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Abstract

The interaction of electromagnetic waves with biological tissue is investigated.
Two problems in particular are studied. The first is three-dimensional scattering from
biological tissue taking into consideration its dispersive nature. The other problem that is
investigated is the three-dimensional reconstruction of the dielectric properties of a body
from the scattered field data resulting from interrogation with electromagnetic waves.

The symmetric condensed node transmission line matrix method (SCN TLM) is
used to study three-dimensional scattering from biological tissue. To simulate the
dispersive nature of biological tissue, a second order Debye equation approximation of
the permittivity in the frequency domain is used in a modified TLM technique. In this
technique, the scattering matrix is independent of the dielectric properties of the medium,
which are accounted for via lumped equivalent networks or sources connected to the
nodes. These equivalent sources are calculated at each time step and included in the
scattering procedure of the TLM. To check the validity and accuracy of the modified
TLM technique for dispersive homogeneous and nonhomogeneous dielectric bodies,
some of the results of the numerical simulations are compared to those obtained
analytically. Assuming a nondispersive nature of biological tissue, the nondispersive or
stub-loaded SCN TLM method is used to obtain the near field data and hence the specific
absorption rate (SAR) distribution. The results of both cases are compared. The modified

TLM technique is then applied to a nonhomogeneous and geometrically complex

ii



dispersive dielectric body, which is the human head.

To estimate the complex permittivities of three-dimensional inhomogeneous
dielectric bodies, the unrelated illumination method is used. This method, which has been
tested before with two-dimensional bodies, is extended to handle three-dimensional
inhomogeneous dielectric bodies. The method utilizes the method of moments (MoM) to
discretize the nonlinear integral equation, which relates the scattered field data and the
complex permittivity. Yet, it differs from the other reconstruction techniques in that the
way of acquiring information helps overcoming the ill-posedness nature of the problem.
This is maintained by the proper arrangement of the polarization and the direction of the
incident electric fields aiming to illuminate the body with a group of unrelated incident
fields. Numerical simulations are carried out to assess the method and to test its

robustness in the presence of measured data uncertainties.
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CHAPTER 1

Introduction

1.1 Introduction:

The increased usage of high frequency devices by the society for a variety of
purposes has made it imperative to be able to quantify the absorption of electromagnetic
energy in the human body. Such knowledge is indispensable if one is to either selectively
apply electromagnetic waves for therapeutic purposes or determine if the electromagnetic
fields emitted by a device are harmful. Because ethical considerations make
electromagnetic exposure of humans for experimental purposes difficult, it is necessary to
develop realistic computer or engineering models. Computer simulations could then be
carried out to obtain the required information [1].

Most of nature’s phenomena can be modeled using mathematical models. Models
in general are used to establish a relationship between the input to a system and the
output of the system [2]. Models allow for better understanding of the system response as
well as the possibility of investigating the effects of various parameters involved on the
system output. In order to build a model, the domain, whether it is frequency or time

domain, at which the problem will be solved has to be chosen. In addition, a certain



mathematical formulation has to be adopted. Both of these points are usually related to
the problem under consideration and the information or data required as an output of the
used model. Numerical techniques are essentially mathematical models that make use of

the availability and advances in the high-speed computer technology.

1.2 Domain-Classification of Numerical Techniques:

There are several classification schemes for numerical techniques. One criterion
for classification is the domain in which the actual physical problem is defined. If the
problem is defined in the time domain, then the method is described as a time domain
method. In this case, the computational domain is both space and time dependent.
Alternatively, the frequency domain may be chosen, leading to the frequency domain
methods. In this case the computational domain is only space dependent as the problem is
solved at a single frequency. The time domain formulation is suitable for studying
transients or obtaining the response over a wide frequency range. The latter can be
obtained using Fourier transformation of the time domain information. The frequency
domain formulation is used for studying the steady state response at a single frequency.
The choice of the domain is usually based on the efficiency of handling a particular
problem.

To investigate electromagnetic field problems, techniques belonging to both the
frequency and time domain have been used. For most antenna applications and radar
cross section analysis, frequency domain results are usually required. For certain
electromagnetic compatibility (EMC) problems, the transient response may be required.

Also, the nature of the material parameters affects the choice of the solution domain. The



time domain formulation is preferred for problems that include nonlinear materials. On
the other hand frequency dependant or dispersive materials, although require the use of

convolution in time domain modeling, are easily treated using frequency domain

formulation.

1.3 Formulation-Classification of Numerical Techniques:

The starting point in modeling electromagnetic field problems is usually
Maxwell’s equations, which provide the basis for studying various electromagnetic
phenomena. Two kinds of mathematical formulations can be used to describe
electromagnetic field problems based on the form in which Maxwell’s equations are

given. These are the integral equation formulation and the differential equation

formulation.

1.3.1 Integral Equation Formulation Based Techniques:

The integral equation formulation can be used to solve open problems and treat
complex geometries. The appropriate selection of a Green’s function for the problem
under consideration is the starting point for the integral equation formulation. The
formulation reduces the problem into an integral equation in terms of unknown currents
and these Green’s functions. This usually results in a system with a dense matrix
equation. Assuming a time harmonic variation, the integral equation can be formulated in
the frequency domain. The method of moments (MoM) [3] and the geometrical theory of

diffraction (GTD) [4] are considered the leading methods in the integral equation



frequency domain formulation. The method of moments is used to discretize the integral
equation thus allowing for a numerical solution for the problem at a single frequency. For
frequencies above the resonancel range, the geometrical theory of diffraction may be used.
The integral equation can also be formulated in the time domain [5]. In such a case, it
allows for the study of transients in the system. The integral equation formulation can
further be divided into surface integral equation formulation and volume integral
equation formulation. The surface and volume integral equation formulations have been
widely used to analyze electromagnetic radiation and scattering problems. A detailed

review of the numerical methods based on the integral equation formulation can be found

in [6].

1.3.2 Differential Equation Based Techniques:

The differential equation formulation can be used to solve closed inhomogeneous
problems more easily than the integral equation formulation. Also, as the complexity of
the problem increases, the differential equation based formulations become more
computationally efficient than the integral equation based formulation. The numerical
solution of the differential equation formulation can be obtained via such techniques as
the finite difference time domain (FDTD) [7] or the transmission line matrix method
(TLM) [8], both of which are time domain methods. The finite difference time domain is
based simply on the application of the central finite difference in both space and time to
Maxwell’s equations. The transmission line matrix method is based on the equivalence
between Maxwell’s equations for the electric and magnetic fields in a medium and the

equations for the voltage and current on a network of transmission lines. Both approaches



lead to systems of algebraic equations that must be solved at each time step. They also
require discretization of the entire simulation space in which a non-zero field distribution
exists. For open region problems, they require the application of absorbing boundary
conditions to truncate the simulation space to a reasonable size. Both techniques can be
used as an electromagnetic modeling, simulation and analysis tools. Each of these
techniques has particular advantages over the other, depending on the specific problem
being studied [9]-[11].

The differential equation form of Maxwell’s equations can also be formulated in
the frequency domain. The finite element (FE) method is a widely used technique that
belongs to this category [12]. Because of the type of the space discretization, which is
tetrahedral elements for three-dimensional problems, the method can handle a wide range
of geometries. Another method that belongs to this category is the finite-difference (FD)

method [13]. Both of these techniques have been widely used to analyze different

structures [14]-[17].

1.4 Biological Aspects of Electromagnetic Waves:

The purpose of this thesis is to study the interaction of electromagnetic waves in
particular microwaves with biological tissue. The wide use of electromagnetic and
microwave devices in our daily life has raised a lot of debate regarding the effects of
electromagnetic radiation on living material. How much is absorbed by human tissue
after an exposure and whether this absorbed energy is of any risk or can cause any
mutation to human cells. In order to answer the latter part we have to find an accurate

method to measure the energy deposited to a human tissue after an exposure to



microwave radiation. The dielectric properties of the biological or human tissue are
frequency dependent. Thus, for accurate simulations, the dispersive nature of biological
tissue has to be taken into account. Further studies can be carried out to obtain the safety
exposure levels. Since microwave radiation is a non-ionizing low power radiation and
due to the lack of a solid proof of being harmful, research has been and is being carried
on regarding the possibility of its use as an imaging technique.

Two main issues are going to be studied in this thesis. The first is scattering and
power absorption to obtain the energy deposited in dispersive biological tissue. The
second is inverse scattering to explore the possibility of using microwaves in imaging or
reconstruction of the dielectric properties of inhomogeneous dielectric bodies. Two
different numerical techniques are used, the transmission line matrix (TLM) method and

the method of moments (MoM). The choice is made based on the applicability and the

efficiency of handling each respective problem.

1.5 Thesis Outline:

Chapter 2 provides a review of the TLM method and its use as a time domain
numerical technique to solve various electromagnetic problems. The use of transmission
lines to describe the behavior of electromagnetic fields in a medium is discussed. The
symmetric condensed node (SCN) is presented together with the various capabilities of
the TLM method. In Chapter 3, the use of SCN TLM to model dispersive media in a
modified TLM technique is presented. The dielectric properties of the medium are
modeled via a RC circuit. The circuit is connected to the TLM node and solved at each

time step. In doing so, the scattering matrix of the TLM technique is made independent of



the medium. A circuit model is proposed in Chapter 3 to model second order Debye
dielectrics. The derivation of the circuit model equivalence together with the expressions
for the circuit components in terms of the second order Debye parameters are given in
appendix A. The results of numerical simulations, for scattering from biological tissue,
based on the SCN TLM are then presented. The validity and accuracy of the method are
first presented using results obtained analytically and results obtained using the stub-
loaded or nondispersive SCN TLM method. The modified TLM technique is then applied
to various nonhomogeneous and geometrically complex dispersive bodies.

In Chapter 4, the forward and inverse scattering formulation and their use in the
reconstruction of dielectric bodies are presented. Ill-posed problems as well as the
different methods of regularization, that can be employed, are defined. A review of the
various techniques used in microwave imaging is given in this chapter. In Chapter 5, we
start with the discretization of the integral equation formulation. This is followed by a
discussion of the common reconstruction procedure available. The unrelated illumination
method is then presented as a tool for the reconstruction of the dielectric property
distribution of inhomogeneous dielectric bodies. The results of numerical simulations to

assess the capabilities and robustness of the unrelated illumination are presented. Finally,

conclusion and future work are given in Chapter 6.



CHAPTER 2

The Transmission Line Matrix Method

2.1 Introduction:

The Transmission Line Matrix (TLM) method is a powerful numerical technique
for solving electromagnetic field problems. The method uses transmission line networks
to represent the behavior of electromagnetic fields [18]-[20]. In this model, voltages and
currents behave in the same way as electric and magnetic fields. Therefore, concepts of
transmission line analysis can be used to describe the electromagnetic phenomenon. The
TLM method uses scattering and transmission matrices to simulate the propagation of
electromagnetic fields. The simulation space is divided into a mesh of transmission lines
interconnected at discrete points in space. At each of these points, the incident and

reflected pulses are scattered and transmitted to other points of the mesh.

A simple two-dimensional version of the TLM method can be obtained by
applying Huygens’ principle and the conservation of energy [20]. This formulation shows

the basic concepts involved in the method.

There are two distinct nodes used in modeling electric or magnetic fields. These

nodes represent the two different polarizations for an electromagnetic wave propagating



in a plane [21]-[22]. These are the cases where transverse electric (TE) or magnetic (TM)
field is perpendicular to the plane of propagation. The transmission line analogy
characterizes the first case as a series node case and the second as a shunt node case. This

follows from the topology of the network of transmission lines.

A three-dimensional version of the method is obtained by assembling a three-
dimensional array of two-dimensional nodes. For each direction one series and one shunt
node is used to represent the magnetic and electric field component in that direction [23].
The complete node describes the behavior of six field components.

Permittivity and permeability are modeled by stubs connected to the node [19]-
[20]. In the shunt node case, an open-circuited stub models the relative permittivity of the
region. In the series node case, a short-circuited stub models the relative permeability. In
this representation the relative permittivity and permeability of the medium are isotropic
and frequency independent.

The time domain TLM yields a wide-band response of the electromagnetic field
problems and can be used to analyze its transient behavior [18]-[20]. The TLM algorithm

follows the evolution of voltage pulses on the transmission line grid. The voltage pulses

represent the discrete approximation to the field distributions. The field components are

later determined as a post-processing task

2.2 Huygens’ Principle and Its Discretization:

The propagation and scattering of waves in the TLM method can be viewed as the

discrete equivalent of Huygens’ principle [20]. According to Huygens, a wavefront #; at



time ¢ = t'consists of a number of secondary radiators that give rise to spherical wavelets.
The envelope of these wavelets forms a new wavefront > at time ¢ = '+dt . This process
is shown in Fig. 2.1. In the continuous Huygens’ principle, the secondary wavefronts

form a circle of radius:

dr = vt 2.1)

Where 4t is the differential time step, dr is the differential radius and v is the velocity of

propagation of light in the medium.

Wi(t=r')

Wy (1 =1'+dt)

Secondary waves
(radius dr = vdt )

Fig. 2.1 The wavefront #, is formed of secondary wavefronts obtained from the
primary wavefront W,
In the discrete equivalent, the radius of the wavefront would be:

Ar = vAt 2.2)

where At is the discretized time step, Ar is the discretized spatial step and v is velocity of

propagation of light in the medium. Accordingly, two-dimensional space is modeled by a
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Cartesian matrix of points or nodes, separated by Al. The time At is the time required for
a pulse to travel from one node to the next [20].

Two different kinds of pulses exist in the mesh: pulses incident at the nodes and
pulses transmitted to other nodes. The pulses scattered at a node become incident at
adjacent nodes after a time delay as shown in Fig. 2.2. The delay is due to the distance
between nodes and the finite speed of light. In Fig. 2.2, the pulse scattered at node a in
the direction 4 at 1=¢’ is the same as the pulse incident on node b from the direction 2 at
t=t’+At. This two-dimensional model has a network analogue in the form of a mesh of

orthogonal transmission lines or a transmission line matrix.

3 al 3
4+—>
L J ® ? o
2 2
1 3 1 1
® 2 >4 .b o< .a Zﬁb
1 i
o L J ® L ®
=t’ =t'+At

Fig. 2.2 Scattering and propagation of pulses at adjacent nodes a & b.
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2.3 The TLM Method:

The transmission line model is a simple representation of electromagnetic fields
propagation in a linear media. Instead of using Maxwell’s equations, it represents the

field behavior via transmission and reflection of pulses on transmission lines.

Consider the nodes with spatial locations as shown in Fig. 2.3. If a unit voltage
impulse is incident on a node in the TLM mesh, it will be scattered in the form of a
reflected impulse of -0.5v and three transmitted impulses of 0.5v. The more general case
of four impulses incident on the four branches of a node is obtained by superposition.

Accordingly, the scattering process of the TLM model is given by:

3
ij+1)
2—L_ 4
1
’(3 3 3
i-1.i) (i.j) (i+1.0)
2 | 4 2 4 2 4
1 1 1
3
(ii-1)
2| 4

1

Fig. 2.3 A node and its four adjacent neighbors.
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v, 111 -1 1 1 fv,

=_ 2.3
vy 2i 1 1 -1 1 fiv; 2.3
A 1 1 1 -1 v,

And the transfer or connection process that permits the calculation of the incident

voltages at the new time step is given by:

v ) = v =)
v () = v (-1, )
vy, j) = v G+ 1)

Vi) = vy 41, )

2.4)

The i and » superscripts denote the incident and reflected pulses, respectively. The ¢
superscript corresponds to the time. The » (1,2,3,4) subscript refers to the port number of

the node. The events described by (2.3) and (2.4) are carried out at each node in the TLM

mesh. Equation (2.3) may be written in a matrix form as:
V=S,V (2.5)
where k is the number of time steps Ar that has passed since the beginning of the

computation. ,v”is the vector of reflected voltages and .V'is the vector of incident

voltages. S is the scattering matrix.

Briefly, the representation of the discrete Huygens’ principle by a transmission
line formulation is straightforward. The transmission lines are connected at the nodes. At

each node, a scattering matrix is used to obtain the reflected pulses from the incident

13



ones. The reflected pulses are transmitted to adjacent nodes, transforming into incident

pulses. The process is repeated at each time step.

The equivalent transmission line circuit for the TM case is a shunt circuit, Fig.
2.4. Two transmission lines are connected in parallel. The total voltage across the shunt

node ¥, [19] is written in terms of the incident voltages on the different ports or branches
as:
] i i i i
n:E@pwg+m+m) (2. 6)

The equivalent transmission line circuit for the TE case is a series circuit, Fig. 2.5.

The transmission lines are connected in series.

Fig. 2.4 TLM shunt node: two transmission lines are connected in parallel.

The total current I, across the series node [19] is written in terms of the incident voltages

on the different ports or branches as:

L= (Vi -V Vi +¥) @27

Y2z,
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Fig. 2.5 TLM series node: two transmission lines are connected in series.

To model total and partial reflections at the boundaries, reflection coefficients are
introduced in the mesh [20]. In the shunt node: electric and magnetic walls are modeled

by short (I' =-1) and open (I" =1) circuits, respectively. In the series case the situation

is reversed. In all cases, a boundary must be placed half way between two nodes so that
reflected pulses reach the boundary nodes in synchronism with other impulses in the
mesh. For the appropriate truncation of the computational domain, matched or absorbing
boundary conditions (ABC) have to be used, although their representation is more
complex [10]. In a shunt mesh, this is usually implemented by terminating the
transmission lines by the characteristic impedance of the medium.

