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ABSTRACT

This dissertation is devoted to exploring the possibility of using the stochastic inverse

scheme to reconstruct high contrast dielectric objects in the spatial domain. In the first part

of the dissertation we present the principle of microwave imaging, the basic problems asso-

ciated with reconstructions, such as the ill-posedness and the regularization, and investi-

gates the relation between two important techniques, the Tikhonov regularization and the

stochastic inversion. This forms the theoretical basis for the entire thesis. Then, the stochas-

tic inversion algorithm combined with the Tikhonov regularization is employed in the recon-

struction process to solve the ill--conditioned systems of algebraic equations associated with

microwave imaging problems. The performance of the proposed reconstruction processes

is demonstrated in terms of computer simulations.

The problem of microwave imaging can be mathematically formulated in terms of two

coupled electric field integral equations. These integral equations can be decoupled by intro-

ducing the equivalent culrent density yielding a linear integral equation (equivalent current

formulation). The general procedure for microwave imaging in the spatial domain consists

of discretizing the integral equations by apptying the moment method. The associated ill-
conditioned systems of equations are solved by implementing a regularization technique

which enables to obtain the dielectric permittivity distribution inside bodies.

In this dissertation, the stochastic inverse scheme is employed to regularizetheill-con-

ditioned system of equations in the process of reconstructing high contrast dielectric objects.

The initial values necessary in the reconstruction algorithm are supplied by the application

of the Tikhonov regularization. As a consequence, the number of iterations in the proposed

algorithm is considerably reduced. Example tests show that this algorithm provides an effi-

cient means to reconstruct dielectric bodies of various contrasts with high accuracy even in

the presence of a high level of noise in the scattered field data.

The application of the stochastic inverse scheme in the iterative methods of solving the

Ill



two coupled integral equations permits us to determine directly the Tikhonov regulari zation

parameter in each iteration. Three methods for the selection of this parameter are proposed.

The first method is applicable to the situation when the upper bound of the object function

variance and the upper bound of the measured data noise variance are known. The second

method can be used if only the upper bound of the object function variance is detectable. If
this information is not available, the third method can be employed to find the regularization

parameter. The efficiency of these methods is illustrated by reconstructing two-dimensional

dielectric objects with measured noiseless data and also with the data containing noise.

The dissertation concludes with a summary and the outline of future work in this area.

lv
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CHAPTER I INTRODUCTION

INTRODUCTION

1.1 Generalities

Microwave reconstruction of dielectric bodies from scattered near-field measurements

has many potential applications in such areas as medical imaging, geophysical exploration,

remote sensing, robotic vision, and non-destructive testing.

The interest in developing microwave-based techniques, when other powerful imaging

procedures already exist, is due basically to the possibility of visualizing different physical

parameters involved and to the nature of the interaction between the radiation used and the

dielectric materials. In medical applications, for instance, microwave imaging has some ad-

vantages over existing techniques such as X-ray tomography, magnetic resonance, ultra-

sound, and others. Firstly, unlike ionizing radiation, low-powermicrowave radiation allows

a virtually safe exploration of living tissues. Thus even continuous monitoring is possible.

Secondly, unlike other means of exploration, the microwave imaging is based on the recon-

struction of the complex permittivity distribution of an object. It is well known that a scat-

tered microwave field is sensitive to the complex permittivity distribution within a dielectric

body. This makes it possible to deveiop an active imaging of a dielectric body, since the com-

plex permittivity of the body depends on the morphology, blood flow, and temperature of

a tissue. Moreover, some of the technoiogy involved in microwave imaging is common to

that in radar and communication systems, and is well developed and inexpensive, which may
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make clinical and even domestic applications feasible. Therefore, microwave imaging can

at least complement the existing imaging techniques.

However, there are some problems associated with the usage of this type of radiation,

namely a low resolution and a high attenuation that dielectric materials present to micro-

waves, which impose stringent requirements on the equipment design, as well as the difficul-

ty in developing imaging algorithms for high dielectric contrasr bodies.

The microwave imaging methods proposed so far can be divided into two main groups:

spectral domain methods [1]-[10], and spatial domain methods till-t361 (although some

other techniques, such as maximum entropy [37],[38], and annealing 1391,[40] have also

been attempted). In the spectral domain approach, which is generally called microwave to-

mography, the main technique used for the microwave imaging is the Fourier transforma-

tion. Conventional systems of this type are based on illuminating the body with a plane wave

and measuring the scattered field with a linear array of probes, in away similar to that used

in acoustic diffraction tomography. IVith plane wave illumination and on the assumption of

weakly scattering bodies, the spectrum of the scattered field contains the information about

the dielectric properties of the body in the two-dimensional Fourier spectral domain. By re-

peating the measurement for different directions of incidence, the spectral domain can be

filled and inverted to obtain a section of the body. The main advantage of the diffraction to-

mography method lies in its fast numerical algorithm. However, the spectral approaches

have, as it is well known, some limitations and can only be appiied to low dielectric contrast

and weak scatterers, since the Born or the Rytov approximations are used in the algorithms.

In the spatial domain approach, the object is first divided into small cells. Then the mo-

ment method [41] is employed to transform the integral equations into a set of algebraic

equation systems which relate to the scattered field and to the dielectric properties of the

body. An image of the object can be obtained by solving these systems of equations. Com-

pared to the spectral domain methods, the spatial domain methods have the advantages of

not requiring specific geometries for the measurements of the scattered fietd and of being
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also applicable to high contrast dielectric bodies or strong scatterers. Furthermore, the spatial

resolution does not seem to be so strictly related to the wavelength as it is for diffraction to-

mography. However, the main problem of this approach is the lack of good reconstruction

algorithms.

The problem of microwave imaging can be mathematically formulated in terms of two

coupled nonlinear integral equations. To solve these equations in spatial domain, the mo-

ment method with pulse basis function over the domain of identical square cells is usually

employed, yielding two coupled nonlinear systems of equations. Two techniques are mainly

used to decouple them. One is to introduce an equivalent current density to the reconstruction

process (equivalent current formulation)t16l.The other one is to use the Born approxima-

tion[11]-t141 to estimate the initial total field in the investigation region. Then, the discre-

tized integral equations are solved iteratively. Because the problem of determining the elec-

tric properties of the objects involved is ill-conditioned, regularization techniques[42]-[45]

are usually employed to stabilize the matrix decomposition that are involved in the recon-

struction process. In the equivalent current formulation, the pseudo-inverse transformation

has been used [16]. In the approaches based on the solution of the two coupled integral equa-

tions iteratively, the Tikhonov regularization[42]is applied in each iteration. To obtain a sat-

isfactory solution and also a satisfactory rate of convergence of the iteration process in-

volved, the regularization parameter must be carefully selected.

In this thesis, the stochastic inverse scheme [43] with the Tikhonov regularization is

applied to the above mentioned two techniques. In the equivalent current formulation, the

stochastic inverse scheme allows us to find the equivalent current in the investigated body

more accurately, even for the measured data with high levet of noise. On the other hand, when

solving the two coupled integral equations iteratively, the stochastic inversion of matrices

allows us to find the regularization parameter optimally from iteration to iteration yietding

a substantially increased convergence.

The stochastic inverse scheme is developed based on statistical considerations, with the
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generatedreconstructions andthenoise modelledinterms of stochastic orrandomprocesses.

Under the assumption that both the reconstructions and the noise in the measured data are

uncorrelated and isotropic, the solution is stochastically optimum in the sense that repetition

in the measured data produces solutions which, on the average, are optimum according to

the specified error criterion.

The thesis is organized as follows. Chapter 2 is devoted to apresentation of the principle

of the microwave imaging including the analytical formulations of fields, the discretization

of the integral equations, the ill-posed problems and the most commonly used regularization

methods, with emphasis on the Tikhonov regularizationmethod and the stochastic inverse

scheme. The relation between them is also investigated.

In Chapter 3, we explore the possibitity of using the Tikhonov regularizationof different

orders to reconstruct dielectric bodies, with emphasis on the performance of the regulaiza-

tion parameter in the process of reconstructions.

In Chapter 4, a new microwave imaging algorithm based on the stochastic inverse

scheme is proposed. The perforrnance of the algorithm is demonstrated by reconstructing

two dimensional objects with noise contaminated data.

One of the difficulties in the iterative methods of solving the two coupled integral equa-

tions directly is the seiection of the Tikhonov regularization parameter at each iteration step.

In Chapter 5, the stochastic inverse scheme is applied to the iterative reconstruction pro-

cesses. By considering both the reconstruction error and the object function as random vari-

ables, the stochastic inverse scheme allows us to choose this parameter optimally. Three

methods for selecting this parameter are presented. The performance of these methods is

demonstrated by numerical simulations, using two-dimensional objects with noiseless data

and with the data containing noise.

A conclusion of the dissertation and recommended future work are presented in Chapter

6.
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1.2 Review of Previous Work

In this section, microwave imaging methods proposed by various researchers in recent

decades are briefly discussed. They are: the microwave tomography technique, the pseu-

doinverse method with equivalent current modelling, the Born and the distorted Born itera-

tive methods, the Newton iterative method, the conjugate gradient method, the "unrelated"

illumination method, the spectral inverse technique, the maximum entropy method, the sim-

ulated annealing approach, and the time domain method.

Microwave Tbmography

A great deal of work has been done in applying this approach to two and three-dimen-

sional imaging [4]-[10], since the seminal papers I1l-t3l were published. Conventional mi-

crowave tomography systems are based on the Fourier Diffraction Theorem for a body illu-

minated by a plane wave and the scattered field measured with a linear array of probes. With

plane wave illuminations and the assumption of weak scattering bodies, the plane wave spec-

trum of the scattered field contains information about the dielectric properties of the body

on a circular arc of the two-dimensional Fourier spectral domain. By repeating the measure-

ment for different directions of incidence (or view), the spectral domain can be filled and

inverted to obtain an image of a cut of the body.

The main advantages of the diffraction tomography algorithm are that it permits the use

of explicit formulas for solving the imaging problem and allows us to take advantage of exist-

ing efficient numerical algorithms(Fast Fourier Transform). Therefore, it is possible to com-

plete the imaging process on a small computer. CPU time usually drops to a few seconds

or a few minutes for simple two-dimensional geometries. However, as we indicated before,

this method has some limitations and can only be applied to low dielectric contrast and weak

scatterers since the Born or the Rytov approximations have to be used. These approximations

are fundamental to the reconstruction process and limit the range of the objects that can be

examined. It has been shown that for small cross-sectional area objects and small inhomoge-
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neities of dielectric bodies, it is possible to use microwave tomography. However, for large

inhomogeneous objects (compared to the wavelength), the reconstructed images can only

give the object geometry and not a sufficient representation of the dielectric distribution in-

side the object.

P s e udo inv e r s e w ith E quiv alent C uruent M o de llin g

The first attempt to use the pseudoinverse procedure to overcome the ill-posedness as-

sociated with the permittivity reconstruction within dielectric bodies was made by Ney et

al [ 1 6] ' This method has been further applied by Caorsi et al [ 17]- [20] . In the pseudoinverse

method, the moment method is first applied to the integral equation of electromagnetic in-

verse scattering, expressed in terms of the equivalent current density, to obtain a linear sys-

tem of equation. Then the complex permittivity distribution is derived from a three-step pro-

cedure, e.8. @) determining the equivalent current distribution from the measured scattered

field with a pseudoinverse procedure implemented to overcome the ill-posedness in the ma-

trix inversion process; (b) calculating the total field in the object; and (c) deriving the com-

plex permittivities with the help of the obtained equivalent current and total field. The main

advantage of this method is that the computation time is less than that of iterative algorithms,

since there are no iterations involved in the algorithm. However, the low-pass effect inherent

in the method limits the resolution of the image, especially when the noise level in the scat-

tered field is high.

Born and the Distorted Born lterative Methods

In [11] and[12], two iterative methods called the Born and the distorted Born iterative

methods are proposed. In the Born iterative method, the background medium is assumed to

be homogeneous and the Green functions are used in closed form. The total field within the

investigation domain is initially set to be the incident field and the object function is solved

numerically as a linear inverse problem. Then the object function is used to provide a new
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estimate of the total field. The process is repeated iteratively until a convergence solution

is obtained.

In the distorted Born iterative method, the background medium is not constrained to be

homogeneous, and both the total field within the object and the wave number of the back-

ground medium are updated at each iteration.

Ithasbeenshown[13]thattheBorniterativemethodconvergesforanS.5/.0(/,s isthe

wave number in free space) object with a permittivity contrast equal to I:Z.It has also been

shown that the distorted Born iterative method converges faster than the Born iterative meth-

od. However the latter seems to be more robust when noise contamination is present.

The Newton lterative Method

The Newton iterative method was proposed in [14] to construct dielectric permittivity

distribution. In this method, the integral equations of electromagnetic inverse scattering are

first transformed into matrix equations in terms of the moment method. Then an iterative

procedure is developed as follows. Starting from an initial guess of the complex dielectric

permittivity distribution in the investigation region, the total field inside the body is calcu-

lated. An estimate of the scattered field at the observation points is then obtained by a for-

ward calculation. Comparing the calculated scattered field with its measured value, the vari-

ation of the scattered field is derived. Based on the relation between a small change in

complex permittivity and the scattered electric field, we obtain the increased value in the

complex dielectric permittivity which is used to update the initial guess or the value from

previous iteration. The iterative procedure keeps going until a convergent solution is ob-

tained.

Numerical results show that two-dimensional and three-dimensional inhomogeneous

dielectric bodies immersed in water can be reconstructed. However a lot of computation is

required.
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The Conjugate Gradient Method

The Conjugate Gradient Method was applied in [16] to solve microwave image prob-

lems. The method starts with an initial guess that generates the first residual vector and the

direction vector. Then the integral equation is solved iteratively. It has been shown [35] that

lossy dielectric cylinders with contrast about 2.0 canbe reconstructed. This method was fur-

ther developed in [36], in which the disciepancy between the measured scattered amplitude

and the calculated one is first defined for an estimated object function. Then the gradient of

the functional was constructed by employing its Frechet derivative. The Conjugate Gradient

Method is finally appiied to minimize the functional to yield an estimate of the unknown di-

electric permittivity distribution of the object.

Unrelate d lllumination M ethod

As in the other spatial domain methods, the unrelated illumination method [15] begins

with transforming the integral equations describing the electromagnetic inverse scattering

into matrix equations in terms of the moment method. A non-singular incident wave matrix

is then constructed by illuminating the object in different directions. The permittivity distri-

bution within the object is obtained by solving the matrix equations, which involves the in-

version of only the incident field matrix. Numerical tests show that accurate results can be

obtained for ideal situations when the measured data have neither error nor noise. The main

advantage of this method is that the number of detectors used for measuring scattered field

can be reduced to one. The main difficulty in applying this method to microwave imaging

problems is to construct the non-singular incident wave matrix, especially for large micro-

wave imaging problems.

Spectral Inverse Technique

In this technique [48], [49], the integral equations of electromagnetic inverse scattering

are first transformed into integral equations in the spectral domain by means of the Fourier
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transformation. The moment method is then applied to transform the spectral domain inte-

gral equations into matrix equations. The dielectric permittivity distribution is finally recon-

structed by the inversion of these matrix equations. Numerical results show that a slab with

a dielectric permittivity contrast I:2 canbe reconstructed when aTVo enor is present in the

measured scattered field. However, no results are presented to indicate that this method can

be applied to more complex geometries.

