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When you look at yourself from a universal standpoint, some-

thing inside always reminds or informs you that there are bigger

and better things to worry about.

ALBERT EINSTEIN



Abstract

Intelligent reflective surfaces (IRSs) have recently emerged as a promising technology

for 6G wireless communications as it can improve both the spectral and energy effi-

ciencies of wireless systems at a low cost. In this thesis, we first tackle the problem of

joint active and passive beamforming optimization for an intelligent reflective surface

(IRS)-assisted multi-user downlink multiple-input multiple-output (MIMO) communi-

cation system under both ideal and practical IRS phase shifts. We aim to maximize

the spectral efficiency of the users by minimizing the sum mean square error (MSE)

of the users’ received symbols. For this, a joint non-convex optimization problem is

formulated under the sum minimum mean square error (MMSE) criterion. An alternat-

ing optimization and vector approximate message passing (VAMP)-based approach is

presented to solve the joint problem under both ideal and practical constraints on the

IRS phase shifts. Then, we introduce a novel approach of utilizing the IRS, now called

modulating intelligent surface (MIS), for joint data modulation and signal beamforming

in a multi-user downlink cellular network by leveraging the idea of backscatter commu-

nication. We present a general framework in which the MIS is used i) to beamform the

signals for a set of users whose data is modulated by the BS, and at the same time ii)

to embed the data of a different set of users by passively modulating the deliberately

sent signals from the BS. By following the same VAMP-based optimization approach

developed earlier, we optimize i) the MIS phase-shifts for passive beamforming and data

embedding for the BS- and MIS-served users, respectively, ii) the active precoder and

the receive scaling factors for the BS- and MIS-served users, respectively.

Simulation results are presented to illustrate the performance of both the proposed

IRS-based and MIS-based schemes under both perfect and imperfect channel state in-

formation (CSI). The results validate the superiority of the proposed method over the



state-of-the-art techniques both in terms of throughput and computational complexity.

The results also reveal that the proposed MIS-based approach outperforms the existing

IRS-based schemes in terms of throughput while supporting a much higher number of

users.
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Chapter 1

Introduction

1.1 Overview

The need for higher data rates in wireless communication is soaring. This calls for

innovative and economically viable communication technologies that can keep up with

the increasing network capacity requirement. Massive multiple-input multiple-output

(MIMO) technology can fulfill the network capacity requirement for beyond

fifth-generation (B5G) wireless networks [1–3]. The basic idea of massive MIMO is to

equip the base stations (BSs) with tens (if not hundreds) of antenna elements so as to

simultaneously serve multiple mobile devices using the same time/frequency resources.

Despite the many advantages of massive MIMO, its practical large-scale deployment is

hindered by the associated high hardware cost and energy consumption [4, 5]. More-

over, although millimeter wave (mmWave) communication benefits from massive MIMO

due to a symbiotic convergence of technologies, its practical use is still limited by the

less penetrative propagation characteristic of mmWave signals in presence of blockages

between the BS and the mobile device. [6].

One promising technology that has been introduced recently is intelligent reflec-
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Chapter 1. Introduction

tive surfaces (IRSs), also called reconfigurable intelligent surfaces (RISs) [7, 8]. IRS

is composed of a planar metasurface consisting of a large number of passive reflective

elements. This allows the IRS to passively alter the wireless propagation environment

by reconfiguring the phases of its reflective elements through a controller attached to

the surface [9]. The key advantages of the IRSs are listed as follows [10]:

• Easy Installation: IRSs are nearly-passive devices, composed of electromagnetic

(EM) material. Fig. 1.1 shows various possible structures where IRS can be de-

ployed. Unlike traditional BSs which can only be installed at designated locations

and high-rise towers, IRSs can be installed on building exteriors, billboards, aerial

and road vehicles and even on clothes given its low cost.

• Spectral efficiency improvement: Since IRSs are able to modify the wireless

propagation environment, they can mitigate the power loss over large distances.

IRSs can be utilized to perform passive beamforming. Passive beamforming refers

to changing the IRS phases without actively powering the IRS antenna elements

as opposed to active beamforming at the BS so as to improve the received power

while reducing the interference for unintended users, thereby enhancing the overall

throughput of the network [11]. IRSs are especially useful in the scenarios where

Line of Sight (LOS) links between the BS and the mobile users are blocked by

obstacles, e.g., buildings, or indoor walls. IRS allow to form virtual LOS links

between BSs and mobile users via passively reflecting the incident radio signals.

• Environment friendliness: IRS does not require a power amplifier for transmis-

sion which makes it an energy-efficient technology. Practically, IRS deployment

requires a large number of cost-effective phase shifters (PSs) on a surface that can

be easily integrated into a traditional wireless network [12].

• Compatibility with existing networks: Since the IRSs only reflect radio fre-

2



Chapter 1. Introduction

quency (RF) signals, they support full duplex full-band transmission. Moreover,

IRSs can be easily integrated in the existing wireless networks following the cur-

rent hardware standards.

Due to the aforementioned reasons, IRS-assisted communication has gained substantial

research interest in the wireless research community over the recent few years [11–19].

1.1.1 Applications of IRS

As illustrated by Fig. 1.1, the vast number of use cases for the IRS can be covered

under four key scenarios listed as follows [10]:

• IRS-assisted B5G/6G cellular networks: In Fig. 1.1(a), IRS-assisted cellular

networks are shown where it can different aspects of a wireless systems including

but not limited to spectral efficiency, quality of service (QoS) constraints, physi-

cal layer security. It has also found its use in enhancing device to device (D2D)

networks. Moreover, since IRSs can be made with large number of antenna el-

ements, they can be utilized to harvest enough energy to sustain themselves in

simultaneous wireless power and information transfer (SWIPT) networks [20].

• IRS-assisted indoor communications: IRSs can mitigate RF power losses due

to the unfavorable propagation characteristics of mmWaves by acting as virtual

wave guides between the BS and the mobile user. Other indoor applications

include but not restricted to enhanced IRS-assisted wireless fidelity (WiFi) [21]

and light fidelity (LiFi) networks that offer higher range and data rates than

existing networks.

• Applications in unmanned systems: As illustrated by Fig. 1.1(c), unmanned

aerial vehicle (UAV) enabled wireless networks, UAV connected cellular networks,

autonomous vehicular and robotic networks can utilize the IRS for improving the

3



Chapter 1. Introduction

system performance [22]. For example, one can periodically update the phase

shifts of an IRS deployed on a UAV so as to have a portable virtual LOS link

between a BS and a mobile device.

• IRS-enhanced Internet of Things (IoT) networks: The aforementioned

benefits of the IRS can be extended to IoT networks to enhance the usefulness of

existing IoT networks at a low additional cost such as in smart agriculture and

smart factory [23].

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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operation of RISs and their interaction with the EM
signals. We also survey typical RIS functions and their
corresponding principles. Specifically, we focus on patch-
array based implementation and compare the ray-optics
perspective with the wave-optics perspective.

• We develop performance evaluation techniques for multi-
antenna assisted RIS systems. Research contributions
are also summarized along with their advantages and
limitations.

• We investigate RISs from the information-theoretic per-
spective, based on which we review the protocols and ap-
proaches for jointly designing beamforming and resource
allocation schemes with different optimization objectives.
Additionally, the major open research problems are dis-
cussed.

• We discuss the need of amalgamating ML and RISs. After

reviewing the most recent research contributions, we
propose a novel framework for optimizing RIS-enhanced
intelligent wireless networks, where big data analytic and
ML are leveraged for optimizing RIS-enhanced wireless
networks.

• We identify major research opportunities associated with
the integration of RISs into other emerging technologies
and discuss potential solutions.

As illustrated in Fig. 2, this paper is structured as follows.
Section II elaborates on the fundamental operating principles
of RIS-enhanced wireless networks. Section III focuses on the
performance evaluation of multi-antenna RIS-assisted systems
and the main advantages of using RISs in wireless networks.
In Section IV, the latest research activities on the joint design
of beamforming and resource allocation are discussed. The
framework of ML-empowered RIS-enhanced intelligent wire-
less networks is presented in Section V. Finally, Section VI
investigates the integration of RISs with other emerging tech-
nologies towards the design and optimization of 6G wireless
networks.

II. RIS: FROM PHYSICS TO WIRELESS COMMUNICATIONS

An RIS is a two-dimensional (2D) material structure with
programmable macroscopic physical characteristics. The most

Authorized licensed use limited to: UNIVERSITY OF MANITOBA. Downloaded on August 06,2021 at 07:18:15 UTC from IEEE Xplore.  Restrictions apply. 

Figure 1.1: RISs/IRSs in wireless communication networks [10].
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Chapter 1. Introduction

1.1.2 Challenges in IRS-Assisted Networks

The two major challenges in the IRS-assisted networks are described as follows:

• CSI (channel state information) acquisition: CSI knowledge is critical for

many of the applications shown in Fig. 1.1. Especially in MIMO-RIS and MISO-

IRS wireless networks, CSI knowledge is essential. Perfect CSI is assumed to be

available at the BS, the IRS controller and the users in the majority of previous

works. However, CSI acquisition in IRS-assisted networks is a difficult task which

requires a considerable training overhead.

• Optimization of phase shaifts to achieve various objectives: Each ap-

plication of the IRS-enhanced wireless networks necessitate the optimization of

the IRS phase shifts to achieve a certain goal. The challenge is to optimize the

IRS phase-shifts efficiently while also taking hardware inconsistencies in consid-

eration. In this thesis, we focus on IRS-assisted cellular wireless networks and

design efficient algorithms to optimize its phase shifts to increase the throughput

of multi-user cellular wireless systems.

1.2 Related Work and Contributions

In [15], a multi-user multiple-input single-output (MISO) wireless system assisted by

a single IRS in the downlink configuration is studied. The authors present a deep

reinforcement learning (DRL)-based solution to jointly optimize the IRS phase shifts

and the BS precoding under different quality of service constraints. In [19], authors

tackle the problem of estimating the cascaded BS-IRS-user channels for an IRS-assisted

multi-user MISO system. The author propose a pilot-based solution and improve its

efficiency by exploiting the fact that all users share the same BS-IRS channel. The same

problem is solved by utilizing the deep residual learning framework in [24]. In [25], an

5



Chapter 1. Introduction

IRS-assisted multi-cluster MISO system serving multiple users is considered wherein the

authors seek to minimize the transmit power under a minimum signal-to-interference-

plus-noise ratio (SINR) constraint by jointly optimizing the IRS phase shifts and the

transmit precoder. They tackle the underlying problem through alternating direction

method of multipliers (ADMM). An IRS-aided MISO and MIMO system with discrete

phase shifts for IRS elements is also discussed in [13]. The authors formulate the

problem of minimizing the transmit power under minimum SINR constraint and jointly

optimize the transmit precoding and the IRS phase shifts in a mixed-integer non-linear

programming framework. In [18], a relatively more practical model for IRS reflection

coefficients is considered, and then a penalty-based algorithm is used to optimize the

phase matrix. Moreover, IRS can also be utilized to simultaneously perform passive

beamforming and physical information transfer [20] (e.g., synchronization data or the

CSI estimated at the IRS). In [21], the authors present a massive backscatter wireless

communication (MBWC) scheme to encode information on Wi-Fi signals reflected by

the IRS.

1.3 Motivation

The vast majority of the existing work considers a MISO wireless system assisted by

a single or multiple IRSs serving a single user [14, 17, 18]. So far, limited research

has been conducted on IRS-aided multi-user MIMO systems. Moreover, IRS reflection

coefficients are often modeled as ideal phase shifters and a realistic approach towards

modeling reflection coefficients has rarely been investigated. In fact, most of the existing

methods are limited to a single-phase shifter model, unimodular phase shifts being the

most common one, and hence they are not resilient to the various hardware impairments

of the IRS reflection elements [11, 13, 14, 17, 18]. In Chapter 2, we tackle the problem

of jointly optimizing the active BS precoding and the IRS phase shifts under both ideal

6



Chapter 1. Introduction

and practical constraints on the phase shifts for a multi-user MIMO wireless system.

Moreover, the idea of using the IRS to embed information besides performing passive

beamforming in a multi-user cellular network has not been explored yet. Therefore, in

Chapter 3, by leveraging the idea of backscatter communication [21, 26] and building

upon the work in Chapter 2 we propose a general framework in which the IRS is used

for data embedding on the reflected or re-emitted signals by changing the IRS elements’

impedance and making use of the signals deliberately transmitted by a BS. We call the

smart surface with such capability as “modulating intelligent surface (MIS).” In the

proposed framework, the MIS can be used to either: i) perform passive beamforming

for users served by a BS, or ii) embed information through backscatter communication,

or iii) do both simultaneously. In this setting, the MIS phase shifts vary with the

inevitable changes in the propagation medium to perform passive beamforming for one

set of users, and also with every transmit symbol vector in order to modulate the data

for another set of users.

Table 1.1: Summary of Scholastic Outputs

Publications Appearance

1. H. U. Rehman, F. Bellili, A. Mezghani and E. Hos-

sain, “Joint Active and Passive Beamforming Design for

IRS-Assisted Multi-User MIMO Systems: A VAMP-Based

Approach,” IEEE Transactions on Communications, doi:

10.1109/TCOMM.2021.3094509.

Chapter 2

2. H. U. Rehman, F. Bellili, A. Mezghani and E. Hossain,

“Modulating Intelligent Surfaces for Multi-User MIMO Sys-

tems: Beamforming and Modulation Design,” submitted to

the IEEE Transactions on Communications.

Chapter 3
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1.4 Scholastic Outputs and Achievements

This thesis includes material previously published/submitted in peer-reviewed journals

as summarized in Table 1.1. I wish to acknowledge Dr. Faouzi Bellili, Dr. Amine

Mezghani and Dr. Ekram Hossain for their help and constructive suggestions during

the planning and development of this research work.

1.5 Thesis Organization and Notations

We organize the major contents of thesis into two chapters. The brief organization of

the thesis is given as follows:

• In Chapter 2, we solve the problem of jointly optimizing the active BS precoding

and the IRS phase shifts under the both ideal and practical constraints. More-

over, we also develop an extended version of vector approximate message passing

(VAMP) algorithm which we later use for solving the underlying joint problem.

• A modulating intelligent surface (MIS) is proposed in Chapter 3. Specifically, we

build upon our work in Chapter 2 and solve the problem of jointly optimizing the

BS precoding, the MIS phase shifts for passive beamforming and data modulation,

and the receive scaling factors.

• Chapter 4 concludes the thesis while pointing out future research directions.

Notations: Lowercase letters (e.g., r) denote scalar variables. The uppercase italic let-

ters (e.g., N) represent scalar constants. Vectors are denoted by small boldface letters

(e.g., z) and the k-th element of z is denoted as zk. Exponent on a vector (e.g., zn)

denotes component-wise exponentiation on every element of the vector. Capital bold-

face letters (e.g., A) are used to denote matrices, while aik and ai stand, respectively,

8



Chapter 1. Introduction

for the (i, k)-th entry and the i-th column of A. The zero matrix of size M × N is

denoted as 0M×N . CM×N stands for the set of matrices of size M × N with complex

elements and A−k means (A−1)
k
. Rank(A) and Tr(A), return, respectively, the rank

and the trace of any matrix A. We also use ‖.‖2, ‖.‖F, (.)∗, (.)T, (.)H to denote the

L2 norm, Frobenius norm, the conjugate, the transpose, and the conjugate transpose

operators, respectively. The operator < . > returns the empirical average of all the

elements/entries of any vector or matrix. Moreover, vec(.) and unvec(.) denote vector-

ization of a matrix and unvectorization of a vector back to its original matrix form,

respectively. Diag(.) operates on a vector and generates a diagonal matrix by placing

that vector in the diagonal whereas diag(.) operates on a matrix and returns its main

diagonal in a vector. The statistical expectation is denoted as E{.}. A random vector

with complex normal distribution is represented by x ∼ C N (x; u,R), where u and R

denote its mean and covariance matrix, respectively. Similarly, a random matrix with

complex normal distribution is represented by X ∼ CMN (X; M,U,V), where M, U

and V denote its mean and covariance matrices among its rows and columns, respec-

tively. The imaginary unit is represented by j =
√
−1 and the ∠(.) operator returns the

angle of any complex number. The proportional relationship between any two entities

(functions or variables) is denoted by ∝. Lastly, the operators ⊗, � and ∗ denote the

Kronecker, the Hadamard, and the column-wise Khatri-Rao products, respectively.