The TLM method can model inhomogeneous media [19]-[20]. Dielectric and
magnetic media are modeled by changing the impedance of the node. This can be done
by adding a capacitance or an inductance to the node. Magnetic materials are modeled
using inductances and dielectric media are modeled using capacitances. These
capacitances and inductances are added to the node in the form of stubs. In the low

frequency approximation an open-circuited stub behaves as a capacitance and a short-
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circuited stub as an inductance [10]. In the two-dimensional case, these stubs are
connected either to the shunt or series nodes. The open-circuited stub is connected to the
shunt node, representing a medium with permittivity larger than that of vacuum. The
short-circuited stub is connected to the series node, representing a medium with
permeability larger than that of air.

The use of stubs in the node does not require special boundary or interface
treatment. Since the transmission lines connecting the nodes (link lines) do not change,
no boundary reflection or transmission coefficients are introduced. Therefore, the
connection matrix of TLM is not changed by the introduction of stubs. The scattering part
of TLM, however, is changed by the use of stubs {10]. The scattering matrix will have an
extra term describing the reflection of a pulse in the stub. At each time step, a portion of
the energy incident on the node is transmitted into the permittivity or conductivity stub in
the form of a transmitted voltage pulse. At the following time step, the transmitted pulse
along the permittivity stub is returned, while that along the conductivity stub is not

returned because of the match termination. The scattering matrix equation of the shunt

node with an open-circuited stub is [19]:

v, [2-y 2 2 2 2y, 1[v7
v, 2 2~y 2 2 2y, v,
vy =31}- 2 2 2-y 2 2y, || 2.8
Vv, 2 2 2 2-y 2y, v,
LVs | 2 2 2 2y, -4 v
with y, =4, ~1) and y=4+y,

In the series case, the matrix equation is [19]:
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(v [Zz-2 2 2 -2 -2 1v7
v, 2 Z-2 -2 2 2 v,
v, =% 2 -2 Z-2 2 2 v, 2.9)
Vv, -2 2 2 Z-2 -2 v,
v | |2z, 2z, 2z, ~2Z, Z-2Z,||v]
where Z, =4u-1) and Z=4+Z,

This media representation is valid only for non-dispersive isotropic dielectrics.

2.4 Three-Dimensional TLM:

The original three-dimensional TLM node was introduced by Akhtarzad and
Johns in 1975 [8]. This model is constructed from two-dimensional shunt and series
nodes and has been demonstrated to satisfy the Yee algorithm [7], [24]. In 1987, Johns
introduced the three-dimensional symmetric condensed node (SCN) [25]. The purpose of

this node was to overcome the difficulties associated with the original three-dimensional

Fig. 2.6 The symmetric condensed node (SCN).
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TLM node. In this model (Fig. 2.6), all six field components are condensed to the center
of the node. Also, the node appears symmetric when viewed along each coordinate axis.
The propagation characteristics of the node have been studied in [26]. The scattering
matrix is obtained from the total voltages at the shunt node and currents at the series
nodes in all three spatial directions (x,y and z) [23]. Thorough discussion of the

symmetric condensed node is given in Chapter 3.

2.5 Data Extraction in TLM;:

The TLM method generates large amounts of data at each time step simulation
[10]. The processing of these data provides valuable insight into the behavior of the
simulated structure. However, it is important to understand how to excite the TLM mesh
and how to extract signals from it. The accuracy of the TLM results depends not only on
the model itself, but also on the modeling of sources and on the way the field information

is extracted. If the source region is not properly modeled, the results can be quite

erroncous.

In the time domain TLM, the system is excited with a time domain source
function at certain points of the mesh. These are called source points. The source function
is time dependent. It consists of a sequence of pulses injected into the mesh as time
progresses. The most frequently used distributions are the Dirac delta and the Gaussian
functions. The advantage of using Gaussian functions is the bandwidth. Since these

functions are band-limited (unlike the Dirac delta), higher frequency modes are not

excited.
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The response of a system to a source in TLM is the time domain behavior of the
field at all points of the mesh. The frequency response is obtained from the time domain
response with the discrete Fourier Transform (DFT). The frequency domain
transformation of the time domain sequences result in the wide-band representations of
the fields in the simulated regions. These results are used to characterize the simulated
structure.

The output regions can also include several mesh points. In this case, the spatial
distribution of the fields can be visualized. This can be done either in time or frequency
domains. In the time domain visualization, a dynamic representation of the evolution of
the fields through the structure can be displayed. In frequency domain, the fields can be

displayed at any particular frequency. The result is an accurate representation of the field

interaction at the chosen frequency.

2.6 Conclusion:

This chapter presented a review of the Transmission Line Matrix (TLM) method.
The TLM method uses transmission lines to describe the behavior of electromagnetic
fields propagation in a linear medium. In transmission line models, the voltage and
current behave as electric and magnetic fields. The mathematical representation of the
array of transmission lines is the same as that of the fields described by Maxwell’s
equations. The TLM method uses scattering and propagation matrices to simulate the
propagation of electromagnetic fields in a medium. The space is divided into a mesh of
transmission lines interconnected at discrete points in space (nodes). At each of these

points, the voltages and currents are scattered and transmitted to other points of the mesh.
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A three-dimensional version of the method is obtained by assembling an array of
two-dimensional nodes. Series and shunt nodes are used to represent magnetic and
electric field components, respectively. The complete node describes the behavior of six
field components. The modeling of the medium properties is performed by stubs
connected to the node. In the shunt node case, an open-circuited stub models the relative

permittivity of the medium, while in the series node case, a short-circuited stub models

the relative permeability.
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CHAPTER 3

Modeling of Dispersive Media Using TLM

3.1 Introduction:

The TLM method has been widely used to study engineering electromagnetics in
electronics problems. For example, in electrical systems the TLM has been used to study
electromagnetic compatibility (EMC) [27]-[29], and can assist in the design process. This
is done by establishing the degree of compatibility and interference between electronic
systems and subsystems and by pointing to optimum design strategies [19]. The TLM has
also been applied to the analysis and design of microwave devices including microstrip
lines and resonators [30]-{33], as well as radar cross-section (RCS) problems [34]-[35].
Furthermore the TLM has been applied to the study of several radiation problems
including cavity packed aperture antennas, radiation pattern and input impedance of
microstrip antennas and tapered slot antennas [36]-[37]. The TLM has also been used to
model dispersive dielectrics, gyromagnetic and anisotropic materials [38]-[43]. In this

chapter, the TLM is used to model dispersive dielectrics that can be expressed in terms of

the second order Debye approximation equation.
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In the basic TLM formulation, the medium is modeled using stubs connected to
the TLM node [10]. An open-circuited stub represents the dielectric material, and a short-
circuited stub represents the magnetic material. In the representation of the medium
parameters by stubs, the relative dielectric permittivity and permeability of the medium
are frequency independent. However, this is only an approximation of the behavior of
real medium [44] and valid only under certain conditions (low intensity, narrow band
fields). This chapter presents the modeling of dispersive media using the symmetric
condensed node (SCN) TLM. The algorithm relies on the modification of the node
scattering to include the medium behavior in the TLM procedure., The modification of the
node scattering is done using a nodal source approach. In this approach, sources
connected to the TLM nodes represent the dielectric properties of the medium. In doing
so, the TLM scattering matrix is independent of the modeled medium. Only the sources
will change according to the medium properties. The nodal source approach has a
physical interpretation. The sources represent the polarization and magnetization
densities of the medium [44]. The medium independent scattering matrix represents the
free-space propagation properties. In the absence of dielectric and magnetic media, the
sources vanish. In the case of a passive medium, the sources will absorb and/or store
energy. A passive network connected to the node represents this absorption and/or

storage. The circuit is solved at each TLM time-step using a circuit equivalent of the

node.
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3.2 The Symmetric Condensed Node (SCN):

The symmetrical condensed node (SCN), shown in Fig. 3.1, is formed by
combining series and shunt nodes [23). This node can be represented by a set of
equivalent shunt only and series only circuits, where a pair of transmission lines is
common to both circuits as shown in Fig. 3.2. A nodal voltage ¥, and loop current /, can

be determined for the shunt and series node, respectively. For the transmission line

R S rd
tal 1
V.

5

Fig. 3.1 The symmetric condensed node (SCN).

common to both representations the following equations are valid:

V=V, +1,Z, -V, (3. 1)

Ve =V,~1,Zy -V, (3.2)
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where the superscripts » and / are used for reflected and incident waves, respectively. The

subscripts L and R denote the left and right directions, respectively.

Yo ﬁk z, | %
TR 2 B T V2
ﬂ/ () s ®

Fig. 3.2 Equivalent (a)shunt and (b)series representation of condensed node.

Applying the above procedure to all the shunt and series nodes of the symmetric
condensed node (Fig. 3.3), the equations that define the SCN in terms of the voltages
across shunt nodes and currents in series nodes are:

r= Y ro_ .
4 _v.t—Zol: VIZ \¢] —'vz—Zl —Vs

0ox
ro__ syl ro_ . i
v, =V, + 20, =V vy =v +Z,0 -V,

ro_ TR | ro_ . i
vy =V, + 20—V Vg =v, —Z,i -V,
3.3)

i

r . i r .
v, ——vy—Zz — Vg Vip =V, +Z,i, v
r —_— — ] — i
v, V=V, =20, —V

i

[ . i ro_ .
Ve =V.~=Z,i,—V,, v,=Vv . +Zi —V
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where, Z, (=1/Y, ) is the characteristic impedance of the link lines of the node.

e 2 O VA

Fig. 3.3 Equivalent shunt and series representation of symmetric condensed node.
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In free space the voltages across the shunt nodes v, and the currents in the series

nodes i, (n=x,y,z) are given by:

1. . . . .

v, -—-E(v,' +V, FV+V),)
_1 i N i i

v, _.—2—(v3 +v, +vg +Vy))
_1 i i i i

v, —E(V5 +Vvg +vy +v),)

(3.4)

Z,i, =504 v ) =)
N 1 i i i i
Zj, = ?2-(v6 -V +Vy =Vy,)
. I i i i i
Z,j, = '2‘("1 —Vv3 vy —wp,)
Substituting the values for the voltages and currents (3.4) in equation (3.3), we end with

the relationship between the reflected voltages in the different branches and the incident

voltages:
v =0.5[v§+v§+v§-—v{,] v; =O.S[vg+v§+v{0—v;J
v = O.5[v{+vé-+—v,’2 —v{o] vy =O.5[v§ + V) + v, —v;']

ro_ i i i i ro_. i i i
V, = 0.5 v+, + v —V, Vg —0-5[") + YtV vé]

3. 5)

v£=0.5[v§+v§+v{l—v;] Vo = 0.5[Vf +v; + v, = v}
Vs = O.S[v",' +V+ Vg - v,‘,] v, = O.5[vj + Vg + v, — v
i

]
]
]

v = O.S[vé + Vi + V) -—v;] v, = O.5[v; +Vy Y, =V,
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In a matrix form, the previous equation defines the scattering procedure in free space.

The scattering matrix that relates the reflected and incident voltages is the same as that

obtained by Johns [25].

Lumped element networks or sources are used to model the medium. These
networks are connected to the node by a transmission line of characteristic impedance
equal to the driving point impedance of the node (¥ =4Y, or Z = 4Z,) [43]. The incident
and reflected voltages from these networks are related to the voltages across the shunt

nodes and the currents in the series nodes:
I i s r i
vx - vex + vcx 4ZaIx - (vm.\' - vmx)
j . r i
v, = v‘fy + v:,y 4Z“ly =Voy — Vi) 3.6)

— o’ i s roo_ ot
=V, + Ve 4Zol: - (Vm: vm:)

Vins Vows Ve and vy, (n=x,y,z) are the incident and reflected voltages from the lumped
element networks (sources) connected to the shunt and series nodes respectively. The
voltages across the shunt nodes v, and the currents in the series nodes i, (n=x,y,z) are

modified in the presence of the nodal sources and given by:

1 i i i i i . l i i i i i
vx =Z(vi +V2 +v9 +v12)+vex Zalx =Z(v4 "vs +V7 "Vs —vmx

v, =Z(v; +v v A+, Z0, =— (v -V, + vy =) ~V,,) G.7)

i i i i i
W —vs+v, =y, —v,.)

1. . ‘ .
v, =Z(v; + Vg +V, +v{°)+v:,: Zj =

This is the same as equation (3.4) but in this case the voltages incident from the

nodal sources are included. Substituting these values of voltages and currents in equation
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(3.3), we obtain the relationship between the reflected voltages in the different branches

and the incident voltages from the branches and nodal sources:

1 ‘ . 1,
v/ =Z[v; +Vy Yy — V| —-2v{2]+v,;r +Zv,',,z

1 ; ; l
¥ i i i
4 =Z[vl +Vg + V), =V, — 2V, ]+v, ,,,y
r, . .
v§=z v,+v;+vg—v,‘2—2vl]+v 4 V-
vr _l[ i+ i + i _2 /] 1 i
4573 Vi+Vs+vy — v+ v, +4vmx
r_ 1[,- i ] 1,
Vs —'4_v4+v6+v|o vy |+, —vax
ro_ 1[i+ iy 9 ] 1
Ve =7 vy +Vs + v, - vy =2, +v‘,-+4v
ro__ 1[ i + i+ i 2 ] 1 i
Vi =7 Ve TV T Vi ~ VstV +vax
v’ _l[ Lyl 4 ]+ 1,
853 V3 +V; V) — Vg — Ve _va.:
—_1_.[ ~2 i] i 1 i
V =~lv +Vlo +V|2 V6 2 +vux+_vmy
4 4
ro_ 1[ v+ -2 i] I
Vio “Z vy vy — Ve |t Ve _vay
1 ; ; 1 (3.8
vii =gl vg vl - .'—2v;]+v:.y+;v;,,
r _l[/_’_ + i_2 i]+ i _1 i
Vi = 42 v+ V), — Vit Ve va:

To obtain the reflected voltages at the sources we use equations (3.6) and (3.7), in

which case we obtain:

Vo =g WAV Ve V) v = (V- v+ - %)
Vo =703Vt v+ V) vy, = =2 + V5~ Vo) (3.9)
Ve = (5 VeV H V) v = (] =V Y - V)

The last two equations can be written in a matrix form as:
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[v'1=[SI[v']+[TIlv,]

(3. 10)
vil=[xllv]
In this equation t denotes the transpose and the vectors v ; and v! are given by:
Vi = v, el v v, ]
(3.11)

ryt _ |,,r r r r r r
[vs ] - [vux Ve Vex 4vmx 4vmy 4vm: ]

The scattering matrix S is given by:

[0 1 1 0 0 0 0 0 1 0 -1 =2
1 o o0 o0 o0 1 0 0 -2 -1 0 1
1 0 0 1 o o0 o0 1 0 0 -2 -1
0o o0 1 0 1 0 -1 -2 0 0 1 0
o 0 0 1 0 1 -2 -1 0 1 0 0
[s]=l o0 1 0 0 1 0 1 0 -1 -2 0 0
400 0o o0 -1 -2 1 0 1 0 1 0 0
o 0 1 -2 -1t 0 1 0 0 0 1 0
1 -2 0 0 o0 -1 0 0 0 1 0 1
0 -1 0 0 1 -2 1 0 1 0 0 0
-1 0 -2 1 0o o o0 1 0 0 0 1
-2 1 -1 0 0 0 o0 o0 1 o 1 0]
(3.12)

The matrix T is given by:
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T 0 o 0o o0 1
1 0 0 0 -1 0
01 0 0 0 -1
01 0 1 0 o0
0 0 1 -1 0 O
[T]=~I~ 0 0 1 0 1 0
40 01 1 o0 0
01 0 -1 0 O
1 0 0 0 1 0
0 0 1 0 -1 0
0 1. 0 0 0 1
1 0 0 0 o0 - (3-13)

Knowing the incident voltages from sources (as will be shown in this chapter) and

different branches, we can obtain the reflected voltages and hence the incident voltages at

the next time-step.

3.3 Electrical Properties of Biological Tissue:

Dispersive materials are those materials whose electrical properties are frequency

dependent. These electrical properties are namely the dielectric permittivity relative to
free space & and conductivity . For biological tissue, both properties change strongly
with frequency. As a matter of fact, as the frequency increases from a few hertz to
gigahertz, the dielectric constant &. decreases from several million to only a few units.

This manifests the inability of the charges in the tissue to respond to the higher

frequencies of the applied fields, thus resulting in lower permittivity values.
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Concurrently, for the same increase in frequency, the conductivity o increases from a few
millimhos per centimeter to nearly a thousand [47]. Fig. 3.4 shows the variation of the

dielectric properties of muscle with frequency.

Muscle (Transverse Fiber)
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Fig. 3.4 Variation of the dielectric properties of muscle with the frequency [47].

The conductivity o and the dielectric permittivity & of a medium can be
combined together to form the complex permittivity constant which is a frequency

dependent quantity and defined as:

or & =¢&—j&" (3.14)

£ =¢-j
e,

31




&* can be expressed in terms of rational functions. The most popular rational functions
that have been used are first order Debye approximation equation, the second order

Debye approximation equation and Lorentz equation.

3.3.1 First order Debye Approximation Equation:

The complex dielectric permittivity constant of biological tissue can be expressed

as a first order Debye equation:

£ (@) =¢, +or %o (3.15)
1+ jor

where &, is the permittivity at infinite frequency, ¢, is the zero or static permittivity and

7 is the relaxation time constant.

