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Abstract

The noncanonical SLR(I) parsing method is a trvo-stack extension of tlie SLR(1) pars-

ing method that rvorks for a larger class of grammars and languages. Existing NSLR(I)

construction algorithms gelerate some useless parser actions and states.

In thìs thesis, several functions and relations on NSLR(1) parsels are defiled and ana-

lyzed. The analysis leads to trvo algolithms of diferent complexity, rvhich can detect and

delete useless parser actions and redundant states. Ä modified NSLR(1) parser constructiott

algorithm is proposed that can lead to even smaller parser than those genelated by existing

methods.

I(ey words and phrases: Context-fi'ee grammal, SLR parsing, noncanolLical parsing.
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Chapter 1

Introduction

If you look inside the language reference manuals for most of the modern proglamming

la,nguages, such as Pascal, Modula-2, Modula-3, Ada, and Oberon, you rvill find a. character'-

level grammar for that language. A chalacter-level grammar is a grammar that uses only

single charactels as the terminal symbols. Thus all symbols, sucli as identifiers, constants'

and keyrvords, are described right dorvn to theil constituent characters. Character-level

grammars attempt to give a full descliption of a language; avoiding the need for supple-

mentary English descriptions.

Despite tlie popularity of character-level grammars, none of the commonly used palser

generation techniques, including LL(i), SLR(1), and LALR(1) parser gerìerators, are pow-

erful enougli to handle such grammars as published. A single character of lookahead, one

terminal symbol, is not enough to resolve parsing conflicts. This deficiency is usually han-

dled by partitioning the language recognizer into trvo phases, a scanner phase and a parser

phase, ald by partioning the grammar iuto trvo patts, o e part fol each phase. Such a

solution to the problem has several common drarvbacks:



1) The pa.rtitioned grammar is usually desclil¡ed in trvo diferent metalanguages: r'egular

expressions fol the scanner phase, and a context-free glammar fol the parser phase.

2) The partitioned grammar is usually processed by trvo different parser getìelator.s: a

scan er generator (often a human programmer) and a parser genetator.

3) The interface betrveen the trvo modules is cornplex, involvilg both symbol codes, and

semantic values of different forms (identifiers, numeric values, and literal chalacter

strings). In other rvords the trvo modules are strongly coupled.

4) Tlte cohesion of the scanner module is quite poor. It can be characterized as having log-

ical cohesion; the cohesion of tasks that are similal in nature, but otherrvise unrelated.

Tliis is rellected by the fact that there is little common code used in the recognition of

identifiers, numeric constants, and stling constants.

5) The technique lvorks poorly for source-to-source translators that do not rvisli to delete

white space and comments from the input.

In order to be able to process character'-level grammals as published, more porverful

practical parser generation techniques are rìeeded. In ad<ìition it rvould be desirable to han-

dle these grammars rvithout sacrificing the l.inear-time performance of the existing popular

parsing teclìniques. In 1989, Salomon and Cormack [Saì898] proposed that noncanonical

SLR(1) parsing, a method irvented by I(,C. Tai [Tai79], can be used for this task.

A bottom-up parsing technique that can make tìonleftmost possible reductions in sen-

tential forms is said to be noncanonical. One noncanonical extension, the one used by

Tai [Tai79], ivould be to allow a parser to perform slìifting and reduction of right context,

and to use the resulting nonterminal symbols as lookahead characters for a temporarily

postponed action. Nearly every existing parsing technique can be extended in this rvay to



become a noncanonical method which operates on a larger class of grammars and languages

than the original technique. With this processing of right-context a scanner phase becomes

unnecessary.

Existing noncanonical parser construction techniques, which function by the expansion

of corresponding canonical parsers, generate useless lookahead symbols, unreachable tran-

sitions as well as unreachable states. Some transitions and states wilL never be used during

parsing because of the transitions and states added for noncanonical parsing. Some looka-

head symbols may be useless for the same reason and because of the addition of too many

nonterminals to the lookahead sets. Tai mentions this fact but presents no algorithms for

eliminating useless actions and states. The probiem of the automatic optimization of non-

canonical pa sers is discussed in this thesis. New relations, some of which extend those

defined by DeRemer [DeRe82], are defrned here and are analyzed to capture the essen-

tial properties of noncanonical automata. General metÌrods of detecting useless lookahead

symbols and unreachable transitions are proposed. Two algorithms with different levels of

optimization were implemented for SOAP, an NSLR(1) parser generator.

This thesis is organized as follows. Chapter 2 is a summary of the basic terminology used

throughout this thesis. In Chapter 3, a survey of some previous work on noncanonical pars-

ing is presented. The basic ideas of noncanonical parsers are introduced. Several examples

are presented to clarify the differences between noncanonical and canonical parsers, and to

demonstrate the existence of useless shift and reduce actions in the action tables generated

by current NSLR(1) construction algorithm. In Chapter 4, relations and functions to be

used to explore the essential properties of noncanonical SLR(1) parsers are defined. These

relations and functions are used to ensure that the algorithms presented in Chapter 5 are



correct. In Chapter 5, trvo algorithms are presented. My first approach is to detect useless

actions by building relations on nonterminal symbols. The reason that this simple solution

fails to detect some useless actions is explained. A more porverful algorithm is proposed

by building relations on states, In Chapter 5, we also present the experimental results of

the two algorithms on grammars for PASCAL, Modula 2, and some grammars provided by

I{uo-Chung Tai [Tai79]. The results are not encouraging for character leve1 grammars for

real programming languages. The reason tliat such parsers cannot be improved is analyzed.

The analysis leads to the invention of a modified parser construction algorithm, tliat does

permii significant shrinking of parser size.



Chapter 2

The Notation of Canonical

Parsing

In this chapter, the notation used in the rest of this thesis is presented. We also briefly

introduce SLR parsers, and functions used in LR parser construction algorithms.

2,L Terminology

F.irst, we present the notation system used ín this thesis. I/¡ is a finite set of nonterminal

symbols, Vr is a finite set of terminal symbols, and V = V¡¡ UVr is the set of all grammar

symbols. The set V*, the reflexive transitive closure of V, contains all strings composed of

symbols in Jz, including the empty string, rvhich is represented by e.

The following standard convention for the mea.ning of Roman and Greek letters are used

in this thesis.



A,8,C,,,.ÇV¡¡

...,x,v,2 €v

o,,b,cr,,, e V7

"'rÌ'!,2QVi

d,13,1',,,eV*

The letter 5 € V¡ denotes the start symbol of a grammar. Called the length of a, lal, is

the lumber of occurrences of symbols of V in a.

If -R is a relation, Ã* denotes the reflexive transitive closure of À, and À+ denotes the

transitive closure.

The production set P is a finite subset of V¡ x V*, rvhose members take the form A --+ a,

rvhere A is called the left-part, and a is called líe right-part. If A --+ a is a production and

BA7 is a string in V+, then rve rvrite þA1 + Ba1 and say that BA7 dhecíly deríues pa1.

A sentential Jorrn of G is a strìng a such that 5 +* a and a is in V*. A sentence x ofG

is a sentential form of G consistilg solely of terminals, i.e., c is in Vi. The langu,øge L(G)

generated by G is the set of seltences generated by G, i.e., L(G) = þ | S+.2).

A derivation in rvhich the rightmost rìonterminal is replaced at each step is said to be

a rightmost derivation. Iî a + B is a step in rvhich the rightmost noÌìterminal in o is

replaced, we rvlite a)r^þ. Every rightmost step, using our notational conventions, has

tlre form 1AA + 16U in rvhich g consists of terminals only and A -' ó is a production.

If ,9+)-a, tlren rve say a is a right-sentential Íorm of tlìe grammar at hand. Rightmost

derivations are also called canonical derivations.



2"2 T,R parsing

An LR parser, also known as a bottom-up or shift-reduce parser, operates by scanning an

inptt word from left to right, and constructing the rightmost derivation in reverse. To

construct a parser for a grammar G, G is augmented with a new start symbol 5/, not in V,

and a new production ,9/ -* S$, assuming that every input string is followed by the symbol

$, where $ is not in V. The new production is assumed to be the zeroth production.

The two basic actions in a parser are to shift an additional character of input onto

the state stack, or to reduce a handle on the state stack to the nonterminal symbol which

generates it. The parse ends when the state stack contains the start symbol and the input

is the termination symbol $. The rightmost derivation generated by the operation is the

parse of the input word.

More formally, a canonical LR automaton for a contert-free gro,rnmo,r (CFG) G, G =

(V¡v,Vr,P,,S), is a sextuple LRA(G) : (I(,V,P,s,¡o,¡,Action,NBXT), where 1l is a flnite

set of states, whose members are represented by a subscripted letter s, such âs spr ssr s1:

a,nd s2. The symbol srturt € 1l represents the start state. The parsing Action function is

a map from 1( x (Vr U {$}) into {shi.fi, error, accept} U{reduce I I I € P}. The function

NEXT is a map from 1l x V into I( U {error}, each member is called a transition. The

tra,nsition (rn,X) is represented by ,n 4 r, where sp = NEXT("n,X),or by sn 4 when

so is irrelevant, and we call X the accessing synzbol of state so. Each state has a unique

accessing symbol, except sstart¡ which has none. In this thesis we assume that the grammar

has no duplicate or useless productions, and no useless symbols.

Function PRED, which is the inverse of NEXT, takes a state so as an argument, and



produces a set of states as output. State sn is in PRED(so)

accessing symbol of state sp.

if sn I so, where Y is the

PRED(so) = {so I so \ sr,Y eV}

A path ll is a sequence of states sqo, . . ., sqn such that

soo Il ser snln-r¡ & ser,.

The path Il is denoted by [sn6 : a], rvhere a = Xt,".,X,., and Top(fl) = s0,,. The

concatenation of [so : a] and [so : B], where Top([so : a]) = so, is rvritten [so : a] [s, : B]

and denotes lsn : aBl. [se¿o¡¿ : a] can be abbreviated [a]; thus [ ] denotes s"¿o,¿ alone, We

say that a accesses sn if Top([a])= sn.

