FUNCTIONAL HUMAN ARM MOTION STUDY WITH A NEW 3-D MEASUREMENT SYSTEM (VCR-PIPEZ-PC)

by

Reza Safaee-Rad

A Thesis

Submitted to the Faculty of Graduate Studies in Partial Fulfillment of the Requirements for the Degree of Master of Science

The University of Manitoba Department of Electrical Engineering

Winnipeg, Manitoba

August, 1987

The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

BY

REZA SAFAEE-RAD

A thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE
© 2987

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to lend or sell copies of this thesis. to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or sell copies of the film, and UNIVERSITY MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

ABSTRACT

The problem of the design of a prosthetic arm controller and one approach to this problem based on a fundamental study of functional human arm motion is discussed. To provide a proper basis and direction for this fundamental study, a classification of natural human arm movements is formulated. To study different aspects of the approach, a new 3-D measurement system was developed. The dynamic error of the system is between - .85\% to 2.65%. The arm motions of ten subjects performing three feeding tasks were videotaped and subsequently processed by a PC based image acquisition system. Euler angles are used to simultaneously determine the required range and arc of eight arm joint rotations at the shoulder, elbow, and wrist for three feeding tasks. The movement pattern is shown by three stick diagrams in three orthogonal planes. Also angle-time graphs of eight joint rotations are presented. It is concluded that elbow flexion and forearm supination-pronation are the most important elementary motions and versatile fixed positions of 15° of wrist extension and 10° of ulnar deviation are recommended.

ACKNOWLEDGEMENTS

With respect to the completion of my research and thesis, I wish to acknowledge my advisor, Dr. Edward Shwedyk, for his wise counsel, understanding and inspiration and the ten students of the Biomedical Engineering Laboratory for their participation in functional arm motion experiments.

With respect to financial assistance, I wish to acknowledge the Rehabilitation Centre for Children at Winnipeg for a Research Grant which provided much of the equipment and for a Postgraduate Scholarship.

TABLE OF CONTENTS

Abstract i
Acknowledgements ii
Table of Contents iii
List of Tables v
List of Figures vi

1. Introduction 1
1.1 Preface 1
1.2 Problem Statement 2
1.3 Literature Review 4
2. Classification of Arm Movements 10
2.1 Functional Anatomy of Human Arm 10
2.2 Classification of Arm Movements 15
2.2.1 Elementary Motions 16
2.2.2 Basic Motions 20
2.2.3 Purposive Motions 23
2.3 Priority and Importance of Motions 24
3. 3-D Measurement System 27
3.1 Hardware Components of the System 30
3.2 3-D Measurement Procedure 35
3.2.1 Calibration of the System 35
3.2.2 Movement Recording and 2-D Calculation 38
3.2.3 Identification of Markers in Each Frame 43
3.2.4 3-D Coordinate Calculation 43
3.2.5 Euler Angle Calculation for Each Joint 45
3.2.6 Stick Diagram Plotting 45
3.3 Software Components of the System 47
3.3.1 Camera Calibration 48
3.3.2 3-D Coordinates Calculation 53
3.3.3 Image Processing and 2-D Coordinates Calculation 55
3.3.4 Tracking Algorithm 59
3.3.5 Euler Angle Calculation 63
4. Functional Arm Motion Study 72
4.1 Materials and Methods 72
4.2 Analysis of Collected Data 75
4.3 Stick Diagrams and Angle-Time Graphs 89
4.4 Static and Dynamic Error Analysis 97
4.5 Conclusion 103
5. Conclusions and Recommendations 112
6. References 1167. Appendices
A. Complete List of Programs 125
B. Hardware Component Technical Specifications 173
C. Detailed Collected Data 176

LIST OF TABLES

2.1 Normal Range of Motion of Human Arm Joints 21
2.2 Relative Importance of Elementary Motions 26
3.1 List of 3-D Measurement System Computer Programs 47
4.1 Average Arm Joint Rotation Data for Three Feeding Tasks (With Initial Deviation)
4.2 Average Arm Joint Rotation Data for Three Feeding Tasks (Without Initial Deviation)
4.3 Performance Time 78
4.4 Summary of Available Data on Eating Activity 80
4.5 Static Error of the System-Calibration Markers 104
4.6 Static Error of the System-Body Markers 104
4.7 System Static Error Effect on Euler Angles 106
4.8 Dynamic Error of the System 108
4.9 The Required Range and Arc for Feeding 110
2.1 a) Anatomy of the Upper Extremity System 11
b) Right Shoulder From Above, and c) Anterior View
2.2 Anterior View of Right Arm Bones (Hand Pronated) 12
2.3 Dorsal Aspect of the Bones of Right Hand and Wrist 13
2.4 Motion of the Arm at the Shoulder (a) 17
2.5 Motion of the Arm at the Shoulder (b) 18
2.6 Motion of the Arm at the Elbow 18
2.7 Motion of the Arm at the Forearm 19
2.8 Motion of the Arm at the Wrist 19
3.1 Image Recording Components of the System 31
3.2 Image Processing System 32
3.3 Calibration Frame 33
3.4 Schematic Diagram of System Set-Up 34
3.5 Fixed Frame of Reference Position 37
3.6 Calibration Parameters Calculation Flow Chart 39
3.7 Reflective Marker Arrangement on Subjects Arm 41
3.8 Arrangement of Plate, Cup, etc., on the Table of Activity 42
3.9 Marker 2-D Coordinate Calculation Flow Chart 44
3.10 Marker Identification Flow Chart 44
3.11 Marker 3-D Coordinate Calculation Flow Chart 46
3.12 Euler Angle Calculation Flow Chart 46
3.13 Stick-Diagram Plotting Flow Chart 46
3.14 Schematic Diagrams for Image Processing 57
3.15 Stick Diagrams of Two Different Frames 60
3.16 The Eulerian Angles 64
3.17 Body Axes Unit Vector Directional Cosines 66
3.18 Kinematic Model for Shoulder, Elbow, and Wrist Joints 673.19 Markers Arrangement on the Human Arm and Fixed Frameof Reference
3.20 Four Orthogonal Body Axis and Fixed Frame of Reference 6969
4.1 The Standard Arm Position 74
4.2 Type of Grip 75
4.3 Forearm Neutral Position 84
4.4 Stick Diagram - Drinking (Cup) Without Body Movement 90
4.5 Stick Diagram - Eating (Fork) Without Body Movement 91
4.6 Stick Diagram - Eating (Spoon) Without Body Movement 92
4.7 Stick Diagram - Drinking (Cup) With Body Forward Movement 93
4.8 Stick Diagram - Eating (Fork) With Body Forward Movement 94
4.9 Stick Diagram - Eating (Spoon) With Body Forward Movement 95
4.10 Stick Diagram - Standard Position 96
4.11 Angle-Time Graph for Shoulder - Drinking (Cup) 98
4.12 Angle-Time Graph for Elbow - Drinking (Cup) 98
4.13 Angle-Time Graph for Wrist - Drinking (Cup) 99
4.14 Angle-Time Graph for Shoulder - Eating (Fork) 99
4.15 Angle-Time Graph for Elbow - Eating (Fork) 100
4.16 Angle-Time Graph for Wrist - Eating (Fork) 100
4.17 Angle-Time Graph for Shoulder - Eating (Spoon) 101
4.18 Angle-Time Graph for Elbow - Eating (Spoon) 101
4.19 Angle-Time Graph for Wrist - Eating (Spoon) 102

CHAPTER 1

INTRODUCTION

1.1 PREFACE

Four decades of research and development in the field of EMG-Controlled prosthetic arm has established that the problem of control is the most important, difficult, and challenging problem in this field. This was observed in 1967 by Mckenzie [Mckenzie, 1967, 1] and the last two decades have proven the validity of this observation.

The reason for this is readily understood when the number of degrees of freedom (DOF) of the natural arm is considered. The basic components of the natural arm are bone, muscle, and joint (number: 32, 60, and 28 respectively) and if these components are considered together, the number of DOF of the natural arm can be estimated. According to one estimate, each arm has approximately 87 gross external mechanical degrees of freedom [Jacobsen, et al. 1982, 2]. It is clear that developing a control system that simultaneously and sequentially controls this number of DOF by EMG signals is, if not impossible, at least extremely difficult. The difficulty and complexity of this problem can be clearly seen by considering the available commercial EMG-Controlled prosthetic arm: after fourty years the only functional, practical, and cosmetic prosthetic arm of this kind has just one DOF.

The first objective of this study is to formulate an approach to the design of a prosthetic arm controller. This has not been well defined or studied before. The second objective of this study is to
implement this approach to the extent of establishing the fundamental basis for future studies, i.e. the fundamental questions that should be studied and answered, the required instrumentation (hardware and software). The third objective is functional arm motion study of a few selected activities of daily life. Based on the results of a thorough and detailed study of this kind, a functional and practical control strategy can be formulated and developed.

The approach is based on functional human arm motion study. So the first phase of this study was to formulate a well-defined classification of human arm motion. The second phase was to develop a new three dimensional measurement system for studying functional arm motion patterns. The final phase was to use the classification of arm motion and the three dimensional measurement system for the analysis of feeding, an important daily life activity.

1.2 PROBLEM STATEMENT

There can be two approaches to the design of a prosthetic arm controller. One approach is to develop a functional and practical control system that is capable of simultaneous control of more degrees of freedom. There have been many studies in Europe, the U.S.A., and Canada for this approach in the last forty years. Many sophisticated control strategies have been developed but as Jacobsen wrote [Jacobsen, et al. 1982, 2]:

These methods [...] are not refined, and typically involve complex decision processes for their implementation. Furthermore, "simple" problems, such as convenience, reliability, number of recording channels required, time delays, and controller
dynamics minimize the chance of their early application.

The other approach to the same problem is to minimize the number of degrees of freedom that is necessary for a prosthetic arm. The philosophy of this approach is based on the fundamental point that it is more practical, effective, and fruitful to concentrate on providing a limited number of degrees of freedom and thus limited number of useful arm movements than to provide a prosthetic arm capable of all degrees of freedom encountered in the natural arm (if of course developing such a prosthetic arm is possible at all).

In order to minimize the number of degrees of freedom which are controlled naturally by the brain through EMG signals, the first step is to narrow the range of tasks which are performed by the prosthetic arm to the most vital, crucial and useful ones. Based on this, the following aspects can be studied:

- coupling of single joint rotations or different joint rotations,
- elimination of some arm joint rotations based on the priority and importance of various joint rotations,
- sequential joint rotations and joint locking,
- determination of a versatile axis of rotation for a joint,
- pre-position settings,
- pre-programming specific tasks.

A few studies have addressed some of the above aspects in the design of a prosthetic or orthotic arm [Carlson, et al. 1977, 3; Reswick, 1970, 4; Funakubo, et al. 1980, 5], but not all of these
aspects have been used in the design and further none of the arms are EMG-controlled.

In order to study the above-mentioned aspects, a fundamental study of the functional movement of a natural arm is required which is the research in this thesis. The short term R \& D, objective of this study is to narrow the functional capabilities of the prosthetic arm to the most vital ones. In terms of long term R \& D, the research objective is to minimize the number of degrees of freedom to be controlled by the brain through EMG signals for a universal prosthetic arm (i.e. capable of performing all tasks).

This kind of fundamental study, which provides the functional range of arm joint motion, also

- helps in the assessment of functional loss and the effectiveness of treatment of patients with different arm joint disease, and
- aids in the development of arm joint prosthesis, (i.e. elbow, and wrist joint prostheses).

1.3 LITERATURE REVIEW

There have been very few fundamental studies which considered the functional movements of the natural arm and most of these were concerned with only a few aspects of the overall problem. For example typical studies consider only just one joint. In this section, a brief review of the literature in the field is presented.

Keller, Taylor, and Zahm at UCLA [Keller, et al. 1947, 6; Taylor, 1951, 7; Taylor, 1954, 8; Taylor, 1955, 9] were the first group to study the functional requirements for an arm prosthesis. The aim of this
study was to determine the essential movements for 51 activities of daily living (ADL). They used a photographic method and a kinematic analyzer to determine joint rotations. They could only measure the extreme angular positions and not the pattern of joint rotation. Only one subject who had been trained prior to the study was used. The published data did not cover two of the three shoulder rotations. Further, the data for the functional range of rotations were combined and only one range that covered all 51 ADL was given. Based on the frequency distribution of the different rotations, they determined the priority and importance of the various joint rotations. Other important points that were studied were joint locking, coupled rotations, pre-position settings, and compensation for eliminated rotations or limited joint rotations by other joint rotations or by the head and trunk. The system of measurement that was used is time consuming, not very accurate, and difficult to use. However this study is still, because of its originality, breadth of problems covered, and lack of similar studies, a valuable reference.

A later study by Enger at the Prosthetic Research Laboratory of the Norrbacka Institute - Stockholm [Enger, 1967, 10] investigated the possibility of eliminating two of the three shoulder joint rotations, i.e., a shoulder joint with only one degree of freedom. He described this versatile single-axial exo-skeletal prosthetic shoulder joint and showed that it had ample mobility for feeding.

Engen and Spencer at the Texas Institute for Rehabilitation and Research [Engen et al. 1968, 11; Engen et al. 1969, 12] indicated "a need for detailed analysis of the complex, synchronized musculoskeletal
actions in normal upper extremity motions involved in daily activities". This study was begun in the early 1965 and ended in 1969. They used the photographic method and a manually operated $x-y$ recorder. As a part of this study, nine subjects were used for the kinematic study of a normal arm while performing five basic functions. Based on collected data, stick diagrams for the three orthogonal planes were plotted manually. Although they recognized the importance of the functional study of arm movement and briefly discussed important points such as joint fixation and pre-setting of elbow joint for specific tasks, they did not determine the functional range of motions for different joint rotations. Also there are not any graphs in the reports that show the angular rotations of each arm joint with respect to time.

Davis at the University of Surry, Guildford [Davis, 1977, 13] also studied by simple observation the frequency and functional range of arm joint motion. The number of subjects in this study was nine. The problem with a study of this kind is its inaccuracy. Further the published data were only for group of activities not for any specific task.

Chao, An, Askew, and Morrey at the Mayo Clinic/Mayo Foundation [Chao et al. 1980, 14; Morrey et al. 1981, 15] studied functional elbow joint rotations. They used a triaxial electrogoniometer. In this study, 15 male and 18 female subjects participated who performed fifteen ADL. Only elbow joint rotations were measured (Flexion-Extension: F-E, Pronation-Supination: P-S, Abduction-Adduction: A-A). A graphic display of the elbow joint angle measurements was given (angular rotation with respect to time). They also studied the variation in the
movement patterns among normal subjects and compensatory motion for patients with elbow functional limitation, as well as priority and importance of each of the three elbow rotations.

Langrana at Rutgers University [Langrana, 1981, 16; Langrana, 1978, 17] developed a biplanar videotaping 3-D measurement system for arm motion study. The $2-\mathrm{D}$ coordinates of different points were manually digitized. Only one basic activity, i.e. diagonal reaching activity, was studied and analyzed. Two subjects participated in this experiment. Also, only shoulder and elbow joint motions (each with three rotations) were measured. Motion patterns were shown by a stick-diagram, and the change of each joint rotation is shown by an angle-time graph.

Brumfield, and Champaux at Rancho Los Amigos Hospital [Brumfield et al. 1984, 18] studied normal functional wrist motion. They used a uniaxial electrogoniometer to determine the range of wrist joint flexion-extension for 15 ADL. Nineteen normal adult subjects participated in this experiments. They suggested a versatile position for wrist fusion.

Palmer, Werner, Murphy, and Glisson at Upstate Medical Center, Syracuse, N.Y. [Palmer et al. 1985, 19] also studied functional wrist motion. They used a triaxial electrogoniometer to study three functional wrist joint rotations for 52 standardized tasks (26 ADL) . Ten normal subjects participated in this study. A histogram was used to show the study's results for 26 ADL.

Compared to all of the above-mentioned studies, this study has the following features that distinguishes it from all others:
(1) The implication of functional arm motion study for developing a control strategy is formulated clearly.
(2) A clear base and direction for functional arm motion study is provided by the given arm motion classification.
(3) The 3-D measurement system that is developed for functional arm motion study is:

- a new system in that an image processing board (PIPEZ) is used instead of manual digitizer; thus by using computer programs the two dimensional coordinates can be calculated automatically,
- much easier to use in clinical environment,
- much faster compared to stereometric systems that were used in arm motion study,
- capable of providing the pattern of movement automatically (stick diagram).
(4) Simultaneously provides eight rotations for the three arm joints.
(5) Study had ten subjects. The only other comparable study [Keller et al. 1947, 2] was based on one subject.

As a result of these features, it will be much easier to study and answer all the problems that were formulated at the beginning of this chapter, and thus provide a better understanding of functional movement of the arm and its specific implications on developing new control strategies for a prosthetic arm.

Here, it should be noted that in this study only the positioning component of the arm is studied and thus the hand and specifically the
fingers are not considered. In fact in the last few decades more studies have been done on finger movement patterns and classification of hand movements than on the positioning component of arm [2, 20-37].

The next four chapters discuss and explain the following aspects of the research study. In Chapter 2 a general background on arm movement is presented which covers the functional anatomy of a human arm and the classification of arm movements. The new 3-D measurement system that has been developed for functional arm motion study is explained in Chapter 3. Chapter 4 presents data which have been collected for seven functional joint rotations and also analyze these data. Finally Chapter 5 contains discussion, conclusions and recommendations.

The Appendices give a complete list of all the computer programs developed for the $3-D$ measurement system, hardware component technical specifications, and detailed collected data.

CHAPTER 2

CLASSIFICATION OF ARM MOVEMENTS

In this chapter, two topics are discussed. The first is a brief presentation of the functional anatomy of the human arm. The second is a formulation of a general classification of human arm motion based on the available but scattered information about this topic (e.g. ergonomics, medicine, engineering).

2.1 FUNCTIONAL ANATOMY OF HUMAN ARM

The basic anatomical components of the arm are (as shown in Figures 2.1, 2.2, 2.3): bone, muscle, and joint. The number of skeletal bones in the different parts of an arm are [Schade, 1974, 1]:

- shoulder girdle

2

- upper arm 1
- forearm 2
- hand 27

Approximately 60 paired muscle groups are directly or indirectly involved in the arm movement and are distributed as follow [Schade, 1974, 1; Vokubratovic et al. 1972, 2]:

- upper extremities 26
- back 56
- chest 26

There are 28 joints in the human arm [Berme et al. 1985, 3]:

(1) Acromioclavicular joint
(2) Sternoclavicular joint
(3) Glenohumeral joint

Fig. 2.1 a) Aratomy of the upper extremity system, b) right shoulder girdle from above and c) right shoulder girdle from anterior view.

(1) Humeroulna joint
(2) Humeroradial joint
(3) Superior radioulna joint
(4) Inferior radioulna joint

Fig.2.2 Anterior view of right arm bones (hand pronated).


```
(1) Inferior radioulna joint
(2) Radiocarpal joint
    (formed by the scaphoid, lunate, and
    triquetrum distally and by the radius
    and radioulna disc proximally)
(3) Midcarpal joint
    (formed by the two rows of carpals)
(4) Carpometacarpal joints [ 5 ]
(5) Metacarpophelageal joints [ 5 ]
(6) Froximal interphalageal joints [ S ]
(7) Distal interphalageal joints [ 4 ]
```

Fig.2.3 Dossal aspect of the bones of right hand and wrist.

- shoulder 3
- elbow 3
- wrist
inferior radioulnar 1
radio carpal (compound joint) 1
mid carpal (compound joint) 1
- hand

19

Each major human joint has six degrees of freedom: three translations and three rotations [Kinzel, et al. 1972, 4; Kinzel et al. 1983, 5].

If a human arm with these three basic components (which are 32, 60 , and 28 respectively) is considered as a whole, one can estimate its total number of degrees of freedom. According to one estimate there are "approximately 87 gross external mechanical degrees of freedom and many, many more internal degrees of freedom" [Jacobsen et al., 1982, 6]. Another report estimates that "Altogether, the natural arm and hand account for something like 42 degrees of freedom" [Zimmerman, 1982, 7]. This high degree of freedom for a natural arm makes it a redundant system and thus an extremely flexible positioning and manipulating system.

The natural arm can be considered as having two functional components: a terminal device (TD) for grasping and manipulating objects (hand) and a means of positioning the $T D$ in space (upper arm and forearm). This study is concerned only with the positioning component of the arm. So in classification of arm movements, the hand (palm and fingers) is not considered.

2.2 CLASSIFICATION OF ARM MOVEMENTS

The main objectives in providing a general classification of the extensive and extremely varied arm movements are:

- to have a better understanding of this extremely flexible part of the human body in general,
- to provide a proper direction and base for a 3-D study of human arm motion patterns,
- to determine the most crucial and vital functions and motion patterns that should be provided by a prosthetic arm (both for developing control strategies and for the mechanical design of a functional and practical prosthetic arm).

Here, it is appropriate to say a few words about other human limbs, i.e., lower limbs, in this context. In general, there have been more studies on lower limb motion patterns, primarily because the human lower limbs, in their most important function, walking, follow a repetitive cycle. The human gait cycle can be divided into three phases of activity in which the first and third phases are divided into three periods of distinct activity [Thornton-Trump, 1979, 8]. Thus human locomotion consists of just a few repetitive activities, which make it very easy to study and analyze.

Compared to human locomotion, arm motion is much more complex, and thus it is much more difficult to classify these types of motions. What is presented here, is a summarization and formulation of all the available studies in various fields of science and engineering that address different motion classification for different parts of the human arm and present it as a general human arm motion classification.

At first sight it would seem that the human arm movements are so extensive and varied that its classification would not be feasible. But various studies in the last few decades have shown that it is possible to classify arm motions into three groups:

1 - elementary motions,

2 - basic motions, and

3 - purposive motions.

What follows is a brief discussion of these three groups of arm motions.

2.2.1 ELEMENTARY MOTIONS

Elementary motions are all those motions that any complex motion can be decomposed to. The best known source for defining these elementary motions is the handbook of the American Academy of Orthopaedic Surgeons [AAOS, 1965, 9]. Terminology and neutral position for each motion are as follow (see Figures 2.4 to.2.8).

Shoulder:

- Abduction - Adduction
- Flexion - Extension
- Forward - Backward
- Horizontal
- Inward Rotation - Outward Rotation
- With arm at side
- In abduction

Elbow:

- Flexion - Extension (Hyperextension)

Fig.2.4 Motion of the arm at the shoulder (a).

Fig.2.5 Motion of the arm at the shoulder (b).

Fig.2.6 Motion of the arm at the elbow.

Fig.2.7 Motion of the arm at the forearm.

FLEXION end EXTENSION

Fig.2.8 Motion of the arm at the wrist.

Forearm:

- Pronation - Supination

Wrist:

- Flexion - Extension
- Ulnar Deviation - Radial Deviation

It should be noted that in the above-mentioned figures the standard position and neutral position for each of the elementary motions are specified.

The range of these elementary motions as defined above are given in the AAOS handbook. But a more accurate study was done recently by Boone and Azen at the University of Southern California [Boone et al. 1979, 10]. In this study 109 normal male subjects, ranging in age from eighteen months to fifty-four years, participated. The results of this study for arm joints are shown in Table 2.1.

2.2.2 BASIC MOTIONS

Hancock [Hancock, 1977, 11] studied many manual industrial tasks and concluded that five basic motions comprise 97.5% of all motions used. These basic motions are [Karger et al. 1966, 12]:

1. Reach : "The basic hand and finger motion employed when the predominant purpose is to move the hand or fingers to a destination."
2. Grasp : "The basic finger or hand element employed to secure control of an object."
3. Move : "The basic hand or finger motion employed when the predominant purpose is to transport an object to a destination."

TABLE 2.1 Normal range of motion of human arm joints (Degrees)

Shoulder

Horizontal Flexion	140.7 ± 5.9
Horizontal Extension	45.4 ± 6.2
Neutral Abduction	182.0 ± 7.0
Forward Flexion	166.7 ± 4.7
Backward Extension	62.3 ± 9.5
Inward Rotation	In Abduction
Outward Rotation	68.8 ± 4.6
Inward Rotation	At Side
Outward Rotation	103.7 ± 8.5
Adduction	68^{*}

Elbow

Flexion
142.9 ± 5.6
Extension
. 6 ± 3.1
Forearm

Pronation
75.8 ± 5.1
Supination
82.1 ± 3.8

Wrist

Flexion
76.4 ± 6.3
Extension
Radial Deviation
Ulna Deviation
74.9 ± 6.4
21.5 ± 4.0
36.0 ± 3.8
*This study did not provide data for these three rotations. These data
are from AAOS handbook.
4. Position: The basic finger or hand element employed to align, orient, and engage one object with another to attain a specific relationship."
5. Release : "The basic finger or hand motion employed to relinguish control of an object, freeing the hand and finger for use in other motion."

Based on the above definitions and classification, basic motion has the following features:

- it is composed of elementary motions,
- it does not provide alone any purposive motion,
- combination of basic motions provides purposive motion.

This study considered only manual industrial tasks and these basic motions are defined for those types of tasks. However, a minor modification in the definition of these basic motions allows them to be applied to many activities of daily living (ADL). For example, for feeding tasks, the first four basic motions are applicable while the fifth (i.e., release) should be modified in such a way that covers unloading of food into the mouth (examples of feeding activity: eating with a spoon, eating with a fork, drinking a glass of water, ...).

Besides the decomposition of purposive motions into basic motions, this classification has another feature. It demonstrates the very important aspect of human arm movement which is the sequential nature of motions of the positioning (upper arm and forearm) and manipulating (hand) components of an arm in any task. It is easy to see that reach, move, and position basically are positioning component motions and grasp and release are manipulating component motions. Generally, in the majority of $A D L$, whenever one component is active, the other is locked. For example in bringing a glass of water to the mouth, during the move and position motions the hand and specifically the fingers do not move relative to each other, i.e., the fingers are locked. This sequential nature of the basic motions can be used very effectively in the development of control strategies for the prosthetic arm.

Another very important aspect of this classification is its use for the evaluation of a prosthetic arm and hand. Based on that
recommendations for improvement can be made. An example is the study regarding artificial hands done by Gilad at Israel Institute of Technology [Gilad, 1982, 13; Ibid, 1985, 14; Ibid, 1986, 15].

2.2.3 PURPOSIVE MOTIONS

Purposive motion is a motion that is

- composed of elementary motions,
- can also be composed of basic motions,
- in itself is a complete activity, i.e., a task is performed; an example is drinking a glass of water.

Based on this definition, it is easy to see that feeding, for example, is a collection of different purposive motions such as:

- cutting with a knife
- eating with a fork
- eating with a spoon
- drinking from a glass
- pouring from a pitcher, etc.

The upper limbs utilize the three classes of motions discussed to perform all human activities, which can be divided into three groups:

- Activities of Daily Living (ADL),
- Working Activities (WA), and
- Leisure Activities (LA).

McWilliam at West Hendon Hospital - London [McWilliam, 1970, 16] compiled a list of tasks which covers all the activities of normal adult daily life (excluding jobs or recreations). This list is composed of 625 ADL.

2.3 PRIORITY AND IMPORTANCE OF MOTIONS

Determination of the priority and importance of different motions in each class is of high importance. The reasons are, firstly, it helps to narrow the number of motions to be studied for functional arm motion analysis; secondly, it helps to design and develop a more functional and practical prosthetic arm. It is clear that a study of functional human arm motions is partly concerned with the determination of priority and importance of these motions.

All functional arm motion studies agree that the feeding task is the most important task of all human activities for an amputee. This observation is based on clinical experience in different hospitals. McWilliam [McWilliam, 1970, 16] asked 17 normal adults (10 men and 7 women) to assess 625 different ADL. Three categories were used in order to score the priority and importance of 625 ADL: essential, useful, trivial. The following eating activities had a range of scores from 91 - 100\%. Activities that were unanimously classed as essential are indicated by *:

Load spoon from:
bowl
plate*
Unload into: plate

```
    mouth*
Use fork for impaling
Use fork as spoon
Use knife for:
    cutting
    pushing
    spreading
Stir with spoon*
Lift and tilt:
    cup*
    wine glass
    tumbler*
    jug
    bottle
```

Although it is not possible to omit any of the five basic motions, it is possible to determine the importance and priority of these motions for the natural and prosthetic arm. As was mentioned, Gilad studied this problem and, based on the methods time measurement (MTM) technique (a standardized procedure for analyzing manual operations in terms of their motion elements), he concluded that for a prosthetic hand, the basic motion grasp has the highest priority. Based on this conclusion, he recommended a few improvements in the design of the body-powered hook device.

Keller at UCLA [Keller et al. 1947, 17] studied the importance and priority of elementary movements in greater detail than any other study. Mason [Mason, 1972, 18] tabulated the result of the above-mentioned study (using elbow flexion as the standard unit of measure $\equiv 1.00$) as shown in Table 2.2.

Based on this study, Keller et al. concluded that wrist abduction-adduction can be eliminated entirely without important functional loss. Also from the above table which was based on 51 ADL ,

TABLE 2.2. Relative importance of elementary motions.

Upper Arm	Relative Frequency	
Forward Flexion	.667	$*$
Extension	.248	
Abduction	.563	$*$
Internal Rotation	.720	$*$
External Rotation	.061	
Fore Arm		
Flexion	1.000	$*$
Pronation	.575	$*$
Supination	.200	
Wrist		
Flexion	.575	$*$
Extension	.194	
Adduction	.302	
Abduction	.097	

it is clear that elbow flexion, shoulder inward rotation, shoulder forward flexion, forearm pronation, wrist flexion, shoulder abduction have respectively the highest importance and priority among elementary motions (indicated by *).

This chapter has discussed briefly the functional anatomy of human arm, the importance of arm motion classification, a general classification of arm motion, and finally the priority and importance of the classified motions in each class. These aspects provide a clear base and direction for functional arm motion study. But before this, a proper 3-D measurement system should be developed. The following chapter discusses the hardware and software components of the new 3-D measurement system.

3-D MEASUREMENT SYSTEM

Different $3-D$ measurement systems have been developed in the last few decades [Cappozo, 1985, 1; Winter, 1984, 2; Chao, 1978, 3; Atha, 1984, 4]. Although the precise instruments and techniques used in these methods are different, they generally follow similar principles in converting the measured raw data to the required joint kinematic information. One way of classifying these methods is as follows:

1. Stereometry
(a) Stereo photogrammetry
(b) Light-scanning system
(c) Stereosonic system
2. Exoskeletal Linkages
3. Accelerometry

Stereophogrammetry is basically a method to reconstruct of 3-D coordinates of a point in object space from at least two $2-D$ coordinates of the point in image spaces. This can be done using different instruments. Different systems that are based on this method are classified as follows:

1. Photography
(a) Still cameras
(b) Cine cameras
(c) TV cameras
2. Opto-electronic
3. X-ray
4. Tomography

All of the above stereometric systems have been used to study the kinematics of different human arm joints or human arm motion patterns.

Typical studies are: still cameras [Ayoub et al. 1970, 5; Fioretti et al. 1985, 6], cine cameras [Keller et al. 1947, 7; Engen et al. 1969,8; Nicol et al. 1977, 9; Erdman et al. 1979, 10], TV cameras [Langrana, 1981, 11], opto-electronic [Suzuki, 1981, 12], x-ray [Chao et al. 1978, 13], and tomography [Robbin et al. 1986, 14]. Other methods that have been used to study upper limb kinematics are: stereosonic [Andrews et al. 1979, 15; Brumbaugh et al. 1982, 16; Engen et al. 1984, 17; Engen et al. 1984, 18], and exoskeletal linkages [Chao et al. 1980, 19; Sommer III et al. 1980, 20; Morrey et al. 1981, 21; Brumfield et al. 1984, 22; Palmer et al. 1985, 23]. These systems have been reviewed and compared with each other [Cappozo, 1985, 1; Winter, 1984, 2; Chao, 1978, 3; Ahta, 1984, 4].

The basic hardware components of a photography system are still, cine or TV cameras and a projector for enlargement. Therefore, the recorded image is manually digitized. Opto-electronic systems, on the other hand, permit a direct feeding of the point projection information to a digital computer. Established opto-electronic systems, which are available are: VICON (England), SELSPOT (Sweden), CoSTEL (Italy), and EMR Schlumberger (U.S.A.).

The 3-D measurement system that was developed for functional human arm motion study in this project is a new system. The position of this new system in the above stereometric systems is somewhere between photographic and optoelectronic (VICON which uses TV cameras)systems. The basic features of this new system compared to the two above-mentioned systems are:
compared to a photography system

- more accurate,
- faster with respect to processing the images,
- much easier to use;
compared to an opto-electronic system
- more flexible in that it provides a permanent visual record for teaching and reanalysis; this feature should be emphasized because the information inherent in the photographic record is an order of magnitude more extensive than can yet be provided by the most sophisticated computer analysis technique; furthermore it can be extremely valuable in slow and stopped motion (frame-by-frame, $1 / 5,1 / 10$, and normal speed - 30 frames/sec.) assessments;
- much easier to use,
- cheaper.

Overall, this $3-\mathrm{D}$ measurement system is much more convenient and suitable for clinical use than any other available system.

This chapter discusses and explains the new 3-D measurement system. Section 1 discusses the hardware components of the system and its set-up. The general procedure and different steps that are involved in using the system is explained in Section 2. The details of different techniques and algorithms that are used in the software components of the system are discussed in Section 3. The program listing is given in the Appendix (A). Microsoft FORTRAN (version 3.20) was used to write the programs.

3.1 HARDWARE COMPONENTS OF THE SYSTEM

The system consists of the following equipment:

- two black-white video cameras,
- two zoom lenses,
- two video cassette recorders, one with frame-by-frame replay and frame counting capabilities,
- two video lights,
- two black-white monitors,
- a PC computer with PIPEZ image acquisition board,
- a monitor with computer and RGB (image) channels,
- a calibrating frame,
- seven spherical reflective markers.

Components of the system are shown in Figures 3.1, 3.2, and 3.3. The complete technical specifications of the equipment is given in Appendix (B).

The schematic figure of the system set-up as it is seen from the top is shown in Fig. 3.4. As seen, black curtains are used in order to make the background completely black. The angle between the two camera optical axes is choosen to be approximately 40 degrees. This makes all the markers on the arm visible at all times (preventing the problem of marker disappearance). Here it is noted that the larger this angle, the better is the measurement accuracy. However, a larger angle between the two camera optical axes causes an increase in data deficiency since it enlarges the unmeasureable areas of the image surface. The field of view of each camera can be adjusted by using the zoom lens.

Fig. 3.1 Image recording components of the system.

Fig. 3.2 Image processing system

Fig. 3.3 Calibration frame


```
T: Area of table which is used to perform
    different tasks (table area of activity)
    M1 \& M2 : Elack and white monitors
    VCR1 \& VCR2 : Video cassette recorders
    C1 \& C2 : Video cameras
    L1 \& L2 : Video lights
    ME : Image processing system monitor
    FC : Fersonal computer with video digitiser
        board
```

Fig. 3. 4 Schematic diagram of system set-up.

The calibrating frame is shown in Fig. 3.3. In order to make it easy to use, the frame is movable. During calibration, the frame is put on the table in such a way that eight control markers are in the field of view of both cameras. After calibration, the frame is removed. The eight control markers are arranged in such a manner that the entire field of view of both cameras is covered and also that they are non-coplanar in order to prevent the singularity condition in the calculation of the eleven calibrating parameters.

Abstract

3.2 3-D MEASUREMENT PROCEDURE

This section discusses 'how to use the system' step by step. Details of different techniques, algorithms and mathematical equations that are used in the programs are explained and discussed.

