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Two simple decomposition algorithms a¡e presented for the synthesis of modular,

pipelineable, complex wave (unitary) digitât filters (CWDFs), namely the PU synthesis algorithm

and the cascade synthesis algorithm. The main features of the PU synthesis algorithm are the

following:

1. The PU structure has built-in pipelineability;

2. Requires only six basic rotations per order of the filter;

3. Requires only one basic building block, which makes the overa-ll structure moduiar and

easy to implement.

For the pipelineabie cascade algorithm, the main features are the following:

1. The extraction step obviates coefficient-form polynomial arithmetic and zero-finding

operarions by using an alternative (sample) representation of the canonic polynomials that

describe the lossless two-port - an idea that was first introduced tbr real two-ports in [13];

2. First-order sections that effect pipelineability are treated like any other section (they

realize a transmission zero at z-r = 0), thus eliminating the need for special treatment;

3. A futly general lst-order complex section is derived that can realize a "transmission zero"

anywhere in the e-plane and is the only section required for the cascade decomposition. It

requires six basic rotations per order.

4. Each transmission zero in the cascade realization can be fi¡e tuned individualiy because

each cascade section realizes a distinct transmission zero.

5. This algorithm can also be used to synthesize real two-port networks; equivalences are

given between a cascade of two complex sections with keti'o transmission zeros and a

2nd-order real section.

AtsSTRACT

A method to obtain the frequency response

effects directly in the ¿-domain is given for both

algorithm are discussed.

for investigation of coeffîcient quantization

structures and the merits of each synthesis
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Digital frlters have advantages compared to analog filters because they are easily

reprogrammed, their responses are not affected by temperature variations and aging, and they can

be readily implemented using cost-effective digital signal processors (DSPs). Due to the sæady

æchnological advances in the signal processor design, what used to be an unbridgeable gap in the

computationai efficiencies of real and complex digital ci¡cuits has largely disappeared over the

years. The criæria used in evaluating the various digitai circuits have also changed. The total

number of multiplications and delays, and the maximum bits aliowed for multiplier quantizatton

are no longer as critical as, for example, pipelineabiliry t18lt25l (dift'erent instances of the

algorithm are executed simultaneously), or modularity, having only one basic building block

repeated throughout the structure. Other important properties such as numerical robustness,

avaüabiliry of a simple schemes that ensure nonlinear stability, and low-passband-sensitivity

circuits can be carried over to the complex-domain as long as the resulting circuit is inærnally

passive [17], i.e., it is a complex wave digital (CWD) circuit.

Acha and Torres [16] reaiize a complex transfer function as the reflectance of a lossiess

two-port with the restriction that all the attenuation zeros must be located on the unit circle;

otherwise, the reflectance must be scaled with a passive multiplier to force a reflection one on the

unit-circle. In this thesis, we present two CWD structures that are modular, pipelineable, and

have no restrictions on the location of either the transmission or attenuation zeros.

The flrst CWD stmcture is the pipelineable, complex, lossless (unitary), two-port network

that will be referred to as the pipelinable unitary (PU) structure. The derivation of the circuit is

based on iteratively inærchanging the h and/polynomials [9]. The synthesis algorithm for real

rwo-port networks was f,rst introduced by Rao and Kailath [10] and modified by Fenweis [9]

using a network theory approach. We exænd this to the complex two-port networks using only

one additional two-port element, the unimodular multiplier section. Three forms of polynomial

representation can be used in the synthesis algorithm, namely the coefficient-form, DFT-form, and

the zero-form, with the second one being the easiest to implementation. A unitary lst-order

complex circuit was derived using the PU structure that can reaJize a transmission zero anylvhere

I
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in the z-plane and consists of only six real planar rotations and two real delays. This section is

derived such that one of the unimodular multiplier is used to directly control the location of the

unit-circle transmission zero. It is used as the basic building block in the second CWD structure.

The second CWD structure is the cascade (chain) decomposition of complex two-ports.

Again, there are no restrictions on the location of either the transmission or attenuation zeros, and

the designer has the option of having a given (real or complex) transfer function realized as a

transmittance or a reflectance of a lossless and intemaliy-passive two-port. To make the

decomposition algorithm very simple and easy to program, we make use of an observation from

the real two-port decomposition [13] and the PU structure above that a noncanonic (called

sample) representation of the polynomials is used. This eliminates the need for handling either

coefficient or zero-form polynomials, thus avoiding the explicit derivation of order-reduced

remainder polynomials. In contrast to real circuits, the lossless complex cascade require only one

elementary section, which leads to avery modular configuration.

Although the development is entirely in the z-domain, we chose to use terms and concepts

from the classical scattering domain for the simple reason that all the analytic properties of

scattering coefficients (such as passivity of the reflection coefficient [5], reflection-free ports [1],

etc.) can be carried over to the z-domain. Because the resulting CWD frlters are inærnally

passive, one can always derive an equivalent analog circuit, although such a circuit may have little

practical value and its implementation maybe difficult.



^AÞ{AT,OG ANÐ DIGXT.AN, COMPLEX T-OSSLESS TWO.PORT NETWORKS

This chapter presents the basic building blocks for the decomposition of complex lossless

two-port networks together with their analog equivalents. We will also discuss the

characterization of lossless two-port networks using scattering parameters.

2,1, Characterization of Analog and Digital Two-Fort l{etworks

CE{APTER.IX

æ
B...#

(a) (b)

Figure 2.1 Analog and Digital two-port network.

Consider the two-port network shown in Fig. Z.Ia; we can characterize

the chain (transmission) matrix:

['11=J %'l
I /' I l-1-)

æ
A"..F

+

u2

Alærnatively, a two-port can be characterized using scattering variables, i.e., for each

incident and reflected voltage waves are defined bV [1]

A,=V,+RiIi , B,=V¡-R,l¡

respectively, where R, is an arbitrary positive port reference. From

can write

WAVE
DIGITAL

TWO.PORT

the two-port using

(2.2)

Eq.(2.1) and Eq. (2.2), we

(2.r)

port i, the



[i] =[1 ï][i] =[i ï]"[]¿l
=[i ï]"#[i ?]ti ïll:;l
=fl ï1.#[1] ?][ä] e3,

Eq. (2.3) defïnes the scattering transfer matrix for the two-port network in Fig. 2.1a, which is

[i]="[;;] where "=[l ï]"å[ll i] e4)

For normalized two-port networks, we have & =R, =1. It follows that the chain and transfer

matrices are related by a similarity transformation:

T = FKF-i where P = [i -1-l

[r r ] Q.s)

An alternative grouping of the scattering variables is given below [3]

läl=[ï i;]til =*l'i ,,,'_;?""llil=,1il 
,,uu

lä]=[i, Z[3=l=;['''';'''' 1]t;r]="[;;] e6b)

where S is the scattering matrix [5].

A class of digital filters was int¡oduced by Fenweis [i], called wave digital filters ç1MDFs),

which has the same analytic properties (inærnal passivity) as analog filters. The term "wave"

refers to the fact that, instead of voltage and current variables, incident and reflected wave

quantities (see Eq. (2.2)) must be used to ensure computability (i.e. no delay-free loops). A wave

digital two-port that corresponds to an analog two-port is shown in Fig. 2.lb.

4



2.2 T'he 2-port ,A,dapton - a Wave DigÍtal Equivatrent of an ïdeal T'ransforrner

In this section, we will derive the Wave Digital equivalent of an ideal transformer - the most

basic and widely used zeroth-order tv/o-port. An adaptor is the WD equivalent of an analog

multi-port network which does not store or dissipate energy. Its main purpose is to ensure that

Kirchhoffs voltage and current laws, as transcribed to the scattering domain, hold in WD domain.

An ideal transformer and its chain matrix are shown inFig.2.2.

Figure 2.2 An ideal t¡ansformer and its chain matrix K.

From Eq. (2.4) and Eq- (2.6a), the corresponding voltage wave scattering and tra¡sfer

marices for the general port references ,( and & in Fig. 2.2 are given by

R2 [i] = [;'i "]l:,1 
= .[]¿]

There are three cases of Eq. (2.7) that are of interest to us, which are shown in Table 2.1. The

case n = 1 is simply an interconnection of 2 ports with different port references, R, and &, nd
the WD image is defined as the voltage wave 2-port adaptor. The second case, & = R, = 1,

defines the WD translation of the ideal ransformer using power waves (normalized voltage

waves), which is known as the normalized 2-port adaptor. Looking at the scattering and transfer

matrices from Table 2.I, andby letting T = cosg (i.e. n2 = &l &), we can also write [3]

[T]I= *V,:Ï,',3, :".Ï,',3,1[t] ={;]

t4l- t ln'-&lR,
L¿l-7.RJR I ," ;ii:,1Ê,1 ='[t]

se = F-lsrP )

(2.7a)

T _TT _TT
^'l *n ^n ^y

(2.7b)

(2.8)



i.e., a normalized 2-port adaptor is equivalent to a .¿oltage wave 2-port adaptor cascaded with

pair of inverse scaling multipliers. This is shown nFig.2.3.

Cæes:

n=1

2-port adaptor:

Scattering and Tra¡sfer Mat¡ix

l-y t+y1 r Il -T]S..=j I T.--r r",-lt-y y )' -,- t-yl-y 1 
_l

R, -R"where y'=-' Ã'+&

R,=R,=1

normalize d 2-port adaptor:

[-cos0 sinOl r I I -cc -r r T -____:_l"e -[ sing cos0] ; -ê - singf-cos0

whe¡e cos o=# , ,rne=# - n=t

Symbolic representatio n & fio wgr aphs

"R,n'=:
R2

Al

BT

scaling multipliers:

6

[o n1 .To r'l l-i ol l-l olt^=Lv, ol=P''[1 o]t'*=Lo nl'''=nlo r]

T'able 2.'/., Three special cases for the digital equivalent of an ideal transformer.

os 0l
1l
*(Ð

B2

A"

Al

Bl

cosg= Y4, sing = 'n^I+nz',"^^^" l+nz
re\

= ,=r*lt)

AL

Bl

B2

Figure 2.3 An equivalence between a normalized 2-port adaptor and a2-port adaptor cascaded

with a pair of inverse scaling multipliers.

A,

B2

4

A,O---+-@--ø.--OB,
Un

Rr

4o-<-€---4--.o4

B,

4

&

- R -R"7=CoS9= ' "' R' +R,

B2

A?



Another zeroth-order two-port that is of interest is the gyrator, which is shown nFíg.2.4
together with its WD equivalent. Again, using the chain matrix in Fig. 2.4, together with Eq.

(2.4) and Eq. (2.6a), the corresponding voltage \¡/ave scattering and t¡ansfer matrices for the

general poft references R, and R, for the gyrator are given by

[ql= I |--(&& *n') -(R,R, -^').l[q ] =rlal
LA,_l zRR,l && -R, && +R, ILA_I 

^14_l

For normalized case, we have 4 =& =1, EQ. (2.9) reduces to the scattering and transfe¡

matrices nFíg.2.4.

[;;] 
=*ï"[{11; ^'' -r^,'^il;,)][t] ='[î,1

lil=l,i äï11

,R,=R"=1Ãr'€i

We can see that the flowgraph of the gyrator is essentially the same as that of the ideal

transformer except for the negation of B, in Fig. 2.4, and is equivalent to the rotation operator,

also known as the Givens rotator [2].

For 2-port adaptors, we choose to label the rotation angle on port one. However, different

orientation for the 2-port adaptor may be needed for convenience. Fig.2.5 and Fig. 2.6 [3] show

some of the equivalences between normalized Z-port adaptors.

where cosg=#, sing =# + 
^=ttt(;)

Figure 2.4 A gyrator and its V/D image

[cos9 -sin 9l I [ -1S^=l I . T'"=-:-l' fsin9 cos0 ] sin9[-cos0

(2.9a)

(2.eb)

4
cosgl

1l



#
'.l ll "þ*

(b)

Figure 2.5 Normalízed 2-port adaptor equivalences.

B1

Figure 2.6

2.3 The unirnodular multiplier section and its analog equivalent

Shifting a pair of scaling multipliers through a normalized2-port adaptor

(n can be complex).

The only additional two-port element that is required in extending real two-port networks

to complex two-port is the unimodular multiplier element L{llzl, as shown n Fig. 2.7 . Here, we

derive its analog equivalent in order to show that we are still dealing with WD circuits, i.e., the

unimodular multiplier element has an analog equivalent circuit.



Figure 2.7 Ummodular multiplier section with its scanering and transfer matrices.

One approach is to obtain from the scattering matrix the corresponding two-port admittance

parameters. Using the relation Y = 2(n + S)-t - n, where X is the unit matrix, we obtain

A,O-----ç>--CB,
id

e'
4G4--@/,

, =f cotî 
d 

1- jcot î1-l icot| -i,o$] ,¡ o 
1l=x +y, , f:l" 

:f-t 
- ico:t9 icot| )-l-t*tî icotll-L-t 0J- "''r 12' 

l',

which is expressed as the sum of two admittance matrices, Y, and Yr. These t

matrices correspond to a series connection of an imaginary resistance(Y,) and

'=[? ';] , u=l''; 
?]

R = 1(Yz) respectively, as shown in Fig. 2.8.

.ct
L ¿=-JtaÍt- 12

+@+
uu
-H-

l-. a, ufI rcot- - rcoi- |a r al\7_t L .L Ir-l q, d, Il-¡cot- rcot- |tr)")l
L--)

9

Figure 2.8 Admittance matrices for the imaginary resistance and the gyrator (R = 1).

Therefore, the normalized unimodular multiplier section in Fig. 2.7 has an analog equivalence as

shown in Fig. 2.9.

=,l-q'l
lv'J en)

wo admittance

a gyrator with

R=1
-+

Y=[0 1l

L-l 0.1
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If port #2 for the unimodular multiplier section is open-circuiæd (i.e. 4. = Bri 1z = 0), the

corresponding TVD one-port terminator and its analog equivalent is shown in Fig. 2.10.

