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ABSTRACT

Two simple decomposition algorithms are presented for the synthesis of modular,

pipelineable, complex wave (unitary) digital filters (CWDFs), namely the PU synthesis algorithm
and the cascade synthesis algorithm. The main features of the PU synthesis algorithm are the

following:
1. The PU structure has built-in pipelineability;
2. Requires only six basic rotations per order of the filter;
3. Requires only one basic building block, which makes the overall structure modular and

easy to implement.

For the pipelineable cascade algorithm, the main features are the following:

1.

The extraction step obviates coefficient-form polynomial arithmetic and zero-finding
operations by using an alternative (sample) representation of the canonic polynomials that
describe the lossless two-port - an idea that was first introduced for real two-ports in [13];

First-order sections that effect pipelineability are treated like any other section (they
realize a transmission zero at z~ = 0), thus eliminating the need for special treatment,

A fully general 1st-order complex section is derived that can realize a "transmission zero"
anywhere in the z-plane and is the only section required for the cascade decomposition. It

requires six basic rotations per order.

Each transmission zero in the cascade realization can be fine tuned individually because

each cascade section realizes a distinct transmission zero.

This algorithm can also be used to synthesize real two-port networks; equivalences are
. . . +; . .
given between a cascade of two complex sections with ke™® transmission zeros and a

2nd-order real section.

A method to obtain the frequency response for investigation of coefficient quantization

effects directly in the z-domain is given for both structures and the merits of each synthesis

algorithm are discussed.
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CHAPTER1

INTRODUCTION

Digital filters have advantages compared to analog filters because they are easily
reprogrammed, their responses are not affected by temperature variations and aging, and they can
be readily implemented using cost-effective digital signal processors (DSPs). Due to the steady
technological advances in the signal processor design, what used to be an unbridgeable gap in the
computational efficiencies of real and complex digital circuits has largely disappeared over the
years. The criteria used in evaluating the various digital circuits have also changed. The total
number of multiplications and delays, and the maximum bits allowed for multiplier quantization
are no longer as critical as, for example, pipelineability [18][25] (different instances of the
algorithm are executed simultaneously), or modularity, having only one basic building block
repeated throughout the structure. Other important properties such as numerical robustness,
availability of a simple schemes that ensure nonlinear stability, and low-passband-sensitivity
circuits can be carried over to the complex-domain as long as the resulting circuit is internally

passive [17], i.e., it is a complex wave digital (CWD) circuit.

Acha and Torres [16] realize a complex transfer function as the reflectance of a lossless
two-port with the restriction that all the attenuation zeros must be located on the unit circle;
otherwise, the reflectance must be scaled with a passive multiplier to force a reflection one on the
unit-circle. In this thesis, we present two CWD structures that are modular, pipelineable, and
have no restrictions on the location of either the transmission or attenuation zeros.

The first CWD structure is the pipelineable, complex, lossless (unitary), two-port network
that will be referred to as the pipelinable unitary (PU) structure. The derivation of the circuit is
based on iteratively interchanging the A and f polynomials [9]. The synthesis algorithm for real
two-port networks was first introduced by Rao and Kailath [10] and modified by Fettweis [9]
using a network theory approach. We extend this to the complex two-port networks using only
one additional two-port element, the unimodular multiplier section. Three forms of polynomial
representation can be used in the synthesis algorithm, namely the coefficient-form, DFT-form, and
the zero-form, with the second one being the easiest to implementation. A unitary lst-order
complex circuit was derived using the PU structure that can realize a transmission zero anywhere



in the z-plane and consists of only six real planar rotations and two real delays. This section is
derived such that one of the unimodular multiplier is used to directly control the location of the
unit-circle transmission zero. It is used as the basic building block in the second CWD structure.

The second CWD structure is the cascade (chain) decomposition of complex two-ports.
Again, there are no restrictions on the location of either the transmission or attenuation zeros, and
the designer has the option of having a given (real or complex) transfer function realized as a
transmittance or a reflectance of a lossless and internally-passive two-port. To make the
decomposition algorithm very simple and easy to program, we make use of an observation from
the real two-port decomposition [13] and the PU structure above that a noncanonic (called
sample) representation of the polynomials is used. This eliminates the need for handling either
coefficient or zero-form polynomials, thus avoiding the explicit derivation of order-reduced
remainder polynomials. In contrast to real circuits, the lossless complex cascade require only one

elementary section, which leads to a very modular configuration.

Although the development is entirely in the z-domain, we chose to use terms and concepts
from the classical scattering domain for the simple reason that all the analytic properties of
scattering coefficients (such as passivity of the reflection coefficient [5], reflection-free ports [1],
etc.) can be carried over to the z-domain. Because the resulting CWD filters are internally
passive, one can always derive an equivalent analog circuit, although such a circuit may have little

practical value and its implementation maybe difficult.




CHAPTER I

ANALOG AND DIGITAL COMPLEX LOSSLESS TWO-PORT NETWORKS

This chapter presents the basic building blocks for the decomposition of complex lossless
two-port networks together with their analog equivalents. We will also discuss the
characterization of lossless two-port networks using scattering parameters.

2.1 Characterization of Analog and Digital Two-Port Networks

] L A B,
T — —> + 3 O
A ANALOG B, WAVE
V. R | rwo.porT| v, R DIGITAL R,
B, A, B TWO-PORT A,
(a) (®

Figure 2.1 Analog and Digital two-port network.

Consider the two-port network shown in Fig. 2.1a; we can characterize the two-port using

AN
[illjl_ l:—lj 2.1)

Alternatively, a two-port can be characterized using scattering variables, i.e., for each port i, the

the chain (transmission) matrix:

incident and reflected voltage waves are defined by [1]
A =V.+RI , B,=V,—RI, (2.2)

respectively, where R, is an arbitrary positive port reference. From Eq. (2.1) and Eq. (2.2), we

can write



B, 1 —Rl— |4 _ 1 -R K |4
Al [ R L] R||-L
[t Rl L[R R RV
|l R | 2R|-1 1|1 R |-
='1 —R‘_K 1 [R, R A
1 R | 2R|-1 1|B (2.3)
Eq. (2.3) defines the scattering transfer matrix for the two-port network in Fig. 2.1a, which is
B A, 1 -R 1 |R R
=T here T= K—r
[AJ [Bj W [1 RJ 2R, {—1 1 (2.4)

For normalized two-port networks, we have R =R, =1. It follows that the chain and transfer

matrices are related by a similarity transformation:

1 -1
T=PKP" where P= L }

1 (2.5)
An alternative grouping of the scattering variables is given below [3]
Bl— — —Su S1z_rA1_ - 1 —7;2 711712 “7127;1-_A1- :SliAl:l
By | Sy SnllA] Tyl -7, 14 ] A, .(2.6a)
BI_[T TaA]_ 1 [SeSu—SuSe Sul4]_[4]
A1_ _7;1 Tzz__Bz_ Sy L Sy 1 __Bz_ B, (2.6b)

where S is the scattering matrix [5].

A class of digital filters was introduced by Fettweis [1], called wave digital filters (WDFs),
which has the same analytic properties (internal passivity) as analog filters. The term "wave"
refers to the fact that, instead of voltage and current variables, incident and reflected wave
quantities (see Eq. (2.2)) must be used to ensure computability (i.e. no delay-free loops). A wave

digital two-port that corresponds to an analog two-port is shown in Fig. 2.1b.




2.2 The 2-port Adaptor — a Wave Digital Equivalent of an Ideal Transformer

In this section, we will derive the Wave Digital equivalent of an ideal transformer — the most
basic and widely used zeroth-order two-port. An adaptor is the WD equivalent of an analog
multi-port network which does not store or dissipate energy. Its main purpose is to ensure that
Kirchhoff's voltage and current laws, as transcribed to the scattering domain, hold in WD domain.
An ideal transformer and its chain matrix are shown in Fig. 2.2.

1

I M

Figure 2.2 An ideal transformer and its chain matrix K.

From Eq. (2.4) and Eq. (2.6a), the corresponding voltage wave scattering and transfer
matrices for the general port references R, and R, in Fig. 2.2 are given by

B|_1[n"+R/R, n’-R/R, [Az_ =T{A2‘
A | 2n\n*-RJR, n*+R/R, | B, B, | (2.72)

{Bl]_ 1 n*~R /R, 2nR/R, —Al} _S_Al}
B,| n*+R/R, 2n R/R, -n* |4 |A,

There are three cases of Eq. (2.7) that are of interest to us, which are shown in Table 2.1. The
case n=1 is simply an interconnection of 2 ports with different port references, R and R,, and
the WD image is defined as the voltage wave 2-port adaptor. The second case, R =R, =1,

(2.7b)

defines the WD translation of the ideal transformer using power waves (normalized voltage
waves), which is known as the normalized 2-port adaptor. Looking at the scattering and transfer

matrices from Table 2.1, and by letting ¥ =cos9 (i.e. n* = R,/R), we can also write [3]

S,=P7'S.P T,=T,T,=T,T, (2.8)




i.e., a normalized 2-port adaptor is equivalent to a voltage wave 2-port adaptor cascaded with a
pair of inverse scaling multipliers. This is shown in Fig. 2.3.

Cases: Scattering and Transfer Matrix Symbolic representation & flowgraphs
2-port adaptor: AO—>— —>—0 B,
R R
B, O—a— 0 A,
- - 1+ 1 -
n=1 S = Y Y T = 1 Y
Toll-y oy Tol-ylr 1
where y:=M
R +R,

normalized 2-port adaptor:

—cosf sinf | 1 1 —cos 8
Se = E ’ Te ==
R =R, =1 sing cos@ sin@| —cos @ 1

2

where cose=l_—nz, sin@ = 2n2 = n=tan(—9—)
1+n 1+n 2

scaling multipliers:

2

R
= 0 ] 01 10 10 R R,
2 |8, = =P P, P= , T,=n
n O 1 0 0 n 01 B.O ® OA,
1

Table 2.1 Three special cases for the digital equivalent of an ideal transformer.

_}_=co[_9_= +JE
A B, Al 2 T\R
O—3— ——0 O—>— —>—0O—>—0 B,
9 = Rl R/J_ R1
O—<t— ——0 o—<— ! <=0—<04
Bl A2 Bl n=tan—z-=t -1}—31
2 1
c039=—1———§2— , Sin@ = an
1+n 1+n
Rx - Rz
6 Y = c086 = ——=t

Figure 2.3 An equivalence between a normalized 2-port adaptor and a 2-port adaptor cascaded
with a pair of inverse scaling multipliers.



Another zeroth-order two-port that is of interest is the gyrator, which is shown in Fig. 2.4
together with its WD equivalent. Again, using the chain matrix in Fig. 2.4, together with Eq.
(2.4) and Eq. (2.6a), the corresponding voltage wave scattering and transfer matrices for the
general port references R and R, for the gyrator are given by

5. (RR+R) ~(RR,-F) HER '
A | 2RR,| RR,-R* RR,+R* |B] |B (2.92)
[Bl:l__ 1 "(Rle_RZ) —2RR, Al =S Al

B,| RR,+R*| 2RR, —(RR-R*)|4A,]| {AJ (2.9b)

For normalized case, we have R =R, =1, Eq. (2.9) reduces to the scattering and transfer

matrices in Fig. 2.4.

I I '
o—— R <—0 A B
+ + 1 2
= oO——p— —3»—0
R =R, =1
RV, > ( v, R, e RE L
_ _ O—at—(—t— 0
o 0 B, A,
cos@ -—sin8 -1 cos@
Y = 0 RIV, Ss z[ N0 QJ , Ty = .1 [ 6 }
I YR 0 -1 sin Ccos sinf | —cos 1
2
where cosG=R——21, sinf = ZR, = R=cot(~6—)
1+R 1+R° 2

Figure 2.4 A gyrator and its WD image

We can see that the flowgraph of the gyrator is essentially the same as that of the ideal
transformer except for the negation of B, in Fig. 2.4, and is equivalent to the rotation operator,

also known as the Givens rotator [2].
For 2-port adaptors, we choose to label the rotation angle on port one. However, different

orientation for the 2-port adaptor may be needed for convenience. Fig. 2.5 and Fig. 2.6 [3] show
some of the equivalences between normalized 2-port adaptors.




O—— -0 o3> ——0 O—»— 0
6 = -6 = 2 =
O—<— —&—O O—<— —<<—0 o-O= ~O~<0
-1 -1
(a) (b) ©
-1 .
- 9-Z ) e+§ ) g-e

2
|
(d) (e) ®

Figure 2.5 Normalized 2-port adaptor equivalences.

A Un B, A n B,
o O —3—0 O3 —(O—>0
n 6 = o n
o——0O— ——0 O —O—20
B 4 B 4,

Figure 2.6 Shifting a pair of scaling multipliers through a normalized 2-port adaptor
(n can be complex).

2.3 The unimodular multiplier section and its analog equivalent

The only additional two-port element that is required in extending real two-port networks
to complex two-port is the unimodular multiplier element [4][2], as shown in Fig. 2.7. Here, we
derive its analog equivalent in order to show that we are still dealing with WD circuits, i.e., the
unimodular multiplier element has an analog equivalent circuit.




Ao > O B, )
, _[o e’“} _l:e’“ 0
e’ 11 o7 o 1
B 0—<—0—<—0 4,

Figure 2.7 Unimodular multiplier section with its scattering and transfer matrices.

One approach is to obtain from the scattering matrix the corresponding two-port admittance

parameters. Using the relation Y =2(I+ S)_1 —1I, where I is the unit matrix, we obtain

jcot a 1—jcot o jeot @ jeot a
Py - Py P P’y 0 1 I V
Y= 2 2= 2 2 { ]=Y1+Y2, [IJ=Y|:1

U A A -1 0 I V:!
-1- t— ot — —jcot— cot— 2 2
Jco > JcC 5 J > J 5 (2.10)

which is expressed as the sum of two admittance matrices, Y, and Y,. These two admittance
matrices correspond to a series connection of an imaginary resistance(Y,) and a gyrator with

R =1(Y,) respectively, as shown in Fig. 2.8.

