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ÀBSTRÀCT

Flat-prate structures tend to experience excessive drifts
when subjected to lateral Loads. This is due mainly to the
nonlinear deformations at the plate_to_column connections.
Most of the analysis methods available today do not account
for these deformations. Therefore they tend to underesti_
male the Iateral drifts. Several modeLs have been developed
to predict the nonlinear behaviour of this type of struc_
ture. However they are too complex to be incorporated into a

rout ine structural analysis program.

In this sludy, a simple-to-use computer program is deveL_
oped for analyzing lateraJ.ly-loaded flat_p1ate structures,
with or without shear waIIs. The nonlinear moment_rotation
behaviour at the pr-a te - to-coL umn connections is accounted
for by incorporating standardized moment_rotation functions
into the computer program. The functions are derived using
available experimental data and a modified Ramberg_Osgood

function. Several examples are included to demonstrate the
capabilities of the program and to compare the results
obtained from the nonlinear analysis with results published
in the Literature.
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NOMENCLÀN'RE

À = cross-sectional a rea

aj = dimensionless exponent which indicates thelntLuence of the jth connection parameteron t.he moment-rotat ion relationsirip
Bi = width of interior pLate strip
Bi = interior equivalent beam ì{idth
Be = width of edge plate strip
B"' = edge equivalent beam width
C = square column dimension

Cl rCz = constants used-in evaluating LagrangeCs,C¿ interpotation function
D = vector of local end dispLacements
E = rnodulus of elasticity
f.¿ = concrete 28 day compressive strength
G = shear modulus

h = flexural rigidity of flat-plate floor
= u t'

12 (t - rz¡
H' = translation transformation matrix
I ¡ = second moment of area about the local

X 1 ax i s

12 = second moment of area about the localX2 axis
13 = second moment of area about the local.X3 axis
J = St. venant torsion constant
k,¡ = :tiffness coefficients relating degrees offreedom i and j
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Ko = stiffness matrix corresponding to
column-depth-to-plate-span rat io = 1/a

Kp = panel condensed stiffness matrix
' K = stiffness matrix of a slructural component
. uxpressed in local system

. x' = stiffness matrix of a structural component,expressed in the global system

tr = plate span parallel to the applied moment

L2 = plate span normal to the applied moment

L = sguare plate panel span

L¡ = storey he i ght

. Ls = distance from center of column to location
, of concenlrated gravity load

Ls = span of. specimens used in testing plate_column
c onnec t ions

Ms = gravity-load moment at the column face

. M = moment due to lateral loading
, ¡,f' = normalized moment due to lateral J.oading

, Mc = plate cracking moment at the column face
:; m = number of connection parameters considered in; deriving the standardized moment_rotation
I. functions

p, = numerical value of paramenter p for connection j
P = force vector expressed in 1ocal system

= force vector expressed in global system
:

: S = rigidity ratio of the spring at beam end b
j R = rotational transformation matrix

: r = factor that scales the ordinates on thestandardized moment-rotation curve, according

. ;:':l:i:':"oendence 
upon the conneétion

SF = flexibility of flexural spring
Så = flexural spring stiffness at beam end a

- viii -



Sb = flexural spring stiffness at beam end b

t = plate totaL thickness
tw = shear walL total thickness
T = translation transformation matrix
9¡ = shear wall widt.h

ß = angle between l-ocal and global axes

v = Poisson ratio
ø = plate-to-coLumn connection rotation
øc = portion of pJ.ate-to-col.umn connection rotation

caused by column deformation

ø. = portion of plate-to-column connection rotation
caused by spring rotation

p = plate steel ratio in the immediate
vicinity of the column

p, = sum of plate top and bottom steel ratios in the' column immediate vicinity
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Chapter I
INTRODUCTION

1 .1 NÀTT'RE oF rHE PRoBLEttI

A flat-plate concrete f rarne is a structure composed of col_
umns and flat-plate floors r¡ithout drop panels, beams or
column capitals as illustrated in Figure 1.1. In some cases
the structure may incorporate shear waIIs, as iJ.lustrated in
Figure 1.2. The flat plate frame has several advantages for
multistorey residential and office buildings. It requires
only relatively simple and repetitive formwork, thus mini_
mizing construction costs. The absence of beams minimizes
the overalL depth of structural components, thus facilitat_
ing the installation of mechanical and electrical services.
Columns can be easily incorporated into the walls, so it is
easy to make the finat structure aesthetically pleasing.
Finarly, the rectangurar grid of columns is werr suit,ed to
of f ice and residential requirements.

The resistance of this type of structure to lateral loads
is normarly provided by the combination of the three-dimen-
sional frame, composed of the flat-plate floors and the sup_
porÈing columns, and shear wal1s. It has been observed that
whil.e they possess sufficient st.rength to resist lateral
Ioads, reinforced-concrete flat-p1ate frames sometimes tend



(a) z-way slsb tv¡th b€ams

. .(b) 2-way stab without b6amc(qrop panels and column capitals)

(c) 2-way slab w¡thout beams
(ftat ptate)

Figure 1,1: Types of Trro-Way SLab SysÈerns
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Figure 1.2: Typical FlaÈ-plate structure t¡ith shear t.taII
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to experience excessive Ìateral drift. À large proportion of
the drift is associated with deformations in the plate imme_

diatery adjacent to the corumns. These deformations resurt
primarily from cracking of the concrete and bond slip of the
reinforcement, and t,hey cause the structure to behave non_

linearly starting at Io!, stages of ).oading. In this study,
the junction betvreen a column and a flat-plate floor will be

referred to as a "pÌate-to-coLumn connection", and the
deformations referred to above wiIl be assumed to be concen_

trated at the connections.

Several linear, elastic models have been developed to
analyze the load-dispLacement behaviour of flat-plale struc_
tures under lateral load. The results obtained using these
models have been found to vary considerably depending upon

the model. used and the parameters considered. In general,
the Iinear models do not represent the true behaviour oi t¡.
structure, and in some instances they produce results that
are not conservative. Thus, there is an apparent need for a

rational, simpLe-to-use model that can account for the non_

linear behaviour at the plate-to-column connections. The

difficuJ-ty in developing such a model stems from the mathe_

matical complexities involved when dealing with p).ate equa_

tions, especially for support conditions which realistically
approximate nultipanel f loor plates.



1.2 scoPE ÀND oBi'EcTIvEs

The current practice when designing flat_plate structures
is to perform separate analyses for gravity loading and lat_
eral loading, and to design for appropriate combinations of
the internal forces computed in the analyses. The gravity_
load analysis of frat-pIate froors has been studied exten-
sively. Ànalysis procedures have been incorporated into
design specifications (cse A23.3_Mg4) and (Àcr 318_g4).
Efficient finite element computer programs are available to
perform the gravity-load analysis of f J.at_plate floor sys_
tems (Hrabok and Hrudy , 1 9g 1 ) .

On the other hand, the LaLeral--load anaJ.ysis of fLat_
plate building structures has received relatively little
attention. ÀvaiLable computer programs for performing Iat_
eral-load analysis assume rinear Load-deformation behaviour,
even though nonLinear behaviour begins at the plate_to_col_
umn connections at low load levels. ConsequentLy, the objec_
tive of this study was to develop an economical, easy_to_use
computer program ¡+hich accounts for the nonlinear moment_ro_

tation behaviour at the plate-lo-coLumn connections when

anal.yzing laterally loaded flat-plate structures.

The program performs nonlinear Iateral_l.oad anatysis
only; iL cannot be used for gravity-Ioad analysis. Thus, in
accordance with the current state of practice, it is antici_
pated that the program wiLl be used in con juncti.on with a
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gravity-Ioad analysis program, when designing flat_plate
building structures. It is recognized that because the IaL_
erar-1oad anarysis prograrn accounts for the nonrinear behav-
iour, results obtained from it theoretically cannot be

superimposed onto those obtained from a gravity_load analy_
sis program. Nonetheless, it is asserted that the use of a

nonlinear lateral-Ioad analysis program in the manner

described here represents an improvement over a strictly
Linear analysis. It is a necessary stèp toi¡ard the develop_
ment of a program to perform the nonlinear analysis of flat_
plate structures under combined gravity and lateral loading.

The development of the nonlinear Lateral_Ioad analysis
program occured in three phases. The first involved the
moderling of the nonrinear moment-rotation behaviour of the
plate-to-column connections at an interior column, at an

edge column, and at a corner column. For each connection
type, simple, normalized expressions were derived as func_
tions of the geometric and material parameters that inftu_
ence most strongly the connection moment-rotation behaviour.
The expressions were derived using a modified Ramberg_Osgood

function and calibrated using all availabLe experimental
results.

The normal ized functions
puter program. The Iatter
and mater ia1 parameters for
the normalized funct ion for

r{ere incorporated into the com-

reads the appropr iate geometric

any given connection, selects
the connection type specified,
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and substitutes the parameters to generate the specifíc,
dimensionaL moment-rotation function for the connection.
This procedure has the advantage that connection moment-ro-
tation behaviour can be incorporated into the structural
analysis computer program wíthout having to store moment-ro-
tation data for a rarge number of connections with different
geometric and material parameters.

The second phase involved the development of a procedure
for modelling the flat-plate floor pane).s, which accounts
for the nonlinear noment-rotation behaviour at the plate_to_
column connections. As illustrated in Figure 1.3, the flat_
plate floor is subdivided into interior, edge and corner
panei.s. Only square panels supported on square columns are
considered in this study. The plate panel is assumed to be
linearly elastic, homogenous, and isotropic, the nonlinear
moment-rotation behaviour being concentrated in the p).ate_
to-column "connections". Às ilLustrated in Figure 1.4, the
plate panels are connected to the supporting column el-ements
by rigid beam elements, each of nhich has a nonlinear
flexural spring at the end connected t.o the flat_plate and a

rigid connect.ion at the column. The beam eLements are used
to simulate the column cross-section, which is assumed to
remain plane and normal to the column axis. They therefore
account for the influence of the cross_sectional dimensions
of the column on the stiffness of the plate elemenl. The

flexural springs have nonlinear moment-rotation characÈeris-



Figure 1.3: Typical Flåt-pLate Fl.oor



Plate panel

Rigid bearn

Co ltÜnn element
(Line elernent )

Figure 1.4: Model of the pLate_coLumn connection



tics identical to those

which they modeI.
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of the plate-to-column connect ions,

The third and final phase of the study involved the
incorporation of the features described above into a comput_
er program to perform the nonrinear ana].ysis of a three-di-
mensionaL reinforced-concrete flat-plate structure with or
r{ithout shearwalrs- The nonrinear anarysis involves repeated
cycles of linear analyses to determine the appropriate
secant flexibility characteristics for the various plate_to_
column connections. The final Iinear analysis, ernploying the
appropriate connection secant frexibirities, yierds the cor-
rect structural displacements and forces. The advantage of
lhis analysis procedure is the saving realized in running
costs and storage requirements. In developing the program,
extensive data generation capabilities were incorporated to
reduce the amount of data preparation required.

1.3 ASSUHPTIONS AND LIMITÀTIONS

À number of assumptions were made when developing the com_
puter analysis program. The assumptions, and the consequen!
linitations on the use of the program foLlow.

1. À11 of the structural elenents are linearly elastic
except for the flexural springs that connect the
rigid beam elements to the plate elements.

2. The plate elements are IinearLy elastic, homogeneous,

and isotropic everywhere.



3.

4.

5.

6.

'II

ÀLl of the floors in the structure have identical
plan geometries and dimensions.

The floor plates provide rigiil in-plane diaphram
action.
Lateral loads are applied at floor levels only.
Only sguare plate panels supported by square col-umns

are considered. This was done for trro reasons. The

first is that most flat-plate structures have square,
or nearly square, plat.e paneLs. The second is that
the effort required to develop the program, and the
program storage requirements, would both increase
dranatically if more than one plale paneJ. aspect
ratio were to be incorporated. It is suggested that
it would be appropriate to use the program to anal,yze
structures with approximately square floor panels.
OnLy static lateral loading is considered.
Ai.I floor panels have the same thickness and rein_
forcement ratios in the two ort.hogonal directions.
Àll connections of the same type have lhe sa¡ne rein_
f orcernenh ratios in a given floor. The ratios may

vary from floor to floor.
À11 colunns in a given storey have the same cross_
sectional dimensions. However, the column sizes may

vary from storey to storey.

7.

8.

a



12
1.4 ORGÀNIZÀTION OF REPORT

This report is divided into six chapters. A brief summary of
their content is presented in this section.

The first chapter provides an introduction to the problern
and a general description of the method used and the
assumptions made in the solution.

In the second chapter, a review of the r-iterature rele-
vanÈ to the analysis of flat_plate structures is presented.
The chapter is divided into t.r{o sections. The first deals
with the general. methods used to analyze flat._p1ate struc_
tures. The second deals with the nonlinear models that have
been developed to predict the moment_rotation behaviour of
plate-to-column connections.

Chapter three deals wi,th the modelling of the plate_to_
column moment-rotation behaviour. The various parameters
that influence the behaviour of the plate_to_column connec_
tions are discussed. Then, the standardization procedure
used to model the nonlinear moment_rotation behaviour of the
connections is described. Finally, a description of the
physical model of the connection is presented

In chapter four, the nodetling of the various structural
cornponents is discussed. The concepts used to modeL the
overall structure are presented first. Then, the modelling
of columns, shear naÌts and ftat-plate panets is discussed.
Finally' the nonlinear anarysis procedure is described.



In chapter five, examples are presented

the capabilities of the st,ructural analysis
gram, and to compare the results obtained
values.

13

to demonstrate

computer pro-

r{ i th publ i shed

The concLusions and recommendations for further work are
presented in chapter six.



Chaptcr II
IJITERÀTURE REVIEW

2.1 INII'RODUCTION

A review of research work related to the analysis of
fLat-plate structures is presented in this chapter. The

chapter is divided into two sections. The first deals with
the methods currently used !o analyze f 1at_pl.ate structures.
The second deals with the rnodelling of the rotational behav_
iour of concrete plate-to-column connections.

2.2 METHODS OF ÀNÀLYSIS

To date, onLy linear structurar analysis methods have been
developed and used widely for IateralJ.y loaded flat-plate
structures. Most of them assume a two dimensional structure
in which the plates are modelled by eguivalent bearns. The

others assume a three-dimensional structure and represent
the floor plates by finite. element arrays.

2.2.1 Equivalent Bean Models

These modeLs idealize the structure as a series of
eÌastic planar frames, each comprising a row of
associated portions of the f J.at-plate floors and,
appropriate, shear wal.1s. The flat-plate floors are

Iinearly
columns,

r¡he r e

norma 1ì.y
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subdivided into interior and edge strips as illustrated in
Figure 2.1. The interior strips are defined by the center_
lines of lhe adjacent panels, while the edge strips are
defined by the edge columns and the edge panel centerline.
usualry, only a fraction of the pJ.ate strip is considered
effective in bending. The width of that part is termed the
effective width, 8,, as illustrated on Figure 2.2. Thus,
for lateral load analysis purposes strips are replaced by
beams rvith the same thickness as the plate, but with width
Br. The resuLting planar frame is then analyzed. À summary

of the bases of derivation and the parameters considered in
the various equivalent bean models is presented in Table
2.1. In the table, and as illustraÈed in Figure 2.2, C is
the column width or depth, Lr is the plate span paralJ.e1 to
the direction of moment transfer and Lz is lhe span normal
to the direction of monent lransfer. Àn X in the column
headed GL in Table 2.1 indicates that gravíty loading .is
applied to the ptate prior to the application of the lateral
loads. since onry square prate paners are considered in this
study, henceforth the plate span will be referred.to as L .

Khan and Sbarounis (1964) presented one of the first
equivaJ.en! beam representations of the flat_plate floor. It
was based on a grid anarogy and tests on s¡narr scale metar.
models. The modeLs r¡ere excessively flexibLe because the
correct boundary conditions were not enforced during test_
ing. The plate strip aspect ratio ¡ras considered as a vari-
abIe.
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Figure 2.1: Typical Flat_plate Floor
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TÀBLE 2. 1

Equivalent Beam ModeIs

Resea¡cher Basis of Derivation clL L1lLz GL

Kba_u ¡nd sb6¡þ'tñis Grid Analogy a¡d Test Models x

Pecloold Elastic Thecr:y x x

AIIân aDd Deryall El'stic The€ry x

Wong .-d ço.r¡ Plate TheGy x x

Frazer Finite Elemeût x x

Iæng ".¿ ¡ç¡¡ l/3 Scale Models ' x x

Elias
and Georgiadis

Energy Metbods x x
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Pecknold (1975) and Àllen and Darvall (1977 ) deveLoped

similar representations based on elastic plate theory. They
considered the c o I urnn -depth-to-plat e _span ratio and the
aspect ratio of the plate as variables. Only interior strips
vrere considered and no recommendations were given for edge
strips.

