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Abstroct

Several classes of E-minimal algebras of affi¡e type are investigated: finite nilpotent

squags, finite nilpotent SQS-skeins and finite p-g¡oups. (Squags arise f¡om the co-

ordinatization of Steiner triple systems and SQS-skeins from Steiner quadruple sys-

tems,) We present several representation and construction theorems for these

algebras of the type given by Klossek for distributive squags. As a consequence of

these theo¡ems we are able to show that for every k larger than 1 there are infinitely

many finite subdirectly i¡reducible (distributive) squags of nilpotence class &. More-

over we show that the variety of SQS-skeins is not locally finite by constructing a

sequence of 4-generated nilpotent SQS-skeins of strictly increasing cardinality (and

nilpotence class). We also investigate the variety of semi-boolean SQS-skeins, i.e.

SQS-skeins satisfying the identity q(x,u,q(y,u,z)) = q(q(x,u,y),u,2), and show that it

contains the variety of boolean SQS-skeins as proper subvariety, thereby disputing

the popular belief that above identity characterizes boolean SQS-skeins. Semi-boolean

SQS-skeins can be described as those SQS-skeins that correspond to Steiner qua-

druple systems whose derived Steiner triple systems are all projective geometries.
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L lntroduction

In the early nineteen hundred eighties P. P. Pálfy, P. Pudlák, R. McKenzie, D. Hobby

and others investigated the structure of finite algebras with the use of tame

congruence theory. Their results were collected and presented in (Hobby, McKenzie

1988). One of the classes of finite algebras considered is the class of E-minimal

algebras: a finite algebra (A;O) is calted E-minimal if and only if lÁl > 1 and every

unary idempotent algebraic function on (A;O) is either constant or the identity. It has

been shown that there are exactly 5 types of E-minimal algebras, in fact every E-

minimal algebra with at least 3 elements is eithe¡ of afflne or unary type. The exact

definitions of these terms are presented in chapter I of this thesis. We will be

exclusively concerned with E-minimal algebras of affrne type, especially with the

following three classes of examples: finite nilpotent squags, finite nilpotent SQS-

skeins and finite p-groups.

Both squags and SQS-skeins arise from the co-o¡dinatization of Steiner Systems: the

former are obtained from Steiner triple systems and the latte¡ from Steiner quadruple

systems. While SQS-skeins have not been extensively studied, the theory of nilpotent

squags includes the theory of distributive squags. The latte¡ a¡e polynomially

equivalent to exponent-3 commutative Moufang loops, which were thoroughly

investigated by R. H. B¡uck in (Bruck 197i). In (Klossek 1975) S. Klossek translated

this theory into the language of distributive squags (kommutative Spiegelungsräume)

and added several representation and construction theorems. We will fi¡st introduce

the co-ordinatization of Steiner Systems in chapter 4 and then discuss nilpotent

squags in chapter 5. We æe able to generalize Klossek's representation theo¡em fo¡

any finite nilpotent squag and answer some of her open questions. For example, we

are able to show that fo¡ every n > 1 the¡e are infinitely many frnite subdirectly

irreducible squags of nilpotence class exactly n.

ANDREAS GUELZOW -t UNIVERSITY OF N4ANITOBA



L lntroduction

In chapter 6 we turn to the theory of SQS-skeins and are able to present repre-

sentation and construction theorems that are analogous to the theorems for squags.

Moreover, we will prove constructively, that the free SQS-skein with four generators

is neither finite nor nilpotent. As for nilpotent squags we a¡e also able to prove

constructively that for every n > 1 there are infinitely many finite subdirectly inedu-

cible SQS-skeins of niipotence class exactly n. In (Mendelsohn 1975), (Quackenbush

1975) and (Lindner, Rosa 1978) it is claimed to be well known that the SQS-skeins

satisfying the added equation q(x,u,q(y,u,z)) = q(q(x,u,y),u,2) are exactly the SQS-

skeins corresponding to the boolean groups. We will provide a counterexample to this

'folklore'. The class of SQS-skeins satisfying ihe above condition shall be called semi-

boolean SQS-skeins; it can also be cha¡acterized as the class of all those SQS-skeins

whose corresponding Steiner quadruple systems have only derived Steiner triple

systems that are projective geometries over GF(2). The class of semi-boolean SQS-

skeins appears to be quite analogous to the class of distributive squags among all

nilpotent squags, but it has yet to be proven that every semi-boolean SQS-skein is

even nilpotent.

Chapter 7 contains a sho¡t excursion into the theory of finite p-groups. Again we can

give a representation theorem for these algebras that is similar to the theorems for

squags and SQS-skeins. For ¿-groups of maximal class we are even able to improve

our representation theorem. We have chosen to include this short discussion of p-

groups in this thesis since it shows that some of the nice properties of finite nilpotent

SQS-skeins and finite nilpotent squags cannot be generalized to all E-minimal alge-

bras of affine type.

In chapter 8 finally, we will

presented in earlie¡ chapters

While many of the proofs in

ANDREAS GUELZOW

investigate generalizations of some of the theorems

into the theory of E-minimal algebras of affine type.

the earlier chapters become superffuous once we have
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I . lnkoduclion

verified these more general statements, we have ¡etained them since they provide a

clearer insight into the structure of the speciûc algebras than the more general ones.

In chapter 9 we conclude this thesis by discussing some of the questions that we were

unable to answer and whose further investigation appears \rorth\rhile.
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2. Nototion

In this paper we wiII mainly use the notations as introduced in (Grätzer 1979 t19681).

We assume that the reader is familia¡ with the concepts introduced in this book.

Below we will review a few of the most important notations and introduce those that

a¡e different from (Grlitzer 1979 t19681).

An algebra å shall be written as A = (A;O), where A is the underlying non-empty set

and O the set of (finitary) operations of å" If O is indexed by the elements of I (i.e.

A = ßilie 1)) or 1f d2 = {F 7,F2,...,Fn} is finite, we will also write (A;F':íe 1) or

(A;FpF2,...,Fn) respectively. lf H cA then [Ë/]¡ denotes the set generated by Il in

the algebra A i.e. (t¡ll¡;O) is the smallest subalgebra of A whose universe (the

underlying set) contains ¡1.

In universal algebra, some mathematicians use the expression 'polynomial' ínter'

changeable with 'term function' while to others a'polynomial' is exactly an'algebraíc

function'. Contrary to the usage in (Grätzer 1979 t19681), in this thesis 'algebraic

functíon' and'polynomíal' shall be synonyms, i.e. polynomials a¡e those functions

that arise from term functions by substituting some variables with constants from A.

The set of all term functions on A shall be denoted by Clo(A) and the set of all

polynomials by Pol(A). Clor(A) and Poln(Ð will represent the sets of all n-ary term

functions and polynomials respectively.

The congruence lattice of the algebra A will be denoted by t(A). The largest and

smallest elements in (I(A) will be denoted by r¿ and or¿ respectively. If X ç ,4 then

OAIX¡ denotes the smallest congluence s¡ g = (A;O) identifying all elements in X. If

it is clear from the context which opetations are considered we will also just write

@A(X) instead or OA(x). A quotient in t("4) or of A is any patr (a,þ) of distinct

elemenrs in 6("4) such that a < B. If B even covers d then (d,P) is called a prime

ANDREAS GUETZOW -4- UNIVERSÍTY OF MANITOBA



2, Notot¡on

quotient in @(.4) or of .4. Fo¡ any cong¡uence a e û\(A;AÐ and every x e A the

expression [:r] ø denotes the set {} e AlxayJ.

õ* will denote the Kronecker symbol, i.e. ô*= 0 if í * k and ô,¿ = 1 if i = k. Moreove¡

Z will denote the set of all integers and N the set of all non-negative integers (inclu-

ding 0). In some of the calculations in this thesis, it will be obvious that the values of

certain expressions do not influence the final result. If these expressions are also com-

plicated or lengthy, we will replace them by the symbol '?'.

ANDREAS GUELZOW -5- UNIVERSW OT MANITOBA



3. Universol Algebroic Concepts

3,1. The Commutqtor

ln 197 6 Jonathan Smith's book on Mal'cev varieties was published, In this book Smith

generalized the group theoretic concept of the commutator to the theory of Mal'cev

varieties, i.e. varieties that have permutable congn¡ences. With this concept he also

generalized such notions as the 'centre' of an algebra, 'nilpotence' and 'cenualizer'. A

short time later Ioachim Hagemann and Christian Herrmann extended the theory of

the commutator to modular va¡ieties. In (Gumm 1980) Heinz Pete¡ Gumm presented

an elegant intoduction into the commutator theory, which is especially nice since it

motivates the commutato¡ geometrically. The definition in this paper will follow along

the introduction in (Gumm 1980). A more complete introduction into commutator

theory can be found in (Freese and McKenzie 1987). (A 1981 preprint of this book is

known as 'the commutator, an overview'.)

DEFINITION 3.1.1 L€tg be any congruence modular variety and let

"A e €. Let a and Bbe congruences on .4,

Then the congn¡ence ød({((x,x),O,y))lxþy)) is denoted by Â{ and

la,Bl = l(b,c)l(b,b) LPd(å,c)) is called the comtnurøtor of aand p.

THEOREM 3,1,2 LetB be any congruence modular variety and let

Ae E. l¿t a and þ be congruences on 2\ Properties of the congruence

fio,,,
(r)

(2)

(3)

@,Ð Lfafr,d) + (aBb &. cad &. dBb &.bon)

@,Ð Afa4d) + (b,a) 
^Pa@,c)

apb + (a,a) tþo@,ø)

ANDREAS GUELZOW -ó- UNIVERSfi OF MANITOBA
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3, Un¡versol Algebrolc Concepts

THE0REM 3.1.4 Let E be any congruence modular variety and let

Ae E. Let a and p be congruences on A- Properties of the commutator

lø,Bl are:

(l) la,þl is a congruence onA.

(2) fa,pl s anB

(3) la,p) = l(x,y )l(x,x) Lþd O,tc)\

(4) Ía,þ) = l(x,y)l3z 112,r¡ t?olz,Ð)\

(s) lc',pl = {(x,y)l1z ((x,z) Lþe O,z))j

(6) La,pl = ((x,y)llz 112,2¡ LBoiJ,,Ð)l

(7) la,Fl = tþ,al

(8) y< d+ ly,Fl<la,þ) for all congruences yon A.

THEoREM 3.1.5 LetE be any congruence modular vartety and let

AEe t. Iæt a and B be congruences on A and let @:A--+E be a suriec-

tive homomorphism. Then Q{q,þl) < lQ@),0(þ)1,

The inequality in theorem 3.1.5 can be sharpened to an equality if the kernel of the

homomorphism is known:

THEoREM 3.1.6 LetE be any congruence modular variety and let

A,B e E. t¿t a and þ be congruences on A and let Q:A'--+>ß be a surjec'

tive hornamorphisrn with kernel kerQ. Then:

Q [a, B]v ker Q) = IS (a v ue4), q( Bv ker @)]

CoROLLARY 3.L.7 LetE be any congruence modular variery and let

A,B e €. Let a,þ and ybe congruences on A such that yç q^P.

rhen: ["'Ã" ù/r=l"l,P/r]

ANDREAS GUELZOW _ 7 _ UNIVERSÍTY OF MANITOBA



. 3. Unlveßol Algebrolc Concepts

THEoREM 3.1.8 LetE be any congruence modular variety and let

A,B e €. l*t a,p and y be congruences on A- Then la,Bl < y if and only

iÍ lnla),n{.þ)l = @A/.t, where n.y is the canonícal homomorphism

from Aonto lr.

A very useful (and well known) syntactical description of the commutator is given by

Ihe term conditton:

THEOREM 3.1.9 I¿tE be any congruence modular varíery and let

Ae E, Let a and B be congruences on A. Then fa,Bl is the smallest

congruence on A such that for all terms t{xgåy,..,xn), (x,l) e B and

(a yb 1),...,(a n b n) e a we have :

r(x,a 1,...,a r) fa,Bl irx,b r,...,b n) + lirt,a 1,...,a n) la, Þ1ø(y,b r,...,b n)

The proofs of these theorems have been omitted since, with the exception of 3.1.6 and

3.1.7, they can be found in (Gumm 1980) or (Gumm 1983). A proof for theorem 3.1.6 is

contained in (Freese and McKenzie 1987).

3,2, Nilpotence

In group theory non-commutative groups can be classified by "how far they are from

being commutative (abelian)" using the notion of nilpotence. As mentioned above,

Smith (1976), Gumm (1980), etc. have also generalized this group theoretic notion of

nilpotence:

DEFINITToN 3.2.1 Given an algebra (S; O) in a congruence modular

variety € we define a sequence {S¡}¡=0,r,... of congxuences on (S; O) by:

Qo=ts
0¡*l = [ 0n' rs J

-8-ANDREAS GUELZOW UNIVERSITY OF MANITOBA



3. Unlversol Algebroic Concepls

' This sequence is called the lower central series of (S;O). IfQo = ¡¡t ¿¡t¿

0¿-1 * or5 then (S; O) is said to be nilpotent of class k. The universal

algebraic centre Ç((S; O)) of (S; O) is defined as the largest congruence

@ on (S; O) such that [@, t5] = otr .

Let Ë(e) denote the class of all algebras in € that are nilpotent of class & or less, i.e.

€1r¡ e ä12¡ e ü1:¡ e ... ç U.

THEoREM 3.2.2 I¿tB be any congruence modular variety. Then all

€.1¡¡¡ (k> 7) are congruence permutable varieties.

A proof of this theorem may be found in (Gumm 1980). An alternative definition of

nilpotence can be given using the concept of the 'upper cenüal series':

DEFTNITION 3,2.3 Letü be any congruence modular variety and

(S; O) e €. Then the series Ëo < €r < 4z< ...< Ç, I ... of congruences

on (S; O) defined by:

a) €s= (l)5 and

b) Ç, is that congnrence above Çrr-1 on (S; O) such that

Ç/r*-,=,((t/ç-,' 
"))

is called the upper cental series of (Si d2).

For Mal'cev varieties Smith (1976) has proven the following theorem. It can similarly

be proven for modular varieties. (This theorem appeârs to be known, but the author

was unable to find any reference to it.)

THEOREM 3.2,4 L¿t$ be any congruence modular variety and let

{€¡}¡=0,¡,... be the upper central series oÍ$;A)eË.Then (S;O) rs

nilpotent of class k if and only if EF rs and l¡-r+ tg.

ANDREAS GUELZOW - 9 _ UNIVERSITY OF MANITOEA



3. Univeßol Algebrolc Concepts

In the proof of this theorem we require the following lemma:

LEMMA 3,2.5 lßt E be any congruence modular variery and let

lE¡li=o,l,...and {Qil¡=0,t,...be the upper and lower central series of

(S; O) e ry. If Qi < E¡ then q,*, 3 Ç¡_1 and þ¡_1 < l¡a.

Proof of Lemma 3.2.5: l-,et 0¡<Ë¡. ny defi¡itions 3.2.1 and,3.2.3 Ei is the largest

congruence on (S; o) such that 
'rrte,_,=lEy'E,_r,"/C,_r].By 

theorem 3.1.6 this implies:

,,ta_,=fly'E,_,, 
'4 _,] = (te*'J 

"E,,VE,_,

Therefore É,.-t > 
[Ër,'s]> [Q¡,r5] = Qi*r

u"a -o,"ou". loj /r,,"/rl= [0,-,,"] " 
q'y 

=(ø ¡" e,/r. = Ey'E,= r r,r,

Since Çr*1 is defined as the largest congruence with the properry 
lç"/ç,:/rf,= ^rrr,

we get: Qr._t < (,*t . tr

Proof of Theorem 3,2.4t Let (0¡)¡=0,r,... be the lower central series of (S; O). It is

then sufficient to show that Or: os if and only if (¡ t5 for all i.

Assume €¡ = rs . Clearly 0o < É¡ . By repeated application of lemma 3.2.5 we get finally

0¡ < Çg = co5. Therefore Q¡ = os . Vice versa, let us assume 0¡= os. Then Q¡ <(9

and again by lemma 3.2.5 we get QO < É¡. Since 0O = rS thit implies l¡ = rg . tr

Since the upper central series of an algebra p has obviously one term more than the

upper central series of F/çqp¡ $roria"d $ is not already of nilpotence class 1) theo-

rem3.2.4 yields a corollary that will become useful in section 3.4.:

ANDREAS GUELZOW UNIVERSÍÍY OF MANITOBA



3, Unlveßol Algebroic Concepts

COROLLARY 3.2,6 l¿t B be any congruence modular varíety and let

5, = $; Q e E with ff * Ç(ã). Then þ is nilpotent of class k if and only

f F/C6\ is nilpotent of class k-7.

As a simple consequence of theorem 3,2.4 and lemma

3.2.5 we can get the following two corollaries that

describe the relationship between the upper and the

lower central series of a nilpotent algebra in a

congruence modular variety. Figure I shows this

relationship in the congruence lattice of such an algebra

of nilpotence class 4.

CoRoLLARY 3,2.7 LetE be any congru-

ence modular variety and let

5 = (S; O) e E be nílpotent of class k.

Let IEì ¡=0,t,... and lþ¿] i=0.t.... be the

upper and lower central seríes of þ.

Then þ¡31¡-¡for all i=0,1,...,k.

Figure 1

Upper and lo' er central
series of an algebra

of niþænce class 4.

Conoulnv 3,2,8 LetE be any congruence modular variery and let

5=(S; O) e E be níIpotent of class k> 0. Let (E¡\¡=6,7,... and

{0¡}¡=0,r,... be the upper and lower central series of fi.Then Q¡ * Ë¿-,-r

for all i=0,1,...,k-1.

Proof of Corollary 3.2.7: By theo¡em 3.2.4 lk = rs = Qo , i.". Ét > 0o . fr" statement

of the corollary follows by repeated application of lemma 3.2.5, D

ANDREAS GUELZOW _ ]] _ UNIVERSIY OF MANITOBA



3. Universol Algebrofc Concepts

Proof of Coiollary 3.2.8: Suppose E*_i_t > Q6. By repeated application of lemma

3,2.5 we get €¿-r à 0¡ = rs . This contradicts theorem 3,2.4 since $ is of nilpotence

class &. ¡

Note that it is not possible to improve these corollaries since it is possible to

construct nilpotent algebras in a modular variety such that each of the following con-

ditions holds fo¡ some i in at least one of these algebras:

Ç-ir'Q¡,
Ç_¡_r v Q¡=Ç_¡with Q,+Ç_,, and

Q¡=Ç-¡'

When determining whether certain nilpotent algebtas are subdirectly irreducible we

will require the following lemma and its corollary:

LEMMA 3,2.9 Let E be any congruence modular variety and let

F = (S; O) e E be nilpotent. Let d, e 6(F). rhen

dt(ù5 <+ a^((F)+os.

CORoLLARY 3,2,10 LetE be any congruence modular variety and let

5 = (,S; A) e E be nílpotent. Then $ is subdirectly írreducible if and

onty if for att C c {ae (I(F) 
I a < Ç(F)} :

/-'lC = <¡S + 1d,e C such that ø= os.

Lemma 3.2.9 is an exercise in (Freese, McKenzie i987). We will therefore omit the

proof.

Proof of Corollary 3.2.10: Since an algebra F = (S; O) is called subdirectly i¡reducible

if for all C c6(ã) the implication (ÔC= co5 +=d,e C such that d= ots) holds,

corollary 3.2.10 is an obvious consequence of lemma 3.2.9.
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By corollary 3.2.10, a description of the centre of a given algebra is useful in

determining whether that algebra is subdirectly i¡reducible. The next theorem will

yield such a description. Before we are able to present it, we have to recall the

definition of a Gumm difference term:

DEFIMTION 3.2.11 tet ë be any variery. A temary terrn d(x,y,z) is

called a Gumm dífference term if it satisñes the following two

conditions:

(a) d(x¡,2) =y is an identity in €.

(b) If (.x,y) e 0 e (I(A) for some A q €, then d(xt,Ð 10,01x .

It is well known that every modular variety has a Gumm difference term. Note that in

a permutable variety the Mai'cev term is a Gumm difference term.

THEOREM 3,2,L2 LetE be a modular variety and <A,A> = Ae E. Let

d(x¡,2) be a Gwnn difference term. Then a ç(A) b íf and only if
( I ) f(d(r {a,b),r {b,b),c ),... d(r n@,b),r n(b,b),c n\ =

d(f (r la,b),. . .,r n@,b)) Í (r {b,b),. .,, r n(b,b)) Í(c))

and

(2) d(r(a,b),r(b,b),r(b,b)) = ¡1a,6¡

for all f e Q, all c = (c1,...,c¡) e An (n being the arity of f) and all

bi nary t er m func tio n s r (x J),r (x,y),,,,,r n@,y),

A proof of theorem 3,2.12 can be found in (Freese, McKenzie 1987). As mentioned

above, in every permutable variety the Mal'cev polynomial is a Gumm difference term.

Since it always satisfies 3.2.12 (2), we getl'

CoRoLLARY 3.2,13 Ißt E be a permutable variety with Mal'cev term

p(xJ,z) and let @,A) = A e €' Then aÇ(A) b íf and onlv if
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fQt(r {a,b),r {b,b),c ù,...,p(r n@,b),r n(b,b),c )) =

p(f(r {ø,b),...,r n(a,b)) f(r {b,b),...,r n(b,b)) f(c))

for all f e 12, all s = (c1,...,c) e An (n being the aríty of fi and all

bínary term functions r l(x,y),...,r r(x,l).

3.3. The Voughon-Lee Description of the Commulolor

At the Fourth International Conference on Universal Algebra and Lattice Theo¡y at

Puebla, Mexico in 1982 M. R. Vaughan-Lee presented a paper on nilpotence in per-

mutable varieties (Vaughan-Lee 1983). In this paper Vaughan-Lee int¡oduces a new

description of the commutator for varieties of unital algebras with permutable weakly

regular congruences,

The results as presented in (Vaughan-Lee 1983) are valid for a variety 8 satisfying

the following conditions:

(1) € is a variety of O-algebras where O is a frnite set of finitary operations con-

taining a single nullary operation 0.

(2) ö is congruence permutable.

(3) ?ü is weakly congruence regular, i.e. for every (A;O) in € every congnrence of

(A; O) is uniquely determined by its 0 class.

(4) Every algebra (A;12) is unital, i.e. [0J is a subalgebra of (A;A). (This is

equivalent to the ¡equirement that /(0,0,...,0) = 0 is a law in üfor all/e O.)

Examples of varieties satisfying above conditions are: the variety of groups (G; +,-,0)

and the variety of pointed squags (.S; .,¿).

In group theory the 0-class of the universal algebraic commutator can be described by

the values of the group theo¡etic commutator term -r-y+r+y. For va¡ieties satisfying

the above conditions (1) to (4) this notion can be generalized as follows:
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Dpnrx¡rroN 3.3,14 Let € be a variety satisfying above conditions (1)

to (4). A term r(xg,xr...,rn-1) is called a commuta,tor term inB iî for

each i e {0,1,...,¿-1) :

0 = r(xg,xþ...,x¡a,lr¡a1,...Jr-1)

is a law in ü. The commutator tenn flxglþ...,x^-) is said to involve n

variables.

(Vaughan-Lee, 1983) mentions that the same results can also be proven without the

requirements that the algebras in € have an equationally defrned constant, The proofs

of the generalized theorems are presented in (Freese and McKenzie 1987, ch. 14). In

this case the concept of a commutator or commutator term has to be defrned as

follows:

DEFTNITION 3.3.18 Let € be a congruence permutable variety. A term

t(xg,xy,,..,xr-1 ,z) is called a commrttalor term in € if for each

i e {0,1,...,n-1J

t = t\xg¡y...,x¡-1,2J¡ay...,xr-1,2)

is a law in ü.

We will present some of the results from (Vaughan-Lee 1983) in the setting of

(Freese and McKenzie 1987). We will omit the proofs that can be found in (Freese

and McKenzie 1987). An important tool is the following generalization of a lemma well

k¡own in group theory:

LEMMA 3.3.2 (HIGMAN'S LEMMA) LetE be a congruence permutable

and nilpotent variery, i.e. a variety such that every algebra fi= @'A) in

E is nílpotent. Let ff = (F,A) be the Íree algebra ínE with generators

z,x¡Ã1,. .. and for every s¿t S c N let õg:Í''+Í, be the endomorphisnt

defined by:
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(x, íf ie S
ô5(x¡)=i,' yr.r and õsQ)=z

Let t(xo,xþ...,xr) and o(xg,x1,...,x*) be arbitrøry terms in E. Then

there is a finite set C of commutator tenns such that for all S 
=N:

(1) the identity ô5(ø) = ðs(o) together with the identities of B

implies the law: õg(a(xgt1,..,J*,2)) = z for all a e C, and

(2) the paír (A5t"l,Or<"1) is contained in the congruence generated

ar {(as("{to,tt, ...*r,))")laeclin the free atgebra g = <F,a)

in$ with generators z, xgt xy....

Higmann's Lemma in (Freese and McKen zie 7987)is formulated only for S = Ø, but

the proof itself shows above formulation, which is essentially the same as in

(Vaughan-Lee 1983). Using Higmann's Lemma in this stronger formulation we can

show that definition 3.3.1 is appropriate, i.e. these commutator terms describe the

universal algebraic commutator:

THEOREM 3,3,3 Let E be a congrltence perrnutable and nílpotent

variety. Let fl = (Á; O) be an algebra inH. Let þ and ty be congruences

on A. Then lþ;1t1 =

o{(þ,øtxs,h,.. . *,-rò)lze 6(€) &. x ¡Qz & x ¡{z e xs,x ¡,...,x,-t,ze Ðl)

where ß(M) denotes the set of all commutator terms of E involving at

Ieast the three variables xo , \ and z.

To prove this theorem we require a lemma from (Freese and McKenzie 1987):

LEMMA 3.3,4 Let A= (A; O) be a nilpotent algebra of class k in a con'

gruence permutable variety E with lower central seríes l.þì ¡=0,t,.... Let

p(x,y,z) be the Mal'cev polynomiat for thís variety and let fr(x,y,z) be a

term defined recursívelY bY:
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Ís(x,Y,z)

Ín+{x,y,z) = dt aþ *of^<x,y,zl,yl))f^@,y,zl)

Thenfor all n and all x¡,b,c e A we h¿ve:

(1) fn(n@,b,c),b,c) Qn x

(2) njn0,b,c),b,c) Qn t
and thereþre

(3) Í¡(n@,b,c),b,c) = x

(4) pÇ¡Q,b,c),b,c) = y

and

and

and

Proof of theorem 3.3.3 This proof follows closely along the line of the corresponding

proof in (Vaughan-Lee 1983). We will abbreviate:

e = oÁ({(r' <ro 4'.. .'r,4,r>)lte fr (€) & x sQz & x l}rz e x s,x 1,. ., s na,z e Ð\)

First we will show that @ < tQ,Vl ,i.e.zlQ,ryl r(xstþ...Jn-yz) for all øe ñ(8) A

xgQz & xlrYz .

Obviously r(z,zS2...,xn-y,z) = z[Q,V]z= Í(z,xþ,,,,xn-1,2). Since (z¡g) e @ and

(z¡r),(x2x2),..., (xn*) e lf \ e may conclude by theorem 3.1.9 :

z = ¡(x0,2,...,x n-yz) î0,V1 t(xst þ...,r 
^-1,2)

i.e. @ <lQ,Vt,

Now suppose t(xg,.xþ..,,x^) is any term, (cd) e ttt and (ø1,b1),..,,(an,ån) e p such

that flc,ay.,.,an) @ r(c,bt,,.,,år). We will show that c(d,ay..,,4n) @ r(d,bþ.",bn)

since this implies @ >tQ,Vl.

Since A is in a nilpotent variety it is nilpotent of class k fo¡ some positive integer &.

Let p(xo,xL,xz) be the Mal'cev polynomial in I and /¿(xg* 1J2) the polynomial defined

in lemma 3.3.4.

Thenl¡r?,c,z)=csincez=P(c,c,z)and
ltÇt'c'z)=d with P(d'c'z)'
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¡1= p(d,c,z) V p@,c,z) = z.

Similarly we get for all i = 1,2,.,,:

l¡rQ,a¡,2¡ = aí since z = p(à¡,a¡,2) and

î¡(v ¡,a¡,2¡ - bi with vi = p(b¡,a¡,2) and

v í = p(ní,ai,z) Q p@¡,a;,2) = 7.

Now define with s = (s1,...,sn) and t = (r1,...,rn) the term funcrion r:
{r,s,t,t n*1,t n*2) = rf Ár,t n-.',t n*2).f 2(s 1,t 1,t n*),..,,1¡ß r,t n,t n*))

Then lc,ay.,.,a) = {z,z,a,c,z)

flc,by...,b) = {z¡,a,c,z)

t\d,ay...,a) = fl¡t,z,a,c,z)

r\d,by...,bt) = {¡t,v,a,c,z)

where v = (vr,...,vn) ,a=(ay.,.,an) and z = (2,...,2) with:

¡t ry z and v @ z componentwise.