3.3.2 Second Order Debye Approximation Equation:

The complex dielectric permittivity constant of biological tissue can be expressed

as a second order Debye equation:

g'(w) =g, + €41 '-aeo + €2 ‘.—&'w (3. 16)
1+ jor, 1+ jor,

where &, is the permittivity at infinite frequency, &, =¢,, +¢&,, —¢&,, is the zero or static

permittivity and 7, and 7, are the relaxation time constants.
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3.3.3 Lorentz Equation:

The complex dielectric permittivity constant can be expressed in terms of the

Lorentz equation:

2

. _ \ @,
e (w=¢c_ +e, —¢ 3.17
@)=¢, +(¢, ) (3.17)

where ¢, is the permittivity at infinite frequency, ¢, is the zero or static permittivity ,

@, is the resonant angular frequency and & is the damping constant.

3.4 Modeling of Dispersive Media in FDTD:

Modeling of dispersive materials has been widely studied using finite differece
time domain (FDTD). Two main approaches have been taken to develop frequency
dependent finite difference time domain (FD)’TD method. The first one utilizes the use
of recursive convolution (RC) to develop frequency dispersive RC FDTD method. The
second approach utilizes the use of auxiliery differential equation (ADE).

In 1990, Luebbers et al published the first frequency dependent FDTD
formulation [48] by using a recursive convolution (RC) scheme to model dispersive
media. In this formulation, the complex permittivity is converted from the frequency
domain to the time domain. It is then convolved with the time domain electric fields to
obtain time domain fields for dispersive materials. This discrete time domain convolution
has to be updated recursively for some rational forms of the complex permittivity.

Independently, in 1991 Bui et al [49] also developed a RC FDTD model for modeling
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dispersive media. In both cases, the medium was modeled using a first order Debye
approximation equation and was tested with one and two-dimensional problems.
Luebbers et al [50] modified and generalized the frequency dependent RC formulation to
handle wave propagation in any dispersive media as long as the frequency domain
permittivity can be expressed as a ratio of two polynomials [51]. The main disadvantage
is that the calculation time is approximately twice that of nondispersive lossy dielectric
FDTD calculation. Much work have been done by other research groups to improve the
RC approach with regards to its accuracy and efficiency. Applications of the FDTD RC
method include Sullivan's modeling of 3-D biological problems [52].

While Luebbers and others were developing the frequency dispersive RC FDTD
method, several other researchers were developing an alternate frequency dispersive
method termed the auxiliary differential equation (ADE) method. The first papers
utilizing this approach were by Kashiwa et al [S3]-[55] for Debye media, Lorentz media,
and media obeying the Cole-Cole Circular Arc law, respectively. While this research was
progressing, Joseph et al [56] independently developed a similar ADE model for Debye
media. Goorjian and Taflove [57] soon extended this model to include effects for
nonlinear dispersive media. Independently, a third research group headed by Gandhi
proposed the ADE method for treating general dispersive media [58]-[60]. In this
method, a differential equation relating the flux density and the electric field together
with the complex permittivity has to be formulated. This equation is then solved
simultaneously with the standard FDTD equations. This method has been tested with one
and three-dimensional problems. First and second order Debye approximation have been

used to model the complex dielectric permittivity of biological tissue. Originally, the
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disadvantage of the ADE approach was that it required a large amount of storage.

However, further research has shown how to reduce this storage requirement.

3.5 Modeling of Second Order Debye Dielectrics in TLM:

Using a pulse excitation in the TLM generates results for a wide band of
frequencies from a single computer run via Fourier transformation. Yet, the requirement
that the material properties have to be kept constant limit the accuracy of the results
obtained via a single run. This is only the case for frequency dependent or dispersive
materials. To overcome this problem in the basic TLM method, several computer runs
have to be carried out for narrow frequency bands. Dispersive materials whose frequency
dependence can be expressed in terms of first order Debye equation have been
successfully modeled in the TLM [38], [40]. In this section, we show how to model a

dispersive material that can be expressed as a second order Debye equation in the TLM
method [61].

The conductivity o and the dielectric permittivity & of a medium can be

combined together to form the complex permittivity which is a frequency dependent

quantity as shown by equation (3.14). For a dispersive dielectric medium the frequency

domain permittivity & (@) can be modeled using second order Debye equation:

gsl_eeo +€s2—€m (3. 18)
I+ jor, 1+ jor,

g (@)=¢,+

where &, is the permittivity at infinite frequency, &, =&, + &, — &, is the zero or

static permittivity and 7|, and 7, are the relaxation time constants.
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Equation (3.18) could be separated into its real and imaginary parts, giving the

following equations for the dielectric permittivity and conductivity:

’ € — &y o —E&,
=g + 3.19
1+ (wr,)*  1+(wr,)? 3. 19)

" 8.cl —geo 8.\'2 _gae
" =(wr,)—2—"=_ 4 (w7,)—2 "= 3.20
( l)1+(a)z',)2 ( 2)l+(corz)2 ( )

The second order Debye equation (3.18) can be modeled by the RC circuit

shown in Fig. 3.5. The capacitances and resistances of the circuit model are defined in

terms of the second order Debye equation parameters as:
R, =117, 1201, T, + £,,T) —6,(7) +7,))
R, =7,7,/C,CiR,

C, =2At(s, —1) (3.21)

C. = 2AH£,T, + €57, — E,(T, + T, ))2
, =
(64T +£,,7, =&, (T, + 1))z, +7,) — 7,7, (6, — €,,)

C, =2Mt(e, —¢,)-C,

Details of the derivation is given in Appendix (A).
Circuit theory may then be used to solve the above circuit to obtain the state

equations [45] that describe it. At node 1 the current / incident from the node is:

dv v—-v
j=C, —+——L 3.22
THU TR, ©.22)

36



Fig. 3.5. Circuit model for second order Debye dielectric.

From the transmission line theory this current is given by:
=Y =v)=Y@ —-(v=v")=¥(2v -v) (3.23)

where Y is the admittance of the link line connecting the circuit to the node and is
specified to be 4Y, as mentioned before. v is the reflected voltage from the node to the

source and V' is the incident voltage from the source. At nodes 2 and 3, the following

relations exist:

v=v _dl_‘_v, -V, G.24)
R, Ydr R,

v, =V, dv,
= 3.25
R, Pt (3.23)

Rewriting the above equations and combining (3.22) and (3.23):

37



dv [—Y 1 ] 1 27,
R
| 1

d | C RC C, C,
v __1 vo| ! v, + 1 v, (3. 26)
d RC, RC, R,C, R,C,
dv, __1 v — 1 v,

d RC, ' R,C,

The above equations can be written in a matrix form as:

%[vn 1=[Al[v,]+[BI[V,,]

(3.27)
[vi,1=ICllv,]1+[D]{v.,]
where;
F . -
_ (L;J 1 0 LY
I RICI RlCl 1
1 1 1 1
Al= - + B]=| 0
[ ] RlCZ [RICZ RZCZJ RECZ [ ]
(3.28)
0 L - 0
L chs R2C3_ L .

[C1=f o o] [D]=[-1]

where n=x,y and z, v;, are the reflected voltages from the node to the sources, v are

the incident voltages from the sources and Vv is a vector formed of the node voltage and

the two auxiliary voltages.
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Equation (3.27) is discretized using the approximate trapezoidal scheme for

numerical integration [46], in which:

' J' f(x)cbc = f(xi) -;f(xi“)(Ax) (3 29)

Xj

Equation (3.27) is then solved at each time step to obtain the incident voltages from the

sources and hence, the reflected voltages at the different ports of the node.

A Y At
(m-Z1a1) (m+Z1a1) v o+
[v,(t+AN]= .
([I] - %—t[A]J %[B]([v;,, (t +AD]+[VE ())) (3. 30)
[Vea (t + AN] =[C][v, (z + AN] +[DI[ve, (¢ + Ar)]
Three sets of matrix equations in the form of (3.30) have to be solved to obtain vy, vy and

v, and hence v' , vi and vi that are used in the scattering procedure. A schematic
ex ey ez gp

diagram outlining the steps followed in the implementation of the TLM algorithm taking

into consideration the dispersive nature of the medium is shown in Fig. 3.6.
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Read input data
Mesh size & discretization, geometry material

specifications, time step and required output.

v

Impose initial conditions

v

Implement sources

Apply the time-domain excitation

v

Knowing the initial incident field, calculate the
reflected voltages from the node to the sources.
Equation (3.9)

v

Calculate the node voltages and hence the

incident voltages from the sources.

Equation (3.27)

v

Apply the scattering procedure defined

by equation (3.10)

v

Transfer reflected pulses to incident pulses on

adjacent nodes.

Equation (2.4)

v

Perform partial Fourier transforms at output points.

—

4
Output results

Fig. 3.6 Schematic of the dispersive TLM algorithm.
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3.6 Numerical Simulations and Results:

Electromagnetic scattering and absorption by human tissue are being widely
studied. Numerical techniques such as the Finite Difference Time Domain (FDTD)
method and the transmission line matrix (TLM) method have been found to be highly
versatile in calculating the specific absorption rate (SAR) distribution resulting from
exposure to electromagnetic waves. A weakness in the conventional form of these
techniques is that the dispersion of the tissues’ dielectric properties is ignored and
frequency independent properties are assumed.

In this section, the application of the symmetric condensed node transmission line
matrix method (SCN TLM) to three-dimensional scattering from biological tissue is
investigated. A second order Debye equation of the complex permittivity in the frequency
domain is used in a modified TLM technique to simulate the dispersive nature of
biological tissue. Some of the results of the numerical simulations are compared to those
obtained analytically using Mie series [59], [62] or to those obtained using the stub-
loaded or nondispersive TLM method.

All simulations are carried out for an incident plane wave with a Gaussian pulse

excitation. To ensure the stability of the solution in all simulations, the time step At is

given by £ oy where £ is the cell size and v is the maximum velocity of the
electromagnetic wave encountered anywhere in the modeled space, which includes the
dielectric body and the surroundings. This is same as the constraint set by Taflove for

stability in the FDTD. For our simulations v = ¢, which is the velocity of the electro-

magnetic waves in air. The stability of the modified TLM is discussed in [63].
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The accuracy of the scattering procedure of the modified TLM technique is first
established by comparing the near field data obtained for simulating the test case of a 2/3
muscle-equivalent sphere with the analytical Mie series solution. The second order Debye

equation for the 2/3 muscle-equivalent in the frequency range 20MHz to 20GHz is [59]:

10000 42
- -+ - -5 3.31)
1+ jo(0.113x107) 1+ jw(0.119%x107")

&' (w)=19+

The diameter of the sphere is 20cm corresponding to the average dimensions of the
human head. The sphere is divided into cells of size lem. Six cells are taken from the
boundaries of the sphere to the absorbing boundaries in the x-, y-, and z-directions. The
=(1=1,)*17*

time step ¢t is taken to be 1/60 ns. The Gaussian pulse is of the form 1000e where

t, = 2100t and T = 804t. The incident pulse is polarized in the z-direction and propagating
in the y-direction. Fig. 3.7 shows the results obtained using the analytical Mie series

solution and the dispersive TLM at 100MHz for the total field E; along the y-axis through

0.14
e Modified TLM
0.12 o ) .
° \ —— Analytical solution
0.1 -o-
. \
0.08 L

EAnormalized)
o
3

RN &
Pl

|
|

o

-9.5 7.5 -5.6 -3.5 -1.8 0.5 2.5 4,5 6.5 8.5

Fig. 3.7. E; calculated by the modified TLM and the Mie series
analytical solution at 100 MHz.
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the center of the sphere. The computed resuit is normalised to the value of the incident
field at 100MHz. As shown the results are in a reasonable good agreement.

To further investigate the accuracy of the technique in handling high contrast
dielectric bodies, the near field distribution in a layered dielectric sphere is obtained using

the analytical Mie series [62] and the dispersive TLM methods. The sphere has two

0.9
we,

and

layers with radii a; = 7.5cm and a; = 15cm and permittivities &, =72- j

&=75-j 0.5 . The equivalent second order Debye approximations that are used by the

wE,
dispersive TLM are:
&’ (@) = 50.8+ . 11417.67 4 . 18.9343 ~
1+ jw(0.113x10°) 1+ jw(0.119%x107")
(3.31)
£, (0)=58+ 637.3 1.57356

. -6 + . -10
1+ j@(0.113x10%) ~ 1+ a(0.119x10™)

The plane wave is propagating in the z-direction and polarized in the x-direction.
The space is 54x54x54, the cell size is .9375cm, &=0.156358ps and the Gaussian pulse
has t;=2106t and T=804r. 11 cells were taken to the absorbing boundary in each direction.
Fig. 3.8 shows the results obtained using the analytical Mie series solution and the
dispersive TLM at 100MHz for E, along the z-axis through the center of the sphere. As
shown the numerical result agrees well with the analytical result. For the last two

simulations, the Mie series solutions were obtained from [59] and [62], respectively.
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Fig. 3.8 E, calculated by the modified TLM and the Mie series analytical

solution at 100 MHz along the z-axis of a two layered sphere.

The next simulation involved the use of a 10 x10x10¢cm cube filled with bone

(weak scatter). The TLM mesh is formed of 50x50x50 nodes. Thus,
At =8.339 ps for & =5 mm. The Gaussian pulse is of the form 1000e™“"*)"'"" where f, =

906t and T = 605t. The plane wave is propagating in the z-direction and polarized in the
x-direction. The time domain near field data are obtained. Fast Fourier transformation
[37] is then used to generate the frequency domain near field data and hence the specific
absorption rate (SAR). SAR is a measure of the amount of energy absorbed by the tissue
following irradiation by electromagnetic waves. This value is directly related to the

various components of the field inside the body:

SAR = 0.55)|E[* (3.32)
P
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The density p is assumed constant and equals to that of water although this is an
approximate value especially for bone. Assuming 2 nondispersive nature of the tissue, the
equivalent dielectric permittivity and the loss tangent of the tissue are obtained at
100MHz as the real and imaginary parts of the second order Debye equation,
respectively. These values are further used to obtain the SAR distribution using the stub-
loaded or the nondispersive TLM method at various frequencies. As shown in Fig. 3.9,
the results obtained from the modified TLM and the stub-loaded TLM techniques agree
very well at 100MHz but they are different at 300M/Hz and S00MHz. The difference in the
distributions obtained from both techniques is due mainly to neglecting the effect of the
dispersive nature of the tissue in the stub-loaded TLM. Also, the difference in the SAR
distributions at 500M/Hz is larger than at 300MHz, this is because as the frequency
increases, the difference between the values used and the actual values of the dielectric
permittivity and loss tangent increases.

In the following simulation the bone is replaced with brain and nerve tissue

(strong scatter). The cell size  and time step At are the same as before and satisfying the
o, z’(,ﬂ' . . . . .
condition that < To " The specifications of the incident pulse were not changed. Fig.

3.10 compares the results at 100MHz, 300MHz and 500MHz. The two simulated results
are almost identical at 300MHz, the frequency at which the equivalent values for

permittivity and loss tangent of the tissue are used by the nondispersive TLM.
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Fig. 3.9 SAR obtained from modified 7LM and nondispersive LM in the center of

the cube along the y-axis for the case of a weak scatterer (bone).
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Fig. 3.10 SAR obtained from modified 7LA and nondispersive TLM in the center
of the cube along the y-axis for the case of a strong scatterer (brain &

nerve tissue).
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In the following numerical simulation, the method is applied to a geometrically
complex inhomogeneous second order Debye dielectric body. A rough model of the
human head [64] is used. The head is divided into five layers and 209 cells,
2x2x2cmeach. Fig. 3.11 shows the consecutive layers constituting the head and
different kinds of tissue involved. The TLM mesh is formed of 50x 50 x50 nodes with
At = 0.0334ns. Fig. 3.12 shows the SAR distribution at different layers of the head at

300M/Hz. As shown the SAR distribution is different in each layer because of the

First & fifth laver Second & fourth layer

Third laver

Skin
Bone
Brain
Eye

Fig. 3.11 Five different layers forming the human head.
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interaction of the electromagnetic waves with the different kinds of tissue involved. The
amount of energy absorbed by bone tissue is very small compared to that absorbed by the
other kinds of tissue. This follows directly from the dielectric properties of the bone
tissue. Using the real and imaginary parts of the second order Debye equation to obtain
the permittivity and loss tangent at 300MHz for the brain, eye and skin tissue, shows that
the three kinds of tissue have almost the same dielectric properties at 300AdHz. This

explains why the absorption in these tissues is approximately the same.
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Fig. 3.12 SAR distribution in the five layers forming the head at 300 MHz.
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The next simulation involves a refined model of the human head based on the
model in [65]. The head is divided into 24 layers and 24552 cells each of dimension
7x7x7 mm . Five kinds of tissue are involved: bone, skin/fat, muscle, brain and eye. Fig.
3.13 shows a section through the middle of the head. The TLM mesh is formed of
50x 50 x50 nodes with At = 0.01167»s. The Guassian pulse had t,=508 and T=206¢ and
at least 9 cells were taken to the boundary. The incident wave was propagating in the z
direction and polarized in the x direction. Fig. 3.14 shows the SAR distribution at three
different layers through the head obtained using the modified TLM at 300MHz. From the

plot, it is apparent that more energy in deposited to the brain and muscle tissue.

EEBARERE

1l

Fig. 3.13 Section through the middle of the head.
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Fig. 3.14 SAR (W/kg) distribution in three layers of the head at 300MHz.
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The last simulation involves a much finer model of the human head based on the model
used in the previous simulation. The cell size in this model is 3.5x3.5x3.5 mm . So the
location of each cell in the previous model is now occupied by 8 cells. The total number
of cells is 196416. Five kinds of tissue are involved: bone, skin/fat, muscle, brain and
eye. The TLM mesh is formed of 100x100x100 nodes with At = 5.83737 ps. The
incident wave was propagating in the z direction and polarized in the x direction and the
Gaussian pulse had t,=1006¢ and T=404%.