3.2.1. CALIBRATION OF THE SYSTEM

The position of the two cameras is fixed as shown in Fig. 3.4. The height of the activity table is 78 cm , while the height of the center of the zoom lens is approximately 90 cm . The cameras are leveled in both directions. It should be emphasised that the tripods for the cameras should be of good quality in order to maintain the cameras' positions and attitudes. Any small change in the position and attitude of either camera changes the calibration parameters completely and thus would cause large errors in the 3-D measurement. The 2.8 f -stop is used. The
reasons are this setting requires a minimum amount of light, and, for limited arm movement space, it provides enough depth of field to have a focused image. The cameras are focused by using an object positioned at the center of the table area of activity (it is focused at $\sim 200 \mathrm{~cm}$). The required field of view is about $80 \times 80 \mathrm{~cm}^{2}$, and this is provided by a focal point of $\sim 20 \mathrm{~mm}$. Finally the lighting system should also be adjusted in such a way that the field of view of both cameras is properly illuminated, i.e., control markers, reference markers and the seven markers on the arm should be illuminated properly with a minimum amount of shadow and noise from other parts of the field of view. This is done by a trial and error method. It is possible to find an optimal position and attitude for lighting system in order to provide proper illumination. Once the optimal position and attitude (and also amount of illumination) are found, the lighting system can be fixed.

When all these camera-related parameters are fixed, the calibrating frame is put on the table, positioning the eight white control markers in the field of view of the two cameras. This can be checked by looking at the monitor of each camera. There should be a minimum of margin space between the control markers and the edges of the monitor screen (this is related to the image processing algorithm and is explained later in this chapter).

The $3-D$ coordinates of all eight control markers should be measured in meters to two decimal places. This degree of measurement accuracy is sufficient for the research of this thesis. The measurement is done with respect to the hypothetical fixed frame of reference (orthogonal) as shown in Fig. 3.5. The $3-\mathrm{D}$ orthogonal axes are based on the Right

Fig. 3.5 Fixed frame of reference position.

Hand Rule (RHR). It should be emphasised that using the RHR and the above arrangement of x, y, and z axes are important for the calculation of Euler angles as explained later in the chapter. Once the $3-D$ coordinates of the eight control markers are measured, there is no need to repeat this measurement in later calibrations, as long as the calibration frame is placed in the same position (the relative positions of the eight markers with respect to the frame are fixed).

The static and fixed image of the control markers is captured by the PC-PIPEZ image processor. The grabbing, processing and finally calculation of $2-D$ coordinates of the control markers is done by using the program CALIB1.FOR for the first camera and CALIB2.FOR for the second camera. The $2-D$ coordinates of the control markers are stored in two files: TEM1.TXT and TEM2.TXT.

The next step is executing the second part of the program CALIB1.FOR and CALIB2.FOR. The input data for the second part are 2-D coordinates of the control markers which are read from the above mentioned files and the $3-\mathrm{D}$ measured coordinates of control markers which are typed in by the operator. The $3-D$ data should be typed in the same order as the 2-D data for each image. The output of these two programs are the
eleven calibration parameters for each camera which are stored in two data files: CALIB1.TXT and CALIB2.TXT.

This system of calibration is easy to use (compared to other systems of calibration) and there is no need of recalibration as long as the camera-related parameters are not changed. The flow chart for the above-mentioned steps is shown in Fig. 3.6.

3.2.2 ARM MOVEMENT RECORDING AND 2-D CALCULATION

To acquire movement data that can be used to determine the 3-D movement data of the limb, it is necessary that the two cameras are synchronized and also the beginning of recording be properly identified. This enables a proper match of two simultaneous frames. In order to synchronize the two cameras, one is synchronized internally and is used as a master and the other is synchronized externally and is used as a slave. The identification signal for the beginning of recording can be simply a fast or jerky hand movement by the subject.

Before starting to record arm movement, it is necessary to calculate the 2-D coordinates of reference markers. Because of vertical and horizontal shifts in the position of markers when each frame (image) is captured in the frame buffer, there is a need to use a reference marker for each camera. These markers are positioned on the edges of the activity table and in the field of view of each camera. By executing the programs IMAGEOO.FOR for the first camera and the IMAGE01.FOR for the second camera, the $X R$ and $Y R$ of the reference markers are calculated and stored in two files: OUTO.TXT AND OUTOO.TXT.

Note: Rectangle is used for data files and trapezoid is used for programs.

Fig. 3.6 Calibration parameters calculation flow chart.

The next step is to put the markers on the arm. The subject wears a turtle neck shirt (black or dark blue). Seven spherical reflective markers are used, with the arrangement on the arm shown in Fig. 3.7. Fig. 3.8 shows the arrangement of plate, cup, spoon, fork, etc. At the beginning of arm movement recording, the subject is asked to move his arm rapidly in order to use this fast movement as an identification signal for the beginning of recording. Then the subject is asked to do the feeding task in a natural order and as natural as possible. Each task is recorded at least three times.

The recorded arm movement is then replayed frame-by-frame. Before processing each frame, the beginning of recording is identified and the frame counter of the VCR is reset to zero. This enables the operator to identify the beginning of each specific movement (i.e., drinking, eating with spoon, etc.) with the same frame number for both tapes. Each frame is then frozen and processed. For processing the stationary image and calculating the $2-\mathrm{D}$ coordinates of seven markers in each frame, two programs are executed, one for each tape: IMAGE1.FOR and IMAGE2.FOR. Before executing these two programs three empty files are created for each program:

FRNO1.TXT for the frame number,
OUT1.TXT for the $2-\mathrm{D}$ coordinates of the markers,

XYREF1.TXT for the $2-D$ coordinates of the reference marker.
The schematic diagram of the above-mentioned steps is shown in Fig. 3.9. The program IMAGE1.FOR and IMAGE2.FOR should be executed for each frame. However, typically only every fifth fram was used for the analysis. At the end, the data file OUT1.TXT contains the $2-D$ coordinated of 7 markers.

Fig. 3.7 Reflective marker arrangement on subject's arm.

Fig. 3.8 Arrangement of plate, cup, etc., on the table of activity.

3.2.3 IDENTIFICATION OF MARKERS IN EACH FRAME

In order to calculate the $3-D$ coordinates of each marker based on its two 2-D coordinates, each marker in a frame is labelled by a number, and then the $2-D$ coordinates of the same marker in two simultaneous frame are used for its $3-D$ coordinate calculation. This identification process is called the tracking problem. Two programs are used for this purpose: TRACK1.FOR and TRACK2.FOR. The input data are the 2-D coordinates of markers from OUT1.TXT and OUT2.TXT. The order of markers in the first two frames are typed in by the operator. Here it should be emphasized that the marker order should be typed in by the operator in the same order as the $2-D$ data file. After identification of the markers in the first two frames by the operator, the tracking and identification of markers the remaining frames is done automatically by the computer. At the end a new data file for the 2-D coordinates of the markers is created. The order of the $2-D$ data for each frame in the new data file is from one to seven. This whole process is shown in fig. 3.10.

3.2.4 3-D COORDINATE CALCULATION

Calculation of the $3-D$ marker coordinates is based on the new 2-D coordinate data file. The input data are: the $2-\mathrm{D}$ coordinates of the markers: files NOUT1.TXT and NOUT2.TXT, and 11 calibtration parameters: files CALIB1.TXT and CALIB2.TXT. The output is the 3-D coordinates of the markers in each frame. The schematic diagram for the above-mentioned process is shown in Fig. 3.11.

Fig. 3. 10 Marker identification flow chart.

3.2.5 EULER ANGLE CALCULATION FOR EACH JOINT

The final step is to calculate the Euler angles for the three joints: shoulder, elbow, and wrist. These angles show the amount of rotation with respect to the three orthogonal axes and can be interpreted as flexion-extension, abduction-adduction (or ulna deviation-radial deviation), and finally inward-outward rotation (or pronation-supination). The program for this calculation is ANGROT10.FOR. The input data is the 3-D coordinate and the output is the Euler angles for each joint. The schematic diagram in Fig. 3.12 shows this process.

3.2.6 STICK DIAGRAM PLOTTING

In order to provide a visual presentation of arm movement, two dimensional stick diagram can be'plotted. They can be plotted for both the image and object planes. The first two are plotted in the camera image planes and are based on ordered 2-D coordinates of the markers. The second three are plotted in the three orthogonal planes of the fixed reference frame: $X Y, X Z$, and $Y Z$ planes and are based on the $3-D$ coordinates of markers. The schematic diagram for these two cases are shown in Fig. 3.13.

3.3 SOFTWARE COMPONENTS OF THE SYSTEM

The complete list of program names for the 3-D measurement system for functional arm motion study is presented in Table 3.1. In this

Fig. J. 11 Marker J-D coordinate calculation flow chart.

Fig. 3.12 Euler angle calculetion flow chert.

Fig. 3.13 Stick diagram plotting flow chart.
section, different image processing techniques, algorithms and mathematical equations that are used in these programs are explained. The complete lists of the programs with sufficient comment statements are given in the Appendix (A).

TABLE 3.1. List of 3-D Measurement System Computer Programs

Camera (1)

(1)

CALIB1.FOR
(2) IMAGEO.FOR
(3) DATA1.FOR

XYREF1.FOR
FRNO1.FOR
IMAGE1.FOR
(4) TRACK1.FOR
(5)
(6)
(7) STICK1.FOR

Camera (2)
SUB3.FOR
CALIB2.FOR
IMAGE00.FOR

DATA2. FOR
XYREF2.FOR
FRNO2. FOR
IMAGE2.FOR

TRACK2.FOR
SUB4.FOR TDCCM. FOR

ANGROT10.FOR

STICK10.FOR
STICK20.FOR STICK30.FOR

In general acquiring $3-D$ data from real object points via a stereometric system is done by the following steps:

- camera calibration,
- stereo matching (tracking and identification),
- multiple stereo views covering the whole object points,
- geometrical computations to determine the 3-D coordinates.

The final step is the Euler angle calculation which is done using acquired $3-\mathrm{D}$ coordinates of the markers.

3.3.1 CAMERA CALIBRATION

The relationship between the $3-D$ coordinates in object space and the corresponding $2-\mathrm{D}$ coordinates in the image space is essentially a perspective transformation [Duda et al. 1973, 24]. When this transformation is known, given the $3-D$ coordinates X, Y, and Z in object space, the corresponding $2-D$ coordinates of U and V in the image space can be found. Conversely, given the coordinates of U and V in the image space, the corresponding ray along which all the points satisfying this transformation must lie can be found. The elements of the transformation matrix are called calibration parameters.

There are several different calibration methods based on different camera models. The camera model used here is the one which is used in computer vision and computer graphics [Ballard, 1982, 25]. This camera model is called central projection, i.e. the image is an ideal central projection of the object-space onto the image-plane. Here, ideal means that the camera compound lens is free of optical distortion and thus the image is not deformed. Homogeneous coordinates are used for calibration of the above camera model [Lee, 1982, 26]. The process of developing the above-mentioned transformation using homogeneous coordinates is described below. For a more detailed mathematical treatment of
homogeneous coordinate and its application to this specific camera model, refer to Duda et al. [Ibid, p.p.380-386]

In computer vision and computer graphics, homogeneous coordinates are widely used. The reason is that it allows many important geometric transformations to be represented uniformly and elegantly. The basic idea in using homogeneous coordinate for the ideal central projection camera model is to convert the non-linear transformation from 3-D object space to 2-D image space into a linear transformation in a different coordinate system, i.e., homogeneous coordinates. The important aspect of homogeneous coordinates is its redundancy: a point in Cartesian n-space is represented by a line in homogeneous $(n+1)$-space, i.e., a unique point in Cartesian coordinates is represented by infinitely many homogeneous coordinates. Correspondence of these two coordinate systems is:

$$
\begin{equation*}
(X, Y, Z) \leftrightarrow(w X, w Y, w Z, w) \tag{3.1}
\end{equation*}
$$

where w is the extra redundant variable. In the special case of $w=1$, this becomes:

$$
\begin{equation*}
(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) \leftrightarrow(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, 1) \tag{3.2}
\end{equation*}
$$

Now, if homogeneous coordinates are applied to the $2-\mathrm{D}$ image-space and the $3-\mathrm{D}$ object-space, the result is:

$$
\begin{align*}
& (U, V) \leftrightarrow(t U, t V, t) \\
& (X, Y, Z) \leftrightarrow(X, Y, Z, 1) \tag{3.3}
\end{align*}
$$

The aim here is to find the transformation matrix from the $3-D$ homogeneous image space to the $4-\mathrm{D}$ homogeneous object space and vice versa:

$$
\begin{equation*}
(X Y Z 1)[L]=(t U t V t)^{T} \tag{3.4}
\end{equation*}
$$

Obviously this transformation takes the form of a 4×3 matrix:

$$
\left(\begin{array}{llll}
X & Y & Z & 1
\end{array}\right)\left[\begin{array}{lll}
L_{1} & L_{5} & L_{9} \tag{3.5}\\
L_{2} & L_{6} & L_{10} \\
L_{3} & L_{7} & L_{11} \\
L_{4} & L_{8} & L_{12}
\end{array}\right]=\left[\begin{array}{r}
t U \\
t V \\
t
\end{array}\right]^{T}
$$

As it is seen there are three variables (U, V, t) and three equations. If t is eliminated in the first two, the result is:

$$
\begin{align*}
& L_{1} X+L_{2} Y+L_{3} Z+L_{4}-L_{9} U X-L_{10} U Y-L_{11} U Z-L_{12} U=0 \\
& L_{5} X+L_{6} Y+L_{7 Z}+L_{8}-L_{9} V X-L_{10} V Y-L_{11} V Z-L_{12} V=0 \tag{3.6}
\end{align*}
$$

or:

$$
\begin{align*}
& U=\frac{L_{1} X+L_{2} Y+L_{3} Z+L_{4}}{L_{9} X+L_{10} Y+L_{11} Z+L_{12}} \\
& V=\frac{L_{5} X+L_{6} Y+L_{7} Z+L_{8}}{L_{9} X+L_{10} Y+L_{11} Z+L_{12}} \tag{3.7}
\end{align*}
$$

By simple scaling, L_{12} is equated to 1 and these two transformations become:

$$
\begin{align*}
& \mathrm{U}=\frac{\mathrm{L}_{1} X+L_{2} Y+L_{3} Z+L_{4}}{L_{9} X+L_{10} Y+L_{11} Z+1} \\
& V=\frac{L_{5} X+L_{6} Y+L_{7} Z+L_{8}}{L_{9} X+L_{10} Y+L_{11} Z+1} \tag{3.8}
\end{align*}
$$

Thus, it is possible to write two linear equations for each point $\left(L_{12}=\right.$ 1):

$$
\begin{align*}
& \mathrm{L}_{1} \mathrm{X}_{\mathrm{i}}+\mathrm{L}_{2} \mathrm{Yi}_{\mathrm{i}}+\mathrm{L}_{3} \mathrm{Z}_{\mathrm{i}}+\mathrm{L}_{4}-\mathrm{L}_{9} \mathrm{U}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}+\mathrm{L}_{10} \mathrm{U}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}+\mathrm{L}_{11} \mathrm{U}_{\mathrm{i}} \mathrm{Z}_{\mathrm{i}}=\mathrm{U}_{\mathrm{i}} \\
& \mathrm{~L}_{5} \mathrm{X}_{\mathrm{i}}+\mathrm{L}_{6} \mathrm{Y}_{\mathrm{i}}+\mathrm{L}_{7} Z_{i}+\mathrm{L}_{8}-\mathrm{L}_{9} \mathrm{~V}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}+\mathrm{L}_{10} \mathrm{~V}_{\mathrm{i}} Y_{i}+\mathrm{L}_{11} \mathrm{~V}_{\mathrm{i}} Z_{i}=\mathrm{V}_{\mathrm{i}} \tag{3.9}
\end{align*}
$$

in which:
$U_{i}, V_{i}:$ image coordinates of the i th point
$X_{i}, Y_{i}, Z_{i}:$ object coordinates of the i th point
$L_{1}-L_{11}:$ calibration parameters.
(3.9) can be written in matrix form, and if it is written for n points, the resulting matrix equation is:

In matrix form (3.10) becomes:

$$
\begin{equation*}
[\mathrm{P}]_{2 n \times 11}[\mathrm{~L}]_{11 \times 1}=[\mathrm{Q}]_{2 \mathrm{n} \times 1} \tag{3.11}
\end{equation*}
$$

In order to solve (3.11) and obtain eleven calibration parameters, at least eleven equations are needed, or in another words at least six control points are needed (only one equation for the last point is used). In order to prevent the problem of singularity, all eleven
equations should be independent of each other or, i.e., the columns of matrix [P] should be linearly independent. This can be achieved by preventing the control points from being in the same plane, i.e., have non-coplanar control points. But in order to calculate eleven calibration parameters more accurately, it is logical to use more than eleven equations. In this project eight control markers are used (sixteen equations for eleven unknowns). Thus equation 3.11 becomes an overdetermined system of equations. The classical approach to the problem is to use a minimum-squared-error (MSE) criterion to solve the equations. It has been shown [Duda et al. 1973, 24; Wu et al. 1984, 27] that the MSE solution of (3.11) is obtained by multiplying the vecter [Q] by the Pseudo-inverse of matrix [P]. Note that for the overdetermined system of equations, matrix [P] is a non-square matrix and thus in order to solve (3.11), the pseudo-inverse matrix must be used. The solution is:

$$
\begin{equation*}
[\mathrm{L}]=\left([\mathrm{P}]^{\mathrm{T}}[\mathrm{P}]\right)^{-1}[\mathrm{P}]^{\mathrm{T}}[\mathrm{Q}] \tag{3.12}
\end{equation*}
$$

where $\left([P]^{T}[P]\right)^{-1}[P]^{T}=[R]$ is the pseudo-inverse matrix of $[P]$.

The eleven calibration parameters can be expressed in terms of external and internal parameters of the camera. Conversely, external and internal parameters of the camera can be expressed in terms of the eleven calibration parameters. These camera parameters are:

- position and attitude of the camera, i.e., coordinates of the nodal point (x, y, z) and the orientation of the optical axis (nine direction cosines),
- principal distance of the camera,
- scale factor.

One very important internal parameter of the camera that was not considered in the ideal central projection camera model is systematic error caused by optical distortion. Abdel-Aziz and Karara [Abdel-Aziz et al. 1971, 28] developed a methodology that would allow application of stereo-photogrammetric techniques to situations in which nonmetric camreas, i.e., those in which the internal orientations are not known, would be used. This method is called the "direct linear transformation method" (DLT). Thus in their mathematical model, optical distortion (symmetrical lens distortion and asymmetrical lens distortion) are considered. DLT has been applied to 3-D cinematography and its accuracy has been studied for static and dynamic conditions [Miller et al. 1980, 29 ; Shapiro, 1978,30 ; Walton, 1979,31$]$. It is clear that if optical distortion parameters are omitted in this model, the resulting equations would be the same as 3.8 . However, the ideal central projection camera model provides sufficient accuracy for the functional arm motion study and thus there is no need to use a sophisticated camera model.

3.3 .2 3-D COORDINATE CALCULATION

One the calibratin parameters have been determined, equation 3.9 shows that each 2-D image yields two equations in the three unknowns, X_{i}, Y_{i}, Z_{i}. Thus to determine the $3-\mathrm{d}$ coordinates requires at least one more equation. Physically this means that at least two cameras should be used in order to provide the minimum number of equations required. Of course it is possible and sometimes recommended to use multiple
(more than two) cameras to get more accurate measurements.
When two cameras are used four equations for each point can be written based on the two sets of calibration parameters:

$$
\begin{align*}
& L_{1} X+L_{2} Y+L_{3} Z+L_{4}-L_{9} U_{1} X-L_{10} U_{1} Y-L_{11} U_{1} Z-U_{1}=0 \\
& L_{5} X+L_{6} Y+L_{7} Z+L_{8}-L_{9} V_{1} X-L_{10} V_{1} Y-L_{11} V_{1} Z-V_{1}=0 \\
& L_{1}^{\prime} X+L_{2}^{\prime} Y+L_{3}^{\prime} Z+L_{4}^{\prime}-L_{9}^{\prime} U_{2} X-L_{10}^{\prime} U_{2} Y-L_{11}^{\prime} U_{2} Z-U_{2}=0 \\
& L_{5}^{\prime} X+L_{6}^{\prime} Y+L_{7}^{-} Z+L_{8}^{\prime}-L_{9}^{-} V_{2} X-L_{10}^{\prime} V_{2} Y-L_{11}^{\prime} V_{2} Z-V_{2}=0 \tag{3.13}
\end{align*}
$$

in which:
$U_{1}, V_{1}: 2-D$ coordinates of the point in the 1 st image
$U_{2}, V_{2}: 2-D$ coordinates of the point in the 2nd image
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}: 3-\mathrm{D}$ coordinates of the point
$\mathrm{L}_{1}-\mathrm{L}_{11}$: Calibration parameters of the 1 st camera
$L_{i}-L_{11}$: Calibration parameters of the 2nd camera.

Rearranging the terms in (3.13) one obtains:

$$
\begin{align*}
& \left(L_{1}-L_{9} U_{1}\right) X+\left(L_{2}-L_{10} U_{1}\right) Y+\left(L_{3}-L_{11} U_{1}\right) Z+\left(L_{4}-U_{1}\right)=0 \\
& \left(L_{5}-L_{9} V_{1}\right) X+\left(L_{6}-L_{10} V_{1}\right) Y+\left(L_{7}-L_{11 V_{1}}\right) Z+\left(L_{8}-V_{1}\right)=0 \\
& \left(L_{1}^{\prime}-L_{9}^{-} U_{2}\right) X+\left(L_{2}^{\prime}-L_{10}^{\prime} U_{2}\right) Y+\left(L_{3}^{\prime}-L_{11}^{\prime} U_{2}\right) Z+\left(L_{4}^{\prime}-U_{2}\right)=0 \\
& \left(L_{5}^{\prime}-L_{9}^{\prime} V_{2}\right) X+\left(L_{6}^{\prime}-L_{10} V_{2}\right) Y+\left(L_{7}^{\prime}-L_{11}^{\prime} V_{2}\right) Z+\left(L_{8}^{\prime}-V_{2}\right)=0 \tag{3.14}
\end{align*}
$$

In order to simplify these equations the following terms are defined:

$$
\begin{aligned}
& \mathrm{A}_{11} \equiv \mathrm{~L}_{1}-\mathrm{L}_{9} \mathrm{U}_{1} \\
& \mathrm{~A}_{12} \equiv \mathrm{~L}_{2}-\mathrm{L}_{10} \mathrm{U}_{1} \\
& \mathrm{~A}_{13} \equiv \mathrm{~L}_{3}-\mathrm{L}_{11} \mathrm{U}_{1} \\
& \mathrm{~A}_{21} \equiv \mathrm{~L}_{5}-\mathrm{L}_{9} \mathrm{~V}_{1} \\
& \mathrm{~A}_{22} \equiv \mathrm{~L}_{6}-\mathrm{L}_{10} \mathrm{~V}_{1} \\
& \mathrm{~A}_{23} \equiv \mathrm{~L}_{7}-\mathrm{L}_{11} \mathrm{~V}_{1}
\end{aligned}
$$

$$
\mathrm{A}_{31} E \mathrm{~L}_{1}^{\prime}-\mathrm{L}_{9}^{\prime} \mathrm{U}_{2}
$$

$$
\mathrm{A}_{32} \equiv \mathrm{~L}_{2}^{\prime}-\mathrm{L}_{10}^{\prime} \mathrm{U}_{2}
$$

$$
\mathrm{A}_{33} \equiv \mathrm{~L}_{3}^{\prime}-\mathrm{L}_{11} \mathrm{U}_{2}
$$

$$
A_{41} E L_{5}^{\prime}-L_{9}^{\prime} V_{2}
$$

$$
\mathrm{A}_{42} \equiv \mathrm{~L}_{6}^{\prime}-\mathrm{L}_{10}^{\prime} \mathrm{V}_{2}
$$

$$
\mathrm{A}_{43} \equiv \mathrm{~L}_{7}^{\prime}-\mathrm{L}_{11}^{\prime} \mathrm{V}_{2}
$$

$$
\begin{array}{ll}
\mathrm{B}_{1} \equiv \mathrm{U}_{1}-\mathrm{L}_{4} & \mathrm{~B}_{3}=\mathrm{U}_{2}-\mathrm{L}_{4}^{\prime} \\
\mathrm{B}_{2} \equiv \mathrm{~V}_{1}-\mathrm{L}_{8} & \mathrm{~B}_{4} \pm \mathrm{V}_{2}-\mathrm{L}_{8}^{\prime}
\end{array}
$$

Thus (3.14) is simplified to:

$$
\begin{align*}
& A_{11} X+A_{12} Y+A_{13} Z=B_{1} \\
& A_{21} X+A_{22} Y+A_{23} Z=B_{2} \\
& A_{31} X+A_{32} Y+A_{33} Z=B_{3} \\
& A_{41} X+A_{42} Y+A_{43} Z=B_{4} \tag{3.16}
\end{align*}
$$

In matrix form:

$$
\begin{align*}
& {\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33} \\
A_{41} & A_{42} & A_{43}
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{l}
B_{1} \\
B_{2} \\
B_{3} \\
B_{4}
\end{array}\right]} \tag{3.17}\\
& {[A][D]=[B]} \tag{3.18}
\end{align*}
$$

Again because there are three unknowns and four equations the pseudoinverse must be used.
$\left[\begin{array}{lll}X & Y & Z\end{array}\right]^{T}=\left([A]^{T}[A]\right)^{-1}[A]^{T}[B]$

In summary, knowledge of the two $2-\mathrm{D}$ coordinates of a point and the two sets of calibration parameters for the two cameras allows one to calculate the $3-\mathrm{D}$ coordinates of the point (X, Y, Z).

3.3.3 IMAGE PROCESSING AND 2-D COORDINATES CALCULATION

As shown, the 3-D coordinate calculation of a point is based on the $2-D$ coordinates of the point (markers's centroid). In order to find the marker centroids in each frame, all the pixels which belong to a marker need to be identified and clustered. To do the clustering, a
few simple techniques are used. In this section these simple techniques used to process the image are discussed. The object is to process the image as fast as possible and minimize the amount of data that should be stored. Note that each image of 512 by 512 needs 256 K bytes of storage space and takes 60 seconds to be processed. Using these simple techniques, data acquisition and data preprocessing from each frame takes less than 10 seconds and the final data is the seven $2-D$ coordinates of the seven markers, which needs a very small storage space.

After each frame (image) is captured in the frame buffer, the following image processing techniques are applied to obtain a marker centroid.
(1) Apply a threshold value. Basically the pixel values range from 0 (black) to 255 (white). By thresholding a black and white binary image is produced.
(2) Fast reading of the processed image. The image is 512×512. To read the 512 by 512 image pixel by pixel takes about 60 seconds for the $P C$. In order to reduce the reading time, the image is read in steps of 5 , both vertically and horizontally (Fig. 3.14(a)). This reduces the reading time to less than 10 seconds. The image is read by the PC from left to right and from top to bottom. The value of 5 is based on the minimum size of the marker. If the marker is bigger, this value should be increased.
(3) Windowing. The next step is to put a window around the white pixels that were detected in the last step. The size of the window is two times the maximum size of the markers. In this project, the window size is 24×24 (Fig. $3.14(\mathrm{~b})$). It should be emphasised that all the

Fig. 3. 14 Schematic diegrams for image processing.
windows should be inside the 512×512 screen, otherwise the $P C$ reads negative numbers and the whole program goes awry. Therefore the field of view of the cameras should be such that all the markers have a distance of at least 24 pixels from the screen edges.
(4) Detect the transition points in the window. The window is read pixel by pixel. The transition points from white to black or from black to white are deleted and thus the edge of the marker is determined (Fig. 3.14(c)).
(5) Marker centroid calculation. In order to calculate the centroid of each marker, the following simple equations are used (Fig. $3.14(\mathrm{~d})$):

$$
\mathrm{X}_{\mathrm{c}}=\left[\sum_{\mathrm{K}}\left(\mathrm{X}_{\mathrm{K}}-\frac{\delta_{\mathrm{k}}}{2}\right) \delta_{\mathrm{k}}\right] \frac{1}{\Sigma \delta_{\mathrm{K}}}
$$

$\mathrm{Y}_{\mathrm{c}}=\left[\sum_{\mathrm{K}} \mathrm{Y}_{\mathrm{K}} \delta_{\mathrm{k}}\right]_{\mathrm{K}}^{\sum \delta_{\mathrm{k}}} \frac{1}{\sum}$
(6) Elimination of repeated detected markers. Because there is a possibility that in step 4 more than one pixel of the same marker is detected, in the last part of the program, all the markers that are detected more than once are eliminated.
(7) Vertical and horizontal shifts. Because there is a possibility that the captured image in the frame buffer has a vertical or horizontal (or both) shift, the coordinates of the reference marker in the captured image is compared with the original coordinates of the reference marker and the vertical and horizontal differences are applied to the coordinates of the seven markers.
(8) Scattered noise in the image. To eliminate scattered noise (isolated white pixels) in the processed image, a simple condition is used to determine whether a detected marker is valid:

If $\sum \delta_{k}<20$ eliminate the detected marker.
This condition is based on the fact that the minimum number of white pixels in each marker is 20.

In order to make the image processing more flexible, four interactive questions are used and these should be answered by operator. The first is choosing the threshold value. The second is to verify whether the processed image is acceptable or not (based on the choosen threshold value). The third and fourth are to choose the reading increment and window size. The output of the above-mentioned steps is the $2-D$ coordinates of the marker centriods.

3.3.4 TRACKING ALGORITHM

As explained before, in order to calculate the $3-\mathrm{D}$ coordinates of a marker, the marker should be identified in the two simultaneous images. One important problem in tracking and identification of markers is the problem of disappearance and reappearance of markers. In this project, this problem has been prevented by:

- proper positioning of the two cameras,
- the choice of marker positions on the arm and the spherical marker shape,
- proper lighting,
- choice of arm movement (feeding tasks).

Tracking is thus reduced to the identification of a fixed number (i.e.,
7) of markers in each frame. Since the image is read by the PC from top to bottom, the preliminary $2-\mathrm{D}$ coordinates of markers are ordered according to the y coordinate. If, for example, the stick diagrams of four markers in two frames are as shown in Fig. 3.15,

Fig. 3.15 Stick diagrams of two different frames.
then the marker order in the preliminary data file would be:

FRAME NO. 1

FRAME NO. 2

1	A	D
2	B	C
3	D	A
4	C	B

It is clear that the marker order can change from one frame to the other. The aim in the tracking algorithm is to obtain the same order in all frames.

For the first two frames, the identification is done by the operator and the computer reads the order. For the third frame, simple two dimensional linear extrapolation is used. First the position of a marker in the third frame is estimated from:

$$
\begin{align*}
& x_{3}^{\prime}=x_{1}+2\left(x_{2}-x_{1}\right) \\
& y_{3}^{\prime}=y_{1}+2\left(y_{2}-y_{1}\right) \tag{3.21}
\end{align*}
$$

in which:
$x_{1}, y_{1}:$ marker coordinates in the first frame
$x_{2}, y_{2}:$ marker coordinates in the second frame
$x_{3}^{\prime}, y_{3}^{\prime}:$ estimated marker coordinates in the third frame.

The estimated coordinates are then compared with all the marker coordinates in the third frame, and, based on the nearest neighbour criterion, the marker is identified in the third frame.

The identification of markers in subsequent frames (fourth, fifth, ...) is done by using a three point, 2-D linear least squares approximation i.e., the best straight line $y=a x+b$ through the set of measured values is determined. The unknowns a and b are estimated by using following equations [Spencer et al. 1977, 32]:

$$
\begin{align*}
& a=\frac{n \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}} \\
& b=\frac{\sum y_{i}-a \sum x_{i}}{n} \tag{3.22}
\end{align*}
$$

in which:

$$
\begin{aligned}
x_{i}, & y_{i}: \\
& \text { measured values } \\
& n: \text { number of measured values. }
\end{aligned}
$$

For the specific case at hand, the result is:

$$
X=a F+b
$$

in which:
X : x coordinate of marker

F: frame number.

So for the fourth frame, the estimate for x is:

$$
x_{4}^{-}=a F_{4}+b \rightarrow x_{4}^{-}=4 a+b
$$

where

$$
\begin{aligned}
& a=\frac{3\left(1 x_{1}+2 x_{2}+3 x_{3}\right)-(1+2+3)\left(x_{1}+x_{2}+x_{3}\right)}{3\left(1^{2}+2^{2}+3^{2}\right)-(1+2+3)^{2}} \\
& a=\frac{-x_{1}+x_{3}}{2} \\
& b=\frac{\left(x_{1}+x_{2}+x_{3}\right)-a(1+2+3)}{3} \\
& b=\frac{\left(x_{1}+x_{2}+x_{3}\right)-6 a}{3}
\end{aligned}
$$

Thus the general estimation equation is:

$$
\begin{align*}
& x_{n+3}^{\prime}=4 a_{x}+b_{x} \\
& y_{n+3}^{\prime}=4 a_{y}+b_{y} \tag{3.23}
\end{align*}
$$

in which:

$$
\begin{align*}
& a_{x}=\frac{-x_{n}^{\prime}+x_{n+2}^{-}}{2} \\
& a_{y}=\frac{-y_{n}^{-}+y_{n+2}}{2} \\
& b_{x}=\frac{\left(x_{n}^{-}+x_{n+1}^{-}+x_{n+2}^{-}\right)-6 a_{x}}{3} \\
& b_{y}=\frac{\left(y_{n}^{-}+y_{n+1}^{-}+y_{n+2}^{\prime}\right)-6 a^{\prime}}{3} \tag{3.24}
\end{align*}
$$

After the estimation of a marker's coordinates in the fourth frame, the estimate is compared to all measured coordinates in the
fourth frame, and, based on the nearest neighbour criterion, the marker is identified in the fourth frame. The result of applying this tracking algorithm to preliminary $2-D$ data file will be the final ordered $2-D$ data file. Based on this data file identical markers in two simultaneous frames are matched and markers' 3-D coordinates are calculated.

3.3.4 EULER ANGLE CALCULATION

Major joints of the body generally have six degrees of freedom: three translational and three rotational. In this study, only rotational motion is considered. For anatomical purposes, the orientation of a segment of the arm is often defined by rotations in three orthogonal planes (saggital, frontal, and transverse), as well as the rotation about the longitudinal axis of the body segment. The most convenient and proper way of defining three rotational motions with respect to three orthogonal axes is to use Euler angles. Several different types of Euler angle systems have been used. The one that is used here is the type that has been widely used in aeronautical engineering and also in the analysis of missiles and other space vehicles [Greenwood, 1965, 34; Rosenberg, 1977, 35]. This type has also been used recently in the functional study of arm movement [Kinzel et al. 1983, 33; Chao et al. 1978, 13; Langrana, 1981, 11].

It should be noted that for $3-D$ rotations, the order of rotation about specified axis is extremely important in order to describe
the joint motion uniquely. In Fig. 3.16, the order of rotations and the Euler angles are as follows:

- Rotation about the Z axis:

$$
\begin{aligned}
& \phi \\
& \mathrm{Z} \xrightarrow{\rightarrow} \mathrm{z}^{-} \\
& \mathrm{X} \rightarrow \mathrm{x}^{-} \\
& \mathrm{Y} \rightarrow \mathrm{y}^{-}
\end{aligned}
$$

- Rotation about the x^{-}axis

$$
\begin{gathered}
\theta \\
x^{-} \rightarrow x^{\prime \prime} \\
y^{-} \rightarrow y^{\prime \prime} \\
z^{-} \rightarrow z^{\prime \prime}
\end{gathered}
$$

-Rotation about the y " axis:

$$
\begin{gathered}
\stackrel{\psi}{y^{\prime \prime}} \xrightarrow{\rightarrow} \mathrm{y} \\
\mathrm{x}^{\prime \prime} \rightarrow \mathrm{x} \\
\mathrm{z}^{\prime \prime} \rightarrow \mathrm{z}
\end{gathered}
$$

Fig. 3.16 The Eulerian angles.