Consider the two terms r(x9,(r1,...,,rn), (xn*y...Jn*r),x2n¡1,2) and L(xg,...s2n*yz) =

p (x\2,2,(x 
n ¡,. .,,x r* n) ã 2, * yz), f,2,(x y, .,,r ),(x n* y. . . J n* r) J 2¡ a 1, 

z),

rdxg,z,(x n* 1,... å ¡¡) #2n ¡,2)).
By Higmann's Lemma (Theorem 3.3.2), there exists a frnite set C of commutator

terms such that in the free algebra in t with generators z,xgÃ1,... the pair

(L{r¡,. , . s2n*r,t), K(rg,(rl,. . . J,, ),(xn*1,. ..,x2n)frr¿+ 1,2)) is contained in the congruence

generated uy {(artøt:s,r1 ,..,,x¡,,2)l,z)lcoec}. since ¡tryzand v1 pz and since

o = oÃ({þ,<ro t ¡,....t 
^-yò)løe 

ñ@ & xsw & x 1Qz & x s,x 1,...,x 
^-1,2e 

e>l)

we know the¡efoie that in A : Iv(¡t,v,...,v,ar,...,an c,2) @ r{1t,v,a,c,z) , i,e.:

p (t<\z,z,a,c,z), tdz,v,a, c, z), r<\ ¡t,z,a,c, z)) I t4lt,v,a, c,z)

therefo¡e p(flc,a y...,a r),flc,b 1,,,.,b ),r(d,a r,,..,a )) @ úd,b þ...,b ) .

Since we have assumed that t{c,ar,...,an) @ (c,by...,br) we get immediately:

r(d,a r,.,.,a n) @ L\d,b þ.,.,b n)

and therefo¡e @>l,Q,Vl. We have shown that @=lQ,Vl. tr
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While (Vaughan-læe 1983) and (Freese and McKenzie 1987) use this description of

the commutator to show that certain algebras are finitely based we will use it in a

different context.

3.4. Representing Nilpotent Algebros

ln (Freese and McKenzie 1987) a description of the structure of an algebra over its

centre is given. By induction, this will allow us to describe the basic structure of any

nilpotent algebra in a modula¡ variety, especially in those varieties in which the struc-

ture of the algebras of nilpotence class I is well known. To present this description we

have first to discuss the concept of an associated group:

DEFTNITIoN 3.4.1 Let ö be a modular variety and let .A e €. A= Ø;A)

is called abelian if and only if [tÁ,t¿] = o¿, i.e. if and only if A is

nilpotent of class 1.

DEFIMTIoN 3,4.2 l,et A= Ø;Ø be any algebra (not necessarily in a

modular variety). A is called affine iî and only if there exists an abelian

group (Á;+,-) = A and a ternary term function t\x,y,z) of A such that

(1)

(2)

r(x,Y,z) = x-Y+z for allx¡,2 e A and

{(x,y,z,u) lx + y = z + ul is a subalgebra of 44.

If this abelian group exists it is called the group associated with A and

the term function t is called a dffirence function for A.

In a modular variety these two concepts coincide. This has been proven first by

Christian Herrmann in (Herrmann 1979). P¡oofs of this difflcult theorem can also be

foundin (Taylor 1982) and (Gumm 1980):
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' THE0REM 3,4.3 In a modular variety, every abelian algebra is affine,

and conversely .

The next definition yields the constn¡ction used in (Freese and McKenzie 1987) to

describe an algebra over its centre:

DEFIMTIoN 3.4.4 Let@ =(Q;Fi:iel) andB = (B;Fí:ieI) be algebras in

the modular variety €. læt (0 be abelian with associared group (0;+,-,0).

Suppose fo¡ each i e 1 we are given a map T¡:Bn(Ð -¿Q where ¿(i) is the

arity of Ft. Let T denote the system of such maps (T¡:le 1). Then

A = B@r@ is defined to be the alge&a ( BxQ;F : i e /) with:

Fi ((b þq ì,...,(bn,qn)) = (F¡ (b r,...,b n),Fi (ø 1,...,ø ) + T ¡(b 1,...,b n))

where b¡e B, q¡e Q for all & and each Fi is evaluated in the appropri-

ate algebra.

In (Freese and McKenzie 1987) B and Q are exchanged. The author of this paper has

chosen to use this version to be consistent with certain representation theorems pre-

sented in (Klossek 1975) which will be discussed below. Obviously, the algebra

defined in 3.4.4 need not belong to the variety ü. But in (Freese and McKenzie 1987)

this construction has been used to describe the structure of the non-abelian algebras

in a congruence modular variety €:

THEOREM 3.4.5 Let Ae E, where E is a congruence modular variety.

ø ffi=lç6¡. Then there exists an øbelian algebra (D e M and a

system T of maps as described above such that A=æ @T(@ and the

centre of ß @T (þ is the kernel of the projection onto B.

It is clear that the projection onto B is always a homomorphism. A relatively simple

corollary to this theorem is:
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C0ROLLARY 3.4,6 An algebra in a congruence modular variety is nilpo-

tent of class 2 or less if and only íf it can be represented as (í.e. ís iso-

morphic to¡ @r{@rwnere @, and @2are abelían algebras inä.

By induction over the class of nilpotence (using corollary 3.2.6), one implication of this

corollary can easily be extended. The proof of the second implication of Co¡ollary 3.4'6

seems to require the knowledge that Qt is also abelian. We can therefo¡e write:

CoRoLLARY 3,4.7 If an algebra A = (A;Fi: ie I | ín a congrtænce modu'

lar variety ís nilpotent of class n then it is isomorphíc ta:

((. ((ro,ø''orþ",0,). . .þ"''e,)

where @1,@2,...,@n are abelian algebras inE an¡t Tr,T2,.,.,"ln-r are

some appropriate systems of maps as described ín 3.4.4. Moreover, íf

or¿ = Ë9 < €r <42 < "' 3 En = t¡ is the upper cental series of A then for

any ke{0,.,.,n} En-¡, coÛesponds to the kernel of the proiection onlo

(( (þ'e''rozþ"e,)"'þ'*'',co}

We will see in a later chapter that although this representation doesn't appear to

provide much information on the structure of an arbitrary nilpotent algebra in a congri¡-

ence modular variety, for certain varieties it yields valuable information, especially if

the structure of the abelian algebras is easy to describe - as for groups, squags and

SQS-skeins.

It is.easy ro see that the algebra ([ ((rO,øttrOrþ"'rÞr)...þt^t@,)r* atso be given

ln \
u'(lI Q¡,;Fi:iet\wirn

\t= t I
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Fì ((q 
t J,q \2,. . .,Q 1,n),. .',(Q 

^,1,e ̂  
2,..., Q ¡n, n))

F'r(01,1,...,ø^,),

F )@ ¡ 2,, ..,ø*,2) + T,t (q 1,1,...,Q^,1),

F l@ 1,s,...,ø6) + r? (q wq,z),.. .,(q^ J,q,,ù),

r in{ø 

1 n . . .,ø 
^,n) 

+ r!- | (o ¡r,. . .,q ¡-t),. ..,(q 
m J,. . .,Q^ ¡r- t))

if Ft is z-ary ana fl is rt evatuated iî (8k = (Ok;F,:ie I).
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Two of the main examples in this paper a¡e the classes of nilpotent squags and

nilpotent SQS-skeins. Since squags and SQS-skeins arise from the co-ordinatization

of certain Steiner systems a short review of this topic shall be given. A good suwey of

different algebras corresponding to Steiner systems can be found in (Ganter and

Werner 1980).

A Steiner system of type (t,k) is a pair (P,B) of fi¡ite sets, where B is a set of k

element subsets of P such that every l-element subset of P is contained in exactly one

element of B. While the elements of P are usually called points, the elements of B are

called blocks (or lines). A Steiner system of type (2,3) is also called a Steiner triple

system (STS) and a Steiner system of type (3,4) is called a Steiner quadruple system

(sQs).

Steiner triple systems can be represented using one of three types of algebras: near

boolean algebras, sloops or squags. The fust method of co-ordinatizing is due to R. W.

Quackenbush, the remaining two to R. H. Bruck. Steiner quadruple systems are

usually represented by SQS-skeins. This concept is due to T. Evans.

4.1. Neor Booleqn Algebros

Let (P,B) be a Steiner triple system. Let P' be a set disjoint from P such that

lPl = lP'\. Let 0 and 1 be two symbols neither in P no¡ in P'. I*t': P-+P' be a bijection

andQ=p¡-lp'u {0,1). On @ let us define two binary operations ¡ and v in such a

way that for every block å in,B the algebra (bvb'v { 0,1};¡,v,',0,1) is a boolean alge-

b¡a where b'= {x'l xe b}. Note that this is possible since each pair of elements

x¡ e P, x * y is in exactly one block å e B. It is clear that the algebra (0; n'v,"0' 1) is
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a near boolean algebra, i.e. an algebra satisfying all equations in two variables that

are satisfied in all boolean algebras.

Vice versa, let (0; ¡,v,',0,1) be a finite nea¡ boolean algebra and P c 0\{0,1} such that

PwP' = 0\(0,1) and PoP'=Ø where P' = {p'lp e P}.lf xl e P,x.+y then ({¡,y})

denotes the subalgebra of (O; ¡.,v,',0,1) generated by r and y. ({¡,y}) is a boolean

algebra, therefore ({¡,y}) n P\(x,y} contains either exactly one element (that we will

call z) or a unique element z that is the join of two atoms of ({x,y}). Then let B be

defined as: B = {(x¿,zllx,y e P,x *y, z chosen as described above). It can be shown

that (P,B) is a Steiner triple system.

4.2. Sloops

Steiner riple systems can also be co-ordinatized by sloops. A sloop (or Steiner loop)

is a commutative loop satisfying the equation x . (x . y) = y. Let (P,B) be again a

Steiner triple system. Let e be a symbol not contained in P. Let S = Pu { ¿ }, The

binary operation . be defrned on S by:

x,.x - e, e.e=e
x.e = x = e.x

x , y = the third point on the block through x and y

for all xy e P, x + y,It is easy to see that the resulting algebra (S; .,e)isasloop.

Conversely, given a sloop (S; .,e) we can define:

P = 5\{¿} and

a = {{x,t ¡'Y Jlx,Ye S\{ e},r*Y}

Then (P,B) is a Steiner triple system.
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4.3. Squogs

In this thesis we will be mainly interested in the co-ordinatization of Steiner triple

systems by squags. Given a Steiner triple (P"B) system we can define a binary opera-

tion . on the set of points as follows:

x.x - x,

x .y = the third point on the block through x and y

for all r,y e P, x * y. The resulting groupoid is catled a squag. The (equational) class

of all squags is defined by the equations:

x,x = x

x.y = y.x

x.(x'y) = Y

(4.3.1)

Conversely, given a finite squag (,S; '), i.e. a groupoid satisfying the equations (4.3.1),

we can consEuct a Steiner Triple System by taking the elements of S as points and the

sets {r, y, (¡ .y)) with x + y and r, y e ,S as blocks. The¡efore squags correspond

exactly to Steiner triple systems.

In 1960 M. Hall, Jr. investigated which Steiner riple systems are transitive on tri-

angles. In (Hall 1960) he showed that thele ale exactly two classes of such Steiner

triple systems. The first class consists of all systems whose subplanes (i.e. sub-

designs generated by a triangle) are rhe projective plane of order 2. He showed that

these are exactly the projective geometries ove¡ GF(2). The second class is the class

of all Steiner triple systems whose subplanes are the affine (9-element) plane over'

GF(3) (See figure 2). This class obviously contains all affine geometries over GF(3).

But contrary to the fifst case there are also non-affi¡e steiner triple systems belonging

to this class. As M. Hall, Jr. has proven, the smallest non-affine steiner triple system

whose subplanes are affine planes over GF(3) has 81 elements. This system is
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unique and we will refer to it and to the corresponding squag as 116¡ and Hltt¿1

respectively. Every Steiner triple systems in this second class (whether affine or not)

will be called Hall triple system (HTS), although some authors use this name for the

.non-affine systems only. It can be shown that the squags associated with Hall triple

systems æe exactly the (self-) distributive squags, i.e. those groupoids sarisfying the

following four equations:

x.x = x

x.y = y.x (4,3.2')

x '(x 'y)

x.(y .z) = (x.y).(x.z)

(Distributive squags are also called commutative ¡eflection spaces (kommutative

Spiegelungsräume), e.g. by l,oos and Klossek, or symmetric distributive quasigroups,

e.g. by Deza.) Conversely, the Steiner triple system corresponding to a given finite

distributive squag is also

always a Hall triple sys-

tem.

It is easy to verify that

these distributive squags

are functionally equivalent

to commutative Moufang

loops of exponent 3. In

(Bruck 1971) Bruck pre-

sents an extended theory

for commutative Moufang

loops of exponent 3, which

was first t¡anslated into
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the language of distributive squags and then expanded by Klossek in (Klossek 1975).

Some results of this paper will be presented in the next chapter.

4,4. SQS-Skeins

lßt (P,B) be a Steiner quadruple system, i.e. a Steiner system of type (3,4). Then we

can deflne on P a ternary operation 4 by

q(x*t) = y

s@,y,x) = y

SOtÐ = y and

q(x,y,z) = 4th point on the block through x¡ and z

fo¡ all¡ *y+ z*xnP,
' The algebras (P; q) obtained in this way are called SQS-skeins. The class of all SQS-

skeins is defined by the equations:

s@r,y) = y

q(x,y,z) = q(x,z,y) (4.4.1)

q(x,y,z) = q(y,x,z) nd

q(x,y,q(x,y,z)) = z

Conversely, given any SQS-skein (P;q) i,e, any algebra of type (3) satisfying the

equations (4.4.1) we can define a set B of blocks on P by:

a = l{x¡,2,ø(x,y,z)llxs,ze P, x+y +z +xl

It is straightforward to verify that (P"B) is indeed a Steiner quadruple system.

In chapter 7 we will take a closer look at nilpotent SQS-skeins,
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5.1. Bqsic Properties

It is well known-and was fi¡st proven in (Ganter, We¡ner 1975 A)-that the class of

all squags is a congruence uniform, regular, coherent, permutable and modular variety,

i.e. all congruence classes of the same congruence are of identical size, each con-

gruence class determines the congruence uniquely, each subalgebra that contains a

congn¡ence class of a cong¡uence is the union of congruence classes of this congru-

ence, etc. Moreover, every congruence class is a subalgebra, but the¡e may be subal-

gebras which are not congruence classes for any congruence (i.e. this variety is not

hamiltonian).

5.2. Mediol Squogs

In (Hall 1960) M. Hall, Jr. has shown that the affine Hall triple systems (i.e. Hail

triple systems that are affine spaces over GF(3)) are those Hall triple systems which

are transitive on 4-tuples of non-planar points. As a consequence the (distributive)

squags coresponding to affine Hall triple systems are exactly those satisfying the

medial or surcommutative larei

(x'y).(z .u) = (x ' z) ' $t'u)

Note that the medial law implies the distributive law, by choosing x = y.

(s.2.1)

As mentioned above, the smallest non-affine Hall triple system is I1g1' Therefore it

corresponds to the smallest distributive squag violating (5.2.1). This algebra was first

discussed by G. Bol in (Bol 1973). It can be given as follows: H*tt, = (V;') where

v= (cr'11¡)4ano . is defined by
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I

l-r,-r, tri+4
(¡.y)¡={ , , foti=l,...,4r J't 

Ï-*-" 
.(',-r)l::l:l o'=o

It can easily be checked that this structure is a distributive squag and that the medial

law (5.3.1) is not satisfied for ¡ = (0,0,0,0), y = (0,1,0,1), 2 = (1,1,0,1), and

¿ = (1,0,1,0).

5.3, The Squog Commutotor for Distributive Squogs

In group theory nilpotence refers to the commutative law: gxoups that are nilpotent of

class I a¡e commutative, etc. ln the theory of distributive squags nilpotence ¡efers to

the medial law instead of the commutative law. I-et $ = (S;') be a distributive squag

and ¿ e ,!. Then define/"(ø ,b,c) to be the polynomial:

f"@,b,c) = ((e. a). (b. c)). (((e. c) . (b. a)). e) (s.3.1)

lf e,a,b and c generate a medial subalgebra oft then clearly f¿(a,b,c) = e. If at least

two of the four variables a¡e identical the generated subalgebra must be contained in a

plane, i.e. it is medial and f"(a,b,c) = e holds. If A=(Á;')'B=(B;')and@=(C;') are

normal subalgebras of S, i.e. subalgebras which are congruence classes of some con-

gruences (possibly of a different congruence for each of A,B, and C), and e e An,B¡C

then/r(ÀB,@) denotes the subalgebra generated by (Í"(a,b'c)l aeA & beB &. ceCl.

It can be shown that/"(^â,8,(I) is even a nomtal subalgebra. Similar to the original de-

ûnition of the commutator in the theory of groups, the squag theoretic commutator of

two normal subalgebras A and E of F = (S;') that contain a common element ¿

(corresponding to the constant 0 in groups) can be defined as the (normal) subalgebra

çe(î\F,Ð:),For congruences \ e can therefore define:

ANDREAS GUELZOW -n- UNIVERSÍTY OF MANITOBA



5, Squogs

DEFINITION 5,3.2 Let F = (S;) be a distributive squag and ¿ e .S. Let

a and Bbe congn¡ences on $. Then the squag theoretic commutator of d,

and B will be denoted as [ø,8]s and is defined as

1",þls =ø-\lGl"<a,u,clNaae & bes e bþel).

It is clear that this squag theoretic commutator is a congruence. It is presently not

known whether this squag theoretic commutator coincides with the universal algebraic

one, but the author has proven in (Gülzow 1983):

THEoREM 5,3,3 Let 5 = (S;.) be a dístibutive squag. Izt a and B be

any congruences on p. Then

La,þ) > ta,Éls and trs,fl = trs,Êls

This theorem is also a consequence of the Vaughan-Lee description of the commuta-

tor, Using this concept of a commutator the notion of nilpotence can be defrned as

befo¡e:

DEFTNITIoN 5.3.4 l,et 5 = (S;.) be any distributive squag. Then define:

F"=F
ãn+t = Í"(ã,,ã,F)

with pn= (Sn;.). IfS¿ = {e} and S¿-r + {¿) then I is said to be of nilpo-

tence class /c. Moreover, we will consider the trivial (i.e. l-element)

squag ( {¿ };.) to be of nilpotence class 1.

Theorem 5.3.3 clearly ensures that this concept of nilpotence coincides with the uni-

versal algebraic concept as defrned in 3.2.1.

Using 5.3.4 and 5.3.1 one can easily verify that the distributive squags of nilpotence

class I are exactly those satisfying the medial law 5.3.1, i.e those squags correspond-

ing to the affine spaces over GF(3).
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DEFIMTION 5.3.5 The (squag theoretic) centre Ç'(ã) of the distribu-

tive squag 5 = (S;.) is defined ro be the congruence generated by:

{<e,xl. szll"{x,b,c)=¿ ¡rl, all åe S & ce s}

which is equal to:

{{e,x).s21 @'x)'(b'c)=(e.c).(b.x) for all åes & ceS)

It is easy to see that ((ã) = Ç'(ã). A short proof verifies Ç(Ð cÇ'6). We have

therefore:

THEOREM 5,3.6 The universal algebraic cente of a distíbutive squag

and its squag theoretical centre coincide.

In the variety of distributive squags the centre also allows us to recognize whether a

given distributive squag is subdirectly i¡reducible:

THEoREM 5.3,7 Let $ = (57) be a distibutive squag and let e e S.Then

Itrl(fFll =3 if and only if S is subdirectly irreducible.

A proof of this theorem can be found in (Klossek L975, 4.4). We will prove a general-

ization of theorem 5.3.7 in section 5.6. Another important congruence related to the

concept of nilpolence is:

DEFINITIoN 5,3.8 The Frauini congruence ã(F) of the squag S is

defined as the intersection of all maximal congn¡ence relations of $.

In (Soublin 1971) J. P. Soublin has proven that for a distributive squag $, Í($) is the

smallest congruence @ such that Ff.is of nilpotence class 1. Therefore every simpletf

disr¡ibutive squag is medial. This implies that the 3-element distributive squag is the

only simple distributive squag and, as a consequence, it is also the only simple

nilpotent squag.
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5.4. The Theorem of Bruck ond Sloby

In (Bruck 1971) Bruck presents the generalization of a theorem previously proven by

T. Slaby that-translated into the theory of distributive squags-gives a relationship

between the numbers of generators of a distributive squag and its class of nilpotence:

THEOREM 5.4.1 An n-generated distributive squag is of nilpotentce

class at most n-2.

The lengthy proof of this theo¡em can be found in (Bruck 1971). It relies heavily on the

structure of the commutator polynomial (5.3.1). Note that this theorem implies that

every finitely generated distributive squag is nilpotent, i.e. every finite distributive

squag is nilpotent. An arbirary infinite distributive squag may o¡ may not be nilpotent.

L. Bénéteau has shown in (Bénéteau 1980 A) that the above limit is the best

possible:

THEOREM 5.4,2 For n> 3, the free n-generated distributive squag is of

nílpotence class n-2.

While it was the original goal of the resea¡ch leading to this thesis to generalize

theorem 5.4.1 and possibly 5,4,2 we were unable to succeed. In fact a result that we

obtained for nilpotent SQS-skeins shows that they cannot be generalized fo¡ all E-

minimal algebras of afflne type.

5.5, Free Distributive Squogs

In (Bruck 1971) the following important ¡esult has been proven:

THEoREM 5.5,1 Let 5 = (S;Ð be a finítely generated distributive squag '

Then S is finite and moreover lSl= 3^ Íor some ínteger m,
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Ci:nollenv 5.5.2 The variety of distibutive squags is locally finite '

Let X denote the class of atl distributive squags. We wilt now consider the class N¿ of

atl distributive squags of nilpotence class at most k. It is lnown from universal algebra

that N and X¿ are varieties for every È. Therefo¡e in each H¿ and for every positive

integer n there exists a free n-generated disributive squag S¿,¿ in H¿. Let us denote

the free n-generated distributive squag in X with Sr. By theorem 5.5.1 þ¡r,n and ãn are

both finite. Since by theo¡em 5.4.2 ãn (with È3) is of nilpotence class n-2 we know

that Fn = F*,¡ for all ¿23 and all k> n-2 .

In general, the size of $¡,n is unknown, Only for very small t has this size been deter-

mined:

ros,(þ',,1)=,-r (affine geometries ove¡ GF(3))

r"eril¡r,,1) =,-t.(';t)

re,([F,,"1) =,-r.('; 1)*+('+')*(';')

bclp.,"l) =,- r.('; I 

).a 
(';' ).' 

o (";'þro (';'þ, (';')

(Bruck 1971)

(Bénéteau 1980 A)

(Smith 1984)

From these formulae we can calculate the size of the f¡ee distributive squags in X:

lFrl= ¡0, lÞzl+1,lÍtl=32,|.F+l=zq ,låtl=t" and l!61= 3+e.

5.ó, Nilpotent Squogs

In section 5.4 we have seen that every distributive squag is nilpotent. This raises the

question whether there are any non-distributive squags that are also nilpotent. Before

we will answer this question positively by providing an example, we need to cha¡ac-
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terize the centre of a squag-the chåracterization given in 5.3.5 and 5.3.6 is only valid

fo¡ distributive squags-and the squags that are of nilpotence class 1.

LEMMA 5.6.1 Let F = $;.1 be a squag. Then a Uå) b iÍ and only iÍ for

all c,d. e S the following five ídentities hold:

a)

b)

c)

d)

e)

¿. ¿ = ((((a. c). b) ((a. d). b)). b)' a

c. d = (((((a. b). c). b). (((a. b)' d). b)). b)' (a. b)

¿. ¿ = ((a' c). b). (((a. b). d)' b)

c. a = ((((a. c)' b). d). b). (a' b)

c. d = ((((((a. b). d). b). c). b). a

Proof: The statement of this lemma follows immediately from corolla¡y 3.2.13 if we

observe that the Mal'cev polynomial is given by p(x,y,z) = (x.z).y and the only binary

term functions are r, y, and.r.y. tl

THEoREM 5.6.L The squaC F is of nilpotence class I if and only ü' ã ß

medial.

Proof: Since every medial squag is of nilpotence class 1 in the variety of distributive

squags, it is obviously also of nilpotence class 1 in the variety of all squags. Suppose

5 = (S;.) is of nilpotence class 1. Then [ls,rs] = ro5 . Let r(4s2t3t4fi5) be the term

function given by:

1(x | Í2#3J 4J s) = øy (@ ús). (¡¿.¡s)))' ((r r'.rq)' (¡:'¡s))

By theorem 3.1.9 the following implication holds for aLLxS,aya2,a3,a4,byb2,b3,b4 e S:

r(x,a ya2,a3,a4) = r(x,b þbz,bZ,b q) + r'@'a y,az,az,aò = r(y'b yb 2'\,b).
I-et a,b,c,d,e be some arbitrary elements in 5. Let¡ =c'd,q=bt=bz=þ3=þa=¿,
y = a, a2= b, a3 = c, and a4 = d. Then this implication becomes

't (c' d,e,b,c d) = 1(c' d,e,e,e,e) + r(a,e,b,c d) = t(a,e,e'e'e).
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Sincer(c'd,e,e,e,e)=(e.(((c.d).¿).(e.e))).(((c.d).e).(e.e))=(e.(c.d)).(c.d)=¿and

r(c'd,e,b,cd)=(e.(((c.d).b).(c.d))).(((c.d).c).(b.d))=(e.b).(d.(b.d))=(e.b).b=e,

the left hand side of the latter implication is always true and we have

(e' ((a. b)' (c. d))), ((a' c)' (b. d)) = r(a,e,b,c d) = r(a,e,e,e,e) = e,

therefore e.((a.b).(c.d)) = e.((a'c).(b.d))

and finally (a. b). (c' d) = (a. c). (b' d).

Since this equations holds fo¡ aI a,b,cd e S the squag F = (S;.) is medial. tr

We will now show that there are indeed non-dist¡ibutive, but nilpotent squags by con-

structing a 27 -element example. Let S = GF(3)3 and let. be a binary operation on .g

defined by:

lrt
lrz
\r¡

It is immediately c

consider the identir

i,e. x12 = 1, then it

we have:

(¡'(¡.y))¡

| -xt-!t \

) üi)=f , -,t"-,, I

\ -',-r,*[','-,)þ,'- r)t r-rrf ]
lear that (,!;.) satisfies the identities x.x = x and x.y = y'x. Let us

y x.(x.y) = y. Obviously (x.(x.yÐi = y¡ for all i e l1,2J.If 11 * 0,

is also clear that (r.(r.y))3 = y3 . Therefore assume ¡t = 0. Then

= -xz-þ.ùt*(- r)(k.y),,- lt r-t .thY

= ry * þr2 - r)t, -)ry -þrr' - tll,r- F,r-ùy
= r,*þr,-tl{,,-np -þr,-t\t r-rry
=t3

(.î;.) is therefore a squag. It is not disributive since:

(å)((:)(å)(t)(ã)(i)
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bu ((å)(:))((t)(å) (?)(r) (i)
It remains to be verified that (S;.) is nilpotent. Let 12 be the projection onto the fusr

two components. It is clear that the image of 12 is a medial squag, by theorem 5.6.2 it

is therefore nilpotent of class 1. If we can show that (((S;.)) 2 ker(n), then (S;.) is

nilpotent of class at most 2.

supp.se (i).'(å)]. ,* (íi 
)=( ¿ ).

Using lemma 5.6.1 it is straightforward to verify, that in fact

(¿ )'l(Bl,*','
Since the variety of squags is regular, this implies ker(22) c (((S;.)). Since (,S;.) is not

distributive, it cannot be medial; by theorem 5.6.2 it is therefore not of nilpotence ciass

i. (S;.) is a non-distributive squag of nilpotence class 2. In the remainder of this thesis,

we will call this squag 427 .

5.7. Some Representotion Theorems

In (Klossek 1975) two representation theorems for distributive squags are presented.

Applying a theo¡em from (Freese and McKenzie 1987) we can find two further repre-

sentation theorems, that are even valid for all nilpotent squags. Moreover, these theo-

rems will ansrver an open question from (Klossek 1975). We will frrst present-

without proof-the two theorems of (Klossek 1975):

FIRsr REPRESENTATION THEOREM 5,7,I Let þ = (S;.) åe afinite dis-

tributive squag generated by A = lar,a2,...,an| and not by any proper
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subset of A, Then there exists an m-dimensíonal vector space V

(m > n-l) and zm-ary polynomials p¡(xy...,x^, !y,. ..,!^) for n 3 i 3 m

over GF(3) without constant term such that

I) Every monomial oÍ every p¡ contains

lxy..s^l and {yy...,y mJ.

2) $ is isomorphic ¡6 $ = (V;ø) where
f-t. -.r.

(¡o))¡ = t;, ; +p¡(x,y)

3) Ã(F) \he Fratiní congruence) is the kernel of the projection

onlo the frst n-l components. This projection is a homomor-

phism.

4) The isomorphism Q: þ --s B can be chosen such that for all i

with 7 3i<t S@)= eí-rwhere (e¡)p=õ¡¡ for k= 1,...,m.

SEcoND REPRESENTaTIoN THEOREM 5,7,2 Let ã = (Sy) be a finite

distributive squag generated by A = {aya2,...,an} and not by any proper

subset of A. ø ltal(6)l= 3t and ((ã) cg6). Then there exísts an

m-dimensional vector space V (m > n-l) and 2m-ary polynomíals

P¡@y...s^Jy...,1) for n3i3m over GF(3) without constant term

such that

I) Every monomial of every pi contains elements of both sets

1x1,... t ) and {y 1,...,Y r}.
2) For n1l3m-rthe polynomial p¡ (xy...,x^,! 1,,..,!*) does not

depend on x*n*¡,...J^ and y^-r+1,..,Jm.

3) fi is isomorphic ¡6 fi = (Y;ø) where

elements of both sets

if I <i<n

ifn<i<m

ift<icn
ifn3i<m
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!{F) ß the kernel of the projection onto the first n-l compo-

nents. This projection is a squog homomarphism.

Ç(F) ß the kernel of the projection onlo the first m-r compo-

nents, this projection is also a squøg homomorphism.

