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Abstract

Supervisor: Professor Nan Wu

Sound Transmission Loss (STL) describes the accumulated decrease in the sound

intensity as waves spread outward from a source or through specific areas. In

order to reduce the sound transmission from the cylinder, an acoustic quieting

process needs to be implemented. One of the most efficient ways to reduce sound

transmission is using piezoelectric materials. Piezoelectric materials can be applied

to reduce transmitted noise from different structures versus damping approaches

when it is difficult to completely dampen structural vibrations via passive methods.

The primary aim of the present study is to analyze the dynamic characteristics of

infinitely long, thick, piezo-laminated cylindrical structures with functionally graded

material properties for vibration suppression and control of sound transmission

losses.

Two thick shell models were developed to consider the effects of anisotropicity

and piezoelectricity on the STL. In the first model, an exact Three Dimensional

(3D) piezoelectric model is built to investigate the free vibration of an arbitrary

thick triclinic piezoelectric hollow cylinder. The effects of different anisotropic piezo-

electric properties (i.g orthotropic piezoelectric, monoclinic piezoelectric, triclinic

piezoelectric, ...) on the dispersion curve of natural frequencies were studied. In the

second model, the estimation of STL due to the piezoelectric effects is studied for a

thick-walled piezo-composite cylindrical shell excited by an oblique incident plane

wave. Parameter studies are conducted to investigate the effects of piezoelectric ma-

terial properties, piezoelectric polarization direction, shell thickness ratio, electrical

boundary conditions, and Functionally Graded Piezoelectric Material (FGPM) on

i



the sound transmission loss due to the piezoelectricity. These two models were used

as the fundamental workspace.

These two initial models enable us to explore deeper and study the effect of

feedback control strategy for the enhancement of STL. The active control strategy is

achieved by sending the control signal from the distributed piezoelectric sensor layer

through a controller to drive the external piezoelectric actuators. Comprehensive

numerical studies are carried out to investigate the sound transmission loss of

controlled and uncontrolled piezo-composite cylinders as well as the effect of closed-

loop gain. The second model was also used to increase STL by using the different

sizes and arrangements of piezoelectric electrodes. The study shows that increasing

the number of electrodes may not necessarily provide higher soundproofing abilities.

However, the level of sound isolation can be adjusted by using the proper size of the

electrode.

Finally, in order to go one more step deeper, considering the fluid-solid shear

interaction, a new 3D elastic model incorporating the piezoelectricity and fluid

viscosity is developed to simulate the dynamics and STL of a thick shell submerged

in a viscous fluid. The Navier-Stokes equation is employed to describe the surrounding

viscous acoustic medium as well as the internal acoustic cavity. Parametric studies

are carried out to investigate the effect of fluid viscosity (dynamic viscosity and bulk

viscosity), shell anisotropicity, and piezoelectric boundary conditions on the sound

transmission loss. The results show that the magnitude of STL linearly increases

as the value of bulk and dynamic viscosities increases, which results in providing a

better soundproofing ability.
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Chapter 1

Introduction

“Invention is the most important
product of man’s creative brain. The
ultimate purpose is the complete
mastery of mind over the material
world, the harnessing of human
nature to human needs."

Nikola Tesla

1.1 The Big Picture

Dynamic studies of thick smart cylindrical composite structures have a widespread

application in nondestructive testing, underwater acoustics, diagnostic ultrasound,

noise abatement in the fuselage, and marine applications (Caresta [4], Krakers et al.

[5]). Prediction of steady-state behavior of fluid-coupled structures has been the

subject of current research as the most external excitations, or acoustic pressure

signals in many technological and engineering applications are of a harmonic nature.

Particularly, fluid-solid interaction in submerged cylindrical structures experiencing

1



an oblique incident shock wave or wide-band acoustic excitation is a difficult multi-

physics problem of fundamental importance that has been extensively studied over

the past few decades (Hasheminejad and Mousavi-Akbarzadeh [6], Iakovlev et al.

[7, 8]).

Attenuation of transmission loss (TL) from such structures based on conventional

passive control methods in most cases is insufficient due to the deterioration of

the damping characteristics of such treatments under temperature and frequency

deviations aside from the cost of including substantial weight or volume to the vibrat-

ing structure (Hasheminejad and Keshavarzpour [9], Hasheminejad and Kazemirad

[10]). New developments in the area of smart material technology along with the

considerable enhancement in the computational power of microcomputers have

paved the way for an efficient mechanism to diminish vibration and acoustic emis-

sion of vibrating structural systems (Crawley and De Luis [11], Hasheminejad and

Alaei-Varnosfaderani [12], Hasheminejad and Keshavarzpour [13]). Specifically, the

coupled electro-mechanical properties of piezoelectric materials embedded into the

mechanical structures give the structure the ability to convert electrical energy to

mechanical energy and vice versa. These materials are suitable for exploiting as

piezoelectric sensor and actuator layers in a wide range of industrial applications in

active vibration and noise control. Such an intelligent structure would allow the use

of a closed-loop control system for vibration and sound suppression.

In general, when the sound waves impinge on the wall of a cylinder, the sound

wave attenuates because of the boundary layer effects. These losses can be significant

when the structure is quite small compared to the surrounding media and submerged

in a viscous fluid. Although the inviscid acoustic model is very efficient to study
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the sound transmission loss (STL) in many cases, there are some cases that the

inviscid model may fail to accurately predict the STL. For instance, if the structure

is submerged in a fluid with a high level of viscosity, the loss of sound waves is caused

by fluid viscosity and heat exchange. In the vicinity of borders, these losses are

particularly significant. Such losses become very significant when the dimension of

the structure is similar to the boundary layer thickness [14]. Obviously, the inviscid

model can not capture such losses, so it becomes necessary to develop a model

that can take into account such losses. It should also be mentioned that in some

circumstances, wave propagation happens in a narrow gap due to the presence of

a fluid’s viscosity, which cannot be ignored [15]. A narrow slit or enclosure in a

hearing aid, a small transducer, etc, are examples of such a situation [15].

While browsing through the literature, although the effects of the fluid viscosity

on the sound transmission loss through thin/thick smart cylindrical structures is

often overlooked, some scholars pay attention to the effects of viscosity on the sound

transmission in the cylindrical structures [16, 17, 18], and some comprehensive studies

on the piezoelectricity benefiting STL have also been conducted in non-viscose media

[19, 20] . However, the compound effects of an-isotropic piezoelectricity and fluid

viscosity on the STL while the structure is submerged in the viscous fluid were not

considered and well discussed. In addition, the effect of piezoelectric materials on the

active and passive STL control from smart structures is often overlooked. Besides,

the effect of piezoelectric anisotropicity was not considered during the operation

of the intelligent system. Both piezoelectricity and fluid viscosity have obvious

effects on wave behaviors in a cylindrical shell, and the coupled and interacted

piezoelectricity and fluid viscosity could bring different understanding/findings on
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STL that has not been revealed before. Therefore, designing a model that can

deal with an-isotropic piezoelectric crystal and also take into account the effects of

inevitable fluid viscosity in wave propagation is very important in acoustic quieting

or sound utilization applications. Such a model can also help in predicting the

dynamics of nano and micro-electromechanical systems as fluid viscosity plays an

important role at nano and micro scales.

1.2 Thesis Statement and Objectives

1.2.1 Thesis Statement

The main focus of this study is to investigate the interaction between the incident

plane waves and the smart piezo-composite hollow cylinder to provide active control

strategies for sound isolation enhancement of the cylindrical structures submerged

in either an inviscid or viscous fluid. The aim is to mitigate the transmitted

sound into the cylinder by decreasing the internal sound intensity, using a control

strategy to provide smart structures with better acoustic performances. This will be

achieved by using the proposed Vibro-Acoustics model to investigate the effects of

piezoelectric material properties, effects of size and configurations of piezoelectric

electrode patches, piezoelectric polarization direction, shell thickness ratio, electrical

boundary conditions, and FGPM on the STL due to the piezoelectricity. Besides,

comprehensive numerical studies are carried out to investigate STL of the controlled

and uncontrolled piezo-composite cylinder as well as the effect of closed-loop gain.

In addition, the structure is submerged in a viscous fluid in order to study the effect

of viscosity on the STL through the piezo-composite hollow cylinder.
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1.2.2 Objectives

The main goals of this study are classified into two sub-objectives as follows.

Objectives for Mathematical Modeling

1. To establish an accurate closed-form mathematical model of the Vibro-acoustics

behavior of a smart piezo-composite cylinder. This model should:

(a) consider the specific continuum-mechanical model of three-dimensional

3D exact theory of elasticity and piezo-elasticity rather than approximate

shell theories for all ranges of thicknesses and frequencies;

(b) be able to model cylinders made of fully anisotropic or triclinic materials

(the most general form of anisotropic materials without any axis of material

symmetry);

(c) modeling the propagation of waves through the internal cavity and in-

finitely large domain of external surrounding fluid using the classical

Helmholtz equation;

(d) including the fully coupled fluid-structural interactions by considering the

equilibrium of the radial stress with the fluid pressure at the inner/outer

surfaces of the piezo-composite cylinder in addition to considering the con-

tinuity of the normal fluid and solid displacements at the interior/exterior

surfaces;

(e) the model should be able to obtain an analytical solution for calculation

of STL;
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(f) the intelligent structure model should be able to integrate with a closed-

loop control system for the enhancement of STL;

(g) the closed-loop control strategy should be able to provide a significant

wave isolation effect at the resonant frequencies;

(h) the model should be able to take into account the viscosity of the sur-

rounding fluid and the internal cavity in order to predict the sound wave

attenuation due to the effect of the boundary layers;

(i) the model should be able to consider different sizes and configurations of

electrode patches

2. To use the developed model and study STL through a smart cylinder under

different conditions (i.e., perform parametric studies).

Objectives for Investigations

1. To investigate the effect of anisotropicity on the natural frequency of the

thick-walled piezoelectric cylinder;

2. To investigate the effect of different electrical boundary conditions on the STL

and determine a better one for the different range of frequencies;

3. To investigate the effect of different piezoelectric materials and functionality

of material properties on the STL and specifying which materials provide the

best sound isolation performance for a different range of frequencies;

4. To investigate the effect of different piezoelectric polarization at different angles

of the plane incident waves;
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5. Investigation of the optimal thickness ratio between the piezo-layer and host

material;

6. Performing convergence study for selected incident wave frequencies and differ-

ent angles of an acoustic incident plane wave;

7. Studying the effect of different gain controls on the STL;

8. Studying the effect of different sizes and configurations of electrode patches on

the STL

9. Studying the compound effects of an-isotropic piezoelectricity and fluid viscosity

on the STL while the structure is submerged in the viscous fluid.
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1.3 Organization of this study

The specific organization of this study is outlined as follows. First, a definition of

STL and its importance will be provided. Then, a comprehensive review of the STL

through cylindrical shells is given. Next, different isolation techniques for cylindrical

shells are discussed. In addition, a brief history of piezoelectricity, along with the

basic principles of piezoelectricity, is discussed in chapter 2. Finally, a comprehensive

review of the STL through a viscous fluid will be given.

In chapter 3, the basic theory of 3D elasticity is discussed and explained. Ad-

ditionally, the basic principles of acoustic theory in viscous and inviscid fluids are

comprehensively explained.

In chapter 4, the free vibration of the general model of an anisotropic piezoelectric

material with all possible material constants is analytically modeled and studied to

cover a broad range of anisotropic piezoelectric materials. Then the validity of the

proposed model was checked against other literature’s results. Next, the effect of

anisotropy on the wave dispersion curves of the piezoelectric cylinder is discussed in

the case studies section. Finally, the concluding remarks are listed.

In chapter 5, the general model presented in chapter 4 is used and extended to

investigate sound transmission through a thick-walled Functionally Graded Material

(FGM) piezo-laminated cylindrical shell filled with and submerged in compressible

inviscid fluids. Parameter studies are conducted to investigate the effects of piezo-

electric material properties, piezoelectric polarization direction, shell thickness ratio,

electrical boundary conditions, and FGPM on the STL due to the piezoelectricity.

The passive STL control given in chapter 5 has many advantages. There were,
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however, some drawbacks, such as the fact that the passive method could not

provide high STL at resonance frequencies. In addition, there are not many ways

to provide the desired sound isolation at a specific frequency. In chapter 6 we

probe deeper into this issue and used active STL control to solve this problem. In

chapter 6, the previous study was utilized to realize better STL especially at the

resonance frequencies of the structure through a feedback control of piezo-composite

cylinder. The active control strategy is achieved by sending a control signal from the

distributed piezoelectric sensor layer through a controller with a certain feedback

gain to drive the external piezoelectric actuators. The mechanical stress generated

by the piezo-actuator layer cancels the parts of the input incident wave to enhance

the STL.

In chapter 7, the effect of different sizes and configurations of piezoelectric patches

are discussed.

The previous studies on STL with smart composite thick shell are all based on

non-viscosity assumption. To consider the viscosity and piezoelectric coupling effect

on STL, the content in chapter 8 is proposed. In chapter 8, the Navier-Stokes

equation is employed to study the effect of the fluid viscosity on the STL. Parametric

studies are carried out to investigate the effect of fluid viscosity (dynamic viscosity

and bulk viscosity), shell anisotropicity, and piezoelectric boundary conditions on

the STL through a piezo-composite cylinder submerged in a viscous fluid.

Lastly, the concluding remarks and future work are given in chapter 9.
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Chapter 2

Literature Survey

“Is it right to probe so deeply into
Nature’s secrets? The question must
here be raised whether it will benefit
mankind, or whether the knowledge
will be harmful."

Pierre Curie

The multidisciplinary nature of sound isolation and noise reduction by a piezo-

electric element, in particular, makes the topic to be approached by a large group

of audience from a different scientific branch of knowledge. Therefore, the goals

of this chapter are to cover basic principles of piezoelectricity and research that

have been carried out in the areas of anisotropic piezoelectric materials modeling,

investigating the effects of piezoelectric material on STL along with a thorough

review of recent developments and techniques for acoustic enhancement of smart

cylindrical structures with a short description of STL.
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2.1 Transmission Loss

2.1.1 What Is Transmission Loss?

TL typically defines the cumulative reduction in the waveform energy as a wave

transmits through a barrier or a given area, such as the different variety of structures

[21]. TL is a broad terminology in many branches of science, such as acoustics, optics,

electrical science. In optics, it refers to attenuation of sunlight or X-rays when they

transmit through water, air, or any other media [22]. In electrical engineering, TL is

defined as the electrical power loss along an electrical cable [23]. Here, however, we

focused our study on the transmission of acoustic waves. Three different phenomena

may occur when sound waves impinge on a solid structure, as illustrated in Figure 2.1

[24].

Incident W
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tte
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Figure 2.1: An idealized model of inclined incidence TL through a barrier.
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Some portion of acoustic pressure waves can be reflected off an obstacle while

the rest of it can be transmitted through the barrier or absorbed and dissipated

by converting to thermal energy [25]. STL evaluates the performance of acoustic

obstacles for industrial applications [24]. It can be described as the ratio of acoustic

energy transmitted through an acoustic barrier to the acoustic energy of the incident

wave [24, 26]. It can be defined as [24]

TL = 10 log10

(
ΠI

ΠT

)
, (2.1)

in which ΠI and ΠT are incident and transmitted acoustic power, respectively.

Furthermore, log10(x) indicates the common logarithm with base 10. STL is very

much dependent on the frequency (see Figure 2.2)[26]. It is not dependent on

the sound source [26]. Keeping in mind Equation 5.32, the higher the STL of an

acoustic treatment has, the better it will work in regard to sound attenuation [26].

In Figure 2.2, the y-axis shows how many dB the acoustic treatment attenuates the

incoming acoustic intensity. For instance, in Figure 2.2, it is evident that at 445

Hz, the cylinder reduces the incident acoustic energy by 33 dB as shown by the

green line, whereas, at 377 Hz, the cylinder does not significantly reduce the incident

acoustic energy as shown by the purple line (see Figure 2.2). This also shows that

the STL is highly dependent on the frequency of the incoming incident wave.
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Figure 2.2: STL spectrum through a cylindrical structure. The cylinder absorbed
the incident energy at 455 Hz (see green dotted line).

2.2 A Comprehensive Review on The STL Through

Cylindrical Shells

Structural dynamic behavior and its TL from cylindrical and spherical objects

have been a subject of researchers’ interest from the late nineteen century within

different branches of physics such as acoustics, electromagnetic, geology, and quantum

(Furutsu [27], Li and Zhang [28], Zhou et al. [29], Suematsu and Imai [30], Jiang

and Georgakopoulos [31], Dong and Wang [32], Goubau [33], Young and Crocker

[34], Oba and Finette [35], Bisheh and Wu [36], Moore and Lyon [37], Chen et al.

[38], Hasheminejad et al. [39, 40], Bisheh and Wu [41, 42, 43, 44], Lu-miao et al.

[45], Qin et al. [46, 47], Wang et al. [48], Kang et al. [49]).
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The appeal is due to its wide range of applications in different branches of

applied physics. STL through cylindrical structure stays as a hot topic due to its

manufacturing feasibility and wide range of industrial applications, examples of

which are

• Noise reduction, in air conditioning and ventilation systems (Choy et al. [50]);

• Aviation, in predicting airborne noise from a fuselage (Wang and Crocker [51]);

• Underwater acoustics, design of transducer arrays in cylindrical Sound Nav-

igation RAnging (SONAR) systems (Sastry and Munjal [52], Li and Hua

[53]);

• Noise control, in an aircraft’s cabin (Koval [2], Flodén et al. [54]);

• Muffler, design such as expansion volume types (Tao and Seybert [55], Wu

and Wan [56]).

Several studies have been carried out in this area to cover the essential needs of

these industrial applications. Many researchers focused on the classical shell theories

to study the TL through an isotropic cylindrical shell. Among these researchers,

Smith Jr [57] used the thin cylindrical elastic shell theories along with the method

developed by Lax and Feshbach [58] in order to measure the acoustic impedance

of an infinite cylindrical shell subjected to normal incident acoustic waves. Due to

the limitations of shell theory, the solution was only valid when the radial thickness

of the shell is of the same order of the shell vibration wavelength. Later on, White

[59] used the concept of average energy and energy flow to study the same problem
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for a finite-length cylindrical shell. The results showed that the acoustic isolation

properties subjected to a random incident plane wave are approximately independent

of the incident angle.

Koval [2] developed the work done by Smith Jr [57] to include the effects of

different acoustic’s fluid properties, Mach number, and internal pressurization on the

STL of oblique incident plane waves through a thin shell. The results showed that

the TL is not affected by the Mach number when the wave incident angle is normal.

Koval [60] extended his previous work to consider the effect of orthotropicity on the

STL of airborne noise. While the TL was shown to be very sensitive to the ratio

of circumferential to axial elastic modulus, it was nearly unaffected by the change

in the shear modulus. Later on, the model was developed to investigate the effect

of the fiber orientation in the acoustic isolation of a laminated composite circular

cylindrical shell (Koval [61]). Numerical results demonstrated that the laminated

composite shell can reduce the noise transmission at low frequencies, while their

performance may degrade in the high-frequency ranges.

