
TRUST MODELII{G AI{D ITS APPLICATIONS

FOR PEER.TO.PEER. BASED SYSTEMS

UNIVERSITY of MANITOBA

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Farag A. Azzedin

August 2004

THE fINÏYERSITY OF MANITOBA

FACT]LTY OF GRADUATE STI]DTES
t&&&ú

COPYRIGHT PERMISSION

TRUST MODELING AND ITS APPLICATIONS

FOR PEER-TO.PEER BASED SYSTEMS

A ThesislPracticum submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

of

BY

Farag A. Azzedin

Permission has been granted to the Library of the University of Manitoba to lend or sell copÍes of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied

as permitted by copyright laws or with express written authorization from the copyright owner.

DOCTOR OF PHTT,OSOPHY

Farag A. Azzedin @ 2004

Acknowledgrnents

In the name of Allah, the Merciful, the Compassionate. Praise be to Him for His creation

and making me submissive to Him. Thanks to Him that He sent us the prophets to guide us

to the straight path.

I express my gratefulness to my supervisor Prof. M. Maheswaran, whose amazing pa-

tience, infinite help in all aspects, and non-stop support made me achieve what I did not

know I had in me. I can never thank him enough. I am also thankful to the thesis committee

members, Dr. J. Diamond, Prof. N. Arnason and Prof. P. Thulasiraman for giving me valu-

able suggestions, comments, and for evaluating this work. Also, I am very appreciative to

TRLabs and the University of Manitoba whose financial support made this thesis possible.

All the love is to my mother (Fatima) and my father (Ahmed). They are always in my

heart and mind, and whose my accomplishment in life is none but the result of Allah's

answering to their prayers and supplication to Him for my success.

Finally, I express my heartfelt gratitude to my wife (Ameena), whom whatever words of

thanks I say, they would not be enough to do justice to her. And to our children Muhammad,

Ahmed, Hala, and Fatima whom just remembering them makes me know what I want to

do in life.

iii

Abstract

Organizing large-scale network computing systems in a peer-to-peer (PZP) fashion is a

manifestation of one of the fundamental design principles on the Internet. Current research

is focusing on improvingP2P systems and one of the future directions is to combine P2P

and Grid technologies. One of the key issues identified in the evolution of P2P technologies

is the trust issue.

This thesis presents a trust model for P2P structured large-scale network computing

systems. The most widely used trust modeling approach is to use a network of recom-

menders to obtain references and use these to predict the trust between two entities. This

approach is known to suffer from drawbacks such as trustworthiness of the recommenders

and scalability.

To address this problem, a solution is proposed where a recommender is independently

evaluated using accuracy and honesty measures. This thesis explains using simulation

results how the separation of accuracy and honesty helps in addressing the above issues.

To demonstrate the utility of the trust model, a trust aware resource allocation model is

developed such that it can be used to make trust cognizant resource allocations. To the

best of our knowledge, this is the first study to integrate trust into resource management

systems. The simulation results indicate that significant preferences gain can be obtained

through this integration.

iv

Contents

Acknowledgments

Abstract

List of Tables

List of Figures

L Introduction

1.1 Security Versus Trust

1.2 Motivation

1.3 Trust Taxonomy

1.4 Thesis Overview

Literature Survey

2.1 Overview

2.2 Definitions

2.3 Models for Identity Trust

2.4 Models for Behavior Trust

2.4.I Reputation-basedModels

2.4.2 Hybrid-basedModels

111

iv

xi

XV

2.5 Limitations of Current Trust Models

v

2.4.3 Incentives-basedModels

I
1

4

6

10

12

T2

t3

t4

16

t7

25

34

36

2.6 Trust: Trends and Current Status

2.7 Summary

3 Tlust Terminology

3.1 Fundamental Trust Model Concepts

3.1.1 Identity Trust

3.1.2 Behavior Trust

3.I.3 Reputation

3.1.4 Honesty

3.1.5 Accuracy

Trust Model Elements

Assumptions of the Trust Model . . "

Computing Honesty and Accuracy

Computing Trust and Reputation

Trust Transaction Example

3.6.I Overview

3.2

J.J

3.4

3.5

3.6

3.1 Summary

3.6.2 Example

4 Mapping the TFust Model onto Network Computing Systems

4.I Overview of Network Computing Systems

4.2 Aggregating Network Computing Systems

4.3 Mechanisms for Mapping Trust

4.3.I Trust Representation and Usage

4.3.2 Coherent versus Incoherent Trust Models

39

40

42

42

42

43

45

46

47

47

48

49

53

55

55

60

61

69

69

7l

73

l3

l7

t9

824.4 Behavior Trust Illustration

4.3.3 Trust Evolution

VI

4.5

4.6

4.7

Trust Transaction Example 84

TrustModelrealismandlimitations 87

Summary 89

5 PerformanceEvaluation

5.1 Overview

5.2 Simulating Trust Model Performance .

5.2.1 Goals of the Simulation

5.2.2 Overview

5.2.3 Design and Exogenous Parameters .

5.2.4 Conceptual Model

5.2.5 InitializationPhase

5.2.6 Performance Metric

5.2.1 Event Generation

5.2.8 Event Generation Example

5.2.9 Implementation .

5.2.10 Verification and Validation

5.3 Simulation Results and Discussion

5.3.1 Overview

5.3.2 Coherent versus Incoherent Trust Models

5.3.3 Agility of the Trust Model . . .

5.4

9l

9l

92

92

92

95

99

101

t04

r04

108

tt2

tt4
t19

rt9

r20

t2l

t24

125

r25

126

126

126

5.3.4 Remarks

Simulating Recommender Set Variation

5.4.I Simulation Objective and Setup

5.4.2 Simulation Results and Discussion .

Simulating Updating Parameters

5.5.1 Goals of the Simulation

vii

5.5

5.5.2 UpdateAlgorithms

5.5.3 Simulation

5.5.4 Verification and Validation

5.5.5 Simulation Results and Discussion "

5.6 Summary

On the Scalability of The Tlust Model

6.I Overview

6.2 A Behavior Trust Cost

6.2.I Reputation Cost .

6.3

6.4

The Scalability Metrrc

Simulation

6.4.1 Goals of the simulation

6.4.2 SimulationSummary

6.4.3 Verification and Validation

6.4.4 Simulation Results and Discussion .

Evaluation of the Scalability Metric

Intra-NCD Costs

Summary

6.5

6.6

6.7

l2l
t29

130

131

148

1s0

150

t52

t54

158

159

t59

160

r6t

r62

163

168

170

17t

17I

t74

t76

t78

179

t79

7 Applications of the Ttust Model

7.1 Overview

1.1.I Evaluation of Security Overheads

1.2 A Trust Model for Peer-to-Peer Grids

7.3

7.4

Notation and Terminology

Resource Management Based on Security Overhead Minimization

1.4.I Overview

viii

7.4.2 Trust-aware Minimum Completion Time Algorithm

1.4.3 Trust-AwareMin-minAlgorithm

1.4.4 Trust-Aware Sufferage Algorithm

7.5

1.6

7.7

Analysis of the Trust-Aware Schemes

Practical Issues

Resource Management Based on Risk Minimization .

1.1.1 Overview

1.7.3 Trust Aware Maximum Risk Algorithm

7.8 Performance Evaluation of the Trust-Aware Algorithms

7.7 .2 Trust Aware Trade-off Algorithm

1.8.2 Overview

7.8.3 Design and Exogenous Parameters .

7.8.4 Conceptual Model

7.8.5 PerformanceMetrics

1.8.6 Event Generation

7.8.1 Implementation .

7.8.8 Verification and Validation

7.9 Simulation Results and Discussion

7 .9.1 Investigating Resource Allocation Based on Security Overhead Min-

7.8.1 Goals of the Simulation

r82

r82

183

184

186

t87

187

188

189

190

190

t9t
r92

195

196

198

201

202

204

imizatron . . .204

7.9.2 Investigating Resource Allocation Based on Risk Minimization . . 207

7.10 Summary ...208

I Conclusions and X'uture Work

8.1 Overview

8.2 Thesis Contributions

1X

zr'i.

2tt

2t3

8.3 Directions for Future V/ork . . 214

8.3.1 Dynamics of Trust . .2I4
8.3.2 Using Trust Decay to Shape the Recommender Set 215

8.3.3 Coherent and Incoherent Trust Models 215

8.3.4 ScalabilityattheNode-level216
8.3.5 Formal Trust Representation and Estimation 2Il

8.4 ConcludingRemarks217

Appendix A

Abbreviations used in this thesis . . 219

Appendix B

Calculating the success rate . . . 221

Appendix C

Perl script controlling the trust model simulation . . 222

Bibliography 224

List of Tables

1.1 Comparison of identity and behavior trust. 10

2.I Confidence Values. 20

2.2 Uncertainty values. 31

2.3 Summary of existing behavior trust models. 41

3.1 Description of the different trust levels 45

3.2 The behavior trust terms used by entity r. 56

3.3 Accuracy computation for recommenders inT*. 66

4.I An example of a direct trust table maintained by NC Dr. 74

4.2 Anexampleofarecommendertrusttablemaintainedby NCDr. 75

4.3 An example of a global direct trust table. 76

4.4 A coherent global direct trust table. 79

4.5 An incoherent global direct trust table. 19

4.6 Outcome of tests performed in Example 3.6.2by NC Dr. 84

4.1 Updates process performed by NC D,. 86

5 . 1 Initial recommender trust table maintained by N C D ,. 95

5.2 Design parameters used in the simulation. 97

5.3 Exogenous parameters used in the simulation. 98

5.4 An actual direct trust table example. Element in row ,l column j , T L¿j :
direct trust by NC Di in NC D¡. . . . 102

xi

5.5 A computed direct trust table example. Element in row d column j , T L¿j :
direct trust by NC D¿ in NC D¡.

A predicted direct trust table example. Element in row ,i column j,TL¿j :
direct trust by NC Di in NC D¡.

5.6

5.7 The structure of an event.

5.8

5.9

5.10

5.1 1

5.r2

5.13

5.14

A relation event created by NC Dr.

Recommendation events created by NC D".

A reply event created by 11. .

Recommendation events created by ,r.

A reply event created by
"r.

A reply event created by 12. . .

A recommender trust table maintained by NC D, that has active and inac-

tive recommenders.

Meaning of the command line arguments.

Using the accuracy and consistency measures: Success rate using a coher-

ent and incoherent trust models using 150 transactions per relation.

5.15

5.16

5.17 Success rate for a coherent trust model using the accuracy measure.

5. 1 8 Success rate for a coherent trust model using the accuracy and the consis-

tency measures.

6.1 Access costs for DTT¡¡sp" and RTT¡¡çp".

6.2 Comparison of average number of messages for various number of NCDs.

6.3 Success rate for different number of NCDs where half of the NCDs are

dishonest, a : 0.5, and number of transactions per relation : 50.

6.4 Trust model scalability with various number of NCDs where half of the

NCDs are dishonest, s : 0.5, monitoring frequency - 5, and number of

transactions per relation : 50.

7 .1 Secure versus regular transmission for a 100 Mbps network.

xii

102

103

105

109

109

109

110

110

111

TT2

113

120

136

t40

154

1,65

t66

167

174

7.2 Secure versus regular transmission for a 1000 Mbps network. 175

7.3 An example of a direct trust table between NCDs. . . 177

1.4 the trust supplement table. . . 118

7 .5 An example execution time matrix. Element in row z column j, ET(i., j) :
execution time of task z if assigned to machine 7. . . 193

1.6 Design and Exogenous parameters used in the simulation. . . 194

1.1 An examplecompletiontimematrix. Elementin rowi column j, CT(i, j) :
completion time of task i if assigned to machine 7. 200

1.8 Anexamplecompletion time matrix. Elementin row'i column j, CT(i, j) :
completion time of task z if assigned to machine 7. 200

7 .9 A processing time matrix. Element in row i column j, PT(i,/) : total

processing time if task i assigned to machine 7. . . . 202

7.10 Events generated from running a simulation example. 203

7.1 1 Comparison of average completion time for inconsistent LoLo heterogene-

ityusingtheMCTheuristic.204
7.T2 Comparison of average completion time for consistent LoLo heterogeneity

using the MCT heuristic. . . . 205

7.13 Comparison of average completion time for inconsistent LoLo heterogene-

ity using the Minmin heuristic. 205

7 .14 Comparison of average completion time for consistent LoLo heterogeneity

using the Minmin heuristic. . . 205

7. i5 Comparison of average completion time for inconsistent LoLo heterogene-

ity using the Sufferage heuristic 206

7.16 Comparison of average completion time for consistent LoLo heterogeneity

using the Sufferage heuristic . . 206

7 .I7 Expected and actual makespans of various resource management algorithms

using an inconsistent LoLo heterogeneity . . 209

xiii

7.18 Expected and actual makespans of various resource management algorithms

usingaconsistentloloheterogeneity210

xlv

List of Figures

1.1 Trust taxonomy for online systems 7

3.I Source entity r initializes its recommenders in R,. 57

3.2 Behavior trust steps. 57

3.3 computationof O(r,A,t,c). 58

3.4 Consistencycheckperformedbyr.. 58

3.5 Adjusting the recommendations made by r's recommenders. 59

3.6 Update process. 59

3.7 The different components of the trust model. 6l

4.1 Block diagram of the overall network computing system trust model. 73

4.2 An example of a recommendation tree existing in a trust relationship 17

4.3 Trust Development Cycle. 83

5.1 Simulation model. 96

5.2 Simulationcontrolflow.. ...101

5.3 Event generation flow control. I07

5.4 For zero dishonest NCDs out of 30 NCDs: Success rate for a coherent trust

model using the accuracy measure where the monitoring frequency is: (a)

1, (b) 5, (c) 10, and (d) 20. . . 133

XV

5.5 For 15 dishonest NCDs out of 30 NCDs: Success rate for a coherent trust

model using the accuracy measure where the monitoring frequency is: (a)

1, (b) 5, (c) 10, and (d) 20. . . 134

5.6 For 20 dishonest NCDs out of 30 NCDs: Success rate for a coherent trust

model using the accuracy measure where the monitoring frequency is: (a)

1, (b) 5, (c) 10, and (d) 20. . . 135

5.1 For zero dishonest NCDs out of 30 NCDs: Success rate for a coherent

trust model using the accuracy and the consistency measures where the

monitoring frequency is: (a) 1, (b) 5, (c) 10, and (d) 20. . . . 137

5.8 For 15 dishonest NCDs out of 30 NCDs: Success rate for a coherent trust

model using the accuracy and the consistency measures where the moni-

toring frequency is: (a) 1, (b) 5, (c) 10, and (d) 20. " 138

5.9 For 20 dishonest NCDs out of 30 NCDs: Success rate for a coherent trust

model using the accuracy and the consistency measures where the moni-

toring frequency is: (a) 1, (b) 5, (c) 10, and (d) 20. 139

5.10 Recommenders set variation's affect on success rate for a coherent trust

model using the accuracy measure where the monitoring frequency is: (a)

5.11 Recommenders set variation's affect on success rate for a coherent trust

model using the accuracy and consistency measures where the monitoring

frequency is: (a) 1, (b) 5. . . . 142

5.12 Estimating the trust level using an EWMA filter scheme. . . 143

5.13 Estimating the trust level using a MFF filter scheme. 144

5.14 Estimating the trust level using a V/MFF filter scheme. . . . I45

5.15 Comparison of different schemes used to estimate the trust level. 146

5.16 Estimating the trust level using a LMFF scheme. . . 147

6.1 Behavior trust steps. . . 153

xvi

1, (b) 5. t4t

6.2

6.3

6.4

6.5

Reputation steps.

The function of seeking reputation.

The function of recommendation request.

A network computing domain (NC Dù selecting its target NCDs following

auniformdistribution162
A network computing domain (NC Dù selecting its target NCDs following

a normal distribution . . 163

RMS scheduling algorithm using the minimum completion time heuristic. . 183

RMS scheduling algorithm using the min-min heuristic. . . . 183

RMS scheduling algorithm using the sufferage heuristic . . . 185

Simulationmodel. ...I92
Generating the execution time matrix. I93

Simulationcontrolflow.. ...196
Eventgenerationcontrolflow.I99
Calculatingthesuccessrate.22I
Perl script controlling our trust model simulation process. . . 223

6.6

1.1

1.2

1.3

7.4

1.5

7.6

1.1

8.1

c.1

155

156

151

xvll

TIIAY

Chapter 1

Introduction

L.L Security Versus TFust

As we move towards the continued growth of computing opportunities, the relationship be-

tween security and trust is becoming the focus of many researchers and businesses [1, 2, 3].

Trust is emerging as a fundamental part of the Internet of tomorrow [4]. Currently, security

mechanisms do not say anything about trust [1, 5]. For example, a hostility behavior of a

code can not be determined by any level of cryptography t6l. The term soft security, which

we refer to as trust, is used in [6, 7] to describe a "social control" model which acknowl-

edges that malicious entities may exist among harmless ones in online communities.

Online communities are facing increasing challenges. The network information sys-

tems are vulnerable to technical failures as well as malicious attacks [8]. If customers

or clients refuse to engage in online activities because they are fearful that they will be

cheated, have their confidential data stolen, or overcharged for online services; then online

communities will not survive [9]. Similarly, if online businesses stay away fearing costly

losses from such actions as customers or clients failing to pay bills, repudiating debts or

1

commitments, or clients running illegal or nefarious programs; then again online commu-

nities will not survive.

Can the solution to the above concerns be provided by suites of technical security mech-

anisms seeking to create "trusted" or rather trustworthy systems? In other words, can we

suggest that trust is provided through security? It turns out that security does not give trust

[1, 5, 3]. If your neighbor is a thief, you will not leave your car unlocked. But if there

is a guard watching your car, you can leave your car unlocked. You feel certain and safe

because of the presence of the guard, but still you do not trust your neighbor. Security

(as provided by the guard in our example) gives certainty and safety, whereas trust gives

vulnerability and risk [10, 11, I2]. For example, one feels safe and certain because the

enemy is behind bars but still has no trust in that enemy.

We might think that as long as certainty and safety are provided, trust seems not to be

needed. In the online world, neither certainty nor safety can be achieved . As stated in

[10, 3], there is no such thing as absolute online certainty and safety. Even if we achieve

a reasonable level of certainty and safety, the price of certainty and safety is limitation

[3, 1] because we have yet to establish a method of assuring certainty and safety without:

a) limiting the range, nature, and scope of on-line interaction, b) acceptance of greater

surveillance, and c) the need to make prior judgments about whom we will or will not

interact with. In general, we trade freedom and range of opportunity for this certainty and

safety [1, 9].

In other words, security limits choice and allows retention; whereas trust creates oppor-

tunities and allows growth [10, 3]. Security systems such as surveillance that involve close

monitoring and watching are not just costly for an organization, but also can undermine

trust and elicit the very behaviors they are intended to prevent tll. I quote from [9] "if

heavy regulations is capable of eradicating overtures of trust, and of driving out opportuni-

ties for trusting relationships, then it is capable of doing great harm".

Chapter 1 : Intrcduction

1.1 : Security VersusTrust

In addition, online security has draw backs because: a) betrayal comes from those al-

lowed within our spheres of safety and within our safe zones [13, 1]. For example, while

firewalls are used to protect assets from external attacks, it is still the insiders (e.g., com-

pany's employees) who can accidentally or intentionally do great amount of damage, b)

security does not necessarily change the attitude of the "bad guys" [9]. Online security

mechanisms such as firewalls, encryption, and access control would no more prevent on-

line hackers than prison bars and surveillance cameras could achieve offline, and c) having

achieved some modes of safety and certainty through security and relying on them, we

might not notice a failure until considerable damage is done [14, 15]. For example, patches

are released frequently to fix bugs in programs that we rely on to provide security U6,l7l.
That is, on-line security is not bullet-proof and by solely relying on it, we might not notice

a compromise until considerable damage has been done. For example, there are regular

announcements of security flaws [18] and that several security flaws have been reported

since Sun Microsystems [19] announced Java. Unfortunately, anti-virus software can not

help much. If a virus can infect 1.2 million computers (one estimate of Melissa infections)

in the hours before a fix is released, that is a lot of damage [15]. Further, Not all users are

particularly diligent about installing security patches. A case study in [14] reports that75%

of users had failed to upgrade their Apache servers months after the Apache vulnerability

was known.

Trust is an attitude and involves at least a trustor and a trustee [20]. In trusting, we are

acknowledging the other as a free agent and this is part of the exhilaration both of trusting

and being trusted. Where people are guaranteed safety, where they are protected from

harm, and if all other persons act under coercion, then trust is redundant [9, 1]. If there is

security, there is no place for trust and trust is squeezed out of the picture. The signs that

give evidence of the reasonableness of trust must always fall short of certainty [10]. Trust

is an attitude without guarantees and without complete warranty [5, 10].

1.2 Motivation

The peer-to-peer (PzP) computing is one of the technologies that is having a significant

impact on the way Internet-scale systems are built. It is well established for applications

such as file sharing (e.g., Gnutellal2ll andKaZZal22l) and parallel distributed computa-

tion (e.g., SETI@home 123)). The popularity of P2P computing has prompted the research

community to examine several aspects of it. One aspect is to extendPZP computing to

host a wider variety of applications. Several approaches including the following have been

investigated to achieve this goal: (a) constructing generalized P2P overlays 1241, (b) using

P2P overlays as resource provisioning systems for resource management infrastructures

such as Grid systems [25], and (c) hybrid systems that combine P2P and Grid computing

techniques [26].

One of the issues that is common to all these approaches is trust 126, 2'7 , 28, 21, 29, 3Ol.

The manifestation of trust as a crucial issue can be understood by closely looking at tra-

ditional P2P applications. In file sharing and parallel computations, a massive redundancy

approach is followed. In this approach, the objective is to make the hosted service (in the

case of file sharing, the access to files) immune to individual resource failures or misbe-

havior. While this approach yields robust service for applications such as file sharing, it is

not suitable for sensitive applications such as hosting databases or storing medical images.

One of the causes of this situation is the massive redundancy approach itself. Because of

massive redundancy, a peer by itself has very little value to the P2P system in which it is a

member. As a result, the peer has little incentive to contribute towards the overall goal of

P2P system and usually ends up pursuing its own agenda. This has been observed in real

P2P systems such as Gnutella as the free riding phenomena l2ll and also philosophically

referred to as the "tragedy of the commons" [29]. The importance of trust can be further

understood by examining the following scenarios: (a) accountability on the resource side

[29] and (b) resource sharing in hostile versus friendly environments [8, 10].

Chapter 1 : Introduction

1.2: Motivation

As P2P systems are generalized, we need to manage the resources to deliver predeter-

mined levels of service. One of the requirements to deliver acceptable levels of service is

accountability on the resource side [29], For example, a resource should be accountable for

promising services and not delivering them. One way of holding a resource accountable is

to maintain a trust parameter dedicated to the resource and update it accordingly.

One of the objectives of resource sharing is to increase some measure of the overall

work done by the collection of resources. In a hostile environment, resource sharing re-

quires stringent security measures to protect resources as well as the consumers. The over-

head of security provisioning can negate the performance advantages targeted by resource

sharing. If the expected trust levels among the different entities are known, the sharing

relationships can be confined to mutually trusting entities and consequently the security

provisioning overhead can be reduced.

Being part in aP2P computing system, a client has the privilege of using pools of re-

sources or services that would not be available to it otherwise. Unfortunately, the idea of

having a virtual network framework is not attractive because of the risk associated with the

notion of "sharing" resources or services [8, 9, 31,2]1. Because of the sensitivity and the

vitality of data or information, such clients prefer to use their own "closed box" resources.

This is not just costly but also an inefflcient way to utilize resources. Clients and resources

(also referred to as entities) perceive such an environment as offering both opportunities

and threats [10]. Factors affecting trust for entities include security risks, privacy issues,

and vulnerability to harm due to malicious attacks. It is in this environment of risk and

uncertainty that mechanisms must develop strategies to establish trustworthiness. Conse-

quently, systems should aid entities in assessing the level of trust they should place on

online transactions.

L.3 Tþust Taxonomy

The evolution of trust is one of the most profound and irreversible changes in online sys-

tems [4]. Users of the Internet consist of parties with different motivations. This implies

that mechanisms that manage interactions on the basis of trust should be a fundamental

and an integral part of online transactions [9, 4]. The notion of trust is more than creating,

acquiring, and distributing credentials such as identities or certificates. A peer might be

identified, authenticated, and authorized, but this does not ensure that it exercises its autho-

rizations in a way that is expected [32,31]. In general, trust is a complex concept that has

been addressed at different levels by many researchers 133,34,5, 351. This thesis classifies

trust into two categories (a) identity trust and (b) behavior trust. Figure 1.1 shows a trust

classification scheme. Identity trust can be further classified into the identity of an object

or an entity. An object can be static as well as dynamic or executable data. Therefore, an

object can be a stored object or an object in transit. An entity can be the originator or a

recipient of an object. These two types of entities have different trust concerns as we will

see later. On the other hand, behavior trust can be attached to the behavior of an entity or

the behavior of an object.

Identity trust is concerned with verifying the authenticity of an entity and determining

the authorizations that the entity is entitled to access [36]. Identity trust is based on tech-

niques including encryption, data hiding, digital signatures, authentication protocols, and

access control methods. An entity might be concerned with verifying the authenticity of

the originator or the recipient of an object. For example, an entity might be concerned with

delivering its object to the intended recipient(s) and not its competitors. An entity might

also be concerned with the authenticity of the received object. Usernames, passwords,

smart cards, digital signatures, and public key infrastructure [13] are techniques used for

identifying and/or authenticating the originator or the recipient of an object.

An entity can also be concerned with the privacy or the integrity of the received object or

Chapter 1. : Introduction

1.3: TrustTaxonomy

identity behavior
I

object entity object entity

ll

trust

storage

its own object. Privacy is concerned with the secrecy of the object. An object stored on an

entity's resources should only be accessible by authorized entities while an object in transit

should not be accessible by any other entity as in man-in-the-middle attacks. Integrity

means that the object stored in an entity's resources can not be accidentally or maliciously

modified; whereas integrity for an object in transit means that the object received is the

object that was sent. Access control, encryption methods, IP Security (IPSec), Secure

Sockets Layer (SSL), checksums, and message integrity codes [13] are techniques used for

ensuring the object's identity trust.

On the other hand, behavior trust deals with a wider notion of an object's or an entity's

"trustworthiness". Behavior trust can be of concern because of the behavior of the entity.

A malicious web server could accept to host Web document replicas and deliver modified

versions to the user or refuse requests directed to these replicas [37]. In this case, the

behavior trust of an entity (i.e. the web server) should be monitored to assure compliance

with expected behavior. Behavior trust of an entity can be examined in different ways

including: a) entity's accessibility: is the entity up most of the time, b) entity performance:

transit originator recipient

Figure 1.1: Trust taxonomy for online systems

measures the response time of the entity, and c) honesty of the entity.

Behavior trust can also be of concern because of the behavior of the object itself. For

example, a digitally signed certificate does not convey if the issuer is an industrial spy and

a digitally signed code does not specify if the code is written by competent programmers

[5]. The behavior of such digitally signed executable code when executed on the resources

of entity z might not comply with the privacy or system regulations and policies of entity

r. It should be noted that: if the object is static as in an e-mail text message, then there is

no object behavior trust issue. An object behavior trust issue arises only when the object

contains a dynamic or executable data.

Table 1.1 illustrates the difference between identity and behavior trust and shows why

it is important to model behavior trust over the identity trust. Identity trust forms the basis

for providing trust in any system. Without identity trust, we can not build behavior trust

132, 38, 31. For example, in 1271, trust is managed at two-levels: (a) the identity-level,

where a"real world" identity is bound to an entity. This can be established by identif,cation,

authentication, and authorization techniques and (b) the behavior-level, where the behavior

of an entity is monitored and managed. Knowing the identity of an entity enables recourse

through the courts if deemed necessary [27].

The cost of evaluating the level of trust for identity trust is straight forward. The level

of trust for identity trust is either 0 or 1. For example, the identif,cation and authentication

process (typically called "Login") starts with the user identifying himself by supplying

his identity. The level of trust here is either successful Login (i.e., 1) or unsuccessful

Login (i.e., 0). Because the identification and authentication process is based on the user's

identity, the computational cost of the identification and authentication process is the same

(i.e., fixed and does not change over time) whether it is the first or the tenth time the user

is logging into the system. Also, identity trust does not change often. Entity z is known

as r and object z is known an z unless they are given new identities. So, the changeability

of identity trust is not controlled by the owner but rather it is imposed by an external entity

Chapter 7 : Introduction

1.3 : TrustTaxonomy

such as a system administrator. That is, identity trust is granted and it can not be developed

over time. An entity does not develop its identity based on its behavior, but rather the

identity is granted by some authoritative entity such as a system administrator.

If entity r requires a new identity by, for example, losing its identity, the identity can

be easily replaced. As soon as an entity gets an identity, this identity establishes itself in

the system. For example, if the entity r wants to access a remote data, the remote server

checks its access list. If r is in the access list, the remote server grants u access to the data.

Otherwise, z is denied access to the data. The establishment of z in the remote server's

access list does not evolve, but rather is either 0 or 1 (i.e., either z is in the access list or

not).

On the other hand, behavior trust is built as another layer to identity trust [32, 3,27,

28]. However, the cost structure associated with providing behavior trust is more complex

than the identity trust. For example, since behavior trust can be based on experience over

time, the cost structure associated with establishing initial behavior trust is complex and

challenging for newcomers in an online environment [10]. The cost of allowing entity r
or entity gr to access certain resources depends on the trustworthiness of these two entities

[5, 39]. The more trustworthy an entity is, the lesser concern and the lesser cost that need to

be employed to guard these resources from it. Behavior trust changes more often depending

on the behavior of the entity. Furthet behavior trust is gained and not given [10, 40]. An

entity can approve or disapprove itself as being trustworthy to other entities. If entity r
loses its trustworthiness because of its misbehavior, z's trustworthiness can not replaced

t401. An entity needs to gain its trustworthiness by interacting with other entities and

correcting its reputation. This process is not as fast as replacing an identity. It takes more

time to gain the trust of other entities from the behavior point of view. Other entities'

perception of entity r to be trustworthy or not is learnt gradually through interaction with

ir [40].

10

Table 1.1: Comparison of identity and behavior trust.

Trust
attribute

Importance

1.4 Thesis Overview

Chaneeability
Cost

Chapter 1 : Introduction

Creation
Replacement

ldentity
trust

In this thesis, a trust model for network computing systems is presented. The trust model is

defined and the schemes used in the model are described. Peer-reviews are one of the key

mechanisms in this trust model. The model presents a concept of accuracy to enable peer

review-based mechanisms to function with imprecise trust metrics, where different peers

can evaluate the same situation differently. By introducing a concept of honesty, the trust

model handles situations where peers intentionally lie about others for their own benefit.

Simulation studies demonstrate that these two conditions can be handled by the trust model

mechanisms. Further, the simulation studies show the importance of properly handling

these conditions for trust modeling that uses P2P reviews.

To improve the overall scalability and efficiency, we use aggregation to segment the net-

work computing system into domains. A domain assumes the responsibility of managing

the trust of the set of resources within it by estimating the best trust levels for the resources,

using the trust levels to group the resources into clusters, representing the resources to other

Propagation

basis (foundation)

Perception

straight forward
very seldom

granted

Behavior
trust

immediate
yes

layer
complex

exists

frequent
developed

with time
no

learned

1.4 : Thesis Overview

domains, and penalizing or rewarding the resources for their behavior. One of the advan-

tages of the two-level trust model is the facility to include different initial trust levels into

the model for new resources. In addition, the trust notion managed by this model is used in

resource management systems to optimize the operation of a large-scale distributed system

such as Grid [41]. Simulation studies indicate that the performance resource management

systems can improve the overall quality of the schedules obtained by the allocation process.

In the rest of this thesis, unless explicitly stated, trust refers to behavior trust. The rest

of the thesis is organized as follows. Chapter 2 examines the related literature and gives

background information on identity as well as behavior trust models. Chapter 3 defines

the notions of accuracy, honesty, trust and reputation. Mechanisms for computing these

notions are outlined in Chapter 3 as well. Mapping the trust model onto a P2P system

is presented in Chapter 4, while Chapter 6 discusses the scalability of the trust model.

Chapter 5 outlines simulation studies performed to evaluate the trust model and discusses

their results. Chapter 7 presents a case study designed to investigate the utility of the trust

model. Simulation studies are also performed in Chapter 7 to investigate the effectiveness

of the utility of the trust model. The thesis closes with future work and conclusions in

Chapter 8.

11

Chapter 2

Literature Survey

2.1 Overview

This chapter provides a detailed description of literature related to trust modeling, examines

each one of them, and highlights the unique aspects of the proposed trust model from the

existing ones. Section2.2 introduces and defines some terms used in the rest of the chapter.

These terms are formally defined in Chapter 3 but included here for completeness purposes.

The related work done pertaining to trust modeling is grouped into two main categories:

(a) Models for identity trust (Section 2.3) and (b) Models for behavior trust (Section 2.4).

We will use the term identity trust to mean security. Although identity trust is not directly

related, the chapter includes a general survey of identity trust models to give a full picture

of the "trust" notion. For the relevance and distinction between identity and behavior trust,

please refer to Section 1.1.

The primary emphasis will be on modeling behavior trust which is the focus of the

thesis. Behavior trust models can be categorized into three groups. First, reputation-based

12

2.2: Defrnitions

models, where a reputation management system gathers, distributes, and aggregates re-

views about participants' behavior. These mechanisms help participants in making deci-

sions about whom to trust and also provide an incentive for honest behavior. Second, direct

and reputation-based (hybtid) models, where a peer relies on its own experience as well

as reviews from other peers to make a trust decision. In the hybrid models, a peer has

the flexibility to weigh the two components (direct experience and reputation) differently.

Third, incentive-based models which use market-based or payment mechanisms to give an

incentive to the buyer or the seller in such a way that they do not just honestly reveal their

trustworthiness but also benefit from the trade. Incentive-based models discussed here are

applicable for E-commerce environments. Incentive-based models refer to the reputation

and hybrid-based models as thresholdmodels because reputation-based models and hybrid-

based models assume that a peer will only engage in a trust relationship if the level of trust

exceeds some particular threshold (i.e., an acceptable level of trustworthiness). Incentive-

based models are proposed to ensure that it is in the best interest of a peer to honestly report

information.

Section 2.5 highlights the limitations of the existing trust modeling approaches and

how our proposed trust model overcomes these limitations, while Section 2.6 provides

references to some trust working groups and the current status of trust modeling. Section

2.7 closes the chapter.

T3

2.2 Definitions

For completeness and clarification purposes, we include the definitions of trust terms used

in this chapter. Motivations of using these terms in our behavior trust model, their quantifi-

cations, and how to compute and use them are explained in Chapter 3. The following are

definitions of identity trust, behavior trust, reputation, honesty, and accuracy, respectively.

T4

Identity trust is concerned with verifying the authenticity of an entity and de-

termining the authorizc¿tions it is entitled to access.

Behavior trust is thefirmbelief inthe competence of an entity to act as expected

such that this firm belief is not a fixed value assocíated with the entity but rather

it is subject to the entity's behavior and applies only within a specific context

at a given time.

The reputation of an entity is an expectation of its behavior based on other enti-

ties' observations or the collective information about the entity's past behavior

within a specífic context at a given time.

Entity n is said to be honest if the information, pertaining to a specific entity

within a specific context at a given time, received r is the same information

that r believes in.

An entity is said to be accurate, if the deviation between the information re-

ceivedfrom it pertaining to the trustworthiness of a given entity E in a specific

context at a given time and the actual trustworthiness of E within the same

context and time is within a precision threshold.

Chapter 2 : Literature Survey

2.3

Trust models such as PGP [33] and X.509 [34] as well as trust management applications

such as PolicyMaker l42l and KeyNote l43l are concerned with identity trust. PGP and

X.509 are two of the main trust models used for authentication using digital certificates

based on public key cryptography. That is, these two models can be used to guarantee the

identity of the originator or the recipient of the object. PGP's digital certificates are used

primarily for privacy and authentication relating to e-mail type of applications between

Models for Identity T[ust

2.3 : Models for Identity Trust

human users. PGP trust model assumes no centralized or hierarchical relationship between

certification authorities [44].

On the other hand, X.509 is a strictly hierarchical trust model used for authenticating

web transactions (i.e., authenticating the user or the web server) by offering a digital cer-

tificate as a proof of identity. Digital certificates such that issued by PGP and X.509 do not

bind access rights to the owner of the public key. PolicyMaker and KeyNote specify the

access rights of a public key. Knowing what a public key is authorized to do, can be used

to enforce secrecy and integrity of a stored object.

The Secure Sockets Layer (SSL) [45] is a trust model that provides application encryp-

tion for Web browsers and it protects the secrecy and integrity of an object sent from an

application that uses SSL. That is, it is a protocol that protects data sent between 'Web

browsers and'Web servers by insuring that the data came from the Web site supposed to

have originated from and that no one tampered with the data while it was being sent. For

example, SSL is used in virtually all the encrypted e-commerce credit-card transactions

today. Any Web site address that starts with "https" has been SSl-enabled.

IP Security (IPSec) [a6] is a standard suite of protocols that ensure private and trusted

communications over IP networks. In other words, while the object is in transit, IPSec

ensures the secrecy and the integrity of the object. IPSec achieves this by implementing

network layer encryption and authentication providing an end-to-end object identity trust

solution.

In 1411, a security architecture for a Grid system is designed and implemented in the

context of the Globus system [48]. In 1471, the security policy focuses on authentication

and a framework to implement this policy has been proposed. Authentication is provided

so that users and resources can identify and verify themselves when creating computational

entities (i.e., processes).

A design and implementation of a secure Service Discovery Service (SDS) is presented

in [a9]. SDS can be used by service providers as well as clients. Service providers use

15

l6

SDS to advertise their services that are available or already running while clients use SDS

to discover these services. In SDS, privacy and integrity are maintained via encryption of

all information sent between system entities.

Identity trust mechanisms do not consider behavior trust which changes over time and

thus these approaches have no mechanisms to monitor behavior trust relationships. In

addition, these trust models and trust management applications do not recognize the need

for entities to learn from past experiences in order to dynamically update their trust levels

144,311.

2"4 Models for Behavior TFust

Before r decides to have a transaction with gr, it might want to determine the reputation

of y to assess the risk involved with the transaction. Therefore, z might have to manage

two different kinds of information. One resulting from its own experience (i.e., direct trust)

and the other resulting from gathering recommendations about U (i.e., reputation of A).

Therefore, trust models can be based on reputation or on direct trust and reputation. Trust

models can be incentive-based as well. Incentive-based mechanisms discussed here are of

two types:

o A solution proposed as an alternative to reputation-based models. The claim is that

if incentives are made to gr such that y honestly reveals its trustworthiness, then the

collection of reputation information is not needed and thus trust management costs

can be reduced.

o A solution to make reputation-based models incentive-compatible. That is, to ensure

that it is in the best interest of an entity to honestly share reputation information.

Thus, this section classifies behavior trust models into: (a) reputation-based models, (b)

direct trust and reputation-based (hybrid) models, and (c) incentive-based models.

Chapter 2: Literature Survey

2.4 : Models for Behavior Trust

2.4.1 Reputation-based Models

A Reputation-based Tiust Model for Feer-to-Peer eCommerce Communities

A reputation-based trust model is presented in [50] for P2P electronic communities. In

eCommerce P2P settings, peers often have to interact with unfamiliar peers and need to

manage the risk that is involved with the ìnteractions. One way to help minimize such

risk is to use reputation-based reviews to help evaluate the trustworthiness and predict the

future behavior of target peers. In [50], authors introduced a trust model called PeerTrust.

In PeerTrust, the trustworthiness of a peer is evaluated in terms of reputation it receives in

providing service to other peers in the past. After each transaction, the two participating

peers give feedback about each other on the current transaction. For example, after peer

z interacted with peer U, z gives feedback according to its satisfaction with interacting

with gr and gr gives feedback according to its satisfaction in interacting with r. That is, each

peer is bound to give feedback after each transaction. Feedback is collected by a distributed

feedback system within PeerTrust. Each time when a source peer is interested in evaluating

the trustworthiness of a target peer, the source peer has to retrieve the feedbacks of other

peers which have interacted with the target peer.

For example, suppose that peer z wants to determine the trust level of peer U. Let

/(g) denote the total number of interactions peer E engaged in for a specific period of time,

p(A,i) denote other participating peer in g's'ith interaction, S(A,i) denote the satisfactiony

receives fromp(E, z) in its 'dth interaction, and Cr(p(U,e)) denote the credibility of the feed-

back submitted by p(A , i). The value S (U , i) is between 0 and 1 and quantifies the amount

of satisfaction gr receives from p(A,i) in its zth interaction. The value Cr(p(A,z)) can be

quantified by using a function of the trust level of a peer. That is, feedback from trustwor-

thy peers are considered more credible and thus weigh more than those from untrustworthy

peers.

T7

18

Then, r can quantify gr's trust level as follows:

After ø collects the feedback from other peers that have interacted with E, z computes

the trust level of y by averaging the credible amount of satisfaction gr receives for each

transaction performed. A simple rule of determining gr's trustworthiness can use a threshold

value. If f (g) is greater than the threshold value, then r considers y to be trustworthy.

Otherwise, E is considered to be untrustworthy.

One limitation of this model is that it has no mechanism for preventing a dishonest

peer from inserting arbitrary bogus number of feedbacks and potentially causing a denial

of service attack. Further, this mechanism does not prevent cheating via collusion, where

a group of peers secretly agree or cooperate especially for an illegal or deceitful purpose.

In addition, this approach has no mechanism for filtering out and isolating dishonest peers

from the reputation network. A peer gathers feedbacks from other peers regardless of their

honesty. This practice is not just inefficient, but also gives continued opportunities for

dishonest peers to damage and influence the feedback-based reputation network. Because

our model uses the honesty concept, such dishonest peers will be detected and isolated

from the feedback-based reputation network. Furthet our trust model prevents cheating via

collusion by introducing the concept of accuracy, which enables our trust model to adjust

each recommendation and ensures that the received information pertaining to a target peer

is as close as possible to the trustworthiness of the target peer.

A Reputation-based Approach for Choosing Reliable Resources in Peer-to-Peer Net-

works

r(v) : Ðíl? s@,i) cr(p(y,i,))

Chapter 2 : Literature Survey

t(u)
(2.r)

A

in

reputation-based approach focusing on P2P applications for file exchange is proposed

[51]. This approach extends Gnutella-like [52] environments by guiding peers in their

2.4 : Models for Behavior Trust

decision making on the file to download as well as the peer offering the file. This approach

is motivated by the fact that P2P file sharing applications introduce a whole new class of

trust threats such as distributing viruses or Trojan horses.

In [51], each peer has a unique identifier (i.e., peer-id) being a digest of the peer's

public key, obtained using a secure hash function. In addition, each file is associated with

a digest computed by applying a secure hash function to the file's content. Each peer

ø maintains two datasets, a file dataset and a peer dataset. A file dataset maintains two

attributes: peer-id and value. Each time ø downloads a file from a target peer U, z keeps

g's peer-id and the value which is either good (+) or bad (-) describing r's opinion in the

file downloaded from A. On the other hand, A peer dataset has three attributes: peer-id,

num-plus, and num-rninus. Each time ø downloads a file from gr, r keeps gr's peer-id, the

number of successful (i.e., num-plus) and unsuccessful (i.e., num:ninus) downloads.

The proposed approach in [51] uses a protocol that works as follows: First, the source

peer, searching for a specific file tb download, broadcasts a query message to all of its

neighbors. Query replies contain the offerer's id and the digest of the file it is offering.

The source peer has to select among the possibly different peers offering possibly different

files. The selection process can be guided by the source peer's preference and/or by the

number of offerers. In principle, the source peer selects a list of top files and the file to

download is selected by polling votes. Vote polling is performed via broadcasting to all the

source peer's neighbors. There are different ways a voter can cast its vote and it is up to

the Gnutella configurator to decide the specific choice to adapt. For example, a peer could

vote yes only if num:ninus is zero or if num-plus is much higher than num-minus. Once

the source peer receives the votes, it uses a majority voting scheme to determine the best

offerer. To prevent overloading the best offerer, the source peer contacts the best offerer for

the file digest. Based on the majority voting scheme, the source peer decides from which

peer to download the file and it starts the download. After downloading, the file is checked

against the digest to ensure the file's integrity. Finally, the source peer updates its datasets

19

20

according to its satisfaction with the file downloaded and the peer offering it.

This approach has no mechanism for filtering out and isolating dishonest peers from

the reputation network. A peer broadcasts to all of its neighbors regardless of their honesty.

This practice is not just inefficient, but also gives continued opportunities for dishonest

peers to damage and influence the reputation network. Because this approach uses a voting

scheme to determine the truth, a peer can be fooled into accepting a tampered file espe-

cially if the majority of recommenders are dishonest. Further, this model is based only on

reputation and deals with file sharing or file exchange.

A Distributed Tfust Model for Peer-to-Peer Networks

A P2P trust model called Poblano is presented in [53]. Poblano allows peers to communi-

cate their "opinion" on both the information they have received and on the peers that are its

source. Poblano coined the term "codat" which is a general term that covers static as well

as dynamic or executable data. In Poblano, a peer is connected to at least one peer group,

which is a dynamic set that have agreed upon a common set of policies and services. Peer

group's membership is motivated by keyword interest. In Poblano, the "keyword" is used

instead of "context" that is used in our trust model. A peer uses the values in Table 2.1 to

quantify its confidence. These values are based on the work done in [5].

Chapter 2 : Literature Survey

Table 2.1: Confidence Values.

Value I Meaning

-1
0

1

2

Distrust

Minimum trust

,l

Ignore

4

Average trust
Good trust

Complete trust

2.4 : Models for Behavior Trust

Over time, each peer will acquire a local collection of codats. This local collection

of codats will be kept in a local CodatConf table. A CodatConf table is categorized by

keyword and has four attributes: codat:id, f løg of making the codat either local or remote,

popularitE andreleuance. Popularity is monotonically increasing and is incremented each

time the codat is requested. Relevance measures how relevant a codat is to the keyword

and is quantified using the same values shown in Table 2.1. In addition, each peer group

maintains two more tables, namely PeerConf and PeerGroupConf. PeerConf and Peer-

GroupConf tables are categorizedby keyword and each has two attributes: peer-,id, and

conf i,dence. PeerConf table can be accessed by all those peers in a given peer group,

whereas PeerGroupConf table can be accessed by all the peer groups to which peer r be-

longs.

One of the applications of Poblano is reputation guided search in JXTA [54], which

is a P2P platform providing developers of P2P applications with a wide range of libraries

and services like routing, peer discovery, and peer communication. Specifically, Poblano

is used as the trust model for distributing signed certificates among peers in JXTA. When

peer r does a search to find a given peer E's certificate (i.e., using the given peer's public

key for securing a transaction), z will do the following. First, z looks up the keyword

"signed certificates" in its own CodatConf table. If there is a local signed certificate (i.e.,

the flag is set to local) for y, then the search succeeds. Else, z looks in the PeerConf table

to see if there are any peers highly associated with keyword "signed certificates". That is,

if there are any peers in which r has a high confidence (i.e., a confidence value) 2),then r
forwards the request to those peers. Otherwise, r can resort to the PeerGroupConf table to

forward the request to other peers highly associated with the keyword "signed certificates"

across all the peer groups to which r belongs.