The isomorphism Q: $ -+ E can be chosen such that Q@) = e¡-1

for all i with 7 3 i < n where (e 
¡) ¡, = õ ¡¡ for k = 7,,..,nt.

Using corollary 3.4.1, lhe following representation theorem for arbitrary niipotent

squags can be proven:

THIRD REPRESENTaTION THEOREM 5,7 ,3 Let 5 = (S;') be a finite

squag of nilpotence class k. Then there exísts an m-dimensional vector

sp ace V and poly nomials p ¡(x r,.,.,x¡-1,1 t,.'.,1 ¡-ì for L 3 i < m ov er

GF (3) wíthout constant term and a sequence 1 < nL..'.< nk= m of

integers such that

1) For nr<i< ns+l pì(\,.,.J¡-1,)1,...,)¡-1) does not dependonx,

and yrfor all t with nr< t < m.

2) $ = (V;o) is isomorphic to S where

(x o y)¡ = -xi-!¡+ pr(xy'.'J¡-1,! 1,"',)¡-1)

for all i e {1,...,m) with p,= 0fo¡ all t e (1,'..,n) '

3) Ç(E) corresponds to the kernel of the projection onto the rtrst

nk-l componenx of (V;ø), this proiection is a squøg homomor-

phísm.

4) r¡co5 = €6 <4<Ez' "' < Ér =rs is the upper central series of

(S¡) then for any i e {0,1,. , ',k} the congruence \¡ corresponds to

the kernel of the projection onto the first n¡-¡ components of

(Y;o).

4)

s)

6)
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Proof: Ifk = 1, $ corresponds to an affrne space over GF(3) and it is sraightforward

to verify the statement of the theorem. In this case p¡ = 0 for all i. Therefore we will

assume that /d > 1.

By coroilary 3.4.7 there is a collection of finite squags @1 =(Qt'),@z=(Qz;'),...,

@lr= (Qr) of nilpotence class 1 and maps rt,r2,...,f-1 such that þ is isomorphic to:

l-*- \
( llq;o )
\i=t I

with (r yr2,.,.,r ¡r) 
ø @ yqz,...,q *) =

(r1'ø 1,Q2'ø2)+rr Q¡'q),...,(r¡r'Q¡¿+lk-L{{rr,rr,. ' .,r¡-),@ y'ø2,. '.,ø¡-)))

li \2
where each ri:llIAi | -+ e*r.

\t= I I

Since all (8¡ a¡e of nilpotence class 1 they are medial and correspond to affrne spaces

over GF(3). Therefore each @¡ is isomorphic to þf1l¡tr;) for some m ¡21 with

(',, .. 

",,)'(n,,. 
.',n 

^)=(-r 
r- n r...,-r,,- q 

^)' 
Now define n y = m 1, ni = n i-r + m, ror arr i

= 2,3,. . .,k and nt = n¡. Then I < n, <.. .< n¡r.

Each ?t can then be considered a mapping from GF(3;2nt to GF(3)n¡i+l. we can fur-

ther define prr*; as the ith component of Tt andp,=0 if r e {1,.'.,n1}. Sincepn.*;is a

2n,
mapping from CF(3)-"¡ to GF(3) it can be written as a polynomial over GF(3).

Using these notations, $ is isomorphic to g = þr1f )"*;o) where

(xøy)¡ = -r¡-!¡+ pr(x1,...,xn"J1,...J¡r) if nr< i ( nr*1.

Since0=(0,0,...,0)r=(0,0,...,0)o(0,0,."'0))r=¡-{+p10,...'0)=p,(0,...'0)we

can conclude that none of the polynomials p¡ has a constant term.

From corollary 3.4.7 we get immediately 3) and 4). n
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Note that, as an immediate consequence of this representation theorem, the size of

every nilpotent squag is a power of 3.

It is clear that there may be different representations satisfying the conditions of theo-

rem 5.7.3 for any given squag S. These representations can obviously only differ in the

choice of the polynomials P¡,i= 1,...,m.In the following discussion we will denote the

set of all possible families (n¡li=\,.,.,n) of polynomials satisfying 5.7.3 with õ. We

will now show that we can always choose these polynomials such that every mono-

mial of p¡ must contain at least one of x1J2,..,&¡-1and one of !rJz,...J¡-t.

LEMMA 5.7.4 The polynornials p¡in theorem 5.6.3 can be chosen such

that lor all í p¡(x1,x2,.,.Jr-1,0,0,...,0) = 0 .

To prove lemma 5.7.4 we require the following lemma:

LEMIIA 5,7.5 Let V be an rn-dimensiona! vector space over GF(3) and

Iet (V:l be a squag such that

(x 'y)i = -x¡-!í+ pr(xy...,x¡4,!r'...')u)

for i = 1,...,m where the P¡@y...,x¡-1,11,..',)i-r) are polynomials over

GF(3). Let k be a fixed number in Í2,...,m1 and let P(x1'...,x¡,-1) be

another polynomial in GF(3). Let I be a binary operation on V defined

by:
il í<k

íf i=k

(x. y)i

(x. y)t+ P(xy...,x¡r-1) + P(]r,,..,)¿-r)

+ r(fx . r11,...,(x'rl¿-1)

-r r-r r* o þ r,...,x ¡r-1s. ¡r-P (x 1,.'.,x ¡r-1),

x¡*1,...fi¿-1J1,..,J ¡ç-1, Lf i> k

I rP0t,"',1*-1),r¿* 1" "'r¡-1)

(x t y¡t=
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and kt AiV-+V be defined by :

f 
ør r',,. ..,',1 l],= l(,' 

o*, o r,, ..,, o _, 
--t,:i

Then Q:(V;.)>-----*(y;r) ts an isomorphism and çr is given by:

lø-' t<,,,.., * 
^,,],= {il-"o,, ... r *-t) i',:I

Moreover, if (V;.) satisfies the conditions 3) and 4) of theorem 5.7.3

then (V:t) also satisfies these conditions.

Proof of Lemma 5.7.5: F¡om the definition of P it is immediately clear that @ is a bi-

jection and that fl is given as described. To prove that @ is even an isomorphism, we

will show that for every i (l < i < m):

[ø{o-1{{r,,...,rr)).0-1((yr,...,r.)))], = [(r1,...,xr)r(11 ,...,y^)f¡ (5.7.6)

5.7.6 holds clearly for 1 < i < È. At fust we will show 5.7.6 holds for i = /<:

(O( øt t<r,,...,r,)).d-l((r1,...,y,))) )*

= (O( ('t'...** - P(x1,,..*¡,-1),...t^)'(ty...,t¡- POt,...,rr-ì,...,y,) 
))o

= (o((<'' Ðt,@' Ð2,...,(x' v)*;,

-x¡+ P(xy,...s¡-r) -y¿ + P(yt,...,y*-ì +p,r(x1,...Jpall,...,)¿-l),...)))¿

= -x *-l r+ P rG t"rz,.. .'x çyl t'l 2,.. .'l t -ì + P (x þ.. .'x k-ì + P (l y.. .,1 *-ì
+ P((.x . r)1,G , Ð2,...,(x. y)¿_r)

= ((r1,...,.rr) o (r y...,y ì) t,

If i > Ê then we get similarly:
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(o (ø-t r<r r,...,x.)).0-1((r1,...,r,) )) ),
t/,\

= [ A ( Q y'. t e - P (x1'..,x ¡,-),..' t^)' (t y...'t t - P 0 t,...,t t -t),,y.) ) I\ \' '/ j

= -x¡ -l¡+ O¡(xy...,x¿- P(xr,...,x¡,_),...,x¡-1,!r,...,); - P()r,...,f¿_1),...,f¡_1)

= ((x r,...,x *) t (t y...,y ì) i

i.e. 5.7 .6 holds fo¡ all i e {7,. . .,m}. The¡efo¡e p is an isomorphism,

If (V;.) satisfies the conditions 3) and 4) of theorem 5.7.3 then (V;r) also satisfies

these conditions since @ and the projection onto the fust j components commute for

every l. (This is immediately clear from the definition of @.) n

Proof of Lemma 5.7.4: Suppose the conditions of lemma 5.7.3 are satisfred. To prove

this lemma we will fust define a concept of an improved family of polynomials and then

show that for every family (p¡ li=1,. ..,m) inÇ, not satisfying the condition

P¡@1s2""'xt-r,0,0, "'0) = 0 for all i = 1,"',n (5'7'7)

we can find an improved family (q¡li=\,...,m) in G. Note that for i = 1 the property

P¡@¡x2'..',x¡-1,0'0'..',0) = 0 is always satisfied.

In this proof, the weight of a point.x e GF(3)n shall be the number of non-zero coordi-

nates of .r. We define a mapping cG-+NxNxN as foliows: Let p = (p¡li=\,...,m) e E

be a family of polynomials. If p satisfies 5.7.7 then (p) = (n+1,0,0), otherwise (p) =
(a,b,c) wherc d is the smallest number such that

Po(\J2,..."ro-1'0,0'.'.'0) + 0 for some (\J2,...J) e GF(3)tn,

å is the smallest number such that there exists an (x1Í2,...,x^) e GF(3)n of weight å

with po@112,...td_I,0,0,...,0) + 0, and c is the number of such points of weight å. On

NxNxN we can define a total ordering < by:
( a.a or
I(a,b,c)<(a,ß,y)e I a=aandb<þ or

I a=a andb= þandc>y
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Via t this total ordering < on NxNxN induces a partiâl ordering <" on t by p <, q if
and only if [ø(p) < ø(q) and z(p) + ø(q)] o¡ p = q. We wrire p <¡Q and say a family

qe Ois improved over p e õltp<?qandp+q.

From the definition of c it is clear that the families in G that satisfy 5.7.7 a¡e maximal

elements in (G;<"). In the next part of this proof we are going to show that no other

families in t are maximal elements by constructing for every p e G that does not

sâtisfy 5.7.7 a q e G such that q is improved over p.

Suppose p = (p¡li=L,...,m) e G does nor satisfy 5.7.7 and z(p) = (k,å,c) wirh

7 <k<m, å > 0 and c>0. Let (wr,w2,...,w^) e GF(3)"?\{(0,...,0)} be a point of

weight å such that 0 * p¡r(wr,w2,...,w¿_r,0,0,...,0). Obviously wi=0 for all i= k,...,m.

Let a1< az<...< a6 be those integers such that for all l:

wj=0 <+ ie I = {a1,a2,...,ø). 
\

ys¡ ( = p t (w 
1,w 2,...,w ¡14,0,0,...,0) and let P (\,.,,,x k-r) = - rc i II$. ¡ 

-+ ¡ l.
(je r )

Note that, since p e G, (y,op) is isomorphic to $ where

(x \ y) ; = -x ¡ -! ¡ +p ¡(x y. ..,x ¡_1,!r,. ..,)¡_r) for all í e { 1,...,m}.

Now define q= çqrli=l,...,m) by:

. if 1 < t < & then Q¡(x1,x2,...,x¡_1J1,t2,...,t¡_) = p¡@1J2,...J¡_tJtJz,.. .J ¡_ù
, iÎ i = k rhen q¡(x112,...,x¡_1Jy!2,...,!i_) =

P ¡@ 1J2,... s ¡-1'l ù 2,...'t ¿-ì + P (x r'.. .,x ¡-) + P(¡l r, ".,)¡,-r)
+ P((;r op t)y@ øpl)2,..,,(¡ op y)¿_r)

. if m >- í > ¿ then Q ¡@ p2,. ..,x,_r,l t,l 2,...,1 i_ì =

f ¡(x1,...,x¡- P(x1,...t¡r_1),...fr¿_t,V ¡,...,1¡- P(1tr,...J¿_1),...,)¡_1)

Lemma 5.7.5 implies that (y,op) is isomorphic to (7,o0) with:

(.r oq ))¡ = -x¿-!¡ + q¡(x1,...,xi_1J1,...J¡_1) fo¡ all i e (,1,..,,mj
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Thèrefore q satisfies 5.7.3.3). Lemma 5.7.5 yields also that 5.7,3.4) and 5) are

satisfied for (V,oq). Due to the minimality of b, P(xy.,.,x¡_1) depends only on the vari-

ables that p¡r(xyx2,.,,,x¡-ylt,lz,..,,lt-1) also depends on. Therefore q satisfies

5.7.3.2).

Therefore q e C. It remains to be shown that p <"q. Recall that (p) = (&,å,c) and

suppose 4ù = @,eû. From the construction it is clea¡ that d > k.If d > & we are

done. Therefore assume d = È. By the definition of q¿, the minimality of å and since

lll=b,for every point (xy...x) e Vof weight less than å we have:

|¡r@y'..*p4,0,...'0) = O + p*@y'..J¿-1'0'.'.'0) = Q.

This implies e> b.11 e > å we are done. Therefore assume e = å.

We know (s.7.8)

Now consider the product (0,0,.,.,0)oo(w 1,...,w¿_1,0,...,0¡ = (2y.,.,2^). Obviously

zi= - wfor all i with | < i < k-l and zo= K. (There is nothing that could be said about

z¡ for i > &.) By 4.3.1 we get:

(-w ¡,-w2,..,,-w ¡-y K,z ¡*y.,.,2 
^)op(0,0,...,0) 

= (w y...,w k-1,0,...,0)

The fth component of this equation yields:

-K +p¡(-wy...,-w¿_r,O,...,0) = 0

P¡rÇwy,,',-w¡r-1,0,...,0) = K* 0 (5.7.9)

Note that the point (-wy,,,,-w¡r_1,0,...,0) e V has weight å since (w1,...,wÉ-1,0,...,0)

has weight å.

Now let (x1,...,x¿_1,0,...,0) e V be a point of weight b s,l, pk@þ...,x¿-1,0,...,0) = Q.

Recall that a1<a2<...<a6 are those integers such that for all i:

wi=0 <+ ¡ç l={aya2,...,a61,

lf one of xor,xo",.,, liabis zero then by the definition of q¿:

Q¡@1,"'spa,0,"',0) = 0+pk@þ"'Jfr-l'O""'0) = 0
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lfthexal,xaz,,,,,xabareallnon-zerothen.rr=0forallíel&l<i<k-lsincethe

weight of (r1,...,r¿_1,0,...,0) is å. Because of 5.7.8 and 5.7.9 we have:

(r1,...*¿-1,0,...,0) t (w¡,...,w¡r-1,0,...,0) and

(r1,...,r¿-1,0,...,0) * (-wþ...,-wk-1,0,...,0).

Then there must be r e f and v e / such that rr= wuand x"= -wu. But then:

4¿(r1"""t¿-1'0""'0) = 0+pt(¡t';"'t¿-1'0""'0) = 0'

Finally:

Q ¡.(w yw2,,,,,w p-I,0,0"..'0)

= p ¡(w ¡,...,w ¡, -,,0,. . .,0) - xflt * ¡* r-, 
) 
- "[T 0 (,i-0 ))

- *[n 1,¡ o- n ¡@ y...,w ¡ a,0,, . . o))þ,'¡ -,'r- 0 + p,(w p...,w, -,,0,.. .,rÙ

='"k')*hl')-"[T',',)
/\

=r-rlfl r l=o
\¡.t )

and

Q ¡Çw y-w 2,.'.,-w¿-1,0,0,...,0)

= p rÇw,,. ..,-w¿ - 1,0,. . .,0) - KFI -* ¡* ¡ * ¡)-"þ 0,,,-0, 
)

.[g f* ¡- n ¡G* v "',-w¡- 1,0, "',0)) (-w ¡ + w 
¡ 

+ p,{-w,,''',-'i-,,0, "',0)))

=*-*lTI*,*,)-.hù"[+')
/\

=r-"f|Itl=o
v-. ¡ ,/
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We have shown that every point (x1,..,,x¡_y0,,..,0) e V of weight b such that

Pp(x1,...,xp-r,0,...,0) = 0 also satisfies Q 2(x1,...,x¡r-1,0,...,0) = 0. Moreover we have

shown that there are two points (xy..,*¡r_r,0,...,0), (y1,...,)¿_r,0,...,0) e V of weight

å such that:

P¡@y..'*pa,0,...'0) * 0 & P¡¿Oy...,t¡a,0'...,0) *0 but

Qp@y.'.t¡a,0,...'0) = 0 &. 4¡Oy...,1¡-y0,...'0) = 0

i.e, c à/+ 2>1,$n fact ir can be proved rhat c =-f + 2.) This means p <¡9. As we

have mentioned above this implies that all maximal points in (Û;<r) are satisfying

5.7.7. Since iÍ is finite it has at least one maximal point, i,e. the polynomials p¡ in

Theorem 5.7 .3 can be chosen such that for all i: p¡(x1,x2,...J¡_1,0,0,..,,0) = Q. tr

The polynomial p3 in our example 427 does not satisfy the condition in this lemma

since p3(0,1,0,0) = (02-1) (02-l) (1 - 0)2 = I + 0. It is relatively simple to find a

representation of 427 such that the polynomials satisfy this condition:

Let P be the constant polynomial 1. By lemma 5.7.5, the algebra (GF(3)3,.) with the

binary operation r defined by

| -'1-)1+1+l+1 \

ü;)'ü;)=l -xz-v2 |

\ -',-r, +(rx, + rr2 t¡1r,. Ð2 -t)(x2-yzf 
1

, _,, _r, \
/ 

-'t -'t 
I=l -xz-!z 
I

\-t, - ,, 
+ 11 (x1 - l)Yr 0r - Ðþ2- Yzf l

is isomorphic to A21 and it is obvious that p¡(x1*2,.,.#t-1,0,0,'..,0) = 0 holds for all i.

ANC,REAS GUELZOW -4- UNIVERSITY OF MANITOBA



5. Squogs

For distributive squags we a¡e able to specify the type of polynomials even more

closely, but we f¡st have to examine some additional property of the polynomials

described in S.Z.+:

LEMMA 5.7.10 Ißt V be an m-dimensional vector space over GF(3) and

let (V:l be a squag with

(x . y)¡ = -tc¡-!¡+ pr(x1,...#¡_1,!r,...,)¡_r)

for i = 1,...,m where the pr(xr,.,.)c¡_y,!1,,,,,!í_t) are polynomials over

GF(3) sacå thatîor all í p,(0,...,O,yr,...J;_1) = 0.

Thenfor all (xy...t*),0y..,,1) e V:

lff l:¡ Olu 1i ¡yr+ 0)l < I + yi p¡(x¡_..x¡alr,...,)¡._1) = 0.

For the proof of this and the following lemma we require the notation:

DEFTNITION 5.7.11 Let V be an rø-dimensional vector space over

GF(3). Then sln¡ denotes the point (x1,...x) e Vwith.rn=s and.rÉ= 0

if k* n and (s ys2)61,n) denotes the point (.r1,....t ) e V with xn, = s1 ,

xnz= s2 andxo=0 if ft e {nyn2}. Any point (xy,,,,x^) e V with

rnl = Jt ,xnz= s2,x,o= s3 and.r¿= 0if ke (nþn2l. &,t < n3 will be

denoted by (s1,s2,s3)(n1 ,n2,4,...). (The latter expression will therefore

indicate one of several possible points.)

Proof of lemma 5.7.10: If l{ j | .rr* 0)u{ j I f¡+ O¡¡ = 0 then the equation

P¡(xy...,,x¡-y!1,...,)¡-r) = 0 is a special case of p¡(0,...,0,y1,...,)¡-r) = 0 . We can

therefore consider the case U I xj* 0)u{¡ l}¡*0} = [&] and the polynomial

P¡@y...fr¡aJy...J¡-1) (i.e. for the ¡emainder of this proof i and * will be fixed). If i < *

we have again a special case of pj(O,...,0,y1,...,yr.-t) = 0. rile may therefore assume

that i > k.
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Since pr(0,...,0,)r,...,)¡_l) = 0 we have l1r¡ . 01¿¡ = 21¿¡. Since every 2-generated

squag has three elements, {01¿¡, 11t¡,21¿¡} is a subalgebra of (y,.).

Now suppose p¡@y,,,J¡_1,11,...,)¡_r) * 0 for (r1,...,r,n) = s1¿¡ and Oy...,l¡) = tç¿¡.

Then:

[sa¿¡'(*¡li = P¡@y.'.J¡-1J1,...,]¡-¡) 'É 0.

Since /c < I this implies: r(¿). t¿) e {01r¡, 1(t),2Q,>l which is a conrradicrion.

Therefore p¡(xr,...J¡_1J1,..,,)¡_1) =0. !

Before we will use this lemma to 'improve' the polynomials in the representation of an

distributive squag even funher, we will conside¡ an obvious consequence of this

lenma regarding the existence of small nilpotent squags: Since p2 depends at most on

.r1 and y1 lemma 5.7.10 implies that p2 = 0 and we have:

CoRoLLARy 5,7,L2 Every nilpotent squag with 3 or 9 elements is

medíal.

(In fact, this corollary does not provide us with new information. It is well known that

the 9 element squag is unique, i.e. it is the medial one.)

This corollary allows us to deduce that above example 427 is even a subdirectly irre-

ducible squag, since otherwise it would have to be the suMirect product of smaller

nilpotent squags, at least one of which being non-medial.

As previously indicated, for a distributive squag we can 'improve' the polynomials in

the representation even further:
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LEMMA 5,7,13 If the squag þ = (S;.) is distributive then the polynomi_

als p¡ ín theorem 5.7.3 can be chosen such that for all iand all

(xy...t^), (tr...,y^) e V:

P¡@1J2''..t¡-1,0'0,."'0) = 0 and

I U l r¡ o) u 1; ¡ rr* 0 ) | < 2 + p ¡@1,... r ¿4J 1,...,)¡_1) = 0 .

Proof: The proof of this lemma is very similar to the proof of lemma 5.7.4:

Let E be the set of al1 families (f ¿li=l,...,m¡ of polynomials sarisfying the conditions

of lemma 5.7.3 and the condition:

P¡(x1i2,...,x¡-r,0,0,...,0) = 0 foralli=1,...,rnand(xr,...t^)eV (5.7.14)

By lemma 5.7.4 we know that lt is non-empty.

we will f¡st define a new concept of an improved fmruly of polynomials and then show

that for every family p = (pílí=1,...,m) in B not satisfying the condition:

l{jlx¡+ 0)u(llyr+ }Jl<2 + yi p¡(x,r,...,x¡_1,}1,...,}¡._i) = 0 (5.2.15)

we can find an improved family (q, l;=t,...,m) in It. Note that by lemma 5.7.11 the

weaker condition:

l{l l;F 0}uU lyJ+ 0}l < 1 :å Vi p,(x1,...,x¡_1,}1,...J,._1) = 0

is always satisfied.

We define a mapping ø:It-+NxN as follows: Let p = (n¡li=\,...,m) e B be a family of

polynomials. If p satisfies 5.7.15 then 4p¡ = (z+1,0), orherwise 4p¡ = (a,b) whe¡e a

is the smallest number such that po@r,...,xo_1,!1,,..,!s_) + 0 for some

(x1s2,...,x*),(tytz,...,tì e GF(3)n with (7lx¡ 0)u(jlyr+ 0) = {r,s} (from lemma

5.7.11 it is clear that r + s) and b is the number of possible sets {r,s}. On NxN we can

define a total ordering < by:

(a,b) < (cr,Þ) (å { "=:Í^irru 
or
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Vìa ø this total ordering < on NxN induces a parrial ordering <r on Tt by p <" q if and

ontyif [(n) I ø(q) and r(p)+ rÇ)forp = q. We wrire p <7e and say a family q e 1ì

is improved over p e X4 if p <? q and p * q.

From the definition of ø it is clear that the families in 14 that satisfy 5.7.15 a¡e maximal

elements in (B;<7). In the next part of this proof we are going to show that no other

families in c are maximal elements by constructing for every p e 1{ that does not

satisfy 5.7.15 a q e B such that q is improved over p.

Suppose p = @ il i=1,,...,m) e B does not satisfy 5.7. 15 and 4p¡ = (k,b) with I < k < m

and å > 0. Let (u1,u2,...,u.),(v r,v2,...,v 
^) 

e GF(3)n with:

p¡,(uy...,u¡_r,vr,...,v¿_l) + 0 and ljlu,+ 0)u(llvF 0) = {r,sJ.

As mentioned above, r * s. Therefore let us assume r < s. By lemma 5.7.11 we have

also s < ft. Since p e lt, (y,op) is isomorphic to $ where

(x s ))¡ = -xi -! ¡ +p r(x y...,x¿_1,tr,...,)¡_r) fo¡ all i e 11,...,m).

By 5.7.74: (O,O)(r,r)op (0,1)1,,r¡ = (0,2)(r,s) and

(0,0)(,,")op(i,0)(,,r) = (2,0)(r,r)

The th¡ee points (0,0),r,r, , (0,1)(r,s) , and (1,0),r,"¡ will therefore generate a 9-element

subplane (subalgebra) of (V,op). Due to the minimality of ft we know:

(1,0)(r,")op (0,1)1,,r¡ = (2,2,Ðçs*,...) and

(1,0)(r,r)op (0,2)1r,r¡ = (2,1L)e,r,t,...)

where

By 5.7.1,4 we may conclude:

(0,0)(,,r)op (2,2,K)0,s,*,...) = (1,1,-trO(r,s,*,...)

(0,o)(r,Ðop (2,1,L)c,s,t,...) = (t,2,-L)0,rk,...)

p¡,G1,...r¡-1,!1,...,!t-r) = { : ::::'' 'f'] = Í]*]oo 
and þ'" "v",) = 

lo'^t]r',0[ ¿ if (xr,...,x^) = (1,0)(,,") and þr,...,y,,) = (0,2)(,,r)
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Since the subplane generated

by (0,0)1,,,¡, (0,1)1,,r¡, and

( I ,0)(r,s) is the 9-element

afûne plane we have the

situation as shown in figure

3, Recall that three different

points -x, y and z lie on one

line if and only if

x\Y=z
In the figure, the index of a

pair is (r,s) and of a triple

(r,s,È,. . . ).

As in the proof of lemma

5.7.4 we will now define a

polynomial P (x y... t ¿_):

Let P(x1,...*p-) = L.(x|x,- x?x,)-x.þlx,+ xtxJ ts.z.rel

Then define q= (qrli=l,...,m) by:

. if 1 < i < & then Q¡@fi2,..,Ã¡_1,1ù2'..,t¡_ì = p¿@1i2*..,x¡_tlt,tz,...,t¡_ù

. f i = k then q ¡(x yx2,.., J ¡_1J 1,12,... Ji_) =

P ¡(x 1 r 2,.. . Ã ¡-1,1 t,! z', . .'l ¡-ì + P (x y..',x ¡r-) + P() r,. ..,)r- r )

+ P (- xy - !y- x2- !2+ p2@yt),...,- x¡_1- !¡_f p¡_1(xy...,y*_z))

. if m 2 i >,t then Q ¡@fi2,.,. J¡a,l ylz,.,. Ji_ù =

p ¡(x 1,... s ¿ - P (x y... J p-1),... i ¡-r,y 1,.. .,)¡ - Pþr,. ..,)¿-1 ),.. .,r¡- 1)

Lemma 5.7.5 implies that (%op) is isomorphic to (V,oo) with:

(x oq ))¡ = -x¡-!¡+ q¡(x1,"'s¡-1,! 1,"'J¡-t) for all i e {1,"',ml

Figue 3:

Suþlane genemæd by (0,0\,o¡ , (0,1\. r) , a.nd (1,0)(/,s) .
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Therefo¡e q satisfies 5.7.3.2). Lemma 5.7.5 yields also that 5,7.3.3) and 4) are

satisfied for (V,oq). Since P(.rr,...,x¿_1) depends only on variables, on which

P ¡r@ 1s2,.. .,x O-r,l t,l 2,...,1 t -ì also depends, q satisfi es 5.7 .3.1).

By 5.7.16 P(0,...,0) = 0 and P(-¡1,. ..,-xt_) = -P(x1,....r¡_1), rherefore \rye gef:

Q¡@1t2,...,xt-r,0,0'... '0) = 0 for all i = 7,...,m and (x1,...t^) e V

i.e. q satisfies 5.7.14 .

Therefo¡e q e E. It remains to be shown that p <"q. Recall that dù = &,b) and sup-

pose ø(q) = (d,e). From the construction it is ciear that d> k.lf d > È we are done.

Therefore assume d = ,t. Now suppose:

{jlw,+ }lv{jlz.+ 0} = {o,ri * {r,sJ &. p¡,(wy,...,w¡r_1,21,...,2¡,_) = 0

Since {o,l} + {r,s} we havewr=0= zror w, = Q = z, .In either case:

Q p(w yw2,.. .,w o-1,2y22,.. . Jy-y)

= p ¡r(w yw2,. . .w p_1,2 y22,... J ¡_1) + P (w r,...,w ¡r_r) + P (z ¡,...,2 ¡r_)
+ P (- w r- 21,- w2- z2* p2(w1,2),...,- w¡r_r- zO_r+ p O_r(wt,.. .,rçz))

= 0 + 0 + 0 + P(- w, - zþ- wz- 22,...,- w¡r_r- zo_r) = O

Note that due to the minimality of k: p2(wyz1)=...= p¡r_1(wr,...,2p_) =0.

The image of the subplane gene¡ated by (0,0)1r,"¡ , (0,1)1r,s¡ , and (1,0)1r,r¡ in (V,op)

under the isomorphism @ is given in figure 4. The calculation is straightforward. Again,

the index of a paù is (r,s) and of a triple (r,s,fr,...).

