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ABSTRACT

Flat-plate structures tend to experience excessive drifts
when subjected to lateral loads. This is due mainly to the
nonlinear deformations at the pPlate-to-column connections.
Most of the analysis methods available today do not account
for these deformations. Therefore they tend to underesti-
mate the lateral drifts. Several models have been developed
to predict the nonlinear behaviour of this type of struc-
ture. However they are too complex to be incorporated into a

routine structural analysis program,

In this study, a simple-to-use computer program is devel-
oped for analyzing laterally-loaded flat-plate structures,
with or without shear walls. The nonlinear moment-rotation
behaviour at the plate-to-column connections is accounted
for by incorporating standardized moment-rotation functions
into the computer program. The functions are derived using
available experimental data and a modified Ramberg-0Osgoocd
function. Several examples are included to demonstrate the
capabilities of the program and to compare the results
obtained from the nonlinear analysis with results published

in the literature.
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NOMENCLATURE

cross—~sectional area

dimensionless exponent which indicates the
influence of the jth connection parameter

on the moment-rotation relationship
width of interior plate strip
interior equivalent beam width
width of edge plate strip

edge equivalent beam width

square column dimension

constants used 1in evaluating Lagrange
interpolation function

vector of local end displacements
modulus of elasticity

concrete 28 day compressive strength
shear modulus

flexural rigidity of flat-plate floor
E t3

12 (1 - r?)
translation transformation matrix

second moment of area about the local
X, axis

second moment of area about the local
X, axis

second moment of area about the local
X3 axis

St. Venant torsion constant

stiffness coefficients relating degrees of

freedom i and j
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SF

Sa

stiffness matrix corresponding to
column-depth-to~-plate-span ratio = 1/«

panel condensed stiffness matrix

stiffness matrix of a structural component
expressed in local system

stiffness matrix of a structural component,
expressed in the global system

plate span parallel to the applied moment
plate span normal to the applied moment
square plate panel span

storey height

distance from center of column to location
of concentrated gravity load

span of specimens used in testing plate-column
connections

gravity-load moment at the column face

moment due to lateral loading

normalized moment due to lateral loading
plate cracking moment at the column face
number of connection parameters considered in
deriving the standardized moment-rotation
functions

numerical value of paramenter p for connection j
force vector expressed in local system

force vector expressed in global system
rigidity ratio of the spring at beam end b
rotational transformation matrix

factor that scales the ordinates on the
standardized moment-rotation curve, according
to their dependence upon the connection
parameters

flexibility of flexural spring

flexural spring stiffness at beam end a
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De

flexural spring stiffness at beam end b
plate total thickness

shear wall total thickness

translation transformation matrix

shear wall width

angle between local and global axes
Poisson ratio

plate-to-column connection rotation

portion of plate-to-column connection rotation
caused by column deformation

portion of plate-to-column connection rotation
caused by spring rotation

plate steel ratio in the immediate
vicinity of the column

sum of plate top and bottom steel ratios in the
column immediate vicinity
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Chapter I
INTRODUCTION

1.1 NATURE OF THE PROBLEM

A flat-plate concrete frame is a structure composed of col-
umns and flat-plate floors without drop panels, beams or
column capitals as illustrated in Figure 1.1. 1In some cases
the structure may incorporate shear walls, as illustrated in
Figure 1.2. The flat plate frame has several advantages for
multistorey residential and office buildings. It requires
only relatively simple and repetitive formwork, thus mini-
mizing construction costs. The absence of beams minimizes
the overall depth of structural components, thus facilitat-
ing the installation of mechanical  and electrical services.
Columns can be easily incorporated into the walls, so it is
easy to make the final structure aesthetically pleasing.
Finally, the rectangular grid of columns is well suited to

office and residential requirements.

The resistance of this type of structure to lateral loads
is normally provided by the combination of the three-dimen-
sional frame, composed of the flat-plate floors and the sup-
porting columns, and shear walls. It has been observed that
while they possess sufficient strength to resist 1lateral

loads, reinforced-concrete flat-plate frames sometimes tend



{a} 2-way slab with beams

{b) 2-way slab without beams
{drop panels and column capitais)

[N

i

{c) 2-way siab without beams

(flat plate)

Figure 1.1: Types of Two-Way Slab Systems



Flat Plate Floor
Plate panel

Column { J:::::1,3>C:iihear Wall

Figure 1.2:

—

Typical Flat-Plate Structure With Shear Wall
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to experience excessive lateral drift. A large proportion of
the drift is associated with deformations in the plate imme-
diately adjacent to the columns. These deformations result
primarily from cracking of the concrete and bond slip of the
reinforcement, and they cause the structure to behave non-
linearly starting at low stages of loading. 1In this study,
the junction between a column and a flat-plate floor will be
referred to as a "plate-to-column connection”", and the
deformations referred to above will be assumed to be concen-

trated at the connections.

Several linear, elastic models have been developed to
analyze the load-displacement behaviour of flat-plate struc-
tures under lateral load. The results obtained using these
models have been found to vary considerably depending upon
the model used and the parameters considered. In general,
the linear models do not represent the true behaviour of the
structure, and in some instances they produce fesults that
are not conservative. Thus, there is an apparent need for a
rational, simple-to-use model that can account for the non-
linear behaviour at the plate—to—column- connections. The
difficulty in developing such a model stems from the mathe-
matical complexities involved when dealing with plate equa-
tions, especially for support conditions which realistically

approximate multipanel floor plates.



1.2 SCOPE AND OBJECTIVES

The current practice when designing flat-plate structures
is to perform separate analyses for gravity loading and lat-
eral loading, and to design for appropriate combinations of
the internal forces computed in the analyses. The gravity-
load analysis of flat-plate floors has been studied exten-
sively. Analysis procedures have been incorporated into
design specifications (CSA A23.3-M84) and (ACI 318-84).
Efficient finite element computer programs are available to
perform the gravity-load gnalysis of flat-plate floor sys-

tems (Hrabok and Hrudy, 1981).

On the other hand, the lateral-load analysis of flat-
plate building structures has received relatively 1little
attention. Available computer programs for performing lat-
eral-load analysis assume iinear load-deformation behaviour,
even though nonlinear behaviour begins at the plate-to-col-
umn connections at low load levels. Consequently, the objec-
tive of this study was to develop an economical, easy-to-use
computer program which accounts for the nonlinear moment-ro-
tation behaviour at the plate-to-column connections when

analyzing laterally loaded flat-plate structures.

The program performs nonlinear lateral-locad analysis
only; it cannot be used for gravity-load analysis. Thus, in
accordance with the current state of practice, it is antici-

pated that the program will be used in conjunction with a
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gravity-load analysis program, when designing flat-plate
building structures. It is recognized that because the lat-
eral-load analysis program accounts for the nonlinear behav-
iour, results obtained from it theoretically cannot be
superimposed onto those obtained from a gravity-load analy-
sis program. Nonetheless, it is asserted that the use of a
nonlinear lateral-load analysis program in the manner
described here represents an improvement over a strictly
linear analysis. It is a necessary step toward the develop-
ment of a program to perform the nonlinear analysis of flat-

plate structures under combined gravity and lateral loading.

The development of the nonlinear lateral-load analysis
program occured in three phases. The first involved the
modelling of the nonlinear moment-rotation behaviour of the
plate~to-column connecpions at an interior column, at an
edge column, and at a corner column. For each connecticon
type, simple, normalized expressions were derived as func-
tions of the geometric and material parameters that influ-
ence most strongly the connection moment-rotation behaviour.
The expressions were derived using a modified Ramberg-0sgood
function and calibrated wusing all available experimental

results.

The normalized functions were incorporated into the com-
puter program. The latter reads the appropriate geometric
and material parameters for any given connection, selects

the normalized function for the connection type specified,
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and substitutes the parameters to generate the specific,
dimensional moment-rotation function for the connection.
This procedure has the advantage that connection moment-ro-
tation behaviour can be incorporated into the structural
analysis computer program without having to store moment-ro-
tation data for a large number of connections with different

geometric and material parameters.

The second phase involved the development of a procedure
for modelling the flat-plate floor panels, which accounts
for the nonlinear moment-rotation behaviour at the plate-to-
column connections. As illustrated in Figure 1.3, the flat-
plate floor 1is subdivided into interior, edge and corner
panels. Only square panels supported on square columns are
considered in this study. The plate panel is assumed to be
linearly elastic, homogenous, and isotropic, the nonlinear
moment-rotation behaviour being concentrated in the plate-
to~column "connections". As illustrated in Figure 1.4, the
plate panels are connected to the supporting column elements
by rigid beam elements, each of which has a nonlinear
flexural spring at the end connected to the flat-plate and a
rigid connection at the column. The beam elements are used
to simulate the column cross—-section, which is assumed to
remain plane and normal to the column axis. They therefore
account for the influence of the cross-sectional dimensions
of the column on the stiffness of the plate element. The

flexural springs have nonlinear moment-rotation characteris-



1 —— 1T ) | 1 1
1 am,) - (W - &
l i Corner l
' Panel
=5 _ fom] — m —_ H
. E | Loy
’ Interior , ,
’ Panel Edge
Panel
) _ m — m _— 13
na ol uJ |08
|
l l :
uh| _ ani — .y — —f

Figure 1.3

Typical Flat-Plate Floor



Plate panel

Rigid beam elements

Flexural spring
Column element

(Line element)

Half width of column

Figure 1.4: Model of the plate-column connection
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tics identical to those of the plate-to-column connections,

which they model.

The third and final phase of the study involved the
incorporation of the features described above into a comput-
er program to perform the nonlinear analysis of a three-di-
mensional reinforced-concrete flat-plate structure with or
without shearwalls. The nonlinear analysis involves repeated
cycles of 1linear analyses to determine the appropriate
secant flexibility characteristics for the various plate-to-
column connections. The final linear analysis, employing the
appropriate connection secant flexibilities, yields the cor-
rect structural displacements and forces. The advantage of
this analysis procedure is the saving realized in running
costs and storage requirements. In developing the program,
extensive data generation capabilities were incorporated to

reduce the amount of data preparation required.

1.3 ASSUMPTIONS AND LIMITATIONS

A number of assumptions were made when developing the com-
puter analysis program. The assumptions, and the consequent

limitations on the use of the program follow.

1. All of the structural elements are linearly elastic
except for the flexural springs that connect the
rigid beam elements to the plate elements.

2. The plate elements are linearly elastic, homogeneous,

and isotropic everywhere.
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All of the floors in the structure have identical
plan geometries and dimensions.

The floor plates provide rigid in-plane diaphram
action.

Lateral loads are applied at floor levels only.

Only square plate panels suppcorted by square columns
are considered. This was done for two reasons. The
first is that most flat-plate structures have square,
or nearly square, plate panels. The second is that
the effort required to develop the program, and the
program storage requirements, would both increase
dramatically if more than one plate panel aspect
ratio were to be incorporated. It is suggested that
it would be appropriate to use the program to analyze
structures with approximately square floor panels.
Only static lateral'loading is considered.

All floor panels have the same thickness and rein-
forcement ratios in the two orthogonal directions.
All connections of the same type have the same rein-
forcement ratios in a given floor. The ratios may
vary from floor to floor.

All columns in a given storey have the same cross-
sectional dimensions. However, the column sizes may

vary from storey to storey.
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1.4 ORGANIZATION QOF REPORT

This report is divided into six chapters. A brief summary of

their content is presented in this section.

The first chapter provides an introduction to the problem
and a general description of the method used and the

assumptions made in the solution.

In the second chapter, a review of the literature rele-
vant to the analysis of flat-plate structures is presented.
The chapter is divided into two sections. The first deals
with the general methods used to analyze flat-plate struc-
tures. The second deals with the nonlinear models that have
been developed to predict the moment-rotation behaviour of

plate-to-column connections.

Chapter three deals with the modelling of the plate-to-
column moment-rotation behaviour. The various parameters
that influence the behaviour of the plate-to-column connec-
tions are discussed. Then, the standardizétion procedure
used to model the nonlinear moment-rotation behaviour of the
connections is described. Finally, a description of the

physical model of the connection is presented

In chapter four, the modelling of the various structural
components is discussed. The concepts used to model the
overall structure are presented first. Then, the modelling
of columns, shear walls and flat-plate panels is discussed.

Finally, the nonlinear analysis procedure is described.
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In chapter five, examples are presented to demonstrate
the capabilities of the structural analysis computer pro-

gram, and to compare the results obtained with published

values.

The conclusions and recommendations for further work are

presented in chapter six.



Chapter 11
LITERATURE REVIEW

2.1 INTRODUCTION

A review of research work related to the analysis of
flat-plate structures is presented in this chapter. The
chapter is divided into two sections. The first deals with
the methods currently used to analyze flat-plate structures.
The second deals with the modelling of the rotational behav-

iour of concrete plate-to-column connections.

2.2 METHODS OF ANALYSIS

To date, only linear struétural analysis methods have been
developed and used widely for laterally lbaded flat-plate
Structures. Most of them assume a two dimensional structure
in which the plates are modelled by equivalent beams. The
others assume a three-dimensional structure and represent

the floor plates by finite element arrays.

2.2.1 Equivalent Beam Models

—— e

These models idealize the structure as a series of linearly
elastic planar frames, each comprising a row of columns,
associated portions of the flat-plate floors and, where

appropriate, shear walls. The flat-plate floors are normally
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subdivided into interior and edge strips as illustrated in
Figure 2.1, The interior strips are defined by the center-
lines of the adjacent panels, while the edge Strips are
defined by the edge columns and the edge panel centerline.
Usually, only a fraction of the plate strip is considered
effective in bending. The width of that part is termed the
effective width, B', as illustrated on Figure 2.2. Thus,
for lateral 1load analysis purposes strips are replaced by
beams with the same thickness as the plate, but with width
B'. The resulting planar frame is then analyzed. A summary
of the bases of derivation and the parameters considered in
the various equivalent beam models is presented in Table
2.1. In the table, and as illustrated in Figure 2.2, C is
the column width or depth, L; is the plate span parallel to
the direction of moment transfer and L2 is the span normal
to the direction of moméﬁt transfer. An X in the column
headed GL in Table 2.1 indicates that gravity loading is
applied to the plate prior to the application of the lateral
loads. Since only square plate panels are considered in this

study, henceforth the plate span will be referred to as L .

Khan and Sbarounis (1964) presented one of the first
equivalent beam representations of the flat-plate floor. It
was based on a grid analogy and tests on small scale metal
models. The models were excessively flexible because the
correct boundary conditions were not enforced during test-
ing. The plate strip aspect ratio was considered as a vari-

able.
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Figure 2.1: Typical Flat-Plate Floor
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TABLE 2.1

Equivalent Beam Models

18

Researcher Basis of Derivation C/L Li/Ly GL
Khan and Sbarounis Grid Analogy and Test Models X

Pecknold Elastic Theory X X

Allan and Dervall Elastic Theory X

Wong and Coull Plate Theory X X

Frazer Finite Element X X

Long and Kirk 1/3 Scale Models - X X
Elias Energy Methods X X

and Georgiadis
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Pecknold (1975) and Allen and Darvall (1877) developed
similar representations based on elastic plate theory. They
considered the column—depth—to~plate—span ratio and the
aspect ratio of the plate as variables. Only interior strips
were considered and no recommendations were given for edge

strips.

Elias and Georgiadis (1978) developed a method for deter-
mining the stiffness matrix of an equivalent beam using com-
plementary energy methods and an assumed stress distribution

in the plate. Both interior and edge strips were considered.

Wong and Coull (1980) presented an equivalent beam repre-
sentation based on the influence coefficient method for
determining the width of the equivalent beam. Two parame-
ters, the column—depth—to—plate—span ratio and the aspect
ratio of the plate strip;were considered. Only interior

strips were dealt with.