I Z=—jtan-g- 1 I 1,
+ O }F—i—0 + + A= +
Y v, v )C v,
— 0 O — _ . —
o— o)

'cotg —-'cotg—
— J 2 J 2 0 1
Y =
. a .o Y =
—_]COt'E _]COt—Z— -1 0

Figure 2.8 Admittance matrices for the imaginary resistance and the gyrator (R=1).

Therefore, the normalized unimodular multiplier section in Fig. 2.7 has an analog equivalence as

shown in Fig. 2.9.
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o
Z=—jtan<
jianz
Il 12
A O——3—0B, + R=l +
s & R=1Y, ) V, R=1
B O—<«—0O—«0A, _ _
© o}

Figure 2.9 Unimodular multiplier section and its analog equivalence

If port #2 for the unimodular multiplier section is open-circuited (i.e. A, = B,; I, =0), the

corresponding WD one-port terminator and its analog equivalent is shown in Fig. 2.10.

I
A O—>— -
. +
O < v jeot=
2
B, O——-
(a) (b)

Figure 2.10 (a) One-port termination of an unimodular multiplier section with port #2 open-
circuited; (b) its analog equivalent.

2.4 One-Port Dynamic Terminations

In this section, we derive a number of one-port terminations which are used in the synthesis
process. Consider a section of uniform lossless transmission line with characteristic impedance R
and a one-way delay of 7=17/2 seconds, where T can be associated with the sampling frequency,
as shown in Fig. 2.11 together with its wave digital image [1] [3]. The analog circuit in Fig. 2.11a
is referred to as the unit element (UE).
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I I
+ O <O+
R=1
V R=1 . |R=1V, ©
—0- O—
€Y (b)

Figure 2.11 (a) Unit element; (b) its wave digital image.

The chain matrix for this section is given by

Vi1 |cosh(sT/2) sinh(sT/2) [V, | K A
L | |sinh(sT/2) cosh(sT/2) | -1, | | -T, 2.11)
Using the mapping z =e*’, we obtain the WD equivalent as shown in Fig. 2.11b. To derive all

the necessary one-port dynamic terminations that we are going to use in the following chapters,

we terminate port #2 of Fig. 2.11a with an imaginary resistance of jcot(ct/2) (see Fig. 2.10b) as
shown in Fig. 2.12a.

I, e
A o3>
v © 1
() (b)

Figure 2.12 A one-port dynamic termination: (a) analog circuit; and (b) its WD equivalent.

From Eq. (2.11), the driving point impedance is given by

cosh(s—T—)—YQ——ksinh(sZ)
¥ TN TSy Y@
Lo ( T\ Y ( T) -1, 2
| hl s— 2
sinh (s 5 ) L cosh| s 5 @12

In the scattering domain, the corresponding reflection coefficient is given by

B _V/L-1_ i T
Bt B = where z=¢
A v+l (2.13)
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The corresponding wave-flow diagram follows easily from Eq. (2.13) and is shown in Fig. 2.12b.

There are two special cases of interest for the circuit in Fig. 2.12a; viz. ¢=0 and ax=7.
Using the complex frequency variable mapping defined by

sTY eT-1 z-1 T :
=tanh| — | = = e— = e =T
4 ( ) eT+1 z+1 7 4 27 t=e (2.14)

2
where v is referred to as Richard's variable [6], the one-port complex dynamic termination

reduces to two real cases, which also have lumped element equivalents, as shown in Fig. 2.13.

R 1 = C - ]. &~ Z.-l
Bl

=y

0
1 -
1 v o 0 o——T

-1
oO=T7 O AIO-P‘O'—“I
‘/1 R=1 = L=1 (_) Z—'l
—_ T
Y 6 B,o——

Figure 2.13 Real one-port dynamic terminations.

A two-port that is closely related to the UE is the quasi-reciprocal line (QUARL), which
does not have the same delay in both transfer directions. However, the sum of the constant group
delays is the same in the transmittance. Fig. 2.14 shows two instances of a QUARL which are of
importance for wave digital filters.

o . Z_.;. 20 Fo RS S— Z—x S — [e B 9]
O—<—{ S—<—0 o <% o o—<—| ;' —<—0
~— ~
unit element QUARL QUARL

Figure 2.14 Unit element and two instances of a QUARL that are equivalent to within a constant
group delay in the transmittance.

Two other important one-port terminations are the resistive load and a voltage source in series
with a resistor. Using Eq. (2.2), we can derive the WD images as shown in Fig. 2.15.
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I
o]
|
)
<

(b)

Figure 2.15 Resistive one-port terminations and their WD images.

2.5 Belevitch's Representation of Lossless Two-Port Networks

The usual approach to characterize a lossless two-port network with port references R, and

R,, as shown in Fig. 2.16a, is to use normalized scattering variables

= Vit R, V=R

it T, \/IT; B, = 5 \/E
which are known as the incident and reflected power waves, respectively [S]. Power waves are
scaled (normalized) voltage waves (see Eq. (2.2)), and are used in the following chapters for
convenience. As seen in Section 2.2, one can convert a voltage-wave two port to power-wave
two port by simply inserting an ideal transformer (see Fig. 2.3). The port references for power
wave circuits are usually ignored, as they may all be set to one for convenience, and the resistive
terminations are accounted for later with the insertion of appropriate inverse multipliers.

i=12 (2.15)

Belevitch [5] presented three useful groupings of the scattering variables and coefficients
for real lossless two-ports:

o P R Y O . [ B

where S, T, and H are 2x2 matrices referred to as the scattering, transfer and hybrid matrix,
respectively. Fettweis modified Belevitch's theorem for complex lossless two-ports [7] and
showed that a canonic representation of the scattering coefficients can be expressed using three

polynomials and a unimodular constant, which take on the following forms:
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1[og h He 1 [-og. of.] A
flon g’ —oh.| -f g (2.17)
Lt o AA—
_ B, +
LOSSLESS : <
N vor| B
4, _
< A
ZZ
@
B,=2V,—E, D
LOSSLESS ‘
N A =E
G B =2V, —F ,=E, G
(b)

Figure 2.16 (a) A lossless two-port network N between resistive terminations, and (b) its wave

digital equivalent.

The polynomials f, g, & satisfy the following conditions:

1)

2)

f=f(y), g=g(v), h=h(y) are real or complex polynomials (i.e. real or complex

coefficients) in some complex frequency variable y. The subscript asterisk denotes
paraconjugation, ie., f.(w)= f (—-w’“) where the superscript asterisk designates ‘complex

conjugate’. Due to the conformal nature of the mapping w=(z-1)/(z+1), this

representation also holds for the wave digital domain, and paraconjugation here means

£z () alet)=2ms (@) L mle)=mn (@) (2.18)

where m is the highest degree in S (Note that it is possible for g to be of lower degree

than g.).

g(w) is a Hurwitz polynomial with all its zeros strictly in the left-hand plane, and g(z_l)

has all its zeros outside the unit circle in the z™* plane.
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3) The three polynomial f; g, and 4 satisfy losslessness
88, =hh. + ff. (2.19)
which is the analytic continuation of the Feldkeller equation.
4) ois complex but unimodular (i.e. [6]=1).

5) We can see that by rewriting Eq. (2.19) as

2

T

2
L for y=jo (=) where “’zta“(”z‘) (2.20)

LR
8

which clearly shows the complementary nature of the scattering coefficients, where f/g is
defined as the transmittance and h/g is the reflectance. Both transmittance and reflectance

-+

are passive (bounded) functions, i.e.,

|_J:
8

h . -
<1 v =jo (zl-:e
4

=i, ) 2.21)

ARNIA) .
6) The zeros of f are called transmission zeros. We have (—) = (_é: for transmission zeros

on the W = j¢ axis or in the z™* domain for z™ = ™" (unit circle). From Eq. (2.20), we

have

g (2.22)

For transmission zeros with Rey >0 ( [z‘1|<1, i.e. inside unit circle), the passivity

property implies that

(2.23a,b)
where Eq. (2.23b) follows from Eq. (2.19) with ff. =0.

7) A function defined by

sereplg] o)
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will be referred to as the delay. By substituting the expression for the reflection coefficient

h{ _iw ; . . .
(e )=p(w)e™® into Eq. (2.24), it can be readily shown that

5(e'jw° ) =j %((—2—)0—)2 - ¢)(a)o ). The reflection coefficient of a lossless two-port evaluated at
0

a transmission zero, e, has the property p(w,)=1 and, because p(@w)<1 V o, we
have p’(@,)=0. It follows that 8(e*)=~¢(w,), i.c., 8(e7™) is the return group

delay and, as was shown in [16], —¢"(@, ) > 0.

We can associate a transfer function to be realized with either scattering coefficient f/g
(transmittance) or h/g (reflectance). The criteria governing the choice of realization are [8]:

1) the total number of 2-port adaptors (planar rotations) in the realization.
2) whether it is important to tune each transmission zero individually,

3) or to tune each reflection zero individually.

Generally, choose f/g if point (2) is of importance, and 4/g for point (3).

2.6 Cascade Connection of two two-ports

A cascade connection of two lossless two-ports N, and N, is shown in Fig. 2.17. The

transfer matrices of N, and N, are given by
‘:Bl} ___1_|:O'aga* ha j||:A2a] I:Blbjl z_}_{abgb* hb:”:AZjl
Al fl0he 8| Bu] Avl K19 & B

_ o | B2 o [Aw
- Ta[sz b [sz] (2.25)
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fFr "B N A T _ -——=
c—-»A’ By T Dy —
’ A 0
® : | N, |R, "V, V, Rl N, ||
ﬂ-—l ﬂ——c—ﬁ——— B e
Bl A’Za Blb !AZ

®)

Figure 2.17 (a) Cascade connection of N, and N,, and (b) its signal flowgraph.

A direct interconnection between the two two-ports requires V,, =V,,, I,, =-I, and R, =R,. Tt
follows from Eq. (2.2) that A,, = B, and B,, = A,. Together with Eq. (2.25), the transfer matrix

for the combined network N is given by

r=r1 =1 % " h
LT o g whete (2.26)
o= C).ao~b 4 f = f;sz » 8% gagb + Gaha*hb ’ h= hagb + Gaga*hb (227a_d)

We consider the situation where T, =T, corresponds to the transfer matrix of an ideal-
transformer (2-port adaptor) (see Table 2.1). Extracting this two-port on the left leaves a

remainder network with T, = T,”T where the canonic polynomials are given by

f,=fsin®
8, =& +hcosb
h, =h+gcosf

o, =0 (2.28)
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as shown in Fig. 2.18a. This extraction is often used to force A, to have a desired factor, e.g. 7.
In this case
h. o
cosf=——(z7 =0)
g (2.29)

which can always be satisfied because the reflection coefficient 4/g is bounded by one everywhere
inside the unit circle (see Eq. (2.23)). Also note that the extraction of a 2-port does not change

the zeros of f.

Alo—-w—-
Nb
< -0 A,

y
R
7
=
(#] o]
=

B, 0—=t—

=
i
5
TN
0|
N~ S

cos 6 = ~—h~(z"l =0)
g

(2) ®

Figure 2.18 Extracting a 2-port adaptor, which forces a z™ factor in & for the remaining

network.

Extracting a 2-port in the wave digital domain is equivalent to extracting an ideal transformer (see
Fig. 2.18b), which is a lossless element. Therefore, according to classical network theory, the

remainder network N, is also lossless.

2.7 Reflection-Free Property

A two-port network can be implemented using an interconnected network of smaller
adaptors. An important consideration is to choose reflection-free ports for a direct
interconnection of adaptors so that there are no delay-free loops (i.e. at least one delay must
interpose somewhere along the loop) and, consequently, the structure is computable [11].
Computability allows us to write down an ordered sequence of computational steps for the
filtering algorithm without creating infinite loops. Sedlmeyer and Fettweis [12] showed that for a
direct interconnection (equal port reference) between two adaptors, either port can be made
reflection-free (the reflected wave becomes independent of the incident wave at the reflection-free
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port). The reflection-free property can be satisfied by having at least one factor of z™' for the
reflection coefficient (B,/A;) looking into the reflection-free port. The situation is illustrated in

Fig. 2.19, with two interconnected sub-networks N, and N, that share one common port, and N,

is said to have a reflection-free port #2.

B, =A,
A O—3— H—— —»—0 B,
N, < N,
B, O—<a— <5 —<—0 A
Ap|= By
B, 1 -1
—a2 — U,
Ba_ oip(z)

Figure 2.19 Direct interconnection of two adaptors with port #2 reflection-free; F'is a rational

function of z7*.



CHAPTER II

SYNTHESIS OF PIPELINEABLE COMPLEX LOSSLESS (UNITARY) TWO-PORT WD
CIRCUITS

In this chapter, we derive a pipelineable, complex, lossless (unitary), two-port network that
will be referred to as the pipelinable unitary (PU) structure. The derivation of the circuit is based
on iteratively interchanging the 4 and f polynomials [9] (see Eq. (2.17)). A way of obtaining the
frequency response for the PU structure in the digital domain is also given. Three different forms
of representing the polynomials can be used in the synthesis process, namely the coefficient, DFT-
sample, and the zero form. We discuss the merits of each of these representations and their
associated synthesis procedures. Finally, a general 1st-order complex section will be derived

using the PU structure that is used in the cascade structure.

3.1 The process of interchanging the . and f polynomial

The main step in the PU-structure synthesis is the process' of interchanging the 4 and f
polynomials. In this section, we discuss what this step means in both the analog and WDF-

domains.

