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Abstract

The noncanonical SLR(1) parsing method is a two-stack extension of the SLR(1) pars-
ing method that works for a larger class of grammars and languages. Existing NSLR(1)
construction algorithms generate some useless parser actions and states.

In this thesis, several functions and relations on NSLR(1) parsers are defined and ana-
lyzed. The analysis leads to two algorithms of different complexity, which can detect and
delete useless parser actions and redundant states. A modified NSLR(1) parser construction
algorithm is proposed that can lead to even smaller parser than those generated by existing
methods.

Key words and phrases: Context-free grammar, SLR parsing, noncanonical parsing.
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Chapter 1

Introduction

If you look inside the language reference manuals for most of the modern programming
languages, such as Pascal, Modula-2, Modula-3, Ada, and Oberon, you will find a character-
level grammar for that language. A character-level grammar is a grammar that uses only
single characters as the terminal symbols. Thus all symbecls, such as identifiers, constants,
and keywords, are described right down to their constituent characters. Character-level
grammars attempt to give a full description of a language; avoiding the need for supple-
mentary English descriptions.

Despite the popularity of character-level grammars, none of the commonly used parser
generation techniques, including LL(1), SLR(1), and LALR(1) parser generators, are pow-
erful enough to handle such grammars as published. A single character of lookahead, one
terminal symbol, is not enough to resolve parsing conflicts. This deficiency is usually han-
dled by partitioning the language recognizer into two phases, a scanner phase and a parser
phase, and by partioning the grammar into two parts, one part for each phase. Such a

solution to the problem has several common drawbacks:



1)

2)

3)

1)

5)

The partitioned grammar is usually described in two different metalanguages: regular
expressions for the scanner phase, and a context-free grammar for the parser phase.
The partitioned grammar is usually processed by two different parser generators: a
scanner generator (often a human programmer) and a parser generator.

The interface between the two modules is complex, involving both symbol codes, and
semantic values of different forms (identifiers, numeric values, and literal character
strings). In other words the two modules are strongly coupled.

The cohesion of the scanner module is quite poor. It can be characterized as having log-
ical cohesion; the cohesion of tasks that are similar in nature, but otherwise unrelated.
This is reflected by the fact that there is little common code used in the recognition of
identifiers, numeric constants, and string constants.

The technique works poorly for source-to-source translators that do not wish to delete

white space and comments from the input.

In order to be able to process character-level grammars as published, more powerful

practical parser generation techniques are needed. In addition it would be desirable to han-

dle these grammars without sacrificing the linear-time performance of the existing popular

parsing techniques. In 1989, Salomon and Cormack [Sal89B] proposed that noncanonical

SLR(1) parsing, a method invented by K.C. Tai [Tai79], can be used for this task.

A bottom-up parsing technique that can make nonleftmost possible reductions in sen-

tential forms is said to be noncanonical. One noncanonical extension, the one used by

Tai [Tai79], would be to allow a parser to perform shifting and reduction of right context,

and to use the resulting nonterminal symbols as lookahead characters for a temporarily

postponed action. Nearly every existing parsing technique can be extended in this way to



become a noncanonical method which operates on a larger class of grammars and languages
than the original technique. With this processing of right-context a scanner phase becomes
unnecessary.

Existing noncanonical parser construction techniques, which function by the expansion
of corresponding canonical parsers, generate useless lookahead symbols, unreachable tran-
sitions as well as unreachable states. Some transitions and states will never be used during
parsing because of the transitions and states added for noncanonical parsing. Some looka-
head symbols may be useless for the same reason and because of the addition of too many
nonterminals to the lookahead sets. Tai mentions this fact but presents no algorithms for
eliminating useless actions and states. The problem of the automatic optimization of non-
canonical parsers is discussed in this thesis. New relations, some of which extend those
defined by DeRemer [DeRe82], are defined here and are analyzed to capture the essen-
tial properties of noncanonical automata. General methods of detecting useless lookahead
symbols and unreachable transitions are proposed. Two algorithms with different levels of
optimization were implemented for SOAP, an NSLR(1) parser generator.

This thesis is organized as follows. Chapter 2 is a summary of the basic terminology used
throughout this thesis. In Chapter 3, a survey of some previous work on noncanonical pars-
ing is presented. The basic ideas of noncanonical parsers are introduced. Several examples
are presented to clarify the differences between noncanonical and canonical parsers, and to
demonstrate the existence of useless shift and reduce actions in the action tables generated
by current NSLR(1) construction algorithm. In Chapter 4, relations and functions to be
used to explore the essential properties of noncanonical SLR(1) parsers are defined. These

relations and functions are used to ensure that the algorithms presented in Chapter 5 are



correct. In Chapter 5, two algorithms are presented. My first approach is to detect useless
actions by building relations on nonterminal symbols. The reason that this simple solution
fails to detect some useless actions is explained. A more powerful algorithm is proposed
by building relations on states. In Chapter 5, we also present the experimental results of
the two algorithms on grammars for PASCAL, Modula 2, and some grammars provided by
Kuo-Chung Tai [Tai79]. The results are not encouraging for character level grammars for
real programming languages. The reason that such parsers cannot be improved is analyzed.
The analysis leads to the invention of a modified parser construction algorithm, that does

permit significant shrinking of parser size.



Chapter 2

The Notation of Canonical

Parsing

In this chapter, the notation used in the rest of this thesis is presented. We also briefly

introduce SLR parsers, and functions used in LR parser construction algorithms.

2.1 Terminology

First, we present the notation system used in this thesis. Vj is a finite set of nonterminal
symbols, Vp is a finite set of terminal symbols, and V = Vy U Vr is the set of all grammar
symbols. The set V*, the reflexive transitive closure of ¥V, contains all strings composed of
symbols in V, including the empty string, which is represented by e.

The following standard convention for the meaning of Roman and Greek letters are used

in this thesis.



A, B,C,...eVy
WX Y ZEeV
a,be,... € Vp
e Z,Y,2 € VR

a:ﬁa’}"-"e'V*

The letter S € Vv denotes the start symbol of a grammar. Called the length of a, |a|, is
the number of occurrences of symbols of V in a.

If R is a relation, R* denotes the reflexive transitive closure of R, and Rt denotes the
transitive closure.

The production set P is a finite subset of Viy x V*, whose members take the form A — «,
where A is called the left-part, and « is called the right-part. If A — « is a production and
BAv is a string in V', then we write $Ay = Jay and say that Ay directly derives Savy.
A sentential form of GG is a string o such that § =* o and « is in V*. A sentence z of &G
is a sentential form of G consisting solely of terminals, i.e., 2 is in V7. The language L(G)
generated by G is the set of sentences generated by G, i.e., L(G) = {2 | S=*z}.

A derivation in which the rightmost nonterminal is replaced at each step is said to be
a rightmost derivation. If @ = f is a step in which the rightmost nonterminal in o is
replaced, we write =, . DLvery rightmost step, using our notational conventions, has
the form yAy = ~v6y in which y consists of terminals only and A — & is a production.
If §=7,, o, then we say « is a right-senteniial form of the grammar at hand. Rightmost

derivations are also called cenonical derivations.



2.2 LR parsing

An LR parser, also known as a bottom-up or shift-reduce parser, operates by scanning an
input word from left to right, and constructing the rightmost derivation in reverse. To
construct a parser for a grammar G, GG is augmented with a new start symbol S/, not in V,
and a new production S/ — S8, assuming that every input string is followed by the symbol
$, where $ is not in V. The new production is assumed to be the zeroth production.

The two basic actions in a parser are to shift an additional character of input onto
the state stack, or to reduce a handle on the state stack to the nonterminal symbol which
generates it. The parse ends when the state stack contains the start symbol and the input
is the termination symbol $. The rightmost derivation generated by the operation is the
parse of the input word.

More formally, a canonical LR automaton for a contezt-free grammar (CFG) G, G =
(Vn, Vr, P, S), is a sextuple LRA(G) = (K, V, P, sstqrt, Action, NEXT), where K is a finite
set of states, whose members are represented by a subscripted letter s, such as sp, s4, $1,
and sg. The symbol sg4.: € K represents the start state. The parsing Action function is
a map from K x (Vp U {$}) into {shift, error, accept} U{reduce I | I € P}. The function
NEXT is a map from K x V into K U {error}, each member is called a transition. The
transition (sg, X) is represented by s, .S Sp, where s, = NEXT(s4,X), or by s, X when
sp is irrelevant, and we call X the accessing symbol of state s,. Each state has a unique
accessing symbol, except Ss44rt, which has none. In this thesis we assume that the grammar
has no duplicate or useless productions, and no useless symbols.

Function PRED, which is the inverse of NEXT, takes a state s, as an argument, and



produces a set of states as output. State s, is in PRED(s,) if s4 y sp, where Y is the

accessing symbol of state s,.

PRED(s,) = {s, | 5, = 5,,Y € V}

A path H is a sequence of states sqg,: -, Sqp, such that

X X
8g0 = Sq1 =+ 7 Syn_1) =¥ Sgn.

The path H is denoted by [seo : ], where o = Xy,---,X,, and Top(H) = sg,. The
concatenation of [, : @] and [s, : 8}, where Top({sq : @]) = sp, is written [s, : @] [s, : 5]
and denotes [s; : @ff]. [Sstart @ @ can be abbreviated [o]; thus [ ] denotes sgq,¢ alone. We
say that o accesses s, if Top([a])= s,.