Narayanan and Shanbhag [62] used the thin shell theory to study TL and the

structural response of a layered cylindrical shell with unconstrained damping and a

sandwich shell with constrained damping treatment by consideration of axisymmetric

modes. Significant improvement of sound transmission characteristics was achieved

for a layered cylindrical shell by appropriate choice of the modulus of elasticity and

thickness of the damping layer. Later on, Blaise et al. [63] extended Koval’s work

([60]) to calculate the diffuse field transmission coefficient. His previous work was

extended in order to compare the STL through the 3D and Two Dimensional (2D)

models. The main aim was to investigate the limitations of the 2D model (Blaise
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and Lesueur [64]).

Tang et al. [65] have studied the effects of the incident angle, Mach number,

structural loss factor, and the ratio between the core thickness and the total thickness

of the cylinder on the STL from a cylindrical sandwich shell with a honeycomb

core. In addition, the effects of shear and rotation of sandwich shell were considered,

and the results showed that the transmission of shear waves will result in the TL

reduction for the high-frequency range. Lee and Kim [66] both experimentally and

analytically studied the sound transmission through an infinite cylindrical shell

excited by an oblique incident plane wave. Love’s thin shell theory was utilized to

model the cylinder structure. It was shown that, despite the significant simplification

of the problem, the theoretical model can still be employed as an effective tool in

practical design. Ghinet et al. [67] used symmetrically laminated composite shells

and discrete layer shell theory to investigate the diffuse field TL of infinite cylindrical

shells. The validity of the two models was compared against the experimental results.

The 3D theory of elasticity has also been used to investigate the STL from the

thick isotropic cylindrical shell. Among these researchers, Sastry and Munjal [52]

utilized the transfer matrix approach to study the effect of cylinder thickness, layer

material characteristics, and surrounding media on the wave scattering from a thick

multi-layered infinite cylindrical shell in the case of the normal plane incident wave.

Later on, Hosseini-Toudeshky et al. [68] used the same theory to investigate the

sound transmission through a thick hollow cylindrical shell with fixed-end boundary

condition in the case of the plane wave, monopole, and dipole sources. Recently,

Magniez et al. [69] employed a mixed 3D-shell analytical model to investigate the

sound transmission through a cylindrical sandwich shell. The mixed 3D-shell cylinder
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was composed of thin orthotropic layers and an isotropic core layer. The first was

described with the first-order shear deformation theory, while the latter was modeled

with the 3D theory of elasticity.

2.3 A Comprehensive Review on The Sound Isola-

tion Techniques for Cylindrical Shells

Dynamics modeling and analysis of composite structures, as well as the sound

isolation behaviors of these structures, are vital issues in the evaluation and en-

hancement of their dynamics and acoustic properties. Designing, studying and

enhancement of different composite engineering materials or structures and the

associated sound isolation method and techniques have been widely investigated by

many scholars (Li and Zhang [28], Dong and Wang [32], Young and Crocker [34], Oba

and Finette [35], Moore and Lyon [37], Hasheminejad et al. [39, 40], Bisheh and Wu

[36, 41, 70, 43, 44], Bisheh et al. [71], Lu-miao et al. [45], Wang et al. [48], Kang et al.

[49], Daneshjou et al. [72], Chronopoulos et al. [73]). One common consideration

of vibration/acoustics isolation is the analysis of different boundary conditions con-

necting engineering mediums and structures. Accounting for non-classic boundary

conditions commonly encountered in engineering applications, plates, and shells

under general boundary conditions have been extensively studied using the artificial

spring technique. Different types of orthogonal polynomials and modified Fourier

series functions were commonly employed to expand displacement fields, accounting

for general boundary conditions. For those expansion functions, Qin et al. [74] devel-

oped a unified solution and compared the computational efficiency and convergence
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rates of different expansion functions, upon which a series of studies were conducted

on rotating plate-shell combinations [75], CNT and graphene reinforced composite

shells [76, 77]. Regarding the vibration/acoustics isolation techniques, the most

common technique that has been widely investigated is based on the passive sound

isolation technique by adding absorption treatments to the main structure such as

using shunt piezoelectric, viscoelastic, blocking masses, and porous materials (Fu

et al. [78, 79], Pietrzko and Mao [80]).

Numerous studies used poroelastic materials to improve the sound attenuation

of cylinders ([81, 82, 83]). Lee et al. [84] utilized a multi-wave characterization of

the poroelastic materials in which the strongest wave is considered among the two

dilatational and rotational waves in order to study the STL through a doubled

panel lined with a poroelastic layer. Magniez et al. [85] used 3D Biot’s theory of

poroelasticity mixed with classical first-order shear deformation theory to investigate

the STL through a composite cylinder with a poroelastic core. Umnova et al. [86]

studied STL through a finite periodic array of a rigid cylinder with and without the

poroelastic absorber. Ramezani and Saghafi [87] used the Genetic Algorithms (GA)

to optimize the STL through a composite double-walled circular cylindrical shell lined

with poroelastic materials. Daneshjou et al. [88] used Biot’s theory of poroelasticity

to investigate the STL through the sandwich cylindrical shell with a poroelastic core

excited by an incident plane wave. Talebitooti et al. [82] utilized Non-dominated

Sorting Genetic Algorithm (NSGA) along with classical first-order shear deformation

theory to optimize sound attenuation through a sandwich circular cylindrical shell

lined with a poroelastic material. Talebitooti et al. [89] used 3D Biot’s theory of

poroelasticity to investigate the effect of compressed poroelastic materials on the
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sound attenuation of a sandwich cylindrical shell lined with poroelastic core and

air gap insulation for different boundary conditions. The results show that using

poroelastic covering improves the overall sound attenuation of periodic arrays of

cylinders.

Some scholars used other passive methods such as a shunted piezoelectric system,

constrained-layer damping treatment, added mass, and air gap flow for sound

mitigation purposes. Ahmadian and Jeric [90] utilized shunted piezoceramic materials

to increase the sound attenuation from a plate with and without constrained-layer

damping materials. Gardonio et al. [91] used blocking masses to reduce the coupling

between the structural vibration modes and the incident plane waves in order to

reduce the STL through a honeycomb cylinder filled with air. Liu and He [92] studied

the effect of external mean flow on the sound attenuation of a double-walled circular

cylindrical shell lined with porous materials. Yu and Chuanbo [93] studied the effect

of air gap flow on the STL through a double-walled sandwich cylinder excited by a

random incident wave. The study showed that the air gap flow enhances the sound

isolation properties of the cylinder near the critical frequency. Oliazadeh et al. [94]

used statistical energy analysis to investigate the effect of sound-absorbing materials

on the STL of cylindrical shells. Yu and Chuanbo [93] used the reinforcement angles

of the orthotropic layers as an optimization parameter to reduce the transmitted

sound through the sandwich cylindrical shells. The results show that the optimization

technique is effective at low frequencies. Smart composite structures have also been

used for the TL enhancement of different engineering structures.

New advancements in the field of intelligent materials, in addition to an important

improvement in high-speed electronic computing machines, paved the way for dealing
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with airborne sound control problems ([95, 96, 97]). In general, intelligent materials,

such as piezoelectric materials along with a suitable control strategy can significantly

enhance the vibration suppression of the structure by modification of damping and

stiffness in a controlled manner ([98]). The use of piezoelectric materials for vibration

suppression proposes a very applicable option due to low energy consumption, easy

implementation, and being lightweight ([98]).

Many researchers applied a different technique for active vibration control of

STL through cylindrical structures. Jones and Fuller [99] utilized the unstiffened

cylindrical model in conjunction with multi-control forces exerted directly on the

surface of the cylinder to actively control the STL through cylindrical shells excited

by external monopole sources. Later on, he used piezoelectric actuators bonded to

the cylinder to study the active control of internal sound in model aircraft fuselage

([100]). Sun et al. [101] used a distributed piezoelectric actuator to actively control

the interior sound radiation and vibration of the aircraft fuselage. Wang and Vaicaitis

[102] employed Galerkin-like approximation method and patches of the piezoelectric

actuator in conjunction with velocity and sound pressure rate feedback control

strategy to control the vibration of a simply supported composite cylindrical shell

due to random point force inputs. Lin et al. [103] used Flugge’s shell theory and a pair

of piezoelectric actuators and sensors along with a Linear Quadratic Gaussian (LQG)

control strategy to control the vibration of cylindrical panel excited by external

forces acting on the surface of the panel. Henry and Clark [104] used velocity and

pressure feedback control strategy to control structural-acoustic vibration through a

rigid-wall cylindrical enclosure with a curved panel. Li et al. [105] used a numerical

approach and GA to optimize the location of piezoelectric patches to control the
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structural-acoustic noise of a thin finite circular cylindrical shell with a longitudinal

floor partition excited by a mechanical force. They neglected the mass of actuators

and sensors. Bernardini et al. [106] used Boundary Element Method (BEM), which

is a numerical method for solving linear partial differential equations to reduce the

tonal noise of an elastic thin cylindrical shell and longitudinal stringers modeled as

a beam with arbitrary cross-section excited by two pulsating monopole sources.

2.4 Introduction of Piezoelectricity

2.4.1 A Brief History of Piezoelectricity

“The crystals that have one or more axes with dissimilar ends, i.e., the hemihedral

[semi-symmetrical] crystals with oblique faces, possess a particular physical property

of giving rise to two electric poles of opposite signs at the extremities of these

axes when they undergo a change in temperature: This phenomenon is known as

pyroelectricity. We have found a new method for developing polar electricity in these

same crystals, which consists of subjecting them to variations in pressure along their

hemihedral axes",(Jacques et Pierre Curie, 1880, p.15, [107]).

With these words, on 2 August 1880, two brothers, Jacques and Pierre Curie,

reported to the French Academy of Sciences about their finding of the direct piezo-

electric effect [107]. Two brothers put together their knowledge of crystal structures

and pyroelectricity (i.e., the capacity of certain materials to produce temporary

voltage when experiencing a change in the temperature) to model the behavior of

piezoelectric crystals such as Rochelle salt (sodium potassium tartrate tetrahydrate),
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topaz, quartz, tourmaline [108]. According to Encyclopaedia Britannica, piezoelec-

tricity is described as “the generation of electric charge in a substance by mechanical

stress that changes its shape, and a proportional change in the shape of a substance

when voltage is applied" [107, 109]. However, the finding and early observation by

Curie brothers explain only the direct effect “the generation of electric charge by

mechanical stress” [107]. Nonetheless, the Curies failed to predict the existence of

the reverse process. The generation of strain and/or stress by applying the voltage is

known as converse piezoelectric effects [107, 110]. While the Curies established their

piezoelectric explanation based on the reciprocal effect of pyroelectricity that was

explained by Thomson’s hypothesis of inner polarization, yet, they did not notice the

likelihood of a piezoelectric converse effect [107]. Undoubtedly, it was difficult and

delicate to measure the converse effect experimentally [107]. The converse piezoelec-

tric effect was theoretically predicted by Jonas Ferdinand Gabriel Lippmann in 1881

[107]. He used basic thermodynamic concepts to prove the converse piezoelectric

effect mathematically [110]. The Curies soon endorsed Lippmann’s finding [111].

Lippmann’s theoretical approach to piezoelectricity bears no resemblance to the

mechanistic method of Jacques and Pierre Curie. However, this dissimilarity didn’t

stop the brothers from gaining experimental evidence that electro-elasto-mechanical

deformations in piezoelectric crystals are completely reversible [111]. Piezoelectricity

stayed something of a laboratory interest for many years later, although it was a

crucial element in Pierre and Marie Curie’s 1898 discovery of Radium and Polonium

[112]. Additional work has been done to investigate and describe the properties of

crystals that show piezoelectricity [113].

The publication of Woldemar Voigt’s Lehrbuch der Kristallphysik in 1910 delin-
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eated twenty different natural crystal groups, having the ability to show piezoelectric

properties and the piezoelectric constants were rigorously established using tensor

analysis [114]. Perhaps, the early practical application of piezoelectric material date

back to world war I when French physicist Paul Langevin and his assistant employed

SONAR technique (i.e., Sound Navigation RAnging known as SONAR is a method

that uses sound propagation underwater to interact, navigate with or trace an object

such as submarine) to track down marine vessels [115]. The device was a transducer

consisted of two steel plates covering a thin quartz crystal and a hydrophone to

receive the reflected sound waves. By sending a high-frequency acoustic pulse from

the piezoelectric device, one can measure the distance to the object by calculating

the time needed to detect the reflected acoustic waves that are scattered from the

surface of the object [115]. It wasn’t until after world war I that the design of the

detector was completed. A major breakthrough in piezoelectric research happened

during World War II when many different countries such as USA, Russia, and Japan

conducted research which led to the discovery of a new class of synthetic materials

known as ferroelectrics (i.e., a feature of unique nonconducting crystals that exhibit

natural electric polarization that can be reversed when exposed to the external

electrical field) [116, 117, 118]. This class of materials has piezoelectric coupling con-

stants several times greater than natural materials [116, 117, 118]. These intensive

researches paved the way for the discovery of barium titanate (BaTiO3) and PZT

during and after World War II [119]. Barium titanate (BaTiO3) is a ferroelectric

ceramic material that was separately developed by different research groups from

Russian, USA, and Japan simultaneously whereas, PZT discovered by scientists at

Tokyo Institute of Technology in 1952 [119]. PZT exhibits a greater piezoelectric
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coefficient of almost 250 PC/N and can resist harsh environment, which makes it an

ideal candidate for many industrial applications [119]. Over the next few decades,

new advanced piezoelectric materials with different applications were developed

and explored [120]. Piezoelectric devices are an indispensable part of our daily life.

Nowadays, piezoelectric materials are used in many home appliances such as washing

machines, cigarette lighters, printers, guitars, etc [121, 122, 123, 124]. However,

future researches need to be done to develop new piezoelectric technologies.

2.4.2 Basic Principles of Piezoelectricity

2.4.3 Anisotropic Piezoelectric Cylinder and Its Applica-

tions

The exceptional electro-mechanical coupling properties of piezoelectric materials

plays a preeminent role in the advancement of various electro-mechanical equipment

(Shodja and Ghazisaeidi [125], Arnau et al. [126], Jalili [127], Park and Shrout

[128], Brown [129], Anderson and Hagood [130], DeReggi et al. [131]). These

applications can be classified as

• Nondestructive testing, which utilizes piezoelectric transducers in intelligent

monitoring of infrastructure such as pressure vessels, natural gas pipelines,

railways, roads and bridges (Giurgiutiu and Cuc [132], Krautkrämer and

Krautkrämer [133], Rose [134], Bickerstaff et al. [135], Chapagain et al. [136],

Boucher [137], Kobayashi and Jen [138, 138]). Also, oxyborate piezoelectric

crystals are used in condition monitoring in high temperatures such as turbines

and furnaces (Yu et al. [139, 140], Zhang et al. [141, 142], Yu et al. [143]);
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• Underwater acoustics, which applies piezoelectric hydrophone in modern towed

SONAR array for underwater surveillance (Brown et al. [144]);

• Diagnostic ultrasound, which uses a small piezoelectric transducer placed

within the cylinder frequently used for the in-vivo ultrasound tomography

for early detection of malignant lesions such as in breast and prostate tissues

(Opieliński et al. [145], Opielinski et al. [146], Yang et al. [147]). Furthermore,

cylindrical piezoelectric balloons under internal pressure have been utilized in

the in-vivo treatment of distal flow and angina and myocardial hypoperfusion

issues (Vidal Denham and Rice [148]);

• Sensors and actuators, which use piezoelectrics for active vibration and noise

control of smart structures (Tzou and Gadre [149], Riley et al. [150], Zhuk and

Guz [151], Zhao et al. [152], Kirichok [153], Kozlov and Karnaukhova [154],

Hasheminejad and Keshavarzpour [9], Hasheminejad and Alaei-Varnosfaderani

[95, 12], Hasheminejad et al. [155], Shur et al. [156], Yang et al. [157]). Fur-

thermore, they have been extensively utilized to increase the bending stiffness

of structures in order to resist high buckling loads beyond what it can normally

tolerate (Thompson and Loughlan [158]).

2.4.4 A Review on The Dynamic Study of Anisotropic Piezo-

electric Cylinder

Among all different shapes of engineering structures, the hollow cylindrical shape

has attracted much attention and been recommended where acoustic directivity,

simplicity, and size constraints are the primary design concerns (Rabbani et al.
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[3]). Thus, numerous studies have been carried out on the dynamic behavior of

piezoelectric cylinder (Hasheminejad and Keshavarzpour [9], Hasheminejad and

Alaei-Varnosfaderani [12, 95], Hasheminejad et al. [159], Chen et al. [160], Hashem-

inejad and Rajabi [161], Hasheminejad et al. [155], Tzou [162], Ding et al. [163]).

Piezoelectric cylinders are applied not only to structural engineering but also to

biomechanics. Experimental studies on the human body have proved that the bone

structure has mechanical anisotropy and piezoelectric properties (Jayasuriya et al.

[164]).

Numerous studies on the free vibration analysis of a piezoelectric cylindrical shell

with some degrees of anisotropy have been done by using fully numerical methods

such as FEM as well as analytical approaches. The current review, however, is

focused merely on the analytical and semi-analytical approaches. The analytical

solutions are based on two different methods in describing the elastic deformation of a

shell: one is based on the thin shell theories, whereas the other uses the exact theory

of linear elasticity. A brief review of the most related studies on the application of

the thin shell theory to study the free vibration of piezoelectric structures is given

next.

Numerous investigations on the free vibration of different piezoelectric structures

have been conducted by utilizing different thin shell theories (Bisheh and Wu

[41]). Haskins and Walsh [165] used the traditional shell theory to investigate the

free vibration of the transversely isotropic hollow piezoelectric cylindrical shell.

Their numerical results obtained for the radially polarized piezoelectric cylindrical

shell displayed a good agreement with experimental data in the case of a very

small thickness. Drumheller and Kalnins [166] employed shell theories to develop
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an analytical solution for free vibration of piezoelectric cylindrical shells. Their

proposed model can also satisfy both mechanical and electrical governing equations

within the border of shell theories. Babaev et al. [167] utilized thin shell theory to

investigate the dynamic response of a radially polarized cylindrical piezoelectric shell

filled and submerged with the acoustic fluid, excited by electrical signals. Babaev and

Savin [168] used Kirchhoff-Love theory to study the transient vibroacoustic response

of two infinitely long coaxial piezoelectric cylinders excited by a time-dependent

electrical signal. Tzou and Zhong [169] proposed a generic linear shell theory to

investigate the dynamic response of thin or moderately thick piezoelectric cylinders.

The suggested piezoelectric shell theory is so general that it can be employed for

other engineering structures, such as the sphere, plate, panel, etc. Sheng and Wang

[170] used Hamilton’s principle and Maxwell’s equation along with the first-order

shear deformation theory to study the thermo-elastic vibration of the moderately

thick functionally graded piezoelectric shell under thermal loading and electrical

voltage. Studies based on the exact theory of linear elasticity are reviewed next.