EIias and Georgiadis (1979).deveJ.oped a method for deter_
nining the stiffness matrix of an equivalent bean using com_
plemenhary energy methods and an assumed stress distribution
in the plate. Both interior and edge strips were considered,

Wong and Coull (l980) presented an equivalent beam repre_
sentation based on the infLuence coefficient method for
determining the width of the equivalent beam. Two parame_
ters, the column-depth-to-plate_span ratio and the aspect
ratio of the ptate strip,were considered. Only interior
strips lrere dealt with.

Based upon his finite eLement studies, Frazer (19g3)
deveì.oped simpre equations for detèrmining the effective
r{idth. These equations were expressed in terms of lhe tran-
sverse column dimension and the pLate sÈrip span. Both
interior and edge strips were considered_

Long and Kirk (1990) tested one_third scal.e concrete mod_
els' They observed that a significant reduction in the
sÈiffness of !he plate- to-column connection resulted from
the cracking of the concrete around the column. They recom_
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mended an effectivê width of 0.3 tine the width of.the plate
strip for column-depth-to-plate-span ratios between 0.0g and
0 .12.

The equivalent beam methods a1l- have the shortcoming that
they do not force compatibility of displacements among the
planar frames. Most of them rack provisions for accommodat-

ing edge strips and shear walls. ALso, they yield effective
widths that vary considerably depending upon the basis of
the derivation and the parameters considered. FinalJ.y,they
do not give a realistic representation of the actual behav_
iour of the frame, and tend to overestimate the stiffness of
the structure in resisting lateral. loads.

2.2.2 Eouivalent Frame Method

In this method, which has been incorporated into both the
Àmerican (Àmerican Concrete Institute, 19g3) and Canadian
(Canadian Standards Association, .l 9g3) standards, the full
width of the paneJ. is assumed to be effective in resisting
IateraL loads. The columns are replaced by equivalent col_
umns to account for t.he two-dimensional behaviour of lhe
plate. The eguivalent column consists of the actual column
pLus torsionaL elements that connect it to the pLate and

simui.ate the stiffness of the coLumn-to-pLate connection.
The equivalent frame method was originally developed for the
analysis of individual floors under gravity ).oading only.
Although it has been used for lateral load analysis, its use
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can result in gross overestimations of the stiffness of the

structure. Thus, it is not recommended for lateral load

analysis.

2.2.3 Fínite E1ernènt Hethods

French, Kabaila and Pulmano (1975) developed a three-dimen-
sional representation of the flat-pLate structure in which

the flat-p1ate floor panels were modelled by rectangular
finite elenent arrays. Three degrees of freedom - a verti-
cal displacement and rotations about two horizontal axes -
were provided at the corner of the rectangular elements.

Inter-element displacement compatibility was enforced ât the

corner nodes onIy. The column-depth-Èo-plate-span ratio and

the aspect ratio of the plate panels were the paramet.ers

considered.

Ma ( 1976) modified the TÀBS prograrn (wilson, 1975), by

adding a finite element representation of the flat-plate
floors. Plate bending elenents were used to model the
floors. The stiffness matrix was then assembled and the

internal and edge node stiffness contributions were con-

densed off, Ieaving the column node contributions. Ma's mod-

eI was excessively flexible because he did not account for
the finite cross-sectional dimensions of the column. Às

welI, the interaction bet¡,reen floors and shear walls was not

incorpora!ed. The program was moderateJ.y expensive to use.
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Hrabok and Hrudy (1981) developed a Iinear finite element

program for the gravity road anarysis of fLat-plate f100rs.
The plate bending elements used were derived using the
hybrid stress method. The program accounts for both the
finite size of the colunn and the presence of floor beams.
The program is a comprehensive one, but it permits the grav_
ity load analysis of flat-plate floors only, and cannot per_
form lateral load analysis.

Chislet and Morris (1995) deve).oped a linear, three_di_
mensional analysis program, in which the floor panels were
modelled using elastic plate elements with sixteen nodes,
four at the corners and three along each panel edge. Three
degrees of freedom - a vertical displacement and two hori_
zontal rotations - were assumed at each node. Inter_element
displacement compatibility, was provided at the corner and
edge nodes. The finite size of the column lras accounted for
by assuming the column eLements to be attached to the plate
by rigid bearn erements. The stiffness matrix for the prate
element was derived numerically in a nondimensional. form, as
a function of the c ol umn -depth-t o-p1a t e_span ratio. Only
square panels supporbed on square corumns we.re considered.
The program is easy and inexpensive to use and the results
obtained rvere in good agreemenb with those obtained using
other Iinear, elastic models,

The main drawbacks to the use of linear finite element
mebhods such as most of those described in this section, are
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the high cost involved in running the programs and the time
required to prepare and input the data. ÀIso, because they
nodel the structure linearly elastical).y, lhey tend to over_
estimate its stiffness. Thus the improved accuracy conpared
to that obtained from eguivalent beam models does not justi_
fy the extra effort and expense invoLved in using these pro-
grams.

2,3 BEHÀVIOUR OF CONCRETE SLÀB-COLT'}ÍN CONNECTIONS

Observations made on fult scaLe reinforced concrete flat-
plate structures under load show that a large proportion of
the structural deflections are the result of defor¡nations at
the plate-to-column connections. Severat experimental and

analytical research programs have been carried out to study
and model the behaviour of lhose connections.

2.3.1 Exoerimental Reaearch

Às shown in Figure 2.3 four distincL plate-column connection
types can be identified in a typical building. They are
interior connections, corner connections, edge connections
transferring moment paralle1 to the edge, and edge connec_

tions transferring moment normal to the edge. Most of the
available experimental work deals with the behaviour of
interior connections, as only a few sludies have been done

on corner and edge connecÈions.
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To study the influence of different parameters, such as

the amount and distribution of the plate reinforcenent in
the coLumn region, the concrele conpressive strength and the
roading history' on the behaviour of interior connections,
twenty interior plate-column specimens were tested at the
university of washington. Details of tests to destruction
on four specimens without shear reinforcement and two with
shear reinforcement were presented by Hawkins et aI ( 1974r.
In the tests, the influence of concrete compressive
strength, reinforcement ratio and distribution in the plate,
and the presence of shear reinforcement were studied. Hanna
(1976) tested three specimens with shear reinforcement to
study the influence of the 1ateral 1oad history of the con_
nection and the type of .loading applied. Symonds (1g76t

lested five specimens subjected to large gravity Loads and

rela!ively small lateral ioad. The parameters considered
were the amount and distribution of the flexurat reinforce_
ment in the p1ate, the gravity Ìoad level applied t.o the
plate prior to the application of the lateral loads, the
concrete compressive strength, and the presence of shear
reinforcement in the plate in the region of the column.
Simpson (1976) tested six specimens to study the influence
of changing the proportions and aspect ratio of the column.

Morrison et aL (1983) reported tests to destruction of
five interior connections. The infLuence of the flexural
steel ratio and concrete strenglh were examined. Mulcahy
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one-f i fth scale specimens, and

the steel ratio and concrete

Èhe connect ions.

Chaichanavong (19?9) tested five edge connections trans_
ferring moment parallel to the edge. Three specimens had

shear reinforcement, while the other tno had none. In the
tests, the influence of the shape and size of hhe col-umns

was studied, as were the effects of loading history and

reinforcement ratio and distribution.

Wong and yang (1978) tested eight edge connections !rans_
ferring moments normal to the edge. Five specimens had shear
reinforcement while the other five had none. The effects of
the column di¡nension, the concrete strenglh and the amount

and distribution of reinforcement were studied.

Yu (1979) tested five corner connections, Three without
shear reinforcement and two with it. The influence of the
amount and distribution of reinforcement, the colurnn size
and concrete strength r¡ere studied.

The experimental research described above has estabLished
that a large number of parameters influence the behaviour of
plate-to-column connect.ions. The most significant of them

are the level of gravity loading applied to the plate prior
to the application of lateraL loads, the flexural reinforce-
ment ratio in the immediate vicinity of Èhe column, the con_

crete compressive strength, the c ol umn -depth- to-pla te _ span

s1x

of

of
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ratio, and the bond slip of the plate reinforce,nent within
the column. Of only minor influence are the presence of
stirrups in the plate around the coJ.umn, the yield strength
of the reinforcement, the bar diameter, the column aspect
ratio and the plate aspect ratio.

2.3.2 Ànal.vt ical Reaearch

Only a few analycical models have been developed for pre_

dicting the nonlinear moment-rotation behaviour of plate-to_
column connections. AI1 of them are based on either finite
eÌement representations, a beam grid analogy, or a stub beam

representation of the flat-plate floors.

Yamazaki and Hawkins (1975) reported one of the firse
attempts to modeL the rotational behaviour of an interior
plate-to-column connection. The plate was modelled using a

general purpose finite element program. The loads were

applied incrernentally and the stiffnesses were varied
according to the rnagnitude of the major principal moment in
each elemenb. The stiffness of the connection was consider-
ably overestimated because no provisions were made to
account for the rotations caused by bond slip of the rein_
forcing bars or the cracking of concrete around the column.

Shue and Hawkins (1980) presented a grid model to predict
the stiffness of plate-interior column connections. The

plate was modelled as an ort.hogonal grid of beams with rigíd
connections, The properties of the beams were determined on
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a trial and error basis by correlating elastic predictions
for the grid model with the results of finite element analy_
ses. The flexural and torsional stiffnesses of the grid
bea¡ns were varied to account for the change in stiffnesses
with increasing Ioading.

Morrison et aL (1983) developed a similar modeL in which
the properties of the grid beams ¡rere derived by matching
the curvature of a portion of the plate under a given force
with that of beams represen!ing the p1ate, under a statical_
ly egui vaJ.ent force.

ÀIthough results obtained usíng the beam grid models are
in reLatively good agreement with experimentaf results, the
models are too complex to be applied directly in design or
to be incorporated into a computer analysis program.Thus,

they remain of academic interest only.

Àkiyama (1984) presented a model in which the plate was

assumed to be at.tached !o the column through a series of
stub beam elements. The properties of the beams were varied
with Loading, to model the cracking of the concrete and bond

slip of the reinforcement. The results obtained using this
nodel vrere in good agreement with experimental results.
Unfortunately, again lhe ¡nodel. is too cornplex to be applied
directly in design.



Chapter III
I,ÍODELTJING OF PLÀTE-COLUI,IN CONNECT¡ON BEHÀVIOUR

3.1 INTRODUCTION

Observations made on existing structures and on experi-
nental modeLs show that the rotational behaviour of plate_
to-column connections greatly influences the behaviour of
the entire structure under Lateral loading. Therefore, in
order to correctly represent the behaviour of the flat_plate
structure, provision should be made in the analysis to
account for the influence of connection deformation on the
overall stiffness of the structure.

The models dèveloped to date !o predict the nonlinear
behaviour of plate-to-column connections are rather complex
and not suit.able for incorporation into a structural analy_
sis computer program. In this chapter, a procedure is
described for standardizing experimental moment_rotation
behaviour so t.hat it can be ef f icient).y incorporated into a

nonlinear structural analysis computer program. ÀIso pre_
sented is a physical nodel of the column region, capab).e of
incorporating the influence of connection deformations on

the behaviour of the structure.

-29-



3.2 FÀCTORS INFLTJENCING CONNECTION BEHÀVIOUR

There are several factors that influence the behaviour of
plate-lo-column connections. The more significant ones are
described below, in decreasing order of significance.

3.2.1 Gravitv ttomênt

Experimental studies have shor¿n that the gravity-load
moment r Mrr acting on the column face has a large influence
on the behaviour of plate-to-column connections. For exam-

ple, as illustrated in Figure 3.1, Akiyama (1984) found that
an increase in gravi!y loading resulted in a decrease in
both the stiffness and the shrength of the connection, with
regard to lateraL load resistance. The reason is that the
gravity-load moment causes the initiation of concrete crack-
ing along the boundary where the column intersects the flat
plate. Moreover, the rate of crack propagation is a func-
tion of the magnitude of the gravity-Ioad moments. It has

been observed also that the influence of gravity loading is
larger for connections without shear reinforcement than for
those with it (akiyama, 1984).

In test.s of plate-to-column specimens under combined

gravity and transverse loading, the gravity loading has been

simulated by two vertical J.oads p* applied at a distance Ls

from the col.umn center, as illustrated in Figure 3.2 (Àkiya-

râ r 1984 ) . Accordingly, the gravi ty load moment thaÈ has
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plate to each sidebeen assumed to
of the colurnn is

be transmitted from the

Me = pe &s- c/2) (c/Ls) (3.1)

= gravity-load moment at the column face

= appLied gravi !y load

= width of test specimen plate
= distance from column center to point ofapplication of gravity load

= column depth

whe re ,

M
Ë̂

P.

L"

L.

In the tests, the gravity load was applied to the plate
first, then the Iateral load was appLied in repeated
reversed cycles until the specimen failed. The combined
effects of the gravity and.lateral Loads on the moment_rota_
tion behaviour of the plate-to-column connections were
determined. No attempt was made to differentiate between the
connection behaviour on the side of the coLumn where gravi_
ty-load and transverse-Load moments were additive, and that'
on the side where they were in opposíte directions.

For interior plate-to-column connections, test results
have been reported for specimens subjected to "1ow graviby
load", where plate seJ.f weight was the only gravity load
applied (Morrison, 1983) and (Mulcahy et aI, 19g1), for
"moderate gravity J.oad" where the average vaLue of the
applied gravity load p* gras about four times the plate self



neight (akiyama, 1984 ) , and for
the average value of the applied
eight times the plate self weight
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"high gravity 1oad" where

gravity load pg r¡as about
(ekiyama, I984 ) .

The method used in this study to account for the effects
of gravity-load moment on plate-to-column connection behav_

iour paralleÌs that used in neasuring the behaviour experi_
mentally. Thus, for a given level of gravity-load moment, a

single standardized moment-rotation function has been

derived. No attempt has been made to differentiate between

the moment-rotation behaviour on the side of lhe column that
is unloading as transverse load is applied and that on the
opposite side of the column, where the moments due to gravi_
ty and transverse Loads are additive. For interior plate_
to-column connections, three such standardized moment_rota_

tion functions have been derived, one corresponding to each

of "low", "moderate" and "high" gravity-load moments. To

derive the standardized functions, alL available experimen_
tal data were examined and for each specimen, the ratio of
the gravity-Ioad moment, Mg, to the cracking noment, M"r at
the column face was determined. The cracking monent was com_

puted as :

z.s u[ rf c tz
Mc= (3.2)

6

28 day compressive strength of concrete

total plate thickness

çt

t

where,
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It was found Èhat the ratio Mr/tt c for specinens subjected to
high gravily ).oads r âs defined above, rras always greater
than 4.0. That for specimens subjected to moderate gravity
Ioads was normally belween 1.0 and 4.0, and that for speci_
mens subjected to low gravity loads was smaller than 1.0.

For edge connections transferring moments para).lel to the
edge, for edge connections transferring mornents nornal to
the edge, and for corner connections, test data were avail_
able for "noderate" gravity-load moment only. Thus, only a

singre standardized moment-rotabion function was derived for
each of t hem.

ÀIthough the procedure described here accounts onLy

approximately for the effect of gravity-Ioad moment, it is
asserted that it provides a more reaListic model of the
actuaL behaviour of the connection than does the commonly-

used assumption of a linearly elastic connection.

3.2.2 Conncction Flexura1 Reinforcement

The strength and stiffness of plate-to-column connections
are greatly influenced by the connection fLexural reinforce_
ment ratio, p, in the immediate vicinity of the column. Às

illustrated in Figure 3.3, an increase in the reinforcement
ratio resuLts in an increase in both the strength and stiff_
ness of the connection. Thus, for example, Àkiyama (19g4)

found that increasing the connection reinforcement ratio in
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the vicinity of the column from 0.30% to 1.0% produced an

increase in the connection stiffness of more than 40%. The

magniÈude of the increase depended in part on the specimen

geometry and the concretè strength. It has been found also
that the distribution of the reinforcement is as important
as the reinforcement ratio. Àkiyama (1994) recommended that
in order to be effective in increasing lhe connection stiff-
ness, the connection reinforcement should be concentrated in
a region extending a distance of at least (C+3t) from the
column face.

In this study, the total reinforcemen! ratio ,p , in the
connection region was defined as the sum of the top and bot.-
tom plate reinforcement ratios. The total reinforcement
ratio was used in developing the standardized moment-rota-
tion functions for all connection types considered. It is
assumed that the distribution of the connection reinforce_
ment is consistent with Àkiyama,s recommendations.

3.2.3 Concretè Strcnqlh

Mulcahy et al (1981) observed thaÈ an increase in the
plate concrete compressive strength, ft , resulted in an

increase in the strength and stiffness of the connection, as

illustrated in Figure 3.4. He found that an increase in the
concrete conpressive st,rength is accompanied by an increase
in its tensile strength, and therefore by a reduction in the
extent of crack propagation and the consequent Ioss of
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stiffness, Thus, for example, an increase in the concrête
compressive strength from 30 MpA to 45 MpA resulted in an

increase in the connection tangent stiffness of as much as
30%, depending on the magnitude of the applied moment.