A configuration is a member of K+ x Vi and can be presented by [a]8, its first part
is a state accessed by «, and its second the unprocessed input S. The relation F on the
configuration represents the next move of the parser and is the union of kg5 and Fa.,
foral A - we P.

We denote an item of an LR automaton LRA(G), with respect to a production A — «
as [A — fBev,y], where @ = Bv. Each item represents a partition of the right hand side of
a production. Informally, the item represents a production which is partially recognized, so
we call items as above where oo = 3, (i.e. ¥ = €) complete items, denoted {A — ae,y]. The
fixed-sized string of lookahead symbols ¥ denotes possible terminal symbols that can follow

the nonterminal 4 of this item.



LRA(G) states are elements of the power set of items. There are two types of items in
a state, kernel items, which define the state, and closure items, which complete the state,
and are derived through a closure operation on the kernel items.

A CFGis LR(1) if a parser exists which can always make the decision to reject, accept,
shift or reduce (and by which production to reduce) with a one symbol of lookahead in the
remaining terminal string. Unless otherwise specified, only parsers with & = 1 lookahead
symbol are discussed in this thesis.

An inadequate state in a parser is one for which the parser cannot deterministically
decide what move to make. These fall into two classes, reduce-reduce conflicts, and shi fi-
reduce conflicts. In the first class, a parser knows there is a handle, but the information
on the lookahead stack is not sufficient to determine which production should be used in
a reduction. In the second class, the parser cannot tell if the string shifted in is a handle.
It might be correct to reduce the string to a nonterminal symbol, or it might be correct to

shift more symbols to form a different handle.

2.3 The Sets FIRST, LAST, and FOLLOW

Here we describe functions we use in later discussion.
Let FIRST () be the set of terminals and nonterminals that can be the first symbol of

any sentential form derivable directly from a.

FIRST(e) = {Y | a=Y S5}

And let LAST(a) be the set of terminals and nonterminals that can be the last symbol of



any sentential form derivable directly from «.

LAST(a) = {Y | a=>BY}

Let FIRST*(a) be the reflexive transitive closure, and FIRST () be the transitive closure
of FIRST(«), and LAST*(a) be the reflexive tramsitive closure, and LAST*(a) be the
transitive closure of LAST(a). Thus, for instance, FIRST*(a) = {Y | @ = Y3}. The
function FIRST~!(Y) is the inverse of function FIRST*(a), and LAST~}(Y), the inverse
of LAST*( ).

FIRST-1(Y) = {X | Y € FIRST*(X)}

LAST-Y(Y) = {X | Y € LAST*(X)}

The symbol B is ranked as a lower-level symbol of A if B is in FIRST*(A), and 4 is not
in FIRST*(B). We say A and B are same-level symbols if A is in FIRST*(B) and B in
FIRST*(A). Terminals are always lowest-level symbols.

T_FOLLOW(A), for a nonterminal A, is a set of terminals that can follow A in some

sentential form, and if 4 can be the rightmost symbol of a sentential form, then § is included

in T_.FOLLOW(A). That is,

T_FOLLOW(A) = {beVru{$}|S > BAby,

for some § in V* and v in V*§}

Function FOLLOW(A), for a nonterminal A4, is a set of symbols, terminals and nonter-

10



minals, that can follow A in some sentential form, and if A can be the rightmost symbol of

a sentential form, then § is included in FOLLOW(A). That is,

FOLLOW(4) = {YeVU{$}|5 S BAY~,

for some B in V* and v in V*§}

Thus the function T_FOLLOW(A) can also be defined as T_FOLLOW(A) = { b €

Vru{$}|be FOLLOW(A) }.

2.4 SLR(1) Parsers

To construct a canonical SLR(1) parser, we first precompute the T_.FOLLOW sets as previ-
ously defined, then the LR(0) parser is built using the LR construction algorithm with null
lookahead sets. Since items of the parser have no lookhead, we will simplify their definition
to[A— Bex]

An LR(0} parser state is inadequate if it contains more than one item, at least one of
which is complete, since there is no lookahead to distinguish between multiple actions.

The SLR(1) automaton attempts to resolve the conflicts through the addition of looka-
head symbols for complete items. SLR(1) lookahead is computed, for the complete items

of each state, as follows:

LA(sq, A — a)={z |2 € T FOLLOW(A)}

The correctness follows because LA(s,, A — «) simply states that parsing can continue

11



by reducing o to A ounly if the following symbol in the input stream could possibly arise after
A in some derivation from S/, which is obviously necessary for the result to be a sentential
form deriving a word 2 € L(G).

Note that simple LR lookahead for A — « is independent of the state in which it is being
applied (other than that the state contains the production A — «). This differs from LR
lookahead, which enforces that parsing continue with reduction A — a only if the following
symbol could possible arise after A in some derivation consistent with the current state of

the parsing automaton.

2.5 Summary

In this chapter, we presented the notation and terminclogy used in the remainder of this
thesis, which is largely standard and can be found in such sources as [Aho86], and [DeRe82].
The very few differences in terminology are taken from the Tai in [Tai79], and Salomon in
[Sal89A]. We also presented functions which are used in SLR(1) and NSLR(1) construction
algorithms and will be used in following chapters. We introduced briefly the idea of SLR(1)
parsers. Detailed information about SLR(1), LR(1), LALR(1) parsers can be found in most

compiler books like [Aho86].

12



Chapter 3

Noncanonical Parsing and The

Objective of This Research

A survey of noncanonical LR parsers is presented in this chapter. The basic ideas of the
NSLR technique and the difference between SLR. and NSLR parsers are introduced. In
addition, two examples will be given to demonstrate that useless actions can exist in the

parsers generated by current noncanonical parser construction techniques.

3.1 Survey

The well known LR(%) parsing algorithm of Knuth [Knuth65] and its two major variations
SLR(%) and LALR(k) due to DeRemer [DeRe71] are canonical in that they reduce only
leftmost phrases of handles, with & terminal lookahead symbols, where k is a constant. Such
parsers can be implemented by a single-stack machine with a fixed-size parse table, that is

a pushdown automaton.

13



Compared with canonical parsing, noncanonical parsing allows greater freedom to select
a phrase for reduction and therefore has several advantages. First, the set of grammars
which are deterministically parsable by noncanonical parsing is larger. Second, the set of
languages defined by noncanonically-parsable grammars may contain some nondeterministic
languages. Some of the existing canonical parsing methods can be extended for noncanonical
parsing without loss of parsing efficiency. A brief discussion of existing noncanonical parsing

methods follows.

3.1.1 Noncanonical Extension of Simple Precedence(SP) Parsers

Colmerauer [Col70] defined total precedence relations, which are generalizations of the
Wirth and Weber simple precedence relations, such that <. and .> indicate the left and
right ends, respectively, of a phrase. By requiring that at most one precedence relation
hold between any pair of symbols, at least one phrase of every sentential form is uniquely
distinguished by the relations at its left and right ends. Colmerauer showed that the total
precedence languages are incommensurate with both the deterministic languages and their

reflections.

3.1.2 Noncanonical Extension of Bounded Context(BC) Parsers

Floyd’s notion of Bounded Context Parsers [FFloy64] provided much of the framework for the
discovery of the LR(%) languages. A grammar is said to be m, n bounded contezt (BC(m,n))
if every phrase of any sentential form is uniquely distinguished by the m symbals to its left
and the n» symbols to its right. If this restriction is weakened by specifying that at least

the leftmost phrase has bounded context, then the class, BRC{m,n), of bounded right

14



context grammars, is a proper subclass of the LR{n) grammars, as LR(n) grammars have
right context of at most n symbols, and unbounded left context. However, the classes are
equivalent when viewed in language space.

BRC parsing is canonical, in the LR sense, as only leftmost phrases are reduced.
Williams [Will75] derived a noncanonical extension of the BC method and defined a class
of grammars, called the m, n bounded contezt parsable (BCP(m,n)) grammars, in which
at least one phrase of any sentential form is uniquely distinguished by the m symbols to
its left and the n symbols to its right. Currently, the BCP method is the most powerful of
all parsing methods that have both decidability and linear time parsability. However, this
method is not practical because it requires that a large table be scanned to distinguish a

phrase.

3.1.3 Noncanonical Extensions of LR(k) Parsers

Szymanski and Williams [Syzm76] attempted to construct a general framework for bottom-
up parsers and, within that framework, to examine noncanonical extensions of some existing
bottom-up parsing methods. One noncanonical extension of LR(k}, which was suggested by
Knuth [Knuth65] and called LR(k, ), requires that in any sentential form one of the leftmost
t phrases be uniquely distinguished by its left context and the first k£ symbols of the right
context. Szymanski and Williams showed that the LR(%,?) grammars are a superset of
the LR(%) grammars, but the LR(k,t) languages are exactly the LR(k) languages (i.e. the
deterministic languages).

Two other noncanonical extensions of LR(k) were studied by Szymanski and Williams.