9



Chapter 2

Joint Active and Passive

Beamforming Design for

IRS-Assisted Multi-User MIMO

Systems

IRSs have recently emerged as a promising technology for beyond-5G/6G wireless com-

munications as it can improve both the spectral and energy efficiencies of wireless sys-

tems. IRS is an energy-efficient technology since it allows passively to beamform the

incoming signal without the need for a power amplifier as in traditional MIMO BSs.

It does so by suitably optimizing the phase shifts applied by each reflective element to

constructively combine the incoming signals so as to achieve improved received power at

the end users. In this chapter, we consider a multi-user IRS-assisted single-cell downlink

MIMO system with a single IRS. The IRS is equipped with a large number of passive

phase shifters that aid the BS to serve a small number of users. We propose a ro-

bust solution for the problem of jointly optimizing the active and passive beamforming

10
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tasks under different models for the IRS reflection coefficients. The main contributions

embodied by this chapter are as follows:

• We solve the problem of maximizing the spectral efficiency of the users by jointly

optimizing the transmit precoding matrix at the BS and the reflection coefficients

at the IRS. To that end, we first formulate the joint optimization problem under

the sum MMSE criterion in order to minimize the MSE of the received symbols

for all users at the same time.

• To solve the underlying joint optimization problem, we first split it using alternate

optimization [27] into two easier sub-optimization tasks of the active precoder at

the BS and the reflection coefficients at the IRS. The precoding sub-optimization

problem is similar to the MMSE transmit precoder optimization for a traditional

MIMO system, which can be solved in closed-form through Lagrange optimization.

• We modify and extend the existing VAMP algorithm [28] and propose a flexible

technique to find locally optimal reflective coefficients for the IRS under multiple

constraints. Precisely, we find a sub-optimal but good solution for the phase

matrix under two different models for the reflection coefficients: i) Under the

unimodular constraint on the IRS reflection coefficients and ii) under a practical

constraint, where each IRS element is terminated by a tunable simple reactive

load.

• We discuss the convergence and provide the order of complexity of the proposed

solution. We present various numerical results to compare the proposed solution

with the semi-definite relaxation (SDR) plus MMSE-based IRS beamforming and

precoding optimization approach [11, 29], an ADMM-based solution, and a stan-

dalone massive MIMO system using MMSE precoder. The results show that, the

proposed solution: i) outperforms both the SDR-based and the ADMM-based

11
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solutions in terms of throughput while using the same resources and being less

computationally demanding, and ii) achieves higher throughput than a traditional

massive MIMO system while using a significantly smaller number of transmit an-

tennas in typical propagation scenarios. We illustrate the effect of practical phase

shifts on the system throughout. We also show the robustness of the proposed

solution by assessing its performance under imperfect CSI.

The rest of the chapter is organized as follows: the system model along with the

problem formulation for jointly optimizing the active precoder and the reflection coeffi-

cients are discussed in Section 2.1. Section 2.2 briefly introduces the VAMP algorithm

and then extends it to solve optimization problems. In Section 2.3, we solve the op-

timization problem at hand using the proposed extended version of VAMP. In Section

2.4, we further solve the underlying optimization problem under the “simple reactive

loading” constraint on the IRS reflection elements. Exhaustive numerical results are

shown in Section 2.5. Finally, Section 2.6 provides an analysis on the convergence and

computational complexity of the proposed solution.

2.1 System Model, Assumptions, and Problem For-

mulation

Consider a BS that is equipped with N antenna elements serving M (M < N) single-

antenna users in the downlink. The BS is assisted by an IRS which has K (K > M)

reflective elements. For each m-th user, we have a direct link to the BS expressed by

a channel vector hb-u,m ∈ CN . The channel of the surface-user m link is denoted by

hs-u,m ∈ CK . As shown in Fig. 2.1, Hb-s ∈ CK×N denotes the channel matrix of the

MIMO IRS-BS link with Rank(Hb-s) ≥ M . The signal received at the IRS is phase-

shifted by a diagonal matrix Diag(υ) ∈ CK×K , where υ ∈ CK is the phase-shift vector

12
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BS

IRS K reflectors

User 1

User M

hb-u,1

hb-u,M

hs-u,1 hs-u,MHb-s

... ...
· · ·
· · ·
. . .

Figure 2.1: IRS-assisted multi-user MIMO system.

having unimodular elements, i.e., |υk| = 1 for k = 1, · · · , K. In other words, for each

reflection element, we have υk = ejθk for some phase shift θk ∈ [0, 2π]. The received

signal for user m can be expressed as follows:

ym = α

(
hH
s-u,mDiag(υ)Hb-s

M∑
m′=1

fm′sm′ + hH
b-u,m

M∑
m′=1

fm′sm′ + w

)
, m = 1, · · · ,M

(2.1)

where sm ∼ C N (s; 0, 1) is the unknown transmit symbol, w ∼ C N (w; 0, σ2
w) denotes

additive white Gaussian noise (AWGN), and α ∈ R refers to the receiver scaling which is

a common practice in precoding optimization literature [30,31]. Here, fm ∈ CN for m =

1, · · · ,M are the precoding vectors that are used for power allocation and beamforming

purposes. Let F = [f1, f2, · · · , fM ] be the precoding matrix and let P denote the total

transmit power. By denoting s = [s1, s2, · · · , sM ]T, it follows that E
{
‖Fs‖2

}
= P .

Let Hb-u = [hb-u,1,hb-u,2, · · · ,hb-u,M ] and Hs-u = [hs-u,1,hs-u,2, · · · ,hs-u,M ]. Then, by

stacking all the users’ signals in one vector y = [y1, y2, · · · , yM ]T, we can express the

13
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input-output relationship of the multi-user MIMO system as:

y = α

HH
s-uDiag(υ)Hb-sFs︸ ︷︷ ︸

Users-IRS-BS

+ HH
b-uFs︸ ︷︷ ︸

Users-BS

+ w

 . (2.2)

The overall effective channel matrix for all users is thus given by:

HH = HH
s-uDiag(υ)Hb-s + HH

b-u. (2.3)

We aim to minimize the received symbol error of each user under the MMSE criterion,

which consequently maximizes the user SINR. A lower bound on the spectral efficiency

for user m can be expressed in terms of the MMSE of its received symbol [32] as follows:

CMMSE
m = log2

(
1

MMSEm

)
. (2.4)

The MSE of the received symbol for user m is given by Eym,sm

{
|ym − sm|2

}
, and for M

users, the sum symbol MSE can be written as:

M∑
m=1

Eym,sm

{
|ym − sm|2

}
= Ey,s

{
‖y − s‖22

}
. (2.5)

Thus, our problem under the MMSE criterion can be formulated as follows:

arg min
α,F,υ

Ey,s

{
‖y − s‖22

}
, (2.6a)

subject to Es

{
‖Fs‖22

}
= P, (2.6b)

|υi| = 1, i = 1, 2, · · · , K. (2.6c)

Remark. The objective function in (2.6a) leads to some fairness among the users by

ensuring that the MSE is minimized for each user. The lower bound on sum-spectral-

efficiency of M users can be expressed in terms of the MMSE of the users’ received

symbols [32] as follows:

Ĉ =
M∑
m=1

log2

(
1

MMSEm

)
= log2

(
M∏
m=1

1

MMSEm

)
. (2.7)
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In other words, maximizing the sum-spectral-efficiency is equivalent to minimizing the

product MSE of all users. This can be achieved by minimizing the MSE of the user with

the strongest channel, thereby leading to a very unfair solution. On the other hand,

aiming for complete fairness results in a very inefficient allocation of resources when it

comes to the overall system throughput. In this respect, the sum MMSE criterion is

a good balance between the two extremes. Since our aim is to maximize the spectral

efficiency of each user rather than the sum-spectral-efficiency, the MMSE criterion is a

good fit for our problem formulation.

The expectation involved in (2.6a) and (2.6b) is taken with respect to (w.r.t.) the

random vectors s and w. Explicitly writing the objective function in (2.6a) leads to:

Ew,s

{
Tr
(
α2sHFHHHHFs− αsHFHHs− αsHHHFs + ssH + α2sHFHHw

+ α2wHHHFs− αwHs− αsHw + α2wHw
)}
,

(2.8)

thereby resulting in the following optimization problem:

arg min
α,F,υ

∥∥αHH
s-uDiag(υ)Hb-sF− (IM − αHH

b-uF)
∥∥2
F

+Mα2σ2
w, (2.9a)

s.t. ‖F‖2F = P, (2.9b)

|υi| = 1, i = 1, 2, · · · , K. (2.9c)

The optimization problem in (2.9) is a non-convex optimization problem due to the

unimodular constraint1 on the IRS phase shifts in (2.9c). VAMP is a low-complexity

algorithm which is designed to solve optimization problems with a linear objective

function and non-linear constraints [28]. VAMP has a modular structure that makes it

possible to decouple the constraints from the objective function. Therefore, the same

objective function can be minimized under different constraints by modifying the VAMP

module that satisfies the constraint (simple scalar functions). VAMP automatically

1Later, we will solve the same problem under another constraint on the reflection coefficients.
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updates the stepsize at a per-iteration basis that leads to a faster convergence compared

to other iterative algorithms (e.g., ADMM) [33]. This favorable property makes VAMP

tuning-free. The performance of VAMP can be theoretically predicted to establish

optimality through the statistical state evolution framework [28,34].

2.2 Modified VAMP Algorithm for Constrained Op-

timization

Recently, message passing algorithms [28, 35, 36] have gained attention in estimation

theory because of their high performance and fast convergence. Vector approximate

message passing (VAMP) [28], in particular, is a low-complexity algorithm that solves

quadratic loss optimization of recovering a vector from noisy linear measurements. In

this section, we briefly discuss the standard max-sum VAMP algorithm and we further

modify it to solve the constrained optimization problem at hand.

2.2.1 Background on Max-Sum VAMP

Approximate message passing (AMP)-based computational techniques have gained a

lot of attention since their introduction within the compressed sensing framework [35].

To be precise, AMP solves the standard linear regression problem of recovering a vector

x ∈ CN from noisy linear observations:

z = Ax + w, (2.10)

where A ∈ CM×N (with M � N) is called sensing matrix and w ∼ C N (w; 0, γ−1w IM),

with γw > 0, so that pz|x(z|x) = C N (z; Ax, γ−1w IM). Interestingly, the performance of

AMP under independent and identically distributed (i.i.d.) Gaussian sensing matrices,

A, can be rigorously tracked through scalar state evolution (SE) equations [37]. One
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major drawback of AMP, however, is that it often diverges if the sensing matrix, A, is ill-

conditioned or has a non-zero mean. To circumvent this problem, vector AMP (VAMP)

algorithm was proposed and rigorously analyzed through SE equations in [28]. Although

there is no theoretical guarantee that VAMP will always converge, strong empirical

evidence suggests that VAMP is more resilient to badly conditioned sensing matrices

given that they are right-orthogonally invariant [28]. Consider the joint probability

distribution function (pdf) of x and z, px,z(x, z)

px,z(x, z) = px(x) C N (z; Ax, γ−1w IM). (2.11)

Here px(x) is some prior distribution on the vector x whose elements are assumed to be

i.i.d. with a common prior distribution, px(x), i.e.,

px(x) =
N∏
i=1

px(xi). (2.12)

Max-sum VAMP can solve the following optimization problem:

x̂ = arg min
x
‖z−Ax‖2 , (2.13)

by finding the maximum a posteriori (MAP) estimate of x as follows:

x̂ = arg max
x

px|z(x|z). (2.14)

The algorithm consists of the following two modules.

Linear MAP/MMSE Estimator

At iteration t, the linear MAP estimator receives extrinsic information (message) from

the separable (i.e., element-wise) MAP denoiser of x in the form of a mean vec-

tor, rt−1, and a common scalar precision, γt−1. Then, under the Gaussian prior,

C N (x; rt−1, γ
−1
t−1IN), it computes the linear MAP estimate, x̄t, along with the asso-

ciated posterior precision, γ̄t, from the linear observations, z = Ax + w on x. Because
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we are dealing with Gaussian densities, the linear MAP estimate is equal to the linear

MMSE (LMMSE) and given as follows:

x̄t =
(
γwAHA + γt−1IN

)−1 (
γwAHz + γt−1rt−1

)
, (2.15)

γ̄t = NTr
([
γwAHA + γt−1IN

]−1)−1
. (2.16)

The extrinsic information on x is updated as C N (x; x̄t, γ̄
−1
t IN)/ C N (x; rt−1, γ

−1
t−1IN),

and then sent back in the form of a mean vector, r̃t = (x̄tγ̄t − rt−1γt−1) / (γ̄t − γt−1),

and a scalar precision, γ̃t = γ̄t − γt−1, to the separable MAP denoiser of x. The SVD

(singular value decomposition) form of VAMP directly computes extrinsic mean vector

r̃t and scalar precision γ̃t, and can be readily obtained by substituting A = UDiag(ω)VH

in (2.15) and (2.16).

Separable MAP Denoiser of x

This module computes the MAP estimate, x̂t, of x from the joint distribution

px(x) C N (x; r̃t, γ̃
−1
t IN). Because x is i.i.d., the MAP estimate can be computed through

a component-wise denoising function as follows:

x̂i,t = g1,i(r̃i,t, γ̃t) , arg max
xi

[
−γ̃t|xi − r̃i,t|2 + ln px(xi)

]
, (2.17)

or equivalently,

g1,i(r̃i,t, γ̃t) = arg min
xi

[
γ̃|xi − r̃i,t|2 − ln px(xi)

]
. (2.18)

The derivative of the scalar MAP denoiser w.r.t. r̃i,t is given by [28]:

g′1,i(r̃i,t, γ̃t) ,
∂g1,i(r̃i,t, γ̃t)

∂r̃i,t
=

1

2

(
∂g1,i (r̃i,t, γ̃t)

∂<{r̃i,t}
− j

∂g1,i (r̃i,t, γ̃t)

∂={r̃i,t}

)
= γ̃tγ̂t, (2.19)

where γ̂t is the posterior precision. The vector valued denoiser function and its derivative

are defined as follows:

g1(r̃t, γ̃t) ,
[
g1,1(r̃1,t, γ̃t), · · · , g1,N(r̃N,t, γ̃t)

]T
, (2.20)

g′1(r̃t, γ̃t) ,
[
g′1,1(r̃1,t, γ̃t), · · · , g′1,N(r̃N,t, γ̃t)

]T
. (2.21)
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Similar to the LMMSE module, the MAP denoiser module computes an extrinsic mean

vector, rt = (x̂tγ̂t − r̃tγ̃t) / (γ̂t − γ̃t), and a scalar precision, γt = γ̂t − γ̃t, and sends

them back to the LMMSE module for the next iteration. The process is repeated until

convergence. It is worth mentioning that the extrinsic parameters, i.e., the extrinsic

mean vector and the scalar precision, calculated by each module act as a Gaussian prior

on the succeeding estimate of the adjacent module, thus making VAMP parameter-free.

Another key advantage of VAMP is that it decouples the prior information, px(x), and

the observations, px|z(z|x), into two separate modules. Moreover, it also enables the

denoising function to be separable even if the elements of x are correlated in which case

the LMMSE module can easily incorporate such correlation information. The steps of

the standard max-sum VAMP algorithm are shown in Algorithm 1.

