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ABSTRACT

The main attraction of using the CPM receiver in Walsh signal space is its

simplicity. Small symbol timing and carrier phase difference between the receiver and

received signal can also effectively be synchronized in the steady-state tracking mode.

This thesis focuses on acquiring symbol timing and carrier phase using the Walsh

signal space receiver. A pilot signal enables simple and fast acquisition. The acquisition

algorithm requires more computation than the steady-state tracking algorithm but there is

no added hardware complexity. The acquisition is achieved in a two-step approach by

first approximating the carrier phase and synbol timing, and then refining the

estimations.

Sending a pilot signal seems like a waste of energy but it is justifiable in overall

robustness and for fast acquisition time. Acquisition is achieved with a relatively short

training sequence, sometimes as short as 10 symbol bits, with the proposed algorithm that

was used.
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CHAPTER 1

II{TRODUCTION

Digital communication has such overwhelming advantages over analog that it

increasingly dominates communication systems lleMeg4]. Though, computer to

computer communication is inherently digital, even analog signals such as voice and

other biological signals are being converted to digital format. Advantages of digital

communication include reduced bandwidth and greater overall system capacity. It is,

however, susceptible to errors. Generally, various coding and modulation schemes are

used as error combating techniques.

Continuous phase modulation (CPM) is particularly attractive in this regard

because its memory serves as a coding without introducing redundant symbols. CPM

also has good power and bandwidth efficiency compared to other modulation and coding

techniques. Finally, it generates constant envelope waveforms that are attractive in

applications involving nonlinear amplifi ers [GiMM99].

The major drawback of CPM is that the optimum receiver has typically a large

bank of matched filters followed by a trellis decoder [AnAS86]. Therefore, considerable

research has focused on finding a simplified CPM receiver: by reducing the number of

filter banks lKram92l, by representing CPM as a superposition of simpler waveforms



[Laur85, MeMo85], or by projecting CPM into different signal spaces [Tang98, TaSh0O].

Other research has sought to simplifu the trellis [Seve91, Lars90].

This thesis considers the receiver which projects CPM to the V/alsh signal space

[Tang98]. Typically the receiver is assumed to be coherent which requires complete

knowledge of the transmission carrier and sl,rnbol timing. Thus, either the carrier phase

and symbol timing must be precisely known or a reasonably accurate synchronization

must be established before this receiver can be used. Phase and time acquisition

techniques for CPM receivers based on the Walsh signal space are the major focus of the

research in this thesis.

This chapter briefly introduces digital communication systems and presents the

mathematical background of CPM. Research objectives and the outline of the overall

thesis are provided at the end of the chapter.

1.1 Digital Communication System

In digital communication, the information is sent by a data sequence a, a sequence

of symbols which is from either an M-ary or binary alphabet. Typically to combat error,

the signal is encoded by mapping k information symbols into n channel symbols before

modulation. Thus, n-k redundant symbols are used for error control. However, this type

of coding is not discussed in this thesis. After coding, the coded bits are digitally

modulated to accommodate the channel. A communication channel is the physical

medium that is used to send a signal from the transmitter to the receiver. In wireless

communication the medium is air, while a telephone channel employs a variety of



physical media. Regardless of the media, the transmitted signal, x(r), is comrpted in a

random manner by a variety of possible mechanisms, such as additive thermal noise

generated by electrical devices, man-made noise such as automobile ignition and

atmospheric noise such as electrical lightening during a thunderstorm. After the signal

has passed through the channel, the comrpted received signal r(t) can be written as

r(t)=a x(t)+n(t) (1-1)

where, n (r) represents the additive noise and ø represents the attenuation factor. The

most common comrption is a thermal noise which is generally characterized as Additive

White Gaussian Noise (AWGN) with power spectrum density *"/ (V/ans/Hz) where

N6 varies in different channels. This is the noise model used in this thesis, with the noise

denoted as w(r).

A general model for the digital communication system is shown in the following

figure.

Figure 1.1 The digital communication system model.

Usually, the power and bandwidth effrciency as well as the accuracy of the

recovered signal determine the performance of the modulation scheme. Generally, the

Signal to Noise Ratio (SNR) is the key factor in improving the accuracy of the detection.

SNR can be improved by increasing the po\¡/er but SNR is subject to the physical



limitation of the equipment and to cost limitation. Although power efficiency and

bandwidth efficiency are usually contradictory requirements, CPM is a modulation

method that is both more bandwidth and power efficient than its predecessors.

1.2 Digital Phase Modulation

Digital phase modulation (PM) has a constant envelope, a property that is

attractive in many communication systems. In PM, the information is carried in phase of

the signal. The following equation expresses PM

x(t) = ff "orfztr f"t 
+q(a,t)) (1-2)

(1-3)

wheref is the carrier frequency, Zis the length of a symbol time interval; E is the

energy expended during the period T and a is the M-ary data sequence from M-ary

alphabet, {0,1,...(M-1)}. If the information phase e(a,t)is defined as

2n
e(a,t) = M 

o,

for n¡¡ interval, [nT, (n+1)T) when a,, e {0],...(M-1)} is the data symbol, one has the

special digital phase modulation called Phase Shift Keying (PSK). When M:2, it is called

Binary Phase Shift Keying (BPSK) and when M:4, it is called Quadrature Phase Shift

Keying (QPSK) (see Figure 1.2). PSK is an attractive modulation method because it

employs rather simple techniques both for the modulation and demodulation while

offering constant envelopes and power efficiency. Generally, /l is much larger then llT



but in the Figure 1.2 f , is set equal to I lT to clearly show the discontinuities in the

modulated signal.

Baseband Signal Baseband Signal

1" ---
l

s(t)o.s :

0
0:

s(t)

1

01234
time [t/T]

Transmitted Signal

01234
time [VT]

Transmitted Signal

23
time [t/ï]

Figure 1.2 PSK and QPSK Signal

Though PSK is relatively power effrcient, it has poor bandwidth efficiency

because of the discontinuities at the interval boundaries as seen clearly in Figure 1.2. The

maximum derivative of the signal determines the bandwidth and whenever there are

discontinuities the maximum derivative goes to infinity. To examine this problem more

closely rewrite equation (1-2), using equation (1-3),

01234
time [t/T]

x (t) = fflr, - "D 
*,(# o,,)" o 

"(2. 
of 

" 
ù - p (r -,D "i'(# o,,)"in(2,f , ùf e - 4)



where, p(t)is called a shaping pulse.

For BPSK or QPSK (or in general m-PSK), it is defined as:

(t o<r<Tp(t)=1^ ,7 . (l-s)
l0 otherwise

Clearly, the discontinuity lies within the shaping pulse. Thus, one can reduce the

bandwidth by changing the shaping pulse to be wider and/or to be continuous. However,

making the shaping function wider causes inter-symbol interference and changing the

rectangular shaping function into other shapes causes the constant envelope to be

distorted.

1.3 Continuous Phase Modulation

Continuous Phase Modulation (CPM) was introduced to make syrnbol boundaries

continuous while keeping the envelope constant.

The discontinuity comes from the shaping pulse as can be seen from equation (1-

4). Changing the shaping pulse ¡z(r - nT) will cause inter-symbol interference. Thus,

instead of using the shaping pulse to change the envelope of the modulated signal (hence,

minimize the discontinuity), a phase smoothing function can be used to reduce the

discontinuity. Furthermore, memory could be introduced in the phase to create a coding

effect.

