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Abstract

Use cases of future wireless networks (e.g. fifth-generation [5G] networks and beyond [B5G]) will have service-

quality requirements including higher data rates than today’s networks for enhanced mobile broadband

(eMBB), minimal latency and high network availability for ultra-reliability low-latency connection (URLLC),

and massive access support for machine-type communications (mMTC). Also, 5G and B5G are expected

to support communications for highly mobile scenarios with applications in new vertical sectors such as

unmanned aerial vehicle (UAV) and autonomous car. Therefore, 5G and B5G cellular systems require a set

of new technology enablers and solutions. In this thesis, we address some of the challenges of future wireless

networks. In particular, we develop novel analytical models as well as methods, which will enable us to

obtain insights into the performance of large-scale cellular networks and optimize network parameters.

Non-orthogonal multiple access (NOMA) is a promising multiple access technique that enables massive

connectivity and reduces the delay. We develop an analytical framework to derive the distribution of trans-

mission success probabilities, meta distribution, for uplink and downlink NOMA. We also investigate the

accuracy of distance-based ranking, instead of instantaneous signal power-based ranking, in the successive

interference cancellation (SIC) at the NOMA receiver.

Sojourn time, the time duration that a mobile user stays within a cell, is a mobility-aware parameter that

can significantly impact the performance of mobile users and it can also be exploited to improve resource

allocation and mobility management methods in the network. We derive the distribution and mean of the

sojourn time in multi-tier cellular networks.

Future wireless networks will exploit data-driven machine learning techniques for improving network

management as well as service provisioning. Due to privacy and communication issues, learning at a central-

ized location (for example, at a base station) by collecting data from the mobile devices may not be always

feasible. Federated learning is a machine learning setting where the centralized location trains a learning

model using remote devices. Federated learning algorithms cannot be employed in real-world scenarios unless

they consider unreliable and resource-constrained nature of the wireless medium. We propose a federated

learning algorithm that is suitable for wireless networks.
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Chapter 1

Introduction

1.1 Introduction

Performance targets and standard services of each generation of cellular systems are defined based on new

applications and technologies [1]. To understand the motivation behind deployment of fifth generation (5G)

and beyond (B5G) cellular systems, consider the following example from [2]:

Imagine “a typical morning office commute in a 5G-connected car just a few years down the road. The

vehicle is constantly exchanging position, behavior, and system status information with nearby vehicles,

the surrounding highway infrastructure, and traffic control centers. Doing so in a fast and reliable manner

augments the car’s awareness of its surroundings and allows the driver to turn the steering, accelerating, and

braking functions over to the car’s semi-autonomous driving system. He can now focus on the morning’s

first conference call.

The driver’s team is trying to find the root cause of a turbine malfunction. He puts on his augmented

reality (AR) set, and a wireless 4K video feed of an airplane turbine overlaid with sensor data and gauge

readings fills his screen. Collaborating in real time with a group of engineers in three different countries, the

team guides a technician to isolate one of the components and recommends a troubleshooting procedure.

A few minutes later, when his intelligent-highway exit comes up, the driver takes back control of the car,

switches over to a low-bandwidth voice-only connection, and drives into work. The car guides him to the

closest available parking spot with an electric charging station. The parking sensor at that spot detects his

car and updates the parking availability information on the network. When he plugs in the car to charge,

the charging terminal establishes a low-data-rate connection to verify his account and process payment.”

Future use cases of 5G request diverse service-quality requirements including higher data rates than to-
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Figure 1.1: Overview

day’s networks for enhanced mobile broadband (eMBB), minimal latency and high network availability for

ultra-reliability low-latency connection (URLLC), and massive access support for machine-type communica-

tions (mMTC) [3]. These service classes are expected to morph and merge in B5G wireless networks [1]. As

a result, 5G and B5G cellular systems require a set of new technology enablers and solutions to accomplish

their goals. Performance targets in 5G and B5G can be achieved through 1) redesigning the multiple access

format, 2) integrating aerial and terrestrial networks, 3) distributing machine learning at network edge, 4)

communicating with large intelligent surfaces, 5) moving toward higher frequency bands, etc [1, 4, 5].

Before deploying these solutions in large-scale systems, we must identify corresponding challenges and

performance gains/losses. In this regard, in this dissertation, we study some of the existing challenges in

large-scale deployment of 5G and beyond cellular wireless networks.

1.2 Road Map

5G and B5G wireless networks must have sufficient flexibility and capability to support existing and emerging

applications including autonomous driving, smart city, live event streaming, and virtual reality. It is not

possible to achieve heterogeneous sets of requirements of this broad range of applications by a one-size-fits-all

solution, i.e., there is no single solution that supports the super-set of all sets of requirements. In this regard,

for 5G and B5G networks we need

• a new multiple access format to address the increasing demand for wireless communications,

• better mobility management techniques to enable applications in highly mobile scenarios such as

autonomous vehicles and drones,

• efficient use of the available data, through distributed learning, for improving network performance

and service provisioning.

Thus, multiple access, mobility, and distributed learning are challenging for future networks in the sense

that current solutions to these challenges are not sufficient to support future requirements. To ensure

that proposed solutions for multiple access, mobility, and distributed learning are capable of accomplishing
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their performance targets in 5G and B5G, we must study the large-scale performance of each (Fig. 1.1).

Accordingly, in this dissertation, we

• analyze performance of NOMA, a promising multiple access technique for future wireless networks, in

large-scale cellular networks to enable massive connectivity,

• derive sojourn time distribution, a mobility-related performance metric, for large-scale networks to

understand effect of mobility and enable better mobility management for highly mobile scenarios,

• design a distributed learning algorithm for large-scale cellular networks to efficiently use the available

data at user devices.

To this end, in this chapter, we briefly explain large-scale challenges and our contributions related to

multiple access, mobility, and distributed learning. In the next chapter, we introduce large-scale cellular net-

works and provide mathematical preliminaries, and, in the subsequent chapters, we use tools from stochastic

geometry to tackle the challenges.

1.3 Multiple Access in Future Wireless Networks

As mentioned earlier, next generations of wireless networks must provide service to a massive number of

users, support rate-hungry applications, guarantee low-latency communication, and provide reliable connec-

tivity. Effective multiple access technique facilitates meeting these requirements. Adopted multiple access

techniques in the previous generations of wireless networks, from the first generation (1G) to the fourth

generation (4G), have one common theme—allocate orthogonal resource blocks to different users [6]. For

example, time division multiple access (TDMA) allocates different time slots to different users, or frequency

division multiple access (FDMA) allocates different frequency channels. However, supporting billions of de-

vices and acquiring low-latency communication for emerging massive wireless networks necessitate efficient

user access mechanisms that can potentially serve multiple devices in the same resource block [7].

Non-orthogonal multiple access (NOMA) has been recognized as a promising multi-user channel access

technique that enables massive connectivity while reducing the transmission delay of the devices [7]. Contrary

to traditional orthogonal multiple access (OMA), such as time division multiple access (TDMA), frequency

division multiple access (FDMA), and code division multiple access (CDMA), the key idea of NOMA is

to serve multiple users, termed NOMA cluster users, in the same channel simultaneously. The concurrent

transmissions in NOMA reduce the waiting time of the devices while saving network resources. Of course,

this can be achieved at the expense of additional interference and decoding complexity at the receivers.
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(a) Downlink. (b) Uplink.

Figure 1.2: Two-user NOMA.

NOMA uses superposition coding at the transmitters, and exploits successive interference cancellation (SIC)

at the receiver(s) to mitigate interference [8, 9] as shown in Fig. 1.2.

Recently, performance analysis of NOMA-based wireless networks has attracted significant research in-

terest. The existing studies contribute mainly toward understanding the average performance of users

considering a single NOMA cell/cluster [8, 10, 11, 12, 13, 14]. For instance, the performance of a single-cell

downlink NOMA system with randomly located users was first studied in [10]. In particular, the signal-to-

interference-plus-noise ratio (SINR) outage probability and the ergodic capacity were derived for a user at

rank m in terms of distance.

The aforementioned research studies ignore the impact of inter-cell interference (interference from trans-

missions in other cells) which can significantly limit the performance of NOMA in massive wireless networks.

Very recently, some of the research works have considered performance characterization of large-scale NOMA

systems using stochastic geometry tools [15, 16, 17, 18, 19].

Problem 1: To derive the analytical results for uplink of cellular networks with PPP (Poisson point

process) distributed base stations (BSs)1, it was assumed that uplink inter-cell interferers form a homogeneous

PPP which is inaccurate since there is no inter-cell interferer in the desired cell, where the desired user lies

in [20]. Thus, the effective inter-cell interference field as observed from the desired BS can be modeled more

accurately as an inhomogeneous PPP as demonstrated in [21, 22].

Contribution 1: Since the actual point process for the spatial locations of the inter-cell interferers is

unknown, we propose two models for this point process based on the pair correlation between interferers

and a typical BS. We demonstrate the accuracy of the proposed point processes by comparing the second

1This model is explained in the next chapter.
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moment measure of each process with that of the original process obtained via simulations.

As explained earlier, performance of NOMA in both uplink and downlink depends on the SIC which

relies on the ranking of the users in each NOMA cluster [15]. In particular, downlink intra-cell interference

(interference from transmissions within the desired cell) received at a given user in NOMA depends on the

power allocation factors of users in the cluster. These power allocation factors are designed according to

the ranking of users’ transmission links quality. For example, users with stronger links have smaller power

allocations and vice versa. On the other hand, in uplink NOMA to apply SIC, BS successively decodes

and cancels the messages of strong channel users prior to decoding the signals of weak channel users [15].

Therefore, the intra-cell interference encountered by any user depends on the instantaneous received signal

powers (which includes short-term fading) of users in the NOMA cluster.

Problem 2: To avoid analytical complexity (in theory) and overcome implementation complexity, mean

signal power- (distance-) based ranking is typically considered to be appropriate for ordering users in a

NOMA cluster. Although this method simplifies the analysis and provides tractable results, its validation

(i.e., accuracy) has not been studied yet. The distance-based ordering may not always be accurate, especially

in a dynamic multi-path fading environment, where a near user can experience severe fading and a far user

can observe weak fading. Since the ranking of users in a NOMA system has a direct impact on the system

performance (e.g., coverage probability) analysis, it is crucial to quantify the impact of distance-based ranking

in various environments and to identify the scenarios where this ranking is accurate (i.e., provides system

performance close to that achievable with full CSI-based user ranking).

Contribution 2: We characterize the accuracy of analyzing the performance of a NOMA system where

users are ranked according to their distances (or, equivalently, mean signal powers) instead of instantaneous

signal powers, i.e., product of their distance-based path-loss and fading channel. In particular, we derive the

probability of the event when distance-based ranking yields same results as instantaneous signal power-based

ranking, which is referred to as the accuracy probability.

1.4 Mobility in Future Wireless Networks

The next generations of cellular wireless networks are expected to support communications for highly mo-

bile users and devices [23] with applications in new vertical sectors. For instance, in 5G and B5G wireless

communication systems, drones can be exploited as aerial base stations to assist terrestrial communications,

or drones with their own missions could be connected to terrestrial networks as new aerial users [24]. The

mobility of drones allows flexible network reconfiguration to adapt to dynamic traffic and channel condi-

tions. It also enables a wide range of key applications that include military, surveillance and monitoring,
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telecommunications, delivery of medical supplies, and rescue operations [24].

Therefore, addressing the mobility related challenges is necessary for the development of the next gen-

eration cellular networks. Impact of user/device mobility on its performance in cellular networks can be

measured through mobility-aware performance metrics such as handoff rate, handoff probability, and so-

journ time [23]. Sojourn time (or dwell time), time duration that a mobile user stays within a cell, is a

key network parameter which allows studying other important network parameters such as channel occu-

pancy time, new call and handoff call dropping probabilities [25]. Therefore, it is imperative to incorporate

the sojourn time distribution in resource allocation and mobility management for improving the network

performance.

Problem 3: To analyze the sojourn time distribution in multi-tier scenarios with PPP distributed BSs,

the existing works either assume that the mobile user is always associated to only one of the tiers [26], or

only focus on the small tier (in two-tier scenarios) [27, 28]. For both the cases, the results are no different

from the single-tier scenarios [29]. In single-tier networks with maximum averaged received power association

(nearest BS association), (Voronoi) cells are convex; however, in multi-tier networks with maximum biased

averaged received power association, cells may not be convex depending on the transmission power and bias

factor of each tier. Therefore, analysis of sojourn time of multi-tier cellular networks is more complicated

compared to the single-tier networks.

Contribution 3: We derive the distribution and mean of the sojourn time for multi-tier cellular networks,

and study its relation with other mobility-related performance metrics.

1.5 Distributed Learning in Wireless Networks

With growth in the number of smart devices and advancements in their hardware, in recent years, data-

driven machine learning techniques have drawn significant attention. In fact, machine learning techniques

analyze the data and obtain useful information for the detection, classification, and prediction of future

events [30]. For example, app Waze suggests the optimal route to drivers by collecting a large number of

data from users including every road driven [31], or in edge computing users data can be used to determine

popular contents for caching. However, due to privacy and communication issues, it is not always possible

to collect the data at a centralized location. Federated learning (FL) is a machine learning setting where the

centralized location trains a learning model over remote devices.

In FL, a learning model is trained over remote devices under the control of a centralized location, called

server [32, 33, 34]. Specifically, in federated learning, the server broadcasts the global model parameters to

the remote devices. Each remote device uses its local dataset to update the global model, and then transmits
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the updated local model to the server. After aggregating the local models, the server updates the global

model and repeats the whole procedure.

Problem 4: Training federated learning models in a wireless networking environment requires devices

and the server exchange information via wireless transmissions. Due to the limited number of available

resource blocks (such as bandwidth) for communication, full device participation at each round of communi-

cation is not possible. Moreover, in reality, transmission success probability is different for different devices,

even when they all have the same hardware. Specifically, transmission success probability for devices that

are located closer to the server is higher than far devices. Thus, without considering this issue at the time of

updating the global model, the updated global model will be biased towards local models of devices that are

closer to the server. Existing works [35, 36, 37, 38, 39, 40] assume that transmissions are always successful,

which is not correct in reality.

Contribution 4: We propose a federated learning algorithm that is tailored for unreliable and resource-

constrained wireless cellular networks, where success probability varies across different devices.

1.6 Organization of the Thesis

Chapter 2 provides mathematical preliminaries and introduces Poisson cellular network. As discussed earlier,

in this thesis, we study multiple access, mobility, and learning in Poisson cellular networks.

In this regard, in Chapters 3 and 4, we study the large-scale performance of NOMA technique. Specifically,

we focus on Problem 1 in Chapter 3 and Problem 2 in Chapter 4. These chapters are based on the following

published papers:

[1] M. Salehi, H. Tabassum, and E. Hossain, “Meta distribution of the SIR in large-scale uplink and

downlink NOMA networks,” IEEE Trans. on Commun., vol. 67, no. 4, pp. 3009-3025, Apr. 2019.

[2] M. Salehi, H. Tabassum, and E. Hossain, “Accuracy of distance-based ranking of users in the

analysis of NOMA systems,” IEEE Trans. on Commun., vol. 67, no. 7, pp. 5069-5083, July 2019.

[3] M. Salehi and E. Hossain, “On coverage probability in uplink NOMA with instantaneous signal

power-based user ranking,” IEEE Wireless Commun. Letters, vol. 8, no. 6, pp. 1683-1687, Dec. 2019.

In Chapter 5, we derive the mean and distribution of the sojourn time in multi-tier cellular networks.

This chapter is based on the following published papers:

[4] H. Tabassum, M. Salehi, and E. Hossain, “Fundamentals of mobility-aware performance charac-

terization of cellular networks: A tutorial,” IEEE Commun. Surveys and Tutorials, vol. 21, no. 3, pp.

2288-2308, Third Quarter, 2019.
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[5] M. Salehi and E. Hossain, “Stochastic geometry analysis of sojourn time in multi-tier cellular

networks,” IEEE Trans. on Wireless Commun., DOI: 10.1109/TWC.2020.3036894.

[6] M. Salehi and E. Hossain, “Handover rate and sojourn time analysis in mobile drone-assisted

cellular networks,” IEEE Wireless Commun. Letters, DOI: 10.1109/LWC.2020.3032596.

In Chapter 6, we work on Problem 4, where we propose an FL algorithm and study its convergence

in unreliable and resource-constrained cellular wireless networks. This chapter is based on the following

submitted manuscript:

[7] M. Salehi and E. Hossain, “Federated learning in unreliable and resource-constrained cellular

wireless networks,” IEEE Trans. on Commun., to appear.

Finally, the dissertation concludes with Chapter 7, which summarizes the key contributions and discusses

promising future directions of research.
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Chapter 2

System Model and Mathematical

Preliminaries

As discussed in the previous chapter, in this dissertation, we study multiple access, mobility, and learning in

Poisson cellular networks. In this regard, in this chapter, we first provide mathematical preliminaries, then

introduce the network model, and finally present performance metrics that we use to study multiple access,

mobility, and learning.

2.1 Mathematical Preliminaries

Stochastic geometry studies random spatial patterns [41]. The basic ingredients of geometry are points.

Point process theory is the main sub-field of stochastic geometry and studies random point patterns [42, 43].

Following imaginary scenario from [42] helps to better understand point processes: A simple example of

a random variable describes the outcome of a roll of a die. Here the random variable takes on the values 1

to 6, and when the die is fair the probability for each of the six values is 1
6 . Now assume that it is possible to

construct a die with infinitely many sides, with a (two-dimensional) point pattern on each of the sides. Every

time the die is thrown, a point pattern is generated. This die represents the point process Φ, and a point

pattern ϕ = Φ(w) is assigned to each sample point w represented by a roll of die. Now assume somebody

is observing the independent repetitive rolling of the die. This person sees different point patterns and, in

particular, fluctuating values of the number of points in some fixed, deterministic subset B of the plane. In

other words, every throw of the ‘point pattern die’ produces a different realisation of the random variable

‘number of points in B’.
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Therefore, there are two ways to interpret a point process Φ [41, 21]. In Random set formalism, Φ =

{x1, x2, ...} is regarded as a random set of points in space (usually the Euclidean space Rd.), where each

element xi is a random variable. In Random measure formalism, Φ(B) is a random variable that assumes

values from the non-negative integers and denotes the number of points falling in set B ⊂ Rd.

Definition 2.1 (Intensity Measure [41]). For any point process Φ, the intensity measure Λ(B) is the mean

number of points in B, i.e.,

Λ(B) = E[Φ(B)],

where the expectation is with respect to the point process Φ.

Definition 2.2 (Stationarity [41, 42]). For a point process Φ = {xi} to be stationary, Φ = {xi} and

Φ = {xi + x} must have the same distribution for all x ∈ Rd, i.e., Φ is stationary if its distribution is

translation-invariant.

Definition 2.3 (Isotropy [41, 42]). Φ is isotropic if its distribution is invariant with respect to rotations

about the origin.

For stationary point processes, the intensity measure is just a multiple of the Lebesgue measure, i.e.,

Λ(B) = λ|B|,

where λ is called the intensity of Φ, and |B| is the Lebesgue measure of B. Thus, |B| denotes area of the

set B in two-dimensional space and volume of the set B in three-dimensional space.

Definition 2.4 (Proability generating functional (PGFL) [21]). PGFL of point process Φ with respect to a

function f : Rd → R+ is

G(f) = E

[∏
x∈Φ

f(x)

]
.

Poisson Point Process (PPP)

Poisson point process (PPP) Φ with intensity measure Λ is characterised by two properties [21, 42, 43]:

• Poisson distribution of point counts: Φ(B) is a Poisson random variable with mean Λ(B) for every set

B. Therefore,

P (Φ(B) = k) =
(Λ(B))

k

k!
exp(−Λ(B)).

• Independent scattering : For all disjoint sets B1, B2, ..., Bm, random variables Φ(B1),Φ(B2), ...,Φ(Bm)

are independent.
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Homogeneous PPP is a special case of PPP where Λ(B) = λ|B|, for any set B [41]. Homogeneous PPP

is stationary and isotropic.

Definition 2.5 (PGFL of PPP). For PPP Φ with intensity measure Λ, PGFL with respect to f is given as

G(f) = E

[∏
x∈Φ

f(x)

]
= exp

{
−
∫
Rd

(1− f(x))Λ(dx)

}
.

When Φ is a homogeneous PPP with intensity λ, we can further simplify the above equation as

G(f) = E

[∏
x∈Φ

f(x)

]
= exp

{
−λ
∫
Rd

(1− f(x))dx

}
.

2.2 Network Model

Prior to developing stochastic geometry for modeling and analysis of cellular wireless networks, system

engineers and researchers used regular hexagonal or square lattice for modeling. However, for such models

tractable expressions for average performance are unavailable and simulations are also time-consuming. On

the other hand, modeling networks using tools from stochastic geometry yields closed-form expressions which

not only circumvents the need for simulation but also provides useful insights for system design [44].

To model the cellular networks, we assume that base stations (BSs) are spatially distributed following

a homogeneous PPP ΦB with intensity λb
1. Users are located according to a homogeneous PPP ΦU with

intensity λu. This model is in direct agreement with the 3rd generation partnership project (3GPP) models

[45], and has been widely used in the literature ([46, 47] and references therein).

Real world deployment of BSs are neither perfectly regular (as in hexagonal grid) nor completely random

(as in PPP). Indeed, the actual deployment of BSs lies between perfectly regular and completely random.

Thus, perfectly regular (such as hexagonal grid) and completely random (such as PPP) spatial models

provide bounds for the actual network performance [21]. Due to the analytical tractability of PPP models,

existing literature mostly resort to PPP to model the cellular networks. Recently, it has been observed that

performance of a variety of cellular network models and transmission techniques look very similar in shape.

In fact, they can be well approximated by a simple horizontal shift of the most tractable model, the Poisson

point process (PPP) [48]. Moreover, in many circumstances, cellular networks’ users take independent

locations which motivates using PPP to model the spatial distribution of users.

A realization of a cellular network over a 100 km × 100 km area with λb = 0.004 points/km
2

and λu =

0.02 points/km
2

is shown in Fig. 2.1. Each user in the network is connected to its nearest BS. Therefore,

1In this chapter, we only focus on single-tier networks.
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Figure 2.1: A realization of a cellular network over a 100 km× 100 km area with λb = 0.004 points/km
2

and

λu = 0.02 points/km
2
. BSs are represented by blue squares, users are shown by brown circles, and cells’

boundaries are illustrated by black lines.

each BS serves the users that are located in its Voronoi cell. For a BS at x, Voronoi cell V (x) is given as [41]

V (x) =
{
y ∈ R2 : ‖y − x‖ ≤ ‖y − z‖, ∀z ∈ Φb \ {x}

}
2.

2.3 SINR Distribution

Because of the stationarity of the homogeneous PPP, we can condition on having a receiver at the origin

which is called the typical receiver. In downlink communications, the typical receiver belongs to ΦU, while

it belongs to ΦB in uplink. For such a set-up, the concepts of success/coverage probaility, CSP, and the

meta distribution along with their evaluation methods are defined in the following to provide a preliminary

mathematical background to readers. We denote the transmitter point process by Φ. Φ ≡ ΦB in downlink,

and Φ ≡ ΦU in uplink.

Definition 2.6 (Success Probability). Success probability is the complementary cumulative distribution func-

tion (CCDF) of the signal-to-interference-plus-noise ratio (SINR), i.e., P(SINR > θ).

Definition 2.7 (Conditional Success Probability (CSP) [49]). Given the location of the transmitters Φ and

conditioned on the desired transmitter to be active (denoted by tx), CSP is defined as:

Ps(θ) , P(SINR > θ | Φ, tx), (2.1)

2In this dissertation, we are interested in 2-dimensional Euclidean space.
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where θ is the desired SINR and the b-th moment of Ps(θ) is given by Mb(θ) = EΦ

[
Ps(θ)

b
]
. Therefore,

success probability is the first moment of the CSP.

Using the indicator function 1(.), success probability can be written as

P(SINR > θ) = E [1 (SINR > θ)] ,

where the expectation is over time and space. However, conditional success probability is as

P(SINR > θ | Φ, tx) = E [1 (SINR > θ) | Φ, tx] ,

i.e., conditional success probability is obtained by only averaging with respect to time (while keeping spatial

random variable Φ fixed).

Definition 2.8 (Meta Distribution of CSP). Meta distribution is the CCDF of Ps(θ), i.e.,

F̄Ps(θ)(x) , P(Ps(θ) > x), x ∈ [0, 1]. (2.2)

Since ΦB and ΦU are ergodic, the meta distribution can be interpreted as the fraction of active users

whose success probabilities are more than x in each realization. In [49], an exact expression along with an

approximation and simple bounds for the meta distribution are provided. A summary of these results is

given below.

• Exact meta distribution of CSP: To derive the exact meta distribution, we first need to derive imaginary

moments Mjt(θ) = EΦ

[
Ps(θ)

jt
]
, where j =

√
−1 and t ∈ R+. Then using the Gil-Pelaez theorem [50],

the exact meta distribution is given as follows:

F̄Ps(θ)(x) =
1

2
+

1

π

∞∫
0

=
(
e−jt log xMjt(θ)

)
t

dt, x ∈ [0, 1], (2.3)

where =(s) gives the imaginary part of s.

• Approximate meta distribution of CSP: A simple approximation of the meta distribution is provided by

using the beta distribution. In this approach, we need to derive the first moment M1(θ) and the second

moment M2(θ) of Ps(θ) and match them with the first and second moments of the beta distribution,

i.e.,

F̄Ps(θ)(x) ≈ 1− Ix
(

M1(θ)β

1−M1(θ)
, β

)
, x ∈ [0, 1], (2.4)
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where β = (M1(θ)−M2(θ))(1−M1(θ))
(M2(θ)−M1(θ)2) , Ix(a, b) is the regularized incomplete Beta function, and B(a, b) is

the Beta function. The beta distribution [49, 20, 51, 52] and the generalized beta distribution [53] have

been shown to match the exact meta distribution.

• Bounds on the meta distribution are also presented in [49, Corollary 4]. For the Markov’s bound, we

can use any moment of (1−Ps(θ)) and Ps(θ). For the Chebyshev’s bound, we need the mean (M1(θ))

and variance (M2(θ)−M1(θ)2) of CSP. For the Paley-Zygmund (or Cauchy-Schwarz) bound, we simply

need the first moment M1(θ).

For a given realization of transmitters Φ, the transmission success events are obtained by averaging over

the fading channels and are thus i.i.d. over time for i.i.d. fading. The local delay (defined as the number of

transmission attempts until a packet is successfully received [54, 55]), is thus geometrically distributed with

parameter Ps(θ). For the rest of this chapter and in the following chapters, to simplify notation, we omit θ

from Ps(θ) and Mb(θ). Thus, Ps , Ps(θ) and Mb ,Mb(θ).

Definition 2.9 (Distribution of the Local Delay). For a given realization, local delay, L, follows a geometric

distribution with parameter Ps given in Definition 2.7, i.e.,

P (L = k | Φ) = (1− Ps)
k−1

Ps, k ∈ N. (2.5)

Therefore, the mean local delay is given by E [L] = EΦ [E [L | Φ]] = EΦ

[
1
Ps

]
= M−1 and the variance of the

local delay is E
[
L2
]
− E [L]

2
= EΦ

[
E
[
L2 | Φ

]]
−M2

−1 = 2M−2 −M−1 −M2
−1,

For ergodic point processes, now we are able to answer the question “what fraction of users successfully

receive their desired signals in at most k time slots with probabilities larger than x?”. We can answer this

question by deriving the following:

P (P (L ≤ k | Φ) > x) = P
(

1− (1− Ps)
k
> x

)
= F̄Ps

(1− (1− x)
1/k

), (2.6)

where F̄Ps
(.) is the meta distribution defined in (2.2). Based on (2.6), the meta distribution also reveals the

distribution of the CSP for any number of retransmissions.

Example: To better understand conditional success probability (CSP), success probability, mean local

delay, and the meta distribution consider the example shown in Fig. 2.2. For each user in Fig. 2.2, CSP is

written above its link and is obtained by averaging over fading (time averaging). The success probability in

this example is (0.1+0.4+0.4+0.9)/4 = 0.45, i.e., the success probability is the average (first moment) of the

conditional success probabilities over different users (space). For device with conditional success probability
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Figure 2.2: A typical cell with four users. Conditional success probability is written above each link.

0.1, local delay is 1
0.1 = 10 since on average it transmits successfully once in every ten attempts. Similarly,

local delay for users with conditional success probability 0.4 is 1
0.4 and it is 1

0.9 for the user with conditional

success probability 0.9. Therefore, mean local delay is
(

1
0.1 + 1

0.4 + 1
0.4 + 1

0.9

)
/4 ≈ 4, i.e., mean local delay

is the average of 1
CSP (first negative moment of CSP) over different users (space). Finally, meta distribution

gives information about the distribution of CSPs. From the meta distribution, we can understand that for

1
4 of users CSP is 0.1, for half of the users CSP is 0.4, and for the rest of the users it is 0.9.

Next, to understand the importance of meta distribution, consider the following example.

Example: Consider two networks. Assume that, in network A, the CSP of half of the users is 0 while

that of the other half is 1. In network B, the CSP is 0.5 for all the users. For these two networks, the

standard (average) success probability is the same and is equal to 0.5, while they behave completely different

in terms of delay. In network A, half of the users have a successful transmission after their first attempt

while the transmission delay is infinity for the other half of the users (i.e., the mean local delay is infinity

when CSP of users is 0 or close to 0). In network B, the number of transmission attempts until the first

successful reception is almost surely finite for all the users, and for this network, the average number of

transmission attempts for successful transmission is 2. Therefore, comparing two networks simply in terms

of their average success probabilities is not accurate since average success probability is not enough to

capture a network performance. On the other hand, meta distribution is a fine-grained performance metric

that provides detailed information about distribution of the conditional success probability. In fact, from

the meta distribution we can calculate average success probability and mean local delay, this is similar to

calculating moments of a random variable using its distribution function.

Example: With x = 0.95, F̄Ps
(0.95) is the fraction of users that successfully receive their desired signals

(or the SINR is higher than the target threshold) in the first transmission attempt (i.e., k = 1) with a
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probability higher than 0.95 (i.e., with reliability 0.95). F̄Ps(0.78) is the fraction of users that successfully

receive their desired signals after the second transmission attempt (i.e., k = 2) with reliability 0.95. F̄Ps
(0.63)

is the fraction of users that successfully receive their desired signals after the third transmission attempt

(i.e., k = 3) with reliability 0.95. F̄Ps(0.63) can also be interpreted as the fraction of users that successfully

receive their desired signals in the first time slot with reliability 0.63, or the fraction of users that successfully

receive their desired signals after the second time slot with reliability 0.86.
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Chapter 3

Meta Distribution of SIR in

Large-Scale Uplink and Downlink

NOMA Networks

We develop an analytical framework to derive the meta distribution and moments of the conditional success

probability (CSP), which is defined as success probability for a given realization of the transmitters, in large-

scale co-channel uplink and downlink non-orthogonal multiple access (NOMA) networks with one NOMA

cluster per cell. The moments of CSP translate to various network performance metrics such as the standard

success or signal-to-interference ratio (SIR) coverage probability (which is the 1-st moment), the mean

local delay (which is the −1-st moment in a static network setting), and the meta distribution (which is

the complementary cumulative distribution function of the success or SIR coverage probability and can be

approximated by using the 1-st and 2-nd moments). For the uplink NOMA network, to make the framework

tractable, we propose two point process models for the spatial locations of the inter-cell interferers by utilizing

the base station (BS)/user pair correlation function. We validate the proposed models by comparing the

second moment measure of each model with that of the actual point process for the inter-cluster (or inter-cell)

interferers obtained via simulations. For downlink NOMA, we derive closed-form solutions for the moments

of the CSP, success (or coverage) probability, mean local delay, and meta distribution for the users.
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3.1 Introduction

The next generations of wireless networks (such as 5G [56] or beyond 5G [B5G]) are expected to support bil-

lions of devices that are stimulated mainly from the diverse Internet-of-Things (IoT) applications (ranging

from delay-tolerant machine-type communications (MTC) to delay sensitive mission-critical communica-

tions) in addition to the enhanced mobile broadband applications. As a result, acquiring ultra-reliable and

low-latency communication (URLLC) is among one of the constitutional challenges for emerging massive

wireless networks [57]. Traditionally, reliability can be achieved with efficient channel coding and retrans-

mission schemes, e.g., hybrid automatic repeat request (HARQ). However, at the same time, massive device

connectivity with strict latency requirements need to be achieved in URLLC systems. This necessitates effi-

cient user access mechanisms that can potentially serve multiple devices in a specific time-frequency resource

block while reducing their respective transmission delays [7].

