulation. The surface and volume integral equation formulations have been 

widely used to analyze electromagnetic radiation and scattering problems. A detailed 

review of the numerical methods based on the integral equation formulation c m  be found 

in [6]. 

1.3.2 Differential Equation Based Techniques: 

The differential equation formulation can be used to solve closed inhomogeneous 

problems more easily than the integraI equation formulation. Also, as the complexity of 

the problem increases, the differential equation based formulations become more 

computationally efficient than the integral equation based formulation. The numerical 

solution of the differential equation formulation can be obtained via such techniques as 

the finite difference tirne domain (FDTD) [7] or the transmission line matrix method 

(TLM) [8], both of which are time domain methods. The finite difference time domain is 

based simply on the application of the central finite difference in both space and time to 

Maxwell's equations. The transmission Iine matrix method is based on the equivalence 

between Maxwell's equations for the electric and magnetic fields in a medium and the 

equations for the voltage and current on a network of transmission lines. Both approaches 



lead to systems of algebraic equations that must be solved at each time step. They also 

require discret izat ion of the entire simulation space in which a non-zero field distri but ion 

exists. For open region problems, they require the application of absorbing boundary 

conditions to tmncate the simulation space to a reasonable size. Both techniques can be 

used as an electromagnetic modeling, simulation and analysis tools. Each of these 

techniques has particular advantages over the other, depending on the specific problem 

being studied [9]-[l l]. 

The differential equation form of Maxwell's equations can also be formulated in 

the frequency domain. The finite element (FE) method is a widely used technique that 

belongs to this category [12]. Because of the type of the space discretization, which is 

tetrahedral elements for three-dimensional problems, the method c m  handle a wide range 

of geometries. Another method that belongs to this category is the finite-difference (FD) 

method [13]. Both of these techniques have been widely used to analyze different 

structures [14]-[17). 

1.4 Biological Aspects of Electromagnetic Waves: 

The puxpose of this thesis is to study the interaction of electromagnetic waves in 

particular microwaves with biological tissue. The wide use of electromagnetic and 

microwave devices in Our daily life has raised a lot of debate regarding the effects of 

electromagnetic radiation on living material. How much is absorbed by human tissue 

after an exposure and whether this absorbed energy is of any risk or can cause any 

mutation to human cells. In order to answer the latter part we have to find an accurate 

method to measure the energy deposited to a human tissue after an exposwe to 



microwave radiation. The dielectric properties of the biological or human tissue are 

fiequency dependent. Thus, for accurate simulations, the dispersive nature of biological 

tissue has to be taken into account. Further studies cm be carried out to obtain the safety 

exposure levels. Since microwave radiation is a non-ionizing low power radiation and 

due to the lack of a solid proof of being hannful, research has been and is being carried 

on regarding the possibility of its use as an imaging technique. 

Two main issues are going to be studied in this thesis. The first is scattering and 

power absorption to obtain the energy deposited in dispersive biological tissue. The 

second is inverse scattering to explore the possibiiity of using microwaves in imaging or 

reconstruction of the dielectric properties of inhomogeneous dielectric bodies. Two 

different numerical techniques are used, the transmission line matrix (TLM) method and 

the method of moments (MoM). The choice is made based on the applicability and the 

efficiency of handling each respective problem. 

1.5 Thesis Outline: 

Chapter 2 provides a review of the TLM method and its use as a time domain 

numerical technique to solve various electromagnetic problerns. The use of transmission 

lines to describe the behavior of eIectromagnetic fields in a medium is discussed. The 

symmetric condensed node (SCN) is presented together with the various capabilities of 

the TLM method. In Chapter 3, the use of SCN TLM to mode1 dispersive media in a 

modified TLM technique is presented. The dielectric properties of the medium are 

modeled via a RC circuit. The circuit is connected to the TLM node and solved at each 

tirne step. In doing so, the scattering matrix of the TLM technique is made independent of 



the medium. A circuit model is proposed in Chapter 3 to model second order Debye 

dielectrics. The derivation of the circuit model equivalence together with the expressions 

for the circuit components in tenns of the second order Debye parameters are given in 

appendix A. The results of numerical simulations, for scattering from biological tissue, 

based on the SCN TLM are then presented. The validity and accuracy of the method are 

first presented using results obtained analytically and results obtained using the stub- 

loaded or nondispersive SCN TLM method. The modified TLM technique is then applied 

to various nonhomogeneous and geometrically complex dispersive bodies. 

In Chapter 4, the fonvard and inverse scattering formulation and their use in the 

reconstruction of dielectric bodies are presented. Ill-posed problems as well as the 

different methods of regularization, that c m  be employed, are defined. A review of the 

various techniques used in rnicrowave imaging is given in this chapter. In Chapter 5, we 

start with the discretization of the integral equation formulation. This is followed by a 

discussion of the common reconstruction procedure available. The unrelated illumination 

method is then presented as a tool for the reconstruction of the dielectric property 

distribution of inhomogeneous dielectric bodies. The results of numerical simulations to 

assess the capabilities and robustness of the unrelated illumination are presented. Finally, 

conclusion and future work are given in Chapter 6.  



CHAPTER 2 

The Transmission Line Matrix Method 

2.1 Introduction: 

The Transmission Line Matrix (TLM) method is a powerful numerical technique 

for solving electromagnetic field problems. The method uses transmission line networks 

to represent the behavior of electromagnetic fields [18]-[20J In this rnodel, voltages and 

currents behave in the sarne way as electric and magnetic fields. Therefore, concepts of 

transmission line analysis can be used to describe the electromagnetic phenornenon. The 

TLM method uses scattering and transmission matrices to simulate the propagation of 

electromagnetic fields. The simulation space is divided into a mesh of transmission lines 

interconnected at discrete points in space. At each of these points, the incident and 

reflected pulses are scattered and transmitted to other points of the mesh. 

A simple two-dimensional version of the TLM method c m  be obtained by 

applying Huygens' principle and the conservation of energy [20]. This formulation shows 

the basic concepts involved in the method. 

There are two distinct nodes used in modeling electric or rnagnetic fields. These 

nodes represent the two different polarizations for an electromagnetic wave propagating 



in a plane [21]-[22]. These are the cases where transverse electric (TE) or magnetic (TM) 

field is perpendicular to the plane of propagation. The transmission line analogy 

characterizes the first case as a series node case and the second as a shunt node case. This 

follows fiom the topology of the network of transmission lines. 

A three-dimensional version of the method is obtained by assembling a three- 

dimensional array of two-dimensional nodes. For each direction one series and one shunt 

node is used to represent the magnetic and electric field component in that direction [23]. 

The complete node describes the behavior of six field components. 

Permittivity and permeability are modeled by stubs connected to the node [19]- 

[2O]. In the shunt node case, an open-circuited stub models the relative perrnittivity of the 

region. In the series node case, a short-circuited stub models the relative permeabihty. In 

this representation the relative permittivity and permeability of the medium are isotropic 

and frequency independent. 

The time dornain TLM yields a wide-band response of the electromagnetic field 

problems and can be used to analyze its transient behavior [ 3  81-[20]. The TLM algorithm 

follows the evolution of voltage pulses on the transmission line grid. The voltage pulses 

represent the discrete approximation to the field distributions. The field components are 

later determined as a post-processing task 

2.2 Huygens' Principle and Its Discretization: 

The propagation and scattering of waves in the TLM method can be viewed as the 

discrete equivalent of Huygens' principle [SOI. According to Huygens, a wavefiont Wi at 



time t = t' consists of a nurnber of secondary radiators that give rise to spherical wavelets. 

The envelope of these wavelets foms a new wavefiont W2 at time t = t'+dt . This process 

is shown in Fig. 2.1. In the continuous Huygens' principle, the secondary wavefionts 

forrn a circle of radius: 

dr = vdt (2. 1) 

Where dt is the differential time step, dr is the differential radius and v is the velocity of 

propagation of light in the medium. 

w1 ( t  = t ' )  

Secondary waves 
(radius dr = vdt ) 

Fig. 2.1 The wavefront W2 is fonned of secondary wavefionts obtained fiom the 
primary wavefiont Wl . 

In the discrete equivalent, the radius of the wavefront would be: 

Ar = vAt (2.2) 

where AI is the discretized time step, Ar is the discretized spatial step and v is velocity of 

propagation of light in the medium. Accordingly, two-dimensional space is modeled by a 



Cartesian rnatrix of points or nodes, separated by Al. The time At is the time required for 

a pulse to travel from one node to the next [203. 

Two different kinds of pulses exist in the mesh: pulses incident at the nodes and 

pulses transmitted to other nodes. The pulses scattered at a node become incident at 

adjacent nodes after a time delay as shown in Fig. 2.2. The delay is due to the distance 

between nodes and the finite speed of light. In Fig. 2.2, the pulse scattered at node a in 

the direction 4 at t=t ' is the same as the pulse incident on node b fiom the direction 2 at 

t=t '+At. This two-dimensional mode1 has a network analogue in the form of a mesh of 

orthogonal transmission lines or a transmission line matrix. 

Fig. 2.2 Scattering and propagation of pulses at adjacent nodes a & b. 



2.3 The TLM Method: 

The transmission line model is a simple representation of electromagnetic fields 

propagation in a linear media. Instead of using Maxwell's equations, it represents the 

field behavior via transmission and refîection of pulses on transmission lines. 

Consider the nodes with spatial locations as shown in Fig. 2.3. If a unit voltage 

impulse is incident on a node in the T'LM mesh, it will be scattered in the form of a 

refiected impulse of - 0 . 5 ~  and three transmitted impulses of 0 . 5 ~ .  The more general case 

of four impulses incident on the four branches of a node is obtained by superposition. 

Accordingly, the scattering process of the TLM model is given by: 

Fig. 2.3 A node and its four adjacent neighbors. 



And the transfer or connection process that permits the calculation of the incident 

voItages at the new time step is given by: 

v;*'+' (i, j) = v:** (i, j - 1) 

vy4' (i, j) = 4 9 '  ( i  - 1, j )  

vi-"' (i, j )  = ( 9 '  (i, j + 1) 

vit+' (i, j )  = v;nr (i + 1, j )  

The i and r superscripts denote the incident and reflected pulses, respectively. The t 

superscript corresponds to the time. The n (1,2,3,4) subscript refers to the port number of 

the node. The events described by (2.3) and (2.4) are carried out at each node in the TLM 

mesh. Equation (2.3) may be written in a matrix forrn as: 

where k is the number of time steps At that has passed since the beginning of the 

computation. ,v r i s  the vector of reflected voltages and ,v' is the vector of incident 

voltages. S is the scattering matrix. 

Briefly, the representation of the discrete Huygens' principle by a transmission 

line formulation is straightforward. The transmission lines are connected at the nodes. At 

each node, a scattering matrix is used to obtain the reflected pulses fkom the incident 



ones. The reflected pulses are transmitted to adjacent nodes, transforming into incident 

pulses. The process is repeated at each time step. 

The equivalent transmission line circuit for the TM case is a shunt circuit, Fig. 

2.4. Two transmission lines are connected in parallel. The total voltage across the shunt 

node V, [19] is written in ternis of the incident voltages on the different ports or branches 

as: 

The equivalent transmission line circuit for the TE case is a series circuit, Fig. 2.5. 

The transmission lines are connected in series. 

Fig. 2.4 TLM shunt node: two transmission lines are connected in parallel. 

The total current I, across the series node 11 91 is written in terms of the incident voltages 

on the different ports or branches as: 



Fig. 2.5 TLM series node: two transmission lines are comected in series. 

To model total and partial reflections at the boundaries, reflection coefficients are 

introduced in the mesh [20]. In the shunt node: electric and magnetic walls are modeled 

by short (r = -1) and open (r = 1) circuits, respectively. In the series case the situation 

is reversed. In al1 cases, a boundary must be placed half way between two nodes so that 

reflected pulses reach the boundary nodes in synchronism with other impulses in the 

mesh. For the appropriate truncation of the computational domain, matched or absorbing 

boundary conditions (ABC) have to be used, although their representation is more 

complex [IO]. In a shunt mesh, this is usually implemented by terminating the 

transmission lines by the characteristic impedance of the medium. 

The TLM method can model inhomogeneous media [19]-[20]. Dielectric and 

magnetic media are modeled by changing the impedance of the node. This can be done 

by adding a capacitance or an inductance to the node. Magnetic materials are modeled 

using inductances and dielectric media are modeled using capacitances. These 

capacitances and inductances are added to the node in the f o m  of stubs. In the 1ow 

fiequency approximation an open-circuited stub behaves as a capacitance and a short- 



circuited stub as an inductance [10]. In the two-dimensional case, these stubs are 

connected either to the shunt or series nodes. The open-circuited stub is connected to the 

shunt node, representing a medium with permittivity larger than that of vacuum. The 

short-circuited stub is comected to the series node, representing a medium with 

permeability Iarger than that of air. 

The use of stubs in the node does not require special boundary or interface 

treatment. Since the transmission lines connecting the nodes (link lines) do not change, 

no boundary reflection or transmission coefficients are introduced. Therefore, the 

connection matrix of TLM is not changed by the introduction of stubs. The scattering part 

of TLM, however, is changed by the use of stubs [l O]. The scattering matrix will have an 

extra term describing the reflection of a pulse in the stub. At each time step, a portion of 

the energy incident on the node is transmitted into the permittivity or conductivity stub in 

the form of a transrnitted voltage pulse. At the following time step, the transmitted pulse 

along the permittivity stub is returned, while that along the conductivity stub is not 

retumed because of the match termination. The scattering matrix equation of the shunt 

node with an open-circuited stub is 1191: 

1 

with 

In the series case, the matrix equation is [19): 



k 

where 2, = 4(p - 1) and 2 = 4 + 2 ,  

This media representation is valid only for non-dispersive isotropie dielectrics. 

