
Independent Component Analysis for

Maternal-Fetal Electrocardiography

by

Kathryn L. Marcynuk

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfilment of the requirements of the degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

University of Manitoba

Winnipeg, Canada

Copyright © 2014 by Kathryn L. Marcynuk



ICA for Maternal-Fetal ECG

To my family and friends

Kathryn L. Marcynuk - ii of xviii - December 12, 2014



ICA for Maternal-Fetal ECG

Abstract

Separating unknown signal mixtures into their constituent parts is a di�cult problem

in signal processing called blind source separation. The ability to separate signal mixtures

is relevant to a wide variety of areas including telecommunications, image processing, and

medicine. One of the benchmark problems of blind source separation is the extraction of the

fetal heartbeat from an electrocardiography (ECG) recording in which it is overshadowed by

a strong maternal heartbeat. Successful extraction of the fetal heartbeat is more than just an

academic problem. Fetal heart monitoring has become common practice in much of North

America and is a deciding factor in whether or not to intervene during labour, so accurate

fetal heart readings have social and economic impacts on the health care system.

This thesis presents a study of blind source signal separation technique called inde-

pendent component analysis (ICA), in order to assess its suitability for the maternal-fetal

ECG separation problem. This includes an analysis of ICA on both (i) deterministic and

stochastic signals, and (ii) simulated and recorded ECG signals. The e↵ectiveness of ICA

is investigated by identifying measures to evaluate and quantify its success at extracting

source signals.

The experiments presented in this thesis demonstrate that ICA is e↵ective on linear

mixtures produced from known source signals of either simulated or recorded ECGs. The

success of the ICA extraction was assessed using energy, information theory, and fractal-

based measures, as well as visual comparison and heart rate calculation. In all cases there

were minimal changes between the source and extracted signals, and the heart rate was

recovered accurately. ICA extraction of clinically recorded maternal-fetal ECGs mixtures,

in which the source signals were unknown, were less conclusive and appeared to only recover

the fetal heart rate.
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Visual Abstract

This diagram summarizes the independent component analysis (ICA) process that takes

a mixture of signals, obtained by multiple-sensor recording, and separates them into inde-

pendent sources.

Kathryn L. Marcynuk - iv of xviii - December 12, 2014



ICA for Maternal-Fetal ECG

Acknowledgements

This work would not have been possible without the help and support of an entire

network of people. Thank you to Dr. Kinsner for welcoming me into the Delta Research

group and for trusting me with this important project. I have learned so much from you,

and I am excited to delve into new topics and continue this research. I would also like to

thank my examining committee, Dr. Dean McNeill and Dr. Michael Domaratzki, for taking

the time to truly read this work and provide insightful questions and areas to explore.

Thank you as well to the incredibly supportive Technical Communications group: Dr.

Anne Parker, Norma Godavari, Babak Salimifard, and Aidan Topping. You have helped me

grow and hone my communication skills, and I could not ask for a better group of people

with whom to work.

I would also like to extend my gratitude to the members of the Delta Research group,

past and present. Our current group (David, Greg, Hieu, Maryam, Rafi, Sina, and Soroush)

explores so many diverse and engaging topics, and I continue to be motivated by each of you.

Thank you as well to group alumnus Dario Schor, for your words of wisdom, encouragement,

and constructive criticism - and knowing when I needed to hear some of each.

To my friends: thank you for allowing me to talk to you about this project well past the

point that you were tired of it, yet never failing to ask how things were going. In particular,

I would like to thank Katie Grabau, Kate Langrell, Talia Pankewycz, and Erika Mann who

bore the brunt of these discussions.

I owe a special thank you to Matthew Kulasza for being my sounding board, shoulder

to cry on, and one-man cheering squad. You continuously motivate me to do my best, while

keeping me grounded and reminding me to take a break and have fun. I am so grateful that

we were able to share in this experience together.

Kathryn L. Marcynuk - v of xviii - December 12, 2014



ICA for Maternal-Fetal ECG

Finally, but certainly not least, I would like to thank my family for their unwavering

support. Thank you to my parents for giving me the gifts of a love of knowledge and the

education to pursue this passion. What five-year-old dreams of going to graduate school?

Yet you continue to believe in me every step of the way. Lastly, completing this project

would not have been nearly as enjoyable without my furry study buddies and “supervisors”,

Oden and Noelle, sitting by my side.

This work was funded by NSERC, the University of Manitoba Faculty of Graduate

Studies, and the University of Manitoba Faculty of Engineering.

Kathryn L. Marcynuk - vi of xviii - December 12, 2014



ICA for Maternal-Fetal ECG CONTENTS

Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Visual Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Independent Component Analysis (ICA) 8

2.1 Blind Source Signal Separation Problems . . . . . . . . . . . . . . . . . . . 9

2.2 Overview of ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Historical Background of ICA . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 The E↵ects of Signal Mixing . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Relationship to Principal Component Analysis (PCA) . . . . . . . . 12

2.3 Description of ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Kathryn L. Marcynuk - vii of xviii - December 12, 2014



ICA for Maternal-Fetal ECG CONTENTS

2.3.1 Considerations of ICA . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Principles of ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 FastICA and Other ICA Algorithms . . . . . . . . . . . . . . . . . . 24

2.3.4 Applications of ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.5 Alternatives to ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.6 Measures of the E↵ectiveness of ICA . . . . . . . . . . . . . . . . . . 26

2.4 ICA Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Deterministic Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 E↵ect of Amplitude Di↵erences . . . . . . . . . . . . . . . . . . . . . 46

2.4.3 E↵ect of Phase Di↵erences . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.4 Stochastic Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Electrocardiograms (ECGs) 62

3.1 Introduction to ECGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.1 The ECG waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.2 Heart Rate Variability . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Properties of ECGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 ECG and HRV Stationarity . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.2 Probability Distribution of ECGs . . . . . . . . . . . . . . . . . . . . 68

3.2.3 Fractal Dimension as a Measure of HRV . . . . . . . . . . . . . . . . 69

3.3 ECG Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.1 ECGsyn Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.2 ECGfm Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 Recorded ECG Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Electrocardiograms Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Maternal-Fetal ECG Separation Problem 75

4.1 Background on Fetal Heart Monitoring . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Evolution of Fetal Heart Monitoring Techniques . . . . . . . . . . . 76

4.1.2 Motivation: Current state of problem and consequences . . . . . . . 78

4.2 Characteristics of Maternal-Fetal ECGs . . . . . . . . . . . . . . . . . . . . 80

4.2.1 Fetal ECG Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Combined Maternal-Fetal Signals Characteristics . . . . . . . . . . . 81

4.3 Maternal-Fetal ECG Separation Techniques . . . . . . . . . . . . . . . . . . 82

4.3.1 ICA for Maternal-Fetal ECG Separation . . . . . . . . . . . . . . . . 82

Kathryn L. Marcynuk - viii of xviii - December 12, 2014



ICA for Maternal-Fetal ECG CONTENTS

4.3.2 Other Maternal-Fetal Separation Techniques . . . . . . . . . . . . . 83

4.4 Experimental Maternal-Fetal ECG Signals . . . . . . . . . . . . . . . . . . . 84

4.4.1 Simulated Maternal-Fetal ECG Signals . . . . . . . . . . . . . . . . . 85

4.4.2 Maternal and Fetal ECG Recordings from PhysioNet . . . . . . . . . 88

4.5 Maternal-Fetal ECG Separation Problem Summary . . . . . . . . . . . . . . 91

5 Case Study: ICA for Maternal-Fetal ECG Separation 92

5.1 Experiment: Two Adult ECGs (model) . . . . . . . . . . . . . . . . . . . . 93

5.2 Experiment: Two Adult ECGs (recorded data) . . . . . . . . . . . . . . . . 97

5.3 Experiment: Maternal-Fetal ECGs (model) . . . . . . . . . . . . . . . . . . 101

5.4 Experiment: Maternal-Fetal ECGs (synthetic data) . . . . . . . . . . . . . . 106

5.5 Experiment: Non-Invasive Maternal-Fetal ECGs (recorded data) . . . . . . 110

5.6 Case Study Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Discussion of Experimental Results 114

6.1 Discussion of Performance Measures . . . . . . . . . . . . . . . . . . . . . . 115

6.1.1 Visual Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1.2 Energy-Based Measure: RMSE . . . . . . . . . . . . . . . . . . . . . 116

6.1.3 Information-Based Measure: Entropy . . . . . . . . . . . . . . . . . 118

6.1.4 Fractal-Based Measure: Spectral Fractal Dimension . . . . . . . . . 119

6.1.5 Heart Rate Preservation . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Comparison Between Simulated and Synthetic Data . . . . . . . . . . . . . 121

6.3 Discussion of Non-Invasive ECG Experiment Results . . . . . . . . . . . . . 121

6.4 Discussion Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7 Conclusions 124

7.1 Thesis Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 128

References 130

Appendix A Heart Rate Calculation A1

Appendix B Experiment Codel B1

Appendix C Colophon C1

Kathryn L. Marcynuk - ix of xviii - December 12, 2014



ICA for Maternal-Fetal ECG LIST OF FIGURES

List of Figures

2.1 ICA with two in-phase sine waves: source signals . . . . . . . . . . . . . . . 31

2.2 ICA with two in-phase sine waves: mixture signals . . . . . . . . . . . . . . 32

2.3 ICA with two in-phase sine waves: comparison of source and extracted signals 32

2.4 ICA with two in-phase sine waves: signal 1 estimated probabilities . . . . . 33

2.5 ICA with two in-phase sine waves: signal 2 estimated probabilities . . . . . 33

2.6 ICA with square and sine waves: source signals . . . . . . . . . . . . . . . . 34

2.7 ICA with square and sine waves: mixture signals . . . . . . . . . . . . . . . 35

2.8 ICA with square and sine waves: extracted signals . . . . . . . . . . . . . . 36

2.9 ICA with square and sine waves: comparison of source and extracted signals 36

2.10 ICA with square and sine waves: square wave estimated probabilities . . . . 37

2.11 ICA with square and sine waves: sine wave estimated probabilities . . . . . 37

2.12 ICA with Weierstrass and sine waves: source signals . . . . . . . . . . . . . 39

2.13 ICA with Weierstrass and sine waves: mixture signals . . . . . . . . . . . . 40

2.14 ICA with Weierstrass and sine waves: comparison of source and extracted

signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.15 ICA with Weierstrass and sine waves: Weierstrass wave estimated probabilities 41

2.16 ICA with Weierstrass and sine waves: sine wave estimated probabilities . . 41

2.17 ICA with two Weierstrass waves: source signals . . . . . . . . . . . . . . . . 42

2.18 ICA with two Weierstrass waves: mixture signals . . . . . . . . . . . . . . . 42

2.19 ICA with two Weierstrass waves: comparison of source and extracted signals 43

2.20 ICA with Weierstrass and square waves: source signals . . . . . . . . . . . . 44

2.21 ICA with Weierstrass and square waves: mixture signals . . . . . . . . . . . 44

2.22 ICA with Weierstrass and square waves: comparison of source and extracted

signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Kathryn L. Marcynuk - x of xviii - December 12, 2014



ICA for Maternal-Fetal ECG LIST OF FIGURES

2.23 ICA with Weierstrass and square waves: Weierstrass wave estimated proba-

bilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.24 ICA with Weierstrass and square waves: square wave estimated probabilities 46

2.25 ICA with amplitude di↵erences: source signals . . . . . . . . . . . . . . . . 47

2.26 ICA with amplitude di↵erences: mixture signals . . . . . . . . . . . . . . . . 47

2.27 ICA with amplitude di↵erences: comparison of source and extracted signals 48

2.28 ICA with amplitude di↵erences: signal 1 estimated probabilities . . . . . . . 49

2.29 ICA with amplitude di↵erences: signal 2 estimated probabilities . . . . . . . 49

2.30 ICA with phase di↵erences: source signals . . . . . . . . . . . . . . . . . . . 50

2.31 ICA with phase di↵erences: mixture signals . . . . . . . . . . . . . . . . . . 50

2.32 ICA with phase di↵erences: comparison of source and extracted signals . . 51

2.33 ICA with phase di↵erences: signal 1 estimated probabilities . . . . . . . . . 52

2.34 ICA with phase di↵erences: signal 2 estimated probabilities . . . . . . . . . 52

2.35 ICA with phase and frequency di↵erences: source signals . . . . . . . . . . . 53

2.36 [ICA with phase and frequency di↵erences: mixture signals . . . . . . . . . 53

2.37 ICA with phase and frequency di↵erences: comparison of source and ex-

tracted signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.38 ICA with phase and frequency di↵erences: signal 1 estimated probabilities . 55

2.39 ICA with phase and frequency di↵erences: signal 2 estimated probabilities . 55

2.40 ICA with a uniform random wave: source signals . . . . . . . . . . . . . . . 56

2.41 ICA with a uniform random wave: mixture signals . . . . . . . . . . . . . . 56

2.42 ICA with a uniform random wave: comparison of source and extracted signals 57

2.43 ICA with a uniform random wave: uniform wave estimated probabilities . . 58

2.44 ICA with a uniform random wave: sine wave estimated probabilities . . . . 58

2.45 ICA with one Gaussian wave: source signals . . . . . . . . . . . . . . . . . . 59

2.46 ICA with one Gaussian wave: mixture signals . . . . . . . . . . . . . . . . . 59

2.47 ICA with one Gaussian wave: comparison of the source and extracted signals 60

2.48 ICA with one Gaussian wave: Gaussian wave estimated probabilities . . . . 61

2.49 ICA with one Gaussian wave: sine wave estimated probabilities . . . . . . . 61

3.1 Chambers of the human heart . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Idealized ECG waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 The RR-interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Normalized histogram of ECG . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Normalized histogram of HRV . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Kathryn L. Marcynuk - xi of xviii - December 12, 2014



ICA for Maternal-Fetal ECG LIST OF FIGURES

3.6 Heart rate variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7 Example of ECGwaveGen waveform . . . . . . . . . . . . . . . . . . . . . . 71

3.8 Example of ECGsyn waveform . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Simulated fetal ECG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Comparison of simulated maternal and fetal ECGs . . . . . . . . . . . . . . 86

4.3 Simulated maternal-fetal ECG mixture . . . . . . . . . . . . . . . . . . . . . 87

4.4 Comparison of adult ECG recoding and synthetic fetal ECG . . . . . . . . . 89

4.5 Synthetic maternal-fetal ECG mixture . . . . . . . . . . . . . . . . . . . . . 89

4.6 Recorded non-invasive abdominal maternal-fetal ECG . . . . . . . . . . . . 90

5.1 Two simulated adult ECGs: source signals . . . . . . . . . . . . . . . . . . . 93

5.2 Two simulated adult ECGs: mixture signals . . . . . . . . . . . . . . . . . . 94

5.3 Two simulated adult ECGs: comparison of source and extracted signals . . 95

5.4 Two simulated adult ECGs: signal 1 estimated probabilities . . . . . . . . . 95

5.5 Two simulated adult ECGs: signal 2 estimated probabilities . . . . . . . . . 96

5.6 Two recorded adult ECGs: source signals . . . . . . . . . . . . . . . . . . . 97

5.7 Two recorded adult ECGs: mixture signals . . . . . . . . . . . . . . . . . . 98

5.8 Two recorded adult ECGs: comparison of source and extracted signals . . . 99

5.9 Two recorded adult ECGs: signal 1 estimated probabilities . . . . . . . . . 100

5.10 Two recorded adult ECGs: signal 2 estimated probabilities . . . . . . . . . 100

5.11 Simulated maternal-fetal ECGs: source signals . . . . . . . . . . . . . . . . 102

5.12 Simulated maternal-fetal ECGs: mixture signals . . . . . . . . . . . . . . . 103

5.13 Simulated maternal-fetal ECGs: comparison of the source and extracted sig-

nals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.14 Simulated maternal-fetal ECGs: maternal ECG estimated probabilities . . . 104

5.15 Simulated maternal-fetal ECGs: fetal ECG estimated probabilities . . . . . 105

5.16 Synthetic maternal-fetal ECGs: source signals . . . . . . . . . . . . . . . . . 107

5.17 Synthetic maternal-fetal ECGs: mixture signals . . . . . . . . . . . . . . . . 107

5.18 Synthetic maternal-fetal ECGs: comparison of the source and extracted sig-

nals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.19 Synthetic maternal-fetal ECGs: matronal ECG estimated probabilities . . . 109

5.20 Synthetic maternal-fetal ECGs: fetal ECG estimated probabilities . . . . . 109

5.21 Non-invasive abdominal maternal-fetal ECG recordings . . . . . . . . . . . 111

5.22 Signals extracted by ICA from non-invasive abdominal maternal-fetal ECG

recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Kathryn L. Marcynuk - xii of xviii - December 12, 2014



ICA for Maternal-Fetal ECG LIST OF FIGURES

5.23 Estimated probabilities for the non-invasive maternal-fetal ECG mixtures . 112

5.24 Estimated probabilities for the signals extracted from the non-invasive maternal-

fetal ECG recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.1 ECG with identified R-wave peaks . . . . . . . . . . . . . . . . . . . . . . . A2

A.2 HRV of a recorded ECG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A2

Kathryn L. Marcynuk - xiii of xviii - December 12, 2014



ICA for Maternal-Fetal ECG LIST OF TABLES

List of Tables

6.1 Summary of the experimental root mean square values . . . . . . . . . . . 117

6.2 Summary of the experimental entropy values. . . . . . . . . . . . . . . . . . 119

6.3 Summary of the experimental calculated fractal dimensions. . . . . . . . . . 120

6.4 Summary of the derived experimental heart rates. . . . . . . . . . . . . . . 120

Kathryn L. Marcynuk - xiv of xviii - December 12, 2014



ICA for Maternal-Fetal ECG LIST OF ACRONYMS

List of Acronyms

bpm beats per minute 63, 70, 80, 81,

85, 87, 88, 93,

96, 101, 105,

110, 113, 122,

126

BSS blind source separation 2, 4, 6–10, 13,

15–17, 25, 26,

84, 85, 87, 88,

90, 118

cdf cumulative distribution function 19

ECG electrocardiogram 2–7, 12, 17,

25, 27, 28, 37,

49, 62, 64–93,

97, 98, 101,

102, 106, 110,

111, 113–129,

A1, B1

EEG electroencephalography 25

fMRI functional magnetic resonance imaging 25

HOS higher order statistics 18

Kathryn L. Marcynuk - xv of xviii - December 12, 2014



ICA for Maternal-Fetal ECG LIST OF ACRONYMS

HRV heart rate variability 65–70, 72, 74,

A1, B1

ICA independent component analysis 2, 4–22, 24–

30, 33–35, 37–

39, 41, 43, 45,

46, 48, 49, 51,

54, 55, 57, 58,

60, 61, 68, 75,

81–84, 88, 90,

92–94, 98, 101,

103, 105, 108,

110, 113–116,

118–129

ISP intelligent signal processing 10, 46

MEG magnetoencephalography 25

MLE maximum likelihood estimator 21, 23

nifecgdb Non-Invasive Fetal ECG Database 90, 122, B1

nsrdb Normal Sinus Rhythm Database 88, 97, 106, B1

PCA principal component analysis 12, 18, 26, 84

pdf probably density function 17–19, 22

RMSE root mean square error 27, 28, 31, 35,

39, 43, 45, 48,

51, 54, 57, 60,

96, 100, 105,

108, 113, 115–

118, 121, 122,

126, 127, B1

RMSSD root mean square of the successive di↵erences 67

SNR signal to noise ratio 9, 10, 46, 82

Kathryn L. Marcynuk - xvi of xviii - December 12, 2014



ICA for Maternal-Fetal ECG LIST OF SYMBOLS

List of Symbols

Notation: Scalars are denoted by plain text, italics. Vectors are denoted by bold text.