These three rotations can be expressed by the following three matrix equations:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]} \\
& {\left[\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime} \\
z^{\prime \prime}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
\cos \psi & 0 & -\sin \psi \\
0 & 1 & 0 \\
\sin \psi & 0 & \cos \psi
\end{array}\right]\left[\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime} \\
z^{\prime \prime}
\end{array}\right]}
\end{aligned}
$$

Now if these three rotations are combined, the total transformation matrix is:

$$
\left[\begin{array}{l}
x \tag{3.25}\\
y \\
z
\end{array}\right]=\left[\begin{array}{lrr}
\cos \phi \cos \psi-\sin \phi \sin \theta \sin \psi & \sin \phi \cos \psi+\cos \phi \sin \theta \sin \psi & -\cos \theta \sin \psi \\
-\sin \phi \cos \theta & \sin \theta \cos \theta \\
\cos \phi \sin \psi+\sin \phi \sin \theta \cos \psi & \sin \phi \sin \psi-\cos \phi \sin \theta \cos \psi & \cos \theta \cos \psi
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

If ($\hat{i}, \hat{j}, \hat{k}$) are the unit vectors of the $x y z$ orthogonal axes and (\hat{i}, \hat{j}, $\widehat{K})$ are the unit vectors of the $X Y Z$ orthogonal axes, then (3.25) can be written in the following form:

$$
\left[\begin{array}{l}
\mathrm{x} \tag{3.26}\\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{lll}
\hat{i} \cdot \hat{\mathrm{I}} & \hat{\mathrm{i}} \cdot \hat{J} & \hat{\mathrm{i}} \cdot \hat{\mathrm{~K}} \\
\hat{\mathrm{j}} \cdot \hat{\mathrm{I}} & \hat{\mathrm{j}} \cdot \hat{J} & \hat{\mathrm{j}} \cdot \hat{\mathrm{~K}} \\
\hat{\mathrm{k} \cdot \hat{I}} & \hat{\mathrm{k}} \cdot \hat{J} & \hat{\mathrm{k}} \cdot \hat{\mathrm{~K}}
\end{array}\right]\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y} \\
\mathrm{z}
\end{array}\right]
$$

If the transformation matrix in (3.26) is compared with the transformation matrix in (3.25), the following equations can be written:

$$
\begin{array}{ll}
\sin \theta=\hat{j} \cdot \hat{\mathrm{~K}} \rightarrow & \theta=\operatorname{Arcsin}(\hat{\mathrm{j}} \cdot \hat{\mathrm{~K}}) \\
\cos \phi \cos \theta=\hat{j} \cdot \hat{\mathrm{~J}} \rightarrow & \phi=\operatorname{Arccos}\left(\frac{\hat{j} \cdot \hat{\mathrm{~J}}}{\cos \theta}\right) \\
\cos \theta \cos \psi=\hat{\mathrm{k}} \cdot \hat{\mathrm{~K}} \rightarrow & \psi=\arccos \left(\frac{\hat{\mathrm{k}} \cdot \hat{\mathrm{~K}}}{\cos \theta}\right) \tag{3.27}
\end{array}
$$

On the other hand, the elements of the transformation matrix in (3.26) are the direction cosines of unit vectors i, j, and k in the $X Y Z$ frame of reference (Fig. 3.17):

$$
\begin{aligned}
& \hat{\mathbf{j}} \cdot \hat{\mathrm{K}}=\cos \gamma_{2}=\left(\mathrm{Z}_{2}-\mathrm{Z}_{1}\right)_{\mathbf{j}} \\
& \hat{\mathbf{j}} \cdot \hat{\mathrm{J}}=\cos \beta_{2}=\left(\mathrm{Y}_{2}-\mathrm{Y}_{1}\right)_{\mathbf{j}} \\
& \hat{\mathbf{k}} \cdot \hat{\mathrm{K}}=\cos \gamma_{3}=\left(\mathrm{Z}_{2}-\mathrm{Z}_{1}\right)_{\mathrm{k}}
\end{aligned}
$$

Fig. 3.17 Body axes unit vector directional cosines.

Thus, (3.27) can be written in the following final form:

$$
\begin{aligned}
& \theta=\operatorname{Arcsin}\left[\left(Z_{2}-Z_{1}\right)_{j}\right] \\
& \phi=\operatorname{Arccos}\left[\frac{\left.\left(Y_{2}-Y_{1}\right)_{j}\right]}{\cos \theta}\right]
\end{aligned}
$$

$\psi=\operatorname{Arccos}\left[\frac{\left(\mathrm{Z}_{2}-\mathrm{Z}_{1}\right)_{k}}{\cos \theta}\right]$
To measure the rotational motion of an arm's different joints, the kinematic model has to be defined for each joint. It has been shown that there are three rotational motions in elbow and wrist joint [Chao et at. 1980, 19; Palmer et al. 1985, 23]. However due to the insignificant role of the third rotational motion of the elbow in general [Chao et al. 1980, 19] and in our study in particular, a two degree of freedom (rotation) model is defined for the joint.

For the shoulder a three-DOF spherical joint is used (Fig. 3.18). This kinematic model has been used for the human shoulder in many studies [Taylor et al. 1951, 36; Dempster, 1955, 37; Bahmink et al. 1963, 38; Steindler, 1964, 39; Bausso, 1969, 40; Risteen et al. 1970, 41]. The shoulder joint in this study is considered to have three rotations with respect to the three orthogonal axes. In anatomical terms these are:

- Flexion-Extension,
- Abduction-Adduction,
- Inward-Outward Rotation.

For the elbow, a two-DOF spherical joint is used (Fig. 3.18). This kinematic model has been used for the human elbow in a few studies [Taylor et al. 1951, 36; Taylor, 1954, 42; Dempster, 1955, 37]. Thus

Fig. 3. 18 Kinematic model for shoulder, elbow, and wrist joints.
the elbow joint can have two rotations which are:

- Flexion-Extension
- Pronation-Supination.

At this joint, abduction-adduction of the elbow or in another words the carrying angle (rotation of ulna relative to radial bone at elbow) is omitted.

For the wrist, a three-DOF spherical joint is used (Fig 3.18). This kinematic model has also been used for human wrist before [Youm et al. 1979, 43]. In anatomical terms, these three rotations are defined as follow:

- Flexion-Extension
- Abduction-Adduction
(ulna deviation, radial deviation)
- Inward-Outward Rotation

Thus altogether, in this study, the human arm has eight degrees of freedom and eight rotational motions are measured. In order to measure these eight rotational motions, seven markers are used as shown in Fig. 3.19. For each segment of the arm, one orthogonal body axis is defined. Therefore, three orthogonal body axes are defined for the upper body, forearm, and hand. A fourth orthogonal body axis system is also defined for the shoulder (Fig. 3.20). These orthogonal axes are defined as follows (RHR is used):

- shoulder:

$$
\begin{aligned}
& \overrightarrow{\mathrm{y}}_{0}=\overrightarrow{21} \\
& \overrightarrow{\mathrm{x}}_{0}=\overrightarrow{21} \times \overrightarrow{23} \\
& \overrightarrow{\mathrm{z}}_{0}=\overrightarrow{\mathrm{x}}_{0} \times \overrightarrow{\mathrm{y}}_{0}
\end{aligned}
$$

Fig. .19 Marlems arremgement an the human erm and fixed fixEd freme of reference.

Note: F.F.Fi. : Fixed freme of refererice.

Fig. 3.20 Four orthogonal body axis and fixed frame of referance.

- hand:

$$
\begin{aligned}
& \overrightarrow{\mathrm{y}}_{3}=\overrightarrow{7 \mathrm{M}} \\
& \overrightarrow{\mathrm{x}}_{3}=\overrightarrow{75} \times \overrightarrow{76} \quad \text { (palm up) } \\
& \overrightarrow{\mathrm{z}_{3}}=\overrightarrow{\mathrm{x}}_{3} \times \overrightarrow{\mathrm{y}}_{3}
\end{aligned}
$$

It should be noted that due to the way z_{1} and x_{2} are defined, abduction-adduction at the elbow joint is prevented. These orthogonal body axis are shown schematically in Fig. 3. 20.

The Euler angles of each body axis with respect to a fixed frame of reference can be calculated by using equations (3.28). These give the rotation of each body segment (upper arm, forearm, and hand) with respect to the fixed frame of reference. For joint rotation, the relative motion of the body axes with respect to each other should be calculated. The absolute rotations are defined as follow:

- shoulder: $\quad\left[E_{0}\right]=\left[T_{0}\right][E]$
- upper arm: $\quad\left[E_{1}\right]=\left[T_{1}\right][E]$
- forearm: $\quad\left[E_{2}\right]=\left[T_{2}\right][E]$
- hand: $\quad\left[E_{3}\right]=\left[T_{3}\right][E]$
in which:
[E] : unit vectors of fixed frame of reference,
$\left[\mathrm{E}_{\mathrm{i}}\right]$: body axes unit vectors,
$\left[T_{i}\right]:$ transformation matrix.
The joint rotations (relative) are defined as follows:
- shoulder joint:

$$
\left[\mathrm{E}_{1}\right]=\left[\mathrm{T}_{1}\right]\left[\mathrm{T}_{0}\right]^{-1}\left[\mathrm{E}_{0}\right] \rightarrow\left[\mathrm{E}_{1}\right]=\left[\mathrm{R}_{1}\right]\left[\mathrm{E}_{0}\right]
$$

- elbow joint:

$$
\left[\mathrm{E}_{2}\right]=\left[\mathrm{T}_{2}\right]\left[\mathrm{T}_{1}\right]^{-1}\left[\mathrm{E}_{1}\right] \rightarrow\left[\mathrm{E}_{2}\right]=\left[\mathrm{R}_{2}\right]\left[\mathrm{E}_{1}\right]
$$

- wrist joint:

$$
\begin{equation*}
\left[\mathrm{E}_{3}\right]=\left[\mathrm{T}_{3}\right]\left[\mathrm{T}_{2}\right]^{-1}\left[\mathrm{E}_{2}\right] \rightarrow\left[\mathrm{E}_{3}\right]=\left[\mathrm{R}_{3}\right]\left[\mathrm{E}_{2}\right] \tag{3.30}
\end{equation*}
$$

in which $\left[R_{i}\right]$ is the relative transformation matrix. Thus by calculating relative transformation matrices $\left[R_{i}\right]$, Euler angles for each joint can be calculated easily using equation 3.28 .

CHAPTER 4

FUNCTIONAL ARM MOTION STUDY

The previous two chapters discussed arm motion classification and explained a new 3-D measurement system developed for functional arm motion study. In this chapter, based on the classification of arm motion, the $3-D$ measurement system is applied to study three important ADL. A summary of collected data is presented and an analysis of acquired data is given. Also the static and dynamic error of the system is discussed.

4.1 MATERIALS AND METHOD

This section explains the materials used to study a few functional arm motions and the overall experimental method.

Ten subjects were used in this experiment. All were healthy, right-handed males, ranging in age from 20-29 year and in height from 167 to 185 cm .

Three highly important $A D L$ were chosen to be performed by the subjects. These were three feeding tasks: drinking from a cup, eating with a fork, and eating with a dessert spoon. To provide different degrees of consistency the drink and food consisted of orange juice, muffin, and pudding (or yogurt).

Before the subject performed the experiment, the purpose and the procedure of the experiment was explained. Then the subject was asked to wear a turtle neck shirt, and seven reflective spherical markers
were put on the arm as explained in Chapter 3. An adjustable chair was used in order to adjust the chair height for the subject. The subject was asked to sit upright and flex his elbow to 90 degrees. The chair height then was adjusted so that the subject's forearm almost touched the table of activity. This height was a comfortable height for the subject and was used during the whole experiment.

To calibrate the seven markers, the subject was asked to fix his arm in the standard position: 90 degrees of elbow flexion and forearm neutral rotation (see Fig. 4.1). The arm's standard position was checked by visual observation. The result of this calibration was the initial deviation of the eight joint rotations. The subject would keep his arm in the standard position for 10-15 seconds and then perform drinking, eating with the fork, and eating with the spoon, respectively. Each task was done at least three times. The subject was asked to perform these tasks as naturally as possible.

Before performing each task, in order to identify the simultaneous frames for both recorded tapes, the subject moved his hand up and down rapidly. The returning position of the hand was used for identification and thus subsequent simultaneous frames could be counted by the VCR frame counter and easily identified. The overall time required to prepare the subject and perform the tasks was less than 10 minutes. Another important point that was considered in performing the eating tasks was the type of grip. The subject was asked to handle the fork or dessert spoon in the standard web-of-thumb grip.

Fig. 4.1 The standard arm position.

Fig. 4.2 Type of Grip
This is one of the most frequent types of grip for eating [Sperling et al. 1977, 1].

When the recorded images were processed, two more factors were considered in order to standardize the whole experiment. First, the beginning and end points of each task had to be the same for different subjects; second only data from trials that were performed smoothly and without time lag or pause were processed.

The sampling frequency of recorded images for processing was very important. Some subjects did different feeding activities faster than the others. So in order to get sufficient information, it was necessary to use adaptive sampling. It was found that every 5 frames (which is equal to one sixth of a second) was a sufficient sampling frequency.

4.2 ANALYSIS OF COLLECTED DATA

The detailed collected data for ten subjects are given in Appendix (C), Tables 1 to 18 . These cover the seven rotations for the three feeding tasks. The mean and standard deviation of minimum and maximum
rotations and the resulting arcs (i.e., maximum rotation minus minimum rotation) also were calculated and are presented. A summary of the data is given in Tables 4.1 and 4.2. Table 4.1 shows the eight rotations without taking the initial deviation into account while in Table 4.2 , the initial deviation is taken into account.

The mean and S.D. of the performance time for three feeding tasks and the average number of processed frames (based on a sampling frequency of 6 frames per second) is given in Table 4.3. On the average drinking with a cup took 2.62 sec., eating with a fork took 1.95 sec. and eating with a spoon took 2.31 sec . One interesting point that can be concluded from the data is the relationship between performance time and the degree of consistency (viscosity) of the food. Food with lower consistency takes longer to load and bring to the mouth! Eating food with low consistency requires a more accurate control and lower arm motion speed to prevent spilling. This aspect should be considered in developing preprogrammed feeding motions.

In order to understand and analyze the data in Tables 4.1 and 4.2 , first an explanation should be given about the physical meaning of the numbers. Based on the definition of the four body axes for the shoulder, upper arm, forearm, and hand in Chapter 3, the meaning of the calculated angles ϕ, θ, and ψ (output of program ANGROT.FOR) in clinical terms are:
TABLE 4.1. GVEFAGE AKM JOINT KOTATIIJN IAATA FGR THFEE FEEDING TASKG.

JOINT ROTATION		DFINKINE WITH		$\begin{aligned} & \text { CUF } \\ & \text { ARE } \end{aligned}$	EATING MIN.	WITH A MAX.	FOFT: AFC	EATING MIN.	WITH A MAX.	$\begin{aligned} & \text { SPOON } \\ & \text { ARC } \end{aligned}$	INITIAL DEV.
SHDULDEF:											
FLEXION	MEAN	21.4	48.8	27.4	16.3	40.7	24.4	13.3	41.6	28.3	-5.6
	S. D.	(7.4)	(19.4)	(13.9)	(5.8)	(13.4)	(9.1)	(8.3)	(15.1)	(10.0)	
ABDUCTIIEN	MEAN	-31.0	-49.5	18.5	-25. 4	-37.0	11.6	-25.0	-40.2	15.2	-18.3
	S.D.	(7.6)	(9.4)	(9.5)	(8.0)	(6.9)	(2.6)	(8.2)	(7.1)	(7.2)	
IN. ROTATION	MEAN	13.0	31.2	18.2	12.9	25.9	13.0	12.7	24.6	11.9	-7.8
	S.D.	(7.7)	(14.2)	(8.0)	(11.1)	(11.9)	(2.2)	(15.8)	(15.2)	(5.1)	
ELBOW											
FLEXION	MEAN	78.3	135.9	57.6	100.6	129.0	28.4	107.9	129.9	22.0	-6.7
	S. D.	(6.6)	(3.3)	(5.2)	(9.0)	(5.5)	(5.3)	(10.5)	(6.8)	(7.9)	
PRONATION	MEAN					39.3			24.0		-1.2
	S.D.					(7.5)			(17.1)		
SUPINATION	$\begin{aligned} & \text { MEAN } \\ & \text { S.D. } \end{aligned}$	$\begin{aligned} & -2.3 \\ & (5.1) \end{aligned}$	$\begin{gathered} -30.0 \\ (9.3) \end{gathered}$	$\begin{aligned} & 27.7 \\ & (8.9) \end{aligned}$		$\left.\begin{array}{c} 57.7 \\ (8.0) \end{array}\right]$	$\begin{aligned} & 97.0 \\ & (8.8) \end{aligned}$		$\begin{aligned} & 57.6 \\ & (5.6) \end{aligned}$	$\begin{gathered} 81.6 \\ (17.5) \end{gathered}$	
WRIST											
EXTENSION	MEAN	-3.0	-16.4	13.4	-13.7	-28. 1	14.4	-18.1	-30.9	12.8	-10.5
	S.D.	(3.9)	(8.0)	(6.2)	(7.7)	(6.4)	(3.8)	(6.9)	(7.4)	(4.1)	
ULNAR DEV.	MEAN	11.1	18.9	7.8		6.0			7.0		-2.8
	S. D.	(6.3)	(7.1)	(3.7)		(10.6)			(8.8)		
fadial dev.	MEAN					-2.0	8.0		-1.6	8.6	
	S.D.					(8.9)	(3.0)		(8.8)	2.4	
Rotation	MEAN	0.5	3.0	2.5	0.8	2.9	2.1	0.7	3.2	2.5	-1.0
(IN.-DUT.)	S. D.	(0.9)	(1.7)	(1.6)	(1.1)	(2.5)	(1.6)	(1.2)	(1.6)	(0.8)	

TABLE 4.2. AVEFAGE ARM JOINT FOTATBON DATA FIR THRIME

	TAGLE 4.2. aVERAGE ARM JOINT HOTATJON DATA FIR THREE FEEDING TASHS. takine initial. deviation into accoind (slmmary of tafle: $10-18$ in affernoix (?)									
JOINT ROTATION		DFINEING WITH		$\begin{aligned} & \text { A CUF } \\ & \text { ARC } \end{aligned}$	EATJNG MIN.	WITH A MAX.	FORE ARC.	EATING MIN.	WITH A MAX.	SPOONARC
		MIN.	MAX.							
SHOULDER										
FLEXION	MEAN	15.8	43.2	27.4	10.7	85.1	24.4	7.8	36.1	29.3
	S. D .	(4.4)	(16.3)	(13.9)	(5.2)	(11.7)	(9.1)	(7.7)	(13.7)	(10.0)
ABDUCTIION	MEAN	-12.7	-31.2	18.	-7.1	-19.6	11.5	-6.6	$\cdots 21.8$	15.2
	S. D.	(7.7)	(9.2)	(9.5)	(7.8)	(6.0)	(2.6)	(9.9)	(7.1)	(7.2)
IN. RDTATION	MEAN	5.2	23.4	19.2	5.1	18.1	13.0	4.9	16.8	11.9
	S.1).	(8.0)	(12.0)	(9.0)	(9.8)	(10.0)	(2.2)	(12.0)	(11.9)	(5.1)
ELEOW										
FLEXION	ME.AN	71.6	129.2	517.6	97.8	122.2	23.4	101.2	123.2	22.0
	¢j. D.	(5.9)	(2.5)	(5.2)	(6.6)	(3.6)	(5.3)	(8.1)	(5.0)	(7.9)
PRONATION	MEAN					$3 \mathrm{~B} \cdot 27$			22.9	
	G. D .					(7.6)			(14.6)	
SUPINATICIN	MEAN	3.5	31.2	27.7		59.6	97.0		58.7	81.6
	S. D.	(7.2)	(11.1)	(8.7)		$(7 \cdot B)!$	(B.E)		(5.8)	(17.5)
WRIST										
EXTENSION	MEAN	7.5	-5.9	13.4	-3.2	-17.6	14.4	-7.6	-20.4	
	S.D.	(6.1)	(8.3)	(6.2)	(8.2)	(7.2)	(3.6)	(9.0)	(8.7)	(4.1)
Ill.nar dev.	MEAN	6.3	16.1	7.8		3.2			4.27	
	3.D.	(6.4)	(7.2)	(3.7)		(6.2)			(6.2)	
RADIAL DEV.	ME.AN					$\left.\begin{array}{c} -4.9 \\ (6.7) \end{array}\right\}$	$\begin{gathered} 6.0 \\ (3.0) \end{gathered}$		$\left.\begin{array}{c} -4.4 \\ (5.9) \end{array}\right\}$	$\begin{aligned} & 8.6 \\ & 2.4 \end{aligned}$
ROTATION(IN. -OUT.)	MEAN	-0.	2.0	2.5	-0. 2	1.9	2.1	-0.3	2.2	2.5
	S.D.	(0.8)	(1.7)	(1.6)	(1.0)	(2.2)	(1.6)	(1.0)	(1.3)	(0.8)

TABLE 4.3. Performance Time (Sec.)

Shoulder:
ф>0: Flexion
$\phi\langle 0$: Extension
$\theta>0$: Adduction
$\theta<0$: Abduction
$\Psi\rangle 0$: Inward Rotation
$\psi\langle 0:$ Outward Rotation
Elbow:
$\phi>0$: Flexion
$\Psi\rangle 90^{\circ}$: Pronation (Forearm)
$\psi\left\langle 90^{\circ}\right.$: Supination (Forearm)
Wrist:
ф>0: Flexion
$\phi<0$: Extension
0)0: Ulnar Deviation
$\theta<0:$ Radial Deviation
$\psi\rangle 0$: Inward Rotation
$\psi\langle 0$: Outward Rotation
In all the tables, absolute values for forearm pronation and supination are given, i.e., if the calculated angle is $\psi=135^{\circ}$ or 65°, the table would have 45° pronation or 35° supination respectively.

In order to analyze and evaluate the calculated joint rotations for different tasks in this study, all the available and published data by other research groups are tabulated in Table 4.4. For proper comparison it should be pointed out that for the shoulder joint there is no accurate data available. Only one paper [Davis, 1977, 2] reported
TABLE 4.4. SUMMARY OF AVAILABLE DATA ON FEEDING ACTIVITY.

shoulder flexion-extension data (column 6) based on 9 subjects. These data are not accurate because they are based only on visual observations and furthermore it is for feeding as a whole. They are good indicators, however, as a general range for feeding activity.

For the elbow joint, there are two references. The first [Morrey et al. 1981, 3] (column 2) gives data for drinking with a glass; the second reference [Chao et al. 1980, 4] (column 3) provides data for drinking with a cup. The former study is based on 33 subjects (18 female) and the latter on 15 male subjects. Also, the latter report gives standard deviations, which are important for comparison. These two papers also give data for eating with a fork (column 4 and 5 respectively). All the measurements were done by using a triaxial electrogoniometer.

For the wrist joint, there are also two papers. The first [Brumfield et al. 1984, 5] used a uniaxial electroganiometer and gives wrist flexion-extension for drinking with a glass and eating with a fork (column 2 and 4) and is based on 19 subjects. The second [Palmer et al. 1985, 6] provided two wrist joint rotations using a triaxial electrogoniometer. The data are for drinking with a cup and eating with a fork and were based on 10 subjects (column 3 and 5).

It should be noted that there is no published data on eating with a spoon. Finally the normal range of arm joint rotations is given in the first column [Boone et al. 1979, 7; AAOS, 1965, 8]. This provides a general indication for maximum arm joint rotations.

The initial deviation of different arm joint rotations, which is based on the standard position, is given in the last column of Table 4.1. This is the average for ten. subjects. Basically the effect of the
initial deviation is to shift the range of joint rotations. As an example for shoulder flexion the initial deviation was -5.6° and thus it shifted the shoulder flexion range from $21.4^{\circ}-48.8^{\circ}$ to $15.8^{\circ}-43.2^{\circ}$. The S.D. of joint rotation is also effected by the initial deviation. For the same example the S.D. for minimum and maximum rotations decreased from 7.4 and 19.4 to 4.4 and 16.3 , respectively. The overall effect of taking initial deviation into account is the reduction of S.D. for different joint rotations, which in fact shows its positive effect (i.e., more consistent and less variable) on collected data.

Here it should be emphasized that because of the lack of accurate checking of the standard position for each subject, the collected initial deviation data were not accurate. Through close evaluation and checking of all the data and also the recorded tapes, it was concluded that the initial deviation for wrist extension was not correct $\left(-10.5^{\circ}\right)$. Thus, the wrist extension data without taking the initial deviation into account (Table 4.1) is used for analysis. Note that -10.5° is the largest recorded deviation (except for shoulder abduction which because of the positions of the markers no. 3 and 4 , is clearly acceptable) and also that it has an increasing not decreasing effect on S.D. For the rest of collected data, overall it is concluded that the data in Table 4.2 is correct and may be used for analysis.

Comparison of the collected data with the normal range of arm joint rotations (Table 4.4 , column 1) shows that all of these data are within normal range. Since for shoulder joint rotations there is no accurate data to compare with, these data are analyzed by themselves. The first important aspect that these data show is that the range (i.e., minimum
and maximum joint rotations) and the arc (i.e., maximum joint rotation minus minimum joint rotation) for eating with a fork and eating with a spoon are very close. The second important aspect is the difference of arc and especially the range for the drinking task as compared to the other two tasks; it has a larger arc and higher range of rotation. This is due to the larger distance between the cup and the subject's body and to the smaller distance between the cup and the subject's mouth as compared to the spoon or fork. The third important aspect is that for these tasks only flexion, abduction and inward rotation are required, thus there is no need to provide extension, abduction or outward rotation. Overall the required arc and range for the three tasks are:

SHOULDER:

	Min.	Max.	Arc
- Flexion	5	45	40
- Abduction	-5	-30	25
- In. Rotation	5	25	20

For the elbow joint there are accurate data to compare the collected data with. Starting from elbow flexion for drinking with a cup (the data for glass and cup are almost identical), it is seen that the maximum rotation is identical $\left(130^{\circ}\right)$, but the minimum rotation is different (71° versus 42°). Two factors caused this difference. First, in this study some of the subjects used large forward movement of their trunk and head when performing these tasks. This is the main factor. The second factor is the cup position with respect to subject's body. With the increase ofdistance between cup and subject's body, a smaller
flexion angle is required and, accordingly, a larger flexion arc is needed. This shows an important aspect of arm movement: it is possible to compensate for a large amounts of elbow flexion with trunk and head forward movement. All of the above discussion is also valid for eating with a fork. There is no comparison data for eating with a spoon.

For forearm pronation-supination the following points can be said. When drinking with a cup, the arc is identical $\left(27^{\circ}\right)$, but the range is different. The data in this study shows that only supination ranging from 3.5° to 31.2° is present, while column (3) in Table 4.4 shows 11° pronation and 16° supination. This latter range is more logical and corresponds to the actual pattern of drinking with a cup. The reason for this range difference is basically related to the definition of the neutral position of the forearm. Morrey [Morrey et al. 1981, 3] gave this definition as: "neutral rotation defined as the extended thumb being coplanar with the humerus". This standard position is shown in Fig. 4.3.

Supination

Neutral

Pronation

Fig. 4.3 Forearm Neutral Position
In this study, the forearm neutral position was determined by general observation without any specific criterion as was the case in the above mentioned study. So instead of having positive forearm
initial deviation (approximately 14°), a negative initial deviation $\left(-1.2^{\circ}\right)$ was estimated. This indicates once again the importance of accurately defining the standard position and the need to accurately check the standard position during the experiment.

In the case of feeding with a fork the supination is very close (58 ${ }^{\circ}$). But pronation and thus the arc is not the same. It is clear and can be checked easily by watching the recorded motion in the slow motion mode that the amount of pronation is much larger than the reported 6° in column 5 (Table 4.4). Some factors that might cause small pronation can be the grip type, whether the fork is used in the usual manner or as a spoon, and finally the definition of the beginning and the end of feeding with the fork. In this study the web-of-thumb grip was used. The fork was used in the usual manner and thus at the time of loading food, there is a need of more pronation. Finally, the beginning of feeding is defined as the time of loading the food and the end as the time of unloading the food into mouth. Again there is no comparison data for feeding with a spoon.

Overall, the following aspects can be mentioned about elbow joint rotation. First, except for forearm pronation the range and arc for feeding with a fork and a spoon are almost the same. Second, drinking requires larger flexion arc and smaller pronation-supination while eating requires smaller flexion arc and larger pronation-supination. Third, the large amount of flexion and supination-pronation as a whole for feeding shows the high importance of these two joint rotations. Overall, the required range and arc for these three tasks are:

Elbow:
Min. Max. Arc
$\begin{array}{lll}\text { - Flexion } & 70 & 130\end{array}$

- Pronation 40
- Supination 60

For the wrist joint, there are two papers that provide comparison data. As mentioned for wrist extension the data in Table 4.1 is used. In the case of drinking the extension arcs agree (13 ${ }^{\circ}$), but the range is different $\left(3^{\circ}-16.4^{\circ}\right.$ versus $\left.11.2^{\circ}-24^{\circ}\right)$. The reason again is due to the definition of standard position (zero degrees extension). The first paper (column 2) defines the zero degrees as "the point at which these three [the lateral epicondyle, radial styloid, and center of the second metacarpal head] were linearly aligned while the forearm was held in maximum supination" [Brumfield, et al. 1984, 5]. The second paper did not provide any definition for the standard position. The difference in definition caused the range shift of approximately 8°.

For eating with a fork, the data in this study show a smaller arc (14° versus 27°), while the extension range is within the range of column $4\left(14^{\circ}-28^{\circ}\right.$ versus $\left.9^{\circ}-36^{\circ}\right)$. For eating with a spoon, the data in Table 4.2 shows close correspondence to the data for eating with a fork (12.8 8° versus 14.4° for arc and $13.7^{\circ}-18.1^{\circ}$ versus 28.1° versus $18.1^{\circ}-30.9^{\circ}$ for range).

If the above-mentioned 8° shift is taken into account, the general range of extension for drinking would be $11^{\circ}-24.4^{\circ}$ and its centroid would be 18°, which is very close to the data in column $3\left(19^{\circ}\right)$. In the case of eating with a fork the range of extension would be $21.7^{\circ}-36.1^{\circ}$
and its centroid would be 29°, which is close to the data in column 5 $\left(32^{\circ}\right)$; for the data in column 4 , the centroid is 23° which shows a large difference. The small S.D. (4) for the wrist extension data in this study indicates that it is more reliable. Overall, it can be said that for eating 15° degrees of extension arc is sufficient and the data in this study corresponds more to the actual required extension arc than the data in column 4.

For ulnar and radial deviation there is a very small amount of data to compare with. Only one paper (column 3 and 5) gives the rotation centroids for drinking with a cup and eating with a fork (0 and 7 degrees respectively) and, as previously mentioned, it did not define the neutral position. The very important point about radial-ulnar deviation is that it is extremely sensitive to the way the neutral position is defined. The reason is that it has a very small arc (about 8°). As seen in the last column of Table 4.1 , the initial deviation is -2.8°. This initial deviation depends basically on the position of point M on the line connecting markers 5 and 6 on the subject's wrist. Point M was defined as a point which divides 56 in a ratio of 1 to 2 for all ten subjects (in the program ANGROT.FOR). But because the subjects' wrist sizes were different, the point M should have been measured according to a criterion for each individual subject. This method would change the initial deviation and overall it would provide more reliable data.

Overall, the following points can be said about wrist extension and radial-ulnar deviation for all the three tasks. First, for all
three tasks the extension and radial-ulnar deviation arc are almost the same (13.5° and 8° respectively). Second, the range of extension and radial-ulnar deviation for the two eating tasks are almost the same and there is a clear distinction between eating and drinking tasks. Third, because radial-ulnar deviation has a smaller arc and range than wrist extension, it can be concluded that wrist extension has a higher importance and priority than wrist radial-ulnar deviation and furthermore, ulnar deviation is more important than radial deviation.

As a whole the required minimum, maximum, and arc for all the three tasks are:

Wrist:

Min. Max. Arc

- Extension: $0 \quad-35 \quad 35$
- Ulnar Dev.:

15
\} 20

- Radial Dev.:
-5
These arcs and ranges are generally in agreement with the available published data [Brumfield, 1984, 5; Palmer et al. 1985, 6]. Another important conclusion that can be made based on what was discussed above is that it is possible to determine versatile positions for these two rotations and thus fix the prosthetic wrist at these positions. These positions can be the centroid for each rotation. Thus, 15° extension and 10° ulnar deviation are recommended. Brumfield [Ibid] suggested that 10° of extension is probably the most versatile position for wrist fusion".

In Table 4.2 there is a third wrist rotation ψ. According to the kinematic model that was explained in Chapter 3 , three degrees of
rotational freedom were chosen for the wrist joint. The physical meaning of this third rotation in clinical terms is inward-outward wrist rotation. For the three feeding tasks the range and the arc of inward-outward rotation are very close $\left(-.4^{\circ}\right.$ to 2.1° and 2.5° respectively). These data show that: (1) There is a third wrist rotation as was shown before [Palmer et al. 1984, 6]; (2) It is within the range that was estimated for 52 standardized tasks, i.e., 2.2° to 11.8° [Ibid]; (3) It is very small and thus negligible.

4.3 STICK DIAGRAMS AND ANGLE-TIME GRAPHS

In order to provide a visual presentation of the arm motion pattern, three stick diagrams are given for each task. These three diagrams show the arm motion pattern in three orthogonal planes: top view, side view, and front view. These stick diagrams show the following important aspects of the arm motion. First, it provides the general pattern of the arm motion for each especific task; thus by comparing the stick diagrams of different activities, it is possible to recognize visually the difference in motion patterns (e.g., eating with a fork compared to drinking). Second, from a kinematic point of view it clearly shows the change of velocity and thus acceleration of the arm. Third, it clearly shows the trunk forward motion (body front flexion) and partially shoulder elevation-depression. This helps in understanding the compensation effect of the subject's trunk forward motion on the arm joint rotations during different tasks.

Figures 4.4 to 4.6 show stick diagrams for the three feeding tasks

Fig. 4.4 STICK DIAGRAM-DRINEING (CUF) WITHOUT EODY MOVEMENT.

Fig.4.5. STICK DIAGFAM-EATING (FOFK) WITHOUT BODY MOVEMENT.

Fig.4.6. STICK DIAGRAM-EATING (SFOON) WITHOUT EODY MOVEMENT.

Fig.4.7. STICF DIAGRAM-DFINKING (CUF) WITH BODY MOVEMENT.

Fig.4.b. STICF DIAGFAM-EATING (FOFE) WITH EODY MOVEMENT.

Fig.4.9. STICE DIAGFGM-EATING (SFOON) WITH BODY MOVEMENT.

Fig.4.10. STICK DIAGRAM-STANDAFD FOSITION.
when the subject sits upright. Figures 4.7 to 4.9 show the same tasks while the subject moves his trunk forward. Fig. 4.10 shows the standard position for one of the subjects. It clearly shows some of the initial deviation for the joints.

Angle-time graphs are another way of presenting arm motion patterns. Here, the quantitative changes of different arm joint rotations are presented. These graphs show the individual changes of joint rotations with respect to time. The significance of these graphs is as follows: (1) it provides a visual but quantitative presentation of individual joint rotations, (2) it provides the simultaneous pattern of quantitative changes in different joint rotations during performing different tasks, and (3) it provides the range and arc of each joint rotation visually. Figures 4.11 to 4.19 show the angle-time graphs of the three arm joints for the three feeding tasks. It is noted that these graphs are not smoothed or filtered in any way.

4.4 STATIC AND DYNAMIC ERROR ANALYSIS

One important aspect of any measurement system that should be evaluated is the system measurement error. In the case of the 3-D measurement system, this includes both static and dynamic system errors.

