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ABSTRACT

This dissertation is devoted to exploring the possibility of using the stochastic inverse
scheme to reconstruct high contrast dielectric objects in the spatial domain. In the first part
of the dissertation we present the principle of microwave imaging, the basic problems asso-
ciated with reconstructions, such as the ill-posedness and the regularization, and investi-
gates the relation between two important techniques, the Tikhonov regularization and the
stochastic inversion. This forms the theoretical basis for the entire thesis. Then, the stochas-
tic inversion algorithm combined with the Tikhonov regularization is employed in the recon-
struction process to solve the ill-conditioned systems of algebraic equations associated with
microwave imaging problems. The performance of the proposed reconstruction processes
is demonstrated in terms of computer simulations.

The problem of microwave imaging can be mathematically formulated in terms of two
coupled electric field integral equations. These integral equations can be decoupled by intro-
ducing the equivalent current density yielding a linear integral equation (equivalent current
formulation). The general procedure for microwave imaging in the spatial domain consists
of discretizing the integral equations by applying the moment method. The associated ill—
conditioned systems of equations are solved by implementing a regularization technique
which enables to obtain the dielectric permittivity distribution inside bodies.

In this dissertation, the stochastic inverse scheme is employed to regularize the ill-con-
ditioned system of equations in the process of reconstructing high contrast dielectric objects.
The initial values necessary in the reconstruction algorithm are supplied by the application
of the Tikhonov regularization. As a consequence, the number of iterations in the proposed
algorithm is considerably reduced. Example tests show that this algorithm provides an effi-
cient means to reconstruct dielectric bodies of various contrasts with high accuracy even in
the presence of a high level of noise in the scattered field data.

The application of the stochastic inverse scheme in the iterative methods of solving the

ii



two coupled integral equations permits us to determine directly the Tikhonov regularization
parameter in each iteration. Three methods for the selection of this parameter are proposed.
The first method is applicable to the situation when the upper bound of the object function
variance and the upper bound of the measured data noise variance are known. The second
method can be used if only the upper bound of the object function variance is detectable. If
this information is not available, the third method can be employed to find the regularization
parameter. The efficiency of these methods is illustrated by reconstructing two—dimensional
dielectric objects with measured noiseless data and also with the data containing noise.

The dissertation concludes with a summary and the outline of future work in this area.
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CHAPTER 1 INTRODUCTION

1

INTRODUCTION

1.1 Generalities

Microwave reconstruction of dielectric bodies from scattered near—field measurements
has many potential applications in such areas as medical imaging, geophysical exploration,
remote sensing, robotic vision, and non—destructive testing.

The interest in developing microwave—based techniques, when other powerful imaging
procedures already exist, is due basically to the possibility of visualizing different physical
parameters involved and to the nature of the interaction between the radiation used and the
dielectric materials. In medical applications, for instance, microwave imaging has some ad-
vantages over existing techniques such as X-ray tomography, magnetic resonance, ultra-
sound, and others. Firstly, unlike jonizing radiation, low—power microwave radiation allows
a virtually safe exploration of living tissues. Thus even continuous monitoring is possible.
Secondly, unlike other means of exploration, the microwave imaging is based on the recon-
struction of the complex permittivity distribution of an object. It is well known that a scat-
tered microwave field is sensitive to the complex permittivity distribution within a dielectric
body. This makes it possible to develop an active imaging of a dielectric body, since the com-
plex permittivity of the body depends on the morphology, blood flow, and temperature of
a tissue. Moreover, some of the technology involved in microwave imaging is common to

that in radar and communication systems, and is well developed and inexpensive, which may
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make clinical and even domestic applications feasible. Therefore, microwave imaging can
at least complement the existing imaging techniques.

However, there are some problems associated with the usage of this type of radiation,
namely a low resolution and a high attenuation that dielectric materials present to micro-
waves, which impose stringent requirements on the equipment design, as well as the difficul-
ty in developing imaging algorithms for high dielectric contrast bodies.

The microwave imaging methods proposed so far can be divided into two main groups:
spectral domain methods [1]-{10], and spatial domain methods [11]-[36] (although some
other techniques, such as maximum entropy [37],[38], and annealing [39],[40] have also
been attempted). In the spectral domain approach, which is generally called microwave to-
mography, the main technique used for the microwave imaging is the Fourier transforma-
tion. Conventional systems of this type are based on illuminating the body with a plane wave
and measuring the scattered field with a linear array of probes, in a way similar to that used
in acoustic diffraction tomography. With plane wave illumination and on the assumption of
Weakly scattering bodies, the spectrum of the scattered field contains the information about
the dielectric properties of the body in the two—dimensional Fourier spectral domain. By re-
peating the measurement for different directions of incidence, the spectral domain can be
filled and inverted to obtain a section of the body. The main advantage of the diffraction to-
mography method lies in its fast numerical algorithm. However, the spectral approaches
have, as it is well known, some limitations and can only be applied to low dielectric contrast
and weak scatterers, since the Born or the Rytov approximations are used in the algorithms.

In the spatial domain approach, the object is first divided into small cells. Then the mo-
ment method [41] is employed to transform the integral equations into a set of algebraic
equation systems which relate to the scattered field and to the dielectric properties of the
body. An image of the object can be obtained by solving these systems of equations. Com-
pared to the spectral domain methods, the spatial domain methods have the advantages of

not requiring specific geometries for the measurements of the scattered field and of being
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also applicable to high contrast dielectric bodies or strong scatterers. Furthermore, the spatial
resolution does not seem to be so strictly related to the wavelength as it is for diffraction to-
mography. However, the main problem of this approach is the lack of good reconstruction
algorithms.

The problem of microwave imaging can be mathematically formulated in terms of two
coupled nonlinear integral equations. To solve these equations in spatial domain, the mo-
ment method with pulse basis function over the domain of identical square cells is usually
employed, yielding two coupled nonlinear systems of equations. Two techniques are mainly
used to decouple them. One is to introduce an equivalent current density to the reconstruction
process (equivalent current formulation)[16]. The other one is to use the Born approxima-
tion[11]-[14] to estimate the initial total field in the investigation region. Then, the discre-
tized integral equations are solved iteratively. Because the problem of determining the elec-
tric properties of the objects involved is ill-conditioned, regularization techniques[42]-[45]
are usually employed to stabilize the matrix decomposition that are involved in the recon-
struction process. In the equivalent current formulation, the pseudo—inverse transformation
has been used [16]. In the approaches based on the solution of the two coupled integral equa-
tions iteratively, the Tikhonov regularization [42] is applied in each iteration. To obtain a sat-
isfactory solution and also a satisfactory rate of convergence of the iteration process in-
volved, the regularization parameter must be carefully selected.

In this thesis, the stochastic inverse scheme [43] with the Tikhonov regularization is
applied to the above mentioned two techniques. In the equivalent current formulation, the
stochastic inverse scheme allows us to find the equivalent current in the investigated body
more accurately, even for the measured data with high level of noise. On the other hand, when
solving the two coupled integral equations iteratively, the stochastic inversion of matrices
allows us to find the regularization parameter optimally from iteration to iteration yielding
a substantially increased convergence.

The stochastic inverse scheme is developed based on statistical considerations, with the
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generated reconstructions and the noise modelled in terms of stochastic or random processes.
Under the assumption that both the reconstructions and the noise in the measured data are
uncorrelated and isotropic, the solution is stochastically optimum in the sense that repetition
in the measured data produces solutions which, on the average, are optimum according to
the specified error criterion.

The thesis is organized as follows. Chapter 2 is devoted to a presentation of the principle
of the microwave imaging including the analytical formulations of fields, the discretization
of the integral equations, the ill-posed problems and the most commonly used regularization
methods, with emphasis on the Tikhonov regularization method and the stochastic inverse
scheme. The relation between them is also investigated.

In Chapter 3, we explore the possibility of using the Tikhonov regularization of different
orders to reconstruct dielectric bodies, with emphasis on the performance of the regulariza-
tion parameter in the process of reconstructions.

In Chapter 4, a new microwave imaging algorithm based on the stochastic inverse
scheme is proposed. The performance of the algorithm is demonstrated by reconstructing
two dimensional objects with noise contaminated data.

One of the difficulties in the iterative methods of solving the two coupled integral equa-
tions directly is the selection of the Tikhonov regularization parameter at each iteration step.
In Chapter 5, the stochastic inverse scheme is applied to the iterative reconstruction pro-
cesses. By considering both the reconstruction error and the object function as random vari-
ables, the stochastic inverse scheme allows us to choose this parameter optimally. Three
methods for selecting this parameter aré presented. The performance of these methods is
demonstrated by numerical simulations, using two—dimensional objects with noiseless data
and with the data containing noise.

A conclusion of the dissertation and recommended future work are presented in Chapter
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1.2 Review of Previous Work

In this section, microwave imaging methods proposed by various researchers in recent
decades are briefly discussed. They are: the microwave tomography technique, the pseu-
doinverse method with equivalent current modelling, the Born and the distorted Born itera-
tive methods, the Newton iterative method, the conjugate gradient method, the “unrelated”
illumination method, the spectral inverse technique, the maximum entropy method, the sim-

ulated annealing approach, and the time domain method.

Microwave Tomography

A great deal of work has been done in applying this approach to two and three—dimen-
sional imaging [4]-[10], since the seminal papers [1]-[3] were published. Conventional mi-
crowave tomography systems are based on the Fourier Diffraction Theorem for a body illu-
minated by a plane wave and the scattered field measured with a linear array of probes. With
plane wave illuminations and the assumption of weak scattering bodies, the plane wave spec-
trum of the scattered field contains information about the dielectric properties of the body
on acircular arc of the two—dimensional Fourier spectral domain. By repeating the measure-
ment for different directions of incidence (or view), the spectral domain can be filled and
inverted to obtain an image of a cut of the body.

The main advantages of the diffraction tomography algorithm are that it permits the use
of explicit formulas for solving the imaging problem and allows us to take advantage of exist-
ing efficient numerical algorithms(Fast Fourier Transform). Therefore, it is possible to com-
plete the imaging process on a small computer. CPU time usually drops to a few seconds
or a few minutes for simple two—dimensional geometries. However, as we indicated before,
this method has some limitations and can only be applied to low dielectric contrast and weak
scatterers since the Born or the Rytov approximations have to be used. These approximations
are fundamental to the reconstruction process and limit the range of the objects that can be

examined. It has been shown that for small cross—sectional area objects and small inhomo ge-
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neities of dielectric bodies, it is possible to use microwave tomography. However, for large
inhomogeneous objects (compared to the wavelength), the reconstructed images can only
give the object geometry and not a sufficient representation of the dielectric distribution in-

side the object.

Pseudoinverse with Equivalent Current Modelling

The first attempt to use the pseudoinverse procedure to overcome the ill-posedness as-
sociated with the permittivity reconstruction within dielectric bodies was made by Ney et
al [16]. This method has been further appiied by Caorsi et al [17]-[20]. In the pseudoinverse
method, the moment method is first applied to the integral equation of electromagnetic in-
verse scattering, expressed in terms of the equivalent current density, to obtain a linear sys-
tem of equation. Then the complex permittivity distribution is derived from a three—step pro-
cedure, e.g. (a) determining the equivalent current distribution from the measured scattered
field with a pseudoinverse procedure implemented to overcome the ill-posedness in the ma-
trix inversion process; (b) calculating the total field in the object; and (c) deriving the com-
plex permittivities with the help of the obtained equivalent current and total field. The main
advantage of this method is that the computation time is less than that of iterative algorithms,
since there are no iterations involved in the algorithm. However, the low—pass effect inherent
in the method limits the resolution of the image, especially when the noise level in the scat-

tered field is high.

Born and the Distorted Born Iterative Methods

In [11] and [12], two iterative methods called the Born and the distorted Born iterative
methods are proposed. In the Born iterative method, the background medium is assumed to
be homogeneous and the Green functions are used in closed form. The total field within the
investigation domain is initially set to be the incident field and the object function is solved

numerically as a linear inverse problem. Then the object function is used to provide a new
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estimate of the total field. The process is repeated iteratively until a convergence solution
is obtained.

In the distorted Born iterative method, the background medium is not constrained to be
homogeneous, and both the total field within the object and the wave number of the back-
ground medium are updated at each iteration.

It has been shown [13] that the Born iterative method converges for an 8.5A¢ (Ag isthe

wave number in free space) object with a permittivity contrast equal to 1:2. It has also been
shown that the distorted Born iterative method converges faster than the Born iterative meth-

od. However the latter seems to be more robust when noise contamination is present.

The Newton Iterative Method

The Newton iterative method was proposed in [14] to construct dielectric permittivity
distribution. In this method, the integral equations of electromagnetic inverse scattering are
first transformed into matrix equations in terms of the moment method. Then an iterative
procedure is developed as follows. Starting from an initial guess of the complex dielectric
permittivity distribution in the investigation region, the total field inside the body is calcu-
lated. An estimate of the scattered field at the observation points is then obtained by a for-
ward calculation. Comparing the calculated scattered field with its measured value, the vari-
ation of the scattered field is derived. Based on the relation between a small change in
complex permittivity and the scattered electric field, we obtain the increased value in the
complex dielectric permittivity which is used to update the initial guess or the value from
previous iteration. The iterative procedure keeps going until a convergent solution is ob-
tained.

Numerical results show that two—dimensional and three~dimensional inhomogeneous
dielectric bodies immersed in water can be reconstructed. However a lot of computation is

required.
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The Conjugate Gradient Method

The Conjugate Gradient Method was applied in [16] to solve microwave image prob-
lems. The method starts with an initial guess that generates the first residual vector and the
direction vector. Then the integral equation is solved iteratively. It has been shown [35] that
lossy dielectric cylinders with contrast about 2.0 can be reconstructed. This method was fur-
ther developed in [36], in which the discrepancy between the measured scattered amplitude
and the calculated one is first defined for an estimated object function. Then the gradient of
the functional was constructed by employing its Frechet derivative. The Conjugate Gradient
Method is finally applied to minimize the functional to yield an estimate of the unknown di-

electric permittivity distribution of the object.

