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ZSUMMARY

This dissertation deals with the development of a simple
but precise experimental technique that can be used effectively in
model analysis as a means of studying the more complicated structural
systems. The inadequacy of the analytical methods is discussed,
indicating how these deficiencies point to the importance of considering
structural model analysis and testing as a design tool. After a
brief review of the experimental techniques available for model
analysis, a detailed description of the technique used in this work
is presented. The combination of versatility and simplicity offered
by this technique makes it suitable for use even in remote field
design offig:es. A unique curvature meter was developed as a part
of the work and details of its design are presented. This design has
many advantages over those used by other investigators. One of the
main advantages of the writer's design is that a twisting_curvature
associated with the two orthogonal bending curvatures can be obtained
without rotating the meter. The need for rotation of the meter through
45° s inconvenient and time consuming and is required in all other
curvatures reported in the literature.

After a brief discussion on the necessity of the use of
curved bridge decks in modern highway systems, the results of tests
on three aluminium models of curved bridge decks are described and

used to show the effectiveness of the experimental technique. Two




of the models chosen represent the two extremes of the simply supported

curved slab bridges that are popular in practice. The third model is
used to.study the effect of an intermediate support on one of the
simpTy supported slabs mentioned above.

The concept of influence surfaces for slab-, or slab-Tike
structures is reviewed. Non-dimensional curvature influence surfaces
are prepared from the model results. A brief description is given
of how these influence surface could be used as aids in bridge designing
as well as in checking existing curved slab bridges for abnormally
heavy moving loads.

The validity of the application of model results to proto-
type slabs has been discussed. The limits and the method of incor-
porating any difference in between the Poisson's ratio of the model
material ‘and that of the prototype material are also included. The
model results are compared with the exact solution results obtained
from the computer prograhme developed and are found to be in good
 agreement.

The influence surfaces so prepared for the curved slabs
are compared with each other and with the influence surfaces that
have been published for rectangular bridge decks and are discussed.
Finally, thirty-five influence charts are presented in Appendix II

‘to be used as a permanant record.
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The following includes the notations generally used throughout this work.

NOTATIONS

Occational deyiations are defined where they occur in the text,

> CR,» Cor
D

E

H

I, Ip

Tor> IR

K

Ke’ Kpo Ke+45°
Ker KRe

L

Ly

Ly

Mg> Mps Morase
Mer> Mre

p

R

R

f’ fe’ fR’ fe+450

h
8

U

Calibration constants
Plate stiffness
ModuTus of &lasticity

Height of the curvature meter

Non-dimensional bending curvature influence values

Non-dimensional twisting curvature influence values

Curvature

Bending curvatures

- Twisting curvatures

Gauge length of the curvature meter
Span of the model

Micrometer carriage gauge length

Bending moments per unit Tength

Twiéting moments per unit length

Load

Orthogonal axis in radial direction
Radius of curyature

Relative deflections

Plate thickness

Opthogahalraxis in tangential direction

Poisson's Ratfio
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CHAPTER I

INTRODUCTION

With the increasing demands for the use of statically in-
ﬂ@termfnate structures, especially for modern highway systems,
refined and more accurate methods of analysis of these structures
are required. In applying existing structural theories to the
analysis of structuresgquite often the design engineer is required
to incorporate simplifying assumptions with regard to the deformed
shape and structural behaviour. Even with the finite element tech-
nique which is considered to be the most powerful analytical tool at
the present time, one has to work with a structure that corresponds
to presumed deformations or stress distributions. Usually it is
difficult to visualize and to predict the behaviou¥ which is the
governing factor of the accuracy, that leads to optimum designs,
Simplifying assumptions always tend to be taken on the conservative
side for safety, and the economy of the structure depends on how
conservative they are. It is always essential to verify the efficiency
as well as the reliability, before an analytical method is made avail-
able for the use of others,

One may suggest checking the reliability by applying the select-
ed analytical method to a problem, where the exact solution is available,
In most practical cases, however, numerical solution of these equations

utilizing a digital computer is the only practicable method.




Such a method of solution will be referred to as the "exact" method

in this thesis. |

Also, in general, the ﬁrob]ems-that have exact solutions
are not complex. Therefore, in solving these problems, eyen by the
so-called approximate analytical methods, it may not be necessary
to make severe assumptions as in a cemplex problem, Hence, this
method of checking will not verify the reliability of an analytical
method truly. In addition these exact analyses are really only a
better approximation to the exact theory because the practical
accuracy depends on the convergence of the hyperbolic and trig-
nometric series employed. Although one finds perfect, rapid
convergence for deflections, in the vicinity of the load the
convergence becomes slow for bending moments and very slow for

(1)

shear The series become d¢vergent in the vicinity of a con-
centrated load (2?, as mentioned in Chapter VII.

The numerical solutions to all these powerful approximate
~analytical methods, including finite element, finite strip, folded
plate analysis etc., that require a matrix formulation are just not
attainable without the aid of digital computers. At the same time
an analytical method is only as good as the data fed in at the
beginning since no computer ®idgrammecwtllheoppect the poor
assumptions made in the analysis.

| With the development of the highly sensitiye &lectronic
apparatus, the method of model anadysisabecomesiancanswer to the

above-mentioned shortcomings of the analytical methods. Many




investigators particularly in Europe(3’4’5’6) have shown the reliability

and scope of model analysis and testing as an indispensable design tool,
particularly for structures of complex shapes and boundary conditions. i;i
The testing of models not only demonstrates the true structural

behaviour under load, but also provides the stress and strain indirectly

through the deformations such as deflections, rotations, elongations

and shortenings which can be measured on the model.

The main objective of this dissertation is to demonstrate
experimentally, how model analysis and testing can be used as a
precise design tool in analysing structures of any shape and of any
complex boundary conditions. Also its purpose is to build up a simple,
but precise experimental technique which is efficient, but unsophisti-
cated, hence could be used even in a remote field design office.

In Chapter II, some of the experimental methods that are
frequently used in the model analysis, are briefly discussed along
with a detailed description of the technique used in this work.

The technique of direct measurement of relative deflections by

curvature meters was used in this project. As a part of the project,
a unique curvature meter was designed. The writer's design differs

in many ways from the curvature meters that have been used by other

(5.7,8,9)

investigators so far. This is discussed in Chapter III.

Minor but important design details such as the design of legs, the
~ procedure to obtain correct center points for the legs and the

transducer holes and the method of mounting the meter onto the



model, that had to be considered in order to achieve a high Tevel

of precision, are also included in Chapter III. The writer's inverse
approach of checking the meter analytically on an assumed worst case
(a deflection equal to half the thickness of the plate which is
considered to be the 1imit for small deflection theory) to obtain
a quantitative idea of each individual error that he feels could
~ be present in the actual testing, is included 1in  Appendix 1.1.
This is go-called the "inverse approach" because initially, the
significance of each error was studied individually. Then, where
appropriate, they were considered separately to obtain an optimum
design, instead of checking the quality of the meter in a direct
way (1ike most investigators have done), by using it on a situation
with a known solution. The danger inherent in the latter method is
that, by coincidence one may use a rare situation where the errors
cancel out each other to give excellent results, which may not be
the case in the actual testing.

The effect of the gauge Tength of the meter on the measured
values and the size of the model are discussed in Chapter VII. An
approximate idea of this effect was obtained analytically and the
details are included in Appendix 1.2.

In the type of curvature meter designed, three diép]acement
transducers were used on two orthogonal and one 45° axes to find the
curvatures in those three directions. The curvature meter was

calibrated along each axis, using a strain gauge testing beam




apparatus. This apparatus also works on the same principle as the

curvature meter. Details of the calibrations are included in

Chapter V.

With the type of device described above, curvature only in

one direction can be measured when the reference point is situated

on or close to a boundary of the model. Hence another "edge meter"

was designed to be used in these situations. This meter too is dis-

cussed in Chapter III though it was not used in the testing due to
poor performance in one direction.

To demonstrate the ssuitability of mode1 analysis, models
of curved bridge decks were chosen. Curved bridges are required
particularly in highly developed urban and suburban areas, where
many railroad level crossings and highway intersections are being
replaced by overpasses, underpasses and interchanges. Even in
rural areas, alignment and site conditions may be such as to make
it more economical to locate a curve on the bridge rather than on
the approaches. As far as the writer knows, until a few years
back curved slab bridges were analysed using the simple beam
theory. Then came the more refined analyses for curved slabs,
such as finite strip method(]o), curved strip method(1]) (or
curved folded plate analysis) and discrete energy method(12).
Basically all of these fall into the same approximate but
conservative group of analytical methods discussed earlier. The

writer feels that, comparatively very 1little research work has been

carried out on curved bridges, although they have become increasingly




common in modern highway systems as a result of smooth traffic

flow requirements.

For straight and skew bridges of various boundary
conditions, span/width ratios and opening angles, one can find an
ample amount of published design data(6’13’]4’]5’16’]7). They
are usually presented in a form that is more useful to the
deéigner, name1y "influence surfaces". But, so far no attempt has
been made to provide the designer with this type of design data
for curved bridges.

Thérefore as a second objective, information on curved
bridge decks was obtained from the study of models and is presented
in a form, that mayAbe u§efu1 as aids to the bridge designer. Such
information was not previously available.

Many model tests particularly in North America have
been used just to study a particular unfavourable case or cases of
loading, as an aid of the désign of the structure or just in

d"(18’19’20). Such tests

verifying the design under fworst loa
provide only qualitative information of the effect of other
fheavy loads" that may cross the bridge from time to time. Hence
these model tests are not of much use, particularly to a bridge
engineer, who hés been called upon to check existing bridges for
the passage of abnormai]y heavy loads. Indivisible objects such
as transformers, electrical generators, pre-cast highway bridge

beams and turbines are few examples of the so-called "heavy loads”,

that are being transferred from one part of the country to the




other. The 800 Megawatt generators for Bruce Nuclear Power Station
in Ontario is a current example of heavy indivisible Toads currently

being built for Canada(35).

Out of the entire turbine-generator

set, the stator core and the windings alone weigh about 240 tons.

There will be a total of four of them at Bruce Nuclear Power Station.
The use of influence surfaces is an answer to the above-

méntioned Timitations of the model tests. These influence surfaces

for two dimensional slab-Tike structures are analogous to the

influence Tines of one dimensional framed structures. An influence

surface prepared for any action (moment, curvature, twist, shear, etc.)

at a particular reference point on a slab, provides the designer

with qualitative information of the considered action at the reference

- point due to a.load or any pattern of 1oading_at any place on the slab.

Such surfaces have been used first by H. M. Westergaard(z). A Targe

number of such surfaces have already been prepafed for-standard

cases of structures, such as rectangular and skew slabs of single

span and also of continuous spans(6’8’13’]4’]5’16’]7’21’22’23).

If a set of influence surfaces for the structure under consideration

are available, all that the designer has to do is to draw the loading

pattern on tracing paper to the same scale as the inf]uence surfaces

and move it about on each corresponding surface, until the critical

location of the load is obtained. This may require more than one

trial whereas a person familiar with influence surfaces will spot

critical cases just by,g]ahcing through the set of influence surfaces.

The method of evaluation of these surfaces is discussed in Chapter VII.




Thirty-five influence surfaces were prepared from the

writer's model test results. They are presented in Appendix 2,

in the form of contour plans which seems to be the most useful form
of presentation for the assessment of the effect of heavy loads on
bridges. A1l these surfaces are plotted in terms of nondimensional

curvatures. The ddvantage of so doing, is discussed in Chapter VII.

The investigator has to use his own judgement in selecting the
reference points for influence surfaces. The points considered in
this project are discussed in Chapter IV.

Initially two model curved bridge decks made out of high
strength aircraft aluminium were studied experimentally. The model
sizes were chosen such that they represented the two extremes of
the simply supported curved slab bridges, popular in practice.

A computer programme was developed for the exact analysis solution
involving an infinite Fourier series. Model results were compared

with the "exact" solution results and found to be in close agreement.

A two span continuous model deck was formed by Tocating
a radial knife edge at the center of the span of the second model
tested. The effect of presence of the intermediate support was
studied experimentally and compared with the single span model results.

No exact solution is available for the continuous case.




CHAPTER II

ELASTIC PLATE EQUATIONS AND REVIEW OF SOME FREQUENTLY USED
EXPERIMENTAL METHODS IN MODEL ANALYSIS

2.1 Elastic Plate Equations

The general elastic plate theory is well established and

has been known for years. Derivations and the limitations on the

applications of elastic plate equations can be found in any standard

text book on elastic plates

~given below since they are necessary for an understanding of how
the experiments described later could be used in the analysis of

plates. Attention is also drawn to two of the limitations, to

(Eg. 1,24)

However, the equations are

the application of these equations since they are crucial factors

in model analysis.

In a plate element, stressed in the elastic range,

the following relationships exist.

M = D[Kp + 1 K]

Mg

DKy +  Kp]

and

Mpo = “Mgg = D(1 -~ 1) Kpg

(2.1)

(2.2)

(2.3)

where, MR’ Me and MRe'are moments per unit length of the plate as

shown in Figure 2.1 on page 10; KR (=‘-

bending moments MR and Me; and KRG { =

____] and K, [ _____

‘represent the curvatures in the R and 6 directions produced by th

1 3w
2 562

R™ 3
e

2

} is the twisting
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Figure 2.1 Moment Diagram
Terms Shown all Positive.
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curvature due to the torsional moment MRe'

3

b Eh2
)

i 12(1 - u
is the plate stiffness per unit width where E is the modulus of
elasticity, u is the Poisson's ratio of the material and h is the
thickness of the elastic plate.

Two lTimitations mentioned above are:

1) The model slab must be thin compared to the other dimensions, for
the shear deformation to remain negligible in relation to the
flexural deformation;

2) The deflection of the model must be small compared to the thickness,
in order that the stresses corresponding to the stretching of the
middle surface of the plate are negligible in compartson with

£ the bending stresses.

2.2 Review of Some Frequently Used Experimental Methods In
' Model Analysis -

2.2.1 Moire Method

The Moire fringe technique is now fregently used in model
studies where the stress and strain can be derived directly from
displacements.

A model made of reflecting material or coated with a
i reflecting surface is set up vertically, in front of an illuminated
cylindrical screen, consisting of black and white parallel Tines of equal

width. The model is loaded from the back to obtain unobstructed
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fringes. Images of the screen reflected by the model in the loaded
and unloaded states are photographed through a hole in the center
of the screen. Both states are photographed on the same negative.
Moire” interference fringe patterns appear on the photographic

plate since when the model is loaded, the reflected array of lines
deform following the surface displacements induced in the model

and generally do not coincide with the 1ines reflected by the
unloaded model. These interference fringes represent contours

of constant slope normal to the screen Tline direction. By rotating
the screen, the slope in any direction can be obtained. Numerical
or graphical intergration and differentiation of the slope curves
give the deflections and the curvatures in the plate respectively.
Hence the bending and twisting moments at any location can be

found making use of the relationship between curvatures and

moments and knowing the flexural rigidity of the model as shown

in Equations 2.1, 2.2 and 2.3. For more details, the writer refers
the reader to F. K. Ligtenberg's paper on Moire(method(zs).

This method is not suitable if very high accuracy is
required since there is always a possibility of human error in
finding the fringe centers and plotting the slope curves. This
technique becomes less precise when the model has a shape other
than a rectangle or a square, especially a curved model, such as
the one considered in this work. In a curved bridge slab, it is

more appropriate to present curvatures, moments, etc. using the
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polar coordinate system. Hence it is convenient to use curved and

radial grid Tines with a curved model. Since the black and white

screen lines are parallel to one of the axes of an orthogonal
system, the fringe patterns that appear on a photographic plate
represent contours of constant slope in a direction parallel

or perpendicular to only one radial grid line at a time.