Figure 2.9 Unimodular multiplier section and its analog equivalence

R=1

Figure 2,10 (a) One-port termination of an unimodular multiplier section with port #2 open-

circuiæd; (b) its analog equivalent.

2,4 One-FontDynamic Terrnir¡ations

10

(a)

In this section, we derive a number of one-port ærminations which are used in the synthesis

process. Consider a section of uniform lossless t¡ansmission Line with characteristic impedance R

and a one-way delay of T =Tf 2 seconds, where T can be associated with the sampLing frequency,

as shown in Fig. 2.11 together with its wave digital image t1l I3l. The analog circuit in Fig. 2.1Ia
is referred to as the unit element (UE).

e

R=i

.d
r cot-"2

(b)
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Ar BzW

The chain matrix for this section is given by

It{l= fcosh(szl2) sinh ('r12)11 ,,1_J % 
.l

Lt,.l=isinh(srl2) cosh(szlÐ)l-I,j-*L-t,l Q.|t)

Using the mapping z=e'r, we obtain the V/D equivalent as shown in Fig. 2.11b. To derive all

the necessffy one-port dynamic terminations that we are going to use in the following chapters,

we terminate port #2 of Fig.2.1la with an imaginary resistance of j cot(al2) (see Fig. 2.10b) as

shown in Fig. 2.I2a.

Figure 2.11 (a) Unit element; (b) its wave digital image.

(a)

,d
e'

oær}-1

tr
(b)

Figure 2.12 A one-port dynamic termination: (a) analog circuit; and (b) its WD equivalent.

From Eq. (2.1\), the driving point impedance is given by

4

(2.r2)

.arcot- I"2

and +='"*(i)

(2.13)

In the scattering domail, the corresponding reflection coefficient is given by

(a)

where z = e'r

,1 _'o'n('i)++ 
sinh (';)t-@

\ 2)-t.

PL-UlI,-I 
- --r-jd

a- r¡,--" e



The corresponding wave-flow diagram follows easily from Eq. (2.13) and is shown in Fig. 2.12b.

There are two special cases of interest for the circuit in Fig. 2.I2a;vtz. a =0 and a=nc.

Using the complex frequency variable mapping defined by

where t¡ is referred to as Richard's variable [6], the one-port complex dynamic temination

reduces to two real cases, which a-lso have lumped element equivalents, as shown in Fig. 2.13.

. ls?"1 e"r -l z-r T ¡r

'/=tunh[7 )= n'.,= ,*r ' r=, ' ¿=s"'

ü=0
u =r\V

A=It
u¿ =71/
\I

Figure 2.L3 Real one-port dynamic terminations.

A two-port that is closely related to the UE is the quasi-reciprocal Line (QUARL), which

does not have the same delay in both transfer directions. However, the sum of the constant group

delays is the same in the transmittance. Fig. 2.14 shows two instances of a QUARL which are of

importance for wave digital filters.

12

Figure 2.1.4 Unit element and two instances of a QUARL that are equivalent to within a constant

group delay in the transmittance.

(2.r4)

unit element

Two other imporrant one-port tenninations are the resistive load and a voltage source in series

with a resistor. Using Eq. (2.2), we can derive the WD images as shown in Fig. 2.i5.

#
L4 I

a[o \+
QUARL

-1

#
QUARL



2.5 Belevitch's Representation of X-ossXess Two-Fort Networks

Figure 2.15 Resistive one-port terminations and their WD images.

ë
nB=2V-E(F

(a)

The usual approach to charactenze a lossless two-port network with port references & and

&, as shown in Fig. 2.16a, is to use normalized scattering variables

which are known as the incident and reflected power waves, respectively [5]. Power waves are

scaled (normalized) voltage waves (see Eq. (2.2)), and are used in the following chapters for

convenience. As seen in Section 2-2, one can convert a voltage-wave two port to power-v/ave

two port by simply inserting an ideal transformer (see Fig.2.3). The port references for power

wave circuis are usually ignored, as they may all be set to one for convenience, and the resistive

terminations are accounted for laær with the insertion of appropriaæ inverse multipliers.

Belevitch [5] presented three useful groupings of the scattering variables and coefficients

for real lossless fwo-ports:

^ _V,+ Rili
' 2JR,

t3

(b)

o _vi - Rili
Di ----------- i =7, 2' 2rl¡.

where S, T, and F{ are 2x2 matnces referred to as the scattering, transfer and hybrid matrix,

respectively. Fettweis modified Belevitch's theorem for complex lossless two-ports [7] and

showed that a canonic representation of the scattering coefhcients can be expressed using three

polynomials and a unimodular constant, which take on the following forms:

[;;]='[t] iil= "[i;] ll,l=.[;;]

(2.1s)

(2.16)



s=1[å of. 
1

Tlf -otL )

T =!los"
f LotL

,+TAI

'l , *o=-J-[-os. qÊl

s) -6h-L-f rl

LOSSLESS
N

Figure 2,16 (a) A lossless two-port network N between resistive terminations, and (b) its wave

digital equivalent.

The polynomials/, g, å satisfy the following conditions:

1) f =f(V), g=g(V/), n=h(V) are real or complex polynomials (i.e. real or complex

coefficients) in some complex frequency variable V . Ttre subscript asterisk denotes

paraconjugation, i.e., Í-fu) = f. ÇV.) where the superscript asterisk designates 'complex

conjugate'. Due to the conformal nature of the mapping V=k-Ðl(z+I), this

representation also holds for the wave digital domain, and paraconjugation here means

T4

v2 &l E2

LOSSLESS
N

(2.r7)

(b)

where m ß the highest degree in S (Note that it is possible for g to be of lower degree

than g").

2) S(y) is a Hunvitz polynomial with all its zeros strictly in the left-hand plane, a"¿ S(z-t )

has all its zeros outside the unit circle in the e-t plane.

r-Q-') = ,-^ f" (r-) , B-(r-') = ,-^ g. (r-) , h(r-') = ,-^n. (r-) (2.18)



3) The three polynomial f, g, and ft satisfy losslessness

gg" =hLt_ + ff.

which is the analytic continuation of the Feldkeller equation.

ois complex but unimodular (i.e. lol= 1¡.

We can see that by rewriting Eq. (2.19) as

4)

s)

which clearly shows the complementary nature of the scattering coefficients, where f lS ts

defined as the transmittance and hlg is the reflectance. Both transminance and reflectance

are passive (bounded) functions, i.e.,

, =lil' .l*l' ror v = iQ (,-' = ,-,*) where , ='*(+)

l*l=' 
, 

lil='

The zeros of f are called transmission zeros.

on the V = jQ axis or in the z-r domain for

have

6)
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For transmission zeros with

properry implies that

(2.1e)

V = jQ (r-' = r-'*) (Z.zt)

we have l¿l = l4l. ,o, transmission zeros
\g/. \s/

z-r - e-i(ir (unit circle). From Eq. (2.20), we

where Eq. (2.23b) follows from Eq. (2.19) with 5 = g.

,=lLl' oL
lol olôl ô

Rer¡>O ( l.

7) A function defined by

ô(z-') := -e

(2.20)

td

-e

ll.' ,

-rl-'l < 1. t.e. msrde unlt
I

l*1"

'['(f)]' = -z-'(îr't -it t)

() ))\

circle), the passivity

(2.23a,b)

(2.24)



will be referred to as the delay. By substituting the expression for the reflection coefficient

!-1r-'') = p(ø)eiil') into Eq. (2.24), it can be readily shown thar
6

õ(e-i',) = j 
p'!''! 

- Q'(o,o) . The reflection coefficient of a lossless rwo-port evaluated at\ / p(too)

a transmission zero, e-i@', has the property p(ao)=l and, because p(at)<l V ø, we

have p'(oo)=0. It follows that õ(e-i'')=-Q'@), i.e., ô(e-;'') is the return group

delay and, as was shown in [16], -Q'(a)r 0.

We can associate a transfer function to be realized with either scattering coeffrcient f lg
(transmittance) or hlg $eflectance). The criteria goveming the choice of realization a¡e [8]:

1) the total number of 2-port adaptors (planar rotations) in the realizaúon.

2) whether it is important to tune each transmission zero individually,

3) or to tune each reflection zero individually.

Generally, choose f lS if point (2) is of importance, and hlg fot point (3).

2.6 Cascade Connection of two two-ports

T6

A cascade connection of tw

transfer matrices of ¡/, and N, are

l-4-] - Llo"s'.
L¿,1 

- f,lo,h".

_*14,1-'^ltr'l

o lossless

given by

?.113,".)

two-ports N" and N, is shown n Fíg. 2.I7. The

,W,',)=+l:',:o',.-:',ll3,l

=r,13,"f (2.2s)



(a)

(b)

q I'o ;," i,, Iú 
&

Figure 2.17 (a) Cascade connection of N" and N, , and (b) its signal flowgraph.

A direct interconnection beween the two two-ports requires V" =Vu, Ir.o = -l* and ^Ç = Rá. It

follows from Eq. (2.2) lhat 4o = Bru and Bro = Art. Together with Eq. (2.25), the transfer matrix

for the combined network N is given by

JO

o
öd

ho -o oho,

Otõa õa
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o=6aob , f =f,fu , B=Bo1r+ooho*hu , h=hogu*oogo*h, Q.27a-d)

'We consider the situation where To=T, corresponds to the transfer matrix of an ideal-

transformer (2-port adaptor) (see Table 2.1). Extracting this two-port on the left leaves a

remainder network with T', = Q-tT where the canonic polynomials are given by

oofo,
o
öa

hb -ouhu,
o. oÒb öb

r='r.E =il"*;

oufo'

hf

s] 
where

¡r=fsno
gt = g+hcos9

hu=h+5cosO

6t=o

(2.26)

(2.28)



as shown in Fig. 2-18a. This extraction is often used to force

In this case

cosg= _L(r-t =o)
oò

which can always be satisfied because the reflection coefficient hlg is

inside the unit circle (see Eq. (2.23)). Also note that the extraction

the zeros of/.

Al

Bl

Figure 2.1E Extracting a 2-port adaptor, which forces a ¿-t t'actor in h for the remaining

network.

hu to have a desired factor, e.g. z-I

coso= -L(r^ =o)
oô

(a)

Extracting aZ-portin the wave digital domain is equivalent to exüacting an ideal ransformer (see

Fig.2.18b), which is a lossless element. Therefore, according to classical network theory, the

remainder network N, is also lossless.

B2

(2.2e)

bounded by one everywhere

of a2-port does not change

18

*<'í,Jll

2.7 Reflection-Free Froperty

A2

A two-port network can be implemenæd using an interconnected network of smaller

adaptors. An important consideration is to choose reflection-free ports for a direct

interconnection of adaptors so that there are no delay-free loops (i.e. at least one delay must

interpose somewhere along the loop) and, consequently, the structure is computable [1i].
Computability a1lows us to write down an ordered sequence of computationai steps for the

filæring algorithm without creating infrniæ loops. Sedlmeyer and Fettweis [12] showed that for a

direct interconnection (equal port reference) between tlvo adaptors, either port can be made

reflection-free (the reflected wave becomes independent of the incident wave at the reflection-free

reln=tanl -l\) l
\!/

(b)



port). The reflecúon-free property can be satisfied by having at least one factor of z-' for the

reflection coefficient (B,lA,) iooking into the reflection-free port. The situation is illustrated in

Fíg.2.19, with two interconnected sub-networks N, and l/, that share one common port, and ¡/"

is said to have a reflection-free port #2.

Figure 2.L9 Direct interconnection of two adaptors with port#2 reflection-free; Fis a rational

function of ¿-1.
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SYNTF{ESIS ûF PIPEI INE.A.tsr,E COMPLEX T,OSSLESS (U]\XT.A.RY) TWO-PORT'WÐ
CTR.CUITS

In this chapter, we derive a pipelineable, complex, lossless (unitary), two-port network that

will be referred to as the pipelinable unitary (PU) structure. The derivation of the circuit is based

on iteratively inærchanging the h andf polynomials [9] (see Eq. (2.I7)). A way of obtaining the

frequency response for the PU structure in the digital domain is also given. Three different forms

of representing the polynomials can be used in the synthesis process, namely the coefficient, DFT-

sample, and the zero form. We discuss the merits of each of these representations and their

associated synthesis procedures. Finally, a general lst-order complex section will be derived

using the PU structure that is used in the cascade structure.

CFT.AFTER. III

3.1 The process of interchanging the le and/polynomial

The main step in the PU-structure synthesis is the process of interchanging the h and f
polynomials. In this section, we discuss what this step means in both the analog and WDF-

domains.

Consider the two-port network N as shown in Fig. 3.1a, the scattering matrix can be

factored into simple factors as follows

The two-port network corresponding to the lst factor t, = 
[?

corresponds to a simple feed through in the digital-domain, and

network ly'":

'=;[; -i,]=[? ;]lv -ff1+',u,

s, =![-t" SzUz

orf.-f Ilf -otLlt--tt

-o,k- )- sln "f. )

(3.1)

is a trivial two-port that

2nd factor describes a

ål

the

(3.2)



where fz = h, Bz = B, 4 = f , oz = -a.
interchanged.

+

r=1[o ø I t =Ll"c' nl n- t l-oe- .'f'1
elf -otL) Í16ÌL e) -otLL -f e )

(a)

Therefore, N, corresponds to a network with h and 
"f

Figure 3.1. Decomposition of a two-port network which amounts to interchangng h andf.

A circuit that realizes a factorization of the scattering matrix S = S,S, is shown in Fig. 3.1b,

which involves two identical circulators. A 3-port circulator is defined in Fig. 3.2a, and the

corresponding V/D circuit is shown in Fig. 3.2b.

4-

<_

,^ =1[/ -oL1 ,^=l[-"r. /.l *n. =_l_|-"o -oh]"'-iln tf, ) "- nl-of. ,l '^'- "f.l-h r l
(b)
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Figure 3.2 (a) A 3-port circulator, and (b) its WD circuit (ust a trivial wiring problem).