A, configuration is a member of 1l+ x V¡r and can be presented by [o]p, its first part

is a state accessed by a, and its second the unprocessed input B. The relation F on the

configuration represents the next move of the parser and is the union of F"¡;¡¿ and l-¡*.,,

for a.ll .'4 -+ a € P.

We denote an item of an LR automaton LRA(G), rvith respect to a production ,4-- a

as lA --+ B r 7, g], rvhere 2 = 81. Daclrr, item represents a partition of the right liand side of

a production. Informally, the item represents a production rvhich is porúr'ally recognizetl, so

rve call items as above where a = þ, (i... I = e) complete items, denoted [á -r ao, g]. Tìre

fixed-sized string of lookahead symbols g denotes possible terminal svmbols that can follorv

the nonterminal -4 of this item.



LRA(G) states are elements of the power set of items. There are t\vo types of items in

a state, kernel items, which define the state, and closure items, rvhich complete the state,

and are derived through a closure operation on the kernel items.

A CFG is tR(1) if a parser exists rvhich can alrvays make the decision tro reject, accept,

slúJt or retluce (and by rvhich production Ío reduce) rvith a one symbol of lookahead in the

remaining terminal strilg. Unless otherrvise specified, only parsers rvith ft = 1 lookahead

symbol are discussed in this thesis.

An inadequate state in a parser is one for rvhich the parser cannot deterministically

decide wlrat move to make. These fall into trvo classes, redzce-redzce conflicts, anð, shift-

ledzce conflicts. h the first class, a parsel knorvs there is a handle, but the information

on tlie lookahead stack is not sufrcient to determine rvhicli production should be used in

a reduction. In the second class, the parser canrot teli if the string shifted in is a handle.

It might be co¡rect to reduce the string to a nonterminal symbol, or it might be correct to

shift more symbols to form a different handle.

2.3 The Sets FIRST, LAST, and FOLLO'W

Here rve describe functions rve use in later discussion.

Let FIRST(o) be the set of terminals and nonterminals that can be the first symbol of

any sentential form derivable directly lrom a.

IIRSr(a) = {Y I a+Y P}

And 1ei LAST(a) be the set of terminals and ronterminals that can be the last symbol of



any sentential form derivable directly from a.

LASr(a) = {\'la+BY}

Let FIRST-(a) be the reflexive transitive closure, and FIRST+(a) be the transitive closule

of FIRST(a), and LAST-(a) be tlie reflexive transÌtìve closure, and LAST+(a) be the

transitive closure of LAST(a). Thus, for instance, FiRST-(a) = {Y I a +* YB}. The

function FIRST-1(y) is the inverse of function FIRST-(a), and LAST-I(Y), the inverse

of LAST-(a).

FrRSr-l(]') = {x lY € FrRSr-(x)}

LAST-1(y) = {X l\'€ rAST-(X)}

The symbol B is rarked as a louer-leuel symbol of A if B is in FIRST+(A), and .4. is not

in FIRST+(B). We say -4 and B are same-letel symbols if ,4 is in FIRST+(B) and B in

FIRST+(,A). Terminals are ahvays lowest-leuel symbols.

T-FOLLOW(.4), for a nonterminal .4, is a set of terninals that can follorv ,{ in some

sentential form, and if ,4 can be the rightmost symbol of a sentential form, then $ is included

in T-FOLLOW(A). That is,

T-FOrLOW(.A) = lber/ru{$} | ^ç', I pAbT,

for some B in V* and 7 in V-$]

Function FOLLOW(,4.), for a nonterminal ,,4, is a set of symbols, termina,ls and nontel-

i0



minals, that can fo11ow .4 in some sentential form, and if ,4 can be the rightmost symbol of

a sentential form, then $ is included in FOLTOW(, ). That is,

FOLLOW(A) = {y€yu{$}l S' + :JAYT,

for some p in V* and 7 in V-$]

Thus tlre function T-FOLLOW(á) can also be defined as T-FOLLOW( A) = { b e

vÎ u {$} | å e FoLLOW(,A) }.

2.4 StR(1) Parsers

To construct a canonical SLR(I) parser, rve first precompute the T-FOLLOW sets as previ-

ously defined, tlien the LR(0) parser is built using the LR construction algoritlim rvith null

lookahead sets. Since items of the parser have no lookhead, rve rvill simplify their definition

tolA-* Bc1l.

An LR(0) parser state is ìnadequate if it contains more than one item, at least one of

rvhich is complete, since there is no lookahead to distinguish betrveen multiple actions.

The SLR(1) automaton attempts to resolve the corflicts through the addition of looka-

head symbols for complete items. SLR(1) lookahead is computed, for the complete items

of each state, as follows:

LA(so,A.-* û) = {z I z: e T-FOLLOW(.a)}

Tlre correctness follorvs because LA(sn,A --+ a) simply states tlìat parsing can continue



by reducing a to Á only if the following symbol in the input stream could possibly arise after

,4. in some derivation from ,S/, rvhich is obviously necessary for the result to be a sentential

form deriving a rvord c e .L(G).

Note that simple LR lookahead for -4 ---+ a is independent of the state in rvliich it is being

applied (other than that the state contains the production A-- a). This difers from LR

lookahead, rvhich enfolces that parsing continue rvith reduction A -- a only if the follorving

symbol could possible arise after A in some derivation consistent rvith the current state of

the parsing automaton.

2.5 Summary

In this chapter, we presented the notation and terminology used in the rema.inder of this

thesis, rvhich is largely standard and can be found in such sources as [Aho86], and [DeRe82].

The very few dìfferences in terminology are taken from the Tai in [Tai79], and Salomon in

[Sal89A]. We also presented functions rvhich are used in SLR(i) and NSLR(1) construction

algorithms and rvill be used in following chapters. We introduced briefly the idea of SLR(1)

parsers. Detailed information about SLR(l), LR(1), IALR(I) parsers can be found in most

compiler books like [Aho86].

t2



Chapter 3

Noncanonical Parsing and The

Objective of This Research

A survey of noncanonical LR parsers is presented in this chapter. The ba.sic ideas of fhe

NSLR techlique and the diference between SLR ard NSLR parsers are introduced. In

additiol, trvo examples rvill be given to demonstrate that useless actions can exist in the

parsers gerìerated by current noncanonical parser construction techniques.

3.1 Survey

The rvell knorvn LR(ß) parsing algorithm of l(nuth [I{nuth65] and its trvo major variations

SLR(È) and LAtR(e) due to DeRemer [DeRe71] ate canonical in that they reduce only

leftmost phrases ofhandles, rvith È terminal lookahead symbols, rvhere Ål is a constant. Such

parsers c¿n be implemented by a single-stack machine rvith a fxed-size parse table, tliat is

a pushdovn automaton.



Compared rvith canonica-l pa.rsing, noncanonical parsing allorvs greater freedom to select

a phrase for reduction and therefore has several advaltages. First, the set of grammars

rvhich are deterministica.lly parsable by noncanonica.l parsing is larger. Secold, the set of

languages defined by noncanonically-parsable grammars may contain some nondeterministic

languages. Some of the existing canonical parsing methods can be extended for noncanonical

parsing rvithout loss of parsing efficiency. A brief discussion of existìng lLoncanonical parsing

metlìods follows.

3.1,1 Noncanonical Extension of Simple Precedence(SP) Parsers

Colme¡auer [Col70] defined total precedence relations, rvhich are generalizations of the

Wirth and Weber simple precedence relations, such that <' and '> indicate the left and

right elds, respectively, of a phrase. By requìring that at most one precedence reÌatìon

hold betrveen any pair of symbols, at least one phrase of every sentential form is unirluely

distinguished by the relations at its left and right ends. Colmerauer shorved tliat the tota,l

precedence languages are incommensurate rvith both the deterministic languages and their

rellections.

3,1,2 Noncanonical Dxtension of Bounded Context(BC) Parsers

Iloyd's notion of Bounded Context Parsers IFloy64] provided much of the framervork for the

discovery of tlre LR(È) languages. À grammar is said to be m, n bounded context (BC(m, n))

if every phrase of any sentential form is uniquely distinguislied by the m symboìs to its left

and the z symbols to its right. If this restrìction is rveakeled by specifying that at least

the leftmost phrase has bounded context, then the class, BRC(m,n), of bounded right



conteît grummo,rs, is a proper subclass of the LR(z) grammars, as LR(z) grammars have

right context of at most z symbols, and unbounded left context. Horvever, the classes are

equivalent when vierved in language space.

BRC parsing is canonical, in the LR sense, as only leftmost phrases are reduced.

Williams [Will75] derived a noncanonical extension of the BC method and defined a class

of grammars, called the m, n bounded, context parsable (BCP(m, z)) grammars, in which

at least one phrase of any sentential form is uliquely distinguished by the rn symbols to

its left and the z symbols to its right. Currently, the BCP method is the most porvelful of

all parsing methods that have both decidability and linear time parsabilìty. Horvevel, this

method is not practical because it requires that a large table be scanned to distinguish a

phrase.

3.1.3 Noncanonical Extensions of LR(k) Palsers

Szymanski and Williams [Syzm76] attempted to construct a general framervork for bottom-

up parsers and, rvithin that framervork, to examine noncarìonical extensions of some exisiing

bottom-up parsing methods. One noncanonical extension of LR(k), rvhich was suggested by

I(nuth fl(nuth65l and called LR(&, f), requires that in any sentential form one ofthe leftmost

f phrases be uniquely distinguished by its left context and the first É symbols of the right

context. Szymanski and Willams shorved tliat the LR(å,t) grâmmars are a superset of

the LR(,t) grammârs, but the LR(fr,1) languages are exactly the LR(È) languages (i,e. the

deterministic languages).

Two other noncanonical extensions of LR(È) rvere studied by Szymanski and Williams.