One of them, FSPA(k), requires that a finite-state parsing automaton be able to find a

15



phrase in any sentential form by using a left-to-right scan with £ symbols of lookahead. The
other, which includes FSPA(k) as a proper subclass and is called LR(k, 0o), requires that at
least one phrase of every sentential form can be found solely by examining its left context
and the first k£ symbols of its right context. They showed that the question of whether an
arbitrary CF grammar is FSPA(k) and LR(%, 00) for any fixed value of % is undecidable
and suggested that further restriction to the FSPA method to achieve decidability should
be considered. RNP(k), a noncanonical extension of SLR(k) proposed by Szymanski, is
a proper subclass of FSPA(k). It is defined by requiring that phrases which have been

scanned be reduced as early as possible.

3.1.4 Noncanonical SLR Parsing

Two noncanonical extensions of the simple LR(1) method are presented by Tai [Tai79].
He defined a class of context-free grammars called leftmost SLR(1) by using lookahead
symbols which appear in leftmost derivations. This class includes the SLR(1), reflected
SMSP, and total precedence grammars as proper subclasses. Another larger class of context-
free grammars is called noncanonical SLR(1), that is NSLR(1) for short. The NSLR(1)
languages can be recognized deterministically in linear time using a two-stack pushdown
automaton. With no e-productions, the NSLR(1) grammars are exactly the RNP(1) defined
by Szymanski. The noncanonical SLR(1) method of Tai was chosen by Salomon [Sal89A]}
to supply the parsing power needed for character-level grammars.

Tai’s parser-generation method cannot be used for character-level grammars exactly as
published. It requires several improvements. One error in Tai’s method is that lookahead

sets for reduce items in unexpanded states contain only terminal symbols. It is possible,

16



however, that during a parse, an unexpanded state may be presented with a valid nonter-
minal as a lookahead symbol and as a result the parser would incorrectly terminate with an
error. Salomon and Cormack corrected this error by allowing all reduce items in all states,
expanded and unexpanded, to have all-possible following symbols in their lookahead sets.
Another deficiency of Tai’s algorithm is the handling of e-productions. Tai’s use of
e-closure on inadequate parser states, generates more complete items from e-preductions
than are actually needed. These extra items can introduce new conflicts that unnecessarily
cause the rejection of some grammars. Salomon proposes a method for reducing the number
of e-reduce items generated, and in this way admit an important class of practical grammars

previously rejected.

3.2 The Noncanonical SLR(1) Parsing Automaton

In this section and the next section, we present a description of NSLR(1) parsers and
NSLR(1) parser construction methods. The NSLR(1) construction method begins by con-
structing SLR(1) parsing tables. Whenever an inadequate ifem set is reached, the parser
postpones any conflicting reductions, and continues parsing the right context in order to
obtain a nonterminal to be used as a lookahead symbol. Since further right context is used
in the reduction of the new lookahead symbol, the new lockahead symbol can often resolve
the original conflict.

An NSLR(1) parser has two stacks, a state stack and a lookahead stack (see Figure
3.1). It uses the four usual parser actions, shift, reduce, error, and accept, but two of these

actions change slightly. The first change is that the reduce action is redefined so that the
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left part of the reduce item, instead of being shifted immediately, is pushed back onto the
lookahead stack to serve as the lookahead symbol for the next parser action. The top of
the lookahead stack contains the lookahead symbol for the parser. If the lookahead stack is
empty, the next symbol will be taken from the input stream. The second change is that the
shift action is allowed to shift nonterminals as well as terminals, in order to accommodate

the previous change.

Finite-State Input /I
Automaton ‘

State
Stack |

I Parse 1

: Tables |

_________ 1 Lookahead

. ~ Stack
~ ~
~ ~
~J ~

Figure 3.1: The noncanonical LR parsing automaton.

There is a slightly different way, used by Tai, to describe a noncanonical parser. In this
second description, a parser is initiated with all the input stacked on the lookahead stack,
with the front of the input at top of the stack. This description is functionally identical
to the one given above, but it simplifies the specification of the parsing algorithm. In
this description, popping the lookahead stack encompasses the operations of popping the
lookahead stack and shifting the next input character if the lookahead stack is empty. As

a result, we use the second description in the rest of this thesis.

3.3 Extending SLR(1) Parsers to Become NSLR (1) Parsers

In this section, a simple example is used to illuminate the construction of noncanonical

SLR(l) parsers. Consider the grammar G; with the productions in Figure 3.2:
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S — Aa| Bb
A —- FEA|E
B — FB|F
E — ¢
F — ¢

Figure 3.2: Grammar Gi: Gy is not LR(k) for any k.

Figure 3.3 shows the SLR(1) parser for Gy in which sq is the only SLR(1) inadequate
state. Actually, Gy is not LR(k) for any k because the nonterminal, F or F, to which ¢
should be reduced depends upon whether the final input symbolis a or b, respectively. Since
the input can be of unbounded length, unbounded lookahead would be needed to resolve

the conflict.

32
S
9 s | s >5.8 L S . accept
gf -, 38 5 =
s —>.na A s —a.a &+ 5 —=pa. {8}
S —.Bb 5, 5,
A —>.EA B__. s —B.b b 5 —Bb.{$}
A _’.E Ss SQ
B —+ FB e B, A . A —EA.{a}
B —".F A —>E.{a)}
E—r.c A —>.EA S,
F—".c A —> B c
' ¥ E —*c.{a,c}
E —> C
c F s 5
B
£ —
s, | B —sF B B FB.{a}
B —F. {b
E —c.{a,c} {b}
B —*.FB
F —*¢.{b,c} B P 5,
P —> G C—— F —>c.(b,c}

Figure 3.3: SLR(1) parser for G.

In order to resolve the conflict, noncanonical parsing can be applied to reduce nonleft-
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most phrases of sentential forms. We present a modified NSLR(1) construction algorithm
due to Salomon and Cormack [Sal89B], which incorporates several fixes and enchancements
to Tai’s original algorithm. For a detailed discussion, please see [Tai79], [Sal89B], and
[Sal89A]. The following is a brief description.

To construct an NSLR(1) parser, we precompute FIRST*, LAST*, FOLLOW and the

three following sets.

VISIBLE = {Y | Y =" y, for some y, y # €}

NEEDED_FOLLOW(A) = {Y | there is arule B — aXgYy, A € LAST(X), 8 =" ¢}
UNRESOLVABLE(A) = {Y ¢ VISIBLE | A= oY 83, a =T ¢}

The function VISIBLE represents the set of nonterminals that can generate a non-empty
word.

The set NEEDED_FOLLOW(A) needs a detailed description. If the definition is restated
without the 3 intervening between X and Y, it is exactly the definition given by Tai for
LM_FOLLOW, which contains the symbols that can immediately follow A in any sentential
form of a leftmost derivation from the start symbol. NEEDED_FOLLOW(A) is different in
that it contains those symbols that can follow A in a leftmost derivation even if they are
separated by a string that can generate e. The set NEEDED_FOLLOW(A) is so named
because it contains those lookahead symbols that must not be noncanonically reduced to
resolve a conflict involving a reduction to A. A symbol Y in NEEDED FOLLOW(A) may

not be reduced because there is a grammar rule involving A or symbols in LAST™1(A)
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that can only be used during a derivation if lookahead symbol ¥ remains unreduced.
FOLLOW(A)is a closure of NEEDED FOLLOW(A)—the union of the FIRST sets of sym-

bols in NEEDED FOLLOW(A).

Loop until all states completed.
Compute next SLR state s, for grammar.
To each complete item I; = [A — «e] attach
a lookahead set L; = FOLLOW(A)NVISIBLE
and a needed-lookahead set NL; = NEEDED _FOLLOW(A)NVISIBLE
If state s, has a conilict then
For each conflicting lookahead symbol X:
resolved := true
For each complete item [[; = A — ae] such that X isin L;:
If X isin NL; or X is in UNRESOLVABLE(B) for some B in I;
then resolved := false
else
For each rule B — X3 where B isin L;:
Add item [B — e X 3] to s,
end for
end if
end for
If resolved then remove X from £;-
else grammar is not NSLR(1).
end if
end for
end if
end loop.

Figure 3.4: The construction algorithm for NSLR(1) parsers.

The list of UNRESOLVABLE lookahead nonterminals for a given nonterminal arises
from the method of Cormack and Salomon for handling invisible nonterminals during con-

flict resolution. Its purpose is to reject grammars that require state expansion to occur

21



recursively on some states!,

The NSLR(1) construction algorithm is given in Figure 3.4. After performing the state
expansion algerithm, s; will have been expanded by adding noncanonical items, and the
lookahead sets will have been trimmed. Figure 3.5 shows the NSLR(1) parser which accepts
grammar (. Ignoring the question of e-productions and invisible nonterminals, we are
simply including nonterminals in the lookahead sets, and whenever a symbol ¥ causes a
conflict in state sq, we eliminate it by adding [B — oY f] for all productions such that B
is in FIRST!(Y). Therefore, for an NSLR(1) parser, there are three types of items in a
state, kernel items, closure items, which exist in canonical parsers, and noncanonical items,

which are added by the expansion algorithm, and can themselves generate closure items.