2.2.2 Optimization Oriented VAMP

In this section, we explain how max-sum VAMP can be applied to constrained opti-

mization problems. Given the knowledge of three matrices A ∈ CM×N , B ∈ CQ×N and

Z ∈ CM×Q, the goal is to solve an optimization problem of the form:

arg min
x ∈ CN

∥∥ADiag(x)BT − Z
∥∥2
F

(2.22a)

s.t. fi(xi) = 0 i = 1, · · · , N. (2.22b)

In the context of optimization, the observation matrix, Z, is considered as the desired

output matrix and it is also assumed to be known. Unlike the estimation problem in

(2.13), we do not have a prior distribution on x. Yet, the optimization problem in (2.22)

can be solved by modifying the modules of standard max-sum VAMP.
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Algorithm 1 Max-sum VAMP SVD

Given A ∈ CM×N , z ∈ CM , a precision tolerance (ε) and a maximum number of iterations

(TMAX)

1: Initialize r0, γ0 ≥ 0 and t← 1

2: Compute economy-size SVD A = UDiag(ω)VH

3: RA = Rank(A) = length(ω)

4: Compute z̃ = Diag(ω)−1UHz

5: repeat

6: // LMMSE SVD Form.

7: dt = γwDiag(γwω
2 + γt−11RA

)−1ω2

8: r̃t = rt−1 + N
RA

VDiag (dt/〈dt〉)
(
z̃−VHrt−1

)
9: γ̃t = γt−1 〈dt〉 /

(
N
RA
− 〈dt〉

)
10: // MAP Denoiser

11: x̂t = g1(r̃t, γ̃t)

12: γ̂t = 〈g′1(r̃t, γ̃t)〉 /γ̃t
13: γt = γ̂t − γ̃t
14: rt = (γ̂tx̂t − γ̃tr̃t)/γt
15: t← t+ 1

16: until ‖x̂t − x̂t−1‖22 ≤ ε ‖x̂t−1‖22 or t > TMAX

17: return x̂t

Extended LMMSE/LMAP

Through vectorization, the objective function in (2.22a) can be written in the same

form as the quadratic objective function in (2.13) in the following way:

vec(Z) = (B⊗A)vec(Diag(x)). (2.23)
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We then define a matrix, D ∈ CMQ×N , as follows:

D , B ∗A = [b1 ⊗ a1, · · · ,bK ⊗ aK ] . (2.24)

Then, the objective function in (2.22a) is equivalently expressed in a standard form that

is amenable to VAMP as follows:

arg min
x ∈ CN

‖Dx− vec(Z)‖22 (2.25a)

s.t. fi(xi) = 0 i = 1, · · · , N. (2.25b)

The column-wise Khatri-Rao structure can be exploited to avoid taking SVD of the large

matrix D as explained in the sequel. Let A = UADiag(ωA)VH
A, B = UBDiag(ωB)VH

B,

D = UDiag(ω)VH and VBA =
(
VH

B ∗VH
A

)H
. By defining the normalization vector:

vn =
[
‖vBA,1‖2 , ‖vBA,2‖2 , · · · , ‖vBA,MQ‖2

]T
, (2.26)

it can be shown that the SVD of the matrix D is given by:

D = (UB ⊗UA)︸ ︷︷ ︸
U

Diag
(
(ωB ⊗ ωA)� vn

)︸ ︷︷ ︸
Diag(ω)

(
VH

B ∗VH
A

)
�
(
v−1n 1T

N

)
︸ ︷︷ ︸

VH

. (2.27)

These steps can be easily incorporated in the Algorithm 1 accordingly. Similar to

the standard max-sum VAMP, at iteration t, the LMMSE module receives an extrinsic

mean vector, rt−1, and a scalar precision, γt−1, from the separable MAP estimator. The

SVD form of VAMP allows for exploiting the Kronecker structure inside the algorithm

to avoid any large matrix multiplication. The product of a Kronecker-structured matrix

and a vector can be computed in an efficient way through reverse vectorization or un-

vectorization by computing the product of three smaller matrices, and then vectorizing

the result. Therefore, line 4 of Algorithm 1 can be modified as follows:

z̃ = Diag(ω)−1UHvec(Z) (2.28)

= Diag(ω)−1vec
(
UH

AZU∗B
)
. (2.29)
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Figure 2.2: Block diagram of VAMP for optimization. The calculation of extrinsic

information is performed by the “ext” blocks.

The steps for computing the extrinsic mean vector, r̃t, and the scalar precision, γ̃t,

remain unchanged and they are computed directly without the need for computing

the LMMSE estimate, x̄t, and the posterior precision, γ̄t. Hence, the only Kronecker

product required for the LMMSE is of the two vectors ωB and ωA.

Scalar MAP Projector

Because the constraint on x is component-wise, we model the constraint on its entries,

xi, as a prior with some precision, γp, i.e., px(xi) ∝ exp
(
−γp|fi(xi)|2

)
with γp →∞. We

then define the scalar denoising function (now called projector function in the context

of optimization) as follows:

x̂i,t = gi(r̃i,t, γ̃t) , arg min
xi

[
γ̃t|xi − r̃i,t|2 − ln px(xi)

]
, (2.30)

or equivalently:

gi(r̃i,t, γ̃t) = arg min
xi

[
γ̃t|xi − r̃i,t|2 + γp|fi(xi)|2

]
. (2.31)

The parameter γp in (2.31) accounts for the weight given to the prior on xi inside the

scalar MAP optimization. Therefore, taking γp → ∞ enforces the constraint. Taking
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the derivative of the scalar projector function w.r.t. r̃i,t as defined in equation (2.19)

yields:

g′i(r̃i,t, γ̃t) = γ̃tγ̂t, (2.32)

where γ̂t is the posterior precision. The vector valued projector function, g(r̃t, γ̃), and

its derivative, g′(r̃t, γ̃), are defined in the same way as (2.20) and (2.21) respectively.

Similar to the denoiser module, extrinsic information from the projector module is

calculated in the form of the mean vector, rt = (x̂tγ̂t − r̃tγ̃t) /(γ̂t − γ̃t), and scalar

precision, γt = γ̂t− γ̃t, which are then fed to the LMMSE module. In an analogous way

to sum-product VAMP, the max-sum VAMP (for optimization) decouples the constraint

from the objective function and also enables the projector function to be separable.

While the LMMSE module optimizes the objective function with no constraints, the

latter are enforced by the projector function. This modular property makes VAMP

a robust algorithm for solving optimization problems in the presence of linear mixing

and under various component-wise constraints. The block diagram and the algorithmic

steps for the optimization-oriented VAMP are presented in Fig. 2.2 and Algorithm 2,

respectively.

2.3 VAMP-Based Solution for the Joint Beamform-

ing Problem

In this section, we apply the optimization-oriented VAMP algorithm, described in Sec-

tion 2.2.2, to simultaneously optimize the vector of phase shifters, υ, as well as the

optimal precoding matrix F. We decouple the joint optimization problem into two

sub-problems through alternate optimization. In one side we optimize υ by utilizing

the modified max-sum VAMP and, on the other side, we find the optimal transmit

precoding F.
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Algorithm 2 Max-sum VAMP SVD for optimization

Given A ∈ CM×N , B ∈ CQ×N , Z ∈ CM×Q, a precision tolerance (ε) and a maximum number

of iterations (TMAX)

1: Select initial r0, γ0 ≥ 0 and t← 1

2: Compute economy-size SVD A = UADiag(ωA)VH
A

3: Compute economy-size SVD B = UBDiag(ωB)VH
B

4: Compute VBA =
(
VH

B ∗VH
A

)H
5: Compute vector vn =

[
‖vBA,1‖2 , · · · , ‖vBA,MQ‖2

]T
6: Compute VH = VH

BA �
(
v−1n 1T

N

)
7: Compute ω = (ωB ⊗ ωA)� vn

8: Compute z̃ = Diag(ω)−1vec
(
UH

AZU∗B
)

9: RBA = Rank(B ∗A) = length(ω)

10: repeat

11: // LMMSE SVD Form.

12: dt = γwDiag(γwω
2 + γt−11RBA

)−1ω2

13: r̃t = rt−1 + N
RBA

VDiag (dt/〈dt〉)
(
z̃−VHrt−1

)
14: γ̃t = γt−1 〈dt〉 /

(
N
RBA
− 〈dt〉

)
15: // Separable MAP Projector.

16: x̂t = g(r̃t, γ̃)

17: γ̂t = γ̃−1t 〈g′(r̃t, γ̃)〉

18: γt = γ̂t − γ̃t
19: rt = γ−1t (γ̂tx̂t − γ̃tr̃t)

20: t← t+ 1

21: until ‖x̂t − x̂t−1‖22 ≤ ε ‖x̂t−1‖22 or t > TMAX

22: return x̂t
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2.3.1 Alternating Optimization

We use alternating minimization which is the two-block version of the block coordinate

descent (BCD) algorithm. It is a simple iterative approach that optimizes one variable

at a time2 (while fixing the others) and the process is repeated for every variable. Al-

though it is hard to analytically establish the optimality of the alternating minimization

technique for non-convex optimization problems, it is known that it performs really well

for various non-convex optimization problems especially for large system sizes [38–41].

More specifically, we divide the optimization problem in (2.6) into the following two

sub-optimization problems:

1.

arg min
υ

Ey,s

{
‖y − s‖22

}
(2.33a)

|υi| = 1, i = 1, 2, · · · , K. (2.33b)

2.

arg min
α,F

Ey,s

{
‖y − s‖22

}
(2.34a)

s.t. Es ‖Fs‖22 = P. (2.34b)

Let us define the error at iteration t as follows:

Et ,
∥∥∥α̂t (HH

s-uDiag(υ̂t)Hb-s + HH
b-u

)
F̂t − IM

∥∥∥2
F

+Mα̂2
tσ

2
w. (2.35)

The algorithm stops iterating when |Et−Et−1| < εEt−1, where ε ∈ R+ is some precision

tolerance. The algorithmic steps for alternating minimization (after evaluating the

expectation) are shown in Algorithm 3.

2Note here that a variable can be a scalar, a vector, or a whole matrix.
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Algorithm 3 Alternating minimization
Given Hs-u, Hb-u, Hb-s, a precision tolerance (ε), and a maximum number of iterations

(TMAX)

1: Initialize υ̂0 and t← 1.

2: repeat

3:

[α̂t, F̂t] = arg min
α,F

∥∥α (HH
s-uDiag(υ̂t−1)Hb-s + HH

b-u

)
F− IM

∥∥2
F

+Mα2σ2
w

s.t. ‖F‖2F = P

4:

υ̂t = arg min
υ

∥∥∥α̂t (HH
s-uDiag(υ)Hb-s + HH

b-u

)
F̂t − IM

∥∥∥2
F

s.t. υik = 0 i 6= k,

|υii| = 1 i = 1, 2, · · · , K

5: t← t+ 1

6: until |Et − Et−1| < εEt−1 or t > TMAX

7: return υ̂t, F̂t, α̂t.

2.3.2 Optimization of the Phase Vector

Here, we specialize optimization-oriented VAMP algorithm introduced in Section 2.2.2

in order to optimize the phase vector, υ. Let us restate the associated optimization
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after explicitly finding the expectation in (2.33) as follows:

arg min
υ

∥∥αHH
s-uDiag(υ)Hb-sF− (IM − αHH

b-uF)
∥∥2
F

(2.36a)

s.t. |υi| = 1 i = 1, 2, · · · , K. (2.36b)

The solution is obtained by setting A = αHH
s-u, B = (Hb-sF)T and Z = IM −αHb-uF in

Algorithm 2 and then choosing a suitable projector function to satisfy the constraints

on the reflection coefficients. The unconstrained minimization of the objective function

in (2.36a) is performed by the LMMSE module. We define the projector function that

enforces the constraint on the reflection coefficients as:

g2,i (r̃i, γ̃) , arg min
υi

[
γ̃|υi − r̃i|2 + γp

∣∣|υi| − 1
∣∣2] . (2.37)

Solving the optimization problem in (2.37) results in the following closed-form expres-

sion for the underlying projector function:

g2,i (r̃i, γ̃) =
γ̃

γ̃ + γp
r̃i +

γp
γ̃ + γp

r̃i|r̃i|−1. (2.38)

As γp → ∞, we have, γ̃
γ̃+γp

→ 0 and γp
γ̃+γp

→ 1. Therefore, the projector function

simplifies to:

g2,i (r̃i) = r̃i|r̃i|−1. (2.39)

The derivative of the projector function (2.39) w.r.t. r̃i is obtained according to equation

(2.19) as follows:

g′2,i (r̃i) =
1

2
|r̃i|−1. (2.40)

Finally, the projector function, g2(r̃t), and its derivative g′2(r̃t) are obtained by following

(2.20) and (2.21), respectively.

2.3.3 Optimal Precoding

The sub-optimization problem in (2.34) is a constrained MMSE transmit precoding

optimization for traditional MIMO systems. It can be solved by jointly optimizing F
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Figure 2.3: Block diagram of the proposed algorithm.

and α using Lagrange optimization. After finding the expectation, we construct the

Lagrangian function associated to the problem in (2.34) as follows:

L(F, α, λ) =
∥∥αHHF− IM

∥∥2
F

+Mα2σ2
w + λ(Tr(FFH)− P ), (2.41)

with λ ∈ R being the Lagrange multiplier. The closed-form solutions for optimal α and

F are given below and we refer the reader to [30] for more details:

αopt = g3 (H) ,

√
1

P

√√√√Tr

([
HHH +

Mσ2
wIN
P

]−2
HHH

)
. (2.42)

Fopt = g4 (H) ,

√
P
[
HHH + Mσ2

wIN
P

]−1
H√

Tr

([
HHH + Mσ2

wIN
P

]−2
HHH

)
=αopt−1

[
HHH +

Mσ2
wIN
P

]−1
H.

(2.43)

Note that, the scalar, α, merely represents a scaling factor at the receiver that is used

to scale the incident signal as so to obtain the transmitted constellation symbols and
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this a common practice in MMSE precoding optimization [30,31]. Choosing a common

α for all users results in better tractability and makes it possible to derive a closed-form

solution for the optimal α. By inspecting the closed-form solution of the precoding

matrix, we observe that it is scaled by αopt−1
. This allows the transmitter to optimally

scale all the transmit symbols based on the available transmit power whereas the receiver

upscales the received signal plus noise to get back the original transmitted symbols while

keeping the SNR unaffected. It is also worth mentioning that the optimal scaling factor,

αopt, is only utilized in optimizing the precoding matrix since the receivers can blindly

estimate this scalar based on the received symbol sequence [30, 31]. Now that we have

solved both sub-optimization problems in (2.33) and (2.34), separately, we substitute

their solutions into Algorithm 3. The overall block diagram and algorithmic steps are

respectively shown in Fig. 2.3 and Algorithm 4.

Remark. It is possible to include per-user data requirement by formulating the problem

under the weighted MMSE (WMMSE) criterion where we scale the MSEs of the users

with weights according to each user’s data requirement and then minimize the sum MSE.

To that end, we define a positive semi-definite real diagonal matrix, Q, containing user

weights, {qm}Mm=1, in its diagonal, i.e., Q = Diag(q1, · · · , qM). Then, the optimization

problem under the WMMSE criterion is given by:

arg min
α,F,υ

Ey,s

{∥∥Q1/2(y − s)
∥∥2
2

}
, (2.44a)

subject to Es

{
‖Fs‖22

}
= P, (2.44b)

|υi| = 1, i = 1, 2, · · · , K. (2.44c)

In this formulation, WMMSE precoding optimization is performed instead of the or-

dinary MMSE precoding optimization, wherein the matrices A, B and Z are adjusted

accordingly inside the VAMP part of the Algorithm 4.
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2.4 Joint Beamforming Under Reactive Loading at

the IRS

We consider a reflective element that is combined with a tunable reactive load 3 instead

of an ideal phase shifter, i.e., 4 υi = −(1+jχi)
−1, where χi ∈ R is a scalar reactance value

that has to be optimized for each reflection coefficient. Under the unimodular constraint,

the idealistic IRS has a full field of view (FOV) and the reflection coefficients correspond

to ideal phase-shifters and are of the form υi = ejθi , where θi ∈ [0, 2π]5, whereas under

the practical constraint we have a restriction on the possible values of the IRS phase

shifts i.e., ∠− (1 + jχ)−1 ∈
[
-π
2
, π
2

]
. Moreover, the magnitude of each phase shift under

this constraint is always less than 1 for any χ 6= 0. Practically, this introduces the

phase-dependent amplitude attenuation in the incident wave. We rewrite the objective

function under the new constraint on phases as follows:

arg min
υ

∥∥αHH
s-uDiag(υ)Hb-sF− (IM − αHH

b-uF)
∥∥2
F

(2.45a)

s.t. υi =
−1

1 + jχi
, i = 1, 2, · · · , K. (2.45b)

To find the sub-optimal phase vector under the new constraint, we change the projector

function accordingly as follows:

g5,i (r̃i, γ̃) , arg min
υi

[
γ̃|υi − r̃i|2 + γp

∣∣∣∣υi +
1

1 + jχopt
i

∣∣∣∣2
]
, (2.46)

3This can be implemented for instance by an antenna array composed of omni-directional dipole

elements loaded with the reactive elements in the absence of a ground plane to allow for bidirectional

beamforming and not just hemispherical coverage.
4The value 1 is the normalized resistive part of the element impedance whereas χi is the normal-

ized reactive part of the antenna plus reactive termination. Accordingly υi represents the induced

current flowing across the antenna. We assume the antenna elements to be uncoupled which holds

approximately for half-wavelength element spacing.
5In practice, this assumption is difficult from a practical standpoint. With the reactive-loading

constraint, the assumption of an IRS with full FOV becomes more acceptable.

