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"A DISCUSSION OF THE FUNDAMENTAL THEOREM OF GAME THEQRYY

A THESIS BY LELAND DALE BLACK

lany proofs of the fundamental theorem of game theory

%

are known, with varying restrictions on the payoff
function and strategy sets. In this work, a survey of
varions types of proof is presented so that a reader with-
out background in game theory may discover the relation
of the fundamental theorem to other mathematical and

social disciplines.

The great advantage of symmetrimation ig demonstrated
in proving the fundamental theorem, Algorithms are pre-
sented, both for solution on digital and analogue compuber.
The latter is shown to simplify drastically if symmet-

rization is employed.

Finally ensues a brief discussion of the practical

adequacy of matrix games in solving real life situabions.
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INTRODUCTICN

The "game of skill" as opposed to the "game of chance",
and the concept of a "strategy" in playing such a game, were
described by E. Barel4(5} as eérly as 1921. Although he
later recognized the importance of the “symmebric game® (6)
he was unable to prove the "fundamental theoren®, conject=
uring the impossibility of such theorem. Therefore, in
spite of many published claims for his priority in the theory
of games, he evidently did not esbtablish its foundations.

All the same, because his concept of a "mixed strategy® was
very clear, he did point the way bo applying parts of

classical gambling theory to games of skill.

In 1928, J. von Neumann, a giant of modern mathematics,
wrote his classic paper in which for the first time the
“fundamental theorem" was proved under quite general
éssumptionse ( A c@m@lete translation of this classic is
found in Contributions to the theory of Games, Vol. 4,

Ann, Math. Stud. 24, Princeton, 1950) At that time, von

Neumann had not seen Borel's papers, so it may be rightly
said that he laid the foundations of the modern theory of

games.

For some years the new discipline d4id not attract a
wide following. Von Neumann had written in German, and his

style made difficult reading; he had not yet acquired his



international reputation; his original proof was bhoth
topological and non-elementary; and World War II had not
been fought. This last is not at all incongruous, since
the vast logistic problems encountered during the War
greatly stimulated the study of games and gamelike sit-

uations.

Twenty-five years later the same author, writing in
English, joined forces with the renowned Economist, Oskar
Morgenstern, to produce the magnum opus THEORY OF GAMES
AND ECONOMIC BEHAVIOUR (39). Because both authors were
so famous, the book was avidly studied, and a place for

game theory in the modern world was assured.

Bconomist and Mathematician have been working busily
ever since Lo flesh out the skeleton of the subject. In
the process, game theory has been applied to all types of
real life situation, often with inadequate Justification,
as ably discussed by Rapoport (43). Such misuse occurred
because some individuals got the impression that the
mathematical theory of games of conflict must necessarily
apply to every type of conflict situation in real life.
As will be seen laber, the application of game theory is
actually rather restricted by the requirement that rewards
or payoffs be intercomparable. Because of this, some
mathematicians view game theory as shallow. A perusal of

some papers from the Bibliography (8,13-16,22 for example)

oo



should dispel this notion, since however pedestrian the
game theory itself might be, it has led to inberesting

results in topology and the theory of convex cones.

Motivation for this thesis came during the author's
exposure to a course in linear programming. Cogitation
on the subject led to the feeling that in practical cases
the finite ﬁheory will suffice, even if the strategy sets
seem unbounded. Continuation of this trend of thought led
quite naturally to a summary of available proofs of the
fundamental theorem and comparison of their similarities
and differences. As a result, the original impression was
strengthened. Although many workers in game theory will
not agree with it on grounds of lack of generality., the
concept should nevertheless prove useful to workers in
other fields, Economics for example, where game theory is

seen rather as a tool to be used than as an end in itself.



CHAPTER I

e ]

GENFRAL. THEQRY OF GAMES

1.1 INTRODUCTION General N-person games are gualitative-

ly described@ Zero-sum games are defined and the treabt-
ment of arbitrary games reduced to that of the zero-sun
game. Extensive and intensive or normal forms of a game

are defined and contrasted. The meaning of a solubion is
discussed. Finite and infinite two-person games are defined
and justification given for concentrating on the zero-sum
form of the two-person game. Symmetric games are defined

and symmetrization discussed.

1.2.1 THE GENERAL N-PERSON GAVME Many kinds of conflict

situation found in real life may be reduced to the follow-
ing mathematical abstraction: an integral number N of
players compete against each other in an attempt to max=—
imize utility . The ubtility might be money, commodities,

power, pleasure &c. but in any case must be measurable in

some obJjective way to permit inbtercomparison of utilities:
among the various players. If chance or nature has an
effect on the outcome of the situation, it is counted as
one of the players. Certain rules govern the outworking
of the conflict situation. At each stage of the process
there are certaln courses of action available to each
player. An exhaustive prescription of how the player
shall act abt each such stage, based on all that has gone

before during the conflict, is a strategy. While it might



difficult to predict it, there is no difficulty in extending
this idea to a strategy for nature or chance. In essence,
by conducting himself in a certain manner all through the
confliet situation, a player chooses one strategy. Thus in
all N strategies are chosen, one for each player, including
nature. All these are effective in governing the outcome

of the conflict situation. So the bayoff to each player

or his increase in utility as a result of the conflict is

a function of N wvariables- the players' strategies. An
essential feature of the above is that each player has only
one decision to make during the conflict situation- & manner
of play, or a policy to guide him. The details are fere-

ordained by his choice of strategy.

Mathematical abstraction is straightforward. A gane
is a set of rules governing a conflict situation. A rlay
is one particular butworking of the conflict in accordance
with the rules. Fach player's move is his occasion to
choose a strategy for the game. Hach player's choice is
the strategy actually chosen during a play. N payoff
functions of the N strategy choices exist, one for
each player. After each play, the N function values
corresponding to the choices measure the players' gains
of utility as payoffs. If after each play the initial
stock of ubility remains within the cirele of players,
the game is gzero-sum, that is, the algebraic sum of the

payoffs is zero. IFf not, and an oubtside agency upsets



the internal stock of utility, the game is non-zero sum.

Since this is very common in real life, it is useful
to exhibit that the two forms of game are not essentially
different. Into the N-person non-zeroc sum game is in-
troduced another player, the'ggggg having one strategy
and whose payoff is always exactly sufficient to make the
game zero-sum. Since this converts the original N-person
game to an N + 1 person zero-sum game, all games may be
treated provided a valid general theory is available for

the N-person zero-sum game.

1.2.2 GANES TN EXTENSIVE FORM Following the detailed

structure of the players' strategies through tc the end
of the game? considering the information available at each
stage and the choices available there, yields a game in

extensive form. Such games have not been very avidly

pursued in the past, because the complexities mount up
very rapidly, and rernder even a fairly straightforward
game like checkers, inaccessible to the fastest computers.

A pleyer has either perfect information or incomplete

information. Chess exemplifies the former, in which

each player is complevely informed of +the other nlayers®
choices up until making his cwn ab each stbage of the nlay.
Bridge exemplifies the latter, where not only is the nlayer
ignorant of his opponent's resources, but also of half his
own. (Bridge is properly a two-person game, in which each

P

player is bifurcated, each half holding half the resources)




Tt seems inbtuitively obvious that 2 "besth® way of playing
& game of perfect information exists, that is, there is
a best possible strategy for each player. Von Neumann and
Morgenstern (op cit) have shown that this ig true in the
two=person zero-sum game. Unfortunately, most reasl con-
flict situations are.not of this type, and in general one
works with probabilities of other players' choices rather

than with the certain knowledge of themn.

If a player knows in advance which strategies will be
used by the others, he turns this knowledge to advantage in
making his own choice. If the choices are not proclaimed
in advance, but rather recorded secretly, there is the
pessibility of espionage. @h@refore the only way a player
can be sure of concealing his choice from the other players
is to conceal it from himself! A way of doing this is to
specify an e priori probability distribubtion over the avail-
able strategies and leave the actual choice in a given play

to a suitably constructed mechanism. Such a probability

distribution is denoted a mixed strategy for the player.

Although this prevents certainty of winning a particular
play, it presents the possibility that over a sufficiently
large number of plays, one mixed strategy may give rise to

the best obtainable average winning.,

1.2.3 GAVES IN NORMAL FORM Von Neumann and Morgenstern

{op cit) showed that the entire cumbersome structure of the

game in extensive form could be reduced to the following



intengive or normal form:

Each player chooses a mixed strategy after which he
receives the payoff corresponding to the choices made by

all the players.

The general N-person game is complicated because
any number of players from two to N - 1 may band togeth-
er, pool their resources, and play to maximize their common
utility. At the first glance, this seems merely to de-
crease the number of players, but because many ccalitions
are possible in general , and are not unique, the problen
is much more difficult. This fact of coalitions makes it
difficult to give a precise meaning to solution of an

N-person game.

1.2.4 SOLUTION OF A GAME There are two rather different

interpretations of solution of an N-person zero-sum game .
That of von Neumann and Morgenstern (op cit) is based on

the idea of imputation. An impubtation is a way of dividing

up the spoils among the members of a coalition in such a
way that each player receives as much or more in coalition
as he would have individually. The solution of the game is
then the set of impubtations. Because this concept does nob
yield a unique answer, it has not been very sabisfying.

A more attractive definition is given by Nash J.(36,37).

An equilibrium point is an N-tuple of mixed strategies,

one for each player, such that no player can improve his

‘payoff by modifying his mixed strategy independently of the



others. There is an element of uniqueness that +the previous
definition lacked, because there is no incentive for players
To modify their play if they are in possession of equili-
brium point strategies. One further advantage is that this
definition is valid without any change in the case of +the

two-person zero-sum game.

1.3.1 THE TWO-PERSON ZERO-SUM GAME Since this is merely

the general game already discussed with N replaced by two,
a great deal of 1.2 carries over directly. It is best to
nete only that coalitions cease to have meaning for this
game, and that each player receives all that the other
loses. A very concise definition of this game will be
given in mathematical terms at the beginning of Chapter II.
Because it has been exhaustively investigated and is a
beautiful example of a mathematical theory, the remainder
of the thesis will be devoted to the fundamental theorem

of the two-person zero-sum game.

There is nothing to prevent considering games with
infinite numbers of pure strategies for each of the two
players. Indeed, one could conceive of such a situation
in the general case. Such games are known as infinite,
whereas 1f only a finite number of pure strategies ig
available to each player the game is finite. The

Xtended game in which the mixed strategies enter is

evidently always infinite, since probability distribubions

may vary in infinitely many ways.



1.3.2 THE SYMURTRIC GAME A two-person game is Symmetric

if its payoff functions are skew-symmetric in the
strategies. An actual game is of this nature if esch
player must brepare himself in advance to play either side.
In chess, the brivilege of playing the white pieces is
governed by the choice of white or black from two pawns
concealed behind the back of one of the players in his

two hands. Hence roughly half the time, a player has:

to be prepared to play white, and the'remainder he must

be ready to play black. There is thus a certain symmetry

in the situation.

Sometimes there is no such symmetry inherent in a
game. In this case it ig possible to make use of one of

two symmetrizaetions. These both have as object, to reduce

the problem of playing a zero-sum two=-person game to that

of playing = symmetric game. ( A symmetric game, is as

& consequence of itg definition, zero~-sum) One of these

due to von Neumann (8) formalizes the game situstion Just
described. The other, due to D.Gale,H.W.Xuhn and A.W.Tucker
(20) is more elegant in yielding smaller compesite strategy
sets, but is less appealing to the intuition. Additionally
it does not seem to generalize to the infinite gane,

whereas the former experiences no difficulty in so doing.

1.4 CQNCLUSlQN In view of the Preceding discussion, the

pages following will review selected proofs of the fundament-

al theoremn, emphasizing its greab mathematical interest.
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CHAPTER TT

THE TWO-PERSON ZERQ-SUM GAME

2.1.1 DEFINITION A two-person zero-sum game G=(X,¥:f) ,

referred to hereafter simply as game, consists of a
set ¥, a set ¥, and a real-valued function f defined

on the Cartesiasn Product X x V.

2.1.2 TERMINOLOGY An element x of X is a pure strategy

for the maximizing player P. An element y of ¥ is a pure

strategy for the minimizing player p. f is the payoff

function. f(x,y) is the payoff for a play for which P
makes the choice x, and p makes the choice Yy paid by p
to P. BSince P's gain is p's loss, the sum of the payorffs
ig zerc. If v exists such that P is sure of winning at
least v, while p is sure of not losing more than v, then
v is the value of the game. Pure strategies x and v
achieving this, are optimal. The triple (x,y;v) is a

solution of G.