2.4 Three-Dimensional TLM: 

The original three-dimensional TLM node was introduced by Akhtarzad and 

Johns in 1975 [8]. This mode1 is constmcted fkom two-dimensional shunt and series 

nodes and has been demonstrated to satis@ the Yee algonthm [7], [24]. In 1987, Johns 

introduced the three-dimensional symmetric condensed node (SCN) [25]. The purpose of 

this node was to overcome the difficulties associated with the original three-dimensional 

Fig. 2.6 The symmetric condensed node (SCN). 
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TLM node. In this model (Fig. 2.6), al1 six field components are condensed to the center 

of the node. Aiso, the node appears symmetric when viewed aIong each coordinate axis. 

The propagation characteristics of the node have been studied in 1261. The scattering 

matrix is obtained fiom the total voltages at the shunt node and currents at the series 

nodes in al1 three spatial directions (x,y and z) 1231. Thorough discussion of the 

symmetric condensed node is given in Chapter 3. 

2.5 Data Extraction in TLM: 

The TLM method generates large arnounts of data at each time step simulation 

[IO]. The processing of these data provides valuable insight into the behavior of the 

simulated structure. However, it is important to understand how to excite the TLM mesh 

and how to extract signals fiorn it. The accuracy of the TLM results depends not only on 

the model itself, but also on the modeling of sources and on the way the field information 

is extracted. If the source region is not properly modeled, the results can be quite 

erroneous. 

In the time domain TLM, the system is excited with a time domain source 

function at certain points of the mesh. These are called source points. The source fûnction 

is time dependent. It consists of a sequence of pulses injected into the mesh as tirne 

progresses. The most fiequently used distributions are the Dirac delta and the Gaussian 

functions. The advantage of using Gaussian kc t i ons  is the bandwidth. Since these 

fûnctions are band-limited (unlike the Dirac delta), higher fiequency modes are not 

excited. 



The response of a system to a source in TLM is the time domain behavior of the 

field at al1 points of the mesh. The frequency response is obtained from the time domain 

response with the discrete Fourier Transfomi (DFT). The frequency domain 

transformation of the time domain sequences result in the wide-band representations of 

the fields in the simulated regions. These results are used to characterize the simulated 

structure. 

The output regions can also include several mesh points. In this case, the spatial 

distribution of the fields cm be visualized. This can be done either in time or fiequency 

domains. In the time domain visualization, a dynamic representation of the evolution of 

the fields through the structure can be displayed. In frequency dornain, the fields can be 

displayed at any particular frequency. The result is sm accurate representation of the field 

interaction at the chosen frequency. 

2.6 Conclusion: 

This chapter presented a review of the Transmission Line Matrix (TLM) method. 

The TLM method uses transmission lines to describe the behavior of electromagnetic 

fields propagation in a linear medium. In transmission line models, the voltage and 

current behave as electric and magnetic fields. The mathematical representation of the 

array of transmission lines is the same as that of the fields described by Maxwell's 

equations. The TLM method uses scattering and propagation matrices to simulate the 

propagation of electromagnetic fields in a medium. The space is divided into a mesh of 

transmission lines interconnected at discrete points in space (nodes). At each of these 

points, the voltages and currents are scattered and transmitted to other points of the mesh. 



A three-dimensional version of the method is obtained by assembling an array of 

two-dimensiond nodes. Series and shunt nodes are used to represent magnetic and 

electric fieId components, respectively. The complete node describes the behavior of six 

field components. The modeling of the medium properties is perfomed by stubs 

comected to the node. In the shunt node case, an open-circuited stub models the relative 

permittivity of the medium, while in the series node case, a short-circuited stub models 

the relative permeability. 



CHAPTER 3 

Modeling of  Dispersive Media Using TLM 

3.1 Introduction: 

The TLM method has been widely used to study engineering electromagnetics in 

electronics problems. For example, in electrical systems the TLM has been used to study 

electrornagnetic compatibility (EMC) [27b[29], and c m  assist in the design process. This 

is done by establishing the degree of compatibility and interference between electronic 

systems and subsystems and by pointing to optimum design strategies [19]. The TLM has 

also been applied to the analysis and design of microwave devices including microstrip 

lines and resonators [30]-[33], as well as radar cross-section (RCS) problems 1341-[35]. 

Furthermore the TLM has been applied to the study of several radiation problems 

including cavity packed aperture antennas, radiation pattern and input impedance of 

microstrip antennas and tapered slot antennas [36]-[37]. The TLM has also been used to 

model dispersive dielectrics, gyromagnetic and anisotropic materials 1381-[43]. In this 

chapter, the TLM is used to model dispersive dielectrics that can be expressed in terms of 

the second order Debye approximation equation. 



In the basic TLM formulation, the medium is modeled using stubs connected to 

the TLM node [IO]. An open-circuited stub represents the dielectric material, and a short- 

circuited stub represents the magnetic material. In the representation of the medium 

parameters by stubs, the relative dielectric permittivity and permeability of the medium 

are frequency independent. However, this is only an approximation of the behavior of 

real medium [44] and valid only under certain conditions (low intensity, narrow band 

fields). This chapter presents the modeling of dispersive media using the syrnrnetric 

condensed node (SCN) TLM. The algorithm relies on the modification of the node 

scattering to include the medium behavior in the TLM procedure. The modification of the 

node scattering is done using a nodal source approach. In this approach, sources 

connected to the T'LM nodes represent the dielectric properties of the medium. In doing 

so, the TLM scattering matrix is independent of the modeled medium. Only the sources 

will change according to the medium properties. The nodal source approach has a 

physical interpretation. The sources represent the polarization and magnetization 

densities of the medium [44]. The medium independent scattering matrix represents the 

fiee-space propagation properties. In the absence of dielectric and magnetic media, the 

sources vanish. In the case of a passive medium, the sources will absorb and/or store 

energy. A passive network connected to the node represents this absorption andlor 

storage. The circuit is solved at each TLM time-step using a circuit equivalent of the 

node. 



3.2 The Syrnmetric Condensed Node (SCN): 

The symmetrical condensed node (SCN), s h o w  in Fig. 3.1, is forrned by 

combining series and shunt nodes [23]. This node c m  be represented by a set of 

equivalent shunt only and series only circuits, where a pair of transmission iines is 

common to both circuits as s h o w  in Fig. 3.2. A nodal voltage Vn and loop current In can 

be detemined for the shunt and series node, respectively. For the transmission line 

Fig. 3.1 The symmetric condensed node (SCN). 

common to both representations the following equations are valid: 



where the superscripts r and i are used for reflected and incident waves, respectively. The 

subscripts L and R denote the left and right directions, respectively. 

Fig. 3.2 Equivalent (a)shunt and (b)series representation of condensed node. 

Applying the above procedure to al1 the shunt and series nodes of the symmetric 

condensed node (Fig. 3.3), the equations that define the SCN in ternis of the voltages 

across shunt nodes and currents in series nodes are: 



where, 2, (= 115 ) is the characteristic impedance of the link lines of the node. 

Fig. 3.3 Equivalent shunt and series representation of symmetric condensed node. 



In fiee space the voltages across the shunt nodes v, and the currents in the series 

nodes i, (n=x, y,z) are given by: 

Substituting the values for the voltages and currents (3.4) in equation (3.3), we end with 

the relationship between the reflected voltages in the different branches and the incident 

voltages: 



In a matrix form, the previous equation defines the scattering procedure in fiee space. 

The scattering matrix that relates the reflected and incident voltages is the same as that 

obtained by Johns [ î 5  1. 

Lumped element networks or sources are used to mode1 the medium. These 

networks are connected to the node by a transmission line of characteristic impedance 

equal to the driving point impedance of the node ( Y = 4% or Z = 42, ) [43]. The incident 

and reflected voltages from these networks are related to the voltages across the shunt 

nodes and the currents in the series nodes: 

vl,, , v h  , vLn and v, (n=x,y,z) are the incident and reflected voltages from the lurnped 

elernent networks (sources) connected to the shunt and series nodes respectively. The 

voltages across the shunt nodes vn and the currents in the series nodes in (n=xJyJz) are 

modified in the presence of the nodal sources and given by: 

This is the sarne as equation (3.4) but in this case the voltages incident fiom the 

nodal sources are included. Substituting these values of voltages and currents in equation 



(3.3), we obtain the relationship between the reflected voltages in the different branches 

and the incident voltages fiom the branches and nodal sources: 

To obtain the reflected voltages at the sources we use equations (3.6) and (3.7), in 

which case we obtain: 

The last two equations can be written in a matrix form as: 



In this equation t denotes the transpose and the vectors V: and V: are given by: 

The scattering matrix S is given by: 

The matrix T is given by: 



Knowing the incident voltages from sources (as will be s h o w  in this chapter) and 

different branches, we can obtain the reflected voltages and hence the incident voltages at 

the next time-step. 

3.3 Electrical Properties of Biological Tissue: 

Dispersive materials are those materials whose electrical properties are fiequency 

dependent. These electrical properties are namely the dielectric permittivity relative to 

fiee space E, and conductivity o. For biological tissue, both properties change strongly 

with fiequency. As a matter of fact, as the fiequency increases from a few hertz to 

gigahertz, the dielectric constant E, decreases from several million to only a few units. 

This manifests the inability of the charges in the tissue to respond to the higher 

fiequencies of the applied fields, thus resulting in lower permittivity values. 



Concwrently, for the same increase in fiequency, the conductivity dncreases from a few 

millimhos per centimeter to nearly a thousand [47]. Fig. 3.4 shows the variation of the 

dielectric properties of muscle with frequency. 

Fig. 3.4 Variation of the dielectric properties of muscle with the frequency [47]. 

The conductivity a and the dieiectric pemittivity E,. of a medium c m  be 

cornbined together to form the complex permittivity constant which is a frequency 

dependent quantity and defined as: 

Muscle (Transverse Fiber) 

l.OE+l t.OE+2 I.OE+3 I.OE+4 1.OE+5 1.OE+6 1.OE+7 1.OE+8 1.0~+9 1.0~+10 1.0È+il 

Frequency (Hz) 



~l can be expressed in terms of rational functions. The most popular rational functions 

that have been used are first order Debye approximation equation, the second order 

Debye approximation equation and Lorentz equation. 

3.3.1 First order Debye Approximation Equation: 

The complex dielectric permittivity constant of biological tissue cm be expressed 

as a first order Debye equation: 

where E, is the permittivity at infinite frequency, E, is the zero or static permittivity and 

z is the relaxation time constant. 

3.3.2 Second Order Debye Approximation Equation: 

The complex dielectric permittivity constant of biological tissue c m  be expressed 

as a second order Debye equation: 

where E, is the permittivity at infinite fiequency, 6, = E,, +E,, -6, is the zero or static 

permittivity and 7, and s, are the relaxation time constants. 



3.3.3 Lorentz Equation: 

The complex dielectric permittivity constant c m  be expressed in terms of the 

Lorentz equation: 

where E, is the permittivity at infinite fiequency, E, is the zero or static permittivity , 

w, is the resonant angular frequency and 6 is the damping constant. 

3.4 Modeling of Dispersive Media in FDTD: 

Modeling of dispersive materials has been widely studied using finite differece 

time domain (FDTD). Two main approaches have been taken to develop frequency 

dependent finite difference time domain (FD)~TD method. The first one utilizes the use 

of recursive convolution (RC) to develop frequency dispersive RC FDTD method. The 

second approach utiIizes the use of auxili~ry differential equation (ADE). 

In 1990, Luebbers et  al published the first fiequency dependent FDTD 

formulation 1481 by using a recursive convolution (RC) scheme to model dispersive 

media. In this formulation, the complex permittivity is converted fiom the fiequency 

domain to the time domain. It is then convoIved with the time domain eiectric fields to 

obtain time domain fields for dispersive materials. This discrete time domain convoIution 

has to be updated recursively for some rational forms of the complex pemittivity. 

Independently, in 1991 Bui et al [49] also developed a RC FDTD model for modeling 



dispersive media. In both cases, the medium was modeled using a first order Debye 

approximation equation and was tested with one and two-dimensional problems. 

Luebbers et al [50] modified and generalized the frequency dependent RC formulation to 

handle wave propagation in any dispersive media as long as the frequency domain 

permittivity can be expressed as a ratio of two polynomials [5 11. The main disadvantage 

is that the calculation time is approximately twice that of nondispersive lossy dielectric 

FDTD calculation. Much work have been done by other research groups to improve the 

RC approach with regards to its accuracy and efficiency. Applications of the FDTD RC 

rnethod include Sullivan's modeling of 3-D biological problems [52]. 

While Luebbers and others were developing the frequency dispersive RC FDTD 

method, several other researchers were developing an alternate fiequency dispersive 

method termed the auxiliary differential equation (ADE) method. The first papers 

utilizing this approach were by Kashiwa et al [53]-[55] for Debye media, Lorentz media, 

and media obeying the Cole-Cole Circular Arc law, respectively. While this research was 

progressing, Joseph et al [56] independently developed a similar ADE model for Debye 

media. Goorjian and Taflove [57] soon extended this model to include effects for 

nonlinear dispersive media. Independently, a third research group headed by Gandhi 

proposed the ADE method for treating general dispersive media [58]-[60]. In this 

method, a differential equation relating the flux density and the electric field together 

with the complex permittivity has to be formulated. This equation is then solved 

simultaneously with the standard FDTD equations. This method has been tested with one 

and three-dimensional problems. First and second order Debye approximation have been 

used to model the complex dielectric permittivity of biological tissue. Originally, the 



disadvantage of the ADE approach was that it required a large amount of storage. 

However, further research has shown how to reduce this storage requirement. 