If the search is successful, z requests the target peer's certificate. The provider (i.e., the

peer that provided the target peer's certificate) increments the signed certificate's popular-

ity by one as soon as it is requested by r. After using the certificate, u adds an entry in its

21

22

CodatConf table and sets codatjd to the target peer's certificate id, flag to local, popularity

to zero (since no peer has requested the certificate yet from z), and relevance to u 's satis-

faction of how relevant the certificate is to the search keyword . In addition, Í generates or

updates an entry in its peer group table (i.e. PeerConf) setting peer-id to the provider's id

and confidence to z's confidence of the signed certificate. The same codat rating will be

also fed back to the provider which may choose to update its own rating based on: (a) its

confidence in z, (b) previous rating value of the signed certificate, and./or (c) the feedback

value on the signed certificate.

A major drawback of Poblano is that it does not learn from the information available

to it. For example, when peer z does a search to find a target peer's certificate, ø looks

up the keyword "signed certificates" in its own CodatConf table. If there is a local signed

certificate matching what z is looking for, then the search succeeds. This practice can lead

ø to use a compromised given peer's certificate (i.e., using a compromised given peer's

public key for securing a transaction). Because r's local information in its CodatConf table

might be outdated, z will be using a compromised given peer's public key for securing its

transactions. Because our model combines direct experience with reputation, a peer always

probes its recommenders to get current information. Also, our model uses a decay function

to distinguish between old and current information as explained in Chapter 3.

Chapter 2 : Literature Survey

A T[ust Model for Peer-to-Peer Content Distribution Networks

A trust model for P2P behavior trust in Content Distribution Networks (CDNs) is proposed

in [37]. CDNs are systems that dynamically movo content (e.g. web content) close to the

clients and these clients are transparently redirected to the content nearest to them. The

emphasis in this model is on web servers which potentially belong to different adminis-

trative peers and can cooperate to replicate their documents worldwide. The trust model

represented in [37] requires that each peer provides recommendations to a number of other

2.4 : Models for Behavior Trust

peers and that these recommendations are publicly available to any peer in the system. A

recommendation represents the level of trust that one peer has in another.

The motivation of this trust model is that once web servers start cooperating and repli-

cating their documents worldwide, such a system presents obvious trust concerns. A dis-

honest web server can accept to host web document replicas and deliver modified versions

to the users. A dishonest web server could accept to host replicas and refuse to answer any

request directed to them. Further, a dishonest web server could allocate less resources to

replicas than was negotiated.

This trust model uses a voting scheme to aggregate several recommendations into a

single trust value. This trust model assumes that similar independent recommendations

reinforce each other and if all recommendations but one agree, then the opposite recom-

mendation is wrong. This is a major drawback of the trust model as it opens the door for

cheating via collusion, where a group of peers secretly agree or cooperate especially for an

illegal or deceitful purposes. Such a group of peers tend to be dishonest and give poor rec-

ommendations (e.g., when asked for recommendations regarding one of their opponents)

in order to isolate their opponents and leave them out of the competition. Because our

model uses the honesty concept, such recommenders will be detected and isolated from

the recommenders network. Further, this model is based on recommendations and uses an

exponentially weighted moving average (EWMA) algorithm [55], when updating the rec-

ommender set. EIVMA algorithms are either able to detect true changes quickly or to mask

observed noise and transients [55]. Hence, dishonest peers can cheat every r¿ transactions

and still be considered trustworthy.

z3

Robustness of Reputation-based Tlust

Assuming that less than 50To of a population of entities are dishonest, a simple reputation-

based polling mechanism is presented in [56]. This mechanism assumes that an entity z has

24

identified one (entity g) of several entities that can provide a service that r needs. Since the

performance of service providers varies significantly, r is interested in selecting a service

provider with high performance. As ø lacks prior knowledge about the performance of E,

ø will poll a group of recommenders who have knowledge of E's performance. The goal of

entity r is to select the service provider who has the highest reputation.

The motivation of this trust mechanism is that in dynamic and open societies, au-

tonomous agents interact with each other with little or no information. Therefore, there

is always a chance that a rogue agent may take advantage of an unwitting agent by pretend-

ing to offer assistance for malicious hidden motives.

Because the percentage of the dishonest entities is assumed and this percentage should

be less than 50% of the total population, this trust scheme uses a majority voting when

combining recommendations. Majority voting is not a suitable way to combine recommen-

dations because it opens the door for cheating via collusion, where a group of peers secretly

agree or cooperate especially for an illegal or deceitful purposes. Such a group of peers tend

to be dishonest and give poor recommendations (e.g., when asked for recommendations re-

garding one of their opponents) in order to isolate their opponents and leave them out of the

competition. Because our trust model distinguishes between trustworthiness and honesty,

it is able to perform well even though the dishonest entities exceed 50% of the total entities

population. Further, assuming less than 50% of the entities population to dishonest, is not a

reasonable assumption for autonomous agents which are software entities that are capable

of independent action in dynamic and unpredictable environments. Hence, using majority

voting, an entity can be fooled if the majority of recommenders are dishonest.

Chapter 2 : Literature Survey

Managing T[ust in a Peer-2-Peer Information Systern

A scheme for trust management in a P2P information system is proposed in [57], where

the focus is on implementing a generic scalable infrastructure to deploy a trust model. This

2.4 : Models for Behavior Trust

model is based on binary trust meaning that an entity is either trustworthy or untrustworthy.

This trust model assumes that usually trust exists and distrust is the exception. Hence, the

model considers only the information on untrustworthy interactions as relevant. That is, the

only time entities post information is when they have a complaint based on bad experiences

they had while interacting with other entities. For example, assume that p and q interact

with each other and r later wants to determine the trustworthiness of p and q. Letus assume

that p is untrustworthy and q is trustworthy. After their interaction, q files a complaint,

which is perfectly fair since p is untrustworthy. Now, p will also file a complaint about q in

order to hide its misbehavior. Entity r can not distinguish whether p or q is untrustworthy.

But, the trouble forp starts when it continues to cheat with another entity s. Then r observes

thatp complains about q and s, whereas both q and s complain aboutp. Hence, r concludes

that p is untrustworthy. The model assumes that relatively few entities cheat.

One limitation of this model is that it is based on a binary trust scale (i.e., an entity

is either trustworthy or not). Hence, once there is a complaint filed against entity q, q is

considered untrustworthy even though it has been trustworthy for all previous interactions.

Also, this approach has no mechanism for preventing a dishonest entity from inserting arbi-

trary number of complaints and potentially causing a denial of service attack. Further, this

mechanism does not prevent a group of entities from cheating via collusion. For example,

a group of entities, for deceitful purposes, can secretly agree to file complaints against a

particular entity.

25

2.4.2 trIybrid-basedModels

The Ponder Policy Specification Language

A survey of trust in Internet applications is presented in l44l and as part of this work a

policy specification language called Ponder [35] is proposed for specifying security and

management policies as well as allowing the specification of more abstract and complex

26

behavior trust relationships. Ponder recognizes the need for peers to learn from their past

experience (i.e., direct trust) as well as for a trust network (reputation) to dynamically de-

termine and adjust trust levels. Ponder can be used to define authorization and security

management policies. Ponder is being extended to: (a) allow for more abstract and poten-

tially complex trust relationships between entities across organizational domains and (b)

have mechanisms for monitoring trust relationships and acknowledge that trust changes

over time.

The same group inl44l is working on trust specification language [20] for e-commerce

and hoping to use these specifications to generate Ponder trust management policies. The

authors in [20] view the essential components of a trust relationship as: a trustor, a trustee,

a specific context, and conditions under which the trust relationship can proceed. In [20]

trust specification has two constructs: (a) trust construct and (b) recommend construct.

Trust construct is used to specify a trust relationship and it is of the form:

PolicyName: trust(Trustor, Trustee, ActionSet, Level)

Constraintset;
PolicyName is the name of the policy being defined. Trustor and Trustee refer to objects

or people, whereas ActionSet is a list of semi-colon delimited actions which specify the

context for the trust relationship. Level is an integer in the range of 1 to 100 for trust

and -1 to -100 for distrust, which defines a particular trusldistrust level for the actions

forming the part of the trust relationship. ConstraintSet is the set of conditions that must

be met for the trust relationship to be established. Recommend construct is used to specify

positive or negative recommendations and has a similar layout as the trust construct.

Trust Models such as the ones proposed in [5] and in this thesis can feed the trust

attributes (e.g., trustor, trustee, context, and trust level) into this trust specification language

(i.e., [20]), which then can be tailored for use at the management level. For example, a

system administrator with a global view of the system resources and needs can utilize these

specifications to augment the overall performance of the system.

Chapter 2 : Literature Survey

2.4 : Models for Behavior Trust

Managing Trust and Reputation in the XenoServer Open Platform

The XenoServer project [2]l is developing an infrastructure for general-purpose and public

wide-area computing, capable of hosting tasks that span the full spectrum of distributed

paradigms. The architecture of XenoServer Open Platform consists of XenoServers, Xeno-

Corp, XenoServer Information Service (XIS), and clients. XenoServers host tasks that are

submitted by clients and a XenoCorp act as a trusted third party. The job of a XenoCorp is

to authenticate XenoServers and clients by signed credentials that can be tied to the issuing

XenoCorp. That is, XenoCorp is the authority responsible for registering the clients and

XenoServers that wish to participate in the XenoServer Open Platform. XenoCorp has the

absolute authority for registering and ejecting participants.

In such a public open environment, XenoServers face some threats. Disreputable clients

may try to: (a) place tasks on them and not pay and (b) run tasks that use XenoServers as

the source of some nefarious activity on the network. On the other hand, clients may find

that their tasks are not executed properly. A client may may also find that an untrustworthy

XenoServer may over charge for resource consumption or the XenoServer might be using

unreliable machines.

Fundamental to all of this is trust. XenoTrust 127 , 581is the trust management intro-

duced for use in the XenoServer Open Platform. It takes a two-layer approach to managing

trust by distinguishing authoritative and reputation-based trust. Authoritative trust is a

boolean propsrty established between a XenoCorp and clients/XenoServers that register

with it. Authoritative trust is made possible by the credentials issued by the XenoCorp.

These credentials can be validated by any of the XenoCorp's clients or XenoServers. The

Authoritative trust makes XenoCorp aware of a "real world" identity bound to the par-

ticipants. This enables recourse through the courts (i.e., judicial system), should it be

necessary. The second layer of the XenoTrust model is the reputation-based trust, which

27

28

is a continuous property quantifying the trustworthiness that one client or XenoServer as-

cribes to another. In XenoTrust, this layer is called reputation-based trust but actually it is

a hybrid-based trust because a XenoServer or a client can rely on reputation-based infor-

mation as well as its own experience. This will become clear in the upcoming example.

Individual clients and XenoServers will build up this reputation-based trust information

locally as they interact with others. The participants' views are subjective. For example,

some clients might favor a XenoServer correct pricing advertisements, while other clients

might favor a XenoServer with a reliable service. It is the participant's responsibility to

decide how to interpret the scores in its reputation database (i.e., to decide at what point

a counterpart is deemed untrustworthy of further interactions). Participants will also tell

others about their experiences and it is up to participants to decide how to deal with the

reports that they hear.

Chapter 2 : Literature Survey

Reputation-based trust involves three steps: statement advertisement, rule-based de-

ployment, and reputation retrieval. 'We explain these three steps by giving the following

example. Let us assume that two Xenoservers (A and B) have been hosting tasks on be-

half of client X. All of these XenoServers advertise their experience with client X. The

following are the advertisements held in the XenoTrust system and are available for public

view.

(A, X,payment,1, 50)

(8, X, payment, 0.27, 10)

(D, X, pagment., 0.40, 25)

(D, A,belief ,I)
(D, B,beli.ef ,0)

(X, X,payment,1, 100)

2.4 : Models for Behavior Trust

The first three advertisements above show three XenoServers (,4, B, and D), which have

hosted tasks on behalf of a client X. The first three advertisements labeled "payment" refer

to the XenoServer's view of whether client X is reputable when it comes to settling their

bills and thus, indicating how likely a XenoServer believes (a value between 0 and 1) an

interaction with X is to proceed without problems in this regards. The advertisement also

shows how many times a XenoServer has interacted with X. For example, XenoServer A

assigns X the maximum score (i.e., 1) stating that it has a complete trust in X paying its

bills based on A's 50 direct interactions with X. V/hile XenoServer B assigns X a low

score of 0.27 stating that it has 0.27 trust level in X paying its bills based on B's 10 direct

interactions with X. The third "payment" advertisement made by XenoServer D assigning

X a trust level 0f 0.40 regarding X's bills payment based on D's 25 direct interactions with

X.

The second two advertisements labeled "belief" are advertisements made by XenoServer

D indicating the value (between 0 and 1) it places on statements made by,4 and B. For ex-

ample, D places 1 indicating a complete trust on statements made by A.On the other hand,

D places 0 indicating a complete distrust on statements made by B.The last advertisement

is made by X about itself, claiming to have interacted 100 times and always successfully.

Different users (Xenoservers and clients) of XenoTrust have installed different rule-

sets to quantify their trust in clients or XenoServers on the basis of the advertisements

that have been made. For example, if D wants to evaluate the trustworthiness of X, D
can use a rule set "scaled", which combines advertisements and scale them according to

D's "belief" statements. In this case, D will ignore B's advertisement and consider only

its own and A's advertisements. Other rule sets, which D can use, include discarding

X's self-referential advertisement before combing the other advertisements according to

various weighed averages.

One limitation of this model is that it has no mechanism for preventing a dishonest users

from inserting arbitrary bogus number of advertisements and potentially causin g a denial

29

30

of service attack. Further, this mechanism does not prevent cheating via collusion, where

a group of users secretly agree or cooperate especially for an illegal or deceitful purposes.

Because our model uses the honesty concept, such dishonest users will be detected and

isolated from the recommenders network. Further, our model uses the accuracy concept to

adjust each recommendation and hence prevents cheating via collusion.

Supporting Trust in Virtual Communities

A model for supporting behavior trust based on experience and reputation is proposed in

[5]. This theoretical trust-based model allows entities to decide which other entities are

trustworthy and also allows entities to tune their understanding of another entity's recom-

mendations. This trust model describes direct trust as an entity ø's belief in another entity

g's trustworthiness within a certain context c to a certain trust level. These trust levels range

fromvery untrustworthy to very trustworthy and represented by 1 to 4, respectively. The set

of entities that r directly interacted with are kept in set Q". For each target entity directly

trusted, ø keeps the following three attributes in Q,: the target entity's id, the context,

and outcome. OutcomeT : (nn,rt,nz,nt) is a four-tuple (very trustworthy, trustworthy,

untrustworthy, very untrustworthy). For example, Let us assume that entity r has directly

interactedwithentitiesgandz. Therefore,Q,: {(A,"r,(2,0,3,7)),(r,cl,(1,3,0, 1))}to

mean that:

o Entity ø has directly interacted 6 times with entity y lor a specific context c2. The

outcome is very trustworthy for 2 of these interactions, untrustworthy for 3 of these

interactions, and very untrustworthy for 1 of these interactions.

Chapter 2 : Literaturc Survey

Entity z has directly interacted 5 times with entity zfor a specific context c1. The

outcome is very trustworthy for 1 of these interactions, trustworthy for 3 of these

interactions, and very untrustworthy for 1 of these interactions.

2.4 : Models for Behavior Trust

Further, let us assume that r directly interacted once more with z and that ø found the

outcome of its interaction with z tobe untrustworthy. Then r will update its 8, as follows:

Q,: {(8,"r, (2,0,3, 7)),(",c1, (1,3, 1, 1))}. Now, if ,D wants to determine the direct trust

in z for c1, then r will return the mar : modaln¿ value. For example, if T : (1, 3, 1, 1),

z's direct trust in z for cl is trustworthy.If mar returns more than one value, z's direct trust

in z is assigned uncertainty value according to Table 2.2 (the symbol ? indicates zero or one

other value). Semantic distance (sd) quantifies the gap between the recommendation given

Table 2.2: Uncertainty values.

(Number of very trustworthy equal

number of trustworthy) AND ?

(Number of very untrustworthy equal

number of untrustworthy) AND ?

combination

All other combinations

by recommender r (recr) and z's own perception of the recommendation (per").Semantic

distance value are given by the set ,S : {-3, -2, -1, 0, 7,2,3} and can be calculated by

the following equation:

31

outcome
au'

Consider the following two examples, where r asks 11 for recommendation for a specific

context c2 regarding atarget entity:

1. Recommender 11 flave very trustworthy as a recommendation for the target entity.

After u has interacted with the target entity, r found the target entity to be very

trustworthy. Since very trustworthy is represented by the numeric value of 4, then

u

Mostly trustworthy and

some untrustworthy

1t'

meaning

Mostly untrustworthy and

some trustworthy
Equal amount of trustworthy

and untrustworthy

sd : Tecr-pern (2.2)

32

2. Recommender rl gave very untrustworthy as a recommendation for the target entity.

After r has interacted with the target entity, z found the target entity to be very

trustworthy. Since very untrustworthy and very trustworthy are represented by the

numeric values of 1 and 4, respectively, then r2's semantic distance is sdr, :
'1 À_ OL -'1 - -d.

The trust model also describes recommender trust as an entity r's belief that another entity

E is trustworthy to a certain trust level for giving recommendations about other entities

with respect to c. Entity z keeps its recommenders in set -Rr. For each recommender, z

keeps the following three attributes in Br: the recommender's id, the context, and outcome.

Here, outcome is four sets : ({very trustworthy}, {trustworthy}, {untrustworthy}, {u"ry
untrustworthyÌ). For example, Let us assume that entity r has 2 recommenders 11 and 12.

Therefore, R,: {(rt,ct, ({0}, {}, {}, {})), (r.r,"r, ({}, {-2}, {}, {}))} to mean that:

o Entity r has asked 11 for recommendations for a specific context c1 regardingatarget

entity. Recommender rl gave very trustworthy as a recommendation for the target

entity. After r has interacted with the target entity, r found the target entity to be

very trustworthy. Therefore, r1's semantic distance (sd,r) is 0.

o Entity r has asked 12for recommendations for a specific context c1 regarding a target

entity. Recommender 12 gave trustworthy as a recommendation for the target entity.

After z has interacted with the target entity, ø found the target entity to be very

trustworthy. Therefore, '.2's semantic distance (sd,r) is -2.

Further, let us assume that r asked once more for recommendations for a specific con-

text c1 from 11 and 12 regarding a target entity. Let 11 give very trustworthy and 12

give untrustworthy as their recommendations. After z has interacted with the target en-

tity, r found out that the target entity to be very trustworthy. Therefore, r1's sd", is

11's semantic distance is sd,rr: 4 - 4:0.

Chapter 2 : Literature Survey

2.4 : Models for Behavior Trust

0 and

R,:
r2's sdr, is 2. When u updates its recommender set, -R" will look as follows:

{(rr, cr, ({0,0}, {}, {}, {}), ("r, cr, {}, {-2}, {}, {2}))}

The trust model presented in [5] suggests that in order to reduce the uncertainty, new

entities are initialized and equipped with a number of "trusted" entities in their Q and R

sets so that initial transactions can be made with already trusted parties. From [5], some

issues not discussed as: (a) how are Q and .R equipped, (b) who equips them, and (c) with

how many "trusted" entities Q and R are equipped with.

One of the drawbacks of this model is its use of an EWMA algorithm for updating

Q and,R. The two sets Q and R are updated such that observed noise and transients are

masked. Forexample, let Q*: {(r,"t,{3,0, 1,2})}. Thatis, overthe6transactions

that r has directly interacted with z, z has been untrustworthy in 1 transaction and very

untrustworthy in 2 transactions. In spite of that, z determines the direct trust in z for

c1 to be very trustworthy. In other words, a recommender can give intentionally false

recommendations about a few domains and maintain high overall accuracy. Because our

model uses the honesty concept, such recommenders will be detected and isolated from

ft. In addition, because of this trust model's inability to filter out and isolate dishonest

entities from the reputation network, an entity asks all of its neighbors regardless of their

honesty. This practice is not just inefficient, but also gives continued opportunities for

dishonest entities to damage and influence the reputation network. Further, the scalability

of the model is not explicitly addressed in this study. For example, there is no limit on

the number of recommenders (i.e. size of R) that each entity has; nor there is a discussion

on how well the model will scale as the number of entities grow. In our trust model, the

scalability issue is addressed by the aggregation scheme.

Some concepts in our trust model are influenced by the work done in [5]. For example,

the direct trust and recommender trust tables, the context, and the different trust levels.

These concepts are detailed in Chapter 3.

JJ

34

An Evidential Model for Distributed Reputation Management

A reputation management model for aPZP multiagent system is proposed in [31]. An entity

determines the trustworthiness of a correspondent by combining its local experience with

the testimonies of other entities regarding the same correspondent. Using this model, en-

tities find trustworthy correspondents by collaborating with others to identify those whose

past behavior has been untrustworthy. In this model, each entity ø has a set of acquain-

tances, which is a set of neighboring entities that r would contact to get testimonies of other

entities behavior. Entity ø maintains two attributes for each of its acquaintances, namely

expertise and sociability. Expertise is the acquaintance's ability to act in a trustworthy man-

ner, whereas sociability is the acquaintance's ability to refer to other trustworthy entities.

Each entity modifies its set of acquaintances based on the entity's direct interaction with the

acquaintance as well as the entity's interaction with entities referred to by the acquaintance.

This approach does not prevent dishonest entities from generating spurious ratings and

assumes that the majority of the entities offer honest ratings to cancel the effect of dishonest

entities.

Chapter 2 : Literaturc Survey

2.4.3 Incentives-based Models

These models [59, 40] are proposed and focus on giving incentives to peers such that it

is in the best interest for each peer to truthfully reveal its trustworthiness. Peers might

decline to reveal the truth because: (a) truthfully reporting any reputation information,

a peer might decrease its own reputation with respect to the average of other peers, (b)

truthfully reporting reputation information, a peer provides competitive advantage to other

peers, and (c) Untruthfully reporting reputation information, a peer can increase its own

reputation with respect to other peers.

In [59], the proposal is to make a reputation mechanism incentive-compatible. A pay-

ment system is introduced where special agents called broker agents buy and sell reputation

2.4 : Models for Behavior Trust

information and assume that no other payments occur between the agents themselves. That

is, all payments go through broker agents. Before a peer ,r engages in a transaction with

another peer A, it must buy reputation information about g/ at cost F'. After the transaction,

the peer can sell its reputation report to any broker agent at cost C. A broker agent will pay

for the reputation report only if it matches the next report about g filled by another peer. If
r truthfully reports the result of its transaction with gr, then F < C. That is, r will not lose

any money. Otherwise, F) C and gradually r loses money. Some of the drawbacks of

this approach are that: (a) it assumes that the majority of the peers report honest reputation

information to cancel the effect of dishonest peers and (b) it goes against the notion of P2P

systems by having central points (i.e., broker agents) that control the payment system.

In [40], the authors proposed a solution applicable to entities in E-Commerce that can

be used as an alternative to reputation-based systems. Compared to reputation-based sys-

tems, this mechanism provides several advantages. First, the proposed solution does not

require the estimation of other entities' trustworthiness. For example, a seller does not

need to estimate the trustworthiness of a buyer from the buyer's previous interactions with

the seller. Also, the seller does not need to estimate the trustworthiness of a buyer from

reputation databases. Second, the proposed solution reduces the cost of trust management.

Since entities are honestly reporting their level of trustworthiness, there is no need to store

and keep large reputation databases.

This approach assumes the following. The seller produces the commodity and sells it to

the buyer. The buyer always pays (i.e., he is completely trustworthy). However, the seller's

trustworthiness varies from 0 (completely untrustworthy) to 1 (completely trustworthy) and

measures the probabllity B of the seller to deliver the commodity to the buyer. The buyer

does not know B and believes that the commodity will be received with probability c.

Probability a can be obtained from: (a) the history of previous interactions of the buyer

with the seller, or (b) from the buyer seeking the reputation of the seller. The proposed

approach also assumes that the quantities of the commodity produced and sold is known,

35

36

the seller's cost as a function of the quantities produced and sold is known, and the value

the buyer places on the quantity is known.

[40] shows analytically that with all the above assumptions, the transaction between

the seller and the buyer can be made such that the seller not just honestly reveals its level

of trustworthiness B,but also benefits from the trade. Also, the buyer benefits from the

trade by knowing the trustworthiness of the seller (i.e., þ) instead of estimating the seller's

trustworthiness by using a. In other words, the need to speculate about the seller's trust-

worthiness is eliminated.

One of the drawbacks of this approach is the assumption that the information about a

seller's cost function is known, which is a strong assumption and is not suitable in such

aP2P business competitive environment. Also, this approach is specific to E-Commerce

transactions where at least one of the trading entities (i.e., the buyer) is completely trust-

worthy.

Chapter 2 : Literature Survey

2.5 Limitations of Current TFust Models

The papers discussed above examine issues that are related to the notion of trust, but these

papers come short of addressing the following:

o The distinction between accuracy and honesty and the importance in treating them

differently. By separating accuracy and honesty, our trust model maintains its effec-

tiveness even when the dishonest peers exceed 50% of the population. In addition,

knowing the availability of honest peers, gives a confidence level of how reliable the

trust model is. For example, [56] assumes that dishonest entities form less than 50To

of the total population. Also, in 157 ,3Il and others where a majority voting scheme

is used in determining an entity's trustworthiness, honest entities are assumed to be

the majority to cancel the effect of dishonest entities.

2.5 : Limitatians of Current Trust Models

c A mechanism to function with imprecise metrics, where different entities can evalu-

ate the same situation differently. The mechanism introduced by the proposed trust

model to accomplish this is the accuracy concept. Our model uses the accuracy con-

cept to adjust each recommendation and hence prevents cheating via collusion. In

the trust model presented in 1271, an entity scales a recommender's advertisement

according to the entity's belief. This scaling process takes into account how accurate

the recommender's advertisement is. Further, referring to the trust model outlined in

[50], before entity r collects feedback from recommenders to compute the trustwor-

thiness of entity y, r scales the feedback by the respective recommenders' credibility.

However, in these trust models f27,501 accuracy is approximated by the trustwor-

thiness of an entity. That is, feedback from trustworthy entities are considered more

accurate and thus weigh more than feedback from untrustworthy entities. In our trust

model, accuracy is an independent notion from an entity's trustworthiness. In other

trust models, entities post complaints [57] and advertisements l2ll with no mecha-

nisms to check for the credibility of these posts. This can lead to a group of entities to

secretly agree to post bogus complaints or advertisements against a particular entity

for deceitful purposes.

3l

A mechanism for building and maintaining an honest recommender network. The

mechanism introduced by the proposed trust model is the honesty concept. The aim

of our trust model is to end-up with honest set of recommenders and thus prevent dis-

honest entities from influencing the recommendations network. The current practice

pursued, for example in [5, 51], is that an entity asks all of its neighbors regard-

less of their honesty. This practice is not just inefficient, but also gives continued

opportunities for dishonest entities to damage and influence the reputation network.

The flexibility and the importance to weigh direct trust and reputation differently.

Having the flexibility of combining direct trust and reputation gives the trust model

38

the leeway to choose the strategy that best fits it. For example, in Poblano [53]

when peer ø does a search to find a target peer's certificate, z looks up the keyword

"signed certificates" in its own CodatConf table. If there is a local signed certificate

matching what r is looking for, then the search succeeds. This practice can lead r
to use a compromised or a stale given peer's certificate (i.e., using a compromised

given peer's public key for securing a transaction). Because r's local information in

its CodatConf table might be outdated, z will be using a compromised given peer's

public key for securing its transactions. Because our model combines direct experi-

ence with reputation, a peer always probes its recommenders to get the most recent

information.

Chapter 2 : Literature Survey

o The applicability of modeling trust by integrating it into resource management sys-

tems. To the best of our knowledge, no existing literature directly addresses the issues

of trust aware resource management systems. A resource management system man-

ages the resources that comprise the computing environment [60]. Hence a resource

management system is able to allocate resources to tasks, schedule tasks, control and

monitor the status of resources. Resource management systems such as Globus [48]

make the allocation decisions oblivious of the security and trust implications. Our

study in investigating the utility of the trust model by integrating trust into resource

management systems shows that: (a) the overall performance increases when the

resource management algorithm is trust aware, and (b) high levels of "robustness"

can be attained by considering trust while allocating the resources. These ideas are

developed in Chapter 7.

Our behavior trust model and the mechanisms used to overcome the above limitations

of the current trust models are published in 5 refereed conferences [61, 62,36, 63,39).

2.6 : Trust: Trends and Currenf Sfafus

2.6 T[ust: TFends and Current Status

Since 1950s, trust and trust relationships have been the subject in the offline world in many

disciplines including philosophy, sociology, psychology, and managementfl,64,2l. While

trust has been identified as a critical factor in many offline non-technical human endeavors,

researchers are just beginning to study it in the context of technology [10, II,64,65]. Trust

in online communities is in its infancy [10, 65] and there is a lack of standards towards and

about online trust [2, 64]. In addition, trust management is a relatively young and a com-

plex research field with many different emerging ideas and solutions [2, 64]. While the

importance of trust in on-line interactions is accepted, there is a limited theoretical support

for its role in on-line communities [10, 66, l2]. Fortunately, there is a lot of research that

has been done on trust in the offline communities and it is on this body that the theory of

on-line trust can be built. Some of the offline communities, where trust has been researched

and identified as a key factor in relationships include philosophy, sociology, psycholog¡

and management. For example, in the field of philosophy, Baier [67] known as the grand-

mother of trust, defines trust as letting other persons take care of something the truster

cares aboul. Baier's focus is on interpersonal trust (i.e. trust between people) and says that

one leaves others an opportunity to harm when one trusts. Sociologists [68, 69] view trust

as a social lubricant that social interactions are jeopardized without it. Most sociologists

agree that trust is very important and that trust is hard to build and easy to destroy. Oth-

ers such as [70] studies the conditions in which trust declines and states that trust declines

with: (a) decreased interaction frequency, (b) increased interactions of "outsiders" (i.e., in-

creased interaction with people whom we do not know), and (c) rapid change in the social

community.

The field of trust online has spawned the interest of a number of scholars in techni-

cal as non-technical fields. For example, some of the projects and directions represented

39

40

at the first conference on trust management Ull held in May, 2003 include: (a) facilitat-

ing the cross-disciplinary notion of trust by bringing together expertise from technology,

philosophy, and social sciences, (b) facilitating the development of new paradigms in the

area of dynamic open systems which effectively utilize computational trust models, and (c)

helping to incorporate trust management into existing security standards. The conference

[71] is held by ITrust 1721, which is an European-funded trust working group that brings

together researchers and practitioners across a range of disciplines to develop models and

techniques for dealing with trust in open dynamic systems. The group aims are to ex-

plore the role of trust and its interactions with security. Effective trust modeling is believed

to be an enabler for a range of new computing services including enhanced e-commerce,

ubiquitous computing, Grid computing, P2P computing, and probably a variety of collab-

orative/cooperative online activities that we haven't begun to imagine 12, 12,31.

Chapter 2: Literature Survey

2.7 Summary

In this chapter, we presented the related work done in the area of behavior trust model-

ing. First, we presented model for identity trust. These models are not directly related to

behavior trust, but discussed them to show that these models are not suitable to monitor

and manage behavior trust between peer in an online community. Second, we viewed the

current behavior trust models and divided them into three categories: (a) reputation-based

trust models, (b) hybrid-based (direct trust and reputation) trust models, and (c) incentive-

based trust models. Third, we outlined the limitations of theses behavior trust models and

how our proposed trust model overcomes these limitations. To date, research based on this

thesis has generated 5 publications, which are listed in Section 2.5. Last, we discussed the

the current issues and mentioned recent trust management conferences and working groups

whose aim is to develop models and techniques for dealing with trust in open dynamic

systems.

2.7: Summary

To conclude this chapter, the existing behavior trust model schemes that tackle the

trust notion are summarized in Table 2.3. When computing trust, models can be classified

according to: (a) the components used to compute trust and (b) the mechanism used to

aggregate recommendations. Trust models compute trust based on two components: direct

trust and/or reputation. If reputation is used to compute trust, then recommendations can

be aggregated by taking a weighted average or a majority voting approach.

Table 2.3: Summary of existing behavior trust models.

Behavior trust model
(Authors names)

[paper reference #]

(Ernesto Damiani et al.) [51]

(Li Xiong et al.) [50]

(Guillaume Pierre et al.) [37]

(Rita Chen et al.) [53]

4t

(Sandip Sen et al.) [56]
(Karl Abere et al.) [57]

(Boris Dragovic et al.) [27]
(Tyrone Grandison et a1.) [35]

(Alfarez Abdul-Rahman et al.) [5]

Components

Direct
trust

(Sviatoslav Brainov et al.) [40]

(Bin Yu et al.) [31]
(Radu Jurca et al.) [59]

Reputation

Recommenders aggregation
scheme

X

Weighted
averaging

X

X

X

X

X

X

X

X

X

X

X

Majority
voting

K

X

X

X

X

X

X

X

x

X

X

X

X

X

X

X

K

X

X

Chapter 3

Tþust TermÍnology

3.L Fundamental Tfust Model Concepts

3.1.1 Identity T[ust

Identity trust forms the basis for providing trust in any system. IVithout identity trust, we

can not build behavior trust 132, 38,31. As stated in [27], identity trust is used to bind

an entity to one identity. This prevents an entity from creating multiple false identities.

Establishing this link enables holding an entity responsible for its behavior. The objective

of applying identity trust is to keep entities from performing undesirable activities: (a)

to your data or resources and (b) with your data or resources. Identity trust is based on

techniques including encryption, data hiding, digital signatures, authentication protocols,

and access control methods. The definition of identity trust used in this thesis is as follows:

Identity trust is concerned with verifying the authenticity of an entity and de-

termining the authorizations it is entitled to access.

42

3.1 : Fundamental Trust Model Concepts

3.1..2 Behavior Tfust

Behavior trust is identified as a vital component in any Internet-based transaction and

lack of behavior trust is a major obstacle for the potential growth of Internet communities

[1, 10, 65]. Operating in open and dynamic environments, an entity encounters unfamiliar

and possibly hostile entities. For example, consider entity g transferring an executable ap-

plication to execute on entity u's resources. Even though authentication and authorization

mechanisms allow g to use r's resources, they do not guarantee that g's application will

not perform illegal operations on Í's resources. Knowledge of gr's prior behavior can avoid

suspicion or ø's hesitance to share its resources with gr.

Behavior trust deals with a broad notion of an entity's "trustworthiness". There is a

lack of consensus in the literature on the definition of behavior trust and on what consti-

tutes behavior trust managementl20,73,5,691. Trust is a multi-dimensional notion that is

suitable for a wide range of relationships [20]. Researchers have defined trust in different

ways, which often reflects the research's background. Psychologists, such as [74], view

trust as a belief or feeling rooted deeply in the personality which has its origins in the per-

son's early psychological development. This is referred to in the literature as dispositional

trust lI1, 51. Dispositional trust does not focus on contextual or personal factors. That is,

it is cross-contextual and cross-personal. A person is said to have dispositional trust if a

person has a consistent tendency to trust across a broad spectrum of contexts and people.

For example, when asked whether he trusts the new boss, an employee says she trusts new

people, both at work and elsewhere. The philosopher and grandmother of trust, Baier 1671,

and others like [75, 76] focus on a context-specific interpersonal trust involving a trustor

and a trustee. Interpersonal trust is a perception the trustor may have, that the trustee will

not intentionally or unintentionally do anything that harms the trustor's interests. For ex-

ample, if you hire a babysitter to care for your newborn while you and your spouse go for

an outing, your interest is the safety of your newborn. Going for an outing with your spouse

43

44

is not nearly as valuable as what you may lose if your trust is violated. Your babysitter may

abuse or harm your newborn. In sociology, researchers such as U7,701focus on system

trust or impersonal trust. Impersonal trust is not based on the trustee's personal attributes

but rather on a social or institutional structure. For example, people have impersonal trust

in systems such as the monetary or the judicial systems. The lack of consensus in the

literature on the definition of trust has led researchers to use the terms trust and security

interchangeably 173,20, 51. For an overview on delineating the boundaries of security and

trust, please refer to Section 1.1. The definition of behavior trust used in this thesis is as

follows:

Chapter 3 : Trust Terminology

Behavior trust is the firmness of belief in the competence of an entity to act

as expected such that this firm belief is not a fixed value associated with the

entity but rather it is subject to the entity's behavior and applies only within a

specific context at a given time.

Behavior trust is quantified by a dynamic parameter called trust level (TL) that ranges from

very untrustworthy to very trustworthy, and which is represented by a numeric range [1..5]

as shown in Table 3.1. The TL is computed based on past experiences for a specific context.

For example, based on trust, entity E might allow entity u to use its resources to store data

files but not executable files. As we saw in Chapter 2, oTher researchers such as [5, 53] and

the grandmother of trust, Baier [67], focused on a context-specific trust. Also in [53], peer

groups' membership is motivated by keyword, which is very similar to the context concept.

In our trust model, we borrow the context-specific idea when measuring the trust notion

between entities. The TL is also specified for a given time frame because the TL today

between two entities is not necessarily the same as the TL was ayear ago.

3.1 : Fundamental Trust Mode(Concepts

Table 3.1: Description of the different trust levels.

Equivalent numerical value I Description

3.1.3 Reputation

In a dynamic setting, entities need to manage risks involved with interacting with other

entities. In a dynamic environment, entities are vulnerable to risks because of unknown,

incomplete, or distorted information about each other. One way to address this problem is

to establish trust through reputation. The reputation concept is already used in other trust

models, for example [5, 50, 51]. When making trust-based decisions, entities can rely on

others for information pertaining to a specific entity. For example, if entity u wants to make

a decision about whether to engage in a transaction with entity g, which is unknown to r, r
can rely on the reputation of g. The definition of reputation used in this thesis is as follows:

The reputation of an entity is an expectation of its behavior based on other enti-

ties' observations or the collective information about the entity's past behavior

within a specific context at a given time.

Forming the reputation of an entity so that it is effective, informed, and reflects the en-

tity's "trustworthiness" depends on two factors: (a) the honesty of the information source

(i.e., the entity that sent the information) and (b) the accuracy of the information received.

Therefore, the objective is to rely on entities that are honest as well as to rely on information

that is accurate. Honesty and accuracy are defined next.

1

2
a
-)

4

5

very untrustworthy
untrustworthy

medium trustworthy

45

trustworthy
very trustworthy

46

3.1.4 Honesty

Relying on other entities for information when seeking the reputation of entity y, entity r
might be misinformed and form the wrong perception about g. This is due to dishonest

recommenders that try to pollute the environment by intentionally giving bogus reputation

reports. Ideally, we want to prevent dishonest entities from contributing to the computation

of reputation. The definition of honesty used in this thesis is as follows:

A recommender r is said to be honest if the information, pertaining to a specific

entity within a specific context at a given time, received from from entity r is

the same information that entity r believes in.

Chapter 3 : Trust Terminology

When entity z gives out information, z fetches this information from a data structure that

ø maintains. Hence, by "believes in", we mean the information that is stored in r's data

structure. Honesty is a critical factor in any reputation-based trust model. For example,

current trust models [56, 5], 3Il assume that the majority of the entities are honest and

therefore cancel the effect of dishonest ones on the recommendation network. Also in

[5] Section 2.4.2 , it is assumed that an entity is equipped with honest entities in its Q

and -R, and entities are assumed to be robust and resilient to dishonest entities and risky

environments. In [50], please refer to Section 2.4.I, an entity's credibility is used to offset

the risk of dishonest feedback. In these approaches, no mechanism is used to identify and

prevent dishonest entities from polluting the recommendation network. In our trust model,

the goal is to come up with a mechanism to compute honesty and use this measure to weed

out and prevent dishonest recommenders from influencing the recommendation network.

The mechanism of achieving this goal is explained in Section 3.4.

3.2 : Trust Model Elements

3.L.5 Accuracy

The objective here is to ensure that the received information pertaining to entity

close as possible to the trustworthiness of entity g. The definition of accuracy used

thesis is as follows:

A recommender ís said to be accurate, if the deviation between the information

receivedfrom it pertaining to the trustworthiness of a given entity g in a spectfic

context at a given time and the actual trustworthiness of y within the same

context and time is within a precision threshold.

Other trust models use similar concepts to the accuracy notion used here. For example,

as discussed in Chapter 2, the trust model in [5] uses the semantic distance as a mea-

sure that is applied to the information received frorn a recommender to infer what the

recommender really means. In the trust model presented in 1271, an entity scales a Íec-

ommender's advertisement according to the entity's belief. This scaling process takes into

account how accurate the recommender's advertisement is. Further, referring to the trust

model outlined in [50], before entity r collects feedback from recommenders to compute

the trustworthiness of entity g, ø scales the feedback by the respective recommenders' cred-

ibility. In [50], the trustworthiness of an entity is used to approximate its credibility. That

is, feedback from trustworthy entities are considered more credible and thus weigh more

than feedback from untrustworthy entities. In our trust model, accuracy is an independent

notion from an entity's trustworthiness and in Section 3.4, we present the mechanism of

computing and quantifying accuracy.

47

Elsas

in this

3.2 Tþust Model Elements

In our trust model, entity ø maintains a set of recommenders (-Rr) and a set of trusted

allies (7}). Entity ø completely trusts the members of Ç that are chosen based on off-line

48

relationships. Trusted allies are used by an entity as part of a mechanism to determine

the honesty of its recommenders. In general, members of 7} do not have the complete

knowledge of all other entities needed to provide the recommendations themselves and

so use recommenders to fill this gap. In addition, z maintains a recommender trust table

(RTT") that associates a two-tuple (honesty, accuracy) with each recommender in R,.

Initial membership of -8" is randomly chosen and it evolves as described below. Similar

to the RTT,, r maintains another table called direct trust table (DTT") that includes trust

levels for entities with which r had prior direct transactions. These two tables RTT, and

DTT, are maintained by tr's trust agent (T A"). The data structures DTT and RTT, their

initializations, and their usage are explained in more detail in Section 4.3.1.

Chapter 3 : TrustTerminology

3.3 Assumptions of the Tlust Model

The following are the assumptions of the trust model. First, behavior trust is a slowly vary-

ing parameter, therefore, the update associated with the trust level is computed based on

a significanl amount of transactional data. Second, an entity has at least a few friendly

entities that are perfectly trusted and this set is generated by offline mechanisms. Third,

transactions between entities are secure. In other words, data or information that was re-

ceived is the data or information that was sent. Well known techniques such as encryption

methods, checksums, or SSL can be used to ensure the integrity of data while in transit.

Fourth, the source and destination are properly authenticated. For example, each entity

periodically re-authenticates its set of trusted allies since if a trusted ally is usurped by

a dishonest entity, this will compromise the trustworthiness of the whole system. Fifth,

trustworthiness and honesty are independent notions, (i.e., an entity can be trustworthy

and dishonest at the same time). It should be mentioned that the notion of independence

between trustworthiness and honesty is not fully studied in this thesis.

3.4 : Computing Honesty and Accuracy

3.4 Computing Honesty and Accuracy

Entity ø randomly chooses its recommender z and initializes it as follows. First, z is con-

sidered to have maximum accuracy regardless of the target entity. That is, A,(t,t, c) : 1

meaning that r considers z to have maximum accuracy for context c at time ú. Second,

since z is a new recommender and has given no recommendations so far, z's recommenda-

tion error as observed by z for context c at time ú is set to zero (i.e., Ü,¡16,(z,t,c) - 0).

Third, z is considered consistent regardless of the target entity. That is, Cr(z,t,c) : 1

meaning that r considers z consistent for context c at time ú. Entity z's objective is to keep

only honest and accurate recommenders in -Rr.

Honesty is used to continually adjust the membership of the recommender set such that

it consists of the most honest recommenders. The aim here is to determine the honesty of

a recommender z for a single (source,target) entity pair regarding a transaction between

the source entity r and the target entity y. The honesty of an entity is evaluated using

the trusted allies as follows. To determine the honesty of z, r instructs the entities in

Ç to request recommendatioñs fuom z regarding g for a specific context. These requests

are launched such that they arrive at z as closely spaced in time as possible. Since we

consider behavior trust to be slowly varying and since requests launched from the entities

in T, anive at z as closely spaced in time as possible, we eliminate the possibility of

obtaining different responses from z due to the evolution over time of z's belief. If z gives

away largely different answers to the different entities in T*, then z is considered to be

inconsistent. Otherwise, z is consistent. If z is inconsistent, then z must be dishonest.

Now, let us discuss the consistent case.

If z is consistent, then there are two possible cases. In the first case; z can give the same

trust level it stores in its data structure (i.e. being honest) to the entities in 7,, in which

case z is considered consistent and honest. In the second case; z can modify the trust level

it stores in its data structure (i.e. being dishonest) but gives the same modified trust level to

49

50

the entities inTr, in which case z is considered consistent and dishonest.

Let the consistency of recommender z as observed by r in giving recommendation re-

garding gr for context c at time ú be denoted by C"(z,A,t,c). Let RE¡,(z,A,t,c) denote

the recommendation for entity gr given by z to entity k for context c and time ú, where

k e 7,. The recommendation RE¡(z,A,t, c) is given lrom DTT, and that is what z be-

lieves in as the reputation of g. The data structure DTT, is explained in more detail in Sec-

tion 4.3.1. LetTL*¿n(r,",A,t,c) : min¿62;{-REn(r,U,t,c)} andTL^o*(r,r,g,t,c) :

max¡64{-REn(z,A,t,c)}.Let A,pB,(r,A,t,c) denote the difference and be given by:

The value of A¡¿. (r,A,t,c) will be less than a small value epB if recommender z is con-

sistent. Consequently, C,(z,U,t, c) is computed as follows: (It should be noted that after

Cr(",U,t,c) is computed, it will be used to update z overall consistency regardless of the

target entity (i.e., C,(2,ú, c)). Please, see Section 4.3.3).

, { o if A¿¿- (z,u,t,c) } enp
C"(z,g,t,c) : 1

|. 1 otherwise

If C,(z,A,t,c): 0, then z is dishonest and will be filtered out and prevented from influ-

encing the recommendation network. If C*(z,A,t,c): 1, then z is consistent but may be

dishonest. Another filter called the accuracy measure is used by our trust model to cap-

ture these consistent but dishonest recommenders and adjust their recommendations before

using them to compute the reputation of E.

Seeking the reputation of g/, r will ask z for recommendation regarding y for c attimet.

Once z sends its recommendation (i.e., REr(z, A, t,c)) and before r can use REr(2, A, t, c)

to calculate the reputation of y, REr(z,A,t,c) must be adjusted to reflect recommender

z's accuracy. To achieve this objective, a shift function (S) is introduced that uses the

Chapter 3 : TrustTerminology

L np - (r, U, t, c) : T L*o, (r, z, A, t, c) - T L *¿n(r, z, g, t, c) (3.1)

3.4 : Computing Honesty and Accuracy

overall accuracy Ar(r,t,c) (i.e., z's accûÍacy regardless of the target entity) to correct

RE,(z,a,t,c). The shift function is defined as:

S(r,A, z,t,c) :

Let IT L"(A,t, c) denote the instantaneous trust level (ITL) of E obtained by r as a result

of monitoring its cuffent transaction with E for context c at time ú. The ITL is determined

based on a single transaction between r and g. In practice, the monitoring process can be

done offline, online, or combining offline and online mechanisms. The transaction mon-

itor (TM) proxy of ø (i.e. TM, proxy) determines the ITL,(y,t,c) of the transaction.