Based wupon his finite element studies, Frazer (1983)
developed simple equations for determining the effective
width. These equations were expressed in terms of the tran-
sverse column dimension and the plate strip span. Both

interior and edge strips were considered.

Long and Kirk (1980) tested one-third scale concrete mod-
els. They observed that a significant reduction in the
stiffness of the plate- to-column connection resulted from

the cracking of the concrete around the column. They recom-
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mended an effective width of 0.3 time the width of the plate
strip for column-depth-to-plate-span ratios between 0.08 and

0.12.

The equivalent beam methods all have the shortcoming that
they do not force compatibility of displacements among the
planar frames. Most of them lack provisions for accommodat-
ing edge strips and shear walls. Also, they yield effective
widths that wvary considerably depending upon the basis of
the derivation and the parameters considered. Finally,they
do not give a realistic representation of the actual behav-
iour of the frame, and tend to overestimate the stiffness of

the structure in resisting lateral loads.

2.2.2 Equivalent Frame Method

In this method, wvhich has been incorporated into both the
American (American Concrete Institute, 1983} and Canadian
(Canadian Standards Association, 1983) standards, the full
width of the panel is assumed to be effective in resisting
lateral loads. The columns are replaced by equivalent col-
umns to account for the two-dimensional behaviour of the
plate. The equivalent column consists of the actual column
plus torsional elements that connect it to the plate and
simulate the stiffness of the column-to-plate connection.
The equivalent frame method was originally developed for the
analysis of individual floors under gravity loading only.

Although it has been used for lateral load analysis, its use
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can result in gross overestimations of the stiffness of the
structure. Thus, it is not recommended for lateral load

analysis.

2.2.3 Finite Element Methods

French, Kabaila and Pulmano {(1975) developed a three-dimen-
sional representation of the flat-plate structure in which
the flat-plate floor panels were modelled by rectangular
finite element arrays. Three degrees of freedom - a verti-
cal displacement and rotations about two horizontal axes -
were provided at the corner of the rectangular elements.
Inter-element displacement compatibility was enforced at the
corner nodes only. The column-depth-to-plate-span ratio and
the aspect ratio of the plate panels were the parameters

considered.

Ma (1976) modified the TABS program (Wilson, 1975), by
adding a finite element representation of the flat-plate
floors. Plate bending elements were used to model the
floors. The stiffness matrix was then assembled and the
internal and edge node stiffness contributions were con-
densed off, leaving the column node contributions. Ma's mod-
el was excessively flexible because he did not account for
the finite cross-sectional dimensions of the column. As
well, the interaction between floors and shear walls was not

incorporated. The program was moderately expensive to use.
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Hrabok and Hrudy (1981) developed a linear finite element
program for the gravity load analysis of flat-plate floors.
The plate bending elements used were derived wusing the
hybrid stress method. The program accounts for both the
finite size of the column and the presence of floor beams.
The program is a comprehensive one, but it permits the grav-
ity load analysis of flat-plate floors only, and cannot per-

form lateral load analysis.

Chislet and Morris (1985) developed a linear, three-di-
mensional analysis program, in which the floor panels were
modelled using elastic plate elements with sixteen nodes,
four at the corners and three along each panel edge. Three
degrees of freedom - a vertical displacement and two hori-
zontal rotations - were assumed at each node. Inter-element
displacement compatibility. was provided at the corner and
edge nodes. The finite size of the column was accounted for
by assuming the column elements to be attached to the plate
by rigid beam elements. The stiffness matrix for the plate
element was derived numerically in a nondimensional form, as
a function of the column-depth-to-plate-span ratio. Cnly
Square panels supported on sqguare columns were considered.
The program is easy and inexpensive to use and the results
obtained were in good agreement with those obtained using

other linear, elastic models.

The main drawbacks to the use of linear finite element

methods such as most of those described in this section, are
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the high cost involved in running the programs and the time
required to prepare and input the data. Also, because they
model the structure linearly elastically, they tend to over-
estimate its stiffness. Thus the improved accuracy compared
to that obtained from equivalent beam models does not justi-
fy the extra effort and expense involved in using these pro-

grams.

2.3 BEHAVIQUR OF CONCRETE SLAB-COLUMN CONNECTIONS
Observations made on full scale reinforced concrete flat-
plate structures under load show that a large proportion of
the structural deflections are the result of deformations at
the plate-to-column connections. Several experimental and

analytical research programs have been carried out to study

and model the behaviour of those connections.

2,3.1 Experimental Research

As shown in Figure 2.3 four distinct plate-column connection
types can be identified in a typical building. They are
interior connections, corner connections, edge connections
transferring moment parallel to the edge, and edge connec-
tions transferring moment normal to the edge. Most of the
available experimental work deals with the behaviour of
interior connections, as only a few studies have been done

on corner and edge connections.
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To study the influence of different parameters, such as
the amount and distribution of the plate reinforcement in
the column region, the concrete compressive strength and the
loading history, on the behaviour of interior connections,
twenty interior plate-column specimens were tested at the
University of Washington. Details of tests to destruction
on four specimens without shear reinforcement and two with
shear reinforcement were presented by Hawkins et al (1974).
In the tests, the influence of concrete compressive
strength, reinforcement ratio and distribution in the plate,
and the presence of shear reinforcement were studied. Hanna
(1976) tested three specimens with shear reinforcement to
study the influence of the lateral 1load history of the con-
nection and the type of .loading applied. Symonds (1976)
tested five specimens subjected to large gravity 1loads and
relatively small lateral ioad. The parameters considered
were the amount and distribution of the flexural reinforce-
ment in the plate, the gravity 1load level applied to the
plate prior to the application of the lateral loads, the
concrete compressive strength, and the presence of shear
reinforcement in the plate in the region of the column.
Simpson (1976) tested six specimens to study the influence

of changing the proportions and aspect ratio of the column.

Morrison et al (1983) reported tests to destruction of
five interior connections. The influence of the flexural

steel ratio and concrete strength were examined. Mulcahy
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and Rotter (1983) tested six one-fifth scale specimens, and
studied the influence of the steel ratio and concrete

strength on the stiffness of the connections.

Chaichanavong (1973) tested five edge connections trans-
ferring moment parallel to the edge. Three specimens had
shear reinforcement, while the other two had none. In the
tests, the influence of the shape and size of the columns
was studied, as were the effects of loading history and

reinforcement ratio and distribution.

Wong and Yang (1978) tested eight edge connections trans-
ferring moments normal to the edge. Five specimens had shear
reinforcement while the other five had none. The effects of
the column dimension, the concrete strength and the amount

and distribution of reinforcement were studied.

Yu (1979) tested five corner connections, Three without
shear reinforcement and two with it. The influence of the
amount and distribution of reinforcement, the column size

and concrete strength were studied.

The experimental research described above has established
that a large number of parameters influence the behaviour of
plate-to-column connections. The most significant of them
are the level of gravity loading applied to the plate prior
to the application of lateral loads, the flexural reinforce-
ment ratio in the immediate vicinity of the column, the con-

crete compressive strength, the column-depth-to-plate-span
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ratio, and the bond slip of the plate reinforcement within
the column. Of only minor influence are the presence of
stirrups in the plate around the column, the yield strength
of the reinforcement, Vthe bar diameter, the column aspect

ratio and the plate aspect ratio.

2.3.2 Analytical Research

Only a few analytical models have been developed for pre-
dicting the nonlinear moment-rotation behaviour of plate-to-
column connections. All of them are based on either finite
element representations, a beam grid analogy, or a stub beam

representation of the flat-plate floors.

Yamazaki and Hawkins (1975) reported one of the first
attempts to model the rotational behaviour of an interior
plate-to-column connection. The plate was modelled using a
general purpose finite element program. The loads were
applied incrementally and the stiffnesses were varied
according to the magnitude of the major principal moment in
each element. The stiffness of the connection was consider-
ably overestimated because no provisions were made to
account for the rotations caused by bond slip of the rein-

forcing bars or the cracking of concrete around the column.

Shue and Hawkins (1980) presented a grid model to predict
the stiffness of plate-interior column connections. The
plate was modelled as an orthogonal grid of beams with rigid

connections. The properties of the beams were determined on
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a trial and error basis by correlating elastic predictions
for the grid model with the results of finite element analy-
ses. The flexural and torsional stiffnesses of the grid
beams were varied to account for the change in stiffnesses

with increasing loading.

Morrison et al (1983) developed a similar model in which
the properties of the grid beams were derived by matching
the curvature of a portion of the plate under a given force
with that of beams representing the plate, under a statical-

ly equivalent force.

Although results obtained using the beam grid models are
in relatively good agreement with experimental results, the
models are too complex to be applied directly in design or
to be 1incorporated into a computer analysis program.Thus,

they remain of academic interest only.

Akiyama (1984) presented a model in which the plate was
assumed to be attached to the column through a series of
stub beam elements. The properties of the beams were varied
with loading, to model the cracking of the concrete and bond
slip of the reinforcement. The results obtained using this
model were in good agreement with experimental results.
Unfortunately, again the model is too complex to be applied

directly in design.



Chapter III
MODELLING OF PLATE-COLUMN CONNECTION BEHAVIOUR

3.1 INTRODUCTION

Observations made on existing structures and on experi-
mental models show that the rotational behaviour of plate-
to-column connections greatly influences the behaviour of
the entire structure under lateral loading. Therefore, in
order to correctly represent the behaviour of the flat-plate
structure, provision should be made 1in the analysis to
account for the influence of connection deformation on the

overall stiffness of the structure.

The models developed to date to predict the nonlinear
behaviour of plate-to-column connections are rather complex
and not suitable for incorporation into a structural analy-
sis computer program. In this chapter, a procedure 1is
described for standardizing experimental moment-rotation
behaviour so that it can be efficiently incorporated into a
nonlinear structural analysis computer program. Also pre-~
sented is a physical model of the column region, capable of
incorporating the influence of connection deformations on

the behaviour of the structure.
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3.2 FACTORS INFLUENCING CONNECTION BEHAVIOUR

There are several factors that influence the behaviour of
plate-to~column connections. The more significant ones are

described below, in decreasing order of significance.

3.2.1 Gravity Moment

Experimental studies have shown that the gravity-load

moment, M acting on the column face has a large influence

g?
on the behaviour of plate-to-column connections. For exam-
ple, as illustrated in Figure 3.1, Akiyama (1984) found that
an increase in gravity loading resulted in a decrease in
both the stiffness and the strength of the connection, with
regard to lateral 1load resistance. The reason is that the
gravity-load moment causes the initiation of concrete crack-
ing along the boundary where the column intersects the flat
plate. Moreover, the rate of crack propagation is a func-
tion of the magnitude of the gravity-load moments. It has
been observed also that the influence of gravity loading is

larger for connections without shear reinforcement than for

those with it (Akiyama, 1984),

In tests of plate-to-column specimens under combined
gravity and transverse loading, the gravity locading has been
simulated by two vertical loads P, applied at a distance L
from the column center, as illustrated in Figure 3.2 (Akiya-

ma, 1984). Accordingly, the gravity load moment that has
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been assumed to be transmitted from the plate to each side

of the column is :

Mg = Pg (Lg- C/2) (C/Ls) (3.1)
Where,

Mg = gravity-load moment at the column face

P, = applied gravity load

Ly = width of test specimen plate

Lg = distgnce.from column center to point of
application of gravity load

C = column depth

In the tests, the gravity load was applied to the plate
first, then the 1lateral load was applied 1in repeated
reversed cycles until the specimen failed. The combined
effects of the gravity and.lateral loads on the moment-rota-—
tion behaviour of the plate-to-column connections were
determined. No attempt was made to differentiate between the
connection behaviour on the side of the column where gravi-
ty-load and transverse-load moments were additive, and that

on the side where they were in opposite directions.

For interior plate-to-column connections, test results
have been reported for specimens subjected to "low gravity
load", where plate self weight was the only gravity load
applied (Morrison, 1983) and (Mulcahy et al, 1981), for
"moderate gravity load" where the average value of the

applied gravity load Py was about four times the plate self
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weight (Akiyama, 1984), and for "high gravity load" where

the average value of the applied gravity load Py, was about

eight times the plate self weight (Akiyama, 1984).

The method used in this study to account for the effects
of gravity-load moment on plate-to-column connection behav-
iour parallels that used in measuring the behaviour experi-~
mentally. Thus, for a given level of gravity-load moment, a
single standardized moment-rotation function has been
derived. No attempt has been made to differentiate between
the moment-rotation behaviour on the side of the column that
is unloading as transverse load is applied and that on the
opposite side of the column, where the moments due to gravi-
ty and transverse loads are additive. For interior plate-
to-column connections, three such standardized moment-rota-
tion functions have been derived, one corresponding to each
of "low", "moderate" and "high" gravity-load moments. To
derive the standardized functions, all available experimen-
tal data were examined and for each specimen, the ratio of
the gravity-load moment, My, to the cracking moment, M., at

the column face was determined. The cracking moment was com-

puted as
7.5 [fc' C t?
M¢e = (3.2)
6
Where,
fc = 28 day compressive strength of concrete
t = total plate thickness
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It was found that the ratio Mg/M(;for specimens subjected to
high gravity loads, as defined above, was always greater
than 4.0. That for specimens subjected to moderate gravity
loads was normally between 1.0 and 4.0, and that for speci-

mens subjected to low gravity loads was smaller than 1.0.

For edge connections transferring moments parallel to the
edge, for edge connections transferring moments normal to
the edge, and for corner connections, test data were avail-
able for "moderate" gravity-load moment only. Thus, only a
single standardized moment-rotation function was derived for

each of them.

Although the procedure described here accounts only
approximately for the effect of gravity-load moment, it is
asserted that it provides a more realistic model of the
actual behaviour of the cbnnection than does the commonly-

used assumption of a linearly elastic connection.

3.2.2 Connection Flexural Reinforcement

The strength and stiffness of plate-to-column connections
are greatly influenced by the connection flexural reinforce-
ment ratio, p, in the immediate vicinity of the column. As
illustrated in Figure 3.3, an increase in the reinforcement
ratio results in an increase in both the strength and stiff-
ness of the connection. Thus, for example, Akiyama (1984)

found that increasing the connection reinforcement ratio in
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the vicinity of the column from 0.30% to 1.0% produced an
increase in the connection stiffness of more than 40%. The
magnitude of the increase depended in part on the specimen
geometry and the concrete strength. It has been found also
that the distribution of the reinforcement is as important
as the reinforcement ratio. Akiyama (1984) recommended that
in order to be effective in increasing the connection stiff-
ness, the connection reinforcement should be concentrated in
a region extending a distance of at least (C+3t) from the

column face.

In this study, the total reinforcement ratio ,e » 1in the
connection region was defined as the sum of the top and bot-
tom plate reinforcement ratios. The total reinforcement
ratio was wused in developing the .standardized moment-~rota-
tion functions for all connection types considered. It is
assumed -that the distribution of the connection reinforce-

ment is consistent with Akiyama's recommendations.

3.2.3 Concrete Strength

Mulcahy et al (1981) observed that an increase 1in the
plate concrete compressive strength, f'., resulted in an
increase in the strength and stiffness of the connection, as
illustrated in Figure 3.4. He found that an increase in the
concrete compressive strength is accompanied by an increase
in its tensile strength, and therefore by a reduction in the

extent of crack propagation and the consequent loss of
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Figure 3.4: 1Influence of concrete compressive strength on
connection behaviour
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stiffness. Thus, for example, an increase in the concrete
compressive strength from 30 MPA to 45 MPA resulted in an
increase in the connection tangent stiffness of as much as

30%, depending on the magnitude of the applied moment.