To see how this is accomplished, rewrite Equation (1.2) in complex notation

x(a,,,t) = Re{s(a,, ,t)exp(j2nf,l} (1-6)



where,

e(ù,,,t) = 2n lh,a,qQ - fT)
i=-ø

(r-7)

is the complex envelope of the transmitted signal x(a,,,t)relative to frequency/; E is the

energy per symbol; T is the length of sy.rnbol interval; â = (..., d_1,as,a.,...) is the

transmitted data sequence with o, . {tl,+3,...,!(M - t¡}. fne phase e(^,,r) with

Ã, = (...an_,.an ) bears the information which is written as

nT<t<(n+I)7. (1-8)

(1-e)

It can be seen from the above equation that the phase, g(a,,/), is determined by

all the bit information up to nth bit information. In equation (1-8) å, is the modulation

index and takes value from the set {h",h1,...,12¡7-1}cyclically. Although ,h, canbe any

number, for practical reasons it is a rational number less than 1. For H:l, the scheme is

called asingle-h and for H>l, it is called multi-h where H is a small integer. Multi-his

known to be an effective approach to increase the power efficiency over single-h; the

price paid is the added complexity of the receiver. q(r) is the phase smoothing function

which is also called a phase pulse.

The phase pulse, q(t\is restricted as follows:

I o r<o
ø(t)=\tt2 t> LT

To have a continuous phase, q(r)just has to be a continuous function. However, to

increase the bandwidth efficiency, q(t) should have the smallest maximum derivative

possible. Furthermore, a q(t) which has more higher derivatives before encountering an



impulse is known to be more bandwidth efficient. Two common examples of q(t) are

LRC and LREC. If L: I , it is called full response and if L>l it is known as a partral

response. Partial response is one way to reduce the bandwidth requirement but it is not as

power efficient as the fulI response system. LREC and LRC are described by the

following equations with plots of them shown in Figure 1.3.

LREC:

q(t):{,,rrl
jrz

t<0
0<t <LT
T> LT

(1-10)

LRC:

(1-11)

It can be seen from the equation (1-11) and the plot of Figure 1.3, that partial response

(Þ1) will have a smaller maximum derivative and that LRC can be differentiated more

times than LREC before an impulse function occurs.

i o t<o
llt¡ 1 2zr1q(t)=1;ln--sin u,) 0<t < Lr
t'
lt/z t > LT
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Figurel.3 Examples of LREC and LRC CPM phase pulses.

1.4 Objectives of the Study

CPM has been the focus of much research interest because of the many attractive

features such as high efficiency in power and bandwidth. Despite this, its current usage

is limited to simple schemes such as MSK (Minimum Shift Keying) only. The reason for

its limited usage always has been the complexity of the demodulation and the receiver

design. Considerable research has been dedicated to finding a simplified solution for the

receiver design. A typical coherent receiver requires reasonably accurate

synchronization. Tang's research [Tang98] focused on the steady-state tracking aspect of

the synchronization using Walsh signal space. In the steady-state tracking mode it is



assumed that reasonably reliable clock, carrier and data value have been established. The

synchronizer then needs only to track small changes caused by channel and/or the

transmitter drift, and to combat noise.

This thesis is an attempt to broaden Tang's synchronization technique to the

acquisition mode which occurs when the receiver is first turned on. During the

acquisition-state the synchronizer needs to be locked on to the symbol clock and carrier.

The symbol and carrier frequency is rather easy to obtain and assumed to be known. This

thesis focuses on acquiring symbol timing and carrier phase using the Walsh signal space

receiver.

l.SOutline of the Thesis

In Chapter 2,the basics of the optimum CPM receiver, as well as the sub-

optimum receivers using a different signal space are discussed. Also, this chapter

introduces the trellis and Viterbi algorithm. Next, Walsh functions are introduced and the

advantage of using Walsh signal based CPM receiver structure. Chapter 3 deals with

data-aided bit time and carrier phase acquisition techniques. Performance evaluation of

acquisition of the time and phase error is given in Chapter 4. The minimum length of

training signal and the signal requirements are discussed. Finally, the conclusion and

suggestions for further research are presented in Chapter 5.

10



CHAPTER 2

CPM RECEIVERS

Although, there are two basic types of receivers, a coherent and non-coherent

type, only the coherent type is discussed because the non-coherent receiver has poor

performance for CPM.

A typical optimum receiver has a bank of matched filters to generate the sufficient

statistics, followed by a trellis decoder. The trellis decoding depends on the criterion

used. Two common ones are MAP (maximum a posteriori probability) symbol detection

where the decision is made on a symbol-by-symbol basis, with each symbol decision

based on an observation of received data sequence and MLSD (Maximum Likelihood

Sequence Detection). MLSD is more commonly known as MLSE (Maximum Likelihood

Sequence Estimation). Both, MAP and MLSD can be used to decode a signal with

memory, but the only the simpler one, MLSD, is discussed in this thesis. In general, the

optimum receiver, in MLSD sense, for CPM is not practical because of its complexity in

receiver design, in particular, alarge matched filter bank. This chapter provides the basic

concepts behind optimum and simplified sub-optimum receivers.

1l



2.1 MLSD Receiver for CPM in an AWGN Channel

The received signal, comrpted by noise, can be written in the baseband as

r(t¡ = s(r) + w^(t) + jw,(t) (2-1)

where the noise is Gaussian and has independent real and imaginary components, w*(t),

and w, (r), each with spectral density of No/2 and the signal is

(2-2)

0 and t are carner phase and time uncertainty in the received signal and a is the data

sequence. It is assumed that the receiver knows the carrier frequency f, and s¡rmbol

period Z. To determine the likelihood function, discretize the waveform by sampling r(l)

every { seconds. The samples,r(k), are

r(k): 
Æ 

explj(O + e @;kT, -t )l +.^ (k) + jw,(k) k:0,1,2,.... (2-3)

where, w^(k) and w,(Æ) have the same vartanceo,,' = (No l2)/T,. Over the time

interval corresponding to N symbols, sequence r(Æ) has N x Loelements, where Zo is

T lT,. This set of sample is used to express the likelihood function as:

-{-*ï'1,,0, Æexpetã +e(a,kr,-v)tl } ,, o,

| 2o,,- -o* I ìl .¿ I J

s(r) = E explj(o + e @;t -r )).

t2
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ã and V in (2-4) represent the estimated values of á and r . Si

function is a monotonic function, one can take the natural log o

equation and drop any constant multipliers. The likelihood eq

Â, (r I ^,ã 
,7¡= 'î'lrro, - ,Æ "*o(ilã 

+ cp(a;kr, -
Ëõl \ r

Minimizing equation (2-5) is equivalent to minimizing

nt.tl 6tr
A, (r I u,ã,v¡ = å l',0, 

- l" expQlã + rp(a;kr, -r)

(2-7)

(2-8)

(2-e)

(2-r0)

NT NT.D NT 6F t - ì

llrqt¡l' dt + I ?d, - l rrl*neþ{r) expelõ + e@;t -Ðl)Þto dr d\/r
The first two terms in equation (2-8) are not dependent on ã and V . Furthermore, they

are independent of the data sequence. The likelihood equation can be written as follows:

A,(r I u,ã,V¡= fn"{rrrl s(a,ã,t -r¡þt
0

Letting { -+0 gives

Expanding the right hand side yields

where,

13

6F
s(a,O,t -V) = l; exp(jl? + e@;t -V)l



Since a negative constant -2 was dropped in obtaining equation (2-9), one needs

to find the data sequence of a that maximizes the likelihood function value, i.e., find

NT

ã = max [n"{'rrlrt u,ã,t -ÐÞt e-tt)aJ
0

where, ã is the data sequence which maximizes the above likelihood function.

According to equation (2-11) to recover the data sequence with a reliable accuracy, the

time and phase uncertainty should be estimated with reasonable accuracy prior to MLSD

symbol detection.

Computing the log-likelihood function for all possible a is not practical since the

possible number of sequences of a grows exponentially with its length. However, if the

signal has a trellis representation, then the Viterbi Algorithm can be used to simplify the

search.

Equation (2-9) can be rewritten as

NT / \ ,v-l
L"(a,,ã,v) = Jneþ{r) s(a,ã,r -Ðfu :lBM 

"7a,,¡

(2-r2)

where

(r+l ) ?"