Because a TM proxy is controlled by the associated entity, a transaction can be rated to

have different trust levels by different TM proxies. TM proxies observe the transaction or

the transaction records to determine whether any abuses have taken place. While the partic-

ular entities should be able to configure the TM proxies to define what conditions exactly

cause a breach in the transaction contract, some example breaches include: (a) holding

the resources for longer periods that initially requested, (b) trying to access protected local

data, (c) instantiating illegal tasks on the resources, (d) reneging on promises to provide

resources, and (e) going down during periods of peak usage 1291. One way of monitoring

the transaction is to analyze the data gathered from audit data l78l generated by the op-

erating system. Audit trails are particularly useful because they can be used to establish

guilt of attackers. An audit trail is a record of activities on a system that are logged to a

file in chronologically sorted order. Since almost all activities are logged on a system, it

is possible to manually inspect these logs and detect untrustworthy entities. However, the

incredibly large sizes of audit data generated make manual analysis undesirable. The audit

data generated can be of the order of 100 Megabytes daily.

Monitoring the transactions in a real-time Intrusion Detection Systems (IDSs) [79, 80]

[*u.çr,u,t,c)+ 4(i - A,(z,t,c))

ì.tO,r, u,t,c) - 4(r - A,(z,t,c))

if ú pB.(2,t, c) < 0

if V¿s- (z,t,c)) 0

51

52

automate the cumbersome task of going through the rather jungle-like audit data trails.

However, monitoring the transactions in a real-time fashion can cause significant over-

head for trust computation. One way to reduce the overhead is to combine online and

offline mechanisms in the monitoring process. For example, we can log the events and

use an offline post mortem analysis to determine the trust level. Alternatively, the data

for analysis can be gathered from audit data [78) generated by the operating system or a

post-mortem analysis tool such as IDSs. Monitoring each transaction is an onerous task.

Therefore, the monitoring process (i.e., obtaining ITL,(y,c,ú) is done every nth trans-

action. After the transaction is over and if ø carried out the monitoring process (i.e.,

ITL,(y,c,ú) is obtained), then V¿¿,(",8,t,c) can be calculated as shown in Equation

3.2, where úRE,(",A,t,c) is z's recommendation error as observed by r when z gives

recommendation regarding g for context c at time t.

Chapter 3 : TrustTerminology

The value of lü66, (r., A,t, c) | is an integer value ranging from 0 to 4 becau se RE*(2, A,t, c)

and ITL,(U,t,c) are in t1..51. Notice, that ü¿8.(r,A,t,c) is computed if and only if

IT L,(g, ú, c) is obtained. Hence, the accuracy of z when giving recommendation regarding

gr for context c at time ú as far as z is concerned (i.e., Ar(2, A, t, c)) can be defined by:

ú ap,(", U,t, c) : REr(z, U,t, c) - IT L"(U, t, c)

Note that, Ar(r,A,t,c) is a real number in the interval [0,1]. If l\[¡¿"(r,A,t,c)l : 0,

A*(r,a,t,c): l implying that z has maximum accuracy as far as ø is concerned. In-

versely, if lüÊ8"(",y,t,")l : 4, Ar(z,U,t,c) : 0 meaning that z is completely inac-

curate to r about g as far as z is concerned. Note that Ar(",g,t,,c) : 0 if and only if

lú^e*(r,E,t,c)l : 4 meaning that: (a) ITL,(y,t,c) :1and RE,(z,A,t,c): 5 or (b)

Ar(z,a,t, c)
1

4 l\1""- (r,A,t,c)l + 1

(3.2)

(3.3)

3.5 : Computing Trust and Reputation

ITL,(y,t,c) :5 and RE*(z,a,t,c): 1. This is because the largestrecommendation

error results in the lowest accuracy and the smallest recommendation error results in the

maximum accuracy

Note also that, A,(z,A,t,c) is the accuracy of z pertaining to the current particular

transaction between r and E.
'Whereas, Ar(2,t, c) is the overall accuracy of z, regardless

of the target entity, as far as z is concerned. Finally: (a) A,(" , A , t , c) will be used to update

z's overall accuracy (i.e. A,(z,t,c)), and (b) üne,(r,U,t,c) is used to update z's overall

recommendation error (i.e., ü¿6, (z,t,c)). The update procedures are explained in more

detail in Section 4.3.3.

3.5 Computing TFust and Reputation

In computing trust and reputation, several issues have to be considered. First, the trust

may decay with time. For example, if r trusts E at level p based on past experience five

years ago, the trust level today is very likely to be lower unless they have interacted since

then. Similar time-based decay also may apply for reputation. Second, entities may form

alliances and as a result would tend to trust their allies more than they would trust others.

Finally, the trust level that r holds about E is based on Í's direct relationship with g as

well as the reputation of g,i.e., the trust model should compute the eventual trust based

on a combination of direct trust and reputation and should be flexible to weigh the two

components differently.

Let the behavior trust for a given context c and time ú between two entities z and gr be

l(r,A,t,c), directtrust between the entities for the same context and time be Ø(r,y,t,c),

and the reputation of gr for the same context and time be Q(g,t, c).

The computation of 0(gr, ú, c) is calculated by ø asking all entities (excluding E) about

53

54

the reputation of 3r as illustrated in Equati on 3.4, where U is the universe set of all entities.

where [/ is the universe set of entities, T is the decay function (defined below), ,9 is the

shift function, and r denotes the time of the last transaction between z and gr (defined below

in more detail). In practice no entity is omniscient and thus, the reputation of gr is estimated

by ø based on the recommendations ø receives from its recommenders. In general, this es-

timate will not be the same as Q(A,t,c). However, as a simplification measure, we assume

the estimate to be sufficiently accurate. I-et the weights given to direct trust and reputation

beoandB,respectivelysuchthata]-þ:1andc-,P>0. Ifthetrustworthinessofgr,as

far as z is concerned, is based more on direct trust than the reputation of gr, then a should

be larger than B.

In the trust model, trust is allowed to change with time. For example, if r trusted g at

a given level five years ago, z's trust in gr now is likely to be lower unless r and y have

continued to interact since then. To model this aspect, we multiply the trust levels in DTT"

by adecayfunction (T(ú - ,,y(t),c)), where c is the context, ú the cunent time, andr,o(t)

is the time of the last transaction between r and y.

Q(E,t,c): Dzeu-þ,aÌ T(¿ - t"o(t), c) 'S(r, E, z,t, c)

Chapter 3 : TrustTerminology

lu - {",a}l
,z#a (3.4)

The reputation of g is computed as the average of the product of the trust level in the DTT

shifted by the shiftfunction S andthe decayfunction (T(¿ - r"r(t),c)), for all recom-

menders z € R and z # g. In practical systems, entities will use the same information to

l(r,g,t,c) : a Ø(r,A,t,c) * B Q"(E,t,c)

Ø(r,g,t,c) : T(¿ - r*s(t),c) DTT"(y,t,c)

(3.5)

(3.6)

3.6 : Trust Transaction Example

evaluate direct trust and give recommendations, i.e., DTT will be used to give recommen-

dations as well as for obtaining the direct trust level.

3.6 Thust TFansaction Example

{1"(y,t, c)

3.6.1 Overview

Before presenting the numerical example to illustrate how the behavior trust operates, we

provide the following pseudo-code segments to show the sequence of the steps a source

entity z takes to determine the trustworthiness of a target entity y. For the sake of the

reader and for an easy reference, table 3.2 summarizes the behavior trust terms used by z.

Before u engages in any behavior trust relationships with any target entity, r performs

an initialization steps to choose its set of trusted allies as well as its set of recommenders.

Entity z also performs further steps to initialize its set of recommenders as illustrated in

Figure 3. 1. In lines (1.) and (2), z chooses its set of trusted allies (i.e., Q) based on off-line

relationships and randomly chooses its set of recommenders (i.e., Æ,). In lines (3) through

(6), r initializes accuracy and consistency of its recommenders.

Now, to determine the trustworthiness of y, r uses the steps illustrated in Figure 3.2.

It should be mentioned that r performs the consistency check every rnth transaction and

the accuracy check every nth transaction. Also, trans-num means the transaction number

(i.e.,1st transaction, 2nd transaction, etc.). In line (1), r computes its direct trust in g and

the details of this step are illustrated in Figure 3.3. In line (2), r requests and gets recom-

mendations from all of its recommenders in R,. As illustrated in line (3), if the consistency

check needs to be performed, z carries that in line (4) and detailed in Figure 3.4. Before

using the recommendations to compute the reputation of g, z adjusts the recommendations

DzeR,T(¿ - r"y(t),c) S(r,Y, z,t,c)

lÃ,1

55

,z#a (3.1)

56

Behavior
trust term

A,(2,,a,,t, c)

Table 3.2: The behavior trust terms used by entity z.

A,(2,t, c)

C"(",U,t, c)

C*(2,t, c)

Accuracy of recommender z as observed by r in giving
recommendation regarding E at time ú for context c

ú nn,(r,a,t,c)

Accuracy of recommender z as observed by r attime t
for context c

Chapter 3 : TrustTerminology

ú ¡76,(2,t, c)

Consistency of recommender z as observed by ø in giving
recommendation regardingE at time f for context c

REr(z,A,t, c)

meanlng

Consistency of recommender z as observed by r attime
ú for context c

IT L,(9,t, c)

Recommendation error of recommender z as observed by r
in giving recommendation regarding y at time ú for context c

S(r, z,t, c)

Recommendation error of recommender z as observed by r
at time ú for context c

l(r,g,t, c)

The recommendation for g given by recommender z
to r at time ú for context c

The instantaneous trust level of gr obtained by r as a result of
monitoring its current transaction with g at time ú for context c

O(r,g,t, c)

The shift function used by entity z to adjust the recommendation
given by recommender z attimet

Q,(y,t, c)

received from its recommenders in .R,. This step is shown in line (5) and detailed in Fig-

ure 3.5. In lines (6) and (7), r computes the reputation of g and the behavior trust of gr,

respectively. Lines (8) through (12) are self explanatory. The update process camied out by

r after the transaction is over is shown in Line (13) and detailed in Figure 3.6.

The loop, Figure 3.4, in line (1) through line (8) carries out the consistency check. As

a consequence, the inconsistent and hence must be dishonest recommenders are identified

Behavior trust between r and y attime t for context c

for context c

Direct trust between r and y attime t
for context c

Reputation of gr as observed
for context c

by r at time ú

3.6 : TrustTransaction Example

(1) ;; Based on off-line relationships, í¿ chooses its set of trusted allies 7}
(2) ;; ,r randomly chooses its set of recommenders -R'
(3) for each recommender z e ,R" do
(4) A,(z,t,c) <- 1 ;; z is considered to have maximum accuracy
(5) C,(z,t,c) + 1 ;; z is considered to be consistent
(6) Vnn*(",t,c) <- 0;; since z is considered to have maximum accuracy, then

recommendation error of z is set to 0

Figure 3.1: Source ent¡ty r initializes its recommenders in .R,.

The initialization steps performed by entity z.

Source entity r computes the behavior trust in target entity g.

(f) compute @(r,y,t,c) i; as detailed in Figure 3.3
(2) gel RE,(z,a,t,c), Vz € R,;; r gets the recommendations regarding gr

(3) if ((trans-num mod rn):0)
(4) consistency check ;; as detailed in Figure 3.4
(5) adjust recommendations ;; as detailed in Figure 3.5

(6)Q,(a,t,")-_W,zla;;asillustratedinEquation3.7
(7) l(r,a,t,c) +- a O(r, a,t,c) i þ Q"(a,t,c) ii as illustrated in Equation 3.5
(8) if z decides to proceed with the transaction
(9) if ((trans-num mod n) :- 0) ;; accuracy check
(10) obtain ITL,(y,t,c)
(11) else
(12) ,r rejects the transaction with gr

(13) update process ;; as detailed in Figure 3.6

Figure 3.2: Behavior trust steps.

57

and removed from T, b! setting their consistency to zero. The consistent recommenders

have their consistency set to one.

58

Source entity n computes direct trust in target entity gr.

(1)
(2\
(3)
(4)

;; get DTT,(a,t, c)

;; decay DTT,(y,t,c) it necessary

;; compute the direct trust O(r, U,t,c) as illustrated in Equation 3.6
Q(*,A,t,c) <- T(ú - ,,y(t),c) DTT"(y,t,c)

Figure 3.3: computation of O(2, U,t,c).

Source entity z performs the consistency check to filter dishonest recommenders.

(1)
(21

(3)
(4)
(5)
(6)
(7)
(8)

Chapter 3 : Trust Terminology

forall z€R*do
gel RE¡r(z,A,t,c), Yk e T,
LnE,(",A,t,c) <- max¡67,{RE¡(z,A,t,c)} - min¡ç4 {RE¡(z,g,t,c)}, Vk e T,
iÎ A.pB,(r,A,t,c)) enB;; z¿ inconsistent and hence must be dishonest

Cr(z,A,t, c) <- Q

lË"1 : lR"l- 1 ;; remove zfrom R,
else ;; z consistent but may be dishonest

Cr(r,y,t,c) <- 7

Figure 3.5 illustrates how r adjusts the recommendations received from consistent rec-

ommenders. Lines (2) through (5) details the explicit steps carried out by the shift function

as explained in Section 3.4. Figure 3.6 shows the update steps that z performs after the

transaction with E is over. The algorithms used to perform the various updates are dis-

cussed in more details in Section 4.3.3. Line (1) starts a loops that goes through all the

recommenders in R,. In line (2), if the consistency check was performed by r, then r
updates the overall consistency of its recommender z by using z's current consistency in

recommending A . Similarly, if the accuracy check was performed by r, then r updates the

Figure 3.4: Consistency check pedormed by r.

3.6 : TrustTransaction Example

Source entity r adjusts z's recommendation to reflect z's accuracy.

(1) forall z ç R, do
(2) if (!tr¿¿, (z,t,c) < 0) ;; computed in line (0), Figure 3.1

(3) S(*,A, z,t,c) *- RU,(z,a,t,c) + 4(1 - A,(z,t,c))
(4) else
(5) S(r,A,z,t,c) *- RE,(z,A,t,c) - 4(1- A,(z,t,c))

Figure 3.5: Adjusting the recommendations made by r's
recommenders.

overall accuracy of z using z's current accuracy in recommending E.

Source entity r updates the consistency and accuracy of its recommenders.

(1) forall z €. R, do
(2) if ((trans-num mod m):0) ;; consistency check
(3) update C,(z,t,c) using C,(z,y,t,,c)
(4) if ((trans-num mod n):0);; accuracycheck
(5) update DTT,(y,ú,c) using ITL,(g,t,c)
(6) Vnn,(z,U,t,c) +- REr(z,A,t,c) - ITLr(g,t,c)
(71 update ú ap"(2,ú, c) using ú nn,(",A,t,c)
(B) A,(",a,t,c) <- -f, lvne-(",a,t,c)l + 1

(9) update A*(",ú,c) using A*(z,y,t,c)
(f 0) trans-num++

Figure 3.6: Update process.

59

60

3.6.2 Example

Figure 3.7 shows a block diagram of the different components of the trust model. The

figure shows an example of a source entity r wanting to engage in a transaction with a

target entity g. The example, provided in this section, illustrates the evaluation of direct

as well as reputation trust relationships in the context c of a "printing service" where r
provides some of its resources to other entities for printing purposes. In such a transaction,

there is a trust concern from the source entity as well as the target entity. As shown in

the figure, each entity has its local elements. For example, z has its own T*, R,, DTT*,

RTT,, TM* proxy, and TA". Each entity should have its own trusted allies set and set

of recommenders. For the sake of simplicity, we provide a walk through example of ø

determining the trustworthiness of E. Hence, the figure shows only the trusted allies set

and set of recommenders of r, namely T* and R".

Let us assume that entity E wants to print its annual report using z's resources. Entity

ø is concerned about gr's trustworthiness and hesitant to provide its service and allow gr

to use its resources. Some breaches that g can commit while using u 's resources include:

(a) holding the resources for longer periods that initially requested, (b) trying to access

protected local data, and (c) instantiating illegal tasks on the resources. To make a decision

about whether to have a transaction with U, tr can rely on its own past experience with gt as

well as on g's reputation. This is expressed in Equation 3.5.

As stated in Section 3.2 each entity maintains a set of trusted allies as well as a set

of recommenders. Hence, z maintains 4 and -R". Suppose that z has two trusted allies

ø1 and a2inT, as well as three recommenders ?'1, 12, àfldryin R,. The trusted allies in

T, are completely trusted by r and are chosen based on off-line relationships. However,

the recommenders r)., 12, and r3 in -R" are randomly chosen and initially these recom-

menders are considered by r to be honest and completely accurate. That is, once rr, 12,

and 13 are randomly chosen by z, their consistency and accuracy are initialized as follows:

Chapter 3 : Trust Terminology

3.6 : Trust Transaction Example

rì'xi trusted allies set { J Entiry llJ "f t""otmenders set R,
,::-\ t tY

./_______________ \ì _______T_______/

I entitv]f i rM, x.ï transaction monitorins

F+-l rA, xi trust agent

f RTrþ"

DTT, -r.T direct trust table
RTT, x.T recommender trust table

Cr(rr,t,c) :1 because since 11 is honest, 11 is consistent, since z ts a new recommender

and gave no recommendations to n so faÍ, z's recommendation error as observed by z for

context c at time ú is set to zero (i.e., V¡8, (rr,t,c) : 0), and Ar(r1,t,c) :1. Similarly,

C*(rr,t,c): I, Ar(r2,t,c):1,úR1*(rr,t,c) : 0, Cr(rt.,t,c) - 7, A*(rs,t,c): L,

ú nn.(ry,t, c) : 0. We also assume that rr, 12, and 13 have previous interactions with E.

First, Let us illustrate how can r discover and quantify gr's reputation. That is, let us

show how to compute Qr(U,t, c). To determine the reputation of E, u consults its recom-

menders in -R" to give recommendations regarding 3r for context c. Since Cr(rr,t,c) : 1

andCr(r2,t,c) :1, ø decides to keep both of rl and12in Rr. Note that, as long as the

recommenders are consistent, the first measure used by our trust model, namely consis-

tency, will filter out the inconsistent and hence dishonest recommenders. Then, the second

Figure 3.7: The different components of the trust model.

6l

62

measure used by our trust model, namely accuracy, assures that if there is any bias in the

recommendations received about E's trustworthiness, this bias is minimized and brought as

close as possible to the trustworthiness of gr. Please refer to Section 3.4 for clarification.

Now, z sends recommendation requests to 11, '.2, àfld 13 to obtain E's reputation. After

consulting DTT,' 11 finds that it has a trust level of 3 based on recent interactions with

E for context c at time ú. Consulting DTT,,, 12 finds that it has a trust level of 5 based

on interactions done two years ago with gr for context c. Consult\ng DTT,., 13 finds that

it has a trust level of 5 based on interactions done recently with g for context c. Assume

that r carries out the consistency check and instructs the entities in Q to request recom-

mendations from rr, 12, àod 13 regardingy for c. Suppose that: (a) 11 gives 3 to ø1 and a2,

(b) rz gives 5 to ø1 and a2, àîd (c) rs gives 3 and 5 to ø1 and 42, respectively. Calculat-

ing A¿¿- (rr,A,t,c) as illustrated in Equation 3.1 yields Lnø*(rt,A,t,c) :0. Similarly,

Lnø.(rr,E,t,c) :0, whereas Lnp,(rr,U,t,c) - 2. Obviously, Lnø,(rt,U,t,c) > epB

and hence Cr(rs,A,t, c) : 1. Therefore, 13 is considered inconsistent and hence dishonest.

As a result, r3 is removed from R".

Before Í uses REr(r1,A,t,c) and REr(r2,U,t,c) to compute the reputation of g, r
assures that if there is any bias in the recommendations received about gr's trustworthiness,

this bias is minimized and brought as close as possible to the trustworthiness of A (i.e.,

r has to use the recommender's accuracy to adjust or shift the recommendation). After

receiving the recommendation from 11 and before the transaction between z and gt takes

place, z has the following about r¡ RÛr(rt,U,t,c) : 3 and Ar(r1,t,c) :1. Keep in

mind that IT L,(E, ú, c) will be determined during or after the transaction. In other words,

beforethetransactionwithA,rdoesnotknowthevalueofgr'sITL.Since Ar(rr,y,t,c)and

V np,(rt,A,t, c) depend on gr's ITL, they will be computed if and only if gr's ITL is obtained.

Similarly, after receiving the recommendation from rz aîd before the transaction between

r andE takes place, ø has the following about 12: REr(r2,A,t,c) : 5 , Ar(r2,t,c) :7.

Similarly, úRp,(rr,A,t,c) and A,(rr,U,t,c) will be computed if and only if 3r's ITL is

3.6 : TrustTransaction Example

obtained. Therefore, RE,(ry,A,t,c) and RE*(r2,U,t,c) are shifted as follows:

Since, 11 has maximum accuracy as far as z is concerned, then the recommendation given

by 11 will not be shifted and will be taken as is by r. The recommendation given to z

by 11 regarding g is 3. After applying the shift function to the recommendation to reflect

r,'s accuracy, indeed z takes exactly what 11 recommends and this is.shown in Equation

3.8. Similar observation can be drawn on the recommendation received from 12. Now,

r is ready to compute g/'s reputation according to Equation 3.7. Entity z needs to de-

cay the recommendations obtained from 11 and 12 to reflect the time elapsed since these

recommendations were obtained. One implementation of the decay function is to make

T(¿ - r,ra(t),c) areal number in the interval [0, 1] such that 0 means extreme decay and

1 means no decay. For example, T(ú - Trra(t), c)because the recommendation given by 11

regarding g is based on recent interactions. Hence, r does not decay the recommendation

from 11 and takes it as is. However, since the recommendation given by 12 regarding E

is based on interactions done two years ago, then z needs to decay this recommendation.

Assume that r set the decay function T(¿ - r,ra(t), c) to 0.4. Therefore, the reputation of

A Q,(A,f , c) as illustrated in Equation 3.J, is computed as:

S(r,U,r1,t, c)

S(t,U,12,t, c)

3-4(1 -1)
5-4(1 -1)

:L)

-5

63

(3.8)

(3.e)

To compute the direct trust r has in g, r consults DTT, through TA, as shown in Figure

3.7 . Let us assume that r has directly interacted with g ayear ago and the trust level is 5.

Since this direct trust level was based on interactions one year ago, T(¿ - r,r,(t),c) might

Q,(a,t,c): (1 x3) +(0.ax5) :2.5 (3.10)

64

be assigned 0.7. According to Equation 3.6:

Assume that a : 0.8 and B : 0.2 meaning that r relies more on its direct trust than

reputation, then finally z is ready to calculate the trust in E,

According to Table 3.1, the behavior trust evaluation of gr at trust level 3.3 says that gt

is medium trustworthy. Suppose that r decides to have the transaction with gr and the

transaction is monitoredby T M, proxy as shown in Figure 3.7. Suppose that IT L"(y,t, c)

is found by TM" proxy to be equal to 3.

After the transaction and since r monitored its transaction with E, the accuracy check

can be performed. The accuracy of the recommenders based on the current transaction are

computed as shown in Table 3.3. Based on the current transaction and after computing the

accuracy and the recommendation error, u does the following:

o Updates its direct trust in g by using ITL,(y,t,c) to update the comesponding entry

in DTT" (i.e., DTT*(U,t,")).

Ø(r,y,t,c): 0.7x5:3.5

Chapter 3 : Trust Terminology

l(r,u,t,c):0.8 x 3.5 +0.2 x 2.5:3.3

(3.1 1)

Uses C"(r1 ,A,t,c) and C*(r2,U,t,c) to update C*(r1,t,c) and C,(rr,ú, c), respec-

tively.

Uses V¿B, (rr,A,t,c) andú n1,(rr,U,t,c) to update ú np,(rr,ú, c) and

ú nn,(rz,ú, c), respectively.

(3.12)

Uses,4."(r1,a,t,c) and Ar(r2,A,t,c) to update Ar(rr,t,c) and A,(rr,ú,c), respec-

tively.

3.6 : Trust Transaction Example

The next chapter will have more details on the update algorithms used to update direct trust,

recommenders' honesty, recommendation error, and recommenders' accuracy.

65

R
ec

om
m

en
de

r

T
1

T
ab

le
 3

.3
:

A
cc

ur
ac

y
co

m
pu

ta
tio

n
fo

r
re

co
m

m
en

de
rs

in

T
2

Ü
R

¿
,(

rr
,

a,
t,c

)
*-

 R
Ð

r(
rt

,u
,t,

c)
 -

 IT
L"

(y
,t,

c)
úa

p,
(r

t,A
,t,

c)
 <

-
3
-

3:
0

R
ec

om
m

en
da

tio
n

er
ro

r

V
 n

B
*(

r
z,

 a
,
t,

c)
 .-

 R
E

r(
r

z,
 a

,
t,

c)
 -

IT
 L

"(
y,

 t
,

c)
V

 n
p,

(r
z,

A
,t,

 c
)

<
-

5
-

3
:

2

T
*.

A
*(

rt
.,U

,t,
c)

 +
-
-

j
lü

n¿
,
(,

rt
,U

,t,
c)

l
-f

 I
A

r(
rr

,g
,t,

c)
 <

-
|

R
ec

om
m

en
de

r's
 a

cc
ur

ac
y

A
,(

rr
,A

,t,
c)

 <
-
-à

 lú
na

,(
r,

A
,t,

c)
l+

 1
A

r(
rr

,U
,t,

 c
)

<
-

0.
5

o\ o\ s b õ' \ (¿
)

LI t' râ LI cD
'

J È
¡ o o ùa \<

3.7: Summary

3.7 Summary

In this chapter, we introduced the fundamental concepts used in our behavior trust model

and presented the basic rules for quantifying them. The fundamental concepts and rules

have been presented and published at some conferences [63, 39,61].

Behavior trust is quantified by trust level, which is a dynamic parameter ranging from

very trustworthy to very untrustworthy. The trust level is computed based on direct trust

as well as reputation for a specific context at a given time. Direct trust is the behavior

trust level resulting from an entity's own past experience with the target entity. Ideally,

reputation of an entity is the behavior trust level reached by global consensus. In practice,

it is estimated by polling recommenders regarding the behavior trust of the target entity.

Because recommenders can be dishonest and distort the reputation estimates, we intro-

duced a consistency concept that tracks the truthfulness of a recommender. A recommender

is considered to be truthful if it says what it actually knows. We track the truthfulness or

the honesty of a recommender by applying a consistency measure. If a recommender gives

away largely different answers to the different entities tnT*, then the recommender is con-

sidered to be inconsistent and hence dishonest. Otherwise, the recommender is consistent.

If the recommender is consistent, then the recommender might be: (a) honest and that

is what we want to achieve, or (b) dishonest by modifying the truth but giving the same

modified truth to all the entities inT,.

In our trust model, we introduced an accuracy measure to reflect a recommender's accu-

racy: (a) to further prevent these consistent but dishonest recommenders from influencing

the recommendation network, and (b) to adjust the recommendations received from honest

recommenders. This is done before the recommendations received are used to compute the

reputation of the target entity. In a nutshell, the accuracy measure is an important concept

that tracks how correctly a recommender estimates the underlying trust level of the target

entity.

61

68

Further, Our trust model has the flexibility to weigh direct trust and reputation differ-

ently. Having the flexibility of combining direct trust and reputation gives the trust model

the leeway to choose the strategy that best fits it. Finally, to illustrate the usage of concepts

used in our trust model and to explain how the behavior trust operates, we provided an ap-

plication example. The example depicts how behavior trust is determined between a source

entity and a target entity.

Chapter 3 : Trust Terminology

Chapter 4

Mapping the Trust Model onto Network

Computing Systems

4.1 Overview of Network Computing Systems

The deployment of faster networking infrastructures and the availability of powerful mi-

croprocessors have positioned Nen'vork Computing (NC) systems as a cost-effective alter-

native to traditional computing approaches. The NC system can be grouped into various

categories depending on the extent of the system and the performance of the interconnec-

tion media. For example, clusters of workstations are NC systems that use commodity

networks to create dedicated very tightly coupled systems. Another example of NC sys-

tems is the meta-computing initiatives on the Internet that attempt to harness the available

resources to perform complex parallel applications such as prime number sieves. Motivated

by the successes of NC systems, researchers have started examining more generalized re-

source/information sharing and integration infrastructures such as Grid [41,81,60] and

PZP l2l, 22, 261 systems.

A Grid system is defined as a generalized, NC and data handling virtual system that

69

10

is formed by aggregating the services provided by several distributed resources f82, 48,

83, 84, 851. A Grid can potentially provide pervasive, dependable, consistent, and cost-

effective access to the diverse services provided by the distributed resources and support

problem solving environments that may be constructed using such resources.

On the other hand, PZP systems aÍe a way of organizing NC systems and they are a

manifestation of one of the fundamental design principles of the Internet [86]. Recently,

popular file-sharing applications such asKaZZal22l and Gnutella 128,2ll have rekindled

interest in this approach to large-scale system design. The P2P approach has significant

benefits including scalability, low cost of ownership, robustness, and ability to provide

site autonomy. Although current PzP systems are mainly concerned with file swapping

applications, the concept can be generalizedto build different large-scale NC systems [24,

25,261. To achieve this generalization, NC systems' scalability becomes a vital concern.

For scalability, large scale NC systems can be considered as a set of interconnected

domains. These domains can interact in a P2P fashion to share resources and services

amongst themselves. One primary goal of NC systems is to encourage domain-to-domain

interactions and increase the confidence of the domains to share their resources (a) without

losing control over their own resources and (b) ensuring confidentiality for other domains.

Sharing resources across institutional boundaries creates several issues related to quality

of service (QoS) and trust. Handling these issues are complicated in NC systems due to

distributed ownership, site autonomy, resource provider heterogeneity, and diverse resource

clients.

Dividing NC systems into domains or regions that could be diverse along one or more

dimensions such as addressing, performance, or trust is suggested in [87]. This division

introduces a new building block to connect domains and adds an additional layer called

trust enforcement layer [87]. Integrating trust into NC systems introduces trust aware-

ness that enables the isolation of different resource pools and client pools into "trusted

Chapter 4 : Mapping the Trust Model onto Network Computing Sysúems

4.2 : Aggregating Network Computing Sysfems

domains." Such trusted domains increase and encourage more business-to-business appli-

cations which in turn can create new forms of service models.

Another goal behind mapping trust onto NC systems is the capability of addressing

the needs of a wide area networked system where different nodes (clients or resources)

interact by sharing resources and"ior services. Building a trust model for these distributed

heterogeneous domains is a complex task" The distribution nature of such an environment

plays a primary factor in the design complexity for such systems in various ways: (a) the

trust model needs to be designed in a distributed architecture fashion and (b) the scalability

becomes a major issue for the success of such a trust model.

In wide area networked systems, we can not assume that every node knows about every

other node nor can we assume that all the nodes are trustworthy. Therefore, another goal

of the trust model is the ability to:

o Evolve and establish trust relationships between nodes prior to any cooperation.

o Manage and maintain existing trust relationships.

Be resilient to dishonest nodes that for malicious reasons give incorrect reviews.

71

4.2 AggregatÍng l.{etwork Computing Systems

A straightforward approach to mapping the trust model would be to consider each node

(resource or client) of the networked system as an entity of the trust model. Such an ap-

proach is less desirable from the scaling point-of-view because a networked system can

have a large number of nodes. To reduce the number of nodes, the networked system is

aggregated into network computing domains (NCDs) and the trust model is required to

maintain an entity for each NCD as shown in Figure 4.1. The aggregation, however, has

some interesting side-effects beyond improving scalability. Before examining these effects,

we present the assumptions and methodologies used for the aggregation.

12

The aggregation process elects one or more leaders for a given NCD. Because the leader

is representing the whole NCD in the trust modeling process, it is held responsible for any

violations by the NCD members. The leader is expected to manage the member nodes to

maintain a high reputation for its NCD within the global community.

For example, consider an NCD formed by five physical nodes. Let one of the nodes be

the leader. The leader is assumed to have the complete trust of the rest of the nodes within

the NCD. Although the leader in general, does not trust the other members at a uniform

level, in this example, we assume that the leader trusts the nodes at a uniform high level.

Suppose a new node is interested in joining the NCD; it would negotiate with the leader

regarding the trust level that would be bestowed upon it. Ideally, the joining node would like

to be trusted at the highest possible level and may lay claim based on references from prior

associations. The leader has conflicting requirements: (a) it wants to present its resources

as highly trustworthy to the outside NCDs because the value of the highly trustworthy

resources will be much higher than the resources that are less trustworthy and (b) it does

not want to overestimate the trustworthiness of a resource because its own reputation will

suffer if the resource turns out to be less trustworthy. This conflict drives the leader to make

choices that are as close to optimal as possible.

As shown in Figure 4.1, each NCD is a collection of nodes (clients and resources).

These nodes collectively contribute to the trustworthiness of their NCD. Each NCD has a

T Mucn proxy that monitors the NCD-level transactions with other NCDs. The trust levels

that an NCD believes of other NCDs directly interacted with are kept in DTT¡¡sp, while

consistency and accuracy of the NCD's recommenders are kept in RTT¡¡sp. These two

data structures, associated with each NCD, are maintained by TAncn. For a transaction

between two NCDs, the actual interaction occurs at the node level as illustrated in Figure

4.1.

Chapter 4 : Mapping the Trust Model onto Network Computing Sysfems

4.3 : Mechanisms for Mapping Trust

-/ \-
DTT direct trust table Other network \ RTT recommender
TA trust agent \ computing ,i trust table

domains
f ,_ V

__-1;ffi;---_-l- ^ _.---l***i-=--:
l\èNN =-l rA k { rA;.._Àùffi \.
!*ir\Y:N-W- i -<- , -_'-v -T+qi-*Ë ',

|
*"^"'-ì

t,,i+i.-(s;,,
"

, lt\(1\$È*tìl
^**-"**

\
' i\ii:'.lffiir:i , I ili5*#.rì\ l

\ nodes ri\)¡s,.ti.i.ìt \ t(iì.i:iÌ,\rÈtìi nodgs I
i¡¡ú\sY)*:\s

\
il¿iasaÌs$i

\ Ì--..---= ,...'"'"''
t"'.-.

-

< .-'/-==___=-7 -----
network computing domain network computing domain

Figure 4.1: Block diagram of the overall network computing system
trust model.

4.3 Mechanisms for Mapping TFust

4.3.1 Tfust Representation and Usage

13

One important aspect of mapping trust is the mechanism for representing trust that exists

among the NCDs. Table 4.1 shows an example DTTyçp" that depicts how a given NCD,

trusts other NCDs. For a specific context c¡, NCD" trusts ,À/CD¡ at trust levelTLil, and

this trust level is based on direct experience with NC D j. If NC D j is unlmown to NC Dr,

the trust levelTLil, is set to -1 and this denotes that NCD, did not have a prior direct

relationshiportransactionwith NCDj. Thetrustlevelsinthe DTT¡¡7p" aretimestamped

to indicate the time of the last update. For example, Tft denotes the timestamp of the last

update of the direct trust level between NC D, and NC D¡ for context c¿.

74

An NC D, has a set of recommenders (i.e .R¡¿6r¿") providing it with recommendations.

This information is kept in RTT¡¡ç7" as shown in Table 4.2. For each recommender in

RNCD", NCD, maintains the recommender's consistency as well as the recommender's

accuracy. That is, NC D"'s objective is to filter out inconsistent and hence dishonest rec-

ommenders in its Ruco" and also to know how accurate is the recommendations given

by the consistent recommenders. Let Cp77*.o"(NCD",ú,c) denote the consistency of

NC D" kept in RTT¡¡sp" for context c at time t. Let ARTT*.o"(NC D",ú, c) denote the

accuracy of NCD" kept in RTT¡¡sp" for context c at time ¿. Initially, NCD" randomly

selects its recommenders and considers them to be consistent and have maximum accu-

racy. Let 7L\li,"denote the consistency that NCD" assigns to recommender NCD¡ for a

specific context c¿ andletTS,. denote the timestamp of the last update of consistency that

NCD, assigns to NCD¡ for specific context c¿. Similarly, let TL\:¡,"denote the accuracy

that NC D, assigns to recommender NC D j for a specific context c¿ andletT!;," denote the

timestamp of the last update of accuracy that //CD" assigns to NC Di for specific context

c¿. For example, assume that NC D" chooses NC D j as one of its recommenders for con-

text c¿. As explained in Section3.4, since NC D¡ is considered consistentby NC D", then,

TL?j," is set to 1 and T!;," is set to the time of the last update. Similarly, since NC Di is

considered by NC D, to have maximum accuracy, thenTLiir," is set to 1 andT!;," is set to

the time of the last update. These two data structures, namely DTT¡¡7p" and RTT¡¡ç7",

are maintained by TAwco".

Table 4.1: An example of a direct trust table maintained by NC D,.

Chapter 4 : Mapping the Trust Model onto Network Computing Sysfems

Context

C1

Trust Level

Ci

NC Dr

TLi\

Network Computi

rL?,

Timestamp

r:i

ng Domains

r:i

Trust Level
NC Di

rLi\
Timestamp

T L1N,

'rcl's1

T:;

C

T
ab

le
 4

.2
:

A
n

ex
am

pl
e

of
 a

 r
ec

om
m

en
de

r
tr

us
t

ta
bl

e
m

ai
nt

ai
ne

d
by

 N
C

 D
".

C
1

T
ru

st
 L

ev
el

C
on

sr
st

en
cy

T
Ll

\
"

C
¿

T
LZ

\
"

T
im

es
ta

m
plY

U
D

l

r:
l

T
ru

st
 L

ev
el

'1
':i

 "

A
cc

ur
ac

y

T
L2

1
"

S
et

 o
f

R
ec

om
m

en
de

rs

T
L?

 "

T
im

es
ta

m
p

r:
+ 13

"

T
ru

st
 L

ev
el

C
on

si
st

en
cy

T
L2

'^
 ^

s U
J È C

b o Ø q) \, F
l ? \J 'tl tq !ì *l
'

lâ

T
L?

 "

T
im

es
ta

m
plY

U
D

¡

T
',:

:
"

T
ru

st
 L

ev
el

T
!:

"

A
cc

ur
ac

y

T
L2

'^
.

T
 L

'":

T
im

es
ta

m
p

r:
:

'1
'3

 "

\ì ('¡
r

16

Suppose a resource belonging to NC D, is interested in engaging in a transaction with

a remote resource in NC Dr To determine the suitability of the candidate remote resource,

the NCD, consults: (a) DTT¡¡so" to obtain its direct trust level with NC\ and (b)

its recommenders in RTT¡¡c¿r" to obtain the reputation of NCD1. Let NCD, be one

of the recommenders contacted by NCD,. NCD, will consult DTT¡¡çp." to find out

whether it had any prior transactions with NC Dt.If NC D, had no prior transactions with

NCDb then NCD, will request its set of recommenders from RTTxco, to determine

NCD¿'s reputation. Therefore, the recommendation requests can form a recommender

tree as illustrated in Figure 4.2. Because we assume that the trust network among the

NCDs are connected, a recommendation tree exists for any given source and target NCDs.

Leaf nodes in a recommendation tree reply to their parent nodes with the trust level in their

DTTs concerning NC Dï A recommendation tree has DTT lookups at its leaf nodes and

DTT plus RTT lookups at the intermediate nodes. To avoid cycles in the recommender tree,

a recommendation request carries the list of visited NCDs. Further, the recommendation

request carries a time to live field to determine the maximum number of NCDs it is allowed

to visit before it is discarded.

Chapter 4 : Mapping the Trust Model onto Network Computing Sysfems

Network Computing
Domains

Table 4.3: An example of a global direct trust table.

NC DI

NC Di

Trust Level
NC D1

TLn

Network Compu

Timestamp

TL¿t

Tn

ng Domains

T¿t

Trust Level
NC Di

TLu

T L¿¡

Timestamp

Tr¡

Tr¡

4.3 : Mechanisms for Mapping Trust

recommenders NCD,
1/ '\

./'
'\

t\
/r/ \setof ¡' {

recommenders NCQ, NCD,,

set of

(

1

---î
::::i:::i:: :ii:: ::::: :: :::ï:;;:,',:: rece ved

Figure 4.2: An example of a recommendation tree existing in a trust
relationship.

NCD j

4.3.2 Coherent versus Incoherent Tiust Models

+ trust relationship

> direct relationship

77

Suppose we merge all the local DTTs together to obtain a global DTT, that will depict

how any given NCD trusts other NCDs as shown in Table 4.3. The global DTT will have

equal number of rows and columns entries if we disregard the multiple entries made due to

the different contexts. The variation across a single column of the global DTT shows how

different NCDs trust a given NCD.

Since NCDs give recommendations using their DTTs, the structure of DTT used by

the trust model is essential for recommendations to be useful (i.e., the structure of DTT

is essential for the trust model to learn from recommendations). The effectiveness of the

accuracy measure is a good indicator of whether the recommendations are useful to the

78

learning process of the trust model. This is because before an NCD can use the recommen-

dation received from a recommender, the NCD must adjust the recommendation to reflect

the recommender's accuracy (i.e. this process determines if the recommendation is useful

or not). Since the accuracy measure works by comparing the ITL to the recommendation

and then shifting up or down (i.e. adjusting) the recommendation accordingly to narrow

the gap between ITL and the recommendation, the accuracy measure will be effective as

long as the recommendation is consistently low or consistently high in relation to the ITL.

Hence in this case, the trust model will learn from recommendations.

That is, a trust model is considered to be coherent if the recommendation is consistently

low or consistently high in relation to the ITL. Otherwise, the trust model is considered

incoherent.

In the thesis and for the rest of the simulation, we adopted the following definition of

coherent and incoherent trust models. Suppose NC D j is highly trustworthy in the global

sense, then we can expect the global DTT to have very high trust levels along the 7{h col-

umn. We refer to the trust model as coherent if the variation along any given column of the

DTT is below a given threshold. Otherwise, the trust model is considered to be incoherent.

In practice, a coherent DTT means that when NC D" is considered trustworthy by NC Db

it is very highly likely that other NCDs will also frnd NCDs trustworthy. As we will see

in Chapter 5, Section 5.3.2, this property of the DTT is essential for recommendations to

be useful. For example, assume that, in the global sense, NC D j is very trustworthy and

that NCD¿ is very untrustworthy. Table 4.4 is considered coherent because other NCDs

(i.e., NCD,, NCD¿, NCDp, NCDq) agree on the trustworthiness of NCD¿ and NCD¡.

Whereas, Table 4.5 is considered incoherent because there is no global consensus on the

trustworthiness of NC Di and NC D¡. For simplicity purposes, we ignored the timestamps

in these two DTT tables (i.e., Tables 4.4 and 4.5).

Chapter 4 : Mapping the Trust Model onto Network Computing Sysúems

4.3 : Mechanisms for MappingTrust

Table 4.4: A. coherent global direct trust table.

Network Computing
Domains (Trustors)

NC D,
NC DI
NC D"

Network Computing Domains
Domains (Trustees)

NC D"

NC Di
1

Table 4.5: An incoherent global direct trust table.

2

Network Computing
Domains (Trustors)

1

1

NCDi

79

4.3.3 TFust Evolution

5

.)

Suppose that based on the trust evaluations l/CD" decides to go ahead with the transaction,

the transaction can be monitored by the TMxcn" and the TMxcn, proxies. TheTM¡¡çp"

and the TMucn, proxies determine the instantaneous trust levels ITL¡¡çp"(NCD¿,t,c)

and ITLu6p,(NCD,,t,c), respectively. Because a TM proxy is controlled by the asso-

ciated NCD, TM proxies of NCD, and NCD¿ might evaluate the same transaction dif-

ferently. For how a transaction is monitored and examples of conditions that can cause a

breach in the transaction between NC D, and NC D¿, please refer to Section 3.4.

In the remainder of this section, we detail how the updates mentioned in Figure 3.6

NC D"

4

NC Dt

,)

NC D"

Network Computing Domains
Domains (Trustees)

NC Do

NC Di
1

5
t
t)

1

NC Di
1

J

1

5

80

are carried out by NC D,. If ITLs are obtained by the TM proxies, then they are used to

evaluate the two sources of information regarding trust between NC D' and .l/CD¿. For

example, if ITL¡¡6p. is obtained, the following two sources of information are updated

by TA¡¡çp": (a) direct trust between NCD, and NCD¿ (i.e., DTT¡¡7p"(NCD¿,t,c))

and (b) the accuracy of NCD, in making recommendations for context c at time t (i.e.,

ARTT*.o"(NC Dr,t, c)

The two soufces are evaluated differently. Let ITL¡¡çp"(NCDûú, c) denote NCD¿'s

ITL for context c at time ú as observed by NC D, and DTTT¡cI"(NC Dt,t, c) be the trust

level of the DTTxcD" entry that corresponds to the level NC D, trusts NC Dt for context

c at time ú based on direct interaction that NC D, had with NC Dt Let ô be a real number

between 0 and 1.

Chapter 4 : Mapping the Trust Model onto Network Computing Systems

If ô > 0.5, preference is given to the ITLs determined through the analysis of the previous

transactions between NCD" and NCDt.

To evaluate the set of recommenders, NC D, needs to compute the consistency as well

as the accuracy measures as shown in Section 3.4. Suppose Ü¿¿r"o
"(NC

D", NC D¿,t, c)

is the recommendation error for recommender NCD, based on the recommendation re-

garding NC Dtthat NC D" gave to NC D" for the cument transaction and Ú¿6r" o"(NC D",t, c)

is the accuracy of recommender N C D, maintained based on all previous recommendations

made by NCD". The following formula is used to update NCD"'s recommendation error.

DTT¡¡17"(NCDbt,c) : õ DTT¡¡77"(NCDr,t,c)

+ (1 - ð) ITL¡¡¿p"(NCD¿,t,c)

VRE*.,"(NCD,,t,c) : õ úRE*.,"(NCD",t,c)

+ (1 - ô) Ú REr"o"(NC D", NC Dbt, c)

(4.1)

(4.2)

4.3 : Mechanisms for Mapping Trust

Suppose ANco"(NCD",NCDbf,c) is the accuracy of recommender NCD, based on

the recommendation regarding NCU that NCDz gàva to NCD, for the current trans-

action and Ap7,7*co"(NC D", ú, c) is the accuracy of recommender NC D, maintained at

RTT¡çsp" based on all previous recommendations provided by the average accuracy mea-

sure. The following formula is used to update the average accuracy measure.

ARTT*.o"(NC Dr,t,c) : 6 Anrr*.o"(NCD",t,c)

The above equations, use a weighted averaging scheme to determine the update for the

parameters. In Section 5.5, we show alternative schemes for updating the parameters and

examine their properties. The consistency'for the recommenders is updated differently.

Suppose C x c o "(N
C D

",
N C Dt,ú, c) is the consistency of recommender N C D

"
based on

the recommendation NCD" gave for the current transaction to NCD, regarding NCDt

for context c at time t.

+ (1 - ð) Axco,(NCD",NCD¡,t,c)

81

LetC¡¿TT*co"(NCD",ú,c)denotetheconsistencyofrecommender NCDrmaintained

at RTT¡¡6p- based on all previous recommendations provided by NCD". The following

simple formula updates CRTTwcp"(NC D,,t, c).

CR r*.o"(NCDr,t,c):

This formulapenalizes NC D" for lying even once. 'When the consistency value reaches 0,

the NC D" is removed from the recommendation set for a random amount of time that is

sampled from a predefined interval.