Maximum Entropy Method (MEM)

The MEM has been applied extensively to spectral analysis since 1967 when Burg pres-

ented his classic paper [65]. The basic idea is to extend a finite data time series so as to make

the spectrum most probable, subject to the constraints defined in terms of a finite number

of correlation coefficients. In microwave applications, the initial integral equation is first

transformed into a matrix equation with the help of the moment method. An entropy function

is then constructed based on the entropy concept. An algorithm is developed to maximize

the entropy function. Numerical results t371,[38] indicate that the MEM is very promising

for the qualitative microwave imaging of simple two-dimensional dielectric scatterers.

However, for a quantitative microwave imaging of more complex two-dimensional and

three-dimensional dielectric bodies, no published results are available.

S imulate d Anne alin g Ap p ro ac h

This approach is based on stochastic techniques to search for the optimum state of a sys-

tem. Usage of the simulated annealing technique can bypass the need for inverting large ma-

trices and enables one to obtain the solution by apptying an iterative procedure. Computer

simulations [39],[40] show that simple two-dimensional dielectric scatterers can be recon-

structed, but the computation time is considerable.
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Time Domain Method

One of the methods in this category is that of marching-on-in-time [50] . Here, integral

equations in time domain are first constructed, and then the solution is obtained by employ-

ing a marching-on-in-time procedure in terms of an iterative process, based on the Born

approximation. Numerical simulations show that one-dimensional problems can be solved

by this method.

L.3 Conclusion

In this Chapter, after discussing the general problem of microwave imaging, we have

surveyed the reconstruction methods which have been proposed for microwave imaging by

various research groups. It has been noted that more efficient microwave imaging algorithms

are required for practical purposes. The basic requirements for the new algorithms are: (1)

to be fast and easy to implement; (2) to be able to handle the noise in the measured data and

to reduce its effect on the reconstructions; (3) to yield images of satisfactory resolution.

l0
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PRII\CPLE OF MICROWAVE IMAGING

2.L Introduction

In principle, microwave imaging is aimed at obtaining some information about the in-

side of an object exposed to low power incident microwave radiation from limited external

scattered field measurements. In general, consider a dielectric body with a complex permir

tivity e(r) situated in a homogeneous medium with known dielectric permittivity så as

shown in Fig. 2.L.If an electromagnetic incident wave crosses this body, a scattered field

which is related to the electrical properties of the dielectric scatterer is produced. The relation

between the scattered field and the scatterer can be mathematically expressed in terms of two

coupled integral equations. By solving these two integral equations, the location, the shape

and the permittivities of the object can be determined. If the main objective is to detect the

location and the shape of the unknown.body, it is traditionally called a qualitative imag-

ing[46],[47]. If the objective is to determine the permittivity distribution as well, it is usually

called a quantitative imaging.

The microwave imaging problem is inherently ill-posed[51]. Theoretical difficulties

arising from issues of continuity and uniqueness can exist with all such kinds of problems,

but in practice, these take the second place for it is only possible to make a limited number

of discrete and noisy measurements of the scattered field that is otherwise a continuous func-

tion. When only a limited number of scattered field data can be measured, an infinite number

11
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of scattered functions consistent with these data can be arbitrarily constructed. Therefore,

there are fundamental difficulties in formulating a useful inversion algorithm, and more

mundane optimization and signal processing techniques have to be considered in the practi-

cal implementation.

Detectors
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+
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Ftg.2.1 Geometrical configuration of the microwave imaging system.

For the pu{pose of applying the stochastic inversion and the Tikhonov regularization

method to microwave imaging problems, in this chapter, the theoretical basis of the two

methods is briefly reviewed, and the inherent relation between the two methods is investi-

gated. The statistical explanations for some of the parameters related to the methods are also

given.
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2.2lntegral Equations

2.2.1 Basic Integral Equations

Assume that an inhomogeneous dielectric body with arbitrary shape is immersed in a

homogeneous dielectric background. The dielectric body has a complex dielectric permitiv-

ity

e(r) = e'(r) -7'e "(r)

and a permeability ps .The background consists of a complex dielectric permittivit! s 6 and

a permeability pg. No real electric current or magnetic source current present within the

body is assumed. The outline and the permittivity distribution of the body are assumed to

be unknown. If incident electromagnetic fields, E and Ht , of frequ ency o, are used to illu-

minates the body, the incident fietds satisfy the following Maxwell's equations

(2.r)

(2.2)

(2.3)

(2.4)

(2.s)

(2.6)

(2.7)

where the time dependence of et@t has been assumed. The incident fields induce the total

fields, E and Ht, which also satisfy the following Maxwell's equations in the dielectric

body

V x E --ja¡poFi

V x Ht - ja,e6F.i

VxEt--ja¡l¿olJ'

V x Ht = jae(r)Et

Et = E'+Es

H¡ = Hi+Ht

From eqns. (2.2) and (2.3), a differential equation for Et can be derived as

Physically, the total electromagnetic fields, E/ and Hr, can be visualized to be the sum of

the incident electromagnetic fields, E'and Ht, and the scattered electromagnetic fields,

E" and H' , i.e.

73
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V x V x E'1r¡-finiçr¡=g (z.B)

with k6 denoting the background wave number

kb=øl;att e.g)

And from eqns. (2.4) and (2.5), we have

V x V x Er(r)-P(r)n(r)=o (2.t0)

where fr(r) is the wave number in the dielectric body

k(r) = ot JÃffi e.rr)
From eqns. (2.8) and (2.10) with eqn. (2.6), we can derive the electric field equation in the

body

V x V x E(r) -4n'G)=tÊG)-41øfr> (z.rz)

or

V x V x E"(r) -(n'G)= O(r)øt(r) (2.r3)

where

o(r) = lt2(Ð-41 e.t4)

is the so-called "object function" describing the electric properties of the investigated re-

gion.

using the Green function for an unbounded space G(r, r') [52],1531, eqn. (2.13) can be

expressed in an equivalent form, as

E' (r) = | G(r, r,)O(r,)Et (r,)dr, (2.15)
Jv'

The total field in (2.I5) can be calculared from Et (r) = Et (r) + Es (r) as

Et (r) = Et (r) + f GQ,r',)O(r',)Et (r')dr' (2.16)
Jv'

The Green's function is expressed as

t4



G(r,r') = -+ tS)g<6tr-r,t¡ (2.17)

for two dimensional problems with TM (Transverse Magnetic) field illumination;

G(r,r') =17+àrol j rfl)fkfir-r,t) (z.tl)

for two dimensional problems with TE (Transverse Electric) field illumination; and

G(r,r') = ( I= +lVV, exP(-ik¿lr-r'l)
k:b 4n lr _ r,l
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(2.re)

for three dimensional problems with 7 indicating unit dyad an d I#) standing for rhe Hankel

function of the second kind and zero order.

Equations (2.15) and (2.16) are the basic integral equations for microwave imaging.

Once the scattered fields are measured by detectors at observation points, the effort is made

to find the object function by solving these two coupled nonlinear integral equations. The

complex permittivity distributions of the unknown body can be obtained with the help of

eqns. (2.14) and (2.II) if the object function has been reconstrucred.

2.2.2. Integral Equations with Equivalent Cuffent Modelling

In this formulation, an equivalent current density defined as

J,(r) = j(a¡pù-ro(r)Er (r)

is introduced to eqns. (2.15) and (2.16). Then rhey become

E" (r) = - jtol.¿o I O(", r,)Jr(r,)d.r,
Jv'

and

(2.20)

(2.2r)

Et (r) = Et (r) + (- jø1.¿o) f 
"(", 

r')J,(r')dr' (2.22)
JV,

Equation (2.21) offers a clear physicaì picture. The scattered field E" is maintained by

15
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equivalent curent density Jr(r) which occupies the dielectric body. The amplitude and the

phase of the equivalent current depends on the complex permittivity e (r) and the total fieid

in the body and the frequency of the incident wave. The reconstruction can also be performed

by solving the linearized integral eqn. (2.21). From the scattered fîeld measurements, the

equivalent current distribution within the object can be obtained. The total field inside the

body is then calculated in terms of eqn. (2.22). The object function and the permittivity distri-

butions of the dielectric body can be determined with the help of eqns. (2.20) and (2.I4).

Equivalent current modelling can also be used for qualitative electromagneticimaging

1461,[47lin which only the location and the outline of the dielectric body are concerned. By

defining

Jr(r) - 0, inside the body

Jr(r) * O, outside the body

the location and the outline of the object can be detected.

2.2.3. Integral Equation with Born Approximation

Consider the total electric field E'(r) expressed as the sum of the incident electric field

Et(r) and the scattered electric field E (r) . We rewrite the integral eqn. (2.15) as

(2.23)

If the object is of a low contrast inhomogeneous material, i.e. the permittivity differences

between the dielectric body and the background are very small, and the magnitude of the

scattered field in the object is much smaller than that of the incident field, the second term

of eqn. (2.23) may be neglected yielding

I.:l
E" (r) = J,G(r,r')O(r'¡Fi çr'¡dr, * 

J*G(r,r,)O(r,)Es 
(r,)dr,

E" (r) : 
J ,,G(r, 

r')O(r')Ei (r')dr' (2.24)

This constitutes the first order Born approximation. Studies have shown that [ 10] for the first

16
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order Born approximation to be valid, a necessary condition is that the change in phase be-

tween the incident field and the wave propagating through the object be less than n .

2.2.4. Integral Equation with R)¡tov approximation

Unlike the Born approximation formuiation, the Rytov approximation is based on the

fact that the change in the scattered phase over one wavelength is small. The phase of the

scattered field can be expressed for the two-dimensional case as

(2.2s)

It has been proven that [4] the Born approximation provides a better estimate of the scat-

tered field for objects small in size with relatively larger contrast of the dielectric medium.

On the other hand, the Rytov approximation gives a more accurate estimate of the scattered

field for larger sized objects with relatively smaller contrast in permittivity.

2.3. Discretization of the Integral Equations

For the purpose of solving the general integral equations in spatial domain numerically,

the integral equations discretized appropriately. Consider a cylindrical dielectric body with

arbitrary shape situated in a two dimensional region S of a square area, called the investiga-

tion domain. Detectors for measuring the scattered field are situated on a loop surrounding

the investigation domain, as shown in Fig. 2.2. Suppose a TM electric field is employed to

illuminate the object. The scattered fietd at the receiving points can be expressed in terms

of the two dimensional Green's function as

d"(r) = tb"|y o,", r')o(r')E (r')dr'

E" = 
J J r"rr,y;x',y')O(x',y')8, 

(x',y')dx' dy, (2.26)

To discretize this integral equation, we divide the investigation domain S in terms of

rectangular patches. For graphic simplicity, we assume that all patches have the same size.

Each patch is labeled with index i, where i indicates the i-thpatch in the investigation do-

l1
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main. The area of the i-thpatchis designated as s¿, and the radius vector from the original

pointtothecentralpointof the i-thpatchâs r; = (x¡y¡).Wethenexpandtheobjectfunction

O(x,y) and the total field E'(r,y) inside the investigation region in a piecewise-constant

manner as

o(x,y) = io, ¡,çr¡
i=l

n

E'(*,y) = LEI f¡G)

(2.27)

(2.28)
j=1

where J(r) is called basis function and n indicates the total number of the patches. O¡ and

E! arecoefficients . Following the classical prescription of the moment method [41], the ex-

l8
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pansion (2.27) and (2.28) are inserted into eqn. (2.26).If the puls function is selected as the

basis function, i.e.

(2.2e)

and Dirac's delta function as the test function, considering that the measured data are at the

finite points around the object, we have a system of linear algebraic equations

E(r¡,y¡)=i"çr,¡¡E!¡o¡, (j=r,z,...,m) (2.3o)
i=1

with m indicating the total number of detectors, and the coefficient G(1, j) is

.f,rr¡=[ 
r' rcs¡

L g, rÉs¡

G(i, i)= I f,, cu,ø Jçx'.- x¡)2 + (y' -yj)2 )dx'dy'

, ítj

t=J

(2.3r)

(2.32)

(2.33)

(2.34)

To evaluate the term G(i, j) , we adopt the technique from the work [54]. The integral region

s¿ in (2.30) is replaced with a circular cell of a radius o = ßln centered at (x¡,y) having

the same area as s¡. With the problem considered here, the corresponding result is

G(i,j) =

- ffi t Uoua¡ rS) çk6tr ¡ - r J)

#rwcøad?Qcba') -zil

where -/1 ,and 4" *"thefirstkindBesselandthefirstkindHankelfunctionsofthesecond

order. Now we can write eqn. (2.30) in matrix form as

E"= [Gz] l#lo
where E" is a vector of dimension m ( one illumination is considered here)

E = [Eì , Et,..., EtÀr

19
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with Zrepresenting the transpose of a vector or a matrix , and lGz] is a matrix of dimension

m x n containing the Green function relating the observation points to the investigation

points,

Gtt Gn Gn

[Gz] = (2.3s)

- Grrl Grú G,no

I B ] is a diagonal matrix of dimension n containing the total field at each patch

Et

Itrl =

Ei0
tta

0

(2.36)

EL

and O is a vector of dimension n containing the object function.

O =[Ot, O2,..., Or]T (2.3l.)

From the relation of eqn. (2.6),we can also write the discretized integral equation (2.L6)

in matrix form

Er = Ei + [Gr] [ol E' ' e.3B)

where [Gr] is the Green function relating the points in the investigation region, Er and Et

are vectors of dimension n.

Er =[E\,Ûr,..., E,rfT (2.3g)

20
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Ei =lE\,Ei,...,nhlr
and [o] is a diagonal matrix containing the object functions in the patches

(2.40)

O1

lol = (2.4r)

In the same manner, we can write discretized integral equations for eqns. (2.22), and,

(2.24) in matrix forms as

E'= lGzl J, (2.42)

where J" is a vector of dimension z containing the equivalent current density which has been

factorized by (- jr,¡po) in order to keep a uniform expression for the Green function, and

E=[Gz]tEIO (2.43)

where [E, ] presents a diagonal matrix with its elements being the incident fields in the

patches.

If the total field I E ] in the investigation region is obtained, the eqn. (2.33) can also be

written as

Er=[D] O (2.44)

with [D] = [Gz]lE I , being aî m x n dimension marrix. Equations (2.33), (2.3g), (2.42)

and (2.44) are the discretized integral equations employed to develop microwave imaging

in spatial domain. Visually, these operators are nothing more than complex. The difficulties

in the solution of these equations arise from the so-called "ilþosed problems".

0Oz

0
on
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2.4 lll-posedness in Microwave Imaging

The microwave imaging problem is, in general, an ill-posed problem. First, the number

of the total detectors is not necessarily equal to the number of patches used to divide the in-

vestigation domain, i.e. m * nrefening eqns. (2.33), (2.42) and (2.44).In the practical

point of view, the selection of the number of patches depends on the requirement of the reso-

lution to the image, the characteristics of the body to be detected, the capacity of the comput-

er used, and so on. The number of the detectors can be limited by the physical construction

of the imaging system, also the capacity of the computer. Increasing either the number of the

patches or the number of detectors results in increase of expensive computation time. On the

other hand, even if we carefully select the number of the detectors and the number of patches,

i.e. m = n it is hard to guarantee the operator is not singular. Secondly, the solution of the

microwave imaging is not unique t56l-t581. This nonunique solution is generated by so

called "nonradiating sources" [57] inherited in the body, and also by the limited measure-

ments mentioned before. Thirdly, there is always noise and errors accompanied with the

measured data, such as the surrounding noise and measurement error. There are also numeri-

cal errors accumulated in the caiculation of the inverse of the matrix, especially when the

dimension of the matrix is large. The condition number of the matrix representing the

Green's function can be very large. In order to solve an ill-posed problem, techniques called

"tegularization" usually have to be employed. The solution to a regularized problem can be

well-behaved and give a reasonable approximation to the solution of the ill-posed problem

allowing us to develop a satisfactory image from a practical point of view.