Unrelated Illumination Method

As in the other spatial domain methods, the unrelated illumination method [15] begins
with transforming the integral equations describing the electromagnetic inverse scattering
into matrix equations in terms of the moment method. A non—singular incident wave matrix
is then constructed by illuminating the object in different directions. The permittivity distri-
bution within the object is obtained by solving the matrix equations, which involves the in-
version of only the incident field matrix. Numerical tests show that accurate results can be
obtained for ideal situations when the measured data have neither error nor noise. The main
advantage of this method is that the number of detectors used for measuring scattered field
can be reduced to one. The main difficulty in applying this method to microwave imaging
problems is to construct the non—singular incident wave matrix, especially for large micro-

wave imaging problems.

Spectral Inverse Technique
In this technique [48], [49], the integral equations of electromagnetic inverse scattering

are first transformed into integral equations in the spectral domain by means of the Fourier
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transformation. The moment method is then applied to transform the spectral domain inte-
gral equations into matrix equations. The dielectric permittivity distribution is finally recon-
structed by the inversion of these matrix equations. Numerical results show that a slab with
a dielectric permittivity contrast 1:2 can be reconstructed when a 2% error is present in the
measured scattered field. However, no results are presented to indicate that this method cén

be applied to more complex geometries.

Maximum Entropy Method (MEM)

The MEM has been applied extensively to spectral analysis since 1967 when Burg pres-
ented his classic paper [65]. The basic idea is to extend a finite data time series so as to make
the spectrum most probable, subject to the constraints defined in terms of a finite number
of correlation coefficients. In microwave applications, the initial integral equation is first
transformed into a matrix equation with the help of the moment method. An entropy function
is then constructed based on the entropy concept. An algorithm is developed to maximize
the entropy function. Numerical results [37],[38] indicate that the MEM is very promising
for the qualitative microwave imaging of simple two—dimensional dielectric scatterers.
However, for a quantitative microwave imaging of more complex two—dimensional and

three—dimensional dielectric bodies, no published results are available.

Simulated Annealing Approach

This approach is based on stochastic techniques to search for the optimum state of a sys-
tem. Usage of the simulated annealing teéhnique can bypass the need for inverting large ma-
trices and enables one to obtain the solution by applying an iterative procedure. Computer
simulations [39],[40] show that simple two—dimensional dielectric scatterers can be recon-

structed, but the computation time is considerable.



CHAPTER 1 INTRODUCTION

Time Domain Method

One of the methods in this category is that of marching—on—in—time [50] . Here, integral
equations in time domain are first constructed, and then the solution is obtained by employ-
ing a marching—on—in-time procedure in terms of an iterative process, based on the Born
approximation. Numerical simulations show that one-dimensional problems can be solved

by this method.

1.3 Conclusion

In this Chapter, after discussing the general problem of microwave imaging, we have
surveyed the reconstruction methods which have been proposed for microwave imaging by
various research groups. It has been noted that more efficient microwave imaging algorithms
are required for practical purposes. The basic requirements for the new algorithms are: (1)
to be fast and easy to implement; (2) to be able to handle the noise in the measured data and

to reduce its effect on the reconstructions; (3) to yield images of satisfactory resolution.

10
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2

PRINCIPLE OF MICROWAVE IMAGING

2.1 Introduction

In principle, microwave imaging is aimed at obtaining some information about the in-
side of an object exposed to low power incident microwave radiation from limited external
scattered field measurements. In general, consider a dielectric body with a complex permit-

tivity &(r) situated in a homogeneous medium with known dielectric permittivity &, as

shown in Fig. 2.1. If an electromagnetic incident wave crosses this body, a scattered field
which is related to the electrical properties of the dielectric scatterer is produced. The relation
between the scattered field and the scatterer can be mathematically expressed in terms of two
coupled integral equations. By solving these two integral equations, the location, the shape
and the permittivities of the object can be determined. If the main objective is to detect the
location and the shape of the unknown body, it is traditionally called a qualitative imag-
ing[46],[47]. If the objective is to determine the permittivity distribution as well, it is usually
called a quantitative imaging.

The microwave imaging problem is inherently ill-posed[51]. Theoretical difficulties
arising from issues of continuity and uniqueness can exist with all such kinds of problems,
but in practice, these take the second place for it is only possible to make a limited number
of discrete and noisy measurements of the scattered field that is otherwise a continuous func-

tion. When only a limited number of scattered field data can be measured, an infinite number

11
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of scattered functions consistent with these data can be arbitrarily constructed. Therefore,
there are fundamental difficulties in formulating a useful inversion algorithm, and more
mundane optimization and signal processing techniques have to be considered in the practi-

cal implementation.

Detectors

Ei

Fig. 2.1 Geometrical configuration of the microwave imaging system.

For the purpose of applying the stochastic inversion and the Tikhonov regularization
method to microwave imaging problems, in this chapter, the theoretical basis of the two
methods is briefly reviewed, and the inherent relation between the two methods is investi-
gated. The statistical explanations for some of the parameters related to the methods are also

given.

12
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2.2 Integral Equations

2.2.1 Basic Integral Equations

Assume that an inhomogeneous dielectric body with arbitrary shape is immersed in a

homogeneous dielectric background. The dielectric body has a complex dielectric permitiv-
ity

e(r) =¢'(r)~je''(r) 2.1)
and a permeability 4o . The background consists of a complex dielectric permittivity & and
a permeability s . No real electric current or magnetic source current present within the

body is assumed. The outline and the permittivity distribution of the body are assumed to

be unknown. If incident electromagnetic fields, E! and HZ, of frequency w , are used to illu-

minates the body, the incident fields satisfy the following Maxwell’s equations
V X Ef = —jouH! (2.2)
V x H! = jwe,E (2.3)
where the time dependence of ¢’ has been assumed. The incident fields induce the total

fields, E' and H’, which also satisfy the following Maxwell’s equations in the dielectric

body
V % E' = - jouH’ (2.4)
V X H! = joe(r)E’ (2.5)
Physically, the total electromagnetic fields, E’ and H’, can be visualized to be the sum of
the incident electromagnetic fields, Efand H’, and the scattered electromagnetic fields,
Efand H*, i.e.
E' = E' +ES ' (2.6)
H = H' +H° 2.7)

From eqns. (2.2) and (2.3), a differential equation for E’ can be derived as

13
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V x V X E(r)-kZEi(r)=0 (2.8)
with k;, denoting the background wave number

ky = w Vemuo (2.9)
And from eqns. (2.4) and (2.5), we have

V x V x E(r) - (r)E(r) = 0 (2.10)
where k(r) is the wave number in the dielectric body

k(r) = o Je(r)uy (2.11)

From eqns. (2.8) and (2.10) with eqn. (2.6), we can derive the electric field equation in the

body

V X V X EXr) -kgES(f) = [k*(r) - IZ1E!(r) (2.12)
or

V X V X E(r) - k2 ES(r) = O(r)EX(r) (2.13)
where

O(r) = [K*(r) - k3] (2.14)

is the so—called “object function” describing the electric properties of the investigated re-
gion.
Using the Green function for an unbounded space G(r,r’) [52],[53], eqn. (2.13) can be

expressed in an equivalent form, as

Ef (r) = J G(r,r"YO@"HE! (r"dr' (2.15)
1% .
The total field in (2.15) can be calculated from E! (r) = Ef (r) +E* (r) as

E' (r) = Ef (r) +J G, r)O"E' (x")dr' (2.16)
Vv

The Green’s function is expressed as

14
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Gr,r') = _ﬁ HP (ke — 11y 2.17)
for two dimensional problems with TM (Transverse Magnetic) field illumination;
-1 —j
Grx') = (T+5VV ) 7’ HP (e —1'1) (2.18)
b

for two dimensional problems with TE (Transverse Electric) field illumination; and

Gr,r') = ( I+ kivv ) SXpC ki —rh (2.19)

2 47t Ir 1’|

for three dimensional problems with T indicating unit dyad and Héz) standing for the Hankel

function of the second kind and zero order.

Equations (2.15) and (2.16) are thé basic integral equations for microwave imaging.
Once the scattered fields are measured by detectors at observation points, the effort is made
to find the object function by solving these two coupled nonlinear integral equations. The
complex permittivity distributions of the unknown body can be obtained with the help of

eqns. (2.14) and (2.11) if the object function has been reconstructed.

2.2.2. Integral Equations with Equivalent Current Modelling

In this formulation, an equivalent current density defined as
Jo(r) = jlwpo) OME (r) (2.20)
is introduced to eqns. (2.15) and (2.16). Then they become
E° (r) = —jouy J o G(r,r")J (r")dr' (2.21)
and
E' (r) = E' () + (- jouo) J . G(r,r")Je(r")dr’ (2.22)

Equation (2.21) offers a clear physical picture. The scattered field E° is maintained by

15
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equivalent current density J.(r) which occupies the dielectric body. The amplitude and the
phase of the equivalent current depends on the complex permittivity e(r) and the total field

in the body and the frequency of the incident wave. The reconstruction can also be performed
by solving the linearized integral eqn. (2.21). From the scattered field measurements, the
equivalent current distribution within the object can be obtained. The total field inside the
body is then calculated in terms of eqn. (2.22). The object function and the permittivity distri-
butions of the dielectric body can be determined with the help of eqns. (2.20) and (2.14).
Equivalent current modelling can also be used for qualitative electromagnetic imaging

[46], [47] in which only the location and the outline of the dielectric body are concerned. By
defining

J.(r) =0, inside the body

Jo(r) # 0, outside the body

the location and the outline of the object can be detected.

2.2.3. Integral Equation with Born Approximation

Consider the total electric field E/(r) expressed as the sum of the incident electric field
Ei(r) and the scattered electric field E’(r) . We rewrite the integral eqn. (2.15) as
E (r) = J G(r, r’)O(r’)Ei (rdr' + J G(r,r YOx"HE® (x"dr’ 2.23)
VI Vl

If the object is of a low contrast inhomogeneous material, i.e. the permittivity differences
between the dielectric body and the background are very small, and the magnitude of the
scattered field in the object is much smaller than that of the incident field, the second term

of eqn. (2.23) may be neglected yielding
ES (r) = J G(r,r)O"E' (r')dr’ (2.24)
VI

This constitutes the first order Born approximation. Studies have shown that [10] for the first
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order Born approximation to be valid, a necessary condition is that the change in phase be-

tween the incident field and the wave propagating through the object be less than 7 .

2.2.4. Integral Equation with Rytov approximation

Unlike the Born approximation formulation, the Rytov approximation is based on the
fact that the change in the scattered phase over one wavelength is small. The phase of the

scattered field can be expressed for the two—dimensional case as

1

F5(r) = —— J G, tYOW)E (v')dr’ (2.25)
o s

Ithas been proven that [4] the Born approximation provides a better estimate of the scat-
tered field for objects small in size with relatively larger contrast of the dielectric medium.
On the other hand, the Rytov approximation gives a more accurate estimate of the scattered

field for larger sized objects with relatively smaller contrast in permittivity.

2.3. Discretization of the Integral Equations

For the purpose of solving the general integral equations in spatial domain numerically,
the integral equations discretized appropriately. Consider a cylindrical dielectric body with
arbitrary shape situated in a two dimensional region S of a square area, called the investiga-
tion domain. Detectors for measuring the scattered field are situated on a loop surrounding
the investigation domain, as shown in Fig. 2.2. Suppose a TM electric field is employed to
illuminate the object. The scattered field at the receiving points can be expressed in terms

of the two dimensional Green’s function as
ES = J J G(x,y; x', y")YOX',yHE! (x',y")dx'dy' (2.26)
SI

To discretize this integral equation, we divide the investigation domain S in terms of
rectangular patches. For graphic simplicity, we assume that all patches have the same size.

Each patch is labeled with index i, where i indicates the i—th patch in the investigation do-

17
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Fig. 2.2 Discretizing the investigation domain.

main. The area of the i—h patch is designated as s;, and the radius vector from the original

point to the central point of the i~th patchas r; = (x;, y;) . We then expand the object function

O(x,y) and the total field E'(x,y) inside the investigation region in a piecewise—constant

manner as
Ox,y)= > 0; fi(r) 2.27)
=1
E'(x,y)= > E! fi(r) (2.28)

=1

where fi(r) is called basis function and » indicates the total number of the patches. O; and

E} are coefficients . Following the classical prescription of the moment method [41], the ex-

18
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pansion (2.27) and (2.28) are inserted into eqn. (2.26). If the puls function is selected as the

basis function, i.e.

1, r €s;
f(r) = { (2.29)
0, r $ Si

and Dirac’s delta function as the test function, considering that the measured data are at the

finite points around the object, we have a system of linear algebraic equations

E(x;, y)= > GGNE 0; , (j=1,2,...,m) (2.30)

i=]

with m indicating the total number of detectors, and the coefficient G(i, j) is

GG, j)= f f Gk [ =5+ &' =3 dx'dy’ (2.31)
To evaluate the term G(i, j) , we adopt the technique from the work [54]. The integral region

s; in (2.30) is replaced with a circular cell of a radius a = |/s;/7 centered at (x;, y;) having

the same area as s;. With the problem considered here, the corresponding result is

it ) )
~’27bJ1<kba>H62><kblri—rjl> Q]
G(i,j) = , (2.32)
~ Lo kel P Gopa) - 271, i=j
213

where Jy ,and H(lz) are the first kind Bessel and the first kind Hankel functions of the second
order. Now we can write eqn. (2.30) in fnatrix form as

E°=[G,] [E']O (2.33)
where E* is a vector of dimension m ( one illumination is considered here)

E' =[E,E,..., BT (2.34)
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with T representing the transpose of a vector or a matrix, and [G,] is a matrix of dimension

m X n containing the Green function relating the observation points to the investigation

points,

[ Gu G Gin

[Gy] = . : : (2.35)

- ml Gml e Gmn—

[ E’] is a diagonal matrix of dimension n containing the total field at each patch

[E] = . (2.36)

u E;

and O is a vector of dimension » containing the object function.
0 =[01,0,,...,0)7 (2.37)
From the relation of eqn. (2.6), we can also write the discretized inte gral equation (2.16)

in matrix form
E'=E + [G] [0O] E' (2.38)

where [G] is the Green function relating the points in the investigation region, E’ and E!

are vectors of dimension 7.