In this study, the concrete strength was used to compute
a dimensionless moment, M', which was used to develop the
standardized moment-rotation functions for the various con-

nection types. The dimensionless moment is defined as:

M
M' = (3.3)
t 2
fC L t
Where,
M' = dimensionless moment transmitted from

the floor plate to the column

moment transmitted from the floor

=
n

plate to the column

3.2.4 Column-To-Plate Stiffness Ratio

Pavlovic et al (1985) found that as the ratio of the col-
umn stiffness to the plate stiffness is increased, there is
an increase in both the strength and the stiffness of the
connection, Normaly, the column-depth-to-plate-span ratio,
c/L, is used to represent the column-to-plate stiffness
ratio. Walker found that an increase in the column-depth-to-
plate-span ratio from 0.08 to 0.12 resulted in an increase
in the connection secant stiffness of as much as 20%,

depending upon other connection parameters.
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In this study, the column-depth-to-plate-span ratio,C/L,

was incorporated into the standardized moment-rotation func-

tions for all of the connection types considered.

3.2.5 Bond Slip of Plate Reinforcement

Sheu et al (1980} found experimentally that the bond slip
of the plate reinforcement within the column produced a con-
centrated rotation at the column-to-plate boundary, thus
reducing the stiffness of the connection. The experimental-
ly measured moment-rotation curves used in developing the
standardized moment-rotation functions account, among other
things, for the bond slip effects. Thus, the influence of
bond slip is automatically accounted for in the standardized

moment-rotation functions.

3.2.6 Other Parameters

Akiyama (1984) observed in tests of plate-to-column spec-
imens that while the presence of shear reinforcement in the
connection region increased the strength and ductility of
the connection, it had very 1little influence on its stiff-
ness. It has also been observed that other parameters such
as the reinforcement yield strength and bar diameter have
virtually no influence on the stiffness of plate~to-column
connections. Consequently, for the standardized moment-ro-
tation functions derived in this study no attempt was made

to account for these parameters.
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3.2.7 Summary

The moment-rotation behaviour of plate-to-column connec-
tions is influenced by several parameters. In this study,
only the four that affect connection behaviour most signifi-
cantly have been incorporated into the standardized moment-
rotation functions. The ratio of gravity-locad moment to
cracking moment at the column face, Mg/q:, has been account-
ed for by deriving different standardized functions for low,
moderate and high gravity-load moments for interior connec-
tions. Only a single standardized function, for moderate
gravity-load moments, has been developed for each of edge
and corner connections. The total reinforcement ratio for
the plate,ﬂ > the column-depth-to-plate-span ratio, C/L, and
the concrete compressive strength, Q; » have all been incor-

porated explicitly into the standardized functions.

Other parameters which have less significant effects on
the connection behaviour were excluded from the standardized
functions. They include the presence of shear reinforcement
in the plate adjacent to the column, the reinforcement yield

strength and the bar diameter.
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3.3 STANDARDIZED MOMENT-ROTATION FUNCTIONS

There are two ways in which the nonlinear connection
moment-rotation relationships can be incorporated into a
structural analysis computer program. One is to store a
large family of functions, one for each of the many combina-
tions of the physical parameters associated with the connec-
tions, such as reinforcement ratio, concrete strength,etc.
This procedure would require a prohibitively large amount of
storage. The second alternative, used in this study, 1is to
derive and store standardized connection moment-rotation
functions for the various types of connections. These func-
tions are expressed in terms of the several connection
parameters. Thus, when the physical parameters are known for
a given plate-to-column connection in the structure, they
can be substituted into the standardized function in order
to generate the specific moment-rotation relationship for

that connection.

The first step in the standardization procedure is to
express the flexural moment at the plate-to-column connec-
tion in dimensionless form as described in Equation (3.3),
Next, a Ramberg-Osgood function (1943), which was modified
by Ang (1983) to describe the moment-rotation behaviour of
steel connections, is used for the standardized function.

The modified function is in the following form.
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n-1
1/] r M’ r M'
= T +{— (3.4)
@o {(rMo) (rMg)
Where,

@ = relative rotation between the column axis and the
normal to the plate midsurface at the column.

Po,(rMe) and n = constants that define the shape of
the standardized function

As illustrated in Figure 3.5, @, and (rMg) define the
position of point 1, through which a family of Ramberg-Os-
good curves pass. Constant n defines the sharpness of the

curvature for any one of the curves.

In Equation (3.4), factor r scales the ordinates on the
curve, according to their dependence upon the connection

parameters. It has the form

m
r = W (p.) ° (3.5)

'P. = numerical value of the jth connection parameter
a; = dimensionless exponent which indicates the
influence of the jth connection parameter on the
moment-rotation relationship

m = number of connection parameters considered
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The evaluation of the exponent a, in Equation {(3.5) is
illustrated by considering a family of experimentally
determined moment-rotation curves, as shown in Figure 3.6,
for plate-to-column connections that are identical except
for parameter pj. A pair of curves is considered and the
relationship between moments M} and M} at a particular
rotation @ is assumed to have the form

: a5
M . (P52 (3.6)
M3 ipjl

Where Pj, andjpj2 are the numerical values of parameter Pj

for connections 1 and 2 ( corresponding to curves
1 and 2) respectively.

Equation (3.6) can be rewritten and solved for aj, as fol-
lows

log (M} / ML )
a. = (3.7)
log (P, /ip, )
12 J1

Equation (3.7) is used to compute a, values corresponding to
several values of rotation @, for each combination of exper-
imental curves, such as 1 and 2, 1T and 3, 2 and 3,etc. The
mean of the 2 values thus obtained is then'used in Equation

(3.5).

When mean values have been computed for all m exponents a
in Eguation (3.5), they are plotted on a standardized
moment-rotation ({(r M' vs @) diagram. Finally, a least
squares curve fitting procedure is used to evaluate coeffi-

cients @o,(rMp) and n in Equation (3.4).
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As illustrated in Table 3.1, 36 tests of plate-to-column
specimens, performed in 10 different investigations, were
considered in deriving standardized moment-rotation func-
tions in the form of Equation (3.4). Twenty one of the spec-
imens were for interior pPlate-to-column connections, four
were for edge connections transferring moment parallel to
the edge, six were for edge connections transferring moment
normal to the edge and five were for corner connections. The
table shows the reference for each test specimen and the
specimen designation used by the original authors. Also
included are the values of the parameters P, c/L, Mg/MC,
and the connection type (interior, corner, etc.) for all of
the test specimens used in deriving the standardized moment-—

rotation functions.

The six standardized moment-rotation functions derived in
this study are presented in Table 3.2. Also included in the
table are the number of test specimens used in deriving each
of the functions, lthe references for the data on which the
functions are based, and the maximum percentage deviations
of the derived functions from the experimental values. The
deviations were computed by substituting the parameters for
a particular test specimen into the appropriate standardized
function, computing the connection rotations corresponding
to several applied moments, and comparing them with the

experimental values.



TABLE 3.1

Test Specimens Used in
Deriving Standardized Moment-Rotation Functions

REFERENCE SPECIMEN o c/L M /K PANEL TYPE
DESIGNATION T g <
Morrison S 0.0130 0.167 0.0 Interior/
et al. Low Grav,
(1983) s2 0.0196 0.167 0.0 Interfor/
Low Grav.
S3 0.0262 0.167 0.0 Interior/
Low Grav.
sS4 0.0196 0.167 2.23 Incerior/
Mod. Grav.
s5 0.0196 0.167 5.39 Interior/
High Grav.
Hulcahy M02 0.0117 0.057! 0.0 Interior/
Rotter Low Grav.
HO3 0.0117 0.0571 0.0 Interior/
(1981) Low Grav.
MO5 0.0160 0.0571 0.0 Interior/
Low Grav.
KOs 0.0072 0.0571 0.0 Interior/
Low Grav.
Havkins SSl1 0.0188 0.077 2.83 Interior/
et al, Mod. Grav.
(1974) 5s2 0.0139 0.077 3,01 Interior/
Mod. Grav.
Hanna et al. S53 0.0166 0.0077 2.96 Interior/
(1975) Mod. Grav.
§85 0.0139 0.077 2.63 Interior/
Mod. Grav.
Symmonds 556 0.0139 0.077 6.54 Interior/
et al. High Grav.
(1976) S§S87 0.0173 0.077 6.21 Interfor/
High Grav.
Simpson $s8 0.0215 0.103 2.95 Interior/
et al. Hod. Grav.
{(1976) SS9 0.0215 0.103 5.86 Incerior/
High Grav.
SSio 0.0174 0.125 5.70 Interior/
High Grav.
SSti 6.0t76 0.125 2.44 Incerior/
Hod. Grav.
Ss12 0.0176 0.0513 3.3l Interior/
Mod., Grav,
SS13 0.0174 0.0513 6.76 Inter{or/

High Grav,
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Table 3.1 (continued)

REFERENCE SPECIMEN Pr c/L M PANEL TYPE
DESIGNATION g ¢
Chaichanavong ELI 0.0121 0.077 2.63 Edge Parallel
(1979) EL2 0.0126 0.103 2.53 Edge Parallel
ELS1 0.0140 0.077 2.55 Edge Parallel
ELS2 0.0140 0.077 2.60 Edge Parallel
Havkins El 0.0133 0.154 2.72 Edge Normal
et al. E2 0.0191 0.205 2.56 Edge Normal
(1978) E3 0.0227 0.103 2.64 Edge Normal
ES2 0.0230 0.154 2,58 Edge Normal
ES4 0.0227 0.250 2.66 Edge Normal
ESS 0.0236 0,103  2.63 Edge Normal
Yu cl 0.0083 0.143 2.58 Corner
(1979) c2 0.0083 0.143 2.61 Commer
Cc3 0.0125 0.190 2.71 Corner
csl 0.0125 0.43 2.52 Corner
Ccs2 0.0150 0.232 2.68 Corner
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TABLE 3,2

Standardized Moment-Rotation Functions

Connection Type Reference Number of Specimens T Standardized Function Maximum Percent Deviation
M ¢ r M' r M' .
..E(l.U Mulcahy et. al 7 (p)-0.042 (£)=0.6Y —— o [1 4l )4-58 15
Me Morrison et. al. L 0.0065 1.25 1.25
M
Interior 8 4. Hawkins et. al. " o] r M' ( r M')4.86
l.O(H_<4 0 Hanna et. al. 8 (p)-l.zlo(&)-o.ll — . [ ] e ] 13
¢ Simpson et. al. L 0.0101 22.8 22.8
e -3.51¢¢)-1.07 ¢ r 4’ 1 14.86
L >a.0 Symmonds et. al. 6 (p)-3-31(¢)-1. = L1+ (e m ). 7
M Simpson et. al. L 5.4x10"3  1.6x106 1.6x106
Parallel ¢ . 5.32
. L}
to Chaichanaveng 4 (P)=3.02(c)-2.16 - XM RN UL ] 9
Edge et. al. L 2.1x10"3  1.04x107 1.04x107
Edge
Normal - = LM
to Hawkins et. al. 6 (P)"O'N(E?"O'Sg {1+ (z_n')5.68 ] 18
Edge L 5.6x10°3 5 45 2.47
t
Corner Yu et, al. 5 (P)~2.03(C)-0.39 ¢ [ I (z M!' )6.92 20
L 9.5x10"3 8,1x102 8.1x102

0¢
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As described previously, the rotational stiffness of the
plate-to-column connections was affected most significantly
by the the level of gravity loading acting on the structure.
Therefore, as shown in Table 3.2, three standardized func-
tions were derived for an interior connection, one each for
low gravity loading (Mg /M. < 1.0), for moderate gravity
loading (1.0 < Mg/M% < 4.0), and for high gravity loading
(Mg/ﬁ: > 4.0). Limited experimental data were available for
edge connections transmitting moment parallel to the edge,
for those transmitting moment normal to the edge, and for
corner connections. Consequently, only one standardized

function was derived for each of these cases,

Typical plots of experimentally determined moment-rota-
tion curves and the corresponding curves obtained from the
standardized functions are. presented in appendix A. It can
be seen that 1in most cases the standardized functions
approximate closely the shapes of the experimental curves,

wvhile smoothing them somewhat.

As can be seen in Table 3.2 and the plots in Appendix A,
in a few instances the standardized functions deviate sig-
nificantly from the experimental data. This can be attribut-
ed to three factors. The first is that the standardization
procedure used is an averaging process, capable of describ-
ing the behaviour of specimens having parameters that are
well within the ranges considered 1in the standardization

process. However, results obtained from the standardized
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functions for specimens having parameters that are close to
the extremes of the ranges considered in the derivation,
tend to deviate significantly from the experimentally meas-

ured results.

Secondly, in order to account for the influence of a giv-
en connection parameter, several specimens should be avail-
able that are identical except for the parameter under con-
sideration. Unfortunately, because of the non-homogeneous
nature of concrete, and the limited amount of experimental
data available, it was impossible to achieve the latter con-
dition. Therefore, in order to facilitate comparisons among
the different specimens available, it was assumed that spec-
imens with parameters that differed by less than five per-
cent were identical. As a conseguence, inaccuracies were
built into the derived functions. The third factor is that
the small number of experimental tests available, especially
for edge and corner plate-to-column connections, meant that

only a very small number of data values were available.

The Ramberg-0Osgood curve fitting function requires that
experimental moment-rotation curves start at the origin. On
the other hand, most of the available test data included an
initial rotation caused by the application of gravity load
to the plate prior to the application of the lateral load.
The initial rotations due to the gravity load were deducted
from the total connection rotations when developing the

standardized moment-rotation functions. This is justified on



53
the basis that the derived functions and the analysis pro-

gram are applicable to transverse loading only. Gravity
loading is not dealt with, except for its effects on the
moment-rotation behaviour of interior connections under

transverse loads.

3.4 PHYSICAL MODEL OF COLUMN AND CONNECTION

————— — — L R St

When a flat-plate structure is subjected to transverse
loading, nonlinear load-deformation behaviour occurs at the
column-to-plate connections beginning at relatively low load
levels. The primary source of the nonlinear behaviour is
early flexural cracking of the plate, as illustrated in Fig-

ure 3.7.

Based wupon experimental Observations, Hawkins (1980)
described the connection ﬁbment—rotation behaviour, as fol-
lows. As transverse load is applied to the structure, the
moment-rotation behaviour at the typical plate-to-column
connection is approximately linear, as illustrated in Figure
3.8. When the flexural moment at the plate-to-column bound-
ary reaches the cracking moment, the connection stiffness
decreases abruptly as cracking propagates. With increasing
load, torsional cracking occurs in the plate at the sides of
the column. As the loading is increased further, yielding of
the flexural reinforcement commences and the stiffness again
decreases. Finally, with a further load increase, the con-

crete crushes in flexure and the connection fails.
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Figure 3.7: Flexural cracking at the plate-column boundary
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In this study, the finite cross-sectional dimensions of
the column and the nonlinear behaviour of the plate-to~col-
umn connection were modelled using the arrangement shown in
Figure 3.9. The column was modelled as a line element
extending from one floor plate to the next higher one. To
fepresent the finite cross-sectional dimensions of the col-
umn, rigid beam elements, B1 in Figure 3.9, each with a
length of half the column width, were assumed to be connect-
ed rigidly to the column, at the elevation of the floor

plate.

The moment-rotation behaviour of the plate-to-column con-
nection was modelled by flexural springs FS;, and FS,, which
allow rotations in the two orthogonal directions, and which
connect the beam elements to the plate. In order to maintain
a constant plate slope normal to the face of the column,
torsionally rigid beam elements, B2, were connected to the
plate where it intersects the column face. The beam ele-
ments were connected to the torsional springs at the column
centre lines, and to each other by ball-and-socket joints at

the column corners.