2.5 Regularization

2.5.1 Methods of handling ill-oosed oroblems

Numerous methods have been proposed for treating and regularizing various types of

illlosed problems mathematic aIlyl42l-1441. The rationale in most methods is to construct
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a "solution" that is acceptable as a meaningful approximation and is sufficiently stable from

the computational standpoint. The main techniques that are employed to treat an ill-posed

problem are summarized as follows:

1) changing the definition of what is meant by an acceptabre sorution;

2) changing the space to which the acceptable solution belongs;

3) revising the problem statement;

4) introducing regularizing operators;

5) introducing probability concepts so as to obtain a stochastic extension of the original

deterministic problem.

For the pulpose of exploring the possibility of using the Tikhonov regularization and

the stochastic inverse scheme to reconstruct high contrast dielectric objects in the spatial do-

main, we briefly review the fundamental principles of them.

2.5.2 Tikhonov Regularization

In its general form, this method is discussed in detail in[42].Its objective is to produce

an "estimate" of some unknown quantity X, usually a vector or a function, with the help of

data Y. The estimate is derived as the solution of an optimizationproblem, in the form of

(2.4s)

in which Â' is a measure to the solution X, Q is a regularization functional, and a > 0 is

called regularization or smoothing parameter.

Specifically, for an ill-posed system of linear equations

Y=[A]X+N (2.46)

where Y and N are an m x 1 vectors with N standing for the noise and error in the data Y,

Xart n X 1 vector, [A]an m x n matrix. Reasonablechoicesofthe A and Q inthiscase

are

-i" fxt A(X, Y) + a OfX) 
]
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a(x, y) = ll talx - y ll, (2.47)

and

ç¿(x) = ll tax ¡¡, (2.48)

where ll . ll indicates the Euclidean norm, and [fl is a linear operator having to be convenient-

ly chosen. If tflX isthe i-th derivative of X, then it is called the i-thorder of the Tikhonov

regulaúzation. Thus our estimate of X is the solution of

(2.49)

The solution of the problem posed in eqn. (2.49) is equivalent to the solution of the matrix

equation

QAlHtAl + G tnfl V1)Xr = IAIHv (2.s0)

and is given

Xz = ([A]¡1[A] + a VlH VDr lalfiv (2.s1)

where X7 indicates the Tikhonov regularization solution of X and Ël denotes the conjugate

transpose of a matrix.

The existence of the solution of eqn, (2.5I) is obvious. However, care must be taken in

choosing the regularization parameter. If it is too big, too much useful information may be

lost. If it is too small, we may not obtain a stable solution.

2.5.3 Stochastic Inverse scheme

The stochastic approach [43] starts from very different assumptions, with the errors in

measured data being treated as Gaussian random variables and the solution of unknown be-

ing a stochastic process. After an error criterion is specified, the solution is stochasticlly opti-

mum in the sense that repetition in the measurements of the data produces solutions which

are optimum according to the specified error criterion. Consider a general ill-posed system

of linear equations

ç" { ll t¿lx -Y ll'+ø ll rflx il'z }
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Y= [A]X+N (2.52)

in which both N and X are assumed to be stochastic processes. Without loss of generality,

X, N and Y each can be considered to have zero mean value since an equation identical in

form to eqn. (2.52) is obtained when the known means are subtracted from the equation. The

stochastic inverse method seeks an estimate X" of X from measured data y

Xs=lY

that minimizes the mean square effor

(2.s3)

ðT=E{ll x-x, lf} (2.s4)

where E{ . } denotes the expected value of a random number, t is a linear operator and

ll . ll is the Euclidean noÍn . The eqn. (2.54) can also be written in terms of the trace (Tr)

of the error matrix[60]

ôl=E{ Trl(X-X") (X-X,)Hl }=E{(X-X,)i/ (X-X,) t Q.55)

The error matrix can be expanded for simplification as

(X - X,) (X - X,)H= 6X¡1- XXI- X,Xä + X"Xf) (2.56)

Since

X! =yHLH = (xHïAlH + Nã¡tä (2.s7)

then

xxl= xxH¡e1HrH +XNä¿H (2.s8)

Also

X,XH = LYXH = L(lAlX+ N)XH

X,Xä =LIAIXXH +ZNXH

(2.se)

(2.60)

and

X,X3 = T([A]XX,þq]U + IA]XNH + Nxä¡A1ã + NNä¡TH (2.6r)

Since the trace of a sum of two matrices is equal to the sum of the two traces, the ex-
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pected value and the trace operators can be interchanged. Considering the expected values

of the four terms separately, we obtain

E{ XXH}= [Rx]

where [Rx] is the correlation matrix of the random vector X.

If X and N are independent

E{ XNä¡=9

E{ xxy}= [Rx][Á]¡1¿ä

and

E{ X,X¡/} = ZIAIIRx]

E{ x,xf } = ¿tÁlln xllAlHLH + z[R¡]rä

where

[RN]=E{ NN¡1 }

Now the mean square enor can be expressed as

òk = Tr(lRxl - IRxltAlHLn -¿tAltRxl + zt¿ltn¡l IAIHLH + L[R¡]IH)

(2.62)

(2.63)

(2.64)

(2.6s)

(2.66)

(2.67)

(2.68)

(2.10)

(2.7r)

(2.72)

Since the correlation matrix is symmetric and the trace of the transpose of a matrix is equal

to the trace of the matrix, the error expression may be simplified further to

ôI = rr(tÃxl - 2lRxltAlHLH +¿tAltRxllAlHLH +¿tRNl¿¡1) e.6g)

The desired linear transform L can now be determined by

# =- 2tRxl tÁl 
H + 2LlAl[Rx] [A]H + 2z[RN]

Let this equation to zero, we obtain the optimum lo which minimizes ôrt

zo = [R¡][A]ä(t¿ltnxli¿lH + [RN])-l

Hence, the optimum estimate X, is

X, = [R¡][A]ä(t¿llnxll¿lH+ [RN])-1 y
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which is the equation we desired. Equation (2.72) can also be written as

X, = ([A]HtR¡cl-ltal + [R¡1-t;-tlA]H[RN]-ry

Equations (2.72) and (2.73) are algebraically identical. Computationally, rhey are quite dif-

ferent, however, because eqn. (2.72) involves the inverse of an m x m symrnetric matrix,

and eqn. (2.73) an n x n symmetric matrix. Thus, if the number of data is less than the num-

ber of unknowns, eqn. (2.72) is more economical and. vice versa.

Ineqn. (2.73),IfwefurtherassumethatboththerandomvectorsNand X, are uncoffe-

(2.73)

(2.74)

(2.7s)

X, . Thus, eqn. (2.73)

(2.76)

the regularization pa-

lated and also isotropic, we have

IR¡rl = øfrt4

tRxl = ølt4

with øfr andolç denoting the variances of the random vectors N and

becomes

X, = ( [A]HtAl + o2¡1 / oTtnf t t¿l"y

which is equivalent to the zero-order Tikhonov regulaúzation with

rameter taking the form of

a = oK/ok (2.77)

and eqn. (2.73) also holdsIt also can be shown that equivalence between eqn. (2.5I)

whenf61]

lRxl = (trl¡/tfl)-l (2.78)

At this point, the Tikhonov regularization can be statistically interpreted in terms of the noise

variance and the reconstruction variance. Besides this, eqn. (2.78) also shows us a possible
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way to estimate the regularization parameter.

2.5.5 Maximum Likelihood Estimate of the Noise Variance

Consider matrix equation [62]

Y=[A] X+N e.:.g)

where Y is a vector of dimension m, [A] is matrix of dimension of m x n, X is a vector

of dimension n and N is a vector of dimension m, presenting the random error in the mea-

sured data Y. We assume N follows normal distribution with its expected value being zero,

i.e. E{N} = 0 and its variance being ofr . fne vector Y follows a mutilate normal distribution

with the mean vector [A]X and variance matrix o2*¡4, f.e.

Y: ([A]X, o'ftt4) (2.80)

Thus the likelihood functional can be expressed asl62l

H= H(X,&N/Y) = f (y lx,øfr) = f (y t,yz, ... ,y*/X,ok)

1l
= Q,y;EGM"*pt-14ü-lÁlx)Hü-talx)l (2'81)

and the log of the functional is

log(¿Ð = log(X, oK/Y)

=-Lbs(?'ooi'l -ftrv - tAlÐHG - tAlx) (z.Bz)

Let

ð

- 
log(I1) = gðX

we obtain

;{ = 1¡a1H¡al)-rt¿lH y

where * denotes the maximum likelihood estimate of X.

(2.83)
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ð
^ " leg(I1)=Q
døñ

we get

dfr = +G - talx)" (y - IAlx) (2.84)
m

with rîrt presenting the maximum likelihood estimate of variance øfl¡ .

2.5.6 An estimate of the Object Function Correlation Matrix b]¡ the Tikhonov Regularization

Considering the maximum likelihood solution (2.83),we can rewrite the Tikhonov reg-

ularization solution eqn. (2.51) as

X7 = ([A]HlAl + alTjH ITD-I lAlH y

= {A\H[A] + aTfH[n )-l(t¿]Ht¿l) *

= lzrl X e.8s)

where LZrl = (tAlHtAl + avlHllfl(¿lHtel)

The expected value of X7 is

¿{x.i =E {lzrl *} = tzrt øfxl e.B6)

The expected value of the maximum likelihood * is

"{ 
* }= r{rrer olqt)-,rar"y}

= n{uelotal)-l tAlH (talx . N}
t

= n{tvlH lel)-l t¿lHt¿lx + (talHtAl)-l talnÐ}

Since A{N} = 0, and (t¿latAl)-l17')HVI = Ul , we obrain
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"{ 
*} =x (2.87)

and

llElxrl=tzrlx (2.88)

The correlation matrix of X7 can be expressed as

lnxl = ø{txr- r'ix/1¡xr- E'ixr}lH}

Since

X¡-E{Xfl = X7-27 X

= (tAl¡ltAl + a7lHln¡-!¡a1äv - (AlHØl + alrlHtTl)-r6¿lHt¿l) x

= ( tAllltal + aVlH lrl)-r [¿]HN

and ø{ **" } = dfr 14. The correlation matrix of X1 is given by

[Rx] = n{(e:dra + d[Tf [Tf¡l ¡alHirlu Hlq](¡tlï.¡tl * otn lrl)-r]

= ç¡e1H ¡e1 + alrlH lTl¡ r 
¡a 1 

Hø{ NruH} ta t f ta t, [¡] * a ltf VD-l

= ç¡e1H ¡z_1 + aVlH Vl)r VIH okln1ql6lí L,4l + aWH V1)-l

= (te,qlølAl + alTlHln)-rlilH4l(talHtal + a[r]H7\-t (2.8s)

It is worth noting that when the regularizationparameter goes to zero, the correlation matrix

goes to

[Rx]: øfr(elHt¿lfr. e.so)

This result is used in chapter 5 for obtaining initial Tikhonov regularization parameter.

2.5.7 Totalvariance

The total variance of X7 is defined as[64]
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Tr (LRxl ) = øfr Trl(LAlHlAl+atrD-tlA)Hbqli(r,q]Htal +at4)-11

="kiØi; (2.er)

for the 0-th order Tikhonov regular ization, where A t , Az , . . . , A, are the non-zero eigenva-

lues of (AIH|1_D. From the form above, we notice that the Tikhonov regularization parame-

teÍ a, canimprove the total variance of X¡, especially when one or more of the eigenvalues

are very small.

2.6 Conclusion

In this chapter, after reviewing the equations used in microwave imaging, we discussed

some of the related problems such as the ill-posed problem and the regulari zation.Two regu-

larization methods, the Tikhonov regularizationmethod and the stochastic inversion meth-

od, were presented. It has been shown that for the Gaussian distribution random noise, the

Tikhonov regularization parameter can be interpreted statistically in terms of the noise vari-

ance and the reconstruction variance. The maximum likelihood estimate of the noise vari-

ance and statistic properties of the Tikhonov rcgularization were also given.
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MICROWAVE IMACENG OF DIELECTRIC BODIES WITH EQUIVALENT
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MICRO\ryAVE IMAGING OF DIELECTRIC BODIES

WITH EQUIVALENT CURRENT MODELLING

AND TIKHOI\OV REGULARIZATION

3.l lntroduction

As mentioned before, the microwave imaging methods proposed so far fall into two

main categories, namely the spectral domain methods and the spatial domain methods. As

for the spectral domain methods, they are fast and seem not to be sensitive to the random

noise in the measured field, but they are only valid for low contrast dielectric bodies and

week scatterers, since the Born or the Rytov approximations have to be employed in the re-

construction algorithms. On the other hand, the spatial domain methods have the advantage

that no strict limitations are imposed relative to the size and dielectric nature of the scatterers,

but, until now, there are atleast three obvious difficulties: a long duration in the reconstruc-

tion process, a low tolerance of noise and errors in the scattered data, and an image that is

not of a satisfactory resolution. For practical applications, more efficient algorithms are re-

quired. In this chapter, we explore the possibility of using the Tikhonov regularization of dif-

ferent orders to reconstruct dielectric bodies and report on an experimental study of the per-

formance of this method, with emphasis on the optimum selection of the regularization

parameter as it relates to the noise level t30l-t321. The reconstruction process has three

steps: first, the equivalent current density distribution within the scatterer is obtained by in-

verting eqn. (2.2I) with the Tikhonov regularization of different orders; second, the total
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field within the body is calculated in terms of eqn. (2.22);finally, the permittivity distribution

inside the object is computed by means of eqn. (2.20).It is shown that in the presence of noise

in the scattered field data, the application of the Tikhonov regulari zation for the treatment

of the equivalent current density integral yields an efficient solution for these types of inverse

problems.

3.2 Tikhonov Regularization

Consider the noise in the measured scattered field, we may rewrite eqn. (2.42) as

f,s=[G2]J,+N (3.1)

where N is a m X I vector representing the noise in the measured data Es , which may in-

clude environment noise, instrument noise, detector position error, and measuring error. As

indicated earlier, the solution of (3.1) is in general not unique. For if lczl is singular, there

may exist a family of solution J9 of the homogeneous equation lclJg = 0 , coffesponding

(3.1). The component J! represents the "nonradiating sources", which produce no electric

field at the observation points. On the other hand, the number of the measurements is usually

less than the unknowns and the unknowns may not all be independent of each other. This

limits the least-squares to apply our problems. Applying the Tikhonov regularization to

(3.1), our problem is simply stated to find a solution which minimizes the functional

*'{ llrcrll"-E ll' *"lllr'l"ll'l
J"

which is equivalent to solving the following linear system of equations

(3.2)

JT = (G zla lG zl + aUlH ln)-t lcrloB' (3.3)

where JJ indicates the Tikhonov regularization solution of (3.1). tfl is defined in eqn.

(2.48) and a the regularization parameter. For the zero-order Tikhonov regularization,

VIHVI is a n x n identity matrix denoted as [4. For the first and the second order Tikho-
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nov regularization, the corresponding Vlilln maÍices are

VIHVf =

1 -1
-1 2

-1

0

0
.'

-1
2

-1 2 -1
1 -1

(3.4)

(3.7)

and

1

-2
1

-2 1

1"u ), o
14 6 4 T

t 4 641
t 4 5-2

t-2 1

0

VlH[71=

respectively.