Now suppose [jlwr+ }lw(jlzr+ 0] = {r,si. Then (wy...,w*) and (2r,...,2*) arc in

the subplane shown in figure 4. We get immediately:

Q¡(wy,..,w¡r-r,2y,,.,2¡r-1) = 0. Since P¡r(uy...,u¡r-r,v1,...,v¿-1) t 0 and because of

{j I ur+ 0J v (j I v r+ 0 } = { r,s } w e ger q ¡(u 1,,..,u ¡r_r,v r,...,v ¡r_) = 0.

The¡efore b > e andp <rq.
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5, Squogs

Figure 4:

Image of rhe subplane generared by (0,0)1.,s¡ , (0,1)1r,s¡ , md

(1,0\,,,¡ in(%g).

As in the proof of lemma

5.7.4 this implies that the

maximal elements of (B;<7)

satisfy 5.7.15. Since the

finite poset (E; I 
") 

must

have at least one maximal

element, we are done. n

Using these lemmas and

some further arguments we

can formulate a stron ger

version of theorem 5.7.3:

FOURTH REPRESENTaTIoN THEoREM 5.7 .17 Iet fi = (S;.) be a finite

squag of nílpotence class k. Then there exists an rn-dimensional vector

space V,for every i (1 < i <m) a polynomial p¡(xy...,x¡-1,!1,...,)¡-r)

over GF(3), and an increasíng sequence ¿t < ... < nk=m of integers

such thøt

1) For nr< i 3 nr*y p¡(x1,...,x¡-1,11,...J¡-1) does not depend on x,

and yrfor all t with ns< t < m.

2) € = (Y;o) is isomorphic to $ where

(x ol)¡ = -x¡-!¡+ p¡(xy...Ã¡a,lr'...')¡-r)

for all i e {1,...,m} with p, = 0 for all t e {1,,..,ny|.
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3) (($) corresponds to the kernel of the projectíon onto the rtrst

n¡-1 componênts of (V;o), this projection is a squag homomor-

phism.

4) If ío5=Eg<lt<Ez' "' <l*=rs ís the upper central series of

(S;') thenfor anyl e {0,1,.'.,k) the congruence \¡ coruesponds to

the kernel of the proiection onlo the first no-t components of

(Y;o).

5) For all i and all (x1,...,x.), Oy,...J^) e V:

P ¡@ y,. . .,x ¡a J 1,. .',)¡-r ) = P ¡(l t'... J i-úr,. " J¡- r )

6) For all i and all (xr,...,x*) e V: pi@n...t¡-r,O,...,0) = 0 .(i.e. no

P¡@1,..'J.¡-1,11,...Ji-r) has a constant term and every monomial

of it contaíns elements from [xt,...,x*] and from {yy...,y*}.)

Z) For all (x1,...,xv1), (11,...J^) e V:

l{jlx,+}Jv{jly,+ 0)l< 1 =+ Vip¡(xy...,x¡-1,}1,...,};1) = 0 .

8) If k > | then n1> 2.

lÍ F = ß7) is distributive, the polynomials pi (tlso satisfy

9) For all (xr,...,x¡¡), (ly...J) e V:

Itilxf 0\vUlyr+ 0]l< 2 =+ Yi p¡(xy,.',,x¡-1'h,...')¡-1) = 0 .

rc) For all i and all (x1,...,x), (ty...J*) e V:

P ¡(x y, . .,x ¡-1,! 1,. . .')¡-r ) = -p t(-x r,.' .,-x'- t'-) l,'' "-)¡-r )

(i.e. all monomials in p, (xr,...,x¡a,! 1,...,1¡-) lnve an odd num-

ber of factors.)

11) Ifk>lthenn¡23.

Proof: Theorem 5.7.3, together with lemmas 5'7,4, 5.7.10, and 5'7.13, yields theoren

5.7 .17 except parts 3, 5, 8, 10, 1 1, and the second half of 6.
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Pa¡t 3 is a consequence of part 4. Pan 5 follows immediately from the commutativity of

the squag operation and implies together with the first half of part 6 that its second

part is also true.

To verify part 10, suppose p is distributive and consider the following equation:

0¡1¡ o ((x1,...,t.)ø Ay...,t¡) ) = (0<rl o (x¡'.'.'r')) o (0(r) o (yr'...,y')) (5.7.18)

Because of the distributivity 5.7.18 is satisfied for every @y...st*), Oy...J^) e V.

The ith component of the lefthand side evaluates to:

(011¡ o ((x1,..., x*) ø (!y...,!¡¡)))¡ = ri + t¡- P¡@y...,x¡aJ1,...,t¿-)

and the same component of the righthand side to:

((01r¡o(xy...,x^))o(0(r)o(y1,...,yr)))¡ =x¡+!i+pr(-xr,...,-x¡-r,-)1,...,-)¡-r)

Pa¡t 10 is therefore correct.

To prove 8 and 11, suppose that 5 (and therefore þ is of nilpotence class ,t > 1. Then

consider the image þftf¡'z;or) of the projection of ë onto its fust n, components.

From the construction we know that this algebra is of nilpotence class 2, i.e. it is not

medial. Therefo¡e the¡e are points y = (xyx2,.,.,xn2), y = 0 y12,,.,,1 nr), z =

(zyz2,,,,,znr) and w = (wt,w2,...,w rr) such that

(w \x)o2Q \z) * (w o2y)ø2(w \z).
This inequality must hold in at least one component, say in component j. Due to the

definition of the operation 02 '\ e know z1 <i < nz, Now consider the projection

,, (or ç¡n, ;or) --* þr{al 
I * nr ;or) arnned by:

tt(u r,u2,,,,,un r,. 
..,, n2) (u yu2,,,.,u r r,u ¡)

where $ is given by :

l-r-rt ifi3n1
(u\v)¡ = 'f\" J /, 

¡-u;v¡+p.,(u1,u2,...,unr,v 
yv2,..,,v ¡r) if i = nt + 1

It is easy to verify that this is indeed a homomorphism since P; depends only on the

first n1 components. Since the inequality had held in the jth component we get
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5. Squogs

' (n(w) øt n(x)) ot (tv(t) øt n(z)) * (x(w) at tt(y)) øt (x(x) øt n(z)),

i.e. þr1l¡1*'r;or) i. not medial and is an homomorhic image of €; it must be of

nilpotence class 2. By corollary 5.7.72 the smallest squag of nilpotence class 2 has

33 = 27 elements, therefore nl ) 2. Moreove¡, if € is distributive so is its homomorphic

image þr1A¡i 
*nr;or). Since, as mentioned in section 4.3, the smallest disributive

squag of nilpotence class 2 (the squag flgl) has 34 = 81 elements, we have shown

that nt > 3.

The existence of the squag 427 shows that parts 9 and 11 cannot be proven for non-

distributive squags, since both of them would imply That A27 must be medial.

We will see in chapter 8 that the representation given in 5.7.17 exactly describes the

nilpotent squags, since the following theorem is a special case of a theorem proven

there:

THEoREM 5,7.19 Let (V;.) be a finíte squag having the following

properties:

I) V is an m-dimensional vectorspace over GF(3).

2) There exists a positive integer k and an íncreasing sequence 0 =

n0 < nl < .. . < nk = m of integers such that the binary operation '

is given by:

(x.y)¡ = x, +y, + p r(xr,...J¡_rJr,...,)¡_l)

where all P¡(xy...,x¡-1,!1,...,),-t) are polynomials over GF(3)

and each p¡does not depend on rnra1,...,x¡7,!¡¡+1,,.,,!7n,

znù1,.. ,zmîor n¡ < í 3 n¡a1 .

Then (V:) is nilpotent of class at most k.

In section 3 we had seen that whethel a distributive squag is subdirectly ineducible,

can be recognized in the size of the cenü.e: theolem 5.3.7 stated that a distributive

¡
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squag is subdirectly irreducible if and only if the size of any or every centre class is 3.

The representation given in theorem 5.7.17 allows the proof of the same theorem for

nilpotent squags in general:

THEoREM 5.7 ,20 lßt F = $) be a finite nílpotent squag and let e e S.

Then $ is subdírectly irreducible if and only tÍlf3t(6)l= 3.

Proof: Si¡ce S is a nilpotent squag, it has a representation as described in theorem

5.7.17. Suppose S is subdirectly ireducible and n¿-1 3 m-2. Then the two mappings:

"{Ë)) 
Ë)andhr (L')) 

É)
are homomorphisms and have kernels that a¡e smaller than ((ã) and that inte¡sect in

og. This contradicts 3.2.10, i.e. nk-r = m-7. But this implies that each class of ((F)

has size 3. On the other hand, if each class of ((S) has size 3, then the only congru-

ences below ((F) are Ç(S) itself and cr:5. By corollary 3.2.10 ttris implies that p is

subdirectly i¡¡educible.

5.8. Construclion of Nilpotent Squogs

In (Klossek 1975) some methods a¡e described that \rill allow us to construct

arbitrarily large but finite subdirectly irreducible distributive squags of a given

nilpotence class & > 2 if one subdirectly i¡reducible distributive squag in this class is

known, We will frst present these methods as theorem 5.8.1 and 5.8.2:
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THEOREM 5.8,1 Let V be an n-dimensional vector space over GF(3)

and let (V':) be a subdirectly irreducible distibutive squag of nílpotence

class k such that

(¡ . y)¡ = -xi-!¡+ p¡(x1,...J.r4,!r,..,,)n_r)

for i = 1,, .,,n where the p, are polynomials over GF(3) with:

a) pt =0
b) p¡(0,...,0,0,...,0) = 0 fori=1,...,n
c) r¡(r1,0,...,0,y1,0,...,0) = 0 for i= 7,...,n

d) ((y;t) ís the kernel of the projectíon onto the first n- l
components.

Then the n+2 dimensional vector space V'with the operation I defined

by

-ui-Y i if i<3

(ulv)t= -u i-v i+ p i_2(u3,,.,,u n* yv g,...,v n a 1) if 4 3i < n + 7

-u¡-v r+p r_2(4,...,ur*1,v3,.,,,v na 1) íf i=n+2
+p(uþuz,q,v þvz,v3)

with p(u¡,u2,u3,vyv2,v3)= (u3-v3) l:t :tl* a subdirectty írreducibte" ' luzvzl
distributíve squøg of nitpotence class k an¿ Ç((V;t)) is the kernel of

the projection onto the rtr$ n+l components.

THEOREM 5,8,2 Let V be an n-dimensional vector space over GF(3)

and let (Vyl be a subdirectly irreducible distributive squag of nílpotence

class k such that
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5, Squogs

(x . y)¡ = -x¡-!¡+ pr(xy.,.,tr4,!t,...Jn_t)

l,...,nwhere the prare polynomíals over GF(3) with:

for i = 1,...,n

((y;)) is the kernel of the projectíon onto the first n-7

components.

Ict V' be an m-dimensional vector space over GF(3) and let (V';t) be a

subdirectly írreducible distributive squag of nilpotence class j such that

(x o y)¿ = -x¡-!¡+ qr(xy.,.J*_¡J1,...,)¿_1)

for i = 1,.. .,m where the qi are polynomials over GF(3) with:

a) 410,0,...,0¡r¡2,...Jm_) = 0 fori=7,,..,m
b) (((ø;r)) is the kernel of the projection onto the first m-l

components.

Then the n+m-I. dimensíonal vector space V" with the operation x

defined by

-ut-v t+pt(ur,...,ttn_yt)y,..,v n_ì il | <i<n-I

is a subdirectly írreducible distributive squag of nilpotence class

max{kjJ,
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Since every nilpotence class of distributive squags has to contain at least one

subdirectly i¡¡educible squag and this squag can be represented as described in 5.7.17,

we can answer an open question of (Klossek 197 5) by concluding from 5.8.1 o¡ 5.8.2:

COROLLARY 5,8,3 For every k 22 there are infinitely many finíte subdi-

rectly irreducible distríbutive squags of nilpotence class k.

Klossek was unable to prove this corollary, since her general representation theo-

rems, i.e. theorems 5.7.1 and 5,7 .2 in this chapter, did not provide al1 the properties

required for these construction theorems,
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6. SQS-Skeins

ó,1. Bosic Properties

In section 4.4 we inroduced the concept of an SQS-skein as a co-ordinatization of a

Steiner quadruple system. Let us recall the definition:

DEFITüTIoN 6.1.1 An atgebra (S;ø) of type (3) satisfying the equations

sUã,y)

q(x,y,z) -- qþc,z,y)

q(x,y,z) = q(y,z¡) and

q(x'Y,q(x'Y 'z)) = z

is called an SQS-skein.

An extensive discussion of SQS-skeins can be found in (Armanious 1980), where they

are called Steiner Ternar¿. These algebras ale sometimes also called idernpotent

totally symmetríc 3-quasigroups or Steiner 3-quasigroups, e.g. in (Lindner, Rosa 1978).

Since the ternary operation of an SQS-skein itself is a Mal'cev polynomial, it is im-

mediately clear that the variety of SQS-skeins is congn:ence permutable and modular.

Mo¡eove¡, it is congruence uniform, coherent and regular. A proof of the latter state-

ment is given in (Armanious 1980).

In (Hanani 1960) the possible size of a Steiner quadruple system was investigated.

Due to the correspondence between Steiner quadruple systems and SQS-skeins as

described in 4.4. we get the fololving lemma:

LEMMA 6.1,2 Il $; q) is an SgS-skein then I S I = 2 or 4 (mod 6) or

lsl=i.
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Note that lemma 6.1.2 does not exclude any power of 2 as the possible size of an

SQS-skein.

Let us consider the subalgebras of an SQS-skein (S; ø). The defining identities in 6.1.1

imply that every one or two element subset of S forms a subalgebra of (S; q). If ø is

any congruence on the SQS-skein (S;q) and ø,b,ce [dju îor some de ,S, then

q(a,b,c) a q(ddd) = d and therefore q(a,b,c) e [d] ø. This means that every congru-

ence class is a subalgebra. In fact we even have:

LEMMA 6.1.3 IÍ d, is a congruence on the SQS-skeín (S; q) and (T; ql a

subalgebra of (S; q) then ¡4 a = U lsla is the universe of a subalgebra

oÍ (s; ò.

A proof of 6.1.3 is contained in (Armanious 1980). Note that this lemma implies im-

mediately that the union of two congruence classes (of the same congruence) is a

subalgebra, since-as noted above-every 2-element set is a subalgebra.

While every congruence class is a subalgebra, the converse is not true. An SQS-skein

may have subalgebras that are not congn¡ence classes. As in the theory of groups we

will call every subalgebra that is a congruence class of some congruence a normal

subalgebra. The next lemma will charactenze these normal subalgebras and describe

the associated congruence:

LEMMA 6,1.4 A subalgebra (N: q) of an SQS-skein (S; q) ts a normal

subalgebra (i.e. is the congruence class for some congruence on (S; ql) if

and only íf for some a e N and all rt, x2, x3, yr, y2, y3 e S:

( vi . 1 r,z,l t q@, xi,yi) e n) + q@,q(\, xz, xz),q( yt, yz, yù) e N
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If (N; q) is a normal subalgebra of an SQS-skcin (S:q), then N is a class

of the congruence 0y defined by:

Oiy = {(r,y) e 52 I S( a, x, y)) e N) for some a e N.

If a subalgebra (ru;a) of(S;4) is sufficiently large (in relation ro S) then it is always a

normal subalgbra:

LEMMA 6,1.5 I¿t (N; q) be a subalgebra of the SQS-skcin (S; ql such that
1

¡5¡ = i lNl. Then (N;q) is a rcrmal subalgebra of (S;q).

P¡oofs of lemmas 6.1.4 and 6.1,5 can be found in (Armanious 1980),

ó,2, Booleon ond Semi-Booleon SQS-Skeins

We will precede the discussion of nilpotent SQS-skeins with the study of a subvariety

of the variety of SQS-skeins:

DEFrMrroN 6,2.1 An SQS-skein (S; 4) satisfying the equation:

q(x,u,qj,u,z)) = q(x ¡,2)

is called a boolean SQS-skein.

In the context of Steiner Quadruple Systems this equation means that if two blocks (of

4 points each) intersect in two points then the remaining four points form a block.

(Figure 5.)

In (Quackenbush 1975) a boolean SQS-skein is defined to be an SQS-skein sarisfying

the equation

q(x,u,q(y,u,z)) = q(q(x,u,y),u,2) (6.2.2)

It is immediately clear that the equation 6.2.2 is satisfied by all boolean SQS-skeins

as defined in 6.2.1. Since we are able to provide an example of an SQS-skein satisfy-
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ing 6.2.2 but failing to be boolean, we will introduce the following name for

Quackenbush's version of boolean SQS-skeins:

DEFrMrroN 6.2.3 An SeS-skein (S; q) satisfying the equation:

q (x,u, qQ,u,z)) = q (q (x,u,y),u, z)

is called a semi-boolean SQS-skein.

At the end of this section, lemma 6.2.9 will justify the choice of the expression ..semi-

boolean", since semi-boolean sQS-skeins satisfy half of the main properry of boolean

SQS-skeins. As indicated above, we have:

THEOREM 6.2.4 The variety of boolean SeS-skeins is a proper sub-

variety of the variety of semi-booleøn SeS-skeins.

Proof: As mentioned previously, boolean ses-skeins form a subvariety of the variety

of semi-boolean sQS-skeins, To show that this subvariety is proper we will construct

q(xJ,z) =
xrrÅr$.{t¿*,rK})

q(u,y,z)

Figure 5:

Interse¿ting blocks in a boolean SQs-skein

an SQS-skein H6=(H;q)
that is semi-boolean, but not

boolean. (We have chosen

the name Í/16 since this SQS-

skein is very similar to the

distributive squag ¡181 as

deûned in 5.2. and will play

an analogous role.)

Let H be a 4-dimensional

vectorspace over GF(2) and

let q be the temary operation

on ll given by:
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It is straightforward to verify that (H; q\ is indeed an SQS-skein. (Note that only one

of the defining equations requires some work.) It is not boolean since:

'ffiß)'{(t(tffi (il-ß)'{(t(å)ß))

It is also easy to verify that this SQS-skein is semi-boolean. We have (omitting a few

steps):

!

We will encounter the SQS-skein ¡116 soon again. In 4.4. we had outlined the ¡elation-

ship between SQS-skeins and Steiner quadruple systems. Obviously this SQS-skein

H16 must also correspond to such a quadruple system. It is given in figure 6.

The main results of (Quackenbush 1975) and (Armanious 1980) on boolean SQS-

skeins a¡e given in the following three theorems:

THEOREM 6.2.5 An SQS-skein (^S; q) ts boolean if and only if there

exists a boolean group (S;+,0) such that q(x,y,z) = x + y + z.

ó. SQS - Skeins

'{(ätil(i|) (*Ï'iWrtì

I xt+yl+zt \I xz+y2+zz I

e(x,u,q(v,u)) =l x3+y3+4 l= q(x,u,q(y,u,z))

I |tr +zt Yt \l lxt \ ttil
I x4+y4+ z4+lx2+ zZ y2 u2l+lxZ tk zZll

\ l'¡+\ \ \l 14 4 4ll
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THEoREM 6,2,6 The variety îq of all boolean SeS-skeins is generated

by the unique 2-element SQS-skein. î,4 is the uníque atom in the lattice

of subvarieties of the variety A of all SQS-skcíns.

THEoREM 6,2,7 The variery Aof all SQS-skeins is the class of all alge-

bras of type (3) satisÍying all identities in three variables that are

satisfied in îq.

P¡oofs of the last three theorems can also be found in (Armanious 1980). The follow-

ing lemma, describing the possible sizes of boolean SQS-skeins, is an immediate

corollary of theorem 6.2.5:

CoRoLLARY 6.2.E IÍ (S; q) is a finite boolean SQS-skein then I S | = Z'

for some non-negatíve integer r. Více versa, if r is any non-negative

integer, then there exists (up to isomorphisms) a uníque bòolean SQS-

skzin (S; q) satislying I Sl = Z'.

0123 049D L29A 1ÀDE 2'1 AE 3ÀEF 59BF
0145 04ÀE 1348 lBCE 29CE 456F 5ÀBC
0167 04BF 135F lBDF 29DE 45.1 Ê 5CEF
0189 0s8D L36C 234D 2BCD 4589 6.1 8g
01ÀB 059C 13?D 235C 2BEE 45CD 6?EF
01C D 0 5 AF 13I À 2 3 6F 3 4 5 À 4 6.7 D 6 9 ÀD
0l.EF 05BE 1398 23.1 E 3469 468À 69BC
0246 068E 1468 2389 348F 46CE 6ÀBF
0257 069F l-47À 23ÀB 34BC A.1 8B 6CDF
028A 06ÀC 148D 2458 35?9 4.tCE ?9AC
0298 06BD 149C 2479 358E 49ÀF ?9BD
02cE 078F 156À 2488 35BD 49BE ?ÀBE
O2DF O?9E 15?B 24AC 36?A 4ÀBD ?CDE
0 3 4 7 0 ? ÀD 15I C 2 5 6 9 3 6I D 4 D E F I9 AB
0356 07BC 159D 258F 36BE 56'7C 89CD
0388 L24F L68F 25ÀD 378C 5688 89EF
039À 1258 t 69E 2678 3?BE 56DE 8ÀCE
03CF L26D 1?88 268C 39CE 5?8A 8ÀDF
O3DE L2'IC 1?9F 26ÀE 39DF 5?DF SBCF
048c 7288 lACF 2'1 8D 3ÀCD 59ÀE SBDE

Figure 6: The Steiner quadruple sysæm conesponding to Il15 .
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In the ¡emainder of this chapter we will refer to the unique boolean SQS-skein of size

2r with B, .

The following lemma justifies the choice of the expression "semi-boolean" since it is

about half of theo¡em 6.2.5. We will omit the proof, because it follows immediately

from the defining equations:

LEMMA 6,2,9 If (S; q) is a semi-boolean SQS-skeín then for every 0 e S

the algebra (S; +,0) with x + y = q(x,y,0) ís a boolean group.

This lemma immediately yields a generalization of the fust part of corollary 6.2.8:

CoRoLLARY 6.2J0 If $;ql ís a finíte semi-boolean SQS-skein then

lSl =2'¡o, to*e non-negative integer r.

ó.3. Nilpotent SQS-Skeins

As in the theory of squags the original definition of nilpotence of SQS-skeins is the

universal algebraic one. We have already discussed the SQS-skeins of nilpotence

class I since:

THEoREM 6,3,1 The boolean SQS-skeiw are exactly the SQS-skeins of

nilpotence class l.

A simple consequence of 3,4.7,6.2.8 and 6.3.1 is the following theorem:

THEoREM 6,3.2 IÍ (S; ql is a finite nílpotent SQS-skein then I Sl = 2' for

some non-neSative ínteger r.

Theo¡ems 6.3.1 and 6.3.2 are both consequences of the discussion in (Armanious

1980). Note that the converse of theorem 6.3.2 is not true, since it was shown in
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(Armanious 1980) that there exists a 16-element SQS-skein rhat is not nilpotent. The

same thesis also answers the question about the size of the smallest nilpotent SQS-

skein that is not boolean: it has 16 elements (and is obviously of nilpotence class 2), it

is not necessarily unique. An example of such an SQS-skein is the already discussed

.F/16. To verify that.É116 is indeed nilpotent, we note that each of the sets

l@Yxz,xztòl t¿ = 6¡ fot i = 7,2,3

Í(\xztztùl ¡¡= 1) fori=1'2'3

{(xyx2,4fiòI xt=xù, {(\,xz;.zy'ùI rr =rs}, {(xyxz,4tòl rz=*z}
((\tz,rztq)l x1=x2+LJ, l@¡,x2,4t) I .r1 =¡3+t], l@Èyxz;"òl x2=4+1¡

has eight elements and is the universe of a subalgebra of 11i6, i.e. this SQS-skein has

ât least 12 8-element subalgebras. (By (Gibbons I97 6) Hß has the¡efore either 14 or

30 such subalgebras.) Since it has been shown in (Armanious 1980) that every SQS-

skein of cardinality 16 with more than 6 8-element subalgebras is nilpotent of class i

or 2, we know that 1116 is nilpotent of class 2.

Alternatively we can determine the centre of H6 . This is relativeiy easy due to the

following consequence of corollary 3.2.13:

LEMMA 6.3.3 ¿et S = $; q) be an SQS-skeín. Then a ((S) b if and only

if for all c yc2,ca e S :

q(q(a,b,c),c2,c) = q(a,b,ø(cyc2,c))

Proof: Since every 2-element subset of an SQS-skein is a subalgebra, the 2-gener-

ated free SQS-skein has only two elements. The¡efore there are only two binary term

functions (none of which is essentially binary): rt(¡,y) = )( and r2@,y) = y. Moreover,

the ternary operation 4 itself is a Mai'cev polynomial. After omitting the equations

that are obviously satisfied by all elements in every SQS-skein, corollary 3.2.13

yields:
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a ç(ã) b if and only if:

( 1) q(q(a,b,cù,cz,c) = q(a,b,ø(c1,c2,c)) for all c1,c2,ca e S and

(2) q(q(a,b,cù,q(a,b,cù,cù = q(cyc2,ca) for all c1,c2,ca e ,9 and

(3) q(q(a,b,cì,q(a,b,cù,q(a,b,cù) = q(a,b,q(cyc2,ca)) forall cyc2,cae S

We will complete the proof by showing that (1) implies (2) and (3). Suppose (1) holds

for all c¡,c2,ca e ,f. Then:

q(q(a,b,c ù,q(a,b,c2),c) = q(a,b,q(c yq(a,b,cù,cù)

= q(a,b,q(a,b,q(c2,c yca)))

= q(cyc2,ca)

i.e. (2) holds for all c1,c2,ca e ,S. Moreover:

q(q(a,b,c ù,q(a,b,cz),q(a,b,cù) = q(c yc2,q@,b,c ))
= q<a,b,q(cþcz,ca))

bv (1)

bv (1)

bv (2)

bv (1)

!i.e. (3) holds for all c1,c2,ca e S.

By,emma u,,l*;,,). 
l( : I+,a 

irandon y

'þfi;),(:)ff)ff,)ff,)) '((:;

if

)(;)'((;',)fi;ìffil

-.ffìfft){ï,) .',
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This is clearly equivalent to

cÍ2) c(3) 
|

cp g3tl=o

cj'zl cr:l 
i

which happens exactly if w1 = 1t2= v3 = Q,

We have shown that Ç(H ò = ker(23) where z3 is the projection onto the first th¡ee

components. Since the image of ø3 is a boolean SQS-skein, f/16 is nilpotent of class 2.

The nilpotence of H16 also follows immediately from theorem 6.4.4 which we will

present and prove in the next section.

since our example Ë116 is both nilpotent (of class 2) and semi-boolean' we a¡e faced

with the t\ o questions whether every semi-boolean SQS-skein is nilpotent and

whether every SQS-skein of nilpotence class 2 is semi-boolean. We can answer the

latter question negatively by considering the following example A 16 = (A; q):

r,* 
"{r)+ 

rf2)* rf3)

w"+c[Ð*ry1* nl

*3*"!1)* t{2)* t[3)

|'ftr'1zr'or ¡

*a*dÌ*s)+ffi.lq> q 4z>l

l"1tr.5tr'ar ¡

lt1+cÍ1)+c(2)+c(3)

*r*$t)*rf)+S)
w3+ c{1)+ t5zl* t1:¡

| 
,,*rf 1) cfz) t<r¡

wo+c[t)*;;zt* 3)*l.r*r\1) r,) rf)

l*3*,{') 4Ð,[t)

-.ffi)iii)
w1

14a

t+r 3

cF(2)3
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operation on A defined by

\ / xlyt+zl

I I x2+y2+22

I I x3+y3+23

I 
l, u, n u*,r,,,12î:r::l\ l"

4 be a temary

Ë)ft)(î

LetA = GF(2)a and

l
I

It is easy to verify that 416 = (A; ql is indeed an SQS-skein. It is not semi-boolean

(and therefore not boolean) since:

'((il(¡)'ffi(å)ffi'ffi(i)(i)) 
ü)

.(j)'ffifi)(i))'þffit)(i))(¡)(å)

Via similar calculations as for I/¡6, lemma 6.3.3 yields that

( ; )'l(3)]'¡'a 
irand'nrYir

l,t, 'y, 'trl l, ,y, 4"1
orl,5', ,5rr,ár,1.þ,."f',)l o ,,r, ,5,,1=o

l,, ,l' 10 1 ,1

'"'"'(;r){;, I;I)""
UNIVERSÍTY OF MANITOBAANDREAS GUELZOW



ó. SQS - Skeins

Tlie choice ,Ít)= o, ,ho*, fhat a1 = 0. Choosing cQ) = cQ) yields further az = a3 = O.

This proves that again ç(Aß) = ker(4), t4 being the projection onto the first three

components. Since the image of z3 is a boolean SQS-skein, Á16 must be of nilpotence

class 2. (Note that this will also foliow immediately from theorem 6.4.4.) This example

yields the following lemma:

LEMMA 6,3,4 The vøriety of SQS-skein of nilpotence class at most 2 is

not a subclass of the variety of all semi-boolean SQS-skeins,

The SQS-skein 416 is essentially one of the Steiner quadruple systems described in

(Armanious n.d.). Armanious considers the direct product of an SQS-skein with the 2-

element boolean SQS-skein and modifies one of the 8-element subskeins. In figure 7,

the blocks within the modified subskein are ma¡ked by a grey underlay.