E =[E,E,. ..., EJ (2.39)
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E' =[E,E,..., EI (2.40)

and [O] is a diagonal matrix containing the object functions in the patches

Oy

0, 0

[0] = . (2.41)

In the same manner, we can write discretized integral equations for eqns. (2.22), and

(2.24) in matrix forms as
ES = [G2] J. (2.42)
where J, isa vector of dimension  containing the equivalent current density which has been

factorized by (—jwpo) in order to keep a uniform expression for the Green function, and
Ef=[G,] [E']O (2.43)
where [ E'] presents a diagonal matrix with its elements being the incident fields in the

patches.

If the total field [ £’ ] in the investigation region is obtained, the eqn. (2.33) can also be

written as
ES=[D] O (2.44)
with [D] = [G2] [E'], being an m X n dimension matrix. Equations (2.33), (2.38), (2.42)

and (2.44) are the discretized integral equations employed to develop microwave imaging
in spatial domain. Visually, these operators are nothing more than complex. The difficulties

in the solution of these equations arise from the so—called “ill-posed problems”.
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2.4 Ill-posedness in Microwave Imaging

The microwave imaging problem is, in general, an ill-posed problem. First, the number
of the total detectors is not necessarily equal to the number of patches used to divide the in-
vestigation domain, i.e. m # nreferring eqns. (2.33), (2.42) and (2.44). In the practical
point of view, the selection of the number of patches depends on the requirement of the reso-
lution to the image, the characteristics of the body to be detected, the capacity of the comput-
er used, and so on. The number of the detectors can be limited by the physical construction
of the imaging system, also the capacity of the computer. Increasing either the number of the
patches or the number of detectors results in increase of expensive computation time. On the
other hand, even if we carefully select the number of the detectors and the number of patches,
i.e. m=n it is hard to guarantee the operator is not singular. Secondly, the solution of the
microwave imaging is not unique [56]-[58]. This nonunique solution is generated by so
called “nonradiating sources” [57] inherited in the body, and also by the limited measure-
ments mentioned before. Thirdly, there is always noise and errors accompanied with the
measured data, such as the surrounding noise and measurement error. There are also numeri-
cal errors accumulated in the calculation of the inverse of the matrix, especially when the
dimension of the matrix is large. The condition number of the matrix representing the
Green’s function can be very large. In order to solve an ill-posed problem, techniques called
“regularization” usually have to be employed. The solution to a regularized problem can be
well-behaved and give a reasonable approximation to the solution of the ill-posed problem

allowing us to develop a satisfactory image from a practical point of view.

2.5 Regularization

2.5.1 Methods of handling ill-posed problems

Numerous methods have been proposed for treating and regularizing various types of

ill-posed problems mathematically[42]-[44]. The rationale in most methods is to construct
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a “solution” that is acceptable as a meaningful approximation and is sufficiently stable from
the computational standpoint. The main techniques that are employed to treat an ill-posed
problem are summarized as follows:
1) changing the definition of what is meant by an acceptable solution;
2) changing the space to which the acceptable solution belongs;
3) revising the problem statement;
4) introducing regularizing operators;
5) introducing probability concepts so as to obtain a stochastic extension of the original
deterministic problem.
For the purpose of exploring the possibility of using the Tikhonov regularization and
the stochastic inverse scheme to reconstruct high contrast dielectric objects in the spatial do-

main, we briefly review the fundamental principles of them.

2.5.2 Tikhonov Regularization

In its general form, this method is discussed in detail in [42]. Its objective is to produce
an “estimate” of some unknown quantity X, usually a vector or a function, with the help of

data Y. The estimate is derived as the solution of an optimization problem, in the form of
min { AXY) +aQ(X) } (2.45)
X

in which A is a measure to the solution X, Q isa regularization functional, and ¢ > 0 is
called regularization or smoothing parameter.
Specifically, for an ill-posed system of linear equations
Y =[A]X+N (2.46)
where Y and N are an m X 1 vectors with N standing for the noise and error in the data Y,
Xan n X 1 vector, [A]an m X n matrix. Reasonable choices of the A and Q in this case

arc
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AX,Y) = || [AIX-Y |2 (247)
and

QX) = || [TIX | (2.48)
where Il Il indicates the Euclidean norm, and [77 is a linear operator having to be convenient-

ly chosen. If [T]X is the i~¢h derivative of X, then it is called the i~th order of the Tikhonov

regularization. Thus our estimate of X is the solution of
min { | AX =Y [P +e || (71X | } (2.49)

The solution of the problem posed in eqn. (2.49) is equivalent to the solution of the matrix
equation

([A17[A] + & [TVP[T) X7 = [A]FY (2.50)
and is given

Xr = ([A17[A] + & [TV T]) AT (2.51)
where Xr indicates the Tikhonov regularization solution of X and H denotes the conjugate

transpose of a matrix.
The existence of the solution of eqn. (2.51) is obvious. However, care must be taken in
choosing the regularization parameter. If it is too big, too much useful information may be

lost. If it is too small, we may not obtain a stable solution.

2.5.3 Stochastic Inverse scheme

The stochastic approach [43] starts from very different assumptions, with the errors in
measured data being treated as Gaussian random variables and the solution of unknown be-
ing a stochastic process. After an error criterion is specified, the solution is stochasticlly opti-
mum in the sense that repetition in the measurements of the data produces solutions which
are optimum according to the specified error criterion. Consider a general ill-posed system

of linear equations
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Y =[AIX+N (2.52)
in which both N and X are assumed to be stochastic processes. Without loss of generality,
X, N and Y each can be considered to have zero mean value since an equation identical in
form to eqn. (2.52) is obtained when the known means are subtracted from the equation. The

stochastic inverse method seeks an estimate X; of X from measured data Y
X,=LY (2.53)

that minimizes the mean square error
6% = E{| X~ X, |P] (2.54)

where E{ . } denotes the expected value of a random number, L is a linear operator and
IF'. Il is the Euclidean norm . The eqn. (2.54) can also be written in terms of the trace (Tr)

of the error matrix[60]
0% =B{Tr{(X-X,) X-X)] }=E{X-X)# X-X,)} (2.55)

- The error matrix can be expanded for simplification as

X-X,) X-Xpf = (XXH_XXH _X XH + X XH) (2.56)
Since

XH = YHLH = (XH[A1H + NH)[H (2.57)
then

XX = XXHALH + XNHLHE (2.58)
Also

X X7 = LYX? = L([A]X + N)X? (2.59)

X XA = [JAIXXH + INXH (2.60)
and

X,XE = L(IAIXXP[A]H + [A]XN? + NXH[A]H + NNH)LH (2.61)

Since the trace of a sum of two matrices is equal to the sum of the two traces, the ex-
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pected value and the trace operators can be interchanged. Considering the expected values

of the four terms separately, we obtain .
E{ XX } = [Ry] (2.62)

where [Rx] is the correlation matrix of the random vector X.

If X and N are independent
E{ XN7}=0 (2.63)
E{ XX{'} = [Rx][A}LH# (2.64)
and
E{ X,X"} = LIA][Rx] (2.65)
E{ XX} = LIAIRXI[AVPLY + LIRNILH (2.66)
where
[RN]=E{ NN¥} (2.67)

Now the mean square error can be expressed as
0% = Tr([Rx] ~ [Rx][AILY - L[AI[Rx] + LIAIRKI[AY/LY + LIRNILY) (2.68)
Since the correlation matrix is symmetric and the trace of the transpose of a matrix is equal

to the trace of the matrix, the error expression may be simplified further to
0% = Tr([Rx] - 2[Rx1IA1PLY + LIANRXI[AVELH + LIRNILH) (2.69)

The desired linear transform L can now be determined by

2
%ﬁ& = —2[Rx1[A)Y + 2L[A][RX][A)” + 2L[RN] (2.70)

Let this equation to zero, we obtain the optimum L, which minimizes 6%

Lo, = [RITAT([AIRXIATY + [RN])™! (2.71)

Hence, the optimum estimate X is

X, = [RIATI([AIRXIIA]Y + [R]) T Y (2.72)
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which is the equation we desired. Equation (2.72) can also be written as

X, = ([A17[RNI AT + [Rx]7) AV [RN]'Y (2.73)
Equations (2.72) and (2.73) are algebraically identical. Computationally, they are quite dif-
ferent, however, because eqn. (2.72) involves the inverse of an m X m symmetric matrix,

and eqn. (2.73) an n X n symmetric matrix. Thus, if the number of data is less than the num-

ber of unknowns, eqn. (2.72) is more economical and vice versa.

2.5.4 Relations between Stochastic Inversion and Tikhonov Regularization

Ineqn. (2.73), If we further assume that both the random vectors N and X, are uncorre-

lated and also isotropic, we have

[RN] = 0[] (2.74)

[Rx] = o%[I] | (2.75)
with 0% ando% denoting the variances of the random vectors N and X . Thus, eqn. (2.73)
becomes

X, = ([A1”[A] + 0% /0% [1) 1 [AYTY (2.76)

which is equivalent to the zero—order Tikhonov regularization with the regularization pa-

rameter taking the form of
a= 012\1 /G§( (2.77)

It also can be shown that equivalence between eqn. (2.51) and eqn. (2.73) also holds

when[61]

[Rx] = (717D (2.78)
Atthis point, the Tikhonov regularization can be statistically interpreted in terms of the noise

variance and the reconstruction variance. Besides this, eqn. (2.78) also shows us a possible
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way to estimate the regularization parameter.

2.5.5 Maximum Likelihood Estimate of the Noise Variance

Consider matrix equation[62]
Y =[A] X+N (2.79)
where Y is a vector of dimension m, [A] is matrix of dimension of m X n, X is a vector

of dimension » and N is a vector of dimension m, presenting the random error in the mea-

sured data Y. We assume N follows normal distribution with its expected value being zero,

i.e. E{N} =0and its variance being 01% . The vector Y follows a mutilate normal distribution
with the mean vector [A]X and Variancé matrix 012\1 1], i.e.
Y: ([AIX, o}l (2.80)
Thus the likelihood functional can be expressed as[62]
H=HX,0%/Y) = f(Y/X,00) = f(Y,Y2, ... ,Yn/X,0%)

1
- (m)m/2(0.12\1)m/2

1 H
CXP[—?%J(Y - [AIX)"(Y - [AIX)] (2.81)

and the log of the functional is

log(H) = log(X,0%/Y)

- -%mg@m@ ——21—2(Y _ XY - [A]X) (2.82)
ON
Let
3
X log(H) =0
we obtain
X = ([AJ7[AD A Y (2.83)

where X denotes the maximum likelihood estimate of X.
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Let

d
— lo =0
30'12\1 g(H)
we get

R 1 A N
%= — (Y - [AIX)" (Y - [ATX) (2.84)

with 0% presenting the maximum likelihood estimate of variance 012\1 .

2.5.6 An estimate of the Object Function Correlation Matrix by the Tikhonov Regularization

Considering the maximum likelihood solution (2.83), we can rewrite the Tikhonov reg-

ularization solution egn. (2.51) as
Xr = ([A1[A] + [ TY[T]) N AH Y

= ([A1F[A] + o[ TP T]) L ([AT[A]) X
= [Z7 X (2.85)

where [Z7]= (A[A] + a[TIE[T]) (JAJP[A])

The expected value of X7 is

EXp=E {[ZT] X} = [Z] EX) (2.86)
The expected value of the maximum likelihood X is
E[ X}= E[([A]H[AD-I[A]HY}
= E{([A]H[AD-I[A]H([A]X + N)}

= E{(APAD APIAIX + ([A1[A]) [A7N)

Since E{N}=0, and ([A1?[A])"'[A]7[A] = [I] , we obtain
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B X} =x (2.87)
and

E{ Xr}= 1z X (2.88)

The correlation matrix of X7 can be expressed as

[Rx] = E{[Xr— E[XI[X7 - E{(X7}"}
Since

Xr—EX7 = Xr-2Zr X

= (A[A]+al T[T MAFY - (ATIA] + alTHT]) ' ([AT[A]) X

= ([A1[A] + o[ T[T [AJN

and E{ NNH } = 012\1 [{]. The correlation matrix of Xt is given by

[Rx] = E{(AI[A] + TV T)) [AT'NNFLAL AT [A] + o117y
= ([A1"[A] + e[ T[T [AJEINNT)AT(ATIA] + o[ THLT]) !
= ([A17[A] + o T[T AT IAI(AVIA] + e[ T T])™

= oR(AI[A] + o[ T[T TAT[AICATTA] + ol TH[ ) (2.89)
It is worth noting that when the regularization parameter goes to zero, the correlation matrix

goes to

[Rx] = oX([A17[A]). (2.90)

This result is used in chapter 5 for obtaining initial Tikhonov regularization parameter.