BM,(a,,¡= jn"{"e)s@,ã,t-r¡þt e-13)
ttT

BM 
"(a,,) 

is a branch metric that can be used by the Viterbi Algorithm.

t4



2.1.2 Trellis

As seen in Chapter 1 the CPM signal in the interval, nT < t < (n + 1)Z is

determined by the phase function cp(a,,,t). It can be written as:

e(ã,,,t) =0 ,,+2tr ilr,o,qçt - if¡ nT < t < (n +I)T (2-14)
i=n-L+l

where, á,, is

n-L
0,,= ftZh,o, (2-15)

i=-ø

Thus, in the n6 time interval the CPM signal is determined by

ø(n) = {0,;o,_r*r,...,ãn-2,a,_t} Q-16)

and the current symbol a,,.

From the above calculations it can be concluded that a CPM scheme has a trellis

representation if 0,,has a finite number of possible values. This is so if á,, is created with

a finite set of modulation indexes {ho,hr,...,ho_r} which are all rational numbers

[Weyi98]. Then, the number of trellis states is a fixed number

s = pMt-, (2-17)

where p is obtained from the set of modulation indexes {qo I p,Q, I p,...,Q r_, I p} , p can

be any positive integer as long as the greatest common divisor of the set

{80, 8 t,"', Q a-t,P} is 1.

l5



A full response phase smoothing function with single-llwith modulation index

f createsone of the simplest trellis representations. Figure 2.1 is an example of the

phase trellis representation for binary fuIl response scheme withh:112.

0.5r

0n

2.1.3 Optimum Receiver for CPM

The MLSD CPM receiver requires the computation of the branch

metric, BM,(a,,), in each symbol interval. By substituting equation (2-14) into equation

(2-10), equation (2-13) can be rewritten as

(n+l)I

BM ,(a,.(n)) = Re{siã" tr@h(a,.(n),t)dt}
nT

where, a,,(n) = (a u_ut,..., a u_', a,,) and

(2-1 8)

h(t,a, (n)) = 
"*o( ¡ro fn,a qç,- ã -,Dl

\ ¡=r-L+l )
(2-1e)

16



There arc M I' different functions h(a,.(n),t) for any n'h interval. Denote this set of

h(a,,(n),r)possible functions as{h,(t), hr(t), ... ,hu,.(/)}. It follows directly from the

equation (2-18) that the most general form of the optimum MLSD receiver for CPM is as

shown in Figure 2.2.

Figure 2,2The optimum MLSD receiver.

It requires ML complex matched filters followed by samplers which sample at

the end of each interval. To implement Figure 2.2 dîectly in practice, 4 M L ftlters are

required. However, since every sequence ã, has a corresponding sequence with a reverse

sign, only 2 MI'matched filters are required. However this still can mean a fairly large

number of matched filters for partial response, M-ary CPM. For example, an optimum

receiver for quaternary, 3RC with h = f rcquires 128 matched filters. Additional

difficulty exists for multi-,Ël schemes. Equation (2-19) shows that the set{h(t,ã,,(z))} is

different in different intervals for multi-fland there are lldifferent sets of {h(t,ã,,(n))} s

appearing cyclically. Thus, it is desirable to have a simpler sub-optimum receiver. The

next section discusses the sub-optimum receiver in signal space.

Multiply by
the phase 0n

and take the
real part

Trellis
Decoder

ht(t)

17



2.2 Receiver in signal space

Let {r7oQ),k =O,I,...K -t} be a subset of orthogonal basis functions of a complete

signal space for all the possible transmitted baseband signals s(ã,t -7) when t .fO,f).

This space will be called the transmitter signal space and its basis functions are defined

over the time interval [0,T) and are zero outside this range. According to Parseval's

theorem the branch metric, BM,(a,,ã,V), of equation (2-13) can be expressed in terms

of {ry*(r)} as:

(2-20)

where

(n+l)T

t o(ã ,t -V) = [s1ã ,t -V)rt rQ - nT)dt (Z-2t)
nT

Though any basis set can be used, the set of Walsh Functions is particularly attractive due

to its simplicity. Let wo(t), k = 0,7,...,denote the Walsh Functions defined over the

time interval [0,T) where index Æ is expressed in the binary form as

D-l
¡t =\kozo (2-22)

cl=0

tco e {O]}and kr-, * 0. The Walsh functions are given by

wrQ)={#il""[""'(0, '' " +))
lo

o<t<T 
e-23)

otherwise

r( -l ( tnn)r ì
BM,(a,,,ã,7)= In"] t;(ã,t -v) lr7)rto7 - nDùl

k=o l. ,,i )

where sgn(x) is defined as sgn(x): l,if x > 0, sgn(x):-1 ifx<O.
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The first eight Walsh functions are shown in figure 2.3.

1t^lT
woQ)

-U Jr

1t Jr
w,(t)

-1t Jr
II JT

wr(t)

-1t Jr

UJf
w'(t)

_1IJT

1t Jl
wo(t)

_II JT

w,(t) t l Jr

-U Jr
woQ) 

t t J-r

-v Jr
1t Jr

wr(t)

-U Jr

Figure 2.3 The first eight Walsh Function

Equation (2-21) becomes

(r+l)I

,içã,t -v): ts{ã,t -v)wt Q - nT)dt
nT

(2-24)
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Consider the first K Walsh functions. The time interval l0,T] can be partitioned

to K subintervals. From, equation (2-23) one can see that all the basis functions are

constants ill JT . Let the subinterval be indexed by m:0,1,. ..J<-1and denote the value

of wo(r) in the mthsubinterval [mf l K ,(m +Ðf l K) aswr(m) .

Then,

(2-2s)

where the coefficient If JT has been dropped.

The following tables show w* (m) for K:2 and 4 respectively.

Table 1. The value of wo(m) lor I{=Z

m- 0 I

k:0 1 I

k:l 1 -I

(n+l)T

In Walsh Space the sufficient statistic r* (n ) : trØrt rQ - nT)dtbecomes.
nT

K-l
rt,(n) =Z*r@)V^(n) (2-26)

m=0

w r (m)= 
fr 

,r"[.",[o, r' "((*. ;) å)))

Tabte 2. The value of wo(m) for K:+
m- 0 1 2 3

k:0 I I I I

k=1 I I -1 -1

k:2 I -1 -1 I

k:3 I -1 I -l
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where,

nT+Qn+l)T / K

v,(n) = þf,>0,
nT+mT / K

(2-27)

This shows that only two ordinary integrate-and-dump filters, followed by a

sampler, which samples the output at a faster rate (K times faster), is required.

The resulting structure is shown in Figure 2.4.

K samples/T

sin(2r f,t)
Figure 2.4 Structure of the sub-optimum receiver in Walsh signal space.

Simplicity is the most important benefit of the sub-optimum receiver in V/alsh signal

space shown in Figure2.4. This simplified receiver requires a reasonable synchronization.

The next chapter is a discussion ofsynchronization techniques. Synchronization is

especially important when the receiver is first turned on, which is known as acquisition.

'When 
the receiver is first tumed on, the symbol timing and carrier phase difference

between the receiver and received signal is usually too large for the receiver to detect the

data sequence reliably and a linear assumption which would simplifu synchronization is

not valid. The next chapter focuses, in particular, on the acquisition process.

Trellis
Decoder
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CHAPTER 3

ACQUISITION

3.1 Introduction

Synchronization is a problem for all digital communication systems. It requires

knowledge of four things: carrier frequency and carrier phase, symbol (or bit) frequency,

and symbol timing. In most cases, the carrier frequency and symbol frequency are easily

determined.

There are several methods of synchronization. One way to solve this problem is to

send a reference signal separately from the modulated signal. But this solution wastes

power and/or frequency spectrum. Besides, additive noise in the channel will cause a

distortion in the signal making it undesirable to be used as a reference signal. When

separate transmission is not feasible, the receiver usually must recover the symbol clock

and carrier, from the received signal.