Therefore, one has to employ the conditions of equilibrium (Mohr's

circle) to obtain radial and tangential curvatures at grid points

on the other radial grid 1ines. The other alternative is the
expensive method of taking two photographs with the screen lines
parallel and perpendicu1ar to each radial grid line. From his earlier
experience on the application of Moire technique to models of

curved bridge decks, the writer is aware of the amount of work

and the errors involved in finding a slope along a curved grid

Tine. The above method becomes relatively expensive if high

accuracy is needed(s).

2.2.2 Strain Gauge Technique

The strain gauge technique is certainly the most widely
used technique in model analysis and has been known for many years.

Details of the technique can be found in any book on experimental
(Eg. 26)

stress analysis » therefore will not be given here. Moments
are calculated from the surface strains of the model that are
obtained from the strain gauges affixed to the model. The
magnitude of the reading and therefore its accuracy increases with

the distance of the strain gauge from the middle surface of the slab.
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For this reason relatively thick slabs are advantageous for strain
measurements. At the same time one has to keep in mind the limita-
tions imposed by the elastic theory on the thickness of the slab,
as mentioned in section 2.1 above.

With strain gauges, high precision can be obtained with
a little care. The development of modern electronic equipment
. has made the use of strain gauges in model analysis much easier in
recent years. Typical of such high precision strain gauge study

is the work of Yeginoba11(27) where he used electric strain gauges
to study a three-span continuous skew slab model to verify his
theoretical results. But a total of 20,000 strain readings were
required to complete the experiment. In 1961 Rusch and Hergenrader(G)
also made use of strain gauge technique to study models of skew slabs
to produce 174 contour charts of influence surfaces for bending and
twisting moments. A test of equilibrium showed a discrepancy of not
more than 4 percent in the final results.

In most of the places on the model, except at free edges,
interior supports and exterior supports, the gauges have to be
applied in the form of "3-legged rosettes". There is a difficulty
in finding the stress peak over the reference point (even if the
gauge length is sufficiently small) if rosettes made of individual
strain gauges are used, since these gauges will have to be applied
at some distance from the theoretical reference point. This

drawback can be avoided by using more expensive commercially made
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rosettes fabricated so that all the individual gauges coincide at
one common point. Hence with this type of rosette, it is possible

to have all the three gauges directly over the reference point.

For better accuracy, it is preferable to have the same number of
gauges on both sides of the slab to seperate axial from bending

and for temperature compensation. Therefore a large number of gauges
are required for a detailed model study of any structure. These

high costs and the amount of labour involved become a significant
drawback for the extensive use of strain gauges in detailed

investigations.

2.2.3 Curvature Meter Method

As mentioned in the first chapter, in model analysis
stresses and strains are not measured directly, but calculated
indirectly from the deformations that are measured on the model
and the elastic constants of the model mafer1a1. Since the
characteristics deformations produced by bending are curvatures,
an obvious way of determining experimentally the moments in a
model slab is by the use of curvature measurements. The relation-
ships that exist between curvatures and moments have already been
shown in Equations 2.1, 2:2 and 2.3. The curvature meter technique

is based on the calculation of curvature from the measurement of

relative deflections of points over a predetermined base length.
These curvature meters have been used in optics for

a Tong time in curvature measurements, under the name spherometers.



- 16 -

Simple curvature meters were employed in model tests, as early as

(28) 29) (8,29)

1949 W. Andra(5’9), R. Krieger(5), H. Weig1er( » H. Weise
and A. Mehmel(s) made improvements to the curvature meter to bring

it up to its present advanced form. Some of the investigators
employed the method of mechanical addition of deflections in order

to include the Poisson's effect while others preferred the addition
to be done electrically. The difficulties of machining for the

case of mechanical addition has made the method of electrical
addition more popular. In recent years, the advancement of highly
sensitive electronic apparatus has made it even more suitable.

It was not neéessary to employ any of the above-mentioned
methods of addition with the work described in the dissertation since
it was decided to present the results in the form of curvatures, and
hence they are, independent of the Poisson's effect in the plate.

The advantage of so doing is discussed in Chapter VII as mentioned

previously.

The basic principle of the curvature meter is that of

measuring the relative deflections at three positions on the surface
of the slab. In Figure 2.2 (page 17).A, B and C are three equally
spaced collinear points on a deflected surface having a local radius
of curvature, R,. If this spacing (L) is small compared to R, the
curvature from A to C can be assumed to be constant. In other words,
the three points A, B and C can be assumed to 1lie on a circular
segment of radius R,. Based on these assumptions, the

relationship between the measured rise f over the chord length AC



Figure 2.2  Curvature Meter Principle.

Figure 2.3 Position of the Deflection
- Measuring Transducer.
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(as indicated in Figure 2.2, page 17) and the radius of curvature

R is derijved as follows:

(5)2+ (R - £)2 = R?

L2
or 7t RZ2 - 2Rf + f2 = R2
2 2
where 2Rf = L——%—ﬂf—
L _ L2 + 4f2
giving R, = ——8F —

since f is very small compared to L, 4f2 becomes negligible in

comparison to L2, Hence,

_ L2

R = 57

Curvature K = %—= (2.4)

8f
L2
The displacement measured is 2f for the curvature meter used in the
work since deflection measuring transducer was fixed at the outer
point as shown in Figure 2.3 on page 17. Letting 2f be equal to the

registered value f , then

K = % (2.5)

Equation 2.5 is the basic expression used for bending curvature

in the meters of the type used in this investigation.
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2.3 Application of Elastic Plate Theory to Concrete

Many investigators(18’]9’27’31) have shown the validity of
the use of elastic plate theory in predicting the behaviour of reinforced
concrete structures. Elastic behaviour of a structure can be obtained
from a study of elastic model also. The results obtained from an
elastic model study are Timited in value to the same extent as the
results obtained from an accurate mathematical study based on the theory
of elasticity. Thus, we may state that the findings derived from a
well conceived elastic model are no better than but as good as, those
from a properly executed study of a mathematical model. Knowels and

Huggfns(]g)

from their model study on the behaviour of a three-span 60°
skew bridge with stiffened edges concluded that tests on a model made

from a reasonably isotropic material, such as aluminum, can provide the
necessary information for the design of a reinforced concrete strusture

under both service and ultimate load conditions.




CHAPTER I11

DESIGN OF CURVATURE METER

3.1 Rationale Behind the Design

In some recent types of curvature meters, the meter
has to be rotated through 45° with respect to one of the main direc-
tions considered, in order to find the twisting moment associated
with the two bending moments in those main directions. The meter
developed for the present work does not suffer from this disadyan-
tage and a twisting moment at any point can be found without rota-
ting the meter, To avoid this extra rotation, an additional third
transducer was placed on an axis 45° to the main axis 6 as shown
in the Figure 3.1b on page 20. This transducer measures the rela-
tive deflection between points 0 and E in the diagram, In Figure
3.15, AOC and BOD form the gauge lengths of the meter in ® and R
direction respectively.

For each metér position three deflection readings are re-
.corded. From these deflection readings, curvatures Ke’ KR and
Ke¥ﬁ5° at a point can be calculated and hence the bending moments
Me’MR and the twisting moment MeR can be obtained, without adjusting
the meter. From Equatfons 2.1 and 2,2 it is clear that once Ke and
KR are obtained, the calculation of'Me and MR is straightforward.

But the calculation of MeR is not as easy since KeR is not known

directly. But from equilibrium for curvatures in a plate (Mohr's
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circle), it is known that the following relationship exists.

K - K

K = _ot45° 6+135°
oR o
Hence,MeR is expressed in a different form, from that of Equation 2.3
D(T - u)
namely Map = 2 (Ke+45° _ Ke+]35o) (3.1)

However, only K o can be obtained from the readings of the meter

ot4
as designed. Therefore, equilibrium is used again to calculate

Ke+1356. It is known that

a +Ké

Ko * Kp = K +135°

9+45

Substituting back into Equation 3.1 gives

= EKJ_:;ED . | ;
weR" 2 [Ke+45° h (Ke *Kp - Ke+45°)]

Kg + KR y

= D(-l - U)(Ke+456 - 2

From the Equation 2.5

Ke=.£_l._1:_e
L2
and
K, = 1R
R T

Unfortunately the-expression for Ke+459 is not as straightforward as

"the above two. This is because the required relative deflection between
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the points 0 and E (Figure 3.1b, page 20) on the axis 6+45° cannot
be obtained from the third transducer reading fe+45° alone without
knowing the tilt of that axis e+45°. This tilt of the axis 6+45°
cannot be determined as easily as that for the other two axes since
along the former, the curvature meter is supported only on one lea,
i.e. the common center leg. To make this clear hypothetical and real

examples are considered along the 6 axis (or R axis),

' Figure'3;2 Hypothetical Case ) Fiqure 3.3 Rea] Case
As shown in Figure 3?2'?? oh1y~poin£'CrQét§'deffectéd and point A
remains undeflected, the curvature meter will remain level. Then the
registered feadihg of the transducer will be the true deflection of
C relative to 0. On the other hand, if points A and C both get de-
flected as shown in Figure 3.3, as éccurring in the general case, the
curvature meter will be tilted due to the uplift of the bottom tip |
of the outer leg. Here the registered readina therefore will not be
the true def]eétion of C relative to 0. To find the true relative

deflection, the amount of uplift of the bottom tip of the outer leg

‘has to be deducted from the registered reading. This uplift is equal




- 23 -

to one half of the registered reading of the transducer and hence the
true deflection is half the registered value, for both axes R and 0.
In the case of the axis 8+45°, this uplift, which gives
the tilt of the axis can not be determined as easily, due to the
absence of an outer leg. If we imagine an outer leg F on the axis

6+45° of length equal to that of the other three fixed legs A, 0 and

B (as shown in Figures 3.4 and 3.5 below), then the uplift of the

Figure 3.4 Imaginary Leg F , EigureA3,5.Tilt_of;e+459 Axis

bottom tip of the imaginary leg F will be defined by the uplifts of
the legs A and B, since the tilt (inclination) of the solid base carry-
ing these 1egs depends on those two dp1ifts. Uplift of F is the
average of those of A and B since F is midway between those two points.
As pointed out previously the uplifts of A and B are equal to one

half the registered readings on the respective transducers opposite

to them. Therefore the true deflection of E relative to 0 is the
reading registered on the third transducer 1e§s one-fourth of the sum

of the other two readings. Of course the signs must be taken into

account,
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Hence, from Equation 2.4

fo+ f
_ 8 0 R
Ko+as° = L/ m)?° (forgse -~ —7—)
16 . To* ™ )
12 p+45° 4
Substituting back into MeR
fo+ f f+fp)
- 16 0 R 4 ‘g 'R
MGR = D(1 - u) [F‘ (fe+4519 - __4‘—'— ) - 2 2 ]

(f o+ fp)  (f, + f5)
D1 = W) 12 [ Fougpo - ——t - —2F
L | 4 8

(1= 1) 3 [ Foygge - 5 (g + T

The expressions that were used with the curvature meter designed,

in order to calculate bending and twisting curvatures are given below

4f,
Kg = F" . (A)
KoR =,1L_2§ [ Fouse = g (F + Tp)] (c)
3.2 Design of Main Body and Legs of Curvature Meter

It is preferable to make the curvature device as 1ight as

possible, in order to keep the deflection due to its selfweight a

minimum. Although the initial curvature due to this selfweight has
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no effect on the final results, since the whole system can be "zeroed"
electronically after applying the meter to the model, a 1ight meter
will help in allowing a greater portion of the total allowable deflec-
tion (for the small deflection theory) to be obtained only from
external loading after the electrical "zeroing", A detailed discus-
sion of this is included in Chapter V.

A piece of aluminium, 2" x 2" x 3/8", was used as a base for
the legs and the housing for the transducers. The centers of the legs
and the transducer holes (Figure 3,1b, page 20) were located using a
universal milling machine (Maximat V-10, Canadian Edelstaal Limited),
The carriage of this machine could be moved in two orthogonal directions,
with a precision of 1/1000 of an inch, using the attached micrometers,
It was ascertained that there was some back Tash in the horizontal
moyement of the machine carriage, Therefore, care had to be exer-
cised in locating the centers of the legs and the transducer holes.

- The transducer holes Were bored out to obtain a close smooth fit,
Hence, it was possible to move the transducers smoothly, edsi1y;and

- quickly in the vertical direction to obtain the zero position. Poly-
ethylene screws were used to Tock the transducer in place (Figure 3.1a,
page 20).

In order to measure the minute changes in curvatures, the
Tegs of the curyvature meter should be pressed tight1y‘agaiﬁst the
surface but at the same time, its abilfty;to‘adjust itself to the
change in ﬁgauge Tength" due to circular arc deformatfon of the plate

should not be prevented. If the outer legs of the curvature meter

were rigid and solidly fixed to the base, obviously
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they would offer some resistance to the deformation of the surface.
Thefefore, localized stress concentrations would be formed around
the tips of these legs which could have a significant effect on the
local final deformed shape of the plate. An answer to this is the
use of legs with freely movable bottom tips.

Both outer legs of the meter were made of two parts, connected
together at the middle by a high tensile Teaf spring as shown in
Figure 3.6 on page 27. The bottom part of each leg had a conical
tip of 6@5 and was hardened. The center leg was made of one solid
piece and this too had a hardened, 60° conical tip.

The outer legs were fixed on to the base as indicated in
Figure 3.7 on page 27. A great deal of care was taken to ensure
that the plane of each Teaf spring was orthogonal to the respective
meter axis through it. Each Teaf spring offered stiffness in the
direction along the plane of the spring, and 1itt1e-resist§nce'1n the
direction normal to its p]éne. Thérefore, the bdttoh part of each
outer leg was allowed to move, only in the direction of its corres-
ponding meter axis. Since the meter axes were orthogonal to each
other, any rotation of the meter aont a vertical axis was prevented.

To make sure that the distances between the tips of the
outer legs and the center Teg remained equal to half the gauge length,

the tips of all the three legs were placed in precisely Tocated 90°

conical shaped punch marks on the model.
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TOP PART
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Two Views of an Quter Leg. : Center Ledg,

Figure 3.6 Curvature Meter Legs.

PLANE OF LEAF SPRING

| PLANE OF LEAF SPRING

Figure 3,7 Alignment of the Legs on the Base of the Curvature Meter,




- 28 -

3.3 Curvature Meter Mounting Device

Due to the eccentric weights of the three transducers, it
was not possible to support the curvature meter on its own three Tegs
alone. Therefore, a method that would ensure stability and firm contact
between the Tegs and the surface, without introducing significant
restraints, was required to support the meter on the model.

A very efficient technique which had not been used in earlier
work, was employed to meet this design reguirement. The force re-
quired to hold the curvature meter against the model was obtained
from the action of a "string and spring" arrangement as shown in
Figure 3.8. First, a nylon fishing line, knotted at one end was
passed through a hole of diameter 0.04" made in the base at the center
of gravity of the meter. Then it was taken through a hole (diameter
0.04") made in the model, right beneath the center of gravity of the
meter. After that it was passed through a helical spring. This
spring was guided by a guide pin made of‘§1um1nium, with a restraining
collar at the bottom. fhe purpose of the restraining collar was to
compress the spring against the model plate.. To obtain the fbrce
required, the Tine was tensioned and anchored against the inner wall
of the guide pin with a set screw (Figure 3.8, page 29), with the
spring in compression in between the plate ana the collar. The tension
in the Tine could be varied by varying the compression in the spring.

It was tested and ascertained that, within reasonable Timits, the

amount of tension in the Tine was not an influential factor on the




- 29 .

smme\ o | @
\ .
N

~ Z
==
| ==
‘SPRING =
GUIDE PIN T t~—seT SscRew

Figure 3.8 The Curvature Meter Mounting Device,

_ Figure 3.9 The Reversed Mounting,




- 30 -

results.