2.5.7 Total variance

The total variance of X7 is defined as[64]
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Tr ([Rx]) = o Tr[([A1[A] + eIl TAVPA([ATIA] + el ]

S
A
2 i
=0 _— (2.91)
N;aﬁmz
for the O—h order Tikhonov regularization, where A1 , 45 ,.. ., A, are the non—zero eigenva-

lues of ([A]H [A]) . From the form above, we notice that the Tikhonov regularization parame-
ter & can improve the total variance of Xr, especially when one or more of the eigenvalues

are very small.

2.6 Conclusion

In this chapter, after reviewing the equations used in microwave imaging, we discussed
some of the related problems such as the ill-posed problem and the regularization. Two regu-
larization methods, the Tikhonov regularization method and the stochastic inversion meth-
od, were presented. It has been shown that for the Gaussian distribution random noise, the
Tikhonov regularization parameter can be interpreted statistically in terms of the noise vari-
ance and the reconstruction variance. The maximum likelihood estimate of the noise vari-

ance and statistic properties of the Tikhonov regularization were also given.
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3

MICROWAVE IMAGING OF DIELECTRIC BODIES
WITH EQUIVALENT CURRENT MODELLING
AND TIKHONOV REGULARIZATION

3.1 Introduction

As mentioned before, the microwave imaging methods proposed so far fall into two
main categories, namely the spectral domain methods and the spatial domain methods. As
for the spectral domain methods, they are fast and seem not to be sensitive to the random
noise in the measured field, but they are only valid for low contrast dielectric bodies and
week scatterers, since the Born or the Rytov approximations have to be employed in the re-
construction algorithms. On the other hand, the spatial domain methods have the advantage
that no strict limitations are imposed relative to the size and dielectric nature of the scatterers,
but, until now, there are at least three obvious difficulties: a long duration in the reconstruc-
tion process, a low tolerance of noise and errors in the scattered data, and an image that is
not of a satisfactory resolution. For practical applications, more efficient algorithms are re-
quired. In this chapter, we explore the possibility of using the Tikhonov regularization of dif-
ferent orders to reconstruct dielectric bodies and report on an experimental study of the per-
formance of this method, with emphasis on the optimum selection of the regularization
parameter as it relates to the noise level [30]-[32]. The reconstruction process has three
steps: first, the equivalent current density distribution within the scatterer is obtained by in-

verting eqn. (2.21) with the Tikhonov regularization of different orders; second, the total
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field within the body is calculated in terms of eqn. (2.22); finally, the permittivity distribution
inside the object is computed by means of eqn. (2.20). It is shown that in the presence of noise
in the scattered field data, the application of the Tikhonov regularization for the treatment
of the equivalent current density integral yields an efficient solution for these types of inverse

problems.

3.2 Tikhonov Regularization
Consider the noise in the measured 'scattered field, we may rewrite eqn. (2.42) as
E’=[G:1J.+N (3.1
where Nisa m X 1 vector representing the noise in the measured data E*, which may in-

clude environment noise, instrument noise, detector position error, and measuring error. As

indicated earlier, the solution of (3.1) is in general not unique. For if [G,] is singular, there
may exist a family of solution J? of the homogeneous equation [G]1JO = 0, corresponding

(3.1). The component J? represents the “nonradiating sources”, which produce no electric

field at the observation points. On the other hand, the number of the measurements is usually
less than the unknowns and the unknowns may not all be independent of each other. This
limits the least-squares to apply our problems. Applying the Tikhonov regularization to

(3.1), our problem is simply stated to find a solution which minimizes the functional

min { [ (G:e- B[P+ | (113, 32

€

which is equivalent to solving the following linear system of equations

Ji = (GGl + ol TV TN G ES (3.3)
where JI indicates the Tikhonov regularization solution of (3.1). [7] is defined in eqn.
(2.48) and a the regularization parameter. For the zero—order Tikhonov regularization,

[TH[T] isan X n identity matrix denoted as [I]. For the first and the second order Tikho-
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nov regularization, the corresponding [T1H[T] matrices are

[ 1 -1 ]
-1 2 -1 O
b -1 2 -1
[T1°[1] = . (3.4)
O -1 2 -1
1 -1 |
and
1 2 1 ]
-2 54 1
1 4 6 4 1 O
. 14 6 4 1
[T17[T] = . (3.5)
1 4 6 4 1
O 1 4 5 =2
i 1 -2 1 ]
respectively.

It is worth noting that the matrix ([G5]? [Ga] + [T [T]) is always invertable if the Tik-
honov regularization is carefully chosen. Using the following relation
([G2[Gal + &l TI*IT) G = [GoI (GG + ol THTID ™ (3.6)
we may also write (3.3) as
J¢ =[G (IGIG) + el TN T1H) ' Es 3.7
Mathematically, eqn. (3.3) and eqn. (3.7) are the same. Numerically, they are quite different.
Equation (3.3) deals with the inversion of a matrix of dimension n X 7, and eqn. (3.7) is
associated withan m X m matrix inversion. Therefore, if the number of unknown variables

is less than the number of equations, computationally, eqn. (3.3) is more economical. If the

number of the unknowns is larger than the number equations, eqn. (3.7) is more efficient.
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After the equivalent current is obtained, the total field inside the investigation region can be
determined by a forward calculation

E'=[G]J] +E (3.8)
The object function is then calculated in terms of the eqn. (2.20) with matrix form

12 =[E"0 (3.9)
with [E'] being defined eqn. (2.36).

The problem of the choice of the regularization parameter & has been the object of
many studies. Theoretical works can be found in [42], [45]. However, to the best of my
knowledge, there is no general rule available so far for selecting this parameter for micro-
wave imaging problems. In this chapter,‘ the selection of this parameter is based on the nu-
merical simulations for the purpose of showing the application of the Tikhonov regulariza-
tion to the solution of the microwave imaging problems. The reconstruction process can be
summarized in the following three steps
(1) solving eqn. (3.3) or (3.7) for a given regularization parameter;

(2) calculating the total electric field in the investigation region using eqn. (3.8);

(3) finding the object function using eqn. (3.9).

3.3 Numerical Results

A thin inhomogeneous dielectric slab of finite width, assumed to be infinitely long, is
illuminated by a plane electromagnetic wave with an electric field intensity of unit ampli-
tude, polarized in the z—axis direction, as shown in Fig. 3.1 (4 o is the wavelength in free
space). The slab is divided into 25 cells of the same size and the relative permittivity is con-
sidered to be 4 for the cells 1 to 4 and 22 to 25, 8 for the cells 5to 9 and 17 to 21, and 12 for
the cells 10 to 16. 25 detectors are used. The electric field values measured by the detectors

are provided by direct scattering computation[54] and the presence of the noise is simulated

by adding a random Gaussian noise of zero mean value. The signal-to—noise ratio is defined
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Fig. 3.1 Cross section of a dielectric slab.
as
R
S/N=10log-—— (3.10)
INJP

In order to compare the overall accuracy of the reconstructed equivalent current densi-

ties inside the object, we define the relative error as

[RARA

MO=T

(3.11)
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with J, and J, being, respectively, the original and reconstructed equivalent current densi-
ties.

Figs. 3.2,3.3 and 3.4 show the behavior of the relative error dj(e) versus the regulariza-

tion parameter 0. under the signal-to-noise levels of 20dB, 40dB, and 60dB, for different
regularization orders. It is shown that for each case, an optimum regularization parameter
o which minimizes the relative errors exists. In the cases of signal-to—noise levels of 20dB
and 40dB, the relative errors obtained by the 2nd—order regularization are slightly less than
those by the Oth—order and the 1st—order regularizations at the optimum regularization pa-
rameters. But, in the case of the signal-to-noise level of 60dB, it seems that only the Oth—or-
der regularization is reasonable.

Fig. 3.5 shows the original and the reconstructed equivalent current densities. The re-
constructed one is obtained under the signal-to—noise level of 20dB by selecting the second
order regularization and the optimum regularization parameter o..

Figs. 3.6, 3.7, and 3.8 present the reconstructed permittivities under a signal-to—noise
of 20dB, 40dB, and 60dB, respectively. In each case, the optimum order of regularization
and the optimum regularization parameter are used.

Now, we test the method by using only 13 detectors assuming that the investigation do-
main has the same shape as that in Fig. 3.1. Figs. 3.9, 3.10, and 3.11 give the reconstructed
permittivities under signal-to—noise levels of 20dB, 40dB, and 60dB, where the optimum
orders of the Tikhonov regularization and the optimum regularization parameters are
employed.

Next, we consider an homogeneous cylinder of square cross section occupying the black

cell in Fig. 3.12. The side of its cross section is taken to be equal to A9/4 , where A is the
wavelength of the incident plane wave in free space, and the permittivity of the scatterer is

€ r=3. Asquare grid of 4 X 4 cells for investigation and 16 measurement points around

the cylinder are considered, as indicated in Fig. 3.12. The electric field values measured by
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detectors are provided by a direct scattering computation[54], and the presence of the noise
is simulated by adding a generated random Gaussian noise of zero mean value.

Fig. 3.13 presents the reconstructed permittivity under a high level of noise in the scat-
tered field data. The optimum order of regularization ( i.e. the zero order here) and the opti-

mum regularization parameter are used. The latter has been determined by minimizing the
error | Jo—J. || / | Je ||, with J. and J, being, respectively, the original current and the re-

constructed current. The computed results for the reconstructed permittivity are in good
agreement with the corresponding exact value, especially taking into account the high level
of noise considered and the fact that no iteration was used.

As shown in Fig. 3.14, the identification of the dielectric body in the presence of noise
becomes practically impossible if regularization is not applied. Fig. 3.15 shows the object
image when the investigation domain is the same as in Fig. 3.12, but with only 12 detectors

which are located symmetrically on a concentric circular loop of a diameter of 24 . The re-

sultis obtained under the signal-to-noise level (S/N) of 20dB. Both the position and outline

of the unknown body can be clearly identified.

4.4 Conclusion

Computer simulation shows that the equivalent current modelling combined with the
Tikhonov regularization technique is an efficient procedure for locating and reconstructing
dielectric bodies. By selecting the regularization parameter properly, it is possible to obtain
a picture of satisfactory resolution, even for measured data with a relatively high level of
noise (with up to 10% uncertainties in the measured scattered field values). Computer simu-
lations have shown that the regularization parameter plays an important role in the procedure

of the reconstruction. In order to get a good results, this parameter must be carefully selected.
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Fig. 3.2 Mean square error versus the regularization param—
eter under the signal-to-noise level of 20 dB.
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Fig. 3.3 Mean square error versus the regularization param—
eter under the signal-to—noise level of 40 dB.
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1.4- XXX : 2nd—order regularization.
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Fig. 3.4 Mean square error versus the regularization param-—
eter under the signal-to-noise level of 60 dB.
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Fig. 3.5 Equivalent current density distributions in a dielectric slab
reconstructed under the signal-to-noise level of 20 dB.
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Fig. 3.6 Reconstructed permittivity with 25 detectors, S/N=20dB.

XXX No regularization;
® ¢ ¢ ?nd-order regularization, & =0.1.
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Fig. 3.7 Reconstructed permittivity with 25 detectors, S/N=40dB.

XXX No regularization;
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Fig. 3.8 Reconstructed permittivity with 25 detectors, S/N=60dB.
XXX No regularization;
e o ¢ (Oth—order regularization, @ = 7.0 X 107.
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Fig. 3.9 Reconstructed permittivity with 13 detectors, S/N=20dB.
X XX Oth—order regularization, & = 0.1;

® @ o 2nd-order regularization,a = 1.2.

46



MICROWAVE IMAGENG OF DIELECTRIC BODIES WITH EQUIVALENT

CHAPTER 3 CURRENT MODELLING AND TIKHONOV REGULARIZATION
20
15
Er X D 4
- % \ I\

1 5 9 13 17 21 25

Location (cell)

Fig. 3.10 Reconstructed permittivity with 13 detectors, S/N=40dB.
X X X Oth—order regularization, ¢ = 1.0 X 1072
® ¢ o 2nd-order regularization,a = 1.0 X 107*.
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Fig. 3.11 Reconstructed permittivity with 13 detectors, S/N=60dB.
XXX Oth—order regularization,a = 1.0 X 1073;

e o o 2nd-order regularization,e = 1.0 X 107,
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Fig. 3.12 Cross section of two~dimensional dielectric structure. ~
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Fig. 3.13 Dielectric cylinder reconstruction:
S/N=20 dB, 0=0.001, ¢, = 2.59.

Fig. 3.14 Results computed with no regularization:
S/N=20dB, no regularization.

Fig. 3.15 Dielectric cylinder reconstruction with 12 detectors
on a circular loop: S/N=20dB, ¢=0.05, &, =2.58.
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MICROWAVE IMAGING OF DIELECTRIC BODIES IN THE
PRESENCE OF NOISE BY STOCHASTIC INVERSION

4.1 Introduction

In Chapter 3, the equivalent current modelling and the Tikhonov regularization tech-
nique are combined to reconstruct two—dimensional dielectric bodies. This procedure can
be efficiently employed to locate dielectric objects in the presence of noise in the measured
scattered field, but the optimum regularization parameter needed in the reconstruction pro-
cess has to be selected for best results.