One of them, FSPÀ(ß), requires that a finite-state parsing automaton be able to find a

15



phrase in any sentential form by using a Ìeft-to-right scan with & symbols of lookahead. The

other, which includes FSPA(,t) as a proper subclass and is called LR(&, oo), requires that at

least one phrase of every sentential form can be found solely by examining its left coltext

and the first & symbols of its right context. They showed that the question of whether a,n

arbitrary CF grammar is FSPA(À) and LR(È, oo) for any fixed value of Ë is undecidable

and suggested that further restriction to the FSPA metlÌod to achieve decidability should

be considered. RNP(å), a noncanonical extension of SIR(fr) proposed by Szymanski, is

a proper subclass of FSPA(È). It is defined by requiring that phrases rvhich have been

scanned be reduced as early as possible.

3.1.4 Noncanonical SLR Parsing

Two noncanonical extensions of the simple LR(1) method are presented by Tai [Tai79],

He defired a class of context-free grammars called leftmost SLR(1) by using lookahead

symbols which appear in leftmost derivations. This class includes the SLR(1), refìected

SMSP, and total precedence grammars as proper subclasses. Another larger class ofcontext-

free grammars is called noncanonical SLR(1), thai is NSLR(1) for short. The NSLR(1)

languages can be recognized deterministically in linear time using a trvo-stack pushdorvn

automaton. With no €-productions, the NSLR(1) grammars are exactly the RNP(1) defined

by Szymanski. The noncanonical SLR(1) metlìod of Tai rvas chosen by Salomon [Sat89A]

to supply the parsing powel needed for character-1eve1 grammars.

Tai's parser-generation method cannot be used for character-level grammars exactly as

published. It requires several improvements. O e error in Tai's method is that lookahead

sets for reduce items in unexpanded states contain only terminal symbols. It is possible,
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horvever, that during a parse, an unexpanded state may be presented rvith a valìd nonter-

minal as a lookahead symbol and as a result the parser would incorrectly terminate rvith an

error. Salomon and Cormack corrected this error by allorving all reduce items in all states,

expanded and unexpanded, to have all-possible follorving symbols in their lookaliead sets.

Another deficiency of Tai's algorithm is the handling o1 e-productions. Tai's use of

e-closure on inadequate parser states, generates more complete items from e-protluctions

than are actually needed. These extra items can int¡oduce nerv conflicts that unnecessarily

cause the rejection of some grammars. Salomon proposes a method for reducing the number

of e-reduceitems genelated, and in this rvay admit an important class of practical grammals

previously rejected.

3,2 The Noncanonical SLR(I) Parsing Automaton

In this section and the next section, we present a description of NSLR(1) parsers and

NSLR(I) parser construction metltods. The NSLR(I) construction method begins by con-

structing SLR(1) parsing tables. Whenever an inadequate item set is reached, the parser

postpones any conflicting reductions, and continues parsing tlie right context in order to

obtain a nonterminal to be used as a lookaliead symbol. Since further right context is used

in the reduction of the new lookahead symbol, the nerv lookahead symbol can often resolve

the original conflict.

An NSLR(I) parser has trvo stacks, a state stack and a lookahead stack (see Figure

3.1). It uses the four usual parser actions, shift, reduce, error, a:nd. accept, btsl trvo of these

actions clrange slightly. Tire first change is that the red,uce aclio¡ is redefined so that the
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left part of the reduce item, instead of being shifted immediately, is pushed back onto the

lookahead stack to serve as the lookahead symbol for the next parser action. The top of

the lookahead stack contains the lookahead symbol for the parser. If the lookahead stack is

empty, the next symbol rvi1l be taken from the input stream. The second change is that the

shi.¡l action is allorved to shift nonterminals as rvell as terminals, in order to accommodate

the previous change.

Figure 3.1: The noncanonical LR parsing automaton.

There is a slìghtly different rvay, used by Tai, to describe a noncanonica,l parser. In this

second descliption, a parser is ìnitiated with a.ll the input stacked on the lookahead stack,

rvith the front of the input at top of the stack, This description is functionally identical

to the one given above, but it simplifies the speciflcation of the parsing algorithm. In

this description, popping the lookahead stack encompasses the operations of popping the

lookaliead stack and shifting the next input character if the lookahead stack is empty. As

a result, we use the second description in the rest of this thesis.

3.3 Extending StR(1) Parsers to Become NSLR(I) Parsers

In this section, a simple exarnple is used to ìllumilate the constluction of noncanonica.l

SLR(I) parsers. Consider the grammar G1 rvith the productions in Figure 3.2:
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S --+ Aal Bb

A -+ EAIE
B ..+ FBIF
E--+c
F--+¿

Figure 3.2: Grammar Gt Gt is not LR(/i) for any È.

Figure 3.3 slìow6 the SLR(1) parser for Gr in which sl is the only SLR(1) inadequate

state. Actually, G1 is not LR(fr) fol any È because the nonterminal , E or F, to rvhich c

should be reduced depends upon rvhethel the final input symbol is a or ö, respectively. Since

the input can be of unbounded lengtli, unbounded lookahead rvould be needed to lesolve

the conllict.

Figure 3.3: SLR(1) parser for G1.

Li order to resolve the conflict, nolcanonical parsing caì. be applied to reduce nonleft-

S +.Aa
s .""'+, Bb

A ----.>, E

B ..--.-+. F

E +.c
F "-+, c

s ------+Aa. {s}

S """'>Bt,, {$}

A ------+E . A

A ------->E , {a}
A ----'-+. EA

E-ù c

A 
-'EA, { a}

E +c. {a, c}

B .""'+F , B

B ------'F . {b}
B -----+ . FB

B'------>.F
F -----+, c

B -)FB. {a}

Er 
-¡'^ 

J= ^t

F +c. {b.c}
F """+c, {b,cl
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most phrases of sentential forms. We present a modified NSLR(I) construction algorithm

due to Salomon and Cormack [Sa.l89B], rvhich incorporates several fixes and enchancements

to Tal's original algorithm. For a detajled discussion, please see [Tai79], [Sal89B], and

[Sa]8941. The follorving is a brief description.

To construct an NSLR(1) parser, we precompute FIRST-, LAST-, FOLLOW and tlìe

three follorving sets.

VISIBLD = {Y l}'l* s, for some y, y f e}

NEEDED-FOLLOW(,4) = {Y I there is a rule B ---+ aX þY1,, A e LAST(X), p +" e}

UNRESOIVABLE(A) = {Y €VISIBLE I A + aY B, a ++ e}

The functìon ViSIBLÐ represents the set of nonterminals that can generate a non-empty

rvord.

The set NDÐDED-FOLLOW(,4) needs a detailed description. If the definition is restated

rvithout the B intervening betrveen X and Y, it is exactly the definition given by Tai for'

LM-FOLLOW, rvhich contains the symbols that can immediately follorv A in any sentential

form of a leftmost derivation from the start symbol. NÐEDED-FOLLOIV(A) is different in

that it contains those symbols that can follorv A in a leftmost delivation even if they ale

separated by a stling that can genelate e. The set NDEDED-¡'OLLOW(á) is so named

because it contails those lookahead syrnbols tliat Ìnust not be noncaronically reduced to

resolve a conflict involving a reduction to -4. A symbol Y in NDEDED-F0ILOW(.4) may

not be reduced because there is a grammar rule ilvolving A or symbols in LAST-I(A)
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that can only be used during a derivation if lookahead symbol Y remains unreduced.

FOLLOW(,A) is a closure of NEEDDD-FOLLOW(A)-ILe union of tlte FIRST sets of sym-

bols in NEBDÐD-FOLLOW(,4.).

Loop until all states completed.

Compute next SLR state so for grammar.

To each complete item | = [,4 --+ ao] attach

a ìookaltead set tr; = FOLLOW(A)nVISIBLD
and a needed-lookahead set I{¿i = NEÐDDD-FOLLOW(,4)nVISIBLE

If state so has a conflict then

For each conflicting lookahead symbol X:
resolued, := t:lrte
For each complete item [I¡ = A'- c'o] such that X is in tri:

If X is in N L; or X is in UNRESOLVABLE(.8) for sorne B in -L;

then resoloed := false

else

For each rule B ---+ XB rvhere -B is in Z¡:

Add iten lB -+ oXPlIo sn

end for

end if
end for

If resoloed then remove X fi'om -L¡

else grammar is not NSLR(1).

end if
end for

end if
end loop.

Figure 3.4: The construction a.lgorithrn for NSLR(1) parsers.

The list of UNRDSOLVABLÐ lookahead nonterminals for a given nonterminal arises

from the method of Cormack and Salomon for handling invisible nolterminals during con-

flict resolution. Its purpose is to reject grammars that require state expansion to occur
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recursively on some statesl.

The NSLR(1) construction algorithm is given in Figure 3.4. After pelforming the state

expansion algorithm, s1 will have been expanded by adding noncanonical items, and the

lookahead sets rvill have been trimmed. Figure 3.5 shorvs the NSLR(1) parser rvhich accepts

grammar G1. Ignoring the question of e-productions and invisible nonterminals, rve are

simply including nonterminals in the lookahead sets, and rvhenever a syrnbol I' causes a

conflict in state sq, we eliminate it by adding IB --+ oY B] for all ploductions such t]rat B

is in FIRST-I(Y). Thelefole, for an NSLR(1) parser, there ale thlee types of items in a

state, kernel items, closule ìtems, rvhich exist in canonical palsers, and noncanonical items,

rvhich are added by the expansion algolithrn, and can themselves generate closure items.