When it was required to Toad the model from underneath,
closer to the reference point, the Toading stem 1nterfered with the
guide pin. Then the "string and spring"karrangement had to be re-

versed as shown in Figure 3.9 on page 29.

3.4 Electronic Equipment Associated with the Curvature Meter

As mentioned earlier, the principle of the curvature meter
was based on the measuremeht of relative deflection over a gauge
Tength. Since these gauge lengths were kept as small as possible
consistent with the required sensitivity, the magnitude of these
relative deflections was generally in the neighbourhood of several
microns. At the end of each gauge length of the meter, an inductive
displacement tfansducer of the type WIE (Messrs. Hottinger Messtechnik,
Darmstat) was installed to measure these minute relative deflections.

The transducer, type WIE, consisted of a probe connected
to a ferrite core wHich could be moved axially in the bore of a coil
assembly, placed in the cylindrical transducer housing. The coil
assembly was made of two coils which were adjacent to one another on
a common axis. These coils were electrically connected in series
to form two branches of a Wheastone Bridge circuit. The Wheastone
Bridge could be balanced by moving the ferrite core, so that its
center coincided with the mid point of the transducer. Any axial

displacement from this position resulted in a change of inductance

in the two coils, causing a disbalance in the previously balanced
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Wheastone bridge., The signal that would be ayailable as a result
of this disbalance, after amplification, could be read on the meter
of a carrier frequency amplifier, For this purpose an amplifier of
the type KWS/T-5 (Messrs. Hottinger Messtechnik, Darmstadt) was used
in this work. The maximum sensitivity of the meter KWS/T-5 is
2 X 1078 metre.

To connect simultaneously the three transducers used in
the curvature meter to measuring bridge KWS/T-5, a switch box was
constructed. This was capable of connecting one transducer directly
to meter KWS/T-5 for one switch position, Then for the other switch
position it connected a frequency mixing apparatus S A II (Messrs.
Hottinger Messtechnick, Darmstat) to the meter KWS/T-5. The other
two transducers were connected directly to the input of the mixing
apparatus S A I (same manufacturer as the above equipment)., The
mixing apparatus S A II is simply a mixer, which has to be used always
in conjunttionwwith KWS/T-5. In using the mixer S A Il two seperate |
electric signals could be summed or subtracted using the appropriafe
sién settings. The ineoming signa1s cbu]dvbe mixed to different pro-
portions using the two proport1ona11ty sett1ngs. -

In th1s exper1ment the mixer S A II was used to feed only
one trénéducer impulse at a time, into the measuring bridge KWS/T-5.
This was achieved by setting one of the proportionalty knobs to zero

while the other was set to read 100 percent, Hence, with the aid of

the switch box and the mixereS A IT, it was possible to read the
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probe deflections of all the three transducers on the measuring bridge
KWS/T-5 one at a time, without disturbing the meter, the Jeads or the
connections. A schematic diagram of this arrangement {s shown in

‘Figure 3.10 on page 32,

3.5 Edge Curvature Meter

As mentioned previously, the curvature meter discussed above
could not be used to measure all the three curvatures occuring on
or c]o§e to a boundary, especially at a free edge, A special fixing
clamp shown i- Figure 3.11 on page 23 was designed to carry the
curvature meter and to support it on an edge, such that the tip of
the center Teg of the meter was right over the reference point (Figure
3.11, page.34). The conical bottom of the cylindrical hole in the
clamp was made to coincide with the tip of the center leg when inserted.
In machining the é]amp, care was taken to make sure that the points
A, B and C were solinear.

The tightness of clamping was found to have an effect on
the results. This effect was dend'to be more significant on the reading
fe+45° than on the’other two, fé and fR‘ This waé becaUse,the magnitude
of fé+45° was very Tow compared7£6“the'bther two. The resu]ting in-
aécuraciés caused this type ofﬁedge.meter‘to be discarded. Instead
the curvafuré Ke in the ¢ direction was measured at the fFee edges‘using
the ordinary currature metek as shown in Figure 4.26 (page 38), The
other two curratureé Kp and KRé were oBtained from the measured Ke value

using the plate theory for free edge boundary conditions,
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CHAPTER 1V
MODEL AND TEST EQUIPMENT

4.1 Construction of Models

Out of the few model materials that have already been shown
suitable for simulating the flexural behaviour of reinforced and

prestressed concrete structures (5, 9, 21, 27, 29)

, air-craft alum-
inium alloy (ALCAN 2024-T-3) was chosen fo construct the models.
Its high modulus of elasticity (E = 10.38 x 10° psi) enabled the
achievement of adequate accuracy of measurémehts, with the equipment
available, without requiring deformations so larage as to alter the
fundamental geometry of}the model slab. Hence it was ensured that
the small deflection theory of plates remained valid. In addition,
its nature for easy fabrication to the required curved form was also
considered to be 1mportant; Poisson's ratio (u) was 0.322 for the
aluminium a11oy used and therefore higher than that for concrete,
The effect of the differenééhin Poisson's ratios and the method of
correcting the model results for varying Poisson's ratio, are dis-
cussed in Chapter VII,

The thickness of aluminium plate used was 0.125", The thick-

ness chosen was such that the plate could be considered thin compared

to the dimensions on plane. However this, at the zones of application

of the load, where the "load spread" takes place, is not true. Thin-
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ness of the model assisted in correlating the model results to those
of actual structure around these zones as discussed in Chapter VII,
It also facilitated the measuring procedure because measurable deflec-
tions could be achieved with small values of applied Toad.

The Tayout of the models is shown in Figure 4.1, on page 37.
As mentioned earlier, the model dimensions were chosen to represent
curved slab bridges popular in practice. Along each radial boundary,
a set of holes of diameter 0.04" were drilled through the model plate
to pass the strings to hang the "pre-Toads" that will be discussed
Tater in this chapter.

The reference points investigated are indicated in
Figure 4.1 on page 37. The reference points at the free boundaries
were located as close as possible to the free edge. It was possible
to Tocate all the "edge" points at distances less than one half the
thickness of the plate from the edges. Around each reference point,
three 90° conical éhéped;ho]es were punched (Figure 4.2bon page 38)
to position the meter in‘blace. As mentioned eaf]ier, . great care
was taken to ensure that the distances from the center leg hole (i.e.
the reference point) to the two outer leg holes were equa1 to one
half the gauge length of the meter. For each meter portion, a hole
of diameter 0.04" was drilled through the model plate at the appro-
priate place to mount the device as explained earlier. The Toading

schedule used is shown in Figure 4.laon page 38.

4.2 The Pre-Loading

Due to the fact that the self weight of the aluminium plate




Model 1 - 15° Opening Angle.

Opening Angle.

Model 2 - 45°

~ Layout of Models,

Figure 4.1




L b
a R v
3 ,
b y e b
l/\M NN
< p 3=
L
4 ¢ g \d
¢

Figure 4,2a  Loading Schedule,

Figure 4,2b  Location of Punch Marks,




- 39 -

was not great enough to ensure firm contact between the;mode] plate

and the knife edge supports; some pressufe was necessary to hold the
model plate down. This was achieyed by hanging weights from strings
which were anchored to the upper surface of fHE‘mode1 through tiny

cones sitting at the edge, as shown in Figure 4.3 on page 40, 1In
addition these pre-loads prevented any possible uplifts of the corners
of th& model due to loading. The question may arise as to whether

these loads would affect the results because they cause some initial
curvature in thermodel. However, this curvature was very small and {its
effect was eliminated by electronically "zeroing" the whole system after

all the pre-loads were applied. This principle is explained in Chapter V.

4.3 The Knife Edges and the Testing Arrangement

The knife edges were made of solid steel, As shown in

Figure 4.4 on page 40, slots were cuf along the sharp edge of each
knife edge, A set of holes of diameter 0.04" were drilled thrpugh
them, to pass the strihgs carrying the'pre—]oads. These slots were
cut to avoid the difficulties in aligning the holes through the sharp
tips of the knife edges. ;The slots were machined to widths of
dimensions less than one ha]f the thickness of the plate to ensure
that the localized stresses formed in the plate aroung the slots due
to suspended pre-loads were insignificant,

The test bed consisted of two large steel channels champed -

across two leveled tables. Two double angles made of single angles

fixed back to back were clamped across these two channels, In each
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of them, a gap was provided between the two single angles in order
to pass the strings carrying the pre-loads. The two knife edges
were fixed to the double angles. This test set up is shown in Figure

4.5, page 41.

4.4 “Loading Mechanism

A vertical steel shaft with a ball transfer at the bottom
was employed to 1oad the model plate. This Toading shaft was guided
through two teflon bushings placed inside a cylindrical housing. As
shown in Figure 4.6 on page 43 the cylindrical housing was machined
as a part of a carriage that was designed to slide on a horizontal
beam. The ends of this beam were fixed on to two vertical posts having
magnetic bases. Another vertical frame was fixed on top of the
previously mentioned horizontal beam. In the horizonta] beam of the
top frame, a number of holes were bored at pre-determined spacings to
fix an inductive displacement transducer of the type 7DCDT-100, HewTett
Packard. The purpose of this transducer was to obtain the deflection
directly under the Toad. A circular steel disc was fixed to the top
of fheé]oading shaft on which the loads were placed. Solid steel
washers with a circular hole in the center to fit the shaft were used
as weights. The loading shaft could be held at any vertical position
using two Tong vertical screws placed against the bottom surface of
the steel disc (Figure 4.6). Hence the ball transfer of the Toading

shaft could be made to be just in contact with the plate before Toading.

To obtain the deflection directly under the load, the bottom end of
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the transducer probe was kept on the Toading shaft after it was adjusted
to the above mentioned position. This transducer was connected to the
Hewlett Packard Data Acquisition System machine to find the corres-
ponding deflection. |

As mentioned previously, at points close to the reference
points,it was required to load the model from underneath. A cantilever
system similar to that of a simple balance was employed to achieve
this purpose. As shown in Figure 4.7 on page 43, a vertical steel
needle with a ball transfer at the end was employed to load the model
frpm underneath. This needle was guided through a steel tube fixed
to an end of the horizontal balance beam. The needle could be adjusted
vertically to ensure thét the horizontal beam remained horizontal
during loading and the deflecting of the plate. The purpose of this
was to avoid the load being applied at an inclination to the vertical.
To minimize the possible effect due to the horizontal frictional force
that cou1d exist between the ball and the model plate, the length
D of the needle (Figure 4.7) was kept as short as possible. A tiny
bit of grease on the ball transfer also helped to reduce the above
mentioned friction to a negligible amount. When Toading from below,
instead of turning'the knife edges to the top‘of the model, a technique

of preloading the model was used and the procedures involved are given

in Chapter V, page 55.
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CHAPTER V

EXPERIMENTAL PROCEDURE

5.1 Calibration of Curvature Meter

Initially, the performance of the curvature meter discussed
- in Chapter III was tested on a plate that was subjected to pure
bending. As shown in Figure 5,1, page 46 a 6" x 6" square plate
made of aluminium alloy (ALCAN 2024 T-3) was supported at the oppo-
site corners A and C from underneath and at the corner B from the top,
The curvature meter was attached to the plate such that the two main
- axes of the meter were aligned along the two diagonals of the plate.
Then the plate was loaded at the corner D. As expected, the two
transducers on the main axes registered readings of equa] magnitudes
but of opposite signs indicating anticlastic curvatures along AC and
BD. The third traﬁsducer registered a zero'reading indicating that
~ the plate remained undeflected along the lines X and Y (Figure 5.1,
page 46) as éxpected in the case of pure bending. In addition the
twisting curvature calculated from Equation [C] on page 24 usfng

the three transducer readings was zero, which again satisfied the
criterion of pure bending. Further, this confirmed the validity

of Equation [D] that was deyeloped in Chapter III. This experiment
was repeated for two or three loading cases, For example the trans-

ducer readings obtained for a particular load were +0,00199, -0.0020

and 0.0 for the two main axis transducers and the third transducer
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+

Figure 5.1  Plate Subjected to Pure Bending.
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respectively. This experiment was repeated with the device rotated
through 180° to be certain of the cohsistency of the curvature meter.
The‘same réadTngs were obtained with the signs reversed, Then;the
curvature meter was rotated through 45° such that the main axes'of the
meter were at 45° to the diagonals of the p1ate, f.e., in X and Y
directions. As anticipated, the transducers on the main axes registered
zero readings WhTTe the third transducer registered a non-zero reading.
The curvature along the diagonal of the plate was calculated using Equa-
tion [C] deve1oped for Ké+450 in Chapter III, page 24. This value was
found to be equal to the curvature obtained for the same diagona1 for
earlier meter set up using the more straightforward Equation [A]. Hence,
the validity of Equation [Clwas confirmed again. The curvature meter was
rotated through 180° from this position. The same readings were obtained
again with the sign reversed. Then the curvature meter was adjusted

such that the main axes were 15° from the diagonals., A1l the three -
transducers registered non zero readings, From these readings curvatures
along the diagonals were calculated using the equilibrium for curvatures
in a plate (Mohr's circle). They were equal to those obtained

with earlier set ups. Unfortunately, the above described cexperi-

ment could not be considered as a general prosf to show the

validity of Equation [C] developed for 6+45° axis of the meter. This

was due to the fact that in all the three meter set ups the meter

axis 6+45° remained level as in the simple case considered in Figure

3.2 on page 22. Hence the term (fe + fR) in Equation [Clzalways
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turned out to be zero unlike in the general case shown in Figure 3.3,
page 22, On the other hand, this experiment did not produce data
inconsistent with the equations developed for the meter axis e+45° in
Chapter III.

As mentioned earlier, the curvature meter was calibrated
along each axis using a strain gauge testing beam apparatus, (H.
Tinsley’and Co. Ltd.). With this apparatus, a circular curvature
could be obtained in the center pdrtion of the beam by fixing the
twd adjustable roller supports A and B equi-distant from the respec-
tive screw jacks R and L provided at the ends of the beam, (Figure
5.2a page 49); This circular curvature could be calculated using
the relative deflection measurement obrained_from a micrometer mounted
at a center of a special carriage. This carriage had been designed
to work on the same principle as the curvature meter. The gauge
length between the two fixed legs at the ends of the carriage was
much larger than the gauge length of the ;urvature meter. The rela-
tive deflection measurements of the micrometer, therefore, were
greater in magnitude than those of the curyature meter transducers.

5 metre was. quite adequaté

Hence, the micrometer sensitivity of 10°
for calibration of the currature meter. For accurate measurements of
deflections the micrometer should not exert any pressure on the beam

while recording the readings. For this purpose the carriage was pro-

vided with two terminals which were connected to an electric buzzer actuated
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by a high frequency current. Thus, the slightest contact between the
micrometer and the test beam would at once be indicated by the buzzer
sound.

The calibration set-up is shown in Figure 5.2b, page 49,
A narrow strip of aluminium of length 48", of width 2" and of thick-
ness 0.125" was used as the testing beam instead of the Beryllium
Copper beam supplied with the apparatus. This strip was cut from
the same sheet of aluminium that was used to make the models in
order to attain high 1level of precision. The micrometer carriage
was placed on the center portion of the beam such that the twd
fixed legs were on the center Tine of the beam. The curvature meter
was mounted on the beam at a predetermined point between the legs of
the carriage with its axis to be calibrated Tying along the center
line of the beam. More‘accurate displacement measurements on the
measuring bridge could be obtained if the transducer probe was close
to its mechanical zero position at the unloaded state. This was
obtained by moving the transducer housing vertically until the measur-
1hg bridge meter néed]e was close to zero while all the electrical
settings were at middle positions.  The meter needle was brought to
exact zero position electrically and the measuring bridge was then
balanced for phase and amp]itude; The measuring amplifier K.W. S/T-5
used could be set to varioys measuring range sensitivites such that

even a fractional part of the nominal 1 mm: range of displacement of

the transducer probe indicated a full deflection on the recording
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meter. The measuring bridge meter was then calibrated such that the
needle indicated a full def]ectionAin the meter when the maximum
displacement corresponding to the selected sensitivity range was
simulated e1ectkica11y. The micrometer reading was recorded at this
un1oaded state and then the beam was deflected by movﬁng the two
screw jacks downwards. The micrometer readings and the measuring
bridge meter readings were recorded at various stages of loading.