A Mixing matrix in ICA 14, 16, 17, 22,

30, 39, 41, 46,

51, 52, 57, 58,

94, 110

D
�

Spectral fractal dimension 29, 69, 119

g(·) Invertible function 19

H(x) Shannon entropy of x 21

L(W) Likelihood function of W 23

M Number of mixture signals 14, 21, 23

N Number of samples in a signal 23

n Total number of RR-intervals in an ECG recording 67

P A permutation matrix 17

p
s

Joint pdf of the source signal vectors 22

p
x

Joint pdf of the mixture signal vectorx 22

RR
i

The ith RR-interval 67

Kathryn L. Marcynuk - xvii of xviii - December 12, 2014



ICA for Maternal-Fetal ECG LIST OF SYMBOLS

s Source signal vector 13, 14, 16, 17,

22, 33, 94, 110

s1 The first source signal 13, 31, 33, 39,

43, 46, 99, 100,

103

s2 The second source signal 13, 31, 33, 39,

43, 46, 99, 103

W Unmixing matrix in ICA 14, 15, 17, 20–

23

W⇤ Optimal unmixing matrix 22, 23

x Mixture signal vector 13–18, 22, 31,

33, 94, 110

x1 The first mixture signal 13, 30, 33, 34,

39, 46, 51, 99,

103

x2 The second mixture signal 13, 30, 33, 34,

39, 46, 51, 99,

103

y Extracted signal vector 14, 15, 18, 19,

33

y1 The first extracted signal 31, 33, 39, 43,

51, 99, 100, 103

y2 The second extracted signal 31, 33, 39, 51,

99, 103

Kathryn L. Marcynuk - xviii of xviii - December 12, 2014



ICA for Maternal-Fetal ECG 1. Introduction

Chapter 1

Introduction

“Distinguishing the signal from the noise requires both scientific knowledge and

self-knowledge: the serenity to accept the things we cannot predict, the courage to predict

the things we can, and the wisdom to know the di↵erence.”

– Nate Silver [Silv12]

In a crowded room with many people talking it is usually still possible to carry on a

conversation without yelling. The human brain is remarkably adept at filtering out un-

wanted sounds while focusing on what is important. Ask a machine to do so and the results

are typically disappointing, as anyone who has used automatic voice recognition programs

in a noisy room knows. This is called the cocktail party problem, and it applies to more

than just social gatherings. The ability to reliably separate signals is important to many

fields including telecommunications, image processing, and medicine.
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1.1 Problem Statement

It is rare in signal processing to work with isolated, purely individual signals. In most

cases, physical signals are observed as part of a mixture of source signals and this mixture

is typically further obscured by noise. This section introduces the specific blind source

separation (BSS) problem of maternal-fetal heartbeat separation and why it is an important

problem in signal processing. The signal separation technique of independent component

analysis (ICA) is also introduced.

1.1.1 Motivation

In medicine the ability to measure the electrical activity of the body can provide useful

diagnostic information. When electrical signals from the heart are measured it is called an

electrocardiogram (ECG). Since ECGs can be non-invasive, they can be used to monitor

a fetus before or during birth. However, the fetal heartbeat is obscured by the stronger

maternal heartbeat, as well as by other electrical noise within the mother’s body. The

interfering signals make it di�cult to reliably record a fetal ECG, and can falsely indicate

problems leading to unnecessary medical intervention.

The ability to separate maternal and fetal ECGs accurately has social and economic

impacts on the health care system. Maternal-fetal ECG recordings have been used by

physicians since the middle of the 20th century and non-invasive, continuous electronic fetal

heart monitoring is now standard practice during labour in North America [Buxt63][Wool90]

[Davi93][Meni01]. The ECG recordings and heart rate data are used to assess fetal distress

during birth, and are influential factors in the decision to perform an emergency Caesarean

section [Lark58][Decl06][Clar07]. Of concern, the output from non-invasive fetal heart mon-

itors can be di�cult to interpret due to the relatively strong maternal ECG and noise

interference from other biological electrical signals [Albe93][Rode08]. In practice it is not
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always possible to reliably detect the features of the heart wave, including the main peaks

that are used to calculate the fetal heart rate [Donk93]. Chapter 4 provides more informa-

tion on the social and medical motivation behind this signal separation problem.

1.1.2 Problem Definition

Blind source separation addresses the problem of disentangling a signal of interest from

a linear mixture when little to no information is known about the sources, although they

are assumed to be independent. Often the signal mixing process is also unknown [Hyva01]

[Ston04]. This is analogous to talking with someone in a noisy room, which is why it is often

called the cocktail party problem. Even though there may be other conversations well within

earshot, it is still possible for the people to focus their attention on one conversation.

While separating speech signals comes naturally to the human brain, it is still a challeng-

ing area of interest in other domains. Separating the fetal heartbeat from the other signals in

a non-invasive ECG is a physical application of the cocktail party problem, and has become

a benchmark problem in non-deterministic linear signal mixing [Hare60][Widr75][Vand87]

[Schr96][Anan03]. Successes in separating maternal-fetal ECGs can also be applied to other

blind source separation problems including audio, radio signal interference, and biological

electrical signals [Robe01]. Blind source separation is not limited to one-dimensional signals,

and can also be applied to signals such as images [Ston04].

1.1.3 Proposed Solution

Classic signal processing techniques, which rely on signal power, are not e↵ective when

the signal-to-noise ratio (SNR) is low. In these cases, other techniques such as adaptive or

intelligent signal processing (ISP) must be used [Hayk01].
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Independent component analysis (ICA) is a relatively new ISP technique to separate lin-

early mixed signals as recorded by more than one sensor simultaneously. ICA requires higher

order statistics (HOS) in order to separate the signals, and the component signals must be

statistically independent and non-Gaussian but need not be deterministic or probabilistic.

These features make ICA particularly suited for blind separation of physical signals, which

are typically non-deterministic and embedded in noise [DeLa00][Jung00][Pott01][Gadh06].

ICA exploits these assumptions to separate a signal mixture into statistically independent

components of minimal mutual information or maximum non-Gaussianity [Robe01]. There

is a wide range of applications for ICA, including telecommunications, stock market pre-

diction, and biological electrical signal monitoring [Horn01]. The theory and conditions of

ICA are described more fully in Chapter 2.

1.2 Thesis Formulation

This thesis is comprised of three parts: (i) an introduction to BSS problems, including

the theory behind ICA and examples of its use; (ii) a study of ECG signal characteristics,

as well as how maternal and fetal ECGs are combined; and (iii) an investigation into the

maternal-fetal ECG problem as an application of ICA.

1.2.1 Thesis Statement

The goal of this thesis is to assess the suitability of ICA for ECG signals in the maternal-

fetal ECG separation problem, and to investigate the e↵ectiveness of ICA on this problem

by identifying the successes and limitations of the approach.

Kathryn L. Marcynuk - 4 of 138 - December 12, 2014



ICA for Maternal-Fetal ECG 1.2 Thesis Formulation

1.2.2 Thesis Objectives

There are three main objectives in this thesis:

1. Study the e↵ectiveness of ICA for blind source separation by:

(a) implementing an ICA algorithm;

(b) identifying metrics to evaluate and quantify the success of ICA at extracting

source signals; and

(c) experimenting with constructed deterministic and stochastic signals to test how

source signal characteristics a↵ect the outcome of ICA.

2. Study the characteristics of ECG signals and maternal-fetal ECG mixtures by:

(a) implementing a model to simulate ECG signals;

(b) obtaining recorded adult ECG signals and maternal-fetal ECG mixtures; and

(c) simulating maternal-fetal ECG mixture signals.

3. Assess the e↵ectiveness of ICA with the maternal-fetal ECG separation problem as a

case study with both simulated and recorded data.

1.2.3 Research Questions

Blind source signal separation, and specifically maternal-fetal ECG separation, is a

challenging problem in signal processing. The following is a list of the topics and research

questions addressed in full or part in this thesis.

1. What are the limitations on the source signals that can be used with ICA?

(a) What is the e↵ect of source signal amplitude on ICA?
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(b) What is the e↵ect of source signal frequency and phase di↵erences on ICA?

2. How can the performance of ICA be justified and quantified?

(a) How well do energy-based measures quantify the success of ICA?

(b) What other measures can be used?

3. What are the characteristics of a healthy adult ECG?

(a) How do the characteristics of adult and fetal ECGs di↵er?

(b) How well do heart models accurately reflect ECG recordings?

4. What are the characteristics of maternal-fetal ECG mixtures?

(a) How are the maternal and fetal ECGs combined?

(b) How large is the maternal ECG relative to the fetal ECG?

5. What are the current methods of maternal-fetal ECG separation?

(a) What features of the fetal ECG are important to capture accurately?

(b) What are the specifications of current fetal ECG recording devices?

(c) Can we reduce the number of “false positives” (i.e., the times when a pregnancy

is considered unhealthy due to the fetal ECG, but it is actually healthy) by

increasing the accuracy of fetal ECG separation?

6. How does the BSS problem apply to maternal-fetal ECG separation?

(a) Is ICA applicable to the problem of maternal-fetal ECG separation?

(b) To what other problems do BSS and ICA apply?

(c) How well can ICA separate the maternal-fetal ECGs?

(d) Can the fetal heart rate be accurately recovered in the signals separated by ICA?
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1.3 Thesis Organization

This thesis addresses the problem of blind source separation, specifically in terms of

maternal-fetal ECG separation, with ICA. An introduction to BSS problems is presented in

Chapter 2, along with the fundamental concepts of ICA theory. This chapter also contains

experiments to test and illustrate how well ICA works under a variety of conditions. Chap-

ter 3 provides an overview of heart waveform characteristics and how ECG recordings are

obtained. This chapter also serves as an introduction to current models that can be used to

simulate heart signals. The discussion of ECGs is expanded into Chapter 4 with a review of

past and current practices in maternal-fetal ECG separation. Experiments were designed

to test ICA on simulated and recorded ECG data, and Chapter 5 presents the results. Five

e↵ectiveness measures are used in Chapter 6 to discuss the results of these experiments

and to compare the trials with simulated ECG waveforms to those with recorded data.

Chapter 7 provides a summary of the results, suggestions for future work, and concluding

remarks.
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Chapter 2

Independent Component Analysis

(ICA)

It is rare in signal processing to work with clear, individual signals unless they are

simulated. Most signals in the physical world are observed as part of a mixture that is

combined with other signals and noise. In many cases it is costly or impossible to directly

observe the signal of interest in isolation.

In this chapter, BSS problems and the most common techniques used to address them

are introduced. One such technique, independent component analysis is described, beginning

with a brief history and overview of current applications. The limitations of ICA are then

discussed, including how they can be overcome for most BSS problems. This is followed

by a high-level description of how ICA works and a brief introduction to the mathematics

behind it.

The FastICA implementation of ICA was chosen for all of the experiments in this work.

It is one of the more popular ICA algorithms due to its speed and reliability [Hyva00]. The
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algorithm is introduced along with other ICA implementations and alternatives.

Finally, this chapter contains examples that show how ICA is used. These examples

include experiments that highlight the e↵ectiveness of ICA, as implemented in the Fas-

tICA algorithm, under a variety of conditions. ICA is explored using both deterministic

and stochastic signals with varying attributes including their frequencies, amplitudes, and

phases.

2.1 Blind Source Signal Separation Problems

BSS addresses the problem of disentangling independent signals from a mixture when

little to no information is known about the sources. The mixing process is often unknown

as well, increasing the di�culty of the problem.

These types of problems are also known as cocktail party problems, because they are

analogous to talking with someone in a noisy room. Even though there may be other sounds

such as talking, music, or movement, it is still possible for the human brain to sift through

noise to carry on a conversation. While separating signals comes naturally to the human

brain, it is still a di�cult feat for machines. In every day life, this di�culty is shown in audio

recognition programs such as Shazam or Siri that need clear, unobstructed input in order

to work. Signal separation is a challenging area of research that has many applications

in addition to speech recognition, including radio signal interference, biological electrical

signal processing, and feature extraction.

Traditional signal processing relies on the relative power di↵erence between the signal

of interest and the surrounding noise. This ratio is called the signal to noise ratio (SNR)

and is defined in Equation 2.1.
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SNR =
P
signal

P
noise

(2.1)

Signal processing that relies on the SNR uses the assumption that the signal of interest

has more power than any of the other components. That is, anything other than the signal

of interest is considered to be noise. However, this approach only works if there is a strong

signal of interest and weak noise, therefore leading to a high SNR. What if the SNR is low,

or if the signal is even weaker than the noise? In these cases, traditional signal processing

techniques to filter out the noise are not feasible. Too much, or all, of the signal of interest

would be filtered out in the process. Instead, new techniques that do not rely on the SNR

must be used.

The term intelligent signal processing (ISP) describes a relatively new class of techniques

that have been developed to address issues that can not be solved with classical signal

processing techniques alone [Hayk01].

2.2 Overview of ICA

While ICA is still relatively new and not yet widely used, it is an active area of research

due to the many BSS problems that exist in the world. In particular, ICA is of interest

because, unlike many other BSS techniques, it does not assume that the source signals have

Gaussian distributions. This is important since physical signals are typically not normally-

distributed.

ICA can be applied to diverse fields: psychology, stock market prediction, radio inter-

ference, image processing, medicine and bioelectric signals, among others.
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2.2.1 Historical Background of ICA

The concepts of ICA started to appear in the literature in the late 1980’s. Christian

Jutten and Jeanny Hérault are generally credited with first working on the technique,

although under the less-specific label: “blind source separation” [Jutt91]. A number of

other researchers at the time were also working on similar techniques, each from a slightly

di↵erent angle [Como94].

In 1984, the term “independent component analysis” was first introduced by Pierre

Comon in an article titled “Independent component analysis, A new concept?” published

in Signal Processing [Como94]. This paper was also one of the first to present a thorough

explanation and mathematical definition of ICA, including an algorithm to implement ICA

in polynomial time.

2.2.2 The E↵ects of Signal Mixing

When non-Gaussian signals are linearly combined to produce new signals, any given

mixture di↵ers from the source signals in three significant ways [Ston04]:

1. Independence: while the source signals are independent, the mixtures are all de-

pendent because they were formed from the same underlying signals.

2. Gaussianity: the sum of any non-Gaussian signals will produce a signal that has

a more Gaussian histogram. Conversely, the individual original signals will be less

Gaussian than any possible linear mixture of them.

3. Complexity: the sum of any two signals will be more complex than any of its

constituent parts. The complexity can be measured as entropy.
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ICA and related techniques exploit these e↵ects to separate the mixtures into signal

components. In particular, ICA focuses on the e↵ects related to independence and Gaussian-

ity by separating signals into maximally independent components or minimally Gaussian

components.

2.2.3 Relationship to Principal Component Analysis (PCA)

ICA was built upon the earlier signal separation technique of principal component anal-

ysis (PCA), which is a less constrained signal separation technique. PCA relies on the prop-

erty that the original source signals are not correlated, so it extracts uncorrelated signals

from the mixtures. These extracted signals are called principal components.

In contrast, ICA focuses on separating out signals based on the property of indepen-

dence. This is a more rigid requirement, as independence implies that the signals are

not correlated. However, this assertion does not hold in the reverse: uncorrelation does

not imply independence. In ICA the source signals are assumed to have no dependence,

so independent components are extracted from the mixtures. This is a valid assumption

in most physical world separation problems, including the maternal-fetal ECG separation

problem [Pott08].

2.3 Description of ICA

ICA works by separating signal mixtures into two or more independent components.

Typically the source signals are time-varying signals that are sampled over some finite period

of time. If the mixture is composed of two source signals with N samples each, the source
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signals can be defined as s1 (Equation 2.2a) and s2 (Equation 2.2b).

s1 = (s11, s
2
1, s

3
1 . . . s

N

1 ) (2.2a)

s2 = (s12, s
2
2, s

3
2 . . . s

N

2 ) (2.2b)

For brevity, any number of these source signals can be combined into a source vector.

For the example with two source signals, the source vector s is defined in Equation 2.3.

s =

2

64
s1

s2

3

75 (2.3)

In general, for any number of source signals the vectors and matrices in the ICA mixing

model will increase in size. The signals in s are linearly combined with no additive constant

to form mixture signals, x1 and x2. The assumption that the source signals have been

linearly combined is a crucial idea in ICA. This means that x1 and x2 are weighted sums of

the source signals, as shown in Equations 2.4a and 2.4b. The scalar multipliers a, b, c and

d may be positive or negative, and any or none of them may be equal.

x1 = as1 + bs2 (2.4a)

x2 = cs1 + ds2 (2.4b)

The mixture signals form a new vector x (Equation 2.5), which will be the input to

the ICA algorithm. In BSS these are the only signals that we are able to observe, as the

original signals are inaccessible. Therefore x may also be called the recorded or observed

signals.

x =

2

64
x1

x2

3

75 =

2

64
as1 + bs2

cs1 + ds2

3

75 (2.5)
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Typically this mixing process is described in terms of matrix multiplication, rather than

calculating each element of x separately. To do this, an M⇥ M mixing matrix A is defined

that contains all of the scalar multipliers used to form the mixture signals. The 2⇥2 matrix

A is defined in Equation 2.6 for the current example.

A =

2

64
a b

c d

3

75 (2.6)

All of this leads to the main equation that characterizes the signal mixing model used

in ICA, given in Equation 2.7.

x = As (2.7)

Alternatively, the signal mixing model can be expressed with time varying signals ex-

plicitly, as in Equation 2.8 [Gian99]. In this equation the ai components are the columns

of mixing matrix A.

x(t) = As(t) =
MX

i=1

a
i

s
i

(t) (2.8)

ICA attempts to recover the mixing matrix A and the original signals s when only the

mixed signals x are known. To do this, it attempts to find an unmixing matrix W such

that:

y = Wx (2.9)

where y is the vector of extracted signals that are expected to be equal to s.

As previously stated, ICA separates x into component signals of:

1. minimum Gaussianity, or

2. maximum statistical independence.
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Finding these signals can be thought of as searching the set of all possible component

signals to find the subset that match this criteria. This search can be done in a brute force

way, but one of the active areas of research within ICA is how to improve the e�ciency of

the search and make it more intelligent.