(4.3)

min(C¿77, cr"(NC D",t, c),CNcn"(NC D", NC D¡,t,c)) (4.4)

82

4.4 Behavior Tþust lllustration

Chapter 4 : Mapping the Trust Model onto Network Computing Systems

The following Figure 4.3 illustrates how the behavior trust operates. The figure shows a

source NCD (i.e. NCD") interested in determining the trustworthiness of a target NCD

(i.e., NCD¿) for context c at time ú. The NCD, determines ly'CD¿'s trustworthiness by

combining its own experience with NC D¿ and the reputation of NC Dt. The l/CD' checks

DTT¡,¡çp" to obtain its direct trust in NC\ as shown in the figure. Determining the

reputation of NCh is more involved. The reputation of NCù is obtained by NCD'

requesting its recommenders in -R¡¡cr¡" for recommendations regarding NCU for context

c at time t. If NC D" decides to check the honesty of its recommenders, then NC D" will

do that by the help of its trusted allies in Twco" as explained in Section 3.4.If the honesty

check was done by NCD, through its trusted allies in TNCD",then NCD" can evaluate

its recommenders' honesty. This is done by applying the consistency test as shown in

Equation 3.4. After the recommendations regarding NC h are receivedby NC Dr, NC D"

shifts every recommendation by its respective recommender's accuracy as well as decaying

the recommendation if needed. For example, if the recommendation received from NC D"

is based on recent direct interaction between NCD. and NCDt then there no need of

decaying the recommendation. Now, l/CD" is ready to compute the reputation of NC Dt

by summing the recommendations and taking the average as defined in Equation 3.7.

After that and as shown in Figure 4.3, NCD" computes the behavior trust in NCDl

by combining its direct trust level in NCDt and reputation trust level of NCDt. Based

on the computed NCD¿'s trustworthiness, ly'CD" can decide to go ahead or reject the

transaction with NCDI. If NCD, decides to proceed with the transaction and if the

monitoring process takes place, the transaction monitor proxy (TMuco" proxy) obtains

ITL¡¡çp"(NCDüc,ú) as explained in Section 3.4. After the transaction is finished, the

followingcanbeupdated: (ùif ITLusp"(NCDt,c,t)wasobtained,NCD"canevaluate

its recommenders' accuracy and (b) NC D" can update its direct trust level of NC 4 using

4.4 : Behavior Trust lllustration

direct trust
in NCD,

I

--_i_,

NCD"

, comoute
>{- \ behavior trust

DTT direct trust table

RTT recommender trust table
NCD network computing domain

l/CQ reputation

83

, reoutation trust /
F- leñrror¡,rc¿ 1

recommendation
trust levels

) selol
recommenders

*;;;,å;il"ti;;; ,:\ _--/=-___r{,-an^..

NCD combines-'

ITLT¡sp"(NC Dbc, ú). In addition, if the consistency check was perforrned, then NC D,

can update its recommenders' consistency. In Figure 4.3, the shaded area illustrates these

update operations. Since monitoring each transaction and checking the recommenders'

honesty for each transaction are onerous tasks, the operations shown in the shaded area

will be carried out periodically by NC Dr.

Figure 4.3: Trust Development Cycle.

Y reject -\)
'-transaction-'----/

<t)
o
C
o

TA

NCD,

NCD,

trust agent

source network computing domain

target network computing domain

84

4.5 T[ust Thansaction Example

Chapter 4 : Mapping the TrustMode(onto Network Computing Sysfems

We present an example to illustrate: (a) the updating process of the recommenders' consis-

tency, (b) the updating process of the recommenders' accuracy, (c) the updating process of

the recommenders' recommendation error, and (d) the updating process of NC Dr's direct

trust in NC Dt.In other words, we will show how DTT¡¡ç7" and RTTucDs ale updated.

It should be mentioned here that this example is a continuation of the example presented

in Section 3.6.2. For the sake of continuation, we introduce the following presentation ad-

justments: (a) we use l/CD, instead of r, (b) we use NC 4 instead of E, and (c) we use

NC Dr, NC Dr* and NC Dr. instead of 11, r2,and 13, respectively.

In the example presented in Section 3.6.2, NCD, performed the consistency check,

went a head with the transaction with NCDb monitored its transaction with NCD¡, and

performed the accuracy check. Table 4.6 summarizes the outcome of these checks. In

Table 4.6: Outcome of tests performed in Example 3.6.2by NC D'.

Recommender

NC D,.,

Outcome of consistency
check performed by NC D,

NC D,"

C ¡vc n "(N
C Dr", N C D¡, t, c)

_1
-I

NC D,s

C uc o "(N
C D,r, N C D¡, t, c)

_1
-

t

Table 4.6, recommender NC Drr's accuracy and recommendation error were not computed

C¡vcp"(NC D,r, NC D¿,t, c) : g

Outcome of accuracy

check performed by NC D¡

V RE*.o"(NC Dr, NC Dt,t, c)
_rr
-

t,

Awco"(NC D,r,, NC Dr,t, c)
1

ú RE*"o"(NC Dr, NC Düt, c)

-t
ANCp"(NC D,r, NC D¡,t, c)

: 0.5

V RE*.o"(NC Dr", NC D¿,t, c)

(Not computed)
Axcn"(NC D"r, NC D¡,t, c)

(Not computed)

4.5 : Trust Transaction Example

since l/CD,r's consistency for the current transaction is zero. That is, NC D, will consider

NC Drs inconsistent and hence dishonest and so it will be removed from Ê¡¿6r¿r".

Now, l/CD" will update its direct trust in NCDt. Also, l/CD" will update the con-

sistency, the recommendation error, and the accuracy of its recommenders. These update

mechanisms are based on Equations 4.1 to 4.4. The updates are basically two kinds, namely

updating DTT, and updating RTT,. For the following updates, we choose the value of ô

to be 0.9. V/e start with updating DTT, and following Equation 4.T. From Example 3.6.2

we have DTT¡¡çp"(NC Dht, c) : 5 and IT L¡,¡sp"(NC Düt, c) : 3 is obtained by mon-

itoring the transaction. Therefore, the new DTT¡¡1D"(NC Dt,t, c) is calculated as:

The RTT" updates are shown in Table 4.7. The next time NC D" engages in a trans-

action with a target NCD, NCD" will use the updated values shown in Table 4.7. These

updated values will be used by NCD, as the initial values, illustrated in Figure 3.1, in its

next interaction with a target NCD.

DTT¡¡:p"(NC4,t,c) :0.9 x 5 +0.1 x 3 : 4.8

85

(4.s)

R
ec

om
m

en
de

r

N
C

D
,,

T
ab

le
 4

.7
 :

 U
pd

at
es

 p
ro

ce
ss

 p
er

fo
rm

ed
 b

y
N

 C
 D

 r
.

N
C

D
,,

C
N

C
o"

(N
C

 D
r'

N
C

 D
t,t

,
c)

:
m

in
(l,

1)
_1 -I

re
co

m
m

en
de

r's
co

ns
is

te
nc

y

C
uc

o"
(N

C
 D

,r
,

N
C

 D
ht

,
c)

:
m

in
(l,

 1
)

1
_l

re
co

m
m

en
da

tio
n

er
T

or

ú
R

E
*"

o"
(N

C
 D

r,
t,

c)
:0

.9
 x

0+
0.

1
x0

_r
ì

-U
V

 R
E

*"
o"

(N
C

 D
r,

t,c
)

:0
.9

 x
0*

0.
1

x2
:0

.2

re
co

m
m

en
de

r's
ac

cu
ra

cy

A
N

C
n"

(N
C

 D
r't

,
c)

:0
.9

 x
1*

0.
1

x1
_1 -a

A
N

C
7"

(N
C

 D
r,

t,
c)

:0
.9

 x
1f

 0
.1

 x
0.

5
:

0.
95

oo o\ o Þ
¡ v cÙ I À F 'c
l

O
q ñ o E
l

t' ø ñ t\ a. o z C
D \J fr ¡i \l o ! O
C (a

)
k (â C

D U
)

4.6 : Trust Model realism and limitations

4.6 T[ust Model realism and limitations

We showed how the trust model is applied to a large-scale network computing system. For

scalability purposes, a network computing system is aggregated into network computing

domains (NCDs) and the trust model is required to maintain an entity for each NCD. These

NCDs are considered interconnected domains that interact in a P2P fashion to share re-

sources and services amongst themselves. The trust model is deployed in each NCD as

shown in Figure 4.1. Implementing the trust model on NCDs that peer with each other

is feasible due to the following: Since the goal is to map the trust model onto a large-

scale network computing system, the trust model was designed with the scalability factor

in mind. The trust model elements such as DTT¡¡sp, RTT¡¡sp,TMxco proxy, TAwcn,

andT¡¡sp are designed to operate and evolve trust in a purely distributed manner. There

is no NCD that is omniscient. Rather each NCD: (a) has its own view of how trustwor-

thy other NCDs are and keeps this information in DTT¡¡ç7, (b) controls the monitoring

process of its own transactions using T M¡,tco proxy, (c) has its own set of recommenders

and set of trusted allies, and (d) maintains DTT¡,¡çp and RTTucrD using its own TA¡ucp.

Each NCD cooperates with other NCDs by sharing information in the form of recommen-

dations. Further, each NCD is required to maintain two data structures, namely DTT¡¡ç7

and RTTy1p. The size of RTTNCD is small since it contains information about R¡vco,

which is a small set of the total number of NCDs. On the other hand, DTT¡¡çp contains

entities for each of the NCDs that this particular NCD directly interacted with. Hence, as

the direct interaction with different NCDs increase, the size of DTT¡¡ç¡ increases in a

linear fashion.

A potential implementation problem with our trust model is ensuring that the identities

of NCDs cannot be created trivially. This is crucial since reputation can get erased if an

NCD changes its identity. Hence, an untrustworthy NCD can use this trick to start fresh

every time it builds up a bad reputation history.

87

88

Further, P2P systems are well known to suffer ftomfree loader problem [88, 89], where

an individual may refuse to devote resources to external requests and still get full benefit

from the P2P system. Taking this further to our trust model, an NCD may expect its rec-

ommendation requests to be fulfilled by others. But, when it comes to others asking for

recommendations, this particular NCD chooses not to give recommendations by simply

returning -1 (i.e., do not know) or basically ignoring the request. That is, NCDs may

refuse to give recommendations for various reasons. Further, by isolating dishonest recom-

menders and routing the recommendation requests to only honest recommenders, a tedious

task can be potentially created by bombarding these honest recommenders with a rather

huge volume of recommendation requests. As a result, an honest recommender might be

inclined to refuse giving recommendations in order to avoid the extra work.

To remedy this problem, our trust model should provide some incentives to encourage

and reward these cooperative NCDs. As it is, our model implicitly provides two levels of

incentives for NCDs to be cooperative: (a) by modeling honesty, the trust model provides

a mechanism for giving an incentive to recommenders to truthfully give recommendations

and hence be cooperative in the P2P environment. If a recommender is dishonest, it will be

isolated and the rest of the P2P environment will not ask recommendations from it and (b)

by modeling trust, the model provides another level of incentive to NCDs to be trustwor-

thy and behave as expected. By enabling trust-aware resource management Systems, best

behavior is motivated and that in turn improves the overall system performance (please see

Chapter 7. Although the above mentioned incentives are well taken, we argue that more

explicit incentives should be provided by our trust model. For example, cooperative NCDs

should be given reduced cost when using resources or should have a higher priority when

submitting tasks.

Another limitation of our trust model that we foresee is the potential creation of perfor-

mance bottlenecks. Because every NCD wants to keep honest recommenders, the majority,

if not all, of the recommendation requests will be routed to the honest recommenders. This

Chapter 4 : Mapping the TrustModel onto Network Computing Sysfems

4.7: Summary

not only creates a tedious task that can be bothersome for these honest recommenders,

but also can create a potential performance bottleneck. As a consequence, responses to

recommendation requests can experience a longer delay.

4.7 Summary

In this chapter, we presented an architecture of how our trust model can be mapped onto

network computing systems. This architecture was presented in various conferences in-

cluding [36, 61]. Scalability, that is associated with large-scale network computing sys-

tems, becomes a vital concern. To address this concern, we considered an architecture

where the overall network computing system is partitioned into autonomous entities called

network computing domains (NCDs). Considering each node (resource or client) of the

networked system as an NCD of the trust model is undesirable from the scaling point-of-

view because a networked system can have large number of nodes. Therefore, an NCD is

considered as a collection of nodes and the various NCDs can belong to different adminis-

trative domains and be managed by different policies. The overall system is organized as

a collection of NCDs. One purpose of trust modeling is to facilitate the NCDs to make in-

formed decision when a client wants to access resources that belong to an NCD other than

its own NCD. Therefore, the NCDs should be organized such that they are at the same level

(i.e., they are all peers) and have the freedom to choose a set of remote NCDs to engage in

remote transactions. Naturally, a peer-to-peer organization at the NCD-level satisfies this

requirement. Issues such as peer discovery and negotiation that are important for NCDs

to operate in a peer-to-peer configuration are beyond the scope of this thesis. Each NCD

elects one or more nodes as leaders. A leader of a NCD is assumed to have the complete

trust of the nodes within the NCD. However, the leader may not trust all the nodes within

the NCD at the same level.

Each NCD has a TM proxy that monitors the NCD-level transactions with other NCDs.

89

90

An NCD computes its trust level of other NCDs based on its own experience as well as

reputation provided by its set of recommenders. Further, each NCD has aTA¡¡sp that

maintains the NCD's DTT and RTT. In their DTTs, NCDs keep track of the trust level

of other NCDs that they directly interacted with. V/hile in their RTTs, NCDs keep track

of the honesty and accuracy of their recommenders. Essential for recommendations to be

useful, the trust model should be coherent. A trust model is considered to be coherent if

the variation along any given column of its DTT is below a certain threshold. Otherwise,

the trust model is considered to be incoherent. We provided an example in Section 4.3.2 to

clarify this concept.

In this chapter, we also discussed how trust evolves by showing how l/CD" updates

its direct trust table, its recommenders' consistency, recommendation error of its recom-

menders, and its recommenders' accuracy. We presented a walkthrough example to show

how behavior trust operates as well as a numerical example to illustrate the trust evolu-

tion. Finally, we included a section discussing the limitations and potential implementation

problems with our trust model.

Chapter 4 : Mapping the Trust Model onto Network Computing Sysfems

Chapter 5

Performance Evaluation

5.L Overview

A series of simulation studies was conducted to examine various properties that affect the

performance of the proposed trust model. In these simulations, the trust model was ab-

stracted to keep the complexity manageable and at the same time provide sufficient detail

as explained below. In Section 5.2, we examined the performance of our trust model. We

accomplished that by investigating two properties. First, since modeling behavior trust is

a learning process, we carried out an experiment to examine under what conditions can

our trust model learn the trust levels. Second, we investigated our trust model's ability to

correctly predict the trust that exists between the NCDs.

In Section 5.3.4, we point out other parameters that might have been examined in the

performance evaluation study. We give justifications for not including them in the simula-

tion. As illustrated through simulation experiments in Sections 5.4 and 5.5, we also point

out the importance of some of these parameters in estimating the trust levels.

9I

92

5.2 Simulating TFust Model Performance

5.2.1 Goals of the Simulation

There are two goals of the simulation experiments performed in section 5.2. First and as

explained in Section 4.3.2, the trust model can be referred to as coherent or incoherent.

We also claimed that this property of the trust model is essential for trust estimation to be

useful. In this section, through simulation experiments, we show that our claim holds.

Second, P2P reputation-based systems rely on cross-ratings. Because these systems are

based on a community which may include untrustworthy nodes, correctly predicting the

trust level between nodes is difficult to do [28, 5]. In trust models such as [5, 57, 37], the

main goal is to identify trustworthy and untrustworthy nodes. Hence, a node will be able to

engage in transactions with trustworthy nodes and avoid untrustworthy ones. In our trust

model and through simulations, we examined this property by measuring our trust model's

ability to correctly predict the trust that exists between NCDs. We accomplished this by

varying the number of dishonest NCDs, the frequency of the monitoring process, and the

weight of direct trust versus reputation. We also varied the number of transactions that hap-

pen between NCDs to examine the agility of the trust model in detecting the untrustworthy

NCDs.

Chapter 5 : Performance Evaluation

5.2.2 Overview

In Chapters 3 and 4, we explained in detail how our physical (i.e. real world) behavior trust

model operates. In this section, we give an overview of the simulation (i.e. conceptual)

behavior trust model including any necessary simplifications with justifications of why

these simplifications do not limit the validity and the applicability of our physical behavior

trust model.

In the simulation model, the physical system that consists of a collection of NCDs that

5.2 : Simulating Trust Model Performance

peer with each other is represented by a collection of peering simulated NCDs. Therefore,

in the simulation, there is no representation of the nodes within NCDs and this does not

impact the relevance in presenting the real world model for the following reasons. First, the

transactions that originate and terminate at the resources within NCDs are modeled as hap-

pening between the NCDs. This aggregation does not introduce any erors because in the

physical behavior trust model, the NCDs are assumed to represent the client and resource

sides. Second, clients' and resources' trustworthiness is represented globally by their NCD.

Hence, as far as the trust model is concerned, the objective is to: (a) model behavior trust

by evolving and updating trust levels that exist between these peering simulated NCDs and

(b) predict the trust levels that exist between these peering simulated NCDs to be as close

as possible to the real world trust levels that exist between the real world peering NCDs.

Having said that, an NCD has to manage its members (i.e., clients and resources) to main-

tain a high global reputation and this incurs additional costs and raises issues such as how

resources join, are managed, and leave an NCD. One of the costs and issues that needs to be

addressed when managing clients and resources within an NCD is scalability. Scalability

is discussed in detail in Chapter 6.

Through simulation, we would like to capture the following. Assume that we know

the real world picture as far as behavior trust is concerned. That is, we assume that we

have a data structure that contains the real trustworthiness that exist between the real world

peering NCDs. Since one of the underlying assumptions of this study is that naturally

there exists a network of trust relationships among different NCDs, we model the natural

trust relationships that exist among the NCDs by an Actual Direct Trust Table (ADTT).

This table contains the absolute trustworthiness that exists among different NCDs. For

simplicity, we assume that these trust relationships are constants for the duration of the

simulation time. The ADTT has the same structure as Table 4.1.

The objective of trust modeling is to discover these trust relationships via observations

of ongoing transactions. 'We do this by running two different simulation experiments: (a)

93

94

under what conditions can our trust model learn the true trust levels in ADTT. We exam-

ine two types of conditions, namely a coherent versus an incoherent trust model and (b)

examine how successfully can we predict the true trust levels in ADTT.

In an actual system, the TM proxies periodically examine the transactions among the

NCDs to determine the trust level that exists between source and target NCDs. As explained

in Section 3.4, this is referred to as the instantaneous trust level or ITL. Through outside

observation this is the closest we can get to the actual trust expressed in ADTT. The ITLs

obtained by a TM proxy are used to update a computed direct trust table (CDTT). The

CDTTs keep track of trust levels revealed by the post mortem analysis carried out as the

transactions take place among the different NCDs. The revealing of the ITLs with the trust

monitoring process is simulated by updating the CDTT with values that are closer to the

ADTT (i.e., we simulate the elicitation of the ITLs by equating the CDTT entries to the

corresponding ADTT entries plus a small value that is chosen uniformly at random in the

range [0,2]). The CDTT is initially created by adding a random "noise" generated from

[0,4] to the ADTT.

In addition to the CDTTs, we maintain predicted direct trust tables (PDTTs) to track

the evolution of the trust relationship among the NCDs. The PDTTs are updated using

the trust values that are predicted by Equation 3.5. It should be noted that the prediction

process uses the current entries of the CDTT to determine the new values for PDTT. The

CDTT and PDTT have the same structure as Table 4.1. The PDTT entries are initialized to

-1 meaning that all NCDs are unknown to each other.

Furthermore, RTT has the same structure as Table 4.2 and it keeps track of the consis-

tency and accuracy of .ðy'CD"'s recommenders. Initially, NC D, selects its recommenders

uniformly at random and considers them to be consistent (i.e., the recommenders' consis-

tency is set to 1) and have maximum accuracy (i.e., the recommenders' accuracy is set to

1). Assume thaT. NC D" has 2 recommenders, namely NC D j and NC Dn Initially, NC D,

considers its recommenders to be consistent and have maximum accuracy, as illustrated in

Chapter 5 : Performance Evaluation

5.2 : Simulating Trust Model Performance

Table 5.1: Initial recommender trust table maintained by NC D
'.

Table 5.1. For the trusted allies table (T), NCD" chooses the trusted allies (i.e., members

of T) based on off-line relationships. The structure of T is just a list of these NCDs chosen

by NC D" based on off-line relationships. The trusted allies are assumed to be consistent

and have maximum accuracy. TM proxy and TA are agents whose duties are monitoring

transactions and maintaining trust tables (i.e., CDTT, PDTT, RTT, and T), respectively.

Figure 5.1 shows the simulation model and the simulation entities used in each NCD.

Each NCD is simulated as having its own CDTT, PDTT, RTT, T, TM proxy, and TA. Each

TA maintains its own CDTT, PDTT, RTT, and T. TAs also communicate with their re-

spective TM proxy, instructing it to monitor a transaction if needed. Further, TAs send

transaction requests, reply to the transaction requests, and initiate the transaction.

NC Di
NC Dk

Consistency

1

1

Accuracy

1

1

95

5.2.3 Design and Exogenous Parameters

Tables 5.2 and 5.3 show the design and exogenous parameters used in the simulation. The

NCDs' transactions process was simulated using a discrete event simulator. The term ran-

domly generated over a range [a, b] means that the number is generated using a discrete

(integer-valued) uniform distribution over a, a+1,..., b inclusive. That is written as U[a,

bl. The transactions that take place among the NCDs arrive at the NCDs based on a Pois-

son process. The design parameter reps denotes how many times the simulation run is

repeated. In simulating our trust mode| reps is set deterministically at 10. That is, each

poinr in Tables 5.16 to 5.18 and Figures 5.4 to 5.16 is the result of 10 simulation runs.

96

CDTT

PDTT

TM
proxy

i \-'' '\
computed direct trust table / Other networt<-\ RTT recommender trust table

' uting) rn trust agentpredicted direct trust table \ comp

transaction monitor proxy t-^ domains ,r T trust allies
..
.ì'._-__,,r, _--,,^Ì

--'::::*::^---.-----,'-Â-. ,-A-'-.\ -'-v-
i-S.Ë.ffiËl:"-ì rA ,< f rA Ì--ri.ÌH.Þ*Hslì

--
..

'LRR55ta-----
-=''" î >-Ì-vì--=-

-.-------.-_--.-_-tg.Ëiffi \
"**o**"-'.ìî

^
,-'-/' ,,. / \, / \ .. T$rJqrR\ou'sìs+$-$s

\'a//\
**."^P*"* ¡-

-
ì ". ",t-....,-- lTM proxy ': ...'/' -\r$RffiìÞ' i \ *r"i.rRKRr$ ".\ i TM proxy . I

uuur.=a**,a.ì
*lnirn*jil' ***Ì*o!;

uou*".ê,**,*t
/

\1i\ I Ì:itr ! !¡:f i!¡{t¡ìi\llÌiiìlì.lli:liisiÌ rÌlììì\\\'.È'f¡\ìI\irÌ,\ÌiìuN\\s\sEi$ ìÈììàìi\läi,**ï\/-/
---\

-

-
---'-t

--

(

\'

Chapter 5 : Performance Evaluation

network computing domain

The trust model topology used in the simulation consists of 30 NCDs (i.e., NC Ds-num :
30). The number of recommenders (recs-num) for each NCD was fixed and set to 4, and

the number of trusted allies (alli,es-num) for each NCD was fixed at 4. It should be noted

that recommenders are dropped if their consistency becomes 0. That is, an NCD drops out

inconsistent, and hence dishonest, recommenders from its recommendation set and replaces

them with new recommenders. But the recommender's set size stays fixed at 4. In Section

5.4,we will discuss varying the recommendation set to examine its effect on the perfor-

mance of the trust model. For all'ies-num, it turns out that as long as all'ies-num > L, it

is sufficient for the consistency check. That is, as long as the size of the trusted allies set is

> 1, the consistency check can be carried out correctly.

The source and the target NCDs for each transaction were randomly generated over a

range 10, NCDs-nurn - 11. The frequency of the monitoring process (mon-freq) is set

network computing domain

5.2 : Simulating Trust Model Performance

Symbol

Table 5.2: Design parameters used in the simulation.

Teps

NC Ds-num
Tecs:nun1

NC Ds-di,shonest
all'ies-num

Definition

transact'ions-nun'L

How many times the
simulation is repeated
for each point in the

graphs and tables

cons-check

Number of recommenders

Number of NCDs

d

accu-checlc

Number of trusted allies
Number of dishonest NCDs

mon-f req

Number of transactions
per relation

cons-freq

Design parameter
values

97

accu-f req

Direct trust weight
Consistency check

reps :10

deterministically at [1, 5, 10, 20] meaning that the TM proxy is monitoring every, every

fifth, every tenth, or every twentieth transaction, respectively. The objective of varying the

frequency of the monitoring interval is to examine the dependence of the trust model on the

instantaneous trust levels obtained by the TM proxies.

The frequency of carrying out the the consistency check (cons-freq) and the accuracy

check (accu-f req) is set deterministically at [1, 5, 10, 20]. The consistency determina-

tion parameter epB is set to 0. The reason behind setting €pB to 0 is as follows. As ex-

plained in Section 3.4, the value of LRE*"o"(NC D", NC Dbú, c) will be computed. If

Transaction monitoring
frequency

Accuracy check

€nn

NC Ds-nutn : 30

NC Ds_di,shonest: 10, 1b, 201

Consistency
frequency

TêCSJIUTTL: 4

all'ies-num: 4

Consistency determination

tr an s act'ion s -nLLrrL
:

[5, 10,25,50, 100, 150]

Accuracy
frequency

Boolean value taking 0 or 1

û : 10.0,0.5, 1.0

Boolean value taking 0 or 1

mon-f req: [1,5, 10,20]

cons-freq : [1, 5, 10, 20J

accu-f req: [1, 5, 10, 20]

enp :0

98

Symbol

NC Ds-untrust

Table 5.3: Exogenous parameters used in the simulation.

rels-etist

LRE*,r"(NCD,,NCDbt,") 10, it means that there is a difference in the trust levels

that NCD" gave out to ly'CD"'s trusted allies. Now, there is no reason why NCD" gives

out inconsistent trust levels except if NC D" has some malicious motives. Hence NC D,

should be considered inconsistent and dishonest.

As explained in Figure 3.6, the consistency check is carried out every rn transaction,

while the accuracy check is carried out every n transaction. We chose to carry out the accu-

racy and consistency checks simultaneously (i.e., rn: n) because of the following reason.

The purpose of the consistency check is to filter out the inconsistent and hence dishonest

recommenders. But after carrying out the consistency check, some of these recommenders

may be dishonest. If these dishonest recommenders are given the chance, they will pollute

the recommendation network. Carrying out the accuracy check right away enables our trust

model to capture these consistent but dishonest recommenders and adjust their recommen-

dations before using them to compute the reputation of the target NCD. 'We also, relaxed

the consistency frequency, monitoring frequency, and accuracy frequency because of the

following reasons: (a) if we often carry out these mechanisms (consistency, monitoring,

and accuracy), then there will be a significant overhead for trust computation, and (b) it is

not realistic to carry the consistency check, monitoring process, and accuracy check every

transaction. If an NCD can perform these checks every transaction, then there is no need

to model behavior trust!

Definition

Number of
untrustworthy NCDs

Chapter 5 : Performance Evaluation

existing trust
relationships

NC Ds:untrust :
UINC Ds-nurn - 25, NC Ds-num - 5]

Design parameter
values

reLs-erist :
UINC Ds-nun'L - 25, NC D-num - 20

5.2 : Simulating Trust Model Performance

The value of o determines how the trust model is using the direct and reputation com-

ponents in computing the final trust levels. For example, e, : 1 means only the direct

trust is used, while a : 0 means only the reputation is used. By varying a, we can

examine the dependence of the model on the different trust components. The value a

is set deterministically at [0.0, 0.5, 1.0]. We also varied the number of transactions per

trust relationship (transactions-num) to evaluate the speed of the convergence of the trust

model to the actual trust among the different NCDs. The value of transact'ions-num is

set deterministically at [5, 10, 25,50,100, 150]. In section 5.2.5, we illustrate how the

transactions-nun'L parameter is implemented as a mechanism in our trust model. The

number of dishonest NCDs (NC Ds-di,shonest) is set deterministically at [0, 15, 20]. By

varying NC Ds-di,shonest, we can examine the effect of the number of dishonest NCDs

on the trust model's ability to identify the untrustworthy NCDs.

The number of untrustworthy NCDs (NC Dsnntrust) is randomly generated over a

range INC Ds-num - 25, NC Ds-num - 51. An NCD is considered untrustworthy if its

trust level is S 2. Otherwise, the NCD is considered trustworthy. The number of existing

trust relationships (rels-erist) is randomly generated over a range INCDs-num - 25,

NC Ds-num - 201. The number rels-erisú determines the number of trust relationships

that pre-exist before the simulation takes place. At the end of Section 5.2.4, an example is

given to illustrate how some of these parameters are implemented as mechanisms.

99

5.2.4 Conceptual Model

Figure 5.2 shows the simulation control flow for a single point (i.e., for one value of

NC Ds-di,shonest, one value of mon-f req, one value of a, and one value of trans) in

Tables 5.16 to 5.18 and Figures 5.4to 5.16. First, we prepare an array called results to

store the success rates resûlting from running the simulation reps times. The success rate

measure the convergence rate of PDTT to ADTT. We also initialize the variable rep-numto

100

0 and the k entries of the array resuhs to 0 as well. The design parameter reps is included

in this phase to be used as the size of the array results. The settings phase is explained in

Section 5.2.3, where the design and exogenous parameters are set. Then; the simulation

starts the initialization phase, which is detailed in Section 5.2.5. After that, the simulation

enters a loop. This loop repeats for trans times, where trans is the number of transactions

to be simulated as explained in Section 5.2.5. The data analysis phase outputs the success

rate. The success rate, which is a real number, will be stored in the results array. The

variable repnum is incremented by 1 and if rep-num < reps, then another round of the

simulation takes place. Otherwise, the simulation stops.

First, we want to explain how the simulated entities such as ADTT, CDTT, PDTT,

RTT, and T fit into the schemes explained in Section 3.6. Suppose we merge all the local

DTTs together to obtain a global DTT, that will depict how any given NCD trusts other

NCDs as shown in Tables 5.4,5.5, and 5.6. These DTTs will have an equal number of row

and column entries if we disregard the multiple entries made due to the different contexts.

Also for illustration purposes, we ignore the time stamps assigned to the different trust

levels. Table 5.4 shows a coherent ADTT that is assumed known in our simulation. It

was created for 6 NCDs and NCDs-untrust : 2, where NCDs, NCD1, NCD2, and

NCD4 are trustworthy. On the other hand, NCDs and NCDs are untrustworthy. Now,

for the simulation to take place, we have to generate a CDTT. Remember that one of the

exogenous parameters is reLs-erisú. In this example, rels-erzsú is set to 3 meaning that

each NCD has previously interacted with another 3 NCDs. For example, the first row in

Table 5.5 denotes that NCD6 has previous interaction with NCD1, NCDa, and NCDs.

For NCDz and NCD3, NCDs's direct trust level is set to -1 indicating that it had no

previous interaction with them. The entries in Table 5.6 (i.e., PDTT) are initialized to -1.
In section 3.6, DTT is simulated by CDTT. The PDTTs are updated using the trust values

that are predicted by Equation 3.5.

Chapter 5 : Performance Evaluation

5.2 : Simulating Trust Model Performance

rep-num = 0
For (i=0 to reps) do

resultsli] = 0.0

entities initial conditions

101

Selection phase
(Select NCD,and NCD,)

5.2.5 InitializationPhase

In the initialization phase, we start by setting up the variable trans-num to 0. The variable

trans-num is basically a counter that keeps track of the number of transaction initiated

during the simulation. We also set up the variable tra,ns, which indicates the number of

Update phase
trans_num++

resultsIrep_num] = success-rate
rep-num=rep-num+1

Figure 5.2: Simulation control flow.

102

Table 5.4: An actual direct trust table example. Element in row'd
column i, T L¿¡ : direct trust by NC Di in NC D¡.

i'l j
0

Chapter 5 : Performance Evaluation

0

1

5.00

2

3.00

J

I

3.00

3.00

4

3.00

5.00

Table 5.5: A computed direct trust table example. Element in row'l
column i,TL¿¡: directtrustby NCDiin NCD¡.

5

2

5.00

3.00

4.00

4.00

s.00

5.00

.)

5.00

5.00

2.00

4.00

4.00

2.00

4

4.00

2.00

4.00

5.00

s.00

4.00

i,li

5

2.OO

4.00

1.00

0

1.00

3.00

2.00

transactions in each simulation run. Each entry (in Tables 5.4, 5.5, and 5.6) denotes the

trust level resulting from a relationship between 2 NCDs (except the diagonal entries). For

example in Table 5.5, the second entry in the first row indicates that NC Do trusts NC DL

at trust level 1.0. The design parameter transact'ions-nurn denotes the number of times

that each entry in Table 5.6 is updated. Remember that ADTT is not updated, CDTT is

updated only periodically by the TM proxies when monitoring takes place. But each time

a transaction takes place, Equation 3.5 is computed and PDTT (i.e., Table 5.6) is updated.

That is, on average, each entry in PDTT is updated transact'ions-nun-L times. Now, the

0

1

5.00

2.00

5.00

2

5.00

1.00

3.00

,J

1.00

4.00

I

4

1.00

5.00

-1.00

5

5.00

-1.00

2

5.00

4.00

1.00

5.00

3.00

-1.00

J

5.00

1.00

1.00

-1.00

-1.00

2.00

4

3.00

3.00

3.00

5.00

-1.00

3.00

5

1.00

5.00

2.00

2.00

3.00

5.00

1.00

1.00

3.00

5.00
5.00

5.2 : Simulating Trust Model Performance

Table 5.6: A predicted direct trust table example. Element in row'i
column i,TL¿¡ : direct trustby NC Di in NC D¡.

i./ i
0

0

1

5.00

2

-1.00

.)
J

1

1.00

4

1.00

-1.00

5

5.00

-1.00

2

1.00

-1.00

1.00

-1.00

-1.00

diagonal entries of PDTT do not denote any relation and can be ignored. The same can be

said regarding the diagonal entries of ADTT and CDTT. Therefore, the number of entries

that simulate relations between the NCDs is /úCDs-nun'L x (NCDs-nurn - 7). Since

transact'ions-nun'L is the number of times that each entry in Table 5.6 is updated, then the

number of transactions (trans) in each simulation run can be calculated as:

1.00

')

5.00

-1.00

1.00

-1.00

-1.00

-1.00

4

1.00

-1.00

-1.00

103

5.00

-1.00

1.00

5

r.00

-1.00

1.00

-1.00

-1.00

5.00

1.00

-1.00

-1.00
-1.00

Since NC Ds-num : 30 andtransact'ions-numis set deterministically at [5, 10, 25, 50, 100

,150], then trans is set deterministically at 14350,8700,2\750,43500, 87000,130500].

Also, in the initialization phase, each NCD chooses its initial recommenders uniformly

at random such that each recommender is considered to be consistent and have maximum

accufacy.

5.00

trans: trans0,ct'ions-num x (NCDs-nurn x (NCDs-nun'L - 1)) (5.1)

104

5.2.6 Performance Metric

The goal of behavior trust modeling is to predict the trustworthiness of others [10]. The

success of a trust model is determined by how correctly it predicts the natural trustworthi-

ness. As explained in Section 5.2.4: (a) we model the natural trust relationships that exist

among the NCDs by ADTT and (b) PDTT contains the predicted trust relationships among

the simulated NCDs that our trust model maintains through the simulation process. Now,

the goal is to examine how close the trust levels maintained in PDTT are to their respective

natural trust levels in ADTT.

We define success rale (SR) as the ability to conectly predict the trust that exists be-

tween the NCDs. A prediction is considered successful when: (a) a trustworthy NCD is

predicted as trustworthy, or (b) an untrustworthy NCD is predicted as untrustworthy. An

NCD is considered to be trustworthy if its trust level is in [3, 5] and considered to be un-

trustworthy if its trust level is in [1, 2]. For i, 17, let the value of the prediction function,

Q(NCDi,NCDj), be 1if NCDi corectly predicts NCD¡'s trustworthiness and 0 oth-

erwise. Hence, SR is computed for n NCDs at time ú as follows: (The pseudo-code for

calculating the success rate is included in appendix B.)

Chapter 5 : Performance Evaluation

5.2.7 Event Generation

sR(t):

In this section, we discuss the type of events that change the state of the system and present

a flow chart to show how each event is being generated in our system. There are 4 event

types, namely relation, recommendation, reply, and complete. A relation event is created

to simulate NC Dr's interest to engage in a behavior trust relationship with NC D¿. A rec-

ommendation event is created to simulate the desire of NC D" to request recommendation

Di:oÐi:oollrc Di, NC Di)
nx(n-I) x 100 ,i,+ j (s.2)

5.2 : Simulating Trust Model Performance

from its recommender z regarding the trustworthiness of NC Db while a reply event is cre-

ated to simulate the response of z to the recommendation request sent by NC Dr. Finally,

a complete event is created by NC D, to simulate the readiness of ,^/CDs to compute the

trustworthiness of N C Dï Readiness means that N C D
"

got all the responses from its rec-

ommenders regarding the trustworthiness of NC D¿ and hence NC D, is ready to compute

NC D¡'s reputation. Table 5.7 shows the filled structure of an event.

field type | field name

int

Table 5.7: The structure of an event.

double

type

int
int

Comments

int

105

Ar

1

2

3

4

int

r integer field having the following values:

f the event type is RELATION
f the event type is RECOMMENDATION
f the event type is REPLY
f the event type is COMPLETE

time

double

parent
initiator
recelver

recommendee

We should mention that a numerical example will be given in Section 5.2.8 to illus-

trate and clarify: (a) how and why events are created and generated and (b) how the event

structure shown in Table 5.7 is filled and used with each of the four event types. Now and

as shown in Figure 5.3, we will discuss in more detail the event generation flow control.

For simplicity reasons, we used the following notation in the figure: z instead of NC D,,

g instead of NC D¡, and z instead of NC D,. The event generation process starts by creat-

ing a relation event and inserting it into the calendar (i.e. event list). This step is taken to

The time of the event

The parent NCD

TL

The NC D initiat
The NCD receiv
The NC D whose reputation is sought (i.e., A or NC D¡).

The trust level that conveys the trustworthiness
of the recommendee

n a recommender tree.

ng the event (i.e., r or NC Dr).
ng the event (i.e., z or NC Dr).

r06

initialize the calendar. Then, the event-generation process enters the main body that loops

as long as the calendar is not empty. An event is picked up from the calendar and based on

the event type, the system state changes as explained below. After event processing control

returns to the main body to select the next event, the standard event-oriented simulation

algorithm [90] is followed. We now detail the state changes occurring for each event type.

If the event type is RELATION, the event initiator (i.e., NC Dr) will request recommen-

dations from each z € RTT¡¡çp". NC D, simulates this by creating a recommendation

event for each of its recommenders and inserting in into the calendar. Then, while the

calendar is not empty, a new event is picked up from the calendar.

If the event type is RECOMMENDATION, then the event receiver z consults DTT" to

find out whether it had any prior transactions with NC Dt. Remember from Section 4.3.I if
DTT,(N C D¿, t, c) - - 1, it denotes that z did not have a prior direct relationship or trans-

action with NC D¿. Here there are two outcomes. First: I1 DTT,(NC D¿,t, c) + -I,then z

creates a reply event and inserts in into the calendar. Second: If DTT"(NC D¿,t, c) : -I,
then z will request its set of recommenders to determine NCD¿'s reputation. Recom-

mender z simulates that by creating a recommendation event for each of its recommenders

and inserting in into the calendar. It should be mentioned that before z inserts the recom-

mendation event into the calendar, it does the following: (a) assigns the event parent to be

the event initiator and (b) assigns the event initiator to be itself. It does that because z, as

a child in the recommendation tree, is requesting recommendations from its own recom-

menders. So, basically we will have a recommendation tree consisting of the parent, child

(i.e., z), and the children of z (i.e., z's recommenders).

If the event type is REPLX the event initiator checks if it has received replies from all

of its recommenders. If some recommenders have not responded to the event initiator's

recommendation requests, then a new event is picked from the calendar. Otherwise, the

event parent is checked. There are two possibilities. First: If the event parent : -1, it
means that the event receiver is l/CD, (i.e., the root of the recommendation tree). If this

Chapter 5 : Performance Evaluation

5.2 : Simulating Trust Model Performance

Forall z iî R77",ou,¡,¡¡,,,o, do {
create a recommendation
event and ¡nsert it into
the calendar)

Pick an event from the calendar

event.parent = event.initiator
event.source = event.receiver

z = event.receiver
y = event.recommendee
event.TL = DTT.(y,t,c)

Create a relation
event and insert

it into the
calendar

t07

COMPLETE

Create a reply event and
¡nsert it into the calendar

Reputation of
target ent¡ty or
NCD can be
computed

lf (all recommendations
anived to event.initiator)

is the case, NC D, creates a complete event and inserts it into the calender. Second: If the

event parent + -7, the event receiver, which must be a recommender, uses Equation 3.7

to compute NC D¿'s reputation, which is assigned to the event TL. Then the event receiver

creates a reply event to its parent and inserts it into the calender.

Use Equation 3.7 to compute
event.recommendee
reputation and assign it to
event.TL

Figure 5.3: Event generation flow control.

Create a complete
event and insert
into the calendar

108

If the event type is COMPLETE, the event initiator NC D, knows that all of its recom-

menders have responded to its recommendation requests regarding the trustworthiness of

NC Dr Therefore, NC D" is ready to compute NC D¿'s reputation using Equation 3.7.

Figure 5.3 illustrates the event generation for one behavior trust relationship. Figure

5.3 can be generalized, where k number of trust behavior relationships can be generated.

In that case, a variable called relation-nurz is included in the event structure shown in

Table 5.7. The purpose of the variable relation-num is to keep track of events generated

and match these events to their corresponding trust behavior relationship. For example, an

event might be generated as a result of a trust behavior relationship between NC D" and

NCU and another event might be generated as a result of a trust behavior relationship

between NC De and NC Dn.

Chapter 5 : Performance Evaluation

5.2.8 Event Generation Example

Let us assume that NCD" wants to engage in a trust behavior relationship with NCD,

and that NC D" has 2 recommendets, namely 11 and 12. Also assume that 11 has previous

interactions with NC ù and12 has no previous interactions with NC D¿. Let 13 be the only

recommender that 12has. Also, let us assume that 13 has previous interactions with NC Dt.

To initialize the calendar, NC D" creates a relation event as shown in Table 5.8. The event

type is 1 (i.e., RELAIION) and time of event is generated based on Poisson process with

mean 1.0. Since the event was generated by NC D" (i.e., the root of the recommendation

tree), the parent is set to -1 to denote that there is no parent for this event. Since there

are no recommenders requested yet, the recommendee is set to -1. The relation event

is inserted into the calendar. Following the event flow control, Figure 5.3, an event is

picked from the calendar. Since there is only one event in the calendar, the relation event

created by NCD" is picked. At this time, NCDs creates recommendation events, shown

in Table 5.9, for each of its recommenders and insert these events in the calendar. Since

5.2 : Simulating Trust Model Performance

type

Table 5.8: A relation event created by NC Dr.

1

time

0.075532

parent

-1

Table 5.9: Recommendation events created by NC D".

type

initiator

events are sorted in ascending order of their time, the next event to be picked from the

calendar is the recommendation event created by NC D" for recommender 11. Because 11

has previous interaction with NCDt, assume that it finds DTT,r(NCDt,t,c) :3, which

is assigned to the event TL as illustrated in Table 5.10. Then 11 responds right away to

NCD, as illustrated by Table 5.10. This response is simulated by creating a reply event

and inserting it into the calendar. The next event to be picked from the calendar is the the

2

NC D"

2

time

0.455785

recelver

t.103371

NC Dt

pafent

recommendee

-1
-1

initiator

109

NC D,

-1

NC D"

recelver

TL

-1

T1

T2

recommendee

NC Dt

iype

NC DI

recommendation event created by NC D, for recommender 12. Since 12 has no previous

interaction with NCD¿, it does the following (according to Figure 5.3): (a) it sets event

initiator to event parent and (b) it sets event receiver to event initiator. Since 12 has only

,l

Table 5.10: A reply event created by ,r

TL

time

r.181279

-1
-1

parent

-1
initiator

T1

receiver

NC D"
recommendee

NC DI

TL
tJ

110

one recommender (i.e., r3), it creates one recommendation event and inserts it into the

calendar. These steps are illustrates in Table 5.1 1. The next event to be picked from the

type

Table 5.i 1: Recommendation events created by ,r.

calendar is the the reply event created by 11 to NC D". At this time NC D" is still waiting

for the reply from 12, so the next step is to pick an event from the calendar. The next event to

be picked from the calendar is the the recommendation event created by 12 to 13. Because

13 has previous interaction with NCD¿, ÍtssuÍte that it frnds DTT,r(NCDbt,c) : 2,

which is assigned to event TL as illustrated in Table 5.12. Then 13 responds right away

to 12 as illustrated by Table 5.12. This response is simulated by creating a reply event

and inserting it into the calendar. The next event to be picked from the calendar is the the

2

time

2.031448

Chapter 5 : Performance Evaluation

parent

NC D,
initiator

T2

receiver

Tg

recommendee

NC Dt

type

reply event created by 13 to 12. At this time 12 is not waiting for any other reply from its

recommenders, so it forwards this reply to its event parent (i.e. NC Dr). This response is

simulated by creating a reply event, as illustrated by 5.13, and inserting it into the calendar.

The next event to be picked from the calendar is the reply event created by 12 Io NC D".

Since N C D , is not waiting for any other reply from its recommenders and event parent

- -1, NCD, creates a complete event and inserts in into the calendar. The final event is

D.)

TL

Table 5.I2: A reply event created by
"r.

time

2.596959

-1

parent

NC D"
initiator

Tg

recelver

T2

recommendee

NC Dt
TL
2

5.2 : Simulating Trust Model Performance

picked and found to be of type COMPLETE. This denotes that NC D" can now calculate

NC D¡'s reputation.

After NC D¿'s reputation has been computed, NC D, can combine it with its own direct

trust in NC 4 and then decides whether to engage in a transaction with NC Dï Assume

that NC D" decides to go ahead with the transaction with NC D¿, then NC D" will perform

the following:

c If NCD"'s TM proxy monitored the transaction, then NCD,'s TA will update the

accuracy of ly'CD"'s recommenders. This is done by updating the accuracy field of

each recommender in ly'CD"'s RTT and according to Equation 4.3.

o If NCD, carried out the consistency check, then NCDr's TA will update the con-

sistency of -ðy'CD"'s recommenders. This is done by updating the consistency field

of each recommender in NCD"'s RTT and according to Equation 4.4. Note that

NC D, will not ask recommendations from an inconsistent recommender (i.e., if the

recommender's consistency equals 0). Once a recommender's consistency value is 0,

NC D" chooses uniformly at random a new recommender to replace the inconsistent

one. By scanning the members of RTT, NC D" will make sure that the new chosen

recommender is not already in its RTT. Table 5.14 shows 2 active recommenders in

NCD"'s RTT. The inactive recommenders (i.e. those whose consistency equals 0)

will be ignored and will not be asked to give recommendations regarding NC D,

o If NCD"'sTMproxymonitoredthetransaction,then NCDr'sTAwillupdate NCDr's

type

.)