30



Algorithm 4 VAMP-based joint optimization algorithm
Given Hs-u, Hb-u, Hb-s, a precision tolerance (ε), and a maximum number of iterations (TMAX)

1: Initialize υ̂0, r0, γ0 ≥ 0 and t← 1

2: Ĥ0 =
(
HH

s-uDiag(υ̂0)Hb-s + HH
b-u

)H
3: α̂0 = g3

(
Ĥ0

)
4: F̂0 = g4

(
Ĥ0

)
5: repeat

6: // LMMSE SVD Form.

7: Set A = α̂t−1H
H
s-u, B =

(
Hb-sF̂t−1

)T
and Z = IM − α̂t−1HH

b-uF̂t−1.

8: Compute economy-size SVD A = UADiag(ωA)VH
A

9: Compute economy-size SVD B = UBDiag(ωB)VH
B

10: Compute VBA =
(
VH

B ∗VH
A

)H
11: Compute vector vn =

[
‖vBA,1‖2 , · · · , ‖vBA,M2‖

2

]T
12: Compute VH = VH

BA �
(
v−1n 1T

K

)
13: Compute ω = (ωB ⊗ ωA)� vn

14: Compute z̃ = ω−1 � vec
(
UH

AZU∗B
)

15: RBA = Rank(B ∗A) = length(ω)

16: dt = γw(γwω
2 + γt−11RBA

)−1 � ω2

17: r̃t = rt−1 + K
RBA

V
(

dt
〈dt〉 �

(
z̃−VHrt−1

))
18: γ̃t = γt−1 〈dt〉 /

(
K
RBA
− 〈dt〉

)
19: // Separable MAP Projector

20: υ̂t = g2 (r̃t)

21: γ̂t = γ̃−1t 〈g′2 (r̃t)〉.

22: γt = γ̂t − γ̃t
23: rt = γ−1t (γ̂tυ̂t − γ̃tr̃t)

24: //Find α and F through their closed-form solutions.

25: Ĥt =
(
HH

s-uDiag(υ̂t)Hb-s + HH
b-u

)H
26: α̂t = g3

(
Ĥt

)
27: F̂t = g4

(
Ĥt

)
28: t← t+ 1

29: until |Et − Et−1| < εEt−1 or t > TMAX

30: return υ̂t, F̂t, α̂t.
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where

χopt
i = g6 (r̃i) , arg min

χi

∣∣∣∣r̃i +
1

1 + jχi

∣∣∣∣2. (2.47)

The optimization problem in (2.46) is a bi-level one [42]. The solution to (2.47) is

substituted in (2.46) which is then solved as ordinary MAP optimization. We show in

Appendix A that the solution to (2.47) is given by:

g6 (r̃i) =
1

2={r̃i}

(
1 + 2<{r̃i}+

√
(1 + 2<{r̃i})2 + 4={r̃i}2

)
. (2.48)

Substituting (2.48) back into (2.46) and solving the minimization leads to the following

result:

g5,i(r̃i, γ̃) =
γ̃

γ̃ + γp
r̃i −

γp
γ̃ + γp

(1 + jg6 (r̃i))
−1 , (2.49)

where γp →∞. Thus, the projector function can be expressed as:

g5,i (r̃i) = − (1 + jg6 (r̃i))
−1 , (2.50)

whose derivative is obtained as defined in equation (2.19) as follows:

g′5,i (r̃i) = jg′6 (r̃i) (1 + jg6 (r̃i))
−2 , (2.51)

where

g′6 (r̃i) =
1

2

(
∂g6 (r̃i)

∂<{r̃i}
− j

∂g6 (r̃i)

∂={r̃i}

)
. (2.52)

The partial derivatives involved in (2.52) are given by:

∂g6 (r̃i)

∂<{r̃i}
= ={r̃i}−1 +

(1 + 2<{r̃i})
(
={r̃i}

√
(1 + 2<{r̃i})2 + 4={r̃i}2

)−1
, (2.53)

and

∂g6 (r̃i)

∂={r̃i}
= − (1 + 2<{r̃i})

(
2={r̃i}2

)−1−
(1 + 2<{r̃i})2

(
2={r̃i}2

√
(1 + 2<{r̃i})2 + 4={r̃i}2

)−1
. (2.54)
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Since the derivative is required to be a real scalar, we take the absolute value of the

complex derivative and, therefore, we modify the derivative of the projector function

(2.51) as follows:

g′5,i (r̃i) =
∣∣jg′6 (r̃i) (1 + jg6 (r̃i))

−2∣∣. (2.55)

Lastly, we obtain the vector valued projector function, g5(r̃t), and its derivative g′5(r̃t)

according to (2.20) and (2.21), respectively, and replace g2(r̃t) and g′2(r̃t) in lines 19

and 20 of Algorithm 4.

2.5 Numerical Results: Performance Analysis

2.5.1 Simulation Model and Parameters

We present exhaustive Monte-Carlo simulation results to assess the performance of the

proposed algorithm. We assume that the IRS is located at a fixed distance of 500 m

from the BS and the users are spread uniformly at a radial distance of 10 m to 50

m from the IRS. A path-based propagation channel model, also known as parametric

channel model [32], is used. Such a model is more appropriate for systems with large

antenna arrays. One key parameter of such a channel model is the number of multi-path

components of the BS-IRS channel which governs the effect of channel correlation. The

channel between the IRS and the BS is generated according to:

Hb-s =
√
L(dIRS)

QIRS∑
q=1

cqaIRS(ϕq, ψq)aBS(φq)
T. (2.56)

Here, QIRS and L(dIRS) denote the number of channel paths and the distance-dependent

path-loss factor, respectively. The vectors aBS(φ) and aIRS(ϕ, ψ) are the array response

vectors for the BS and the IRS, respectively. The coefficients cq in (2.56) denote the

path gains which are modeled by a complex normal distribution, i.e., cq ∼ C N (cq; 0, 1).

Assuming that a uniform linear array (ULA) with N antennas is used at the BS, we
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Table 2.1: Simulation parameters, their notations, and values.

Parameter Notation,

Value

Parameter Notation,

Value

Number of channel paths

IRS-BS link

QIRS = 10 IRS-BS distance dIRS = 500 m

Number of channel paths

BS-user link

Qb-u = 2 User-BS distance d = 500 m

Number of channel paths

IRS-user link

Qs-u = 2 User-IRS distance d′ ∈ [10, 50] m

Path-loss exponent IRS-

BS, IRS-user link

η = 2.5 Noise variance σ2
w = −100 dBm

Path-loss exponent BS-

user link

η = 3.7 Channel path gain cq ∼ C N (0, 1)

Reference distance d0 = 1 m Path-loss at reference

distance

C0 = −30 dB

have aBS(φ) = [1, e2πj
db
λ

cosφ, · · · , e2πj
db
λ
(N−1) cosφ]T wherein λ, φ, and db represent the

wavelength, the angle of departure (AOD), and the inter-antenna spacing at the BS,

respectively. The IRS is equipped with a (square) uniform planar array (UPA) with K

antenna elements which are assumed to have a cosine embedded element pattern. By

defining the z-axis as the normal vector to the array, the array response vector for the
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IRS is expressed as follows [43]:

aIRS(ϕ, ψ) =
√
| cosϕ|


1

e2πj
ds
λ

sinϕ sinψ

...

e2πj
ds
λ
(
√
K−1) sinϕ sinψ

⊗


1

e2πj
ds
λ

sinϕ cosψ

...

e2πj
ds
λ
(
√
K−1) sinϕ cosψ

 . (2.57)

Here ds represents the inter-antenna spacing at the IRS whereas ϕ and ψ are the angles

of elevation and azimuth, respectively. In simulations we set db = ds = λ/2. The angles

ψq and φq are uniformly distributed in the interval [0, 2π) and the ϕq’s are uniformly

distributed in [0, π). The channel of the direct link between the BS and each m-th

single-antenna user, with Qb-u paths, is modeled as follows:

hb-u,m =
√
L(dm)

Qb-u∑
q=1

cm,qaBS(φm,q), m = 1, · · · ,M. (2.58)

Similar to the IRS-BS channel, cm,q ∼ C N (cm,q; 0, 1) and each angle φm,q is uniformly

distributed in [0, 2π). The channel vectors in (2.58) are assumed to be independent

across all users. Finally, the channel vector for the link between each m-th user, and

the IRS with Qs-u channel paths, is modeled as follows:

hs-u,m =
√
L(d′m)

Qs-u∑
q=1

cm,qaIRS(ϕm,q, ψm,q), m = 1, · · · ,M. (2.59)

The term L(d) = C0(d/d0)
η in (2.56), (2.58), (2.59) is the distance-dependent path-

loss factor, where C0 denotes the path-loss at a reference distance d0 = 1 m, and η is

the path-loss exponent. Moreover, to account for the line-of-sight (LOS) component,

the gain of one channel path is set to at least of 5 dB higher than the other path

gains. To account for channel correlation effects, we have set the number of multi-path

components lower than the number of BS antennas and the IRS antenna elements for

the BS-IRS channel thereby making the channel matrix rank-deficient. Therefore, in

simulations we have set the number of users lower than the rank of BS-IRS channel
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matrix Hb-s. In the simulations, we fix dIRS = 500 m for the IRS-BS channel whereas

the user-BS distance, d, and the user-IRS distance, d′, vary for each user according

to its location from the BS and the IRS, respectively. In all simulations, we also set

C0 = −30 dB, η = 3.7 (NLOS BS-user channel), η = 2.5 (NLOS IRS-BS and IRS-user

channels), Qb-u = 2, Qs-u = 2, ε = 10−3 and σ2
w = −100 dBm. The results are averaged

over 1000 independent Monte Carlo simulations.

The following two scenarios are studied. First, we consider the case where only the

BS-IRS channel contains a LOS component. Then we consider the scenario where both

the BS-IRS and the IRS-user channels have a LOS component but all the direct BS-

user channels do not have a LOS component. The proposed VAMP-based algorithm is

compared against the following four different configurations:

i. A MIMO system assisted by one IRS where the SDR technique is used to optimize

the IRS reflection coefficients in combination with MMSE precoding.

ii. A MIMO system assisted by one IRS where the joint optimization of the phase

matrix the and the precoding is solved through alternate optimization and penalty-

based ADMM.

iii. A massive MIMO system with a large number of BS antennas with MMSE pre-

coding.

iv. An IRS-assisted MIMO system with unoptimized IRS phases and MMSE transmit

precoding.
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Figure 2.4: LOS IRS-BS channel: Sum-rate versus transmit power with M = 8 and

K = 256.

Figure 2.5: LOS IRS-BS channel: Sum-rate versus the number of IRS reflective elements

with M = 8, N = 32 and P = 30 dBm.
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Figure 2.6: LOS IRS-BS channel: NRMSE versus the number of iterations (BS-user

link excluded) with M = 8, N = 32, and K = 256.

2.5.2 Benchmarking Metrics

We use two metrics for performance evaluation, namely the sum-rate, Ĉ, and the nor-

malized root mean square error (NRMSE) which are defined as follows:

Ĉ =
M∑
m=1

log2

1 +

∣∣hH
mfm

∣∣2
σ2
w +

∑
i 6=m

∣∣hH
mfi
∣∣2
 , (2.60)

where hHm = hH
s-u,mDiag(υ)Hb-s + hH

b-u,m.

NRMSE(α,υ,F) ,

1√
M

√∥∥α (HH
s-uDiag(υ)Hb-s + HH

b-u

)
F− IM

∥∥2
F

+Mα2σ2
w.

(2.61)
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2.5.3 Performance Results With Perfect CSI

BS-IRS channel with LOS component

This situation is encountered in a typical urban or suburban environments where the

BS is located far away from the users and has no direct LOS component. However,

the IRS is installed at a location where a LOS component is present in the BS-IRS

link but not in the user-IRS link. Here we set the number of users to M = 8 and the

number of BS antennas to N = 32 for every configuration except for massive MIMO

for which we use N = 96. Fig. 2.4, depicts the achievable sum-rate versus the transmit

power, P , for the different considered transmission schemes. The proposed algorithm in

this scenario outperforms the massive MIMO system even with a significantly smaller

number of transmit antennas. VAMP automatically updates the step size at a per-

iteration basis that leads to a faster convergence compared to other iterative algorithms

Since the proposed algorithm is based on VAMP, it outperforms the ADMM-based

solution as it automatically updates the step size at a per-iteration basis (by means

of calculating extrinsic information at each step) that leads to a faster convergence

compared to ADMM, where the penalty parameter must be manually chosen. As per

the IRS-assisted configuration, where one uses the SDR technique to optimize the IRS

reflection coefficients, a significant gap is observed between the achieved sum-rates as

compared to the proposed algorithm. Fig. 2.5 shows a plot of sum-rate against the

number of IRS reflective elements. It is observed that even with a small number of

active transmit antennas and merely ten paths between the IRS and the BS, the sum-

rate for the proposed solution keeps increasing with the number of reflective elements.

In contrast, the sum-rate saturates after a small gain when the IRS reflection coefficients

are not optimized. Compared to the ADMM-based solution and the SDR method, the

proposed algorithm shows higher throughput at every point.

The convergence of the proposed algorithm is investigated in Fig. 2.6 which depicts
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the NRMSE as a function of the number of iterations. Here we exclude the direct

BS-user link to highlight the throughput of the BS-IRS-user link after optimizing the

IRS phase shifts. Observe that the major portion of the gain is achieved in the first

few iterations. The small number of iterations required for convergence in combination

with the low per-iteration complexity makes the proposed algorithm very attractive from

the practical implementation point of view. The superiority of the proposed VAMP-

based algorithm over the ADMM-based approach stems from the feedback mechanism

of VAMP. In fact, such feedback controls the weight given to the update of υ at each

iteration compared to that of the preceding iteration. This is achieved with the help

of scalar precision parameters that act as weighting coefficients for the υ updates that

are computed in the current and the preceding iteration. In addition to the plots

shifting downward, the increase in transmit power widens the gap between ADMM and

the proposed VAMP-based algorithm. This demonstrates that the latter utilizes the

available transmit power in a more efficient way than ADMM.

BS-IRS and IRS-user channels with LOS components

Fig. 2.7 illustrates the sum-rate versus the transmit power for this configuration. As

expected, the results show that by adding a LOS component, the use of an IRS together

with the proposed joint beamforming optimization solution yields considerably higher

sum-rates compared to a massive MIMO system with no IRS. Moreover, although the

ADMM-based solution now matches the performance of massive MIMO, the advantage

of the proposed VAMP-based solution over the ADMM- and SDR-based solutions is

higher when compared to the NLOS configuration.

The results in Fig. 2.8, i.e., sum-rate versus the number of IRS reflective elements,

also exhibit the same trends as in the NLOS scenario yet with a broader gap between

the curves, thereby, corroborating the superiority of the proposed solution. Intuitively,
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Figure 2.7: LOS IRS-user and BS-IRS channels: (a) Sum-rate versus transmit power

with M = 8 and K = 256.