Jamieson (1984) derived the stiffness matrix for a beam
element with fexural springs at both ends as illustrated in
Figure 3.10a. The stiffness coefficients were functions of
the rotational stiffnesses, S, and Sy » of the flexural
springs at ends a and b, respectively. In this study, the

stiffness matrix for beam elements B1, which have a flexural



plate panel
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flexural spring FS)

Plate-to-column connection model
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b) Modified beam element

Figure 3.10
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spring at end b only, was derived by modifying Jamieson's
stiffness matrix by assigning a large value to the spring
stiffness S,. As well, the beam end force vector was modi-
fied by including the torsional, instead of the axial,
effects. For «convenience, the beam stiffness matrix was
derived in terms of the rigidity ratio, q » rather than the
stiffness, of the spring. The rigidity ratio is defined as

1
g = 25 1 (3.8)

s, (c/2)

Where,
E = modulus of elasticity

I; = second moment of area about the local X3
axis of the beam

C = twice length of connecting beams B1 and B2
= column width
S, = spring flexural stiffness

Consequently, the modified stiffness matrix is :

Pa 4 -—B11 By12 Bi1a Bya Bi1s Bys Da ;
Pa; S B22 Ba3z Bzs Bzs Bas Da
Paj; ym Baz Bzs Bas Bag Dagj (3.9)
Pb me Bas Bas Bus Db,
Pb, tr_ Bss Bss Db,
Pbs 1C Bss Dbj;
Where,
Biy = (12E13/(C/2)3%)e,
Biz = (6EI3/(C/2)?)sin(B)e,



Bis
Bqys
Bis
Bis

Bz»

€s

and,

11

(6EI3/(C/2)2)cos(B)e:

-(12E13/(Cc/2)3)e,

(6EI13/(C/2)2)sin(B)es
(6EI;/(C/2)2)cos(B)es

(Ga/(c/2))cos?(B) + (4EI3/(C/2))sin%(B)e,

(4EI13/(C/2))cos(B)sin(B)es-(GI/(C/2))cos(B)sin(R)

~(6EI1a/(C/2)2)sin(B)e;

(2E13/(Cc/2))sin2(B)es + (GI/(C/2))cos?(B)
(2E15/(C/2))cos{(B)sin(B)+(GI/(C/2))sin(B)cos(B)
(4EI3/(C/2))cos?(Bles + (GI/(C/2))sin2(B)
-{6EI3/(C/2)2%)cos(B)e,
(2E13/(C/2))cos(B)sin(B8)+(G3/(C/2}))cos(B)sin(RB)
(2E13/(C/2))cos?(B)es ~ (GI/(C/2)}sin2(RB)
(12E15/(C/2)3)e;

-{6EI3/(C/2)2)sin(B)e;

—(6E13/(C/2)2)coé(65e3

(4E1;/(C/2))sin?(B)es + (GI/(C/2}))cos2(B)
(4E13/(C/2))cos(B)sin(B)-(GI/(C/2))cos(B)sin(B)
(4EI;/(C/2))cos2(B)es + (GI/(C/2))sin?(B)

(3g + 1}/4
(@ + 1)/2
q
(g + 3)/4
q
Q

B = Angle between beam local X3 axis and the
global Xj axis
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Shear modulus
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Figure 3.11 illustrates the behaviour of the plate-to-
column connection model. As the column rotates through
angle @cunder lateral loading of the structure, beam ele-
ments B! rotate through the same angle. This satisfies the
small deflection reguirement that plane cross-sectional sur-
faces in the column remain plane after deformation. As the
rotation of the column is resisted by the surrounding plate
panels, moments are induced in the flexural springs connect-
ing beam elements B1 to the plate. As a consequence rota-
tional deformations q;occur in the springs. Hence, the fle-

xural rotation of the plate at the column is @, - @ .
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b) Connection after loading

Figure 3,11: Behaviour of plate

-column connection model
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Chapter 1V
MODELLING OF THE FLAT PLATE STRUCTURE

4.1 MODELLING THE OVERALL STRUCTURE

In order to avoid the difficulties encountered when uéing
the equivalent beam and equivalent frame models, the struc-
ture is modelled as a single rectangular three-dimensional
frame. For analysis purposes, it is assumed to be built up
from a series of flat-plate floor pénels, columns and shear

wall panels, as illustrated in Figure 4.1.

The computer program which performs the structural analy-
sis accounts for the nonlinear moment-rotation behaviour at
the plate-to-column connections by performing repeated
cycles of linear analysis, each time modifying the connec-
tion stiffnesses. Alternatively, the program can be used to

perform a single linear analysis.

For convenience, two coordinate systems are employed to
describe the structure. They are the global and the local
systems. The stuctural locads, displacements and geometry are
expressed in the global coordinate system, which is illus-
trated in Figure 4.1. 1In this study, primed variables, such
as force and displacement vectors, represent quantities

expressed in the global coordinate system. For example, B/

- 63 -
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‘////~—Global coordinate system
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Shear Wall Panel
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Column ‘l::::;

Figure 4.1: Structural Components of Flat-Plate Structure
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is a force vector applied at s and expressed in the global

coordinate system.

The force-deformation relationships for an individual
element in the structure are expressed in a local coordinate
system for that element, as illustrated in Figure 4.2, For
each of the elements shown, the orientation of the coordi-
nate axes for the local system is consistently that illus-
trated in the figure. Thus, for example, the local X, axis
for the column element lies along the column axis, and axes
X2 and X3 coincide with the principal axes of the column
cross~section. In this study, variables such as force and
displacement vectors are unprimed when they are expressed in
a local coordinate system. Thus, for example, D, represents
a displacement vector at point ¢, expressed in the appropri-

ate local coordinate system.

In general-purpose three-dimensional analysis programs,
normally six degrees of freedom are assumed at each node in
the structure, as shown in Figure 4.3, A node is assumed at
each point where a column, or the corner of a shear wall,
intersects a floor plate. For a typical node , three of the
degrees of freedom, 4,,A3 and 6,, are associated with in-
pPlane displacements of the floor plate. The other three,
45,8y and €3, are associated with out-of-plane displace-
ments. For a frame with N nodes per floor, the total number
of unknown displacements to be evaluated, and thus the num-

ber of equations to be solved, equals six times the number
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Figure 4.3: Global degrees of freedom
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of nodes times ‘the number of floors. Conseguently, thé large
storage capacity required by general purpose three-dimen-
sional analysis programs sometimes makes them prohibitively
expensive for lateral load analysis of multi-storey flat-

plate structures.

In flat-plate structures, resistance to lateral loading
is provided by the flexural stiffness of the columns and the
floor plate panels. Shear walls may be included to provide
additional lateral stiffness. Typically, the in-plane
stiffnesses of the floors are large compared to the stiff-
nesses of the elements which resist the lateral loading, and
thus the floors are assumed to act as rigid diaphragms. The
latter assumption is realistic, provided that there are no
large openings in the floor and shear walls extend the full
height of the building. As-well, individual shear walls must
be fairly uniform over the height of the building, (Poland,

1980).

For cross-wall buildings, where shear walls carry all
gravity and lateral loads, the stiffness of the walls may be
the same as or greater than the in-plane stiffnesses of the
floors. Thus, the assumption that the floor acts as a rigid

diaphragm may not be acceptable.

The term "rigid diaphragm" implies that the floors are
assumed to be infinitely stiff in their own plane. No in-

plane distortions can occur. The individual floor panels
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experience rigid body displacements only. The in-plane dis-
Placements of all points in a given floor can be described
by three degrees of freedom; linear displacements in the
directions of the two horizontal axes and a rotation about
the vertical axis. Thus the in-plane degrees of freedom at
node j in Figure 4.4 can be related to those at node v. The
nodes v and j are referred to as master and slave nodes,
respectively. One master node is required for each floor.
It may be located anywhere in the floor. Thus, the three
in-plane degrees of freedom at each column node can be
related to those at the master node. Consequently, for a
structure with N frame nodes per floor, the number of
degrees of freedom per floor is reduced from 6N to 3N+3,
This procedure of slaving the column nodes to the master
nodes permits a very significant saving in both storage

requirements and execution time needed for equation solving.

In the structural analysis computer program, the lateral
loads are applied as concentrated forces at the master nodes
located in each of the floors only, as illustrated in Figure
4.5. These forces may vary from floor to floor in the struc-
ture. Thus, the program is capable of modelling any lateral

load distribution.
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4.2 MODELLING OF THE COLUMN ELEMENT

The typical column is modelled using a one dimensional
elastic element defined by its end nodes s and t as shown in
Figure 4.6. Six degrees of freedom are assumed at each end

of the column. The local stiffness matrix is defined by

P =K D (4.1)
where,
P = vector of local end force components
D = vector of local end displacement components
K = column local stiffness matrix.

The vectors and matrices in Equation (4.1) can be parti-
tioned as follows, to distinguish between force and dis-

placement vectors at nodes s and t.

P K K t D
s = 8¢ i ° (4.2)
B Kis K o Dy
where,

P =1{p p p M M M =
5 sl s2 s3 sl s2 s3

= local force vector for node s
P ={pP p P M M M 3T
t { tl t2 t3 tl t2 t3

= local force vector for node t

- T
Ds ={a sl a s2 AS3 esl esZ 653 }

= local displacement vector for node s

T

Dt = { Atl At2 At3 etl etz et3 }

= local displacement vector for node t.
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The in-plane force and displacement components at a typical
node in a given floor are related to those at the master
node in that floor. Thus, as illustrated in Figure 4.7, the
stiffness matrix for the column element can be partitioned
further to express the relationships between the out-of-
plane and the in-plane forces and displacements. Subscripts
o and i denote the out-of-plane and in-plane force and dis-
placement components, respectively. In partitioned form,
the force and displacement components can be related by the

following matrix equation

P K . K K D
so 5500 ssoi stoo stoi so
P K K K K D
si g = ssio ssii stio stii si (4_3)
P K K K K D
to tsco tsoi ttoo ttoi to
P K K K K _J D
ti L tsio tsii ttio ttii ti
where,
= T
so { %1 MSZ M83 } (4.4)
is the out-of-plane force vector for
node s
T
= M .
Py =t By P o (4.5)
is the in-plane force vector for node s
P =1 p M T .
to tl €2 Mt3 } (4.6)
is the out-of-plane force vector for
node t
= T
Py =1 P, Poy M (4.7)
is the in-plane force vector for node t
T
D, = { A, 9., o_, } (4.8)

is the out-of-plane displacement vector
for node s
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D = T
o { A, A, o, } (4.9)
is the in-plane displacement vector
for node s
- A ) ) T 4.10
Dto t tl t2 t3 ( )
is the out-of-plane displacement vector
for node t
T
Dy =1 4, b3 6, 1} (4.11)
is the in-plane displacement vector
for node t
and
r—-51 0 0
K ssoo= 0 S» 0 (4.12)
0 0 S3
0 0 -Ss
ssio = 0 S+ 0 (4.13)
0 0 0
Sq 0 0
ssii = 0 Ss 0 (4.14)
0 0 Se
-S; 0 0
= 0 Sg 0 (4.15)
tsoo
0 0 Sio



tsio

tsii

tteo

Keeio=

ttii

tsoi

Sq

-S;

...57

Ss

Se

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)
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K = (K ) (4.22)
ssoi ssio
T
KStoo= ( Ktsc)o) (4.23)
T
Kstoi= Kgeio) (4.24)
T
Kstio= { Ktsj_o) (4.25)
_ T
seii™ tsii) (4.26)
= (k VT (4.27)
ttoi ttio

In the above stiffness submatrices

E A
Sy =
I"h
4 EI,
S, =
Ly
4 E I,
53 =
L,
12 E I,
54 =
Ly
12 E I,
Ss = R — (4.28)
Ly
G J
Ss =
Lh
6 E I,
57 =
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Sg =

and,

I, = second moment of area of the
cross-section about the local X, axis

cross—-sectional area

g
]

L, storey height

The partitioned local stiffness matrix for the column can
be transformed to the global coordinate system using the
following relationships between the 1local and global forces

and displacements.

B! = RE (4.29)
P = R B (4.30)
D, = R D (4.31)
D, = RTD; (4.32)

Where R = rotation transformation matrix.

Figure 4.8 shows the relationship between the global
coordinate system and the column local coordinate system
used consistently in this study. Thus, the rotation trans-

formation matrix is
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rotational transformation matrix to express
local out-of-plane forces and displacements

rotational transformation matrix to express

local in-plane forces and displacements in

-
1
1 0 —
Ryy | 0 0
R = -—-—'———— =
0 | Razz 0
0
0
where,
Ry, =
in the global coordinate system
Rz =
the global coordinate system
The global force-displacement

expressed as follows

P'
SO
Psi
1]
PCO

1]
Pei

Where,

[«

K' K'
SS00 ssoi stoo
L r T
ssio Kssii K stio
L 1 []
Ktsoo Ktsoi K ttoo
] 1 1
Ktsio Ktsii ttio
R K
11 Rogoo R
R
" ssoi 22
11
stoo '
11 K . Ra2
stoi
RZZK . RII
ssio
Rz2 K Rj»
ssii
Ra2 Kstio Ry
Rzz2 K ;i Rz
R11 K 11
ts

relationship

K*'
stoi

L]
Kseii

can

Dso

1
Dsi

Dto

ti

(4.35)

thus

(4,34)

(4.33)

be
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K' = R|1 K Rzz
ttoo ttoo

K' = Ryy K Ry,
ttoi ttoi

K' = Ryiy K Rz2
tsio tsio
1 -

Kisii= R22 Kigii Ry
1 _-—

Kesii®  Rzz K ;o Rao
1 P
ttio R22 Ko R11

K' = Rz2 K  Rz2
ttii teii

The in-plane forces and displacements at nodes s and t can
be related to those at the master nodes v and m respectively

using the following translation transformations

o= Hys Péi

By = omL. B (4.36)
D = (') by

b, = (Hy~') b

where H' is a translation .transformation matrix. For exam-
ple, Hy, translates force vector B, from node s to node v.

In equation (4.36)

0 0 0
Hys = 0 0 0 (4.37)
(X3, - x5, ) X\, - %\, ) 1
1 0 0
H' = 0 1 0 (4.38)
mt
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’ [
X1, and X3, are

the global coordinates for node s, and the other coordinates

are similarly
(4.36),

ships become

where

K'
sSs
K'
SV
K'
st
K’
sm

Kvs
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Kl
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tt
Ktm

Kl
ms
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1 ] 1
vs va Kvt Kvm
ts Ktv K tt Ktm
L] 1
ms Kmv Kmt Kmm___j
Kt
5500
T
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ssoi
K!
stoo T
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stoi
HLS ;soi
Hr Kr (H! -1 ;‘
Vs ssii Vs
H' K'
Vs stio
T
1] 1 Tt -1
Hvs Kstii (Bug' )
1
tsoo
T
Ki H! - |
tsoi (Hy )
Kl
ttoo T
H' K*
mt tsio
' - \J
Hue  Kesig (Hyo' )
Hmt Ktsio
' 1 t -1
Hot  Keers CHpo' )

Combining Eguations (4.34)

(4.40)

and

the transformed column force-displacement relation-

(4.39)



84

Equation (4.39) relates out-of-plane force and displace-
ment components at slave nodes s and t and in-plane compo-
nents at master nodes v and m, as influenced by the column
connecting nodes s and t. The stiffness submatrices in Equa-
tion (4.39) are inserted directly into the structure stiff-

ness matrix.

4.3 MODELLING OF SHEAR WALLS

In this study, the portion of a shear wall between con-
secutive floors is modelled as a deep column. A typical
shear wall element a-j-b-d-i-c¢ is shown in Figure 4.9. The
stiffness matrix for a deep column is identical to that of a
regular column except for two modifications. Firstly,
shearing deformations, as well as flexural deformations, are
considered when computing .the in-plane displacements of the
wall, Secondly, for out-of-plane displacements, the shear

wall is modelled as a wide beam.