The number of iterations is twice that used in the previous simulation, thus
making the simulation time the same. Fig. 3.15 shows the SAR distribution at three
different layers through the head obtained using the modified TLM at 300MHz. These
three layers are at the same position as those used in the previous example. Yet, each
layer in the previous simulation is occupied by two layers in that simulation. Comparing
Fig. 3.14 and Fig. 3.15, shows that although the values of the SAR distribution are
different in both figures, the absorption pattern is the same. The maximum SAR values
occur at the same locations. The difference in the SAR distribution values is due mainly
to the resolution used.

To better compare the results of the two simulations, Fig. 3.16 shows the SAR
distribution of a layer obtained using cell size = 7mm and the SAR distribution of the two
equivalent layers obtained using cell size = 3.5mm. In this figure, the SAR values of the
two equivalent layers are averaged at each cell to form a single layer. As shown in Fig.
3.16, after averaging, the difference in the SAR distribution obtained from both

simulations became much less. The average value of the SAR distribution of the first
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layer (a), in Fig. 3.16, is 0.003808 W/kg. While for the second layer (b), the average value

of the SAR distribution is 0.003658 W/kg.

The parameters of the second order Debye equation for the tissue involved in the
simulations are obtained using [60], [47] and [66] and given in Table 3.1. These

parameters fit the actual data in the range 0.1MHz to 1.1GHz.

Table 3.1: Debye constants for tissues 7, =46.25ns and 7, =0.307 ns.

Tissue £, £, £,
Bone 5.8 312.8 7.11
Brain/Nerve 48.1 2064. 56.86
Muscle 52.01 3948. 59.09
Skin 43.8 3399. 55.59
Eye 50.8 2191. 56.99
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Fig. 3.15 SAR (W/kg) distribution in three layers of the head at 300MHz.
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Fig. 3.16 SAR (W/kg) distribution at 300MHz in (a) layer of the head with cell size

7mm and (b) equivalent layer with cell size 3.5mm.
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3.7 Conclusion:

In this chapter, we presented a review of the symmetric condensed node SCN
TLM method. The scattering procedure for free space propagation is first presented. The
dispersive nature of biological tissue is reviewed. The most common approximations that
are used to model the complex permitiivity are given. A quick review of modeling
dispersive materials in the FDTD method is then provided. The modeling of frequency
dependent or dispersive materials in TLM method is then discussed, Sources or lumped
element networks are employed in the modeling of frequency dependent materials. These
networks or sources are connected to the node using transmission lines of characteristic
admittance equals to the driving admittance of the node. These equivalent soﬁrces are
calculated at each time step and included in the scattering procedure of the TLM. The
circuit model that can be used to model second order Debye dielectrics is given. The
necessary modifications to the scattering process in order to account for the dispersive
nature of the medium are pointed out.

Several numerical simulations are then carried out to check the validity and
accuracy of the modified TLM technique for dispersive homogeneous and
nonhomogeneous dielectric bodies. The modified TLM technique is then applied to
nonhomogeneous and geometrically complex dispersive body, which is the human head.
Three models of the head are used a simplified model of 209 coarse cells, a refined model
of 24552 cells and a much refined model of 196416 cells. The near field data and the
SAR distribution obtained from the modified TLM are compared to those obtained from

the stub-loaded or nondispersive SCN TLM method assuming a nondispersive nature of

biological tissue.
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CHAPTER 4

Reconstruction of Dielectric Bodies

4.1 Introduction:

The reconstruction of dielectric bodies using interrogating microwave and near
field scattered data has been widely considered in recent years. Because of the inherent
properties of microwave radiation, which can be used to detect objects, microwave
imaging has been of interest in various areas such as geophysical exploration, remote
sensing, nondestructive testing and medical imaging [67]-[70].

The interest in developing microwave-based techniques, when other powerful
imaging techniques are available, is mainly due to the nature of the interaction between
microwave radiation and the dielectric bodies, and the fact that different physical
parameters are visualized. Dielectric materials are modeled via their complex
permittivities that describe the nature of the propagation of microwave radiation within
dielectric bodies. These complex permittivities are directly related to the morphology,
blood flow, water content and temperature of the tissue, thus leading to a large dielectric
contrast among different biological tissues. In human soft tissue there is only a 2%

diversity in X-ray absorption, whereas the dielectric diversity of human soft tissue is very
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large. For example, the dielectric constant at microwave frequencies for fat is about 4 and
is approximately 80 for the cerebral fluid [70].

The fact that microwave imaging involves the use of non-ionizing, low power
radiation, and is thus less hazardous than other forms of radiation, makes continuous
monitoring of the human body potentially feasible. Since the dielectric constant is highly
related to the water content of the tissue, microwave imaging has an advantage over
ultrasound imaging in its ability to penetrate air and bone, and has been used to detect
cerebral edema [71] and pulmonary edema [72].

Unfortunately, research in microwave imaging is still in the preliminary stages,
basically because of the difficulties in developing adequate reconstruction algorithms.
These difficulties occur because microwaves do not travel in a straight line inside an
inhomogeneous dielectric object. This makes imaging techniques significantly more
complicated than linear-propagation based techniques that are used for X-rays. Based
upon this, reconstruction techniques are divided into two main categories. Those that
involve modification of the already available X-ray linear reconstruction algorithms,
usually referred to as spectral domain techniques [73]-[79], and others that are based on
electromagnetic inverse scattering and are referred to as spatial domain techniques [80]-
[102]. Other techniques involved the use of stochastic procedures such as the maximum
entropy [103] and simulated annealing [104], [105].

In the spectral domain approach, or microwave tomography, the body under
investigation is illuminated by a plane wave and the scattered field is measured using a
linear array of probes in a way similar to that used in diffraction tomography. Fast

Fourier transformation, is then used to obtain the spectrum of the scattered field, which is
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the main advantage of this approach. This spectrum contains information about the
dielectric properties of the body. By repeating the measurement for different directions of
incidence, the spectral domain can be filled and inverted to obtain the image of the body.
The main drawback of the spectral domain techniques is its limited validity for
reconstructing lossless, low contrast dielectric bodies and in the presence of weak
scatterers only.

In the spatial domain approach, the body is illuminated by an incident field and
the scattered field is measured and used to reconstruct the dielectric permittivity
distribution of the body. The aim is to solve the exact equation of the electromagnetic
inverse scattering problem by numerical methods such as the method of moments (MoM)
[3]. The problem is reduced to the solution of linear system of algebraic equations.
Unfortunately, the scattering matrix which governs the external scattered field induced by
internal equivalent currents is highly ill-conditioned. Thus any attempt to get its inverse
makes the system ill-posed. By ill-posedness, we refer to the Hadamard sense [106], in
which the existence, uniqueness and stability of the solution are not simultaneously
ensured. Another disadvantage of the inverse scattering approach is that sampling the
scattered field outside the body is very susceptible to noise. Because of the system ill-
posedness, the effect of this noise is very strong. Several regularization techniques have
been used [88], [95], [97], [101] aiming to reduce the effect of ill-conditioning. These
employ a priori information either to select a suitable regularization parameter or to
enforce convergence in iterative techniques. This process is normally combined with
multi-illumination techniques, in which several directions or angles of incidence are used,

aiming to decrease the effect of uncertainties in the measured scattered field.
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Most of the recent work involves two-dimensional problems. Three-dimensional
problems are usually more complex and reliable reconstructions are harder to obtain. In
this thesis, the unrelated illumination method which has been tested before with two-
dimensional bodies [107], [108], is extended to handle three-dimensional inhomogeneous
dielectric bodies. This method utilizes the method of moments (MoM) to discretize the
integral equation that relates the scattered field data and the complex permittivity. Yet, it
differs from other techniques in that the way of acquiring information helps overcoming
the ill-posedness nature of the problem. Numerical simulations are carried out to assess
the method and to test its robustness in the presence of measured data uncertainties. To
evaluate the method as a tool for medical imaging it is further tested with a model of the
human head [64], and a 180-cell model of the human body [109].

In this chapter, the basic mathematical formulation of the inverse scattering prob-
lem and the definitions of some of the often used terms in microwave imaging are

reviewed, together with discussion of some of the reconstruction techniques that have

been used earlier.

4.2 Integral Equation Formulation:

Consider an inhomogeneous dielectric body of arbitrary shape that is
characterized by a dielectric constant &(r) and an electric conductivity o(r), both
generally variable from point to point situated in a homogeneous medium with known
permittivity g,, as shown in Fig. 4.1. If an electromagnetic incident wave crosses this
body, a scattered field, which is related to the properties of the dielectric scatterer, is

produced. From the scattered field measurements, the location, the shape and complex
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permittivities of the body may be determined. The determination of the location and
shape of the scatterer is known as qualitative imaging, while quantitative imaging

involves the determination of the complex permittivity distribution within the scatterer.

L. measurement
incident field domain

RS, -

A y

Fig. 4.1 Geometry of the three-dimensional problem.

scatterers

The dielectric properties of the body ¥ in Fig. 4.1 can be expressed in terms of the

complex permittivity constant as:
e (r)=¢e'(r)-je'(r) 4.1)
where

£'(r)=¢,(r) and g”(r):wi 4.2)

0

If the body is illuminated by an incident plane wave, the induced current in the
body gives rise to a scattered field E’. This field may be accounted for by replacing the

body with an equivalent current density J,, given by:
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I, () =(o(r)+ jole(r)-&,DE(r) “4.3)
The first term in equation (4.3) is the conduction current density, while the second term is
the polarization current density. E(r) is the total electric field inside the body.

Using the equivalent current density, we can obtain the scattered fields by solving

Maxwell’s equations:
VXES = _ja)#H.\

4.4
VxH'=J, + joe E*

H" is the scattered magnetic field and y is the permeability, assumed that of free space

Ho. To eliminate H*, we take the curl of equation (4.4)

Vx VXEN = —ja)yl) ((V XHS) = “jwﬂo (J(fq +ja)g()Es) =‘_ja)#DJ8q +w2#0€0E5

4. 5)
Substituting for J., in equation (4.5) and rearranging:
VxVxE’' -w’ue B =—jou,(oc+ jole-¢,)E 4. 6)
Equation (4.6) can be further written as:
VxVxE*—k’E* =(k* ~k})E @a.7

where k =[a) \ﬁz,,eo(a, -J g )J and k, = (aJ ,uog,,) are the wave numbers inside and
e,

outside ¥, respectively.

63



The solution to equation (4.7) is given in terms of the magnetic vector potential

A:
E'=- jw[l +ki_,_vv -]A 4. 8)
where
A=y j G, (r,r"),, (rdv' 4.9
and
e—jk,.(r—r')
G,(r,r)=—— 4.10)
47z|r —r ]

is the free space scalar Green’s function. The operator VV:-A is defined as

VV-A =V(V-A). Assuming that J, is an infinitesimal elementary source at ' pointed
in the x direction so that:

J, =6(r~ra, 4.11)

Using equation (4.9), the magnetic vector potential A can be written as:

A=pu,G,(r,r)a, 4. 12)

If G, (r,r') is the electric field produced by the elementary source that is pointing in the

x direction, then G, (r,r") must satisfy:
VxVxG,(r,r)=k’G, (r,r)=—jou,d(rr" 4. 13)

with solution

G, (r,r=—jou, [l + —kl—z v -]Ga (r,r" “4.14)

0
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G, (r,r")is referred to as a free space vector Green’s function with a source pointing in
the x direction. Similarly, G, (r,7)and G, (r,r")correspond to infinitesimal,

elementary sources pointing in the y and z direction, respectively. The three vector

Green’s function can be combined together to form the free space dyadic Green’s

function:
G(r.r) =G, (r,r)a, +G, (r,r')a, +G,. (r,ra, (4. 15)
The free space dyadic Green’s function is the solution to the Dyadic differential equation:

VxVxG(r,r)~k2G(r,r) = I8(r,r") (4. 16)

where 7 denotes the unit dyad. _G_:(r,r’) is the electric field at a field point r due to an

infinitesimal source at r'.

Using the free space dyadic Green’s function E(r,r'), equation (4.7) can be

written as:

E'(") = [G(rr )k (") - 2)E()av' (4.17)

(k*(r)—k2) is usually referred to as the contrast or the object function O(r) and using

(4.1) and (4.2) O(r) can be written as:

O(r) = (kK () 2y = k2 (6, (") -1+ 20y = k2(s° (1) - 1) @. 18)
jwe

o

The treatment of the singularity in equation (4.17) is discussed in appendix B.

The total electric field E at an arbitrary point » can be expressed as:
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E(r)=E (r)+E"(r) 4. 19)

where Ei(r) is the incident field. Using (4.17) and substituting for the scattered field in

(4.19):
E(") = [G(r,r)O(r)E(r")dv' +E'(r) (4. 20)
Equations (4.17) and (4.20) are the basic integral equations for microwave imaging. Once

the scattered fields are measured by detectors at observation points, the complex

permittivity distribution of the unknown body can be reconstructed by solving these two

coupled integral equations.

4.2.1 Integral Equation with Equivalent Current Modeling:

Equations (4.17) and (4.19) can be linearized [110] by introducing an equivalent

current density Jeq(r)

1., (r)s;i—O(r)Ecr) @.21)

[

and the scattered field and total field can be written as:

E*(r) = ~jau, [G(r,r)J,, () 4.22)

E(r) = —jou, [G(r,r)J,, (r)dv' +E () (4. 23)

The reconstruction procedure can also be performed by solving the linear

equation (4.22) from the scattered field measurements to obtain the equivalent current
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distribution within the object. The total field inside the body can then be calculated using

equation (4.23). The object function or the permittivity distribution of the dielectric body

can then be predicted using equation (4.21).

4.2.2 Integral Equation with Born Approximation:

The Born approximation is a widely accepted approximation and usually applied
in microwave tomography. For low contrast inhomogeneous dielectric bodies, the
magnitude of the scattered field in the object is very small compared to that of the
incident field. Thus the scattered field inside the object can be neglected and the total

field can be approximated by the incident field. Based on this approximation, the

scattered field (4.17) can be written as:

E‘(r) = ﬁ (r,rYO("E (r)dv' (4. 24)

4.2.3 Integral Equation with Rytov Approximation:

The Rytov approximation is another approximation that is used in microwave
tomography. It is based on the fact that the change in the scattered phase over one

wavelength is small. The phase @ of the scattered field can be expressed as:

l = ’ [] i ’ ’
&) = T j G(r,r"YO(r"E' (r")dv (4.25)

It has been proven that the Born approximation produces a better estimate of the

scattered field for small sized objects with large deviations in the refractive index. On the
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other hand the Rytov approximation gives a more accurate estimate of the scattered field
for large sized objects with small deviations in the refractive index. The refractive index
is defined as the square root of the permittivity under the assumption that the

permeability of the body is that of free space.

4.3 Ill-posed Problems:

Many problems of mathematical physics can be formulated in terms of an

operator equation

Ax=y (4.26)

Typically, y denotes the system output, x denotes the unknown being sought and
A is the system operator. Given A and y, the objective is to determine X. According to the
Hadamard definitions [106], the problem is well-posed if the following conditions are
satisfied:

1) For each element y, there is a solution x: that is the existence condition.

2) The solution x is unique for a given y: that is the uniqueness condition.

3) For small perturbations in y there are small perturbations in x: that is the stability
condition.

The problem is said to be ill-posed if at least one of the above conditions is
violated. There are three main reasons that cause this ill-posedness, namely,
incompleteness of the input data, numerical errors in the input data and/or the nature of
the system operator A. In order to solve an ill-posed problem, special techniques have to

be employed to regularize the problem [111]. The solution to the regularized problem

68



will be well-behaved and will offer a reasonable approximation to the solution of the ill-
posed problem. In particular, an ill-posed problem may be regularized by:

a) changing the definition of what is meant by an acceptable solution,

b) changing the space to which the acceptable solution belongs,

c) revising the problem statement,

d) introducing regularization operators, and

e) using statistical techniques.

4.4 Previous Work:

In this section twelve microwave imaging methods proposed by various
researchers in recent years are briefly reviewed, together with a discussion of their
advantages and limitations. These are: the microwave tomography technique, the
psuedoinverse method with equivalent current modeling, the Born and distorted Born
iterative methods, a Newton type iterative method, an adaptive iterative algorithm,
Levenberg-Marquardt method, the conjugate gradient method, the hybrid element
method, the stochastic inversion method, the maximum entropy method, the simulated

annealing approach, and the time domain method.

4.4.1 Microwave Tomography:
This approach is based on the Fourier diffraction projection theorem. It has been
applied to cross-sectional or two-dimensional and three-dimensional imaging [73]-[79].

Conventional microwave tomography systems are based on illuminating the body by a set

of plane waves. For each illumination, the forward scattered field is sampled along a
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straight line, for the two-dimensional case, and on a plane for the three-dimensional case.
Either Born or Rytov approximations is applied, thus forcing the assumption that the
inhomogeneities in the body are weak scatterers. The Fourier transform of the forward
scattered field gives the values of the two-dimensional Fourier transform of the object
along a circular arc in the two-dimensional Fourier spectral domain. According to the
Fourier diffraction projection theorem, by illuminating the body from different directions
and repeating the same procedure the spectral domain can be filled with samples of the
body over an ensemble of circular arcs. Using Fourier inversion, the body can then be
reconstructed.

The main advantage of microwave tomography is using an existing efficient
numerical algorithm, which is the fast Fourier transform (FFT). This makes the speed of
the data processing fast enough to allow for real time imaging. However, microwave
tomography is subject to both mathematical and experimental limitations. The
mathematical limitations are imposed by Born and Rytov approximations. These
approximations are fundamental to the reconstruction process and limit the range of
objects that can be examined. The experimental limitations are due to the finite amount of

the collected data, which in turn limits the resolution of the permittivity distribution

reconstruction.