In this study, the concrete strength was used to compute

a dimensionless moment, M', which was used to develop the
standardized moment-rotation functions for the various con-
neciion types. The dimensionÌess moment is defined as:

M
M' = ----- (3.3)

fJLt2
Where,

M' = dimensionless moment transmitted from

the floor plate Lo the column

= moment transmitted from the floor
plate to the column

3.2.4 Column-To-pl.ate Stíffness Rat io

Pavlovic et al (1985) found that as the ratio of the col_
umn stiffness. to the plate stiffness is increased, there is
an increase in both the strength and the stiffness of the
connection. NormaIy, the col umn -dept h-t o-pla te_ span ratio,
C/L, is used to represent thè column-to-plate stiffness
ratio. WaIker found that an increase in the c ol umn -depth_ to_
plate-span ratio from O.Og to 0.12 resulted in an increase
in the connection secant stiffness of as much as 20%,

depending upon other connecbion parameters.
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In !his study, the c oL umn -depth- t o-pla te_ span ratiorC/L,

was incorporated into the standardized moment-rotation func-
tions for all of the connection types considered.

3.2.5 Bond Slio of pLate Reinforccment

Sheu et al (1980) found experimentalJ.y that the bond slip
of the plate reinforcement within the column produced a con_

centrated rotation at the column-to-plate boundary, thus
reducing the stiffness of the connection. The experimental_
1y rneasured noment-rot.ation curves used in developing the
standardized moment-rotation functions account, among other
things' for the bond srip effects. Thus, the infruence of
bond slip is automaticarry accounted for in the standardized
momen!-rotation f unctions.

3.2.6 Other pararnêters

Àkiyama (1984) observed in tests of plate_to_column spec_
imens that while the presence of shear reinforcement in the
connection region increased the strength and ductility of
the connection, it had very little influence on its stiff_
ness. Ib has also been observed that other parameters such
as the reinforcement yield strength and bar diameter have
virtually no influence on Èhe stiffness of plate-to_column
connections. Consequently, for the standardized moment_ro_

tation functions derived in this study no atlenpt was made

to account for bhese parameters.



3.2.7 Su¡¡rna rv

The moment-rotation behaviour of plate_to_column connec_
tions is infLuenced by several parameters. In this study,
only the four that affect connection behaviour rnost signifi_
cantry have been incorporated into the standardized mornent-

rotation functions. The ratio of gravity_load moment to
cracking moment at the column face, Mr/M", has been account_
ed for by deriving different standardized functions for row,
moderaÈe and high gravity-road moments for interior connec-
tions. Onty a single standardized function, for moderate
gravity-load moments, has been developed for each of edge
and corner connections. The total reinforcement raLio for
the platerQ , the cotumn-depth-to-plate_span ratio, C/L, and

the concrete compressive strength, f' , have aIl been incor_
porated exp).icitly into lhe standardized functions.

Other parameters which have less significant effects on

the connection behaviour were excruded from the sLandardized
functions. They include the presence of shear reinforcenent
in the pLate adjacent to the column, the reinforcement yield
strength and the bar diameter.
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3.3 STÀNDÀRDIZED ìIOMENT-ROTÀTION FI,,NCTIONS

There are two ways in which the nonrinear connection
moment-rotation relationships can be incorporated into a

structural analysis conputer program. One is to store a

large family of functions, one for each of the many combina_
tions of the physical parameters associated with the connec-
tions, such as reinforcement ratio, concrete strengthretc.
This procedure would reguire a prohibitively Iarge amount of
storage. The second alternative, used in this study, is to
derive and store sÈandardized connection moment_rotation
functions for the various types of connections. These func_
tions are expressed in terms of the severar connection
parameters. Thus, when the physical parameters are known for
a given plate-to-coLumn connection in the structure, they
can be substituted into the standardized function in order
to generate the specific ,noment-rotation relationship for
that connection.

The first step in the standardization procedure is to
express the flexural rnornent at the plate_to_coLumn connec_
tion in dimensionless form as described in Eguation (3.3).
Next ' a Ramberg-osgood function ( 1943) , which was rnodif ied
by Àng (1983) to describe the noment-rotation behaviour of
steel connections, is used for the standardized function.
The modified function is in the following form.



ø

Øo

ip. =
J

aj =

tn=

r M'

(rMn) i' .{åil "'] (3.4)

Whe re ,

Ø = relative rotation between the column axis and the
nor¡naL to the plate midsurface at the column.

Øo r(tÚo ) and n = constants that define the shape ofthe standardized f unct.ion

Às illustrated in Figure 3.5, Øo and (rt¡o ) define the
position of point 1, through r¡hich a famity of Ramberg-Os_

good curves pass. Constant n defines the sharpness of Èhe

curvature for any one of the curves.

In Equation (3.4), factor r scaLes the ordinates on the
curve, according to their dependence upon the connection
parameters. It has the form

m

' =,]T (0,) "' (3.s)

where,

numerical value of the jt.h connection parameter

dimensionleSs exponent which indicates theinfluence of the jth connection parameter on t,he
moment-rotat ion relat ionship

number of connection parameters considered
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Figure 3.5: S E ånda rd izcd ¡tome n t - Ro c a c i on Func c i on
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The evaluation of the exponent a . in Equation (3.5) is
illustrated by considering a family of experimentalLy
determined moment-rotation curves, as shor¡n in Figure 3.6,
for plate-to-column connections that are idenLical except
for parameter pj. À pair of curves is considered and the
relationship between moments Ml and Må at a particular
rot,ation Ø is assumed to have the form

Mi

Må
=H*J", (3.6)

(3.7)

where P¡, andlP j2 are the numerical values of parameter p¡

for connections 1 and 2 ( corresponding to curves1 and 2) respectively.

Equation (3.6) can be rewritten and sol,Lor+s 
Þe rewrrtten and soLved for a., as fol_

1os (Mï / ui )

' tos (p. / lp, )t2 J I

Equation (3.7) is used to compute a. values corresponding to
several values of rotation Ø, fot each co¡nbination of exper_
imental curves, such as l and 2, l and 3, 2 and 3retc. The

mean of the a . values thus obtained is then used in Eguation
(3.s).

When mean values have been computed for all m exponents a

in Equation (3.5), they are pLotted on a standardized
moment-rotation (r M'vs ø) diagram. Finally, a least
squares curve fitting procedure is used to evaluat.e coeffi-
cients Øo,(rtu|o) and n in Eguation (3.4).
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Figure 3.6: FamiIy of experimental moment rotation curves
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36 tests of plate-Èo-column
specimens, performed in 10 different investigations, were
considered in deriving standardizedmoment_rotation func_
tions in the form of Eguation (3.4). Twenty one of the spec_
imens were for interior plate-to-column connections, four
¡rere for edge connections transferring mornent paralLel to
the edge, six r¡ere for edge connections transferring moment

normal to the edge and five were for corner connections. The

tabLe shows lhe reference for each test specinen and the
specinen designation used by the original authors. ÀLso
included are the values of t,he parameters pt, C/L, M g/Mc,
and the connection type (interior, corner, etc.) for all of
the test specimens used in deriving the standardized noment_
rotation functions.

The six standardized noment-rotation functions derived in
this study are presented in Tabre 3.2. À1so incruded in the
table are the number of test specimens used in deriving each
of the functions, Lhe references for the data on which the
functions are based, and the maximum percentage deviations
of the derived functions from the experimentaL values. The

deviations were compuÈed by substituting the parame!ers for
a particular test specimen int,o the appropriate standardized
function, computing the connection rotations corresponding
to several applied moments, and comparing t.hem níth the
experimental values.
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TABLE 3. I

Test Spec irnens Used in
Dertvlng Standardized Homent-Rotation Functfons

DESIGNATION ¡ I C

ÈiorrÍ6on
cc al. Loe Crav.(1983) s2 0..0196 0.167 O.O Inrertor/

lpv Grav.53 0.0262 O. 167 O.O Inrcr(orl
Lov Grrv.54 0.0196 O. t67 Z.Z3 Inccrtor/
llod. Grev.

0.0196 0. 167 5.39 InÈcrfor/
Hfgh Grev.

0.Oll7 0.05 7 ¡ 0.0 Incêrlor/
lov Grev.0.01l7 0.057I 0.0 Intcrtor/
l¿v Gr¡v.0.0I60 0.057t 0.0 Intc rto r/
Lov Crrv,

,0.0072 
0.057r 0.0 

*.;:ï1
0.0188 O.O?7 2.83 Incc r1or./

l{od. Grev.
0.0139 O.077 3. Ot Inccrior/

llod. Grrv.

0.0166 O.0077 2.96 Intc rlor/
llod. Gr¡v.

0.0t39 0.077 2.63 In rc rlor/
llod . Gr¡v.

0. 0139 0.077 6.54 Inccrtor/
Hlgh Grav.

0.0173 O.077 6.Zt Inrcrtor/
Hlgh Grrv.

0. 02 I5 0.103 2.95 Inrcrlor/
Hod. Grav.

0.02t5 0.103 5.86 Incerlor/
Hlgh C rav.

0.017{ 0. t 25 5. 70 Incertor/
tligh C rrv.

0.0t76 0.125 2.1.t, lncerlor/
¡lod. Grav.

0.01 76 0.0513 3.ll tnccrtor/
l{od . GrÂv.

0. 0I 71 0.051i 6.'16 [nr€rfor/
Hlgh Crsv.

HuIc¡hy
Rotter

( lesl )

Hasklne
ct aI.
( Le7 4)

Hanna cC al.
(r97s)

Syboonds
ec Á1.
( r97ó )

s5

H02

¡{03

H05

x06

ssI

ss2

ss3

ss5

ss6

ss7

S lbpson SS8
ec al.
(1976) ss9

ssl0

ss t I

ss l2

ss t3
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Table l.l (concinued)

REFERENCE SPI'CIHE{
DÊS TCNATION

clL 
"r/"" 

P^NEL TYPEPr

Cha lch!navong
( reTe )

Havklns
ct al.
(re7s)

Yu

( leTe )

0.olzr o.ot7
0.012ó 0. t03
0.0t40 0.077
0.0140 0.077

0.0133 0.154
0.0191 0.205
o.oz27 0. r03
0.0230 0. 154
o.o227 0.250
0.0236 0. t03

0.0083 0.143
0.0083 0. 143
0.0125 0. t90
0.0 r 25 0.43
0.0150 0.232

EdBe P¡ r¡ IIêI
Edge Pe rrlla I
Edgc Pa ra I lcl
Edgc Parrl Ie I

Edgc Nomal
Edgc Norual.
Edge Noraal
Edgc NorEål
Edge Nornal
Edge Noroal

Corner
Corocr
Corncr
Corncr
Co rncr

ELI
L2
ELS t
ELS2

EI
E2
E3
ES2
ES4
ES5

cl
cz
c3
csl
csz

2.63
2.53
2.55
2,60

2.72
2.56
2.64
2.58
2.66
2.63

2.58
2.61
2.7 |
2.52
2.68



Connection Î)¡pe

Interl,or

H^

J<t.u

oSço.o

Reference

M-

-1 > ¿.0
Hc

Stand¡rd lzed Hooènt-Rotation t\¡nc t fonr

EdBe

l,lulcahy et.
Ìlorrison et

Parâlle¡
to
Edge

TÀBLE 3.2

¡lawkins et. a_l.
Hânne et. el.
Sir¡pson et. al.

Cornet

âl

Nor¡n¿l
to
EdBe

llulber ofspecimen,

âl-

Slr¡E¡onds et. el.
Slmpson et. al.

7

Chaichânavong
et. al.

8

Havklns et.

r

(p)-0.042 (c) -0
L

6

Yu et. al-

¡1.

4

p¡-r .2¿(c)-0. t I
L

Standardlzed Function

--E-- - : 
H'- 

¡ 1 *t-!!¡r.sa0.0065 t.rr " - ì;;' I

p)-3.sÌ(c)-r.07
L

6

p)-3.02rc)-2.16
L

5

C r N'

0.0101 22.8

(Ð-o.77 $:.-0.s9
L

--e--- 
r--!:- f l+(r ¡ )4.86

5.4xlo-3 r.6xlo6 ,. o,___u

(p) -2.03(c r-0.39
L

t I +(l--u:)4'86,
22.8 I

I - r ¡.t' [¡*¡.¡r 15.32,
2. rxro-3 r.o4xro, läio, '

Y' r ¡¡

- r¡+(rH,)5.68-5.6xlo-J t

llaxlmrr¡D percent Deviâtion

l5

Ö -..n' tr+1.¡1' 16.9r,
9.5xto-3 8.lxloz ¿¡.r.--át

l3

'I

9

l8

20

(r'l
o
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Às described previously, the rotational stiffness of the
prate-Èo-column connections was affected most significantry
by t,he the level of gravity ).oading acÈing on the structure.
Therefore, as shown in Table 3.2, three standardized func_
tions Here derived for an interior connection, one each for
low gravity loading (tu* /tt" s 1.0), for moderate gravity
Ioading (1.0 < MJM. < 4,0), and for high gravity loadingts'u
(Mg/Mc > 4.0). Limited experirnental data were available for
edge connections transmitting moment parallel to the edge,
for those transmitting moment normal to the edge, and for
corner connections. Consequently, only one standardized
function was derived for each of these cases.

Typical plots of experirnentalLy deLermined moment-rota_
tion curves and the corresponding curves obtained from the
standardized functions are. presented in appendix À. IÈ can
be seen that in most cases the standardized functions
approximate closely the shapes of the experimental curves,
whiLe smoothing them some!¡hat.

As can be seen in Table 3.2 and the ptots in Àppendix À,
in a few instances the standardized functions deviate sig_
nificantry from the experimental data. This can be attribut-
ed to three factors. The first is that t.he standardization
procedure used is an averaging process, capable of describ_
ing the behaviour of specimens having parameters that are
weLL Hithin the ranges considered in the standardizaÈion
process. However, results obtained f rorn the standardized
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functions for specimens having parameters that are close to
the extrenes of the ranges considered in the derivation,
tend to deviate significantly from the experimentally meas_

ured results.

Secondly, in order to account for the influence of a giv_
en connection parameter, several specimens should be avail_
able that are identical except for the paraneter under con_
sideration. Unfortunately, because of the non_homogeneous

nature of concrete, and the Iimited anount of experimental
data available, it was impossibre to achieve the ratter con-
dition. Therefore, in order to facil.itate comparisons among

the different specimens available, it was assumed that spec_
imens with parameters that differed by less than five per_
cent were identical. Às a conseguence, inaccuracies were
built into the derived functions. The third factor is that
the smalI number of experimental tests available, especially
for edge and corner plate-to-column connections, meant that
only a very small number of data values were available.

The Ramberg-Osgood curve fítting function reguires that
experimenÈal moment-rotation curves start at the origin. On

the other hand, most of the avairable test data included an

iniÈiat rotation caused by the application of gravity load
to the plate prior to the applícation of the lateral load.
The initial robations due to the gravíty load were deducted
from the total connection rotations when developing the
standardized moment-rotation functions. This is justified on
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the basis that the derived functions and the analysis pro_
gram are applicabJ.e to Èransverse loading only. Gravity
loading is not deaLt with, except for its effects on the
moment-rotation behaviour of interior connections under
transverse loads.

3.4 PHYSICÀL MODEL OF COLT'}IN ÀND CON¡'.TECTION

When a flat-plate structure is subjected to transverse
Ioading, nonlinear load-deformation behaviour occurs at the
column-to-plate connections beginning at relatively low load
revels. The primary source of the nonrinear behaviour is
early flexural cracking of the plat,e, as illustrated in Fig_
ure 3.7.

Based upon experimental observations, Hawkins (19g0)

described the connection mornent-rotation behaviour, as fo1-
lows. Às transverse load is applied to the structure, the
moment-rotation behaviour atÈhe typical plate_to_column
connection is approximateJ.y Iinear, as illustrated in Figure
3.8. When the flexural monent at the plate-to_coLunn bound_
ary reaches the cracking mornent, the connection stiffness
decreases abruptly as cracking propagates. With increasing
Ioad, torsional cracking occurs in the plate at the sides of
the column. Às the loading is increased further, yielding of
the flexurar reinforcement commences and the stiffness again
decreases. Finally, ¡vith a further J.oad increase, the con_
crete crushes in flexure and the connection fails.
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SECTION A-A

Figure 3.7: Flexural. cracking a! lhe plate-column bounda ry
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In this study, the finite cross-sectional dimensions of

the coLumn and the nonlinear behaviour of the plate_to_col_
umn connection were modelled using the arrangement shor¡n in
Figure 3.9. The column nas modelled as a 1j.ne element
extending from one floor plate to the next higher one. To

represent the finite cross-sectional dimensions of the col-
umn, rigid beam elenents, B1 in Figure 3.9, each with a

length of hal-f the column width, were assumed to be connect_
ed rigidly to the column, at the elevation of the ftoor
plate.