One way of estimating the static error of the system is to calculate the $3-D$ coordinates of a few reflective spheres whose positions are measured and known. Five white table-tennis balls were used in this method. Their positions were measured with a tape-measure with 1 mm accuracy. The measured and calculated values are tabulated in

FIG.4.13 ANGLE-TIME GRAPH

FIG.4.14 ANGLE-TIME GRAPH

FIG.4.18 ANGLE-TIME GRAPH

Table 4.5. The maximum difference is for the Z-coordinate of the fifth ball (7 mm). The field of view was $80 \times 80 \mathrm{~cm}^{2}$ and based on that, the maximum and minimum percentage of errors were calculated to be: $+.875 \%$ and $-.500 \%$. The different factors that were involved in generating this amount of error are:

- the inaccuracy of system calibration;
- the shadows that are around the balls because of non-optimal illumination;
- the noise in the image processing system;
- the error in the measurement of the table-tennis ball coordinates with the tape-measure.

Another method used to estimate the static error of the system was as follows. Markers number 5 and 6 on the subject's arm had a fixed distance w.r.t. each other. This fixed distance was measured (11 cm) and the recorded images of the subject's standard position was processed several times (usually five times). The standard position was a fixed and stationary position and thus the calculated error can be called static error. Based on the processed image, the distance 56 was calculated and compared to the measured value. The minimum and maximum percentages of errors were calculated. This method was applied to all the ten subjects and the results are tabulated in Table 4.6. As can be seen, the mean value of the maximum percentage of error for ten subjects is 1.53\% (with a small S.D. . 34). This is greater than what was calculated previously (1.53\% versus .88\%).

The main reason for this discrepancy is the marker sizes. In the former case, table-tennis balls were used which are 1.5 inches in diameter, but in the latter case the reflective markers were used which

TAELE 4.5. STATIC ERROR OF THE SYSTEM (CALIBRATION MARKERS).

TEST		MEASURED		CALCULATED			DIFFEFENCE		
MARKEER NO.	x	Y	z	X	Y	2	DEL (X)	DEL (Y)	DEL (2)
1	511	639	319	515	641	320	-4	-2	-1
2	217	1124	269	219	1122	270	-2	+2	-1
3	651	1235	201	654	1232	201	-3	+1	0
4	511	639	13日	512	638	137	-1	+1	+1
5	850	879	71	B47	878	78	+5	+1	-7

NOTES: ALL DATA AFE IN MM.
FIELD OF VIEW : 800×800 SQUARE MM.

TAELE 4.6. STATIC ERROR OF THE SYSTEM (EODY MARKEFIS)

SUEJECT	MIt, (\%)	MAX. (\%)
1	- \square^{5}	1. S ¢
2	0.94	1.76
3	$\therefore \mathrm{i} 90$	1.60
4	1.02	2.30
5	¢. 05	1.17
6	1.46	1.72
7	1.05	1.35
Θ	0.74	1.15
9	1. B	1. 56
10	0.6.4	1. 25
MEAN	- 96	1. 5\%
S.D.	2.20	0.84

are $11 / 16$ inch in diameter. Basically, the same sources of error can be mentioned for this method. Another interesting aspect that can be seen in Table 4.6 is the change of percentage of error from a minimum amount (.96\%) to a maximum amount (1.53\%). These are based on processing the same image five times. This shows clearly the effect of noise in the image processing system. In another words, the acquired image of the markers changes slightly each time that the incoming stationary camera image is captured in the frame buffer, and thus the centroids of the markers change.

The effect of the above-mentioned error of the image processing system on the calculated Euler angles is shown in Table 4.7. The tabulated data are the differences between the maximum and minimum calculated angles (based on processing the original image five times). As can be seen, the effect varies from $.14^{\circ}$ to 2.75°. Generally, the effect on shoulder joint rotations is much bigger than the other joint rotations. The reason is due to the fact that markers 1,2 , and 3 which define the shoulder body axis, are very close to each other and thus small changes in the centroid coordinates of these markers cause relatively large changes in the direction cosines of the body axes and thus the shoulder joint rotations (which are defined as the relative rotations of the upper arm body axis with respect to shoulder body axis) go through relatively larger changes.

One simple method for the estimation of the system's dynamic error is as follows: As it was explained before, markers number 5 and 6 have a fixed distance with respect to each other. So it is possible to calculate the distance 56 when the subject's arm is in motion and
TABLE 4.7. SYSTEM STATIC ERROR EFFECT ON EULER ANGLES (DEGREES).

JOINT-->	SHCULDER			ELBOW			WRIST		
SUBJECT	PHI	THETA	PSI	PHI	THETA	PSI	PHI	THETA	PSI
1	2.17	1.8	3.05	0.39	-	0.67	1.38	1.24	0.17
2	0.36	2.07	2.22	0.19	-	0.63	0.28	0.29	0.04
3	0.45	2.13	2.33	0.28	-	1.67	0.75	0.23	0.10
4	0.46	3.60	3.63	0.18		0.73	0.58	0.61	0.14
\square	1.04	1.10	2.80	0.25	-	0.75	0.81	0.28	0.04
6	1.22	2.91	2.10	0.35	-	0.88	0.83	0.37	0.18
7	1.84	1.76	2.99	0.25	-	0.80	3.08	0.80	0.21
8	0.73	0.78	1.42	0.27	-	1.06	0.55	0.33	0.09
9	0.77	1.41	4.49	0.47	-	1.18	0.50	0.58	0.25
10	1.53	3.36	2.51	0.26	-	1.32	0.46	0.12	0.16
MEAN	1.06	2.09	2.75	0.29	-	0.97	0.92	0.48	0.14
S.D.	0.59	0.89	0.82	0.08	-	0.32	0.77	0.32	0.07

estimate the amount of error. This was done for ten subjects for all the three feeding tasks. The results are tabulated in Table 4.8. The overall mean dynamic error for all ten subjects and all three feeding tasks is between +2.65\% and $-.85 \%$ (with S.D. of . 99 and 1.29 respectively). Now an important question that can be asked is: Why does error increase in the dynamic situation compared to the static situation (.96\% to 1.53% with S.D. . 26 and .34 respectively - Table 4.6)? There are two main factors. The first one is the low number of frames per second compared to arm motion speed, especially in the middle of feeding performance (because of maximum arm speed at and around that time). The effect of this condition is the elongation of marker shape and thus a small change of the marker centroid coordinates. The second factor is the shadow around the marker and its change corresponding to the change of marker position in space with respect to the illumination direction. In brief, it is because of non-optimal illumination. The combination of these two factors causes the increase in system error.

Overall this amount of error is acceptable for the functional arm motion study. To improve the accuracy of the system the following provisions should be made.

- More accurate measurement of calibration markers coordinates and thus more accurate estimation of calibration parameters.
- Better illumination in order to minimize shadows around the markers at any position in space.
- Bigger reflective markers.
TABLE 4.B. DYNAMIC ERFOF OF THE SYSYTEM.

ACTIVITY - -	DEIN:ING	(CUF)	EATING	(FORK)	EATING	(SPOON)	ALL	THREE
SUBJECT	$\%$		\%		$\%$			\%
1	-0.74	3.02	0.0	4.016	0.0	2.10		
2	-1.02	1.45	-0.02	3.44	0.0	4.27		
3	-0.17	2.94	0.0	3.51	0.0	3.78		
4	-6.69	1.41	-1.26	1.67	0.0	3.50		
5	-1.40	2.59	-2.34	1.81	0.0	2.25		
6	$\cdots 2.66$	1.40	0.0	3.76	-0.77	1.02		
7	- 0.53	2. 17	-0.36	4.20	-0.88	1.98		
8	-1.19	3.20	-0.82	2.90	-1.23	1.55		
9	$\cdots .61$	3.48	0.0	2.85	-0.70	0.87		
10	-1.40	2.56	0.0	3.91	-0.71	1.82		
MEAN	-1.65	2.42	-0.48	3.21	-0.43	2.31	-0.85	2.65
S.D.	1.80	0.74	0.75	0.95	0.45	1.10	1.29	70.99

4.5 CONCLUSION

The application of the 3-D measurement system to the functional arm motion has shown the following points:

1- The applicability of the system for this kind of study.
2- Sufficient accuracy (i.e., less than 3% dynamic error) and repeatability of the $3-\mathrm{D}$ measurement system.

3- The system is easy to use and comparatively fast processing the recorded images of a feeding task typically takes one hour). The required time to make the subject ready and do the experiment is less than 10 minutes. If the syncing problem between the VCR and PC-image acquisation system is solved, the total required time to process the recorded images for each task with sufficient sampling frequency would be less than 30 minutes.

The analysis of the collected data from ten subjects performing three feeding tasks has shown the following points.

1- Overall, the collected data shows the correct required range and arc for the three tasks.

2- The kinematic model for the three arm joints is valid and provides correct arm joint rotation patterns.

3- The overall required range and arc for three feeding tasks can be summarized as shown in Table 4.9.

TABLE 4.9 The Required Range and Arc for Feeding

JOINT (ROTATIONS)	RANGE		ARC
	Min.	Max.	
SHOULDER			
- Flexion	5	45	40
- Abduction	-5	-30	25
- In. Rotation	5	25	20
ELBOW			
- Flextion	70	130	60
- Pronation		40	\| 100
- Supination		60	\}100
WRIST			
- Extension	0	-35	35
- Ulnar Deviation		15	\} 20
- Radial Deviation		-5	\} 20

4- The relative importance of different arm joint rotations for feeding tasks is as follows: elbow flexion, elbow supination, elbow pronation, three shoulder rotations, wrist extension, wrist ulnar deviation and finally wrist radial deviation. This is in general agreement with the study at UCLA (Table 2.2) [Keller et al. 1947, 9; Mason, 1977, 10]. However, it also shows that for feeding tasks elbow supination, wrist extension, and wrist ulnar deviation have a much higher relative importance than the UCLA report concluded (for 51 ADL).

5- It can be said that the two wrist rotations can be eliminated and fixed versatile positions can be used instead (15 wrist extension and 10° ulnar deviation). Also, the extreme importance of forearm supination-pronation should be emphasized as was done by Stein at the University of Alberta [Stein et al. 1980, 11]. All the three shoulder rotations are almost at the same level of importance for feeding tasks. A fixed versatile axis of rotation for shoulder (for feeding tasks) is a logical alternative as was addressed by Enger [Enger, 1967, 12].

6- As a whole it can be concluded that the most crucial rotations that should be provided for a prosthetic arm are elbow flexion and forearm supination-pronation.

CHAPTER 5

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

An approach to the design of a prosthetic arm controller is formulated. This approach is based on a fundamental study of functional human arm motion. To provide a proper basis and direction for this type of study, human arm movements were classified. To study different aspects of the approach, a new 3-D measurement system was developed.

The $3-\mathrm{D}$ measurement system was applied to study three feeding tasks: drinking with a cup, eating with a fork, and eating with a spoon. Ten right-handed healthy males participated in the experiment. Food with different degrees of consistency were used. It was concluded that for the three feeding tasks, the required range of rotations were: for the shoulder 5 to 45 degrees flexion, 5 to 30 degrees abduction, and 5 to 25 degrees inward rotation; for the elbow 70 to 130 degrees flexion, 40 degrees pronation, and 60 degrees supination; for the wrist 0 to 35 degrees extension, 15 degrees ulnar deviation, and 5 degrees radial deviation. It was concluded that elbow flexion and forearm pronation-supination are the most important elementary motions. Also, it was shown that wrist inward-outward rotation was negligible and that versatile fixed positions of 15 degrees of wrist extension and 10 degrees of ulna deviation could be used. The three shoulder rotations were of equal importance.

In order to provide a better understanding of joint rotations and motion patterns, the collected data were presented in two other forms: stick-diagrams and angle-time graphs. Some aspects of functional arm motion patterns can be seen and understood more easily using these two forms.

The maximum static error of the system is 1.53% and the dynamic error is between -.85\% to 2.65\%. Thus the system has a sufficient static and dynamic accuracy for functional arm motion study.

Overall, the following conclusions can be made:

1. An approach to the design of a prosthetic arm controller is formulated.
2. The fundamental bases for this approach are developed, i.e.,

- the fundamental questions that should be studied and answered;
- the classification of human arm motion;
- the 3-D measurement system (hardware and software);

3. The $3-\mathrm{D}$ measurement system is applicable and has sufficient accuracy for functional arm motion study. Its repeatability is shown by relatively consistent results for ten subjects (smaller S.D. for the min. and max. required rotations compared to the results of other studies). It is easy to use and more suitable for this type of study than any other system that has been used before.
4. The kinematic model for three arm joints is valid and provides correct arm joint rotation patterns.
5. The high importance of elbow flexion and forearm pronation-supination for feeding tasks is shown, and versatile
fixed positions for wrist extension and ulnar deviation are recommended.
6. The compensation effect of body and head forward motion on the range and arc of different joints is shown. This and the existence of S.D. (4 to 19) for the minimum and maximum required rotations (for all joints) provide a relatively flexible condition for preprogramming feeding tasks.

Important problems that should be solved in order to improve the 3-D measurement system and those aspects that should be studied in the future to provide thorough and detailed information for developing new control strategies for prosthetic arm are as follows:

1. The syncing problem between VCR and PC-image acquisition system is the most important problem to be solved. Solving this would drastically reduce the processing time.
2. Accurate definition of standard position and development of a proper technique for checking the defined standard position.
3. Developing a better illumination system in order to minimize shadows around the markers, to minimize the reflection from the subject's skin and consequently putting all the markers directly on the subject's skin (minimizing the displacement of markers 1,2 , and 3 and thus the effect of one source of error).
4. Using bigger reflective markers.
5. Study of other activities of daily life (e.g., selfcare and hygiene, dressing).
6. Study of versatile axis of shoulder rotation for feeding tasks.
7. Study of general pattern of change of forearm supination-pronation with respect to elbow flexion for feeding tasks in order to couple these two rotations.
8. Study of the effects of using fixed versatile positions for two wrist rotations on the other arm joints and subject's body and head movements (the compensation problem).
9. Study of specific implications of the fundamental study of functional human arm motion on the development of control strategies for prosthetic arm in general and EMG-control (Cybernetic control) in particular.

CHAPTER 1

[1] McKenzie, D. S., "Still a Long Way to Go," Artificial Limbs, Vol.11, No. 2:1-4, Autumn 1967.
[2] Jacobsen, S. C., Knutti, D. F., Johnson, R. T., and H. H. Sears, "Development of the Utah Artificial Arm," IEEE Transactions on Biomedical Engineering, vol. BME-29, No. 4:249-269, April 1982.
[3] Carlson, L. E., and D. D. Hock, "Kinematic Analysis of Coupled Arm Prostheses," J. Biomech. Eng., Vol.99, Sec. 4:110-115, May 1977.
[4] Reswick, J. E., "Biomedical Research program on Cybernetic systems for the Disabled," Case Western Reserve University, Cleveland, Ohio, Cybernetic Systems Group, 1970.
[5] Funakubo, H., Isomura, T., Itoh, H., and T. Yamaguchi, "Total Arm Prosthesis Driven by 12 Micro-Motors, packetable Microcomputer and Voice and Look-Sight Microcommanding system." In: International Conference on Rehabilitation Engineering, Toronto, Ontario, Canada, June 16-20, 1980.
[6] Keller, A. D., Taylor, G. L., and V. Zahm, "Studies to Determine the Functional Requirements for Hand and Arm Prosthesis," Department of Engineering, University of California (Los Angeles), 1947.
[7] Taylor, G. L., and A. C. Blaschke, "A Method for Kinematic Analysis of Motions of the Shoulder, Arm, and Hand Complex," Annals New York Academy of Sciences, Vol. 51, Art. 7:1251-1265, Jan. 31, 1951.
[8] Taylor, G. L., "The Biomechanics of the Normal and of the Amputed Upper Extremity." In: "Human Limbs and Their Substitutes," P. E. Klopsteg, and P. D. Wilson, Facsimile Reprint of the 1954 Edition, Hafner Publishing Company, 1968.
[9] Taylor, G. L., "The Biomechanics of Control in Upper-Extremity Prostheses, "Artificial Limbs, Sept. 1955. Republished in: Orthatics and Prosthetics, Vol. 35, No. 1:7-28, March 1981.
[10] Enger, S.,"The Basis for a prosthetic Shoulder Analogue and A View of Upper Limb Function," Med. \& Biol. Eng., Vol. 5:455-462, 1967.
[11] Engen, T. J., and W. A. Spencer, "Method of Kinematic Study of Normal Upper Extremity Movements," Archives of Physical Medicine \& Rehabilitation, Vol. 49:9-12, Jan. 1968.
[12] Engen, T. J., and W. A. Spencer, "Development of Externally Powered Upper Extremity Orthotics," Final Report Texas Institute for Rehabilitation and Research, Houston, Texas, Jan. 1969.
[13] Davis, P. R., "Some Significant Aspects of Normal Upper Limb Functions." In: "Conference on Joint Replacement in the Upper Limb," The Institute of Mechanical Engineers, London, 1977.
[14] Chao, E. Y., An, K. N., Askew, L. J. and b. F. Morrey, "Electrogoniometer for the Measurement of Human Elbow Joint Rotation," J. Biomechanical Eng., Vol. 102:301-310, Nov. 1980.
[15] Morrey, B. F., Askew, L. J., An., K. N., and E. Y. Chao, "A Biomechanical Study of Normal Functional Elbow Motion," The Journal of Bone and Joint Surgery, Vol. 63-A, No. 6:872-877, July 1981.
[16] Langrana, N. A., "Spatial Kinematic Analysis of the Upper Extremity Using a Biplanar Videotaping Method," J. of Biomechanical Engineering, Vol. 103:11-17, Feb. 1981.
[17] Langrana, N. A., "The Kinematic and Force Analysis of Upper Extremity-Orthosis System," ASME, 78-DET-51, 1978.
[18] Brumfield, R. H., and J. A. Champoux, "A Biomechanical Study of Normal Functional Wrist Motion, " Clinical Orthopaedics andRelated Research, No. 187:23-25, July/August 1984.
[19] Palmer, A. K., Werner, F. W., Murphy, D., and R. Glisson, "Functional Wrist Motion: A Biomechanical Study," The Journal of Hand Surgery, Vol. 10A, No. 1:39-46, January 1985.
[20] Napier, J., "The Evolution of The Hand," Scientific American, 56-62, Dec. 1962.
[21] Napier, J. R., "The Prehension Movements of the Human Hand," The Journal of Bone and Joint Surgery, Vol. 38B, No. 4:902-913, Nov. 1956.
[22] Landsmeer, J. M. F., "Power Grip and Precision Handling," Ann. Rheum. Dis., Vol. 21:164-170, 1962.
[23] Yamashita, T., and M. Mori, "Engineering Approaches to Function of Fingers," Report of the Institute of Industrial Science, The University of Tokyo, Vol. 13:60-110, 1963.

Gilad, I., "Objective Performance Analysis of Artificial Hands Towards Improvements of Function," Ergonomics, Vol. 29, No. 4:553-561, 1986.
[35] Fleischer, A. G., and W. Lange, "Analysis of Hand Movements During the Performance of Positioning Tasks," Ergonomics, Vol. 26, No. 6:555-564, 1983.
[36] Fleischer, A. G., and G. Becker, "Free Hand-Movements During the Performance of a Complex Task," Ergonomics, Vol. 29, No. 1:49-63, 1986.
[37] Smith, R. 0., and M. W. Benge, "Pinch and Grasp Strength: Standardization of Terminology and Protocol," The American Journal of Occupational Therapy, Vol. 39, No. 8:531-535, Aug. 1985.

CHAPTER 2

[1] Schade, J. P., "Introduction to Functional Human Anatomy," Philadelphia, Saunders, 1974.
[2] Vukobratovic, M., and J. Stepanenko. "On the Stability of Anthropomorphic System," Mathematical Biosciences, Vol. 15:1-37, 1972.
[3] Berme, N., Heydinger, G., and A. E. Engin, "Biomechanics of the Joints in the Upper Limb" In: "Biomechanics of Normal and Pathological Human Articulating Joints," N. Berme, A. E. Engin and K. M. Correia (Editors), 1985.
[4] Kinzel, G. L., Hall, A. S., and B. M. Hillberry, "Measurement of the Total Motion Between Two Body Segments - I. Analytical Development," J. Biomechanics, Vol. 5:93-105, 1972.
[5] Kinzel, G. L., and L. J. Gutlkowski, "Joint Models, Degrees of Freedom, and Anatomical Motion Measurement," J. Biomed. Eng., Vol. 105:55-62, 1983.
[6] Jacobsen, S. C., Knutti, D. F., Johnson, R. T., and H. H. Sears, "Development of the Utah Artificial Arm," IEEE Transactions on Biomedical Engineering, Vol. BME-29, No. 4:249-269, April 1982.
[7] Zimmerman, M. D., "Designing the Ultimate Man/Machine Interface Technology for the Handicapped," Machine Design, 38-43, April 8, 1982.
[8] Thornton-Trump, A. B., "Gait Analysis" In: "Progress in Biomechanics," N. Akkas (Editor), Nato Advanced Study Institutes Series, 127-155, 1979.
[9] American Academy of Orthopaedic Surgeons, "Joint Motion: Method of Measuring and Recording," Chicago, American Academy of Orthopaedic Surgeons, 1965.
[10] Boone, D. C., and S. P. Azen, "Normal Range of Motion of Joints in Male Subjects," J. Bone and Joint Surgery, Vol. 61A, No. 5:756-759, July 1979.
[11] Hancock, W. M., "The System precision of MTM-1," The Journal of Methods Time Measurement, Vol. 15, No. 3:56-63, 1977.
[12] Karger, D. W., and F. H. Bayha, "Engineered Work Measurement," 2nd Edition, Industrial Press, New York, 1966.
[13] Gilad, I., "Using an Elemental Analysis of the Motion Pattern to Assess the Work Performance of Amputees," Human Factors, Vol. 24, No. 4:427-435, 1982.
[14] Gilad, I., "Motion Pattern Analysis for Evaluation and Design of a Prosthetic Hook," Arch. Phys. Med. Rehab., Vol. 66:399-402, June 1985.
[15] Gilad, I., "Objective Performance Analysis of Artificial Hands TowardsImprovements of Function," Ergonomics, Vol. 29, No. 4:553-561, 1986.
[16] McWilliams, R. "A List of Everyday Tasks for Prosthesis Design and Development," Bull. Pros. Research, 10-13: 135-164, Spring 1970.
[17] Keller, A. D., Taylor, G. L., and V. Zahm, "Studies to Determine the Functional Requirements for Hand and Arm Prosthesis," Department of Engineering, University of California (Los Angeles), 1947.
[18] Mason, P. C., "Design of a Powered Prosthetic Arm System for the Above-Elbow Amputee," B.P.R., 10-24, Fall 1972.

CHAPTER 3

[1] Cappozo, A., "Experimental Techniques, Data Acquisation and Reduction." In: "Biomechanics of Normal and Pathological Human Articulating Joints," Berme, N., Engin, A. E., NATO ASI Series, p.p.53-81, 1985.
[2] Winter, D. A. "Biomechanicas of Human Movement With Applications to the Study of Human Locomotion," CRC Critical Reviews in Biomedical Engineering, Vol. 9, No. 4:287-314, 1984.
[3] Chao, E. Y., "Experimental Methods for Biomechanical Measurements of Joint Kinematics." In: "CRC Handbook of Engineering in Medicine and Biology," Vol. 1, Sec. B:385-411, 1978.
[4] Atha, J., "Current Techniques for Measuring Motion," Applied Ergonomics, Vol. 15, No. 4:245-257, Dec. 1984.
[5] Ayoub, M. A., Ayoub, M. M., and J. D. Ramsey, "A Stereometric System for Measuring Human Motion," Human Factors, Vol. 12, No. 6: 523-535, Dec. 1970.
[6] Fioretti, S., Germani, A., and T. Leo, "Stereometry in Very Close-Range Stereophotogrammetry With Non-Metric Cameras for Human Movement Analysis," J. Biomechanics, Vol. 18, No. 11:831-842, 1985.
[7] Keller, A. D., Taylor, G. L., and V. Zahm, "Studies to Determine the Functional Requirements for Hand and Arm Prosthesis," Dept. of Engineering, University of California, Los Angeles, July 25, 1947.
[8] Engen, T. J., and W. A. Spencer, "Development of Externally Powered Upper Extremity Orthotics, Final Report, "Texas Institute for Rehabilitation and Research, Houston, Texas, Jan. 1969.
[9] Nicol, A. C., Berme, N., and J. P. Paul, "A Biomechanical Analysis of Elbow Joint Function." In: "Conference on Joint Replacement in the Upper Limb," The Institute of Mechanical Engineers, London, p.p.45-51, 1977.
[10] Erdman, A. G., Mayfield, J. K., Dorman, F., Wallrich, M., and W. Dahlof, "Kinematic and Kinetic Analysis of the Human Wrist by Stereoscopic Instrumentation," J. Biomechanical Engineering, Vol. 101:124-133, May 1979.
[11] Langrana, N. A., "Spatial Kinematic Analysis of the Upper Extremity Using a Biplanar Videotaping Method," J. Biomechanical Engineering, Vol. 103:11-17, Feb. 1981.
[12] Suzuki, Y., Tsuchiya, K., and M. Takahashi, "ADL Motion Analysis by 'Selspot'." In: "Biomechanics, VIII-B," 8th International Congress of Biomechanics, Nagoya, Japan, p.p.533-538, 1981.
[13] Chao, E. Y., and B. F. Morrey, "Three-Dimensional Rotation of the Elbow," J. Biomechanics, Vol. 11:57-73, 1978.
[14] Robbin, M. L., An, K. N., Linscheid, R. L., and E. L. Ritman, "Anatomic and Kinematic Analysis of the Human Forearm Using High-Speed Computed Tomography," Med. \& Biol. Eng. \& Comp., 164-168, March 1986.
[15] Andrews, J. G., and Y. Youm, "A Biomechanical Investigation of Wrist Kinematics," J. Biomechanics, Vol. 12:83-93, 1979.
[16] Brumbaugh, R. B., Crowninshield, R. D., Blair, W. F., and J. G. Andrews, "An In-Vivo Study of Normal Wrist Kinematics," J. Biomechanical Engineering, Vol. 104:176-181, Aug. 1982.
[17] Engin, A. E., Peindl, R. D., Berme, N., and I. Kaleps, "Kinematic and Force Data Collection in Biomechanics by Means of Sonic Emitters - I: Kinematic Data Collection Methodology, "J. Biomechanical Engineering, Vol. 106:204-211, Aug. 1984.
[18] Engin, A. E., Peindl, R. D., Berme, N., and I. Kaleps, "Kinematic and Force Data Collection in Biomechanics by Means of Sonic Emitters-II: Force Data Collection and Application to the Human Shoulder Complex," J. Biomechanical Engineering, Vol. 106:212-219, Aug. 1984.
[19] Chao, E. Y., An, K. N., Askew, L. J., and B. F. Morrey, "Electrogoniometer for the measurement of Human Elbow Joint Rotation," J. Biomechanical Engineering, Vol. 102:301-310, Nov. 1980.
[20] Sommer III, H. J., and N. R. Miller, "A Technique for Kinematic Modeling of Anatomical Joints," J. Biomechanical Engineering, Vol. 102:311-317, Nov. 1980.
[21] Morrey, B. F., Askew, L. J., An, K. N., and E. Y. Chao, "A Biomechanical Study of Normal Functional Elbow Motion," The Journal of Bone and Joint Surgery, Vol. 63-A, No. 6:872-877, July 1981.
[22] Brumfield, R. H., and J. A. Champoux, "A Biomechanical Study of Normal Functional Wrist Motion," Clinical Orthopaedic and Related Research, No. 187:23-25, July/Aug. 1984.
[23] Palmer, A. K., Werner, F. W., Murphy, D., and R. Glisson, "Functional Wrist Motion: A Biomechanical Study," The J. of Hand Surgery, Vol. 10A, No. 1:39-46, Jan. 1985.
[24] Duda, R. 0., and P. E. Hart, "Pattern Classification and Scene Analysis," John Wiley \& Sons, New York, 1973.
[25] Ballard, D. H., and C. M. Brown, "Computer Vision," 1982.
[26] Lee, C. S. G., "Robot Arm Kinematics, and Control," Computer, p.p.62-80, Dec. 1982.
[27] Wu, C. K., Wang, D. Q., and R. K. Bajcsy, "Acquiring 3-D Spatial Data of a Real Object," Computer Vision, Graphics, and Image Processing, Vol. 28:126-133, 1984.
[28] Abdel-Aziz, Y. I. and H. M. Karara, "Photogrammetric potentials of Nonmetric Cameras," Civil Eng. Studies, Photogrammetry Series No. 36, University of Illinois, Urbana, Illinois, 1974.
[29] Miller, N. R., Shapiro, R., and T. M. McLaughlin, "A Technique for Obtaining Spatial Kinematic Parameters of Segments of Biomechanical Systems From Cinematographic Data," J. Biomechanics, Vol. 13:535-547, 1980.
[30] Shapiro, R., "Direct Linear Transformation Method for Three-Dimensional Cinematography," The Research Quarterly, Vol. 49, No. 2:197-205, 1978.
[31] Walton, J. C., "Close-Range Cine-Photogrametry: Another Approach to Motion Analysis." In: Science in Biomechanics Cinematography, J. Terauds (Editor), 69-97, 1979.
[32] Spencer, A. J. M., Parker D. F., and D. S. Berry, "Engineering Mathematics," Vol. 2, Von Nostrand Reinhold Company Limited, 1977.
[33] Kinzel, G. L., and L. J. Gutkowski, "Joint Models, Degrees of Freedom, and Anatomical Motion Measurement," J. Biomechanical Eng., Vol. 105:55-62, Feb. 1983
[34] Greenwood, D. T., "Principales of Dynamics," Prentice-Hall, Inc., 1965.
[35] Rosenberg, R. M., "Analytical Dynamics of Discrete Systems," 1977.
[36] Taylor, C. L., and A. C. Blaschke, "Annals New York Academy of Sciences," Vol. 51, 1951.
[37] Dempster, S. T., "The Anthropometry of Body Motion," Annals New York Academy of Sciences, Vol. 63:559-585, 1955.
[38] Bahniuk, E., and M. J. Wiynschenk, ASME Paper No. 63-WA-282, 1963.
[39] Steindler, A., "Kinesiology of the Human Body," Thomas Springfield, 1964.
[40] Bousso, D., "Biomedical Engineering," Vol. 4, 1969.
[41] Risteen, F. C., and L. E. Torfason. ASME Paper No. 70-MECH-55, 1970.
[42] Taylor, C. L., "The Biomechanics of the Normal and of the Amputee Upper Extremity." In: "Human Limbs and Their Substitutes," P. G. Klopsteg and P. D. Wilson (Editors), Reprint of the 1954 Edition, Hafner Publishing Company, New York, 169-221, 1968.
[43] Youm, Y., and Yoon, Y.S., "Analytical Development in Investigation of Wrist Kinematics," J. Biomechanics, Vol. 12: 613-621, 1979.

CHAPTER 4

[1] Sperling, L., and C. Jacobsen-Sollerman, "The Grip Pattern of the Healthy Hand During Eating," Scan. J. Rehab. Med., Vol. 9: 115-121, 1977.
[2] Davis, P. R., "Some Significant Aspects of Normal Upper Limb Functions." In: "Joint Replacement in the Upper Limb," The Institute of Mechanical Engineers, London, 1977.
[3] Morrey, B. F., Askew, L. J., An, K. N., and E. Y. Chao, "A Biochemical Study of Normal Functional Elbow Motion," J. Bone and Joint Surgery, Vol. 63-A, No. 6: 872-877, July 1981.
[4] Chao, E. Y., An, K. N., Askew, L. J., and B. F. Morrey, "Electrogoniometer for the Measurement of Human Elbow Joint Rotation," J. Biomechanical Engineering, Vol. 102: 301-310, Nov. 1980.
[5] Brumfield, R. H., and J. A. Champoux, "A Biomechanical Study of Normal Functional Wrist Motion," Clinical Orthopaedics and Related Research, No. 187: 23-25, July/August, 1984.
[6] Palmer, A. K., Werner, F. W., Murphy, D., and R. Glisson, "Functional Wrist Motion: A Biomechanical Study," J. Hand Surgery, Vol. 10A, No. 1: 39-46, Jan. 1985.
[7] Boone, D. C., and S. P. Azen, "Normal Range of Motion of Joints in Male Subjects," J. Bone and Joint Surgery, Vol. 61-A, No. 5: 756-759, July 1979.
[8] American Academy of Orthopaedic Surgeons, "Joint Motion: Method of Measuring and Recording," Chicago, 1965.
[9] Keller, A. D., Taylor, G. L., and V. Zahm, "Studies to Determine the Functional Requirements for Hand and Arm Prosthesis," Dept. of Eng., U. of California (Los Angeles), 1947.
[10] Mason, C. P., "Design of a Powered Prosthetic Arm System for the Above-Elbow Amputee," B.P.R., 10-24, Fall 1972.
[11] Stein, R. B. and J. Arsenault, "New Approaches for the Control of Powered Prostheses Particularly by High-Level Amputees," B.P.R. 10-33, Vol. 17, No. 1: 51-62, Spring 1980.
[12] Enger, S., "The Basis for a Prosthetic Shoulder Analogue and a View of Upper Limb Function," Med. \& Biol. Engng., Vol. 5: 455-462, 1967.

