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Abstract

Several classes of E-minimal algebras of affine type are investigated: finite nilpotent
squags, finite nilpotent SQS-skeins and finite p-groups. (Squags arise from the co-
ordinatization of Steiner triple systems and SQS-skeins from Steiner quadruple sys-
tems.) We present several representation and construction theorems for these
algebras of the type given by Klossek for distributive squags. As a consequence of
these theorems we are able to show that for every k& larger than 1 there are infinitely
many finite subdirectly irreducible (distributive) squags of nilpotence class k. More-
over we show that the variety of SQS-skeins is not locally finite by constructing a
sequence of 4-generated nilpotent SQS-skeins of strictly increasing cardinality.(and
nilpotence class). We also investigate the variety of semi-boolean SQS-skeins, i.e.
SQS-skeins satisfying the identity q(r,u,q(y,u,2)) = g(g(x,u,y),u,z), and show that it
contains the variety of boolean SQS-skeins as proper subvaﬁety, thereby disputing
the popular belief that above identity characterizes boolean SQS-skeins. Semi-boolean
SQS-skeins can be described as those SQS-skeins that correspond to Steiner qua-

druple systems whose derived Steiner triple systems are all projective geometries.

ANDREAS GUELZOW — i - UNIVERSITY OF MANITOBA




Acknowledgements

This dissertation would have been impossible without the support of several people

and organizations.

I would like to thank Prof. Dr. Heinrich Werner and Prof. Dr. Bernhard Ganter for
awakening in me the interest in Universal Algebra and Combinatorics. As advisor to
my Diplom-thesis, Heinrich Werner suggested to me to investigate distributive
squags; this investigation has finally led to this thesis. I am also thankful to my
current advisor Prof. Dr. Robert W. Quackenbush for discussing with me my ideas, for
suggesting different approaches, for raising interesting and stimulating questions and

~ for providing me with his experience.

I appreciate the financial support given to me by the Government of Canada through
the World University Service of Canada, by the Faculty of Graduate Studies of the
‘University of Manitoba, by the Department of Mathematics and Astronomy and by

Prof. Dr. R. W. Quackenbush.

At last I would like to thank my wife Dona for her moral support, for believing in me,
for the patience she showed while waiting for the completion of this dissertation, and
for getting used to the peculiarities some mathematicians tend to exhibit, and my
fellow graduate student’ and close friend David Kaminski who, while he studied at
this university, discussed with me my research and thereby allowed me to clarify and
organize my thoughts, although he was working in a completely different mathematical

field (asymptotical analysis).

1 David is currently a professor in the Department of Mathematical Sciences at the University of
Lethbridge.

ANDREAS GUELZOW — v - UNIVERSITY OF MANITOBA



Table of Contents

ADSITaCt.ivueiciinienaererrenraenas resr et enae e seaeane TIPSR tsrsesesesesreesaasreensans iii
‘Acknowledgements.......oecerceennierirnirinnans oot et sarebenes e srseinse e es s e st renaesaeestat iv
Table of Contents........... Cesresrbe e srasans veseeaisneane e e ree s seassrans veeeesbaeesienennnens \%
Table of Figures ....ccovveverneerrennns Ceseesenrt e esarne s nrasaeraraess eterreestea et aesaaresentaeans weane Vil
1. Introduction..........c... et st ae e ee s enaeaa et sseas TR, |
2. Notation.............. e e e e e esnan st e s e e sanaes et e seanaans 4
3. Universal Algebraic Concepts..........cocevvverrvrrenee. cssreessransenans ceeeseanesrnes reereesnteneeannes 6
3.1. The Commutator............cou.... tebast et rneraeseenenes et et e b e e bens 6
3.2, NIIPOIENCE....truvueireeenriresirrenasereeserreessrsssssssesssstssessseseseesssssssssoses e e 8
3.3. The Vaughan-Lee Description of the Commutator................... verresneseanas 14
3.4. Representing Nilpotent Algebras....... et et e e s e e s ae s bens reerineenns 19
4. Co-ordinatizations of Steiner Systems......... ettt s e e e s srresreenerteaes vreeaeecanes 23
4.1. Near Boolean Algebras.............. ettt b st sanena e e sesenanesraes ervernreeens 23
4.2. Sloops......... e s e seesesseraesasaanes e s eranee 24
4.3. Squags....... et r e e e e e srassn et benes e et e e enns 25
4.4, SQS-SKeins...ccveevecvciiieneninnenencnnienens et s st e e s s e e te e bt e baeraeas 27
5. SQUAES . et s eas Vs s sane s 28
5.1. BasiC Properties.....c.coiencnnnnnsnnnesnns Vhsereshesree s ae e sr s erae e s naas w28
5.2. Medial Squags.....cccceeveecrenne RTTRUPOON Ceeteare et e e st e st e e seaaesae et aenreennentas 28
5.3. The Squag Commutator for Distributive SqUags...cc..cereerrerrerrncrenienrennnenne .29

ANDREAS GUELZOW -V - UNIVERSITY OF MANITQBA




Table of Contents

5.4. The Theorem of Bruck and Slaby......cmiiniemin, 32
5.5. Free Distributive SQUAES ...cccciievimeniisniinnnimnenesineenisnnais st 32
5.6. NiIPOENt SQUAGS....crieisririmrmiiiciisntiissnasssss s ssssississs st estass s ssssassnas 33
5.7. Some Representation ThEOrems.....oiieiiciisinimsscnnnin e, 36
5.8. Construction of Nilpotent SQUAES .....ceveimmeniiniisnemmeiiis i 57
6. SIS -SKEIMS.ccrrrererireirimiiiiaiessties s s s s st stsasaeseses e st sesb b s s s s st s e SR b s RS sa b se s e nn st 61
6.1. BasiC PrOPerties .o 61
6.2. Boolean and Semi-Boolean SQS-SKeINs ....cccccnmninmnninnininnianeneeiiens 63
6.3. Nilpotent SQS-SKeins.....ocveiiniiesnininesrssenseeicsnsnias ................................. 67
6.4. Representation of Nilpotent SQS-SKeins... ..o, 73
6.5. Construction of Nilpotent SQS-SKeins s, 83
6.6, EXAMPLES .ciiiiirecrmirnrienisissirssiimississassstsessessssstsisssaissssesmanasssssssessasssssssses 103
6.7. Derived Steiner Triple SYStemS. ., 109
B X € (011 o1 OO OO OO PO SRS PR TS O SPO TS RIS 114
7.1. Basic Properties and Definitions.......cccvinmnineinninioe. 114
7.2. A Representation ThEOTeM ...cviiiiiiinicninnnsnisiiii s 118
7.3. p-Groups of Maximal Class ............................................ 124
T4, EXAMPIES ecverrrecrrreesrinrernreiesirirssssmnessssiasnsssasaessssasississssasiasssssusasssiessssesssses 127
8. E-Minimal Algebras of Affine TYDPe. ... 131
8.1. Minimal and E-Minimal Algebras.......ccuvmmmnniiiin.. 131
8.2. Representation of E-Minimal Algebras of Affine Type.....cooieicienennnenss 135
8.3. Subdirectly Irreducible E-Minimal Algebras of Affine Type.......ccccuns 146
9. Open QUESHONS.cuiviiimimmmesrseseissisststssesisibisss st ssssssssansts s ssesases rereessrnseas 148
9.1. The Theorem of Bruck and S1aby.....ceimmeiiiiimnin. 148

ANDREAS GUELZOW — vi — UNIVERSITY OF MANITOBA



Table of Contents

0.2, The COmMMULATOT. ..eeiiecieereeerrvereesresessesesssrsessssssssesassssessans beeeeeeeararieenensrerens 148
9.3. Semi-Boolean SQS-SKEINS....ccciviriiriiiineeiierreneieesseseseeesmessesseesseseseenenes 149
0.4, ConStrUCION THEOTEIMS....cuviviereecereensreierrersesssesssesssseseessnsessssssssssessssessass 149
BIDHOZTADNY . ..civiiiiiiicciicnirier st e s b sr s b st a s e ererbnas 150
I X ettt s bbb e s ae st as e et en e aeene e st saeneeaeneaeenseenasannnresenns 159

ANDREAS GUELZOW — Vil — UNIVERSITY CF MANITOBA




Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10

11

12

13

14

Table of Figures

Upper and lower central series of an algebra of nilpotence class 4. .............. 11
Affine plane OVEr GF(3) i ceensneeesesssssessssasssassssesssanes 26
Subplane generated by (0,0)(,'3) , (0,1)(,,13) , and (1,0)(,’8) ........................... 5‘1
Image of the subplane generated by (0,0)(,,,9 s (0,1)(m) , and (1,{})(,._s) ...... 53
Intersecting blocks in a Boolean SQS-skein .......cccvcennccvinnnnennennnennenennn 64
The Steiner quadruple system corresponding t0 Hig uwevesmanieeresiseessierenne 66
The Steiner quadruple system coOrresponding t0 Agg....ccueermrereasersineirersnnnnans 72
A part of the subvariety lattice of the variety of SQS-skeins........ eeerresanaans 109
A subplane in a projective geometry over GE(2) ... 110
In a derived Steiner triple system of a semi-boolean SQS-skein (1).......... 111
In a derived Steiner triple system of a semi-boolean SQS-skein (2).......... 111
In a derived Steiner triple system of a semi-boolean SQS-skein (3).......... 111

A plane in a derived Steiner triple system of a semi-boolean SQS-skein...112

A plane in a derived Steiner triple system of a boolean SQS-skein............ 112

ANDREAS GUELZOW — viii — UNIVERSITY OF MANITOBA




1. Introduction

In the early nineteen hundred eighties P. P. Pélfy, P. Pudldk, R. McKenzie, D. Hobby
and others investigated the structure of finite algebras with the use of tame
congruence theory. Their results were collected and presented in (Hobby, McKenzie
1988). One of the classes of finite algebras considered is the class of E-minimal
algebras: a finite algebra (A;Q) is called E-minimal if and only if lAl > 1 and every
unary idempotent algebraic function on (A;€) is either constant or the identity. It has
been shown that there are exactly 5 types of E-minimal algebras, in fact every E-
minimal algebra with at least 3 elements is either of affine or unary type. The exact
deﬁnitiéns of these terms are presented in chapter 8 of this thesis. We will be
exclusively concerned with E-minimal algebras of affine type, especially with the
following three classes of examples: finite nilpotent squags, finite nilpotent SQS-

skeins and finite p-groups.

Both squags and SQS-skeins arise from the co-ordinatization of Steiner Systems: the
former are obtained from Steiner triple systems and the latter from Steiner quadruple
systems. While SQS-skeins have not been extensively studied, the theory of nilpotent
squags includes the theory of distributive squags. The latter are polynomially
equivalent to exponent-3 commutative Moufang loops, which were thoroughly
investigated by R. H. Bruck in (Bruck 1971). In (Klossek 1975) S. Klossek translated
this theory into the language of distributive squags (kommutative Spiegelungsriume)
and added severai representation and construction theorems. We will first introduce
the co-ordinatization of Steiner Systems in chapter 4 and then discuss nilpotent
squags in chapter 5. We are able to generalize Klossek’s representation theorem for
any finite nilpotent squag and answer some of her open questions. For example, we
are able to show that for every n > 1 there are infinitely many finite subdirectly

irreducible squags of nilpotence class exactly a.
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1. introduction

In chapter 6 we turn to the theory of SQS-skeins and are able to present repre-

sentation and construction theorems that are analogous to the theorems for squags.

Moreover, we will prove constructively, that the free SQS-skein with four generators

is neither finite nor nilpotent. As for nilpotent squags we are also able to prove
constructively that for every n > 1 there are infinitely many finite subdirectly irredu-
cible SQS-skeins of nilpotence class exactly n#. In (Mendelsohn 1975), (Quackenbush
1975) and (Lindner, Rosa 1978) it is claimed to be well known that the SQS-skeins
satisfying the added equation gq(x,u,q(y,u,z)) = q(q(x,u,y),u,z) are exactly the SQS-
skeins corresponding to the boolean groups. We will provide a counterexample to this
‘folklore’. The class of SQS-skeins satisfying the above condition shall be called semi-
boolean SQS-skeins; it can also be charactgrized as the class of all those SQS-skeins
whose corresponding Steiner quadruple systems have only derived Steiner triple
systems that are projective geometries over GF(2). The class of semi-boolean SQS-
skeins appears to be quite analogous to the class of distributive squags among all
nilpotent squags, but it has yet to be proven that every semi-boolean SQS-skein is

even nilpotent.

Chapter 7 contains a short excursion into the theory of finite p-groups. Again we can
give a representation theorem for these algebras that is similar to the theorems for
squags and SQS-skeins. For p-groups of maximal class we are even able to improve
our representation theorem. We have chosen to include this short discussion of p-
groups in this thesis since it shows that some of the nice properties of finite nilpotent
SQS-skeins and finite nilpotent squags cannot be generalized to all E-minimal alge-

bras of affine type.

In chapter 8 finally, we will investigate generalizations of some of the theorems
presented in earlier chapters into the theory of E-minimal algebras of affine type.

While many of the proofs in the earlier chapters become superfluous once we have
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1. Introduction

verified these more general statements, we have retained them since they provide a

clearer insight into the structure of the specific algebras than the more general ones.

In chapter 9 we conclude this thesis by discussing some of the questions that we were

unable to answer and whose further investigation appears worthwhile.
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2. Notation

In this paper we will mainly use the notations as introduced in (Gritzer 1979 [1968]).
We assume that the reader is familiar with the concepts introduced in this book.
Below we will review a few of the most important notations and introduce those that

are different from (Gritzer 1979 [1968]).

An algebra A shall be written as A = (4;42), where A is the underlying non-empty set
and £2 the set of (finitary) operations of A. If £2 is indexed by the elements of I (i.e.
Q= {Filicl)orif 2= (F;,F,,..,F,) is finite, we will also write (A;Fi:iel) or
(A;F,F,,.. ,F ) respectively. If H c A then [H]p denotes the set generated by H in
the algebra A, i.e. ({H]a ;£2) is the smallest subalgebra of A whose universe (the

underlying set) contains H.

In universal algebra, some mathematicians use the expression ‘polynomial’ inter-
changeable with ‘term function’ while to others a ‘polynomial’ is exactly an ‘algebraic
function’. Contrary to the usage in (Gritzer 1979 [1968]), in this thesis ‘algebraic
function’ and ‘polynomial’ shall be synonyms, i.e. polynomials are those functions
that arise from term functions by substituting some variables with constants from A.
The set of all term functions on A shall be denoted by Clo(A) and the set of all
polynomials by Pol(d). Clo,(A) and Pol,(A) will represent the sets of all n-ary term

functions and polynomials respectively.

The congruence lattice of the algebra A will be denoted by @(A). The largest and
smallest elements in @(A) will be denoted by 14 and w, respectively. If X ¢ A then
@A(X) denotes the smallest congruence on A = (4;£2) identifying all elements in X. If
it is clear from the context which operations are considered we will also just write
@A(X) instead of @A(X). A quotient in @(@) or of A is any pair (&,f8) of distinct

elements in @(A) such that < B. If B even covers ¢ then (¢,f) is called a prime
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2. Notation

quotient in G(A) or of A. For any congruence o € I({A;£2)) and every x € A the

expression [x]o denotes the set {y e A|xoy}.

d;;, will denote the Kronecker symbol, i.e. §;,= 0if i # k and d;, = 1if i = k. Moreover
Z will denote the set of all integers and N the set of all non-negative integers (inclu-
ding 0). In some of the calculations in this thesis, it will be obvious that the values of
certain expressions do not influence the final result. If these expressions are also com-

plicated or lengthy, we will replace them by the symbol ‘?°.
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3. Universal Algebraic Concepts

3.1. The Commutator

In 1976 Jonathan Smith’s book on Mal’cev varieties was published. In this book Smith
generalized the group theoretic concept of the commutator to the theory of Mal’cev
varieties, i.e. varieties that have permutable congruences. With this concept he aiéo
generalized such notions as the ‘centre’ of an algebra, ‘nilpotence’ and ‘centralizer’. A
short time later Joachim Hagemann and Christian Herrmann extended the theory of
the commutator to modular varieties. In (Gumm 1980) Heinz Peter Gumm presented
an elegant introduction into the commutator theory, which is especially nice since it
motivates the commutator geometrically. The definition in this paper will follow along
the introduction in (Gumm 1980). A more complete introduction into commutator
theory can be found in (Freese and McKenzie 1987). (A 1981 preprint of this book is

known as ‘the commutator, an overview'.)

DEFINITION 3.1.1 Let ¥ be any congruence modular variety and let
Ae Y. Let a and 8 be congruences on A.

Then the congruence @a( {((x,x),(,¥) | xBy}) is denoted by A% and
[e,B] = {(b,c)|(b,b) A‘?x (b,c)) is called the commutator of o and S.

THEOREM 3.1.2 Let ¥ be any congruence modular variety and let

A e ¥ Let a and B be congruences on A. Properties of the congruence

Aﬁ are:

(1) @) AP (cd) = (afb & cod & dPb & bou)
2) @Al ey = Ga)al @e

(3) afp = (aa)Ab @b

ANDREAS GUELZOW -6 - UNIVERSITY OF MANITOBA



3. Universal Algebraic Concepts

THEOREM 3.1.4 Let ¥ be any congruence modular variety and let
A e ¥. Let o and B be congruences on A. Properties of the commutator
[o.B] are:

(1) [e,B] is acongruence on A.

(2) [a,f] £ onf

() loufl = (oy)] ) A 00))

(4)  lofl = ()32 (@0) A% @)

(5)  loufl = ()32 (2 A, 0.2)))

(6)  [ofl = ()32 (@2) Ay )

(7) [a.f8] = [B.a]

(8) y<a= [Pl <[e,fl for all congruences yon A.

THEOREM 3.1.5 Let 8 be any congruence modular variety and let
AR e Y. Let and B be congruences on A and let ¢:A—> 8 be a surjec-
tive homomorphism. Then ¢([or,B]) < [¢(c0),¢(B)].

The inequality in theorem 3.1.5 can be sharpened to an equality if the kernel of the

homomorphism is known:

THEOREM 3.1.6 Let ¥ be any congruence modular variety and let
ABe ¥ Let cand B be congruences on A and let ¢:A—» B be a surjec-

tive homomorphism with kernel ker¢. Then:

¢ Blvkerg) = [p(avkerg),¢(Bv kerg)]

COROLLARY 3.1.7 Let ¥ be any congruence modular variety and let

AR e ¥ Let o,8 and ybe congruences on A such that y< onp.

hen: (1081 3 = [, B
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3. Universal Algebraic Concepts

THEOREM 3.1.8 Let 8 be any congruence modular variety and let
AR e ¥ Let o, and y be congruences on A. Then [, £ yif and only
if [x,(a),yry(ﬁ)] = ma/y , Where Tty is the canonical hémamorphism
from A onto 3/7 .

A very useful (and well known) syntactical description of the commutator is given by

the term condition:

THEOREM 3.1.9 Let ¥ be any congruence modular variety and let
Ae M. Ler ¢ and B be congruences on A. Then [,f] is the smallest
congruence on A such that for all terms 'r(xo,xl,...,xn), (x,y) e B and
(@y,b1),...,(a,,b,) € o we have:

X,aq,..05a,) [0LJ] TX,by,..00,) = W3.aq,....a,) [068] TY.by,....b,)

The proofs of these theorems have been omitted since, with the exception of 3.1.6 and
-3.1.7, they can be found in (Gumm 1980) or (Gumm 1983). A proof for theorem 3.1.6 is

contained in (Freese and McKenzie 1987).

3.2. Nilpotence

In group theory non-commutative groups can be classified by “how far they are from
being commutative (abelian)” usihg the notion of nilpotence. As mentioned above,
Smith (1976), Gumm (1980), etc. have also generalized this group theoretic notion of

nilpotence:

DEFINITION 3.2.1 Given an algebra (S; £2) in a congruence modular
variety ¥ we define a sequence {¢;};-o ; . . of congruences on (S; £) by:
¢ = L
Pne1 = [Opisl

ANDREAS GUELZOW - 8 - UNIVERSITY OF MANITOBA




3. Universal Algebraic Concepts '

This sequence is called the lower central series of {S; £2). If ¢, = ®g and
§,_1 # 0¢ then (S; Q) is said to be nilpotent of class k. The universal
algebraic centre L((S; £2)) of {S; £2) is defined as the largest congruence
¢ on (S; ) such that [¢, 1] = @y .

Let ¥(x) denote the class of all algebras in ¥ that are nilpotent of class & or less, i.e.

Boc¥yc¥sc...c¥.

THEOREM 3.2.2 Let ¥ be any congruence modular variety. Then all

By (k=1)are congruence permutable varieties.

A proof of this theorem may be found in (Gumm 1980). An alternative definition of

nilpotence can be given using the concept of the ‘upper central series’:

DEFINITION 3.2.3 Let ¥ be any congruence modular variety and
(5; Q) € ¥. Then the series {3 <&, <&, <... <& < ... of congruences
on (S; £2) defined by:

a) €= wg and

b) €, is that congruence above §,_; on (S; £2) such that

e, ,=¢((%,.:9)

is called the upper central series of (S; £2).

For Mal’cev varieties Smith (1976) has proven the following theorem. It can similarly
be proven for modular varieties. (This theorem appears to be known, but the author

was unable to find any reference to it.)

THEOREM 3.2.4 Let ¥ be any congruence modular variety and let
{gi}:':(),f,... be the upper central series of {(S; Q) e ¥. Then (S; 2) is

nilpotent of class k if and only if §=1gand §;_; # 1.

ANDREAS GUELZOW -9 — UNIVERSITY OF MANITOBA



3. Universal Algebraic Concepts

In the proof of this theorem we require the following lemma:

LEMMA 3.2.5 Let 8 be any congruence modular variety and let
{gi}i=0,1,... and {¢i}i=0,1,... be the upper and lower central series of
(S; Q) € "ﬁ. If¢] < gl then ¢_]+1 < gt—l and ¢j__1 < §i+1'

Proof of Lemma 3.2.5: Let q)j <&, By definitions 3.2.1 and 3.2.3 &; is the largest
congruence on {S; £2) such that g /e = [{Zq/t:. 1}3/&' 1]' By theorem 3.1.6 this implies:
i-1 1— —

ms/é.'_x B [é%i—i’l%i—l] - ( [gi,lS] Vgi_l )/‘gi—l
Therefore Gii1 2 [&isls] 2 [¢jsls] =041

and moreover [*? = /éi,té/gi] - ([¢ -_1,15]\/ éi)/gi = (‘1’ v ﬁi)/gi = &i/&i = g -

§i+1/¢i,1,5/§i] = W /e,

we get: ¢, ; < €1 - O

Since §;,, is defined as the largest congruence with the property

Proof of Theorem 3.2.4: Let {¢;} i=0.1,... be the lower central series of {(S; £2). It is

then sufficient to show that ¢= W if and only if = 1¢ for all i.

Assume §; = 1¢ . Clearly ¢ < &; . By repeated application of lemma 3.2.5 we get finally
$; <&y = 00 . Therefore ¢; = g . Vice versa, let us assume ¢; = g . Then ¢, < §,

and again by lemma 3.2.5 we get ¢, < §,. Since ¢, = 1¢ this implies §; =15 . L]

Since the upper central series of an algebra 8 has obviously one term more than the
upper central series of 5/%5) (provided 8 is not already of nilpotence class 1) theo-

rem 3.2.4 yields a corollary that will become useful in section 3.4.:

ANDREAS GUELZOW - 10 — UNIVERSITY OF MANITOBA



3. Universal Algebraic Concepts

COROLLARY 3.2.6 Let ¥ be any congruence modular variety and let
E=(S; Q) e ¥ with 3= (8). Then 8 is nilpotent of class k if and only
if ‘S/C(S) is nilpotent of class k1.

As a simple consequence of theorem 3.2.4 and lemma §4= ¢0=IS
3.2.5 we can get the following two corollaries that
describe the relationship between the upper and the
lower central series of a nilpotent algebra in a
congruence modular variety. Figure 1 shows this
relationship in the congruence lattice of such an algebra

of nilpotence class 4.

COROLLARY 3.2.7 Let 8 be any congru-

ence modular variety and let

8 =(S;2) e ¥ be nilpotent of class k.

Let {&;}iz0,1,.. and {{;}i0 ... be the Figure 1
Upper and lower central
upper and lower central series of 8. series of an algebra
of nilpotence class 4.

Then ¢I < gk_ifor a” i=0,1,...,k.

COROLLARY 3.2.8 Let ¥ be any congruence modular variety and let
B=(S5;2) e ¥ be nilpotent of class k> 0. Let {§;};,_o; and
{©;)i=0,1,... be the upper and lower central series of 8. Then ¢;$ &, ; |
Jor all i=0,1,...k—1.

Proof of Corollary 3.2.7: By theorem 3.2.4 §, =15 =¢g , i.e. §; 2 ¢p . The statement

of the corollary follows by repeated application of lemma 3.2.5. O

ANDREAS GUELZOW — 11 - UNIVERSITY OF MANITOBA,



3. Universal Algebraic Concepts

Proof of Corollary 3.2.8: Suppose §, ; ; = ¢g. By repeated application of lemma
3.2.5 we get §;_; 2 ¢; = 15 . This contradicts theorem 3.2.4 since & is of nilpotence

class k. ]

Note that it is not possible to improve these corollaries since it is possible to
construct nilpotent algebras in a modular variety such that each of the following con-

ditions holds for some i in at least one of these algebras:

&i1<9s
Ceoin1V 0;= ;with ¢;#,_;, and
;=8 -

When determining whether certain nilpotent algebras are subdirectly irreducible we

will require the following lemma and its corollary:

LEMMA 3.2.9 Let ¥ be any congruence modular variety and let
£=(S5;0) e ¥ be nilpotent. Let a € Q(8). Then

o0y & on{(B)#o0g.

COROLLARY 3.2.10 Let § be any congruence modular variety and let
5=1(S;0Q) e ¥ be nilpotent. Then § is subdirectly irreducible if and
only if for all C < {ore €(®) | a < L(H)} :

MC=wg = Jae Csuchthat o= wyg.

Lemma 3.2.9 is an exercise in (Freese, McKenzie 1987). We will therefore omit the

proof.

Proof of Corollary 3.2.10: Since an algebra 3 = (5; £2) is called subdirectly irreducible
if for all C c @($) the implication ((MC = wg = Jar e C such that o = wg) holds,

corollary 3.2.10 is an obvious consequence of lemma 3.2.9.
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By corollary 3.2.10, a description of the centre of a given algebra is useful in
determining whether that algebra is subdirectly irreducible. The next theorem will
yield such a description. Before we are able to present it, we have to recall the

definition of a Gumm difference term:

DEFINITION 3.2.11 Let ¥ be any variety. A ternary term d(x,y,z) is
called a Gumm difference term if it satisfies the following two
conditions:

(a) d(x)yz)=y isan identity in ¥.

(b) If(xy)e Be Q(A) for some A € ¥, then d(x,y,y) [6,0] x .

It is well known that every modular variety has a Gumm difference term. Note that in

a permutable variety the Mal’cev term is a Gumm difference term.

THEOREM 3.2.12 Let ¥ be a modular variety and {A,£2) = A ¢ ¥. Let

d(x,y,2) be a Gumm difference term. Then a {(A) b if and only if

(1) fd(ri(ab)r1(b,b),c1)s....d(ry(a,b),r(b,b),cp)) =
d(f(ri(a.b),....,r,(a,b)) fri1(b,b),...,r,(b,b)) f(c))

and

(2)  d(r(a,b),r(b,b),r(b,b)) = r(a,b)

forallfe Q,all ¢ =(cy,....,c,) € A" (n being the arity of ) and all

binary term functions r(x,y),ri(x,y),....r ,(x,y).

A proof of theorem 3.2.12 can be found in (Freese, McKenzie 1987). As mentioned
above, in every permutable variety the Mal’cev polynomial is a Gumm difference term.

Since it always satisfies 3.2.12 (2), we get:

COROLLARY 3.2.13 Let ¥ be a permutable variety with Mal’ cev term
p(xy,z) and let {(A,Q) = A e ¥. Then a{(A) b if and only if
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S(r1(a,b),r1(,b),c),....p(ry(a,b),rp(b,b),c,)) =
p{f(ri(a,b),....r,(a,b)) f(r(b,b),...,r,(b,b)) fe))
Jorallfe Q,all ¢ =(cq,....c,) € A" (n being the arity of f) and all

binary term functions ri(x,y),...,r,(x,y).

3.3. The Vaughan-Lee Description of the Commutator

At the Fourth International Conference on Universal Algebra and Lattice Theory at
- Puebla, Mexico in 1982 M. R. Vaughan-Lee presented a paper on nilpotence in per-
mutable varieties (Vaughan-Lee 1983). In this paper Vaughan-Lee introduces a new
description of the commutator for varieties of unital algebras with permutable weakly

regular congruences.

The results as presented in (Vaughan-Lee 1983) are valid for a variety ¥ satisfying

the following conditions:

(1)  Wis a variety of 2-algebras where (2 is a finite set of finitary operations con-
taining a single nullary operation 0.

(2) ¥ is congruence permutable.

(3) ¥ is weakly congruence regular, i.e. for every {A; £) in ¥ every congruence of
(A; ) is uniquely determined by its O class.

(4)  Every algebra (A; £2) is unital, i.e. {0} is a subalgebra of (4; Q). (This is

equivalent to the requirement that f{0,0,...,0) = 0 is a law in ¥ for all fe Q.)

Examples of varieties satisfying above conditions are: the variety of groups (G; +,—,0)

and the variety of pointed squags (S; +,e).