3.5 Modeling of Second Order Debye Dielectrics in TLM: 

Using a pulse excitation in the TLM generates results for a wide band of 

fiequencies fiom a single computer run via Fourier transformation. Yet, the requirement 

that the material properties have to be kept constant limit the accuracy of the results 

obtained via a single run. This is only the case for frequency dependent or dispersive 

materials. To overcome this problem in the basic TLM method, several computer nuis 

have to be carried out for narrow frequency bands. Dispersive materials whose frequency 

dependence can be expressed in terrns of first order Debye equation have been 

successfully modeled in the TLM [38], [40]. In this section, we show how to mode1 a 

dispersive material that c m  be expressed as a second order Debye equation in the TLM 

method [6 11. 

The conductivity a and the dielectric permittivity E, of a medium can be 

combined together to form the complex permittivity which is a frequency dependent 

quantity as shown by equation (3.14). For a dispersive dielectric medium the frequency 

domain permittivity E* (w) c m  be modeled using second order Debye equation: 

where E, is the permittivity at infinite fiequency, E, = E,, + 6, - 6, is the zero or 

static permittivity and z, and z, are the relaxation time constants. 



Equation (3.18) could be separated into its real and imaginary parts, giving the 

following equations for the dielectric permittivity and conductivity: 

The second order Debye equation (3.18) can be modeled by the RC circuit 

shown in Fig. 3.5. The capacitances and resistances of the circuit mode1 are defined in 

terms of the second order Debye equation parameters as: 

Details of the derivation is given in Appendix (A). 

Circuit theory may then be used to solve the above circuit to obtain the state 

equations [45] that describe it. At node 1 the current i incident from the node is: 

dv v - v ,  
i=C1-+- 

dt RI 



Fig. 3.5. Circuit mode1 for second order Debye dielectric. 

From the transmission line theory this current is given by: 

where Y is the admittance of the link line connecting the circuit to the node and is 

specified to be 4Y, as mentioned before. vr is the reflected voltage fiom the node to the 

source and vi is the incident voltage fiom the source. At nodes 2 and 3, the following 

relations exist: 

v-v 1- dv, v, -v2 
RI -c2-d;+- R2 

"1 - v2 
R2 

Rewriting the above equations and combining (3.22) and (3.23): 



The above equations can be written in a matrix form as: 

where: 

where n=x,y and z, vLn are the reflected voltages from the node to the sources, v:, are 

the incident voltages fiom the sources and v,, is a vector formed of the node voltage and 

the two auxiliary voltages. 



Equation (3.27) is discretized using the approximate trapezoidal scheme for 

numerical integration [46], in which: 

Equation (3.27) is then solved at each time step to obtain the incident voltages from the 

sources and hence, the reflected voltages at the different ports of the node. 

[v, (t + At)] = 
-1 

([II - $[AI) !+i(rV~ (t + AOI + [v:, (OI) 

[v:,, (t + Ai)] = [C ] [v, (t + At) 1 + [DI [vin (t + At)] 

Three sets of matrix equations in the form of (3.30) have to be solved to obtain v,, v, and 

v, and hence v,, v:, and v; that are used in the scattering procedure. A schematic 

diagram outlining the steps followed in the implementation of the TLM algorithm taking 

into consideration the dispersive nature of the medium is s h o w  in Fig. 3.6. 
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Perform partial Fourier transforms at output points. 
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Fig. 3.6 Schematic of the dispersive TLM algorithm. 



3.6 Numerical Simulations and Results: 

Electromagnetic scattering and absorption by human tissue are being widely 

studied, Numerical techniques such as the Finite Difference Tirne Domain (FDTD) 

method and the transmission line matrix (TLM) method have been found to be highly 

versatile in calculating the specific absorption rate (SAR) distribution resulting fiom 

exposure to electromagnetic waves. A weakness in the conventional forrn of these 

techniques is that the dispersion of the tissues' dielectric properties is ignored and 

fiequency independent properties are assurned. 

In this section, the application of the symmetric condensed node transmission line 

matrix method (SCN TLM) to three-dimensional scattering from biological tissue is 

investigated. A second order Debye equation of the complex permittivity in the frequency 

domain is used in a modified TLM technique to simulate the dispersive nature of 

biological tissue. Some of the results of the numerical simulations are compared to those 

obtained analytically using Mie series [59], [62] or to those obtained using the stub- 

loaded or nondispersive TLM method. 

Al1 simulations are carried out for an incident plane wave with a Gaussian pulse 

excitation. To ensure the stability of the solution in al1 simulations, the time step At is 

given by gv, where l is the ce11 size and v is the maximum velocity of the 

electromagnetic wave encountered anywhere in the modeled space, which includes the 

dielectric body and the surroundings. This is same as the constraint set by Taflove for 

stability in the FDTD. For our simulations v = c, which is the velocity of the electro- 

magnetic waves in air. The stability of the modified TLM is discussed in [63]. 



The accuracy of the scattering procedure of the modified TLM technique is first 

established by comparing the near field data obtained for simulating the test case of a 213 

muscle-equivalent sphere with the analytical Mie series solution. The second order Debye 

equation for the 213 muscle-equivalent in the frequency range 20MHr to 20GHz is [59]: 

The diameter of the sphere is 20cm corresponding to the average dimensions of the 

human head. The sphere is divided into cells of size lcm. Six cells are taken fi-om the 

boundaries of the sphere to the absorbing boundaries in the x-, y-, and z-directions. The 

tirne step & is taken to be 1/60 ns. The Gaussian pulse is of the form 1000e-""~~)~'~~ where 

t,  = 2 1 0 6  and T = 806s. The incident pulse is polarized in the z-direction and propagating 

in the y-direction. Fig. 3.7 shows the results obtained using the analytical Mie series 

solution and the dispersive TLM at lOOMHz for the total field E z  along the y-axis through 

Fig. 3.7. Ez calculated by the modzj?ed TLM and the Mie series 

analytical solution at 1 00 MHz. 



the center of the sphere. The computed result is normalised to the value of the incident 

field at 100MHz. As shown the results are in a reasonable good agreement. 

To fùrther investigate the accwacy of the technique in handling high contrast 

dielectric bodies, the near field distribution in a layered dielectric sphere is obtained using 

the analytical Mie series [62] and the dispersive TLM methods. The sphere has two 

layers with radii a, = 7.5cm and a2 = 15cm and permittivities 6, = 72- j- 0g9 and 
@Eo 

0.5 
~2 = 7.5 - j-. The equivalent second order Debye approximations that are used by the 

f3% 

dispersive TLM are: 

The plane wave is propagating in the z-direction and polarized in the x-direction. 

The space is 54x54~54, the ce11 size is .9375cm, +0.156358ps and the Gaussian pulse 

has &,=2 1 O& and T=808t. 1 1 cells were taken to the absorbing boundary in each direction. 

Fig. 3.8 shows the results obtained using the analytical Mie series solution and the 

dispersive TLM at 1 OOMNt for Ex along the z-mis through the center of the sphere. As 

shown the numerical result agrees well with the analytical result. For the last two 

simulations, the Mie series solutions were obtained from [59J and [62], respectively. 
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Fig. 3.8 Ex calculated by the modzped TLM and the Mie senes analytical 

solution at 100 MHt along the z-axis of a two layered sphere. 

The next simulation involved the use of a 10 x 10 x 10 cm cube filled with bone 

(weak scatter). The TLM mesh is formed of 50 x50 x50 nodes. Thus, 

At = 8.339 ps for 6 = 5 mm . The Gaussian pulse is of the form 1000e-"-")~'~~ where t, = 

9 0 8  and T = 60Sr. The plane wave is propagating in the z-direction and polarized in the 

x-direction. The time domain near field data are obtained. Fast Fourier transformation 

[37] is then used to generate the fiequency domain near field data and hence the specific 

absorption rate (SAR). SAR is a measure of the amount of energy absorbed by the tissue 

following irradiation by electromagnetic waves. This value is directly related to the 

various components of the field inside the body: 

SAR = O . ~ ( Z ) ( E ( *  
P 



The density p is assumed constant and equals to that of water although this is an 

approximate value especially for bone. Assuming a nondispersive nature of the tissue, the 

equivalent dielectric permittivity and the loss tangent of the tissue are obtained at 

lOOMHz as the real and imaginary parts of the second order Debye equation, 

respectively. These values are further used to obtain the SAR distribution using the stub- 

loaded or the nondispersive TLM method at various fiequencies. As shown in Fig. 3.9, 

the results obtained fiom the modified TLM and the stub-loaded TLM techniques agree 

very well at 100MHz but they are different at 300MHz and SOOMHz. The difference in the 

distributions obtained fiom both techniques is due mainly to neglecting the effect of the 

dispersive nature of the tissue in the stub-loaded TLM. Also, the difference in the SAR 

distributions at 5OOMHi is larger than at 300MHz, this is because as the fiequency 

increases, the difference between the values used and the actual values of the dielectric 

permittivity and loss tangent increases. 

In the following simulation the bone is replaced with brain and nerve tissue 

(strong scatter). The ce11 size Sand time step Af are the same as before and satisfying the 

condition that 6 5 !K. The specifications of the incident pulse were not changed. Fig. 
10 

3.1 0 compares the results at 1 OOMHz, 300MHz and SOOMHz. The two simulated results 

are almost identical at 300MHz, the fiequency at which the equivalent values for 

permittivity and loss tangent of the tissue are used by the nondispersive TLM. 
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Fig. 3.9 SAR obtained from modified TLM and nondispersive TLM in the center of 

the cube along the y-axis for the case of a weak scatterer (bone). 
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Fig. 3.10 SAR obtained fiom modified TLM and nondispersive TLM in the center 
of the cube along the y-axis for the case of a strong scatterer (brain & 
nerve tissue). 



In the following numerical simulation, the method is applied to a geometrically 

complex inhomogeneous second order Debye dielectric body. A rough mode1 of the 

human head [64] is used. The head is divided into five layers and 209 cells, 

2 x 2 x 2 cm each. Fig. 3.1 1 shows the consecutive layers constituting the head and 

different kinds of tissue involved. The TLM mesh is formed of 50 x 50 x 50 nodes with 

At = 0.0334ns. Fig. 3.12 shows the SAR distribution at different layers of the head at 

300MHt. As shown the SAR distribution is different in each layer because of the 

First & fifth laver Second & fourth layer 

Third Iaver 

Fig. 3.1 1 Five different layers forming the human head. 



interaction of the electrornagnetic waves with the different kinds of tissue involved. The 

arnount of energy absorbed by bone tissue is very small compared to that absorbed by the 

other kinds of tissue. This follows directly from the dielectric properties of the bone 

tissue. Using the real and imaginary parts of the second order Debye equation to obtain 

the perrnittivity and loss tangent at 300MHz for the brain, eye and skin tissue, shows that 

the three kinds of tissue have aImost the same dielectric properties at 300MHz. This 

explains why the absorption in these tissues is approxirmtely the same. 
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Fig. 3.12 SAR distribution in the five layers forming the head at 300 MHz. 



The next simulation involves a refined model of the human head based on the 

model in [65]. The head is divided into 24 layers and 24552 cells each of dimension 

7 x 7 x 7 mm . Five kinds of tissue are involved: bone, skidfat, muscle, brain and eye. Fig. 

3.13 shows a section through the middle of the head. The TLM mesh is formed of 

50 x 50 x 50 nodes with At = 0.0 1 16717s. The Guassian pulse had t,=50& and T=20& and 

at least 9 cells were taken to the boundary. The incident wave was propagating in the z 

direction and polarized in the x direction. Fig. 3.14 shows the SAR distribution at three 

different layers through the head obtained using the modified TLM at 300MHz. From the 

plot, it is apparent that more energy in deposited to the brain and muscle tissue. 

Fig. 3.13 Section through the middIe of the head. 
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Fig. 3.14 SAR (Wkg) distribution in three layers of the head at 300MHz. 
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The Iast simulation involves a rnuch finer model of the human head based on the model 

used in the previous simulation. The ceIl size in this model is 3.5 x 3.5 x 3.5 mm . So the 

location of each ce11 in the previous model is now occupied by 8 cells. The total number 

of cells is 19641 6. Five kinds of tissue are involved: bone, skidfat, muscle, brain and 

eye. The TLM mesh is formed of lOOxlOOxlOO nodes with At = 5.83737 ps. The 

incident wave was propagating in the z direction and polarized in the x direction and the 

Gaussian pulse had t,=l OOSt and T=406t. 

The number of iterations is twice that used in the previous simulation, thus 

making the simulation time the sarne. Fig. 3.15 shows the SAR distribution at three 

different layers through the head obtained using the modified TLM at 300MHr. These 

three layers are at the same position as those used in the previous exarnple. Yet, each 

layer in the previous simulation is occupied by two layers in that simulation. Comparing 

Fig. 3.14 and Fig. 3.1 5, shows that although the values of the SAR distribution are 

different in both figures, the absorption pattern is the same. The maximum SAR values 

occur at the same locations. The difference in the SAR distribution values is due mainly 

to the resolution used. 

To better compare the results of the two simulations, Fig. 3.16 shows the SAR 

distribution of a layer obtained using ce11 size = 7mm and the SAR distribution of the two 

equivalent layers obtained using cell size = 3.5mm. In this figure, the SAR values of the 

two equivalent layers are averaged at each ce11 to form a single layer. As s h o w  in Fig. 

3.16, afler averaging, the difference in the SAR distribution obtained fiom both 

simulations became much less. The average value of the SAR distribution of the first 



layer (a), in Fig. 3.16, is 0.003808 W/kg. While for the second layer (b), the average value 

of the SAR distribution is 0.003658W/kg. 

The parameters of the second order Debye equation for the tissue involved in the 

simulations are obtained using [60], [47] and [66] and given in Table 3.1. These 

parameters fit the actual data in the range O. 1 MHz to 1.1 GHz. 