When the received signal is used, there are two approaches to synchronization -

data-aided [HuLi92], [Tang98] and non-data aided [AnMM96], [MoMV97]. Data-aided

synchronization is reasonable only if the data can be approximated with good accuracy or

the data is known. In order to approximate the data with some accuracy, the symbol

timing and the carrier phase uncertainty should be small: r << T and 0 << 2tr , typically
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the error should be less than I}Yo. For this reason data-aided synchronization is a good

approach for steady-state tracking. In tracking, only small changes to symbol timing and

carrier phase, to combat slow drifts caused by additive noise, by channel andlor

transmitter drift, are required. However, for acquisition, r and 0 are usually too large for

reasonable data estimation. Thus, a non data-aided approach should be used or a known

data sequence should be transmitted.

CPM is a very attractive modulation scheme but the extent of its future usage will

be dependent on the receiver design and efficiency. Synchronization is a required step

toward better CPM receiver designs. As discussed in Chapter 2, various CPM receivers

have been designed. The Walsh signal space receiver developed by Tang [Tang98] is an

improvement from previous receivers since it performs well with CPM signals with

reasonable complexity. This receiver also provides for a reasonable implementation of

synchronization, particularly in the tracking mode. The receiver performs well in steady-

state tracking but not for acquisition, since a linear approximation is used in the

synchronization.

The CPM signal is non-linear with respect to the symbol timing and carrier phase

difference between the receiver and the received signal. Thus, a linear approximation is

valid only over small interval segments of the parameters. In steady-state tracking, one

assumes that symbol timing and carrier phase differences of the received signal and the

receiver clock are relatively small (r << T and 0 << 2tr ), whereas in acquisition, the

clock offset, r , can be comparable to a symbol period and the phase can be anywhere in

the range of 0 to 2n .
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Let us consider acquisition. For acquisition, using the non-data aided approach

Andrea at al [AnMM96] suggest a joint carrier phase and symbol timing recovery by

treating the data symbol and carrier phase as nuisance parameters. This method performs

well, but the algorithm is complex and is difficult to implement.

Instead of approximating the data or treating it as a nuisance information, one

could send a known sequence and utilize this information to stabilize the clock

synchronization. Although sending a known sequence for acquisition purposes may

waste porù/er, it is justifiable for the overall robustness of system. It is common practice to

use a pilot signal for the acquisition purpose, especially for those systems where the

accurate time synchronization is demanded, such as in TDMA system [YuGe99].

Sending a known sequence is justified in terms of accuracy and speed of the acquisition.

The acquisition, proposed in this thesis, also uses a pilot signal. Using the pilot

signal, one can estimate the symbol timing and carrier phase discrepancy between the

receiver clock and the received signal in two steps. First, detect in which interval the

parameters lie. As mentioned earlier, the linear approximation is only valid over a small

interval. Thus, the interval size should be relatively small compared to T for symbol

timing or to2n for carrier phase. The exact interval size will vary with the signal types.

Then, after detection of the interval, a linear approximation similar to the synchronization

technique described by Tang is used.

After acquisition, the synchronizer works in the steady state where the only small

changes, due to channel transmitter drift and channel noise, need to be estimated. Further,

once acquisition is established, one can estimate the data sequence with reasonable

accuracy to use it for the data-aided tracking.
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This chapter presents general issues associated with sSrmbol timing and carrier

phase synchronization. The tracking method for small discrepancies in symbol timing and

carrier phase is discussed first. Then, the acquisition method is presented.

3.2 Estimation

In baseband, the received signal with a complex envelope before synchronization can be

written as

(3-1)

where n (r) denotes the baseband noise, á is the phase difference between the carrier of

the transmitted signal and the local oscillator of the receiver, and t is the symbol timing

difference between the transmitter and receiver. During the acquisition period, one

cannot assume that 0 and r are bounded to a certain limit. However, for bit

synchronization one only needs to fìnd where the symbol boundaries are made. Thus the

natural interval for symbol timing difference between the transmitter and receiver lies

within the interval - T / 2 < r < T / 2 . The carrier phase difference between the carrier of

the transmitted signal and the local oscillator is limited to 0 < 0 < 2n .

In the proposed acquisition method, one must detect in which interval the

parameters lie first, and then using this information estimate the discrepancy between the

symbol timing and carrier phase of the receiver and the received signal. However, the

estimation method, where it is assumed that the discrepancy is small, is discussed first.

r(t) = s(t,a,r,0) + n(t¡: ff"" n"G't-t) * n7¡¡
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This section deals with estimation of the symbol timing and carrier phase

differences between the received signal and the receiver when these differences are

relatively small.

The correlation log-likelihood function (2-I2) is now in the following form,

(¡trì
L,(e,e) = Re] ,-iot lrQ)r-io(a't-t)¿,f = *.1n-" Z(a,r)\ (3-2)

[dj
where the data sequence, a, is assumed to be known

Z (a,r) : !rQ)e- 
i'(^'t-r) dt

o

(3-3)

One can either find a pair of 1î,0¡thatmaximizes the function (3-2) or average out one

parameter and find theB or á which maximizes the function (3-2). According to equation

(3-3) the phase uncertainty is independent of Z(a,z) . Thus, the maximum likelihood

estimate of the phase is simply

o = arylZ@,Ò] Q-4)

Z(a,r) is relatively easy to find when the Walsh signal space approach is used, so

r is usually considered first.

The next subsections present two different methods of estimation. One can either

assume that one variable is known and estimate the other variable or estimate both

variables jointly.
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3.2.1Separate Ml-estimation of Carrier Phase and Symbol Timing

One can assume that one of the variables is known and estimate the other

variable. Although this is not a very practical assumption, it is a good way to illustrate

Ml-estimation principles. First, let's assume that r is known.

To make equation (3-3) more manageable, one can approximate the mapping

Q(a,t - t) by using a Maclaurin's series with respectto r, an approximation that works

well for small r . Retaining only the first two terms of the mapping one has

e(a,,t -r) = e(a,,t)-Lty(a,,,t) (3-5)

where,

v/(a,,ù:- + fn,o,¡r1t - rr¡ (3-6)
L ¡=î-ut

and,

I t for REC
PU) = {r.tn' (nr /L\ for<C Q-7)

The details of the approximation are given in the Appendix.

Using equations (3-5), (3-6) and (3-7) one can approximate equation (3-3) by

z,(a,r)= Ï 
t"Ït 

r(t)s-ivl"'rt 
"iiv<^"''t 

o, (3-s)
,¡=0 nT

where Z"(a,r) = Z(a,r). Although, Zo(a,r) is still difficult to evaluate it allows a

fuither approximation as shown by the following equation:
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j:u/(^,,.t) . Te'r"" =l+j¡w@,,,t) (3-9)

This approximation is helpful to obtain an explicit solution for the estimation r . The

objective function, Z,(a,z), becomes

z"(a,r)=8r,",,)*i+,Zrr^,,) (3-1o)
l=0

where

(3-1 1)

(r+l)

C(a,,): !rçtlp-i'<",,'Òty(a,,,t)dt e-ll)
nT

Clearly (3-10) is computable with the error caused by the approximation depending on

the size ofr . Though B(a,,) and C(a,,) are still difficult to compute by a traditional

approach, using the Walsh signal space approach enables the computation. According to

(3-a) the phase is def,rned asarg(Zça,r¡). thus, using Z,(a,r) as an approximation for

Z(a,r) the phase can be approximated as,

(r+l)

B(a,,) : !r{t¡e-i'ø"''> n,
nT

where

e =*e(n,ø¡* iîc,(")) (3- 13)

N-l

4(a) = IB(u,) (3-14)
l=0

N-l
C"(a) :LC@,,) (3-15)

n=0
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Now, assume that the phase uncertainty is known. To determine the r estimate,

take the derivative of the correlation log-likelihood function (3-2).Setting it equal to zero

yields,

n"{"-" !r@,r)} = o
ldr)

Approximating Z(a,e) , using Z"(a,t), the derivative can be calculated as

!26,t¡' 
d = '^ -' 't Ï'"j), tþ-øra"'t¡"|"G"'Òrvça,,,Í)

dr-,--, ,= drza\^,r)= JT 
n=o nr

Approximating the equation (3-16) using (3-8) yields

fr z.(a,r) =, + [ä 
t, 

^,,) 
+ i îEro,,rf

, l^þ-"c"(u)Ì
ry-....g

T Reþ-/'D,(a)]

where

(r+1)

D(a,,) = !rçt¡"-i'ø"''),y' (a,,,t¡dt
nT

It is important to note that the approximation becomes optimum when r -+ 0 .