The particular search algorithm used to find y and W impacts the e↵ectiveness of ICA

in finding a solution. For example, a gradient-based search can become “stuck” at local

minima or maxima, rather than converging to the best solution.

2.3.1 Considerations of ICA

ICA is designed to work on signal mixtures when there is no a priori information about

the source signals. However, to do this there are a few assumptions on the source signals

and mixing process that influence which problems ICA can be applied to properly. As well,

ICA comes with some limitations that are inherent to the technique and must be taken into

account when selecting a BSS method [Hyva00][Ston04][Gadh04].

2.3.1.1 Constraints and Assumptions

ICA makes four assumptions about the source signals and mixing process that constrain

how it can be used:

1. Independence: All source signals are assumed to be statistically independent.

2. Gaussianity: ICA only works on non-Gaussian source signals, although it has been

shown to work with a maximum of one Gaussian signal [Hyva00]. Many physical

world signals of interest are non-Gaussian, so this assumption does not greatly limit

ICA.

3. Number of recorded signals: The number of recorded signals in x must be greater
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than or equal to the number of source signals that ICA is attempting to extract.

4. Linear mixing: The ICA technique assumes that the source signals have been lin-

early mixed to produce the recorded signals. This means that each of the source

signals can only be multiplied by a scalar and added together to produce the recorded

signals. The recorded signals can not be the product of source signals under this

assumption.

These four constraints are critical to the proper use and success of ICA. The assumptions

are valid for many practical BSS problems, making ICA an important signal separation

technique. Applications meeting these criteria are discussed further in Section 2.3.4.

2.3.1.2 Limitations of ICA

Even when the constraints outlined in Section 2.3.1.1 are met, there are still some

limitations on the signals that ICA can extract from mixtures. In particular, ICA is unable

to determine the original energies or order of the source signals [Hyva00], and does not take

noise into account [Ston04].

Using the ICA model, shown in Equation 2.7, it is not possible to recover the energies

or variances of the original signals. Furthermore, the original signals may be extracted

upside-down. This is because the recorded signals vector, x, is the product of two unknown

terms: the source signals vector, s, and the mixing matrix, A. Any scalar multiple of one

of the sources could be cancelled out by the mixing matrix without otherwise a↵ecting the

signal. So most ICA methods assume that the source signals have a variance of one. The

extracted signals may also be upside-down relative to the source signals. This is because

both the signal and a column of the mixing matrix could be multiplied by a factor of �1

without a↵ecting the model [Hyva00].
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ICA is also unable to recover the original ordering of the source signals. As with the

energies, this is because both the source vector, s and the mixing matrix, A, are unknown.

So, the order of the signals in s could be changed and still produce the same vector x with a

corresponding change in the mixing matrix. For example, if a permutation matrix is defined

as P, then x = (AP�1)(Ps) is equivalent to Equation 2.7 where AP�1 is the new mixing

matrix and Ps is the new vector of rearranged source signals [Hyva00].

The final major limitation of ICA is that it does not take additive noise into ac-

count [Pott02]. The ICA model modified to explicitly include additive noise could be

x = As + n, where n is the noise vector. However, this new model is not compati-

ble with the unmixing process in ICA, so additive noise is typically ignored for simplic-

ity [Como94].

Fortunately, for many BSS problems the ambiguity in the signal energy and orientation

is inconsequential, or can be resolved in post-processing. For example, in the maternal-fetal

ECG separation problem the extracted signal can simply be flipped if it is extracted upside-

down because the general ECG waveform is already known. Furthermore, the assumption

that the additive noise is zero, or minimal, is also acceptable in many BSS problems. ICA

is not a good signal separation candidate for problems in which these limitations can not

be ignored.

2.3.2 Principles of ICA

The fundamental concept behind ICA is that it takes mixtures of independent signals

and separates them into mutually independent components by finding an unmixing matrix,

W. Intuitively, if two signals are independent that means that they do not influence each

other. That is, any knowledge about one of the signals provides no information about the

other. This means that the joint probably density function (pdf) of independent signals is
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equal to the product of their individual pdfs, as shown in Equation 2.10.

p
X,Y

(x, y) = p
X

(x)p
Y

(y) (2.10)

Signal independence is a more stringent than constraining the signals to be uncorrelated,

as in PCA. Two signals are uncorrelated if their covariance is equal to zero, as defined in

Equation 2.11.

E[X,Y ]� E[X]E[Y ] = 0 (2.11)

Signals that are independent are also uncorrelated, but the reverse does not hold true.

Uncorrelated signals are not guaranteed to be independent because correlation does not

take higher order statistics (HOS) into account.

2.3.2.1 Infomax and ICA

Independence can not be measured in and of itself, so ICA uses other properties re-

lated to statistical independence. The infomax principle was first described by Ralph

Linsker [Lins89] and later applied to ICA by Anthony Bell [Bell95]. Infomax shows that

signal independence can be maximized in ICA by finding an unmixing matrix that:

1. maximizes the entropy of the y components, or

2. maximizes the mutual information between the extracted signals, y, and the signal

mixtures, x.

In information theory entropy describes the “randomness” of a signal, or how much

a priori uncertainty there is about the signal. A signal with a uniform pdf has maximum

entropy, because every value of the signal is equally likely. Further, a set of signals with a
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uniform joint pdf will have maximum joint entropy [Ston04]. Entropy is most commonly

defined as the Shannon entropy, which is defined in Equation 2.12 for signals of known

pdf [Cove06].

H(X) = �
NX

t=1

p(x
t

) log p(x
t

) (2.12)

The entropy can also be calculated from the data points of an observed signal, as in

Equation 2.13 [Ston04].

H(X) = � 1

N

NX

t=1

ln p
X

(Xt) (2.13)

Mutual information is a measure of how similar two variables or signals are, and is

related to entropy as shown in Equation 2.14. The term H(Y |X) is the entropy of Y when

X is fully known.

I(Y ;X) = H(Y )�H(Y |X) (2.14)

Due to this relationship, maximizing the mutual information I(Y ;X) is the same as just

maximizing the entropy of the observed signals H(Y ) [Bell95]. So maximizing the entropy

of the ICA output is su�cient to extract mutually independent signals without needing to

know H(Y |X).

As stated previously, a signal with a uniform pdf has maximum entropy. So to maximize

the entropy of the ICA output, y, a new variable Y = g(y) can be defined. The function

g(·) is the cumulative distribution function (cdf) of y, making the distribution of Y uniform

according to the probability integral transform [ORei73]. An invertible function, such as

g(·), applied to signals with maximum entropy will produce signals that are also mutually
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independent [Ston04].

Using the definition of entropy of an observed signal from Equation 2.13, the entropy

of Y = g(y) is defined in Equation 2.15.

H(Y) = � 1

N

NX

t=1

ln p
Y

(Yt) (2.15)

To ensure independence, H(Y) needs to be maximized. It can be shown that the

probabilities of the Y output are related to the signals extracted by ICA and the source

signals by Equation 2.16 [Ston04].

p
Y

(Yt) =
p
y

(yt)

p
s

(yt)
(2.16)

Recall that the signals extracted by ICA are related to the source signals through

unmixing matrix W with the relation y = Wx. Therefore, the probabilities of the signals

extracted by ICA are also directly related to the source signals. This relationship is shown

in Equation 2.17.

p
y

(yt) =
p
x

(xt)

|W| (2.17)

Substituting the results of Equations 2.16 and 2.17 back into Equation 2.15 produces

Equation 2.18a. Rearranging and separating the right-hand side of Equation 2.18a, shows
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that one of the terms is simply the entropy of the source signals.

H(Y) = � 1

N

NX

t=1

ln
p
x

(xt)

|W|p
s

(yt)
(2.18a)

=
1

N

NX

t=1

ln p
s

(yt) + ln |W|� 1

N

NX

t=1

ln p
x

(xt) (2.18b)

=
1

N

NX

t=1

ln p
s

(yt) + ln |W|�H(x) (2.18c)

Since the mixing matrix W that maximizes the entropy of the extracted signals is

what is being sought, and the mixing matrix can not a↵ect the source signals, H(x) can

be ignored. The entropy of the extracted signals can now be defined more simply as in

Equation 2.19.

h(Y) =
1

N

NX

t=1

ln p
s

(yt) + ln |W| (2.19)

If the M source signals are assumed to be independent, then the function can be further

simplified as in Equation 2.20.

h(Y) =
1

N

MX

i=1

NX

t=1

ln p
s

(yt
i

) + ln |W| (2.20)

The optimal unmixing matrix will maximize the entropy ofY = g(y), therefore ensuring

that the signals in Y are independent. This means that the extracted signals y = g�1(Y)

are also independent.

2.3.2.2 Maximum Likelihood Estimation of ICA

As shown by [Ston04] and others, the above method for maximizing the entropy of the

ICA output is a maximum likelihood estimator (MLE) for the original signals. The observed
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signals in ICA are considered to be the product of the source signal vector with a mixing

matrix, or x = As (Equation 2.7). Thus the pdfs of s and x are directly related. If the

source signals have joint pdf p
s

and the observed signals have pdf p
x

, then they are related

as shown in Equation 2.21.

p
x

(x) = p
s

(s)

����
�s

�x

���� (2.21)

If the mixing matrix, A, was known then the source signals could be obtained di-

rectly from the mixtures by using the inverse of A as an unmixing matrix, as described in

Equation 2.22.

s = A�1x (2.22)

However, in blind source separation problems the mixing matrix is, of course, not known.

Instead, the unmixing matrix is defined as W, and the unmixing matrix that is equal to the

inverse of A is then called the optimal unmixing matrix, W⇤. The optimal unmixing matrix

is directly related to the source and mixture signals as shown in Equation 2.23.

|W⇤| =
����
�s

�x

���� (2.23)

This optimal unmixing matrix can then be substituted into Equation 2.21, to produce

Equation 2.24.

p
x

(x) = p
s

(s) |W⇤| (2.24)

In practice the optimal unmixing matrix is unknown and the estimated unmixing matrix

W is used to obtain estimated signals y = Wx (Equation 2.9). The estimated components
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are then substituted into Equation 2.24 to obtain:

p
x

(x) = p
s

(y)|W| (2.25a)

= p
s

(Wx)|W| (2.25b)

= L(W) (2.25c)

L(W) in Equation 2.25 is called the likelihood function of W. The unmixing matrix

that maximizes L(W) is the maximum likelihood estimator of W⇤. The likelihood function

can be simplified by assuming that the M source signals are independent (Equation 2.26b),

and then further simplified by assuming that the N samples in each source signal are also

independent (Equation 2.26c).

L(W) = p
s

(Wx)|W| (2.26a)

=
MY

i=1

p
s

(wT

i

x)|W| (2.26b)

=
MY

i=1

NY

t=1

p
s

(wT

i

xt)|W| (2.26c)

For convenience, the likelihood function can be converted into the log likelihood func-

tion by taking the logarithm of both sides (Equation 2.27a). The likelihood function can

also divided by N without a↵ecting the MLE (Equation 2.27b). Doing so produces Equa-

tion 2.27c, which is the same as the right hand side of the equation from the infomax method
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(Equation 2.20).

lnL(W) =
MX

i=1

NX

t=1

ln p
s

(wT

i

xt) +N ln |W| (2.27a)

1

N
lnL(W) =

1

N

MX

i=1

NX

t=1

ln p
s

(wT

i

xt) + ln |W| (2.27b)

=
1

N

MX

i=1

NX

t=1

ln p
s

(yt
i

) + ln |W| (2.27c)

Therefore, maximizing the entropy of the extracted signals in the infomax method

produces a maximum likelihood estimator.

2.3.3 FastICA and Other ICA Algorithms

One of the most widely used implementations of ICA is the FastICA algorithm in-

troduced by Aapo Hyvärinen in 1999 [Hyva99]. FastICA was originally introduced in the

context of neural network research. However, the implementation has been readily adopted

in general ICA research in large part due to its computational e�ciency [Gian98]. This al-

gorithm earns its name by having a quadratic convergence, which is much faster compared

to the linear convergence of the previous gradient descent-based methods. In some cases

the FastICA algorithm has even been shown to have a cubic convergence [Hyva00]. As well,

the algorithm does not require a large amount of memory in order to run.

Another aspect that sets FastICA apart from other ICA algorithms is that it does

not require any prior knowledge or an estimate of probability distributions of the source

signals. As well, while the independent components are typically estimated all at once,

FastICA provides an option to allow for the extraction of one independent component at a

time.
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FastICA is available as an open source algorithm with code in a variety of formats

including Matlab, C++, and Python [Hyva13]. The current Matlab version was updated

in 2013 and also includes an optional graphical user interface. FastICA is used in the

experiments contained in this thesis and was chosen due to the advantages listed above.

In this thesis the current Matlab version of FastICA is used without the graphical user

interface.

Other ICA algorithms include: JADE [Card93], MRMI [Hild01], RADICAL [Lear03],

and MILICA [Stog04], among others [Bell95][Miho02].

2.3.4 Applications of ICA

BSS problems that are suitable for ICA abound in a wide range of science and engi-

neering fields. The following is a list of some of areas where ICA is of interest:

• Speech processing: This is the classic problem in ICA, and is also often called the

“cocktail party problem” as introduced in Section 2.1 [Hayk05].

• Medicine: ICA has been applied to a variety of biomedical signal mixtures including

electrical and medical scans. Some examples include electroencephalography (EEG)

and magnetoencephalography (MEG) recordings of brain waves [Viga00][Vale14]; func-

tional magnetic resonance imaging (fMRI) scans [Calh03]; and maternal-fetal ECGs.

• Telecommunications: Radio signal interference is a concern that has been ad-

dressed by ICA [Ston04][Besi14], including CDMA (Code Division Multiple Access)

methods [Rist99] and array processing techniques such as beam forming or spatial

filtering [Card93].

• Financial data: Recently ICA has been applied to financial data to look for under-

lying patterns, including stock market predictions [Oja00][Hyva00].
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• Image processing: The principles of ICA are not limited to one-dimensional signals.

They can also be applied to multidimensional signals such as images, often as a noise

reduction technique [Karh97][Hyva00].

2.3.5 Alternatives to ICA

There are many other BSS techniques that have influenced ICA. Some may be used

together with ICA as a pre-processing step, while others are currently competing areas of

research [Hyva00][Ston04][Pott08]. The most common alternatives to ICA include:

• principal component analysis (PCA),

• factor analysis (FA),

• projection pursuit,

• wavelets,

• blind deconvolution, and

• artificial neural networks (ANNs).

2.3.6 Measures of the E↵ectiveness of ICA

There are multiple methods that can be used to evaluate how closely the signals ex-

tracted by ICA resemble the original source signals. These methods include measures based

on energy, information theory, and fractals. Some measures are only applicable in simulated

experiments, when the source signals are known and can be used for comparison. In true

BSS problems when the source signals are not accessible, the extracted signals can not be

compared directly to the sources.
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In simulation experiments the limitations of ICA addressed in Section 2.3.1.2 can be

accounted for because the source signals are known. A signal extracted upside-down can

be inverted, and the amplitude can be adjusted after comparing the ranges of the extracted

and source signals. This post-processing allows for a direct comparison of the independent

components found by ICA to the source signals.

2.3.6.1 Visual Comparison

A common, intuitive approach to assess the success of any signal separation technique

is to visually compare the source signals to the extracted signals. The source and extracted

signals can be compared by looking at their amplitudes or normalized histograms. This

method is only possible if the source signals, or good estimations of the source signals, are

known. Thus, it is most useful with simulated data with known source signals to test a

separation technique such as ICA, rather than to verify the results of true blind source

separation problems.

However, in experimental blind source separation problems where the sources are un-

known the visual comparison method can be used as a negative test. With a mixture of

unknown ECG signals, for example, the extracted signals would be expected to exhibit the

periodic waves that are characteristic of heart activity. If the extracted signals do not have

these periodic waves then the separation method must not have been successful. The reverse

does not hold true, however, as periodic waves in the extracted signals do not guarantee

that the separation was successful.

2.3.6.2 Energy-based Measures

One of the most common tools to quantitatively compare expected and observed values

is the root mean square error (RMSE). This measure is only applicable if the original data
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is known or can be estimated, and is therefore applicable only to simulated experiments

of maternal-fetal ECGs. The RMSE for the ith signal in the ICA model is defined in

Equation 2.28.

RMSE
i

=

vuut
 P

N

t=1(s
t

i

� yt
i

)2

N

!
(2.28)

The RMSE is both simple to calculate and intuitive, making it a useful measure. How-

ever, it can be misleading as it only takes the energy of the signals into account.

2.3.6.3 Information-based Measures

If the distributions of the original signals are known or can be estimated, then the

entropy can be calculated and compared to that of the extracted signals. In information

theory, entropy is a measure of the “degree of information that the observation of the

variables gives” [Hyva00]. Signals that are more “random” have a higher entropy, as there

is less a priori certainty about their values. There are other definitions of information that

can be used for the same purpose of evaluating complexity, however entropy is one of the

simplest and is therefore widely used [Kins10].

The most common form of entropy is the Shannon entropy, which is a specific form of

the more generalized Rényi entropy [Cove06]. Shannon entropy is defined in Equation 2.29

for a random signal, X.

H(X) = �
NX

i=1

p(x
i

) log p(x
i

) (2.29)

Entropy is based on the probability distribution of the signal, where p(x
i

) is the prob-

ability that X = x
i

.
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2.3.6.4 Fractal-based Measures

If the original signals are known or can be estimated, then the fractal dimension can

be used to validate ICA. Fractal analysis belongs to a larger class of analytical tools that is

termed polyscale analysis [Kins05]. For time series, such as biomedical signals, the spectral

fractal dimension (D
�

) can be used to reveal underlying information that is not available

in single-scale analysis [Kins13]. The spectral fractal dimension for a stationary time series

is defined in Equation 2.30, where � is the spectral exponent.

D
�

= 1 +
3� �

2
(2.30)

The spectral exponent, �, is the slope of the power spectrum density of signal, or a

stationary section of the signal, typically after it has been averaged to remove any Spanish

moss. The spectral fractal dimension is applicable to self-a�ne time series, unlike other frac-

tal dimensions which are for signals that are self-similar. This measure is further described

in Section 3.2.3.

2.4 ICA Experiments

The following section presents experiments to test the e↵ectiveness of ICA with deter-

ministic and stochastic signals of varying features. All experiments were conducted using

the open source FastICA algorithm developed for Matlab [Hyva99]. Simple deterministic

signals are used, such as sine and square waves, as well as more complex signals like the

Weierstrass function. Experiments are also performed with stochastic signals, including one

with a normally-distributed source signal.

ICA was successful at separating the signal mixtures in nearly all cases. Notable ex-

Kathryn L. Marcynuk - 29 of 138 - December 12, 2014



ICA for Maternal-Fetal ECG 2.4 ICA Experiments

ceptions were the sine waves with phase di↵erences and the Weierstrass functions. In the

former, the phases of the source signals were not recoverable but the shapes and frequencies

of the signals were preserved. In the case of the Weierstrass functions, ICA was only able

to separate a maximum of one Weierstrass signal successfully at a time. Matlab code to

compare the extracted signals to the source signals is included in Appendix A.