7. Appendices

A. Complete list of programs

FROGRAM SYSTEM CALIERATION ONE
*INCLUDE: FORINTF.H
*INCLUDE: 'SUB3.FOR•
C
C INITIALIZATION
C
INTEGER* $2 X, Y, I, J, K, P, Q, R, M, N 1, X C O R(10 \theta), Y C O R(10 \theta), D E L X, D E L Y$,
$1 L(576), O, S, T, X P(100), Y P(100), D X, U, V, W, R O W, C O L, P O S N$
REAL*B $X 1, X 2, D \times 1, X 3(B), Y 1, Y 2, Y Z(B), D E L X 1, D E L Y 1, X 4(8)$,
$1 \quad \mathrm{Y} 4(8), Z 4(8), E(16,11), D(16,1), F(11,16), S U M$,
$1 \quad A(11,11), H(11,11), B(11,16), C(11,1), L 1(11), G(11,11)$
DIMENSION INDEX (11,3)
CHARACTER BUFFEF(256)
C
C CFEATING A NEW FILE FOR 11 CALIBRATION PARAMETERS
C
OPEN (5.FILE $={ }^{\prime}$ CALIB1. TXT',STATUS $=$ 'NEW')
C
C IMAGE PFOCESSING
C
$\mathrm{I}=\mathrm{INIT}$ (620)
CALL AUTO
CALL CHAN(1)
CALL $\operatorname{QUADM}(1)$
CALL DQUAD (D)
18 CALL SETIND (B)
$\operatorname{CALL} \operatorname{CLEAR}(0,7)$
CALL SRUF (1)
WRITE (*, (A) ') ' CHOOSE THRESHOLD VALUE : •
READ (*, (BN,I 6)) I
CALL SCALING ($0,255,1,255$, BUFFER $)$
CALL SCALING (I $+1,0,255,0$, BUFFER)
CALL LUTD ($0,0,0,256$, EUFFER)
CALL SYNC(1)
CALL SNAF (1)
CALL SYNC (D)
WFITE (*, (A
)') ' IS THE PFOCESSED IMAGE ACCEFTABLE (YES/NO: 1/D)?
READ (*, (BN, I6)') J
IF (J.EQ.1) THEN
GOTO 17
ELSE
GOTO 18
ENDIF
C
C READING THE IMAGE I $X I$ (I : FEADING INCREAMENT)
C PROCESSING THE IMAGE BY USING THFESHOLD VALUE: $0 / 1$
C
17 WFITE (*, '(A
)') CHOOSE FEADING INCFEAMENT: •
READ (*, (EN, I 6)) M
OFEN $(2, F$ ILE $=$ 'TEMO.TXT'.STATUS $=$ 'NEW')
$\mathrm{J}=1$
$D O E Y=1,477, M$
DO $10 \quad X=1,511, M$
$I=I F \cdot I X F \cdot(X, Y)$
IF (I.EQ.255) THEN
$X \operatorname{COF}(J)=X$
YCOF (J) $=\mathrm{Y}$
WFIITE $(2, *) \times C O F(J), Y C O F(J)$ $\mathrm{J}=\mathrm{J}+1$
ENDIF

```
    10
        CONTINLE
    C CONTINUE
C
C WINDOWING
C DELETION OF PIXELS WITH VALUE EQUAL TO 10S
C CALCULATION OF TRANSITION POINTS IN EACH WINDOW
C CALCLLATION OF CENTFIOID OF EACH MARKEF: :2-D COORDINATES
C
    REWIND 2
    OPEN (3,FILE='TEM1.TXT'.STATUS='NEW')
    I1=0
    F=|
    O=1
    WRITE (*,'(A\)') ' CHOOSE WINDOW SIZE : '
    READ (*,'(BN,I6)') N
    DO 20 K=1,J-1
        READ (2,*) XCOR (K),YCOR (K)
        X2=0.0
        Y2=0.0
        DX1=0.0
        DO 40 Y=YCOR (K) -N,YCOR (K)+N
            DO 30 X=XCOR(K)-N,XCOR (K) +N
                    I=IPIXR(X,V)
                    L(O)=I
                    S=0-1
                    IF(S.EQ.D)L(S)=0
                    IF(L(0).EQ. 105)L(0)=L(S)
                    IF(L(O).NE.P)THEN
                    XP(O)=X
                    YF (O)=Y
                    T=0-1
                    IF (L (D).EQ.0) THEN
                            DX=XF(O)-XP(T)
                            X1=(XP(O)-DX/2.)*DX
                            Y1=YP(O)*DX
                    X2=X2+X1
                    YZ=Y2+Y1
                            DX1=DX1+DX
                    ENDIF
                    P=I
                    O=0+1
                ENDIF
                CONTINUE
        CONTINUE
        IF (DX1.LT.50) GOTO 20
        11=11+1
        X3(K)=X2/DX1
        Y3(K)=Y2/DX1
        WRITE (3,*) X3(k),YZ(k)
    20 CONTINUE
    IF (II.LT.8) THEN
        WRITE (*,'(A\)') 'NUMEEF OF DETECTED MAFKEFSS IS LESS THAN 8 .
            GOTO 55
    ENDIF
C
C ELIMINATION OF REFEATED DATA
C
    OPEN (4,FILE='TEM2.TXT'.STATUS='NEW')
    REWIND 3
    W=I 1
    IF (W.GT.B) THEN
        GOTO 45
    ELSE
        DO ごSK゙=1,W
            FEAD (S,*) X S(N),Y\Xi(F)
            WFIITE (4,*) Xこ(F゙),Yこ!K)
```

```
    35 CONTINUE
        GOTO 51
    ENDIF
    45 DO 46 K=1,W
        FEAD (J,*) XZ(K),YZ(K)
        CONT INUE
        12=0
        DO 50 M=1,W
            J=M+1
    60 IF(J.GT.W)GOTO 70
            DELX1=XZ(J)-XZ(M)
            DELY1=Y3(J)-YS(M)
            IF (.NDT.((AES (DELX1).LT.3.D).AND.(ABS (DELY1).LT.3.D)))THEN
                J=J+1
                G0TO 60
            ELSE
                GOTO 50
            ENDIF
            WFIITE (4.*) X (M),Y3(M)
            I2=12+1
    5 0 ~ C O N T I N U E
        IF (I2.NE.8) THEN
            WRITE (*,'(A\)') ' NUMBER OF DETECTED MARKERS IS NOT EQUAL TO
        18
            GOTO 55
        ENDIF
C
C READING THREE DIMENTIONAL COORDINATES OF CONTROL FOINTS FROM SCFEEN:
C X4(K),Y4(K),Z4(K) ACCORDING TO THE DRDER OF MARKERS IN THE TWO
C DIMENTIDNAL IMAGE
C
    51 WRITE (*,'(A\)`)' ATTENTION : ALL THE INPUT DATA SHOULD RE IN MET
        IERS WITH THREE DECIMAL POINTS'
            DO 100 K=1,B
            WRITE (*,*) K
            WRITE(*,'(A\)') . X4(K)= .
            READ(*,'(EN,F6.3)') X4(K)
            WRITE (*,*) K
            WRITE(*.'(A\)') . Y4(K)= .
            READ (*,'(BN,F6.3)') Y4(K)
            WFITE (*,*) K
            WRITE(*,'(A\)'), Z4(k)= .
            READ(*,'(BN,FG.3)') Z4(K)
    100 CONTINUE
C
C DEFINING THE ELEMENTS OF THE MATFIX [P]:[16 X 11]
C
C T
C TRANSPOSE OF MATRIX [F]: [P] =[R]:[11 X 16]
C
    REWIND 4
        DO 10S I=1,8
            FEAD (4,*) XZ(I),Y?(1)
    105 CONTINUE
        DO 110 I=1,15,2
        J=(I+1)/2
        E(I,1)=X4(J)
        F(1,I) =XA(J)
        E(I, 2)=Y4(J)
        F(2,I)=Y4(J)
        E(1,Z)=24(J)
        F(S,I)=24(J)
        E(I,4)=1.0
        F(4,I)=1.0
        E(I,5)=0.0
        F(5,I)=0.0
```

```
                E(1,6)=0.0
                F(6,I)=0.0
            E(I,7)=0.0
            F(7,1)=0.0
            E(1,8)=0.0
            F(8,1)=0.0
            E(1,9)=-x3(J)*\times4(J)
            F(9,I)=-x3(J)*X4(J)
            E(I,10)=-X3(J)*Y4(J)
            F(10,I)=-X3(J)*Y4(J)
            E(I,11)=-X3(J)*Z4(J)
            F(11,1)=-X3(J)*24(J)
    110 CONTINUE
    DO 120 I=2,16,2
        J=1/2
        E(I,1)=0.0
        F(1,1)=0.0
        E(1,2)=0.0
        F(2,1)=0.0
        E(I,3)=0.0
        F(3,1)=0.0
        E(I,4)=0.0
        F(4,1)=0.0
        E(I,5)=X4(J)
        F(5,1)=X4(J)
        E(I,6)=Y4(J)
        F(6,I)=Y4(J)
        E(I,7)=24(J)
        F(7,I)=24(J)
        E(1,8)=1.0
        F(B,I)=1.0
        E(I,9)=-Y3(J)*X4(J)
        F(9,I)=-Y3(J)*X4(J)
        E(1,10)=-Y3(J)*Y4(J)
        F(10,I)=-Y3(J)*Y4(J)
        E(I,11)=-Y3(J)*Z4(J)
        F(11,I)=-Y3(J)*Z4(J)
    120 CONTINUE
C
C DEFINING THE ELEmENTS OF THE MATRIX [Q]:[16 X 1]
C
        DO 130 I=1,15,2
            J=(I+1)/2
        D(I,1)=x}(J)
    130 CONTINUE
        DO 140 I=2,16,2
            J=1/2
            D(I,1)=Y3(J)
    140 CONTINUE
C MATRIX MITTPLICATION: [A]=[P]
C MATRIX MULTIFLICATION: [A]=[F] [F] : [11 X 11]
C
        DO 170 ROW=1,11
        DO 180 COL=1,11
            SUM=0.0
            DO 190 POSN=1,16
                SUM=SUM+F (ROW,FOSN) *E (FOSN,COL)
    190 CONTINUE
            A(ROW,COL)=SUM
    1B0 CONTINUE
    17% CONTINLE
        OFEN (11, FILE='MAT.TXT',STATUS='NEW')
        DO 191 J=1,11
            DO 192 I=1.11
                        WFITE (11,*) A(1,J)
    &% CONTINUE
```

```
    191 CONTINUE
    C -1
    C MATFIX INVERTION : [H]=[A] : [11 X 11]
    C GAUSS-JORDAN METHOD
C
        N=11
        CALL MATINV(A,N)
        DO 221 J=1,11
            DO 222 I=1,11
                H(I,J)=A(I,J)
        CONTINUE
    222
    CONTINUE
C
C REGENERATING MATRIX [A]
C
    REWIND 11
        DO 205 J =1,11
            DO 206 I=1,11
            READ (11,*) A(1,J)
    206
        CONTINUE
    205 CONTINUE
C
C CALCULATION OF IDENTITY MATRIX : [I]=[A] [H]
C
        DO 201 ROW=1,11
            DO 202 COL=1,11
                        SUM=0.0
                        DO 203 POSN=1,11
                        SUM=SUM+A(ROW,FOSN)* H(FOSN,COL)
    203
                        CONTINUE
                        G(ROW,COL})=SU
        CONTINUE
    202
        CONTINUE
    201 CONTINUE
        WRITE (*,'(A)`) , MATRIX [I] : [11 X 11].
        DO 208 J=1,11
            DO 209 I=1,11
            WRITE (*,*) G(I,J)
    209 CONTINUE
    208 CONTINUE
C
C MATRIX MULTIPLICATION: [E]={[P][F]; [F] : [11 X 16]
C
        DO 2J0 ROW=1.11
                DO 240 COL=1,16
                        SUM=0.0
                        DO 250 POSN=1,11
                                    SUM=SUM+H(FOW,FOSN)*F(FOSN,COL)
    250 CONTINUE
                        B(FOW,COL)=SUM
    240 CONTINUE
    230 CONTINUE
C T T -1 T
C MATRIX MULTIPLICATION: [C]={[P] [F]; [F] [Q]:[11 X 1]
C
        DO 260 ROW=1,11
            COL=1
            SUM=0.0
            DO 280 POSN=1,16
                        SUM=SUM+B(ROW,FOSN) *D (FOSN, COL )
            CONTINUE
            C(FOOW,COL)=SUM
    280
    260 CONTINUE
C
C DEFINING THE ELEMENTS OF THE CALIEFATION SYSTEM: [L]
    01 281 1=1.11
```

LI(I)=C(I, 1)
281 CONTINUE
c
C Storing caligration fariameters in a file
C
WFITE (*, (A)') CALIBRATION PARAMETERS LI(I).
DO $290 \mathrm{I}=1,11$ WRITE (5,*)LI (I)
WRITE (*,*)LI(I)
290 CONTINUE
55 CALL PEXIT
STOP
END

```
    FROGRAM SYSTEM CALIEFIATION TWO
# INCLUDE: FORINTF.H
$INCLUDE: 'SUES.FOF'
C
C INITIALIZATION
C
    INTEGEF*2 X,Y,I,J,K,F,Q,R,M,N1,XCOF:(100),YCOR(100),DELX,DELY,
    LL(576),O,S,T,XP(100),YF(100),DX,U,V,W,ROW,COL,FOSN
    FEAL*8 X1,X2,DX1,X3(B),Y1,Y2,YZ(B),DELX1,DELY1,X4(8),
    1 Y4(8),Z4(8),E(16,11),D(16,1),F(11, 16),SUM,
    1 A(11,11),H(11,11),E(11,16),C(11,1),L2(11),G(11,11)
    DIMENSION INDEX(11,S)
    CHARACTEF EUFFEF:(256)
C
C CFEATING A NEW FILE FOR 11 CALIEFATION FAFAMETEFS
C
    OFEN (6.FILE='CALIE2.TXT',STATUS='NEW')
C
C IMAGE PROCESSING
C
    I=INIT(620)
    CALL AUTO
    CALL CHAN(1)
    CALL QUADM(1)
    CALL DQUAD (0)
    18 CALL SETIND (0)
            CALL CLEAF (0,7)
            CALL SRUF (1)
            WRITE {*,'(A\)') ' CHOOSE THFESHOLD VALUE : '
            READ (*,*(BN,IG)') I
            CALL SCALING(0,255,I,255, EUFFEF)
            CALL SCALING(I+1,0,255,0,BUFFEF)
            CALL LUTD (D,0,0,256,BUFFEF)
            CALL SYNC(1)
            CALL SNAF(1)
            CALL SYNC(0)
            WRITE(*,'(A\);),; IS THE FROCESSED IMAGE ACCEFTABLE (YES/NO:1/0)?
            IF (J.EQ.1) THEN
                GOTO 17
            ELSE
            gotD 18
            ENDIF
C
C READING THE IMAGE I X I ( I : READING INCREAMENT )
C PROCESSING THE IMAGE EY USING THRESHOLD VALUE : 0/1
C
    17 WFITTE (** (A\)') * CHODSE FEADING INCFEAMENT :'
    READ (*,'(BN,16)') M
    OFEN (2,FILE='TEMO.TXT',STATUS='NEW')
    J=1
    DO 5 Y=1,477,M
        DO 10 X=1,511,M
            I=IFIXF(X,Y)
            IF (I.EO. 2SS) THEN
                    XCOFi(J)=X
                    YCOF(J)= Y
                    WFITE (2,*) XCOF(J), YCOF:(J)
                    J=J +1
            ENDIF
```

```
        CONTINUE
    5 \text { CONTINUE}
c
C WINDOWING
C DELETION OF FIXELS WITH VALUE EQUAL TO 105
C CALCULATION OF TRANSITION POINTS IN EACH WINDOW
C CALCULATION OF CENTROID OF EACH MARKER :2-D COORDINATES
C
    REWIND 2
    OPEN (3,FILE='TEM1.TXT',STATUS='NEW')
    I 1=0
    F=0
    O=1
    WRITE (*,'(A\)') · CHDOSE WINDOW SIZE : .
    READ (*,'(BN,16)') N
    DO 20 k=1,J-1
        READ (2,*) XCOR(K),YCOR(K)
        x2=0.0
        Y2=0.0
        D\times1=0.0
        DO 40 Y=YCOR(K)-N,YCOR(K)+N
            DO 30 X=XCOR(K)-N,XCOR(K)+N
                I=IPIXR(X,Y)
                L(0)=I
                S=0-1
                IF(S.EQ.0)L(S)=0
                IF(L(0).EQ.105)L(0)=L(S)
                IF(L(O).NE.P)THEN
                    XP(0)=X
                    YP(0)=Y
                    T=0-1
                    IF(L(O).EQ.D)THEN
                            DX=XP(O)-XP(T)
                            X1=(XP(D)-DX/2.)*DX
                            Y1=YP(D)*DX
                            x2=x2+x1
                            Y2=Y2+Y1
                            DX1=DX1+DX
                    ENDIF
                    P=1
                    O=0+1
                ENDIF
                CONTINUE
        CONTINUE
        IF (DX1.LT.50) GOTO 20
        I1=11+1
        X3(K)=X2/DX1
        Y3(K)=Y2/DX1
        WRITE (3,*) X3(K),YZ(K)
    20 CONTINUE
        IF (I1.LT.B) THEN
        WRITE (*,'(A\)') ' NUMBEF OF DETECTED MARKERS IS LESS THAN 日,
        GOTO 55
    ENDIF
C
C ELIMINATION OF REPEATED DATA
C
    OFEN (4.FILE='TEM2.TXT',STATUS='NEW')
    FEWIND 3
    W=I1
    IF (w.GT.8)THEN
        GOTO 45
    ELSE
        DO 35 k=1,w
            FEAD (Z,*) XZ(K),YZ(F)
            WFIITE (4,*) XS(K),YB(K)
```

```
    35 CONTINUE
            GOTO 51
    ENDIF
    DO 46 K=1,W
        FEAD (Z,*) XZ(K),YZ(K)
    46 CONTINUE
    12=0
    DO 50 M=1,W
        J=M+1
        60 IF(J.GT.W)GOTO 70
        DELX1= X3(J)-X3(M)
        DELY1=Y3(J)-Y3(M)
            IF(.NOT.((AES(DELX1).LT.3.0).AND.(ABS(DELY1).LT.3.0)))THEN
                    J=J+1
                GOTO 60
            Else
                    GOTO 50
            ENDIF
            WRITE (4,*) XZ(M),Yミ(M)
            12=12+1
    50 CONTINUE
        IF (I2.NE.8) THEN
            WRITE (*,'(A\)') NUMEER OF DETECTED MARKERS IS NOT EQUAL TO
        18
            GOTO 55
        ENDIF
C
C READING THREE DIMENTIONAL COORDINATES OF CONTROL POINTS FROM SCREEN:
C X4(K),Y4(K),Z4(K) ACCORDING TO THE ORDER OF MARKERS IN THE TWO
C DIMENTIONAL IMAGE
C
    51 WRITE (*,'(A\)') · ATTENTION : ALL THE INFUT DATA SHOULD RE IN ME
        1TERS WITH THREE DECIMAL POINTS'
        DO 100 K=1,B
            WRITE (*,*) K
            WRITE(*,'(A\)') . 
            READ (*,'(BN,F6.3)') X4(K)
            WRITE (*,*) K
            WRITE(*:(A\),) . Y&(K)= .
            READ(*,'(BN,F6.3)') Y4(K)
            WRITE (***) K
            WRITE(*,'(A\)') ' Z4(K)= `
            READ(*.'(EN,FG.3)') 24(K)
    100 CDNTINUE
C
C DEFINING THE ELEMENTS OF THE MATRIX [FI:[16 X 11]
C
C
TRANSPOSE OF MATRIX [P] : [P] =[R] : [11 X 16]
    REWIND }
    DO 105 I=1,8
            READ (4,*) XS(1),YS(I)
105 CONTINUE
    DO 110 I=1,15,2
            J=(I+1)/2
            E(I,1)=X4(J)
            F(1,1)=X4(J)
            E(1,2)=Y4(J)
            F(2,I)=Y4(J)
            E(1,3)=24(J)
            F(3,I)=24(J)
            E(I,4)=1.0
            F(4,1)=1.0
            E(I,5)=0.0
            F(S,I)=0.0
```

```
            E(I,6)=0.0
            F(b,I)=0.0
            E(I,7)=0.0
            F(7,I)=0.0
            E(I,8)=0.0
            F(B,I)=0.0
            E(I,9)=-X3(J)*X4(J)
                F(9,I)=-X3(J)*X4(J)
                E(I,10)=-X\(J)*Y4(J)
                F(10,I)=-X3(J)*Y4(J)
                E(I,11)=-X3(J)*Z4(J)
                F(11,I)=-X3(J)*Z4(J)
    110 CONTINUE
        DO 120 I =2,16,2
            J=1/2
            E(I,1)=0.0
            F(1,1)=0.0
            E(1,2)=0.0
            F(2,I)=0.0
            E(1,3)=0.0
            F(3,I)=0.0
            E(I,4)=0.0
            F(4,I)=0.0
            E(I,S)=X4(J)
            F(5,I)=X4(J)
            E(I,G)=Y4(J)
            F(6,I)=Y4(J)
            E(I,7)=Z4(J)
            F(7,I)=Z4(J)
            E(I, 8)=1.0
            F(B,I)=1.D
            E(I,9)=-Y3(J)*X4(J)
            F(9,I)=-Y3(J)*X4(J)
            E(I,10)=-Y3(J)*Y4 (J)
            F(10,I)=-Y3(J)*Y4(J)
            E(I,11)=-Y3(J)*Z4(J)
            F(11,I)=-Y3(J)*Z4(J)
    120 CONTINUE
C
C DEFINING THE ELEMENTS OF THE MATKIX [Q]:[16 X 1]
C
    DO 130 I=1,15,2
            J=(I+1)/2
            D(1,1)=沶(J)
    130 CONT INUE
        DO 140 I=2,16,2
            J=1/2
            D(1,1)=Y?(J)
    140 CONTINUE
C
C MATRIX MULTIPLICATION : [A]=[P] [F] : [11 X 11]
C
    DO 170 ROW=1,11
        DO 180 COL=1.11
            SUM=0.0
            DO 190 POSN=1,16
                SUM=SUM+F(ROW, POSN)*E (FOSN,COL)
            CONTINUE
            A (ROW,COL ) =5UM
        CONTINUE
    170 CONTINUE
        QFEN (11,FILE='MAT.TXT'.STATUS='NEW')
        DO 191 J=1,11
            DO 192 I=1,11
                WFITE (11,*) A(I,J)
    192
            CONTINUE
```

```
    191 CONTINUE

```

C GAUSS-JORDAN METHOD
C
N=11
CALL MATINV(A,N)
DO 221 J=1,11
DO 222 I=1,11
H(I,J)=A(I,J)
222 CONTINUE
221 CONTINUE
C
C FEGENERATING MATRIX [A]
C
REWIND 11
DO 205 J =1,11
DO 206 I=1,11
READ (11,*) A(I,J)
206 CONTINUE
205 CONTINUE
C
C CALCULATION OF IDENTITY MATRIX: [I] = [A] [H]
C
DO 201 ROW=1,11
DO 202 COL=1,11
SUM=0.0
DO 203 POSN=1,11
SUM=SUM+A(ROW,FOSN)*H(POSN,COL)
20.3 CONTINUE
G(ROW,COL)=SUM
202 CONTINUE
201 CONTINUE
WFITE (*,'(A)') ' MATRIX [I] : [11 X 11] .
DO 208 J=1,11
DO 209 I=1,11
WRITE (*,*) G(I,J)
209 CONTINUE
208 CONTINUE
C T T T
C MATRIX MULTIPLICATION: [B]={ [P] [P] } [P] : [11 X 16]
C
DO 230 ROW=1,11
DO 240 COL=1,16
SUM=0.0
DO 250 POSN=1,11
SUM=SUM+H(ROW,POSN)*F(FOSN,COL)
250 CONTINUE
B(ROW,COL)=SUM
240 CONTINUE
2\Xiロ CONTINUE
C T T
C MATRIX MULTIPLICATION: [C]={ [F] [P]; [P] [Q]: [11 X 1]
C
DO 260 FOW=1,11
COL=1
SUM=0.0
DO 280 FOSN=1,16
SUM=SUM+E(ROW,FOSN) *D (FOSN,COL)
280 CONTINUE
C (FOOW,COL)=SUM
260 CONTINUE
C
C DEFINING THE ELEMENTS OF THE CALIEFATION SYSTEM : [L]
C
DO 281 I=1.11

```

L2(I)=C(I, 1)
281 CONTINUE
C
c storing calibration parameters in a file
C
WRITE \((*, \cdot(A) \cdot) \cdot\) CALIBFATION FAFAMETEFSS LZ(I)
DO \(290 \mathrm{I}=1,11\)
WRITE (6,*)LZ(I) WRITE(*,*)L2(I)
290 CONTINUE
55 CALL PEXIT
STOP
END
```

 FFOGGIAM FEFFENCE MARYEER ONE
 \$ INCLUDE: FORINTF.H'
C
C INITIALIZATION
C
INTEGEF*2 X4,Y4,I,J,K,F,Q,F,M,N,XCOF(100),YCOF(100),DELX,DELY,
1 L(576),O,S,T,XF(100),YP(100),DX,U,V,W,FNO
KEAL X1,X2,DX1,X(5),Y1,Y2,Y(5),DELX1,DELY1
C
C IMAGE FROCESSING
C
CHAFACTER EUFFEF(256)
I=INIT (620)
CALL AUTO
CALL CHAN(1)
CALL QUADM(1)
CALL DQUAD (0)
18 CALL SETIND(0)
CALL CLEAR (0,7)
CALL SEUF (1)
WFITTE (*, (A\)') ' CHOOSE THFESHOLD VALUE :
READ (*,'(BN,I6)') I
CALL SCALING (0, 255, I, 255, BUFFER)
CALL SCALING(I+1,0,255,0,BUFFER)
CALL LUTD (0,0,0,256, BUFFEF)
CALL SYNC(1)
CALL SNAF(1)
CALL SYNC (D)
WRITE(*,'(A\)') ' IS THE FROCESSED IMAGE ACCEFTABLEE (YES/NO:1/D)?.
READ (*,'(EN,16)') J
IF (J.EQ.1) THEN
GOTO 17
ELSE
GOTO 18
ENDIF
C
C READING THE IMAGE 5 BY S
C PROCESSING THE IMAGE BY USING THRESHOLD VALUE
C
17 DPEN (11,FILE='TEMFO.TXT'.STATUS='NEW')
J=1
DO 5 \gamma4=1,477,5
DO 10 X4=1,511,5
I=IFIXF(X4,Y4)
IF (I.EQ. 255) THEN
XCOF (J) = X.4
YCOF (J)=Y4
WFITE (11,*) XCOR(J),YCOF:(J)
J=J+1
ENDIF
10
CONTINUE
CONTINUE
C
C WINDOWING
C DELETION OF FIXELS WITH VALUE EQUAL TO 10S
C CALCLLATION QF TRANSITION FOINTS IN EACH WINDOW
C CALCLLATION OF CENTFOID OF EACH MAFKER : 2-D COOFDDINATES
C WRITING 2-D COORDINATES OF THE CENTROID OF EACH MAF\&EF: IN DATA FILE
C
FEWIND 11

```
```

 OFEN(14,FILE='TEMP1.TXT',STATUS='NEW`)
 F=0
 O=1
 WFITE (*., (A\)') CHOOSE WINDOW SIZE
 FEAD (*,'(EN,I6)') N
 DO 20 k:=1,J-1
 FEAD (11,*) XCOR(K),YCOF(K)
 X2=0.0
 Y2=0.0
 D\times1=0.0
 DO 40 Y4=YCOR (K)-N,YCOR (K)+N
 DO 30 X4=XCOR (K)-N,XCOR (K) +N
 I=IFIXFI(X4,Y4)
 L(O)=I
 S=0-1
 IF(S.EQ.D)L(S)=0
 IF (L (O).EQ. 105)L(O)=L(S)
 IF(L (O).NE.P)THEN
 XP(O)=X4
 YF(O)=Y4
 T=0-1
 IF (L (D).EQ.D)THEN
 DX=XP(O)-XF(T)
 X1=(XF(D)-DX/2.)*DX
 Y1 =YP(D)*DX
 X2=X2+X1
 Y2=Y2+Y1
 DX1=D X 1 +DX
 ENDIF
 F=I
 O=0+1
 ENDIF
 CONT INUE
 CONTINUE
 X(K) = X2/DX1
 Y(K)=Y2/DX1
 WRITE (14,*)X(K),Y(K)
 20 CONTINUE
 IF (K-1.LT.1) THEN
 WRITE (*,'(A)') ' NUMEEF OF DETECTED MARKERS IS LESS THAN 1 *
 GOTO 55
 ENDIF
 C
C ELIMINATION OF FEPEATED DATA
C
OFEN (55,FILE='OUTO.TXT',STATUS='NEW')
FEWIND 14
W=k-1
IF (W.GT. 1)THEN
GOTO 45
ELSE
DO 35 J=1,W
FEAD(14,*)X(J),Y(J)
WFIITE (55,*)X(J),Y(J)
CONTINUE
gOTO 55
ENDIF
45 DO 46 M=1,W
FEAD (14,*) X(M),Y(M)
46 CONT INUE
12=0
DO 50 M=1,W
J=M+1
60 IF (J.GT.W) GOTO 70
DELXI=X(J)-X(M)
DELY1=Y(J) - Y(M)

```

IF (.NOT. ( (ABS (DELX1).LT.1.0). AND. (AES (DELY1).LT.1.D)) THEN

ELSE
GOTO 50
ENDIF
\(X F=X(M)\)
\(Y R=Y(M)\)
\(12=12+1\)
WRITE \((*, *) \quad X R, Y R\)
50 CONTINUE
IF (I2.GT.1)THEN
WRITE (*.'(A))') 'NUMEER OF DETECED MARKERS IS GREATER THAN 1
GOTO 55
ELSE
WFITE (55,*) XR,YF
ENDIF
55 CALL PEXIT
STOP
END
```

 FFIOGFAM REFRENCE MAFKEF TWD
 *INCLUDE: 'FORINTF.H'
C
C INITIALIZATION
C
INTEGEF*Z X4,Y4,I,J,K,F,Q,Fi,M,N,XCOF(100),YCOF(100),DELX,DELY,
1 L(576),O,S,T,XP(100),YP(100),DX,U,V,W,FNO
FEAL X1,X2,DX1,X(5),Y1,Y2,Y(5),DELX1,DELY1
C
C IMAGE FFOOCESSING
C
CHARACTER EUFFEF:(256)
I=INIT (620)
CALL AUTO
CALL CHAN(1)
CALL QUADM(1)
CALL DQUAD (O)
18 CALL SETIND(0)
CALL CLEAR (}0,7
CALL SBUF(1)
WFITE (*,'(A\)') ' CHOOSE THFESHOLD VALUE : '
READ (**'(BN,I6)') I
CALL SCALING (0,255,I,255,EUFFER)
CALL SCALING(I+1,0,255,0,EUFFER)
CALL LUTD (0, 0,0,256, BUFFER)
CALL SYNC(1)
CALL SNAP(1)
CALL SYNC(0)
WFITE(*,'(A\)') ' IS THE FROCESSED IMAGE ACCEPTABLE (YES/NO:1/O)?
READ (*,*(BN,I6)') J
IF (J.EQ.1) THEN
GOTO 17
ELSE
GOTO 18
ENDIF
C
C FEADING THE IMAGE S BY S
C PROCESSING THE IMAGE EY USING THFESHOLD VALUE
C
17 OFEN (11.FILE='TEMFD.TXT'.STATUS='NEW')
J=1
DO 5 Y4=1,477.5
DO 10 <4=1,511,5
I=IFIXNF(X4,Y4)
IF (I.EQ. 2SS) THEN
XCOF (J) =X4
YCOF (J) =Y4
WFITE (11,*) XCOF(J),YCOF(J)
J=J+1
ENDIF
10 CONTINUE
CONTINUE
C
C WINDOWING
C DELETION OF FIXELS WITH VALUE EQUAL TO 1DS
C CALCULATION OF TRANSITION FOINTS IN EACH WINDOW
C CALCLLATION OF CENTFOID DF EACH MAFKEF: : 2-D COOFDINATES
C WFITING 2-D COORDINATES OF THE CENTFOID OF EACH MAFKEF IN DATA FILE
C
FEWINI) 11

```
```

 OFEN(14,FILE='TEMF'1.TXT', STATUS='NEW')
 F=0
 O=1
 WRITE (*,.(A\).) CHOOSE WINDOW SIZE :
 READ (*.'(EN,I6)') N
 DO 20 k=1,J-1
 READ (11,*) XCOF(K),YCOR(K)
 X2=0.0
 Y2=0.0
 DX1=0.0
 DO 40 Y4=YCOR(K)-N,YCOR (K) +N
 DO 30 X4=XCOR(K)-N,XCOR (K) +N
 I=IFIXF(X4.Y4)
 L(0)=I
 S=0-1
 IF(S.EQ.0)L(S)=0
 IF(L(D).EQ. 105)L(O)=L(S)
 IF (L (O).NE.F)THEN
 XF}(0)=X
 YP(0)=Y4
 T=O-1
 IF(L(O).EQ.0)THEN
 DX=XP(O)-XP(T)
 X1=(XP(0)-DX/2.)*DX
 Y1=YP(O)*DX
 x2=x2+x1
 Y2=Y2+Y1
 DX1=D\times1+DX
 ENDIF
 F}=
 O=0+1
 ENDIF
 CONTINUE
 CONTINUE
 X(K)=X2/DX1
 Y(K)=Y2/DX1
 WRITE(14,*)X(K),Y(K)
 20 CONTINUE
 IF (K-1.LT.1) THEN
 WFITE (*,'(A)') NUMBER OF DETECTED MAFKERS IS LESS THAN 1
 GOTO 5S
 ENDIF
 C
C ELIMINATION OF REPEATED DATA
C
OPEN (56,FILE='OUTDD.TXT',STATUS='NEW')
REWIND }1
W=K-1
IF(W.GT.1)THEN
GOTO 45
ELSE
DO 35 J=1,W
FEAD(14,*)X(J),Y(J)
WRITE(56,*)X(J),Y(J)
35 CONTINUE
GOTO 55
ENDIF
45 DO 46 M=1.W
FEAD (14,*) X(M),Y(M)
4 6 ~ C O N T I N U E ~
12=0
DO 50 M=1,W
J=M+1
60 IF (J.GT.W) GOTO 70
DELX1=X(J)-X(M)
DELY1=Y(J)-Y(M)

```

IF (. NOT. ((AES (DELX1).LT.1.D).AND. (ABS(DELY1).LT.1.D)))THEN 143 \(\mathrm{J}=\mathrm{J}+1\)
GOTO
ELSE
GOTO 50
ENDIF
\(X \mathrm{~F}=\mathrm{X}(\mathrm{M})\)
\(Y R=Y(M)\)
\(12=12+1\)
WRITE (*,*) XR,YF
50 CONTINUE
IF (I2.GT.1)THEN
WRITE (*,'(A\\)') 'NUMEEF OF DETECED MARKKERS IS GFEATER THAN 1 .
ELSE
WFIITE (56,*) XF,YF
ENDIF
55 CALL FEXIT
stop
END

FROGRAM EMF-TY DATA FILE

\section*{\$INCLUDE: FORINTF.H' \\ C}

C CFEATING AN EMF'TY DATA FILE: 'OUT1.TXT' FOF THE FROGFAM IMAGE1.FOF:
OPEN ( \(30, F\) ILE = 'OUT1.TXT'.STATUS= 'NEW')
CALL PEXIT
STOF
END

FROGFAM EMFTY DATA FILE
\$INCLUDE: FORINTF. H
C
C CREATING AN EMFTY DATA FILE : 'OUTZ.TXT' FOF THE FFOGRAM IMAGEZ.FOR
OFEN (35,FILE = 'OUT2. TXT'.STATUS \(=\) ' NEW \(\cdot\) )
CALL PEXIT
STOF-
END

FROGRAM EMFTY DATA FILE
\$INCLUDE: FORINTF.H•
C
C CREATING AN EMFTY DATA FILE : 'XYFEF1.TXT' FOF THE FROGFAM IMAGE 1.FOR
OPEN (19,FILE='XYREF1.TXT'.STATUS='NEW')
CALL PEXIT
STOF
END

FROGRAM EMFTY DATA FILE
*INCLUDE: 'FORINTF.H•
C
C CREATING AN EMF'TY DATA FILE: 'XYFEF2.TXT' FOF THE PFOGFAM IMAGEZ.FOF
OFEN (20,FILE='XYREF2.TXT',STATUS='NEW')
CALL FEXIT
STOF
END

FROGFAM EMF'TY DATA FILE
*INCLUDE: FORINTF.H.
OFEN (25,FILE='FFNDI.TXT'.STATUS='NEW')
CALL PEXIT
STOF
END

FFIOGFIAM EMFTV DATA FILE
生INCLUDE: FOFINTF.H.
OFEN (26.FILE='FFINOZ.TXT'.STATUS='NEW')
CALL FEXIT
STOF-
END

PROGFiAM IMAGE REDUCTION ONE
\$INCLUDE: 'FORINTF.H'
C
C INITIALIZATION
C
INTEGER* \(2 \times 4, Y 4, I, J, K, F, Q, F, M, N, X C O F(100), Y C O R(100)\), DELX, DELY,
\(1 L(576), O, S, T, X F(100), Y F(100), D X, U, V, W, F N O, F R N O\)
REAL \(X_{1}, X 2, D X 1, X(7,100), Y 1, Y 2, Y(7,100), D E L X 1, D E L Y 1, X N(100)\),
\(1 \quad Y N(100)\)
C
C IMAGE PROCESSING
C
CHAFAACTER EUFFEF (256)
\(I=I N I T(620)\)
CALL AUTO
CALL CHAN(1)
CALL QUADM (1)
CALL DQUAD ( \(\theta\) )
DO \(55 \mathrm{~N}=1,500\)
18 CALL SETIND (O)
CALL CLEAR ( 0,7 )
CALL SETWIN \((35,1,511,477)\)
CALL SBUF (1)
WRITE (*: (A)) ') CHOOSE THFESHOLD VALUE :
READ (*, (BN, 16) ') I
CALL SCALING ( \(0,255, I, 255\), BUFFEF)
CALL SCALING ( \(1+1,0,255, ~ D\), EUFFER)
CALL LUTD ( \(0,0,0,256\), BUFFEF)
CALL SYNC (1)
CALL SNAP (1)
CALL SYNC ( 0 )
WRITE (*, (A\\)') IS THE FFDCESSED IMAGE ACCEF•TABLE (YES/ND:1/D)?'
\(\operatorname{READ}\left(*,{ }^{\prime}(B N, I 6)^{\prime}\right) \mathrm{J}\)
IF (J.EQ.1) THEN
GOTO 17
ELSE
GOTO 18
ENDIF
C
C FOSITIONING THE FILE AT THE END OF THE OLD DATA FILE
C
17 OFEN(30.FILE='OUT1.TXT')
\(\mathrm{FNO}=0\)
DO \(2 \mathrm{~J}=1,100\)
DO S I=1,7
READ \((30, *, E N D=4) \times(1, I), Y(I, J)\)
3 CONTINUE
\(F N O=F N O+1\)
2 CONTINUE
4 EACKSFACE 30
\(F N O=F N O+1\)
C
C FEADING THE IMAGE \(M\) BY \(M\) (M : FEADING INCFEAMENT)
C FROCESSING THE IMAGE EY USIMG THFESHOLD VALUE
C
WFITE (*: (AV)') CHOOSE FEADING INCFEAMENT: •
READ (*, (EN, 16)') M
OFEN (12, FILE = 'TEMF: . TXT . STATUS='NEW')
\(J=1\)
```