Table 5.13: A reply event created by ,r.

time

2.637476

parent

-1
initiator

Tz

recelver

NCD,
recommendee

111

NC Dt
TL
2

tt2

Table 5.14: A recommender trust table maintained by NC D" that has
active and inactive tecommenders.

CDTT according to Equation 4.1.

Chapter 5 : Performance Evaluation

NCDi

{-Ising Equation 3.5, NC Dr's TA will update NC D,'s PDTT according to Equation

4.1.

NC Di
NC Dk

Consistency

NC D,

5.2.9 Implementation

1

For the simulation model, we developed our own discrete-event simulator in C language

running on the UNIX environment. Our simulation program can be run through the com-

mand line. The simulation program is called trustsim with arguments passed from the

command line to define the design parameters explained in section 5 .2.3 . Table 5. I 5 shows

the correspondence between the command line arguments and the simulation design pa-

rameters. The simulation program is run using the command line as follows:

trustSim -n 30 -r 4 -e 4 -d 15 -t 5 -l 0.5 -c 0 -a I -m 5 -o 10 -u 5 -y 0 -p poisson 1.0 -s

6787367 -D DATA > trustSimOut

Where c is a boolean variable taking the values of 0 or 1. If c : 1, then the consis-

tency check is used. Otherwise, the consistency check is not used. Also, a is a boolean

variable taking the values of 0 or 1. If a : 1, then the accuracy check is used. Other-

wise, the accuracy check is not used. For example, the above command line specifies run-

ning trustSim with 30 NCDsnum, 4 recs-nlrn'l,4 alli,es-num,75 NCDs-di,shonest,

0

Accuracy

1

0

1

1

I
1

5.2 : Simulating Trust Model Performance

5 transact'ions-nutn, alpha: 0.5, consistency measure is off, accuracy measure is on,

mon-f req is done every 5th transaction, con-f req is done every 10 transaction. But since

con-ch,eck is off, con-f req will be ignored. The accu-check is done every 5th transaction

and epB is set to 0. The command line indicates that the simulation uses a poisson distribu-

tion for the arrival process with mean 1.0 using 678736 as the seed of the random number

generator and printing the results of the simulation into a file called trustSimOut.

Table 5.15: Meaning of the command line arguments.

Command line
argument

n

rt3

r
e

d

Simulation Design
parameter

t
I

c

NC Ds:num

a

Tecs_nun'L

m

NC Ds-di,shonest
all'ies-num

o

transact'ions-nun'L

We also automated the process of running the simulation by including a

calls a Perl script. The batch file has the following format:

aLc0-005run 30 5 4 4 0 1 0 10

The Perl script is called aIc0-005run. This script runs the simulation with

u

v
p

cons-check

S

a.

accu-checlt

D

mon-f req
cons-f req
accu-f req

to indicate where the output
(DATA) should be redirected to

arrival process
€an

seed

batch file that

the following

tt4

parameters: 30,¡/CDs -nLLrn, Stransact'ions 'n1ln-1, 4recs:num, all'ies-num, cons-check

is off, accu-check is on, e : 0, and 10 reps. We can easily automate this script to run the

simulation for all the other values of transactions per relation. But to shorten the simulation

running time, we run different values of transactions per relation simultaneously on multi-

ple processors. For example, we have Perl scripts a[c}-)l)run and alc0-025run for run-

ning 10 and 25 transactions per relation, respectively. Note that the Perl script alc0-005run

is included in appendix C.

5.2.10 Verification and Validation

Tlace File

Chapter 5 : Performance Evaluation

In this section, we verify the simulation model by examining a trace file that was created as

output of a sample run. We ran our simulation program using the command line as follows:

trustSim -n 6 -r 2 -eZ -d2 -t4 -10.5 -c 0 -a 0 -m2 -o2 -u2 -y 0 -p poisson 1.0 -s 6787989

-D DATA > trustSimOut

The trace file is the output of running the simulation model for 6 NCDs, each NCD has

2 recommenders and 2 trusted allies, the consistency and the accuracy checks are turned

off to simplify the trace file. Notice that, this simplification does not introduce any errors

in verifying and validating the simulation model because: (a) accuracy check does not

produce any events and hence does not change the status of the simulation system and

(b) consistency check generate events ONLY between NCD, and its trusted allies and

hence does not affect the recommendation tree. Transactions, which take place among the

different NCDs, arrive based on POISSON process with mean 1.0 and are set to 4 (i.e., we

deterministically set trans to 4). We set the seed for the simulation to be 6787989. The

output is written to a trace file called trustSimOut. As shown below, there are 4 behavior

trust relations initiated. The 4 relations or transactions are shown in bold. The first relation

is from NCD2to NCDy. The source (initiator) NCD is NCD2 and the target (receiver)

5.2 : Simulating Trust Model Performance

NCD is NCDr. The other 3 relations are from NCDsto NCD2,Trom NCD5 to ,fy'CDs,

and from NC D4 to NC D5, respectively.

In Section 5.2.1, we discussed the event generation scheme, event structure, and their

life cycle in the simulation model. In the following exercise, we trace the events generated

by the simulation program and show that trustSim is working as intended. As shown below,

the first event type (ET) generated is a relation event (i.e., ET : 1). The event was generated

at simulation time (time) 0.035777 time units and the parent NCD is -1 denoting that the

event was generated by the source NCD and not from a recommender. The relation id

(ReId) is set to 1 since this is the first relation event to be generated.

We will trace the relation event number 3 because it has the longest life cycle in this

sample simulation. At line (4) and at simulation time 1.590335, relation number 3 is created

by NCDs wanting to engage in a trust relationship with l/CD6. The event parent is set

to -1 since the relation was initiated by a source NCD. The ReId is set to 3. To seek the

reputation of NC Ds, NC D5 requests recommendations from -R¡¿6'pu. Since NC Dshas 2

recommenders (i.e., NCDo and NC Da), it should create 2 recommendation events. But as

Figure 5.2.7, NCDs generates only one recommendation event to NCDa. That is exactly

what is expected. Since NCD; is seeking the reputation of NCD¡, NCDy can not be

asked about the reputation of itself.

At line (10) and at simulation time 2.539233, NCDs sends a recommendation request

to its recommender NCD4. The event type is 2 (i.e., recommendation event), event ini-

tiator is N C D5, event receiver is N C Da, event parent is set to - 1 since the recommenda-

tion event is generated by a source NCD and not a recommender, ReId is set to 3, event

recommendee is set to NCDs meaning that NCDa is requested to give recommendation

regarding N C Ds, and the event TL is set to - 1 since no recommendation regarding the

trustworthiness of NC Do has been given yet. We should mention that Tables 5.4,5.5, and

5.6 are generated from this simulation run.

Table 5.5 shows that DTT¡¡con(NCDo) : -1 meaning that NCDo is unknown to

115

116

NC D4. Line (11) shows that NC Da resorted to its recommenders to seek the reputation

of NC D¿. The event type is 2 (i.e., recommendation event), event initiator is NC Da, event

receiver is NCD3, event parent is set to NC Ds because NC D4 is still have to report (give

recommendation) to its parent NC D5. , event recommendee is set to NC Ds meaning that

NCDB is requested to give recommendation regarding NCD0, ârìd the event TL is set

to -1 since no recommendation regarding the trustworthiness of NCD0 has been given

yet. Note that at line (1L), the NCDs visited are 1, 3, 4, and 5 before NCD4 requests

recommendation from NCDr This is done because NCDa knows for sure it will send a

recommendation request to its 2nd recommender (i.e., NC D1), which is indeed illustrated

in Line (19).

Table 5.5 shows that DTT¡¡ID.(NCDI) : -1 meaning that NCDy is unknown

to NCD3. The recommenders of NCD¡ are NCDy and NCDa. Since the event al-

ready visited NCD4 and that the event is seeking the reputation of NCDs, NCDscre-

ates a reply eventto NCD4 as shown in line (14), where the event TL is assigned to

DTT¡¡sp.(NCDo).

At line (19) and at simulation time 3.829827, NC D4 sends a recommendation request

to its recommender NC Dr The event type is 2 (i.e., recommendation event), event initiator

is NC Da, event receiver is NC D1, event parent is set to 5 since the recommendation event

is generated by NC Ds's recommender, ReId is set to 3, event recommendee is set to NC Ds

meaning that NC Dl is requested to give recommendation regarding NC D6, âfld the event

TL is set to -1 since no recommendation regarding the trustworthiness of NC Do has been

given yet. Table 5.5 shows that DTT¡¡:D.(NCDo) : 3 meaning that NCDs is known to

NCDr Therefore, NCDr creates areply eventto NCD4 as shown in line (23), where

DTT¡,¡çpr(NC Do) : 3 is assigned to the event TL. Since NC D4 still has to report to it

parent NC Ds, the event parent is still NC Ds.

Once NC D4 receives the reply event from NC D1, it creates a reply event to its parent

NCDs as shown in line (26) as simulation time 6.430470. The event parent is set to -1

Chapter 5 : Performance Evaluation

5.2 : Simulating Trust Model Performance

denoting that NC D5 is the root (i.e., the source NCD initiating the relation event). Finally

and after receiving the reply from l/CD a, NC D5 creates a complete evsnt as shown in line

(27) at simulation time2.629372.

Start of simulation.....Current clock is 0.000000

... The recommenders for NCD 0 are: 4 5

... The recommenders for NCD 1 are: 0 4

... The recommenders for NCD 2 are: 1 4

... The recommenders for NCD 3 are: 0 4

... The recommenders for NCD 4 are: 1 3

... The recommenders for NCD 5 are: 4 0

ET time initiator receiver parent ReId recommendee TL

(1) 1

(2) 2

(3) 1

(4) r
(s) 2

(6) 2

(7) 3

(8) 2

(e) 3

(10) 2

(11) 2

(12) I
(13) 2

(r4) 3

(1s) 3

(16) 2

0.035777

0.669676

1..489206

1.s90335

t.627027

1.64028r

2.306761

2.358854

2.482933

2.539233

2.612114

2.709337

2.821272

3.rt5946

3.218860

3.243459

117

2

2

3

5

J

0

5

J

0

5

4

4

4

5

J

4

\
4

)
0

0

5

0

4

3

4

J

5

J

4

4

3

-1

-1

-x.

-1.

-t
J

J

-1

-1

-1

5

-1

I

5

1

-1

I
1

2

3

2

2

2

2

2

3

J

4

i
J

1

4

-L -1.00

1 -1.00

-1 -1.00

-1 -1.00

2 -1.00

2 -1.00

2 3.00

2 -1.00

2 3.00

0 -1.00

0 -1.00

-L -1.00

1 -i.00
0 -1.00

1 5.00

5 -1.00

NCDs

Visited

42

043
5043
5043
043
5043
45
1345

342
t345
342
134

118

(17) 3 3.s34803 4

(18) 3 3.s36438 3

(19) 2 3.829821 4

(20\ 4 3.89382s 3

(21) 3 4.041627 4

(22\ 4 4.730214 2

(23) 3 s.25s7 17 1

(24) 2 5.734436 4

(2s) 3 s91332r I
(26) 3 6.430410 4

(27) 4 1.629312 s

(28) 4 8.268972 4

aJ

4

1

2

2

I

4

1

4

5

0

5

Chapter 5 : Performance Evaluation

-1

-1

5

-1

-1

-1

5

-1

-1

-1

-1

-1

22
45
30
22

11
11
30
45
45
30
30
45

Intuition

Observing Tables 5.I7 and 5.18, we can notice the following. When a : 1.0 and for the

same monitoring frequency (i.e., mon-f req : r, where tr : 7,5, 10, 20), the success rates

should be very close. When a : 1.0, reputation is ignored and thus the number of dishonest

NCDs is irrelevant. This is indeed what we see in Tables 5.I7 and 5.18. For example

in Table 5.17: (a) for 0 dishonest NCDs, the success rates in the rows comesponding to

mon-f req: 1 and o : 1.0 are very close to the success rates in the rows corresponding

to mon-f reQ : 7 and a : 1.0 when dishonest NCDs are 15 and (b) for 0 dishonest

NCDs, the success rates in the rows corresponding to mon-freq:20 and o : 1.0 are

very close to the success rates in the rows corresponding to mon-f req : 20 and a : 1.0

when dishonest NCDs are 20. Remember, each point in the table to 5.18 is the result of 10

simulation runs.

Further, the same observation holds for comparing the rows in both tables (i.e., table

5.17 and table 5.18). This observation holds because of the following reason. Table 5.17

2.00 0

3.00 1

-1.00 1

3.00 0

5.00 3

s.00 3

3.00 I

-1.00 1

3.00 1

3.00 1

3.00 1

3.00 1

43
34
345
43

42
42
345
34
34
345
345
34

uses the accuracy measure and Table 5.18 uses the accuracy and the consistency measure.

Both measures are irrelevant when a : 1.0 since the reputation is ignored. Observing

the two tables, we indeed find that this observation holds. For example: (a) in Table 5.17

and for 0 dishonest NCDs, the success rates in the rows corresponding to mon-f req : \
and a : 1.0 are very close to the success rates in Table 5.18's rows corresponding to

mon-f req : 1 and a : 1.0 when dishonest NCDs are 15 and (b) in Table 5.17 and

for 0 dishonest NCDs, the success rates in the rows corresponding to mon-f reQ : 15

and o : 1.0 are very close to the success rates in Table 5.18's rows corresponding to

rnon-f req: 15 and o : 1.0 when dishonest NCDs are 20.

5.3 Simulation Results and Discussion

5.3.1 Overview

The objective of the simulation experiments caried below is to examine the impact of dif-

ferent parameters on the performance of our behavior trust model. First, we investigate the

convergence of PDTT to ADTT (i.e. the success rate) using coherent versus incoherent

trust models. As discussed below, we conclude that using incoherent trust model yields a

poor success rate and hence the trust model can not learn the trust levels that exist between

the NCDs. On the other hand, using a coherent trust model yields a very high success rate

and shows that the trust model can predict the trust levels that exist between the NCDs.

Second, we further examine the impact of different parameters on the success rate of a co-

herent trust model. These parameters include accuracy, consistency, monitoring frequency,

number of dishonestNCDs, direct trust, reputation, and number of transactions per relation.

Sections 5.3.2 and 5.3.3 discuss the simulation experiments in detail.

tt9

t20

Table 5.16: Using the accuracy and consistency measures: Success rate
using a coherent and incoherent trust models using 150

transactions per relation.

Trust
model

Chapter 5 : Performance Evaluation

Coherent

Monitoring
frequency

a
value

I

5

Number of dishonest NCDs
out of 30 NCDs

Incoherent

1.0

0.5
0.0

0

100.00Vo

10

1.0

IOO.OOVo

0.5

l00.OOVo

0.0

lO0.OOVo

I

1.0

15

100.00Vo

l00.OOVo

5.3.2 Coherent versus Incoherent Tfust Models

0.5

lOQ.ÙOVo

9O.O3Vo

0.0

l0O.ÙOVo

92.lÙVo

5

In this section, we investigate the dependence of the trust model on coherent versus rnco-

herent DTT. Please refer to Section 4.3.2 for the definition of coherent versus incoherent

trust models. It should be noted that the results in Table 5.16 were obtained using the

accuracy and the consistency measures as well as using 150 transaction per relation.

'When the trust model is coherent, the success rate is very high and it is in the range of

l0O.OjVo

1.0

99.OIVo

20

ß0.00Vo

l0O.00Vo

0.5

88.r4Vo

l0O.00Vo

0.0

9L.7\Vo

49.O8Vo

10

ß0.00Vo

92.I9Vo

1.0

48.85Vo

l00.OjVo

0.5

lOO.OIVo

51.26Vo

IOO.OOVo

0.0

88.9l%o

49.77Vo

94.OIVI

1.0

5O.34Vo

49.89Vo

92.I3Vo

0.5

50.22Vo

50.46Vo

ßO.OOVo

0.0

50.467o

50.ll%o

89.47Vo

50.69Vo

49.77Vo

5O.OOVo

50.00Vo

5l.29Vo

49.547o

5O.IIVo

50.347o

50.34Vo

49.89Vo

49.89Vo

5O.IlVo

49.85Vo

49.89Vo

50.llVo
5U.00u/o

49.77Vo

5.3 : SimulationResults and Discussion

88.14% to 100.00% as shown in Table 5.16. That is, filtering is done to isolate the dishonest

recommenders. 'When monitoring is done every transaction, the CDTT converges quickly

to the ADTT (i.e., the CDTT will have the actual trust levels). In addition, the increase of

dishonest NCDs will have lesser effect because dishonest recommenders are filtered out and

recommendations are adjusted at every transaction to reflect the recommender's accuracy.

On the other hand, as the monitoring interval is increased,the success rate drops to 88.14%.

Although dishonest recommenders are being isolated, the recommendations inaccuracies

are having a greater impact on the overall performance of the trust model. This becomes

especially clear when the monitoring is done every 10 transactions.

W'hen the DTT is incoherent, the success rate is always around 50%. This shows that

an NCD is not learning actual trust because it is getting conflicting reports on other NCDs

and hence the low success rate. Futther, this low success rate is not affected by a variation

of the number of dishonest NCDs.

Now, using the coherent trust model, we examine the response of the success rate to the

number of transactions per relation when using accuracy alone and accuracy plus consis-

tency. 'We examine this next.

t2t

5.3.3 Agility of the Tfust Model

It should be noted that when the frequency of the monitoring process (mon-f req) is set

to 1, 5, 10, or 20; we mean that the TM proxy monitoring is done every, every fifth, every

tenth, or every twentieth transaction, respectively. Figures 5.4 to 5.6 show the success rate

of the trust model when using the accuracy alone. The results in the figures correspond

to the numerical success rates in Table 5.17. Figure 5.4 illustrates the success rate when

there are zero dishonest NCDs. It can be observed that combining direct trust and reputa-

tion (i.e., when a : 0.5), outperforms the others (i.e., when a : 1.0 or when a : 0.0).

r22

Because all recommenders are honest, reputation reinforces direct trust and therefore com-

bining these two components yields a higher success rate than relying on only one of them.

For example, when the monitoring frequency : 1 and the number of transactions : 10, the

success rate reaches 85.61% when a : 1.0 and 87 .1570 when o : 0.0 but 96.90% when

relying on both, as illustarted in Table 5.17 when there are zero dishonest NCDs. 'We
can

also observe that as the monitoring frequency is decreased, the trust model takes longer to

reach an acceptable success rate. Thebold success rates in Tables 5.17 and 5.18 represent

acceptable success rates and they are 85.00% or more. Remember that the accuracy mea-

sure is the difference between a recommender's opinion and the true trust level obtained

by the TM proxy. Hence, the more frequent is the monitoring process, the more effective

is the accuracy measure and that is the reason behind the delay in reaching an acceptable

success rate valte as the monitoring process is relaxed.

However, as illustrated in Figures 5.5 and 5.6, we can observe the following. As the

number of dishonest NCDs increases to 15 or 20, relying on reputation only gives poor

success rate and the accuracy measure loses its effectiveness. Whereas relying on direct

trust is not affected by the increase of the dishonest NCDs and keeps its success rate almost

the same as in the case when there is zero dishonest NCDs. When combining both com-

ponents (i.e. direct trust and reputation), reputation lowers the success rate of the direct

trust because of the negative impact it has on direct trust. For example and as illustrated in

Table 5.17, when monitoring frequency : 1, the number of dishonest NCDs : 15, and the

number of transactions : 25, the success rate reaches 97 .59% when o : 1.0 and 61.84%

when a : 0.0 but only 9I.6I% when relying on both.

Therefore, we can conclude that relying on direct trust converges to an acceptable suc-

cess rate. Relying on direct trust , however does not exploit cooperation which is a main

goal of P2P systems. On the other hand, a reputation-based model can converge to a high

success ratebut as the number of dishonest NCDs increases, the trust model becomes sen-

sitive to these dishonest NCDs.

Chapter 5 : Performance Evaluation

5.3 : Simulation Results and Discussion

To reduce the trust model's sensitivity to dishonest NCDs, we incorporate the accuracy

as well as consistency measures so that dishonest NCDs can be filtered out from the rec-

ommenders set as soon as detected. The results of this approach are shown in Figures 5.7

to 5.9. The results in these figures correspond to the numerical success rates in Table 5.18.

In Figure 5.7, when there are zero dishonest NCDs, it can be observed that the consistency

measure has no effect since the number of dishonest NCDs is zero. Therefore, the success

rates are very similar to those in Figure 5.4 when just the accuracy measure is used.

However, as illustrated in Figures 5.8 and 5.9, we can observe the following. As the

number of dishonest NCDs increases to 15 or 20, relying on reputation only gives a much

higher success rate tban when using just the accuracy measure. For example, when the

monitoring frequency : 1 and the number of dishonest NCDs - 20, we observe the fol-

lowing: (a) when the number of transactions : 5, the success rate reaches 82.78% in Table

5.18 and only 49.8970 inTable 5.Tl and (b) when the number of transactions : 10, the

success rate reaches 92.76% in Table 5.18 and only 53.4570 inTable 5.17. This clearly

shows that the consistency measure is more effective in dealing with the dishonest NCDs.

Also, as the number of dishonest NCDs increases, we observe a contradictory scenario

compared to Table 5.17. That is, combining both components (i.e. direct trust and reputa-

tion) gives a higher success rate than relying only on one of them. For example, when the

monitoring frequency : 5, the number of dishonest NCDs - 15, and the number of trans-

actions - 25, the success rate reaches 76.32% when a : 1.0 and 80.00% when c : 0.0 but

9I.26% when relying on both. This is apparent especially when the number of transactions

exceeds 5.

We can conclude that once the dishonest recommenders are filtered out form the rec-

ommendation sets , reputation reinforces direct trust and therefore combining these two

components yields a higher success rate than relying on only one of them. Therefore, in-

corporating the consistency measure into the trust model can limit the effect of dishonest

NCDs on the overall performance of the trust model and also speeds the convergence of

t23

124

the success rateto a higher value.

The bold areas in Table 5.17 and Table 5.18 further show the benefit of incorporating

the consistency measure into the trust model. Tables 5.11 and 5.18 show the success rate

of the trust model when using the accuracy alone and accuracy and consistency together,

respectively. In each table, there are basically three categories: when the number of dishon-

est NCDs equals 0, 15, and 20. The percentages in the shaded areas where the number of

dishonest NCDs : 0 are the maximum success rate that can be obtained among these three

categories for the same monitoring process, a value, and number of transactions. Since

there are no dishonest NCDs to pollute the recommenders network, the success rate should

be at its maximum value.

In Table 5.17 and as the number of dishonest NCDs increases, the bold area starts to

shrink. This shows that the accuracy measure is not effective in limiting and preventing

the dishonest NCDs from influencing the recommenders set. On the other hand, Table 5.18

show that the bold area is the same in all of the three categories. Hence, the consistency

measure again shows its superiority over the accuracy measure.

Chapter 5 : Performance Evaluation

5.3.4 Remarks

We conducted simulation experiments to evaluate the performance of our behavior trust

model. In addition to the design and exogenous parameters used above, a generalization

of the parameters used or even new parameters might have been used in the simulation.

For example, we used a fixed set of recommenders. We expect that as the size of the

recommendation set increases, there are two intuitions (we should mention that the case

where there are no dishonest NCDs is not realistic. So, the assumption is there exists

some dishonest NCDs and their objective is to pollute the recommendation network): (a)

if the consistency mechanism is not being used, then the success rate of our trust model

degrades. This is because the dishonest recommenders are not being filtered out from the

5.4 : Simulating Recommender Set Variation

recommendation network, and (b) If the consistency mechanism is used, then the success

rate of our trust model improves. This is because the number of honest recommenders are

increasing and that has a great impact on correctly estimating the reputation of the target

NCD. In Section 5.4, we carried out simulation experiments to evaluate the variation of the

recommendation set of the performance of our trust model.

For the consistency determination parameter €.pp, it is realistic to set it to 0. There is

no reason for an honest recommender to give away inconsistent trust levels. A flexibility

on €¿B will just distinguish big liars from small liars. A liar, whether big or small, is

considered in our trust model as dishonest.

We know that estimating trust levels is an important issue, where the objective is to

observe a sequence of past values of a trust parameter and determine the future estimates.

There are different different algorithms that can be used to update the trust parameters.

This concept is investigated in more detail in Section 5.5.

5.4 Simulating Recommender Set Variation

5.4.1 Simulation Objective and Setup

t25

The objective of the simulations camied out in this section is to examine the impact of in-

creasing the size of the recommendation set on the overall performance of our trust model.
'We

repeated the same simulation set up as in Section 5.2 with the following changes: (a)

the design parameter NC Ds-nurn is set to 30, (b) the design parameter NC Ds-di,shonest

is set to 15 (i.e., 50% of the NCDs are dishonest, (c) since we want to investigate the im-

pact of the recommenders set variation on the success rate of the trust model, the design

parameter o is set to 0.0, (d) the design parameter mon-freq was set at 1 and 5, and (e)

we varied the design parameter recs-nurn to take the values 2,4, and 8. The rest of the

simulation is organized as in Sections 5.2.

1,26

5.4.2 Simulation Results and Discussion

Figures 5.10 and 5.1 1 show how the variation in the recommender set E affects the success

rate. The simulation results are shown in Figures 5.10 and 5.11 are obtained for 15 dis-

honest NCDs out of 30 NCDs. 'When using accuracy alone, the success rate decreases as

the size of the recommendation set increases. This is due to the fact that dishonest recom-

menders are not filtered out from the recommendation set and their effect increases as the

size of the recommendation set increases. On the other hand, Table 5.1 1 shows that as the

size of the recommendation set increase, the success rate increases as well. This shows the

superiority and the effectiveness of using the consistency measure in preventing dishonest

NCDs from influencing the recommendation network.

Chapter 5 : Performance Evaluation

5.5 SimulatingupdatingParameters

5.5.1 Goals of the Simulation

Estimating trust levels is an important issue, where the objective is to observe a sequence of

past values of a trust parameter and determine the future estimates. In Chapter 4, Section

4.3.3, we use an exponential weighted moving average (EWMA) process for estimating

trust levels. The EV/MA filter produces an estimate given by:

where 0 1 a 1 7, Ot is the newly generated estimate, O¿-1 is the prior estimate,

and O" is the newly generated observation. If a is large, the filter resists rapid changes

in individual observations and said to provide stability. For low ø values, the filter is able

to detect changes quickly and said to be agile. In [55, 91], these filters were combined to

create aflipflopfilter. Aflipflopfrlter consistsof twoEWMAfilters. Oneisagilewithøof

Ot: uO; + (1 - a)O" (5.3)

5.5 : Simulating Updating Parameters

0.1 and the other is stable with ø of 0.9. A controller makes a decision to select between

the two filters such that it selects the agile filter when possible, but falls back to the stable

filter when new observations are unusually noisy.

In our trust model, there are trust parameters that are updated such as the trust level in

DTTs, consistency and accuracy of recommender. The algorithm chosen to update the trust

parameters is very important for the following reasons. First, depending on the nature of

the parameter, a specific update algorithm might be preferred over another. For example,

we can not use a flip flop filter, which applies an agile filter as soon as quick changes are

detected. Although an agile filter is appropriate for a quick drop in the trust level, an agile

filter is not appropriate for a quick increase in the trust level. The reason behind this is

that As known that trust is difficult to build and easy to lose [10]. Second, using a specific

update algorithm might not be suitable in detecting dishonest NCDs. For example, using

EWMA would return high estimates despite the periodic occunence of low values in the

sequence (i.e., an NCD can periodically cheat and still maintain a high trust level).

At the end of Section 3.6.2, we outlined the updates that need to be done after each

transaction. We detailed in Section 4.3.3 how the update algorithm, namely EWMA, is

used to update direct trust, recommendation error, and recommenders' accuracy. Other

update algorithms (instead of EV/MA) can be used to update direct trust, recommendation

error, and recommenders' accuracy. In this simulation study, we compare 4 update schemes

using a setup where two NCDs are directly connected to each other such that one is being

the source NCD (NCD") and the other is being the target NCD (¡/Cr¿).

t27

5.5.2 Update Algorithms

As mentioned earlier that an EU/MA update scheme or a flip flop update scheme can be

used for estimating trust levels. Further, we introduce 3 other update algorithms to update

the trust level. We use a variation of the flipflop. That is, we introduce a modified flipflop

128

(MFF), where the agile filter is activated as soon as we detect a drop in value of the trust

parameter beyond an acceptable threshold from the previously estimated value. The agile

filter quickly downgrades the estimate. For the subsequent estimates, we switch back to the

stable filter assuming that the trust parameter does not experience any further depreciations.

The MFF is a realization of the trust nature that say trust is difficult to build and easy to

lose. 'When the trust model experiences a drop in value of the trust parameter, it quickly

downgrades the estimate. This simulates the statement that says trust is easy to lose. On

the other hand, the trust model uses a stable filter even if there is a sudden increase in the

trust parameter. This simulates the statement that says trust is difficult to build.

The previous modification activates the agile filter only for sharp declines in trust lev-

els. It does not track the number of such declines in a specific parameter and consequently

does not penalize those NCDs that periodically cheat. We further modify the flipflop and

introduce a weighred modified flipflop (WMFF) to take periodic cheating into considera-

tions by having a history queue that has the past n values of the trust level. When the frth

cheating incident is detected, the history queue is modified by applying k low trust levels

at the end of the trust queue. Because the history queue is limited to n entries, only n - lc

entries from the past remains in the history queue. In computing the trust level, the history

queue entries are weighted such that the weight increases linearly from the head to the tail.

That is, recent trust levels weigh more than old ones.

Another way to penalize those NCDs that periodically cheat is to modify the flffiop
filter by introducing yet another scheme called liberally modifiedflipflop (LMFF). But this

time, we will take a more "liberal" approach and give the target NCD the benefit of the

doubt such that the agile filter produces an estimate given by:

Chapter 5 : Performance Evaluation

where rc is the number of times the target NCD cheats. For example, the first time the

ot: aoo"+ (1 - a")or-t (s.4)

5.5 : Simulating Updating Parameters

target NCD cheats, the source NCD gives the target NCD the benefit of the doubt and still

consider it to be trustworthy at a high trust level. As the number of cheats increase, the

trustworthiness of the target NCD decreases gracefully.

5.5"3 Simulation

Vy'e repeated the same simulation set up as in Section 5.2 with the following changes: (a)

the design parameter NCDs-nurn is set to 2, (b) the design parameter alpha is set to 1.0

meaning that NCD" ignores the reputation of NC4 and depends only on its own expe-

rience with l/CD¿. Therefore, no recommendations are requested, no accuracy measure

is taken, and no consistency measure is taken. The reason behind this is the following. In

this simulation study, we focus on comparing the 4 update algorithms to be used to update

directtrustbetweenNCD,andNCD¡asshowninEquation4.l. ThelTLisassumedtobe

carried by N C D , every transaction. The update algorithm used in Equation 4. 1 is EWMA.

V/e will use the other 3 update algorithms (MFF, WMFF, and LMFF) and compare their

performance. In summary, the simulation in this section is organized as in Sections 5.2

except for the following.

o NC Ds-nllrrL : 2, mon-f r€Q : I, alpha: 1.0.

t29

o NC D, camies ITL every transaction such that: (a) the ITL carried by NC D" returns

a trust level of 5 if NC 4 is trustworthy and (b) the ITL carried by NC D" returns a

trust level of 1 if NC 4 is untrustworthy.

o Use and compare the performance of EWMA, MFF, V/MFF, and LMFF as update

algorithms used to update direct trust between NC D" and NC D¿.

The size of the trust queue n is set to 50. The NC D¿ is assumed to cheat NC D" every 10th

transaction. That is, when N C D, carries ITL, it will find that N C D¿ is untrustworthy every

10th transaction. Also, the number of transactions that NC D, initiated with NC D¿ is set to

130

500. The only design parameters that are relevant in this simulation study is NC Ds-num,

o, and mon-f req.

5.5.4 Ver!fication and Validation

Start of simulation.....

(1) Rel. # 1: ITL returns 5.0, and NCD 0's TL is 5.0, NCD 0 cheated 0 times

(2) Rel. # 2: ITL returns 5.0, and NCD 0's TL is 5.0, NCD 0 cheated 0 times

(3) Rel. # 3: ITL returns 5.0, and NCD 0's TL is 5.0, NCD 0 cheated 0 times

Chapter 5 : Performance Evaluation

(10) Rel. # 10: ITL returns 1.0, and NCD 0's TL is 4.6, NCD 0 cheated 1 times

(11) Rel. # 11: ITL returns 5.0, and NCD 0's TL is 4."1 , NCD 0 cheated 1 times

(12) Rel. # 12: ITL returns 5.0, and NCD 0's TLis 4.7, NCD 0 cheated 1 times

,rO, Rel. # 30: ITL returns 1.0, and NCD 0's TL is 4.6, NCD 0 cheated 3 times

(489) Rel. # 489: ITL returns 5.0, and NCD 0's TL is 4.6, NCD 0 cheated 48 times

(490) Rel. # 490: ITL returns 1.0, and NCD 0's TL is 4.6, NCD 0 cheated 49 times

(49I) Rel. # 491: ITL returns 5.0, and NCD 0's TL is 4.6, NCD 0 cheated 49 times

(498) Rel. # 498: ITL returns 5.0, and NCD 0's TL is 4.6, NCD 0 cheated 49 times

(499) Rel. # 499: ITL returns 5.0, and NCD 0's TL is 4.6, NCD 0 cheated 49 times

5.5 : Simulating Updating Parameterc

(500) Rel. # 500: ITL returns 1.0, and NCD 0's TL is 4.6, NCD 0 cheated 50 trmes

End of simulation.....

In addition to the verification and validation techniques discussed in Section 5.2, we

examined a trace file to further verify the simulation model carried out in this section. The

trace file was created as output of a sample run. We ran our simulation program using the

EWMA update algorithm. We can notice that the simulation Ìù/as run for 500 relations or

transactions (i.e., Lines (1) starts at Rel. # 1 and line (9)ends at 500). As expected NC D0

cheats every 10th relation. Indeed for the simulation run, we notice that: (a) in line (10)

and for the 10 relation between NC D5 and NC Ds, NC Ds cheats once, (b) in line (30) and

for the 30th relation, NC Ds cheats 3 times, and (c) in line (490) and for the 490th relation,

NC Do cheats 49 times.

Further, figure 5.12 uses a EWMA update scheme such that old values weight more

that current observations. That is, it uses a stable update scheme with ø of 0.9. Observing

Figure 5.12, we notice that the graph is indeed stays stable (almost a straight line) as the

number of transactions increase between NC D, and NC Dt.

In the simulation, it assumed that NCD¿ cheats and given lby NCD"'s TM proxy

every 10th transaction. That the monitoring that NC D, carries out should return a value of

l astheITLof NCD, Also, allof theFigures 5.l3,5.I4,and5.l6useanagilefilterwith

ø of 0.1 when experiencing a drop in the trust value. Indeed as expected, all of the Figures

5.13,5.I4, and 5.16 show an immediate drop in the trust level every 10th transaction. One

should notice that the drop in the trust level does not reach 1 because old value of the trust

level have a weight of 0.1.

t3l

5.5.5 Simulation Results and Discussion

In Figure 5.12, we can observe that using EWMA filter does not detect target NCD's pe-

riodic cheating. Thus, the source NCD keeps trusting the target NCD at a high trust level

132

of around 4.6. Figure 5.13 shows the simulation results obtained by applying MFF filter to

estimate the trust level between the source and the target NCDs. In the figure, the follow-

ing pattern can be observed. The target NCD is penalized as soon as it cheats, but then it

behaves in a trustworthy manner for n transactions until it gains the trustworthiness of the

source NCD and then it repeats the pattern. ,

Such repeated cheating by the target NCD can be further penalized for the number of

cheats by the V/MFF filter as shown in Figure 5.14. V/e can observe that the more times

the target NCD cheats, the more transactions it needs to get back its trustworthiness at a

high trust level. Figure 5.15 shows a comparison between the above mentioned three trust

level estimation schemes.

Figure 5.16 shows the simulation results obtained by applying the LMFF filter. From

the figure, we can observe that the number of cheats gracefully decrease the trustworthiness

of the target NCD. By comparing the simulation results of applying WMFF and LMFF

illustrated in Figures 5.14 and5.16, respectively, we observe the following. In both figures,

the target NCD is given a chance to be trusted at a high trust level. For low numbers of

cheats, LMp¡'is more "liberal" in giving the chance than WMFF. For example, the target

NCD still recovers to a trust level of 5 after 10 cheats by using LMFF. On the other hand, it

recovers to a trust level of 3.5 after 10 cheats by using WMFF. For large number of cheats,

we observe the opposite. LMFF is more "harsh" in giving the chance than WMFF. For

example, the target NCD recovers to a trust level of less than 1.5 after 44 cheats by using

LMFF. On the other hand, it recovers to a trust level of 2.5 after 44 cheats by using V/MFF.

Chapter 5 : Petformance Evaluation

5.5 : Simulating Updating Parameters

100
ôÃ

90
às 85
Þ- Boszs
3zoo^-ob5
9eoØs5

50
45

(a)

100
95
90

às 85
Þ80szs
3zo(l)^-
ob5
3eo(n

55
50
45

10 25 50 100
Number of transactions per relation

- -.- - direct trust
+dirêct trust and reputation

-+-rêñrrlâliôñ

100
95
90

àe 85

eeeL /C

8zo
3os
åee

55
50
45

r33

10 25 50 100

Number of transactions per relation

+direct lrust and reputat¡on

- * - reputal¡on

150

(c)

'100

95
90

s85
Þ80(d--L /C

8zoo^-ob5

åee
55
50
45

'r0 25 50 100

Number of transacl¡ons per relat¡on

- - .- - direct trust
*d¡rect trust and reputation

- + - rÊniltâliôn

-' .' ' direct trust
+direct trust and reputation

150

- * - reputation

Figure 5.4: For zero dishonest NCDs out of 30 NCDs: Success rate for
a coherent trust model using the accuracy measure where
the monitoring frequency is: (a) 1, (b) 5, (c) 10, and (d) 20.

10 25 50 100

Number of transactions per relation

150

150

134

100

95

90

-" 85

Sao
Ezs
3zoo
8os
fØ60

55

50

45

(a)

100
95
90

òs 85
ÞBo9zs
3zoo^-ob5

åee55
50
45

Chapter 5 : Performance Evaluation

j *direcltrustandreputation l______

25 50
Number of transaclions per relat¡on

100
95
90

s85
Þ809zs
3zoo^-ob5
3oo(t)

s5
50
45

10 25 50 100

Number of transact¡ons per relation

- - .- - direct trust
+direct trust and reputation

- + - reputation

100
95
90

òe 85
ÞBoszs
3to
3os
ãee

55
50
45

10 25 50 100

Number of transact¡ons per relation

-'.'- direct trust
+direct trust and reputation

-+-ranrrtâli^n

Figure 5.5: For 15 dishonest NCDs out of 30 NCDs: Success rate for a
coherent trust model using the accuracy measure where the
monitoring frequency is: (a) 1, (b) 5, (c) 10, and (d) 20.

10 25 50 100

Number of transactions per relation

150

5.5 : Simulating Updating Parameters

100
95
90

òe 85
g- 80(ú --L /C

3zo
8es
åee

55
50
45

100
95
90

às 85
ÞeoSzs
3zo
3es
3sotss

50
45

' ' .-' direct trust
*direct trust and reputation

- * - reputation

10 25 50 100
Number of lransactions per relation

100
95
90

s85
Þ80(ú --L /C

3zoo^-ob5
3eoØss

50
45

135

10 25 50 100
Number of transaclions per relation

. -.- - direct trusl
*direct trust and reputalion

-+-rcn¡ltalinn

- - .- - direct trust

150

+direct trust and reputation

- + - reputation

(c)

100
95
90

s85
ÞBo9zs
8zoo^-obc
3eoØss

50
45

-----+-----{

10 25 50 100

Number of transactions per relation

".' ' direct trust
+d¡rect trust and reputation

- + - rêniltâliôn

150

Figure 5.6: For 20 dishonest NCDs out of 30 NCDs: Success rate for a
coherent trust model using the accuracy measure where the
monitoring frequency is: (a) 1, (b) 5, (c) 10, and (d) 20.

10 25 50 100

Number of transact¡ons per relation

150

1s0

t36

Dis-
honest
NCDs

Table 5.17: Success rate for a coherent trust model using the accuracy
measure.

Mon.
freq.

0

a
value

1 1.0

Chapter 5 : Performance Evaluation

5

0.5
0.0

5

7l.83Vo

Number of transactions per relation

86.55Vo

1.0

10

0.5

79.71Vo

0.0

57.017o

10

85.6l%o

1.0

6O.5lVo

96.907o

20

0.5

15

6O.23Vo

87.lSvo

0.0

54.02Vo

6I.38Vo

25

97.59To

56.44Vo

1.0

7l.6l%o

99.31Vo

0.5

I

54.94Vo

61.47Vo

94.377o

0.0

5l.95Vo

57.70Vo

75.29Vo

50

99.867o

1.0

53.68Vo

63.9lVo

5

88.97Vo

0.5

99.54Vo

5I.84Vo

59.3tVo

78.05Vo

0.0

95.2970

7l.84Vo

53.45Vo

65.40Vo

1.0

16.907o

86.90Vo

100

55.98Vo

lO0.O0Vo

t0

11.82Vo

0.5

55.86Vo

97.477o

54.95Vo

99.547o

68.287o

0.0

86.327o

57.jIVo

85.63Vo

97.907o

58.057o

1.0

11.36Vo

55.l7Vo

85.017o

20

96.7$Vo

64.607o

20

0.5

88.16Vo

50.69Vo

150

l00.O0Vo

59.3IVo

99.08Vo

6O.\OVo

0.0

19.66Vo

54.027o

99.54Vo

6l.38Vo

88.397o

97.59Vo

1.0

64.377o

52.99Vo

99.017o

6l.O|Vo

87.827o

91.6tr 70

1

0.5

49.17Vo

75.867o

99.3l%o

52.76Vo

97.82Vo

6l.84Vo

0.0

69.54Vo

5I.95Vo

99.Llvo

86.78Vo

57.l4%o

15.29Vo

99.89Vo

1.0

5l.O3Vo

89.777o

56.677o

74.48Vo

75.987o

5

0.5

9L.95Vo

5O.92Vo

92.l9Vo

51.497o

91,.1,57o

53.lo7o

0.0

62.99Vo

71.67Vo

98.85Vo

53.44Vo

78.85Vo

65.60Vo

72.O7Vo

1.0

86.907o

88.74Vo

L00.00Vo

53.8OVo

10

64.017o

0.5

85.52Vo

49.89Vo

5O.5lVo

81.847o

91.387o

5I.95Vo

0.0

53.91Vo

51.09Vo

95.98Vo

85.56Vo

64.02Vo

58.05Vo

1.0

54.60Vo

77.36Vo

82.53Vo

84.607o

20

96.787o

58.74Vo

0.5

44.l4%o

75.637o

100.00Vo

53.45Vo

88.85Vo

49.54Vo

0.0

51.12Vo

54.OZVo

9l.49Vo

61.38%o

54.837o

97.59Vo

1.0

52.O7Vo

64.37Vo

64.25Vo

59.66Vo

87.82Vo

89.087o

0.5

46.32Vo

63.44Vo

44.03Vo

99.317o

86.09Vo

56.557o

0.0

50.llVo

5l.95Vo

89.777o

57.lOVo

52.OlVo

75.29Vo

5l.90Vo

99.897o

54.6OVo

54.45Vo

75.987o

68.28Vo

49.08Øò

89.54Vo

4l.OIVo

92.18Vo

75.03Vo

44.31Vo

57.73Vo

88.287o

53.45Vo

51.847o

65.40Vo

86.90%o

52.41Vo

52.26Vo

\00.0070

60.80Vo

76.90Vo

49.20Vo

8t.84Vo

89.62Vo

46.44Vo

45.75Vo

8I.617o

57.jlVo

58.05Vo

l7.36Vo

52.l8Vo

96.82Vo

57.l3%o

68.28Vo

100.00Vo

82.53Vo

4l.24Vo

44.60Vo

89.54Vo

46.90Vo

64.37Vo

57.24Vo

87.827o

62.87Vo

99.317o

75.63%o

46.09Vo

83.9l%o

45.06Vo

47.47Vo

15.80Vo

92.187o

69.17Vo

44.837o

/9.20u/o

45.75Vo

8I.84Vo
13.68Vo

44.257o

5.5 : Simulating Updating Parameters

100
95
90

òe 85
ÞBoszs
3zoo^-ob5
3eou) 5s

50
45

100
oÃ

90
às 85
ÞBoSzs
3zo
8os
;eg

50
45

.t0 25 50 100

Number of transaclions per relation

'-.-' direct trusl
*direct trust and reputation

-+-rôñrrlâli^n

(b)

100
95
90

òe 85
ÞBo9zs
3zo
Hos
ai

33
50
45

t37

10 25 50 100

Number of transactions per relation

+direct trust and reputation

150

100
95
90

s85
ÞBo9zs
8toc)^-ob5

åee
55
50
45

10 25 50 100

Number of transactions per relation

- - .- - direct trust
+direct trust and reputation

- * - reputalion

150

Figure 5.7: For zero dishonest NCDs out of 30 NCDs: Success rate for
a coherent trust model using the accuracy and the
consistency measures where the monitoring frequency is:
(a) 1, (b) 5, (c) 10, and (d) 20.

10 25 50 100

Number of transactions per relation

r50

150

138

100
95
90

{85q80(ú --L /C

8zo0)^-oÞc
9ooØss

50
45

100
95
90

òe 85
ÞBoszs
8zoo^-oþð
3ooØss

50
45

Chapter 5 : Performance Evaluation

' ' .' - direct trust
+direct trust and reputation

25 50

Number of transactions per

100
95
90

òS 85
Þsoszs
3zo
8oso^^
J bt,(t)

55
50
45

relation

10 25 50 100

Number of transaclions per relation

- -.- - d¡rect trust
+direct trust and reputation

100
95
90

àe 85
ÞBo9zs
3zo
8os
åee

55
50
45

10 25 50 100
Number of transaclions per relation

- -.'- d¡rect trust
+direct trust and reputation

- * - reputation

- '.' - direct trust

150

+direct trust and reputation

-+-rênrrtâl¡ôn

(d)

Figure 5.8: For 15 dishonest NCDs out of 30 NCDs: Success rate for a
coherent trust model using the accvracy and the consistency
measures where the monitoring frequency is: (a) 1, (b) 5,

(c) 10, and (d) 20.