Table 3.1 : Debye constants for tissues 7, = 46.25 ns and r2 = 0.307 ns . 
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Fig. 3.15 SAR (W/kg) distribution in three layers of the head at 300MHz. 



Fig. 3.16 SAR (Wkg) distribution at 300MHz in (a) layer of the head 

7mm and (b) equivalent layer with ce11 size 3.5mm. 

with ce11 size 



3.7 Conclusion: 

In this chapter, we presented a review of the syrnrnetric condensed node SCN 

T'LM method. The scattering procedure for fiee space propagation is first presented. The 

dispersive nature of biological tissue is reviewed. The most common approximations that 

are used to mode1 the complex permitiivity are given. A quick review of modeling 

dispersive materials in the FDTD method is then provided. The modeling of frequency 

dependent or dispersive materials in TLM method is then discussed, Sources or lumped 

element networks are employed in the modeling of frequency dependent materials. These 

networks or sources are connected to the node using transmission lines of characteristic 

admittance equals to the driving admittance of the node. These equivalent sources are 

calculated at each time step and included in the scattering procedure of the TLM. The 

circuit model that cm be used to model second order Debye dielectrics is given. The 

necessary modifications to the scattering process in order to account for the dispersive 

nature of the medium are pointed out. 

Several numerical simulations are then carried out to check the validity and 

accuracy of the modified TLM technique for dispersive homogeneous and 

nonhomogeneous dielectric bodies. The modified TLM technique is then applied to 

nonhomogeneous and geometrically complex dispersive body, which is the human head. 

Three models of the head are used a simplified model of 209 coarse cells, a refined model 

of 24552 cells and a much refined model of 196416 cells. The near field data and the 

SAR distribution obtained fiom the modified TLM are compared to those obtained from 

the stub-Ioaded or nondispersive SCN TLM method assurning a nondispersive nature of 

biological tissue. 



CHAPTER 4 

Reconstruction of Dielectric Bodies 

4.1 Introduction: 

The reconstruction of dielectric bodies using interrogating microwave and near 

field scattered data has been widely considered in recent years. Because of the inherent 

properties of microwave radiation, which can be used to detect objects, microwave 

imaging has been of interest in various areas such as geophysical exploration, remote 

sensing, nondestructive testing and medical imaging [67]-[70]. 

The interest in developing microwave-based techniques, when other powerfil 

imaging techniques are available, is mainly due to the nature of the interaction between 

microwave radiation and the dielectric bodies, and the fact that different physical 

parameters are visualized. Dielectric materials are modeled via their complex 

pemittivities that describe the nature of the propagation of microwave radiation within 

dielectric bodies. These complex perrnittivities are directly related to the morphology, 

blood flow, water content and temperature of the tissue, thus leading to a large dielectric 

contrast among different biological tissues. In human soft tissue there is only a 2% 

diversity in X-ray absorption, whereas the dielectric diversity of human sofi tissue is very 



large. For exarnple, the dielectric constant at microwave fiequencies for fat is about 4 and 

is approximately 80 for the cerebral fluid [70]. 

The fact that microwave imaging involves the use of non-ionizing, low power 

radiation, and is thus less hazardous than other forms of radiation, makes continuous 

monitoring of the human body potentially feasible. Since the dielectric constant is highly 

related to the water content of the tissue, microwave imaging has an advantage over 

ultrasound imaging in its ability to penetrate air and bone, and has been used to detect 

cerebral edema [7 1 3 and pulmonary edema [72]. 

Unfortunately, research in microwave imaging is still in the preliminary stages, 

basically because of the difficulties in developing adequate reconstruction algorithrns. 

These difficulties occur because microwaves do not travel in a straight line inside an 

inhornogeneous dielectric object. This makes imaging techniques significantly more 

complicated than linear-propagation based techniques that are used for X-rays. Based 

upon this, reconstruction techniques are divided into two main categories. Those that 

involve modification of the already available X-ray linear reconstruction algorithms, 

usually referred to as spectral domain techniques [73]-[79], and others that are based on 

electromagnetic inverse scattering and are referred to as spatial domain techniques [go]- 

[102]. Other techniques invoived the use of stochastic procedures such as the maximum 

entropy [IO31 and simulated annealing Cl 041, [I  OS]. 

In the spectral domain approach, or microwave tomography, the body under 

investigation is illuminated by a plane wave and the scattered field is measured using a 

linear array of probes in a way similar to that used in difhction tomography. Fast 

Fourier transformation, is then used to obtain the spectrum of the scattered field, which is 



the main advantage of this approach. This spectrum contains information about the 

dielectric properties of the body. By repeating the measurement for different directions of 

incidence, the spectral domain can be filled and inverted to obtain the image of the body. 

The main drawback of the spectral domain techniques is its limited validity for 

reconstructing lossless, low contrast dielectric bodies and in the presence of weak 

scatterers only. 

In the spatial domain approach, the body is illurninated by an incident field and 

the scattered field is measured and used to reconstruct the dielectric permittivity 

distribution of the body. The aim is to solve the exact equation of the electromagnetic 

inverse scattering problem by numerical methods such as the method of moments (MoM) 

[3]. The psoblem is reduced to the solution of linear system of algebraic equations. 

Unfortunately, the scattering matrix which govems the extemal scattered field induced by 

intemal equivalent currents is highly iI1-conditioned. Thus any attempt to get its inverse 

makes the systern ill-posed. By ill-posedness, we refer to the Hadamard sense [106], in 

which the existence, uniqueness and stability of the solution are not simultaneously 

ensured. Another disadvantage of the inverse scattering approach is that sarnpling the 

scattered field outside the body is very susceptible to noise. Because of the system ill- 

posedness, the effect of this noise is very strong. Several regularization techniques have 

been used [88], [953, [97], [IO11 airning to reduce the effect of ill-conditioning. These 

employ a priori information either to select a suitable regularization parameter or to 

enforce convergence in iterative techniques. This process is nonnally combined with 

multi-illumination techniques, in which several directions or angles of incidence are used, 

aiming to decrease the effect of uncertainties in the measured scattered field. 



Most of the recent work involves two-dimensional problems. Three-dimensional 

problems are usually more complex and reliable reconstructions are harder to obtain. In 

this thesis, the unrelated illumination method which has been tested before with two- 

dimensional bodies [107], [108], is extended to handle three-dimensional inhomogeneous 

dielectric bodies. This method utilizes the method of moments (MoM) to discretize the 

integral equation that relates the scattered field data and the complex pennittivity. Yet, it 

differs from other techniques in that the way of acquiring information helps overcoming 

the ill-posedness nature of the problem. Numerical simulations are carried out to assess 

the method and to test its robustness in the presence of measured data uncertainties. To 

evaluate the method as a tool for medical imaging it is M e r  tested with a mode1 of the 

human head [64], and a 180-ce11 mode1 of the human body [log]. 

In this chapter, the basic mathematical formulation of the inverse scattering prob- 

lem and the definitions of some of the often used tenns in microwave imaging are 

reviewed, together with discussion of some of the reconstruction techniques that have 

been used earlier. 

4.2 Integral Equation Formulation: 

Consider an inhomogeneous dielectric body of arbitrary shape that is 

characterized by a dielectric constant c,(r) and an electric conductivity o(r), both 

generally variable from point to point situated in a homogeneous medium with known 

perrnittivity E,, as shown in Fig. 4.1. If an electromagnetic incident wave crosses this 

body, a scattered field, which is related to the properties of the dielectric scatterer, is 

produced. From the scattered field measurements, the location, the shape and complex 



permittivities of the body may be determined. The determination of the location and 

shape of the scatterer is known as qualitative imaging, while quantitative imaging 

involves the determination of the complex permittivity distribution within the scatterer. 

measurement 
domain 

Eo 

Fig. 4.1 Geometry of the three-dimensional problem. 

The dielectric properties of the body Vin Fig. 4.1 can be expressed in terms of the 

complex permittivity constant as: 

where 

If the body is illurninated by an incident plane wave, the induced current in the 

body gives rise to a scattered field Es. This field may be accounted for by replacing the 

body with an equivalent current density Je, given by: 



The first term in equation (4.3) is the conduction current density, while the second term is 

the polarization current density. E(r) is the total electric field inside the body. 

Using the equivalent current density, we can obtain the scattered fields by solving 

Maxwell's equations: 

H' is the scattered magnetic field and p is the perrneability, assumed that of free space 

p,. To eliminate H" , we taise the curl of equation (4.4) 

Substituting for J, in equation (4.5) and rearranging: 

Equation (4.6) can be M e r  written as: 

and k, = (w JE) are the wave nurnbers inside and 

outside Y,  respectively. 



The solution to equation (4.7) is given in terms of the magnetic vector potential 

A: 

where 

and 

is the free space scalar Green's function. The operator VV. A is defined as 

VV A = V(V - A).  Assuming that J, is an infinitesimal elementary source at r' pointed 

in the x direction so that: 

J ,  = S(r - r')a, 

Using equation (4.9), the magnetic vector potential A cm be written as: 

A = PO GO (rY (4. 12) 

If G ,  (r ,  r') is the electric field produced by the elementary source that is pointing in the 

x direction, then G ,  (r, r') must satisfy: 

with solution 

G o  (r ,  r )  = - j 
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G , ( r , r f )  is referred to as a fiee space vector Green's function with a source pointing in 

the x direction. Similady, Goy (r ,  r') and G , (r ,  r  ') correspond to infinitesimal, 

elementary sources pointing in the y and z direction, respectively. The three vector 

Green's function c m  be combined together to fom the free space dyadic Green's 

fùnction: 

The fi-ee space dyadic Green's function is the solution to the Dyadic differential equation: 

where denotes the unit dyad. G ( r , r ' )  is the electric field at a field point r  due to an 

infinitesimal source at r ' . 

Using the free space dyadic Green's fùnction G ( r , r ' ) ,  equation (4.7) can be 

written as: 

Es ( r )  = IE(r,r ')(k2 ( r r )  - k: )~(r ' )dv '  
Y 

( k 2  ( r )  - k: ) is usually referred to as the contrast or the object function O(r) and using 

(4.1) and (4.2) O(r) can be written as: 

The treatment of the singularity in equation (4.17) is discussed in appendix B. 

The total electric field E at an arbitrary point r can be expressed as: 



E(r) = E' (r) + E" (r) (4. 19) 

where ~ ' ( r )  is the incident field. Using (4.17) and substituting for the scattered field in 

(4.19): 

Equations (4.17) and (4.20) are the basic integral equations for microwave imaging. Once 

the scattered fields are measured by detectors at observation points, the complex 

permittivity distribution of the unknown body c m  be reconstructed by solving these two 

coupled integral equations. 

4.2.1 Integral Equation with Equivalent Current Modeling: 

Equations (4.17) and (4.19) c m  be linearized [ I l  O] by introducing an equivalent 

current density J,,(r) 

and the scattered field and total field can be written as: 

- 
E" (r) = - jwpa F ( r ,  r ') J, (r  ' )dvt 

V 

The reconstruction procedure c m  also be perfomed by solving the linear 

equation (4.22) from the scattered field measurements to obtain the equivalent current 



distribution within the object. The total field inside the body can then be calculated using 

equation (4.23). The object function or the permittivity distribution of the dielectric body 

can then be predicted using equation (4.2 1). 

4.2.2 Integral Equation with Born Approximation: 

The Born approximation is a widely accepted approximation and usually applied 

in microwave tomography. For Iow contrast inhomogeneous dielectric bodies, the 

magnitude of the scattered field in the object is very small compared to that of the 

incident field. Thus the scattered field inside the object cm be neglected and the total 

field c m  be approximated by the incident field. Based on this approximation, the 

scattered field (4.17) can be written as: 

4.2.3 Integral Equation with Rytov Approximation: 

The Rytov approximation is another approximation that is used in microwave 

tomography. It is based on the fact that the change in the scattered phase over one 

wavelength is small. The phase CD of the scattered field can be expressed as: 

It has been proven that the Born approximation produces a better estimate of the 

scattered field for small sized objects with large deviations in the refractive index. On the 



other hand the Rytov approximation gives a more accurate estimate of the scattered field 

for large sized objects with small deviations in the refractive index. The refractive index 

is defined as the square root of the perrnittivity under the assumption that the 

pemeability of the body is that of free space. 

4.3 111-posed Problems: 

Many problems of mathematical physics can be formulated in t e m s  of an 

operator equation 

Typically, y denotes the system output, x denotes the unknown being sought and 

A is the system operator. Given A and y, the objective is to determine x. According to the 

Hadamard definitions [106], the problem is well-posed if the following conditions are 

satisfied: 

1) For each element y, there is a solution x: that is the existence condition. 

2) The solution x is unique for a given y: that is the uniqueness condition. 

3) For small perturbations in y there are small perturbations in x: that is the stability 

condition. 

The problem is said to be ill-posed if at least one of the ûbove conditions is 

violated. There are three main reasons that cause this ill-posedness, narnely, 

incompleteness of the input data, numerical errors in the input data andor the nature of 

the system operator A. In order to solve an ill-posed problem, special techniques have to 

be employed to regularize the problem [lll] .  The solution to the regularized problem 



will be well-behaved and will offer a reasonable approximation to the solution of the ill- 

posed problem. In particular, an ill-posed problem may be regularized by: 

a) changing the definition of what is meant by an acceptable solution, 

b) changing the space to which the acceptable solution belongs, 

c) revising the problem statement, 

d) introducing regularization operators, and 

e) using statistical techniques. 

4.4 Previous Work: 

In this section twelve microwave imaging methods proposed by various 

researchers in recent years are briefly reviewed, together with a discussion of their 

advantages and limitations. These are: the microwave tomography technique, the 

psuedoinverse method with equivalent current modeling, the Born and distorted B o n  

iterative methods, a Newton type iterative method, an adaptive iterative algorithm, 

Levenberg-Marquardt method, the conjugate gradient method, the hybrid element 

method, the stochastic inversion method, the maximum entropy method, the simulated 

annealing approach, and the time domain method. 