4.4.2 Psuedoinverse with Equivalent Current Modeling:

Ney et al [81] was the first to propose the method of psuedoinverse
transformation to microwave imaging. In this method the linearized integral equations,

via equivalent current modeling, are first transformed into matrix equations using the
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method of moments (MoM). The complex permittivities are then derived using the
following procedure: first the equivalent current distribution is obtained from the
measured scattered field, second this current distribution is used to obtain the total field.
Knowing the total field and the equivalent current, the object function is obtained and
thus the permittivity distribution. The first step involves the use of the psuedoinverse
transformation [82] to obtain the inverse of an ill-conditioned matrix. The psuedoinverse
transformation is a very powerful method in dealing with ill-conditioned matrix
equations. The solution obtained is a minimum norm least square solution. Coarsi et a/
[83]-[88] have further developed the method and applied it to two and three-dimensional
electromagnetic imaging problems. So far the method has been applied only to simple
geometries, with a small number of weakly scattering inhomogeneities. To obtain
acceptable results, especially in three-dimensional imaging problems, the method
employs the use of multi-illumination together with the constraint that the number of
measurement points is larger than the number of discretization cells.

As there are no iterations involved in this method, the computation time is small
compared to that of the iterative methods, which is the main advantage of the method. To
improve the quality of the reconstructed image, a priori information, regarding the
geometry and the dielectric properties, have been lately utilized in the reconstruction
process. Yet, the filtering effect inherent in this method limits the resolution of the

reconstruction especially for high noise levels in the measured scattered field.

4.4.3 Born and Distorted Born Iterative Methods:

Iterative methods with regularization in the space domain have become popular in
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recent years. Wang and Chew [89] proposed the Born iterative method in which the total

electric field and the distribution of the electric parameters are updated by solving the

direct and inverse problem separately in each iteration. The outline of the approach can
be summarized as follows:

(1) The linearized inverse scattering problem is solved using the Born approximation.

(2) The scattering problem is solved for the field in the object and at the measuring points
using the object function obtained in the first step.

(3) The calculated fields in step (2) are used to solve the inverse problem and obtain the
next order object function.

(4) Repeat step (2) comparing the scattered field at the observation points, obtained using
the reconstructed object function, with measured fields at the same observation
points. When the difference is acceptable, the iteration terminates.

It should be noted that the Green’s function remains unchanged during the
iteration procedure (only the field in the scatterer is updated). One immediate extension
of this method is to update the Green’s function in each iteration together with the field in
the scatterer. This is known as the distorted Born iterative method [90]. The outline of
this method is almost the same as that of the Born iterative method, except that in the
second step an updated Green’s function should be calculated using the last reconstructed
permittivity distribution. Both methods have been tested with two-dimensional objects
only.

The results obtained using these two methods show that, for noiseless cases, the
distorted Born iterative method is superior to the Born iterative method because of its

faster convergent speed. While for noisy cases, the Born iterative method is more robust
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than the distorted Born iterative method. Also, it was shown [112] that the Born iterative

method can handle electrically large scatterers with low permittivity contrast.

4.4.4 The Newton Iterative Methods:

Joachimowicz et al [91] proposed a Newton iterative method to construct the
complex dielectric permittivity distribution. In this method, the integral equations are first
transformed into matrix equations using the method of moments (MoM). Then an
iterative procedure is developed as follows:

(1) Starting from an initial guess of the permittivity distribution and hence the object
function, the total field inside the body is calculated.

(2) The forward scattering problem is then solved for the field at the measuring points.

(3) The error between the scattered field computed in (2) and the measured field
(obtained through solving the forward scattering problem using the exact permittivity
distribution) is calculated

(4) The first order estimation of the object function error is obtained and the object
function is updated using this error

The iterations go on until the error in the calculated scattered field is acceptable.
In this procedure, step (4) involves obtaining the inverse of an ill-conditioned matrix, so
standard Tikhonov regularization [92] is used to stabilize the results. Yet, the
regularization factor used in this process involves a parameter that can only be
determined empirically.

The main advantage of this techniques is its flexibility in considering a priori

information. It provides quantitative imaging even with strong diffraction effects.
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However, it requires the use of a multi-illumination technique in order to obtain accurate

reconstructions. Also, the required computational time is extensive.

4.4.5 An Adaptive Iterative Algorithm:

Liu ez al [93], [94] proposed an adaptive algorithm that optimizes the iterative
process by using, selectively, a different iterative technique for each iteration. The
iterative techniques involved are the Born iterative technique and the Newton iterative
technique. A decreasing ratio of error in the scattered field is used as a criterion for
selecting a more suitable technique for each iteration. This algorithm requires the use of
multi-view illumination and Tikhonov regularization. It has been applied successfully to

two-dimensional objects in the presence of noise in the measured field data.

4.4.6 Levenberg-Marquardt Method:

This method has been proposed lately by Franchois et al/ [95] to obtain a
quantitative reconstruction of the complex dielectric property distribution of biological
objects. The method is a modification of the Gauss-Newton iterative method and is
equivalent to the distorted Born iterative method. The method of moments is applied to
discretize the nonlinear integral equation relating the scattered field data and the complex
permittivity. The resulting system of nonlinear equations is linearized in each iteration,
regularized, via Tikhonov regularization, and then solved for an updating correction of
the complex permittivity in the iterative procedure. The regularization parameter used can
either be obtained empirically, or using a generalized cross validation (GCV) method. In

fact, this method is very similar to Newton iterative method and its main modification
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and advantage is using the GCV method to get the regularization parameter.

The Levenberg-Marquardt method requires the use of multi-view illumination and
imposes a priori bounds on the complex permittivity in order to accelerate the
convergence. The method has only been applied to two-dimensional objects immersed in
water. The use of the generalized cross validation method for choosing the regularization
parameter has proven to be successful in the case of weak homogeneous scatterers and
strong homogeneous scatterers with an initial guess in the neighborhood of the solution.

For strongly scattering inhomogeneities, the reconstruction is of lesser quality.

4.4.7 The Conjugate Gradient Method:

The conjugate gradient method was discussed in [97] as a tool to handle ill-posed
matrix equations resulting from the method of moments. This iterative method is similar
to the steepest descent method which involves the search for the minimum of a function
in a direction suggested by its negative gradient. It starts with an initial guess that
generates the first residual vector and the direction vector. Then, the system is solved
iteratively. The conjugate gradient method has the advantage of having a rate of
convergence practically insensitive to the initial guess, although a good initial guess
reduces the number of iterations. The method has been applied to two and three-

dimensional microwave imaging problems [97]-[98], and good reconstructions were

obtained.

4.4.8 The Hybrid Element Method:

Meaney et al [99] proposed this method for two-dimensional image
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reconstruction problems. The used computational methodology is a hybrid coupling of
the finite element and the boundary element methods. In calculating the electric fields
from the current estimates of the electrical properties, it seeks to take advantage of the
strong points of the finite element method in the regions where the electrical properties
are inhomogeneous or not known. It also utilizes the strengths of the boundary element
method in the regions where the medium is homogeneous, unbounded in nature and the
electrical properties are known. Coupling of these two methods occurs only at the
boundary of the inhomogeneous dielectric object. The method employs a Newton
iterative procedure together with multi-view excitation for image reconstruction. The
reconstruction technique is very similar to that used by Joachimowicz et al [91]. The
regularization employed is a blending of both Tikhonov and Marquardt approaches with
regularization coefficients being determined empirically. One of the advantages of this
method is the ability to use nonuniform meshing to handle available a priori information.
The results obtained show that it operates best for smaller objects with low contrast. For

the case of large objects and, or steep gradients, the method provides only qualitative

images.

4.4.9 Stochastic Inversion Method:

The stochastic treatment of ill-posed problems has been successfully used in
image processing and recognition techniques and seismology studies. Qin es a/ [100]
applied the stochastic inversion of matrices to microwave imaging of two-dimensional
dielectric bodies. The method requires an initial accurate guess, as inappropriate guesses

can cause the algorithm to be slowly convergent or even divergent. The reconstruction
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process can be summarized in the following steps. The linearized integral equation is
discretized using the method of moments. The next step is to use the Tikhonov
regularization to solve the inverse problem, the solution obtained is used as a priori data.
Finally, using this a priori data, the stochastic inverse is applied to compute the
equivalent current distribution within the body and hence the complex permittivity
distribution.

The main advantage of this method is that it requires less computation time
compared to other iterative techniques. Also, various criteria for choosing the
regularization parameter [101], [102] were proposed. Single-view illumination yields
accurate reconstruction only for simple objects with very small inhomogeneities. As the

number of inhomogeneities increases, this requires the use of multi-view illumination.

4.4.10 The maximum Entropy Method:

Baribaud [103] applied the maximum entropy method to two-dimensional
microwave imaging problems. The method, which belongs to stochastic techniques, is
based on the information theory approach. It demands that one chooses from the available
data the solution which uses the maximum information from the available data. In this
method, the method of moments is used to discretize the integral field equation. The
entropy is defined in terms of the current density distribution. The aim of the method is to
maximize the difference between the entropy and the Gaussian and excess noise. The
problem of maximization has no explicit solution and has to be solved iteratively. The
image obtained using this method uses more of the available data and is a regularized

solution. Also, the effect of the noise can be easily included in this method. Yet, the main
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drawback is that although the method has only been applied to simple two-dimensional

dielectric scatterers, the computational time needed is very long.

4.4.11 Simulated Annealing Approach:

This approach is based on stochastic techniques to search for the optimum state of
a system and to avoid iterative processes being trapped to a local minimum. The usage of
simulated annealing technique can bypass the need to invert large matrices and enables
one to obtain the solution using an iterative procedure. This approach has only been

applied to simple two-dimensional problems [104], [105] and its main disadvantage is the

large computation time involved.

4.3.12 Time Domain Methods:

Moghaddam and Chew [112] proposed a method to solve a two-dimensional
problem in time domain. In their method, the time domain problem is transformed by
using Fourier transformation. The integral equation obtained in the time domain is
transformed into a set of integral equations in the spatial domain with different
frequencies and then solved using a Born iterative technique. In the computation, the
dielectric distribution is assumed to be independent of frequency.

Batrakov et al [113] proposed an algorithm based on the Newton-Kantorovich
iterative procedure and Tikhonov regularization for solving two-dimensional inverse
problems in the time domain. In their algorithm, most of the calculations are given in an
explicit form, thus reducing the computational time and making the algorithm suitable for

real time processing. Yet, their analysis is restricted to cylinderical objects with
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permittivity varying in the radial direction only. Later, they extended their work [114] to
handle objects with arbitrary complex permittivity distributions. In doing so, they
introduced complexity to the calculations compared to their earlier work.

The advantage of the time domain methods is that more information is available.
However, the computational cost is huge compared to spatial domain methods because

the fields or their spectrum have to be calculated at different times.
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CHAPTER S

Reconstruction of Dielectric Bodies Using

Unrelated Illumination

5.1 Introduction:

The reconstruction methods proposed so far fall into two main categories, namely
the spectral domain methods and the spatial domain methods. The spectral domain
methods have the privilege of being based on and making use of a well-developed theory
and techniques. Yet, employing the Born and Rytov approximation in the reconstruction
makes it only applicable in the presence of weak scatterers and low contrast dielectric
bodies. The spatial domain methods theoretically impose no restrictions on the complex
permittivity distribution of the dielectric bodies to be reconstructed. The main
disadvantages of these methods are their sensitivity to the noise and the long
reconstruction time required.

In this chapter, we are going to proceed with the discretization of the integral
equations derived in the previous chapter. This is followed by a discussion of the

reconstruction procedure normally used in inverse scattering techniques, and the problem
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of ill-posedness of the system and the most common regularization techniques used.
Finally, the unrelated illumination method is presented and its use to handle three-

dimensional lossless and lossy dielectric objects is discussed.

5.2 Discretization of the Integral Equations:

In Chapter 4, starting from Maxwell’s equations, we have derived the integral
equations governing the forward and inverse scattering problems. In order to solve these
integral equations in the spatial domain numerically, they have to be discretized. The
body is partitioned into N subvolumes. The »” subvolume is denoted by ¥, and the

position of a representative interior point of ¥, is denoted by #,. Writing equation (4.20)

as:

E(r) = J’E ', PYO(r Y E(r)dv' +E (r) (5. 1)

Applying the method of moments [3], we can expand the object function O(r) and the

total field E(r) inside the body in a piece wise constant manner:

N
O(r)=Y_0,f,(r) (5.2)

n=|

E(r)= Y E,f,(r) (5.3)

n=l

where f,(r) is called the basis function and O, and E, are the coefficients. Using a pulse

basis function:
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Su(r)= G4

Using Dirac delta as the weighting function, equation (5.1) can be rewritten as:

E()-E'() =) [G(r.r,)E, 0., 5.5)

n=1 v

where #,, represents the m™ measurement point. In this way, we obtain a linear system

that can be rewritten in a matrix form:

[E]-[E']=[G,][O][E] (3.6)

or
[E']=({1]-[G,][O](E] (5.7)

where E' is a 3N dimensional array containing the components of the incident field at the
N subvolumes, E is a 3V dimensional array containing the components of the total field at
the N subvolumes. The matrix O is a 3NV x3N diagonal matrix whose elements are the
contrast or the difference of the wave number of the subvolume and that of the
observation region which is assumed to be free space. G, is a 3N x 3N matrix depending
on the wave number, cell size and location.

Following the same notation, the scattered field at the measuring points can be

given by:

[E°] =[G, ][O][E] (5.8)
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Where E° is the 3M dimensional array containing the components of the scattered field at
the M measuring points. G is a matrix 3M x3N depending on the wave number, cell

size, cell location and the location of the measuring points.

Using the equivalent current modeling, which was discussed in the previous

chapter, the scattered field at the measuring points can be rewritten as:

[E]1=[G,]J.,] (5.9)

where,

(J.,]1=[O][E] (5. 10)

In equation (5.9) Jeq is a 3N dimensional array whose elements are the unknown

components of the equivalent current density inside the N discretization subvolumes of

the body.

5.3 Reconstruction Procedure:

The reconstruction procedure usually starts by solving the forward problem so as
to obtain the scattered field at the measuring points, which simulate the measured field.
The values of the incident field are calculated at the center of each subvolume or cell.
This is followed by the calculation of the Green’s function matrix G;. Assuming that the

permittivity distribution of the body is known and thus the matrix O, the total field E at

each subvolume is calculated using (5.7) as follows:

(E]=(1]-[G,1[0])"'[E'] (5. 11)
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The elements of the 3M x3N matrix Gz, which relates the subvolumes to the measuring
points, are then calculated. The scattered field at the measuring points is then calculated
using (5.8).

In order to solve the inverse problem we have to use the equivalent current
modeling. Knowing the scattered field E°, the equivalent current Jeq is calculated using
(5.9). This involves the calculation of the inverse of the matrix G,.

This matrix G, is not necessarily square matrix depending on the number of
measuring points. For the three-dimensional case and because of the field components, if
the body is divided into N subvolumes, these requires the use of 3N measuring points or
detectors so as to have a square Green’s function matrix G;. Doing this increases the
computation time. If this was the only problem with the matrix G,, it may be solved using
special techniques for handling rectangular systems. Yet, this is not the case, as the
matrix G is highly ill-conditioned even when it is square and thus the system described
in (5.9) is ill-posed. So regularization techniques have been applied to obtain a well
behaved, reasonable approximation of this ill-posed problem. The most widely used
regularization techniques are the psuedoinverse transformation [82] and the Tikhonov
regularization [92]. The latter is widely used by several researchers as has been shown in
the previous chapter. These techniques usually require the availability of a priori
information.

Assuming the process of regularization is successful, we proceed by calculating
the diagonal elements of the object matrix Q. This is done using (5.10), by dividing the
corresponding elements of the total field vector and the equivalent current vector. For the

three-dimensional case and because of the presence of three field and current
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components, we obtain three sets of contrast, corresponding to the x, y and z components,
respectively. So averaging is used to obtain a single value for the contrast and thus the
complex permittivity distribution.

Any proposed technique or method for the reconstruction of the complex
dielectric permittivity should be tested first in the absence of noise. The next step is to
add noise to the scattered field calculated by solving the forward problem. This is done to
simulate measured data uncertainties. For a well-posed system, this wouldn’t have been a
problem, but being ill-posed and thus unstable regarding noise complicates the problem
even more. Most of the published results require the use of multi-illumination techniques
added to the use of a regularization procedure. Although this increases the computation

time, it helps decreasing the ill-posedness of the system, aiming to obtain an acceptable

reconstruction.

5.4 The Unrelated Illumination:

The unrelated illumination method, like most of the spatial domain methods,
utilizes the method of moments (MoM) to discretize the nonlinear integral equation,
which relates the scattered field data and the complex dielectric permittivity. Yet, it
differs from other previous spatial methods in that the way of acquiring information helps
overcoming the ill-posedness nature of the problem. This is done simply by redefining
the problem, aiming to solve a well-posed system and hence eliminating the need to use
special regularization techniques. The unrelated illumination method has been tested
before with two-dimensional bodies [107], [108] and is extended here to handle three-

dimensional inhomogeneous lossy and lossless dielectric bodies.
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In this method, the body under investigation is illuminated with a group of
unrelated incident fields. This is maintained by the proper arrangement of the polarization
and the direction of these incident electric fields. Using this method, the scattered field
measured at one point is sufficient to reconstruct the dielectric permittivity distribution of
the body. Yet, for a body divided into V subvolumes, the method requires the use of 3N

unrelated incident fields. This guarantees that the matrix formed of these incident fields is

well-conditioned and thus invertible.