Note that a WD simulation of a 3-port circulator is rather trivial. The resulting WD image of Fig.

3.ib is shown in Fig. 3.3.

\-..-----,------l

4

eBl

(a)

Br=4, B2=4, Br='4"

B2

A.

(b)



(a)

(c)

Figure 3.3 Interchanging h andf orúy amounts to a trivial routing problem in the V/DF-domain.

tÊ,

I

I

3.2 FU synthesis algorithrn

22

The synthesis algorithm for real two-port networks was flrst introduced by Rao and Kailath

[10] and modified by Fettweis [9] using a network theory approach. In this section, we extend

this to complex fwo-pofi networks using only one additional two-port element, and the

unimodular multiplier section [4][5], as shown in secúon 2.3. The algorithm is quite simple, and

step-by-step instructions are as follows.

Consider a two-port network N, described by the three polynomials fr(zu), gJz-l), and

4k-' ) of Nth degree shown in Fig. 3.3a. By first extracting a unimodular multiplier section with

the proper parameter, we can ensure that for the remaining network, an extraction of an additional

lr=h
o =oö2 ô

4=l
6z=-o



real 2-port adaptor can force a factor z-1 in the å polynomial. The parameter of the extracted

unimodular multiplier section is given by

and the remaining network is shown in Fig. 3.4 together with its analog equivalent.

.G,
-rtanJ'2

/it

i,8r,4
ô,

l¿. rol I
ør = arg[-r;, 

J- 
îr

Figure 3.4 (a) Extraction of an unimodular multiplier section, and (b) its analog equivalent.

The next step of the algorithm is to extract aZ-port adaptor with the parameter

l¡â roll l¿. roll
coso' =l,JÐl=lr,(oil 

G-4)

to ensure that for the remaining two-port Nr{fr, Bz, 4, or}, we have 4@)=0. See Eq. (2.29)

for the choice of the extraction parameter. This is shown in Fig. 3.5.

-jr^L

(a)

Al

Bl

R=1x
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¡it

Ir, 8',, 4
ô,

(b)

'+t

B"

î,(r-') = f,(r-')
â, (.-') = g, (¿-')

nr(, ') = ,-i"'4(z-t)

at = ê t"tat

Figure 3.5 (a) Extraction of a2-port adaptor, thus forcing a factor of ¿-t in the å polynomiai,

and (b) its analog equivalent.

The unimodular multiplier section and the 2-port adaptor always go together to force a factor of

z-' rnthe å polynomial; therefore, we can group them together and rewrite

(3.3)

(a)

n,=øn(e,¡z)

(b)



Íz= frsing, , Bz= Bt+e-i"'4cos91 , 14=t-iø4+g,cosQ , Çz=e-iqo, (3'5)

Thus together with Eq. (3.a) we obtain 4@)=0. Next, we interchange 4 nd l, so that the

remaining nerwork Ñr{îr, Êr, ù, ôr} t described av Îr=4,Êr=sr, ù=.fr, ôr--o2 ¿rs

shown in Fig. 3.6. Note that this is just simple routing problem in the WD-domain, ùhile

implementation of circulators in the analog domain is difficult.

Al

J

il

Al

=Bl
B2

,+,

(a)

Figure 3.6 (a) Interchange h andf antounts to trivial routing problem in WD-domain; (b) analog

equivalent that involves circulators.

Note that since the extracted two-ports a¡e lossless, it follows from a classical network theory

result that the remainder two-port also is lossless (see section 2.6). At this point,

,t(O)= h,r(0)=0. After the interchange, we repeat the lrst two basic steps, namely the

extraction of a unimodular multiplier section (dz=ure(d0)lÊr(0))-z) together with a2-port

adaptor (cosg, =ll,-riúi)l er(o)l; as shown in Fig. 3.7 to rorce û"(0) = 0. The remaining network' I"'""'''t'

Nr{fr, &, 4, % } is described by

f, = Îrsin9r, gz = Êz* r-'"'ùcosgr, 4 = r-i"'û, + þrcoslr, a3 = e-io'ô, (3.6)

nr=t^(grp)
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(b)

N2

Jz, 8z' lk
ô,

fr=14
ô -oô: ô2

hr. = .f,

ô. = -6,

¿(o) = o



(a) O)

Figure 3.7 (a) Extraction of another unimodular multiplier and a 2-port; (b) its analog equivalent.

Since Í(0)=0 and 4(0)=0, and since gr(.-t) *urt have all its zeros outside the unit

circle, it foltows from the Feldkeller equation BB* = hlL + ff- that gr.(e-r) *urt also have a factor

of z-'. Thefactorof z-1 whichisnowcommontof,g.,andhcanbeextractedusingaQUARL

section [9] (see Fig. 3.8). In this way the degrees of the original h, g and/ are reduced by one,

i.e., the degree of N, is equal to N-1. The order reduction of Sr(r-') i, u..o-plished by

forcing the leading coefficient of g, (z-') to ,.ro. Another interchange of the h and f polynomials

results in the circuit shown in Fig. 3.9. The seven steps described above lead to an order-reduced

fi, g, and 14 that describe a lossless two-port, and will be referred to as the basic extraction step

for the PU structure. Note that in the analog domain, the QUARL section and the second

interchange can be combined into the circuit as shown in Fig. 3.10 [9].

25

(a) (b)

Figure 3.8 (a) A QURAL section , and (b) its digital equivalent.



(a)

l- .- a.| -Jtan*
I

(b)

AJ-

| '' =ân(e'/2

n,:7 z^\
R=1'

ll

Figure 3.9 (a) The basic extraction step, (b) its analog equivalent.

N,

It' &' \
o3

-¡tÂnr'2

D-1

)(

n.^

ãllil'Xî
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n,=w(erlz)

Vtll

The process of performing the PU-step is repeated iæratively until a zeroth-order network

remains (N = 0). Next an extraction of an unimodular multiplier and a2-port will force n(0) =9,
which is just a feed through, in the remaining network, and f lS is unimodular. The zeroth-order

network can also be realized using the basic PU step but with the last 2-port being a decoupling 2-

port, i.e., cos9r**, = i (Bt - -At and B, = Az for the last 2-pott). This is shown in Fig. 3.Ila-

Fígure 3.10 Combining the QUARL section and the second interchange.

\

&
Jr, h,4

ô3

(a)

¿

(b)



. 4..
-J tan-*'

ni*1"1

n,*r=Án(8,*r12)

il

Bl

B2

-trârg¡n'2

Ær

Figure 3.11 (a) The basic extraction blocks, and (b) their analog equivalents

(c) simplified version of the last ærmination.

Note that the algorithm should automatically reach the last decoupling Z-port with the expected

value of cos0r¡¡*, = 1 because of the structure's design. A value different from one means either

that there is accumulation of error during the extraction, and higher precision should be used

during the calculations, or the input polynomials do not satisfy the losslessness condition

gg-=hIL+ ff.. The necessary condition cos?r**, =1 offers a useful verification of the synthesis

solution. The last 2-portwith cos9r¡¡+z = 1 corresponds to a multiplier with a value of -1 (see Fig.

3.11a) that can be combined with the last unimodularmultiplieruidzx-z (i.e. æ is subtracted from

the angle of the last unimodular multiplier) and the circuit is simplified, as shown in Fig. 3.11c.

The second interchange of h and / is not necessary. However, it can be used as a degree of

freedom to allow the designer to pick a more suit¿ble value of cos0 for quantization purposes (

i.e., either choose h(O)lsQ) or /(0)/s(0) ).
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,u., = øo(0rr,r¡2)

(b)

il
R=1'

-jarfu where

R=1rt
üù,. ? dù,2- 1t

R=1

(c)

¿i4r*t < ,i@zv-z-r)



The general PU structure for the digital domain in Fig. 3.1lb can be redravm to avoid the

crossing of connections and is shown in Fig. 3.12. This version of the general PU structure makes

it easier to visualize the signai flow, and it is especially useful for obtaining the frequency response

which is described in the next section.

Figure 3.12 Anottrer version of the general PU structure redrawn to avoid crossing of

connections.

The PU structure is evaluated in a particular sequence imposed by the location of the delays

within the ci¡cuit. With reference to Fig. 3.12 and assuming that the two subnetworks a¡e

connected, the computational sequence which must begin at port #2 is as follows:

1. lvith 4 and A, as inputs, evaluate the 2-port with 9r"*, as the rotation angle and obtain

the two outputs 4 ^d 
A, bV performing two additionai rotation sby ¿io'u" un¿ ,idz*tr .

2. With,4r 
^d 

A" as inputs, evaluate the 2-port with 9, as the rotation angle and obtain the

two outputs 4 þy performing an addition rotation by ei"'¡ and 4.
3. Tvith 4 and A, as inputs, evaluate the Z-porf with 9,*, as the rotation angle and obtain the

two outputs B, (by performing an addition rotation by ¿i"'.' ) and Br.

4. Replace B, with B, for the next sampling instance.

Now we return to step 2 and repeat with appropriate changes to the index i.

A summary of the PU synthesis algorithm is shown in Table 3.1.

,ldzx*z
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1.

2.

Given three input polynomials f , g, h, and l/, the order of the filær.

For the ith extraction step in which i goes from 1 to 2N +2,

3. ret cosg, =lffil + s 4 =

4. Update the three polynomiais:

5.

6.

Interchange h andf.

If i is even: divide h andf by e-1to reduce the order by one.

degree reduced automatically.

Go back to step 3) with the next i until i>2N +2.

cos9r**, should be 1.

Update the last unimodular multiplier:

üz¡t*z?Gz¡o*z-fr

7.

8.

9.

f <- f sn9,

â<-s+e-i"'hcos7,
h <- e-i"'h+ gcosg,

8<-8

l¿lo)l
dr = arsl-;;r- 7t

29

T'able 3.1. Summary of PU Synthesis Algorithm.

The g poþomial will be



3.3 Computation of Fnequency Response for the FU Stnucture with quaretized rnutrtipliers

In this section, we present a direct method (as oppose to the indirect method of taking the

DFT of the impulse response) to obtain the frequency response in the digital-domain, so that the

more involved time-domain simulations can be avoided.

The frequency response can be obtained from the product of 3 by 3 transfer matrices Q,

each of which represents a basic PU extracúon block, and the 3 by 3 matrix for the last

termination. Fig. 3.13 shows the 3 by 3 matrices representing the PU block.

B2

Al

Bl

?;1=f; : :l -i-f"îo i -J,, l--,-['"' j;.,;î"' -cos6' : ] lå : :l
L4] [o o,'"]"nt'L o -cosg,*r'6,+rin'e,J"""1 0 0 sine,.l lo0r.l

Figure 3.13 3x3 matrices for each subsection of the PU extraction block.

In the case of lossless 2-ports (i.e. cos29, +sin2 0,=I), the 3 by 3 transfer matrix { for the PU

block can be simplified to

30

fþ,*,+jx*,0 o 1 lu, o ol t | -a¡*t
q = | 

'*' 
o"u''' 1 o l+l ,j r -a,lll -r,., 1' L o o þ,+ ix,la Lo -ai ,' )u'.' L t" o

- [ (É,., + jx,,*r)b, -(þu, * jx*t)b,a,*,2 o -]

= ; ,t | -ai*t z -a,b¡*, Io'o*'l{Þ, 
+ iy,)a,a,*, -(p, * ih)a,z (8, * ix)u*,)

where a, = COS?, , b¡ = Sin 0, , eto' - þt + iX,. However, when the

{o,, b,, þ,, X,, a¡*y, b¡*1, þ,*r, X,*r} arc quantized, the ffansfer matrix of the

longer be put in the lossless form. Instead, the transfer matrix is given by

A,

lil '[i]

jlli
001
. 0l
0 1l

(3.1)

eight multipliers

PU block can no



3l

o -l 
, [o-,t 

*b,*,' -d¡*t o llt û ol

-ai l, I -ouj'' 1''' o ll o . ol
oi +'u¡)b'-'l ;' o r,.,1[o o t-j

þ,-r+jr,*r)b,a,*rz o lz -a¡b¡*t 
I

-(þ,* jx)a,z (þ,* ix,)þ,'+b,')b,*,1 (3.8)

quantized design, we form the product of all transfer

(2)2N, together with the transfer matrix for the last

lÞ*,+ixu, o o l,[-4 o

4=l 0 1 0 Fl 0 1

I o o þ,+ir,)"'Lo -ai

_ [(p,., + ¡y,-r)a,(a,*r' * b,*r') -(lt
=::-l -uz

b,bn l-¡-¡+r 
L (8,+ ¡L,)a,a,-,

In order to obtain a frequency response of a

matrices T = ffiq for each PU block (i=1
í=I(2)2N

ærmination section as shown in Fig.3.14.

")at

, [(É,,, 
+ ¡nu)b,(a,,,' * b*,') -(þ,,, + ¡7u,)b,a,,,2 o ]f = ;j-l -a¡ot z -a,bu, IoPn 

| (B, + ¡y,)a,a,,, - (p, + ¡x)a,z (p, * ix,)(oi + u)0,,1

ce the 3 by 3 matrix

-(þrru * irr*,r)arr*, (þrru + jxrr,,)(arr*,' + brr*,

Figure 3.14 The overall 3 by 3 matrix for the PU structure.

(3.e):';"[i,)

redu

1lh_t
8lf

(3.10)

Due to the fact that A, - B, at the last ærmi¡ation section, we

to the 2by 2 scattering matrix, which is given by

l-4-] _ 1 [r3, + q1 4, (r, + 4, ) -Tu(Trr* 4, )'[¿'
L¿l- r".r" Lq, *8, E,(8, +r,,)-q,(r,, *8,)lL¿,

Therefore

0

I

*

]=

A,

BL

, l(Þ,r,' 
+ ix,^,u,,)b,nu

x-l u
sin0r"*, 

I O

s(.-t) =Tn *Tr, , f (r-') = T,, * E' n(r-')= E, + &,



The frequency response for the transmittance is given by lQl) *d the reflectan." ir 4(.-t).
88

Note that the factors outside the 3 by 3 transfer matrices can be ignored when evaluating the

transfer functions because they appear in both the numerators and denominators.