3,4 The Objective: Eliminating Useless Actions and States

One deflciency of parsers built by the existing NSLR(1) construction algorithm is that some

tlansitions and states will never be accessed during parsing because of the transitions and

states added for noncanonical parsing. For example, consider state s16 ir.L Figure 3.5. The

transition from s5 to s1s is redundalt because every c in the input stling rvi11 be reduced to

.8 ìn state s1 before s5 is entered. After the transition from s5 to s16 is deleted, there rvill

be no transitions to s10 and thus s1¡ will be redundant. Some lookahead symbols associated

rvith reduce items could be useless too. For example, symbol ,4 and B in state s1 and symbol

¿ in state s1o and s12 are useless. The¡e are tivo kinds of useless lookahead symbols. OÌe

kind is higherJeueJ nonterminals, rvhich cannot have been reduced rvhen the corlesponding

lWhen the algorithm marks a conflict as unresolvable, it nray still be possible to resolve the conllict fo¡
some grammars by adding e-reducing items and mo¡e shi{t itenrs. Fo¡ details, please see [Sal89A]
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S +.Aa
s'------Þ,Bb
A _}.EA
À -+,EB """'r. FE

B ----+, F
E +,c
F'------+.c

s .------ùAa. {$)

s -ùBb, {$}

A """'>E , Ä

A +8.{a}
A ->. EA

A --"-+. E

E 
->.c

A """'ùEA, {a}

E +c. {a,c}

B --'+F , B

B .------¡F. {b}
B 

-},FBB _}.F
F """'>. c

B +FB. {a}

E .'+c, {a. E, Â}
F """'+c. {b, F¿ B}

F +.c

F +c. {b,c}

Figure 3.5: NSLR(I) parser for G1 by expanding algorithm.

state is entered. Another kinð. is lower-leuel te¡minals and nonterminals, rvhich have been

reduced already and therefore cannot appear on the top of lookahead stack rvhen a certain

state is entered. Salomon shorvs horv to delete most of the useless nonterminal symbols by

using algorithm DUR2 [Sal89A], In this thesis rve rvill examine rvays of removing redtndant

transition and states as rvell as removing more ledundant lookahead symbols.

B --. Btþt
Bt - Bzþz

B2 --+ B3B3

Bs --+ bBa

C ..+ 9ABt

A ---+ a1A1
At - azAz

Az "'+ ozAs

As - aqa

Figure 3.6: Part of the productions for grammal G2.



In order to explaìn horv the useless sådfi and, retluce actions are generated, rve give a

more general example in the follorving discussion. Only palt of the grammal and pa.rt of

the parser are presented here. Assume that palt of glammar G2 is as in Figure 3.6:

Figure 3.7 shorvs part of the NSLR(I) parser for G2 obtained by expanding the SLR(1)

parser. (The itern sets and lookahead sets shorvn there are also incomplete.) For that figure,

Figure 3.7: Part of tlìe parser for grammar G2.

ó c T-Follorv(,43), and {'B,,81,.82, Bs,b} C Follow(fu).

Assume that fol some reason, si4 and s;6 ale not SLR(1) consisteùt. In state s;4,

noncaùonical expansion items -B3 + röBa and B2 --+ c BsB3 have been added. Item ,83 -+

cóBa is also added to state ,si6 to resolve a conflict, The lookahead set of reduce item
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As -+ a4a in state s;4 is {.B2}. After the plirase BeÉe is shifted in, and .B2 is pushed onto

the lookahead stack by reducing the phrase Bals, it rvill selve a.s the lookahead symbol for

tlre reduce item .43 -' a4a. Alter phrase a4ø has been leduced to ,43, sia rvill be popped

f¡om the state stack so that s;3 appeârs on the top of the state stack, and the top of the

lookalread stack rvill be 4382. After state si1 shiÍts,43 and entels state s¡5, .B2 rvill be on

top of tlre lookahea.d sta.ck. In this case, B3 and ó are lower-leuel useless lookahead symbols

since .B3 and i' have been shifted and reduced To hàglrcrJeuel symbols (82, in this example)

before state s;5 is entered. B anð, 81 are higher-leuel rseless lookahead symbols since item

A2 --+ a3A3 is reduced befole B1B1 is reduced to B, and .82B2 is leduced to .81.

It is interested to notice that noncanonical items cal be useless items too. In this

example, 83 '-+ oóBa in state s;6 is a useless noncanonica.l item because of the state expansion

of s;¿.



Chapter 4

The Properties of NSLR (1)

Automata

The purpose of this chapter is to explore the essential ploperties of noncanonical SLR(1)

automata. We àre interested in the properties tha,t such a parser rvould have if it contained

no useless shift or reduce actions caused by noncanonical state expansion. By anaiyzing

these properties rve hope to discover methods for deleting useless actions. In tlie follorving

sections rve rvill define and analyze relations and sets for such parsers.

4.L The Difference Betv¡een The Two Deffnitions of Reduce

Actions

As mentioned in Chapter 3, rve use a nontraditional definition of the reduce action. In the

traditional definition [Aho86], the popping of a handle and the pushing of the nonterminal

resulting from the reduction onto the state stack are performed in one action, so that



nonterminals never appear on tlÌe lookahead stack. The contents of a lookahead stack

during a parser are a string in Vi. For example, assume state s" corresponds to the item

set in Figure 4.1, only terminal symbols, such as ò, can be on the top of the lookahead stack

rvhen s, is on tlie top of the state stack. Thesymbols-81,82,83,and, Ba will a.ll be shifted

immediately after their reduction, and hence rvilì not be pushed onto the lookahead stack.

Iigure 4.1: State s".

In the nerv definition ol reduce, the pop and the push are separated ilto trvo actions.

A reduction on item 1= [A '--+ oo] consists of popping lal states off of the state stack, and

pushing the symbol A onto the lookahead stack. The next step depends on the state stack

and tlre lookalread stack. Under this definition, any of the symbols -B1, 82, Bs, Ba, and b

can appear on the lookahead stack rvhen the current state is s".

4.2 The shift and reduce Lookahead Sets

In order to explain parser properties clearly, rve divide symbols on the lookahead stack into

two categories, ShiftLA, and ReducelA. Shiftl,A(so) is a symbol set associated rvith all

shift actions out of state sr; ReducelA(so, 1) is a symbol set associated rvith reductions

due to item I in state so.

The formal definition of the shift lookahead set for a state sp is:
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Definition 4.1

SlrÌftlA(so) = {Y € v llalY7

l"¡¡¡¿ laYll

l-- [^9'$], and a accesses so]

Notice that both nonterminals and terminals are possible in shift lookahead sets. For canon-

ical LR(l) parsers with the new definition of reduction, sliift lookahead sets are easy to

calculate. I(norving kernel items, we can get closure items using FIRST* sets. For example,

if X e ShiftlA(so), and Y € FIRST.(X), then it must be true that Y e ShiftlA(so). For a

noncanonical LR(l) parsers, things are more complicated, The fact that X € ShiftlA(sr)

does not guarantee that y € FIRST.(X) rvill be useful in the shift lookahead set. It is pos-

sible that a string starting with Y rvill ahvays be reduced to X by a noncanonical expansion

item before state so is reached. In this case, Y should not be ircluded in ShiftlA(so).

Let the reduce lookahead set for item [,4'* c.ro] in s, be denoted by ReducelA(so, [A--

u.l),

Definition 4,2

ReducelÀ(so, [A -+ cur]) = {Y e V | [ao)Y 1

t¡d-.4la1AYt

F* [.9/$], ønd aw accesses so],

Notice that a,4 need not be a viable prefix of a noncanonical sentential form. It is possible
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for the string a to be reduced to another string when the top of the lookahead stack is A.

The symbols in ReducelA(sr, I = lA -+ c.rrl) can be terminals rvhich rvere in the input

string, as well as nonterminals rvhich were pushed by previous redzce actions. For any

noncanonical SLR(1) consistent state s?, ReducelA(so, .I) n ReducelA(se, J) = Ø, and,

ReducelA(sr, I n Shi{tlA(sr) = Ø, for any items 1 and .I in state sr, where 1f ./.

ReducelA(so) is a short form used to represent all symbols associated wìth reductions

in state sl

Definition 4.3 ReducelA(so) = lJReducelA(so, 1), uhere I is a complete item i,n state
I

sp,

4,3 The Functions Accessl,A and PreShifted

We define AccesslA(so) as the set of symbols rvhich may appear on top of the lookahead

stack rvhen state so is entered from other states by sliifting .,4, the accessing symbol of

so. We rvill shorv later that act.ions .in a state are determined by its kernel items and its

AccesslA set. More precisely, AccesslA cal be defined as:

Definition 4.4

AccesslA(so) = {Y € V llalAYT

l"¡;¡¡ laAlYl

F- [S/$], aA accesses sp,

a accesses some state sq, and sq f sp}.
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The above definition deserves further explanation.

First, for canonical LR parsers, only terminals can be on the lookahead stack, so

Äccessl,A(sr) C V¡; but for noncanonical LR parsers, AccesslA(sr) C V.

Second, symbols that can be on top of the lookahead stack only rvhen state s, is uncov-

ered on the top of the state stack by reduce actions are not included in AccesslA(sr).

Third, condition so f s, in Defirition 4.4 is c¡ucial. The existence of at least one such

state sn from rvhicli state so can be entered is obvious. f'or those states rvltich can be entered

by shifting fi'om itself, this condition rules out some symbols rvhich can be on top of the

lookahead stack only rvhen tlte state is entered from itself.

Please notice the differences betrveen AccessLA(so), ReducelA(sp,1) and ShiftLA(so).

They al1 contain symbols rvhich calL appear on top of the lookahead stack rvhen the parser

is in state so, Wlien state s, is entered from another state by slii{ting the accessing symbol

,4, any symbol Y that can be olL top of the lookahead stack belongs to AccesslA(sr)' After

more symbols are shifted, this string beginning rvith Y can be reduced to another symbol

C, Symbol C may belong to ReducelA(so, 1) for sorne complete item f, or ShiftlA(so).

But C is not in AccesslA(sr), even ìf after shifting C, another instance of state s, is pushed

onto tlie state stack (in this case, symbol C is the same symbol as the accessing syrnbol A)'

Figure 4.2: State s5 of the NSLR(1) parser for G1.
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We choose the NSLR(I) palser for G1 as an example. State s5 appears in Figure 4.2

alter the useless item E -r ¡¿ is removed. (See also Figure 3.5).