For each sensitivity range selected these measurements were carried
out for two continuous cycles of beam deflection obtained by Toad-
ing, unloading, reloading and re-unloading. This was to obtain an
idea of the significance of the hysteresis of the total system

and to check whether the meter was capable of reproducihg the results
faithfully. The data that were obtained from these calibration tests
are discussed in the next chapter.

The question arose as to whether the calibration obtained
for a pérticu1ar initial balance position of the probe close to its
mechanical zero position would be valid if the 1n1tié1 balance posi-
tion of the probe during testing was not the same, although in both
cases the measuring bridge could be set for "initial zero" using
its é]ectronic settings. Therefore, the calibration procedure was
repeéted for a number of off set positions of the probe on both sides
of its mechanical zero position. For each calibration, the positions

of the appropriate "coarse" electronic setting and the "fine" elec-

tronic setting of KWS/T-5 (or S A II) were recorded. However, it




was not pessible to record the position of the “extra fine" setting,

A11 three meter axes were calibrated in three sensitiyity ranges
that showed deflections of 0,01 mm, 0.005 and 0.002 mm at full

range. In calibrating the 6+45° axis of the meter, all the three
transducer readings were recorded and used in Equation [C] (page 24).
The three transducers used on the three curvature meter axes were
marked with different numbers in order to make sure that in testing

they were used on the same axes on which they were calibrated.

5.2 Procedure for Obtaining Curvature Data

The curvature meter was mounted on the model at the point
under investigation such that the middle leg of the meter coincided
with the reference point. The theee transducer housings tthen:were
Tocked onto the curvature meter such that the probes were close
to their mechanical "zero" positions while the measuring bridge
electrical settings were at their middle positions. The purpose of
this adjustment was two-fold. First, as mentionddeagr e, the sen-
sitivity of the displacement transducer was at its peak when its
probe was at this middle position. Secondly, this adjustment gave a
one millimetre range above and below the "zero" position, thus allowing
the probe to record both positivevgyrvature and negative curvature,
(Figure 5.3, page 53). The measurdngg: bridge meter needle was brought
to the zero position for each transducer cTrcuTt,‘ The measuring bridge
was then balanced for phase and amplitude for each

transducer circuit. When the bridge was balanced, it
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was assumed to have "zeroed" the initial conditions of the model.

From then on, the meter registered the deflections corresponding to
change 1in curvature due to any additional Toad applied to the slab.
Therefore; the earlier mentioned initjal curvatures produced by the
pre-loading and the weight of the curvature device did not have any
bearing on the curvature recorded due to the lToad. The measuring
bridge was calibrated internally as described earlier in all the three
selected sensitivity ranges. The model was then Toaded at the required
place (the "load point") and the three transducer readings were re-
corded. This was repeated three times, starting with a different
transducer every time to ensure that the readinas were not influenced
by factors such as the transducer circuit transfer switch box, connect-
ing cables, etc. After the first model was completely tested this was
carried out only as an coceasional check. Every time when the load

was lifted it was checked to see whether the measuring bridge remained
balanced for all the three circuits. The reading of the transducer
type 7DCDT-100 (HEWLETT PACKARD) was also recorded to make sure that
the selected Toad did not produce deflection large enough to violate
the small deflection theory for elastic plates.

In the case of first model, the symmetry of the measured
values for the three reference points on the center radial Tine were
checked by Toading the model at load points on both sides of this
symmetric radial line. For the other two models this symmetry check

was done occasionally. In addition, en the first model an extra
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symmetric reference point (Figure 4,1, page 37) was examined
to check the symmetry.

In order to load the model from underneath, it is usual
to change the knife edge set-up. Instead of this complicated proce-
dure the fact that the curvature meter measures only the change in
curyature was used. First, the model was Toaded from above at a
‘number of points close to both supports with reasonabl¥ heavy Toads.
This was to ensure that the plate was pressed against the supports
when it was loaded from underneath. Then the meter was zeroed for
initial conditions and the load was applied from below using the
cantilever system described in Chapter IV. The same experimental

procedure described in the preyious paragraph was then followed.

5.3 ‘Material Properties and Calibration of Loading Systems -

AAtension test was carried out to obtain the modulus of
elasticity and the poisson's ratio of the model material, The load-
1ngvmechanism used to load from above was ca]fbrated using a preci-
sion balance capable of reading down to the nearest 1/100th of a gm.
It was ascertained that even the small friction that existed
between the shaft and the teflon bushing could be rendered negligible
by tapping 1ightly on the shaft after loading. This procedure was

followed at all times.
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CHAPTER VI
OBSERVATIONS FROM CALIBRATION AND SYMMETRY TESTS Eﬁi

6.1 Calibration Constants for the Three Transducers

The circular curvature produced by the strain gauge testing
beam apparatus was measured in two ways as described in the previous
chapter. Then they were compared with each other in order to find a
calibration constant "Ce" (or CR or Ce+45°). Instead of calculating
a number of "Ce” 's at different levels of loading and taking the
average value, it was decided to plot the curvature measured by the
testing apparatus (using Equation 2.4 on page18 ) vs the curvature
measured by the meter (using Equation [A] on page 24). In each case
the slope of the best straight 1ine through these calibration points
was taken as the constant "Ce" (or Cp or Ce+45°). The Calcomp Tine
plotter computg% programme "AVLIN" that is available at the computer

center of University of Manitoba was used to plot the calibration

data. The slopes of these straight 1ines were obtained as out puts
of the programme. Excellent Tinearity and reproducibility of the
measured values indicated the high degree of reliability of the measur-

ing bridge apparatus and the transducers. When the data for loading,

unloading, re-loading and re-unloading were plotted on the same sheet,
it was obvious that the hysteresies in the system was insignificant.
From these calibration graphs (Figure 6.1, page 57) the reproducible

nature of the curvature meter was very evident.
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Each meter axis was calibrated in three sensitivity ranges.
There was a slight difference in "C" values between the three sensi-
tivity ranges of the measuring bridge for all the three curvature
meter axes, The effect of offsetting the transducer probe from its
mechanical zero position was found to be insignificant on the cali-

bration constants Ce and C 5o in all the three sensitivity ranges.

o+4
The constant CR was affected by offsetting the transducer probe and
this was found to be very significant in the 0.002 mm (the highest)
sensitivity range. In the cases of 0.01 mm and 0,005 mm sensitivity
ranges this effect was found to be significant only when the probe
was offset considerably from the mechanical zero position. However,
this did not have any bearing on the testing since the positions of
electronic balance settings of KWS/T-5 for S A II) were recorded during
each calibration,

A different procedure that was used in plotting the cali-
bration curve for the 6+45° axis of the meter because of its compli-

cated expression for curvature is given below.

The circular curvature calculated from the testing beam

apparatus = T%ET?- where LT is the gauge Tength of the carriage meter.
T
The same curvature calculated on 6+45° axis of the meter
16

- -3 .
= ?3;)2 [ f9+45° - g-(fe + fR) 1.  The readings fe and fp can be

corrected since Ce and CR are known.

8F - 16 3
(LT)2 - E—i [ 'Fe+450 - 'é' (Cefe + CRfR) ]
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- F /Lo, 3
F /L -3
* = (k)2 —
Let F 5 (LT) + = (Cefe + CRfR)

* . .

Hence F* vs f6+45° was plotted to find Ce+45°. Ce+45° is
really a calibration for the third transducer alone, Hence, in correct-
ing the curvature measured on the 6+45° axis, all three calibration

constants Ce, Cp and Cy,spo were used in the Equation [C].

o+4

Full Deflection

of the Sensitivity C C C 0

Range. . 0 v o .,R o v ,5+45.,

0.0T mm 1,002 0.992 0.995

0.005 mm 1.011 0.998 0.991

0.002 mm 1.008 0.999 0.987
6.2 Checks on Experimental Results

As mentioned in the previous chapter in the case of the
first model tested, the model slab was loaded at loading grid points
on both sides of the symmetric radial line in studying the three
reference points A, B and C. Since these reference points were on
the symmetric radial 1ine, this provided a comprehensive check for
symmetry. For all the three reference points A, B and C, the trans-
ducer values fe were found to be remarkably close for symmetric load

points [e.qg., g, g'/h, h'/ etc. (Figure 4.2 page 38)]. The maximum
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difference obtained was much Tess than one half of the smallest read-
able diyision (0.0002 m m) of the 0,07 mm scale used, At the reference
point A, the registered transducer values of fR were small compared to the
orthogonal axis values fé. Some discrepancy could be noted for these
small values of fR for s&mmetric loading. However, only in four
instances these differences were more than the smallest readable divi-
sions{6:001. m361)} of the 0,005 m m scale used. The obvious solution
appeared to be the use of higher Toads so as‘to obtain higher readings
for fR.that could be read on a less sensitiye scale than the one al-
ready used. However, it was not possible to use higher loads since

the small deflection theory of plates would have been violated. The
alternate solution for the above problem are discussed in Chapter IX,

The third transducer readings f 5o obtained at reference point A

o+4
were entirely different from each other for symmetric load points.

Howeyer, when the twisting curvatures KeR at A were calculated using

fe’ fR and fe+45° in Equation [C] for symmetric load points, remark-

ably close values were obtained with opposite signs. This was an i
excellent demonstration of the highly pfecise performance of the -
curvature meter. It aTSo proved that symmetric boundary conditions

had been obtained from the modelling technique employed. These

transducer readingﬁ are listed in Table 6.1 on page 61. As expected

zero values were obtained for K p at reference point A when the model E;;
was loaded at points on the symmetric radial Tine, A1l the three

transducer readings obtained for reference point D for all the load



Table 6.1

Some of

- 6] -

the Symmetric Load Points for the Reference Point A,

Load Points

Transducer Readings

8 ' R 0+45°
a 0.00705 -0.00296 0.00152
b 0.00850 +0.00221 0.00236
c 0.00576 -0.00090 0.00250
d 0.00958 -0.00232 0.00272
e 0.00740 -0.00300 0.00165
f 0.00600 -0,00225 0.00110
f! 0.00603 -0.00225 0.00173
g 0.00683 -0.00164 0.00165
g' 0.00683 -0.00175 0.00221
h 0.00755 -0.00105 0.00239
h' 0.00755 -0.00105 0.00249
i 0.00760 -0.00178 0.00235
i 0.00762 -0,00181 0.00798
i 0.00660 -0,00240 0.00178
J' 0.00664 ~-0.00232 0.00740
k 0.00603 -0.00208 0.00102
k' 0.00609 -0,00216 0,00194
1 0.00558 -0,00145 0.00123
1! 0.00560 . -0.00144 0.00188
m 0.00536 -0.00111 0.00138
m' 0.00536 -0,00100 0.00183
n 0.00532 -0.00129 0.00189
n' 0.00534 -0,00130 0.00101
0 0.00535 -0.00179 0.00188
o' 0.00542 -0.00180 0.00081
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Some of the Readings at Symmetric Reference Points D and D' *

Transducer Readings at the Transducer Readings at the
Load Reference Point D Reference Point D'
| Points 0 R o+45° 6. R g+45°
a 0.00403 | -0.00742 | 0.00142 | 0.00401 | -0,00138 | 0.00141
b 0.00467 | -0.00122 { 0.00152 | 0,00464 | -0,00122 | 0.00154
o 0.00540 | -0.00115 | 0.00144 | 0.00538 | -0,00116 | 0.00142
d 0.00534 | -0.00128 | 0.,00104 | 0.00532 | -0.00128 | 0.00104
e 0.00453 | -0.00150 | 0.00054 | 0.00452 | -0.00150 | 0.00052
f 0.00514 | -0.00200 | 0.00155 | 0,00295 | -0.00093 | 0.00118
f! 0.00295 | -0.00098 | 0.00120 | 0.00511 | -0.00196 | 0.00158
g 0.00585 | -0.00136 | 0.00195 | 0,00342 | -0.00095 | 0.00120
g' 0.00341 | -0.00096 | 0.00120 | 0.00579 | -0.00134 | 0.00200
h 0.00660 | -0.00070 | 0.002065 | 0.00400 | -0.00100 | 0.00119
h' 0.00400 | -0,00100 | 0.00120 | 0.00653 | -0.00070 | 0.00210
i 0.00648 | -0.00140 | 0.00153 | 0.00328 | -0,00088 | 0.00063
i 0.00322 | -0,00085 | 0.00068 | 0.00645 | -0,00140 | 0,00155
j 0.00564 | -0,00202 | 0.00076 | 0.00330 | -0.00103 0.00041
J' 0.00330 | -0.00103 | 0.,00042 | 0,00564 | -0,00202 | 0.00078

At the reference point D' the curvature meter is Tlocated with a 90°

“rotation (clockwise) from that at D. The loading points a, b, ¢, d
and e are Toecated on the symmetrical radial line. Hence for the
above mentioned loading points identical transducer readings are
obtained for the reference points D and D' as shown above.
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points were in good agreement with the corresponding values obtained
for the symmetric reference point D' as shown in Table 6.1 on page 61,
In the other two models tested, only occassional load sym-

metry tests were performed,




CHAPTER VII

PRESENTATION OF TEST RESULTS

7.1 Dimensionless Curvature Influence Coefficients

The mements Me, MR and MRe could be obtained from Equation
2.1, 2.2 and 2.3 on page 9 using the curvatures calculated from
test results. Influence surfaces presented in terms of these moments
would not be of much direct use to the designer since they were cal-
culated for a certain load P and for a plate material of certain
Poisson's ratio p. Therefore, it was decided to present the results
in the form of non-dimensional curvature influence surfaces as shown
below. This method would help in attaining a better accuracy in
correlating the model results to prototype slabs made of materials
of different Poisson's ratios. The method of obtaining this correc-
tion for Poisson's ratio is given below. However, some discrepancies
would still be present and they are discussed later in this chapter.
Ie, IR and IeR are the non-dimensional influence coefficients corres-

ponding to the curvatures K, KR and KeR where

1, = X (7.1)
p

. = X (7.2)
P

I.= (1-p)D Ker

oR We (7.3)
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These curvature influence coefficients can then be used to find the

moments of prototype slabs of the same shape but of different Poisson's

ratios, in the following way. If the Poisson's ratio of the proto-

type material is uy_. and the concentrated lead is P_, then:

p p

=
I

m m
6 = Pp (I6 + pp IR)

P _ m m
MR = Pp [ IR + pp Ie ]
P _ m
Mor = Pp Top

m -m m
where Ie, IR and IeR

be shown in the following way:

Prototype curvature/unit load = v%%J.%%
where Dm = model stiffness
Km = model curvature for a load Pm
Pm = model Tload
Dp = prototype stiffness
Therfore, for a prototype load Pp
K = Dokm Pp _ Pp  Dmkm,
o) Dp Pm Dp Pm
But " = D?ﬁm
Hence Kp = EE—Im

are the model curvature coefficients.