In group theory the 0-class of the universal algebraic commutator can be described by
the values of the group theoretic commutator term —x—y+x+y. For varieties satisfying

the above conditions (1) to (4) this notion can be generalized as follows:
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DEFINITION 3.3.1A Let ¥ be a variety satisfying above conditions (1)
to (4). A term 'r(xo,xl,...,xn_l) is called a commutator term in ¥ if for
eachie {0,1,...,n-1}:

0 = oy X1, 0 poe Xy )
is a lIaw in ¥. The commutator term XX 50Xy 1) is said to involve n

variables.

(Vaughan-Lee, 1983) mentions that the same results can also be proven without the
requirements that the algebras in ¥ have an equationally defined constant. The proofs
of the generalized theorems are presented in (Freese and McKenzic 1987, ch. 14). In
this case the concept of a commutator or commutator term has to be defined as

follows:

DEFINITION 3.3.1B Let ¥ be a congruence permutable variety. A term
T(XgX 500X p_1-2) is called a commutator term in ¥ if for each
ie {0,1,...,n-1)

z = T(xo,xl,...,xiﬁl,z,xiﬂ,...,xn_l,z)

is a law in 4.

We will present some of the results from (Vaughan-Lee 1983) in the setting of
(Freese and McKenzie 1987). We will omit the proofs that can be found in (Freese
and McKenzie 1987). An important tool is the following generalization of a lemma well

known in group theory:

LEMMA 3.3.2 (HIGMAN’S LEMMA) Let § be a congruence permutable
and nilpotent variety, i.e. a variety such that every algebra A =(A,£2) in
¥ is nilpotent. Let T = (F,2) be the free algebra in B with generators

Z,X(:X1,... and for every set Sc N ler 5S:§—>Ef be the endomorphism

defined by:
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fxi ifieS

SS(xi) = \Z ifieS and 68(2) =z

Let ©(xgiXq,...X,) and 0(xy.X1,...,X,,) be arbitrary terms in . Then

there is a finite set C of commutator terms such that for all S < N:

(1)  the identity 8¢(7) = 85(0) together with the identities of ¥
implies the law: 8g(a(xp,x1,....Xp2)) =z for all w e C, and

(2)  the pair (63('5),83(6)) is contained in the congruence generated
by {(SS[GJ{xO,xl,...,xk,z)),z” we C} in the free algebra ¥ = (F,82)

in @ with generators z, Xy, Xy,

Higmann’s Lemma in (Freese and McKenzie 1987) is formulated only for S = &, but
the proof itself shows above formulation, which is essentially the same as in
(Vaughan-Lee 1983). Using Higmann’s Lemma in this stronger formulation we can
show that definition 3.3.1 is appropriate, i.e. these commutator terms describe the

universal algebraic commutator:

THEOREM 3.3.3 Let ¥ be a congruence permutable and nilpotent
variety. Let A = (A; Q) be an algebra in 8. Let ¢ and \ be congruences
on A. Then [¢,v] =
®A({(z,1:(x0,x1,...,xn_l,z))] e R(Y) & xgfz & x Wz & X X1, X, _1,2€ A)})
where TROY) denotes the set of all commutator terms of 8 involving at

least the three variables xy , x; and z.
To prove this theorem we require a lemma from (Freese and McKenzie 1987):

LEMMA 3.3.4 Let A = {4; ) be a nilpotent algebra of class k in a con-
gruence permutable variety 8 with lower central series {¢;};.01 . . Let
p(x,y,2) be the Mal cev polynomial for this variety and let [, (xy.2) be a

term defined recursively by:
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folxy.z) =y and
fpr1xy:z) = p{y,p(y,x,p(fn(x,y,Z),y,Z)),fn(x,y,Z))
Then for all n and all x,y,b,c € A we have:

(1) Hokbe)be)y ¢, x and
(2) p(fOb.c)bie) ¢,

and therefore

(3) HeGxbe)be) = x and
(4) p(f0.b.chb.e)y =y

Proof of theorem 3.3.3 This proof follows closely along the line of the corresponding
proof in (Vaughan-Lee 1983). We will abbreviate:

O= @a(((z,z'(xo,xl,. . .,xn_l,z))] e RM¥) & xpfz & x ¥z & xg.x15.. 00X, 1,2€ A)})
First we will show that © < [¢,y] , i.e. z [¢, ] Wxg.x1,....%,_102) forall e B &

Xopz & x yz.

Obviously 7(z,z,x5...,X,_1,2) =2 [¢,¥] z = 7(z.xy,....x,_1,2). Since (z,xp) € ¢ and
(z,xl), (izxz),..., (xn,xn) € W we may conclude by theorem 3.1.9 :
| 2= (g2t p2) [GW] TG poeresEy_17)

ie. © <[¢, vl

Now suppose 7(Xy,Xy,....X,) is any term, (c,d) € ¥ and (ay,0,),...,(a,,b,) € ¢ such
that 7(c,a;,...,a,) © 1(c,by,...,b,). We will show that d.ay,....a,) © Wd,by,....b,)

since this implies & 2 [¢,y].

Since A is in a nilpotent variety it is nilpotent of class k£ for some positive integer £.
Let p(xy.x;,x,) be the Mal’cev polynomial in ¥ and f}(xg.x1,%y) the polynomial defined

in lemma 3.3.4.

I

Then fi(z,6,2) c since z plc,c,2) and

d with U pld,c,z).

fk(lu'!caz)
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Note that M =pld,cz) y plc,c,z) =z

Similarly we get forall i = 1,2,...:

fk(z,ai,z) = q; since z

; playa;z) and

Il

fk(vi,ai,Z) = bl with Vi

p(b,-,ai,z) and
v; =p(npa,z) ¢ playa;z) =z
Now define with s = (54,...,5,) and t = (ty5--.st,,) the term function k'

K8ty lpep) = f(fk(’ s 1) S 1t 1ota0)s - *fk(sn’tn’tn+2))

Then we,dyse-q,) = K(2,2,3,0,2)
we,bp,..0b,) = K(z,v,a,6,2)
T(d,al,...,an) = x(u,z,a,c,z)
od,bys...,b,) = K(u,v,a,c,2)

where v = (v,...,v,),a= (@y,...,a,;) and z=(z,...,z) with:
U yzand v ¢ z componentwise.
Consider the two terms K(xg,(x1,...3%,)s(X,, 150+ Xy )Xo 4 102) and A(xg,... X9, 1,2) =
P22, (X e X ) X2 4 17D KK X)) G 1+ K ) Hop 41525
KOO, 1o+ ) X2 152):
By Higmann’s Lemma (Theorem 3.3.2), there exists a finite set C of commutator
terms such that in the free algebra in ¥ with generators z,xy,x;,... the pair
(Z,(xo,...,xzn,rl,z),x(xo,(xl,...,xn),(xn+1,...,x2n),x2n+1,z)) is contained in the congruence
generated by {(SS(a)(xo,xl,...,xk,z)),z)lcoe C}. Since i yz and v; ¢z and since
O= @A({(z,f(xo,xl,...,xn_l,z))l e B(¥) & xpuz & x,0z & xpxy,...0%,, 1.2 A)})
we know therefore that in A : A(,v....,v,ay,...,a,,¢,2) © K(W,v,a,c,2) , ie.
p(kx(z,z,a,c,z),x(z,v,a,c,2),k(,z,a,c,z)) O k(l,v,a,c,2)
therefore  p(7(c.ay,...,a,),%C.by,....0,),Ud.ayq,....a,)) © Wd,by,....b,) .
Since we have assumed that 7(c,a,...,a,) © ©c,by,...,b,) we get immediately:
Wd,a e sd,) @ Udbyy. b))
and therefore & = [¢,y]. We have shown that & = [¢,y]. O
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While (Vaughan-Lee 1983) and (Freese and McKenzie 1987) use this description of
the commutator to show that certain algebras are finitely based we will use it in a

different context,

34. Representing Nilpotent Algebras

In (Freese and McKenzie 1987) a description of the structure of an algebra over its
centre is given. By induction, this will allow us to describe the basic structure of any
nilpotent algebra in a modular variety, especially in those varieties in which the struc-
ture of the algebras of nilpotence class 1 is well known. To present this description we

have first to discuss the concept of an associated group:

DEFINITION 3.4.1 Let ¥ be a modular variety and let Ae ¥. A=(4;Q)
is called abelian if and only if [14,14] = Wy, i.e. if and only if A is

nilpotent of class 1.

DEFINITION 3.4.2 Let A = (A;£2) be any algebra (not necessarily in a
modular variety). A is called affine if and only if there exists an abelian
group {A;+,—) = A’ and a ternary term function ®x,y,z) of A such that

(1) 7(x,y,2) = x-y+z forallx)y,ze A and
(2) {Cx,y,z,u) | x +y =z + u} is a subalgebra of At

If this abelian group exists it is called the group associated with A and

the term function 7 is called a difference function for A.

In a modular variety these two concepts coincide. This has been proven first by
Christian Herrmann in (Herrmann 1979). Proofs of this difficult theorem can also be

found in (Taylor 1982) and (Gumm 1980):
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THEOREM 3.4.3 In a modular variety, every abelian algebra is affine,

and conversely .

The next definition yields the construction used in (Freese and McKenzie 1987) to

describe an algebra over its centre:

DEFINITION 3.4.4 Let @ = (Q;F':ie ) and B = (B;F':ic I) be algebras in
the modular variety ¥. Let @ be abelian with associated group {(Q;+,-,0).
Suppose for each i € 1 we are given a map Ti:B"(D—-:»Q where n(i) is the
arity of F ! Let T denote the system of such maps (7;:ie I). Then
A =BOT® is defined to be the algebra { BXQ :F: i € I with:
FH(B1.01)se @)} = F (b1 by F@ e sdy) + Tilbsee b))
where b, € B, q, € Q for all k and each F' is evaluated in the appropri-

ate algebra.

In (Freese and McKenzie 1987) B and Q are exchanged. The author of this paper has
chosen to use this version to be consistent with certain representation theorems pre-
sented in (Klossek 1975) which will be discussed below. Obviously, the algebra
defined in 3.4.4 need not belong to the variety ¥. But in (Freese and McKenzie 1987)
this construction has been used to describe the structure of the non-abelian algebras

in a congruence modular variety .

THEOREM 3.4.5 Let A € 4§, where ¥ is a congruence modular variety.
Let E=Zyc(3). Then there exists an abelian algebra @ e 8 and a
system T of maps as described above such that A= ®T® and the

centre of B ® 1@ is the kernel of the projection onto B.

It is clear that the projection onto 8 is always a homomorphism. A relatively simple

corollary to this theorem is:
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COROLLARY 3.4.6 An algebra in a congruence modular variety is nilpo-
tent of class 2 or less if and only if it can be represented as (i.e. is iso-

morphic to) (@1®T®2 where ®, and @, are abelian algebras in 8.

By induction over the class of nilpotence (using corollary 3.2.6), one implication of this
corollary can easily be extended. The proof of the second implication of Corollary 3.4.6

seems to require the knowledge that &, is also abelian. We can therefore write:

COROLLARY 3.4.7 If an algebra A = (A;F el Y in a congruence modu-

lar variety is nilpotent of class n then it is isomorphic to:
[{esmef e} jre)

where @1, ®2,....@, are abelian algebras in ¥ and TI T2, . T" ! gre

some appropriate systems of maps as described in 3.4.4. Moreover, if

0y=80S&; <& ... <&, =1, is the upper central series of A then for

any ke {0,...,n} §,_; corresponds to the kernel of the projection onto

[-fesmelra) )

We will see in a later chapter that although this representation doesn’t appear to
provide much information on the structure of an arbitrary nilpotent algebra in a congru-
ence modular variety, for certain varieties it yields valuable information, especially if
the structure of the abelian algebras is easy to describe — as for groups, squags and

SQS-skeins.
2 -1 :
It is easy to see that the algebra (( . -{((@1®T1®2)®T ®3)- . -)®Tn (@n) can also be given

n
as <H Qk;F’:ieI> with

k=1
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; .
F ((q1,1’q1'2s- . °sq1’n):- --s(qm’]_:qm,zs-'-,qm'n)) =

i
(Fl(qi,l" .

i
Fi(qy 0

i
FB(ql.3,--

i
\Fn(q]_’ns' .

'!q";,l)’
1
) + T (@11, 1
2
-,qm,3) + T, ((41’1,(11,2),-- -,(qm,l,qm,z)),

-n-l
-sqm'n) + -T; ((q]'ls‘ "!ql'n_l)" --s(qm,ls'- 'sqm,n._]))

if F* is m-ary and ka is F* evaluated in @ = <Qk ;Fi:iel>.
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-4, Co-ordinatizations of Steiner Systems

Two of the main examples in this paper are the classes of nilpotent squags and
nilpotent SQS-skeins. Since squags and SQS-skeins arise from the co-ordinatization
of certain Steiner systems a short review of this topic shall be given. A good survey of
- different algebras corresponding to Steiner systems can be found in (Ganter and

Werner 1980).

A Steiner system of type (¢,k) is a pair (P,B) of finite sets, where B is a set of £
element subsets of P such that every s-element subset of P is contained in exactly one
element of B. While the elements of P are usually called points, the elements of B are
called blocks (or lines). A Steiner system of type (2,3) is also called a Steiner triple

system (STS) and a Steiner system of type (3,4) is called a Steiner quadruple system

(5QS).

Steiner triple systems can be represented using one of three types of algebras: near
boolean algebras, sloops or squags. The first method of co-ordinatizing is due to R. W.
Quackenbush, the remaining two to R. H. Bruck. Steiner quadruple systems are

usually represented by SQS-skeins. This concept is due to T. Evans.

4.1. Near Boolean Algebras

Let (P,B) be a Steiner triple system. Let P’ be a set disjoint from P such that
IPl = IP’l. Let 0 and 1 be two symbols neither in P nor in P’. Let ": P—P’ be a bijection
and 0 =PUP’U{0,1}. On Q let us define two binary operations A and v in such a
way that for every block b in B the algebra (hub’U {0,1}; A,v,”,0,1) is a boolean alge-
bra where b’= {x’| x € b}. Note that this is possible since each pair of elements

x,y € P,x#yis in exactly one block b € B. It is clear that the algebra (Q; A,v,,0,1) is
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a near boolean algebra, i.e. an algebra satisfying all equations in two variables that

are satisfied in all boolean algebras.

Vice versa, let {Q; A,v,’,0,1) be a finite near boolean algebra and P < Q\{0,1} such that
PUP’ =Q\[0,1} and PP’ = where P’ = [p’lpe P}.Ifx,ye P,x#Yy then {{x,y}) -
denotes the subalgebra of (Q; A,v,”,0,1) generated by x and y. {{x,y}) is a boolean
algebra, therefore {{x,y}) N P\{x,y} contains either exactly one element (that we will
call z) or a unique element z that is the join of two atoms of {{x,y}). Then let B be
defined as: B = {(x,y,z} |x,y € P,x #y, z chosen as described above). It can be shown

that (P,B) is a Steiner triple system.

42, Sloops

Steiner triple systems can also be co-ordinatized by sloops. A sloop (or Steiner loop)
is a commutative loop satisfying the equation x  (x » y) = y. Let (P,B) be again a
Steiner triple system. Let ¢ be a symbol not contained in P. Let § = PU{e}. The

binary operation * be defined on § by:

X*x = e, ece=¢
X*e = X = e°*Xx
x+y = the third point on the block through x and y

for all x,y € P, x # . It is easy to see that the resulting algebra (S; +,e) is a sloop.

Conversely, given a sloop (S; *,e) we can define:

P =5\{e} and

B = {{x,yxylx.ye S\(e},x=y}

Then (P,B) is a Steiner triple system.
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43. Squags

In this thesis we will be mainly interested in the co-ordinatization of Steiner triple
systems by squags. Given a Steiner triple (P,B) system we can define a binary opera-
tion - on the set of points as follows:

X-x = X,

Xy the third point on the block through x and y
for all x,y € P, x #y. The resulting groupoid is called a squag. The (equational) class

of all squags is defined by the equations:

XX = pe
Xy = Yy-x 4.3.1)
x-(x-y) =y

Conversely, given a finite squag (S; ), i.e. a groupoid satisfying the equations (4.3.1),
_we can construct a Steiner Triple System by taking the elements of S as points and the
sets {x,y, (x-y)) withx=#yandx,ye S as blocks. Therefore squags correspond

exactly to Steiner triple systems.

In 1960 M. Hall, Jr. investigated which Steiner triple systems are transitive on tri-
angles. In (Hall 1960) he.showed that there are exactly two classes of such Steiner
triple systems. The first class consists of all systems whose subplanes (i.e. sub-
designs generated by a triangle) are the projective plane of order 2. He showed that
these are exactly the projective geometries err GF(2). The second class is the class
of all Steiner triple systems whose subplanes are the affine (9-element) plane over
GF(3) (See figure 2). This class obviously contains all affine geometries over GF(3).
But contrary to the first case there are also non-affine Steiner triple systems belonging
to this class. As M. Hall, Jr. has proven, the smallest non-affine Steiner triple system

whose subplanes are affine planes over GF(3) has 81 elements. This system is
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unique and we will refer to it and to the corresponding squag as Hg; and HALLg;

respectively. Every Steiner triple systems in this second class (whether affine or not)

will be called Hall triple system (HTS), although some authors use this name for the

‘non-affine systems only. It can be shown that the squags associated with Hall triple

systems are exactly the (self-) distributive squags, i.e. those groupoids satisfying the

following four equations:
X-x
x-y
X-x-y)
x-(y-2)

X

y-x

y
(x-y)-(x-2)

4.3.2)

(Distributive squags are also called commutative reflection spaces (kommutative

Spiegelungsriume), e.g. by Loos and Klossek, or symmetric distributive quasigroups,

e.g. by Deza.) Conversely, the Steiner triple system corresponding to a given finite

distributive squag is also
always a Hall triple sys-

fem,

It is easy to verify that
these distributive squags
are functionally equivalent
to commutative Moufang
loops of exponent 3. In
(Bruck 1971) Bruck pre-
sents an extended theory
for commutative Moufang

loops of exponent 3, which

was first translated into

N\
N
S

S

AV
\_/

Figure 2:

Affine plane over GF(3)
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4, Co-ordinatizations

the language of distributive squags and then expanded by Klossek in (Klossek 1975).

Some results of this paper will be presented in the next chapter.

44. SQS-Skeins

Let (P,B) be a Steiner quadruple system, i.e. a Steiner system of type (3,4). Then we

can define on P a ternary operation g by

glxx,y) =y

gxy.x) =y

g(yx,x) = y and

g{x,y,z) = 4th point on the block through x,y and z

forallx#y#z#xin P,
The algebras {P; g) obtained in this way are called SQS-skeins. The class of all SQS-

skeins is defined by the equations:

qgxx,y) =y
gxyz) = qx.z.y) (4.4.1)
gix.y.z) = qOxz) and

qx.y.qx.y,2)) = z

Conversely, given any SQS-skein {P; g) i.e. any algebra of type (3) satisfying the
equations (4.4.1) we can define a set B of blocks on P by:
B ={{x,y,2,q(x.y,2) )|x.y.z€ P, xy #z #x)

It is straightforward to verify that (P,B) is indeed a Steiner quadruple system.

In chapter 7 we will take a closer look at nilpotent SQS-skeins.
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5.1. Basic Properties

It is well known—and was first proven in (Ganter, Werner 1975 A)—that the class of
all squags is a congruence uniform, regular, coherent, permutable and modular variety,
i.e. all congruence classes of the same congruence are of identical size, each con-
gruence class determines the congruence uniquely, each subalgebra that contains a
congruence class of a congruence is the union of congruence classes_ of this congru-
ence, etc. Moreover, every congruence class is a subalgebra, but there may be subal-
gebras which are not 'congruence classes for any congruence (i.e. this variety is not

hamiltonian).

52. Medial Squags

In (Hall 1960) M. Hall, Jr. has shown that the affine Hall triple systems (i.e. Hall
triple systems that are affine spaces over GF(3)) are those Hall triple systems which
are transitive on 4-tuples of non-planar points. As a consequence the (distributive)
squags corresponding to affine Hall triple systems are exactly those satisfying the
medial or surcommutative law:

x-y)-z-w) = @-2) - u (5.2.1)

Note that the medial law implies the distributive law, by choosing x = y.

As mentioned above, the smallest non-affine Hall triple system is Hg;. Therefore it
corresponds to the smallest distributive squag violating (5.2.1). This algebra was first
discussed by G. Bol in (Bol 1973). It can be given as follows: HALLg; = (V;*) where
V=(GF(3))*and « is defined by
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- if1%4
(xey)= fori=1,...4

—x4—y4+(x1 ‘3’1)

It can easily be checked that this structure is a distributive squag and that the medial
law (5.3.1) is not satisfied for x = (0,0,0,0), y =(0,1,0,1), z =(1,1,0,1), and
u=(10,1,0).

5.3. The Squag Commutator for Distributive Squags

In group theory nilpotence refers to the commutative law: groups that are nilpotent of
class 1 are commutative, etc. In the theory of distributive squags nilpotence refers to
the medial law instead of the commutative law. Let 8 = {S;-) be a distributive squag
and e € S. Then define fq(a,b,c) to be the polynomial:

felabe) = ({(e-a)-(b-ch)-(((e-c)-(b-a))-e) _ (8.3.1)

If e, a ,b and ¢ generate a medial subﬂgebra of 8 then clearly fe(a,b,c) = e. If at least
two of the four variables are identical the generated subalgebra must be contained in a
plane, i.e. it is medial and fo(a,b,c) = e holds. If A=(A;), B = (B;:) and € = (C;-) are
‘normal subalgebras of %, i.e. subalgebras which are congruence classes of some con-
gruences (possibly of a different congruence for each of A, B, and (), and e € ANBNC
then f(A,B,4) denotes the subalgebra generated by {fe(a.b,c)| ac A & beB & ceC}.
It can be shown that f,(A,B,8) is even a normal subalgebra. Similar to the original de-
finition of the commutator in the theory of groups, the squag theoretic commutator of
two normal subalgebras A and B of 8 = (S;-) that contain a common element e
(corresponding to the constant 0 in groups) can be defined as the (normal) subalgei)ra

{f.(A.8.8);-). For congruences we can therefore define:
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DEFINITION 5.3.2 Let 8 =(S;-) be a distributive squag and e € S. Let
o and JB be congruences on 8. Then the squag theoretic commutator of «

and 8 will be denoted as [¢,8]S and is defined as
[a,B) = @5({(e,fe(a,b,c))|aae &beS& bﬁe}].

It is clear that this squag theoretic commutator is a congruence. It is presently not
known whether this squag theoretic commutator coincides with the universal algebraic

one, but the author has proven in (Giilzow 1983):

THEOREM 5.3.3 Let § = (S;') be a distributive squag. Let o. and B be

any congruences on 8. Then

[@f] 2 [eflS and [fl = [BIS

This theorem is also a consequence of the Vaughan-Lee description of the commuta-
tor. Using this concept of a commutator the notion of nilpotence can be defined as

Lefore:

DEFINITION 5.3.4 Let 8 = (S;:) be any distributive squag. Then define:
Fo = B
Fntl = fe(Bn.5.H)
with 8,={Sp:"). If S}, = {e} and S;_1 # {¢} then S is said to be of nilpo-
tence class k. Moreover, we will consider the trivial (i.e. 1-element)

squag {{e};} to be of nilpotence class 1.

Theorem 5.3.3 clearly ensures that this concept of nilpotence coincides with the uni-

“versal algebraic concept as defined in 3.2.1.

Using 5.3.4 and 5.3.1 one can easily verify that the distributive squags of nilpotence
class 1 are exactly those satisfying the medial law 5.3.1, i.e those squags correspond-

ing to the affine spaces over GF(3).
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DEFINITION 5.3.5 The (squag theoretic) centre (%) of the distribu-
tive squag B = (S;+) is defined to be the congruence generated by:

{(e,x) € Sz|fe(x,b,c)=e forall be S & ce S}
which is equal to:

{(e,x)eSz| (e:x)-(b-c)=(e-c)-(b-x)forall be S & ce S}

It is easy to see that {(&) 2 {'(8). A short proof verifies {(&) < {'($). We have

therefore:

THEOREM 5.3.6 The universal algebraic centre of a distributive squag

and its squag theoretical centre coincide.

In the variety of distributive squags the centre also allows us to recognize whether a

given distributive squag is subdirectly irreducible:

THEOREM 5.3.7 Let 3 =(S;') be a distributive squag and let e € S. Then
[e1C($)| =3 if and only if § is subdirectly irreducible.

A proof of this theorem can be found in (Klossek 1975, 4.4). We will prove a general-
ization of theorem 5.3.7 in section 5.6. Another important congruence related to the

concept of nilpotence is:

DEFINITION 5.3.8 The Frattini congruence H(8) of the squag % is

defined as the intersection of all maximal congruence relations of 8.

In (Soublin 1971) J. P. Soublin has proven that for a distributive squag %, #(8) is the
smallest congruence ¢ such that 5/,}, is of nilpotence class 1. Therefore every simple
distributive squag is medial. This implies that the 3-element distributive squag is the
only simple distributive squag and, as a consequence, it is also the only simple

nilpotent squag.
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54. The Theorem of Bruck and Slaby

In (Bruck 1971) Bruck presents the generalization of a theorem previously proven by
T. Slaby that—translated into the theory of distributive squags—gives a relationship

between the numbers of generators of a distributive squag and its class of nilpotence:

THEOREM 5.4.1 An n-generated distributive squag is of nilpotence

class at most n-2.

The lengthy proof of this theorem can be found in (Bruck 1971). It relies heavily on the
structure of the commutator polynomial (5.3.1). Note that this theorem implies that
every finitely generated distributive squag is nilpotent, i.e. every finite distributive

squag is nilpotent. An arbitrary infinite distributive squag may or may not be nilpotent.

L. Bénéteau has shown in (Bénéteau 1980 A) that the above limit is the best

possible:

THEOREM 5.4.2 For n 2 3, the free n-generated distributive squag is of

nilpotence class n-2.

While it was the original goal of the research leading to this thesis to generalize
theorem 5.4.1 and possibly 5.4.2 we were unable to succeed. In fact a result that we
obtained for nilpotent SQS-skeins shows that they cannot be generalized for all E-

minimal algebras of affine type.

5.5. Free Distributive Squags
In (Bruck 1971) the following important result has been proven:
THEOREM 5.5.1 Let 8 = (S;+) be a finitely generated distributive squag.

Then S is finite and moreover |S|= 3™ for some integer m.
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COROLLARY 5.5.2 The variety of distributive squags is locally finite.

Let N denote the class of all distributive squags. We will now consider the class N of
all distributive squags of nilpotence class at most k. It is known from universal algebra
that M and N, are varieties for every k. Therefore in each ; and for every positive
integer n there exists a free n-generated distributive squag By, in ;. Let us denote
the free n-generated distributive squag in X with $,,. By theorem 5.5.1 % , and 8, are
both finite. Since by theorem 5.4.2 8, (with n23) is of nilpotence class n—-2 we know
that 8, = 8 ,forall n>3 and all k2 n-2 .

In general, the size of & , is unknown. Only for very small £ has this size been deter-

mined:
iog3( ﬁl,n )= n—-1 (affine geometries over GF(3))
n—1
logy{|8, |} =n-1+{"5 (Bruck 1971)
logy{|$3 ,|) = n-1+ =1 g g (Bénéteau 1980 A)
AP 3m 3 4 5
_ n—1 n—1 n—1 n—1 n-1 .
log3(|54,nn-—n—1+ 3 +4( . )+14( S }fso( p }+20( ; ) (Smith 1984)

From these formulae we can calculate the size of the free distributive squags in N:

1811 =30, |8,| =31, |83] = 32, |84l = 3¢, | 85| = 312 and | = 3%.

5.6. Nilpotent Squags

In section 5.4 we have seen that every distributive squag is nilpotent. This raises the
question whether there are any non-distributive squags that are also nilpotent. Before

we will answer this question positively by providing an example, we need to charac-
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terize the centre of a squag—the characterization given in 5.3.5 and 5.3.6 is only valid

for distributive squags—and the squags that are of nilpotence class 1.

LEMMA 5.6.1 Let 3 =(S;) be a squag. Then a {(8) b if and only if for
all c,d € S the following five identities hold:

a) c-d = ((((a-c)-b)((a-d)-b))-b)a

b) c-d = (((((a-b)-c)-b)-(((a-b)-d)-b))-b)(a-b)
c) ¢-d = ((a-c)-b)-(((a-b)-d)-b)

d) c-d = ((({a-c)-b)-d)-b)-(a-b)

e) ¢-d = (((a-b)-d)-b)-c)-b)a

Proof: The statement of this lemma follows immediately from corollary 3.2.13 if we
observe that the Mal’cev polynomial is given by p(x,y,z) = (x-z)-y and the only binary

term functions are x, y, and x-y. O -

THEOREM 5.6.1 The squag 8 is of nilpotence class 1 if and only if 8 is

medial.