Non-orthogonal multiple access (NOMA) has been recognized as a promising multi-user channel access

technique that enables massive connectivity while reducing the transmission delay of the devices [7]. Contrary

to traditional orthogonal multiple access (OMA), such as time division multiple access (TDMA), frequency

division multiple access (FDMA), and code division multiple access (CDMA), the key idea of NOMA is to

serve multiple users in the same channel simultaneously. The concurrent transmissions in NOMA reduce the

waiting time of the devices while saving network resources. Of course, this can be achieved at the expense of

additional interference and decoding complexity at the receivers. To mitigate interference, NOMA exploits

successive interference cancellation (SIC) at the receivers [9, 8].

3.1.1 Background Work

Recently, performance analysis of NOMA-based wireless networks has attracted significant research interest.

The existing studies contribute mainly toward understanding the average performance of users considering

a single NOMA cell/cluster [8, 10, 11, 12, 13, 14]. For instance, the performance of a single-cell downlink

NOMA system with randomly located users was first studied in [10]. In particular, the signal-to-interference-

plus-noise ratio (SINR) outage probability and the ergodic capacity were derived for a user at rank m in terms

of distance. In [11], the problem of user pairing was investigated considering fixed NOMA (F-NOMA) and

cognitive radio inspired NOMA (CR-NOMA). A comparative performance analysis of uplink and downlink

NOMA with selective two user pairing was conducted in [8]. Closed-form solutions for ergodic sum-rate

and outage probability of a two-user NOMA cluster were presented in [12] considering a power back-off

policy. The power back-off policy was applied to distinguish users in a NOMA cluster with nearly similar

signal strengths (given that traditional uplink power control is in effect). The problem of user scheduling,
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subcarrier allocation, and power control in uplink NOMA was investigated in [13, 14] with perfect SIC at

the BS.

The aforementioned research studies ignore the impact of inter-cell interference which can significantly

limit the performance of NOMA in massive wireless networks. Very recently, some of the research works have

considered performance characterization of large-scale NOMA systems using stochastic geometry tools such

as Poisson point process (PPP) and Poisson cluster process (PCP). The performance of uplink NOMA in

terms of the rate coverage and average achievable rate was characterized first in [15] using PCP considering

both perfect and imperfect SIC. For downlink NOMA, outage probability and average achievable rate of

m-th rank user were derived in [16, 17] assuming that the BS locations follow a homogeneous PPP. The

users are ranked based on their normalized channel gains defined as the channel gain including path-loss and

small-scale fading normalized by the inter-cell interference. The analytical expressions are derived assuming

that the normalized channel gains of users located in a given NOMA cluster are independent and identically

distributed (i.i.d.). However, since the inter-cell interferences received at the different users in the downlink

are correlated, the normalized channel gains are also correlated, and therefore, the derived results are not

precise. In [18], the performance of two-user downlink NOMA was investigated in a K-tier cellular network.

The macro cell BSs use the massive multiple-input multiple-output (MIMO) technology and each small cell

adopts user pairing to implement two-user NOMA transmission. In [19], for K-tier heterogeneous networks

(HetNets) with biased nearest BS association, performance of downlink NOMA was investigated in terms of

the coverage probability and throughput for non-cooperative and cooperative schemes. For Poisson cellular

networks, [17] also studied the performance of uplink NOMA. To derive the analytical results, it was assumed

that uplink inter-cell interferers form a homogeneous PPP which is inaccurate since there is no inter-cell

interferer in the cell that the typical user lies in [20] (i.e., locations of the interferers are not independent).

Moreover, unlike the downlink case, an exclusion zone around the serving BS (called the desired BS) of the

typical user cannot be considered since an inter-cell interferer in the uplink can actually lie closer to the

desired BS than the typical user. Therefore, the effective inter-cell interference field as observed from the

desired BS can be modeled more accurately as an inhomogeneous PPP as demonstrated in [21, 22].

3.1.2 Motivation and Contributions

The current state-of-the-art mainly analyze the standard transmission success probability and ergodic capac-

ity of users in NOMA-enabled cellular networks. Nevertheless, it is noteworthy that the standard transmis-

sion success probability is itself the mean of a random variable referred to as conditional success probability

(CSP), which is the success probability of a user considering a given realization of BSs [49]. When the
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point processes describing the transmitter and receiver locations (referred to as transmitter point process

and receiver point process) are ergodic, the standard success probability is the average of the CSPs of all

users. Two networks can have the same standard (mean) success probability but distributions of the CSPs

may be completely different. This is similar to the case where two different random variables have the same

mean but different probability density functions (PDFs). To illustrate, let us consider the following example

with two networks: network A and network B. Assume that, in network A, the CSP of half of the users is 0

while that of the other half is 1. In network B, the CSP is 0.5 for all the users. For these two networks, the

standard (mean) success probability is the same and is equal to 0.5, while they behave completely different

in terms of delay. In network A, half of the users have a successful transmission after their first attempt

while the transmission delay is infinity for the other half of the users (i.e., the mean delay is infinity when

CSP of users is 0 or close to 0). In network B, the number of transmission attempts until the first successful

reception is almost surely finite for all the users, and for this network, the average number of transmission

attempts for successful transmission is 2. Therefore, comparing two networks simply in terms of their average

CSPs (or mean success probabilities) will not always be accurate since the CSP will not always be precisely

characterized by its average value.

Along this line, [49] characterized the meta distribution which is the complementary cumulative distri-

bution function (CCDF) of the CSP. This pioneering work was followed by various research studies for

Poisson bipolar and cellular networks, device-to-device (D2D) networks, and millimeter-wave (mm-wave)

D2D networks [49, 20, 51, 52, 53]. The meta distribution provides a more precise characterization of a

typical transmission link than the standard success probability. Meta distribution enables us to answer

questions such as “for a given target SIR threshold θ, what fraction of users are in coverage with reliability

x?”, whereas the standard success probability answers the question “for a given target SIR threshold θ, what

fraction of users are in coverage?”. Note that, CSP is a random variable and the meta distribution is the

CCDF of this random variable while the standard success probability is its mean (average). Therefore, from

the meta distribution we can derive the standard success probability, while the standard success probability

does not reveal any information about the distribution of the CSP.

To this end, the contributions of this chapter can be summarized as follows:

• We derive the moments of CSP for uplink and downlink NOMA in Poisson cellular networks. This

allows us to study the traditional success/coverage probability (which is the 1-st moment), the mean

local delay (which is the −1-st moment), and the meta distribution (which is the CCDF of the con-

ditional success probability and can be approximated by using the 1-st and 2-nd moments). Note

that mean local delay, which is defined as the mean number of transmission attempts until the first
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successful transmission [54], is a crucial performance metric for emerging URLLC systems.

• In uplink NOMA, the point process for the spatial locations of the interferers is a key for the derivation

of the meta distribution and moments of CSP. Since the actual point process is unknown, we propose

two models for this point process based on the pair correlation between interferers and the typical BS

(which is at the origin). We demonstrate the accuracy of the proposed point processes by comparing

the second moment measure of each process with that of the original process obtained via simulations.

We show that the proposed point processes provide better approximations for derived results for low

SIR threshold θ, and user locations closer to the BS.

• For downlink NOMA, we derive closed-form expressions for the moments of the CSP, success proba-

bility, mean local delay, and the meta distribution. We approximate the meta distribution by a beta

distribution and demonstrate the accuracy of the approximation.

The rest of the chapter is structured as follows. In Section 3.2, we describe the system model and assump-

tions for uplink and downlink NOMA. In Section 3.3, for uplink NOMA, we propose two point processes

to model the locations of the interferers, and derive the moments of the CSP and its meta distribution. In

Section 3.4, for downlink NOMA, we derive closed-form solutions for the moments of the CSP and its meta

distribution. Section 3.5 discusses numerical and simulation results followed by the conclusion in Section 3.6.

3.2 System Model and Assumptions

This section details the network model, channel model, and interference model along with assumptions for

multi-user uplink and downlink NOMA systems.

3.2.1 Uplink NOMA

Network and Channel Model

We consider an uplink NOMA system where BSs are distributed according to a homogeneous PPP1 ΦB

of intensity λb. Users are modeled as points of a homogeneous PPP of intensity λu. We assume a high

user density regime, i.e., λu >> λb. Therefore, we can assume that there are at least N users located

in each Voronoi cell. We consider random user selection, i.e., N users are randomly selected for NOMA

transmission from the users located in the Voronoi cell2. Each user is connected to its nearest BS. The

1The motivation of modeling BS locations for real-world cellular networks with PPP was justified in [58].
2This can be viewed as the general case of the user point process of type I introduced in [22]. In [22], the user point process

for N = 1 is studied which is the case in OMA. In this chapter, we consider N ≥ 1.
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network is interference-limited. The channel power between a user located at x and the typical BS located

at the origin is given by hx`(x) where hx represents the small-scale multi-path fading channel power following

i.i.d. exponential distribution with unit mean and `(x) = ‖x‖−α represents the path-loss with exponent α,

where α > 2.

SIC

We assume that decoding order is based on the distance and consider perfect SIC, i.e., the BS perfectly

decodes and cancels the first m− 1 interference signals coming from rank 1 to m− 1 users before decoding

the signal of the m-th rank user3. The channel gains of different users are different4 in the uplink, therefore

each message signal experiences distinct channel gain. The conventional uplink power control, which is

typically intended to equalize the received signal powers of users, may remove the channel distinctness and

thus may not be feasible for uplink NOMA [15]. Therefore, we assume that all users transmit with the same

power P .

Interference and SIR Model

To model the intra-cell interference with SIC, the typical BS needs to rank the received powers of various

users. The ranking of users in terms of their distances from the serving BS is generally considered as a

reasonable approximation of their respective ranked received signal powers5 [59, 15]. This approximation

provides tractability in the analysis. The intra-cell interference for the m-th rank user can therefore be

modeled as:

I intra
(m) =

N∑
i=m+1

Phx(i)
‖x(i)‖−α, m = 1, 2, ..., N, (3.1)

where hx(i)
is the fading from the i-th rank user who is located at x(i) (in the Voronoi cell of the typical BS)

to the typical BS. The inter-cell interference is given as follows:

I inter =
∑
x∈ΦI

Phx‖x‖−α, (3.2)

3In the next chapter, we introduce ordering methods and analyze the accuracy of distance-based ordering.
4The channel frequency/bandwidth is same for all users in NOMA; however, the channel gains experienced by the users on

that specific frequency will be different due to their path-loss and fading.
5In Chapter 4, we further study this assumption. Removing the perfect SIC and distance-based ranking assumptions, in the

next chapter, we derive the coverage probability for a more realistic setup.
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where ΦI is the point process describing the locations of the inter-cell interferers, which is unknown. Using

(3.1) and (3.2), for the user at rank m, the SIR is given as follows:

SIR(m) =
Phx(m)

‖x(m)‖−α

I intra
(m) + I inter

. (3.3)

3.2.2 Downlink NOMA

Network and Channel Model

In downlink NOMA, the BSs apply superposition transmission and SIC is implemented at the receiver where

each user decodes and cancels strong interferences before extracting the desired signal. A BS allocates more

power to the weaker (located farther from the BS) users such that a user at rank m (ranked with respect to

distance from the serving BS) can decode its signal in presence of interference from stronger users at rank 1

to m − 1 [60, 8, 61, 62]. We consider N users in each Voronoi cell. The BSs are distributed according to a

homogeneous PPP ΦB of intensity λb and each BS can transmit with maximum power PBS. The effect of

thermal noise is neglected. The channel power gain between the BS located at x and the typical user located

at the origin is given by hx`(x), and hx for different users is modeled by i.i.d. exponential random variable

with unit mean. `(x) = ‖x‖−α represents the power-law path-loss, in which α is the path-loss exponent.

The power allocated to the i-th rank user is Pi = βiPBS, ∀i = 1, 2, ..., N . Also, we have βi ≤ βj , ∀i ≤ j such

that
∑N
i=1 βi = 1 (or equivalently

∑N
i=1 Pi = PBS).

SIC

We consider perfect SIC, i.e., user at rank m successfully removes the intra-cell interference of all users who

are at higher ranks in terms of their distances.

In this chapter, as the first step towards performance analysis of NOMA in large-scale cellular networks,

we assume perfect SIC and distance-based ordering to drive closed-form expressions. In the next chapter,

we study SIC in more details. Specifically, we explain the difference between SIC in uplink and downlink,

and analyze the accuracy of distance-based ranking in SIC.

Interference and SIR Model

The intra-cell interference at m-th rank user can be given as:

I intra
(m) =

m−1∑
i=1

βiPBSh0‖x0‖−α, m = 1, 2, ..., N, (3.4)

23



where h0 is the fading from the serving BS located at x0 to the m-th rank user located at the origin. The

inter-cell interference can be modeled as:

I inter
(m) =

∑
x∈ΦB\{x0}

PBShx‖x‖−α, m = 1, 2, ..., N. (3.5)

Hence, for the user at rank m, the SIR can be given as:

SIR(m) =
βmPBSh0‖x0‖−α

I intra
(m) + I inter

(m)

. (3.6)

By Slivnyak’s theorem, the point process for the inter-cell interferers is a PPP with intensity λb in R2 \

b(o, ‖x0‖) where distribution of ‖x0‖ depends on the rank of the user. This is different from uplink where

the inter-cell interference is received at a typical BS and is therefore same for all NOMA users in the typical

Voronoi cell.

3.3 Uplink NOMA: Moments and Meta Distribution of the CSP

In this section, we derive the CSP and the moments and meta distribution of the CSP for an uplink NOMA

network. For this, we first derive the distance distribution of the intra-cell interferers. Afterwards, we derive

the approximate point process(es) of the inter-cell interferers, and then obtain the moments of CSP. The

exact and approximate meta distributions can then be obtained by using (2.3) and (2.4), respectively, as

described in Section 2.3. Let ΦU denote the point process of the uplink NOMA users. ΦU can be viewed as

the superposition of two point processes, namely, intra-cell point process and inter-cell point process. The

intra-cell point process consists of the uplink NOMA users that lie in the same cell as the typical uplink

NOMA user (it also includes the typical uplink NOMA user). The inter-cell point process, denoted by ΦI,

consists of the inter-cell interferers.

For performance analysis of uplink NOMA, modeling the actual point process ΦI for the inter-cell inter-

ferers is critical. In this section, we propose two point processes to approximate ΦI since the exact process

is not known. We will demonstrate the accuracy of the proposed point processes by comparing the second

moment measure of each point process with the second moment measure of the actual (or original) point

process ΦI obtained by simulations. Since the typical BS is located at the o (origin) and we model ΦI from

the typical BS point of view, we are interested in the first and second moment measures for b(o, r), where

b(o, r) denotes the ball of radius r centered at o.
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3.3.1 Distance Distributions of the Intra-cell Interferers

The cell that contains the typical uplink NOMA user is the typical cell; therefore, the desired link distance

between the typical uplink user and its serving BS is not Rayleigh distributed with mean 1/(2
√
λb) [22]. For

the typical cell, the desired link distance between the typical uplink user and its serving BS can be approxi-

mated by a Rayleigh distribution with mean 1/
√

5λb [20], which we follow in this chapter. Subsequently, for

the typical uplink user, the probability density function (PDF) and cumulative distribution function (CDF)

of the desired link distance are given as follows: [20]:

fR(r)≈(5/2)λbπre
−(5/4)λbπr

2

, FR(r)≈1− e−(5/4)λbπr
2

. (3.7)

Using the above distributions and order statistics [63, 64], the distribution of the distance of the user at rank

m from its serving BS can be derived as follows:

fRm(r) =
5λbπr

(
1− e−(5/4)λbπr

2
)m−1 (

e−(5/4)λbπr
2
)N−m+1

2B(N −m+ 1,m)
, r ≥ 0, (3.8)

where B(·, ·) is the Beta function. Conditioned on the distance of the user at rank m (Rm = rm), it was

shown in [65, 15] that the distances of users at lower or higher ranks than m-th rank user to the typical BS

are i.i.d. and their PDFs can be characterized, respectively, as follows:

fRin (r | Rm = rm) =
fR(r)

FR(rm)
, r ≤ rm, i = 1, ...,m− 1, (3.9)

fRout
(r | Rm = rm) =

fR(r)

1− FR(rm)
, r ≥ rm, i = m+ 1, ..., N. (3.10)

3.3.2 BS/user Pair Correlation Function

In this section, we proceed by obtaining BS/user pair correlation function which is the pair correlation

function of ΦI with respect to the origin (the location of the typical BS), through simulations, and then

model the locations of the inter-cell interferers by proposing two point processes with the same BS/user pair

correlation function.

The pair correlation function measures the correlation (dependency) between the points of a point process.

Similar to [22], we study the cross-correlation between the inter-cell interfering users’ point process and the

typical BS. Therefore, we use the term “BS/user pair correlation function”6. For a motion invariant point

6BS/inter-cell user pair correlation function is more accurate. However, to be consistent with [22], we also use the term
“BS/user pair correlation function”.
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process Φ with intensity λ, the pair correlation function is defined as [41]:

g(r) =
1

2πr

d

dr

(
1

λ
E0![Φ(b(o, r))]

)
,

where E0! is the reduced palm expectation given that a point exists at the origin. In the following, we will

use the above definition and replace the reduced palm expectation with E0 [ΦI(b(o, r))] which is the mean

number of inter-cell interferers that are located within distance r from the typical BS which is located at

the origin. Therefore, this term captures the cross-correlation between the typical BS and ΦI.

Definition 3.1 (BS/user Pair Correlation Function [22]). For the motion invariant BS and user point

processes, the BS/user pair correlation function gλb
(r) is defined as follows:

gλb
(r) ,

1

2πr

d

dr
K(r) =

1

2πr

d

dr

(
1

Nλb
E0[ΦI(b(o, r))]

)
, (3.11)

where E0 is the Palm expectation (given that the typical BS is at the origin), and λb is the intensity of the

BS point process. When ΦI is scale-invariant, gλb
(r) = g1(

√
λbr).

Note that the BS/user pair correlation function gλb
(r) is useful in approximating the inter-cell interfering

users’ point process by a PPP of intensity function λbgλb
(r) [22]. Specifically, [22] studied the point process

of uplink interferers for N = 1 (i.e., for orthogonal multiple access [OMA]), and through numerical fitting,

the best exponential fit for N = 1 was obtained as follows:

g1(r) = 1− e−(12/5)πr2

. (3.12)

Note that any other point process with the same intensity function (λbgλb
(r)) can also be used to approximate

the inter-cell interferers’ point process.

Along the same lines, we also obtain g1(r) through simulations. For N = 2 and N = 5, g1(r) is illustrated

in Fig. 3.1 and we observe that it does not vary for any value of N . The reason is that the average number

of inter-cell interferers within distance r from the typical BS E0[ΦI(b(o, r))] for clusters of N users in NOMA

is N times higher than OMA. Therefore, (3.11) does not change with respect to N . We also compare the

simulation results with the best exponential fit for N = 1. Using the invariance property of g1(r) with

respect to N , the scale-invariance property of the model, and the results in [22], we approximate the inter-

cell interferers ΦI by a PPP ¯̄ΦI with intensity Nλbgλb
(r). NOMA users in each NOMA cluster must be

served by the same BS, i.e, they must be in the same Voronoi cell. Therefore, distances among the users is

limited by the size of the Voronoi cell and the users’ locations are correlated. Since, in a PPP, the location
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Figure 3.1: BS/user pair correlation function g1(r) for different N and validation with the best exponential
fit in (3.12) for N=1.

of each point is independent of the other points [41], this correlation cannot be modeled accurately with

¯̄ΦI. To address this issue, we also propose a cluster process Φ̄I to approximate ΦI. In the following, first we

define the intensity measure and then we describe the two proposed models along with their validation and

comparative analysis.

Definition 3.2 (Intensity Measure [41]). For any point process Φ, the intensity measure (first moment

measure) Λ(B) is the mean number of points in B, i.e., Λ(B) = E[Φ(B)], ∀B ⊂ R2. If Φ has an intensity

function λ(x), then Λ(B) =
∫
B

λ(x)dx.

3.3.3 Point Process Models for Inter-cell Interferers

Model 1

To model the interferers, we consider a PCP Φ̄I
7, where the parents form an inhomogeneous PPP Φ̄P with

intensity function λ̄p(x) = λb

(
1− e−(12/5)λbπ‖x‖2

)
. In each cluster, N offspring points are located in the

same location as the parent, i.e., for a parent at x, N offsprings are i.i.d. with PDF f(y) = δ(y − x), where

x, y ∈ R2. This model can also be viewed as a non-simple inhomogeneous PPP [41]. As mentioned earlier,

other cluster processes that have the same BS/user pair correlation function can also be used to model the

inter-cell interferers, but Φ̄I is more tractable. Note that Φ̄I models the locations of the inter-cell interferers.

Model 1 implies that, although inter-cell interferers are located in different locations in each Voronoi cell,

for large-scale analysis of uplink NOMA, it can be assumed that, from the point of view of the typical BS,

they are co-located.

7If the parents of a cluster process are the points of a Poisson process, the resulting process is a Poisson cluster process [41].
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Using Model 1, the mean number of inter-cell interferers within the distance r from the typical BS (first

moment of Φ̄I(b(o, r))) can be derived as follows:

Λ̄(b(o, r)) = E
[
Φ̄I(b(o, r))

] (a)
= NE

[
Φ̄P(b(o, r))

]
= N Λ̄p(b(o, r))

= N

∫
b(o,r)

λ̄p(x)dx = Nλb

[
πr2 − 5

12λb

(
1− e−(12/5)λbπr

2
)]
, (3.13)

where Λ̄ and Λ̄p are the intensity measures of Φ̄I and Φ̄P, respectively. Step (a) follows from Φ̄I(b(o, r)) =

N Φ̄P(b(o, r)). The second moment measure of Φ̄Ib(o, r)) is derived as follows:

E
[
Φ̄2

I (b(o, r))
]

= N2E
[
Φ̄2

P(b(o, r))
] (a)

= N2
∞∑
k=0

k2 Λ̄p(b(o, r))k

k!
e−Λ̄p(b(o,r))

(b)
= N2

[
Λ̄p(b(o, r)) + Λ̄p(b(o, r))2

]
= Λ̄(b(o, r))

[
N + Λ̄(b(o, r))

]
, (3.14)

where (a) follows since Φ̄P(b(o, r)) is a Poisson random variable with mean Λ̄p(b(o, r)), and (b) is obtained

from mean and variance of the Poisson distribution, where Λ̄(b(o, r)) is given in (3.13). (3.14) can also be

derived using the second factorial moment measure of PPPs.

Model 2

We approximate ΦI with an inhomogeneous PPP ¯̄ΦI with intensity function ¯̄λ(x) = Nλb

(
1− e−(12/5)λbπ‖x‖2

)
.

The mean number of inter-cell interferers within the distance r from the typical BS (first moment of

¯̄ΦI(b(o, r))) is as follows:

¯̄Λ(b(o, r)) = E
[

¯̄ΦI(b(o, r))
]

=

∫
b(o,r)

¯̄λ(x)d(x) = Λ̄(b(o, r)),

where ¯̄Λ denotes the intensity measure of ¯̄ΦI. The second moment of ¯̄ΦI(b(o, r)) is given by

E
[

¯̄Φ
2

I (b(o, r))
]

(a)
= ¯̄Λ(b(o, r))

[
¯̄Λ(b(o, r)) + 1

]
, (3.15)

where (a) follows since ¯̄ΦI(b(o, r) is Poisson variable with mean ¯̄Λ(b(o, r)). Note that the point process

introduced in [22] is a special case (N = 1) of the proposed Models 1 and 2.

According to the simulation results for success probability and the meta distribution in Section 3.5,

analytical results that are obtained from Model 1 provide upper bounds while those that are derived from

Model 2 provide lower bounds. Moreover, Model 2 provides a better approximation for the nearest user

(m = 1), while Model 1 provides a better approximation for the furthest user m = N .
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3.3.4 Model Validation

To compare the second moment of ΦI(b(o, r)) with the proposed models, we define ρ(r) , 1
Nλb

√
E [Φ2

I (b(o, r))].8

In Fig. 3.2, ρ(r) for the original inter-cell interferers’ point process ΦI is obtained via simulations and a com-

parison is performed with the proposed models. We observe that, ρ(r) for the proposed models are close to

the ρ(r) of ΦI. Moreover, based on Fig. 3.2, Model 1 provides a better approximation for larger values of

r.

3.3.5 Moments and Meta Distribution of the CSP

The moments of the CSP for uplink NOMA users can be derived as follows.

Theorem 3.1 (Moments of the CSP for Uplink NOMA). In uplink NOMA, the b-th moment of the CSP,

b ∈ C, for the m-th rank user can be derived as follows:

Mb,(m) =

∫ ∞
0

[
(5/2)λbπr

2e(5/4)λbπr
2

µb
(
(5/4)λbπr

2, θ
)]N−m

E

[ ∏
x∈ΦI

(
1

1 + θrα‖x‖−α

)b]
fRm(r)dr,

(3.16)

where fRm(r) is given in (3.8) and µb(x, z) =
∫ 1

0
t−3e−xt

−2

(1+ztα)b
dt. The expectation in (3.16), which is conditioned

on the serving distance r, can be approximated by using the proposed Model 1 and Model 2, respectively,

8We consider the square root of the normalized second moment since it illustrates the difference between the models better.
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as follows:

E

[ ∏
x∈ΦI

(
1

1 + θrα‖x‖−α

)b]
≈ exp

−2πλb

∞∫
0

[
1−

(
1

1 + θrαx−α

)Nb](
1− e−(12/5)λbπx

2
)
xdx

 , (3.17)

E

[ ∏
x∈ΦI

(
1

1 + θrα‖x‖−α

)b]
≈ exp

−2πNλb

∞∫
0

[
1−

(
1

1 + θrαx−α

)b](
1− e−(12/5)λbπx

2
)
xdx

 . (3.18)

Proof. See Appendix A.1.

As shown below, the proposed point processes provide better approximations for standard transmission

success probability (b = 1) when the SIR threshold is low.

Corollary 3.1. For b = 1 (standard success probability), the proposed point process models provide better

approximations when θ → 0 compared to large values of θ.

Proof. For b = 1, we have E
[∏

x∈ΦI

1
1+θrα‖x‖−α

]
= LIinter(θrα/P ), where I inter is given in (3.2) and

LIinter(s) = E
[
e−sI

inter
]

is the Laplace transform of the inter-cell interference. When s→ 0, we have

LIinter(s) = E
[
e−sI

inter
]
∼ 1− E

[
sI inter

] (a)
= 1− E

[
s
∑
x∈ΦI

Phx‖x‖−α
]

(b)
= 1− sPE

[∑
x∈ΦI

‖x‖−α
]
,

where (a) follows from (3.2), and (b) follows since the fading coefficients hx are i.i.d. with unit mean.

According to the Campbell’s theorem, approximating ΦI with point processes that have the same BS/user

pair correlation function (which can also be interpreted as the intensity measure with respect to the origin)

for any f : R2 7→ R yields

E

[∑
x∈ΦI

f(x)

]
≡ E

∑
x∈Φ̄I

f(x)

 ≡ E

∑
x∈ ¯̄ΦI

f(x)

 .
Therefore, proposed models provide better approximations for the first moment M1 when θ → 0.

Similarly, we can prove that for m = 1 the approximations are better compared to other values of m,

because the probabilities of small values of r are higher for m = 1. Moreover, after applying changes of

variables and some simplifications in (3.16), we can show that the moments of the CSP in uplink NOMA

are independent of the BS intensity λb.

Corollary 3.2. For b ∈ R, Mb,(m) of Model 2 is a lower bound for Mb,(m) of Model 1.
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Proof. Using the identity 1− yN ≡ (1− y)
(
1 + y + y2 + ...+ yN−1

)
, for 0 ≤ y, we have, 1− yN ≤ N(1− y).

Then Corollary 3.2 is obtained by setting y =
(

1
1+θrαx−α

)b
in (3.17) and (3.18).

The exact and approximate meta distributions of CSP can be obtained by using (2.3) and (2.4), respec-

tively, as described in Section 2.3.

Remark: Perfect SIC offers an optimistic view of the system performance especially for scenarios where

the users are located very close to each other. However, these scenarios are less likely to occur when the

number of users in a NOMA cluster is small, which would be usually the case in a practice. The performance

gains of NOMA over OMA are generally achievable for N = 2 or N = 3 and in such scenarios interference

cancellation is therefore likely to be achieved. Thus, achieving near perfect SIC is not completely unrealistic

and has been considered in most of the existing state-of-the-art work [66, 67, 68, 69, 70]. Nevertheless, we

can characterize the system performance with the worst-case SIC, where a given user will be able to decode

its signal only when all the strong interferences are decoded perfectly. This will provide a pessimistic view

(i.e., lower bound) of the system performance.9

In uplink NOMA with the worst-case SIC, decoding of the desired signal of the user at rank m is

always unsuccessful whenever the decoding of the m− 1 closer users (strong interferences) are unsuccessful.

Therefore, the success probability of the m-th rank user is

pworst-case
(m) =

m∏
i=1

M1,(i),

where M1,(i) is given in Theorem 3.1. The corresponding expression for the downlink case will be provided

in the next section.

3.4 Downlink NOMA: Moments and Meta Distribution of the

CSP

In this section, we derive the CSP, and the moments and meta distribution of the CSP in a downlink NOMA

network. For this, we first derive the distance distribution of the desired link and then derive the moments

of CSP as well as the meta distribution.

9Analysis of the worst-case SIC for both uplink and downlink with the impact of interference correlation is postponed to the
next chapter.
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3.4.1 Distribution of the Desired Link Distance

Since each user connects to its nearest BS, the serving link distance distribution is given by the Rayleigh

distribution as follows [71]:

fR(r) = 2λbπre
−λbπr

2

, FR(r) = 1− e−λbπr
2

. (3.19)

Using the above equations and order statistics [63, 64], the distribution of the distance of a user at rank m

from its serving BS is as follows:

fRm(r) =
2λbπr

(
1− e−λbπr

2
)m−1 (

e−λbπr
2
)N−m+1

B(N −m+ 1,m)
, r ≥ 0. (3.20)

3.4.2 Moments and Meta Distribution of the CSP

The b-th moment of the conditional success probability Mb,(m), b ∈ C, for an m-th rank downlink NOMA

user is derived in the following. Based on these moments, we can derive the mean success probability, the

meta distribution, and the mean local delay.

Theorem 3.2 (Moments of the CSP for Downlink NOMA). For a user at rank m, the b-th moment of the

conditional success probability Mb,(m) is

Mb,(m) =



B(Ab,m+N−m+1,m)
B(N−m+1,m) , θ < βm/

m−1∑
i−1

βi

0, θ > βm/
m−1∑
i−1

βi & <(b) > 0

∞, θ > βm/
m−1∑
i−1

βi & <(b) < 0

(3.21)

where Ab,m =
∑∞
k=1

(
b
k

)
(−1)k+1ckm

δ
k−δ 2F1(k, k− δ; k− δ + 1;−cm), cm = (βmθ −

m−1∑
i−1

βi)
−1, δ = 2/α, 2F1 is

the Gauss hypergeometric function, and <(b) gives the real part of b.

Proof. See Appendix A.2.

Note that, similar to the uplink, moments of the CSP in downlink are independent of the BS intensity λb.

The condition θ < βm/
m−1∑
i−1

βi (or equivalently, cm > 0) implies that the received SIR at the m-th rank user

is greater than the required SIR θ in the absence of inter-cell interference. Moreover, when N = 1, which is

the case in orthogonal multiple access, Theorem 3.2 reverts back to the known results for downlink Poisson

cellular networks [49].
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With the worst-case SIC, decoding of the desired signal of the user at rank m, is always unsuccessful

whenever the decoding of the N − m farther users (strong interferences) are unsuccessful. Therefore, the

success probability of the m-th rank user is

pworst-case
(m) =

N∏
i=m

B(A1,i +N −m+ 1,m)

B(N −m+ 1,m)
,

where A1,i is given in Theorem 3.2. Note that, in downlink, each user performs decoding separately while

in uplink, detection of signals is performed at the BS.

In the following, a simplified closed-form expression for negative moments M−w,(m), w ∈ R+, is provided.

The expression is useful in evaluating the mean local delay of an m-th rank user in closed-form by setting

w = 1.

Corollary 3.3. When b = −w, w ∈ R+, and cm > 0

M−w,(m) =


B(N−m−Dw,m+1,m)

B(N−m+1,m) , Dw,m < N −m+ 1

∞, otherwise

(3.22)

where Dw,m =
∞∑
k=1

(
w
k

)
ckm

δ
k−δ . When cm < 0, from Theorem 3.2, we have M−w,(m) =∞.

Proof. From the proof of Theorem 3.2, we have

M−w,(m) = ERm

exp

−2πλb

∞∫
Rm

[
1−

(
1

1 + cmRαmr
−α

)−w]
rdr




=

∞∫
0

exp

{
πλbr

2
∞∑
k=1

(
w

k

)
ckm

δ

k − δ

}
fRm(r)dr. (3.23)

Finally, Corollary 3.3 is obtained by substituting (3.20) in (3.23) and setting Dw,m =
∑∞
k=1

(
w
k

)
ckm

δ
k−δ .