 DO S Y4=1,477.M
 DO 10 X4=1,511,M
 I=IFIXF(X4,Y4)
 IF(I.EQ.25S)THEN
 XCOF (J) = X4
 YCOR:(J)=Y4
 WFITE (12,*) XCOR(J),YCOR(J)
 J=J+1
 ENDIF
 1 0
 CONT INUE
 5 CONTINLE
 C
C WINDOWING
C DELETION OF FIXELS WITH VALUE EQUAL TO 105
C CALCULATION OF TRANSITION POINTS IN EACH WINDOW
C CALCULATION OF CENTROID OF EACH MARKER :2-D COORDINATES
C WRITING 2-D COORDINATES OF THE CENTROID OF EACH MARKER IN DATA FILE
C
REWIND 12
OPEN(15,FILE='TEMFS.TXT', STATUS='NEW')
I =0
F=0
O=1
WFITE (*,'(A\)') 'CHOOSE WINDOW SIZE :'
READ (*.'(BN,I6)') N
DO 20 K=1,J-1
READ (12,*) XCOR (K),YCOR(K)
\times2=0.0
Y2=0.0
DK1=0.0
DO 40 Y4=YCOR(K) - N,YCOR(K) +N
DO 30 X4=XCOR(K)-N, XCOR (K)+N
I=IFIXR(X4,Y4)
L(0)=1
S=0-1
IF(S.EQ.0)L(S)=0
IF(L(0).EQ.105)L(0)=L(5)
IF (L (O).NE.F)THEN
XF(0)=X4
YF (0) = Y4
T=0-1
IF (L (D).EQ.D)THEN
DX=XP(0)-XF(T)
X1=(XF(0)-DX/2.)*DX
Y1=YF(0)*DX
x2=x2+\1
Y2=Y2+Y1
DX1=D X1+DX
ENDIF
F=I
O=0+1
ENDIF
CONTINUE
CONTINUE
IF (DX1.LT.15) GOTO 20
I 1 = I 1 +1
XN(II)=X2/D\times1
YN(I1)=Y2/DX1
WFITE(15,*)XN(I1),YN(I1)
2O CONTINUE
IF (I1.LT.g) THEN
WFIITE (*, (A)') NUMEEF OF DETECTED MAFKEFS IS LESS THAN E
GOTO SS
ENDIF
C
c Elimination of feregited data

```

\section*{FEWIND 15}
\(W=11\)
45 DO \(46 \mathrm{M}=1\), W
FIEAD (15,*) XN(M),YN(M)
46 CONTINUE
OFEN (16,FILE='TEMF4.TXT',STATUS='NEW')
\(12=0\)
DO \(50 M=1, W\)
\(J=M+1\)
\(60 \quad\) IF (J.GT.W)GOTD 70
\(\operatorname{DEL} X 1=X N(J)-X N(M)\)
DELY1=YN(J)-YN(M)
IF (.NDT. ((AES (DELX1).LT.4.0).AND. (AES (DELY1).LT.4.D)))THEN
\(J=J+1\)
GOTO 60
ELSE
GOTO 50
ENDIF
\(12=12+1\)
WRITE (16,*) XN(M), YN(M)
50 CONTINUE
IF (I2.EQ.8) THEN
GOTO 51
ELSE
WFiITE (*, (A))') NUMBEF OF DETECTED MAFKEESS IS NOT EQUAL TO
18
GOTO 55
ENDIF
51 FEWIND 16
DFEN (19.FILE = XYFEEF 1.TXT')
DO \(54 \mathrm{I}=1,100\)
FEAD (19,*, END=80) \(X N(12), Y N(I 2)\)
54 CONTINUE
80 BACKSFACE 19
DO \(52 \mathrm{I}=1,12\)
FEAD (16,*) XN(I), YN(I)
52 CONTINUE
WFITE (*,*) XN(I2),YN(12)
WFITE (*, (A ) ') , IS THE COOFD. OF FEFF. MAFKEF COFFECT (YES/NO :
\(11 / 0) ?\)
FEAD (*, (EN, 16)') I
IF (I.EQ.1) THEN
GOTO 71
ELSE
GOTO 55
ENDIF
71 WFITE (19,*) XN(I2), YN(I2)
OPEN ( 55, FILE = OUTD. TXT')
FEAD (S5,*) XF, YFi
DO \(5 \mathrm{I} \quad \mathrm{I}=1, \mathrm{I} 2-1\)
\(X(I, F N O)=X N(I)-(X F-X N(I Z))\)
\(Y(I, F N O)=Y N(I)+(Y R-Y N(I 2))\)
WFITE \((\Psi D, *) X(I, F N O), Y(I, F N O)\)
WFITE \(\langle *, *\rangle X(I, F N O), Y(I, F N O)\)
S. CONTINUE

WFITE (*, *) FND
OFEN (2S.FILE = FFNOI.TXT')
DO \(15 \mathrm{I}=1,100\)
FEAD (25, * , END \(=16\) ) FFNO
15 CONTINUE
15 EACHSFACE ZE
WFIITE (*, (A\\)') THE FFRAME NUMEEF OF THE FROCESSED IMAGE IS :
1FFINO=
FEAD (*. (BN. 1 ( ) , FFNO
WFITE (こ与, •) FFMG

55 CONTINUE
56 CALL FEXIT STOF
END

FFOGFAM IMAGE FEDUCTION TWO
\$INCLUDE: FORINTF.H'
C
C INITIALIZATION
C
INTEGEFi*2 \(X 4, Y 4, I, J, K, F, Q, F, M, N, X C O F(100), Y C O R(100), D E L X, D E L Y\),
1 FEAL \(X 1, X 2,576), O, S, T, X P(100), Y P(100), D X, U, V, W, F N O, F R N O\)
FEAL \(\begin{aligned} & X 1, X 2, D X 1, X(7,100), Y 1, Y 2, Y(7,100), D E L X 1, D E L Y 1, X N(100), \\ & Y N(100)\end{aligned}\)
C
C IMAGE FFOCESSING
C
CHAFACTEF EUFFEF: (256)
\(I=I N I T(620)\)
CALL AUTO
CALL CHAN (1)
CALL QUADM (1)
CALL DQUAD (0)
DO \(55 N=1,500\)
18 CALL SETIND(D)
CALL CLEAR ( 0,7 )
CALL SBUF (1)
WFITE (*, (A\\)') CHOOSE THFESHOLD VALLE :
READ (*, (BN, 16) ) I
CALL SCAL ING ( \(0,255, I, 255\), EUFFEFi)
CALL SCALING ( \(I+1,0,255,0\), BUFFEF)
CALL LUTD ( \(0,0,0,256\), BUFFEF)
CALL SYNC (1)
CALL SNAF (1)
CALL SYNC (D)
WFITE (*, (A\\)') ' IS THE FFOCESSED IMAGE ACCEFTABLE (YES/ND:1/0)?'
READ \((*, \cdot(B N, I 6) ') ~ J ~\)
IF (J.EQ. 1) THEN
GOTD 17
ELSE
GOTO 18
ENDIF
C
C FOSITIONING THE FILE AT THE END OF THE OLD DATA FILE
```

 17 DFEN(35,FILE='OUT2.TXT')
    ```
            FNO \(=0\)
            DO \(2 J=1,100\)
                DO \(3 \mathrm{I}=1,7\)
                        READ ( \(35, *, E N D=4) \quad X(I, J), Y(I, J)\)
            CONT INUE
            \(\mathrm{FNO}=\mathrm{FNO}+1\)
        2 CONTINUE
        4 EACKSFACE 35
        \(\mathrm{FNO}=\mathrm{FNO}+1\)
C
C FEEADING THE IMAGE \(M\) BY \(M\) (M : FEADING INCFEAMENT,
C fROCESSING THE ImAGE EY USING THFESHDLD value
    WFIITE (*: (A\\)') CHOOSE FEADING INCFEAMENT: •
    FEAD (*: (EN,I6) ) M
    OFEN (12,FILE = TEMF 2. TXT. STATUS = 'NEW')
    \(\mathrm{J}=1\)
    DO 5 Y4 \(=1,477 . \mathrm{M}\)
```

 DO 10 X4=1,511.M
 I=IF.IXFi(X4, Y4)
 IF (I.ER. 25S) THEN
 XCOF:(J)=X4
 YCOF:(J)=Y4
 WFITE (12,*) XCOF(J),YCOF:(J)
 J=J+1
 ENDIF
 10
 5 \text { CONTINUE}
 C
C WINDOWING
C DELETION OF FIXELS WITH VALUE EQUAL TO 10S
C CALCULATION OF TFANSITION FOINTS IN EACH WINDOW
C CALCULATION OF CENTFOID OF EACH MAFKEF: : -D COORDINATES
C WFITING 2-D COORDINATES OF THE CENTROID OF EACH MARHEF IN DATA FILE
C
REWIND 12
OFEN(1S,FILEE='TEMFS.TXT',STATUS='NEW')
I1=0
F=0
O=1
WFIITE (*, (A\),) CHOQSE WINDOW SIZE : .
FEAD (*,'(EN,Ib)') N
DO 20 K=1,J-1
FEAD (12,*) XCOF(k), YCOF(k)
X2=0.0
Y2=0.0
D 1 =0.0
DO 40 Y4=YCOFF(K)-N,YCOF(K)+N
DO =0 X4=XCOF(K)-N,XCOR(K) +N
I=IF'IXF'(X4,Y4)
L(D)=I
S=0-1
IF(S.EQ.0)L(S)=0
IF (L(D).EQ.105)L(D)=L(S)
IF (L (D).NE.F)THEN
XF}(0)=X
YF'(0) =Y4
T=O-1
IF (L (D).EQ.0)THEN
DX=XF'(O)-XF'(T)
X : = (XF (O) -DX/2.)*DX
Y1=YF'(O)*DX
X2= X2+X1
Y2=Y2+Y1
DX1=D X1 +DX
ENDIF
F}=
O=O+1
ENDIF
CONTINIIE
CONTINUE
IF (DX1.LT.15) GOTO 2a
I I=I 1 +1
XN(I1)= X2/D\times1
YN(I1)=Y2/DX1
WFITE(15,*)XN(I1),YN(I1)
20 CONTINUE
IF (I1.LT.B) THEN
WFITE (*,'(A)') NLMEEF OF DETECTED MAFLEEFS IS LESS THAN \&
GOTO 5S
ENDIF
C
C ELIMINATION GO FEFEATED DAIA
C

```

FEWIND 15
\(W=I 1\)
45 DO \(46 \mathrm{M}=1 . W\)
FEAD (15,*) XN(M),YN(M)
46 CONTINUE
OFEN (16.FILE='TEMF'4.TXT'.STATUS='NEW')
\(12=0\)
DO \(50 M=1, W\)
\(J=M+1\)
60 IF (J.GT.W) GOTO 70
DELX1=XN(J)-XN(M)
DELYI=YN(J)-YN(M)
IF (.NOT. ((ABS (DELX1).LT.4.D).AND. (ABS (DELY1).LT.4.D)) THEN \(\mathrm{J}=\mathrm{J}+1\) GOTO 60
ELSE
GOTO 50
ENDIF
\(12=12+1\)
WFITE (16,*)XN(M),YN(M)
50 CONTINUE
IF (I2.EQ.B) THEN
GOTO 51
ELSE
WRITE (*, (AN)') ' NUMEEF OF DETECTED MARKEFS IS NOT EQUAL TO
18
GOTO 55
ENDIF
51 REWIND 16
OFEN (20.FILE='XYFEFZ.TXT')
DO \(54 \mathrm{I}=1,100\)
FEAD (20,*, END=80) XN(12), YN(I2)
54 CONTINUE
BO EACKSFACE 20
DO \(52 \quad \mathrm{I}=1\), 12
FEAD \((16, *) X N(I), Y N(I)\)
52 CONTINUE
WFIITE \((*, *)\) XN(12), YN(I2)
WRITE (*, (A\\)') 'IS THE COORD. OF REF. MARKEF CORRECT (YES/NO :
1 1, (D)?
FEEAD (*, (BN, IS ) ') I
IF (I.EQ. 1) THEN
GOTO 71
ELSE
GOTO 55
ENDIF
71 WFITE (20,*) XN(I2), YN(I2)
OPEN (56.FILE = 'OUTDD. TXT')
READ (56.*) XR,YR
DO 5Z \(\mathrm{I}=1, \mathrm{I} 2-1\)
\(X(I, F N D)=X N(I)-(X R-X N(I Z))\)
\(Y(I, F N O)=Y N(I)+(Y R-Y N(I 2))\)
WFITE ( \(35, *) X(I, F N D), Y(I, F N O)\)
WRITE \((*, *) \quad X(I, F N O), Y(I, F N O)\)
53. CONTINUE

WRITE (*,*) FNO
OFEN (26,FILE='FRNO2.TXT')
DO 15 \(\mathrm{I}=1.100\)
FEAD (26,*, END=16) FFNNO
15 CONTINUE
16 BACFSFACE 26
WFITE (*. (A\\)') THE FFIAME NUMEER OF THE FROCESSED IMAGE IS:
1FRNO = .
FEEAD (*, (EN, I6) ) FFNNO
WFIITE (26,*) FFND
55 CONTINUE
56 CALL FEXIT
STOF
FNO

FROGRAM MAFKEF TRACKING ONE
```

\$INCLUDE: 'FORINTF.H'
\$LARGE
C
C INITIALIZATION
C
INTEGER*2 MNO,FNO,NMNO,FNO1,M(7)
REAL X(7,100),Y(7,100),XN1 (7,100),YN1(7,100),XF(7,100),YF(7,
1 100),DIST(7,7),BIG,AX(7,100),AY(7,100),EX(7,100), EY(7,
1 100),LARGE,DISTA(7,7),T
C
C READING FROM OLD DATA FILE=S0 INTO MEMOFIY
OFEN (SD.FILE='OUT1.TXT')
FNO1=0
DO 10 FNO=1,100
DO 20 MNO=1,7
FEAD (3Q,*,END=4) X (MNO,FNO),Y(MNO,FNO)
CONTINUE
FNO1=FNOI+1
CONTINUE
WRITE (*,*)FNOI
C
C CREATING FINAL TWO DIMENTIONAL DATA FILE
C
C INTERACTIVE IDENTIFICATION OF MAFKERS IN THE FIRST TWO FRAMES
C
OFEN (40,FILE='NOUT1.TXT',STATUS='NEW')
OPEN (77,FILE='TEMP20.TXT',STATUS='NEW`)
DO 30 FNO=1.2
DO 40 MNO=1,7
WRITE(*,'(A\)') ' ASSIGN CORFECT MARKER NUMBER: NMND=
READ (*,'(BN,I6)') NMNO
XN1 (NMNO, FNO) =X (MNO, FNO)
YN1 (NMNO,FNO)=Y(MNO.FNO)
CONTINUE
DO 42 NMNO=1,7
WFITE (40,*) XN1 (NMNO,FNO), YN1 (NMNO,FNO)
WRITE (77,*) XN1 (NMNO,FNO),YN1 (NMNO,FNO)
CONTINUE
42 CONTINUE
C
C IDENTIFICATION OF MAFIKEFIS IN THIFD FFIAME:USING TWO DIMENTIONAL
C LINEAR EXTRAPOLATION AND NEAREST NEIGHEOUR CRITERION
C

```
    REWIND 77
    DO \(45 \mathrm{FNO}=1.2\)
        DO 46 NMNO=1.7
            FEAD (77,*) XNI (NMNO,FNO), YNI (NMNO, FNO)
    46
        CONT INUE
    45 CONTINUE
    OFEN (7B,FILE='TEMF'21.TXT', STATUS='NEW')
    DO \(51 \mathrm{FNO}=3\)
        DO 50 K=1.7
            \(X F \cdot(K, F N O)=X N 1(ト, F N \cap 1-2)+2 . *(X N 1(ト, F N O-1)-X N 1(1, F N Q-Z))\)
            \(Y F(K, F N O)=Y N 1(K, F N O-2)+2 . *\) (YN1 \((K, F N O-1)-Y N 1(K, F N O-2))\)
        CONTINUE
        OFEN (22,FILE='TEMF22.T \(\times\) T', STATLIS = 'INEW')
        \(\mathrm{L}=0\)
        DO 60 1 \(1=1,7\)
```

 E1G=10000.0
 DO 7@ J=1.7
 IF (K..EQ.1) GOTO 72
 FEWIND 22
 IF (K.EQ.2) THEN
 FEAD (22,*) M(1)
 IF (J.EQ.M(1)) GOTO 70
 IF (J.NE.M(1)) GOTO 72
 ENDIF
 DO 71 I=1,k-1
 READ (22,*,END=72) M(I)
 IF ((J.EQ.7).AND.(M(I).EQ.7)) GOTO 71
 IF (J.EQ.M(I)) GOTO 70
 CONTINUE
 DIST (K,J)=((XF'(K,FNO) -X(J,FNO))**2.+(YF (K,FNO)-Y(J,FNO))
 2.)(1./2.)
 IF (DIST(K.J).LT.EIG) THEN
 BIG=DIST(K,J)
 N=J
 ELSE
 EIG=8IG
 ENDIF
 70 CONTINUE
 L=L+1
 M(L)=N
 WFITE (22,*) M(L)
 XN1 (K,FNO) =X (N,FNO)
 YN1 (K,FNO)=Y (N,FNO)
 WRITE(40,*) XN1(K,FNO),YN1(K,FNO)
 WRITE (7B,*) XN1 (K,FND),YN1 (K,FNO)
 CONTINUE
 51 CONTINUE
 C
C IDENTIFICATION OF MAFKERS :USING THREE-FOINT,TWO DIMENTIONAL
C LINEAF LEAST SQUARES APFROXIMATION AND NEAREST NEIGHROUR CRITERION
C
REWIND }7
FEWIND 78
DO 6S FNO=1.2
DO 66 NMNO=1,7
FEAD (77.*) XN1 (NMNO,FNO), YN1 (NMNO,FNO)
66
CONTINUE
65 CONTINUE
DO 67 NMNO=1,7
FEAD (78,*) XN1 (NMND,3),YN1 (NMNO, 3)
67 CONTINUE
DO BS FNO=4,FNOI
DO 90 K=1,7
AX(K,FNO)=(-XN1 (K,FND-Z)+XN1(K,FNO-1))/2.
AY (K,FNO)=(-YN1 (K,FNO-S)+YN1 (K,FNO-1))/2.
EX(K,FNO)=(XN1 (K,FNO-Z) +XN1 (K,FNO-2) +XN1 (K,FNO-1)-
6.*AX(K,FNO))/3.
FY(K,FNO)=(YN1 (K,FNO-S)+YN1 (K,FNO-Z)+YN1(K゙,FNO-1)-
6.*AY(K,FNO))/3.
XF}(K,FNO)=4.*AX (K,FNO)+EX(K,FNO
YF\cdot(K,FND)=4 . *AY (K.,FNO) +BY (K,FNO)
CONTINUE
OFEN (2З,FILE=`TEMF23.TXT',STATUS='NEW`)
L=0
DO 100 K=1.7
LAF:GE=10000.0
DO 110 J=1,7
IF (K..EQ.1) GOTO 96
REWIND 2`
IF (k.EQ.2) THEN
FEAD (2\Xi.*) M(1)

```
```

 IF (J.EQ.M(1)) GOTO 110
 IF (J.NE.M(1)) GOTO 96
 ENDIF
DO 95 I=1,K-1
O=K-1
FEAD (23,*,END=96) M(I)
IF ((J.EQ.7).AND. (M(I).EQ.7)) GOTO 95
IF (J.EQ.M(I)) GOTO 110
95 CONTINUE
96 DISTA (K,J) =((XF (K,FNO)-X(J,FNO))**2.+{YF:(K,FNO)-Y(J.
FNO))**2.)**(1./2.)
IF (DISTA(K,J).LT.LARGE) THEN
LARGE=DISTA(K,J)
N=J
ELSE
large=LARGE
ENDIF
CONTINUE
L=L+1
M(L)=N
WFITE (23,*) M(L)
XN1 (K,FNO)=X(N,FNO)
YN1 (K,FNO)=Y (N,FNO)
WRITE (4O,*) XN1(K,FNO),YN1 (K,FNO)
100
CONTINUE
85 CONTINUE
REWIND 23
DO 150 I=1,7
FEAD (2S,*,END=151) M(1)
150 CONTINUE
151 CALL FEXIT
STOP
END

```

FROGRAM MAFKER TRACKING TWO
\$INCLUDE: 'FORINTF.H'
*LARGE
C
C INITIALIZATION
C
INTEGER*2 MNO,FND,NMNO,FNO1,M(7)
REAL \(X(7,1000), Y(7,1000), X N 2(7,1000), Y N 2(7,1000), X F(7,1000), Y F(7\),
\(11000), \operatorname{DIST}(7,7), \mathrm{EIG}, \mathrm{AX}(7,1000), A Y(7,1000), E X(7,1000), \mathrm{BY}(7\),
1 1000),LARGE,DISTA(7,7),T
C
C FEADING FROM OLD DATA FILE=35 INTO MEMOFY
C
OFEN (35.FILE='OUT2.TXT')
FNO1 \(=0\)
DO \(10 \mathrm{FND}=1,1000\)
DO \(20 \mathrm{MNO}=1,7\)
READ ( \(35 . *, E N D=4\) ) \(X(M N O, F N D), Y(M N O, F N D)\)
20
CONTINUE
FNOI \(=\) FNOI +1
10 CONTINUE
4 WRITE (*,*)FNO1
C
C CREATING FINAL TWO DIMENTIONAL DATA FILE
C INTERACTIVE IDENTIFICATION OF MAFKEFIS IN THE FIFIST TWO FFAMES
C
OFEN (45,FILE='NOUT2.TXT', STATUS='NEW')
OPEN (77,FILE='TEMP20.TXT',STATUS='NEW')
DO 30 FNO=1,2
DO \(40 \mathrm{MNO}=1,7\)
WRITE (*, '(A\\) ') , ASSIGN CORFECT MARKEF NUMEEF: NMNO =
READ (*, (EN, I6) ') NMNO
\(X N 2(\) NMNO, \(F N O)=X\) (MNO, FNO)
YN2 \((\) NMNO , FNO \()=Y(\) MNO, FND \()\)
CONTINUE
DO 42 NMNO \(=1,7\)
WFIITE (45.*) XN2 (NMNO, FNO), YN2 (NMND, FNO)
WRITE (77,*) XN2 (NMNO,FND), YN2 (NMNO, FNO)
CONTINUE
30 CONTINUE
C
C IDENTIFICATION OF MARKEFS IN THIRD FFAME: USING TWO DIMENTIONAL
C LINEAR EXTRAPOLATION AND NEAREST NEIGHBOUR CRITERION C

FEWIND 77
DO 4S FNO=1,2 DO 46 NMNO \(=1,7\)

READ (77,*) XNZ (NMNO,FNO), YN2 (NMNO,FNO)
46 CONTINUE
45 CONTINUE
OFEN (78,FILE='TEMF'21.TXT'.STATUS='NEW')
DO 51 FNO=?
DO \(50 K=1,7\)
\(X F(K, F N O)=X N 2(K, F N O-2)+2 . *(X N 2(K, F N O-1)-X N 2(K, F N O-2))\)
YF (K,FNO \()=Y N 2(K, F N O-2)+2 . *(Y N 2(K, F N O-1)-Y N 2(K, F N O-2))\)
50
CONTINUE
OF'EN (22.FILE = ' TEMF'22.TXT'.STATUS='NEW')
\(L=0\)
DO \(601=1.7\)
```

 EIG=10000.0
 DO 70 J=1.7
 IF (K.EQ.1) GOTO }7
 FEWIND 22
 IF (N.,EQ.2) THEN
 FEAD (22.*) M(1)
 IF (J.EQ.M(1)) GOTO 70
 IF (J.NE.M(1)) GOTO }7
 ENDIF
 DO 71 I=1,K-1
 READ (22,*,END=72) M(I)
 IF ((J.EQ.7).AND. (M(I).EQ.7)) GOTO 71
 71
 CONTINUE
 DIST (K,.J)=((XF (K,FNO)-X(J,FND))**2.+(YF.(K,FND)-Y(J,FNO))
 2.)(1.12.)
 IF (J.EQ.1) EIG=10DOD.D
 IF (DIST(K.J).LT.BIG) THEN
 EIG=DIST(K.J)
 N=J
 ELSE
 EIG=EIG
 ENDIF
 CONTINUE
 L=L+1
 M(L)=N
 WRITE (22,*) M(L)
 XN2 (K,FNO) =X (N,FNO)
 YN2 (K,FNO) =Y (N,FNO)
 WRITE (45,*) XN2(K,FNO), YN2 (K,FNO)
 WFITE (78,*) XNZ(K,FNO), YN2(K,FNO)
 CONTINUE
 60 CONTIN
 C
C IDENTIFICATION OF MARKERS : USING THREE-POINT,TWD DIMENTIONAL
C LINEAR LEAST SQUARES APPROXIMATION AND NEAREST NEIGHBOUR CRITERION
C
REWIND }7
FEWIND 78
DO 65 FNO=1,2
DO 66 NMNO=1,7
FEEAD (77,*) XN2 (NMNO,FNO), YN2 (NMNO,FNO)
6% CONTINUE
65 CONTINUE
DO 67 NMNO=1,7
FEAD (78,*) XN2 (NMND,3), YN2 (NMNO, 3)
6 7 CONTINUE
DO B5 FNO=4,FNO1
DO F0 K=1,7
AX(K,FNO) = (-XN2 (K,FNO-3) +XN2 (K,FNO-1))/2.
AY (K, FNO) = (-YN2 (K,FNO-3) +YN2 (K,FNO-1))/2.
BX (K,FNO) = (XN2 (K,FNO-3) +XN2 (K,FNO-2) +XN2 (K,FNO-1)-
6.*AX(K,FNO))/Z.
BY(K,FNO)=(YN2 (K,FNO-3) +YN2 (K,FNO-2)+YN2 (K, FNO-1)-
6.*AY(K,FNO))/3.
XF}(K,FNO)=4.*AX(K,FNO)+BX(K,FNO
YF (K,FNO)=4.*AY (K,FNO) +EY (K,FNO)
9 0
CONTINUE
OFEEN (2S,FILE='TEMP2Z.TXT`,STATUS='NEW')
L=0
DO 100 K=1.7
LAFGE=10000.0
DO 110 J=1,7
IF (K.EQ.1) GOTO 96
FEWIND 2?
IF (\&.EQ.2) THEN
FEAD (2\Xi,*) M(1)

```
```

 IF (J.EQ.M(1)) GOTO 110
 157
 IF (J.NE.M(1)) GOTO 96
 ENDIF
 DO 95 I=1,K-1
READ (23,*,END=96) M(I)
IF ((J.EQ.7).AND.(M(I).EQ.7)) GOTO 95
IF (J.EQ.M(I)) GOTO 110
95
CONTINUE
DISTA(K,J)=((XP (K,FNO)-X (J,FNO))**2.+(YF (K,FNO)-Y(J,
FNO))**2.)**(1.12.)
IF (J.EQ.1) LARGE=10000.0
IF (DISTA(K,J).LT.LARGE) THEN
LARGE=DISTA(K.J)
N=J
ELSE
LARGE=LARGE
ENDIF
110 CONTINUE
L=L+1
M(L)=N
WRITE (23,*) M(L)
XN2(K,FNO)=X(N,FNO)
YNZ (K,FND) =Y (N,FNO)
WRITE (45,*) XN2(K,FNO), YN2(K,FNO)
100
CONTINUE
85 CONTINUE
REWIND 23
DC 150 I=1,7
READ {23,*,END=151) M(I)
150 CONTINUE
1 5 1 ~ C A L L ~ P E X I T ~
STOF
END

```
```

 SUEFOUTINE MATINV(A,N)
 DIMENSION INDEX(11,3)
 FEAL*B A(11,11),DETERM.FIVOT
 EQUIVALENCE (IROW,JROW), (ICOLUM, JCOLUM). (AMAX,T,SWAP)
 DETEFM=1.0
 DO 20 J=1,N
 INDEX(J,3)=0
 CONTINUE
DO 550 I=1,N
AMAX=0.0
DO 105 J=1,N
IF (INDEX(J,3)-1) 60,105,60
DO 100 K=1,N
IF (INDEX(K,3)-1) 80,100,715
IF (AMAX-ABS (A (J,K))) 85,100,100
IFOW=J
I COLUM=K
AMAX=AES (A(J,K))
CONTINUE
CONTINUE
INDEX (ICOLUM, 3)=INDEX (ICOLUM, 3) +1
INDEX(I,1)=IROW
INDEX (1,2)=1COLUM
IF (IROW-ICOLUM) 140,310,140
DETERM=-DETERM
DO 200 L=1,N
SWAP=A(IFROW,L)
A(IROW,L)=A(ICOLUM,L)
A(ICOLUM,L)=SWAF
CONTINUE
PIVOT=A(ICOLUM, ICOLUM)
DETERM=DETERM*PIVOT
A (I COLUM, ICOLUM) = 1. D
DO 350 L=1,N
A(ICOLUM,L)=A(ICOLUM,L)/FIVOT
CONTINUE
DO 550 L1=1.N
IF(L1-ICOLUM) 400,550,400
T=A(L1, ICOLUM)
A(L1, ICOLUM) =0.0
DO 450 L=1,N
A(L1,L)=A(L1,L)-A(ICOLUM,L)*T
CONTINUE
CONT INUE
DO 710 I=1,N
L=N+1-I
IF (INDEX(L,1)-INDEX(L,2)) 630,710,630
JROW=INDEX (L,1)
JCOLUM=INDEX (L,2)
DO 705 K=1,N
SWAF=A (K,JFOW)
A(K,JROW) =A (K,JCOLUM)
A(K.JCOLUM) =SWAF
CONTINUE
CONTINUE
DO 7S0 K=1,N
IF (INDEX(F.Z)-1) 715,730,715
7\Xi CONTINUE
GOTO 740
715 WFITE (*.'(A)') ' MATFIX IS SINGULAF:
740 RETUFN
END

```
```

 SUBROUTINE MATINVO(A,N)
 DIMENSION INDEX(Z,Z)
 FEAL*B A(J, З),DETEFM,FIVOT
 EQUIVALENCE (IROW,JFOW), (ICOLUM, JCOLUM), (AMAX,T,SWAP)
 0 DETERM=1.0
 DO 20 J=1,N
INDEX (J, З)=0
CONTINUE
DO 550 I=1.N
AMAX=0.0
DO 10S J=1,N
IF (INDEX(3,3)-1) 60,105,60
DO 100 K=1,N
IF (INDEX(K,3)-1) 80,100,715
IF (AMAX-ABS(A(J,K))) 85,100,100
I ROW=J
I COLUM=K
AMAX=ABS (A(J,K゙))
CONTINUE
CONTINUE
INDEX(ICOLUM,3)=INDEX(ICOLUM,3) +1
INDEX(I,1)=IROW
INDEX(I,2)=ICOLUM
IF (IROW-ICOLUM) 140,310,140
DETERM=-DETERM
DO 200 L=1,N
SWAP=A(IFOW,L)
A(IROW,L)=A(ICOLUM,L)
A(ICOLUM,L)=SWAF
CONTINUE
FIVOT=A (ICOLUM, ICOLUM)
DETERM=DETERM*PIVOT
A(ICOLUM,ICOLUM)=1.0
DO 350 L=1,N
A(ICOLUM,L)=A(ICOLUM,L)/FIVOT
CONTINUE
DO 550 L1=1,N
IF(L.1-ICOLUM) 400,550,400
T=A(L1,ICOLUM)
A(L1,ICOLUM)=0.0
DO 450 L=1,N
A(L1,L)=A(L1,L)-A(ICOLUM,L)*T
CONTINUE
CONT INUE
DO 710 I=1,N
L=N+1-I
IF (INDEX(L,1)-INDEX(L,2)) 630,710,630
JROW=INDEX(L,1)
JCOLUM=INDEX(L,2)
DO 705 K=1,N
SWAF=A (K:,JFOOW)
A(K,JFOW)=A(K,,JCOLUM)
A(K,JCOLUM)=SWAF
CONTINUE
CONTINUE
DO 730 K=1,N
IF (INDEX(K,3)-1) 715,73@,715
730 CONTINUE
GOTO 740
715 WFITE (*,'(A)') ' MATFIIX IS SINGULAF:
740 RETURN
END