The moment-rotation behaviour of the plate-to_column con_
nection was nodelled by flexural springs FSr and FSzr which
a1low rotations in the tno orthogonal directions, and which
connect the beam elements to the plate. In order to maintain
a constant plate slope ngrnal to the face of the column,
torsionally rigid beam elements, 82, were connected to the
plate where it intersects the column face. The beam ele_
ments r¡ere connected to the torsional springs at the column
centre lines, and to each other by balt-and-socket joints at
the column corners.

Jamieson (1984) derived the stiffness matrix for a beam

element with fexural springs at both ends as illustrated in
Figure 3.10a. The stiffness coefficients nere functions of
the rotational stiffnesses, Sa and So, of the flexural
springs at ends a and b, respectively. In this study, the
stiffness matrix for beam erenent.s n1, which have a flexural



flexural spring FS1

leid bearn element 81

pfate panel

ball ãnd socket ioínt

column element

flexural spring tr'S2

beam element rigid in torsíon 82

tligure 3.9 : Plate-to - colu¡nn connection mode.l
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spring at end b only, was derived by modifying Jamieson's

stiffness ¡natrix by assigning a large value Lo the spring
stiffness Sa. Às weII, the beam end force vector sas nodi-
fied by including the torsionaL, instead of the axial,
effects. For convenience, the beam stiffness matrix was

derived in terms of the rigidity ratio, n, rather than lhe
stiffness, of the spring. The rigidity ratio is defined as

q- (3.8)

1+ (#.t)
Where,

E = modulus of elasticity
I3 = second momen! of area about the

axis of the beam

C = twice length of connecting bearns
= column width

So = spring flexural stiffness
Consequently, the modified stiffness matrix

Br s

Bzs

B¡ o

B¿ o

Bs e

Bo o _

IocaI Xg

81 and B2

15 :

(3.e)

liÌ

Bll Blz Bls Br¿ Brs

S Bzz 823 B2a 825
v
m Bss B¡¡ B¡s

m

I Baa Ba5
t
r Bs s

I

where,

Brr = (lzett/(c/2)3)et
Br z = (6er s/ k/z) 2)sin(ß)e2
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Br ¡ = (6eI s/(c/2) 2)cos(ß)ez

Br ¿ = -(128I s/ (C/2)3)e t

Br ¡ = (6et t/(c/2) 2)sin(ß)es

Br e = (6EI s/(c/2) 2)cos(ß)es

Bzz = (GJ/ (c/2))cos2 (ß) + (4Er t/G/2) )sin2(ß)e¿

823 = (4EI a/ (c/2))cos(ß)sin(ß)e¿-(GJ/ rc/2\)cos(ß)sin(ß)
Bz¿ = -(6EI a/G/Z) 2)sin(ß)e2

B2s = (2Er a/ß/2) )sin2(ß)es + rcJ/rcl21)cos2(ß)

Bzs = (2er s/ @/2) ) cos ( ß) sin ( ß) + (cJ/ (c/2 ) ) sin ( ß)cos( ß)

B¡s = (4el s/rc/2))cos2(ß)eo + rcJ/rcl2) )sin2(ß)

B¡¿ = -( 6Er3/ (c/2) 2)cos(ß)ez

Bss = (2nI s/@/z) )cos(ß)sin( ß)+rcJ/rc/2) )cos(ß)sin(ß)

Bas = (2nl s/ rcl2) )cos2 (ß)es - rcJ/ rc/2) )sin2 (ß)

B¿¿ = ( 12EI 3/(c/2)s)e1
Brs = -(6EI "/k/Z)2)sin(ß)es
B¿e = -( 6EI 3/rc/2) 2)cos(ß)e¡

B5s = (4Er s/k/2) )sin2(ß)ee + ß¿/ (c/2llcos2(n)

855 = (4EI s/ rcl2) )cos(ß)sin(n)-(c.l/(c,/2) )cos(ß)sin(ß)

Bss = (4EI s/@/z) )cos2(ß)es + ß¿/rc/2))sin2(ß)
er = (3q + 1l/4

e2 = (q + 1)/2

e3 = q

ed = (q + 3)/a

es = q

e6 = q

and,

ß = Àngle between beam local X3 axis and the
global Xi axis
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G = Shear modulus

J = Polar moment of inertia

Figure 3.11 illustrates the behaviour of the pLate-to-
column connection model. Às the column rotates through
angle øcunder lateral loading of the structure, beam ele-
ments 81 rotate through the same angle. This satisfies the
small defLection requirement that plane cross-sectional sur-
faces in the column remain pl-ane after deformation. Às the
rotation of the column is resisted by the surrounding plate
panels, moments are induced in the flexural springs connect_
ing bearn elements B'l to the plate. Às a consequence rota-
tionaL deformations Ø" occur in the springs. Hence, the f1e-
xural rotation of the plate at the column is Ø"- Ø".
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Co ltllnn ele¡nent

Rigid bearn e leænt
Flexural sprfng

a) Connectfon before loading

Co lumn centre lÍne

late centre line

b) ConnecÈfon afÈer loadíng

plEtc-column connecÈion mode I
Figure 3. f l: Behaviour of
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Chåpter IV
I{ODELLII{G OF TT{E FLÀT PLÀTE STRUCN'RE

I,ÍODELLING THE OVERÀIL STRUCTI'RE

In order to avoid the difficulties encountered when using
lhe equivalent beam and equivalent frame models, the struc_
ture is modelled as a single recÈangular three_dimensional
frame. For analysis purposes, it is assumed to be built up
from a series of flat-plate floor panels, columns and shear
waIl panels, as i1).uslrated in Figure 4.1.

The computer program which performs the structural analy_
sis accounts for the nonÌinear moment-rotation behaviour at
the plate-to-column connections by performing repeated
cycles of linear analysis, each time modifying the connec_
tion stiffnesses. ÀIternâtively, the program can be used to
perform a single linear analysis.

!'or convenience, two coordinate systems are employed to
describe the structure. They are the global and the 1oca1

systens. The stuctural 1oads, displacemenls and geometry are
expressed in lhe globaI coordinate system, which is illus_
trated in Figure 4.1. In this study, prirned variables, such
as force and displacement vectors, represent quantities
expressed in the global coordinate system. For example, ps,
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Global coordfnate syster¡
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Panel

Figure 4.1: StructurâL Components of FIat_p1ate Structure
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is a force vector applied at s and expressed
coordinate system,
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in the g toba I

The force-deformation relationships for an individual
elernent in the structure are expressed in a local coordinate
system for that element, as illustrated in Figure 4.2. For
each of the elements shown, the orientaÈion of the coordi_
nate axes for the Local syslem is consistently that iIlus_
trated in the figure. Thus, for example, the local Xt axis
for the column element J.ies along the column axis, and axes
Xz and Xs coincide with the principal axes of the column
cross-section. In this study, variables such as force and
displacement vectors are unprimed when they are expressed in
a local. coordinate system. Thus, for example, Dc represents
a displacement vector at point c, expressed in the appropri_
ate locaI coordinate system.

In general-purpose three-dimensional analysis prograrns,
norrnally six degrees of freedom are assumed at each node in
the structurer as shown in Figure 4.3. À node is assumed at
each point where a column, or the corner of a shear wall,
intersects a floor plate. For a typical node , three of the
degrees of freedom, a-1 ,d3 and ê'2, are associated with in_
pLane displacements of the fLoor plate. The other three,
a'2 re'1 and ê'., are associated with out-of-prane disprace-
ments. For a frame with N nodes per floor, the total number
of unknown displacements to be evaluated, and thus the num_

ber of equations to be sorved, eguars six times the number
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Figure 4.2: Member Local Coordinate Systems
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of nodes bimes the number of floors. Consequently, the large
storage capacity reguired by general purpose three_dimen_
sional analysis programs sometimes ¡nakes them prohibitively
expensive for lateral J-oad analysis of nulti_storey flat_
plate st ruc tures.

In flat-plate structures, resistance to Iateral loading
is provided by the frexurar stiffness of the cor.unns and lhe
floor plate panels. Shear waì.ls may be included to provide
additional lateral stiffness. Typically, the in_plane
stiffnesses of the fLoors are large compared to the stiff_
nesses of the elements which resist the lateral loading, and
thus the floors are assumèd to act as rigid diaphragrns. The

Iatter assurnption is realistic, provided that there are no

large openings in the floor and shear rcalls extend the fuII
height of the building. Às.weIl, individual. shear ¡ralIs must
be fairly uniform over the height of the building, (poland,
1980 ) .

For cross-ealI buildings, where shear walIs carry all
gravity and lateral loads, the stiffness of the walls may be

the same as or greater than the in-plane stiffnesses of the
floors. Thus, the assumption that the fLoor acts as a rigid
diaphragm may not be acceptable.

The term "rigid diaphragm" implies that the floors are
assumed to be inf iniÈeJ.y stiff in their own plane. No in_
plane distorÈions can occur. The individuat floor panels
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experience rigid body displacements only. The in_plane dis_
placements of a1t points in a given floor can be described
by three degrees of freedom; Iinear displacements in hhe
directions of the two horizontaL axes and a rotat.ion about
the vertical axis. Thus the in-p1ane degrees of freedom at
node j in Figure 4.4 can be reLated to those at node v. The
nodes v and j are referred to as naster and srave nodes,
respectively. one master node is required for each fLoor.
It may be located anywhere in the fLoor. Thus, the three
in-plane degrees of freedom at each coLumn node can be
reLated to those at Èhe master node. Consequently, for a

structure nith N frame nodes per floor, the number of
degrees of freedom per floor is reduced from 6N to 3N+3.
This procedure of staving the corumn nodes to the master
nodes permits a very significant saving in both storage
requirements and execution time needed for eguation solving.

In the sÈructural analysis computer program, the lateral
loads are applied as concentrated forces at the master nodes
Iocated in each of the floors on).y, as illustrated in Figure
4.5. These forces may vary from floor to floor in the struc_
ture. Thus, the program is capable of modeLling any lateraJ.
Ioad distribution.
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Figure 4.4: rîaster and slave nodes



I
Þ I t'lv..VI T '.,(

p,,^ ,_ u (naster node)
"3/

j 
" l'^,

', ,^r-7'rn 
(master node )
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4.2 MODELLING OF rHE COLTJÌÍN ELEUENT

The typicar corumn is ¡nodelred using a one dimensional
elastic element defined by its end nodes s and t as shown in
Figure 4.6. Six degrees of freedom are assumed at each end

of the column. The local stiffness matrix is defined by

P =K D (4.1)

where,

P = vector of local end force components

D = vector of 1ocal end dispJ.acement components

K = column local stiffness matrix.

The vectors and matrices in Equation (4.1) can be parti_
tioned as f ol-lows, to distinguish between force and dis_
placement vectors at nodes s and t,

(4.2')

where,

P" = { P"t P"2 P"3 M"r M"2 M"3 }T

= Local force vector for node s

", = { 
".t "r, ",, "., "r, "r, 

}T

= local force vector for node t
Ds = i Â sI Ã s2 4"3 gst ê"2 o"3 ÌT

= Iocal displacement vector for node s
DÈ = i a rl a rz Â.3 ê,1 a", or3 lT

= local displacement vector for node t.

til [i:" l:J {:;l
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The in-plane force and displacement components at a typical
node in a given fLoor are related to those at the master
node in that floor. Thus, as i).lustrated in Figure 4.2, the
stiffness mat.rix for the column elenent can be partitioned
further to express the relationships betrreen the out_of_
plane and the in-plane forces and displacements. Subscripts
o and i denote the out-of-plane and in_plane force and dis_
placement conponents, respectively. In partitioned f orn,
the force and displacement conponents can be related by the
following matrix equation

::::l f t"Ì,. ,,
:::,.1 1",:l{ii}[

where ,

KKssoo ssoi
KKssio ssii
KK

tsoo tsoi
KKtsio tsii

K
s Ëoo

K
stio

K
t Èoo

K
ttio

K

K

K

K

Þ-
^so

P=s1

to

Þ-'ti -

{o' 's I

is the
node s

{ 
"",

is the

Ip
r1

i s the
node t

M"2 M"3 ]T

out-of-plane force vector for

(4.4)

P"3 M"r ¡t (4.5)
in-plane force vector for node s

Mr2 M.3 ]r (4'6)
out-of-plane force vector for

{ 
",, 

Pt3 M rl Jr (4.7)
is the in-plane force vector for node t
I o", o"2 o"3 ]r (4.g)
is the ou!-of-pLane displacenent vectorfor node s

so
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i o", Â"3 o"1 ¡r ( 4.9 )

is the in-plane displacement vectorfor node s

{ or,. 
"", 

ot3 }r (4.10)

is the out-of-plane displacement vectorfor node t
{ atz Âr3 o.r i" (4.11)

is the in-plane displacement vectorfor node t

0
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0

0
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(4.12')
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K = (x )rssoi ssio

K sroo= { K ,"oo )T

Kscoi= { K 
",ro 

)T

Ksrio= { K,"ro)T

Ksrii= ( n."r, f

K,.oi = ( 
^,rro)t

In the above stiffness submatrices

r3

12 E 12

r3
'¡Jh

GJ

( 4 .22')

(4.23)

(4.241

(4.2s')

(4.26)

(4.27 1

(4.28)
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6 E 13

J2!h

2 E Iz

Lh

2 E t3

Lh

and,

12 = second moment of area of the
cross-section about the local Xz axis

À = cross-sectional area

Lh = storey he i ght

The partitioned local stiffness matrix for the column can
be transformed to the global coordinale system using the
foLlowing relationships between the local and globaI forces
and di splacements.

Se

Sg

Sro

P"' - RP.

P,' - RP,

Ds = RT Ds'

(4.29)

( 4.30 )

(4.31)

Dr = Rr Di (4.32)
Where R = rotation transfornation matrix.

Figure 4.8 shows the relationship between the global
coordinate sysLem and the column local coordinate system
used consistently in this study. Thus, the rolation trans_
forrnation maÈrix is
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I1 o o¡o o o I0 -1 0,0 0 o I

_o_ _ g _ _'_;_ g _ _o_ _ 1_ Io 0 o r-1 o 0 I0 0 OtO 1 o I0 0 0¡0 o 0 ]

f",, ; o Il--r---l=
l- 
o 

"',, 
]

(4.33)

whe re ,

Rt r =

Rzz =

The global

expressed as

Whe re ,

K'
ssoo

K'ssol
K.

s too

stoi

ssio
K.ssii

s¡ro

K,sÈii

tsoi

K' K'ssoi s too
Ks'"ii 

. 
K'srio

Kt'"oi K'a,oo

Kr'"ii K'rtio

rotational transformation matrix to expresslocaL out-of-plane forces and displacementsin the global coordinate system

rotational transformation matrix to exÞressIocaI- in-p1ane forces and displacementä inthe globaI coordinate system

force-displacement rela! ionship can thus
foI Iows

f::,ì [:i:
l";:f L ï::: till lil

(4.34)

Rrr K R,.
s soo

Rr r K""o, Rzz

Rrr K Rrr
s coo

Rrr K Rzzstor
Rzz K Rrr

sslo
Rzz K .. Rzz

ssll
Rzz K",ro Rrr (4.35)

Rzz K",,, Rzz

Rrr K Rrr
fsô1
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ttoo

ttoi

Rrr K Rzzttoo
Rrl K Rrtttoi

Kr = Rlr K Rzz
ts io Ès io

K'rsi¡. = Rz z \"i, R1 ¡

K'r"ii = Rzz Ka"r, Rzz

K'aaio = Rz z Kaaro Rt t

K'aart = Rzz Kar.. Rzz

The in-plane forces and displacements at nodes

be related to those at the master nodes v and m

using the following translation transformaÈions

(4.36)

s and t can

respect i vely

For exam-

to node v.

(4.37\

ansformat ion matrix.
tor Psi from node s

o ol
Io ol

(x'," - x1, ) t 
_]

Pv' = H.l" p", i
P; = H,i. p,',

Dj' = (HJ"-l I DJ

Dt', = (Håt-'f o'
where H' is a translation .tr
ple, H,j" transÌates f orce vec

I n equat ion ( 4. 36 )

[-o
I

HJ" = lo
I

Lt*i" - *î )

'lol
x1,)'J

l
l_t"1, - x,.," )

mt

0

1

,*í.