4.4.1 Microwave Tomography: 

This approach is based on the Fourier diffraction projection theorem. It has been 

applied to cross-sectional or two-dimensional and three-dimensional imaging [73]-[79]. 

Conventional microwave tomography systems are based on illuminating the body by a set 

of plane waves. For each illumination, the fonvard scattered field is sampled along a 



straight line, for the two-dimensional case, and on a plane for the three-dimensional case. 

Either Born or Rytov approximations is applied, thus forcing the assumption that the 

inhomogeneities in the body are weak scatterers. The Fourier transform of the forward 

scattered field gives the values of the two-dimensional Fourier transfonn of the object 

along a circular arc in the two-dimensional Fourier spectral domain. According to the 

Fourier diffraction projection theorem, by illuminating the body from different directions 

and repeating the same procedure the spectral domain c m  be filled with sarnples of the 

body over an ensemble of circular arcs. Using Fourier inversion, the body can then be 

reconstmcted. 

The main advantage of microwave tomography is using an existing efficient 

numerical algorithrn, which is the fast Fourier transform (FFT). This makes the speed of 

the data processing fast enough to allow for real time imaging. However, microwave 

tomography is subject to both mathematical and experimental limitations. The 

mathematical limitations are imposed by Born and Rytov approximations. These 

approximations are fundamental to the reconstruction process and limit the range of 

objects that can be examined. The experimental limitations are due to the finite amount of 

the collected data, which in turn limits the resolution of the permittivity distribution 

reconstruction. 

4.4.2 Psuedoinverse with Equivalent Current Modeling: 

Ney et al [81] was the first to propose the method of psuedoinverse 

transformation to microwave imaging. In this method the linearized integral equations, 

via equivalent current modeling, are first transformed into rnatrix equations using the 



method of moments (MoM). The compfex permittivities are then derived using the 

following procedure: first the equivalent current distribution is obtained fiom the 

measured scattered field, second this current distribution is used to obtain the total field. 

Knowing the total field and the equivalent current, the object function is obtained and 

thus the permittivity distribution. The first step involves the use of the psuedoinverse 

transformation [82] to obtain the inverse of an ill-conditioned matrix. The psuedoinverse 

transformation is a very powerful method in dealing with ill-conditioned matrix 

equations. The solution obtained is a minimum n o m  least square solution. Coarsi et al 

[83]-[88] have further developed the method and applied it to two and three-dimensional 

electromagnetic irnaging problems. So far the method has been applied only to simple 

geometries, with a small nurnber of weakly scattering inhomogeneities. To obtain 

acceptable results, especially in three-dimensional imaging problems, the method 

employs the use of rnulti-illumination together with the constraint that the nurnber of 

measurement points is larger than the number of discretization cells. 

As there are no iterations involved in this method, the computation time is small 

compared to that of the iterative methods, which is the main advantage of the method. To 

irnprove the quality of the reconstructed image, a priori information, regarding the 

geometry and the dielectric properties, have been lately utilized in the reconstruction 

process. Yet, the filtering effect inherent in this method limits the resolution of the 

reconstruction especially for high noise levels in the rneasured scattered field. 

4.4.3 Born and Distorted Born Iterative Methods: 

Iterative methods with regularization in the space domain have become popular in 



recent years. Wang and Chew CS91 proposed the Born iterative method in which the total 

electric field and the distribution of the electric parameters are updated by solving the 

direct and inverse problem separately in each iteration. The outline of the approach c m  

be summarized as follows: 

(1) The linearized inverse scattering problem is solved using the Born approximation. 

(2) The scattering problem is solved for the field in the object and at the measuring points 

using the object function obtained in the first step. 

(3) The calculated fields in step (2) are used to solve the inverse problem and obtain the 

next order object function. 

(4) Repeat step (2) comparing the scattered field at the observation points, obtained using 

the reconstructed object fùnction, with measured fields at the same observation 

points. When the difference is acceptable, the iteration terminates. 

It should be noted that the Green's function remains unchanged during the 

iteration procedure (only the field in the scatterer is updated). One immediate extension 

of this method is to update the Green's function in each iteration together with the field in 

the scatterer. This is known as the distorted Born iterative method [go]. The outline of 

this method is almost the same as that of the Born iterative rnethod, except that in the 

second step an updated Green's function should be calculated using the last reconstructed 

permittivity distribution. Both methods have been tested with two-dimensional objects 

only . 

The results obtained using these two methods show that, for noiseless cases, the 

distorted Born iterative method is superior to the Born iterative method because of its 

faster convergent speed. While for noisy cases, the Born iterative method is more robust 



than the distorted Born iterative method. Also, it was shown [112] that the Born iterative 

method can handle electrically large scatterers with low permittivity contrast. 

4.4.4 The Newton Iterative Methods: 

Joachimowicz et al [91] proposed a Newton iterative method to construct the 

complex dielectric permittivity distribution. In this method, the integral equations are first 

transformed into matrix equations using the method of moments (MoM). Then an 

iterative procedure is developed as follows: 

(1) Starting from an initial guess of the permittivity distribution and hence the object 

function, the total field inside the body is calculated. 

(2) The fomard scattering problem is then solved for the field at the measuring points. 

(3) The error between the scattered field computed in (2) and the measured field 

(obtained through solving the forward scattering problem using the exact permittivity 

distribution) is calculated 

(4) The first order estimation of the object function error is obtained and the object 

function is updated using this error 

The iterations go on until the error in the calculated scattered field is acceptable. 

In this procedure, step (4) involves obtaining the inverse of an ill-conditioned matrix, so 

standard Tikhonov regularization [92] is used to stabilize the results. Yet, the 

regularization factor used in this process involves a pararneter that can only be 

detennined empirically. 

The main advantage of this techniques is its flexibility in considering a priori 

information. It provides quantitative imaging even with strong diffraction effects. 



However, it requires the use of a multi-illumination technique in order to obtain accurate 

reconstructions. Also, the required computational time is extensive. 

4.4.5 An Adaptive Iterative Algorithm: 

Liu et al [93], [94] proposed an adaptive algorithm that optimizes the iterative 

process by using, selectively, a different iterative technique for each iteration. The 

iterative techniques involved are the Born iterative technique and the Newton iterative 

technique. A decreasing ratio of error in the scattered field is used as a criterion for 

selecting a more suitable technique for each iteration. This algorithm requires the use of 

multi-view illumination and Tikhonov regularization. It has been applied successfulIy to 

two-dimensional objects in the presence of noise in the measured field data. 

4.4.6 Levenberg-Marquardt Method: 

This method has been proposed Iately by Franchois et al [95] to obtain a 

quantitative reconstruction of the complex dielectric property distribution of biological 

objects. The method is a modification of the Gauss-Newton iterative method and is 

equivalent to the distorted Born iterative method. The method of moments is applied to 

discretize the nonlinear integral equation relating the scattered field data and the complex 

permittivity. The resulting system of nonlinear equations is linearized in each iteration, 

regularized, via Tikhonov regularization, and then solved for an updating correction of 

the complex permittivity in the iterative procedure. The regularization parameter used c m  

either be obtained empirically, or using a generaIized cross validation (GCV) method. In 

fact, this rnethod is very similar to Newton iterative method and its main modification 



and advantage is using the GCV method to get the regularization parameter. 

The Levenberg-Marquardt rnethod requires the use of multi-view illumination and 

imposes a priori bounds on the complex permittivity in order to accelerate the 

convergence. The method has only been applied to two-dimensional objects irnmersed in 

water. The use of the generalized cross validation method for choosing the regularization 

parameter has proven to be successful in the case of weak homogeneous scatterers and 

strong homogeneous scatterers with an initial guess in the neighborhood of the solution. 

For strongly scattering inhomogeneities, the reconstruction is of lesser quality. 

4.4.7 The Conjugate Gradient Method: 

The conjugate gradient method was discussed in [97] as a tool to handle ill-posed 

matrix equations resulting fiom the method of moments. This iterative method is similar 

to the steepest descent method which involves the search for the minimum of a function 

in a direction suggested by its negative gradient. It starts with an initial guess that 

generates the first residual vector and the direction vector. Then, the system is solved 

iteratively. The conjugate gradient method has the advantage of having a rate of 

convergence practically insensitive to the initial guess, although a good initial guess 

reduces the number of iterations. The method has been applied to two and three- 

dimensional microwave imaging problems 1971-[98], and good reconstructions were 

obtained. 

4.4.8 The Hybrid Element Method: 

Meaney et al [99] proposed this method for two-dimensional image 



reconstruction problems. The used computational methodology is a hybrid coupling of 

the finite element and the boundary element methods. In calculating the electric fields 

from the curent estimates of the electrical properties, it seeks to take advantage of the 

strong points of the finite element method in the regions where the electrical properties 

are inhomogeneous or not known. It also utilizes the strengths of the boundary element 

method in the regions where the medium is homogeneous, unbounded in nature and the 

electrical properties are known. Coupling of these two methods occurs only at the 

boundary of the inhomogeneous dielectric object. The method employs a Newton 

iterative procedure together with multi-view excitation for image reconstruction. The 

reconstruction technique is very similar to that used by Joachimowicz et al [91]. The 

regularization employed is a blending of both Tikhonov and Marquardt approaches with 

regularization coefficients being determined ernpirically. One of the advantages of this 

method is the ability to use nonuniform meshing to handle available a priori information. 

The results obtained show that it operates best for smaller objects with low contrast. For 

the case of large objects and, or steep gradients, the method provides only qualitative 

images. 

4.4.9 Stochastic Inversion Method: 

The stochastic treatment of ill-posed problems has been successfidly used in 

image processing and recognition techniques and seismology studies. Qin et al [100] 

applied the stochastic inversion of matrices to microwave imaging of two-dimensional 

dielectric bodies. The method requires an initial accurate guess, as inappropriate guesses 

c m  cause the algorithm to be slowly convergent or even divergent. The reconstruction 



process can be sumrnarized in the following steps. The linearized integral equation is 

disbretized using the method of moments. The next step is to use the Tikhonov 

regularization to solve the inverse problem, the solution obtained is used as a priori data. 

Finally, using this a priori data, the stochastic inverse is applied to compute the 

equivalent current distribution within the body and hence the cornplex pemittivity 

distribution. 

The main advantage of this method is that it requires Iess computation time 

compared to other iterative techniques. Also, various criteria for choosing the 

regularization parameter [101], [102] were proposed. Single-view illumination yields 

accurate reconstruction only for simple objects with very small inhomogeneities. As the 

number of inhomogeneities increases, this requires the use of multi-view illumination. 

4.4.10 The maximum Entropy Method: 

Baribaud [1 O3 3 applied the maximum entropy method to two-dimensional 

microwave imaging problems. The method, which belongs to stochastic techniques, is 

based on the information theory approach. It demands that one chooses fiom the available 

data the solution which uses the maximum information fiom the available data. In this 

method, the method of moments is used to discretize the integral field equation. The 

entropy is defined in terrns of the cwrent density distribution. The aim of the method is to 

maximize the difference between the entropy and the Gaussian and excess noise. The 

problem of maximization has no explicit solution and has to be solved iteratively. The 

image obtained using this method uses more of the available data and is a regularized 

solution. Also, the effect of the noise can be easily included in this method. Yet, the main 



drawback is that although the method has only been applied to simple two-dimensional 

dielectric scatterers, the computational time needed is very long. 

4.4.1 1 Simulated Annealing Approach: 

This approach is based on stochastic techniques to search for the optimum state of 

a system and to avoid iterative processes being trapped to a local minimum. The usage of 

simulated annealing technique can bypass the need to invert large matrices and enables 

one to obtain the solution using an iterative procedure. This approach has only been 

applied to simple two-dimensional problems [104], [IO51 and its main disadvantage is the 

large computation time involved. 

4.3.12 Time Domain Methods: 

Moghaddam and Chew [Il23 proposed a method to solve a two-dimensional 

probIem in time domain. In their method, the time domain problem is transformed by 

using Fourier transformation. The integral equation obtained in the time domain is 

transformed into a set of integral equations in the spatial domain with different 

frequencies and then solved using a Born iterative technique. In the computation, the 

dielectric distribution is assurned to be independent of frequency. 

Batrakov et al [113] proposed an algorithm based on the Newton-Kantorovich 

iterative procedure and Tikhonov xegularization for solving two-dimensional inverse 

problems in the time domain. In their algorithm, most of the calculations are given in an 

explicit form, thus reducing the cornputational time and making the algorithm suitable for 

real time processing. Yet, their analysis is restricted to cylinderical objects with 



pemittivity varying in the radial direction only. Later, they extended their work [114] to 

handle objects with arbitrary complex permittivity distributions. In doing so, they 

introduced complexity to the calculations compared to their earlier work. 

The advantage of the tirne domain methods is that more information is available. 

However, the computational cost is huge compared to spatial domain methods because 

the fields or their spectnun have to be calculated at different times. 



CHAPTER 5 

Reconstruction of Dielectric Bodies Using 

Unrelated Illumination 

5.1 Introduction: 

The reconstruction methods proposed so far fa11 into two main categories, narnely 

the spectral domain methods and the spatial dornain methods. The spectral domain 

methods have the privilege of being based on and making use of a well-developed theory 

and techniques. Yet, employing the Born and Rytov approximation in the reconstruction 

makes it only applicable in the presence of weak scatterers and low contrast dielectric 

bodies. The spatial domain methods theoretically impose no restrictions on the complex 

permittivity distribution of the dielectric bodies to be reconstructed. The main 

disadvantages of these methods are their sensitivity to the noise and the long 

reconstruction time required. 