In this parser, state s0 is in PRDD(s5). When.Ð ís shifted by state so, arìd state ss is

pushed onto the state stack, the terminal symbol a, or nonterminal symbol -E may appear

on top of the lookahead stack depending on the input sentence. Symbols ø and ,Ð are in

AccesslA(s5). Symbol .4 may appear on top the of lookahead stack rvhen the current state

is s5, but .4. is not in AccesslA(s5), since there are no noncononical reductions to á that

could leave,4 on the lookahead state rvithout an immediate shift,

Ploperty 4.L For any state so, AccesslA(sp) c ShiftlA(sr) U ReducelA(so).

Proof: This is an immediate consequence of the definitions of AccesslA, ShìftLA, and

ReducelA, since every syrnbol in AccesslA must lead to either a shift action or a

redrrce actìon.

Ploperty 4.2 For ang Y e Shiftl,A(so) U ReducelA(so) , there erists an X, such tlmt

X € AccesslA(s) and, X € FIRST-(Y).

Proofr For any Y € ShiftlA(so) U ReducelA(so), there are only trvo possible cases:

1. there is no item rvith Y as the left-part in state so, or

2. there is at least one item rvìth Y as the left-part.

Case 1: In this case, Y must be in AccesslA(so). By way of obtaining a contradiction,

suppose that Y / AccesslA(so). According to the definition of AccesslA, there exists
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â.n a and an .4 such that

lalAl F 
"¡;¡¿ [a,4]7 F- [^9/$]

lvhere û accesses sq, aá accesses sp, and sp f sn. Because Y / AccesslÀ(so), Y cannot

be on the top of the lookahead state rvhen so is entered by shifting ,4 from state sn.

Since Y € ShiftlA(so) U ReducelA(sr), Y can be on tlte top of the lookahead stack

when the current state is so. The only rvay that Y can be pushed onto the lookahead

stack is by shifting a string from state sp, and then reducing this string to Y. The first

symbol X of tlris string must belong to set ShiftlA(so) u ReducelA(so) and Y ++ X 0 .

So, we conclude that in state sp, there must be at least one item rvhose left part is Y.

This contradicts tìre assumptìon. So that Y € AccesslA(sr), and the property is true

'r case 1.

Case 2: Since tliere is at least one item rvith Y as its left-part, this item can be

rvritten as lY ---+ cY101l, furthermore, rve can find al1 items of the form lY1 --+ tY202],

lY2 -, cY3fu), ...,lYn - oXî"+tl that are in state sp, and X is not the left part o{

any item ir this state. According to the proof of case 1, X € AccesslA(so), so that

the propelty is true in case 2.

Hence we proved property 4.2.

Property 4.2 tells us that AccesslA can be used to limit which symbols can be shift or

reduce lookahead symbols.

tr
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Property 4.3 AccesslA(sp)ç l/,Í, iÍ se is accessed, bg a terminal sgmbol a.

Proof: The lookahead stack is initialized with all the input terminal symbols. During

parsing, only nonterminals can be pushed onto the lookahead stack by reduce actions.

Due to the nature of stacks, the contents of a lookahead stack (from top to bottom)

must be a string in VfrVi. This means that only terminals can be under a terminal

in the lookahead stack. Thus the symbol exposed on the lookahead stack must be a

terminal, if state s, is accessed by shifting a terminal symbol a. tr

Having defined AccesslA, rve norv define the function PreShifted. The function Ac-

cesslA defines a set o{ lorvest-level symbols rvhich can appear on the lookahead stack for

a state. The function PreShifted for a state so is defined as a set of symbols lvhich are

ahvays shifted by noncanonical expansion items before state sp is entered, and therefore

these symbols .unnìt bu shift or reduce lookahead symbols in this state. PreShifted(so) can

be computed from AccesslA sets and FIRST sets.

Definition 4.5

PreShifted(sr) = {y ll,4 € AccesslA(so), y € FIRST+(A),

for any B, .B € AccesslA(se), y ø FIRST-l(B).)

From the definition, we can see that the symbols in PreShi{ted(so) are lorverJevel symbols

of those in AccesslA(so).



Property 4.4 PreShifted(se) n (ShiftlA(,sp) u ReduceLA(sp)) = ø

Proof: We prove this property by contradiction: suppose the property does not hold,

then there is some Y,

Y e PreShifted(so)

Y e ShiftlA(sr) U ReducelA(so)

(4.1)

(4.2)

Relation 4.2 rvith Property 4.2 imply that there exists an X, such that X e AccesslA(so)

and X € FIRST.(y). By Definition 4.5,Y / PreShifted(sr). Hence tltere is a contra-

dition rvith the assumption, and we have proved the ploperty. tr

Property 4.5 PreShifted(sr)= Q, if so is accessed by a terminal sgmbol a.

Proof: Thìs proof is trivial. By Property 4.3, if so is accessed by terminal symbol a,

AccesslA(so) Ç Vr. This implìes that there is no A, such that Y e FIRST+(A), so

that PreShifted("p) = Ø by Definition 4.5. E

4.4 The LOOKBACK Function

Here we define another function called LOOI(BACI(, which is very similar to the relation

Lookback defined by DeRemer [DeRe82].

Intuitively, we say,sq is in LOOI(BACI((s,, 1 = [A --+ ao]) if so is the state rvhich

pushes a nonterminal symbol '{ onto the lookahead stack by reduction of item 1, ald s,

is the state rvhich is entered by shifting this ,4. For example, in Figule 3.7, sta is in
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LOOKBACI((s;s, [As - aaao]) and s¡5 in LOOI{BACI{(s;6, [.42 -* a3Á3r]). We simply

say so lookback so if no confusion arises.

Before we formally define the LOOKBACK function, rve first introduce two relations

related to that function.

Definition 4,8 State so UIRS (uni,nterrupted red.uce arul shift to) state so at item I = lA '-+

.r,cl if, there is at least one state s,, s" 3 
"0, ", 

4 so. and Jor anyY e ReducelA(sq,1),

there is a path,

Tolt([s": u])Y1 16-.,1 :lop(ls"l) AY1

lshi1t Top(ls": A))Y1.

Figure 4.3 shorvs part of a parser for an NSLR(1) grammar in rvhich state sn UIRS state

so at item [A --+ ao].

.tê

I A.......' .n I I o1 .:___JL----T-----J I

Figule 4.3: State sn UIRS state so.

Definition 4,7 State so IRS (interruptetl retluce and. shi.ft to) state s, at item I =lA "+ wol

if there is a state ss, and B +t þ, such that 
"u 

B3 
"n, 

ord, s" BJ s, for ang Y e

Red,u,celA(sn,I), there is a path,

Top(ls, : Bul)Y1 F¡-, Top([s": þ]) AVt

l"n;Jt Top(ls" : B Al)Y^l
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D-ÞE,Cr
c ---à , AG

c--r,BH
B -.--> . a
A ----+ , a

c---ùAG,{i}

G----+.fg
H ----+ , fh
A ->a. {G}

G.----f.g
H--+f.h

G --Þ fq. { 1}

Figure 4.4: State sn IRS state so.

Figure 4.4 gives an example in rvhich state so IRS state so at item lG'* /gc].

The IRS relation is unique for noncanonical automata. For a parser rvhich is canonica.l

LR consistent, only UIRS relations hold for states.

Formally, function LOOI(BACI( is defined as follorvs:

Definition 4,8 FunctionLOOI(BACI(, for a state s, and an i.tem I = lA "+ aol, is defined

as a set of states. State sq zs in LOOI(BACK of so at item I, iJ state so UIRS state s, at

i,tem I, or state sn IRS state s, at item I , ue urite as so € LOOI(BACI((s,, 1 = [,{ --+ cur]),

Observing the relationship ofthe symbols in AccessLA(so) and ReduceLA(so), ive obtain

Theorem 4.1, rvhich helps us to determine the symbols in AccesslA for a given action tab1e.
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Theorem 4.1

AccesslA(so) Ç [JReducell(s n,lA -- olcl),

uhere so € LOOKBACI((s', [,4-* cuo]),

Proof: According to the definition of AccesslA, for any Y e AccesslA(sr), and for some d

and 7, there is a transition lîlAY I I "utt [á,4]Y7, such that d accesses s.,, áA accesses

sr, attd s. I sn.

Since .A is a nonterminal, there must be some strings a and ar, and a state sn accessed

by ac,:, in rvliich a string ¿¡ is reduced to .4., such that

larllY l I a-. lalAY l l. lîlAY 1 I 
"¡; ¡ ¿ l0 AlY 1.

If there rvere no such a and c.r, tlten there rvould be ro deriatiott 5r '-+ lîlAYl.

Here two points need to be explained:

1. y € ReducelA(s',I = lA'- ul simply because Y is under ,4. on the lookahead

stack while the parser is in state s-, and .4 is reduced from string c,.r. The A must irave

been pushed by a reduce action and Y must have been the lookahead symbol for that

action.

2. T opt(lal) may differ from Top([d]). After the ¿.r is reduced to .4., a secluence of reduce

and shift moves may occur rvhile this .4 remains on the lookahead stack.

Norv, we rvant to prove that sn € LOOI{BACI((s,,I = lA --+ uel),

For any X e ReducelA(s',1), thele are some 7/, such that lo.ulXlt l--1-, lalAXTt,



Since [a].4Y7 ts- ll)AY1,,4. remains on the lookahead stack, and "- 4 
"r, "o

faalXl' I ¡-, lalAXTt ts- lïlAX 7t ts 
"¡¡¡¿ l0 AIX 1'

We conclude that sq € LOOI(BACK(s,,,I = lA-- uol).

Hence, rve proved that AccesslA(sr) C UReducelA(sq, [á * c.l"]), rvhere

so € LOOKBACK(s', [A '- øo]).