```

FROGFAM TDC CALCULATION
\$INCLUDE: FORINTF.H.
*INCLLDE: 'SUR4.FDF'
*DEBUG
*LARGE
C
C INITIALIzATION
C
INTEGER*2 ROW, COL,FOSN,JJ,F,FNO1,FNO2,FNO
REAL*8 L1(11),L2(11),XN1 (7,100), YN1 (7,100), XN2(7,100), YN2(7,10
1 ( ) \(, B(4,3), C(4,1), D(3,4), S U M, F(3,4), G(3,1), A(3,3), E(3,3)\)
\(1, \times 3(7,100), Y 3(7,100), 23(7,100), L\)
DIMENSION INDEX \((3,3)\)
C
C CREATING A NEW FILE FOR THREE DIMENTIONAL COORDINATES OF MARKER
C
OPEN(10,FILE='TDC.TXT',STATUS='NEW')
C
C READING CALIBRATION FARAMETERS OF TWO CAMERAS
C
OFEN (5.FILE= \({ }^{\prime}\) CALIB1. TXT')
OPEN(6,FILE= 'CALIB2.TXT')
DO \(10 \mathrm{I}=1,11\)
READ (5,*) L1 (I)
10 CONTINUE
DO \(15 \mathrm{I}=1,11\)
\(\operatorname{READ}(6, *) L 2(I)\)
15 CONTINUE
C
C READING TWO DIMENTIONAL COORDINATES OF MARKEKS
C
OPEN(40,FILE='NOUT1.TXT')
OPEN(45,FILE='NOUT2.TXT')
FNO1 \(=0\)
DO \(20 \mathrm{~J}=1,1000\)
DO \(22 \mathrm{I}=1,7\)
READ (40,*,END=4) XN1(I,J),YN1(I,J)
22
CONT INUE
FNOI=FNO1+1
20 CONTINUE
4 FNO2=0
DO \(25 \mathrm{~J}=1,1000\)
DO \(27 \mathrm{I}=1,7\)
READ \((45, *, E N D=5) \quad X N 2(I, J), Y N 2(I, J)\)
27 CONT INUE
FNO2=FNO2+1
25 CONTINUE
C
C CALCULATION OF THE ELEMENTS OF MATFIX [E]: [ \(4 \times 3]\)
C
C
C TRANSPOSE OF MATRIX [E] : [D]=[B] : [ \(\left.{ }^{\top} \times 4\right]\)
C
C CALCULATION OF THE THFEE DIMENTIONAL COOFDINATES OF MAFKEFS
C
5 IF (FNO1.GT.FNOZ) THEN
FNO =FNO2
ELSE
\(F N O=F N O I\)
ENDIF
```

C
C creating a data file fof the distance metween the makikers no. 5 and o
OFEN (3Z.FILE='DIST.TXT',STATUS='NEW')
C
DO 30 J=1,FNO
DO 40 I=1.7
B(1,1)=L1(1)-L1(9)*XN1(1,J)
D(1,1)=E(1,1)
B(1,2)=L1(2)-L1(10)*XN1(I,J)
D (2,1)=B(1,2)
E(1,3)=L1(3)-L1(11)*XN1(1,J)
D(3,1)=B(1,3)
B(2,1)=L1(5)-L1(9)*YN1 (I,J)
D (1,2)=B(2,1)
B(2,2)=L1(6)-LI(10)*YN1(I,J)
D (2,2)=B(2,2)
B(2,3)=L1(7)-L1(11)*YN1(1,J)
C
B(3,1)=L2(1)-L2(9)*XN2(I,J)
D (1,3)=B(3,1)
B(3,2)=L2(2)-L2(10)*XN2(1,J)
D (2,3)=E (3,2)
E(3,3)=L2(3)-L2(11)*XN2(1,J)
D (3,3)=B(3,3)
B(4,1)=L2(5)-L2(9)*YNZ(I,J)
D (1,4)=B(4,1)
B(4,2)=L2(6)-L2(10) *YN2(1,J)
D (2,4)=B(4,2)
E(4,3)=L2(7)-L2(11)*YN2(1,J)
D (3,4) = B(4,3)
C
c CALCLLATION OF THE ELEMENTS OF MATRIX [C] : [4 x 1]
C
C(1,1)=XN1(I,J)-L1(4)
C(2,1)=YN1(I,J)-L1(8)
C
C(3,1)=XN2(I,J)-L2(4)
C(4,1)=YN2(I,J)-L2(8)
c
T
C MATRIX MULTIPLICATION : [A]=[B]'[B] : [3 X 3]
c
DO 70 ROW=1,3
DO 80 COL=1,3
SUM=0.0
DO 90 POSN=1,4
SUM=SUM+D(ROW,POSN)*B(POSN,COL)
90 CONTINUE
A(ROW,COL)=SUM
CONTINUE
CONTINUE

```

```

C
N=3
CALL MATINVD(A,N)
DC 100 N=1.3
DO 110 M=1, ?
E(M,N)=A(M,N)
110 CONTINUE
100 CONTINUE
C
C MATRIX MULTIFLICATION: [F]={[E] [E]; [B]: [S X 4]
C FSEUDO-INVERSE MATRIX CALCULATION
C

```

DO 130 FOW \(=1,3\)
DO \(140 \quad \mathrm{COL}=1,4\)
SUM \(=0.0\)
DO 150 POSN \(=1,2\)
SUM \(=\) SUM \(+E\) (FOW, FOSN ) *D (FOSN, COL \()\)
CONT I NUE
\(F(\) ROW, COL \()=\) SUM
140
CONTINUE
CONTINUE
C
C MATRIX MULTIFLICATION: [G]=\{[E] [B] \(\}^{-1}[B][C]:[3 X 1]\)
C THREE DIMENTIONAL COORDINATES OF MARKEF : \(x\) y \(z\)
C
DO 160 ROW \(=1,3\)
SUM \(=0.0\)
DO 180 POSN \(=1.4\) SUM \(=\) SUM + F (ROW, FOSN \() * C(P O S N, 1)\)

\section*{180 CONTINUE}

G(ROW, 1) \(=\) SUM
160 CONTINUE
C
C THREE DIMENTIONAL COORDINATES OF MARKEF
C
\(X Z(I, J)=G(1,1)\)
\(Y 3(I, J)=G(2,1)\)
\(23(I, J)=G(3,1)\)
C
C
WRITE (10,*) X \(3(I, J), Y Z(I, J), Z 3(I, J)\)
IF (I.EQ.6) THEN
\[
L=((X 3(6, J)-X 3(5, J)) * * 2 .+(Y 3(6, J)-Y Z(5, J)) * * 2 .+(Z 3(6,
\] J) \(-23(5, \mathrm{~J})) * * 2) * *.(1.12\). WFIITE( \(3 \Omega, *\) ) L
ENDIF
C
40 CONTINUE
30 CONTINUE
CALL PEXIT
STOP
END
```

 FFOGRAM CALCULATION OF EULEF ANGLES
 \$INCLUDE: FORINTF.H` $LARGE $DERUG C C INITIALIZATION C INTEGER*2 FNO FEAL X3(7,1000),V3(7,1000),Z3(7,1000),F12,E11,E12,B13,XM,YM,ZM, 1 R13,C11,C12,C13,A11,A12,A13,R34,B21,B22,B23,A21,A22,A23, C21,C22,C23,R3M, R31, B32, B33,R4M,A31,A32,A33,C31,C32,C33, PSIS(100), PHIS(100), THES(100),D11,D112,D13,E11,E12,E13, F11,F12,F13,FSIE (100), FHIE (100), THEE (100),D21,D22,D23, E21,E22,E23,F21,F22,F23,PSIW(100),PHIW(100),THEW(100), THES1(100), PHIS1(100), PSIS1(100), FSIS2(100), THES11(100) ,PSIE2(100), THEE11(100), THEE1(100),PHIE1(100),FSIE1(100), FSIW2(100), THEW11(100), THEW1(100), FHIW1(100), FSIW1 (100),R46,RM7,R56,R,A01,A02,A03,B01,R02,B03,C01,C02,C03,T0,T0日, TOOD,DO1,DO2,DD3,EO1,ED2,ED3,FO1,FD2,FDS,A1,A2,AS C C CREATING NEW FILES FOF EULER ANGLES C OPEN (15.FILE='ELLEFF1.TXT',STATUS='NEW') OPEN (16,FILE='EULER2.TXT',STATUS='NEW') OFEN (17.FILE='ELLLER3.TXT',STATUS='NEW') C OPEN 〈71,FILE='EULER10.TXT',STATUS='NEW'`
OPEN (72,FILE='EULER20.TXT',STATUS='NEW')
OPEN (73,FILE='ELLLER3D.TXT',STATUS='NEW')
C
C FEADING THREE DIMENTIONAL COORDINATES OF MARKERS FROM FILE='TDC.TXT'
C
OPEN (10,FILE='TDC.TXT')
FNO=0
DO 10 N=1,1000
DO 20 M=1,7
READ (10,*,END=4) X3(M,N),VS(M,N),Z3(M,N)
CONTINUE
FNO=FNO+1
CONT INUE
4 BACKSFACE 10
C
C CALCULATION OF UINT VECTORS OF RODY ROTATING AXES
C
C FIXED AXES UINT VECTORS : I,J,K
C
C BODY AXES UNIT VECTORS : i,j,k
C
DO 30 N=1,FNO

```

```

C SHOULDER UNIT VECTOR
i\emptyset(N)=A\emptysetI*I+ADI*J+A0\Omega*K
j0(N)=B01*I+B02*J+E0S*F
NO(N)=C01*I+CO2*J+COS*F
F12=((XI.(1,N)-XE (2,N))**2.+(YS(1,N)-YS(2,N))**2.+(ZS(1,N)-

```
        E01=(X3(1,N)-X3(2,N))/R12
        B02=(Y3(1,N)-YJ(2,N))/R12
        E@I=(ZS(1,N)-ZS(2,N))/R12
        TD=(B\emptyset1**2.+B02**2.+B0J**2.)**(1./2.)
                            A1=(YZ(1,N)-Y3(2,N))*(ZZ(3,N)-Z3(2,N))-(Z3(1,N)-Z3(2,N))*
                (YJ(3,N)-YJ(2,N))
            A2=(Z3(1,N)-Z3(2,N))*(X3(3,N)-X3(2,N))-(X3(1,N)-X3(2,N))*
                (ZJ(3,N)-Z3(2,N))
            AJ=(X3(1,N)-X3(2,N))*(YZ(S,N)-Y3 (2,N) )-(YZ (1,N)-YZ (2,N))*
            (XS(3,N)-XS(2,N))
            R13={A1**2.+A2**2.+A3**2.)**(1./2.)
            AO1=A1/R13
            AD2=A2/R13
            A@J=A3/R13
                            T00=(A01**2.+A02**2. +A03**2.)**(1./2.)
C
    CD1=A02*F03-A03*B02
    CO2=ADS*RO1-AO1*BDJ
    COS=A01*BO2-A02*BO1
    T000={CD1**2.+C02**2.+C03**2.)**(1.12.)
C
C ARM UINT VECTORS : [E1(N) ]=[ i1(N) il(N) Ni(N) T
C
C
C il(N)=A111*I+A12*J+A13*K
    j1(N)=B111*I+B12*J+B13*K
    k1(N)=C11*I+C12*J+C13*K
C
    1
        F34=({X3(3,N)-X3(4,N))**2. +(Y3(3,N)-Y3(4,N))**2.+(Z3(3,N)-
            Z3(4,N))**2.)**(1.12.)
            E11=(X3(3,N)-X3(4,N))/RJ4
            B12=(Y3(3,N)-Y3(4,N))/R34
            B13=(Z3(3,N)-Z3(4,N))/R34
            T1=(B11**2.+B12**2.+B13**2.)**(1./2.)
            XM={2.13.)*X3(5,N)+(1./3.)* X (6,N)
            YM=(2./3.)*Y3(5,N)+(1./3.)*YZ(6,N)
            ZM={2./3.)*Z3(5,N)+(1.13.)*Z3(6,N)
            RZM=(({YM-YZ (4,N))*(ZS(S,N)-Z3(4,N))-(ZM-ZS(4,N))*
            (YZ(S,N)-YZ(4,N)))**2.+((ZM-Z3(4,N))*(XZ(Z,N)-XZ(4,N))-
            (XM-XZ(4,N))*(Z3(3,N)-ZZ(4,N)))**2.+((XM-XS(4,N))*
            (YZ(3,N)-YZ(4,N))-(YM-YZ (4,N))*(XZ(3,N)-XS(4,N)))**2.)
            **(1.12.)
            C11=((YM-Y3(4,N))*(Z3(3,N)-Z3(4,N))-(ZM-Z3(4,N))*
            (Y3(3,N)-Y3(4,N)))/R3M
C12=((ZM-ZS(4,N))*(XS(S,N)-X3(4,N))-{XM-XZ(4,N))*
            (Z3(3,N)-Z3(4,N)))/RTM
C13=((XM-XZ (4,N))*(YZ(Z,N)-YZ (4,N))-(YM-YS(4,N))*
            (X3(3,N)-X3(4,N)))/RSM
            T2=(C11**2.+C12**2.+C13**2.)**(1./2.)
            A11=B12*C13-B13*C12
            A12=B13*C11-B11*C13
            A13=B11*C12-B12*C11
            TS=(A11**2.+A12**2.+A13**2.)**(1./2.)
                    C FOREARM UNIT VECTORS: [ E2(N) ]=[ i2(N) j2(N) kZ(N) ]
                    C
                    C
                    C
                        i 2(N)=A21*I+A22*J+A2S*K
                                j2(N)=E21*I+B22*J +E2S*F
```

```
```

F4M=((X3(4,N)-XM)**2.+(YS(4,N)-YM)**2.+(ZЗ(4,N)-ZM)**2.)

```
```

F4M=((X3(4,N)-XM)**2.+(YS(4,N)-YM)**2.+(ZЗ(4,N)-ZM)**2.)
**(1./2.)
**(1./2.)
E21=(X3(4,N)-XM)/R4M
E21=(X3(4,N)-XM)/R4M
B22=(Y3(4,N)-YM)/R4M
B22=(Y3(4,N)-YM)/R4M
B2J=(Z3(4.N)-ZM)/R4M
B2J=(Z3(4.N)-ZM)/R4M
P1=(B21**2.+B22**2.+B23**2.)**(1./2.)

```
```

P1=(B21**2.+B22**2.+B23**2.)**(1./2.)

```
```

C
1

```
F46=(((YZ (6,N)-YZ (4,N))*(Z3 (5,N)-Z3(4,N))-(Z3(6,N)-Z3(4,N))*
(Y3(5,N)-YZ (4,N)))**2.+((Z3(6,N)-Z3(4,N))*(XJ(5,N)-XZ(4,
    N) )-(XJ (6,N)-X3(4,N))*(23(5,N)-Z3(4,N)))**2.+((X3(6,N)-
    XS (4,N))*(YS (5,N)-YZ (4,N))-(YS (6,N)-YS(4,N))*(XS (5,N)-
    X3(4,N)))**2.)**(1./2.)
A21=((YS (6,N)-YZ (4,N))*(ZS(5,N)-ZJ(4,N))-(Z3(6,N)-Z3(4,N))*
    (Y3(5,N)-Y3(4,N)))/R46
A22=({ZS (6,N)-23(4,N))*(XJ (5,N)-X3(4,N))-(X3 (6,N)-X3 (4,N))*
    (Z3(5,N)-Z3(4,N)))/R46
A2B=((XZ (6,N)-X3 (4,N))*(YZ (5,N)-Y3 (4,N))-(YZ (6,N)-YZ(4,N))*
    (X3(5,N)-X3(4,N)))/R46
P2=(A21**2.+A22**2.+A23**2.)**(1./2.)
```

C
$\mathrm{C} 21=\mathrm{A} 22 * \mathrm{~B} 23-\mathrm{A} 23 * \mathrm{~B} 22$
$\mathrm{C} 22=\mathrm{A} 23 * \mathrm{~B} 21-\mathrm{A} 21 * \mathrm{~B} 23$
$C 23=A 21 * B 22-A 22 * B 21$
$P 3=(C 21 * * 2 .+C 22 * * 2 .+C 23 * * 2) * *.(1.12$.
\hat{C} HAND UNIT VECTORS : $[\hat{E S}(N)]=[\hat{i} 3(N) \hat{j} \hat{j}(N) \hat{k J}(N)]^{\top}$
C HAND UNIT VECTORS : [ES (N) $]=[$ i 3 (N) $j 3(N) k J(N)]$
C
C
C
$i 3(N)=A 31 * I+A 32 * J+A 33 * K$
$j 3(N)=R 31 * I+B 32 * J+B 33 * K$
$k 3(N)=C 31 * I+C 32 * J+C 33 * K$
$R M 7=((X M-X 3(7, N)) * * 2 .+(Y M-Y 3(7, N)) * * 2 .+(Z M-Z 3(7, N)) * * 2$.
** (1./2.)
$\mathrm{B} 31=(X M-X 3(7, N)) / R M 7$
$B 32=(Y M-Y 3(7, N)) / R M 7$
$B 33=(Z M-23(7, N)) / R M 7$
$\mathrm{Q}_{1}=(\mathrm{B} 31 * * 2 .+\mathrm{B} 32 * * 2 .+\mathrm{B} 33 * 2) * *.(1.12$.

C

```
R56=(((YJ (5,N)-Y3 (7,N))* (ZS (6,N)-ZS(7,N))-(ZS(5,N)-Z3(7,N))*
```

 \((Y 3(6, N)-Y 3(7, N))) * * 2 .+((Z 3(5, N)-Z 3(7, N)) *(X 3(6, N)-X 3(7, N)\)
 \()-(X 3(5, N)-X 3(7, N)) *(Z \Omega(6, N)-Z 3(7, N))) * * 2 .+((X 3(5, N)-X 3(7\),
 \(N)) *(Y Z(6, N)-Y S(7, N))-(Y S(S, N)-Y S(7, N)) *(X 3(6, N)-X 3(7, N)\)
)) **2.)**(1./2.)
 $A 31=((Y 3(5, N)-Y Z(7, N)) *(Z 3(6, N)-Z Z(7, N))-(Z 3(5, N)-Z 3(7, N)) *$
$(Y 3(6, N)-Y 3(7, N))) / R 56$
$A 32=((\operatorname{ZS}(5, N)-23(7, N)) *(X 3(6, N)-X 3(7, N))-(X 3(5, N)-X 3(7, N)) *$
$(23(6, N)-23(7, N))) / F: 56$
$A B S=((X 3(5, N)-X 3(7, N)) *(Y Z(6, N)-Y B(7, N))-(Y 3(5, N)-Y 3(7, N)) *$
$(\times 3(6, N)-X 3(7, N))) / R 56$
$Q 2=(A 31 * * 2 .+A 32 * * 2 .+A 33 * * 2) * *.(1 . / 2$.
c
$\mathrm{C} 31=\mathrm{A} 32 * \mathrm{~B} 33-\mathrm{A} 33 * \mathrm{E} 32$
$\mathrm{C} 32=\mathrm{A} 33 * \mathrm{ER} 31-\mathrm{A} 31 * \mathrm{E} 33$
$\mathrm{C} 3 \mathrm{~S}=\mathrm{A} 31 * \mathrm{~EB} 2-\mathrm{A} 32 * \mathrm{~B} 31$
Q3=(C31**2.+C32**2.+C3I**2.)**(1.12.)

C
C CONVEFSION FACTOF: DEGFEES/FADIANS
C $F=180 . / 5.1415927$
C
C CALCLLATION OF EULEF ANGLES FOF SHOULDEF: FHI-S. THETA-S,FSI-S

C TRANSFORMATION MATRIX FOF SHOULDEF: :
$\left[\begin{array}{llll}\hat{E}\end{array}\right]=\left[\begin{array}{ll}\hat{I} & \hat{J} \\ \hat{K}\end{array}\right]$
FIXED AXES $[E]=[\quad I \quad J \quad K]$
$[E D(N)]=[T O][E]$
$\left[E_{1}(N)\right]=[T 1][E] \quad$,
$[E 1(N)]=[T 1][T D][E O(N)]$
ORTHOGONAL AXES : $[T]=[T]$
$\left[\begin{array}{lll}{[D]}\end{array}\right]=[1$][TO]

C
C
C
C
C
C
C C
C
C

C

200

C
C
C
C
C
C TRANSFOFMATION MATRIX FOF ELEOW:
C

```
\(D 01=A 11 * A 01+A 12 * A 02+A 13 * A O 3\)
\(\mathrm{DO} 2=\mathrm{A} 11 * \mathrm{BO} 1+\mathrm{A} 12 * \mathrm{BO} 2+\mathrm{A} 13 * \mathrm{BD} 3\)
\(D 03=A 11 * C 01+A 12 * C 02+A 13 * C 03\)
```

$E D 1=B 11 * A 01+B 12 * A D 2+B 13 * A 03$
$\mathrm{E} 02=\mathrm{B} 11 * \mathrm{BO} 1+\mathrm{B} 12 * \mathrm{B0} 2+\mathrm{B} 13 * \mathrm{B0} 3$
$\mathrm{E} 03=\mathrm{B} 11 * \mathrm{CO} 1+\mathrm{B} 12 * \mathrm{CO} 2+\mathrm{B} 13 * \mathrm{CD} 3$
$F O 1=C 11 * A 01+C 12 * A 02+C 13 * A D 3$
$F 02=C 11 * B 01+C 12 * B 02+C 13 * B 03$
$\mathrm{F} 日 \Omega=\mathrm{C} 11 * \mathrm{CD} 1+\mathrm{C} 12 * \mathrm{CD} 2+\mathrm{C} 13 * \mathrm{CD} 3$
FSIS2 (N) =ATAN (-D03/FD3)
FSIS $(N)=(A T A N(-D 03 / F 03)) * R$
FHIS $(N)=(A T A N(-E 01 / E 02)) * R$

THESI1(N)=ASIN(EOS)
THES $1(N)=$ THES $11(N) * R$
PHIS1(N) $=(\operatorname{ACOS}(\operatorname{ED2} / \operatorname{COS}(\operatorname{THES} 11(N)))) * R$
PSISI $(N)=(\operatorname{ACOS}(F Q 3 / C O S(\operatorname{THESII}(N)))) * R$
IF (PHISI(N).GT.90.) PHIS (N)=PHIS1(N)
IF (PSIS1 (N).GT.90.) PSIS(N)=PSISI(N)

WRITE ($15,20(0)$ FHIS (N), THES (N), PSIS(N)
FORMAT (10X, 3F14.2)

OFTHOGONAL AXES :
$\operatorname{THES}(N)=(A T A N((E O S * \operatorname{COS}(\operatorname{PSIS2}(N))) / F Q 3)) * R$

IF ((PHISI (N).LT. 90.).AND. (PHIS(N).LT.O.)) PHISI (N) =PHIS(N)
IF (PSISI (N).LT.90.).AND. (PSIS(N).LT.D.)) PSISI (N)=PSIS (N)

WRITE (71,200) PHIS1 (N), THES1 (N), PSISI (N)

CALCULATION OF EULER ANGLES FOR ELBOW : FHI-E,THETA-E,FSI-E

D11 $=A 21 * A 11+A 22 * A 12+A 23 * A 13$
D $12=A 21 * B 11+A 22 * B 12+A 23 * B 13$
D13=A21*C11+A22*C12+A23*C13
C

$[D 1]=[T 2][T 1]$
$\mathrm{E} 11=\mathrm{H} 21 * \mathrm{~A} 11+\mathrm{B} 22 * \mathrm{~A} 12+\mathrm{E} 2 \mathrm{Z} * \mathrm{~A} 1 \mathrm{Z}$
$\mathrm{E} 12=\mathrm{B} 21 * \mathrm{~B} 11+\mathrm{B} 22 * \mathrm{~B} 12+\mathrm{B} 2 \mathrm{~B}+\mathrm{B} 13$
$\mathrm{E} 13=\mathrm{E} 21 * \mathrm{C} 11+\mathrm{E} 22 * \mathrm{C} 12+\mathrm{B} 23 * \mathrm{C} 13$

F11=C21*A11+C22*A12+C23*A13
F12=C21*B11+C22*B12+C23*E13
F13=C21*C11+C22*C12+C23*C13
C
FSIEZ $(N)=A T A N(-D 13 / F 13)$
$\operatorname{PSIE}(N)=(\operatorname{ATAN}(-\operatorname{D13/F13})) * \mathrm{R}$
$\operatorname{PHIE}(N)=(\operatorname{ATAN}(-E 11 / E 12)) * R$
$\operatorname{THEE}(N)=(\operatorname{ATAN}((E 13 * \operatorname{COS}(\operatorname{PSIE} 2(N))) / F 13)) * R$
$\operatorname{THEE} 11(N)=A S I N(E 13)$
THEE $1(N)=$ THEE $11(N) * R$
FHIE1 $(N)=(\operatorname{ACOS}(E 12 / \operatorname{COS}(\operatorname{THEE} 11(N)))) * R$
FSIE1 $(N)=(\operatorname{ACOS}(F 13 / C O S(\operatorname{THEE} 11(N)))) * R$
C
IF (FHIEI (N).GT.90.) PHIE(N)=FHIEI(N)
IF ((PHIE1 (N).LT. 9 (D.). AND. (PHIE (N).LT.D.)) PHIEI (N)=PHIE (N)
IF (PSIEI(N).GT.90.) PSIE (N)=PSIE1(N)
IF ($(\operatorname{PSIE1}(N) . L T .90.) . A N D .(P S I E(N) . L T .0).) \operatorname{PSIE1}(N)=\operatorname{PSIE}(N)$
C
WRITE (16,200) FHIE (N), THEE (N), PSIE (N)
WRITE $(72,200)$ PHIE1 (N), THEEI (N), PSIE1 (N)
C CALCULATION OF EULER ANGLES FDR WRIST : FHI-W,THETA-W,FSI-W
C
C TRANSFDRMATION MATRIX FOR WRIST:
C
C
C
C
C
C
C
C
C
C
C
C
ORTHOGONAL AXES:

```
                                    [E2(N)]=[T2] [E]
                                    [ES(N)]=[TB] [E]
    ^ -1 ^
    [ES(N)] = [T3] [T2] [E2(N)]
            -1
                [T2] =[T2]
                            T
                            [D2]=[T3] [T2]
```

 \(\mathrm{D} 21=\mathrm{A} 31 * \mathrm{~A} 21+\mathrm{A} 32 * A 22+A 33 * A 23\)
 \(\mathrm{D} 22=\mathrm{A} 31 * \mathrm{R} 21+\mathrm{A} 32 * B 22+A 33 * B 23\)
 \(\mathrm{D} 23=\mathrm{A} 31 * \mathrm{C} 21+\mathrm{A} 32 * \mathrm{C} 22+\mathrm{A} 33 * \mathrm{C} 23\)
 Q10=(D21**2.+D22**2. +D23**2.)**(1.12.)
 C
$\mathrm{E} 21=\mathrm{B} 31 * \mathrm{~A} 21+\mathrm{B} 32 * \mathrm{~A} 22+\mathrm{B} 33 * \mathrm{~A} 23$
$\mathrm{E} 22=\mathrm{B} 31 * \mathrm{~B} 21+\mathrm{B} 32 * \mathrm{~B} 22+\mathrm{B} 33 * \mathrm{~B} 23$
$\mathrm{E} 23=\mathrm{B} 31 * \mathrm{C} 21+\mathrm{B} 32 * \mathrm{C} 22+\mathrm{B} 33 * \mathrm{C} 23$
Q20 = (E21**2. $+E 22 * * 2 .+E 23 * * 2) * *.(1.12$.
C
$F 21=C 31 * A 21+C 32 * A 22+C 33 * A 23$
$\mathrm{F} 22=\mathrm{C} 31 * \mathrm{~B} 21+\mathrm{C} 32 * \mathrm{~B} 22+\mathrm{C} 33 * \mathrm{~B} 23$
$\mathrm{F} 23=\mathrm{C} 31 * \mathrm{C} 21+\mathrm{C} 32 * \mathrm{C} 22+\mathrm{C} 3 \mathrm{~B} * \mathrm{C} 23$
Q30 $=($ F21**2. + F22**2. + F23**2.) ** (1.12.)
C
FSIWZ $(N)=A T A N(-D 23 / F 23)$
PSIW $(N)=(\operatorname{ATAN}(-D 23 / F 23)) * R$
FHIW $(N)=(\operatorname{ATAN}(-E 21 / E 22)) * R$
$\operatorname{THEW}(N)=(A T A N((E 23 * \operatorname{COS}(P S I W 2(N))) / F 23)) * F i$
C
THEW11 (N) =ASIN (E2S)
THEW $1(N)=$ THEW 1 1 $(N) * F$
FHIW1 $(N)=(\operatorname{ACOS}(E 22 / \operatorname{COS}(\operatorname{THEW} 11(N)))) * F$
$V=F 23 / C O S(T H E W 11(N))$
IF (V.GT.1.) THEN
$V=1.0$
ENDIF
FSIWI $(N)=(\operatorname{ACOS}(V)) * F$
C

```
IF (FHIW1(N).GT.90.) FHIW(N)=FHIW1(N)
IF ((PHIWI(N).LT.90.).AND.(FHIW(N).LT.0.)) FHIWI(N)=PHIW(N)
IF (FSIW1(N).GT.90.) FSIW(N)=FSIWI(N)
IF ((PSIWI(N).LT.90.).AND. (FSIW(N).LT.D.)) PSIWI(N)=FSIW(N)
WFITE (17,200) FHIW(N), THEW(N),FSIW(N)
WRITE (73,200) PHIW1(N),THEW1(N),FSIW1(N)
CALL PEXIT
```

C

30 CONTINUE

STOP
END

FFOGFAM STICK DIAGFAM FLOTTING IN XY FLANE
\$INCLUDE: ${ }^{\text {FIGRINTF.H. }}$
*LARGE
C
C INITIALIZATION
C
REAL XN1 (7,100),YN1 (7,100), ZN1 (7,100)
INTEGER* $2 X(6,100), Y(6,100), M, N, F N O$
C

```
C
```

C
OFEN(10,FILE='TDC.TXT')
OPEN (92,FILE='TEMP92.TXT',STATUS='NEW')
$F N D=0$
DO $10 \mathrm{~J}=1,100$
L=1
DO $20 \mathrm{I}=1,7$
$\operatorname{READ}(10, *, E N D=4) \quad X N 1(I, J), Y N 1(I, J), Z N 1(I, J)$
IF (I.EQ.5) GOTD 20
IF (I.EQ.6) THEN
XN1 $(L, J)=(8 . / 11) * X N .1(5, J)+(3 . / 11) * X N .1(6, J)$
YN1 $(L, J)=(8 . / 11) * Y N .1(5, J)+(3 . / 11) * Y N .1(6, J)$
GOTO 100
ENDIF
XN1 $(L, J)=X N 1(I, J)$
YN1 (L, J) =YN1 (I,J)
100
$P=X N 1(L, J) * 470$
$M=I N T$ (F) -150
$X(L, J)=512-M$
$Q=Y N 1(L, J) * 470$
$N=I N T(Q)-250$
$Y(L, J)=N$
WRITE $(92, *) X(L, J), Y(L, J)$
$L=L+1$
20 CONTINLE
$F N O=F N O+1$
10 CONTINUE
C
C INITIALIZING THE EDAFD
C CLEARING THE SCREEN TO INDEX 255
C SET THE INDEX TO © FOR FLDTING
C
4 I=INIT(620)
CALL SETIND (255)
CALL CLEAR $(0,7)$
CALL SETIND (D)
C
C FLOTING STICK DIAGFAM FOF TWO DIMENTIONAL IMAGES
C NOTE THAT THE IMAGE PLANE IS NOT FARALLEL TO $X Y, X Z$, AND YZ FLANES
C
WRITE(*,*) FND
REWIND 92
DO $30 \mathrm{~J}=1$, FNO
DO $40 \quad I=1,6$
FiEAD $(92, *) \times(1, J), Y(I, J)$
IF (I.LT.S) GOTO 40
IF (I.EQ.S) THEN
CALL MOVETO $(X(I, J), Y(I, J))$
ENDIF
IF (I.GT.S) THEN

CALL LINETO (X(I,J),Y(I,J)) ENDIF
40 CONTINUE
30 CONTINLE
CALL FEXIT
STOF
END

FFROGFiAM STICK: DIAGRAM PLOTTING IN ZY FLANE
\$INCLUDE: FORINTF.H'
ELAFigE
C
C INITIALIZATION
C
REAL XN1 (7,100), YN1 (7,100), ZN1 (7, 100)
INTEGER*2 $X(6,100), Y(6,100), M, N, F N O$
C
C FEADING THREE DIMENTIONAL COORDINATES FROM FILE: TDC.TXT C

DFEN(10,FILE='TDC.TXT')
OPEN (93,FILE='TEMP93.TXT',STATUS='NEW')
$\mathrm{FNO}=0$
DO $10 \mathrm{~J}=1,100$
$L=1$
DO $20 \quad I=1,7$
$\operatorname{FEAD}(10, *, E N D=4) \quad X N 1(I, J), Y N 1(I, J), Z N 1(I, J)$
IF (I.EQ.5) GOTO 20
IF (I.EQ.6) THEN YN1 $(L, J)=(8 . / 11) * Y N .1(5, J)+(3 . / 11) * Y N .1(6, J)$ ZN1 $(L, J)=(8 . / 11) * Z N .1(5, J)+(3 . / 11) * Z N .1(6, J)$ GOTO 100
ENDIF
YN1 $(L, J)=Y N 1(I, J)$
$Z N 1(L, J)=Z N 1(I, J)$
$P=$ ZN1 (L,J) *470
$M=I N T(F)$
$Y(L, J)=477-M$
Q=YN1 (L, J) *470
N=INT (Q)-250
$X(L, J)=N$
$\underset{\substack{\text { WRITE } \\ L=L+1}}{(93, *)} x(L, J), Y(L, J)$
CONTINUE
$F N O=F N O+1$
CONTINUE
C
C FLOTTING STICK DIAGKAM FOR TWO DIMENTIONAL IMAGES
C NOTE THAT THE IMAGE PLANE IS NOT PARALLEL TO $X Y, X Z, A N D Y Z$ PLANES
4 WRITE (*,*) FND
REWIND 93
DO $30 \mathrm{~J}=1$, $F N O$
DO $40 \quad \mathrm{I}=1,6$
READ (93,*) $X(I, J), Y(I, J)$
IF (I.LT.J) GOTO 40
IF (I.EQ.3) THEN
CALL MOVETO ($X(I, J), Y(I, J))$
ENDIF
IF (I.GT.3) THEN
CALL LINETO (X(I,J),Y(I,J))
ENDIF
CONTINUE
40 TINUE
CALL FEXIT
STOF-
END