To verify the PU synthesis and analysis algorithm, pick an arbitrary set of

{a,,0,:I(I)ZN +2} and obtain frequency response on 1/+1 frequency points along the unit

circle using Eq.(3.10). These frequency points can now be used as the input sample

representation for the synthesis algorithm. Resynthesize the data using the sample representation

should result in the {a,, 0,: l(I)zN+2} wepicked at the outset. If values for 9, are critical (i.e.

close to 0 or nlT), the roundoff error is significant.

3.4 T'he associated synthesis procedures for 3 difïerent polynomial representations

The 
"f, 

g, and å polynomials for the synthesis process can be represented by three dilïerent

forms, namely the coefficient, DFT-sample, and the zero form. The coefficient-form

representation for a polynomial p is given by

where cn aÍe the coefficients of the polynomial and N is the degree of the polynomial. The zero

form representation is given by

32

where c is the constant factor, N is the degree, and z, are the zeros of the polynomial. Both

representations are straight forward in the synthesis process except that the zero form requires a

zero-finding routine for updating the g and å polynomials. The DFT-sample representation

defi¡es samples for a polynomial p(z-I) evaluated along the unit circle, which are given by

p(r-')= f ,,(.-')"
n=0

rV

p(r-')=cfÏ(¿-'-¿,)
n=l

.2it

po=p(*o) , w=r-tî, k=o(1)l/

(3.11)

(3.r2)

(3.13)



where Nis the degree of the polynomial, and

p(o) = E po
k

The associated synthesis process requires minor modification

as shown in Table 3.2.

The DFT-sample representation synthesis algorithm effects order reduction implicitly (see

step 6 in Table 3.2) without having to do an actual degree reduction. Aithough, afær each basic

extraction step it is possible to obtain a sample set of lower degree, we choose to retain the

original size in order to make the algorithm easier to implement, i.e., we allow the redundancy to

grow.

(3.14)

for the DFT-sample representation

JJ



1. Given three input polynomials f, g, h, and N, the order of the filær.

1b. Compute samples on the unit circle

fo = fØo), Bk = s(*n), ho = h(*o) fr = 0(1)N

where wo = e-'T .

2. For the ith extraction step in which i goes from 1 to 2N +2,

3. Ler cosQ -lffil + sinQ =!/i-.*"-

where h(0) =)no ana B(0) = Xso.
kk

4. Updaæ all samples (k = 0(1)1/) for the three polynomials:

5.

6.

34

Interchange aII hn and fn.

If i is even, reduce the order of h andf by updating the samples:

_ h,. f,,no*# , lon#
Go back to step 3 with the next i until i>2N +2.

cos0r**, should be 1.

Updaæ the last unimodula¡ multiplier:

a^,,." <- d,^,,.- -7T

l¿(o))
ø; = ars[-ffJ- z

fr <- frsn0,

Êo ? go+ e-i"'hocos7,

ho <- e-io'ho + g o cos 0,

8o?Êo

7.

8.

9.

T'able 3.2 Summary of the Synthesis Algorithm via DFT Samples.



3.5 Ðesign Exarnple for the FU Structure

In this section, we use an 8th order band-pass filter example to illustrate the difference in

slmthesis results using the three forms of representation for the polynomials. The input data is

from Jarmasz's Ph.D thesis [3], and is converted to the z-1-domain with 12 digits of precision.

This set of data caused premature ærmination in the PU synthesis algorithm because the

Feldkeller equation was not satisfied accurately enough. Therefore we regenerated the input data

so that the Feldkeller equation was satisfied to 15 decimal places, and the results are given in

Table 3.3. The input data is in zero form and will be converted to the required polynomial

representation by the PU synthesis program discussed in Chapter 5. All the calculations for the

synthesis program are based on a precision of 18 digits.

f zeros

constant

1

2

magnitude

3

0.00090521

4

5

1.0

6

1.0

0.0

I

0.0

angle I x

3: Zeros

1.0

35

constant

1,0

0.430034232

0.0

0.0

-0.430034232

i

0.0

2

0.0

3

0. 8 8 067 3595 6 3',7 83 5 t9 4

0.320538560

0.0

magnitude

4

å zeros

r.00834t527 6563657 50

-0.320538560

5

| .008341527 6563657 50

constant

6

1.008545764020980650

0.0

7

i.008545764020980650

I

0.0

8

2

1.023795851013025390

magnitude

0.938442111704

J

1.023795851013025390

4

T'able 3.3 An 8th ordered design example with up to 18 decimal places of precision.

t.023471807530125960

The PU synthesis results based on the three forms of polynomial representation is shown in

Table3.4. Notethatthisexampleisforarealtwo-port,thereforeweexpectu,lTc=0,+1 Vi.

5

| .02347 1807 530t25960

[.0

6

1.0

7

-0. 39934 15 28997 245882

ar,gl,e I n

1.0

8

0.399341528997245882

1.0

angle / n

0.0

-0.3 5 0 67 5 39 64 6237 98 5 5

1.0

0.35t73271.t368

0.35 06'7 539 646237 985 5

1.0

0.0

-0.351732711368

-0.3 645 095 17 7 3387 8304

1.0

0.365109796566

0.364509517733878304

1.0

-0.365109796566

-0. 385 806739 1 50357 242

0.385182448776

0.3858067391 50357242

-0.385182448776

0.398308216049

-0.3983082i6049



I

1

)

5

Coefñcient Form

0.938442110231743403

4

0.000000000000000000

5

0.38203 499 6 63'1 0 63 t82

6

0.000000000000000000

7

0.9948795303263t6620

8

0.000000000000000000

9

0.38309650099903 i838

0

0.000000000000000000

1

0.9958581 80702095568

DFT-sampie Fonn

2

cos 9i

0.938442t10231743403

0.3340650906 67967 128

)

0.000000000000000000

0.36064086 19437 50237

4

038203499 663' t 0 63 | 68

0.136479907863578986

0.000000000000000000

5

0.932253262419454669

6

0.9948795303263t6598

0.95 5 467 7'7 0295 3 1 8026

7

0.000000000000000000

0. r40971 140077849394

8

0.383096500999031771

0.40285 r061536305702

0.000000000000000000

0.01 1855555896985612

0.995858 1 80702094174

0.938 442 1 1 023 |',7 43 403

1 .000000 l 3792 1265430

0.3340650906 67910315

Zero Form

I

0.000000000000000000

0.36064086 1943088380

1

0.38203499ó637064448

0.t36479907863264483

2

0.000000000000000000

36

0.93225326241'7 5 67 69 4

J

0.994879530326326402

0.955467770279996041

Coefficient Form

4

1.000000000000000000

0.000000000000000000

0.140971 1401 42782783

1.000000000000000000

5

0.383096501007988522

0.40285 106i0874186t2

6

1.000000000000000000

0.000000000000000000

-1.000000000000000000

0.0 1 1 85 55558 5302890'7

7

0.995858 1 807 56248036

1.0000001 365 07 67 r3r0

I

i.000000000000000000

0.334065092864509806

i.000000000000000000

9

0.3606408669041 19160

1.000000000000000000

0.13617991t0387 47 653

0

1.000000000000000000

0.93225 32657 29 0'7 5 5 37

I

DFT-sample Form

1.000000000000000000

2

0.955467805784553804

a,ln

1.000000000000000000

1.000000000000000000

0.1 4097 1.21 69 1 097 7 921

-)

I .000000000000000000

1.000000000000000000

0.4028 5 1 3 t7 224't 683 57

4

1.000000000000000000

- i.000000000000000000

5

0.01 1 855835657636921

1.000000000000000000

L000000000000000000

6

1 .00000028 8742289130

i.000000000000000000

T'able 3.4 Synthesis resulis for the 8th-order design example (18 decimal places of precision).

1.000000000000000000

7

1.000000000000000000

0.000000000000000000

8

1.000000000000000000

1.000000000000000000

L000000000000000000

0.000000000000000000

1.000000000000000000

-i.000000000000000000

1 .000000000000000000

Ze¡o Fomr

i.000000000000000000

-1.000000000000000000

1.000000000000000000

1.000000000000000000

1 .000000000000000000

r.000000000000000000

1.000000000000000000

1.000000000000000000

. i .000000000000000000

r.000000000000000000

0.000000000000000000

1.000000000000000000

1.000000000000000000

- r . 000000000000000000

0.000000000000000000

1.000000000000000000

i.000000000003691340

- 1.000000000000000000

1.000000000000000000

- 1.000000000000000000

1.000000000000000000

-1.000000000000000000

0.000000000000000000

1.000000000000000000

0.000000000000000000

i.000000000000000000



We can see that the last cos9 for all three representations are very close to one. The last cos0 is

set to one to make the overall structure lossless. The three frequency plots for the different

polynomial representation match the nominal result (not shown separately because all the curves

are overlapping and the nominal response is shown in Fig. 3.15). The synthesis results based on

all three representations are acceptable.

Next, we quantize the constant teilns (it is known that the overall response of a two-port is

sensiúve to these constants) of h and g to 9 decimal places to determine how inaccuracy in the

losslessness condition in the input data affects the synthesis results. The input data is shown in

Table 3.5, and Table 3.6 shows the percentage error of cos 0, f.or the synthesis results. As can be

seen, the error grows very rapidly and the last cos9 for the coefficient form and DFT-sample

form are not close to one, while the zero-form yields a much better result than the other two

approaches. If the last cos0 is set to one, the frequency response plot is as shown in Fig. 3.15.

The frequency response for the coeffrcient form and DFT-sample form do not match the nominal

response. On the other hand, the zero-form gives acceptable results.

f zeros

constant

i

2

magnitude

3

0.00090521

4

5

1.0

37

6

1.0

'7

0.0

I

0.0

angle I x

1.0

I Zeros

constant

1.0

0.430034232

0.0

0.0

-0.430034232

i

0.0

2

0.0

J

0.320538560

0.0

magnitude

4

h zeros

t .008341527 6563657 50

-0.320538560

0.880673596

5

consta¡t

t.008341527 6563657 50

6

t.0085457 64020980650

0.0

7

1

1.008545764020980650

0.0

8

2

1.02379585 1013025390

magnitude

0.938442tt2

3

1 .023795 85 I 0 13025390

T'able 3.5 8th-order design example with constant term quantized to 9 decimal places.

À

1.023471807530125960

5

1.02347 180'7 5301259 60

0

6

0

'7

-0.3993 4t 528997 245 882

angle I x

,0

8

0.399341528997245882

0

ansle / n

0.0

-0.35067 539Ø623'7 985 5

0.351732711368

0

0.3s067 539 64623',1 985 5

0.0

-0.351732711368

.0

-0364509517'r 3387 8304

,0

0.365109796566

0.3645095 r7',1 3387 8304

-0.365109796566

0

-0. 3858067 39 1 50357 242

0.385r824487't6

0.3858067391 50357242

-0.385182448"176

0.39830821 6049

-0.398308216049



I

1

2

J

Coefficient Form

4

5

9.68-09

6

'l

1.5i68-07

0

percentage error for cosq

8

I

0

2.38-07

10

1i

DFT-sample Fomr

0.000113

0

t2

13

0.000135

0

9.6E-09

L4

0.0162

l5

1 .5 16E-07

0

1,6

0.113

t7

Table 3.6 Synthesis results (percent error compared to Table 3.2) for the 8th-order design

example (constant tenns quantized to 9 decimal places).

0.148

0

18

2.3F-0',1

0.128

1.01

0.000113

0

From the above two examples and many more that have been examined in the course of this

research, we observe that the DFT-form and coefficient form always give similar results, and the

PU synttresis is extremely sensitive to initial input data. A slight diff'erence in the input data yields

completely different results. The proper steps for the PU synthesis are as follows:

1) Assume the givenJ g, a¡¿ å polynomials satisfy the iosslessness condition.

2) Attempt PU synthesis using the simplest algorithm, namely the DFT-sample

representation.

3) If the last cosg is close to one, the synthesis should give the right solution for the

problem, and the frequency response can be used for a consistency check. Goto (6).

4) If the last cos0 is not close to one, use the zero-form synthesis algorittrm instead. If the

zero-form gives a one for the last cos0, perform frequency response for a consistency

check. Goto (6).

25

Zero Fomr

56

0.000135

0

9.68-09

57

0.0162

51

38

0

0.113

2.tE-06

0.148

0

0.128

6.lE-06

1.01

0

0.00118

26

56

0

0.00040

57

0.M9

5l

0.101

0.r72

0.026

0.28

3.4

5.0

98

1.3



5) I1- both the DFT-sa-mple a-nd the zero-fonn algorithm fail, regenerate the input polynomial

set by using a zero-finding routine to recalculate one of the poþomials in the Feldkeller

equation. Go back to step (1).

6) The solution for the PU synthesis is compleæd.

Generally, the zero form representation is less efficient, hardest to implemeng requires

longer synthesis time due to more computations in the zero-finding routine. The coefficient and

the DFT-sample representalion on the other hand are more efficient and require much shorter

synthesis time. However, the zero form representation is fairly iruensitive to input data

inaccuracy, while the other two representations give unacceptable results for the same input data.

mË

co
6
=c
ID

4

39

Figure 3.X.5 Frequency response plots for the 8th-ordered bandpass example.
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3.6 Derivation of a general lst-order complex section with reflecfion-f,ree load port

In this section, we apply the PU structure synthesis and hope to obtain a lst-order complex

section that will result in a two-port that has a reflection-free load port (port#2), and can be used

in the next chapter as a basic building block for the cascade synthesis algorithm.