It is worth noting that the matrix (tczlalGzl + aVlHUl) is always invertable if rhe Tik-

honov regularization is carefully chosen. using the following relation

(GzlHlGzl + aVlHITl)-t[Gz]H = tGzlH(tGzl[Gz]H + aln[T]\-t (3.6)

we may also write (3.3) as

JT = IGz]H qGzllGzlø + a ¡4 ¡4H;-18'

(3.s)

Mathematically, eqn. (3.3) and eqn. (3.7) are the same. Numerically, they are quite different.

Equation (3.3) deals with the inversion of a matrix of dimension n x n, and eqn. (3.7) is

associated with an m x m matrix inversion. Therefore, if the number of unknown variables

is less than the number of equations, computationall¡ eqn. (3.3) is more economical. If the

number of the unknowns is larger than the number equations, eqn. (3.7) is more efficient.
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After the equivalent current is obtained, the total field inside the investigation region can be

determined by a forward calculation

E'= IGr]JT +Ei (3.8)

The object function is then calculated in terms of the eqn. (2.20) with matrix form

¡! = ¡Ðlo (3.e)

with [E'] being defined eqn. (2.36).

The problem of the choice of the regularization parameter a has been the object of

many studies. Theoretical works can be found in [42], [45]. However, to the best of my

knowledge, there is no general rule available so far for selecting this parameter for micro-

wave imaging problems. In this chapter, the selection of this parameter is based on the nu-

merical simulations for the purpose of showing the application of the Tikhonov regulaiza-

tion to the solution of the microwave imaging problems. The reconstruction process can be

summarized in the following three steps

(1) solving eqn. (3.3) or (3.7) for a given regularization parameter;

(2) calculating the total electric fietd in the investigation region using eqn. (3.8);

(3) finding the object function using eqn. (3.9).

3.3 Numerical Results

A thin inhomogeneous dielectric slab of finite width, assumed to be infinitely long, is

illuminated by a plane electromagnetic wave with an electric field intensity of unit ampli-

tude, polarized in the z-axis direction, as shown in Fig. 3.I (10 is the wavelength in free

space). The slab is divided into25 cells of the same size and the relative permittivity is con-

sideredtobe4forthecells l to4and22to25,8forthecells5to9and I7 tozI,and 12for

the cells 10 to 16. 25 detectors are used. The electric field values measured by the detectors

are provided by direct scattering computation[54] and the presence of the noise is simulated

by adding a random Gaussian noise of zero mean value. The signal-to-noise ratio is defined
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Fig. 3.1 Cross section of a dielectric slab.

SÆ.{= loros1Ëìr (3.10)

In order to compare the overall accuracy of the reconstructed equivalent current densi-

ties inside the object, we define the relative effor as

(3.11)
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with J¿ and Je being, respectively, the original and reconstructed equivalent current densi-

ties.

Figs. 3.2, 3.3 and 3.4 show the behavior of the relative error ôr(ø) versus the regulariza-

tion parameter cx, under the signal-to-noise levels of 20d8, 40d8, and 60d8, for different

regularization orders. It is shown that for each case, an optimum regularization parameter

cr which minimizes the relative effors exists. In the cases of signal-to-noise levels of 20dB

and 40d8, the relative errors obtained by the 2nd-order regulaization are slightly less than

those by the 0th-order and the lst-order regulaÅzations at the optimum regularization pa-

rameters. But, in the case of the signal-to-noise level of 60d8, it seems that only the Oth-or-

der regularization is reasonable.

Fig. 3.5 shows the original and the reconstructed equivalent current densities. The re-

constructed one is obtained under the signal-to-noise level of 20dB by selecting the second

order regularization and the optimum regularization parameter o(,.

Figs. 3.6, 3.7, and 3.8 present the reconstructed permittivities under a signal-to-noise

of 20d8, 40d8, and 60d8, respectively. In each case, the optimum order of regularization

and the optimum regularization parameter are used.

Now, we test the method by using only 13 detectors assuming that the investigation do-

main has the same shape as that in Fig. 3.1. Figs. 3.9,3.10, and 3.11 give the reconstructed

permittivities under signal-to-noise levels of 20d8, 40d8, and 60d8, where the optimum

orders of the Tikhonov regularization and the optimum regularization parameters are

employed.

Next, we consider an homogeneous cylinder of square cross section occupying the black

cell in Fig. 3.12.The side of its cross section is taken to be equal to Ls/4, where /,s is the

wavelength of the incident plane wave in free space, and the permittivity of the scatterer is

€ r = 3. A square grid of 4 x 4 cells for investigation and 16 measurement points around

the cylinder are considered, as indicated in Fig. 3.I2.The electric field values measured by

37



""^""*, ''"*o*åJFiKrof,[89å?ffo''o1#i?'åoo'.1åTi#f'1Hil^1i",åü

detectors are provided by a direct scattering computation[54], and the presence of the noise

is simulated by adding a generated random Gaussian noise of zero mean value.

Fig. 3.13 presents the reconstructed permittivity under a high level of noise in the scat-

tered field data. The optimum order of regularization (i.e. thezero order here) and the opti-

mum regulaúzation parameter are used. The latter has been determined by minimizing the

error ll Jr-i"ll /llJ"ll ,with J, and.J" being,respectively,theoriginalcurrentandthere-

constructed current. The computed results for the reconstructed permittivity are in good

agreement with the corresponding exact value, especially taking into account the high level

of noise considered and the fact that no iteration was used.

As shown in Fig. 3.14, the identification of the dielectric body in the presence of noise

becomes practically impossible if regularization is not applied. Fig.3.15 shows the object

image when the investigation domain is the same as in Fig. 3.I2,butwith only 12 detectors

which are located symmetrically on a concentric circular loop of a diameter of ?)s. The re-

sult is obtained under the signal-to-noise level (S/l\) of 20dB . Both the position and outline

of the unknown body can be clearly identified.

4.4 Conclusion

Computer simulation shows that the equivalent current modelling combined with the

Tikhonov regularization technique is an efficient procedure for locating and reconstructing

dielectric bodies. By selecting the regularization parameter properly, it is possible to obtain

a picture of satisfactory resolution, even for measured data with a relatively high level of

noise (with upto lOVo uncertainties in the measured scattered field values). Computer simu-

lations have shown that the regularization parameter plays an important role in the procedure

of the reconstruction. In order to get a good results, this parameter must be carefully selected.
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10-r

o¿

Fig.3.2 Mean square error versus the regularization param-
eter under the signal-to-noise level of 20 dB.
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X X X : 2nd-order regularization.
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Fig. 3.3 Mean square error versus the regularization param-
eter under the signal-to-noise level of 40 dB.
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Fig.3.4 Mean square error versus the regularization param-
eter under the signal-to-noise level of 60 dB.

aaa : Oth-order regularization;
o o .' lst-orderregularization;
X X x : 2nd-order regularization.

41



CHAPTER 3

MICROV/AVE IMAGENG OF DIELECTRIC BODIES WITH EQUIVALENT
CURRENT MODELLING AND TIKHONOV REGULARIZATION

I 2 3 4 5 6 7 8 910 1It2I3t4t5I6171819202122232425

Cell number

Fig. 3.5 Equivalent cunent density distributions in
reconstructed under the signal-to-noise

a dielectric slab
level of 20 dB.
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Fig. 3.6 Reconstructed permittivity with 25 detectors, SÆrI=20d8.
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Ftg.3.7 Reconstructed permittivity with 25 detectors, S/1.{=40d8.
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Fig. 3.8 Reconstructed permittivity with 25 detectors, S/1.{=60d8.
xxx Noregularization;
. o . 0th-order regularization, a = 7.0 x 10-5.

0

45



MICROWAVE IMAGENG OF DIELECTRIC BODIES WITH EQUIVALENT
CHAPTER 3 CURRENT MODELLING AND TIKHONOV REGULARIZATION

I3

Location (cell)

Fig. 3.9 Reconstructed permittivity with 13 detectors, SÆ.{=20d8.
x x x Oth-order regularization, G, - 0. 1;
o o r /,nd-srder regularization,e = I.2.
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T3
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Fig. 3.10 Reconstructed permittivity with
xxx Oth-orderregularization,a = 1.0 x
r o o l,¡d-srderregularization,a= 1.0 x

I 3 detectors, S/1.{=40d8.
r\a;
10-4.

47



MICROWAVE IMACENG OF DIELECTRIC BODIES WITH EQUIVALENT
CHAPTER 3 CURRENT MODELLING AND TIKHONOV REGULARIZATION

20

15

er

10

0
5913t721 25

Location (cell)

Fig. 3.11 Reconstructed permittivity with 13 detectors, S/l.t=60d8.
xxx Oth-order regularization,a = 1.0 x 10-3;
o o . 2nd-order regularizationç - 1.0 x 10-5.
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Fig. 3. 13 Dielectric cylinder reconstruction:
S/II=20 dB, 0:0.00I, e, = 2.59.

Fig.3.14 Results computed with no regularization:
S/N=20d8, no regulari zation.

Fig. 3.15 Dielectric cylinder reconstruction with 12 detectors
on a circular loop: SAtr=20d8, cr=0.05, s, = 2.58.
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MICROWAVE IMAGING OF DIELECTRIC BODIES IN THE

PRESENCE OF I\OISE BY STOCHASTIC INVERSION

4.l lntroduction

In Chapter 3, the equivalent current modelling and the Tikhonov regularization tech-

nique are combined to reconstruct two-dimensional dielectric bodies. This procedure can

be efficiently employed to locate dielectric objects in the presence of noise in the measured

scattered field, but the optimum regularization parameter needed in the reconstruction pro-

cess has to be selected for best results.

In this chapter, a new method for reconstructing dielectric bodies based upon a stochas-

tic inversion transformation is presented. The stochastic treatment of ill-posed problems

[43] has been successfully used in image processing and recognition techniques [60], seis-

mology studies [67], and synthetic aperture radar imaging [68]. Here, we apply the stochastic

inversion of matrices to the area of microwave imaging of dielectric bodies and illustrate the

efficiency of this new approach. A difficulty in this case is that appropriate initial dataneces-

sary in the associated iterative process are practically impossible to be made and inappropri-

ate guesses can cause the algorithm to be slowly convergent or even divergent. 'We obtain

the required prior knowledge by applying the Tikhonov regularization procedure, which we

have found to give very good first approximations. The proposed algorithm consists of three

main steps. The nonlinear integral equation used for the reconstruction of the dielectric body

is first linearized by introducing an equivalent current density. Secondl¡ Tikhonov regular-
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ization l42l is employed to obtain the best approximation of the a priori data required in the

algorithm. Finally, the stochastic inverse is applied to compute the equivalent current density

distribution within the body. From the reconstructed equivalent current density distribution,

one can simply derive the permittivity distribution. The object images can be developed by

using the distribution of either the permittivity or the equivalent current density. An impor-

tant feature of this algorithm is its high efficiency in the presence of noise. Numerical experi-

ments show that sufficiently accurate results can be obtained even in an environment with

a relatively high level of noise. This enables us to develop high resolution images.

4.2 Stochastic Inverse

As indicated eariier, if we consider the noise in the measured scattered field Es , we may

rewrite eqn. (2.42) as

þs=[G2]Jr+N (4.1)

with N indicating the noise in the measured data. Applying the stochastic inversion scheme,

i.e., eqn. (2.72), to eqn. (4.1), we obtain

Ji = lR IllGzlH (tczlln ìIG z]H + [R¡])-1 E, (4.2)

where [R¡] isthecorrelationmatrix of Jr, [R¡¡] isthecorrelationmatrixofN, Jä indicates

the stochastic estimate of the equivalent current, and H denotes the conjugate transpose of

a matrix. In this dissertation, the additive noise is assumed to have a normal distribution and

the random noise vectors are uncorrelated and isotropic, and thus [R¡g] is a diagonal matrix

tRNl = oß¡t4 (4.3)

where øfr, is the noise variance, which is assumed to be available from prior knowledge, and

[4 is a unit matrix. Since J, is assumed to be an uncorrelated random vector, its correlation

matrix [rR¡] is approximated as consisting of the elements [68]
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(4.s)

Rt = lJ\lzô¡j, (4.4)

with ô¿ denoting the Kronecker delta symbol. For the problems analyzed. so far by using

this technique, the initial estimate is provided by available a prioriknowledge of the system

investigated. Since in the case of our problem the unknown J" is the equivalent current den-

sity, with no initial information about its distribution in most cases, in this paper we propose

the usage of the Tikhonov rcgularization technique in order to obtain a first approximation

of J" in the form

Ji = lGzlH,1GzllGzlw +an)-lE

which corresponds to letting the equivalent current correlation matrix in eqn. (2.76)be a unit

matrix and ofr therefore be the rcgularization parametera .Although this is not the best se-

lection of a , it allows us to obtain a good first estimate in a very simple way. In addition,

we have found that the proposed algorithm is practically sensitive only to the order of magni-

tude of ø . Thus, we only use a regul arizationparameter equal to the order of magnitude of

øfr . Witfr the classical definition of the signal-to-noise ratio, S/1.{ = 20 tog(ll E ll / ll N lD ,

weset a=r}4whensa.l= zodB,a=ro4 when sÆ.{=40d8,andsoon,foran ll E ll

of the order of magnitude of unity. This simplifies the implementation of the algorithm since

in practical cases the signal-to-noise ratio is readily available.

In the next section, the following iterative algorithm is used for numerical computations

based upon the discussion above. An initial estimate of Jä is obtained by applying the Tikho-

nov regularization technique, with the regularization parameter in (4.5) chosen to be equal

to the order of magnitude of the elements in the correlation matrix of the noise. The diagonal

matrix [R¡] in (4.4) is then calculated from this Jä. Subsequent estimates of Jä are ob-

tained ftom(4.2), with [R¡] from (4.3) and with the latest evaluarion of tRJl . The iteration

process continues until a stable solution is obtained.
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Once the equivalent current is obtained, the total field Et in the investigation region is

calculated by means of eqn. (2.22) with its matrix form

Et = [Gr]JL+Ei (4.6)

where Er and E' are n-dimensional vectors containing the arrays of the values of the total

electric field and incident electric field inside the investigation region , LGù is n X n Green

function matrix for the scattering region. The object function is then calculated in terms of

Jt = LOIE| (4.1)

with [O] being a n x n diagonal matrix containing object function inside the region, and

the dielectric permittivity distributions can be obtained from eqns. (2.11) and(2.14). Please

note that the equivalent current density vector in eqn. (4.7) has been factorizedby (- ja¡pù .

4.3 Numerical Results

4.3.1 Lossless Obiects

In order to compare our quantitative results with those available in [ 17], we first consid-

er an investigation domain of a square cross sectio n of 5 /U.g to each side, where ,tg is the

wavelength of the incident plane wave. 25 cells are used to discretize the domain and 25

equally spaced detectors are located on three straight line segments as indicated in Fig. 4.1.

The electric field values measured by the detectors are provided by direct scattering compu-

tation [54], and the presence of noise in the scattered field is simulated by adding to the real

and imaginary parts of the field values two independent sequences of Gaussian random vari-

ables of zero mean value.

Table 4.1 shows the reconstructed results when a homogeneous scatterer of a relative

dielectric permittivity Ê r = 3 occupies the 17th cell. For comparison pulposes, the second

column shows the results computed by applying the pseudoinverse[17] in the absence of the

noise. Accurate resuits are obtained by using only three iterations in our method. The same
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level of accuracy was obtained by considering a more practical situation where 25 equally

spaced detectors were located on a concentric circular loop of diameter 3Ag . Itis clear that

the results obtained by the proposed method even in the presence of a high level of noise are

much more accurate than the results obtained by the pseudoinverse in the absence of noise.

Fig. 4.1 Cross section of a two-dimensional region
with detectors along the broken line.