Consider the two-port network N as shown in Fig. 3.1a, the scattering matrix can be

factored into simple factors as follows
§=1 o1 1/ Ass,
el f -on| |1 0lgln o 3.1

0 1
The two-port network corresponding to the 1st factor S, = [1 0] is a trivial two-port that

corresponds to a simple feed through in the digital-domain, and the 2nd factor describes a

S ___Lhz O, fou __l_f ~Oh.
2_82 fi —O.h. _g h o (3.2)

20

network N,:
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where f,=h, g, =g, h, = f, 0, =—0. Therefore, N, corresponds to a network with 4 and f

interchanged.

|
|

%—m}

1[r o 1/og. A 1 [-og. o 1
S=—- =— =— = —

g[f —G’J ! f[dhx g} H —chx{—f g] H: ofx{—h 8
® (b)

Figure 3.1 Decomposition of a two-port network which amounts to interchanging 4 and f.

A circuit that realizes a factorization of the scattering matrix S =8§,S, is shown in Fig. 3.1b,
which involves two identical circulators. A 3-port circulator is defined in Fig. 3.2a, and the

corresponding WD circuit is shown in Fig. 3.2b.

Ao > 0B,

4 B,

B =A;, B,=A, By=4,
(a) ()

Figure 3.2 (a) A 3-port circulator, and (b) its WD circuit (just a trivial wiring problem).

Note that a WD simulation of a 3-port circulator is rather trivial. The resulting WD image of Fig.
3.1bis shown in Fig. 3.3.
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A O—p é‘
B o—= <
B
A B, !
O—p— e
N
= NZ
(. 8 h, O}
B A X
B,
B, 0—== 2
Ao | >
@ == 4
®
4 B,
A B
L=h
_ . £=8
{fz’ gZ’h'Z’GZ} h=f

©

Figure 3.3 Interchanging /4 and f only amounts to a trivial routing problem in the WDF-domain.

3.2 PU synthesis algorithm

The synthesis algorithm for real two-port networks was first introduced by Rao and Kailath
[10] and modified by Fettweis [9] using a network theory approach. In this section, we extend
this to complex two-port networks using only one additional two-port element, and the
unimodular multiplier section [4][5], as shown in section 2.3. The algorithm is quite simple, and

step-by-step instructions are as follows.

Consider a two-port network N, described by the three polynomials f,(z), g (z™), and
R, (z™") of Nth degree shown in Fig. 3.3a. By first extracting a unimodular multiplier section with

the proper parameter, we can ensure that for the remaining network, an extraction of an additional
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real 2-port adaptor can force a factor z™ in the / polynomial. The parameter of the extracted
unimodular multiplier section is given by ‘

Q= arg[——————h1 ©) ) -7

&(0) (3.3)

and the remaining network is shown in Fig. 3.4 together with its analog equivalent.

jnSs
A — 4 = —1 . Al)=4k")
o—>—o> N, < A~ |25 A e ()= g,(z")
e’ fis gl’ h, > B ) C ]gl, gu ;11 5 1 1

o—g—0—-<H - A - Sl —jeyy f -

Bx % —b-gz é O Oy ——02 l(z l)ze ! ]’L1<Z 1)
6, =e 0o

(2) (b)

Figure 3.4 (a) Extraction of an unimodular multiplier section, and (b) its analog equivalent.

The next step of the algorithm is to extract a 2-port adaptor with the parameter

A (0)]_|m(0)]
£0)] [(0)] (3.4)

to ensure that for the remaining two-port N,{f,, &, ., 0, }, we have ,(0)=0. See Eq. (2.29)

cosf, =

for the choice of the extraction parameter. This is shown in Fig. 3.5.

A B,
C——0— o ]\/‘2 S ®]
OO0 04 O, O
B, 4,

(a)
Figure 3.5 (a) Extraction of a 2-port adaptor, thus forcing a factor of z™ in the 4 polynomial,

and (b) its analog equivalent.

The unimodular multiplier section and the 2-port adaptor always go together to force a factor of
z”! in the & polynomial; therefore, we can group them together and rewrite
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f,=fsin6, , g, =g +e " cosh , h,=e’h +gcosb,, 0,=e""0, (3.5

Thus together with Eq. (3.4) we obtain A,(0) =0. Next, we interchange %, and f, so that the
remaining network ]%{]22, 82» iALZ 62} is described by ];2 =h,, &, =&, }?2 =f,, 6,=-0, as

shown in Fig. 3.6. Note that this is just simple routing problem in the WD-domain, while

iniplementation of circulators in the analog domain is difficult.

A o—— = Nz
B ej“‘ 91 l l Lo gzv f’z
, o—~—0 i>< 0,
Bzc 25 %
Ao o
h=h
gz =& 7 (0) 0
Az =f B
6-2 =—0,

()

Figure 3.6 (a) Interchange 4 and f amounts to trivial routing problem in WD-domain; (b) analog
equivalent that involves circulators.

Note that since the extracted two-ports are lossless, it follows from a classical network theory
result that the remainder two-port also is lossless (see section 2.6). At this point,

]?2(0) =h,(0)=0. After the interchange, we repeat the first two basic steps, namely the
extraction of a unimodular multiplier section (¢, = arg(ﬁZ (0)/8, (0))—-7() together with a 2-port
adaptor (cos8, =tﬁz (O)/ 2, (O)') as shown in Fig. 3.7 to force ﬁz(O) =0. The remaining network
N3{f3, 8 s, 03} is described by )

£, =fsing,, g =8 +e hcosb,, hy=e7%h +§,c086,, 0, =e "6, (3.6)
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—jmn%L -jm%
n:l C m,:1
—1R=1 = =1 -
AT IR 5< 3
B_ 3 3
« i n, = tan(8,/2) R n, = tan{8, /2)
A= 2
B .
F.. O
®)

£ 8
(%]

hy

Figure 3.7 (a) Extraction of another unimodular multiplier and a 2-port; (b) its analog equivalent.

Since £,(0)=0 and ,(0)=0, and since g,(z) must have all its zeros outside the unit

circle, it follows from the Feldkeller equation gg. = hh, + ff. that g3*(z_l) must also have a factor

of z7*. The factor of z™ which is now common to f, g., and % can be extracted using a QUARL

section [9] (see Fig. 3.8). In this way the degrees of the original 4, g and f are reduced by one,

i.e., the degree of N; is equal to N—1. The order reduction of g3(z"1) is accomplished by

forcing the leading coefficient of g3(z"1) to zero. Another interchange of the 4 and f polynomials

results in the circuit shown in Fig. 3.9. The seven steps described above lead to an order-reduced

f3» &> and h, that describe a lossless two-port, and will be referred to as the basic extraction step

for the PU structure.

Note that in the analog domain, the QUARL section and the second

interchange can be combined into the circuit as shown in Fig. 3.10 [9].

N

(2

®

Figure 3.8 (a) A QURAL section , and (b) its digital equivalent.
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(a)

(b

iy

)

R=1

(

() (b)

Figure 3.10 Combining the QUARL section and the second interchange.

The process of performing the PU-step is repeated iteratively until a zeroth-order network
remains (N =0). Next an extraction of an unimodular multiplier and a 2-port will force £(0) =0,
which is just a feed through, in the remaining network, and f/g is unimodular. The zeroth-order
network can also be realized using the basic PU step but with the last 2-port being a decbupling 2-
port, i.e., cos6,y., =1 (B, =—A, and B, = A, for the last 2-port). This is shown in Fig. 3.11a.
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(®)
Alo-»—— - - - - O
ej"‘! 9:‘ l l ejo:“l 9i+1 eiazmx By ef&zmz — ef(a:mz—n)
Blo—-ﬂ—o— -G-X—'ﬂ-o- —%—X:: - - - 0—4—0— =
B,o—= < -
Ao O - - - O—p
©

Figure 3.11 (a) The basic extraction blocks, and (b) their analog equivalents
(c) simplified version of the last termination.

Note that the algorithm should automatically reach the last decoupling 2-port with the expected
value of cos,y,, =1 because of the structure's design. A value different from one means either
that there is accumulation of error during the extraction, and higher precision should be used
during the calculations, or the input polynomials do not satisfy the losslessness condition
gg. = hh. + ff.. The necessary condition cos6,,,, =1 offers a useful verification of the synthesis
solution. The last 2-port with cos8,,,, =1 corresponds to a multiplier with a value of -1 (see Fig.

3.11a) that can be combined with the last unimodular multiplier e’® (ie. 1 is subtracted from
the angle of the last unimodular multiplier) and the circuit is simplified, as shown in Fig. 3.11c.
The second interchange of 4 and f is not necessary. However, it can be used as a degree of
freedom to allow the designer to pick a more suitable value of cosf for quantization purposes (
i.e., either choose k(0)/g(0) or £(0)/g(0) ).
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The general PU structure for the digital domain in Fig. 3.11b can be redrawn to avoid the
crossing of connections and is shown in Fig. 3.12. This version of the general PU structure makes
it easier to visualize the signal flow, and it is especially useful for obtaining the frequency response

which is described in the next section.

efam ’ A3 efazm: A
B, 0-O—— L <« 0<O otk
B4 9i+l B3 é}
A o—p— 2 n o - - - o—p— O
ej““ 61 l l BS AZ ef"‘zmx By
B ot - 0% - .. o<t -@-—oéz——-o

Figure 3.12 Another version of the general PU structure redrawn to avoid crossing of

connections.

The PU structure is evaluated in a particular sequence imposed by the location of the delays
within the circuit. With reference to Fig. 3.12 and assuming that the two subnetworks are

connected, the computational sequence which must begin at port #2 is as follows:

1. With B, and A, as inputs, evaluate the 2-port with 6,,,, as the rotation angle and obtain

the two outputs A, and A, by performing two additional rotations by e’ and e,

2. With A, and Az as inputs, evaluate the 2-port with 6, as the rotation angle and obtain the
two outputs B, (by performing an addition rotation by ¢’®) and B,.

3. With B, and A, as inputs, evaluate the 2-port with 6, as the rotation angle and obtain the

two outputs B, (by performing an addition rotation by e’y and B,.
4. Replace B, with B; for the next sampling instance.

Now we return to step 2 and repeat with appropriate changes to the index i.

A summary of the PU synthesis algorithm is shown in Table 3.1.



. Given three input polynomials f, g, , and N, the order of the filter.

. For the ith extraction step in which i goes from 1 to 2N +2,

. let COS Q. = l—é(—-()z - sin 61' =.1- 0032 91' , o, = arg(h(o))_ T
5(0) | 8(0)

. Update the three polynomials:

f & fsin6,

g g+ehcosh,

h ¢ e7®h+gcosé,

g8

. Interchange 4 and f. .

. Ifiiseven: divide # and f by z™'to reduce the order by one. The g polynomial will be

degree reduced automatically.

. Go back to step 3) with the next i until i > 2N +2.
cos8,,,, should be 1.

. Update the last unimodular multiplier:

Oy € Cgppy =T

Table 3.1 Summary of PU Synthesis Algorithm.

29
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3.3 Computation of Frequency Response for the PU Structure with quantized multipliers

In this section, we present a direct method (as oppose to the indirect method of taking the
DFT of the impulse response) to obtain the frequency response in the digital-domain, so that the
more involved time-domain simulations can be avoided.

The frequency response can be obtained from the product of 3 by 3 transfer matrices T,

each of which represents a basic PU extraction block, and the 3 by 3 matrix for the last
termination. Fig. 3.13 shows the 3 by 3 matrices representing the PU block.

ol
B, 0t—(O—o < o ’ ‘ o—— 0 A,
6,
Ao " o
efax 91 | l
B ot—(O—o0 o % oO—— 0 A,

B, e 0 0 . sin 8, 0 0 cos? @, +sin’8, —cosf, O 1 0 0] {4 4,

Al=lo 1 ol -2] 0o 1 —coss, |2 —cos6, 1 o | |o z of|B|=T5
o | SInG 5 .2 sinéd, .

B 0 0 e 0 —cos8, cos’@, +sin®f, 0 0 sing,| {0 O 1] |4, A,

Figure 3.13 3x3 matrices for each subsection of the PU extraction block.

In the case of lossless 2-ports (i.e. cos> 6, +sin” 6, =1), the 3 by 3 transfer matrix T, for the PU

block can be simplified to

B+ %m0 0 by 0 0 1 -a, O0}1 00
T=| 0 1 0 %— 0 1 -a|—|-a, 1 00 z0
0 0 B+jx| |0 —a 1| ™| 0 0 b,|I0 01
! (:Bi+1 + )bi "(Bm + X )biai+1z 0
= bh “in z ~a;b,,,
S (ﬁz + in)aiai-é-l '“(:Bi + in)aiZ (ﬂx + jx;>bi+1 (3.7
where a,=cosf,, b =sinb,, ¢ =pf +jx,. However, when the eight multipliers

{a., b, B, %:» @.ys by Buys Xy} are quantized, the transfer matrix of the PU block can no

longer be put in the lossless form. Instead, the transfer matrix is given by
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B+ ik O 0 i b, 0 0 a. +b.> -a, O 00
T= 0 1 0 |=o0 1 -q -bl— e 1 00z o0
i+1 0 i+1 0 1

2 2
-a, a“+b,

0 0 B+jx] L0
| (ﬂiﬂ + X )bi<ai+12 + bi+12) "(ﬂm + JXin )biai+lz
’ -a b4
bb,. : .
' ()B +sz) 4,4,y _(ﬂi +JXi)aiz

In order to obtain a frequency response of a quantized design, we form the product of all transfer

z t+1

1
0
0
(ﬁ '*‘JX; CZ +b x+lJ

(3.8)

matrices T HT for each PU block (i=1(2)2N), together with the transfer matrix for the last

i=1(2)2N
termination section as shown in Fig. 3.14.