Solvins for L vieldsT-

(3-16)

(3-17)

(3-1 8)

(3-1e)

(3-20)

(3-2r)

where

r'r'-l

D,(a): IP(u,,)
r=0
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3.2.2 Joint Estimation

In a real situation, it is not reasonable to assume that one or the other variable is

known, especially in the acquisition step where one cannot assume that error was initially

limited to a small range. However, upon closer examination of the correlation log-

likelihood function, one finds that the magnitude of the log-likelihood is solely dependent

on Z(a,e) . Since Z(a,t) is not a function of 0,thejoint estimation of (t,0\ can be

found in two steps by finding r which maximizes lZça,r)1. Note that the r which

maximizes lZça,r¡l' = Z* (^,r)Z(a,z) will also maximize lZ@,r)1. Therefore, taking the

derivative of Z. (a,r)Z(a,r) with respect to r and setting it equal to zero yields.

Z (a, r) 
q#t 

+ Z. (a, r' !z*Ð

However, since the first and the second terms of (3-22) are complex conjugates,

true if

n"{z-{u, ngz*Ð}:o

Again using the approximation Z"(a,r) = Z(a,r) and f t,(a,r) = !. Zçu,r¡,

(3-23) can be rewritten as following

n"{z"ru, ,44*9}=o

(3-22)

(3-22) is

(3-23)

(3-24)

Substituting (3-10) and (3-17) into equation (3-24), one will have a quadratic function of

| . Ho*.uer, it has been shown [Tang98] that for 1..1, further approximation will notT'T
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compromise the performance too much. One can further approximate the 
"'l'''^"''' 

u" I

for Z)@,2) while still using the approximation (3-11) for the second part. Thus, equation

(3-24) can be approximated as

Solving for

(r^,, \*
t'n]f Is(u,,) ì

|.\,=o )

yields

(àr,",, )* i+ 
,Zoru,,,)Ì= 

t (3-2s)

(3-26)

(3-27)

T

T

T

T_

Applying equation (3-4)

e =*e(n,@)+ iîr,rr)
Each of the approximations made compromises to the accuracy of the estimation.

However, the purpose of these approximations is not to get the exact value of the

parameters, but to get a reasonable estimate in order to make the receiver function

efficiently.

I-taJ (a)c, (a)

ne{rl1a;4,1a¡
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3.3 Detection

The previous section discussed estimation of symbol timing and carrier phase

estimation over a small interval. This section deals with how to bring the parameters into

the estimation range.

For this thesis, a pilot signal, x(r), is used during the acquisition period. The pilot

signal used in this thesis is an antipodal signal. For an M-ary signal it will be {a,-a,a,-

a,a,-a,a...) where a e{I,3,....,M}.For conveniencc, e= 1is chosen. The antipodal signal

has the maximum number of symbol transitions compared to other data sequences of the

same length.

3.3.1 Preliminary Carrier Phase Estimation

'When the antipodal pilot signal is used, the baseband phase function without

noise is further restricted to 0o < rp < anh I 2 + ?ofor single h. For binary signals with

h:ll2 the phase function limit is 0o 3 ç < n I 4 +á0. Thus, if the phase of the baseband

CPM signal is restricted, then the estimation of e 
"unsimply 

be calculated as,

ê:ran.' fr**tr# - E{arg(x(t))} (3-28)

where x(t) is the pilot signal and E{arg(n(/))} can be calculated and stored since one has

prior knowledge of the pilot signal, x(t). Phase uncertainty can be estimated without the

knowledge of time uncertainty since the time uncertainty does not affect the average

phase of the periodic signal. Also, attenuation does not affect the average phase.
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Examine equations (I-6,1-7 and 1-8) again. The envelope is determined mostly by

the carrier frequency since the carrier frequency is much higher than any phase change or

instantaneous frequency change caused by the information bits. Thus, restricting the

baseband phase will not affect the constant envelope feature of CPM.

3.3.2 Symbol Timing Detection

When the receiver is first turned on, the time uncertainty is not bounded to any

time interval. Since the memory of the CPM serves as coding, it is important to find the

time uncertainty beyond the natural symbol bound. The pilot signal here is dependent on

theprevious symbol only, so thetimeuncertaintyinterval becomes -T <r <7, which is

larger than natural symbol bound, -T l2 < r <T l2, although it is still restricted.

To account for this the likelihood equation (2-12) should be examined from a

different perspective; the unknown variable should be the symbol time and carrier phase

difference between the receiver and the received signal, r and 0 .

The maximum likelihood estimate of r and 0 are then determined from the

following likelihood equation.

î,ê =maxl\oQla,c,0)= mqx fn*{r1r¡"1" ,0,t -r)dt\
r.o t'a 

ô'

(3-2e)

A straightforward approach to determin " þ,Alis to exhaustively evaluate t\oQla,r,0)

over the range of {r, d}values.

However, exhaustive evaluation is not practical. An alternative way to achieve

this evaluation is to divide l-T,T) into small intervals and detect in which interval the
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symbol timing lies. Ideally, the maximum likelihood value of the equation (3-29) should

lie within the detected interval. Figure 3.1 shows how f-T,T) can be divided into 2J

intervals. 0 can be evaluated without using the likelihood equation as shown in the

previous section. The X marks the midpoints of the intervals. The midpoints of the

intervals represent approximate value of all the other points in the interval.

-r +{
2J

Figure 3.1 The subintervals

Accuracy of the estimation is largely dependent on interval size. Thus, the number

of intervals is determined by the maximum range over which the linear approximation is

reasonably justified and by how much error can be tolerated. The approximate value of

symbol timing is detected by testing the likelihood function (equation 3-29) withdifferent

V, from the set of the midpoints of each interval,

( 
-) -1 1 -1 ì

V, . 1-T,...,:7,-.f ,0,-f ,...,7 - _ f I . -T and Zis considered to be the samet r J "J J )

point since the pilot signal is antipodal.

Then,

NT

r = î =maxÂ, 1rla,V,0)= m-ax'1n.{"trlrt u,â,t -Ðdt}- î, ¿r¡ ' 0 (3-30)

)#
T

I _-
2J

3T

2J
T
2J

3TT
2.1 2.r

T

2J
T

where i: -J,-J +\,...,0,7,2,3,...J -7
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I l ^1 ^l
I -j + î. - +r l. Figure 3.2 represents the ideaì situation. Fromthe set of I thel2J '2J )

Ideally, the true value of the symbol timing,z, should lie in the detected interval,

midpoint of the detected interval, f , should be closest to e .

True Value

1r
J

Detected value

^1T--
J

t- Detected Interval

Figure 3.2 Detected Subinterval

If the true value of ø does not lie in the above interval, it is most probable to be in

the intervals adjacent to it, [-] -: * î,-+*l * t) or t1 -+ * t,! *l + f). lrJ 2J J 2J 'J 2J 'J 2J

the symbol timing does not lie in the detected interval or the intervals adjacent to it,

estimation based on linear approximation is likely to fail.