Note that this game is fair, in the usual sense, if
one fixed first move is appended to G,namely the payment

of v by P to p.

2.2 DEFINITION If X and Y are arbitrary sets, and f a

real-valued function defined on their Cartesian Product,

and f(x,7) £ £(x,7)

for all x in X and all y in Y, then f has a saddle point

at (x,y) and w=f(x,y)is the corresponding saddle value.




Ixistence of a saddle point in the payoff function
is intimately associated with the state of information of
the game. Von Neumann and WMorgenstern (op cit) show that

every game with perfect infommation has a saddle point.

2.5 THEQREM A game has a solution if and only if its

payoff function has a saddle point.

PROOF IF- f(x,y) £ £(x,¥y) for all (x,y) in X x Y,

then £((x.y) [ £(x,7) and f(x,y) [/ £(x,y)
S0 t(x,y) £ £(x,y) [/ £(x,5) But w = f(x,y).

Therefore  £(x,y)

1™

w L £(xz,7) or verbally:

no strategy of P played against p's saddle strategy can

win P more than w, whereas no strategy of p played against
P's saddle strategy can cost p less than w. Hence by

2.1.2 the game has solution (x,y;w).

ONLY IF~ (x,ys;w) solves the game, therefore P wins at
least w by playing ¥X. and p loses no more than w by playing
L. But P's gain when p plays strategy y against x is £(x,y)

and p's loss when P plays strategy x against y is £(x,y).

Therefore flx,y) /£ £f(x,y)
because F(x,3) £ w [ £(x,7) so that by 2.2
£ has a saddle point. Q.E.D.

It is very easy to construct a game with no solution
in the above sense. Tet X=Y=(1,2), £(1,1)=f(2,2)=0 and
£(1,2)=F(2,1)=v40. TFor definiteness suppose 0O/ v. Then

if P plays first, p may hold his loss to zero, whereas if



P plays first, P can gain exactly v. So no solution exists
in the above sense. UNMeanwhile, the question presents
itself, if a game has more than one solution, does it also

have more than one value?

2.4 THEQOREM The value of a game is unique.

PROOF  Suppose two solutions of G are (x,y;v) and (xiyiv').
Thus by 2.3 (x,y) and (x!y') are saddle points.
Thus by 2.2 f(x,y) / f(x,y) and f(x,y") L £(xiy)

for all x in X and y 2n Y.

In particular, flxly) [/ £(x,y) = v
x,y) £ £(x,5")
and £(x, 7' )L £(xiyt) =v

Pxiy' )L f(xiy)
Combining, f(xég}éf(gag}zzéfggﬁy”}éf(xﬁy')zV’éf(xgg)e
But the extremes of this string of inequalities are identical
so that the equality must be taken all the way through. In

particular v =v' so the value of the game is unique. Q.E.D.

2.5 DEFINITION A mixed strategy x* for P is a real=valued

probability distribubtion defined over x in X such that

0/ x*(x) and g x*¥{x%) =1,
‘ x in X

L mixed stravegy y* for p is defined similarly, the sunm

being taken over y in Y.

The number x*(x) is the a priori probability that P

will choose pure étrategy Xo



2.6.1 DEFINITION Related to G=(X,¥:f) is the extended

two-person zero-sum game G*=(X*,Y*:f*) referred to

hereafter simply as the extended game.

X* and Y* are the sets of all mixed strategies x*

and y* respectively, and are called the extended strategy

sets -or the mixed strategy sets. Since the pure strategy

x' is obtained by setting x*(x')= 0 and x*(x)= 0 for xix',
all pure strategies are ooniained in the mixed strategy
sets, and X* and Y* are commonly referred to simply as

the strategy sets. The extended payoff function f* often

referred to simply as the payoff function is the

mathematical expectabtion of P from p. That is, fE{x* ,y*)

| represents the long term expected gain o P when he plays

x* and p plays y*. Thus straightforwardly:

£* (x*,5%)

¥*(x)=0 (resp. y*(y)=0 )
(resp. y€Y).

2.6.2 DEFINITION G has a solubtion in mixed strategies,

hereafter referred to simply as soluticn, if and only if

G* has a solution.

2.6.3 THEOREM (x*,y*;v) is a solubtion of G if and only if

¥ (x, 79 / £%(x*,y) for 2ll pure strategies x and v-

PROOF  ONLY IF- G has a solution, so G* has a solution by
2.6.2 implying that G* has a saddle point from 2.3

Hence, EH(x*,3%) £ ¥ (x*,y*) £ £*(x*,5*) by 2.2 for

¥ (x)y*(y)£(x,y) and



H_iS,””,

all x* in X* and y* in ¥¥. Bub as noted in 2.6.1 these

include all the pure strategies, proving the theorem.

TP £ (x,y*¥) [ £ (x,y) xin X yin¥Y
Then x*(x)f#€xgg$) / f*(é*?y}x*éx) " "
Sun over x £¥(x¥ ,3%) [ £ (x*,y) x*in X* "

gince x*(x) sum to unity.
Sum over y f*(x*;g*) / f*(§#?y*} " y*in T*

Which exhibits a saddle point for G*@ whence a solution for

G*,whence a solubtion in mixed strategies for G, Q. E.D.

Hereafter, as in the literature, the word game will
$ b

usually be taken to mean G* unless otherwise specified.

2701 DEFINITION If for fixed x in X, £(x,y) always has

a greatest lower bound with respect to y in ¥, and for
fixed y in ¥, f(x,y) always has a least upper bound with

regpect to x in X, then:

Bf(y) = lub f(x,y) = sup £f(x,y) re xinXx
bf(x) = glb £(x,y) = inf f(x,y) re v in ¥

bBf = inf Bf(y) = inf sup f

Bbf = sup bf(x) = sup inf f

It is possible that these limits will actually
be attained by function values of f. In that case,
sup becomes max, inf becomes min, sup inf becomes maxmin

and inf sup becomes minmax as follows:
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Mf(y) = max £{x,y) re x in X
nf(x) = min £(x,y) re v inY
mMf = minmax f
Mmf = maxmin f

There is no difficulty remembering which set goes
with which operation, since both max and sup are char-
acteristic of the maximizing player and logically take
place over X. Hence it is not necessary to specify the

strategy set when using the preceding abbreviations.

2.7.2 THEOREM If Bbf and bBF exist, then Bbf / bBF.

PROOF £(x,y) [/ B£(y)
So bf(x) [/ Bf(y) showing that the set of
bf(x) is bounded above and that of Bf{y) bounded below.

Therefore Bbf [/ Bf(y)
And Bb?t é bBf Q.E.D,
CORQLLARY If Mof and mMf exist, then Mmf / mlf.

2.7.3 THEOREM Bbf = bBf if and only if there exists a
point (x,y) in X x Y such that for any positive e there
exists a positive §' so that

fx,5') / £(x',y) + e whenever /xt=x/ [/ g and /y'~-y/ / &

PROCE OHLY IF- Assuming Bbf = bBf, then by 2.7.1 and
the definitioﬁ of a limit there exists a point (x,y)

in X x Y for which the following inequalities hold:



bBf / Bf(y') / bBf + %+ e

i

Bbf - % e / bf(x') / Bbr
whenever /x'-x/ / & and /y'-y/ / §
But from 2.7.2 for 21l x and v:

f(x,5') [/ BE(y') /

Bbf - 3+ e / bf(x')
Combining these inequalities:
~%e+f(x,y') L BE(y')-te / bBEf=Bbf / bf(x')+ie z f(X’Qy}+%@
Vhence f(x,y') /[ £(x',¥y) + e with the stated restrictions
on x',y' with respect to x and g - BSo this point (x,y) is

the one whose existence is required by the theorem.

IF- Assuming the existence of the point as in the

enunciation of the theorem, and applying 2.7.1 yields:

flx,y") [ f(x',y) + e

Bf(y') [/ bf(x') + e

bBF [ BT + e
But Bbf / bBf by 2.7.2
Therefore Bbf / bBf / Bbf + e

But since e is purely arbitrary, being only required to be
positive, therefore the only way this inequality can be

always valid is if Bbf =bRBf A Q.E.D.

COROLLARY If mMf and Mmf both exist, mMf=Mmf if and only

if f has a saddlepoint.

PROOFR The only difference from the previous theorem
is that e = 0. But by 2.2 the enunciation of the theorem

is precisely the condition for a saddle point in f. Q.E.D.



Since this could be rephrased as minmax = maxmin
if and only if the game has a saddlepoint, the origin of

the term Minimax Theorem referring to the fundamental

theorem of game theory should be clear.

2.8 THEOREM If G = (X,Y;f) has the solution (x,y;v)
and w is an arbitrary constant, then G' = (X,¥;f+w)

has the solution (x,y;v+w).

PROOF Tet f+w = f£f'. Then f'(x,y) = f(x,y) + w.
By 2.% and the hypothesis, f’has a saddlepoint:
(x,3) [ v [ £(x,57)
So flx,y) +w/v+w/f f(xy) +w
Oor U (x,y) £ vew £ £'(x,5) which tells us that
G' has the same saddle point as G and hence by 2.2 and

2.5 has the solution (X,y; v+w) Q.E.D.

The solvability and the optimal strategies of a game
are not affected by the addition of an arbitrary constant

to the payoff function.

COROLLARY The value of a game depends continuously on the

payoff function.

PROOF TLet G and G' have £ and f' such that:

/ f(x,y) - £'(x,y) / / e, a positive number.

Then f(x,5) - e / f(x,y) / £(x,5) + e for all x,¥v.
By 2.8 vee/v'/ v+ e
Or fv=v'/ [ e Q.E.D.

A small change in payoff function generates a small
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change in the payoff.

2.9.1 DEFINITION A game G = (X,¥:;f) is symmetric if

X =Y and f is skew-symmetric. TE £(a.,b) = = £(v,a).

Both players have equal resources and the skew=
symmetry of f shows that identical strategy choices
will result in a payoff of zero. So if G has =

solution, its value is zero.

2.9.2 DEFINITION «G- is the symmetrization of G if

=G- is symmetric, and G has a solubtion if and only if
=G= has a solution.

See 1.3.2 . Here only one of the symmetrizations
will be defined, consideration of the other waiting

until matrix games have been introduced.

2.9.3 DEFINITION Von Neumann's symmetrization of a

game G = (X,¥;f) is (Xx¥,XxY; =f=) where
~f~(z,2') = f(x,y') - f(x',y)

Both players have pure strategies z = (x,y) in
the same strategy set ¥ x Y . The definition of -f-
makes it aubomatically skew-symmetric. Mixed strategies
z* in X*xXY* may be introduced without difficulty. Since
each player must be prepared in advance to play either
side, hig mixed strategy consists of choosing probability

distributions x*(x) and y*(y). Since these choices are




independent, the probability of choosing a particular pair
of probability distributions in ¥ and ¥ is the product of
the individual probabilities. That is, z* = x* v*. Tt re-
mains to be seen whether the other conditions of 2.5 are
satisfied.

Since x*(x) and y*(y) are never negative, neither is
their product, so 0/ z*(2) for all z, which is the first
condition.

But EZZ 2% (2)

V4

i

DI CAICOND SN END
7 £
> ()

N

i

1, since x* and y* satisfy 2.5

Therefore 2* satisfies 2.5 and a bona fide mixed strategy
has been obtained for the symmetrization.

2.10 THEOREM G has a solubtion if and only if its von
Neumann symmetrization hag a solution.

PROOF ONLY IF- Tet (x*, y*; v) solve G. Then by 2.6.3

£(x,y%) [ f(x*,y) for all pure strategies x,y.

Thus wfe(é*gz) f(§*9Y> - f(Kgg*) is never negative
for any pure strategy z of the symmetrization. Taking any
mixed strategy z* of the symmetrization:

~t=(z%,3) = 2o =f=(z*,2)2*(z) and 0 / z%(z)
Z

.

Therefore 0 ~f=(z*,29 for all mixed strategies of

the symmetrization. But -f- ig skew=symmetric, therefore:
=f=(z% ,z%) L 0 / mfa(g*%ﬁi for all z'* and gz*,

Hence -f- has a Saddlepoint at (g*Qégjgby 2.3 the sym-

metrization has the solution (z*,2%30).