2 D E r. ? e F 2 6 B F iigÌ,'i$,t:lljilË,ii -9..?-..?..-î_.346 17ÀC 2'1 8D 456'7 ìii5iill9ii.:ltlii{iiiì

p.ìii"?jiiÊri 234s 2'7AF' 4sÀB 67ÀB
38Â 236'7 27BE 45CD 6'1 CD
398 2389 348F 45EF ...q._7-..F-.-q._.3cE 23ÀB 349E 468À SirrqiiF¡öii
48D 23CD 34ÀD 4698 89ÀB
49C 23EF 34BC 46CE 89CD
4ÀF 24sE ijÈ"lpiìiiÌl*ii 46DF BeEF
4BE 249F' 358E 4788 SACE
þ:iif.iiÈ:ii: 24Ac 3sÀc 4'tsA sADF
58C 2ABD 35BD 4?CF SBCF
59D 258F 368D 47DE SBDE
5AE 2598 369C 5688 9ÂCE
68F 25ÀD 36ÀF 569A 9ÀDE
69E 2'BC 36BE 56CF 9BCE
6AD 268C 3?8C 56DE ÀBCD
6BC 269D 37ÀE 578À ÀBEF
?88 26ÀE 37BF 57CE CDEF

0123 049D
0l_ 4 5 0 4 ÀE
0l- 6 7 0 4BF
018 9 0 5 8D
0l-ÀB 059C
01cD 05ÀF
OlEF O5BE
0246 068E
025't 0 6 9F
028À 06ÀC
02 9B 0 6BD
02cE 0?8F
O2DE O?9E
0341 0?AD
0 3 5 6 0 ? Bc
0388 r24'.l
039À !256
03cF t28B
03DE t29A
048C L2CE

LJ5 / 13DF 15BF

Figure 7: The Steiner quad¡uple system conesponding n,416.
Exchanging the grey blocks with the blocks below the separating line,

crætes the 16-element boolean SQS'skein.

1?BD 35 9F 3 7 9D 57 9B
9BDF
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ó.4. Representotion of Nilpotent SQS-Skeins

As in the theory of squags we can again use corolla¡y 3.4.7 to give a representation of

any finite nilpotent SQS-skein. Since the abelian SQS-skeins (i.e. the SeS-skeins of

nilpotence class 1) are the booiean SQS-skeins, they can easily be described as

boolean groups:

LEMMA 6,4.1 Let S = $; q) be a finite abelian SeS-skein (i.e. a finite

SQS-skein of nilpotence class 1). Let m be the non-negative integer with

lSl = z*. Then there exists an m-dimensional vector spa.ce v over

GF(2) such that E = (V¡) is isomorphic to $ where

(t(x,y,z))¡ = xi+yi+zí

It is clear that this lemma is a simple consequence of 6.2.2. For arbitrary finite nilpo-

tent SQS-skeins we can therefore obtain the following representation theo¡em:

THEoREM 6,4.2 Let $ = (S; q) be a finíte SQS-skein of nilpotence class

k> 0. Let m be the non-negatíve integer with lSl = Z'and, for some

element a of S, let llal((F)l =2r. Then there exísts an m-dimensíonal

vector space V over GF(2) and a family of polynomials:

P¡@1" ' 'ã¡-1'l¡" ",!¡-1,21,' ' ',2¡-)
over GF(2) for | <í <m and an increasíng sequence ng< n1<- ... 1n¡

of integers such that

1) 0=n0,3 <nt,nk4=m-r a.nd nk=m

2) For nr< l S n"*1 p¡@y...,x¡_ylt,...,yi_1,21,...,2¡_1) does not

depend on \ , yt , and zrfor all t with ns< t < m,

3) M = (V;t) ís isomorphic to $ where

(t (x,y,z)) ¡ = x ¡ +! i +2, + p ¡(x y... J i_yy r,...,y i_1, z 1,...,2 ¡_)

for all i e {1,...,m1 with p,=Qfey all t e {1,...,n1}.
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4) For all i and all (xy. ..t2), (ty...J¡1), ey,...,2^) e V:

P ¡@ y... å ¡-1,! 1,.'.,! ¡-1,2 y.' .,2 ¡-)
= P ;0 r "',li-ú 1, "' J¡-1,2 y..',2 ¡-y)

= P¡Ot'... Ji-t' z y...,2 ¡-1Í y...'x¡-)
5) For all i and al! (xy...t*) e V p¡@1,..,¿¡_r,0,...,0) = 0 (i.e. no

P¡@1',.,'x¡a'Ì1,...,!¡-1,2y'..,2¡-) has a constant term and every

monomial of it contøìns elements from at least two oî the sets

lxy... x*|, {l y...,t*} and {2y..,,2^},)

6) {/ os = Ë0 s Et<Ez< ". < €¿ = rs ís the upper central series of E

then for any j e {0,...,k} the congruence l, corresponds to the

kernel of the projection onto the rtr$ n¡_, components of E.

7) Ç(E) corresponds to the kernel of the projection onto the rtrst

m-r components of B, this projection is a homomorphísm.

8) E is subdirectly iteducible if and only if n¡_1= ¡n-1.

Proof¡ The main part of theorem 6.4.2 follows again from corollary 3.4.7. Since the

details are essentially the same as in the proofs of theorems 5.6.3 and 6.2.3 we will

omit that part of the proof. Nevertheless we will have to prove parts 4, 5, and 8, and

the fact that ¡11 > 3.

Let us assume that n1 < 3. It is cleff that the projection onto the fust 3 co.ponents is

a homomorphism and its image is a finite nilpotent SQS-skein of size 23 = 8. Since

n1 < 3 this SQS-skein cannot be nilpotent of class i, but this contradicts the above

mentioned fact that the smallest non-boolean nilpotent SQS-skein has 16 elements.

Pa¡ts 4 and 5 follow immediately from the fact that :

((0,...,0),(0,...,0),y) = y,

t(x,Y,z) = t(x,z,Y),
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and t(x,y,z) = ¡çy,a,t¡

for all x¡,2 e V since (V;¡) is an SQS-skein.

Part 8 follows from co¡ollary 3.2.10:

m-2. Then the two mappings:

//r \\ l',
'ilr 

JJ l*

Suppose € is subdirectly irreducible and n¡r_1 S

Ë)) Ë)

ì*u"-
'l m-t

are homomorphisms and have kernels that are below ((ü) and that intersect in coy.

This contradicts 3.2.10, i.e. nk-t = m-1. Now suppose nk4 = rn-7. Then the size of any

class of ((€) is 2, therefore the only congn¡ences below ((@ are ((U) irself and coy.

But by corollary 3.2.10 this implies that € is subdirectly ireducible. !

Part 8) of theore m 6.4.2 canin fact be formulated directly for all nilpotent SeS-skeins:

CoRoLLARy 6.4.3: Let fi = (S; q) be a finite nilpotent SeS-skein. Then S

is subdírectly írreducible if and onty if ÍplÇ(Ðl=2for some element

ae,l.

COROLLARY 6,4,4 Let (V;t) be a finite subdirectly irreducible and nílpo-

tent SQS-skein such that V is an m-dimensional vectorspace over GF(2)

and t is given by:

(t(x,y,z))¡ = xi +Ji +2, + p¡(xy.. .,x¡_1J1,. . .,!¡_1,21,. ..,2¡4)

where alt p ¡(xy...Í¡-1,! 1,..,,!¡-1,21,...,2 ¡-¡) are polynomtals over GF(2).

Then Ç((v;t)) = ker(nm-ù, where n^-1 denotes the projection onto the

first m-1 components of V.
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Proof: Sincep,, does not depend on x*,y*andz^itis cleæ that ker(n^_) is a con-

gruence. By 3.2.9 (((V;Ð) n ker(x*_):e coy , rherefore tOl(((y;Ð) 
^lDlker(nn_ù 

#

Ø andby 6.4.3 ltOl((y;t))l =2 = ll0lker(r^_1) | which implies immediately that

ç(.(V;î>) =ker(n^-).

We will use this corollary seve¡al times in the remainder of this chapter. The repre-

sentation given in 6.4.2 is very useful since even the converse is true:

THEoREM 6,4,5 Let (V;tl be a finite SQS-skein having the following

properties:

1) V is an m-dimensíonal vectorspace over GF(2).

2) There exists a positive integer k and an increasing sequence 0 =

no< nt I .., < nk= m of integers such that the lernary operation

t is given by:

(t(x,y,z)) ¡ = x i +! ¡ +2, + p r(x y,. .. fi i_1,! y...,! ¡_1,2 1,...,t ¡-)
w here all p r(x r,... J ¡_1,! 1,...,t ¡_1,2 1,.. .,2 ¡_1) ar e p o Iy nomials ove r

GF(2) and eachprdoes not depend on xnny...,x¡nJ n¡+!,...,!¡7,

znÈ1,. '.,zmÍor n¡ 1 i 3 n¡a1 ,

Then (V¡) is nilpotent of class at most k.

It is clear that this theorem immediately implies that the SQS-skein discussed at the

end of the previous section is nilpotent of class at most 2. Analogous theorems can

also be proven for squags (see 5.7.19) and p-groups. All three theorems a¡e â conse-

quence of a more general theorem which we will present and prove in chapter 8; we

have nevertheless chosen to present this proof since it provides-in this simpler

situation-a better insight into the sructure of these algebras.

¡
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lilhile proving theorem 6.4.5 we will rely heavily on the Vaughan-Lee representation

of the commutato¡ as described in 3.3. We need therefore a good description of the

commutator terms in the variety of SQS-skeins. This description is given by the

following two lemmas:

LEMMA 6.4.6 Let (V:tl be a rtnite SQS-skein having the following

properties:

1) V is an m-dimensional vectorspace over GF(Z).

2) There exists a positive integer k and an increasing sequcnce 0 =

n0< nt < .'. I n¡= ¡n of integers such that the ternary operation

t is given by:

(t(x,y,z)) ¡ = x ¡ +! ¡ +z i + p i(x y...,x i4,y t,,..,y i_L,z t,...,, i_ì
w her e al I p ¡(x y,,, J ¡_1,! 1,, .,,! ¡_t,z y.. . z ¡_1) ar e p o Iy nomia I s ov er

GF(2) and each p¡ does not depend on x,nr¡1t...Ã¡¡¡t!¡¡1,...J 
^,

zn¡t.. ,2^for n¡ 1 i 3 n¡a1 .

For every i= 1,...,m letf(i) be the integer such that f(i) = n, 1 i I nral

for some r. If rlxÍ)sQ)s€),...,¡0)¡ is a term function on (V¡) then it

is given by

,*v.).ffiì 
ffi)

where rb,,,,rj e GF(2) and the s¡ are polynomials over GF(2) in the

variabtesrÍt',...,#,1ì,...,t1',,rfl,

Proof: We will prove 6.4.6 by i¡duction over the number of operations occurring in ø.

If ø is a projection then 6.4.6 is obviously true.

IJ
[tçxl sQ) *Q),... ro)) ]. = f i\ /' 

\r¡= I
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ó. SQS - Skelns

' where all p¡(xy... s¡_1J 1,.,.,! ¡_1,21,...,2r_1) are pollnomials oyer

GF(2) and each prdoes not depend on xr¡y...,x¡¡,!n¡+1,...,|¡7,

zn¡+1,...,2^for n¡ 1i 3 n¡a1 ,

For every í = 1,...,m let f(i) be the integer such that f(i) = n, 1i I nr*1

for some r. If r@0),rQ),aß),...,aQ)¡ is a commutator term wíth j > 2

then ít ís gtven on (V¡) by

(r{x(L),xQ) sQ),..,,r0) Ð1,=t-',((Ï; 

) ffi (',,l)

where the si are polynomials over GF(2) in the variables rÍt', 
"j¿ì,,-?, ,rf.¿ù satisfiíns

(=0.,,,,,,f"t,) 

É,)) 
_,ffiì 

ffi)H,\ \+'
forallie Í1,...,m)

Proof: Let ø be a commutator tenn, By lemma 6.4.6 r c.an be w¡itten as:

(r{x(r) s{2) ¡t2,. *u,,,,),= 
( þ,,*!,).,,,.,,((',i,;) lffi)

We will first prove rå = 0 for all li e {1,...1).I-et0= (0,...,0). Since zis a conìmuraror

term andj à 2, ¡s¡ a11xQ) sQ),...,x(Ð e V the following equation holdsr

0 = (0) r = (t{o,x 
(2),xe),.. .,' ur, ol 

), 
=, r.(*r*.øÍr,)*,0 *,, =,, * f 

,,,¿lo)
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Since øn,-r(z) = nnrt(xÉ)) and/(;) < n¡-1 rhis implication yields

ffil ffi)H'
and rherefore (4a0)*Q)rß1,,..,rA,ò)¡= zifor all i s n¡. This implies En{z) =

nn,(4x0)¡Q)*Q),...¿(í),r¡¡, i.e. 6.4.9 and consequenrly 6.4.8 have been proven.

To complete the proof of 6.4.5 we only have to observe that, for å = ft, 6.4.g implies

Qp= ke{tno) = ke(nm) = oly, therefore Q¿ = coy . This means (V;r) is nilpotent of

class at most &. tr

In the next two sections we will consider generating sets of several ses-skeins. To

facilitate this, we will now prove a lemma that provides generating sets for ses-

skeins represented as in the preceding theorems. Note that this generating set is

usually not minimal. In fact, it is only minimat if the SeS-skein is boolean.

LEMMA 6.4.10 Let E = (v¡) be a finíte Ses_skein having the fottowing

properties:

l) V is an m-dimensionøl vectorspace over GF(2).

2) The ternary operation t is given by:

(t(x,y,z)) i = x i +! i +2, + p ¡(x 1,... t i_1J 1,...,! ¡4,2 1,...,, ¡_t)

where all pr(xr,. ,, fr¡_1J 1,..,,!¡_1,2y...,2¡_y) are polynomials over

GF(2).

Let eg, ey e2, ..., em be the elements in V gíven by (e¡)¡ = õ¡¡ Then Íor
every he {0,1,...,ln):

{xe VlVj 3h:x,=g¡ = [{e0}u{¿jl h <j <m}]U

Especially: V = l{eg,ebe2,...,emllry
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Proof: Note that for all i and all x = (x1,,.,,x*) e

since (.r,eg,eg) = x. Let å e {0,1,...,2 } and ler z e

s: [{es)v{ejll < j < m}]ry + (0,...,rn} by:

V: p ¡(xy... s¡_1,0,...,0,0,...,0) = 0

lxe VlVi 3 h: x¡ = 0). Now define

{1,...i}

Note that C@) = m if and only if x = z, Since (0,...,r2 ) is finite, there exists a

y e l[eolv {ejl h < j < mJlV s.t. s(y) > s(r) for all ¡ e l{es}v {e¡l h < j < z }]g. Ob-

viously g(y) > S@ù > å. We will show that CO) = m, i.e. y - z.

Suppose SO)<m. Then yrg¡*1 * zs())+1, i".yeg)*t +l = zse)+t. Consider the

element tj,es,e s(y¡+ù e ileslv {e¡l h < j < m}le :

/ì
[t0'"0'"trl*t)J,

lt¿+0+O+p,6'r,...J¡.-1,0,...,0) =y- =zi if i<g(y)

\ 
)sg¡*r +0+ t +P¡O1,... J¡.-1,0,...,0) = yrg¡*r+1 = z e¡)+tif t = súi)+1

This implies that g(t(y,eg,e,0)+ l )) > sO) + I > g(y), which is a contradiction to the

maximality of gþ). Therefore gO) = m and z = y e l{ey}u (ejl h < j < z¡ }lU .

We have shown thar {.re TlVi 3h:x¡= 0) Et{e6}u{er.lh<j<n}1ry. Since obvi-

ously {.re VlVi 3h:x¡=0} ¡ t(es}u{e;lh<j<m}Jg we are done. tr

ó.5. Construction of Nilpotent SQS-Skeins

In chapter 5,8 we have presented some construction methods for distributive squags.

We a¡e able to provide similar methods for nilpotent SQS-skeins:
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. THEoREM 6.5.It LetEL= (V;11)) andV2= |y¡Q)¡ be finite SeS-skeins

having thè foltowing properties:

I) V = GF(2)m îor some m21.

2) The operations tU) are gíven by:

Q(Ð@,y,2))¡ = xi+y¡+ z¡+ fç,y,2¡
where j = 1,2 and i = 1,..,,m.

3) For all k = 7,...,m and j = 1,2 the lollowing lølds:

If for some i pp@s,z) depends on zk then pÍ4@,y,2) = o.

Then$ = (v¡) with

(t(x,y,z)) ¡ = x ì + ! ¡ * 
" 
¡ * p[t) 1, ¡,r¡ + p!2) 1, ¡,"¡

is also an SQS-skein. Moreover, if bothEy and82 are boolean (semi-

boolean) thenE is also boolean (semi-boolean).

Proof: We have to show that € satisfres the four defining equations of 6.1.1: I*t x,y,

zeVandlSilm.Then:

(t(x,x,y)) ¡ = x i + x, ¡ * y, * p[t) @ r,t¡ * p[2) {r,r,t)

= xi + xi + y ¡ + (x ¡ + r¡ + ! ¡ * p[1) tt,t,Ð) + (x¡ + x¡ * y ¡ * p!2) {r,r,Ð)

= !i + (ll)(¡,¡,y)); + (tQ)(xt,Ð)¡

= li + 0)¡ + (Y)¡

=l¡
i.e. (xJ,y)

Similarly we can prove t(x,y,z) = t(x,zy) and

t(x,y,z) t(y,z,r).

Note that for the proofs of these three equations we do not require condition 3.
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For the proof of the ¡emaining equation we define: pA: V3-+ V (j = 1,2)to be the

function given by: (ph(x,y,ò)i= pp6¡3¡. Note that condition 3 imFlies that for all

xyz,u,v,weVandj=1,2:

Then we get:

= " 
.l 

x +y + x +y + z + p( l)qx,y,z¡ 
+ p{r)þ,!,x +y + z + p(tlG,y,r))l

- 
\ 

* r *r *r * y +, + p(2) 1x ¡,rl * p(2{r,y,, *y *, * or', <, o r)\l

=, + ¡ 
( r )þ,y,r + y +, + p(1, 1* ¡,rl 

)* 
r 
(2)þ,r,, *r + z + pe) 6 r,r¡)

= 2 + t 0)þ ¡,tff) @ r,,))+ 12)þ,r,1Ð @ 

", 
4)

= z+z+z = z

i.e. we have shown that E = (V;tl is indeed an SQS-skein. We can show similarly to

the proof of the last equation, that € is boolean or semi-boolean provided both €¡ and

€2 are boolean or semi-boolean respectively. D

Note that the operation r defined in 6.5.1 can also be given as:

t(xt,z) = x, + y + z * ¡0)6¡,2) - ¡(2)1a,y,z)

naþ*,+oa-Ð(r,%,t = pa(x,y,,)

t (x,y,t (x t, z)) = rþ,y * y * 
" 
*o ( 1 ) 1¡,y, z¡ + p 

(2'¡ 6 à)

l r*r*r*r*r*p!)6,y,2¡+p(2)çx,y,z¡ I

= 
{ 
. o,',{r"*+y+z+p(r)1¡,y,¿*0,',<ro,rl) 

I

| 
. ot'{'''* *' +z + P(l)1'r'Y'z; + v<'t w''>) 

l

-l ,*r*r*r*z+p(r)1x,y,z¡+p(2)(r,y,r) ì

I 
* ottt"" *, +' + p(r ){x,v,'))* p(2{''v.' *v *' * oo' <',r rl) 

|
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The main part of the next construction theorem is in fact a corollary of the last

theorem. This is the analogue to theorem 5.8.2 for distributive squags.

THEoREM 6,5.2 For each j e {1,2) let V¡ be an m¡dimensional vector

space over GF(Z) and let (V¡:tA) Ue a subdirectly irreducíble SeS-skein

of nilpotence class k¡ such that

tØ@,y,2¡ = x¡ + !¡ * ,, * p!6r,...Ji-l ,yr,...,y¡_r,21,...,2¡_1)

for i = 1,..,,m¡where the p! are polynomìals over GF(2).

Then (V¡) ís a subdirectly írreducíble SeS-skein of nilpotence class

max(k1,k2j where V is an m¡m2-l dimensional vector space over

GF(2) and the ternary operation t is defined by

(t(x ¡,2)) ¡

|"Li,)L*;,,)(;;il'<<m1.1

(,"iLi,) [,;,, ) 
("-,i:,)),,., if m13i3m1+m2-2

x í+y i+zi

(''{L*;')('tilh*))I

{-{L:., ) 
(,,::,, 

) 
(, -':^,,il ^,

íf i=m1+m2-7
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Proof: The fact that (V;t) is an SQS-skein follows immediately from theorem 6.5.1

with ã7 isomorphic ro rhe dhect producr of (V¡J¡) with the boolean SeS-skein Br,rrr_1.

By theorem 6.4.5 <Vit> is nilpotent. It is easy to see thar (lx e V lVi (i < rn1 +
x¡= 0)];t) and({r e V lVi (ry3i<m¡ m2-l + x¡= 0));r) are subalgebras of (V;r).

Moreover, these algebras are obviously isomorphic to (V1;t1) and (Vz;tzl respectively.

Therefore (V;l) contains subalgebras that a¡e nilpotent of class &1 and /<2, it must

therefore be nilpotent of class at least max(È1, &2J. By corollary 3.2.6, the algebras

(vvttl/t ,*¿(vzrzl// r/ çl<vþtt)l r Çl(vz,tzll

are nilpotent of class &1-l and k2-l respecrively. Their direct product is therefore of

nilpotence class max{/c1, &2}-1. As a consequence of corollary 6.4.4 it is isomorphic to

the image of the projectioî Emt+mz_2 onto the frrst m 1+m2-2 components of (V;r).

n^ra^r¿is obviously a homomorphism with the property that the classes of its kernel

have 2 elements each. By lemma 3.2.9 this implies (((y;Ð) 
= 

ker(n^ra ¡72_2). There-

fore (V;r) is indeed nilpotent of class max{ft1, fr2 }.

By corollary 6.4.3,lf ç(<V;t>) = ker(tt^ra 
^r-2) 

then (y;r) is subdirectly irreducible, and

this proof is complete. We will no'rv prove that ((y;Ð) çker(x^ra ,72_2).

Suppose w e t01(((v;Ð) whe¡e 0 = (0,,..,0). Let

/\/\l*: I i*T, i
u/(1) =l : land y/(2)=l : I

| '^r-t I I wm1+m2-2 
|tlll

\wmy+m2-t / \'m1+my-t I

Then w0 e ¡0¡(((V;;rÚ)). We will show this fact for j = 2. The proof for j = 1 is nearly

identical. By lemma 6.3.3 it is sufficient to verify that for all cQ), cQ), cQ) e Vz the

following equation holds:
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¡(2)6Q)p,y,(2),6(1\,a(2),¿(3)¡ = 1(Ðp,y,(2),12)1¿(1),6(z),6(3\¡ (6.5.3)

For/e {1,2,3} let c(l)e vbe defined by (c(D)- - {0 ,,, 
if icml

[(c\'/)¡-rr*1 
if iàm1

Since w e t()ll((y;¡)), by lemma 6.3.3 the following equation is satisfied:

r(r(0,w,c(1)),c(2),c(3)) = 40,w,r(c(1),s(2),ç(3)¡¡ (6.5.4)

We observe that for 1 3 i < m2 obviously

(((0,w,c(1)),c(2),"(3)))¡*, 
r_ r = 1¡(z)1¡(z)1¡, *(2) ,t(r)¡,¿(2) ,¿(3)¡¡,

((0,w,(c(1),c(2),c(3))))¡*,,,-r = 112)19,!r(z),12)1¿(1),6(z),6(3)¡¡¡.

i.e. 6.5.4 implies 6.5.3 for all but possibly the last component. Let us now consider this

lasr componenr. lVe have for I I i < m¡ (i e {l,2}):

f,((;)'{;I(;il 
o+r,+o+p,,1. 0,1 r¡-10 0,

=þ{'(l)'))=', 
(6ss)

a+x^r u + nfl,<0,...,0,-r¡,...,r.-;,0,...,0)

,.,.('',(' (l 
)n)t 

= ..,*,,

lrqc(1),s(2),s(3\)¡ = 0 and (r(g,w,c(1)¡¡¡ = y¡, .

('{;)t;l(;il.

6.5.5 implies that for 1 3 i < m1
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Moreover for m¡ 3 i 3 m1+ m2- I :

þr0,,,"<trl)=

þtz{0,'<zl,"tr,),-o,,*, ifm13i<mr+mr-t

íf í=mr+m2-l

=1("'{r,,"),,(r)þ,,*r 
irmri<*r**r-r\

Ì,,.,Íu.*(,o{0,,(2),,(r))., 
iri=mrm2-t 

I

,.*"(l),m2

.(,.'t '.''(.;))L

-(rtz{o,,,t2r,rttr},,

c(1)+c(2)+c(3) \m2m2m2ì

{,((å)(il{ il1
-(,<r{.<tr,,t'r,.,,,)),, I

= (, 
<'\0,* <'t,,,',))..,.,

and

(, 
<'\ro>, r<tt, 

",', )),-,,,.,
íf m13í<m¡m2-I

íf í=mfm2-7
(rtcrr),c{z),cr:l¡}=

= (rrr{"<tl,"trr,"(r))),_,,.,
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We can now calculate:

(,{0,,,,{.t'r,.t,),.(r))þ,*",,-,

))f
1r1c(r),ç(2),ç(3) )) 

^t* 
*z-t+* 

^r. *r-n(,rrlo,*r"rl 
((c(r)'c(2)'c(3)¡¡',

\ \ \{r{c(r),c(z),ct:)))nrm/-

./,.'/r,.,,,f t 
.,))I\ I \tu""'""'''Î3)))m,+m2

.f,,,/l ;::,,;,,: 
) 

( 
il 
(flI

\ \\u,0,',""

GUELZOW _M_ UNIVERSITY

_ /tr<'lt, 

ttl,.t2),r(3))¡^r+**,*.r-r *(r (2{0,, (2) 
,¡(2)1¿ol,¿Q),",r,,)).rl

Ï - 1¡Q)ç¿(1),¿(2),¿(t)))^r*n1) 
I

= 
þ 

(2{0,, (r),r ( zt 6 <tt,r<2t,"<t ¡)þ"

(,(<0,,,",t,¡,.,'),.(3)þ,*,r-,

1110,w,c(, )¡¡,, * *2-,+ cff, + cf). 
(, 

.,(,,, j::;i: 
:,, )',.,'.,,ì),,

OF MANITOBA



_ 
/ 

rr ro ;r, 
" 

t t rl 
I m ¡ n - r 

+ cf) + rf) *(, <r\, <rt <0,* e),, (t) 
¡, ¿(2), r, r,)),,, 

ì

f .(r1o,w,c(1)¡¡r,* ^"-r+rft)+rß) I

Therefore by 6.5.4 \üe may concrude 6.5.3, i.e. wQ) e t0lÇ((v2;12)¡¡ ana similarly
w(l) e t0l(((v1;ll)¡¡. sin.e by corollary 6.4.4 these two cenrers a¡e rhe kemels of the

projections onto the frrst m2- 7 and m1- 1 components resp., this implies that for all
i < m1 + m2- 1 w¡= 0. Therefore w e [0]ker(2, ¡ m2_2) which finally shows that

(((Y;¡)) E ker(n^ra 
^r_2).

By theorem 6.4.5 (V;t) is nilpotent, therefore 2 < I tOl(((v;r)) | < l[0]ker(/¡n1 + m2_2)l

= 2. This implies (((4¡)) = ker(n*r¡ 
^r_2). tr

Before we present an analogue to the constn¡ction theorem 5.g.1, we will prove a

Iemma necessary for the proofs in the remainder of this öection:

LEMMA 6.5.6 LetW be an m-dimensional vector space over GF(2) with

m>landlet

s(x,y,z) = x.¡ + y i + zi + p i@b... J i_t J t,...,! ¡_t,2t,,..,2¡_ù

for i = 1,...,¡nwhere all the p¡ are polynomíals over GF(2). If (W;s) is

an SQS-skeín then the foltowing statements hold:

a) for all i e {1,. . ,m) and all a1,.. .,a¡_ryr,. . .Ãi_t e GF(2):

p¡(a1,...,a¡_1,a1,...,a¡_1,J 1,...¿¡_) = Q.

ó. SOS - Sketns

= 
þ 

rr) rrr ro,* o),c 0 
), cØ, cØ)h

i.e. 
{r(0,,,<.<u,.<z),.(')))),,,*,,-, = (r<r{0,,<zt,,t 

2) Ge),cØ,cØ))bz

and (,(uo,',.,t,,,., "),"ß)þr**rr= þ<r{,<rr1o,, 
r 2t,,ro¡,cØ,ce;fu,
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for alli e {1,...,m1, all je [1,...,íl and all a1,...,a¡_r,aj+r,.. .,ai_1,

x,y,z e GF(2):

pi(ab...,aj-t$aj+þ..',a¡-r,ab.,,,a¡-v!,a¡+v..,,ai-t,

a y,,.,a¡-bz,a¡+¡,...,¿¡-t) = 0.

Proof: Pa¡t (a) of this lemma follows immediately from the identity s(x,r,z) = z. Part

(b) is obvious if we observe

and therefo¡e

THEOREM 6,5,7 Let W be an m-dímensional vector space over GF(2)

with m> I and let (W;s) be a subdirectly irreducible SQS-skein of nilpo-

tence class k> | such that

s(x,y,z) = x¡ + ! ¡ + zi + p i@þ.'. Åi-t,! t',., J i-t,2t,.. "2 ¡-ì
for i = 1,,..,,mwhere all the p¡ are polynomíals over GF(2). If V is an

rn+2 dimensional vector space over GF (2) and if t is the ternary

operalion given by

b)

-)

a!

o¡-,

ori,

am

al

o¡-,

v
d¡-t

:

am

that

D

a1

oì-'

ot!.'

am

ay

'i-,
v

"tr:
am

a1

"i-,
t

a;,t

:

4m

a1

oj-t

otl.'

amffi
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xì+y i+ zi ir t<i <2

if 33i<m+l

The proof of this theo¡em is very similar to the proof of the¡rem 6.5.2. Since some of

the details are quite different, we will present it nevertheless.