Table4.2indicatestheresultsofasituationwhenascattererofpermittiviW €r= 3 occu-

pies two cells in the investigation domain, with the first column showing the adopted config-

uration according to Fig. 4.2.The second column indicates the results given in[L7] in the

absence of the noise. Again the reconstructed permittivities by the proposed method, with

only three iterations, are very accurate even with a I\Vo level of uncertainty (i.e. SIrt=2O dB)
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in the measured scattered data. As before, the same high accuracy is obtained afterthree iter-

ations with the detectors located symmetrically on the circular loop.

Fig. 4.3 shows the results of reconstructed permittivity versus signal-to-noise ratio

when the scatterer of relative permittivity Er = 3 is located in the 17th cell of the investiga-

tion domain. The results obtained by the stochastic inverse are much more accurate than the

results obtained by the pseudoinverse especially for high levels of noise.

In order to compare the overall accuracy of the reconstructed permittivities, one defines

the relative mean square error(MSE) as

ôr= (4.8)

lzu'"1"'
where e, and ir, stand for the values of the original relative permittivity and of the recon-

structed relative permittivity in the i{h cell, respectively. Fig. 4.4 shows the relative MSE

of the reconstructed permittivities for all the cells in Fig. 4.1 as a function of the signal-to-

noise ratio, when the scatterer with a relative permittivity of e. = 3 is located in the 17th

cell of the investigation domain.

Next, we consider a homogeneous dielectric cylinder of a relative permittivity er- 3

that occupies four cells in the investigation domain, as shown in Fig. 4.5(a),with 25 equally

spaced detectors located on a concentric circular loop of diameter 3rtg . Table 4.3 shows the

numerical values of the relative permittivites reconstructed by the proposed method, with

three iterations, for noise levels of 40dB and of 20 dB. Compared to the original ones, the

reconstructed values are accurate enough to develop images with high resolution. Fig. a.5þ)

shows the original image, while Figs. 4.5(c) and 4.5(d) show the images for,S/l/=40d8 and

SI'{=20d8, respectively. The relative MSE of the reconstructed permittivity distribution as

a function of the number of iterations for two levels of noise is plotted inFig. 4.6. Both lines

W
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drop close to a constant just after the second iteration. In the 20dB case the MSE stays at3 .8Vo

after three iterations, while in the 40dB case it drops to0.4Vo after the same number of itera-

tions. Fig.4.7 shows the relationship between the initial guess of the equivalent current den-

sity (considered for illustration to be the same for all cells) and the convergence of the pro-

posed algorithm. It indicates that an inappropriate initial guess of the equivalent current can

cause a very slow convergence of the iterative process, or even its divergence. On the other

hand, by applying the Tikhonov regulañzation, the algorithm will converge in only two or

three iterations.

The method was also tested by using less detectors than cells. Consider a case in which

the investigation domain has the same shape as that in Fig.4.1 but with only 16 detectors

symmetrically located on a concentric circular loop of diameter 3)"s. The dielectric scatterer

with arelativepermittivity e," = 3 occupiesfourcellsasshowninFig.4.5(a).Table4.4pres-

ents the numerical values of the reconstructed permittivities. When the signal-to-noise ratio

in the measured field is 40d8, only three iterations are required to make the MSE reach a

constant value. For S/lr{=ZOdB, five iterations are needed.

4.3.2 Lossv Obiects

As a first illustrative example of lossy object, we consider an investigation domain of

a square cross sectio n of 5 f 3),s a side, where /,6 is the wavelength of the illuminating inci-

dent wave taken to be a plane wave propagating normally to the left hand side of the domain.

25 cells are used to discretize the investigation region and 16 equally spaced detectors are

located on a concentric circular loop of a diameter of 3rt6 . The electric field values measured

by the detectors are provided by a direct scattering computation using the moment method

for the scatterer shown in Fig. 4.8 and the presence of the noise in the scattered field is simu-

lated by adding to the real and imaginary parts of the field values two independent sequences

of Gaussian random variables of zero mean value. Fig. 4.9 shows the results after four itera-
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tions for the reconstructed average permittivify versus signal-to-noise ratio for a relative

permittivitY € , = 5.5 - jL2 of the scatterer. The relative mean square error defined in eqn.

(4.6) is used to compare the overall accuracy of the reconstructed permittivities. Fig. 4.10

shows the errors of reconstruction after four iterations as a function of the signal-to-noise

ratio. Similar quantitative results are obtained for any location and orientation within the in-

vestigation region of the lossy object considered. The error in the permittivity reconstruction

as a function of the number of iterations for two levels of noise is represented in Fig. 4.11.

In both cases a stable value is reached after the fourth iteration. In the 20dB case this value

is approximately I6.0Vo, while in the 40dB case it drop sto I.6Vo.It should be noted that even

for a level of noise of 10 dB, a practically constant value of ø is obtained in only six itera-

tions. Fig. 4. 12 shows the relationship between the initial guess of the equivalent current den-

sity (considered for illustration to be the same for all the cells) and the convergence of the

proposed algorithm for S/lt{ = 20 dB. It indicates that an inappropriate initial guess of the

equivalent current can cause a slow convergence of the iterative process or even its diver-

gence. On the other hand, by applying the Tikhonov regularization,the algorithm will con-

verge in only four iterations.

Thesecondexampleofalossyscattererofcomplexpermittivity t,=5.5-jI.Z ispres-

ented in a cross section in Fig. 4.73 .In this case we use 25 detectors for the same illumination

as in the first example. The reconstructed average permittivities of the scatterer are

t,=5.49-jI.20 with a =0.02 forS/lr{=40dB,after5iterations,and e,=5.11 -jI.6l
with ø = 0.22 for SA{ = 20d8, after 6 iterations.

4.3.3 Very High Contrast Dielectric Bodies

One of the features of the proposed method is its capability to reconstruct very high con-

trast permittivity objects even with high noise contaminated data. For the purpose of demon-

stration, we consider aregion of ,1,s x ).s insize. The region is divided into l44square sub-
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cells and 1 6 receivers uniformly located on a concentric loop of diamete r I.5 )"g are used

to detect the scattered field. This results in an algebraic system of 16 equations and I44un-

knowns in accordance with eqn. (4. i ). The dielectric cylinder with complex permittivity oc-

cupies one cell in the region as shown in Fig. 4.I4.The background is assumed to be a free

space in the following examples. One TM incident wave is used to illuminate the region.

Fi5.4.15 shows the 3D image of the reconstructed object with the signal-to-noise ratio of

40 dB after 8 iterations. The original value of dielectric permittivity is (46 - jlz) and the

reconstructed value is (46.09 -jII.l6). The relative reconstruction error of real part is

O .2Vo , and the relative emor of imaginary part is ZVo .Fig.4. 1 6 shows the reconstructed results

when 20 dB signal-to-noise ratio is used after 8 iterations. The reconstructed value is

(44.7 -jll.18) withrelativereconstructionerors of 2.T%oforrealpartand 6.SVoforimagi-

nary part. It is worth noting that not only the dielectric permittivity is well reconstructed,

the background is also well reconsftucted. No low-pass filtering effect [16] is exhibited. This

allows us to develop images with very high resolution.

Fig.4.L7(a) andFig. 4.17(b) present the reconstructed dielectric permittivity versus the

original dielectric permittivity regarding the location of the dielectric object in Fig. 4.l4for

different signal-to-noise levels. In Fig. 4.I7(a),all results are obtained after 8 terations. The

imaginary part of the dielectric permittivity of the object is assumed to be zero, and the real

part varies from 10 to 250. \ù/hen the signal-to-noise ratios 100d8 and 40 dB are used, the

dielectric permittivities of the object can be reconstructed almost completely. 'When 
20 dB

signal-to-noise ratio is used, relative reconstruction errors areO.O3Vo for the contrast of 10,

6.24Vo forthecontrastof 100 andILTVo forthecontrastof 200.InFig.4.ll(b),therealpart

of the dielectric permittivity of the object is assumed to be unity, and the imaginary part va-

ries from 10 to 1000. The reconstruction accuracies similar to Fig. 4.17(a) are obtained.
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4.3.4 Multiview Illuminations

Numerical results have shown that dielectric permittivities of relatively simple two-di-

mensional objects can be reconstructed with satisfactory accuracy even with one wave illu-

mination. For more complex objects, multiview techniques can be employed to improve the

quality of the images. The multiview techniques which can be utilized arcl46l:

1) changing the incident wave direction and keeping a constant wavelength and a steady

object;

2) changing the wavelength and keeping a steady incident wave direction and object;

3) changing the object orientation and keeping a constant wavelength and a steady incident

wave direction.

In this thesis, we simply use the first technique to demonstrate the efficiency of the sto-

chastic method by reconstructing two-dimensional objects. In the process of the imaging,

each illumination gives different values of the object function due to the the noise in the mea-

sured data and to the reconstruction errors. The imaging is performed by using the average

value of the object function, that is

o=1ion
vE1

(4.e)

where v is the number of illuminations and O¿ is the object function vector yielded from

the k-th view.

As the first multiview reconstructioú, we consider an investigation domain of Ls x ).g ,

divided into I44 cells with 16 detectors uniformly located on a concentric loop of a diame-

ter 1.5)"s. A dielectric cylinder of a cross-sectional dimension of ),s/2, with a relative per-

mittivity of t, = 3 , occupies 24 cells, as shown in Fig. a.18(a). The noise and error in the

measured data are introduced by adding Gaussian random variables to the real and imaginary

parts of the scattered field. The signal-to-noise ratio (S/N) used is defined by
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S/N = 10log(ll F.'ll' /ll N ll1 . Figure 4.18(b) shows rhe image obtained afrer rhree irera-

tions with one incident wave illumination with a signal-to-noise level of 40dB in the mea-

sured data. In Fig. 4.18(c), the image is obtained by using four incident waves to illuminate

the object successively. Figure 4. 18(d) presents the reconstruction in a highly noisy environ-

ment, where 17.\Vo Gaussian noise (S/ir{=15d8) was added to the measured data and four

incident waves were employed. Please note that the blurt technique has been used to smooth

the edge of the images.

In the second computer simulation, the reconstruction systemis the same to the first one

but a circular dielectric cylinder of two layers with complex dielectric permittivity is consid-

ered. The outer layer of the cylinder has a dimension of diame ter ),sf 2 with a relative dielec-

tricpermittivityof er=2.75 -j0.01 .Theinnerlayerhasadimensionofdiameter ),s/6 with

a relative dielectric permittvity of r, = 3.5 -j0.15 . 16 detectors are used on a concentric

loop of a diameter of 1.5),s to detect the scattered fields. The cylinder is modeledby 24

square cells in the test region, with 4 cells for the inner iayer and 20 cells for the outer layer.

The real part of the original dielectric permittivity distributions of the modeled cylinder is

shown in Fig. 4.19(a). Figure 4.19(b) shows the real part of the dielectric permittivities re-

constructed by the single-view technique after three iterations for S/1.{=40d8 with the inci-

dent wave coming from the left side of the region. Figure 4.19(c) and Figure 4.19(d) show

the real parts of the dielectric permittivities obtained by the muliview technique (where four

views from each side of the test region are used) from three iterations for SÆ.{=40 dB and

for SÆ'{=15 dB respectively. The results with similar accuracy have been obtained for the

imaginary parts of the dielectric permittivities.

4.4 Conclusion

An iterative method for reconstructing complex dielectric permittivity distribution of

an inhomogeneous cylindrical scatterer has been presented. The method is developed based
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on the stochastic inversion algorithm which seeks an optimal solution in the stochastic sense

that minimizes the expected value of the reconstruction error.

The performance of the proposed reconstruction method is demonstrated in terms of re-

constructing two dimensional objects. Although the development of a good image depends

on many factors such as the configuration of the image system, the number of the detectors,

the number of waves used and the organization of the object, it has been shown that, by the

proposed method, the dielectric object with very high dielectric contrast can be recon-

structed with high accuracy even for measured data containing a high level of noise. The

low-pass filtering effect which have been noticed in other reconstruction algorithms is not

presented in the proposed method. Compared with other iterative methods presented so far

for dielectric body microwave imaging problems, the stochastic technique requires less

computation time since the number of iterations can be reducedby utilizingapriori informa-

tion which has been supplied by the application of the Tikhonov regularization in the pro-

posed examples. Moreover, for each iteration, only one matrix inversion is needed, while

other iterative techniques require two matrix inversion operations per iteration. These fea-

tures reconìmend the method presented for some special applications when a high resolution

is required in the presence of noise such as in defect detection, material characterization and

remote sensing.
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TABLE 4.1

Reconstructed permittivities when the scatterer
with e, = 3 occupies the 17th cell.

Cell

Number

er
Pseudoinverse
Noise-Free

e r Proposed Method

SA{=40d8 S/N=20d8

I
2
J

4
5

6

7
8

9
10

11

12

13

T4

15

t6
T1

18

T9

20
21

22
23
24
25

0.98
1.03
1.00
1.01

0.99
1.03
0.99
0.88
1.03
0.99
1.08
r.25
0.91
L20
1.00
1.01

2.63
0.89
i.03
0.99
0.99
1.01

0.99
1.00
0.98

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
i.00
1.00
1.00
1.00
3.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
3.02
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
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two cells in the investigation domains.
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TABLE 4.2

Permittivity reconstruction for the scatterer configurations in Fig.4.2,
with the same locations of the detectors as in Fig. 4.1.

Configuration
8r

Pseudoinverse
Noise-Free

Er Proposed Method

S/N=40d8 S/N=20d8

(a)
|rfi = 2.0I

Sr18 = 3.87

trfi = 3.00

sr18 = 3.01

srfi = 3.09

sr18 = 3'11

(b)
srß= 2.45

trfi = 2.24

I 116 = 3'01

sr17 = 3.00

s116 = 3.10

€rI7 = 3.00

(c) srfi = 2.5I

sr22= 2'75

tr17 = 3'00

€r22= 3.00

êrfi = 2'92

e,ez= 2'95

(d) sr12= I'87

trfi = 2.24

sr2= 3.00

trfi = 3.0I

srD= 2.97

trfi = 3'04
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Fig. 4.3 Plots of the reconstructed permittivity versus S/l,t ratio
for the scatterer with êr= 3 occupying the 17th cetl
in Fig. 4.1.
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Fig. 4.4 Relative mean square errors of the reconstructed
permittivities versus SI,{ ratio.
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Fig. 4.5 Configuration and images for the scatterer occupying four cells
in the investigation domain, corresponding to Table 4.3.
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TABLE 4.3

Reconstructed permittivities in all the cells for the
scatterer with t r = 3 shown in Fig. 4.5.

Cell

Number

Er

SA{=40d8 SAt=20d8

1

2
J

4
5

6
7
8

9
10

11

12

t3
I4
15

T6

I7
18

T9

20
2T

22
23
24
25

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
i.00
1.00
3.00
3.03
1.00
1.00
1.00
2.99
3.02
i.01
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
3.03
3.26
1.00
1.00
1.00
2.87
3.09
1.02
1.00
1.00
1.00
1.00
1.00
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Fig. 4.6 Relative mean square error of the reconstructed permit-
tivities versus the number of iterations for the scatterer
in Fig. 4.5.
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J" = 0.01. +j0.01
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Number of Iterations

Fig.4.7 Influence of the initial guess for the current density upon the
number of iterations, for the structure in Fig. 4.5(a) and
S/Ì,{=ZO1B.
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TABLE 4.4

reconstructed permittivities for the scatterer shown
in Fig. a.5@) with only 16 detectors.