IF~ +the symmetrization has the solution mentioned,
then =f= has a saddle point by 2.3 and sebting z'% = z*
yields 0 [/ =f=(g¥,z*) for all z*.

So 0 [/ f£(x*,y¥) = £(x*,y*) for all x* and y*.
Or f(x* 9Z*> &,/: f(gg*'gy*) i 1 1 &

This is the condition for a saddlepoint in G* by 2.2 and

by 2.6.2 G has a solution in mixed strategies. Q.E.D,

2.11 CONCLUSION These have been results needed for the

thesis, and readily deriwvable for general strabegy sebts.
In the next chapter will be treabed a narrower, but more

tractible subject- matrix games.

21



CHAPTER ITT

MATRTX GAMES

3.1 DEFINITION A matrix game is a two=person zero-

sum game with finite strategy sets.

The name arises because the payoff function can be
set up in matrix form. Suppose X contains m elements and
Y contains n elements. Within these sets, the pure
strategies may be put into one-to-one correspondance
with the first m and n positive integers, respectively,

so that f(x.,¥v) = £(i,3) = as for i = l,mand j = 1,n .

Cuts

A = {aﬁé) is a matrix whose general element is the payoff
when P plays pure strategy i against p's pure strategy .

But uiﬂvﬂ = 8;VY = 8343 , 50 bthat the mixed strategies now

¥

appear in the form of m-vectors x for P and n—vectors y for
Py with the additional requirewent that xu = yv = 1. If
this ie a valid interpretation, then the peyvoff when the

mixed strategies x and y are played should b exactly the

e
mathematical expectation value. Let x = (¥;), v = (vd),
XU

Xy aﬁj yj which

i=1,msi=1l,n: 1 = yV = 1. Then xAy

k24

i}

by 2.6.1 is exactly the payoff in the extended game G*,

3.2 DEFINITION The fumdameatal theorem or minimax theorem
of game theory may be stated in two equivalent ways:
Every mabtrix game has a solution in mived strategies.
In every ewbended mabtrix game is found a =addle point.

The proofs of this theorem fall into two general

22




categories: existence proofs, and algorithmic proofs. The
former type only proves the theorem. In accomplishing this
the latter furnished the opbimal vectors, the value of the
game or both. Rach type of proof could be further subdivided
as to method: topological, aaalytio &c. A representative
selection of these proofs will be given and some of the
similarities and differences between them will he noted as
well as a brief indication of the sort of situation each

proof best sults. Von Neumann's first two proofs made use

of difficult topology. and many years elapsed before Ville's

"elementary" proof appeared. A proof ig elementary if it
involves only operations in an ordered field requiring
addition, subtraction, multiplication, division and decision
as to whether a number exceedsg equals, or falls short of
zero; decisions in a finite set of numbers exhibited one

at a time.

5.5 DEFINTITION Gale, Kuhn and Tucker's symmetrization (20)

of the game with matrix A is the game whose matrix is

.;/o' A =1}
8= [-a" o 1|
1 -1 @/

where the 0 and 1 in each instance refer to submatrices
containing all zerss and all ones sufficient to Fill out
S to (m+n+l) x (men+l).

When any confusion might arise, this symmetrization

will have matrix Sp to distinguish it Ffrom the previous




24

one which shall have matrix 54. Of course, this accords
with the chronological order of their appearance, S0 no
difficulty will be experienced in keeping them sorted

out.

This symmetrization has a similar interpretation to
the previous one as is seen by the manner in which A
and its branspose enter the matrix. At first it seems
that the marginal row and column of zeros and ones are
superfluous, but they are found to be necessary in order
that the vectors' components satisfying the symmetrization
be forced to add up to unity to meet the mixed strategy

condition.

3.4.1 THEOREM OF THE SEPARATING HYPERPLANE For a given

nxn matrix A and a given n-vector b, exactly one
of the following vector equations has a solution:

(1) XA = D 0 é‘x

(2) 0 é Ay  yb /O

This theorem is presented as Theorem 2@6 in D. Gale
(18) and is very powerful for working with linear ineg-
ualities, but the proof in Gale's book is an uninspiring
dull exercise in induction. There is another method
available, first proposed about a decade ago by Motzkin.
and lately revived by  Hoffman and Mc Andrew (25). A
modification of this method will be used here Lo establish

the theorem.
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PROOF  Suppose that (1) and (2) are both true. Then:
0/ xAy = by = yb / O which is a contradiction.

=

Hence (1) and (2) are mubually exclusive possibilities.

Now suppose that (2) is false, which means essentisally
that Ay /O and yb / O. If this is not so because of

the sign of y, use its negative. Now consider the funchion

%

f(y) = yb + : exp(=24y)  which can be

i

n dimensions represent the components of y. BEvidently £(¥)
is a continuous surface in such a space. It therefore
attains its bounds over the set of y for which yb / O.

But the term yb is bounded above by zero, and the summation
is bounded below by zero, since all its terms are exponen=
tials. Furthermore, exponentials go to infinity much
faster than quadratic terms of the type found in yb. There
is therefore no question that the two components of f£(y)
might cancel each other off for 2ll values of ¥. Hence
£(y) is bounded below, hence has a greatest lower bound,
and by the argument above assumes this as a minimum.
Suppose a vector for which such minimum is atbained is

Joe Let the first partial derivative with respect to the

d'th component of y be denoted by a superscript ' and a

subscript j. Then, fg = by% + ;ET -a yé exy(aaiy)
¢ i
3 S 3
and ¥y. = v s o0 fl= DbV, s+ < =g v expl{-a,y)
(2 } & . 3 - XL
i <
fh= bY - > 2;5 expl-a,y)

i
and the necessary condibvion for the existence of a minimum



of £(v) for the vector To is that all the first partials

vanish there, yielding the n eguations:

i s 9 o . . ot
bY = X, 8. i=l,m  in which exp( aiy}
has been replaced by Xg o But x 8oy = {xA)q from
which B - (XA)J
or b = xA which ig the first half of

(1) satisfied. But since all the components of x are in
the form of real exponentials, it follows that no such
component can be negative. Hence 0 / x which is the

other half of (1). This proves the theorem. Q.E.D.

5.4.2 LEMMA TIf A is skew-symmetric then the set of in-

Sz

equalities: 0/ xA, 0/ %, =xu=l always has 2

solubion.

PROOF Tet b 2 0. Then x must be semipositive, since

x = 0 implies xA = O. Similarly, y = 0 implies yb = O,
80 y may be taken semipositive. Both x and y may be
considered normalized (strategies); if not, divide through
by xv and yv respectively. Now the alternatives become:

0/ b=xA, 0/x, xu=1 or O/ Ay, yb= =1,

N

But since @ / b, no component of y can be positive, so
reverse the second alternative by letting z = =y.
Then O / =&, O/ x, xu = 1 or Az /0, zb =1, 0/ 2
O‘é xh Oé X, ¥1u = 1 or zAtué 0, 0/ =z, zgsl since
at least one compouent of z is positive. Also the transpose

of A is its mnegative because of the skew-symmetry. Hence:



0/ xh, 0/ x, xu =1 or =-zh/ 0, 0 4 z, zb=1
it 1 i or O 131 ZA ] 11
Taking b=v it is seen that both these alternatives are

subsumed under: O / xA, x semipositive, xu = 1 Q. E.D.

3.4.%5 THEOREM The S, symmetrization of a game has a

solution if and only if the game has a solution.

PROOF By 2.8 the solvability of a game is not disturbed
by adding a constant to the payoff function. Therefore
a large enough constant is added o every element of the
matrix Yo assure that there are no negative elements left,
in fact, that the smallest element is now positive. Hence
the value of the game is also positive.
If { x ,7 ;5 w) solves the original geme, then (xiy )
is a2 saddle point in the extended game. Therefore by 2.3
sy L w/ &35 for i=l,m;j=1,n; xu=yv=1l. But 8y
and aj are positive vectors, and the strategies semi-
positive, therefore the left and right hand sides of the
above inequality are both positive. Therefore:
0/ wu - Ay
0/ Ax -~ wv and xu = yv = 1
Consider the m+n+l vector z = (x,y,w) and form both its

t

products with So: zZ S5 = 552 = -5p2 and

oo

¢ N

i

S, ( ~yA” + wu, %A = wv, =30 +yV )

N

= ( wu « Ay, x A = wv, 0)
and from the preceding set of inequalities, every component

of this vector is either positive or zero. It is therefore
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semipositive and for any vector z which is semipositive
the product z S, z 1s not negative. Hence g S, z is
net positive and the following inequality holds

z' 852 [/ 2z 852z for all semipositive vecto

and in particular for any mixed strategies of +the

symmetrization. But the sum of the components of zZ 1is
2 + w. Hence 3z" = Z is an optimal strategy for

A S R AR TS

2+ w

the symmetrization and its value ig zero.
% % %

Assume now that the symmetrization has the solution

tﬁ
0

(z", z" : 0). ecause of the way S, is parbitioned. it
Z7, 27 3 ) 3 ;

ig natural to write 2" = (x*.y*.w) where the first is

an m=vector, the second an n-vector. and the third a
scalar. From 2.6.3 applied to symmetric gemes follows:

Il

z" 52 z not negabive for any pure strategy =.

Letting the z be equal to each k'th unit vechtor in turn
yields the condition 0 /£ z" 8y, and the condition

that the components of z" add up to unity yields
X*u o+ yEV o+ w o= 1.

Expanding the first of these yields

5 Yown
o/ E*A - WY two vector inequalities
and 0/ -x*u + y¥v a scalar inequality
and writing out components:
O/ w- a;y*

O
™
o
i
E:3
H
#
g
o
!
g»..! o
it
o
=
I
§_,s
il
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(o)

which combines into a;y* / w / adx* for all

This is the condition for x* and y* to be optimal

x*u y*v
mixed strategies for the game with mabtrix A, provided
that neither x%*u nor y*v is equal to zero. It is at
this Juncture that the extra marginal row and column in
the symmetrization mabrix become indispensable. Notbe
that x*u [/ y*v and x* and y* are non-negative since

z" being a strategy was semipositive. If, then, y*v = O,

-l

x*u = O also which is only possible if x* = 0. But since

x* A - wv and w is not negative since it was a

O
Fi

component of z'", therefore w = 0. But this implies that

¥

X*0 + y*v + w = 0, which is a contradiction, since this
sum is the sum of the components of a mixed strategy z"

for the symmetrization and by definition is equal to one.
Therefore y*v £ O.

Now suppose that w = 0. Bubt -Ay* + wu has no negative
components, therefore Ay* has no positive component. Thus
xﬂg* / O for every strategy x of the game with matrix A.
But this means that the value of that game is also negative
or zero, when in fact the value was made positive by adding
a sufficiently large positive constant to all terms of the
matrix. Here, then, is another contradiction, and it is
impossible that w = 0.

Combining the two vector inequalities from the bottom
of page 28, yields wy*v / x* A y* / wx*u and since w is

positive, y*v / x*u, and since it is already known thab
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the inequality holds in the opposite sense, then must be
true that x*u = y*v = r, say. Consider now x*/r and y*/r
whose components sum to unity. The previous inequality
becomes ajy*/r [ w/r [/ adx*/r which is pre-
cisely the condition that the game with matrix A have

the solution {§*/r s Y¥/r 5 w/r ) Q.E.D.,

3.4.4 LEMMA Every symmetric mabtrix game has a solubtion.

FPROOF From 3.4.2 applied to the skew-symmetric matrix
S: 0/ =x8, 0/ x, xu =1 always has a solution.
The second pair of conditions guarantees that +this
solution is a mixed strategy., and the first condition

is that for x to be optimal for S. Q.E.D,

5.5 ALGEBRATC PROOF OF FUNDAMENTAL THEOREM HEvery matrix

game has a sclution in mixed strategies.

PROOE  From 2.10 or 3.4.3 every matrix game is equi-
valent to a symmetric matrix game. From 3.4.4 every

such game has a solution. Q.E.D,

This is an umcommonly compact proof, but it should
not be forgotten that several pages of straight algebra
were invelved in it. Proof without symmetrization is

not so neat, as will be shown now by way of comparison.