Proof: Since every medial squag is of nilpotence class 1 in the variety of distributive
squags, it is obviously also of nilpotence class 1 in the variety of all squags. Suppose
8 =(S;) is of nilpotence class 1. Tﬁen [1g.15] = g . Let T(xy,xp,%3,%4,%5) be the term
function given by:
T(xy.X2.X3.X4.X5) = (xp-((x1-x3) (xg-x5)))-((x1-x4) (x3-X5))

By theorem 3.1.9 the following implication holds for all x,y,a,,a5,a3.44,01,b7,b3,b4 € S:

T(x,a1,09,a3,84) = Tx,by,b2.03,04) =  1(y.a1,42,a3.a4) = T(¥,b1,b2,b3,b4).
Let a,b,c,d,e be some arbitrary elements in S. Letx =cd, a; = by =by =b3 =by =,
y=a,a,=b, az =c, and a4 = d. Then this implication becomes

t(cdeb,cd) = t(cdeeee) = taebced =1aeeee).
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Since 1(c-d,e,e.e.e) = (e-(((c-d)-e)-(e-e)))-(((c-d)-e)-(e-e)) = (e-(c-d))(c-d) = e and
(c-d.e,b,c,d) = (e:(((c:d)-b)-(c-d)))(((c:d)-c)-(b-d)) = (e-b)-(d:(b-d)) = (e:b)b = ¢,
the left hand side of the latter implication is always true and we have

(e-((a-b)(c-d)))-((a-c)(b-d)) = ©a,eb,c,d) =T(a.eeee)=e,

therefore e-((a-b)(c:d)) = e-((a-c)(b-d)
and finally (a-b)-(c-d) = (a-c)(b-d).
Since this equations holds for all a,b,c,d € S the squag 8 = (S;) is medial. O

We will now show that there are indeed non-distributive, but nilpotent squags by con-
structing a 27-element example. Let S = GF(3)3 and let - be a binary operation on §
defined by:

1=

*11 [
Xy 1= =Xy —¥;

X3/ V3
~x3~y3 + 3%~ 1)(3’12 - 1xp =)

It is immediately clear that (S;-) satisfies the identities x-x = x and x-y = y-x. Let us

consider the identity x-(x-y) = y. Obviously (x-(x-)); =y; foralli e {1,2}. If x; # 0,
ie. x12 = 1, then it is also clear that (x-(x-y))3 = y3 . Therefore assume x; = 0. Then

we have:

]

—x3 = eyl + (= )xy)® - 1)y - v
112 =1y = o) = (312 - 1)(xy — (=xp—,)

y3 + (y12“1 (= 3o (312 = 1]{xy3,f

(x-(x¥))3

=y3+

(S;+) is therefore a squag. It is not distributive since:

M HENEH
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S HIH L HEH Rt

It remains to be verified that {S;-) is nilpotent. Let 7, be the projection onto the first
two components. It is clear that the image of 75 is a medial squag, by theorem 5.6.2 it
is therefore nilpotent of class 1. If we can show that {({(S;-)) 2 ker(n), then {(S;-) is
nilpotent of class at most 2.

w1 0 w1 0
Suppose wy |ell 0 (|73 then wy |=| 0

w3 0 w3 w3

Using lemma 5.6.1 it is straightforward to verify, that in fact

0 0
0 (e [( 0 )}C((S;-»-

Since the variety of squags is regular, this implies ker(m,) < {({S;-)). Since {S;-} is not
distributive, it cannot be medial; by theorem 5.6.2 it is therefore not of nilpotence class
1. {S;) is a non-distributive squag of nilpotence class 2. In the remainder of this thesis,

we will call this squag Asy .

57. Some Representation Theorems

In (Klossek 1975) two representation theorems for distributive squags are presented.
Applying a theorem from (Freese and McKenzie 1987) we can find two further repre-
sentation theorems, that are even valid for all nilpotent squags. Moreover, these theo-
rems will answer an open question from (Klossek 1975). We will first present—

without proof—the two theorems of (Klossek 1975):

FIRST REPRESENTATION THEOREM 5.7.1 Let 8 = (S;-) be a finite dis-

tributive squag generated by A = {ay,a,,...,a,} and not by any proper
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subset of A. Then there exists an m-dimensional vector space V

(m 2 n-1) and 2m-ary polynomials py(xy,....X, Y1, ¥p) for nSis<m

over GF(3) without constant term such that

1} Every monomial of every p; contains elements of both sets
{x15x,} and {yq,...5,,}-

2) 8 is isomorphic to 8 = (V;0) where
—X; —¥; ifl<i<n
(xBy); = {—xi—yi+pi(x,y) ifn<i<m
3) F(8) (the Frarini congruence) is the kernel of the projection
onto the first n-1 components. This projection is a homomor-
phism.
4) The isomorphism ¢ : 8 — ¥ can be chosen such that for all i

with 1 i<t §(a;) = e;_y where (e;), =0y for k=1,...,m.

SECOND REPRESENTATION THEOREM 5.7.2 Let 8 =(S;-) be a finite

distributive squag generated by A = {ay,a,,...,a,} and not by any proper

subset of A. Let |{a1}c(,%)| =3" and {(8) < F(8). Then there exists an

m-dimensional vector space V (m 2 n—1) and 2m-ary polynomials

DiX1seeesX ¥ 1ser ¥ ) for n i< m over GF(3) without constant term

such that

1) Every monomial of every p; contains elements of both sets
{x1s.0x,) and {y4,...yp}.

2) For n <1< m — rthe polynomial p; (x1,....X,,¥15--+:¥,,) does not
depend on X, . 1 Xy ARA Yy pitsee Vi

3) 8 is isomorphic to ¥ =(V;0) where
{_xi_y‘. l:f1$l<n

xB0vy), =
B, —X; = ¥; + pi(x.y) fnsism
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4) F(S) is the kernel of the projection onto the first n—1 compo-
nents. This projection is a squag homomorphism.

5) C(8) is the kernel of the projection onto the first m—r compo-
nents, this projection is also a squag homomorphism.

6) The isomorphism ¢ . $ — % can be chosen such that §(a;) = €;_4

for all i with 1 <i < n where (e)), =8y for k=1,....m.

Using corollary 3.4.7, the following representation theorem for arbitrary nilpotent

squags can be proven:

THIRD REPRESENTATION THEOREM 5.7.3 Let $ =(S;:) be a finite
squag of nilpotence class k. Then there exists an m—dimensional vector
space V and polynomials pX{,....X;_1.¥1s--2¥i_1) Jor 1 Sism over
GF(3) without constant term and a sequence 1 <ny <...<ng=m of
integers such that

1) For n<isngy pPix(s..X_1V1se-¥i1) does not depend on x,
and y, for all t with n<t<m.

2) ¥ = (V;0) is isomorphic to B where

(x0y); = XY+ Epe XY Yio1)
forallie{1,...m} withp,=0forallte {1,....,n}).

3) C(¥) corresponds to the kernel of the projection onto the first
ny_1 components of (ViQ), this projection is a squag homomor -
phism.

4) Ifog=§,<§ <& <. <& =1; is the upper central series of
(S;-) then for any j€ {0,1,...,k} the congruence E;j corresponds to
the kernel of the projection onto the first Ry_j components of

(Vo).
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Proof: Ifk =1, 8 corresponds to an affine space over GF(3) and it is straightforward
to verify the statement of the theorem. In this case p; = 0 for all i. Therefore we will

assume that £ > 1.

By corollary 3.4.7 there is a collection of finite squags ®; = (Q1;), @2 = (Q2;).-.,

@y, = (Qp;-) of nilpotence class 1 and maps ! ,T2,.. .,’1‘*’1 such that 8 is isomorphic to:

fIQz‘ e
i=1
with (r{,79....71) B (@1,G0s- - »qp) =

(r1q19(r2q2)+T1 (rl:(h),- . 's(rk'qk).{-j‘k—l((r]_arzs' . -,rk_l)a(qiaqz)- . sqk._i)))

A P
where each 77 (HQ,;) = Qi1

i=1

Since all §; are of nilpotence class 1 they are medial and correspond to affine spaces

over GF(3). Therefore each ®; is isomorphic to <GF(3)’"5;0> for some m;21 with

(ri,...,rmi)'(ql,...,qmi)=(—r1—q1,. . "_rm,-”qm,-)' Now define ny = my, ny=n;_y +m; for all{

=23,....kand m=n;,. Then 1 <ny <...<m.

. “2n. ,
Each T? can then be considered a mapping from GF(3) " 10 GE3) 1. We can fur-
ther define Pryej @S the jth component of T and p=0ifre {1,...,n;}. Since Ppsj is a

2n.
mapping from GF(3) "o GE(3) it can be written as a polynomial over GF(3).

Using these notations, & is isomorphic to = (GF(?:)”k;G) where
(x Dy)l = —xi—yi+pi(x1,...,xns,yl,...,yns) if ns<iSnS+1.
Since 0 = (0,0,...,0); = ((0,0,...,0) & (0,0,...,0)); = -0 -0 +pi(0,...,0) = pi(O,...,O) we

can conclude that none of the polynomials p; has a constant term.

From corollary 3.4.7 we get immediately 3) and 4). O
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Note that, as an immediate consequence of this representation theorem, the size of

every nilpotent squag is a power of 3.

" It is clear that there may be different representations satisfying the conditions of theo-
rem 5.7.3 for any given squag 8. These representations can obviously only differ in the
choice of the polynomials p;, i= 1,...,m. In the following discussion we will denote the
set of all possible families (p;|i=1,...,m) of polynomials satisfying 5.7.3 with T. We
will now show that we can always choose these polynomials such that every mono-

mial of p; must contain at least one of x,x,....%;_ and one of ¥1,¥9,....¥;_1-

LEMMA 5.7.4 The polynomials p; in theorem 5.6.3 can be chosen such

that for alli pxyxg....%;_1,0,0,....00 =0
To prove lemma 5.7.4 we require the following lemma:

LEMNIA 5.7.5 Let V be an m-dimensional vector space over GF(3) and
et (V) be a squag such that |
eyl = XY e XY e YD)
fori=1,...,m where the p{X{,....X;_1:Y1,----Y;_1) are polynomials over
GF(3). Let k be a fixed number in (2,....m} and let P(xy,....x;_1) be

another polynomial in GF(3). Ler ¢ be a binary operation on 'V defined

by:

(x*y); if i<k

(x ey + Plxp,..oxp_ ) + PqsesYpt)
if i=k

+ Pl(x ¢ Y)gsee (X ® y)k._l)

(x ¢ y);=

—X;=Y;+D; xl,...,xk_l,xk—P(xl,...,xk_l),
xk_,_l,...,xi_I,yl,...,yk_l, lf i>k

yk”‘p(yl"'"yk—l)'yk+1""’yi—1)
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and let §:V—V be defined by :
[¢((x1,-..,xm))]‘." \xk'l'P(xl,.,.,xk_l) i_fi:k

Then ¢:(Vie)—»(V; &) is an isomorphism and ¢\ is given by:

1 _[xi if i=k
E “"“"""‘"‘”L‘\xk—P<x1,...,xk_1) i

Moreover, if {V;*) satisfies the conditions 3) and 4) of theorem 5.7.3

then {V; ¢) also satisfies these conditions.

Proof of Lemma 5.7.5: From the definition of ¢ it is immediately clear that ¢ is a bi-
jection and that ¢‘1 is given as described. To prove that ¢ is even an isomorphism, we

will show that for every i (1 <i < m):

[¢(¢_1 ((x13 e ,xm))‘¢—1(0’1, v ,ym)))]l = [(x19~ . "xm) ¢ (yl,- . -,ym)]i (5.7.6)
5.7.6 holds clearly for 1 <i < k. At first we will show 5.7.6 holds fori=k:

(2087 @yt ¢ O y)) ),
= (¢>( (xl’-"’xk — P(xy,.. .,xk_l),...,xm) -(yl,...,yk —P(yl,...,yk_l),...,ym)))k

- (¢(((x SN P x e Vg
X+ Py X 1) Y+ PO esdp) +pk(x1""’xk—l’yl"“’yk~l)"")))k

= —xk'—yk+pk(x1’x2v--sxk_liy],yZ)--'ayk_l) + P(xls--°9xk_1) + P(ylsn-syk_l)
+ P M@ Pgoee X+ ) y)

= ((xl,...,xm)o(yl,...,ym))k

If i > k then we get similarly:
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(200712 0T Oy )) )
- (¢( (310 = P Do i) (oY = PO ¥ Do) ) 1

==X; ~y; + pi(xl,...,xl- = POt X )5 oo XY e oYy = P(yl,...,yk_l),...,yi_l)

= ((xl,...,xm)o (yl,...,ym))i

i.e. 5.7.6 holds for all i € {1,...,m}. Therefore ¢ is an isomorphism.

If (V;+) satisfies the conditions 3) and 4) of theorem 5.7.3 then (V;+) also satisfies
these conditions since ¢ and the projection onto the first j components commute for

every j. (This is immediately clear from the definition of ¢.) (]

Proof of Lemma 5.7.4: Suppose the conditions of lemnﬂa 5.7.3 are satisfied. To prove
this lemma we will first define a concept of an improved family of polynomials and then
show that for every family (p;|i=1,...,m) in T not satisfying the condition
p(xyX9,..%;_1,0,0,...,0) = 0 foralli=1,....m (5.7.7)
we can find an improved family (g;|i=1,...,m) in T. Note that for i = 1 the property

Pix1:X:...x;_1,0,0,...,0) = 0 is always satisfied.

In this proof, the weight of a point x € GF(3)" shall be the number of non-zero coordi-
nates of x. We define a mapping 7:T—NxNxN as follows: Let p = (p;|i=1,...m)e T
be a family of polynomials. If p satisfies 5.7.7 then 7(p) = (m+1,0,0), otherwise ©®p) =
(a,b,c) where a is the smallest number such that

P Xy Xos X, 1,0,0,...,0) = 0 for some (xy,%y,...,X,,) € GF(3)m,
b is the smallest number such that there exists an (xq,x,,...,X,,} € GF(3)m of weight b
with p(x1.%5,...,%,_1,0,0,...,0) # 0, and ¢ is the number of such points of weight 5. On

NxNxN we can define a total ordering < by:
a<o or

(a,b,c) £ (a,B,9) & a=ocandb< f or
a=gandb=Pandc2y
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Via 7 this total ordering < on NXNxN induces a partial ordering <;onTby p <, qif
and only if [ 7(p) < ©(q) and 7(p) # 7(q)] or p = q. We write p <;q and say a family

qe Tis improvedover pe T if p <rqand p #q.

From the definition of 7 it is clear that the families in T that satisfy 5.7.7 are maximal
elements in (T;<). In the next part of this proof we are going to show that no other
families in T are maximal elements by constructing for every p € T that does not

satisfy 5.7.7 a q € T such that q is improved over p.

Suppose p = (p;|i=1,...,m) € T does not satisfy 5.7.7 and 7(p) = (k,b,c) with
l<k<m,b>0and ¢>0. Let (wl,wz,...,w;,n) € GF(3)m \(0,...,0)} be a point of
weight b such that 0 :&pk(wl,wz,...,wk_l,0,0,...,O). Obviously w; = Oforalli=¢k,....m.
Let a) < ap <...< a, be those integers such that for all i:
w; =0 & iel={aa,....a,).
[

Let K = py(wy,wy,...wg_1,0,0,...,0) and let P(xy,....x, 1) =— K ‘lez_lxj(wj—xj)}

Note that, since p € T, (V, ) is isomorphic to § where

(xBp ¥); = —%; =¥; D (X1 X1V 150 ¥y) forall i e (1,...,m}.

Now define q = (q;|i=1,...,m) by:

¢ if 1 £i <k then qf(xl,xz,...,xi_l,yl,yz,...,yi_l) =pi(xl,xz,...,xi_l,yl,yz,...,yi_l)

o if i = k then 7RO ST SN 1) 1Yo ¥io1) =

DX X050 X 1Y 1Y oY) F PGy Xy 1) + POrpsenyyg)
+ P((x B )1 (x Bp ¥)g,e (X B ¥)yy)

*ifm 210>k then q,(x;.Xp,. .. X; 1YY ¥ p) =

pi(xl,...,xi “P(xi’---’xk—l)"-"xi—l’yl"'-'yi“P@ls---’yk—l)v“’yi-l)

Lemma 5.7.5 implies that {V,0p) is isomorphic to (V,0g) with:

(X Bq¥); =% ~¥; + q[(X1se 0 Xi_1Y 150 ¥y forall ie (1,...,m}
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Therefore q satisfies 5.7.3.3). Lemma 5.7.5 yields also that 5.7.3.4) and 5) are
satisfied for (V,0g). Due to the minimality of b, P(xy,...,x;_;) depends only on the vari-
ables that p,(x{,Xp,...,X;_ 1:Y1s¥2s+--:¥4.1) also depends on. Therefore q satisfies
5.7.3.2).

Therefore q € T. It remains to be shown that p <r4. Recall that 7(p) = (k,b,c) and
suppose 7(q) = (d,ef). From the construction it is clear that d 2 k. If d > & we are
done. Therefore assume d = k. By the definition of g, the minimality of b and since
| |7}=b, for every point (xy,...,x,,) € V of weight less than b we have:
Axpse Xy 150,00 = 0+ pplxg,....x 150,...,0) = 0.
This implies e 2 b. If e > b we are done. Therefore assume e = b.
We know Prwpewy 1,0,..,00 = K = 0. (5.7.8)
Now consider the product (0,0,...,O)Up(wl,...,wk_l,O,...,G) = (Z]see0sZ) Obviously
z;=—w;for all i with 1 i <k-1 and z; = K. (There is nothing that could be said about
z; fori > k.) By 4.3.1 we get:
(—wl,—wz,...,—wk__l,K,zk+1,...,zm)0p(0,0,...,O) = (Wi oW 1505...,0)

The kth component of this equation yields:

-K +pk(_w1,...,—wk__1,0,...,0) = 0 or

P(-wipeowy 1,0,...0) = K = O (5.7.9)

Note that the point (~wy,...,~w;_;,0,...,0) € V has weight b since (wy,...,w;1,0,...,0)

has weight b.

Now let (xy,...,x;_;,0,...,0) € V be a point of weight b s.t. p(xq,....%;_1,0,...,0) = 0.
Recall that a;<a,<...<a, are those integers such that for all i:

Wl =0 & iel= {al,az,...,ab}.
If one of xal,xaz,...,xab is zero then by the definition of ¢,:

qk(xl,...,xk_l,O,...,O) = 0 +pk(x1,...,xk_1,0,...,0) =0
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If the x_ -

al,xaz,...,x ap are all non-zero then xX= Oforallie I & 1 <i € k-1 since the

weight of (xy,....x;_1,0,...,0) is b. Because of 5.7.8 and 5.7.9 we have:
(pseeesXp_ 1505 s0) = (Wiseawy_1,0,...,0) and
Xy 150,00y 2 (wiae-wy 1,0,...,0).
Then there must be u € I and v € Isuch that x,;= w, and x,= -w,. But then:
Gy 15050.50) = 0+ pplry,ix 1,0....,0) = 0.
Finally:

qk(wlswz’- [ swk_I,0,0,. N .,0)

=Pk(W1, ,wk 13 3 0) K(/H w. (W —-wW )) LH O(WJ—O))
jel

—KLH (W 0-DjW 1500 91,0, O -wj=w=04 P (w1, j_l,o,...,(})))
fel

=K—-K(H 0 —K(H 0)——1((}—1 ijj)

\jel jel

\
=K-K|[]1]|=0
\jel |

and

qk(—-wl Wayes ’—Wk—'l ,0,0, ves ,0)

=pk(—w1, oWy 1, .0) = K(H —WJ(WJ"}'WJ))—-K(/H O(WJ-—O))
jel

el

_K(H (—wj—pj(—wl,...,—wj_l,O,...,0))(—wj+wj+pj(—w1,...,-wj_l,O,...,O)))
jel

=k-K|[] ijj)—K(' 0)- I 0]
\jel el jel

=k-K|]] 1):
Ue[
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We have shown that every point (xq,...,x;_1,0,...,0) € V of weight b such that
pk(xl, o Xp_ 1:0 ..,0) = 0 also satisfies qk(xl, ,xk 1, ,...,0) = 0. Moreover we have
shown that there are two points (xy,....x;_1,0,...,0), Oq,...,¥4_150,...,0) € V of weight
b such that:

Prxpsee Xy 10,00 20 & p(ypye 0¥ 150,...,0) 2 0 but

gppse X 10,00 =0 & g0y ¥ 10050 = 0
ie.c2f+2>f.(In fact it can be proved that ¢ =f + 2.) This means p <, q. As we
have mentioned above this implies that all maximal points in (T;<;) are satisfying
5.7.7. Since T is finite it has at least one maximal point, i.e. the polynomials p; in

Theorem 5.7.3 can be chosen such that for all i: p(x;.x5,...,%;.1,0,0,...,0) = 0. |

The polynomial p3 in our example A7 does not satisfy the condition in this lemma
since p3(0,1,0,0) = (0°=1) (0%-1) (1 - 0)2 = 1 # 0. It is relatively simple to find a

representation of Ay such that the polynomials satisfy this condition:

Let P be the constant polynomial 1. By lemma 5.7.5, the algebra (GF(3)3,_0) with the

binary operation ¢ defined by
X1 -y;+1+1+1

X1 N1
Xy | el Yo |= : —X9—Yp
X3 Y3

—X3 Y3 +((x1 + 1) - 1} oy + D2 -1)(xy -y, f

_yi

—X2—Y2
~x3=y3+x (¢ - Dy, O - 1)ty - y,f

is isomorphic to Ap7 and it is obvious that p(x{,%5,...,%;.1,0,0,...,0) = 0 holds for all i.
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For distributive squags we are able to specify the type of polynomials even more
closely, but we first have to examine some additional property of the polynomials

described in 5.7.4:

LEMMA 5.7.10 Let V be an m-dimensional vector space over GF(3) and
let {V;*) be a squag with
&e¥) = Y P X YY)
Jor i=1,...,m where the px,,....x;_1,¥1,.---¥;_1) are polynomials over
GF(3) such that for all i p(0,...,0,y1,...,y;_1) = 0.
Then for all (xq,....%,), (G1see0sd)) € Ve
l{j[xﬁt 0lu{jly# 0}[<1= Vi plrys..X; 1 ¥y =0.

For the proof of this and the following lemma we require the notation:

DEFINITION 5.7.11 Let V be an m-dimensional vector space over
GF(3). Then S(n) denotes the point (xy,....x, ) € Vwithx, =sand x, =0
if k# nand (SI'SZ)(nl,ng) denotes the point (xy,...,X,,) € V with X5 =515

x,,=5yand x, =0if k¢ {ny,ny}. Any point (xq,...,x,,) € V with

2
Xy =810 Xpy =52 %y =53 and x, =0if k¢ (ny,ny} & k <ny will be
denoted by (-91’32’33)(;; g (The latter expression will therefore

indicate one of several possible points.)

Proof of lemma 5.7.10: If |{j ] xX;# oyulj| yj# 0)| =0 then the equation
DilXyseesX;15¥15-5¥;.1) =0 s a special case of p,(0,...,0,y,...,y;_1) =0 . We can
therefore consider the case {j | Xj # 0Juijl yj;éO} = {k} and the polynomial
p(xys- "’xi-i’y}""’yi-l) (i.e. for the remainder of this proof i and k will be fixed). If i <%k
we have again a special case of p;(0,...,0,y;,...,y;_;1) = 0. We may therefore assume

that i > k.
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Since p;(0,...,0,y1,...,¥;_1) = 0 we have l(k) . G(k) = 2(k)- Since every 2-generated
squag has three elements, {O(k)= i(k)’ 2(k)} is a subalgebra of (V,s).

Now suppose pi(xy,....%;_1,¥1>---»¥;1) # 0 for (xq,....x,,)) = S (k) and (yy,....¥,,) = L)
Then:

[S(k) . t(k)]l = pi(xl,...,xi_l,yl,...,yi_l) # 0.
Since & < i this implies: Sty * tr) & {O(k), l(k)' 2(k)} which is a contradiction.

Therefore PiXpse Xy YY) =0 (.

Before we will use this lemma to ‘improve’ the polynomials in the representation of an
distributive squag even further, we will consider an obvious consequence of this
lemma regarding the existence of small nilpotent squags: Since p, depends at most on

x1 and y; lemma 5.7.10 implies that p5 = 0 and we have:

COROLLARY 5.7.12 Every nilpotent squag with 3 or 9 elements is

medial.

(In fact, this corollary does not provide us with new information. It is well known that

the 9 element squag is unique, i.e. it is the medial one.)

This corollary allows us to deduce that above example A,7 is even a subdirectly irre-
ducible squag, since otherwise it would have to be the subdirect product of smaller

nilpotent squags, at least one of which being non-medial.

As previously indicated, for a distributive squag we can ‘improve’ the polynomials in

the representation even further:
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LEMMA 5.7.13 If the squag % = (S;-) is distributive then the polynomi-
als p; in theorem 5.7.3 can be chosen such that for all i and all
ooty Opseesyyp € V0

pixyxg,...%; 1,0,0,...,0) = 0 and

[Ulx2 0}y 0} <2 = plrys ;¥ e¥i) = 0.
Proof: The proof of this lemma is very similar to the proof of lemma 5.7.4:

Let R be the set of all families (;1i=1,...,m) of polynomials satisfying the conditions
of lemma 5.7.3 and the condition:
pi(xl,xz,...,xi_l,0,0,...,O) = 0 foralli=1,...,m and Gpeex) € Vo (5.7.14)

By lemma 5.7.4 we know that R is non-empty.

We will first define a new concept of an improved family of polynomials and then show
that for every family p = (@;li=1,...,m) in R not satisfying the condition:

I{jle& O]u{jlyf 0}|£2 = VipdXyseosXi 1150 Y1) =0 (5.7.15)
we can find an improved family (qi_| i=1,...,m) in R. Note that by lemma 5.7.11 the
weaker condition:

[Ulx 0}ofily# O} ST = Vippeiky ¥ysoyi) =0

is always satisfied.

We define a mapping 7R —NxN as follows: Let p = (p;]i=1,...,m) € R be a family of
polynomials. If p satisfies 5.7.15 then 7(p) = (m+1,0), otherwise 7(p) = (a,b) where a
is the smallest number such that PaXqssXy 15¥1s5Y 1) # 0 for some
X5 Xy h O Vg V) € GE(3)™ with (] x 0)U{j]y# 0} = {r,5) (from lemma
5.7.11 it is clear that r # §) and b is the number of possible sets {r,s}. On NxN we can
define a total ordering < by:

a<o or
(ab) < (0,B) < { a=cand b 2P
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Via 7 this total ordering < on NN induces a partial ordering <ronRby p <. qif and
only if ['L‘(p) < 7(q) and 7(p) # *c(q)] or p =q. We write p <, q and say a family g e R

is improved overpe Rifp < qandp #q.

From the definition of 7 it is clear that the families in R that satisfy 5.7.15 are maximal
elements in (R;<p). In the next part of this proof we are going to show that no other
families in T are maximal elements by constructing for every p € R that does not

satisfy 5.7.15 a q € R such that q is improved over p.

Suppose p = (p;|i=1,...,m) € R does not satisfy 5.7.15 and 7(p) = (k,b) with 1<k <m
and b > 0. Let (y,ly,....H,),(V{Vgs..sv,) € GEB3)™ with:
Pty sty 1,V 15005V _q) # 0 and (/] U 0}u{j| Vi 0} = {r,s}.
As mentioned above, r # 5. Therefore let us assume r < 5. By lemma 5.7.11 we have
also s < k. Since p € R, (V,0p) is isomorphic to § where
(X Bp ¥); = —x; =y; w0, (X 15 X1V e Wy forallie {1,...m}.
By 5.7.14: (0,0)¢, yPp O, = (0.2), 5 and
©.0)¢5% L0y = (2.0)
The three points (0,0)(r’s) , (O,I)(m) , and (I,O)(r,s) will therefore generate a 9-element
subplane (subalgebra) of (V,5,). Due to the minimality of £ we know:
(L0 o% (O o = 22,8 5k..) and
(L0 Oy = @LDggs

where
_ K if (xl,...,xm) = (1,0)(7.,‘5.) and (yi""’ym) = (0’1)(.?',5)
pk(xl""’xk—l’yl!--.,yk—l) - L if (xl,...,xm) = (1’0)(1',8) and 0’1,...,ym) = (0,2)(],,‘9)

By 5.7.14 we may conclude:
0.06.9% @284 50,5 = GLKgor and
00)6.0% @LDGr..y = 02-Dgsp )
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Since the subplane generated

by (O,O)(,,s), (0,1)(,-’3), and

(1,0)(”) is the 9-element

(0,0)
affine plane we have the / ’\
(1,0) (0,1)

situation as shown in figure

3. Recall that three different 2.0 \ \ (0,2)

points x, y and z lie on one

line if and only if
xOpy =z

In the figure, the index of a

11,-K)

2.1.L) 1.2,1L)

(2.2K)

pair is (r,5) and of a triple
(r.s,k,...).
Figure 3:

. Subplane generated by (0,0),,. ~, (0,1);,. o, and (1,0}, .
As in the proof of lemma & Y sy ) r.s)

5.7.4 we will now define a
polynomial P(x,....x; 1):
Let P(xye..Xy_1) = Lo{x 2~ x2x )-K(x2x + x2x,) (5.7.16)
Then define q = (g;|i=1,...,m) by:
¢ if 1 <i <k then q;(x). X0, s X;_ 1YY 000 0¥ 1) = Py Xse oo X 1Y Y20 ¥ 1)
o if i =k then ¢;(x) X0, 0% 1,1 Y050 p) =
PiX 100 Xi Y 1Y e0s¥io) + PO e X ) + PO ¥ )

+ P (=X =YXy =Yg + Doy s o= Ky = Vit Pt Koo ¥4 2))

sif m2i>kthen g(x1.Xg,....%;_1,Y1:Y2¥ip) =

pj(xls- Xy = Py Xy Dse X 15Y 150w s¥; = POy --syk_}))n-:yi_l)

Lemma 5.7.5 implies that (V,0p) is isomorphic to (V,0g) with:

(xOg y); = =X; =; + qi{X 150 esXj_ 1YYy forallie {1,....m}
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Therefore q satisfies 5.7.3.2). Lemma 5.7.5 yields also that 5.7.3.3) and 4) are
satisfied for (V,Dq). Since P(xq,...,x;_1) depends only on variables, on which

PpXyXg,. 0 X 1:¥1:Y9s+Yy.1) also depends, q satisfies 5.7.3.1).