3.4 The Objective: Eliminating Useless Actions and States

One deficiency of parsers built by the existing NSLR(1) construction algorithm is that some
transitions and states will never be accessed during parsing because of the transitions and
states added for noncanonical parsing. For example, consider state s;9 in Figure 3.5. The
transition from s to sjo is redundant because every ¢ in the input string will be reduced to
F in state s; before sy is entered. After the transition from ss to s1p is deleted, there will
be no transitions to syg and thus s19 will be redundant. Some lockahead symbols associated
with reduce items could be useless too. For example, symbol A and B in state s; and symbol
¢ in state s;g and s12 are useless. There are two kinds of useless loockahead symbols. One

kind is higher-level nonterminals, which cannot have been reduced when the corresponding

YWhen the algorithm marks a conflict as unresolvable, it may still be possible to resolve the conflict for
some grammars by adding e-reducing items and more shift items. For details, please see [Sal89A]
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A —>.EA BE_. s —n.b bl 5 —mp. (s}
A —>.E s, S,
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B .FB 2 »F A A —»EA,.{a}
B F A —*E.{a}
—
B € A —>.EA S1
F—>.c A —>.E c
) B —*c.{a,c}
E —%. cC
C F 5, 51
B £ e
5 ¥ B —M¥F.B B FB. {a}
B —F.{b
E —*c.{a,E,A} o}
B —* FB
F —¢.{b,¥,B} S
____________ B —>.,F o
F—>.c ? F —*c.{b,c}
E —*.cC
F —*_ C

Figure 3.5: NSLR(1) parser for G; by expanding algorithm.

state is entered. Another kind is lower-level terminals and nonterminals, which have been
reduced already and therefore cannot appear on the top of lookahead stack when a certain
state is entered. Salomon shows how to delete most of the useless nonterminal symbols by
using algorithm DUR2 [Sal89A]. In this thesis we will examine ways of removing redundant

transition and states as well as removing more redundant lookahead symbols.

B —3 Blﬁl A - G.’lAl
By — Baffs Al — Ay

By — Bsfls As — azAs
B3 — b3, Az — aya
C — 8ABy

Figure 3.6: Part of the productions for grammar Gs.
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In order to explain how the useless shift and reduce actions are generated, we give a
more general example in the following discussion. Only part of the grammar and part of
the parser are presented here. Assume that part of grammar G5 is as in Figure 3.6:

Figure 3.7 shows part of the NSLR(1) parser for G3 obtained by expanding the SLR(1)
parser. (The item sets and lookahead sets shown there are also incomplete.) For that figure,

S

il

¢ ™ (.ABy
A ag.Ag
A —".qg, R,

O

]
I
I
iz ¥ i6

A, > o2 Ay A, Ay 0. 2B 20
B {B BiB2B3}

Az 'alAl

A, pa.dy B, A% 1A 5.

A,7 >, g, a {BB:B2B3 b}

Figure 3.7: Part of the parser for grammar Gy.

b C T-Follow(As), and {B, By, Ba, B3, b} C Follow(As).
Assume that for some reason, s;y and s;g are not SLR(1) consistent. In state s,
noncanonical expansion items By — ebf; and By — eB3fs; have been added. Item B3 —

ebf3, is also added to state s;s to resolve a conflict. The lookahead set of reduce item
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As — a4a in state s;4 is {Bz}. After the phrase B3f3 is shifted in, and Bj is pushed onto
the lookahead stack by reducing the phrase Bsfs, it will serve as the lookahead symbol for
the reduce item A3z — aga. After phrase a4a has been reduced to As, s;4 will be popped
from the state stack so that s;3 appears on the top of the state stack, and the top of the
lookahead stack will be A3 B,. After state s;3 shifis Az and enters state s;5, By will be on
top of the loakahead stack. In this case, By and b are lower-level useless lookahead symbols
since Bz and b have been shifted and reduced to higher-level symbols ( By, in this example)
before state s;5 is entered. B and B; are higher-level useless lookahead symbols since item
Ay — a3Aaz is reduced hefore By is reduced to B, and Bef; is reduced to By.

It is interested to notice that noncanonical items can be useless items too. In this

example, B3 — obf, in state s;5 is a useless noncanonical item because of the state expansion

of Si4.

25



Chapter 4

The Properties of NSLR(1)

Automata

The purpose of this chapter is to explore the essential properties of noncanonical SLR(1)
automata. We are interested in the properties that such a parser would have if it contained
no useless shift or reduce actions caused by noncanonical state expansion. By analyzing
these properties we hope to discover methods for deleting useless actions. In the following

sections we will define and analyze relations and sets for such parsers.

4.1 'The Difference Between The Two Definitions of Reduce

Actions

As mentioned in Chapter 3, we use a nontraditional definition of the reduce action. In the
traditional delinition [A_hoSG], the popping of a handle and the pushing of the nonterminal

resulting from the reduction onto the state stack are performed in one action, so that
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nonterminals never appear on the lookahead stack. The contents of a lookahead stack
during a parser are a string in V. For example, assume state s, corresponds to the item
set in Figure 4.1, only terminal symbols, such as b, can be on the top of the lookahead stack
when s; is on the top of the state stack. The symbols By, Hs, Bs, and By will all be shifted

immediately after their reduction, and hence will not be pushed onto the lookahead stack.

A—-=CeB
By — o833,
By — eB3f;
B3 — eByf4
By — obfs

Figure 4.1: State s,.

In the new definition of reduce, the pop and the push are separated into two actions.
A reduction on item [ = [A — «e] consists of popping |a| states off of the state stack, and
pushing the symbol A onto the lookahead stack. The next step depends on the state stack
and the lookahead stack. Under this definition, any of the symbols By, Bs, B3, By, and b

can appear on the lookahead stack when the current state is s;.

4,2 The shift and reduce Lookahead Sets

In order to explain parser properties clearly, we divide symbols on the lookahead stack into
two categories, ShiftLA, and ReduceLA. ShiftLA(s,) is a symbol set associated with all
shift actions out of state s,; ReduceLA(s,, I} is a symbol set associated with reductions
due to item [ in state s,.

The formal definition of the shift lookahead set for a state s, is:
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Definition 4.1

ShiftLA(s,) = {Y eV |[a]Yy
Fonife [aY ]y

F* [578], and & accesses sp}

Notice that both nonterminals and terminals are possible in shift lookahead sets. For canon-
ical LR(1) parsers with the new definition of reduction, shift lookahead sets are easy to
calculate. Knowing kernel items, we can get closure items using FIRST* sets. For example,
if X € ShiftLA(s,), and Y € FIRST*(X), then it must be true that ¥ € ShiftLA(s,). Fora
noncanonical LR(1) parsers, things are more complicated. The fact that X € ShiftLA(s))
does not guarantee that ¥ € FIRST*(X) will be useful in the shift lookahead set. It is pos-
sible that a string starting with ¥ will always be reduced to X by a noncanonical expansion
item before state s, is reached. In this case, ¥ should not be included in ShiftLA(sp).

Let the reduce lookahead set for item [A — we] in s, be denoted by ReduceLA(s,,[A —

wel),

Definition 4.2

ReduceLA(sp,[A —we]) = {Y € V| [aw]Y7y
FlA—we) [@]AY v

F* [5'8), and aw accesses sp}.

Notice that oA need not be a viable prefix of a noncanonical sentential form. It is possible
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for the string & to be reduced to another string when the top of the lookahead stack is A.
The symbols in ReduceLA(s,, I = [A — we]) can be terminals which were in the input
string, as well as nonterminals which were pushed by previous reduce actions. For any
noncanonical SLR(1) consistent state s,, ReduceLA(s,, I) N ReduceLA(s,, J) = 0, and,
ReduceL A(sp, I)N ShiftLA(sp) = 0, for any items [ and J in state s,, where I # J.
ReducellA(s,) is a short form used to represent all symbols associated with reductions

in state s,.

Definition 4.3 ReduceLA(s,) = UReduceLA(sP,I), where I is a complete item in state
I

Sp.

4,3 The Functions AccessLA and PreShifted

We define AccessLA(s,) as the set of symbols which may appear on top of the lookahead
stack when state s, is entered from other states by shifting A, the accessing symbol of
sp. We will show later that actions in a state are determined by its kernel items and its

AccessLA set. More precisely, AccessLA can be defined as:

Definition 4.4

AccessLA(s,) = {Y €V |[a]AYYy
Fohise [@A]Y v
F* [S'8], A accesses s,

o accesses some state sg, and s; # sp}.
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The above definition deserves further explanation.

First, for canonical LR parsers, only terminals can be on the lookahead stack, so
AccessLA(sp) C Vp; but for noncanonical LR parsers, AccessLA(s,) C V.

Second, symbols that can be on top of the lookahead stack only when state s, is uncov-
ered on the top of the state stack by reduce actions are not included in AccessLA(s,).

Third, condition s, # s, in Definition 4.4 is crucial. The existence of at least one such
state s, from which state s, can be entered is obvious. For those states which can be entered
by shifting from itself, this condition rules out some symbols which can be on top of the
lockahead stack only when the state is entered from itself.

Please notice the differences between AccessLA(sy), ReduceLA(s,, I) and ShiftLA(s,).
They all contain symbols which can appear on top of the lookahead stack when the parser
is in state s,. When state s, is entered from another state by shifting the accessing symbol
A, any symbol ¥ that can be on top of the lookahead stack belongs to AccessLA(s,). After
more symbols are shifted, this string beginning with Y can be reduced to another symbol
C'. Symbol C may belong to ReduceLA(s,, I) for some complete item I, or ShiftLA(s,).
But C is not in AccessLA(s,), even if after shifting C, another instance of state s, is pushed

onto the state stack (in this case, symbol C is the same symbol as the accessing symbol A).