10 25 50 100

Number of transactions per relation

150

150

5.5 : Simulating Updating Parameterc

100
95
90

{85980(ú --L /5

3zo8os3ooØs5
50
45

100
95
90

e-r 85
980(ú --L /C

3too^-obC
3ooØss

50
45

'-.'- direct lrust
+direct lrust and reputation

-+-rêñrrlâl¡ñn

10 25 50 100

Number of transacl¡ons per relalion

100
95
90

òe 85
ÞBos75
8zo
8os
åeecc

50
45

139

10 25 50 100

Number of transactions per relation

- -.- - direct trust

150

+direcl trust and reputation

-*-rôñrrtâli^ñ

(c)

100
95
90

às 85
ÞBoszs
3zoo^-obJ

åee
Ðþ
50
45

10 25 50 100

Number of transactions per relation

150

+direct trust and reputation

- + - ranlllatinn

Figure 5.9: For 20 dishonest NCDs out of 30 NCDs: Success rate for a

coherent trust model using the accuracy and the consistency
measures where the monitoring frequency is: (a) 1, (b) 5,
(c) 10, and (d) 20.

10 25 50 100

Number of transactions per relation

150

150

140

Dis-
honest
NCDs

Table 5.18: Success rate for a coherent trust model using the accuracy
and the consistency measures.

Mon.
freq.

0

a
value

I 1.0

Chapter 5 : Performance Evaluation

5

0.5

0.0

5

7I.22Vo

Number of transactions per relation

1.0

87.36Vo

10

0.5

80.t5vo

0.0

56.787o

10

85.057o

62.l8%o

t.0

97.82Vo

20

0.5

l5

60.46Vo

88.087o

0.0

54.287o

61.68Vo

25

98.3970

1.0

56.677o

72.53Vo

99.54Vo

0.5

I

55.637o

68.167o

94.9 Vo

0.0

5l.49Vo

51.24Vo

76.32Vo

52.7\Vo

1.0

50

100.00Vo

61.6t%

90.38Vo

5

0.5

51.847o

99.54Vo

60.00Vo

l8.34Vo

0.0

7l.20Vo

95.67 Vo

53.427o

65.98Vo

1.0

87.70Vo

88.16Vo

55.7SVo

10

100

l8.5lVo

I00.007o

0.5

17.82Vo

98.16Vo

55.74Vo

70.23Vo

l00.O0Vo

0.0

56.7\Vo

87.477o

85.O6Vo

58.39%o

97.09Vo

1.0

63.45Vo

97.47Vo

77.l3Vo

20

64.83Vo

0.5

20

62.4IVo

96.677o

90.34Vo

88.62Vo

150

6l.95Vo

100.00Vo

0.0

98.977o

54.25Vo

80.23Vo

6l.51Vo

100.00vo

98.39Vo

89.34Vo

1.0

55.4OVo

66.44Vo

74.6OVo

100.007o

99.43Vo

0.5

1

55.98Vo

87.557o

16.32Vo

68.62Vo

lOO.O0Vo

94.48Vo

0.0

97.467o

5l.49Vo

l0.57Vo

57.24Vo

IO0.O0Vo

76.32Vo

86.897o

1.0

53.33Vo

L00.00Vo

62.O7Vo

9l.26Vo

9O.03Vo

5

0.5

s3.79%

16.55Vo

99.677o

59.54Vo

80.007o

0.0

92.107o

89.86Vo

7I.lTVo

97.01%o

53.45Vo

99.OlVo

65.9lVo

89.08Vo

1.0

77.93Vo

88.16Vo

55.63Vo

10

88.14Vo

76.55Vo

0.5

I00.007o

82.787o

97.827o

55.86Vo

69.54Vo

0.0

LO0.OOVo

82.797o

56.787o

86.447o

85.05Vo

LOO.0OVo

95.66Vo

58.39Vo

63.22Vo

1.0

98.05Vo

71.13Vo

20

64.83Vo

82.7OVo

0.5

67.72Vo

96.44Vo

90.ll%o

92.76Vo

lO0.0OVo

61.84Vo

0.0

99.787o

54.25Vo

18.62Vo

67.68Vo

IOO.OOVo

98.39Vo

88.937o

55.98Vo

1.0

66.44Vo

75.06Vo

IOO.OOVo

99.777o

0.5

87.897o

55.98Vo

77.47Vo

69.207o

97.59To

100.00Vo

0.0

98.53Vo

51.497o

68.9lVo

57.247o

100.00Vo

76.32Vo

84.57To

52.537o

l00.0OVo

65.06Vo

92.4"t Vo

91..787o

52.30Vo

76.78Vo

99.897o

59.89Vo

84.37Vo

92.197o

91.59Vo

98.85Vo

53.45Vo

L00.00Vo

65.98Vo

78.67Vo

88.16Vo

56.78Vo

88.917o

79.54Vo

100.007o

98.167o

54.l4Vo

73.91%ô

L00.00Vo

82.OZVo

89.89Vo

96.597o

100.00Vo

58.39Vo

71.ljVo

66.09Vo

84.l4Vo

96.36Vo

93.33Vo

100.00Vo

59.89Vo

99.43Vo

80.52Vo

100.007o

92.66Vo

66.86Vo

100.007o

87.l3%o

l8.3l%o

L00.00Vo

98.467o

70.57Vo

100.00Vo

87.76Vo

94.0lVo

76.l3Vo

92.13Vo

91..7lVo

100.007o

8l.l9%o

89.47Vo

82.49Vo

94.937o

85.017o

5.5 : Simulating Updating Parameters

68.00

66.00

64.00

* .r.oo

fr oo.oo

$ sa.oo
o
õ 56.00

54.00

52.00

50.00

(a)

68.00

66.00

64.00
\9
ä 62.00

E oo.oo
U)

E se.oooI se.oo
at)

54.00

52.00

50.00

(b)

+25 transactions

-
50 transactions

141

4

Number of recommenders

Figure 5.10: Recommenders set variation's affect on success rate for a
coherent trust model using the accuracy measure where
the monitoring frequency is: (a) 1, (b) 5.

+25 transactions

-
50 transactions

4
Number of recommenders

142

99.00
97.00
95.00
93.00
91.00
89.00
87.00
85.00
83.00
81.00
79.00
77.00
75.00

s
o
(ú

!)
Øo()
o
f

U)

Chapter 5 : Performance Evaluation

(a)

99.00
97.00
95.00

S 93.00

Þ e1.00
E 89.003 at.oo

$ as.oo

õ 83.00
81.00
79.00
77.00
75.00

(b)

4
Number of recommenders

--a-25 transactions

-
50 transactions

---::Ï -

*'--

Figure 5.1 1: Recommenders set variation's affect on success rate for a
coherent trust model using the accuracy and consistency
measures where the monitoring frequency is: (a) 1, (b) 5.

->25 transactions

-
50 transactions

4
Number of recommenders

5

4.
5 4

3.
5 3

2.
5 2

1.
5 1 o

õ o q) =L F

| *
E

W
M

A
 I

?o
 u

o
oa

 s
s

.o
a

&
o

.ñ
 .

ñ
.8

 q
oo

 "&
o.

ùo
.r

,"
o

n¡
lo

.ñ
.&

o
r*

o.
ñ

"8
 oñ

 g
t;o

 ù
ñ

ub
o

ùñ
N

um
be

r
of

 t
ra

ns
ac

tio
ns

F
ig

ur
e

5.
12

:
E

st
im

at
in

g
th

e
tr

us
t

le
ve

l
us

in
g

an
 E

W
M

A
 f

ilt
er

 s
ch

em
e.

þ (à Ø ñ ùa c: 'Ìf
,' a. F

Þ

O
C À
i o o À U
)

5

4.
5 4

3.
5 3

2.
5 2

1.
5 1 o

õ o ah) L 1-
-

?o
 u

.a
 o

a
so

 n
oa

 &
s

.ñ
 "ñ

 .o
o.

r,
oo

 "&
o

ùo
.¿

,.o
 6

ro
 "ñ

 oo
o.

ñ
"ñ

.ñ
 oñ

 ú
r,

o
hñ

 ù
ñ

ùo
o

N
um

be
r

of
 t

ra
ns

ac
tio

ns

F
ig

ur
e

5.
13

:
E

st
im

at
in

g
th

e
tr

us
t

le
ve

l
us

in
g

a
M

F
F

 f
ilt

er
 s

ch
em

e.

s À À
) ! o \ (^ o' ts
J- U I N o o ù1 p F
O

4.
5 4

2.
5 2

1.
5 1 o

?o
 !

o
6o

 s
o

^o
o

&
o

.ñ
 .

ê
po

 "ñ
 n?

o
?ñ

 ?
60

 ù
ro

 .ñ
 6

uo
 "ñ

 .o
o

"8
 oñ

 p
,u

 u
ñ

F
6o

 Þ
ñ

i

__
 *'

T
11

1î
ï"

**

F
ig

ur
e

5.
14

:
E

st
im

at
in

g
th

e
tr

us
t

le
ve

l
us

in
g

a
W

M
F

F
 f

llt
er

 s
ch

em
e

iq lq t. tØ : Þ : ùe È
q È
.

Þ : ùa N ri o 0 À

5

4.
5 4

3.
5 3

2.
5 2

1.
5 1 s

õ o) U
' f L l--

?o
 u

o
oo

 s
o

ño
 &

o
^ñ

 "
ñ

"8
.r

,o
o.

&
o

.È
o.

r"
o

q,
oo

.ñ
 s

"o
 o

ñ.
ñ.

Ð
 no

o
ot

o
ùñ

 u
ñ

uñ
N

um
be

r
of

 t
ra

ns
ac

tio
ns

F
ig

ur
e

5.
15

:
C

om
pa

ris
on

 o
f

di
ffe

re
nt

 s
ch

em
es

 u
se

d
to

 e
st

im
at

e
th

e
tr

us
t

le
ve

l.

À o\ s -õ õ' (â lÈ o' + o' \ Ê
ù

C
) o tt È
)

Ê
ù ñ v

5

4.
5 4

õ
3.

5
o) =
3

(D =F
 2

.5 2

1.
5 1 o

?o
 u

o
oo

 s
o

ño
 &

o
nñ

 ""
"

""
t "

ro
o

",
?o

.r
lo

 "*
o,

uo
o

*ñ
 s

"o
 s

ñ.
ñ.

8
oñ

 ú
r,

o
ùñ

 t
rñ

 u
ñ

N
um

be
r

of
 t

ra
ns

ac
tio

ns

F
ig

ur
e

5.
16

:
E

st
im

at
in

g
th

e
tr

us
t

le
ve

l
us

in
g

a
LM

F
F

 s
ch

em
e.

þ (â Ø E
¡.

0C -(t e. ùC Â
r'

N o õ' 11 À -ì

r48

5.6 Summary

This chapter presents a series of simulation results to evaluate the performance of our trust

model. These results are published in various conferences and workshops including [61],

[36], and [63]. Central to the model is the idea of maintaining a recommender network that

can be used to obtain references to predict the trust that exists between two NCDs. Our

trust model uses an accuracy concept to enable peer review-based mechanisms to function

with imprecise trust metrics, the imprecision is introduced by peers evaluating the same

situation differently. Simulation results show that a reputation-based trust model reaches

an acceptable level of capability after a certain number of transactions. However, as the

number of dishonest NCDs increase, the model becomes slow in reaching the acceptable

level of capability.

To reduce the trust model's sensitivity to dishonest NCDs, we introduced a consístency

concept to handle the situation where NCDs intentionally lie about other NCDs for their

own benefit. Simulation results indicate that incorporating the consistency concept into

the trust model, limits the effect of dishonest NCDs by preventing them from providing

recommendations.

Another feature of our model is the flexibility to weigh direct trust and reputation dif-

ferently. Simulation results show that it is better to rely on direct trust when consistency

is not used. This can be explained by observing that due to dishonest recommenders, the

reputation is tainted and using it can only lead to incorrect decisions. When the consis-

tency is used to isolate the dishonest recommenders, we are assured of an honest set of

recommenders. In this situation, simulation results indicate that significant benefits can be

obtained by using reputation.

Another significant advantage of our model is that it does not depend on a majority

opinion as previous models did. Therefore, our model can work even when the majority

of the recommenders are dishonest. Actually, as the number of dishonest recommenders

Chapter 5 : Performance Evaluation

5.6 : Summary

increases, the recommenders providing recommendations to a query reduces. The number

of recommenders also provides another measure of trust on the overall system because all

the recommenders are considered honest.

We also discussed other parameters that should be investigated such as the variation of

the recommendation set and the algorithms used to update the trust parameters. Through

simulation, we investigated the affect of varying the recommendation set as well as using

certain algorithms to update the trust level parameter. As outlined in the simulation re-

sults, the performance of our trust model can be improved by using some of the suggested

mechanisms.

t49

Chapter 6

On the Scalabitity of The Tlust Model

6.1 Overview

In mapping the trust model onto P2P structured large-scale network computing system,

scalability becomes a vital issue. Scalability means that a system must be deployable in

a wide range of scales. Scalability means not just to operate, but to operate efficiently

and with adequate value delivered, over the given range of scales [92]. The scalability

framework is based on a scaling strategy for scaling up or scaling down the trust model.

The scaling strategy is controlled by a scaling factor (k). For example, if the number of

NCDs is increased from 30 to 60, we say that the system is scaled up from configuration

1 to configuration 2 by a scaling factor of 2. The system is considered to be scalable

from configuration 1 to configuration 2, iÎ the value delivered keeps pace with cost. In

our trust model, the value delivered and the cost are derived by examining a behavior

trust. A behavior trust of atarget NCD is estimated by a source NCD interested to engage

in a transaction with the target NCD. Obviously, there is a cost for the source NCD to

estimate the target NCD's behavior trust. There is also a value delivered to the source

NCD by estimating the target NCD's behavior trust. The value delivered is measured by

150

6.1 : Overview

how successful is the transaction as far as the source NCD is concerned. The cost of the

behavior trust will be discussed in detail in Section 6.2.

It should be mentioned that the objective of this study is to examine the scalability of

the trust model at the NCD level. That is, to determine the scalability of the trust model

as the number of NCDs increase. Other factors in our behavior trust model will affect

its scalability and further investigation is needed to examine their impact on the overall

scalability of the model. First: Besides the behavior cost, additional cost incurs at the

node level. An NCD manages its nodes (clients or resources) and deploys mechanisms to

allow them to join, operate, and leave the pool of clients or resources. This management

needs to be done in a scalable and efficient manner because the behavior of the nodes

affect the NCD's reputation and hence its interaction with other NCDs. As nodes join or

leave an NCD, processing costs due to these operations have to be taken into consideration.

Also, managing nodes and monitoring their behavior while they are part of an NCD incur

additional processing cost. These costs increase as the number of nodes within an NCD

increase. Second: In our trust model, we limited the context to primary service types

such as printing, storage, and computation. This reduces the fragmentation of the trust

management space, but the coarse definition of context can result in inaccurate trust level

estimates. Depending on the definition of context, a huge amount of data may result. In

Section 6.6, we shed more light on the scalability concerns at the node level and at the

context level.

151

So, the goal is to generalize the scalability metric such that the overall cost includes the

behavior trust, node level costs, and factors related to context. Therefore, further analysis

needs to be done to include the node level cost and the impact of the context definition

into the scalability metric. However, what is done in this chapter is a necessary first step

towards achieving that goal.

r52

6.2 A BehavÍor TFust Cost

There is a cost involved in the source NCD (¡/CD") determining the trustworthiness of

the target NCD (¡/C D¿) and engaging in the transaction with ,^/CDr. tily'e refer to this cost

as behavior trust cost. It should be mentioned that the behavior trust cosl will be shown

for the worst case scenario. That is, the accuracy, honesty, and monitoring process are

assumed to be done for every transaction. In Section 3.6 and specifically in Figure 3.2,

we explained the detailed behavior trust steps that NC D, performs as a result of engaging

into a transaction with l/CD¿. These detailed steps are repeated in Figure 6.1 for clarity

purposes.

Now, let us go through the pseudo-code presented in Figure 6.1 and explain the behav-

ior trust cost involved. In line (1), NCD, accesses DTT, to determine the direct trust in

NC}andthencomputes O(NCD,,NCDt,t,c)by possiblydecayingthetrustlevelob-

tained from DTT,. Hence, there is an access cosl plus a computational cost involved. We

will skip the behavior trust cost involved in line (2) through line (4) for now and we will

consider them in Section 6.2.1. Lines (5) through (13) involve computational cost with the

exception of line (10), which involves amonitoring cost.

From the above costs, we observe that these costs do not depend on the number of

NCDs. It is obvious that the computational cost is independent of the number of NCDs

and the monitor cost is done irregardless of the number of NCDs. For the access cost,

NC D, has to access either DTT¡¡çp" or RTT¡¡ça". The size of RTT¡¡sp" and DTT¡¡çp"

are very small. Each NCD in the trust model maintains RTT, which is initially chosen

randomly and then evolves as explained in previous Chapters. The size of RTT is very

small compared to the total number of NCDs and it does not depend on the number of

NCDs. Further, RTTT¡sp" holds just two entries (consistency and accuracy) for each of

lúCD"'s recommenders. For the DTTy1n", NCD, maintains one entry for each NCDt

directly interacted with. Therefore, as the direct interaction with different NCDs increases,

Chapter 6 : On the Scalability of The Trust Model

6.2 : A Behavior Trust Cost

Source entity r computes the behavior trust in target entity gr.

(1) compute O(NCD", NCDüt,c) ;i as detailed in Figure 3.3
(2) gel RE¡¡çp"(NCDz,NCD¿,t,c), V NCD, € R¡,tco";; l/CD, gets

;; recommendations regarding NCDt
(3) if ((trans-num modzn):0)
(4) consistency check ;; as detailed in Figure 3.4
(5) adjust recommendations ;; as detailed in Figure 3.5

(6) {ÌNCD"(NCDt,t,c) <-'
NCDz t NC4;; as illustrated in Equation 3.7

(71 l(NCD,,NCDt,t,c) <- aO(NCD,,NCD¿,t,c) -t 13 Qwco"(NCD¡,t,c)
;; as illustrated in Equation 3.5

(8) it NCD" decides to proceed with the transaction
(9) if ((trans-num mod n) :- 0) ;; accuracy check
(10) obtain ITL¡vco"(NCD¿,t,c)
(11) else
(12) NCDs rejects the transaction with NCDt
(13) update process ;; as detailed in Figure 3.6

Figure 6.1: Behavior trust steps.

DTT¡,¡çp" size increases in a linear fashion. Assuming that NC D" interacted at least once

with every other NCD, the maximum number of NCDs in DTTxco" is the total number

on NCDs minus 1.

'We conducted a study to examine and measure the accessing costs incurred when ac-

cessing RTTNsp" and DTT¡¡sp". The size of RTT¡¡ç¡r" is set to 4. Let us consider

the worstcase scenario and assume that NCD, directly interacted with all otherNCDs.

Therefore, the size of DTT¡¡st" is set to the maximum number of NCDs minus 1.
'We

also

assume a sequential access to DTT¡¡çD" and RTT¡¡sp". The machine used to in this study

is based on an Intel Pentium fV processor running at 1.3 GHz with memory size of 256

MB and a level 2 cache of size 256 KB. Table 6.1 shows the cost in seconds for accessing

RTT¡¡çp" and DTTT¡çD" with different sizes. The access cost depends largely on the size

153

r54

Table 6.1: Access costs for DTT¡¡ço" and RTT¡¡çp"

Chapter 6 : On the Scalability of The Trust Model

accessing RIT

of RTT¡¡co, or DTT¡¡ca". As mentioned before, the size of RTT¡¡c¿r" is independent of

the number of NCDs. Hence the access cost of RTT¡¡7p" can be ignored. Also, as men-

tioned before, the size of DTTNco" increases in a linear fashion as NCD" interacts with

every other NCD and the maximum number of NCDs in DTT¡,tc¿r" is the total number

on NCDs minus 1. From Table 6.1, as the number of NCDs increased from 30 to 90, the

access cost increased only by 0.3 x 10-6. Because the size of these tables are small and the

increase of NCDs does not have much affect on their access cost, the access cost of these

two tables can be ignored. The only behavior trust cost that we have not considered is the

cost involved in lines (2) through (4) depicted in Figure 6.1. This cost is considered next.

accessing DTT

Description

size of RTT is 4

NCDs'number
NCDs'number
NCDs'number

Cost (in seconds)

s30
s60

0.5 x 10-o

s90

1.3 x 10-o

6"2.1 Reputation Cost

1.4 x 10-o
1.6 x 10-o

In this section, we will focus on the cost illustrated in Figure 6.1, lines (2) through (4). This

cost, we call reputation cost, is further detailed in Figure 6.2. The access cost,Figure 6.2,

in lines (1) and (2) can be ignored as explained in Section6.2. In lines (3) to (5), NCD,

carries out the consistency check by instructing its trusted allies in T¡vco" to request rec-

ommendations from NCDr's recommenders regarding NCD¿. The cost associated with

the steps in lines (3) to (5) can be ignored because: (a) the trusted allies set is small, (b) the

recommenders set is also small, and (c) each of the NC Dr's recommenders will receive the

same recommendation request from NC D, and from NC Dr's trusted allies. Therefore, all

6.2 : A tsehavior Trust Cost

these recommendation requests will form the same one and only one recommendation tree.

Hence, the cost that we are concerned about is the cost associated with line (7), which is

expressed in more detail in Figure 6.3. We should mention two points: (a) the creation of

Reputation steps incurred by NCD, acquiring recommendations to determine
NCD¿'s reputation.

(1) NCD" accesses RTT¡¡¿p" to look up its recommenders
(2) NCDs accesses TwcD" to look up its trusted allies
(3) forall NCD, e TNCo" do ;; forall the trusted allies of NCDs
(4) forall NCD" € RTT¡¡sp" do ;; forall recommenders of NCD"
(5) ;; trusted ally NCD, sends recommendation request lo NCD,

;; regarding the reputation of NCDt
(6) NCDs-Vi,sited,: {} ;; ttto recommender has been sought for help yet by NCDs
(7) SeekRep(,n/CD", -1, RTT¡¡çp", NCD-Visi,ted, NCD¿) :; NCD' seeks help from

;; its recommenders to determine the reputation of NCDt

Figure 6.2: Reputation steps.

155

the recommendation tree starts from line (7) and (b) the cost associated with line (7) is due

to the creation of the recommendation tree, in which NC D, is its root node. The function

SeekRep, in Figure 6.3, takes four parameters: (a) initiator, which is the node that initi-

ates the recommendation request (i.e., the node that seeks NC D¡'s reputation), (b) parent,

which is the parent of the initiator, (c) the initiator's set of recommenders, (d) a list of NCDs

that are already have seen the recommendation request.
'We

use this list to prevent cycles in

the recommendation tree, and (e) the target NCD that its reputation is sought. As we see in

Figure 6.2 in line (7), the parent is set to - 1 since the initiator is N C D,, which is the root of

the recommendation tree. In Figure 6.3, the initiator starts by requesting recommendations

from its recommenders. The recommendation request is sent down the recommendation

t56

tree in line (5). Line (8) states that if all of the initiator's recommenders have seen the rec-

ommendation request and the initiator is not the root of the recommendation tree, then the

initiator sends a request reply to its parent with -1 as the trust value, which means: (a) the

initiator does have previous interaction with NCD¿ and (b) the initiator's recommenders

have been asked for the same request by other NCDs and hence, NC D, will get an answer

from them. Note that each behavior trust relation (i.e., a relation from lr/CD, to NC D¿)

forms its own recommendation tree. As we discussed earlier in Section 5.2.7 that each

relation has its own relationium to keep track of events generated and match these events

to their corresponding trust behavior relationship. Therefore, line (8), states a definition of

a leaf node as a recommendation node that does not have previous interaction with NC Dt

and all of its recommenders have seen the recommendation request.

Chapter 6 : On the Scalability of The Trust Model

Pseudo-code for the SeekRep function, which takes five parameters as follows.
SeekRep(initiator, parent, RTT¿n¿t¿ator, N C D s -V i,si,ted, N C D¿), where
initiator is the NCD seeking the reputation of NC D¿, parent is the initiator's
parent, RTT¿n¿t¿ator is the set of the initiator's recommenders, NCD s-Visited is the
NCDs visited by the recommendation request so far, and NCD¡ is the target NCD.

SeekRep(initiator, parent, RTT¿n¿¡¿o¿o,, N C D s -V i sited,, N C Dù
(1) forall (NCD" € RTT¿n¿¡¿o¿o,) do ;; forall the recommenders of the initiator
(2) RecReq-Sent = 0 ;; the initiator has not sent any recommendation request to any

(3)
(4)
(5)

(6)
(7)
(8)
(e)

of its recommenders yet
at (NCD, e NCDs-Vi,sited);;it NCD" has seen the request, do not resend to it
else

;; Rec-Req(initiator, NCD,, NCDs-Visited, NCD¡) ;; the initiator requests
;; a recommendation trom NCD, regarding the reputation of NCDt
N C D s-V isited, : N C D s-V isited t N C D,
Req-Sent = 1

if ((Req-Sent == 0) and (parent + -Ð)
Rec-Reply(initiator, parent, -1)

Figure 6.3: The function of seeking reputation.

6.2 : A Behavior Trust Cost

Pseudo-code for the Rec-Req function, which takes four parameters as follows.
Rec-Reply(initiator, N C D

",
N C D s-Visited, N C D¿)

Where initiator is the NCD replying Io NCD" regarding the reputation of NCDt

Rec-Reply(initiator, N C D
",

N C D s -V i. sited, N C D ¡)
(r) if (DTT¡¡7p.(NCD¡) + -1)
(21 Rec-Reply(NCD.,initiator, DTTwcp"WCDt))
(3) else
(4) SeekRep(.n/CD", inihialor, RTT¡¡çp", NCDs-Visited, NCDù

Figure 6.4 shows the pseudo-code for the recommendation request that initiated from

Figure 6.3 line (5). Once a recommender receives a recommendation request, there are

two scenarios: (a) the recommender has previous interaction with NC4 and hence the

recommender will reply to the initiator of the recommendation request. This is outlined in

lines (1) and (2) or (b) the recommender has no previous interaction with NC D¿ and hence

the recommender will resort to its recommenders for help and thus recursively contribute to

the building of the recommendation tree. This is outlined in lines (3) and (4). Line (2) states

yet another definition of a leaf node, which is a recommender node in the recommendation

tree that has previously interacted with NC ù (i.e., DTT¡¡7D.(NC Dr) * -L).

As, we can see from the above discussion that recommendation requests are pushed

down the recommendation tree and replies to these recommendation requests are pushed

up the recommendation tree. Obviously, there is a cost associated with: (a) sending recom-

mendation requests and (b) sending replies to these recommendation requests. Let rc denote

the cost involved in sending a recommendation request and ¡ denote the cost involved in

sending a reply to a recommendation request. We will refer to recommendation requests

and their replies as messages. Therefore, we are concerned with the number of messages

Figure 6.4: The function of recommendation request.

t57

158

and their cost traversing down and up the recommendation tree. Let rn denote the average

number of messages per a behavior trust. Therefore, we can define the reputation cost (RC)

AS:

6.3 The Scalability Metric

Chapter 6 : On the Scalability of The Trust ModeL

The scalability metric is based on productivity. Il productivity is maintained as the scale

changes, the system is considered to be scalable 1921. In our trust model, productivity is

measured as the success rate divided by the cost. The cost is expressed in Equation 6.1 and

the success rate is defined in Section 5.2.6. Given the following quantities:

. C (k) : cost at scale k, expressed as the cost of a behavior trust in seconds.

RC: nm*ym.

. f(k): value delivered, expressed as the success rate.

Then, the productivity F(k) is the value delivered

second:

F(k): f (k)lc(k)

The scalability metric relating systems at two different scale factors

ratio of their productivity figures [92]:

v(k,, kz) : F(kr)lF(k1)

(6.1)

This is the scalability metric used in the rest of this chapter. The trust model model is said

to be scalable from configuration 1 to configurati on 2 if productivity keeps pace with costs,

per second, divided by the cost per

(6.2)

is then defined as the

(6.3)

6.4: Simulation

in which case ü will have a value greater than or not much less than unity. Based on 192),

we use the threshold value of 0.8, and say the system is scalable from configuration 1 to

configuration2if ü/ > 0.8.

Since the RC expressed in Equation 6.1 is the only behavior trust cost that needed to

be considered, we have C(k) : m(k) (o * X), where rn(fr) is the number of messages at

scale k. Therefore, the scalability metric will be given by:

v(kr, k2) : F(kr) I F(kr) : ffi " ffi

We see from Equation 6.4 that the scalability metric depends on two things: (a) value

delivered, expressed as the success rate. Simulation experiments were carried out in Section

5.2to calculate the success rate and (b) the average number of messages (rn), which are

propagating down and up the recommendation tree. It turns out thatm is a crucial parameter

in calculating the scalability metric of our trust model. In the following section, zn is

investigated in more detail through simulation experiments.

f (kr) m(k)
m(kz) f &')

m(kr) (" + x)

1s9

f (kr)

6.4 Simulation

rn(kr) (" + x)

6.4.1 Goals of the simulation

f (kr)

'We
see from Equation 6.4 that the scalability metric depends on the average number of

messages propagating down and up the recommendation tree (i.e., on the depth of the rec-

ommendation tree), which is in tern depends on the number of peering NCDs. In this sec-

tion, the intention is to run simulation experiments to show that the way an NCD chooses

(6.4)

160

its target NCDs has an impact on n'1. Suppose that a source NCD (¡/CD") is interested to

engage in a transaction with a target NCD (¡/CD¿). To determine the suitability of the can-

didate NC Db the NC D, consults its set of recommenders to obtain NC D¿'s reputation.

Let NC D, be one of the recommenders contacted by N C D
".

NC D, will consult its DTT

to find out whether it had prior transactions with l/CD ï If N C D, had no prior transactions

with NC D¿, then NC D, will request its set of recommenders from its RTT to determine

NCD¡'s reputation and that is how messages are generated. If NCDs uniformly choose

their target NCDs, it is more likely that NC D, and all members of its recommenders set

have interacted with NCD, That is, when,^/CD, consults its DTT, it will find out that

it had prior transactions with NC D¿. Hence, NC D, will not contribute in forming a new

message. On the other hand, if NCDs choose their target NCDs based on a normal distribu-

tion, it is more likely that NC D, and all members of its recommenders set have different

favored NCDs to interact with. That is, when NC D, consults its DTT, it is likely to find

out that it had no prior transactions with NC Dï Hence, NC D, will contribute in forming

a new message.

In summary, the objective of the simulation experiments in this section is the following.

We want to manipulate the selection phase in the simulation control flow, Figure 5.2. That

is, we want to run the same simulation as in Section 5.2 (with minor changes, please see

the following section) for two different cases: (a) NC D, selects NC 4 randomly and (b)

NC D" selects NC 4 based on a normal distribution. Then compare the average number

of messages for each case. Below, is the simulation experiments in detail.

Chapter 6 : On the Scalability of The Trust Model

6.4.2 SimulationSummary

'We
repeated the same simulation set up as in Section 5.2. That is, the simulation in this

section is organized as in Section 5.2 except for the following (Please refer to Section 5.2

for further detail on the description of the simulation).

6.4: Simulation

o NC Ds-numis set deterministically at [30, 60, 90]. The NCDs are sorted in a circular

array such that the neighbors of NC Ds are NC D1 and NC D2e and the neighbors of

NC D2s are NC Ds and NC D2s

o alpha:: 0.5 meaning the NCD, relies on its direct trust as well the reputation

to determine the trustworthiness of NC D¡. We could also have set a to 0.0 as well.

Since we are concerned to simulate and get the average depth of the recommendation

tree, setting a to 1 is not suitable.

o transactions-num is set to 50.

. mon-f req is set deterministically at [1, 5, 10, 25, 50].

o NCDs-d'ishonest is set deterministically to NCDs-num f 2.

o rels-erisú is set deterministically to NCDs-nurn x 10/100 and NCDs-nun1 x

201r00.

6.4.3

t6r

In addition to the verification and validation techniques discussed in Section 5.2, we used

the following validation technique to make sure that the target NCDs are selected according

to the distribution chosen. Figures 6.5 and 6.6 are shown using 30 NCDs. As stated above

and since the NCDs are sorted in a circulat array such that the neighbors of NCDy are

NC Dr and NC D2e and the neighbors of NC D2s are NC Ds and NC D26, we plotted the

average number of transactions that NC Do has with other NCDs. As expected, figure 6.5

shows a uniform distribution of target NCDs chosen by NCDs. The figure shows that

NCDy does not favor any NCD to interact with. 'Whereas Figure 6.6, shows a normal

distribution of target NCDs chosen by NCDs. Figure 6.6 shows that NCD0 favors its

neighbor NCDs. Both distributions in Figures 6.5 and 6.6 use a standard deviation of 5.

Verification and Validation

t62

28

24

20

16

12

I
4

0

U'co.F
C)
(d
U)
C
(g
L

o
Ë
:Jc
ci

Chapter 6: On the Scalability of TheTrustModel

15 13 11

Figure 6.5: A network computing domain (NC Dù selecting its target
NCDs following a uniform distribution.

6.4.4 Simulation Results and Discussion

312826
NCD number

Simulation experiments were run and show that the average number of messages is smaller

if source NCDs select their target NCDs following a uniform distribution versus a nor-

mal distribution. Table 6.2 illustrates how the average number of messages is affected by

the distribution followed in selecting target NCDs. The 10% and 20To existing relations,

mean that each NCD had prior direct interaction with 10% and 20To of the total number

of NCDs, respectively. For more information on how these parameters such as rels-etist

and transact'ions-num are implemented as mechanisms, please refer to Section 5.2. V/e

also observe that selecting target NCDs based on a uniform distribution, always results in

a smaller average number of messages per transaction.

24 22 20 18 16

6.5 : Evaluation of the Scalability Metric

28

9.24
.9

H20
U)c
g1ô
E. tz
E
=c8
cil

ì4
0

15 13

Figure 6.6: A network computing domain (NC Dù selecting its target
NCDs following a normal distribution.

11

6.5 Evaluation of the Scalability Metric

r63

Simulation experiments were conducted, based on Section 5.2, to compute the success

rate with different numbers of NCDs. As shown in Table 6.3, the number of NCDs are

increased from 30 to 150 with the monitoring frequency done every 5 and 10 transactions.

The success rates shown in Table 6.3 are obtained for 50 transactions per relation with

o : 0.5. The results show that as the number of NCDs are scaled up, our trust model still

converges to an acceptable success rate.

The scalability is computed based on Equation 6.4 for 30, 60, and g0 NCDs, which

corresponds to k : l, k : 2, and lt : 3, respectively. Table 6.4 shows the scalability

results for dishonest NCDs equal half of the total number of NCDs, monitoring frequency

: 5, e: 0.5, and number of transactions per relations : 50. The results show that scaling

3128
NCD number

18 16

164

the trust model from scale I to 2 or from 1 to 3 yields a scalability value of more than 0.8.

For example, using a uniform distribution and scaling the trust model from 1 to 2, we have

the following: (a) at scale 1 (i.e., NC Ds-num : 30), the value delivered is 0.9782. That

is /(k1) : 0.9782. Also rn(k1) : 4.3 and (b) at scale 2 (i.e., NC Ds-nurn : 60), the value

deliveredis0.9697. Thatis f(kr):0.9697. Alsorn(k2) :4.9. Therefore,thescalability

value, for this particular case, is computed using Equation 6.4 as:

Chapter 6 : On the Scalability of The Trust Model

The rest of Table 6.4 shows that as the trust model scales up, productivity keeps pace

with cost. From the table, we can observe that when a normal distribution is followed in

selecting target NCDs, the scalability decreases beyond the 0.8 threshold. The reason for

this is as follows. Because of using a normal distribution to select target NCDs, a source

NCD will interact most of the time with favored group of NCDs. Since the success rate

between two NCDs improves as they interact, the success rate should have been weighted

by the number of transactions between the source NCD and its target NCDs. Hence, the

success rate will have more weight between the source NCD and each of its favored target

NCDs. However, the success rate shown in Table 6.4 is computed as an equally-weighted

average success rate between a source NCD and each of its target NCDs.

ü(k', kz) :{/(1,2) : o
?Tt "

j* : 0.874.9 0.9782
(6.s)

6.5 : Evaluation of the Scalability Metric

Table 6.2: Comparison of average number of messages for various
number of NCDs.

Num.
of

NCDs

Transactions
per relation

30

Selection
distribution

of target NCD

I

5

10

uniform
normal

25

60

uniform
normal

10% existing relations

50

uniform
normal

Avg. num. of messages

per transaction

165

1

uniform
normal

18.8

uniform

5

20.4

normal

7.6

10

uniform

10

normal

20% existing relations

25

90

6

uniform

7.6

normal

4.8

50

uniform

5.2

normal

4.3

14.8

uniform

1

4.6

I4

normal

27.2

6.4

5

uniform

30

8

normal

9.2

5.2

10

uniform

11.6

6.4

normal

6.8

4.3

25

uniform

8.4

5

normal

5.2

50

4.7

uniform

6.4

4.2

normal

4.9

t9.2

uniform

5.7

20.8

normal

32.8

7.6

uniform

35.6

9.6

normal

r0.4

5.6

t3.2

7.2

7.6

4.8

9.2

6

5.6

4.4

7.2

4.7

5.1

25.2

6.4

26.8

8.8
71.2

6.4
8

5.2

6.4
4.8
É.Dd.J

r66 Chapter 6 : On the Scalability of The Trust Model

Table 6.3: Success rate for different number of NCDs where half of the
NCDs are dishonest, a : 0.5, and number of transactions
per relation : 50.

Selection
distribution

of target NCD
uniform

Monitoring
frequency

Number of NCDs

5

10

30

60

Success rate

90

150

30

97.82%

60

90

96.97%

150

97.07%
95.79%
90.r7%
88.40%
89.77%

90.0r%

T
ab

le
 6

.4
:

T
ru

st
 m

od
el

 s
ca

la
bi

lit
y

w
ith

 v
ar

io
us

 n
um

be
r

of
 N

C
D

s
w

he
re

 h
al

f
of

 th
e

N
C

D
s

ar
e

di
sh

on
es

t,
a

:
0.

5,
 m

on
ito

rin
g

fr
eq

ue
nc

y
:

5,
 a

nd
 n

um
be

r
of

 t
ra

ns
ac

tio
ns

pe

r
re

la
tio

n
:

50
.

S
el

ec
tio

n
di

st
rib

ut
io

n
of

 ta
rg

et
 N

C
D

s

un
ifo

rm

N
um of

N
C

D
s

no
rm

al

A
vg

.
nu

m
.

of
 m

es
sa

ge
s

pe
r

tr
an

sa
ct

io
n

30 60 3U 90 30 60

4.
3

30

4.
9

9U

4.
3

S
uc

ce
ss

5.
1

4.
6

ra
te

5.
',t

97
.8

2Y
0

4.
6

96
.9

7Y
0

S
ca

lin
g

fr
om

 r
 N

C
D

s
to

 g
r
N

C
D

s

6.
4

97
.8

2%
97

.0
7T

0

94
.2

r%
9l

.8
3Y

o

r:
 3

0,
 U

:6
0

9\ q tl] Ê
ù o \ s. o Ø \< cD |ì

94
.2

7Y
0

E
9.

U
T

Y
I

r
:

30
,
A

:9
0

r:
30

,A
:6

0

S
ca

la
bi

lit
y

r:
30

,a
:9

0

0.
87

0.
84

0.
79

0.
68

o\ {

168

6.6 Intra-NCD Costs

As mentioned in Chapter 4, nodes are aggregated into NCDs and this aggregation process

elects a leader who manages the member nodes to maintain a high reputation for its NCD

within the global community. Suppose that a node wants to join NCDr. Joining NCDr,

a node negotiates with l/CDr's leader who can either reject or accept the join request. A

node'sjoin request can be supported by references from prior associations. References are

given by NCDs and hence can affect the referee NCD's reputation if the node's behavior

is not up to the reference. As a consequence, the referee NCD might be isolated and no

more references are accepted from it. This also has a consequence on the referee NCD to

be isolated from NC D"'s recommendation set and consequently from other NCDs' recom-

mendation sets. Upon joining, nodes are clustered into 5 clusters in accordance with the 5

trust levels. If the node has no references, it will be placed into cluster 1. Based on its refer-

ences, a node will be placed in an appropriate cluster matching the node's trustworthiness..

The leader is responsible for promoting or demoting nodes among the 5 clusters based on

the nodes' behavior. The leader maintains an internal trust table (ITT) that includes trust

levels for the different nodes. Each time a node participates in a transaction, the leader ad-

justs the node's trust level in the ITT by: (a) monitoring the transaction and/or (b) getting

reviews from NCDs which used the node.

From the time a node wants to join an NCD to the time it leaves. the following internal

costs are involved.

1. Cost due to the joining process. This cost includes network cost as well as processing

cost.

o The network cost is measured in bytes and is represented by a join request

message cost sent by the node to the leader, a reply message cost sent from the

leader to the node. If the node was accepted to join, a join message cost is sent

Chapter 6 : On the Scalability of The Trust Model

6.6 : Intra-NCD Cosfs

from the node to the leader.

o The processing cost is measured in seconds and it includes accessing (reading)

each of the messages at each end (the node end and the leader end), the leader

accessing its DTT and/or RTT to know the referees' trustworthiness. If a referee

is unknown to the NCD, the NCD can probe its recommenders for the referee

reputation.

Cost due to the leaving process. This is a processing cost measured in seconds and it

includes the leader accessing its ITT and the node's cluster to remove the node.

Cost due to managing the node while it is with the NCD. This cost has two compo-

nents, namely processing cost and network cost.

2.

J.

The processing cost includes a monitoring cost during transactions in which the

node participates, computing the node's trust level, accessing ITT to adjust the

nodes trust level, and promoting or demoting the node among the clusters.

The network cost involves sending review request messages to these nodes

which recently used the node and receiving reply review messages. These re-

views are used to compute the node's trust level.

169

Besides the scalability concerns at the node-level, there are factors related to the context

that needs to be further investigated and examined as part of the scalability study of our

trust model. For example, we limited the context to primary service types such as printing,

storage, and computation. This reduces the fragmentation of the trust management space,

but the coarse definition of context can result in inaccurate trust level estimates. Depending

on the definition of context, a huge amount of data may result. On the other hand, a coarse

definition of context may result in inaccurate results. In conclusion, more investigation

needs to be done on the scalability at the context level as well as at the context level.

170

6.7 Surnmary

In this chapter, we examined the scalability issue of the trust model at the NCD-level.

A scalability metric based on productivity is used. Productivity is measured as the value

delivered divided by the cost. In our trust model, the value delivered and the cost are de-

rived by examining a behavior trust between two NCDs, namely NC D, and NC D¡. From

an NCDr's perspective, the value delivered is measured by how successful is a transac-

tion with NCD; whereas the cost is measuredby NCD" estimating the behavior trust

of NCD¿ prior to engaging in a transaction with NCDï The system is considered to be

scalable from one scale to another, if the value delivered keeps pace with the cost. The

scalability study shows that if scaled up from scale 1 to scale 3, then the trust model is

scalable.

The scalability study examined in this chapter is done at the NCD-level. This study

lays the first step towards understanding the overall scalability of the trust model. When

considering cost, additional cost incurs at the node-level where an NCD manages its nodes

(clients or resources) and deploys mechanisms to allow nodes to join, operate, and leave

the pool of clients or resources. This management needs to be done in a scalable and

efficient manner because the behavior of the nodes affect the NCD's reputation and hence

its interaction with other NCDs. So, the goal is to generalizethe scalability metric such that

the overall cost will include the behavior trust cost, cost at the node-level, and cost related

to the context.

Chapter 6 : On the Scalability of The TrustModel

Chapter 7

Applications of the TFust Model

7.1 Overvielv

The Grid [60, 81, 41,48] is a highly scalable network computing system that is emerg-

ing as a popular mechanism for harnessing resources that are distributed on a wide-area

network. Conceptually, a Grid computing system allows resources from different adminis-

trative domains to participate in it and ensures the autonomy of the different sites (referred

to hereafter as domains). However, in current practice, Grid computing systems are built

from resources that are contributed by institutions that agree to work together due to off-

line trust relationships that exist among them ï261. To scale a Grid beyond hundreds of

nodes, it is necessary to accommodate public resources, where a priori trust relationships

do not exist among the resources [26].

A variety of different approaches can be used to construct Grid systems that fit into this

class including combining elements of technology from PZP and Grid computing. Recently

Í93,94,26f, there has been an interest in a new class of Grids called Peer-to-Peer Grids

(P2P Grids). PZP Grid is a new trend in scientific computing and collaboration with a set

of services that includes those typical of Grids andP2P networks [95]. For our pu{pose, we

t7r

172

define P2P Grids as Grids for which the different domains do not have off-line agreements

that maintain static trust relationships among them. Vy'e contend that one of the most de-

sirable features of P2P Grids is opening up the membership of the Grid much like P2P file

sharing systems. This provides an opportunity for the Grid to increase its eligible number

of participants.

Curently, only best-effort application specific Grids such as SETI@home bring pub-

lic resources under a single virtual entity. One way to increase the applicability of such

systems is to make them QoS-aware. To provide services with QoS, the resources should

be managed. Because aPZP Grid is made of resources with heterogeneous trust relation-

ships [26, 29,30f, the resource manager needs to consider these trust relationships while

managing the resources. Currently,P2P Grid resource management systems (RMSs) make

allocation decisions oblivious of the trust implications 16I,36,471. That is, the trust rela-

tionships between resources and tasks are not integrated into the allocation decision.

P2P Grid Systems have RMSs to govern the execution of tasks that arrive for service.

The tasks are assumed to be independent, which is a realistic assumption. For example,

independent clients submit their tasks to a collection of shared resources in a P2P Grid

environment. Therefore, algorithms are necessary to assign tasks to machines and com-

pute the execution order of the tasks assigned to one machine. The process of assigning

tasks to machines and computing the execution order of the tasks assigned to one ma-

chine is called scheduling or mapping [96]. Literature on mapping independent tasks onto

a heterogeneous computing environment such as a PZP Grid includes a well-known NP-

complete problem with throughput as the optimization criterion [96, 97]. Researchers such

as [96] have investigated mapping heuristics based the following assumptions: (a) tasks

are mapped non-preemptively, (b) mappers are organized centrally, (c) tasks are assumed

to have no deadlines or priorities associated with them, and (d) tasks are indivisible (i.e., a

task cannot be distributed over multiple machines).

The mapping heuristics can be grouped into two categories, namely immediate mode

Chapter 7 : Applications of the Trust Model

7.1 : Overview

and batch mode heuristics [96]. Immediate mode means that a tasks is mapped or scheduled

as soon as it arrives for service at the mapper or scheduler, whereas batch mode means that

tasks are collected into a set that is examined for mapping at pre-scheduled times called

mapping events. The trade-offs among and between immediate mode and batch mode

heuristics are studied in detail in [96]. The independent set of tasks that are considered for

mapping at the mapping events is called ameta-task A meta task can include newly arrived

tasks (i.e., the ones arriving after the last mapping event) and the ones that were mapped

earlier but did not begin execution. V/hile immediate mode heuristics consider a task for

mapping only once, batch mode heuristics consider a task for mapping at each mapping

event until the task begins execution.

The primary objective of these resource management algorithms (i.e., mapping heuris-

tics) is makespan minimization, where makespan is defined as the time required to complete

all tasks. The mapping heuristics use makespan minimization as their mapping criterion. It

should be noted that makespan is related to the throughput of a heterogeneous systems such

as a P2P Grid. Makespan does not consider quality of service (QoS) nor trust when assign-

ing tasks to resources. In this study, we examine the integration of the notion of "trust" into

resource management such that the allocation process is aware of the trust implications. To

the best of our knowledge, no existing literature directly addresses the issues of trust-aware

resource management [36].