In this chapter, a new method for reconstructing dielectric bodies based upon a stochas-
tic inversion transformation is presented. The stochastic treatment of ill-posed problems
[43] has been successfully used in image processing and recognition techniques [60], seis-
mology studies [67], and synthetic aperture radar imaging [68]. Here, we apply the stochastic
inversion of matrices to the area of microwave imaging of dielectric bodies and illustrate the
efficiency of this new approach. A difficulty in this case is that appropriate initial data neces-
sary in the associated iterative process are practically impossible to be made and inappropri-
ate guesses can cause the algorithm to be slowly convergent or even divergent. We obtain
the required prior knowledge by applying the Tikhonov regularization procedure, which we
have found to give very good first approximations. The proposed algorithm consists of three
main steps. The nonlinear integral equation used for the reconstruction of the dielectric body

is first linearized by introducing an equivalent current density. Secondly, Tikhonov regular-
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ization [42] is employed to obtain the best approximation of the a priori data required in the
algorithm. Finally, the stochastic inverse is applied to compute the equivalent current density
distribution within the body. From the reconstructed equivalent current density distribution,
one can simply derive the permittivity distribution. The object images can be developed by
using the distribution of either the permittivity or the equivalent current density. An impor-
tant feature of this algorithm is its high efficiency in the presence of noise. Numerical experi-
ments show that sufficiently accurate results can be obtained even in an environment with

a relatively high level of noise. This enables us to develop high resolution images.

4.2 Stochastic Inverse

As indicated earlier, if we consider the noise in the measured scattered field E* , we may

rewrite eqn. (2.42) as
E° = [Gy]J. +N (4.1)
with N indicating the noise in the measured data. Applying the stochastic inversion scheme,

L.e,eqn. (2.72), to eqn. (4.1), we obtain
Je = [RIIGI(GRAGA? + [Ra)ES 4.2)
where [Rj] is the correlation matrix of J, , [Rn] is the correlation matrix of N, J% indicates

the stochastic estimate of the equivalent current, and H denotes the conjugate transpose of
amatrix. In this dissertation, the additive noise is assumed to have a normal distribution and

the random noise vectors are uncorrelated and isotropic, and thus [Ry] is a diagonal matrix
[RN] = o} 7] 4.3)
where 01% is the noise variance, which is assumed to be available from prior knowledge, and

[7] is a unit matrix. Since J, is assumed to be an uncorrelated random vector, its correlation

matrix [Ry] is approximated as consisting of the elements [68]
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Ry, =T, 1%0, (4.4)
with J;; denoting the Kronecker delta symbol. For the problems analyzed so far by using
this technique, the initial estimate is provided by available a priori knowledge of the system

investigated. Since in the case of our problem the unknown J, is the equivalent current den-

sity, with no initial information about its distribution in most cases, in this paper we propose
the usage of the Tikhonov regularization technique in order to obtain a first approximation

of J. in the form

Je = [G) (GG +al ) 'ES (4.5)
which corresponds to letting the equivalent current correlation matrix in eqn. (2.76) be a unit
matrix and alz\l therefore be the regularization parameter ¢ . Although this is not the best se-

lection of «, it allows us to obtain a good first estimate in a very simple way. In addition,
we have found that the proposed algorithm is practically sensitive only to the order of magni-

tude of & . Thus, we only use a regularization parameter equal to the order of magnitude of

o . With the classical definition of the signal-to-noise ratio, S/N = 20 log(|| £° /1IN,

we set & = 10 when S/N = 20dB, a = 10* when S/N = 40dB, and so on, for an || ES |

of the order of magnitude of unity. This simplifies the implementation of the algorithm since
in practical cases the signal-to—noise ratio is readily available.

In the next section, the following iterative algorithm is used for numerical computations
based upon the discussion above. Aninitial estimate of J} is obtained by applying the Tikho-

nov regularization technique, with the regularization parameter in (4.5) chosen to be equal

to the order of magnitude of the elements in the correlation matrix of the noise. The diagonal

matrix [Ry] in (4.4) is then calculated from this J,. Subsequent estimates of J, are ob-
tained from (4.2), with [RN] from (4.3) and with the latest evaluation of [Rj] . The iteration

process continues until a stable solution is obtained.
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Once the equivalent current is obtained, the total field E’ in the investigation region is

calculated by means of eqn. (2.22) with its matrix form
E' =[G, +E (4.6)
where E! and E’ are n—dimensional vectors containing the arrays of the values of the total
electric field and incident electric field inside the investigation region, [G;] is n X n Green
function matrix for the scattering region. The object function is then calculated in terms of
J, = [O]E' (4.7)
with [O] being a n X n diagonal matrix containing object function inside the region, and

the dielectric permittivity distributions can be obtained from eqns. (2.11) and (2.14). Please

note that the equivalent current density vector in eqn. (4.7) has been factorized by (- jopo) .

4.3 Numerical Results

4.3.1 Lossless Obiects

In order to compare our quantitative results with those available in [17], we first consid-

er an investigation domain of a square cross section of 5 /3¢ to each side, where A is the

wavelength of the incident plane wave. 25 cells are used to discretize the domain and 25
equally spaced detectors are located on three straight line segments as indicated in Fig. 4.1.
The electric field values measured by the detectors are provided by direct scattering compu-
tation [54], and the presence of noise in the scattered field is simulated by adding to the real
and imaginary parts of the field values two independent sequences of Gaussian random vari-
ables of zero mean value.

Table 4.1 shows the reconstructed results when a homogeneous scatterer of a relative
dielectric permittivity &, = 3 occupies the 17th cell. For comparison purposes, the second
column shows the results computed by applying the pseudoinverse[17] in the absence of the

noise. Accurate results are obtained by using only three iterations in our method. The same
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level of accuracy was obtained by considering a more practical situation where 25 equally
spaced detectors were located on a concentric circular loop of diameter 34 . It is clear that

the results obtained by the proposed method even in the presence of a high level of noise are

much more accurate than the results obtained by the pseudoinverse in the absence of noise.

211 221 23| 24| 25

. 16| 17] 18] 19| 20
El

Fig. 4.1 Cross section of a two—dimensional region
with detectors along the broken line.

Table 4.2 indicates the results of a situation when a scatterer of permittivity &, = 3 occu-
pies two cells in the investigation domain, with the first column showing the adopted config-
uration according to Fig. 4.2. The second column indicates the results given in [17] in the
absence of the noise. Again the reconstructed permittivities by the proposed method, with

only three iterations, are very accurate even with a 10% level of uncertainty (i.e. S/N=20 dB)

55



MICROWAVE IMAGING OF DIELECTRIC BODIES IN THE
CHAPTER 4 PRESENCE OF NOISE BY STOCHASTIC INVERSION

in the measured scattered data. As before, the same high accuracy is obtained after three iter-
ations with the detectors located symmetrically on the circular loop.
Fig. 4.3 shows the results of reconstructed permittivity versus signal-to-noise ratio

when the scatterer of relative permittivity €, = 3 islocated in the 17th cell of the investiga-

tion domain. The results obtained by the stochastic inverse are much more accurate than the
results obtained by the pseudoinverse especially for high levels of noise.
In order to compare the overall accuracy of the reconstructed permittivities, one defines

the relative mean square error(MSE) as

n 1/2
D(en—Er)°
=1

0 = (4.8)

n 1/2
Z(Sr,)z
i=1

where ¢, and £,, stand for the values of the original relative permittivity and of the recon-

structed relative permittivity in the i—th cell, respectively. Fig. 4.4 shows the relative MSE
of the reconstructed permittivities for all the cells in Fig. 4.1 as a function of the signal-to—
noise ratio, when the scatterer with a relative permittivity of €, = 3 is located in the 17th
cell of the investigation domain.

Next, we consider a homogeneous dielectric cylinder of a relative permittivity &, = 3
that occupies four cells in the investigation domain, as shown in Fig. 4.5(a), with 25 equally
spaced detectors located on a concentric circular loop of diameter 34 . Table 4.3 shows the
numerical values of the relative permittivites reconstructed by the proposed method, with
three iterations, for noise levels of 40dB and of 20 dB. Compared to the original ones, the
reconstructed values are accurate enough to develop images with high resolution. Fig. 4.5(b)
shows the original image, while Figs. 4.5(c) and 4.5(d) show the images for S/N=40dB and
S/N=20dB, respectively. The relative MSE of the reconstructed permittivity distribution as

a function of the number of iterations for two levels of noise is plotted in Fig. 4.6. Both lines
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drop close to a constant just after the second iteration. In the 20dB case the MSE stays at 3.8%
after three iterations, while in the 40dB case it drops to 0.4% after the same number of itera-
tions. Fig. 4.7 shows the relationship between the initial guess of the equivalent current den-
sity (considered for illustration to be the same for all cells) and the convergence of the pro-
posed algorithm. It indicates that an inappropriate initial guess of the equivalent current can
cause a very slow convergence of the iterative process, or even its divergence. On the other
hand, by applying the Tikhonov regularization, the algorithm will converge in only two or
three iterations.

The method was also tested by using less detectors than cells. Consider a case in which
the investigation domain has the same shape as that in Fig. 4.1 but with only 16 detectors
symmetrically located on a concentric circular loop of diameter 3 . The dielectric scatterer
with arelative permittivity €, = 3 occupies four cells as shown in Fig. 4.5(a). Table 4.4 pres-
ents the numerical values of the reconstructed permittivities. When the signal-to—noise ratio
in the measured field is 40dB, only three iterations are required to make the MSE reach a

constant value. For S/N=20dB, five iterations are needed.

4.3.2 Lossy Obiects

As a first illustrative example of lossy object, we consider an investigation domain of
a square cross section of 5/34, aside, where A, is the wavelength of the illuminating inci-
dent wave taken to be a plane wave propagating normally to the left hand side of the domain.
25 cells are used to discretize the investigation region and 16 equally spaced detectors are
located on a concentric circular loop of a diameter of 34 . The electric field values measured

by the detectors are provided by a direct scattering computation using the moment method
for the scatterer shown in Fig. 4.8 and the presence of the noise in the scattered field is simu-
lated by adding to the real and imaginary parts of the field values two independent sequences

of Gaussian random variables of zero mean value. Fig. 4.9 shows the results after four itera-
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tions for the reconstructed average permittivity versus signal-to—noise ratio for a relative
permittivity &, =5.5~-j1.2 of the scatterer. The relative mean square error defined in eqn.
(4.6) is used to compare the overall accuracy of the reconstructed permittivities. Fig. 4.10
shows the errors of reconstruction after four iterations as a function of the signal—to—noise
ratio. Similar quantitative results are obtained for any location and orientation within the in-
vestigation region of the lossy object considered. The error in the permittivity reconstruction
as a function of the number of iterations for two levels of noise is represented in Fig. 4.11.
In both cases a stable value is reached after the fourth iteration. In the 20dB case this value
is approximately 16.0% , while in the 40dB case it drops to 1.6%. It should be noted that even
for a level of noise of 10 dB, a practically constant value of « is obtained in only six itera-
tions. Fig. 4.12 shows the relationship between the initial guess of the equivalent current den-
sity (considered for illustration to be the same for all the cells) and the convergence of the
proposed algorithm for S/N = 20 dB. It indicates that an inappropriate initial guess of the
equivalent current can cause a slow convergence of the iterative process or even its diver-
gence. On the other hand, by applying the Tikhonov regularization, the algorithm will con-
verge in only four iterations.

The second example of a lossy scatterer of complex permittivity &, = 5.5 —j1.2 is pres-
ented in a cross section in Fig. 4.13. In this case we use 25 detectors for the same illumination
as in the first example. The reconstructed average permittivities of the scatterer are

£,=5.49-j1.20 with @ =0.02 for S/N = 40dB, after 5 iterations, and e,=5.11-j1.61

with a = 0.22 for S/N = 20dB, after 6 iterations.

4.3.3 Very High Contrast Dielectric Bodies

One of the features of the proposed method is its capability to reconstruct very high con-

trast permittivity objects even with high noise contaminated data. For the purpose of demon-

stration, we consider aregion of A9 X A¢ in size. The region is divided into 144 square sub-

58



MICROWAVE IMAGING OF DIELECTRIC BODIES IN THE
CHAPTER 4 PRESENCE OF NOISE BY STOCHASTIC INVERSION

cells and 16 receivers uniformly located on a concentric loop of diameter 1.5 Ay are used
to detect the scattered field. This results in an algebraic system of 16 equations and 144 un-
knowns in accordance with eqn. (4.1). The dielectric cylinder with complex permittivity oc-
cupies one cell in the region as shown in Fig. 4.14. The background is assumed to be a free
space in the following examples. One TM incident wave is used to illuminate the region.
Fig. 4.15 shows the 3D image of the reconstructed object with the signal-to—noise ratio of
40 dB after 8 iterations. The original value of dielectric permittivity is (46 —j12) and the
reconstructed value is (46.09 —j11.76) '. The relative reconstruction error of real part is
0.2%, and the relative error of imaginary part is 2%. Fig. 4.16 shows the reconstructed results
when 20 dB signal-to—noise ratio is used after 8 iterations. The reconstructed value is
(44.7—j11.18) with relative reconstruction errors of 2.7% for real part and 6.8% for imagi-
nary part. It is worth noting that not only the dielectric permittivity is well reconstructed,
the background is also well reconstructed. No low—pass filtering effect [16] is exhibited. This
allows us to develop images with very high resolution.

Fig. 4.17(a) and Fig. 4.17(b) present the reconstructed dielectric permittivity versus the
original dielectric permittivity regarding the location of the dielectric object in Fig. 4.14 for
different signal-to—noise levels. In Fig. 4.17(a), all results are obtained after 8 terations. The
imaginary part of the dielectric permittivity of the object is assumed to be zero, and the real
part varies from 10 to 250. When the sigﬁal—to—noise ratios 100dB and 40 dB are used, the
dielectric permittivities of the object can be reconstructed almost completely. When 20 dB
signal—to—noise ratio is used, relative reconstruction errors are 0.03% for the contrast of 10,
6.24% for the contrast of 100 and 11.7% for the contrast of 200. In Fig. 4.17(b), the real part
of the dielectric permittivity of the object is assumed to be unity, and the imaginary part va-

ries from 10 to 1000. The reconstruction accuracies similar to Fig. 4.17(a) are obtained.
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4.3.4 Multiview Illuminations

Numerical results have shown that dielectric permittivities of relatively simple two—di-
mensional objects can be reconstructed with satisfactory accuracy even with one wave illu-
mination. For more complex objects, multiview techniques can be employed to improve the
quality of the images. The multiview techniques which can be utilized are[46]:

1) changing the incident wave direction and keeping a constant wavelength and a steady
object;

2) changing the wavelength and keeping a steady incident wave direction and object;

3) changing the object orientation and keeping a constant wavelength and a steady incident

wave direction.