Cell

Number

er
S1l=40d8

Three iterations

er
S/NzOdB

Five iterations

i
2
J

4
5

6
7
8

9
10

ii
I2
t3
L4

15

I6
T7

18

I9
20
2T

22
23
24
25

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
3.03
2.99
1.00
1.00
1.00
3.00
2.96
1.01

i.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
3.08
2.17
i.00
0.99
1.00
3.06
2.32
1.00
1.00
1.00
1.00
1.00
1.00
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Fig. 4.8 Discretization of the investigation region.
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Fig. 4.9 Reconstructed permittivity versus the signal-to-noise ratio.
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Fig.4.10 Error of reconstruction versus the signal-to-noise ratio.
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Fig. 4.11 Error of reconstruction versus the number of iterations.
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Ftç.4.13 Discretization grid for a scatterer occupying 20Vo of
the investigation region.

5.
-AnJ

o

75



CHAPTER 4
MICROWAVE IMAGING OF DIELECTRIC BODIES IN THE

PRESENCE OF NOISE BY STOCHASTIC INVERSION

Detectors

/-

Bi

O+

Fig. 4.14 Discretization grid for a scatterer occupying one cell.
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Fig.4.15 Pictorial.presentation of the reconstructed pennittivity, S/N:4odB.

(b)

(a) Real part; (b) Imaginary part.

71



CHAPTER 4
MICROWAVE IMAGING OF DIELECTRIC BODIES IN THE

PRESENCE OF NOISE BY STOCHASTIC INVERSION

.Þ\
È

ç 
ì:::

\ ìooo

* iìl
*\ a^
rñ vo

e

s=
\\Ss^'N- 

*:'oo
\ ,"'oo

-S.r 'O^.\
.S tooo
Sl^
sJ "oo
È ooo

ñ

(b)

Fig. 4.i6 Pictorial presentation of the reconstructed permittivity, S/N:20d8.

(a) Real part; (b) Imaginary part.
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Fig. 4.1 7 Reconstructed permittivities versus original permittivities:
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(a) Investigation region and object
model.

(b) one incident wave with S/|.1=40d8.

(c) four incident waves with SA{=40d8. (d) four incident waves with S/lt{=15d8.

Fig.4.18 A dielectric cylinder and its microwave images.
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(a) Original permittivity (real part) dis-
tributions.

(c) Reconstructed dielectric permittivi-
ties (real part) with four-view process
for SA{=40d8.

(b) Reconstructed dielectric permittivi-
ties (real part) with monoview technique
for SA{=40d8.

(d) Reconstructed dielectric permittivi-
ties (real part) with four-view process
for SAi=15d8.

Fig. 4.19 A lossy dielectric cylinder with two layers.
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SELECTION OF THE REGULARIZATION PARAMETER

FOR MICROWAVE IMAGING

5.l lntroduction

As we mentioned before, one of the advantages of linearized inverse methods based on

the equivalent current formulation lies in their fast reconstruction algorithms. However, be-

cause of the limited space for situating the receivers and the difficulty of combining ajointed

system of equations for multi-illuminations, the resulting systems are usually underdeter-

mined. For more complex dielectric bodies, this underdetermined system may not contain

enough information to yield an expected result. Although the studies regarding the limitation

of each method are still ongoing, we may predict that the equivalent current modelling based

methods are more efficient only for the dielectric properties of relatively small problems. For

more complex dielectric inverse problems, efforts have been made to solve the two coupled

non-linear equations directly t11l-t141. The general procedure is that a multiview process

is usually firstemployedto construct an overdetermined systemof equations. The total fields

in the dielectric bodies are then calculated by giving an initial guess to the object function.

Substituting the total field into the first equation, the first approximation of the object func-

tion is obtained by solving an ill--conditioned linear systems of equations. The process per-

forms iteratively until an acceptable error level is obtained. If the initial object function is

assumed to be the same as the background, the method is called the Born iterative meth-
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od[11]. The above iterative method can also be modified, such as the distorted Born iterative

methodf12] and the Newton-type iterative method[14]. Because the problem is ill-condi-

tioned in determining the object function in each iteration, the regularization technique is

employed to stabilize the matrix decompositions that are involved in the process of the re-

construction. One of the difficulties in the procedure is the selection of the regularization pa-

rameter. If this parameter is too big, too much useful information could be lost. If it is too

small, a convergent solution might not be obtained. In the Born iterative method and the dis-

torted Born iterative method, this parameter is selected experimentally. In the Newton type

iterative method, it is chosen in terms of the relative mean square error of the reconstructed

scattered field and the measured field. This process allows the parameter adjusting its value

from iteration to iteration accordingly. However, a new scalar presenting the magnitude of

the regularization parameter was introduced and no indication given how to select this new

parameter.

In this chapter, we first review the general procedure of solving nonlinear integral equa-

tions associated with the microwave imaging in the spatial domain. Then we present three

methods for selecting this parameter. The first method is applicable to the situation when the

upper bound of the object function variance and the upper bound of the measured data noise

variance are known. The second method can be used if only the upper bound of the object

function variance is detectable. If this information is not available, the third method can be

employed to find the regularizationparameter. The efficiency of these methods is illustrated

by reconstructing two-dimensional dielectric objects with noiseless measured data and also

with data containing noise. In the first example, a dielectric cylinder with continuous dielec-

tric permittivity distribution along cross-section is considered. In the second example, an

object with discontinuous dielectric permittivity distribution is investigated. In the third ex-

ample, we use noisy data to reconstruct the same dielectric profile to the second one to test

the robustness of the methods. All the examples show the efficiency and the robustness of
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the presented methods.

5.2 Reconstruction procedure

Consider the following two coupled nonlinear matrix equations employed for micro-

wave imaging in spatial domain in the case of one illumination[11]-[14], lzzl-lz5l

ES = lczllÐlo

Ef=([4-tcl]tol)-lEt

(s.1)

(s.2)

where Es is a column vector representing the measured scattered electric field of dimension

m ( m denotes the number of detectors ), Er , Ei and O are column vectors of dimension

n (n indicates the number of cells in which the investigation region is divided) representing

the total field, the incident field and the object function respectively, lEtl and lol arediago-

nal matrices consisting of the elements of Et and O respectively, [G1] and [G2] are ma-

tricesofdimensionsnXnandmXnrespectively,and[1]istheidentitymatrix.Thegen-

eral procedure of solving these two equations is that the first approximation of the total field

in eqn. (5.1) is taken to be just the incident field. Substituting the object function obtained

from eqn. (5.1) in eqn. (5.2) gives the first estimate of the total field E' . Then this Et is

used in eqn. (5.1) to obtain the second estimate of the object function and the iterations con-

tinue until a stable solution is obtained. In this process, eqn. (5.2) is always well-condi-

tioned. Therefore, once the object function is given, the solution of (5.2) can be obtained di-

rectly. However, eqn. (5.1) is, in general, ill-conditioned and, usually, instead of solving

(5.1) directly, an attempt is made to regularize it. The solution to the regularized equation

may give a reasonable approximation to the solution of the original ill-conditioned equation

allowing us to develop a satisfactory image.

Taking into account the global effect of all the illuminations yields for each iteration step

(s.3)
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where [D] is a vm X r¿ matrix consisting of the submatrices obtained from the product

lGzllÛ'l for all the v illuminations í.e.

lDl =

lGzh [Elt
[GzJz ldlz
lGzlt [E]z

:

[Gz], [E'1,

(s.4)

and Ei is a column vector of dimension yrn consisting of all Es

Ef = [Et, Eå, Eå, . . ., Ei]r

This equation is ill-conditioned in general, with the measured field in Es7 containing noise

and errors, and [D] containing the errors accumulated in [E'] in the previous iterations. The

regularized solution of eqn. (5.3) is given by

o = (DlHlDl +øt4)-ltDlHF;i

(5.5)

(s.6)

with Ël denoting the conjugate transpose of a matrix and a the regularization parameter. In

order to obtain an acceptable solution, an appropriate regulari zationparameter must be cho-

sen. To the best of our knowledge there is no general rule presented in the literature regarding

the selection of this parameterforelectromagnetic imaging algorithms. In the following, we

consider the problem from a stochastic point of view and show the possible ways to estimate

this parameter. Taking into account the inaccuracies and the noise in [D] and E"¡, we rewrite

eqn. (5.3) as

Ef = [D]O+N (s.t)

where N is a v¡z-dimensional vector indicating the enor E"¡ - [D] O at the iteration step con-

sidered. We treat this error term N as being a random variable and then the solution O of eqn.
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(5.7) is also a random variable. Under the assumption that these two variables are uncorre-

lated, the following expression is employed to evaluate O from eqn. (5.7) [43]

o = ( [D]¡1[Rr.¡]-1 [p] + [Ro]-r)-r tDlHtRNl-l E"r (s.8)

where [R¡] and [Re] denotethecorrelationmatricesofNandO.AssumingthatNandO

are also isotropic random variables, we have

tRNl = ø3rt4 (s.e)

(5.10)

N and O. Thus, eqn. (5.8)

[Ro] = obfn

with øfr¡ ando2g denoting the variances of the random vectors

becomes

O = [DlH lD1 + o2* / o[¡4)-1 tD]HEi (s.11)

Comparing eqn. (5.11) with eqn. (5.6), we find that the role of the regalarization parameter

ø is played by

a, = ok/o6 6.12)

Although these variances are unknown in most microwave imaging problems, (5.12) stitl

allows us to evaluate a from a practical point of view.

5.3 Methods for Selecting the Regularization Parameter

Equation (5.12) shows us that the regularization parameter can be interpreted in terms

of the variances of noise and the object function. Here we consider three cases and present

the corresponding expressions for this parameter.

Suppose the values of ofr¡ andozs are not known, but their upper bounds can be fixed

fromourpreviousknowledgeandexperience.Ifweusethenotations C¡ and Cg forthese
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upper bounds, i.¿.

øfr< cN

o[= cs

we employ as the reguiarization parameter

a = CN/Co

Since

ll Ei- rDlo ll2 = ll N ll,

(s.13)

(s.14)

(s.1s)

(5.16)

(5.17)

(5.18)

and the Maximum likelihood estimate of the noise variance øft is given by eqn. (2.84), i.e.

(r/vm) ll Er- tDlo lf = e/vm) ll N llt

we see that if the measured data is noisier the bigger regularization parameter must be used,

andvice versa. On the other hand, if the selected regularization parameter is bigger than the

desired one, higher reconstruction error can be expected.

In some applications, only the upperbound of the object function Cg canbe fixed. For

example, in biomedical applications the range of electric qualities which char acterize the tis-

sues in the body under most conditions can be evaluated from previous experience. Using

the maximum likelihood estimator of noise variance (eqn. 2.84), the regularizationparame-

ter at each iteration step can be expressed as

1 ll Eï- rDlo ll2

vm Co

where the matrix [D] and vector O are those from the preceding iteration. To avoid too small

values of ø as the iterative process progresses, when at a certain iteration step the recon-

struction error

(5.1e)
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becomes less than an imposed value, the value of a corresponding to that step should be

used for the next iterations (in the simulations presented in Section 5.4, this value is chosen

to be equal i0+ in the case of noiseless data and equal to the order of the variance of the noise

in the case of data containing noise). The whole iterative procedure is summarized as fol-

lows:

(1) apply Born approximation to eqn. (5.3);

(2) calculate ø using eqn. (5.18);

(3) find the object function O from eqn. (5.6);

(4) calculate Et using eqn. (5.2) and then [D] from eqn. (5.4);

(5) check relative enor ll Eå- tDlo llt /r*; if less rhan rhe imposed value, go to (3)

and use the latesta until a stable value of O is obtained; if not, go to (2).

C. ø& andoä are unknown

In this case, the Levenberg-Marquardt scheme [69],[70] can be applied to the imaging

process. The Levenberg-Marquardt scheme was originally developed to solve general non-

linear algebraic equations. The main point is that at each iteration the squared Euclidean

norrn of the the difference between the given data and the recovered data is calculated. If the

difference at that iteration is smaller than the previous one, then decrease regularization pa-

rameter by a factor, or continuously increase it by a factor until a decrease is obtained. A

starting rcgularization parameter of 0.01 was suggested. However, in our numerical simula-

tions we find that Marquardt's suggestion that the regularization parameter be increased or

decreased by factors which are powers of 10 is not applicable in general to the problems of

microwave imaging. For some increasing/decreasing factors the error is oscillating and the

iteration process does not seem to behave as a convergent process, at least for the first 10 to

20 iterations in the examples considered. Numerical tests performed by the author indicate

that an increasing factor of 1.5 coupled with a decreasing factor of 0.5 performs much better
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for this type of electromagnetic imaging problems.

In our imaging process, an initial positive value is taken forthe rcgularizationparameter

to be used in the first iteration, whose selection will be discussed later. At each iteration, the

difference between the calculated scattered field and the measured scattered field defined

in eqn. (5.19) is estimated. If the difference decreases from one iteration to the next one, the

rcgtiarization parameter to be used in the succeeding iteration is decreased by a factor which

is chosen to be 0.5. If the difference does not decrease, the parameter is increased by a factor

of 1.5, until a decreased difference is achieved. This iterative process is ended when the error

in the computed scattered field decreases to an acceptable value.

For the initial value of the regularizatíonparameter, we know that the correlation matrix

ofthe object function can be expressed as (see eqn. 2.89)

[Ro] = ok (olHlnl +aul)-t (DlHlDD [D]HlDl+GVD-l (s.20)

whose diagonal elements are the corresponding variances of the object function. Using the

totalvariance(seeeqn.2.9l)oftheobjectfunctionandassuming a=0 ineqn. (5.z}),yields

o2o= 
"okttrç¡o|H¡n¡yl (s.2r)

With eqn. (5.I2), we find that the initial regularization parameter takes the form

as= (If n)tr(DlH[D]) (s.22)

The reconstruction algorithm is summarized as follows:

(1) determinetheinitialregularizationparameter a and thematricesGl, G2,andchoose

a desired level of accuracy;

calculate the total field Et in (5.2) and construct the matrix [D] in (5.3);

find the object function O from (5.6);

compute the relative error of the scattered field calculated from (5.3) with respect

to the measured scattered field., i.e. ll Eå- tDlO ll2 / llr*; if the error is less rhan

the desired value, the iteration is terminated or go to step 2; otherwise, go to step 5;

(2)

(3)

(4)
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(5) after the first iteration, reduce the initial regularization parameter by a factor of 0.5

and go to step 2; in each subsequent iteration, compare the error noûn with the

one in the preceding iteration; iftheerror normdecreases,reducetheregularization

parameter by a factor of 0.5 and go to step 2; otherwise, increase the parameter I .5 times

for the microwave imaging problem considered and go to step 3.

The iterative process continues until the desired level of accuracy is achieved or until the

error norm maintains a practically stable value.

5.4 Numerical Results

To illustrate the methods presented in this chapter, we consider a few two dimensional

objects similar to those in[l1], UZ}In all examples, the size of the investigation domain

is l.ü"s x I.4As, where.f,o is the wavelength of the background medium which is now as-

sumed to be free space. To apply the moment method, we divided the investigation domain

into 196 subsquare of equal size of 0.ú"0 x O.I),s . Eight incident waves with unity ampti-

tude and frequency of 100 MHz are used to illuminate the region from eight directions at 45

degrees from each other. For each illumination, 36 receivers uniformly distributed on a mea-

surement loop are used. Figure 5.1 shows the geometry of the investigation region. The scat-

tered fields at the receiver points are calculated by the moment method with pules functions

and point matching. The resulting simultaneous linear equations are solved using LU factor-

ization method. The relative mean square error of the reconstructed permittivity defined as

lÉ',,-ëi21+
ô, = l+-l ç.n>

| )te¡t2 |L=r I

is used to compare the overall accuracy of the reconstructed permittivity, where where e¿
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and i¡ are the values of the original permittivity in the i-th cell and of the reconstructed per-
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Fig. 5.1 The geometry of a two-dimensional region with 36 detectors uniformly
distributed along the broken line and 8 incident waves.

mittivity, respectively, with the summations extended over all the cells in the investigation

region. The relative error of the scattered fields defined as

òh=
tiw;o-n¡,,r2

j=l Ìet
(s.24)

22wìot'
j=l k=7

is employed to evaluate the overall accuracy of the reconstructed scattered fields, where E'¡n
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and Ej* are the values of the detected electric field and the reconstructed electric field at the

k-th receiver for the j-th view of the incident field.