In this cliapter, rve defined sets and analyzed relatiols betrveen them. We shorved that

PreShiftetl(sr) is a set of symbols rvltich cannot be in this state so. In next chapter, I will

present algorithms to detect subsets of PreShifted, given an action table containing useless

actions.
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Chapter 5

Algorithms for Shrinking

NSLII(1-) Parsers

In chapter 4, rve analyzed the properties of the NSLR(1) parsers without useless actions

caused by noncanonical state expansion. In fact, up to norv there does not exist a prac-

tical parser construction technique which can generate such pa,rsers. Given action tables

generated by an exist.ing NSIR(I) parser construction algorithm N PG sc (as presented by

Salomon and Cormack [Sal89B]), rve present two approaches for deleting useless actions by

using the relations rve found in Chapter 4. The safety of these approaches is also proved

in this chapter, The results of the two approaches are analyzed in Section 5.4. The results

for real character-level grammars for plogramming languages are poor. The reasons for the

poor performance are analyzed and the analysis leads to a simple improvement of the parser

constluction algorithm. When applied to parsels gerìerâted by the modified parsel construc-

tion algorithm, the algorithms for deleting useless parser actions lead to signifrcantly smaller
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parsers.

S.L Lookahead Sets Obtained from Action Tables

The algorithms presented here are designed to rvork on the parser action tables built by

the standard LR(1) family of parser construction algorithms. In order to differentiate sets

rvhich are obtained from an actual action table fi'om theoretical sets which contain no useless

actions, we precede the names of the former sets with the prefix A?. ATReduceLA and

ATShiftLA, are respectively the reduce anð, shift lookahead sets computed from an action

table.

ATShiftLA(so) = {Y I Action(s,Y) = shif t} (5.1)

ATReduceLA(s' I = lA --+ c.ro]) = {Y I Acti.on(sr,Y) = red.uce by A --+ u} (5.2)

ATReduceLA(so) is deflned as the set of symbols associated with any reduction in state so.

ATReduceLA(sr) = {Y I Action(s,Y) = reduceJ

For any NSLR(I) consìstent state sp, ATReduceLA(s, I) o ATReduceLA(s, J) = $,

and, ATReduceLA(so, I) n ATShiftLA(sr) = @, for any items 1 and ,.I in state s* where

I+J.

The sets of actions obtained frorn an action table ale supersets of the corresponding

theoretically optimal ones.

ATShiftLA(so) ) ShiftLA(so)

(5.3)
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ATReduceLA(so, [,4. ---' cuo]) ) ReducelA(so, lA-- ao)) (5.5)

ATReducelA(so) ) ReduceLA (sr) (5.6)

5.2 A Simple Parser Shrinking Algorithm

The algorithm presented in tliis section is simple and quick because useless actions in a

parser are detected by examining each state of the parser individually rvÌthout considering

the paths between states.

The principle of this algorithm is that if some symbol X € FOLLOW(.A) is deleted by

noncanonical state expansion from the lookahead set of all complete items [,4 ---+ tlr] lor al1

cu in all states, then X cannot possibly be on the lookahead stack after shifting A. In other

rvords, X should not be in ATAccessLA(.4).

ó.2,L ATAccessLA and ÀTPreShifted

ATAccessLA and ATPreSliifted for a nonterminal symbol á can be computed as:

ATAccessLA(A) = lJ nrneaucelA(sr, [,4--. r.,o]) (5.7)
sPe¡t !!,

ATPreShifted(A) = {v | 3 Ce ATAccessLA(,4),

Y € FIRST+(C), and for any

B€ATAccessLA(A),YdFIRST-1(B)Ì (5.8)



We rvill show that useless actions can be dctected witli the set ATPleShifted. First, ive

rvant to prove that:

ATAccessLA(.'4) ) AccesslA(so) (5 9)

rvhere ,4 is the accessing symbol of state sp.

Proof: By the definition of ATAccessLA in Relation 5.7,

ATAccessLA(.4) = lJ ATReduceLA(so, [,4 - t^ro]).

By Relation 5.5, rve knorv that ReducelA(so, [,4. -' ruo]) Ç ATReduceLA(so, [,4-- ar.]),

so tliat

ATAccessLA(A) I lJ ReducelA(sn, [,4 --+ r^rr]).

If rve can prove that

lJ ReducelA(so ,lA-- uol) ) AccesslA(so),

then the relation is proved.

Àccording to Theorem 4.1,

lJReducelA(sn, lA --+ ucl) ) AccesslA(so),
sq

wlrere sn e LOOI(BACI(( so,lA-- rlol).
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By enlarging the leftside, rve have

U ReducelA(sq, [,4---; c..'o]) ) AccesslA(sr),

and so that the relation 5.9 is proved.

Based on Relation 5.9, rve cau prove: if ,4 is the accessing symbol of state so, then actions

on the lookahead symbols in ATPreShifted(.4) n (ATShiftLA(sp) U ATReduceLA(so)) form

a subset of useless actions in state sp.

This statement can be explained in another way: for a state s, rvhich is accessed by A,

ATPreShifted(,4) n (ATSlìifttA(sp) u ATReduceLA(se))

c (ATShiftLA(so) u ATReduceLA(ro)) - (ShiltLA(sr) u ReducelA(sr)) (5.10)

Proof: We fir'st let (i) Y e ATPreShifted(A)n(ATShiftLA(sp) UATReduceLA(so)), assume

(ii) v ø (ATShiftLA(so)uATReducelA(so))-(ShiftLA(sr)uReduceLA(so)), and plove

that (i) and (ii) are inconsistent,

Based on hypothesis (i), rve have Y e ATPreShifted(,4.) and y € ATShiftLA(re) u

ATReduceLA(so). Then Y € ShiftlA(se) u ReducelA(so) must be true by hypothesis

(ii). \ ¡ith Property 4.2, we knorv that there exists an X, such that X e AccesslA(so)

and X € FIRST-(y) or \ve say y € FIRST-l(X). X e ATAccessLA(so) because

of Relation 5.9. Then by the definition of ATPreShifted(,4) in 5.8, rve conclude that

Y / ATPreShìfted(A), rvhich is ¿ contradiction rvith our hypothesis (i).
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Thus we proved that Relation 5.10 is true.

From Rela,tion 5,10, we conclude that given an action table, we can delete some use-

less actions and get a valìd suboptimal parser by computing ATPreShifted sets for every

nonterminal.

5.2.2 Algorithm DULAl:

Figure 5.1 presents a simple algorithm for deleting useless looka,head symbols from an action

table.

This algorithm rurs in time lìnearly ploportional to tlte size of V,y. The safety of this

algorithm can be ensured by the discussion in section 5.2.1. Useless actions of some parsing

tables generated by SOAP, rvere identifled using ihis algolithm. Table 5.1 in section 5.4

shows the results fol grammars for PASCAL and Modula 2, and some grammars supplied

by l(uo-Chung Tai [Tai79], named I(CTI, KCT2, KCT3, and I(CT41.

The algorithm is not porverfui enough to delete all useless actions. Suppose that the

same complete item ,4 -* a. appears in trvo dillerent states ap and sn, and that in state so

tliere is a conflict on a lookahead symbol Y, and in so there is no such conflict. Since there

is no conflict in so, Y rvill remain in ATAccessLA(A) and actions on Y rvi[ remailt in all

states accessed by ;1 rvhether or not these actions are useless. For example, in Figure 3.5,

symbol c is include in ATAccessLA(.4), since Action(s16, c)=reduce, despite the fact that

s1o .is an unreachable state. This prevelÌts Action(ss, c) frorn being deleted. The second

algorithm is proposed to improve performance.

lSee Appendix A
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/+ Compute ATAccessLA(.4) fol every nonterminal .4..*/

Initialize ATAccessLA(,4) as the empty set for all .Á.

For every state s,:

For every X such that Action(s", X)= reduce by .4 --+ a:

Include X in ATAccesslA(.4)

End for.

End for.

/* Compute ATPreShifted(,4) for every nonterminal .4.. */
For every nonterminal A:

Initialize sets High and Lorv to be empty.

For every symbol X in ATAccessLA(,4):

High= Highu{FTRST-I (X) }
Lorv= Lorvu {FIRST+(X) }

Dnd for.

ATPreShifted(,4) = Low- High

End for.

/* Delete useless actions. */
For each state se:

,4 = accessing symbol of s".

For each symbol Y in ATPleShifted(.4).

set action[s' Y]= utto.

Dnd for.

Dnd for.

Figure 5.1: Algorithm DULA1: A simple algoriihm to delete useless actions.
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5.3 A Non-simple Algorithm

Given a state sp, we can delete useless actions by retrieving all states so, which loohbach sy

If so UIRS so, it is easy to find so if rve knorv so. But the problem o{ how to determine sn

for a given so, if so IRS ,ep, is not as easy to solve. Figure 5.2 shorvs one example of a state

so,*, that IRS another state spi+1 .

9p, sPt+r

1(r, I

"1------l- ln
le,-a,.r.)¡ su. I| --:-------------I Ä,r*'û'-' I I I----T----- I I;n

Figure 5.2: State so,*, lookback so,*,.

Since tlrere are some states like s,,,, rvhich seem t'o lookbacft so,*r, but in fact, may be

unreachable, we may have to look several steps backrvald and fonva¡d to find sn,*r ' Here

rve provide a suboptimal algorithm that looks one step back. Instead of finding ssi+1 
' 

lve

are trying to compute ATAccessLA(so,*, ) according to s.,,, rvhich is easy to compute'

5.3,1 A.TAccessLA and ATPreShifted

ATAccessLA is designed to look one step back.

ATAccessLA(sr) = [-latReducelA(s',1 - [,4 --r c.,o]), rvhere
sqrl
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-Alsü' 3u ---+ 3p, and sr¿ --+ sq.

(For this algorithm ATAccesslÀ(so) is not necessarily ) AccesslA.)