5.6.1 THEOREM OF THE ATTERNATIVE FOR MATEICES Straight
t

from 3.4.1 come the pairs of alternatives:



EITHER

XA = b 0 4 b4
%X?ZD{“' =b 0/ % 0/ 3
XA /Db 0/ x

13 B 11 h

x(A,-u) / (0,-1) 0 é x
¥h [0/ xand -xu/ -1
XA /O 0/ x

Ly /O 0/ vy

p ,

\-éav;:[m} <;§ ‘{i 0 Oé:y Q/,/.Z
Ay + 2z /O " :

Ay [ O 0/ v

53.6.2 ANOTHER ATLGEBRAIC FROOF

solution in mixed strategies.

EROOF

OR
0/ Ay yb /O
{; ¥y non-negative yb /
(A 357.) 1] 8¢ 1
0/ Ay 0/ y yb /
0 :;{, (A%"u)(yg (Qawl) gy

= k ¥,
0/ ¥ 0/ k

Ay-ku non-negative,also v

<k /O

0/ Ay y non-negative

O 4 A e 1% 1

0/ x(4,In) 0/ x

0/ (xA,x) "

0/ xA 0/ =x

Q.E.D.

Every matrix game has a

Let the game matrix be A and consider the set of

payoffs xAy for which B#(y) = sup xAy and bf(x) = inf xAy

whence

Bbf / DBf.

inf Bf(y) = bBf and sup bf(x) = Bbf.

From 2.7.

Assume that Bbf / DBFf and form a new metrix

A" = 4 = (DBE + Bbf)

e S 5 AN 30

IIBIQ_

2

W
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for which is true

}
i

‘(l) Bbf' = Bbf - % (Bbf + bBRf) %+ (Bbf = BRF) /0

(2) DbBfY bBf - % (Bbf + bBRf)

i

% (DBf - Bbf) » O

il

by 2.8 . Applying 3.6.1 to the matrix A' guppose the
first alternative to be true where the vector involved

is a strategy: Ayt /0, 0/ ¥, y'v = 1. Then for

any strategy x' the p;yoff x'Aly' [/ O because any strategy
is semipositive. From this Bf'(y') / O and bBf' / O

in contradiction to (2).

If on the other hand the second alternative is taken,
then 0 / x'A* , O/ x', x'u =1, so that x' is a strategy.
Then for any strategy y' the payoff satisfies 0 [ oxtAtyr
from which bf'(x*') and Bbf' are positive, contradicting
(1). Since neither alternative holds, the assumption that
Bbf / DBf must be wrong, and the alternative of equality

mast be valid.

Finally, for a matrix game there exist mixed strategies
for which the bounds are attained so that

Mnf = mMf 4 Q.E.D.

3.7 GEOMETRIC CONSIDERATIONS The outline of a geometric

proof, essentially Villé'ss as presented in D. Gale (18)

will now be presented.

PROOF Tet A = (29) and consider the set of columns of A
as a finite seb of n points in m-space. TLeh -A- be the

smallest convex set containing all the ad, j=1,n.



That is, =A- = ( x 3 x = 4y , yv =1 ). Let z =wu ,
the m-vector all of whose components are w . Define a
new convex set -A - = ( X ; X = Ay - 2z , yv = 1 ) which
comes from -A- by subtracting z from every vector in it.
But since 2z is equally inclined to the axes in the
w-space, the formation of this new set is geometrically
the same as sliding the entire set -A- along the egqually
inclined line towards the negative orthant. Then for
large enough w +the entire seti -A- may be slid into the
negative orthant as all the points in it are finitely far
from the origin. Conversely, for a sufficiently negative
value of w , the entire set will be in the positive orthant.
Therefore at some intermediate value of w = Wo, =A= will
contain exactly one point contiguous to the negative
orthant, namely the origin. In algebraic language, there
exists y* such that A v* - W 1/ 0. On multiplying
through by x, any strategy for P, it is found that
xAy* -  wyxu / 0O

x Ay* / wy xu for all gsrategies x.
This is precisely the stéte;ent that the minimising
player may restrict his loss not to exceed W, Since for
a strategy x, it is true that =xu = 1.

Since the intersection of ~A,~ and the negative
orthant contains only one point , there is a hyperplane
separating them. A vector x perpendicular to the hyp-
erplane, pointing away from the negative orthant, will

form an obtuse or right angle with any vector from the
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negative orthant and an acute or right angle with any
vector from the positive orthant. Hence x is semi-
positive. Therefore =x* = x/xu is a strategy for P.
Since “Azg lies all on the same side of the separating
hyperplane as does x*, the inner nroduct of the latter
and any element of the former must be positive or zero.
Algebraically O / x*( Ay - 3z4)

0 £ x*Ay = x*z,
wox*u / x*Ay

W, £ X*Ay  for y any mixed strategy for b.
Combining this result with the previous

XAy* [ w, £ Ay for 21l mixed strategies
of the original game. By 2.3 therefore the game has
the solution ( x*, y* ; W) Q.8.D.

There is a great deal of intuitive appeal to this

proof, as it is so easily by diagrams and models in
two and three dimensions. Probably it is the best of

all the proofs to present in a first course in Game

Theory for practical people.

The next chapter will deal with algorithmic proofs
of the fundamental theorem by linear programming and

differential equations.
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CHAPTER IV

ALGORTITHMIC PROOFS OF THE FUNDAMENTAT, THEOREM

4.1 DEFINITION An algorithmic proof of the fundamental

Theorem is any proof which shows the truth of the theorem
by actually producing the optimal strategies, the value,
or both. For most practical work, these are much more
useful than the existence proofs. In the final chapter
will be shown that practical games do have solutions,
regardless of the apparent complexity of the strategy
sets. Therefore the interest of game theory to a prac-
tical man lies more particularly in actually determin-
ing strategies or value. These might be vital for use

in a decision procedure for example.

4.2.1 LINEAR PROGRAMMING is a method of solving certain

maximum and minimum problems which do not yield to dif=-
ferential calculus. The word "linear" refers to the

constraint imposed on the variables involved by requiring

that they satisfy certain linear equations or inequalities.
To any such problem in which we are especially interested,
denoted the primal problem, corresponds another related
problem, denoted the dual problem. A necessary and
sufficient condition for either of these problems to have
a solution i1s that the other have a solution. Here, then,
is a similarity to game theory, where if P has an optimal

strategy,so does p and the game has a value.



4.,.2.2 TYPES OF PROGRAM Standard: maxinum:

Given: m x n matrix A, determine a non-negative =, %o

maximize xe¢ , constrained by x A / b .

Dual: determine a non-negative y, to
s ]

Pra Sy

minimize yb , constrained by ¢ / Ay .

£x

e

Capnonical maximum:

Given: m x n matrix A, determine a non-negative x, to
maximize =xc , constrained by x A = b.
Dual: determine a non-negative y, to

s

minimize yb , with y unconstrained.

General maximum:

Given: m x n matrix A, two sets M = ( x ; x = 1, m) and
N=(x:x=21,n) of which & and T are subsets re-
spectively, determine x such that:

x¢ 1s maximum

0/ % fories;g

xad / b for Jef®

J
xad = bj for j e N-T
Dual: ‘ determine y such that:

yb is minimum

-3

O[fy; for e

€

AN

2;y for i e &

C. M=5

i

i

&

a;y for i

A few minutes work leads to the conclusion that the
first two types are special cases of the third. In fact,

as shown in standard works on the subject, the three
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If x* and y* solve the primal and dual standard max—
imum problems, then: cx* / x*Ay* L y*0, O/ x%¥ 0/ y*.
If it turns out that x*c = y*b, then: i )
XAy * [/ by*=x*c [/ x*Ay for all non-negative x
and y. This looks suspiciously like a saddlepoint sibuation
and bears further investigation. The fellowing theoren
will be proved only for the standard maximum problem,
since the types of programs are interchangeable anyway
and from the above remark, the standard problem is the

one which bids fair to be useful in discussing game theory.

4.2.%3 FUNDAMENTAL DUALITY THEOREM Tf the primal and

dual standard maximum problems are both feasible (ie
there are vectors satisfying the constraints), then
optimal vectors exist for both programs, and the value
of the primal maximum is the same as that of the dual
minimum. If one of the programs is infeasible, then

neither program has an optimal vector.

PROOE  Suppose both programs feasible, that is:

xA /b, 0/ x and ¢ / Ay, O / y for some vectors
x and y,:Then: i i i
(1 xc [/ xAy [/ yb for all feasible x and y.
Since this automatically pubs bounds on x¢ and yb, the
maximum and minimum problems are both solved if it ever
happens that yb = x¢c / 0 , in which case (1) tells

us that , say, X*¢ = y*b. Let x and y now refer to any

other two feasible vectors. The following inequality



results: xc [/ xAy* / y*b = x*c¢ / x*Ay / vb which shows that

=3 = Voo
x*c is never smaller than any other xe¢ and y*b never larger
than another yb. That is, both primal and dual have been

solved. Therefore x*c¢ = y*b is the optimality criterion

for feasible vechtors.

The truth of the duality theorem therefore depends on

whether the following have a solution:

xA /b c / Ay ¥c = ¥b or
" t Ay [/ -c yb-xc /£ O (from (1) above)
14 131 gﬂy—ﬂ&i} w/ - 131 1 i
X'A' / B 0/ xt
'3 =~ =7 \ . [
where x'= (X,y) fo oy w@i b= (b,=c, 0)
AY = e
{Qm 4% b
X'A" 4+ 7 = b o/ x 0/ =z
x* A" = B 0/ x
where x" =(x',z)

AM o AT ’
- (Vm+n%l

If this last has no solution, then by alternative

N
A
—
D

Hy

3.4.1 the following have a solubtion:

0 / Atyt y'b'/ O or in termg of 4
(Atyh, v " which tells this

o0
{1 I T RSN 1

Aty 0/ wn yb = zc / O where y'=(v,z,w).

Ay = cw o/ w&tz + Wh

O
0™

0/ v,z

Two possible cases now present themselves, either w = 0 or




vectors x and y. The result follows from the enunciation

h

the primal and dual problems and the preceding con-

sequence of the theorem of the sevarabing hyperplane.

£’<3
I\
]

N
N
0

Teking the extreme members of +this ineguality

a contradiction. Hence w £ 0.

i~
!"{)

so, then ¢ / Ay/w, z/w A/ Db, yb/ zc =since

e

w ig positive. TFrom the first twe of these follows that
z/w and y/w are feasible vectors for the primal and dual
problems ( non-negative, since y and z both are) But from
the top of the preceding page this implies that

ze/w [/ yb/w  whence 1 é vb. But thisg results in the

inequality yb / zc / yb, another contradiction.

Conjecturing that the standard maximum problem may
have feasible vecbtors without having a sclubtion leads %o
contradiction, so the opposite must be true- if the primal
and dual programs have feasible vectors, then they have

optimal vectors and a common value.

Now suppose that the primal maximum problem has no
feasible vector. Then by the discussion on page 38, the
following have a solution: O / Az O/ 2z 2zb /O .

If the dual slso has no feagigle vectogg the problem is

trivial. Suppose then that ¢ / Ay, 0 / y have a solution.

Teke some positive number w : ¢ / A(wz + yv) which states
that wz + y is a feasible vector of the dual for all
positive w. But (wz + y)b = w(zb)+ yb / yb because

zb / 0. This says that no minimum exists for the dual
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program, since by teking w sufficiently large it is possible

to make (wz + y)b as negative as desired.

If the dual is infeasible, then exactly the same
procedure establishes:

0/ Ay - ¢ has no non-negative solution

"“'Ay + C / Q 114 £ 14} 111 11

z heve a solution.

V3
=
D
=
]
e—f,
(@]

K
0]

N

-
o

AN
[
AV
o

(=c)z /O, O

24 ( 0/ zc 0/ z" :

N
o=

1N
O

T A

Again if the primal is infeasible, the problem is trivial.
Assume therefore x A / b, 0O/ x for some x. Taking a
positive w as before: w(x + wz) A / b expressing the
feasibility of x + wz for the prim;l problem. Bub

xc / (x + wz)e for all positive w since O / zc. There
is hence no optimal vector for the primal problem, and

the theorem is complete. Q.E.D.

It is very easy to pursue this and get another
existence proof for a matrix game with positive payeff
function. By 2.8 the result will be valid for arbitrary

natrix games.

4.2.4 MATRIX GAME PROGRAM Given: A a matrix of positive

entries. 0 / 8 4 i=1,m; J=l,n . Determine x and y

to maximize yv and minimize xu subject to the constraints

Ay /u and x A\ V.