( 4.38 )
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In the translation transformation matrices, Xi" and Xrs" are
the global coordinates for node s, and the other coordinates
are similarly expressed. Combining Equations (4.34) and
(4.36), the transformed column force-displacement relation-
ships become

nl{i}lïÌlil
Ã st

^ vt

tt
K'

mt

= Kr
ssoo

= K' (n;.-r ¡ssor
= K'

s too
T

= 
^"to' 

(Håt-t )

= Hi" K!"oi

= Hlr" K i"ii {H;"-t I
= H,vs stio
= Hi," Kl,ii {n;,-'I
= K'

tsoo

= K l"oi (H;"-r )r

= K'
t too

T= Klror (u;,-t ,'

= H'
mt ts io

= Hå. Klsii (Hj.-r )r

= Hå, Kl"io

= Hå, Klrii ( uS¡r)r

K!,

K 1.,

fv

K'
mv

(4.3e)

where

ss

K'
SV

K'
sÈ

K'
sm

Kl"

vv

vt
K.

vm

K'ts

tt
Ãtm

ms

Kår'

¡\mt

¡nm

(4.40)
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Equation (4,39) relates out-of-plane force and displace_

ment components at sl.ave nodes s and t and in_plane cornpo_

nents at master nodes v and m, as influenced by the column
connecting nodes s and t. The stiffness submatrices in Equa_

tion (4.39) are inserted directly into the structure stiff_
ness matrix.

4.3 MODELLING OF SI{EÀR T{ÀÍ.¡IJS

In this study, the portion of a shear wall between con_
seculive floors is ¡nodelled as a deep column. À typical
shear wal1 element a-j-b-d-i-c is shown in Eigure 4.9. The

stiffness mabrix for a deep coLumn is identical to that of a

regu).ar column except for tvro modifications. FirstIy,
shearing deformations, as weII as flexural deformations, are
considered when computing .the in-plane displacements of the
wall. Secondly, for out-of-plane displacements, the shear
wall i.s modelled as a wide beam.

When subjected to flèxure, slender beams exhibit antic_
Iastic behaviour, with cross-sectional deformations as
illustrated in Figure 4.10 (a). wide beams, on the other
hand, experience anticlastic bending near their edges on1y,
as illustrated in Figure 4.10 (b). IÈ has been found exper_
imen!aIly that the consequent increase in the out-of_plane
bending of wide beams can be accounled for by multiplying
the modulus of elasticity by the factor 1/(j_v2), (Timosh_

enko, I941). Thus the out-of-plane modulus of elasticity can
be expressed as
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(4.41)

where,

Ew = effective out-of-plane modulus of elasticityfor shear wall element

y = Poisson ratio

Às illustrated in Figure 4.11, the interaction belween

shear walls and the floor panels is provided by inserting
rigid beams at floor levels in bays where shear waLls are
located. The rigid beams ensure that the cross-section of
the waII remains plane after deformation, as is implied by

the deep column model. They are assembled into the plale
panel stiffness matrices. This constrains the panel edge

node diplacements and provides shear wall-frame interaction.
The rigid beams are automatically assembled into the floor
stÍffness matrix in the same manner as regular beams. They

are made rigid by specifying suit.ably large beam properties.

The Iocal force-deformation rela!ionship for the shear
wa 1I elemen! is I

E

1-v2

{:;l=fl;,
K i j 

I
K j j l

f 
o'l

I ",f
(4.42)

whe re

Pi { Pii P¡2 Pr¡ M it Miz
"r: ]t (4.43)
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is the local force vector for node i
Pj = { Pit 

'i, 
Pj: 

"j, 
,i, 

"j, 
}r (4.44)

is the local force vector for node j
Dl = { air arz ar¡ êr, êr, êr¡ JT (4.45)

is the local displacement vector for node i
o, = { a¡r aiz aj¡ ejr êjz ej¡ }t (4.46)
is the local displacement vector for node j

and

K..1I

s1 o o o o o I
I0 s2 0 0 o 0 I

oos40-ssrl
o o o s6 o o | 

(4'4?)

0o-s50s701
s3 o o sej

l--rroooool
l. -s2 o o o -s3 

I

loo-s4oossIKii = | Ilooo-s6ool
Ir o -ss o s8 , I

Lr s3 o o o ,,0 l

(4.48)

Kij = {x.,, )r (4.49)
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In the stiffness submatrices

ÀE
Lh

12 E I3

t n3 
( 1+çl¡

6 E 13

LÊ (1+ø)

12 E r "

55 =

r3
"h

6 E I"

s1

s2

S3

Ln,

GJs6=-
Lh

S7=
4 EnI 2



sB = 
2 E'nJ t

Lh

(4+ø) E Is
s9 = 

-

Ln ( 1+Q)

(2-ø) E r z
S10 =

Lh(1+ø)

12 E 13
ø=-

G AsLf

À" =-
1.2

J = St. Venant torsion constant

w r,í

3

12 = second moment of area of the shear wallcross-section about the local Xz axis
w t3w

12

I s = second moment of area of the shear wallcross-section about the local X3 axis

= 
t*w 3

12

W = shear waII width

Èy, = shear wall thickness

A = cross-sectional a rea= t*w
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Teo transforrnations are required to transform the local
system displacement components shown in Figure 4.9 to equiv_
alent. gLobal system displacement components at a, b, c, and

d, as illustrated in Figure 4.13. The displacement compo-

nents at i and j, shown in Figure 4.9, are first expressed
in terms of components d sho$rn in Figure 4.12, using the
following relationship
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dro

dr t
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dto

(4.s1)

oE r D = Crd (4.52')

The displacements d are, in turn, expressed in terms of
the global displacements D, I through Ð, 1s shown in Figure
4.13. In the figure, the nodes m and v are the master nodes
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for the upper and the lower floors,
required transformation is :
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respectively. The

D,l

Dt z
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D'q
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D'e
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D' r o

¡J tt

o-' l'
D' r s

D' r ¿
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D' r e

D' r z

D' r s

(4.s3)
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(4.s4)
N=

a= (4.ss)

ß = angle bettreen loca1 and gJ-obal axes as shownin Figure 4. 14.

X = distance from the master node to the centerline ofthe waLl in lhe Xi direction.
Z = distance from the master node to the centerline ofthe wall in the Xt direction.

Equation (4.53) can be writÈen as

d = Cc D' (4.s6)

substituting Equation (4.56) into Equation 4.Sz

D = cL cc Dr (4.57')

Because of the contragrediant nature of displacement and

force transformations, it follows from Equation (4.52) that

= c[c[e

(zcosß-xsinß)
(z si.nß - x cosß )

'|

ol
Isinß 

_J

(4.s8)

sinß

-cosß

0

0

cosß

The force-displacement relationship in terms of
force and displacement vectors is thus

(4.s9)

the 9l oba 1
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Hastêr Nod€

Figure 4. 14: View Showing Shear wa11 Orientation



where

= .l .l K cL cc (4.60)

= shear wa1l. stiffness matrix expressed
in global systern

In Equation ( 4.60 )

shear walL local stiffness matrix

Eguation (4.59) relates out-of-plane global force and
displacement components at sLave nodes a, b, c and d, and
in-p1ane components at master nodes v and m, as influenced
by shear wall panel a-b-c-d. The shear wall stiffness coef_
ficients can be inserted directly into the structure stiff_
ness matrix.

MODEI.,LING OF PLÀTE PÀNELS

The typicar frat-prate paner is assumed to comprise the
portion of a fLat-plate floor bounded by the center lines of
the columns at its corners. Às illustrated in Figure 4..f5,
the pLate panel model includes also the cross_hatched
regions at the paner corners, that are common to both the
panel and the coLumns. The latter are outLined by rigid beam
eLement.s on the column center lines and along the plate_to_
column boundaries. The beams on the coLumn center lines are
rigid).y connected to columns, and are connected to the plate
by means of nonlinear f .Lexural springs designated FS r

through FSs in the figure. The beams on the column_to_plate

4.4
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boundary are connected to the flexural spring and to the
plate element. At the column corners the beams are connected
to each other by ball-and-socket joints. The plate panel is
assumed to be Iinearly elastic, except for the nonlinear
flexural springs, homogeneous and isotropic.

Four corner nodes and tweLve edge nodes are used in
describing the force-displacement relationship for the pan_

el. The edge nodes ensure that compatibility is enforced
between adjacent p).ate paneJ.s. This is an improvement over
the earlier work of French, Kabaila and pulmano (1925) and
that of French et al ( 1975) , where compatibitity was ensured
at the panel corners only. Às illustrated in Figure 4..1 6,
three degrees of freedom are assumed at each node. This
results in a total of 4g degrees of freedom for each flat_
plate panet

4.4.1 Derivation of Floor panel St,if fness Matrix

The nonlinear stiffness matrix of the plate panel was

derived numericarry as a function of boLh t.he corumn-to-
plate span ratio, c/L, and the flexibilities, sFr through
SFa r corresponding to flexural springs, FS I through FS8 ,
shown in Figure 4.I5.

The finite element program HYBSLAB was used to model the
flat-pIate panel. The program was developed by Hrabok and
Hrudey (1981) for the gravity load analysis of flat_plate
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floors. The plate bending elements used in the program were
derived using lhe hybrid stress method, which is wer.1 suited
to the analysis of f ).at_pi.ate floor systems (Hrabok, 19g1).
The program has the capability of generating in_plane and
pJ.ate bending stiffness matrices for a wide range of eLement
shapes. The latter may vary from a 3_sided element (trian_
gle) bo a 6-sided irregular polygon. some of the possibJ.e
element configurations are shown in Figure 4.17. In order to
model the plate panel, a subroutine was added to the finite
elenenÈ program to calcuLate and assemble the stiffness
matrices of the beams connecting the column elements to the
plate element.

A convergence test was performed to determine the appro_
priate mesh to be used in the analysis. Às illustrated in
Figures 4.18 through 4.22,, five different meshes, ranging
from 40 to 420 elements, were tested. Figure 4.23 illus_
trates the convergence of stiffness coefficient Kr r for the
different meshes considered. Similar convergence rates were
observed for other paner stiffness coefficients. The 336
element mesh ¡ras chosen as the nost appropriate for the
analysis.

The s!iffness matrix for the plate panel was derived by
constructing the stiffness matrix for the entire finite e1e*
menf array and then condensing off al1 degrees of freedom
except those for nodes 1 through .f 6 in Figure 4.21. This
Ieft the forty eight degrees of freedom shown in Figure 4..f6
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Figure 4.22: 420 Element Mesh
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to describe the f orce-

eI. The f orc e -d i splac

mesh is described by t

{i}
In Equation (4.61), subscript e denotes degrees of freedom
to be condensed off, and subscript c denotes degrees of
freedom associaÈed with panel edge and corner nodes.

Às no loads were applied at the nodes r¡here degrees of free_
dom were to be condensed off, po = 0. Consequently, in Equa-

tion (4.61)

displacernent relationship for the pan-

ement relationship for the 336-element

he foIlowing matrix equation.

l-n"" Ke. II I f""l (4.61)
Ln." K.. __l tq I

0 = Ke€ Dê + Koc 4
and P. = K.e D" + K.. D<

Fron Equa t ion (4.62)

De - -K;l K.. Dc

(4 .62)
( 4.63 )

( 4.64 )

Substituting Equation (4.64) into Equation (4.63)
p. = (K.. - K." K"-"t K." ) 4 (4.65)

In Eguation (4.65), the condensed stiffness matrix, Kp,
which relates force and displacement components at the panel
corner and edge nodes is defined as f oLl.ows.

Kp = K.. K." K;t Ke. (4.66)

Then, substituting Equation (4.66) into Equation (4.55)

P"=KpDc
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Às illustrated in Figure 4.16 the plate locaI coordinate
system coincides r.rith the gIobal system. Thereforer rìo

transformation to the global system is required, and the
elenents of the pJ.ate paneJ. condensed stiffness matrix, Kp,
can be assembled directly into the st.ructure stiffness
matrix.

Because of the large number of degrees of freedom, the
overall stiffness matrix for the plate panel is large. Con_

sequently, conventional storage schemes accounting for the
banded nalure of the matrix would have required auxilliary
storage. Therefore, taking advantage of the fact that the
stiffness matrix is sparse, considerable reduction in the
storage reguirements was achieved by using a variable column

he i ght storage scheme.

In Equation (4.66), K." is large aIso. Therefore direct
inversion would have been prohibitively expensive and as a

consequence, row elimination methods were used. À Crout
reduction procedure proposed by Mondkar and powel (1974) was

used. If has been shown to require a minimum number of
unnecessary operations for sparse matrices, thus saving core
space. The use of the Crout reduction procedure combined
with the variabLe column height storage scheme pernitted the
stiffness matrix to be condensed in core, with no auxiliary
storage regui rement.



112

The HYBSLÀB program was modified in order to take advan_
täge of the storage and reduction procedures described
above. The output of the modified program rras the condensed
48 by a8 stiffness matrix for the pLate panel, including the
I rigid beam elements and the g flexural springs at the col_
umns, as shown in Figure 4.16.

Using the modified HYBSLÀB program, stiffness matrices
for panel elements with col.umn-bo-plate span ratios of 1/g,
1/11, 1/16 anó, 1/25 were derived numerically as functions of
the eight spring flexibilities, SFr through SFe. The four
column-to-p1ate-span ratios represent thepractical range
normally used in des i gn.

The derived stiffness matrices were made dimensionless
using the method suggesteå by French at aI. (1925) and
described here. Consider a typical 3x3 submatrix of the
panel stiffness natrix which relates the forces at node i to
the displacements at node j. The relationship between the
dimensional and dimensionLess submatrices is

I n,r krz k," i f- --]

I I ¡, I k"" Lk"rz Lk"t¡ 
I

I urt kzz kr3 I = ]; I rn"r, L2k"zz r.2k',2. II I ).'| l(4.67)
Lut' k¡z ¡.._J lr,k".r L2k"32 L2k"r. l' 

'""

k,j

l¡ rr
''rj

= DimensionaL st i f fness coefficientrelating degrees of freedom i ã"ã:
= DimensionLess st i ffness coefficientrelating degrees of freedom i ;;ã'j

where,
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h = flexural rigidity of the flat_plate floor

E t3
12(1-rz¡

Once computed, the dimensionLess stiffness coefficients
were built inÈo the structural analysis computer program.
Thus, for any plate Hith a column_to_plate span ratio of
1/8, 1/11, 1/16 or 1/25, when va.l.ues have been assigned to
the plale span, L, and f IexuraJ. rigidity, h, the program
computes the dimensional stiffness matrix for the plate pan_
el.

The stiffness matrix for a panel with a column_to_plate
span ratio other thân lhe ones mentioned above, is evaluated
using Lagrange interporation. The paner stiffness matrix for
an arbitrary value of the colurnn_to_pJ.ate span ratio of 1/a
is evaluated as follows.

lKal = cr [Kzs] * cz [Kre] + cs [Krrj + c¿ [xe] (4.68)
where,

Ixo] = interpotated_ panel stiffness matrix evaluatedfor cotumn_ptáre span iãClã tU"
[Kzs], [x,-.], [{,r] and [xr] = panet stif fnesseva lua red numer i ca I iy f oi -cof urnlpi. tã'"punrarios of 1/2s, 1/16', iJ11 I and t/Brespect ively. and

4

c, = Tl- 
(1/a - 1/a¡ I

í=1 ,2,3,4i:l (1/a,- 1/o, )jlitt

=25

= 16

= 11

ql

dz

q3
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aq = 8

À study was conducted to determine the influence of the
different spring frexibirities on the pLate stiffness coef-
ficients. This was done by considering different combina_
tions of spring flexibilities SF, through SFa. It was
observed that the infLuence of the spring flexibilitíes is
localized, the infLuence of a given spring being negligible
beyond the quarter in which it is Located. Thus, for exam_
p1e, the stiffness coefficients in quarter I of the pLate
shown in Figure 4.24 are influenced mainly by the flexibili_
t.ies of springs FS1 and FS2. Consequently, instead of gen_
erating the stiffness matrix for the en!ire plate panel as a

function of the eight spring flexibilities, the stiffness
coefficients for only one quarter of the plate vrere evaLuat_
ed as functions of the fLexibilities of the two springs
Located in that quarter. Stiffness coefficients for the
other three guarters r{ere generated by symmetry. Further_
more, due to the symmetry of the plate panel r¡ith respect to
its diagonals, only those stiffness coefficients relating
degrees of freedom 1 , 3 , I 3 , j 4 ,15 ,1 6 ,17, and 1g !o the 4g
plate degrees of freedom had to be considered.

It rras observed that most of
corresponding lo the degrees of
pIâte quarter were influenced by

of the adjacent springs, while a

the sti ffness coefficients
freedom in a parLicular

the flexibility of only one

few were infLuenced by both
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Fss
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Plate edge node

t4
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Figure 4.24. Influence of Sprinq Flexibilities on plate
St i f f n esses
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of them. Thus, for example, f.or the plabe panel shown in
Figure 4.25, stiffness coefficients k¡rg, k¡¡13 âtld k3,1a
Ì¡ere influenced by spring ftexibility SFr ¡ whil-e k r , r ,
k4sr¡3 âIìd k14,4¡ wê!€ influenced by spring fl-exibilities
SFr and SF2.