Figure 2.8: LOS IRS-user and BS-IRS channels: Sum-rate versus the number of IRS

reflection elements with M = 8, N = 32 and P = 30 dBm.

41



Chapter 2. Joint Active and Passive Beamforming Design for IRS-Assisted
Multi-User MIMO Systems

Figure 2.9: LOS IRS-user and BS-IRS channels: NRMSE versus the number of iterations

(BS-user link excluded) M = 8, N = 32, and K = 256.

the presence of a LOS component helps the VAMP-based joint beamforming scheme to

focus most of the transmit/reflected energy in that direction. This is clearly depicted

in Fig. 2.9, where the NRMSE achieved by the proposed algorithm is approaching the

NRMSE achieved by the ADMM-based solution but at almost 5 dB lower transmit

power.

Practical IRS phase shifts

In this subsection, we assess the effect of replacing the unimodular constraint on the

reflection coefficients by reactively loaded omni-directional elements. We use the same

channel configuration as in Section 2.5.3. But, we rely on optimizing just the reactive

part of the reflection coefficients. Therefore, as portrayed by Fig. 2.11, the new con-

straint decreases the throughput when compared with the ideal phase shifters setup.

However, the resulting sum-rate is still much higher than the one obtained by using
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Figure 2.10: LOS IRS-user and BS-IRS channels: NRMSE versus the number of itera-

tions (BS-user link excluded) M = 8, N = 32, K = 256 and P = 30 dBm.

unoptimized IRS reflection coefficients. In fact, when the number of IRS elements is

higher than a certain value, the proposed approach with practical phase shifts achieves

higher throughput than both the SDR- and ADMM-based solutions with ideal phase

shifts. Similarly, due to having less room for optimizing the reflection coefficients, Fig.

2.10 shows that the NRMSE saturates sooner and at a higher value as compared to the

case of a unimodular constraint (i.e., ideal phase shifts). Nonetheless, even with the

more practical reactive load constraint, the resulting VAMP-based NRMSE is close to

the NRMSE achieved by ADMM with ideal phase shifters.

2.5.4 Performance Results With Imperfect CSI

In this section, we measure the performance of the proposed solution in the presence

of channel estimation errors. Specifically, we consider a scenario where pilot training

followed by MMSE estimation algorithms are used to estimate the cascaded BS-IRS-
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Figure 2.11: LOS IRS-user and BS-IRS channels: Sum-rate versus IRS elements with

practical phase shifts with M = 8, N = 32 and P = 30 dBm.

Figure 2.12: LOS IRS-user and BS-IRS channels: Sum-rate versus transmit power under

imperfect CSI with M = 8, N = 32, and K = 256.
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users and the direct BS-user channels [44,45]. We model the estimated channel matrix

and vectors using the statistical CSI error model proposed in [46–48] as follows:

Ĥb-s = κHb-s +
√

(1− κ2)L(dIRS)∆b-s, (2.62)

ĥb-u,m = κhb-u,m +
√

(1− κ2)L(dm)δb-u,m, m = 1, · · · ,M, (2.63)

ĥs-u,m = κhs-u,m +
√

(1− κ2)L(d′m)δs-u,m, m = 1, · · · ,M, (2.64)

where κ ∈ [0, 1] denotes the channel estimation accuracy and ∆b-s, δb-u,m and δs-u,m fol-

low the circularly symmetric complex Gaussian (CSCG) distribution, i.e.,

vec(∆b-s) ∼ C N (0,1N×N ⊗ IK), δb-u,m ∼ C N (0, IN) and δs-u,m ∼ C N (0, IK). We

first optimize the matrix F and vector υ under imperfect CSI and then use the exact

CSI matrices to calculate the sum-rate. Fig. 2.12 plots the sum-rate versus transmit

power for different values of the channel estimation accuracy parameter κ. We also

include plots for the other beamforming schemes under perfect CSI for reference. The

results show the resilience of the proposed VAMP-based approach against small chan-

nel estimation errors. At low SNR, it is observed that the proposed design with a low

channel estimation accuracy of κ = 0.85 performs better than the SDR based approach

and nearly as good as the ADMM-based approach under perfect CSIs. Moreover, the

performance loss with a high channel estimation accuracy value of κ = 0.99 is negligible.

2.6 Convergence, Optimality, and Complexity Anal-

ysis

According to the monotone convergence theorem in real analysis [49], a monotonically

decreasing sequence with a lower bound is convergent. In our case, since the objective

function, ∥∥αHH
s-uDiag(υ)Hb-sF− (IM − αHH

b-uF)
∥∥2
F

+Mα2σ2
w (2.65)
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has a lower bound of zero, the proposed algorithm will always converge to a solution if

the MSE monotonically decreases in both steps of the algorithm, i.e., the step of opti-

mizing the phase-shifts (VAMP part) and the step of optimizing the active precoding.

For the latter, we have a closed-form optimal solution. Therefore, it is necessary that

the MSE decreases monotonically inside the VAMP step in every iteration to guarantee

the convergence of the entire algorithm. In practice, most of the approximate message

passing-based algorithms (including VAMP) add damping steps inside the algorithm to

avoid any oscillations in the resultant MSE and thus, ensuring convergence [28]. The

lines 18 and 20 inside the VAMP part of the Algorithm 4 are, respectively, replaced

by the damped versions:

γ̃t = %γt−1 〈dt〉 /
(

K

RBA

− 〈dt〉
)

+ (1− %)γ̃t−1. (2.66)

υ̂t = %g1(r̃t) + (1− %)υ̂t−1, (2.67)

for all iterations t > 1 where % ∈ (0, 1] is a suitably chosen damping factor. The optimal-

Table 2.2: Comparison between the CPU execution time of the proposed VAMP-

based algorithm, the ADMM-based algorithm and the SDR-based algorithm for differ-

ent design configurations. The algorithms terminate when |NRMSEt − NRMSEt−1| <

10−3NRMSEt−1 or t > 100.

Design Parameters

VAMP-based

algorithm

O(MN(K+N))

(msec)

ADMM-based

algorithm

O(MN(K +N))

(msec)

SDR-based

algorithm

O(MN +K6)

(msec)

M = 2, N = 16, K = 64 14 26 2100

M = 4, N = 32, K = 256 104 340 12500

ity of the proposed VAMP-based approach can be investigated through statistical state
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evolution analysis of the proposed algorithm which we have left for a future work. Please

note that for non convex optimization problems like optimizing the phase-shifts vector

under uni-modular constraint, asymptotic (for large matrix sizes) optimality can be

claimed for i.i.d. matrices, if the proximal functions (projector function and its deriva-

tive inside Algorithm 4) are shown to be Lipschitz continuous, and the state evolution

analysis reveals that the VAMP-based algorithm has only one fixed point [28, 34]. For

implementation purpose, we choose the maximum possible value for precision tolerance,

ε, for which the MSE approximately saturates before the algorithm is stopped. For the

proposed solution we have found out that ε = 10−3 does the trick as the MSE achieved

by choosing any lower values for ε is approximately equal to the MSE achieved by

choosing ε = 10−3. The maximum number of iterations, Tmax, is a hardware-dependent

parameter and is manually chosen to have a limit on the number of iterations.

Note that, by utilizing the Kronecker structure, we avoid any large matrix multi-

plication or even taking SVD of Kronecker or Khatri-Rao product of matrices. Let

A = αHH
s-u and B = (Hb-uF)T. For our system model, the matrices A and B are of the

same size M×K. Assuming that the matrices A and B are of full rank, the complexity

of the truncated SVDs of the matrices is of O(M2K). The computational complexity

of the column-wise Khatri-Rao product in line 10 and the following operations in lines

11 and 12 of Algorithm 4 has a complexity of O(M2K). The Kronecker product of

two vectors in line 13 and the component-wise operations of vectors in lines 16 and

17 are of order O(M2). The projector function and its derivative has a complexity in

the order of O(K). The functions g3 (H) and g4 (H) can be implemented efficiently by

using the matrix inversion lemma, thereby entailing a complexity of O(M3 + MN2).

The complexity of all other matrix multiplications elsewhere including the LMMSE part

is of order O(MNK + M2K). Therefore, the overall per-iteration complexity of the

algorithm is of order O(M3 +M2K+MNK+MN2). Since M < N and M < K in our

case, the overall per-iteration complexity simplifies to O(MN(K + N)) or O(MNK)
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for N ≤ K.

Table 2.2 provides a comparison of CPU (central processing unit) run time between

the VAMP-based approach, the ADMM-based approach and the SDR-based approach

for different design configurations. For comparison purpose, we measure the time un-

til the NRMSE saturates with a tolerance, ε. Therefore, we run the algorithms un-

til |NRMSEt − NRMSEt−1| < εNRMSEt−1 or t > TMAX, while setting ε = 10−3 and

TMAX = 100. We set the channel simulation parameters as in Section 2.5.3 with P = 30

dBm. The algorithms are simulated using MATLAB R2020a on a laptop having a Core

i7-4720HQ processor and 16 GB of RAM running Windows 10 operating system. As ex-

pected, the simulation results confirm that the proposed approach is significantly faster

in terms of convergence time, especially when there is a high number of IRS antenna

elements.

2.7 Summary

We investigated the problem of joint active and passive beamforming design for an IRS-

assisted downlink multi-user MIMO system under both ideal and practical models for

the IRS phase shifts. The associated joint non-convex optimization has been formulated

under sum-MMSE criterion. Using alternating minimization, the joint optimization has

been decomposed into two sub-optimization tasks, i.e., optimizing the IRS phase shifts

and the BS precoding matrix separately. Regarding the phase shifts, we have presented

a novel approach that relies on the approximate message passing framework to solve the

associated sub-optimization problem. For this, we have first extended the traditional

VAMP algorithm, and then used the extended version to find a local optimum, for the

phase-shifts matrix under both ideal and practical constraints. The optimal precoder

at the BS, however, was found in closed-form using Lagrange optimization. Simulation

results illustrate the superiority of the proposed approach over existing beamforming
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schemes (e.g., the SDR-and ADMM-based approaches) both in terms of throughput and

convergence speed. The results also illustrate that the reduction in the throughput of

the system under more restrictive phase shifts is not significant. Moreover, it has been

shown that the performance of the proposed approach is largely unaffected by small

channel estimation errors.
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Chapter 3

Modulating Intelligent Surfaces for

Multi-User MIMO Systems:

Beamforming and Modulation

Design

Modulating intelligent surface (MIS) refers to an intelligent surface that has the capa-

bility of doing both i) beamforming for a set of users whose data is modulated by a

BS, and ii) modulating data for another set of users on an unmodulated carrier signal

transmitted by a BS by appropriately designing the MIS phase shifts. The benefits of

MISs – that can beamform and modulate signals at the same time – are three-fold:

i. In traditional purely reflective IRS-based schemes, the users’ received signals are

subject to severe attenuation stemming from the product path loss of the BS-IRS

and IRS-users links since both links are used for data communication. Using a

MIS, however, allows the BS to focus all of the transmit power (of a reference

signal) towards the strongest path in the BS-MIS link and the modulated signals
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are passively generated at the MIS by appropriately designing its phase shifts. In

this way, the information-bearing signals undergo the path loss of the MIS-users

link only before reaching the intended users.

ii. The total number of users which can be served is not limited by the number of

channel paths available in the BS-IRS link, but rather by the number of MIS

elements. Therefore, more users than the number of BS antennas can be served

by allocating power towards an MIS having a high number of antenna elements

and then serving the users through the MIS.

iii. The MIS can serve users by recycling the incoming signals transmitted by the BS

without any RF chains, thus making the entire approach very cost-effective.

A practical implementation of the MIS system will require the BS to transmit the

optimized phase shifts to the MIS through a high speed communication link, and also

a deliberately transmitted carrier signal by the BS towards the MIS to obtain the RF

(radio frequency) power required to serve different users. Ideally, the MIS must be

installed at a location where a line-of-sight (LOS) path is present between the MIS and

the BS to minimize the power loss. There are two possible ways transmit the optimized

phase shifts for modulation (i.e., phase shifts which encode the data) to the MIS: i)

through an optical fibre link between the BS and the MIS, ii) through a high-speed

reliable wireless link (e.g., Terahertz wireless links) between the BS and the MIS, if

they are in close proximity to each other.

In this chapter, We consider a single-cell downlink MIMO system assisted by a single

MIS which is equipped with a large number of passive phase shifter elements. The MIS

helps the BS in better serving one portion of the users through passive beamforming and

also embeds the information-bearing data for the remaining users on a separate carrier

signal that it receives from the BS. In this regard, we build on our work in Chapter 2

and propose a general method to jointly optimize:
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• The active BS Precoder.

• The receive scaling factor for the BS- and MIS-served users.

• The MIS phase-shifts of passive beamforming for the BS-served users.

• The embedding of user data on the reflected signal (i.e., modulation of the reflected

signal) for the MIS-served users.

The major contributions embodied by this chapter can be summarized as follows:

• To the best of our knowledge, this is the first work that studies the use of the

MIS for passive beamforming and data embedding at the same time in a multi-

user setup. We solve the problem of maximizing the spectral-efficiency of the

users by jointly optimizing the transmit precoding matrix at the BS, the receive

scaling factor for the MIS-served users, and the MIS phase shifts. To do so, we

follow the optimization-oriented vector approximate message passing (OOVAMP)-

based approach developed in Chapter 2 while formulating the joint optimization

problem under the sum minimum mean-square error (MMSE) criterion in order

to minimize the mean-square error (MSE) of the received symbols for all users at

the same time.

• To solve the underlying joint optimization problem, we first split it using alternate

optimization [27] into two simpler sub-optimization tasks, one for finding the

sub-optimal MIS phase shifts and the other for jointly optimizing the active BS

precoder and the receive scaling factor for both the BS- and MIS-served users.

The solution to the latter sub-optimization task is provided in closed-form.

• We apply the OOVAMP algorithm to optimize the MIS phase shifts under two

different constraints. Specifically, we optimize the phase matrix under two differ-

ent models for the phase shifts: i) under the unimodular constraint on the MIS
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phase shifts, and ii) under a more practical constraint, where each MIS element

is terminated by a tunable reactive load.

• We present various numerical results to compare the proposed scheme against the

standard approach in which an IRS is being used for passive beamforming only

while active MMSE precoding is used at the BS for all users. In this context, we

consider two baseline techniques that rely on i) semi-definite relaxation (SDR)

[11, 29], and ii) OOVAMP-based alternate optimization [50] to find the adequate

IRS phase shifts. The latter approach boils down to a special case of the herein

proposed scheme when the number of MIS-served users is equal to zero. The

simulation results show that using MISs for joint beamforming and information

embedding significantly outperforms the classical schemes in which IRSs are solely

used for passively beamforming the signals they receive from the BS. We also

study the resilience of the proposed scheme under channel state information (CSI)

mismatch stemming from imperfect CSI acquisition in practice.

The rest of the chapter is organized as follows: the system model along with the

problem formulation for jointly optimizing the active BS precoder and the MIS phase-

shifts are discussed in Section 3.1. Section 3.2 discusses the matrix OOVAMP algorithm

and its constituent modules. In Section 3.3, we solve the optimization problem at hand

under multiple constraints by applying the OOVAMP algorithm. Lastly, numerical

results are presented in Section 3.4 before drawing out some concluding remarks in

Section 3.5.
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... ...
· · ·
· · ·
. . .

User 1

User R

hs-us,1

hs-us,R

Figure 3.1: MIS-assisted multi-user MIMO system in which the MIS is being concur-

rently used for beamforming and data embedding.