When subjected to flexure, slender beams exhibit antic-
lastic behaviour, with cross-sectional deformations as
illustrated in Fiqure 4.10 (a). Wide beams, on the other
hand, experience anticlastic bending near their edges only,
as illustrated in Figure 4.10 (b). It has been found exper-—
imentally that the consequent increase in the out-of-plane
bending of wide beams can be accounted for by multiplying
the modulus of elasticity by the factor 1/(1-»2), (Timosh-
enko, 1941). Thus the out-of-plane modulus of elasticity can

be expressed as



Figure 4.9 :

Shear wall Element, Showing Force

and Displacement Components at i and b
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Figure 4.10: Beam Deformation Under Bending
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E
E, = —Tr;;—— (4.41)
where,
E, = effective out-of-plane modulus of elasticity
for shear wall element
y = Poisson ratio

As illustrated 1in Figure 4.11, the interaction between
shear walls and the floor panels is provided by inserting
rigid beams at floor levels in bays where shear walls are
located. The rigid beams ensure that the cross-section of
the wall remains plane after deformation, as is implied by
the deep column model. They are assembled into the plate
panel stiffness matrices. This constrains the panel edge
node diplacements and provides shear wall-frame interaction.
The rigid beams are automa£ically assembled into the floor
stiffness matrix in the same manner as regular beams. They

are made rigid by specifying suitably large beam properties.

The local force-deformation relationship for the shear

wall element is

if_ ) (4.42)

T
Mio Mg} (4.43)

o
i}
oty
o
—
—
el
[ s
N
U
w
=
-
—
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is the local force vector

. = . P. .
PJ { P}l j2 %3
is the local force vector
D =

A
¢ il AiZ AiB

is the local displacement

D= a5 a5 ajp
is the local displacement
and
B S1 0 0
0 s2 0
0 0 S4
“ii 0 0 0
0 0 -55
0 S3 0
———51 0 0
0 -52 0
0 0 -S54
Kii =
0 0 0
0 0 -85
0 s3 0
K. = (K. )

for node 1
T

Mjl sz MJ.B} (4.44)
for node j

T (4.45)
eil e12 613 J

vector for node i

T
©j1 ©52 633 } (4.46)

vector for node j
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0 0 0
0 0 0
0 -S5 0
(4.47)
S6 0 0
0 s7 0
0 0 S9
0 0 0
0 0 ~-S3
0 0 S5
(4.48)
-S6 0 0
0 S8 0
0 0 S10
(4.49)
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In the stiffness submatrices
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Two transformations are required to transform the local
system displacement components shown in Figure 4.9 to equiv-
alent global system displacement components at a, b, ¢, and
d, as illustrated in Figure 4.,13. The displacement compo-
nents at i and j, shown in Figure 4.9, are first expressed
in terms of components d shown in Figure 4.12, using the

following relationship

Aj1 0 0 0 0 0 0 + g L ¢
2 2
4, 1 0 0 0 0 0 0 0 0 0 0 O 0 O d,
A5 01 0 0 0 0 0 0 0 0 0 0 0 O d;
8;, 0 0 1t 0 0 0 0 0 0 O 0 O 0 O dq
1 1
e, 0 000 0 0 0 5 0 5 0 0 0 0 ds
6 o0 0 0 0 0 0L o o0 0 0 o de
i3 W W
) X (4.51)

A_}l 0 0 0 0 0 0 0 0 0 0 2— 0 —?: 0 d7 >
Aj2 0 0 0 1t 0 0 0 0 0 0 0 0 0 <d3
Aj3 0O 0 0 0 1 0 c 0 0 0 0 0 O ds
i1 0 0 0 0 0 1 0 0 0 0 O0 0 0 O dio
052 6 0 0.0 0 0 0 0 0 0 O % 0 §~ dy
O3 0 0 0 0 0 00 0 0 o0 =9 1 9 di.
\<]J L W W |

dis

\d14/
or, D = ¢ d (4.52)

The displacements d are, in turn, expressed in terms of
the global displacements D', through D';3 shown in Figure

4.13. In the fiqure, the nodes m and v are the master nodes
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Local Wall Element Displacements
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for the upper and the lower floors,

required transformation is

s
di2 |

dIS
d14

where

null matrix (3x3)

(=]
]

null matrix (2x3)

o
™~
1]

|
[
| 0s | 04
i
[ |
______ -
|
!
0,4 | Oy
l
i
0 l 0
2 | 2
- - -
|
0, | 0.
_—_l.—.__.
l
o | 0,
- - -m - -
|
0, 0

respectively.
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D"z
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D'ya4

D'7
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cosf sinf (Z cosB - X sinB)
(4.54)
N = sinB ~-cosf (z sinB - X cosf)
0 0 1
1 0 0
Q = (4.55)
0 cosf sinf

8 = angle between local and global axes as shown
in Figure 4.14,
X = distance from the master node to the centerline of
the wall in the X} direction.
Z = distance from the master node to the centerline of

the wall in the X} direction.
Equation (4.53) can be written as
d = (i D (4.56)
substituting Equation (4.56) into Equation 4.52
D = C Cg D' (4.57)
Because of the contragrediant nature of displacement and

force transformations, it follows from Equation {4.57) that
P' = Cg C[ P (4.58)

The force-displacement relationship in terms of the global

force and displacement vectors is thus

P' = K' D' (4.59)
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where

N - T T
K = C3 CL K ¢ Cs (4.60)

]

shear wall stiffness matrix expressed
in global system

In Equation (4.60)
K = shear wall local stiffness matrix

Equation (4.59) relates out-of-plane global force and
displacement components at slave nodes a, b, c and d, and
in-plane components at master nodes v and m, as influenced
by shear wall panel a-b-c-d. The shear wall stiffness coef-
ficients can be inserted directly into the structure stiff-

ness matrix.

4.4 MODELLING OF PLATE PANELS

The typical flat-plate panel is assumed to comprise the
portion of a flat-plate floor bounded by the center lines of
the columns at its corners. As i1llustrated in Figure 4,15,
the plate panel model includes also the cross-hatched
regions at the panel corners, that are common to both the
panel and the columns. The latter are outlined by rigid beam
elements on the column center lines and along the plate-to-
column boundaries. The beams on the column center lines are
rigidly connected to columns, and are connected to the plate
by means of nonlinear flexural springs designated FS,

through FSg in the figure. The beams on the column-to-plate
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boundary are connected to the flexural spring and to the
plate element. At the column corners the beams are connected
to each other by ball-and-socket joints. The plate panel is
assumed to be linearly elastic, except for the nonlinear

flexural springs, homogeneous and isotropic.

Four corner nodes and twelve edge nodes are used in
describing the force-displacement relationship for the pan-
el. The edge nodes ensure that compatibility 1is enforced
between adjacent plate panels. This is an improvement over
the earlier work of French, Kabaila and Pulmano (1975) and
that of French et al (1975}, where compatibility was ensured
at the panel corners only. As illustrated in Figure 4,16,
three degrees of freedom are assumed at each node. This
results in a total of 48 degrees of freedom for each flat-

plate panel.

4.4.1 Derivation of Floor Panel Stiffness Matrix

The nonlinear stiffness matrix of the plate panel was
derived numerically as a function of both the column-to-
plate span ratio, C/L, and the flexibilities, SF; through
SFg, corresponding to flexural springs, FS; through FSg,

shown in Figure 4.15,.

The finite element program HYBSLAB was used to model the
flat-plate panel. The program was developed by Hrabok and

Hrudey (1981) for the gravity load analysis of flat-plate
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floors. The plate bending elements used in the program were
derived using the hybrid stress method, which is well suited
to the analysis of flat-plate floor systems (Hrabok, 1981).
The program has the capability of generating in-plane and
plate bending stiffness matrices for a wide range of element
shapes. The latter may vary from a 3-sided element (trian-
gle} to a 6-sided irregular polygon. Some of the possible
element configurations are shown in Figure 4.17. In order to
model the plate panel, a subroutine was added to the finite
element program to calculate and assemble the stiffness
matrices of the beams connecting the column elements to the

plate element.

A convergence test was performed to determine the appro-
priate mesh to be used in the analysis, As illustrated in
Figures 4.18 through 4.22, five different meshes, ranging
from 40 to 420 elements, were tested. Figure 4.23 illus-
trates the convergence of stiffness coefficient Ky, for the
different meshes considered. Similar convergence rates were
observed for other panel stiffness coefficients. The 336
element mesh was chosen as the most appropriate for the

analysis.

The stiffness matrix for the plate panel was derived by
constructing the stiffness matrix for the entire finite ele-
ment array and then condensing off all degrees of freedom
except those for nodes 1 through 16 in Figure 4.21. This

left the forty eight degrees of freedom shown in Figure 4.16
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to describe the force-displacement relationship for the pan-
el. The force-displacement relationship for the 336-element

mesh is described by the following matrix equation.

{P" = Reo Koc R (4.61)
P, Kca K" D:

In Equation (4.61), subscript e denotes degrees of freedom
to be condensed off, and subscript c denotes degrees of

freedom associated with panel edge and corner nodes.

As no loads were applied at the nodes where degrees of free-
dom were to be condensed off, B, = 0. Consequently, in Equa-
tion (4.61)

0 = K,o D, + Ko D, (4.62)
and B = Ke Dy + K, D, (4.63)
From Equation (4.62) '

D, = -Kgd Ko, D, {(4.64)
Substituting Equation (4.64) into Equation (4.63)

E = (K - K, K& K,) D (4.65)
In Equation (4.65), the condensed stiffness matrix, Ky

which relates force and displacement components at the panel

corner and edge nodes is defined as follows.

K, = K - K, K-~ Ke. (4.66)

ce o6

Then, substituting Equation (4.66) into Equation (4.65)
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As illustrated 1in Figure 4.16 the plate local coordinate
system coincides with the global system. Therefore, no
transformation to the global system is required, and the
elements of the plate panel condensed stiffness matrix, Kg,
can be assembled directly into the structure stiffness

matrix.

Because of the large number of degrees of freedom, the
overall stiffness matrix for the pPlate panel is large. Con-
Sequently, conventional storage schemes accounting for the
banded nature of the matrix would have required auxilliary
storage. Therefore, taking advantage of the fact that the
stiffness matrix is sparse, considerable reduction in the
storage requirements was achieved by using a variable column

height storage scheme.

In Equation (4.66), K, is large also. Therefore direct

inversion would have been prohibitively expensive and as a
consequence, row elimination methods were used. A Crout
reduction procedure proposed by Mondkar and Powel (1974) was
used. It has been shown to require a minimum number of
unnecessary operations for sparse matrices, thus saving core
space. The use of the Crout reduction procedure combined
with the variable column height storage scheme permitted the
stiffness matrix to be condensed in core, with no auxiliary

storage reguirement.
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The HYBSLAB program was modified in order to take advan-
tage of the storage and reduction procedures described
above. The output of the modified program was the condensed
48 by 48 stiffness matrix for the plate panel, including the
8 rigid beam elements and the 8 flexural springs at the col-

umns, as shown in Figure 4.16.

Using the modified HYBSLAB program, stiffness matrices
for panel elements with column-to-plate span ratios of 1/8,
1/11, 1/16 and 1/25 were derived numerically as functions of
the eight spring flexibilities, SF; through SFg. The four
column-to-plate-span ratios represent the practical range

normally used in design.

The derived stiffness matrices were made dimensionless
using the method suggesteé by French at al. (1875) ana
described here. Consider a typical 3x3 submatrix of the
panel stiffness matrix which relates the forces at node i to
the displacements at node j. The relationship between the

dimensional and dimensionless submatrices is

Kii k12 kiys k"4 Lk" 2 Lk" 43
h
k21 k22 kaj = — Lk"21 L2k",, L2k",,
L2 (4.67)
kat ksz kag Lk"3y L2k"3, L2k";3
where,
ki; = Dimensional stiffness coefficient

Y relating degrees of freedom i and 3

k" = Dimensionless stiffness coefficient
J . . .
relating degrees of freedom i and 3
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g
|

= flexural rigidity of the flat-plate floor

E t3

12(1-p2)

Once computed, the dimensionless stiffness coefficients
were built into the structural analysis computer program.
Thus, for any plate with a column-to-plate sSpan ratio of
1/8, 1/11, 1/16 or 1/25, when values have been assigned to
the plate span, L, and flexural rigidity, h, the program
computes the dimensional stiffness matrix for the plate pan-

el.

The stiffness matrix for a panel with a column-to-plate
Span ratio other than the ones mentioned above, is evaluated
using Lagrange interpolation. The banel stiffness matrix for
an arbitrary value of the . column-to-plate span ratio of 1/«
is evaluated as follows.

(K] = Cy [Kas) + C, [Kye] + Cs [Ky4] + Cq4 [Ks] (2.68)

a]

where,

(Kq]l = interpolated panel stiffness matrix evaluated
for column-plate span ratio 1/a

[K2s], [K:e), [K,y) and [(Ke]l = panel stiffness
evaluated numerically for column-plate span
ratios of 1/25, 1/16, 1/11, and 1/8
respectively. and

4
(1/a - 1/ai )
c, = i=1,2,3,4
j=1 (1/a - T/% )
J#i
a g =25
agz = 16
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A study was conducted to determine the influence of the
different spring flexibilities on the plate stiffness coef-
ficients. This was done by considering different combina-
tions of spring flexibilities SF;y through SFj. It was
observed that the influence of the spring flexibilities is
localized, the influence of a given spring being negligible
beyond the quarter in which it is located. Thus, for exam-
ple, the stiffness coefficients in quarter I of the plate
shown in Figure 4.24 are influenced mainly by the flexibili-
ties of springs FS, and FS,. Consequently, instead of gen-
erating the stiffness matrix for the entire plate panel as a
function of the eight spring flexibilities, the stiffness
coefficients for only one quarter of the plate were evaluat-
ed as functions of the rflexibilities of the two springs
located in that quarter. Stiffness coefficients for the
other three gquarters were generated by symmetry. Further-
more, due to the symmetry of the plate panel with respect to
its diagonals, only those stiffness coefficients relating
degrees of freedom 1,3,13,14,15,16,17, and 18 to the 48

plate degrees of freedom had to be considered.

It was observed that most of the stiffness coefficients
corresponding to the degrees of freedom in a particular
plate quarter were influenced by the flexibility of only one

of the adjacent springs, while a few were influenced by both
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of them. Thus, for example, for the plate panel shown in
Figure 4.25, stiffness coefficients ksss, ki,s13 and ka, s
were influenced by spring flexibility SFi, while k,,,,
kao,13 and kys,s: were influenced by spring flexibilities

SF, and SF,.

The stiffness coefficients were found to vary exponen-
tially with an increase in the spring flexibilities. There-
fore, exponentially decaying functions were fitted to the
stiffness coefficient values generated from the finite ele-
ment analysis. The function used to fit stiffness coeffi-
cients dependent wupon a single spring flexibility had the
following form.

—(31 SF:)
kj = Fa + (Fy - Fp) e (4.69)

The function wused to fit stiffness coefficients dependent
upon two spring flexibilities had the form

~{a, SF3)

kij = Fs + (Fs - Fs5) e (4.70)

In Equations (4.69) and (4.70),

kU = Stiffness coefficient relating degrees of
freedom i and j
-{a; SF,)
Fs = Fs + (F3 - Fs) e
-{a, SFy)
Fg = F; + (F; - Fy) e
Fi1 = value of k;; when SFy = 0
F, = value of kU wvhen SF; =oo
F3 = value of kij when SF, =oo

Fs = value of kij when SF; = SF, =00
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F; = value of ki; when SF, = SF, = 0

SFy and SF, = flexibilities of flexural springs
FS, and FS, respectively

a1 and a, = constants

The constant a; in Equation (4.69) was evaluated as fol-

lows.
i Fy - F,
ay = —— 1n (4.71)

Equation (4.71) was evaluated for several spring flexibili-
ties and the average value was used 1in Equation (4.69).
Since it is difficult to solve analytically for constants a;
and a; in Equation (4.70), and also since exponentially
decaying functions were found not to be very sensitive to
changes in these constants, they were evaluated using a tri-

al and error procedure.