5.4.1 Mathematical Formulation:

Consider an inhomogeneous dielectric body of arbitrary shape that is
characterized by a dielectric constant €(r) and an electric conductivity o(r), both
generally variable from point to point. If the body is illuminated in free space by an
incident wave with electric field E' and using the method of moments, the total field at

each subvolume and the scattered field at the measuring points were derived earlier in

this chapter:
[E']=(1]-[G,1[OI)E] (5.7

[E*]=[G,][O]E] (5.8)
The matrix ([I]~-[G,][0]) is always well-posed, thus knowing the incident field we can

solve the forward problem and obtain the scattered field at the measuring points, On the
other hand the matrix G; is highly ill-conditioned especially when a large dielectric body
is involved. Thus, as mentioned earlier trying to solve the system by computing its

inverse renders the system ill-posed and forces the use of regularization techniques.
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Usually E' is a 3N x1 vector containing the E, components of the field at all N
subvolumes, followed by the E, components and the last N elements are the E,
components. By using a 3N unrelated incident fields, which is the key of the unrelated
illumination method, E' is 2 3N x3N matrix. This differs from the multi-illumination
technique used in other reconstruction methods in that it puts a constraint on the number
of views, that it must be 3N. Also, the incident fields used should be linearly independent
or unrelated, thus allowing the inversion of the 3N x3/N incident matrix. To obtain these
3N unrelated incident fields two planar phased array antennas are used, one in the xy
plane and one in the xz plane as shown in Fig. 5.1. By adjusting the polarization of the

array elements we can obtain a diagonally dominant incident matrix.

4 detector
®

Fig. 5.1 An arbitrary shaped body illuminated by a group of unrelated

incident fields from two planer phased arrays.
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Writing equation (5.7) in the form:
[E]=~(G,][0]-[1))"[E'] (5. 12)

and substituting (5.12) into (5.8) and taking into consideration that E° is not a 3M array

any more, it is now 3M x 3N matrix corresponding to the 3 incident fields:
[G,1[0](IG,][0]-[1})'[E"] = —{E] (5.13)

Making use of the fact that the incident matrix is well conditioned and thus invertible, the

matrices in (5.13) can be rearranged as follows:
(E'1E'T'[G,]1+[G,D[O]=[E*][E')" (5.14)

where the only unknown is the object or contrast matrix O. As shown by equation (5.14)
the only matrix that needs to be inverted is the incident matrix. Then using simple vector
and matrix operations we can obtain the object function of each cell.

For simplicity we can denote:
[¥]=[E*][E']"[G,]+[G,] (5.15)

and
[@]=[E*][E']" (5. 16)

Equation (5.14) can be written in a simplified form as:

[¥][0) = [@] G- 17)
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and the elements of the diagonal matrix O are obtained by comparing the corresponding
elements at any row of [\¥'] and [®]. As m changes from 1 to 3M, where M is the number

of measuring points, the object function or the contrast of the n cell is given by:

—_ (Dmn
O = Am (5.18)

By doing so we obtain 3M values of the object function of the n' cell Onn, thus averaging
is used to obtain a single value of O,,. Then using (4.18) we can obtain the permittivity

and conductivity of each cell as follows:

e (n)=Re[O%2]+l (5. 19)
o(n) = Im[o% ) :’x we, (5. 20)

In conclusion, for the unrelated illumination method, the body under investigation
is illuminated by a group of unrelated incident fields. The method of moments is applied
to discretize the problem. The forward scattering problem is solved via a technique
similar to that applied by all other techniques. The only difference is that the total field is
a matrix not a vector and so is the scattered field at the measuring points. Knowing the
scattered field and making use of the fact that the incident matrix is invertible, we use
simple vector and matrix operations to arrive at a system that can be solved easily to
obtain the required object function matrix. In doing so, we eliminate the need to calculate
the inverse of a highly ill-conditioned matrix and also eliminate the use of the equivalent

current modeling procedure that is applied by all spatial domain techniques. Fig. 5.2
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summarizes the steps used in the reconstruction process in the unrelated illumination

method.

Assume a known complex

permittivity distribution.

Obtain 3N unrelated incident
fields.

Solve the forward problem
to obtain the scattered field

at the detectors

Obtain the inverse of the
matrix formed of the

incident fields.

Through matrix operations
obtain the complex

permittivity of the body.

Fig. 5.2 Steps used in the reconstruction process.
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5.5 Numerical Simulations and Results:

In the previous section, the unrelated illumination method was presented as a tool
for the reconstruction of the complex dielectric permittivity of three-dimensional bodies.
In this section, results of the numerical simulations that were carried out are presented
and discussed. The aim of these simulations is to assess the capabilities of the method and
to test its robustness in the presence of measured data uncertainties. Various three-
dimensional dielectric bodies have been used including a simple cube, a model of the
human body and a model of the head.

All the numerical simulations have been carried out using only one measuring
point. Yet, because of the three-dimensional nature of the problem under consideration,
one measuring point yields three measured values of the diagonal elements of O
corresponding to the three components of the scattered field. Averaging is used to obtain
a single value of the object function and hence the permittivity and conductivity. The
values of the scattered electric field at the measuring point is obtained via a computer
program that can determine the direct scattering from three-dimensional inhomogeneous
dielectric bodies. For all simulations two planar phased arrays (Fig. 5.1) are used to
illuminate the body with a group of unrelated incident fields. The number of elements
and the spacing between them are varied according to the dielectric body under
consideration.

The relative mean square error formulae are used to measure the error in the

relative dielectric permittivity, conductivity and object function in all simulations:
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(5.21)

S = o (5.22)

(5.23)

where ¢,,, 0, and O, are the original relative dielectric permittivity, conductivity and

object function of the n'" subvolume, respectively. ¢, , o, and O, are the reconstructed

relative dielectric permittivity, conductivity and object function of the n™ subvolume,
respectively. Because the error obtained with these formulae is the average error, in some

of the simulations, the normalized error in every cell in the volume under consideration is

plotted:

- ae)
8’”

So, = (A (5.24)
o-"

50, =12 =0.)
0
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In the absence of noise and irrespective of the permittivity distribution within the
dielectric body, the error is found to be negligible, giving almost perfect reconstruction.
In order to study the effect of measured data uncertainties on the reconstruction process,
we added to the scattered field at the detector a random noise complex array n. The real
and imaginary parts of this array are constituted by two independent sequences of random

variables. These sequences have zero mean and a variance that can be varied to obtain

different signal to noise (S/N) ratios:

2

S/N = 1010g|Exl (5.25)

In’

5.5.1 Effect of varying the cell size:

In this simulation we attempt to study the effect of varying the cell size and hence
the descritization on the accuracy of the reconstruction. The body under consideration is a
40 x40 x 40 cm body. The operating frequency is 900MHz. The body is divided into 8
cubic cells with &, = 8. The computer simulation is carried out, the body is then divided
into 64 equal cubic cells of the same dielectric permittivity. Fig. 5.3 shows the error in
the dielectric permittivity in both cases. As shown the smaller the cell size, the less the

error and the better the reconstruction for the same S/N ratio.
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A layer in the 8cell cube

S/N=25
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Fig. 5.3 Percentage error versus S/N ratio for cell sizes 10, 20 cm.
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5.5.2 Effect of varying the strength of the scatterers:

Reconstruction procedures are highly sensitive to the strength of the scatterer
under investigation. In this simulation, two scattering bodies are investigated, the first
body has ¢, =8 and the second has &, =32. The simulation is carried out for the
40x40x 40 cm cube, which is divided into 64 equal cubic cells at 900AM/Hz. Fig. 5.4
shows the error in the reconstruction of the dielectric permittivity for these scattering
strengths. At a S/N ratio of 25dB, the error for the cube whose £, =32 is almost 9%

while the error in the case when &, =8 is almost 2%. So the reconstruction is better for

weaker scatterers, yet, the 9% error at S/N ratio of 25dB is still acceptable.

18 A ——¢ =3
16 \ B +£,.=32

oe %
o
/

15 2 b 45

L -

Fig. 5.4 Percentage error versus S/N ratio for different scattering strength.
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5.5.3 Effect of changing the contrast:

In this simulation we attempt to study the effect of varying the contrast on the
reconstruction of the dielectric permittivity. The 40x40x 40cm cube is divided into 64
cells each of dielectric permittivity &, =1, except for 8 cells in the core of the cube that
have a dielectric permittivity ¢, = 3. For the next simulation, the eight cells in the core
are given a permittivity £, =32 thus increasing the contrast between the core and the

surrounding cells. As shown in Fig. 5.5, the effect of the change in the contrast on the

reconstruction of the permittivity distribution is minimal, still the reconstruction is

slightly better for the low contrast body.

The next simulation, the 40x40x40cm cube is divided into 64 cells each of
dielectric permittivity &, =3, except for 8 cells in the core of the cube that have a
dielectric permittivity ¢, =1. For the next simulation, all the cells except the core are
given a permittivity &, =32 thus increasing the contrast between the core and the

surrounding cells. As shown in Fig. 5.6, the effect of the change in the contrast on the
reconstruction of the permittivity distribution in this case, which is the opposite of the

case shown in Fig. 5.5, can not be ignored.
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Fig. 5.5 Percentage error versus S/N ratio for different contrasts.
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5.5.4 Effect of changing the number of scatterers:

Another issue to investigate is the effect of the number of scatterers within the
body. It should follow from the previous simulations, that if the reconstruction is better
for weaker scatterers and lower contrast, then it should be better for fewer number of
scatterers. To check this the 40x40x 40cm cube is divided into 64 cells. The case of 8
scatterers imbedded in the core of the cube is compared to when all of the 64 cells
forming the cube are scatterers. The scatterers have a permittivity &, = 3. Fig. 5.7 shows
the error in the reconstruction for both cases. As predicted, the error is less for the fewer

number of scatterers. Yet, as shown at S/N ratio of 25dB, the error for the 64 scatterers

case is only 1.1%.
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Fig. 5.7 Percentage error versus S/N ratio for different number of scatterers.
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In all of the previous simulations, we have investigated lossless dielectric bodies.

In the following simulations we are going to study lossy dielectric bodies of variable cell

size and geometric complexity.

5.5.5 Reconstruction of a simplified human body model:

This simulation involves the use of a 180 cubic cell human body [109]. Fig. 5.8
shows the model. This model is characterised by a variable cell size together with the fact
that the average values for the conductivity and dielectric permittivity for the different
kinds of tissue have been used in certain cells.

The simulation is carried out at 300MHz as the model data is only available at this
frequency. The cell size varies from 10cm to lcm through out the model. The cell
number, volume, relative location and the dielectric properties for this model are given in
Appendex C. For some of the cells of size 10cm and &, ~ 80, which is the worst case
electrical cell size, the method of moments requirements for discretization are violated.
Fig. 5.9 shows the percentage mean square error in the reconstruction of the relative
dielectric permittivity, conductivity and object function. As shown the error in the
reconstruction of the conductivity is higher than that of the permittivity, yet, it is still
acceptable at higher levels of noise. Fig. 5.10 shows the error in the reconstruction of the

relative dielectric permittivity and conductivity at every cell in the body.
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Fig. 5.8 Three layers constituting the 180-cell human body model.
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Fig.5.9 Reconstruction error in the human body model.
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Fig.5.10 Reconstruction error in every cell of the human body model.

5.5.6 Reconstruction of a simplified head model:

In this simulation, the body under investigation is a simplified model of a human
head. It is formed of 209 cells arranged in five layers and formed of four types of tissue:

skin, bone, brain and eye (Fig. 3.11). The cell size is 2x2x2 cm. The model is an
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example of a geometrically irregular and inhomogeneous dielectric body. The values of
the dielectric permittivity and conductivity for the tissue involved at 300MHz and
900MHz are given in table 5.1. These values have been obtained using the second order
Debye dielectric equation given in Chapter 3. The parameters used in the equation are
those given in Table 3.1. The simulation is carried out at 900MHz and the percentage
mean square error in the reconstruction of the object function, dielectric permittivity and
conductivity is shown in Fig.5.11. Fig. 5.12 shows the error in the reconstruction of the
relative dielectric permittivity and conductivity at every cell in the simplified head model.
From Fig. 5.12 it is clear that although the average error in the reconstruction of the

dielectric properties for all cells is low (Fig. 5.11), at some cells the error is much higher.

Table 5.1 Dielectric properties of human tissue.

300MH? 900MH?

Tissue Permittivity Conductivity Permittivity Conductivity
Bone 6.82205 0.0682344 6.13111 0.0871317
skin 53.0764 0.727464 46.7887 0.897553
Brain 54.9296 0.449199 50.3136 0.575565
Eye 55.7202 0.454412 52.3747 0.543721

104




—e— permittivity
—— conductivity

6 —‘\ —a— object function
5 \

4 \

3

0 | \\“Q\-;.L_

15 20 25 30 35 40 45 50
S/N dB

percentage error

7
x
/

Fig. 5.11 Percentage error in the dielectric properties of the head.
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Fig.5.12 Reconstruction error in every cell of the head model at S/N=17.

5.5.7 Effect of varying the operating frequency:

These simulations involve the use of the same model of the head that was used in
the previous section. The dielectric properties of the tissue used are kept constant for the

three frequencies studied and correspond to those at 300A/Hz. This contradicts the
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dispersive nature of biological tissue but is important for the sake of comparison. Three
frequencies have been tried, 300MHz, 900MHz and 3GHz. A single detector at a fixed
location has been used for all the simulations. Fig.5.13 shows the percentage relative
mean square error in the object function. Fig. 5.14 and Fig. 5.15 show the percentage
relative mean square errors in the relative dielectric permittivity and conductivity,
respectively. As shown, the error in the reconstruction increases by increasing the
frequency. The reason for this increase is that the incident matrix is not totally diagonally
dominant. This is mainly because as the frequency increases, the physical size of the
array decreases. This in turn decreases the effective aperture and hence the beam width of
the incident ray. Thus, the incident field is not totally focussed on the required cell. Also,
as the frequency increases, the physical size of the cells compared to the wave length of
operation increases. This affects the performance of the method of moments especially at
3GHz when the size of the cell is 0.2A. From the figures, for a typical signal to noise ratio

(S/N) of 25, the reconstruction error is still acceptable for the three frequencies used.
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5.5.8 Effect of varying the location of the detector:

All previous simulations, for a certain dielectric body, were carried out using one
detector whose position has been kept constant. Acceptable error levels in the
reconstruction of the dielectric properties have been obtained with only one detector in
use. In this section, we attempt to study the effect of varying the detector location. The
simulations that have been carried out show that the detector can be placed anywhere on
the surface of sphere whose radius is at least one meter greater than that of a sphere

containing the dielectric body which is the head model. Increasing the radius of the
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spherical on which the detector is placed only presents minor fluctuations in the error
level of the reconstruction of the dielectric parameters as shown in Fig. 5.16. As
averaging is used to obtain a single value of the dielectric parameters, and because the
error levels from different detectors are almost the same, using more than one detector
does not guarantee better reconstruction. These conclusions are based solely on the
simulations that were carried using the simplified head model

In the next simulation, we attempt to study whether the percentage error for a
certain detector location is affected by frequency. Three different detector locations are
tried, d, d/2 and 2d, where d=2m, at 300MHz, 900Mhz and 3GHz. As shown in Fig, 5.17,
the fluctuations in the error levels make it unclear whether the effect of the detector
location on the reconstruction error is influenced by the operating frequency. These
conclusions are based solely on the simulations that were carried out using the simplified

head model and for the specified three detector locations.

5.6 The planar phased array system:

As mentioned in the previous section, the required 3NV unrelated incident fields are
obtained by two planar phased arrays. Instead of using the arrays, a reflector antenna
could have been used and mechanically steered to provide the required incident
illumination. The arrays used are mainly selected to facilitate the numerical computations
and to prove the numerical accuracy of the technique. The planar phased arrays have
uniform amplitude and spacing. The orientation and polarization of the elements of the

array, which are short dipoles, are varied to obtain the required components of the
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incident fields. The phase excitations between the elements are adjusted to aim the main
radiation from the array io a certain subvolume within the body [115].

Most of the work was done initially at 300MHz. Each planar array was 100 x100
elements for the cube and 300x 300 elements for the head model so as to have a small
half power beam width (HPBW). The physical size of the array is large and can be a real
hindrance when practical implementation is considered. Higher frequencies were then
tried: 900MHz and 3GHz, thus reducing the physical size of the array by two thirds and
nine tenth, respectively. As shown in the previous section, acceptable reconstructions
were obtained for both frequencies. This was done keeping the physical size and the
discretization of the body under investigation constant. In other words, the numerical
requirements of the simulation were not changed. For the 3GHz simulation and with cell
size 2x 2 x 2 cm for the case of the head, this discretization is considered marginal for the
method of moment optimal performance.

Numerous methods are available to decrease the physical size of the array for a
given HPBW at a certain frequency. One of these methods is to mount the dipoles on a
ground plane. By properly adjusting the height of the dipole above this ground plane (Fig.
5.18), the directivity of the dipole can be increased, hence achieving the required HPBW
using a smaller array size and thus effectively reducing the size of the array.