Proof: The fact that (V;¡) is an SQS-skein follows f¡om theorem 6.5.1 with €1 isomor-

phic to the direct product of (W;s) with the boolean SQS-skein 82 and €1 isomorphic to

the direct product of I/16 with.Br_1. Theorem 6.5.1 is applicable in this case since by

lemma 6.5.6 p1 = 0.

By theorem 6.4.5 (V;tl is nilpotent. It is easy to see thar ({x e V l\ = xz= 0)};r) is a

subalgebra of (V;r) isomorphic to (W;s). Therefore (V;r) must be nilpotent of class at

least ft. By corollary 3.2.6,the al1ebra (W,s)fr(W,r)) ir nilpotent of class fr-l à t, i.e.

its direct product with 82 is also of nilpotence class &-1. Since by corollary 6.4.4 this

direct product is isomorphic to the image of the projection onto the first zr+l compo-

nents, we may conclude-as in the proof of the previous theorem-that (V;r) is

nilpotent of class /c,

then
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It remains to be shown that (v¡) is subdirectly i¡reducible. As before ir is sufficienr to

prove rhat Ç((V;Ð) E ker(itm+ù.

Suppose w e tOl(((y;¡)) where 0 = (0,...,0). Ler

/rs\fr=l i lew
\***zl

We will prove that ñ e t0l(((W;s)). By lemma 6.3.3 it is suffrcienr to verify that for all

cQ), cQ), c(3) e $/ the following equation holds:

s(s(0,ñ,c(l),c(2),c(3)) = s(0,ñ,s(c(1),a(2),a(3)¡¡ (6.5.8)

For / e { 1,2,3} let c(/)e V 
' 

lo if i<2
: defined by (c(Ð¡, = 

i n,rr._, o . .

Since w € tOl(((y;t)), by lemma 6.3.3 the following equarion is satisfied:

r(r(0,w,c(1)¡,ç(2),ç(3\ = ¡1Q,w,¡1s(l),"(2),ç(3)¡¡ (ó.s.9)

We will fust evaluate (O,w,c(l)¡ and r(c(l),ç(2),s(3)¡ and both sides of 6.5.9:

(<0,,,.<r rr} = 

ftio,r,,,,,, ¡,I'r 
!, =^.r\

l*, íf i<z

, , ,, lþþ,0,t,'<rr¡,c<21,"<3r)þz if 3<i<m+2

( 
r(<o'''' t 1 rr' c <Ð' c .,)tr = 

iii, 
r, r, ",,,,,,,,,,,,,,¡¡..li:, 

å,, å, I 
ir i = m+2

l*, il i<z ì
= 

[('þ,0,t,',',),c 
(2),c (3))]-2 r t s i <m+z 

I
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These calculations show that 6.5.9 implies 6.5.8, i.e. ñ e tOl(((W;s)). Since by corol-

Lary 6.4.4 (((W;s)) is the kernel of the projection onto the tust m-1 components of I4l,

we can conclude that fo¡ all !3i<m-l fr¡=w¡*2=Q,

By lemma 6.5.6 p¡(x1,0,...,0,y1,0,...,0,21,0,..,,0) = 0 for all l. Using this property and

the fact that w¡ = 0 for all i e 13,...,m+1), itcan similarly be shown that:

[o tî í<2 
ì

(r{c 
(r)'c(z)'c(r)¡)' 

= 

{þn,t,,. 
o,,, (Ð¡)¡.'lf t <i <m+z 

I

(,þ,,,<. r, r,. rr),c (3))) 
= 

{fr', 
r,,n,,,,c Ø,c (Ð))\_2\tr7, 

= ^.r}

/ ,, \

I Y,? le tol((H16)

\*^*zl

i.e. w¡= 0 for all i e { 1,...,n+1). Therefo¡e w e ker(n^a1) - we have shown

Ç((Y;¡)) s ker(nlm+r).

that

u

The last two theorems furnish tools that allow us to construct SQS-skeins within a

given nilpotence class, i.e. to create a new SQS-skeins of nilpotence class ft provided

we already know an SQS-skein of this class. Vr'e will now turn to the question of

building an SQS-skein of a higher class. The first answer to this question was given in

(Armanious n.d.). Armanious constructed an SQS-skein of nilpotence class k from an

SQS-skein of class k-l by considering the Steiner quadruple system coresponding to

the direct product of the latter SQS-skein with B1 and rearranging an appropriate

subsystem. The next theorem presents this construction using the easier accessible

representation that we have developed in this section:
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THEoREM 6.5.10 Let (W;s) be an SQS-skein such that W is an m-

dimensional vector space over GF(2) with m23 and

s (x ¡,2) = x ¡ + ! ¡ + z ¡ + p ¡(x y... Ã ¡_t,y r,,..,y i_r,z r,..,,2 i_t)

for í = 7,...,m where all the p¡ are polynomials over GF (2), Let

I < j < m. If V is an m+l dimensíonal vector space over GF(2) and if t

is the ternary

then (V;t) is an SQS-skein which is not semi-boolean. If (W:s) is sub-

directly irreducible and of nilpotence class k, then (V;tl is also

subdirectly irreducible, but of nilpotence class k+l.

Proof: It is immediately clea¡ that in (V;r) the equarions t(x,x,y) = y and t(xS,z) =

t(x,z,y) = ¡(y,z,r) hold. Firsr we will show that t(xy,t(x.,y,z)) = z. Suppose æ, is the

projection onto the first rz components of V. Then for I S i 3 m we have:

(t(x,y,t(x,y,z))) ¡ = (s(n^(x),n^@),s (n 
^(x),n^@),n 

r(z))D i = @meD ¡ = z i
Moreover:

m-l

ff ('rr¡(rrx,r,,l),)
l= I
t+j

operation given by

fl(::)(;i)H)
l,i Yil ^-, , ì

xm+1*! m+L* z m".lri;i Tlil F 
r,,,) ir i = m +l

if l3i <m

(t(x,y,z¡),=

(t(x,y,t(x,y,z)))^+1=xm+tt!m+t+(t(x¡,2))^*r+l::;:ttf :ll^l
l"1|
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l,^.,.1::i:?^1fr0,,,,,, \

l^ ,:,- .'..''':':! I

\ 
.lii*l'''!-:iä "',,1 

fr {.,,,1.,., ,*,,*o¡,u ",,,¡¡l\1" 1 lï;j l
If 0 e {r1,...,xr.- 1l;+t,...,xn-t,!t,...,y¡-t,l¡+t,,,.,yr_1} then both products are zero,

therefore (t(x ¡,t(x ¡,2))) *+t = zm+1. Now assume rhat 0 É (4,,.,,x¡_tfr¡+t,,.,,rm_1,

y1,...,y j-t,y j+1,...,Ïm-tÌ', i.e. {r1,...,r7-1J"¡+ 1,,..,xm-l,yr,..,,|¡-t,lj+t,,,.,\m-r } = {11.

Then by lemma 6.5.6 p¡(r b...,xi-r,y r,...,y¡_1,2¡,.,.,2¡_1) = p¡(1,...,1,21,.,.,2¡_r) = 0 for

all t < j. This yields

(t (x,y,t (x,y,z)¡) 
^*, 

=

,^.,.(lr,r,,Nn 
J 
.l; ; 1', 

.,^.)..1;*;.,--

\r rr+i 
J ln

Fl (fi,{',.*,., ',-

ó, SQS - Skelns

If there exists an ie {1,,,.,7-1} such that z¡ = 0 then again we get (t(x¡,t(x ¡,2))) 
^*1i-1

= zr*1 since the products fl, z¡ become 0.
l=l

Othe¡wise suppose that z¡= l for all i e {1,...,j-1 } and that there exists an

i e {j+1,.,.,m-1 } such that z¡ = 0. Let/ denote the minimal such index i. Then by

lemma 6.5.6:

,rr)
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pfxy. " t¡-t} r,.'.,yi-t,z t,...,2f-ù =

and we get:

m-l

fI,, =o 
"n¿l=l

t+j

i.e. (t(x,y,t(x¡,2)))m+t = zm+t .

Finally we have to consider the case

6.5.6. we have for all I 3 i 3 m

(t (x,y,t (x,y,z))) 
^*t 

= z m+ t

We have shown that (V;t) is indeed an

Befo¡e we prove that (V;t) is not semi

we will have to use twice:

?
0
0,

9
0
0

î
0
fì

I
0

xm
xm+l

ANDREAS GUELZOW -98- UNIVERSTTY OF MANITOBA



i
1
1.'l

I
I

.Lm+ I
xm+ltÍm

SQS - Skelns

)fl| ål
\'.'.1"i' lll/

ó.

i
I
0j

i
I
0.

J

I
I

Ím+1
Ím+l

i
I
0j

(i)'(¡)(j)-'

,,r,r,r,rr,r,rr= 
( j 

)

where the index j indicates the jth component.

Now consider the following elements:

By 6.5.11 we get

(t(x,u,t (0,u,2))) 
^*, 

=

i.e. t(t(x,u,0),u,2) + t(x,u,t(0,u,2))

this SQS-skein is not semi-boolean.

but

=0

m+l{l)
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Now suppose (tü;s) is suMirectly ireducible and of nilpotence class *. By theorem

6,4.5 <V:t> is nilpotent. Since the image under the projection onto the first rz compo-

nents is obviously isomorphic to (lIl;s) and the kemel of this projection is a minimal

non-trivial congruence, \fle may conclude as befo¡e that (V;r) is nilpotent of class /r or

&+1 and (((Y;t)) 
= 

ker(n^*1).

Suppose w e t0l(((y;t)) where 0 = (0,...,0). Iât ttnbe the projection onto the tust m

components of V. We will prove thar n^(w) e t0l(((W;s)). By lemma 6.3.3 it is

sufficient to verify that fo¡ all clú), cQ), c(3) e W the following equation holds:

sls(o,ør(w),c(l)¡,6(z),a(3\ = s(0,ttm@),s1c(l),c(2),¿(3\¡ (6.s.12)

For / e { 1,2,3} 1s¡ ç(l)e V be defined by (c(D¡, = {f 
t")' t:r'r::

\

Since w e t0lÇ((y;¡)), by lemma 6.3.3 the following equation is satisfied:

r(r(0,w,c(l)¡,s(2),ç(3)¡ = (0,w,4s(l),s(2)s(3)¡¡

By application of the projection ttm on both sides of this equation, we immediately get

6.5.12, i.e. n^(w) e I0l(((W;s)). Since by corollary e.q.4 Ç((WsD is the kernel of the

projection onto the first m-l components of (lV;s) tve may conclude w¡ = 0 for all i =

1,...,m-1, By lemma 6.3.3 we have

ilß)(il(l))(l
The left hand side of this equation is just 6.5.11, and

evaluated easily. We obtain

the right hand side can be

î
0
0j

i
0

wm
wm+l

I
I
rj

?
0
0j

3
0
0
0

I
I
1j

i
I
1

0

i
I
0,
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I

1

1,

i
1

wm+7

wm+l*|9m

=t

q

0
0.

?
0

wm
wm+l

î
0
0j

I
0
0
0

I

I
1..J

i
I

wm+1
wm+l

1

I
rj

i,e. w^ = 0. Therefore w e ke{n^a1), we have shown (((V;r)) = ker(z,n+t). By corol-

Læy 6.4.3 this implies that (Iz;¡) is subdirectly irreducible, and by 3.2.6 that (V;r) is

nilpotent of class -1. tr

Using these -construction theorems we are able to construct SQS-skeins of nilpotence

class & and size 2n for all ¿ > I and n > &+2. Note that corollary 6.2.8 already states

that for every z à 0 there exists an SQS-skein of nilpotence class I and size 2n, but

this SQS-skein is only suMirectly irreducible il n = l.

THEoREM 6.5.132 For every k> 7 and every n2k+2 there exists an

subdirectly irreducible SQS-skein of size 2n and nilpotence class k.

Proof: Before we can proceed with the main part of this proof we have to construct an

SQS-skein of nilpotence class 2 and size 25.I*t A32= (A;q) where 4 =(AF(2))5 and

4 is given by

x,l+yl+zl
x2+y2+22
x3+y3+23
x4+y4+24

It follows immediately from theorem 6.5.10 that 432 is an SQS-skein, qeated from 84,

that is not semi-boolean. By 6.4.5 it is nilpotent of class I or 2. Since it is not semi-

'ffiffi(il)
l', ,, ,,1

x 5 +! 5+ z 5+ x2!zzz\h4lx 4 y 4 z 4l

11111
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boolean, it cannot be of nilpotence crass 1, i.e. it is of nilpotence class 2. Let n4be the

projection onto the fust four components. As before it is clea¡ that ker(24) c ÇØ32).
We will show thar in fact ker(a4) =KAzz). Suppose w e l0l((\2) with 0 = (0,...,0).

By lemma 6.3.3 for all c0) e A with j = 1,2,3

q(q(0,w,cQ)¡,s(2),ç(3)¡ = q(0,w,qþ(1),s(2),r(3)¡¡.

Evaluation of these expressions yields

(, ;,t * *,), 5r> 4, 
) 

þ{, 
r *,, 

),r,,?W','r::'Ir
'Í') "Í')
4',t 4't
1l

= c$t) c[z) r[zt r,,, 
"¡r, 

rlr, 

/rj 

i 
j !j:'|:l

Choosing cQ)=cQ)=cQ)-43)= t g c$1)=r(t)=0 shows thar

i,Í',*,, ,lr) ,Ír) 
|

*2ry1c|)+*a ,t') 4Ð l= 
o

Ir 1 1l
for all remaining choices of c0), i.e. wz\t3= 0. If we change ou¡ selecrion to cjl)= 1 y7,

obtain instead

(6.s.14)

lrÍt,*,, ,Í') ,Ír) 
I

wr(wr+r)ldr)+wo ,f, ,f.3, 
l=,li 1 1l

fo¡ all remaining choices of cÚ1, i.e. w2 (w3 + 1) = 0. This implies w2 = 0. Similarly we

can deduce )r3 = 0. If we now choose c[1)=$)=Ñ)=c(I)=c(2)=c\3)= i then 6.5.14

yields
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for all remaining choices of c0), i.e. , t =w4 = 0. This implies w e ker(ø4). We have

shown ker(24) = Ç@). By corollary 6.4.3 A3zis subdirectly ireducible. We a¡e now

¡eady to proceed with the main part of the proof.

I-et k> 2, n 2 k + 2 2 4 and m = n - (k - 2). Then m > 4.

We note first that 416 and A32 are subdirectly irreducible SQS-skeins of nilpotence

class 2and of size 24 and 25 respectiv ely,lf mis even we apply the construction theo-

¡em 6.5.7 Ç ,i^", to Á16 and obrain an subdirectly irreducible SQS-skein of

nilpotence class 2 and size 2m, If zl is odd we can construct a suMirectly ireducible

SQS-skein of nilpotence class 2 and size 2m by applying the same theorem Lt'times

to.á32. Therefore for any m = n - (k - 2) there exists an suMirectly irreducible SeS-

skein Z,^ of nilpotence class 2 and size 2m,

Starting with Z^ and applying theorem 6.5.10 (k -2) rimes we have finally consrruc-

ted a suMirectly irreducible SQS-skein of nilpotence class 2 + (k -2) = & and size

2m + (k - 2) - 2n - (k - 2) + (k - 2) 
= 2n . E

ó.ó. Exomples

In this section we will investigate several examples of SQS-skeins. In all of these

examples, given an SQS-skein (V;4) where V is an vectorspace oveÍ GF(Z), e¡ e V

shall denote the element given by (e¡ )¡ = ô7i for j =Q,1,2,... and i = 1,2,.... Note that

es=[=(0,...,0).

In the previous sections we have already discussed the SQS-skeins Bn, 1116,416, and

A32,'We will now complete their investigation.

wt .12) rol 
¡

,4 ,f) 
'j3rl=oo 1 1l
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EXAMPLE 6,6.1: Let n be any positive integer, Let Bn be the algebra

(B;q) given by B = (GF(2))n and

(q(x,y,z))¡ = xi+yr+zi foralli=1,...,n
Then B n is an SQS-skein of nílpotence class l, which is generated by the

n +l elements eO, eL, e2,..., en. Bn is subdirectly irreducible if and onty

|fn=1'

Proof: The propenies of Bn follow immediately from theorem 6.2.5, lemma 6.4.10 and

co¡olla¡y 6,4.3, since Ç(B¡) =g^.

Then H6 ís a semi-boolean, subdirectly írreducible SeS-skein of nílpo-

lence class 2, which is generated by the four elements eO, et, e2, and e3.

Proof: We have already seen in 6.2, and 6.3. that 1116 is a semi-boolean SeS-skein of

nilpotence class 2 with ç(H ß) = ker(a3) where E3 is rhe projeprion onto the first 3

components. By corollary 6,4.3 Hrc is subdirectly ireducibte. By lemma 6.4.10 É116 is

generated by the 5 elements e0, eb e2, g, and e4. It remains to be verified that in fact

eae l{es,eye2,e3l)n6. This is rrue since ø(ø(eye¡,ø(e2,e¡,4)),e¡,q(e1,e2,er))=

EXAMPLE 6.6.2: l¿t H6 be the atgebra (H;q) given by H = (cF(2))4

and

'ffiffi(''i)) (,-î.'i,i;r,u)

tr
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Then A16 is a subdirectly irreducible SQS-skein of nílpotence class 2,

whích is generated by the four elements eo, et, ez, and 4 and which ís

not semi-boolean.

Proof: We have already seen in 6.3. that 416 is an SQS-skein of nilpotence class 2,

which is not semi-boolean, with ((416) = ker(z¡) where ø3 is the projection onro the

fust 3 components. Corollary 6.4.3 shows again that 416 is suMirectly i¡reducible and

lemma 6.4.9 yields that A 16 is generated by the 5 elements eO, eb e2, %, a\d e4. It

remains to be verified that in fact ea e l{eg, ey, e2,4}f¿ru. This is true since

a(ø(ø(eþes,et),q(eþe0,%),c(s(eþes,e2),es,%)),ro,"t)

'þ((å)fii'ffii.,l.,ì'þ((¿)ß](i

'((i)",') ß) ',
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EXAMPLE 6.6.42 I¿t A32 be thc algebra (A;q) given by A = 1

and t

Then A32 is a subdirectly irreducible SeS-skeín of nilpotence class 2,

which ís generated by the five elements e0, et, e2, e, and e4 and which

is not semïboolean.

cF(2))5

)

I xr+vr+2,
I x2+y2+22

I x3+y3+23

I x4+y4+24

I l\vt ztl

\rs 

+)s + zs + rz Y"'rrtY t 4lrl Y 

î, ll

',il
'ffi,ft)

Proof: we have already seen in the proof of 6.5.13 that A32is a subd.irectly ireducible

sQS-skein of nilpotence class 2, which is not semi-boolean. læmma 6.4.9 yields that

á32 is generated by the 6 elements eo, eb e2,4, e4, and e5. It remains to be verified

that in fact e5 e f{eg, eb e2, e3, e+)lnsz. This is true since

døþ@(eþes,er),e¡,%),ø(e2,es,4),ø(ø(e2,es,%),es,ea)),q(e1,es,e2),ø(%,es,ea))

'ft'((å). l(il'ffi). l)(å)ff))

'þ((;)(il(ilft)ff))

'((i)(å)fi) (i) "' 
tr
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We will'now consider an infinite sequence of 4-generated SQS-skeins of increasing

size and nilpotence class. The existence of this sequence shows that the free 4-

generated SQS-skein must be infinite and cannot be nilpotent.

ExAMILE 6.6.5: Let N4 = ((GF(2))4 .n(Ð¡ 
= 46 as given in example

6.6.3. For n > 4 let N, be the algebra ((cF(2)),' ;q(n)¡ y'¡srs qø) ¡g

given by

if 73í< n

(o@G,t,')),=

Then each Nn is a subdírectly irreducible SQS-skein of nilpotence cløss

(n - 2), which ís not semi-boolean. Moreover, eøch Nn is generated by

the four elements e0, eI, e2, and e3.

Proof: The first part of this sratement follows immediately from example 6.6.3 and the

fact that for n> 4 Nn is constructed from Nr_1 by the construction method described in

theorem 6.5.10.

It remains to be shown that each Nn is generated by the four elements eg, ey e2, and

e3. We will fust show that for every ie {4,...,n1 e¡e f{eg,eye2,..., e¡_t}lnn.

Let 1f denote rhe elemenr in (GF(2))n given by (tÐ, = I Î i;: j<5 . Nore that for any s

1j=",. [ort<;

r'",, rr,((; 
) H,d 

= [ 1'' ) 

*"""u, ts, e r{e s,...,e ¡-1tr¡n for ar 0 <, <.ç < i.

@ùtrt) if i=n

/þ" "((.:1, ) 
(,:, 

) L,l il
\ lr, ¿ln¿zn-zl n-z

l, n*, n*, n*1, n -, y 

^ 
-r t r.l'fr

\ ltt llr='
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n j<i-ztiren (q(,)1ri1,r,l,,i,rL = 

{ 
l. i.i;il I l1= , 

-:,:,

tr j = i -z*ren (a(n)1r il,r î,,,,t >)¡= 

{ 
I I I lï{, 

i il 
=, Tlf :

rr¡=j-r trren (q(n)1ril,r ?,ri,ù¡= 
{ 
l.l.l;il I e¡= , i;::

rrj=j then (a<,r1r¡,,ri2,ri-3)L = o*o*o*,li 
iil= 

, .",

ó. SOS - Sketns

Let us now consider the expression nøl6it,ff ,ti-3>.

iri> i then (aøl1ril,r,¡2,rirlf = o*o*o*rlíiil= t

rherefore oøt6iL,r\-2¡i1 = o<"l1ri.-1,ri-',"0¡ -d 'r" g",

nØ) çnØ) çq(n) çti- 
1, 

r i-2, r i1, r i-3,e s),e ¡ _1, e s¡

=q(n)g(n)1qø)eia;Lr3,"s¡,t\-3,es¡,e¡_1,es¡

= q(n'Qi-1,e¡-1,es¡ = e¡

Since for every i e 14,...,n) and all 0<f <,r<i tf e ¡{e6, er,e2,..., e¡_¡}l,yn this

equation implies that for every í e {4,...,n} e¡e [{eg,e1, e2,..., e¡_il¡tr. Since by

lemma 6.4.10 iy', is generated by (eg, e1, e2,..., e¡¡\, we can deduce that Nn is in fact

generated by {eg, e1, e2, egl. n

As mentioned above, the existence of this sequence of ses-skeins permits some

conclusions about the free 4-generated SQS-skein:
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CoROLLARY 6,6.6t The free 4-generated SQS-skein is infiníte and

neither nílpotent nor semi-boolean.

CoRoLLARY 6.6.7: The variety of SQS-skeins ís not locally finite.

SQS+kei¡u

Eemi-booleån
¡ infniæ chain of subvarielies:
I nilpotent of qlass at most ¿
t
I
I

N6€ nilpolent of clsss atmost 4

niÞtent of clsss Ât most 3

nilpotent of class at most 2

niþtent of class atmost 2

Boe

./
atom

l-elønent SQS-skein

Figure 8:
A part of the subvariety lattice of rhe variety of SQS-skeins.

ó.7. Derived Stelner Trlple Systems

We have previously seen that distributive squags can be cha¡acterized combinatori-

cally as those squags that corespond to Steiner Triple Systems whose subplanes are

isomorphic to the g-element affine plane. A simila¡ description can be given fo¡ semi-

These examples allow us to

take a glance at the structure

of the subvariety lattice of the

va¡iety of SQS-skeins. Figure

8 shows those subvarieties

that we have shown to be dif-

ferent from all others included

with the exceptions that we

have not constructed a semi-

boolean SQS-skein that is not

nilpotent of class at most 2. In

this figure .T,4 indicates the free

4-generated SQS-skein.
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boolean sQS-skeins. we will 6¡st define the concept of a derived steiner triple system

as a certain "substructure" of a Steiner quadruple system:

Definition 6,7 ,l: Let (P,B) be a Steiner quadruple system and u e p be

an arbitrary point in P. Then the Steiner triple system (p\{ø}, A,) with

3' = {(x,y,z}l x,y,z e P\(uJ &. [x,y,z,u] e B] is called a derived

Steiner triple system of (P,B).

We can now state and proof the following characterization of semi-boolean SeS-

skeins:

THEOREM 6.7,2: Let $ = (S;ql be a SQS-skein with the corresponding

Steiner quadruple system (SJ). 5 is semi-boolean if and onty if all de-

rived Steiner triple systems oÍ (S,B) are projective geometries over

GF(2).

Proof: Suppose all derived Steiner triple systems of (S,B) are projective geomerries

over GF(2). I-at u, x, y, z e S. If l{u, ,, y, zll < 4 or lu, x, y, zl form a subalgebra of $
then q(x,u,q(y,u,z)) = q(q(x,u,y),u,2) since every four elemenr SeS-skein is boolean.

Otherwise, consider the derived triple

system (P\{uJ,B') where B'is given by B'=

Ua,b,cl I a,b,c e A{u) & {a,b,c,uJ e A}. In

(P\(r],8') x, y, and z a¡e not collinear. Since

this triple system is a projective geomeffy

over GF(2), the subplane generated by x, y,

and z has seven elements and is shown in

figure 9. It is straightforward to verify that in

facr q(x,tt,q$t,u,z)) = q(q(x,u,y),u,2), i.e. $ is

semi-boolean.

q (q(xt,y),u,2) = p = q (x I q A ! t))

Figure 9:
subplane in a projective geometry over GF(2)
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Figure l0:
In a derived Steiner triple system
of a semi-boolean SQs-skein (l).

The third point on the line through y and z is

q(y,u,z) and the third point on the line pass-

ing through q(y,u,z) and.r is q(x,u,qe,u,z))

(figure 10). (Note that we ate now not con-

cemed with the question whether the points

that appear distinct in the figures are in fact

p = q(q(x*y),u¿)
=c@r¿ajw))
= qlq@J¿a),ull

Figure 12:
In a derived Steiner triple system
of a semi-boole¿n SQS-skein (3),

ó. SOS - Skelns

Now suppose that F is semi-boolean. Iæt

¿ e .S and let .r, y and z be three non-collinear

points in the derived Steiner triple system

(P\{n),B'). We will show that the subplane

generated by x, y and z is the projective

plane of order two (i.e. the Fano plane).

Figure I l:
In a derived Sþine¡ triple system
of a semi-boole¿n SQS-skein (2).

different; we will consider this question at

the end of the proof.) Similarly, the third

point on the line through .r and z is q(x,u,z)

and the third point on the line passing

through q(x,u,z) and ) is q(q(x,u,z),u,y).

Since S is semi-boolean, q(q(x,u,z),u,y) =

q(x,u,q(z,u,y)) = q(x,u,qQ,u,z)) (figure 11).

Using the same argument again and since

q(q(x,u,y),u,2) = q(x,u,qgt,u,z)), we obtain

figure 12. Since q(q(x,u,z),u,q(y,u,z)) =

q(x,u,q(z,u,q(y,u,z))) = q(x,u,y) we reach
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the subplane shown in figure 13. It is easy to

verify that this configuration contains all

lines determined by at least two of the

.included points, i.e. it is indeed the complete

subplane generated by .r,y and z.

The configuration shown in figure 13 is ob-

viously the projective plane of order 2 (the

Fano plane). Since the Fano plane is the

smallest Steiner triple system that contains

at least three non-collinea¡ points, we can conclude that the subplane generated by r,y

and z is this projective plane of order 2, i.e. the diffe¡ent points in figure 13 are in fact

distinct. As we have mentioned in 4.3, Hall showed in (HaU 1960) that the Steiner

triple systems whose subplanes are the projective plane of o¡der 2 are exactly the

projective geometries over GF(2). We may conclude that the derived Steiner triple

block missing tr

block through u

Figure 14:
A plane in a derived Steiner riple

system ofa boolean SQS-skein.

Figure 13:
A plane in a derived Sæiner riple

sysærn of a semi-boolean SQS-skein.

systems of a Steiner quadruple system

corresponding to a semi-boolean SQS-

skein are projective geometries over

GF(2).

The boolean identity 6.2.1 cannot be

expressed within a derived Steiner

triple system. It describes in which

way these systems a¡e assembled to

form the Steiner quadruple system.

Figure 14 shows the meaning of this

equation for the points x, y and z of the

last proof. Note that the 'grey' blocks

tr
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miss & and afe therefore not pafi of the derived steiner triple system considered.

several blocks rrissing ø have been omirted. They can be obtained from an existing

block by rotating it about the cent¡e of the configuration by @o or 120o.
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7,1, Bosic Properties qnd Definitions

In this paper we are considering groups only as algebras of type (2,1,0), i.e.:

DEFTMTToN 7.1.1 An algebra (G;.,-1,1) of type (2,1,0) is callú a group

if the following equarions a¡e satisfied in (C;.,-t,l):

a.(b.c) = (a.b).c

a,l= a =l.a
a'1a-1¡= 1 =@-t¡'a

A group (c;.,-1,t) is called commutative if in (G;.,-1,1) the following

equation is satisfred:

a.b = b.a

A group (C;.,-l,t) is called cyctic if itis generared by one element.

since the universal algebraic theory of the commutator has been developed as a gene-

ralization of the group-theoretic commutato¡ it is not surprising that the commutator

and the centre can be easily described in group-theoretic terms:

THEoREM 7.1.2 I¿t 6 = (c;.,-1,t) be a group and let a and B be wo

congruences on 6. Then

a) the commutator la,Bl is the unique congruence satifyíng the

condition: ll\la,þl= laba-16-r I aatpb &a,b e G) and

b) the cente Ç(6) is the unique congruence satisfying the condi-

tion:[LlÇ(6) = {,r lr e G &ax=xaforallae G}.
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It is well known that the commutâtive groups are exactly the abelian groups. More-

over the frnite abelian groups are exactly the direct products of cyclic groups. Every

cyclic group is one of:

(l;+,-,0) the additive group of integers

({0,...,p-ll;+ o,-0,0) the set of integers 0,...p-1 under addition modulo p

for every positive tnteger p > 2.