Starting from basic considerations, the polynomiai set that characærizes a general lst-o¡der

complex section with a reflecúon-free load port (port #2) can take on the following form:

where ke-i'o is the location of the üansmission zeÍo and all the constants {ø, y,k,b,c,A,B} are

real. ln order to induce a reflection-free property on the load port, which is necessa¡y for
computability lll, 11- must have a ¿-t factor which ímplies that h is a complex constant.

Moreover, one coefficient among the f, g and å polynomials can always be fixed [7]. Substituting

the above constraints in the losslessness condition gg* = hIL + ff" yields

l=yeþ(r-'-ke-i'o) , S=1+AeFz-t , h=Beio

The unimodular constant eþ can always be chosen for convenience by cascading the lst-order

section with a pair of conjugate unimodular multipliers t4l. We chose ,ib = *riao to eliminaæ one

of the unimodular multipliers generated by the PU cycle and thereby simplify the fi¡al realization.

It is apparent that there are four degrees of freedom from Eq. (3.15) and Eq. (3.16), and the

canonic polynomials are given by

Aei" = -T'kei'o and B -
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We synthesize aPU structure for the above polynomial set that charactenzes a general 1st

order complex section using the PU algorithm, with the results shown in Fig. 3.16.

f =-Tei'o(a-t-ke-i'o) , s-7-ky2ei',1-1 , h=

r-y')(r- t'y')

Figure 3.X6 Synthesis of a 1st-order complex section with reflection-free port #2 using the PU structure.

(3.1s)

(t-y')(r- n'y')''"

(3.16)

cosQ = ^l¡-f[-t'y1,-^,

s¡sB. =-rl-
sin ür

(3.t7)

cosQ =
wJtT

sin0,



However, there is a problem with the circuit in Fig. 3.16. It can be seen clearly that a direct path

can be drawn from ,4, to 8, without any delay in between (see path with the dotted line), which

means that the structure is not structurally reflection-free at port #2 and therefore not computable.

For computability, every directed loop must have at least one delay [1]. In order to obtain a

general lst order compiex section structurally reflection-free at port #2 using the PU algorithm,

we interchange ports #1 and #2 and then apply the PU synthesis. The iniúal polynomiai set is

given by

î = of. - -yr-j'o (t - nr'^ ,u)

Ê=8=l-kY2ei'o7-r

where o is initially chosen to be one but is changed to some unimodular value in the final

realization in order to simplify that realization, i.e., a circuit with the fewest number of unimodular

multipliers fixes its own o. The circuit resulting from the PU algorithm is shown in Fig. 3.17.

Êr. = B,

Ar= 4

Êr=8,

û = -oru = -e-i" .ff - ¡ff- ¡r' ^¡) r-'

e -jao

Figure 3.X7 Synthesis of the general lst order complex section with port #1 and #2 interchanged.

-1 '

rÈ
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By redrawing Fig. 3.17 and applying the normalized Z-port adaptor equivalences from Fig. 2.5-6,

we obtain the structure as shown in Fig. 3.i8. This structure will be used in the next chapter as a

basic extraction block for the cascade synthesis. Note that a delay is imposed befween the path

from A, to B, (dotted line), thus making this circuit structurally reflection-free at port #2 and

therefore algorithmically computable. The circuit is optimum in the number of unimodular

multipliers (there are four degrees of freedom which is the original number) which is

accomplished by setting ,ib - -riao and o - -ri@+').

-ll
ejto

-ll

(3.18)

'@

coser =0
cos9, = y

î _¡ cosgr=JL-l¿y'
¡42 - .ftl



,t?z = co$

BT

T = cosfl,

Figure 3.XE A CWD circuit for the 1st-order elementary complex section with a transmission

zero at r-' - kr-t',.

Degrees of Freedom i {k, @0, a, T}

3.7 Characterization of a General lst-order Complex Section

Canonic Polynomials: f = -Wi'o (z-' - ke-i'o)

g = I - ky2 ei^o 7-1 ¡ = ,i" ,[11 [:t
¡(a+a^\O=-e" "'

As was shown in section 3.6, the canonic polynomial set that characterizes a general lst-

order complex section with a reflection-free load port is given by

f =-Tei'o(r-'-ke-i'o) , s =I-kyzei'oz-' , ¡=.ff-fi(-Ltflri" , a=-ri@+ø') (3.t9)

with four degrees of freedom. The reflectance evaluaæd at the transmission zero yields

4

42

For a passive (i.e., stable and bounded) reflectance, we have k I 1 ë) P >< I (see Eq. (2.22)),

which implies that 0 <T <1. Hence, if the reflectance is known, v/e can solve for T ñd ø using

Eq. (3.20). For the case k = 1, the reflectance in Eq. (3.20) is necessarily unimodular, and we

must use Eq. (2.2Ð and the fact that the return group delays of the overali and the extracted two-

port are equal at t¡ansmission zeros, i.9.,

!{or-^)=m* = þeio -+ y- (3.20)



{çr-,,,) -(G-',,1 =l' r riao : -piao x y -
I t ' h' ' r-yt

From point (7) in section 2.5, because ô > 0, this implies that 0 <y <1.

In summary, the four real numbers {fr, 0)0, d, f} frrIy specify a lst-order complex section

to within unimodular scaling. Parameters ø and T are obtained from the value of the reflectance

in Eq. (3.20), and for k=7, T is obtained from the return group delay in Eq. (3.21). These

results are summarized inFig. 3. 1 9a.

Some noteworthy features of the realization in Fig. 3.I9a are as follows:

1) The circuit has four degrees of freedom {k, ,0, d, y}, but in practice eight real

multipliers *"reqoired, {7, ^lr-y', ky, J-,¿y', cosd, sind, cosroo, ,inøo}.

2) The scattering matrix S, of a normalized 2-port adaptor can be identified with a Givens

planar rotation, i.e.,

u,=ffuYl rs,=[;

ô

ð+1

By separating the signals in Fig. 3.I9a into their real and imaginary parts, a circuit with six

planar rotations can be derived, as shown in Fig. 3.19b. Although S, is lossless, it cannot

be maintained so when the two multipliers, say T and LltJ, have been quantized to a

finiæ number of bits. An analog circuit corresponding to a quantized S, is shown in Fig.

3.20. Clearly,srispassive(R>0)if andonlyif f <I-aconditionthatisenforcedin

practice to allow the various nonl-inear stability arguments to apply.

3) For the important case of a unit-circle transmission zero (k = i), the circuit in Fig. 3-I9a

simplifies to an equivalent circuit shown in Fig. 3.21. The series adaptor requires only one

multiplication and four additions [1] and the pair of inverse multipliers can be ignored in

the frnal realization. AIso, the circuit in Fig. 3.2I is a WD equivalent of an analog section

used in the Brune cycle [5] but with a reflecúon-free port on the right.
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(3.21)

Ollcos I -sin 9l
r.l[ri' e .oro 

-]

where cos9 = T

sine= [:f Glz)



kY = cos9,

Degrees of Freedom: {,t, ao, a, y}

a*"*
, =L- ky'r¡'o r-' h = e¡" ,f l-7 rE-F7

Reflectance , h (ke-i'or='t" J-t ,': =I ll- k'Y'

StabilityRelation: Blt o f->i +

Rerurn Group Delay , ,-t^(!¡r-t'o) - I (r ioo

[/¿' ' g'

Pæameter Value:

Case:

M

ne{r,} eio

6 = -ri@+'o\

f1_ R,(t*t) r=|ffi-cosâ,

(tr=P=I) T=,Æ

ttr{8,}

(a)

P"t"

T, <T

ll: v'') r-v'

Figure 3.19 (a) A CWD circuit for the 1st-order elementary complex section with a transmission

zero at ,-r - ¡rr-iøo; 0) an equivalent circuit comprised of rotator operators.

n'{q}

-om'{¿}

=ð>0

B, ejt Al

- (-

(b)

TB, I lcos g -sin 9-l[4, I:l'l=lll'l
lBr) [sin0 cos0l[A,J

nri,qr]

A2

--o
t"r{q}



(r- y)(r- l')
L+y + l'?(1- y)

Figure 3.20 Passive (l' < 1) quantization of the normalized2-port adaptor.

u'=l'fu'Yl

uÇv

Figure 3.21 An equivalent implementation of Fig. 3.19a (case k =I) that uses a 3-port

reflection-free series adaptor.
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'When the eight multipliers in (1) are quantized, the resulting transfer matrix of the circuit in

Fig. 3.19a can no longer be put in the lossless form as in Eq. 2.11b. Instead, the transfer matrix is

given by

lo,
u =L

where ejo = d,

associated with

6 - _ri@+oo)
.ì

¡ =-npi'"(z-r -r-iao)
-ai.^-1

8= I-T-e''o, '

h= ej" (l-y2)
.Ò

4f- 
--'-ð+l

I tt: * bi )@: + bl,¡ça, + i oz)z-' - qa, -4b, I
+ jþ, OlL brbr(otr+ jar)z-. ha,((Ðt+ jo)zLz-t-rl

o r ) Q.23)

+ jþ, , ei'o =(ott ja, , eit'=q* jb, , eit'=ar* jbr. The two multipliers

each rotation are quantized in a passive way (see (2) above) resulting in four



soufces of passivity. Forthecase k =7 (4=A) realizedas in (see (3) above), the transfe¡matrix

is given by

[ {ar, + jo)z)z-'-y' T' -l 
-]

T =lo,* iþ, }lll-y')(a,+ ia,)z-' T' @,+ ia,)zu -t)
L o t) Gz4)

with 7 - cosO, and there are only two sources of passivity. Note that the location of the

transmission zero is directly controlled by the multiplier ar+ jar.
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SYNTHESTS OF PIPE[,TNE,4.E[,8 CASCAÐE COMPLEX W,AVE DTGTTAT- F'ru,T'ÐRS

In this chapter, another decomposition algorithm is presented for the synthesis of

pipeLineable, modular, cascade, complex wave (unitary) digitâl frlters (CWDFs). The main

features of the algorithm are the foliowing:

1. The extraction step obviates coefficient-form polynomial arithmetic and zero-finding

operations by using an alternative (sample) representatíon of the canonic polynomials that

describe the lossless two-port - an idea that was first introduced for real two-ports in [13];

2. First-order sections that eft'ect pipelineability are treated like any other section (they

realize a transmission zero àt 1-r = 0), thus eliminating the need for special treatment;

3. A fully general lst-order complex section that can realize a "transmission zero" anywhere

in the z-plane from Section 3.7 is the only section required for the cascade decomposition.

4. Each uansmission zero in the cascade realization can be fine tuned individually because

each cascade section realizes a distinct transmission zero.

The aigorithm can also be used to synthesize real two-port networks; equivalences are given

be¡veen a cascade of two complex sections with keti'o transmission zeros and a 2nd-order real

section. Also, a method is presented for investigating coefficient quantization effects directly in

the z-domain.

CF{APTER. W

4,1 Ðecomposition of Cornplex Ï-ossless Two-Forts

As shown in section 2.6, cascade decomposition amounts

r'= E4

with each factor having the same form and properties as in Eq.

have the remainder polynomials given by

to factoring the transfer matrix T'

(4.i)

(2.17b). Rewriting Eq. (2.27), we
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which, by construction, characTænze a lower-order lossless (i.e. grgu* = huh6* + luf u") network.

A factorization resulting in a reabzable network always exists, as Tvas proved by Fettweis

[14] for the V=(z-I)lk+1)-domain. However, the mechanics of carrying it out are usually

quite involved. Operations such as zero finding, solving a set of simultaneous equations, or

having to deal with numerically sensitive coefficient-form polynomials are usually required.

However, as was the case for real two-ports, in the process of extracting a complex two-port it is

also unnecessary to find hu and gr in their order-reduced polynomial form to continue on with the

factorization. The process of extraction foilowed by the determination of the remainder network

can be greatly simplified tl the h and g as well as hu and g, polynomials a¡e given a noncanonic

(redundant) representation, calied the sample representation [13]. These are defi¡ed as follows:

we assume that/has m+I factors (transmission zeros), i.e.,

t=ffif, where f¡=z-'-z¡-' , zi+0 , z)l*r=0 (4.3)
j=t

The last factor Í^*t = ¿-1 is inroduced in order to be able to extract the last zeroth-order section

without special reatment. Such a section is shown in Fig. 4.1.

Rfv-,
ub-- , Jt-1oi I¡

,- -8,h-h,8 ^ _ 9,.9-h,*h
t tLh - , 6h -

6 ¡f ¡J¡. J,i*

48

(4.2a,b,c)

For each transmission zeÍo z¡-' ,

radius rcentered at z,-t,i.e.,

lt
llrr, lrr: lt(r, ' + rW'),

Figure 4.1 Two equivalent elementary sections that realize a zeroth-order section.

we compute N=rn +1 samples of h and g located on a circle of

n=o(t)*I , {rr1 Bj,=sQ,'+rw'), ,=0(l)*I (4.4a,b)



1+

where W=e'N. Typically r=7 can be chosen. However, in some rare situations ff" in Eq.

(4.2) may become zero al some stage during the ext¡action. In this case, we have to choose a

different r (say r=Il2) and try again. One strategy that eliminaæs this problem is to always

choose r to be less than the Euclidean distance be¡¡reen two nearest transmission zeros. Sample

locations for an arbitrary 3rd-order example are shown inFig.4.2.

Assume that we have reached the ith extraction step. It will be shown in the next section

that the sampie sets {frr} -d {g,"} togrther with the transmission zeÍo z,'t, can be easily

ransformed to the polynomial set tf,, h,, g¡, a¡) which characterizes a general lst-order

Figure 4.2 Sample locations in the e-t plane for an arbitrary 3rd-order example.
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complex section. Sample sets for the remaining transmission zeros, i.e., ñ =

@

o

recomputed using Eq. (4.2), i.e.,

. lh^s,-Brh,l tBa¡¡--hrh*1hrr=l-#l , Bm=l#l , j=l(l)N, n=o(I)m

Note that the sample representation of the remainder network is obtained quite easily without

polynomial a¡ithmetic (only complex multiplications and divisions are required), which is a

consequence of the inherent redundancy in the sample representation.