Earlier research by the exact theory of linear piezoelasticity has attracted more

attention due to its capability for obtaining accurate results while the thickness

of the cylinder can vary from thin to extremely thick along the radius. Kapuria

et al. [171] presented an analytical approach to calculate the harmonic response of a

simply supported orthotropic piezoelectric cylinder subjected to non-axisymmetric

electromechanical loads. The inverse technique was used to determine the applied

pressure to the shell from the electrical voltage measured between the inner and

outer radius of the piezoelectric cylinder. Chen and Shen [172] used the power series

expansion method to study both direct and inverse piezoelectric effects on the free
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vibration of a finite length orthotropic piezoelectric circular cylindrical shell. Chen

et al. [160] developed a closed-form solution by using the piezoelasticity, the state

space method, and the transfer matrix approach to study the free vibration of an

arbitrarily thick functionally graded orthotropic piezoelectric hollow cylinder filled

with ideal fluid. Shlyakhin [173] utilized the vector eigenfunction expansion method

to find a closed-form solution for the dynamic vibration of a radially polarized

orthotropic piezoelectric cylinder. More recently, Wang et al. [174] both theoretically

and experimentally investigated the free vibration of a finite quartz cylinder using

the Rayleigh-Ritz method and Chebyshev polynomials.

2.5 Review on The STL Through Viscous Fluid

The backgrounds and discussion of the STL through a piezo-laminated cylinder with

some level of anisotropicity submerged in an ideal fluid was discussed section 2.2.

Although the inviscid acoustic model is very efficient to study the STL in many cases,

there are some cases that the inviscid model may fail to accurately predict the STL.

For instance, if the structure is submerged in a fluid with a high level of viscosity, the

loss of sound waves is caused by fluid viscosity and heat exchange. In the vicinity of

borders, these losses are particularly significant. Such losses become very significant

when the dimension of the structure is similar to the boundary layer thickness [14].

Obviously, the inviscid model can not capture such losses, so it becomes necessary to

develop a model that can take into account such losses. It should also be mentioned

that in some circumstances, wave propagation happening in a narrow gap due to

the presence of a fluid’s viscosity, which cannot be ignored [15]. A narrow slit or

enclosure in a hearing aid, a small transducer, etc. are examples of such a situation
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[15]. Actually, many attempts have been made to include viscosity in the wave

propagation through the structure in viscous fluids. The boundary value problem

affected by the interaction of a plane sound wave with (thermo)elastic solid cylinders

and spheres submerged in (thermo)viscous fluid was studied by Lin and Raptis

[16] through both analytical and numerical approaches. Later, the same authors

presented a general scattering theory for an incident plane sound wave obliquely

exciting a thin, elastic circular rod submerged in an unconfined viscous fluid [17].

Hasheminejad and Safari [18] used 3D dimensional theory of elasticity to study the

scattering by isotropic spherical and cylindrical shells immersed in and filled with

viscous compressible fluids.

2.6 Objectives, Contributions, Applications and Dis-

cussions

From the literature review given in subsection 2.4.4 and to the best of the author’s

knowledge, there are numerous studies on the vibration of a cylindrical shell with

some degrees of anisotropy where most of them are transversely isotropic (Haskins

and Walsh [165]) and orthotropic (Shlyakhin [173], Chen et al. [160], Kapuria

et al. [171]). The need for improvement in a piezoelectric element’s sensitivity,

however, requires the development of materials with stronger anisotropy such as

lead Lithium Tantalate, Lithium Niobate, and Oxyborate crystals of Y Ca4O(BO3)3

(YCOB) as indicated in previous studies, for example, Kar-Gupta and Venkatesh

[175], Yu et al. [139], Han and Yan [176], Luo et al. [177]. Dynamic and vibration

characteristics analysis of these components is obviously an essential element in
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their design, no matter whether they are employed as sensors or actuators. The

aforementioned comprehensive literature review suggests that a dispersion analysis

of a fully anisotropic hollow cylindrical piezoelectric shell is yet to be addressed.

Consequently, the specific novelties and highlights of this research are

• monoclinic material with one symmetry plane;

• fully anisotropic or triclinic materials are the most general form of anisotropic

materials without any axis of material symmetry;

• using the exact theory of elasticity rather than approximate shell theories for

all ranges of thicknesses and frequencies.

The solution of such problems includes complexity because of the system of the

coupled partial differential equation along with satisfying the boundary conditions

on the internal and external surface of the cylinder. These complexities can increase

when the cylinder is made of an anisotropic material.

Besides, for the STL through the cylinder, a survey of the literature given in

section 2.2, however, shows that almost no study has been done on the STL from

a thick orthotropic hollow piezo-composite cylindrical shell excited by an oblique

plane incident wave. Thus, investigating the effects of piezoelectric material proper-

ties, piezoelectric polarization direction, shell thickness ratio, electrical boundary

conditions, and FGPM on the STL is also an objective of the current study.

This study can expediently help acoustics engineers to use piezoelectric layers

to design cylindrical structures with remarkable sound transmission control charac-

teristics. Such smart structures have extensive applications in noise control in the
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fuselage (Krakers et al. [5]) and marine applications (Caresta [4]). In addition, by

coupling a piezoelectric sensor to the current structure, an Active Damping Control

(ACD) strategy can be implemented to increase the sound insulation enhancement

for a wide range of frequencies (Hasheminejad et al. [39]). Moreover, the extensive

numerical data can help as a dependable benchmark for checking other numerical

methods, particularly in the case of a lack of experimental data.

In addition, the preceding review given in section 2.3 showed that the majority of

the previous works used numerical approximation methods to control the structural-

acoustic vibration of a cylinder, which always suffer from discretization errors. The

numerical solutions, given the discretization of the PDEs, can lead to some inaccuracy

in high-frequency ranges ([178]). In addition, some scholars used pressure feedback

velocity to measure the pressure inside the cylinder, which required installing a

pressure sensor inside the cylinder. Installing a pressure sensor inside a cylinder

is very costly and conveys complicated implementation. Besides, the majority of

works that have been published in this area are focused on the membrane or thin

shell theories. As the thickness of the cylinder increases, the results provided by

even high order shell theories become inaccurate, especially at higher frequencies

([179]). Furthermore, some scholars used passive control strategies, which are easier

to be realized. While the passive control strategy showed less TL efficiency at the

resonance frequencies, the new work is aimed at improving the STL at the resonance

frequencies ([19]).

Furthermore, the review given in section 2.5 showed although the effects of

the fluid viscosity on the STL through thin/thick smart cylindrical structures is

often overlooked, some scholars pay attention to the effects of viscosity on the sound
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transmission in the cylindrical structures [16, 17, 18], and some comprehensive studies

on the piezoelectricity benefiting STL have also been conducted in non-viscose media

[19, 20] . However, the compound effects of an-isotropic piezoelectricity and fluid

viscosity on the STL while the structure is submerged in the viscous fluid were

not considered and well discussed. As introduced before, both piezoelectricity and

fluid viscosity have obvious effects on wave behaviors in a cylindrical shell, and

the coupled and interacted piezoelectricity and fluid viscosity could bring different

understanding/findings on STL that has not been revealed before. Therefore,

designing a model that can deal with an-isotropic piezoelectric crystal and also

take into account the effects of inevitable fluid viscosity in wave propagation is very

important in acoustic quieting or sound utilization applications. Such a model can

also help in predicting the dynamics of nano and micro-electromechanical systems

as fluid viscosity plays an important role at nano and micro scales.

The purpose of the current work is to tackle the above-mentioned limitations by

introducing the active control process of the piezoelectric layers and studying its effect

on the enhancement of the STL through a thick cylindrical structure, especially at

resonance frequencies. The current work benefits from the 3D theory of elasticity and

piezoelectricity to give highly accurate results even in high-frequency ranges. This

study takes advantage of the direct piezoelectric effect, which uses the piezoelectric

layer as a sensor and can easily be implemented with minimal modification of the

original structure compared to other pressure sensors. The current solution also

gives more accurate and reliable results compare to other numerical approaches.

In addition, the current model can be used to send multimedia data such as video

and pictures to underground tunnels. We know that underground transmission of
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radio frequency is not feasible. For digital data transmission, it is possible to utilize

an acoustic waveguide that transmits modulated sounds. With our current model,

we can find a specific frequency in which the magnitude of sound transmission

loss is very low to make sure that the majority of acoustic incident waves are

transmitted through the elastic medium. This research can be used to decrease the

sound transmission through the air-plane fuselage as aircraft noise exposure leads

to an increased risk of hearing-related diseases. Excessive vibration due to sound

transmission into the fuselage also can cause failure in electronic chips which can lead

to catastrophic air-plane crashes. Lastly, the current model if submerged in water

could be used for condition monitoring of the oil and gas pipelines that are located

at the bottom of the ocean. By sending a plane wave incident wave and studying the

scattered wave from the pipeline, engineers could use ultrasonic imaging to perform a

preventative maintenance examination of pipelines. The objective of this inspection

is to identify corrosion, cracks, and other defects that may cause catastrophic failure

of the structure. The current model also can be used as benchmark to check the

validity of numerical solutions.
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Chapter 3

Fundamental Theories of Elasticity
and Acoustics

“A theory can be proved by
experiment; but no path leads from
experiment to the birth of a
theory.."

Albert Einstein

In this Chapter, the equation governing a linear elastic body can be established

by three tensor partial differential equations. These three equations include the

Lagrangian description of the equation of motion, infinitesimal strain-displacement,

and linear algebraic constitutive relations. Constitutive equations for the elastic

body are the equations that relate the secondary field variables such as stress tensor

to the primary field variable, such as strain tensor. In addition, the basic principles

of acoustic theory for viscous and inviscid fluids are comprehensively explained.
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3.1 Introduction to The Three Dimensional Theory

of Elasticity

In the continuum study of solid mechanics, there are two major theories that study

the deformation of the elastic cylinder under applied forces. The first theory is

the shell theory, whereas the second one is the theory of elasticity. Here, h is the

thickness of the shell, whereas R indicates the radius of the shell. Besides, the

thickness ratio can be shown by (h/R). A 3D body can be referred to as a shell

if the thickness/radius ratio of the cylinder is small enough compared to unity

[180, 181]. A shell considered to be thin when the thickness ratio is h/R ≤ 1/20

[182]. All shell theories under-predict the radial displacement and the classical

shell theory of Donnell gives unacceptable results even for a shell with thickness

h/R=1/20 [183]. In order for a linear theory to accurately describe the behavior of

the shell structure, their vibration amplitude must be smaller than 1/10 of their

thickness [182]. The shell theories take advantage of this geometric property to

reduce a 3D problem to a 2D problem [181]. 3D theory of elasticity is a mathematical

model to study the stress and deformation of solid materials due to arbitrary sets

of loads and boundary conditions [184]. The advantage of the theory of elasticity

over the shell theories is that as the thickness/radius ratio of the cylinder increases,

the results provided by the shell theories become highly inaccurate, especially in

higher vibration frequencies. In contrast, the 3D theory of elasticity can deal with a

full 3D structure with an arbitrary thickness ratio [179]. Besides, there are many

different types of shell theories. Based on their type and orders, they can give a

finite number of natural frequencies. However, the 3D theory of elasticity gives
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infinite numbers of natural frequencies with no loss of accuracy, especially in the

high-frequency ranges. For instance, Cooper-Naghdi shell theory provides the first

fifth natural frequencies, whereas the 3D theory of elasticity can give infinite natural

frequencies. In modeling scattering problem using the shell theories, one cannot

distinguish the reflection of waves from the inner and outer surface of the cylinder,

and the boundary condition should be applied to the middle surface of the shell,

while in the 3D theory of elasticity, the boundary conditions are defined on the

real internal and external surface of the cylinder [185]. Usually, in the dynamic

equation of thin shell theories, only the first parts of the dispersion curves of some

first modes of the 3D theory of elasticity will be properly modeled [185]. It is

evident that when the shell theories are used to model a scattering problem, the

peripheral modes of the higher-order, which can not be described by these theories,

could not be generated [185]. Considering the advantages of the theory of elasticity,

this theory is used to study the current problem. The equation governing a linear

elastic body using the 3D theory of elasticity can be established by three tensor

partial differential equations [184]. These three equations include the Lagrangian

description of the equation of motion, infinitesimal strain-displacement, and linear

algebraic constitutive relations. Here, we assumed that the deformation in the solid

media is very small so that we can neglect the squares of the displacement gradients,

and the stresses do not reach the yield point in the material [184]. Such assumptions

are reasonable in many real-life engineering problems and are used extensively in

engineering design and applications [186]. Even considering these simplifications,

seeking an analytical solution assuming the linearized elasticity can not be obtained

for complicated geometries [184]. It is very beneficial to mention the equations of
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linearized elasticity for use in the later chapters. The strain-displacement relations

in the direct tensor form that is independent of the choice of the coordinate system

are given here [184]

εεε =
1

2
[∇u + (∇u)T + (∇u)T (∇u)], (3.1)

in which,

εεε =

εrr εrθ εrz
. εθθ εθz
. . εzz

 ,
where, u = [ur uθ uz]

T and ∇ is the gradient operator. When the deformation is

very small (|∇u| << 1), the nonlinear term in the Equation 3.1 can be omitted and

the linearized form of the infinitesimal strain tensor can be defined as ([187])

εεε =
1

2
[∇u + (∇u)T ]. (3.2)

Lagrangian description of the equation of motion is the second set of equations

in the theory of elasticity. It is an expression of Newton’s second law under the

assumption that the Green’s strain and stress tensors as γγγ and σσσ are symmetric.

The tensor form of Lagrangian description of the equation of motion in the absence

of body forces can be given as ([187])

∇. σσσT = ρ
∂2u

∂t2
. (3.3)

in which, ρ is the spatial density of the material.

The third set of tensor equations is the constitutive equations. Constitutive

equations are the equations that relate the secondary field variables such as stress
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tensor to the primary field variable, such as strain tensor ([187]). Constitutive

equations can not be obtained from physical principles because they are associated

with the physical properties of a medium ([187]). The constitutive model can be

validated against the experimental data ([187]). The general form of the constitutive

equation for elastic materials can be written as ([188, 189])

σσσ = C : εεε, (3.4)

in which, C is the elastic stiffness tensor of the material and “ : ” represents the

inner product of two second-order tensors. Matrix C can be different for various

materials depending on the certain material symmetry. If we apply strain positive

energy condition, the fourth-order elastic stiffness tensor, C, becomes 6 ∗ 6 matrix

[188]. Depending on the number of symmetry planes, matrix C can be classified into

eight fundamental groups. The following symbols are used to indicate the relation

between the elements [188].

∗ nonzero elements

* * equal elements

* ∗̄ equal but opposite elements

• indicates C66 = (C11 − C12)/2

• Isotropic materials with infinite number planes of symmetry [188]
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C =

∗ ∗ ∗ 0 0 0

. ∗ ∗ 0 0 0

. . ∗ 0 0 0

. . . • 0 0

. . . . • 0

. . . . . •




• Cubic Materials have 9 planes of symmetry

C =

∗ ∗ ∗ 0 0 0

. ∗ ∗ 0 0 0

. . ∗ 0 0 0

. . . ∗ 0 0

. . . . ∗ 0

. . . . . ∗





• Transversely Isotropic or Hexagonal Materials

C =

∗ ∗ ∗ 0 0 0

. ∗ ∗ 0 0 0

. . ∗ 0 0 0

. . . ∗ 0 0

. . . . ∗ 0

. . . . . •




• Tetragonal Materials have 5 planes of symmetry
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C =

∗ ∗ ∗ 0 0 0

. ∗ ∗ 0 0 0

. . ∗ 0 0 0

. . . ∗ 0 0

. . . . ∗ 0

. . . . . ∗




• Trigonal Materials have 3 planes of symmetry

C =

∗ ∗ ∗ ∗ 0 0

. ∗ ∗ ∗̄ 0 0

. . ∗ 0 0 0

. . . ∗ 0 0

. . . . ∗ ∗

. . . . . •




• Orthotropic Materials have 3 planes of symmetry

C =

∗ ∗ ∗ 0 0 0

. ∗ ∗ 0 0 0

. . ∗ 0 0 0

. . . ∗ 0 0

. . . . ∗ 0

. . . . . ∗
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• Monoclinic Materials have one planes of symmetry

C =

∗ ∗ ∗ 0 ∗ 0

. ∗ ∗ 0 ∗ 0

. . ∗ 0 ∗ 0

. . . ∗ 0 ∗

. . . . ∗ 0

. . . . . ∗





• Triclinic Materials, No symmetry planes

C =

∗ ∗ ∗ ∗ ∗ ∗
. ∗ ∗ ∗ ∗ ∗
. . ∗ ∗ ∗ ∗
. . . ∗ ∗ ∗
. . . . ∗ ∗
. . . . . ∗




.

Here, the study is focused on the most general form of material, which is the

triclinic materials with no planes of symmetry. The solution procedure for the

coupled partial differential equations over an elastic domain will be given in the next

chapter.

3.1.1 Limitation of Linear Three Dimensional Theory of

Elasticity

The limitation of of linear 3D theory of elasticity is that the deformation in the

solid media is very small in comparison with the dimensions of the structure so that
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we can neglect the squares of the displacement gradients, and the stresses do not

reach the yield point in the material. Do not make a distinction between the second

Piola–Kirchhoff stress tensor S and the Cauchy stress tensor σ and between the

current coordinates x and the material coordinates X [190]. The current model can

be used when the stiffness, strength, ductility, and other properties are not sensitive

to the rate of deformation (indirect dependence on time), the loading rate, the strain

or stress history, temperature, and heating or cooling rate [190]. We also consider

that removing the loading reverts the sample to its original shape and the strain

disappears [190]. Elastic behavior is characterized by this characteristic. At some

point along the stress-strain curve, the sample does not return to its original state,

and some permanent plastic deformation occurs. The current model is not able to

predict the behavior of the structure beyond its elastic limit [190]. We also consider

that the body is continuous and without any void [191]. The physical quantities

in the body, such as stresses, strains, and displacements, can only be translated

into continuous functions of coordinates in space under this assumption [191]. As

long as the dimensions of the body and the distances between neighboring particles

are very large, however, these assumptions will not lead to significant errors [191].

In addition the body is considered to be homogeneous. This implies that elastic

constants are independent of the location within the body [191]. As a result, one

can analyze the body’s basic structure from an isolated volume, and then apply the

results to the entire structure [191].
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3.2 Inviscid Acoustic Field Equations

The compressible fluid motion in which the pressure does not constrain the flow

so that the volume of fluid elements is changeable (i.e., the material derivative of

the density is not negligible) can be described by conservation of mass, momentum

and energy laws. The mass conversation law for a compressible fluid can be written

as (Rienstra and Hirschberg [192])

∂ρ

∂t
+∇.(ρ ννν) = 0, (3.5)

in which the ρ is the fluid density, and ννν is the fluid velocity. The conservation of

momentum for a fluid particle can also be written as (Rienstra and Hirschberg [192])

ρ
∂ννν

∂t
+∇.(P) + ρ ννν.∇ννν = f, (3.6)

where P and f are the fluid stress tensor, and the external force density, respectively.