2.4.1 Deterministic Signals

The first ICA experiments shown here were conducted using determinist waves: sine

waves, square waves, and Weiestrass functions. The sine wave experiments examine the ef-

fect of phase, frequency, and amplitude di↵erences in the source signals on the performance

of ICA. The square and Weierstrass waves were also included to investigate the e↵ect of sin-

gularities on ICA, as well as to demonstrate ICA with signals of di↵ering complexity.

2.4.1.1 Two In-Phase Sine Waves

The first experiment to test the FastICA algorithm used two sine waves. Both signals

had the same phase and amplitude, but di↵ered in frequency as defined in Equations 2.31a

and 2.31b where t = [0 : 0.01 : 100 � 0.01]. Figure 2.1 shows the two signals graphically.

s1(t) = 2 sin(2⇡ ⇥ 0.1t) (2.31a)

s2(t) = 2 sin(2⇡ ⇥ 0.03t) (2.31b)

The signals were then combined using the mixing matrix A, defined in Equation 2.32

The result of this mixing process is shown in Figure 2.2. Neither mixed signal, x1 or x2,
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resembles a sine wave any longer.

A =

2

64
2 3

2 1

3

75 (2.32)

After the FastICA algorithm was applied to x, the original signals were recovered with

only a small error. A visual comparison of the recovered and original signals is given

in Figure 2.3. The RMSE for y1 and s1 was RMSE1 = 4.1145 ⇥ 10�15 and the for y2

and s2 it was RMSE2 = 5.1159 ⇥ 10�15. Both signals were successfully recovered by the

FastICA algorithm, and the phase of each was preserved. In both cases the amplitude

was adjusted as described in Section 2.3.6 in order to properly compare the extracted and

original signals.
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Fig. 2.1: The two sine waves defined in Equations 2.31a and 2.31b before mixing.
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Fig. 2.2: The two sine waves after mixing.
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Fig. 2.3: The two sine waves after separation by the FastICA algorithm compared to the
source signals.
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Note: one of the signals was recovered up-side-down, and both were multiplied by a

factor of
p
0.5, as shown in the estimated mixing matrix:

estA =

2

64
�2.8284 4.2426

�2.8284 1.4142

3

75 (2.33)

The change in entropy for the first signal was �1.4365⇥10�6, and there was no change

in entropy for the second signal.

The success of ICA in this example is also shown in the histograms of s, x, and y. Both

s1 and s2 are clearly non-Gaussian, but when mixed into x1 and x2 the distributions have a

more Gaussian shape. The independent components y1 and y2 have the same distributions

as their respective source signals.
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Fig. 2.4: Estimated probabilities of s1,
x1, and y1 for the first of the two sine
waves.
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Fig. 2.5: Estimated probabilities of s2,
x2, and y2 for the second of two sine
waves.
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2.4.1.2 Square and Sine Waves

The next experiment shows how ICA performs with a square wave. The sharp corners

and flat sections of the square wave, much di↵erent from the smooth and continuous sine

wave, make the signal an interesting candidate for signal separation. In this experiment, a

square wave was mixed with a sine wave using the same mixing matrix in Equation 2.32.

The original signals are shown in Figure 2.6 and the mixed signals are shown in Figure 2.7.

Neither mixed signal resembles either of the original signals, though both x1 and x2 exhibit

smooth sections and sharp peaks.
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Fig. 2.6: The original square and sine waves before mixing.
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Fig. 2.7: The square and sine waves after mixing.

The signals extracted using the FastICA algorithm are shown in Figure 2.8. Both waves

are recognizable, but in some trials the flat surfaces of the square wave were not preserved

due to the statistical nature of ICA. Figure 2.9 shows a comparison of the extracted signals to

their original counterparts when the flat surfaces were preserved. The RMSE was rmse1 =

4.6154⇥ 10�12 between y1 and s1, while the error was rmse2 = 0.0173 between y2 and s2.

Compared to the previous experiment using only sine waves, the RMSE is 3-13 orders of

magnitude greater here.

There was no change in entropy for the square wave, but the change in entropy for the

sine wave was -0.034683.
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Fig. 2.8: The square wave, y1, and sine wave, y2, extracted by FastICA.
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Fig. 2.9: Comparison of the original square and sine waves to the extracted waves.
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Fig. 2.10: Estimated probabilities of
s1, x1, and y1 for the square wave.
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Fig. 2.11: Estimated probabilities of
s2, x2, and y2 for the sine wave.

2.4.1.3 Weierstrass and Sine Waves

As shown in the previous sections, ICA worked well for the smooth sine curves but

was unable to fully recover the sharp corners and straight lines of the square wave. This

observation led to the question of whether or not ICA is e↵ective on other signals with

singularities from rapid changes in amplitude. In this case, a singularity is defined as a

point at which the function is not di↵erentiable. This is an important question as many

signals encountered in the physical world, including ECGs have sharp peaks and valleys

that are essential to the accurate representation of the signal.

To investigate the e↵ectiveness of ICA on waves with singularities, the Weierstrass

function was used. The Weierstrass function is defined in such a way so that it is continuous

and non-di↵erentiable everywhere. There are multiple implementations of this function,

including the original definition introduced by Karl Weierstrass in 1872 [Weie95] and shown

in Equation 2.34.
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W (t) =
1X

n=0

an cos(bn⇡t) for: 0 < a < 1 (2.34)

b > 0

ab > 1 +
3

2
⇡

For this experiment, one Weierstrass signal was generated and mixed with one sine

wave. As shown in Section 2.4.1.1, a mix of sine waves can be separated by ICA such that

the separated mixtures are nearly identical to the original source signals. Therefore, the

variable in this experiment is the Weierstrass signal.

The parameters for the Weierstrass signal were a = 0.1 and b = 61. This is one of the

possible implementations such that the parameters satisfy the constraints of the Weierstrass

function. The two signals were created as follows:

s1(t) =
1000X

n=0

0.1n cos(61n⇡t) (2.35)

s2(t) = sin(2⇡t) (2.36)

where t = [�2 : 0.00001 : 2]. Graphical representations of equations 2.35 and 2.36 are

shown in Figure 2.12. The signals were then mixed as described in Equation 2.7 with

mixing matrix A, defined in Equation 2.32.
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Fig. 2.12: The sine wave and Weierstrass function before mixing.

The resulting signals from the mixing process are shown in Figure 2.13. Neither of

the mixed signals, x1 or x2, is recognizable as a Weierstrass or sine wave. However, when

these mixed signals are supplied to the FastICA algorithm, the outputs y1 and y2 are nearly

identical to the original signals, as shown in Figure 2.14.

The RMSE value for the comparison of the extracted signal, y1, to the original signal,

s1, is RMSE1 = 1.1911 ⇥ 10�12. Similarly, the RMSE value for the comparison of y2 and

s2 is RMSE2 = 1.4062⇥ 10�12. There was no change in entropy for the Weierstrass wave,

and the change of entropy for the sine wave was 9.9008⇥ 10�7.

In this experiment, despite the number of singularities in the Weierstrass wave and its

lack of di↵erentiability, ICA was still able to reliably separate the source signals.
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Fig. 2.13: Result of mixing the sine wave and Weierstrass function.
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Fig. 2.14: ICA output shows the successful separation of the sine wave and Weierstrass
function, although the Weierstrass function has been inverted and both outputs are scaled.
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Fig. 2.15: Estimated probabilities of
s1, x1, and y1 for the Weierstrass
wave.
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Fig. 2.16: Estimated probabilities of
s2, x2, and y2 for the sine wave.

2.4.1.4 Two Weierstrass Waves

In this next experiment, two Weierstrass signals with di↵erent a and b parameters were

mixed. The two source signals were created as defined in Equations 2.37a and 2.37b, and

graphed in Figure 2.17.

s1(t) =
100X

n=0

0.1n cos(61n⇡t) (2.37a)

s2(t) =
100X

n=0

0.2n cos(151n⇡t) (2.37b)

The results of mixing the signals are shown in Figure 2.18. They were mixed using the

matrix A defined in Equation 2.32 using the standard ICA definition. Both of the mixed

signals resemble the original source signals.
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Fig. 2.17: The original two Weierstrass source signals.
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Fig. 2.18: The two Weierstrass signals after mixing.
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Fig. 2.19: The extracted Weierstrass signals.

The signals extracted by ICA are shown in Figure 2.19. After ICA is performed,

only one of the extracted signals, y1, resembles the original source. The RMSE values are

rmse1 = 0.0354 and rmse2 = 0.8348. The change in entropy was 0.06682 for the first

signal, and 0.081511 for the second signal.

This is particularly interesting because the amplitude of s1 was less than that of s2, yet

it was recovered more accurately. The performance of ICA in this example may have been

a↵ected by the complexity of the Weierstrass signals.

2.4.1.5 Weierstrass and Square Waves

One final experiment was performed with the Weierstrass function. In this experiment,

one Weierstrass signal (Equation 2.37a) was mixed with a square wave. The source signals

are shown in Figure 2.20 and the mixed signals are shown in Figure 2.21.
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Fig. 2.20: The Weierstrass signal and square wave before mixing.
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Fig. 2.21: The Weierstrass and square waves mixed together.
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As shown in Figure 2.22, ICA was better able to separate the Weierstrass signal when

combined with a square wave, compared to when it was mixed with another Weierstrass

signal. The RMSE values were rmse1 = 3.2972⇥ 10�5 and rmse2 = 7.6330⇥ 10�15.

The change in entropy for the Weierstrass wave was 5.3477 ⇥ 10�5, and there was no

change in entropy for the square wave.
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Fig. 2.22: The Weierstrass and square waves after ICA separation.
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Fig. 2.23: Estimated probabilities of
s1, x1, and y1 for the Weierstrass
wave.
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Fig. 2.24: Estimated probabilities of
s2, x2, and y2 for the square wave.

2.4.2 E↵ect of Amplitude Di↵erences

The following experiment was performed to test ICA on signals with large di↵erences in

amplitude. The ability to extract small signals is an important characteristic of ISP tech-

niques, and separates them from traditional SNR approaches. The two source signals used

in the experiment are sine waves given in Equations 2.38a and 2.38b. In this experiment,

the amplitufde of s1 is 200 times greater than that of s2, as shown in Figure 2.25.

s1(t) = 200 sin(2⇡ ⇥ 01.t) (2.38a)

s2(t) = sin(2⇡ ⇥ 0.03t) (2.38b)

The source signals were mixed together using the ICA mixing model using mixing matrix

A defined in Equation 2.32. The resulting signals x1 and x2 are shown in Figure 2.26.
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Fig. 2.25: Two source sine signals with amplitudes that di↵er by a factor of 200.
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Fig. 2.26: The two signal mixtures created from sine waves of vastly di↵erent amplitudes.

Kathryn L. Marcynuk - 47 of 138 - December 12, 2014



ICA for Maternal-Fetal ECG 2.4 ICA Experiments

After ICA, the separated signals match the original source signals as shown in Fig-

ure 2.27. The RMSE for the signals are very small, as rmse1 = 4.0016 ⇥ 10�11 and

rmse2 = 2.8929 ⇥ 10�13. The normalized histograms in Figures 2.28 and 2.29 also show

that the extracted signals match the source signals. This experiment shows that amplitude

alone is not a significant factor in ICA, and that a small signal embedded in relatively much

larger signal can be successfully recovered.

The change in entropy was �4.2864⇥10�6 for the first signal, and there was no change

in entropy for the second signal.
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Fig. 2.27: Comparison of the extracted signals to the original signals.
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Fig. 2.28: Estimated probabilities his-
tograms of s1, x1, and y1 for the first
signal.
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Fig. 2.29: Estimated probabilities of
s2, x2, and y2 for the second signal.

2.4.3 E↵ect of Phase Di↵erences

This section presents two experiments that examine the e↵ect of phase di↵erences on the

performance of ICA. In the maternal-fetal ECG separation problem, the relative position of

the maternal and fetal heartbeats is unknown so any separation technique must be immune

to phase di↵erences.

2.4.3.1 Di↵erent Phase with Same Frequency

In this experiment the source signals have di↵erent phases but the same frequency, as

define in Equations 2.39a and 2.39b. The source signals are shown graphically in Figure 2.30.

s1(t) = 2 sin(2⇡ ⇥ 01.t) (2.39a)

s2(t) = sin(2⇡ ⇥ 0.1t+ 30) (2.39b)
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Fig. 2.30: Two source sine signals with di↵erent phases.
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Fig. 2.31: The two signal mixtures created from sine waves with the same frequency but
di↵erent phases.
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When the signals are mixed together with mixing matrix A (Equation 2.32), the re-

sulting signals x1 and x2 are both sine waves, as shown in Figure 2.31.

The results of extracting the signals using ICA are shown in Figure 2.32. It can be

seen that both the shape and the frequency of the source signals are preserved, and this is

corroborated in the normalized histograms in Figures 2.33 and 2.34. However, the phases

of the original sources are not recovered correctly for either signal. The RMSE values for

y1 and y2 are rmse1 = 0.2340 and rmse2 = 0.2257, respectively.

The change in entropy for the first signal was -0.0017293, and the change in entropy

was 1.0658⇥ 10�14 for the second signal.
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Fig. 2.32: Comparison of the extracted signals to the original signals.
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Fig. 2.33: Estimated probabilities of
s1, x1, and y1 for the first sine wave.
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Fig. 2.34: Estimated probabilities of
s2, x2, and y2 for the second sine wave.

2.4.3.2 Di↵erent Phase with Di↵erent Frequency

In this experiment the source signals di↵er in both phase and frequency, as defined in

Equations 2.40a and 2.40b. The source signals are also graphed in Figure 2.35.

s1(t) = 2 sin(2⇡ ⇥ 01.t) (2.40a)

s2(t) = sin(2⇡ ⇥ 0.03t+ 30) (2.40b)

The results of mixing the source signals with mixing matrixA, defined in Equation 2.32,

are shown in Figure 2.36. Since the frequencies of the source signals are di↵erent the

mixtures are not sine waves, unlike in the previous example of source signals of the same

frequency.
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Fig. 2.35: Two source sine signals with di↵erent phases and frequencies.
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Fig. 2.36: The two signal mixtures created from sine waves with di↵erent phases and
frequencies.
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In this case, ICA was able to successfully separate the signal mixtures, as shown in

Figure 2.37. This is further confirmed by the histograms in Figures 2.38 and 2.39. The

RMSE values for the extracted signals are rmse1 = 2.4760⇥ 10�15 and rmse2 = 2.0133⇥

10�15, which indicate that the extracted signals match the source signals much more closely

than in the previous example.

The change in entropy was 1.1432⇥ 10�5 for the first signal, and there was no change

in entropy for the second signal.
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Fig. 2.37: Comparison of the extracted signals to the source signals when the phase and
frequency of the source signals di↵er.
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Fig. 2.38: Estimated probabilities of
s1, x1, and y1 for the first signal.
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Fig. 2.39: Estimated probabilities of
s2, x2, and y2 for the second signal.

2.4.4 Stochastic Signals

The previous section demonstrated ICA using only deterministic signals such as the

sine wave, square wave, and Weierstrass wave. In this section ICA is applied to mixtures

of random signals, including an example with one Gaussian wave.

2.4.4.1 Sine Wave and Uniformly Distributed Random Wave

In this experiment a sine wave was mixed with a uniformly distributed random wave.

The random wave was created using the random number generator in Matlab and has a

fairly uniform distribution as shown in the top histogram of Figure 2.43. The sine wave was

defined as s2 = sin(2⇡⇥0.03t), and both signals are shown graphically in Figure 2.40.
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Fig. 2.40: The two source signals were a uniform random wave and a sine wave.
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Fig. 2.41: The two signal mixtures created from one sine wave and one uniformly dis-
tributed random variable.
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The source signals were mixed using the ICA model with mixing matrix A (Equa-

tion 2.32. As shown in Figure 2.41, the resulting mixtures look like noisy sine waves.

A comparison of the signals extracted by ICA with the source signals is shown in

Figure 2.42. Both the clean, simple sine wave and random wave were successfully recovered

by ICA, which can be seen more clearly when by zooming in on the random wave. However,

the full signal is shown in Figure 2.42 in order to preserve the scale of both signals in the

presentation of the example.

The performance of ICA is further shown in the normalized histograms of the two

signals, in Figures 2.43 and 2.44. The RMSE values of the extracted signals are rmse1 =

5.5442 ⇥ 10�4 and rmse2 = 0.0013. The results were similar when this experiment was

repeated using two uniform variables as the source signals. The change in entropy was

1.8987⇥ 10�4 for the first signal and �2.1107⇥ 10�3 for the second signal.
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Fig. 2.42: Comparison of the extracted signals to the original signals.
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Fig. 2.43: Estimated probabilities of
s1, x1, and y1 for the uniform random
wave.
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Fig. 2.44: Estimated probabilities of
s2, x2, and y2 for the sinew wave.

2.4.4.2 ICA with One Gaussian Wave

While ICA typically can not separate signals with Gaussian distributions, it is expected

to work when a maximum of one of the source signals is normally-distributed. To demon-

strate this feature of ICA, this experiment uses one Gaussian random variable and one sine

wave as the source signals. The sine wave was defined to be s2 = sin(2⇡ ⇥ 0.1t), and both

source signals are shown in Figure 2.45.

The signal mixtures resemble noisy sine waves, as shown in Figure 2.46. They were

created using mixing matrix A defined in Equation 2.32 using the standard ICA mixing

model.
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Fig. 2.45: The two source signals: one deterministic sine wave, and one Gaussian signal.
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Fig. 2.46: The two signal mixtures created from a Gaussian random variable and a sine
wave.
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As shown in both Figure 2.47 and the normalized histograms of Figures 2.48 and 2.49,

the source signals were successfully separated using ICA. Therefore, ICA is a feasible

signal separation technique when a maximum of one of the source signals has a Gaus-

sian distribution. The RMSE values of the extracted signals are rmse1 = 0.0031 and

rmse2 = 0.0019.

The change in entropy was �3.9947⇥10�4 for the Gaussian signal, and �1.2764⇥10�2

for the sine wave.
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Fig. 2.47: Comparison of the extracted signals to the source signals, in the case when one
is Gaussian.
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Fig. 2.48: Estimated probabilities of
s1, x1, and y1 for the Gaussian wave.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08
Estimated Probabilites for Signal 2

s 2

Amplitude

−10 −8 −6 −4 −2 0 2 4 6 8
0

0.01

0.02

0.03

0.04

x 2

Amplitude

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

y 2

Amplitude

Fig. 2.49: Estimated probabilities of
s2, x2, and y2 for the sine wave.