A. Continuous Profile

As the first example, we consider a object with a cosinusoidal variation of the permittiv-

ity along the cross-sectional Cartesian coordinate axes and their origin at the center of the

cross section and oriented normal to the cylinder sides, with a peak value of 1.6 e6 . The ra-

dius of the measurement circular loop is 1..5)"s . The profile is shown in Fig. 5.10 (a)

Fig.5.2 shows the real part and imaginary part of the scattered electric field at the detec-

tors generated by one of the microwave illuminations.

In Fig. 5.3 and Fig. 5.4, the relative errors of the reconstructed scattered electric fields

and dielectric permittivity are plotted versus the number of iterations for various values of

the regularization parameters. The solid lines indicates the results yielded from the proposed

method C. When the same value of the regularization parameter is employed for all itera-

tions, a stronger regularization yields bigger reconstruction errors, while too weak a regular-

ization may not insure the iteration convergence. Applying the method C to this problem,

we obtain convergent results with relatively small final reconstruction errors.

Fig. 5.5 and Fig. 5.6 show the relative error of the reconstructed scattered electric fields

and the relative error of the reconstructed dielectric permittivity versus the number of itera-

tions for various increasing/decreasing factors. We see that Marquardt's suggestion [70] that

the regularization parameter should be increased or decreased by factors which are powers

of i0 is not applicable in general to the problems of microwave imaging. For some increa-

sing/decreasing factors the reconstructed results are oscillating and the iteration process does

not seem to behave as a convergent process, at least for the first 10 to 20 iterations in the ex-

amples considered. These figures indicate that an increasing factor of 1.5 coupled with a de-

creasing factor of 0.5 performs much better for this type of electromagnetic imaging prob-
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lems. The relative error of the reconstructed scattered electric field by the

increases/decreases of 1.5/0.5 is less than 10{ after the tenth iteration and keeping decreas-

ing. The relative error of the reconstructed dielectric permittivity is less than 10-3 after the

tenth iteration.

Fig. 5.7 and Fig. 5.8 give the relative erïors of the reconstructed electric fields and the

reconstructed dielectric permittivities from the presented three methods. In the method A,

we assume the upper bound of the error variance of the reconstructed scattered fields is 1 0+ .

For the upper bound of the variance of the object function, we simply take it to be 0.4, a little

bit bigger than the squared peak value of the object function. In the method B, the upper

bound value of the object function variance is the same as that in the method A. If computed

scattered field error defined in eqn. 5.19 is less than 104 , the value of the regularization

parameter stops updating in order to avoid too weak aregularization. In the method C, the

increasing/decreasing factors of 1.5/0.5 are used in the reconstruction process. In these fig-

ures, we see that all three methods yield quite small reconstruction errors either for the per-

mittivity or for the scattered fields. The.iteration processes in both method A and method

B become stable after the eighth iteration the similar reconstruction errors. Method C gives

a similar relative error to methods A and B at the first eight iterations, but yields even smaller

reconstruction error afterwards.

In Fig. 5.9, the traces of the regularization parameter versus the number of iterations in

the three methods are plotted. In method A, the constant regularization parameter performs

in all the iterations. In method B, the regularization parameter stops changing after the sixth

iteration. It is noteworthy that the stabilized regularizationparameter yielded from method

B is almost coincidence with the constant regularization parameter used in the method A.

In method C, no increased parameter was observed.

Fig. 5. i0(a) shows the original distribution of the relative dielectric permittivity with

the peak value of 1.6. Figs. 5.10 (b), (c), and (d) are the reconstructed relative dielectric per-

93



CHAPTER 5
STOCHASTIC SELECTION OF THE REGULARIZATION

PARAMETER FOR MICROWAVE IMAGING

mittivity distributions with the peak values of 1.59304 in (a), I.593Ol in (b) and 1.59279 in

(c).

B) Discontinuous Profile

As the second example, we consider an object with discontinuous dielectric permittivity

distribution along the cross-section. The diameter of the object is 1.01e with the peak per-

mittivity 1.6 es . 36 receivers located on a circular loop of radius 1.2)rs around the investiga-

tion region are used to detect the scattered electric fields.

The real part and the imaginary part of the detected field detected by the receivers gener-

ated by one of the incident waves are plotted in Fig. 5.11.

Fig. 5. 12 and 5.13 show the relative error of the reconstructed scattered electric fields

and reconstructed dielectric permittivity versus the number of iterations for various regular-

ization parameters. As the results in example A, when constant regularization parameters

are used in the algorithm, bigger regularizationparameter yietds a bigger reconstruction er-

ror. A too small regularization parameter may not give a convergent result. The optimum

value of the regularizationparameter in this simulation seems to be between 10-3 and 10a .

'When 10+ is selected as the regularization parameter, the algorithm gives smaller errors

compared with other constant regularization parameters, but it is going to oscillating. When

10-s is used, the algorithm cannot give convergent results. When applying method C to the

problem, convergent results with smaller reconstruction errors are obtained.

The relative errors of the reconstructed scattered electric fields and the reconstructed

dielectricpermittivityversusthenumberofiterationsareshowninFig.5.I4,5.l5,and5.l6

for various increasing/decreasing factors with solid lines indicating the results obtained by

method C. Simiiar to example A, when the increasing /decreasing factors of 10/0.1 and

4/0.25 were used, the algorithm gives oscillating results. Both the increasing/decreasing fac-

tors of 1.5/0.5 and I.l5/0.75 yield convergent results. The factor of 1.5 coupled with 0.5
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gives smaller reconstruction error. By method C, the relative error of the reconstructed scat-

tered electric fieids is less than 2 x 10-8 after the fourteenth iteration and the relative error

of the reconstructed dielectric permittivity is less thanl .SVoafter the fourth iteration. Com-

pared with the results yielded in example A, we also notice that the relative errors are gener-

ally higher than those in the first example. This higher reconstruction error is generated by

the discontinuous edge of the dielectric profile and the band-limited nature of the algorithm

as mentioned in [16]. The regulaúzationparameter plays a smoother role in the reconstruc-

tion process, like a spatial domain lowpass filter to smooth the edge of the object causing

relatively higher reconstruction errors. This phenomenon can be observed in Fig. 5.19.

Fig. 5.17 and Fig. 5.18 present the results obtained by applying the three methods to

the problem. In method A, the upper bound of the reconstruction error variance and the upper

bound of the object function variance are assumed to be I\a and}.4respectively. In method

B, 0.4 is assumed to be the upper bound.of the object function variance and 10+ is used to

terminate updating the regularization parameter. In method C, 1.5/0.5 was used for the in-

creasing/decreasing factor. All three methods gave convergent results with tolerable recon-

struction effors.

The original relative dielectric permittivity distribution is shown in Fig. 5.19(a), and the

reconstructed profiles by the three methods are illustrated in Fig. 5.19 (b)-(d). The peak val-

ue of the reconstructed profiles are 1.70079 in (b), 1.70065 in (c) and I.69706 in (d).

C) Discontinuous Profile with nois]¡ Data

This example allows to test the robustness of the proposed methods by using the data

containing noise. 
.We 

assume the noise has normal distribution with zero mean value. The

signal-to-noise ratio defined in eqn. (a.8) is used to evaluate the level of the noise. Fig. 5.20

shows the detected scattered electric field with the signal-to-noise ratio of 20 dB.
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Fig. 5.21 and 5.22 show the relative error of the reconstructed scattered electric fields

and the relative error of the reconstructed dielectric permittivity with the noisy data of sig-

nal-to-noise ratio of 20 dB. Corresponding to the signal-to-noise ratio, the upper bound of

the variance of the scattered fields error in method A is assumed to be l0-2 , and,the upper

bound of the object function is assumed to be 0.4 as in the previous examples. In method B,

the same upper bound of the object function as in example A is used, and a value of 10-2 of

the reconstruction error in (5.19) was accepted to stop updating the regulari zationparameter.

In method C, the increasing/decreasing factorof I.5/0.5 was employed, and 0.01 was chosen

for the required reconstruction error. All the three methods yielded convergent results with

reasonable reconstruction errors. The relative errors of the reconstructed scattered electric

fields is converged to the order of I.l7o, and the relative errors of the reconstructed dielectric

permittivity converged to 7 .7Eo after the fourth iteration.

Fig. 5.23 presents the original profile and the reconstructed profiles by using the three

proposed methods. The reconstructedpeakvalues of the dielectricpermittivitiesarel.6T216

in (b), 1.64946 in (c) and 1.64961in (d).

5.5 Conclusion

The general procedure of microwave imaging in spatial domain consists of discretizing

the electric field integral equations in the form of two coupled matrix equations by applying

the moment method. The associated ill--conditioned systems of algebraic equations are

solved iteratively by implementing the regularization technique at each iteration step. One

of the difficulties in the procedure is the selection of the regularization parameter. Based on

the fact that the Tikhonov regularization parameter can be interpreted in terms of the random

noise variance and the object function variance, three methods for selecting this parameter

are presented. Their performance is demonstrated by reconstructing two dimensional dielec-

tric objects with both noiseless and noisy computer simulated data. The proposed methods
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for the selection of the regularization parameter can also be extended to other iterative meth-

ods such as the distorted Born iterative methodflZ] and the Newton iterative method[l4].
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Frg. 5.2 Real part and imaginary part of the scattered field from a dielectric
object with consinusoidal permittivity distribution.

98



CHAPTER 5
STOCHASTIC SELECTION OF THE REGULARIZATION

PARAMETER FOR MICROWAVE IMAGING

10-5

!
q)

ir
o

o
-9
ru

tr
o
o
($

o
a
o

0

IJJ

o

-a
o
E

10-10

10'r5

Iteration

Fig. 5.3 Relative error of the reconstructed scattered electric fields versus the
number of iterations for different regularization parameters.
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(a)

(c)

Fig. 5.10 Original and reconstructed cosinusoidal profiles.
(a) original profile; (b) method A; (c) merhod B;
(d) method C.

(b)

(d)
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Fig. 5.11 Real part and imaginary part of the scattered field from a dielectric
object with discontinuous permittivity distribution.
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Fig. 5.15 Relative mean square error of the reconstructed dielectric permittivities
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Fig. 5.17 Relative error of the reconstructed scattered electric fields versus the
number of iterations by the proposed methods.
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Fig. 5.18 Relative mean square error of the reconstructed dielectric permittivities
versus the number of iterations by the proposed methods.
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(b)(a)

(c)
(d)

Fig. 5.19 Original and reconstructed dielectric permittivities.
(a) original profile; (b) merhod A; (c) method B;
(d) method C.
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Fi9.5.20 Real part and imaginary part of the scattered field detected by
receivers for SA{=20 dB.
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(a)

(c)

Fig.5.23 Original and reconstructed dielectric permittivities for the detected data
containing IÙVo noise.
(a) original profile; (b) mettrod A; (c) merhod B;
(d) method C.

(d)
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CONCLUSION AND FUTURE WORK

6.1 Conclusion

The problem of microwave imaging in spatial domain can be mathematically stated in

terms of two coupled electric integral equations or formulated in terms of one linear integral

equation by introducing an equivalent current density (equivalent current formulation). The

general procedure for solving these integral equations consists of discretizing the integral

equations by applying the moment method and the associated ill-conditioned systems of al-

gebraic equations being solved by implementing a regularization technique. Two regulariza-

tion methods, the Tikhonov regularization and the stochastic inverse scheme, have been con-

sidered in this dissertation. The combination of the Tikhonov regularization with the

equivalent current modelling has yielded an efficient way of locating the dielectric scatter-

ers. The selection and performance of the Tikhonov regulaúzation parameter in the process

of the reconstruction have been demonstrated by computer simulations. It has been observed

that the optimum regularization parameter is strongly related to the noise level in the mea-

sured fields. The stronger the noise level, the stronger the regulari zationshould be used. This

is consistent with the theoretical conclusion that the Tikhonov regulari zationparameter can

be statistically interpreted in terms of the noise variance and the reconstruction variance.

The introduction of the stochastic inverse scheme into the equivalent current recon-

struction process has allowed us to develop a new iterative algorithm for reconstructing high

120



CHAPTER 6 CONCLUSION AND FUTURE WORK

dielectric contrast objects accurately. The stochastic inverse scheme was developed by con-

sidering both the measured data and the reconstruction being random processes. Under the

assumption that they are uncorrelated and isotropic, the scheme seeks an optimum solution

by minimizing the expected value of the error in the reconstructed data. The algorithm con-

sists of three main steps. The nonlinear integral equation used for the reconstruction of the

dielectric body is first iinearizedby introducing an equivalent current density. Secondly, the

Tikhonov regularization is employed to obtain a good approximation to the a prioridata re-

quired in the algorithm. Finally, the stochastic inverse is applied to compute the equivalent

current distribution within the body. From the reconstructed current density one can simpty

derive the permittivity distribution which is used directly to develop the object images. Nu-

merical results have shown that this reconstruction procedure is very promising. For relative-

ly simple scatterers, very accurate results can be obtained even by one incident wave illumi-

nation and with the measured data containing high level of noise. Multiview techniques can

also be used to improve the quality of the images especially for the scatterers with more com-

plex geometrical structures. The low-pass filtering effect which have been noticed in other

reconstruction algorithms is not presented in the proposed method. These features have rec-

ommended the proposed method for some special applications when a high resolution is re-

quired in the presence of noise, especially in defect detecting, remote sensing and material

property probing. Compared with other iterative methods presented so far for microwave

imaging problems relative to dielectric bodies, the stochastic technique requires less compu-

tation time since the number of iterations can be reduced by utilizing a priori information

which has been supplied in the proposed examples with the application of the Tikhonov regu-

larization; moreover, for each iteration it only needs one matrix inversion, while other itera-

tive techniques require two matrix inversion operations per iteration.

One of the difficulties in the iterative methods for solving the two electric field integral

equations directly is the selection of the Tikhonov regularization parameter in each iteration.

Based on the fact that the Tikhonov regularizationparameter can be interpreted in terms of
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the random noise vector variance and the object function variance, this dissertation has pres-

ented three methods for seiecting this parameter. The first method is applicable to the situa-

tion when the upper bound of the object function variance and the upper bound of the mea-

sured data noise variance are known. The second method can be used if only the upper bound

of the object function variance is detectable. If this information is not available, the third

method can be employed to find the regularizationparameter. The implementation of these

methods is illustrated by reconstructing two dimensional objects with noiseless measured

data and with the data containing noise. Simulation results have validated the new methods

proposed in this thesis for microwave imaging.

6.2 Future Work

The present work can be used as a starting point for future studies leading to a better

understanding of the performance of the stochastic inverse scheme in the procedure of di-

electric body reconstruction by microwave imaging. The lack of theoretical basis, such as

theories regarding the solution existence, uniqueness, and stability for electromagnetic in-

verse problems has made it difficult to establish the convergence and stability of iterative

reconstruction algorithms proposed so far. More work on the practical implementation of the

reconstruction algorithms should be considered. Following is a summary of the recom-

mended future work.