Transmission zero

Sample location

m+lI
j=i+t

f¡, are



The fonn of the recompuiation formulae together with the proper choice of {Í, h,, 8,, 6,}

ensure that the sample ,.t, {år, } , {sur} *d the remaining tansmission zeros zr-1 describe a

lower-order network. Explicit order reduction is unnecessary and further algorithmic simplicity is

maintained by allowing the redundancy of the sample sets to grow by keeping their size

unchanged. AJso, although only sets j=i+i to j=ly' need to be recomputed at stage i, we

choose to recompute all the original sets (7=1,...,/y') in order to be ableto check the consisæncy

in evaluating the ærminating zeroth-order section. The extraction step is depicted in Fig. 4.3.

A,

Ji
;õi

h.

);ói

It can be observed that evaluating the overall cascade at the transmission zero z,-t forces

f,lg,= 0, which decouples the remainder network { from the overall network. This means that

the overall reflectance is equal to the reflectance of section 1/, evaluated at zi-r. Another way of

B1 
,

Figure 4.3 Flow graph for cascade (chain) connection of lossless two-ports.

-6¡hr r,ûvò;
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showing this is by rewriting Eq. (4.2b,c) as

¡ - BB¡ (l--U\ o ="u - ofioG-t.,J ' öb -

and noting that to effect order reduction, the factor

a¡f¡'
ç.
õt

N,

6b fu

8t hb

N,
I

(4.2b,c). It foilows from Eq. (4.6a) that for ¡,(r,')= 0, we must have

L( r u) = 
å' (.,-') = 8,* (r,-r) = &(.,-')

g t", I - g.\.i ,- h,*r., / - h \4í I

B7

'+,

BB* (, h h,.\

ff.I Bs¡.)

/,f" must divide

(4.6a,b)

the numerators in Eq.

(4.7)



where the last two equalities follow from the assumed losslessness of the overall and the extracted

tv/o-ports. The second equaliry in Eq. (4.7) ensures that the numerator in Eq. (4.6b) also has the

required factor. (Note that we are assuming the usual case that g and / as well as g and f are

mutually prime.) Applying the definition of paraconjugation (h-(z-'): n. (r")r-' where m is the

highest degree in the polynomial set) to Eq. (4.1), taking the complex conjugate and reciprocatirig

yields L(z,")=LQ,.)=P(.,.), which implies that the factor f., which has a zero at zj, also
I 8¡ no,

divides both numerators in Eq. (4.2b,c) without imposing additional constraints.

For the case z,-t =s-io', the factor JJ. has a 2nd-order zeÍo at zi-| =s-i,'i, which means

that the lst-order derivatives with respect to z-t of the numerators and denominators nEq. Ø.2)

evaluated at z¡-t = s-t@i must also vanish. This imposes another condition:

g' _h' _ gi _hi At ,-t _ n-jai

I h-g,-4 
d'L 4 -e

which equates the return group deiays (see point (7) of section 2-5) of the overall

extracted two-ports. These two conditions are sufficient in charactenzing a 1st-orde¡

section, as was shown in section 33 , fromwhich we obtain the required {f,, h,, 8,, o,}.

To obtain the reflectance and return group delay vaiues from the sample representation,

note that it is always possible to express I as
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where {C,, t = O(Dm} are coefficients of the Taylor series exparsion about z-' = z j-t . Evaluating

Eq. (a.9) at z¡-L + rW' yields

It can be seen that the sets {q} and {6r} fo.- a DFT pair genera-lized to radius r.

that

sQ-')= io Q-' -,;')'
i=0

(4.8)

and the

complex

N-1

g, = X G,riwní
i=0

(4.e)

(4.10)

It follows



The same expressions hold for the å polynomial with G, replaced wittr 11,.

The remaining proof is to show that huf gu is a st¿ble and bounded reflection coefficient.

We can do this by expressing the reflection coefficients as

, \ lg:l , \ I ¡/:t

sQ, ') - Go = ;Zt , and s' (z 
¡-' ) = c, = *Et ,*''

L1r,') = p(a)eiþ(') and Lçr'') = p,(a)eiþt')
88i

It readily follows from Eq. (4.6a,b) and Eq. (4.I2) that for z = ei'

lnrl' - p'+ p,'-2pp,.or(ø-0,)

Et -ffi
Since the magnitudes of normalized reflection coefficienis are bounded by one [5], we have

þ- p')* p' ,-(t- p')p,t * pt = 7+ pt p,' 2 p' +p,2, which together with Eq. (4.13) implies

tttatlnulgul<|. By construction, we have g=g¡gø+o,h,*hu. Therefore on the unit circle, we

trave ls,l alt,l=lt,-],, lql= t , lsulrlnl ana thus ls,Brl>lo,h,-hul. Furthermore by assumption

g+0 on the unit circle, it follows by the exænded Rouché's Theorem [15] that g and g,gohave

the same number of zeros inside the unit circle in the a-l-plane (namely zero). Therefore B, hæ

no zeros inside the unit circle, nor on the unit circle since hu f g, is bounded therê, i.e. Bt has all its

zeros outside the unit circle in the z-r-plane and is thus stable.

Alter m+I extraction steps when all the transmission zeros have been exhausted, the

remaining sample r.t, {år} *¿ {Sr} rh*actenze a zeroth-order two-port with zero reflertion,

i.e., the expected values arc hr=0 and ltrl=l i=1(1)N and n=g(l)m. In practice, the

remaining sample sets will only approximate the expected values to the degree that the input

polynomials satisfy the losslessness condition gg. = hh* + ff-. It is up to the designer to judge

whether the final results are acceptable. In any case, the remainder sets offer a useful consistency

check.

52

(4.1 ia,b)

(4.12a,b)

(4.13)



4.2 T'he Cascade Synthesis Algorithm

In summary, the cascade decomposition algorithm is without special cases and is comprised

of two steps:

1) From the given å and g polynomials (which can be in either coefficient or zero-form) and

the set of transmission zeros {r,-'=k,e-i'', i=1(1)1/, zu-' =0}, where N=m*1, and

mbeingthe original order of the filter, compute the sample ,.tr {ø, } *¿ {S, } using

{tr, tr,=h(z¡' +rwn), n=o(l)m} {tr: B¡= sQ,' +rw'), n=0(Ð*} e.r4)

2) For i = 1(1)¡/, compute n(r:') and g(e,-') usíng

sk,') = Go =#Xr, and t (r, ') = Ho

andif k,=I,compute h'(r,-t) ana g'(2,-t)aho using

B'(z¡-') = G, = fiErr*- and h'(r'-') = n,

From these values, a, and Ti are computed using

!{o,r-''')= m*' = þ¡eio' :+ T¡=

and for the case k =1, obtain y, by
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{7r-,.,)-((u,,,¡ =-\riai : -5 rtai - T, = ^EI h\- ' I-Y,' -t- ' 't X4*t

From the s.t {&,, a)¡, d¡, y,},*eobtain {Í,, h,, g., o,} via

=*8,

and the recomputed ,"t, {hur} and {sr" } urit g

=fiY-or*'

f, = -T,ei,, (r-, - k,e-i',¡

h, = 
^l 

(r - y,' )(t - k,' y,' 
) r'",

(4.15a,b)

(4.16a,b)

, 8¡=7-kiYi2ej''z-1

, 6i = -ri@i+r's¡)

(4.r7)

(4.18)

(4.re)



Afte¡ ¡/ iterations, the set {k,, ,,, ai, yi: t = 1(1)N} forms the solution to the

decomposition problem, and the structure for the cascade synthesis is shown in Fig. 4.4. The

remainder sample sets should be {ltr=O} *O {þrl=f} and can be used as a check for

consistency.

At Bt

Figure 4.4 The cascade synthesis structure with the cascade of N 1st-order complex sections.

In order to obtain a frequency response of a quantized design, we form the product

t = Flq where for the case k * 1:
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f ar, + jþ,, o
-ü., = I'L 0 1

withej"'=dt,*iþr, , ej'' =cùri+ j@ri , ej,t¡ =at¡*¡br, , ejt't =ãz¡* jbr,,andif fr=1:

@1,+ü,)@î,+ü,)(osr,* j@r,)z-' -ãt¡az¡ -b,b,
b,br,(ar, * j@r,)z-' a,ar,(a)r, + jcùr,)z-' -I

a,,(a\, + b|.,¡çar, * j a>r,) z-' - q, (4.21)



with Ti=cosor,. The coefficienæ tf i, and f,rf îr, ,"pr"tent the transmittance and

respectively. In this way, the more involved time-domain simulations to obtain

response can be avoided.

, = 
["" 

+oiÞ" 

I

4.3 Synthesis of Fipelineable Cascades

(1- y,')(cor, + jotr,)z-L T,t (ar, * j Ør,)z-' -l

The critical path for the cascade of lst-order complex sections with reflection-free ports

traverses every section, i.e., the longest computational delay-free path that must be computed

before the next input sample can be accepted involves every section (see [18] for a discussion of

critical paths and pipelineability). This is unacceptâble for a VLSI implementation or a high-

sampling-raæ multi-DSP realization where the maximum throughput rate must not depend on the

filter order. However, it is well known ([1], p. 295-29-l) that a cascade can be made pipelineable

by interposing a "unit element" section or, what is essenúally equivalent, a QUARL (see secúon

2.4),between every two nearest-neighbor sections as shown in Fig. 4.5.

T,GÐr,-r jcor,)z-t -T,
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Figure 4.5 Three pipelineable cascades that are equivalent to within a constant group delay in the

transmittance.

A given cascade of order m can be made pipelineable by introducing an additionai delay of

order m-I (i.e. a factor of z-^*' in the transmittance) at the output port, and then shifting a unit

delay to a location between every two original sections, as shown in Fig. 4.6.

(4.22)

reflectance,

a frequency

\-----l

unit elenent

\\-----l

QUARL

\-----/
QUARL



trEffi -TF
The shifting process is non-trivial and in practice requires Kuroda's and Levy's transformations

1191. We propose a much simpler solution: we simply treat the additional delay block as a

transmission zero at z-t = 0 of multiplicity m-I and resynthesize the resulting higher-order

cascade, i.e., the order of the filter is increased to 2m-1 and the originai fi polynomial is

replaced with

F''igure 4.6 Paltitioning of a delay block to effect pipelineabiliry.

The h and g polynomials are unchanged. Since the actual sequence of transmission zeros in the

final cascade can be chosen arbitrarily, selecting every other zero at z-r =0 produces a

pipelineable cascade. In this way, no special treatment is necessary to effect pipelineabüity.

Canonic polynomials for a section that realizes a transmission zero at z-r = 0 are obtained

by substituting fr = @o = 0 into Eq. (3.19), i.e.,

which can be realized with a normalized 2-port adaptor ( cosgo - yo and, sin 9o = [1) and a
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unit delay, as shown inFig.4.7.

f = z-^*'fo

A1

fo=-Toz-1 , ho=ri"'.[11 , Bo=l , Ç0=-ejoo

B2

DDl

Figure 4.7 T\ree equivalent secúons that realize a transmission zero at z-' = 0 with cosgo = yo.

(4.23)

4

(4.24)



Note that the sections introduced to realize pipelineabe structures do not affect the magnirudes of

both scattering coefficients (see Eq. @.23)) and therefore do not contribute towards the overall

attenuation. For this reason, it is preferable to impose the conditions for pipelineability in Eq.

(4.23) at the approximation stage so that original sections with transmission zeros at z-r = 0 do

contribute towards filæring.

4,4 Synthesis of R,eatr Circuits using lst-orden Complex Sections

The lst-order complex section in Fig. 3.19a can be used in the synthesis of real filters by

constraining the unimodular multipliers to the four possibie real values eio =+I and ei'o =+L.

For the case ,t =1, these cover the four possible lst-order real sections that in the analog domain

correspond to a series or paraliel connection of a capacitance or an inductance ([13], Table I); if
k *I, the lst-order section is nonreciprocal (f,. + f ) and in the analog domain requires a Eyrator

([13], Tabte IV). For transfer functions with 2nd-order factors comprised of a pair of complex

conjugate transmission zeros, the decomposition is performed such that the section with a

transmission zero at kei'o is followed by the section with a conjugate transmission zero ke-i'o .

The two sections can be replaced with an equivalent real circuit shown in Fig. 4.8, where the

additional unimodular multipüer ,-i@+a') must be borrowed from the section that comes next in

order to make the overall o =1. For real filters, afær all the conjugate pairs have been grouped

into 2nd-order real sections, only unimodular multipliers equal to tl remain in the cascade.

The 2nd-order real circuit in Fig. 4.8 was derived using the same method as was used for

the ci¡cuit in Fig. 3.19a and outlined in section 3.6,i.e., the derivaúon is a cascade decomposition

problem based on the zeros of å". which, for this case, are necessarily real and given by

h=cz-'(.-t*¿,). The known lst-order solution in Fig. 3.I9a is used in the extracúon of the

¡¡¿o 1st-order factors resulting in the following factored form of the scattering hybrid matrix:
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f1
I cosg^

I{ = !----:

The real circuit in Fig. 4.8 follows readily from the above factored E{.

sin 0o e-tcos9, +cos9,

1 -cos 0,

-cosO, 1

sin %
(4.2s)



A 2nd-order real section with f (ke!i" ) - û has the same four ciegrees oi freedom

{k, ,0, a, T} as a lst-order complex section in Fig. 3.19a. However, for the former, these

cannot be chosen compleæly arbitrarily because the two auxiliary parameters cos o, and cos ar, as

defined in Fig. 4.8 must be bounded by one. There are of course no restrictions for a complex

2nd-order section.