For an inviscid fluid the fluid stress tensor can be related to the pressure, p as

(Rienstra and Hirschberg [192])

P = p I,

in which I is the unit tensor. The energy conversation law for the isentropic fluid

when the viscous dissipation and the heat conduction are negligible can be written

as
∂s

∂t
+ ννν.∇s = 0, (3.7)

in which s is the specific entropy. Using the equation of state, the isentropic speed

of sound, c can be obtained as

c =

√
(
∂p

∂ρ
)s. (3.8)
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The density, ρ′, and velocity, ννν ′ fluctuations associated with the wave propagation

in the acoustic phenomena, are very small. Using the linearized approximation of

Equation 3.5, Equation 3.6 and Equation 3.7, and neglecting the second-order terms

in the perturbations the governing equations for a quiescent fluid in the absence of

body forces can be written as

∂ρ′

∂t
+ ρ0∇. ννν ′ = 0, (3.9a)

ρ0
∂ννν ′

∂t
+∇p′ = 0, (3.9b)

∂s′

∂t
= 0, (3.9c)

in which s′ in the entropy fluctuation. The fluid constitutive Equation 3.8 can also

be simplified as

p′ = c2
0 ρ
′. (3.10)

Now by taking the time derivative of Equation 3.9a along with taking the divergence

of Equation 3.9b and subtracting the equations, one can (Rienstra and Hirschberg

[192])

∇2p′ − ∂2ρ′

∂t2
= 0, (3.11)

substituting Equation 3.10, into Equation 3.11, the acoustic wave equation governing

the small acoustics fluctuations through a compressible, homogeneous, isentropic

and frictionless fluid may be written around the equilibrium pressure as

∂2p′

∂t2
− c2

0∇2p′ = 0. (3.12)
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Equation 3.12 will be used in the next chapters to model the external acoustic

medium and the internal cavity.

3.3 Viscous Acoustic Model

Using the linearized form of the Navier-Stokes equation for a non-heat-conducting

viscous compressible fluid, the governing equations for viscous acoustic medium in

the absence of body forces can be written as [184, 18]

∂ρ

∂t
+∇.(ρvvv) = 0, (3.13a)

µ∇2vvv +

(
1

3
µ+ λ

)
∇(∇.vvv)−∇p = ρ

∂vvv

∂t
, (3.13b)

where ρ, vvv, µ and λ represent the mass density of fluid, velocity vector, shear

and bulk coefficient of viscosites, respectively. In addition, p indicates the acoustic

pressure of the viscous fluid and ∇2 = ∂2

∂r2
+ 1

r
∂
∂r

+ 1
r2

∂2

∂θ2
+ ∂2

∂z2
. For a barotropic

fluid, the equation of the state is independent of the temperature. Thus, the fluid

pressure is only a function of the fluid density. Consequently, the equation of state

for a barotropic fluid can be written as ([184])

p = c2ρ, (3.14)

in which c is the speed of sound. By combining Equation 3.13 and Equation 3.14, a

single equation in terms of fluid velocity can be obtained as ([18])

µ

ρ
∇2∂vvv

∂t
+

1

ρ

(
1

3
µ+ λ

)
∇
(
∇.∂v

vv

∂t

)
+ c2∇(∇.vvv)− ∂2vvv

∂t2
= 0. (3.15)
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Using the Helmholtz decomposition, the velocity field can be decomposed into the

longitudinal (irrotational) and transverse (solenoidal) vector components as ([193])

vvv = −∇φ+∇×ψψψ, (3.16)

where φ is a scalar function and ψψψ = ψrêr + ψθêθ + ψzêz in which êr, êθ and êz are

the orthogonal unit vectors in the radial, tangential, and axial directions, respectively.

By applying the gradient and curl operators to the scalar function φ and vector

ψψψ, the radial, axial, and tangential velocity components can be given in terms of

potential functions in the viscous acoustic medium as [16]

vr = −∂φ
∂r

+
1

r

∂ψz
∂θ
− ∂ψθ

∂z
, (3.17a)

vθ = −1

r

∂φ

∂θ
+
∂ψr
∂z
− ∂ψz

∂r
, (3.17b)

vz = −∂φ
∂z

+
∂(rψθ)

r∂r
− ∂ψr
r∂θ

. (3.17c)

Substituting Equation 3.16 into Equation 3.15, making use of solenoidal vector

field (∇.ψ = 0), the fully uncoupled wave equations in a viscous fluid can be deduced

as ([194])

∂2φ

∂t2
=

[
c2 +

1

ρ

(
4

3
µ+ λ

)
∂

∂t

]
∇2φ, (3.18a)

∂ψi
∂t

=
µ

ρ
∇2ψi; i = r, θ, z. (3.18b)

Since the acoustic incident wave is considered to have a single wavelength and

frequency (monochromatic wave), the solution of Equation 3.18 can be expressed in
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the form of [18]

φ(r, θ, z, t) = R
[
φ(r, θ, z, ω)e−iωt

]
, (3.19a)

ψ(r, θ, z, t) = R
[
ψ(r, θ, z, ω)e−iωt

]
, (3.19b)

where R[Z] gives the real part of the complex number Z and i =
√
−1. Substituting

Equation 3.19 into Equation 3.18, by making use of harmonic functions, after some

algebraic manipulations, the wave equations can be simplified as follows [18]

∇2φ+ κ2
cφ = 0, (3.20a)

∇2ψ + κ2
sψ = 0, (3.20b)

in which κs and κc are the complex shear and compressional wave numbers, respec-

tively, known as [195]

κs = (1 + i)

√
ωρ

2µ
, (3.21a)

κc =

(
ω

c
+ i

ω2

2ρc3

(
4

3
µ+ λ

))
. (3.21b)

Here, the basic equations governing a linear elastic are discussed and explained.

These basic equations will be used in chapters 4, 6 and 7 to model the elastic layer

of the cylinder. However, in order to be able to model the piezoelectric layer, the

constitutive equations and the equilibrium of electrical charge should be added to the

conversations laws of elastic body. The description of constitutive equation for the

piezoelectric layer will be explained in section 4.1.1 and the modified conversation

law for the piezoelectric layer will be explained in section 4.1.1. Please note that

the kinematic assumption for both the elastic layer and piezoelectric later will be
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the same. After modeling the piezoelectric layer by the 3D theory of elasticity, this

model will be used in chapter 4, 5, 6 and 7 to model the actuator and sensor layers.
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Chapter 4

Three-Dimensional Free Vibration
Analysis of Triclinic Piezoelectric
Hollow Cylinder

“If you want to find the secrets of
the universe, think in terms of
energy, frequency, and vibration.”

Nikola Tesla

Piezoelectric materials are anisotropic materials, which means they do not have

the same properties in all directions. As discussed in the section 3.1 majority of

the shell and even the 3D theory of elasticity model used isotropic or transversely

isotropic piezoelectric materials to study the vibration of piezoelectric cylinders

(Haskins and Walsh [165]). While using those models can make the problem solution

easier, it may cause inaccuracy in the results especially in piezoelectric materials

with stronger anisotropy such as lead Lithium Tantalate, Lithium Niobate, and

Oxyborate crystals of Y Ca4O(BO3)3 (YCOB). Thus, studying these materials needs
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to adopt a new model that can handle such a level of anisotropicity. The main aim

of this chapter is to adopt a mathematical model that is capable of handling the

most general form of anisotropic piezoelectric materials, which are known as triclinic

materials with 21 independent elastic parameters. The 3D theory of piezoelasticity

is used to model the triclinic piezoelectric materials. Unlike the shell theory of

piezoelectricity, the piezoelasticity theory can handle 3D structures with no loss

in accuracy of final results in higher frequency ranges. Its results also can be very

accurate as the thickness to radius ratio of the cylinder increases.

Thus, the main aim of this chapter is to develop an analytical model to study,

discuss, and explain the free vibration of a triclinic infinite cylinder in order to fill

the gap in the current literature. The suggested solution is very fundamental, in view

of the classical structural problem. The proposed method can also offer an analytical

foundation for exploiting the potential ability of triclinic piezoelectric material in

intelligent cylindrical structures. It can also be used as a benchmark for comparison

to other results achieved by numerical or semi-analytical methods. The specific

organization of this chapter is outlined as follows. The mathematical modeling

section is developed based on the theory of linear piezoelasticity. This includes

the constitutive relations of the exact 3D elastic medium, kinematic assumptions,

conservation laws, traction boundaries, and solution assembly. Next, the traction

boundary conditions and final solution are obtained. Then the validity of the

proposed model was checked against other literature’s results. Next, the effect of

anisotropy on the wave dispersion curves of the piezoelectric cylinder is discussed in

the case studies section. Finally, the concluding remarks are listed.
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4.1 Mathematical Modelling

A detailed description of the problem is given first. It is important to note that

the current approach is applicable to any fully anisotropic material and different

piezoelectric polarization cases (i.e., radially, axially, and circumstantially polarized).

4.1.1 Problem Description of Triclinic Piezoelectric Hollow

Cylinder

In this chapter, we develop an analytical model to study the free vibration of a

triclinic infinite piezoelectric cylinder. An infinitely long piezoelectric cylindrical

shell is modeled by a fully triclinic anisotropic assumption. The cylindrical shell is

made of a triclinic piezoelectric material with an internal and external radius of a

and b, respectively, as shown in Figure 8.1. Constitutive relations are given next.

Piezoelectric
Layer

b

a
O

Piezoelectric Shell

xθ

r

y

r

b
aV )(r, ,z,θ ω

Figure 4.1: Schematic of thick an-isotropic smart piezoelectric cylinder .
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Constitutive Relations

The general, linear, anisotropic constitutive relations for piezoelasticity can be

written as (Chopra and Sirohi [196])

σij = Cijklεkl − eijkEk, Di = eiklεkl + κijEj, (4.1)

where, eijk, σij, and εkl, are the third-order piezoelectric tensors, second-order Green-

Cauchy stress, and strain tensor, which have 18, 6, and 6 independent parameters,

respectively. Cijkl and κij are the fourth-order elasticity and second-order dielectric

permittivity tensors measured under the conditions of zero electric and strain

fields, which have up to 21 and 6 independent parameters, respectively. Thus a

comprehensive description of a triclinic piezoelectric material involves the recognition

of all 45 independent constants. The expanded matrix form of Equation 4.1 is given

in section A.1. Furthermore, Ei, andDi represent the electrical field and the electrical

displacement vectors, respectively. The electrical field, Ei, can be defined by using

an electrical potential, φ, such that

Ei = −φ,i, (4.2)

where, ,i ≡
−→
∇ is the forward gradient operator in cylindrical coordinates, which is

given in section A.2. The kinematic assumptions will be discussed next.

Kinematic Assumptions

The εij is the Lagrangian finite strain tensor in which its linearized form for infinites-

imal deformations, ui, turns into

εij =
1

2
(ui,j + uj,i), (4.3)
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where ui indicates an infinitesimal deformation. Moreover, ,i ≡
−→
∇, and ,j ≡

←−
∇ are

forward and backward Nabla operators. The expanded matrix form of Equation 4.3

is given in section A.3. The Conservation Laws will be discussed next.

Conservation Laws

Conservation of linear momentum for a differential element can be expressed as

σij,j + fi − ρüi = 0, (4.4)

where, fi, ρ, and üi are a body force, unperturbed material density, and the La-

grangian particle acceleration, respectively. The first term, the divergence of the

stress tensor, is determined by the inner product of the second-order stress tensor

with the cylindrical gradient operator, which is given in section A.2. The expanded

form of Equation 4.4 can be found in Equation A.4.1.

The electrostatic charge equilibrium of a piezoelectric material can be expressed

as
Di,i = Qf , (4.5)

where, Qf is the free charge density. Hence the equilibrium conditions for a piezo-

electric material are satisfied by the implementation of both Equation 4.4 and

Equation 4.5. The expanded form of Equation 4.5 is given in Equation A.4.2. The

traction boundaries are given next.

Traction Boundaries

The mechanical boundary conditions require the continuity of traction forces, ti, and

displacement ui vectors. The traction force can be defined as

ti = σijnj, (4.6)
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where, ti and ni are the Cauchy stress vector at a traction surface and unit-length

direction vector, respectively. The mixed mechanical and electrical boundary condi-

tions, under the assumption of perfect bounding, require the continuities of displace-

ment ui, traction force ti, electric potential, φi, and the electrical displacement Di.

As the center of the cylindrical coordinate is located at the center-line of the shell,

en ≡ er, hence,

t = σrrer + σrθeθ + σrzez, (4.7)

where en is the unit base vector. The solution assembly will be discussed next.

4.1.2 State Space Method

The field’s variables can be expanded in terms of trigonometric functions in the

circumferential θ and axial z directions in a cylindrical coordinate, such that

V =
∞∑

n=−∞

Vnei(ζz+nθ−ωt), (4.8)

in which n, e, ζ, and ω are the circumferential wave number, the exponential function,

the axial wave number, and the circular frequency, respectively. Furthermore

V ≡ V(r, θ, z, ω) is spatial state vectors and
√
i = −1. The modal components of

the aforementioned sate vector, Vn(r, ω), are

Vn(r, ω) =



unr (r, ω)
unθ (r, ω)
unz (r, ω)
σnrr(r, ω)
σnrθ(r, ω)
σnrz(r, ω)
Dn
r (r, ω)

φn(r, ω)


. (4.9)
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After performing a tedious task of substituting modal expansions given in Equa-

tion 4.9 into Equation 4.1, Equation 4.2, Equation 4.3 and Equation 4.4 along with

the application of orthogonality properties of trigonometric functions in the absence

of a body force, fi, and electrical charge density, Qf , a modal state space of the

system emerges can be written as

dVn(r, ω)

dr
= Ξn(r, ω)Vn(r, ω), n = −∞, ...,−1, 0, 1, ...,+∞, (4.10)

where Ξn(r, ω) is a 8 × 8 modal coefficient matrix whose elements are given in

section A.5.

A general analytical solution of Equation 4.10 is not straightforward when Ξ is

position-dependent. Consequently, an approximate laminated model is adopted as

Ding and Chen [197]. Subsequently, the piezoelectric thickness is assumed to be

composed of npz perfectly bonded sub-layers with equal thicknesses of ĥ = (b−a)/npz.

The elements of matrix Ξn(r, ω) is assumed to be constant and equal to the values at

the mid-surfaces r̄k = (rk + rk−1)/2 because of very small thickness of each sub-layer,

ĥ� 1. Accordingly, each layer’s solution to Equation 6.1b is

Vn(r, ω) = e((r−rk−1)Ξn(r̄k,ω))Vn(rk−1, ω), rk−1 ≤ r ≤ rk, (4.11)

rk−1 = a+ (k − 1)ĥ , rk = a+ kĥ, k = 1, 2, ..., npz.

Evaluating the latter equations for the kth layer leads to

Vn(rk, ω) = e(Ξn(r̄k,ω)ĥ)Vn(rk−1, ω). (4.12)

The global transfer matrix is obtained, next, by enforcing the continuity of Vn

between all interfaces. Then the modal components of the state variables, Vn, at the

outer and inner radii are related through the global transfer matrices, Θn, such that

55



Vn(b, ω) = Θn(ω)Vn(a, ω), (4.13)

Θn(ω) =

npz∏
k=1

e(Ξn(r̄k,ω)ĥ), (4.14)

for the piezoelectric layer where Θn(ω) is 8× 8 ultimate transfer matrix, respectively.

The traction boundary conditions and the final solution will be discussed next.

4.2 Traction Boundary Conditions and Final Solu-

tion

The tangential and normal stresses at the internal and external surfaces of the

piezoelectric cylinder can be easily expressed as Chen and Ding [198]:

tn ≡


σnrr(r, ω)
σnrθ(r, ω)
σnrz(r, ω)

 =


0
0
0

 , r = a, b. (4.15)

The short-circuit electrical boundary condition at the inner and outer surfaces of

the piezoelectric cylinder can be written as

φn(r, ω)|r=a = φn(r, ω)|r=b = 0. (4.16)
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Next, by substitution of boundary conditions (Equation 4.15 and Equation 4.16)

into the global transfer function (Equation 4.13), it is obtained,



ur(b, ω)
uθ(b, ω)
uz(b, ω)

0
0
0

Dr(b, ω)
0


= Θn(ω)



ur(a, ω)
uθ(a, ω)
uz(a, ω)

0
0
0

Dr(a, ω)
0


. (4.17)

By rearranging the system of Equation 4.17, the homogeneous linear system of

algebraic equations can be written as

Ax = 08×1, (4.18)

where, 08×1 is a zero vector. The expanded form of Equation 4.18 can be found

in section A.6. By solving the eigenvalue problem of Equation 4.18, a non-trivial

frequency-domain equation of triclinic piezoelectric cylinder is obtained as

∣∣A∣∣ = 0, (4.19)

in which |A| is the determinant of matrix A.

57



Cij PZT4 LiBnO3 LiTaO3 Y Ca4O(BO3)3 Triclinic

C
ij

(1
01

1
N
/m

2
)

C11 1.39 2.45 2.33 1.551 2.385
C12 0.78 0.75 0.80 0.142 0.768
C13 0.74 0.75 0.47 0.422 0.633
C14 0 0 0.11 0 0.06
C15 0 0 0 0 0.028
C16 0 0 0 0 0.005
C22 1.39 2.03 2.75 1.451 2.412
C23 0.74 0.53 0.80 −0.051 0.637
C24 0 0 0 0 −0.027
C25 0 0.09 0 −3.5 −0.010
C26 0 0 0 0 −0.002
C33 1.15 2.03 2.330 1.244 2.177
C34 0 0 −0.11 0 −0.027
C35 0 0.09 0 0.016 −0.019
C36 0 0 0 0 −0.003
C44 0.256 0.75 0.94 0.29 0.860
C45 0 0 0 0 0.057
C46 0 0.09 0 0.007 0.055
C55 0.256 0.6 0.93 0.478 0.843
C56 0 0 0.11 0 0.053
C66 0.305 0.6 0.94 61.4 0.764

e i
j

(C
/m

2
)

e11 0 1.3 0 0.14 −0.614
e12 0 0.2 0 0 0.117
e13 0 0.2 0 −0.47 0.122
e14 0 0 0 0 −0.053
e15 12.7 0 −1.6 −0.07 −0.727
e16 0 0 −2.6 −2.6 −1.252
e21 0 0 0 0 −0.1
e22 0 0 −1.9 −1.9 −0.906
e23 0 0 0 0 0.044
e24 12.7 −2.5 0 0.13 −1.433
e25 0 0 0 0 −0.094
e26 0 3.7 0 0.49 1.908
e31 −5.2 0 −1.6 −0.11 −0.811
e32 −5.2 −2.5 0 −0.36 −1.202
e33 15.1 2.5 1.6 0.15 2.043
e34 0 0 −2.6 −2.6 −1.274
e35 0 3.7 0 −0.23 2.046
e36 0 0 0 0 0.045

ε i
j

(1
0−

1
1
F
/m

) κ11 650 25.7 36.3 8.540 31.753
κ12 0 0 0 0 −0.089
κ13 0 0 0 0.840 1.780
κ22 650 38.9 38.1 10.443 −2.123
κ23 0 0 0 0 −2.123
κ33 560 38.9 36.3 8.451 43.846

ρ (kg/m3) ρ 7500 4700 7450 3310 6075

Table 4.1: Mechanical and electrical properties of the constituent materials.
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Figure 4.2: Non-dimensional wave phase velocity Υ versus the non-dimensional axial
wave number ξ for (b-a)/a=0.05.