Note that setting b = jt, j =
√
−1 and t ∈ R+, the exact meta distribution of the m-th rank user is

derived by substituting Mjt,(m) from Theorem 3.2 in (2.3).

Since the exact meta distribution is complicated and does not provide any direct insights, the correspond-

ing beta approximation can be obtained. To derive the beta approximation, we need the first and second

moments of Ps,(m). Standard (mean) success probability which is the first moment of Ps,(m) can be easily ob-

tained by setting b = 1 in Theorem 3.2, i.e., M1,(m) = B(A1,m +N −m+ 1,m)/B(N −m+ 1,m), where

A1,m = cm
δ

1−δ 2F1(1, 1−δ; 2−δ;−cm). Similarly, we can derive the second moment M2,(m) by setting b = 2.

The beta approximation is obtained by substituting M1,(m) and M2,(m) in (2.4) as described in Section 2.3.
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Figure 3.3: First moment of the CSP (i.e., standard success probability) and meta distribution for uplink
NOMA with λb = 0.001 and α = 4.

Corollary 3.4 (Mean Local Delay of User at Rank m). For the m-th rank user, when cm > 0 and D1,m =

cm
δ

1−δ < N −m+ 1, the mean local delay is finite and is given by

M−1,(m) =
B(N −m−D1,m + 1,m)

B(N −m+ 1,m)
. (3.24)

When cm < 0 or D1,m = cm
δ

1−δ > N −m+ 1 , the mean local delay is infinite.

3.5 Numerical Results and Discussions

In this section, we present numerical and simulation results to validate the accuracy of the derived expressions.

Specifically, for uplink NOMA, we validate and compare the analytical results of Theorem 3.1 considering

the two proposed models for the inter-cell interferers’ point process. A comparison is also provided with

the traditional OMA scheme. For both uplink and downlink NOMA, we validate the accuracy of the beta

approximation for the meta distribution using the results in Theorem 3.1 and Theorem 3.2 and show the

distribution of the CSP for different users in a NOMA cluster.

3.5.1 Uplink NOMA

Validation of Model 1 and Model 2 and Meta Distribution of CSP

To demonstrate the accuracy of the proposed inter-cell interferers’ point process models, in Fig. 3.3(a), we

plot the first moment of the CSP, which is the standard success probability, of a user at rank m. Simulation
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Figure 3.4: G(θ) for uplink and downlink NOMA. (a) Uplink NOMA with λb = 0.0005 and α = 4. (b)
Downlink NOMA with λb = 0.001 and α = 4. For N = 2, β1 = 0.15 and β2 = 0.85. For N = 3, β1 = 0.17,
β2 = 0.33, and β3 = 0.5.

results and the analytical results derived in Theorem 3.1 are compared for λb = 0.001, N = 2, and α = 4.

According to Fig. 3.3, Model 2 provides a better approximation for m = 1, while Model 1 provides a better

approximation for m = N . In general, Model 1 outperforms in a wide range of scenarios.

For the same BS intensity and path-loss exponent with three users in each NOMA cluster, the exact

meta distribution of the CSP (obtained via simulations) and its beta approximation (with two approximate

inter-cell interferer point processes) are shown in Fig. 3.3(b). The beta distribution as well as the proposed

point process models provide a good approximation for the exact meta distribution.

NOMA vs. OMA

To compare N -user NOMA with OMA, we define the gain G as

G(θ) ,

∑N
m=1M1,(m)(θ)

MOMA
1 (θ)

, (3.25)

where MOMA
1 considers no channel inversion power control and is obtained by setting N = m = 1 in

Theorem 3.1. For a given amount of radio bandwidth, when BS and user point processes are ergodic, G(θ)

can be interpreted as the ratio of the density of users served in NOMA to the density of users served in

OMA. For instance, according to Fig. 3.4(a), when N = 3, G(−10 dB) ≈ 2.3, which means, with NOMA, the

number of users served in a unit area is 2.3 times that with OMA. In Fig. 3.4(a), the gain of uplink NOMA

G(θ) decays rapidly with increasing θ and the rate of decay is much higher for large number of users N .
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Figure 3.5: The exact meta distribution and its beta approximation for m-th rank user when λb = 0.001,
N = 3, α = 4, and θ = −3 dB.

3.5.2 Downlink NOMA

NOMA vs. OMA

In Fig. 3.4(b), G(θ) is evaluated for downlink. Similar to the uplink, the gain of downlink NOMA G(θ)

decays rapidly with increasing θ and the rate of decay is much higher for large number of users N . However,

for large values of θ, G(θ) increases since the effect of link distance is dominant and the average link distance

of a typical user in OMA is 1/(2
√
λb), while in NOMA, the average link distance of the 1-st rank user is

1/(2
√
Nλb).

Validation of Meta Distribution of CSP

In Fig. 3.5, we show that the meta distribution for the CSP can be approximated by the beta distribution

with shape parameters M1β/(1−M1) and β. We consider three users in each NOMA cell. In this scenario,

the meta distribution of the m-th rank user, m = 1, 2, 3, and its beta approximation are shown in Fig. 3.5

for two different power allocations. It can be seen that the beta distribution provides a good approximation

for the meta distribution. In Fig. 3.5(a), we note that about 58% of the 1-st rank users, 30% of 2-nd rank

users, and 7% of 3-rd rank users have success probabilities greater than 0.6. Therefore, success probabilities

of 32% of users are greater than 0.6. With OMA, for 68% of users, success probabilities are greater than

0.6. This means that, with NOMA, the density of users served with the same amount of radio spectrum is

32× 3/68 ≈ 1.4 times that with OMA, when the target reliability is 0.6.

Using (2.6), we can also study the distribution of the local delay from Fig. 3.5. We note that 58% of the

1-st rank users successfully receive their desired signals with probability more than 0.6 in the first time slot,
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(b) β1 = 0.15 and β2 = 0.85.

Figure 3.6: PDF of the CSP of 1-st and 2-nd rank downlink NOMA users for λb = 0.001, N = 2, α = 4,
θ = −5 dB. (a) M1,(1) = 0.73 and M1,(2) = 0.53. (b) M1,(1) = 0.59 and M1,(2) = 0.63

while, after the second time slot, 74% of the 1-st rank users successfully receive their desired signals with

probability more than 0.6 (this is obtained by setting k = 2 and x = 0.6 in (2.6) which yields F̄Ps,m
(0.37)).

This value for the 2-nd rank users is 50% and for the 3-rd rank users is 17%. Hence, after the second time

slot, 47% of users receive their desired signals with reliability 0.6.

Finite and Infinite Mean Local Delay

Using the beta approximation, distribution of the CSP for the 1-st and 2-nd rank users are shown in Fig. 3.6.

To understand the relations between the CSP, the standard success probability (1-st moment), and the mean

local delay (−1-st moment), consider the following examples.

• When λb = 0.001, N = 2, α = 4, θ = −5 dB, β1 = 0.35, and β2 = 1−0.35 = 0.65, the standard success

probability for the 1-st rank users is 0.73 and for the 2-nd rank users is 0.53. For the 1-st and 2-nd

rank users, the mean local delays are finite, i.e., cm
δ

1−δ < N −m+ 1 is satisfied for m = 1 and m = 2.

• When β1 = 0.15 and β2 = 0.85, the standard success probability for the 1-st rank users is 0.59 and for

the 2-nd rank users is 0.63. Although the overall mean success probability for these two examples in

Fig. 3.6 is about 0.62, in the second example, for the 1-st rank users, the mean local delay is infinite.

When the mean local delay is infinite, it means that there is a significant number of users with small

conditional success probabilities in the network [54]. This can also be seen in Fig. 3.6(b) where the

PDF of small values of CSP for the 1-st rank users is not zero. Therefore, we can conclude that, in the

second example, for the 1-st rank users CSPs are close to 0 and 1 with high probability while for the

2-nd rank users they are close to mean 0.63 with high probability.

37



3.6 Conclusion

Standard success probability is not enough for capturing a network performance since two networks can have

the same success probability but completely different mean local delay (for one it can be finite and for the

other it can be infinite). On the other hand, meta distribution is a fine-grained performance metric that

gives the distribution of the CSP. It can be used in the evaluation of the network performance metrics such

as the standard success probability (first positive moment) and mean local delay (first negative moment).

In this chapter, we have developed a stochastic geometry framework to derive the moments of the con-

ditional success probability (CSP) and its meta distribution in uplink and downlink NOMA networks. For

uplink NOMA, we have proposed two point process models for spatial locations of the interferers by using

the definition of BS/user pair correlation function and demonstrated the accuracy of the models by using

Monte-Carlo simulations. For downlink NOMA, we have derived closed-form solutions for the success prob-

ability, the meta distribution, and the mean local delay. In the next chapter, we derive the performance of

NOMA in a more realistic setup. Specifically, we study the impact of ordering in SIC.
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Chapter 4

Accuracy of Distance-Based Ranking

of Users in the Analysis of NOMA

Systems

We characterize the accuracy of analyzing the performance of a non-orthogonal multiple access (NOMA)

system where users are ranked according to their distances instead of instantaneous channel gains, i.e.,

product of their distance-based path-loss and fading channel gains. Distance-based ranking of users is

analytically tractable and can lead to important insights. However, it may not be appropriate in a multipath

fading environment where a near user suffers from severe fading while a far user experiences weak fading.

Since the ranking of users (and in turn interferers) in a NOMA system has a direct impact on coverage

probability analysis, impact of the traditional distance-based ranking, as opposed to instantaneous signal

power- (ISP-) based ranking, needs to be understood. This will enable us to identify scenarios where

distance-based ranking, which is easier to implement compared to instantaneous signal power-based ranking,

is acceptable for system performance analysis. To this end, in this chapter, we derive the probability of

the event when distance-based ranking yields the same results as instantaneous signal power-based ranking,

which is referred to as the accuracy probability. We show that the accuracy probability decreases with the

increasing number of users and increases with the path-loss exponent. Closed-form expressions are presented

for Rayleigh fading environment.

In addition, through examples, we study the impact of ranking on uplink and downlink coverage prob-

ability. In dowlink NOMA, decoding order is dictated by the power allocation at the BS. If BS employs
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ISP-based ranking to allocate power, decoding order at each user will be based on users’ ISPs (in the same

order as the power allocation at the BS), and if BS employs distance-based ranking, decoding order will

be based on users’ distances (in the same order as the power allocation at the BS). On the other hand, in

uplink NOMA, since the channels of different users are different, each message signal experiences distinct

channel gain. Therefore, even when user j transmits with more power, compared to user i, it is still possible

that the received signal power of user i at the BS be stronger than user j. The strongest signal is decoded

first at the BS and experiences interference from all users in the cluster with relatively weaker instantaneous

received signal powers (ISPs). Thus, to study the coverage probability for uplink NOMA, we must rank

the users based on their received ISPs. In the existing literature, however, mean signal power (MSP)-based

ranking1 is used to determine the decoding order and calculate the SIR coverage probability. Although this

approximation provides tractable results, it is not accurate. In this chapter, we also derive the coverage

probability for ISP-based ranking, and we show that MSP-based ranking underestimates the SIR coverage

probability

4.1 Introduction

Performance of non-orthogonal multiple access (NOMA) in both uplink and downlink depends on the succes-

sive intra-cell interference cancellation (SIC) which relies on the ranking of the users in each NOMA cluster

[8]. In particular, downlink intra-cell interference received at a given user in NOMA depends on the power

allocation factors of users in the cluster. These power allocation factors are designed according to the ranking

of users’ transmission links quality. For example, users with stronger links have smaller power allocations

and vice versa. On the other hand, in uplink NOMA, to apply SIC, BS successively decodes and cancels

the messages of strong channel users, prior to decoding the signals of weak channel users [8]. Therefore, the

intra-cell interference encountered by any user depends on the instantaneous received signal powers (which

includes short-term fading) of users in the NOMA cluster.

The link quality can be evaluated by different metrics. These metrics should include effects of path-loss

(and therefore link distance), fading, and/or inter-cell interference [72]. However, acquiring complete channel

state information (CSI) with fading and inter-cell interference increases system complexity. Therefore, most

of the existing state-of-the-art resorts to mean signal power- (or distance-) based user ranking in NOMA

analysis. Recently, in [15], the rate coverage probability of a user at rank m in uplink NOMA has been

derived assuming distance-based ranking. In [73, 59], it is assumed that the order statistics of instantaneous

signal power are dominated by the distance; hence, in the analysis, users are ordered based on their distances

1In our network, MSP-based, path-loss-based, and distance-based rankings yield the same result. Thus, we use them
interchangeably throughout the chapter.
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instead of complete CSI. In [74, 75], distance-based ranking is used for the analysis of NOMA systems with

HARQ. In [76], the authors study two-user cooperative NOMA and derive the outage probability assuming

the near user to be the strong user and the far user to be the weak user. In [77], a similar assumption is made

for the analysis of uplink and downlink MIMO NOMA. In order to maximize the rate region of the uplink

NOMA systems, in [78], decoding order of the information signal at the BS is the inverse of the distances. In

[72], the authors derive the outage probability in downlink Poisson cellular networks where users are ranked

based on mean signal power and instantaneous signal-to-intercell-interference-plus-noise ratio.

To avoid analytical complexity (in theory) and overcome implementation complexity, mean signal power-

(distance-) based ranking is typically considered to be appropriate for ordering users in a NOMA cluster.

Although this method simplifies the analysis and provides tractable results, its validation (i.e., accuracy)

has not been studied yet. The distance-based ordering may not always be accurate, especially in a dynamic

multipath fading environment, where a near user can experience severe fading and a far user can observe

weak fading. Since the ranking of users in a NOMA system has a direct impact on the system performance

(e.g., coverage probability) analysis, it is crucial to quantify the impact of distance-based ranking in various

environments and to identify the scenarios where this ranking is accurate (i.e., provides system performance

close to that achievable with full CSI-based user ranking).

The contributions of this chapter can be summarized as follows:

• This chapter characterizes the accuracy of analyzing the performance of a NOMA system where users

are ranked according to their distances (or, equivalently, mean signal powers) instead of instantaneous

signal powers, i.e., product of their distance-based path-loss and fading channel. In particular, we

derive the probability of the event when distance-based ranking yields same results as instantaneous

signal power-based ranking, which is referred to as the accuracy probability.

• By analyzing the properties of the derived accuracy probability, we show that the accuracy probability

decreases with the increasing number of NOMA users and increases with the path-loss exponent.

Closed-form expressions are derived for special cases with two and three users in a NOMA cluster and

Rayleigh fading.

• For uplink NOMA, we must rank the users based on their received ISPs. This is unlike downlink

NOMA, where the order of decoding at the receiver is dictated by the power allocation at the BS. In

this regard, through examples, we further study the impact of ranking on uplink and downlink. We

also derive the coverage probability for ISP-based ranking in uplink NOMA.

• Finally, we study the impact of fading severity and user selection on the accuracy probability.
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The rest of the chapter is organized as follows. The system model and assumptions are presented in

Section 4.2. The definition and properties of the accuracy probability are provided in Section 4.3. Discussions

on the impact of ranking on uplink and downlink coverage probability are provided in Section 4.4. For

Rayleigh and Nakagami-m fading, the accuracy probability is derived in Sections 4.5 and 4.6, respectively.

In Section 4.7, the impact of user pairing on the accuracy probability is investigated. Numerical results are

presented in Section 4.8. Finally, Section 4.9 concludes the chapter.

4.2 System Model and Assumptions

We assume that the spatial locations of the BSs follow a homogeneous Poisson point process (PPP) Φ of

intensity λ. Users are also distributed according to a homogeneous PPP ΦU of intensity λu independent of

the BS point process. Each user is associated to its nearest BS. We consider a heavily loaded regime, i.e.,

λu � λ where we have at least N users in a typical Voronoi cell2. To form a NOMA cluster of size N in

the typical cell, we randomly select N users. Therefore, NOMA users are uniformly distributed within the

typical Voronoi cell. The explicit distribution of the main geometrical characteristics of the typical cell of

a Voronoi tessellation is not known [80]. In [81, 22, 20], taking c = 5/4, the probability density function

(PDF) and the cumulative distribution function (CDF) of the distance for a typical user from its serving BS

are approximated, respectively, as follows:

fr(x) ≈ 2cλπxe−cλπx
2

, Fr(x) ≈ 1− e−cλπx
2

, x ≥ 0. (4.1)

A realization of the network model is illustrated in Fig. 4.1.

Let us denote the distance between the i-th nearest user (termed rank i user) and the serving BS by r(i),

1 ≤ i ≤ N . The received power, for the user at rank i, is modeled by hir
−α
(i) . r−α(i) represents the large-scale

path-loss where α > 2 is the path-loss exponent. hi models the channel power gain due to small-scale

fading. The channel power gains follow independent gamma distribution with parameter m and mean Ω for

Nakagami-m fading environment, i.e.,

fh(x) =
mmxm−1

Γ(m)Ωm
exp

(
−mx

Ω

)
, (4.2)

where Γ(.) is the gamma function. By setting m = 1, it reduces to the exponential distribution, corresponding

to Rayleigh fading.

2In a heavily loaded network, when N is small, assuming that we have at least N users in a typical cell, is not unrealistic.
For instance, when λu/λ = 10, according to [79][Lemma 1], the probability of having more than one user in the typical cell is
0.97 and the probability of having more than two users is 0.93.
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Figure 4.1: A realization of the network. The green triangles represent the BSs and the blue dots represent
the users. λ = 0.0005.

4.3 Ranking Accuracy Probability: Definition and Properties

Ranking users based on their distances from the serving BS in each NOMA cluster is a common assumption

in the existing literature to characterize the performance of NOMA. That is, the nearest user to the serving

BS is assumed as the user with the highest CSI and so on (which may not always be true). To understand the

accuracy of this approximation and its impact on important performance metrics such as coverage probability,

in this and next sections, we define the term (ranking) accuracy probability A, highlight its properties, and

describe its connection to uplink and downlink coverage probability.

Definition 4.1 (Ranking Accuracy probability). Ranking Accuracy probability A is the probability that

ordering based on large-scale path loss3 matches ordering based on the instantaneous signal power (small-

scale fading and large-scale path-loss), i.e.,

A = P
(
h1r
−α
(1) > h2r

−α
(2) > · · · > hNr

−α
(N) | r(1) < r(2) < · · · < r(N)

)
= P

(
h1r
−α
(1) > h2r

−α
(2) > · · · > hNr

−α
(N)

)
, (4.3)

where the last result is obtained from the definition of r(i). According to the definition, ordering users based

on path-loss, instead of instantaneous signal power is accurate with probability A.

Example: According to the definition of the accuracy probability, in two-UE uplink NOMA, received

signal power at the BS from the near user is stronger than that for the far user with probability A. With

probability 1−A received signal power for the far user is stronger.

3In our network, MSP-based, path-loss-based, and distance-based rankings are the same so we use them interchangeably
throughout the chapter.
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Using the indicator function, the ranking accuracy probability can be expressed as

A = E{hi},{r(i)}
[
1
(
h1r
−α
(1) > h2r

−α
(2) > · · · > hNr

−α
(N)

)]
= E{r(i)}

[
E{hi}

[
1
(
h1r
−α
(1) > h2r

−α
(2) > · · · > hNr

−α
(N)

)]]
. (4.4)

The inner expectation in (4.4) is over the channel power gains {hi}, i.e., the inner expectation calculates the

ranking accuracy probability for a given realization of users and BSs. The outer expectation is with respect

to the ordered desired link distances
{
r(i)

}
. In the derivation of the outer expectation we use the following

definition.

Definition 4.2 (Joint PDF of N -ordered Random Variables). Let r1, r2, ..., rN be a set of N i.i.d. random

variables with PDF fr(x). Let r(i) denote the i-th smallest observation of the N random variables, i.e.,

r(1) ≤ r(2) ≤ · · · ≤ r(N). The joint PDF of N -ordered random variables is given as [64]:

fr(1),··· ,r(N)
(x1, · · · , xN ) =


N !
∏N
i=1 fr(xi) when x1 ≤ x2 ≤ · · · ≤ xN

0 otherwise

. (4.5)

In the following, two properties of the ranking accuracy probability are reported. These properties are

general and apply to any fading channel and users’ spatial distributions.

Corollary 4.1. The ranking accuracy probability A fulfills the following properties: i) A is a decreasing

function of NOMA cluster size N , ii) A is an increasing function of path-loss exponent α.

Proof. The result in (i) follows from definition of the ranking accuracy probability (4.3). The result in (ii)

follows from (4.4). If h1r
−α
(1) > h2r

−α
(2) > · · · > hNr

−α
(N) is satisfied by α, it will also be satisfied by higher

values of path-loss exponent. On the other hand, if h1r
−α
(1) > h2r

−α
(2) > · · · > hNr

−α
(N) is not satisfied by α,

any smaller value of path-loss exponent cannot also satisfy this condition. Therefore, when we increase the

path-loss exponent, ranking users based on their distances is valid for a wider range of channel and distance

realizations, i.e., A is an increasing function of α.

4.4 Ranking in Uplink and Downlink NOMA

Uplink NOMA: All users of the same NOMA cluster transmit in the same time, frequency, and code

domain. Since the signal of each user experiences a different fading and path-loss, at the BS we have
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different signal powers. To apply SIC, in the first step, the BS decodes the strongest signal by treating other

signals as noise. Then, it remodulates the decoded signal and subtracts the remodulated signal from the

composite received signal and proceeds the SIC process on the remaining signal by decoding, regenerating,

and canceling the second strongest signal and so on [15]. Now consider the typical cell and let us denote

transmit signals of near and far users by x1 and x2, respectively, and assume they have unit powers. The

received signal at the BS from these two users is
√
h1r
−α
(1) x1 +

√
h2r
−α
(2) x2. Since uplink inter-cell interference

at the desired BS is same for all users in the NOMA cluster, ranking users based on instantaneous signal-

to-interference-plus-noise ratio yields the same result as ranking users based on instantaneous signal power.

Therefore, x1 is decoded first when h1r
−α
(1) > h2r

−α
(2) ; otherwise, x2 is decoded first. Thus, for the 2-UE

NOMA, the coverage probability of the near user to the BS (P ISP
cov,(1)) must be derived as follows:

P ISP
cov,(1) = P

{
Ptxh1r

−α
(1)

Ptxh2r
−α
(2) + Iinter + σ2

n

> θ | h1r
−α
(1) > h2r

−α
(2)

}
P
(
h1r
−α
(1) > h2r

−α
(2)

)
︸ ︷︷ ︸

A

+ P

{
Ptxh2r

−α
(2)

Ptxh1r
−α
(1) + Iinter + σ2

n

> θ,
Ptxh1r

−α
(1)

Iinter + σ2
n

> θ | h1r
−α
(1) < h2r

−α
(2)

}
P
(
h1r
−α
(1) < h2r

−α
(2)

)
, (4.6)

where Iinter denotes the inter-cell interference; σ2
n is the noise power, and Ptx is the transmit power (for

proof refer to Appendix B.1). According to (4.6), when h1r
−α
(1) > h2r

−α
(2) , BS decodes the intended signal

of near user in the presence of interference from far user, and when h1r
−α
(1) < h2r

−α
(2) , BS decodes and cancels

the signal of far user and then decodes the intended signal of near user4. Similarly, for the far user, we have

P ISP
cov,(2) = P

{
Ptxh1r

−α
(1)

Ptxh2r
−α
(2) + Iinter + σ2

n

> θ,
Ptxh2r

−α
(2)

Iinter + σ2
n

> θ | h1r
−α
(1) > h2r

−α
(2)

}
P
(
h1r
−α
(1) > h2r

−α
(2)

)
+ P

{
Ptxh2r

−α
(2)

Ptxh1r
−α
(1) + Iinter + σ2

n

> θ | h1r
−α
(1) < h2r

−α
(2)

}
P
(
h1r
−α
(1) < h2r

−α
(2)

)
. (4.7)

In the analysis of uplink NOMA, it is generally assumed that the nearest user to the BS has the highest

instantaneous signal power, i.e., P
(
h1r
−α
(1) > h2r

−α
(2)

)
≈ 1 for 2-UE NOMA. Hence, only the first terms in (4.6)

and (4.7) are derived to date in the literature and reported as P ISP
cov,(1) and P ISP

cov,(2), respectively. However,

the first terms in (4.6) and (4.7) provide good approximations when: i) network is intercell-interference- (or

noise-) limited, or ii) assumption P
(
h1r
−α
(1) > h2r

−α
(2)

)
≈ 1 is accurate.

Downlink NOMA: The BS allocates different powers to different users of the NOMA cluster, and then

transmits the superposed signal. At the receiver side, similar to uplink, each user employs the SIC process

to decode its intended signal. As an example, consider 2-UE downlink NOMA. The BS transmits the

4This corresponds to the worst-case SIC, where to decode a weak user’s signal we must successfully decode stronger users’
signals first.
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superposed signal
√
a1PBSx1 +

√
a2PBSx2, where a1PBS and a2PBS are the allocated powers to the near and

far users, respectively. The received signal from the serving BS at user i, i = 1 for near user and i = 2

for far user, is
√
hir
−α
(i) (
√
a1PBSx1 +

√
a2PBSx2). Order of decoding at a given user depends on the power

allocations of users’ signals at the BS since effect of fading and path-loss is the same on all signals5. If BS

allocates more power to the far user (i.e., a2 > a1), far user decodes its intended signal in the presence of

interference from the near user while near user decodes far user’s signal before decoding its intended signal.

Typically BS allocates more power to the weak user. To determine the weak user, knowledge of complete

CSI with fading and interference is required. However, acquiring complete CSI increases system complexity.

Therefore, in the following, we consider instantaneous signal power-based and distance-based ranking. Let

denote the allocated powers to the weak and strong users by a(2)PBS and a(1)PBS, where 0 < a(1) < a(2) < 1

and a(1) + a(2) = 1. With instantaneous signal power-based ranking at the BS, the coverage probabilities of

near and far users are as follows:

P ISP
cov,(1) = P

 a(2)PBSh1r
−α
(1)

a(1)PBSh1r
−α
(1) + I

(1)
inter + σ2

n

> θ,
a(1)PBSh1r

−α
(1)

I
(1)
inter + σ2

n

> θ | h1r
−α
(1) > h2r

−α
(2)

P
(
h1r
−α
(1) > h2r

−α
(2)

)

+ P

 a(2)PBSh1r
−α
(1)

a(1)PBSh1r
−α
(1) + I

(1)
inter + σ2

n

> θ | h1r
−α
(1) < h2r

−α
(2)

P
(
h1r
−α
(1) < h2r

−α
(2)

)
, (4.8)

P ISP
cov,(2) = P

 a(2)PBSh2r
−α
(2)

a(1)PBSh2r
−α
(2) + I

(2)
inter + σ2

n

> θ | h1r
−α
(1) > h2r

−α
(2)

P
(
h1r
−α
(1) > h2r

−α
(2)

)

+ P

 a(2)PBSh2r
−α
(2)

a(1)PBSh2r
−α
(2) + I

(2)
inter + σ2

n

> θ,
a(1)PBSh2r

−α
(2)

I
(2)
inter + σ2

n

> θ | h1r
−α
(1) < h2r

−α
(2)

P
(
h1r
−α
(1) < h2r

−α
(2)

)
. (4.9)

I
(1)
inter and I

(2)
inter denote the inter-cell interference at the near and far users, respectively. With instanta-

neous signal power-based ranking at the BS, when h1r
−α
(1) > h2r

−α
(2) , BS allocates more power to the far

user, while, when h1r
−α
(1) < h2r

−α
(2) , more power is allocated to the near user. On the other hand, with

distance-based ranking at the BS, BS always allocates more power to the far user, i.e., far user is always

considered as the weak user. Therefore, coverage probabilities of the near and far users with distance-based

ranking at the BS can be derived by the first terms in (4.8) and (4.9), respectively. Note that coverage

probabilities with distance-based ranking provide close results to the coverage probabilities with instanta-

neous signal power-based ranking when: i) the network is intracell-interference-limited, or ii) the assumption

5In the downlink, for a fixed power allocation at the transmitter (BS), decoding order is fixed at the receiver (user) side since,
at each receiver, effect of channel is the same on all signals. Therefore, in downlink, decoding order is completely determined
by the power allocation at the BS. On the other hand, in uplink, different signals experience different channels thus decoding
order at the receiver (BS) may change with channel conditions, even for a fixed power allocation at the transmitter (user) side.
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P
(
h1r
−α
(1) > h2r

−α
(2)

)
≈ 1 is accurate.

Comparison: In dowlink NOMA, decoding order is dictated by the power allocation at the BS. If BS

employs ISP-based ranking to allocate power, decoding order at each user will be based on users’ ISPs (in

the same order as the power allocation at the BS), and if the BS employs MSP-based ranking, decoding

order will be based on users’ MSPs (in the same order as the power allocation at the BS). Thus, derived

analytical results for downlink with MSP-based ranking, in the literature, are valid when the BS employs

MSP-based ranking for power allocation.

On the other hand, in uplink NOMA, since the channels of different users are different, each message

signal experiences distinct channel gain. Therefore, even when user j transmits with more power, compared

to user i, it is still possible that the received signal power of user i at the BS be stronger than user j. The

strongest signal is decoded first at the BS and experiences interference from all users in the cluster with

relatively weaker ISPs. Thus, to study the coverage probability for uplink NOMA, we must rank the users

based on their received ISPs. In the existing literature, however, MSP-based ranking is used to determine

the decoding order and calculate the uplink coverage probability. Since this is not accurate, we have derived

the uplink coverage probability with ISP-based ranking in Appendix B.2.

4.5 Accuracy Probability for Rayleigh Fading

In this section, we derive the (ranking) accuracy probability A for Rayleigh fading. Note that the results

provided in this section for Rayleigh fading can also be obtained from the results derived in the next section

for Nakagami-m fading by setting m = 1. However, for N -UE NOMA, calculating inner expectation in (4.4)

for Nakagami-m fading yields N − 1 integrals as is shown in Theorem 4.3. Deriving A for Rayleigh fading

directly from Definition 4.1 is easier than deriving from Theorem 4.3 except for some special cases such

as N = 2. Therefore, we first study the accuracy probability for Rayleigh fading in this section. Since steps

of the proofs for Rayleigh and Nakagami-m fading are similar, in the next section, we will only mention the

steps or directly provide the final expressions. It is worth mentioning that the result in Theorem 4.2 can

be obtained by solving the integrals in Theorem 4.4 for m = 1 and applying binomial expansion. Our

methodology to derive A can be described as follows:

1. Derive the inner expectation in (4.4) by averaging over fading channel powers {hi}.

2. Characterize A for any arbitrary users’ location model.

3. Derive A by averaging over the distance distribution of users considering PPP model.

47



The first two steps are performed in the following theorem and the third step is conducted in Theorem 4.2

and in subsequent discussions.

Theorem 4.1 (Accuracy Probability of Distance-Based Approximation -N UE NOMA). For N -UE NOMA,

the inner expectation in (4.4) for Rayleigh fading can be obtained by

E{hi}
[
1
(
h1r
−α
(1) > h2r

−α
(2) > · · · > hNr

−α
(N)

)]
=

N∏
i=2

1∑i
j=1

(
r(j)
r(i)

)α . (4.10)

Then, using aforementioned expression, (4.10), and Definition 4.2 we obtain

A = E

 N∏
i=2

1∑i
j=1

(
r(j)
r(i)

)α


= N !

∫ ∞
0

∫ ∞
r1

· · ·
∫ ∞
rN−1

N∏
i=2

1∑i
j=1

(
rj
ri

)α fr(r1)fr(r2) · · · fr(rN )drN · · · dr2dr1. (4.11)

Proof. See Appendix B.3.

According to Theorem 4.1, the accuracy probability does not depend on the mean channel power gain

Ω. In the following corollary, we provide a simplified expression for the inner expectation in (4.4) considering

2-UE NOMA cluster6.

Corollary 4.2. Substituting N = 2 in Theorem 4.1 and using negative binomial series (1 + x)−1 =∑∞
k=0(−1)kxk for |x| < 1., the inner expectation in (4.4) for Rayleigh fading can be obtained as follows:

E{hi}
[
1
(
h1r
−α
(1) > h2r

−α
(2)

)]
=

∞∑
k=0

(−1)k
(
r(1)

r(2)

)αk
. (4.12)

The accuracy probability can then be derived as follows:

A =

∞∑
k=0

(−1)kE

[(
r(1)

r(2)

)αk]
= 2

∞∑
k=0

(−1)k
∫ ∞

0

∫ ∞
r1

(
r1

r2

)αk
fr(r1)fr(r2)dr2dr1. (4.13)

It is worth mentioning that the summation in (4.13) can be truncated after a few terms since the

expression inside the summation is close to zero for large values of k. Moreover, unlike the expectation

in (4.11), the expectation in (4.13) can be derived in closed-form for PPP. In the following, we obtain the

accuracy probability in closed-form considering two users in a NOMA cluster (i.e., 2-UE NOMA), and then

6In this chapter, we use the term “N -UE NOMA” to make it explicit that the framework can capture any value of N ;
however, the performance gains of NOMA over OMA (Orthogonal Multiple Access) are generally achievable for small number
of user equipment (UE) in a NOMA cluster. Therefore, we are more interested in cases where N = 2 and N = 3.
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we study the accuracy probability for N -UE NOMA. Evidently, for N -UE NOMA, there is no closed-form

expression available.