```
    FFOGFAM STICK DIAGFAM FLOTTING IN XZ PLANE
*INCLUDE: 'FORINTF.H'
FLAFGE
C
C INITIALIZATION
C
    FEAL XN1(7,100),YN1(7,100),ZN1(7,100)
    INTEGER*2 X (6,100),Y(6,100),M,N,FNO
C
C READING THREE DIMENTIONAL COORDINATES FFOM FILE : TDC.TXT
C
    OPEN(10,FILE= 'TDC.TXT')
    OPEN(94,FILE='TEMPQ4.TXT',STATUS='NEW')
    FNO=0
    DO 10 J=1,100
            L=1
            DO 20 I=1,7
                FEAD (1D,*,END=4) XN1(I,J),YNI(I,J),ZN1(I,J)
                    IF (I.EQ.5) GOTO 20
                    IF (I.EQ.6) THEN
                    XN1(L,J)=(8./11.)*XN1(5,J) +(3./11.)*XN1 (6,J)
                    ZN1(L,J)=(8./11.)*ZN1 (5,J) +(3./11.)*ZN1(6,J)
                    GOTD 100
                ENDIF
                XN1 (L,J)=XN1(I,J)
                                    ZN1(L,J)=ZN1(I,J)
                            P=XN1(L,J)*470
                M=INT(P)-150
                    X(L,J)=5:2-M
                    Q=ZN1(L,J)*470
                    N=INT (Q)
                        Y(L,J)=477-N
                        WRITE (94,*) X(L,J),Y(L,J)
                L=L+1
        CONTINUE
            FNO=FNO+1
        10 CONTINUE
C
C FLOTTING STICK DIAGRAM FOR TWO DIMENTIONAL IMAGES
C NOTE THAT THE IMAGE PLANE IS NOT PARALLEL TO XY,XZ,AND YZ PLANES
    4 WFITE(***) FNO
    FEWIND 94
    DO SO J=1,FNO
        DO 40 I= 1,6
            FEAD (94,*) X(I,J),Y(I,J)
            IF (I.LT.3) GOTO 40
            IF (I.EQ.3) THEN
                    CALL MOVETO (X (I,J),Y(I,J))
            ENDIF
            IF (I.GT.3) THEN
                CALL LINETO (X(I,J),Y(I,J))
                    ENDIF
    40
        CONTINUE
    OC CONTINUE
        CALI. FEXIT
        STOF
    END
```


B. Hardware Component technical specifications

(1) TV Camera:

| Panasonic, Model WV-CD20 (B \& W) | |
| :---: | :---: |
| 510 (H) x 492 (V) Elment CCD Type | |
| Internal or external sync. | |
| Scanning: | 521 Lines/60 Fields/30Frames |
| | $\mathrm{H}: 15.734 \mathrm{~K} \mathrm{~Hz}$ |
| | V: 59.9 Hz |
| Resolution: | H: 380 lines at center |
| | V: 350 lines at center |
| Lens Mount: | C-Mount |

(2) Zoom Lens:

TV Zoom Lens
$12.5 \mathrm{~mm}-75 \mathrm{~mm}$
1: 1.8
C - Mount
(3) VCR:

Sony, Model SL-HF 1000
Play back speed: freeze, $1 / 10,1 / 5$, normal
Tape counter: frame by frame counter
Adjustment: slow tacking adjustment freeze picture adjustment

Sony, Model SL-700
Tape: Sony, Dynamicron PRO-X/L-250
(4) Video Light:

SAFARI, Model VS-650
Focusing video quartz light
Lamp type: DYH 120V/650W
(5) Monitor:

Sony, Model CVM-112 (B\&W)
Video monitor
Picture tube 11"
(6) PC:

> IBM-PC-XT compatible personal computer (Mind II)
> 640 K memory
> 8 mHz clock
(7) Video Digitiser Board:

Matrox PIP-1024A video-digitiser-fram buffer board Runs under PIPEZ software
(8) Image Processing Monitor:

Sony Trinitron RGB color monitor with computer and RGB (image) channels
(9) Calibrating Frame:

18" x $26^{\prime \prime} \mathrm{x} 38^{\prime \prime}$ steel frame with eight $1.5^{\prime \prime}$ tabletennis balls (calibration markers)
(10) Body Marker:
$11 / 16$ " white sperical reflective markers
C. Detailed collected data
table 1．Euler angles－shoulder joint－drinking with a cup．

| 98.11 $9 \cdot 8 L$ | $00 \cdot 8$ $V \cdot 80$ | 81．bi | | | | 09% 80% | ${ }_{2 t}^{16 \cdot g}$ | 82.61 82.85 | 52： | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OOI | 8198 | $20 \cdot 86$ | 加记 | $9 \mathrm{C} \cdot 01$ | 20．82－ | ［ $\angle \cdot \angle 己-$ | Os－at | 59．19 | ¢t．8z | or |
| 08 | $50^{\circ} \mathrm{E}$ | T． 5 | 82．81 | 8098 | 6：•19－ | 9598． | 16.96 | 17.99 | 00^{69} | 6 |
| s | $6 \underbrace{\circ} \mathrm{~L}$ | 91．98 | ＜8．8！ | 9く．0i | カ8．6か－ | $60^{\circ} 6$ | SIL\％ | ごぐく | 89．sz | a |
| G日 | 60．61 | 69.6 | s\％${ }^{\text {ci }}$ | ce． 2 | O2． $29-$ | 96\％\％－ | $\angle \mathrm{t} \cdot \mathrm{Bz}$ | $\angle 6.29$ | os．bc | \llcorner |
| GL | 61.9 | czob | 20．si | L6． 2 | $20.6{ }^{\text {－}}$ | coba－ | 06．98 | $65 \cdot 89$ | 6ぐた | 9 |
| SL | 65^{60} | 28．12 | 时•L | cs．cz | $60^{\circ} \mathrm{za}$ | 二a＊8こ－ | くヵ・日1 | goir | 85＊21 | s |
| 95 | 8く．02 | 2900\％ | ¢8＊¢ | に－Iて | 日： 6 － | $20^{\circ} \mathrm{BE}$ | 95゙リア | OE．bく | 60．2z | t |
| 59 | 29.91 | cz＇bz | 0907 | cs＊ | $20 \cdot 6$ | 切くぐ－ | | 18－8t | くらくて | 2 |
| 06 | 68.4 | 29.4 | crob | | 89．85－ | | 09．11 | zg．iz | $20 \cdot 6$ | 2 |
| 98 | btot | $25 \cdot 01$ | 20 | $0<\mathrm{G}$ | $09^{\circ} \mathrm{C}$ | 06・くで－ | 69＊81 | 08.62 | ！゙！ | 1 |
| （3） 3 WIL | כษ | －x＊W | －NIW | Ј४ \forall | ＇xもw | －NIW | コロ | $\cdot x \in \omega$ | －NIW | 1－3．cans |
| ヨon＊Wyȯy | | ISd | | | $\forall 1.3 \mathrm{H}$ | | | IHd | | ＊43าก3 |

TABLE 2. EULER ANGLES - ELEOW JOINT - DFINKING WITH A CUP

| EULER ANGLE | | PHI | | | THETA | | | PSI | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUBJECT | MIN. | MAX. | ARC | MIN. | MAX. | ARC | MIN. | MAX. | ARC |
| 1 | 87.61 | 143.11 | 55.50 | - | - | - | 27.61 | 3.28 | 30.89 |
| 2 | 76.60 | 136.12 | 59.52 | - | - | - | 26.72 | -9.05 | 17.67 |
| 3 | 75.31 | 138.12 | 62.81 | - | - | - | 17.06 | 0.14 | 17.20 |
| 4 | 80.26 | 13.75 | 53.49 | - | - | - | 44.76 | 3.50 | 48.26 |
| 5 | 78.22 | 135.54 | 57.32 | - | - | - | 41.93 | -8.00 | 33.93 |
| 6 | 71.72 | 1.35 .83 | 64.11 | - | - | - | 31.19 | -2.65 | 28.54 |
| 7 | 84.27 | 134.06 | 49.79 | - | - | - | 36.94 | -5.93 | 31.01 |
| 8 | 77.93 | 137.21 | 59.28 | - | - | - | 26.52 | -5.87 | 20.65 |
| 9 | 86.13 | 136.08 | 49.95 | - | - | | 33.81 | -5.00 | 28.81 |
| 10 | 64.65 | 129.41 | 64.76 | - | - | - | 13.85 | 6.79 | 20.64 |
| MEAN | 78.27 | 135.92 | 57.65 | - | - | - | 30.04 | -2.28 | 27.76 |
| S.D. | 6.5 | 3.30 | 5.18 | - | - | - | 9.39 | 5.14 | 8.92 |
| NOTE : PSI IN THIS TABLE IS DEFINED AS FSI (CALCULATED) - 90 , THUS
 PSI (MIN.) : SUFINATION
 PSI (MAX.) : PRONATION | | | | | | | | | |

table 3. euler angles - wrist joint - drinking with a cup .

| euler angle | | PHI | | THETA | | | PSI | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| subject | MIN. | max. | ARC | MIN. | max. | ARC | MIN. | Max. | ARC |
| 1 | -0.96 | -28.66 | 27.70 | 18.54 | 22.82 | 4.28 | 0.31 | 6.88 | 6.57 |
| 2 | -1.69 | -7. 27 | 5.58 | 11.16 | 18.93 | 7.77 | 0.36 | 1.67 | 1.31 |
| 3 | -0.90 | -16.12 | 15.22 | 9.45 | 22.14 | 12.69 | 0.16 | 3.92 | 3.76 |
| 4 | +4.68 | -4.89 | 9.57 | 24.29 | 33.86 | 9.57 | -1.21 | 1.30 | 2.51 |
| $=$ | 0.93 | -5. 26 | 6.19 | 9.23 | 12.25 | 3.02 | -0.12 | 0.58 | 0.70 |
| 6 | -8.03 | -19.43 | 11.40 | 6.69 | 9.54 | 2.85 | 2.00 | 3.75 | 1.75 |
| 7 | -7.22 | -20.13 | 12.91 | 14.76 | 20.98 | 6.22 | 1.56 | 4.15 | 2.59 |
| 日 | -3.08 | -14.77 | 11.69 | 4.41 | 10.42 | 6.01 | 0.39 | 1.76 | 1.37 |
| 9 | -6.86 | -20.48 | 13.62 | 10.84 | 23.74 | 12.90 | 1.56 | 3.29 | 1.73 |
| 10 | -6.55 | -26.89 | 20.34 | 2.02 | 14.39 | 12.37 | 1.02 | 3.07 | 2.05 |
| MEAN | -2.97 | -16.39 | 13.42 | 11.14 | 18.91 | 7.77 | 0.60 | 3.04 | 2.43 |
| S.D. | 3.94 | B. 02 | 6.25 | 6.29 | 7.08 | 3.73 | 0.90 | 1.73 | 1.59 |

| EULER ANGLE | | PHI | | | THETA | | | FSI | | PERFORMANCE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUBJECT | MIN. | MAX. | ARC | MIN. | MAX. | ARC | MIN. | MAX. | AFC | TIME (F) |
| 1 | 9.16 | 28. 24 | 19.08 | -16.36 | -30.09 | 13.73 | 2.92 | 13.13 | 10.21 | 39 |
| 2 | 12.72 | 18.63 | 5.91 | -37.18 | -44.98 | 7.80 | -4.04 | 5.17 | 9.21 | 70 |
| 3 | 19.33 | 48.37 | 27.04 | -31.98 | -39.76 | 7.78 | 15.28 | 30.13 | 14.85 | 55 |
| 4 | 24.03 | 60.27 | 36.24 | -40.17 | -50.75 | 10.78 | 27.42 | 41.54 | 14.12 | 36 |
| 5 | 4.35 | 22.66 | 18.31 | -16.75 | -26.78 | 10.03 | 8.05 | 21.78 | 13.73 | $8{ }^{\text {8 }}$ |
| 6 | 19.67 | 45.11 | 25.44 | -18.51 | -31.42 | 12.91 | 16.71 | 30.59 | 13.88 | 75 |
| 7 | 17.23 | 47.99 | 30.76 | -21.01 | -34.73 | 13.72 | 9.64 | 25.49 | 15.85 | 55 |
| 8 | 19.57 | 35. 11 | 15.54 | -27.29 | -38.83 | 11.54 | 16.00 | 31.24 | 15.24 | 40 |
| 9 | 14.67 | 42.92 | 28.25 | -22.91 | -33.43 | 10.52 | 2.82 | 14.88 | 12.06 | 65 |
| 10 | 22.12 | 57.70 | 35.58 | -22.31 | -38.64 | 16.33 | 34.38 | 45.23 | 10.85 | 65 |
| MEAN | 16.28 | 40.70 | 24.42 | -25.45 | -36.96 | 11.51 | 12.92 | 25.92 | 13.00 | 58.5 |
| S.D. | 5.79 | 13.44 | 9.10 | 8.02 | 6.89 | 2.58 | 11.06 | 11.91 | 2.16 | 15.63 |

TABLE 5. EULER ANGLES - ELBOW JOINT - EATING WITH A FORK.

| EULER ANGLE | | PHI | | THETA | | | PSI | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUBJECT | MIN. | MAX. | ARC | MIN. | MAX. | ARC | MIN. | MAX. | ARC |
| 1 | 115.74 | 137.42 | 21.68 | - | - | - | 69.21 | 44.12 | 113.33 |
| 2 | 105.75 | 128.41 | 22.66 | - | - | - | 61.00 | 25.52 | 86.52 |
| 3 | 107.21 | 131.47 | 24.26 | - | - | - | 59.95 | 45.76 | 105.71 |
| 4 | 93.09 | 125.36 | 32.27 | - | - | - | 62.92 | 41.73 | 104.65 |
| 5 | 103.54 | 131.69 | 28.15 | - | - | - | 70.25 | 31.21 | 101.46 |
| 6 | 92.75 | 131.02 | 38.27 | - | - | - | 46.83 | 37.85 | 86.68 |
| 7 | 101.65 | 133.50 | 31.85 | - | - | - | 47.82 | 45.09 | 92.91 |
| 8 | 106.0 .3 | 130.27 | 24.24 | - | - | | 53.80 | 39.21 | 93.01 |
| 9 | 98.38 | 124.90 | 26.52 | - | - | - | 48.69 | 50.50 | 99.19 |
| 10 | 81.77 | 116.36 | 34.59 | - | - | - | 56.37 | 30.40 | 86.77 |
| MEAN | 100.59 | 129.04 | 28.45 | - | - | - | 57.68 | 39.34 | 97.02 |
| S.D. | 9.03 | 5.48 | 5.28 | - | - | - | B. 04 | 7.51 | 8.83 |
| ```NOTE : PSI IN THIS TABLE IS DEFINED AS PSI (CALCULATED) - 90 PSI (MIN.) : SUFINATION PSI (MAX.) : PRONATION``` | | | | | | | | | |

TABLE 6. EULER ANGLES - WFIST JOINT - EATING WITH A FORK.

| EULER ANGLE | | PHI | | THETA | | | PSI | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUBJECT | MIN. | MAX. | ARC | MIN. | MAX. | ARC | MIN. | max. | ARC |
| 1 | -22.66 | -34.00 | 11.34 | 0.61 | 8.49 | 7.88 | 2.20 | 3.30 | 1.10 |
| 2 | -4.69 | -17.22 | 12.53 | -2.35 | 8.36 | 10.71 | 0.54 | 2.59 | 2.05 |
| 3 | -9.27 | -24.75 | 15.48 | 0.46 | 9.50 | 9.04 | 0.76 | 3.12 | 2.36 |
| 4 | -22.50 | -39.11 | 16.61 | 14.75 | 27.98 | 13.23 | 2.94 | 9.55 | 6.61 |
| 5 | -10.57 | -28.01 | 17.44 | -8.99 | 0.09 | 9.08 | 0.26 | 1.83 | 1.57 |
| 6 | -18.72 | -32.68 | 13.96 | -10.89 | -2.55 | 8.34 | 0.40 | 2.67 | 2.27 |
| 7 | -26.42 | -33.86 | 7.44 | 7.06 | 10.21 | 3.15 | 1.48 | 3.38 | 1.90 |
| 8 | -11.10 | -23.22 | 12.12 | -7.56 | -2.35 | 5.21 | -0.01 | 0.31 | 0.32 |
| 9 | -6.91 | -21.45 | 14.54 | 3.37 | 13.25 | 9.88 | 0.68 | 2.60 | 1.92 |
| 10 | -4.55 | -26.94 | 22.39 | -16.90 | -12.99 | 3.91 | -0.99 | -0.08 | 0.91 |
| MEAN | -13.74 | -28.12 | 14.38 | -2.04 | 6.00 | 8.04 | 0.83 | 2.93 | 2.10 |
| S. D. | 7.69 | 6.40 | 3.82 | 8.86 | 10.56 | 2.98 | 1.07 | 2.48 | 1.62 |

| Euler angle | | PHI | | THETA | | | PSI | | | PERFORMANCE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Subject | MIN. | max. | ARC | MIN. | MAX. | ARC | MIN. | Max. | ARC | time (F) |
| 1 | 9.05 | 32.09 | 23.04 | -21.28 | -31.23 | 9.95 | -2.96 | 9.50 | 12.46 | 80 |
| 2 | 1.12 | 9.97 | 8.85 | -36.09 | -48.92 | 12.83 | -19.24 | -3.07 | 16.17 | 90 |
| 3 | 22.24 | 46.77 | 24.53 | -35.19 | -43.79 | 8.60 | 22.00 | 26.70 | 4.70 | 55 |
| 4 | 17.16 | 59.90 | 42.74 | -33.36 | -53.50 | 20.14 | 21.30 | 43.63 | 22.33 | 65 |
| 5 | -0.29 | 25.86 | 26.15 | -24.06 | -34.29 | 10.23 | 2.69 | 10.11 | 7.42 | 70 |
| 6 | 19.28 | 56.24 | 36.96 | -9.71 | -35.50 | 25.79 | 19.92 | 33.24 | 13.32 | 52 |
| 7 | 10.98 | 51.83 | 40.85 | -23.25 | -44.60 | 21.35 | 17.60 | 26.16 | 8.56 | 90 |
| - | 9.56 | 32.59 | 23.03 | -26.87 | -35.70 | 8.83 | 21.30 | 29.52 | 8.22 | 70 |
| 9 | 17.67 | 53.00 | 35.33 | -14.44 | -41.49 | 27.05 | 3.87 | 20.80 | 16.93 | 75 |
| 10 | 26.34 | 47.83 | 21.49 | -25.52 | -32.63 | 7.11 | 40.17 | 49.68 | 9.51 | 45 |
| MEAN | 13.31 | 41.61 | 28.30 | -24.98 | -40.16 | 15.19 | 12.66 | 24.63 | 11.96 | 69.2 |
| 5.D. | 8.31 | 15.06 | 9.95 | 8.15 | 7.08 | 7.23 | 15.84 | 15.22 | 5.07 | 14.55 |

table 9. euler angles - wrist joint - eating with a spoon.

| Euler angle | | PHI | | THETA | | | PSI | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUBJECT | MIN. | Max. | ARC | MIN. | max. | ARC | MIN. | max. | ARC |
| 1 | -22.22 | -32.20 | 9.98 | -0.81 | 7.96 | 8.77 | 1.60 | 4.56 | 2.96 |
| 2 | -7.82 | -25.29 | 17.46 | 3.30 | 13.16 | 9.86 | 1.27 | 4.47 | 3.20 |
| 3 | -17.68 | -28.97 | 10.39 | -2.94 | 8.76 | 11.70 | 0.51 | 3.52 | 3.01 |
| 4 | -18.30 | -29.53 | 11.23 | 8.48 | 19.93 | 11.45 | 1.73 | 5.20 | 3.47 |
| $=$ | -13.45 | -22.31 | 8.86 | -12.52 | -4.05 | 8.47 | -1.19 | 0.00 | 1.19 |
| 6 | -31.90 | -42.63 | 10.73 | -8.97 | -3. 29 | 5.68 | -0.06 | 2.96 | 3.02 |
| 7 | -24.29 | -41.07 | 16.78 | 9.24 | 15.24 | 6.00 | 2.59 | 4.28 | 1.69 |
| B | -21.42 | -39.97 | 18.55 | -6.03 | 5.25 | 11.28 | 0.12 | 2.75 | 2.63 |
| 9 | -15.55 | -22.06 | 6.51 | 10.02 | 14.77 | 4.75 | 1.89 | 3.32 | 1.43 |
| 10 | -8.60 | -25.73 | 17.13 | -15.75 | -7.53 | 8.22 | -1.18 | 1.04 | 2.22 |
| MEAN | -18.12 | -30.88 | 12.76 | -1.60 | 7.02 | 8.62 | 0.73 | 3.21 | 2.48 |
| S.D. | 6.94 | 7.38 | 4.06 | в.8о | 8.83 | 2.38 | 1.23 | 1.55 | 0.76 |

TABLE 10. EULER ANGLES - SHOULDER JOINT - DRINKING WITH A CUP.

| EULER ANGLE | | PHI | | THETA | | | PSI | | | PERFORMANCE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUBJECT | MIN. | MAX. | ARC | MIN. | max. | ARC | MIN. | max. | ARC | time (F) |
| 1 | 14.15 | 32.84 | 18.69 | -13.56 | -19.26 | 5.70 | -3. 87 | 6.57 | 10.44 | 85 |
| 2 | 7.28 | 18.88 | 11.60 | -22.41 | -36.19 | 13.78 | 6.72 | 14.61 | 7.89 | 90 |
| 3 | 23.81 | 45.05 | 21.24 | -12.04 | -21.57 | 9.53 | 11.08 | 27.75 | 16.67 | 65 |
| 4 | 19.98 | 71.34 | 51.36 | -14.60 | -35.91 | 21.31 | 10.65 | 33.43 | 22.78 | 56 |
| 5 | 11.66 | 30.13 | 18.47 | -18.60 | -42.12 | 23.52 | 1.24 | 15.83 | 14.59 | 75 |
| 6 | 15.59 | 52.39 | 36.80 | 1.18 | -26.79 | 27.97 | 3.99 | 29.18 | 25.19 | 75 |
| 7 | 13.39 | 41.86 | 28.47 | -1.67 | -38.92 | 37.25 | -11.07 | 7.97 | 19.04 | 85 |
| 8 | 17.30 | 24.45 | 7.15 | -21.22 | -31.97 | 10.75 | 15.60 | 22.89 | 7.29 | 75 |
| 9 | 18.63 | 65.54 | 46.91 | -17.74 | -42.77 | 25.03 | 14.96 | 48.01 | 33.05 | 80 |
| 10 | 16.43 | 49.93 | 33.50 | -5.95 | -16.31 | 10.36 | 2.74 | 27.92 | 25.18 | 100 |
| MEAN | 15.82 | 43.24 | 27.42 | -12.66 | -31.18 | 18.52 | 5.20 | 23.42 | 18.21 | |
| S.D. | 4.37 | 16.27 | 13.91 | 7.69 | 9.15 | 9.54 | 8.00 | 11.98 | 8.00 | 11.86 |

TABLE 11. EULER ANGLES - ELBOW JOINT - DRINKING WITH A CUP

| EULER ANGLE | PHI | | | THETA | | | PSI | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUBJECT | MIN. | MAX. | ARC | MIN. | MAX. | ARC | MIN. | MAX. | ARC |
| 1 | 77.97 | 133.47 | 55.50 | - | - | - | 25.51 | 5.38 | 30.89 |
| 2 | 68.12 | 127.64 | 59.52 | - | - | - | 29.91 | 12.24 | 17.67 |
| 3 | 62.55 | 125.36 | 62.81 | - | - | - | 22. 21 | -12.24 | 17.67 17.20 |
| 4 | 78.13 | 131.62 | 53.49 | - | - | - | 55.24 | -6.95 | 17.20 48.26 |
| 5 | 72.11 | 129.43 | 57. 32 | - | - | - | 28.25 | 5.68 | 33.93 |
| 6 | 63.80 | 127.91 | 64.11 | - | - | - | 37.70 | -9.16 | 28.54 |
| 7 | 78.51 | 128.30 | 49.79 | - | - | - | 36.32 | -95.31 | 31.01 |
| 8 | 67.96 | 127.24 | 59.28 | - | - | - | 29.76 | -9.11 | 20.65 |
| 9 10 | 77.87 | 127.82 | 49.95 | - | - | - | 36.28 | | 28.81 |
| 10 | 68.22 | 132.98 | 64.76 | - | - | - | 10.42 | 10.22 | 20.64 |
| MEAN | 71.52 | 129.18 | 57.65 | - | - | | 31.16 | | |
| S.D. | 5.92 | 2.53 | 5. 18 | - | - | | 11.09 | 7.24 | 8.92 |
| PSI (MIN.) : SUPINATION
 NOTE : PSI IN THIS TABLE IS DEFINED AS PSI (CALCULATED) - 90 , THUS
 PSI (MAX.) : PRONATION | | | | | | | | | |

table 12. Euler angleg - wrist joint - drinking with a cup

| euler angle | | PHI | | THETA | | | PSI | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUBJECT | MIN. | max. | ARC | MIN. | MAX. | ARC | MIN. | Max. | ARC |
| 1 | 5.10 | -22.60 | 27.70 | 17.00 | 21.28 | 4.28 | -0.42 | 6.15 | 6.57 |
| 2 | 3.03 | -2.55 | 5.58 | 7.93 | 15.70 | 7.77 | -0.32 | 0.99 | 1.31 |
| 3 | 5.12 | -10.10 | 15.22 | 4.30 | 16.99 | 12.69 | -0.57 | 3.19 | 3.76 |
| 4 | 19.32 | 9.75 | 9.57 | 18.79 | 28.36 | 9.57 | -2.77 | -0.26 | 2.51 |
| 5 | 2.30 | -3.89 | 6.19 | 12.09 | 15.11 | 3.02 | -0.18 | 0.52 | 0.70 |
| 6 | 4.09 | -7.31 | 11.40 | 1.19 | 4.04 | 2.85 | -0.11 | 1.64 | 1.75 |
| 7 | 16.69 | 3.78 | 12.91 | 8.51 | 14.73 | 6.22 | -0.65 | 1.94 | 2.59 |
| 8 | 0.60 | -11.09 | 11.69 | -0.57 | 5.44 | 6.01 | -0.03 | 1.34 | 1.37 |
| 9 | 6.34 | -7. 28 | 13.62 | 1.84 | 14.74 | 12.90 | -0.20 | 1.53 | 1.73 |
| 10 | 12.47 | -7.87 | 20.34 | 12.24 | 24.61 | 12.37 | 0.66 | 2.71 | 2.05 |
| MEAN | 7.51 | -5.92 | 13.42 | 8.33 | 16.10 | 7.77 | -0.46 | 1.98 | 2.43 |
| S.D. | 6.06 | 8.28 | 6.25 | 6.35 | 7.17 | 3.73 | 0.84 | 1.68 | 1.59 |

table 13. EULER ANGLES - ShOULDER JOINT - EATING WITH A FORK.

| Euler angle | | PHI | | THETA | | | PSI | | | PERFORMANCE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Subject | MIN. | max. | ARC | MIN. | max. | ARC | MIN. | MAX. | ARC | time (f) |
| 1 | 12.20 | 31.28 | 19.08 | -2.02 | -15.75 | 13.73 | -1.08 | 9.13 | 10.21 | 39 |
| 2 | 10.08 | 15.99 | 5.91 | -18.49 | -26.29 | 7.80 | 2.95 | 12.16 | 9.21 | 70 |
| 3 | 15.57 | 44.61 | 29.04 | -16.48 | -24.26 | 7.78 | 13.76 | 28.61 | 14.85 | 55 |
| 4 | 21.07 | 57.31 | 36.24 | -16.70 | -27.48 | 10.78 | 18.22 | 32.34 | 14.12 | 36 |
| 5 | 3.43 | 21.74 | 18.31 | -6.78 | -16.81 | 10.03 | 2.01 | 15.74 | 13.73 | 85 |
| 6 | 3.47 | 28.91 | 25.44 | 6.72 | -6.19 | 12.91 | 5.67 | 19.55 | 13.88 | 75 |
| 7 | 6.12 | 36.88 | 30.76 | -2.73 | -16.45 | 13.72 | -17.08 | -1.23 | 15.85 | 55 |
| 8 | 11.29 | 26.83 | 15.54 | -9.42 | -20.96 | 11.54 | 12.73 | 27.97 | 15.24 | 40 |
| 9 | 13.80 | 42.05 | 28.25 | -4.29 | -14.81 | 10.52 | -0.50 | 11.56 | 12.06 | 65 |
| 10 | 10.40 | 45.98 | 35.58 | -0.55 | -16.88 | 16.33 | 14.28 | 25.13 | 10.85 | 65 |
| MEAN | 10.74 | 35.16 | 24.42 | -7.07 | -18.59 | 11.51 | 5.10 | 18.10 | 13.00 | 58.5 |
| S.D. | 5.20 | 11.91 | 9.10 | 7.76 | 6.02 | 2.58 | 9.83 | 10.00 | 2.16 | 15.63 |

table 14. euler angles - elbow joint - eating with a fork.

| uler angle | | PHI | | THETA | | | PSI | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUBJECT | Min. | Max. | ARC | MIN. | Max. | ARC | MIN. | Max. | ARC |
| 1 | 106.10 | 127.78 | 21.68 | - | - | - | 67.11 | 46.22 | 113.33 |
| 2 | 97.27 | 119.93 | 22.66 | - | - | - | 64.19 | 22.33 | 86.52 |
| 3 | 94.45 | 118.71 | 24.26 | - | - | - | 65.14 | 40.57 | 105.71 |
| 4 | 90.96 | 123.23 | 32.27 | - | | - | 73.40 | 31.25 | 104.65 |
| 5 | 97.43 | 125.58 | 28.15 | - | - | - | 56.57 | 44.89 | 101.46 |
| 6 | 84.83 | 123.10 | 38.27 | - | - | - | 53.34 | 33.34 | 86.68 |
| 7 | 95.89 | 127.74 | 31.85 | - | - | - | 47.20 | 45.71 | 92.91 |
| 8 | 96.06 | 120.30 | 24.24 | - | - | - | 57.04 | 35.97 | 93.01 |
| 9 | 90.12 | 116.64 | 26.52 | - | - | | 51.16 | 48.03 | 99.19 |
| 10 | 85.34 | 119.93 | 34.59 | - | - | - | 52.94 | 33.83 | 86.77 |
| MEAN | 93.84 | 122.29 | 28.45 | - | - | - | 58.81 | 38.21 | 97.02 |
| S. D. | 6.00 | 3.63 | 5.28 | - | - | - | 7.85 | 7.85 | 8.83 |
| NOTE : PSI IN THIS TABLE IS DEFINED AS PSI (CALCULATED) - 90 , THUS
 PSI (MIN.) : SUPINATION
 PSI (MAX.) : PRONATION | | | | | | | | | |

TABLE 15. EULER ANGLES - WRIST JOINT - EATING WITH A FORK.

| EULER ANGLE | | PHI | | THETA | | | PSI | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUBJECT | MIN. | MAX. | ARC | MIN. | MAX. | ARC | MIN. | max. | ARC |
| 1 | -16.60 | -27.94 | 11.34 | -0.93 | 6.95 | 7.88 | 1.47 | 2.57 | 1.10 |
| 2 | 0.03 | -12.50 | 12.53 | -5.58 | 5.13 | 10.71 | -0.14 | 1.91 | 2.05 |
| 3 | -3.25 | -18.73 | 15.48 | -4.69 | 4.35 | 9.04 | 0.03 | 2.39 | 2.36 |
| 4 | -7.86 | -24.47 | 16.61 | 9.25 | 22.48 | 13.23 | 1.38 | 7.99 | 6.61 |
| 5 | -9.20 | -26.64 | 17.44 | -6.13 | 2.95 | 9.08 | 0.20 | 1.77 | 1.57 |
| 6 | -6.60 | -20.56 | 13.96 | -16.39 | -8.05 | 8.34 | -1.71 | 0.56 | 2.27 |
| 7 | -2.51 | -9.95 | 7.44 | 0.81 | 3.96 | 3.15 | -0.73 | 1.17 | 1.90 |
| 8 | -7.42 | -19.54 | 12.12 | -12.54 | -7.33 | 5.21 | -0.43 | -0.11 | 0.32 |
| 9 | 6.29 | -8. 25 | 14.54 | -5.63 | 4.25 | 9.88 | -1.08 | 0.84 | 1.92 |
| 10 | 14.47 | -7.92 | 22.39 | -6.68 | -2.77 | 3.91 | -1.35 | -0.44 | 0.91 |
| MEAN | -3. 26 | -17.65 | 14.38 | -4.85 | 3.19 | 8.04 | -0.24 | 1.86 | 2.10 |
| S.D. | 8.24 | 7.18 | 3.82 | 6.67 | 8.16 | 2.98 | 1.01 | 2.25 | 1.62 |

TABLE 16. EULER ANGLES - SHOULDER JOINT - EATING WITH A GPOON.

| EULER ANGLE | | PHI | | THETA | | | PGI | | | PERFORMANCE
 TIME (F) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUBJECT | MIN. | MAX. | ARC | MIN. | MAX. | ARC | MIN. | MAX. | ARC | |
| 1 | 12.09 | 35.13 | 23.04 | -6.94 | -16.89 | 9.95 | -6.96 | 5.50 | 12.46 | 80 |
| 2 | -1.52 | 7.33 | 8.85 | -17.40 | -30.23 | 12.83 | -12.25 | 3.92 | 16.17 | 90 |
| 3 | 18.48 | 43.01 | 24.53 | -19.69 | -28.29 | 8.60 | 20.48 | 25.18 | 4.70 | 55 |
| 4 | 14.20 | 56.94 | 42.74 | -9.89 | -30.03 | 20.14 | 12.10 | 34.43 | 22.33 | 65 |
| 5 | -1.21 | 24.94 | 26.15 | -14.09 | -24.32 | 10.23 | -3.35 | 4.07 | 7.42 | 70 |
| 6 | 3.08 | 40.04 | 36.96 | 15.52 | -10.27 | 25.79 | 日. 88 | 22.20 | 13.32 | 52 |
| 7 | -0.13 | 40.72 | 40.85 | -4.97 | -26.32 | 21.35 | -9.12 | -0.56 | 8.56 | 90 |
| 8 | 1.28 | 24.31 | 23.03 | -9.00 | -17.83 | 8.83 | 18.03 | 26.25 | 8.22 | 70 |
| 9 | 16.80 | 52.13 | 35.33 | 4.18 | -22.87 | 27.05 | 0.55 | 17.48 | 16.93 | 75 |
| 10 | 14.62 | 36.11 | 21.49 | -3.76 | -10.87 | 7.11 | 20.07 | 29.58 | 9.51 | 45 |
| MEAN | 7.77 | 36.07 | 28.30 | -6.60 | -21.79 | 15.19 | 4.84 | 16.80 | 11.96 | 69.2 |
| S.D. | 7.72 | 13.67 | 9.95 | 9.88 | 7.08 | 7.23 | 11.96 | 11.92 | 5.07 | 14.55 |

table 17. EuLER angles - ELBOW joint - EAting with a spoon.

| Euler angle | | PHI | | THETA | | | PSI | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Subject | MIN. | MAX. | ARC | min. | max. | ARC | MIN. | max. | ARC |
| 1 | 108.04 | 130.91 | 22.87 | - | - | - | 58.81 | 43.22 | 102.03 |
| 2 | 110.94 | 126.05 | 15.11 | - | - | - | 63.55 | 22.15 | 85.70 |
| 3 | 106.90 | 117.64 | 10.74 | - | - | - | 62.42 | 26.27 | 88.69 |
| 4 | 100.28 | 123.78 | 23.50 | - | - | - | 70.63 | 33.41 | 104.04 |
| 5 | 104.75 | 127.10 | 22.35 | - | - | - | 54.42 | 7.07 | 61.49 |
| 6 | 82.80 | 124.78 | 41.98 | - | - | - | 52.03 | -1.62 | 50.41 |
| 7 | 107.53 | 127.96 | 20.43 | - | - | - | 51.89 | 38.70 | 90.59 |
| 8 | 100.79 | 121.04 | 20.25 | - | - | - | 62.37 | 16.23 | 78.60 |
| 9 | 97.05 | 113.65 | 16.60 | | - | - | 57.54 | 36.68 | 94.22 |
| 10 | 92.71 | 119.04 | 26.33 | - | - | - | 53.29 | 6.77 | 60.06 |
| MEAN | 101.18 | 123.20 | 22.02 | - | - | - | 58.70 | 22.89 | 81.58 |
| S.D. | 8.10 | 5.02 | 7.94 | - | - | - | 5.77 | 14.60 | 17.54 |
| note : pSi in this table is defined as psi (Calculated) - 90 , thus
 PSI (MIN.) : supination
 PSI (MAX.) : PRONATION | | | | | | | | | |

TABLE 18. EULER ANGLES - WRIST JOINT - EATING WITH A SPION.

| EULER ANGLE | | PHI | | THETA | | | PSI | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| subject | MIN. | max. | ARC | Min. | Max. | ARC | MIN. | max. | ARC |
| 1 - | -16.16 | -26.14 | 9.98 | -2.35 | 6.42 | 8.77 | 0.87 | 3.83 | 2.96 |
| 2 | -3.10 | -20.56 | 17.46 | 0.07 | 9.93 | 9.86 | 0.59 | 3.79 | 3.20 |
| 3 | -11.66 | -22.05 | 10.39 | -8.09 | 3.61 | 11.70 | -0.22 | 2.79 | 3.01 |
| 4 | -3.66 | -14.89 | 11.23 | 2.98 | 14.43 | 11.45 | 0.17 | 3.64 | 3.47 |
| 5 | -12.08 | -20.94 | 8.86 | -9.66 | -1.19 | 8.47 | -1.25 | -0.06 | 1.19 |
| 6 | -19.78 | -30.51 | 10.73 | -14.47 | -8.79 | 5.68 | -2.17 | 0.85 | 3.02 |
| 7 | -0.38 | -17.16 | 16.78 | 2.99 | 8.99 | 6.00 | 0.38 | 2.07 | 1.69 |
| 8 | -17.74 | -36.29 | 18.55 | -11.01 | 0.27 | 11.28 | -0.30 | 2.33 | 2.63 |
| 9 | -2.35 | -8.86 | 6.51 | 1.02 | 5.77 | 4.75 | 0.13 | 1.56 | 1.43 |
| 10 | 10.42 | -6.71 | 17.13 | -5.53 | 2.69 | 8.22 | -1.54 | 0.68 | 2.22 |
| MEAN | -7.65 | -20.41 | 12.76 | -4.40 | 4.21 | 8.62 | -0.33 | 2.15 | 2.48 |
| s.D. | 8.95 | 8.67 | 4.06 | 5.92 | 6.19 | 2.38 | 0.95 | 1.31 | 0.76 |