Every finite cyclic group ({0,...,p-1 ),+r,7,0) satisfres the equation pr = 0. (The ex-

pression px stands for the sum ((...((.x +¡) +.r) +,..) + x) in which r occurs p times.

Similarly, we will denote the product ((...((x .x) .r) ....) .r), r occurring p times,

with ¡p.) A generalization of this concept is:

DEFINTTIoN 7.1.3 A group (G;.,-1,1) satisfying the equation ¡p = 1 is

called a group of exponent p. Groups of exponent 2 are also called

Boolean groups.

DEFINITIoN 7,1.4 Given a group 6 = (6;.,-1,1) an element ¡e G is said

to have order n if xn = 1 and for all j:

7<i<n + xi+1

If G is finite then lGl is called the order of 6.

It is known that the order of any element in a finite group divides the order of the

group. It is also known that these definitions imply that the order of any element in a

group (G;.,-1,t) of exponent p must divide p. Since the only element in (G;.,-1,t) wittr

o¡der 1 is the element 1, every element other than 1 in a group (G;',-1,1) of exponent p

where p is prime must have order p itself. A more general concept is:

DEFIMTIoN 7,1.5 A group (G;.,-1,1) in which every element.r + t has

the order pÈ '¡¡ere ft is some positive integer (depending on x) is called

a p-grow.
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In the remainder of this chapter we will be mainly concemed with p-groups for prime p.

Note that for every prime p every group of exponent p including the cycric group

({0,...,p-1Ji+p,-p,0) is ap-group. Every homomorphic image, subalgebra (i.e.

subgroup) and finite direct product ofp-groups (p prime and fixed) is again a p_group,

Nevertheless, the class 6oof all p-groups does not form a subvariety of the variety of

all groups. Every variety within 6o is congruence permutable, uniform and reguiar.

we have previously seen rhar every finite distributive squag is nilpotent. similarty, it
is also known that:

THEoREM 7 ,L6 Every finíte p-group is nilpotent and if (G7,-1 ,l) is a

finite p-group with lGl = pk then (C;.,-1,t) is nilpotent of class at most

k-l.

but while the variety of distributive squags is locally finite, we have here:

THEoREM 7.L7 The class of all p-groups 6p(p prime and fixed) is not

locally finite.

i'e. a flnitely generated p-g¡oup may be infinite. The question whether this can happen

is known as the generalized Burnside problem. It was answered in (Golod, i965

t19641). Golod gave a non-constructive proof that for every prime p there exist a

finitely generated infinite p-group. In (Grigoröuk 1980) the consrruction of a 3-gener-

ated infinite 2-group was presenred and (Gupta and sidki 1983) gives constructions of

2-generated infinite p-groups for every odd prime p. The original Burnside problem was

posed in (Bumside 1902): "Is every group with a finite number of generators and.

satislying an identical relation xn = l rtnite? " This question was first answered neg-

atively in (Adian and Novikov 1968) for all odd n à 4381. The limit fo¡ ¿ has been im-

proved in (Adian 1979 [1975]) to n > 665 (n odd).
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For ce¡tain classes of groups of exponent p more can be said: Every Boolean group is

abelian, every finitely generated group of exponent 3 is frnite and every group of expo-

nent 3, whether finitely generated or not, is even nilpotent of class at most 3. More-

over' every finitely generated group of exponent 4 is also ûnite and therefore nilpotent.

But in this case it cannot be extended to the infinitely gene¡ated groups of exponent 4.

The ñnitely generated infinite p-groups behave very differently from their finire coun-

terpart since the following theorem holds:

THEoREM 7.1,8 No finítely generated infinite p-group is nilpotent.

Theorem 7.1.8 is really a corollary of the more general theorem that a nilpotent group

is finite if it is generated by a finite number of elements each having finite order. It

allows us to describe a locally finite class ofp-groups:

COROLLARv 7.L9 Any variery consisting sotely of nílpott:nt p_groups is

locally finite.

Proofs for theo¡ems 7.7.6 and 7.1.8 can be found in every standard group theory

textbook. Corollary 7.1.9 follows immediately from 2.1.8.

we will see in the next sections that the limit on the nilpotence class given by theo-

rem 7 '7.6 is only slightly better than the mosr obvious one. Theorem 5.4.1 has given

us an upper bound of the nilpotence class of an n-generated distributive squag as a

function of the number of generators n- theorem s.4.2 even proved that this was the

best possible bound. The question arises whether such a bound can also be given for

p-groups. The existence of a recursive upper bound for the nilpotence class of an

n-generated finite group of prime exponent p has already been shown by Adian and

Razborov. A rathe¡ shorter proof of this fact due to E. L Zel'manov can be found in

(Kostrikin 1989),
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M. F, Newman and J. riliegold have found a bound for the nilpotence class of algebras

in the variety X3= Xrgrwhere A2 is the variety generared by ({0,1);+r,-r,0) ancl the

product of two group varieties is defined to be the variety of alt groups that are exten-

sions of a group in the fust factor by a group in the second factor. Their bound was fust

published in (Neumann 1967, theorem 34.53):

THEoREM 7,1.10 In the variety L! rurry n-generator group is nilpotent

of class at most (n+7) for every n 2 2,

This theorem is a consequence of their result (also published in (Neumann 1967,

34.52)) that whenever rhe group fl = (A;+,-,0) is metabelian (soluble of class 2)-i.e.

it satisfres the commutator identity ftr¿,ral, tr¿,r¿J] = cù¿ 
-a¡rd for k=2and È = 3 all

the &-generator subgroups of .4, are nilpotent of class at most ¿ + 1, then the same is

tnre for all values of fr.

7.2. A Representolion Theorem

As in the theories of nilpotent squags and nilpotent SQS-skeins we can use corollary

3.4.7 to give a representation of any finite p-group provided we have found a similar

representation for all finite abelian p-groups. Since every finite abelian p-group is the

direct product of cyclic groups of order p¿ þ prime), we will first consider such a cyclic

group of order p¿:

THEoREM 7.2.1 Let 6 = (G;+,-,0) be a cyclic group of order pn

(p prime). Then there exists an n4imenslonal yector space V and poly-

nomials p ¡(x 1,...,x ¡_1Jr,...,)i_t ) and q ¡(x 1,...,x ¡_1) over GF (p) for

l<i3nsuchthat

1) € = (y;+,:,0) ís isomorphic to 6 where

(x + l)¡ = x¡+!¡+ p¡@y...ã¡_ylr,...,),ir) ,

ANDREAS GUETZOW -lt8- UNIVERS Y OF MANITOBA



7. ÞGroups

(:¡)¡ = -xi+ 8¡@y...t¡_1) ,

and0j=0
for all i e 11,...,n| wíth pr= 0 = qr.

2) For all í and all (xy...frn), (Ï1,...,)n) e V:

p ¡(x y. .. J ¡-1,1 y.' .,y ¡-ì = P ¡0 t'. . .')¡-1,t 1,. ..,x¡-1 )

3) For all i and all (xy...xn) e V pr(x¡,...,xr_1,0,...,0) = O (i.e. no

P¡@y,..J¡-1,1y,...,/¡-1) has a constant term and every monomíal

of it contains elements from {x1,,,.,xnl and from {f1,...,fr}.)

4) For all i 4¡(0,...,0) = 0 (i.e. no qi(x1,...,xi_1) has a constant

term.)

Proof: The representation described is simply the base p representation xn...x.L

where the polynomials p¡and qt are the carry-over functions. It is clea¡ that these

functions depend only on the lotver valued digits - note that they indeed depend on

all lower valued digits since prhas to consider the value of pr_r. Properties 2, 3, and 4

are consequences of the equations x+y=y +.r, r+0=0, and :0=0. tr

Since every finite abelian p-gloup is the di¡ect ptoduct of cyclic groups of order pn we

immediately get the follo\rying corollary:

Cono¡.¡.eny 7.2,2 Let 6 = (c;+,-,0) be an abelian p-group of order pn

(p prime). Then there exists an n4imensional vector space V and poly-

nomíals p ¡(x y,.,,x ¡_1,1t,...,)¡_t) and q ¿(x 1,...,x ¡_1) over GF (p) for
l<i3nsuchthat

l) ð = (y;+,:,0) is isomorphic to 6 where

(¡ + J)¡ = xi +!i+ p¡(t1,...J¡_1Jr,...,)¡_r) ,

(:x)¡ = -xi+ 4¡@¡,..'t¡-) ,

and0,=0
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for all i e {1,,..,n} with pr=O=qr.

For all i and all (x1,...*r), Oy...1) e V

P ¡@ y... J ¡-1,! 1,. . .')¡-l ) = P i0 y...,1 i-tÃr,. . . #¡- r )

For all i and all (xy...s) e V p¡@y...J,._1,0,...,0) = 0 (i.e. no

P¡@y'..J¡-1,1y...,1¡-) has a constant term and every monomial

of it contains elements from [x1,.,.l'n! and from lyt,...lnl)
For all i A¡(0,,..,0) = 0 (i.e. no qí(xL,.,.,xí_) has a constant

term.)

As a consequence of this corollary and of corollary 3,4.7 we get (as in the case of theo-

rem 5.6.3):

REpRESENTATToN THEoREM i.2.3 Let 6= (G;+,_,0) be p_group of

order pm (p prime) of nilpotence class k. I¿tl[Olç(@)l=pr. Then thcre

exists an m4ímensional vector space V and polynomials q¡(xy,.,.s¡_)

andp¡(xy..,.t¡-tJt,...,)¡_r) over GFQt) without constant term Íor Atl í

with 7 3i3m and an increasing sequence n 1 
( ... ( n¡, of integers such

that

1) n122, n¡r-¡= m-r and nk= m

2) $ = (V;+,:,0) is isomorphic to 6 where

(¡ + ])¡ = x¡+p!¡+ppi@1,...tí_rJ1,...,)¡_1) ,

(:¡)¡ = -pxi+pe¡@y...fr¡_),

and0,=0

for all i e [1,..,,m\ with p, = 0 = qr.

3) For all i and all (xy...s^) e V p¡@y...,r¡_1,0,...,0) = O and

p¡(0,...,O,xr,...,r,._1) = 0 (í.e. no p¡(x1,...Ã¡_yly...,l¡_) løs a

constant term and every monomial of it contains elements lrom

(x1,,., t^l and from ll y...,1 *l )

2)

s)

4)
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4) For all i 4¡(0,...,0¡ = 0 (i.e. no qr(xp...,x¡_1) has a constant

term.)

5) Ç(þ corresponds to the kernet of the projection onto úe rtrst

m-r components ofv, this projection is a group honomorphism.

6) folt= çog \<Ez<... <Ë*=rs ís the upper central series ofE
then for any j e {0,..,,k1 the congruence Ç¡ corresponds to the

kernel of the projection onto the rtr$ nk_j components of g.

Note that the requiremenr ltotglø¡¡ =pt is not a resrricrion for this theorem but a defi-

nition of the variable r. we will illustrate this representation theorem in section 7.4.

Proof: I1 k=16 is an abelianp-group with m=r and((61 = C. Theo¡em j,2.3 fol_

Iows then immediately from corolla¡y 7.2.2,Therefore we w l assume that ¿ > 1.

By corollary 3.4.7 there is a collection of ñnite p_groups @1 = (O 1;+,_,0),
@2= (Q2;+,-,0), ..., (@* = (Qt;+,-,O) of nilporence class I and maps rj for e = 1,2,3 and

j = 1,...,k_t such thar: 
l_r \

6 is isomorphic ro ( fI q ;+,-,0 ) with:

(rt,r2,...,rk)+ (s1,s2,...,s¿) - \tt ' I

þ,*t,z*t*ri(,i,sr),...r¿+,IÈ+rf-r({r,,...,r¿-1),{s1,...,r*-,)))
:(,r1,s2,...,s¿) = (-rr,-rr*{ ts1 ),...,-s¿+f 11sr,...,s¿_1 

))

o = (o,o+q',...o.rf-')=þ,4, ,rj-')
l¡ \2 j

where {' f Il q 
I 
+ 4 * t, rl,\e ) 4 * t, nd r! : Ø -+ e, * r, i.e. rle 

Q + t.\¡=r I Ll '

we can assume that rj = 0 ro. all j, since otherwise we may consider the isomorphic

l* \
argebra (fJ Q ;+*,:* ,o* ) with:

\¡=t I
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(r r,r2,,,.,r ¡r) 
+* (sr,s2,..,,s¿) =

** (s 1,s2,...,s¿) = þt,-rz|+{ {s,),...,-s¡ zr!-L +r!-tþ usz+r1...,s¿_,+f2)
o* = (0,0,...,0) .

lr \
This algebra (fI q 

'o*,-* 
,0* ) is iso-orphic to 6 since rhe bijection:

\i=ì 
. 

I
a,(ftq,.,:,0\'-" /ú q ;**,:* ,o*\\Êì' / \Êi' I

given by 0((s1,sr,...,s*¡)= G¡,s2-rrl,...,s.-{-1) can easily be checked to be an

isomorphism.

Since all (ô¡ are of nilpotence class 1 they can be represented as described in corollary

7 .2.3, i.e. each @¡ is isomorphic to þrp¡,t ;+i,-1,0) for some zr¡ à 1 with:

(t,..."*).'þt,.,'*) = r¡+o s¡ +o p¡¡ u 1,...,!.-1,s1,...,f.-1)

(-'þt,,'*)} = o s,+o Q¡i(s1,...,s¡-r)

O¡= (0,0,...,0)

for all j and appropriate families of polynomials {p;i(r1,...,1,_r,sr,...,s;_r) lj = l,...,miJ

and {4r¡(sr,...,g.-)li= 1,...,m¡1. Now define nr=mr,ni=n¡-t+mrforatti =2,...,k

and ¡n = z¿. Then I a rt a...a n*. Each ft1 errrd, i't2 can then be considered a mapping

from GF(r,)2'|i or Grç¡2ni to GF(p)nJ+l. We can further deûne r¡,n*¡ as the åth com-

ponentofTj andr¡,¿=0 rf he {l,...,nrL.Since t¡,nj*nisu*uppin!fromGFGr)2ãito

GF(p) it can be considered a polynomial over GFþ).

/ t*t' \

| 
,"+¿*{*r,t('1,r,), 

I

þo***f ' 
*rf -' ((n rr*rJ,.. .u, +rf '2)'þ, ¿+rj,. . . r¿- r +rj-2)/

7. ÞGroups
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Using these norarions, 6 is isomorphic to U = (GF(p)';+,-,0) where

((r r,r2, . . .,r ¡) + (s1,s2,...,s¿)), =

r, + 
o s, + 

o Pt U 1,.' .,rr-1,r1,. . .,sg-l ) + p t ¡ r* ¡(r 1,..',r0,s1,. . .,sr)

(:(sr,s2,...,s¿))s = - p ss +, øj(s1,...,ç1) + p tz,\+ h(\,...,sry)

0 = (0,0,...,0)

if g = nt a h and h e (1,...,m¡+t).

Obviously this implies part i and all of part 2 except n12Z ,

The inequality n 1 > 2 follows from theorem 2.1.6 and the fact that the projection z2

onto the fust two components is obviously a homomorphism. Suppose ¿1 = 1, then the

image of 12is a p-group of nilpotence class 2 and size p2 which contradicts theorem

7 .1.6.

Pa¡ts 5 and 6 are true since they are true for the original construction as described by

corollary 3.4.7 and the possible changes to this consEuction a¡e all within a fixed com-

ponent, i.e. they do not change the kernel of any projection onto the 6rst r? components.

(x + 0 =.r) and (0 + x = ¡) imply pffr 3, white (:0 = 0) implies part 4. n

It is interesting to note that the reÞresentation as described in theorem 7.2.3 is quite

similar to an intermediate construction used in the proof of the theorem that there

exists a representation of every finitely generated torsion-f¡ee nilpotent group as a

group of uni-triangular matrices over Z as given in (Kargapolov, Merzljakov 1979,

theorem 17.2.5). Note that torsion-free groups are the opposite of p-groups since a

group is called torsion-free if there is only one element of finite order.

This theorem even provides a representation of an arbitrary finite nilpotent group since

by the Burnside-Wielandt theorem a finite group is nilpotent if and only if it is the

direct product of its Sylow p-subgroups, i.e. the finite nilpotent groups are exactly the

direct products of finite p-groups þ prime). The statement and proof of the Burnside-

ANDREAS GUELZOW -r23- UNIVERSIry OF MANITOBA



7. ÞGroups

Wielandt theorem can be found in many group-theory texrbooks, e.g. in (Kargapolov,

Merzljakov 1979).

7.3. pGroups of Moximol Closs

It has been shown by C. C. Sims in (Sims 1965) that the number of non-isomorphic

groups of order pn is (asymptotically) given by pA(n) n3 where e@) = fi + O(n- 1/s¡.

Due to this multiplicity, special classes of p-groups are being investigated separately.

One of these classes a¡e the p-groups of maximal class:

DEFIMTIoN 7.3.1 A p-group of order pm with m >- 3 a¡d nilpotence

class m-| is called a p-group of maxímal class.

In view of theorem 7.1.6 a p-group of maximal class has the laÌgest nilpotence class

possible for its order. For any such p-group we a¡e able to specify exactly the se-

quence zl I ... 1nm_l of numbers described in the representation theorem 7.2,3 and

we can formulate the following theorem:

REpREsENrarroN THEoREM 7.3.2 I¿tG =(G;+,-,0) bep-group of

order pm (p prime) of nnximal class, i.e. of nilpotence class k = m-l.

Then there exists an m-dimensional vector space V and polynomials

q 
i@ þ... Ã i-ù and p ¡(x y.,.,x ¡-¡,)1,...,)¡-1) over GF (p) wiîhout constant

term for 7 3 i < m such that

l) S = (V;+,-,0) is isomorphíc to 6 where

(r+y)¡ = x¡+p!¡+op¡(xy,..J¡_1,)r,...,)¡_l),

(:x)¿ = -px¡+p8¿@y...t¡_),

and0r=0

foralli e {1,...,n) with pr=0=qr.
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For all i and all (xr,...,x) e V p¡r:'1,.,.,x¡-1,0,...,0) = 0 and

p¡(0,...,0,xr,...,x¡_1) = 0 (í.e. no p¡(x1,...,x¡_1,! 1,...,t¡-) has a

constant term and every monomial of it contaíns elements from

lxr,...,x rl and from U y,...,1 ).)
For all i23 p¡(x1,,.."x¡ayr,...,)¡_r) depends on xi_t or yi1.

For all í ør(0,...,0) = 0 (i.e. no q¡(x1,...,x¡_) has a constant

term,)

Ç(E) corresponds to the kernel of the projection onto the rtrst

m-L components ofV, this projection is a group homomorphism,

]Í co5 = Ég <\ <\z ' '.. < 6* = rs is the upper cental seríes and,

os = 0¿ < 0¿-t < 0¿-z < .'. l0o = ls the lower cental series of

Mthenfor any je (0,...,k)4¡=þt_¡andfor any je i0,...,e-1 ]

this congruence E¡ corresponds to the kernel of the projection

onto the rtr$ m-j components of E.

Proof: The represenrarion S = (V;+,:,0) is exactly rhe representarion given by theo_

rem 7 .2.3. Consider the sequence 2 < ,t < n2 <.. ,< nk = m given by that theorem.

Since for p-groups of maximal class k = m-1, we must have z¡ = j+l for all

je {1,...,¿). The remaining statements of this theorem follow immediately except part

3 and the claim Ç, = 0¿_¡ for all j e {0,...,e} in part 6.

The fact Ë; = Q¿_; for all je {0,...,k) is well known for p-groups of maximal class (e.g,

see (Huppert 1967, lemma 14.2)) but we can easily prove it using only universal alge-

braic arguments and this representation:

Obviously l¡=Q¡_¡for¡ e {0,t} since (g = o:5 =Q¿and Ë¿= r5 =qo. Let us assume

that we have already proven €; = Q¿_¡ for all7 e {0,...,í}. We will show rhat €¡ = 0¿_¡

for 0 < I < È. Since €¡ > Ë¡_l = 0*_;*r < 0¿_¡ it is sufficient ro prove:

1)

s)

4)

s)

6)
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factthat0<i<¿.

Therefore

7. pGroups

E/E,-r=þ4rr-,*, (7.3.3)

By 3,2.7 we may conclude that (¡ à 0¿_¡ and therefore

Ê/8,-rrþr-y'rr-,*, e.3.4)

hence tor(%,-J = Ior(o*-y'qo-,-,)

From part 6 of theo¡em 7.2.3 we get that

lror{e/ç,.J1 
= 
"

Since Q *-y'f 
o_.* 

is a subalgebra (subgroup) this implies

I'0,(o',/oo_,_,)l 
= o ",'

o 
lfof 

(O*-/*r-,.,)l = t then Q¿-¡=0¿-¡*r and therefore i<0 which cont¡adicrs the

lror(o*-/o*_-,)l 
=, = 

l'',(%,_,)|

and we get r0r(oÈ-y'0È_j_,) e pt(ç/E,r) (7.3.s)

7 .3.4 and 7.3.5 together imply immediately 7 .3.3, i.e we have proven (¡ = go_, for all

j e (0,...,È).

It remains to prove part 3. Suppose there exists at least one i Þ 3 such that

P ¡(xy...,x¡-yl r,...,)¡-r) does not depend on r¡-1 and )¡-r. By theorem 7.3.2 the

element (at,,,,,a^) with a; = 0 if j + i-l and a¡_1 = I is not in the kernel of Em_¡+t =

4"tt^). 
.et (b r,...,b m)be an arbirary element in V. Then for j < Í we have:

((a'"a*\ + @v'ø))i'l"r;'rl!",':::':'"" 
bv pu,
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7. pGroups

= bj +o a¡ +pp¡(by...,b¡a,a1,..,,a¡_ì

= ((bþ...,bm) + @1,...,a^))¡ and

((a y,..,a*) + (b ¡,...,b 
^)) 

¡ = a ¡ + o b ¡ + p p ¡(a 1,...,a ¡_1,b 1,...,b ¡_1)

= ai +p bi +p pi(O,...,0,1,b1,...,å¡_1)

' 4¡+p bi +p pi(0,...,0,O,by...,b¿_ù

since p¡ does not depend on r",
= a¡+ob¡+00 by part2

bi + p a¡ + p pi(b r,..,,ä,._1,0,..,,0,0)

= b¡ +o a¡ +ppi(by...,b._1,0,...,0,1)

since p¡ does not depend on yr_,

b ¡ +, a¡ + 
o 

p ¡(b 1,,..,b ¡_1,a 1,..,,a¡-)

= ((bþ...,bì + (a1,...,a^))¡

Therefore ((ar,...,a^) + (by...,b^)) E^_¡ ((bt,...,b^¡ + (ar,...,a*)).

Since (år,...,å.) was chosen arbitrarity, theorem 7.1.2 implies that (at,.,.,am) is i¡ the

kernel of Çr-¡1 = t\/rÀwhich is a contradicrion! We have shown that for all i à 3

P¿@y,'.#¡-1,!1,...,)¡-t) depends on at least one of r;-1 and y,._1. tr

7.4, Exomples

In this section we will illustrate the representation theorems of sections 7 .2 and 7 .3 by

presenting representations of some well known finite groups. we will begin with a

trivial example, a boolean group:

EXAMPLE 7.4.1 (KLETN'S FoUR.cRoUp) Klein,s four-group ís the

unique 4-element boolean (i.e. exponent 2) group. It can be given as:

GFQ)z,+,-,0) where

(;;). (í;) =( i;?,:,), -H=(::) "^ o =(t)
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our next example is only slightly more complicated. It is the smallest 2-group that is

not boolean, i.e. that is not an exponent 2 group:

ExAllaeLE 7,4,2 The cyclic group of order 4 can be given as:

<cFQ)2,+,-,01 where

F;).ß;)=( ,,i;)t1,,,) E)=( ,:],,) *a o=(g)

Examples 7 .4.1 and 7 .4.2 are abelian groups, i.e. groups of nilpotence class 1. The next

two examples are of nilpotence class 2:

EXAMILE 7,4.3 The \-element dihedral group Ð4 can be gíven as:

(GF(2)3, +,-,0) where

/o\
and 0=l ol.

\o/
It is generated by the two elements et and ez; e1 has order 2 and e2has

order 4. The centre of this group is the kernel of the projection onto the

first wo components,

This group is of maximal class and subdirectly ireducibte. Note that it looks like the

direct product of the 2-element boolean group and the cyclic group of o¡der 4 with the

added polynomial terms x1l2 and x1.r2. Similarly, \re can represent Ðg, the 16-

element dihedral group:
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EXAMPLE 7.4.4 The lí-element dthedral group Ðg can be given as:

(cF(2)4, +,-,0) where

rL+! 
1

xz+!2

4+!3+ x2/2+ x1!2

x4+y4+ xùt3+ rzx3yz+ xùtù4+ xtþz+ h+@z+tz+ xùy2)

It is generated by the wo elements el and ez; e1 has order 2 and e2 has

order 8. The centre of this group is the kernel of the projectíon onto the

ftrst three components,

This group is also subdirectly ineducibie and of maximal class, i.e. it is nilpotent of
class 3. our last example is a group that is nilpotent of class 2, subdirectly ineducible,

but not of maximal class:

(Ë)

Ë) 1... ;,i:;,,',,,..,,) 
*" = 

( 
å )

EXAMrLE 7.4.5 The group G = G(X, rlXS = t, f = Lyxyx3 = t) can

be given as (GF(2)4, +, -,0) where

/;;1"1;;l / ::i: l
l" I l" I I h+v3+ xù'z 

l'
\ro J \vo / \x4+v4+ hv3+ xzxzyz+ xùùz+ xùzl
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It is generated by the two elements Y = et and X = eZ, The centre of

this group is the kernel of the projection onto the rtr$ two components,

Note that the group in the last example is subdirectly irreducible, but the centre is not

a minimal congruence. This implies that the equivalenr rheorem ro 5.7.20 and 6.4.3 is

not true for p-groups.

We have omitted the proofs that the representations given in examples 7.4.1 to 7.4.5

are indeed cor¡ect since it is very easy to see: Examples 7.4.1 and,7.4.2 are

immediately clear. 7 .4.3 and 7.4.4 follow f¡om the representation of the dihedral group

Ð, as the group of 2x2 matrices 
lã ?]*rt Z, with¿ =+t (see for exampie

(Kargapolov, Merzljakov 1979 t19771)). 7.4.5 finally follows from rhe representarion

of the group G as a semidirect product of Zg with 22 gee (Weinstein 1977, example

4.7)). The other mentioned properries of these groups are also proven in (Weinstein

r977).

"r, ,=lå 
)

\o/
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B. E-Minimol Algebros of Affine Type

Ll, Minimol ond E-Minimot Algebros

In this chapter we will consider E-minimal algebras of affine type. This concept arose

f¡om the investigation of finite algebras by Pálfy, pudlák, Hobby and McKenzie. Most

of their results were collected and presented in (Hobby, McKenzie 19gg). In this sec-

tion, and the beginning of the next, we will present those definitions and theo¡ems that

a¡e needed for our work. We omit all proofs, since they can be found in (Hobby,

McKenzie 1988). we will see that finite nilpotent squags, finite nilpotent ses-skeins

and finite p-groups are examples of E-minimal algebras and we will be able to gener-

alize some of the results that we have obtained earlier in this thesis.

The main concepts are given in the following th¡ee definitions:

DEFINITION 8.1.1 Let (ô9) be a congruence quorienr of the frnite

algebra.A =(A;A). Ais called (6,0)-minimal ifand onty ifevery unary

polynomial /e Pol1(A) is either a permutation of A or satisfies the

condition: /(0) s ô.

DEFTNITIoN 8.1.2 A finite atgebra g= Ø;Ø is called minimal if a¡d

only if 
^A 

is (co¿,r¡)-minimal (i.e, if lA | > I and every non-constanr

unary polynomial/e Pol1(A) is a permutation of A).

DEFINITToN 8.1.3 Let A= (A;O) be a finite algebra. Then E(A)

denotes the set of all unary polynomials e e Poll(A) sarisfying

e(x) = ¿1r1r¡¡ for all ¡ e A. The ûnite algebra A is called E-minimal if
and only if lA | > 1 and every non-constanr e e E(A) is the identity on

A, i'e. e(x) = ¡ fo¡ all ¡ e A.
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It has been shown that every minimal algebra is of one of flve types:

DEFrNrrroN 8.1.4 fæt.A = (A;O) be a minimal algebra.

1) Ais of unary type, or type 1, if and only if pol(A) = pol(,4;IÐ) fo¡

a subgroup .l-lc Sym(Ð.

2) A is of a!fine type, ü type 2, if and only if "A is polynomially

equivalent (i.e. functionally equivalent) to a vectorspace.

3) Ais of boolean type, or rype 3, if and only if .â, is polynomially

equivalent to a 2-element boolean algebra.

4) Ais of lattice type, or type 4, if and only if A is polynomially

equivalent to a 2-element lattice.

5) Ais of semilattice type, o1 type 5, if and only if A is polynornially

equivalent to a 2-element semilattice.