By 5.7.16 P(0,...,0) =0 and Plaxy,xp ) = ~P(x(,....x;_4), therefore we get:
qixX) X9, 0, ;10.0,...,00 = 0 foralli=1,...,m and (xi,...,xm) eV
i.e. ( satisfies 5.7.14 .
Therefore q € R. It remains to be shown that p <rq. Recall that 7(p) = (£,b) and sup-
pose 7(q) = (d,e). From the construction it is clear that d = k. If 4 >k we are done.
Therefore assume d = k. Now suppose:
{jle¢ O]U{j]zj;t 0} ={ot} = {r.s} & prwi.owy (,2750.02_1) =0
Since {o,t} # {r,s} we have w,=0=z,0orw,=0= z, . In either case:
W1 Wose s Wi 152152950002y 1)
=p(wy,ws,.. W 152152952 _1) + Plwy,..owp_) + P(zq,.021 )
+ P(— W= 21— Wy —Zp + DyWpaZ )see o= Wy — 21+ Pp (W1 "Zk~2))

=0+0+0+P(~wi~21-wy—2p..m Wy = 1) =0
Note that due to the minimality of k: p,(wy,z;) =...= Pr1Wpse 23 0) = 0.

The image of the subplane generated by (0,0)(”) , (0,1)(“) , and (1,0)(”) in (V,Dp)
under the isomorphism ¢ is given in figure 4. The calculation is straightforward. Again,

the index of a pair is (r,s) and of a triple (r,s,%,...).

Now suppose {j[wj¢ O}U[j]zj-‘r-“ 0} = {r,s}. Then (wy,...,w,)) and (z;,...,2,) are in
the subplane shown in figure 4. We get immediately:

qk(wl,...,wk_l,zl,...,zk_l) = (0. Since pk(ul,...,uk_l,vl,...,vk_l) # (0 and because of
{7l W O}U{jlvth 0} = {r.s} we get qp(uq,....4_1,V15--v_) = 0.

Therefore b > e and p <, q.
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As in the proof of lemma
5.7.4 this implies that the

maximal elements of (R;<)
(0,0)
/ satisfy 5.7.15. Since the
(L.0) oL finite poset (R;<,) must
2.0 \ 02 have at least one maximal
\ / element, we are done. ]
1,1,0)

(2,1,0) (1,2,0)

(2,2,0) Using these lemmas and
some further arguments we
can formulate a stronger

Figure 4: version of theorem 5.7.3:

Image of the subplane generated by (0,0)(,,_ 5 (0,1)(r_ s> and
(1 !0)("'5) in (V!Dp)'

FOURTH REPRESENTATION THEOREM 5.7.17 Let $ ={(S;-) be a finite
squag of nilpotence class k. Then there exists an m—dimensional vector
space V, for every i (1 £i<m) a polynomial p(xq,...,X;_1:¥1>-+s¥Y;i_1)
over GF(3), and an increasing sequence ny < ... < n, =m of integers
such that

1) For n<igngq pixys...X;_y:Y15--+5¥;_1) does not depend on x,

and y, for all t with n<t <m.
2) ¥ = (V;0) is isomorphic to $ where
(x8y); = XY P XY i)

forallie{1,...,m} with p,=0forallte {1,...n0}.
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3) C(8) corresponds to the kernel of the projection onto the first
ny_1 components of {V,00, this projection is a squag homomor-
phism.

4) Ifog=83<8, <&y < ... <& =1 is the upper central series of
{S;-) then for any j € (0,1,...,k} the congruence ﬁj corresponds 1o
the kernel of the projection onto the first Ny_j COMPOREnLs of
(Vo).

5) For all i and all (xy,....x,,), Opseees¥) € V2

Py X 1Y e ¥in) =P 1o Vi p X e Xiny)

6) For alliand all (xy,....x,) e V: pi(xi,...,xi_l,O,...,O) =0 (i.e. no
PiX 1 esXi_15Y 00+ ¥s_1) has a constant term and every monomial
of it contains elements from {xy,...,x,,} and from {y1,....,,}.)

7) For all (x1,....x,), (1se-¥p) € V2

[ 1x 03U {j1yp OIS 1= Vip(yee Xy e ¥i) = 0.

8) Ifk > 1 then ny 2 2.

If $ =(S;") is distributive, the polynomials p; also satisfy
9) For all (xy,....x,), (yl,...,ym) e V:
|{j|xj¢ O}u{j]yj-vﬁ 0}]<2 = Vi pi(xy,. .o X YY) =0
10)  Foralliandall (xi,....xp), O1se-esYp) € Vi
DX X 1Y e ¥in1) = PilE s XY Yic1)
(i.e. all monomials in p; (X{,....X;_1:¥1>----¥i_1) have an odd num-
ber of factors.)

11) IKk>1thenny23.

Proof: Theorem 5.7.3, together with lemmas 5.7.4, 5.7.10, and 5.7.13, yields theorem
5.7.17 except parts 3, 5, 8, 10, 11, and the second half of 6.
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Part 3 is a consequence of part 4. Part 5 follows immediately from the commutativity of
the squag operation and implies together with the first half of part 6 that its second

part is also true.

To verify part 10, suppose 3 is distributive and consider the following equation:
0(1) a ((xl,...,xm) o 0’1,---,)’,,1)) = (0(1) o (xl""’xm)) g (0(1) o 0’1,--~,ym)) (5.7.18)
Because of the distributivity 5.7.18 is satisfied for every (xy,....X,,), (15... ¥} € V.
The ith component of the lefthand side evaluates to:
(0(]_) a ((-x]:-n:xm) S 0’1,--.,)’,”))); =xj + )’; _pg (xlx---:xi_l:y}_:---:yi_l)
and the same component of the righthand side to:
((0(1} B (X150009X,,)) O (0(1) S (.Yp---s)?m)))i =X;+ ¥+ Dy (X XYoo~ Yiy)

Part 10 is therefore correct.

To prove 8 and 11, suppose that & (and therefore ¥) is of nilpotence class k > 1. Then
consider the image (GF(B)”2;DZ) of the projection of % onto its first n, components.
.From the construction we know that this algebra is of nilpotence class 2, i.e. it is not
medial. Therefore there are points x = (xl,xz,...,xnz), y = (yl,y2,...,yn2), z =
(21,22,...,zn2) and w = (wl,wz,...,wnz) such that
(wohx)0 0 Byz) # WOy, (wh)z).
This inequality must hold in at least one component, say in component j. Due to the
definition of the operation O, we know n; <j <n,. Now consider the projection
7+ (GF(3)"2;0,) — (GF(3)! *";01;) defined by:
n(ul,uz,...,unl,...,unz) = (ul,uz,...,unl,uj)

where B, is given by :
—ui_vi ifi < nl

(uyv); =

—ul—vi-i-pj(ul,uz,...,uni,vl,vz,...,vnl) ifi=n;+1

It is easy to verify that this is indeed a homomorphism since p ; depends only on the

first n; components. Since the inequality had held in the jth component we get
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(m(w) Oy 7(x)) O3 (n(y) B3 7(2)) #  (a(w) B3 2(¥)) B (7(x) B3 7(2)),
l.e. (GF(3)1+”1;03) is not medial and is an homomorhic image of ¥; it must be of
nilpotence class 2. By corollary 5.7.12 the smallest squag of nilpotence class 2 has
. 33=27 elements, therefore ny 2 2. Moreover, if ¥ is distributive so is its homomorphic
image (GF(3)1+"1;G3). Since, as mentioned in section 4.3, the smallest distributive
squag of nilpotence class 2 (the squag Hgi) has 3% = 81 elements, we have shown

that ny 2 3. O

" The existence of the squag Ap7 shows that parts 9 and 11 cannot be proven for non-

distributive squags, since both of them would imply that Ay7 must be medial.

We will see in chapter 8 that the representation given in 5.7.17 exactly describes the
nilpotent squags, since the following theorem is a special case of a theorem proven

there:

THEOREM 5.7.19 Let {V;-) be a finite squag having the following

properties:
1) V is an m-dimensional vectorspace over GF(3).
2) There exists a positive integer k and an increasing sequence 0 =

ng <ny <...<ng=mof integers such that the binary operation -
is given by:

(xy); = x;+y; + DX s X1V 1o Yio1)
where all pxq,....X;_1:Y15--2¥;_1) are polynomials over GF(3)
and each p; does not depend on X, i3 XYy, 155 Y
zntﬂ,...,szor R <iS Ryt

Then (V) is nilpotent of class at most k.

In section 3 we had seen that whether a distributive squag is subdirectly irreducible,

can be recognized in the size of the centre: theorem 5.3.7 stated that a distributive
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squag is subdirectly irreducible if and only if the size of any or every centre class is 3.
The representation given in theorem 5.7.17 allows the proof of the same theorem for

nilpotent squags in general:

THEOREM 5.7.20 Let 8 = (S;-) be a finite nilpotent squag and lete € S.
Then 8 is subdirectly irreducible if and only if |[€]{(8)] = 3.

Proof: Since ¥ is a nilpotent squag, it has a representation as described in theorem

5.7.17. Suppose & is subdirectly irreducible and ny_; <m-2. Then the two mappings:

X X
X X '1 1
: = : and m— || x, =1x
M X1 Xm-1 m-1| | "m-2 r; 2
X
-1
X, 0 m
xm xm

are homomorphisms and have kernels that are smaller than {(8) and that intersect in
axg. This contradicts 3.2.10, i.e. n;_; = m—1. But this implies that each class of {(8)
has size 3. On the other hand, if each class of {(&) has size 3, then the only congru-
ences below {(8) are {(B) itself and wg. By corollary 3.2.10 this implies that 8 is

subdirectly irreducible. ' O

5.8. Construction of Nilpotent Squags

In (Klossek 1975) some methods are described that will allow us to construct
arbitrarily large but finite subdirectly irreducible distributive squags of a given
nilpotence class k 2 2 if one subdirectly irreducible distributive squag in this class is

known. We will first present these methods as theorem 5.8.1 and 5.8.2:
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THEOREM 5.8.1 Let V be an n-dimensional vector space over GE(3)
and let (Vi*) be a subdirectly irreducible distributive squag of nilpotence
class k such that

XX = XY DX Ky 1Y e Ypy)

Jori=1,...,nwhere the p; are polynomials over GF(3) with:

a) pi = {
b) r;0,....00,...,00 = 0 fori=1,..n
c) pix1:0,...,0.1,0,...,0) = 0 fori=1,...n

d) Q((V;-)) is the kernel of the projection onto the first n— 1
components.

Then the n+2 dimensional vector space V' with the operation # defined

by
—U—v; if i3

(u .V)l = ——ui——vi+p1-_2(u3,...,un+1,v3,...,vn+1) lf4SI.<.n+1

“UVitD (el V30 Vg )

if i=n+2
\ +pu, U9 U3,V V), V3)

L4

with p(ul,uz,u3,v1,v2,v3) = (u3~v3) ! is a subdirectly irreducible

distributive squag of nilpotence class k and C((V;o)) is the kernel of

the projection onto the first n+1 components.

THEOREM 5.8.2 Let V be an n-dimensional vector space over GE(3)
and let {V;*) be a subdirectly irreducible distributive squag of nilpotence

class k such that
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Xe¥) = =Yt DXy 1Y e Ypt)
Jori=1,...n where the p; are polynomials over GF(3) with:
a) p0,0,....0,y1. Y950y, 1)) = O fori=1,...,n
b) C((V;-)) is the kernel of the projection onto the first n—1
components.
Let V' be an m-dimensional vector space over GF(3) and let (V';¢) be a
subdirectly irreducible distributive squag of nilpotence class j such that
(oY) = XD+ qEL X 1YY met)
Jor i =1,....m where the q; are polynomials over GF(3) with:
a) qi(0,0,...,O,yl,yz,...,ym_l) = 0 fori=1,...m
b) C((V’;Q)) is the kernel of the projection onto the first m—1
components.

Then the n+m-1 dimensional vector space V" with the operation *

defined by

_“i_vi+pi(”1’-"’”n-l"’l’-'-="’n—1) ifl1<isn-1

Vg

(uxv), = if n<i<n+m-2

+qi—(n—1)(un" "’un+m-—2’vn""’vn+m—2)

U=V AP, (Ut 13V15eeusVy 1) .
I Vi TP\ n—12Y1r2¥p-1 tf1=n+m—l

+qm(un,. . .,un+m_2:vn!- . 'Qvn+ m_2)

is a subdirectly irreducible distributive squag of nilpotence class

max{k;j}.
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Since every nilpotence class of distributive squags has to contain at least one
subdirectly irreducible squag and this squag can be represented as described in 5.7.17,

we can answer an open question of (Klossek 1975) by concluding from 5.8.1 or 5.8.2:

COROLLARY 5.8.3 For every k =2 there are infinitely many finite subdi-

rectly irreducible distributive squags of nilpotence class k.

Klossek was unable to prove this corollary, since her general representation theo-

rems, i.e. theorems 5.7.1 and 5.7.2 in this chapter, did not provide all the properties

required for these construction theorems.
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6.1, Basic Properties

In section 4.4 we introduced the concept of an SQS-skein as a co-ordinatization of a

Steiner quadruple system. Let us recall the definition:

DEFINITION 6.1.1 An algebra (S; ¢) of type (3) satisfying the equations

gxxy) =y
qlxy,z) = qxz)y)
qgx,y,z) = q(y,zx) and

q(x,y,q(x,y,2)) z

is called an SQOS-skein.

An extensive discussion of SQS-skeins can be found in (Armanious 1980), where they
_are called Steiner Ternare. These algebras are sometimes also called idemporent

totally symmetric 3-quasigroups or Steiner 3-quasigroups, e.g. in (Lindner, Rosa 1978).

Since the ternary operation of an SQS-skein itself is a Mal’cev polynomial, it is im-
mediately clear that the variety of SQS-skeins is congruence permutable and modular.
Moreover, it is congruence uniform, coherent and regular. A proof of the latter state-

ment is given in (Armanious 1980).

In (Hanani 1960) the possible size of a Steiner quadruple system was investigated.
Due to the correspondence between Steiner quadruple systems and SQS-skeins as

described in 4.4, we get the following lemma:

LEMMA 6.1.2 If (S: ) is an SQS-skein then |S| =2 or 4 (mod 6) or
[S] =1.

ANDREAS GUELZOW - 61 — UNIVERSITY OF MANITOBA




6. SQS - Skeins

Note that lemma 6.1.2 does not exclude any power of 2 as the possible size of an

SQS-skein.

Let us consider the subalgebras of an SQS-skein (S; g). The defining identities in 6.1.1
| imply that every one or two element subset of S forms a subalgebra of (S; g). If & is
any congruence on the SQS-skein {(S;¢) and a, b, ¢ € [d]a for some d € S, then
g(a,b,c) @ g(d,d,d) = d and therefore g(a,b,c) € [d]a. This means that every congru-

ence class is a subalgebra. In fact we even have:

LEMMA 6.1.3 If o is a congruence on the SQS-skein (S;q) and (T;q) a
subalgebra of (S, q) then [T]o = US [s]lee is the universe of a subalgebra
sE

of {S; @).

A proof of 6.1.3 is contained in (Armanious 1980). Note that this lemma implies im-
mediately that the union of two congruence classes (of the same congruence) is a

subalgebra, since—as noted above—every 2-element set is a subalgebra.

While every congruence class is a suballgebra, the converse is not true. An SQS-skein
may have subalgebras that are not congruence classes. As in the theory of groups we
will call every subalgebra that is a congruence class of some congruence a normal
subalgebra. The next lemma will characterize these normal subalgebras and describe

the associated congruence:

LEMMA 6.1.4 A subalgebra (N; q) of an SQS-skein (S;q) is a normal
subalgebra (i.e. is the congruence class for some congruence on (S; q)) if
and only if for some a € N and all x{, X3, X3, ¥1, ¥2. Y3 € S

(\'/i e {1,2,3} g(a,x;y) € N) = qa,q(x1, X3, x30,9( Y1, Y2, y3) € N
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If {N; g) is a normal subalgebra of an SQS-skein (S; q), then N is a class
of the congruence Oy defined by:

By ={xy) e 52 | g(a, x,¥)) € N) for some ae N.

If a subalgebra {N; g) of (S; ¢) is sufficiently large (in relation to §) then it is always a

normal subalgbra:

LEMMA 6.1.5 Let (N; q) be a subalgebra of the SQS-skein (S; q) such that
18] = % INI. Then {N; q) is a normal subalgebra of (S, q).

Proofs of lemmas 6.1.4 and 6.1.5 can be found in {(Armanious 1980).

62. Boolean and Semi-Boolean SQS-Skeins

We will precede the discussion of nilpotent SQS-skeins with the study of a subvariety

of the variety of SQS-skeins:

DEFINITION 6.2.1 An SQS-skein {S; ¢) satisfying the equation:

Q(x:u:Q’(}’,u:Z)) = q(x,y,z)
is called a boolean SQS-skein.

In the context of Steiner Quadruple Systems this equation means that if two blocks (of
4 points each) intersect in two points then the remaining four points form a block.

(Figure 5.)

In (Quackenbush 1975) a boolean SQS-skein is defined to be an SQS-skein satisfying
the equation

gixu,q(y.u,2)) = qlglxuy),uz) 6.2.2)

It is immediately clear that the equation 6.2.2 is satisfied by all boolean SQS-skeins

as defined in 6.2.1. Since we are able to provide an example of an SQS-skein satisfy-
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ing 6.2.2 but failing to be boolean, we will introduce the following name for -

Quackenbush’s version of boolean SQS-skeins:

DEFINITION 6.2.3 An SQS-skein (S; g) satisfying the equation:

qOx,u,q(y,u,2)) = glq(x,u,y),u,z)
is called a semi-boolean SQS-skein.

At the end of this section, lemma 6.2.9 will justify the choice of the expression “semi-
boolean”, since semi-boolean SQS-skeins satisfy half of the main property of boolean

SQS-skeins. As indicated above, we have:

THEOREM 6.2.4 The variety of boolean SQS-skeins is a proper sub-

variety of the variety of semi-boolean SQS-skeins.

Proof: As mentioned previously, boolean SQS-skeins form a subvariety of the variety
of semi-boolean SQS-skeins. To show that this subvariety is proper we will construct

an SQS-skein ng ={(H;q)

that is semi-boolean, but not

boolean. (We have chosen

the name H g since this SQS-

qgxyzy=
g (x,2,q(,y,2))

skein is very similar to the
distributive squag Hg;p as
defined in 5.2. and will play

an analogous role.)

Let H be a 4-dimensional
vectorspace over GF(2) and
Figure 5: let ¢ be the ternary operation

Intersecting blocks in a boolean SQS-skein on H given by:
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X +y1+z

X1l (Y1) (24 Xo+yo+zs

q 20172 1%2(i= X3+Y3+23
X311Y31123 X101 2
X4! Va4l \Z4 Xg+Yg+zg+{Xo Yo 2)
*3Y3 23

It is straightforward to verify that (H; ¢) is indeed an SQS-skein. (Note that only one

of the defining equations requires some work.) It is not boolean since:

O OO
O = OO
oD OO

1 1 1 0\ 1\ {0
0 (ML ol o
tollofl=lo|™ 1ol YUloltol|o
0 1/ 1o o/ o/ \o

£
OO O

It is also easy to verify that this SQS-skein is semi-boolean. We have (omitting a few

steps):
x1+y1+zl
x2+y2+22
qlx,u,q(y,u,z)) = x3+y3+23 = q(x,u,q(y,u,2))
x1+ZI yl ul xl ul 2'1=
Xgtygtzgtotiy ¥y UWpl+iXy Uy Zp
X3+Z3 y3 u3 XS Ug Z3

O

We will encounter the SQS-skein H g soon again. In 4.4. we had outlined the relation-
ship between SQS-skeins and Steiner quadruple systems. Obviously this SQS-skein

H 16 must also correspond to such a quadruple system. It is given in figure 6.

The main results of (Quackenbush 1975) and (Armanious 1980) on boolean SQS-

skeins are given in the following three theorems:

THEOREM 6.2.5 An SOS-skein {(S; q) is boolean if and only if there

exists a boolean group (S, +,0) such that g(x,y,z2) =x +y + z.
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0123 049D 1289nhA 1ADE 2 7AF SAEF 59BF
0145 04AE 1 34E 1BCE 29CF 456F 5ABC
0167 0 4BF i135F 1BDF 2 9DE 4 57E 5 CETF
06189 058D 136C¢C 234D 2BCD 4589 6788
01AaAB 0 59cC 137D 235¢C 2 BEF 45CD 6 7EF
01cCPD 05SAaF 138~a 2 3 6F 3454 4 6 7D 6 9 AD
01EF 0 5BE 1398B 23 7E 34609 4 6 8 A 6 9BC
0246 06 8E 1468 2389 348F 4 6 CE 6 ABF
0257 06 8F 14743 23a8B 34BC 47 8B 6 CDF
028aA 0 6 AC 148D 2458 3579 4 7CF 7T9AC
02 9B 0 6 BD 1 49¢C 2479 358E 4 9AF 798D
6C2CE 078F 1564 248E 35BD 4 9 BE 7ABE
02DF 07 9E 1578 24AC 367AaA 4 ABD 7CDE
03 47 0 7AD 158¢C 2569 368D 4 DEF 8 9aB
0356 0 7BC 159D 258F 3 6BE 56 7C 8 9CpD
0388B 12 4F 168F 25AD 378¢ 5688 8 S EF
039n=a 125¢E 16 9E 26 7B 37BF 5 6DE 8 ACE
0 3CF 126D 17 8E 26 8¢C 3 9CE 57 8~A 8 ADF
0 3DE 127¢C 17898F 2 6 AE 39DF 57DF 8 BCF
0 48¢C 1288 1ACTFEF 278D 3ACD 5 %9 AE 8 BDE
Figure 6: The Steiner quadruple system corresponding to H¢ -

THEOREM 6.2.6 The variety Ay of all boolean SQS-skeins is generated
by the unique 2-element SQS-skein. Ay is the unique atom in the lattice

of subvarieties of the variety A of all SQS-skeins.

THEOREM 6.2.7 The variety A of all SQS-skeins is the class of all alge-
bras of type (3) satisfying all identities in three variables that are

satisfied in Ay.

Proofs of the last three theorems can also be found in (Armanious 1980). The follow-
ing lemma, describing the possible sizes of boolean SQS-skeins, is an immediate

corollary of theorem 6.2.5:

COROLLARY 6.2.8 I (S; q) is a finite boolean SQS-skein then |s ] =27
Jor some non-negative integer r. Vice versa, if r is any non-negative
integer, then there exists (up to isomorphisms) a unique boolean SQS-

skein (S; q) satisfying | S| =2
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In the remainder of this chapter we will refer to the unique boolean SQS-skein of size

2" with B, .

The following lemma justifies the choice of the expression “semi-boolean” since it is
about half of theorem 6.2.5. We will omit the proof, because it follows immediately

from the defining equations:

LEMMA 6.2.9 If (S, q) is a semi-boolean SQS-skein then for every Qe S
the algebra (S; +,0) with x + y = q(x,y,0) is a boolean group.

This lemma immediately yields a generalization of the first part of corollary 6.2.8:

COROLLARY 6.2.10 If(S; q) is a finite semi-boolean SQS-skein then

| S| =27 for some non-negative integer r.
4 8

6.3. Nilpotent SQS-Skeins

As in the theory of squags the original definition of nilpotence of SQS-skeins is the
universal algebraic one. We have already discussed the SQS-skeins of nilpotence

class 1 since:

THEOREM 6.3.1 The boolean SQS-skeins are exactly the SQS-skeins of

nilpotence class 1.
A simple‘consequence of 3.4.7, 6.2.8 and 6.3.1 is the following theorem:

THEOREM 6.3.2 If (S; q) is a finite nilpotent SQS-skein then |s] =2 for

some non-negative integer r.

Theorems 6.3.1 and 6.3.2 are both consequences of the discussion in (Armanious

1980). Note that the converse of theorem 6.3.2 is not true, since it was shown in
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(Armanious 1980) that there exists a 16-element SQS-skein that is not nilpotent. The
same thesis also answers the question about the size of the smallest nilpotent SQS-
skein that is not boolean: it has 16 elements (and is obviously of nilpotence class 2), it
-is not necessarily unique. An example of such an SQS-skein is the already discussed
Hyg. To verify that Hg is indeed nilpotent, we note that each of the sets

{Gryxpxaxg) | x;=0) fori=1,23

{((r1xgx3.x) | x;=1) fori=1,2,3

(Gepxx3:x8) | x1 = x0), (Gpxaxsxg) | x1 =23}, {Grxax3xg) | xp = x3)
(e1x0x3.00) | x1 = 20+ 1), (Gepaxpxaxa) | x1 = x3+1 ), ((epXX3.%8) | xp = x3+1)

has eight elements and is the universe of a subalgebra of H g, 1.e. this SQS-skein has
at least 12 8-element subalgebras. (By (Gibbons 1976) H ¢ has therefore either 14 or
30 such subalgebrés.) Since it has been shown in (Armanious 1980) that every SQS-
skein of cardinality 16 with more than 6 8-element subalgebras is nilpotent of class 1

or 2, we know that Hjg is nilpotent of class 2.

Alternatively we can determine the centre of Hyg . This is relatively easy due to the

following consequence of corollary 3.2.13:

LEMMA 6.3.3 Let § =(S; q) be an SOS-skein. Then a {(8) b if and only
iffor all c1,¢9,c5 € S:

g(qla.b.cy)ca.c3) = qlab,g(c,69.3))

Proof: Since every 2-element subset of an SQS-skein is a subalgebra, the 2-gener-
ated free SQS-skein has only two elements. Therefore there are only two binary term
functions (none of which is essentially binary): ri(x,y) = x and ry(x,y) = y. Moreover,
the ternary operation g itself is a Mal’cev polynomial. After omitting the equations

that are obviously satisfied by all elements in every SQS-skein, corollary 3.2.13

yields:
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a {(8) b if and only if:
(1) Q(Q(a,b,CI),Cz,C3) = Q(a,b,Q(Cl,CZ,CB)) for all C},C2,C3 €S and
(2) q(g(a,b,c1)g(ab,co)es) = glc1,6,€3) forall ¢i,cp,c3€ §  and

(3)  qlgla,b,c1).q(a.b.c).q(ab.c3)) = qla.b.glcr.cac3)) forallepepcze S

We will complete the proof by showing that (1) implies (2) and (3). Suppose (1) holds

for all ¢1,¢9,¢3 € S. Then:

q{g(a,b,c1),q(a,b,cp).c3) = qlab.g(cy.q(ab,cy).cz)) by (1)
= g(a,b,q(a,b.q(cy,c1,¢3))) by (1)
= g(c1,62,C3)

i.e. (2) holds for all c1,¢9,¢3 € S. Moreover:

Q(Q(a,b,CI),Q(Q,b,Cz),Q(a,b,53)) = q(C13623Q(a9bs63)) b}’ (2)
= g(a.b,q(cy,c9.03)) by (1)
- i.e. (3) holds for all ¢1,¢p,c3 € S. U

Wl B 0
Bylemma 633 { : |e ( :

}C(HM) if and only if
W4 0

Cfi) C%Z) C§3) c%l) C§2) ch)

Yo UERTRY
ql14q N 1 S . g M B =q M A 1) ) N O .
wa |0 10 [l e@ | @ we\0 [ e |l ||
cgl) 6‘%2) c§3)
forall | @ [ : | 1 JeH
04(11) c&Z) C‘(13)
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ie.
( w1+c(1)+c§2)+ c§3) ( wl+c(1)+ c§2)+ c§3)
wyr e P IROICING
w +c§1)+c§2)+ c§3) = w +c§1)+ c§2)+ S
w1+c§1) (2) (3) gl) c§2) c§3)
w +c§1)+ c£2)+ c§3)+ Wo +c(1) (2) (3) w +c§1)+ cf)-i-cf’) él) cgz) c§3)
W +c§1) (2) (3) \ Cgi) c§2) c§3)
This is clearly equivalent to
wy @ @ ROAVRS)

wy 52 ) [=0 forall c§2) ¥ |e GF)3
2 P\

W3

which happens exactly if wy =wy =w3 =0,

We have shown that {(H ) = ker(3) where 73 is the projection onto the first three

components. Since the image of 73 is a boolean SQS-skein, Hjg is nilpotent of class 2.

The nilpotence of Hyg also follows immediately from theorem 6.4.4 which we will

present and prove in the next section.

Since our example Hg is both nilpotent (of class 2) and semi-boolean, we are faced
with the two questions whether every semi-boolean SQS-skein is nilpotent and
whether every SQS-skein of nilpotence class 2 is semi-boolean. We can answer the

latter question negatively by considering the following example A6 = (A q):
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LetA = GF(2)4 and g be a ternary operation on A defined by

x\ v\ [# ( X1ty \
AlAIEAN Xy +yytz,
x3 (|73 [| 73 X3ty3+2z3
X4f\Y4] 24 Xy ¥g 2
\14"'}’4‘*'24“‘-’51)’121 X3Y3 23 )
111

It is easy to verify that A;g = {A; g) is indeed an SQS-skein. It is not semi-boolean

(and therefore not boolean) since:

1\ {1} {fo\ 1\ fo 1) (1) (1)} f1

of (1] flof{alfrit|_ fjot{t]]o}| |1
Moftop9fopiopla]i|= Atoflopi1]i =]
of {o/ \loflo/ \o of \o/ Yo}/ |1

1 01(0 1) 1} fo\\ {1\ (O

A =dlEUE = dlatlol Lol 2]

1 opfofl1 olfoflolflopl

0 0/ \0/ \o o/ 10/ \o/f o/ 0

Via similar calculations as for Hyg, lemma 6.3.3 yields that

ng _ [( Z HC(AM} if and only if

Wq
5D o oY 0 o o
a P o o |+l @y o o |0

1 1 1 0 11

ANDREAS GUELZOW - 71 — UNIVERSITY OF MANITOBA



6. 5SS - Skeins

The choice c§1)= ay shows that @; = 0. Choosing D = 2 yields further a9 = a3 = 0.
This proves that again {(A;g) = ker(m3), 73 being the projection onto the first three
components. Since the image of 73 is a boolean SQS-skein, A must be of nilpotence
“class 2. (Note that this will also follow immediately from theorem 6.4.4.) This example

yields the following lemma:

LEMMA 6.3.4 The variety of SQS-skein of nilpotence class at most 2 is

not a subclass of the variety of all semi-boolean SQS-skeins.