Jen
eiﬂ
A o—pp—] g
ol
B, o <%
y
) (.Bm + jxm)bi(amz + bmz) "‘(ﬁm + X )b i3 Z 0
T= oh -, z -ab, |
o (.BL + in)aiai+1 —(ﬁi + in)aiZ (.B; + X )(aiz + bi2 )bi+l
) (.Bzmz + JXowez )b2N+1 0 0
X sin@ 0 ! O <
e 0 (lBZN-rl +jX2N+l)a2N+I (IB?.NH +jx2N+l )(a2N+12 + bZNH )

Figure 3.14 The overall 3 by 3 matrix for the PU structure.

Due to the fact that A, = B, at the last termination section, we can reduce the 3 by 3 matrix

| A

to the 2 by 2 scattering matrix, which is given by

T32 + T31 T33 (Tzz + T31 ) - TB (Tsz + T31 )

BI} 1
!:BZ B T, + Ty [le +T, T, (Tzz +T, ) =Ty (le + Tn)

Therefore
(3.10)

8( '1)=T22+T21 ) f(z_l)=T12 +T, h(z_l)=T32 +T;
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The frequency response for the transmittance is given by —Ji(z_l) and the reflectance is ﬁ(z’l).
8 8

Note that the factors outside the 3 by 3 transfer matrices can be ignored when evaluating the
transfer functions because they appear in both the numerators and denominators.

To wverify the PU synthesis and analysis algorithm, pick an arbitrary set  of
{ai, 6. I(D2N +2} and obtain frequency response on N +1 frequency points along the unit

circle using Eq. (3.10). These frequency points can now be used as the input sample
representation for the synthesis algorithm. Resynthesize the data using the sample representation

should result in the {ai, 6. (12N + 2} we picked at the outset. If values for 8, are critical (i.e.

close to 0 or 7/2), the roundoff error is significant.

3.4 The associated synthesis procedures for 3 different polynomial representations

The f, g, and % polynomials for the synthesis process can be represented by three different
forms, namely the coefficient, DFT-sample, and the zero form. The -coefficient-form

representation for a polynomial p is given by
N
P(Z_l)zzcn(z_l) (3.11)
n=0
where ¢, are the coefficients of the polynomial and N is the degree of the polynomial. The zero

form representation is given by

ple?)=c]]lz"-z) (3.12)

where ¢ is the constant factor, N is the degree, and z;, are the zeros of the polynomial. Both
representations are straight forward in the synthesis process except that the zero form requires a
zero-finding routine for updating the g and s polynomials. The DFT-sample representation

defines samples for a polynomial p(z™) evaluated along the unit circle, which are given by

2

po=pw) ., w=e ¥, k=0DN (3.13)
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where N is the degree of the polynomial, and
p(0)=),p
; k (3.14)

The associated synthesis process requires minor modification for the DFT-sample representation
as shown in Table 3.2.

The DFT-sample representation synthesis algorithm effects order reduction implicitly (see
step 6 in Table 3.2) without having to do an actual degree reduction. Although, after each basic

extraction step it is possible to obtain a sample set of lower degree, we choose to retain the
original size in order to make the algorithm easier to implement, i.e., we allow the redundancy to

grow.



1b.

Given three input polynomials f, g, &, and N, the order of the filter.
Compute samples on the unit circle

o= W), g =gW*), b =n(w*) k=0)N

2r
_pE
where w* =e V.

For the ith extraction step in which i goes from 1 to 2N +2,

H0)

= sin§, =41-cos’6, o =arg -
g(0) (8(0))

Let cos6, = ’

where 2(0) =) &, and g(0)=)g,.

Update all samples (k = Ob(l)N ) for the three polynomials:

fi < f.sin 6.
g, & g, +e%h, cosh,
h, e %h, +g,cos0,
8 < &

Interchange all 4, and f,.

If [ is even, reduce the order of # and f by updating the samples:

h,
Ay é—-.——"l? o Je <_’I%
w w
Go back to step 3 with the next i until i > 2N +2.
cos6,,,, should be 1.

Update the last unimodular multiplier:

Oynig € Oy =T

Table 3.2 Summary of the Synthesis Algorithm via DFT Samples.
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3.5 Design Example for the PU Structure

In this section, we use an 8th order band-pass filter example to illustrate the difference in
synthesis results using the three forms of representation for the polynomials. The input data is
from Jarmasz's Ph.D thesis [3], and is converted to the z~'-domain with 12 digits of precision.
This set of data caused premature termination in the PU synthesis algorithm because the
Feldkeller equation was not satisfied accurately enough. Therefore we regenerated the input data
so that the Feldkeller equation was satisfied to 15 decimal places, and the results are given in
Table 3.3. The input data is in zero form and will be converted to the required polynomial
representation by the PU synthesis program discussed in Chapter 5. All the calculations for the

synthesis program are based on a precision of 18 digits.

fzeros magnitude angle / h zeros magnitude angle / 7
constant 0.00090521 0.0 constant | 0.938442111704 0.0
1 1.0 0430034232 1 1.0 0.351732711368
2 1.0 -0.430034232 2 1.0 -0.351732711368
3 0.0 0.0 3 1.0 0.365109796566
4 0.0 0.0 4 1.0 -0.365109796566
5 1.0 0.320538560 5 1.0 0.385182448776
6 1.0 -0.320538560 6 1.0 -0.385182448776
7 0.0 0.0 7 1.0 0.398308216049
8 0.0 0.0 8 1.0 -0.398308216049
g zeros magnitude angle / 7
constant 0.880673595637835194 0.0
1 1.008341527656365750 -0.399341528997245882
2 1.008341527656365750 0.399341528997245882
3 1.008545764020980650 -0.350675396462379855
4 1.008545764020980650 0.350675396462379855
5 1.023795851013025390 -0.364509517733878304
6 1.023795851013025390 0.364509517733878304
7 1.023471807530125960 -0.385806739150357242
8 1.023471807530125960 0.385806739150357242

Table 3.3 An 8th ordered design example with up to 18 decimal places of precision.

The PU synthesis results based on the three forms of polynomial representation is shown in
Table 3.4. Note that this example is for a real two-port, therefore we expect ¢, /7 =0,£1 V i.



cos®,

i Cocfficient Form DFT-sample Form Zero Form

1 0.938442110231743403 0.938442110231743403 0.938442110231743403
2 0.000000000000000000 0.000000000000000000 0.000000000000000000
3 0.382034996637063182 0.382034996637063168 0.382034996637064448
4 0.000000000000000000 0.000000000000000000 0.000000000000000000
5 0.994879530326316620 0.994879530326316598 0.994879530326326402
6 0.000000000000000000 0.000000000000000000 0.000000000000000000
7 0.383096500999031838 0.383096500999031771 0.383096501007988522
8 0.000000000000000000 0.000000000000000000 0.000000000000000000
9 0.995858180702095568 0.995858180702094174 0.995858180756248036
10 0.334065090667967128 0.334065090667910315 0.334065092864509806
11 0.360640861943750237 0.360640861943088380 0.360640866904119160
12 0.136479907863578986 0.136479907863264483 0.136479911038747653
13 0.932253262419454669 0.9322532624175676%4 0.932253265729075537
14 0.955467770295318026 0.955467770279996041 0.955467805784553804
15 0.140971140077849394 0.140971140142782783 0.140971216910977927
16 0.402851061536305702 0.402851061087418612 0.402851317224768357
17 0.011855555896985612 0.011855555853028907 0.011855835657636921
18 1.000000137921265430 1.000000136507671310 1.000000288742289130

o,/n

i Coefficient Form DFT-sample Form Zero Form

1 -1.000000000000000000 -1.000000000000000000 -1.000000000000000000
2 -1.000000000000000000 -1.000000000000000000 -1.000000000000000000
3 -1.000000000000000000 -1.000000000000000000 -1.000000000000000000
4 -1.000000000000000000 -1.000000000000000000 -1.000000000000000000
5 -1.000000000000000000 -1.000000000000000000 -1.000000000000000000
6 -1.000000000000000000 -1.000000000000000000 -1.000000000000000000
7 -1.000000000000000000 -1.000000000000000000 -1.000000000000000000
8 -1.000000000000000000 -1.000000000000000000 -1.000000000000000000
9 -1.000000000000000000 -1.000000000000000000 -1.000000000000000000
10 -1.000000000000000000 -1.000000000000000000 -1.000000000000000000
11 -1.000000000000000000 -1.000000000000000000 -1.600000000000000000
12 -1.000000000000000000 -1.000000000000000000 -1.000000000000000000
13 -1.000000000000000000 -1.000000000000000000 -1.000000000000000000
14 -1.000000000000000000 -1.000000000000000000 -1.600000000000000000
15 0.000000000000000000 0.000000000000000000 0.000000000000000000
16 -1.000000000000000000 -1.000000000000000000 -1.000000000000000000
17 0.000000000000000000 0.000000000000000000 0.000000000000000000
18 -1.000000000000000000 -1.000000000003691340 -1.600000000000000000
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Table 3.4 Synthesis results for the 8th-order design example (18 decimal places of precision).
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We can see that the last cos@ for all three representations are very close to one. The last cos@ is
set to one to make the overall structure lossless. The three frequency plots for the different
polynomial representation match the nominal result (not shown separately because all the curves
are overlapping and the nominal response is shown in Fig. 3.15). The synthesis results based on

all three representations are acceptable.

Next, we quantize the constant terms (it is known that the overall response of a two-port is
sensitive to these constants) of 4 and g to 9 decimal places to determine how inaccuracy in the
losslessness condition in the input data affects the synthesis results. The input data is shown in
Table 3.5, and Table 3.6 shows the percentage error of cos@, for the synthesis results. As can be
seen, the error grows very rapidly and the last cos@ for the coefficient form and DFT-sample
form are not close to one, while the zero-form yields a much better result than the other two
approaches. If the last cos@ is set to one, the frequency response plot is as shown in Fig. 3.15.
The frequency response for the coefficient form and DFT-sample form do not match the nominal
response. On the other hand, the zero-form gives acceptable results.

S zeros magnitude angle / & h zeros magnitude angle /
constant 0.00090521 0.0 constant 0.938442112 0.0
1 1.0 0.430034232 1 1.0 0.351732711368
2 1.0 -0.430034232 2 1.0 -0.351732711368
3 0.0 0.0 3 1.0 0.365109796566
4 0.0 0.0 4 1.0 -0.365109796566
5 1.0 0.320538560 5 1.0 0.385182448776
6 1.0 -0.320538560 6 1.0 -0.385182448776
7 0.0 0.0 7 1.0 0.398308216049
8 0.0 0.0 8 1.0 -0.398308216049
g zZeros magnitude angle / 7
constant 0.880673596 0.0
1 1.008341527656365750 -0.399341528997245882
2 1.008341527656365750 0.399341528997245882
3 1.008545764020980650 -0.350675396462379855
4 1.008545764020980650 0.350675396462379855
5 1.023795851013025390 -0.364509517733878304
6 1.023795851013025390 0.364509517733878304
7 1.023471807530125960 -0.385806739150357242
8 1.023471807530125960 0.385806739150357242

Table 3.5 8th-order design example with constant term quantized to 9 decimal places.
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percentage error for cos o,

i Coefficient Form DFT-sample Form Zero Form
1 9.6E-09 9.6E-09 9.6E-09
2 0 0 0

3 1.516E-07 1.516E-07 2.1E-06
4 0 0 0

5 2.3E-07 2.3E-07 6.1E-06
6 0 0 0

7 0.000113 0.000113 0.00118
8 0 0 0

9 0.000135 0.000135 0.00040
10 0.0162 0.0162 0.049
11 0.113 0.113 0.101
12 0.148 0.148 0.172
13 0.128 0.128 0.026
14 1.01 1.01 0.28
15 25 v 26 3.4
16 56 56 5.0
17 57 57 98
18 51 51 1.3

Table 3.6 Synthesis results (percent error compared to Table 3.2) for the 8th-order design
example (constant terms quantized to 9 decimal places).

From the above two examples and many more that have been examined in the course of this
research, we observe that the DFT-form and coefficient form always give similar results, and the
PU synthesis is extremely sensitive to initial input data. A slight difference in the input data yields
completely different results. The proper steps for the PU synthesis are as follows:

1) Assume the given f, g, and 4 polynomials satisfy the losslessness condition.

2) Attempt PU synthesis using the simplest algorithm, namely the DFT-sample

representation.

3) If the last cos@ is close to one, the synthesis should give the right solution for the
problem, and the frequency response can be used for a consistency check. Goto (6).

4) 1If the last cos@ is not close to one, use the zero-form synthesis algorithm instead. If the
zero-form gives a one for the last cos@, perform frequency response for a consistency
check. Goto (6).
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5) If both the DFT-sample and the zero-form algorithm fail, regenerate the input polynomial
set by using a zero-finding routine to recalculate one of the polynomials in the Feldkeller
equation. Go back to step (1).

6) The solution for the PU synthesis is completed.

Generally, the zero form representation is less efficient, hardest to implement, requires
longer synthesis time due to more computations in the zero-finding routine. The coefficient and
the DFT-sample representation on the other hand are more efficient and require much shorter
synthesis time. However, the zero form representation is fairly insensitive to input data
inaccuracy, while the other two representations give unacceptable results for the same input data.

m
o
-
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i)
P
[6+]
=3
[
[a]
g — - — - Zero Form
------ DFT Form
— — —  Coeff. Form
Nominal
G Illlllllll’l’llllllllll|lllIIIIIllll{llllllllllillll
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized frequency/n

Figure 3.15 Frequency response plots for the 8th-ordered bandpass example.
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3.6 Derivation of a general 1st-order complex section with reflection-free load port

In this section, we apply the PU structure synthesis and hope to obtain a 1st-order complex
section that will result in a two-port that has a reflection-free load port (port #2), and can be used
in the next chapter as a basic building block for the cascade synthesis algorithm.