The geometry and type of the array elements used determine the overall
directivity and HPBW of a certain array as well as the size and weight of the overall
array. The more directive the element is, the more directive the overall array will be. Yet,
the choice of the element will probably dictate what type of feed network can be used. So

another alternative, instead of using short dipoles, more directive elements could be used.
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Microstrip antennas, for example, have a gain of approximately 6-8dB, as
compared to less than 2dB for short dipoles. The size of the microstrip element itself is
less than the corresponding dipole because of the presence of the dielectric substrate.
Thus using microstrip antennas as array elements would reduce the overall size of the
array. Added to this, microstrip antennas are easy to fabricate, inexpensive, and can be
seamlessly incorporated with the appropriate feed networks. However, the microstrip
feed network will suffer from substrate losses. These losses can be substantial especiaily

at higher frequencies and for large feed networks. In this case amplifiers can be used to

compensate for the dielectric losses.
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Fig. 5.18 Variation of the directivity with height from the ground
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Another option is the use of superdirective arrays [116]-[117]. These arrays have
directivities that are much larger than the directivity of an array of the same length and
elements that is uniformaly excited. Superdirectivity applies in principle to both arrays of
isotropic elements and to actual antenna arrays composed of nonisotropic elements such
as dipoles [116]. A fixed aperture can achieve in theory any desired directivity value but
the practical implications are not known. Superdirectivity is usually accomplished by
inserting more elements within a fixed length thus decreasing the spacing between the
elements. This eventually leads to rapid changes in the phase of the excitation
coefficients of the array elements. In [117] two methods of achieving superdirectivity in
uniform arrays of isotropic elements are presented. The first approach is achieved using
alternating negative and positive phases with odd number of elements. In the second

method, phases are adjusted to yield maximum directivity. The latter is achieved by

applying an optimization technique.

5.7 Conclusion:

In this chapter we reviewed the basic reconstruction procedure employed by most
of the spatial domain methods. The ill-posedness of the system in the inverse scattering
problem was discussed and the necessity of using regularization techniques was pointed
out. This was followed by a presentation of the unrelated illumination method and how it
can be used to overcome the ill-posedness of the system. This was carried out by using a
group of unrelated fields to illuminate the body, this guarantees that the incident matrix. is
invertible. Through some matrix operations and using the inverse of the incident fields

matrix, the inverse problem is solved and the complex permittivity distribution at each
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subvolume is obtained. It should be noted that the method does not put any constraints on
the number of measuring points, in fact one measuring point provides sufficient data to
reconstruct complex permittivity distribution of the body.

We then presented and discussed some of the numerical simulations that were
carried out to assess the performance of the unrelated illumination method in the
reconstruction of dielectric bodies. The scattered field at the measuring points or
detectors was obtained via a computer program utilizing three-dimensional scattering
from dielectric bodies. Measured data uncertainties were simulated by adding noise to the
scattered field at the detectors. Several dielectric' bodies, homogeneous,
nonhomogeneous, lossless, lossy and geometrically complex bodies were reconstructed.
The number of scatterers as well as the contrast have been varied and the accuracy of the
reconstruction has been examined for each case. The effect of varying the operating
frequency and the detector location on the error level of the reconstruction of the

dielectric parameters have also been studied. The method has been proved to be robust

and fairly accurate reconstruction technique.
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CHAPTER 6

Conclusions

6.1 Conclusions:

In this thesis, we have attempted to study different aspects of interaction of
electromagnetic waves with biological tissue. Two problems in particular were
investigated. The first is three-dimensional scattering from biological tissue taking into
consideration its dispersive nature. The other problem that was investigated is the three-
dimensional reconstruction of the dielectric properties of a body from the scattered field
data resulting from interrogation with electromagnetic waves. In the first problem
forward scattering of electromagnetic waves was studied while in the latter both forward
and inverse scattering of electromagnetic waves have been studied.

The specific absorption rate (SAR) is 2 measure of the amount of energy absorbed
by the tissue as a result of irradiation by electromagnetic waves. This value is directly
related to the various components of the field inside the body. The symmetric condensed
node transmission line matrix method (SCN TLM) has been used to obtain the fields

inside the body. Being a time domain method, it allows for obtaining the frequency
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domain response over a wide frequency range via Fourier transformation and from a
single run.

Second order Debye equation of the complex permittivity in the frequency
domain has been used to simulate the dispersive nature of biological tissue in a modified
TLM technique. In this technique the scattering matrix is independent of the dielectric
properties of the medium, which are accounted for via lumped equivalent networks or
sources connected to the nodes. These equivalent sources are calculated at each time step
and included in the scattering procedure of the TLM.

Assuming a nondispersive nature of biological tissue, the nondispersive or stub-
loaded SCN TLM method was used to obtain the near field data and the specific
absorption rate (SAR) distribution. The results of both cases have been compared.
Several simulations were carried out to check the validity and accuracy of the modified
TLM technique for homogeneous nondispersive and dispersive dielectric bodies. The
modified TLM technique was then applied to nonhomogeneous and geometrically com-
plex dispersive body, which is the human head. Three models of the head were used: a
simplified model of 209 coarse cells, a refined model of 24552 cells and a much refined
model of 196416 cells.

To investigate the possibility of the reconstruction of three-dimensional dielectric
bodies from scattered field data, the unrelated illumination method has been used. The
method utilizes the method of moments (MoM) to discretize the nonlinear integral
equation, which relates the scattered field data and the complex permittivity distribution
of the body. It is thus a frequency domain technique. The method requires that the body

under investigation be illuminated by a group of unrelated incident fields, thus forcing the
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incident matrix to be nonsingular. This incident fields are obtained using two planar
phased arrays. The values of the scattered field at the measuring points are obtained by
solving the forward scattering problem. The inverse scattering procedure is based on
obtaining the inverse of the incident field matrix. Through performing some simple
matrix operations, the complex permittivity distribution of the body is reconstructed.

This method, although similar to the other multi-view illumination methods, has
the advantage of providing accurate reconstruction using only one measuring point or
detector and without any iterations. Thus it reduces the required computation time and
still provides good accuracy. Numerical simulations were carried out to evaluate the
capabilities of this method. In the absence of noise, the reconstruction error was
negligible irrespective of the complex permittivity distribution or the cell size. To
simulate realistic measurement conditions, the results are generated in the presence of
Gaussian noise with zero mean added to the scattered field at the measuring points.

It has been shown that the method can handle both strong and weak scatterers of
different densities. Also, better reconstruction has been obtained for smaller cell sizes.
The unrelated illumination method can be used for the reconstruction of both lossless and
lossy inhomogeneous dielectric bodies. It can also equally handle simple or geometrically
complex bodies. Using a mode! for the human head and another for the human body, it
has been shown that for realistic signal to noise ratios, the method provides a reliable
basis for the reconstruction dielectric parameters. Acceptable error levels have been

obtained for higher frequencies. The effect of varying the detector location has also been

studied.
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In conclusion, we have attempted to study both the forward and inverse
electromagnetic scattering from biological tissue. Two numerical techniques have been
used, the SCN TLM which is a time domain technique and the MoM which is a
frequency domain technique. The choice of the technique was made based on its

suitability to handle the problem under consideration.

6.2 Future Research:

The interaction of electromagnetic radiation with biological tissue has been
studied in this thesis. Both the forward and inverse scattering problems of
electromagnetic waves have been investigated. The ability to model the dispersive nature
of biological tissue using second order Debye equation in a modified TLM technique can
be considered as preliminary work. It offers an accurate way to study the energy
deposition and the various fields that exist in a biological body after an exposure to
electromagnetic waves. Further simulations can be carried out to model realistic
situations especially those involving wireless communications. The results could be
compared to those available assuming frequency independent biological tissue.

A different issue that could be further studied is using higher orders of Debye
approximation, which are more accurate, to model dispersive tissue. How this would
affect the SAR levels in a body after exposure to electromagnetic waves, is an interesting
point and can help investigate the need to use higher order formulae to model dispersive
tissue.

The reconstruction of the complex permittivity distribution of dielectric bodies

using the method of moments (MoM) has been shown to be very proving. Yet, research
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can still be done on the planner phased array antennas that are used to obtain the required
incident field. Once an optimum design for an antenna array of acceptable size is
available, it should be implemented physically. The whole procedure should then be
tested as it has been proven theoretically, in this thesis, to be a very reliable three-
dimensional imaging procedure. To further improve the resolution of the reconstructed
bodies, the use of smaller cell size could also be studied. This is directly related to the

design of the planner phased array antennas as it requires incident fields of smaller half

power beam width (HPBW).
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APPENDIX A

Modeling of Second Order Debye Dielectric

In Chapter 3, we have shown how to model a dispersive material that can be
expressed as a second order Debye equation in the TLM method. The conductivity o and
the dielectric permittivity & of a medium can be combined together to form the complex

permittivity constant which is a frequency dependent quantity and defined as:

g
€

or & =¢—j&" (A. 1)

» ' .
E =&~

o

For a dispersive dielectric medium the frequency domain permittivity constant

¢’ (@) can be modeled using second order Debye equation [59):

8.\'! &y + 83‘2 —geo (A. 2)
1+ jor, 1+ jor,

& (w)=¢,+

Where &_ is the permittivity at infinite frequency, & =&, + &, — €, is the zero or

static permittivity and 7z, and 7, are the relaxation time constants.

As shown in Chapter 3, the second order Debye equation (A.2) can be modeled

by the RC circuit shown in Fig. A.1. In this section, we attempt to obtain the expressions
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for the various circuit components in term of the parameters of the second order Debye

equation (A.2).

The first step is to obtain the impedance of the circuit shown in Fig. A.1. The
mathematical formula for the impedance is then compared with the relation between the

voltage and current as obtained from equation (A.2), as will be shown. From the

O OO
M

c, _Lc _Lc

Fig. A.1. Circuit model for second order Debye dielectric.

comparison of the two equivalent formulae, we will be able to find the required

expressions for the various circuit components.

The input impedance for the above circuit is given by combining the various

series and shunt components as:

v 1+ jo(C,R, + C,R, + C,R ) - #°C,C,RR,
i

L =—=
jolC, +C, +C,)-0*(C,C,R, + C,C,R, + CC,R, + C,C,R, ) — jao*C,C,C,R R,

(A.3)

From equation (A.2), we get:
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= € +ja)(8.vlr2 +£.s'2fl)—wzrlr2€ao (A 4)
1+ jo(r, +1,) ~ 0’17,

&' (w)

The next step is to obtain the expression for (&*-1):

(&, =D +jo((e, —Dry, + (5, —Dry)-0’r17,(e, - 1) (A.5)
1+ jo(r, +7,) -0’77,

e (w)-1=
The polarization P is related to the electric field E via this equation:
P(w) = (¢ (®) ~DE(w) (A.6)
Substituting for (¢'(w)—1) in equation (A.6)
P(@)1+ jo(zr, +7,)-0’n1,)=((¢, - 1) +ja)((¢°:j.l -1, +(&,, — D1, ) -’17, (¢, - D)E(w)
(A.7)

And writing the above equation in the time domain:

dP d’P dE d*E
P+(7, + z‘z)—d—t» + 7,7, =T =(e, - DE+ ((551 -Dz, +(g,, -1, );'t_ +7,7,(6, 1) =
(A. 8)
The polarization current i is related to the polarization P:
i= 2At-d£ (A.9)
dt
From the analogy between field and circuit quantities:
E=v (A. 10)

Substituting (A.9) and (A.10) in (A.8):

124



1 [, di d’i dv d*v d’v
E[’ +(7, + 1, )-CE +77, F) = (¢, - 1);‘,? +((8y — D)7y + (6, - D1, )"C}IT"' 7,7, (8, _1)‘6?*

(A. 11)

Changing to the frequency domain and rearranging, we get the relationship between the

voltage and current in terms of the second order Debye parameters:

v_ 1+ jo(r, +1,) - @’1,T, (A 12)
i 2u6e, ~1)jo-a*(z, (e, ~1)+7,(s, -1)- jo’rz, (e, 1) '

Through comparing the coefficients of the various terms of equations (A.3) and (A.12),
we can get the expressions for the circuit components of Fig. A.1 in terms of the second

order Debye parameters. The five equations that result from the coefficients comparison

are:
C,R, +C,R +C,R, =1, +7, (A.13)
C,C,R R, =17, (A.14)
(C +C, +C,)=24A1(¢, -1) (A.15)
(C\CsR, + C\C,R, + C\CyR, + C,CyR, ) = 2At (e, 7, + 8,07, — 7, — T,) (A.16)
C,C,C,R\R, = 7,7,(e, —1RA¢ (A.17)

Through simple mathematical substitutions in the previous five equations, we get the

following expressions:

C, =(e, —1)24t (A.18)
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C, = 2Mt(e,,T, + £,,T, — £, (7, +7,))° (A. 19)
(£4T2 + €T — €,(T, +T,)))7, +7,) —1,7,(8, —&,)

200(e, T, +£,T, —€,(7, +T,))° (A.20)
(807y + 6,7 — &, (7, +T,))(7, +7,) ~1,7,(&, — €,)

C, =2At(e, —€,)—

R =17, 12At(e,7, + £,T) —€,.(T, +T,)) (A.21)
2AHE, T, + €T, —E6,(7, +173))
R, = A. 22
2 C.C, ( )
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APPENDIX B

Green’s Function Formulation

In Chapter 4, starting from Maxwell’s equation we have derived the equations

relating the total and scattered field inside a dielectric body:

E’(r)= J-a_(nr')(r’fz(r')—k,,2 JE(r)av’ (B.1)

Using the equivalent current density Jeq, equation (B.1) can be written as:

E'(r)= [G(r.r)-J,,(r)d' (B.2)

In the above equation E(r,r') has a singularity, the integral equation (B.1) will
diverge if the field point 7 is inside the volume v of the body. This diversion is overcome
by defining the principal value (PV) to which a correction term is added. The principal
value PV is an integral equation that is valid everywhere except where the singularity
occurs. The correction term is added only when the source and the field point approach
each other. It can be evaluated by excluding a small volume surrounding the singular

field point first and then letting the small volume approach zero. Equation (B.2) can thus

be written as:
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E*(r) = PV [G(r,F") oy ()" + [B* (1) ecion (B.3)

The correction term depends on the geometry of the volume over which equation (B.3) is

evaluated. It has been shown that the correction term for a sphere is [110]:

g, )
E* R p— B. 4
B ) = =372 ®.4)
Rewriting equation (B.3):
‘ —_ , , J’-"I (r)
E'(r)= PV j G(r,r")-d,, (rdv' -~ (B. 5)
; 3jwe,

The total electric field E at an arbitrary point » can be expressed in terms of the incident

and scattered fields as:

E(r)y=E'(r)+E‘(r) (B. 6)

Substituting equation (B.5) in (B.6) and rearranging;:

[1 + L(QJE(,) PV | T(r)G (r,") “E(* ) —E' (r) (B.7)
3jwe ;

]

where
F(ry=oc(r)+jole(r)—¢,1 (B. 8)

In equation (B.7) the only unknown is the total field inside the body and can be

determined using the method of moments.

The inner product in equation (B.7) can be represented as:
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—Gxx (r,r) G (r.r) G(r, ] (Ex (r,r")]

G(r.r)-E(r)=|G () G, (rr) G, .(rnr) | E(r.r" (B.9)

L_G =r) G @) G_(r r')_j | E,(r,r") ]

Denoting x, y and z by x;, x> and x3, the entries in the matrix above can be written as:

1 o ,
“(rr)——Jaw[é +;3-axqaxJG,(r,r) (B. 10)

where p,g = 1,2,3.

The method of moments with pulse basis function and point matching procedure
can now be applied to equation (B.7). This results in the following expressions for the
elements of the Green’s function matrix:

For non-diagonal elements:

Gm = I oHkT (’4)A0Z" XCICm) (2 _1- jar,, )5, +cos6O™ (3-aa?, +3ja )|
r%q T P 4

mn

B.11)
where
(g -x;) ey =;)
Ay = k|1, =1, |5 cOSO" = and cosd;" = ——=
Im*rI rm_rn,
and r,, -—(x, 23Xy 5 X5 ) r, -—»(x]”,x;’,x;)
For the diagonal elements:
m —2]60,[lr(",,) g : ~1]_ I"(r,,)
G =6, {—--——-%g [exp(- jk,a, X1 + jk,a,)-1] [1 +———3ng0 ]} (B. 12)
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Detailed derivation of the expressions of the Green’s function matrix are given in [109]-

[110].
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APPENDIX C

Parameters of the Human Body Model

The 180 cubic cell human body model that has been used is characterised by a
variable cell size. The parameters of the model including the cell number, volume,

relative location and dielectric properties are given in Table C.1.

Table C.1 Volume, location and dielectric properties of the 180-cell human
body model.