3.1 System Model, Assumptions, and Problem For-

mulation

Consider a BS that is equipped with N antenna elements that is serving a total of

M single-antenna users (in the downlink) with the help of an MIS that has K > M

reflective elements. Also consider a scheme in which the data for B out of the total

M users are directly modulated/encoded by the BS (in baseband). Those B users

(B < N) are referred to as the BS-served users. For the remaining R = M − B users,

the BS will simply send a known/reference signal which will then be modulated by

appropriately phase-shifting it using the MIS reflective elements. For this reason, we

call those R users as the MIS-served users although, strictly speaking, both types of
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users are being served by the BS1. The goal is to optimally design the MIS phase shifts

not only to modulate the data for the MIS-served users but also to passively beamform

the signals for the BS-served users. As illustrated by Fig. 3.1, for each b-th BS-served

user, its direct link to the BS is expressed by a channel vector hb-ub,b ∈ CN . The BS-

user channel vector for each r-th MIS-served user2 is denoted by hb-us,r ∈ CN . The

channels of the surface-user link for the b-th BS-served user and the r-th MIS-served

user are denoted, respectively, by hs-ub,b ∈ CK and hs-us,r ∈ CK . Let Hb-s ∈ CK×N

denote the channel matrix of the MIMO MIS-BS link with Rank(Hb-s) ≥ B. The signal

received at the MIS is phase-shifted by a diagonal matrix Diag(υ) ∈ CK×K , where

υ ∈ CK is the phase-shift vector. Under the unimodular constraint we have |υk| = 1

for k = 1, · · · , K. In other words, for each reflection element, we have υk = ejθk for

some phase shift θk ∈ [0, 2π]. Let Hb-ub = [hb-ub,1,hb-ub,2, · · · ,hb-ub,B] ∈ CN×B, Hb-us =

[hb-us,1,hb-us,2, · · · ,hb-us,R] ∈ CN×R, Hs-ub = [hs-ub,1,hs-ub,2, · · · ,hs-ub,B] ∈ CK×B and

Hs-us = [hs-us,1,hs-us,2, · · · ,hs-us,R] ∈ CK×R. For mathematical convenience, we stack the

channel matrices of the BS- and MIS-served users in the following combined matrices:

Hb-u = [Hb-ub Hb-us] ∈ CN×M , (3.1)

Hs-u = [Hs-ub Hs-us] ∈ CK×M . (3.2)

Let ȳm be the noiseless signal received by the m-th user and define ȳ , [ȳ1, ȳ2, · · · , ȳM ]T.

In the sequel, without loss of generality, we assume that {ȳ1, ȳ2, · · · , ȳB} and

{ȳB+1, ȳB+2, · · · , ȳM} pertain to the BS-served and IRS-served users, respectively. Then,

ȳ can be decomposed as ȳ = ȳb + ȳs where ȳb (resp. ȳs) is the signal intended to the

1Indeed, although being applied at the MIS, the information-bearing phase shifts are designed

centrally at the BS as function of the users data.
2Although the BS is not transmitting any data to the MIS-served users, they will experience inter-

ference from the direct BS-user link of BS-served users.
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BS-served (resp. IRS-served) users which are given by:

ȳb = HH
s-uDiag(υ)Hb-sFsb + HH

b-uFsb, (3.3)

ȳs = HH
s-uDiag(υ)Hb-s

(√
Psvb

)
. (3.4)

In (3.3), sb ∼ C N (s; 0, IB) is the unknown symbol vector being transmitted by the BS

(to the B-served users) and υ = [υ1, υ2, · · · , υK ]T ∈ CK is a vector that gathers all

the phase shifts used by the IRS. Moreover, F ∈ CN×B is the active precoding matrix

that is used for beamforming purposes at the BS, which satisfies ‖F‖2F = Pb where Pb

is the fraction of power being allocated to the BS-served users. In (3.4),
√
Psvb is a

separate constant vector being transmitted by the BS towards the IRS with ‖vb‖22 = 1

and Ps is the fraction of transmit power being allocated to the IRS-served users. The

total transmit power is denoted by P = Pb + Ps. Now, we let wb ∼ C N (w; 0, σ2
wIB)

and ws ∼ C N (w; 0, σ2
wIR) denote the additive white Gaussian noise (AWGN) vectors

pertaining to the BS-served and IRS-served users, respectively. Therefore, the noisy

received signal at all the users, y, is given by:

y = αbȳb + αsȳs +
[
αbw

T
b , αsw

T
s

]T
, (3.5)

wherein αb and αs are some real-valued receive scaling factors3. They are only utilized

to facilitate the optimization of the other variables (i.e., the BS precoder and the IRS

phase shifts) since the receivers can blindly estimate these scalars based on the received

symbol sequence [30,31].

Remark. The system model in (3.7) is an approximation of the exact system model

which is expressed as follows:αbIB 0B×R

0R×B αsIR

(ȳb + ȳs +
[
wT

b , w
T
s

]T)
. (3.6)

3This is a common practice in precoding optimization literature [30,31].
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The approximation will allow better tractability for the receive scaling factors, αb and

αs, and the precoding matrix, F, by decoupling αs from the other two variables in the

joint optimization problem solved in Section 3.3.2. Therefore, we use the system model

in (3.7) to optimize the variables and then use those optimized variables together with

the exact system model in (3.6) to compute the performance metrics such as sumrate

in the numerical results section (Section 3.4).

By using (3.3) and (3.4) in (3.5), it follows that:

y = αb

(
HH

s-uDiag(υ)Hb-sFsb + HH
b-uFsb

)
+αs

(
HH

s-uDiag(υ)Hb-s

√
Psvb

)
+
[
αbw

T
b , αsw

T
s

]T
.

(3.7)

The sub-optimal MIS phase-shift vector varies in space (with changes in the channel)

and in time (with every transmit symbol vector). We now extend the system model in

(3.7) for a transmit block of length, L, as follows:

Y = αb

[
HH

s-uDiag(υ1)Hb-sFsb,1 + HH
b-uFsb,1, · · · ,HH

s-uDiag(υL)Hb-sFsb,L + HH
b-uFsb,L

]
+ αs

√
Ps

[
HH

s-uDiag(υ1)Hb-svb, · · · ,HH
s-uDiag(υL)Hb-svb

]
+
[
αbW

T
b , αsW

T
s

]T
.

(3.8)

Let Sb = [sb,1, · · · , sb,L] and let Ss ∈ CR×L denote the exact information symbols for

the MIS-served users, then the information symbols for both types of users are gathered

in a single matrix S =
[
ST
b , ST

s

]T
. Lastly, we define the phase shifts matrix, Υ ∈ CK×L,

containing the phase-shift vectors corresponding to all time indices l = 1, · · · , L as

Υ = [υ1, υ2, · · · ,υL]. The goal is to maximize each user’s signal-to-interference-plus-

noise ratio (SINR) by minimizing the error in its received symbols under the sum MMSE

criterion. A lower bound on the spectral efficiency for user m can be expressed in terms

of the MMSE of its received symbol error [32] as follows:

CMMSE
m = log2

(
1

MMSEm

)
. (3.9)
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The MSE of the received symbol for user m and time index l is given by

Eyml,sml

{
|yml − sml|2

}
, and for M users and a transmit block of length L, the sum

symbol MSE is given by:

M∑
m=1

L∑
l=1

Eyml,sml

{
|yml − sml|2

}
= EY,S

{
‖Y − S‖2F

}
. (3.10)

Thus, our optimization problem under the sum MMSE criterion can be formulated as

follows:

arg min
αs,αb,F,Υ

EY,S

{
‖Y − S‖2F

}
, (3.11a)

subject to ‖F‖2F = Pb, (3.11b)

|υkl| = 1, k = 1, 2, · · · , K, l = 1, 2, · · · , L. (3.11c)

We take the expectation involved in (3.11a) with respect to (w.r.t.) the random matrices

S, Wb and Ws to further simplify the objective function (see Appendix B) thereby

resulting in the following optimization problem:

arg min
αs,αb,F,Υ

∥∥∥∥αb

[
HH

s-uDiag(υ1)Hb-sF + HH
b-uF, · · · ,HH

s-uDiag(υL)Hb-sF + HH
b-uF

]
−
[
[IB,1, 0B×R,1]

T, · · · , [IB,L, 0B×R,L]T
]∥∥∥∥2

F

+

∥∥∥∥αs

√
Ps

[
HH

s-uDiag(υ1)Hb-svb, · · · ,HH
s-uDiag(υL)Hb-svb

]
−
[
0L×B ST

s

]T ∥∥∥∥2
F

+ LBσ2
wα

2
b + LRσ2

wα
2
s .

(3.12a)

s.t. ‖F‖2F = Pb, (3.12b)

|υkl| = 1, k = 1, 2, · · · , K, l = 1, 2, · · · , L. (3.12c)

We shall denote the objective function in (3.12a) by f(αs, αb,F,Υ) throughout the rest

of the chapter. The optimization problem in (3.12) is non-convex due to the unimodular
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constraint on the MIS phase-shifts in (3.12c). We aim to solve the problem by utilizing

OOVAMP algorithm in the same way as done in Chapter 2.

3.2 Optimization Oriented VAMP for Matrices

We developed OOVAMP as an extension of the standard max-sum VAMP algorithm [28]

in Chapter 2 which solves constrained optimization problems involving linear objective

functions under both linear and non-linear constraints. Moreover, asymptotic optimality

can be claimed for the computed solution under certain mild conditions using state

evolution arguments. In this section, we present an extended version of the OOVAMP

algorithm to optimize matrices involving linear mixing. Given the knowledge of two

matrices, A ∈ CM×N and Z ∈ CM×K , the OOVAMP algorithm solves the following

optimization problem:

arg min
X ∈ CN×K

‖AX− Z‖2F (3.13a)

s.t. fik(xik) = 0 i = 1, · · · , N, k = 1, · · · , K. (3.13b)

The algorithm consists of the following two modules.

Linear MAP Estimator

At iteration t, the linear MAP (LMAP) estimator receives extrinsic information (mes-

sage) from the separable (i.e., entry-wise) MAP projector of X in the form of a mean

matrix, Rt−1, and a common scalar precision, γt−1. Then, under the Gaussian prior,

CMN
(
X; Rt−1, γ

−1
t−1IN , IK

)
, it computes the LMAP estimate, X̄t, along with the as-

sociated posterior precision, γ̄t, as follow:

X̄t =
(
AHA + γt−1IN

)−1 (
AHZ + γt−1Rt−1

)
, (3.14)

γ̄t = NTr
([

AHA + γt−1IN
]−1)−1

. (3.15)
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The extrinsic information on X is updated as:

CMN (X; X̄t, γ̄
−1
t IN , IK)/ CMN (X; Rt−1, γ

−1
t−1IN , IK),

and then sent back in the form of a mean matrix, R̃t =
(
X̄tγ̄t −Rt−1γt−1

)
/ (γ̄t − γt−1),

and a scalar precision, γ̃t = γ̄t − γt−1, to the separable MAP projector of X.

Separable MAP Projector

Because the constraint on X is component-wise, the constraint on its entries, xik, is

modeled as a prior with some precision, γp, i.e., px(xik) ∝ exp
(
−γp|fik(xik)|2

)
with

γp →∞, which results in the following prior distribution on X:

pX(X) =
N∏
i=1

Q∏
k=1

px(xik). (3.16)

This module computes the MAP estimate, X̂t, of X from the joint distribution

pX(X) CMN
(
X; R̃t, γ̃

−1
t IN , IK

)
. The MAP estimate can be computed through a

component-wise projector function as follows:

x̂ik,t = gik(r̃ik,t, γ̃t) , arg min
xik

[
γ̃t|xik − r̃ik,t|2 − ln px(xik)

]
, (3.17)

or equivalently:

gik(r̃ik,t, γ̃t) = arg min
xik

[
γ̃t|xik − r̃ik,t|2 + γp|fik(xik)|2

]
. (3.18)

The parameter γp in (3.18) accounts for the weight given to the prior on xi inside the

scalar MAP optimization. Therefore, taking γp → ∞ enforces the constraint. The

derivative of the scalar MAP projector w.r.t. r̃ik,t is given by [28]:

g′ik(r̃ik,t, γ̃t) ,
∂gik(r̃ik,t, γ̃t)

∂r̃ik,t
=

1

2

(
∂gik (r̃ik,t, γ̃t)

∂<{r̃ik,t}
− j

∂gik (r̃ik,t, γ̃t)

∂={r̃ik,t}

)
= γ̃tγ̂t, (3.19)
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where γ̂t is the posterior precision. The matrix-valued projector function and its deriva-

tive are defined as follows:

G(R̃t, γ̃t) ,


g11(r̃11,t, γ̃t) g12(r̃12,t, γ̃t) · · · g1K(r̃1K,t, γ̃t)

g21(r̃21,t, γ̃t) g22(r̃22,t, γ̃t) · · · g2K(r̃2K,t, γ̃t)
...

...
. . .

...

gN1(r̃N1,t, γ̃t) gN2(r̃N2,t, γ̃t) · · · gNK(r̃NK,t, γ̃t)

 , (3.20)

G′(R̃t, γ̃t) ,


g′11(r̃11,t, γ̃t) g′12(r̃12,t, γ̃t) · · · g′1K(r̃1K,t, γ̃t)

g′21(r̃21,t, γ̃t) g′22(r̃22,t, γ̃t) · · · g′2K(r̃2K,t, γ̃t)
...

...
. . .

...

g′N1(r̃N1,t, γ̃t) g′N2(r̃N2,t, γ̃t) · · · g′NK(r̃NK,t, γ̃t)

 . (3.21)

Similar to the LMAP module, the MAP projector module computes an extrinsic mean

matrix, Rt =
(
X̂tγ̂t − R̃tγ̃t

)
/ (γ̂t − γ̃t), and a scalar precision, γt = γ̂t − γ̃t, and sends

them back to the LMAP module for the next iteration. The process is repeated until

convergence.

It is worth mentioning that the extrinsic parameters, i.e., the extrinsic mean ma-

trix and the scalar precision, calculated by each module act as a Gaussian prior on

the subsequent estimate of the adjacent module, thus making OOVAMP parameter-

free. Another major advantage of OOVAMP is that it decouples the constraint from

the objective function and also allows the projector function to be separable. While

the LMAP module optimizes the objective function with no constraints, the latter are

enforced by the projector function. This modular property makes OOVAMP an at-

tractive algorithm for solving optimization problems involving linear mixing and under

various component-wise constraints. The algorithmic steps of OOVAMP are shown in

Algorithm 5.
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Algorithm 5 Optimization-oriented max-sum matrix VAMP

Given A ∈ CM×N , Z ∈ CM×Q, a precision tolerance (ε) and a maximum number of iterations (TMAX)

1: Initialize R0, γ0 ≥ 0 and t← 1

2: repeat

3: // LMAP.

4: X̄t =
(
AHA + γt−1IN

)−1 (
AHZ + γt−1Rt−1

)
5: γ̄t = NTr

([
AHA + γt−1IN

]−1)−1
6: γ̃t = γ̄t − γt−1
7: R̃t = γ̃−1t

(
X̄tγ̄t −Rt−1γt−1

)
8: // Separable MAP Projector

9: X̂t = G
(
R̃t, γ̃t

)
10: γ̂t = γ̃−1t

〈
G′
(
R̃t, γ̃t

)〉
11: γt = γ̂t − γ̃t
12: Rt = γ−1t

(
γ̂tX̂t − γ̃tR̃t

)
13: t← t+ 1

14: until
∥∥∥X̂t − X̂t−1

∥∥∥2
2
≤ ε

∥∥∥X̂t−1

∥∥∥2
2

or t > TMAX

15: return X̂t

3.3 OOVAMP-Based Solution for the Optimization

Problem in (3.12)

In this section, we apply the OOVAMP algorithm, introduced in Section 3.2, to simul-

taneously optimize the matrix of phase shifters, Υ, the optimal precoding matrix F,

and the scaling factors, αb and αs. We follow the optimization procedure presented in

Chapter 2, and decouple the joint optimization problem into two sub-problems through

alternate optimization. In one side, we optimize Υ by utilizing OOVAMP and, on the
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other side, we find the optimal transmit precoding, F, and scalars αb and αs. It is a sim-

ple iterative approach that optimizes a subset of all variables at a time while fixing the

other set of variables and the process is repeated until convergence. More specifically,

we divide the optimization problem in (3.11) into the following two sub-optimization

problems:

1.