The ATPreShifted for a state so can be computed as:

(5.11)

ATPreShifted(so) = {y | 3 BeATAccessLA(sr),

Y € FIRST+(B), and for any

(l€ATAccessLA("ò,Y /FIRST-1(C)). (5.12)

Our algorithm is based on the fact that ATPreShifted(sr)n(ATShiftLA(so)uATReducelA(so))

is a subset of useless actions in state .sp.

This statement is equivalent to the follorving Relation 5.13:

ATPreShifted(so) n (ATSIìiftLA(so) u ATReduceLA(so) )

g (ATShiftLA(se) u ATReduceLA("u)) - (ShiftLA(so) u ReducelA(su)) (5.13)

In order to prove the above statement, rve first prove:

Property 5,1 Gi,uen an NSLR( 1) grammûr and the action table of lhat grammar ob-

tained by performing the state et:ltansion algorithnz, i/sn, € LOOI(BACI((s0,, [.4; -- a;o]),

[.4;11 -* ra;11] is a noncanonicat i.Iem in sto.te sqi, ro, 13t 
"n,*r, 

antl so,"\' su,, then the

i,tem set oJ su, is smaller than that oJ sn,*r,

Figure 5.2 rnay help us understand the states and their relation described in Property

5.1.
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Proof: The closure items and the noncanonical items are generated from kernel items, so,

if rve can prove that the kernel item set in su, is smaller than that of sn,*r, then the

property is true.

Let l = [B;+r -- 0¡1¡. o 1¡¡1] be an item in state s,,, , we are trying to prove that l must

be in sn,*,. There are three cases that must be considered.

Case 1. d¡11 = a;*t.

Item 1in state s¿i can be ¡vritten as I = lBi+t ---+ a¡11 o l;1t] and [B;a1 '--+ .aí+17i+1]

is an initial item in state sp,, B¡+t € FOLLOW(A;) because ,4.; is the accessing symbol

of state so,. With the given condition that [.4;11 --+ ra;a1] is an noncanonical item in

state sqi, rve obtain that [B;11 ---+ .ai+17i+1] must be added to state sqi according to

the state-expansion algoritlim. So that [B;11 '-r oi+l .7;+i] is an item in state so,*,

since sn, 15t sn,*r. So Property 5.1 holds for case 1.

Case 2' qa¡¡1 = 0;+t and n I e.

Item f in state sui can be rervritten as [B¡11 -* 4di+1t7i+1]. And [B;11 + ?.at+17i+1]

is an item in state sr,. The last symbol of 4 is .4;, since ,4¡ is the accessing symbol of

state so,. Then the first symbol of a;11 is in NEEDED-FOLLOW(A;). A.ccording to

the NSLR(I) construction algorithm N PG sc, tlie grammar is not NSLR(I) consistent.

So case 2 is impossible.

Case 3. 42d;41 = o¡+l, q2 + €,

Item 1= [.8;11 * d;11 o7iç1] is in state s,,,. There must be an item lC '- r¡1o q2B¡¡1(]

in state so,. There are trvo situations: r/r = €, or not.

3.1. 41 = e , lC ---+ onzB¡+tCl is iÌ state spì. C € FOLLOW(,4í) because á; is the

accessing symbol of state spi. lÇ --+ oq2B;a(] wiìl be in state sn,, since the first
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symbol of a;11 is the same as that of 42, Witlt the condition tliat so 1Sl snr*r, we get

that [B;1t + ai+1 e 7i+t] is an item in state sqi+r '

3.2. ry + e, lC -- r¡, o nzB¡+tCl is in state so,. The last symbol of 41 is át. For the

same reason as Case 2, the grammar is not NSLR(I) consistent.

Hence rve prove in all cases tlìat item I must be in state sn,*r, otherwise the grammar

is not NSLR(1) consístent.

From Property 5.1, rve can conclude that:

Property 5,2 For state sti and sqi+r, uhich satisfy the conditions in Propertg 5,f iÍ C e

ATReduceLA(s",), then there is a D €. Re<lucelA (sn,*, ) , and C € FIRST.(D)

Proof: By the construction algorithm NPGsc, rve knorv that if C e ATReduceLA(s", ),

tlrere are items lA --+ 0. {C}l and [C -' r7] in state s,.,. By Ploperty 5' 1, both [á --+ do]

and [C -' 17] are in stâte sei+1. The only possible rvay tltat C / ReducelA(sn,*r, [A -
do)] is that there is some D, D € ReducelA(sn,*,, [,4 --+ ár]), and [D ---+ oC4] is an

noncanonical item in state sn,*r. Hence, rve proved the property. o

Now we are ready to prove the relation 5.13.

Proof: The proof here is similar to the proof of Relation 5.10 in Section 5.3. First rve

let (i) l' € ATPreShifted(sp) n (ATShiftLA(so) u ATReduceLA(so)), assume (ii) Y /

(ATShiftlÀ(sr) U ATReduceLA(sr)) - (ShiftlA(sr) u ReducelA(so)), and prove that

assumption (ii) is a contradiction rvith assumption (i).

Since hypothesis (i) is true, therefore y € ATPreshifted(so), and y € ÀTshiftlA(sp)U
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ATReduceLA(so), With liypothesis (ii), the above results imply that Y € ReducelA(so)U

ShiftlA(sr). So that according to Property 4.1, there exists an X, such that X €

AccesslA(so) and X e FIRST-(y) or \\¡e say y € FIRST-I(X). We knorv there is at

least one path:

lau¡)x1 F¡¡¡*.,¡n1 la)A;X1 ts- lïlA¡x 7 I "¡;¡¿ l0 A¡1x1,

and d.At accesses so,, d accesses srr-rf sp, and au;¡ accesses sn,.

In the action table, there is a state s,¡, sp¡-r 5 sr,, and [,4; * a;o] is an item in

state s,,. We are going to plove that only X or Z € FIRST-(X) may belong to

ATReduceI-A(s,,, [.4; '- a;.]).

For any V € FIRST-I(X), V can not be in set ATReduceLA(s,, ). Otherwise, [V'-

cX¡711, lX1 --+ cX2r72l, ' ' ', lX* -+ cX ¡l^\, would be items in state s¿i , and they

are items in state sn,-, too by the property 5.1. So that X / ReducelA(so,-, ) since

ShiîtLA and ReducelA are exclusìve. It turns out that the path is impossible, rvhich

contradicts the condition that X € AccesslA(so).

Since there is an X or a Z e FIRST-(X) in ATReduceLA(s"', [.4¡ -+ a;r]), with

tlie definitions 5.11, and 5.12, rve can conclude rhat Y /. ATPreShifted(so), rvhich

contradicts our hypothesis. Hence we proved that Relation 5.13 is true. Û

The statement shows that rve can delete some of the useless actions by computing

ATAccessLA and ATPreShifted for every state and get a valid parser.
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/x Compute ÄTAccesslA(so) for every state so.*/

Initialize ATAccessLA(so) as the empty set for every state.sp.

For every state sp:

Get the accessing symbol .A of state so.

Find a1l the state ss, such that ," 4 ,o.

For every state sn, so 3 s,, rvhere A --+ a e P:

For every symbol X:
If Action(so,X)= reduce from [A-- ao], include X in ATAccessLA(so).

End for.

End for'.

End for.

/* Compute ATPreShifted(so) for every state so x/
For every state Jp:

Initialize the sets High and lolv to be empty.

For every symbol X in ATAccesslA(so):

High= Highu {FIRST-1(X) }
Lorv= LowU {FIRST+(X) }

End for.

ATPreShifted(A) = Lorv- High

End for.

/x Delete useless actions */
For each state .9":

For each symbol Y in ATPreShifted(s, ).
set action[s", Y]= 

"tto.
End for,

End for.

Figure 5.3: Algorithm DULA2: The second algorithm for deletilg useless actions.



6.3.2 Älgorithm DULA2

Figure 5.3 is an algorithm for the second method' The algorìthm is linear. The sa{ety of

this algoliihm can be ensured by the discussion in 5.3.1.

5.4 Results

Modules for performing the elimination of inaccessible parser actions were written in Modula-

2 and added to the SOAP parser generator. A group of sample grammars rvere tested and

verified manually. The optimal parse-table generated from PASCAL and Modula-2 gram-

mars rvere verified on a test suite of programs that lvere supplied by Sa1omon.. The remai¡der

of this section discusses results gained from the implementation of the proposed techniques.

Grammar KC'II I{ (i't'2 t( L:'-t'3 I(CT4 PASCAL MODULA-2

total no. of states I5 24 77 T2 1005 150

states added by non-
canonìcal expansion 0 0 I 84 118

tota,l no. o1 5Ìll¡ Is 26 22 t2 14363 1721

total no. of REDUCEs 14 13 I 45026 52684

useless SHll'-[ s 2 I 1

useless REDUCEs 4 0 1 I ?

redundant states 2 2 1

Table 5.1: Useless actions in action tables.

Table 5.1 summarizes the useless actions and redundant states in the action tables of

a group of grammars2. Also the number of noncanonical states added by state expansion

is presented. These results rvere obtained manually' We have no rvay to manually obtain

the number of useless actions in the action tables for real grammars like PASCAL and

Modula-2, since their sizes are too big.

2See Appendix A
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tammar KCTl KCT2 t((-)T3 K 0 -t'4 ASUAL MODULA-2

SHIFTs deleted 0 2 a 0 35 45

REDUCEs deleted 0 0 1 0 91 0

sta,tes deleted 0 4 0 0

Table 5.2: Results of the simple algorithm'

Table 2 summarizes the results of the sìmple algorithm DULA1. The number of deleted

useless actions and redundant states for grammals is listed.

Grammar KC'l'1 l(c'l'2 t((,'-t 3 KCT4 PASCAL MO D U LA.z
SHIFTs deleted 2 o 50 E5

REDUCEs deleted 4 0 I 2ß6 793

states deleted 2 2 4 3 30

Table 5.3: Results of the second algorithm.

Tabie 3 shorvs of the results of the second algorithm DULA2 applied for the test suite

of grammars.