(7.4)

(7.5)

(7.6)

This can
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p p p
Therefore My Dp (Ke + Hp KR)

Pp m
Dp ( Dp Ie + up

W,

Pp .m
Dp IR )

m m
Pp ( Ie + up IR )

Eugations 7.4 and 7.5 are simplified forms of more complex expressions
that have been developed by S. Timoshenko and S. Krieger(24) to modify
the bending moments in slabs for a change in Poisson’s ratio from Uy

to “p' The expressions given by Timoshenko and Krieger are:

P 1 _ m _ m

M - [ (1 umup) Mg + (up ue) Mpd
M

p L m m

My = 1-u2 L= ppg) M+ Gy =) Mg

It can readily be shown that the above equations are not valid when
applied to the slabs with boundary conditions such as free edges or
cases of elastic supports--where n is implied in those boundary condi-
tions. For example, at a free edge, the use of the above equations

for conversion of moments from U to u. yields an expression

p

P - — - m
MR 1-u§ [ (up um) Me ] for the transverse moment MR' Clearly

this expression is not zero although the transverse moments at a free
edge must be zero for any Poisson's ratio. However, it has been shown
that, although the use of the above equations leads to some errors

near a free edge or an elastic support, it does not influence the
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b, (24> 27530, 31, 32) 4 getaited

moments elsewhere on the sla
investigation of the effect of change of Poisson's ratio is beyond

the scope of this dissertation. However, the writer has carried out

a survey of Titerature available on this subject (15, 24, 27, 30, 31, 32)
and therefore with the aid of those he offers the following comments.

Robinson (31)

in his investigation of centrally loaded square
slabs found that a reduction of Poisson's ratio from 0.30 to 0.15
resulted in a considerable reduction in both spanwise and transverse
moments under the load point. The effect of this on span-wise moment
at the center of a free edge was found to be negligible. He ascer-
tained similar results for a reduction from 0.3 to zero. In the
reference (30) it is mentioned that Balas and Hanuska (32) have
observed that for a uniform Toading, an increase in Poisson's ratio
from zero to 1/3 resulted in an increase of deflection at the center
of a free edge. For a concentrated load near the free edge, an increase
of both deflection and spanwise moment was observed. Yeginoboli (27)
from his studies on continuous skewed plates commented that the
deflections and moment increased with increase in Poisson's ratio.
The above comments illustrate only a few examples of the research
that has been done on this subject.

The writer concludes that in correlating the model results
to the prototype, any difference in Poisson's ratio between the model

and the prototype should be considered. Since the use of Equations

7.4 and 7.5 Teads to some errors near a free edge or an elastic support,
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at those places it appears safer to use the model results directly

in the design without any coversion if the model test has been carried
out on a material of higher Poisson's ratio. than the prototype(21).
The reason for the above recommendation is that the model defiections
and moments will be higher than those of a material of lower Poisson's

ratio.

7.2 " Evaluation of Influence Surfaces

(a) Uniformly Distributed Load (U.D.L.)

As mentioned earlier an influence surface drawn for a parti-
cular reference point presents the influence of a unit load any-
where on the slab at that point. Therefore, the influence of any
load is measured by the product of the magnitude of the load and the
corresponding ordinate of the influence surface. The distributed
load can be considered as closely packed concentrated Toads.

If p is the loading per unit area and i is the influence
ordinate of curvature under the load p, the curvature created at the
reference point by this Toading is:

dI = (p i) RdedR (7.7)
If one replaces arc length Re by T, then small arc length Rde becomes
dT. Therefore, Equation (7.7) becomes

dl = (p i) dT dR

The total curvature due to uniformly distributed load over the whole slab

is given by the summation of each of these curvatures dI.

I=7dl =7 (p i) dTde (7.8)
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Reference point A and load point P with
coordinates (u,v) ond (g,R) respectively.

Figure 7.1a
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The influence ordinate i depends on four variables, namely u, v, 6, and R.

The reference point location is denoted by u and v. The load location
is given by R and e as shown in Figure 7.1a (Page 68a). Therefore,

Equation 7.8 becomes

I (u, v) =ss5 (R, 8) . i (u, v, 8, R) dT dR (7.9)
If one replaces the acutal dimensions R and T by dimensionless coordinates
= I - R - u =Y
a_-l b"-l C"«I d 'I

where 1 is an arbitrary length:
then dT = 1da dR = 1db
Hence Equation 7.9 becomes

I (u, v) = 1°

srp(a,b) i(c, d, a, b) da db (7.10)
This evaluation formula shows an important general feature of influence
surfaces. That is they are independent of the absolute plate dimensions
and that only the shape of the plate is important.

In general, uniformly distributed loads are constant. There-
fore, Equation (7.10) becomes

I (u, v) =p.12 754 (c, dy a, b) da db (7.11)
The double integral in Equation (7.11) can be interpreted geometrically
as the volume of the influence surface over the Toaded area. This
geometric meaning is the key for the evaluation since, .in general, it is
not possible to determine the exact influence function 1 in order
to perform the double integration in Equation (7.11) mathematically.
When the contour plan of an influence surface is given, it
isca’simpleproblem to find the "influence volume" from plane

projected areas of the contours or from the section through the con-
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(13). These calculations are made in a

tours as shown by A. Pucher
manner identical to earthwork volume computations, using Simpson's
rule where appropriate.

Although any arbitrary value could be used for 1 in Equation

(7.11) in this work the width of curved bridge deck is used for 1.

(b) Wheel Loads

In designing highway bridges, it is essential to study the
effect of a truck Toad when it travels across the bridge. The magni-
tude of the curvatures depends on the position of the truck on the
bridge. The critical position of the truck is usually determined
by a trial and error procedure. The wheel spacing is drawn on a piece
of tracing paper to the same scale as the influence diagram and then
it is moved about on the influence surface until the critical location
of the truck is obtained. With a 1ittle practice, one can approxi-
mate to this position very closely by inspection, noting that in
general, one wheel 1oad should be on top of, or as close as possible
- to the reference point. All the wheel Toads can be considered as
concentrated Toads except that wheel Toad,which is over the reference
point or very close to it. In this case the load distribution should
be considered, since at or close to the reference point the influ-
ence surface changes rapidly. Often a Toad distribution angle:of 45°
is used (]3).

In the treatment of other wheel Toads it has been assumed

that they are concentrated loads. But if the contact area is large,
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consideration of load distribution is necessary, as discussed in
greater detail in Reference (13). An example of the use of influence
surfaces in truck Toad analysis is given in Reference (33) by A. M.
Lansdown,

Influence surfaces are useful to the bridge designer not
only in assessing the effect of abnormally heavy loads on anc exist-
ing bridge, but also assist in the design of bridges in many ways.

The critical moment Tocations can be obtained quickly if a set of
influence surfaces for the structure to be designed are available.
They also become useful in Taying out the reinforcement for the struc-
ture. When the pertinent influence surfaces for the particular struc-
ture to be designed are not available, the designer can employ a set
of influence surfaces representing a structure that is closely similar
to that under design. The hypothetical structure so chosen can assist
him to arrive at the final structure. For example, when a bridge
engineer is called upon to'design a bridge, the total span and the
approximate width will be the only definite properties of the bridge
that he will have at hand., The plane geometry of the bridge of course
depends on the traffic requirements at the particular Tocation. If the
influence surfaces are available for various shapes of structures of
different span to width ratios, the engineer can select a structure
that appears to be the most suitable for his problem. Then he can
start to build up his particular structure using the critical moments
in the selected influence surface as the primary design moments,

For instance, if the designer has selected a horizontally curved




- 72 -

bridge deck, at once he will notice from the influence surfaces that
the critical locations are the mid points of the two free edges
instead of the mid span. Hence, it would indicate to him that edge
beams are 1likely called for. Similarly, in the case of a skew

slab, the influence surfaces will indicate the obtuse corner as the
critical Tocation that should be considered in detail. From an in-
spection of influence surfaces alone, with a Tittle experience one
may be able to pick a hypothetical structure that will be close to

the final structure.

7.3 Correlation of Model Results to Actual Structure

The gauge Tength of the curvature meter controls the accur-
acy of the measured values and therefore indirectly governs the choice
of size of the model. This stems from the curvature meter's measur-
ing only an average curvature over the base length L of the meter.

The ratio LZLM (where LM is the span of the model slab) therefore

becomes a prime factor for the accuracy of the model results. The

assumption of constant radius of curvature within the base length L

is assisted by the selection of smaller ratios.of'L/LM. An analy-
tical  approximation to the effect of L/LM on:curvatures is presented
in Appendix 1.2. Weigler and Weise (29) recommended that for prac-
tical purposes ratios of (L/LM) of 1/10 to 1/8 is satisfactory.

8)ment-ioned that the error that could result from

Mehmel and Weise (
a ratio of 1/6 was Tess than one percent in the mid span region.

The ratio used in this investigation was 1/18 with respect to the
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center spans of the simply supported model slabs, whereas it was

1/9 with respect to the continous slab. The ratio was very close to
1/7 in the transverse direction with respect to the width of both
model slabs:

Any curvature meter does not accurately measure the curva-
ture at or in the close vicinity of a concentrated load where the
curvature of the deformed plate changes rapidly. This inaccuracy
in curvature measurement is due to its peak value being rounded
(flattened off) as a result of the curvature meter's measuring only
an average curvature over the base length.

Theoretically the curvature under a perfectly concentrated
load is a singular function which reaches an infinite value directly
under the Toad point. In reality, however, perfectly concentrated
Toads do not exist. As explained by Westegaard (2), the 1oad tends
to spread over a definite contact area. For analytical purposes
the "concentrated Toad" is distributed over an even greater area
than the actual contact area. The further distribution is usually
considered by projecting it on to the neutral plane along 45° lines
as shown in Figure 7.1 on page 74. Such a spreading of the load

reduces the infinite curvature under the load to a finite value.

The greater the distribution of the "concentrated Tload", thesless sharp

the maximum peak becomes at the load location. The contact area
between the ball transfer of the loading shaft and the model slab

is much smaller than that of a real wheel load and the actual slab.
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Hence, the Toad spread area on the model is less than that on the
actual slab as shown in Figure 7.1 on page 74. Therefore, the ‘
curvature due to a unit Toad on the model at fhe load point is greater
than that occuring on the actual slab due to a unit wheel load.
Although the curvature meter measures an average curvature, the
difference between the measured curvature and the practical curva-
ture on the actual slab tends to be negligibly small for practical

purposes, with the model tending to give higher (conservative) value.




CHAPTER VIII

ANALYSIS OF RESULTS

8.1 Comparison of Influence Surfaces

In general, the contours of the influence surfaces follow
a definite pattern for the corresponding reference points in all
the three models (15° opening angle, 45° opening angle and continuous)
except for the three reference points on the interior support of the
continuous model. The spanwise 6-axis of the curvature meter was
found to be more sensitive to the Tocation of the load than the
other two axes R and 6+45°. Hence, as it can be seen in Appendix II
the contours of the Ie influence surfaces are more closely spaced
than those of IR and IeR’ The Ie influence coefficients are higher
in magnitude compared to the corresponding IR and IeR coefficients
at all the loading grid points in all the models.

In the transverse curvature influence surfaces IR (Figures
I-2 and I-14) for the reference points: A and D (Figure 4.1, page 37)
of the single span models, large areas of anticlastic curvatures
are noticeable unlike in the case of transverse influence surfaces

(13)

for rectangular slabs and skew slabs as given by Pucher and

Rusch(G)

respectively. This anticlastic curvature occurs because
the sTab behaves more Tike a cantilever in the transverse direction

due to the fact that a considerable portion of the horizontally
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curved slab 1s unsupported outside the chiord of the outer circular
%dge. This cantilevering effect becomes less foy curyed slabs of
short spans and narrow opening angles that are more similar to the
case of rectangular slabs. The transverse curyature influence sur-
face IR (Figure I-30) for the reference point D of the continuous
model shows the diminution of this cantilever effect. In general,

for each model the maximum ordinates of Ie surfaces for the

~edge reference points B,CG, E, F, G, H (Figure 4.1, page 37) are
greater than those for the corresponding A and D, the center and the
quarter span reference points respectively. The ratios of the corres-

ponding Ie values for the edge reference points and center reference

s , B C E F
B81ﬁ%§ Eglai Eg_, Eg_, Eg_, Eg_ ) are considerably greater than

S GRS U

e e i i

0 6 6 6

*
those ratios in the case of a rectangular slab (139) . The above
comparison shows that the free curved edges must be considered in

detail in analysing and designing curved slabs.

(a) The Center Reference Points (A) of Model 1 (15° opening angle)

and Model 2 (45° opening angle)

(a]) I, Influence Surface Figures I-1 and I-13

The general shape of the influence contours and the maximum
influence ordinates for both cases are practically the same, except

that in model 2 the contours start to open out towards the outer

*

The rectangular slabs considered for comparison were of span to
width ratios of 2 and 3. The models tested had span to width ratio
of 2.7.
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edge. This occurs because as the opening angle is increased, the

outer edge becomes more flexible and inner edge becomes more stiff

even though both models have the same center span length. The above 522
statement is clear from the fact that the influence ordinate at the

mid point of the inner edge is reduced from a value of 0.605 for

model 1 to a value of 0.538 for model 2 while the ordinate at the

mid point of the outer edge is increased from 0.690 for model 1 to

0.804 for model 2. The 1nf1uence ordinate at a similar point on a
rectangular slab of 3 to 1 span/width ratio (close to that of the
modets) is 0.696 (13X, Although the maximum ordinates are practically
the same, a close comparison reveals that the area covered by each
contour of particular influence ordinate value is increased as the
opening angle is increased. Therefore, the total influence volume
under the influence surface fér the reference point A of model 2 is
greater than that of model 1. From the contour patterns it can be

seen that at regions close to the inner edge the contours of parti-

cular influence values that are obtained for model 2 with a load

close to the mid radial 1ine occur for a load further away from
the mid radial Tine in the case of model 1. The above shows that

the inner edge of model 1 of smaller opening angle is less stiff

than that of model 2. e

When the influence surface I-1 and I-13 are compared with
Pucher's influence chart 19 (13) for the center of a cantilever

plate strip and with Molkenthin's influence chart 13 (14) for the
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center of a simply supported rectangu]ar's1ab, it can be seen clearly
that the inner edge becomes stiff and starts to act more like a

fixed edge.

(a,) I, Influence Surface Figures I-2 and I-14
2 R :

The shape of the contours for both cases appear to be
similar to each other and to those that have been pub]ishéd_for the
rectangular slabs (13). One Striking difference between these in-
f1uence surfaces and those for the rectangular slabs is that a sma]ier
area is covered by the positive contours of these influence surfaces
for the curved slabs compared to the other surfaces. The reason
for the presence of more negati?e contours is that in the transversé
diréction the slab acts more like a cantilever as a result of the
middle strip of the curved slab being stiffer than that of a rec-
tangular slab. This extra stiffness is due to the supports being
aligned in a ‘radial direction instead of being parallel to each
other and also due to the reason mentioned earlier in this chapter.
~To illustrate the above statement, an example of a plate strip having

non-parallel supports is considered.
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From the above shown moment vectors, it can be seen that the twisting
and the bending moment at the support in the X direction are not
zero unlike in the case of parallel supports. This illustrates
the presence of twiSting due to radially aligned supports.
If we consider a virtuak. displacement § the total energy

in the system can be given by the following equation.
Ps = ZEB + ZEE

But if there is no twisting as in the case of parallel supports, the
above equation will have only one term (i.e. ZEB) on the right hand
side too. Therefore, for -the above equation to be true, the magni-
tude of P has to be less. The above example illustrates the increase
in stiffness due to radially aligned supports. Pucher's influence
chart 18 (13) for the transverse curvature at the center of a clamped
plate strip is useful for illustration of the above mentioned behav-
jour of the curved plate. This cantilevering action is also assisted
by a distribution of twisting curvature across the slab especially
close to the outer edge even though their influence ordinates are
Tow. Some evidence of this cantilever effect can be. seen 5z - -
in the influence surface Figures I-2 and I-14.