The SQS-skein A4 is essentially one of the Steiner quadruple systems described in
(Armanious n.d.). Armanious considers the direct product of an SQS-skein with the 2-
element boolean SQS-skein and modifies one of the §-element subskeins. In figure 7,

the blocks within the modified subskein are marked by a grey underlay.

0123 049D 26BF
0145 0 4AE 278D 4567
0167 04BF 279¢ 4589
0189 058D 27TAF 4 5AB
01 AaAB ¢059¢cC 236717 27BE 45CPD
0r1CcpD 05AF 2388 348F 4 5EF
01EF 05BE 23AB 349E 4682 29BD
02406 06 8E 23CpD 34AD 46 9B 8 8¢AB
0257 06 9F 23 EF 34BC 4 6 CE 89CD
028~ 0 enc 2 48E 4 6DF 8 9EF
0 298B 0 6BD 2 49F 358E 47 8B 8 ACE
0 2CE 0 78F 2 4AC 35a¢c¢C 479 A 8 ADF
02DF 079E 2 4BD 358D 4 7CF 8§ BCF
0347 07AD 159D 258F 368D 4 7DE 8 BDE
0 35686 0 7BC 1 5AE 25 9E 369CcC 56 8B 9ACEF
0 38B 1247 168F 25AD 36AF 569a2a 9ADE
0 39A 1256 169E 25BC 3 6BE 56 CF 9BCE
0 3CF 1288 16AD 268C¢C 378C¢C 56DE ABCD
0 3DE 129%a 16BC 269D 37AE 578na ABEF
0 48C¢C 12CF 178E 2 6 AE 37BF 5 7CE CDEF
1 57 13DF 1 5BF 17BD 359%F 379D 57 98B
9BDF
Figure 7: The Steiner quadruple system corresponding to A;¢.
Exchanging the grey blocks with the blocks below the separating line,
creates the 16-element boolean SQS-skein,
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64. Representation of Nilpotent SQS-Skeins

As in the theory of squags we can again use corollary 3.4.7 to give a representation of
any finite nilpotent SQS-skein. Since the abelian SQS-skeins (i.e. the SQS-skeins of
nilpotence class 1) are the boolean SQS-skeins, they can easily be described as

boolean groups:

LEMMA 6.4.1 Let 8 =(S; q) be a finite abelian SQS-skein (i.e. a finite
SQS-skein of nilpotence class 1). Let m be the non-negative integer with
|S| = 2™, Then there exists an m-dimensional vector space V over
GF(2) such that 8 = (V1) is isomorphic to $ where

It is clear that this lemma is a simple consequence of 6.2.2. For arbitrary finite nilpo-

tent SQS-skeins we can therefore obtain the following representation theorem:

THEOREM 6.4.2 Let § =(S; q) be a finite SQS-skein of nilpotence class
k> 0. Let m be the non-negative integer with |S ] = 2" and, for some
element a of S, let [{a]C(,S)] = 2", Then there exists an m—dimensional
vector space V over GF(2) and a family of polynomials:
DilE 1o X 1Y 10 Y1210 125-1)
over GE(2) for 1 i< m and an increasing sequence ng<nj; <..<n,
of integers such that
1) O=ng,3<n;,n_y=m-r and n=m
2) For n<isng  piX{scoX_ppY1sers¥i_1:210e2;_1) does not
depend on x,,y,, and z, for all t with n<t <m.
3) ¥ = (V1) is isomorphic to § where
(((x3:2)); = X4y 42, + P Xy 1Y 1o Y2 oF )

forallie{1,....m} with p,=0for allte {1,...,n1}.
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4)

5)

6)

7)

8)

Proof: The main part of theorem 6.4.2 follows again from corollary 3.4.7. Since the
details are essentially the same as in the proofs of theorems 5.6.3 and 6.2.3 we will

omit that part of the prbof. Nevertheless we will have to prove parts 4, 5, and 8, and

6. 5SS - Skeins

For all i and all X pseeesXp)s OFgoesdp)s (2450002 ) € V2
P X Y15 oo¥io15 e e 5% )
= DV pse e Vis 1 X 0o X 12 oe e 024 1)
= PO VinppZ1se e sZin 1 X e X 1)
For all i and all (xq,....x,)) € V pixq,....%;_1,0,...,0) = 0 (i.e. no
PiX (s X 13Y 150 ¥ 15215+ -+22;_1) has a constant term and every
monomial of it contains elements from at least two of the sets
fxpsx, ) (90 oyy, ) and {zq,....2,,}.)
Ifog=87<8) <&, <... <&, =1 is the upper central series of ¥
then for any je {0,...,k} the congruence ?';j corresponds to the
kernel of the projection onto the first My_j Components of ¥.
C(¥) corresponds to the kernel of the projection onto the first
m—r components of ¥, this projection is a homomorphism.

¥ is subdirectly irreducible if and only if ny_y = m-1.

f

the fact that ny 2 3.

Let us assume that 7y < 3. It is clear that the projection onto the first 3 components is
a homomorphism and its image is a finite nilpotent SQS-skein of size 23 = 8. Since
ny <3 this SQS-skein cannot be nilpotent of class 1, but this contradicts the above

mentioned fact that the smallest non-boolean nilpotent SQS-skein has 16 elements.

Parts 4 and 5 follow immediately from the fact that :
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6. SQS - Skeins

and ’ t(x’ysz) = r(yaxsz)
for all x,y,z € V since (V;f) is an SQS-skein.

Part 8 follows from corollary 3.2.10: Suppose ¥ is subdirectly irreducible and n;_; <

m—2. Then the two mappings:

X1 X1
X1 X1 )
T— : = ,: and n—_| | x =|x
m X 1 Xm-1 m| | m2 18_2
X
1
X, 0 m
xm n

are homomorphisms and have kernels that are below {(¥) and that intersect in wy.
This contradicts 3.2.10, i.e. ny_; = m—1. Now suppose ny_; = m~1. Then the size of any
class of {(¥) is 2, therefore the only congruences below {(¥) are {(¥) itself and wy.

But by corollary 3.2.10 this implies that 3 is subdirectly irreducible. O
Part 8) of theorem 6.4.2 can in fact be formulated directly for all nilpotent SQS-skeins:

COROLLARY 6.4.3: Let ¥ =(S; q) be a finite nilpotent SQS-skein. Then $
is subdirectly irreducible if and only if [[a]l{(®)| = 2 for some element

ae S

COROLLARY 6.4.4 Let (V;t) be a finite subdirectly irreducible and nilpo-
tent SQS-skein such that V is an m-dimensional vectorspace over GF(2)
and t is given by:

(t(x,,2)); = x; +y; +2; + DX X P Yis 102 10 Z1)
where all pi(x (5. X;_1.Y15e¥i_1:215-002;_1) @re polynomials over GF(2).
Then {((V;1)) = ker(m,,_1), where 7,,_1 denotes the projection onto the

first m—1 components of V.
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Proof: Since p,, does not depend on x,, , y,, and z,, it is clear that ker(zx,,_;) is a con-
gruence. By 3.2.9 L({Vin)) N ker(7,_1) # 0y , therefore [01{((V;5) N [0]ker(z,, ;) #
@& and by 6.4.3 [[01L(V;e))| =2 = |[0]ker(m,, ;)| which implies immediately that
LLV;n) = ker(my,_1). O

We will use this corollary several times in the remainder of this chapter. The repre-

sentation given in 6.4.2 is very useful since even the converse is true:

THEOREM 6.4.5 Let (V;t) be a finite SOS-skein having the following

properties.
1) V is an m-dimensional vectorspace over GF(2).
2) There exists a positive integer k and an increasing sequence 0 =

ng <np <...<n,=mof integers such that the ternary operation
tis given by:

(xy,2)); = X4y 42; + DX e XY Y1 E Y 0B ])
where all p{xy,....X;_ 15150 sYj_1sE10e+ w2;_1) Gre polynomials over
GF(2) and each p; does not depend on S PR TRRP 0y SIS TRRES o
zm+1,...,sz0r n<i<ngq.

Then (V1) is nilpotent of class at most k.

It is clear that this theorem immediately implies that the SQS-skein discussed at the
end of the previous section is nilpotent of class at most 2. Analogous theorems can
also be proven for squags (see 5.7.19) and p-groups. All three theorems are a conse-
quence of a more general theorem which we will present and prove in chapter 8; we
have nevertheless chosen to present this proof since it provides—in this simpler

situation—a better insight into the structure of these algebras.
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While proving theorem 6.4.5 we will rely heavily on the Vaughan-Lee representation
of the commutator as described in 3.3. We need therefore a good description of the
commutator terms in the variety of SQS-skeins. This description is given by the

following two lemmas:

LEMMA 6.4.6 Let (V1) be a finite SOS-skein having the following

properties:

1) V is an m-dimensional vectorspace over GF(2).

2) There exists a positive integer k and an increasing sequence 0 =
ng < ny <...<n=mof integers such that the ternary operation
tis given by:

((x,9,2)); = X4, 42, 4 Py pae Xy (Voo Yo Z 1)
where all pxq,....X;_1:Y1s++»¥j_1:%15- »Zi_1) Gre polynomials over
GF(2) and each p; does not depend on Xpaloer X ¥patse Y
Zy s B for ng<i<ngg .

For every i = 1,...,m let f(i) be the integer such that f(i) = n, <i < n,.,

for some r. If 1D x@ B Dy is a term function on {V;t) then it

is given by

) ) [
EARRIORIONNEION [ B SFUEA L) PO | BN WO
b o\h=1 (1) )
(i) Y1)
where ry,....rj € GF(2) and the s; are polynomials over GF(2) in the

variables xgl),. . ,Jg%g, e ,x?),. . .,Jar((]?).

Proof: We will prove 6.4.6 by induction over the number of operations occurring in 7.

If 7 is a projection then 6.4.6 is obviously true.
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Now suppose
f(x(l)’x(2),x(3),m,x(i)) = t(rl(x(l),x(2),x(3),...,x(i)),...,rg(x(l),x(z),xo),...,x(’)))

where 7, 75, and 73 satisfy 6.4.6, i.e. for /e {1,2,3}:

,- o) (s
(r,(x(l),x(?'),xa),...,x@)),= > r,(ll)xi(h) +sl.a) S T
f k=1 (1) ()

X10) *6)

Then 'c(x(l),x(z),x(z'),...,IU))]IF
- O [N (0] [0
) (i r,(li)xi(h))é-si(l) N N +PAl 0 e
I=1|\h=1 (1) ) (1) 0)
wio wio) wio) i)
] 1 i
i {3 3 xl( ) xl(ﬂ xl( ) xl(])
DDA ST | Il B | S | e O O
h=1\I=1 I=1 ) ) ) 0
*fi) *£i) *£i) i)

where P; is an appropriate composition of py, (T1)1,..,(T1)pu) (T2)1,---»(T2)piy» and

(73)1,---+(T3)g)- Note that D, r\? does not depend on i. This proves 6.4.6 for all term
i=1 )
functions 7. ]

LEMMA 6.4.7 Let {V;1) be a finite SQS-skein having the following

properties:
1) V is an m-dimensional vectorspace over GF(2).
2) There exists a positive integer k and an increasing sequence 0 =

ng<nq <...<n,=mof integers such that the ternary operation
tis given by:

(t(xsy:z))i = x;' +}’, +zi +pi(x1’---,xf_11y1a--'ayi_l:zlx---:zi_])
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where all PiX1se X (Y15 sYi 152 0e - +Z;_1) are polynomials over
GF(2) and each p; does not depend on Xppr1oe XY gy 1Y
Zy 1o Z JOr np <i<myy .
For every i = 1,...,m let f(i) be the integer such that f(i) = Ry <I<n.q
for some r. If 'r(x(l),x(z),xe),...,x(i)) is a commutator term with j 2 2
then it is given on (V1) by

z
i
T(x(l)sx(z),x(g')’-"ax(j)’z) ,= zi+si S sseey . L) :
(1) 0 [V zg,
ay |\ X | (@

. . ) (1 (1)
where the s; are polynomials over GF(2) in the variables X1 oo XR(G)
e ,x?), . .,x}g) satisfying

) g R e

Jhe {l,...4}:f  |=| = sl : Lo Ll ¢ (=0
) Zo (1) ) [ Yzg:
Moy ) \ T o) Mo\ P

forallie {1,....m}

Proof: Let 7 be a commutator term. By lemma 6.4.6 7 can be written as:
(1) ()

. j *1 1
wOx®xO 0] = P 1P erzpes| ..

h=1 (1) o)
*1) Xy |\ 2

9

k)

We will first prove r, =0 forall ke {1,.../}. Let 0 = (0,...,0). Since 7is a commutator

term and j = 2, for all x(z),x(?’),. P e Vthe following equation holds:

J J
0=(0),= r((),x(z),xm,...,x(’),O))l = r10+(2 r,,x§h))+ rO+s) =s;+ Z rhxfh)
h=2 h=2

ANDREAS GUELZOW -0 - UNIVERSITY OF MANITOBA



6. SQS - Skeins

Therefore 51 =0and r, =0 forall he {2,...,f}. Since j 2 2, we get similarly for all
e v:

0=(0), = (t(x(l),{),xm,. ..J-‘(D,O))1 = r1x§1)+ r0= rlxgl)

i.e. ry =0, therefore rp =0 for all h e {1,.../}. The fact that r = 1 follows now immedi-

ately from:

2 =(’b’(z,x(2),Jc(3),.--,76(’),2))1 =rz

We have shown that 7 is given by:

) [0

L
» 1.
'r(x(l),x(z.),x(3),.-.,x(’),Z))i=Zi+5i Do b b
(1) 6
*1) *ray |\ 6
) [
Suppose | : |=| * {, then:

(h)
ay |\ )

z;= (f;(x(1),...,x("“l),z,x("“),...Jc(’),Z) ;

[ |

: _ 1 :
B SR EIA Y
=| T x(l)i'--v z f(l) ’-“,x(j)az :'zi+S; S 3oy E 3
fi)+1 (1} ()
: ) *a) [\ 2
\ “m i
x? x %
and therefore s; A RO N N =0, i.e. we have proven 6.4.7.

(1) )
10] Xy |\ )
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Since ”nz.z(z) = nnl_l(x(l)) and f(i) € n;_; this implication yields
o) [0/,

IS FOUON I N =0

(1) )
1) *ra) | \%fay

5

and therefore ('L‘(x(l),x(z),x(3),...,x(’),z))i = z; for all i < ny. This implies 7, (z) =

xnl(r(x(l),x(z),x@,...,xw,z)), i.e. 6.4.9 and consequently 6.4.8 have been proven.

To complete the proof of 6.4.5 we only have to observe that, for & =k, 6.4.8 implies
¢r < ker(zy,,) = ker(r,,) = 0y, therefore ¢y = wy . This means (V;r) is nilpotent of

class at most k. O

In the next two sections we will consider generating sets of several SQS-skeins. To
facilitate this, we will now prove a lemma that provides generating sets for SQS-
skeins represented as in the preceding theorems. Note that this generating set is

usualiy not minimal. In fact, it is only minimal if the SQS-skein is boolean.

LEMMA 6.4.10 Let 8 = (V;1) be a finite SQS-skein having the following
properties:

1) V is an m-dimensional vectorspace over GF(2).

2) The ternary operation t is given by:

(Y2 = X492, + DKo X (Y e oYy 121 2 )
where all PiXpae X 1Y 15000 Yi1oE )0 »Z;_1) are polynomials over
GF(2).

Let eq, e1, €3, ..., ey, be the elements in V given by (e)); = 8;i. Then for
every he {0,1,....m}:
{xe VIVishix=0} = [{eg}u{ejlh <js<mllg

Especially: V = [leger.ez...em}lu
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Proof: Note that for all { and all x = (Xy5e.0x,,) € Vi pi{xys..0%;1,0,...,0,0,...,0) = 0
since 1(x,eq,eq) =x. Let he {0,1,....,m} and letze {xe V|Vi< k; x; = 0}. Now define
g: [{eo}u{ej|l<j3m}]g - {0,...,m} by:

IO ifxlitzl
g(x) = l] iij+1¢zj+1 and xi=zi forallie {1,...J}

mif x;=z; for all ie {1,...,m}

Note that g(x) = m if and only if x = z. Since {0,...,m} is finite, there exists a
ye [{eglulejlh<j<mlly st g(y) 2 g(x) forallx e [{eg}iejlh <j<m}ly. Ob-
viously g(¥) 2 g(ey) 2 h. We will show that g(y) =m, i.e. y=z.

Suppose g(y) <m . Then Ye()+1 * Zg(3)+1s L€ Yo(3)+41 + 1 = Z(y)4+1. Consider the

element #(y,ep.€4(y)+1) € [{eg}u{ejlh <j<mllyg:
(t(y’eO’eg(y)-f-i))i

. ] Yi+H04+04p,5rse e 1.0,0.,0) = ¥ =z  ifi<gy)
\yg(y)+1+0+ 1+pl'(yi""’yi—1’0""’0) = yg(y)+1+1 = Zg(y)+1 ifi= g@)'f'l

This implies that 8(t(v.ep.€4(3)+1)) 2 g(y) + 1 > g(y), which is a contradiction to the

maximality of g(y). Therefore g(y) =mandz=ye [{eo}u{ejlh <j<m}lyg.

We have shown that {x e V|Vi<h:x;=0) ¢ [{eg}{ejlh <j<m}lg. Since obvi-

ously {xe VIVi<h:x;=0) 2 [{eg}{ej|h <j<m}ly we are done. 3

6.5. Construction of Nilpotent SQS-Skeins

- In chapter 5.8 we have presented some construction methods for distributive squags.

We are able to provide similar methods for nilpotent SQS-skeins:
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THEOREM 6.5.1: Let ¥1 = (V;{D) and ¥, = (Vii®) be finite SQS-skeins
having the following properties:
1) V = GE(2)" for some m 2 1.
2) The operations D are given by:
(t(’)(x,y,z)) i = Xty +z+ p,-w(x,y,z)
where j=12andi=1,...m.
3) Forallk=1,...mand j=1,2 the following holds:

If for some i p,-(’)(x,y,z) depends on zj then pf:z_ﬁ

(x,y,2) = 0.
Then ¥ = (V;0) with

Wy = %+ + 2+ P 0n.2) + P y,)
is also an SQS-skein. Moreover, if both 8, and ¥, are boolean (semi-

boolean) then ¥ is also boolean (semi-boolean).

Proof: We have to show that ¥ satisfies the four defining equations of 6.1.1: Let x, ,
ze Vand 1<i<m. Then;
_ n (2)
(txx,y)); = xp+x+y;+p; (xxy) +p (xxy)
(n 2
= X+x+y; gty +p (xy) + (X;+x;+y; +p; )(x,x,y))

= y; + (t(l)(x,x,y))i + (r(z)(x,x,y))i

= i+ O)+0)
= Y
ie. xxy) =y
Similarly we can prove tx,y,z) = t(x,z,y) and
t(x,y,2) = Hy,z,x).

Note that for the proofs of these three equations we do not require condition 3.
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For the proof of the remaining equation we define: pojz Visv (j=1,2) to be the
function given by: (p(’)(x,y,z))i = p,-(’)(x,y,z). Note that condition 3 implies that for all
xy,zuywe Vandj=1,2:

p®

x,y,2+p(2'-’)(u,v,W)) = pWxy.2)
Then we get:  1(x,y,0(x,y,2)) = t(x,y,x+y+z+p(1)(x,y,z)+p(2)(x,)’,2))

x+y+x+y+z+pM,y,2)+pPD(x,y,2)

={ + p(l)(x,y,x+y+2+ p(l)(x,y,z)+p(2)(x,y,z))

+p(2)(x,y,x+y +z+pMx,y,2) +p(2)(x,y,é))

x+y+x+y+z+pW(xy,2) +pP(x,y,2)

-+ p(l’(x,y,x+y +z+pM(x,y,2) +p(2’(x,y,x+y +2+p(2)(x,y,2))

x+y+x+y+z+pDxy,2) +pDlxy x+y+2+ p(”(x,y,z)}l
=z+
+x+y+x+y +z+p(2)(x,y,z)+p(2)(x,y,x+y +2+p@(x,y.2) ]
= 2+t Wley x4y +24 pOy,2) |+t Dx,y x4y +24pP(x,y,2)

= z+t(1)(x,y,t(1)(x,y,z))+t(2)(x,y,t(2)(x,y,z)

=z4z+2z = 2
i.e. we have shown that ¥ = (V;#) is indeed an SQS-skein. We can show similarly to
the proof of the last equation, that ¥ is boolean or semi-boolean provided both ¥; and

¥, are boolean or semi-boolean respectively. ‘ J

Note that the operation ¢ defined in 6.5.1 can also be given as:

Hxy,z) = x+y+z+ t(l)(x,y,z) - 1(2)(x,y,z)
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The main part of the next construction theorem is in fact a corollary of the last

theorem. This is the analogue to theorem 5.8.2 for distributive squags.

THEOREM 6.5.2 For each je {1,2) let Vi be an my-dimensional vector
space over GF(2) and let (Vj;t(’)) be a subdirectly irreducible SQS-skein
of nilpotence class k; such that
Dxyz) = %+W+Q+£mﬁvwﬂ43k~%4waQﬂ
0

fori=1,...m j where the p;” are polynomials over GF(2).

Then (Vi) is a subdirectly irreducible SQS-skein of nilpotence class
max {ky,ky) where V is an my+my-1 dimensional vector space over

GF(2) and the ternary operation t is defined by

(t(x,y,2));
X1 N1 7
e : , : : : if1<i<m -1
X y 4 1
ml—-l m1—1 ml—l .
xm1+m2—i ym1+m2—1 zml-i-mz—l i
xml yml zm1
t(z s E N ' lfm1SiSm1+m2——2

X+ my-1 Yimy+my-1 Zmyrmy-1 [ i-my+1

*1 \ N 2
+ {1 , ' , '
xml—l yml—l zmi——l

if i=m,+m,—1
xml-i-mz—l} ym1+m2—-1 zm1+m2—1 m 1 2 .

(2 me yml zml
' . . .

-
-

\ xm1+m2—1 ym;é—mz—l zm1+m2—l oy
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Proof: The fact that (V1) is an SQS-skein follows immediately from theorem 6.5.1

with 7€j isomorphic to the direct product of (Vj;rj) with the boolean SQS-skein Bm(z_,)—l'

By theorem 6.4.5 (V:f) is nilpotent. It is easy to see that ({x e V |Vi(i<m; =
x;=0));t) and {{x € V |Vi(m) <i<mp+ my-1 = x; = 0));1) are subalgebras of {V;2).
Moreover, these algebras are obviously isomorphic to (Vq;¢;) and (V,;t,) respectively.
Therefore (V;) contains subalgebras that are nilpotent of class k; and ko, it must

therefore be nilpotent of class at least max(&;, k3}. By corollary 3.2.6, the algebras

(v, ,tlyc ((Vl,tl) (Vautp) : ((VNZ))

are nilpotent of class k1-1 and k-1 respectively. Their direct product is therefore of

nilpotence class max {kj, k2}-1. As a consequence of corollary 6.4.4 it is isomorphic to
the image of the projection 7y, 4,,,-2 onto the first m;+my—2 components of (V;1).
Tmy+my—2 18 obviously a homomorphism with the property that the classes of its kernel
have 2 elements each. By lemma 3.2.9 this implies {{(V;1) 2 ker(y,, 4 mp-2). There-

fore {V;1) is indeed nilpotent of class max{ky, k5 }.

By corollary 6.4.3, if L((V;1)) = ker(7y, 4 my-2) then (V;#) is subdirectly irreducible, and

this proof is complete. We will now prove that {{(V;1)) < ker (%4 my-2)-

Suppose w € [01L({V;#)) where 0 = (0,...,0). Let

WI wml
wl) = ! and W(z) =
wml—l Wiy +my-2
wm1+m2—-1 wm1+m2—1

Then w? e [O}C((Vj;t(’))). We will show this fact for j = 2. The proof for j = 1 is nearly
identical. By lemma 6.3.3 it is sufficient to verify that for all c(l), c(z), ¢® e V; the

following equation holds:
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{DED0,wD U D 3y = D@ (DD 2 Blyy (6.5.3)

0 o 0 ifi<m,
For l e {1,2,3) let ¢'e V be defined by (¢*/); = |
©D);_myer i i2my

Since w e [0]C((V;1), by lemma 6.3.3 the following equation is satisfied: .
1 0,w,eM,e@ By = 1(0,w,1(cD,c@,cBy) (6.5.4)

We observe that for 1 < i <my obviously
ttOw,cD),e@, ey, 1 = (@De@0,w?,c1)),c By,
0w, 1D, e@ ey 1 = (DOwD (DB Oy,

i.e. 6.5.4 implies 6.5.3 for all but possibly the last component. Let us now consider this

last component. We have for 1 <i< m; (e {1,2})

0 X 0
t(j) 0 b ; » 0 =0+xi+0+plg)(0,---,OJI,...JI-_I,O,...,O)
a xmj b1l
%y 6.5.5)
= t(]) 0, E ,0 =xi
xmj i
and
0 X 0
My - : : = ) )
t ol Mo —a+xmj+b+pmj(0,...,0,xj,...,xmﬁ,{),...,())
a x’"j b m;
X
=a+b+{t 0 1 |ON =a+btx,
Y| |

6.5.5 implies that for 1 <i<m; (#(c,c@,eBh); =0 and (#(0,w,eD)); = w;.
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Moreover for m; <i<mj+my—1:

( t(”{(},w(z),c(l)))‘-_ml_,_l if my<i<my+my—1 \

(1)

Wi+Cm2

0
0
(1)

€y } -

| oo

(«mwxﬂb}=

if i=my+m,—1

) |

if miSi<my+my—1

+ Mo, w D),

ma

o

2o,
n

2

(1)
w‘-+wm1 +

2 2) (1
=(,( )(o,w( ) J))l‘_ml+1

and
(t(z)(c(1),6(2),0(3)))‘_,”1“ ifmi<i<my+my—1

M, (2, .(3)
Cm2+(,‘m2 +Cm2

(r(c(l),c(z),c(s))),- = <

0
j| :
+|t o I
e

my

0

0

(2)
Crny

1

c

0
(:) l:f i=ml+m2—1
(3)

my

.

m

\ _ ;(2>(c(”, @ 3
- (t(z)((:(l),C(2>,c<3>))'__m1+1
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We can now calculate:
(1) (2) .3
[ossafe e e

(t(c(l),c(Z),c(l")))ml

CCRFCRON NI PO PWC ,
(t(c(l),c(z),c(3)))m1+m2_1 my

0
(1 9.,y (D :
+it W 0

mi+mo-1|{imy

DD DBy
2

m+ M2—-1

+ t@*(o,w@),:@)(c(1>,c(2>,c(3>))),,,2

+(tP(c (1),6(2),6(3)))m2+w$1)
- (:(2>(0,w<2),t(2>(c(1>,c<2>,c(33)))m2

and

(I(I(O!wac(i))’c(2)3c(3)))m1+ m2—1

@(0,w,cMy),,
(t(O,W C 1 ))m +m2_ +C](?122)+C?5!32)+ t(2 : ,C(z),C(S)
@Ow,eM)), 4o -

(t(0,w, c‘”)) o\l o
+ | I
(1(0,w,c’ >))m _ 00

M ! NONRIKE)

(t(0,w,c ))m1+m2_ mz mz my
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(I(O,'w,c(i)))ml_,_mz_l+c§222)+c£32)+(t(2)(t(2)(0,w(2),6(1)),0(2)’6(3)))]”2

+(t(0’w’c(l)))M}+m2—1+cgz)+cfr?;

- (,(»(,(2)(0,“,(2),c<1)),c<2),c(3)))m2

ie. (,(O,W,I(C(l),c(z),ccs)))lnﬁmz_1 :(,(z)((,,w(z),,(z)(c(1),6(2),6(3)))),”2
and (n{t(o,w,c(l)),0(2),c(3))),n1 tmy-1= (1(2)(t(2)(0,w(2),6(1)),6‘(2),0(3)))m

Therefore by 6.5.4 we may conclude 6.5.3, i.e. w@® e [O]C((Vz;t(z))) and similarly

2

w) e [0]§((V1;t(1))). Since by corollary 6.4.4 these two centers are the kernels of the
projections onto the first m, — 1 and m)—1 components resp., this implies that for all
i<mj+my—1 w;=0. Therefore w [0)ker(7y,, 4 1pp-2) Which finally shows that

CAViD) S ker(Ty 4 pyy_2).