A— FEeA
A — FEe{a}
A—eFA
A— ol

Figure 4.2: State ss of the NSLR(1) parser for G.
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We choose the NSLR(1) parser for Gy as an example. State s; appears in Figure 4.2
after the useless item E — eoc is removed. (See also Figure 3.5).

In this parser, state sp is in PRED(s5). When £ is shifted by state sg, and state ss is
pushed onto the state stack, the terminal symbol a, or nonterminal symbol £ may appear
on top of the lookahead stack depending on the input sentence. Symbols ¢ and E are in
AccessLA(s5). Symbol A may appear on top the of lookahead stack when the current state
is 85, but A is not in AccessLA(s5), since there are no noncononical reductions to A that

could leave A on the lookahead state without an immediate shift.
Property 4.1 For any state s,, AccessLA(s,) C ShiftLA(s,) U ReduceLA(s,).

Proof: This is an immediate consequence of the definitions of AccessLA, ShiftLA, and
ReduceL A, since every symbol in AccessLA must lead to either a shift action or a

reduce action. [}

Property 4.2 For any Y € ShiftLA(s,) U ReducellA(s,), there exists an X, such that

X € AccessLA(s,) and X € FIRST*(Y).

Proof: For any Y € ShiftLA(s,) U ReduceLA(s,), there are only two possible cases:
1. there is no item with Y as the left-part in state sp, or
2. there is at least one item with Y as the left-part.
Case 1: In this case, ¥ must be in AccessLA(s,). By way of obtaining a contradiction,

suppose that ¥ ¢ AccessLA(s,). According to the definition of AccessLA, there exists
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an a and an A such that

o] Ay Fopige [ A}y £ [578]

where a accesses s4, @A accesses sp, and s, # s,. Because Y ¢ AccessLA(s,), Y cannot
be on the top of the lookahead state when s, is entered by shifting A from state s,.
Since Y € ShiftLA(s,) U ReduceLA(s,), ¥ can be on the top of the lookahead stack
when the current state is s,. The only way that ¥ can be pushed onto the lookahead
stack is by shifting a string from state s,, and then reducing this string to Y. The first
symbol X of this string must belong to set ShiftLA(s,)UReduceLA(s,)and ¥ =+ X4.
So, we conclude that in state sp, there must be at least one item whose left part is Y.
This contradicts the assumption. So that ¥ € AccessLA(sy), and the property is true
in case 1.

Case 2: Since there is at least one item with Y as its left-part, this item can be
written as [Y — oY,8y], furthermore, we can find all items of the form [¥; — Y36},
[Yo — oYabs], ..., [V, — X0,1] that are in state sp, and X is not the left part of
any item in this state. According to the proof of case 1, X € AccessLA(s,), so that
the property is true in case 2.

Hence we proved property 4.2. O

Property 4.2 tells us that AccessLA can be used to limit which symbols can be shift or

reduce lookahead symbols.
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Property 4.3 AccessLA(s,)C Vr, if s, is accessed by a terminal symbol a.

Proof: The lookahead stack is initialized with all the input terminal symbols. During
parsing, only nonterminals can be pushed onto the lookahead stack by reduce actions.
Due to the nature of stacks, the contents of a lookahead stack (from top to bottom)
must be a string in VFV}E. This means that only terminals can be under a terminal
in the lookahead stack. Thus the symbol exposed on the lockahead stack must be a

terminal, if state s, is accessed by shifting a terminal symbol a. |

Having defined AccessLA, we now define the function PreShifted. The function Ac-
cessLA defines a set of lowest-level symbols which can appear on the lookahead stack for
a state. The function PreShifted for a state s, is defined as a set of symbols which are
always shifted by noncanonical expansion items before state s, is entered, and therefore
these symbols cannot be shift or reduce lookahead symbols in this state. PreShifted(s,) can

be computed from AccessLA sets and FIRST sets.

Definition 4.5

PreShifted(s,) = {Y |3A € AccessLA(s,), Y € FIRSTT(4),

for any B, B € AccessLA(s,), Y ¢ FIRST'(B).}

From the definition, we can see that the symbols in PreShifted(s,) are lower-level symbols

of those in AccessLA(s,).
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Property 4.4 PreShifted(s,) N (ShiftLA(s,) U ReduceLA(s,)) =@

Proof: We prove this property by contradiction: suppose the property does not hold,

then there is some Y,

Y € PreShifted(s,) (4.1)
Y € ShiftLA(s,) U ReduceLA(sy) (4.2)

Relation 4.2 with Property 4.2 imply that there exists an X, such that X € AccessLA(s))
and X € FIRST*(Y). By Definition 4.5, Y ¢ PreShifted(s,). Hence there is a contra-

dition with the assumption, and we have proved the property. 0

Property 4.5 PreShifted(s,)=0, if s, is accessed by a terminal symbol a.

Proof: This proof is trivial. By Property 4.3, if s, is accessed by terminal symbol a,
AccessLA(s,) C V. This implies that there is no A, such that Y € FIRST+(A4), so

that PreShifted(s,) = # by Definition 4.5. o

4.4 The LOOKBACK Function

Here we define another function called LOOKBACK, which is very similar to the relation
Lookback defined by DeRemer [DeRe82].

Intuitively, we say s, is in LOOKBACK(s,, I = [A — «e]) if s, is the state which
pushes a nonterminal symbol A onto the lookahead stack by reduction of item I, and s,

is the state which is entered by shifting this A. TFor example, in Figure 3.7, sy is in
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LOOKBACK(s;5,[As — aqae]) and s;5 in LOOKBACK(s6,[A2 — azAge]). We simply
say sg lookback s, if no confusion arises.
Before we formally define the LOOKBACK function, we first introduce two relations

related to that function.

Definition 4.6 State s, UIRS (uninterrupted reduce and shift to) state s, at item I = [A —
we] if, there is at least one state s;, 85 — S4, Ss A sp. and for any Y € ReduceLA(sy, I},

there is a path,

Top([ss : WYy Flamwe Top([ss]) AYy
Fonist  Top([ss : AJYy.
Figure 4.3 shows part of a parser for an NSLR(1) grammar in which state s; UIRS state

sp at item [A — ae].

Ss SP
B—* C.AD A_ | B—*CA.D
A— .0 D—+ .d
|
s o
A —>a, {d}

Figure 4.3: State s, UIRS state s,.

Definition 4.7 State s, IRS (interrupted reduce and shift to) state s, at item I = [A — we]
if there is a state s;, and B =1 B3, such that s, P 8q, and s, B4 Sp, for any Y €

Reducel A(sq, 1), there is a path,
Top([ss : W)Yy Faww Top([ss: B])AYy

Fsnise  Top([ss: BA]) Yy
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D—E.CI
C—= ,AG C—>A.G | C—>AG.{i}

C—>.BH
Be—.a

A—wp.a

G—.fg
H— ,fth
A—+a,.{G}
B—*a.{H}
£

G—f.g
H—>f.h

Sq 9,

G—>fg.{i}

Figure 4.4: State s4 IRS state s,.

Figure 4.4 gives an example in which state s, IRS state s, at item [G' — fyge].
The IRS relation is unique for noncanonical automata. For a parser which is canonical
LR consistent, only UIRS relations hold for states.

Formally, function LOOKBACK is defined as follows:

Definition 4.8 Function LOOKBACK, for a state s, and an item I = [A — we), is defined
as a set of states. State sq is in LOOKBACK of s, at item I, if state s, UIRS state s, at

item I, or state s, IRS state s, at item I, we write as s, € LOOKBACK(s,, I = [A — we]).

Observing the relationship of the symbols in AccessLA(s,) and ReduceLA(s,), we obtain

Theorem 4.1, which helps us to determine the symbols in AccessLA for a given action table.
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Theorem 4.1

AccessLA(s,) C UReduceLA(sq, [A — we)),

Sq

where s; € LOOKBACK(s,, [A — we)).

Proof: According to the definition of AccessLA, for any ¥ € AccessLA(s,), and for some ¢
and v, there is a transition [8]AY 7y Fpip: [6A}Y 7y, such that  accesses s, §A4 accesses
Sp, and 8, # Sp.
Since A is a nonterminal, there must be some strings « and w, and a state s, accessed

by aw, in which a string w is reduced to A, such that

[ew]Yy b an, [@]AY y B [6]AY v Fapige [BATY 7.

If there were no such o and w, then there would be no deriation 5" —71 []AY y.

Here two points need to be explained:

1. Y € Reducel A(sy,I = [A — w])} simply because ¥ is under A on the lookahead
stack while the parser is in state s,,, and A is reduced from string w. The A must have
been pushed by a reduce action and Y must have been the lookahead symbol for that
action.

2. Top([e]) may differ from Top({6]). After the w is reduced to A, a sequence of reduce
and shift moves may occur while this A remains on the lookahead stack.

Now, we want to prove that s, € LOOKBACK(s,, I = [A — we]).