The anticlastic curvature influence ordinate at the mid

point of the outer edge increases as the opening angle is increased.
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(a3) Iop Influence Surface Figures I-3 and I-15

The influence surface Figures I-3 and I-15 are practically
the same. The Tow twisting influence coefficients compared to the
two bending influence coefficients at the reference point A indi-
cate that the load carrying capacity at this point relies mainly on
the bending restraint of the slab. However, as mentioned earlier,

a distribution of this twisting curvature can influence the stress
distribution in the transverse direction. It also indicates that
the principal curvatures and their directions remain close to those
of Ie and IR as the load moves away from the symmetric radial Tine.
From the two influence surface diagrams I-3 and I-15 it can be seen
that the twisting curvature at the center point of the slab is not
influenced by the opening angle unlike the bending curvatures I6

and IR'
(b) Reference Points (B) for Model 1 and Model 2

Ie Influence Surface Figures I-4 and I-16

There is no considerable difference between these two
influence surfaces and those that have been published for a similar
point on a rectangular slab -(]3’ ]4). However, when compared with
each other, the stiffening:of the inner edge as the opening angle
is increased can be seen. In the case of model 2 the influence
ordinate starts to change to lTow values rapidly as the load is moved

towards the inner edge unlike in model 1. A similar effect can be
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observed in the rectangular plates as the span to width ratio is

decreased (13, 14).

(c) Reference Boints (C) for Model 1 and Model 2

Ie Influence Surface Figures I-5 and I-17

The greater flexibility of the slab at regions close to
the outer edge with increment of the opening angle is evident from
these influence surfaces (I—S and I-17) in the same way as described
above but with an opposite action taking place in this case. The
influence surface for model 1 is similar to that of a rectangular
slab. In the case of model 2 the shape of the contours changes at
regions close to the outer edge. This change in the contour patterns
is due to the increased flexibility of the outer edge. Okamura and

(34)

Matsui obtained a similar set of contoursvfor the mid point

of an inner edge of a curved slab of 30° opening angle.

(d) Reference Points (D) for Model 1, Model 2 and the Continuous Model

(d]) Ie Influence Surface Figures I-6, I-18 and I-29

The surfaces I-6, I-18 and I-29 appear to be similar to I,
influence surfaces discussed in (a1) above except that they are

not symmetrical due to the ynsymmetrical location of the reference

point. In all the three cases maximum ordinates are reduced, of course.

When the influence surface I-29 for the continuous model is compared
with the influence surfaces I-13 and I-18 for model 2, the reduction

in maximum influence ordinate and the larger spacing of contours
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indicate that a considerable reduction in bending stresses can be
obtained with the aid of an interior support. Some negative contours
of Tow influence values are present in the adjacent .panel due to

continuity of the slab across the support.

(d2) IR Influence Surface Figures I-7, I-19 and I-30

The areas of anticlastic curvature contours are prominent S

in the influence surface Figures I-7 and I-19 for models 1 and 2
as in the case (az) above. As mentioned earlier, considerable areas
of positive contours are present in the case of the continuous model
as in the case of a rectangular slab. The short span Tength and the
small opening angle permit thé curved slab to behave in a manner
similar to a rectangular slab. This similarity to a rectangular

slab is the reason for the above behaviour.

(d3) I,g Influence Surface Figures I-8, I-20 and I-31

The influence surface Figures I-8 and I-20 are similar to

each other. The twisting curvatures at quarter points also seem
to be small compared to Ie's at those points as in the case of the
center reference point. The general pattern of contours of Figure
I-31 for the continuous model 1is similar to IeR influence surfaces
I-3 and I-15 for the center point of model 1 and 2, although they are :gf
unsymmetrical due to the presence of the middle support. The contours -
on Figures I-8 and I-20 are also unsymmetrical as the reference

points are located away from the symmetric radial Tine. From Figures
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I-8 and I-20 it can be noticed the amount of negative twisting curva-

ture contours for the reference point D is decreased with the increase

of the opening angle.

(e) Reference Points (E) for Model 1, Model 2 and the Continuous Model

_IevInf1uence.FiguresAI—9,.I—21.and‘I—32

The Figures I-9, I-21 and I-32 appear to be similar to those

discussed in (b) above except that the contours are unsymmetrical.
In Figures I-9 and I-21 this again occurs because of unsymmetric
reference point locations. In Figure I-32 the unsymmetry is due to
the presence of a middle support. The support is also the cause

for the negative contours that appear in the adjacent panel,

Ie Influence Surface Figures.I-10,.1-22 and I-33

The foregoing remarks apply equally to the comparison of
all the three influence surface contours Figures I-10, I-22 and I-33.
Again as in the case of the earlier discussed influence surface
I-17 for the reference point C of model 2 the pattern of contours

for I-22 also differé from those of I-10 and I-33,

(g) Reference Points (G) for A1l Three Models

_Ie,Inf1uence.Surface4Figures.I—11,VIv23,.and.Ie34

From Figures I-11, I-23 and I-34 it can be stated that
the stresses at these corners are significant only when the Toad is

near those corners., Alsos it can be noticed that they are not in-
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fluenced significantly by the other factors such as opening angle

and number of spans.

(h) Reference Points (H) for A1l Three Models

Ie Influence Figures I-12, I-24 and I-35

The foregoing remarks are true for the influence surface

Figures I-12, I-24 and I-35 for the reference point H also.

(i) Reference Points (A), (B) and (C) on the Middle Support of the

Continuous Model

Ie Influence Surface Figures I-25, I-27 and I-28 and IeR Influence

Surface Figure I-26

The influence surface Figures I-25, I-27, I-28 and I-26
represent the curvatures Ie and IeR at the interior support. As one
would expect, the negative contours are predominant in the case of
Ie‘s at A, B and C. There is no 1rregu1arity in IeR surface Figure
I-26 presented. The only difference in form between these surfaces
and those that have been published for moments and curvatures at
supports involve a question of slab thickness. The influence sur-
faces presented in this work have been calculated for a slab of real
thickness and hence the contours die down to a zero value at the
reference point. Since the published influence surfaces are obtained
for an infinife]y thin slab, the contours merge in to a maximum

value at the reference point. This question of infinitely thin slab

in terms of real slab created an interesting problem for Kurata and
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(21)_

and Hatano The model results were compared with the "exact"

solution results obtained from the computer programme developed along

the 1ines of that of A. Coull and C. Das (36),!aﬂd£WéMEﬂ@0Undit0 be in e

good agreement. The differences for Ie values at the reference points
A and D were not more than 2.5 per cent. At the edge referehce

points B, C, E, F, G and H the differences for Ie values were in

the region of 4-5 per cent.- However, these differences are accep-
table since the model results were obtained for practical edge
reference points close to the edges whereas the theoretical results
were calculated for theoretical reference points exactly on the edges.
The differences for the other curvature values IR and IeR were in

the range of 3-5 per cent. For a very few readings the differences
were as high as 6-8 per cent, but these were limited to the cases
where the recorded transducer readings were of small magnitudes.

This consistency between the test and analytical results enhances

the confidence in both the analytical and the test results.
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CHAPTER IX
CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

The writer concludes that the material presented in this
dissertation provides adequate evidence to show the reliability
and accuracy of the prediction of structural behaviour by means of
model . analysis. A simple but precise experimental technique that can
be used effectively in model analysis has been presented. The adapted
method does not require an advanced knowledge of mathematics that-is
usually required in solving fourth order partial-differential plate
equations nor does it require the aid of electronic computérs as
in the case of numerical analysis. The dse of this experimental
method is not Timited to cases of simp1e (or simp1ified) boundary
conditions as in the case considered in this work. It is more use-
ful -in analysing slabs of any shape, particularly of complex boundary
conditions which defy the accurate analysis by mathematics: ~:-=
VYersatile but unsophisticated nature of this experimental method
makes it possible to be used even in a remote field design office.
The simplicity of the apparatus required is the main advantage -
of this method. However, in usfng this technique one has to remember
the compromises that are required to make between the gauge length
of the curvature meter, the span and the thickness of the model and

the magnitude of the loads so as to obtain reljable results.
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The validity of the application of model results to proto-
type slabs has been discussed; The ' 1imits and the method of incor-
porating any change in Poisson's ratio between the model material
and the prototype material have also been included and have been
shown to pose no major difficulties. The model results have been
presented in the forms of contour influence surfaces useful as a
permanent record which can be used as aids in bridge designing as
well as in checking existing curved slab bridges for abnormally
heavy loads, that may cross the bridge from time to time.

Most of the influence surfaces prepared illustrate the
substantially greater flexibility of the Tonger outer edge compared
to that of the inner edge. It is shown that the inner edge becomes
stiff and starts to act more 1ike a fixed edge with the increase of
the opening angle. The presence of large areas of anticlastic
curvatures is a notable difference in behaviour of these curved
slabs compared to rectangular slabs or skewed slabs. These suggest
that a well distributed torsional action is present in curved slabs
unTike- in the case of a rectangular slab. However, this prediction
could only be conformed by further detailed studies at mbre Tocations
closer to the outer edge and to the inner edge. In general, the
maximum curvatures occur at the free edge of the slab. The consider-
able reduction in maximum curvature at the center and the Targer
spacing of the contours due to the presence of an interior support

provide some valuable data to the designer. The influence surfaces
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at A, B and C for the support moments indicate that there is a con-
siderable difference among these negative moments even for a uni-
formly distributed Toad over both spans. This unevenly distributed
negative moments at the interior support in turn indicate that the
reactions on the supports are not evenly distributed. This Teads
tb a bearing problem which has to be studied from the measurement
of support reactions.

A highly precise experimental technique that could be used
to check the reliability of various analytical approaches has been
presented. This experiment also could be used to find out the Timits
of the approximations that has to be 1ncorpofated in using these
analytical methods in order to obtain data accurate enough for practi-
cal purposes. For instance in the case of a finite element programme,
the shape and the size of the meéh pattern that is required for an
optimum design could be'found very éasi]y and quickly using this
model technique as a basis of comparison. |

A study of the influence of number of bearings and the
spacing of them on the bending and torsional curvatures is recommended
for further studies along with the following. It is desirable to
study further the effect of change of opening angle for single span,
two-span and three-span curved bridges. The influence surfaces of
the above mentionedtstructures! @long withiithe” other! already. published
surfaces will provide invaluable design data for the bridge engineer

to have in hand when he is called upon to design bridges. However,
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the writer recommends the following improvements to the technique
used above.

(1) An automatic influence surface plotter should be
employed to cut down the time required for the tedious process of
plotting influence surfaces by hand. At the same time it would help
in selecting better reference points (more critical) during the
experiment itself since the surfaces for already considered points
are in hand.

(2) A thick sTab and hence a larger model that allows the
use of heavier loads should be used, so as to obtain considerably
high readings in all the three transducers. A material of high
modulus of elasticity is suitable for larger models since in a
stiffer model the deflections due to its self-weight and other dead
loads are small. Hence, a greater portion of the allowable deflec-
tions could be obtained from the external loading alone. Glass,
micro-concrete, sand filled epoxy are few examples of the suitable
model materials.

(3) The use of spring loaded transducers are recommended
since with these type of transducers the curvature meter could be
attached to the underside of the model. Hence, the Toad could be
applied from top even at locations close to the reference point.

The curvature meter so designed is a simple but precise

apparatus that is most suitable for the influence surface plotting.

In turn the availability of influence surfaces for variety of standard
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shapes of slabs is a valuable aid to the designer for preliminary

design or for special Toad analysis.
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APPENDIX I

1.1 The Writer's Inverse Approach

A qualitative idea of each individual error, that the
writer feels could be present in the actual testing, is obtained by
checking the curvature meter analytically on an assumed worst case
as mentioned in Chapter I. This so called "inverse approach” is
given below.

A deflection equal to the half the thickness of the plate
is considered as the worst case. The required relative deflection
f is also assumed to be equal to the maxfmum allowable deflection
although for the considered worst case, a relative deflection between

any two points within the plate will always be much less,

(a) Error Due to Tilt of the Meter
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From the above Figure A, it can be seen that

sin ¢ = [;E' . For the "worst case" conditions L=15", f=00625"
and hence, sin ¢ = °'$6§5 x 2 = 0.0833
or,
$ = 4° 48'

If the additional rotation due to the movement of the outer Teg
(that is shown in the next paragraph to be equal to second order
quantity of 8) is neglected, as shown in Figure B above the trans-
ducer will register a reading Ah' instead of the true reading 2Ah

due to the rotation ¢.

2Ah
cos ¢

Ah' =

2Ah
cos 4° 48!

' 2Ah°
(0.99649)

= 2Ah (1.00352)

Therefore, maximum possible error due to tilt of the meter is 0.35

per cent.

(b) Error Due to the Additional Rotation of the Meter
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Let o be the additional rotation of the meter due to the movement

of the Teg as a result of elongation (or contraction) of the surface

of the plate.

n

olL*

but T
Lx = 1

i
xZ

N
+
—

r

Hence, oV H? ¢ L2 = HeZz

Since VH2 + L2 > H it follows that

a << 82

It is shown that the additional rotation o is a second order quantity

of 6. 6 can be calculated as follows,

elongation e = € %
and € = Kh/2
wheres K = ’%2- -~ f = 0.0625", L = 1.5
and h = 0,125"
hence ~ - 82X 0.0625 0.125
€ (1.5)2 x 2

= (0.0139

and e = 0.0139 x 155

0.0104




_If the bottom tip of the outer leg sits on the wall of the conical
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Ho
e 5
Since H = 1.0"
and 8 = 0,0208 kadians

Therefore, o < 62 < 0.000433 radians
or, < 0.025°

It can be seen that o is insignificant compared to 4.

(c) Error Due to Shifting of Outer Leg

shaped punch mark instead of being at the vertex as shown in the

above figure, it will affect the transducer reading. The magnitude

of the error and the correct size of the punch mark can be obtained
as follows. For convenience the outer leg is considered as made of
one solid piece. The angle subtended by the chord length at the

center of radiai is assumed to be 26 and the angle of the conical

shaped punch mark is taken as 2a.



Therefore,

sin

sh

0

From the above

1

L/2 cos ¢
R

- 101 ~

1 sin [90 - (6 + q)]

1 cos (o + d)

figure,

2AH

sin ¢

or,
hence,

L2

R='é—_f_:,

giving

or,

If o =

1

Sh

.F

sin

45°

Sh

)

= 27

sin [180 - (¢ + 6 + a)]

?AH sin ¢

sin (¢ + 6 + q)

2AH sin ¢ cos (6 + a)

0.

]

sin (¢ + 6 + a)

0625, L

L/2 cos ¢ x

cos 4° 48!

= 1.5,

8f

L2

For the worst case condition

= 4° 48'

8 x 0,0625

2

0.1661
9° 36

1

.5

y Sin 4° 48' cos (9° 36' + 45°)
sin (4° 48' + 9° 36' + 45°)

20H

H sin 4° 48' cos 54° 36'

sin 59° 24!

0.051
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It can be seen that sh is significant compared to the transducer
reading 2AH, Therefore, it is hecessary to take precautions to see
that the bottom tip of the outer leg does not get shifteq on to the
wall of the conical shaped punch mark. However, this occurs very

rarely since both outer legs have flexible bottom parts.

1.2 ' 'The Effect of the Gauge Length

An analytical approximation to the effect of gauge Tength
on the curvatures is obtained as follows. Let us assume that the
curvature meter is used to measure the curvature on a simple beam

subjected tdocadlpPadiPiat thetgenter,

44

DEF. B.M.