Theorem 4.2 (Accuracy Probability of Distance-Based Approximation - 2 UE NOMA and PPP Model).

When each BS serves users that are located in its Voronoi cell, the accuracy probability for 2-UE NOMA

with Rayleigh fading is

A =

∞∑
k=0

(−1)k

αk + 2
2F1

(
2, 1;

αk

2
+ 2;

1

2

)
.

Proof. See Appendix B.4.

According to Theorem 4.2, for N = 2, the probability that the path-loss-based ranking matches the

instantaneous signal power-based ranking only depends on path-loss exponent α and does not depend on

BS intensity λ. Similarly, we can generalize Theorem 4.2 to the case of N -UE NOMA as stated in the

following corollary.

Corollary 4.3. For N -UE NOMA with Rayleigh fading, the accuracy probability A only depends on path-loss

exponent α and does not depend on BS intensity λ.

Proof. See Appendix B.5.

4.6 Accuracy Probability for Nakagami-m Fading

In this section, we derive the probability of accuracy of distance-based approximation considering Nakagami-

m fading channels. Using the analytical results, in Section 4.8, we will show that for more severe fading

conditions (i.e., for small values of m), the distance-based approximation is less accurate whereas for higher

values of m, the distance-based approximation is more accurate.

Similar to the previous subsection, we first derive the inner expectation in (4.4). Then the accuracy

probability A is obtained for PPP model.

Theorem 4.3 (Probability of the Accuracy of Distance-based Approximation -N -UE NOMA). For Nakagami-

m fading, with shape parameter m, the inner expectation in (4.4) can be derived as follows:

E{hi}
[
1
(
h1r
−α
(1) > h2r

−α
(2) > · · · > hNr

−α
(N)

)]
=

Γ(Nm)

Γ(m)N

∫ ∞
1

∫ ∞
1

· · ·
∫ ∞

1

1[
1 +

∑N−1
i=1

(
r(i)
r(N)

)α∏N−1
k=i tk

]Nm N−1∏
j=1

(
r(j)

r(N)

)αm
tjm−1
j dtN−1 · · · dt2dt1.
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Then A can be derived by averaging over the desired link distance distribution using Definition 4.2.

Proof. See Appendix B.6.

Similar to Rayleigh fading, the accuracy probability for Nakagami-m fading does not depend on mean

channel power gain. By setting N = 2 for 2-UE NOMA, we obtain

E{hi}
[
1
(
h1r
−α
(1) > h2r

−α
(2)

)]
=

Γ(2m)

Γ(m)2

(
r(1)

r(2)

)αm ∫ ∞
1

tm−1
1 dt1[

1 +
(
r(1)

r(2)

)α
t1

]2m . (4.14)

For 2-UE NOMA, when m = 1 (Rayleigh fading), (4.14) reverts to Corollary 4.2. However, deriving The-

orem 4.1 from Theorem 4.3 for N -UE NOMA, when m = 1, is not straightforward. Using Definition 4.2

with (4.14) for 2-UE NOMA and with Theorem 4.3 for N -UE NOMA provides the accuracy probability.

Theorem 4.4 (Probability of the Accuracy of Distance-based Approximation - 2 UE NOMA and PPP

Model). For 2-UE NOMA and PPP model for users’ spatial locations, the accuracy probability for Nakagami-

m fading with fading parameter m is as follows:

A =
4Γ(2m)

Γ(m)Γ(m+ 1)

∫ 1

0

u1−αm

(1 + u2)
2 2F1(2m,m;m+ 1;−u−α)du.

Proof. The accuracy probability can be derived as:

A =
2Γ(2m)

Γ(m)2
(2cλπ)2

∫ ∞
1

∫ ∞
0

∫ ∞
r1

(
r1
r2

)αm
tm−1
1[

1 +
(
r1
r2

)α
t1

]2m r1r2e
−cλπ(r2

1+r2
2)dr2dr1dt1

(a)
=

2Γ(2m)

Γ(m)2
(2cλπ)2

∫ ∞
1

∫ 1

0

uαm−3tm−1
1

[1 + uαt1]
2m

∫ ∞
0

v3e−cλπ(1+ 1
u2 )v2

dvdudt1

(b)
=

4Γ(2m)

Γ(m)2

∫ ∞
1

∫ 1

0

uαm+1tm−1
1

[1 + uαt1]
2m

1

(1 + u2)
2 dudt1

(c)
=

4Γ(2m)

Γ(m)2

∫ 1

0

u1−αm

(1 + u2)
2

∫ 1

0

zm−1

[1 + u−αz]
2m dzdu,

where (a) is obtained by changes of variables r1
r2

= u and r1 = v. (b) follows by applying cλπ
(
1 + 1

u2

)
v2 = x.

(c) is obtained by t−1
1 = z. Finally, Theorem 4.4 is derived by using the integral representation of Gaussian

hypergeometric function.

According to Theorem 4.4, the accuracy probability in Nakagami-m fading for 2-UE NOMA does not

depend on the BS intensity λ. In the following, we prove that, for N -UE NOMA with Nakagami-m fading,

the accuracy probability is independent of λ.
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Corollary 4.4. For N -UE NOMA and PPP model, the accuracy probability for Nakagami-m fading with

parameter m is independent of the BS intensity λ.

Proof. See Appendix B.7.

4.7 User Pairing and Accuracy Probability

In the previous sections, from the set of users that are associated to the same BS, N users were randomly

selected to form a NOMA cluster. However, in practice, NOMA users are chosen such that NOMA gain

can be achieved over OMA. For instance, to form a 2-UE NOMA cluster, out of M users associated to the

typical BS, usually the nearest and the farthest users are selected. In the following, we study the accuracy

probability with user pairing.

To form a NOMA cluster, we have selected N users from M users that are associated to the typical BS.

We denote rank of the selected users by the set s = {s(i)}, where i = 1, 2, · · · , N , s(i) ∈ {1, 2, ...,M}, and

1 ≤ s(1) < s(2) · · · < s(N−1) < s(N) ≤M . From Definition 4.2 and Theorem 4.1, for Rayleigh fading, we

obtain

A = E

 N∏
i=2

1∑i
j=1

(
rs(j)
rs(i)

)α


= M !

∫ ∞
0

∫ ∞
r1

· · ·
∫ ∞
rM−1

N∏
i=2

1∑i
j=1

(
rs(j)
rs(i)

)α fr(r1)fr(r2) · · · fr(rM )drM · · · dr2dr1. (4.15)

For N = 2, when we select the nearest and the farthest user, i.e, s(1) = 1 and s(2) = M , (4.15) can be

simplified as in the following:

A = M !

∫ ∞
0

∫ ∞
r1

· · ·
∫ ∞
rM−1

1

1 +
(
r1
rM

)α fr(r1)fr(r2) · · · fr(rM )drM · · · dr2dr1

(a)
=

M !

(M − 2)!

∫ ∞
0

∫ ∞
r1

1

1 +
(
r1
rM

)α [Fr(rM )− Fr(r1)]
M−2

fr(r1)fr(rM )drMdr1, (4.16)

where (a) is obtained using the technique in [82] to derive Equation 2.12, i.e., for i.i.d. random variables

r2, r3, · · · , rM−1, [Fr(rM )− Fr(r1)]
M−2

is the probability that they are in the interval [r1, rM ]. Sorting these

random variables in an ascending order based on their realizations gives (M − 2)! different permutations out

of which only one satisfies the condition r2 < r3 < · · · < rM−1. We can similarly simplify (4.15) for other

values of N and different selection of NOMA users. Note that the same result can also be obtained by
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averaging the result in Theorem 4.1 with respect to the joint PDF of rs(1)
, rs(2)

, · · · , rs(N)
, which is also

provided in [82].

Corollary 4.5. For 2-UE NOMA, the accuracy probability, when we select the nearest and the farthest user,

i.e., s(1) = 1 and s(2) = M , is an increasing function of M irrespective of the fading channel and users’

spatial distributions.

Proof. See Appendix B.8.

For Nakagami-m fading, using Definition 4.2 and Theorem 4.3 gives

A =
Γ(Nm)

Γ(m)N

∫ ∞
1

∫ ∞
1

· · ·
∫ ∞

1

E


∏N−1
j=1

(
rs(j)
rs(N)

)αm
[
1 +

∑N−1
i=1

(
rs(i)
rs(N)

)α∏N−1
k=i tk

]Nm

N−1∏
j=1

tjm−1
j dtN−1 · · · dt2dt1, (4.17)

where

E


∏N−1
j=1

(
rs(j)
rs(N)

)αm
[
1 +

∑N−1
i=1

(
rs(i)
rs(N)

)α∏N−1
k=i tk

]Nm
 =

M !

∫ ∞
0

∫ ∞
r1

· · ·
∫ ∞
rM−1

∏N−1
j=1

(
rs(j)
rs(N)

)αm
[
1 +

∑N−1
i=1

(
rs(i)
rs(N)

)α∏N−1
k=i tk

]Nm fr(r1)fr(r2) · · · fr(rM )drM · · · dr2dr1. (4.18)

Now using the above equations, we can study A for PPP model.

Corollary 4.6. When each BS serves users in its Voronoi cell (PPP model), for any selection of users for

the NOMA cluster, the accuracy probability is independent of the BS intensity λ.

Proof. The proof can be obtained by using the same approach as in the proof of Corollary 4.3 for (4.15)

(Rayleigh fading) and (4.18) (for Nakagami-m fading).

4.8 Numerical and Simulation Results

This section demonstrates the efficacy of the derived expressions by comparing them to Monte-Carlo simula-

tions. In Table 4.1, we provide the final expressions for the accuracy of the distance-based approximation in

NOMA assuming PPP, MCP, and TCP spatial models. In the MCP model, around each BS, N NOMA users

are uniformly distributed within distance R. In TCP, users are independently and identically distributed
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following a normal distribution with variance σ2 around each BS. Although we have only provided the ana-

lytical results for the PPP model in this chapter, our framework can be easily extended to MCP and TCP

models.

We use Gaussian quadrature method to approximate and solve four or higher dimensional integrals in

Table 4.1. In the following, we briefly review the Gaussian quadrature method, describe simulation parame-

ters, and then present our results which demonstrate the impact of path-loss exponent, fading parameter m

(in Nakagami-m fading), and user pairing on the accuracy probability.

Table 4.1: Accuracy Probability A for Random User Selection

Fading Netwrok
Model

N Accuracy Probability (A)

Rayleigh PPP/TCP 2
∑∞
k=0

(−1)k

2+αk 2F1

(
2, 1; αk2 + 2; 1

2

)
Rayleigh PPP/TCP 3 48

∫ 1

0

∫ 1

0
u1u

3
2

(1+uα1 )(1+uα2 +uα1 u
α
2 )(1+u2

2+u2
1u

2
2)

3 du2du1

Raylegih MCP 2
∑∞
k=0(−1)k 2

2+αk

Rayleigh MCP 3 8
∫ 1

0

∫ 1

0
u1u

3
2

(1+uα1 )(1+uα2 +uα1 u
α
2 )

du2du1

Nakagami PPP/TCP 2 4Γ(2m)
Γ(m)Γ(m+1)

∫ 1

0
u1−αm

(1+u2)2 2F1(2m,m;m+ 1;−u−α)du

Nakagami PPP/TCP 3 48Γ(3m)
Γ(m)3

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

u1+αm
1 u3+2αm

2 z2m−1
1 zm−1

2

(uα1 uα2 +uα2 z1+z1z2)
3m

(1+u2
2+u2

1u
2
2)

3 du2du1dz2dz1

Nakagami MCP 2 2Γ(2m)
Γ(m)Γ(m+1)

∫ 1

0
u1−αm

2F1(2m,m;m+ 1;−u−α)du

Nakagami MCP 3 8Γ(3m)
Γ(m)3

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

u1+αm
1 u3+2αm

2 z2m−1
1 zm−1

2

(uα1 uα2 +uα2 z1+z1z2)
3m du2du1dz2dz1

4.8.1 Approximation of Multi-Dimensional Integrals

A quadrature rule provides an approximation of the definite integral of a function, usually stated as a

weighted sum of function values at specified points within the domain of integration.

Definition 4.3 (Gaussian Quadrature). When domain of integration is [0, 1]7, an n-point Gaussian quadra-

ture rule states ∫ 1

0

f(x)dx ≈
n∑
i=1

wif(xi),

where the weights wi and nodes xi are obtained such that the approximation is exact for a set of 2n different

functions [83].

To evaluate the four dimensional integrals in Table 4.1, we use the following approximation:

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

f(x1, x2, x3, x4)dx1dx2dx3dx4 ≈
n∑

i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

wi1wi2wi3wi4f(xi1 , xi2 , xi3 , xi4),

7Note that domains of integrals in Table 4.1 are all [0, 1].
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Figure 4.2: Accuracy probability as a function of path-loss exponent for Rayleigh fading.

where 30-point (n = 30) Gaussian quadrature rule is employed. The values of the weights wi and nodes xi

are provided in [84][Table 3].

4.8.2 Simulation Parameters

We consider λ = 0.0005, R = 20, σ2 = 25, and Ω = 1. Note that when the numerical results match the

simulation results, the numerical results are presented. As we have mentioned in Section 4.2, (4.1) is an

approximation for the PDF of the desired link distance in the typical Voronoi cell. Therefore, for the PPP

model, we plot both numerical and simulation results. Moreover, as we have mentioned in the previous

subsection, four or higher dimensional integrals are approximated using generalized Gaussian quadrature

method. Hence, for N = 3 in Nakagami-m fading, simulation and analytical results for all PPP, MCP, and

TCP models are provided.

4.8.3 Results and Discussions

Impact of Path-Loss Exponent

In Fig. 4.2 and Fig. 4.3, the accuracy probability for Rayleigh and Nakagami-m fading is illustrated as a

function of path-loss exponent α. The analytical results are provided in Table 4.1 for two and three users.

According to Fig. 4.2, for Rayleigh fading with α = 4, ranking users based on their distances for 2-UE NOMA

is accurate with probability 0.84 for PPP and TCP. For MCP, ranking users based on their distances is valid

with probability 0.79. Therefore, for N = 2, ordering users based on their distances instead of instantaneous

signal powers seems reasonable. However, for N = 3, accuracy probability decreases significantly. When

α = 4, the accuracy probability is about 0.61 for TCP and PPP and is 0.51 for MCP.
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Figure 4.3: Accuracy probability as a function of path-loss exponent for Nakagami-m fading with m =
0.5, 1, 2.
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Figure 4.4: Accuracy probability as a function of fading parameter m for α = 4.

In Fig. 4.3, for Nakagami-m fading, the accuracy probability is illustrated for different values of m. For

N = 3, we use the Gaussian quadrature method to numerically evaluate the four dimensional integrals in

Table 4.1. Note that, for N = 3, the difference between simulation results and analysis for TCP and MCP

in Fig. 4.3(a) and Fig. 4.3(b) is due to the Gaussian quadrature method. In summary, we can observe that

distance-based ranking yields more accurate coverage probability results for higher values of α, m, and less

number of users in a NOMA cluster.

Impact of Fading Parameter m

When α = 4, for Nakagami-m fading, in Fig. 4.4, the accuracy probability is shown as a function of m. As we

can see, the accuracy probability is an increasing function of m. Therefore, in scenarios with better fading
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Figure 4.5: Accuracy probability as a function of path-loss exponent and selecting different users for NOMA
transmission with Rayleigh fading. M denotes the total number of users out of which N users are selected
to form a NOMA cluster. Set s contains ranks of the selected users for a NOMA cluster.

conditions, the distance-based approximation is reasonable. This result is also intuitive because when fading

conditions improve, the impact of fading on the channel power is not significant and the distance-based

path-loss is dominant. As such, the distance-based approximation is reasonable.

Impact of Distance-Based User Selection

The accuracy probability is shown in Fig. 4.5 for 2-UE and 3-UE NOMA clusters. For instance, when two

users are randomly selected, the accuracy probability for PPP with α = 4 is about 0.84. However, if we

select three users randomly, and then choose the nearest and farthest users to form a NOMA cluster, the

accuracy probability will be 0.92. With more associated users with the serving BS, selection of the nearest

and farthest users provide higher degree of distinctness among users. According to Fig. 4.5, with increasing

channel distinctness, the accuracy probability increases significantly.

4.9 Conclusion

Most of the existing state-of-the-art analyzed NOMA performance assuming that ranking users in each

NOMA cluster based on their distances, instead of the complete CSI, is a valid approximation. This ap-

proximation affects the coverage probability analysis in the uplink as well as in the downlink. This chapter

has verified this assumption for Rayleigh and Nakagami-m fading channels and a variety of users’ spatial

location distributions such as PPP, MCP, and TCP. Specifically, the accuracy probability, which is the

probability that the distance-based ranking matches ranking based on the instantaneous signal power, has
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been defined and derived. The results show that the accuracy probability is increasing with respect to the

path-loss exponent while it does not depend on the BS intensity in the PPP model, cluster radius in the

MCP model, and scattering variance in the TCP model. Effect of user pairing on the accuracy probability

has also been investigated, and it has been shown that with distinct user pairing the accuracy probability

increases significantly, compared to the random user selection.
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Chapter 5

Stochastic Geometry Analysis of

Sojourn Time in Multi-Tier Cellular

Networks

Impact of mobility will be increasingly important in future generation wireless services and the related

challenges will need to be addressed. Sojourn time, the time duration that a mobile user stays within a

cell, is a mobility-aware parameter that can significantly impact the performance of mobile users and it

can also be exploited to improve resource allocation and mobility management methods in the network. In

this chapter, we derive the distribution and mean of the sojourn time in multi-tier cellular networks, where

spatial distribution of base stations (BSs) in each tier follows an independent homogeneous Poisson point

process (PPP). To obtain the sojourn time distribution in multi-tier cellular networks with maximum biased

averaged received power association, as the first step, we derive the area of contact, based on which we then

derive the linear contact distribution function and chord length distribution of each tier. We also study the

relation between mean sojourn time and other mobility-related performance metrics. We show that the mean

sojourn time is inversely proportional to the handoff rate, and the complementary cumulative distribution

function (CCDF) of sojourn time is bounded from above by the complement of the handoff probability.

Moreover, we study the impact of user velocity and network parameters on the sojourn time.
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5.1 Introduction

5.1.1 Background and Related Work

The next generations of cellular wireless networks are expected to support communications for highly mobile

users and devices [23] with applications in new vertical sectors such as railway, unmanned aerial vehicle

(UAV), and autonomous car. Therefore, addressing the mobility related challenges is necessary for the

development of the next generation cellular networks. Impact of user/device mobility on its performance in

cellular networks can be measured through mobility-aware performance metrics such as handoff rate, handoff

probability, and sojourn time [23]. Sojourn time (or dwell time), time duration that a mobile user stays

within a cell, is a key network parameter which allows studying other important network parameters such as

channel occupancy time, new call and handoff call dropping probabilities [25]. Therefore, it is imperative to

incorporate the sojourn time distribution in resource allocation and mobility management for improving the

network performance. In general, modeling and analysis of mobility-related parameters and performances is

however challenging in multi-tier (or heterogeneous) cellular networks (e.g. a two-tier macrocell-small cell

network) since it needs to consider different aspects such as how to model the distributions of base stations

(BSs) at the different tiers, how to model the user mobility and traffic at the different tiers, and how to

model the radio access network performance at the different tiers [85].

In this above context, [29] derived the sojourn time distribution for the hexagonal (deterministic) cellular

networks and Poisson (random) cellular networks, where the BSs are distributed according to a homogeneous

Poisson point process (PPP). In [86], mean sojourn time of two-tier cellular networks was approximately

derived, where the coverage areas of macro cells and small cells have regular shapes (circles) and within each

macro cell multiple small cells are irregularly deployed. [27, 28] derived the mean sojourn time in small cells

of two-tier cellular networks. The BSs of each tier are distributed following an independent homogeneous

PPP. [26] also derived the mean sojourn time in two-tier cellular networks. However, it was assumed that a

handoff occurs only when the mobile user crosses the boundary of a macro cell. Therefore, the mean sojourn

time in [26] is similar to that in a single-tier network as in [29].

Moreover, the handoff rate, i.e. the expected number of handoffs in unit time, was derived in [29]

for single-tier Poisson cellular networks and in [87] for multi-tier Poisson cellular networks. The handoff

probability, i.e. the probability that the mobile user handoffs to a new BS at the end of a movement period,

was also studied in [88] and [89] for single-tier and multi-tier Poisson networks, respectively. To derive the

mean sojourn time (or distribution of the sojourn time), [29, 28, 26] used the chord length distribution (or

linear contact distribution function) of Poisson Voronoi cells. However, in multi-tier networks with different

transmission power and bias factor for each tier, we need the chord length distribution (or linear contact
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distribution function) of weighted Poisson Voronoi cells which is not available in the literature. For single-

tier networks, [23] used the handoff probability to derive the distribution of sojourn time in the cell where

connection is initiated. In single-tier networks, since the Voronoi cells are convex, we can directly use the

handoff probability to derive the distribution of the sojourn time. However, in multi-tier networks, cells may

not be convex. Therefore, the analytical method in [23] cannot be used for multi-tier networks.

A handoff is considered to be unnecessary when the dwell time of the mobile user in the new cell after

the handoff is less than a predefined threshold. In [90, 91], handoff skipping schemes are employed to avoid

unnecessary handoffs. Moreover, important system parameters such as channel occupancy time, new call and

handoff call dropping probabilities depend on the sojourn time [25]. Therefore, sojourn time is fundamental

for analysis and design of the mobile cellular networks. In [90, 25, 92, 93, 94], different distributions such as

exponential, Erlang, gamma, Pareto, and Weibull were used for modeling the sojourn time distribution. Due

to the principal role of the sojourn time in mobility management and resource allocation, in this chapter, we

derive the sojourn time distribution in multi-tier cellular networks.

5.1.2 Contributions

To analyze the sojourn time distribution in multi-tier scenarios with PPP distributed BSs, the existing works

either assume that the mobile user is always associated to only one of the tiers, or only focus on the small

tier (in two-tier scenarios). For both the cases, the results are no different from the single-tier scenarios. In

single-tier networks with maximum averaged received power association (nearest BS association), (Voronoi)

cells are convex; however, in multi-tier networks with maximum biased averaged received power association,

cells may not be convex depending on the transmission power and bias factor of each tier. Therefore, analysis

of sojourn time of multi-tier cellular networks is more complicated compared to the single-tier networks. In

this regard, the contributions of this chapter can be summarized as follows:

• We derive the distribution and mean of the sojourn time for multi-tier cellular networks. We show

that the mean sojourn time is inversely proportional to speed. We also study the impact of network

parameters on the sojourn time.

• To obtain the analytical results, we derive the linear contact distribution and chord length distribution

of each tier.

• We show that the mean sojourn time is inversely proportional to handoff rate. Also, using handoff rate

and sojourn time, we calculate the ping-pong rate (i.e. rate of unnecessary handoffs) for each tier.

• We show that the complement of the handoff probability provides an upper bound for the comple-
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mentary cumulative distribution function (CCDF) of the sojourn time. We also discuss the scenarios

where the CCDF of the sojourn time is equal to the complement of the handoff probability.

• We show that the mean sojourn time for random mobility models such as random walk converges to

the derived results as the user velocity, flight length, or flight time increases.

The rest of this chapter is organized as follows: In Section 5.2, the system model is presented. In

Section 5.3, we state the methodology for deriving the analytical results. In Sections 5.4 and 5.5, we obtain

the main results related to the distribution and mean of the sojourn time and also discuss the effects of

network parameters. Numerical and simulation results are provided in Section 5.6. Finally, in Section 5.7,

we conclude the chapter.

5.2 System Model and Notations

Consider a K-tier heterogeneous cellular network with K classes of BSs and let K = {1, 2, ...,K}. The spatial

distribution of BSs of k-th tier, k ∈ {1, 2, ...,K}, follows an independent homogeneous PPP Φk of intensity

λk. Different tiers of BSs transmit at different power levels. Pk denotes the transmission power of the k-th

tier BSs.

Consider a typical mobile user which moves in a straight line with a constant speed v. Due to the

stationarity of the homogeneous PPP, i.e. its distribution is invariant under translation [41], we can assume

that the typical mobile user is located at the origin o at time 0. Since homogeneous PPP is isotropic, i.e. its

distribution is invariant under rotation with respect to the origin [41], we can also assume that the typical

mobile user moves along the positive x-axis. Therefore, at time t, the typical mobile user is located at

x(t) = (vt, 0).

The mobile user is always associated to the BS which provides the maximum biased averaged received

power. Let us denote the serving BS at time t by BS(t). Therefore,

BS(t) = arg max
x∈Φk,∀k∈K

BkPk‖x(t)− x‖−α, (5.1)

where Bk is the cell range expansion bias factor for tier-k, and α is the path-loss exponent. Let us denote the

distance between BS(0) and the mobile user at x(t) by r0(t), i.e. r0(t) = ‖BS(0)−x(t)‖. Given that at time

t the mobile user is associated to a tier-k BS at distance r(t), from (5.1), we have Φj

(
B
(

x(t), r(t)βkj

))
= 0,

∀j ∈ K, where βkj =
(
BkPk
BjPj

)1/α

, B(x, r) denotes a ball with radius r centered at x, and Φj(A) is the number

of tier-j BSs in set A ⊂ R2. For simplicity, we define r0 = r0(0).

A summary of the major notations is provided in Table 5.1.
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Table 5.1: Summary of Notations

Notation Description

Φk, λk PPP of tier-k BSs, intensity of Φk
Pk Transmit power of the k-th tier BSs
x(t) Location of the mobile user at time t
v Speed of the mobile user
BS(t) Serving BS of the mobile user at time t
Bk Cell range expansion (bias) factor for tier k
α Path-loss exponent
r0(t), r0 Distance between the initially serving BS and the mobile user at time t,

r0(0)

βkj

(
BkPk
BjPj

)1/α

B(x, r) Ball with radius r centred at x

S̃ Sojourn time in the cell where connection is initiated
S Sojourn time
Hk Handoff rate from (to) a tier-k cell to (from) any other cell in the network
H Handoff rate

5.3 Methodology of Analysis of Sojourn Time in Multi-Tier Cel-

lular Networks

The sojourn time S is the duration that the mobile user stays within a particular serving cell before it is

handed over to another cell [95]. Analysis of sojourn time in multi-tier cellular networks consists of the

following four steps:

• Step 1: Deriving the conditional distribution of the sojourn time in the cell where connection is

initiated, given that the mobile user is initially associated to a tier-k BS.

• Step 2: Deriving the linear contact distribution function, given that the mobile user is in a tier-k cell

at time 0.

• Step 3: Obtaining the chord length distribution for tier k using linear contact distribution function.

• Step 4: Deriving the distribution of the sojourn time S for tier k.
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(a) Single-tier. (b) Two-tier.

Figure 5.1: (Weighted) Voronoi cells in a single-tier and a two-tier cellular network: (a) λ = 0.15, (b)
λ1 = 0.05, λ2 = 0.1, and β12 = 2. In (a), BSs are represented by black circles and user’s trajectory is shown
with a black solid line. Since the cells are convex, there is no handoff in the interval [t1, t2] when the same
BS serves the user at time instants t1 and t2, i.e. the same BS serves the user at any time between t1 and
t2 if and only if it serves the user at t1 and t2. In (b), we show tier-one BSs by black asterisks and tier-two
BSs by black circles. As can be seen, although the same BS serves the user at t1 and t2, a different BS may
serve the user at time t ∈ (t1, t2). Therefore, being served by the same BS at t1 and t2 is necessary but not
sufficient for occurrence of no handoff in the interval [t1, t2]. This stems from the fact that, in a multi-tier
network, the weighted Voronoi cells are not convex when the BP s (product of bias factor and transmission
power) are different for different tiers.

5.3.1 Step 1 of Analysis

First we focus on the distribution of the sojourn time in the cell where connection is initiated S̃. Specifically,

we derive the CCDF of S̃, i.e.

F̄S̃(T ) = P(S̃ > T ) = P (no handoff occurs in the interval [0, T ])

= P (BS(t) = BS(0),∀t ∈ (0, T ]) . (5.2)

In single-tier cellular networks, Voronoi cells are convex [96] (as shown in Fig. 5.1(a)). A set C is convex if

the line segment between any two points in C lies in C [97]. Thus, in single-tier cellular networks, when

the mobile user is connected to the same BS at time 0 and T , i.e. when BS(T ) = BS(0), the serving BS

at any time between 0 and T is also BS(0), i.e. BS(t) = BS(0), ∀t ∈ (0, T ). Hence, for single-tier cellular
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Figure 5.2: System model.

networks, (5.2) can be simplified as

F̄S̃(T ) = P (BS(T ) = BS(0)) 1. (5.3)

However, for multi-tier cellular networks, Voronoi cells may not be convex depending on the values of βkj ,

k, j ∈ K (as shown in Fig. 5.1(b)). Therefore, even when BS(T ) = BS(0), there may exist a time t between

0 and T for which BS(t) 6= BS(0). To derive the CCDF of S̃ for multi-tier cellular networks, we must use

(5.2), which makes the analysis of sojourn time in multi-tier cellular networks more complicated compared

to the single-tier networks. Actually, single-tier scenario can be considered as a special case of multi-tier

scenarios. Moreover, note that, (5.3) provides an upper bound for (5.2).

Given that the mobile user is initially connected to a tier-k BS, the CCDF of S̃ can be obtained by

F̄S̃(T | tier = k) = P (BS(t) = BS(0),∀t ∈ (0, T ] | tier = k)

=
1

π

∫ ∞
0

∫ π

0

P (BS(t) = BS(0),∀t ∈ (0, T ] | r0, θ, tier = k) fR(r0 | tier = k)dθdr0, (5.4)

where θ is the angle between the serving BS at time 0 and direction of the movement (as shown in Fig. 5.2).

θ is uniformly distributed in [0, π]. fR(r0 | tier = k) is the probability density function (PDF) of the serving

link distance at time 0, given that BS(0) belongs to tier-k. According to [98],

fR(r0 | tier = k) =
1

P(tier = k)
2λkπr0 exp

−∑
j∈K

λjπβ
2
jkr

2
0

 , (5.5)

1P (BS(T ) 6= BS(0)) is the probability that the mobile user is handed off to a new BS after the movement period of T , and
it is called handoff probability in the literature. According to (5.3), in single-tier networks, the CCDF of the sojourn time is
equal to the complement of the handoff probability.
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where P(tier = k) is the probability that BS(0) belongs to tier-k which is given by [98]:

P(tier = k) =
λk∑

j∈K λjβ
2
jk

. (5.6)

Using the association strategy (5.1), we get

P (BS(t) = BS(0),∀t ∈ (0, T ] | r0, θ, tier = k)

= P

⋂
j∈K

Φj

(
B
(

x(t),
r0(t)

βkj

)
\ B
(

0,
r0

βkj

))
= 0,∀t ∈ (0, T ] | r0, θ, tier = k

 , (5.7)

where B
(

0, r0βkj

)
is excluded since we know there is no tier j BS closer than r0

βkj
to the typical mobile user

at time 0. Let us define

Akj(r0, θ, v, T, βkj) =

{⋃
t

B
(

x(t),
r0(t)

βkj

)
| t ∈ [0, T ], r0(t) =

√
r2
0 + v2t2 − 2r0vt cos θ

}
. (5.8)

Using Akj(r0, θ, v, T, βkj), we can write

P (BS(t) = BS(0),∀t ∈ (0, T ] | r0, θ, tier = k)

= P

⋂
j∈K

Φj

(
Akj(r0, θ, v, T, βkj) \ B

(
0,

r0

βkj

))
= 0 | r0, θ, tier = k


(a)
=
∏
j∈K

P
(

Φj

(
Akj(r0, θ, v, T, βkj) \ B

(
0,

r0

βkj

))
= 0 | r0, θ, tier = k

)
(b)
=
∏
j∈K

exp

{
−λj

∣∣∣∣Akj(r0, θ, v, T, βkj) \ B
(

0,
r0

βkj

)∣∣∣∣} , (5.9)

where |A| denotes the area of A, (a) follows from the independence of different tiers’ point processes, and

(b) is obtained by using the void probability of PPP. In Fig. 5.3, Akj(r0, θ, v, T, βkj) is illustrated for three

different cases: a) βkj < 1, b) βkj = 1, and c) βkj > 1. To derive the distribution of S̃, we need to calculate

the area of Akj(r0, θ, v, T, βkj) for all three cases. Further discussion about Akj(r0, θ, v, T, βkj) is provided

in the next section.