By theorem 6.4.5 {V;?) is nilpotent, therefore 2 < 01KV | < l[0]ker(7rml+ mo-2) |
= 2. This implies {({V;1) = ker(y,, 4 my-2)- 1

Before we present an analogue to the construction theorem 5.8.1, we will prove a

lemma necessary for the proofs in the remainder of this section:

LEMMA 6.5.6 Let W be an m-dimensional vector space over GF(2) with
m>1andlet

s(x.y,2) = x;+y;+ Z; + PiX g5 X Y1se Vi 12]se e Zi1)
Jor i=1,...,m where all the p; are polynomials over GF(2). If (W;s) is
an SQS-skein then the following statements hold:
a) Jorallie {1,...m) and all 15 @i 1X15..X;_] € GF(2):

p,-(al,. vosli 1587150 s 15 X1 .,x,-_l) =0.
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b) forallie {1,...m}, all je {1,....i} and all ay,....q;_1.0}41... .81,
x,y,z e GF(2):

pi(al,. TP P S107S PERRRLL A PLS RERREULT 3 By 2107 7% PRRRSLA AR B

ai,.. .,aj_l,z,aj+1,. ..,a,-_l) =,

Proof: Part (a) of this lemma follows immediately from the identity s(x,x,z) = z. Part

(b) is obvious if we observe that

(al \ ( a1 \ { 01 \\
g1 | {911 %
X s y 3 Z =2
i1 a4 @iv1
am am/ am)
and therefore
((‘11 (“1\ a 31 (91\(91\
S|l x (o ¥ |s] z € x Ll y || z
aiy1 @i 41 Qi i1 Qi1
\\ m m \ m m' m it D

THEOREM 6.5.7 Let W be an m-dimensional vector space over GF(2)
with m > 1 and let (W;s) be a subdirectly irreducible SQS-skein of nilpo-
tence class k > 1 such that

S(X,y,2) = Xj+Y;+2i+ DX s Xi_1 Y150 sYic108 10 0sZi1)
for i = 1,...,m where all the p; are polynomials over GF(2). If Vis an
m+2 dimensional vector space over GF(2) and if t is the ternary

operation given by
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D Y if3<i<m+l

(t(xsy3z))i =
IR

-
-

a2 [ \Ym+2 | \Zma2 /] Im
X191 4

+ x2 Ya Zy

X3¥323 }

ifi=m+2

then (V1) is a subdirectly irreducible SQS-skein of nilpotence class k.

The proof of this theorem is very similar to the proof of theorem 6.5.2. Since some of

the details are quite different, we will present it nevertheless.

Proof: The fact that {V;#) is an SQS-skein follows from theorem 6.5.1 with ¥; isomor-
phic to the direct product of {W;s) with the boolean SQS-skein B, and ¥; isomorphic to
the direct product of H¢ with B,,_;. Theorem 6.5.1 is applicable in this case since by

lemma 6.5.6 p; =0.

By theorem 6.4.5 (V;1) is nilpotent. It is easy to see that {{x e V |[x; =xp=0)};t) isa
subalgebra of (V;t) isomorphic to (W;s). Therefore {V;f) must be nilpotent of class at
least k. By corollary 3.2.6, the algebra <W’S>/C((W, s)) is nilpotent of class k-1 2 1, i.e.
its direct product with By is also of nilpotence class k1. Since by corollary 6.4.4 this
direct product is isomorphic to the image of the projection onto the first m+1 compo-
nents, we may conclude—as in the proof of the previous theorem—that (V;¢) is

nilpotent of class £.
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It remains to be shown that (V;#) is subdirectly irreducible. As before it is sufficient to

prove that {((V;) < ker(7m,;1).

Suppose w € [0]E(V;t)) where 0 = (0,...,0). Let

~ [ "3
w= - leW
Win+2

We will prove that w e [0](((W;s)). By lemma 6.3.3 it is sufficient to verify that for all
c(l), c(z), e W the following equation holds:
s(s0,w,cM),cPcBy = 50,75, @ 3y (6.5.8)
F 2,3} let ¢ fi ) ifi<2
orle {1,' ,3} let c)e V be defined by (c ); = (C(l))i—?. i<y
Since w € [0]E({V;1)), by lemma 6.3.3 the following equation is satisfied:
t(1(0,w,cD),c@ Bl = 10,w,1(cM,c@ B (6.5.9)

We will first evaluate #(0,w,c(1) and #(c(D,c@ ¢(3)) and both sides of 6.5.9:

M .=/
(I(O,W,c ))( (S(O,W,c(l)))i_z If 3<i<m+2

w; if i<2
s(sm,w,cm),c@),c(s))}_z iF3si<m2

('(t(ﬂ,w,c(1)),6(2),0(3))):=< w; 0 0

)m'l' W2 0 0 ifi=m+2

(S(S(O w,ch,c @ G)
? cfz) 053)

\

= (s(s(O,W,c(l)),c(Z),c(3)))‘-_21'f3Sism+2
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0 ifi<2

1) o (2 =
(t(c( L@l ={l .0, (3))}i_2 if 3<ism+2 I

w

These calculations show that 6.5.9 implies 6.5.8, i.e. w € [0]C({W;s)). Since by corol-

e ——]

1. i
0,#,5(cD,c@,c (3)))),._2 if3<i<m+2 ]

(t({),w,t(c(l),c(z),cm)

g

lary 6.4.4 {({W;s)) is the kernel of the projection onto the first m—1 components of W,

we can conclude that forall 1 Si<m~1 W;=wy9=0.

By lemma 6.5.6 p;{x1,0,...,0,y1,0,...,0,21,0,...,0) = 0 for all i. Using this property and

the fact that w; =0 for alli e {3,...,m+1}, it can similarly be shown that:
wy

Wl | e 101 )

Wine2

cie.w;=0forallie {1,...,m+1}. Therefore w e ker(z,,,;) — we have shown that

Vi) c ker(7y,4.1). ]

The last two theorems furnish tools that allow us to construct SQS-skeins within a
given nilpotence class, i.e. to create a new SQS-skeins of nilpotence class £ provided
we already know an SQS-skein of this class. We will now turn to the question of
building an SQS-skein of a higher class. The first answer to this question was given in
(Armanious n.d.). Armanious constructed an SQS-skein of nilpotence class £ from an
SQS-skein of class k—1 by considering the Steiner quadruple system corresponding to
the direct product of the latter SQS-skein with B and rearranging an appropriate
subsystem. The next theorem presents this construction using the easier accessible

representation that we have developed in this section:
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THEOREM 6.5.10 Let (W;s) be an SQS-skein such that W is an m-
dimensional vector space over GE(2) withm 23 and

s(x,y,2) = x;+yj+z;+ PilX1seeasXin] Y seeosYio1sZ10e0sZi-1)
for i = 1,...,m where all the p; are polynomials over GF(2). Let
1 <j<m. IfVis an m+1 dimensional vector space over GF(2) and if t

is the ternary operation given by

5 : ] E 3 E lflSiSm
xm ym Zm [4
(t(xsysz))j= B y ,
77 i m=l
Tme1 TV me 1 21 HEm Ym Zm (xlyzzl) if i=m+1
11 1]1=1
I#]

then (Vit) is an SQS-skein which is not semi-boolean. If (W:s) is sub-
directly irreducible and of nilpotence class k, then {V;t) is also

subdirectly irreducible, but of nilpotence class k+1.

Proof: It is immediately clear that in (V;f) the equations 7(x,x,y) = y and #(x,y,2) =
#(x,2,y) = t(y,z,x) hold. First we will show that t(x,y,t(x,y,2)) = z. Suppose 1, is the
projection onto the first m components of V. Then for 1 £ < m we have:

(10,1 (x,3,2))); = (S (X, T ), (M (1), g ), Ry (2D))); = (Rpy(2)); = 2;

Moreover:
x yj (I(x:y Z)) m-1

(tCe.y .10 Y.2) i1 = o1+ Ymar (r(x’y’z))m+1+xmym ‘(x’y’z))m H (xy(tCx.y.2)))

11 I=
1#]
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%j ¥ 4| mo1 \

Zoe1t P*mYm Zm (xlylzl)
11 1]!I=1
1#]
xj' yj (xj+yj+zj+pj(x1"'"zj—l)) 1 »
+%X Y (xm+ym+zm+pm(x1,...,zm_l)) H (xly,(x,+y,+z,+pl(x1,...,z,_l)))
=1 .
\ 11 1 , /

If0e {xl,...,xj_l,xj+1,...,xm_l,yl,...,yj-_I,yj_,_l,...,ym_l] then both products are zero,
therefore (¢(x,y,0(x.,2))m+1 = Zm+1. Now assume that 0 ¢ {xl,...,xj__l,xj+1,...,xm__l,
Y1seeedjedYjrloee e Ym=1}s L€ AX 1o e X 110 X 1Y Lo oY o1V 10 oY1 } = {1).
Then by lemma 6.5.6 pi(X1,.. s X; 1Y 150 ¥in1,210e . Zi1) = Pil 1000 1,205000251) = 0 for
all i <j. This yields

(tx.y.1(03,2)) )y =

X y; X:+y.+2z.
] <) J J J

Xi Vi Zj| m-1

21t PFmYm Zm Zp |+ X Y xm+ym+zm+pm(x11""Zm-l))
11 1]!=1
1] 11 1

J-1 m=1

=1 I=j+1

If there exists an i€ {1,...,/~1} such that z; = 0 then again we get e,y (03,2 ma 1

j=1
= Z;p41 since the products ] z; become 0.
I=1

Otherwise suppose that z; =1 for allie {1,...,j~1} and that there exists an
ie {j+1,...,m-1} such that z; = 0. Let f denote the minimal such index i. Then by

lemma 6.5.6:
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DX s e X 1Y e V152100 02f 1) =pAl,....Lx1,..011,. 0Ly 10000, 1,..,1) = 0

and we get:
m-1 m-1
H ZI =O and H (zl+pl(x1,...,zl_1) =O
I=1 I=j+1
1#j

ie. (f(x,y,t(x,}’,z)))m-pl = Zms1 -

Finally we have to consider the case z; =0 foralli e {1,...j-1,+1,...,m-1}. By lemma
6.5.6. we have forall1<i<m

PiK1s oo X1V e Vic1sZ1e - 02i-1) = Pil Lo 16 1 L L Lypls 1, 1,1 = 0
and therefore
R A1 I S R B AR A
(t(x,y,t(x,y,z)))mﬂ =2t P Ym Zm| Y Ym Xt Vm T im
111 1 1 1

%Yi | %Yk
=21 PFmYm Zm| T m Ym Zm
111 111

= 2l

We have shown that (V;#) is indeed an SQS-skein.

Before we prove that {V;#) is not semi-boolean, we will evaluate an expression which

we will have to use twice: (6.5.11)
”/owo (1\\/1\{1\\ [(1”1”1\\
o {loll1 1111 1 111
Oj Oj Oj 0Jf lj Oj Oj lj
gl o plo sl vyl =gl v P o
o [lo]l1 111 1 111
*m \0 1 \1} 1 xm+1} 1 1)
|\l ) Yo/ Lo/ Yol Vodj 1w ) Vo) lo
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RN
1 1|1 1 1
=4l 1 L1 b= 1 =l 1
1 1 1 1 1
\\xmﬂ \ 1/ 11 )} X+l \ x,+1 }
Xm+1 0 0 1 10 Xme1 o |
X1t X1 11
1 11
where the index j indicates the jth component,
Now consider the following elements:
0 0 1 1
s : z 0
x=|10 },0={0 |,z=| 1 |landu=} 1
1 0 1 :
0 0 0 1
\ 1
0
By 6.5.11 we get 1
(2 (x,1,0),u,2) = 1
0
1 but

|

(00, 10,u,2))),,,1 = | H X1

-

ie. t(r(x,u,0),u,2) # t(x,u,t(0,u,2))

T ——
e (O D
i

this SQS-skein is not semi-boolean.
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Now suppose (W;s) is subdirectly irreducible and of nilpotence class k. By theorem
6.4.5 (V;1) is nilpotent. Since the image under the projection onto the first m compo-
nents is obviously isomorphic to (W;s) and the kernel of this projection is a minimal
non-trivial congruence, we may conclude as before that (V;?) is nilpotent of class k or
k+1 and L(V;38) 2 ker(7,,41)-
Suppose w € [01C((V;1)) where 0 = (0,...,0). Let =, be the projection onto the first m
components of V. We will prove that x,,(w) € [0]J{((W;s)). By lemma 6.3.3 it is
sufficient to verify that for all D, c(z), ¢ e Wthe following equation holds:

(0,7, (w),cM,eD By = 50,7,w),5(cD,c@,cBlyy  (6.5.12)

For [ e {1,2,3} let c)e V be defined by (¢, = o .
ifi=m

Since w € [0]E(V;1), by lemma 6.3.3 the following equation is satisfied:
11(0,w,c(),cP By = 10,w,1(cD,cP,cBy)

By application of the projection 7, on both sides of this equation, we immediately get

6.5.12, i.e. m,,(w) € [0]C((W;s)). Since by corollary 6.4.4 {((W;s)) is the kernel of the

projection onto the first m—1 components of (W;s) we may conclude w; =0 foralli=

1,...,m~1. By lemma 6.3.3 we have

(RRIRRIRE AR
\\0 t i))\i} i}) \\")\g L

The left hand side of this equation is just 6.5.11, and the right hand side can be

evaluated easily. We obtain
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RTHIATR
. 11813

1 0 1 1
wp,+1 W \ 1 } w,,+1
W, . 1w W+ 0 w
m+1""m m+1
i.e. wy, = 0. Therefore w € ker(x,,,1), we have shown {(V;#)) = ker(z,,,1). By corol-

lary 6.4.3 this implies that (V) is subdirectly irreducible, and by 3.2.6 that (V;f) is

nilpotent of class k1. i

Using these construction theorems we are able to construct SQS-skeins of nilpotence
class k and size 2" for all k> 1 and n > k+2. Note that corollary 6.2.8 already states
that for every n 20 there exists an SQS-skein of nilpotence class 1 and size 2", but

this SQS-skein is only subdirectly irreducible if n = 1.

THEOREM 6.5.13: For every k> 1 and every n2 k + 2 there exists an

subdirectly irreducible SQS-skein of size 2" and nilpotence class k.

Proof: Before we can proceed with the main part of this proof we have to construct an

SQS-skein of nilpotence class 2 and size 2°. Let A3y = (A;g) where A =(GF(2))* and

g is given by
x1+y1+zl
1) (1) (21 Xp+Yo+2o
X2 1Y21%2 Xgt+y3+z3
q x3 ’ )’3 s 23 = X4+y4+24
Xa{{yallz
x5) D) LA
| X5+Y5+2Zs5+Xp¥p2aX3Y3231%4 Y4 24 }
111

It follows immediately from theorem 6.5.10 that A3; is an SQS-skein, created from By,

that is not semi-boolean. By 6.4.5 it is nilpotent of class 1 or 2. Since it is not semi-
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boolean, it cannot be of nilpotence class 1, i.e. it is of nilpotence class 2. Let 7y be the
projection onto the first four components. As before it is clear that ker(my) C(A32).
We will show that in fact ker(74) = {(A35). Suppose w [0]1C(A3,) with 0 = ©,...,0).
By lemma 6.3.3 for all ¢®) € A with j=1,2,3

9@Ow,c),cP @) = 40,w,q(cM,c®,cB),
Evaluation of these expressions yields

Drw, @ B

(cél)+w2)c§2)c§3)(c§1)+w3)c§2)c§3) c§1)+w4 CgZ) 6‘53)

1 1 1

(6.5.14)

NOWOWE
1 1 1
= (1) (2) .(3) (1) (2) .(3)| (1) (2} (3
=6y ey ey ey e e C§)CS)C£)

I 1 1

i D= (32 D B) (D_ D
Choosing G === =1& Cp =Cq = 0 shows that
Wiy @ @
Wo W3 c§1)+w4 052) cf’) =0
1 1 1
for all remaining choices of c(’}, i.e. wy w3 = 0. If we change our selection to c§ D=1 we
obtain instead
(1) (2) (3)
Wy €
Wy (w3+ 1) C£I)+ Wy C§2) cf) = ()
1 1 1
for all remaining choices of ¢\, i.e. wy (w3 + 1) = 0. This implies wy = 0. Similarly we
can deduce wz = 0. If we now choose c§1)=c§2)=c§3)= c§1)= c§2)= c§3)= 1 then 6.5.14

yields
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m @
w4 cf) cf) =0
0 1 1
for all remaining choices of ¢?, i.e. wy =wy = 0. This implies w € ker(m). We have
shown ker(my) = {(A3). By corollary 6.4.3 A3, is subdirectly irreducible. We are now

ready to proceed with the main part of the proof.
Letk22,n2k+224andm=n—-(k-2). Then m=4.

We note first that Ajg and A3, are subdirectly irreducible SQS-skeins of nilpotence
class 2 and of size 2 and 2° respectively. If m is even we apply the construction theo-
rem 6.5.7 m—;;' times to Ajg and obtain an subdirectly irreducible SQS-skein of
nilpotence class 2 and size 2™. If m is odd we can construct a subdirectly irreducible
SQS-skein of nilpotence class 2 and size 2™ by applying the same theorem "112'—5- times
to A39. Therefore for any m = n — (k — 2) there exists an subdirectly irreducible SQS-

skein Z,, of nilpotence class 2 and size 2™,

Starting with Z,, and applying theorem 6.5.10 (k — 2) times we have finally construc-

ted a subdirectly irreducible SQS-skein of nilpotence class 2 + (¢ —2) = k and size
2m+(k—2)=2n—(k—-2)+(k——2)=2n. H

6.6. Examples

In this section we will investigate several examples of SQS-skeins. In all of these
examples, given an SQS-skein (V;g) where V is an vectorspace over GF(2), ejeV
shall denote the element given by (€)= Sj,- for j =0,1,2,... and l =1,2,.... Note that

eg=0=(0,...,0).

In the previous sections we have already discussed the SQS-skeins B, H6, A4, and

A3y, We will now complete their investigation.
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EXAMPLE 6.6.1: Let n be any positive integer. Let B, be the algebra
{(B;q) given by B = (GF(2))" and

(qxy,2)); = x+y;+z foralli=1,...,n
Then By, is an SQS-skein of nilpotence class 1, which is generated by the
n +1 elements ey, €y, ey,..., €,. B, is subdirectly irreducible if and only

ifn=1.

Proof: The properties of B, follow immediately from theorem 6.2.5, lemma 6.4.10 and

corollary 6.4.3, since {(B,) =1, . O

EXAMPLE 6.6.2: Let Hyg be the algebra (H;q) given by H = (GE(2))*

and
X1+y1+2;
X1 (Y11 {4 Xo+Yo+2y
211721 [%2]| = X3+y3+z3
*3117311%3 X1y 21|
3Y3 23

Then H g is a semi-boolean, subdirectly irreducible SQS-skein of nilpo-

tence class 2, which is generated by the four elements ey, ey, e, and es.

Proof: We have already seen in 6.2. and 6.3. that H ¢ is a semi-boolean SQS-skein of
nilpotence class 2 with {(#H4) = ker(n3) where 73 is the projection onto the first 3
components. By corollary 6.4.3 Hy¢ is subdirectly irreducible. By lemma 6.4.10 H 4 is

generated by the 5 elements ey, €1, €5, €3, and e4. It remains to be verified that in fact

es € [{eg, ey, €3, €3}y, - This is true since g(gey,ep.q{eg.€p.€3)).€0.q(e;.€5.€3)) =

—Jl1 ={01=
q[4q|€1-€ps % ,90,4(31s€2!e3) =4 1 40 i B 8 ¢
0 o) \1j \1
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EXAMPLE 6.6.3: Let A be the algebra (A;q) given by A = (GE(2))*

and
x1+y1+zl
Xa+Va+2
xl yl 21 x2+§2+22
q *2 B y2 s 22 = 3T
X311Y3]1%43 2¥2 2
X4 \Vaf \24 XgFYatIgtxy Y1 211%3Y3 23

111

Then Ayg is a subdirectly irreducible SQS-skein of nilpotence class 2,
which is generated by the four elements eg, ey, ey, and e3 and which is

not semi-boolean.

Proof: We have already seen in 6.3. that A4 is an SQS-skein of nilpotence class 2,
which is not semi-boolean, with {(4,4) = kér(irg,) where 73 is the projection onto the
first 3 components. Corollary 6.4.3 shows again that A4 is subdirectly irreducible and
lemma 6.4.9 yields that Ag is generated by the 5 elements ey, e}, €3, €3, and e4. It

remains to be verified that in fact e4 € [{eg, e, €3, €3}14,4 . This is true since

q(q(q(ea’eo’ez),q(elseo’es)sq(q(el’eo’ez),eo:%)):eo’el)

1{]1 1 11/1¢1)1
=q CI (1) ) ? 1q 6 80,33 360381 =q q é ] ? s i ieOiel
\ \lo/ 10/ {io 0/lo/{0
1 0
=4 8,80,81 = 8 =€4.
W1 1 O
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EXAMPLE 6.6.4: Let A3, be the algebra (A;q) given by A = (GF(2))5

and X 4y +2 \
xl yl zl x2+y2+22
x2 y2 22 x3+y3+z3
q 13 ’ J’3 ’ Z3 = X4+y4+24
X4 1Ya]12%4
xs) \vs/ \zs X191 4
X5tYs5t25+X3Yy23%3Y323 "14 y14 214 }

Then Azp is a subdirectly irreducible SQS-skein of nilpotence class 2,
which is generated by the five elements €0, €1, €3, €3, and e4 and which

is not semi-boolean.

Proof: We have already seen in the proof of 6.5.13 that A3 is a subdirectly irreducible
SQS-skein of nilpotence class 2, which is not semi-boolean. Lemma 6.4.9 yields that
A3 is generated by the 6 elements eg, e, €3, €3, e4, and es. It remains to be verified

that in fact e5 € [{eg, ey, e, e3, 24}]43, - This is true since

4(4(4(4(31’60’92)’30’93)»‘1’(6’2"-’0’33)"1(4(82,eo’6'3),6’0,34))’4(31’80’82)’4(83’6’0’34))

1 0 0 1 0
1 1 1 1 0
=q[q q|| 0 Leges|s| 1 |g|] 1 |eges]ls| O )| 1
0 0 0 0 1
0 0 0 0/10
1 0y/0 1 0
1 1 1 1 0
=qlql 1t 1 L1 01
0/J]0 1 0 1
0/10/1\0 6/10
1 1 0 0
1 1 0 0
=gl 1[0 1][l=(0]|=e5
1 0 1 0
1 0 0 1 0
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We will now consider an infinite sequence of 4-generated SQS-skeins of increasing
size and nilpotence class. The existence of this sequence shows that the free 4-

generated SQS-skein must be infinite and cannot be nilpotent.

EXAMPLE 6.6.5: Let Ny = ((GF(2))* ;¢™) = A1 as given in example
6.6.3. For n> 4 let N, be the algebra ((GF2N" :¢"™) where ¢ is
given by
X1 Y1 Zy
q(n—l) : 3 ; 3 E I:f l Si< n
Xn-1| \Yn-1/ \Zn-1/}i ‘

(¢™Gy.2); =
Xn2Yn-2%n-2| po

Xyt +2,+ ¥ n-1Yn-1 Zn-1 H (92} ifi=n
1 1 1 |iI=1
Then each N, is a subdirectly irreducible SQS-skein of nilpotence class
(n —2), which is not semi-boolean. Moreover, each N, is generated by

the four elements e, ey, 9, and e3.

Proof: The first part of this statement follows immediately from example 6.6.3 and the
fact that for n >4 N, is constructed from N,_; by the construction method described in

theorem 6.5.10.

It remains to be shown that each N, is generated by the four elements ey, €1, €5, and

e3. We will first show that for every i € {4,...,n} ¢; € [{eg, ey, €,..., ei-1}n, -

‘ Oifics
Let lf denote the element in (GF(2))" given by (lf)i = I 1ifr<i<s . Note that for any s
s ‘ 0if s<i
Iy=¢e;.
X1\ (N X1+
Since g@)|| * If ¢ l.eg]=| : |obviously Ije [{30"°"ei-1}]Nn for all 0<t<s<i.
xn yn xﬂ +yn
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Let us now consider the expression q(")(lil_ 1,11;_2,11;—3).
1+41+1 =1 if j<£3

. i-1 102 ,i-3
If;<z—2then(q(")(1 150 ))j= 1+1+1+1

111
111|=1 ifj>3"
111

1+14+0=0 if j<3

. i-1 102 i-3,) _
Ifj_z—zthen(q(")(l 150 ))j" 1+1+0+1

111
111{=0 ifj>3"
111

1+0+0=1 if j<3
. i1 02 i) 111
If j=i I‘hen(‘?(")(l 100 ))j' 1-{-{}+0+1110§=1 ifj>3 -
111
1 g i 110
It j=i then (g)(15,152,153)) = 0404041 100|=1and
. 1D e 200
if j> i then (g1 51,152 1 3))j=0+0+0+o(1)(1)(1) =0

Therefore q(”)(lli_l,lll—z,l?%) = q(")(li-_l,llﬁ,eg) and we get

-1 _i-2 -3, _i-3
@M @M 1T AT eo)eioneo)

= 4" g1 11 e 1T e ei1.60)

=q™ (1::-1’3;'-1’60) =€ ‘
Since for every i € {4,...,n} and all 0<t<s < i lf € [{eg, €1, e3,..., ei—l}]N,, this
equation implies that for every i e {4,...,n} ¢; & [{eg. €1, €2,..., €;_1}1y, . Since by
lemma 6.4.10 N, is generated by (eg, ey, e3,..., €,}, we can deduce that N, is in fact

generated by {eg, e;, €2, e3). O

As mentioned above, the existence of this sequence of SQS-skeins permits some

conclusions about the free 4-generated SQS-skein:
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COROLLARY 6.6.6: The free 4-generated SQS-skein is infinite and

neither nilpotent nor semi-boolean.

COROLLARY 6.6.7: The variety of SQS-skeins is not locally finite.

all SQS-skeins These examples allow us to

take a glance at the structure

y infinite chain of subvarieties: of the subvariety lattice of the
semi-boolean tnilpotent of class at most n

' variety of SQS-skeins. Figure
1

Nse (Onilpotent of class at most 4 8 shows those subvarieties

that we have shown to be dif-

Ns& ( milpotent of class at most 3 ferent from all others included

with the exceptions that we
N4E(

)ni]potem of class at most 2 .
have not constructed a semi-

boolean SQS-skein that is not

semi-boolean &

nilpotent of class at most 2 nilpotent of class at most 2. In
this figure &, indicates the free
By Omedia BUTe 34
4-generated SQS-skein.
unique atom

O 1-element SQS-skein

Figure 8:
A part of the subvariety lattice of the variety of SQS-skeins.

6.7. Derived Steiner Triple Systems

We have previously seen that distributive squags can be characterized combinatori-
cally as those squags that correspond to Steiner Triple Systems whose subplanes are

isomorphic to the 9-element affine plane. A similar description can be given for semi-
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boolean SQS-skeins. We will first define the concept of a derived Steiner triple system

as a certain “substructure” of a Steiner quadruple system:

Definition 6.7.1: Let (P,B) be a Steiner quadruple system and u € P be

an arbitrary point in P. Then the Steiner triple system (P\{u}, B’) with

B’ = {{x,y,2}| x,y,z € P\{u} & {x,y,z,u} € B} is called a derived

Steiner triple system of (P,B).

We can now state and proof the following characterization of semi-boolean SQS-

skeins:

THEOREM 6.7.2: Let 3 = (S;q) be a SQS-skein with the corresponding |

Steiner quadruple system (S,B). 8 is semi-boolean if and only if all de-

rived Steiner triple systems of (S,B) are projective geometries over

GF(2).

Proof: Suppose all derived Steiner triple systems of (S,B) are projective geometries

over GF(2). Letu, x,y,ze S. If f{u, X, ¥, z}l <4or{u x,y, z} form a subalgebra of $

then g(x,u,q(y,u,z)) = g(g(x,u,y),u,z) since every four element SQS-skein is boolean.

Otherwise, consider the derived triple
system (P\{u},B’) where B’ is given by B’ =
{{a,b,c}| a,b,c € P\{u} & {a,b,c,u} € B}. In
(P\{u},B")x, y, and z are not collinear. Since
this triple system is a projective geometry
over GF(2), the subplane generated by x, y,
and z has seven elements and is shown in
figure 9. It is straightforward to verify that in
fact q(x,u,q(y,u,2)) = q(q(x,u,y),1,2), i.e. B is

semi-boolean.
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qlglxuy)uz) = p=qlxuqg(yu.z)

Figure 9:
A subplane in a projective geometry over GF(2).
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Now suppose that 8 is semi-boolean. Let
ue §and let x, y and z be three non-collinear

points in the derived Steiner triple system

(P\{u},B"). We will show that the subplane

qxug(ynz))
generated by x, y and z is the projective

plane of order two (i.e. the Fano plane).

Figure 10:
In a derived Steiner triple system Y
of a semi-boolean SQS-skein (1).
The third point he line through dzi w0
¢ third point on the line throu and z is
P gy 9(g(xuz)uy) =
q(y,4,z) and the third point on the line pass- Jxug(y42))
ing through g(y,u,z) and x is q(x,u,q(y,u,z))
0) (JL
(figure 10). (Note that we are now not con- a(Fa2)
cerned with the question whether the points ,
. Figure 11:
.. . . In a derived Steiner triple system
that appear distinct in the figures are in fact of a semi-boolean SQS-skein (2),

different; we will consider this question at

the end of the proof.) Similarly, the third

aCey) point on the line through x and z is g(x,u,z)

and the third point on the line passing
through g(x,u,z) and y is g{q(x,u,z),u,y).

Since 8 is semi-boolean, q(q(x,u,z),u,y) =

N

aC3) a0,q(zu)) = a0,q0,.2)) (gure 11),
pigfﬁx,;‘(iﬁiﬁg Using the same argument again and since
= q(qxuz)uy)

q(g(x,u.y).u,z) = q(x,u,q(y,u,z)), we obtain

Figure 12:
In a derived Steiner triple system
of a semi-boolean SQS-skein (3).

figure 12. Since q(q(x,u,z),u,q(y,u,z)) =

q(x,u,q(z,u,q(y,u,z))) = qg(x,u,y) we reach
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the subplane shown in figure 13. It is easy to
verify that this configuration contains all
lines determined by at least two of the
included points, i.e. it is indeed the complete

subplane generated by x,y and z.