4.3 Validations

Due to the wide range of different configurations and parameters offered in the

problem formulation, while keeping in mind the computational cost and restrictions,

we should focus on some logically selected model configurations. In order to show

that the proposed model can handle very thick geometries, the inner and outer

radius of the piezo-composite cylinder are considered as a = 1 m and b = 1.5 m.

A general MATLABr parallel code was established in order to determine the final

global transfer matrix Θn as well as attaining matrix determinant (Equation 4.19).

The calculation was performed on the cluster of Intelr Xeonr Processor E5-2630

v4 desktop computer (15M Cache, 2.30 GHz, 7.20 GT/s), which benefits from

parallel core technology for multi-threaded applications. By utilizing Matlab Parallel
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Computing Toolbox, we optimized our code to be able to exploit the full processing

power of multicore desktops by executing applications on 40 workers (MATLAB

computational engines) that run locally.
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Figure 4.3: Non-dimensional wave phase velocity Υ versus the non-dimensional axial
wave number ξ for (b-a)/a=0.5.

Before addressing the main result, the overall accuracy of the proposed solution

shall be studied. First, the cylinder is assumed to be fabricated from non-graded

PZT4. The material properties of PZT4 were provided in Table 4.1. In order

to satisfy the convergence of the final global transfer matrix of the cylindrical

piezoelectric cylinder, we used thirty (npz = 30) sub-layers to calculate the final

global transfer matrix. The lowest non-dimensional natural frequency, Ψ = ωa
√

ρ
C44

,

was determined. Then, the non-dimensional wave phase velocity Υ = Ψ
ξ
versus the

non-dimensional axial wave number ξ = ζ
a
were depicted in Figure 4.2 and Figure 4.3
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Figure 4.4: Non-dimensional wave phase velocity, Υ, versus the non-dimensional axial
wave number, ξ, for selected piezoelectric materials material n=0 and (b−a)/a = 0.5.

for a relatively thin (b−a)
a

= 0.05 and thick (b−a)
a

= 0.5 hollow cylinder, respectively.

The outputs, as shown in Figure 4.2 and Figure 4.3, display an excellent agreement

with Chen et al. [160]. The case studies will be discussed next.
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Figure 4.5: Non-dimensional wave phase velocity, Υ, versus the non-dimensional
axial wave number, ξ, for n=1 and (b− a)/a = 0.5.

4.4 Case Studies

The configuration and material selection is based on the thick case, which has been

addressed in section 4.3. Figure 4.4 and Figure 4.5 show the dispersion curves of the

non-dimensional wave phase velocity Υ versus the non-dimensional axial wavenumber

ξ for the five different piezoelectric materials, as listed in Table 4.1. Although all

the plots finally become almost invariant at high wavenumbers larger than 15, it is

obvious that there is a significant difference between the dispersion curves of the PZT

cylinder with the other materials. The dispersion curve of the PZT cylinder becomes

rapidly invariant with the increase in the axial wavenumber, while the dispersion
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curves for the other anisotropic materials become gradually constant with relatively

higher values of non-dimensional wave phase velocities. Since the PZT material is

classified as the orthotropic piezoelectric materials, however, the other curves belong

to the monolithic or triclinic piezoelectric materials, which show a different pattern

compared to the conventional orthotropic PZT material. This observation shows that

the previous proposed theoretical methods for orthotropic piezoelectric materials

can not be simply extended to monolithic or triclinic piezoelectric materials, which

need to take into consideration a higher number of non-zero material constants.

The non-dimensional wave phase velocities of triclinic material are found to have a

significant difference with other anisotropic materials as well.

Figure 4.6 shows the dispersion curves of the lowest natural frequencies ω versus

the circumferential wave number n for the triclinic and the orthotropic piezoelectric

materials for selected axial wave numbers ξ. The triclinic material used in Table 4.1

is made up one layer of LiNbO3 with the crystalline Z-axis along z and the crystalline

Y-axis along r and the second layer is made up LiTaO3 with the crystalline X-axis

along z and the crystalline Y along r, in order to show the triclinic effect on the

wave behavior (see Akcakaya and Farnell [199]). In order to make the results of

triclinic and orthotropic materials comparable, the orthotropic material used in

Figure 4.6, Figure 4.7 and Figure 4.8 are made up of the same triclinic material

by putting all the nonzero constants to zero in the way that it changes from a

triclinic material to an orthotropic piezoelectric, for example, PZT4. Regarding

Figure 4.6, the circumferential wave number has a significant effect on the natural

frequencies of both triclinic and orthotropic materials. It is axiomatic that there

is a more severe difference between the natural frequencies of the two materials in
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Figure 4.6: First lowest natural frequencies ω versus the circumferential wave number
n for selected axial wave number ξ and (b− a)/a = 0.5.

higher circumferential wavenumber, regardless of the value of the axial wavenumber.

Also, the difference in the natural frequencies of the two materials depends on the

64



value of the axial wavenumber. As it is clearly seen from Figure 4.6, as the value

of the axial wavenumber ξ increases from 0.001 to 60, the difference between the

natural frequencies of the two materials becomes bigger. In addition, for the lower

axial wave number such as ξ = 0.001 and high circumferential wave number, for

example, n = 60, the difference between the natural frequencies of the two materials

is considerable, and the natural frequency of the triclinic material is higher than the

one of orthotropic material by 580 Rad/s. Likewise, for the lowest circumferential

wave number n = 0 and higher axial wavenumber ξ = 60, the natural frequency

difference is also noteworthy, and the natural frequency of the triclinic material is

higher than the one of orthotropic material by 3100 Rad/s. The difference between

the natural frequencies of triclinic and orthotropic materials is due to the fact

that the triclinic material has more non-zero material constants, which results in

consideration of more stress terms with a given strain vector. It can also be concluded

that the conventional orthotropic model of the piezoelectric cylinder, including a

lower number of material constants, can only be used to capture the lowest natural

frequency of the totally anisotropic piezoelectric cylinder when both axial wave

number and circumferential wave number are relatively low. In other words, the

triclinic model proposed in this research, which considers all possible constants

should be used to study the triclinic piezoelectric cylinder for higher axial wave

numbers or higher circumferential wave numbers because the natural frequency of

the orthotropic model deviates from the triclinic model, obviously.

Figure 4.7a and Figure 4.7b display the dispersion curves of the natural frequency

versus the non-dimensional axial wavenumber ξ for selected lowest natural frequencies

while the circumferential wave number is equal to zero. Results for the twelve selected
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Figure 4.7a: Natural frequencies ω versus the non-dimensional wave number ξ for
selected lowest natural frequency with n=0 and (b− a)/a = 0.5.

66



0 1 2 3 4 5 6 7 8 9 10
2.44

2.445

2.45

2.455

2.46

2.465

2.47

2.475

2.48

2.485 105

0 1 2 3 4 5 6 7 8 9 10
2.89

2.9

2.91

2.92

2.93

2.94

2.95

2.96

2.97 105

0 1 2 3 4 5 6 7 8 9 10
3.34

3.35

3.36

3.37

3.38

3.39

3.4

3.41

3.42

3.43

3.44 105

0 1 2 3 4 5 6 7 8 9 10
3.78

3.8

3.82

3.84

3.86

3.88

3.9

3.92

3.94 105

0 1 2 3 4 5 6 7 8 9 10
4.24

4.26

4.28

4.3

4.32

4.34

4.36

4.38 105

0 1 2 3 4 5 6 7 8 9 10
4.72

4.73

4.74

4.75

4.76

4.77

4.78 105

Non-dimensional Axial Wave Number ( ξ)

N
at

ur
al

 F
re

qu
en

cy
, ω

 (R
ad

/s
) 

Figure 4.7b: Natural frequencies ω versus the non-dimensional wave number ξ for
selected lowest natural frequency with n=0 and (b− a)/a = 0.5.
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natural frequencies show that the difference between the natural frequencies of the

two materials is very small for the first lowest natural frequency. However, for

higher natural frequencies, the difference between the natural frequencies of two

materials becomes gradually bigger, and the two plots become completely different

in higher natural frequencies, such as shown in the figure, for the 55-th lowest

natural frequency, and the natural frequency of triclinic material is higher than the

one of orthotropic material by 4300 Rad/s. This observation indicates that the

conventional orthotropic model of the piezoelectric cylinder with a lower number of

non-zero material constants can only be used to model the anisotropic piezoelectric

materials when the value of the natural frequency is relatively small. So, the value of

the lowest natural frequency is the third important factor after the circumferential

wave number and the axial wavenumber when the orthotropic model is utilized to

predict the dynamic behavior of triclinic piezoelectric materials.

Figure 4.8 shows the cut-off frequency of the first eight natural frequencies, ω,

versus the non-dimensional axial wave number, ξ, for the circumferential wave

number n = 0. It can be seen that the difference between the dispersion curves of

orthotropic and triclinic materials increases when the fundamental frequencies order

change to higher values. For instance, while the two plots are exactly matched in

the first and second-order frequencies, a significant difference can be observed in the

7th and 8th order frequencies.
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Figure 4.8: Cut-off frequency of the lowest natural frequencies ω versus the non-
dimensional axial wave number ξ for n = 0 and (b− a)/a = 0.5.

4.5 Conclusions

The state-space method, transfer matrix approach along with appropriate state vector

expansion are utilized to study the free vibration of an arbitrary thick, infinitely

long triclinic hollow piezoelectric cylinder. The free vibration of the most general

form of an anisotropic piezoelectric material with all possible material constants is

analytically modeled and studied to cover a broad range of anisotropic piezoelectric

materials. The main findings of this chapter are as follows

• The orthotropic model can only be used to model triclinic piezoelectric materials

when the circumferential wave number, axial wave number, and the value of

the lowest natural frequency are all relatively small.

• The results of the orthotropic piezoelectric model can not be extended to
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investigate the behavior of the triclinic piezoelectric materials in high-frequency

ranges.

• The difference between the dispersion curves of orthotropic and triclinic ma-

terials increases when the fundamental frequencies order change to higher

values.

Because no assumption was considered for stress and displacement fields, the

output results can be used as a benchmark to investigate the accuracy of different

shell models, semi-numerical and numerical solutions. As part of future works, the

proposed model can also be easily used to study the free vibration of a functionally

graded anisotropic material. Furthermore, due to considering all the possible material

constants for the general anisotropic piezoelectric, the model is able to investigate the

natural frequencies of monolithic piezoelectric material. The model can be extended

to studies of multi-layers anisotropic piezoelectric structures. In addition, it can

be used to investigate the effect of different polarization directions on the natural

frequencies of general anisotropic piezoelectric materials.

70



Chapter 5

Sound Transmission Through a
Thick-Walled FGM Piezo-laminated
Cylindrical Shell Filled with and
Submerged in Compressible Fluids

“Mathematics reveals its secrets only
to those who approach it with pure
love, for its own beauty”

Archimedes

When a sound wave strikes on a barrier, some of it reflects back to the original

medium, and some may be transmitted through the barrier. An index is essential

to be defined, in order to measure the capability of the sound absorber in blocking

the sound transmission from the external fluid to the internal environment. That

index is known as STL. STL is the best quantification for benchmarking the acoustic

performance of any acoustic treatment. In the past few years, STL from cylindrical

objects has been a subject of researchers’ interest due to the wide range of engineering
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applications and their manufacturing feasibility. Several studies have been carried

out in this area to cover the essential needs of these industrial applications [57, 59].

Many researchers focused their study on finding new materials to increase the STL

from the cylindrical structures. The most common materials that were used for this

purpose are viscoelastic and poroelastic materials. However, the use of intelligent

materials such as piezoelectric materials in STL through cylindrical structures is

often overlooked. Piezoelectric materials offer advantages such as durability, high

energy density, low cost, compactness, and low weight which give them the potential

to replace classical poroelastic and viscoelastic sound treatments [200]. The current

work is aimed at using piezoelectric materials in order to investigate their effects

on the STL through the cylinder. In this work, the estimation of STL due to the

piezoelectric effects, as attenuation of acoustic waves, is studied for a thick-walled

piezo-composite cylindrical shell excited by an oblique incident plane wave The

wave propagation through the hollow cylinder was achieved by using the state

space method and transfer matrix approach within the context of the 3D theory of

elasticity. The STL expression was obtained by performing the exact integration

over the internal surface of the cylinder. Finally, the accuracy of the presented

analytical solution was cross-checked with the simplified model in various literature.

Due to a lack of available results for the TL of the piezoelectric cylinder in literature,

a finite element package has been used to check the result of a purely piezoelectric

cylindrical shell. The final results display an impressive agreement between the FEM

and the proposed analytical solution.
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5.1 Problem Description of Sound Transmission Through

a Piezo-laminated cylinder

In this section, the structure given in chapter 4 is modified and used to study the

sound transmission loss from a thick orthotropic hollow piezo-composite cylindrical

shell excited by an oblique plane incident wave.
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Figure 5.1: Problem Configuration.

Let us consider an infinite laminated piezo-composite cylindrical shell with FGM

property, as depicted in Figure 8.1. The cylinder is made of a FGM of total thickness

ho = ra − rin, perfectly matched to an outer radially polarized FGPM of the total

thickness ha = rex − ra. The infinite cylinders are assumed to be submerged in
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and filled with ideal compressible fluids of densities ρex, and ρin, respectively. The

infinite cylindrical shell is excited by an incoming oblique incidence plane wave with

an arbitrary angle, α. Acoustic field equations will be discussed next.

5.1.1 External Acoustic Medium

Since the external acoustic field is affected by the incident and refracted waves,

using Equation 3.12, the external acoustic wave equation can be expressed as [65]

cex∇2(pI + pR)− ∂2(pI + pR)

∂t2
= 0, (5.1)

where cex, pI , and pR are the traveling speed of sound in the external fluid, the

incident pressure wave, and the refracted pressure wave, respectively. Furthermore,

∇2 = ∂2

∂r2
+ 1

r
∂
∂r

+ 1
r2

∂2

∂θ2
+ ∂2

∂z2
is the Laplacian operator in the cylindrical coordinate.

The harmonic incident plane wave pressure, pI can be written as [201]

pI(r, θ, z, ω) =
∞∑
n=0

p0εn(−i)nJn(kexr r)cos(nθ)e
i(ωt−kexz z), (5.2)

where ω, p0, n, α and Jn(x) are circular frequency, the magnitude of the incident

wave pressure, the circumferential wave number, incident wave angle and Bessel

function of the first kind, respectively. Furthermore, pIn(r) = p0εn(−i)nJn(kexr r) and

εn =

{
1 n = 0,

2 n ≥ 1.

where,

kexr = kexsin(α), (5.3a)
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kexz = kexcos(α). (5.3b)

Moreover, kex = ω/cex and i =
√
−1. The reflected wave can also be expressed as

pR(r, θ, z, ω) =
∞∑
n=0

An(ω)H2
n(kexr r)cos(nθ)e

i(ωt−kexz z), (5.4)

where

pRn (r, ω) = An(ω)H2
n(kexr r).

An(ω) and H2
n(x) are an unknown modal constant and Hankel function of the second

kind, respectively (Yuan et al. [202]).
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5.1.2 Internal Acoustic Medium

The governing equation of the acoustic cavity can be expressed using Equation 3.12

as (Pierce and Smith [203])

cin∇2pT − ∂2pT

∂t2
= 0, (5.5)

where cin is the traveling speed of sound in the cavity. The modal expansion of

internal pressure can be written as

pT (r, θ, z, ω) =
∞∑
n=0

Bn(ω)H1
n(kinr r)cos(nθ)e

i(ωt−kinz z), (5.6)

pTn (r, ω) = Bn(ω)H1
n(kinr r),

where, Bn(ω), H1
n, kinr , and kinz are unknown modal constants, Hankel function

of the first kind, radial, and axial wave numbers, respectively. Since the internal

and external acoustic waves are both driven by one incident-traveling wave, the

axial wavenumber inside and outside of the cylinder are equivalent kinz = kexz = kz.

Furthermore, it’s straightforward to show

kinr =
√
k2
in − (kinz )2, (5.7)

in which, kin = ω/cin.
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5.2 Structural Modelling: Elasticity and Piezoelas-

ticity

The generalized linear constitutive equations relating the stress components

(Σij, σij) to the relevant strain components (Γij, γij) for the functionally graded

orthotropic and piezoelectric layers can be written as [196]

σσσ = c γγγ, (5.8)

ΣΣΣ = CΓΓΓ− e E, (5.9)

where, c and C are the elasticity matrices of the orthotropic and piezoelectric

materials, respectively, measured under the condition of zero electric voltage. The

elasticity matrices can have a maximum of 21 independent constants. Likewise, e is

the piezoelectric coupling matrix for zero strain field conditions. This matrix has a

maximum of 18 independent parameters. Furthermore, σσσ and ΣΣΣ represent the Green-

Cauchy stress vector for the orthotropic and piezoelectric material, whereas the γγγ

and ΓΓΓ stand for the Green-Cauchy strain vector of the orthotropic and piezoelectric

material, respectively.

Additionally, E denotes the electric-field vector. The expanded form of Equa-

tion 5.8 is given in subsection B.1.1. Moreover, the expanded form of piezoelectric

constitutive relation, Equation 5.9, for the axially and radially polarized piezoelectric

materials are presented in subsection B.1.2 and subsection B.1.3, respectively.

The electrical field vector E can be related to the electrical potential, φ, in which
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[36]

E = −
−→
∇φ, (5.10)

where, the nabla symbol,
−→
∇ denotes the gradient operator in the cylindrical coordi-

nates. The direct piezoelectric effect can be written as [204]

D = eT ΓΓΓ + εεε E, (5.11)

in which D and εεε are the electrical displacement vector and dielectric permittivity

tensor, respectively. The maximum independent parameters of the dielectric permit-

tivity tensor are 6. The expanded form of Equation 5.11 for the axially and radially

polarized piezoelectric materials is described in Equation B.1.3 and Equation B.1.5,

respectively. The functionally graded laminated model is given next.

5.2.1 Functionally Graded Laminated Model

In order to include the functionality of materials properties in the constitutive

relation, a laminated model should be adopted. By employing the simple rule of

mixture, the mechanical and electrical properties of the constituent materials within

the i-th layer of the laminated cylinder can be advantageously expressed as [160]

ξi = Λ(r̄i)ξ1 + [1− Λ(r̄i)]ξ2, (5.12)

where Λ(r̄i) is the volume fraction of the material in the i-th layer and ξ could be

any material properties such as ε, ρ, e, c, etc. In addition, subscript 1 and 2 show the

material properties in the inner and outer layer of the shell, respectively. The gradient

profile of the associated materials can be described by the following assumption for

the volume fraction of the material across the cylinder radius as [205, 206, 76]

Λ(r) = (1− r − ao
hp

)µ, o = in, a; p = o, a, (5.13)
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in which a0, hp, and µ are the inner radius of the cylinder, thickness along the radial

axis, and power of gradient profile.

5.2.2 Kinematic Assumptions

The Green-Cauchy strain vectors of the orthotropic layer, γγγ, and piezoelectric

layers, Γ are associated with the pertinent material displacement vectors via the

linearized kinematic relation as [207]

γγγ = Ku, (5.14)

ΓΓΓ = KU, (5.15)

where, u = [ur uθ uz]
T and U = [Ur Uθ Uz]

T are the elastic and piezoelectric

Lagrangian displacement, respectively. Furthermore, the matrix operator k is

described in Equation B.2.1. The conservation laws are employed next.