In this chapter, we are going to proceed with the discretization of the integral 

equations derived in the previous chapter. This is followed by a discussion of the 

reconstruction procedure normally used in inverse scattering techniques, and the problem 



of ill-posedness of the system and the most common regularization techniques used. 

Finally, the unreIated illumination rnethod is presented and its use to handle three- 

dimensional lossless and lossy dielectric objects is discussed. 

5.2 Discretization of the Integral Equations: 

In Chapter 4, starting fiom Maxwell's equations, we have derived the integral 

equations governing the forward and inverse scattering problems. In order to solve these 

integral equations in the spatial domain numerically, they have to be discretized. The 

body is partitioned into N subvolumes. The nfh subvolume is denoted by Vn and the 

position of a representative interior point of Vn is denoted by r,. Writing equation (4.20) 

as: 

Applying the rnethod of moments [3], we c m  expand the object function O(r) and the 

total field E(r) inside the body in a piece wise constant manner: 

wheref,(r) is called the basis function and O,, and En are the coefficients. Using a pulse 

basis function: 



Using Dirac delta as the weighting function, equation (5.1) can be rewritten as: 

where r, represents the m" measurement point. In this way, we obtain a linear system 

that can be rewritten in a matrix form: 

where E' is a 3N dimensional array containing the components of the incident field at the 

N subvolmes, E is a 3N dimensional array containing the components of the total field at 

the N subvolumes. The matrix O is a 3 N x  3N diagonal matrix whose elements are the 

contrast or the difference of the wave nwnber of the subvolume and that of the 

observation region which is assumed to be fiee space. Gi is a 3N x 3N matrix depending 

on the wave nmber,  ce11 size and location. 

Following the same notation, the scattered field at the measuring points can be 

given by: 



Where ES is the 3M dimensional array containing the components of the scattered field at 

the M measuring points. G2 is a matrix 3M x 3N depending on the wave nurnber, ce11 

size, ce11 location and the location of the rneasuring points. 

Using the equivalent current rnodeling, which was discussed in the previous 

chapter, the scattered field at the measuring points can be rewritten as: 

where, 

In equation (5.9) Je,] is a 3N dimensional array whose elements are the unknown 

components of the equivalent current density inside the N discretization subvolumes of 

the body. 

5.3 Reconstruction Procedure: 

The reconstruction procedure usually starts by solving the fonvard problem so as 

to obtain the scattered field at the measuring points, which simulate the measured field. 

The values of the incident fieId are calculated at the center of each subvolume or cell. 

This is followed by the calculation of the Green's fùnction matrix Gi.  Assuming that the 

perrnittivity distribution of the body is known and thus the matrix 0, the total field E at 

each subvolurne is calculated using (5.7) as follows: 



The elements of the 3M x 3N matrix G2, which relates the subvolumes to the measuring 

points, are then calculated. The scattered field at the measuring points is then calculated 

using (5 A). 

In order to solve the inverse problem we have to use the equivalent current 

modeling. Knowing the scattered field Es, the equivalent current Jeqi is calculated using 

(5.9). This involves the calculation of the inverse of the matrix Ga. 

This matrix Gz is not necessarily square rnatrix depending on the nurnber of 

measuring points. For the three-dimensional case and because of the field components, if 

the body is divided into N subvolumes, these requires the use of 3N measuring points or 

detectors so as to have a square Green's finction matrix Gz. Doing this increases the 

computation tirne. If this was the only problem with the matrix G2, it may be solved using 

special techniques for handling rectangular systems. Yet, this is not the case, as the 

matrix GZ is highly ill-conditioned even when it is square and thus the system described 

in (5.9) is ill-posed. So regularization techniques have been applied to obtain a well 

behaved, reasonable approximation of this ill-posed problem. The most widely used 

regularization techniques are the psuedoinverse transformation [82] and the Tikhonov 

regularization [92J. The latter is widely used by several researchers as has been shown in 

the previous chapter. These techniques usually reqwire the availability of a priori 

information. 

Assuming the process of regularization is successful, we proceed by calculating 

the diagonal elernents of the object matrix O. This is done using (5.1 O), by dividing the 

corresponding elements of the total field vector and the equivalent current vector. For the 

three-dimensional case and because of the presence of three field and current 



components, we obtain three sets of contrast, corresponding to the x, y and z components, 

respectively. So averaging is used to obtain a single value for the contrast and thus the 

complex permittivity distribution. 

Any proposed technique or method for the reconstruction of the complex 

dielectric permittivity should be tested first in the absence of noise. The next step is to 

add noise to the scattered field calculated by solving the fonvard problem. This is done to 

simulate rneasured data uncertainties. For a well-posed system, this wouldn't have been a 

problem, but being ill-posed and thus unstable regarding noise complicates the problem 

even more. Most of the published results require the use of multi-illumination techniques 

added to the use of a regularization procedure. Although this increases the computation 

time, it helps decreasing the ill-posedness of the system, aiming to obtain an acceptable 

reconstruction. 

5.4 The Unrelated IIlumination: 

The unrelated illumination method, like most of the spatial domain methods, 

utilizes the method of moments (MoM) to discretize the nonlinear integral equation, 

which relates the scattered field data and the complex dielectric permittivity. Yet, it 

differs from other previous spatial methods in that the way of acquiring information helps 

overcoming the ill-posedness nature of the problem. This is done simply by redefining 

the problem, aiming to solve a well-posed system and hence eliminating the need to use 

special regularization techniques. The unrelated illumination method bas been tested 

before with two-dimensional bodies [107], El081 and is extended here to handle three- 

dimensional inhomogeneous lossy and lossless dielectric bodies. 



In this rnethod, the body under investigation is illurninated with a group of 

unrelated incident fields. This is maintained by the proper arrangement of the polarization 

and the direction of these incident electric fields. Using this method, the scattered field 

measured at one point is sufficient to reconstruct the dielectric permittivity distribution of 

the body. Yet, for a body divided into N subvolumes, the method requires the use of 3N 

unrelated incident fields. This guarantees that the matrix formed of these incident fields is 

well-conditioned and thus invertible. 

5.4.1 Mathematical Formulation: 

Consider an inhomogeneous dielectric body of arbitrary shape that is 

characterized by a dielectric constant q(r) and an electric conductivity o(r), both 

generally variable from point to point. If the body is illurninated in free space by an 

incident wave with electric field E' and using the rnethod of moments, the total field at 

each subvolume and the scattered field at the measuring points were derived earlier in 

this chapter: 

[ES] = [G,lCOl[El (5  -8) 

The matrix ([II - [G, ][O]) is always well-posed, thus knowing the incident field we can 

soIve the fonvard problem and obtain the scattered field at the measuring points. On the 

other hand the matrix G2 is highly ill-conditioned especially when a large dielectric body 

is involved. Thus, as mentioned earlier trying to solve the system by cornputing its 

inverse renders the system ill-posed and forces the use of regularization techniques. 



Usually E' is a 3N x 1 vector containing the Ex components of the field at al1 N 

subvolurnes, followed by the Ey components and the last N elements are the Ez 

components. By using a 3N unrelated incident fields, which is the key of the unrelated 

illumination method, E' is a 3 N x  3N matrix. This differs from the multi-illumination 

technique used in other reconstruction methods in that it puts a constraint on the number 

of views, that it must be 3N. Also, the incident fields used should be linearly independent 

or unrelated, thus ailowing the inversion of the 3N x 3N incident matrix. To obtain these 

3N unrelated incident fields two planar phased array antennas are used, one in the xy 

plane and one in the xz plane as shown in Fig. 5.1. By adjusting the polarization of the 

array elements we can obtain a diagonally dominant incident matrix. 

Fig. 5.1 An arbitrary shaped body illurninated by a group of unrelated 

incident fields from two planer phased arrays. 



Writing equation (5.7) in the form: 

[EI = -$G, JPI -~IJ)-'~E'I (5. 12) 

and substituting (5.12) into (5.8) and taking into consideration that ES is not a 3M array 

any more, it is now 3M x 3N matrix con-esponding to the 3N incident fields: 

Making use of the fact that the incident matrix is well conditioned and thus invertible, the 

matrices in (5.13) can be rearranged as follows: 

where the only unknown is the object or contrast matrix O. As shown by equation (5.14) 

the only matrix that needs to be inverted is the incident matrix. Then using simple vector 

and matrix operations we can obtain the object function of each cell. 

For simplicity we can denote: 

m = [E"][E']-'[G,] + [ G , ]  

and 

[<pl = [E"][E']-' 

Equation (5.14) can be written in a simplified form as: 

P l P l  = P l  



and the elements of the diagonal matrix O are obtained by comparing the corresponding 

elements at any row of [Y] and [ml. As m changes from 1 to 3M, where M is the nurnber 

of measuring points, the object function or the contrast of the n" ceil is given by: 

By doing so we obtain 3M values of the object function of the nth ce11 O,,, thus averaging 

is used to obtain a single value of O,,. Then using (4.18) we cm obtain the permittivity 

and conductivity of each ceIl as follows: 

In conclusion, for the unrelated illumination method, the body under investigation 

is illuminated by a group of unrelated incident fields. The method of moments is applied 

to discretize the problem. The forward scattering problem is solved via a technique 

similar to that applied by al1 other techniques. The only difference is that the total field is 

a matrix not a vector and so is the scattered field at the measuring points. Knowing the 

scattered field and making use of the fact that the incident matrix is invertible, we use 

simple vector and matrix operations to arrive at a systern that cm  be solved easily to 

obtain the required object function matrix. In doing so, we elirninate the need to calculate 

the inverse of a highly ill-conditioned matrix and also eliminate the use of the equivalent 

current modeling procedure that is applied by al1 spatial domain techniques. Fig. 5.2 



surnmarizes the steps used in the reconstruction process in the unrelated illumination 

method. 

Assume a known complex 

permittivity distribution. 

Obtain 3N unrelated incident 1 
fields. 1 

Solve the fonvard problem 

to obtain the scattered field 

at the detectors 

I 

Obtain the inverse of the 

matrix forrned of the 

incident fields. 

1 

Through matrix operations 

1 obtain the complex l 
( permittivity of the body. 1 

Fig. 5.2 Steps used in the mconstruction process. 



5.5 Numerical Simulations and Results: 

In the previous section, the unrelated illumination method was presented as a tool 

for the reconstruction of the complex dielectric permittivity of ehree-dimensionai bodies. 

In this section, results of the numerical simulations that were carried out are presented 

and discussed. The aim of these simulations is to assess the capabilities of the method and 

to test its robustness in the presence of measured data uncertainties. Various three- 

dimensional dielectric bodies have been used including a simple cube, a model of the 

hurnan body and a model of the head. 

Al1 the numerical simulations have been c.mied out using only one measuring 

point. Yet, because of the three-dimensional nature of the problem under consideration, 

one measuring point yields three measured values of the diagonal elements of O 

corresponding to the three components of the scattered field. Averaging is used to obtain 

a single value of the object fiuiction and hence the permittivity and conductivity. The 

values of the scattered electric field at the measuring point is obtained via a computer 

prograrn that can determine the direct scattering from three-dimensional inhomogeneous 

dielectric bodies. For ail simulations two planar phased arrays (Fig. 5.1) are used to 

illurninate the body with a group of unrelated incident fields. The number of elements 

and the spacing between them are varied according to the dielectric body under 

consideration. 

The relative mean square error forrnulae are used to measure the error in the 

relative dielectric permittivity, conductivity and object function in al1 simulations: 



where srn, cr, and 0, are the original relative dielectric permittivity, conductivity and 

object function of the dh subvolume, respectively. E;", cri and 0: are the reconstructed 

relative dielectric permittivity, conductivity and object function of the nth subvolume, 

respectively. Because the error obtained with these fomulae is the average error, in some 

of the simulations, the normalized error in every cell in the volume under consideration is 

plotted: 



In the absence of noise and irrespective of the permittivity distribution within the 

dielectric body, the e m r  is found to be negligible, giving almost perfect reconstruction. 

In order to study the effect of measured data uncertainties on the reconstruction process, 

we added to the scattered field at the detector a random noise cornplex array n. The real 

and imaginary parts of this array are constituted by two independent sequences of random 

variables. These sequences have zero mean and a variance that cm be varied to obtain 

different signal to noise (S/N) ratios: 

SIN = 1 O log "Es%Z 

5.5.1 Effect of varying the ce11 size: 

In this simulation we attempt to study the effect of varying the ce11 size and hence 

the descritization on the accuracy of the reconstruction. The body under consideration is a 

40 x 40 x 40 cm body. The operating frequency is 900MHz. The body is divided into 8 

cubic cells with E, = 8, The computer simulation is carried out, the body is then divided 

into 64 equal cubic cells of the sarne dielectric perrnittivity. Fig. 5.3 shows the error in 

the dielectric perrnittivity in both cases. As shown the smaller the ce11 size, the less the 

error and the better the reconstruction for the sarne S N  ratio. 



A layer in the 8cell cube 

Equivalent layers in the 64cell cube 

Fig. 5.3 Percentage error versus SM ratio for ce11 sizes 10,20 cm. 



5.5.2 Effect of varying the strength of the scatterers: 

Reconstruction procedures are highly sensitive to the strength of the scatterer 

under investigation. In this simulation, two scattering bodies are investigated, the first 

body has 8, = 8 and the second has sr = 32. The simulation is carried out for the 

40x40 x 40 cm cube, which is divided into 64 equal cubic cells at 900MHz. Fig. 5.4 

shows the error in the reconstruction of the dielectric pemittivity for these scattering 

strengths. At a S N  ratio of 25dB, the error for the cube whose 6, = 32 is almost 9% 

while the error in the case when E, = 8 is almost 2%. So the reconstruction is better for 

weaker scatterers, yet, the 9% error at S/N ratio of Z d B  is still acceptable. 

r-- --------- 

Fig. 5.4 Percentage error versus S / N  ratio for different scattering strength. 