Typical plots of the variation of stiffness coefficients
with the increase of spring flexibilities, and the functions
used to fit these relationships, are shown in Figqures 4.26 to

4,28,

4.5 ASSEMBLY OF FLOOR STIFFNESS MATRIX

In the structural analysis computer program, the out-of-
plane stiffness of the flat-plate floor is modelled by
assembling the various floor panel stiffness matrices into a

single floor stiffness matrix. The degrees of freedom asso-
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ciated with the panel edge nodes are then condensed off
leaving a reduced stiffness matrix in terms of the column
degrees of freedom only. This condensed floor stiffness
matrix is then assembled into the Structure stiffness
matrix. The coordinate systems for all of the panel ele-
ments, the floors and the entire structure. have identical

orientations. Thus, no transformations are required.

For the nonlinear analysis, as discussed previously, the
stiffness matrices of the plate panels are dependent upon
the flexibility characteristics of their connections to the
supporting columns. Since plate-to-column connection flexi-
bilities vary from one connection to the next, plate panel
stiffness matrices may vary from panel to panel within a
given floor. Therefore, the stiffness matrix for each of the
plate panels in the structure is evaluated before it is
assembled into the structure stiffness matrix. This proce-
dure is repeated for each cycle of iteration in the nonli-

near analysis.

4.6 NONLINEAR ANALYSIS PROCEDURE

The basic premise of the iterative analysis procedure is
that the correct deflections and internal forces for a
structure with nonlinear connections can be obtained from a
single linear analysis, provided the correct stiffness is
assumed for each connection. The procedure thus involves

repeated cycles of an iterative procedure whose purpose is
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to determine appropriate flexibility characteristics for
various connections in the structure. When these character-
istics have been determined with sufficient accuracy, they
are employed in a linear analysis to calculate‘the correct

structural displacements and forces.

Consider a structure with pPlate-to-column connections
having nonlinear moment-rotation functions, as illustrated

in Figure 4.29, of the form
? = g(m) (4.72)

In Equation (4.72), g(m) is a nonlinear function of the
moment acting on the connection. The function is replaced by

a linear relationship of the form .

@ =M/ S, (4,73)

where Sy is the slope of the initial tangent of the M-@
curve. After calculating the initial stiffnesses for all of
the connections in the structure, the stiffness matrices for
all of the plate panels are generated and assembled into the
floor stiffness matrix. Stiffness matrices for all of the
other components of the structure are then generated and
assembled into the overall structure stiffness matrix. A
linear analysis is performed and the moments at all plate-

to-column connections are computed. If the moment at the
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connection originally considered is My, the corresponding

rotational deformation is
@1 = My / S, (4.74)

However, the rotation calculated from the correct nonlinear

relationship of Equation (4.72) is

@7 = g(M,) (4.75)

A better approximation to the moment-rotation functions is

thus

M /S, (4.76)

2
"

where

S, =My / @} (4.77)

as illustrated in Figure 4.29, Equation (4.77) and similar
relationships for all other connections are then used to
calculate the new member force-displacement relationships
and a second linear analysis is performed. The procedure 1is
repeated until the rotations at all connections, calculated
from the 1linear relationships for the current cycle, are
sufficiently close to those given by the appropriate nonli-

near relationship of the form of Equation (4.72).
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The convergence of the above procedure can be hastened by
using only some fraction of the difference between @' and @,
rather than the total difference, when modifying the connec-
tion flexibility. A factor of one half was arbitrarily

employed in this study.

4.7 DESCRIPTION OF PROGRAM

The computer analysis program is written in the FORTRAN H
language. It has 5340 statements. In order to reduce the
storage requirements, a storage pool is used. The program
is implemented using the AMDAHL 470/v8 mainframe computer
System at the University of Manitoba. With minor modifica-~
tions, it can run using any compatible mainframe system. 1In
its current version, it runs in the BATCH mode. Nonlinear
analysis of a ten-storey structure with shear walls, such as
the one described in Example 7 in chapter five, requires
approximately 510 k-bytes of core storage and 59 seconds of

CPU time to run.

The input can be divided into three blocks. The first
describes the geometry of the structure. The second
describes the properties of the structural components such
as columns, plate panels, shear walls and plate-to-column
connections. The third describes the loading. A detailed
description of the required input is presented in Appendix

B.
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The program calculates and outputs the following informa-

tion.

1. An echo of the input data.

2. The floor in-plane displacement components at the
master nodes.

3. The out-of-plane displacements at all floor nodes.

4. The floor plate shears and moments at all nodes.

5. Column shears, moments and axial forces.

6. Shear wall shears, moments and axial forces.

7. Number of iterations required for the analysis to

converge.

It is important to note here that floor shears and

moments are calculated at plate panel corner nodes only.



Chapter Vv
APPLICATIONS AND DISCUSSION

5.1 INTRODUCTION

In this chapter, eight examples are presented to demon-
Strate the capabilities of the analysis procedure and the
computer program. The results obtainegd using the program are
compared with published results. The analysis program is
capable of performing both 1linear and nonlinear analyses.
Examples 1 and 2 illustrate the importance of considering
the nonlinear behaviour of flat-plate structures when they
are subjected to lateral loading. Examples 3 to 6 illustrate
the influence of relevant bhysical parameters on the behav-
iour of a ten storey laterally-loaded flat-plate structure.
The parameters include the plate reinforcement ratio in the
vicinity of the column, the floor concrete strength, the
column—depth—to—plate—span ratio and the plate thickness. In
Example 7, a ten storey structure with shear walls is ana-
lyzed nonlinearly, and in Example 8 a six storey flat-plate
Structure with an unsymmetrical floor plan is analyzed non-

linearly.

- 128 -
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5.2 EXAMPLE 1

The ten-storey flat-plate structure shown in Figure 5.1
was analyzed, first assuming rigid plate-to-column connec-
tions. Accordingly, the entire structure was assumed to
behave linearly. Then the Structure was reanalyzed assuming
the plate-to-column connections to behave nonlinearly. The
lateral loads were applied at the floor levels as shown in
the figure, and it was assumed that no gravity load was act-
ing. For the nonlinear analysis, the reinforcement ratio
was 0.01 and the concrete strength was 30 MPa, values which
would be common in engineering practice. The structure had
been analyzed previously (Chislett, 1983) wusing methods
recommended by several different researchers. They include
the equivalent beam models proposed by Frazer (1983), Peck-
nold (1975) and Long and Kirk (1980), the eguivalent frame
method suggested by the American (ACI 318-83) and the Cana-
dian (CSA A23.3 M83) specifications, the three dimensional
linear analysis program developed by Chislett and Morris
(1983), and the finite element model developed by Pulmano
{1975). Equivalent beam section properties for the various
equivalent beam models are presented in Table 5.1, and sec-
tion properties for the equivalent columns are presented in

Table 5.2,

The lateral drifts computed using the different models
are summarized in Table 5.3 and plotted in Figure 5.2. As

expected, the lateral drifts computed using the nonlinear
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TABLE 5.1

Equivalent Beam Section Properties,

Example 1

Author Interior Beam Edge Beam
Effective J I Effective J 1
width width
{mm) (10% mm+) (10 mm+4) (mm) (10° mm+) (10% mm+)
Long 1830 6.834 1.855 918 3.123 0.89277
Frazer 3553 13.82 3.602 2283 8.671 2.315
Pecknold S612 22.17 5.690 2806 10.79 2.845

LEL



TABLE 5.2

Section Properties For EQuivalent Columns » Example 1

Storey Column J 2 I3 A
Type (10% mm+) (102 mm+) {10® mm+) (10? mmz)
Top Interior 47.0@ 11.21 11.21 S77600
Edge 47.04 11.21 6.72 577600
Corner 47 .04 6.72 6.72 577600
Other Interior 47 .04 13.43 13.43 577600
Storeys Edge 47 .04 13.43 7.46 S77600
Corner 47.04 7.46 7.46 577600

CEL
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TABLE 5.3

Lateral Drifts Obtained from Different Analysis Models

Example 1 {(mm)
STOREY Model

1 2 3 4 5 6 7 8
10 10.6 10.7 11.5 12.3 12.3 14,3 16.6 25.9
9 10.3 10.3 11.2 11.9 11.9 13.7 15.9 24.5
8 9.8 9.8 10.8 11.3 11.2 13.0 15,0 22.7
7 9.0 9.1 10.1 10.4°  10.4 11.9 13,7 20.5
6 8.0 8.1 9,1 9.2 9,2 10.6 2.1 17.9
5 6.8 6.9 7.9 7.8 7.8 8.9 10.1 14,7
4 5.4 5.4 6.5 6.1 6.1 7.0 7.9 11.2
3 3.8 3.8 4.8 4.3 4.3 4.8 . 5.4 7.5
2 2.1 2.2 2.9 2.4 2.4 2,7 2.9 4.0
1 0.7 0.7 1.0 0.7 0.7 0.8 0.9 1.2
0 0.0. 0.0 0.0 0.0: 0.0 0.0 0.0 0.0
- Pulmano
- Pecknolgd

~ CAN 3-A23.3-Ms3

- Chislett and Morris

Linear Frame Analysis (Author)

- Frazer

- Nonlinear Frame Analysis (Author)
- Long and Kirk

W IO U WR) -
|
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method were larger than these obtained using all of the lin-

ear methods except for that developed by Long and Kirk.

To account for the loss of stiffness resulting from the
cracking of the concrete at the plate-to-column connections
due to gravity loading, Long and Kirk recommended using a
very small equivalent beam width of 0.3 times the plate
width. This recommendation was based upon their experimen-
tal program using one third scale reinforced concrete mod-
els. The maximum difference between the drifts obtained
from the nonlinear analysis and those obtained using Long
and Kirk's method was found to be 56%. Long and Kirk sug-
gested a conservative value for the equivalent beam width in
order to emphasize the importance of the effects of concrete
cracking at the plate-to-column boundarigs. That probably
explains the large difference between the drifts obtained by
Long and Kirk and those obtained using the nonlinear analy-

sis program.

Lateral drifts obtained using Frazer's equivalent beam
width were as much as 14% smaller than those obtained using
the nonlinear analysis program, while those obtained using
Pecknold's equivalent beam width were as much as 36% small-
er. Those drifts obtained using the CSA or ACI equivalent

frame methods were as much as 31% smaller.

The lateral drifts obtained using the author's program

assuming linear behaviour and Chislett and Morris' linear



136
analysis program were found to be virtually identical. The
lateral drifts obtained using Pulmano's finite element anal-
ysis were found to be approximately 14% smaller than those
obtained using the author's linear analysis. This is to be
expected since Pulmano's finite element program uses compat-
ible plate elements which normally result in an overestima-

tion of the stiffness of the structure.

All of the equivalent beam methods have the same short-
coming; they assume a single value for the stiffness of the
plate-to-column connections. In reality the stiffness
depends upon several parameters, as discussed previously.
Consequently, equivalent beam methods tend to overestimate
the stiffness of some structures and to underestimate that

of others.

Column shear forces for columns 1 and 6 obtained using
the authors analysis program, the Chislett and Morris (1983)
linear three-dimensional analysis program, and Pulmano's
(1975) finite element program are presented in Table 5.4,
and those for column 1 are plotted in Figure 5.3, Column
moments for columns 1 and 6 obtained using the three methods
of analysis described above, are presented in Table 5.5 and
those for column 1 are plotted in Figure 5.4. It can be seen

that these methods yield very similar column forces.



Column Shear

TABLE 5.4

Forces (kN), Example 1
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Storey

Column 1

Column 6

Linear Chislett Pulmano

Linear Chislett Pulmano

@ W

&2 B )

~-2.20
1.72
3.27
5.19
7.00
8.90
11.35
14.60
19,34
28.76

-1.67 -0.99
1.99 2,52
3.58 4,38
5.46 6.46
7.23 8.45
9.18 10.57
11.49 12.95
14.87 16.07
19.39 20.45
28,77 29.19

7.66

10.65
16.99
22.83
28.81
34,52
39.69
43.59
45,32
40.47

6.69

10.0¢
16.34
22,21
28.22
33.98
39.23
43.23
45.09
40.38

5.48

9.08

14.80
20.26
25.83
31.15
36.26
40.33
42,72
39.39
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TABLE 5.5

Column Bending Moments (kN-m), Example 1

Storey Column 1 Column 6
Linear Chislett Pulmano Linear Chislett Pulmano
10 top 4,05 5.11 5.37 21.13 19.45 16.38
bottom -10.77 -10.21 -8.40 2.23 0.96 0.34
9 top 16,76 17.26 16.27 28.85 28,16 25.08
bottom -11.52 -11.18 -8.59 3.63 2.63 2.61
8 top 21.03 21.68 20.75 41,11 40.23 35.87
bottom -11.07 -10.76 -7.40 10.70 18,10 17.19
7 top 24.63 25.22 24 .50 50.44 49,65 44,60
bottom -8.79 -8.57 -4.80 19.17 18,10 17.19
6 top 26.59 27.15 27.00 58.87 58.12 52.60
bottom -5.24 -5.09 -1,24 29.00 27.96 26.17
5 top 27.13 27.62 28,40 65.21 64,54 59.00
bottom 0.31 0.38 3.84 40.07 39.10 36.02
4 top 25.12 25.50 27.64 67.80 67.21 62.60
bottom 9.50 9,54 11.87 53.26 52.44 48,00
3 top 18.15 18. 34 22.43 62.58 62.06 59.50
bottom 26.38 26.46 26.58 70.36 69.79 63.50
2 top 0.58 0.50 7.16 41,46 40,94 42.10
bottom 58.41 58.64 55.20 96.76 86.57 88.20
1 top -38.28 -38.69 ~29.68 -14,55 -15,07 -8.95
bottom 125.99 126,43 118.70 129,10

137.97 138.24
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5.3  EXAMPLE 2

The ten-storey structure considered in Example 1 was ana-
lyzed nonlinearly under four different lateral loads and
three gravity load levels. The lateral loéds,P, considered
were 20 kN, 40 kN, 80 kN and 100 kN. Low, moderate and high
gravity load levels were considered. The structure was also
analyzed assuming rigid connections between the columns and
the plates under the four lateral loading <conditions. For
the nonlinear analysis, The steel ratio was assumed to be
0.02, the floor concrete strength was 30 MPa, the plate
thickness was 230 mm and the column-depth-to-plate-span

ratio was 1/8.