Let a2 and a be The maximum and minimum matrix elements
respectively. Then ua3= sun of m matrix elements of which
the smallest is a . Also a;v= sum of n matrix elements

of which the largest is a. That is ma / u.aﬁ—j‘3 a;v/ na.

Whence Av / nau and mav / uA which state bthat

v/na  and u/ mg are feasible vectors for the problem.
Hence by 4.2.3 there exist optimal vectors x* and y* such
that y*v = x*Ay* = x*u = w. Further these are semipositive,
because if either Wefe actually zero it would not sat-
isfy the constraints. Therefore =x*/w and v*/w are
strategies. TInserting in the constraint~inequalitiasz

vy/w [ x*Ay/w eand  xAy*/w £ oxufw
for all strategies X and y. Bubt therefore xu = yv o= 1.
Hence x Ayt L Mw i x Ay where y' = y¥/w, x' = x*/w
for all strategies x and y. But this shows that the

game has the solution (x',v'; 1/w ). Q.E.D.

This illustrates that if the standard maximum 1in-
ear program may be solved systematically, the optimal
vectors and value of a matrix game may be debermined
with equal facility. 4 method for doing this exists,
is known as the Simplex Method, and since its invention
in 1949 has become almost classic. Basically it is
Geuss=Jordan elimination in matrices, but with a2 de-
cision procedure incorporated which tells which sub-
stitution to make and at what stage to do so. The gel-
ution now presented makes use of nothing more sophis-

ticated than the idea of inverting a matrix.
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4.7 SIMPLEX PROOF From 2.7.1 and 2.7.2 applied to matrix

games follows: mf(x) / Mmf / mMf / Mf(y) sco that the truth
of the fundamental theorem hinges on finding x* and y*
such that mf(x*) = Mf(y*) since in that case Mmf=mMf.

But a;y / Mf(y) i=1,m and nf(x) / xal j=1,n by
definition of the bounds. They are also recognized as

the constraints of a standard maximum primal problem énd
its dval. The condition mf(x*) = Mf(y*) imposes simul-
taneous maximization and minimization in these problems.
For game purposes the solution of this program must yield
strategies, the condition for which is eg, o/ x, xu=l. So
the following seven conditions formuwlate a standard max-
imum problem and its dual, the solutiorn to which will
provide the optimal strategies and the value of +the game

with payoff matrix A:

(D a3y £ Mf(y*) i=1,m
(2) -xad/ -mf(x*)  j=1,n
(%) mf(x*) = Mf(y*)

(4) 0/ x

(5) 04y

(6) xu = 1

(7) yv = 1

The theorem in this form merely states that the above

seven conditions may always be satisfied.

PROOF The augmented matrix corresponding to A is




It is convenient for the purpose of this proof to arrange
the row vectors in this (m+l) x (m+n+l) such that 211/ 81
in A for i=1,m. Having done this, it is possible to
write A' = (ai) i=0,m or &' = (a'oga’gg u’i)3 i=l,m3;j=1,n.
A set of m+l columns of A' determines & square matrix RB.
B is a basis ifs

(a> aoo = bo

(b) B is non-singular; hence BB“lzB“lB:Zm+l

(¢) b3 > 0, i=1,m.
Condition (c¢) provides a way of ordering the rows of 51
by comparison with the null vector and isg necessary at a
later stage in order to proceed straight to a solubion
without getting caught in a circular argument. It will

now be proved that a basis exists. Consider the matrix:
O i O

M=l

— : O él' 33- sm':'l - - m=1 o T
By=(a'",a'",u' ... J= {=u e T
-1 A1 Om~l

where =1 ig the (m=1)x 1 vector of ones, a* a (m-1)x 1
vector, Opq & 1 x (m-1) zero vector and I, ; the
(m-1) x (@-1) unity matrix. In the latter fornm, inversion

is easily performed by inspection:

1
. ®mi Opp 1
P = . o1 L 0 m~]
:w %= T - A X
Fm1® T 8T gy W
Checking this, it is seen that (a) is avtomatically
satisfied by the definition of By. Further (b) is sat-

isfied since the inverse of the B, has actually been

found. b? >~ O since its first term is one. and the

5
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5 4 I in the last m-1
others because 8;1 £ 8,7 and the lp.q in the last m

rows of B . Therefore {c) is valid and it has been proved

o°
that a basis exists.

Let B = ( a'®, a%P) p=1,m; where all the a“pe(agga“i}
i=1l.m:j=1,n De a basis3 of which was shown that at least
one exists. Its inverse B™'=(b]) = (p™9) i=0,m;3-0,m is
(n+1) % (m+1).  Set bo=(m' ,=x) and b~ 2=(u" s¥'Y . Then
under certain conditions on the matrix B, x and the wvector

y=(y*',0 e m} are ophimal mixed strategies for the game.

Because BB T Lo bZa’OzlQO‘?mx)(Oﬁmu)z xu sab-
isfying (6) . But B is a basis, so from (c¢) follows
that b has no negative component ex ccent maybe the first.
©/ y' whence O / y. But Bbagz(lgom} and equating the
firstwoomponents yi;lds yv = 1, satisfying (5) and (7).
Equating the other components: =M!' a”pyé = 0, p=1l,m.

The latter sum is composed of %wo parts according as

pe (i) or (j). Therefore —M' - aijy; + agpyé_: 0. But
the a“ip in the second sum are either 1 or O, and y' non-
negative, therefore the second sum is not negative. Also
the first som represents (Ay}i since the last n-m com-
ponents of y are zero. Thus (Ay)i - M' é O for all 4,
satisfying (1). Also M'=m' from their definitions, whence
(3) is also satisfied. This is as far as can be got in

solving the program without adding additional restrictions

on B to elevate it to the status of optimal basgis, a

basis for which (2) should also be satisfied, and (4).
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From BB = I bga"P= m' - xal if p e (3) and

m+l ¢
bga"P= 0 - xu; for a"P e (u'l). Satisfying (2) requires
b3 atd / O for all atd entering the basis B as a"P and (4)
requires bg a'l / O for all utd entering B as a"P. Since
it would be rare to find such a fortunate turn @f events
first try, the question presents itself: is there a way

of ,changing B one step at a time, until a basis is reached
for which the foregoing are true? To answer this, note
that in the expansion of all other terms of B3~1g are found
b3y a"P = 0 for all it P, in particular bga”sz for all »p.
There arz exactly m such so among the m&n.séalar products
by a'd and bs u'd remain at most n non-zero numbers. If

none of these exceeds zero, the basig is optimal and the

problem is solved.

Suppose then that B is not optimal. Then 0 / bra"P
for at least one p. Take that for which it is largest
and introduce into the basis B. Compute w = B ~+a"d
where g satisfies the previous condition. 0 [/ wy on
this account. If Wo is the only positive component of w
then wy /0 i=l,m . But a"? =B w = woa'® 4wy anl .1, m.
So a'® = 1/wy (a"% + (-wy) a"l) i-1,m. But O / -w; and
a'® has been expréssed as a pésitive linear combination of
columns of A' all of whieh are headed with O or 1 . This
implies that O is a positive linear combination of zeros
and ones since O is the first component of a'® and is
absurd. Therefore w has at least one other positive com-

ponent, from which is obtained the replacement criterion.
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L=y

Consider mzi 4< ;?i for O/ wy and i £ 0 and
W. 1 Wl

replace b". Note that 0 =< by = wi/wy bL . Denote
the new matrix with bT replaced by 2"? as G. TForthe
rule given to be effective, C must be a basis and have

one more than before of nonpositive scalar products cg a'"p.,

Note that a'%= ¢® since it was ewxcluded from the
replacement c¢riterion. Therefore (a) is satisfied. To
prove (b), it suffices to exhibit an inverse for C. Con—-

sider D defined by:

dy =(1-1; ) (15 - wi/ W, bn ) o« {li?/zﬁfz,) b

where 1;,. is a Kronecker delta. Noting that:

wy = Brat? and  wn = bZ a"@ this becomes:
s o= (G-l T = I3 gl Y . -
dj = (I=1;,) (b3 - Ba'® b2y 1ip b
bLa"d = aa
e e}
T by 2t

Since ¥3a'® = 1i, for all i because BR™l - T and o £ 0,
the first column of DC is that of Im+1 as should be. And
by a"P = 1. b% 2", since for all a"P £ a"d the scalar
products are membérs of I whereas for the Vector entering

the basis the scalar product is the corregponding member

of the vector w. Therefore:

&.avD xélmliﬁ)(bganp - ’Dza"q b;a”p} + 1._ b-anP

= i T T
=_.ud = ud
br& bl" a

ﬁCl“lir>(lip - Wih%fp Tn) + L lrp W,

We Wp



When i £ » and a"P £ a"9, then 4;a"P - lip as is right
for a unit matrix and in the row corresponding to the
replaced column of B, dpa"9 = 1..1ng = lpg so the element
on the diagonal 1s again 6ne and all the others zeros.
This shows that 44 are the rows of the inverse of C, or

D = 0=, so (b) is satisfied.

For all d;, i# O, it follows from the top of page
46 and the fict that B was a basis, that d; is lexico-
graphically positive, satisfying (c¢) so that ¢ is indeed
a new basgis.

Furthér? since 4o = by - wy/w, b7 and w, and w,
both positive, and bl lexicographically positive, there-
fore dg “( bz and for any vector removed from B:

do a"k / b3 a"¥ = 0 since it is expressly
forbidden to remove the first column. Thisg means that
a vector removed from a basis can never again qualify

to enter a basis under the replacement criterion, and it

is impossible to have cycling of bases.

- Rh=aHd _ =10 ., h=attd _
Now d,a"d = bga"d = wo/w, bLa"d ; bja"? = w, and
b;a“q = Wy by tThe replacement criterion. Therefore

d,a"d

i

We = WO/Wr W, = 0, so0 one more scalar product

satisfies the optimality criterion, so that C is an im-

provement over B basewise. Butbt there are precisely

m+n@m possible bases and with the worst possible luck,
the process would terminate after that many steps. Hence

an optimal basis always exists and may be found. Q.E.D.
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The fundamental theorem is thus established, and
the ¥alue of the game and the optinmal strategies appear
almost as fringe benefits. The proof is somewhat long
but uses very little sophisticated knowledge and is very
straightforward To program in a digital compuber., since
available matrix inversion programs may be pieced into
a scheme incorporabing the replacement criterion. In
the next section is described an algorithm equally suited

to analogue computation.

4.4,1 LEMMA For a non-negative vector x in n-space:

xx [/ (xv}g / nxx

PROCF By induction on n. For one-vectors the equality
holds througheut, hence there is a starbing-point.
Assume true for n=k:; for n=(k+l) the three expresgsions
become: xx + o

(xv)2 + 2Ky XV 4 X§+l

(er1) (% + 3opq)

Forming differences from left to right:

2 2 2
XX+ X, =(xv)T = 2 K, XV - ¥ 440 Dby

the inductive assumption and the non-negative property

of the (k+1) vector.

|2 2 L2 2
(xv)© + 2 X ¥V o+ Ky g o exx ek g o-oxp o=

(YVBE =y ~{xx -2 x wv o+ kxe )

WoEN S f N Rt .Jz,""*}, et k;»g..l_ et

( {xv)g =kxx ) = {( % - Xk+?V\ since vv = k by the def-
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inition of tThe unit k-vector. The first of These express-
ions is not positive by the inductive assumption so the
whole difference is also not positive. This established
the inegquality for (k+1) vectors also and the lemma is

proved. Q.H.D,

44,2 AWATYTIC PROOF: SYMMETRIC GAME with n x n matrix

8--8%, Consider n-vectors v and z = 8Sy. ©Let x be
the n-vector with components X4y = max ( 0, zj)a Let

t be a variable continuous with respect to bTime,

Consider the system of =n differential equations:
Doy =x = (xv) ¥y
with initial conditions O [y, , O/ X5, ¥ov = 1, 0/ x,v.
Having started as a strategy, will y remain a strabegy?
Suppose that for some value of 4, y=0. Then at that
time and for the same‘oomponent Dy = X which is never

negative. Therefore O / y for all t.
IT yv = 1 at any value of t., then

VDey = vx = (xv)(vy) = xv(l-vy) =0=D..(vy)
so yv remains constantly unity for all t. Hence if y

starts out as a strategy, it remains a strategy.