2.5 Summary

This chapter introduced the technique of independent component analysis for blind

source separation problems. The background and theory of ICA were discussed, including

its fundamental principles and constraints. Algorithms to implement ICA were presented

with a focus on FastICA, which was used to test ICA with a variety of source signal condi-

tions.
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Chapter 3

Electrocardiograms (ECGs)

Electrocardiograms are recordings of the electrical activity of the heart that may also

be referred to as ECGs or EKGs. They are a non-invasive way to provide insight into how

the heart is working and give diagnostic information on heart health. This chapter serves as

an introduction to the use of ECG waveforms as a diagnostic tool, including an examination

of the characteristic properties of these waveforms. An study of the benefits and limitations

of current ECG simulation models is also presented, along with an introduction to the ECG

recording repository databases on PhysioNet.

3.1 Introduction to ECGs

In order to pump blood throughout the body heart muscles are continuously activated

in a repeating pattern. While each person is unique, their heart muscles fire in the same

pattern to pump blood. The heart is composed of a special type of muscle called cardiac

muscle that is striated, involuntary, and self-excitatory [Mous13]. Heart activity can be

measured indirectly, and non-invasively, using ECGs.
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left atrium 

left ventricle 
right atrium 

right ventricle 

Fig. 3.1: The heart contains two chambers that receive blood (atria) and two chambers
that pump blood (ventricles). [Wiki06].

As shown in Figure 3.1, there are four chambers in the heart that work together to

direct de-oxygenated blood to the lungs and distribute freshly oxygen-rich blood to the rest

of the body. The chambers that receive blood, one from the lungs and one from the body,

are called atria while the chambers that pump blood are called ventricles.

The expansion and contraction of the heart to pump blood is governed by a series of nat-

ural pacemakers that ensure the heart beats steadily at nearly periodic intervals [Mous13].

For a healthy adult, the frequency of these beats is on average 60-100 beats per minute

(bpm). The variations in the frequency of the heart’s pumping motion will be discussed

further in Section 3.1.2. This average frequency is maintained by the S-A node, which is the

primary pacemaker of the heart. In the event the S-A node is compromised, the A-V node

acts as a secondary pacemaker at 40-60 bpm, and the ventricles themselves are tertiary

pacemakers that can pump the heart at 20-40 bpm.
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3.1.1 The ECG waveform

The electrical signal recorded as an ECG is a superposition of the electrical activity of

the various muscles of the heart as it expands and contracts to receive and pump blood.

For adults, the ECG can be measured non-invasively with surface electrodes arranged over

the chest and limbs [Mous13]. This arrangement produces potential di↵erences between

the electrodes, which are called leads. Typically a 12-lead arrangement is used in clinical

practice.

An idealized version of an ECG waveform is shown in Figure 3.2. The distinct peaks

and troughs in the wave correspond to specific heart muscle activity and have standard

labels. The relative amplitudes of the peaks, as well as the time intervals between them,

are used to evaluate heart health.

Fig. 3.2: Idealized ECG waveform with standard labels. [Wiki06a].
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The correspondence between the main sections of the ECG waveform and heart muscle

activity is as follows:

• P-wave: This is considered the start of a new heart beat and represents the depolar-

ization of the receiving chambers, or atria.

• QRS complex: Consisting of the Q, R, and S peaks and troughs, the QRS complex

is the largest and most easily identifiable part of the ECG waveform, even in the

presence of electrical noise. It represents the rapid depolarization of the receiving

chambers, or ventricles, and typically lasts 100ms.

• T-wave: Typically the final stage of the ECG waveform, the T-wave occurs when the

ventricles are repolarized.

A final peak, called the U-wave, may also be present after the T-wave. This peak is

typically much smaller than the rest of the ECG waveform, although a pronounced U-wave

may be indicative of health issues.

3.1.2 Heart Rate Variability

The collection of peaks and troughs that make up an ECG waveform, as shown in

Figure 3.2, are repeated each time the heart goes through a contraction-expansion cycle to

pump blood. Heart rate frequency, or the number of beats per minute, is measured using

the prominent R-waves by calculating the RR-interval as shown in Figure 3.3.

While heartbeats are repetitive, the time between two successive R-waves is not con-

stant. This leads to an important characteristic of the cardiac cycle called the heart rate

variability (HRV), which is the variation in RR-intervals [Kawa97]. HRV is a natural and

healthy characteristic of ECGs, although the amount of variability can be a useful indica-
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RR interval 

Fig. 3.3: Visualization of an RR-interval [Wiki07].

tor for the detection of some cardiovascular and non-cardiovascular diseases. In particular,

lower HRV is associated with certain diseases [Klei87].

It is possible that the HRV could be a↵ected by the sampling rate of the ECG signal.

Since HRV is measured using the R-wave peaks, accurate R-wave peak readings are essential

to correctly calculate the RR-interval. However, the entire QRS complex occurs over a

timespan of about 100ms, so the sampled R-wave peak may not capture the true maximum.

The true peak could be interpolated from the sampled ECG, however in practice it is

assumed that the sampled peak is su�cient. Calculating the true peak is outside the

scope of this thesis and the sampled peak will be used as it is the common practice in the

literature.

3.2 Properties of ECGs

In this section the properties of ECGs that are relevant to signal analysis are presented.

These properties can also serve as metrics when comparing ECG models to recorded signals.

In particular, the three properties of ECGs that are discussed are the stationarity of both

the ECG signal and HRV, the probability distribution of the time-varying signal, and the

fractal dimension of the HRV.
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Other measures used to analyze ECG signals in medical practice include:

• RMSSD: The root mean square of the successive di↵erences (RMSSD) is the root

mean square of consecutive RR-intervals as defined in Equation 3.1:

RMSSD =

vuut 1

n

 
nX

i=2

(RR
i

�RR
i�1)

2

!
, (3.1)

where n is the total number of RR-intervals, and RR
i

is the ith RR-interval [?]. The

RMSSD is used in HRV analysis.

• pNN50: This is the number of consecutive RR-intervals that di↵er by more than 50ms

divided by the total number of RR-intervals. The measure derives its name from the

termNN-intervals, where the “NN” designation means “normal” RR-intervals [Miet02].

• pNN20: This measure is the same as pNN50, except with a threshold of 20ms. Both

the pNN20 and pNN50 are used in heart health diagnosis.

3.2.1 ECG and HRV Stationarity

Like many biological signals, the ECG and HRV are non-stationary processes [Gao13]

[Mous13]. A stationary process is one in which the “joint distribution of any subset of the

sequence [of data points] is invariant with respect to shifts in the time index” [Cove06].

This means that the statistical properties of ECG and HRV signals, such as their mean

and variance, are not constant over time and signal processing techniques that assume

stationarity can not be applied.

Fortunately, the issue of non-stationarity with ECGs and the HRV can be overcome by

segmenting the signals into shorter, stationary windows. This is the principle behind the

short -time Fourier transform (STFT), for example. ECG signals are particularly well-suited
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to this type of analysis, as these signals can often be considered stationary for minutes at

a time [Zgal13].

3.2.2 Probability Distribution of ECGs

An important consideration for ICA is the probability distribution of the source signals,

of which no more than one can be Gaussian for ICA to work properly. This constraint

is satisfied when the source signals are ECG recordings. As shown in Figure 3.4, the

normalized histogram of an ECG recording is distinctly non-Gaussian and demonstrates

significant positive skew. The normalized histogram was produced using data from the MIT-

BIH Normal Sinus Rhythm Database (nsrdb) on PhysioNet [Gold00]. The normalized ECG

histogram more closely resembles the Pareto distribution, which is common for biological

signals [Kins13].

While the HRV would not be a source signal for ICA separation, it is worth noting that

its distribution is also non-Gaussian as shown in Figure 3.5. This normalized histogram

was created from the same ECG recording and also demonstrates a positive skew.
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Fig. 3.4: Normalized histogram of a
recorded ECG signal.
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Fig. 3.5: Normalized histogram of the
HRV from a recorded ECG signal.
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3.2.3 Fractal Dimension as a Measure of HRV

HRV is a statistically self-a�ne process. That is, when the HRV is scaled along the

x-axis (without changing the y-axis scaling) the resulting signal statistically resembles the

original [Kins13]. This concept is shown in Figure 3.6, where the HRV from a recorded

ECG is shown. The inset graph contains a segment of the HRV at 4x magnification, which

statistically resembles the original signal.
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Fig. 3.6: HRV is a self-a�ne process.

Since the HRV is self-a�ne, its fractal dimension can be calculated. The fractal dimen-

sion can be considering a way of measuring the complexity of a signal. For a time series the

appropriate fractal dimension is the spectral dimension, which is denoted D
�

. As mentioned

in Section 2.3.6.4, the spectral dimension is defined as

D
�

= E +
3� �

2
, (3.2)

where � is the spectral component obtained by finding the slope of the log-log power spec-
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trum density of the signal in question. The term E is the number of independent variables

in the signal, which for time series such as HRV is E = 1.

3.3 ECG Modelling

Due to the prevalence of ECGs in medicine, ECG modelling is a subject of interest in

that field. ECG models can be used to understand the activity of the heart in a noise-free

environment. One way to approach an electrical model of the heart is to build it from the

ground up by simulating electrical currents at the cellular level and combining them into a

composite signal [Sach98]. However, this method is computationally intensive so nonlinear

dynamical models are more typically used to simulate ECGs [Pott08].

Three of the most common nonlinear dynamical ECG simulators are ECGwaveGen,

ECGsyn, and ECGfm. Created by Floyd Harriott, ECGwaveGen is a simplistic ECG simu-

lator with user-settable parameters [Harr11]. It does not take any variability or randomness

into account, but does model each of the major components of ECG waves. A signal gener-

ated by ECGwaveGen is shown in Figure 3.7, with a sampling frequency of 1kHz, 60 bpm,

and amplitude of 1V.

Since the ECGwaveGen model is completely deterministic, multiple trials with the same

input parameters will always produce the same waveform. It is a good tool to graph the

general shape of an ECG, but does not capture any of the subtleties of the waveform so

this model will not be considered any further in this work. The other two models will be

described in more detail in the following sections.
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Fig. 3.7: Deterministic output from ECGwaveGen.

3.3.1 ECGsyn Model

One of the leading ECG waveform generators is the ECGsyn model developed by Patrick

McSharry from the University of Oxford and Gari Cli↵ord from MIT [McSh03][McSh12].

The ECGsyn model is freely available for Matlab, C, and Java on PhysioNet [Gold00]. By

using a combination of parameters that may be adjusted by the user, along with random

variables, the model successfully mimics many features of the cardiac cycle. The user is

able to set the sampling frequency, signal length, and signal mean, as well as adjust each of

the P, Q, R, S, and T waves individually.

In contrast to ECGwaveGen, the waveforms generated by ECGsyn are distinct and non-

deterministic because some of the characteristics are governed by random processes in the

model. The use of random numbers produces di↵erences in the RR-intervals lengths, as well

as the R-wave amplitudes. An example waveform generated by ECGsyn with a sampling

frequency of 1kHz is shown in Figure 3.8. As can be seen, this model produces
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Fig. 3.8: Example output from ECGsyn.

visually realistic heartbeats.

The main weakness in the ECGsyn model is its inability to accurately simulate HRV.

The RR-interval lengths in ECGsyn have a uniform distribution. As shown in Figure 3.5,

the probability distribution of HRV in recorded ECG signals is distinctly non-uniform.

Therefore, while ECGsyn is a valuable tool to model the cardiac cycle, it can not reliably

be used in cases where the HRV is important.

3.3.2 ECGfm Model

In response to the HRV deficiencies of the ECGsyn model, a new ECG waveform gen-

erator was developed by Michael Potter [Pott08]. This model, ECGfm, builds on ECGsyn

but takes RR-intervals from recorded ECG signals as input and uses them to build the

ECG signal. This is a significant improvement over the uniformly distributed HRV in

ECGsyn [Pott09]. In this way, the HRV of the ECGfm waveforms is guaranteed to have
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the same properties as ECG recordings.

The ECGfm algorithm is written in Matlab and maintains the same functionality of

user-settable parameters as ECGsyn. However, unlike ECGsyn which is widely accessible

on PhysioNet, the source code for ECGfm is not freely available so it is not used in ECG

research.

3.4 Recorded ECG Databases

In addition to modelled ECG waveforms, it is useful to perform experiments on recorded

ECG data. One way to do this is through databases of ECG recordings that have been

compiled for academic purposes. The largest collection of such databases is on PhysioNet,

which stores recorded bioelectrical signals in its PhysioBank archives [Gold00]. All of the

signals in the PhysioBank databases are free to use for academic purposes.

PhysioBank contains a number of databases dedicated to ECG records, including record-

ings from healthy subjects as well as databases dedicated to particular arrhythmias. There

are also databases with maternal-fetal ECG recordings. However, these databases di↵er in

both size and quality, with some containing under ten records and others containing over

one hundred. The length of the recordings also di↵ers between the databases, with some as

short as one minute.

As well, there is no current standard for recording ECG signals, so the sampling fre-

quency varies greatly between the databases. In some the signals are sampled at a rate

as low as 128 samples/second, or up to 10,000 samples/second. The higher sampling fre-

quency is used for shorter recordings that are typically one minute long. While even a

lower sampling frequency will capture the general morphology of an ECG signal, including

all of the waveforms depicted in Figure 3.2, it is possible that more subtle features of the
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ECG are missed. It is also possible that the true R-wave peak may not be sampled, and

a nearby point is captured instead, which would lead to changes in the HRV as discussed

in Section 3.1.2. In practice, 128 samples/second is most typically seen, but it has been

suggested that the sampling frequency for an ECG should be at least 200-500 samples/sec-

ond [Rudi07]. Due to all of these di↵erences in the recordings, not all of the databases are

suitable for all purposes.

3.5 Electrocardiograms Summary

This chapter introduced the adult electrocardiogram waveform with a focus on its

characteristics and properties including heart rate variability and estimated probability

distribution. The three heart models of ECGwaveGen, ECGsyn, and ECGfm were dis-

cussed, outlining their strengths and limitations at simulating ECG waveforms. Finally,

the databases on PhysioNet of ECG recordings were introduced as a valuable tool for ECG

signal experiments.
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Chapter 4

Maternal-Fetal ECG Separation

Problem

In this chapter, the problem of maternal-fetal ECG separation is presented. Historical

and current methods of monitoring the fetal heart are discussed, including the benefits and

concerns with the standard practice of continuous fetal heart monitoring. The characteris-

tics of fetal ECGs are compared to adult heart activity, and the properties of maternal-fetal

ECG mixtures are introduced. These properties influence the signal separation techniques

that are appropriate, including ICA which was introduced in Chapter 2. Several representa-

tions of maternal-fetal ECG recordings that can be used to test signal separation techniques

are also presented.

4.1 Background on Fetal Heart Monitoring

The problem of assessing the health of a fetus has long been of interest to the medical

community. This section summarizes the evolution of fetal monitoring techniques, with
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emphasis on fetal heart monitoring and ways to capture the fetal ECG. Current stan-

dard practices in North America are discussed, including their limitations and the positive

correlation between continuous fetal heart monitoring and the rise in Caesarean section

deliveries.

4.1.1 Evolution of Fetal Heart Monitoring Techniques

Fetal heart monitoring in various forms has been in use for over a century, includ-

ing attempts to record fetal ECGs by Cremer as early as 1906 [Lark58]. However, the

recording equipment at that time did not have su�cient amplification to detect the small

fetal heart beat signal consistently. Insu�cient amplification devices continued to be a

roadblock to fetal heart monitoring using electrical signals for at least the following 10-15

years [Skem58].

4.1.1.1 Early Fetal Heart Monitoring

By the 1950’s, fetal ECG monitoring technology had improved enough to create a

resurgence of interest in the topic. Initially, fetal heart monitoring was used as a fourth

“positive sign” of pregnancy at approximately 20 weeks gestation. That is, simply the

presence of a fetal heartbeat was sought to show that the fetus was still alive, without any

attempts to assess the fetal heart health yet. The other three positive signs of pregnancy

at the time were: listening for the fetal heartbeat; feeling for fetal movement; and taking

x-rays of the fetus [Skem58]. Around 1960, fetal ECGs were explored as a tool to help

reduce the number of perinatal deaths, nearly all of which occurred in the period before

labour to within 48 hours after birth [Hare60]. It was estimated that such deaths accounted

for 10% of all U.S.A. fatalities.

One of the dangers to fetal health that was addressed at this time with fetal heart
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monitoring in the form of ECGs was the ability to determine fetal position [Lark58]. When

the fetus is in vertex presentation, or head down, the QRS complexes of the fetal ECG point

in the opposite direction from the mother’s. However, if the fetus is in breech position, or feet

down, the QRS complexes of both fetus and mother point in the same direction. This is an

important characteristic, as breech births can present additional complications. Electrical

fetal heart monitoring was also found to be useful in detecting multiple pregnancies, such

as twins or triplets [Lark58]. The first successful detection of twins using this method was

in 1938 [Novo59]. At that time there was no standard for electrode placement to measure

fetal ECGs. While some set-ups used non-invasive surface electrodes, others required that

the electrodes be placed in uncomfortable or invasive positions for the mother, or “applied

with pressure so as to bring the electrodes closer to the fetal heart” [Lark58].

In addition to fetal heart monitoring by ECGs, fetal phonocardiography was explored

during the twentieth century [Hare60]. This technique uses a microphone to record fetal

heart sounds, and was first successfully implemented in 1923. However, it required further

improvements to eliminate extraneous noise and to represent the sounds graphically in order

to record the data and make it more accessible to physicians.

4.1.1.2 Current Fetal Heart Monitoring

For the most part, the tests used as positive signs of pregnancy continue to be in use

today with the exception of x-rays. Due to concern over the e↵ects of ionizing radiation

on a developing fetus, and inconclusive limits on safe levels during pregnancy, x-rays are

now used only in exceptional cases [Bren89]. In their stead, ultrasounds have become the

preferred method for monitoring the development and position of the fetus, and have become

standard practice during pregnancy in North America.

Continuous electronic fetal heart monitoring has also become standard practice during
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labour and delivery in North America [Wool90][Davi93][Meni01]. It augments intermittent

auscultation, which is the process of periodically listening to the fetal heartbeat. When

the uterine contractions are measured in addition to the fetal ECG readings it is called

cardiotocography. There are two main types of fetal heart monitoring, external and internal.

External monitoring consists of sensors placed on the mother’s abdomen which capture

mixtures of the maternal and fetal ECGs as shown in the visual abstract. In contrast,

internal monitoring uses a scalp electrode on the baby’s head and is more accurate because it

does not capture noise such as the maternal heartbeat. However, unlike external monitoring

it requires the use of a needle electrode which can be a concern if infections are a risk

factor.

4.1.2 Motivation: Current state of problem and consequences

Continuous fetal heart monitoring during labour and delivery is used to assess fetal

distress. This type of monitoring is preferred by hospitals because it produces a permanent

record of fetal heart activity, unlike intermittent auscultation. As well, some women may

feel safer and reassured with continuous monitoring.