The configuration shown in figure 13 is ob-
viously the projective plane of order 2 (the
'Fano plane). Since the Fano plane is the

smallest Steiner triple system that contains

qlxuz)

Figure 13:
A plane in a derived Steiner triple
systemn of a semi-boolean SQS-skein.

at least three non-collinear points, we can conclude that the subplane generated by x,y

and z is this projective plane of order 2, i.e. the different points in figure 13 are in fact

distinct. As we have mentioned in 4.3, Hall showed in (Hall 1960) that the Steiner

triple systems whose subplanes are the projective plane of order 2 are exactly the

projective geometries over GF(2). We may conclude that the derived Steiner triple-

block through u

Figure 14:
A plane in a derived Steiner triple
system of a boolean SQS-skein.
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systems of a Steiner quadruple system
corresponding to a semi-boolean SQS-
skein are projective geometries over

GF(2). 1

The boolean identity 6.2.1 cannot be
expressed within a derived »Steiner
triple system. It describes in which
way these systems are assembled to
form the Steiner quadruple system.
Figure 14 shows the meaning of this
equation for the points x, y and z of the

last proof. Note that the ‘grey’ blocks
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miss 4 and are therefore not part of the derived Steiner triple system considered.
Several blocks missing # have been omitted. They can be obtained from an existing

block by rotating it about the centre of the configuration by 60° or 120°,
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7.1. Basic Properties and Definitions
In this paper we are considering groups only as algebras of type (2,1,0), i.e.:

DEFINITION 7.1.1 An algebra (G;-,”},1) of type (2,1,0) is called a group
if the following equations are satisfied in (G;-,”1,1):
a-b-cy = (@b-c
a‘l= a =1-a
. a-(a“l) = 1 =(a‘1)-a
A group (G:-,”1,1) is called commutative if in (G;-,'l,l) the following
equation is satisfied:
ab = b.a

A group (G;-,‘l,l) is called cyclic if it is generated by one element.

Since the universal algebraic theory of the commutator has been developed as a gene-
ralization of the group-theoretic commutator it is not surprising that the commutator

and the centre can be easily described in group-theoretic terms:

THEOREM 7.1.2 Let 8 =(G;-, L, 1) be a group and let o and 8 be two

congruences on . Then

a) the commutator [o,fB] is the unique congruence satifying the
condition: [1][e,B] = {aba™ b7 | ac1fb & ab e G) and

b) the centre {(®) is the unique congruence satisfying the condi-

tion: [11{(@&) ={x | xe G & ax=xaforallae G).
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It is well known that the commutative groups are exactly the abelian groups. More-
over the finite abelian groups are exactly the direct products of cyclic groups. Every
cyclic group is one of:

(Z;+,-,0) the additive group of integers

{0,....p-1};+ ,—p,O) the set of integers 0,...p—1 under addition modulo p

for every positive integer p 2 2.

Every finite cyclic group {{0,...,p—1},+ ,—p,O) satisfies the equation px = 0. (The ex-
pression px stands for the sum ((...((x + x) + x) +...) + x) in which x occurs p times.
Similarly, we will denote the product ((...((x-x)-x) -...) + x), X occurring p times,

with xP.) A generalization of this concept is:

DEFINITION 7.1.3 A group (G;,7L1) satisfying the equation xP =1 is
called a group of exponent p. Groups of exponent 2 are also called

Boolean groups.

DEFINITION 7.1.4 Given a group 6 = (G;-,"l,l) an element xe G is said
to have order nif x? = 1 and for all j:
1<j<n = H=1

If G is finite then IGl is called the order of &.

It is known that the order of any element in a finite group divides the order of the
group, It is also known that these definitions imply that the order of any element in a
group (G;+,"1,1) of exponent p must divide p. Since the only element in (G;+,71,1) with
order 1 is the element 1, every element other than 1 in a group (G;-,~1,1) of exponent p

where p is prime must have order p itself. A more general concept is:

DEFINITION 7.1.5 A group (G:+,~1,1) in which every element x # 1 has

the order pk where k is some positive integer (depending on x} is called

ap-group.
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In the remainder of this chapter we will be mainly concerned with p-groups for prime p.
Note that for every prime p every group of exponent p including the cyclic group
({0,....p-1};+ ,—p,O) is a p-group. Every homomorphic image, subalgebra (i.e.
subgroup) and finite direct product of p-groups (p prime and fixed) is again a p-group,
Nevertheless, the class ﬁp of all p-groups does not form a subvariety of the variety of

all groups. Every variety within ﬁp is congruence permutable, uniform and regular.

We have previously seen that every finite distributive squag is nilpotent. Similarly, it

is also known that:

THEOREM 7.1.6 Every finite p-group is nilpotent and if(G;-,"l,l) isa -
finite p-group with |G| = p* then (G;',"l,l) is nilpotent of class at most

k-1,
but while the variety of distributive squags is locally finite, we have here:

THEOREM 7.1.7 The class of all p-groups @F (p prime and fixed) is not

locally finite,

i.e. a finitely generated p-group may be infinite. The question whether this can happen
is known as the generalized Burnside problem. It was answered in (Golod, 1965
[1964]). Golod gave a non-constructive proof that for every prime p there exist a
finitely generated infinite p-group. In (Grigoréuk 1980) the construction of a 3-gener-
ated infinite 2-group was presented and (Gupta and Sidki 1983) gives constructions of
2-generated infinite p-groups for every odd prime p. The original Burnside problem was
posed in (Burnside 1902): “Is every group with a finite number of generators and
satisfying an identical relation x" = 1 finite? ™ This question was first answered neg-
atively in (Adian and Novikov 1968) for all odd » 2 4381. The limit for » has been im-
proved in {Adian 1979 [1975]) to n = 665 (n odd).
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For certain classes of groups of exponent p more can be said: Every Boolean group is
abelian, every finitely generated group of exponent 3 is finite and every group of expo-
nent 3, whether finitely generated or not, is even nilpotent of class at most 3. More-
over, every finitely generated group of exponent 4 is also finite and therefore nilpotent,

But in this case it cannot be extended to the infinitely generated groups of exponent 4.

The finitely generated infinite p-groups behave very differently from their finite coun-

terpart since the following theorem holds:
THEOREM 7.1.8 No finitely generated infinite p-group is nilpotent.

Theorem 7.1.8 is really a corollary of the more general theorem that a nilpotent group
is finite if it is generated by a finite number of elements each having finite order. It

allows us to describe a locally finite class of p-groups:

COROLLARY 7.1.9 Any variety consisting solely of nilpotent p-groups is

locally finite.

Proofs for theorems 7.1.6 and 7.1.8 can be found in every standard group theory

textbook. Corollary 7.1.9 follows immediately from 7.1.8.

We will see in the next sections that the limit on the nilpotence class given by theo-
rem 7.1.6 is only slightly better than the most obvious one. Theorem 5.4.1 has given
us an upper bound of the nilpotence class of an n-generated distributive squag as a
function of the number of generators n — theorem 5.4.2 even proved that this was the
best possible bound. The question arises whether such a bound can also be given for
p-groups. The existence of a recursive upper bound for the nilpotence class of an
n-generated finite group of prime exponent p has already been shown by Adian and
Razborov. A rather shorter proof of this fact due to E. I. Zel’manov can be found in

(Kostrikin 1989).
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M. F. Newman and J. Wiegold have found a bound for the nilpotence class of algebras
in the variety 2\72_ =A, A, where A, is the variety generated by {{0,1 };+2,—,0) and the
product of two group varieties is defined to be the variety of all groups that are exten-
. sions of a group in the first factor by a group in the second factor. Their bound was first

published in (Neumann 1967, theorem 34.53):

THEOREM 7.1.10 In the variety 2\% every n-generator group is nilpotent

of class at most (n+1) for every n 2 2.

This theorem is a consequence of their result (also published in (Neumann 1967,
34.52)) that whenever the group A = (A;+,—-,0) is metabelian (soluble of class 2)—i.e.
it satisfies the commutator identity [[lA,IA] \ [T.A,IA]] =, —and for k=2 and k =3 all
the k-generator subgroups of A are nilpotent of class at most & + 1, then the same is

true for all values of £.

7.2. A Representation Theorem

As in the theories of nilpotent squags and nilpotent SQS-skeins we can use corollary
3.4.7 to give a representation of any finite p-group provided we have found a similar
representation for all finite abelian p-groups. Since every finite abelian p-group is the
direct product of cyclic groups of order p” (p prime), we will first consider such a cyclic

group of order p™:

THEOREM 7.2.1 Let @ ={G;+,-,0) be a cyclic group of order p"
(p prime). Then there exists an n—dimensional vector space V and poly-
nomials pxy,....%;_{¥1.-->¥i_1) and q{xy,...,x;_1) over GE(p) for
1 <i<nsuch that

1) ¥ = (V;+,=,0) is isomorphic to & where

(X+Y); = G P X YY)
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(=x); = —Xx+q(xpexpy),
and 0, = 0
Jorallie(l,...,n} with py=0=gq,.
2) Foralliand all (x,...x,), OppeenYp) € V0
PiXpse e Xy 1Y 5o ¥i)) =P e ¥inp X e K1)
3) For alliand all (xy,....x,) € V pj(xq,....x;_1,0,...,0) = 0 (i.e. no
PiX 1o X 1¥15- Y1) has a constant term and every monomial
of it contains elements from {x1,...,x,} and from {ypoeee¥p )l
4) For alli ¢,0,...,0) = 0 (i.e. no qi(x1,-.-,X;_1) has a constant

term.)

Proof: The representation described is simply the base p representation XpeooX)
where the polynomials p; and g; are the carry-over functions. It is clear that these
functions depend only on the lower valued digits — note that they indeed depend on
all lower valued digits since p;has to consider the value of p;_ ;. Properties 2, 3, and 4

are consequences of the equations x +y=y+x, x+0=0,and =0=0. OJ

Since every finite abelian p-group is the direct product of cyclic groups of order p" we

immediately get the following corollary:

COROLLARY 7.2.2 Let 6 = (G;+,—,0) be an abelian p-group of order p*
(p prime). Then there exists an n—dimensional vector space V and poly-
nomials p(xq,....X;_1:¥15--s¥;_1) and qxy,...,x;_1) over GF(p) for
1 <i<nsuch that

1) ¥ = (V;+,=,0) is isomorphic to ® where

x+y); = X4y, P XX (Y pees¥i1) s
(=x); = =x+qxp.% 1)
and 00 = 0

i
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forallie{l,...,n}) with p=0=g¢q;.
2) For all i and all (XseeesXy), Oy eV
| Py Xi Y10 +¥ie1) = DO e Yig KX )

3) Foralliand all (x,....x,)e V Pixys. X 1,0,...,0) = 0 (ie. no
J 716 STIPNG FI0N P .+s¥;_1) has a constant term and every monomial
of it contains elements from {x15....x,,) and from {yl,...n,yn}. )

4) For alli q,0,...,0) = 0 (i.e. no q;(X15-..»X;_1) has a constant

term.)

As a consequence of this corollary and of corollary 3.4.7 we get (as in the case of theo-

rem 5.6.3);

REPRESENTATION THEOREM 7.2.3 Let & = (G;+,—,0) be p-group of
order p™ (p prime) of nilpotence class k. Let|[0]§(®)| =p’. Then there
exists an m—dimensional vector space V and polynomials Gi(X 500X q)
and pxq,....X;_1:¥1s--¥;_1) over GE(p) without constant term for all i
with 1 <i<m and an increasing sequence n; < ... < n, of integers such
that

1) n22,n_y=m-r and ng=m

2) ¥ = (Vi+,=,0) is isomorphic to @ where

(X +y); = X4 Y Hp DX X 1 YY) s
(=x); = —pXitp G(XqseaX; 1) s
and 0 = 0

i

Jorallie{l,...,m} with p;=0=gq,.

3) For all i and all (xy,....x,)) € V pix{,....x;_1,0,...,0) = 0 and
p{0,...,0,x},....x; 1) =0 (i.e. no PiX 1o sX; 1Y pse-0¥i_1) has a
constant term and every monomial of it contains elements from

{x15...x,,) and from {y;,....y,.}.)

ANDREAS GUELZOW - 120 — UNIVERSITY OF MANITOBA



7. p-Groups

4) For all i q;,0,...,0) = 0 (i.e. no q;(xy5....x;_1) has a constant
term.)

5) C(¥) corresponds to the kernel of the projection onto the first
m~r components of 8, this projection is a group homomorphism.

6) Ifog=8<E <& <...< & = \g is the upper central series of ¥
then for any je (0,...,k) the congruence §j corresponds to the

kernel of the projection onto the first ny_; components of 6.

Note that the requirement ][O]C(ﬁ)] =p” is not a restriction for this theorem but a defi-

nition of the variable r. We will illustrate this representation theorem in section 7.4.

Proof: If £ =1 @ is an abelian p-group with m = r and C(®) = G. Theorem 7.2.3 fol-

lows then immediately from corollary 7.2.2. Therefore we will assume that & > 1.

By corollary 3.4.7 there is a collection of finite p-groups ®; = (Q1;+,—,0),
@2 =(02+,-,0), ..., @, = {Q;+—,0) of nilpotence class 1 and maps T’; for e = 1,2,3 and
J=1,..,k-1 such that; . |

® is isomorphic to HQ s+.=,0 } with:

i=1]
(rl,rz,...,rk)+(SI,SZ,..-,Sk)=
+87,7 55+ T robs,+T5 (ool 1)5(S15e 08 _1)
TS St pr e M HT] (e ol 1)1 (805008
1 k-1
'='(Sl,5'2,...,sk) = _sl’—s2+T2(Sl)""’"sk+T2 (Sl,...,sk_l)

1 k-1 1 k-1
0 = (00473047 = [0,7},...747)
. j 2 . j 2 )
where 77 :| [T @ =01 T[] =0y1,amd T : 00, ie. HeQ,,
i=1 i=1

We can assume that T4 = 0 for all j, since otherwise we may consider the isomorphic

k
algebra Hg;+*,=* ,0* with:
i=1
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%
(SECTR AR (5155950058 =
r1+sl,

r2-t~52-1-T31+T11 (rl,sl ),

k-1 k-1 1 Lk i
R ot i (RS S o | DR P )

1 .1 k-1 | k-1 1 k-2
*($18geS) = (S 2T ()5 2T 4T 15+ T 5475 )

0*

0.,0,...,0) .

a =07 ) is isomorphic to & since the bijection:

This algebra
j=1

k
i=

¢: HQ ;+:=:0 e HQ ;+*,=* ,0*

i=1 i=1

given by ¢((sl,sz,...,sk))=(sl,sz—T;,...,sk—T;“l) can easily be checked to be an

isomorphism,

Since all @; are of nilpotence class 1 they can be represented as described in corollary
7.2.3, i.e. each @; is isomorphic to <GF ()™ + i) for some m; 2 1 with:
((’1»--"'::;-)"“(31’" .,sm‘_))j =rt, sj'*'ppjl(rl’”‘"}—l’sl"""s:f—l)
i — i
("" (Sl’”‘,smf))j = '—p .S.'}"l‘p ql (Sl,.. "'S_‘]'—-l)
0' = (0,0,...,0)
for all j and appropriate families of polynomials {pji(rl"--s'}—1=31’"°’3}-1) |j= 1,...,m;}
and {g}"(sl,...,.s;_l) lj= 1,...,m;}. Now define ny =my, n; = n_y+m;foralli=2,.k
and m = ny. Then 1 <n; <...<n;. Each T{ and T{; can then be considered a mapping
2n. 2. .
from GE(p) 7 or GF(p)"'7 to GE(p)"#*1, We can further define tin;+ 35 the hth com-
) 2n;
ponent of T{ and #; ;=0 if h e {1,...,n,}. Since ‘i.nj+h is a mapping from GF(p) 7 to

GF(p) it can be considered a polynomial over GF(p).
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Using these notations, & is isomorphic to ¥ = (GF(p)”;+,=,0) where
((rysrpseensrp) + ($1559500s84))g =
Ty tpSg pé{(rl,...,rg_l,sl,..., 1) *p et (T ST +55,)
(=159 8)g = = p S5 +p U515, 1) +p AIORRES
0= (0,0,...,0)
ifg=n;+handhe {1,.., g1}

Obviously this implies part 1 and all of part 2 except ny 22 .

The inequality n; 22 follows from theorem 7.1.6 and the fact that the projection 7,
~ onto the first two components is obviously a homomorphism. Suppose #n; = 1, then the
image of 7, is a p-group of nilpotence class 2 and size p2 which contradicts theorem

7.1.6.

Parts 5 and 6 are true since they are true for the original construction as described by
corollary 3.4.7 and the possible changes to this construction are all within a fixed com-
ponent, i.e. they do not change the kernel of any projection onto the first # components.

(x+ 0 =x) and (0 + x = x) imply part 3, while (=0 = 0) implies part 4. )

It is interesting to note that the representation as described in theorem 7.2.3 is quite
similar to an intermediate construction used in the proof of the theorem that there
exists a representation of every finitely generated torsion-free nilpotent group as a
group of uni-triangular matrices over Z as given in (Kargapolov, Merzljakov 1979,
theorem 17.2.5). Note that torsion-free groups are the opposite of p-groups since a

group is called torsion-free if there is only one element of finite order.

This theorem even provides a representation of an arbitrary finite nilpotent group since
by the Burnside-Wielandt theorem a finite group is nilpotent if and only if it is the
direct product of its Sylow p-subgroups, i.e. the finite nilpotent groups are exactly the

direct products of finite p-groups (p prime). The statement and proof of the Burnside-
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Wielandt theorem can be found in many group-theory textbooks, e.g. in (Kargapolov,

Merzljakov 1979).

73. p-Groups of Maximal Class

It has been shown by C. C. Sims in (Sims 1965) that the number of non-isomorphic
groups of order p” is (asymptotically) given by pA(® " where A(n) = 527—+ O(n- ).
Due to this multiplicity, special classes of p-groups are being investigated separately.

- One of these classes are the p-groups of maximal class:

DEFINITION 7.3.1 A p-group of order p™ with m =3 and nilpotence

class m—1 is called a p-group of maximal class.

In view of theorem 7.1.6 a p-group of maximal class has the largest nilpotence class
possible for its order. For any such p-group we are able to specify exactly the se-
quence ny < ... <n, i of numbers described in the representation theorem 7.2.3 and

we can formulate the following theorem:

REPRESENTATION THEOREM 7.3.2 Let @ = (G;+,-,0) be p-group of
order p™ (p prime) of maximal class, i.e. of nilpotence class k = m~1.
Then there exists an m-dimensional vector space V and polynomials
q{(x1s X 1) and p(xq,....X;_1,¥15---¥;_1) over GF(p) without constant
term for 1 £i <m such that

1) ¥ = (V;+,=,0) is isomorphic to ® where

x+y); = x +p¥itp PiXqsee X Y100 ¥i1) s
(=x); = —pX+p g0yt
and 0, = 0

i

Jorallie{1,...,n} with p;=0=q,.
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2) For all i and all (xl,...,xn) € Vpi(xl,...,xi_l,O,...,O) =0 and
2i0,...,0,xq,...,x;_{) =0 (i.e no pi(xl,...,xi_l,yl,...,yi_l) has a
constant term and every monomial of it contains elements from
{x{,....x,} and from Viseesy,))

3) Foralli=3 pi(xl,...,xi_I,yl,...,yi_l) depends on x;_; or ¥;_1-

4) For alli q(0,...,0) = 0 (ie. no qi(X1s--.sX;_1) has a constant
term.)

5) C(8) corresponds to the kernel of the projection onto the first
m—1 components of®, this projection is a group homomorphism.

6) Ifog=8,<& <& < ... <& =1 is the upper central series and
Wg=0,<¢p 1S9, 7<... ¢y = g the lower central series of
W then for any je (0,....k} &J,- = {_j and for any je (0,....k~1)}
this congruence ?;j corresponds to the kernel of the projection

onto the first m—j components of .

Proof: The representation ¥ = (V;+,=,0) is exactly the representation given by theo-
rem 7.2.3. Consider the sequence 2 < ny <ny <...< n; =m given by that theorem.
Since for p-groups of maximal class & = m—1, we must have n;=j+1 for all
J€ {1,...,k}. The remaining statements of this theorem .follow immediately except part

3 and the claim c“,j = ¢k_j forall je {0,...,k} in part 6.

The fact ﬁj = q)k_j forall je {0,...,k} is well known for p-groups of maximal class (e.g.
see (Huppert 1967, lemma 14.2)) but we can easily prove it using only universal alge-

braic arguments and this representation:

Obviously éj = ¢p_jforje {0,k} since & = 05 =0 and &, = 15 = ¢;. Let us assume
that we have already proven §j = ¢y for all je {0,....i}. We will show that §; = ¢,_,

forO<i<k Since §;2&; | =¢,_;,1 <0, ; it is sufficient to prove:
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g. = O
5/‘5;'—1 b l/‘bk-z’a ' (7.3.3)
By 3.2.7 we may conclude that §; 2 ¢,_; and therefore
E; O ;
/‘5;.1 > O /¢k_i+1 (7.3.4)
hence [0](5;/§i_1) 5 [0}(¢k—z‘/¢k_i+l]

From part 6 of theorem 7.2.3 we get that

01/8; =
i)
Since ¢k-f/¢k ., is a subalgebra (subgroup) this implies

(0] (q)k_i/‘bk—n 1)

If I[O](q)k—i/q)k ) 1)' = 1then ¢;_; = ¢, ;. and therefore i <0 which contradicts the
—i+

=porl

factthat 0 <i < k.

Therefore |[0] (¢k—f Opis l)l =p= ‘[0](%/&;'—1}1
and we get [0](¢k—i ¢k_i+1) z [0](‘%‘__1) (7.3.5)

7.3.4 and 7.3.5 together imply immediately 7.3.3, i.e we have proven E-oj = ¢k—j for all

J€ {0,....k}.

It remains to prove part 3. Suppose there exists at least one i 23 such that
Pi{X15.c0sX;_1,¥15.-.,¥;_1) does not depend on x;_; and y;_;. By theorem 7.3.2 the
element (ay,...,a,,) with @;=0if j=i-1 and @;_; = 1 is not in the kernel of §,,_;,; =
C(%m_;) . Let (by,...,b,,) be an arbitrary element in V. Then for j < i we have:

((al,.. .,am) + (bl"' "bm))J = aj +P bj +p pj(al,.. .,aj_l,bl,...,bj_l)

= f +p bj +ij(0,...,0,b1s---,bj_i)
=aj+pbj+p0 bypartz
= bj +p aj +p pj(bl,. ..,bj_]_,o,""o)
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=bj +, aj +, pj(by.. csbi 1481508 )
= ((By,..obp) + (@y5..08,)); and
((al,...,am) +(bp.nb)) =a; +p b; +,0i(ay,.. 81015050 1)
=a;+, b; +p pi(O,...,G,l,bl,...,bi_l)
a; +p b; 4, p{0.,...,0,0,b4,...,b; 1)
since p; does not depend on x;_,
=a;+p b+, 0 by part 2
= bj +p 8 +p Dby, b;_1.0....,0,0)
=b; +, a; +, pi(by,...,b;_1,0,...,0,1)
' since p; does not depend on y; ,
= b; +p @ +p pi(bl,...,bi_l,al,...,ai_l)
= ((by,....b,) + (@ys---,a,));
Therefore ((ay;....a,) + (by,....0,)) &, _; ((Bys...by) + (ays....a,)).
Since (bi’""bm) was chosen arbitrarily, theorem 7.1.2 implies that (al,...,am) is in the
kernel of €, ;.1 = C(%/E:m—i) which is a contradiction! We have shown that for all i > 3

pi(xl,...,xi_l,yl,...,yi_l) depends on at least one of x;_; and y;_;. ]

74. Examples

In this section we will illustrate the representation theorems of sections 7.2 and 7.3 by
presenting representations of some well known finite groups. We will begin with a

trivial example, a boolean group:

- EXAMPLE 7.4.1 (KLEIN’S FOUR-GROUP) Klein’s four-group is the
unique 4-element boolean (i.e. exponent 2) group. It can be given as:

(GF(2)%, +,~, 0) where
i) o 2t ) [ le) =(G)
(xz) +(3’2) Xytyy ) ’ (12) (xz and 0 0}
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Our next example is only slightly more complicated. It is the smallest 2-group that is

not boolean, i.e. that is not an exponent 2 group:

EXAMPLE 7.4.2 The cyclic group of order 4 can be given as:
(GF(2)2, %, =, 0) where

iz -] * |0
+3’2) (x2+x1) and 0 (0)'

Examples 7.4.1 and 7.4.2 are abelian groups, i.e. groups of nilpotence class 1. The next

X1
%)

X1+ _*
Xoptyo+ X331 | X

two examples are of nilpotence class 2:

EXAMPLE 7.4.3 The 8-element dihedral group Dy can be given as:

(GF(2)3, +, =, 0% where

X1 A5 X1+¥ X X1
Xy [+| ¥ |= Xy +y, ==l x
X3 ¥3 X3tY3+ Xp¥o+ XYy X3 X3+ Xq (1+x4)
0
and 0= @
0

It is generated by the two elements e and ey, ey has order 2 and e has
order 4. The centre of this group is the kernel of the projection onto the

first two components.

This group is of maximal class and subdirectly ireducible. Note that it looks like the
direct product of the 2-element boolean group and the cyclic group of order 4 with the
added polynomial terms x;y, and x;x,. Similarly, we can represent ®yg, the 16-

element dihedral group:
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. EXAMPLE 7.4.4 The 16-element dihedral group Dg can be given as:
(GF(2)4, +, =, 0) where

X +y
1771
*1 1
X +y
%) Y2 2772
& = v
*3 ¥3 X3+Y3+ Xo¥o+ X175
X, ¥
4 4

X1 X1
X X 0
2 2
= = ' and 0= 0
X3 Xqtxy (1+x,) 0
0
X4 x4+(x2+ X3+XZX3) (1+x1)

It is generated by the two elements ey and ey, e has order 2 and ey has
order 8. The centre of this group is the kernel of the projection onto the

first three components.

This group is also subdirectly irreducible and of maximal class, i.e. it is nilpotent of
class 3. Our last example is a group that is nilpotent of class 2, subdirectly irreducible,

but not of maximal class:

EXAMPLE 7.4.5 The group G = G(X, Y|X8 =1, ¥2 =1, YX¥X3 = 1) can
be given as (GF(2)*, +, -, 0) where

Xy 1 x1+y1
21072 X212
X3 Y3 X3+Y3+ X)) ’

X4 Y4 Xy t¥q+ X3¥3+ XpX3Yot Xo¥oy3+ XYy
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X1 X1
X X 0
2 2
= = and 0= 0
X3 X3+ Xy 0
0
X4 X4+ X2+ X3+ x2x3+ XIX2

It is generated by the two elements Y =e; and X = ey. The centre of

this group is the kernel of the projection onto the first two components.

Note that the group in the last example is subdirectly irreducible, but the centre is not
~ a minimal congruence. This implies that the equivalent theorem to 5.7.20 and 6.4.3 is

not true for p-groups.

We have omitted the proofs that the representations given in examples 7.4.1 to 7.4.5
are indeed correct since it is very easy to see: Examples 7.4.1 and 7.4.2 are
immediately clear. 7.4.3 and 7.4.4 follow from the representation of the dihedral group
D, as the group of 2x2 matrices [8 I;] over Z, with a =*1 (see for example
(Kargapolov, Merzljakov 1979 [1977])). 7.4.5 finally follows from the representation
of the group G as a semidirect product of Zg with Z, (see (Weinstein 1977, example

4.7)). The other mentioned properties of these groups are also proven in (Weinstein

1977).
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8.1. Minimal and E-Minimal Algebras

In this chapter we will consider E-minimal algebras of affine type. This concept arose
from the investigation of finite algebras by Pilfy, Pudldk, Hobby and McKenzie. Most
of their results were collected and presented in (Hobby, McKenzie 1988). In this sec-
tion, and the beginning of the next, we will present those definitions and theorems that
are needed for our work. We omit all proofs, since they can be found in (Hobby,
McKenzie 1988). We will see that finite nilpotent squags, finite nilpotent SQS-skeins
and finite p-groups are examples of E-minimal algebras and we will be able to gener-

alize some of the results that we have obtained earlier in this thesis.
The main concepts are given in the following three definitions:

DEFINITION 8.1.1 Let (8,6) be a congruence quotient of the finite
algebra A =(A;0). A is called (5,6)-minimal if and only if every unary
polynomial fe Pol{(d) is either a permutation of A or satisfies the

condition: f(8) < 6.

DEFINITION 8.1.2 A finite algebra A = (4;) is called minimal if and
only if A is (4,14)-minimal (i.e. if [A| > 1 and every non-constant

unary polynomial f € Poly(A) is a permutation of A).

DEFINITION 8.1.3 Let A = (A;£2) be a finite algebra. Then E(A)
denotes the set of all unary polynomials e € Pol;(A) satisfying
e(x) = e(e(x)) for all x € A. The finite algebra A is called E-minimal if
and only if |A| > 1 and every non-constant ¢ € E(A) is the identity on

A,ie.e(x)=xforallx e A.
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It has been shown that every minimal algebra is of one of five types:

DEFINITION 8.1.4 Let A = (4;£2) be a minimal algebra.

1) Adisof unary type, or type 1, if and only if Pol(A) = Pol({A;ID)) for
a subgroup IT < Sym(A).

2)  Ais of affine type, or type 2, if and only if A is polynomially
‘equivalent (i.e. functionally equivalent) to a vectorspace.

3) A is of boolean type, or type 3, if and only if A is polynomially
equivalent to a 2-element boolean algebra.

4) A is of lattice type, or type 4, if and only if A is polynomially
equivalent to a 2-element lattice.

5) A is of semilattice type, or type 5, if and only if A is polynomially

equivalent to a 2-element semilattice.

THEOREM 8.1.5 A finite algebra is minimal if and only if it is of one of

the types 1 to 5.

Similarly, it has also be shown that every E-minimal algebra is of one of five types. To

present this result, we require some further concepts:

DEFINITION 8.1.6 Let A = {4;0Q) be (§,68)-minimal. A subset N C A is
called a (6,6)-trace of A if and only if there exists an x € N such that

N = [x]0 # [x]6.