5.5.3 Effect of changing the contrast: 

In this simulation we attempt to study the effect of varying the contrast on the 

reconstruction of the dielectric permittivity. The 40 x 40 x 40 cm cube is divided into 64 

cells each of dielectric pemittivity E, = 1, except for 8 cells in the core of the cube that 

have a dielectric permittivity E, = 3. For the next simulation, the eight cells in the core 

are given a pemittivity E, = 32 thus increasing the contrast between the core and the 

surrounding cells. As shown in Fig. 5.5, the effect of the change in the contrast on the 

reconstruction of the pemittivity distribution is minimal, still the reconstruction is 

slightly better for the low contrast body. 

The next simulation, the 40 x40x 40 cm cube is divided into 64 cells each of 

dielectric permittivity E, = 3,  except for 8 cells in the core of the cube that have a 

dielectric permittivity E, = 1. For the next simulation, al1 the cells except the core are 

given a pennittivity E, = 32 thus increasing the contrast between the core and the 

surrounding cells. As shown in Fig. 5.6, the effect of the change in the contrast on the 

reconstruction of the pennittivity distribution in this case, which is the opposite of the 

case s h o w  in Fig. 5.5, can not be ignored. 



Low contrast 

Fig. 5.5 Percentage error versus SM ratio for different contrasts. 



Fig. 5.6 Percentage error versus SM ratio for outer cells of dielectric 

permittivity (a) E, = 3 and (b) E, = 32. 



5.5.4 Effect of changing the number of scatterers: 

Another issue to investigate is the effect of the number of scatterers within the 

body. It should follow fiom the previous simulations, that if the reconstruction is better 

for weaker scatterers and lower contrast, then it should be better for fewer nwnber of 

scatterers. To check this the 40x 40x  40cm cube is divided into 64 cells. The case of 8 

scatterers irnbedded in the core of the cube is compared to when al1 of the 64 cells 

forming the cube are scatterers. The scatterers have a permittivity E, = 3. Fig. 5.7 shows 

the error in the reconstruction for both cases. As predicted, the error is less for the fewer 

number of scatterers. Yet, as shown at S/N ratio of 25dB, the error for the 64 scatterers 

case is only 1.1 %. 

1 1 -O- 8 scatterers II 

Fig. 5.7 Percentage error versus S N  ratio for different nurnber of scatterers. 



In al1 of the previous simulations, we have investigated lossless dielectric bodies. 

In the following simulations we are going to study lossy dielectric bodies of variable ce11 

size and geometric complexity. 

5.5.5 Reconstruction of a simplified human body model: 

This simulation involves the use of a 180 cubic cell human body [log]. Fig. 5.8 

shows the model. This model is characterised by a variable ceIl size together with the fact 

that the average values for the conductivity and dielectric permittivity for the different 

kinds of tissue have been used in certain ceils. 

The simulation is carried out at 300MHz as the mode1 data is only available at this 

fiequency. The cell size varies from lOcm to lcm through out the model. The ce11 

number, volume, relative location and the dielectric properties for this model are given in 

Appendex C. For some of the cells of size lOcm and 6, ;. 80, which is the worst case 

electrical ceIl size, the method of moments requirements for discretization are violated. 

Fig. 5.9 shows the percentage mean square error in the reconstruction of the relative 

dielectric perrnittivity, conductivity and object function. As shown the error in the 

reconstruction of the conductivity is higher than that of the permittivity, yet, it is still 

acceptable at higher Ievels of noise. Fig. 5.10 shows the error in the reconstruction of the 

relative dielectric permittivity and conductivity at every ce11 in the body. 



00 
Front layer Middle layer 

00 
Back laver 

Fig. 5.8 Three layers constituting the 180-ce11 human body model. 



Fig.5.9 Reconstruction error in the human body model. 



Num ber of cells S/N=2 1 

Number of cells 
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Fig.S.10 Reconstruction error in every ce11 of the hurnan body model. 

5.5.6 Reconstruction of a simplified head model: 

In this simulation, the body under investigation is a simplified model of a human 

head. It is formed of 209 cells arranged in five layers and formed of four types of tissue: 

skin, bone, brain and eye (Fig. 3.1 1). The ce11 size is 2 x 2 x 2 cm. The mode1 is an 



example of a geometrically irregular and inhomogeneous dielectric body. The values of 

the dielectric permittivity and conductivity for the tissue involved at 300MHz and 

900MHz are given in table 5.1. These values have been obtained using the second order 

Debye dielectric equation given in Chapter 3. The panuneters used in the equation are 

those given in Table 3.1. The simulation is carried out at 900MHz and the percentage 

mean square error in the reconstruction of the object function, dielectric permittivity and 

conductivity is shown in Fig.5.11. Fig. 5.12 shows the error in the reconstruction of the 

relative dielectric pemittivity and conductivity at every ceIl in the simplified head model. 

From Fig. 5.12 it is clear that although the average error in the reconstruction of the 

dielectric properties for al1 cells is low (Fig. 5.1 l), at some cells the error is much higher. 

Table 5.1 Dielectric properties of human tissue. 

Tissue 

Bone 

skin 

Brain 

E Y ~  

Permittivity 

6.82205 

53.0764 

54.9296 

55.7202 

Conductivity 

0.0682344 

0.727464 

0.449 199 

0.4544 12 

Permit tivity 

6.131 11 

46.7887 

50.3 136 

52.3747 

Conductivity 

0.08713 17 

0.897553 

0.575565 

0.54372 1 



Fig. 5.1 1 Percentage error in the dielectric properties of the head. 



number of cells 

number of cells 

Fig. 5.12 Reconstruction error in every ce11 of the head model at S N =  1 7. 

5.5.7 Effect of varying the operating frequency: 

These simulations involve the use of the same model of the head that was used in 

the previous section. The dielectric properties of the tissue used are kept constant for the 

three fiequencies studied and correspond to those at 300MHz. This contradicts the 



dispersive nature of biological tissue but is important for the sake of cornparison. Three 

fiequencies have been tried, 300MHz, 900MHz and 3GHz. A single detector at a fixed 

location has been used for al1 the simulations. Fig.5.13 shows the percentage relative 

mean square error in the object function. Fig. 5. f 4 and Fig. 5.15 show the percentage 

relative mean square errors in the relative dielectric permittivity and conductivity, 

respectively. As shown, the error in the reconstruction increases by increasing the 

fiequency. The reason for this increase is that the incident matrix is not totally diagonally 

dominant. This is mainly because as the frequency increases, the physical size of the 

array decreases. This in turn decreases the effective aperture and hence the beam width of 

the incident ray. Thus, the incident field is not totally focussed on the required cell. Also, 

as the frequency increases, the physical size of the cells compared to the wave length of 

operation increases. This affects the performance of the method of moments especially at 

3GHz when the size of the ce11 is 0.23L. From the figures, for a typical signal to noise ratio 

(SM) of 25, the reconstruction error is still acceptable for the three frequencies used. 



Fig. 5.13 Percentage relative mean square error in the object function 0. 

15 20 25 30 35 40 

SIN dB 

Fig. 5.14 Percentage relative mean square error in the relative permittivity. 



Fig. 5.1 5 Percentage relative mean square error in the conductivity. 

5.5.8 Effect of varying the location of the detector: 

Al1 previous simulations, for a certain dielectric body, were carried out using one 

detector whose position has been kept constant. Acceptable error levels in the 

reconstruction of the dielectric properties have been obtained with only one detector in 

use. In this section, we attempt to study the effect of varying the detector location. The 

simulations that have been carried out show that the detector can be placed anywhere on 

the surface of sphere whose radius is at least one meter greater than that of a sphere 

containing the dielectric body which is the head model. Increasing the radius of the 



Radius m 
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Radius m 

Fig. 5.16 Percentage relative mean square error in (a) object fiction, 

(b) dielectric permittivity and (c) conductivity for different 

locations of the detector. 



spherical on which the detector is placed only presents minor fluctuations in the error 

level of the reconstruction of the dielectric parameters as shown in Fig. 5.16. As 

averaging is used to obtain a single value of the dielectric parameters, and because the 

error levels fi-om different detectors are almost the sarne, using more than one detector 

does not guarantee better reconstruction. These conclusions are based solely on the 

simulations that were carried using the simplified head model 

In the next simulation, we attempt to study whether the percentage error for a 

certain detector location is affected by frequency. Three different detector locations are 

tried, d, d/2 and 2d, where d=2m, at 300MHz, 9000Mhz and 3GHz. As shown in Fig, 5.17, 

the fluctuations in the error levels make it unclear whether the effect of the detector 

location on the reconstruction error is influenced by the operating frequency. These 

conclusions are based solely on the simulations that were carried out using the simplified 

head model and for the specified three detector locations. 

5.6 The planar phased array system: 

As mentioned in the previous section, the required 3N unrelated incident fields are 

obtained by two plana phased arrays. Instead of using the arrays, a reflector antenna 

could have been used and mechanically steered to provide the required incident 

illumination. The arrays used are mainly selected to facilitate the numerical computations 

and to prove the numerical accuracy of the technique. The planar phased arrays have 

uniform amplitude and spacing. The orientation and polsirization of the elements of the 

array, which are short dipoles, are varied to obtain the required cornponents of the 
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Fig. 5.17 Percentage relative mean square error in (a) object function, 

(b) dielectric permittivity and (c) conductivity for three 

detector locations S/N=20. 



incident fields. The phase excitations between the elements are adjusted to aim the main 

radiation fiom the array io a certain subvoIurne within the body [ I l  51. 

Most of the work was done initially at 300M.z. Each planar m a y  was 100 x 100 

elements for the cube and 300 x 300 elements for the head mode1 so as to have a small 

half power beam width (HPBW). The physical size of the array is large and can be a real 

hindrance when practical implementation is considered. Higher fiequencies were then 

tried: 900MNz and 3GHz, thus reducing the physical size of the array by two thirds and 

nine tenth, respectively. As shown in the previous section, acceptable reconstructions 

were obtained for both frequencies. This was done keeping the physical size and the 

discretization of the body under investigation constant. In other words, the numerical 

requirements of the simulation were not changed. For the 3GHz simulation and with ce11 

size 2 x 2 x 2 cm for the case of the head, this discretization is considered marginal for the 

method of moment optimal performance. 

Numerous methods are available to decrease the physical size of the array for a 

given HPBW at a certain fiequency. One of these methods is to mount the dipoles on a 

ground plane. By properly adjusting the height of the dipole above this ground plane (Fig. 

5.18), the directivity of the dipole can be increased, hence achieving the required HPBW 

using a smaller array size and thus effectively reducing the size of the array. 

The geometry and type of the array elements used determine the overall 

directivity and HPBW of a certain array as well as the size and weight of the overall 

array. The more directive the element is, the more directive the overall array will be. Yet, 

the choice of the element will probably dictate what type of feed network can be used. So 

another alternative, instead of using short dipoles, more directive elements could be used. 



Microstrip antennas, for exarnple, have a gain of approximately 6-8dB, as 

compared to less than 2dB for short dipoles. The size of the microstrip element itself is 

less than the corresponding dipole because of the presence of the dielectric substrate. 

Thus using microstrip antennas as array elements would reduce the overall size of the 

array. Added to this, microstrip antennas are easy to fabricate, inexpensive, and can be 

seamlessly incorporated with the appropriate feed networks. However, the microstrip 

feed network will suffer fiom substrate losses. These losses c m  be substantial especially 

at higher fiequencies and for large feed networks. In this case amplifiers c m  be used to 

compensate for the dielectric losses. 

l 
j 
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directivity dB 

Fig. 5.18 Variation of the directivity with height fiom the ground 

plane for a horizontal short dipole. (directivity of the same 

dipole in fiee space is 1.78dB) 



Another option is the use of superdirective arrays [116]-[117]. These arrays have 

directivities that are much larger than the directivity of an array of the same length and 

elements that is uniformaly excited. Superdirectivity applies in principie to both arrays of 

isotropic elements and to actual antenna arrays composed of nonisotropic elements such 

as dipoles [116]. A fixed aperture can achieve in theory any desired directivity value but 

the practical implications are not known. Superdirectivity is usual1y accomplished by 

inserting more elements within a fixed length thus decreasing the spacing between the 

elements. This eventually leads to rapid changes in the phase of the excitation 

coefficients of the array elements. In [Il71 two methods of achieving superdirectivity in 

uniform arrays of isotropic elements are presented. The first approach is achieved using 

alternating negative and positive phases with odd number of elements. In the second 

method, phases are adjusted to yield maximum directivity. The latter is achieved by 

applying an optimization technique. 

5.7 Conclusion: 

In this chapter we reviewed the basic reconstruction procedure employed by most 

of the spatial domain methods. The ill-posedness of the system in the inverse scattering 

problem was discussed and the necessity of using regularization techniques was pointed 

out. This was followed by a presentation of the unrelated illumination method and how it 

can be used to overcome the ill-posedness of the system. This was carried out by using a 

group of unrelated fields to illuminate the body, this guarantees that the incident matrix is 

invertible. Through some matrix operations and using the inverse of the incident fields 

matrix, the inverse problem is solved and the complex perrnittivity distribution at each 



subvolume is obtained. It should be noted that the method does not put any constraints on 

the number of measuring points, in fact one measuring point provides sufficient data to 

reconstruct complex permittivity distribution of the body. 

We then presented and discussed some of the numerical simulations that were 

carried out to assess the performance of the unrelated illumination method in the 

reconstruction of dieIectric bodies. The scattered field at the measuring points or 

detectors was obtained via a cornputer program utilizing three-dimensional scattering 

fiom dielectric bodies. Measured data uncertainties were simulated by adding noise to the 

scattered field at the detectors. Several dielectric bodies, homogeneous, 

nonhomogeneous, lossless, lossy and geometrically complex bodies were reconstructed. 