Unless -/ goes to infinity, there is an inherent error associated with detection. If

the r lies in the detected interval and one assurnes that the symbol timing lies with equal

probability anywhere in the interval (which possible only in noise free environment), then

the rms error of discrete detection is + ,which implies that in general rms error ofJzl' r

discrete detection is greater tn^ L. Hence, one needs to tighten the rms error margin
Js¡

by estimation, using a linear approximation discussed in previous sections. The next
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chapter will illustrate how the detection and estimation can be established in Walsh signal

space.
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CHAPTER 4

IMPLEMEI{TATION AI{D PERFORMAI{CE

Acquisition is required when transmission begins. Acquisition is only an issue for

a short period of time, but without successful acquisition the coherent receiver cannot

function.

The last chapter discussed the need to differentiate between acquisition and

steady-state tracking. The mathematical background of the steady-state tracking

algorithm was discussed in detail and discretization of the parameters into intervals was

introduced. Within each interval, a linear approximation can be used. Thus, one can

estimate the symbol timing and carrier phase using a two-step approach in the acquisition

stage. To find approximately where the syrnbol timing and carrier phase lie, one can

divide the symbol time and phase range into fìnite intervals and detect which interval the

parameters lie in. However, finding an approximate value of one parameter and detecting

which interval the other parameter lies in with knowledge of the approximated parameter

will reduce the computation significantly. Since the symbol timing and carrier phase have

non-linear relationships with each other they cannot be completely decoupled.

Nonetheless, one can approximate the carrier phase without the knowledge of the symbol

timing if the pilot signal is chosen to restrict the carrier phase range. Using the

approximate value of the carrier phase, the slmbol timing range can be divided into finite
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intervals. Then one can detect which interval the symbol timing lies in. After the interval

is determined, one can further refine both the symbol timing and carrier phase estimate

using a joint-estimation method. The joint-estimation method is also used in steady-state

tracking stage.

This chapter discusses how the interval size and the length of training sequence

are selected. Since it is intractable to obtain analytical solutions to the above questions,

simulation is used to evaluate the acquisition algorithm.

4.1 Step One: Approximation

The first step for acquisition is approximation and there are two parts to this step:

the initial phase approximation and symbol timing interval detection. This section

discusses these parts of the approximation in detail.

4.1.1 Initial Phase Approximation

The carrier phase estimate can be made rather easily since the samples of the real

and imaginary part of the signal are available from the sub-optimum receiver, which uses

integrate-and-dump filters followed by samplers, in Walsh signal space (see Figure 2.4).

The carrier phase of the received signal is the difference between the average phase of the

received signal and average of the pilot signal phase.

It is also possible to obtain the carrier phase average by taking instantaneous

samples without using the sub-optimum receiver, and taking the inverse tangent of the

38



real to imaginary signal ratio. Taking discrete samples introduces inherent error.

Approximately 4 to 8 samples per bit for 2T where T is a bit interval for any periodic

signal with period of 2T is sufficient to get the phase offset estimation limit below 15%

when the signal is noise free. For a signal with additive noise, more frequent sampling of

a longer sequence is required.

For the reasons discussed above, the first method of the carrier phase is more

attractive and is the method chosen to be used in this thesis.

4.1.2 Symbol Timing Interval Detection

Once the phase estimate is obtained, symbol time estimation is considered.

A major consideration is determining the appropriate interval size. The size should be

selected so that the detected interval includes the received symbol timing most of the

time. If the interval size is too large, the linear approximation for the second step is

invalid. On the other hand, if the interval size is too small, the number of computations

becomes intolerable. Thus, the interval size should be chosen to minimize the

computations while still being able to use the linear approximation range.

To motivate and guide the selection of the interval size, consider a hypothetical

probability density function of symbol timing shown in Figure 4.1. The symbol interval

shown in Figure 4.1 represents the interval which has the highest probability of

containing the true symbol timing. The interval selection is made using the midpoint of

each interval. Thus, the midpoint of each interval is a target value and the one which is

detected to be closest to the true symbol timing is denoted as f . It is assumed that each
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symbol bit Z is divided into -I intervals and the resulting interval size is { . It on"
,I

assumes that symbol timing is within -T to T, then 2J different intervals should be

considered.

Probability Density of the True Symbol Timing
Given an Interval with Midpoint f was Detected

Conditional
Probability

Density

Detected Interval
<l>

\i\
/\

x \--x r>

î ^TT -l-
J

T --------l

^Tt--
J

Figure 4.1 Hypothetical Probability Density Function

Ideally the probability density function would be zero outside of detected interval.

It can have an arbitrary shape within the detected interval. Practically, additive noise will

affect the probability density function so that the symbol timing may lie outside the

detected interval. The goal of the detection is to detect a value which is close enough to

the true value to allow a linear approximation. It would be ideal if the true symbol timing

T
always was within laway from the midpoint of the detected interval. According to W.

Tang s research Irirnrl'the linear approximation is valid if the difference between the

detected value and the true value of symbol timing is within the range of l5 to 20o/o of the

symbol timing period, 7. Thus, the interval size, {, should be less than 15 to 20o/o of T.'J'

Now, look at how the likelihood function is evaluated at the target values.
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To evaluate the likelihood function, one can write equation (3-30), with f as an

argument, in Walsh signal space. Using the estimated phase á.

NT, r N

î =mãx Jþ"{rfrlrf a,,,ê,t -ldtl=-p*I B(a,,,v) (4-t)
'or=o

where ã s are midpoints of the intervals which can be represented as

I -) -r 1 -1 I
f . 

i- 
7,...,:7,--:7,O,LT,...,7 ---!f 

lana 
rhe quantity B(a,,,ã) can be

approximated in Walsh Signal space as

K-l
B(a,,,V) =Zrr@)si@,,,V) Ø-2)

,t=0

where

(n+l)T

r,,(n) = þ{t).*(t - nT)dt
nT

(4-3)
(n+l)T

I
sr(a,,,7) = Jr(r - V)woQ -V - nT)dt

nT

Since ro(n)is not a function of V ,the receiver sampling does not need to be changed to

accommodate the algorithm for the acquisition. However, one needs to obtain a 2J set of

s o(a,,,V) over the set of ã 's in the range -T to T. These values can be pre-calculated and

stored in memory. Therefore, their computation does not tax the receiver hardware.

One of the ways to reduce the number of computations is to make -/ an integer

multiple of K, the dimension of Walsh signal space, which was used to represent the

received signal and pilot signal. This way, all theso (a,,,V) 's with different ã will be

very closely related to each other.
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To examine how this could simplify the calculation, examine the case where r

and 0 are zero. Then equation (4-3) becomes

(n+l)T

so(a,,)= tniø<''o")wo!-nT)dt Ø-4)
nT

Consider equation (4-4).It can be expressed by using the Walsh Function subinterval

defined in Equation (2-25) as

K-l
sr(a,,) =2*o(m)V,,,(a,,) Ø-5)

nt=0

where

'+(n+l)T /K

1,,,(o,,) = ,,r_,[:,r:rr' (4-6)

Bychoosing J to beamultipleof K, J = K xl,onecanfurthersubdividethe

Walsh function to -/ intervals which are associated with the Walsh Function subintervals.

Let the subinterval be indexed by þ : 0,7,2,...,J - 1 and denote the value of

woQ) inthe B th subinterval I pf I J ,(P +l)T l-l ) as wo(þ). Then, wo(þ) = wt (m) for

þ : *I,mI +I,...,(m +1)I -2,(*+i)1 -1 when m : 0,1,...,K -l

The following tables show wo (þ) for K:2 and 4 respectively.

Tabte 3. The value of wo(p) for K:2.

m: 0 I

p= 0,7,"',I -1 I,I +1,...,21 -l
k:0 1 I

k:1 I I
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Table 3. The value of wo(p) for K:2.