In this thesis, we simply use the first technique to demonstrate the efficiency of the sto-
chastic method by reconstructing two—dimensional objects. In the process of the imaging,
each illumination gives different values of the object function due to the the noise in the mea-
sured data and to the reconstruction errors. The imaging is performed by using the average

value of the object function, that is
1 «
0==>0 (4.9)
V=t

where v is the number of illuminations and Oy is the object function vector yielded from
the k—th view.

As the first multiview reconstruction, we consider an investigation domain of Ag X Ag,
divided into 144 cells with 16 detectors uniformly located on a concentric loop of a diame-
ter 1.54¢ . A dielectric cylinder of a cross—sectional dimension of (/2 , with a relative per-
mittivity of &, = 3, occupies 24 cells, as shown in Fig. 4.18(a). The noise and error in the

measured data are introduced by adding Gaussian random variables to the real and imaginary

parts of the scattered field. The signal-to-noise ratio (S/N) used is defined by
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S/N =101log(| E*|* / | N | . Figure 4.18(b) shows the image obtained after three itera-

tions with one incident wave illumination with a signal—to—noise level of 40dB in the mea-
sured data. In Fig. 4.18(c), the image is 6btained by using four incident waves to illuminate
the object successively. Figure 4.18(d) presents the reconstruction in a highly noisy environ-
ment, where 17.8% Gaussian noise (S/N=15dB) was added to the measured data and four
incident waves were employed. Please note that the blurt technique has been used to smooth
the edge of the images.

In the second computer simulation, the reconstruction system is the same to the first one
but a circular dielectric cylinder of two layers with complex dielectric permittivity is consid-

ered. The outer layer of the cylinder has a dimension of diameter 19/2 with arelative dielec-
tric permittivity of €, = 2.75 — j0.01 . The inner layer has a dimension of diameter Ao/6 with
a relative dielectric permittvity of &, = 3.5—;0.15 . 16 detectors are used on a concentric

loop of a diameter of 1.54¢ to detect the scattered fields. The cylinder is modeled by 24
square cells in the test region, with 4 cells for the inner layer and 20 cells for the outer layer.
The real part of the original dielectric permittivity distributions of the modeled cylinder is
shown in Fig. 4.19(a). Figure 4.19(b) shows the real part of the dielectric permittivities re-
constructed by the single—view technique after three iterations for S/N=40dB with the inci-
dent wave coming from the left side of the region. Figure 4.19(c) and Figure 4.19(d) show
the real parts of the dielectric permittivities obtained by the muliview technique (where four
views from each side of the test region are used) from three iterations for S/N=40 dB and
for S/N=15 dB respectively. The results with similar accuracy have been obtained for the

imaginary parts of the dielectric permittivities.

4.4 Conclusion

An iterative method for reconstructing complex dielectric permittivity distribution of

an inhomogeneous cylindrical scatterer has been presented. The method is developed based
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on the stochastic inversion algorithm which seeks an optimal solution in the stochastic sense
that minimizes the expected value of the reconstruction error.

The performance of the proposed reconstruction method is demonstrated in terms of re-
constructing two dimensional objects. Although the development of a good image depends
on many factors such as the configuration of the image system, the number of the detectors,
the number of waves used and the organization of the object, it has been shown that, by the
proposed method, the dielectric object with very high dielectric contrast can be recon-
structed with high accuracy even for measured data containing a high level of noise. The
low—pass filtering effect which have been noticed in other reconstruction algorithms is not
presented in the proposed method. Compared with other iterative methods presented so far
for dielectric body microwave imaging problems, the stochastic technique requires less
computation time since the number of iterations can be reduced by utilizing a priori informa-
tion which has been supplied by the application of the Tikhonov regularization in the pro-
posed examples. Moreover, for each iteration, only one matrix inversion is needed, while
other iterative techniques require two matrix inversion operations per iteration. These fea-
tures recommend the method presented for some special applications when a high resolution
is required in the presence of noise such as in defect detection, material characterization and

remote sensing.
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TABLE 4.1

Reconstructed permittivities when the scatterer
with €, =3 occupies the 17th cell.

Cell £, &, Proposed Method
Pseudoinverse
Number Noise—Free S/N=40dB S/N=20dB
1 0.98 1.00 1.00
2 1.03 1.00 1.00
3 1.00 1.00 1.00
4 1.01 - 1.00 1.00
5 0.99 1.00 1.00
6 1.03 1.00 1.00
7 0.99 1.00 1.00
8 0.88 1.00 1.00
9 1.03 1.00 1.00
10 0.99 1.00 1.00
11 1.08 1.00 1.00
12 1.25 1.00 1.00
13 0.97 1.00 1.00
14 1.20 1.00 1.00
15 1.00 1.00 1.00
16 1.01 1.00 1.00
17 2.63 3.00 3.02
18 0.89 1.00 1.00
19 1.03 1.00 1.00
20 0.99 1.00 1.00
21 0.99 1.00 1.00
22 1.01 1.00 1.00
23 0.99 1.00 1.00
24 1.00 - 1.00 1.00
25 0.98 1.00 1.00
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Fig. 4.2 Configurations for a scatterer occupying
two cells in the investigation domains.
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TABLE 4.2

Permittivity reconstruction for the scatterer configurations in Fig. 4.2,
with the same locations of the detectors as in Fig. 4.1.

- &r ¢, Proposed Method
Configuration  { peoydoinverse
Noise—Free S/N=40dB S/N=20dB
@ €:17=2.01 €r17=3.00 £,17=3.09
a
€r18 = 3.87 er18=3.01 £,18 = 3.11
b €16 =245 €16 =3.01 €16 =3.10
€,17=2.24 €r17=3.00 £,17=13.00
© €17 = 2.51 €17 = 3.00 €17 =292
&2 =275 €22 =3.00 £,90=2.95
@ €12 =187 €12 =3.00 £,12 =297
€r17=2.24 €17 =3.01 &£17=13.04
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1 iterations
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S/N(dB)
Fig. 4.3 Plots of the reconstructed permittivity versus S/N ratio
for the scatterer with ¢, =3 occupying the 17th cell
in Fig. 4.1.
30
® ® ® Pscudoinverse
0e (%) 0. X x x Proposed method, three
iterations.
10 -
0

S/N(dB)

Fig. 4.4 Relative mean square errors of the reconstructed
permittivities versus S/N ratio.
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Fig. 4.5 Configuration and images for the scatterer occupying four cells
in the investigation domain, corresponding to Table 4.3.

67



MICROWAVE IMAGING OF DIELECTRIC BODIES IN THE
CHAPTER 4 PRESENCE OF NOISE BY STOCHASTIC INVERSION

TABLE 4.3

Reconstructed permittivities in all the cells for the
scatterer with ¢,.=3 shown in Fig. 4.5.

g,
Cell
Number S/N=40dB S/N=20dB
1 1.00 1.00
2 1.00 1.00
3 1.00 1.00
4 1.00 1.00
5 1.00 1.00
6 1.00 1.00
7 1.00 1.00
8 1.00 1.00
9 1.00 1.00
10 1.00 1.00
11 1.00 1.00
12 1.00 1.00
13 3.00 3.03
14 3.03 3.26
15 1.00 1.00
16 1.00 1.00
17 1.00 1.00
18 2.99 2.87
19 3.02 3.09
20 1.01 1.02
21 1.00 1.00
22 1.00 1.00
23 1.00 1.00 '
24 1.00 1.00
25 1.00 1.00
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Fig. 4.6 Relative mean square error of the reconstructed permit—

tivities versus the number of iterations for the scatterer
in Fig. 4.5.
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Fig. 4.7 Influence of the initial guess for the current density upon the

number of iterations, for the structure in Fig. 4.5(a) and
S/N=20dB.
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TABLE 4.4

reconstructed permittivities for the scatterer shown
in Fig. 4.5(a) with only 16 detectors.

Cell £, £,
Number S/N=40dB S/N=20dB
Three iterations | Five iterations
1 1.00 1.00
2 1.00 1.00
3 1.00 1.00
4 1.00 1.00
5 1.00 1.00
6 1.00 1.00
7 1.00 1.00
8 1.00 1.00
9 1.00 1.00
10 1.00 1.00
11 1.00 1.00
12 1.00 1.00
13 3.03 3.08
14 2.99 277
15 1.00 1.00
16 1.00 0.99
17 1.00 1.00
18 3.00 3.06
19 2.96 2.32
20 1.01 1.00
21 1.00 1.00
22 1.00 1.00
23 1.00 1.00
24 1.00 1.00
25 1.00 1.00
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Fig. 4.8 Discretization of the investigation region.
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Fig. 4.9 Reconstructed permittivity versus the signal-to—noise ratio.
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Fig. 4.10 Error of reconstruction versus the signal-to—noise ratio.
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Fig. 4.11 Error of reconstruction versus the number of iterations.
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Fig. 4.12 Influence of the initial guess for the current density upon
convergence when S/N = 20 dB.
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Fig. 4.13 Discretization grid for a scatterer occupying 20% of
the investigation region.
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Fig. 4.14 Discretization grid for a scatterer occupying one cell.
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Fig. 4.15 Pictorial-presentation of the reconstructed permittivity, S/N=40dB.

(a) Real part; (b) Imaginary part.
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Fig. 4.16 Pictorial presentation of the reconstructed permittivity, S/N=20dB.

(a) Real part; (b) Imaginary part.
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Fig. 4.17 Reconstructed permittivities versus original permittivities:

(a) Real part;
(b) Imaginary part.
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(c) four incident waves with S/N=40dB.  (d) four incident waves with S/N=15dB.

Fig. 4.18 A dielectric cylinder and its microwave images.
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(a) Original permittivity (real part) dis-
tributions.

(c) Reconstructed dielectric permittivi-
ties (real part) with four—view process
for S/N=40dB.
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(b) Reconstructed dielectric permittivi-

ties (real part) with monoview technique
for S/N=40dB.
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(d) Reconstructed dielectric permittivi-
ties (real part) with four—view process
for S/N=15dB.

Fig. 4.19 A lossy dielectric cylinder with two layers.
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CHAPTER 5 PARAMETER FOR MICROWAVE IMAGING

S

SELECTION OF THE REGULARIZATION PARAMETER

FOR MICROWAVE IMAGING

5.1 Introduction

As we mentioned before, one of the advantages of linearized inverse methods based on
the equivalent current formulation lies in their fast reconstruction algorithms. However, be-
cause of the limited space for situating the receivers and the difficulty of combining a jointed
system of equations for multi—illuminations, the resulting systems are usually underdeter-
mined. For more complex dielectric bodies, this underdetermined system may not contain
enough information to yield an expected result. Although the studies regarding the limitation
of each method are still ongoing, we may. predict that the equivalent current modelling based
methods are more efficient only for the dielectric properties of relatively small problems. For
more complex dielectric inverse problems, efforts have been made to solve the two coupled
non-linear equations directly [11]-[14]. The general procedure is that a multiview process
is usually first employed to construct an overdetermined system of equations. The total fields
in the dielectric bodies are then calculated by giving an initial guess to the object function.
Substituting the total field into the first equation, the first approximation of the object func-
tion is obtained by solving an ill-conditioned linear systems of equations. The process per-
forms iteratively until an acceptable error level is obtained. If the initial object function is

assumed to be the same as the background, the method is called the Born iterative meth-

82



STOCHASTIC SELECTION OF THE REGULARIZATION
CHAPTER 5 PARAMETER FOR MICROWAVE IMAGING

od[11]. The above iterative method can aiso be modified, such as the distorted Born iterative
method[12] and the Newton—type iterative method[14]. Because the problem is ill-condi-
tioned in determining the object function in each iteration, the regularization technique is
employed to stabilize the matrix decompositions that are involved in the process of the re-
construction. One of the difficulties in the procedure is the selection of the regularization pa-
rameter. If this parameter is too big, too much useful information could be lost. If it is too
small, a convergent solution might not be obtained. In the Born iterative method and the dis-
torted Born iterative method, this parameter is selected experimentally. In the Newton type
iterative method, it is chosen in terms of the relative mean square error of the reconstructed
scattered field and the measured field. This process allows the parameter adjusting its value
from iteration to iteration accordingly. However, a new scalar presenting the magnitude of
the regularization parameter was introduced and no indication given how to select this new
parameter.

In this chapter, we first review the general procedure of solving nonlinear integral equa-
tions associated with the microwave imaging in the spatial domain. Then we present three
methods for selecting this parameter. The first method is applicable to the situation when the
upper bound of the object function variance and the upper bound of the measured data noise
variance are known. The second method can be used if only the upper bound of the object
function variance is detectable. If this information is not available, the third method can be
employed to find the regularization parameter. The efficiency of these methods is illustrated
by reconstructing two—dimensional dielectric objects with noiseless measured data and also
with data containing noise. In the first example, a dielectric cylinder with continuous dielec-
tric permittivity distribution along cross—section is considered. In the second example, an
object with discontinuous dielectric permittivity distribution is investigated. In the third ex-
ample, we use noisy data to reconstruct the same dielectric profile to the second one to test

the robustness of the methods. All the examples show the efficiency and the robustness of
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the presented methods.