For any X € ReduceLA(s,,I), there are some «/, such that [aw] Xy’ k4, [o]AX7Y".
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Since [a]AY vy F* [#]AY y, A remains on the lookahead stack, and s, A Sp, SO

[0w] X" Famsw [@]AXY H* [B]AX Y Fopige [0A]X Y

We conclude that s, € LOOKBACK(s,, I = [A — we]).
Hence, we proved that AccessLA(s,) C UReduceLA(s,,[A — we]), where

s, € LOOKBACK(s,, [A — we]). 0

In this chapter, we defined sets and analyzed relations between them. We showed that
PreShifted(s,) is a set of symbols which cannot be in this state s,. In next chapter, I will
present algorithms to detect subsets of PreShifted, given an action table containing useless

actions.
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Chapter 5

Algorithms for Shrinking

NSLR(1) Parsers

In chapter 4, we analyzed the properties of the NSLR(1) parsers without useless actions
caused by noncanonical state expansion. In fact, up to now there does not exist a prac-
tical parser construction technique which can generate such parsers. Given action tables
generated by an existing NSLR(1) parser construction algorithm N PGsc (as presented by
Salomon and Cormack [Sal89B|), we present two approaches for deleting useless actions by
using the relations we found in Chapter 4. The safety of these approaches is also proved
in this chapter. The results of the two approaches are analyzed in Section 5.4. The results
for real character-level grammars for programming languages are poor. The reasons for the
poor performance are analyzed and the analysis leads to a simple improvement of the parser
construction algorithm. When applied to parsers generated by the modified parser construc-

tion algorithm, the algorithms for deleting useless parser actions lead to significantly smaller
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parsers.

5.1 Lookahead Sets Obtained from Action Tables

The algorithms presented here are designed to work on the parser action tables built by
the standard LR(1) family of parser construction algorithms. In order to differentiate sets
which are obtained from an actual action table from theoretical sets which contain no useless
actions, we precede the names of the former sets with the prefix AT. ATReducelLA and
ATShiftLA, are respectively the reduce and shift lookahead sets computed from an action
table.

ATShiftLA(sp) = {Y | Action(s,,Y) = shift} (5.1)

ATReduceLA(sp, ] = [A — we]) = {Y | Action(sp,Y) = reduce by A — w} (5.2)

ATReduceLA(s,) is defined as the set of symbols associated with any reduction in state s,.

ATReduceLA(sy) = {Y | Action(s,,Y) = reduce} (5.3)

For any NSLR(1) consistent state s,, ATReduceLA(s,, I) N ATReduceLA(s,, J) =6,
and, ATReduceLA(s,, I) N ATShiftLA(s,) = 0, for any items I and J in state s,, where
I#J.

The sets of actions obtained from an action table are supersets of the corresponding

theoretically optimal ones.

ATShiftLA(s,) D ShiftLA(s,) (5.4)
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ATReduceLA(s,,[4 — we]} D ReduceLA(s,,[A — we]) (5.5)

ATReduceLA(s,) 2 ReduceLA(s,) (5.6)

5.2 A Simple Parser Shrinking Algorithm

The algorithm presenied in this section is simple and quick because useless actions in a
parser are detected by examining each state of the parser individually without considering
the paths between states.

The principle of this algorithm is that if some symbol X € FOLLOW(A) is deleted by
noncanonical state expansion from the loockahead set of all complete items [A — we] for all
w in all states, then X cannot possibly be on the lookahead stack after shifting A. In other

words, X should not be in ATAccessLA(A).

5.2.1 ATAccessLA and ATPreShifted

ATAccessLLA and ATPreShifted for a nonterminal symbol A can be computed as:

ATAccessLA(A) = | ] ATReduceLA(s,,[4 — we]) (5.7)
spEK w

ATPreShifted(A) = {Y |3 C € ATAccessLA(A),
Y € FIRST*(C), and for any

B € ATAccessLA(A), Y ¢ FIRST~}(B)} (5.8)
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We will show that useless actions can be detected with the set ATPreShifted. First, we
want to prove that:

ATAccessLA(A) D AccessLA(s,) (5.9)

where A is the accessing symbol of state s,.

Proof: By the definition of ATAccessLA in Relation 5.7,

ATAccessLA(A) = | ] ATReduceLA(s,,[A — we]).
sq€K

By Relation 5.5, we know that ReduceLA(sg, [A — we]) C ATReduceLA(sq,{A — we]),
so that

ATAccessLA(A) D U Reducel A(s,,{A — we]).
sqeK

If we can prove that

U ReduceL A (sq,[A — we]) D AccessLA(s,),
sq€K

then the relation is proved.

According to Theorem 4.1,
UReduceLA(sq, [A — we]} D AccessLA(s,),

Sq

where s, € LOOKBACK(sp, [A — we]).
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By enlarging the leftside, we have

U ReduceLA(s,,[A — we]) D AccessLA(s,),
sqEK

and so that the relation 5.9 is proved. |

Based on Relation 5.9, we can prove: if A is the accessing symbol of state s,, then actions
on the lookahead symbols in ATPreShifted(A) N (ATShiftLA(s,) U ATReduceLA(s,)) form
a subset of useless actions in state s,,.

This statement can be explained in another way: for a state s,, which is accessed by A4,

ATPreShifted(A) N (ATShiftLA(s,) U ATReduceLA(s,))

C (ATShiftLA(sp) U ATReduceLA(s,)) — (ShiftLA(s,) U ReduceLA(sp))  (5.10)

Proof: Wefirstlet (i) ¥ € ATPreShifted(A)N(ATShiftLA(s,)UATReduceLA(s,)), assume
(i) Y ¢ (ATShiftLA(s,)UATReduceLA(s,))—(ShiftLA(sp)UReduceLA(s;)), and prove
that (i) and (ii) are inconsistent.

Based on hypothesis (i), we have Y € ATPreShifted(A) and ¥ € ATShiftLA(s,) U
ATReduceLA(s,). Then Y € ShiftLA(s,)U ReduceLA(s,) must be true by hypothesis
(ii). With Property 4.2, we know that there exists an X, such that X € AccessLA(s,)
and X € FIRST*(Y) or we say Y € FIRST1(X). X € ATAccessLA(sp) because
of Relation 5.9. Then by the definition of ATPreShifted(A) in 5.8, we conclude that

Y ¢ ATPreShifted(A), which is a contradiction with our hypothesis (i).
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Thus we proved that Relation 5.10 is true. a

From Relation 5.10, we conclude that given an action table, we can delete some use-
less actions and get a valid suboptimal parser by computing ATPreShifted sets for every

nonterminal.

5.2.2 Algorithm DULAZ:

Figure 5.1 presents a simple algorithm for deleting useless lookahead symbols from an action
table.

This algorithm runs in time linearly proportional to the size of Viy. The safety of this
algorithm can be ensured by the discussion in section 5.2.1. Useless actions of some parsing
tables generated by SOAP, were identified using this algorithm. Table 5.1 in section 5.4
shows the results for grammars for PASCAL and Modula 2, and some grammars supplied
by Kuo-Chung Tai [Tai79], named KCT1, KCT2, KCT3, and KCT4%.

The algorithm is not powerful enough to delete all useless actions. Suppose that the
same complete item A — e appears in two different states s, and s,, and that in state s,
there is a conflict on a lookahead symbol Y, and in s, there is no such conflict. Since there
is no conflict in s;, ¥ will remain in ATAccessLA(A} and actions on Y will remain in all
states accessed by A whether or not these actions are useless. For example, in Figure 3.5,
symbol ¢ is include in ATAccessLA(A), since Action(syp, ¢)=reduce, despite the fact that
s10 is an unreachable state. This prevents Action(ss, ¢) from being deleted. The second

algorithm is proposed to improve performance.

18ee Appendix A
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/* Compute ATAccessLA(A) for every nonterminal A.*/
Initialize ATAccessLA(A) as the empty set for all A.
For every state s;:
For every X such that Action(s;, X)= reduce by A — o
Include X in ATAccessLA(A)
End for.
End for.

/* Compute ATPreShifted(A) for every nonterminal A. %/
For every nonterminal A:

Initialize sets High and Low to be empty.
For every symbol X in ATAccessLA(A):
High= HighU{FIRST}(X) }
Low= LowU {FIRST*(X) }
End for.
ATPreShifted(4) = Low— High
End for.

/+ Delete useless actions. */
For each state s;:

A = accessing symbol of s;.
For each symbol ¥ in ATPreShifted(A).
set action[s;, Y]= error
End for.
End for.

Figure 5.1: Algorithm DULAL: A simple algorithm to delete useless actions.
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5.3 A Non-simple Algorithm

Given a state s,, we can delete useless actions by retrieving all states s;, which lookback s,.
If s, UIRS sp, it is easy to find s, if we know s,. But the problem of how to determine s,
for a given s,, if s, IRS s, is not as easy to solve. Figure 5.2 shows one example of a state

84,4, that IRS another state sp,,; .

Sp, Spi
Al Al+l
AH—] O 1 >
| |
[0
Sa. i { O 1
A, e {--} |
__________ s Uy v
AHI o 131
o 1+l

SQ’H]

Figure 5.2: State s,;,, lookback sp,, ;.

Since there are some states like s,;, which seem to lookback s, ,, but in fact, may be
unreachable, we may have to look several steps backward and forward to find s, ,. Here
we provide a suboptimal algorithm that looks one step back. Instead of finding s, ., , we

are trying to compute ATAccessLA(sp,,,) according to s, which is easy to compute.

5.3.1 ATAccessLLA and ATPreShifted

ATAccessLA is designed to look one step back.