The stiffness coefficients were found to vary exponen_

tially with an increase in the spring fLexibiLities. There-
fore, exponentially decaying functions were fiÈted t.o the
stiffness coefficient vaLues generated from the finite ete_
ment analysis. The function used to fit stiffness coeffi_
cients dependent upon a single spring flexibility had the
following form.

-(ar SFr )k,J = Fz + (nr - Fz) e (4.69)

The function used to fit stiffness coefficients dependent

upon two spring fLexibilities had the form

-(az srz)k,J = Fs + (ns - ¡'s) e

In Equations (4.69) and (4.70),

k,l = Stiffness coefficient relating degrees of" freedom i and j

Fs = Fe + (F3 - F4) e
- (a r sr r )

- (a r SF ' )

(4.70)

Þ^

F1

F2

F3

Fa

= Fz + (rt - rz) e

= value of k¡, when SFI = 0

= vaLue of k,, when SFI =æ

= value of k,, when SF2 =æ

= vaiue of k,, nhen SF2 = SFr =co



Plate quater

I

Rfgld beans

FSr -rls
L4

Half the column
rrldth (C/Z )

Figure 4.25: plate Ouârter I
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Fz = value of k¡ i when SF2 = SFr = 0

SF1 and SFz = ¡1"*ibilities of flexural springsFSr and FSz respectively
al and a2 = constants

The constant ar in Equation (4.69) was evaruated as for.-
lows .

Fr - Fz l (4.711
k'l - F2

Equation (4.71) was evaluabed for several spring flexibili_
ties and the average value was used in Eguation (4.69).
Since it is difficult to solve analyticalty for constants ar
and a2 in Equation (4,70), and also since exponentially
decaying functions were found not to be very sensitive !o
changes in these constants, they were evaluated using a tri_
al and error procedure.

Typical plots of the variation of stiffness coefficients
with the increase of spring flexibilities, and the functions
used to fit these relationships, are shown in Figures 4.26 to
4.28.

4.5 ÀSSEMBLY OF FLOOR STIFFNESS MÀÎRIX

In the structural analysis computer program, the out_of_
plane stiffness of the flat-plate floor is modelLed by
assembling the various ftoor paner stiffness maLrices into a

singJ.e floor stiffness matrix. The degrees of freedom asso_

1

at = 

- 

ln
SFr I
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ciated with the panel edge nodes are then condensed off
leaving a reduced stiffness matrix in terms of the column
degrees of freedom only. This condensed floor stiffness
matrix is then assembled into the structure stiffness
matrix. The coordinate systems for aII of the panel ele_
nents, the floors and the entire structure. have identical
orientations. Thus, no transformations are required.

For the nonlinear analysis, as discussed previously, the
stiffness matrices of the pLate panels are dependent upon
the flexibility characteristics of their connections to the
supporting columns. since plate-to-corumn connection flexi_
bilities vary from one connection to the next, plate panel
stiffness matrices rnay vary from panel to panel r¡ithin a
given floor. Therefore, the stiffness matrix for each of the
plate panels in the structure is evaluated before it is
assembled into the structure stiffness matrix. This proce_
dure is repeated for each cycre of iteration in the nonri-
near analysis.

4.6 NONLINEÀR ÀNÀLYSIS PROCEDT'RE

The basic premise of the iterative anaJ.ysis procedure is
that the correct deflections and internal forces for a
structure with nonlinear connections can be obtained from a
single linear anarysis, provided the correct stiffness is
assumed for each connection. The procedure thus involves
repeated cycles of an iterative procedure whose purpose is
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!o determine appropriate frexibility characteristics for
various connections in the structure. when these character-
istics have been determined with sufficient accuracy, they
are employed in a linear analysis to caÌculate the correct
structural displacements and forces.

Consider a structure with plate_to_column connections
having nonlinear moment-rotation functions, as iI).ustrated
in Figure 4.29, ot the form

q=s(m) (4 .7 2)

rn Equation (4.72), 9(m) is a nonrinear function of the
moment acting on the connection. The function is replaced by
a Linear relationship of the form.

Ø = M / St (4 .7 3l

where s1 is the sl0pe of the initial tangent of the M-Ø

curve. Àfter calcuì.ating the initial stiffnesses for aIl of
the connections in the structure, the stiffness matrices for
all of the prate paners are generated and assembred into the
floor stiffness matrix. Stiffness matrices for alL of the
other components of the structure are then generated and
assembled into the overall structure stiffness matrix. À

Linear analysis is performed and the moments at alI plate_
to-column connections are conputed. If the moment at the
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Figure t.29: ModificaÈion of Connection Fl.exibi).iLy



connection or igi naL ly considered
rotational deformat ion is

Øt=Mt/St
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the c or re spond i ngis M1,

(4 ,7 4)

However, the rotation calculated from
relationship of Eguation (4.72) js

the correct nonlinear

gi = g(Mr) (4.7s)

A better approximation to lhe moment_rotation functions is
t hus

Ø=M /sz (4 .7 6')

whe re

s2=Ml /øl (4.77')

as iLlustrated in Figure 4.29. Equation (4.77) and similar
relalionships for alL olher connections are then used to
ca.lculate the new member force_displacement relationships
and a second Iinear analysis is performed. The procedure is
repeated until the rotations at aI1 connections, caJ.culated
from the linear relationships for the curren! cycle, are
sufficiently close to those given by the appropriate nonli_
near relationship of the form of Equation (4.72).
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The convergence of lhe above procedure can be hastened by
using only some fraction of lhe difference between Ø, anð Ø,
rather than the total difference, when modifying the connec_
tion flexibility. À factor of one half nas arbit.rarily
employed in thi s study.

4.7 DESCRIPTION OF PROGRAM

The computer analysis program is written in the FORTRAN H
language. It has 5340 statements. In order to reduce the
slorage requirements, a storage pooJ. is used. The program
is implemented using the ÀMDÀHL 470/vg mainframe computer
system at the University of Manitoba. With minor modifica_
tions, it can run using any compabible mainframe systèm. In
its current version, it runs in the BÀTCH mode. Nonlinear
analysis of a ten-storey structure with shear walIs, such as
the one described in Example 7 in chapter five, requires
approximately 510 k-bytes of core storage and 59 seconds of
CPU time to run.

The input can be divided into three blocks. The first
describes the geometry of the structure. The second
describes the properties of the structurar components such
as columns ' prate paners, shear warrs and prate-Èo-corumn
connections. The third describes the loading. À detailed
description of the required input is presented in appendix
B.
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The program caLculates and outputs the follor.¡ing informa_
tion.

1. An echo of the input data.
2. The floor in-plane displacement cornponents at the

naster nodes.

3. The out-of-plane displacements at aII floor nodes.
4. The floor plate shears and moments at aIl nodes.
5. Column shears, moments and axial forces.
6. Shear walL shears, moments and axial forces.
7. Number of iterations required for the analysis to

converge.

It is important to note here that floor shears and
moments are calculated.at plate panel corner nodes only.
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Chapter V

ÀPPLICÀTIONS ÀND DISCUSSION

INIRODUCTION

rn this chapÈer, eight exampres are presented to demon-
strate the capabilities of the analysis procedure and the
conputer program. The results obtained using the program are
compared with published results. The analysis program is
capable of performing both linear and nonl.inear analyses.
ExampLes 1 and 2 ilLustrate the importance of considering
the nonlinear behaviour of flat_pIate structures when they
are subjected to lateral loading. Examples 3 to 6 ill.ustrate
the influence of relevant physical parameters on the behav_
iour of a ten storey Iaterally_Ioaded fLat_p1ate structure.
The parameters incl.ude the pLate reinforcement ratio in the
vicinity of the column, the floor concrete strength, the
c or umn-depth- to-pra t e - span raÈio and the prate thickness. In
Exampre 7, a ten storey structure with shear warr.s is ana-
lyzed nonlinearly, and in ExampJ.e g a six storey flat_plate
strucLure with an unsymmetrical. floor plan is analyzed non_
linearly.

- '128 -



5.2 EX.À!ÍPLE 1

The ten-storey flat-p1ate strucÈure shown in Figure 5..1
was analyzed, first assuming rigid prate-to-column connec_
tions. Àccordingly, the entire structure was assumed to
behave linearly, Then the structure was reanalyzed assuming
the plate-to-column connections to behave nonlinearly. The
rateral .Loads were appried at the froor revers as shown in
the figure, and it was assumed that no gravity road was act-
ing. For the nonlinear analysis, the reinforcement rat.io
was 0.01 and the concrete strength was 30 Mpa, values which
would be common in engineering practice. The structure had
been analyzed previously (Chislett, 1993) using methods
recommended by several different researchers. They include
the equivalen! beam rnodels proposed by Frazer (19g3), peck_
noLd (1975) and Long and Kirk (19g0), the equivalent frame
method suggested by the Àmerican (ACI 31g_g3) and the Cana_
dian (cSÀ À23.3 Mg3) specifications, the three dimensional
rinear analysis program deveroped by chistett and Morris
(1983), and the finite element model deveJ.oped by puLmano
(1975). Equivalent beam section properties for the various
eguivalent bearn models arè presented in TabJ.e 5.1, and sec_
tion properties for the eguivalent col.umns are presented in
Table 5.2.

The IaberaL drifts computed using the different models
are summarized in Table 5.3 and plotted in Figure 5.2. Às
expected, the Lateral drifts computed using the nonlinear
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TABLE 5.1
tquivàIenÈ Beâm secÈion pro¡)crÈies, Example 1

Long

Fràzer
Pcc hnold

tffectlve
wldÈh

lntêrior Beâm

1830

3s53
56 r 2

( loe ñm4 ) (ror;J)

6.a34
13.82
22 - 1-'

1 .855
3-602
s.690

EffecÈfvè
r{idth

(mm) (tOe mm.)

9rs
22A3

2AO6

3.123
8.67 1

10.79

(1ot mm.)

o.92-r7
2.315
2.845



Storèy

TÀALE 5. 2
scction propertres 

'.or EquivarenÈ corumns, Exanpre .r.

Other
Storeyg

rntèrior
tdgc
Cornèr

rntcrior
Ed9 c

Corncr

47.O!
47.O4
47.O4

47.O4
47.O4
¡¡7.O¿

1t.21
11.21
6.72

13.{3
'I 3.43
7 .46

11.21
6.72
6.72

'I 3.43
7 .46
7 .46

577600
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577600

577600
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TABLE 5.3
tateral Drifts Obtained f rorn Different Ànalysis Mode1s

Example 1 (mm)

1234

10.6 10.7

10.3 10.3

9.8 9.8 ,

9.0 9.1

8.0 8.1

6.8 6.9

5.4 5.4

3.8 3.8

2.1 2.2

0.7 0.7

0.0 0.0

11.s 12.3 12.3

11.2 11.9 11.9

10.8 1 1 .3 11 .2

10.1 10.4 10.4

9. 1 9.2 9.2

7.9 7.8 7.8

6.5 6.1 6.1

4.8 4. 3 4.3

2.9 2.4 2.4

1.0 0.7 0.?

0.0 0.0i 0.0

16. 6 25.9

15.9 24.5

15.0 22.7

13.7 20.s

12.1 17.9
'1 0.1 14.7

7.9 11.2

5.4 7.5

2.9 4.0

0.9 1 .2

0.0 0.0

14.3

13.7

13.0

11 .9

10.6

8.9

7.0

4.8

2.7

0.8

0.0
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I
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8-
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Pec kno ld
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method were Larger than these obtainêd using alt of the.lin_
ear methods excepÈ for that deveJ.oped by Long and Kirk.

To account for the loss of stiffness resulting f r.om the
cracking of the concrete at the plate-to-coLumn connections
due to gravity roading, tong and Kirk recommended using a

very small equivalent beam vridth of 0.3 times the plate
width. This recommendation was based upon their experimen_
taL program using one third scale reinforced concrete mod_
els. The maximum difference between the drifts obtained
from the nonlinear analysis and those obtained using Long
and Kirk's method was found to be 55%. Long and Kirk sug_
gested a conservative value for the equivalent beam width in
order to emphasize the importance of the effects of concrete
cracking at the pl-ate-to-column boundaries. That probabty
explains the large difference between Èhe drifts obtained by
Long and Kirk and those oblained using the nonlinear analy_
sis program.

Lateral drifts obtained using Frazer,s eguivalent bean
width were as much as 14% smaller than t.hose obtained using
the nonrinear anarysis program, whir-e those obtained using
Pecknold's equivalent beam. rsidth were as much as 36% snall_
er. Those drifts obtained using the CSÀ or ACI equivalent
frame methods vere as much as 31% smaller.

The Lateral drifts obtained using the author,s program
assuming linear behaviour and Chistett and Morris, Linear
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analysis program ¡{ere found to be virtuarry identicar. The
lateral drifts obtained using pulmano,s finite element anal_
ysis were found to be approximatety 14% smaller than those
obtained using the author's linear analysis. This is to be
expected since pulmano's finite element program uses compat_
ible ptate elements which normalry resurt in an overestima-
tion of the stiffness of the structure.

ÀlI of the equivalent beam methods have the same shorÈ_
coming; they assume a single value for the stiffness of lhe
plate-to-column connections. In reality the stiffness
depends upon several parameters, as discussed previously.
Conseguently, equivalent beam methods tend to overestimate
thê stiffness of some structures and to underestimate that
of others.

Column shear forces for columns 1 and 6 obtained using
the authors anarysis program, the chisrett and Morris (19g3)
Linear three-dimensional analysis program, and pulmano,s
(1975) finite el-ement program are presented in Table 5.4,
and those for coÌumn 1 are plotted in Figure 5.3. Co1umn
moments for coLumns l and 6 obtained using the three methods
of analysis described above, are presented in Tab1e 5.5 and
those for column l are plotted in Figure 5.4. It can be seen
tha! lhese methods yield very similar column forces.
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TÀBLE 5.4

Column Shear Forces (kN) , Example 1

Storey

10

9

ö

7

6

E

4

3

2

1

Linear Chislett pulmano Linear Chislett pulmano

-2.20 -1 .67 _0.99

1.72 1.99 2.52

3.27 3.58 4.38

5.19 5.46 6.46

7.00 7.23 8.45

8.90 9. 18 .1 o. 57

1 1 .35 11 .49 12.95

14.60 14.87 16.0,7

19 .34 19.39 20 .45

28.7 6 28.77 29.19

7.66 6.69 5.48

10.65 10.09 9. 08

16,99 16.34 14.80

22.83 22.21 20,26

28.8 1 28.22 25.83

34.52 33.98 31.15

39.69 39 .23 36.26

43 . s9 43.23 40.33

45.32 45.09 42.72

40.47 40.38 39.39
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Figure 5.3: Co]umn Shear Forces For Column 1, Example 1
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TÀBLE 5.5

column Bending Moments ( kN-m ) , Example 1

Storey

Linear Chislett pulmano Linear Chi slett pulmano

10 top
bot t om

9 top
bottom

I top
bot t om

7 top
bot tom

6 ùop
bottom

5 top
bottom

4 Lop
bottom

3 top
bottom

2 Eop
bottom

'1 top
bottom

4.0s s.11 5,37
-10.77 -10.21 _8.40

16.76 17.26 16.27
-11 .52 -t 1 . 18 _8. 59

21 .03 21 .68 20.75-11.07 -10.76 _7.40

24.63 25.22 24.50
-8.79 -8.57 _4.80

26.59 27.15 27.00-5.24 -s.09 _1 .24

27 .13 21 .62 28.40
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EXÀlrPËE e

The ten-storey structure considered in Example 1 was ana_
ryzed nonJ.inearJ.y under four different r.aterar roads and
three gravity road revers. The rateral roads,p, considered
were 20 kN, 40 kN' B0 kN and r0o kN. Low, moderate and high
gravity load levels were considered. The structure was also
anaryzed assuming rigid connect.ions between the corumns and
the plates under the four laÈeral loading conditions. For
the nonrinear anarysis, The steer ratio was assumed ho be
0.02, the floor concrete strength was 30 Mpa, the plate
thickness was 230 mm and the c ol umn _dept h_ to_pla t e_span
ratio was 1/8.

The roof lateral drifts for the different loading cases
considered are shown in Figure 5.S and listed in Table 5.6.
It can be seen from the figure that the lateral drifts
obtained from the nonlinear analysis deviate considerably
f rorn those obtained from hhe linear analysis. The deviation
increases as the lateral load increases. Thus, the ratio of
the roof drifts for the high-gravity_Ioad and the linear
analysis cases is 1.24 at a transverse load of 20 kN. At a

transverse load of 1OO kN, the ratio has increased to 1.65.
In practice this could mean the difference between consider_
ing the structure to meet the code serviceabílity require_
ments or not.