For a meaningful solution to be obtained, it is nec-
essary to show that x and xv Dboth approach zero with
increasing T fast enough to assure that the rate of
change of y Dbecomes nil. If at any value of %, x=0

the process has stopped, so it suffices to consider x£0.
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Sx -(xv)(8y) = Sx -(xv)z

il

Note that Dyz = S Dty

sx-(xv) sy =sp(x - xv y)

and VW x-xvy) =vk-xvvy=xv(1l-vy) =0

and since every component of v is one, this means that
X - Xvy 1is a null vector.
So suppose that O / zp. Then x = O and remains so
because the negative component of z cannot change by the
above. Thus Dtxj = thj for positive Zje
| Dt(xg) = 2 Xj Dtxj = 2 X3 thj because
when Z5 / 0, xj=0 and nothing is contributed. So then

2-— (5 . = N .
Dt(xj) = 2 XJ(SX)J 2 xv xa(Sy)J

and summing over the index j=1,n

Dt(xx)

2 x8x - 2 xv xSy

-2 xv x8y Dbecause x8x = 0 by

[}

XZ since

the skew-symmetry of S. But B8y = z, and xx
ever& time z has a negative component, x has a zero to

counteract it. ™Pherefore:
De(xx) = -2 xv xx whence

D.(ln xx) = - 2 xv to approximate
the solution of which recourse is had to 4.4.1 in the

form: ()t / xv / (nxx)®

N ] ’ 1 .
+2 (xx)¥(xx) [ 2xx xv [ 2 xx n?(xx)?
Changing sign, reversing inequalities, and replacing xv
by = 7 Dg(ln xx):

1 £ -t ()2 D (xx) (£ nt
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of which the solution sbtarting from t = O is:

XoX, [ ¥ [ XoXg

T

K A2
n(1+6{xex,)7) (1+5(x%e)7%)

showing that =xx indeed approaches zero with increasing
t. Noting 4.4.1 again, it is seen that xv also goes
to zero. But x has no negative components, so the only
way this can happen is for x to approach zero. In the
original system of differentisl equations, then , the

rate of change of y goes to zero with increasing %.

Because 0O / Y3 é 1, a compact range, limit points
yg exist for increasing t, such that x* = 0 according
to the last inequality. This implies that z* =8 y* £ O
since z / x always. Furthermore, ¥y has always remained
a Strate;y% so that y* is a strategy. Playing any other

strategy y for P against y*'for P and wice versa:

ySy* = Sy* ¥ = y*8¥%y = —y*sy £ 0

ySy* £ O [ y*Sy |
which is the condition for S to have solution (y*,y*: 0).
Since yv=1 at all times, the actual number of indep-

endent differential equations:is =n-1, and the process

can always be started by letting ¥y

Jo = -vvle QnEcDa

44,3 ANATYTIC PROOF; ARBITRARY MATRIY GAME Since by the

above proof, symmetric games are solveble by algorithm,

arbltrary games may be handled through their von Neumann
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symmetrization. Of course, the other one could be used %oo,

but this one yields a system with fewer differential equations.

-

f G has the m ¥ n matrix A, and 87 the mn x mn matrix
S, then a pure strategy for P is the choice of (qg,r) where

g is a meximizing strategy and r is a minimising strategy
in G. A pure strategy for p is, similarly, (s,t). If P
plays q against t he wins 8t and r against s loses him

a so that Sij = 8gy = 8gp - By lemma 3.4.2.therefore,

sT
0/ 28, 0/ =z, zw=1 for some 3z, where w is the vector
of ones and dimension mn. Replace z8 = - Sz in the first

of these by the skew-symmetry of S.

Expanding, 2%: (aobzsr - asrzst> / O for all q and r.
5,6 - ’

Therefore 25: gt 2%; Zop 4 :gi Bap Eil.zst
- S S g

t
of form :Ej aqt Ty £ D Bgp Xg
t 8
or Ay [/ xA where Xu = yv = 2w = 1.

And since 0 / z, it follows that 0 / x and 0 / y which

qualifies x and y as optimal strategies for G.

Now a system of mn differential equations:

Diz = X = (XV) =
where U =832 , X = ( max(oﬁUﬁ} ). But because
U = (ayy - xad) from Ay - xA = S z , the treatment of
4.4.2 applies, with X , XX, XV depending only on the m+n

indices of G instead of on the mn indices of S-.
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ReBxpressing these differential eguations in component

form and summing selectively:

i, Dt Zij = j_ Xij o= QXV) 22-'—1 Z:L;!
2> 2> =
j D'f] Zla = J Xla == (XV) 3: zi.,j
D‘i; yj = Xz = (XV) ya
D, x; = X¥ - (xv) xg

a system of m+n differential equations, the simultaneous

solution of which systenm furnishes x* and y*$ optimal

vectors for G. Beéause yxu = yv = 1 always, only m+n-=2

of the differential equations are independent. Further,

i% is also possible to start the process by taking

Xo = Uy and o = Vq- Q.E.D.
This algorithm should be very easily set up on an

analogue computer, and by comparison with the previous

one, should be relatively insensitive to small errors

in the equipment. See in this connection 'N. Mendelsohn

(35) on ill-conditioning in matrices.

All the proofs to this point have relied rather
heavily on restricting the strategy sets of the game
under consideration. In the next chapter will be given

some less restricted proofs of the fundamental theorem.



CHAPTER V

LESS RESTRICTED PROOFS

‘5.1 THEQOREM G = (X,Y;f) has a value if f is bounded
and for O / e, there exists a finite set (xi, .o xi)
in X such that for any (x,y) in X x Y the particular
mixed strategyvx' involving only the previously mention-

ed finite set satisfies: f(x,y)-e [/ £(x',y) .

PROOF The set of vectors uj= £(x§,7)=0;(y) (y in ¥)
is in Rm and bounded since f is bounded. Therefore
among these are finitely many u(y&); J=l,n such that
for every yin Y : / u(y) - u(y&?/ / e for at least
one value of j. / ui(y)- u(yé)/ / e .follows by
taking the i'th component of the difference vector,
whose length cannot exceed the length of the vector
itself. This holds for each such 1ength; ie for i=1,m
and a particular j. So / £(x!,y) - £(x},55)/ [ e,i=1,m.
The sets X,=(x!) and Yo=(y5),vi=l,m; j=1l,n, define
a related matrix gamé GO, which is known to have a sol-
ution by 3.5 . Let the optimal strategies be x'*, y'E,
and x', y' any other mixed strategies in Gy - Byﬂ2.37$nd
2.6.2 f(x',y'*) W, £ £(x'*,y") and by
hypothesis f(x;y3”5 f(k',¥? ; e j<l,n

Summing over j: £(x,y'*) [/ f£(x',y'*) + 8 for all x in X.

£
L

or. B 163520 B wy .+ e  for all x'in X.
IE 4 obEE) [ W+ e for all x'in X.




Hence Bbf /[ w, + e.

But / £(x!.y) = f{xigyg}/ Je, i=1,m; 8ll y in Y.
SO f(X:":ag?\;D é f{zé %V} -1 T S A + A £ SR £ SRS £ S it

Forming mixed strategies over the x:

f{x’ﬁgyg) [ T(x'*,y) + e for all v in Y.
Rut Flx',y'*) [ wy £ £(x'*,¥") for 21l x'.,v'.
So féxigy’$} L wy £ f(x’*eyé} in particular.
Hence W, £ fxt*,y) + e for all v in Y.
O WO -8 / Bf(y) [0 B TR ¢ S ¢ S { B
Hence W, = e / DBf.
IE ~bBf / e « w, to which we add the ineqguality ab

=1 G - i

the top of the page to getn:

Bbf - bBf / 2 e which is twice an arbitrariiy
small number, hence arbitrarily small. This can only
be if Bbf = bBf. Therefore G has a value and there
exist sbrategies approximating this value with arbitrary

precision. Q.E.D.

5.1.1 COROLLARY A game with X finite has a value and P
has a strategy attaining the value against all strategies

of ».

PROOF 5.1 applies with (x{) = X, i=l,m. Hence G has
2 value. Let X =(x;), i=1l,m and consider G*=(X*,T*;£*)
where X*.¥* are the counvex hulls of X,Y respectively3 and

£* ig £ made affine in both variables. IE for 0fafl and
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a +b =1, f£*(az+sbw,y) = a £(z,5) + b £(w,y)

or f*(x,az+bw) = a fx,z) + b £(x,w)

Then Bbf* = w = sup bf*{x*) where x*in X*.

In X* exists a sequence of mixed strategies X*k such

that 1lim f*{x*kﬁy} = w as k goes to oo . Because
no cemponent of a mixed strategy can exceed one, these
vectors all have their ends in the m-~dimensional unit
cube in the positive orthant with one vertex at the
origin. Thus a convergent subsequence exists which
approaches a vector x**, 0 / x**, ux**=1. By the affine
property of f£*, lim f*(x*kyy) = £*(x**,y) for all vy.
But by definition of a greatest lower bound:

bf*(x*) / f(x$k9y) for all y. Hence

w / 1lim £(x**,y) which exhibits the exist-

ence of an optimal strabegy for P. Q. E.D.

5.1.2 COROLLARY If £ is continuous, and X,Y are bounded

closed subsets of Ry Rp respectively, G has a wvalue.

FPROOF Since £ is a continuous function on a closed,

bounded Cartesian Product, it is uniformly continuous.

So a d exists corresponding to O / e such that:
/t(x,y) = £(x',y')/ / e provided that:
/(x,y) =(xt,y")/ [/ 4.

Take (xi) in X, i=1,m such that for every x in X there

is at least one x; for which /x-%;/ / d. This is pos-

sible because X is bounded and contains the boundary.



Then / (x,y) = (Xi,y) / =/ x-%/ [/ 4 for all y,
so that by a previous resuli:

/ f(x,y) - £(xi,y) / L e
which assures that G has a value, by 5.1 Q.8.D.

5.2 DEFINITIONS A topology is a set of sets containing

the intersection of any two of its members, and the

union of sets in any subset. The union of all its members
is the space of the topology. This space and the topology
together constitute a topological space. A point is a

limit point of a set of points X, if every open set con-

taining it also contains a point of X distinct from it.
The set X is compact if every infinite subset of X has

at least one limit point in it. X is separable if it has
a countable subset P such that every point of X is either
a point of P or a limit point of P. Borel's Theorem

states that a necessary and sufficient condition for a
space X in which each point is a closed set to be compact
is that every set of open sets covering X contains a
finite subset also covering X, ** A real-valued function
£f(x) defined over members of X is upper semi-continuous

at X, © X if for any positive e There exists an open setb
U containing x5 such that f(x) / f(xy) + e for all x e U.
Affine has been defined in 5.1.1 . If F=(f;) i=1,m

is a family of functions, then F*, the family of all
possible affine combinations of the f;, is the convex

family generated by F. A function is said to be concave if

*#%* This is certainly true of a bounded subset of an

n-dimensional Fuclidean space.



58

for O/ k /1, kf{a) + (1=k)f(b) £ £( ka + (1-kK)b )} for
all a and b in the domain of f. If the inequality points
the other wey, then f is convex. Note that when the

equality holds, the functicn is affine. A real, linear

space is a set of elements x,y,Z ... not necessarily
countable, for which a(bx) = (ab)x, (a+b)x = ax + bx,
alx + y) = ax + ay, and 1x = x , where x and y are any
elements of the space, and a, b are in the field of real

nunbers.

The following paper is an original, although short,
contribution to the art which has been used by many sub-
sequent investigators as a basis for new results. Be-
cause no translation has been available to date, this
translation is included for the benefit of those who wish

To acquire an acouaintance and have not much knowledge

of Mathematical French:

5.2.1 TRANSLATION OF KNESFR (30)

MATHEMATTCAL: ANATLYSIS .~ On a Pundamental Theorem of the
Theory of Games. Note(Session of June 4.1952) by lr.

Hellmuth Kneser, presented by Mr. Joseph Pérés.

A generalisation of von Neumann'®s fundamental theorem
in the theory of games(Math. Ann., 100, 1928, p.295-320;
Jd. von Neumann and O. Morgenstern, THREORY OF GAMES AND

ECONOMIC BEHAVIOUR, 1944)
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THEQEEM (W').= Let:

(1) ¥ and T be two convex spaces ( for example two
convex regions of vector spaces ) on the field of real
munbers:

(2) £(x,y) be a function, linear in x and y, for
x e ¥ and v e L.

(3) K be compact { by "compact® we do not understand
that X be separable, but iny that Borel's theorem be
valid), for a topology in which each function f(x,y) for
fixed y e I is upper semi-continuous.