5.5 Analysis of the Poor Performance for Real Grammars

In this sectiol rve will analyze the reason why the trvo parser-shrinking algorithms rvorked

poorly for character-level grammars of rea.l programming languages. This analysis leads

to a modified parser generation algorithm rvith much better performance. Figure 5.4 gives

part of the parser for a character-level grammar called mini-pascal, presented in Appendix

A,

In state s2, the parser expects to see symbols "ou , "b , etc. If symbol "å" is slúfted from

state s2, it could be reduced to symbol /elfer, or more symbols could be shifted to form the

keyrvord begin. To solve the shift-reduce conflict, symbol "e" is noncanonically shifted in



PTOg ""+PROGRAM.ID SEMI
decls cmpd_s tmt DOT

ID ""+, id \,¡hite
td ----+ , begin
id ->, idfrag
idf rag ----+. idf rag alpha_num
idf rag ----Þ. letter
letter ----+. t'¡"
f etter .---+. rrarl

Ietter -', 
¡tcrl

begin ->. "b" ,I'err!¡grr rri rrnrt

id ....+ idfrag. {, ., }
idfrag ->idfrag . alpha_num
alpha_num ----+ . letter
lett er ----+.trert

idfrag -' lêtter.
1c ,!!J

l-etter ..---Ibrt. {letter . . . }
begin ""+"b" , rrentrgtt nirrrrnrr

l ett er -+. "e"

letter +"a" .

Figure 5.4: Patt of a NSIR(I) Parser for mini-pascal.

state s7. In this case, "e" would not be on the lookahead stack when s45 is entered, since

it rvoulil have been reduced to leúfer. Tlius it could not serve as a shift lookahead symbol

for state s44. On the other hand, if symbol "¿" is shifted from state s2, it ivill be reduced

to symbol letter il Tlte next symbol on the lookahead stack is "e"' Then the symbol "e"

would be needed for both states s44 ând s45. Thus the shift action letter "'+ o"e" in state

s44, and tlÌe reduce action litlfrag'- letterc,"e"l liave to be kept.

The problem in that for real charactetlevel grammars lookahead symbols that do need

to be noncanonically shifted and reduced for some states can be kept unreduced for many

other states. The states that do not reduce lookahead terminals, block the elimination of

sornetimes useless lookahead symbols, because they mean that those symbols will often be
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valid.

5.6 Parser Generation with Forced Lookahead Shifting

The above analysis suggests a simple modification to the parser-generation algorithm to

increase the number of deleted actions and states. The principle is that if any symbol is

deleted from the lookahead set of any reduce action by generating a noncanonical shift

action, it should be deleted from the lookahead sets of all reduce actions. We will call

this new algorithm N PGrst, an algorithm for noncanonical parser generation with forced

shifts, version 1.

Algorithm N PG rs¡¡ If a lookahead symbol is found to be in conflict in any parser state,

consìder it to be in conllict in all parser states,

Algorithm NPGrst does not alrvays rvork' It generates many new shift actions that

cause unresolvable conflicts. The purpose of the added sl ft actìons is simply to help

reduce the size of the parser so rve can easily eliminate those added actions if they cause

new conflicts.

Algorithm NPGrsz: use algorithm NPGrst, but if forcing conflicts on a particular

lookahead symbol causes unsolvable conflicts in the parser then do not force state expansion

on that symbol.

Àlgorithm N PGrsz rvas implemented by gìving feedback to the grammar writer' The

grammar rvriter rvas informed of rvhich lookahead symbols had caused state expansion in

any state, ttren the grammar rvriter could code into the grammar rvhich symbols be ivanted

noncanonically shifted in all states. The grammar rvriter has the option of not forcing the
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shi{ting of symbols that rvould cause rejection of the grammar.

For PascaÌ, Algorithm N PGpsz rvolked very rvell eliminating 74 states, which is 7.4%

of all states, and almost deleting as many states as were added by noncanonical expansion.

For Morlula-2 unfortunately no further irnprovemeut in the palser tables resulted. It is

possible that careful modiflcation of the Modula-2 Srammar could lead to better results but

such changes were not seriously attempted.

In Tai's original paper, six NSLR(I) grammars wete analyzed by hand. For al1 six gram-

mars the conflict-free noncanonical palsel could be rnade smaller than the basic canonica,l

parser ivith the conflicts unresolved. These surprising results rvere not duplicated here. Nev-

ertlreless, the excellelt performance of eliminating 7 .470 of all parser states fÌom a palsel for

a real character-leve1 glammar ofers significant hope for continued research on shrinking

noncanonical parsers,
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Chapter 6

Conclusion

In this thesis, the structure of JVS/-R(1) parsers is presented by defining and analyzing

several functions. Based on this analysis, algorithms to detect and delete useless actions

are presented. These algorithms have been implemented. The shrunken parsing tables for

real characterlevel grammars rvere verified on a test suite of programs.

The work that rvould be needed to obtain optimal theoretíca1 and practical methods for

NSLR(i) parsers is probably beyond the scope of a master's thesis. This thesis a.lso leads to

the invention of a modified parser construction algorithm rvhich generates smaller parsers

after elìminating inaccessible states.
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Appendix A

Grammar KCT?
!

! Grammar G(2) from the paper "Noncanonical SLR(1) Grammars"

! l:y l(uo-Cliung Tai.

!

S' ---+ <BOF> S <ÐOF>

S---cACeldADelAÃlBB
A-+a
B--.'a
Ã -- f g
fl --+ fh
C-*d
D-* d

Grammar KCT3

!

! Grammar G(3) from the paper "Noncanonical SLR(1) Grammars"

! by I(uo-Chung Tai.

!

$' ---+ 4BOF> S <EOF>
S--+DÐlDF
D-*d
D-'d
E-, aEb lab
F-+aFlaE



Grammar KCT4
!

! Grammar G(4) from the paper "Noncanonical SLR(1) Grammars"

! by Kuo-Chung Tai.

!

S' ---+ <BOF> S <EOF>
S*,ElFB
E-+bbE, lbb
F---+bbllbb
B--+b

Grammar Mini-Pascal

!

! A character-level glammar for a

! Pascal-like mini language.

!

S'.* <BOF> prog <EOF>
prog '--+ PROGRAM ID SEMI decls cmpd-stmt DOT

id l ist -+ ID

I idJist COMMA ID

decls -- decls VÀR idlist COLON type SEMI

I

type '--+ INTEGER
cmpd-stmt -- BEGIN opt-stmts ÐND

opt-stmts --+ stmtlist

I

stmtlist --+ stmt

I stmiJist SEMI stmt

stmt ---+ variable ASSIGNOP expr

cmpd-stnLt

ID

WHILE expr D0 stmt

if-then

if-then-else

if-then -* IF expr THEN stmt

if-then-else --+ IF expr THEN stmt ELSÐ stmt
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variable ---+ ID

exprlist -+ expr

expl --+

term --+

I term MULOP factor

factor --+ ID

INUM
I LPAR expr RPAR

I NOT factor

MINUS -' (r-" rvhite

PLUS -- u+" rvhïte

MULT .* u*u rvhite

DIV --+ "/" rvhite

COLON-- ":" rvhite

SÐMI -+ ";" white

COMMA -+ 'r," rvhite

LPAR -* u(u rvhite

RPAR -' *)" white

DOT --+ "." white

ASSIGNOP --* ".-u rvhite

sign---+ PI,US I MINUS

ÀDDOP-- sign

MULOP -' MULT IDIV
white --+

I white rvhite-char

white-clìar --+ " "
|"\t'
l"\""
I comment

commerìt --+ cmt-body ")"
cmt-body --+ ..{'

I cmt-body any-cmt-cltar

any-cmt-char ---+..aD | ..b' 
¡ 

tt"rt | 
(d' 

| .,e,' 
| 
(f'

| 
((g)' 

I 
.rh" I "i' | .j' I 

(k,' 
| 

(rln 
I 
(m'

I exprJist COMMA expr

term

I sign term

I expr ADDOP term

factor
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unu luo" 1,,p,'1,,q" l(Ì" l(s'' | (t''

"u' I (v' 
I urv" I uxu 

1,,y,, 1,,2,'
(0'' l(1,, 1.2'l'3'1.4" 1.5"
,'6" | .7" 1"8'1"e" l..l" l"@"(#' | 

($' |(% ll1û, I .&' 
¡ "*"

(trt-t-trt-
..' I..'" I "{' | "f I "1" I "'''
,,;', 

1,," 1,,", 1,,¡,'l{r,,} | 
(>,,

(.' l(?'' I"/" l"l" l"\" l..\r"
*rr¡<\n"1.\fi

BEGIN ---,

begin --+

DO --+

do -t
ELSÐ --
else ---r

ÐND --*

end --+

IF --+

if -+
INTEGER---+

integer -r
NOT -+
not -+
PROGRAM -,
Plogtam --)

THEN--
then '*
VAR --+

vat ---+

WHILE --+

rvhile --+

ID -+
id -*
idfrag -*
letter --r

begin rvhite

"begìn"
do rvhite
*do'

else rvhite

"elseu

end rvhite
t'end"

if white
.if,
integer rvhite

"ilteger"
not rvhite
ttnottt

rvhite program rvhite

"program"
then white
t'then"

var rvhite
ttvartt

rvhile rvhite

"wlìrle"

id wliite
idfrag

letter I idfrag alpha-num
..a', I 

(b'' 
| "c' l.d' I %" 1,,f,,

| "c" I "L' | .i" | .j'| ,,k" 
I '1
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digit '--+

alpha-num -+

NUM --¡
digit-string--

(m' 
l 
( " l "o" l "p" l "q" I "."

(s', 
| 

(rt'' l(u' | 
(v'' 

|,,w'' I.,x"
J IL

,,0" 
1,,1" 1,,2" | "3' | "4',

I 
,,s,' 

¡ 
..6" | ,,7" I 

-8" 
| 

.,e"

letter I digit

dìgit-string rvhiie

digit I digit-string digit
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