1. It is well known that the moment method yields dense element matrices. For large recon-

struction problems, these matrices not only require expensive computation time, but also

generate great increased computer round-offerrors which are added into the measured data

used in the imaging process, thus introducing undesired uncertainties in reconstructions.

Techniques which can be utilized to simplify the generated matrices, such as the Wavelet

Transformation, are strongly recommended for future studies.
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2. Computer simulations for more complex dielectric scatterers are to be performed. The fol-

lowing techniques might be involved: (1) increasing the number of discretization cells, the

number of detectors and the number of incident wave illuminations; (2) using time-domain

data; (3) employing data processing techniques, such as edge detection and spatial domain

filtering [71] to improve rhe qualiry of images.

3. Finally, the proposed reconstruction methods are to be extended to three dimensional di-

electric scatterers.

123



LIST OF REFERENCES

LIST OF REFERENCES

t1] E. Wolf, "Three-dimensional structure determination of semitransparent objects from

holographic data," Opt. C ommun., vol. 1, pp. 1 53- 156, 1969.

l2l K. Iwata, and R. Nagata, "Calculation of refractive index distribution from interfero-

grams using the Born and Rytov's approximations," J. AppI. phys., vor. r4,pp. r92l-
1927,1975.

l3l R. K' Muller, M. Kaveh, and G. Wade, "Reconstructive tomography and applications

to ultrasonics," Proc. IEEE, vol. 6J, pp. 567-581, Iglg.

l4l M' Slaney, A. C. Kak, and L. E. Larsen, "Limitations of imaging with first order diffrac-

tion tomography," IEEE Trans. Microwave Theory Tech., vol.32,pp. g60-g73, rgg4.

t5l J. V. Candy, and C. Pichot, "Active microwave imaging: a model-based approach,"

IEEE Trans. Antennas Propagat., vol. 39, pp.285-290, 1991.

t6l A. Broquetas, J. Romeu, J. M. Rius, A. R. Elias-Fuste, A. c. cardama, and L. Jofre,

"Cylindrical geometry: a further step in active microwave tomography," IEEE Trans.

Microwave Theory Tþch., vol. 39, pp. 836-844,1991.

t7l F. C. Lin, and M. A. Fiddy, "Image estimation from scattered field data," Int. J. Imagíng

Syst. Technol, vol. 2, pp.76-95, 1990.

t8l J. V. Candy and C. Pichot, "Active microwave imaging: a model-based approach,"

IEEE Trans. Antennas Propagat., vol. 39, pp.285-290, I9gl.

t9l L. Joffre, M. s. Hawley, A. Broquetas, E. Delos Reyes, M. Ferrando, and A. R. Elias-

Fuste,"Medical imaging with amicrowave tomographic scanner," IEEETrans. Biomed.

Eng., vol. 37, pp. 303-312,1990.

[10] M. slaney, M. Azimi, A. c. Kak, and L. E. Larsen, "Microwave imaging with first

order diffraction tomography," in Medical Applications of Microwave Imaging, L.E.

124



LIST OF REFERENCES

Larsen, and J. H. Jacobi, Ed., 1986, pp. IB4-2I2.

[11] Y. M. Wang, and W. C. Chew, "An Iterative solution of two-dimensional electromag-

netic inverse scattering problem," Int. J. Imaging Syst. Technol, vol.1, pp. 100-10g,

r989

[12]W. C. Chew and Y. M. Wang, "Reconstruction of two-dimensional permittivity distri-

bution using the distorted Born iterative method," IEEE Trans. Med. Imaging, vol.9,

pp.218-225, 1990.

[13]M. Moghaddam and W. C. Chew, "Study of some practical issues in inversion with the

Born iterative method using time-domain data," IEEE Trans. Antennas Propagat., vol.

41, pp. 717-184, 1993.

[14] N. Joachimowicz, C. Pichot, and J.-P. Hugonin, "Inverse scattering: an iterative nu-

merical method for electromagnetic imaging," IEEE Trans. Antennas Propagat., vol.

39, pp. 1142-1752, 199I.

[15] W. Wang and S. Zhang, "Unrelated illumination method for electromagnetic inverse

scattering of inhomogeneous lossy dielectric bodies," IEEE Trans. Antennas Propagat.,

vol. 40, pp. 1292-1296, tggz.

t16l M. M. Ney, A. M. Smith, and S. S. Stuchly, "A solution of electromagnetic imaging us-

ing pseudo-inverse transformation," IEEE Trans. Med. Imaging, vol.3, pp. 155-162,

7984.

117] S. Caorsi, G. L. Gragnani, and M. Pastorino, "Two-dimensional microwave imaging

by a numerical inverse scattering solution," IEEE Trans. Microwave Theory Tech., vol.

38, pp.981-989, 1990.

[18] -, "Equivalent current density reconstruction for microwave imaging purpose," IEEE

Trans. Microwave Theory kch.,vol.37, pp. 910-916, 1989.

[19] 
-, 

"An approach to microwave imaging using a multiview moment method solution

for a two-dimensional infinite cylinde¿" IEEE Trans. Microwave Theory Tech., vol.

39, pp. 1062-1067, 199I.

t25



LIST OFREFERENCES

l20l-, "Numerical electromagnetic inverse-scattering solutions for two-dimensional

infinite cylinder buried in a lossy half-space ," IEEE Trans. Microwave Theory Tech.,

vol. 41, pp. 352-356, 1993.

[21] M. Hagmann and R. L. Levin, "Procedures for noninvasive electromagnetic property

and dosimetry measurements," IEEE Trans. Antennas propagat., vol. 3g, pp. 99-106,

i990.

L2ZIY.M- Qin and I.R. Ciric, "Efficient Techniques for Choosing the Regul arizationParam-

eter for Microwave Imaging", in Proc. ANTEM'96, Lgg6, (Montréal, canada).

[23] I.R. Ciric and Y.M. Qin, "Self-adaptive selection of the regulari zationparameter for

electromagnetic imaging," in Proc. CEFC'96, 1996, (Okayama, Japan).

t24lY.M. Qin and I.R. Ciric, "High resolution electromagnetic imaging of lossy objects in

the presence of noise," IEEE Trans. Magn., vol. 31, no. 3, May 1995.

l25l-, "Method of selecting the regularizationparumeterformicrowaveimaging,"

Electron. Lett., vol. 30, no. 24, pp. 2028-2029, Nov. 1994.

t26l-. "High Resolution Electromagnetic Imaging of Lossy Objects in the Presence

of Noise," in Proc. CEFC'94, 1994, (Aix-les-Bains, France).

t21l-, "Dielectric Permittivity Reconstruction in a Highly Noisy Environment, " in

Proc. PIERS' 94, 1994, (Noordwijk, The Netherlands).

t28] 

- 

, "Stochastic Inversion for Microwave Imaging of Dielectric Bodies in the

Presence of Noise," in Proc. 1994 IEEE Int. Symp. Antennas Propagat., 1994, (Seattle,

usA).

l29l-, "Stochastic reconstruction of Dielectric Permittivities with Multiple lllumina-

tions", in Proc. ANTEM'94,1994, (Ottawa, Canada).

l30l 

-, 

"Dielectric Body Reconstruction with Current Modelling and Tikhonov Regu-

larization," IEE Electron. Lett., vol. 29, pp. l4Z7-I429, 1993.

t31l 

-, 

"Inverse Scattering Solution with Current Modeling and Tikhonov Regulariza-

tion," in Proc. 1993 IEEE Int. symp. Antennas propagat.,1993, (Ann Arbor, uSA), pp.

126



LIST OF REFERENCES

492495.

l32l-. "Equivalent Current Reconstruction in Electromagnetic Imaging of Dielectric

Bodies, in Proc. PIERS'93, 1993, (pasadena, USA).

[33] P. M' Meaney, K. D. Paulsen, A. Hartov, and R. C. Crane, "An Active Microwave Imag-

ing System for Reconstruction o12-D Electrical Property Distribution", IEEE Trans.

Biomed. Eng., vol. 42, no. i0, pp. 10Il--1026. October 1995.

[34] P. M. Meaney, K. D. Paulsen, andT. P. Ryan, "Two-DimensionalHybridElementlmage

Reconstruction for TM lllumination", IEEE Trans. Antennas Propagat., vol. 43,no. 3,

pp.239-247, 1995.

l35l J. Larrigan and L. Shafai, "Microwave Imaging of Inhomogenious Dielectric Cylin-

ders", in Proc. ANTEM'92, T992, (Winnipeg, Canada), pp.696_701.

[36] H. Harada, D. J. N. 'Wall, 
T. Takenaka, and M. Tanaka, "Conjugate Gradient Method

Applied to Inverse Scattering Problem", IEEE Trans. Antennas Propagat.,vol. 43, no.

8.pp. 784-192, Augusr 1995.

137] R. M. Bevensee, "solution of underdetermined electromagnetic and seismic problems

bythemaximumentropymethod," IEEETrans.Antennaspropagat.,vol.2g,pp.2Tr-

274, lggr.

t38l X. Chen and W. X. Zhang, " Solution of inverse problems by the general maximum en-

tropy method," in Proc. I99l IEEE Int. sy*p.Antennas propagat.,(London, canada),

1991,pp.1308-1311.

[39] L. Garnero, A. Franchois, J.-P. Hugonin, C. Pichot, and N. Joachimowicz, "Microwave

imaging-complex permittivity reconstruction by simulated annealing," IEEE Trans.

Microwave Theory Tþch., vol. 39, pp. i80l-1901, IggI.

[40] s. caorsi, G. L. Gragnani, S. Medicina, M. pastorino, and G. Zunino, ..Microwave

imaging method using a simulated annealing approach ," IEEE Microwave GuidedWave

Lett., voI.1, pp. 331-333,I99I.

[41] R' F. Harrington, Field computation by moment methods, New York, Macmillan ,lglï.

t27



LIST OF REFERENCES

[42] A. N. Tikhonov and V. Y. Arsenin, Solutions of iU-posed problem.s. V.H. Winston &

Sons,1977.

l43lJ . N. Franklin, "Well posed stochastic extensions of ill-posed linear problems," J. Math.

Anal. AppL, vol. 3i, pp. 682-716,1970.

l44lT. Sarkar, D. D. Weiner, and V. K. Jain, "Some mathematical considerations in dealing

with the inverse problems," IEEE Trans. Antennas Propagat., vol. 29, pp.373-379,

1981.

[45] D.C. Sabatier, "Theoretical Considerations for Inverse Scattering," Radio Science,vol.

18, no.1, pp.1-18, Jan.-Feb. 1983.

t46l M. Baribaud, F. Dubois, D. EnMéd, R. Floyrac, and s. wang, "Tomographic rmage

Reconstruction of Objects from Multi-incidence Microwave exploration ," IEE. Proc.,

vol. I32, Pt. H., no. 5, pp.286-290, Aug. 1985.

l41lJ.M. Gironés, L. Jofre, M. Ferrando, E. de los Reyes, and J. ch. Bolomey, "Microwave

Imaging with crossed Linear Arrays," IEE Proc. vol. r34, pt. H, no. 3, pp. 249-252,

June 1987.

[48] S.-Y. Kim, "Electromagnetic imaging of 2-D inhomogeneous dielectric objects by an

improved spectral inverse technique," IEEE Trans. Magnetics, vol.26, no. z, pp.

634-637, rgg0.

[49] S. M. Lee, S. Y. Kim, and J. W. Ra, "Filtering effects on permittivity profiles recon-

structed by a spectral inverse scattering technique," IEE Proceed.-H, vol. 139, pp.

507-512, rgg2.

t50l A. G. Tijhuis, Electromagnetic inverse profilíng, vNU Science press BV, 1987.

[51] J. Hadamard, Sur les problèmes aux dérivées partielles et leur signification physique,

Bull. Princeton Univ., pp.49-52. 1902.

[52] C'T. Ta¡, Dyadic Green's Function in Electromagnetic Theory, Scranton: International

Texbook, 1971.

[53] R.F. Harrington, Time-Harmonic Electromagnetic F ields, New York: McGraw-Hill,

t28



LIST OF REFERENCES

1961".

t54l J. H. Richmond, "Scattering by a dielectric cylinder of arbitrary cross section shape,"

IEEE Trans. Antennas Propagat., vol. 13, pp.334-34I,1965.

[55] R. Mittra and C. A. Klein, "Stability and convergence of moment method solutions,"

in Numerical and Asymptotic Techniques in Electromagnetics, R. Mittra, Ed., New

York: Springer-VerIag, I97 5.

t56] N. Bleistein and J. K. Cohen, "Nonuniqueness in the inverse source probìem in acous-

tics and electromagnetics," J. Math. Phys., vol. 18, no.2, pp. Ig -zOI,Feb. 1971.

t57l A. J. Devaney and E. Woil "Radiating and nonradiating classical current distributions

and the fields they generate," Physical Review, vol. 8, no.4, pp.1044-1047, Aug.1.973.

[58] A. J. Devaney, " Nonuniqueness in the inverse scattering problem," J. Math. Phys., vol.

19, no. 'l , pp. 1526-1531, July 1978.

l59lM. Guarnieri, A. Stella, F. Trevisan, "AMethodological Analysis of DifferentFormula-

tions for Solving Inverse Electromagnetic Problems", IEEE Trans. Magnetics, vol.26,

no. 2, pp.633-625, March 1990.

t60l E. L. Hall, Computer image processing and recognition. IJnited Kingdom: Academic

Press (London), pp.232-234, 791 9.

[61] M. Bertero, C. DeMol, and G. A. Viano, "On the problems of object restoration and

image extrapolation in optics", J. Math. Phys., vol. 20, pp.509-52I,1979.

l62lH. D. Vinod and A. Ullah, Recent advances in Regression methods, Marcel Dekker, Inc.

New York, 1981.

[63] D.C. Momtgomery,Introduction to linear regression analysis, John Willey&Sons, Inc.

1982.

l64lG. A. F. Seber and C. J. Wild, Nonlinear regression, John V/illey &Sons,Inc. 1989.

[65] J.P. Burg, "Maximum entropy spectral analysis," in Modern spectral analysis, D.G.

Childers, Ed., New York: IEEE Press, 1978, pp. 3Ml.

166l A. Taflove and K.R. Umashankar, "The FD-TD method for numerical modelling of

t29



LIST OF REFERENCES

electromagnetic wave interaction with arbitrary structures", in PIER 2, Progress in

Electromagnetic Research, Chapter 8, Editor: M.A. Morgan, 1990, pp.363-366.

[67] K. Aki and P. G. Richards, Quantitative seismology theory andmethods. vol. II, Free-

man (San Francisco), 1980.

t68l L. M. Delves, G. C. Pryde, and S. P. Luttrell. "A super-resolution algorithm for SAR

images," Inverse Problems,vol.4, pp. 681-703, 1988.

t69l K. Levenberg, "A method for the solution of certain non-linear problems in least

squares," Quart. Appl. Math., vol.2.,no.7, pp.164-768,J:uly 1944.

[70] D.V/. Marquardt, "An algorithm for least-squares estimation of non-linear parame-

ters," SIAM J. AppI. Math., vol. 11, no.2, pp. 43I44l,June 1963.

[71]M. Frank and C.A. Balanis, "Method for improving the stability of electromagnetic

geophysical inversion," IEEE Trans., Geosci. Remote Sensing. vol.27, pp.339-343,

May 1989.

[72]C. N. Dorny, Avector space approach to methods and optimization, Huntington, New

York: Krieger, 1980.

130