5.3
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S t ruc t ure

Example 2

TÀBLE 5.6

Drifts Under Various

(mm)

Loading Conditions,
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The leve1 of gravity loading applied to the structure
influences its behaviour under lateraL load aIso. Thus, for
exarnple, in Figure 5.5 it can be seen that as the gravity
load IeveI is increased from ,'Lor+,' to "hi9h", while holding
the lateral load constant at 100 kN, the Lateral drift
increases by 28 percent. This is due mainly to the cracking
of the concrete at the column face caused by gravity load_
ing. That cracking results in a loss of stiffness at the
connections between lhe plates and the coLumns. À variation
in gravity load rever has virtually no infruence on coLumn

end shears and moments due !o lateral load. It is important
to recall that in this study, the influence of the gravity
loading was considered for interior pLate_to_coLumn connec_
tions onJ.y. The influence of the gravity loading on the
sLiffness of the overall structure would increase if it were

accounted for in the derivation of t.he standardized func-
tions for corner and edge connection types.
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5.4 EXÀ¡.rpLE 3

rn this exampre, Èhe inf r.uence of the pr.ate steer ratio
in the vicinity of the column is demonstrated. The ten_sto_
rey structure shown in Figure 5.1 was analyzed assuming
steel ratios at the connections of 0.04, 0.03,. 0.02 and
0.01. They represent the practical range used in design,
The structure eras assumed to be subjected to lateral loads,
P, of 50 kN, and moderate gravity J.oading. The concrete
strength was assumed to be 30 Mpa, while the plate thickness
was 230 mm and the column-depth-to_plate_span ratio r¡as 1/g.

The lateral drifts for the structure are listed in Table
5.7 and plotted in Figure 5.6. Figure 5.7 shows a plot of
various storey drifts as a function of lhe floor reinforce_
ment ratio. It can be seen from the figures that the lateral
response of the structure is influenced significantly by the
total amount of reinforcement present at the plate_lo_column
connections. It can be seen in Figure 5.6 that there is an
increase in the stiffness of the structure with the increase
of the connection reinforcement ratio until the latter
exceeds about 3 percent, after which rittre stiffness is
gained by increasing the reinforcement ratio. Thus, an
increase in the total steel ratio in the coLumn region from
0.01 to 0.02 resulted in a 19% reduction in the Lateral
drift, çhiIe an increase from 0.03 to 0.04 result.ed in only
a 4% reduction in the Lateral drift. This phenomenon has
been observed by Àk iyama ( 1 9g4 ) .
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Lateral
Example 3

TÀBLE 5. 7

Drif!s For Different Steel Ratios,
(mm )

t0
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S!orey Ptotal = Ptop + Pbortom
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1
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Column moments for coLumn 6 are ptotted in Figure 5.g for

steel ratios of 0.01 and 0.04. It can be seen from hhe fig_
ure that the coLumn moments are not very sensitive to varia_
tions in the fLoor reinforcement ratio.

The program assumes alL connections of the same type in a
given floor to have the same steel ratio. This assumption
is considered to be reasonable for practical design apptica_
tions.



E P= o.01
o P= o.oq

= aztu

F

=(9

LLJ -
=

20
I N KN-I'4

0.0 I
MOMENT

Figure 5.8: Column Moments for Column 6, Example 3



151

5.5 EXÀMPLE A

This example iLlustrates the influence of the column_depth_
to-plate-span ratio on the behaviour of a structure. The
structure shown in Figure 5.1 was analyzed. assuming square
column dimensions of. 760, 55S, 3g.l , and 244 mn, correspond_
ing to column-depth-to-plate-span ratios ot 1/g, 1/11, 1/16,
1/25, respec!ivery. These ratios cover the range normarry
used in design. The steel ratio was assumed to be 0.02, the
floor concrete strength was 30 Mpa, and the plate thickness
was 230 mm. The lateraL loads, p, were 50 kN, and moderate
gravi ty loading was assumed.

The lateral drifts are Listed in Table 5.g and pLotted in
Figure 5.9. Figure 5.10 shows a plot of various storey
drifts as a function of the column_depth_to_plate_span
ratio. It can be seen that t.he lateral behaviour of the
s!ructure was strongJ.y inf .Luenced by that parameter. In
this study, the influence of the column_to_plate span ratio
was accounted for in deriving the standardized functions for
the different types of connections, and also in the deriva-
tion of hhe plat.e-element stiffness matrix. Therefore, an

increase in the column-depth:to-p1ate_span ratio increases
the stiffnesses of the pl-ate-to-col-umn connections and aLso
the stiffness of the floor plate panels. Thus, for example,
an increase in the coLumn-depth-lo_plate_span ratio from
1/25 to 1/8 results in a decrease of the roof Lateral drift
by a factor of 7.
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TÀ8LE 5.8

Lateral Drifts For Differen! Column,/elate Span Ratios,
Example 4

(mm )

Storey Column / elate Span Rat,io c/L

1/8 1/1 1 1 /16 t/2s

10

9

I
7

6

5

3

2l
I

1l
,rrooo a a 

" 
I
I

26

25

23

22

19

16

12

I
4

1

0.0

29

29

28

26

24

21

17

12

7

2

0.0

63

62

60

57

52

45

38

29

f8

7

0.0

180

178

172

163

1s0

134

113

89

60

28

0.0
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It is evident from Figure 5,9 that the lateraL sLiffness
of !he structure is very sensitive to changes in t.he column_
depth-to-plate-span ratio r¡hen the floors are relatively
fIexibIe. However, when the floors are stif.f , a further
increase in the plate-to-column-ratio produces on).y a small
increase in lateral stiffness. For exampLe, increasing the
coLumn-depth-to-plate-spari ratio f.ron 1/25 to 1/16 resulted
in a reduction of the roof drift of 65 percent, while
increasing the ratio from 1/11 to 1/g produced only a 13

percent reduc!ion.

Column moments for columns 1 and 6 are p)-otted in Figure
5. f1 for column-depth-to-plate-span ratios of. 1/g anà 1/25.
It can be seen that the column moments are extremely sensi_
tive to changes in lhe ratio.
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5.6 EXÀ!ÍPLE 5

The infLuence of floor concrete strength on the behaviour
of the overaLl structure is demonstrated in this example.
The structure shown in Figure 5.1 was analyzed assuming dif_
ferent floor concrete strengths. The concrete strengths con_
sidered were 20, 25, 30, 35 and 40 Mpa, which represent lhe
practicaJ. range of values normally used in design. The rein_
forcement ratio was 0.02, the plate thickness was 230 mm and
the column-to-prate-span ratio was 1/g. The structure eas
subjgcted to a lateral loads, p, of 50 kN and it supported
moderate gravity toads,

The computed Lateral drifts are listed in Tab]e 5.9 and
plotted in Figure 5.12. In Figure 5.13, the various storey
drifts are plotted as a function of the froor concrete
strength. The resurts shown in Figure 5.12 and 5.r3 demon-
strate that the concrete strength has Iess influence on the
behaviour of the structure than does the steel ratio. The
concreLe strength influences the exten! and propagation of
the cracks in the column region. Therefore, as it increases,
although onLy moderatery, rhe stiffness of the connections
and that of the overall structure increases. It was found,
for example, that increasing the floor concrete strength
from 20 to 40 Mpa resulted in a 15% reduction in the Lateral
drift at the roof level.
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TÀBLE 5.9
Lat,eraI Drifts For Different Floor Concrete Strengths,
ExamPre 5 

(mu)

Storey Fl,oor Concrete Strêngth fc'

20.00 25.00 30.00 35.00 40.00
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are pLotted in Figure 5.14

MPa. It can be seen tha!
little effect on the column
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5,7 EXÀI.{PLE €

The influence of the thickness of the floor plate on the
behaviour of the structure is iltustra!ed in this exampte.
The ten-storey structure shown in Figure 5.1 was analyzed
assuming floor plate thicknesses of 150, 1gO, Z3O, 27O, 310

and 350 mm. The pJ.ate reinforcement ratio in !he vicinity
of the column was 0.02, the fLoor concrete strength was 30

MPa, and the column-to-plate-span ratio was 1/g. The struc_
ture was assumed to support Iateral loads, p, of 50 kN, and

moderate gravi ty Ioad,

The lateral drifts are listed in Tab1e 5.10 and plotted
in Figure 5.15. Figure 5.16 shows a plot of various storey
drifts as a function of the floor plate thickness. It is
demonstrated in Figures 5.15 and 5.16 that the plate thick_
ness strongly influences thu ,.=pon"" of ftat-plate struc-
tures to lateral toads. Às would be expected, an increase
in the plate thickness causes an increase in its stiffness,
thus a decrease in the lateral drift. The figures illus_
trate as ¡selI however, that the thicker the floor plate, the
less sensitive to pl.ate thickness is the Iateral drift.
Thus, for the structure considered in this exampLe, increas_
ing the plate thickness from I50 to 190 mm resulted ín a 43%

reduction in the roof IateraL drift, whi).e increasing the
thickness from 310 to 350 mm resulbed in only a 27% reðuc_
tion in the drifr.
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Laleral
Exarnple 6

TÀBLE 5. 1O

Drifts For Di f ferent
(tm)

Pla te Thicknesses

Storey Ptate rhic kn"";-;-¡ñ-t

l0
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I
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6
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I

Support s
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57
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0.0
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0.0
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Column moments for columns 1 and 6 are plotted in Figure
5.17 for pLate thicknesses of j50 and 350 mm. It can be seen

from the figure that corumn moments are sensitive to varia-
lions in the floor pJ.ate thickness. Comparison. of figures
5.13 and 5.17 ilLustrates that the influence of column_
depth-to-plate-span ratio on column moments is smar.rer than
that of plate thickness.
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5.8 EXÀUpLE Z

The structure shown in Figure 5.1g was analyzed nonli_
nearly. The lateral Loads, p, were applied as shown in the
figure. The steel ratio rras 0.02, the column-depth-to-pl-ate_
span ratio was 1/16, the froor concrete strength was 30 Mpa,

and the floor thickness was 230 mm. The thickness of the
shear !¡alls was 200 mm and their poisson's ratio was 0.20.

The lateral drifts obtained for the ten storey structure
with and without shear walls are plotted in Figure 5.'19, It
can be seen from the figure that the presence of shear waLls
reduced the roof lateraL drift by g0%.

The totat shears in the structure are normaLty resisted
by both the frame, which comprises the floor plate panels
and the columns, and the shear warrs. shear forces resisled
by the frame and those resisted by the shear walls at dif_
ferent floor levels are pIoÈted in f,igure 5.20. It can be

seen from lhe figure that the shear r¡all resisted g2 percent
of the total shear forces in the structure. As h,eIl, a sud_
den increase in the roof shear forces was observed. This is
a result of the tendency of the frame to restrict the free
defLecÈion of the wall. Similar behaviour has been observed
by Khan and Sbarounis (1964) for multistorey structures with
shea r r+a 11s .

Numerical comparisons between influence curves proposed
by Khan and Sbarounis and shear forces obta.ined from the



P --.+

P-
p ---+
P-
P-
p-+

p-+

P-.*

P..-

(a) Elevati.on

-P----.+ P

-P
--- P

-P--+ P

-...- P

_-P

-P
-ÞP

P= 40. 0 kN

o

a

tb12

S lab =230 mm

Thickness

Cofumns : 555x555 mm

Shear watl
thíckness = 200 mm

Shear wa.l l Þo í sson
ratlo = 0.2

l-.--!lt llo_]_o'
1

L

6l 10o'cl

L=6.10 m

.- þ= o.o2t5

E=2 0ó 90 MPa

lt =0. tt1
f' = 30 ¡fpA

c

ctL = Llrl

13

(b) Ftoor plan

Figure 5.18: Ten Storey Structure With Shear Walls
Example 7



=
zc\)

F
I
(J
l-J

=

E
o

I^] I TH SHERR 14ÊLLS

I^] i THOUT 5HEÊR HRLLS

O
-ir"o.o 5 lo 15 20 25

DR]FT IN MM

Figure 5.19: Lateral Ðrifts for the Structure f^¡ith andwithout Shear Walls, Exanple 7



lll
ro

ú
O

FRÊME

SHERR NÊLL

z^)

t--r
(.)
H:f

tLJ -
I

tt
SHERR IN KN xt0,

Figure 5.20: Shear Forces Resisted by the Frame and the
Shear WaIIs . Example 7



173

author's nonLinear analysis program are difficult to make

for the following reasons. Firstly, the influence curves
proposed by Khan and Sbarounis are for two dimensional
frames, while the author's analysis program assumes a three-
dimensionaL frame. Secondly, the stiffness parameters for
lhe structure considered in this example were beyond t.he

ranges considered in the influence curves proposed.



5.9 E:TÀüPLE q

The six storey structure with an unsymmetrical floor plan

shown in Figure 5.21 was analyzed nonlinear).y. The lateral
load distribution is shown in the figure. The Loads were

applied as concentrated loads at the rnaster nodes on the

various floors. The steel ratio was 0.0f 5 for interior con-
nections, 0.010 for corner connections, and 0.020 for edge

connections. The column-depth-to-p1ate-span ratio was O.Og,

the fLoor concrete strength was 30 Mpa and the floor thick-
ness was 200 mm. The square column dimension was 500 mm for
the upper three storeys and 600 mm for the lower three, as

shown in the figure. The master nodes are located at coordi-
nates X'r = 10.5 m and X'¡ = 14.0 m as shown.

Figure 5.22 shows the data input requi red to describe the

structure. Because of the data generation provisions that
were built into the program, only a relatively smaLl, number

of staLements were reguired to describe the structure and

loading.

The lateral drifts in the direct.ion of the Iateral load

at the masler nodes at lhe various floor levels are plotted
in Figure 5.23. Figure 5.24 shows the magnitudes of the

rotations of the various floors abou! a vertical axis. The

original and displaced positions of the roof are illustrabed
in rigure 5.25.
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As the lateral loads are apptied at t.he master nodes (X,r =

10.5 m) and as the center of resisÈance for the columns in a

given floor is at X,¡ less than 10.5 m, it is to be expected
that the rotâtion of the roof r{ould be clockwise, as illus_
trated in Figure 5.24.
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Chapter VI

SIJl,lMÀRy, CONCIJUSIONS AND RECOMMENDÀTIONS

ST'MI,ÍÀRY ÀND CONCLUSIONS

¡. computer prograrn has been developed for the lateral
Ioad analysis of flat-ptate building frames with or
h,ithout shear walls. The program is capable of per-
forming both Iinear and nonlinear analyses.
For the nonLinear analysis, aIl of the structural
componenLs are assumed to be linearly elastic, except
for the connections between t.he plates and the col-
umns.

Using all available experimental data, standardized
functions have been derived !o model the moment-rota-

tion behaviour of floor-p1ate-to-column connections.
The functions are expressed in terms of the geometric

and material paraneters that influence most strongly
the behaviour of the connections. Once the standard-
ized functions had been derived, the parameEers for
each of the test spec imens on which lhey were based

were back substituted to check the acccuracy of the
standardization procedure. For most of the test spec_

imens there was good agreement between the experimen-
tal data and !he " reconstructed" moment-rotat ion

3.

181 -
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data. The maximum percentage difference between pre_
dicted and experimenLaL values ¡,ra s small.er Ehan 20%

for all of the connections considered. Even though
this might be considered only a crude estimation of
the actual connection behaviour, it is asserted that
it provides a more realistic approximation than the
commonly used assumption of rigid connec!ions.
Nonlinear stiffness matrices have been determined
numerically to model the out-of-plane stiffnesses of
f lat-pl-ate floors. The stiffness coefficients were

derived as functions of both hhe flexibilities of the
plate-to-column connections and the column_depth_to_
plate-span ratio.
Examples have been presented to illustrate the influ_
ence of several parameters on the behaviour of rein_
forced concrete flat plate structures. The parameters
included the gravity 1oad level, the column_depth_to_
plate-span ratio, the total floor steel ratio in the
vicinity of the column, the fLoor concrete strength,
and the floor plate Èhickness.

Àn example has been presented in Hhich several models
lrere compared with the author's procedure, The l-at_
eral drifts obtained using the author's nonlinear
analysis were found to be about 2g% Iarget than those
drifts obtained using most of the Iinear methods of
analysis. LateraL drifts obtained using Long and

Kirk's recommendations were found to be 56% Iarger

t
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than lhose obtained using the nonlinear analysis. The

ì.atter authors "calibrated" their linear analysis
procedure to account approximately for the effects of
cracking at the plate-to-column connecLions.

7. Using the CSÀ À23.3-MB4 equivalent frame method to
analyze flat plate structures subjected to lateral
Ioad can resuLt in gross overestimation of t.he stiff_
ness of the structure. Therefore, it is strongly
recommended that this method not be used for 1ateral
load analyses. This confirms observations made by

Allen and Darvall (1977) and Elias and Geogiadis
(19781 .

6.2 RECO!.ÍMENDÀTIONS FOR FT'RTHER STT'DIES

The prinary purpose of the present study rras to
develop the methodology for accounting for the nonli_
near connection behaviour in the lateral load analy_
sis of flat-plate structures. The accuracy of the
analysis procedure depends primariJ.y upon the experi_
mentaf data used in deriving the standardized moment_

rotation functions. Às experimental data at present
are limited, more experimental research is needed to
determine the infLuence of the various geometric and

material parameters on the moment-rotation behaviour.
In particular more research is needed on edge and

corner connections.
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In this study, onl.y square flat-plate floor panels
and coLumns of square cross-section eere considered.
The program should be extended !o model rectangular
panels and columns

The program considers only static IateraL loads.
Provisions should be added to allow for dynamic load_
ing.