The rest of this chapter is organized as follows. A trust model for PZP Grid systems

is outlined in Section 7.2. Notation and terminology used in the rest of this chapter is

discussed in Section 7.3. Trust-aware resource management algorithms are discussed in

Sections 7.4 and 7.7. Evaluation of security overheads and the analysis of trust-aware

schemes are presented in Sections 7.1.1 and 7.5, respectively. Finally, the performance of

the proposed trust-aware resource management algorithms are examined in Section 7.8.

173

174

7.1"1 Evaluation of Security Overheads

We claimed that there is security overhead due to applying security mechanisms to address

the security concerns from both clients and resources. We conducted a study to examine

the overhead of securing data transmissions for 100 Mbps and 1000 Mbps networks. The

machines used were base on an Intel Pentium III processor running at 866 MHz with mem-

ory size of 256 MB and a level 2 cache of size 256 KB. Tables "l .7 and 7.2 show the security

overhead for secure transmissions using secure copy (scp) versus the regular transmission

using remote copy (rcp) for different network speeds and with different file sizes. As illus-

trated in Tables 7.1 through 7 .2, using scp introduces an overhead caused by the addition

of security to the file transfer.

Chapter 7 : Applications of the Trust Model

Table 7.1: Secure versus regular transmission for a 100 Mbps network.

File
sizelMB

1

Regular transmission
using rcpl(sec)

10

100

500

From Table J .2, we observe that the security overhead negates the benefits of using the

high speed network. Also, the security overhead as shown in Table 7.2 is significant for the

secure transmission when compared to the regular transmission using rcp.

Furthermore, a performance study was done in [98] where three target benchmark ap-

plications are processed by Minimal i386 Software Fault Isolation Zool (MiSFIT) [99] and

Security Automata SFI Implementation (SASI x86SFI) [98] sandboxing systems. Software

1000

0.19

7.37

9.77

Secure transmission
using scp/(sec)

48.88
97.00

0.63
2.45

75.34

Overhead

77.56

155.07

69.84%
44.08%

36.3r%
36.70%

37.45%

7.1 : Overview

Table 7.2: Secure versus regular transmission for a 1000 Mbps network.

File
sizelMB

1

Regular transmission
using rcp/(sec)

10

100

fault isolation (SFI) is a sandboxing technique for transforming code written in unsafe lan-

guage into safe compiled code. MiSFf T specializes the SFI technique to transform C++

code into safe binary code whereas SASr xB 6SFI specializes SFI to transform x86 as-

sembly language output of the GNU gcc C compiler to safe binary code. The three target

applications used are: (a) a memory intensive application benchmark called page-eviction

hotlist, (b) Iogical log-structured disk, and (c) a command line message digest utility called

MD5.

Page-eviction hotlist has the highest runtime overhead of I37% on MiSFTT and264To

on SASI xB 6SFI compared to the execution of the target applications on the target sys-

tems with no sandboxing. The other two benchmark applications performed as follows

(compared to their execution on the target systems with no sandboxing): the logical log-

structured disk has runtime overhead of 58% on MiSFIT and 65Yo on SASI xB6SFf ,

whereasMD5 hasruntimeoverhead of 33% onMiSFIT andSîTo on SASI xB6SFI.

The additional overhead caused by techniques such as sandboxing may negate the per-

formance advantages gained by the Grid computing and hence we contend that it is es-

sential for the scheduler to consider the security implications while performing resource

allocations.

500
1000

0.34

0.50

4.98

Secure transmission
using scpi(sec)

22.44

46.05

0.65

2.r8

t75

74.23

Overhead

69.86

138.30

47.69%
77.06%
65.00%
67.88%
66.70Y0

fl6

7.2 A TFust Model for Peer-to-Peer Grids

A P2P Grid is composed of several domains (also referred to as NCDs) that are made up

of resources and clients. These NCDs are considered interconnected domains that interact

in aP2P fashion to share resources and services amongst themselves. The trust model is

deployed on each NCD and the trust model elements such as DTT¡¡çp, RTT¡¡çp,T Mwcp

proxy, TA¡¡co, andT¡¡çp are designed to operate and evolve trust in a purely distributed

manner. There is no NCD that is omniscient. Rather each NCD: (a) has its own view of

the trustworthiness of other NCDs and stores this information in DTT¡,¡çp, (b) controls the

monitoring process of its own transactions using aTM¡¡çp proxy, (c) has its own set of

recommenders and set of trusted allies, and (d) maintains DTT¡¡sp and RTT¡¡61¿ using

its own TAucn.Each NCD cooperates with its peer NCDs by sharing information in the

form of recommendations.

From a trust-aware resource management system's perspective, a resource of an NCD

has the following attributes: (a) type of contexts (ToCs) it supports and (b) a trust level

for each ToC. Because an NCD is responsible for representing the resources in the trust

model, the NCD and the resource negotiate on the ToCs and the corresponding trust levels

that can be advertised for a resource. The ToCs supported by an NCD are determined by

the functionalities of the resources that are part of an NCD (for example, an NCD could

support printing, storing data, and display services as ToCs). Associating a trust level with

each ToC provides the flexibility of selectively opening services to clients. Similarly, a

client of an NCD has its own trust attributes including: (a) ToCs sought and (b) trust levels

associated with the ToCs.

Chapter 7 : Applications of the Trust Model

Table 7.3 shows an example DTT for a set of NCDs where TLl, isthe offered trust

Ievel (OTL) that NC Di offers to NC D¡ to engage in activity within context k. Suppose

we have client X from NCDj wanting to engage in activities within contexts c1, c2, àîd

ca oIì resourceY in NCD¿. Because resources and clients inherit the trust levels from

7.2 : ,4 Trust Model for Peer-to-Peer Grids

the NCD they are associated with, we can compute the OTL for the composite activity

between X and Y, i.e., OTL : min(TLi),7Lii,TLi;). There is a required trust level

(RTL) from the client side specifying the trust level required by NC Dis client (i.e., X) to

use NC D¿'s resource (i.e., Y). Also, there is a RTL from the resource side specifying the

trust level required by NC D¿ to use its resources. If the OTL is greater than on equal to the

maximum of client and resource RTLs, then the transaction can proceed with no additional

security overhead. Otherwise, there will be a security overhead. Table 7.4 shows the trust

supplemenl (TS) table for different RTL and OTL values. The TS(j,rn) values are given

by RITL - OTL. When RTL < OTL, TS(j,nz) is zero and when RTL : 6,TS(j,nz) is

6. RTL can have a value 6 that is not provided by any OTL. This is supported in our trust

model so that clients or resources can enforce enhanced security by increasing their RTL

value to 6.

117

Network
Computing
Domains

Table 7.3: An example of a direct trust table between NCDs.

NC D\

Type of
contexts

NC Di

C1

Trust Level

c¡t

NC Dl

r LÎ\

Network Computing Domains

C1

rLi\

Timestamp

C¡ç

rf+

rLä

T Lii

'f if

Trust Level

r:i

NCD

TLI"

't';f

rLi\

Timestamp

r Li:

rî]

rii

T Lii

'l'i

'1',;:

178

Table 7.4: the trust supplement table.

Required trust
level (RTL)

Chapter 7 : Applications of the Trust Model

7.3 Notation and Terminology

1

Offered trust level (OTL)

2

Let ET (j , m) be the execution time for task 7 on machi ne rn. In an ET matrix, the numbers

along a row indicate the execution time of the conesponding task on different machines.

Variation along the rows is referred as machine heterogeneity of a task. Similarly, the

numbers along a column of the ET matrix indicate the execution time of the machine for

different tasks on one machine. Variation along columns is referred to as taskheterogeneíty.

An ET can be classified into two classes, namely consistent and inconsistent. An ET is said

to be consistent if whenever machine rn has a lower execution time than machine q for task

j, the same is true for any task k. If an ET matrix is not consistent, then it is referred to as

inconsistent.

Definition: A matrix of execution is said to be consistent if:

o
d

1

4

0

5

2

1

6

0

2

.f

.)

0

4

0

1

2

4

6

0

ô

0

0

6

0

I

5

2

0

0

6

0

0

1

0

6

0

0

6

ET(j,m) > ET(j,q) + ET(k,rn) > ET(k,q) V j,k eT,m,q € M

where M is set of machines and T is set of tasks. Also, Let C (j , m) denote the Completion

time of taskT on machine rn and let a* denote the completion time of the last task assigned

(1.r)

7.4 : Resource Management Based on Security Overhead Minimization

to machine rn so far.

7.4 Resource Managernent Based on Security Overhead

Minimization

7.4.1 Overview

In previous generation network computing systems, RMSs were primarily responsible for

allocating resources for tasks. They also performed functions such as resource discovery

and monitoring that supported their primary role. In P2P Grid systems, with distributed

ownership for the resources and tasks, it is important to consider quality of service (QoS)

and security while allocating resources. Integration of QoS into RMS has been examined by

several researchers [100, 101]. However, security is implemented as a separate subsystem

of the P2P Grid l47l and the RMS makes the allocation decisions oblivious of the security

implications.

Integrating trust into resource management algorithms is motivated by the following

scenarios. P2P Grid computing systems provide a facility that enables large-scale con-

trolled sharing and inter-operation among resources that are distributively owned and man-

aged. Trust is a major concern for the consumers and producers of services that participate

in a P2P Grid. Some resource consumers may not want their applications mapped onto

resources that are owned and"/or managed by entities they do not trust. Similar concerns

apply from the resource producer side as well. The cuffent generation of distributed sys-

tems addresses these concerns by providing security at different levels. Suppose resource

M is allocated to task 7. Resource M can employ sandboxing techniques to prevent task

7 from eavesdropping or interfering with other computation or activìties ongoing on M.

Similarly, task 7 may employ encryption, data hiding, intelligent data encoding, or other

mechanisms to prevent M from snooping into the sensitive information carried by task ?.

t79

180

Security concerns, such as the ones mentioned above, have hindered the acceptance and

wide-spread use of P2P Grid applications [102, 103].

Based on the above scenarios, we hypothesize that if the RMS is aware of the security

requirements of the resources and tasks, it can perform the allocations such that the security

overhead is minimized [63, 36]. This is the goal of the trust-aware resource management

system (TRMS) studied and examined here. The TRMS achieves this goal by allocating

resources considering a trust relationship between the resources and the clients. If an RMS

maps a resource request strictly according to the trust, then there can be a severe load

imbalance in a large-scale wide area system such as the P2P Grid. On the other hand,

considering just the load balance or resource-task affinities, as in existing RMSs, causes

inefficient overall operation due to the introduction of the overhead caused by enforcing the

required level of security. Mapping according to load balance or trust considerations results

in diverging schedules. The former spreads the requests for the sake of load balance while

the latter segregates them for security considerations. In the TRMS algorithms examined

here, the minimization criterion is derived from load balancing and security considerations.

The load balancing is accomplished by the makespan minimization criterion. Let ST(j,m)

be the processing time associated with the TS (Table 7.4) if task 7 is assigned to machine

m. To consider security while allocating tasks to resources, Sf U,rn) should be included

when computing the total processing time Pf (j , m) of task 7 on machine rn. This is shown

in Equation 7.2.

Chapter 7 : Applications of the Trust Model

In our simulations,the ST(j,m) are assigned values as a percentage of the ET(j,m).

When trust is not considered, ST(j,rn) values are set to 50To of ET(j,m) as shown in

Equation I .3. On the other hand, when trust is considered, ST(j, rn) values are computed

by multiply ing ET (j , rn) values by a weighted TS value (Tabl e 7 .4). We arbitrarily choose

PT(j,m) : ET(j,rn) + Sf Q,m) (7.2)

7.4 : Resource Management Based on Security Overhead Minimization

the weight for TS as 15/100 as shown in Equation 7.4. Therefore, when

on average the ST(j,zn) values are calculated as 45% of the ET(j,m)

The sole purpose of the trust-aware resource managemetxf (TRM) algorithms is to

demonstrate the utility of the trust model. V/e present three TRM algorithms as example

applications of integrating trust into the RMS where clients belonging to different NCDs

present the tasks for task executions and the TRM algorithms allocate the resources. Dif-

ferent tasks belonging to the same NCD may be mapped onto different NCDs.

The three TRM algorithms implemented are based on the following three trust-unaware

heuristics based on [96]: minimum completion time (MCT) heuristic, min-min heuristic,

and sufferage heuristic. For further details on these three mapping heuristics, please refer

to [96]. We will refer to these three heuristics as: trust-unaware minimum completion time

(MCT) heuristic, trust-unaware min-min heuristic, and trust-unaware sufferage heuristic.

The three TRM algorithms implemented are: (a) trust-aware minimum completion time

(MCT) heuristic, (b) trust-aware min-min heuristic, and (c) trust-aware sufferage heuristic.

The MCT is an on-line or immediate mode mapping heuristic, whereas the min-min and

sufferage are batch mode mapping heuristics.

For the trust-unaware algorithms, the idea is to map a task j to a machine rn that gives

the earliest completion time without considering the security overhead. Although the com-

pletion time was calculated in terms of PT(j,rn) (Equation7.2) and e,^, ST(j,rn) is not

considered when mapping 7 to m. For the trust-aware algorithms, ,S7(7, zn) is considered

when mapping as well as calculating PT(j,rn).

ST(j,m)

ST(j,m)

ET(j,m) x 50/100

ET(j,m) xTS(j,rn) x 15/100

trust is considered,

1361.

181

(7.3)

(1.4)

182

For the on-line mode mapping heuristic, the TRM schedules client tasks as they ar-

rive. For the batch mode mapping heuristics, the TRM collects client tasks for a predefined

time interval to form batch of tasks (i.e., a meta-task).The meta-task is then scheduled

by the TRM-scheduler function, which is called when the cument time is equal to the

current scheduling event time that is equal to r. The TRM-scheduler func-

tion, schedules the meta-task based on the two batch mode mapping heuristics, namely

min-min and sufferage.

Chapter 7 : Applications of the Trust Model

7.4.2 Thust-aware Minimum Completion Time Algorithm

The MCT heuristic [96] is an immediate mode mapping heuristic. The MCT heuristic,

shown in Figure 7.1, assigns each task to a machine as soon as the task arrives for service.

The task is assigned to a machine that results in that task's earliest completion time. This

causes some tasks to be assigned to machines that do not have the minimum processing time

for them. As a task arrives, all the machines are examined to determine the machine that

gives the earliest completion time for the task. The completion time is computed as shown

in line (2). Then am, representing the completion time of the last task assigned to machine

rn so far, is updated to reflect the available time of machine rn. Note that trust is integrated

into the allocation decision as shown in line (2). When calculating the completion time of

task 7 on machine rn (r.e., CT(j,m)), the Sf U, rn) is taken into consideration.

7.4.3 Tþust-Aware Min-min Algorithrn

The TRM-scheduler algorithm schedules a batch of tasks called meta-task. To map the

meta-tasks, a min-min heuristic [96] is used as shown in Figure 7.2. First, the CT(j,m)

entries are computed using the ET (j, m), ST (j, m), and a^. For each task j , the machine

rn* that gives the earliest completion time is determined by scannin gth i,th row of the CT

matrix. The task j* that has the smallest processing time is determined and then assigned

7.4 : Resource Management Based on Security Overhead Minimization

(1)
(2)
(3)
(4)

for all machines m do
cr(i,m) : ET(i,rn) + sr(i,rn) + a*: PT(i,m) + a*

Assign task j to the machine rn* that gives the earliest completion time.
dm* : dm* * E'f (j,',n*) + ST(j,m*) : em* * PT(j,m.)

Figure 7.1: RMS scheduling algorithm using the minimum
completion time heuristic.

to rn* . The matrix CT and e..n afe updated and the above process is repeated with tasks that

have not yet been assigned a machine.

function RMS-scheduler(meta-task,R,, r,")
(1) for alltasks j in meta-task,R, do
(2) for all machines m do
(3) CrU,m) : Er(i,rn) + Sr(i,m) + a^: PT(i,m) + a*
(4) do until(all tasks in R. are scheduled

OR the minimum machine completion time > rr,)
(5) for each task 7 in R, find the earliest completion time

and the machine (rn*) that obtains it.

(6) Find the task 7* with the minimum processing time.
(7) Assign j* to the machine zn* that gives the minimum earliest completion time.
(8) Delete task j* from ,R,

(9) Q'r¡t* : Q¡n* I ET(j*,rn") + ST(j*,m*)
(f 0) Update CT(j,m) tor all j
(11) enddo

Figure 7.2: RMS scheduling algorithm using the min-min
heuristic.

183

7.4.4 Tfust-Aware Sufferage Algorithm

The TRM-scheduler algorithm schedules a batch of tasks called meta-task based on

[96] called the Sufferage heuristic. The Sufferage heuristic is based on the idea that better

t84

mappings can be generated by assigning a machine to a task that would "suffer" most in

terms of expected completion time if that particular machine is not assigned to it. Let the

sufferage value of task 7 be the difference between its second earliest completion time (on

some machine m) and its earliest completion time (on some machine q). That is, using

rn will result in the best completion time for 7, and using g will result in the second best

completion time for 7.

As shown in Figure 7.3,the initialization of the trust-aware Sufferage algorithm is simi-

lar to the min-min heuristic. However, for each iteration of the for loop in Lines (6) to (14),

the algorithm picks an arbitrary task j from the meta-task R, and assigns it to a machine

m that gives the earliest completion time for task 7. Then, tentatively assigns m to j if m
is unassigned, marks rn as assigned, and removes 7 from R..If however there was another

task k that was assigned to machine zn previously, the algorithm chooses the task (among

j and It) that suffers the most (i.e., has a higher sufferage value) if not assigned to machine

rn. It should be noted that the unchosen task (among j and k) will not be considered again

for execution until the next iteration of the do loop on line (4).

Chapter 7 : Applications of the Trust Model

7.5 Analysis of the T[ust-Aware Schemes

The goal of the three mapping heuristics (MCT, Min-min, and Sufferage) is to minimize

the makespan, where makespan is defined as the maximum among the available times of

all machines after they complete the tasks assigned to them. Initially em: 0,Y m.

Theorem: The makespan obtained by an optimal trust-aware scheduler, which minimizes

makespan, is always less than or equal to the makespan obtained by any trust-unaware

scheduler.

Proof: Let X[^ be the mapping function computed by the optimal trust-aware scheduler,

where Xl,. : 1, if task 7 is assigned to machine mand 0, otherwise. Let X{f, be the

mapping function computed by the trust-unaware scheduler, where XYl. : 1, if task j

7.5 : Analysis of the Trust-Aware Scåemes

function RMS-scheduler(meta-task,R,, r,,)
(1) for all tasks j in meta-task R, do
(21 for all machines m do
(3) Cr(i,m) : ET(i,rn) + ST(i,m) + a^: PT(i,m) + a^
(4) do until (all tasks in R" are scheduled

(5)
(6)

(7',)

(8)
(e)
(10)
(1 1)

OR the minimum machine completion time > r,")
Mark all machines unassigned
for each task j in R, find the earliest completion time
and the machine rn that obtains it.

sufferage value = sêcorìd earliest completion time - earliest completion time
if rn is unassigned

assign j To m, markm assigned, and delete j trcm R.)

else
if sufferage value of k already assigned
to zn is less than the sufferage value of 7

(121 unassign j, add k back to 4.,
(13) assign j lo m
(14) delete j lrom R.
(15) Update enL* : e¡n* I ET(j",rn*) + ST(j*,m*)
(16) Update C'I(j,m) for all j

Figure 7.3: RMS scheduling algorithm using the sufferage
heuristíc.

185

is assigned to machine m and 0, otherwise. Let the makespan obtained by the optimal

trust-aware scheduler be:

n-I
l\r: -#"{t lvr(j,rn) + SrU,ù) x XT*}

j:o

Let the makespan obtained by the trust-unaware scheduler be:

n-1.

t\ur: -ff{I lÛrj,rn) + sr(j,m)l x xii¡
j:o

186

By virtue of the optimality of Xr,

Àr ("*"{Ï [Er(j,rn) + Sr(j,n-,)] x Xi,-]
J:0

where Xi^ is any mapping function. Therefore,

Âr ("'*"{Ï Wr(j,rn) + ST(j,nL)l x xi,ï¡ : t\ur
j=o

since Xlf is a mapping function.

Chapter 7 : Applications of the Trust Model

7.6 Practicatr Issues

So far, we have proposed integrating the "trust" notion into RMSs to reduce the security

overhead while allocating resources to tasks. We accomplished this by assuming that the

security overhead can be quantified and tied to the trust supplement values inTablel.4.

From a practical point of view, this assumption is not realistic. For example, if the trust

supplement (TS) is 3, then the processing time due to the security supplement is calculated

as indicated in Equation 7.4:

Therefore, we assume that using a security mechanism will patch and fill the security gap

of 45% of ET(j,rn). That is, we assume that there exists a security solution (e.g., SSH,

sandboxing, etc.) to exactly fill a gap of size z. In other words, we quantify the chosen

security solution to supplement the gap and bring up the level of security to what the client

or resource requires. In practice, quantifying the level of security SSH or sandboxing gives

to a particular transaction is very difficult to come up with.

ST(j,m) : ET(i,m) x 451100 (7.s)

7.7 : Resource Management Based on Risk Minimization

In Section 7 .J , we enhance the idea of integrating the "trllst" notion into RMSs such that

the above problem is alleviated. We integrate trust into RMSs such that it tracks the trust

relationships among the different NCDs and brings together only those NCDs that have

high levels of trust among them in any given allocation. Allocating tasks on untrustworthy

resources is risky and a risk overhead and risk penalty are associated . We do not try to

quantify or supplement the risk involved. Rather, we minimize the risk penalty.

7 "7 Resource Management Based on Risk Minimization

7.7.1 Overview

In this section, we show how an algorithm based on a simple resource management heuris-

tic can be modified to perform trust aware resource management. An untrustworthy NCD

can promise resources or services and fail to deliver them and it can go down during peak

hours. One way of holding a resource accountable is to maintain a trust parameter dedicated

to its NCD and update it accordingly. The risk overhead that the resource manager might

incur represents re-allocating the task to another NCD and re-scheduling it. One of the

advantages of avoiding resources from untrustworthy NCDs in a single virtual collection is

the potential of reducing the risk overhead associated with sustaining the transactions. As

a result, the trust-aware allocation enables the resource manager to provide a higher level

of assurance on the delivered performance.

The objective of this exercise is to show the utility of the trust model and not to solve the

resource management problem optimally. In this study, we choose the min-mi¡z heuristic

[96] as the base algorithm. To recap, the min-miz heuristic has two phases. In the first

phase; for each task 7, the machine that gives the earliest completion time is determined

by scannin g the 'ith row of the CT table. In the second phase; the task k that has the

minimum completion time is determined and then assigned to the machine chosen in the

187

188

first phase. The goal of the min-min heuristic is to assign a set of tasks {0 ...n - 1} such

that {max- {"*}} is minimized for all m, where n is the number of tasks and m is the

number of machines.

In this section, we refer to TS(j,m) as the riskfacror (known earlier as "trust supple-

ment" in Section 7 .2) when assigning j to m and is computed as in Table 7.4.

To perform resource management, we can apply the min-mire algorithm such that it

makes allocation decisions based only on execution times. That is, allocation decisions

are made without considering any risk. This plain min-min algorithm, referred to as trust

unaware min-min algorithm, is concerned with one parameter (i.e., execution time) when

allocating tasks onto machines. On the other hand, we introduce two variations of the

min-min algorithm such that completion cost as well as risk are considered when allocat-

ing tasks onto machines. First, is the trust-aware trade-off algorithm, which makes the

allocation decisions based on a combination of completion time and risk and is flexible in

weighing the two components differently. The objective of trust aware trade-off algorithm

is to make a trade-off between the two components and choose a solution that gives signif-

icant preferences gain. This objective is called a "bi" objective formulation. The min-min

algorithm has a "uni" objective formulation since it only considers completion times. Sec-

ond, is the trust aware maximum risk algorithm , where we set an upper bound (B^o) on

T S (j, m) for any individual allocation that the resource management is willing to take. The

difference between T S (j, m) and B*o, ts computed and a large penalty factor is added to

machine rn's completion time if the difference is > 0. These two trust-aware algorithms

are discussed in detail next.

Chapter 7 : Applications of the Trust Model

7.7 .2 TFust Aware Tþade-off Algorithm

Since there are n tasks, each task can be allocated to k different machines. For each of these

allocations, we associate CT(j,m) andTS(j,rn). For each j, the trade-off algorithm finds

7.7 : Resource Management Based on Risk Minimization

the maximum CT(j,rn) and the maximum 7,S(7, nz). Using these two maximum num-

bers, the trade-off algorithm normalizes the i,th row of the CT and the risk factor tables,

respectively. The riskfactor table is the same as the supplementtime table and is shown

in 7 .4. Hence, we end up with normalized CT and risk factor tables. Because the comple-

tion time changes with each assignment, the completion times need to be recomputed and

renormalized with every assignment.

Let u" and w, represent weights for the two components, namely completion time and

risk factor. These two weights imply the trade-off between the two components. Be-

cause we are dealing with normalized quantities, the weights do not imply that some risk

is equivalent to some completion time. By using these two weights, we can transform the

"bi" objective formulation to a "uni" objective formulation where we are dealing with one

parameter. This is done by combining the comesponding entries for each 'ith row in the

normalized CT and risk factor tables to end up with a normalized trade-off table. Since

min-min algorithm can deal with a single parameter minimization, we can apply it as fol-

lows. In the first phase: For each task 7, the machine that gives the minimum value is

determined by scannin gthe ith row of the normalized trade-off table. In the second phase:

The task lt that has the minimum execution cost is determined and then assigned to the

corresponding machine. The algorithm proceeds as in Figure 7 .2 except that steps (3) and

(9) are replaced by Equationl .6 and Equation 7 .7, respectively:

189

CT(j,m)

Qrn*

7.7.3 T[ust Aware Maximum Risk Algorithm

The objective of this algorithm is to avoid high risk allocations by setting an upper bound on

the expected riskfactor. Suppose that B*o, is the maximum risk that the Íesource manager

w" (ET(j,m) + a*)
max^{ET(j,-), o^}
em* * ET(j",m.)

+
w, TS(j,m)

rnax^{T S (j, *)} (7.6)

(t.t)

190

is willing to take for any individual allocation. A factor Q is added to the completion time

of rn as follows:

where O is a large penalty factor. Then, the min-min algorithm proceeds as usual with

the modified CT cost. By adding the Q factor to selected entries, we avoid untrustworthy

machines. That is, we eliminate those task-machine pairs that have risk more than or equal

to Brnor.

CT(j,m)

Chapter 7 : Applications of the Trust Model

:{ Cr(j,m)+Q if TS(j,m)) B*o,

CT(j,m) otherwise

7 .8 Performance Evaluation of the TFust-Aware Algorithms

7.8.L Goals of the Simulation

To highlight the benefits of trust-aware resource management, we investigate the follow-

ing. First, simulation experiments were conducted to examine the performance of resource

management based on security overhead minimization. 'We accomplished this by exam-

ining the improvement in completion time of the trust-aware resource management over

the trust-unaware resource management. Second, simulation experiments were constructed

to investigate two factors that impact the performance of the risk minimization-based re-

source management: (a) makespan for the complete schedule and (b) makespan variability.

The makespan variability is defined as the variation in makespan as the risk penalty value

changes. 'We accomplished that by measuring makespan that considers only completion

time with no risk penalty. Then, we measured the actual makespan considering completion

time that includes risk penalty. By varying the risk penalty value (i.e., Q), we can compute

the variability of the actual makespan and compare it to the makespan.

7.8 : Performance Evaluation of the Trust-Aware Algorithms

7.8.2 Overview

Figure 7.4 shows the simulation model and the simulation entities used in the simulation

experiments. In the simulation model, the physical system that consists of a collection of

NCDs peering with each other is simulated by a collection of peering simulated NCDs.

Each NCD represents a collection of nodes (i.e., clients and resources) as shown in Figure

1.4. The interaction between NCDs is simulated by clients from NC D¡ submitting tasks to

be executed on resources in NC Di. Although, a global resource manager that coordinates

the allocation of resources, the trust estimates is done is a purely P2P manner as explained

in Section 7.2. The trust estimates are evolved and maintained by the behavior trust model

proposed in this thesis. The global resource manager is represented by the P2P Grid sched-

uler as depicted in Figure 1 .4. The P2P Grid scheduler is assumed to have knowledge of

the execution time of task 'l on machine 7 (i.e., ET) and consequently CT, PT, as well as

a¿. In addition, the P2P Grid scheduler is assumed to have knowledge of the trust levels

between the different NCDs (i.e., ST). These different tables are shown in Figure 7.4.

The predicted direct trust table (PDTT) has structure as shown in Table '7.3, where

TLft is the offered trust level (OTL) that NCD¿ offers to NCD¡ to engage in activity

within context k. The values in the PDTT are estimate of the trust that exists between the

peering NCDs. These values are estimated, evolved, and maintained by the behavior trust

model proposed in this thesis. The PDTT used in the simulation here is basically the same

PDTT that is used to track the evolution of the trust relationships among the peering NCDs

in Section 5.2.

As shown in Table '/ .5, an example of ET matrix is generatedfor t^or: 3 and rrLmat :
3. The ST matrix shown in Figure 7.4 has structure as the ET matrix and its entries are

calculated based on Equation 7.3 or L4. The PT matrix has structure as the ET matrix

and its entries are the sum of the corresponding entries of ET and ST as expressed in

Equation 7.2. The a vector shown in Figure 7.4 , consisting of n'Lrnaæ entries, represents

t9t

t92

ET Execution time matrix

PT Processing time matrix

CT Completion time matrix

Chapter 7 : Applications of the Trust Model

i
nodes
- -l---

\"- -'/'
----=/network computing domain

ST Processing t¡me due to
security overhead

Alpha Machines available time

PDTT Predicted direct trust table

the completion time of the last task assigned to each of the Trlmax machines so far. Initially,

the entries in the a vector in set to 0 indicating that all machines are ready to accept tasks.

The CT matrix has the same structure as the ET matrix and its entries are the sum of the

coffesponding entries of PT and a.

{.

Figure 7.4: Simulation model.

-'/
network computing domain

7.8.3 Design and Exogenous Parameters

Table 7.6 shows the design and exogenous parameters used in the simulation. The NCDs'

transactions process was simulated using a discrete event simulator. The term randomly

generated over a range [a, b] means that the number is generated using a discrete (integer-

valued) uniform distribution over a, a+1, ..., b inclusive. That is written as U[a, b]. The

l

7.8 : Performance Evaluation of the Trust-Aware Algorithms

Table 7.5: An example execution time matrix. Element in row'i column
j, ET(i,r) : execution time of task i if assigned to machine
j.

(1) Let l¿ be an arbitrary constant quantifying task heterogeneity, being smaller for
low task heterogeneity.
Let N¿ be a number picked from the uniform random distribution with range [1, f¿]

(2) Let f- be an arbitrary constant quantifying machine heterogeneity, being smaller for
low machine heterogeneity.
Let l/- be a number picked from the uniform random distribution with range [1, f,',]

(3) Sample l/¿ for ú-o" times to get a vector Q[0..(t*", - 1)].
(4) Generate the EEC matrix, e10..(t*o, - t),0..(m*"" - 7)l as follows:

for ú¿ from 0lo (tmar - I)
tor m¡ from 0 to (t*o, - 1)

pick a new value for.frl-
eft, ¡1 : qlil x N^

xli
0

0

1

50

2

i

20

20

20

2

30
15

60

t93

15

15

transactions that take place among the NCDs arrive at the NCDs based on a Poisson pro-

cess. The design parameter reps denotes how many times the simulation run is repeated. In

simulating our trust model, reps is set deterministically at 10. That is, each point in Table

l.1l to Table 7.18 is the result of 10 simulation runs.

The trust model topology used in the simulation consists of 20 NCDs (i.e., NC Ds-num :
20). The number of tasks generated from NCDs' clients are set deterministically to 10, 000

(i.e., t^o* - 10, 000). The type of contexts (i.e., ToC s) is randomly generated over a range

194

Table 7.6: Design and Exogenous parameters used in the simulation.

Symbol

reps

Chapter 7 : Applications of the Trust Model

NC Ds-num
Lrnat

Definition

How many times the
simulation is repeated
for each point in the

graphs and tables

n'¿mar

ToC

RTL

Maximum number of tasks
Maximum number of machines

OTL

Number of NCDs

l^

Type of context required
for each task

[1, 4] meaning that each task involves in at least oneToC but no more than four ?oCs. The

two RT Ls are randomly generated over a range [1, 6] representing the five values of trust

levels (Please refer to Table 3.1). Clients or resources can specify RTL :6 meaning that

they want to enforce enhanced security or they are risk averse. Whereas, the OTL values

are randomly generated over a range [1,5] representing the 5 trust levels (Please refer to

Table 3.1). The constants 10 and 1000 are used as the values of f- for low machine het-

erogeneity and f¿ for low task heterogeneity [96], respectively. These are used according

to Figure 7 .5 to generate the execution time matrix (i.e., ET). As explained in Section 7 .3,

an ET can be consistent or inconsistent. From the ET generated above (i.e., Figure 7.5, a

consistent ET can be generated by sorting the execution times across the machines for each

task. Whereas, an inconsistent ET can be generated by simply leaving the ET generated

Design parameter
values

f¿

Required trust level

Constant quantifying low
machine heterogeneity

Offered trust level

reps : I0

Constant quantifying low
task heterogeneity

NC Ds-num : 20

t^o, : 10,000
rn^o* :20

ToC : Ul|,4l

RTL: U11,6
OTL: U[1,5

f-: 10

f¿: 1000

7.8 : Performance Evaluation of the Trust-Aware Algorithms

above as such.

7.8.4 Conceptual Model

Figure 7.6 shows the simulation control flow. First, we initialize rep:nun'L: 0 for running

the simulation reps times. The setting phase is explained in Section 7 .8.3. In the initializa-

tion phase, simulation entities such as ET, ST, FT, PDTT, a, and CT are set to their initial

conditions. First, the rn,naÍ entries in the vector o is initialized to 0 stating that all machine

are ready at time 0. Second, the ET matrix in initialized as shown in Figure 7.5. The PDTT

is assumed to be known and it contains the estimated trust levels that exist among the dif-

ferent NCDs. For simplicity, we assume that these trust relationships are constants for the

duration of the simulation time. The PDTT entries are initialized to be randomly generated

over a range [1, 5]. The entries of the ST matrix are initialized according to Equati on 7 .3

or I .4 based on the RTLs specified by the the client side and the resource side and the OTL

specified by the resource side. The entries of PT and CT are initialized based on ET, ST,

and o.

In the selection phase, an NCD¡ is randomly chosen to represent a client X's task

wanting to engage in activities on resource Y in NC Di. The variable tasks-num is incre-

mented by 1. If the scheduling scheme used is MCT (i.e., an online or immediate mode),

then the task is allocated to a machine as soon as it arrives and begins execution. On the

other hand, if the scheduling scheme used is min-min or sufferage (i.e., batch mode), then

the following is done. First, the task is inserted into a meta-task. If it is time to map the

meta-task, then the scheduler starts mapping the tasks within the meta-task into machines.

Otherwise, a another task is generated and inserted into the meta-task.

r95

196 Chapter 7 : Applications of the Trust Model

(rep_num <

entities initial conditions

(tasks_num

7.8.5 PerformanceMetrics

lnsert
task into

meta
task

In the first set of the simulation experiments, we examine the process of resource manage-

ment based on security overhead minimization. The goal of resource management based

on security minimization is to map tasks to machines such that the overall completion time,

Figure 7.6: Simulation control flow.

to map the

7.8 : Performance Evaluation of the Trust-Aware Algorithms

oveÍ n1, machines, is minimized. We used the average completion time metric to compare

the performance of the trust-aware and trust-unaware algorithms based on security over-

head minimization.

In the second set of simulation experiments, we investigate two factors that impact

the performance of trust-aware resource management: (a) makespan [96] for the complete

schedule and (b) makespan variability. Makespan is defined às ffLar¿ç6(a¿) , where rn is

the number of machines. Makespan is a measure of the throughput of the whole resource

allocation process. Robustness is measured as the largest variation in risk penalty that can

be tolerated without running out of bounds on the completion time. The risk penalty is

computed as a proportion ({) of the ET. Therefore, { indicates the variation in risk penalty.

Let RO(j, m) denote the risk overhead incurred by assigning task j onto machine rn.

Then, the risk overhead is calculated as follows:

We normalize the rtskfactor by dividing it by 6 (i..., UP) to indicate how likely

it is to incur a risk penalty. For example, riskfactors of 1 and 4 indicate 716 : lTTo and

4f 6 : 67Vo chance of incurring the risk penalty, respectively. By varying {, we can increase

the variation of risk penalty and examine if the actual makespan runs out of bounds on the

expected makespan.

Although the completion time of a task 7 mapped onto machine rn is computed with-

out considering the risk overhead, the actual completion time of the task j is going to be

determined by the completion time plus the risk overhead of executing.T on rn. The risk

overhead determines the cost (in terms of time) that the resource management incurs be-

cause of misbehaved resources.

r91

Ro(i, m) : E*4 (EC(j, m) (7.8)

198

7 "8.6 Event Generation

In this section, we discuss the type of events that change the state of the system and present

a flow chart to show how each event is being generated in our system. There are 4 event

types, namely aruival, mapping, begin, and complete. An arrival event is created to sim-

ulate task j anival at the scheduler. A mapping event is created to simulate the process

of assigning a task to a machine and computing the execution order of the tasks assigned

to that particular machine. A begin event is created to simulate the execution of a task on

a particular machine. Finally, a complete event is created to simulate the readiness of a

machine after finishing executing a certain task.

The event generation process starts by creating an arrival event and inserting it into the

calendar (i.e. event list). This step is taken to initialize the calendar. Then, the event-

generation process enters the main body that loops as long as the calendar is not empty. An

event is picked up from the calendar and based on the event type, the system state changes

as explained below. After event processing control returns to the main body to select the

next event, the standard event-oriented simulation algorithm [90] is followed. We now

detail the state changes occurring for each event type.

If the event type is ARRIVAL, two things can happen. First, if the scheduling scheme

used is MCT (i.e., an online or immediate mode), then abegin event is generated to simulate

the allocation and the start of the execution of the arrived task on the allocated machine.

The begin event in inserted into the calendar and a new event is picked from the calendar.

Second, if the scheduling scheme used is min-min or sufferage (i.e.,a batch mode), then the

arrived task is inserted into the meta-task. If the cument time equals the cunent scheduling

event time, then a mapping event is created to map the meta-task. the mapping event in

inserted into the calendar. Otherwise, a new event is picked from the calendar.

If the event type is MAPPING, the appropriate scheduler (min-min or sufferage) is used

to map the tasks within the meta-task to machines. One a task is mapped to a machine, a

Chapter 7 : Applications of the Trust Model

7.8 : Pefformance Evaluation of the Trust-Awarc Algorithms

begin event is generated in inserted into the calendar. Then, a new event is picked from the

calendar.

If the event type is BEGIN, the mapped task starts execution on its machine. Then, a

new event is picked from the calendar. If the event type is COMPLETE, the task that started

execution on its machine completes its execution and the update process takes place. That

is, the appropriate data structure is updated (i.e., ET, CT, PT, o, and ST). The update process

is explained below. Then, a new event is picked from the calendar.

create a begin event and
insert it into the calendar.

elseif (time to map meta task)
creale a mapping event and
insert ¡n into the calendar.

else
insert task to meta task.

r99

Pick an event from the calendar

loop until (meta task is empty OR
current time is equal to current
scheduling event time)

map a task from the meta task.
generate a begin event and
insert in into lhe calendar.

After task j has completed execution on machine m, then the scheduler (i.e., MCT,

min-min, or sufferage) will perform the following:

o If the scheduler mode is batch, then task 7 is removed from the meta-task.

Create an arrival
event and insert

¡t ¡nto the
calendar

Figure 7.7: Event generation control flow.

Start execution
lf (batch)

remove task from meta task

200

. The ready time of machine rn is updated. That is, the entÍy om is updated to reflect

the ready time of machine m after executing task 7.

The completion time of machine zn is updated. That is CT(j,rn) is updated forall

7. For example, if task 0 is to begin execution on machine 1 and the processing time

PT(0,1) : 15 units time. Then Table 7.7 wlll updated as in Table 7.8.

Chapter 7 : Applications of the Trust Model

Table 7.7: An example completion time matrix. Element in row d

column i, CT(i,r) : completion time of task 'd if assigned
to machine 7.

i.li
0

Table 7.8: An example completion time matrix. Element in row z

column j, CT(i,7) : completion time of task i if assigned
to machine 7.

0

1

50

2

1

20
20

20

)

30

15

60
15

15

i.l i
0

0

1

50

2

1

20

35

20

2

45

15

75

15

15

7.8 : Performance Evaluation of the Trust-Aware Algorithms

7.8.7 Implementation

For the simulation model, we developed our own discrete-event simulator in C language

running on the UNIX environment. Our simulation program can be run through the com-

mand line. The simulation program is called trustAppl with arguments passed from the

command line to define the design and exogenous parameters shown in Table 7.6. The

simulation program is run using the command line as follows:

trustAppl -m 5 -t tr00 -u L -p poisson 1.0 -h clolo -a min-min -r 8343324 -D DATA >

trustApplOut

where rn is the number of machines taking the value of 5, ú is the number of tasks taking

the value of 100, u is a boolean variable taking the values of 0 or 7. If u : 1, then the

scheduling algorithm is trust-aware. Otherwise, the scheduling algorithm is trust-unaware.

p indicates the arival process follows a poisson distribution for the arrival process with

mean 1.0, h, indicates the category of ET matrix is consistent low-low heterogeneity, a

indicates the scheduling algorithm is min-min, r indicates that 8343324 is the seed of the

random number generator, and finally the results of the simulation into a file called trustAp-

plOut.

We also automated the process of running the simulation by including a batch file that

calls a Perl script. The batch file has the following format:

trustApplMin-min 20 10000 10

The Perl script is called trustApplMin-min. This script runs the simulation with the follow-

ing parameters: 20 ffima¡,10000 t^or, and 10 reps. This script runs the simulation using

the min-min scheduler using both clolo (i.e., consistent low-low heterogeneity ET matrix)

and ic-lolo (i.e., inconsistent low-low heterogeneity ET matrix. Other Perl scripts are cre-

ated to run the other types of the simulation experiments (i.e., using MCT and sufferage).

201

202

7.8.8 Verification and Validation

Tlace File

In this section, we verify the simulation model by examining a trace file that was created as

output of a sample run. We ran our simulation program using the command line as follows:

trustAppl -m 5 -t 8 -p poisson 1.0 -h ilolo -a mct -r 8343324 -D DATA > trustApplOut

The trace file is the output of running the simulation model for 3 machines (i.e., rn^o" : 3),

8 tasks (i.e., t^o, : 8), the arrival process follows a poisson distribution for the arrival

process with mean 1.0, the category of ET matrix is inconsistent low-low heterogeneity,

the scheduling algorithm is mct, the seed of the random number generator is 8343324, and

finally the results of the simulation into a file called trustApplOut.

In Section L8.6, we discussed the event generation scheme, In the following exercise,

we trace the events generated by the simulation program and show that trustAppl is working

as intended. Table 7.9 shows the total processing time (i.e., execution time plus security

overhead) of the 5 tasks if executed on each of the 3 machines.

Chapter 7 : Applications of the Trust Model

Table 7.9: A processing time matrix. Element in row,l column 7,
PT(i,.?) : total processing time if task'd assigned to
machine j.

i.l i

We will trace the events generated and shown in

arrival event, 1 represents a complete event, and 2

0

1

0

661.96

2

1280.08

tJ

582.69

4

389.44

I
470.00

1568.78

874.96

r074.50
273.24

2

1089.11

1447.07

1368.25

t179.24
278.95

1593.25

Table 7.10. Event type 0 represents

represents a BEGIN event. Since the

7.8 : Performance Evaluation of the Trust-Aware Algorithms

scheduling algorithm used in this example is MCT, the mapping event is not represented

in Table 7.10 (Please refer to 7.8.6). The arrival events of the 5 tasks are in lines (1),(3),

(5), (7), and (8), respectively. When the first task (i.e., task 0 arrives at simulation time

0.728677 to the scheduler, the ready times of all the machines are 0. Since the scheduling

algorithm is MCT, task 0 is assigned a machine as soon as it arrives and it begins execution

at time 0.728677 on machines 1. From Table 7.9, machine 1 gives the earliest processing

time for task 0. Line (2) shows the ready time for machine 1 changed to P7(0, 1) : 470.00

plus the simulation time 0.728677. As expected all arrival events generated completed on

lines (1,0), (11), (13), (L4), and (15), respectively.

Line
number

Table 7.10: Events generated from running a simulation example.

1

Event

2

ty

203

o
t)

pe

0

4

Simulation
time

2

5

0

6

0.728677

2

7

0.728677

0

8

0.781710

Task
number

2

9

0.7877104

10

0

2.836522

11

0

2.836522

L2

2

0

Machine
number

4.049642

13

0

1

5.094594

T4

i

1

470.731841

15

t

1

470.731847

2

1

743.976480

1

Mach

2

1

743.976480

0

oJ

t182.074436

1

0

0.00

1390.945666

nes ready

Àa

0.00

.)

2185.047824

2

0.00

1390.95

0

1

0.00

1390.95

.)

tlmes

470.73

1390.95

4

1

470.73

2

1390.95

470.73

1

2

1390.95

I

0.00

1

470.73

4

1390.95

0.00

470.73

1

1390.95

0.00

2

470.73

1390.95

0.00

0

743.98

i390.95

2185.05

0.00

1

rI82.07

1390.95

2185.05

rr82.07

1390.95

2185.05

1782.07

1390.95

2185.05

1782.07

2185.05

7182.07

2185.05

1182.07

2i85.05

LL82.07

t782.07
7182.07

1782.07

204

7.9 Simulation Results and Discussion

7.9.1 Investigating Resource Allocation Based on Security Overhead

Minimization

When not using trust, the idea is to map a task j to machine m that gives us the earliest

completion time without considering the security overhead. Although the completion time

was calculated in terms of the execution time of j on m plus the security overhead of

executing j on m, the security overhead is not considered when mapping z to rn. For the

trust-aware heuristics, the security overhead is considered when mapping as well as when

calculating the completion time of executing j on m.

Tables 7.il and 7.12, show the benefit of integrating the trust notion into an MCT-

based RMS. Table 7.11 was run for the inconsistent LoLo heterogeneity with 5 machines.

In Table 7 .ll, the completion time was reduced by about 38%. Table 7 .12 was run for the

consistent LoLo heterogeneity with 5 machines. In Table 7 .I2, the completion time was

reduced by about 35%.

Chapter 7 : Applications of the Trust Model

Table 7.1 1: Comparison of average completion time for inconsistent
LoLo heterogeneity using the MCT heuristic.

Number of
tasks

50

Using
trust

100

No

Machine
utilization

Tables 7.13 and 7.14 show the benefit of integrating the trust notion into aMinmin-

based RMS. Table 7.13 was run for the inconsistent LoLo heterogeneity with 5 machines.

Yes

No

92.86%

Yes

93.56%

Ave. completion
time (sec)

96.29%
96.12%

5,817.38
3,665.23
71,244.77
7,018.38

Improvement in completion
time when using trust

36.99%

37.59Y0

7.9 : Simulation Results and Discussion

Table 7.12: Comparison of average completion time for consistent
LoLo heterogeneity using the MCT heuristic.