5.3.2 Step 2 of Analysis

Given that, at time 0, the mobile user is associated to a tier-k BS, the origin is almost surely contained

in the interior of a tier-k Voronoi cell. In this chapter, we define linear contact distribution function as

the probability that a line segment ` containing the origin with length r and random orientation crosses
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Figure 5.3: Akj(20, π/3, 5, 20, βkj). (a) βkj < 1, (b) βkj = 1, and (c) βkj > 1. Red circles correspond to

B
(

0, r0βkj

)
and B

(
x(T ), r0(T )

βkj

)
.

the cell boundaries. Therefore, given origin o is inside a tier-k cell, linear contact distribution function

H`(z | tier = k) is equal to the probability that intersection of user’s trajectory with length z and the cell

boundaries is nonempty. Using the conditional CCDF of S̃, we can derive the linear contact distribution

function as

H`(z | tier = k) = 1− P
(
S̃ >

z

v
| tier = k

)
= 1− F̄S̃

(z
v
| tier = k

)
. (5.10)

5.3.3 Step 3 of Analysis

So far, we have considered the sojourn time in the cell where connection is initiated (S̃). Distribution of the

sojourn time (S), for tier-k, can be obtained using the chord length distribution. Due to the stationarity of

our model, chord length distribution for tier-k, denoted by FL(z | tier = k), can be computed as follows [42]:

FL(z | tier = k) = 1− E[L | tier = k]
d

dz
H`(z | tier = k), (5.11)

where E[L | tier = k] is the mean length of the chords lying in tier-k cells, and is obtained by [99]

E[L | tier = k] = lim
z→0

z

H`(z | tier = k)
(5.12)
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5.3.4 Step 4 of Analysis

Finally, we can characterize the sojourn time distribution for tier-k using the results from previous step. In

particular, the mean and CCDF of the sojourn time in tier-k are

E[S | tier = k] =
1

v
E[L | tier = k], (5.13)

F̄S(T | tier = k) = 1− FL(vT | tier = k). (5.14)

5.4 Derivation of |Akj(r0, θ, v, T, βkj)|

As mentioned in the previous section, the first step of sojourn time analysis requires calculation of area of

Akj(r0, θ, v, T, βkj). In this regard, we consider three cases: I) βkj < 1, II) βkj > 1, and III) βkj = 1.

5.4.1 Case I: βkj < 1

The following proposition helps us to derive the area of Akj(r0, θ, v, T, βkj) for this case.

Proposition 5.1. When βkj < 1, Akj(r0, θ, v, T, βkj) = B
(

x(0), r0βkj

)
∪ B

(
x(T ), r0(T )

βkj

)
.

Proof. See Appendix C.1.

Note that, depending on radii of the two circles, r0
βkj

and r0(T )
βkj

, and the distance between their centres,

i.e. vT , three different situations can happen when βkj < 1:

Situation 1: When r0(T )
βkj
≥ r0

βkj
+ vT , we have B

(
x(0), r0βkj

)
⊂ B

(
x(T ), r0(T )

βkj

)
, which yields

Akj(r0, θ, v, T, βkj) = B
(

x(T ),
r0(T )

βkj

)
.

Situation 2: When r0
βkj
≥ r0(T )

βkj
+ vT , we have B

(
x(T ), r0(T )

βkj

)
⊂ B

(
x(0), r0βkj

)
, which yields

Akj(r0, θ, v, T, βkj) = B
(

x(0),
r0

βkj

)
.

Situation 3: When r0(T )
βkj

< r0
βkj

+ vT and r0
βkj

< r0(T )
βkj

+ vT ,

Akj(r0, θ, v, T, βkj) = B
(

x(0),
r0

βkj

)
∪ B

(
x(T ),

r0(T )

βkj

)
.

An example of which is illustrated in Fig. 5.3(a).
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(a) t = 2, 2.2. (b) t = 0, 1, 2, 3, 4, 5, 6, 7, 8.

Figure 5.4: B
(

x(t), r0(t)
βkj

)
at different time instants. Union of these circles from t = 0 till t = 8 forms

Akj(20, π/3, 5, 8, 1.2).

Using this information, now we can compute |Akj(r0, θ, v, T, βkj)| when βkj < 1.

|Akj(r0, θ, v, T, βkj)| =


π r0(T )2

β2
kj

, if 2r0
cos θ+βkj

1−β2
kj
≤ vT

π
r2
0

β2
kj
, if vT ≤ 2r0

cos θ−βkj
1−β2

kj

π
r2
0

β2
kj

+ π r0(T )2

β2
kj
− V

(
r0
βkj

, r0(T )
βkj

, vT
)
, if 2r0

cos θ−βkj
1−β2

kj
< vT < 2r0

cos θ+βkj
1−β2

kj

(5.15)

where V
(
r0
βkj

, r0(T )
βkj

, vT
)

is the area of intersection of two circles with radii r0
βkj

and r0(T )
βkj

whose centers are

separated by vT , i.e. V
(
r0
βkj

, r0(T )
βkj

, vT
)

=

r2
0

β2
kj

arccos

(
r2
0 + β2

kjv
2T 2 − r0(T )2

2βkjr0vT

)
+
r0(T )2

β2
kj

arccos

(
r0(T )2 + β2

kjv
2T 2 − r2

0

2βkjr0(T )vT

)

− 1

2

√(
r0

βkj
+
r0(T )

βkj
+ vT

)(
r0

βkj
+
r0(T )

βkj
− vT

)(
r0

βkj
− r0(T )

βkj
+ vT

)(
− r0

βkj
+
r0(T )

βkj
+ vT

)
. (5.16)

5.4.2 Case II: Bkj > 1

For this case, to derive the area of Akj(r0, θ, v, T, βkj), first we study the intersection of B
(

x(t), r0(t)
βkj

)
and

B
(

x(t+ dt), r0(t+dt)
βkj

)
as dt→ 0 (Fig. 5.4(a)). From triangle equations, we have

r0(t+ dt)2 = r2
0 + v2(t+ dt)2 − 2r0v(t+ dt) cos θ = r0(t)2 + v2dt2 + 2vdt(vt− r0 cos θ). (5.17)
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Since |vt− r0 cos θ| ≤ r0(t),

r0(t)2 + v2dt2 − 2r0(t)vdt ≤ r0(t+ dt)2 ≤ r0(t)2 + v2dt2 + 2r0(t)vdt. (5.18)

Dividing r0(t)− vdt ≤ r0(t+ dt) ≤ r0(t) + vdt by βkj yields

r0(t)

βkj
− vdt

(a)

≤ r0(t)

βkj
− vdt

βkj
≤ r0(t+ dt)

βkj
≤ r0(t)

βkj
+
vdt

βkj

(b)

≤ r0(t)

βkj
+ vdt,

where (a) and (b) are obtained using βkj > 1. Therefore, as dt→ 0, B
(

x(t), r0(t)
βkj

)
and B

(
x(t+ dt), r0(t+dt)

βkj

)
partially overlap (boundaries of B

(
x(t), r0(t)

βkj

)
and B

(
x(t+ dt), r0(t+dt)

βkj

)
intersect at two points), and we

have

∣∣∣∣B(x(t),
r0(t)

βkj

)
\ B
(

x(t+ dt),
r0(t+ dt)

βkj

)∣∣∣∣ = π
r0(t)2

β2
kj

− V
(
r0(t)

βkj
,
r0(t+ dt)

βkj
, vdt

)

= π
r0(t)2

β2
kj

− arccos

(
r0 cos θ − vt
βkjr0(t)

+
β2
kj − 1

2βkj

vdt

r0(t)

)
r0(t)2

β2
kj

− arccos

(
vt− r0 cos θ

βkjr0(t+ dt)
+
β2
kj + 1

2βkj

vdt

r0(t+ dt)

)
r0(t+ dt)2

β2
kj

+
1

2

√√√√2vdt

βkj

(
r0(t)− vt− r0 cos θ

βkj

)
+ v2dt2

(
1− 1

β2
kj

)

×

√√√√2vdt

βkj

(
r0(t) +

vt− r0 cos θ

βkj

)
− v2dt2

(
1− 1

β2
kj

)

=
2v

β2
kj

[√
β2
kjr0(t)2 − (vt− r0 cos θ)2 − arccos

(
vt− r0 cos θ

βkjr0(t)

)
(vt− r0 cos θ)

]
dt+O(dt2), (5.19)

where the last result is proved in Appendix C.2.

Moreover, we can derive the intersection points of these two circles from their equations in Cartesian

coordinate system, i.e.

B
(

x(t),
r0(t)

βkj

)
: [x− vt]2 + y2 =

r0(t)2

β2
kj

,

B
(

x(t+ dt),
r0(t+ dt)

βkj

)
: [x− v(t+ dt)]

2
+ y2 =

r0(t+ dt)2

β2
kj

.

Combining these equations and solving for x results in

x = v

(
t+

dt

2

)(
1− 1

β2
kj

)
+
r0 cos θ

β2
kj

,

69



which indicates that, for βkj > 1, the boundaries’ intersection points move along the positive x-axis as t

increases (Fig. 5.4(b)). Using this result, we can write

∣∣∣∣∣
n⋃
i=0

B
(

x(t+ idt),
r0(t+ idt)

βkj

)∣∣∣∣∣ = π
r0(t+ ndt)2

β2
kj

+

n−1∑
i=0

∣∣∣∣B(x(t+ idt),
r0(t+ idt)

βkj

)
\ B
(

x(t+ (i+ 1)dt),
r0(t+ (i+ 1)dt)

βkj

)∣∣∣∣ . (5.20)

Let the time interval [0, T ] be partitioned by points ti = idt, i = 0, ..., Tdt . We can calculate the area of

Akj(r0, θ, v, T, βkj) by setting t = 0 in (5.20), i.e.

|Akj(r0, θ, v, T, βkj)| = lim
dt→0

∣∣∣∣∣∣
T
dt⋃
i=0

B
(

x(idt),
r0(idt)

βkj

)∣∣∣∣∣∣
= π

r0(T )2

β2
kj

+ lim
dt→0

T
dt−1∑
i=0

∣∣∣∣B(x(idt),
r0(idt)

βkj

)
\ B
(

x((i+ 1)dt),
r0((i+ 1)dt)

βkj

)∣∣∣∣
(a)
= π

r0(T )2

β2
kj

+ lim
dt→0

T
dt−1∑
i=0

2v

β2
kj

[√
β2
kjr0(ti)2 − (vti − r0 cos θ)2 − arccos

(
vti − r0 cos θ

βkjr0(ti)

)
(vti − r0 cos θ)

]
dt+O(dt2)

(b)
= π

r0(T )2

β2
kj

+
2v

β2
kj

∫ T

0

√
β2
kjr0(t)2 − (vt− r0 cos θ)2 − arccos

(
vt− r0 cos θ

βkjr0(t)

)
(vt− r0 cos θ)dt, (5.21)

where (a) is obtained by using (5.19) and (b) follows from the Riemann integral.

5.4.3 Case III: βkj = 1

For this case, similar to Appendix C.1, we can prove Akj(r0, θ, v, T, 1) = B (x(0), r0) ∪ B (x(T ), r0(T )).

Since |r0 − vT | ≤ r0(T ) ≤ r0 + vT , B (x(0), r0) and B (x(T ), r0(T )) partially overlap. Therefore,

|Akj(r0, θ, v, T, βkj)| = π
r2
0

β2
kj

+ π
r0(T )2

β2
kj

− V
(
r0

βkj
,
r0(T )

βkj
, vT

)
, (5.22)

where βkj = 1 and V
(
r0
βkj

, r0(T )
βkj

, vT
)

is given in (5.16).
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5.4.4 Closed-form Expression for |Akj(r0, θ, v, T, βkj)|

Theorem 5.1. Area of Akj(r0, θ, v, T, βkj) can be obtained by

|Akj(r0, θ, v, T, βkj)| = |Akj(r0, θ, vT, 1, βkj)| =

π g(vT,1)2

β2
kj

+ 2vT
β2
kj

1∫
0

√
β2
kjg(vT, u)2 − (vTu− r0 cos θ)2 − arccos

(
vTu−r0 cos θ
βkjg(vT,u)

)
(vTu− r0 cos θ)du,

if (βkj > 1)

π
r2
0

β2
kj

+ π g(vT,1)2

β2
kj

− V
(
r0
βkj

, g(vT,1)
βkj

, vT
)
,

if (βkj = 1) or
(
βkj < 1 and 2r0

cos θ−βkj
1−β2

kj
< vT < 2r0

cos θ+βkj
1−β2

kj

)
π
r2
0

β2
kj
, if

(
βkj < 1 and vT ≤ 2r0

cos θ−βkj
1−β2

kj

)
π g(vT,1)2

β2
kj

, if
(
βkj < 1 and 2r0

cos θ+βkj
1−β2

kj
≤ vT

)

,

(5.23)

where g(vT, u) = r0(Tu) =
√
r2
0 + v2T 2u2 − 2r0vTu cos θ and V

(
r0
βkj

, g(vT,1)
βkj

, vT
)

is given in (5.16).

Proof. The proof follows from combining (5.15), (5.21), and (5.22). For, βkj > 1, we have used change of

variable t
T = u.

It is worth mentioning that, according to Theorem 5.1, in multi-tier networks, tier-k cells are convex,

if BkPk ≤ BjPj (or equivalently, βkj ≤ 1), ∀j ∈ K. Therefore, in this case, we can derive the sojourn time

distribution of tier-k similar to the single-tier scenario using (5.3) (instead of (5.2)). This is the reason why

some works in the literature only focus on the sojourn time in small cells of two-tier networks.

5.5 Main Results on Sojourn Time and Handoff Rate and Effects

of Network Parameters

5.5.1 Conditional CCDF and Mean of Sojourn Time

Since B
(

0, r0βkj

)
⊂ Akj(r0, θ, v, T, βkj), we can further simplify (5.9) as

P (BS(t) = BS(0),∀t ∈ (0, T ] | r0, θ, tier = k) = exp

−∑
j∈K

λj

(
|Akj(r0, θ, vT, 1, βkj)| − π

r2
0

β2
kj

) , (5.24)
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The CCDF of the sojourn time of a connection in a cell where it is initiated, S̃ can be obtained by substituting

(5.5) and (5.24) in (5.4).

F̄S̃(T | tier = k) =
1

P(tier = k)

∫ ∞
0

∫ π

0

2λkr0 exp

−∑
j∈K

λj |Akj(r0, θ, vT, 1, βkj)|

dθdr0, (5.25)

where P(tier = k) is given in (5.6), and |Akj(r0, θ, vT, 1, βkj)| is given in Theorem 5.1.

As discussed before, in Step 2, we use (5.25) to derive the linear contact distribution function given that

the mobile user is in a tier-k cell at time 0, i.e.

H`(z | tier = k) = 1− F̄S̃(
z

v
| tier = k) =

1− 1

P(tier = k)

∫ ∞
0

∫ π

0

2λkr0 exp

−∑
j∈K

λj |Akj(r0, θ, z, 1, βkj)|

dθdr0. (5.26)

To derive the chord length distribution in tier-k cells, according to (5.11), we need d
dzH`(z | tier = k)

and E[L | tier = k]. From (5.26), we have

d

dz
H`(z | tier = k) =

1

P(tier = k)

∫ ∞
0

∫ π

0

2λkr0

∑
j∈K

λj
d

dz
|Akj(r0, θ, z, 1, βkj)|


× exp

−∑
j∈K

λj |Akj(r0, θ, z, 1, βkj)|

 dθdr0, (5.27)

where d
dz |Akj(r0, θ, z, 1, βkj)| is given in (5.28).

E[L | tier = k] is also provided in the following theorem.

Theorem 5.2. The mean length of the chords lying in tier-k cells is as

E[L | tier = k] = π

(∑
j∈K λjβ

2
jk

)1/2

∑
j∈K λjI(βkj)

,

where

I(β) =


1
β2

∫ π
0
β2+1−2 cos2 θ√

β2−cos2 θ
dθ, if β ≥ 1

1
β2

∫ π−arccos(β)

arccos(β)
β2+1−2 cos2 θ√

β2−cos2 θ
dθ, if β < 1

. (5.29)

Proof. See Appendix C.3.

72



d

dz
|Akj(r0, θ, z, 1, βkj)| =

π 2(z−r0 cos θ)
β2
kj

+ 2
β2
kj

1∫
0

√
β2
kjg(z, u)2 − (zu− r0 cos θ)2 − arccos

(
zu−r0 cos θ
βkjg(z,u)

)
(zu− r0 cos θ)du

+ 2z
β2
kj

1∫
0

√
β2
kjg(z, u)2 − (zu− r0 cos θ)2 u(zu−r0 cos θ)

g(z,u)2 − arccos
(
zu−r0 cos θ
βkjg(z,u)

)
udu,

if (βkj > 1)

π 2(z−r0 cos θ)
β2
kj

+

β2
kj−1

β2
kj

r2
0√

4β2
kjr

2
0−((β2

kj−1)z+2r0 cos θ)
2

+

β2
kj+1−2 cos2 θ

β2
kj

r2
0−

β2
kj−1

β2
kj

r0z cos θ√
4β2
kjg(z,1)2−((β2

kj+1)z−2r0 cos θ)
2

− arccos

(
(β2
kj+1)z−2r0 cos θ

2βkjg(z,1)

)
2(z−r0 cos θ)

β2
kj

+

√
−(β2

kj−1)z+2r0(βkj−cos θ)

(β2
kj−1)z+2r0(βkj+cos θ)

(β2
kj−1)z+r0(βkj+cos θ)

2β2
kj

+

√
(β2
kj−1)z+2r0(βkj+cos θ)

−(β2
kj−1)z+2r0(βkj−cos θ)

−(β2
kj−1)z+r0(βkj−cos θ)

2β2
kj

if (βkj = 1) or
(
βkj < 1 and 2r0

cos θ−βkj
1−β2

kj
< z < 2r0

cos θ+βkj
1−β2

kj

)
0, if

(
βkj < 1 and z ≤ 2r0

cos θ−βkj
1−β2

kj

)
π 2(z−r0 cos θ)

β2
kj

, if
(
βkj < 1 and 2r0

cos θ+βkj
1−β2

kj
≤ z
)

(5.28)

Using these results, the mean and the CCDF of the sojourn time are

E[S | tier = k] =
π

v

(∑
j∈K λjβ

2
jk

)1/2

∑
j∈K λjI(βkj)

, (5.30)

F̄S(T | tier = k) = E[L | tier = k]
d

dz
H`(z | tier = k)

∣∣∣
z=vT

. (5.31)

5.5.2 Handoff Rate

In [87], rates of different handoff types in multi-tier cellular networks are provided. For k, j ∈ K, the type

k-j handoff rate Hkj , defined as the mean number of handoffs made from a tier-k cell to a tier-j cell in unit

time, is2

Hkj =
v

π

λkλjF(βkj)(∑
i∈K λiβ

2
ik

)3/2 , (5.32)

where

F(β) =
1

β2

∫ π

0

√
β2 + 1− 2β cos θdθ. (5.33)

Therefore,

Hk =
v

π
λk

∑
j∈K λjF(βkj)(∑
i∈K λiβ

2
ik

)3/2 (5.34)

is the mean number of handoffs from (to) a tier-k cell to (from) any other cell in the network.

2Hkj in (5.32) is obtained by further simplifying the result in [87]. Specifically, we have used βij = βik
βjk

besides F( 1
β

) =

β3F(β).
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Figure 5.5: I(β) and F(β) for β ≥ 1.

In Fig. 5.5, we can see I(β) = F(β) for β ≥ 1. Since F( 1
β ) = β3F(β) and I( 1

β ) = β3I(β), we can

conclude I(β) = F(β) for any β > 0. Using this result, the relation between mean sojourn time and handoff

rate for tier-k is as follows:

E[S | tier = k] =
P(tier = k)

Hk
. (5.35)

An important metric in mobility analysis is the fraction of time the mobile user stays in tier-k cells during

a movement period since it considers both handoff rate and sojourn time.

Corollary 5.1. The fraction of time the mobile user stays in tier-k, during the movement period, is P(tier =

k).

Proof. Let us denote the number of times that the mobile user enters a tier-k cell during the movement

period by Nk, k ∈ K. Also, t
(k)
i denotes the i-th dwell time in the tier-k cell, where i = 1, ...,Nk and k ∈ K.

The fraction of time that the mobile user stays in tier-k can be obtained by

∑Nk
i=1 t

(k)
i∑

j∈K
∑Nj
i=1 t

(j)
i

=

∑Nk
i=1 t

(k)
i

Nk
× Nk∑

j∈K
∑Nj
i=1 t

(j)
i

= E[S | tier = k]×Hk
(b)
= P(tier = k),

where (b) follows from (5.35).

5.5.3 Unconditional CCDF and Mean of Sojourn Time

So far we have focused on F̄S(T | tier = k) and E[S | tier = k], i.e. the CCDF and average of sojourn time

in a tier-k cell. In the following corollaries, we derive the unconditional CCDF and mean.
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Corollary 5.2. The CCDF of sojourn time, during the movement period, can be obtained by

F̄S(T ) =
∑
k∈K

F̄S(T | tier = k)
Hk

H
,

where H =
∑
k∈KHk is the mean number of handoffs in unit time.

Proof. Using the same notation as in the proof of Corollary 5.1, we can write

F̄S(T ) = E [1(S > T )] =

∑
k∈K

∑Nk
i=1 1(t

(k)
i > T )∑

j∈KNj

=
∑
k∈K

∑Nk
i=1 1(t

(k)
i > T )

Nk
× Nk∑

j∈K
∑Nj
i=1 t

(j)
i

×
∑
j∈K

∑Nj
i=1 t

(j)
i∑

j∈KNj
.

Corollary 5.3. The mean sojourn time during a movement period can be obtained by

E [S] =
1

H
=
π

v

(∑
k∈K

λk

∑
j∈K λjF(βkj)(∑
i∈K λiβ

2
ik

)3/2
)−1

.

Proof. The mean sojourn time can be obtained by following the same approach as in proof of Corollary 5.2.

5.5.4 Effect of Network Parameters

In this subsection, we study the effect user speed, transmit power, bias factor, and BS intensity on the

distribution and mean of the sojourn time. Since our proofs do not rely on the mobility model, the following

results can be used for any mobility model.

Proposition 5.2. The CCDF and the mean of the sojourn time decrease as the mobile user’s speed increases.

Proof. This can be understood from the definition of the sojourn time. (This can also be proven from the

derived analytical results.)

Proposition 5.3. In multi-tier networks, the sojourn time of k-th tier increases as transmit power or bias

factor of tier-k increases, while sojourn time in other tiers decreases. In single-tier networks, sojourn time

is independent of transmit power and bias factor.

Proof. Assume that a user at location y ∈ R2 is served by a tier-k BS at x, i.e, y is in the cell of x. Therefore,
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from (5.1), we have

BkPk‖y− x‖−α ≥ BkPk‖y− z‖−α, z ∈ Φk, (5.36)

BkPk‖y− x‖−α ≥ BjPj‖y− z‖−α, z ∈ Φj ,∀j ∈ K \ {k}. (5.37)

From these equations, when B′kP
′
k ≥ BkPk, we obtain

B′kP
′
k‖y− x‖−α ≥ B′kP ′k‖y− z‖−α, z ∈ Φk,

B′kP
′
k‖y− x‖−α ≥ BjPj‖y− z‖−α, z ∈ Φj ,∀j ∈ K \ {k},

i.e. y is still in the cell of x after increasing BkPk. On the other hand, when the user at location y is served

by a tier-j BS at x, j ∈ K \ {k}, we have

BkPk‖y− z‖−α ≤ BjPj‖y− x‖−α,

where z denotes the location of the nearest tier-k BS to the user at y. For B′kP
′
k ≥ BkPk, one of the two

following cases can happen: a) B′kP
′
k‖y−z‖−α ≤ BjPj‖y−x‖−α, i.e., the user is still served by the tier-j BS,

or b) BjPj‖y− z‖−α ≤ B′kP ′k‖y−x‖−α, i.e., the nearest tier-k BS serves the user when BkPk is increased to

B′kP
′
k. Therefore, in multi-tier networks, the size of the k-th tier cells increases as transmit power or bias

factor of tier-k increases while the size of other tiers’ cells decreases. For single-tier networks, according to

(5.36), cell sizes are independent of transmit power and bias factor. Finally, using these results and the fact

that the sojourn time is directly proportional to the size of cells, we can obtain Proposition 5.3.

Proposition 5.4. In multi-tier networks, when the BS intensity of tier-k increases, the sojourn time for

other tiers decreases.

Proof. According to the superposition property of PPP [41], increasing λk to λ′k is similar to adding a new

tier of BSs with intensity λ′k − λk, transmission power Pk, and bias factor Bk. Therefore, the size of cells of

other tiers decreases when the BS intensity of k-th tier increases.

5.5.5 Other Mobility Models

Due to irregular shapes of Poisson Voronoi cells and random direction changes between consecutive steps,

analysis of sojourn time over multiple consecutive steps for mobility models such as random walk [86] or

modified random waypoint [29] seems impossible. However, as the user velocity, flight length, or flight time
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increases, the effect of direction change decreases. Thus, sojourn time approaches the results derived for

straight line mobility model. In this regard, we have considered a simplified random walk mobility model

where the mobile user moves with speed v for a duration of Tf before changing its direction. For small vTf ,

irregular movements of the user near the cell boundaries can cause multiple handovers within a small period

of time. On the other hand, when the user is far from the cell boundary it stays a longer time within the cell

owing to the frequent random direction changes. For a two-tier network with λ1 = 0.002, λ2 = 0.005, and

β12 =
(

1
2

)1/4
, we have compared the mean sojourn time of the simplified random walk mobility model with

our analytical results for different values of v and Tf in Table 5.2. It seems that the derived analytical results

for the straight line mobility model can also be used for random mobility models when E[L] ≤ vTf , where

E[L] is the average chord length which is equal to
∑
k∈K

λk∑
j∈K λj

E[L | tier = k]. For the given parameters,

average chord length is about 8.

Table 5.2: Mean Sojourn Time

v = 0.5 v = 1 v = 4
Analysis 18.74 9.37 2.34
Tf = 1 16.66 8.85 2.34
Tf = 5 18.49 9.24 2.35
Tf = 10 18.58 9.36 2.35

5.6 Numerical and Simulation Results

5.6.1 Distribution of Sojourn Time

For a two-tier cellular network, in Fig. 5.6(a), the distribution of the sojourn time S̃ in the cell where the

connection is initiated is illustrated for tier-k, k ∈ {1, 2}. In Fig. 5.6(b), the distribution of (conditional

and unconditional) S, for this network, is provided. As can be seen, the simulation results match the

derived analytical results. According to Fig. 5.6, at high velocities, the sojourn time for tier-k stochastically

dominates the sojourn time of tier-j when BkPk > BjPj , i.e. βkj > 1.

In practice, when a mobile user crosses a cell boundary, it starts a Time to Trigger (TTT) timer. The

mobile user does not make a handoff to the new BS, if it leaves the new BS’s cell before the end of TTT

timer [27]. The derived results for handoff rates, in the literature, usually assume TTT is 0, i.e. the handoff

rates provided (in [29] and [87] for example) are actually the mean number of intersections between the user

trajectory and cell boundaries per unit time. In practice, the handoff rate for tier-k is HkP(S > TTT | tier =

k) = HkF̄S(TTT | tier = k), where Hk is given in (5.34). When the network parameters are as in Fig. 5.6,

H1 = 0.13 and H2 = 0.41. For this network, with TTT = 0.2, the handoff rate for tier-one is 0.12 and for
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Figure 5.6: Distribution of S̃ and S in a two-tier cellular network (for λ1 = 0.002, λ2 = 0.005, β12 =
(

1
2

)1/4
,

and v = 5).

tier-two is 0.39. Although the difference between Hk and the handoff rate for these parameters is negligible,

it is noticeable for high velocity scenarios. In this regard, for the same network parameters as in Fig. 5.6,

effect of TTT on the handoff rates as a function of velocity is shown in Fig. 5.7. While Hk (mean number of

intersections between the user’s trajectory and tier-k cell boundaries per unit time) linearly increases with

the user’s velocity, handoff rate for tier-k (HkP(S > TTT | tier = k)) is close to zero at high velocities due

to small sojourn time.

Moreover, using the distribution of sojourn time, we can study the ping-pong rate (unnecessary handoff

rate). If, after a handoff, the time duration that the mobile user is inside the new cell be less than a threshold

Tp, the handoff is considered unnecessary [27]. Therefore, for tier-k, the ping-pong rate can be obtained by

Hk (P(S < Tp | tier = k)− P(S < TTT | tier = k)) = Hk (P(S > TTT | tier = k)− P(S > Tp | tier = k)) .

For TTT = 0.2 and Tp = 0.5, for tier-one, the ping-pong rate is less than 0.01 and for tier-two, the ping-pong

rate is 0.03.

As discussed earlier, we obtain the distribution of S̃ in multi-tier networks from (5.2). For convex cells,

(5.2) can be further simplified as (5.3) which is the complement of the handoff probability. Therefore, we

can use (5.3) to derive the CCDF of the sojourn time in single-tier networks and also in multi-tier networks

for the tier with the smallest BP (multiplication of bias factor and transmission power). However, for other

tiers in multi-tier networks, (5.3) provides an upper bound for the CCDF of the sojourn time. This is also

illustrated in Fig. 5.8 for a three-tier network. It is worth mentioning that the gap between the CCDF of
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Figure 5.8: Sojourn time and complement of the handoff probability in a three-tier network. For tier-1,
λ1 = 0.01 and B1P1 = 10, for tier-2, λ2 = 0.005 and B2P2 = 50, and for tier-3, λ3 = 0.001 and B3P3 = 100.
α = 4 and v = 5.

the sojourn time and its upper bound (obtained from (5.3)) increases as the intensity of tiers with lower BP

increases.

5.6.2 Mean Sojourn Time

In Fig. 5.9, the mean sojourn time for a two-tier cellular network with λ1 = 0.002 and λ2 = 0.005 is

illustrated as a function of velocity. We compare the results for the two-tier network with two single-

tier scenarios where the mobile user is associated to only one of the tiers. When the number of tiers

increases, through increased spectral reuse, users can transmit with higher data rates. However, there is

more undesired overhead transmission due to the higher handoff rate (lower mean sojourn time). The sojourn
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Figure 5.9: Mean sojourn time with respect to velocity. We have compared the results for a two-tier cellular

network with λ1 = 0.002, λ2 = 0.005, and β12 =
(

1
2

)1/4
with two single-tier networks.

time distribution is helpful in mobility management where the mobile user can skip unnecessary handoffs

with a negligible spectral efficiency loss [91].

In Fig. 5.10(a), the effect of transmit power (or bias factor) on the mean sojourn time in a two-tier

cellular network is illustrated. As discussed in Proposition 5.3, the mean sojourn time of tier-two increases

as transmit power (or bias factor) of tier-two increases, while mean sojourn time of other tier decreases. As

can be seen, the (unconditional) mean sojourn time in the network does not change with increasing transmit

power or bias factor of tier-two. In Fig. 5.10(b), the effect of BS intensity on the mean sojourn time is shown.

As can be seen, the mean sojourn time for all tiers decreases with increasing the BS intensity of tier-two.

This is also mentioned in Proposition 5.4.

5.7 Conclusion

We have derived the distribution and mean of the sojourn time of multi-tier cellular networks. The existing

works assume that a mobile user is always associated to only one of the tiers, or focus on the sojourn time in

small cells (for two-tier scenario). Since in both the cases the cells are convex, the sojourn time distribution

(or mean) can be easily obtained similar to single-tier scenarios by using the chord length distribution

in Poisson Voronoi tessellation. However, in multi-tier networks with maximum biased averaged received

power association we need the chord length distribution in weighted Poisson Voronoi tessellation, which is

not available in the literature. In this chapter, we have derived the area of contact in weighted Poisson

Voronoi tessellation from which we have obtained the linear contact distribution function and chord length

distribution.
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(a) Effect of transmission power (or bias factor).
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(b) Effect of BS intensity.

Figure 5.10: Effect of network parameters on the mean sojourn time in a two-tier cellular network with
λ1 = 0.002, B1P1 = 100, α = 4, and v = 5. a) Effect of increasing transmission power (or bias factor) when
λ2 = 0.005. b) Effect of increasing BS intensity when B2P2 = 50.

We have studied the relation between mean sojourn time and other mobility-related performance metrics.