The equations (4-5) and (4-6) can be rewritten as

sr(a,,) =Z*oçp)lo@,,) g-7)
p=0

where

nT+(p+l)T / J

lo(a,,) = [eiouo,'t dt (4-g)
nT+PT / J

The training sequence used in this thesis is an antipodal signal which has period 2T. Thus

s(a,,) = s(a,*zt) , where / is an integer. It is interesting to note that s(a,, ) is symmetric to

s(au_t) and s(d,*t) with respect to their respective transitional points. Thus,

Tr-p(ou-,¡ :lo(a,,) (4-e\

and

TL_p(a,,_r) =l_p_r(a,,) (4_10)

Thus, there are only -/values for the different lo(a,,_r) 's for a given carrier phase

approximationand V=0.

0 1 2 J

p= 0r7,"',1 -7 [,1+7,...,21 -7 21,21 +7,...,31-7 31,31 +1,...,41 -7
k:0 1 1 I I

k:1 1 1 -1 -1

k:2 I -1 -1

k:3 I -1 I -1
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If V + 0, one can index different 7's as V(a) where

d = -J,-J +1,-J +2,....,0,7,....J -1,i.e. V(-J) - -T , ..., V(-Z) =+T , V(_1) = !T 
,

1 ) t-1
ã(O¡=0, ã(1) = -T,V(2)=:7,...,V(J -l)= " 'T Then, theequation(4-4)canJJ.I

be written as, (note: it is written with 0 = 0 for simplicity sake, although the estimated á

can be any other value)

(n+l)T

so(a,,,v(a)\ = !"i'<'-'t"t'""'.oQ - nT)dt (4-11)
nT

where

sr(a,,,V(a))=Iwo(þ)Tp(a,,,V(a)) Ø-12)
p=0

lp*o(o,,) =lp(a,,,t(a)). (4-13)

All lr(a,,,r(a)) 'sarerelatedto 3r(a,,) with V =0by thefollowingrelationships.

When a>0

T B*o (o,,) = T p (a,,,r (ø))

If B+a<J-l

T -(p*o) (a,,) = î o 
(a,,, t (ø))

If J-7<p+a Ø-t4)

When a <0

T p *o (o,,) = I p (a,,, r (a))

If-J<þ+a

lr, _r* B * o (a,,) = î o (a,,, t (a))

lf p+a<-J
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Thus, the likelihood function (4-1) can be evaluated if one has one set of lo(a,,)'s with

any value of V . The likelihood values with different ã's can be compared, and the

maximum likelihood value î canbe found.

4.2 Step Two: Fine Estimation

Once the interval that is most likely to contain the true syrnbol timing is chosen,

one can use the joint estimation introduced in Chapter 3 to bring the estimated symbol

timing and carrier phase closer to the true values.

Thus, consider how C(a,,),D(a,,) (equation 3-I2 and 3-19) can be calculated for

the fine estimation. Now, V(a)represents a midpoint of an interval that is most likely to

contain true symbol timing, z .

K-1

C(a,,,V(a)l=I ro@)ui@,,,V(a)) (4-16)
È=0

K-l
D(a,,) =Zrr@)vi@,) f 4-17)

É=0

where

(n+l)T

ut(a,,,V(a)) = feiou-r<o>o')V(t -V(a),a,,)wo| - nT -V(a))dt (4-1g)
uT

(r+l)I

vo(a,,,V(a)) = !"i'<'-r<"v,)r/'(t -V(a),a,,)wtQ - nT -V(a))dt. ( 4-Ig)
nT

Similarly the equations (4-18) and (4-19) can be expressed as
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B-l
ut(a,,,V(a)) =Z*r(Ðip(a,,,7(a)) Ø-20)

þ=0

B_l

vo(a,,V(a)) :Z-r@)lp(a,,,V(a)) 
Ø-21)

p=0

io(a,,,V(a)) and lr(a,,,V(a)) can be derived from the following equations,

nT+(P+l\

ìo(a,,) = [uio<t'')yçt,a,,)dt @-22)
nT+BT / K

nT+(p+l)T I K

lo(a,,) = !"i'r'''"tr' (t,a,,)dt Ø-23)
nT+fT I K

where p =0,1,2,...,J -1. Note that, lp*o(o,,,r(0)) and ùo(a,,,r(a))are related, as well as

lB*o(o,,t(0)) and lo(a,,,r(a)) are related in the same way as lp*o(a,,,r(0)) and

lo(a,,,r(ø))are related in equation (4-14).
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4.3 Simulation Results

Simulation is used to evaluate the two-step acquisition algorithm. To simulate

acquisition algorithm performance, a received signal was created using a known data

sequence and randomly selected symbol timing and carrier phase. The symbol timing was

chosen to be equally likely within -T to T and carrier phase was chosen to be equally

likely within 0 to2n. Thus, uniform pseudo random numbers between zero to one were

scaled to be used as sl,rnbol timing and carrier phases for the received signal.

After the signal is generated, white Gaussian noise is added to simulate signal

comrption from channel. The uniform random numbers were transformed using the Box-

Muller algorithm to generate the Gaussian random numbers that can be used as white

Gaussian noise. The Gaussian random numbers are then scaled with different scaling

factors. The scaling factor decides the Signal to Noise Ratio (SNR). The SNR is

Signal Power

Noise Power x Scaling Factor
(4-24)

The first step to the simulation was to approximate the carrier phase and symbol

timing. Carrier phase is approximated by comparing the average phase of the received

signal and the average phase of the pilot signal. Next, one should determine in which

interval the true symbol timing is most likely to lie. For interval detection, each bit is

divided into eight subintervals. Thus, the subinterval size is Tl8. It is divided into eight

subintervals since Z/8 is a small enough interval size for the symbol timing within that

range to be expressed by a linear approximation. Next, the joint-estimation is used to

bring the approximated s5rmbol timing and carrier phase close to the true values.
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A pilot signal is sent prior to transmission of data. The pilot signal itself does not

convey any pertinent data but is simply used to aid the acquisition process. Thus, it is

important to keep the pilot signal as short as possible. By studying the correlation of the

pilot signal length with how closely one can approximate the unknowns, one can decide

the ideal length of pilot signal.

This thesis focused on the acquisition-ability for 1RC, 2RC, lREC and 2REC

signals because they are the most commonly used CPM signals. The simulation code was

written in C++.

4.3.1The Carrier Phase Estimation

One of the indicators of acquisition algorithm performance is the RMS difference

of the estimation value and true value.

Figure 4.2 shows the relationship between the RMS error of carrier phase

estimation (difference between estimated carrier phase and true carrier phase) and the

pilot signal length.
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lRC with h:112, for different T in 2 to 8 dimensional Walsh space for the pilot signal with different

signal to noise ratio.

The above figure shows the simulated performance of multi-step acquisition

algorithm that uses initial phase approximation, symbol timing subinterval detection and

open-loop joint symbol timing and phase estimation for 2RC and lRC, with h:1/2. The

same pilot signal was used for both 1RC and 2RC. The simulation result appears to be

better for the 1RC signal. This is due to the fact that the lRC signal has larger phase

change within a symbol period.

N

RMS enorvs N (for2RC, K=8)
1 o-t

H(\
ô
o
(l)

U)

t

H
c{ô
o
o
(/)

t

49



In all cases, the RMS difference of the estimated carrier phase and the true carrier

phase is brought to less than 10%o of 2n which is within the trackingrange, for training

sequence as short as 10 symbols.

The carrier phase estimation result for LREC scheme is not discussed here since

the symbol estimation and carrier phase estimation are inter-related. Thus, having a good

result for one would imply a good result for the other variable. Symbol timing estimation

of LREC schemes is discussed in following sections.