4.1.2.1 Concerns with Continuous Fetal Heart Monitoring

Despite the rise in use of continuous fetal heart monitoring, the output from non-invasive

external fetal health monitors can be di�cult to interpret due to the relative strong maternal

ECG and noise interference from other biological signals [Albe93][Rode08]. In practice it

is not always possible to reliably detect the features of the fetal heart wave, including

even the strongest component, the QRS complex [Donk93]. Accurate detection of the

QRS complex is necessary to calculate the fetal heart rate, which is critical in assessing

fetal distress. More subtle features of the fetal ECG are even more di�cult to extract,
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and standards for interpreting data from non-invasive fetal heart monitors vary between

hospitals [Davi93].

Invasive internal fetal health monitors are the current clinical solution, but present

many complications of their own. These monitors can only be used during the latter stages

of labour, unlike external monitoring which is possible throughout the pregnancy. Since

internal monitoring uses a needle electrode there are risks of infection for the baby, partic-

ularly if the mother has any blood-born pathogens [Ferr01]. As well, some women are not

comfortable with using needle electrodes for routine monitoring, as there are still concerns

about fetal pain and even long-term consequences of this method.

4.1.2.2 Relationship Between Fetal Heart Monitoring and Caesarean Section Rates

Fetal ECGs and heart rate have become an influential factor in the decision of whether or

not to perform an emergency Caesarean section, so reliable data is critical [Decl06][Clar07].

Since the introduction of continuous fetal heart monitoring, the number of unscheduled

Caesarean sections deliveries has been on the rise [Decl06][Matt03]. By 2002, one-quarter of

first-time mothers in the United States delivered with a Caesarean section. However, there

has not been a corresponding rise in the number of high-risk pregnancies. Studies have

attributed part of the increase in these operations to decisions made using unreliable fetal

ECG data [Clar07][Anan13]. It is speculated that when the fetal ECG data is inconclusive,

emergency Caesarean sections are performed out of caution. However, any false positives

from the continuous fetal heart monitoring have consequences, as this is a major surgery

with additional risks and healing time for the mother.
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4.2 Characteristics of Maternal-Fetal ECGs

The maternal-fetal ECG recorded by non-invasive fetal heart monitors is a mixture of

(i) the fetal ECG, (ii) the maternal ECG, and (iii) other electrical noise. Even though

the fetal ECG is of interest, it is the much stronger maternal component that dominates

the mixture. However, certain characteristics are known about both the fetal heartbeat

itself and how the maternal-fetal mixture is created. This knowledge can be used to select

techniques to extract the fetal ECG from the mixture.

4.2.1 Fetal ECG Characteristics

The fetal ECG signal closely resembles adult ECG recordings and can typically be

detected near the six-to-seven week gestation point [Skem58]. Both adult and fetal ECGs

contain the same repetitive, morphological pattern depicted in Figure 3.2 with a dominant

QRS complex. As with adults, the fetal heart rate is measured as the average number of

R-wave peaks per minute.

However, there are two main features that di↵er between the fetal and adult ECGs:

the amplitude and the heartbeat frequency. The physically smaller fetal heart produces a

weaker ECG signal than the much stronger maternal heart. Depending on sensor position

and the natural variation in heart strength among individuals, the maternal heartbeat may

be on the order of 10 to 1000 times stronger than the fetal heartbeat on non-invasive ECG

recordings [Buxt63][Gupt07].

The fetal heart also beats at a higher frequency than an adult heart, and fetal heart rate

has been closely linked to overall fetal heath. It is considered normal to have a fetal heart

rate of 100-120 bpm at six to seven weeks gestation, increasing to 120-160 bpm at 30 weeks

and levelling out at term to 110-150 bpm [Oudi04]. This is compared to a typical adult
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heart rate of 60-100 bpm. A slower than average heart rate, also known as bradycardia,

is detrimental to the fetus particularly in the first trimester [Doub95]. In one study the

instances of first trimester fetal fatalities increased from 2.5% of those with normal heart

rates to 15.6% of those with bradycardia [Ozte09]. A less common, but also dangerous,

condition for the fetus is an abnormally fast heart rate or tachycardia [Oudi04].

4.2.2 Combined Maternal-Fetal Signals Characteristics

While non-invasive recording devices produce a combined maternal-fetal ECG signal,

it is important to remember that this signal is produced by two separate, physical sources.

This simple fact has two important consequences for methods of maternal-fetal ECG sepa-

ration:

1. Independence: Since the fetal and maternal heartbeats are produced by two dis-

tinct, physical sources they can be assumed to be statistically independent from one

another. Despite being a stronger muscle, the maternal heart does not influence the

physiological processes that produce the fetal heartbeat.

2. Linear Mixing: The combined maternal-fetal ECG can be considered to be the

weighted sum of the individual maternal and fetal ECGs. The weighting is dependent

on the placement of the non-invasive sensors, which cause each of the these two source

signals to be scaled by some factor in the recording.

These two characteristics of maternal-fetal ECGs, independence and linear mixing,

make maternal-fetal ECG mixtures good candidates for blind source signal separation tech-

niques to be applied to extract the source signals. ICA is particularly well-suited in this case,

as neither the order nor amplification of the extracted signals is critical to the maternal-fetal

ECG separation problem.
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4.3 Maternal-Fetal ECG Separation Techniques

The task of separating the maternal and fetal heartbeats from a combined ECG record-

ing has been one of the benchmark problems in signal processing since the 1970’s, due to the

complicated nature of the signals and their real-world clinical relevance [Widr75][Vand87].

However, since the maternal component of the signal is much stronger than the desired fe-

tal heartbeat, traditional signal processing techniques that rely on the signal to noise ratio

(SNR) are not applicable. There is currently no standard for isolating these signals and, as

discussed in Section 4.1, there are concerns with current clinical techniques.

4.3.1 ICA for Maternal-Fetal ECG Separation

The maternal-fetal ECG separation problem is an application that is well-suited for ICA

because it is predominately characterized by two independent, non-Gaussian signals: the

heartbeat of the mother and that of the fetus. One of the first proposals to use ICA for the

materal-fetal ECG separation problem was by De Lathauwer in 2000 [DeLa00]. Since then,

di↵erent ICA algorithms have been applied to the problem, including FastICA, JADE, and

AMUSE [Lee04][Naja06][Tara11]. These ICA experiments have produced promising results,

but not the complete elimination of the maternal heartbeat and noise from the fetal ECG

signal.

ICA has also been modified or used in conjunction with other methods to try to improve

the speed and e�cacy of maternal-fetal ECG separation [Xu12]. One proposed method

uses both ICA and wavelets to circumvent the requirement of having the same number of

recordings as source signals that ICA imposes [Pour06]. However, this method was not as

successful as using ICA with multiple recordings. Another method used a modified version of

ICA called Multidimensional Independent Component Analysis (MICA) [Cama11]. MICA

assumes that the source signals can be separated into statistically independent groups,
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while allowing that signals in the same group may be dependent. However, it was found that

MICA did not produce consistently reliable results for maternal-fetal ECG separation.

The majority of the work in ICA separation of maternal-fetal ECG signals has two miss-

ing components. The first is that in the majority of cases the stationarity of the maternal

and fetal ECGs is not taken into account, or they are assumed to be stationary [Sabr01]. As

described in Chapter 3, it is well-known that ECG signals are non-stationary over long peri-

ods of time. However, they can be considered stationary over shorter intervals. Therefore it

is important that the length of the maternal-fetal ECG recordings is considered before apply-

ing ICA. The second missing component is that there is no standardized method of quantify-

ing how successful ICA was at maternal-fetal ECG separation. In many cases the extracted

signals are visually verified to see if they look like typical ECG waveforms, or energy-based

measures such as mean squared error are used [Pour06][Gupt07][Subh14][Sugu14]. These

verification methods do not take the complexity of the signals into account.

4.3.2 Other Maternal-Fetal Separation Techniques

As maternal-fetal ECG separation is a benchmark problem in signal processing, as well

as a problem of practical interest in medicine, numerous techniques other than ICA have

also been attempted to varying degrees of success. The most common fetal ECG extraction

techniques include:

• Adaptive noise cancelling: One of the first techniques to isolate the fetal ECG sig-

nal was to simultaneously record the maternal ECG separately, then use this to can-

cel out the strong maternal signal from the combined signal [Widr75][Gupt07][Liu11].

Adaptive filters are used for blind source separation problems because their param-

eters can be adjusted, unlike fixed filters. This technique is also called adaptive

noise filtering because in this context the maternal ECG is considered to be noise.
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Adaptive filtering can also be used in conjunction with other techniques, such as

ICA [Gupt07][Khal13].

• Component Analysis: In addition to ICA, there are other component analysis

techniques such as PCA and periodic component analysis (⇡CA). These techniques

have been applied to maternal-fetal ECG separation with limited success [Llam13].

• Singular value decomposition: Based on matrix factorization, this technique has

been used with some success on the maternal-fetal separation problem before the

invention of ICA [Vand87]. It has also been used in conjunction with ICA [Gao03].

Other techniques used for maternal-fetal ECG separation include wavelets [Jafa05]

[Lee04] [Pour06], the Hilbert transform method [Wils08], local linear projection [Schr96],

artificial neural networks [Ye07], Kalman filtering [Venn14], and adaptive neuro-fuzzy in-

ference systems [Nasi11][Subh14]. These methods have been applied with limited success,

though none have fully solved the blind source separation problem. As well, some of these

methods seek only to detect the fetal QRS complex, rather than to extract the full fetal

ECG signal.

4.4 Experimental Maternal-Fetal ECG Signals

Ideally, to measure the e↵ectiveness of a signal separation technique, the separated

signals would be compared to the source signals. However, an essential feature of BSS

problems is that the individual source signals are unattainable. In the case of maternal-

fetal ECG separation, it is not possible to non-invasively record the fetal heartbeat directly.

If there were, then by definition the problem would be solved.

In the absence of these direct signals, there are other ways to test maternal-fetal ECG

separation techniques. Source signals can be simulated or synthesized from existing ECG
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recordings. Maternal-fetal ECG mixtures can also be used to test signal separation tech-

niques, although the results can not be explicitly verified.

4.4.1 Simulated Maternal-Fetal ECG Signals

Modelled signals, whether they are deterministic or probabilistic, can be useful to mimic

physical signals because they can be made completely free of noise. For BSS problems,

modelled signals have an additional benefit because they can be used as known source signals

that are mixed and then separated again. The separated signals can then be quantitatively

compared to the original, modelled source signals. By their very nature, it is not possible

to directly obtain the source signals from BSS problems of physical processes, so the models

provide a way to measure how well a BSS algorithm works.

The maternal-fetal ECG mixture can be modelled with the ECGsyn algorithm, which

was introduced in Section 3.3. One of the advantages to this model is that it allows the user

to set the average heart rate of the ECG signal in bpm. Figure 4.1 shows the simulated

fetal ECG signal produced by ECGsyn in Matlab with an average heart rate of 120 bpm.

The amplitude of the simulated fetal ECG has been reduced by a factor of ten.
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Fig. 4.1: Simulated fetal ECG with ECGsyn.
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Fig. 4.2: Comparison of simulated maternal and fetal ECGs with ECGsyn.

The maternal ECG can be simulated in ECGsyn to have a di↵erent heart rate from the

fetal signal. In Figure 4.2 the maternal ECG is simulated with an average heart rate of 60
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bpm and shown in comparison with the simulated fetal ECG. The maternal ECG is drawn

in a dotted line, while the fetal ECG is drawn in a solid line. The largest part of the fetal

ECG, the QRS complex, is still smaller than the minor waves of the maternal ECG such as

the P wave.

The resulting mixture from linearly combining the simulated fetal and maternal ECG

signals is shown in Figure 4.3. The two simulated signals were added together to produce

this noise-free model of what a non-invasive maternal-fetal ECG recording would look like.

Only the QRS complex from the fetal ECG is visible amidst the much stronger maternal

signal, and even this is aided by the fact that in this case they happen to occur in between

the major maternal ECG peaks.

While the modelled signals do not fully capture all of the intricacies of the physical

ECG signals, they provide a good substitute to test BSS techniques in a noise-free and

fully defined environment. Furthermore, it is possible to model noise and add it to the

maternal-fetal ECG model as well.
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Fig. 4.3: Mixture combining the maternal and fetal ECGs simulations from ECGsyn.

Kathryn L. Marcynuk - 87 of 138 - December 12, 2014



ICA for Maternal-Fetal ECG 4.4 Experimental Maternal-Fetal ECG Signals

4.4.2 Maternal and Fetal ECG Recordings from PhysioNet

In addition to the simulated signals produced by heart wave models, it is useful to

perform experiments using recorded ECG data. As described in Section 3.4, the online

resource PhysioNet hosts one of the largest open access repositories of electrical record-

ings of the heart, including healthy heart recordings and ones from patients with arrhyth-

mias [Gold00].

4.4.2.1 Synthetic Maternal-Fetal ECG Signals

The MIT-BIH Normal Sinus Rhythm Database (nsrdb) on PhysioNet contains eighteen

long-term ECG recordings from adult subjects that were assessed to have no significant

arrhythmias, or irregular heartbeats. The recordings can be imported into Matlab for study

and analysis using the PhysioToolKit provided by PhysioNet. Using recordings from this

database, fetal heart signals and maternal-fetal recordings can be synthesized in order to

produce mixtures in which the source signals are known. The synthesized mixtures can then

be separated with BSS techniques such as ICA, and the results compared to the original

source signals.

While the synthesized maternal-fetal ECG signals in this approach are created with

two adult recordings, they can be scaled to represent fetal heart signals. Figure 4.4 shows a

comparison of two nsrdb recordings scaled to represent the maternal and fetal ECGs. The

maternal ECG is plotted as a dotted line and was not scaled. The fetal ECG was scaled in

the time domain to have a heart rate of approximately 120 bpm, and scaled in amplitude

to be ten times smaller than the original adult recording from which it was derived. The

synthetic fetal ECG is plotted as a solid line.
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Fig. 4.4: Comparison of adult ECG recording and synthetic fetal ECG.
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Fig. 4.5: Synthetic maternal-fetal ECG signal produced from nsrdb recordings.

To demonstrate a synthetic maternal-fetal ECG recording, the two signals in Figure 4.4
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were added together to produce the synthetic mixture signal in Figure 4.5. In this mixture

signal even the prominent QRS complex of the the fetal heartbeat is nearly undetectable

by eye.

The two recordings used to create the synthetic fetal ECG and maternal-fetal ECG

mixture depicted in Figures 4.4 and 4.5 were both measured from women of child-bearing

age (ages 28 and 20, respectively).

4.4.2.2 Open Source Maternal-Fetal Recordings

In addition to adult ECG recordings, PhysioNet also contains a small number of non-

invasive maternal-fetal ECG recordings that are available for public use. Each record in

the Non-Invasive Fetal ECG Database (nifecgdb) contains three non-invasive maternal-fetal

ECG abdominal recordings and two thoracic recordings of the mother’s heartbeat. All five

signals in each record were captured simultaneously, so they can be used to explore BSS

methods such as ICA. One of the abdominal recordings is shown in Figure 4.6.
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Fig. 4.6: Recorded non-invasive abdominal maternal-fetal ECG.
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In the non-invasive maternal-fetal ECG recording in Figure 4.6 the fetal component of

the signal is di�cult to distinguish by eye. As well, there is more noise in this recording than

in both the simulated and the synthetic ECG signals, which presents an added di�culty for

maternal-fetal signal separation. Electrode placement and movement can contribute to the

recorded noise. The need to use more sensitive equipment to capture the faster and weaker

fetal heartbeats, compared to recording only an adult ECG, may also be a factor in the

increased noise.

4.5 Maternal-Fetal ECG Separation Problem Summary

This chapter defined the problem of maternal-fetal ECG separation. The past and

current fetal heart monitoring techniques were reviewed, including invasive and non-invasive

continuous monitoring. The characteristics of fetal heart waveforms relative to adult heart

waveforms were explored, noting that they can be considered scaled versions of the same

signal archetype. Finally, methods of simulating and synthesizing maternal-fetal mixtures

were presented in order to design experiments that recreate non-invasive maternal-fetal

mixtures with known source signals.
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Chapter 5

Case Study: ICA for

Maternal-Fetal ECG Separation

In this chapter, the experimental results of ICA separation on simulated and recorded

ECG signals are presented. First, ICA is used to separate mixtures of two adult ECG

waveforms, in order to test its performance on this type of signal when amplitude di↵erences

are not a significant factor. Maternal-fetal ECG signals are modelled next using both

simulated and synthetic data, then these signals are separated by ICA. To test how well

ICA recovered the original source signals the energy, information theoretic, and fractal based

measures described in Section 2.3.6 were calculated for each experiment. The heart rate

of the source and extracted signals was also calculated and compared as a fifth measure.

The fetal heart rate is one of the most critical components in determining fetal distress,

so accurate recovery of the heart rate is essential to the success of any signal separation

technique used for this purpose. These measures are used in the discussion in Chapter 6 to

quantify the performance of the results.

ICA was also tested on non-invasive maternal-fetal ECG recordings. In this experiment
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the original source signals are unknown, so the same success measures could not be used

directly. However, they will be used indirectly in Chapter 6 to justify how well ICA worked

by comparing the characteristics of the extracted signals to known averages.

5.1 Experiment: Two Adult ECGs (model)

In this ICA experiment, two adult ECG source signals modelled using ECGsyn were

mixed and separated. As shown in Figure 5.1, the first signal had an average heart rate

of 60 bpm while the second was 80 bpm. Both signals were created for a duration of two

minutes, with a sampling frequency of 500 Hz and all other default values of the model.

Only the first 20 seconds of each signal are shown in Figure 5.1, as well as in the following

figures, in order to more clearly show the ECG waveforms.
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Fig. 5.1: Two simulated adult ECG source signals prior to mixing.
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The two mixed signals, designated by vector x, were created using the ICA mixing

model, x = As, where A is the mixing matrix and s is a vector of the source signals. The

mixing matrix was defined as:

A =

2

64
2 3

2 1

3

75 (5.1)

so that each of the original source signals was stronger in one of the mixed signals.

The resulting mixed signals are shown in Figure 5.2, and the signals separated by ICA

are shown in Figure 5.3.
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Fig. 5.2: Mixtures produced from two simulated adult ECG signals.
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Fig. 5.3: The source and extracted simulated adult ECG signals are visually the same.

Figures 5.4 and 5.5 show a comparison of the estimated probabilities of the source,

mixed, and extracted signals.
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Fig. 5.4: Two simulated adult ECGs: estimated probabilities of s1, x1, and y1.
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Fig. 5.5: Two simulated adult ECGs: estimated probabilities of s2, x2, and y2.

In all of the examples in this section, the results are presented with the full precision

returned by Matlab. The root mean square error (RMSE) between the first source signal

and the corresponding extracted signal was RMSE1 = 0.020993 V. Similarly, the error for

the second set of signals was RMSE2 = 0.016738 V.