Specifically, We have shown that mean sojourn time is inversely proportional to the handoff rate. Also, the

complementary cumulative distribution function of sojourn time is upper bounded by complement of the

handoff probability. In addition, we have studied the impact of user velocity and network parameters on

the distribution and mean of the sojourn time. The sojourn time distribution can be used to derive the

ping-pong rate which is important in mobility management where the mobile user can skip unnecessary

handoffs with a negligible spectral efficiency loss. Moreover, it can be used for studying channel occupancy

time which can be exploited for improving resource allocation.
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Chapter 6

Federated Learning in Unreliable and

Resource-Constrained Cellular

Wireless Networks

With growth in the number of smart devices and advancements in their hardware, in recent years, data-driven

machine learning techniques have drawn significant attention. However, due to privacy and communication

issues, it is not possible to collect this data at a centralized location. Federated learning is a machine learning

setting where the centralized location trains a learning model over remote devices. Federated learning

algorithms can not be employed in the real world scenarios unless they consider unreliable and resource-

constrained nature of the wireless medium. In this chapter, we propose a federated learning algorithm that

is suitable for wireless networks. We prove its convergence, and provide a sub-optimal scheduling policy

that improves the convergence rate. We also study the effect of local computation steps and communication

steps on the convergence of our algorithm. We prove, in practice, federated learning algorithms may solve

a different problem than the one that they have been employed for if they neglect the unreliability of

wireless channels. Finally, through numerous experiments on real and synthetic datasets, we demonstrate

the convergence of our proposed algorithm.
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6.1 Introduction

6.1.1 Motivation

With the rapid growth in Internet-of-Things (IoT) applications and increase in the computational and storage

power of smart devices, modern distributed networks generate a huge amount of data everyday [32]. Owing

to this reason, data-driven machine learning techniques have gained significant attention in recent years.

Currently, most of the existing machine learning techniques are centralized, i.e., they assume all data is

available at a centralized location, where a central processor trains a powerful learning method on the data

[30]. However, transferring data from user devices to the centralized location violates users’ privacy [33]. To

cope with this issue, federated learning has been introduced where a learning model is trained over remote

devices under the control of the centralized location, called server [32, 33, 34]. Specifically, in federated

learning (FL), the server broadcasts the global model parameters to the remote devices. Each remote device

uses its local dataset to update the global model, and then transmits the updated local model to the server.

After aggregating the local models, the server updates the global model and repeats the whole procedure. As

an example, consider the task of next-word prediction on mobile phones, where a language model predicts the

most probable next word or phrase based on a small amount of user-generated preceding text. To maintain

the users privacy, instead of transmitting the raw text data to the server and training a predictor at the

server, we use federated learning [100, 32].

Although the above definition of federated learning seems similar to parallel optimization and distributed

machine learning in datacenters, due to the following challenges, it needs to be treated separately: i) In

federated learning, connections between the remote devices and the server1 are unreliable and slow. ii)

Different devices in the network have different systems characteristics (systems heterogeneity). iii) Training

data is not independently and identically distributed (statistical heterogeneity) [37, 38]. Since data is non-

i.i.d. (not independently and identically distributed) across devices, all devices must participate in the

learning process. However, due to the systems heterogeneity, which includes variable computation and

communication capabilities at different devices, and limited number of available resource blocks (such as

bandwidth) for communication, full device participation at each round of communication is not possible.

Moreover, in reality, transmission success probability is different for different devices, even when they all

have the same hardware. Specifically, transmission success probability for devices that are located closer to

the server is higher than far devices. Thus, without considering this issue at the time of updating the global

model, the updated global model will be biased towards cell center devices’ local models.

1In wireless networks, base stations (BSs) act as the servers.
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6.1.2 Related Works

Training federated learning models in a wireless networking environment requires devices and the server

exchange information via wireless transmissions. The existing works (e.g. in [33, 101], and references

therein) aim to improve implementation of federated learning by optimizing resource allocation and/or

reducing the communication requirements since communication is a key bottleneck [32]. To reduce the

communication rounds of FL, three main approaches have been employed: quantization, sparsification, and

local updates [102]. In this chapter, we study local updates where, between any two aggregation steps in

consecutive rounds, each device performs multiple local update steps. In this regard, [30, 31, 103] studied the

convergence of communication-efficient FL with local updates for convex and non-convex problems. However,

it was assumed that all of the devices participate in the aggregation step, which is obviously not possible

when the number of available resource blocks is limited. To tackle this problem, in [35, 36, 37, 38, 39, 40]

at the beginning of each round, the server samples a subset of devices and allocates the available resource

blocks to these devices. After performing local update steps, the BS aggregates the local models of the

chosen (scheduled) devices and updates the global model. The works in [35, 36, 37, 38, 39, 40] assumed that

the BS successfully receives the local models of all the scheduled devices, and they designed the global model

update step only based on the scheduling policy. However, in reality, not only is the success probability less

than one, but also it is different for different devices. Clearly, to update the global model we need to include

both scheduling policy and success probability.

To better understand, consider a scenario with two devices and two resource blocks, where both devices

are scheduled for sharing their updated local models with the server. Assume that the success probability

is 1 for device one and is 0.1 for device two. In this scenario, the server receives the local model of device

two once in every ten rounds on average, while the local model of device one is always successfully received.

Obviously, without considering this aspect of wireless communications, the global model is biased towards

device one at the end of the learning process.

In the above context, we propose an FL algorithm that is suitable for unreliable and resource-constrained

cellular wireless networks. Specifically, at the end of each FL round, our algorithm updates the global model

by allocating different weights to different devices, where weight for each device depends on the scheduling

policy and its transmission success probability. Stochastic geometry is used in the literature to derive the

transmission success probabilities in large-scale cellular networks ([21, 43, 46, 47] and references therein).

Therefore, in designing FL algorithms for cellular wireless networks, we need to borrow tools from stochastic

geometry.

To the best of our knowledge, only the work in [104] considered the effect of success probability on the
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convergence of FL. Similar to [105], [104] solved the FL problem using primal-dual optimization method.

However, when strong duality is not guaranteed, this method may not be useful [36]. Also, in the analysis,

the FL global objective is assumed to be a function of linear combination of model parameters and the

input features. Thus, convergence analysis for this method cannot be extended to other machine learning

techniques.

6.1.3 Contributions

The most common federated learning algorithm in the literature is FedAvg (federated averaging) [35], which

lacks convergence analysis. Several works in the literature made steps towards analyzing convergence of

FedAvg by modifying the algorithm. For example, [37] proposed a different averaging scheme for FedAvg, and

derived the convergence rate of the modified algorithm. [36] proposed FedProx, which is a generalization of

FedAvg obtained by adding a proximal term to the local objectives. Recently, [38] has proposed SCAFFOLD

which improves FedAvg by adding a correction term, called client drift, to local updates. However, as we

discussed in the previous subsection, these works and all other related works do not consider the effect of

transmission success probability.

In the above context, the major contributions of this chapter can be summarized as follows:

• We propose an FL algorithm that is suitable for unreliable and resource-constrained wireless systems.

In particular, for an FL system in a cellular wireless network, the BS selects a subset of devices at

each round and updates the global model based on their updated local models by allocating different

weights to them. Weight for each device depends on the scheduling policy and its transmission success

probability. We use stochastic geometry tools to approximately calculate the success probability for

each device.

• Our proposed FL algorithm solves the FL problem in the primal domain. We prove that, for strongly

convex and smooth problems, the algorithm converges on non-i.i.d data with rate O( 1
T ).

• We study two difference scheduling (sampling) policies. We also provide a sub-optimal scheduling

policy based on the derived convergence rate.

• We study the effect of number of computation steps and communication steps on the convergence rate.

• We show that the existing works, which do not include the transmission success probability in the global

model update step (e.g. those in [35, 36, 37, 38]), will not be suitable for a wireless communication

environment, since they may converge to the solution of a different FL problem when the success

probabilities are different for different devices.
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• We verify the convergence of our proposed FL algorithm by experimenting over real and synthetic

datasets. We also compare our results with centralized full batch gradient descent which can be

considered as a benchmark for our algorithm.

The organization of the rest of the chapter is as follows. In Section 6.2, we introduce the system model and

propose our FL algorithm. Then, in Section 6.3, we provide the convergence analysis of our FL algorithm.

Further analysis of the proposed FL algorithm and comparison with related algorithms are provided in

Section 6.4. In Section 6.5, we present the simulation results. Finally, Section 6.6 concludes the chapter. A

summary of the major notations used in this chapter is given in Table 6.1.

Table 6.1: Summary of Major Notations

Notation Description
λ Base station (BS) intensity (average number of BSs in a unit area)
N Number of devices in each cell
M Number of available resource blocks at each BS
F , Fk Global loss function, local loss function at device k
w, wk Global model parameters, local model parameters at device k
pk Weight of k-th nearest device
qk Average number of allocated resource blocks to device k at a sam-

pling step
Uk Success probability of device k
K Total number of FL rounds (iterations)
E Number of local SGD steps during each round of FL
` Number of transmission attempts at each aggregation step

6.2 System Model

6.2.1 Network Model

Consider a single-tier cellular network. The Locations of the base stations (BSs) follow a homogeneous

Poisson point process (PPP) Φ of intensity λ, and each BS serves the user devices that are located in its

Voronoi cell. Each device is associated to its nearest BS. In each cell, N devices are uniformly distributed;

we use subscript k to denote the k-th nearest device to the BS. Thus, rk denotes the distance between the

serving BS and its k-th nearest device. Each BS allocates M resource blocks for the learning process, where

M ≤ N .
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Figure 6.1: One iteration (round) of the distributed learning algorithm starting at time t. Green arrows
illustrate the broadcast step. Blue arrows correspond to the local SGD step, and red arrow represents the
aggregation step.

6.2.2 Federated Learning

In order to learn a statistical model from the distributed data across user devices, BS tries to solve the

following distributed optimization problem:

min
w

F (w) =

N∑
k=1

pkFk(w), (6.1)

where w is the learning model parameters. pk is the weight of the k-th nearest device such that pk ≥ 0 and∑N
k=1 pk = 1. Fk(w) also denotes the local loss function at device k; it is defined as

Fk(w) =
1

nk

∑
x∈Dk

L(w, x), (6.2)

where Dk is the local dataset at device k, and is non-i.i.d. across different devices. nk = |Dk| denotes the

number of samples in Dk. Thus, in (6.1), we can set pk = nk
n , where n =

∑N
k=1 nk. L(w, x) also represents

the loss function for data sample x.

Since the information is distributed across multiple devices, BS can not directly solve (6.1). Therefore,

BS and devices collaboratively learn the optimal model parameters w∗ 2 by following an iterative algorithm.

Specifically, after initializing the model parameters at the BS at time 0, each iteration (round) of the algorithm

comprises: 1) Sampling and broadcast, 2) Local stochastic gradient descent (SGD), and 3) Aggregation and

averaging. In the following we discuss each of these steps in detail for an iteration that starts at time t. This

iteration is also shown in Fig. 6.1.

Sampling and Broadcast: Due to the limited number of available resource blocks, the BS first selects

2w∗ = arg minF (w)

87



a group of devices at time t and then broadcasts its model parameters. In this chapter, we consider two

different sampling schemes.

In Scheme I, BS uniformly selects M devices out of N devices without replacement, i.e., each device uses

at most one resource block. Lets denote the set of the selected (scheduled) devices at time t by St. For

Scheme I, device k uses qk resource blocks on average at sampling time t, where

qk = E

[
M∑
m=1

1 (k ∈ St(m))

]
=
M

N
. (6.3)

St(m) in the above equation denotes the index of the scheduled device at time t for resource block m, and

1(.) is the indicator function.

In Scheme II, at time t for resource block m, BS samples a device with replacement from N devices with

probabilities {q̂k}. Thus, sampling is independently and identically distributed over m, and some devices

may use more that one resource block. For Scheme II, we have

qk = E

[
M∑
m=1

1 (k ∈ St(m))

]
= Mq̂k. (6.4)

Local SGD: After receiving the global model parameters from the BS at time t, scheduled device k

initializes its local model as wkt = wt, where wt is the global model parameters sent by the BS, and wkt is the

local model parameters at device k. Then device k performs E steps of SGD and updates its local model at

each step as follows

vkt+i+1 = wkt+i − ηt+i∇Fk(wkt+i; ξ
k
t+i), i = 0, ..., E − 1, (6.5)

where ηt+i is the learning rate, and ξkt+i is the sample uniformly chosen from the local dataset at device k3.

Moreover,

wkt+i =


wt i = 0

vkt+i i = 1, 2, ..., E − 1,

.

Aggregation and Averaging: At the end of E steps of stochastic gradient descent, scheduled devices

transmit vkt+E −wt to the BS using the allocated resource block(s). After collecting the successfully received

local models, the BS updates the global model as

wt+E = wt +

N∑
k=1

M∑
m=1

pk
qkUk

1 (k ∈ St(m),SINRk,m > θ) (vkt+E − wt), (6.6)

3In later sections, we discuss generalizing our results to batch size of greater than one.
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where SINRk,m denotes the recieved signal-to-interference-plus-noise ratio of device k over resource block m.

θ denotes the SINR threshold, and Uk is defined as

Uk = E [1 (SINRk,m > θ) | k ∈ St(m)] ,

i.e., Uk denotes the success probability of device k given that it is scheduled to use resource block m.

According to (6.6), the BS updates the global model by allocating different weights to different devices.

The weight for device k is a function of scheduling policy (qk) and transmission success probability (Uk)

to compensate for systems heterogeneity and different communication capabilities. However, the averaging

step in previous works, such as [36, 37, 40], is designed only based on the scheduling policy while assuming

that success probabilities are all equal to one. As a result, the algorithms proposed in [36, 37, 40] (and other

similar works) do not solve (6.1) in real world deployments, and this will be explained in Section 6.4.3

Remark: From (6.5), we have

vkt+E − wt = −
t+E−1∑
i=t

ηi∇Fk(wki ; ξki ).

Thus, instead of transmitting vkt+E−wt, device k can directly send the gradients (and also the learning rates).

However, direct transmission of the gradients requires sending E times more parameters than vkt+E − wt.

Based on the above discussion, we have summarized our proposed FL algorithm in Algorithm 1.

Algorithm 1: Proposed FL Algorithm

Input: K, E
Initialization: Global model parameters at the BS w0

for i = 0, 1, ...,K − 1 do
Step 1 (Sampling and Broadcast): BS samples a subset of devices and broadcasts the global
model parameters wiE .

Step 2 (Local SGD): Each sampled device initializes its local model parameters with wiE , and
performs E steps of local SGD following (6.5) with t = iE.

Step 3 (Aggregation and Averaging): Scheduled devices transmit their updated local
models to the BS. Then, BS updates the global model parameters according to (6.6) and
obtains w(i+1)E .

return wKE

Moreover, we can summarize the update rule of the proposed algorithm as

vkt+1 = wkt − ηt∇Fk(wkt ; ξkt ), ∀k ∈ {1, ..., N}, (6.7)
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where

wkt =


w0 t = 0

vkt t 6∈ IE

wt = wt−E +
∑N
k=1

∑M
m=1

pk
qkUk

1 (k ∈ St−E(m),SINRk,m > θ) (vkt − wt−E), t ∈ IE

. (6.8)

IE = {nE | n = 1, 2, ...} is the set of time indexes of the global synchronization steps after t = 0 [37].

6.2.3 Interference, SINR, and Success Probability

In this subsection, we study the success probability of device k at its associated BS, given that it is scheduled

to transmit over resource block m. Due to the stationarity of the homogeneous PPP [41], we can consider

the location of this BS as the origin of our coordination system.

Before studying the uplink success probability, it is worth mentioning that, in this chapter, we have

assumed downlink communication is always successful, i.e., all the scheduled devices successfully receive the

global model parameters. This is a valid assumption since the BS can transmit with more power compared

to the devices; moreover, the BS can allocate more than one resource block for broadcasting the global model

parameters. However, due to the power constraint at user devices and limited number of allocated resource

blocks to each scheduled device, we must consider that uplink transmissions may not be successful at an

aggregation step.

To increase the success probability during the aggregation steps, we assume all scheduled devices transmit

their local model parameters for ` times, and BS employs the selection combining, i.e., it uses the highest

received SINR to recover the local model parameters transmitted over resource block m. Therefore,

Uk = E [1 (SINRk,m > θ) | k ∈ St(m)]

= E [1 (max {SINRk,m(1),SINRk,m(2), ...,SINRk,m(`)} > θ) | k ∈ St(m)] ,

where SINRk,m(i) denotes the received SINR from device k over resource block m at i-th transmission

attempt of an aggregation step. Since the success event is identically distributed across different iterations

(rounds) of the algorithm for device k, SINRk,m(i) is not indexed by the iteration number. Moreover, at the

aggregation step of each iteration, interference and fading are identically distributed across different resource

blocks; thus, we can omit subscript m from SINRk,m(i) since its statistics does not depend on m. With this

in mind, we can write

SINRk(i) =
hk(i)r−αk
I(i) + σ2

=
hk(i)r−αk∑

x∈ΦI
hx(i)‖x‖−α + σ2

, (6.9)
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where σ2 is the normalized noise power (noise power to the device transmit power). I(i) =
∑
x∈ΦI

hx(i)‖x‖−α

is the interference at i-th transmission attempt with ΦI denoting the set of interferers. hx(i) denotes the small

scale fading between a device at x and the BS at the origin. We consider Rayleigh fading, i.e., hx ∼ exp(1),

and it is i.i.d. across i (different transmission attempts) and x (different locations). α also denotes the

path-loss exponent. Since the set of interferers remains the same during different transmission attempts of

one aggregation step, success events are temporally correlated over one resource block during an aggregation

step.

It is also worth mentioning that our algorithm can also be employed with the results in [106] for maximal

ratio combining. Moreover, we can easily extend our framework to more complex scenarios including uplink

transmission with power control as in [107], multiple input multiple output antenna systems as in [108, 109],

millimeter wave as in [110].

Lemma 6.1. For the described network, with ` transmission attempts at each aggregation step, the success

probability for scheduled device k is

Uk ≈
∑̀
i=1

(
`

i

)
(−1)i+1 exp

{
−iθσ2rαk − 2πλ

∫ ∞
0

(
1− 1

(1 + θrαk x
−α)

i

)
(1− e−12/5λπx2

)xdx

}
.

Proof. See Appendix D.1.

6.3 Convergence Analysis of the Proposed Federated Learning Al-

gorithm

6.3.1 Convergence Rate

In this section, we prove the convergence of the proposed algorithm. In this regard, we first introduce

additional notations and assumptions that are required to derive the convergence rate.

Following the same notation as in [37], for time t, we define

• v̄t =
∑N
k=1 pkv

k
t ,

• w̄t =
∑N
k=1 pkw

k
t ,

• gt =
∑N
k=1 pk∇Fk(wkt ; ξkt ),

• ḡt =
∑N
k=1 pk∇Fk(wkt ), where ∇Fk(wkt ) = Eξ

[
∇Fk(wkt ; ξ)

]
.

Thus, at t ∈ IE , wkt = w̄t = wt.
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We also make the following assumptions [37, 111, 112].

Assumption 6.1. F1, ..., FN are all µ-strongly convex, i.e., for k ∈ {1, ..., N},

Fk(w2) ≥ Fk(w1) +∇Fk(w1)T (w2 − w1) +
µ

2
‖w2 − w1‖2, ∀w1, w2.

Consequently, F is µ-strongly convex.

Assumption 6.2. F1, ..., FN are all L-smooth, i.e., for k ∈ {1, ..., N},

Fk(w2) ≤ Fk(w1) +∇Fk(w1)T (w2 − w1) +
L

2
‖w2 − w1‖2, ∀w1, w2.

Consequently, F is L-smooth.

Assumption 6.3. Variance of stochastic gradient at device k, k ∈ {1, ..., N}, is upper bounded by σ2
k, i.e.,

Eξ
[
‖∇Fk(w; ξ)−∇Fk(w)‖2

]
≤ σ2

k, ∀w.

Assumption 6.4. Second moment of the norm of the stochastic gradient is bounded at all devices. For all

k ∈ {1, ..., N},

Eξ
[
‖∇Fk(w; ξ)‖2

]
≤ G2, ∀w.

We also define Γ = F ∗ −
∑N
k=1 pkF

∗
k , where F ∗ is the minimum global loss (objective function in (6.1))

and F ∗k is the minimum local loss at device k (objective function in (6.2)). Γ ≥ 0 (proof is given bellow),

and increases as the heterogeneity (degree of non-i.i.d.) of the data distribution increases [37].

Proof of Γ ≥ 0. As mentioned previously, w∗ minimizes the global loss, i.e. F ∗ = F (w∗). Similarly, we

define w∗k = arg minFk(w). From the definition of Γ, we have

Γ = F (w∗)−
N∑
k=1

pkFk(w∗k)
(a)
=

N∑
k=1

pkFk(w∗)−
N∑
k=1

pkFk(w∗k) =

N∑
k=1

pk (Fk(w∗)− Fk(w∗k))
(b)

≥ 0,

where (a) follows from the definition of the global loss function, and (b) is obtained since w∗k minimizes Fk.

When data is i.i.d. across devices, F1 = F2 = · · · = FN = F . Thus, Γ = 0 for i.i.d. data distribution.

Theorem 6.1. When ηt = 2
µ(γ+t) with γ = max

{
8Lµ , E

}
, after the averaging step at time T , we have

E [F (wT )− F ∗] ≤ L/µ

γ + T

[
2

µ

(
N∑
k=1

p2
kσ

2
k + 6LΓ + 8(E − 1)2G2 + 4E2G2B

)
+
µγ

2
‖w0 − w∗‖2

]
,
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where B =
∑N
k=1 pk

(
1

qkUk
− 1
)

for sampling Scheme I, and B =
∑N
k=1 pk

(
1

qkUk
− 1

M

)
for sampling Scheme

II. w0 denotes the initialized global model parameters.

Proof. The result is obtained from

E
[
‖w̄t+1 − w∗‖2

]
≤ (1− µηt)E

[
‖w̄t − w∗‖2

]
+ η2

t


N∑
k=1

p2
kσ

2
k︸ ︷︷ ︸

term I

+ 6LΓ︸︷︷︸
term II

+ 8(E − 1)2G2︸ ︷︷ ︸
term III

+ 4E2G2B︸ ︷︷ ︸
term IV

 . (6.10)

For details, see Appendix D.2.

[37] established a convergence rate of O
(

1
T

)
based on Assumptions 1 to 4. According to Theorem

1, our proposed federated learning algorithm also converges with rate O
(

1
T

)
when Assumptions 1 to 4

hold. Thus, unsuccessful transmissions do not affect the convergence significantly after proper adjustment

of the averaging step.

In (6.10), term I is due to the fact that each device uses a mini-batch instead of the full batch to perform

a local update, term II exists because data is non-i.i.d. across devices, term III stems from performing

multiple (E > 1) local SGD steps between two aggregation steps which allows local models to move without

the server’s control in the direction of the local optimum instead of the global optimum, and term IV comes

from the transmission unreliability and resource scarcity in cellular wireless networks. When term I, term

II, term III, and term IV are zero, according to (6.10), the global model converges exponentially fast

towards w∗. This is also the case in centralized full batch gradient descent. Thus, in Section 6.5, we use

centralized full batch gradient descent as a benchmark.

So far we have assumed that each device uses only one data sample at each local update step. In the

following, we discuss using mini-batches with more than one data sample at the local update steps.

6.3.2 Mini-Batch Gradient Descent

When we use mini-batches with size b for local update steps, (6.7) changes to

vkt+1 = wkt − ηt∇Fk(wkt ; {ξkt }), ∀k ∈ {1, ..., N}, (6.11)

where

∇Fk(wkt ; {ξkt }) =
1

b

∑
ξ∈Bkt

∇Fk(wkt ; ξ)
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is the estimated gradient at device k at time t using samples in the mini-batch Bkt = {ξkt }. For device k and

∀w, we have

E{ξ}
[
‖∇Fk(w; {ξ})−∇Fk(w)‖2

]
= E{ξ}


∥∥∥∥∥∥
∑
ξ∈Bk

1

b
(∇Fk(w; ξ)−∇Fk(w))

∥∥∥∥∥∥
2


≤ E{ξ}

∑
ξ∈Bk

1

b
‖(∇Fk(w; ξ)−∇Fk(w))‖2

 (a)

≤ σ2
k,

where (a) is obtained from Assumption 6.3. Similarly, from Assumption 6.4, we have

E{ξ}
[
‖∇Fk(w; {ξ})‖2

]
≤ G2, ∀w.

Therefore, Theorem 6.1 holds for any batch size.

6.4 Further Analysis and Comparison

In this section, we provide a further discussion on the proposed federated learning algorithm using Theorem

6.1. Specifically, we first study the impact of number of iterations (rounds), number of local update steps

at each round, and number of transmission attempts at each aggregation step in each round; then we find a

sub-optimal scheduling policy that improves the convergence rate. Finally, we compare our algorithm with

the works that do not consider the transmission success probability and prove its significance.

6.4.1 Effects of Number of Computation and Communication Steps

To study the impact of number of rounds (K4), number of local update steps during each round (E), and

number of transmission attempts at each aggregation step in each round (`), we use a simpler form of

Theorem 6.1.

Corollary 6.1. When ηt = 2
µ(γ+t) with γ = max

{
8Lµ , E

}
, after the averaging step at the K-th round, we

have

E [F (wT )− F ∗] ≤ L/µ

KE

[
2

µ

(
N∑
k=1

p2
kσ

2
k + 6LΓ + 8(E − 1)2G2 + 4E2G2B

)
+
µγ

2
‖w0 − w∗‖2

]
,

where T = KE and B is defined in Theorem 6.1.

4According to the definition, K = T/E in Theorem 6.1.
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When T = KE is fixed, the right hand side of Corollary 6.1 is minimum when K = T and E = 1

because we only need to minimize 8(E − 1)2G2 + 4E2G2B. Therefore, the gap between the global model

and the global optimum model is minimized at time T if the server updates the global model after every

local update step.

By taking the derivative of the right hand side with respect to E when K (number of FL rounds) is fixed,

we observe that the upper bound in Corollary 6.1 first decreases and then increases; thus, an optimal

value for E exists. In fact this can be easily understood by considering that increasing E at first allows each

device to move further in the direction of the optimum model parameters; thus, improves the convergence.

However, when E is set to a large value, each device moves towards its local optimum model instead of the

global optimum.

When E is fixed, it is obvious that the upper bound in Corollary 6.1 is a decreasing function of K and

`, i.e. the the gap between the global model and the global optimum model decreases as we increase the

number of communications. However, increasing K decreases the gap more than increasing `. To prove this

statement, we denote the success probability after ` transmission attempts by U
(`)
k . According to (D.1),

U
(`)
k = 1− EΦI

(1− e−θσ
2rαk

∏
x∈ΦI

1

1 + θrαk ‖x‖−α

)`
(a)

≤ 1− EΦI

[
1− `e−θσ

2rαk
∏
x∈ΦI

1

1 + θrαk ‖x‖−α

]

≤ `U (1)
k , (6.12)

where, in (a), we have used Bernoulli’s inequality [113]. When we increase K to `K, ` > 1, from the upper

bound in Corollary 6.1 we observe

L/µ

`KE

[
Constant1 + Constant2 ×

N∑
k=1

pk

qkU
(1)
k

]
≤ L/µ

KE

[
Constant1 + Constant2 ×

N∑
k=1

pk

`qkU
(1)
k

]
(a)

≤ L/µ

KE

[
Constant1 + Constant2 ×

N∑
k=1

pk

qkU
(`)
k

]
,

where we have used (6.12) in (a). Although increasing K is more powerful compared to increasing ` in

decreasing the gap, it consumes more resources since, during each round of the learning process, the scheduled

devices perform E steps of local update.
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6.4.2 Scheduling Policy

The optimal scheduling policy minimizes the global loss function, and can be obtained from the solution to

the following optimization problem:

minimize
{qk}

E [F (wT )]

subject to

N∑
k=1

qk = M,

qk > 0, ∀k ∈ {1, ..., N}.

(6.13)

where the first condition is due to the fact that the BS allocates M resource blocks for the learning process.

To solve (6.13), we need to understand how scheduling affects the global loss for a given w (global model

parameters). Since in general this is impossible [30], we use the convergence bound in Theorem 6.1 to

approximately solve (6.13). Thus, we can obtain a sub-optimal solution to (6.13) by solving

minimize
{qk}

N∑
k=1

pk
Uk
q−1
k

subject to

N∑
k=1

qk = M,

qk > 0, ∀k ∈ {1, ..., N}.

(6.14)

Now, consider the following optimization

minimize
{qk}

N∑
k=1

pk
Uk
q−1
k

subject to

N∑
k=1

qk ≤M,

qk > 0, ∀k ∈ {1, ..., N}.

(6.15)

By contradiction, one can easily prove that solution to (6.15), denoted by q∗1 , ..., q
∗
N , satisfies

∑N
k=1 q

∗
k = M .

Thus, (6.15) is equivalent to (6.14), i.e. q∗1 , ..., q
∗
N is also the solution to (6.14). (6.15) is a geometric program,

and it can be transformed to a convex problem [97]. Therefore, we can find q∗1 , ..., q
∗
N using CVX or any

other convex solver [114]. Finally, the (sub-) optimal5 policy for Scheme II is achieved when q̂k =
q∗k
M . Note

that the optimal policy for Scheme II does not necessarily perform better than Scheme I since convergence

rate and the upper bound in Theorem 6.1 for Scheme I are different from Scheme II. In fact, it is only

5For the rest of the chapter, by optimal scheduling policy we mean the scheduling policy that minimizes the convergence
bound in Theorem 6.1. This scheduling policy is optimal for (6.14) and sub-optimal for (6.13).
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guaranteed that, with optimal policy for Scheme II, the upper bound in Theorem 6.1 performs better

compared to other Scheme II scheduling policies.

Finally, it is worth mentioning that, according to Lemma D.2, the optimal scheduling policy minimizes

the variance of the updated global model at each averaging step.

6.4.3 Comparison with the Existing Works

Existing works, such as [35, 36, 37, 38], assume that the BS always successfully recovers the transmitted

information of the scheduled devices. For example, [36, 37, 40] use sampling Scheme II with probabilities

{pk} besides the following averaging approach:

wt =
1

M

N∑
k=1

M∑
m=1

1 (k ∈ St−E(m)) vkt (6.16)

at t ∈ IE . To study this averaging approach when unsuccessful transmission probability is greater than zero,

we modify it as

wt =



wt−E

if
∑N
k=1

∑M
m=1 1 (k ∈ St−E(m),SINRk,m > θ) = 0

1
M

∑N
k=1

∑M
m=1 1 (k ∈ St−E(m),SINRk,m > θ) vkt

otherwise

. (6.17)

In the following, we prove that this averaging scheme does not solve (6.1) when unsuccessful transmission

probability is greater than zero and varies across the devices. In this regard, we focus on the following

averaging approach:

wt = wt−E +

N∑
k=1

M∑
m=1

1 (k ∈ St−E(m),SINRk,m > θ)∑N
k=1

∑M
m=1 1 (k ∈ St−E(m),SINRk,m > θ)

(
vkt − wt−E

)
, t ∈ IE , (6.18)

where we define 0
0 = 0. It is straightforward to show that, when M = 1, (6.18) is same as (6.17).

In Appendix D.3, we prove that by using (6.18) for updating the global model parameters at t ∈ IE ,

instead of (6.1), the algorithm converges to the solution to the following problem:

min
w

F̂ (w) =

N∑
k=1

pkUkFk(w). (6.19)

Since (6.18) and (6.17) are equal for M = 1, we can conclude that the employed learning approach by
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[36, 37, 40] does not always solve (6.1). In fact, one can easily understand that (6.17) is biased towards

devices with higher success probabilities.

Finally, it is worth mentioning that (6.16) can be considered as a special case of (6.6), i.e. (6.6) simplifies

to (6.16) when all transmissions are successful (SINRk,m > θ and Uk = 1, ∀k,m).

6.5 Simulation Results and Discussion

Cellular Network: BS intensity λ is 0.001 [points/area]. We assume in each cell there are N = 100 user

devices and each BS allocates only M = 20 resource blocks for the distributed learning process. We also set

σ2 = 10−4, α = 4, and θ = −15 dB.

Datasets: We evaluate our proposed federated learning on both real and synthetic datasets. For real

data, we use MNIST [115] and distribute our data similar to [37] in a non-i.i.d. fashion. Specifically, each

sample in MNIST dataset is a 28×28 image of a handwritten digit between 0 to 9. We distribute the dataset

samples such that each device has samples of only two digits and the number of samples at different devices

is different. For synthetic data, we follow the same setup as in [116, 37, 36]. In this regard, we generate

samples at device k, denoted by (Xk, Yk), using y = argmax (softmax (Wkx+ bk)), where Wk ∈ R10×60 and

bk ∈ R10. Each element in Wk and bk is a realization of N (µk, 1), where µk ∼ N (0, α̃). Thus, α̃ controls the

degree of difference between local models at different devices6 [36]. Moreover, x ∈ R60. The j-th element

(feature) in x is drawn from N (vk,j , j
−1.2), where vk,j ∼ N (Bk, 1)7 and Bk ∼ N (0, β̃). Thus, β̃ controls the

data heterogeneity. Finally, the number of data samples at device k, denoted by nk, follows a power law

distribution. In this chapter, we set α̃ = 1 and β̃ = 1.