The nurnber of scatterers as well as the contrast have been varied and the accuracy of the 

reconstruction has been examined for each case. The effect of varying the operating 

fi-equency and the detector location on the error level of the reconstruction of the 

dielectric parameters have also been studied. The method has been proved to be robust 

and fair1 y accurate reconstruction technique. 



CHAPTER 6 

Conclusions 

6.1 Conclusions: 

In this thesis, we have atternpted to study different aspects of interaction of 

electromagnetic waves with biological tissue. Two problems in particular were 

investigated. The first is three-dimensional scattering from biological tissue taking into 

consideration its dispersive nature. The other problem that was investigated is the three- 

dimensional reconstruction of the dielectric properties of a body from the scattered field 

data resulting from interrogation with electromagnetic waves. In the first problem 

forward scattering of electromagnetic waves was studied while in the latter both fonvard 

and inverse scattering of electromagnetic waves have been studied. 

The specific absorption rate (SAR) is a measure of the arnount of energy absorbed 

by the tissue as a result of irradiation by electromagnetic waves. This value is directly 

related to the various components of the field inside the body. The symmetric condensed 

node transmission line matrix method (SCN TLM) has been used to obtain the fields 

inside the body. Being a time domain method, it allows for obtaining the frequency 



domain response over a wide fiequency range via Fourier transformation and fiom a 

single run. 

Second order Debye equation of the complex permittivity in the frequency 

domain has been used to simulate the dispersive nature of biological tissue in a modified 

TLM technique. In this technique the scattering rnatrix is independent of the dielectric 

properties of the medium, which are accounted for via lumped equivalent networks or 

sources comected to the nodes. These equivalent sources are calculated at each time step 

and included in the scattering procedure of the TLM. 

Assuming a nondispersive nature of biological tissue, the nondispersive or stub- 

loaded SCN TLM method was used to obtain the near field data and the specific 

absorption rate (SAR) distribution. The results of both cases have been compared. 

Several simulations were carried out to check the validity and accuracy of the modified 

TLM technique for homogeneous nondispersive and dispersive dielectric bodies. The 

modified TLM technique was then applied to nonhomogeneous and geometrically corn- 

plex dispersive body, which is the human head. Three models of the head were used: a 

simplified model of 209 coarse cells, a refined model of 24552 cells and a much refined 

model of 1 964 1 6 cells. 

To investigate the possibility of the reconstruction of three-dimensional dielectric 

bodies fiom scattered field data, the unrelated illumination method has been used. The 

method utilizes the method of moments (MoM) to discretize the nonlinear integraI 

equation, which relates the scattered field data and the complex permittivity distribution 

of the body. It is thus a frequency domain technique. The method requires that the body 

under investigation be illuminated by a group of unrelated incident fields, thus forcing the 



incident matrix to be nonsingular. This incident fields are obtained using two planar 

phased arrays. The values of the scattered field at the measuring points are obtained by 

solving the forward scattering problem. The inverse scattering procedure is based on 

obtaining the inverse of the incident field rnatrix. Through performing some simple 

matrix operations, the complex permittivity distribution of the body is reconstructed. 

This method, although sirnilar to the other multi-view illumination methods, has 

the advantage of providing accurate reconstruction using only one measuring point or 

detector and without any iterations. Thus it reduces the required computation time and 

still provides good accuracy. Numerical simulations were carried out to evaluate the 

capabilities of this method. In the absence of noise, the reconstruction error was 

negligible irrespective of the complex permittivity distribution or the ce11 size. To 

simulate realistic rneasurement conditions, the results are generated in the presence of 

Gaussian noise with zero mean added to the scattered field at the measuring points. 

It has been s h o w  that the method can handle both strong and weak scatterers of 

different densities. Also, better reconstruction has been obtained for smaller ce11 sizes. 

The unrelated illumination method can be used for the reconstruction of both lossless and 

lossy inhomogeneous dielectric bodies. It can also equally handle simple or geometrically 

complex bodies. Using a mode1 for the human head and another for the human body, it 

has been shown that for realistic signal to noise ratios, the method provides a reliable 

basis for the reconstruction dielectric parameters. Acceptable error levels have been 

obtained for higher frequencies. The effect of varying the detector location has also been 

studied. 



In conclusion, we have attempted to study both the forward and inverse 

electromagnetic scattering fiom biological tissue. Two numerical techniques have been 

used, the SCN TLM which is a time domain technique and the MoM which is a 

frequency domain technique. The choice of the technique was made based on its 

suitability to handle the problem under consideration. 

6.2 Future Research: 

The interaction of electromagnetic radiation with biological tissue has been 

studied in this thesis. Both the forward and inverse scattering problems of 

electromagnetic waves have been investigated. The ability to model the dispersive nature 

of biological tissue using second order Debye equation in a modified TLM technique c m  

be considered as preliminary work. It offers an accurate way to study the energy 

deposition and the various fields that exist in a biological body after an exposure to 

electromagnetic waves. Further simulations can be carried out to model realistic 

situations especially those involving wireIess communications. The results could be 

compared to those available assuming frequency independent biological tissue. 

A different issue that could be further studied is using higher orders of Debye 

approximation, which are more accurate, to model dispersive tissue. How this would 

affect the SAR levels in a body afier exposure to electromagnetic waves, is an interesting 

point and c m  help investigate the need to use higher order formuIae to model dispersive 

tissue. 

The reconstruction of the complex permittivity distribution of dielectric bodies 

using the method of moments (MoM) has been shown to be very proving. Yet, research 



can still be done on the planner phased array antemas that are used to obtain the required 

incident field. Once an optimum design for an antenna array of acceptable size is 

available, it should be implemented physically. The whole procedure should then be 

tested as it has been proven theoretically, in this thesis, to be a very reliable three- 

dimensional imaging procedure. To further improve the resohtion of the reconstructed 

bodies, the use of smaller ce11 size could also be studied. This is directly related to the 

design of the planner phased array antennas as it requires incident fields of smaller half 

power beam width (HPBW). 



APPENDIX A 

Modeling of Second Order Debye Dielectric 

In Chapter 3, we have shown how to mode1 a dispersive material that c m  be 

expressed as a second order Debye equation in the TLM method. The conductivity 0 and 

the dielectric permittivity 8, of a medium can be combined together to form the complex 

permittivity constant which is a fiequency dependent quantity and defined as: 

For a dispersive dielectric medium the fkequency domain permittivity constant 

&*(a) can be modeled using second order Debye equation [59]: 

Where 6, is the permittivity at infinite fkequency, E, = + E,, - 6, is the zero or 

static permittivity and r, and r, are the relaxation time constants. 

As shown in Chapter 3, the second order Debye equation (A.2) can be modeled 

by the RC circuit s h o w  in Fig. A. 1. In this section, we attempt to obtain the expressions 



for the various circuit components in term of the parameters of the second order Debye 

equation (A.2). 

The first step is to obtain the impedance of the circuit s h o w  in Fig. AS. The 

mathematical formula for the irnpedance is then compared with the relation between the 

voltage and current as obtained from equation (A.2), as will be shown. From the 

Fig. A. 1. Circuit mode1 for second order Debye dielectric. 

cornparison of the two equivalent formulae, we will be able to find the required 

expressions for the various circuit components. 

The input impedance for the above circuit is given by combining the various 

series and shunt components as: 

From equation (A.2), we get: 



E* (W) = 

The next step is to obtain the expression for (E*-1): 

The polarization P is related to the electric field E via this equation: 

P(m) = (E* (O) - 1) E (w) 

Substituting for (~'(w) - 1) in equation (A.6) 

2 ~ ( o ) ( i  + ja>(q + r2 ) - m2r1 r2)  = ( (E,  - 1) + ~o( (E ,~  - 1)r2 + (g12 - l)rl )- w r1T2 (8, - l))E(m) 

And writing the above equation in the time domain: 

The polarization current i is related to the polarization P: 

From the analogy between field and circuit quantities: 

(A. 10) 

Substituting (A.9) and (A. 10) in (A.8): 



(A. 11) 

Changing to the fi-equency dornain and rearranging, we get the relationship between the 

voltage and cui-rent in terms of the second order Debye parameters: 

(A. 12) 

Through cornparing the coefficients of the various terms of equations (A.3) and (A. 12), 

we can get the expressions for the circuit components of Fig. A. 1 in tems of the second 

order Debye parameters. The five equations that result from the coefficients cornparison 

are: 

C3R2 +C2R, +C,R, = r, +r,  (A. 13) 

C2 C3 RI R2 = r1 r2 (A. 14) 

(c, + C, + C3 ) = 2 At(&., - 1) (A. 15) 

(c,c,R, +CIC,Rl +CIC,R, +c,c,R,)= ~ A ~ ( E J ,  +E,,T~ -5, -5) (A. 16) 

C, C, C, R, R2 = 7, .r2 (sa - 1)26t (A. 1 7) 

Through simple mathematical substitutions in the previous five equations, we get the 

following expressions: 

(A. 1 8) 



(A. 19) 

(A. 20) 

(A. 21) 

(A. 22) 



APPENDIX B 

Green's Function Formulation 

In Chapter 4, starting fiom Maxwell's equation we have derived the equations 

relating the total and scattered field inside a dielectric body: 

Using the equivalent current density Je,, equation (B.l) c m  be written as: 

In the above equation G(r , r ' )  has a singularity, the integrai equation (BA) wiII 

diverge if the field point r is inside the volume v of the body. This diversion is overcome 

by defining the principal value (PV) to which a correction term is added. The principal 

value PV is an integral equation that is valid everywhere except where the singularity 

occurs. The correction term is added only when the source and the field point approach 

each other. It can be evaluated by excluding a small volume surrounding the singuiar 

field point first and then letting the small volume approach zero. Equation (B.2) can thus 

be written as: 



Es ( r )  = PV JZ(r ,  r') J, (rt)dv' + [ ~ " ( r ) ] ~ ~ , , , , ,  

The correction term depends on the geometry of the volume over which equation (B.3) is 

evaluated. It has been shown that the correction term for a sphere is [ I l  O]: 

Rewriting equation (B.3): 

J, ( r )  E" ( r )  = PV I z ( r , r t )  Je, (r')dvt - - 
y 3 jaso 

The total electric field E at an arbitrary point r can be expressed in terms of the incident 

and scattered fields as: 

E(r) = E' ( r )  + Es' ( r )  

Substituting equation (B.5) in (B.6) and rearranging: 

U r )  
11 + - - PV J ~ ( ~ ' ~ E ( ~ ,  r l )  E(r')dvt - Ei  ( r )  

31 0% V 

where 

In equation (B.7) the only unknown is the total field inside the body and can be 

determined using the method of moments. 

The inner product in equation (B.7) can be represented as: 



Denoting x, y and z by x i ,  xz and x3, the entries in the matrix above can be written as: 

(B. 10) 

where p,q = l ,2 ,3.  

The method of moments with pulse basis fùnction and point matching procedure 

can now be applied to equation (B.7). This results in the following expressions for the 

elements of the Green's function matrix: 

For non-diagonal elements: 

where 

anln = k, Irnl - r, 1, COS ey = (x; - x; ) and coseBY = 
(.," - X U )  

Irjn - ' n  1 l'nt - rn 1 
a n d r n 1 = ( x ; ' , x ; , x j )  r n = ( $ , x ; , x ; )  

For the diagonal elements: 

(B. 11) 

= &M { j t l  ) [exp(- k a  a,, 1 + k a  a,, ) - i] - (B. 12) 
3 k i  



Detailed derivation of the expressions of the Green's function matrix are given in [log]- 

[ I l  O]. 



APPENDIX C 

Parameters of the Human Body Mode1 

The 180 cubic ce11 human body model that has been used is characterised by a 

variable cell size. The parameters of the model including the ce11 number, volume, 

relative location and dielectric properties are given in Table C .  1. 

Table C. 1 Volume, location and dielectric properties of the 180-ce11 human 
body model. 

Cejl no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

volume 

2.88E-04 
4.65E-04 
4.65E-04 
1.74E-04 
4.22E-04 
4.22E-O4 
4.22E-04 
4.22E-04 
4.22E-04 
4.22E-04 
4.22E-04 
4.22E-04 
3.14E-04 
3.14E-04 
4.22E-04 
4.22E-04 
4.22E-04 

x 

1.717 
1.6452 
1.5677 
1.4998 
1.433 
1.433 
1.358 
1.358 
1.283 
1.283 
1.208 
1.208 

1.1365 
1.1365 
1 .O65 
1.065 
0.99 

Y 

0.033 
0.0388 
0.0388 
0.0292 
0.0375 
0.1 725 
0.0375 
0.1 125 
0.0375 
0.1 125 
0.0375 
0.1 125 
0.034 
0.102 

0.0375 
0.1 125 
0.0375 

z 

0.1678 
0.162 
0.1 77 

0.1335 
0.15 
0.15 

0.1875 
0.1875 
0.7 875 
0.1875 
0.1875 
0.1875 
0.177 
0.1 77 
0.1875 
0.1875 
0.1875 

CJ 

0.38 
0.84 
0.84 
0.843 
0.84 
0.84 

1 .O849 
0.84 
0.843 
0.84 
0.84 
0.84 
0.84 
0.84 
0.84 
0.84 
0.84 

goEr 

7.16E-IO 
7.07E-10 
7.07E-1 O 
7.07E-10 
7.07E-1 O 
7.07E-IO 
7.07E-1 O 
7.07E-10 
8.63E-10 
7.07E-1 O 
7.07E-10 
7.07E-1 O 
7.07E-10 
7.07E-1 O 
7.07E-10 
7.07E-10 
7.07E-10 
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