Starting from basic considerations, the polynomial set that characterizes a general 1st-order
complex section with a reflection-free load port (port #2) can take on the following form:

F=wP(s —ke™) | g=1+Ae*z" | h=Be" (3.15)

where ke”® is the location of the transmission zero and all the constants {c,y,k,b,¢c,A, B} are

real. In order to induce a reflection-free property on the load port, which is necessary for
computability [1], A must have a z' factor which implies that 4 is a complex constant.

Moreover, one coefficient among the f, g and 4 polynomials can always be fixed [7]. Substituting
the above constraints in the losslessness condition gg. = hh. + ff. yields

Ae* =—7ke™ and  B=,[(1-77)1-k7?) (3.16)

The unimodular constant e” can always be chosen for convenience by cascading the 1st-order
section with a pair of conjugate unimodular multipliers [4]. We chose e” = —¢’® to eliminate one
of the unimodular multipliers generated by the PU cycle and thereby simplify the final realization.
It is apparent that there are four degrees of freedom from Eq. (3.15) and Eq. (3.16), and the

canonic polynomials are given by

F=—p™ (7 —ke™) | g=1-kyle’™z | hz\/(1—y2)(1—k2y2)ef“ (3.17)

We synthesize a PU structure for the above polynomial set that characterizes a general 1st
order complex section using the PU algorithm, with the results shown in Fig. 3.16.

B A N ejwo_ ________ cos 8, =/(1-y*)(1-k*y?)
, o= ' '
ky
9, =
A o—p— €085 sin6,
_eja 93 ' l 2
‘_ R k‘y l__y«
B o0 04, oogf =

Figure 3.16 Synthesis of a 1st-order complex section with reflection-free port #2 using the PU structure.



41

However, there is a problem with the circuit in Fig. 3.16. It can be seen clearly that a direct path
can be drawn from A, to B, without any delay in between (see path with the dotted line), Which
means that the structure is not structurally reflection-free at port #2 and therefore not computable.
For computability, every directed loop must have at least one delay [1]. In order to obtain a
general 1st order complex section structurally reflection-free at port #2 using the PU algorithm,
we interchange ports #1 and #2 and then apply the PU synthesis. The initial polynomial set is

given by

g=g=1-ky?e’™;"
h=-oh =—e* [(1-7*)(1-k*y*)z" (3.18)

where ¢ is initially chosen to be one but is changed to some unimodular value in the final
realization in order to simplify that realization, i.e., a circuit with the fewest number of unimodular
multipliers fixes its own ¢. The circuit resulting from the PU algorithm is shown in Fig. 3.17.
—j® efa’o
—<—<O |

l cosg, =0
— cosf, =y

-1 : -_e_ja 93 I

cos@, =/1-k*y°

-4-—0/12 :A1

Figure 3.17 Synthesis of the general 1st order complex section with port #1 and #2 interchanged.

By redrawing Fig. 3.17 and applying the normalized 2-port adaptor equivalences from Fig. 2.5-6,
we obtain the structure as shown in Fig. 3.18. This structure will be used in the next chapter as a
basic extraction block for the cascade synthesis. Note that a delay is imposed between the path
from A, to B, (dotted line), thus making this circuit structurally reflection-free at port #2 and
therefore algorithmically computable. The circuit is optimum in the number of unimodular

multipliers (there are four degrees of freedom which is the original number) which is

accomplished by setting e = —¢’® and o = —gitered)
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Degrees of Freedom: {k, @y, O, y}

Canonic Polynomials:  f = —%/® (77! — ke ™)
g=1-ky’ez?  h=eR|1-y 1~k

jlotay)

O =-¢

Figure 3.18 A CWD circuit for the 1st-order elementary complex section with a transmission

zero at 77 = ke ™.

3.7 Characterization of a General 1st-order Complex Section

As was shown in section 3.6, the canonic polynomial set that characterizes a general 1st-

order complex section with a reflection-free load port is given by

Fe—p (7 —keT™) | g=1-ky'ez | h= 1=V )1-Ep2)e* . o=-e* (3.19)

with four degrees of freedom. The reflectance evaluated at the transmission zero yields

hy, _; -y . 1-p?

—(ke™® )= e = = = 3

g( ) l_kZYZ ﬁ ’}/ 1_k2ﬁ.. (320)
For a passive (i.e., stable and bounded) reflectance, we have k 2 1 < f 2 1 (see Eq. (2.22)),
which implies that 0 <y <1. Hence, if the reflectance is known, we can solve for ¥ and ¢ using
Eq. (3.20). For the case k =1, the reflectance in Eq. (3.20) is necessarily unimodular, and we
must use Eq. (2.24) and the fact that the return group delays of the overall and the extracted two-

port are equal at transmission zeros, i.e.,
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& (o _ P ( i\ _ =V o __s ion - /__5__ .
g<e ) h(e ) -y = V=5 (3.21)

From point (7) in section 2.5, because 8 >0, this implies that 0 <y < 1.

In summary, the four real numbers {k, @,, C, 7} fully specify a 1st-order complex section
to within unimodular scaling. Parameters ¢« and y are obtained from the value of the reflectance
in Eq. (3.20), and for k=1, y is obtained from the return group delay in Eq. (3.21). These

results are summarized in Fig. 3.19a.

Some noteworthy features of the realization in Fig. 3.19a are as follows:

1) The circuit has four degrees of freedom {k, W,, O, y}, but in practice eight real

multipliers are required: {y, J1=7%, ky, J1=F7’, cosa, sina, cos,, sina)o}.

2) The scattering matrix S, of a normalized 2-port adaptor can be identified with a Givens

planar rotation, i.e.,

- [1—+2 -1 0 6 -—sinf
s =| ¥ =7 S, = €08 7 where cos6= ¥
7 /1—)/2 v 0 1}sin@ coso
sin@ = 41—y 3.22)

By separating the signals in Fig. 3.19a into their real and imaginary parts, a circuit with six
planar rotations can be derived, as shown in Fig. 3.19b. Although S, is lossless, it cannot

be maintained so when the two multipliers, say ¥ and ZW , have been quantized to a
finite number of bits. An analog circuit corresponding to a quantized S, is shown i Fig.
3.20. Clearly, S, is passive (R>0) if and only if I* <1 — a condition that is enforced in
practice to allow the various nonlinear stability arguments to apply.

3) For the important case of a unit-circle transmission zero (k =1), the circuit in Fig. 3.19a
simplifies to an equivalent circuit shown in Fig. 3.21. The series adaptor requires only one
multiplication and four additions [1] and the pair of inverse multipliers can be ignored in
the final realization. Also, the circuit in Fig. 3.21 is a WD equivalent of an analog section
used in the Brune cycle [5] but with a reflection-free port on the right.



A Degrees of Freedom : {k, w,, a, y}
Io_%_-_—_]
Canonic Polynomials :  f =—7' (™" —ke ™)
g= 11— k,},Zeia)oz—l h= efa ,1_72 ’1 _k2y2 o= _ej("‘+“’0)
Jjor ’ a2
Reflectance : ﬁ(/<f€'jm°) L el = fe’
8 J1=-k%?
Stbility Relation: 21 & k31 =  y*<l
! ‘ 2
Return Group Delay : ¢/ (-%(e"%)—g-(e‘j%)j: - Y -=38>0
g —
1-p?
Parameter Value: (kz21) y= —— =C0s6,
jet 1—-k'ﬁ
e
Blo-«—O——l 5
Case: k=8=1) v=,]—
(k=p=1) y=y=—
(2)
Re{A,} Re{B,}
O Lo T e O
O — —»— — —_—— = — = | — —p» — 0
Im{Al} Im{Bz}
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B <d B _[cos® —sin6] 4,
O—<t— 2 2 }——0 B, sin6 cos@ || A,
B A
2 2
Re{B} Re{4,}
O] <% O
O L — <— -0
m{B,} m{4,}
(b)

Figure 3.19 (a) A CWD circuit for the 1st-order elementary complex section with a transmission
zero at 7' = ke™™; (b) an equivalent circuit comprised of rotator operators.
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oo =n)-F)
l+y+E{1-7)
O AAAANA, )

-7y
ne 1+y 1 G=R ©
1+y+1F(1-7y)

S INICS &
Iy1-7* Y

Figure 3.20 Passive (/> <1) quantization of the normalized 2-port adaptor.

" : G = — (@)
j @ \
e o f:—“—"}’ej(%(Z_l_e_jwo)
=Y

A B 2 jay,~
1 '__ O 2 g=1.—-’}’ e’z 1
I h=e"(1-7%)
—O—= —O—= -l
Bl ej“ —1— A2 4 o+1
-7

Figure 3.21 An equivalent implementation of Fig. 3.19a (case k =1) that uses a 3-port
reflection-free series adaptor.

When the eight multipliers in (1) are quantized, the resulting transfer matrix of the circuit in
Fig. 3.19a can no longer be put in the lossless form as in Eq. 2.17b. Instead, the transfer matrix is

given by
(@@ + b2 +bi o, + jo,)z" —aa, -bb,
po|etib 0 bb, (o, + jo,)z” a,a,(®, + jo,)z" -1
0 1 a,(a? +b2)w, + jo,)z™" ~a, (3.23)

where ¢ =a +jB, , e =w +jo, , ¢ =a +jb , ¢’ =a,+jb,. The two multipliers

associated with each rotation are quantized in a passive way (see (2) above) resulting in four
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sources of passivity. For the case k=1 (6, = 6,) realized as in (see (3) above), the transfer matrix

is given by
[ (o, +jo,)z” ~7* 7 -1
Tz[oﬁ +JjB; 0} =7 No +jo) v (e +jo)" -1]
0 1 Yo +jw,)z™ -y (3.24)

with ¥ =cosf, and there are only two sources of passivity. Note that the location of the

transmission zero is directly controlled by the multiplier @, + j®, .



CHAPTER IV

SYNTHESIS OF PIPELINEABLE CASCADE COMPLEX WAVE DIGITAL FILTERS

In this chapter, another decomposition algorithm is presented for the synthesis of
pipelineable, modular, cascade, complex wave (unitary) digital filters (CWDFs). The main

features of the algorithm are the following:

1. The extraction step obviates coefficient-form polynomial arithmetic and zero-finding
operations by using an alternative (sample) representation of the canonic polynomials that
describe the lossless two-port - an idea that was first introduced for real two-ports in [13];

2. First-order sections that effect pipelineability are treated like any other section (they
realize a transmission zero at z~' = 0), thus eliminating the need for special treatment;

3. A fully general Ist-order complex section that can realize a "transmission zero" anywhere
in the z-plane from Section 3.7 is the only section required for the cascade decomposition.

4. Each transmission zero in the cascade realization can be fine tuned individually because

each cascade section realizes a distinct transmission zero.

The algorithm can also be used to synthesize real two-port networks; equivalences are given
between a cascade of two complex sections with ke™® transmission zeros and a 2nd-order real
section. Also, a method is presented for investigating coefficient quantization effects directly in

the z-domain.

4.1 Decomposition of Complex Lossless Two-Ports

As shown in section 2.6, cascade decomposition amounts to factoring the transfer matrix T
T=TT, (4.1)

with each factor having the same form and properties as in Eq. (2.17b). Rewriting Eq. (2.27), we

have the remainder polynomials given by

47
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o f - gih - hig _ &8»8 "'hi*h

g, =-— , = === — .
Y A T (4.28.b.0)

which, by construction, characterize a lower-order lossless (i.e. g,8,. = A + f, f,.) network.

A factorization resulting in a realizable network always exists, as was proved by Fettweis
[14] for the w =(z—1)/(z+1)-domain. However, the mechanics of carrying it out are usually

quite involved. Operations such as zero finding, solving a set of simultaneous equations, or
having to deal with numerically sensitive coefficient-form polynomials are usually required.
However, as was the case for real two-ports, in the process of extracting a complex two-port it is
also unnecessary to find 4, and g, in their order-reduced polynomial form to continue on with the
factorization. The process of extraction followed by the determination of the remainder network
can be greatly simplified if the » and g as well as A, and g, polynomials are given a noncanonic
(redundant) representation, called the sample representation [13]. These are defined as follows:

we assume that f has m+1 factors (transmission zeros), i.e.,

m+l

f=£[fj where fi=z"-z7 , z;#0 , z,,=0 43)

The last factor f,,, =z~ is introduced in order to be able to extract the last zeroth-order section

without special treatment. Such a section is shown in Fig. 4.1.

= = (o O

6, : ? ? :
Q
o=
= _efao o A
o___.o_@_ SO S—

ei%
O——O—'@— e s ¢

Figure 4.1 Two equivalent elementary sections that realize a zeroth-order section.

For each transmission zero z].“, we compute N = m+1 samples of 4 and g located on a circle of

radius r centered at z; 7, i.e.,

{hﬁ,: b, =h(z, +rW"), n=0Um} | {gj,,: g, =gl +rwm), n=0)m} (4.4ab)
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2

j . . N .
where W=¢ ¥ . Typically r=1 can be chosen. However, in some rare situations f.f. in Eq.

(4.2) may become zero at some stage during the extraction. In this case, we have to choose a
different r (say r=1/2) and try again. One strategy that eliminates this problem is to always

choose r to be less than the Euclidean distance between two nearest transmission zeros. Sample

locations for an arbitrary 3rd-order example are shown in Fig. 4.2.

e  Transmission zero

e Sample location

Unit Circle

Figure 4.2 Sample locations in the z™' plane for an arbitrary 3rd-order example.