For quantized designs, each Z-port adaptor in the real circuit in Fig. 4.8 is quantized

passively according to Fig.3.19. For À=1, there are two cases where this circuit can be

converted to a structurally lossless voltage-wave circuit with transmission zeros that do not move

away from the unit circle even for quantized multipliers:

1) case 1: sinø=0 => cosO, -*1 corresponds to a series or parallel resonant circuit section

ftable II in [13]);

2) case 2: sin (o - rr) = 0 + cos9, = *1 corresponds to the matched 4-port adaptor (Fig. 5

in [13]), which was used exænsively in the designs presented in [20].

For other cases, the 2-port adaptors corresponding to q and e2 must be quantized

(rit' = h + jb, , ¿i0' = a, + jbr) passively, causing the pair of transmission zeros to move away

from the unit circle; by substituting Eq. (3.23) for each factor of FI in Eq. (4.25), it can be shown

that the resulting radius of the pair of transmission zeros in the e-plane is given by

Gi *t)Gi*ü).t.
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Degrees of Freedom : {tc, ao, a, y}

Transmittance: f çk¿ti'"¡=g
c

Reflectance:

GroupDeJay:,-*"(+v*")-1p,,'l)=#= u

!-1¡r"-,',¡=t'" [-Ji 
= pr'"

I ll-k'y'

Pa¡emeter: (k + t) y =

StabiJityRelation,Éãf <+ fa>f + y'<7
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Auxilliary Pa¡ameters :

COSú)l =

cosú)? =

þo=T'## P,=-ffi
. k,^, (t+,t')cosar, - 2kcosaocosot"
À,:---' k,o (l+k')cosa,lr-2,tcosøocosar,

- ,1 ^ (a-b)
Í = z-t cos9o +y¿-r + cos 0,

B = z-2.o, eo .or 9r-* 
(a !b) ,-' *,

2

lz = -sin go sin gr(z-' cos 0, + cos 9,)

a=l
a = (1 + cos 06)(t + cos 0, )cos(0r - 0r)

b = (l-cos 0o)(t - cos 9r)cos(9, + 9r)

în=)ft-k.ñsin(a- 
¿:o)

s1n ú)o

kyt sinøo

slnd

Figure 4.8 Ari equivalence between a real

complex sections used in

Ci¡cuit Parameters:

cos0o = po , sinOo =

Tz
sin a¡, / \

= T----- , tanld * &z)=
sln ú).

l r_ R,
cosg, = ssn(tt,o)l;fç, sinO, = B,sin?,

cos0, = k, cosO, ,

cos0, = ktþo ,

B cos a(t + cos' arr) + (t + P')cos a;,

2nd-order section and a cascade of two 1st-order

the synthesis of real two-ports.

-psin ø sinz ar"

sing,=ffi
sing, = ¡-FBJ



In this chapter, we present two design examples to show how the PU and the cascade

stmctuÍes derived in the previous chapters differ in their sensitivities to multiplier quantizations.

Also the diff'erence between transmittance and reflectance realizations for the two structures are

examined.

5.1 T'he Computer Synthesis Frograms

CE{,APT'ER. V

ÐESIGN EX,{MPLES

Two programs were written to implement the PU and cascade synthesis algorithm discussed

in Chapter IV and V. The flrst version of the programs were developed with THINK Pascal

using a Macintosh computer. Later, we translated all the programs to the more popular C++

compiler @orland C++ 3.1) for use on IBM compatibles, which allowed more flexible coding and

faster run time; note that the Macintoså does not yet have a good C++ compiler. The main

features of the C++ compiler are objecroriented programming and the use of overriding

operators (which in our case are ideal for complex number computations and polynomial

operations). However, in order to be able to transiate the programs so that they can be run under

the Macintosh environment again, we tried to keep the structure of the C++ program more or less

the same as the Pascal structure. In this way, we gave up some of the C++'s features, such as the

object oriented data structure and memory management. A future version of the synthesis

programs can be rewritten so that one can fully utilize the special features that the C++ offers.

Appendix I shows the program listing and ttre required modules for each synthesis algorithm.
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5.2 Exarnple of a 3rd-order complex bandpass fïlter

The fìrst example is a 3rd-order complex bandpass filter taken from [16] with the canonic

polynomials given in Table 5.1, which satisfy the Feldkeller equation up to 7 decimal places.

f zeros

constant

i
0.0017 3'l t7 I 447 8 11 83 6

2

magnitude

r.239539805592213030

J

6.55713447 4620700520

0.9't 3'7 90267 085 6363 8 8

I Zeros

consta¡t

I

0.9169450884619501 31

0.r L'7 37 6125 5 0597 | r82

2

magnitude

1.034058 1 28 195634690

3

anp,le I n

-0.3525 01."1 28 592457 7 9 |

1.0 1247 2'Ì 238 1357 2680

-0.328283 67 7 1 3287 7 7 87

r.u+16657543725M750

-0.38 1 3858 1580',7 02'7 7 59

In this example, we synthesize the frlter design using the PU, cascade, and pipeline cascade

structure based on the transmittance and the reflectance, which behave differently for quantized

multipliers (say 8 and 12-bit fîxed-point multipliers). The cascade realization was made

pipelineable by including a factor of z-t in the transmittance polynomial (i.e. a zeÍo at zero was

inserted between the original transmission zeros). Since the order of this example is low, the DFT

form synthesis for the PU structure gives satisfactory results immediaæly. The synthesis results

for the transmittance realtzation are shown in Table 5.2-4, while the results for the reflectance

realization are shown in Table 5.5-1, and the corresponding frequency responses are shown in Fig.

5.1 and Fig.5.2. Note that the last cos0 for the PU structure is set to one in order to obtain the

frequency response.

Table 5.1 Input data for Example 1 (3rd-order complex bandpass filter).

0.0293471777 1 1460338

h zeros

-0.3t 52't 4223865 5 8 63 5 I

angle I n

constant

-0.3 6 63220287 7 0 5 13232

-0.347 7 4492507 53 607 5 3

1

0.9 5'7 5 6009 2t9 6 t3 6287

2

magnitude

61

3

1.0

1.0

1.0

-0. 346 1 5340690000000c

angle I n

-0.3 1 88357341 0000000C

0.0

-0.36435 1 1 8300000000c

L

I

2

0.957560092t96r36284

J

cos I,

0.M7't023652271t6112

4

0.998252323578017 6t?
0.10125897 6212685513

Table 5.2 PU decomposition (DFT form) of the transmittance in Example 1.

r.029340324000000000

-0.9 447 9 5 09 6026392233

a,ln

-0. 6621200 | 5 435 5 35 0r2
-0.2 1 982823 1 I 95825287

L

5

6

0.99 4213 4'7 052124420 1

7

cos 0,

0.9 1 4 67 15 408'7 9312931

I
0.314089092630529918

L0000522598 101 28780

-0.657890528088391 1 1 8

-1.0992297 1349703009C

ü,17t

-0. 85 62044000 44218't 5 5

-0. 6187't 210129 6 67 9 698



I

1

2

1 .239539805592213030

J

4

6.557t34474620700520

ki

0.973790267085636388

0.000000000000000000

I

Table 5.3 Cascade decomposition of the tansmittance in Example 1.

I
2

a35250r728592457't91

1.239539805592213030

J

0.328283 67 7 1328',7 7 7 8',7

Ø,ln

0.000000000000000000

4

0.3813858 15807027759

ki

6.557134474620700520

5

-0.000000000000000000

0.000000000000000000

6

0.9'7 3't 90267 085 6363 88

0.000000000000000000

Table 5.4 Pipeline cascade decomposition of the transmittance in Example 1.

T

-0.0075545200861 19 123

t

0.35250t728592457791

-0.034346625 663405 57 5

a,l7c

2

-0.000000000000000000

a,lfr

0.0 r3'7 49 429 5 60 62027 2

0.014022008605 176070

1

0.328283 67'7 13287 7 7 87

0.s5765061 6873348732

-0.0342923889s 035 5 95 5

cosQ

4

-0. 000000000000000000

0.04491 1 10502332t488

0.3813858i5807027759

0.9982667 597 068499'7 2

-0. 000000000000000000

Table 5.5 PU decomposition (DFT form) of the reflectance in Example 1.

0.7021868t9200t28202

T

-0.0075545200861 19 r23

0.0r7397516345624240

-0.03 433 44 695 53297 889

I

u,llt

-0.9 447 9 5 09 602 639215 5

T¡

0.49335 3',1 5 583 187 8257

62

2

0.334466150955358439

-1.029340324000000000

d,ltr

0.28823476802805cÉ22

0.999999999999999999

-0.1981 647 35't 841 38883

5

1.7 03913039917487880

4

-0. 618 6125 84 68 8495 08 9

1 .000000000000000000

-0.6 6203 41928 68882', 1 67

ki

1.000000000000000000

0.7 7 L 458 197 438't 52087

0.000000000000000000

0;702186819200128202

L

0.091008412983706725

Table 5.6 Cascade decomposition of the reflectance in Example 1.

I

T

0.026746097875690607

2

5

0.3 4 61. 5 340 6900000000

0.9937 18832468785005

0.999999999999999999

J

6

@,ln

0.3 1 88357341 00000000

0.9595 1 0569853713821

0.r2503r40r48 1845955

0.000000000000000000

4

7

0.36435 I 183000000000

ki

0.999999999658423781

0999041925272336434

cos 9,

5

1.000000000000000000

8

-0.000000000000000000

0.25'7 7 99 61 0181 693932

0.000000000000000000

6

1.000061 695049873t70

1 .000000000000000000

Table 5.7 Pipeline cascade decomposition of the reflectance in Example 1.

0.000000000000000000

-0.43'7 65 5461 608 1 94876

0.346153406900000000

-0.99 44t | 503 132t087 45

a,lfr

1.905 10204i047098000

-0.000000000000000000

to,ltr

-0.661 1 i 1605934160362

-0.4902i 86580927 9587 2

d,ltc

0.31 8835734i00000000

-0. 0 6069468 8 027 939839

0.01 0321 4 t 45 5 0335 32'7

-0. 000000000000000000

-0. 64't 6M57 9 6681 2æ 5 A

0.3&35i 183000000000

-0. 000000000000000000

0982002232690002730

-0.437 65 5 461 608 l 94876

0.s818838991 10585982

0.881991690073898222

u,ln

tt

0.993102509757900023

-0.5 47'7 267 39 0 417 40092

0.999998491 102605074

-0. 45 4 57 98 47 4s 39 5 5 5 2L

-0.6356488 15 1 50041211

-0. 396600428027 263030

0982002232690002i30

0.999225710850659453

tt

0.9825273r30022cr'i999

0.9999086735 82472656

0.993310427856011198

i.000000000000000000
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Figure 5.2 Frequency responses of the transmittance for Example 1 with 8-bit fixed-point

multipliers; stopband (top) and passband (bottom).
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5.3 Example of an 8th-order real bandpass filter

The second example is a real 8th-order bandpass filte¡ taken from [21], and the canonic

polynomials are recomputed to better satisfy the losslessness condition gg- =hlt"+ ff". The

canonic poþomiais are shown in Table 5.8, which satisfy the Feldkeller equation up to 15

decimal places.

f zeros

constant

1

2

magnitude

J

0.00090521

4

5

1.0

6

0.0

7

1.0

8

0.0

1.0

ansle I ft

g zeros

0.0

constant

0.430034232

0.0

1.0

0.0

1

-0.430034232

0. 8 80673 5 95 6 3',1 835 19 4

0.0

2

magnitude

r.008341527656365750

3

0.320538560

1..008341. 527 65 63 657 5 0

0.0

h zeros

4

L008545764020980650

5

67

-0.320538560

1.008545764020980650

0.0

6

1.02379585 1013025390

I

7

2

0.0

1.02379585 101 3025390

magnitude

8

0.938M211r704

| .0234't 1807 530t25960

3

-0.3993 4 | 5 28997 2 4 5 882

angle I n

À

r.02347 t807530125960

0.39934t528997245882

5

lVe can see that the inpuT data for the transmittance is pipelineable from the outset for the

cascade synthesis structure, where a factor of zt is introduced to make the reflectance

pipelineable.

Transferring a factor of z-' from the / to the f, polynomial has no effect on the magnitude

response and allows one to write gg. =h? + l'=(h+ jf)(h- jf). It follows that a realization

with a complex allpass section 122), 1231, l24l of order four is also possible in this case. The

1.0

0.0

-0.35067539&62379855

6

1.0

0.350675396462379855

1.0

-0.3645095 r7 7 3387 8304

I

1.0

T'able 5.8 Input data for Example 2 (8th-order bandpass filter).

0.364509517733878304

1.0

angle / n

-0.3858067391 50357 242

0.35r'7327rt368

1.0

0.38580673915 0357242

0.0

-0.3517327tr368

1.0

0.365109796566

1.0

-0.365109796566

0.385182448776

-0.385182448776

0.398308216049

-0.398308216049



cascade synthesis is used to generate the required allpass section, and the input data is given in

Table 5.9. Note that the zeros of h are reciprocal conjugates of those of g and the constants

remain the same. The zeros of/can be chosen to be anywhere in the z-l-plane but are normally

chosen to be at ¿-t =0 to generate a pipelineable cascade comprised of sections from Fig. 4.13

with the fewest number of rotations. The transmittance at frequency z=ei* for the allpass

secrion is given ,, i(lur.(ir-)).) *o *.

f zeros

constant

1

2

magnitude

J

4

0.0

0.0

I Zeros

0.0

consta¡t

0.0

0.0

I

2

renecr¿nce t, 1ftrrl- [.*t.' l'1. I-\ô \ô / )

angle I n

0.880673595637835r94

J

magnitude

t.00834152765636575

0.0

4

i.00854576402098065

0.0

1.02379585 101302539

0.0

68

Again, we synthesizethe filter design using the PU, allpass, cascade, and pipeline cascade

structure based on the transmittance and the reflectance. The synthesis results for the

transmittance reaJtzation are shown in Table 5.10-13, whereas the results for the reflectance

realization are shown in Table 5-14-16. The corresponding frequency responses for the 12-bit and

8-bit fixed-point multiplier quantizations are shown in Fig. 5.5-8.