The entropy of the first source signal was H
s1 = 3.7908, while the entropy of the

corresponding extracted signal was H
y1 = 3.76. The change of entropy between the two

signals was �H1 = 0.030769. For the second set of signals, the entropy of the source was

H
s2 = 3.8858 and the entropy of the extracted signal was H

y2 = 3.8779 for a di↵erence of

�H2 = 0.0078185.

The average heart rate of the source signals was preserved in the extracted signals in

both cases. For the first signal the average heart rate was 60.495 bpm and for the second

signal it was 80.5234 bpm.

The spectral fractal dimension of the first source signal was D
�s1 = 1.9624, and
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D
�y1 = 1.918 for the corresponding extracted signal. Therefore the change in spectral

fractal dimension for the first signal was �D
�1 = �0.0444. For the second signal, the

source had a spectral fractal dimension of D
�s2 = 1.7533 and the for the extracted sig-

nal it was D
�y2 = 1.87. The change in fractal dimension for the second signal was

�D
�2 = 0.1167.

5.2 Experiment: Two Adult ECGs (recorded data)

The above experiment was repeated using recorded data from the MIT-BIH Normal

Sinus Rhythm Database (nsrdb) on PhysioNet [Gold00]. The two source signals were two-

minute ECG recordings from healthy female subjects aged 20 and 28. Due to their short

duration, the ECG signals could be assumed to be stationary. As described in Section 4.3,

this is standard practice in the ECG separation literature. All signals in the nsrdb have a

sampling frequency of 128 Hz.
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Fig. 5.6: Two recorded adult ECG source signals prior to mixing.
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The first 20 seconds of each of the source signals are shown in Figure 5.6. Unlike the

previous experiment with simulated data, the recorded source signals are inherently noisy

and have more natural variation. Compared to the simulated source signals, the recorded

signals show more variation in the ECG morphology and also exhibit artefacts.

The source signals were mixed using the same mixing matrix, defined in Equation 5.1,

as the previous experiment. Figure 5.7 shows the resulting mixtures.
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Fig. 5.7: Mixtures produced from two recorded adult ECG signals.

Figure 5.8 then shows a visual comparison of the source signals to the extracted signals

after ICA separation. The extracted signals match the source signals so completely, that

they overlap and are indistinguishable by eye. As can be seen in the comparison, even

the irregularities of the source signals were extracted by ICA. In particular, the first signal

exhibits a large artifact around the seven second mark that is uncharacteristic of the rest

of the signal but is recovered by ICA.
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Fig. 5.8: The source and extracted recorded adult ECG signals are visually the same.

The estimated probabilities for the source, mixed, and extracted signals were also cal-

culated. Figure 5.9 shows the estimated probabilities for the first signal, including s1,

x1, and y1. The estimated probabilities for the second signal, s2, x2, and y2, are given

in Figure 5.10. In both figures the estimated probabilities for the source and extracted

signals look similar and skewed to the right, while the mixed signals appear to be more

normally-distributed.
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Fig. 5.9: Estimated probabilities of s1, x1, and y1 from two recorded adult ECGs.
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Fig. 5.10: Estimated probabilities of s2, x2, and y2 from two recorded adult ECGs.

The root mean square error (RMSE) between the first source signal, s1 and first ex-

tracted signal, y1 was RMSE1 = 0.43758 mV. For the second signal, the RMSE was

RMSE2 = 0.054264 mV.
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The entropies of each of the source signals and extracted signals were calculated and

compared. The entropy of the first source signal was H
s1 = 3.1568 and the entropy of

the corresponding extracted signal was H
y1 = 3.1681. The change in entropy for the

first signal was �H1 = �0.011307. For the second signal, the entropy of the source was

H
s2 = 2.9602 and the entropy of the corresponding extracted signal was H

y2 = 2.9508. So,

�H2 = 0.0094196 was the change in entropy for the second signal.

The heart rate was also calculated for the source and extracted signals. The signals

recovered by ICA had the same heart rate as the original sources in both cases. The heart

rate was 73.3342 bpm for the first signal, and 92.8082 bpm for the second signal.

The spectral fractal dimension for the first source signal was D
�s1 = 1.64935 and for

the corresponding extracted signal it was D
�y1 = 1.6494, for a change of �D

�1 = 0.00005.

The second signal had a spectral fractal dimension of D
�2 = 1.3321 for both the source

signal and extracted signal.

5.3 Experiment: Maternal-Fetal ECGs (model)

To simulate a non-invasive maternal-fetal ECG mixture, two separate signals were cre-

ated with the ECGsyn model. The input average heart rate to the model was 60 bpm for

the maternal signal and 110 bpm for the fetal signal. As in the previous experiment with

two simulated adult ECGs, in this experiment the signals were approximately two minutes

long, the sampling frequency was 500 Hz, and all of the other model parameters had their

default values. The two source are displayed in Figure 5.11. In order to clearly see the ECG

morphology, only the first 20 seconds of each signal is shown.
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Fig. 5.11: Simulated maternal and fetal ECG source signals prior to mixing.

To represent the disparity in amplitudes between the maternal and fetal ECGs, the

following mixing matrix was defined:

A =

2

64
1000 1

1010 1

3

75 . (5.2)

With this mixing matrix, the maternal component was at least 1000 times stronger

than then fetal component in both signal mixtures. As discussed in Chapter 4, the fetal

component can be this small relative to the maternal heartbeat. This mixing matrix was

also chosen to create two similar mixtures, under the assumption that non-invasive ECG

data recorded simultaneously with two di↵erent electrodes could be quite similar depending

on how close the electrodes are physically placed on the mother’s abdomen. The signal

mixtures produced from this mixing matrix are given in Figure 5.12.
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Fig. 5.12: Mixtures produced from the simulated maternal and fetal ECG signals.

As shown in Figure 5.12, the two mixtures are visually very similar. Further, the fetal

component is so small that it is indistinguishable by eye, such that these mixtures appear

to consist of only the maternal source signal.

The signals extracted by ICA are visually compared to the original source signals in

Figure 5.13. The extracted signals overlap so completely with the source signals that they

are indistinguishable in the figure.

Figure 5.14 shows the estimated probabilities for the source signal, s1, mixed signal x1,

and extracted signal, y1. Both the source and extracted signal have a significant positive

skew, but the mixed signal has a more Gaussian distribution. The same observations can be

made for the estimated probabilities of s2, x2, and y2, which are shown in Figure 5.15
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Fig. 5.13: The source and extracted simulated signals of the both maternal and fetal ECGs
are visually the same.
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Fig. 5.14: Estimated probabilities of s1, x1, and y1 from the simulated maternal ECG
signal.
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Fig. 5.15: Estimated probabilities of s2, x2, and y2 from the simulated fetal ECG signal.

The root mean square error (RMSE) between the source and extracted signals of the

maternal component was RMSE1 = 0.0055866 V, and RMSE2 = 0.011359 V between the

synthetic fetal source signal and extracted signal.

The entropy of the maternal source signal was H
s1 = 3.7893, and it was H

y1 = 3.7868

for the maternal extracted signal. The di↵erence in entropy before and after ICA for the

maternal component was �H1 = 0.0024542. For the fetal signal, the entropy of the source

was H
s2 = 3.9275, and the entropy of the extracted signal was H

y2 = 3.903. The change in

entropy between the source and extracted signals was �H2 = 0.024488.

There was no change in the heart rate of the extracted signals from the source signals.

The maternal component had a heart rate of 60.5235 bpm, while 110.52658 bpm was the

heart rate of the second signal.

The maternal component had a spectral fractal dimension of D
�s1 = 1.81925 for the

source signal, and D
�y1 = 1.8173 for the extracted signal; a change of �D

�1 = 0.00195.
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The spectral fractal dimension of the fetal component source signal was D
�s2 = 1.81385

and for the extracted signal D
�y2 = 1.8062. The change for the fetal component was

�D
�2 = 0.00765.

5.4 Experiment: Maternal-Fetal ECGs (synthetic data)

In order to mimic the non-invasive maternal-fetal ECG separation problem, while hav-

ing full knowledge of the source signals for later comparison, synthetic signals were created

from the nsrdb on PhysioNet [Gold00]. An ECG recording from a 28-year old woman was

used to represent the maternal source signal. To synthesize the fetal source signal, another

adult ECG recording was sped up to have a faster heart rate.

The source signals are shown in Figure 5.16, where the top subfigure is the maternal

ECG and the bottom subfigure is the synthesized fetal ECG. Both source signals are two-

minute long segments from the original recordings, but only 20 seconds are shown in the

figure so the ECG waves can be clearly seen. The source signals representing maternal and

fetal ECG components were mixed using the same mixing matrix as the previous experiment,

given in Equation 5.2. Doing so produced mixtures where the maternal component was

approximately 1000 times stronger than the fetal component, which is possible in non-

invasive maternal-fetal ECG recordings. As shown in Figure 5.17, the mixtures both look

like unaltered copies of the maternal ECG component because the synthetic fetal signal is

so small.
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Fig. 5.16: The top is a recorded adult ECG used to represent the maternal component.
The bottom is the fetal ECG synthesized from an adult recording.
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Fig. 5.17: The two mixtures produced from a recorded adult ECG signal and a synthetic
fetal ECG signal.
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The signals extracted by ICA are presented on the same graphs as their original source

signals in Figure 5.18. Since the extracted signals so closely match the source signals, they

nearly complete overlap on the graphs giving the appearance of only one signal on each.

Even the extracted fetal component matches its source signal, despite being nearly invisible

amidst the much larger maternal component in the signal mixtures.
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Fig. 5.18: The extracted signals representing the maternal and synthetic fetal components
closely match the original source signals.

The estimated probabilities for the source signals, mixed signals, and extracted signals

are given in Figures 5.19 and 5.20.

The root mean square error (RMSE) between the source and extracted signals of the

maternal component was RMSE1 = 2.1487 mV, and for the synthetic fetal component it

was RMSE2 = 0.51913 mV.

The entropy of the maternal source signal was H
s1 = 3.1038, and the entropy of the

corresponding extracted signal was H
y1 = 3.1054. The change in entropy in the maternal

component was �H1 = �0.0016819. For the synthetic fetal component, the source signal
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entropy was H
s2 = 3.0911 and the extracted signal entropy was H

y2 = 3.0964. The change

in entropy in the synthetic fetal component was �H2 = �0.0053071.
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Fig. 5.19: Estimated probabilities of s1, x1, and y1 from a recorded adult ECG.
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Fig. 5.20: Estimated probabilities of s2, x2, and y2 from a synthetic fetal ECG.

The heart rate of the source signals and extracted signals was the same for both of the
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maternal and fetal components. The maternal ECG had a heart rate of 91.9369 bpm, while

the synthetic fetal heart rate was 134.86 bpm.

The spectral fractal dimension of the maternal source signal was D
�s1 = 1.14895 and for

the corresponding extracted signal it was D
�y1 = 1.15825. The change in fractal dimension

for the maternal component was �D
�1 = 0.0093. For the synthetic fetal source signal, the

spectral fractal dimensions were calculated to be D
�s2 = 2.330085 and D

�y2 = 2.329855

with �D
�2 = 0.00023.

5.5 Experiment: Non-Invasive Abdominal Maternal-Fetal ECGs

(recorded data)

In addition to the simulated and synthetic experiments above, the FastICA algo-

rithm was tested using non-invasive maternal-fetal ECG recordings as well. These signals

were obtained from the Non-Invasive Fetal Electrocardiogram Database (ecgca) on Phys-

ioNet [Gold00]. Each record in the database consists of two thoracic signals and multiple

abdominal signals that were recorded at the same time for one minute at a 1 kHz sampling

frequency. There are no direct fetal ECG measurements in this database, so the signals

extracted by ICA can not be directly compared to the original source signals.

In this experiment, two abdominal signals from the same record were used as input x

to the ICA algorithm. Figure 5.21 shows the first 20 seconds of each mixture. Both the

original source signals, s, and the mixing matrix, A, are unknown.
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Fig. 5.21: Two abdominal maternal-fetal ECG recordings.

The extracted signals are shown in Figure 5.22. The top signal has periodic peaks but

not the typical ECG waveform shape, while the bottom looks like an abdominal ECG.
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Fig. 5.22: Signals extracted by ICA from non-invasive abdominal maternal-fetal ECG
recordings.
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The estimated probabilities of the mixed and extracted signals are given in Figures 5.23,

and 5.24, respectively.
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Fig. 5.23: Estimated probabilities for the non-invasive abdominal maternal-fetal ECG mix-
tures.
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Fig. 5.24: Estimated probabilities for the signals extracted by ICA from the abdominal
recordings.
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The entropy of the first abdominal ECG recording was H
x1 = 3.4988, and H

x2 = 3.3038

for the second abdominal recording. The entropy of the first extracted signal was H
y1 =

4.1347, while the entropy of the second extracted signal was H
y2 = 3.4625.

The maternal heart rate obtained from the dominant R-waves in the abdominal ECG

recordings was 88.3937 bpm. The first extracted signal did not have the ECG morphology,

but did have peaks that occurred 121.4411 times per minute. The second extracted signal

resembled the maternal ECG from the abdominal recordings and had a heart rate of 88.3937

bpm.

The spectral fractal dimensions of the abdominal mixture signals were D
�x1 = 1.6808

for the first signal and D
�x2 = 1.659 for the second signal. The extracted signals had

spectral fractal dimensions of D
�y1 = 1.651 and D

�y2 = 1.66455.

5.6 Case Study Summary

This chapter presented experiments to test ICA on maternal-fetal ECG data. The first

four experiments were designed to replicate the conditions of non-invasive maternal-fetal

ECG mixtures from simulated and recorded data. In these experiments the source signals

were known so they could be used for comparison with the signals extracted by ICA. Five

e↵ectiveness measures were used to evaluate the success of ICA at extracting the source

signals: (i) visual comparison, (ii) RMSE, (iii) entropy, (iv) spectral fractal dimension, and

(v) change in heart rate. The ECGsyn heart model was implemented to simulate ECG data,

and recorded data was obtained from PhysioNet databases. The final experiment tested

ICA on recorded non-invasive abdominal maternal-fetal ECG mixtures also obtained from

PhysioNet. In this experiment the extracted signals could not be directly compared to the

unknown source signals.
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Chapter 6

Discussion of Experimental

Results

In this chapter the results of the five experiments presented in Chapter 5 are discussed.

The success of ICA at separating the mixed signals is justified with five qualitative and

quantitative performance measures. Each of these measures is examined individually for

the experiments with known source signals, to show that the signals extracted by ICA

did compare favourably to the original signals. Di↵erences between the experiments with

simulated and recorded data are also highlighted. Finally, the subset of relevant performance

measures are applied to the experiment with non-invasive maternal-fetal ECG recordings

and found to be inconclusive. Possible reasons for the diminished performance of ICA in

this experiment are also discusssed.
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6.1 Discussion of Performance Measures

In this section the performance measures used for the first four experiments are dis-

cussed. All of these experiments had known source signals, so the ICA output could be

compared directly to the original unmixed signals. The extracted signals were compared

to the original sources (i) visually; (ii) with the energy-based RMSE metric; (iii) with the

information-based Shannon entropy; (iv) by calculating the fractal dimension; and (v) by

calculating the heart rate in each signal.

6.1.1 Visual Comparison

In Chapter 5 the signals extracted by ICA are shown on the same graphs as their cor-

responding source signals, giving a visual way to compare how closely they match. Visually

comparing the source and extracted signals is a quick, intuitive way to evaluate the e↵ec-

tiveness of a separation technique. This is the predominant ICA verification technique for

maternal-fetal ECG separation found in the literature.

The first four experiments in Chapter 5 all show an extremely close match between

the source and extracted signals. In fact, the signals overlap so completely that they are

indistinguishable on most of the graphs. Successful visual comparisons provide a quick

check, and compelling argument, that ICA had worked on the known source signals. In

the case of maternal-fetal ECG separation the extracted signals could be compared to ECG

models, but the variability in what constitutes a healthy ECG make this impractical. There

is also the risk of attempting to force an extracted signal to fit the model and overlooking

true signal di↵erences as noise.

In addition to comparing the signals as ECG time series, the histograms of the source

and extracted signals can also be compared. In Chapter 5 the histograms of these signals
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have been converted into estimated probabilities. In the first four experiments, the esti-

mated probabilities of the source signals and extracted signals are visually similar. This

provides additional evidence to support the success of the ICA separation technique. Fur-

thermore, while the estimated probabilities of the source and extracted signal are similar,

they are both di↵erent from the estimated probabilities of the mixture signals. Both the

source and extracted signals have a distribution that is skewed to the right, as is common for

electrophysiological signals. As expected, the mixture signals are more normally-distributed

than the source signals. ICA exploits this di↵erence to separate the mixture signals into

less-Gaussian components.

Visual comparison of both the ECG time series and probability distributions can pro-

vide insight into the e↵ectiveness of the ICA separation. However, these comparisons are

qualitative and quantify the extent to which the signal separation was successful. By simply

looking at the signals it is not possible to define how accurate an extracted signal is to the

source, or to compare if one extracted signal is more or less accurate than another. A desire

to quantitatively assess the signals separated by ICA leads to the other four methods used

next: RMSE, entropy, fractal dimension, and heart rate.

6.1.2 Energy-Based Measure: RMSE

Another one of the more popular methods of evaluating the success of a signal separation

technique such as ICA, is to compare the amplitudes of the source and extracted signals.

That is, these methods compare the energies of the signals. The root mean square error

(RMSE) is an energy-based metric to compare two signals. An advantage of the RMSE is

that it assigns a value to the error, thus providing a base for comparison of how well two

signals match. The ability of the RMSE to quantify error, or success, is an advantage of

this metric over visual comparisons.
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However, the RMSE is not necessarily a reliable measure for signal comparison. Like

visual comparison, it is only possible to calculate the actual RMSE when the source signals

are known. If the source signal was not known, the extracted signal could be compared to

a model. However, any energy-based comparison between the extracted signal and a model

is di�cult when the original source signals are as naturally varied as ECGs.

Even when the source signals are known, there are drawbacks to the energy-based

comparison methods. A small number of large amplitude di↵erences can significantly a↵ect

any error measure based on energy, even if the rest of the signals match well. Furthermore,

the error value produced by an energy-based measure such as the RMSE will be significantly

a↵ected by the amplitude range of the signals. As an example, a RMSE of 1mV may be

insignificant if the source signal has a range of over 10V. However, that same RMSE may

be very significant if the source signal has a range of only 5mV. Therefore, the size of the

source signal must be taken into account if the RMSE is to be used for comparison purposes.

This may not be possible if the source signal is not known and the extracted signal is being

compared to a model.