Assume that we have reached the ith extraction step. It will be shown in the next section

that the sample sets {hm} and {gin} together with the transmission zero z;”, can be easily

transformed to the polynomial set {f, h, g, 0,} which characterizes a general lst-order

m+l
complex section. Sample sets for the remaining transmission zeros, ie., f, = X f;, are
J=itl

recomputed using Eq. (4.2), i.e.,

hin8: = 8P 88~ il :
Iy =[__1"__.___/_"__:I . 8 {_fz__.a_ , J=IN , n=0)m
z 1_Z -1 -

0. [ fifs (4.5)

2 =L

Note that the sample representation of the remainder network is obtained quite easily without
polynomial arithmetic (only complex multiplications and divisions are required), which is a

consequence of the inherent redundancy in the sample representation.
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The form of the recomputation formulae together with the proper choice of {fs s g1 c,}

ensure that the sample sets {hbf.,,}, {gbjn} and the remaining transmission zeros zj_1 describe a

lower-order network. Explicit order reduction is unnecessary and further algorithmic simplicity is
maintained by allowing the redundancy of the sample sets to grow by keeping their size
unchanged. Also, although only sets j=i+1 to j=N need to be recomputed at stage i, we

choose to recompute all the original sets (j =1,...,N) in order to be able to check the consistency

in evaluating the terminating zeroth-order section. The extraction step is depicted in Fig. 4.3.

B,
)
N,
o, J
g h
<o
4,

Figure 4.3 Flow graph for cascade (chain) connection of lossless two-ports.

It can be observed that evaluating the overall cascade at the transmission zero z,”' forces
f./8: =0, which decouples the remainder network N, from the overall network. This means that
the overall reflectance is equal to the reflectance of section N, evaluated at z,”'. Another way of

showing this is by rewriting Eq. (4.2b,c) as

h -—-__.gi. fl___il'_ _ 88 l_ﬁ_}_l_i:_
“Tosnle &) O AR ga. (4.62,b)
and noting that to effect order reduction, the factor f;f. must divide the numerators in Eq.

(4.2b,c). It follows from Eq. (4.6a) that for fi(z,~_1> =0, we must have

B ay_ P a\_8ux( -1)_8(,
_g—(Zz‘ 1)“gi (Zi )—h.* (zi )_h,k <Zf ) 4.7)

4
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where the last two equalities follow from the assumed losslessness of the overall and the extracted
two-ports. The second equality in Eq. (4.7) ensures that the numerator in Eq. (4.6b) also has the
required factor. (Note that we are assuming the usual case that g and f as well as g and f. are
mutually prime.) Applying the definition of paraconjugation (A(z™)=h"(z")z™ where m is the
highest degree in the polynomial set) to Eq. (4.7), taking the complex conjugate and reciprocating

yields —}i(z,.*) =ﬁ(zi*)=§l*-(zi*), which implies that the factor f., which has a zero at z;, also

8i R
divides both numerators in Eq. (4.2b,c) without imposing additional constraints.
For the case 7, = ¢, the factor f,f. has a 2nd-order zero at z,”' = e™*, which means
that the 1st-order derivatives with respect to z~' of the numerators and denominators in Eq. (4.2)

evaluated at z, = ¢”* must also vanish. This imposes another condition:

g K_& K

s h g n LT @8)

which equates the return group delays (see point (7) of section 2.5) of the overall and the
extracted two-ports. These two conditions are sufficient in characterizing a 1st-order complex

section, as was shown in section 3.7, from which we obtain the required { foo by & G,.}.

To obtain the reflectance and return group delay values from the sample representation,
note that it is always possible to express g as
N-1 .
g(t) =26z -27) (4.9)
i=0
where {G.: i =0(1)m} are coefficients of the Taylor series expansion about z™ =z,. Evaluating
Eq. (4.9) at z;7" +rW" yields
N-1 . )
85 = 2,Gr'W (4.10)
=0 .
It can be seen that the sets {Gi} and {g j"} form a DFT pair generalized to radius r. It follows

that



52

N 1 M

-1} - — ’ -1y — 11 .
slz)=Gy==> 8, and 8(2f1>—G1—rN%é’an (4.11a.b)

The same expressions hold for the » polynomial with G, replaced with H,.

The remaining proof is to show that A, /g, is a stable and bounded reflection coefficient.
We can do this by expressing the reflection coefficients as

h joo io(w hi jo jo:{@
le)=p(@)e™ and ZHe)= p(@)e “.122)

It readily follows from Eq. (4.6a,b) and Eq. (4.12) that for z =¢’®

_ pr+p’—2pp;cos(¢—9,)

h 2
bl = .
1+p°p —2pp;cos(9p—¢,) (4.13)

8

Since the magnitudes of normalized reflection coefficients are bounded by one [5], we have
(1 —p*)+pt2(1-p? )p2+p> = 1+p°p?2p*+p?, which together with Eq. (4.13) implies

that [hb /g,,[S 1. By construction, we have g=g,g, +0.h.h,. Therefore on the unit circle, we

!

have |gi!2[h,.f= P lO’i|=1, [gblehbi and thus lgigblzlaihi*hbl. Furthermore by assumption

g #0 on the unit circle, it follows by the extended Rouché's Theorem [15] that g and g,g, have

the same number of zeros inside the unit circle in the z~ -plane (namely zero). Therefore g, has
no zeros inside the unit circle, nor on the unit circle since A, /g, is bounded there, i.e. g, has allits
zeros outside the unit circle in the z™ -plane and is thus stable.

After m+1 extraction steps when all the transmission zeros have been exhausted, the

remaining sample sets {hm} and { g j,,} characterize a zeroth-order two-port with zero reflection,

ie., the expected values are k, =0 and \gﬁ,‘=1 J=11)N and n=0(1)m. In practice, the
remaining sample sets will only approximate the expected values to the degree that the input
polynomials satisfy the losslessness condition gg. =hh, + ff.. It is up to the designer to judge
whether the final results are acceptable. In any case, the remainder sets offer a useful consistency
check.



4.2 The Cascade Synthesis Algorithm

of two steps:

53

In summary, the cascade decomposition algorithm is without special cases and is comprised

1) From the given k& and g polynomials (which can be in either coefficient or zero-form) and

2)

the set of transmission zeros {zj"l =kje'jmj, i=1DN; z,™ =O}, where N=m+1, and

m being the original order of the filter, compute the sample sets {hm} and {g J,,} using

{ho: by =h(e +rw), n=0m} | {g,: g, =8z +W"), n=0m} (4.14)

For i =1(1)N, compute h(z™) and g(z,") using

_ ‘ 1 N-1 _ 1 N-1
g(zj 1)=Go :—]Vz;(;gjn and h<zj 1).—_H0 =_N—zhjn

n=0

and if k, =1, compute h’(zi"1> and g’(z,-"l) also using

o, =1 1 = -n ., -1 1 S -1
g (zj )= G, =—;l\—]-2gj,,W and A (zj )=H1 =—r-]—v~’§0hjnW

n=0

From these values, ¢; and ¥, are computed using

By i ’ 1-77 o .
—_ ke 79; - 4 ejar = ‘e]al = =
g( 1 ) ]_—-kl.2'}/i2 ﬁl y,

and for the case k£ =1, obtain ¥, by

_g_,_ —je; _fl_i —jo; ) — —Yiz jor . 8§ i — 5,'
g(e ) h(e ) ——————1_%2e =-0," = v, /——5,-4‘1

From the set {ki, ;, o;, yi}, we obtain {ﬁ, h, & O'i} via

1-p;
1- kiZ,Biz

f;- = _"’yieja)i <Z_1 - kie_jwi> R gi = 1 —_ kif}/i?-ejwiz"l

h = J(l -7 )(1 ~ky! )eja" , 0, =—e/*%

and the recomputed sets {hb].,,} and {gbj,,} using

(4.15a,b)

(4.16a,b)

(4.17)

(4.18)

(4.19)
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h.,8 — 8yl 88 — , :
hbf"z[%&ﬁm—"], ’ g"f"z[—m—ﬁ_&— BT A O L

After N iterations, the set {k, @, o, ¥,: i=1(1)N} forms the solution to the

decomposition problem, and the structure for the cascade synthesis is shown in Fig. 4.4. The

remainder sample sets should be {hm =O} and {Igj,,l=1} and can be used as a check for

consistency.

o-—@—g l l ‘:O----O—*ﬂ—g——‘l I————a—o—--o—«—gﬂ ‘ l <O

B, 4,

Figure 4.4 The cascade synthesis structure with the cascade of N 1st-order complex sections.
In order to obtain a frequency response of a quantized design, we form the product

N
T= HT,. where for the case k #1:

i=1

(aizi + blzx )(azzi + b22; )(CO“ + jy; )Z—l — Ay Ay, '"blibzi
T = O+ Py 0 Buby (@, +j0,)7" a0 (@, + j0,)7 =1
| o 1 oy (a3, + by )y + j0,)2™ — ay, 4.21)
with e = o, + jB, , ¢ =0, +jw, , e =q,+jb, , e = a,; + jby,, andif k =1:
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ii (o ‘*'.].C‘)zz')z_1 “7,-2 7,-2 -1
T = ,:ali + By 01[A-77)(ey+ jo, )z vl (0, + jo,)z™" -1
l 0 1 Y@y + jo,)z™ -y, (4.22)

with 7, =cos@,;,. The coefficients 1/ T, and T, / f” represent the transmittance and reflectance,
respectively. In this way, the more involved time-domain simulations to obtain a frequency

response can be avoided.

4.3 Synthesis of Pipelineable Cascades

The critical path for the cascade of lst-order complex sections with reflection-free ports
traverses every section, i.e., the longest computational delay-free path that must be computed
before the next input sample can be accepted involves every section (see [18] for a discussion of
critical paths and pipelineability). This is unacceptable for a VLSI implementation or a high-
sampling-rate multi-DSP realization where the maximum throughput rate must not depend on the
filter order. However, it is well known ([1], p. 295-297) that a cascade can be made pipelineable
by interposing a "unit element" section or, what is essentially équivalent, a QUARL (see section
2.4), between every two nearest-neighbor sections as shown in Fig. 4.5.

o> > T b0 o 2 7 Lo >0 O3 IS — >0
o< < 7| <0  o— < L 0  o—= < 77 e -0
~— N ~
unit element QUARL QUARL

Figure 4.5 Three pipelineable cascades that are equivalent to within a constant group delay in the
transmittance.

A given cascade of order m can be made pipelineable by introducing an additional delay of
order m-1 (i.e. a factor of z7™" in the transmittance) at the output port, and then shifting a unit

delay to a location between every two original sections, as shown in Fig. 4.6.
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32)

N,

Figure 4.6 Partitioning of a delay block to effect pipelineability.

The shifting process is non-trivial and in practice requires Kuroda's and Levy's transformations
[19]. We propose a much simpler solution: we simply treat the additional delay block as a
transmission zero at z- =0 of multiplicity m—1 and resynthesize the resulting higher-order
cascade, i.e., the order of the filter is increased to 2m—1 and the original f, polynomial is

replaced with
f=zm 1 ‘ (4.23)
The 4 and g polynomials are unchanged. Since the actual sequence of transmission zeros in the

final cascade can be chosen arbitrarily, selecting every other zero at z' =0 produces a
pipelineable cascade. In this way, no special treatment is necessary to effect pipelineability.

Canonic polynomials for a section that realizes a transmission zero at z~ =0 are obtained

by substituting & = @, =0 into Eq. (3.19), i.e.,

fo=_7’02_1 ) hozejaovl"'yg » & =1, O'oz"eja0 (4.24)

which can be realized with a normalized 2-port adaptor ( cos8, =¥, and sin§, = N 1-y2)and a

unit delay, as shown in Fig. 4.7.

Alo—-w-—-l l———w—c:B2

— B2
cos@, = © e > E—*’

S

]

ejao l l Bl A’Z
B, A

Figure 4.7 Three equivalent sections that realize a transmission zero at z~ =0 with cos6, =7,.
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Note that the sections introduced to realize pipelineabe structures do not affect the magnitudes of
both scattering coefficients (see Eq. (4.23)) and therefore do not contribute towards the overall
attenuation. For this reason, it is preferable to impose the conditions for pipelineability in Eq.
(4.23) at the approximation stage so that original sections with transmission zeros at z7* =0 do

contribute towards filtering. .

4.4 Synthesis of Real Circuits using 1st-order Complex Sections

The 1st-order complex section in Fig. 3.19a can be used in the synthesis of real filters by
constraining the unimodular multipliers to the four possible real values e’* =+1 and '™ ==+1.
For the case k =1, these cover the four possible 1st-order real sections that in the analog domain
correspond to a series or parallel connection of a capacitance or an inductance ([13], Table I); if
k #1, the 1st-order section is nonreciprocal (af. # f) and in the analog domain requires a gyrator
([13], Table IV). For transfer functions with 2nd-order factors comprised of a pair of complex
conjugate transmission zeros, the decomposition is performed such that the section with a
transmission zero at ke’ is followed by the section with a conjugate transmission zero ke /.
The two sections can be replaced with an equivalent real circuit shown in Fig. 4.3, where the
additional unimodular multiplier ¢ 7“** must be borrowed from the section that comes next in
order to make the overall c=1. For real filters, after all the conjugate pairs have been grouped
into 2nd-order real sections, only unimodular multipliers equal to 1 remain in the cascade.

The 2nd-order real circuit in Fig. 4.8 was derived using the same method as was used for
the circuit in Fig. 3.19a and outlined in section 3.6, i.e., the derivation is a cascade decomposition
problem based on the zeros of A which, for this case, are necessarily real and given by

h.o=cz™ (z'l +k1). The known Ist-order solution in Fig. 3.19a is used in the extraction of the

two 1st-order factors resulting in the following factored form of the scattering hybrid matrix:

cosf, z —z"'sin 6, sin 6, 77 cosf, cosb, +1 || —cosb, 1

{ 1 zcos@o} l:—(z‘l +c0s6, cosb, ) sin 6, sin 6, }[ 1 ~Cos 93:!
H= . 7 ,
sin 6, 7 cosf, +cosh, sin 6, (4.25)

The real circuit in Fig. 4.8 follows readily from the above factored H.
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A 2nd-order real section with f(keij“"’)z() has the same four degrees of freedom

{k, @,, O, y} as a lst-order complex section in Fig. 3.19a. However, for the former, these
cannot be chosen completely arbitrarily because the two auxiliary parameters cos @, and cos®, as
defined in Fig. 4.8 must be bounded by one. There are of course no restrictions for a complex

2nd-order section.