0.0

1 .02347 1807 53012s96

h zeros

0.0

constant

Table 5.9 Input data for the 4th-order allpass section for Example 2.

1

0.938442t1t7 04000000

2

magnitude

0.991727477816218162

3

0.97675723M67890762

0.3993 41 5 2899'7 245 882

angle I n

4

0.991526647252069689

-0.35067 539646237 985 5

0.0

0.977 066483553886195

0.3&509517733818304

-0. 3858067391 50357 242

angle / n

0.3993 41 52899'7 245882

0.3645095177 33878304

0.0

-0.35067 539 646237 985 5

-0. 385 806739 1 50357 242



I

I

2

0.938442tt0231743405

J

cos q

0.000000000000000000

4

0.382034996637063t72

5

0.000000000000000000

6

0.9948795303263r6629

7

0.000000000000000000

8

0.383096500999037 531

9

0.000000000000000000

1.000000000000000000

a,ln

1.000000000000000000

0.q958581 80702111374

1 .000000000000000000

Table 5.10 PU decomposition (DFT form) of the transmittance in Example2.

I

1.000000000000000000

-1.000000000000000000

1

-1. 000000000000000000

2

1.000000000000000000

)

1.000000000000000000

4

1.000000000000000000

I .000000000000000000

I

ki

0.000000000000000000

5

1.000000000000000000

0

0.000000000000000000

6

I

0.999999999999999999

7

0.334065090668604390

2

0.999999999999999999

cos 0,

8

0.360ó4086 r 948289544

3

0.000000000000000000

9

0.13647 990'7 865 855 847

4

-0. 43003 4232000000000

0.000000000000000000

0.93?253262432831 888

5

0.000000000000000000

0.430034232000000000

rÐ,1fr

0.955467'770ø'04646774

6

I

-0. 000000000000000000

0.14097 1t3963841 8803

,7

Table 5.11 Cascade decomposition of the transmittance in Example 2.

-0. 000000000000000000

0.402851064656629980

I

I

-0. 3205 385 60000000000

2

1.00000000000000000{

0.01 1 8555561960623&

69

1.000000000000000000

a,lfr

0,320538560000000000

3

i.00000000000000000t

1.00000014778 6428040

0.000000000000000000

4

1.000000000000000000

-0. 000000000000000000

ki

1.000000000000000000

5

-0.000000000000000000

1.000000000000000000

-0 . r29 9 9 5 225 3 621 60 r 60

0.000000000000000000

6

1.000000000000000000

-0.000000000000000000

0.329520485855107430

a,ln

0.000000000000000000

0.999999999999999999

7

-0. 19 9 5 25 2 60 4929 4 69 62

- 1 . 000000000000000000

0.000000000000000000

8

0.000000000000020977

0.000000000000000000

0.999999999999999999

9

0.00766i 3389262r38t7

-0. 99999999997 85 92t7 6

0.000000000000000000

-0.43003 4232000000000

-0. 1 i 206 17983227 0007 6

0.000000000000000000

-0.000000000000000000

a,lft

Table 5.12 Pipeline cascade decomposition of the transmittance in Example 2.

0.1 04400459397340899

T

0A30034232000000000

0.0000000001 02139107

0.856902177327 t046t9

-0. 000000000000000000

1

-0. 000000000 1 017 9 4639

0.868905766082042025

-0. 3205 38560000000000

2

0.1 405:t 3 525 5 012699 4 6

0.000000000000000000

3

-0. 000000000000000000

0.921 151940506531020

0.000000000000000000

4

0.320538560000000000

t-K.
I

0.385 i 08082381281339

0.000000000000000000

-0.000000000000000000

5

-0 .129995225362 I 60 1 60

0.7 5 5 622't 0 418897 0229

0.000000000000000000

-0.000000000000000000

0,17798857 5358195542

a,lft

0.1 01 06789865207 t465

0.000000000000000000

0.372240496861656714

0.924147856859237322

-0.42023384 6857 81 0422

0.3 45 43 6 5 43 646600297

0.00766 1 33 8926352295

-0. 000000000000000000

-0.05 25 1 94 1 0605237 L5 |

Table 5.13 Allpass cascade decomposition in Example 2.

-0. 000000000000000000

ø,1fr

0 .3't 52',7 07 49327 664280

-0. 000000000000000000

-0.33 0 4 12 6 645 1 0 3 03397

0.8569021773271046t9

-0. 000000000000000000

-0.0000000124925 1 15 68

0.29080926r580008262

-0. 000000000000000000

tt

0.420018077 150955863

0.92t |5L940506522988

0.385 108082384979378

-0. 000000000000000000

0.1783848228826t9832

-0.000000000000000009

a,ln

0.4281r4894303120052

0.002841 829083873028

0.92414785673807 4304

-0.020326334185 806908

0.345436540990829595

-0. 00s8 844060 | 6452388

0.3454365437295t3932

0.9241 4'7 85 68 630233 66

lt

0.10067682591 8 153140

0.923464678888730942

0.000000000000000000
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I

I

2

0.000000000000000000

J

cos 0,

0.938442rt02317 43405

4

0.000000000000000000

5

0.382034996637063172

6

0.000000000000000000

7

0.99 48't 9 53 032631 6 629

8

0.000000000000000000

9

- i.000000000000000000

0.38309650099903753]

0.0303'7 3266988859827

d,l7t

1.000000000000000000

1.000000000000000000

Table 5.14 PU decomposition (DFT form) of the reflectance in Example 2.

I .000000000000000000

I

1.000000000000000000

1

1.000000000000000000

a

1.000000000000000000

1.000000000000000000

J

1.000000000000000000

r .000000000000000000

Å

I

ki

1.000000000000000000

0.999999999999999999

5

0

0.999999999999999999

6

1

0.9963r 78559630t6627

1.000000000000000000

7

2

cos 0,

0.0000038 1 2003936620

1.000000000000000000

8

1

0.382447336695649320

0.999999999999999999

9

4

0.0a9'7 409 6 639135 129 |

-0.35 17 327 1 1368000000

0.999999999999999999

5

0.994283478299853873

0.35 t'7 327 | 1368000000

@,1lt

0.000000000000000000

6

0.245457315725 121985

-0. 365 109796566000000

7

I

0.3553824537 1802535 I

0.365t09796566000000

Table 5.15 Cascade decomposition of the reflectance in Example 2.

8

1

0.2488 1785 884 6223124

1.000000000000000000

-0.38 5 1 824487 7 6000000

72

-1.000000000000000000

2

a,ln

1.0000001575 17630890

0.3851824487 76000000

i.000000000000000000

1.000000000000000000

3

-0.3983082 1 6049000000

0.000000000000000000

0.000000000000000000

4

ki

0.39830821 6049000000

0.571467295401512715

1.000000000000000000

5

r.000000000000000000

-0.000000000000000000

a' ln

0.85s66t573467812382

0.000000000000000000

0.000000000000000000

6

0.r45625268t95202336

0.999999999999999999

7

L000000000000000000

0.85t52657 1445 1 61486

0.000000000000000000

8

1.000000000000000000

0.1925389682310707 t2

-0.99999999997 7 18 407 6

0.999999999999999999

9

0;1664516292r388t752

0.000000000000000000

-0.35 17 32't 11368000000

l0

0.294516982030966166

1.000000000000000000

-0. 000000000000000000

11

(D,lrc

0.995759910570240845

0.645 57 953 6'Ì 7 8435 623

0.000000000000000000

t2

0.3517327 1 1368000000

-0. 3233 67 8247 640 13'7'7 9

0.9957 19283733996663

-0.000000000000000000

1.000000000000000000

13

lt

0.988687329369446869

-0.3 65 1 097 9 6566000000

0.000000000000000000

T4

0.98839965 12284G4212

-0. 000000000000000000

0.999999999999999999

15

0. 98 8 54695 66 3'7 3285 61

0.000000000000000000

0.365109196566000000

16

0.9882'7 9't 47 6927 5 5 938

-0.000000000000000000

0.999999999999999999

0.57 r 4 61 29 5 40r52'.7 639

0.99570265461081 1803

-0.385 1 82448'7 7 6000000

0.000000000000000000

-0. 999999999999999'7 92

a,ln

Table 5.16 Pípeline cascade decomposition of the reflectance in Example 2.

0.99s675208687205493

-0. 000000000000000000

-0.7 9 5 00 422824698 8 7 1 5

0.999999 5 9 0297 3 45 30',7

0.3851824487 76000000

-0.7'/ 6463067 15 4461534

-0.000000000000000000

0.8452466308 610t6261

-0.3983082 1 6049000000

0.779191309831084734

-0. 000000000000000000

0.8925 5 460534527 37',7 5

-0.5 1 69925 46035 45 63 63

0.3983082 I 6049000000

0.99575991 0570241 080

-0. 000000000000000000

-0.9227 5 49327 23995 417

0.99996358 1 170383402

v.

-0.3 r99 322'7 t 44192625 4

0.99574808387 3934500

0.999912516975352343

-0.45 0 &2'7',7 5 03 6 61 4 698

0.693329979034896930

0.988419605 r 19843739

0.99992905731869215r

0.28267893141057 6393

0.9882216216145901 18

-0.5 6897 t',l 7 24 1037 49 62

0.99999 1 35',7 1257 29 693

-0. 601 691400i0s065778

0.9884691 5 17 4'7 4357 29

-0.3 69 8322 | 09 5 62 482 | 5

0.999966670048153334

0.9886484909568 1 8578

0.9999593001 86932423

0.99588866 1379942909

0.99996639t7 09661316

0.9959257834152163&

0.999999999999999988
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5,4 General tbservations on Examples X and 2

In Example 1, which is a low-order example, the Feldkeller equation is only satisfied up to 7

decimal places. However, the PU structure synthesized using the DFT form still gives satisfactory

results. On the other hand, the Feidkelier-equation must be satisfied to a much higher accuracy in

order to obtain an acceptable synthesis result for higher-order filters (see Section 3.5 for effects

on input data inaccuracy). Also, the PU structure has no direct control of either a transmission or

a reflection (attenuation) zero. This is shown by the 8-bit multiplier quantizations for both

examples.

For the cascade decomposition structure, transfer functions with a narrow passband that

have as many attenuation zeros as the order of the frlter tend to have the poles located near those

zeros. As a result, the return group delay evaluated at an attenuation zero can be approximated

by õ=If(r,-1)>>1, where r,=1but4>1 is the radius of the nearest pole, and the

corresponding filter parameter obtained using Eq. (3.23) is given by y,=tl.!a=t. A single

extracúon step only removes one attenuation zero without significantly affecting the locations of

the remaining poles with respect to the remaining attenuation zeros. It foliows that transfer

functions realized as the reflectance of a lossless two-port where the füter parameters are obtained

from the return group delay values at the attenuation zeros, tend to have all the y, =1 (see the y

column in Tables 5.6-7 and 5.15-16). Such values are hard to quantize and the filter response

tends to be more sensiúve (see stop band response on Fig.5.4 and Fig.5.8). On the other hand,

transfer functions realized as the transmittance (see Table 5.3-4 and 5.13-14) do not have this

problem because the y, are obtained from the return group delay values at the transmission zeros,

and these locations are relatively much further away from the pole locations. This observation has

been borne out by numerous examples.

The reflectance realization of the pipelineable cascade suffers most in the stop band (Fig.

5.8) because all y, = i and the multiplier quantizations in 7 additional sections.

75



The synthesis of complex lossless two-port IVD filters using the PU structure yields circuits

that are inherent pipelineable, internally passive (hence wave digital), and easy to implement.

Three different forms of polynomial representation are available for the synthesis process, namely

the coefficient form, DFT-sample form, and the zero form, with the second one being the easiest

to implement. The zero form requires zero-finding routines that are relatively slow. However,

numerous examples show that the zero form gives acceptable results with input data inaccuracy

for which the other two forms give totally unreliable results. One should obtain a set of input data

that satisfy the losslessness condition with acceptable accuracy, especially for the synthesis of

higher-order frlters. A convenient consistency check of the PU synthesis results is the last cosO

being one, which is the losslessness condition for the PU structure.

We have also shown that it is possible to generate complex lossless t\¡/o-port cascades that

are also restriction-free, internally passive, and that can easily be made pipelineable. The

accompanying synthesis algorithm is a simple two-step procedure that is easily programmed and

can also generate real two-port cascades and alipass ci¡cuits. The noncanonic "sample"

representation of polynomials is very convenient for it circumvents the numerical problems

encountered when forcing exact cancellations between either coefficient or zero-form

polynomials. Numerous examples have shown that the roundoff error generated during synthesis

is negligible and that it is more important to have the input data satisfy gg. = hh + JT" with

acceptable accuracy. A convenient consistency check of the synthesis results is available from the

observation that afær N = m* 1 iærations, all the "sample" sets must correspond to a simple

"feed-through" two-port. We conclude that narrow-band transfer functions should be realized as

the transmittance of a lossless two-port.

Finally, both cascade and PU structures can reafize allpass sections. In the PU synthesis

algorithm we set h=0 and f =!g*, and for the cascade s1'nthesis algorithm, we let f =z-^
where ¡z is the order of the allpass section and h = tB*.

The following table gives a comparison between properties of the PU structure and the

cascade structure.
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pipelineability is inherent.

PU Structure

- no direct control over the transmission zeros

or reflection ones, each section contributes
to the overall filtering.

6 basic rotaûons per filter order.

If one wants to have direct control of either the transmission or reflection zeros together

with pipelineabil-ity, the pipelineable cascade is the only choice and the three additional rotations

per h1ær order are necessary.

- pipelineable cascades are generated by
choosing all even-indexed sections
with their nansmission zeros zt

¿-t = 0.

Cascade Structure

each section directly controls either a

transmission or reflection zero.

- 6 basic rotations per filter order for
non-pipelineable cascade synthesis.

- 9 basic rotations per frlter order for
pipelineable cascades.
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