DEFINITION 8.1.9 Let A = (A;£2) be an arbitrary algebra, & € Con(d),
h € Pol,(A), and N c A. Then

1) | =on (N xN) denotes the congruence « restricted to N.
) N
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2) .th = {(xgs-+sXp=1,R(XQs e X)) | (XQs- ., X_1) € N®} denotes

the n-ary polynomial 4 restricted to N. Note that the description
of h may still contain constants from A that are not in N.

3) Pol(A), is the set of all hl such that for some n, h € Pol,(A)
N N
and A(N™) c N.

4) A, = (N ;Pol(ﬂ)l > is called the algebra induced on N by A.
N N

DEFINITION 8.1.8 Let A = (A;€) be (5,6)-minimal. Let ie {1,2,3,4,5).
We say that A is (8,6)-minimal of type i if and only if for every (&,6)-
A
trace N,( IN)/(SI ) is a minimal algebra of type i.
N

Using these definitions we can describe the possible types of an E-minimal algebra as

follows:

DEFINITION 8.1.9 Let A be an E-minimal algebra.

1) Ahasunary type (type 1) if and only if A is (5,6)-minimal of type
1 for every prime congruence quotient (§,60) of A.

2) A has affine type (type 2) if and only if A is (8,8)-minimal of type
2 for every prime congruence quotient (65,8) of A.

3) A has boolean type (type 3), lattice type (type 4), or semilattice
type (type 5) if and only if it is a 2-element minimal algebra of the

same type.

THEOREM 8.1.10 Every E-minimal algebra is of one of the following

types: unary, dffine, boolean, lattice or semilattice type.
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We are only interested in E-minimal algebras of affine type, since finite nilpotent

squags, finite nilpotent SQS-skeins and finite p-groups can be shown to be of this

type.

In (Hobby, McKenzie 1988) the following properties of E-minimal algebras of affine

type have been proven:

THEOREM 8.1.11 Any finite algebra A with more than one element is
E-minimal of affine type if and only if A satisfies the following two
conditions:

1) A has a Mal’ cev polynomial and

2) A has a congruence quotient (8,0) such that it is (8,0)-minimal

of type 2.

THEOREM 8.1.12 Every E-minimal algebra of affine type is nilpotent.

In the proof of this theorem in (Hobby, McKenzie 1988) an even stronger property of

E-minimal algebras of affine type has been shown:

LEMMA 8.1.13 Let A be an E-minimal algebra of affine type and let o,
€ Q(2) such that ¢ covers . Then [v4,0] < B. Moreover:

[La-0] <M {re GA) | « covers 7}
The proof of lemma 8.1.14 is an exercise in (Hobby, McKenzie 1988):

LEMMA 8.1.14 Every E-minimal algebra of affine type has a Mal' cev
term operation that is one—to—one in each variable when the others are

held fixed.

A simple, but useful consequence is the following corollary:
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COROLLARY 8.1.15 Every E-minimal algebra of affine type is con-

gruence uniform and congruence regular.

Proof: Let A be an E-minimal algebra of affine type. Let d(x,y,z) be the Malcev term |
operation on A described in lemma 8.1.13. Then for every @ and b in A and every
congruence ¢ on A the term function f(x) = d(a,x,b) maps [a]¢ into [b]¢ and [b]¢ into
[a]¢. Since f is one-to-one [a]¢ and [b]¢ have the same cardinality. Since the algebra

is finite and f([a]¢) < [b]¢ this also implies congruence regularity. J

Note that the congruence uniformity also follows from theorems 8.1.11 and 8.1.12 and
the fact that every nilpotent algebra in a congruence modular variety is congruence

uniform. For a proof of the latter statement see (Freese, McKenzie 1987).

82. Representation of E-Minimal Algebras of Affine Type

Already in (Hobby, McKenzie 1988) a representation of E-minimal algebrés of affine -

types has been given:

DEFINITION 8.2.1 Let GF(g) be a finite field and m be any positive
integer. Then %(q,m) denotes the algebra (GF(g)™:Q) where 2 is the
set of all operations f on GF(g)™ satisfying the following condition (pro-
vided the arity of fis n):

There exist Ay, 4. ..., 4, € GF(g) and polynomials 4y, ks, ..., h,, over
GF(q), such that k; is n-(i—1)-ary and fof all 20, x@) (e GF(g)™:
(f(x(i), x(2),“_, x(n)))i

. ,
1 1 | 2
=(21 /ljxlm)+ hi(xi( ),xz( ),...,xi(_l),xl( ),...,xf”),...,xi(_"i))

foralli=1,2,.., m fwill be denoted by [A1.....A,; Ag,....1, 1%
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THEOREM 8.2.2 For any finite, non-trivial algebra A the following are
equivalent:

1) A is E-minimal of affine type.

2) A is Mal’ cev and isomorphic to a rea'uct of some algebra %(q,k),

where k is the height of Con(A).

The following corollary is an immediate consequence of this theorem and our represen-
tation theorems 5.7.3, 6.4.2 and 7.2.3. Note that the sequence of kernels of the projec-
tions onto the first m, m—1, m—2,... components respectively form a maximal chain in

the congruence lattice of those algebras.

COROLLARY 8.2.3 All finite nilpotent squags, finite nilpotent SQS-skeins

and finite p-groups are E-minimal algebras of affine type.

We will now consider some generalizations of theorems and lemmas that we have
already proven for finite p-groups, finite nilpotent SQS-skeins, and finite nilpotent
squags. We will begin with a more detailed description of the representation given by

theorem 8.2.2.

COROLLARY 8.2.4 Let A =(A;{f;lie}) be an E-minimal algebra of
affine type and of nilpotence class k. Then there exist an m-dimensional
vector space V over a finite field GF(q), for every iel an operation
[Al(i),...,l,(l? ;h(i),...,h,g)]q where n; is the arity of f;, and a sequence 1 <
my <...<my =m of integers such that:
O] )., ® 9, s :
1) H=(V;{[1 ,...,ﬂ,ni st se by ’] i€ 1Y) is isomorphic to A.
2) C(8) corresponds 1o the kernel of the projection onto the first

my._y components of V, this projection is a homomorphism.
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3) Ifoy=8,<8, <&, <... <& =1y is the upper central series of
¥ then for any je {0,1,...,k) the congruence &1- is the kernel of

the projection onto the first m,_. components of V.
k—j D

Proof: This corollary follows immediately from the proof of theorem 8.2.2 in (Hobby,
McKenzie 1988), since the construction of the %(q,k) proceeds along an arbitrary

maximal chain in @(A) and § < §, <&, < ... <& canbe extended to such a chain, [J

In the theory of squags we had seen that we can inove among different representa-
tions of a fixed squag by using certain easily described isomorphisms (see lemma
5.7.5). We had used this fact to prove the existence of especially nice representations
(see lemmata 5.7.4 and 5.7.13). We are able to generalize this tool to the theory of E-

minimal algebras:

LEMMA 8.2.5 Let V be an m-dimensional vector space over the finite
field GF(q) and let ¥ = (V;{ f;|ie I}) be an E-minimal algebra of affine
type with f; = (A, AR, hN for all i€ 1. Let k be a fixed
number in {2,....m} and let P(xy,....x;_1) be another polynomial over
GFE(q). For everyic I and every j € {(k,...,m)} define:
~(1) . :
*ifj=k then b (xl(l),xél),...,xj-(_ll),...,xl("‘),..., j(_"l‘))
- D) (n) (D) (n)
= P[lAix,...x D) s Ds o x =))k_ )
n; s
{ t @O ;
-3 A P0,xO)+ 10 (e, x )
t=1

where x =(xfs) ,...,xé"i)l,O,...,O)
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oo Mmoo m oy
s if j>k then h (xl 2 X3 sy X e X ,...,xj(_f )

] x:f ) ,Xk( %, ( )' 'P(.XI( ), x‘(: %),x‘(:l?l,..., j( 1),

= b oo
xf”*'),...,xéfi},xlf”")—P(xf”"),- (n;)}x&:) ,xj(_n]i)

20 0.0 0 20 0 .
Then f;=[A ,...,lni,h ooy LRy s k] s an operation on the
field GF(q) in the sense of definition 8.2.1.
Let ¥ = (V;{}’i |ieI)) and let ¢ : V=V be defined by :

X; if j#£k

[¢((x1,...,xm))]j= X+ P(xy,...x,_y)  ifj=k

Then ¢ : P—>8 is an isomorphism and ¢~ is given by:

X if j#£k

[d’ (@1, x))} X=P ety ) ifj=k

Moreover, if 8 sarisfies the conditions 2) and 3) of corollary 8.2.4 then

¥ also satisfies these conditions.

Proof: From the definition of ¢ it is immediately clear that ¢ is a bijection and that its
inverse qb“l is given as described. It is straightforward to verify that each polynomial
;1}(1) depends only on the variables xf ),xél), j(_ll),...,xl(”"),. ("1‘), ie. fz is an
operation on the field GF(g) in the sense of definition 8.2.1. As in the proof of lemma

5.7.5 it is easy to show that ¢ is even an isomorphism.,

Moreover, if Y satisfies the conditions 2) and 3) of theorem 8.2.4 then ¥ also satisfies
these conditions since ¢ and the projection onto the first j components commute for

every j. (This is immediately clear from the definition of ¢.) O

We can now use this tool to show that the representation in corollary 8.2.4 can be

chosen such that any arbitrary element a € A can be mapped onto 0 = (0,...0):
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THEOREM 8.2.6 The representation in corollary 8.2.4 can be chosen
Such that the isomorphism from the algebra A = (As{filiel}y to B =
(GF(q)™;{g;lieI)) maps any fixed point ae A to 0 = (0,...,0).

Proof; Let ¢ : A >—» ¥, be any representation of A as given by corollary 8.2.4, Let
¢1> $2, ..., i be the sequence of isomorphisms and ¥y, ¥y, ... ¥, the sequence of
algebras obtained from lemma 8.2.5 for ¢;: ;. —» ﬁ- vk =1iand P = (¢(a));. Let
V=0 oPp1°...001°¢: Ar—» B,,. Then yr: A>—» ¥, is a representation as

described by 8.2.4 and (y(a)); = (¢;(a)); = (6(a)); — ($(a)); = O. O

As we have seen in the proofs of 5.7.4 and 5.7.13, this tool—lemma 8.2.5—is also
useful to improve the representation given by corollary 8.2.4 within the theory of

specific E-minimal algebras of affine type, e.g. finite nilpotent squags.

In section 6.4 (lemma 6.4.7) we presented a description of the commutator terms for
finite nilpotent SQS-skeins. Since this description is based on a representation theo-

rem analogous to 8.2.4, we are able to generalize this description.

LEMMA 8.2.7 Let V be an m-dimensional vector space over the finite
field GF(q) and let § = (V;{ f;|ieI}) be an E-minimal algebra of affine
type with f; = (D, AP, hN forallie I Letke (1,....m)
and let 0 =mqy <my < ... <my =m be a finite sequence of integers. For
every j = 1,...,m let m(j) be the integer such that m(j) =m, <j <m,
for some r. Moreover, suppose that for all ie I andje (1,...,m) the

polynomial hj-(i) depends only on xl(l),xél),---,x,g(}),...,xl(ni),---=xr£zn(% :

3

Then every r-ary term function 'c(x(l), x(z), x yeens x(’)) on B is given

by
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, xfl) xl(t)
(‘L’(x(l)’x@),...,x(f)))j =(Z rhx}(h))"' 5 NP -
h=1 1 4

x,ﬁ,g) x,%%n

where ry,...,ry € GE(q) and the 8j are polynomials over GF(q) in the

variables xgl),..., x,(nl()]),. . x?),..., x,%).

Proof: We will prove 8.2.7 by induction over the number of operations occurring in .
If 7is a projection then 8.2.7 is obviously true.
Now suppose ,

2D XD 3 )y =ﬁ(t(1)(x(1),x(2),x(3),...,x(’)),...,'z("f)(x(i),xa),x@),...,x(‘)))
where ©1 1o (%) satisfy 8.2.7, i.e. for I e {1,...,n;}:

| | D) [0
f 1 |
('rw(x(i),x(z),x@),...,x(')))_=(2 r,(f)xj(h))+ s}’) N RO B
7 \n=1 (1 )
X m() Xmij)
Then ('r(x(l),x(z),x(3),...,x(')))'_ =
. .
w1/ LRI e %D x)
> A Y D ® Lo L el ]
l=1 h=1 1 t 1
xéaa xfn%,) "r(n(% x,E,”(,)
ni .
= 2 2 /ll(l)-r,(j) xj(h) +
h=11\l=1
1 1
W ([0 [0 [0} [
l : : :
Izlsj() S PO B +Pj R S (_)
= 1 t 1 t
x,ﬁ,(}) xfnén xr(nda *m{j)
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where Pj- is an appropriate composition of 1:(1)1,...,1:(1),,,0),...,t("i)l,...,r("i)mm and
hj(i) . Note that (Z?_i_ 1 JL,(D . r}(t’) ) does not depend on j. This proves 8.2.7 for all term

functions . O

LEMMA 8.2.8 Let V be an m-dimensional vector space over the finite
field GF(q) and let ¥ = (V;{ f;|ic I}) be an E-minimal algebra of affine
type with f; = [,11@,...,a,g?;hﬁ),...,hg)]q forallie I Letke (1,...,m)
andlet0=my<m; <...< my, =m be a finite sequence of integers. For
every j = 1,...,m let m(j) be the integer such that m(j)=m, <j < My,
Jor some r. Moreover, suppose that for all ie I and je {1,....m} the

polynomial hj(") depends only on x1( b, xél)’---’xr(nl(i)""'xgni)" xr(nn(‘;% ‘

Then every (t+1)-ary commutator term ’L'(x(l),x(2),x(3),..., x(t), 2)on¥

with t 2 2 is given by

(1) (0

X1 Xy 73
(f(x(l),x(z),xe),...,x(’),z))j=zj+ 8 S FOUT! R
1 t
x,i(?) x,izn Zm(j)
. . , (1 (1)
where the 8; are polynomials over GF(q) in the variables xj °,..., Xm(j)s
S L x,%) satisfying (for allj € (1,...,m)):
x{h) 3| xl(l) xft) 7
dhe(1,...0}:| *+ |=| = 5 [ OO N | =0
h 1 (¢
x,% Zm(j) : xrszw xm%i) Zm(j)

Proof: Let 7 be a commutator term. By lemma 8.2.7 7 can be written as:
(1) ()
1 *1

x
t
(t(x(l),x(z),xm,...,x(‘),z))j = ( Z rhxj.(h))+ rzjts; S U B
h=1 L« Mo s
m(j) m(j) m{j)

3
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We will first prove r, =0 forall he {1,...,z}. Let 0 = (0,...,0). Since 7 is a commutator
term and ¢ 2 2, for all x(2),x(3),.. .,x(’) € V the following equation holds:
0=(0);, = ('I:(O,x(z),x(g'),...,x(t),O))l = r10+( Et: rhxfh))+ rO+s; =5+ i rhxl(h)
h=2 h=2
Therefore 51 =0 and r, =0 forall he (2,...,2}. Since £ 2 2, we get similarly for all
WDev: 7
0=(0), = ('L'(x 19,53, .,Jc(t),()))1 =rxVir0= rxiD

-i.e. r; =0, therefore r, =0 for all A € {1,...,r}. The fact that r = 1 follows now immedi-

ately from:
2y = (r(z,x(z),x(3),,..,x(’),z))l =rz;

We have shown that 7 is given by:

) ()
('r(x(i),x(2),x(3),...,x(t),z))j=zj+sj S PN N

1 {

(Ea %l | \*m)
1) [ o

Suppose| : |=| : |forsomehe {1,...,t}, then:
h
%)) \Zmd
zj=(r(x(1),...,x(h—l),z,x(hﬂ),...,x(t),z)),

: 1
LB # [A{] #
=z x(l),.,,, m(j) ,...,x(‘),z = zj+s; )
Zm()+1 (1 () 7
: Xm(j) Xm(p) | \Zm()
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) [0\«
and therefore 5 S FUUU I N =0, i.e. we have proven 8.2.8.
(1) (1)
*m()) *mijy |\ Zm() O

As we had already mentioned in the context of theorem 5.7.19 and in analogy to
theorem 6.4.5 the dependency of the polynomials in the representation theorem 8.2.2
allows us to determine an upper bound for the class of nilpotency of a given E-minimal

algebra of affine type:

THEOREM 8.2.9 Let V be an m-dimensional vector space over the finite
field GF(q) and let 8 = (V;{ f;|ieI)) be an E-minimal algebra of affine
type with f; = [}ll(i),...,?u,(z?;h(i),...,hg)]qfor alliel Letke {1,...,m}
andletO0=my<m;<..< m; =m be a finite sequence of integers. For
every j = 1,...,m let m(j) be the integer such that m(j) =m, <j < nt 41
Jor some r. iMoreover, suppose that for all ie Iandje {1,....,m)} the

polynomial hj(i) depends only on xfl),xél),---, ,E,la},...,xl("i),--°’xr(rzn(% .

Then ¥ is nilpotent of class at most k.

We have chosen to present two proofs for this theorem since they use quite different
tools. The first proof is analogous to the proof for 6.4.5 while the second uses the
property of E-minimal algebras described in 8.1.13, i.e. that the commutator [14,0] is

below or equal to the intersection of all congruences covered by a.
Proof 1 of Theorem 8.2.9: We will first prove the following claim by induction over A:

(8.2.10)  For all & = 0,...,k the following holds: if T, 18 the projection onto the first
my components then ¢ < ker(z,,,) where {¢;};=1 2, ., is the lower central

series of .
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If h =0, then ¢ = ¢y =1y = ker(my) = ker(7,,,), i.e. 8.2.10 holds for 2 = 0.

Suppose 8.2.10 is true for all & < /. We will show that ¢; < ker(z,,)). By 3.3.3 and

since ¢; = [§;_1 ,1y ] it is sufficient to show that:

(8.2.11)  for all commutator terms 7(x{1), x@, x®),. | x®, 7) with £ >2 and all £V,
x(2), x(3),..., x(’), z e V with Toms 4 (z) = j’[ml_l(x(l)):

T (2) = Ty (2D, B, x3) | x(0, 2y

Let t(x(l), x@, x(3),..., x®, z) be any commutator term with ¢ 2 2 and let x(l), x(z),
X3, x0 2 e v with Ty, (2) = nml_l(x(l)). Let j £ m;. Then m(j) < m;_;, where

m(j) is defined as in the statement of lemma 8.2.8. By this lemma we have:

A [0 g
('c(x(l),x(2),x(3),...,x(‘),z)),-=zj+sj S PO ST N with

1
xéz(?} xr%) Zm(j)

MOARY I ORI IMORY

: = ' =>Sj . 3svey E > E =0

1 1 !

x,&(}) Zim(j) x:(n(}) x,% Zm(j)

Since 7, ,(2) = 7y, (1) and m(j) < my_; this implication yields

0 e

X1 21

8 5 LRR R ] : » E =O

1
%) $tn | \ #m)

and therefore ('L'(x(l),x(z), x(3),..., x(‘), z)) =2 for all j £ m;. This implies T (2) =

ﬂml(’r(x(l), x(z), x(3),..., x(’), z)), i.e. 8.2.11 and consequently 8.2.10 have been proven.
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To complete the proof of 8.2.9 we only have to observe that, for & = k, 8.2.10 implies
O < ker(zm,,,) = ker(m,) = @y, therefore ¢ = @y . This means that ¥ is nilpotent of

class at most k. 4

- Proof 2 of Theorem 8.2.9: Let x,,, be the projection onto the first m;, components of

V. We will first prove that for all A =0,...,k-1:

(8.2.12) [tv,kcr(ffmh)] s ke‘{”mh+1)

For my <l<my,let m,, ;be the projection given by

o
:1 X \
xmh .

xmh
xmh +1 Xy 41
: h
T, ) = .
mhsl X1 x!' .
xl B

vl 141 )
\ x;n /  Fmpg
Since the polynomials hj(i) depend only on xl(l),xz(l),...,x,gl(}),...,xl(n"),.. .,xg(% the ker-
nel of 7,,, ;is a congruence. It is clear that, since ker(mg) > ker(my) > ... > ker(x,) is
a maximal chain of congruences on ¥, ker(my) > ker(zy) > ... > ker(m,, W > ker(nmh D

> ker(y, ) N ker(7y, 1) > ... > ker(my,, p N ker(my_) > ker(my 1) > ... > ker(m,,)

is also a maximal chain. Therefore 7,,, covers 7,,, ; and we get by lemma 8.1.13:
[1 A,ker(jrmh)] < ﬁ{ye aA) | ker(ﬂ:mh) covers 'y}

< ﬂ{ker(ﬂm,, ,I)l my <l<my } = ker(ﬂmh+l)

i.e. 8.2.12 has been proven.
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Now let {¢;};=12,... be the lower central series of ¥. By induction over / we will show
that ¢, < ker(m,,,) for all 2 = 0,1,....k. This statement is immediately clear for 4 = 0.
Now suppose it is true for i = h-1, i.e. ¢5_1 < ker(m,, ). By 8.2.12 and 3.1.4 (8) we

have therefore:

o= [wtn] [wkeny, |

< kex{:rm h)

which proves ¢, < ker(7,,,) for all & = 0,1,...,k. For h = k this means ¢, < ker(m,,,) =

ker(m,,) = oy , i.e. ¥ is nilpotent of class at most . » ]

Note that this theorem 8.2.9 implies theorem 5.7.19. We had omitted the proof of the

latter theorem since it is a consequence of the former.

8.3. Subdirectly Irreducible E-Minimal Algebras of Affine Type

For finite nilpotent squags and finite nilpotent SQS-skeins we had seen that our
representation can be used to characterize the subdirectly irreducible algebras: a finite
nilpotent squag or finite nilpotent SQS-skein is subdirectly irreducible if and only if in
its representation n;_; = m-1, i.e. every class of the centre contains ¢ elements (see
theorem 5.7.20, theorem 6.4.2 part 8 and corollary 6.4.3). Example 7.4.5 showed that
this is not necessarily true for p-groups, i.e. it can’t be true for all E-minimal algebras

of affine type. Nevertheless, one implication still holds:

THEOREM 8.3.1 Let A = (A;{f;|ie I}) be an E-minimal algebra of affine
type with [[x}C(A)| = g for some element x € A and some prime q. Then
A is subdirectly irreducible.
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Proof: By theorems 8.2.4 and 8.2.6 there exists an m-dimensional vector space V over
a finite field GF(g"), for every i € I an operation [}lfi),...,l,(i?;hm,...,hg)]q’as de-
scribed above with n; being the arity of f;, and an isomorphism
0 A—» ¥ = (Vi m("),...,x},?;h(‘),...,h,ﬁf)]"'1 ien})

such that {(¥) corresponds to the kernel of the projection onto the first » components
of V and ¢(x) = (0,...,0). Since |[x]{(A)|=¢ and g is prime, we may conclude
immediately that ¢ = ¢" and n = m—1. Consider the sequence of congruences &g >
>...> Oy, defined by oy = ker(z;) where m; is the projection onto the first j components
of V. Note that ,,_; = {(¥). By 8.2.2 this sequence of congruences is maximal.

Therefore {(¥) is an atom in €(¥). By 3.2.10 ¥ and A are subdirectly irreducible. O
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9.1. The Theorem of Bruck and Slaby

‘The research leading to this dissertation was initiated by the question whether the
theorem of Bruck and Slaby (theorem 5.4.1) can be generalized to a larger variety of
algebras. The author was unable to find a generalization, but would therefore like to
pose the following question: Which additional properties must be required of ¥ to en-
-sure the correctness of the following statement: If ¥ is an E-minimal variety of affine
type, i.e. a variety in which every finite algebra is an E-minimal algebra of affine type,
then then there exists a function f{(n) = (@ n + ¢) such that every n-generated algebra

in ¥ is of nilpotence class at most f(n).

More specifically it should be investigated whether any variety of nilpotent squags is
locally finite, and—in the case of an affirmative answer—whether a theorem similar to

the theorem of Bruck and Slaby can be proven for said variety.

9.2. The Commutator

By theorem 5.3.3 the squag theoretic commutator (defined by a single commutator
term) coincides with the universal algebraic commutator if one of the congruences is 1.
While the author believes this also to be true if none of the congruences is 1, this is
still an unsettled question. Note that any counterexample must have at least 243
elements, since the statement is trivial for medial squags and known to be true for the

unique non-medial 81-element squag (Hgy).

It is well known that the universal algebraic commutator for groups coincides with the
group theoretic commutator which is defined using a single commutator term, A posi-

tive answer of the question mentioned in the previous paragraph will obviously raise
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the question whether in every E-minimal variety of affine type the commutator can be
defined with one or a finite number of commutator terms. Note that theorem 3.3.3
states that the commutator in every congruence permutable and nilpotent variety can

be defined by all (i.e. possibly infinitely many) commutator terms.

3. Semi-Boolean SQS-Skeins

Since it was believed that the semi-boolean SQS-skeins are exactly the SQS-skeins
that arise from boolean groups (a statement which we have shown to be incorrect),
the variety of semi-boolean SQS-skeins has escaped investigation. The immediate
questions are whether every semi-boolean SQS-skein is nilpotent (and we can there-
fore apply the theory of nilpotent SQS-skeins) and whether this variety is locally
finite. If these questions can be answered positively, then the semi-booloean SQS-
skeins may behave similar as the distributive squags and it would be reasonable to
explore whether they in fact have the same properties. It would be especially inter-
esting to know whether there are semi-boolean SQS-skeins of every nilpotence class
and whether an analogue of the theorem of Bruck and Slaby can be proven. Note that
both semi-boolean SQS-skeins and distributive squags can be selected from among
the SQS-skeins and squags respectively by properties'of the corresponding designs

(see theorem 6.7.2 and section 4.3).

94. Construction Theorems

Of all the construction theorems in this thesis only one allows the formation of an
algebra (a nilpotent SQS-skein) that has a larger class of nilpotence than any of the
algebras required for it. Since this theorem therefore allows the construction of SQS-
skeins of arbitrary large nilpotence class it would be useful to have similar theorems

for nilpotent squags, distributive squags and semi-boolean SQS-skeins.
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A1 70, 71-72, 105, 107
Ay 36, 46, 48
A3; 101, 106
Abelian (see algebra, abelian)
Affine (see algebra, affine)
Algebra
abelian 19, 20
affine 19, 20
Algebraic function (see polynomial)
B, 67,104
Boolean group 115
a4

Central series
lower 9, 10, 11, 16
upper 9, 10, 11

Centre
of an SQS-skein 68
in group theory 114
squag theoretic 31, 34
universal algebraic 9, 31
Clo(A) 4
Clo,(&) 4
Coherent 28

Commutator 68
for E-minimal algebras of affine type
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in group theory 114
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Commutator (continued)
squag theoretic 29, 30-31
term 15, 16

for E-minimal algebras of
affine type 141

for SQS-skeins 78
universal algebraic 6
properties 7, 8§
Vaughan-Lee description 14-19
Construction theorem 149

for distributive squags 58

for nilpotent SQS-skeins 84, 86, 92,
96

for semi-boolean SQS-skeins 84
Dy 128
Dg 129
D, 130
Derived Steiner triple. system 110
Difference function 19
0 5
T(g,m) 135

E-minimal 131, 131-135

of affine type 134-135
and E(q,k) 136
class of nilpotence 143
commutator for 148
representation 136
subdirectly irreducible 146

type 133

B(®) 31
Sfela,b,c) 29
Frattini congruence 31

Geometry
affine 25, 26
projective 25, 110
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Group 14, 114
associated with an affine algebra 19
commutative 114
cyclic 114
dihedral 128, 129
of exponent p 115
order of 115

p-group (see p-group)
Gumm difference term 13
H16 64, 66, 68-70, 104
Hgj 26, 28
"Hall triple system 26
Hallgy 26,28

Hamiltonian 28

Higman’s Lemma 15

Klein’s four-group 127

Mal’cev varieties 6

Minimal 131, 131-133
type 132

(6,6)-Minimal 131
type 133

Moufang loop, commutative and of
exponent 3 26

N §
Ny 107
Near boolean algebra 24

Nilpotence 8-14
class of 9, 30
of class 2 21
of class n 21

N, 107

p-Group 115, 136
class of nilpotence 116, 118
locally finite 116, 117
of maximal class 124
representation of 124
representation of 118, 119, 120
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Pol(A) 4

Pol(3d)| 133
N
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Polynomial 4
Quasigroup, symmetric distributive
(see squag, distributive)
Quotient 4
prime §
Reflection space, commutative (see
squag, distributive)
Regular 28
weakly 14

Representation theorem
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136
for nilpotent SQS-skeins 73
for p-groups 118, 119, 120
of maximal class 124

Sloop 24

Spiegelungsraum, kommutative (see
squag, distributive)

SQS (see Steiner quadruple system)
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commutator term 78
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size 67
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SQS-skein (continued)
semi-boolean 64, 67, 110, 149
construction of 84
subdirectly irreducible 104
size 61
subvarieties 109

Squag 25, 28-60
distributive 26
construction of 58
free 32
representation of 36, 37, 53
medial 28, 28-29, 34, 48
nilpotent 136
class of 56
representation of 38, 53
size 40

subdirectly irreducible 57, 58,

60
and non-distributive 36
pointed 14

Steiner loop (see sloop)
Steiner quadruple system 23, 27

Steiner system 23-27
of type (t,k) 23
quadruple system (see Steiner
quadruple system)

triple system (see Steiner triple
system)

Steiner triple system 23, 24, 25, 26
derived 110

STS (see Steiner triple system)

Subdirectly irreducible 12, 31, 57, 58,
60, 74,75, 86, 92, 96, 101, 104-107,
146

Surcommutative {see medial)

Term condition 8
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Theorem of Bruck and Slaby 32, 148
(8,0)-Trace 132

Type
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of an E-minimal algebra 133

Uniform 28
Unital 14
%(k) 9

Z5

[e,316
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N
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N
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