Model: To examine the performance of the proposed FL algorithm on the discussed datasets, we use

a three layer neural network with 300 hidden units at each hidden layer. For MNIST datatset, input of

the model is a flattened 784-dimensional image. For the synthetic dataset, an input of the model has 60

dimensions. We use ReLU (rectified linear unit) activation function for the hidden layers and softmax in

the output layer. At the beginning of round k, k ∈ {0, 1, 2, ...,K − 1}, we set the learning rate as ηt = η0

1+k ,

where kE ≤ t < (k + 1)E. We measure the performance of our model with regularized cross-entropy loss,

where we use `2-norm regularization with regularization parameter 10−4. Therefore, the local loss at device

k is computed by

Fk(w) =
1

nk

∑
(x,y)∈Dk

CrossEntropy(f(w;x), y) + 10−4‖w‖22,

6When α̃ = 0, elements of Wk and bk at all devices are drawn from the same distribution, i.e. N (0, 1).
7vk,j remains the same across j-th feature of different samples of device k.
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where f(w;x) denotes the neural network prediction for input x [37]. The global loss is a weighted average

of the local losses as given in (6.1).

Benchmark: When M = N and Uk = 1, ∀k{1, ..., N}, the BS receives the local model parameters of

all devices successfully. Under this assumption, if all devices use their full batch and E = 1, the distributed

learning algorithm is equivalent to the centralized full batch gradient descent. This scenario can be regarded

as a benchmark for our proposed algorithm. In Fig. 6.2, performance of the centralized full gradient descent

with η0 = 1 is shown in terms of global loss and accuracy over both MNIST and synthetic datasets. Accuracy

is defined as the percentage of correct predictions.
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Figure 6.2: Performance of the benchmark algorithm over MNIST and Synthetic datasets.

Training: To train the local models at local SGD steps, for MNIST dataset, we use batch sizes of 64

and set η0 = 1. For the synthetic dataset, we use batch sizes of 25 and set η0 = 0.1. Since we use a smaller

learning rate for the synthetic dataset, we consider higher values for E at the time of simulation. Our codes

are available at [117].

Results8: In Fig. 6.3(a) and (b), we measure the performance of the proposed FL algorithm in terms

of global loss and accuracy on MNIST dataset; Fig. 6.3(c) and (d) also illustrate the performance on the

synthetic dataset. For Scheme II, we show the results with q̂k = 1
N , i.e. uniform selection and q̂k =

q∗k
M , i.e.

(sub-) optimal selection. For MNIST dataset, the objective function of (6.15) at q1 = q2 = ... = qN = M
N

is 7.09 and at the optimal point q∗1 , q
∗
2 , ..., q

∗
N is 6.48. For the synthetic dataset, these values are 6.89 and

3.66, respectively. Thus, optimal scheduling has more effect on the synthetic dataset which can also be

understood from Fig. 6.3. By calculating B in Theorem 6.1 for Scheme I and Scheme II with optimal

scheduling, we expect that Scheme I performs better on MNIST dataset and Scheme II performs better on

the synthetic dataset. This is also illustrated is Fig. 6.3 and is in compliance with our discussion in Section

6.4.2. Moreover, as explained in Section 6.4.3, previous works, such as [36, 37, 40], cannot be used for

wireless networks since they do not include unsuccessful transmission probability. This is also shown in

8To make a fair comparison, we have illustrated the average performance over multiple trials.
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Fig. 6.3, where we illustrate the performance of the introduced setup in Section 6.4.3.
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(c) Synthetic.
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Figure 6.3: In (a) and (b), ` = 2 and E = 1. In (c) and (d), ` = 2 and E = 20.

We provide more simulation results in Fig. 6.4, 6.5, 6.6, and 6.7 where we study the effects of K, `, and

E on the performance of our algorithm. For Scheme I sampling, we show the results in Fig. 6.4 and 6.6. For

Scheme II sampling with q̂k = 1
N , we show the results in Fig. 6.5 and 6.7. Note that, when q̂k = 1

N in Scheme

II, both schemes select users uniformly; however, Scheme I selects without replacement, while replacement

is allowed in Scheme II. We see that Scheme I performs better than Scheme II with uniform selection. This

can be also understood from Theorem 6.1. Finally, it is worth mentioning that, with appropriate tuning

of the hyper-parameters (K, `, and E), we can reach the benchmarked performance levels.

6.6 Conclusion

Federated learning algorithms cannot be employed in the real world scenarios unless they consider the

scarcity of radio resources and unreliability of wireless transmissions. In this regard, in this chapter, we have

proposed a federated learning algorithm that is tailored for unreliable and resource-constrained wireless net-

works, where success probability varies across different devices. Our proposed federated learning algorithm

incorporates the success probability in the averaging step. Thus, as the first step towards designing the FL

algorithm, we have used stochastic geometry tools to calculate the success probability. We have studied the
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Figure 6.4: Performance of the proposed FL with Scheme I sampling over MNIST dataset. In (a) and (b),
` = 1. In (c) and (d), E = 2.
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Figure 6.5: Performance of the proposed FL with Scheme II sampling with q̂k = 1
N , for all k, over MNIST

dataset. In (a) and (b), ` = 1. In (c) and (d), E = 2.
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Figure 6.6: Performance of the proposed FL with Scheme I sampling over the synthetic dataset. In (a) and
(b), ` = 1. In (c) and (d), E = 20.
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Figure 6.7: Performance of the proposed FL with Scheme II sampling with q̂k = 1
N , for all k, over the

synthetic dataset. In (a) and (b), ` = 1. In (c) and (d), E = 20.
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convergence of the proposed algorithm. Specifically, we have proven that the algorithm converges with rate

O( 1
T ) for strongly convex and smooth problems on non-i.i.d. data. The effects of computation, communica-

tion, and scheduling on the convergence rate of the algorithm have also been investigated. Finally, we have

verified our algorithm through experimenting on real and synthetic datasets.
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Chapter 7

Summary and Future Directions

7.1 Summary

In Chapter 3, using tools from stochastic geometry, we have derived the conditional success probability (CSP),

its moments, and its CCDF (meta distribution) for uplink and downlink NOMA. The spatial distribution of

uplink interferers is required for deriving the analytical results. We have proposed two point process models

for spatial locations of the uplink inter-cell interferers by moment matching (BS/user pair correlation function

matching). Using these models, in Chapter 4, we removed some simplifying assumptions that we make in

Chapter 3. Specifically, we derived the uplink coverage probability (first moment of CSP) while including

interference correlation and removing distance-based ranking assumption.

Most of the existing works assume that ranking users in each NOMA cluster based on their distances,

instead of the complete CSI, is a valid approximation. In Chapter 4, we studied the effects of this ap-

proximation on the coverage probability analysis in the uplink as well as in the downlink. Specifically, the

accuracy probability, which is the probability that the distance-based ranking matches ranking based on the

instantaneous signal power, has been defined and derived for Rayleigh and Nakagami-m fading channels.

Effects of NOMA cluster size, path-loss, and user selection on the accuracy probability are also investigated.

In Chapter 5, we have derived the distribution and mean of the sojourn time in multi-tier cellular networks.

In multi-tier networks with maximum biased averaged received power association we need the chord length

distribution in weighted Poisson Voronoi tessellation. In Chapter 5, we have derived the area of contact in

weighted Poisson Voronoi tessellation from which we have obtained the linear contact distribution function.

Then, chord length distribution is obtained from linear contact distribution function. Chapter 5 also studies

the relation between mean sojourn time and other mobility-related performance metrics. Specifically, it
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shows that mean sojourn time is inversely proportional to the handoff rate. Effects of different parameters

on mean and distribution of sojourn time are also investigated in Chapter 5.

In Chapter 6, we study the performance of distributed machine learning algorithms in cellular wireless

networks. Previous works ignored the scarcity of radio resources and unreliability of wireless transmissions,

when designing the learning algorithms. In this regard, in Chapter 6, we have proposed a federated learning

algorithm that is tailored for unreliable and resource-constrained wireless networks, where success probability

varies across different devices. We have studied the convergence of our algorithm and proved that the

algorithm converges with rate O( 1
T ) for strongly convex and smooth problems on non-i.i.d. data. The effects

of computation, communication, and scheduling on the convergence rate of the algorithm have also been

investigated in Chapter 6.

7.2 Future Directions

Design and analysis of improved multiple access methods: Meeting performance targets and sup-

porting standard services of 5G and B5G necessitate efficient user access mechanisms. In this dissertation,

we have focused on the large-scale performance of power-domain NOMA in single-antenna setup and calcu-

lated its gain over orthogonal multiple access (OMA). Although, NOMA seems promising for this scenario, it

has been shown recently in [118] that power-domain NOMA is inefficient in multiple-input-multiple-output

setups compared to conventional Multi-User Linear Precoding (MU-LP) and Rate-Splitting Multiple Access

(RSMA). Moreover, extra overhead, user grouping, receiver design, and complexity of NOMA diminish the

gain of NOMA over OMA. Future works need to address the existing challenges of NOMA to make it bene-

ficial for future use-cases. Also, Large-scale performance analysis of RSMA in MIMO setup and comparison

with MU-LP and NOMA is an open problem.

Mobility analysis of integrated terrestrial-aerial networks: With stringent requirements in future

generations of wireless networks and emerging applications in new vertical sectors, mobility related challenges

become more noticeable. In this dissertation, we have studied the sojourn time distribution and its relation

to handoff rate for multi-tier terrestrial networks. We can use sojourn time distribution and handoff rate for

resource allocation and mobility management to improve network performance. For example, when a user

enters a new cell, sojourn time distribution can be employed to avoid an unnecessary handoff based on the

user’s distance between to the BS. Moreover, analysis of different handoff types and handoff in more complex

scenarios is necessary for future applications. For instance, Xn-based and N2-based handoff rate analysis for

understanding effects of mobility in 5G networks is required for better resource allocation, or considering
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Poisson Line process to model cars mobility in 5G networks can be insightful.

Improved federated learning methods and theorem analyses in wireless networks: Our pro-

posed algorithm modifies FedAvg such that it converges in wireless medium under resource scarcity and

transmission unreliability. Improving the convergence rate of the proposed algorithm by predicting clients’

drifts, sharing more local information besides the updated local model, and client sampling based on data

distribution seem promising. Moreover, FedAvg on non-i.i.d. data lacks theoretical guarantee in a convex

optimization setting. Similarly, convergence analysis of our algorithm, which can be regarded as a modified

version of FedAvg, with convex loss functions is an open problem. Finally, our results can be used in network

design for edge computing and spectrum management [119].
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Appendix A

Appendix to Chapter 3

A.1 Proof of Theorem 3.1

We first derive the CSP Ps,(m) for the m-th rank uplink NOMA user as follows:

Ps,(m)(θ) = P
(
SIR(m) > θ | ΦU, tx

)
= P

(
hx(m)

> θ‖x(m)‖α
(∑
x∈ΦI

hx‖x‖−α +

N∑
i=m+1

hx(i)
‖x(i)‖−α

)
| ΦU, tx

)

(a)
=
∏
x∈ΦI

1

1 + θ‖x(m)‖α‖x‖−α
N∏

i=m+1

1

1 + θ‖x(m)‖α‖x(i)‖−α
, (A.1)

where (a) follows from applying the CCDF of the unit mean exponential distribution of hx(m)
and then the

Laplace transform of the unit mean exponential distribution of hx and hx(i)
. Note that ΦU represents the

superposition of two independent point processes, namely, the inter-cell interferer point process ΦI and point

process of users located in the typical Voronoi cell (intra-cell users).

Next, we derive the b-th moment of CSP Mb,(m) = EΦU

[
P bs,(m)

]
as follows:

Mb,(m)
(a)
= Ex(m)

EΦI

[ ∏
x∈ΦI

(
1

1 + θ‖x(m)‖α‖x‖−α

)b]
︸ ︷︷ ︸

Part A

Er

[(
1

1 + θ‖x(m)‖αr−α

)b]N−m
︸ ︷︷ ︸

Part B

 , (A.2)

where (a) is obtained by noting that (i) ΦU is the superposition of the inter-cell and intra-cell point processes,

(ii) the inter-cell interferers’ point process and the intra-cell interferers’ point process are independent, and

(iii) conditioned on the user at rank m, distributions of the distances of the intra-cell interfering users from
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the typical BS are i.i.d, so we can replace ||x(i)|| with r [15]. Using the Model 1 for inter-cell interferer

point process in Section 3.3, we can approximate Part A as follows:

EΦI

[ ∏
x∈ΦI

(
1

1 + θ‖x(m)‖α‖x‖−α

)b]
≈ E

 ∏
x∈Φ̄P

(
1

1 + θ‖x(m)‖α‖x‖−α

)Nb
| x(m)


(a)
= exp

−2πλb

∞∫
0

[
1−

(
1

1 + θ‖x(m)‖αr−α

)Nb](
1− e−(12/5)λbπr

2
)
rdr

 ,

where we approximate ΦI with Φ̄I and Φ̄I is same as the parent process (which is a PPP) with co-located

N daughters. The last equality is obtained from the probability generating functional (PGFL) of PPP.

Similarly, using the Model 2, where we approximate ΦI with ¯̄ΦI, Part A can be derived as follows:

EΦI

[ ∏
x∈ΦI

(
1

1 + θ‖x(m)‖α‖x‖−α

)b]
≈ E

∏
x∈ ¯̄ΦI

(
1

1 + θ‖x(m)‖α‖x‖−α

)b
| x(m)


= exp

−2πNλb

∞∫
0

[
1−

(
1

1 + θ‖x(m)‖αr−α

)b](
1− e−(12/5)λbπr

2
)
rdr

 .

Now, Part B in (A.2) is derived as follows:

E

[(
1

1 + θ‖x(m)‖αr−α

)b
| x(m)

]
=

∞∫
‖x(m)‖

(
1

1 + θ‖x(m)‖αr−α

)b
fRout

(
r | ‖x(m)‖

)
dr

= (5/2)λbπ‖x(m)‖2e(5/4)λbπ‖x(m)‖2
∫ 1

0

t−3e−(5/4)λbπ‖x(m)‖2t−2

(1 + θtα)
b

dt.

Finally, Theorem 3.1 is obtained by averaging over the desired link distance using (3.8).

A.2 Proof of Theorem 3.2

Substituting (3.6) in (2.1), the CSP for the m-th rank user yields

Ps,(m)(θ) = P

(
I intra
(m) + I inter

(m)

βmPBSh0‖x0‖−α
<

1

θ
| ΦB, tx

)
(a)
=P

(
I inter
(m)

βmPBSh0‖x0‖−α
<

1

θ
−
∑m−1
i=1 βi
βm

| ΦB, tx

)

(b)
=Ehx

exp

−cm‖x0‖α
 ∑
x∈ΦB\{x0}

hx‖x‖−α
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=
∏

x∈ΦB\{x0}

1

1 + cm‖x0‖α‖x‖−α
,

where (a) is obtained by using (3.4). When βm/θ−
∑m−1
i=1 βi is not positive, Ps,(m)(θ) = 0. Therefore, in the

following, we consider βm/θ −
∑m−1
i=1 βi > 0. (b) follows from the exponential distribution of h0, applying

(3.5), and setting cm =

(
βm
θ −

m−1∑
i−1

βi

)−1

. Using Ps,(m), now we can derive Mb,(m) as follows:

Mb,(m)
(a)
=E

 ∏
x∈ΦB\{x0}

(
1

1 + cm‖x0‖α‖x‖−α

)b
(b)
=ERm

exp

−
∫

R2\b(o,Rm)

[
1−

(
1

1 + cmRαm‖x‖−α

)b]
λbdx




(c)
=ERm

exp

−2πλb

∞∫
Rm

∞∑
k=1

(
b

k

)
(−1)k+1ckmR

αk
m

r−αk+1

(1 + cmRαmr
−α)k

dr




(d)
=

∞∫
0

exp

{
−πλbr

2
∞∑
k=1

(
b

k

)
(−1)k+1ckm

δ

k − δ 2F1(k, k − δ; k − δ + 1;−cm)

}
fRm(r)dr,

where the expectation in (a) is over the point process ΦB, (b) follows from probability generating functional

(PGFL) of PPP [41] outside b(o,Rm), (c) is obtained by using the polar domain representation and by

applying the binomial expansion, and finally, Mb,(m) in (3.21) is obtained by calculating the integral in (d)

where fRm(r) is given in (3.20).
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Appendix B

Appendix to Chapter 4

B.1 Proof of (4.6)

In two user uplink NOMA, transmission success probability of the near user to the BS (P ISP
cov,(1)) is obtained

by

P ISP
cov,(1) = P (success of near user | received signal from near user is stronger than far user)

× P (received signal from near user is stronger than far user)

+ P (success of near user | received signal from near user is weaker than far user)

× P (received signal from near user is weaker than far user) . (B.1)

We can write the second and fourth terms in the above equation as

P (received signal from near user is stronger than far user) = P
(
h1r
−α
(1) > h2r

−α
(2)

)
P (received signal from near user is weaker than far user) = P

(
h1r
−α
(1) < h2r

−α
(2)

)

It is worth mentioning that, according to Definition 4.1 in the thesis, second term in (B.1) is the (ranking)

accuracy probability and fourth term is its complement.

Next, we simplify the first and third terms. Note that in the SIC process, receiver (BS) first decodes the

strongest signal by treating other signals as noise. Then, it regenerates the decoded signal and subtracts the

regenerated signal from the composite received signal and proceeds the SIC process on the remaining signal

by decoding, regenerating, and canceling the second strongest signal and so on. Thus, when received power
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of near user is stronger than far user, BS decodes near user’s signal in the presence of interference from the

far user, and we can write the first term as

P (success of near user | received signal from near user is stronger than far user)

= P

{
Ptxh1r

−α
(1)

Ptxh2r
−α
(2) + Iinter + σ2

n

> θ | h1r
−α
(1) > h2r

−α
(2)

}
,

where, in the denominator of the above equation, the first term is due to the interference from the far

(weaker) user, second term is due to the interference coming from transmissions in other cells (inter-cell

interference), and the last term is the noise power.

On the other hand, when the near user is weaker than the far user at the BS, BS first decodes the far

user’s signal in the presence of interference from near user. Then it decodes the near user’s signal (without

interference from far user since signal of far user is removed in the SIC). Thus, we can write the third term

as

P (success of near user | received signal from near user is weaker than far user)

= P

{
Ptxh2r

−α
(2)

Ptxh1r
−α
(1) + Iinter + σ2

n

> θ,
Ptxh1r

−α
(1)

Iinter + σ2
n

> θ | h1r
−α
(1) < h2r

−α
(2)

}
.

Similarly, one can derive (4.7), (4.8), and (4.9).

B.2 Coverage Probability in Uplink NOMA With ISP-Based User

Ranking

We consider 2-user uplink NOMA, and assume the network is interference-limited. Without loss of generality

we can set Ptx = 1 in (4.6) and (4.7). Thus, we can write (4.6) and (4.7) as

P ISP
cov,(1) = P

{
h1r
−α
(1)

h2r
−α
(2) + Iinter

> θ, h1r
−α
(1) > h2r

−α
(2)

}
+ P

{
h2r
−α
(2)

h1r
−α
(1) + Iinter

> θ,
h1r
−α
(1)

Iinter
> θ, h1r

−α
(1) < h2r

−α
(2)

}
,

(B.2)

P ISP
cov,(2) = P

{
h1r
−α
(1)

h2r
−α
(2) + Iinter

> θ,
h2r
−α
(2)

Iinter
> θ, h1r

−α
(1) > h2r

−α
(2)

}
+ P

{
h2r
−α
(2)

h1r
−α
(1) + Iinter

> θ, h1r
−α
(1) < h2r

−α
(2)

}
,

(B.3)
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where Iinter =
∑
x∈ΦI

hx‖x‖−α is the inter-cell interference. According to Section 3.3, we can model ΦI by a

Poisson cluster process where the parent point process is a PPP with intensity function λ
(

1− e−(12/5)λπ‖x‖2
)

,

and, in each cluster, two offspring points are located in the same location as the parent.

As explained in Section 4.4, due to the complicated forms of (B.2) and (B.3), in the existing literature,

it is assumed that the near user is always the strong user, i.e. P
(
h1r
−α
(1) > h2r

−α
(2)

)
≈ 1; therefore, (B.2) and

(B.3) are approximated, respectively, by

PMSP
cov,(1) = P

{
h1r
−α
(1)

h2r
−α
(2) + Iinter

> θ

}
, (B.4)

PMSP
cov,(2) = P

{
h1r
−α
(1)

h2r
−α
(2) + Iinter

> θ,
h2r
−α
(2)

Iinter
> θ

}
. (B.5)

In the following, for Rayleigh fading, we calculate the above coverage probabilities and compare (B.2)

and (B.3) with (B.4) and (B.5), respectively.

Theorem B.1. (SIR distribution for ISP-based ranking) For Rayleigh fading, P ISP
cov,(1) and P ISP

cov,(2) can be

obtained by

P ISP
cov,(1) =

∫ ∞
0

∫ ∞
0

P ISP
cov,(1)|r1,r2fr(1),r(2)

(r1, r2)dr1dr2

=

∫ ∞
0

∫ ∞
0

(
1

1 + θ
(
r1
r2

)αLIinter|r1,r2 (θrα1 ) +
1

1 + θ
(
r2
r1

)αLIinter|r1,r2
(
θrα2 + θrα1 + θ2rα2

)

+ 1(θ < 1)

(
1− 1

1 + θ
(
r1
r2

)α − 1

1 + θ
(
r2
r1

)α)LIinter|r1,r2

(
θ

1− θ
rα1 +

θ

1− θ
rα2

))
fr(1),r(2)

(r1, r2)dr1dr2,

(B.6)

P ISP
cov,(2) =

∫ ∞
0

∫ ∞
0

P ISP
cov,(2)|r1,r2fr(1),r(2)

(r1, r2)dr1dr2

=

∫ ∞
0

∫ ∞
0

(
1

1 + θ
(
r2
r1

)αLIinter|r1,r2 (θrα2 ) +
1

1 + θ
(
r1
r2

)αLIinter|r1,r2
(
θrα1 + θrα2 + θ2rα1

)

+ 1(θ < 1)

(
1− 1

1 + θ
(
r1
r2

)α − 1

1 + θ
(
r2
r1

)α)LIinter|r1,r2

(
θ

1− θ
rα1 +

θ

1− θ
rα2

))
fr(1),r(2)

(r1, r2)dr1dr2,

(B.7)

where P ISP
cov,(1)|r1,r2 and P ISP

cov,(2)|r1,r2 denote the conditional coverage probabilities of near and far users given

their distances from their serving BS. fr(1),r(2)
(r1, r2) denotes the joint PDF of r(1) and r(2) and is given
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in Definition 4.2. LIInter|r1,r2(s) = E
[
e−sIinter | r(1) = r1, r(2) = r2

]
also denotes the Laplace transform of

the inter-cell interference given distances of the typical near and far users from their serving BS1 From the

PGFL of PPP, we have

LIInter|r1,r2(s) = exp

−2πλ

∞∫
0

(
1−

(
1 + sx−α

)−2
)(

1− e−(12/5)λπx2
)
xdx

 .

Proof. We only provide the proof for P ISP
cov,(1); P

ISP
cov,(2) can be proven following the same steps.

The first term in (B.2) can be obtained by

P

{
h1r
−α
(1)

h2r
−α
(2) + Iinter

> θ, h1r
−α
(1) > h2r

−α
(2)

}
= P

{
h1 > max

{
θrα(1)

(
h2r
−α
(2) + Iinter

)
, h2

(
r(1)

r(2)

)α}}
= E

[
1
(
h1 > θrα(1)

(
h2r
−α
(2) + Iinter

))]
− 1 (θ < 1)E

[
1

(
h2r
−α
(2)

Iinter
>

θ

1− θ

)
1
(
h1 > θrα(1)

(
h2r
−α
(2) + Iinter

))]

+ 1 (θ < 1)E

[
1

(
h2r
−α
(2)

Iinter
>

θ

1− θ

)
1

(
h1 > h2

(
r(1)

r(2)

)α)]
. (B.8)

For the second term in (B.2), we also have

P

{
h2r
−α
(2)

h1r
−α
(1) + Iinter

> θ,
h1r
−α
(1)

Iinter
> θ, h1r

−α
(1) < h2r

−α
(2)

}

= P

{
h2 > max

{
θrα(2)

(
h1r
−α
(1) + Iinter

)
, h1

(
r(2)

r(1)

)α}
,
h1r
−α
(1)

Iinter
> θ

}

= E

[
1
(
h2 > θrα(2)

(
h1r
−α
(1) + Iinter

))
1

(
h1r
−α
(1)

Iinter
> θ

)]

− 1 (θ < 1)E

[
1

(
h1r
−α
(1)

Iinter
>

θ

1− θ

)
1
(
h2 > θrα(2)

(
h1r
−α
(1) + Iinter

))]

+ 1 (θ < 1)E

[
1

(
h1r
−α
(1)

Iinter
>

θ

1− θ

)
1

(
h2 > h1

(
r(2)

r(1)

)α)]
. (B.9)

Finally, P ISP
cov,(1) can be obtained by taking the expectation in (B.8) and (B.9) with respect to h1 and h2.

Following the same steps as in proof of Theorem B.1, for PMSP
cov,(1) and PMSP

cov,(2), we obtain

rClPMSP
cov,(1) =

∫ ∞
0

∫ ∞
0

1

1 + θ
(
r1
r2

)αLIinter|r1,r2(θrα1 )fr(1),r(2)
(r1, r2)dr1dr2, (B.10)

1Note that in our proposed models, Iinter is independent of r(1) and r(2).
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PMSP
cov,(2) =

∫ ∞
0

∫ ∞
0

1

1 + θ
(
r1
r2

)αLIinter|r1,r2(θrα1 + θrα2 + θ2rα1 )fr(1),r(2)
(r1, r2)dr1dr2. (B.11)

By comparing (B.6) with (B.10) and (B.7) with (B.11), we see that, the derived results in the existing

literature, which are obtained using MSP-based user ranking underestimate the coverage probability. This

is proved in the following corollary.

Corollary B.1. For Rayleigh fading, the MSP-based user ranking provides a lower bound for the coverage

probability, i.e. PMSP
cov,(i) ≤ P

ISP
cov,(i), i ∈ {1, 2}.

Proof. We only consider θ < 1, since for θ ≥ 1, the proof is straightforward.

Since LIInter|r1,r2(s) is a decreasing function of s, we have

LIinter|r1,r2

(
θ

1− θ
rα1 +

θ

1− θ
rα2

)
= LIinter|r1,r2

(
θrα2 +

θ

1− θ
rα1 +

θ2

1− θ
rα2

)
≤ LIinter|r1,r2

(
θrα2 + θrα1 + θ2rα2

)
.

Using the above inequality besides 1
1+θrα1 r

−α
2

≤ 1, we get PMSP
cov,(1) ≤ P

ISP
cov,(1). A similar approach can be used

for the far user.

B.3 Proof of Theorem 4.1

For Rayleigh fading and N -UE NOMA, the inner expectation over {hi}Ni=1 can be derived as:

E{hi}
[
1
(
h1r
−α
(1) > h2r

−α
(2) > · · · > hNr

−α
(N)

)]
= E

[
1
(
h2r
−α
(2) > · · · > hNr

−α
(N)

)
Eh1

[
1
(
h1r
−α
(1) > h2r

−α
(2)

)]]
(a)
= E

1
(
h2r
−α
(2) > · · · > hNr

−α
(N)

)
exp

−h2

(
r(1)

r(2)

)α
Ω




= E

1
(
h3r
−α
(3) > · · · > hNr

−α
(N)

)
Eh2

1
(
h2r
−α
(2) > h3r

−α
(3)

)
exp

−h2

(
r(1)

r(2)

)α
Ω




(b)
= E

1
(
h3r
−α
(3) > · · · > hNr

−α
(N)

) 1

1 +
(
r(1)

r(2)

)α exp

−h3

[(
r(1)

r(3)

)α
+
(
r(2)

r(3)

)α]
Ω




(c)
=

1

1 +
(
r(1)

r(2)

)α · 1

1 +
(
r(1)

r(3)

)α
+
(
r(2)

r(3)

)α · · · · · 1

1 +
(
r(1)

r(N)

)α
+
(
r(2)

r(N)

)α
· · ·
(
r(N−1)

r(N)

)α
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=

N∏
i=2

1∑i
j=1

(
r(j)
r(i)

)α ,
where (a), (b), and (c) follow since {hi} are i.i.d. exponential random variables with mean Ω.

B.4 Proof of Theorem 4.2

Using PDF of the link distance (4.1) in (4.13) yields

E

[(
r(1)

r(2)

)αk]
= 2

∫ ∞
0

∫ ∞
r1

(
r1

r2

)αk
fr(r1)fr(r2)dr2dr1

= 2(2cλπ)2

∫ ∞
0

∫ ∞
r1

(
r1

r2

)αk
r1r2e

−cλπ(r2
1+r2

2)dr2dr1.

Applying changes of variables r1
r2

= u and r1 = v, we have

E

[(
r(1)

r(2)

)αk]
= 2(2cλπ)2

∫ ∞
0

∫ 1

0

uαk−3v3e−cλπ(1+ 1
u2 )v2

dudv

= 2(2cλπ)2

∫ 1

0

uαk−3

∫ ∞
0

v3e−cλπ(1+ 1
u2 )v2

dvdu.

Applying cλπ(1 + 1
u2 )v2 = t in the inner integral yields

E

[(
r(1)

r(2)

)αk]
= 2(2cλπ)2

∫ 1

0

uαk−3

∫ ∞
0

te−tdt

2(cλπ)2(1 + 1
u2 )2

du = 4

∫ 1

0

uαk+1du

(1 + u2)2
= 2

∫ 1

0

xαk/2dx

(1 + x)2

=
2

αk
2 + 1

2F1

(
2,
αk

2
+ 1;

αk

2
+ 2;−1

)
.

Finally, Theorem 4.2 is obtained by 2F1(a, b; c; z) = (1− z)−a 2F1(a, c− b; c; z
z−1 ).

B.5 Proof of Corollary 4.3

From substituting (4.1) in (4.11), we get

A = N !(2cλπ)N
∫ ∞

0

∫ ∞
r1

· · ·
∫ ∞
rN−1

r1e
−cλπr2

1

N∏
i=2

rie
−cλπr2

i∑i
j=1

(
rj
ri

)α drN · · · dr2dr1. (B.12)

Next, we simplify (B.12) by applying changes of variables r1 = u1, ri−1

ri
= ui for i = 2, ..., N . Since we have

ri = u1

u2u3···ui , i = 2, ..., N , the Jacobian matrix J = ∂(r1,··· ,rN )
∂(u1,··· ,uN ) is a triangular matrix and its determinant is
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equal to the product of the main diagonal entries, i.e., det(J) =
∏N
i=1

∂ri
∂ui

=
∏N
i=2

−u1

u2u3···ui−1u2
i
. Moreover,

after changes of variables the region of integration is as 0 < u1 and 0 < ui < 1 for i = 2, ..., N . Therefore,

(B.12) can be written as follows:

A = N !(2cλπ)N
∫ ∞

0

∫ 1

0

· · ·
∫ 1

0

u1e
−cλπu2

1

N∏
i=2

(
u2

1u
−1
i

∏i
k=2 u

−2
k

1 +
∑i−1
j=1

∏i
n=j+1 u

α
n

e
−cλπ u2

1∏i
m=2 u

2
m

)
duN · · · du2du1

= N !(2cλπ)N
∫ 1

0

· · ·
∫ 1
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∫ ∞
0
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Finally, rewriting
∏N
i=2 u

−1
i

∏i
k=2 u

−2
k as

∏N
i=2 u

−3−2(N−i)
i and applying cλπ

(
1 +
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i=2

∏i
m=2 u

−2
m

)
u2

1 = t

yields

A = N !(2cλπ)N
∫ 1

0

· · ·
∫ 1

0

N∏
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u
−3−2(N−i)
i
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α
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α
n

duN · · · du2, (B.13)

where the final equation is obtained by using the definition of the gamma function. According to (B.13), A

depends on α and N ; it does not depend on the BS intensity λ.

B.6 Proof of Theorem 4.3

For Nakagami-m fading and N -UE NOMA, the inner expectation over {h}Ni=1 can be derived as:

E{hi}
[
1
(
h1r
−α
(1) > h2r

−α
(2) > · · · > hNr

−α
(N)

)]
= E

1
(
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)α mmhm−1
1
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e−
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Ω h1dh1
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= E

[
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)αm ∫ ∞
1

tm−1
1 e
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)α
dt1
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= E
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1
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h3r
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)( mm
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)αm
·
∫ ∞

1
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∫ ∞
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(
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)α h2m−1
2 exp
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Ω
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[
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(
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]

(b)
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3
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1
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(
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tk

]}
dhNdtN−1 · · · dt2dt1.

where (a), (b) are obtained by changes of variables h1 = h2

(
r(1)

r(2)

)α
t1, and h2 = h3

(
r(2)

r(3)

)α
t2. (c) follows by

averaging over h3, ..., hN . Finally, Theorem 4.3 can be obtained by applying tN = m
Ω hN

[
1 +

∑N−1
i=1

(
r(i)
r(N)

)α∏N−1
k=i tk

]
.