ATAccessLA(sp) = | JATReducelA(sy, I = [A — we]), where

sq\d
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sy, Sy A 8p, and s, 5 8. (5.11)

(For this algorithm ATAccessLA(s,) is not necessarily 2 AccessLA.)

The ATPreShifted for a state s, can be computed as:

ATPreShifted(s,) = {Y |3 B € ATAccessLA(s,),
Y € FIRST*(B), and for any

C € ATAccessLA(sp), ¥ ¢ FIRST™Y(C)}. (5.12)

Our algorithm is based on the fact that ATPreShifted(s,)N(ATShift LA(sp)UATReduceLA(s;))

is a subset of useless actions in state s,.

This statement is equivalent to the following Relation 5.13:

ATPreShifted(sp) N (ATShiftLA({s,) U ATReduceLA(s;))

C (ATShiftLA(sp) U ATReduceLA(s,)) — (ShiftLA(s,) U ReduceLA(s,))  (5.13)

In order to prove the above statement, we first prove:

Property 5.1 Given an NSLR(1) grammar and the action table of that grammar ob-

tained by performing the state expansion algorithm, if s, € LOOKBACK(sy,,[Ai — aye]),

. . N . 41 o4l
[Aip1 — ew;y1] is a noncanonical item in stale sq;, Sq; — Sgiy,, and 8y, ~— Sy, then the

item set of s, is smaller than that of s, .

Figure 5.2 may help us understand the states and their relation described in Property

5.1.
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Proof: The closure items and the noncanonical items are generated from kernel items, so,
if we can prove that the kernel item set in s,; is smaller than that of sy, ,, then the
property is true.

Let 7 = [Bi31 — 0iy1 ¢ 7i41] be an item in state s,;, we are trying to prove that I must
be in s,,,,. There are three cases that must be considered.

Case 1. ;41 = @it

Item I in state s,, can be written as I = [Bjy1 — oy1 ¢ vig1) and [Biyq — 0 17Yi41)
is an initial item in state s,,. Bit1 € FOLLOW(A;) because A; is the accessing symbol
of state s,,. With the given condition that {Ait1 — e@;y1] is an noncanonical item in
state sy, we obtain that [Bi;1 — ew;y17;41] must be added to state s, according to
the state-expansion algorithm. So that [Biy1 — @ig1 ¢ vit1) is an item in state sq;,,
since sg; e Sgi41+ S0 Property 5.1 holds for case 1.

Case 2. nojp1 = 841 and 9 # €.

Item I in state s,, can be rewritten as [Biy1 — noip1evipa]. And [Biy1 — neaip17vigal
is an item in state s,,. The last symbol of 7 is A;, since A; is the accessing symbol of
state sp,. Then the first symbol of @;41 is in NEEDED_FOLLOW(A,). According to
the NSLR(1) construction algorithm N PGsc, the grammar is not NSLR(1) consistent.
So case 2 is impossible.

Case 3. 720iy1 = iy1, 2 £ €

Item I = [Biy1 — 0ix107i41] is in state s,;. There must be an item [C — 77 e 9o Bi41(]
in state s,,. There are two situations: 7, = ¢, or not.

3.1. m = ¢ [C — emBip1(] is in state s,,. C € FOLLOW(A;) because 4; is the

accessing symbol of state s,,. [C' — emyB;iy (] will be in state sy, since the first
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symbol of ;11 is the same as that of 5. With the condition that s ey Sgip1s> We get
that [Bit1 — aig1 @ viq1] is an item in state sq;, .

3.2. m # ¢, [C — n e n2Bi1(] is in state sp;. The last symbol of 7, is A;. For the
same reason as Case 2, the grammar is not NSLR(1) consistent.

Hence we prove in all cases that item I must be in state s,,,,, otherwise the grammar

is not NSLR(1) consistent. O

From Property 5.1, we can conclude that:

Property 5.2 For state s,; and sq;,,, which satisfy the conditions in Property 5.1, if C €

ATReduceLA(sy,), then there is a D € ReduceLA(sy,,,), and C' € FIRST*(D)

Proof: By the construction algorithm N PGgq, we know that if C' € ATReduceLA(s,,;),
there are items [A — #e{C}] and [C — o7]in state s,;. By Property 5.1, both [A — fo]
and [C — o7] are in state s, . The only possible way that C' ¢ ReduceL.A(sy,,,[4 —
f0)] is that there is some D, D € ReduceLA(sq,,,[A — o]}, and [D — oC7y] is an

noncanonical item in state s, e Hence, we proved the property. o

Now we are ready to prove the relation 5.13.

Proof: The proof here is similar to the proof of Relation 5.10 in Section 5.3. First we
let (i) Y € ATPreShifted(s,) N (ATShiftLA(s,) U ATReduceLA(s,)), assume (ii) ¥ ¢
(ATShiftLA(s,) U ATReduceLA(s,)) — (ShiftLA(s,) U ReduceL.A(sp)), and prove that
assumption (ii) is a contradiction with assumption (i).

Since hypothesis (i) is true, therefore ¥ € ATPreShifted(s,), and Y € ATShiftLA(s,)}U
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ATReduceLA(s,), With hypothesis (ii), the above results imply that ¥ € ReduceLA(s,)U
ShiftLA(sp). So that according to Property 4.1, there exists an X, such that X €
AccessLA(s,) and X € FIRST*(Y) or we say Y € FIRST™!(X). We know there is at

least one path:

[aw!}X'r }—[A.'-—«\w,'o} [a]AiX'Y = [QIA,X’)’ I—sht'ft [BAz]X75

and #A; accesses sp,, § accesses sp,_, # Sp, and aw; accesses s;.

In the action table, there is a state sy, $p;_, i} Su;, and {A; — «je] is an item in
state s,,. We are going to prove that only X or Z € FIRST*(X) may belong to
ATReduceLA(s,,;,[Ai — aje]).

For any V € FIRST~!(X), V can not be in set ATReduceLA(s,,). Otherwise, [V —
o Xim), [X1 — eXama), -+, [X;n — ¢X1ny), would be items in state s,,, and they
are items in state s,_, too by the property 5.1. So that X ¢ ReduceLA(s,,_,) since
ShiftLA and ReducelLA are exclusive. It turns out that the path is impossible, which
contradicts the condition that X € AccessLA(s,).

Since there is an X or a Z € FIRST*(X) in ATReduceLA(sy,,[Ai — aje]), with
the definitions 5.11, and 5.12, we can conclude that ¥ ¢ ATPreShifted(s,), which

contradicts our hypothesis. Hence we proved that Relation 5.13 is true. a

The statement shows that we can delete some of the useless actions by computing

ATAccessLA and ATPreShifted for every state and get a valid parser.
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/+ Compute ATAccessLA(s,) for every state sp.x/
Initialize ATAccessLA(s;) as the empty set for every state s,.
For every state s,:

Get the accessing symbol A of state s,.

Find all the state s,, such that s, A S5p.
For every state s,, 8, — 85, where A — a € P:
For every symbol X:
If Action(s,, X )= reduce from [A — as}, include X in ATAccessLA(sp).
End for.
End for.
End for.

/% Compute ATPreShifted(s,) for every state s, */
For every state s,:

Initialize the sets High and Low to be empty.
For every symbol X in ATAccessLA(sp):
High= Highu {FIRST!(X) }
Low= LowU {FIRST+(X) }
End for.
ATPreShifted(A) = Low— High
End for.

/* Delete useless actions /
For each state s;:

For each symbol Y in ATPreShifted(s;).
set actionfss, Y]= error
End for.
Ead for.

Figure 5.3: Algorithm DULA2: The second algorithm for deleting useless actions.
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5.3.2 Algorithm DULA2

Figure 5.3 is an algorithm for the second method. The algorithm is linear. The safety of

this algorithm can be ensured by the discussion in 5.3.1.

5.4 Results

Modules for performing the elimination of inaccessible parser actions were written in Modula-
2 and added to the SOAP parser generator. A group of sample grammars were tested and
verified manually. The optimal parse-table generated from PASCAL and Modula-2 gram-
mars were verified on a test suite of programs that were supplied by Salomon. The remainder

of this section discusses results gained from the implementation of the proposed techniques.

Grammar KCTi | KCT2 | KCT3 | KCT4 | PASCAL | MODULA-2
total no. of states 15 24 17 12 1005 1150
states added by non-

canonical expansion 0 1 0 1 84 118
total no. of SHIFTs 17 26 22 12 14363 17217
total no. of REDUCEs 14 13 11 9 45026 52684
useless SHIFTs 2 4 9 1 ? ?
useless REDUCEs 4 0 1 1 7 ?
redundant states 2 2 4 1 ? ?

Table 5.1: Useless actions in action tables.

Table 5.1 summarizes the useless actions and redundant states in the action tables of
a group of grammars?. Also the number of noncanonical states added by state expansion
is presented. These results were obtained manually. We have no way to manually obtain
the number of useless actions in the action tables for real grammars like PASCAL and

Modula-2, since their sizes are too big.

2See Appendix A
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Grammar KCT1 | KCT2 | KCT3 | KCT4 | PASCAL | MODULA-2
SHIFTs deleted 0 2 9 0 35 45
REDUCEs deleted 0 0 1 0 91 0
states deleted 0 1 4 0 1 0

Table 5.2: Results of the simple algorithm.

Table 2 summarizes the results of the simple algorithm DULA1. The number of deleted

useless actions and redundant states for grammars is listed.