The roof lateral drifts for the different loading cases
considered are shown in Figure 5.5 and listed in Table 5.6.
It can be seen from the figure that the lateral drifts
obtained from the nonlinear analysis deviate considerably
from those obtained from the linear analysis. The deviation
increases as the lateral load increases. Thus, the ratio of
the roof drifts for the high-gravity-load and the 1linear
analysis cases is 1.24 at a transverse load of 20 kN. At a
transverse load of 100 kN, the ratio has increased to 1.65,
In practice this could mean the difference between consider-
ing the structure to meet the code serviceability require-

ments or not.
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Figure 5.5: Lateral Drifts For Various Loading Conditions,

Example 2



TABLE 5.6
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Structure Drifts Under Various Loading Conditions,

Example 2 (mm}
Lateral load Linear Low Gravity Moderate Gravity High Gravity
(kN) Load Load Loaad
20.0 8 9 10 10
40.0 17 18 21 23
80.0 35 41 46 52
100.0 44 56 61 72
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The level of gravity loading applied to the structure
influences its behaviour under lateral load also. Thus, for
example, 1in Figure 5.5 it can be seen that as the gravity
load level is increased from "low" to "high", while holding
the lateral load constant at 100 kN, the lateral drift
increases by 28 percent. This is due mainly to the cracking
of the concrete at the column face caused by gravity load-
ing. That cracking results in a loss of stiffness at the
connections between the plates and the columns. A wvariation
in gravity load level has virtually no influence on column
end shears and moments due to lateral load. It is important
to recall that in this study, the influence of the gravity
loading was considered for interior plate-to-column connec-
tions only. The influence of the gravity loading on the
stiffness of the overall structure would increase if it were
accounted for in the deriQation of the standardized func-

tions for corner and edge connection types.
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5.4 EXAMPLE 3

In this example, the influence of the plate steel ratio
in the vicinity of the column is demonstrated. The ten-sto-
rey structure shown 1in Figure 5.1 was analfzed assuming
steel ratios at the connections of 0.04, 0.03, 0.02 and
0.01. They represent the practical range used in design.
The structure was assumed to be subjected to lateral loads,
P, of 50 kN, and moderate gravity loading. The concrete
strength was assumed to be 30 MPa, while the plate thickness

was 230 mm and the column—depth—to—plate—span ratio was 1/8,

The lateral drifts for the structure are listed in Table
5.7 and plotted in Figure 5.6. Figure 5.7 shows a plot of
various storey drifts as a function of the floor reinforce-
ment ratio. It can be seen from the figures that the lateral
response of the structure is influenced significantly by the
total amount of reinforcement present at the plate-to-column
connections. It can be seen in Figure 5.6 that there is an
increase in the stiffness of the structure with the increase
of the connection reinforcement ratio until the 1latter
exceeds about 3 percent, after which little stiffness is
gained by increasing the reinforcement ratio. Thus, an
increase in the total steel ratio in the column region from
0.01 to 0.02 resulted in a 19% reduction in the lateral
drift, while an increase from 0.03 to 0.04 resulted in only
a 4% reduction in the lateral drift. This phenomenon has

been observed by Akiyama (1984),



TABLE 5.7

Lateral Drifts For Different Steel Ratios,

146

Example 3 (mm)
Storey Ptotal = Ptop + Pbottom
0.040 0.030 0.020 0.010
_

10 22 23 26 31
9 21 22 25 30
8 20 21 23 28
7 ig 19 22 26
[ 16 17 19 23
5 14 14 16 19
4 11 11 12 15
3 7 8 8 10
2 4 4 4 5

1 1 1 1 1
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Lateral Drifts For Different Reinforcement

Ratios, Example 3
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Column moments for column 6 are plotted in Figure 5.8 for
steel ratios of 0.01 and 0.04. It can be seen from the fig-
ure that the column moments are not very sensitive to varia-

tions in the floor reinforcement ratio.

The program assumes all connections of the same type in a
given floor to have the same steel ratio. This assumption
1s considered to be reasonable for practical design applica-

tions.
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5.5 EXAMPLE 4
This example illustrates the influence of the column-depth-
to-plate-span ratio on the behaviour of a structure. The
structure shown in Figure 5.1 was analyzed - assuming square
column dimensions of 760, 555, 381, and 244 mm, correspond-
ing to column-depth-to-plate-span ratios of 1/8, 1/11, 1/16,
1/25, respectively. These ratios cover the range normally
used in design. The steel ratio was assumed to be 0.02, the
floor concrete strength was 30 MPa, and the plate thickness
was 230 mm, The lateral loads, P, were 50 kN, and moderate

gravity loading was assumed.

The lateral drifts are listed in Table 5.8 and plotted in
Figure 5.9. Figure 5.10 shows a plot of wvarious storey
drifts as a function of the column-depth-to-plate-span
ratio. It can be seen that the lateral behaviour of the
structure was strongly influenced by that parameter. In
this study, the influence of the column-to-plate span ratio
was accounted for in deriving the standardized functions for
the different types of connections, and also in the deriva-
tion of the plate-element stiffness matrix. Therefore, an
increase in the column-depth-to-plate-span ratio increases
the stiffnesses of the plate-to-column connections and also
the stiffness of the floor plate panels. Thus, for example,
an increase in the column-depth-to-plate-span ratio from
1/25 to 1/8 results in a decrease of the roof lateral drift

by a factor of 7.



TABLE 5.8
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Lateral Drifts For Different Column/Plate Span Ratios

Example 4
(mm)
Storey Column / Plate Span Ratio C/L
1/8 1/11 1/16 1/25

10 26 29 63 180
9 25 29 62 178
8 23 28 60 172
7 22 26 57 163
6 19 24 52 150
5 16 21 46 134
4 12 .17 38 113
3 8 12 29 89
2 4 7 18 60
1 1 2 7 28

Supports 0.0 0.0 0.0 0.0
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It is evident from Figure 5.9 that the lateral stiffness

of the structure is very sensitive to changes in the column-
depth-to-plate-span ratio when the floors are relatively
flexible. However, when the floors are stiff, a further
increase in the plate-to-column-ratio produces only a small
increase in lateral stiffness. For example, increasing the
column-depth-to-plate-span ratio from 1/25 to 1/16 resulted
in a reduction of the roof drift of 65 percent, while
increasing the ratio from 1/11 to 1/8 produced only a 13

percent reduction.

Column moments for columns 1 and 6 are plotted in Figure
5.171 for column-depth-to-plate-span ratios of 1/8 and 1/25.
It can be seen that the column moments are extremely sensi-

tive to changes in the ratio.
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5.6 EXAMPLE 5

The influence of floor concrete strength on the behaviour
of the overall structure is demonstrated in this example.
The structure shown in Figure 5.1 was analyzed assuming dif-
ferent floor concrete strengths. The concrete strengths con-
sidered were 20, 25, 30, 35 and 40 MPa, which represent the
practical range of values normally used in design. The rein-
forcement ratio was 0.02, the plate thickness was 230 mm and
the column-to-plate~span ratio was 1/8. The structure was
subjected to a lateral loads, P, of 50 kN and it supported

moderate gravity loads.

The computed lateral drifts are listed in Table 5.9 and
plotted in Figure 5.12. In Figure 5.13, the various storey
drifts are plotted as a function of the floor concrete
strength. The results shoén in Figure 5.12 and 5.13 demon-
strate that the concrete strength has less influence on the
behaviour of the structure than does the steel ratio. The
concrete strength influences the extent and propagation of
the cracks in the column region. Therefore, as it increases,
although only moderately, the stiffness of the connections
and that of the overall structure increases. It was found,
for example, that increasing the floor concrete strength
from 20 to 40 MPa resulted in a 15% reduction in the lateral

drift at the roof level.



TABLE 5.9

Lateral Drifts For Different Floor Concrete

Example 5

(ram)
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Strengths,

Storey Floor Concrete Strength f!
20.00 25.00 30.00 35.00 40.00
10 28 27 26 25 24
9 27 16 25 24 23
8 25 24 23 23 22
7 23 22 22 21 20
6 20 20 19 19 18
5 17 17 16 16 15
4 13 13 12 12 12
3 9 9 8 8 8
2 5 5 4 4 4
1 1 1 1 1 1
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Column moments for column 6 are plotted in Figure 5.14

for concrete strengths 20 and 40 MPa. It can be seen that

the floor concrete strength has 1little effect on the column

moments.
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5.7 EXAMPLE 6

The influence of the thickness of the floor plate on the
behaviour of the structure is illustrated in this example.
The ten-storey structure shown in Figure 5.1 was analyzed
assuhing floor plate thicknesses of 150, 1390, 230, 270, 310
and 350 mm, The plate reinforcement ratio in the vicinity
of the column was 0.02, the floor concrete strength was 30
MPa, and the column-to-plate-span ratio was 1/8. The struc-
ture was assumed to support lateral loads, P, of 50 kN, and

moderate gravity load.

The lateral drifts are listed in Table 5.10 and plotted
in Figure 5.15, Figure 5.16 shows a plot of various storey
drifts as a function of the floor plate thickness, It is
demonstrated in Figures 5.15 and 5.16 that the plate thick-
ness strongly influences £he response of flat-plate struc-
tures to lateral loads. As would be expected, an increase
in the plate thickness causes an increase in its stiffness,
thus a decrease in the lateral drift. The figures illus-
trate as well however, that the thicker the floor plate, the
less sensitive to plate thickness is the lateral drift.
Thus, for the structure considered in this example, increas-
ing the plate thickness from 150 to 190 mm resulted in a 43%
reduction in the roof lateral drift, while increasing the
thickness from 310 to 350 mm resulted in only a 27% reduc-

tion in the drift.
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TABLE 5.10

Lateral Drifts For Different Plate Thicknesses

Example 6 (rum)

Storey F—i Plate Thickness t (mm)
150 180 230 270 310 350
10 76 43 26 16 11 8
S 71 41 25 16 11 8
8 64 38 23 15 10 7
7 57 35 22 14 10 7
6 48 30 19 13 9 6
5 39 25 16 11 7 5
4 28 19 ?2 8 6 4
3 18 12 8 6 4 3
2 9 6 4 3 2 2
1 2 2 1 1 0.9 0.7
Supports 0.0 0.0 0.0 0.0 0.0 0.0
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Column moments for columns 1 and 6 are plotted in Figure
5.17 for plate thicknesses of 150 and 350 mm. It can be seen
from the figure that column moments are sensitive to varia-
tions in the floor plate thickness. Comparison- of fiqures
5.13 and 5.17 illustrates that the influence of column-
depth-to-plate-span ratio on column moments is smaller than

that of plate thickness.
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5.8 EXAMPLE 7

The structure shown in Figure 5.18 was analyzed nonli-
nearly. The lateral loads, P, were applied as shown in the
figure. The steel ratio was 0.02, the column-depth-to-plate-
span ratio was 1/16, the floor concrete strength was 30 MPa,
and the floor thickness was 230 mm. The thickness of the

shear walls was 200 mm and their Poisson's ratio was 0.20.

The lateral drifts obtained for the ten storey structure
with and without shear walls are plotted in Figure 5.19. 1It
can be seen from the figure that the presence of shear walls

reduced the roof lateral drift by 80%.

The total shears in the structure are normally resisted
by both the frame, which comprises the floor plate panels
and the columns, and the shear walls. Shear forces resisted
by the frame and those resisted by the shear walls at dif-
ferent floor levels are plotted in Figure 5.20. It can be
seen from the figure that the shear wall resisted 82 percent
of the total shear forces in the structure. As well, a sud-
den increase in the roof shear forces was observed. This is
a result of the tendency of the frame to restrict the free
deflection of the wall. Similar behaviour has been observed
by Khan and Sbarounis (1964) for multistorey structures with

shear walls,

Numerical comparisons between influence curves proposed

by Khan and Sbarounis and shear forces obtained from the
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author's nonlinear analysis program are difficult to make
for the following reasons. Firstly, the influence curves
proposed by Khan and Sbarounis are for two dimensional
frames, while the author's analysis program assumes a three-
dimensional frame. Secondly, the stiffness parameters for
the structure considered in this example were beyond the

ranges considered in the influence curves proposed.
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5.9 EXAMPLE 8

The six storey structure with an unsymmetrical floor plan
shown in Figure 5.21 was analyzed nonlinearly. The lateral
load distribution is shown in the figure. The loads were
applied as concentrated loads at the master nodes on the
various floors. The steel ratio was 0.015 for interior con-
nections, 0.010 for corner connections, and 0.020 for edge
connections. The column-depth-to-plate-span ratio was 0.08,
the floor concrete strength was 30 MPa and the floor thick-
ness was 200 mm. The square column dimension was 500 mm for
the upper three storeys and 600 mm for the lower three, as
shown in the figure. The master nodes are located at coordi-

nates X'y = 10.5 m and X' = 14.0 m as shown.

Figure 5.22 shows the data input required to describe the
structure. Because of the data generation provisions that
were built into the program, only a relatively small number
of statements were reqguired to describe the structure and

loading.

The lateral drifts 1in the direction of the lateral load
at the master nodes at the various floor levels are plotted
in Figure 5.23. Figqure 5.24 shows the magnitudes of the
rotations of the various floors about a vertical axis. The
original and displaced positions of the roof are illustrated

in Figure 5.25.
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As the lateral loads are applied at the master nodes (X', =
10.5 m) and as the center of resistance for the columns in a
given floor is at X', less than 10.5 m, it is to be expected
that the rotation of the roof would be clockwise, as illus-

trated in Figure 5.24.
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Chapter VI
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

SUMMARY AND CONCLUSIONS

A computer program has been developed for the lateral
load analysis of flat-plate building frames with or
without shear walls. The program 1is capable of per-
forming both linear and nonlinear analyses.

For the nonlinear analysis, all of the structural
components are assumed to be linearly elastic, except
for the connections between the plates and the col-
umns,

Using all availablel experimental data, standardized
functions have been derived to model the.moment—rota—
tion behaviour of floor-plate-to-column connections.
The functions are expressed in terms of the geometric
and material parameters that influence most strongly
the behaviour of the connections. Once the standard-
ized functions had been derived, the parameters for
each of the test specimens on which they were based
were back substituted to check the acccuracy of the
standardization procedure. For most of the test spec-
imens there was good agreement between the experimen-

tal data and the "reconstructed" moment-rotation

- 181 -
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data. The maximum percentage difference between pre-
dicted and experimental values was smaller than 20Y%
for all of the connections considered. Even though
this might be considered only a crude estimation of
the actual connection behaviour, it is asserted that
it provides a more realistic approximation than the
commonly used assumption of rigid connections.
Nonlinear stiffness matrices have been determined
numerically to model the out-of-plane stiffnesses of
flat-plate floors. The stiffness coefficients were
derived as functions of both the flexibilities of the
plate-to-column connections and the column-depth-to-
plate-span ratio.

Examples have been presented to illustrate the influ-
ence of several parameters on the behaviour of rein-
forced concrete flat plate structures. The parameters
included the gravity load level, the column-depth-to-
plate-span ratio, the total floor steel ratio in the
vicinity of the column, the floor concrete strength,
and the floor plate thickness.

An example has been presented in which several models
were compared with the author's procedure. The lat-
eral drifts obtained using the author's nonlinear
analysis were found to be about 28% larger than those
drifts obtained using most of the linear methods of
analysis. Lateral drifts obtained using Long and

Kirk's recommendations were found to be 56% larger
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than those obtained using the nonlinear analysis. The
latter authors ‘"calibrated" their 1linear analysis
procedure to account approximately for the effects of
cracking at the plate-to-column connections.

Using the CSA A23.3-M84 equivalent frame method to
analyze flat plate structures subjected to lateral
load can result in gross overestimation of the stiff-
ness of the structure. Therefore, it 1is strongly
recommended that this method not be used for lateral
load analyses. This confirms observations made by
Allen and Darvall (1977) and Elias angd Geogiadis

(1978).

RECOMMENDATIONS FOR FURTHER STUDIES

The primary purpose of the present study was to
develop the methodology for accounting for the nonli-
near connection behaviour in the lateral load analy-
sis of flat-plate structures. The accuracy of the
analysis procedure depends primarily upon the experi-
mental data used in deriving the standardized moment-
rotation functions. As experimental data at present
are limited, more experimental research is needed to
determine the influence of the various geometric and
material parameters on the moment-rotation behaviour.
In particular more research 1is needed on edge and

corner connections.
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In this study, only square flat-plate floor panels
and columns of square cross-section were considered.
The program should be extended to model rectangular
panels and columns.
The program considers only static lateral loads.
Provisions should be added to allow for dynamic load-
ing.
At present, the computer program calculates shears
and moments in the floor plates at the column nodes
only. A procedure to determine the actions in the
flat plate floors at other points should be incorpo-
rated.
The effect of gravity loading has not been adequately
accounted for. No provision has been made to account
for loading on one side of the column, and unloading
on the other side when transverse loading is superim-
posed on gravity loading. It is recommended that more
experimental research be carried out to study this
behaviour, and provisions to account for this behav-
iour should be added to the computer analysis pro-
gram, 1in order to correctly account for the gravity

loading effects on the analysis.
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~ Appendix A
PLATE-TO-COLUMN CONNECTIdN MOMENT-ROTATION
CURVES
In this appendix, moment-rotation curves are presented
for the plate-column connection specimens used in the deri-
vation of the standardized functions. The experimental
curves were obtained directly from curves provided by the
original authors. The applied moments were then normalized

as follows

£! L t2

Where,

= normalized applied moment

2
i

rh
n.
]

concrete 28 day compressive strength

e
!