Then one has :

sup inf f(x,y) = inf max £(x.y)
xe¥X yel yel xeK

This is a quite broad generalization of von Neumann's
fundamental theorem in the theory of games. ’Other gen-
eralizations have been given by Messrs. J. Ville ( E.
Borel et al. TRAITE DU CALCUL DES PROBARILITES BT DR
SES APPLICATIONS, 2, 1938, No. 5 ), A. Wald (Ann. Math.
46, 1945, pp. 281-286 ), S. Karlin ( Ann. Math. Stud.

No. 24, 1950 ), and others.
The theorem (N') is demonstrated by means of three

lemmas:

LEMMA T.- Let f and g be two linear functions, upper
semicontinuous in the convéx9 compact space K, and let
the min(f(x),g(x)) / O for all x e K. Then can be
found P2 0 and o~ 2 0, such that ,o' + 0 =1 and
{of(;x:) + ¢ glx) / O for all x e K. |




To prove it let M{N) be the region of X in which

04 £(x) ( 0/ glx) ). In M) one has g(x) / 0 ( £(x)/ 0).

The regions M and N are compact, without a point in con-
mon. Lf M or N is empty cne takes P: 1l «¢ =1 or 0.
Otherwise, setting:

mnax £(x) - £(p) - &

xell -g(x) -g(p)

v
O

e B2 _sla) ﬁ> 0
xeN =f(x) ~F(q) -

and calculating g(x) / O at the point where the segment
pg meets the hyperplane f(x) = 0, one finds 04/6 / 1.
Let YO, (5))./3? ‘;/Af’ = 1: then one can take

s
i
§m.!
i
~
]
s
. o
fd
Q
i
vwﬂl
-
~l
il
Sy
-
Lot

LEMMA 2(n).- Leb fl(x}“aw fn(x) be linear and upper
semicontinuous functions in the convex and compact space
K, and let min f1.(x) / 0, k=1,n; for 2ll x ¢ K. Then
can be found (Ok?;o (k =1,n), such that E;ok = 1 and
hix) = Z/okfk(x) / O for all x e K.

The lemma 2(1) is trivial. Suppose then that 1 / n
and the lemma 2(n-1) holds. One can then apply 2(n-1)
to the region 0O / f,(x) of X ( if it is mnot empty, in
which case h would be taken = f, ), and to the functions

n-~1 .
fo,e00 £ . . Let g = 2_c.f. be the function obtained.

Applying lemma I to X and the functions g and f,, one

finds h = Pg + ¢ f£,, that is to say iﬁk = Fﬁk? k=1,n-1;
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and Pnz‘.@sa

LEMMA 3.~ Under the hypotheses of theorem (') either:
(2) There is an x e K such that 0 / f(x,y) for
all ¥ ¢ 1
(b) There is a y e T such that f(x,y) / O for all

x e XK.

Let us suppose (a) false; which means +to say: to
each x e K can be assigned a y = p(x) e L such that
f(x.p(x)) / 0. TLet Y, be the set of x e X which give

f(x,y) / 0 3 it is an open set in K. As ¥ e Y (%)

‘:’;}/\, ¥
T = 1 M i it 3 P == ( ;
X XéKYp(X> ; & finite number of points Ve pxxk} are
found such that ¥ = T Y. . that is te say for all x e ¥

mimg, £(x,y,) / 0. From the lemma 2 it follows thak
(x,y) / O for all x e K if one takes v sQLf%yke

Therefore (b) is valid if (a) isn'+. Q.E.D.

Now, to demonstrate theorem (N') lemma 3 is applied
to the function f(x,y)-c which is itself upper semi-
continuous in x and linear in x and y. If (a) holds there

is an x, e K such that the function B(x) = inf £(x,v)

© vel
satisfies ¢ / @(x,); then
(a') ¢ / sup inf f£(x,y) = sup &(x) = 4

xeK vel xeK
If (b) holds there is a Y,8 L such that the function
B(y) = max £(x,y) satisfies ¥(ys) / ¢3 then
(b') B = inf ¥(y) = 4inf wmax f(x,3) [ e

Teking ¢ = B makes (b') impossible, so that (a') holds,




that is %o say B / A. The proof of the inequality

L / B Dbeing elementary, the theorem (N') is established.

Let us remark, finally, that sup may be replaced

by max in the enunciation of the theoren.

Kneser's work seems to have inspired a number of
authors (13,15,41 for example) and a couple of examples

will now be given.

5.3 INDUCTION ON AN AFFINE FAMITY dJue to J.E.L. Peck(41).

THEOREM (') - Let:

(1) K be a convex subset of a real, linear space:

(ii) F = (fi} be the family of functions fiéx}
affine in x, for x e K;

(iii) P¥ = ( xix=m; £y ,1=1,n;F;0F,0/m; ,mv=1) be the
convex family generated by F.

Then sup min f£(x) = min sup f£(x)
¥ I* F* K

B ey

PROOF For x e K and f e F, f(x) / sup £(x)
K

therefore in particular fj{x} Z " " J=1l,n. But

£4(x) = maf . (x)/ ni(sup £(x)): = mv sup £(x) = sup f(x)
15 J = 3 K a-} K

So that f*(x) [/ sup £f(x) for 2ll x e XK.
- K
In particular sup £*(x) L sup f(x) ° " #
K K

But the right-hand member is actually attained, so by

definition of f£*, sup f(x) / sup £*(x) so that equality
, X

A
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prevails and sup £(x) = sup £*(x). Reburning to
the previous inequality and making the above replacement
£5(x) [/ sup £*(x)
min £*(x) / min sup £*(x)

sup min £*(x) / min sup £*(x)
K B TOF* X

But min £*(x) is got by taking f*(x) = 1 x min fj(x).
Therefore min £*(x) = min f(x) for all x e XK.
B* B

Hence also their least upper bounds

sup min f(x) = sup min £¥(x)
¥ ¥ X T

Let this common value be w / min sup £#(x)
- e K

The theorem is evidently meaningless if w is infinite.

Tet - / w [/ min sup £¥(x)
P K

HEouality will always hold if a finite w and g* e F¥ can
be found such that g*(x) / w and sup g¥(x) / w .
£ - A

2

These will be exhibited with the aidhof two lenmas.

LEMMA I- For F = (£,,f1), let £f = mfy + (l-m)f . Hence
FHe (f;g O/m/1). TLet M(x)= (m: fzéx) / w, xeK). There
are three possibilities:

T.w/ fQ(x) and w / flgx) for all x e X . Then

f%{x} exceeds mw +(l=m)w = w for 21l m and all x e K.

Also w / min £*(x) and w / sup min £*(x) which con-
B* K =

tradicts the definition of w. Thus this possibility is

thrown outb.

IT. fQ<X) / w and f3{X> / w for all x e XK. Then

fQQX} é w for all m and the lemma is true trivially.



IIT. There is now left the really interegting case,
where w / one of fiiz)3 i=0,1: and the other f.(x) / w
at each point x e K. If in the latter inequality, f
some x, equality prevails, then M(x) = (0) or (1). If

on the other hand, the equality is barred, then M(x) con-

sists of a continuum of values in 04m/l.

Cases IT and IIT conform with the definitiecn of w,
so for every ¥ € K, M(x) exists in 0 / m / 1 and conbains

one emdpoint (III) or both endpoints (IT). If () u(x)= &,
X

the lemma is not btrue, since there is no m for which

f%{x) / w for all x e K. Therefore it is necessary to

leads to non-trivial considerations. Iet x = a, and ¥ = b
where:

0 e M(a) O/m/1 1 e M(b) O/m/1

Then:

(1) fx(a) = Qfl(a) + (1=0)f,(a) = fyla) L w Oeli( a)
fi(a) = 1fl{a) + {1al}§?(a) = fi(2) D w 1 not
fé(b) = Qfl£b) + (lw@}fo(bD = fO{b) > w 043 (b)
FE(b) = 18, (b) + (lml)fOQb) = (b)) L w 1 is

A constant convex combination will now be found in

a/m/ b and its constant value proved /W

Since f£x(x) = mf (x) + (l-m)f (x) by definition,

Tm O

then in order for the convex combination to be constant:

(0) = mfy (b)+(1-m) £, (b)

(2) fx(a) = mfl(a)%{lmmeo(a) = £}

It is easily verified from (1) +that the solution L



of (2) satisfies 0O L m/ 1 . To confirm fh @s constant:
£ m
Tn = 5 (a+k(b=2)) where 0 / k(x) / 1
Yo -
= £5 () + k£r () - k£t (a)
T 0 o
= £ (a) from (2), proving
)

the function constant in a/ x / b.

Now consider the point ¢ e &/ x / b, such that

fole) = f1(c), whose existence is guaranteed by the con-

tinvity of the functions and (1). Now ro*le) = f.€c) = £, (e)
0 : :

because the former ig constant in the interval. Also

suppose that w / f%b):fo(cjzfléc} which contradicts
o

the hypothesis that at least one of the functions is
/ w for all x. Hence f;{x) / w, and since all convex

0
combinations have the same value for X = ¢ , w does not

fall short of the least upper bound of such, establishing

the lemma for two functions.

LEMVA 2(n) The lemma 2(2) Just having been proved, assume
the lemma 2(n-1). Tet P = (f09eeafﬂ) and Koz(xzfo(x)}*w)

this w being appropriate to F. KO is a convex subset of X

since fy is affine. If Ky = @ the lemma is trivially true.

Assume therefore that it has at least one element. Tet
Fy chl? ees ). By 2(n-1) there exists p* in Fé
such that p*(x) /[ w, x e K. Algo sup min £(x) [ w

KO FO
because fo might conceivably be the largest function in
F. But min( fo(x)% p*(x) ) / w, x e X because in
Ky, p* £ w and out of Koo £ 4/ we Hence the lemma is

established by applying lemma I to +the family (£ ,p*)

65



having two members. Tet the resulting function be g*,
£ £ g

THEOREM(N') The existence of g* e F* such that g*(x) / w

for all x e X allows the conclusion that the theorem

is valid. Q.E.D.

.3.1 PUNDAMENTAL THEOREM TLet G = ( X, Y; £) be a game

with Y finite. Tet &% = ( X*,¥*%5f%) be the extended
game. Then X* is convex by the definition of a mixed
strategy, £* is affine by definition of expectation value,
so the family of functions fy(x} = £*(x,y) satisfies
the hypothesis of the preceding theorem, with x e ¥*
and vy e ¥, the last being a finite set.

Hence sup min £*(x,y) = min sup 5 (x,5)

X* T ¥* X*

so that G has a value and P has an optimal strategy

by the method of 5.1.1 Q.E.D.

2.4 THEOREM due to J.E.T.. Peck and A.L. Dulmage (42).
Let (1) Y be a subset of a real, linear space; -Y- its
linear extension; -YX- a convex subset of a real , linear
Space;

(2) £ be a real-valued function, concave in % and
convex in y, for x e =X- and Yy @ =Y= :

(3) ~%- be compact in = topology for which £(x,y)
is upper semicontinuous in x for every y e Yi(no axionm

of separation is assumed)

0



Then inf sup f(x,y) [/ sup inf £(x,y)
Y=  =X- T =X b4

The theorem is established by means of three

lemmas:

LEBMMA T If £ and g are real, concave functions, upper
seml-continuous on the convex, compact set K and if
win ( £(x),e(x) ) / O for all x e K: then for 211 x e X
exist lo and 6 satisfying 0 / /@ s 6~ and F+ o = 1

such that ﬁ»f(x) + oglx) /0.

Let M(N) Dbe the subset(s) of ¥ for which 0/f(x)
(0fg(x) ). M and N are compact and disjoint since the
hypothesis concerning min(f,g) prevents both functions
from being simultanecusly positive, IF(M(W) = %, take
{ﬁz 1, or O, a trivial situation. If x g MU N, take
any € in O [ 6/ 1 and another trivial situation ensues
since any convex combination of negative functions is
also negative. Otherwise, set:

mox £(2L . £(p) =2 0
M -g(x) -g(p)

max gx) gla)

Because f and g are upper semi-continuous over K, hence

n
o
A
(®]

over M and N, p e M and g e N satisfying the above do

exigt.

Now f£(q) / O and O / f(p) by definition of M.