5.2.3 Conservation Laws

The conservation of linear momentum and electrical charge equilibrium in the

absence of free charge density and body forces for a differential element can be

expressed as

m σσσ = ρü, (5.16)

M
[

ΣΣΣ
D

]
= ρpz

[
Ü
0

]
, (5.17)

where ρ and ρpz are the unperturbed material density of elastic and piezoelectric

materials, respectively. Moreover, double dot,¨denotes twice differentiation respect
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to time. The expanded form of matrix operators (m,M) are given in Equation B.2.2

and Equation B.2.3, respectively.

5.3 Spatial State Vectors and Ultimate Transfer

Function

The modal transformed spatial state vectors associated with the orthotropic,

v, and piezoelectric layers, V, may advantageously be expressed in terms of the

trigonometric functions in the form of

v =
∞∑
n=0



unr (r, ω) cos(nθ)
unθ (r, ω) sin(nθ)
unz (r, ω) cos(nθ)
σnrr(r, ω) cos(nθ)
σnrθ(r, ω) sin(nθ)
σnrz(r, ω) cos(nθ)


ei(ωt−kzz), (5.18a)

V =
∞∑
n=0



Un
r (r, ω) cos(nθ)

Un
θ (r, ω) sin(nθ)

Un
z (r, ω) cos(nθ)

Σn
rr(r, ω) cos(nθ)

Σn
rθ(r, ω) sin(nθ)

Σn
rz(r, ω) cos(nθ)

Dn
r (r, ω) cos(nθ)

φn(r, ω) cos(nθ)


ei(ωt−kzz), (5.18b)

in which ω, n and kex
z are angular frequency, circumferential and axial external wave

number, respectively. Subsequently, the modal components of the aforementioned

sate vectors, vn(r, ω) and Vn(r, ω) described in Equation 5.18a and Equation 5.18b

80



can be written as

vn(r, ω) =



unr (r, ω)
unθ (r, ω)
unz (r, ω)
σnrr(r, ω)
σnrθ(r, ω)
σnrz(r, ω)


, Vn(r, ω) =



Ur,n(r, ω)
Uθ,n(r, ω)
Uz,n(r, ω)
Σrr,n(r, ω)
Σrθ,n(r, ω)
Σrz,n(r, ω)
Dn
r (r, ω)

φn(r, ω)


. (5.19)

Now, by performing an exhausting task of substituting Equation 5.18a and

Equation 5.18b into Equation 5.8, Equation 5.9, Equation 5.11, Equation 5.14

and Equation 5.15 along with benefiting from the orthogonality of trigonometric

functions, the modal state-space relations for the elastic and piezoelectric layer

accordingly emerge as
dvn(r, ω)

dr
= gn(r, ω)vn(r, ω), (5.20a)

dVn(r, ω)

dr
= Gn(r, ω)Vn(r, ω), (5.20b)

where gn(r, ω) is 6 × 6 modal coefficient matrix whose elements are given in

Equation B.3.1, whereas Gn(r, ω) is 8 × 8 modal coefficient matrix whose arrays

for the axially and radially polarized piezoelectric materials are provided in subsec-

tion B.3.2 and subsection B.3.3, respectively. The details of the solution procedure

for Equation 6.1 is given in subsection 4.1.2. By subsequent employment of state

space method, the modal components of the state variables at ith sub-layer can be

related to the one at (i− 1)th sub-layer as

vn(ri, ω) = exp
(
gn(r̄k, ω)ĥo

)
vn(ri−1, ω), (5.21a)

Vn(ri, ω) = exp
(
Gn(r̄k, ω)ĥa

)
Vn(ri−1, ω). (5.21b)
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in which the matrix exponential, exp(X), can be expressed by the power series as

exp(X) =
∞∑
j=1

Xj

j!
. (5.22)

Elastic and piezoelectric modal transfer matrices can be obtained, by implementing

the continuity of vn and Vn between all interface layers in the way that, the state’s

components at the outer radii of the elastic and the piezoelectric layers are related

to the states variables at the inner radii of the elastic and the piezoelectric layers

via global transfer matrices, tn, and Tn, respectively such that

vn(ra, ω) = tn(ω)vn(rin, ω), (5.23a)

tn(ω) =
no∏
i=1

exp
(
gn(r̄i, ω)ĥo

)
, (5.23b)

for the elastic layer, whereas

Vn(rex, ω) = Tn(ω)Vn(ra, ω), (5.23c)

Tn(ω) =
na∏
i=1

exp
(
Gn(r̄i, ω)ĥa

)
, (5.23d)

for the piezoelectric layer where tn(ω) and Tn(ω) are 6 × 6 and 8 × 8 matrices,

respectively. The ultimate transfer matrices will be obtained in the next subsection.
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5.3.1 Ultimate Transfer Matrices

At this point, the transfer matrix of the elastic and piezoelectric layer should be

amalgamated in order to obtain the ultimate transfer matrix. Thus, by applying

the perfect bonding conditions between the elastic and piezoelectric layers, the state

variable vector at the inner surface of the elastic layer, vn(rin, ω), augmented with

the electrical potential and radial electrical displacement at the inner layer of the

piezoelectric actuator may advantageously be related to the state variable vector at

the outer surface of the actuator, Vn(rex, ω) using 8× 8 global matrix, Θn in the

form of

Vn(rex, ω) = Θn(ω)Υn(ω), (5.24a)

Θn(ω) = [Tn(:, 1 : 6)tn Tn(:, 7 : 8)], (5.24b)

Υn(ω) = [vTr
n (rin, ω) Dn

r (ra, ω) φn(ra, ω)] (5.24c)

in which, the superscript Tr is the operator which flips a matrix over its diagonal.

Furthermore, it should be mentioned that Tn(:, 1 : 6) includes the first six columns

of Tn, whereas Tn(:, 7 : 8) includes only the last two columns of Tn.
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5.4 Fluid-solid Coupling and Electrical Boundary

Conditions

5.4.1 Fluid-solid Interaction

Keeping in mind the fully coupled nature of the fluid-solid interaction problem,

the relevant mechanical boundary conditions that must be satisfied at the internal

and external surface of the cylinder are as follow

• The acoustic fluid model is assumed to be an inviscid flow. Consequently, the

tangential stress at the inner and outer of the cylinder can be written as

σnrz(rj, ω) = Σn
rz(rj, ω) = 0, j = in, ex, (5.25a)

σnrθ(rj, ω) = Σn
rθ(rj, ω) = 0, j = in, ex; (5.25b)

• Equilibrium of the total external and internal acoustic pressures with normal

stress at the traction surfaces (i.e., solid/fluid stress coupling) can be given as

σnrr(rin, ω) = −pTn (rin, ω), (5.25c)

Σn
rr(rex, ω) = −pIn(rex, ω)− pRn (rex, ω); (5.25d)

• The relationships between the radial solid Lagrangian displacement components

and the radial fluid displacements (i.e., solid/fluid displacement coupling) at
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the traction surfaces are written as [12]

unr (rin, ω) =
1

ρinω2

∂pTn (r, ω)

∂r

∣∣∣∣
r=rin

, (5.25e)

Un
r (rex, ω) =

1

ρexω2

∂[pIn(r, ω) + pRn (r, ω)]

∂r

∣∣∣∣
r=rex

. (5.25f)

5.4.2 Electrical Boundary Conditions

The short-circuited electrical boundary conditions for the inner and outer

surface of the piezoelectric cylinder can be enforced as [95]

φn(ri, ω) = 0, i = a, ex, (5.26)

while, the open-circuited electrical boundary condition can be written as

Dn
r (ri, ω) = 0, i = a, ex, (5.27)

similarly, the compatibility of the electrical boundary condition for the applied

voltage on the inner and outer surface of the piezoelectric electrodes can be

given as

φn(ri, ω) = Φn(ri, ω), i = a, ex, (5.28)

in which the applied modal voltage, Φn can be written using the Fourier

expansion as

Φn(ri, ω) =
1

π

∫ π

−π
Φn(ri, ω)cos(nθ) dθ, (5.29)

for the angular shape of the electrode with the angle, 2β, and voltage amplitude

ϕ, Equation 5.29 emerges as

Φn(ri, ω) =
1

π

∫ β

−β
ϕ cos(nθ)dθ =

{
2 ϕ β/π, n = 0,

[2ϕ sin(nβ)]/(nπ), n > 0.
(5.30)
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5.5 Final Solution

The final solution can be obtained by direct substitution of mechanical and electrical

boundary conditions given in subsection 5.4.2 into the ultimate transfer matrix of

Equation 5.24 in the form of a linear system of the algebraic equation as

Anxn = bn, (5.31)

in which An, xn, and bn for the short-circuited, open-circuited, and active applied

voltage are given in section B.4.

5.5.1 STL

The STL is a measure of the capability of a cylinder to stop the incoming acoustics

wave from being transmitted through the cylinder. It can be expressed as

TL = 10 log10

(
ΠI

ΠT

)
(5.32)

in which ΠI and ΠT are incident and transmitted acoustic power, respectively.

Furthermore, log10(x) indicates the common logarithm with base 10. The incident

and transmitted acoustic power shall be determined before the calculation of TL.

The acoustic power of a plane incident wave impinged on a cylindrical shell can be

evaluated as

ΠI =
1

2
Re(

∫
A

pIν∗dA) =
sinα |p2

0|rex
ρexcex

(5.33)

where Re(z), ν, and A indicate the real part of complex number z, the radial

particle velocity, and the domain of integration over the surface of the cylinder,
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respectively. Moreover, the superscript “ ∗ ” denotes the complex conjugate of a

complex number. Similarly, the transmitted power is written as

ΠT =
1

2
Re(

∫
A

pTν∗dS) =
1

2
Re

[∫
A

pT
∂(ur)

∗

∂t
dS

]
(5.34)

Next by substituting the transmitted acoustic pressure expansion Equation 5.6 and

radial displacement expansion Equation 5.18a into the Equation 5.34 and performing

integration over the internal surface of the cylinder along with using orthogonality

of trigonometric function one can obtain

ΠT =
1

2

∞∑
n=0

Re{Bn(ω)H1
n(kinr rin) [iωunr (rin, ω)]∗

∫ 2π

0

cos2(nθ)rindθ}. (5.35)

The simplification of the latter equation can be achieved by performing exact

analytical integration in the form of

ΠT =
∞∑
n=0

πrin
εn

Re{Bn(ω)H1
n(kinr rin) [iωunr (rin, ω)]∗}. (5.36)

Next, by direct substitution of Equation 5.38 and Equation 5.33 into the Equa-

tion 5.32 result in
TL = −10 log10(Ψ) (5.37)

in which

Ψ =
∞∑
n=0

Re{Bn(ω)H1
n(kinr rin) [iωunr (rin, ω)]∗ rinπρexcex
|p2

0|εnsin(α)rex
. (5.38)

5.6 Model Validation

A general Matlabr code is optimized to execute the parallel clusters in order to

calculate the TL from the cylinder as well as obtaining the solution of Equation 5.31.
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The calculation was carried out on a cluster of Intelr Xenonr Processor G4400 v4

desktop computer (15M Cache, 3.31 GHz, 7.20 GT/s), which benefits from Multi-core

architectures and Hyper-Threading Technology for intensive parallel applications.

The Matlab Parallel Computing Toolbox was engaged in taking advantage

of the ultimate calculation power of multi-thread desktops by performing tasks on

8 workers in the parallel pool (Matlab computational engines) that run locally

[208]. The validity of the proposed analytical solution shall be confirmed by fixing

the variables of the problem according to one specific example.

Figure 5.2a shows the TL comparison between the Flugge-Lure-Byrne thin-walled

shell theory and the 3D theory of elasticity under no-flow condition (Mach=0) for

three different attack angles (α = π/6; π/3;π/2). The general Matlab code was

used to calculate the cylinder TL defined by Equation 5.37. Figure 5.2a demonstrates

a good agreement with the results presented in Figure 3 of Ref.[2].

Figure 5.2b displays the cylinder TL comparison between Love’s shell theory and

the 3D theory of elasticity. The cylinder is subjected to an incident plane wave with

pressure magnitude of p0 = 1 Pa for various incident angles (α = π/6; π/4; π/3).

Equation 5.37 has been employed to calculate the TL from the cylinder. There is no

piezoelectric layer in the proposed model provided by Ref.[66], thus in order to make

a comparison between the two models possible, the thickness of the piezoelectric

actuator layer was set to ha = 0.000001m. The outcome, as shown in Figure 5.2b,

displays an acceptable agreement with that result presented in Fig. 9 of [66].

Figure 5.2c shows the cylinder TL comparison between Donnel and Mushtari

shell theory and the 3D theory of elasticity. The cylinder is assumed to be filled

with (ρin = 1.29 kg/m3; cin = 343 m/s) and submerged in the external air with
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(ρex = 1.29 kg/m3; cex = 343 m/s). The structure is made of (no = 30; rin =

1.9970 m; ra = 2.003 m) with isotropic material property c∗ = c(1 − iη) for two

different structural damping (η = 0.1; 0.01). The outcome, as shown in Figure 5.2c,

displays a good agreement with the result presented in Ref.[64].

Figure 5.2d shows the cylinder TL comparison between the Mixed 3D-Shell

analytical model and the current solution without the piezo-coupling effect. Therefore,

the thickness of the piezoelectric layer was set to zero. The cylindrical shell is made

of the aluminum material (no = 10; rin = 2.1610 m; ra = 2.164 m) with an isotropic

material property c∗ = c(1− iη) and structural damping η = 5 %. The structure is

filled and surrounded by air (ρin = ρex = 1.284 kg/m3; cin = cex = 340 m/s) and

is excited by an oblique incident plane wave with an angle (α = π/4). See Ref.[69]

for more structural details. The final results depicted in Figure 5.2d demonstrate

an excellent agreement between the current study and the mixed 3D-Shell model

presented in Ref. [69] .
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Figure 5.2: STL validations.
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Cij PZT4 Ba2NaNb5O15 Aluminum

c i
j
,C

ij
(N
/m

2
)

C11 13.9× 1010 23.9× 1010 c11 9.692× 1010

C12 7.8× 1010 10.4× 1010 c12 4.153× 1010

C13 7.43× 1010 5.2× 1010 c13 4.153× 1010

C22 13.9× 1010 24.7× 1010 c22 9.692× 1010

C23 7.43× 1010 5.2× 1010 c23 4.153× 1010

C33 11.5× 1010 13.5× 1010 c33 9.692× 1010

C44 2.56× 1010 6.5× 1010 c44 2.769× 1010

C55 2.56× 1010 6.6× 1010 c55 2.769× 1010

C66 3.06× 1010 7.6× 1010 c66 2.769× 1010

ρ (kg/m2) ρpz 7500 5300 ρ 2750

Table 5.1: Mechanical properties of Ba2NaNb5O15, PZT4, and Aluminum.

eij PZT4(Axial) Ba2NaNb5O15(Axial) PZT4(Radial)

e i
j
(C
/m

2
) e31 -5.2 −0.4 e11 15.1

e32 -5.2 −0.3 e21 -5.2
e33 15.1 4.3 e31 -5.2
e15 12.7 2.8 e53 12.7
e24 12.7 4.3 e62 12.7

ε i
j
(F
/m

) ε11 650× 10−11 196× 10−11 ε11 560× 10−11

ε22 650× 10−11 201× 10−11 ε22 650× 10−11

ε33 560× 10−11 28× 10−11 ε33 650× 10−11

Table 5.2: Piezoelectric coupling and dielectric permittivity constants for axially
and radially polarized piezoelectric materials.

Next, the cylinder TL has been studied for a single thick layer of the piezoelectric

shell. The thickness of the elastic layer was set to zero in the general Matlab code,

which calculates the TL from Equation 5.37. The structure is assumed to be made

of axially polarized PZT4 (na = 10) and excited by an incoming incident plane wave

(p0 = 1 Pa) with a normal incident angle (α = π/2). See more structural details

in Table 5.1 and Table 5.2. The cylinder is filled with air (ρin = 1.29 kg/m3; cin =

343 m/s) and surrounded by external air-fluid (ρex = 1.29 kg/m3; cex = 343 m/s).

Various cylinder thicknesses have been considered in order to show the validity of

the proposed analytical solution for the thin and thick geometries. The TL was
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Figure 5.3: Cylinder TL comparison between the current study and FEM (Comsol
Multiphysics) for the thin, moderately thick, and very thick thicknesses (ha =
0.1 m, 0.25 m, 0.5 m). The cylinder is assumed to be made of a single layer of
axially polarized non-graded PZT4 filled and surrounded by air, excited by a normal
incident plane wave while the short-circuited boundary condition is applied at the
inner and outer surfaces of the cylinder.

computed for the thin (e.g., ha = 0.1 m), moderately thick (e.g., ha = 0.25 m) and

very thick (e.g., ha = 0.5 m) cylinder.

Due to the lack of results in the literature for the TL of a piezoelectric cylindrical

shell, Comsol Multiphysicsr have been utilized to check the validity of the
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Water Air
c (m/s2) 1500 340
ρ (Kg/m3) 1.2 1000

Table 5.3: Acoustics properties of Water and Air.

proposed close form solution considering the piezo-electric coupling effect studied in

this work. Comsol Multiphysicsr has been used to describe specific multiple

physical models, including acoustic, elastic, and piezoelectric medium [209]. Like

all finite element packages, Comsol has both its pros and cons. The main pores

are difficulty in modeling infinitely large domains, running-time cost, and numerical

instability at high frequencies. In contrast, the proposed closed-form solution can

tackle all the mentioned issues without difficulty. As an illustration of this, consider

the following example. The external acoustic equation can be solved using the Bessel

functions with enforcing the boundary condition at r = ∞, while Comsol uses

the Perfectly Matched Layer (PLM), which is an artificial boundary condition that

absorbs the majority of the refracted waves. Nevertheless, there is always a partial

reflection of waves from the PLM layer, which is the inevitable result of truncate

computational regions in numerical methods. The FEM model includes the internal

and external pressure acoustic media which are attached to the piezo-laminated

cylinder as can be seen from Figure 5.4. The external acoustic pressure model is

surrounded by cylindrical type of PML layer to ensure that the acoustic waves are

not reflecting from the boundaries.

In order to find the optimized mesh size, a cylindrical shell with only one layer

of isotropic materials were constructed in the FEM software. Next, the element

size was decreased in the FEM model and the STL results were checked against the

analytical results in Ref. [2] for the sound transmission loss through a cylinder made
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Perfectly Matched Layer
Type= Cylindrical 

Pressure Acoustics Model 

 Piezoelectric cylinder Internal Cavity 

Figure 5.4: FEM modeling of the problem using Comsol Multiphysicsr.

of one elastic isotropic layer. At this step, the optimized mesh size was found. In the

next step, the new FEM model with a single layer of axially polarized non-graded

PZT4 materials with the same mesh size were constructed in the FEM software.

Now, the results from the new FEM model were checked against the results from

the current study. Figure 7.2 shows an excellent agreement between the current

study and the commercial finite element package, Comsol multiphysics 4.4 [209].