Υ̂ = arg min
Υ

f(αs, αb,F,Υ) (3.22a)

s.t. |υkl| = 1, k = 1, 2, · · · , K, l = 1, 2, · · · , L. (3.22b)

2.

arg min
αs,αb,F

f(αs, αb,F, Υ̂) (3.23a)

s.t. ‖F‖2F = Pb. (3.23b)

3.3.1 Optimizing the MIS Phase Shifts

Here, we derive the OOVAMP modules (i.e., LMAP estimator and separable projector

function) to solve the sub-optimization problem in (3.22) which is restated explicitly as

follows:

arg min
Υ

∥∥∥∥αb

[
HH

s-uDiag(υ1)Hb-sF + HH
b-uF, · · · ,HH

s-uDiag(υL)Hb-sF + HH
b-uF

]
−
[
[IB,1, 0B×R,1]

T, · · · , [IB,L, 0B×R,L]T
]∥∥∥∥2

F

+

∥∥∥∥αs

√
Ps

[
HH

s-uDiag(υ1)Hb-svb, · · · ,HH
s-uDiag(υL)Hb-svb

]
−
[
0L×B ST

s

]T ∥∥∥∥2
F

+ LBσ2
wα

2
b + LRσ2

wα
2
s .

(3.24a)

s.t. |υkl| = 1, k = 1, 2, · · · , K, l = 1, 2, · · · , L. (3.24b)
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Next, we re-express the objective function in (3.24a) in a form that is similar to the

general OOVAMP objective function in (3.13a). In fact, by introducing the following

matrices:

A = αbH
H
s-u, (M ×K),

(3.25)

B = (Hb-sF)T, (B ×K),

(3.26)

D = [b1 ⊗ a1, · · · ,bK ⊗ aK ] , (MB ×K),

(3.27)

M =
√
PsαsH

H
s-uDiag(Hb-svb), (M ×K),

(3.28)

X =
[
vec
(
[IB, 0B×R]T − αbH

H
b-uF

)
, · · · , vec

(
[IB, 0B×R]T − αbH

H
b-uF

) ]
, (MB × L),

(3.29)

Z =
[
0L×B, ST

s

]T
, (M × L),

(3.30)

we show in Appendix C that the optimization problem in (3.24) can be rewritten as

follows:

arg min
Υ

‖DΥ−X‖2F + ‖MΥ− Z‖2F + LBσ2
wα

2
b + LRσ2

wα
2
s (3.31a)

s.t. |υkl| = 1, k = 1, 2, · · · , K, l = 1, 2, · · · , L. (3.31b)

The steps to derive both OOVAMP modules are detailed in the sequel.

LMAP Estimator

The LMAP module performs the minimization of the objection function in (3.31a)

under the Gaussian prior, CMN
(
Υ; Rt−1, γ

−1
t−1IK , IL

)
, by solving the following un-
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constrained optimization problem:

arg min
Υ

1

2
‖DΥ−X‖2F +

1

2
‖MΥ− Z‖2F +

γt−1
2
‖Υ−Rt−1‖2F . (3.32)

The solution (i.e., the LMAP estimate and the associated posterior precision) to the

optimization problem in (3.32) is given as follows:

Ῡt =
(
DHD + MHM + γt−1IK

)−1 (
DHX + MHZ + γt−1Rt−1

)
, (3.33)

γ̄t = KTr
([

DHD + MHM + γt−1IK
]−1)−1

. (3.34)

Scalar MAP Projector

In this section, we reuse the two projector functions defined in Chapter 2 to satisfy

the two types of constraint on the MIS reflection coefficients, i.e., i) the unimodular

constraint, and ii) a practical constraint on the MIS phase shifts in which each an-

tenna element is terminated by a variable reactive load. The projector function and its

derivative for the unimodular constraint is given as follows:

g1,kl (r̃kl) = r̃kl|r̃kl|−1, (3.35)

g′1,kl (r̃kl) =
1

2
|r̃kl|−1, (3.36)

where the derivative is taken according to (3.19).

To optimize the MIS phase shifts under a practical constraint, we consider a reflective

element that is combined with a tunable reactive load instead of an ideal phase-shifter,

i.e., υkl = −(1 + jχkl)
−1, where χkl ∈ R is a scalar reactance value that must be op-

timized for each reflection coefficient. Under the unimodular constraint, the idealistic

MIS has a full field of view (FOV) and the reflection coefficients correspond to ideal

phase-shifters and are of the form υkl = ejθkl , where θkl ∈ [0, 2π], whereas under the

practical constraint we have a restriction on the possible values of the MIS phase-shifts,

i.e., ∠ − (1 + jχ)−1 ∈
[
-π
2
, π
2

]
. Moreover, the magnitude of each phase-shift under this
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constraint is always less than 1 for any χ 6= 0. Practically, this introduces the phase-

dependent amplitude attenuation in the incident wave. The projector function under

this new constraint is defined as:

g2,kl (r̃kl, γ̃) , arg min
υkl

[
γ̃|υkl − r̃kl|2 + γp

∣∣∣∣υkl +
1

1 + jχopt
kl

∣∣∣∣2
]
, (3.37)

where

χopt
kl = g3 (r̃kl) , arg min

χkl

∣∣∣∣r̃kl +
1

1 + jχkl

∣∣∣∣2. (3.38)

The solution to the optimization problem in (3.38), the projector function, and its

derivative are given by:

g3 (r̃kl) =
1

2={r̃kl}

(
1 + 2<{r̃kl}+

√
(1 + 2<{r̃kl})2 + 4={r̃kl}2

)
, (3.39)

g2,kl (r̃kl) = − (1 + jg3 (r̃kl))
−1 , (3.40)

g′2,kl (r̃kl) =
∣∣jg′3 (r̃kl) (1 + jg3 (r̃kl))

−2∣∣. (3.41)

The matrix valued projector functions, G1(R̃t, γ̃t) and G2(R̃t, γ̃t), and their derivatives,

G′1(R̃t, γ̃t) and G′2(R̃t, γ̃t), are obtained according to (3.20) and (3.21). Lastly, the

constant transmitted vector by the BS, vb, is set to the right singular vector of the

matrix Hb-s that corresponds to the largest eigenvalue.

3.3.2 Optimal Precoding and Scaling Factors

The receive scaling factor, αs, is decoupled from the other optimization variables, i.e., F

and αb, in the objective function (3.23a). Therefore, it can be optimized independently

of the other two variables as follows:

arg min
αs

∥∥∥∥αs

√
Ps

[
HH

s-uDiag(υ1)Hb-svb, · · · ,HH
s-uDiag(υL)Hb-svb

]
−
[
0L×B ST

s

]T ∥∥∥∥2
F

+ LRσ2
wα

2
s .

(3.42)
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Figure 3.2: Block diagram of the proposed algorithm. The calculation of extrinsic

information is performed by the “ext” blocks.

By defining the matrix:

C ,
√
PsH

H
s-uDiag(Hb-svb)Υ, (3.43)

we rewrite (3.42) as:

arg min
αs

∥∥∥αsC−
[
0L×B ST

s

]T∥∥∥2
F

+ LRσ2
wα

2
s . (3.44)

From (3.44), we establish the closed-form solution to the optimization problem in (3.42)

as follows:

αopt
s = g4(C) ,

Tr
(
CH
[
0L×B ST

s

]T
+
[
0L×B SH

s

]
C
)

2
(
‖C‖2F + LRσ2

w

) . (3.45)
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Now, the optimal precoding matrix, F, and receive scaling factor, αb, are obtained as a

solution to the following optimization problem:

arg min
αb,F

∥∥∥∥αb

[
HH

s-uDiag(υ1)Hb-sF + HH
b-uF, · · · ,HH

s-uDiag(υL)Hb-sF + HH
b-uF

]
−
[
[IB,1, 0B×R,1]

T, · · · , [IB,L, 0B×R,L]T
]∥∥∥∥2

F

+ LBσ2
wα

2
b.

(3.46a)

s.t. ‖F‖2F = Pb. (3.46b)

By defining the matrices:

K ,
L∑
l=1

(
HH

s-uDiag(υl)Hb-s + HH
b-u

)H (
HH

s-uDiag(υl)Hb-s + HH
b-u

)
(3.47)

E , [IB 0B×R]
L∑
l=1

(
HH

s-uDiag(υl)Hb-s + HH
b-u

)
, (3.48)

the optimization problem in (3.46) becomes a constrained MMSE transmit precoding

optimization for MIMO systems. The problem can be solved jointly by Lagrange opti-

mization. We construct the Lagrangian function for the optimization problem in (3.46)

as follows:

L(F, αb, λ) = Tr
(
α2
bKFFH − αbEF− αbF

HEH
)

+LB+LBα2
bσ

2
w+λ

(
Tr
(
FFH

)
− Pb

)
,

(3.49)

with λ ∈ R being the Lagrange multiplier. The closed-form solutions for optimal αb

and F are given below and we refer the reader to [30] for more details:

αopt
b = g5 (K, E) ,

√
1

Pb

√√√√Tr

([
K +

LBσ2
wIN

Pb

]−2
EHE

)
, (3.50)

Fopt = g6 (K, E) ,

√
Pb

[
K + LBσ2

wIN
Pb

]−1
EH√

Tr

([
K + LBσ2

wIN
Pb

]−2
EHE

) . (3.51)
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We have found the solution to both optimization problems in (3.22) and (3.23). There-

fore, we can combine their solutions together into one algorithm. We define the MSE

at iteration t as follows:

Et , f
(
α̂s,t, α̂b,t, F̂t, Υ̂t

)
. (3.52)

The algorithm stops when |Et−Et−1| < εEt−1, where ε ∈ R+ is some precision tolerance.

The overall block diagram and the algorithmic steps are shown, respectively, in Fig. 3.2

and Algorithm 6. The convergence and complexity of the OOVAMP-based approach

are discussed in Chapter 2. Because of the monotone convergence theorem in real

analysis [49], Algorithm 6 is guaranteed to converge since the MSE is minimized in

every step and the objective function, f(αs, αb,F,Υ), is lower bounded by zero. The

algorithm can be efficiently implemented by exploiting matrix structures, and by using

the singular value decomposition (SVD) form of OOVAMP so that the computational

complexity is of O(MNL(K +N)).
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Algorithm 6 OOVAMP-based joint optimization algorithm
Given Hs-u, Hb-u, Hb-s, Ss, a precision tolerance (ε), and a maximum number of iterations (TMAX)

1: Initialize Υ̂0, R0, γ0 ≥ 0 and t← 1, and obtain vb from Hb-s

2: Compute Ĉ0, K̂0 and Ê0 by substituting Υ̂0 into (3.43), (3.47) and (3.48).

3: α̂s,0 = g4

(
Ĉ0

)
4: α̂b,0 = g5

(
K̂0, Ê0

)
5: F̂0 = g6

(
K̂0, Ê0

)
6: repeat

7: // LMAP Estimator

8: Compute matrices A, B, D, M, X and Z by substituting α̂s,t−1, α̂b,t−1 and F̂t−1 into

(3.25) to (3.30).

9: Ῡt =
(
DHD + MHM + γt−1IK

)−1 (
DHX + MHZ + γt−1Rt−1

)
10: γ̄t = KTr

([
DHD + MHM + γt−1IK

]−1)−1
11: γ̃t = γ̄t − γt−1
12: R̃t = γ̃−1t

(
Ῡtγ̄t −Rt−1γt−1

)
13: // Separable MAP Projector

14: Υ̂t = G1

(
R̃t

)
15: γ̂t = γ̃−1t

〈
G′1

(
R̃t

)〉
.

16: γt = γ̂t − γ̃t
17: Rt = γ−1t

(
γ̂tΥ̂t − γ̃tR̃t

)
18: //Find αs, αb and F through their closed-form solutions.

19: Compute Ĉt, K̂t and Êt by substituting Υ̂t into (3.43), (3.47) and (3.48).

20: α̂s,t = g4

(
Ĉt

)
21: α̂b,t = g5

(
K̂t, Êt

)
22: F̂t = g6

(
K̂t, Êt

)
23: t← t+ 1

24: until |Et − Et−1| < εEt−1 or t > TMAX

25: return υ̂t, F̂t, α̂t.
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3.4 Numerical Results and Performance Analysis

3.4.1 Simulation Model and Parameters

We present Monte-Carlo simulation results to assess the performance of the proposed

algorithm. We use the channel models introduced in 2.5 besides considering the same

setup for the location of users, the MIS and the BS. Assuming a uniform linear array

with N antennas at the BS and a square uniform planar array with K antenna elements

at the MIS, the channel between the MIS and the BS is generated according to:

Hb-s =
√
L(dMIS)

QMIS∑
q=1

cqaMIS(ϕq, ψq)aBS(φq)
T. (3.53)

The channel vectors for the link between each single antenna m-th user and the MIS,

and each m-th user and the BS are modeled, respectively, as follows:

hs-u,m =
√
L(d′m)

Qs-u∑
q=1

cm,qaMIS(ϕm,q, ψm,q), m = 1, · · · ,M, (3.54)

hb-u,m =
√
L(dm)

Qb-u∑
q=1

cm,qaBS(φm,q), m = 1, · · · ,M. (3.55)

To account for channel correlation effects, we set the number of multi-path components

lower than the number of BS antennas and the MIS antenna elements for the BS-MIS

channel, and set the number of BS-served users lower than the rank of the BS-MIS

channel matrix Hb-s. Moreover, we split the total transmit power, P , between the BS-

served and MIS-served users according to the share of each type of users, i.e., Pb = B
M
P

and Ps = R
M
P . The results are averaged over 1000 independent Monte Carlo trials.

We use the sum-rate, Ĉ, for performance evaluation which is defined as follows:

Ĉ =
M∑
m=1

log2

(
1

MMSEm

)
, (3.56)

where MMSEm refers to the MSE of each m-th user’s received symbol. Since, the ap-

proach of using the MIS as a modulating surface is novel, we benchmark the proposed
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solution against traditional MIS-assisted systems where it is merely used for beam-

forming purposes. The proposed OOVAMP-based approach is compared against the

following two schemes:

i. Scheme 1: a multi-user MIMO system assisted by one IRS where the joint

optimization of the phase matrix is solved through alternate optimization and

OOVAMP along with MMSE precoding.

ii. Scheme 2: a multi-user MIMO system assisted by one IRS where the SDR tech-

nique is used to optimize the IRS reflection coefficients for beamforming in com-

bination with MMSE precoding.

3.4.2 Performance Results With Perfect CSI

We consider a typical urban or suburban environment where the BS is located faraway

from the users and has no LOS to them. However, the MIS is installed at a location

where a LOS component is present in the BS-MIS link but not in the user-MIS link.

We also set the number of BS antennas to N = 32 and the number of MIS antennas

to K = 256. Fig. 3.3, depicts the achievable sum-rate versus the transmit power, P ,

for the different considered transmission schemes. The total number of users is equal

to M = 8. Here we consider two configurations for the proposed approach: i) when

all the users are served by just the MIS, and ii) a hybrid case where the MIS and the

BS both serve 4 users each. The configuration in which all the users are served by the

MIS significantly outperforms the scheme in which an IRS is only used for beamforming

(i.e., Scheme 1). This is because the MIS-served users do not suffer from the path-loss

between the BS and the MIS. Moreover, at low transmit power (e.g., P = 20 dBm),

the sum-rate for the users solely served by the MIS is, respectively, two and four times

the sum-rate of the BS-served users for the beamforming-only IRS-assisted OOVAMP-

based and SDR-based approaches. For the hybrid configuration, the resulting sum-rate
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Figure 3.3: Sum-rate versus transmit power with M = 8, N = 32, and K = 256.

edges Scheme 1 but, it is lower than the case when all users are served by the MIS.

This confirms that it is more beneficial to serve the users by the MIS.

Fig. 3.4 shows a plot of the sum-rate against the share of MIS-served users among

the total number of users. It is observed that the combined sum-rate first decreases and

then monotonically increases with the number of MIS-served users. This is because of

the presence of cross-user interference among the MIS-served and the BS-served users

since the MIS is performing both tasks, i.e., beamforming to assist the BS and also data

embedding to serve another set of users. This implies that there is more loss than gain

when the ratio of the MIS-served users to the total number of users becomes small.