5.2 Reconstruction procedure

Consider the following two coupled nonlinear matrix equations employed for micro-

wave imaging in spatial domain in the case of one illumination[11]-[14], [22]-[25]
E* = [GI[E']O (5.1
E'= (71~ [Gl][O)'E (52)
where E’ is acolumn vector representing the measured scattered electric field of dimension
m ( m denotes the number of detectors ), E/, Efand O are column vectors of dimension
n (n indicates the number of cells in which the investigation region is divided) representing

the total field, the incident field and the object function respectively, [E'] and [O] are diago-

nal matrices consisting of the elements of E’ and O respectively, [G{] and [G,] are ma-
trices of dimensions n X n and m X n respectively, and [I] is the identity matrix. The gen-

eral procedure of solving these two equations is that the first approximation of the total field

in eqn. (5.1) is taken to be just the incident field. Substituting the object function obtained

from eqn. (5.1) ineqn. (5.2) gives the first estimate of the total field E’. Then this E’ is
used in eqn. (5.1) to obtain the second estimate of the object function and the iterations con-
tinue until a stable solution is obtained. In this process, eqn. (5.2) is always well—condi-
tioned. Therefore, once the object function is given, the solution of (5.2) can be obtained di-
rectly. However, eqn. (5.1) is, in general, ill-conditioned and, usually, instead of solving
(5.1) directly, an attempt is made to regularize it. The solution to the regularized equation
may give areasonable approximation to the solution of the original ill-conditioned equation
allowing us to develop a satisfactory image.

Taking into account the global effect of all the illuminations yields for each iteration step

Es.= [D]O | (5.3)
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where [D] is a vm X n matrix consisting of the submatrices obtained from the product

[G,1[E"] for all the v illuminations i.e.

[Gal1 [E']y
[Galo [E']2

(G215 [E']3
[D] = , (5.4

[Galy [ET),

and E7 is a column vector of dimension vm consisting of all Ef
Ey=[Ef, ES, E§, ... EJ’ (5.5)
This equation is ill-conditioned in general, with the measured field in Ej containing noise

and errors, and [D] containing the errors accumulated in [E’] in the previous iterations. The
regularized solution of eqn. (5.3) is given by

O = ([D)7[D] + all) ' [DI”Ef (5.6)
with H denoting the conjugate transpose of a matrix and « the regularization parameter. In
order to obtain an acceptable solution, an appropriate regularization parameter must be cho-
sen. To the best of our knowledge there isno general rule presented in the literature regarding

the selection of this parameter for electromagnetic imaging algorithms. In the following, we

consider the problem from a stochastic point of view and show the possible ways to estimate
this parameter. Taking into account the inaccuracies and the noise in [D] and E%-, we rewrite
eqn. (5.3) as

E%=[D]JO+N (5.7)
where N is a vm—dimensional vector indicating the error ES-~ [D]O at the iteration step con-

sidered. We treat this error term N as being a random variable and then the solution O of eqn.
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(5.7) is also a random variable. Under the assumption that these two variables are uncorre-

lated, the following expression is employed to evaluate O from eqn. (5.7) [43]
O = (IDT'[RNI'[D] + [Rol ™)' [DI[RN]'ES, (5.8)
where [Rn] and [Ro] denote the correlation matrices of N and O. Assuming that N and O

are also isotropic random variables, we have

[Rn] = o] (5.9)

[Rol = o3l (5.10)
with 0% and 0‘%) denoting the variances of the random vectors N and O. Thus, egn. (5.8)
becomes

O = ([D1[D] + o%/op 1) [DIES (5.11)

Comparing eqn. (5.11) with eqn. (5.6), we find that the role of the regularization parameter
a is played by

a =0%/0% (5.12)
Although these variances are unknown in most microwave imaging problems, (5.12) still

allows us to evaluate o from a practical point of view.

5.3 Methods for Selecting the Regularization Parameter

Equation (5.12) shows us that the regularization parameter can be interpreted in terms
of the variances of noise and the object function. Here we consider three cases and present

the corresponding expressions for this parameter.

A. Upper bounds of ¢%_and o3 are known

Suppose the values of 012\1 and U%) are not known, but their upper bounds can be fixed

from our previous knowledge and experience. If we use the notations Cy and Cg for these
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upper bounds, i.e.

ok < Cn (5.13)

03 < Co (5.14)
we employ as the regularization parameter

a=Cn/Co (5.15)
Since

| E7-(DIO | = NP (5.16)

and the Maximum likelihood estimate of the noise variance 012\1 is given by eqn. (2.84), i.e.

(1/vm) | E$~[DIO | = (1/vm) | N|? (5.17)
we see that if the measured data is noisier the bigger regularization parameter must be used,
and vice versa. On the other hand, if the selected regularization parameter is bigger than the

desired one, higher reconstruction error can be expected.

B. Upper bound of 0% is known

In some applications, only the upper bound of the object function Co can be fixed. For
example, in biomedical applications the range of electric qualities which characterize the tis-
sues in the body under most conditions can be evaluated from previous experience. Using
the maximum likelihood estimator of noise variance (eqn. 2.84), the regularization parame-

ter at each iteration step can be expressed as

s 2
o= | Ez—-[D1O | (5.18)
vm Co

where the matrix [D] and vector O are those from the preceding iteration. To avoid too small
values of a as the iterative process progresses, when at a certain iteration step the recon-

struction error

| E&~[DIO |* /vm (5.19)
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becomes less than an imposed value, the value of @ corresponding to that step should be
used for the next iterations (in the simulations presented in Section 5.4, this value is chosen
to be equal 10~*in the case of noiseless data and equal to the order of the variance of the noise
in the case of data containing noise). The whole iterative procedure is summarized as fol-
lows:

(1) apply Born approximation to eqn. (5.3);

(2) calculate o using eqn. (5.18);

(3) find the object function O from eqn. (5.6);

(4) calculate E’ using eqn. (5.2) and then [D] from eqn. (5.4);
(5) check relative error | E§—[D]O ||* /vm ; if less than the imposed value, go to (3)

and use the latesta until a stable value of O is obtained; if not, go to (2).

C. 0%; and029 are unknown

In this case, the Levenberg-Marquardt scheme [69],[70] can be applied to the imaging
process. The Levenberg-Marquardt scheme was originally developed to solve general non-
linear algebraic equations. The main péint is that at each iteration the squared Euclidean
norm of the the difference between the given data and the recovered data is calculated. If the
difference at that iteration is smaller than the previous one, then decrease regularization pa-
rameter by a factor, or continuously increase it by a factor until a decrease is obtained. A
starting regularization parameter of 0.01 was suggested. However, in our numerical simula-
tions we find that Marquardt’s suggestion that the regularization parameter be increased or
decreased by factors which are powers of 10 is not applicable in general to the problems of
microwave imaging. For some increasing/decreasing factors the error is oscillating and the
iteration process does not seem to behave as a convergent process, at least for the first 10 to
20 iterations in the examples considered. Numerical tests performed by the author indicate

that an increasing factor of 1.5 coupled with a decreasing factor of 0.5 performs much better
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for this type of electromagnetic imaging problems.

In our imaging process, an initial positive value is taken for the regularization parameter
to be used in the first iteration, whose selection will be discussed later. At each iteration, the
difference between the calculated scattered field and the measured scattered field defined
ineqn. (5.19) is estimated. If the difference decreases from one iteration to the next one, the
regularization parameter to be used in the succeeding iteration is decreased by a factor which
is chosen to be 0.5. If the difference does not decrease, the parameter is increased by a factor
of 1.5, until a decreased difference is achieved. This iterative process is ended when the error
in the computed scattered field decreases to an acceptable value.

For the initial value of the regularization parameter, we know that the correlation matrix

of the object function can be expressed as (see eqn. 2.89)

[Rol = o% ((DY[D]+all™ ((DIPID]) (IDI¥[D]+alm)™ (5.20)
whose diagonal elements are the corresponding variances of the object function. Using the
total variance (see eqn. 2.91) of the object function and assuming & = 0 ineqn. (5.20), yields

0% = no[tr((DV[D)]™ (5.21)
With eqgn. (5.12), we find that the initial regularization parameter takes the form

ao = (1/n)er([D1[D]) (5.22)
The reconstruction algorithm is summarized as follows:

(1) determine the initial regularization parameter @ and the matrices G, G , and choose
a desired level of accuracy;

(2) calculate the total field E’in (5.2) and construct the matrix [D] in (5.3);
(3) find the object function O from (5.6);

(4) compute the relative error of the scattered field calculated from (5.3) with respect
to the measured scattered field, i.e. || E$—[D]O |]* / || v ; if the error is less than

the desired value, the iteration is terminated or go to step 2; otherwise, go to step 5;
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(5) after the first iteration, reduce the initial regularization parameter by a factor of 0.5
and go to step 2; in each subsequent iteration, compare the error norm with the
one in the preceding iteration; if the error norm decreases, reduce the regularization
parameter by a factor of 0.5 and go to step 2; otherwise, increase the parameter 1.5 times

for the microwave imaging problem considered and go to step 3.

The iterative process continues until the desired level of accuracy is achieved or until the

error norm maintains a practically stable value.

5.4 Numerical Results

To illustrate the methods presented in this chapter, we consider a few two dimensional
objects similar to those in[11], [12]. In all examples, the size of the investigation domain
is1.449 X 1.44¢ , whereA is the wavelength of the background medium which is now as-
sumed to be free space. To apply the moment method, we divided the investigation domain
into 196 subsquare of equal size of 0.14¢ X 0.14¢ . Eight incident waves with unity ampli-
tude and frequency of 100 MHz are used to illuminate the region from eight directions at 45
degrees from each other. For each illumination, 36 receivers uniformly distributed on a mea-
surement loop are used. Figure 5.1 shows the geometry of the investigation region. The scat-
tered fields at the receiver points are calculated by the moment method with pules functions
and point matching. The resulting simultaneous linear equations are solved using LU factor-

ization method. The relative mean square error of the reconstructed permittivity defined as

n 1
z le;— € 1'!2 2
i=1

n
z le i]2
i=1

5, = (5.23)

is used to compare the overall accuracy of the reconstructed permittivity, where where ¢;
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and &; are the values of the original permittivity in the i~#h cell and of the reconstructed per-
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Fig. 5.1 The geometry of a two—dimensional region with 36 detectors uniformly
distributed along the broken line and 8 incident waves.

mittivity, respectively, with the summations extended over all the cells in the investigation

region. The relative error of the scattered fields defined as

2.2 IE]
5% = lm (5.24)

N

J=1k=1

is employed to evaluate the overall accuracy of the reconstructed scattered fields, where i
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and Ejs-k are the values of the detected electric field and the reconstructed electric field at the

k—th receiver for the j—th view of the incident field.

A. Continuous Profile

As the first example, we consider a object with a cosinusoidal variation of the permittiv-
ity along the cross—sectional Cartesian coordinate axes and their origin at the center of the

cross section and oriented normal to the cylinder sides, with a peak value of 1.6 &q . The ra-

dius of the measurement circular loop is 1.54¢ . The profile is shown in Fig. 5.10 (a)

Fig. 5.2 shows the real part and imaginary part of the scattered electric field at the detec-
tors generated by one of the microwave illuminations.

In Fig. 5.3 and Fig. 5.4, the relative errors of the reconstructed scattered electric fields
and dielectric permittivity are plotted versus the number of iterations for various values of
the regularization parameters. The solid lines indicates the results yielded from the proposed
method C. When the same value of the regularization parameter is employed for all itera-
tions, a stronger regularization yields bigger reconstruction errors, while too weak a regular-
ization may not insure the iteration convergence. Applying the method C to this problem,
we obtain convergent results with relatively small final reconstruction errors.

Fig. 5.5 and Fig. 5.6 show the relative error of the reconstructed scattered electric fields
and the relative error of the reconstructed dielectric permittivity versus the number of itera-
tions for various increasing/decreasing factors. We see that Marquardt’s suggestion [70] that
the regularization parameter should be increased or decreased by factors which are powers
of 10 is not applicable in general to the problems of microwave imaging. For some increa-
sing/decreasing factors the reconstructed results are oscillating and the iteration process does
not seem to behave as a convergent process, at least for the first 10 to 20 iterations in the ex-
amples considered. These figures indicate that an increasing factor of 1.5 coupled with a de-

creasing factor of 0.5 performs much better for this type of electromagnetic imaging prob-
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lems. The relative error of the reconstructed scattered electric field by the
increases/decreases of 1.5/0.5 is less than 107 after the tenth iteration and keeping decreas-

ing. The relative error of the reconstructed dielectric permittivity is less than 1073 after the
tenth iteration.
Fig. 5.7 and Fig. 5.8 give the relative errors of the reconstructed electric fields and the

reconstructed dielectric permittivities from the presented three methods. In the method A,

we assume the upper bound of the error variance of the reconstructed scattered fields is 107 .
For the upper bound of the variance of the object function, we simply take it to be 0.4, a little
bit bigger than the squared peak value of the object function. In the method B, the upper

bound value of the object function variance is the same as that in the method A. If computed

scattered field error defined in eqn. 5.19 is less than 10~ the value of the regularization
parameter stops updating in order to avoid too weak a regularization. In the method C, the
increasing/decreasing factors of 1.5/0.5 are used in the reconstruction process. In these fig-
ures, we see that all three methods yield quite small reconstruction errors either for the per-
mittivity or for the scattered fields. The iteration processes in both method A and method
B become stable after the eighth iteratioﬁ the similar reconstruction errors. Method C gives
a similar relative error to methods A and B at the first eight iterations, but yields even smaller
reconstruction error afterwards.

In Fig. 5.9, the traces of the regularization parameter versus the number of iterations in
the three methods are plotted. In method A, the constant regularization parameter performs
in all the iterations. In method B, the regularization parameter stops changing after the sixth
iteration. It is noteworthy that the stabilized regularization parameter yielded from method
B is almost coincidence with the constant regularization parameter used in the method A.
In method C, no increased parameter was observed.