A = A

The deflection profile of a simply supported beam loaded at center

is represented by:

L
- P yx 1 Sq3 _ 1y 2
Y EI§12 5 X - 571 - 35 L X} [D]

Then let the curvature meter be positioned on the beam and let




- 103 -

PL3
S . - S
Yc = beam deflection at the center Tleg A8ET
Yo = beam deflection at the outer leg
Yt = beam deflection at the transducer

(A) Suppose the curvature meter is used to measure the curvature
at the center of the beam., In this case to employ the curvature
meter principle, only YC and Yo are required,

For.a.gauge.length.of.LS/ZO

' ..LS "Ls .,19.Ls
Distance to the outer leg fromend A = i BT
2
v - Em.[ lm(19Ls)3 ;‘Ls >.<.19Ls
Y ET - 12 " 40 16 40
since f = YC - Y0
3 3
SR e L@ty Dy
EI - 4 12 40 640
PL 3
= E —= [0.,00007682 ]
v PL s
Hence, K. = oL = 8 S [0.00007682]
o L . LS)2
20
. PL
= (.2458 Eﬁfw
PL
But the true curvature at the center from beam theory = 0, 25 ET""
The difference between the two curvature values is -1,67 per cent,
L L
Similarly for gauge Tengths of - 10 and , differences of -3.33

per cent and -6.66 per cent are obta1ned respectively.

* The square bracket term in the Equation D is neglected when x < LS/2.
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(B) Suppose the curvature meter is used to measure the curvature
at the gquarter point.

L S
For a gauge.length.of E%- o

Y4
A B_-
o0
) .ALS . LS ’9Ls
Distance to the outer leg from end A = il v e
,2 2
Y =-E—~['HL Ls xhs—]
c ET “ 712 x 64 ~ 16 4
11 PL
~ 768 Eﬁ'
and 11L_° oL L2 9L
foo= v -y = PS4 L8y LS, 8
1 c o ET - 768 12 ‘40 6 ~ 7o
,.PL 3
= — [0,00121
EI [ ]
] Ls LS HLs
Distance to the transducer from end A = T + i - i
similarly,f = y. .y
2 t c

2 3
b (ms)3 L ) 1L , 1 Ls® 1
ET =12 * 40 16 40 768
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PLS3
= mET-[O.0011317]
‘hence, 0, = 0.00121.PLS3 Ls
ET 40
- 0.0484 PLS2
and EI
.3
0, = 0.0011317 PLg Ei
EI 40
- 0,045268 PLS2
ET
-.0.003132.PL_.2 _ L
therefore, ~ .. = - = S. * _S
2f = (&) - 8y) Ly/40 —E 10
. 2
L ¢ = B _ 40003132 Pl oL
giving ]2 (LS/ZO)Z EI 40
CPL |
= 0,12528 —
EI
. A‘PLS
But the true curvature at the quarter point from beam theory = 0.125 T
L

Therefore, the difference is 0.24 per cent for a gauge length of “s .,

Similarly, differences of 0.0032 per cent and zero per cent are
- L L
obtained for gauge Tengths of T§7 and ggarespective1y.
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2.1 Tables of Influence Coefficients.
(a) Influence Coefficients I6 - Model 1 (15° Opening Angle)

Load Reference Points On 15° Opening Angle Model
Points | p B c D E F G H
a 0.690} 1.555| 0.553 0.383 | 0.387 | 0.356 {0.087 | 0.094
aj - 1.186 - - - - - -
as - 1.017 - - - - - -
as - 1.085 - - - - - -
ay - 0.861 - - - - - -
as - 0.819 - - - - - -
ag 0.643 | 0.747 - - - - - -
a7 - 0.630 - - 0.541 - - -
b 0.675{ 0.839| 0.598 | 0.361| 0.379 0.357 | 0.081 | 0.091
o 0.814| 0.643 | 0.670] 0.350 | 0.359| 0.361 | 0.080| 0.086
C 0.730 - - - - - - -
Co 0.764 - - - - - - -
C3 0.750 - - - - - - -
Cy 0.695 - - - - - - -
Cs 0.670 - - - - - - -
Cg 0.627 - - - - - - -
c7 0.608 - - - - - - -
Cg 0.610 - - - - - - -
Co 0.608 - 0.754 - - - - -
cig9 |0.517 - - 0.431 - - - -
cy; |0.492 - - 0.418 - - - -
d 0.639| 0.534 | 0.834| 0.346 | 0.333| 0.365 | 0.077 | 0.075
e 0.605| 0.471 | 1.475| 0.352| 0.304| 0.359 |{ 0.074 | 0.069
e; - - 1.193 - - - - -
e, - - 1.030 - - - - -
eg - - 1.088 - - - - -
e, - - 0.841 - - - - -
es - - 0.821 - - - - -
eg - - 0.629 - - 0.523 - -

(Continued)
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Reference Points On 15° Opening

Angle Model

Load
Points | B c D E F G H
£ |0.584 |0.641 {0.499 | 0.489 |0.549 | 0.396 | 0.114 | 0.114
g |0.542 |0.614 [0.529 | 0.453 |0.522 | 0.407 | 0.112 | 0.113
h |0.498 |0.539 |0.567 | 0.428 |0.453 | 0.451 | 0.106 | 0.110
i | 0.503 |0.469 |0.621 | 0.433 {0.387 | 0.511 | 0.095 | 0.098
j |0.517 {0.426 |0.630 | 0.436 {0.337 | 0.526 | 0.086 | 0.087
k |0.393 |0.384 |0.365 | 0.493 |1.327 | 0.358 | 0.156 | 0.122
ky - - - - Jo712| - - ;
K, - - - - lo.e79| - - -
ks - - - |o0.4942|0.608| - ; -
K, - - . - _ - - -
ke - - - - |1.000] - - -
Ke - - - - |o0.863| - - -
k, - - - - - ; - -
Ke - - - - lo.600| - - -
kg - - - - lo.588| - - -
ko | - - - |o0.398 |0.511] - - -
kyy |- - - - lo.3m4| - - -
1 |0.364 |0.382 {0.372 | 0.4944/0.679 | 0.398 | 0.152 | 0.124
m | 0.347 {0.364 |0.383 | 0.610 |0.461] 0.477 | 0.130 | 0.138
my - - - |o.as1 ] - - - -
M, - - - |o0.460 | - - - -
ms - - - |o0.a63 | - - - -
m, - - - lo0.459| - |o.585]| - -
Ms - - - lo.508 | - - - -
Mg - - - lo0.533| - - - -
m, - - - |o.s58 | - - - -
Mg - - - lo.s55 | - - - -
me - - - los23| - - - -
my | - - - |oar2| - - - -

(Continued)
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Reference Points On 15° Opening

Angle Model

Load

Points |, B c D E F G H
m, | - - - o8| - - - -
m, | - - - |os3n1| - - - -
ms | - - - |o.378] - - - -
my | - - - o372 - |o.s87] - -
ms | - - - |o.246] - - - -
Mig - - - 0.240 - - - -
n [0.344]0.334 | 0.384 | 0.476! 0.361| 0.652| 0.107 | 0.139
o  |0.351|0.304 | 0.379] 0.439} 0.305| 1.235| 0.091 | 0.130
0; - - - - - |o0.656| - -
0, - - - - - |o.659| - -
0, - - - - - |o.876| - -
o, - - - - - o781 - -
05 - - - - - |o0.925| - -
0¢ - - - - - |o0.841] - -
0y - - - — | - Jo.621] - -
0g - - - - - |o.558] - -
0o - - - - - |o0.384| - -
p |0.195|0.185 | 0.189 | 0.294 | 0.361 | 0.207 | 0.320| 0.085
g  |0.183|0.184 | 0.189 | 0.270 | 0.338 | 0.232 | 0.232| 0.096
r 10.176{0.174 | 0.190 | 0.244 | 0.277 | 0.272 | 0.131 | 0.139
s [0.173 | 0.168 | 0.188 | 0.251 | 0.220 | 0.325 | 0.082 | 0.22]
t  |0.174 | 0.158 | 0.180 | 0.263 | 0.183 | 0.349| 0.063 | 0.297
u - - - 10.150| 0.166 | 0.105| 0.926 | 0.045
v - - - 10.132{ 0.159| 0.116 | 0.205 | 0.054
W - - - |0.116{0.134] 0.131] 0.087 | 0.087
X - - - |0.123]0.109] 0.154 | 0.049] 0.193
y - - - |0.132] 0.004| 0.158 | 0.035] 0.922
£ - - - |0.281| 0.272| 0.266 | 0.050] 0.075
g' - - - |o0.264| 0.268| 0.265 | 0.062 | 0.069

(Cohtinued)
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Reference Points On 15° Opening

Angle Model

Load

Points B c D E F 6 H
h' - - ] 0.259 |0.262 | 0.263 |0.062 |0.060
i - - | 0.254 {0.252 | 0.260 |0.059 |0.057
i - - | 0.255 {0.237 | 0.249 |0.056 |0.052
k' - - | 0.1826|0.185 | 0.178 |0.043 |0.049
1 - - 1 0.177 {0.179 | 0.173 |0.042 |0.046
m' - - 1 0.170 |0.174 | 0.170 |0.040 |0.043
n' ] - 10.169 |0.067 | 0.168 |0.0393]0.036
o' - - | o0.168 {0.162 | 0.165 |0.0386(0.032
p' - - | 0.094 |0.088 |0.001 | - -
q' - - | 0.0884]0.087 | 0.089 | - -
p - - | 0.0852|0.086 | 0.084 | - -
5! - - | 0.0852|0.083 | 0.082 | - -
£ - - | 0.0848[0.081 | 0.080 | - -
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(b) Influence Coefficients Ip - Model 1 (15° Opening Angle)

Reference Reference Reference
Load Points Load Points Load Points
Points A D Point; A D Points A D

a -0.293| -0.129 my - -0.048 i - -0.063
ag -0.162 - my, - -0.102 i - -0.076
b -0.182| -0.090 ms - +0.033 k' - -0.055
c +0.158 | -0.071 Mg - -0.054 1! - -0.049
cy -0.110 - m- - +0.009 m' - -0.043
Cy -0.047 - Mg - +0.013 n' - -0.046
C,y -0.041 - Mg - -0.041 o' - -0.049
Cy -0.099 - mio - -0.049 p' - -0.026
Csg 0.0 - miq - -0.035 q' - -0.025
Cg -0.094 - mis - +0.017 r' - -0.024
Coy -0.031 - m;s - -0.022 s' - -0.0247
Cg ~-0.082 - mqy - -0.076 t' - -0.0251
Cq -0.141 - mys - -0.026

Cyo |-0.097| -0.077 Mg - -0.021

cy; | -0.089| -0.067 n ~0.090{ -0.095

d ~-0.157 | -0.079 0 -0.122 | -0.172

e -0.243} -0.111 p -0.069 | -0.119

£ |-0.231] -0.182 q -0.052 | -0.052

g -0.142 | -0.101 r -0.044 | -0.006

h -0.075| -0.043 s -0.046 | -0.044

i -0.123 | -0.087 t -0.060| -0.100

J -0.200{ -0.150 u - -0.059

k -0.145] -0.211 v - -0.026

ks - -0.128 W - -0.007

k1o - -0.093 X - -0.021

1 -0.100| -0.113 y - -0.049

m -0.079| +0.101 f! - -0.089

mq - -0.058 g' - -0.071

my - -0.011 h' - -0.062
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(c) Influence Coefficients I, - Model 2 (45° Opening Angle)

Reference Reference Reference
Load Points Load Points Load Points
Points A D Points A D Points A D

a 0.0 -0.139 ms - +0.028 i +0.033 | +0.028
ag +0.0344| - m, - +0.046 j! +0.048 | +0.072
b 0.0 -0.082 Mg - ~0.015 k' -0.059 | =0.077
c 0.0 =0.020 Mg - --0.029 1 -0.034 | -0.045
Cy 0.0 - m- - ~0.021 m' -0.004 | -0.014
Cy 0.0 - Mg - -0.006 n' +0.025 | +0.018
C3 0.0 - Mg - +0.002 o' +0.047 | +0.048
Cy 0.0 - Mg - =-0.012 p' -0.033 | -0.039
Cs +0.001 - My - +0.004 q' -0.018 | =0.023
Cg +0.032 - Mo - =0.010 r' -0.003 | =0.007
Cy +0.002 - Mg - ~0.023 s' +0.012 | +0.009
Cg -0.026 - My - +0.010 t' +0.026 | +0.024
Cq -0.028 - mis - +0.002

Cy1p | +0.027 |-0.059 Mg - -0.014

cyp | -0.021 140.020 n -0.025 |+0.018

d 0.0 +0.040 0 -0.047 |+0.048

e 0.0 +0.092 p +0.033 {-0.011

f +0.060 {-0.140 q +0.018 |+0.001

g +0.042 {<0.090 r +0.003 {-0.007

h +0.003 |-0.019 S -0.012 |{-0.013

i -0.033 {+0.049 t -0.026 |+0.002

J -0.048 {+0.095 u - =0.001

k +0.059 |-0.077 \ - +0.002

ks - -0.081 W - -0.003

kio - —0.008 X - ~0.007

1 +0.034 |-0.045 y - =0.002

m +0.004 [-0.014 f! -0.060 |+0.112

m; - -0.062 g' -0.042 {-0.065

My - <~0.018 h' -0.003 [-0.018
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(d) Influence Coefficients Ie - Model 2 (45° Opening Angle)

Load Reference Points

Points|  a B c D E F G H
a 0.804 | 1.593| 0.671 | 0.453 | 0.420 0.420} 0.105 | 0.084
a, - |1.260] - - - - - -
ap - 1.087 - - - - - -
as - |1.085| - - - - - -
a, - |0.853] - - - - - -
as - |o.824] - - - - - -
ag | 0.698|0.747| - - - - - -
ay - |o.624| - - 568 | - - -
b 0.769} 0.854 | 0.666 | 0.409} 0.404 | 0.405| 0.100 | 0.085
c 0.842 ] 0.640] 0.722 | 0.371 .372 1 0.399| 0.095 | 0.082
¢, |0.773| - - - - - - -
c, |0.795| - - - - - - -
cs |0.767| - - - - - - -
c, |0.709| - - - - - - -
cs | 0.706| - - - - - - -
Cg 0.667 - - - - - - -
Cy 0.626 - - - - - - -
cg |0.614] - - - - - - -
co |0.581| - |0.761] - - - - -
c;o | 0.563| - - |0.468 | - - - -
c;; | 0515 - - o429 - - - -
d 0.634 | 0.504 | 0.834 | 0.347 { 0.327 | 0.384} 0.084 {0.078
e 0.538 | 0.399 | 1.481 | 0.332 {0.268 | 0.371 | 0.071 .077
e, - - |1as | - - - - -
e, - - 0.995 - - - - -
ej - - 1.076 - - - - -
ey - - 0.864 - - - - -
es - - 0.815 - - - - -
e - - |o0.637 | - - o513 - -

(Continued)
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Load Reference Points
Points | p B c D E F 6 H
f | 0.659|0.637 | 0.600| 0.569 |{0.582| 0.468 | 0.133 | 0.108
g |0.599|0.615|0.592| 0.507 | 0.545| 0.467 | 0.127 | 0.106
h |0.536|0.526 | 0.611] 0.446 | 0.463| 0.476 | 0.116 | 0.105
i 0.500 | 0.438 | 0.634| 0.428 | 0.378] 0.508 | 0.103 | 0.104
j 0.466 | 0.361 | 0.622| 0.399 | 0.302| 0.511 | 0.085 | 0.102
k | 0.446|0.387 | 0.437] 0.578 |1.383] 0.422 | 0.173 | 0.114
k, - - - - |o.740{ - - -
K, - - - - l0.703| - - -
K, - - - |o.55210.631| - - -
Ky - - - - |o0.876| - - -

] - - - - |t1.021) - - -

. - - - - |o.854| - - -

; - - - - |o0.820| - - -
Kg - - - - lo.e31| - - -
kg - - - - |o0.609| - - -
ko | - - - |o0.445|0.562| - - -
kyp | - - - - |o0.353] - - -