Number of
tasks

50

Using
trust

100

No

Machine
utilization

Yes

No

93.90%

Yes

93.96%

Table 7.13: Comparison of average completion time for inconsistent
LoLo heterogeneity using the Minmin heuristic.

Ave. completion
time (sec)

96.5t%

Number of
tasks

96.8r%

4,786.27
3,137.78

50

9, 117.53

Using
trust

Improvement in completion
time when using trust

5,994.25

100

In Table 7.I3,the completion time was reduced by almost 24%. Table7.l4 was run for the

consistent LoLo heterogeneity with 5 machines. In Table J .14, the completion time was

205

No

Machine
utilization

Yes

No

90.56%

Yes

34.44%

90.877

Ave. completion
time (sec)

93.77%

34.26%

94.35Y

Table 7.74: Comparison of average completion time for consistent
LoLo heterogeneity using the Minmin heuristic.

3,983.04

Number of
tasks

3,046.79
7,227.78
5,540.47

lmprovement in completion
time when using trust

50

Using
trust

100

No

Machine
utilization

23.5r%

Yes

No

93.17%

2334%

Yes

92.53%

Ave. completion
time (sec)

96.75%
95.9r%

3,750.59
2,802.27
6,712.27

Improvement in completion
time when using trust

5,012.39

25.28%

25.32Y0

206

reduced by almost267o.

Table 7.15: Comparison of average completion time for inconsistent
LoLo heterogeneity using the Sufferage heuristic.

Number of
tasks

50

Chapter 7 : Applications of the Trust Model

Using
trust

100

No

Machine
utilization

Yes

No

92.59%

Yes

93.96%

Ave. completion
time (sec)

96.60%

Table 7.16: Comparison of average completion time for consistent
LoLo heterogeneity using the Sufferage heuristic.

97.08%

Number of
tasks

5,257.37
3,772.09
9,609.78

50

lmprovement in completion
time when using trust

Using
trust

5,919.49

100

Tables 7.15 and 7.16 show the benefit of integrating the trust notion into a Sufferage-

based RMS. Table 7.15 was run for the inconsistent LoLo heterogeneity with 5 machines.

In Table 7.15, the completion time was reduced by almost 40%. Table 7.16 was run for the

consistent LoLo heterogeneity with 5 machines. In Table 7 .16, the completion time was

reduced by almost 33%.

In summary, the experiments performed to evaluate the overhead of securing remote

computation indicate that the overhead is significant and techniques for minimizing such

overhead by eliminating redundant application of secure operations can greatly enhance the

No

Machine
utilization

Yes

No

39.66%

94.14Y

Yes

95.32Y

Ave. completion
time (sec)

97.11%

38.40%

s7.33%

4,473.05
3,011.81
B,356.33

Improvement in completion
time when using trust

5,582.56

32.67%

33.I9To

7.9 : Simulation Results and Discussion

overall performance. Simulations performed to evaluate the effectiveness of incorporating

trust into resource management heuristics indicate that the overall quality of the schedules

obtained by the resource allocation process can be improved by about407o.

7.9.2 Investigating Resource Allocation Based on Risk Minimization

As shown in Tables I .ll and 7.18, the two weights a;c and wr aÍe not applicable (NA) to the

min-min and maximum risk algorithms. From Table J .IJ,we can observe that the min-min

algorithm's actual makespan does not tolerate large risk penalty variation. For example, as

the risk penalty increases from 0.01 to 10.0, the actual makespan of the min-min algorithm

increases from 16, 094.54 to 101, 87I.4I, respectively.

On the other hand, the other two algorithms, which minimizes the risk, perform much

better and are more resistant to large variation of risk penalty. In Table 7 .17 and for the

trade-off algorithm with trr : 0.8, we can observe that as the risk penalty increases from

0.01 to 10.0, the actual makespan increases from 40, 325.78 to just 42,899.47, respectively.

Notice that when u)r :0.0, the trade-offalgorithm performs very close to the min-min al-

gorithm because the allocation decisions are made without considering risk (i.e., the weight

assigned to risk is zero). The same observations can be made on Table 7.18.

We can conclude that the min-min algorithm, which does not consider any risk when

making allocation decisions (i.e., the allocation decisions are made considering only the

completion times), performs very poor in terms of actual makespan as the risk penalty

increases. Hence, the min-min algorithm is not robust. On the other hand, the trade-off

and the maximum rlsft algorithms, which make the allocation decisions considering both

completion times and risk, perform well in terms of completion times and robustness. They

both tolerate large variation in risk penalty without going out of bounds on the completion

times.

201

208

7.L0 Surnmary

As an application, the trust model is used to incorporate trust into a resource management

system such that the allocation decisions are trust cognizant. In this chapter, we enhance the

global resource manager of aP2P Grid such that it tracks the trust relationships among the

different resource and client domains and brings together only those domains that have high

levels of trust among them in any given allocation. The performance evaluation involved

performing simulations to evaluate the benefit on incorporating trust into resource man-

agement systems. The simulation results indicate that if the allocation decisions are made

without considering trust, the resource management system performs very poor in terms of

actual makespan as the risk penalty increases and hence, it is not robust. On the other hand,

if the resource management is trust-aware such that it makes allocation decisions consid-

ering both completion times and risk, it will perform well in terms of completion times

and robustness. In Summary, the simulation results indicate that due to trust awareness,

the performance of resource management systems can improve the overall quality of the

schedules obtained by the allocation process.

Chapter 7 : Applications of the Trust Model

7.10: Summary

Table 7.17: Expected and actual makespans of various resource
management algorithms using an inconsistent LoLo
heterogeneity

È

value

0.01

RMS
algorithm

mtn-mtn
trade-off

1rc
value

NA

1.0

WT

value

0.0

maximum risk

0.2

NA

Expected makespan

0.4

mln-mtn

1.0

0.6

trade-off

0.8

0.8

0.6

1.0

16,011.28

0.4

NA

178,672.41

0.2

NA

2.0

40,323.55

0.0

0.0

maximum risk

39,474.82

NA

0.2

Actual makespan

209

40,244.76

NA

0.4

mtn-mln

35,273.99

i.0

0.6

trade-off

L5,985.72

0.8

0.8

30,795.42

16,094.54

0.6

1.0

178,686.17

16,011.28

0.4

NA

178,672.41

40,325.79

0.2

NA

5.0

39,477.04

40,323.55

0.0

0.0

maximum risk

40,244.76

39,474.82

NA

0.2

35,274.99

40,244.76

NA

0.4

16,055.42

mln-mtn

35,273.99

1.0

0.6

trade-off

30,211.99

t5,985.72

0.8

0.8

30,,795.42

24,336.83

0.6

1.0

180,048.14

16,011.28

0.4

NA

t78,672.4L

40,546.34

0.2

r0.0

NA

40,323.55

39,697.60

0.0

0.0

maximum risk

40,244.76

39,474.82

NA

0.2

35,372.55

40,244.76

NA

0.4

mtn-mtn

35,273.99

25,297.04

1.0

0.6

31,853.08

trade-off

15,985.72

0.8

0.8

32,662.39

30,r95.42

0.6

1.0

r81,423.87

16,011.28

0.4

NA

778,672.47

40,769.I2

0.2

NA

39,920.38

40,323.55

0.0

0.0

maximum risk

40,244.76

39,474.82

NA

0.2

35,471.L0

40,244.76

NA

0.4

34,784.72

35,273.99

1.0

0.6

33,693.95

r5,985.72

0.8

0.8

30,195.42

58,584.02

0.6

1.0

185,551.06

16,011.28

0.4

NA

178,672.4r

4r,437.47

0.2

40,588.74

40,323.55

0.0

39,474.82

40,754.60

NA

37, 185.09

40,244.76

63,247.76

35,273.99

39,442.76

75,985.72

101,871.4i

30,L95.42

I92,429.77
42,899.47
42,45r.45
42,798.63
4r,317.49
110,686.16
49,040.93

2r0

Table 7.18: Expected and actual makespans of various resource
management algorithms using a consistent LoLo
heterogeneity

value

0.01

RMS
algorithm

mtn-mtn
trade-off

Chapter 7 : Applications of the Trust Model

uc
value

NA

1.0

WT

value

0.0

maximum risk

0.2

NA

Expected makespan

0.4

mrn-mrn

1.0

0.6

trade-off

0.8

0.8

0.6

1.0

29,329.68

0.4

NA

159,694.38

0.2

NA

2.0

47,283.77

0.0

0.0

maximum risk

46,455.73

NA

0.2

Actual makespan

44,506.76

NA

0.4

mtn-mln

38, 164.80

1.0

0.6

trade-off

30,880.70

0.8

0.8

37,379.00

29,465.75

0.6

1.0

159,709.95

29,329.68

0.4

NA

159,694.38

47,283.77

0.2

NA

5.0

46,457 .37

47,283.77

0.0

0.0

maximum risk

44,506.76

46,455.r3

NA

0.2

38, 170.80

44,506.76

NA

0.4

31,042.49

mln-mtn

38, 164.80

1.0

0.6

trade-off

37,395.98

30,880.70

0.8

0.8

45,194.34

37,379.00

0.6

1.0

161.25i.30

29,329.68

0.4

NA

159,694.38

47,283.77

0.2

10.0

NA

46,679.13

47,283.77

0.0

0.0

maximum risk

44,506.76

46,455.t3

NA

0.2

38,788.64

44,506.76

NA

0.4

mrn-mtn

47,680.00

38, 164.80

1.0

0.6

39,352.39

trade-off

30,880.70

0.8

0.8

62,247.77

37,379.00

0.6

1.0

762,808.22

29,329.68

0.4

NA

159,694.38

47,283.77

0.2

NA

46,903.12

47,283.77

0.0

0.0

maximum risk

44,506.76

46,455.73

NA

0.2

39,446.96

44,506.76

NA

0.4

64,958.86

38, 164.80

1.0

0.6

47,329.56

30,880.70

0.8

0.8

113,408.08

37,379.00

0.6

1.0

167,478.98

29,329.68

0.4

NA

159,694.38

47,507.24

0.2

47,575.70

47,283.77

0.0

46,,272.47

46,455.13

NA

41,693.09

44,506.76

116,795.44

38, 164.80

47,257.06

30,880.70

I98,675.25

37,379.00

775,263.58
52,822.L9
57,324.57
50,433.86
45,914.84

203,189.74
57,I37.90

Chapter I

Conclusions and Future Work

8.1 Overview

In this thesis, a trust model was presented for P2P systems, where different network com-

puting domains peer with each other to create large systems by sharing their resources or

services while not binding themselves to each other through agreements. We defined the

trust model and described schemes used in the model.
'We

also outlined mechanisms for

computing the notions of trust and reputation.

Our trust model uses an accuracy concept to enable peer review-based mechanisms to

function with imprecise trust metrics, the imprecision is introduced by peers evaluating

the same situation differently. Simulation results show that a reputation-based trust model

reaches an acceptable level of capability after a certain number of transactions. However,

as the number of dishonest NCDs increase, the model becomes slow in reaching the ac-

ceptable level of capability.

To reduce the trust model's sensitivity to dishonest NCDs, we introduced an honesty

concept to handle the situation where NCDs intentionally lie about other NCDs for their

own benefit. Simulation results indicate that incorporating the honesty concept into the

2tI

212

trust model, limits the effect of dishonest NCDs by preventing them from providing rec-

ommendations.

Another feature of our model is the flexibility to weigh direct trust and reputation differ-

ently. Combining both of direct trust and reputation equally (i.e. a : 0.5) enables the trust

model to perform at its highest capability when using the accuracy and honesty measures.

Because dishonest NCDs are filtered out of the recommender set, reputation reinforces di-

rect trust and combining them results in a higher capability than relying only on one of

them. On the other hand, when using just the accuracy measure, combining direct trust and

reputation lowers the trust model capability because of the negative impact it has on direct

trust. Having the flexibility of combining direct trust and reputation gives the trust model

the leeway to choose the strategy that best fits it.

Estimating trust levels is an important issue to determine future estimates of the trust

value. 'We demonstrated that an exponentially weighted moving average algorithm is in-

adequate for estimating the future value of a trust parameter. A new filter algorithm was

introduced and it was shown to detect periodic cheating.

A study was performed to examine the scalability of the trust model. The scalability

study demonstrated that the trust model is scalable at the NCD-level from scaling factor

of 1 to a scaling factor of 3 if {/ > 0.8. Although, scalability at the node-level was not

examined, this study lays the first step towards understanding the overall scalability of the

trust model.

As an application of our trust model, we incorporate trust-awareness into a peer-to-peer

Grid's resource management system such that the allocation decisions are trust cognizant.

The simulations performed to evaluate the effectiveness of the modifications indicate that

due to trust awareness, the performance of resource management systems can improve the

overall quality of the schedulers.

Chapter 8 : Conclusions and Futurc Work

8.2 : Thesis Contributions

8.2 Thesis ContributÍons

This thesis proposes a behavior trust model for P2P structured large-scale network com-

puting domains. The contributions of this thesis are two folds: contributions to the model

itself and contributions to the utility of the model. These contributions are as follows:

o A trust modeling framework that separates accuracy and honesty. This separation

enables the trust model to work effectively even when the number of honest NCDs

are less that 50% of the NCDs' population. Further, knowing the number of honest

NCDs gives a confidence level about the effectiveness of the trust model.

A novel framework for determining and maintaining honest set of recommenders.

Having honest set of recommenders contributes to the efficiency of the trust model

by sending queries to just honest recommenders and hence all the recommendations

received are valuable. This does not just increase the efficiency of the trust model,

but also utilizes the network bandwidth. Other trust models ask for recommendations

from NCDs whether they are honest or not and then by processing these recommen-

dations, the recommendations that are believed to be dishonest are discarded.

The applicability of modeling trust by integrating it into resource management sys-

tems. To the best of our knowledge, no existing literature directly addresses the

issues of trust aware resource management systems. Simulation results indicate that

trust aware resource management systems tolerate the largest variation in risk penalty

without running out of bounds on the completion time.

A scalability analysis of the trust model is done and a scalability metric is derived.

The scalability study demonstrates that the trust model is scalable at the NCDlevel

under certain conditions. As trust model is scaled up from a scaling factor of 1 to

a scaling factor of 3 where \tr > 0.8, the simulation studies show that the value

delivered keeps up with the cost.

213

2t4

o A trust level estimation schemes were proposed to be used in the trust model. Trust

level estimation using traditional running average schemes suffer from drawbacks

of returning high estimates despite the periodic occuffence of low values in the se-

quence (i.e., an NCD can periodically cheat and still maintain a high trust level). The

simulation results show that the proposed trust level estimation schemes outperform

the traditional running average schemes in detecting periodic cheating.

8.3 Directions for Future Work

Chapter I : Conclusions and Future Work

The work as part of this thesis paves the way for the following initiatives. Future work

includes several issues that are an extension of the trust model proposed in this thesis.

These issues are: (a) dynamics of trust, (b) using trust decay to shape the recommender

set, and (c) formal representation and estimation of the trust notion and using fuzzy sets for

modeling the uncertainty in trust levels.

8.3.1 Dynamics of T[ust

When computing direct trust and reputation, trust may decay with time. For example,

if NCD, trust domain NCD¿ at a given trust level based on experience five years ago,

NC D"'s trust in NC 4 today is likely to be lower unless they have continued to interact

since then. Therefore, a decay function needs to be applied when obtaining direct trust

levels or when giving recommendations as illustrated in Equations (3.6) and (3.7). There

are some issues that need to be sorted out before the decay function can be simulated and

examined. First, how does the decay function apply to the trust levels. 'We
need to explore

the issue of quantity versus time. That is, by how much a trust level should be decayed

and what is a reasonable time interval to decide applying the decay. For example, we

might decide that if N C D
"

has not interacted with l/CD ¡ for r number of time units, then

8.3 : Directions for Future Work

NCD,'strustin NCDtshouldbedecreasedbyA. Thequestionis,whatiszandwhatisgr.

Second, should there be a generic decay function mechanism and leave the implementation

details to each individual NCD. Also, what is the trade offs of implementing a generic decay

function that is used by all the NCDs versus individual NCD's decay implementations.

Finally, how does that the different implementation approaches of the decay function effect

the overall performance of the trust model.

8.3.2 Using Tfust Decay to Shape the Recommender Set

Since the peer reviews play a vital role in estimating the trust level, the recommender

set is a very important component in the trust model proposed in this thesis. The trust

model uses the trusted allies set 7 to shape the recommenders set A and the objective is to

have an honest set of recommenders. The trust model deploys the trusted allies checking

mechanisms to ensure that all of its recommenders are honest. It turns out that having

honest recommenders can give misleading reviews. Suppose that NC D, is a recommender

that NCD' uses to collect reviews about other NCDs. At this point, let us assume that

NC D, is honest. If NC D, is inactive and has not interacted with other NCDs for a long

time, its trust levels in its DTT become stale. 'When NCD" receives recommendations

lrom NCD", these recommendations maybe as misleading as recommendations received

from a dishonest NCD. Therefore, NC D" should have active and honest recommenders in

its ft. This scenario emphasizes and illustrates the importance of a decay function. Hence,

\rye can further shape ,R by using the decay function.

8.3.3 Coherent and Incoherent Tfust Models

215

Since NCDs give recommendations using their DTTs, the structure of DTT used by the

trust model is essential for recommendations to be useful (i.e., the structure of DTT is

essential for the trust model to learn from recommendations). Section 4.3.2 of the thesis

216

classifies a trust model to be coherent if it uses a coherent DTT. Otherwise, the trust model

is considered to be incoherent. Now, the question is "What makes a DTT coherent or

incoherent?".

Section 4.3.2 of the thesis defines a coherent trust model as follows: if the variation

along any column of the trust model's DTT is below a certain threshold, then the trust model

is considered to be coherent. Otherwise, the trust model is considered to be incoherent.

That is, the trust model will learn from recommendations as long as the variation along any

column of the trust model's DTT is below a certain threshold.

Putting more thought into this, the effectiveness of the accuracy measure is a good indi-

cator of whether the recommendations are useful to the learning process of the trust model.

This is because before an NCD can use the recommendation received from a recommender,

the NCD must adjust the recommendation to reflect the recommender's accuracy (i.e. this

process determines if the recommendation is useful or not). Since the accuracy measure

works by comparing the ITL to the recommendation and then shifting up or down (i.e.

adjusting) the recommendation accordingly to nauow the gap between ITL and the rec-

ommendation, the accuracy measure will be effective as long as the recommendation is

consistently low or consistently high in relation to the ITL. Hence in this case, the trust

model will learn from recommendations. This notion is not captured by the coherent ver-

sus incoherent definition given in Section 4.3.2. Therefore, further investigation needs to

be carried out to correct the definition of trust model coherency and its effect on the overall

performance of the trust model.

Chapter I : Conclusions and Future Work

8.3.4 Scalability at the Node-level

The trust model maintains trust levels between NCDs. That is, each NCD has a global

trustworthiness in the eyes of other NCDs. This global reputation of an NCD is affected

by how trustworthy its nodes (resource and clients) behave when engaged in a transaction.

8.4 : Concluding Remarks

Determining the scalability of the trust model, one should examine the scalability at the

NCDlevel as well as the scalability at the node-level. We carried out the scalability and

the NCD-level and demonstrated that the trust model is scalable. As nodes join, leave,

and while they are part of an NCD, additional costs incur and these costs increase as the

number of nodes per an NCD increase. A future work is to generalize the scalability study

to include and investigate the scalability at the nodelevel.

8.3.s

Trust involves specifying and reasoning about beliefs. In the trust model proposed in this

thesis, there are various parameters that contribute to the trust evaluation process. including

our own belief (direct trust), number of recommenders, recommenders' accuracy and hon-

esty, and the weight given to direct trust and recommenders' opinion (reputation). These

parameters can be represented as fuzzy values. The trust notion is a subjective and vague

point of view about how the future behavior of other entities would fit in the expectations

of others. Therefore, luzzy sets can be used to combine trust levels and formally define

the notion of trust. We designed the trust model mathematically and it will be interesting

to incorporate a simple, rule-based IF X AND Y THEN Z approach to solving the trust

level estimation. In addition, since the trust model is a learning process, the learning oper-

ation can be formalized using fizzy logic. Fuzzy logic is relatively new scientific field and

attempts to capture the fuzziness or imprecision of the real world.

Formal TFust Representation and Estimation

211

8.4 Concluding Remarks

Organizing large-scale network computing systems in a peer-to-peer (PZP) fashion is a

manifestation of one of the fundamental design principles on the Internet. Current research

is focusing on improving P2P systems and one of the future directions is to combine P2P

2t8

and Grid technologies. One of the key issues identified in the evolution of P2P technologies

is the trust issue.

This thesis presents a trust model for P2P structured large-scale network computing

systems. The most widely used trust modeling approach is to use a network of recom-

menders to obtain references and use these to predict the trust between two entities. This

approach is known to suffer from drawbacks such as trustworthiness of the recommenders

and scalability.

To address this problem, a solution is proposed where a recommender is independently

evaluated using accuracy and honesty measures. This thesis explains using simulation

results how the separation of accuracy and honesty helps in addressing the above issues.

To demonstrate the utility of the trust model, a trust aware resource allocation model is

developed such that it can be used to make trust cognizant resource allocations. To the

best of our knowledge, this is the first study to integrate trust into resource management

systems. The simulation results indicate that significant preferences gain can be obtained

through this integration.

As a final note, our trust model implicitly provides two levels of incentives for NCDs:

(a) by modeling honesty, the trust model provides a mechanism for giving an incentive to

recommenders to truthfully give recommendations and hence be cooperative in the P2P

environment. If a recommender is dishonest, it will be isolated and the rest of the P2P

environment will not ask recommendations from it and (b) by modeling trust, the model

provides another level of incentive to NCDs to be trustworthy and behave as expected. By

enabling trust-aware resource management systems, best behavior is motivated and that in

turn improves the overall system performance.

Chapter I : Conclusions and Future Work

Appendix A

Abbreviations used Ín this thesis

ADTT

CDTT

CT

DTT

ET

EWMA

ITL

LMFF

LoLo

MFF

NC

NCD

OTL

PDTT

PT

R

Actual Direct Trust Table

Computed Direct Trust Table

Completion Time

Direct Trust Table

Execution Time

Exponential V/eighted Moving Average

Instantaneous Trust Level

Liberally Modified Flipfl op

Low Task Low Machine Heterogeneity

Modified Flipflop

Network Computing

Network Computing Domain

Offered Trust Level

Predicted Direct Trust Table

Processing Time

Set of Recommenders

219

220

RC

RMS

RO

RTL

RTT

SR

ST

T

TA

TL

TM

ToC

TS

V/MFF

Reputation Cost

Resource Management System

Risk Overhead

Required Trust Level

Recommender Trust Table

Success Rate

Appendix A : Abbreviations used in this thesis

Processing Time Due To Trust Supplement

Set of Trusted Allies

Trust Agent

Trust Level

Transaction Monitoring

Type of Context

Trust Supplement

Weighted Modified Flipfl op

Appendix B

Calculating the success rate

A pseudo-code is presented in Figure 8.1 to illustrate how SR(t) is calculated in our sim-

ulation experiments. It can be observed that each entry (except when z : ¡) in ADTT is

compared to its corresponding entry in PDTT and the result is a success or a failure. A

success if P DTT1(7) correctly predicts ADTT,U) and a failure otherwise. Each of ADTT

and PDTT has 'i rows and 7 columns. For example, ADTT,U) indicates the trust level that

NCDi has in NCDj. Please notice that we ignored the context and time stamps in the

ADTT and PDTT for simplification purposes.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(s)

success: f a'ilure:0
for (i=0 to NCDs-num

for (j=Q to NCDs-num
tt(i+j)

.t ((ADTTi(j) € [3, 5]) and (PDTT,U) e [4, b]))
success++

elseif ((ADTri(j) e [1,2]) and (pDTrc(j) € [1,2]))
success++

success rate = success /(NCDs_nun-L x (NCDs_nurn-l)) x100

Figure 8.1: Calculating the success rate.

221

Appendix C

Perl script controlling the trust model

sirnulation

In Figure C.1, lines (1) to (8) parses the command line and assigns the appropriate line

command argument to its corresponding simulation design parameter. Line (9) prints to

the screen the command line arguments assuring that the command line is parsed cor-

rectly. Line (10) sets a different random number generator's seed for each of the reps

runs. Lines (1L) to (13) sets the design parameters a, NC Ds-d'ishonest, and mon-f req,

respectively. Line (L4) specifies how many times the simulation needs to be repeated.

Line (15) specifies a loop to be repeated 3 times, where 7 an index lor NCDs-d'ishonest

(i.e., NCDs-d'ishonestul:0 when j :0, NCDs-di.shonestljl: 15 whenT - 1,

and NC Ds-d'ishonestjl : 20 when j : 2). Line (16) specifies a loop to carry out the

mon-f req values and line (17) specifies a loop to carry out the c values. Finally, Lines (18)

to (20) run the executable simulation program trustsim and direct the output to an output

file called trustSim.out.

222

(1) $NCDs-num = $ARGV[o];
(2) $transactions-num = $ARGV[1];
(3) $recs-num = $ARGV[2];
(4) $allies-num = $ARGV[3];
(5) $cons-check = $ARGV[4];
(6) $accu-check = $ARGV[S];
(7') $epsilon = $ARGV[6];
(8) $reps = $ARGV[7];
(9) printf("%s o/"so/"s %s %s o/"so/"s 7"s", $ARGV[O], $ARGV[1], $RROV[2], $ARGV[3],

$ARGV[4], $ARGV[s], $ARGV[6], $ARGV[7])
(10) @random-seed - (6787367","8423979","83444890", "834389", "64679867","8949924",

"4497461',, "1 435439" , "652210", "4971035");
(11) @alpha = ("1.0", "0.5', "0.0");
(12) @ NODs-dishonest = ("0", "15", "20"\;
(13) @ mon_f req = ("1", "5", "1 0", "20");
(14) for ($i=0; $i < $reps; $i++)
(I5) for ($j=e;j < 3; $j++)
(16) for ($k=0; $k < ¿; $k++)
(171 for ($n=0;$n < 3; $n++¡
(18) $cmdline = sprintf("trustSim -n %s -r 7"s -e %s -d %s -t %s -l %s -c %s

-a o/os -m %s -o %s -u %s -y "/"s -p poisson 1 .0 -r %s -D DATA >>
trustSim.out", $NCDs-num, $recs-num, $allies-num, $NCDs-dishonest[$j],
$transactions-nu m, $alpha[$n], $cons-check, $accu_check, gmon_f req[$k],
$mon-f req [$k], $mon-f req[$k], $epsilon, $random-seed[$i]) ;

A Perl script interfacing with our simulation program

223

(re)
(20)

print $cmdLine;
system $cmdLine;

Figure C.1: Perl script controlling our trust model simulation
process.

Bibliography

tll H. Nissenbaum, "'Will Security Enhance Trust Online, or Supplant it?," in Trust

and Distrust Within Organizations: Emerging Perspectives, Enduring Questions,

R. Kramer and K. Cook, Eds., pp. 155-188. Russell Sage Publications, New York,

NY,2004.

tzl C.Corritore, B. Kracher, and S. Wiedenbeck, "On-line trust: concepts, evolving

themes, a model," International Journal of Human Computer Studies, vol. 58, no. 6,

pp.737158, June 2003.

[3] IBM Global Services, "Trust: Opening up the opportunities of e-business," Tech.

Rep., IBM Global Services, Executive Tek Report, Jan.2002.

t4l D.D. Clark, J. Wroclawski, and R. Braden, "Tussle in Cyberspace: Defining Tomor-

row's Internet," in Proceedings of the 2002 conference on applications, technologies

and protocols for computer communications., Aug.2002, pp. 347-356.

t5] A. Abdul-Rahman and S. Hailes, "Supporting trust in virtual communities," in the

33rd Hawaii International Conference on System Sciences - Volume 6, Jan.2000,

pp.04-07 .

224

BIBLIOGRAPHY

t6] L. Rasmusson, A. Rasmusson, and S. Jansson, "Reactive Security and Social Con-

trol," in l9th National Information Systems Security Conference, Oct. 1996, pp.

101-:703.

t7l L.Rasmusson and S. Jansson, "Simulated Social Control for Secure Internet Com-

merce," in New Security Paradigms Workshop, Sep. 1996, pp. 18-26.

t8l F. B. Schneider, Ed., Trust in Cyberspace, National Academy Press, Washington,

D.C., 1ggg.

t9] H. Nissenbaum, "Securing Trust Online: 'Wisdom
or Oxymoron," in Boston Univer-

sity Law Review Office of Technology Assessment. Electronic Surveillance and Civil

Libraries, June 2001, pp.635-664.

[10] M. A. Patton and A. Josang, "Technologies for Trust in Electronic Commerce,"

Electronic Commerce Research, vol. 4, no. 1, Jan.2004.

l11l S. Grabner-Krauter and E. A. Kaluscha, "Emperical research in on-line trust: a

review and critical assessment," International Journal of Human Computer Studies,

vol. 58, no. 6, pp. 783-812, June 2003.

lI2l B. Friedman, P. H. Khan, and D. C. Howe, "Trust Online," Communications of The

ACM, vol. 43, no. 12, pp.34-40,2000.

t13l C. Brenton, Mastering Network Security, SYBEX Network Press, Alameda, Cali-

fornia,,1999.

[14] E. Rescorla, "Security holes... 'Who cares?," in l2th USENIX Security Symposium,

Aug.2003, pp.75-90.

t15] D. Moore, C. Shannon, and J. Brown, "Code-Red, a case study on the spread and

victims on an Internet warm," in Internet Measurement Workshop, Nov. 2002.

225

226

[16] Microsoft Corporation, "Microsoft Security," http://www.microsoft.com/security.

[17] Cisco Systems Inc., "Security at Cisco," http://www.cisco.com/security.

l18l M. Nelson, "Security bug hits Microsoft Java Virtual Machine," Java World, Sep.

t999.

[19] Sun Microsystems Inc., "Sun Microsystems Security," http://www.sun.com/security.

t20] T. Grandison and M. Sloman, "Trust Management Tools for Internet Applications,"

in Ist International Conference on Trust Management (iTrust 2003), May 2003, pp.

91-107.

lztl A. Oram, Ed., Peer-to-Peer: Harnessing the Power of Disruptive Technologies,

O'Reilly and Associates, Sebastopol, CA, 2001.

BIBLIOGRAPHY

l22l B. Yang and H. Garcia-Molina, "Designing a Super-peer Network," in lgth Inter-

national Conference on Data Engineering (ICDE), Banbalore, India, }l4an2003.

l23l D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, andD. Werthimer, "SETI@home:

An Experiment in Public-Resource Computing," Communications of the ACM, vol.

45,no.11, pp. 56-6I, Nov. 2002.

[24] R. Brayanrd, D. Kosic, A. Rodriguez, J. Chase, and A. Vahdat, "Opus: An overlay

Peer Utility Service," in I5th International Conference on Open Architectures and

Network Programming (OPENARCH), June 2002.

l25l B. Urgaonkar, P. Shenoy, and T. Roscoe, "Resource Overbooking and Application

Profiling in Shared Hosting Platforms," in 5th Symposium on Operating Systems

D esi gn and Implementation (O SDI 2002), Dec. 2002, pp. 239-25 4.

BIBLIOGRAPHY

126l I. Foster and A. Iamnitchi, "On Death, Taxes, and the Convergence of Peer-to-

Peer and Grid Computing," in 2nd International Workshop on Peer-to-Peer Systems

(IPTPS03), Feb. 2003.

I2ll B. Dragovic, S. Hand, T. Harris, E. Kotsovinos, and A. Twigg, "Managing Trust and

Reputation in the XenoServer Open Platform," in lst International Conference on

Tr ust M anag ement (iTrust 2 00 3), May 2003, pp. 59 -7 4.

[28] D. S. Milojicic, V. Kalogeraki, R. I-ukose, K. Nagaraja, J. Pruyne, B. Richard,

S. Rollins, and Z. Xu, "Peer-to-peer Computing," Tech. Rep. HPL-2002-57, HP

Laboratories, Palo Alto, Mar. 2002.

[29] R. Dingledine, M. J. Freedman, and D. Molnar, 'Accountability," in Peer-to-

Peer: Harnessing the Power of DisruptiveTechnologies, A.. Oram, Ed., pp. 271-340.

O'Reilly and Associates, Sebastopol, CA, 2001.

[30] M. Waldman, L. F. Cranor, and A. Rubin, "Trust," in Peer-to-Peer: Harnessing

the Power of Disruptive Technologies, A. Oram, Ed., pp. 271-340. O'Reilly and

Associates, Sebastopol, CA, 200I.

227

t31l B. Yu and M. P. Singh, 'An Evidential Model for Distributed Reputation Manage-

ment," in Ist International Joint Conference on Autonomous Agents and Multi-Agent

Systems (AAMAS-)2), July 2002, pp. 294-301.

[32] S. Breban and J. Vassileva, 'A Coalition Formation Mechanism Based on Inter-

Agent Trust Relationships," in lst International Joint Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS-)2), July 2002, pp. 306-308.

[33] A. J. Menezes, P. C. Oorshot, and S. A. Vanstone, Handbook of Applied Cryptogra-

phy, CFiC Press, New York, Fifth Edition,200L

228

t34l C. Adams and S. Farral, "Internet X.509 public key infrastructure certificate man-

agement protocols," Mar. 1999.

t35l N. Damianou, N. Dulay, E. Lupu, and M. Sloman, "The Ponder policy specification

language," in Workshop on Policies for Dístributed Systems and Networks, Jan.

200T,pp. 18-38.

t36] F. Azzedin and M. Maheswaran, "Integrating trust into Grid resource management

systems," in2002 International Conference on Parallel Processing (ICPP '02), Aug.

2002, pp. 47-54.

I31l G. Pierre and M. van Steen,

Content Distribution Networks "

http : / /v¡ww. cs .vu. n1lÇpierre/publi/TMPTPCDN-draf t.php2,
Nov. 2001.

BIBLIOGRAPHY

[38] B. K. Alunkal, "Grid Eigen Trust: A Framework for Computing Reputation in

Grids," M.S. thesis, Dept. of Computer Science, Graduate College of the Ilinois

Institute of Technology, Chicago, 2003.

[39] F. Azzedin and M. Maheswaran, "Evolving and Managing Trust in Grid Computing

Systems," in EEE Canadian Conference on Electrical & Computer Engineering

(CCECE' 02), ll4.ay 2002, pp. 1424-1429.

t40] S. Brainov and T. Sandholm, "Incentive Compatible Mechanism for Trust Revela-

tion," tn lst International Joint Conference on Autonomous Agents and Multi-Agent

Systems (AAMAS-)2), July 2002, pp. 310-311.

t41l I. Foster and C. Kesselman (eds.), The Grid: Blueprintfor a New Computing Infras-

tructure, Morgan Kaufmann, San Fransisco, CA, 1999.

'A Trust Model for Peer-to-Peer

Draft paper. 'Work in progress.

BIBLIOGRAPHY

142) M.Blaze, J. Feigenbaum, and J. Lacy, "Decentralized Trust Management," in IEEE

Conference on Security and Privacy,7996.

t43l M. Blaze, "Using the KeyNote Trust Management System," AI&T Research Labs,

T999.

l44l T. Grandison and M. Sloman, 'A survey of trust in Internet applicationsl' IEEE

Communications Surveys & Tutorials, vol. 4, no. 4, pp.2-16, Fourth Quarter 2000.

t45l K. Hickman, "The SSL Protocol (version 2)," Netscape Communications Corpora-

tion, Feb. 1995.

t46] M. Blaze, J. Ioannidis, and A. Kermytis, "Trust Management for IPSec," in Network

and Distributed System Security Symposium (NDSS '01), pp. 139-151. San Diego,

CA, Feb. 2001r.

I4l) I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, 'A Security Architecture for

Computational Grids," tn ACM Conference on Computers and Security, Nov. 1998,

pp.83-92.

229

[48] I. Foster and C. Kesselman, "The Globus project: A status report," in 7th IEEE

Heterogeneous Computing Workshop (HCW '98),Mar 1998, pp. 4-I8.

[49] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz, 'An

architecture for a secure service discovery service," in 5th Annual International

Conference on Mobile Computing and Networks (Mobicom '99), Aug. 1999, pp.

24-35.

t50l L. Xiong and L. Liu, 'A Reputation-Based Trust Model for Peer-to-Peer eCommerce

Communities," in IEEE International Conference on E-Commerce(CEC'03), Jun.

2003, pp.270-280.

230

t51l E. Damiani, S. De Capitani di Vimercati, S. Faraboschi, P. Samarati, and F. Violante,

"A Reputation-based Approach for Choosing Reliable Resources in Peer-to-Peer

Netwotks," in 9th ACM Conference Computer and Communications Security,Nov.

2002, pp.2O7-216.

[52] Document Revision 1.2,

http : / /vrww9. limewire. com/developer/gnutellaprotocol-O . 4 .pdf ,

June 2001.

t53l R. Chen and V/. Yeager, "Poblano: A Distributed Trust Model for Peer-to-Peer

Networks," ht.tp z / / security. jxLa " org, 2001.

t54l L. Gong, "JXTA: A network programming environment," IEEE Internet Computing,

vol. 5, no. 3, pp. 88-95, May/June 2001.

t55l M. Kim and B. Noble, "Mobile Networks Estimation l' in 7th Annual Conference

Mobile Computing and Networking, July 2001, pp.298-309.

t56l S. Sen and N. Sajja, "Robustness of Reputation-based Trust: Boolean Case," in

lst International Joint Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS -02), July 2002, pp. 288-293.

[57] K. Aberer andZ. Despotovic, "Managing Trust in aPeer-2-Peer Information Sys-

tem," in L0th International Conference on Information and Knowledge Management

(CIKM' 0 1), Nov. 2OOI, pp. 310-317 .

[58] S. Hand, T. Harris, E. Kotsovinos, and I. Pratt, "Controlling the XenoServer Open

Platform," in 6th International Conference on Open Architectures and Network Pro-

gramming (O P ENARCH' 03), Apr. 2003.

BIBLIOGRAPHY

"The Gnutella Protocol Specification v0.4,"

BTBLIOGRAPHY

t59l R. Jurca and B. Faltings, "Towards Incentive-Compatible Reputation Management,"

in AAMAS 2002 Workshop on Deception, Fraud & Trust in Agent Societies,2002,

pp.138-147.

[60] K. Krauter, R. Buyya, and M. Maheswaran, 'A Taxonomy and Survey of Grid

Resource Management Systems," Softvvare Practice &, Experiance, vol. 32, no. 2,

pp. 135-164, Feb. 2002.

t61l F. Azzedin and M. Maheswarar, 'A Trust Brokering System and Its Application to

Resource Management in Public-Resource Grids," in 2004 International Parallel

and Distributed Processing Symposium (IPDPS 2004), Apr.2O04, pp.26-30.

162l F. Azzedin and M. Maheswaran, "Trust Modeling for Peer-to-Peer based Comput-

ing Systems," in l2th IEEE Heterogeneous Computing Workshop (HCW 2003)(in

conjunctionwith IPDPS 2003), Apr. 2003.

t63] F. Azzedin and M. Maheswaran, "Towards Trust-Aware Resource Management in

Grid Computing Systems," in First IEEE International Workshop on Security and

Grid Computíng,May 2002, pp. 452457.

231

164l T. Grandison, Trust Management for Internet Applications, Ph.D. thesis, Dept. of

Computing, University of London, July 2003.

165l C. Corritore, B. Kracher, and S. Wiedenbeck, "Trust and Tchnology," International

Journal of Human Computer Studies, vol. 58, no. 6, pp.633-635, June 2003.

[66] B. Dragovic, E. Kotsovinos, S. Hand, and P. R. Piezuch, "XenoTrust: Event-based

distributed trust management," in 2nd International Workshop on Trust and Privacy

in Digital Business, Sep. 2003.

t67l A. Baier, "Trust and Antitrust. Ethics," in Ethics,1986, pp. 231-260.

232

t68] N. Luhmann, "Familiarity, confidence, trust: Problems and alternatives," in Trust:

Making and Breaking Cooperative Relations, D. Gambetta, Ed., pp. 94-IO7.Basll

Blackwell, New York, 1988.

169l B. Misztal, "Trust in Modern Societies," 1996, Polity Press, Cambridge MA.

[70] J. Lewis and A. Weigert, "Trust as a social reality," Social Forces, vol. 63, no. 4, pp.

967-985,Jun. 1985.

[71] iTrust, "First International Conference on Trust Management,"

http : / /www. trstmanagement. ccirc. ac . uk, Mar.2003.

[72] iTrust: Working group on trust management in dynamic open systems, "iTrust,"

http : / /www. itrust . uoc . gr, June 2002.

l73l M. Langheinrich, "When Trust Does Not Compute - The Role of Trust in Ubiquitous

Computing," in 5th International Conference on Ubiquitous Computing, Workshop

on Privacy, Oct. 2003.

U4l J. B. Rotter, "Generalized expectancies for interpersonal trust," American Psychol-

ogist, vol. 26, pp. 443452, 197I.

t15l L. S. Wrightsman, "Interpersonal trust and attidutes toward human nature," in

Measures of personality and social psychological attitudes, J. P. Robinson, P. R.

Shaver, and L. S. Wrightsman, Eds., pp.372412. Academic Press, San Diego, CA,

t99t.

U6l G. L. De Furia, Interpersonal Trust Survey: Facilitator's Guide, Wiley & Sons,

Incorporated, John, New York, NY, 1991.

[77] N. Luhmann, "Trust and Power," in Wiley, Chichester, 1979.

BIBLIOGRAPHY

BTBLIOGRAPHY

l78l N. Habra, B. L. Chalier, A.Mounji, and I. Mathieu, "ASAX: Software architecture

and rule-based language for universal audit trail analysis," in European Symposium

on Research in Computer Security (ESORIC'?2), Nov. 1992,pp.435450.

t79l T. F. Lunt, "Detecting intruders in computer systems," in Conference Auditing and

Computer Technology, 1993.

t80] S. E. Smaha and J.
'Winslow, "Misuse detection tools," Journal of Computer Secu-

rity, vol. 10, no. l, pp. 3949, Jan. 7994.

[81] I. Foster, C. Kesselman, and S. Tuecke, "The anatomy of the Grid: Enabling scalable

virtual organizations," Inte rnational J o urnal on S up e rc omp uter Applications, vol.

15, no. 3,2001.

[82] M. A. Baker, R. Buyya, and D. Laforenza, "The Grid: International efforts in global

computing," ACM Computing Surveys, Oct. 2000.

t83l K. Krauter and M. Maheswaran, "Towards a High Performance Extensible Grid

Architecture," in l4th International Symposium on High Performance Computing

Systems and Applications (HPCS 2000), June 2000.

t84l W. W Johnston, D. Gannon, and B. Nitzberg, "Information Power Grid Im-

plementation Plan: Research, Development, and Testbeds for High Performance,

V/idely Distributed Collaborative, Computing and Information Systems Support-

ing Science and Engineering," Tech. Rep., NASA Ames Research Center,

http://www.nas. nasa. gov/IPG, 1 999.

t85l M. Maheswaran and K. Krauter, 'A Parameter-based Approach to Resource Dis-

covery in Grid Computing Systems," in Ist IEEE/ACM International Workshop on

Grid Computing (Grid'00),Dec. 2000, pp. 181-190.

255

234

186l M. S. Blumenthal and D. D. Clark, "Rethinking the design of the Internet: The end-

to-end arguments vs. the brave new world," ACM Trans. Internet Technology, vol.

1, no. l, pp. 7G-109, Aug. 2002.

[87] D. Clark, "Talk at DARPA NGI PI meeting," inTucson, AZ.,Mar.1998.

t88l S. Lee, R. Sherwood, and B. Bhattacharjee, "Cooperative Peer Groups in NICE," in

IEEE Infocom, Apr. 2003.

[89] E. Adar and B. A. Huberman, "Free riding on gnutellal' First Monday, vol. 5, no.

10, Oct. 2000.

t90l A. M. Law and'W. D. Kelton, Simulation Modeling and Analysis, McGraw-Hill,

New York, NY, 1991.

t91l J. S. Chase, D. C. Anderson, P. N. Thakar, and A. M. Vahdat, "Managing Energy

and Server Resources in Hosting Centers," in ISth Symposium Operating Systems

Principles (SOSP), Oct. 2001.

BIBLIOGRAPHY

l92l P. Jogalekar and M. 'Woodside, "Evaluating the Scalability of Distributed Systems,"

IEEE Transactions on Parallel and Distributed Systems, vol. 1 1, no. 6, pp. 589-603,

June 2000.

[93] D. Talia and P. Trunfio, "Towards a Synergy Between P2P and Grids," IEEE Internet

Computing, vol.7 , no. 4, pp.94-96, July 2003.

I94l G. Fox, D. Gannon, S. Ko, S. Lee, S. Pallickara, M. Pierce, X. Qiu, X. Rao, A. Uyar,

M. 'Wang,
and W. 'Wu, "Peer-to-Peer Grids," in Grid Computing: Making the Global

InÍrastructure a Reality,F. Berman, G. Fox, and A. Hey, Eds., pp.471490. John

V/iley & Sons Ltd,'West Sussex, England, 2003.

BIBLIOGRAPHY

l95l M. Wang, G. Fox, and S. Pallickara, 'A Demonstration of Collaborative Web Ser-

vices and Peer-to-Peer Grids," in International Conference on Information Technol-

ogy: Coding and Computing (ITCC')4). Apn2004.

t96l M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, "Dynamic

mapping of a class of independent tasks onto heterogeneous computing systems,"

Journal of Parallel and Distributed Computing, vol. 59, no.2, pp. 107-131, Nov.

t999.

l97l O. H. Ibarra and C. E. Kim, "Heuristic Algorithms for Scheduling Independent

Tasks on Nonidentical Processors," Journal of the ACM,vol.24,no.2,pp.280-289,

Apr.1977.

[98] U. Erlingsson and F. B. Schneider, "SASI Enforcement of Security Policies: A

Retrospective," in New Security Paradigms Workshop, Sep. 1999,pp.87-95.

t99l C. Small and M. Seltzer, "MiSFIT: A Tool for Constructing Safe Extensible C++

Systems," IEEE Concurrency, vol.6, no. 3, pp.3341, July/Sep. 1998.

U00l I. Foster, A. Roy, and V. Sander, 'A Quality of Service Architecture that Combines

Resource Reservation and Application Adaptation," in \th International Workshop

on Qualiry of Service (IWQoS '00), June 2000, pp. 181-188.

U01] M. Maheswaran, "Quality of service driven resource management algorithms for

network computing," in 1999 International Conference on Parallel and Distributed

Processing Technologies and Applications (PDPTA '99),Iune 1999, pp. 1090-1096.

U02l F. Berman, R. Wolski, H. Casanova,'W. Cirne, H. Dail, M. Faerman, S. M. Figueira,

J. Hayes, G. Obertelli, J. M. Schopf, G. Shao, S. Smallen, N. T. Spring, A. Su, and

D. Zagorodnov, 'Adaptive Computing on the Grid Using AppLeS," IEEE Transac-

tions Parallel Distributed Systems, vol. 14, no. 4, pp. 369-382, Ãpl2003.

235

Ii03] K. Czajkowski, L Foster, C. Kesselman, "Resource Co-Allocation in Computational

Grids," in 9th IEEE International Symposium on High Perforrnance Distributed

Computing (HP D C-8), 1999, pp. 219-228.

236