Fig. 5.10(a) shows the original distribution of the relative dielectric permittivity with

the peak value of 1.6. Figs. 5.10 (b), (c), and (d) are the reconstructed relative dielectric per-
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mittivity distributions with the peak values of 1.59304 in (a), 1.59307 in (b) and 1.59279 in
(©).

B) Discontinuous Profile

As the second example, we consider an object with discontinuous dielectric permittivity
distribution along the cross—section. The diameter of the objectis 1.04¢ with the peak per-
mittivity 1.6 &q . 36 receivers located on a circular loop of radius 1.2 4¢ around the investiga-
tion region are used to detect the scattered electric fields.

The real part and the imaginary part of the detected field detected by the receivers gener-

ated by one of the incident waves are plotted in Fig. 5.11.

Fig. 5.12 and 5.13 show the relative error of the reconstructed scattered electric fields
and reconstructed dielectric permittivity versus the number of iterations for various regular-
ization parameters. As the results in example A, when constant regularization parameters
are used in the algorithm, bigger regularization parameter yields a bigger reconstruction er-

ror. A too small regularization parameter may not give a convergent result. The optimum
value of the regularization parameter in this simulation seems to be between 10~ and 1074 .

When 107 is selected as the regularization parameter, the algorithm gives smaller errors

compared with other constant regularization parameters, but it is going to oscillating. When

1073 is used, the algorithm cannot give convergent results. When applying method C to the

problem, convergent results with smaller reconstruction errors are obtained.

The relative errors of the reconstructed scattered electric fields and the reconstructed
dielectric permittivity versus the number of iterations are shown in Fig. 5.14, 5.15, and 5.16
for various increasing/decreasing factors with solid lines indicating the results obtained by
method C. Similar to example A, when the increasing /decreasing factors of 10/0.1 and
4/0.25 were used, the algorithm gives oscillating results. Both the increasing/decreasing fac-

tors of 1.5/0.5 and 1.75/0.75 yield convergent results. The factor of 1.5 coupled with 0.5
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gives smaller reconstruction error. By method C, the relative error of the reconstructed scat-

tered electric fields is less than 2 X 1078 after the fourteenth iteration and the relative error
of the reconstructed dielectric permittivi‘ty is less than 7.5% after the fourth iteration. Com-
pared with the results yielded in example A, we also notice that the relative errors are gener-
ally higher than those in the first example. This higher reconstruction error is generated by
the discontinuous edge of the dielectric profile and the band—limited nature of the algorithm
as mentioned in [16]. The regularization parameter plays a smoother role in the reconstruc-
tion process, like a spatial domain lowpass filter to smooth the edge of the object causing

relatively higher reconstruction errors. This phenomenon can be observed in Fig. 5.19.

Fig. 5.17 and Fig. 5.18 present the results obtained by applying the three methods to

the problem. In method A, the upper bound of the reconstruction error variance and the upper
bound of the object function variance are assumed to be 10~ and 0.4 respectively. In method

B, 0.4 is assumed to be the upper bound of the object function variance and 107 is used to
terminate updating the regularization parameter. In method C, 1.5/0.5 was used for the in-
creasing/decreasing factor. All three methods gave convergent results with tolerable recon-
struction errors.

The original relative dielectric permittivity distribution is shown in Fig. 5.19(a), and the
reconstructed profiles by the three methods are illustrated in Fig. 5.19 (b)—(d). The peak val-
ue of the reconstructed profiles are 1.70079 in (b), 1.70065 in (c¢) and 1.69706 in (d).

C) Discontinuous Profile with noisy Data

This example allows to test the robustness of the proposed methods by using the data
containing noise. We assume the noise has normal distribution with zero mean value. The
signal-to—noise ratio defined in eqn. (4.8) is used to evaluate the level of the noise. Fig. 5.20

shows the detected scattered electric field with the signal-to—noise ratio of 20 dB.
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Fig. 5.21 and 5.22 show the relative error of the reconstructed scattered electric fields
and the relative error of the reconstructed dielectric permittivity with the noisy data of sig-

nal-to-noise ratio of 20 dB. Corresponding to the signal-to—noise ratio, the upper bound of

the variance of the scattered fields error in method A is assumed to be 1072, and the upper

bound of the object function is assumed to be 0.4 as in the previous examples. In method B,

the same upper bound of the object function as in example A is used, and a value of 1072 of
the reconstruction error in (5.19) was accépted to stop updating the regularization parameter.
In method C, the increasing/decreasing factor of 1.5/0.5 was employed, and 0.01 was chosen
for the required reconstruction error. All the three methods yielded convergent results with
reasonable reconstruction errors. The relative errors of the reconstructed scattered electric
fields is converged to the order of 1.1%, and the relative errors of the reconstructed dielectric
permittivity converged to 7.7% after the fourth iteration.

Fig. 5.23 presents the original profile and the reconstructed profiles by using the three
proposed methods. The reconstructed peak values of the dielectric permittivities are 1.67216

in (b), 1.64946 in (c) and 1.64967 in (d).

5.5 Conclusion

The general procedure of microwavé imaging in spatial domain consists of discretizing
the electric field integral equations in the form of two coupled matrix equations by applying
the moment method. The associated ill-conditioned systems of algebraic equations are
solved iteratively by implementing the regularization technique at each iteration step. One
of the difficulties in the procedure is the selection of the regularization parameter. Based on
the fact that the Tikhonov regularization parameter can be interpreted in terms of the random
noise variance and the object function variance, three methods for selecting this parameter
are presented. Their performance is demonstrated by reconstructing two dimensional dielec-

tric objects with both noiseless and noisy computer simulated data. The proposed methods
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for the selection of the regularization parémeter can also be extended to other iterative meth-

ods such as the distorted Born iterative method[12] and the Newton iterative method[14].
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Fig. 5.2 Real part and imaginary part of the scattered field from a dielectric

object with consinusoidal permittivity distribution.
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Fig. 5.3 Relative error of the reconstructed scattered electric fields versus the
number of iterations for different regularization parameters.
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Fig. 5.5 Relative error of the reconstructed scattered fields versus the
number of iterations for various increasing/decreasing factors.
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Fig. 5.6 Relative mean square error of the reconstructed dielectric permittivities
versus the number of iterations for various increasing/decreasing factors.
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Fig. 5.7 Relative error of the reconstructed scattered electric fields versus the
number of iterations by the proposed methods.

103



CHAPTER 5

STOCHASTIC SELECTION OF THE REGULARIZATION
PARAMETER FOR MICROWAVE IMAGING

pa—

—
=1 P
—_— [==]

ey
<
no

L el

—,
<
(45

il

Relative Error of Dielectric Permittivity

P
<=
~

Method A |
Method B | :
Method C | :

lteration

Fig. 5.8 Relative mean square error of the reconstructed dielectric permittivities

versus the number of iterations by the proposed methods.

104



CHAPTER §

STOCHASTIC SELECTION OF THE REGULARIZATION
PARAMETER FOR MICROWAVE IMAGING

Regularization Parameter

100

S
=
>

PR
2
-

—r
@
(=

1078

bl L 111l

1

1] ===n-- Mathod A
1= Method B
Mathod C
N N |
0 2 4 6 8 10 12 14 16 18 20
lteration

Fig. 5.9 Regularization parameters versus the number of iterations.
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Fig. 5.10 Original and reconstructed cosinusoidal profiles.
(a) original profile; (b) method A; (¢) method B;
(d) method C.
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Fig. 5.11 Real part and imaginary part of the scattered field from a dielectric
object with discontinuous permittivity distribution.
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Fig. 5.12 Relative error of the reconstructed scattered fields versus the
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Fig. 5.13 Relative mean square error of the reconstructed dielectric permittivities
versus the number of iterations for different regularization parameters.
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Fig. 5.15 Relative mean square error of the reconstructed dielectric permittivities
versus the number of iterations for various increasing/decreasing factors.
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Fig. 5.16 Relative mean square error of the reconstructed dielectric permittivities

versus the number of iterations for increasing/decreasing factor of 10/0.1.
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Fig. 5.17 Relative error of the reconstructed scattered electric fields versus the
number of iterations by the proposed methods.
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Fig. 5.18 Relative mean square error of the reconstructed dielectric permittivities
versus the number of iterations by the proposed methods.
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Fig. 5.19 Original and reconstructed dielectric permittivities.
(2) original profile; (b) method A; (c) method B;
(d) method C.
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versus the number of iterations by the proposed methods for S/N=20dB.

118



STOCHASTIC SELECTION OF THE REGULARIZATION
CHAPTER 5 PARAMETER FOR MICROWAVE IMAGING

0”;‘;‘- =
.‘$::7iil;”""\§\ 332>
‘t"lll'0 9
AKX
’0‘0“

Fig. 5.23 Original and reconstructed dielectric permittivities for the detected data
containing 10% noise.
(a) original profile; (b) method A; (c) method B:
(d) method C.

119



CHAPTER 6 CONCLUSION AND FUTURE WORK

6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

The problem of microwave imaging in spatial domain can be mathematically stated in
terms of two coupled electric integral equations or formulated in terms of one linear integral
equation by introducing an equivalent current density (equivalent current formulation). The
general procedure for solving these integral equations consists of discretizing the integral
equations by applying the moment method and the associated ill-conditioned systems of al-
gebraic equations being solved by implementing a regularization technique. Two regulariza-
tion methods, the Tikhonov re gularizatioh and the stochastic inverse scheme, have been con-
sidered in this dissertation. The combination of the Tikhonov regularization with the
equivalent current modelling has yielded an efficient way of locating the dielectric scatter-
ers. The selection and performance of the Tikhonov regularization parameter in the process
of the reconstruction have been demonstrated by computer simulations. It has been observed
that the optimum regularization parameter is strongly related to the noise level in the mea-
sured fields. The stronger the noise level, the stronger the regularization should be used. This
is consistent with the theoretical conclusion that the Tikhonov regularization parameter can
be statistically interpreted in terms of the noise variance and the reconstruction variance.

The introduction of the stochastic inverse scheme into the equivalent current recon-

struction process has allowed us to develop a new iterative algorithm for reconstructing high
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dielectric contrast objects accurately. The stochastic inverse scheme was developed by con-
sidering both the measured data and the reconstruction being random processes. Under the
assumption that they are uncorrelated and isotropic, the scheme seeks an optimum solution
by minimizing the expected value of the error in the reconstructed data. The algorithm con-
sists of three main steps. The nonlinear integral equation used for the reconstruction of the
dielectric body is first linearized by introducing an equivalent current density. Secondly, the
Tikhonov regularization is employed to obtain a good approximation to the a priori data re-
quired in the algorithm. Finally, the stochastic inverse is applied to compute the equivalent
current distribution within the body. From the reconstructed current density one can simply
derive the permittivity distribution which is used directly to develop the object images. Nu-
merical results have shown that this recoﬁstruction procedure is very promising. For relative-
ly simple scatterers, very accurate results can be obtained even by one incident wave illumi-
nation and with the measured data containing high level of noise. Multiview techniques can
also be used to improve the quality of the images especially for the scatterers with more com-
plex geometrical structures. The low—pass filtering effect which have been noticed in other
reconstruction algorithms is not presented in the proposed method. These features have rec-
ommended the proposed method for some special applications when a high resolution is re-
quired in the presence of noise, especially in defect detecting, remote sensing and material
property probing. Compared with other iterative methods presented so far for microwave
imaging problems relative to dielectric bodies, the stochastic technique requires less compu-
tation time since the number of iterations can be reduced by utilizing a priori information
which has been supplied in the proposed éxamples with the application of the Tikhonov regu-
larization; moreover, for each iteration it only needs one matrix inversion, while other itera-
tive techniques require two matrix inversion operations per iteration.

One of the difficulties in the iterative methods for solving the two electric field integral
equations directly is the selection of the Tikhonov regularization parameter in each iteration.

Based on the fact that the Tikhonov regularization parameter can be interpreted in terms of
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the random noise vector variance and the object function variance, this dissertation has pres-
ented three methods for selecting this parameter. The first method is applicable to the situa-
tion when the upper bound of the object function variance and the upper bound of the mea-
sured data noise variance are known. The second method can be used if only the upper bound
of the object function variance is detectable. If this information is not available, the third
method can be employed to find the regularization parameter. The implementation of these
methods is illustrated by reconstructing two dimensional objects with noiseless measured
data and with the data containing noise. Simulation results have validated the new methods

proposed in this thesis for microwave imaging.

6.2 Future Work

The present work can be used as a starting point for future studies leading to a better
understanding of the performance of the stochastic inverse scheme in the procedure of di-
electric body reconstruction by microwave imaging. The lack of theoretical basis, such as
theories regarding the solution existence, uniqueness, and stability for electromagnetic in-
verse problems has made it difficult to establish the convergence and stability of iterative
reconstruction algorithms proposed so far. More work on the practical implementation of the
reconstruction algorithms should be considered. Following is a summary of the recom-

mended future work.

1. It is well known that the moment method yields dense element matrices. For large recon-
struction problems, these matrices not only require expensive computation time, but also
generate great increased computer round—off errors which are added into the measured data
used in the imaging process, thus introducing undesired uncertainties in reconstructions.
Techniques which can be utilized to simplify the generated matrices, such as the Wavelet

Transformation, are strongly recommended for future studies.
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2. Computer simulations for more complex dielectric scatterers are to be performed. The fol-
lowing techniques might be involved: (1) increasing the number of discretization cells, the
number of detectors and the number of incident wave illuminations; (2) using time—domain
data; (3) employing data processing techniques, such as edge detection and spatial domain
filtering [71] to improve the quality of images.

3. Finally, the proposed reconstruction methods are to be extended to three dimensional di-

electric scatterers.
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