At present, the conputer prograrn câlculates shears
and moments in the floor plates at the coLumn nodes

only. À procedure to determine the actions in the
flat plate fLoors at other points should be incorpo_
rated.

The effect of gravity loading has not been adequately
accounted for. No provision has been made to account
for loading on one side of the coLumn, and unloading
on the other side wi¡en transverse loading is superim-
posed on gravity loading. It is recommended that more

experimenÈaL research be carried out to study this
behaviour, and provisions to account for Èhis behav_

iour should be added to the computer analysis pro-
gram, in order to correctly account for the gravity
loading effecLs on the analysis.

3.
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Àppêndix À

PLÀTE-TO-COTJT'MN COHIÍECTION I,ÍOMENT-ROTÀTI ON
cuRvEs

rn this appendix, moment-roLation curves are presented
for the plate-corumn connection specimens used in the deri_
vation of the standardized functions. The experimental
curves were obtained directJ.y from curves provided by the
originar authors. The appried moments were then normalized
as fol L ows

M,=

Where,

M' = normalized applied moment

f.' = concrete 2g day compressive strength
L = plate panel breadth
t = plate thichness

The predicted moment-rotation curve for a particular con_
nection is obtained by substituting the connection parame_
ters into the appropriate standardized mornent_rotation func_
tion.
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8.1

Àppendix B

COI,IPUTER pROcRÀr,f USER,S tilÀNUÀL

DESCRIPTION OF PROGRÀM

The computer analysis program presented here is capable
of performing nonJ.inear or linear).y elastic analysis of Iat-
eralIy loaded flat-pIate structures. CoÌumn, floor panel and

shear wall elements are used to modeL lhe structure. To

reduce the task of preparing input, simp).if ied formatting is
used. Data generation is incorporated wherever possible.

8.2 FOR}IÀÎ FOR INPUT

With the exception of the !itJ.e record, a1). data are entered
in ten-column f iel.ds. No distinction between real and inte-
ger numbers is reguired. Data may appear anywhere within the
fie1d. when SI units are used, member section properties
Lend to be large. To accommodate these large nunbers, the
FORTRÀN 'Er format may be used. For example, if a column

has a St, Venant torsion constant of ZOO.x106 mma, this may

be entered as 700 E6. The'E' format can be used for input-
ing section properties only.

In t.he text below, defautts indicate the values which the
program assigns to the variables if they are not specified
in the input data.

- ¿¿6 -



8.3 DESCRIPTION OF THE STRUCTURE

The geometry of the structure is described by the global
coordinate system X' I , X' z, X' ¡. The X' 2 axis is vertical;
the X'r-Xr3 plane (X'r=9,6¡ is horizontal and contains Lhe

structure support s.

The storeys, floors and aII the structural elements are
numbered from lhe roof down. Nodes, floor panels and shear
salls are input for the roof only. The program generates the
nodes and elemen! incidences for aI1 fLoors below the roof.
The program also generates atI column incidences from the
node data. Figure 8.1 shows a bypical structure and floor
plan.

8.4 INPUT DÀTÀ

l) TitIe Record

80 alpha-numeric characters to be printed as a title over
the program output

II ) Frane Data

Field
1

2

?

4

t

6

Variable

NCL

NST

EE

GG

UNI TS

ÀNÀLT
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Figure 8.1: Typical Flat-plate Structure
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NCL = number of columns per storey
NST = number of storeys

EE = modulus of elasticity for columns (cpa or ksi)
GG = shear modulus for col.umns (Gpa or ksi)
UNITS = system of measurement. If 'BR' appears in

field 5, then sritish uniÈs are used. Otherwise

the international system of units is used (SI)

ANALT = type of analysis used. If ,NONLINEÀR' appears

in f iel.d 6, then nonlinear analysis is
performed. OLherwise linear analysis is performed.

Defaults

EE = 200,000 bpu o, 29,000 ksi
cc = 80,000 cpa or 12,000 ksi
ANÀLT = LI NEAR

III ) Storev Data

1) Fiel-d variabLe

I NSCPF

2 NPPF

NSWPS

MNODEl

MNODE 2
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NSCPF = number of plaÈe-to-column connections per fLoor
NPPF = number of floor panel elements per floor
NSWPS = number of shear wall elements per storey
MNODE 1 = global Xtr coordinate of master nodes (m or feet)
MNODE2 = global X,¡ coordinate of masEer nodes (m or feet)

NOTES

1) The master nodes are usually located near the center of
the floor plan.

Iv) Noda1 Data

1) Fietd VariabLe

KX

sx

sz

J = node number

¡ = gJ.obal Xr r coordinate of node J (m or feet)
2 = globa1 X,3 coordinate of node J (m or feet)
KX = number of bays generated in global X,r direction
KZ = number of bays generated in global X,s direction



sx bay span lenglh in globaJ. X'1 direction
bay span length in global X'¡ direction

231

feet)

feet)

Floors belor,¡ the roof are

(m or

(m or

DEFAULTS

Kx=0
Kz = 0

i.e., only node j is input

NOTES

1) OnIy the roof nodes are input.
generahed by the program.

2) Nodes are numbered from the roof down. Al1 nodes in a

given floor are numbered consecutively. The number of nodes

at each floor level- is equal to the number of coÌumns per
floor plus one master node.

3) By specifying KX, KZ, SX, and SZ, a grid of nodes may be

generat.ed as folIows. The first node creabed is node 'J,and
is localed at the point (x'r,X'3). Àdditional nodes are gen_

erated along a Iine parallet to the global X'1 axis until
'KXr bãys are formed, each with a span of 'SX'. If 'KZ' is
greater than zero, a new Line of nodes is created, parallel
t.o the global X'g axis and spaced 'SX' from the first line.
This continues untiL 'KZ' bays are formed in the X's direc_
tion.
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EXÀMPLE

Suppose the structure being analyzed has the floor plan
shown in Figure 8.2. The grid is generated by the following
records:

1 0 0 4 3 7.5 7.5

21 15 30 2 1 7.5 7.5

The program numbers the nodes as shown. Nodes 1 through
20 are generated by the first record; the rest by the second
record. In this case there are 27 nodes per floor (26 nodes
+ 1 master node). Note that the masler node location has

already been specified and is not to be input here.

Y) Storev Heiqhts

Field Variable

DHE

KS

DHE = storey heights (n or feet)
KS = number of storeys to be generated

DEFÀULTS

KS=l

NOTES

1) Values are entered in order from the roof down.
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EXÀMPLE

The following records generated the storey heights for the

structure shoç in Figure 8.3:

33
3.5

+3

vI ) Co1umn Data

.1 ) Headi ng Record

Field Variable

1 'COLUMNS'

COLUMNS = label placed ,in field 1

NCP = number of coLumn section property types

2) Section Property Records

One record for each section type, entered in order of
i nc reas ing property number

Field Va r i able

1 JX1

2 7X2

3 rx3
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JX1 = St. Venant torsion constant (mma or incha)
IX2 = second moment of area about the local X2 axis

(mma or incha )

IX3 = second moment of area about the Local Xs axis
(mma or incha )

À = cross-sectional area (mm2 or inch2)
C = square column width (rnm or inch)

3) Column Section Types

- use as many records as necessary

- omit this section if Ncp=1

Fie]d Variable

1 rC

2 tcp

NCG

I NCR

IC = column n umbe r

ICP = section type

NCG = number of columns generated

INCR = column i nc rement

DEFAULTS

ICP = 1

NCc =1
INCR = 1
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NOTES

1) The coLumn size is the average of the width and the depth

of the column cross-section.

2) The program automatically numbers the columns and calcu-
Lates their node incidences. Column I of storey J has upper

and lower incidences U and L respectively where

L = J,r(HCr,+l )+1

u = L-(NCL+1)

Columns are numbered from the roof down, all columns on a

given floor being numbered consecutively.

vII ) Floor Data

Omit this section if no paneJ. element.s are required.

1) rleading Record

F ield Variable

1 'FLOOR'

NFP

NFG

FLOOR = label to be placed in field 1

NFP = number of floor property types

NFG = number of floor groups

DEF'ÀULTS

NFP=1

NFG=1



2) FIoor Property Records

- One record for each floor property type, entered
order

of inc reasing property type

Field Variabte

1t
2E
3y
4 f",

t = floor thickness (mm or feet)
E = moduLus of eLasticity for f l-oor (cpa or ksi)
y = Poisson ratio for fLoor

f"' = floor concrete strength (lqpa or ksi)

DEF'AULTS

E = 28 Gpa or 4000 ksi

v = 0.20

fJ = 3O MPa or 4 ksi

3) PaneI I nc idence Records

Field Variable
1 t pxl

2e
3s
4C
5p

1n
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NPG

INCR

IPNL = panel number

À = node a

B = node b

C = node c

D = node d

NPG = number of panels generated

INCR = node i nc remen t

DEFÀULTS

NPG=1

INCR = 1

4) FLoor Property Records

- Omit this section if NFc=1

Field Variable

1 I FLR

2 IFP

3 IFG

NFLG

IFLR = floor numbe r
IFP = floor property type

IFG = floor group number



1)

1n

NFLG = number of floors generated

DEFAULT

IFP = 1

IFG =1
NFLG = f

NOTES

OnIy the eLements on the roof are to be input. Elements
bhe lower floors are generated automatically.

2) Panels should be numbered in the direction of the builil_
ing which has the fewest bays in order to minimize storage
requi rements.

3) When inputing the panel incidences, the nodes must be

chosen so that the Local coordinate system has the same ori_
entation as the globaJ. system (nigure n.4).

4) Generally, the size of columns in a building increases in
size from the roof down as the coLumn loads increase. Hovr_

ever, the size of columns may be constant over a number of
storeys. Whenever the c olunn-depth_to_pla t e_ spa n ratio is
the same or approximately the sarne, these floors shouLd be

grouped together. The program will calcuLate an average col_
umn-depth- to-pla t.e- spa n ratio to be used for al1 panel eIe_
ments in the floor group. This will reduce both run times
and costs.



Figure 8.4: paneL Coordinate System and GLobal System
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5) ÀIt floors in a given floor group must have the same

floor properties.

6) FLoor groups are numbered consecutively from the roof
down .

EXAMPLE

The following records generate the panels for the struc-
ture shown in Figure 8.5:

1156231
4 5 9 10 6 3 1

7 9 13 14 10 3 1

10 13 17 1I 14 3 1

Note that the panels are numbered in the direction of the

fewest panels.

VIII) Shear ral.l Data

- Omit this section if no shear wa]Is are used

1) tlead i ng Record

Field Variable

1 ' WÀLLS'

2 NSWP

WÀLLS = Iabel placed in Field 1

NSWP = number of shear waII property types

DEFAULTS

NSWP = 1
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2) Shear Wall property Records

One record for each property type, entered in order of
increas ing property type

F ield Variable

t = shear wall thickness (mm or inch)
E = modulus of elasticity for shear vralI (mma or incha)

7 = Poisson ratio for shear r,¡all

DEFAULTS

E = 28 cpa or 4000 ksi
v = 0,2

3) Shear Wa11 Incidence Records

Field Var iable

À=nodea
B=nodeb

4) Shear Wall Property Numbers

- Omit this section if NSWP = 1

Fie1d Variable

I rw
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I SWP

NWG

I NCR

IW = shear waLl number

I SWP = property number

NwG = number of shear walls generated

INCR = shear wall increment

DEFÀULTS

ISWP = I
Nwc =1
INCR = 1

NOTES

1) Shear waIIs are input for the top storey only. WaLIs in
lower storeys are generated by the program.

2) Shear walLs are nurnbered from roof down; walls in a given

floor are numbered consecutively in t.he same order as they
are i nput .

3) The local coordinate system for a typical shear wall is
shown in Figure 8.6.

rx) Load Data

1) Heading Record

2

3

4
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l.Jall lies in xL - x2 plane

Figure 8.6: Shear WalI LocaI Coordinatè System



247

LOÀDS = J.abel placed in Field

2) Load Descrip!ion Records

2 records per loaded node

Field

1

A) Locat ion Record

FieId

1

2

3

Variable

' LOÀDS '

Variable

NODE

NG

I NCR

I ANd INCR=O; NG=1 , INCR=1

1 and INCR=O; I NcR=NcL+ 1

Variable

NODE = node numbe r
NG = number of nodes generated

INCR = node increment

DEFÀULTS

If

If

B) toad Compobnents

Field

1Px
2PY

NG<

NG>

3

4

5

6

PZ

I*lX

MY

MZ
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PX, PY, PZ = concentrated Loads in global X'r, X'2, X,3

directions respectively (kN or kips)
MX, MY, MZ = moment about the global x't, X'2, X'3 âxês

respect i vely (kN-m or foot-kips)

NOTES

1) A node may be referenced more than once to describe the

Loads ab that node.

2) Loads placed on master nodes must not have any py, MX or
MZ components.

3) Loads are positive in the positive global directions. The

right hand rule applies to all moments and rotations.

E) Plate-To-colurnn connection o=.16

- OmiL this section if bhe analysis is Linear

1) Heading Record

'Fie1d Variable

1 'CONNECTIONS'

CONNECTIONS = label placed in Field 1

2) Connection Property Records

- use as many records as necessary

Field Variable

1 NFG
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4 ROC

5 IGLL

NFG = number of fLoors to be generated

ROI = reinforcement ratio for interior plate-to-column

c onnec t ions

ROE = reinforcement ratio for edge plate-to-column

c onnec ! ions

ROC = reinforcement ratio for corner plate-to-column

c onnec t ions

IGLL = gravi!y load Ieve1. For low gravity load level
IGLL=1 for moderate gravity load level IãLL=2,

and for high gravity load level. IGLL=3.

DEFÀULTS

NFG =1
ROI = 0.01

ROE = 0.01

ROC = 0.01

IGLL = 2

NOTES

1) The total reinforcement ratio shoutd be used (top and

Botton).
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2) ÀIf connections of the same type have the sarne reinforce-

ment ratio in a given floor.

xI ) Proorån Moile

Field Variable

1 PROGRÀM MODE

If hhe word 'SOLVE' is placed in fÍeld 1, lhe program

determines the node displacements and element end forces. If

the word 'CHECK' is found or if the field is left blank,

only the input data is generated. Thus Lhe program can be

run at high priority in the 'cHEcK' mode until the input

data has been debugged. It then can be run at low priority

in the 'SOLVE' mode, resulting in significant savings.



Àppendix C

TTPICÀÉ PLÀTE PÀNEL STIFFNESS COEFFICIENTS

Table C.1 Iists the expressions developed to describe
floor plate panel stiffness coef f icient.s Kl,z through K4s,2

for column-depth-to-p1ate-span ratio of 1/8. It can be seen

that some of the stiffness coefficients are influenced by

one spring flexibilihy while others are inftuenced by two

spring flqxibilities. Similar expressions have been devel-
oped for all other sLiffness coefficients of the plate pan-

eI.

It can be seen from TabLe C,1 that alL stiffness coeffi-
cients relating degrees of,freedom in different quarters of
hhe plate panel, K1er2 for instance, are independant of the
eight spring flexibilities FSr through FSa and therefore are
constant. The degrees of freedom I and J referred to in
Table C.1 are illustrated in Figure 4.16.

-251 -
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TABLE C.1

Expressions Used For Stiffness Coefficients K,,,

I J EXPRESS I ON

1

2

3

4

6

7

I
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2

2

2

2

2

2

2

2

)

2

2

2

2

2

2

2

2

2

2

2

2

2

2

-29.0 - 18.69 ExP(-1400 FSf )

5.73 + 4.09 ExP(-2000 FSr)

-1 .73 - 0.486 IEXP(-2000 FSl )

0 .01629

-0.0003

-0.00006

0.0071

0.00003

-0.0000s

-0.0229

-0.00064

0.00006

17.85 + 16.95 Exp(-1800 FSI)

0.580 + 0.500 ExP(-1800 FSr)

0.511 + 0.321 ExP(-1800 FSr)

-0.111 - 0.063 ExP(-1700 FSf )

-0.042 - 0.023 ExP(-1700 FS, )

-0.012 - 0.013 ExP(-1700 FSf)

0.0456

0.001 1

0.0029

0.0037

0.0013

ExP(-2000 FSz ) l
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Table C.1 conÈinued

I J EXPRESSI ON

¿4

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

+t

42

43

44

,.q

46

47

48

2

2

¿

¿

2

2

2

2

2

2

2

¿

2

2

2

2

2

2

2

2

2

2

2

2

2

7

-0

-0

-0

-0

0

-0 .00010

0.0089

0.001 9
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