Fig. 3.5 illustrates the sum-rate versus the total number of users being served. The

users are solely served by the BS for one plot and by the MIS for the other. Here we

show the benefits of the approach of using the MIS as a modulating surface to directly

serve users. Although the sum-rate of the BS-served users is higher when the number

of users becomes small, the sum-rate of the MIS-served users keeps increasing with the
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Figure 3.4: Sum-rate versus the number of MIS-served users with M = 8, N = 32, and

P = 25 dBm.

number of users while the sum-rate of the BS-served users only increases up to the

number of available channel paths which is set to 10. This is because the number of

users that can be served by the MIS is independent of the number of BS antennas and

the correlation in the MIS-BS channel. The upper limit for the number of MIS-served

users is equal to the number of MIS antenna elements K.

3.4.3 Performance Results With Imperfect CSI

In this section, we asses the performance of the proposed scheme in the presence of

channel estimation errors. Specifically, we consider a scenario where pilot training

followed by MMSE estimation algorithms are used to estimate the cascaded BS-MIS-

users and the direct BS-users channels [44,45]. We model the estimated channel matrix
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Figure 3.5: Sum-rate versus the number of users with N = 32, K = 256 and P = 30

dBm.

Figure 3.6: Sum-rate versus transmit power under imperfect CSI with M = 8, N = 32,

and K = 256.
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and vectors using the statistical CSI error model proposed in [46–48] as follows:

Ĥb-s = κHb-s +
√

(1− κ2)L(dMIS)∆b-s, (3.57)

ĥb-u,m = κhb-u,m +
√

(1− κ2)L(dm)δb-u,m, m = 1, · · · ,M, (3.58)

ĥs-u,m = κhs-u,m +
√

(1− κ2)L(d′m)δs-u,m, m = 1, · · · ,M, (3.59)

where κ ∈ [0, 1] denotes the channel estimation accuracy and ∆b-s, δb-u,m and δs-u,m fol-

low the circularly symmetric complex Gaussian (CSCG) distribution, i.e.,

vec(∆b-s) ∼ C N (0,1N×N ⊗ IK), δb-u,m ∼ C N (0, IN) and δs-u,m ∼ C N (0, IK). We first

optimize the variables αs, αb, F and Υ under imperfect CSI and then use the exact

CSI matrices to calculate the sum-rate.

Fig. 3.6 plots the sum-rate versus transmit power for different values of the channel

estimation accuracy parameter κ. We also include plots for the other schemes (i.e.,

Schemes 1 and 2) which use an IRS as a purely reflective surface) under perfect

CSI for reference. The results show the resilience of the proposed MIS-based approach

against small channel estimation errors. At low SNR, it is observed that the proposed

design with a low channel estimation accuracy of κ = 0.90 performs better than the

baseline schemes even under perfect CSIs. Moreover, the performance loss with a high

channel estimation accuracy value of κ = 0.99 is negligible.

3.5 Summary

We have presented a novel approach of employing the MIS for performing passive beam-

forming and data embedding for the BS-served and the MIS-served users, respectively,

in a multi-user MIS-assisted downlink MIMO system. The associated joint convex op-

timization problem has been formulated under the sum MMSE criterion in order to

maximize the users’ spectral efficiency. Alternating minimization has been used to split
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the original optimization problem into two tasks, i.e., separately optimizing the MIS

phase shifts and jointly optimizing the BS precoding and the receive scaling factors for

the BS- and MIS-served users. The optimal solution to the joint optimization problem

for precoding is found in closed form. We have optimized the MIS phase shifts using

OOVAMP by deriving the problem-specific modules of the OOVAMP algorithm. More-

over, the original joint problem has been solved under both the ideal and a practical

constraint on the MIS phase shifts. Simulation results illustrate highly superior system

throughput performance of the proposed MIS-based scheme over two baseline schemes

in which an IRS is used for beamforming purposes only. Moreover, the proposed ap-

proach can support more number of users simultaneously than existing beamforming

approaches wherein the users are served by the BS only. Finally, the results under

imperfect CSI confirm that the performance remains nearly unchanged in the presence

of small channel estimation errors.
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Conclusion and Future Directions

4.1 Concluding Remarks

IRS/MIS-assisted wireless networks provide an effective solution for many next gener-

ation (e.g., 6G) cellular wireless applications, especially when the link between the BS

and the end user is not favorable. We considered a multi-user IRS/MIS-assisted wire-

less cellular system, and provided a general framework to utilize the surface for passive

beamforming as well as modulation. In Chapter 2, we investigated the problem of joint

active and passive beamforming design for an IRS-assisted downlink multi-user MIMO

system under both ideal and practical models for the IRS phase shifts and provided an

alternating optimization OOVAMP-based solution. Chapter 3 extended the work done

in Chapter 2 by introducing MIS that can simultaneously perform passive beamforming

for and data modulation for the BS- and MS-served users, respectively. From the numer-

ical results we conclude that i) IRS-based beamforming approach performs better than

existing IRS-based beamforming schemes in terms of throughput and computational

complexity, ii) MIS-based schemes greatly outperforms traditional IRS-based schemes

in which IRS is only used for beamforming and, iii) MIS-based schemes can support

78



Chapter 4. Conclusion and Future Directions

much more number of users than IRS-based beamforming schemes.

4.2 Future Directions

This work can be extended in a few directions to provide a comprehensive framework

for multi-user IRS/MIS-assisted cellular wireless systems.

4.2.1 Digital Intelligent Surface

So far, the IRS/MIS does not have the capability to perform any kind of digital signal

processing on the incident signals. Although the MIS is able to modulate user data on

the carrier signal, it does so by only changing the phase of the reflected carrier signals.

Therefore, MIS can only be utilized in the downlink. The problem of designing an

intelligent surface that can also receive user data in the uplink besides doing passive

beamforming and data modulation in the downlink must be investigated to fully utilize

the potential of intelligent surfaces in cellular systems.

4.2.2 IRS-Based Passive Beamforming Under LOS MIMO

The performance of IRS-based beamforming scheme can be studied under LOS MIMO

links between the BS and the IRS. LOS MIMO links are possible when the IRS is

deployed close to the BS which thereby makes the BS-IRS channel matrix full rank.

The maximum number of users that can be supported in such scenario is equal to the

number of BS antennas instead of the number of channel paths in the BS-IRS channel.
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4.2.3 More Physically Consistent Phase Shift Models and Es-

tablishing Optimality

Since the proposed solution provides flexibility in terms of choosing the constraint on

the IRS/MIS phase shifts, it opens up the possibility of solving the joint optimization

problem using more physically-consistent models for the IRS elements. The performance

of the OOVAMP-based approach can be theoretically predicted to establish optimality

through the statistical state evolution framework [28,34].
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We solve the following optimization problem:

arg min
χ

f(χ), where (A.1)

f(χ) ,

∣∣∣∣r̃ +
1

1 + jχ

∣∣∣∣2, (A.2)

in which χ ∈ R and r̃ ∈ C. Expanding the objective function, we re-express it as

follows:

arg min
χ

r̃∗r̃ +
r̃∗

1 + jχ
+

r̃

1− jχ
+

1

(1− jχ)(1 + jχ)
. (A.3)

Let a , <{r̃} and b , ={r̃}. We substitute a and b into (A.3) and simplify the

objective function as follows:

arg min
χ

a2 + b2 +
1 + 2a

1 + χ2
− 2bχ

1 + χ2
. (A.4)

By defining c , (1 + 2a), we take the derivative w.r.t. χ and set it to zero to obtain:

f ′(χ) = − 2b(1− χ2)

(1 + χ2)2
− 2cχ

(1 + χ2)2
= 0. (A.5)

Simplifying (A.5) leads to:

bχ2 − cχ− b = 0. (A.6)

The roots of the quadratic equation in (A.6) are real and distinct and are given by:

χ1 =
c+
√
c2 + 4b2

2b
, (A.7)
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and

χ2 =
c−
√
c2 + 4b2

2b
, (A.8)

where b 6= 0. By taking the second derivative of the objective function in (A.4) w.r.t.

χ and resorting to some straightforward algebraic manipulations, we also obtain:

f ′′(χ) =
2

(1 + χ2)3
(6bχ− 2bχ3 + 3cχ2 − c). (A.9)

Substituting χ = χ1 in (A.9) and simplifying the result yields:

f ′′(χ1) =
1

(1 + χ2
1)

3

(
1

b2

(
c3 + c2

√
c2 + 4b2

)
+ 4

(
c+
√
c2 + 4b2

))
.

(A.10)

Since b 6= 0, we have c2
√
c2 + 4b2 > |c3| and

√
c2 + 4b2 > |c| which implies that f ′′(χ1) >

0. Similarly, we have:

f ′′(χ2) =
1

(1 + χ2
2)

3

(
1

b2

(
c3 − c2

√
c2 + 4b2

)
+ 4

(
c−
√
c2 + 4b2

))
< 0, b 6= 0.

(A.11)

Thus, we choose:

χopt = χ1 =
1 + 2a+

√
(1 + 2a)2 + 4b2

2b
. (A.12)

Interestingly, the solution χ1 results in the same sign for both ={−(1 + jχ1)
−1} and

={r̃}.
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We have the following function:

f(αs, αb,F,Υ) = EY,S

{
‖Y − S‖2F

}
, (B.1)

where

Y = αb

[
HH

s-uDiag(υ1)Hb-sFsb,1 + HH
b-uFsb,1, · · · ,HH

s-uDiag(υL)Hb-sFsb,L + HH
b-uFsb,L

]
+ αs

√
Ps

[
HH

s-uDiag(υ1)Hb-svb, · · · ,HH
s-uDiag(υL)Hb-svb

]
+
[
αbW

T
b , αsW

T
s

]T
,

(B.2)

S =
[
ST
b , ST

s

]T
. (B.3)

We explicitly write the function in (B.1) and then expand it as follows:

f(αs, αb,F,Υ) = EY,S

{
Tr
(
YHY − YHS− SHY + SHS

)}
(B.4)

= EY,Sb

{
Tr
(
YHY − YH

[
ST
b , 0L×R

]T − YH
[
0L×B, ST

s

]T − [SH
b , 0L×R

]
Y

−
[
0L×B, SH

s

]
Y +

[
SH
b , 0L×R

][
ST
b , 0L×R

]T
+
[
SH
b , 0L×R

][
0L×B, ST

s

]T
+
[
0L×B, SH

s

][
ST
b , 0L×R

]T
+
[
0L×B, SH

s

][
0L×B, ST

s

]T)}
f(αs, αb,F,Υ) = EY,Sb

{
Tr
(
YHY − YH

[
ST
b , 0L×R

]T − [SH
b , 0L×R

]
Y

− YH
[
0L×B, ST

s

]T − [0L×B, SH
s

]
Y +

[
SH
b , 0L×R

][
ST
b , 0L×R

]T
+
[
0L×B, SH

s

][
0L×B, ST

s

]T)}
.

(B.5)
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By defining the matrices:

Ye = αb

[
HH

s-uDiag(υ1)Hb-sF + HH
b-uF, · · · ,HH

s-uDiag(υL)Hb-sF + HH
b-uF

]
, (B.6)

Ys = αs

√
Ps

[
HH

s-uDiag(υ1)Hb-svb, · · · ,HH
s-uDiag(υL)Hb-svb

]
, (B.7)

W =
[
αbW

T
b , αsW

T
s

]T
, (B.8)

Yb = αb

[
HH

s-uDiag(υ1)Hb-sFsb,1 + HH
b-uFsb,1, · · · ,HH

s-uDiag(υL)Hb-sFsb,L + HH
b-uFsb,L

]
,

(B.9)

we expand the terms in (B.5) and take expectation w.r.t. the random matrices Sb and

W thereby leading to:

EY,Sb

{
Tr
(
YHY

)}
= EW,Sb

{
Tr
(
YH

bYb + YH
bYs + YH

bW + YH
s Yb

+ YH
s Ys + YH

s W + WHYb + WHYs + WHW
)} (B.10)

= Tr
(
YH

e Ye + YH
s Ys

)
+ LBσ2

wα
2
b + LRσ2

wα
2
s ,

EY,Sb

{
Tr
([

SH
b , 0L×R

]
Y
)}

= EW,Sb

{
Tr
([

SH
b , 0L×R

]
Yb +

[
SH
b , 0L×R

]
Ys

+
[
SH
b , 0L×R

]
W
)} (B.11)

= Tr

([
[IB,1, 0B×R,1]

T, · · · , [IB,L, 0B×R,L]T
]H

Ye

)
,

EY,Sb

{
Tr
([

0L×B, SH
s

]
Y
)}

= EW,Sb

{
Tr
([

0L×B, SH
s

]
Yb +

[
0L×B, SH

s

]
Ys

+
[
0L×B, SH

s

]
W
)} (B.12)

= Tr
([

0L×B, SH
s

]
Ys

)
,

and

ESb

{
Tr
([

SH
b , 0L×R

][
ST
b , 0L×R

]T)}
= Tr

([
[IB,1, 0B×R,1]

T, · · · , [IB,L, 0B×R,L]T
]H

×
[
[IB,1, 0B×R,1]

T, · · · , [IB,L, 0B×R,L]T
])
.

(B.13)
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The remaining two terms in (B.5) can be computed by following (B.11) and (B.12).

Finally, by substituting (B.10)−(B.13) into (B.5) and expressing the function in the

form of norms we obtain:

f(αs, αb,F,Υ) =

∥∥∥∥αb

[
HH

s-uDiag(υ1)Hb-sF + HH
b-uF, · · · ,HH

s-uDiag(υL)Hb-sF + HH
b-uF

]
−
[
[IB,1, 0B×R,1]

T, · · · , [IB,L, 0B×R,L]T
]∥∥∥∥2

F

+

∥∥∥∥αs

√
Ps

[
HH

s-uDiag(υ1)Hb-svb, · · · ,HH
s-uDiag(υL)Hb-svb

]
−
[
0L×B ST

s

]T ∥∥∥∥2
F

+ LBσ2
wα

2
b + LRσ2

wα
2
s .

(B.14)
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We have the following two norms:

f1 =

∥∥∥∥αb

[
HH

s-uDiag(υ1)Hb-sF + HH
b-uF, · · · ,HH

s-uDiag(υL)Hb-sF + HH
b-uF

]
−
[
[IB, 0B×R,1]

T, · · · , [IB, 0B×R,L]T
]∥∥∥∥2

F

,

(C.1)

f2 =

∥∥∥∥αs

√
Ps

[
HH

s-uDiag(υ1)Hb-svb, · · · ,HH
s-uDiag(υL)Hb-svb

]
−
[
0L×B ST

s

]T ∥∥∥∥2
F

.

(C.2)

By defining the matrices, A = αbH
H
s-u ∈ CM×K and B = (Hb-sF)T ∈ CB×K , we rewrite

(C.1) as follows:

f1 =

∥∥∥∥[ADiag(υ1)B
T, · · · ,ADiag(υL)BT

]
−
[
[IB, 0B×R,1]

T − αbH
H
b-uF, · · · , [IB, 0B×R,L]T − αbH

H
b-uF

]∥∥∥∥2
F

.

(C.3)

We then define a column-wise Khatri-Rao matrix, D ∈ CMB×K and another matrix,

X ∈ CMB×L, as follows:

D = [b1 ⊗ a1, · · · ,bK ⊗ aK ] , (C.4)

X =
[
vec
(
[IB, 0B×R,1]

T − αbH
H
b-uF

)
, · · · , vec

(
[IB, 0B×R,L]T − αbH

H
b-uF

) ]
. (C.5)

Through vectorization, we have the following relation for the norm of a matrix:

‖Dυ − vec(C)‖22 =
∥∥ADiag(υ)BT −C

∥∥2
F
. (C.6)
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By using the relation in (C.6) and substituting the matrices D and X into (C.3), we

get:

f1 = ‖D[υ1, υ2, · · · ,υL]−X‖2F , (C.7)

or equivalently:

f1 = ‖DΥ−X‖2F . (C.8)

Similarly, by defining the matrices:

M =
√
PsαsH

H
s-uDiag(Hb-svb), (C.9)

Z =
[
0L×B, ST

s

]T
, (C.10)

and then substituting them into (C.2) one obtains:

f2 = ‖MΥ− Z‖2F . (C.11)
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