THEOREM 8,1,5 A finíte algebra is mínima! if and onty if it ìs of one of

the types I to 5.

Similarly, it has also be shown that every E-minimal algebra is of one of five types. To

present this result, we require some further concepts:

DEFINTTToN 8.1.6 Let A = (A;O) be (ô,9)-minimal. A subset jV ç A is

called a (õ,0)+race of Aif and only if there exists an ¡ e N such that

N=[r]0*[¡]ô.

DEFrNrrroN 8.1.9 læt g= (A;A) be an arbiuary algebra, a e Con(A),

å e Poln(^A), and N E A. Then

1) dl = a n (N x Ð denotes the congruence a restricted to N.
IN
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8, E-Mtnlmot Atgebros of Affine Type

2) ¿1.. = {(r0,...,xn-1,h(xs,...,x¡¡-r)) I(x0,....tr-l) e IVn} denores
IN

the n-ary polynomial l¡ restricted to jV. Note that the description
of å may still contain constants from A that are not in N.

3) Pol(å,) | is the set of all ål such that for some n, h e polr(A)
lN l¡¡

and l¿(Nz) e N.

.t \4) Al = (¡r ;Pol(A) | ) is catted the atgebra induced on N by A.l/y \ ' -l¡vl

DEFrNrrroN 8.1.8 Let A = (A;o) be (ô,0)-minimat. r-et í e {1,2,3,4,s1.

We say that Ais (õ,O)-minimal of type i if and only if for every (ô,9)-

trace N, (nlr)/1u¡"¡ is a minimal atgebra or type i.

using these definitions we can describe the possible types of an E-minimal algebra as

follows:

DEFTNTTToN 8.1.9 Let å, be an E-minimal algebra,

1) Ahas unary type (type 1) if and only if å, is (ô,9)-minimal of rype

1 for every prime congruence quotient (ô0) of .4.

2) Ahas afine type (type 2) if and only if å, is (ô,9)-minimal of type

2 for every prime congruence quotient (ô,9) of "â,

3) Ahas boolean type (type 3), lauice type (rype 4), or semílattice

type (rype 5) if and only if it is a 2-element minimal algebra of the

same type.

THEOREM 8,1,L0 Every E-mtnimal algebra is of one of the foilowing

types: unary, afine, boolean, lattice or semilattice type.
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we are only interested in E-minimal algebras of affi¡e type, since finite nilpotent

squags, finite nilpotent sQS-skeins and finite p-groups can be shown to be of this

type.

In (Hobby' McKenzie 1988) the following properries of E-minimal algebras of affine

type have been proven:

THEOREM 8.L,ll Any finite algebra A with more than one element is

E-minimal of afine type if and onty if A safisrtes the following two

conditions:

I ) A has a Mal' cev polynomial and

2) A has a congruence quotient (õ,0) such that it is (6,0)-minimal

of rype 2.

THEOREM 8.L.12 Every E-minimal atgebra of affine type ìs nilpotent.

In the proof of this theorem in (Hobby, McKenzie 19gg) an even srronger property of
E-minimal algebras of affine type has been shown:

LEMMA 8.1.13 Let Abe an E-minimal atgebra of affine type and tet a,p

e ú(A) such that a covers B. Then [t¡,a] < B, Moreover:

[r¿,ø] < fl lre O(A) | a covers 7) .

The proof of lemma 8.1.14 is an exercise in (Hobby, McKenzie lggg):

LEMMA 8,1,14 Every E-minimal algebra of afine type has a Mal'cev

term operation that is one-toane in each variable when the oîhers are

held fixed.

A simple, but useful consequence is the following corollary:
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CoROLLARY 8,t.15 Every E-mínimal algebra of a!fine type is con_

gruence uniform and congruence regular,

Proof: Let,A be an E-ninimal algebra of affine type. Let d(x¿,2) be the Malcev terrn

operation on -4, described in lemma 8.1.13. Then for every a and b in ^â, and every

congn¡ence @ on A the term function /(.r) = d(a,x,b) maps [c]@ into tåld and [å]f into

[a]p. Since/is one-to-one [aJQ utd [å]p have rhe same cardinality. since the algebra

is finite and/([a]Ð CÍbjQ this also implies congruence regularity. tr

Note that the congruence uniformity also follows from theo¡ems g.1.11 and g.1.12 and

the fact that every nilpotent algebra in a congmence modular variety is congn¡ence

uniform. For a proof of the latter statement see (Freese, McKenzie 19gZ).

8.2. Representotion of E-Minimol Algebros of Atfine Type

Already in (Hobby, McKenzie 1988) a representation of E-minimal algebras of affine

types has been given:

DEFINTTToN 8.2.1 Ler GF(4) be a finite field and, m be any positive

integer. Then iE(4,rn) denotes the algebra (GF(a)n;O) where O is the

set of all operarions/on GF(q)n satisfying the following condirion (pro-

vided the arity of/is n ):

There exist h,h2,...,2,ne GF(q) and oolynomials h1,h2,..., ån, over

GF(q), such that ¿, is n.(i-l)-ary and for all x0), x2t,..., r(r)e GF(4).:

çç(r),yQ),...,7@)¡7.
l" \

= 12. 
rt rY 

| 
+ rr þ{tr, xitr,...,',!tì,',('),...,'Í',,...,',9ì)

V=t l
for all i = 1,2,..., m.f witl be denoted by [)a,...,hr; hb...,h,r|q.
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. THEOREM 8.2,2 For any rtnirc, non-trivial algebra A the following are

equívalent:

I ) A is E-minímal ol afrne type.

2) A ís Mal'cev and isomorphic to a reduct of some algebra T.(q,k),

where k is the height o/ Con(Â).

The following corollary is an immediate consequence of this theorem and our represen-

tation theorems 5.7 .3, 6.4.2 and 7 .2.3. Note that the sequence of kernels of the projec-

tions onto the first rz, m-|, m-2,.,. components respectively form a maximal chain in

the congruence lattice of those algebras.

CoRoLLARy 8.2.3 All finite nÌlpotent squags, finite nilpotent SeS_skeins

and finite p-groups are E-minimal algebrøs of afine rype.

we will now consider some generalizations of theorems and lemmas that we have

already proven for finite p-groups, finite nilpotent ses-skei's, and finite nilpotenr

squags. we will begin wirh a more detailed description of the representarion given by

theorem 8.2.2.

coRoLLARy 9.2.4 Let A=(A;{Íiliel)) be an E_mínimal algebra of

afrtne rype and of nilpotence class k. Then there exist an m-dimensional

vector space V over a finite field GF(q), for every iel an operation

tl.li),...,1,11;nli',...,h*,ln where n¡is the arity off¡, and a sequence 7 3

mt<'.'<mk=mof íntegers such that:

I) U = (y;{t¿Ít),... ,z!,ù,:nlt),...,nallq Vet}) is isomorphic to A.

2) ((S corresponds to the kernel of the projection onto úe rtrst

m¡r_1 components of V, this projection is a homomorphism.
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3) If a, = Ço< Et < Ez t ... < 4* = rv is the upper cental series of

E then for any j e 10,1,,,,,k1 the congruence l, is the kernel of

the projection onto the rtr$ mk_j components of V.

Proof: This corolla¡y follows immediately from the proof of the orcm 8.2.2 in (Hobby,

' McKenzie 1988), since the construction of the E(q,k) ptoceeds along an arbirary

maximal chain in t(Ð and 6o < Ér < Ez< .,.<Es can be extended to such a chain. ¡

In the theory of squags we had seen that we can move among different representa-

tions of a fixed squag by using certain easily described isomorphisms (see lemma

5.7.5). We had used this fact to prove the existence of especially nice representations

(see lemmata 5.7.4 and 5.7.13). We a¡e able to generalize this tool to the theory of E-

minimal algebras:

LEMMA 8,2,5 Let V be an m-dimensional vector space over the rtniæ

rteH GF(q) and letE = (V;{ filiel}) be an E-mínímal algebra of afine

rype with .fi= ÍXli),...,1d1;nlÐ,...,¡A¡e for ail i e L Let k be a fixed

nwnber in {2,..,,m1 and let P(xy,.,}p_) be another polynomial over

GF(q). For every i e I and every j e (k,...,m| define:

. tf i=k ,n nî1" þÍ'r,,;'r,...,,¡ì,...,,Í"",...,,rgi,)

= r(þ.t*ttr,...,*,")l),,..., (4r*.tr,...,'t',)lL_,)

-f 
^,PþÍ'), 

..,,Í1,) - r,rÐ þfr,.,4r¡
where xG) = þÍ'),...,rÍ1,,0,...,0)
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. ir i > k,nr, î,(') þÍtl, r;t1,..., r¡ì,..., rÍ"r,..., 1gi,)

Let E = (V;( f¡lie I)) and tet Q : V-+V be defined by :

lo<r,r,...*->tl.=Pi f i+k
"m"Ji 

\x¡+r{xr,...,r¿_l) tfj=t

Then Q : €,-" € is an isomorphism and Q-l is given by:

l _r .. I (r¡ tf j+k

lQ-'((xy...,x.)lr= 
i+_"<r,, 

...,xt_) f j=k

Moreover, if E satßrtes the conditions 2) and 3) of corollary 8.2.4 then

8 also satísfies these conditions

Proof: F¡om the definition of @ it is immediately clea¡ that @ is a bijection and that its

inverse @-1 is given as described. It is straightforward to verify that each polynomial
^(r)ir)" arp"n¿. onty on the variabtes rftl,r;t1,...,"r1t1 ,...,rÍ,),...,r;:i), i.r.i i, 

"n
operation on the fleld GF(4) in the sense of definition 8.2.1. As in the proof of lemma

5.7.5 it is easy to show that @ is even an isomorphism.

Moreover, if € satisfies the conditions 2) and 3) of theorem 8.2.4 then û also satisfies

these conditions since p and the projection onto the first j components commute for

every l. (This is immediately clear from the definition of p.) ú

'We can now use this tool to show that the representation in corollary 8.2.4 can be

chosen such that any arbitrary element a e A can be mapped onto 0 = (0,...0):
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THEOREM 8,2.6 The representation in corollary g.2.4 can be chosen

such that the isomorphism from the algebra g= (A;{f¿liel}) toE =
(GF(4)n; {g¡ | i e IJ) maps any fixed point a e A ro 0 = (0,. ..,0).

Proof: Let Q: A >-----+> €g be any representarion of .A as given by corollary g.2.4. Let

Qt, Qz, ..., @r, be the sequence of isomorphisms and €1, Ez, ...M^ the sequence of

algebras obtained from lemma 8.2.5 for Q¡:E¡¡ >-----+, €¡ , & = j and p = (Q@\k. Let

V= Qmo Qm-t " ...o Qro Q: / >----->> þ*.Then r¡:4,--r €,n is a representation as

described by 8.2.4 and (ry(a))¡ = (Q¡@))¡ = (Q(a))¡ - (Q@Ð¡ = 0. !

As we have seen in rhe proofs of 5.7.4 and 5.7.13, this tool-lemma g.2.5-is also

useful to improve the representation given by corollary 8.2.4 within the theory of

specific E-minimal algebras of affine type, e.g. finite nilpotent squags.

In section 6.4 (lemma 6.4.7) we presented a description of the commutator terms for

finite nilpotent sQS-skeins. since rhis description is based on a represenration theo-

rem analogous to 8.2.4, we a¡e able to generalize this description.

LEMMA 8,2.7 Let V be an m-dímensional vector spøce over the rtnirc

field GF(q) and let$ = (V:{ f¡lieI}l be an E-minimal algebra of affine

type with ft = llÍi),...,Ñr¡{i),...,¡Øf ¡6r att i e r. Let k e (r,...,mJ

and let 0= mg 1m1 < ... <mk=m be a rtnite sequence of integers. For

every j = 1,., .,m let mQ) be the integer such that m(j) = m, < j I mr*1

for some r. Moreover, suppose îhat Íor all i e I and j e [7,...,mJ the

p o ly nomi a I nji) aep e nas o nty o n xlD, r$r),. . ., r,lttll,. . ., r Í','1,. . ., r1 
o\

Then every t-ary term function r6(t),xQ),xQ),..., r(t)¡ onE is given

by
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(,{,(t),'et,...,'r,), =(å,*j,).rffi; 
fi;)

where r1,,..,r, e GF(4) and the s¡ are polynomials over GF(q) in the

variabtes rÍt),..., 
'ttà,... , ,Í",..,, *Iir.

Proof: We will prove 8.2.7 by induction over the number of operations occurring in r.

If z is a projection then 8.2.7 is obviously true.

Now suppose

,4x(1)*(2)*(3),...,r(t)¡ =¡,ç11)ç(DJQ)ãß),...,x(r),...,1,)1r(t) *(z)¡(3),...,y@¡¡

trhe.e ll) to l'l) sadsfy 8.2.7,i,e. for / e { 1,...,n¡}:

(ro 1xo), xQ), x(3),...,r(t))I = (å ntlr,). t,,( j; 
) ffi )

men (c{r 
(1), 

x Ø, r(z),...,r(t) ¡). =

ä^,,f1å0,,,).-{ffi (;il,ffiil (;f)
=ÞÉaÍ'r 'Á'r)'vo).

þ,{fi;) fi;))-ffi;) 
(;J)
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where P¡ is an appropriate composition of ll)1,...,11) mA,...,rln¡) 1,...,7(7ù^, and

år(i). Not" tr,at (Il1 r LÍÐ ' rØ)does nor depend on j. This proves 8.2.7 for all term

LEMMA 8,2,8 Let V be an m-dimensional vector space over the rtniþ
field cF(q) and let E = (V;t f¡lie lll be an E-minimøt algebra of afine

rype with fi= ILP,...,|Ø:nlÐ,...,nØf ¡or ail ie r. rzt ke (1,...,m1

and let 0 = m0< mt 1 .,. 1m¡= m be a rtnirc sequence of integers. For

every j = 7,,..,m let mÇ) be the ínteger such that m(il = m, < j S mr*1

for some r. Moreover, suppose that for a i e I and j e {1,,,.,m} the

p o ty nomiat njù aep e ras o rty o n rfi), xfi 1.. ., rÍtò,.. ., rÍ ^'),. .., r|d\ .

Then every G+l)-ary commutator term rgl),/2),¡(3),..., xQ), ò onp
with t22 is gíven by

(clx'),x'),r(3r,,..,r<'l,r))i= t- r(:j;) 
fiJ ( ; ))

where the sj are polynomials over GF(q) in the variables ,\r,..., ,::¿n,

..., tÍ'),..., *l¡ sotir¡yrng gor att j e [1,...,m]):

þ"" "ffi(:))='ffi) ffi(,:)) '

functions ø.

Proof: Let ø be a commutator term. By lemma 8.2,7 t can be written as:

(r1x'), xe), xß)..,.,r0),,))j = ( f ,, *jo))*,,,. -((il 
fi, )( ; )
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ve rh=0 for all å e {1,...,r). Let 0 = (0,..,,0). Since øis a cotnmutator

¡¡ ¿¡ ¡(2)¡(3),,. . a0 e v the following equation holds:

, x(2), x(3),..., x(u,or¡, = n o.(å,r'f å))*,0 *,, =, r* f , ¡,Ío)

I and rå = 0 for all å e {2,...,r}. Since I Þ 2, we get similarly for all

= (0)r = (r(r(t),6,r(3),...,r(t),6)), = r1"fr)* ro = rrrÍr)

crer¡=Q fo¡alll¡e {1,...,t}.Thefactthatr= I follows now immedi-

,, =(rçr,xØ ,r(3) ,.,.,r(t, ,r))r= ,r,

that t is given by:

,xQ),xQ),...,x(',,rr),,-{(il 
fi;) L:))

/,, \
=l i lror 

ro-. å e {1,...,r), then:

\'^a l

.., a(h-r),2, a(h*t),..., r(,), r)f

W) 
.Ï,.lli;) 

fiJl )'.((j;) fi;)( )
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and,herer.rer11jil (jil( :))=,,," 
wehaveprovenB2s 

tr

8. E-Minlmol Algebros of Afnne Type

As we had already mentioned in the context of theorem 5.7.19 and in analogy to

theorem 6.4.5 the dependency of the polynomials in the representation theorem 8.2.2

allows us to determine an upper bound for the class of nilpotency of a given E-minimal

algebra of affine type:

THEOREM 8,2.9 Let V be an m-dimensíonal vector space over the finite

field GF(q) and let E = (V;t flie lll be an E-minirnal atgebra of afine

type with ¡t= ¡Lli),...,¡ø;n{Ð,...,¡Ø1q ¡sr alt ie I.I¿t ke {1,.,.,m1

and let 0 = m0< mL < ... lmp= m be a rtnite sequ¿nce of integers. For

every i = l,...,m let mÇ) be the integer such that m(i) = m, < j S mr*1

for some r. ìloreover, suppose that for all í e I and j e 11,..,,m\ the

p o ly nomi at njÐ aeo e nas o rty o n xlÐ, rfr,,. . ., r,ttò,. . ., r Í,,,, .., r*Ìn .

ThenE is nilpotent of class at most k.

We have chosen to present two proofs for this theoreni since they use quite different

tools. The first proof is analogous to the proof for 6.4.5 while the second uses the

property of E-minimal algebras described in 8.1.13, i.e. that the commurator [r¿,a] is

below or equal to the intersection of all congruences covered by ø.

Proof I of Theorem 8,2.9: We will fust prove the following claim by induction over å:

(8.2,10) For all å = 0,...,& the following holds: if n^^is rhe projection onto the firsr

n å components then Q¡ G kerQt*o) where (0¡l¡=t,2,... is the lower central

series of ü.
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If h = 0, then Q¿ = 0o = ry = ker(a¡) = ke{n*), i.e. 8.2. 10 hotds for å = 0.

Suppose 8.2.10 is true for all h < t. We will show thar þ¡ e ker(n^,). By 3.3.3 and

since Q¡ = [0]-l ,ry ] it is sufficient to show thar:

(S.2,11) for all commurator teûns tlx1),aQ),yß),...,,(0, z) with là2 and all ¡(l),
xQ)'xQ)'""""";,r:r*=':::;;:3,)î17.,'..'..'..',',,'r,,r,

Let 4¡Q) , xQ) , rß) ,..., xQ) , z) be any commutator term with t 2 2 and,1s¡ ¡(1), ,(2),

¡(3), ..., ,('),r. V with n*,_r(z) = n^rJxl)). I-et j Sm¡. Then ¡¿(,r) I rz¡_1, where

rn(7) is defrned as in the sratement of lemma 8.2.8. By this lemma we have:

,,(,,,,,\=r.r(j;) 
fiJ( il w h

ffi(,':.) 
-,((j;) ffi(:) '

Since ørr-r(z) = x^t-tc.Q)) and m(Ðl rn ¡-1 this implication yields

'ffi (j,)L:) '
and therefore (4x/J),r(z'l,r(3),...,¡(,), ò)¡= t¡for all jszt¡. This implies n^,(z) =

n*,(l4rx1), xQ),1(3),..., r(t), l), i.e. B.2.l1and consequenrly 8.2.10 have been proven.

8. E-Mlnimol Algebros of Affine Type
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8. E-Mlnimol Algebros of Affine Type

To complete the proof of 8.2.9 we only have to observe that, fo¡ å = &, 8.2.10 implies

Qp= kerQt.) = ke{n^) = Oy, therefore 0¿ = oy . This means that ã is nilpotent of

class at most È.

Proof 2 of Theorem 8.2.9. I,et n*rbe the projection onto the first rn¿ components of

V. We will first prove that for all h = O,.,.,k-l

(8.2.12) ftrtr4".r¡ =k"(o^^^)

For m¡ < l3 m¡a1let x*u,¡ be the projection given by

n^n J

Since the polynomials å.,(t) d"prnd onty on rfl),rjt),...,rÍ:¿Ð,...,rY),...,-làrhe ker-

nel of n^0,¡ is a congruence. It is clear that, since ker(zo) > ker(ø1) > ... > ker(zr) is

a maximal chain of congruences on €, ker(zg) > ker(21) > . ., > ker(rc*o) > ker(n^^ ,¡)

> ker(n^o ) n ker(n*o+t) > ... > ker(x^^,) n ker(z¡_1) > ker(z¡a1) >.,. > ker(ør)

is also a maximal chain. The¡efo¡e Ttmhcovers Í^^,¡ and we get by lemma 8.1.13:

[r¿,re.(z.r)] < ô (2. @rÂl 
I 
r<er(z,r) .ou"r, 7 )

< ñ{r"'(o,0,,)l*0. t < *n*, 
} = t"'(",r.,)

i.e, 8.2.12 has been proven.

tr

-1.

x..-

xm¡+1

,t-t

''lt
Í^h*lffi)
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8. E-Minimol Algebros of Affine Type

Now let {0¡}¡=r,2,... be the lower central series of t. By induction over å we will show

that Q¡ < kerQt^^) fo¡ all å = 0,1,...,È. This statement is immediately clear for å = 0.

Now suppose it is true for i = h-7, i.e. 0¡-t < ker(x*^_r), By 8.2.12 and 3.1.4 (8) we

have therefore:

o¿ = [.*o¡-J = þ**"'{",r-,¡
<xei.n,"o\

which proves þ¡ 3 ker(tc^) for all å = 0,1,...,&. For l¡ = & this means Q¡r 3 ket(tc^r) =

ker(n.) = <¡y, i.e. € is nilpotent ofclass at most &. ¡

Note that this theorem 8.2.9 implies theo¡em 5.7.19. We had omitted the proof oi the

latter theorem since it is a consequence of the former.

8.3. Subdirectly lneducible E-Mlnlmol Algebros of Atfine Type

For finite nilpotent squags and frnite nilpotent SQS-skeins we had seen that our

representation can be used to characterize the suMirectly irreducible algebras: a finite

nilpotent squag or finite nilpotent SQS-skein is subdirectly i¡reducible if and only if in

its representation nt-l = m-1, i.e. every class of the centre contains 4 elements (see

theorem 5.7.20, theorem 6.4.2 part 8 and co¡ollary 6.4.3). Example 7.4.5 showed that

this is not necessarily true for p-groups, i.e. it can't be true for all E-minimal algebras

of affine type. Nevertheless, one implication still holds:

THEoREM 8.3.lLet A= (A;{filieI}) be an E-mintmal algebra of afine

rype with lt¡lç(A)l = qÍor some element x e A and some prime q'Then

A is subdirectly irreducible.
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. 8. E-Minlmol Algebros of Affine Type

Proof: By theo¡ems 8.2.4 and 8.2.6 there exists an rn-dimensional vector space V over

a finite ûeld GF(ø'), for every ie I an operarion ¡t'!i),...,1fl:nlÐ,...,n$)f'as ae-

scribed above with n¡ being the arity offr, and an isomorphism

0 : A >---+ Ë = (y;{ tÂÍi),... ,tf);nlÐ,...,n$)lq lierl>
such that ((€) conesponds to the kernel of the projection onto the fust n components

of V and Q(r) = (0,...,0). Since ltrlç(A)l= q and 4 is prime, we may conclude

immediately íhat q = q' and n = m-1. Consider the sequence of congruences do> dt

>..'> dm defined by a¡ = ke{tt¡) wherc r¡ is the projection onto the frst j components

of 7. Note that q,m-r = ((t). Sy 8.2.2 this sequence of congruences is maximal.

Therefo¡e (1þ is an atom in t@). By 3.2.10 € and Â are subdirectly ineducible, tr
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9. Open Questions

9,ì, The Theorem of Bruck ond Sloby

'The resea¡ch leading to this dissertation was initiated by the question whethe¡ the

theorem of Bruck and slaby (theorem 5.4.1) can be generalized to a larger variety of

algebras. The author was unable to find a generalization, but would therefo¡e like to

pose the following question: which additional properties must be required of t to en-

sure the conectness of the following statement: If € is an E-minimal variety of affine

type' i.e. a variety in which every finite algebra is an E-minimal algebra of affine type,

then then there exists a function /(n) = (a n + c) such that every ¿-generated algebra

in € is of nilpotence class at most/(n).

More specifically it should be investigated whether any variety of nilpotent squags is

Iocally finite, and-in the case of an affrrmative answer-whether a theorem similar to

the theo¡em of Bruck and Slaby can be proven for said variety.

9.2. Ihe Commutotor

By theorem 5.3.3 the squag theoretic commutator (defined by a single commutator

term) coincides with the universal algebraic conmutato¡ if one of the congruences is r.

while the author believes this also to be true if none of the congruences is r, this is

still an unsettled question. Note that any counterexample must have at least 243

elements, since the statement is trivial for medial squags and known to be true for the

unique non-medial 8l-element squag (I1g1).

It is well known that the universal algebraic commutator for groups coincides with the

group theoretic commutator which is defined using a single commutator term. A posi-

tive answer of the question mentioned in the previous paragraph will obviously raise
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9. Open Questions

the question whether in every E-minimal variety of afflne type the commutator can be

deûned with one or a ûnite number of commutator terms. Note that theorem 3.3.3

states that the commutator in every congruence permutable and nilpotent variety can

be defined by all (i.e. possibly infinitely many) commutator terms,

9,3, Semi-Booleon SeS-Skeins

Since it was believed rhat the semi-boolean SQS-skeins are exactly the ses-skeins

that arise from boolean groups (a statement which we have shown to be incorrect),

the variety of semi-boolean sQS-skeins has escaped investigation. The immediate

questions are whether every semi-boolean sQS-skein is nilpotent (and we can there-

fore apply the theory of nilpotent ses-skeins) and whether this variety is locally

finite. If these questions can be answered positively, then the semlbooloean Ses-

skeins may behave similar as the distributive squags and it would be reasonable to

explore whether they in fact have the same properties. It would be especially inter-

esting to know whether there a¡e semi-boolean sQS-skeins of every nilpotence class

and whether an analogue of the theorem of Bruck and slaby can be proven. Note that

both semi-boolean SQS-skeins and distributive squags can be selected from among

the SQS-skeins and squags respectively by properties of the corresponding designs

(see theorem 6.7 .2 and, section 4.3).

9.4. ConstructionTheorems

Of all the construction theorems in this thesis only one allows the formation of an

algebra (a nilpotent SQS-skein) that has a larger class of nilpotence than any of the

algebras required for it. Since this theorem therefore allows the construction of SeS-

skeins of arbirary large nilpotence class it would be useful to have simila¡ theorems

for nilpotent squags, distributive squags and semi-boolean SQS-skeins.
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Frattini congruence 31

Geometry
affrne 25,26
projective 25, I 10
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Group 14, 114

associated with an affine algebra 19
commutative 114
cyclic 114

dihedral 128, 129
. of exponent p 115

o¡der of 115
p-$oup (see p-group)

Gumm difference term 13

H664,66,68-70, 104

Hil26,28

Hall triple system 26

Ha\\il26,28

Hamiltonian 28

Higman's Lemma 15

Klein's four-group 127

Mal'cev varieties 6

Minimal 131, 131-133
type 132

(ô9)-Minimal 131

type 133

Moufang loop, commutative and of
exponenr 3 26

N5
Na 107

Near boolean algebra 24

Nilpotence 8-14
class of 9, 30
of class 2 21

of class ¿ 21

Nnr07

p-Group 115, 136

class of nilpotence 116, i 18

locally finite 116,117
of maximal class 124

representâtion of 124

representation of 118, 119, 120

Permutable 28

Pol(A) 4

Pol(A) | 133
lN

Poln(A) 4

Polynomial 4

Quasigroup, symmetric distributive
(see squag, distributive)

Quotient 4
prime 5

Reflection space, commutative (see
squag, distributive)

Regular 28
weakly 14

Representation theorem
for E-minimal algebras of affine type

136
for nilpotent SQS-skeins 73
forp-groups 118, 119, 120

of maximal class 124

Sloop 24

Spiegelungsraum, kommutative (see
squag, distributive)

SQS (s¿e Steiner quadruple system)

SQS-skein 27, 61
boolean 63,65-67,104
commutator term 78
free 109

locally finite 109

nilpotent 136

but not semi-boolean 72, 105,
106, 107

construction of 84, 86, 92,96
generators 82
class of nilpotence 76
repfesentation of 73
size 6'l
subdirectly ir¡educible 74, 75,

86,92,96,101, 105, 106, 107

size 101
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SQS-skein (contínued)
semi-boolean 64, 67, lI0, 149

construction of 84

subdirectly i¡¡educible 104

size 61

subvarieties i09

Squag 25, 28-60
distributive 26

construction of 58

free 32
representation of 36, 37 , 53

medial 28,28-29,34,48
nilpotent 136

class of 56
representation of 38, 53

size 40
subdirectly irreducible 57, 58,

60
and non-distributive 36

pointed 14

Steiner loop (see sloop)

Steiner quadrupre system 23, 27

Steiner system 23-27
of type (t,k) 23
quadruple system (see Steiner

quadruple system)
triple system (see Steiner triple

system)

Steiner triple system 23, 24, 25, 26

derived 110

STS (see Steiner triple system)

Subdirectly irreducible 12, 31, 57 , 58,
60, 7 4, 7 5, 86, 92, 96, 101, 104-107,
146

Surcommutative (see medial)

Term condition I

Term function 4

Theorem of Bruck and Slaby 32, 148

(õ,0)-Trace 132

Type
of a (ô,9)-minimal algebra 133
of a minimal algebra 132
of an E-minimal algebra 133

Uniform 28

Unital 14

€<¿l 9

¿-5

la,þl6
tø,Éls ¡o

tHle4
lxla 4

al 132
l,,v

^Al ß3
lN

@@r(0 20

h

^;6
hl ß3

lru

r¿,4

oA(x) ¿

oJt 4

((a) e

e'(ã) 3t
?5
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