The free triangular mesh type was used to generate the mesh for different areas as

can be seen in Figure 5.5. In order to perform finite element simulation, about 430

mapped elements were used to model the PZT4 layers, about 20,402 free triangular

elements were employed to model the internal and external acoustic fluids and 33420
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elements were used to model the cylindrical PML layer. The numerical results will

be discussed in the next section.

Perfectly matched layer 
consists of 33420 elements

External Acoustic Medium 
consists of  18988 elements 

Piezolaminated 
cylinder  consists 
of 430 elements

External Acoustic Medium 
consists of  18988 elements 

Internal Acoustic 
Medium  consists
 of  1414 elements 

Type of mesh is 
free triangular 

Figure 5.5: Mesh modeling of the problem using Comsol Multiphysicsr.

5.7 Results and discussion

In this section, the case studies will be discussed; before addressing the main results,

it should be mentioned that due to the large number of variables involved in the

proposed analytical solution, while keeping in mind the computational limitations,

we shall focus on some logically selected examples. Accordingly, the elastic layer is

considered to be made of a single aluminum layer (ho = 0.1 m and rin = 1.8 m).
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Figure 5.6: Effect of piezoelectric layer on the STL of the piezocylinder. The
cylinder is filled with air and submerged in the water. The elastic layer of the
cylinder is made of Aluminum, while the piezoelectric layer is axially polarized
(rin = 1.8 m, ra = 1.9 m and rex = 2 m). The short-circuited boundary condition
was applied at the internal and external surfaces of the piezoelectric cylinder.

The actuator layer (ha = 0.1 m and ra = 1.9 m) is perfectly bonded to the host

structure with the material properties as given in Table 5.1 and Table 5.2. The

piezo-composite cylinder is filled with air and submerged in water with the acoustic

properties of the constituent material given in Table 5.3. The amplitude of the

normal plane incident wave is considered to be 1 Pa in all our calculations. In all

the following figures, the geometry and material properties of the piezo-composite

structure are according to the above-mentioned values, unless specified otherwise.

Figure 5.6 shows the effect of the piezoelectric layer on the cylinder TL. The
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Pzt4 and Ba2NaNb5O15 are axially polarized piezoelectric materials that have

been chosen for the comparison. See more mechanical and electrical properties in

Table 5.1 and Table 5.2. The results show that Ba2NaNb5O15 is more effective in

the low-frequency range. This is an expected result because Ba2NaNb5O15 has a

higher elastic constant than the Pzt4. Please keep in mind that the effect of stiffness

on the TL is dominant in the low-frequency range, especially at frequency ranges

between 20 Hz to 0.2 kHz. In contrast, the Pzt4 displays better performance in the

high-frequency range, specifically at frequency ranges from 0.25 kHz to 1kHz except

for the frequency resonance. This is due to the fact that the density of Pzt4 is

higher than the Ba2NaNb5O15, which makes it more efficient in the mass controlled

high-frequency ranges. Therefore, Ba2NaNb5O15 is a better sound absorber in the

low-frequency range, especially at frequency ranges between 20 Hz to 0.2 kHz, while

the PZT leads to higher TL in the high-frequency range especially at 0.2 kHz to 1

kHz. This can be important guidance for choosing a piezoelectric sensor/actuator

when lower or higher TL is preferred with a specific operating frequency range.
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(a) Normal incident wave, α = π/2.
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(b) Oblique incident wave, α = π/3.
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(c) Oblique incident wave, α = π/4.
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(d) Oblique incident wave, α = π/6.

Figure 5.7: STL versus the frequency for different piezoelectric polarization, when the cylinder is filled with air and
submerged in water subjected to different angles of the plane incident waves. The cylinder is made of Aluminum
and PZT4 with rin = 1.8 m, rm = 1.9 m and rex = 2 m. The cylinder is filled and surrounded by air, and the
short-circuited boundary condition is enforced at the inner and outer surface of the piezoelectric cylindrical shell.
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Figure 6.6 shows the variation of TL versus the frequency for different polarization

of piezoelectric materials and angles of plane incident wave in the frequency range

of 0-2 kHz. The structure is filled and surrounded by air. The elastic layer is

considered to be made of a single aluminum layer (ho = 0.1 m and rin = 1.8 m). The

actuator layer (ha = 0.1 m and ra = 1.9 m) is perfectly bonded to the host structure.

The short-circuited electrical boundary condition is enforced at the inner and outer

surface of the piezoelectric cylindrical shell. It is observed from Figure 6.5a that

there is no significant improvement of TL for a different direction of polarization in
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Figure 5.8: Accumulated cylinder TL versus the thickness ratio between the piezo-
layer and host material, δ = ha

ho
, for the selected incident angles. The cylinder is

made of Aluminum, and radially polarized PZT4 (rin = 1.8 m and rex = 2 m)
surrounded and filled with air-fluid while the short-circuited boundary condition
was enforced at the inner and outer surface of the piezoelectric layer.
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the low-frequency ranges, while the TL moderately improves beyond a frequency of

1.5 kHz. The radially polarized piezoelectric layer also shows a higher value of TL,

especially in the resonant frequencies indicating a better soundproof performance

compared to the axially polarized piezoelectric material beyond a frequency of 1.5

kHz for the case of radially polarized piezoelectric materials. Figure 6.6c displays the

TL for the incident angle, α = π/3. It is interesting to see that the TL significantly

improves for the radially polarized piezoelectric layer in comparison to the axially

polarized case in the frequency 0.5 kHz, while there is no significant improvement at

the low and high range frequencies. This is probably due to the fact that the dipoles

of radially polarized piezoelectric materials are more sensitive in the direction of

the applied forces resulting in a better performance in the case of the higher value

of the incident angle. In addition, the radially polarized case does not have a dip

with low TL at around 500 Hz. This is an important finding to avoid low TL at a

specific resonance frequency. In other words, by choosing the proper piezo-electric

polarization direction, a sudden TL drop can be avoided at a specific incident angle.

Figure 6.5c and Figure 6.6b did not show a significant difference in the low-

frequency ranges (Freq. < 500 Hz), but more substantial improvement can be

noticed at the higher frequency range (Freq. > 500 Hz) for the case of radially

polarized piezoelectric materials. A comparison of all subplots given in Figure 6.6

clearly indicates that by decreasing the angle of the incident plane wave, α, both

radially and axially polarized cases show similar behavior, making both piezoelectric

polarization practically ineffective for passive sound radiation isolation in the low

value of incident angles. Moreover, the TL is more apparent, especially in the

high-frequency ranges from 0.2 kHz to 2 kHz for radially polarized piezoelectric
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materials. Another interesting finding is that there is no cylinder resonance frequency

when the angle of the incident wave is smaller than π/4. This is because the cylinder

resonances occur when the projection of the impinging wave’s airborne wavelength

along the axial direction into the cylinder and frequency match with the appropriate

value of circumferential wave number, n. In the case of incident waves smaller than

π/4, frequencies did not match, and that is why no resonance frequency can be seen

(Koval [2]).

Figure 5.8 describes the effect of thickness ratio, δ = ha
ho
, on the accumulated TL

for the different incident angles. The inner and outer radius of the cylinder is kept

constant (rin = 1.8 m; rex = 2 m) while the thickness ratio changes from 0.01 to

10. The piezoelectric material is considered to be PZT4 with the radial direction of

polarization, while the core elastic layer is made of Aluminum, as given in Table 5.1.

The accumulated TL is obtained by performing integration of Equation 5.37 over the

frequency bounds from 1 Hz to 2 kHz. The vectorized adaptive quadrature built-in

function of Matlabr with default error tolerances is used to perform numerical

integration in the frequency domain [210]. It is very interesting to see that by

increasing the thickness ratio from zero to one, the TL reaches the maximum value,

while further increasing the thickness ratio of piezoelectric layer over elastic layer

cannot help to improve the TL beyond the optimal value of the thickness ratio

regardless of the angles of the incident wave. The optimal thickness ratio given in

Figure 5.8 can be used in the passive sound reduction of piezo-composite shells. In

addition, the best performance of the sound isolation can be seen for the normal

incident angle, while the worst case of sound isolation is corresponding to the incident

angle of α = π/6 with low (thickness ratio smaller than 1) and high (thickness ratio

101



larger than 2) thickness ratios.
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Figure 5.9: Cylinder TL versus the frequency for the short and open circuited
electrical boundary conditions. The cylinder is radially polarized, made of PZT4
piezoelectric material and Aluminum (rin = 1.8 m, rm = 1.9 m and rex = 2 m ),
filled and surrounded with air acted upon by a plane normal incident wave.

Figure 5.9 displays the effect of electrical boundary conditions on the STL of

a radially polarized piezo-composite cylindrical shell. The cylinder is made of

Aluminum, and PZT4 (rin = 1.8 m, rm = 1.9 m and rex = 2 m) which is surrounded

and filled by air as the acoustic properties of the fluid medium are given in Table 5.3.

The angle of the incoming incident plane wave was assumed to be normal (α = π/2).

The analysis of the figure shows several impressive results. Comparison between the

short and open-circuited electrical boundary conditions in the low-frequency ranges

shows no significant difference in the TL, while the TL becomes different for the two
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boundary conditions in the range of frequency beyond the 0.5 kHz. Moreover, the

dips with small values for the case of an open-loop boundary condition show a lower

magnitude of TL indicating the fact that the open-circuited boundary condition

is not quite effective for sound isolation in high-frequency ranges specifically at

frequency ranges beyond 1 kHz, while the closed-circuit boundary condition leads

to higher TL especially at the resonance frequencies, showing better performance

in sound isolation in high-frequency ranges. In the case of open-circuit boundary

conditions, the piezoelectric layer is stiffer. In contrast, in the short circuit boundary

condition, the piezoelectric layer absorbs more energy due to the energy dissipation

during charging. In other words, after impinging the plane incident wave on the

surface of the cylinder, the acoustic power of the incident wave converts to the

mechanical vibrations of the piezoelectric coupled structure. These mechanical

vibrations will be converted to electrical charges using the direct piezoelectric effect

(the generation of electricity when stress is applied) and then dissipates from the

system by the short circuit electrical boundary condition. By this process, more

acoustic energy of incident waves will be dissipated from the system system, resulting

in a higher value of TL considering the piezoelectric effects.

Figure 5.11 shows the effect of the material gradient profile on the STL of an

axially polarized cylinder for the selected type of piezoelectric composition. The

elastic layer of the cylinder is made of non-graded aluminum materials µ = 0

(given in Equation 5.13), while the piezoelectric layer is made of axially polarized

piezoelectric considering FGM properties along the radial direction with the total

concentration of PZT4 materials (PZT-rich composition) in the inner layer of the

piezoelectric shell and full concentration of Ba2NaNb5O15 (Ban-rich composition)
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Figure 5.10: Variation of STL as a function of frequency for the selected material
gradient profiles (µ = 0.2, 1, 5). The cylinder is axially polarized, made of FGPM
perfectly bonded to the internal shell made of aluminum (rin = 1.8 m, rm = 1.9 m,
and rex = 2 m ), filled with air and fully submerged in the water acted upon by a
normal plane incident wave.

at the outermost laminated layer of the piezoelectric shell (rin = 1.8 m, ra = 1.9 m

and rex = 2 m). Please note that all the mechanical and electrical properties of

the functionally graded piezoelectric layer are changing along the radial direction

with different concentrations of PZT4 and Ba2NaNb5O15. The short-circuited

electrical boundary condition was applied at the internal and external surfaces of

the piezoelectric cylinder. The cylinder is filled with air and fully submerged in the

water subjected to a normal incident plane wave. It can be clearly seen that the

STL is notably higher for the Ban-rich composition profile (i.e. µ = 5) than the case
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Figure 5.11: STL spectrum for the selected acoustic fluids. The cylinder is axially
polarized, made of PZT4 perfectly bonded to the internal shell made of aluminum
(rin = 1.8 m, rm = 1.9 m, and rex = 2 m ),insonified by a normal plane incident
wave, filled with and submerged in water/air.

of PZT4-rich composition in a frequency lower than 0.2 kHz. This can be linked to

the higher material stiffness of the Ban-rich profile in comparison to the PZT4-rich

one because the stiffness is dominant in the lower frequency ranges. Moreover, the

PZT-rich composition displays slightly better performance in the sound isolation

in the frequency range between the 0.2 kHz to 1 kHz except for the dip low values.

This can be related to the higher spatial density of the PZT4-rich composition to the

Ban-rich counterpart which makes the PZT4-rich a more practical sound absorber

in the high-frequency regions [66].

Figure 5.11 shows the effect of fluid characteristics on the STL of an axially

polarized cylinder. The cylinder is axially polarized, made of PZT4 materials,

perfectly bonded to the internal shell made of aluminum (rin = 1.8 m, rm = 1.9 m,
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and rex = 2 m ), insonified by a normal plane incident wave. The cylinder is

considered to be filled and submerged with either water (with considerable low

compressibility compared with air) or air in order to study the effect of fluid

properties on the STL. The acoustic properties of the fluid medium are given in

Table 5.3. The results show that the acoustic TL is higher for air in comparison

to water. Water is a more incompressible fluid compare to air result in having

a higher speed of sound. Consequently, for the case of water, more fraction of

incoming incident waves will be transferred through the cylinder due to the low

comparability of water resulting in a low TL. This is also evident from Equation 5.38,

which shows the reverse relationship between STL and speed of sound. It can also

be concluded that TL is higher for compressible fluids than incompressible fluids.

Another interesting observation is that the dips of negative are very small in the

case of water compared to the air one. With water (low compressibility) in and out

the shell, the natural modes of the shell structure are hard to be excited compared

with air, resulting in very small dips of negative. This phenomenon can be found in

the literature as well ([211]).

5.8 Conclusion

The study presented here concentrates on the theoretical modeling and estimation

of TL of an arbitrary thick infinite piezo-composite cylindrical shell. The 3D theory

of piezo-elasticity, state-space approach, and transfer matrix method have been

employed to capture the dynamics of the thick cylindrical shell model. Two different

piezoelectric polarizations have been considered. The validity of the presented

analytical solution was cross-checked by simplified models available in the literature.
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Due to the lack of available results for the TL of the piezoelectric cylinder, a finite

element simulation has been carried out to double-check the result of a purely

piezoelectric cylindrical shell. The final result shows an excellent agreement between

the FEM and the proposed analytical solution. The main findings of this research

are as follows:

• By increasing the thickness of the cylinder, the magnitude of TL increases

while the number of minimum values decreases.

• The radially polarized piezoelectric shows a better performance in the cylinder

isolation compared to the axially polarized one, especially in the high value of

incident angles at a high frequency larger than 500Hz.

• PZT4 shows a better sound isolation performance in comparison toBa2NaNb5O15

in high-frequency ranges, while the Ba2NaNb5O15 provides more isolation in

low-frequency ranges.

• Short-circuited electrical boundary conditions can be used to improve the

sound isolation performance of the piezo-composite cylinder in high-frequency

ranges considering the energy dissipation during the charging and discharging

process.

• The best sound isolation performance of the piezo-composite cylinder can be

achieved by fixing the thickness ratio of the piezoelectric to the elastic layer

to approximately one, regardless of the angle of the incoming incident plane

wave.

• Fluids with higher compressibility characteristics show a higher value of TL

compares to low compressibility fluids.
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The proposed analytical model has three main advantages over the FEM. It

can easily handle the TL for high-frequency range, low computational cost, and

covering infinite acoustics domains. It is worth noting that the proposed solution can

easily handle fully anisotropic material with the different piezoelectric polarization

directions. In addition, the presented model can be easily employed to investigate

active and passive TL control from the piezo-composite cylindrical shells.
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Chapter 6

Active Broadband STL Control
Through an Arbitrary Thick Smart
Piezo-composite Cylinder

“All science is concerned with the
relationship of cause and effect.
Each scientific discovery increases
man’s ability to predict the
consequences of his actions and thus
his ability to control future events..”

Laurence J. Peter

Sound isolation is one of the most vital issues in the structural enhancement of

engineering structures. Designing, studying and enhancement of sound isolation

methods and associated techniques have been widely investigated by many scholars

(Li and Zhang [28], Dong and Wang [32], Young and Crocker [34], Oba and Finette

[35], Moore and Lyon [37]). The most common technique that has been widely

investigated is based on the passive sound isolation technique by adding absorption
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treatments to the main structure such as using shunt piezoelectric, viscoelastic,

blocking masses and porous materials (Fu et al. [78], Arunkumar et al. [83], Fu

et al. [79], Pietrzko and Mao [80], Talebitooti et al. [82], Talebitooti and Zarastvand

[81], Daneshjou et al. [72], Chronopoulos et al. [73]). However, these methods

have disadvantages, such as the increase in the structural weight, decline in the

sound attenuation performance of insulation materials due to aging, temperature or

frequency variation. Recent advancements in the field of intelligent structure offer

significant progress in dealing with air-borne noise control problems [96, 39]. The use

of smart piezoelectric structures is an attractive choice. Piezoelectric materials have

advantages such as low cost, reliability, durability, high performance, and low weight.

However, there are relatively few works that use piezoelectric materials to control

the airborne noise of cylindrical structures. The current work is aimed to fill this

gap in the literature by using the 3D theory of elasticity and piezoelectricity to give

highly accurate results even in high-frequency ranges by considering the peripheral

waves of higher order. The 3D theory of elasticity used in the current work, unlike

the shell theories, can describe the refraction of acoustics waves from the internal

and external surface of the cylinder Veksler [185]. Unlike the shell theories that

apply the boundary conditions on the middle surface, the 3D theory of elasticity and

piezoelectricity used to model the current problem imposes the boundary condition

on the real external and internal surfaces [185]. This study also takes advantage of

the direct piezoelectric effect, which uses the piezoelectric layer as a sensor and can

easily be implemented with minimal modification of the original structure compared

to other pressure sensors. The analytical solution is accomplished, first by modeling

the corresponding vibro-acoustic problem and then by sending a control signal from
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the distributed piezoelectric sensor through a controller process to drive the outer

piezoelectric actuator. In other words, the vibroacoustic response of an elastic

cylinder can be actively mitigated via the smart alteration of damping characteristics

of the piezo-composite external actuator layer with suitable control signals. Here,

the STL convergence for different incident angles is studied. Also, the effect of

different controller gain parameters on the STL spectra of radially/axially polarized

piezo-composite cylinder for four different angles of incident waves are investigated.

The current study is of paramount importance as a fundamental problem in many

interdisciplinary fields for active sound isolation enhancement of structures with

solid-fluid interaction. It can help acoustic engineers to design structures with

impressive noise isolation performance in a wide range of frequencies that can not

be achieved by passive sound suppression techniques. Such an intelligent structure

has a widespread application in noise abatement in the fuselage (Krakers et al. [5])

and marine applications (Caresta [4]). Finally, the frequency domain closed-form

solution can be used as a reliable benchmark for confirming results evaluated by the

approximate or numerical method, particularly in the cases that there is a lack of

experimental data.

6.1 Problem Description for STL Control Through

an Smart Piezo-composite Cylinder

In this section, a distributed sensor layer is augmented to the structure given in

chapter 5, in order to send a control signal through a controller with certain feedback

gain to drive the external piezoelectric actuators.