Cell no. volume X y z c €8¢

1 2.88E-04 | 1.717 | 0.033 [ 0.1678 | 0.38 | 7.16E-10
2 4.656E-04 | 1.6452 | 0.0388 | 0.162 0.84 | 7.07E-10
3 4.65E-04 | 1.5677 | 0.0388 | 0.177 0.84 | 7.07E-10
4 1.74E-04 | 1.4998 | 0.0292 | 0.1335 | 0.843 | 7.07E-10
5 4.22E-04 | 1.433 | 0.0375 | 0.15 0.84 | 7.07E-10
6
7
8
9

4.22E-04 | 1433 | 0.1125| 0.15 0.84 | 7.07E-10
4.22E-04 | 1.358 | 0.0375 | 0.1875 | 1.0849 | 7.07E-10
4.22E-04 | 1.358 | 0.1125 | 0.1875 | 0.84 | 7.07E-10
4.22E-04 | 1.283 | 0.0375 | 0.1875 | 0.843 | 8.63E-10
10 4.22E-04 | 1.283 | 0.1125 | 0.1875 | 0.84 | 7.07E-10
11 4.22E-04 | 1.208 | 0.0375 | 0.1875 | 0.84 |7.07E-10
12 4.22E-04 | 1.208 | 0.1125 | 0.1875 | 0.84 | 7.07E-10
13 3.14E-04 | 1.1365 | 0.034 | 0.177 0.84 |7.07E-10
14 3.14E-04 | 1.1365 | 0.102 | 0.177 0.84 | 7.07E-10
15 4.22E-04 | 1.065 [ 0.0375 | 0.1875 | 0.84 |7.07E-10
16 4.22E-04 | 1.065 | 0.1125 | 0.1875 | 0.84 |7.07E-10
17 4.22E-04 | 0.99 |0.0375 | 0.1875 | 0.84 |7.07E-10
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18 422E-04 | 099 |0.1125|0.1875{( 0.84 | 7.07E-10
19 5.77E-04 | 0.9109 | 0.0416 | 0.1249 | 0.84 | 7.07E-10
20 5.77E-04 | 0.9109 | 0.1249 | 0.1249 | 0.84 | 7.07E-10
21 5.61E-04 | 0.8282 | 0.0435 | 0.1249 | 0.84 | 7.07E-10
22 5.51E-04 | 0.8282 | 0.12565 | 0.1248 | 0.84 | 7.07E-10
23 3.73E-04 | 0.7513 | 0.0385 | 0.1249 | 0.84 | 7.07E-10
24 3.73E-04 | 0.7513 | 0.1102 | 0.1249 | 0.84 | 7.07E-10
25 2.16E-04 | 0.6853 | 0.0325 | 0.1189 | 0.84 | 7.07E-10
26 2.16E-04 | 0.6853 | 0.0925 | 0.1189 | 0.84 | 7.07E-10
27 1.85E-04 | 0.6267 | 0.031 | 0.1174 | 0.84 | 7.07E-10
28 1.85E-04 | 0.6267 | 0.088 | 0.1174 | 0.84 | 7.07E-10
29 1.41E-04 | 0.5723 | 0.0285 | 0.1149 | 0.84 | 7.07E-10
30 1.41E-04 | 0.5723 | 0.0802 | 0.1149 | 0.84 | 7.07E-10
31 1.11E-03 | 0.4945 | 0.0543 | 0.1149 | 0.84 | 7.07E-10
32 1.11E-03 | 0.3908 | 0.0543 | 0.0887 | 0.84 | 7.07E-10
33 1.11E-03 | 0.2873 | 0.0543 | 0.0887 | 0.84 | 7.07E-10
34 4.39E-04 | 0.1975 | 0.0405 | 0.0887 { 0.84 | 7.07E-10
35 4.39E-04 | 0.1215 | 0.1165 | 0.0887 | 0.84 | 7.07E-10
36 5.93E-04 | 0.0415 | 0.0445 | 0.2269 | 0.84 | 7.07E-10
37 2.88E-04 | 1.717 | 0.033 | 0.1018 | 0.38 | 7.16E-10
38 4.65E-04 | 1.6452 | 0.0388 | 0.0845 | 0.84 | 7.07E-10
39 4.65E-04 | 1.5677 | 0.0388 | 0.0995 | 0.84 | 7.07E-10
40 2.00E-04 | 1.4998 | 0.0292 | 0.075 0.84 | 7.07E-10
41 4.22E-04 | 1.433 | 0.0375 | 0.075 0.84 | 7.07E-10
42 4.22E-04 | 1433 | 0.1125 | 0.075 0.84 | 7.07E-10
43 4.22E-04 | 1.358 | 0.0375 | 0.1125 0.7 |5.31E-10
44 4.22E-04 | 1.358 | 0.1125 | 0.1125 | 0.84 | 7.07E-10
45 4.22E-04 | 1.283 | 0.0375 | 0.1125 0.1 5.31E-10
46 4.22E-04 | 1.283 | 0.1125 | 0.1125 | 0.84 | 7.07E-10
47 4.22E-04 | 1.208 | 0.0375 | 0.1125 | 0.84 | 7.07E-10
48 4.22E-04 | 1.208 | 0.1125 | 0.1125 | 0.84 | 7.07E-10
49 3.14E-04 | 1.1365 | 0.034 | 0.109 0.84 | 7.07E-10
50 3.14E-04 | 1.1365 | 0.102 | 0.109 0.84 | 7.07E-10
51 4.22E-04 | 1.065 | 0.0375 | 0.1125 | 1.11 | 8.31E-10
52 4.22E-04 | 1.065 | 0.1125 | 0.1125 | 0.84 | 7.07E-10
53 4.22E-04 | 0.99 | 0.0375 | 0.1125 | 0.84 | 7.07E-10
54 422E-04 | 0.99 | 0.1125 | 0.1125 | 0.84 | 7.07E-10
55 4.22E-04 | 1.358 | 0.0375 | 0.0375 | 0.84 | 7.07E-10
56 4.22E-04 | 1.358 | 0.1125 | 0.0375 | 0.84 | 7.07E-10
57 4.22E-04 | 1.283 | 0.0375 | 0.0375 | 0.84 | 7.07E-10
58 4.22E-04 | 1.283 | 0.1125 | 0.0375 | 0.84 | 7.07E-10
59 4.22E-04 | 1.208 | 0.0375 | 0.0375 | 0.84 | 7.07E-10
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60 4.22E-04 | 1.208 | 0.1125 | 0.0375 [ 0.84 | 7.07E-10
61 3.14E-04 | 1.1365 | 0.034 | 0.041 0.84 | 7.07E-10
62 3.14E-04 | 1.1365 | 0.102 | 0.041 0.84 | 7.07E-10
63 4.22E-04 | 1.065 | 0.0375 | 0.0375 | 0.84 | 7.07E-10
64 4.22E-04 | 1.065 | 0.1125 | 0.0375 | 0.84 | 7.07E-10
65 4.22E-04 | 0.99 | 0.0375 | 0.0375 | 0.84 | 7.07E-10
66 422E-04 | 099 [0.1125 | 0.0375 | 0.84 | 7.07E-10
67 5.77E-04 | 0.9109 | 0.0413 | 0.0416 | 0.84 | 7.07E-10
68 5.77E-04 | 0.9109 | 0.1249 | 0.0416 | 0.84 | 7.07E-10
69 5.51E-04 | 0.8282 | 0.0435 | 0.0845 | 0.84 | 7.07E-10
70 5.61E-04 | 0.8282 | 0.1255 | 0.0845 | 0.84 | 7.07E-10
71 3.73E-04 | 0.7513 | 0.0385 | 0.0529 | 0.84 | 7.07E-10
72 3.73E-04 | 0.7513 | 0.1102 | 0.0529 | 0.84 | 7.07E-10
73 2.16E-04 | 0.6853 | 0.0325 | 0.0589 | 0.84 | 7.07E-10
74 2.16E-04 | 0.6853 | 0.081 | 0.0589 [ 0.84 | 7.07E-10
75 1.85E-04 | 0.6267 | 0.031 | 0.0604 | 0.84 | 7.07E-10
76 1.85E-04 | 0.6267 | 0.088 | 0.0604 | 0.84 | 7.07E-10
77 1.41E-04 | 0.5723 | 0.0285 | 0.0629 | 0.84 | 7.07E-10
78 1.41E-04 | 0.5723 | 0.0802 | 0.0629 | 0.84 | 7.07E-10
79 5.93E-04 | 0.0389 | 0.0445 | 0.1429 | 0.84 | 7.07E-10
80 5.93E-04 | 0.0389 | 0.0445 | 0.0589 | 0.84 | 7.07E-10
81 5.93E-04 | 1433 | 0.192 | 0.1125 | 0.84 | 7.07E-10
82 5.93E-04 | 1.349 | 0.192 | 0.1125 | 0.84 | 7.07E-10
83 593E-04 | 1.265 | 0.197 | 0.1125 | 0.84 | 7.07E-10
84 5.31E-04 | 1.1825 | 0.1985 | 0.1125 | 0.84 | 7.07E-10
85 5.31E-04 | 1.1015 | 0.1985 | 0.1125 | 0.84 | 7.07E-10
86 4.22E-04 | 1.0235 | 0.20156 | 0.1125 | 0.84 | 7.07E-10
87 4.22E-04 | 0.9485 | 0.20156 | 0.1125 | 0.84 | 7.07E-10
88 2.27E-04 | 0.8805 | 0.2015 | 0.1125 | 0.84 | 7.07E-10
89 1.95E-04 | 0.8201 0.2 0.1125 | 0.84 | 7.07E-10
90 111E-04 | 0.768 | 0.195 | 0.1125 | 0.84 | 7.07E-10
91 2.88E-04 | 1.717 | -0.033 | 0.1678 | 0.38 | 7.16E-10
92 4.65E-04 | 1.6452 | -0.039 | 0.162 0.84 | 7.07E-10
93 4.65E-04 | 1.5677 | -0.039 | 0.177 0.84 | 7.07E-10
94 1.74E-04 | 1.4998 | -0.029 | 0.1335 | 0.84 | 7.07E-10
95 4.22E-04 | 1.433 | -0.038 | 0.16 0.84 | 7.07E-10
96 422E-04 | 1433 | -0.113 | 0.15 0.84 | 7.07E-10
97 4.22E-04 | 1.358 | -0.038 | 0.1875 | 1.0849 | 8.63E-10
98 4.22E-04 | 1.358 | -0.113 | 0.1875 | 0.84 | 7.07E-10
99 4.22E-04 | 1.283 | -0.038 | 0.1875 | 0.84 | 7.07E-10
100 4.22E-04 | 1.283 | -0.113 | 0.1875 | 0.84 | 7.07E-10
101 422E-04 | 1.208 | -0.038 | 0.1875 | 0.84 | 7.07E-10
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102 4.22E-04 | 1.208 | -0.113 | 0.1875 | 0.84 | 7.07E-10
103 3.14E-04 |} 1.1365 | -0.034 | 0.177 0.84 | 7.07E-10
104 3.14E-04 | 1.1365 | -0.102 | 0.177 0.84 | 7.07E-10
105 4.22E-04 | 1.065 | -0.038 | 0.1875 | 0.84 | 7.07E-10
106 4.22E-04 | 1.065 | -0.113 [ 0.1875 ! 0.84 | 7.07E-10
107 4.22E-04 | 099 | -0.038 | 0.1875 | 0.84 | 7.07E-10
108 422E-04 | 099 [ -0.113 | 0.1875| 0.84 | 7.07E-10
109 5.77E-04 | 0.9109 | -0.042 | 0.1249 | 0.84 | 7.07E-10
110 5.77E-04 | 0.9109 | -0.125 | 0.1249 | 0.84 | 7.07E-10
111 5.51E-04 | 0.8282 | -0.044 | 0.1249 | 0.84 | 7.07E-10
112 5.51E-04 | 0.8282 | -0.126 | 0.1249 | 0.84 | 7.07E-10
113 3.73E-04 | 0.7513 | -0.039 | 0.1249 { 0.84 | 7.07E-10
114 3.73E-04 | 0.7513 | -0.11 | 0.1249 | 0.84 | 7.07E-10
115 2.16E-04 | 0.6853 | -0.033 | 0.1189 | 0.84 | 7.07E-10
116 2.16E-04 | 0.6853 | -0.093 | 0.1189 | 0.84 | 7.07E-10
117 1.85E-04 | 0.6267 | -0.031 | 0.1174 | 0.84 | 7.07E-10
118 1.85E-04 | 0.6267 | -0.088 | 0.1174 | 0.84 | 7.07E-10
119 1.41E-04 | 0.5723 | -0.029 { 0.1149 | 0.84 | 7.07E-10
120 1.41E-04 | 0.5723 | -0.08 | 0.1149 ( 0.84 | 7.07E-10
121 1.11E-03 | 0.4945 | -0.054 | 0.1149 | 0.84 | 7.07E-10
122 1.11E-03 | 0.3908 | -0.054 | 0.0887 | 0.84 | 7.07E-10
123 1.11E-03 | 0.2873 | -0.054 | 0.0887 | 0.84 | 7.07E-10
124 4.39E-04 | 0.1975 | -0.041 | 0.0887 | 0.84 | 7.07E-10
125 4.39E-04 | 0.1215 | -0.117 | 0.0887 | 0.84 | 7.07E-10
126 5.93E-04 | 0.0415 | -0.045 | 0.2269 | 0.84 | 7.07E-10
127 2.88E-04 | 1.717 [ -0.033 { 0.1018 | 0.38 | 7.16E-10
128 4.65E-04 | 1.6452 | -0.039 | 0.0845 | 0.84 | 7.07E-10
129 4.65E-04 | 1.5677 | -0.039 | 0.0995 | 0.84 | 7.07E-10
130 2.00E-04 | 1.4998 | -0.029 | 0.075 0.84 | 7.07E-10
131 4.22E-04 | 1433 | -0.038 | 0.075 0.84 | 7.07E-10
132 4.22E-04 | 1433 | -0.113 | 0.075 0.84 | 7.07E-10
133 4.22E-04 | 1.358 | -0.038 | 0.1125 0.1 5.31E-10
134 4.22E-04 | 1.3568 | -0.113 | 0.1125 | 0.84 | 7.07E-10
135 4.22E-04 | 1.283 | -0.038 | 0.1125 0.1 5.31E-10
136 4.22E-04 | 1.283 | -0.113 | 0.1125 | 0.84 | 7.07E-10
137 4.22E-04 | 1.208 | -0.038 | 0.1125 | 0.84 |7.07E-10
138 4.22E-04 | 1.208 | -0.113 | 0.1125 | 0.84 | 7.07E-10
139 3.14E-04 | 1.1365 | -0.034 | 0.109 0.84 |(7.07E-10
140 3.14E-04 | 1.1365 | -0.102 | 0.109 0.84 |7.07E-10
141 4.22E-04 | 1.065 [ -0.038 | 0.1125 | 1.11 | 8.31E-10
142 4.22E-04 | 1.065 | -0.113 | 0.1125 | 0.84 | 7.07E-10
143 4.22E-04 | 099 | -0.038 ) 0.1125 | 0.84 |7.07E-10
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144 422E-04 | 099 | -0.113 [ 0.1125| 0.84 | 7.07E-10
145 4.22E-04 | 1.358 | -0.038 | 0.0375 | 0.84 | 7.07E-10
146 4.22E-04 | 1.358 | -0.113 | 0.0375 | 0.84 |7.07E-10
147 4,22E-04 | 1.283 | -0.038 | 0.0375 | 0.84 |7.07E-10
148 422E-04 | 1.283 | -0.113 { 0.0375 | 0.84 | 7.07E-10
149 4.22E-04 | 1.208 | -0.038 | 0.0375 | 0.84 | 7.07E-10
150 4.22E-04 | 1.208 | -0.113 | 0.0375 | 0.84 | 7.07E-10
161 3.14E-04 | 1.1365 | -0.034 | 0.041 0.84 | 7.07E-10
162 3.14E-04 | 1.1365 | -0.102 | 0.041 0.84 | 7.07E-10
163 4.22E-04 | 1.065 | -0.038 | 0.0375 | 0.84 | 7.07E-10
154 4.22E-04 | 1.065 | -0.113 | 0.0375 | 0.84 | 7.07E-10
165 422E-04 | 099 | -0.038 | 0.0375 | 0.84 |[7.07E-10
156 4.22E-04 | 099 | -0.113 | 0.0375 | 0.84 | 7.07E-10
1567 5.77E-04 | 0.9109 | -0.041 | 0.0416 | 0.84 | 7.07E-10
1568 5.77E-04 |{ 0.9109 | -0.125 | 0.0416 | 0.84 | 7.07E-10
159 5.51E-04 | 0.8282 | -0.044 | 0.0845 | 0.84 | 7.07E-10
160 5.51E-04 | 0.8282 | -0.126 | 0.0845 | 0.84 |7.07E-10
161 3.73E-04 | 0.7513 | -0.039 | 0.0529 | 0.84 | 7.07E-10
162 3.73E-04 | 0.7513 | -0.11 | 0.0529 | 0.84 | 7.07E-10
163 2.16E-04 | 0.6853 | -0.033 | 0.0589 | 0.84 |7.07E-10
164 2.16E-04 | 0.6853 | -0.081 | 0.0589 | 0.84 | 7.07E-10
165 1.85E-04 | 0.6267 | -0.031 | 0.0604 | 0.84 | 7.07E-10
166 1.85E-04 | 0.6267 | -0.088 | 0.0604 | 0.84 | 7.07E-10
167 1.41E-04 | 0.5723 | -0.029 | 0.0629 | 0.84 | 7.07E-10
168 1.41E-04 | 0.5723 | -0.08 | 0.0629 | 0.84 |7.07E-10
169 5.93E-04 | 0.0389 | -0.045 | 0.1429 | 0.84 | 7.07E-10
170 5.93E-04 | 0.0389 | -0.045 | 0.0589 | 0.84 |7.07E-10
171 5.93E-04 | 1.433 | -0.192 | 0.1125 | 0.84 | 7.07E-10
172 5.93E-04 | 1.349 | -0.192 { 0.1125 | 0.84 |7.07E-10
173 5.93E-04 | 1.265 | -0.197 | 0.1125 | 0.84 | 7.07E-10
174 5.31E-04 | 1.1825 | -0.199 | 0.1125 | 0.84 | 7.07E-10
175 5.31E-04 | 1.1015 ] -0.199 | 0.1125 | 0.84 | 7.07E-10
176 4.22E-04 | 1.0235 | -0.202 | 0.1125 | 0.84 | 7.07E-10
177 4,22E-04 | 0.9485 | -0.202 | 0.1125 | 0.84 | 7.07E-10
178 2.27E-04 | 0.8805 | -0.202 | 0.1125 | 0.84 | 7.07E-10
179 1.95E-04 | 0.8201 | -0.2 | 0.1125] 0.84 | 7.07E-10
180 1.11E-04 | 0.768 | -0.195 | 0.1125 | 0.84 | 7.07E-10
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