For quantized designs, each 2-port adaptor in the real circuit in Fig. 4.8 is quantized
passively according to Fig. 3.19. For k=1, there are two cases where this circuit can be
converted to a structurally lossless voltage-wave circuit with transmission zeros that do not move

away from the unit circle even for quantized multipliers:
1) case 1: sinox=0 = cosf, ==1 corresponds to a series or parallel resonant circuit section
(Table ITin [13]);
2) case 2: sin(oc —a)o) =0 = cos@, =1 corresponds to the matched 4-port adaptor (Fig. 5
in [13]), which was used extensively in the designs presented in [20].
For other cases, the 2-port adaptors corresponding to 6, and 6, must be quantized
(e =a, +jb, , e’ =a, + jb,) passively, causing the pair of transmission zeros to move away

from the unit circle; by substituting Eq. (3.23) for each factor of H in Eq. (4.25), it can be shown
that the resulting radius of the pair of transmission zeros in the z-plane is given by

\/(af +5 )2 +02) <1.
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4 B,
I-——M—p—-] O o 1 [ P 0
6,
Y = B
2> l Z_I
6,
L——«——O—O—%-l o < oo < o
L B A,
Degrees of Freedom: {k, @,, @, ¥}
S f=z"cos@ +(a—b)z"‘+cose
Transmittance: L (ke* ™) =0 0 7 3
hg jaJl—z g=27"cos8,cos0, +—(a+b) 7'+l
i - i 0
Reflectance ; —(ke@* )= e—‘/_—_le = fe’” 2
§ 1=K h=—sin8,sin0,(z" cosd, +cos b, )

’ ’ 2
Group Delay : e (h—(e‘j“’°)—§—(e‘f‘”° )j=_7_s §

h g 1-7?

[1-§ 5
Parameter: (k=1) y = -1—#, (k=B=1)y= 51

=1
a=(1+cos8,)(1+cosb;)cos(8, - 6,)
b=(1-cos8,)(1- cosB,)cos(6, +6,)

Q

StabilityRelation : f21 & k21 =  y’<l
Auxilliary Parameters: Circuit Parameters:
2 2,,2 . 2
oS, = (1‘7 )(l“k 7*) sina cosb, =B, . sinf, =4/1- B3,°
! ky* sinw, -
; cos8, = sgn(k,,),|—LL—, sin6, = B,sin
2 > sin— @ t 1o rp2 1 1 2
cos®, = (l—y')(l—k'yz)—1<—,—i)- 1-k*B,
sinw, —
, sinw, tan @, cosf, =k cosd, , sing, = ’—,‘2—
=y L =——t 1-k-°
Po sinw, . tanw, Ay

ky, (1+k*)coso, —2kcosm, cos @,

cos8, =k8, , sin@, = /1-k*B,’

—Bsinasin’® o,

k===

"Tkp (14K )cosw, - 2kcosw, cos @,
4 —yEi—r@-‘— tan(a+a,) =
* sinw, 2

B Beosa(1+cos® w,)+(1+ B )cos @,

Figure 4.8 An equivalence between a real 2nd-order section and a cascade of two 1st-order

complex sections used in the synthesis of real two-ports.



CHAPTER YV

DESIGN EXAMPLES

In this chapter, we present two design examples to show how the PU and the cascade
structures derived in the previous chapters differ in their sensitivities to multiplier quantizations.
Also the difference between transmittance and reflectance realizations for the two structures are

examined.

5.1 The Computer Synthesis Programs

Two programs were written to implement the PU and cascade synthesis algorithm discussed
in Chapter IV and V. The first version of the programs were developed with THINK Pascal
using a Macintosh computer. Later, we translated all the programs to the more popular C++
compiler (Borland C++ 3.1) for use on IBM compatibles, which allowed more flexible coding and
faster run time; note that the Macintosh does not yet have a good C++ compiler. The main
features of the C++ compiler are object-oriented programming and the use of overriding
operators (which in our case are ideal for complex number computations and polynomial
operations). However, in order to be able to translate the programs so that they can be run under
the Macintosh environment again, we tried to keep the structure of the C++ program more or less
the same as the Pascal structure. In this way, we gave up some of the C++'s features, such as the
object oriented data structure and memory management. A future version of the synthesis
programs can be rewritten so that one can fully utilize the special features that the C++ offers.
Appendix I shows the program listing and the required modules for each synthesis algorithm.
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5.2 Example of a 3rd-order complex bandpass filter
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The first example is a 3rd-order complex bandpass filter taken from [16] with the canonic
polynomials given in Table 5.1, which satisfy the Feldkeller equation up to 7 decimal places.

[fzeros magnitude angle / h zeros magnitude angle / 7
constant | 0.001737179447817836| 0.117376125505971182 constant] 0.957560092196136287 0.0
1 1.239539805592213030] -0.352501728592457791 1 1.0 -0.346153406900000000
2 6.557134474620700520 | -0.328283677132877787 2 1.0 -0.318835734100000000
3 0.973790267085636388 | -0.381385815807027759 3 1.0 -0.364351183000000000
g zeros magnitude angle/ 7
constant } 0.916945088461950131 | 0.029341177711460338
1 1.034058128195634690 | -0.315274223865586351
2 1.012472723813572680 | -0.366322028770513232
3 1.041665754372504750 | -0.347744925075360753

Table 5.1 Input data for Example 1 (3rd-order complex bandpass filter).

In this example, we synthesize the filter design using the PU, cascade, and pipeline cascade
structure based on the transmittance and the reflectance, which behave differently for quantized
multipliers (say 8 and 12-bit fixed-point multipliers). The cascade realization was made
pipelineable by including a factor of z~ in the transmittance polynomial (i.e. a zero at zero was
inserted between the original transmission zeros). Since the order of this example is low, the DFT
form synthesis for the PU structure gives satisfactory results immediately. The synthesis results
for the transmittance realization are shown in Table 5.2-4, while the results for the reflectance
realization are shown in Table 5.5-7, and the corresponding frequency responses are shown in Fig.
5.1 and Fig. 5.2. Note that the last cos@ for the PU structure is set to one in order to obtain the

frequency response.

i cos 8, o./n i cos@, o./n

1 ]0.957560092196136284 | -1.029340324000000000 5 ]0.994213470521244201 | -0.657890528088391118
2 10.047702365227116112  -0.944795096026392233 6 ]0.914671540879312931 | -1.099229713497030090
3 10.998252323578017612 -0.662120015435535012 7 |0.314089092630529918 | -0.856204400044218755
4 ]0.101258976212685513 | -0.219828231895825287 8 |1.000052259810128780| -0.618772101296679698

Table 5.2 PU decomposition (DFT form) of the transmittance in Example 1.




-

k,

1

/7

o, /m

Y

1.239539805592213030

0.352501728592457791

-0.007554520086115123

0.702186819200128202

6.557134474620700520

0.328283677132877787

-0.034346625663405575

0.017397516345624240

0.973790267085636388

0.381385815807027759

0.014022008605176070

0.493353755831878257

-G ROV N NG T

0.000000000000000000

-0.000000000000000000

-0.034292388950355955

0.288234768028050422

Table 5.3 Cascade decomposition of the transmittance in Example 1.

~.

k,

1

;[T

o, /n

Y

1.239539805592213030

0.352501728592457791

-0.007554520086119123

0.702186819200128202

0.000000000000000000

-0.000000000000000000

-0.034334469553297889

0.097008412983706725

6.557134474620700520

0.328283677132877787

0.334466150955358439

0.026746097875690607

0.000000000000000000

-0.000000000000000000

-0.198164735784138883

0.993718832468785005

0.9737902670856363838

0.381385815807027759

-0.618612584688495089

0.959510569853113821

Afnrib Wit -

0.000000000000000000

-0.000000000000000000

0.771458197438752087

0.999999999658423781

Table 5.4 Pipeline cascade decomposition of the transmittance in Example 1.
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cosé.

o, /m

i cosb,

o, /n

0.013749429560620272

-0.944795096026392155

0.125031401481845955

-1.905102041047098000

0.957650616873348732

-1.029340324000000000

0.999041925272336434

-0.661111605934160362

0.044911105023321488

-1.703913039917487880

0.257799610181693932

-0.060694688027939839

R RCE SR

0.998266759706849972

-0.662034192868882767

[l IS I Ne N8 RS}

1.000061695049873170

-0.647604579668720350

Table 5.5 PU decomposition (DFT form) of the reflectance in Example 1.

k,

4

/7

o, /n

Yi

0.999999999995599959

0.346153406900000000

-0.437655461608194876

0.982002232690002730

1.000000000000000000

0.318835734100000000

-0.994411503132108745

0.981883899110585982

1.000000000000000000

0.364351183000000000

-0.490218658092795872

0.993102509757900023

AN ROV NG 3 e

0.000000000000000000

-0.000000000000000000

0.010321414550335327

0.999998491102605074

Table 5.6 Cascade decomposition of

the reflectance in Example 1.

k,

1

N

o, /n

Y

0.999999999999599939

0.346153406900000000

-0.437655461608194876

0.982002232650002730

0.000000000000000000

-0.000000000000000000

0.881991690073898222

0.999225710850659453

1.000000000000000000

0.318835734100000000

-0.547726739041740092

0.982527313002204999

0.000000000000000000

-0.000000000000000000

-0.454579847453955521

0.999908673582472656

1.000000000000000000

0.364351183000000000

-0.635648815150041211

0.993310427856011198

[« N M08 NN WA B SO 38

0.000000000000000000

-0.000000000000000000

-0.396600428027263030

1.000000000000000000

Table 5.7 Pipeline cascade decomposition of the reflectance in Example 1.
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Figure 5.1 Frequency responses of the transmittance for Example 1 with 12-bit fixed-point

multipliers; stopband (top) and passband (bottom).
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Figure 5.2 Frequency responses of the transmittance for Example 1 with 8-bit fixed-point
multipliers; stopband (top) and passband (bottom).
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Figure 5.3 Frequency responses of the reflectance for Example 1 with 12-bit fixed-point
multipliers; stopband (top) and passband (bottom).
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Figure 5.4 Frequency responses of the reflectance for Example 1 with 8-bit fixed-point

multipliers; stopband (top) and passband (bottom).
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5.3 Example of an 8th-order real bandpass filter

The second example is a real 8th-order bandpass filter taken from [21], and the canonic
polynomials are recomputed to better satisfy the losslessness condition gg. =hh. + ff.. The

canonic polynomials are shown in Table 5.8, which satisfy the Feldkeller equation up to 15

decimal places.

f zeros magnitude angle / h zeros magnitude angle / 7
constant 0.00090521 0.0 constant 0.938442111704 0.0
1 1.0 0.430034232 1 1.0 0.351732711368
2 0.0 0.0 2 1.0 -0.351732711368
3 1.0 -0.430034232 3 1.0 0.365109796566
4 0.0 0.0 4 1.0 -0.365109796566
5 1.0 0.320538560 5 1.0 0.385182448776
6 0.0 0.0 6 1.0 -0.385182448776
7 1.0 -0.320538560 7 1.0 0.398308216049
8 0.0 0.0 8 1.0 -0.398308216049
g zeros magnitude angle / 7
constant | 0.880673595637835194 0.0
1 1.008341527656365750 | -0.399341528997245882
2 1.008341527656365750| 0.399341528997245882
3 1.008545764020980650 | -0.350675396462379855
4 1.008545764020980650| 0.350675396462379855
5 1.023795851013025390| -0.364509517733878304
6 1.023795851013025390| 0.364509517733878304
7 1.023471807530125960 | -0.385806739150357242
8 1.023471807530125960| 0.385806739150357242

Table 5.8 Input data for Example 2 (8th-order bandpass filter).

We can see that the input data for the transmittance is pipelineable from the outset for the
cascade synthesis structure, where a factor of z” is introduced to make the reflectance

pipelineable.
Transferring a factor of z™> from the f to the f. polynomial has no effect on the magnitude

response and allows one to write gg. =h>+ f2=(h+ jf)(h~ jf). It follows that a realization
with a complex allpass section [22], [23], [24] of order four is also possible in this case. The



68

cascade synthesis is used to generate the required allpass section, and the input data is given in
Table 5.9. Note that the zeros of h are reciprocal conjugates of those of g and the constants
remain the same. The zeros of f can be chosen to be anywhere in the z~'-plane but are normally
chosen to be at z =0 to generate a pipelineable cascade comprised of sections from Fig. 4.13
joT

with the fewest number of rotations. The transmittance at frequency z=e’® for the allpass

section is given by 1 ﬁ(z) +(£(z‘l )) and the reflectance is — ﬁ(z) - (ﬁ(z"1 )) .
_ 2(8 8 2\ 8 8
[ zeros magnitude angle/ 7 h zeros magnitude angle /
constant 0.0 0.0 constant] 0.938442111704000000 0.0
1 0.0 0.0 1 0.991727477816218162| 0.399341528997245882
2 0.0 0.0 2 0.976757230467890762 | 0.364509517733878304
3 0.0 0.0 3 0.9915266472520696891 -0.350675396462379855
4 0.0 0.0 4 10.977066483553886195 | -0.385806739150357242
g Zeros magnitude angle /7w
constant 0.880673595637835194 0.0
1 1.00834152765636575 0.399341528997245882
2 1.00854576402098065 -0.350675396462379855
3 1.02379585101302539 0.364509517733878304
4 1.02347180753012596 -0.385806739150357242

Table 5.9 Input data for the 4th-order allpass section for Example 2.