Grammar KCT1 | KCT2 | KCT3 | KCT4 | PASCAL | MODULA-2
SHIFTs deleted 2 4 9 1 50 85
REDUCESs deleted 4 0 1 1 266 793
states deleted 2 2 4 1 3 30

Table 5.3: Results of the second algorithm.

Table 3 shows of the results of the second algorithm DULA2 applied for the test suite

of grammars.

5.5 Analysis of the Poor Performance for Real Grammars

In this section we will analyze the reason why the two parser-shrinking algorithms worked
poorly for character-level grammars of real programming languages. This analysis leads
to a modified parser generation algorithm with much better performance. Figure 5.4 gives
part of the parser for a character-level grammar called mini_pascal, presented in Appendix
A.

In state s9, the parser expects to see symbols “a”, “b”, etc. If symbol “b” is shifted from
state g, it could be reduced to symbol letter, or more symbols could be shifted to form the

keyword begin. To solve the shift-reduce conflict, symbol “e” is noncanonically shifted in
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z 44
prog —>PROGRAM.ID SEMI . ,
decls cmpd stmt DOT id — idfrag.{...}
D —».id white idfrag idfrag —-idfrag.alpha num
id —.begin # alpha num - .letter
id —».idfrag letter —."e"
idfrag —.idfrag alpha num

idfrag —.letter
letter —&."b"
letter —s."a"

letter —s."cC" Bis
begin __;,.Hbﬂ'Helrllgllﬂ‘i!illnll letter idfrag —+ letter.
. o {"e"...}
llbl’!
5 S
letter —"b". {letter ...
begin —p U Ilé" !1g|1 UERI L I letter _P'{ri';l" }

letter —=."e"

Figure 5.4: Part of a NSLR(1) parser for mini_pascal.

state s;. In this case, “e” would not be on the lookahead stack when s45 is entered, since
it would have been reduced to lefter. Thus it could not serve as a shift lookahead symbol
for state sq44. On the other hand, if symbol “a” is shifted from state sq, it will be reduced
to symbol letter if the next symbol on the lookahead stack is “e”. Then the symbol “e”
would be needed for both states sq4 and s45. Thus the shift action lefter — o“e” in state
S44, and the reduce action [idfrag — lettere, “e”| have to be kept.

The problem in that for real character-level grammars lookahead symbols that do need
to be noncanonically shifted and reduced for some states can be kept unreduced for many

other states. The states that do not reduce lookahead terminals, block the elimination of

sometimes useless lookahead symbols, because they mean that those symbols will often be
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valid.

5.6 Parser Generation with Forced Lookahead Shifting

The above analysis suggests a simple modification to the parser-generation algorithm to
increase the number of deleted actions and states. The principle is that if any symbol is
deleted from the lookahead set of any reduce action by generating a noncanonical shift
action, it should be deleted from the lookahead sets of all reduce actions. We will call
this new algorithm N PGFg;, an algorithm for noncanonical parser generation with forced
shifts, version 1.

Algorithm N PGgg;: If a lookahead symbol is found to be in conflict in any parser state,
consider it to be in conflict in all parser states.

Algorithm N PGrs; does not always work. It generates many new shift actions that
cause unresolvable conflicts. The purpose of the added shift actions is simply to help
reduce the size of the parser so we can easily eliminate those added actions if they cause
new conflicts.

Algorithm N PGpgz: use algorithm N PGrsy, but if forcing conflicts on a particular
lookahead symbol causes unsolvable conflicts in the parser then do not force state expansion
on that symbal.

Algorithm N PGrs; was implemented by giving feedback to the grammar writer. The
grammar writer was informed of which lookahead symbols had caused state expansion in
any state, then the grammar writer could code into the grammar which symbols be wanted

noncanonically shifted in all states. The grammar writer has the option of not forcing the

55



shifting of symbols that would cause rejection of the grammar.

For Pascal, Algorithm N PGpg, worked very well eliminating 74 states, which is 7.4%
of all states, and almost deleting as many states as were added by noncanonical expansion.
For Modula-2 unfortunately no further improvement in the parser tables resulted. It is
possible that careful modification of the Modula-2 grammar could lead to better results but
such changes were not seriously attempted.

In Tai’s original paper, six NSLR(1) grammars were analyzed by hand. For all six gram-
mars the conflict-free noncanonical parser could be made smaller than the basic canonical
parser with the conflicts unresolved. These surprising results were not duplicated here. Nev-
ertheless, the excellent performance of eliminating 7.4% of all parser states from a parser for
a real character-level grammar offers significant hope for continued research on shrinking

noncanonical parsers.
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Chapter 6

Conclusion

In this thesis, the structure of NSLR(1) parsers is presented by defining and analyzing
several functions. Based on this analysis, algorithms to detect and delete useless actions
are presented. These algorithms have been implemented. The shrunken parsing tables for
real character-level grammars were verified on a test suite of programs.

The work that would be needed to obtain optimal theoretical and practical methods for
NSLR(1) parsers is probably beyond the scope of a master’s thesis. This thesis also leads to
the invention of a modified parser construction algorithm which generates smaller parsers

after eliminating inaccessible states.
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Appendix A

Grammar KCT2

!

! Grammar G(2) from the paper “Noncanonical SLR(1) Grammars”
! by Kuo-Chung Tai.

!

S’ — <BOF> 5 <EOF>
S—cACe|dADe|AA|BB
A—a

B—a

A-fg

B—rfh

C—d

D—d

Grammar KCT3

!

! Grammar G(3) from the paper “Noncanonical SLR(1) Grammars”
! by Kuo-Chung Tai.

!

5’ — <BOF> S <EOF>

S—DE|DF

D—d

D—d

E—aEb|ab

F—alFl|aE
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Grammar KCT4

!

! Grammar G(4) from the paper “Noncanonical SLR(1)} Grammars”
! by Kuo-Chung Tai.

i

S’ — <BOF> S <EOF>

S E|FB

E—-bbE|bb

F-bbF|bb

B—-b

Grammar Mini-Pascal
!
' A character-level grammar for a

! Pascal-like mini language.
!

S — <BOF> prog <EOF>
prog — PROGRAM ID SEMI decls empd_stmt DOT
id list — D
| id list COMMA ID
decls — decls VAR id_list COLON type SEMI
|
type — INTEGER

cmpd_stmt — BEGIN opt_stmts END
opt_stmts —  stmt_ list

|
stmt list — stmt

| stmt list SEMI stmt
stmt — variable ASSIGNOP expr

| cmpd_stmt

[ ID

| WHILE expr DO stmt

| if_then

| if_then_else
if_then — IF expr THEN stmt
if_then_else — ITI" expr THEN stmt ELSE stmt
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variable — iD

expr_list — expr
| expr_list COMMA expr
expr — term
| sign term
| expr ADDOP term
term — factor
| term MULOP factor
factor — ID
| NUM
| LPAR expr RPAR
| NOT factor
MINUS — “_" white
PLUS — “4? white
MULT — “¥» white
DIV — “/” white
COLON — “” white
SEMI — “ white
COMMA — % white
LPAR — “(” white
RPAR — “)” white
DOT — “” white
ASSIGNOP — “:=" white
sign — PLUS | MINUS

ADDOP —  sign
MULOP — MULT | DIV
white —

| white white_char

{3 })
| u\ t”
E u\ Il”

| comment

white_char —

comment —  cmt_body “}”
cmt body —  “{”

| cmt_body any_cmt_char
a.ny.cmt.cha‘r ——3'“8,” | ub” 1 cccn l ccdn | :ce» | ufn

I tcgn I “h” l uin | ujn l “k” | uln l “l'l‘l”
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I “Il” ] “O” | up” | uqn i “i‘” ] “S” | “t”
I “y? l iyt | g ?? l Hoye® i ccy» ’ i
I “0” | (:1” l “253 E ({3): | u4n | u5n
I “6” | “7” E “8” I ugu | L] | “@w
] {L#” I ugy | wgzrn I wd I “«gr? | Wk
| u(n 1 “)” | W n | “_n | (c+53 1 [{J0}]
| [{3n 1] l {131 I “{}} l “[H 1 cc]” | 1183
.

W9 | €3 ] | L | N | D
el I T T I I
I 138 ] | {4 l u/n | ul» | “\ ” ' u\ t”
1 W on | u\ H” I ::\ f?

BEGIN — begin white

begin — “begin”

DO — do white

do — “do”

ELSE — else white

else — “else”

END — end white

end — “end”

¥ — if white

if — i

INTEGER — integer white

integer — “Integer”

NOT — not white

not — “not”

PROGRAM — white program white
program — “program”

THEN — then white

then — “then”

VAR — var white

var — “yar”

WHILE — while white

while — “while”

D — id white

id — idfrag

idfrag — letter | idfrag alpha_num
letter — U | “h | “e” | “d7 | “e | “P?

I ug” l uh” | uiﬂ [ «jn | “k:s | “1”
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digit —3

alpha_num —
NUM —
digit_string —

| “m” | “11” | “O‘H ] “P” | uqn 1 “I”
| g | “gn l “y® | Wy I g l “X”
I uyn 1 g2

“Uﬂ ] “11) I “2” | “3” ] “411

| u5” I «Gn | w?” I “8” I ((91)
letter | digit

digit_string white

digit | digit_string digit
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