Table 6.1: Summary of the experimental root mean square values

Two Adult ECGs RMSE1 (mV) RMSE2 (mV)

Simulated 20.993 16.738

Recorded 0.43758 0.054264

Maternal-Fetal ECGs RMSE
M

(mV) RMSE
F

(mV)

Simulated 5.5866 11.359

Synthetic 2.1487 0.51913

The values of the RMSE for the first four experiments presented in Chapter 5 are sum-
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marized in Table 6.1. While all of the RMSE values are reasonably small, they vary widely

for each of these experiments and do not provide very much insight into how successful ICA

was at extracting the original signals.

6.1.3 Information-Based Measure: Entropy

Entropy can be thought of as a measure of the complexity of a signal. As with the

RMSE, calculating the entropy produces a quantitative value that can be useful for com-

parisons. Entropy is calculated for each signal individually, so for BSS problems the entropy

of the extracted signals can be calculated without prior knowledge of the source signals.

However, if the entropy of source signals is known to be within a particular range, then the

entropy of the extracted signals can provide an estimate of whether or not the results are

reasonable.

Table 6.2 shows the Shannon entropy of the source and extracted signals from the

experiments with known sources. The di↵erence in entropy between the source signals and

those extracted by ICA was minimal in all cases, supporting the assessment that source

signals were recovered successfully.

Also of note, the entropies of the simulated signals were higher than the recorded signals

on average. The simulated signals consistently had entropies in the range of 3.8�3.9, while

the entropies were closer to 3.0�3.1 for the recorded signals. This suggests another di↵erence

between the ECGsyn model and recorded ECG signals.
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Table 6.2: Summary of the experimental entropy values.

Two Adult ECGs H
s1 H

y1 �H1 H
s2 H

y2 �H2

Simulated 3.7908 3.76 0.030769 3.8858 3.8779 0.0078185

Recorded 3.1568 3.1681 -0.011307 2.9602 2.9508 0.0094196

Maternal-Fetal ECGs H
sM H

yM �H
M

H
sF H

yF �H
F

Simulated 3.7893 3.7868 0.0024542 3.9275 3.903 0.024488

Synthetic 3.1038 3.1054 -0.0016819 3.0911 3.0964 -0.0053071

6.1.4 Fractal-Based Measure: Spectral Fractal Dimension

Similar to the entropy, the fractal dimension of a signal can be used as a measure of

its complexity. The spectral fractal dimension is appropriate for studying stationary, time-

varying signals [Kins13]. Table 6.3 summarizes the spectral fractal dimensions calculated

in each of the experiments with known source signals. As shown in the table, the spectral

fractal dimension was robust under ICA. The extracted signals had nearly the same fractal

dimension as their corresponding source signals, with D
�

changing after ICA even less than

the entropy.

As shown in Table 6.3, there is a di↵erence in average fractal dimension between the

simulated and recorded ECG signals. As was the case with entropy, the average fractal

dimension of the simulated signals is higher than the recorded signals. This indicates

another di↵erence between the ECGsyn model and physical ECG signals.

The synthetic fetal ECG signals also had markedly di↵erent spectral fractal dimensions

than either the simulated or recorded signals. This anomaly may be because the synthetic

signals were created by compressing recorded ECG signals in the time domain, so the fractal

dimension may not be meaningful when signals are manipulated in this way.
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Table 6.3: Summary of the experimental calculated fractal dimensions.

Two Adult ECGs D
�s1 D

�y1 �D
�1 D

�s2 D
�y2 �D

�2

Simulated 1.9624 1.918 -0.0444 1.7533 1.87 0.1167

Recorded 1.64935 1.6494 0.00005 1.3321 1.3321 0

Maternal-Fetal ECGs D
�sM D

�yM �D
�M

D
�sF D

�yF �D
�F

Simulated 1.81925 1.8173 0.00195 1.81385 1.8062 0.00765

Synthetic 1.14895 1.15825 0.0093 2.330085 2.329855 0.00023

6.1.5 Heart Rate Preservation

Fetal ECG monitoring is predominately used to assess the fetal heart rate. The fetal

heart rate has become a critical factor in determining fetal health and distress. Therefore, it

is important to be able to accurately calculate the heart rate from the fetal signal extracted

by ICA. In the four experiments with known source signals, peak detection methods were

used to find the R-wave peaks and calculate the heart rates for each of the source and

extracted ECG signals. Table 6.4 summarizes the heart rates of each signal in beats per

minute.

Table 6.4: Summary of the derived experimental heart rates.

Two Adult ECGs s1 (bpm) y1 (bpm) s2 (bpm) y2 (bpm)

Simulated 60.495 60.495 80.5234 80.5234

Recorded 73.3342 73.3342 92.8082 92.8082

Maternal-Fetal ECGs s
M

(bpm) y
M

(bpm) s
F

(bpm) y
F

(bpm)

Simulated 60.5235 60.5235 110.52658 110.52658

Synthetic 91.9369 91.9369 134.86 134.86
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As shown in the above table, despite any minor discrepancies between the source and

extracted signals, the R-wave peaks were properly recovered for each signal by ICA so that

the heart rate of each of the extracted signals was the same as its corresponding source

signal. Therefore, ICA was successful at extracting signals with the same heart rates as the

original signals.

6.2 Comparison Between Simulated and Synthetic Data

Between the trials with simulated ECG data and those with recorded signals, there were

no statistically significant di↵erences in the success of ICA based on the above measures.

The RMSE was higher for the trials with simulated signals, however this is likely because

the amplitude of the simulated signals was larger than that of the recorded signals. The

changes in entropy and fractal dimension between the source and extracted signals were

minimal for both types of data. However, as mentioned above, the simulated signals had

larger entropies and fractal dimensions overall.

For both the simulated and synthetic data there was no significant di↵erence in ICA

performance between the trials with two adult ECGs and the trials with both maternal

and fetal ECGs. This supports the claim that ICA is insensitive to amplitude di↵erences

between signals, such as maternal ECG signals and much smaller fetal ECG signals.

6.3 Discussion of Non-Invasive ECG Experiment Results

In the experiments with known ECGs as source signals, ICA was able to successfully

recover the original signals as verified through the above measures. However, the exper-

iment with unknown source signals was less conclusive. The signals in this experiment
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came from non-invasive maternal-fetal ECG recordings, so the isolated source signals were

inaccessible.

Visually, the first of the two signals extracted by ICA closely resembled the strong

maternal ECG evident in the mixtures. The other extracted signal did not exhibit typical

ECG wave patterns, however it did have peaks at periodic intervals which could be the fetal

R-waves. Since the source signals were unknown the RMSE could not be calculated. The

entropies of the extracted signals were slightly higher than in the first four experiments,

which may be natural variation in the ECG signals or may indicate that the source ECGs

were not fully recovered. The spectral fractal dimensions of the extracted signals were also

on the high end of the range of what was found in the other experiments. However, the

heart rates of the extracted signals showed promising results. The first extracted signal, that

resembled the maternal ECG, had a heart rate of approximately 88 bpm which is within the

healthy range for adults. For the second extracted signal, the periodic peaks were assumed

to be R-waves so the heart rate could be calculated. This produced an approximate heart

rate of 121 bpm, which is also within the healthy fetal range.

There are a number of factors that could have resulted in the less conclusive results of

the experiment with non-invasive maternal-fetal ECGs. One di↵erence between the non-

invasive recorded ECGs and the signals used in the previous experiment was their length.

The previous experiments used two-minute long signals, but the recordings in the Non-

Invasive Fetal ECG Database (nifecgdb) were each one minute in length. The di↵erence in

duration may have a↵ected the entropy and fractal dimension calculations. Finally, the noise

levels in the recordings in the nifecgdb were unknown and may have been a contributing

factor. This di↵ers from the previous experiments with both simulated and recorded known

source signals. There was no noise in the experiments with simulated ECG signals, and any

noise in the obtained ECG recordings was considered part of the source signals. However,

the non-invasive abdominal recordings likely included additive noise from other bioelectrical
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activity such as muscle movements.

6.4 Discussion Summary

This chapter discussed the success of ICA at separating the ECG signals from the

experiments presented in Chapter 5. All of the experiments with known source signals were

considered successful in terms of the five e↵ectiveness measures individually. However, when

used together these measures present a fuller picture of how successfully the source signals

were extracted by ICA. Di↵erences between the experiments with simulated and synthesized

data were also discussed. Finally, the results from the experiment with unknown source

signals were discussed and found to be inconclusive.
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Chapter 7

Conclusions

This thesis presented an assessment of ICA for the maternal-fetal ECG separation prob-

lem, including an investigation of its successes and current limitations. Chapter 2 began

with an introduction to blind source separation problems in general and an introduction

to the theory behind ICA. The signal separation technique of ICA is based on the critical

concepts of minimum mutual information and maximum non-Gaussianity, without relying

on a priori information about the mixed signals [Hyva00][Ston04]. Currently, there is no

standard way to assess the success of signal separation methods, such as ICA, so four e↵ec-

tiveness measures were introduced: (i) visual comparison, (ii) energy-based comparison, (iii)

information-based comparison, and (iv) fractal-based comparison. Also in Chapter 2, ICA

was implemented in Matlab to perform experiments on both deterministic and stochastic

signals [Hyva99].

The characteristics of ECGs were presented in Chapter 3, including their characteristic

probability distribution to assess the signals suitability for ICA. Three heart models were

also discussed: (i) ECGwaveGen, a deterministic model [Harr11]; (ii) ECGsyn, a stochastic

model also known as the Oxford model [McSh03][McSh12]; and (iii) ECGfm, a stochastic
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model created to more accurately capture heart rate variability [Pott08]. The characteristics

of ECGs were used in Chapter 4 to discuss the maternal-fetal ECG separation problem. The

social motivating factors of this problem were presented, including the current state of fetal

heart monitoring techniques. The mixture models of maternal-fetal ECG were explored to

determine that these signals are suitable for separation under ICA. Maternal-fetal signal

mixtures were also simulated and synthesized from recorded data in this chapter.

Experimental results of ICA with ECG signals were presented in Chapter 5. Exper-

iments were successfully performed on simulated and recorded ECG data, as well as on

mixtures representing maternal-fetal ECGs. The four e↵ectiveness measures previously in-

troduced were used to assess the performance of ICA in these experiments with known

source signals, along with heart rate as a fifth e↵ectives measure. An experiment with un-

known source signals using non-invasive maternal-fetal ECG recordings was also presented

with inconclusive results. The results of these experiments were discussed in Chapter 6, as

were the usefulness of the five e↵ectiveness measures for ICA.

7.1 Thesis Conclusions

This thesis addressed a number of research questions related to blind source separation

problems, ICA, ECG characteristics, and the maternal-fetal ECG separation problem. This

section links back to the research questions first outlined in Section 1.2.3, to attempt to

provide insight into them from the experimental results.

ICA was found to be insensitive to amplitude di↵erences between source signals, both in

the deterministic and stochastic experiments of Chatper 2 and the experiments with ECG

data. However, other characteristics of the source signals were seen to have an e↵ect on

the success of ICA. When two Weierstrass signals were used as source signals, only one was

recovered by ICA. Possible reasons for this include the complexity of the Weierstrass waves
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or the discontinuous nature of the signals. It was also found that source signals with the

same phase and frequency had di↵erent phases when extracted by ICA.

The success of ICA at separating signal mixtures into the original source signals was

quantified using four measures, as well as heart rate for the ECG signals. The visual

comparison were shown to be intuitive, but not quantitative. It was also found that an

energy-based measure, such as the RMSE, was not su�cient on its own to indicate how

well ICA worked. The entropy and spectral fractal dimension showed promise as addi-

tional verification measures. These two measures could work as a negative test, indicating

when a signal extracted by ICA has significantly di↵erent characteristics from the source

signals.

Probability distribution analysis of ECG signals showed that they are positively skewed,

therefore having non-Gaussian distributions, so they are suitable for use with ICA. The fetal

heartbeat was found to have the same characteristics as the maternal heartbeat, but with

the waveforms occurring at more frequent intervals and a smaller amplitude. Therefore,

the fetal ECG could be simulated using heart models created for adult ECGs by increasing

their R-wave frequency of bpm. While the ECGsyn heart model simulates many of the

characteristics of ECGs, the entropy and spectral fractal dimension calculations indicated

systematic di↵erences between the ECGsyn model and ECG recordings.

Research into current fetal heart monitoring indicated that it is performed either inva-

sively or non-invasively. Invasive methods are non-ideal as they present additional discom-

fort and risks in terms of infection. However, recent trends suggest that current non-invasive

monitoring increases the likelihood of false positives of fetal distress leading to increases in

surgical intervention. Therefore, more accurate non-invasive fetal heart monitoring does

have the potential to provide a tangible impact.

Yet, maternal-fetal ECG separation is still an unsolved problem. ICA was success-
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ful in simulated and synthetic trials, as indicated by each of the five measures, but failed

to perform as well on recorded maternal-fetal ECG mixtures. However, ICA did produce

promising results in all experiments at extracting the R-waves for fetal heart rate calcula-

tion.

7.2 Contributions

This thesis contributes to the body of knowledge on ECG modelling, the maternal-fetal

ECG separation problem, and signal separation e↵ectiveness measures. The following are

the main contributions:

(i) The thesis presents a comprehensive review on previous work in ICA and maternal-

fetal ECG separation techniques.

(ii) Suggests and tests information-based and fractal-based measures to quantify and com-

pare the success of ICA separation, in addition to the commonly used visual and

energy-based measures. The experimental data also shows that energy-based mea-

sures such as the RMSE do not fully capture whether or not the signal separation was

successful.

(iii) Identifies di↵erences between the signals produced by the ECGsyn model and recorded

ECGs. Both the entropy and spectral fractal dimension are shown to be consistently

higher in the simulated signals when compared to the recorded signals.

(iv) Adds further test cases to the body of knowledge on maternal-fetal ECG separation

to show that these signal mixtures are appropriate for separation with ICA.

(v) Identifies a gap between theory and practice for ICA separation of maternal-fetal ECG

signals. Separation of simulated, synthetic, and recorded ECGs was successful in the

cases where the source signals were known. However, the results of the experiment
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with non-invasive maternal-fetal ECGs were inconclusive although the periodic peaks

in the extracted signal were a promising indication that the fetal heart rate could be

recovered.

7.3 Limitations and Future Work

Reliable maternal-fetal ECG separation, and blind separation of signals in general, is

still an unsolved problem. In this work and similar studies, there are still a number of

limitations and unanswered questions that provide rich ground for further research.

The main limitation of ICA in the context of maternal-fetal ECG separation is the

gap between theory and practice. ICA separation was successful on the simulated and

synthesized maternal-fetal ECG mixtures, but failed to completely separate the non-invasive

recorded mixtures. Noise is likely a factor, and the type of electrical noise that is endemic to

these recordings should be studied to better understand how it might a↵ect signal separation

attempts. The experiments with simulated data assumed a noiseless system, and in the

experiments with recorded signals any noise was assumed to be inherent to the two source

signals rather than a third, additive signal. Although ICA does not rely on signal-to-noise

ratios, and is largely una↵ected by amplitude di↵erences between signals, electrical noise

may be found to be a limiting factor in maternal-fetal ECG separation.

Additional experiments could be performed to address further questions, such as the

impact of source signal frequency on the performance of ICA. Di↵erent pairs of non-invasive

abdominal maternal-fetal ECG mixtures, that were recorded simultaneously, could also be

tried with ICA.

The method of recording the ECG signals may also have a↵ected the signal separation

results. Sampling rates and signal resolutions that are acceptable for adult ECG recordings
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may not be able to accurately capture the smaller and faster fetal ECG. Further work could

assess the impact of recording fidelity on the successful sampling of the fetal R-wave peaks,

and in turn its impact on the extracted fetal heart rate.

Related to the ability to reliably and accurately separate mixed signals, is the ability to

verify that the separation has been successful and quantify how closely the extracted and

source signals match. This thesis proposed five measures to qualitatively and quantitatively

assess the success of ICA on maternal-fetal ECG separation, though there is still more

to be done. Further testing and analysis will help to verify that these are meaningful

measures, and work could be done to establish a ranking of the measures within the context

of maternal-fetal ECG separation. Other measures could also be identified and investigated,

such as the coe�cient of variation.

Finally, the ICA algorithm required that pre-recorded data be used as input. It would

be particularly advantageous for the maternal-fetal ECG separation problem, among other

blind source separation problems, to be able to separate the signals in real-time. While this

was outside the scope of this project, doing so would increase the e↵ectiveness of the signal

separation technique as a continuous fetal heart monitoring tool.
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Appendix A

Heart Rate Calculation

There were three main steps to calculate the heart rate of both the recorded and

simulated ECG signals:

(i) First, the ECG signal of interest was created in Matlab. This signal could be obtained

from PhysioNet using the PhysioToolKit rdsamp command to specify the length of

the imported signal. An ECG could also be simulated using the ECGsyn model by

setting its sampling frequency, length, and average R-wave frequency.

(ii) Next, the R-wave peaks of the ECG signal were identified. To do this, a minimum

distance between peaks and a minimum peak height needed to be manually specified.

The code used to identify the peaks is given in the disc attached to this thesis. An

example of a recorded ECG with the peaks identified by circles is shown in Figure A.1.

(iii) The time between R-wave peaks was calculated as R
i

� R
i�1 where R

i

is the ith R-

wave peak in the signal. The length of time between R-waves defines the HRV, as

shown in Figure A.2.

The average heart rate in beats per minute, bpm
mean

, can then be calculated as:

bpm
mean

=
60⇥ F

s

RR
mean

(A.1)

where F
s

is the sampling frequency of the ECG, and RR
mean

is the average length of

the RR-intervals in the signal.
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Fig. A.1: Recorded ECG with the R-wave peaks identified.
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Appendix B

Experiment Code

The Matlab code that was written for the experiments in Chapters 2 and 5 is provided

on the attached disc. This includes the source code:

• to implement the Weierstrass function,

• to visually compare two signals on the same graph,

• to calculate the RMSE between two signals,

• to calculate signal entropy,

• to calculate the estimated probabilities of a signal,

• to calculate the spectral fractal dimension of a time series,

• to import PhysioNet recordings and implement the ECGsyn model, and

• to find the R-wave peaks in an ECG signal and calculate its heart rate and HRV.

The FastICA algorithm is available online as an open source Matlab file [Hyva13].

The ECGwaveGen and ECGsyn heart waveform simulators, as well as the nsrdb and

nifecgdb databases of recorded ECG signals, are available on the open source PhysioNet

website [Gold00].
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Appendix C

Colophon

This thesis is typeset in LATEXusing a modified version of the custom template created

by Dario Schor in TeXShop version 3.11. BibDesk version 1.6.3 was used to manage the

references using BIBTEX. The body of the report is written in 11 point Times New Roman,

while the figure captions are printed in 10 point Arial.

With the exception of Figures 3.1-3.3 and the microphones of the Visual Abstract,

which are modified open source images, all figures were created in Matlab version 2010a

and saved as Encapsulated PostScript (eps) files at 300dpi.

All of the work was performed using Mac OS X version 10.8.5 with a 2.3 GHz Intel

Core i7 processor and 8 GB of 1600 MHz DDR3 memory.
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