= plate panel breadth

of
it

plate thickness

The predicted moment-rotation curve for a particular con-
nection is obtained by substituting the connection parame-
ters into the appropriate standardized moment-rotation func-

tion.
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Appendix B
COMPUTER PROGRAM USER'S MANUAL

B.1 DESCRIPTION OF PROGRAM

The computer analysis program presented here 1is capable
of performing nonlinear or linearly elastic analysis of lat-
erally loaded flat-plate structures. Column, floor panel and
shear wall elements are used to model the structure. To
reduce the task of preparing input, simplified formatting is

used. Data generation is incorporated wherever possible.

B.2 FORMAT FOR INPUT

With the exception of the.title record, all data are entered
in ten-column fields. No distinction between real and inte-
ger numbers is required. Data may appear anywhere within the
field. When SI units are used, member section properties
tend to be large. To accommodate these large numbers, the
FORTRAN 'E' format may be used. For example, 1if a column
has a St. Venant torsion constant of 700.x10% mm%, this may
be entered as 700 E6. The 'E' format can be used for input-

ing section properties only.

In the text below, defaults indicate the values which the
program assigns to the variables if they are not specified

in the input data.
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B.3 DESCRIPTION OF THE STRUCTURE

The geometry of the structure is described by the global
coordinate system X';, X',, X'3. The X', axis is vertical;
the X';-X'3; plane (X',=0.0) 1is horizontal and contains the

structure supports.

The storeys, floors and all' the structural elements are
numbered from the roof down. Nodes, floor panels and shear
walls are input for the roof only. The program generates the
nodes and element incidences for all floors below the roof.
The program also generates all column incidences from the
node data. Figure B.1 shows a typical structure and floor

plan.

B.4 INPUT DATA

I) Title Record
80 alpha-numeric characters to be printed as a title over

the program output

Field Variable
1 NCL

2 NST

3 EE

4 GG

5 UNITS

6 ANALT
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Figure B.1: Typical Flat-Plate Structure



NCL =

NST =

EE =

GG =

UNITS

ANALT

Defaults

228

number of columns per storey

number of storeys

modulus of elasticity for columns (GPa or ksi)
shear modulus for columns {(GPa or ksi)

system of measurement. If 'BR' appears in

field 5, then British units are used. Otherwise
the international system of units is used (SI)
type of analysis used. If 'NONLINEAR' appears
in field 6, then nonlinear analysis is

performed. Otherwise linear analysis is performed.

200,000 GPa or 29,000 ksi

III) Storey Data

1)

EE =
GG = 80,000 GPa or 12,000 ksi
ANALT = LINEAR
Field Variable
1 NSCPF
2 NPPF
3 NSWPS
4 MNODE 1

5 MNODE 2



NSCPF =

NPPF = number of floor panel
NSWPS = number of shear wall
MNODE1 = global X', coordinate
MNODE2 = global X'; coordinate
NOTES

1)  The master nodes are usually

the floor plan.

IV) Nodal Data
1) Field Variable
1 J
2 X
3 yA
4 KX
5 KZ
6 SX
7 ¥4
J = node number
X = global X', coordinate of
Z = global X'; coordinate of
KX = number of bays generated
KZ = number of bays generated

230

number of plate-to-column connections per floor

elements per floor
elements per storey
of master nodes (m or feet)

of master nodes (m or feet)

located near the center of

node J {m or feet)
node J {(m or feet)
in global X', direction

in global X'; direction
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SX = bay span length in global X', direction (m or feet)
SZ = bay span length in global X'y direction (m or feet)
DEFAULTS

KX = 0

KZ = 0

i.e., only node j is input

NOTES

1)} Only the roof nodes are input. Floors below the roof are

generated by the program.

2) Nodes are numbered from the roof down. All nodes in a
given floor are numbered consecutively. The number of nodes
at each floor level is equal to the number of columns per

floor plus one master node.

3) By specifying KX, KZ, SX, and SZ, a grid of nodes may be
generated as follows. The first node created is node 'J' and
is located at the point (X',,X';). Additional nodes are gen-
erated along a line parallel to the global X', axis until
'KX' bays are formed, each with a span of 'SX'. If 'KZ' is
greater than zero, a new line of nodes is created, parallel
to the global X'; axis and spaced 'SX' from the first line.
This continues until 'KZ' bays are formed in the X'3 direc-

tion.
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EXAMPLE

Suppose the structure being analyzed has the floor plan
shown in Figure B.2. The grid is generated by the following

records:

1 0 0 4 3 7.5 7.5
21 15 30 2 1 7.5 7.5

The program numbers the nodes as shown. Nodes 1 through
20 are generated by the first record; the rest by the second
record. In this case there are 27 nodes per floor (26 nodes
+ 1 master node). Note that the master node location has

already been specified and is not to be input here.

V) Storey Heights

Field Variable
1 DHE
2 KS
DHE = storey heights (m or feet)
KS = number of storeys to be generated
DEFAULTS
RS = 1
NOTES

1) Values are entered in order from the roof down.
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EXAMPLE

The following

records generated the storey heights

structure show in Figure B.3:

VI) Column Data

1) Heading Record

Field
1
2

COLUMNS

]

NCP

2) Section Pr

One record

increasing pr

Field
1
2

Variable
' COLUMNS'

NCP

label placed in field 1

number of column section property types

operty Records

for each section type,

operty number

Variable
JX1
I1X2
I1X3

A

C

entered in

234

for the

order of
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JX1 = St. Venant torsion constant (mm? or inch?)

IX2 = second moment of area about the local X, axis
(mm* or inch#)

IX3 = second moment of area about the local X3 axis
(mm* or inch?*)

A = cross-sectional area (mm2 or inch2)

C = sqguare column width {mm or inch)

3) Column Section Types
- use as many records as necessary

- omit this section if NCP=1

Field Variable
1 icC
2 ICP
3 NCG
4 INCR
IC = column number
ICP = section type
NCG = number of columns generated
INCR = column increment
DEFAULTS
Icp =1
NCG = 1

]
—r

INCR
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NOTES

1) The column size is the average of the width and the depth

of the column cross-section.

2) The program automatically numbers the columns and calcu-
lates their node incidences. Column I of storey J has upper
and lower incidences U and L respectively where

L

J* (NCL+1)+1

U L-{NCL+1)

Columns are numbered from the roof down, all columns on a

given floor being numbered consecutively.

VII) Floor Data

Omit this section if no panel elements are required.

1) Heading Record

Field Variable
1 'FLOOR'
2 NFP
3 NFG
FLOOR = label to be placed in field 1
NFP = number of floor property types
NFG = number of floor groups
DEFAULTS
NFpP = 1

NFG = 1
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2) Floor Property Records
- One record for each floor property type, entered in
order
of increasing property type
Field Variable
1 t
2 E
3
4 £l

floor thickness (mm or feet)

ct
]

=
1]

modulus of elasticity for floor (GPa or ksi)

Poisson ratio for floor

<
It

-t
n-
[}

floor concrete strength (MPa or ksi)

DEFAULTS

E 28 GPa or 4000 ksi

v 0.20

£ = 30 MPa or 4 ksi

3) Panel Incidence Records

Field Variable
1 IPNL
2 A
3 B
4 C
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6 NPG

7 INCR

IPNL = panel number
A = node a
B = node b
C = node c
D = node d
NPG = number of panels generated
INCR = node increment
DEFAULTS
NPG = 1
INCR = 1

4) Floor Property Records

- Omit this section if NFG=1

Field Variable

1 IFLR

2 IFP

3 IFG

4 NFLG
IFLR = floor number
IFP = floor property type
IFG = floor group number
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NFLG = number of floors generated

DEFAULT

H
—h

IFP

1t
e

IFG

]
—h

NFLG

NOTES

1} ©Only the elements on the roof are to be input. Elements

in the lower floors are generated automatically.

2) Panels should be numbered in the direction of the build-
ing which has the fewest bays in order to minimize storage

requirements.

3) When inputing the panel incidences, the nodes must be
chosen so that the local coordinate system has the same ori-

entation as the global system (Figure B.4).

4) Generally, the size of columns in a building increases in
size from the roof down as the column loads increase. How-
ever, the size of columns may be constant over a number of
storeys. Whenever the column-depth-to-plate-span ratio is
the same or approximately the same, these floors should be
grouped together. The program will calculate an average col-
umn-depth-to-plate-span ratio to be used for all panel ele-
ments in the floor group. This will reduce both run times

and costs.
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5) All floors in a given floor group must have the same

floor properties.

6) Floor groups are numbered consecutively from the roof

down.

EXAMPLE
The following records generate the panels for the struc-

ture shown in Figure B.5:

1 1 5 6 2 3 1
4 5 9 10 6 3 1
7 9 13 14 10 3 1
10 13 17 18 14 3 1

Note that the panels are numbered in the direction of the

fewest panels.

VIII) Shear wall Data

- Omit this section if no shear walls are used

1) Heading Record

Field Variable
1 '"WALLS'
2 NSWP
WALLS = label placed in Field 1
NSWP = number of shear wall property types
DEFAULTS

NSWP = 1



12 16 20
(3) (6) (9) (12)

3 7 1 15 19
(2) (5) (8) (1)

2 6 10 14 18
(1) (4) (7) (10)

1 5 9 13 17

X3
Figure B.5: Roof Joint Numbering

£V



2) Shear Wall Property Records
One record for each property type,

increasing property type

entered
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in order of

Field Variable
1 t
2 E
3 v
t = shear wall thickness {mm or inch)
E = modulus of elasticity for shear wall {(mm? or inch%)
Yy = Poisson ratio for shear wall
DEFAULTS
E = 28 GPa or 4000 ksi
v = 0.2

3} Shear Wall Incidence Records

Field Variable
1 A
2 B
A = node a
B = node b

4) Shear Wall Property Numbers
- Omit this section if NSWP = 1
Field Variable

1 Iw
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2 ISwp
3 NWG
4 INCR
IW = shear wall number
ISWP = property number
NWG = number of shear walls generated
INCR = shear wall increment
DEFAULTS
ISWP = 1
NWG = 1
INCR = 1
NOTES

1} Shear walls are input for the top storey only. Walls in

lower storeys are generated by the program.

2) shear walls are numbered from roof down; walls in a given
floor are numbered consecutively in the same order as they

are input.

3) The local coordinate system for a typical shear wall is

shown in Figure B.6.

I1X) Load Data

1} Heading Record
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%3

Xy axis is vertical

/{//G:;// Wall lies in x; - x, plane

Figure B.6: Shear Wall Local Coordinate System
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Field Variable

1 'LOADS'

LOADS = label placed in Field 1

2) Load Description Records

2 records per loaded node

A) Location Record
Field Variable
1 NODE
2 NG

3 INCR

NODE node number

NG

number of nodes generated

It

INCR node increment

DEFAULTS
If NG £ 1 and INCR=0; NG=1, INCR=1

If NG > 1 and INCR=0; INCR=NCL+1

B) Load Compobnents

Field Variable
1 PX
2 PY
3 PZ
4 MX
5 MY
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PX, PY, PZ = concentrated loads in global X'y, X'2, X';
directions respectively (kN or kips)
MX, MY, MZ = moment about the global X'y, X';, X'; axes
respectively (kN-m or foot-kips)
NOTES

1) A node may be referenced more than once to describe the

loads at that node.

2) Loads placed on master nodes must not have any PY, MX or

MZ components.

3) Loads are positive in the positive global directions. The

right hand rule applies to all moments and rotations.

X) Plate-To-Column Connection Data

- Omit this section if the analysis is linear

1) Heading Record

" Field Variable
1 'CONNECTIONS'
CONNECTIONS = label placed in Field 1

2) Connection Property Records

- use as many records as necessary

Field Variable

1 NFG



ROI
ROE
ROC

IGLL

NEG = number of floors to be generated
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reinforcement ratio for interior plate-to-column

connections

reinforcement ratio for edge plate-to-column

connections

reinforcement ratio for corner plate-to-column

connections

gravity load level. For low gravity load level

IGLL=1 for moderate gravity load level IGLL=2,

and for high gravity load level IGLL=3.

ROI =
ROE =
ROC =
IGLL =
DEFAULTS
NFG
ROI
ROE
RCC
IGLL
NOTES
1) The

Bottom) .

]

0.01
0.01
0.01

total reinforcement ratio

should be used

(top and
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2) All connections of the same type have the same reinforce-

ment ratio in a given floor.

XI) Program Mode
Field Variable

1 PROGRAM MODE

1f the word 'SOLVE' is placed in field 1, the program
determines the node displacements and element end forces. If
the word 'CHECK' is found or if the field is 1left blank,
only the input data is generated. Thus the program can be
run at high priority in the 'CHECK' mode until the input
data has been debugged. It then can be run at low priority

in the 'SOLVE' mode, resulting in significant savings.



Appendix C
TYPICAL PLATE PANEL STIFFNESS COEFFICIENTS

Table C.1 lists the expressions developed to describe
floor plate panel stiffness coefficients Ky,, through K,
for column-depth-to-plate-span ratio of 1/8. It can be seen
that some of the stiffness coefficients are influenced by
one spring flexibility while others are influenced by two
spring flexibilities. Similar expressions have been devel-
oped for all other stiffness coefficients of the plate pan-

el.

It can be seen from Table C.1 that all stiffness coeffi-
cients relating degrees of . freedom in different quarters of
the plate panel, K:g,2 for instance, are independant of the
eight spring flexibilities FS,; through FSy and therefore are
constant. The degrees of freedom I and J referred to in

Table C.1 are illustrated in Figure 4.16.
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Expressions Used For Stiffness Coefficients K,

TABL

E C.1
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I J EXPRESSION
1 2 ~29.0 - 18.69 EXP(-1400 FS;)
2 2 5.73 + 4.09 EXP{-2000 FS;)

3 2 -1.73 - 0.486 [EXP(-2000 FS,) + EXP(-2000 FS,)]
4 2 0.01629

5 2 -0.0003

6 2 ~-0.00006

7 2 0.0071

8 2 0.00003

9 2 -0.00005

10 2 -0.0229

11 2 -0.00064

12 2 0.00006

13 2 17.85 + 16.95 EXP(-1800 FS,)
14 2 0.580 + 0.500 EXP(-1800 FS,)
15 2 0.511 + 0.321 EXP(-1800 FS,)
16 2 -0.111 - 0.063 EXP(-1700 FS,)
17 2 -0.042 - 0.023 EXP(-1700 FS,)
18 2 -0.012 - 0.013 EXP(~-1700 FSy)
19 2 0.0456

20 2 0.0011

21 2 0.0029

22 2 0.0037

23 2 0.0013




Table C.1 continued
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I J EXPRESSION
24 2 -0.00010

25 2 0.0089

26 2 0.0019

27 2 0.000

28 2 -0.0096

29 2 0.00071

30 2 0.00014

31 2 0.0094

32 2 0.00008

33 2 -0.0019

34 2 0.0127

35 2 0.00001

36 2 -0.0024

37 2 -0.0018

38 2 -0.00021

39 2 -0.00069

40 2 7.24 + 3.42 EXP(-1500 FS,)

41 2 ~0.399 - 0.049 [EXP(-1800 FS,) + EXP(-1800 FS,)]
42 2 -0.140 - 0.102 [EXP(-1500 FS,) + EXP{-1500 FS,)]
43 2 —-0.540 - 0.126 EXP(-1500 FS,)

44 2 -0.0039 - 0.002 [EXP(-1300 FS,) + EXP(-1300 FS,)]
45 2 0.245 + 0.005 [EXP(-1400 FS{) + EXP(-1400 FS,)]
46 2 0.0061

47 2 -0.0035

48 2 0.00051