Again, we synthesize the filter design using the PU, allpass, cascade, and pipeline cascade

structure based on the transmittance and the reflectance.

The synthesis results for the

transmittance realization are shown in Table 5.10-13, whereas the results for the reflectance
realization are shown in Table 5.14-16. The corresponding frequency responses for the 12-bit and

8-bit fixed-point multiplier quantizations are shown in Fig. 5.5-8.
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-

cosé,

o,/n

i

cosf,

o /n

0.938442110231743405

-1.000000000000000000

10

0.334065090668604390

-1.000000000000000000

0.000000000000000000

-1.000000000000000000

11

0.360640861948289544

-1.000000000000000000

0.382034996637063172

-1.000000000000000000

12

0.136479907865855847

-1.000000000000000000

0.000000000000000000

-1.000000000000000000

13

0.932253262432831888

-1.000000000000000000

0.994879530326316629

-1.000000000000000000

14

0.955467770404646774

-1.000000000000000000

0.000000000000000000

-1.000000000000000000

15

0.140971139638418803

0.600000000000000000

0.383096500999037531

-1.000000000000000000

16

0.402851064656629980

-1.000000000000000000

0.000000000000000000

-1.000000000000000000

17

0.011855556196062364

0.000000000000000000

VIR~ jlnih Wit |—

0.995858180702111374

-1.000000000000000000

18

1.000000147786428040

-0.959599999978592176

Table 5.10 PU decomposition (DFT form) of the transmittance in Example 2.
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k,

1

/%

o./n

Y

1.000000000000000000

-0.430034232000000000

-0.129995225362160160

0.856902177327104619

1.000000000000000000

0.430034232000000000

0.329520485855107430

0.868905766082042025

0.000000000000000000

-0.000000000000000000

-0.199525260492946962

0.140573525501269946

0.006000000000000000

-0.000000000000000000

0.000000000000020977

0.921151940506531020

0.999999999999599999

-0.320538560000000000

0.007661338926213817

0.385108082381287339

0.999999999999999999

0.320538560000000000

-0.112061798322700076

0.755622704188970229

0.000000000000000000

-0.000000000000000000

0.104400459397340899

0.101067898652071465

0.000000000000000000

-0.000000000000000000

0.000000000102139107

0.924147856859237322

A=R e IS o N8 IV, T BNCNN ROV 3 3

0.000000000000000000

-0.000000000000000000

-0.000000000101794639

0.34543654 3646600297

Table 5.11 Cascade decomposition of

the transmittance in Example 2.
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k,

1

w,;/m

o, /n

1f

1.000000000000000000

-0.430034232000000000

-0.129995225362160160

0.856902177327104619

0.000000000000000000

-0.000000000000000000

0.177988575358195542

0.290809261580008262

1.000000000000000000

0.430034232000000000

0.372240496861656714

0.420018077150955863

0.000000000000000000

-0.000000000000000000

-0.420233846857810422

0.921151940506522988

0.999999995999999999

-0.320538560000000000

0.007661338926352295

0.385108082384979378

0.000000000000000000

-0.000000000000000000

-0.052519410605237151

0.178384822882619832

0.999999999999999999

0.320538560000000000

0.375270749327664280

0.428114894303120052

0.000000000000000000

-0.000000000000000000

-0.330412664510303397

0.924147856738074304

I |~ | iwibd =

0.000000000000000000

-0.000000000000000000

-0.000000012492511568

0.345436540990829595

Table 5.12 Pipeline cascade decompositio

n of the transmittance in Example 2.

-

k,

t

w;/7

o/

i

0.000000000000000000

-0.000000000000000000

-0.000000000000000000

0.345436543729513932

0.000000000000000000

-0.000000000000000000

-0.000000000000000009

0.924147856863023366

0.000000000000000000

-0.000000000000000000

0.002841829083873028

0.100676825918153140

0.000000000000000000

-0.000000000000000000

-0.020326334185806908

0.923464678888730942

[ L R

0.000000000000000000

-0.000000000000000000

-0.009884406016452388

0.000000000000000000

Table 5.13

Allpass cascade decomposition in Example 2.
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—~

cosf,

o, /n

i

cos g,

o, /n

0.000000000000000000

-1.000000000000000000

10

0.996317855963016627

-1.000000000000000000

0.938442110231743405

-1.000000000000000000

11

0.000003812003936620

-1.000000000000000000

0.000000000000000000

-1.000000000000000000

12

0.382447336695645320

-1.000000000000000000

0.382034996637063172

-1.000000000000000000

13

0.009740966391351291

0.000000000000000000

0.000000000000000000

-1.000000000000000000

14

0.994283478299853873

-1.000000000000000000

0.994879530326316629

-1.000000000000000000

15

0.245457315725121985

0.000000000000000000

0.000000000000000000

-1.000000000000000000

16

0.355382453718025351

-1.000000000000000000

0.383096500999037531

-1.000000000600000000

17

0.248817858846223124

-1.000000000000000000

Vil iwlito ]

0.030373266988859827

-1.000000000000000000

18

1.000000157517630830

-0.999999999977184076

Table 5.14 PU decomposition (DFT form) of the reflectance in Example 2.

-

k,

1

/7

o,/n

£

1.000000000000000000

-0.351732711368000000

0.571467295401512715

0.995759910570240845

1.000000000000000000

0.351732711368000000

0.855661573467812382

10.995719283733996663

0.999999999599999559

-0.365109796566000000

0.145625268195202336

0.988687329369446869

0.999999999999939999

0.365109796566000000

0.851526571445161486

0.988399651228464212

1.000000000000000000

-0.385182448776000000

0.192538968231070712

0.988546956637328561

1.000000000000000000

0.385182448776000000

0.766451629213881752

0.988279747692755938

0.999999999999999995

-0.398308216049000000

0.294516982030966166

0.995702654610811803

0.999999999999999999

0.398308216049000000

0.645579536778435623

0.995675208687205493
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0.000000000000000000

-0.000000000000000000

-0.323367824764013779

0.999999590297345307

Table 5.15 Cascade decomposition of the reflectance in Example 2.

k,

1

;|7

o /n

e

1.000000000000000000

-0.351732711368000000

0.571467295401527639

0.995759910570241080

0.000000000000000000

-0.000000000000000000

-0.999999999999999752

0.999963581170383402

1.000000000000000000

0.351732711368000000

-0.795004228246988715

0.995748083873934500

0.000000000000000000

-0.000000000000000000

-0.776463067154461534

0.999912516975352343

0.999999999999999599

-0.365109796566000000

0.845246630861016261

0.988419605119843739

0.000000000000000000

-0.000000000000000000

0.779191309831084734

0.999929057318692151

0.999999995999999999

0.365109796566000000

0.892554605345273775

0.988221621614590118

0.000000000000000000

-0.000000000000000000

-0.516992546035456363

0.999991357125729693

O3 ihlwnibkh{iwi =

1.000000000000000000

-0.385182448776000000

-0.922754932723995417

0.988469151747435729

ot
<

0.000000000000000000

-0.000000000000000000

-0.319932271441926254

0.999966670048153334

—
bt

1.000000000000000000

0.385182448776000000

-0.450642775036614698

0.988648490956818578

—_
[\84

0.000000000000000000

-0.000000000000000000

0.693329979034896930

0.999959300186932423

o
W

0.99999999959999999%

-0.398308216049000000

0.282678931410576393

0.995888661379942909

—
~

0.000000000000000000

-0.000000000000000000

-0.568971772410374962

0.999966391709661316

p—
wn

0.999999939999995999

0.398308216049000000

-0.601691400109065778

0.995925783415216364

—
(23

0.000000000000000000

-0.000000000000000000

-0.369832210956248215

0.999933999999999988

Table 5.16 Pipeline cascade decomposition of the reflectance in Example 2.




73

%03
80
70—
:
60.._
= N
© 4
\ -
g 50
S ]
3 4]
.,% . — - - — Allpass Cascade
30 — - —  Pipeline Cascade
o N L Cascade
20— — — — PU
] Nominal
10
c~Illll!lllllllllllllllllllllll’llllllllllllllllllll
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency /n
2.5
4 — - - — Alipass Cascade
. — - —  Pipeline Cascade
5 R S Cascade
2] — — — PU
4 Nominal
= 4
- 1.5—_
B 4
: -t
g 1
< 4
0.5
0—— —T
0.345 0.375 0.405

Normalized frequency / ©

Figure 5.7 Frequency responses of the reflectance for Example 2 with 12-bit fixed-point

multipliers; stopband (top) and passband (bottom).



~
o

|
[N

3

g

Attenuation / dB
8

8

llIIIlIIllllllIIII!I]III[I)III‘II

— - - — Allpass Cascade
— - — Pipeline Cascade

----- Cascade
20 — — — PU
————  Nominal
10
0[IlllrlIIIlllllllllIllllllllllIillllllllllllllllll
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency/n
5 — - - — Alipass Cascade //
— - —  Pipeline Cascade '
S N Cascade /]
— — — PU "]
4 ————— Nominal /
35

w

-
(44} »n

Attenuation / dB
N
- [3;]
Illlll|l|'|)l1llllllllIlIll!lllllllllll]lllllllll'

T T T T

T T T T I

I
0.375 0.385 0.395 0.405

|
0.365

Normalized frequency /=

Figure 5.8 Frequency responses of the reflectance for Example 2 with 8-bit fixed-point
multipliers; stopband (top) and passband (bottom).




75

5.4 General Observations on Examples 1 and 2

In Example 1, which is a low-order example, the Feldkeller equation is only satisfied up to 7
decimal places. However, the PU structure synthesized using the DFT form still gives satisfactory
results. On the other hand, the Feldkeller-equation must be satisfied to a much higher accuracy in
order to obtain an acceptable synthesis result for higher-order filters (see Section 3.5 for effects
on input data inaccuracy). Also, the PU structure has no direct control of either a transmission or
a reflection (attenuation) zero. This is shown by the 8-bit multiplier quantizations for both

examples.

For the cascade decomposition structure, transfer functions with a narrow passband that
have as many attenuation zeros as the order of the filter tend to have the poles located near those
zeros. As a result, the return group delay evaluated at an attenuation zero can be approximated

by 551/(ri—1)>>1, where r,=1butr;>1 is the radius of the nearest pole, and the

corresponding filter parameter obtained using Eq. (3.23) is given by ¥, El/ \/;: =1. A single
extraction step only removes one attenuation zero without significantly affecting the locations of
the remaining poles with respect to the remaining attenuation zeros. It follows that transfer
functions realized as the reflectance of a lossless two-port where the filter parameters are obtained
from the return group delay values at the attenuation zeros, tend to have all the ¥, =1 (see the ¥
column in Tables 5.6-7 and 5.15-16). Such values are hard to quantize and the filter response
tends to be more sensitive (see stop band response on Fig. 5.4 and Fig. 5.8). On the other hand,

transfer functions realized as the transmittance (see Table 5.3-4 and 5.13-14) do not have this
problem because the ¥, are obtained from the return group delay values at the transmission zeros,

and these locations are relatively much further away from the pole locations. This observation has

been borne out by numerous examples.

The reflectance realization of the pipelineable cascade suffers most in the stop band (Fig.
5.8) because all 7, =1 and the multiplier quantizations in 7 additional sections.




CHAPTER VI

CONCLUSIONS

The synthesis of complex lossless two-port WD filters using the PU structure yields circuits
that are inherent pipelineable, internally passive (hence wave digital), and easy to implement.
Three different forms of polynomial representation are available for the synthesis process, namely
the coefficient form, DFT-sample form, and the zero form, with the second one being the easiest
to implement. The zero form requires zero-finding routines that are relatively slow. However,
numerous examples show that the zero form gives acceptable results with input data inaccuracy
for which the other two forms give totally unreliable results. One should obtain a set of input data
that satisfy the losslessness condition with acceptable accuracy, especially for the synthesis of
higher-order filters. A convenient consistency check of the PU synthesis results is the last cos@
being one, which is the losslessness condition for the PU structure.

We have also shown that it is possible to generate complex lossless two-port cascades that
are also restriction-free, internally passive, and that can easily be made pipelineable. The
accompanying synthesis algorithm is a simple two-step procedure that is easily programmed and
can also generate real two-port cascades and allpass circuits. The noncanonic "sample"
representation of polynomials is very convenient for it circumvents the numerical problems
encountered when forcing exact cancellations between either coefficient or zero-form
polynomials. Numerous examples have shown that the roundoff error generated during synthesis
is negligible and that it is more important to have the input data satisfy gg. = hh. + ff. with
acceptable accuracy. A convenient consistency check of the synthesis results is available from the
observation that after N =m-+1 iterations, all the "sample" sets must correspond to a simple
"feed-through" two-port. We conclude that narrow-band transfer functions should be realized as

the transmittance of a lossless two-port.

Finally, both cascade and PU structures can realize allpass sections. In the PU synthesis
algorithm we set =0 and f =2g., and for the cascade synthesis algorithm, we let f=z""

where m is the order of the allpass section and = %g,.

The following table gives a comparison between properties of the PU structure and the

cascade structure.
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PU Structure Cascade Structure

- pipelineability is inherent. - pipelineable cascades are generated by
choosing all even-indexed sections

with their transmission zeros at
771=0.

- no direct control over the transmission zeros | - each section directly controls either a
or reflection ones, each section contributes transmission or reflection zero.
to the overall filtering.

- 6 basic rotations per filter order. - 6 basic rotations per filter order for
non-pipelineable cascade synthesis.

- 9 basic rotations per filter order for
pipelineable cascades.

If one wants to have direct control of either the transmission or reflection zeros together
with pipelineability, the pipelineable cascade is the only choice and the three additional rotations

per filter order are necessary.
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