1 0.397 | 0.379 | 0.420 0.545 | 0.684| 0.435 | 0.164 | 0.119
m | 0.365]0.346 | 0.409| 0.683 | 0.473| 0.475 | 0.142 | 0.131
my - - - |o.524| - - - -
m, - - - |o0.483] - - - -
ms - - - |o.4ar3| - - - -
m, - - - {o0.55| - |o0.582] - -
ms - - - los22| - - - -
Mg - - - 0.582 - - - -
m, - - - |o0.613] - - - -
mg - - - |o.598] - - - -
Mg - - - lo.s32| - - - -
mo | - - - | o0.468| - - - -

(Continued)
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Reference Points

Load

Points| , B C D E F G H
my | - - - lo.ms| - - - -
my, | - - - o391 - - - -
my | - - - lo.382| - - - -
my | - - - |o.367| - |o0.507| - -
ms | - - - o277 | - - - -
Mig - - - 0.250 - - - -
n | 0.330 | 0.304 | 0.399 | 0.454 |0.352| 0.614 | 0.112 | 0.143
o | 0.310|0.254 |0.366 | 0.381 {0.270| 1.242 | 0.082 | 0.145
0, - - - - - |o.eas| - -
0, - - - - - |o0.680| - -
0, - - - - - |o.887| - -
0y - - - - - 0.782 - -
0s - - - - - |o.m9| - -
0¢ - - - - - o3| - -
0, - - - - - lo.612| - -
04 - - - - - lo.s72| - -
0g - - - - - 0.345 - -
p | 0.228 | 0.201 |0.228 | 0.341 |0.360 | 0.255 | 0.321 | 0.085
q | 0.202|0.187 {0.217 | 0.297 | 0.334 | 0.262 | 0.237 | 0.094
r10.186|0.171 [0.207 | 0.257 | 0.273 | 0.288 | 0.134 | 0.130
s | 0.170 | 0.154 [0.197 | 0.246 {0.202 | 0.327 | 0.081 | 0.215
t |0.156 |0.133 |0.175 | 0.226 |0.155 | 0.342 | 0.052 | 0.302
u - - - |0.170 |0.161| 0.129 | 0.932 | 0.046
v - - - |0.144 {0.159] 0.135 | 0.218 | 0.054
W - - - |0.124 |0.135] 0.147 | 0.087 | 0.083
X - - - lo0.121 |0.105| 0.156 | 0.047 | 0.172
y - - - 10.113 |0.078 ] 0.155 | 0.025 | 0.908
£ - - - |0.333 |0.306 | 0.323 | 0.075 | 0.062
g' - - - |0.307 |0.287 | 0.309 | 0.076 | 0.062

(Continued)
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Load Reference Points
Points D E F G H

h' 0.283 [ 0.267 {0.301 {0.069 | 0.059
i 0.264 {0.238 10.283 |10.064 | 0.056
J' 0.247 {0.211 {0.266 |0.056 ! 0.055
k' 0.221 [ 0.202 | 0.220 {0.048 | 0.036
1 0.208 | 0.191 | 0.209 {0.048 } 0.037
m' 0.192 | 0.173 {0.198 |0.047 | 0.038
n' 0.178 | 0.154 {0,183 | 0.043 | 0.038
o' 0.165 | 0.143 1 0.173 | 0.037 | 0.040
p' 0.109 { 0.097 {0.1711 | 0.024 | 0.0204
q' 0.101 {0.090 | 0.103 {0.0232 0.020
r' 0.093 [ 0.084 | 0.098 |0.0225 0.0173
s' 0.086 | 0.078 [ 0.092 |0.017 | 0.0170
t! 0.079 | 0.071 | 0.085 10.016| 0.0166
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(e) Influence Coefficients In Model 2 (45° Opening Angle)

Reference Reference Reference
Load Points Load Points Load Points
Points A D Points A D Points A D

a -0.362 {-0.180 ms - -0.048 i - -0.077
ag -0.203 - my, - -0.096 j! - -0.084
b -0.225 |-0.126 Mg - +0.036 k' - -0.080
o +0.142 {-0.0908 Mg - -0.080 1! - -0.068
Cy -0.141 - m- - -0.012 m' - -0.058
Cy -0.072 - Mg - +0.003 n' - -0.054
Cy -0.052 - Mg - -0.0491 o' - -0.055
Cy -0.102 - My - +0.0485 p' - -0.040
Cs -0.019 - my, - -0.046 q' - -0.034
Cg -0.123 - myo - +0.026 r' - -0.030
o -0.046 - My - -0.023 s' - -0.028
Cg -0.090 - Myy - -0.071 t' - -0.027
Cq -0.138 - m; 5 - -0.036
cyo |-0.113 |[-0.094 Mg - -0.020
cy; | -0.096 {-0.070 n -0.0891] -0.097
d -0.151 {-0.0914 0 -0.112 | -0.156
e -0.210 {-0.114 ) -0.085 | -0.163
f -0.287 |-0.250 q -0.062 | -0.078
g -0.178 |-0.144 r -0.049 | -0.012
h -0.092 |{-0.063 S -0.047 | -0.044
i -0.121 |-0.094 t -0.053 | -0.091
j -0.175 {-0.149 u - -0.081
k -0.179 |-0.283 v - -0.038
ks - ~0.154 W - -0.015
Ko - -0.120 X - -0.021

-0.123 [-0.158 y - -0.045
m -0.0886}+0.099 f! - -0.125
my ~ -0.075 g' - -0.100
m, - -0.003 h' - -0.081




(f) Influence Coefficients Ie
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- Model 2 (45° Opening Angle)

R
Reference Reference Reference
Load Points Load Points Load Points
Points A D Points A D Points A D

a 0.0 =<0.193 mg - -0.034 n' - -~0.009
ag +0.041 - Mg - -0.025 o' - +0.022
b 0.0 =-0.129 Mg - ~0.037 p' - ~0.056
c 0.0 =0.062 My - -0.017 q' - —=0.039
Cg +0.036 - mi, - -0.031 r' - -0.022
Cr +0.005 - My g - -0.043 s' - -0.006
Cg -0.023 - Mmyy - +0.028 t' - +0.011
Cq -0.024 - ms - -0.0121

C10 - =0.100 Mg - =0.027

C11 - -~0.018 n -0.016 { —=0.009

d 0.0 =0.002 0 -0.035 | +0.022

e 0.0 +0.051 p +0.041 | =0.021

f +0.076 | =0.193 q +0.024 | -0.0118

g |+0.051 |-0.134 r | +0.008 | -0.020

h +0.009 | =0.058 S -0.007 | -0.025

i -0.026 | -0.011 t -0.019 | -0.007

j -0.036 | +0.054 u - -0.006

k +0.073 | -0.110 v - -0.005

ks - -0.121 W - =+0.010

kio - =0.029 X - ~0.013

1 +0.044 | -0.076 y - -0.006

m +0.012 | —=0.042 f! - -0.158

my - =0.099 g' - -=0.107

m, - -0.051 h' - -0.057

mj - -0.006 i - -0.008

m,, - +0.011 j! - +0.037

Mg - =0.047 k' - -0.110

Mg - ~0.059 1' - -0.076

m, - =0.050 m' - ~0.042
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(g) Influence Coefficients Ie - Continuous Model

Reference Points

Load
Points A C D E F
a -0.048 {-0.086 |-0.0008|+0.082 {+0.095 | +0.048 | +0.814 |[+0.026
b -0.044 |-0.053 |-0.016 | +0.064 |+0.079 | +0.054 |+0.205 |+0.039
o -0.039 {-0.025 |-0.032 |+0.054 [+0.063 | +0.071 |+0.072 |+0.063
d -0.031 {-0.008 {-0.061 |+0.054 |+0.042 | +0.084 |+0.030 {+0.157
e -0.024 [+0.001 |-0.098 |+0.053 {+0.025 | +0.089 | +0.013 {+0.799
f -0.093 {-0.169 |-0.0009 +0.164 [+0.187 | +0.084 |+0.287 [+0.048
g -0.0854{-0.105 |-0.027 | +0.136 |{+0.177 | +0.101 | +0.200 |+0.064
h -0.076 |-0.049 |-0.063 |+0.109 {+0.128 | +0.148 | +0.102 |+0.096
i -0.060 |-0.017 {-0.117 | +C.109 {+0.082 | +0.188 | +0.048 |+0.177
J -0.046 |+0.002 {-0.192 |+0.104 {+0.048 | +0.205 | +0.027 |+0.257
k -0.123 {-0.249 | 0.0 +0.231 (+0.374 | +0.109 | +0.154 {+0.056
1 -0.116 {-0.145 {-0.033 |+0.212 |+0.303 | +0.133 { +0.135 |+0.069
m -0.106 {-0.067 |-0.083 | +0.183 |+0.183 | +0.195 | +0.095 {+0.097
n -0.0848|-0.019 {-0.163 {+0.173 |+0.108 | +0.300 | +0.058 |+0.145
0 -0.058 |+0.0047{-0.285 | +0.144 {+0.063 | +0.380 | +0.131 [+0.143
p -0.131 |-0.326 [+0.006 | +0.256 |+1.042 | +0.113 | +0.092 {+0.055
q -0.135 |-0.178 |-0.029 | +0.258 |+0.380 | +0.150 | +0.087 |+0.064
r -0.127 |-0.076 |-0.087 | +0.391 [+0.204 | +0.211 | +0.068 |+0.076
s -0.096 |-0.018 |-0.193 | +0.209 (+0.116 | +0.370 | +0.048 {+0.085
t -0.063 |+0.0066|-0.352 | +0.158 |{+0.065 | +0.964 | +0.029 {+0.095
u -0.116 |-0.387 |+0.009 | +0.221 {+0.356 | +0.098 | +0.0556{+0.046
\ -0.132 |-0.185 [-0.020 | +0.202 |+0.288 | +0.125 | +0.0559{+0.057
W -0.139 | -0.066 [-0.077 {+0.171 {+0.178 | +0.183 | +0.048 {+0.056
X -0.098 | -0.012 |-0.201 | +0.163 |+0.102 | +0.295 | +0.037 {+0.058
y -0.054 {+0.009 |-0.406 | +0.133 |+0.058 | +0.355 | +0.022 |+0.063
z -0.073 {-0.432 |+0.011 { +0.121 {+0.162 | +0.070 | +0.029 {+0.027
a' -0.107 | -0.157 {-0.010 | +0.0997|+0.157 | +0.088 | +0.032 |+0.029
b' -0.136 | -0.042 |-0.048 | +0.0959{+0.114 | +0.124 | +0.030 |+0.030
c' -0.078 | -0.007 }-0.164 | +0,097 {+0.071 | +0.170 | +0.022 |+0.029

(Continued)




- 120 -

Reference Points

Load
Points A B c D E F

d' -0.029 | +0.008 |-0.425 ; +0.087 |+0.041 {+0.188 |+0.016 |+0.029

e' -0.022 | -0.411 |+0.006 | -0.068 {+0.059 |[+0.035 |+0.010 {+0.0132
f! -0.049 | -0.077 |-0.001 | -0.059 |+0.065 |+0.038 {+0.016 {+0.014

g' -0.118 | -0.012 |-0.016 | -0.048 {+0.050 |+0.056 {+0.013 {+0.011

h' -0.039 | -0.003 |-0.092 | -0.044 {+0.031 |+0.068 }|+0.010 {+0.0123
i -0.008 | +0.004 |-0.369 | -0.045 [+0.020 |+0.076 [+0.007 [+0.0119
jt - = - -0,079 |-0.079 |-0.066 |[-0.018 |-0.016

k' - - - -0.066 |-0.062 |-0.060 |[-0.015 |-0.0164
1! - - - -0.058 |-0.051 | -0.060 |-0.015 |-0.015

m' - - - -0.052 |-0.041 | -0.063 |{-0.012 |-0.012

n' - - - -0.049 (-0.032 | -0.069 [-0.011 |-0.011

o' - - - -0.04941-0.092 | -0.082 |-0.020 {-0.019

p' - - - -0.041 |-0.076 | -0.072 }-0.018 {-0.018

q' - - - -0.037 |~0.060 | -0.070 }-0.015 {-0.016

r' - - - -0.0317|-0.049 | -0.075 {-0.014 {-0.016

s' - - - -0.0305|-0.042 | -0.077 (-0.012 |-0.013

t! - - - - -0.056 { -0.052 |+0.013 |-0.0149
u' - - - - -0.047 | -0.048 [+0.0098{-0.0128
v' - - - - -0.039 | -0.0458{+0.008 |-0.009

w' - - - - -0.031 {-0.0462{+0.008 |-0.008

x! - - - - -0.029 | -0.0481]-0.0077|-0.009
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(h) Influence Coefficients IR - Continuous Model

Load Point

Reference Point

>SS Qa —h 0 QO o

—-—fts

N & X £ < € ¢t 0 5 0 T O 3 3 — x .

-0.048
-0.014
+0.008
-0.002
-0.024
-0.095
-0.024
+0.026
-0.004
-0.048
-0.140
-0.045
+0.066
-0.015
-0.069
-0.159
-0.059
+0.176
-0.024
-0.075
-0.137
-0.039
+0.066
-0.012
-0.065
-0.086

Load Point

Reference Point

- o

X =2 < € ¢ nn 3T O T O I O3 — x .

.020
.026
.005
.041
.036
.009
.008

.019
.020
.010
.0066
.007
.008
.014
011
.009
.007
.009
.0083
.0075
.004
.005
.006
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(i) Influence Coefficients IeR - Continuous Model

Load

Points

Reference
Points

S KQ -Hh 0 o 0 U 2

-

N & X = < © ¢ 00 5 O T O S5 J =— X Cu

-0.015 | +0.016
-0.010 | +0.009
-0.003 | +0.002
+0.004 | -0.009
+0.003 | -0.014
-0.035 | +0.039
-0.017 | +0,025
-0.005 | +0.003
+0.008 | -0.022
+0.020 | -0.022
-0.038 | +0.035
-0.018 | +0.020
+0.001 | -0.004
+0.015 | -0.028
+0.031 | -0.028
-0.048 | +0.017
-0.034 | +0.003
-0.004 | -0.009
+0.019 | -0.008
+0.037 | -0.014
-0.059 | -0.002
-0.035| -0.015
-0.003 | -0.010
+0.023 | +0.019
+0.041 | +0.001
-0.053| -0.018

Load

Points

Reference
Points

iy
b
o
4
o
"
g

-l 3

X T < £ & W 5 .0 T O =5 3 — x

-0.029 | -0.
-0.007 | -0.
+0.0234 | +0.
+0.029 | +0.
-0.027 | -0.
-0.019 | -0.
-0.008 | -0.
+0.021 | +0.
+0,026 | +0.
.008
).004
010
.002
.002
.015
.002
.003
.002
. 0004
.005
. 009
.003
. 0006
.0008

018
005
014
006
009
011
002
011
002
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2.2  INFLUENCE SURFACES
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" FIGURE I - 2

Influeﬁde Surface IR for the Reference Poiﬁt A
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Influence Surface Ie for the Reference Point B
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Influence Surface Ie for the Reference Point D
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Influence Surface I, for the Reference Point D
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Influence Surface Ie for the Reference Point F
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Influence Surface Ie for the Reference Point G
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Influence Surface I6 for the Reference Point H
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Influence Surface Ie for the

Reference Point H

0 = 45°

i
o
w

w
r

A2




 FIGURE I = 25
Influence Surface Ie for the
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Influence Surface IGR for the

Reference Point A
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Influence Surface Ie for the

Reference Point B
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Influence Surface Ie for the

Reference Point C
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Influence Surface IR for the

Reference Point D
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