Hence k f(p) + (1-k) f(q) = 0, O / k for some k.
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By definition of a concave function:

0 = kf(p) + (1-K)f(q) / f£( kp + (1-k)g )

(1-k)qg e M oand since M and N are dig-—

Joint kp + (l=k)g £ N. TFrom the definition of N

gl kp + (1-k)g ) / O and g is concave, so:

kg(p) + (A-k)gla) £ ( kp + (1-k)q ) / O.
From the definitions of & , ﬁ’ and k:

£(p) = -ug(®) , ela) = - Bf(a), £(a) = kf(p)

while from the preceeding inequality kg(p) / (k-1)g(q).

Hence kg(p) / (k=1)g(a)
e/ {lWKJ@f(q>
L (k) Bkf(p) o (k-1) Betke(p)
k-1 k-1

But g(p) / O by definition of ¥ and O / k, so kg(p)/ O.

T

Hence @(@;/”19
Let o/ Y /ﬁ,ﬁ/ﬁ f . Y= 1, and take:
[gmliywé’{l gﬁmliy Wé’il
IfxeM, x €N, so 0/ f(x) and g(x) / 0 hence

/Qf(x) +og(x) £ ,@(ﬂx g(x) ) + og(x)

g(x) (-&%+Y )
1»%—}/

The fraction has both parts positive and g(x) / 0, so

3

the combination is negative, proving the lemma if x e M.

It xeN, x¢gM so 0/ g(x) and £(x) / O Thence
/of{;z) +0glx) / Pf(x‘) + 6 ( ml@f(zc))

f(x) (4 -B)
1%—5 Z“O

il




Therefors the lemma is valid for x in N. But since it has
been shown true for x in I and is trivially true for x in

neither, it is true for all x in X.

LEMIEA 2(n)- Let fi, i=1,n be a set of real concave func-
tions on the compact, convex set K, for which min £;(x)/ O
- . ] . _ » N .
for all x in X. Then exist /oj_3 i=1l.n such that O 4/@1
S == = ~r [ s .

;Z,fi = 1, hix) = ZZfﬁfi<“> / O for all x in X.

Lemma 2(1) is trivial. Assume 1 / n and lemma 2(n-1).
If (X:fn(x}éO} £ @, teke h = £f,. If (x:048,(x) ) £ &,
apply 2(n-1) since this is a subset of K and hence com-

pact and convex. Let g = EZGif.

354 resnlt, concave and up-
1

er semi-continucus, since al

e}

its components are. Also

(x) / O everywhere so the conditions of 2(2) are satis-

09

fied by g and f,. Hence by Lemma I, h = Pg + O f, VRS,

and the result is obtained with ipj‘:épéi’ﬁ i=l,n-1; 0, =6

¢

LEMMA %- TUnder the hypotheses of theorem 5.4 either:
(a) there is x e <% such that O L f(x,y) forye ¥

(b) there is y e Y such that f(x,y) / O for x & 3%

Suppose (a) false. Let y = p(x) e Y; £(x,p(x))/ O.

Let me (xixe~-X~, f(x,y)/0), an open set in -X- since
f(x,y) is upper semi~continuous in x by hypothesis.

But every x e ¥ yvs 80 =X- is covered by U Y
p(x) wo-7- P(x)

and since = 1is compact, a finite number of Ti= p{xi)
exist such that -¥- = U Y_ . 1In each ¥

it is true
kzl 311:}7‘1{ yk

€9



that f(x,y,

negative mean  h(x) *E fak z(fkyk}e Consider the
I 'ns -
function value of ¥: j;“§ pr7y end because £(x,y)
. “g ¥

B S

ma 3 may be applied to it. IFf (a) is true, then for

%Xy @ =X=, @(x) = inf f{x,y) satisfies ¢ / #(x,) so:

{a®) ¢ / sup inf £(x,y) = sup B(x) = A

T ¥ ¥ ol

If (b) is true, then for Yo @Y=, ¥i(y)= max £(x,v)
X
L

satisfies W(y,) / c¢. Maz is used rather than sup,

because f(x,y) is upper semi-conbtinuous in x and attains
its upper bound. Then:

(b)) B = inf P(y) = inf max f(x,v) / c
~Y- ~Y— =X

Teking ¢ = B makes (b') impossible so (a') holds, whence

B / A proving the theorem.

5.4.1 COROLLARY 2.7.2 states A / B always. Therefore

sup inf £(x,y) = inf sup f(x,y)
G . Tl

with Y = «Y-, proving the fundamental theorem of game
theory with -X- and -Y- mixed gtrategy spaces.

So#.2 COROLLARY If f(x,y) is linear in y for y e ~¥-,

et




then flx, 2ky) = = k £(x,5;)  so that
inf f(x,y) = inf 3 k;f(x,y.)
=V Y=
= Z_;j_j.%?f T(x,y.)
= inf F 1
= lé_lA L(ngj_} Z**j_
= inf f(x,y)
Y

s0 that once again

sup inf f(x,y) = inf sup f(x,y)
~X- ~Y- ~Y- -X-

5.4.3 COROLLARY If f(x,y) defined on -X- x ¥ is extended

to ~X- x =Y~ by linearity in y, and for all v in =Y-
exist € / P(y) and unrestricted #(y) such that -X-
is compact in a topology in which B(y)T(x,y) «+ Aly) is
concave and upper semi-continuous in x, bthen:

sup inf f(x,y) = inf sup f(x,y)
i S Y- -X-

Let glx,k) = #(k)f(x,k) + h(k). =X- is a convex
subset of a real, linear space and hence contains non~
Trivially an infinite number of elements. Hence by
W. Sierpinski (47) every infinite subset of -¥- has a
non-empty derived set in the topolegy for which -X- is
compact (Page 34), that is the one in which g(x,k) is
upper semi-continuous in x. Defining such a subset by
restricting g(x,k) generates a subset identical $0, one
generated by restricting f(x,k). Hence every infinite
subset of -X- has a non-empty derived set in the top~

ology for which f(x,k) is upper semi-continuous in x.
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But k e ¥, hence 5.4 applies. The extension of f by
linearity satisfies the requirements of 5.4.2 thus est-
ablishing this corollary. In fact. if both inf and sup
of f(x,y) over -X- are finite, using notation from 2.7.1:
be(y) (Fvf(y) + A(y)
Beg(y) = 8(y)BE(y) + A(y)
Since g was not specified exactly, set Bg(y)=1, bg(y)=0

i

1

for every y in Y. Then
-1
B(y) = =bf(y) (Bf(y) -bf(y))™"
B(y) = (BE(F) - ey~

and the game (-X-,Y:f) possesses a value if and only if

i

il

(=X=,Y:;g) has one. This last might be termed the asg-—

ociated normalized game. Q.E.D,

H. Nikaido (40) and Wald (50,51) are two authors
whose work is generalized by the above theorem and cor-
ollaries. See the original paper for details. Ky Fan(15)
has developed a number of minimax theorems not invol-

ving linear spaces using this same general method.

5.5 TOPOLOGICAL PROOF due to J. Nash(37).

KAKUTANT 'S BEIXED POINT THEOREM Since the proof of this

is far outside the purvue of this thesis, the resulb
cenly will be given:

If x —= f(x) is an upper semi-continuous point-
to-set mapping of an r-dimensional closed simplex S

into K(8) then there exists an x.,e S such that x.e #(x.).
o ) 0



VASH'S THEOREM A game with n players, each with finite

ﬁ-‘l

pure stratvegy set, and definite payoffs to each player
for each n-tuple of pure strategies. MNMixed strategies
are discrete probebility distributions and the payoffs
expectablon values.

An n-tuple counters another if the strategy for

each player in the countering n-tuple yields the highest

expectation value possible against the other players'

strategies in the countered n-tuple. If an n~tuple

counters itself, it is self-countering, and is in some

degree optimal because no one player alone has anything
to gain in varying his strategy singly. There is hence

a certain stability associated with thisg situation and

C(
V"

another term for such an n~tuple is eguilibrium point.

The mepping defined by each n-tuple going into the
set of all its countering n-tuples is a one-to-many or
point-to~set mapping of the product space inbo itself.
Hach set of countering points is convex by definition
of a mixed strategy and the payoffs are continuvous
functions on the product space, which causes the graph
of the mapping to be closed. For if (Zj) and (uj) are

sequences with limits 2z* and w* in the product space,

and for every k., u, counters =z then u* counbers z¥.
o ] k: k—_$

So the mapping precisely conforms to the Kakutani Theorem.

By this theorem some n~-tuple has a point in its image
identical to itself, hence has itself as a countering

strategy, hence is an equilibrium point. Q.E.D.

7?3
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Since the definition of an egquilibrium peint when n=2
is the same as a pair of optimum strategies, this theorem

s also a very brief, very elegant proof of the funda-

|
s

mental theoremn.

In general. this theorem guarantees at least one
equilibrium point. There could be several, underlying
the fact that only for the two-person zero-sum game is
the concept of value defined. This property of the
general game raises the exciting possibility of com-
petition-preserving mubually beneficial coalitions of
all the players working in concert.

The same author has written a paper proving this

theorem directly by the Brouwer Fixed Point Theoremn.

5.6 CONCLUDING COMMENTS It is seen in this chapter that

the fundamental\theorem.may be proved in many direct and
indirect fashions. Some of these proofs are quite sur-
prising at first glance. Common to all has been the
fact that a more comprehensive theorem was derived first
and the fundamental theorem of game theory out of it.
This seems to be one of the good things about the theory
of games to date- it stimulates fundamental work in many

related disciplines.
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6.1 FUNCTION OF GAME THEORY fTo date game theory has

not succeeded in revising the foundations of economic
Theory or in giving the solution to any really worthwhile
problem from the real world. Bven parlour board games
are beyond its present scope. This has caused some to
wonder what the ultimate function of game theory may be.

In itself it is a beautiful example of a mathemat-

ical model. But there is another aspech-the way in

e

which it brings togebther verious disciplines of math-

3
Iy
; ot
i

ematics in solwing seemingly unrelated problems.

(’)
(\n

has been noted all through the thesis. Combinatorics.

¥

analysis, topology all are brought to bear on the prob-

foud

Perhape, then, in the future game theory will
bring about a sort of super-unification of mathematics
somewhat as Quantum Mechanics unified the theory of
infinite matrices with that of integral equations be-

ceuse of the different attacks by Heisenberg and

6.2 CONJECTURE +the theory of matrix games will always

8y}
!
"'i'
Q)
{D
(D
n

be adequate for the computation of optima

and value of games arising out of real-life situations.

This follows from a consideration of 5.1 . Any

ra game arising out of the real world

o'
D
o}
d
n
D
oF
)
O
=
Ay}

must D

o)
H
@

corded before anybthing can be done with it.



Even the sum total storage capacity of all the world's
computers is finite for this purpose. A firm, faced
with the necessity of playing a game with infinite

3 e

strategy sets wonld try to select a finite number of

have a drastic effect on the outcome of the game. In
doing this, of course, the game loses its general char-
acter and the methods applicable to matrix games will
work very well.

This note is not meant to disparage the invest-

igation of more general situations. Some of the happy

r

a3

Y

results of such investigation have already been des-~
cribed. But it should be emphasized that these excur—
sions deep into technicalities belong to the province
of the theoretical mathematician. The practical man
calculating optimal strategies should go ahead and use
the theory of the matrix game, confident that an astube
selection of strategies will prevent him from going far

astray.

=3
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The notation used is principally that of D.Gale (18)

changes where necessary to avoid confusion. TIts

!
«f

chief feature is that column and row vectors are sal-

expliclit

5.__1

v 4

&7

é_! -

stinguished, the dimension serving to

i

prevent ambiguity.

u and v , as vectors, have ones for all components.

v, " Vi " i , have one in the i'th (Jj'th)

position and zeros elsewhere

/x/ is the absolute value of the scalar x
/%x/ is the length of the vector x

A= (2;.) = (2;) = (ad) is the matrix with rews a,,

137 v i
columns 333 and element 84 5 at the intersection of such.
Occaesionally, tensor summation is used. e.g.
XA X384, 1=1,m; where x hasg components P
9 / x, or x non-negative means 0 / X5, all i.
0/ x, or x semi-positive means of %, x £ O.
0/ x, or x positive means 0 / x;, all i.

xc is the inner product of vectors x and c.
A” is the transpose of the matrix A
A=t (az} = (a”j} is its inverse.
0 < x means the first non-zero component of x
is positive.
D is the operation of differentiation with respect

to the variable +.
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