B.7 Proof of Corollary 4.4

From (4.4) and Theorem 4.3, we can derive A as follows:

A =
Γ(Nm)

Γ(m)N

∫ ∞
1

∫ ∞
1

· · ·
∫ ∞

1

E


∏N−1
j=1

(
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r(i)
r(N)

)α∏N−1
k=i tk

]Nm
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tjm−1
j dtN−1 · · · dt2dt1, (B.14)

where expectation is over {r(i)}. Following the same steps as Corollary 4.3, we have

E


∏N−1
j=1

(
r(j)
r(N)

)αm
[
1 +

∑N−1
i=1

(
r(i)
r(N)

)α∏N−1
k=i tk

]Nm
 =

N !(N − 1)! 2N−1

∫ 1

0

· · ·
∫ 1

0

∏N
j=2 u

−3−2(N−j)+(j−1)αm
j(

1 +
∑N−1
i=1

∏N−1
k=i u

α
k+1tk

)Nm (
1 +

∑N
i=2

∏i
k=2 u

−2
k

)N duN · · · du2,

which is independent of λ.

B.8 Proof of Corollary 4.5

Assume that M users are associated to the typical BS. Here we have used [M ] to denote the set {1, 2, · · · ,M},

and we have used the notation P
(
hUmin

r−α(Umin) > hUmax
r−α(Umax) | U = [M ]

)
to emphasize that the NOMA

cluster is formed by selecting the nearest and the farthest users from the set U , where U includes ranks of

users that we are allowed to select, Umin = minU is the rank of the nearest user, and Umax = maxU is the

rank of the farthest user. Note that removing one user from the set [M ] corresponds to the case that M − 1

users are associated to the typical BS. Let assume that user i is removed from the set [M ], and the NOMA

cluster is formed by selecting the nearest and the farthest user from the set [M ] \ {i}. Based on value of i,
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two different scenarios can occur:

1) When i ∈ {2, · · · ,M − 1}, the nearest and the farthest users in the set [M ] \ {i} are users at rank 1 and

M , respectively; therefore,

P
(
hUmin

r−α(Umin) > hUmax
r−α(Umax) | U = [M ] \ {i}

)
= P

(
hUmin

r−α(Umin) > hUmax
r−α(Umax) | U = [M ]

)
.

2) When i ∈ {1,M}, we can show

P
(
hUminr

−α
(Umin) > hUmaxr

−α
(Umax) | U = [M ] \ {i}

)
≤ P

(
hUminr

−α
(Umin) > hUmaxr

−α
(Umax) | U = [M ]

)
.

Therefore, when we select the nearest and the farthest user for the NOMA cluster, the accuracy probability

increases as the size of set of users that we are selecting from increases.

To complete the proof we need to show P
(
hir
−α
(i) > hjr

−α
(j) | [M ]

)
≤ P

(
h1r
−α
(1) > hMr

−α
(M) | [M ]

)
, where

i, j ∈ [M ]. From (4.4), we have

P
(
hir
−α
(i) > hjr

−α
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)
= Ehi,hj

[
Er(i),r(j)

[
1
(
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)]]
(a)

≤ Ehi,hj
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[
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(b)
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h1r
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(1) > hMr

−α
(M)

)]]
= P

(
h1r
−α
(1) > hMr

−α
(M) | [M ]

)
,

where (a) is obtained since for any realization of user point process that hir
−α
(i) > hjr

−α
(j) is satisfied, hir

−α
(1) >

hjr
−α
(M) is also true, i.e., hir

−α
(i) > hjr

−α
(j) is a sufficient condition for hir

−α
(1) > hjr

−α
(M). (b) follows since all the

channel power gains are i.i.d.
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Appendix C

Appendix to Chapter 5

C.1 Proof of Proposition 5.1

From (5.8), we have B
(

x(0), r0βkj

)
∪ B

(
x(T ), r0(T )

βkj

)
⊂ Akj(r0, θ, v, T, βkj). To complete the proof we need

to show that Akj(r0, θ, v, T, βkj) ⊂ B
(

x(0), r0βkj

)
∪ B

(
x(T ), r0(T )

βkj

)
.

Consider a point y ∈ B
(

x(t), r0(t)
βkj

)
, 0 ≤ t ≤ T . Let us represent y in polar coordinates as (ζ, ϕ),

where ζ is the distance between y and the origin (x(0)) and ϕ is the angle made between the line segment

from the origin to y and the positive x-axis (user’s trajectory) (Fig. C.1). Using triangle equations, we have

‖y− x(t)‖ =
√
ζ2 + v2t2 − 2ζvt cosϕ. Since y ∈ B

(
x(t), r0(t)

βkj

)
, 0 ≤ t ≤ T ,

ζ2 + v2t2 − 2ζvt cosϕ ≤ r0(t)2

β2
kj

=
r2
0 + v2t2 − 2r0vt cos θ

β2
kj

.

Rewriting the above inequality gives

ζ2 − r2
0

β2
kj

≤

(
1

β2
kj

− 1

)
v2t2 + 2vt

(
ζ cosϕ− r0 cos θ

β2
kj

)
, 0 ≤ t ≤ T.

For βkj < 1 (0 < 1
β2
kj
− 1), the right hand side of the above inequality is a convex function with respect to

t. When x ∈ [a, b], for a convex function f , we have f(x) ≤ max{f(a), f(b)}. Using this property of convex

functions yields,

ζ2 − r2
0

β2
kj

≤ max

{
0,

(
1

β2
kj

− 1

)
v2T 2 + 2vT

(
ζ cosϕ− r0 cos θ

β2
kj

)}
.
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Figure C.1: A geometric illustration for proof of Proposition 1.

Therefore, depending on the parameters, we have

ζ2 − r2
0

β2
kj

≤ 0, or ζ2 − r2
0

β2
kj

≤

(
1

β2
kj

− 1

)
v2T 2 + 2vT

(
ζ cosϕ− r0 cos θ

β2
kj

)
. (C.1)

We can rewrite the inequalities in (C.1) as

ζ2 ≤ r2
0

β2
kj

, or ζ2 + v2T 2 − 2ζvT cosϕ ≤ r2
0 + v2T 2 − 2r0vT cos θ

β2
kj

. (C.2)

ζ2 ≤ r2
0

β2
kj

is equivalent to ‖y− x(0)‖ ≤ r0
βkj

, and ζ2 + v2T 2 − 2ζvT cosϕ ≤ r2
0+v2T 2−2r0vT cos θ

β2
kj

is equivalent to

‖y− x(T )‖ ≤ r0(T )
βkj

. Thus, y ∈ B
(

x(0), r0βkj

)
∪ B

(
x(T ), r0(T )

βkj

)
.

C.2 Proof of (5.19)

Before proving (5.19), we provide the Taylor series expansion of arccos and arcsin. They help us to derive

the final result in (5.19).

The arcsin function has a Taylor expansion:

arcsin(x) =

∞∑
n=0

(2n)!

22n(n!)2

x2n+1

2n+ 1
, (C.3)

By taking derivative with respect to x from both sides of (C.3), we get

1√
1− x2

=

∞∑
n=0

(2n)!

22n(n!)2
x2n. (C.4)
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Using arccos(x) = π
2 − arcsin(x), we can write

arccos(x) =
π

2
−
∞∑
n=0

(2n)!

22n(n!)2

x2n+1

2n+ 1
. (C.5)

When dx→ 0,

arccos(x+ dx) =
π

2
−
∞∑
n=0

(2n)!

22n(n!)2

(x+ dx)2n+1

2n+ 1

=
π

2
−
∞∑
n=0

(2n)!

22n(n!)2

x2n+1 + (2n+ 1)x2ndx+O(dx2)

2n+ 1

=
π

2
−
∞∑
n=0

(2n)!

22n(n!)2

x2n+1

2n+ 1
−
∞∑
n=0

(2n)!

22n(n!)2
x2ndx+O(dx2)

(a)
= arccos(x)− dx√

1− x2
+O(dx2), (C.6)

where (a) is obtained using (C.4) and (C.5).

From (C.6), we obtain

arccos

(
r0 cos θ − vt
βkjr0(t)

+
β2
kj − 1

2βkj

vdt

r0(t)

)
=
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(
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βkjr0(t)

)
−
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β2
kj − 1

)
vdt

2
√
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kjr0(t)2 − (vt− r0 cos θ)

2
+O(dt2)

(a)
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π − arccos
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)
−

(
β2
kj − 1

)
vdt

2
√
β2
kjr0(t)2 − (vt− r0 cos θ)

2
+O(dt2), (C.7)

where (a) follows from arccos(−x) = π − arccos(x).

Using r0(t + dt) = r0(t)
(

1 + vdt
r0(t)2 (vt− r0 cos θ) +O(dt2)

)
, when dt → 0, (C.6), and Taylor expansion

of (1 + x)−1 also yields
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)
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arccos

(
vt− r0 cos θ

βkjr0(t)

)
− vdt√

β2
kjr0(t)2 − (vt− r0 cos θ)

2

(
β2
kj − 1

2
+ 1− (vt− r0 cos θ)2

r0(t)2

)
+O(dt2).

(C.8)

132



From binomial series expansion, we also get

√√√√2vdt

βkj

(
r0(t)− vt− r0 cos θ

βkj

)
+ v2dt2

(
1− 1

β2
kj

)
×

√√√√2vdt

βkj
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r0(t) +

vt− r0 cos θ

βkj

)
− v2dt2

(
1− 1

β2
kj

)
=

2vdt

β2
kj

√
β2
kjr0(t)2 − (vt− r0 cos θ)2 +O(dt2)

(C.9)

Therefore, when dt→ 0,

∣∣∣∣B(x(t),
r0(t)

βkj

)
\ B
(

x(t+ dt),
r0(t+ dt)

βkj

)∣∣∣∣ = π
r0(t)2

β2
kj

−

π − arccos

(
vt− r0 cos θ

βkjr0(t)
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−

(
β2
kj − 1

)
vdt

2
√
β2
kjr0(t)2 − (vt− r0 cos θ)

2

 r0(t)2

β2
kj

−

arccos

(
vt− r0 cos θ

βkjr0(t)

)
− vdt√

β2
kjr0(t)2 − (vt− r0 cos θ)

2

(
β2
kj − 1

2
+ 1− (vt− r0 cos θ)2
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× r0(t)2 + 2vdt(vt− r0 cos θ)

β2
kj

+
vdt

β2
kj

√
β2
kjr0(t)2 − (vt− r0 cos θ)2 +O(dt2), (C.10)

where we have also used (5.17) for dt→ 0. Finally, (5.19) can be obtained by simplifying (C.10).

C.3 Proof of Theorem 5.2

We can derive E[L | tier = k] using (5.12), i.e,

E[L | tier = k] = lim
z→0

z

H`(z | tier = k)

(a)
= lim

z→0

1
d
dzH`(z | tier = k)

, (C.11)

where (a) follows from L’Hospital’s rule.

Since |Akj(r0, θ, 0, 1, βkj)| = π
r2
0

β2
kj

, we have

d

dz
H`(z | tier = k)

∣∣∣
z=0

=
1

P(tier = k)

∫ ∞
0

∫ π
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2λkr0
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λj
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∣∣∣
z=0

 exp
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2
0

dθdr0

=
1
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dθ

 exp
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λjπβ
2
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2
0

dr0.
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(C.12)

(Note that in the above equations we have used βjk = 1
βkj

.)

By setting z = 0 in (5.28), we get

d

dz
|Akj(r0, θ, z, 1, βkj)|

∣∣∣
z=0

=

2r0
β2
kj

[√
β2
kj − cos2 θ − cos θ arccos

(
cos θ
βkj

)]
,

if (βkj ≥ 1) or (βkj < 1 and arccos(βkj) < θ < π − arccos(βkj))

0, if (βkj < 1 and 0 ≤ θ ≤ arccos(βkj))

− 2πr0 cos θ
β2
kj

if (βkj < 1 and π − arccos(βkj) ≤ θ ≤ π)

.

Therefore, ∫ π

0

d

dz
|Akj(r0, θ, z, 1, βkj)|

∣∣∣
z=0

dθ = 2r0I (βkj) . (C.13)

Substituting (C.13) in (C.12), we obtain

d

dz
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∣∣∣
z=0

=

∑
j∈K λjI (βkj)

P(tier = k)
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2
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2
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(a)
=

∑
j∈K λjI (βkj)

π
(∑

j∈K λjβ
2
jk

)1/2
, (C.14)

where (a) follows from change of variable
∑
j∈K λjπβ

2
jkr

2
0 = t. Finally, Theorem 5.2 is derived by substi-

tuting (C.14) in (C.11).
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Appendix D

Appendix to Chapter 6

D.1 Proof of Lemma 6.1

For device k at distance rk from its associated BS, success probability is derived as follows

Uk = 1− E [1 (max {SINRk(1),SINRk(2), ...,SINRk(`)} < θ) | k ∈ St]

= 1− EΦI

[∏̀
i=1

E [1 (SINRk(i) < θ)] | k ∈ St

]

= 1− EΦI

[∏̀
i=1

E
[
1

(
hk(i)r−αk
I(i) + σ2

< θ

)]]

(a)
= 1− EΦI

(1− e−θσ
2rαk

∏
x∈ΦI

1

1 + θrαk ‖x‖−α

)` (D.1)

(b)
=
∑̀
i=1

(
`

i

)
(−1)i+1e−iθσ

2rαk EΦI

[ ∏
x∈ΦI

1

(1 + θrαk ‖x‖−α)
i

]
(c)
≈
∑̀
i=1

(
`

i

)
(−1)i+1 exp

{
−iθσ2rαk −

∫
R2

(
1− 1

(1 + θrαk ‖x‖−α)
i

)
λ(1− e−12/5λπ‖x‖2)dx

}
(d)
=
∑̀
i=1

(
`

i

)
(−1)i+1 exp

{
−iθσ2rαk − 2πλ

∫ ∞
0

(
1− 1

(1 + θrαk x
−α)

i

)
(1− e−12/5λπx2

)xdx

}
,

where (a) is obtained by averaging with respect to the fading. (b) follows from using the binomial expansion.

In reality, ΦI is a subset of the set of the participating devices in the federated learning. However, since

N is large in real world applications, selecting a device in each cell out of a massive number of devices for

assigning a resource block at the beginning of each FL round is almost identical to uniformly selecting a

point inside the cell. This model is referred to as model of type I in [22]. By studying the pair correlation
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function (pcf) between a typical BS and interfering devices in this model, [22, 20] approximated ΦI by a non-

homogeneous PPP with intensity function λ(x) = λ
(

1− e−12/5λπ‖x‖2
)

. In (c), we have used the probability

generating functional (PGFL) for the point process ΦI. Finally, (d) is obtained by using the polar domain

representation.

Finally, note that averaging the success probability over rk blurs the distinction between devices and

removes the communication heterogeneity. In designing FL algorithms, however, we must incorporate the

systems heterogeneity. Specifically, in FL algorithms, we must allocate higher weights to devices with lower

success probabilities at the aggregation step which would not be possible if we averaged out rk.

D.2 Proof of Theorem 6.1

We follow the same procedure as in [37]. Therefore, we mainly focus on the parts that are different.

When we choose the learning rate as ηt = β
µ(γ+t) with β > 0 and γ = max

{
4β Lµ , E

}
, it fulfills the

following properties: i) ηt is decreasing with respect to t, ii) ηt ≤ 1
2L , ∀t, and iii) ηt ≤ 2ηt+E , ∀t. These

properties help us with the convergence analysis of the proposed federated learning algorithm.

In the following, we provide three lemmas which help us in proving the theorem.

Lemma D.1. Averaging step in the proposed algorithm is unbiased, i.e.

E [w̄t] = v̄t, t ∈ IE ,

where the expectation is over sampling and success event.

Proof. When t ∈ IE , w̄t = wt; hence, from (6.8), we have

E [w̄t] = E

[
wt−E +

N∑
k=1

M∑
m=1

pk
qkUk

1 (k ∈ St−E(m),SINRk,m > θ) (vkt − wt−E)

]
(a)
= wt−E +

N∑
k=1

pk
qkUk

E

[
M∑
m=1

1 (k ∈ St−E(m))E [1 (SINRk,m > θ) | k ∈ St−E(m)]

]
(vkt − wt−E)

= wt−E +

N∑
k=1

pk
qkUk

E

[
M∑
m=1

1 (k ∈ St−E(m))Uk

]
(vkt − wt−E)

= wt−E +

N∑
k=1

pk
qkUk

qkUk(vkt − wt−E)

=

N∑
k=1

pkv
k
t = v̄t,
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where, in (a), the inner expectation is over the success event, and the outer expectation is with respect to

the sampling.

Lemma D.2. When ηt satisfies the aforementioned properties,

E
[
‖w̄t+1 − v̄t+1‖2

]
≤ 4η2

tE
2G2B, t+ 1 ∈ IE ,

where B =
∑N
k=1 pk

(
1

qkUk
− 1
)

for sampling Scheme I, and B =
∑N
k=1 pk

(
1

qkUk
− 1

M

)
for sampling Scheme

II.

Proof. For brevity, in this proof, we denote the set of scheduled devices at time t+ 1− E by S rather than

St+1−E .

E
[
‖w̄t+1 − v̄t+1‖2

]
= E

∥∥∥∥∥wt+1−E +

N∑
k=1

M∑
m=1

pk
qkUk

1 (k ∈ S(m),SINRk,m > θ) (vkt+1 − wt+1−E)−
N∑
k=1

pkv
k
t+1

∥∥∥∥∥
2


= E

∥∥∥∥∥
N∑
k=1

M∑
m=1

pk
qkUk

1 (k ∈ S(m),SINRk,m > θ) (vkt+1 − wt+1−E)−
N∑
k=1

pk(vkt+1 − wt+1−E)

∥∥∥∥∥
2


= E

∥∥∥∥∥
N∑
k=1

pk

∑M
m=1 1 (k ∈ S(m),SINRk,m > θ)− qkUk

qkUk
(vkt+1 − wt+1−E)

∥∥∥∥∥
2


(a)

≤ E

 N∑
k=1

pk

∥∥∥∥∥
∑M
m=1 1 (k ∈ S(m),SINRk,m > θ)− qkUk

qkUk
(vkt+1 − wt+1−E)

∥∥∥∥∥
2


(b)
=

N∑
k=1

pk

E
[(∑M

m=1 1 (k ∈ S(m),SINRk,m > θ)
)2
]
− q2

kU
2
k

q2
kU

2
k

E
[∥∥vkt+1 − wt+1−E

∥∥2
]
, (D.2)

where (a) is obtained from convexity of ‖.‖2, and (b) follows from

E

[
M∑
m=1

1 (k ∈ S(m),SINRk,m > θ)

]
= qkUk,

where the expectation is with respect to the sampling and success event. In the following, we first calcu-

late E
[∥∥vkt+1 − wt+1−E

∥∥2
]
, and then calculate E

[(∑M
m=1 1 (k ∈ S(m),SINRk,m > θ)

)2
]

for each sampling

scheme separately.

E
[∥∥vkt+1 − wt+1−E

∥∥2
]

= E

∥∥∥∥∥
t∑

i=t+1−E
ηi∇Fk(wki ; ξki )

∥∥∥∥∥
2
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(a)

≤ E

[
E

t∑
i=t+1−E

∥∥ηi∇Fk(wki ; ξki )
∥∥2

]
(b)

≤ E

[
η2
t+1−EE

t∑
i=t+1−E

∥∥∇Fk(wki ; ξki )
∥∥2

]
(c)

≤ η2
t+1−EE

2G2
(d)

≤ 4η2
t+1E

2G2 ≤ 4η2
tE

2G2, (D.3)

where (a) is obtained by using Cauchy-Schwarz inequality. (b) follows from the property that ηt is decreasing

with respect to t. In (c), we have used Assumption 6.4. (d) follows from ηt ≤ 2ηt+E .

In Scheme I, at the aggregation step, each device can use at most one resource block. Thus,

E

( M∑
m=1

1 (k ∈ S(m),SINRk,m > θ)

)2
 = E

[
M∑
m=1

1 (k ∈ S(m),SINRk,m > θ)

]
= qkUk. (D.4)

However, in the second scheme, the BS may allocate more than one resource block to a device at a sam-

pling time. 1 (k ∈ S(m),SINRk,m > θ) is a Bernoulli random variable which takes value one with prob-

ability q̂kUk. For Scheme II, sampling and success event over each resource block are i.i.d.; therefore,∑M
m=1 1 (k ∈ S(m),SINRk,m > θ) is distributed according to a binomial distribution with parameters M

and q̂kUk, and we have

E

( M∑
m=1

1 (k ∈ S(m),SINRk,m > θ)

)2
 = qkUk

(
1− 1

M
qkUk

)
+ q2

kU
2
k

= qkUk +

(
1− 1

M

)
q2
kU

2
k . (D.5)

Lemma D.3. When ηt satisfies the aforementioned properties, for any t, we have

E
[
‖v̄t+1 − w∗‖2

]
≤ (1− µηt)E

[
‖w̄t − w∗‖2

]
+ η2

t

(
N∑
k=1

p2
kσ

2
k + 6LΓ + 8(E − 1)2G2

)
.

Proof. See Appendix A in [37].

Note that Lemma D.1 and Lemma D.2 only study the averaging steps (t ∈ IE), while Lemma D.3

is a result of one step of SGD (for any t). Lemma D.1 shows that each averaging step is unbiased, and

Lemma D.2 shows that variance of each averaging step is bounded. When, t 6∈ IE , w̄t = v̄t according to

(6.8).
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Based on the above discussion, at any t, we have

E
[
‖w̄t+1 − w∗‖2

]
= E

[
‖w̄t+1 − v̄t+1 + v̄t+1 − w∗‖2

]
(a)
= E

[
‖w̄t+1 − v̄t+1‖2

]
+ E

[
‖v̄t+1 − w∗‖2

]
+ 2E

[
(w̄t+1 − v̄t+1)

T
(v̄t+1 − w∗)

]
(b)

≤ (1− µηt)E
[
‖w̄t − w∗‖2

]
+ η2

t

(
N∑
k=1

p2
kσ

2
k + 6LΓ + 8(E − 1)2G2 + 4E2G2B

)
, (D.6)

where the last term in (a) is zero based on Lemma D.1 and the fact that w̄t = v̄t when t 6∈ IE . In (b), we

have used Lemma D.2 and Lemma D.3.

For brevity, we define C =
∑N
k=1 p

2
kσ

2
k + 6LΓ + 8(E − 1)2G2 + 4E2G2B and ∆t = ‖w̄t − w∗‖2. In the

following, we find v such that E [∆t] ≤ v
γ+t at any t after initializing with ∆0. This is satisfied at time t = 0

when v ≥ γ∆0. Moreover, when β > 1 and v ≥ β2C
µ2(β−1) , E [∆t+1] ≤ v

γ+t+1 given E [∆t] ≤ v
γ+t . The proof is

as follows:

E [∆t+1] ≤ (1− µηt)E [∆t] + η2
tC

≤
(

1− β

γ + t

)
v

γ + t
+

β2C

µ2(γ + t)2

=
γ + t− 1

(γ + t)2
v +

[
β2C

µ2(γ + t)2
− β − 1

(γ + t)2
v

]
(a)

≤ γ + t− 1

(γ + t)2
v ≤ v

γ + t+ 1
,

where (a) is obtained from v ≥ β2C
µ2(β−1) . Thus, by induction E [∆t] ≤ v

γ+t at any t when v = max
{

β2C
µ2(β−1) , γ∆0

}
.

Therefore, when ηt = 2
µ(γ+t)

1 with γ = max{8Lµ , E}, we have

E
[
‖w̄t − w∗‖2

]
≤

max
{

4
µ2

(∑N
k=1 p

2
kσ

2
k + 6LΓ + 8(E − 1)2G2 + 4E2G2B

)
, γ ‖w0 − w∗‖2

}
γ + t

,

(D.7)

where B =
∑N
k=1 pk

(
1

qkUk
− 1
)

for sampling Scheme I, and B =
∑N
k=1 pk

(
1

qkUk
− 1

M

)
for sampling Scheme

II.

After the averaging step at time T (T ∈ IE), from L-smoothness of the global objective function F , we

have

E [F (wT )− F ∗] ≤ L

2
E
[
‖wT − w∗‖2

]
1We set β = 2.
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(a)

≤ L

2(γ + T )
max

{
4

µ2

(
N∑
k=1

p2
kσ

2
k + 6LΓ + 8(E − 1)2G2 + 4E2G2B

)
, γ ‖w0 − w∗‖2

}

≤ L/µ

γ + T

[
2

µ

(
N∑
k=1

p2
kσ

2
k + 6LΓ + 8(E − 1)2G2 + 4E2G2B

)
+
µγ

2
‖w0 − w∗‖2

]
,

where (a) is obtained from wT = w̄T and (D.7).

D.3 Proof of Section 6.4.3

With slight abuse of notation, we define F̂ (w) =
∑N
k=1

pkUk∑N
k′=1

pk′Uk′
Fk(w), and we prove that (6.18) solves

min
w

F̂ (w) =

N∑
k=1

pkUk∑N
k′=1 pk′Uk′

Fk(w), (D.8)

which has the same solution as (6.19). Let us denote the solution to (D.8) by ŵ∗, and define αk = pkUk, α =∑N
k=1 αk, and α′k = αk

α ; therefore,
∑N
k=1 α

′
k = 1. For brevity, we also defineHk,m = 1 (k ∈ S(m),SINRk,m > θ),

where we have ignored the time index of S since it is i.i.d. over different sampling steps.

Since we are using a different averaging approach, we must check Lemma D.1 and Lemma D.2.

However, Lemma D.3 is not affected by the averaging steps; thus, it still holds (after replacing pk with

α′k). We also need to change pk to α′k in definitions of v̄t, w̄t, gt, and ḡt. It is worth reminding that, for

sampling, we use Scheme II with q̂k = pk.

Moreover, according to (6.18), when there is no successful transmission, the global model parameters at

the BS do not change, which only affects the convergence rate (not the converging point). Therefore, to

prove the convergence of (6.18) to ŵ∗, we assume
∑N
k′=1

∑M
m′=1Hk′,m′ > 0, i.e., at least one local update is

available at the BS at each averaging step. Given
∑N
k′=1

∑M
m′=1Hk′,m′ > 0, we can write (6.18) as

wt =

N∑
k=1

M∑
m=1

Hk,m∑N
k′=1

∑M
m′=1Hk′,m′

vkt , t ∈ IE .

In the following, we provide a lemma that helps us derive Lemma D.1 and Lemma D.2 for the new

averaging approach.

Lemma D.4. For Scheme II sampling with {q̂k = pk}, we have

E

[
M∑
m=1

Hk,m∑N
k′=1

∑M
m′=1Hk′,m′

|
N∑
k′=1

M∑
m′=1

Hk′,m′ > 0

]
= α′k.
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Proof.

E

[
M∑
m=1

Hk,m∑N
k′=1

∑M
m′=1Hk′,m′

|
N∑
k′=1

M∑
m′=1

Hk′,m′ > 0

]

=

M∑
m=1

EHk,m

[
E

[
Hk,m∑N

k′=1

∑M
m′=1Hk′,m′

|
N∑
k′=1

M∑
m′=1

Hk′,m′ > 0, Hk,m

]]

=

M∑
m=1

P

(
Hk,m = 1 |

N∑
k′=1

M∑
m′=1

Hk′,m′ > 0

)

× E

 1

1 +
∑N
k′=1

∑M
m′=1,
m′ 6=m

Hk′,m′
|

N∑
k′=1

M∑
m′=1

Hk′,m′ > 0, Hk,m = 1



=

M∑
m=1

M−1∑
i=0

1

1 + i
P

 N∑
k′=1

M∑
m′=1,
m′ 6=m

Hk′,m′ = i,Hk,m = 1 |
N∑
k′=1

M∑
m′=1

Hk′,m′ > 0

 . (D.9)

When Hk,m = 1, we have
∑N
k′=1

∑M
m′=1Hk′,m′ > 0. Moreover, resource allocation is i.i.d. over difference

resource blocks, i.e. random variable
∑N
k′=1

∑M
m′=1,
m′ 6=m

Hk′,m′ is independent of random variable Hk,m.

P

 N∑
k′=1

M∑
m′=1,
m′ 6=m

Hk′,m′ = i,Hk,m = 1 |
N∑
k′=1

M∑
m′=1

Hk′,m′ > 0



=
P (Hk,m = 1)

P
(∑N

k′=1

∑M
m′=1Hk′,m′ > 0

)P
 N∑
k′=1

M∑
m′=1,
m′ 6=m

Hk′,m′ = i


(a)
=

αk
1− (1− α)M

(
M − 1

i

)
αi(1− α)M−1−i, (D.10)

where (a) is obtained using P (Hk,m = 1) = αk and P
(∑N

k=1Hk,m = 1
)

= α. Finally, Lemma D.4 is

obtained by substituting (D.10) in (D.9).

When t ∈ IE , we have w̄t = wt; thus,

E

[
w̄t |

N∑
k′=1

M∑
m′=1

Hk′,m′ > 0

]
= E

[
N∑
k=1

M∑
m=1

Hk,m∑N
k′=1

∑M
m′=1Hk′,m′

vkt |
N∑
k′=1

M∑
m′=1

Hk′,m′ > 0

]

=

N∑
k=1

E

[
M∑
m=1

Hk,m∑N
k′=1

∑M
m′=1Hk′,m′

|
N∑
k′=1

M∑
m′=1

Hk′,m′ > 0

]
vkt

(a)
=

N∑
k=1

α′kv
k
t = v̄t, (D.11)

141



where the expectation is with respect to sampling and success event and (a) follows from Lemma D.4.

At t+ 1 ∈ IE , we also have

E

[
‖w̄t+1 − v̄t+1‖2 |

N∑
k′=1

M∑
m′=1

Hk′,m′ > 0

]

= E

∥∥∥∥∥
N∑
k=1

∑M
m=1Hk,m∑N

k′=1

∑M
m′=1Hk′,m′

(
vkt+1 − v̄t+1

)∥∥∥∥∥
2

|
N∑
k′=1

M∑
m′=1

Hk′,m′ > 0


≤ E

[
N∑
k=1

∑M
m=1Hk,m∑N

k′=1

∑M
m′=1Hk′,m′

∥∥vkt+1 − v̄t+1

∥∥2 |
N∑
k′=1

M∑
m′=1

Hk′,m′ > 0

]
(a)
= E

[
N∑
k=1

α′k
∥∥vkt+1 − v̄t+1

∥∥2

]
= E

[
N∑
k=1

α′k
∥∥(vkt+1 − wt+1−E

)
− (v̄t+1 − wt+1−E)

∥∥2

]

= E

[
N∑
k=1

α′k

(∥∥vkt+1 − wt+1−E
∥∥2

+ ‖v̄t+1 − wt+1−E‖2 − 2
(
vkt+1 − wt+1−E

)T
(v̄t+1 − wt+1−E)

)]

= E

[
N∑
k=1

α′k
∥∥vkt+1 − wt+1−E

∥∥2

]
− E

[
‖v̄t+1 − wt+1−E‖2

]

≤ E

[
N∑
k=1

α′k
∥∥vkt+1 − wt+1−E

∥∥2

]
= E

 N∑
k=1

α′k

∥∥∥∥∥
t∑

i=t+1−E
ηi∇Fk(wki , ξ

k
i )

∥∥∥∥∥
2


≤ E

[
N∑
k=1

α′kE

t∑
i=t+1−E

∥∥ηi∇Fk(wki , ξ
k
i )
∥∥2

]
≤

N∑
k=1

α′kE
2η2
t+1−EG

2 ≤ 4η2
tE

2G2, (D.12)

where, to drive (a), we use Lemma D.4. The last line is also obtained similar to (D.3).

From (D.11), we understand that Lemma D.1 holds (for problem (D.8)). Also, from (D.12), we un-

derstand that Lemma D.2 holds with B = 1. As we discussed earlier, Lemma D.3 is also valid (after

replacing pk with α′k). Thus, following the same procedure as in Appendix D.2, we can prove that with

using (6.18) at averaging steps, at time T ∈ IE , we have

E
[
‖wT − ŵ∗‖2

]
≤

max
{

4
µ2

(∑N
k=1 α

′ 2
k σ

2
k + 6LΓ + 8(E − 1)2G2 + 4E2G2

)
, γ ‖w0 − ŵ∗‖2

}
γ + T

.

Hence, the algorithm converges to the solution to (D.8).
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