4.3.2 The Symbol Timing Estimation

Now, let's examine the symbol timing estimation performance. When the

estimated symbol timing and the true symbol timing difference is greater than 0.2T, one

cannot guarantee reasonable steady state tracking. Thus, successful acquisition is

achieved when both the symbol timing and carrier phase estimation are close enough to

the true value to be in steady state tracking range. The RMS value difference of the

estimated symbol timing and the true syrnbol timing is also a good indication of the

algorithm performance.
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Figure 4.3 shows the relationship between the symbol timing RMS error

(difference between estimated symbol timing and true symbol timing) and the pilot signal

length for 1RC and 2RC in2 to 8 dimensional Walsh space forh:l12
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Figure 4.4 Timing error of quaternary 2RC and lRC with h:ll2,for different t in2to8
dimensional Walsh space for the pilot signal with different signal length.

Figure 4.4 shows the timing estimation effor vs SNR relationship for lRC and

2RC in 2 to 8 dimensional Walsh space withh:7/2. Using Figure 4.3 and 4.4 one can see

that minimum length of pilot signal depends on the dimension of the Walsh signal space,

signal to noise ratio and the nature of the CPM. For many cases a pilot signal with length

N:10 is sufficient for the acquisition.

For SNR's greater than 15d8, Figure 4.4 shows that the perfonnance for practical

purpose does not seem to be dependent on the length of training sequence. The

approximation error introduced to simplify the algorithm is greater than the effect of

noise or pilot signal length attha| point.
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4.3.3 The Symbol Timing EstÍmation in Different Walsh Signal Space

Dimensions

In steady-state tracking, using a higher dimension of Walsh signal space does

seem to improve the performance significantly [Tang98]. This section examines how

acquisition performance behaves with Walsh signal space dimension.
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2RC K=8

15
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Figure 4.5 Comparison of timing error of quaternary 2RC and lRC with h:1/2 in 2 to 8 dimensional
Walsh space for the pilot signal with different signal to noise ratio.

Figure 4.5 more closely illustrates the relationship of the Walsh signal space dimension

and the symbol timing estimation error. Unlike the randomized nature of the CPM, the

pilot signal in CPM is very predictable. Also, the coding does not have any effect due to
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the short length sequence and the nature of the training sequence. It is apparent that using

a higher dimension of Walsh signal space improves performance significantly when SNR

is low and the training sequence is short.
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Figure 4.6 Timing error of quaternary IREC with h:112, for different T in 2 and 4dimensional
Walsh space for the pilot signal with different signal to noise ratio.

Figure 4.6 and Figure 4.7 also show that using a higher dimension for the Walsh signal

space improves the performance for the lREC signal. However, the improvement does

not seem to be as significant as for the RC signal at low SNR with a short training

sequence.

From the Figure 4.6, it can be observed that the relationship between performance

improvement and training sequence length is not linear.
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Figure 4.7 Timing error of quaternary 1REC with h:l/2, for different T in 2 and 4 dimensional
Walsh space for the pilot signal with different signal to noise ratio.

Figure 4.7 shows that for SNR greater than approximately 6 dB the symbol timing

estimate will be within the tracking range of the true symbol timing. Thus, it would not

be beneficial to increase the Walsh signal space dimension or training sequence length at

high SNR.

4.3.4 Probability of Failure

RMS error is a good indicator of the acquisition algorithm performance.

However, accuracy of the symbol timing and carrier phase estimate is not that critical an

issue for this stage of synchronization. The acquisition only needs to bring the symbol

timing and carrier phase estimate close enough for tracking purpose.
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Figure 4.8 shows the frequency of the symbol timing estimate being 0 to 3Yo,3 to

9o/o,9 to 15%o, and greater than l5%o of T different from the true symbol timing.

Frequence of Difference
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Figure 4.8 Frequency of the symbol timing error of quaternary 2RC, N:20 with h:1/2, for different
T in 2 dimensional Walsh space for the pilot signal with different signal to noise ratio.

Figure 4.8 shows that for training sequence with SNR 6dB or greater is

likely to bring the symbol timing estimate within the steady-state tracking range most of

times. From the above histogram, it is most important to see what percentage of

acquisition yields the symbol timing estimate greater than I5o/o.

One of the drawbacks of this algorithm is the fact that the algorithm cannot test

whether the acquisition has been achieved in practice. With additive noise, perfect

synchronization cannot be achieved in real life.
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APTER 5

CONCLUSION AND SUGGESTIONS FOR

FURTHER STUDY

5.1 Conclusion

The main attraction of using the CPM receiver in Walsh signal space is its

simplicity. If the symbol timing and carrier phase difference between the receiver and

received signal is small then also it can be effectively synchronized in the steady-state

tracking mode.

The acquisition algorithm was designed with the goal of keeping the simplicity of

the receiver and efficiency of the steady-state tracking ability. While this algorithm

requires more computation than the steady-state tracking algorithm, there is no added

hardware complexity. Since, the acquisition is only an issue for the short period of time

when the receiver is turned on, this added complexity in algorithm may be justified. A

relatively short training sequence is required for this algorithm, but it is justifiable for the

overall robustness of the system especially when the received signal is comrpted with

noise.
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5.2 Suggestions for the further study

The performance of the acquisition algorithm was studied to determine the length

of the required pilot signal. It would be interesting to study how it performs when, instead

of applying one long pilot signal, one sends a shorter pilot signal multiple times and then

estimates the symbol timing and carrier phase multiple times independently. The

redundancy will allow one to reject those results which deviate significantly from the

average result; also a reiteration method can be used. A disadvantage of repetition and

reiteration would be added computation.

In the first step of the acquisition in this thesis phase was approximated. However,

it would also be possible to come up with an algorithm to estimate th'e symbol timing first

by determining where the transition lies. Also, one of the drawbacks to the algorithm that

was presented in this thesis is the introduction of memory and the delay. Thus, real time

estimation would be natural topic of further study.

The specified degree of error that could be tolerated was rather arbitrary. Perhaps

future studies can relate tolerable error margin with symbol error performance.
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APPENIDIX

THE MAPPING APPROXIMATIOI{

One of the difficulties of estimating 7 comes from the fact that its nonlinearity is hidden

inside the mapping e(a,t -z) where t = t -r .To avert this difficulty, the shaping function

q(t - r) in the interval lr,LT + t) can be approximated by the first two terms of its Maclaurin's

series with respectto r. Then, the modified series can be extended in the time interval [0,LT)

and the values outside the interval redefined. Examples of application to REC and RC schemes

are given as following:

/<0
0<t < LT

LT<t

(A-1)

where,

Io
q(t-r)=løQ)-,#

l/,
(A-2)

Obviously, lrl..f . In equation (3-1), the time uncertainty r is no longer hidden in

nonlinearity but it stands out. For the REC scheme, it is exact except in the time interval [0,r)

andILT,LT+r) where r)0, [2,0) and ILT+r,LT) where r <0.Thisapproximationcreates

a discontinuity at 0 and LT for the REC scheme. However, this discontinuity does not affect the

I t for P.EC
P(t) = {rrtn' (zr t t LT) þrrtC
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continuity of the likelihood function, since the likelihood function is taken by integratingZ(a,r).

Figure 4.1 shows examples of an above approximation.

Substituting (A-1) into equation (2-14) gives

where

rp(a,,,t *r) = e(a,,,t) -lVQ,^,,)

y (a ,, , t) = i ,=ä:,' 
, ¡t(r - ir)

(A-3)

(A-4)

Again, one can see from equation (A-3) that the approximation is exact in the time interval

lr,LT) when r > 0 or l0,LT +r) when r <0.
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This approximation not only makes it easier to take derivatives, but also it should be

noted that cp(a,,,t) and V(t,a,,) can be calculated beforehand and stored as a known function of

the receiver if the data sequence a,, is known.
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Figure 4.2 Comparison between the phase pulse q(/ - ø) and its approximation q(t) - Tp(t) I zLT using

P(t) =t.

It is also possible to use FQ):1 for RC scheme as well although it is a much poorer

approximation. The Figure 4.2 shows the comparison between exact q(t - t) and its

approximation q(t)-tp(t)lzLT using /r(t)=1 insteadofusing p(t=2sin2(tr tlLT).

However, when z is small, it still seems like fairly good approximation.
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