111



Here, we consider a hollow piezoelectric laminated cylinder with infinite length,

a core layer made of orthotropic materials with thickness Ho which is coated by a

piezoelectric actuator and sensor on its outside and inside surfaces. The thickness

of the piezoelectric sensor and actuator layers are Hs and Ha, while the electrodes,

as well as the electrical connection between the sensor and actuators, are shown

in Figure 8.1. The cylinder is assumed to be filled and submerged in the fluid

with acoustic characteristics of (ρin, cin) and (ρex, cex), respectively. The cylinder

is considered to be excited by a progressive incident plane wave. Such a smart

sensor/actuator structure will later be used to attain impressive wave isolation

performance. Before addressing the control strategy, we shall concisely describe the

elasto-acoustic model of the piezo-composite cylinder structure coupled with the

internal cavity and external fluid medium.
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Figure 6.1: Schematic of feedback controller for piezo-laminated cylindrical shell.

6.2 Sensor Layer Modeling

The structural modeling for the actuator and core layer is thoroughly discussed in

section 4.1. The only difference is considering the transfer matrices for the sensor

layer, which will be addressed in the following section. The acoustic model and

calculation of STL are comprehensively discussed and explained in section 3.1.1 and

subsection 5.5.1. The boundary conditions and controller implementation will be

discussed next.
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6.2.1 Modal Spatial State Equations

Now, by straight use of Equation 5.8 to Equation 5.18b the following uncoupled

modal state-space equations emerge as ([19])

dvn(r, ω)

dr
= gn(r, ω)vn(r, ω), (6.1a)

dVn(r, ω)

dr
= Gn(r, ω)Vn(r, ω), (6.1b)

where gn(r, ω) is 6 × 6 modal coefficient matrix whose elements are given in

Equation B.3.1, whereas Gn(r, ω) is 8×8 modal coefficient matrix whose arrays for the

axially and radially polarized piezoelectric materials are provided in subsection B.3.2

and subsection B.3.3, respectively. The direct solution for Equation 6.1 is very

complex as the matrix coefficients are radially dependent ([19]). So, an adaptive

laminated technique should be implemented to solve the Ordinary Differential

Equations (ODE) given in Equation 6.1. The details of the solution procedure

of Equation 6.1 are given in subsection 4.1.2 ([3, 159]). After implementing the

adaptive laminated model considering perfect bounding condition at the interfaces,

the global transfer matrix, Θn, can be obtained in the form of ([159])

Yn(ω) =Θn(ω)Υn(ω), (6.2a)

Yn(ω) =[Va
n(rex, ω)Tr Dn

r (rs, ω) φn(rs, ω)]Tr, (6.2b)

Υn(ω) =[Vs
n(rin, ω)Tr Dn

r (ra, ω) φn(ra, ω)]Tr, (6.2c)

Θn(ω) =

(
Sn(:, 1 : 6)Ts

n(1 : 6, :) Sn(:, 7 : 8),
Ts
n(7 : 8, :) 0

)
, (6.2d)

Sn(ω) = [Ta
n(:, 1 : 6)tn Ta

n(:, 7 : 8)], (6.2e)
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where Tr indicates the transpose of the matrix while the superscript s and a show

the sensor and actuator layers, respectively. Moreover, it should be specified that

Tn(:, 1 : 6) contains all the first six columns of Tn. In addition, Tn(:, 7 : 8) contains

the last two columns of Tn.

6.2.2 Boundary Conditions and Controller Implementation

The fluid-solid compatibility conditions that must be enforced at the internal and

external surfaces of the piezo-composite cylinder are expressed as follows ([12])

Σn
rθ(rj, ω) = Σn

rz(rj, ω) = 0, j = in, ex, (6.3a)

Σn
rr(rin, ω) = −pTn (rin, ω), (6.3b)

Σn
rr(rex, ω) = −pIn(rex, ω)− pRn (rex, ω), (6.3c)

Un
r (rj, ω) =

1

ρjω2

∂pjn(r, ω)

∂r

∣∣∣∣
r=rj

, j = in, ex. (6.3d)

The grounded electrical boundary conditions must be enforced at the external and

internal layer of sensor and actuator, respectively, as [95]

φn(ri, ω) = 0, i = a, s, (6.4)

where, φn is the modal electric potential. The negative feedback velocity is imple-

mented to enhance the sound isolation performance of the cylindrical structure by

sending the electrical charge created over the electrode of the sensor layer into a

controller with an appropriate closed-loop gain amplifier that generates a suitable

electrical charge. The electrical charge that derives the actuator can be written as

115



([212])

φn(rex, ω) = −k φn(rin, ω), (6.5)

with the direct substitution of boundary conditions presented in subsection 6.2.2

into the global transfer matrix of Equation 6.2, after some tedious manipulation,

the final solution emerges as

Anxn = bn, (6.6)

in which, An, xn and bn are provided in subsection B.4.3.

6.3 Model Validation

Considering our computational limitations besides the wide diversity of physical

parameters engaged in the proposed vibroacoustic formulation, some practical

examples shall be deliberated here. The speed of sound waves and densities of the

internal and external fluids are given in Table 5.3.

The internal and external piezoelectric layers are both considered to be made of

either axially or radially polarized PZT4. The mechanical and electrical properties

of the piezoelectric layers are given in Table 5.1 and Table 5.2, respectively. The

amplitude of the acoustic incident wave is considered to be equal to one (|p0| = 1 Pa)

in all calculations.

A general Matlabr code is scripted to calculate the TL for the piezo-composite

cylinder as well as obtaining the solution of Equation 6.6. The computations were

performed on a cluster of Intelr Core(TM) i5-7500 CPU @ 3.40 GHz desktop
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computer (32.0 GB Ram DDR4) capable of exhaustive parallel calculations. The

Matlab Parallel Computing Toolbox was utilized to expedite our calculation

of STL [208]. Before addressing the main results of simulations, the correctness of

the above described analytical solution shall be briefly verified.

Thus, we used our general Matlab code to calculate the STL through the piezo-

composite cylinder (rin = 1.95 m, rs = 1.98 m, ra = 1.99 m, rex = 2 m) with actuator

and sensor layers made of axially polarized PZT4 (see Table 5.2) while the core layer

is made of Aluminum material as its mechanical properties given in Table 5.1. The

cylinder is surrounded and filled with air and excited by a normal incident plane

wave (α = π/2). There was no result in the literature for comparison of our model

even for the case of the thin piezoelectric cylinder. Consequently, a finite element

model was constructed in Comsol Multiphysicsr to verify the accuracy of the

proposed solution considering both the sensor and actuator piezoelectric layer. In

order to simulate the infinite acoustic space surrounding the cylinder, a PLM is used

to let the scattered waves pass through the boundary without any reflection back

to the main domain. The advantage of our model compared to the finite element

package is that in our model, the Hankel function is utilized to enforce the infinite

domain while in the finite element package, there is always a partial reflection of

waves from the truncated region, which causes inaccuracy in the calculation of

scattered pressures.

In addition to the accuracy of the proposed solution, our code is faster compared

to the Finite Element models. It takes about 21.086 seconds to get the result using

the proposed model while we used only one core to get the result, whereas it takes

about 1376 seconds for the FEM to get the result, while the FEM benefits from
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Figure 6.2: Comparison of STL with FEM (Comsol Multiphysics) for a tri-layer
piezoelectric cylinder. The cylinder is assumed to be made of axially polarized
PZT4 (rin = 1.95 m, rs = 1.98 m, ra = 1.99 m, rex = 2 m) with closed-loop electrical
boundary condition applied to both of the sensor and actuator layers whereas the
core layer is made of Aluminum material. The structure is surrounded and filled
with air and excited by a normal incident plane wave (α = π/2).

the parallel computation of four logical cores. Consequently, the proposed model

can generate results about 65 times faster than the FEM. High computation cost

in FEM is because it needs to refine mesh for the whole domain, in this case, the

area of surrounded fluid should be big enough for better accuracy in the results, and

also, the PLM layer should be thick enough to absorb all scattered waves, which

results in having big mesh with a high number of degrees of freedom. Please note

that 347085 degrees of freedom are used in our FEM. Finally, the result, as shown

in Figure 7.2, displays a good agreement between the proposed model and Comsol
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multiphysics 4.4 simulation results [209].

6.4 Results and discussion

Before addressing the main results, we shall check the convergence of our solution.

The convergence of our solution was achieved by increasing the value of the series

truncation constant, N, while the stability of the calculated STL values was inves-

tigated. The code was programmed in a way to repeat the calculation until the

difference between the values of two consecutive STL falls into a predefined error

bound (∆TL ≤ 2.22 e−16). When the above criterion was satisfied, the calculation

of STL was terminated and the new value of STL was believed to be converged. The

maximum value of truncated constant correspondent to the converged value of STL

was considered to be optimal truncated constant (Nopt).

Figure 6.3 shows the convergence study of STL for four selected incident wave fre-

quencies and different angles of the acoustic incident plane wave (α = π/18, π/4, π/3, π/2).

The piezo-composite cylinder is considered to be made of a radially polarized PZT4,

filled and submerged in water. The values of converged truncated mode numbers

beyond which, the value of STL becomes stable are shown in every sub-figure. It is

evident that the convergence rate of STL significantly deteriorates as the frequency

of excitation increases. For instance, considering Figure 6.3a the fastest STL conver-

gence (N = 1) happens at the lowest excitation frequency (f = 100 Hz, α = π/18)

while the worst-case scenario occurs at high frequency (f = 10 kHz). As it is evident,

there is an infinite number of modes for a continuous system, when the frequency of

interest is low, the less number of natural frequencies are excited result in satisfying

the stability in the calculation of STL by considering the low value of truncated
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constant ([213]). Furthermore, considering the constant excitation frequency, the

highest optimal truncated constant can be seen for normal incident angles (α = π/2).

As the value of the incident angle decreases with a specific frequency, the value of the

optimal truncated constant decreases. For example, the lowest value of truncated

constant at the frequency of f = 10 kHz for reasonable convergence is N = 15 and

N = 57, with the wave angles of α = π/18 and α = π/2, respectively.
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Figure 6.3: Convergence study for selected incident wave frequencies and different angles of an acoustic incident
plane wave. The piezo-composite cylinder is assumed to be made of radially polarized PZT4, filled and submerged
in water.
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Figure 6.4: Variation of converged truncated mode number with respect to the
frequency for selected angles of incident waves. The piezo-composite cylinder is
assumed to be made of radially polarized PZT4, surrounded and filled with water.

Figure 6.4 shows the variation of optimal truncation constant versus the frequency

for different values of the incident plane wave angles. The cylinder is assumed

to be made of radially polarized PZT4 materials for sensor and actuator layers

(rin = 1.7 m, rs = 1.8 m, ra = 1.9 m, rex = 2 m) while the core layer is made

from aluminum material (See Table 5.1 and Table 5.2). The cylinder is filled and

submerged in the water (See Table 5.3). Generally, the value of the optimal truncated

mode number increases as the frequency of incident wave excitation increases. In

other words, a higher number of modes should be included in our calculation to

achieve an acceptable accuracy in the calculation of STL for a higher range of

incident wave frequencies. In addition, as the value of incident wave angle increases,

a higher number of modes should be included to satisfy the convergence criteria

regardless of the frequency of excitation. The extreme cases can be seen between

α = π/6 and α = π/2 as the results shown in Figure 6.4.
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(b) Oblique incident wave, α = π/3.
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(c) Oblique incident wave, α = 5π/12.
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Figure 6.5: STL spectra of the radially polarized piezo-composite cylinder for four different angles of incident waves,
based on the negative feedback control strategy with four different gain controls.
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Figure 6.5 shows the STL spectra of the radially polarized piezo-composite cylinder

for four different angles of incident waves (α = π/4, π/3, 5π/12, π/2), within the

frequency range of (1 < f < 103 Hz) based on the negative feedback control strategy

with four different gain controls. The external and internal layers of the cylinder

are assumed to be made of radially polarized PZT4 (rin = 1.7 m, rs = 1.8 m, ra =

1.9 m, rex = 2 m) material, whereas the core layer is made of Aluminum (See

Table 5.1 and Table 5.2).

As evident in the figure, for the un-controlled case, the total magnitude of the

STL decreases as the value of the angle of the incident wave increases with the

highest reduction observed in the normal angle of the incident wave. As the incident

angle increases, the higher fraction of incident wave power contributes to the normal

stress generated inside the cylinder leading to a lower STL. Regardless of the angle

of incident waves, the controlled STL plots follow the uncontrolled variation trend in

a smooth way. Generally, the negative control feedback strategy provides significant

enhancement of the STL at resonance frequencies for the normal incident angle case

(α = π/2).

As the value of the feedback gain, k, increases, the more undesirable STL resonance

dips can be avoided, especially when the plane incident wave angle is close to the

normal angle. The desirable effect of active control feedback declines as the incident

wave angle approaches more inclined angles, such as the case for α = π/4.

In the case of α = π/2, as the incident plane wave impinges on the cylinder,

it creates a significant uniform radial strain inside the cylinder, which generates

a considerable electrical voltage in the internal sensor layer, Er. (please see the

constitutive Equation B.1.5). This electrical voltage will then drive the actuator layer
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via the proper feedback gain. The electrical voltage applied to the actuator layer

creates a strong radial electrical field, Er ∗ (−k). By observing the Equation B.1.4,

it can be concluded that the significant magnitude of the radial electric field, Er,

multiplying by the feedback gain, k, and the corresponding piezoelectric coupling

constant, e11, can create strong radial structural stress, Σrr, to cancel the incident

wave normal pressure (Σrr = k e11Er).

Here, for the normal angle of the incident wave, the magnitude of Ez is zero

(Ez = ∂φ
∂z

) and the axial wave-number becomes zero according to Equation 5.3.

When the axial wave-number is zero, the shear stress in the rz plane of the cylinder

is not significant, and the potential function, φ, is not a function of z anymore having

zero electrical fields in the z direction; hence the feedback-controlled stress mainly

depends on the electrical field in the radial direction, which is also the polling direction

of the piezoelectric layers in this case study. This way, by controlling the magnitude

of radial structural stress, Σrr, the feedback piezoelectric control will be able to

provide superior STL performance when the incident wave is normal to the cylinder.

However, as the angle of incident wave decreases, the effect of feedback control

strategy with the radially polarized piezo-layers becomes less significant. The reason

is that as the value of the incident wave angle decreases, the magnitude of axial wave

number, kz, is getting larger leading to more significant axial direction stress/pressure

variation on the cylinder surface. The axial stress is not zero anymore and could

cancel certain radial direction electrical filed generated by the radial direction stress

leading to relatively weak feedback-controlled stress to cancel the incident wave

pressure. Even though the TL effect with feedback-controlled piezoelectric layers is

still good in the frequency range between 300-500 Hz. But when the wave angle is
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smaller than π/4, the TL effect is not clear. In addition, with a small wave angle

(π/4), there are no clear resonant wave modes excited. In this case, the controller

does not properly detect the impinging of the acoustic wave on the cylinder, and

the actuator is not able to provide the corresponding controlling voltage to enhance

the STL. Moreover, the dipoles of radially polarized piezoelectric materials are more

or less aligned in the radial direction.

Figure 6.6 displays the STL spectra of the axially polarized piezo-composite

cylinder for four different angles of incident waves (α = π/12, π/6, π/3, 5π/12),

within the frequency range of (1 < f < 103 Hz) with four different control gains.

The actuator and sensor layers (rin = 1.7 m, rs = 1.8 m, ra = 1.9 m, rex = 2 m) are

considered to be fabricated of axially polarized PZT4 materials while the central

layer is made of Aluminum materials (See Table 5.1 and Table 5.2).
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(a) Oblique incident wave, α = π/12.
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(b) Oblique incident wave, α = π/6.
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(c) Oblique incident wave, α = π/3.
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(d) Oblique incident wave, α = 5π/12.

Figure 6.6: STL spectra of the axially polarized piezo-composite cylinder for four different angles of incident waves,
based on the negative feedback control strategy with four different gain controls.
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As evident in Figure 6.6, the control feedback strategy reduces the unfavorable

oscillatory motion of the cylinder in addition to providing a superior sound isolation

enhancement, particularly for near-grazing incident angles (α = π/12 &π/6). It

can be observed that by increasing the value of feedback gain, k, the controller can

effectively enhance the STL, especially in the case with a small angle of incident

waves, whereas the effectiveness of the feedback controller reduces severely for

incident angles close to normal (α = 5π/12).

For the case of α = 5π/12, the value of the axial wavenumber given in Equation 5.3b

becomes extremely small. This makes the stress/strain to be almost independent of

the z-direction leading to having a relatively small value of the axial electrical field,

Ez. By looking at the axially polarized piezoelectric constitutive equation (B.1.2)

one can conclude that only the axial piezoelectric field, Ez, and the corresponding

piezoelectric coupling constant, e31, can contribute to increasing the controlled radial

stress in the cylinder.

When the value of the axial electrical field is very small, it may lead to creating

relatively small radial stress by applying a feedback-controlled voltage to the actuator.

This way, the controller cannot effectively reduce the detrimental effect of normal

incident waves, resulting in having unfavorable dips of the STL even by applying

high feedback gain as it is shown in Figure 6.6d. On the other hand, when the

angle of the incident wave is small, the value of axial wave number, kz, increases,

resulting in having more significant axial direction stress/strain and a powerful

axial electrical field. The axial electric field, in conjunction with the piezoelectric

coupling constant, e31, can generate relatively high radial stress in the cylinder.

Consequently, the actuator can adjust the radial stress in a way to decrease the
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acoustic power transmitted inside the cylinder. Furthermore, the dipoles of the

axially polarized piezoelectric cylinder are lined up in the axial direction. This means

that by applying a proper voltage with well-designed layouts of the piezoelectric

elements and electrodes, the actuator is able to cancel some of the small angled

incident waves in the cylinder, resulting in having better sound isolation performance.

6.5 Conclusions

A fully-coupled analytical formulation is accomplished for the STL control of a

thick piezo-composite cylinder by utilizing the acoustic wave equation, the 3D exact

theory of elasticity and piezoelasticity. The active control strategy is achieved by

sending the control signal from the distributed piezoelectric sensor layer through

a controller to drive the external piezoelectric actuator. The final result shows an

excellent agreement between the FEM and the proposed analytical solution. The

main findings of this research are as follows:

• As the angle of the incident wave increases approaching the normal wave case,

a higher number of modes should be included to satisfy the convergence criteria

regardless of the frequency of excitation.

• A significant wave isolation effect is realized at the resonant frequencies on

the STL spectra for a radially/axially polarized piezo-composite cylinder with

different feedback gains.

• In the case of the radially polarized piezoelectric actuator and sensor layers,

the feedback control provides significant STL enhancement.
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• For the incident wave close to the normal angle, the desirable effect of the active

control feedback declines as the value of the incident wave angle approaches to

more inclined angles.

• In the case of the axially polarized piezoelectric actuator and sensor, the control

feedback strategy reduces the unfavorable oscillatory motion of the cylinder in

addition to providing a superior sound isolation enhancement, particularly for

near-grazing incident angles (α = π/12 &π/6).
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Chapter 7

Effect of Electrode Size and
Configuration on the Sound
Transmission Loss of Smart
Piezo-laminated Structures

“It is strange that only
extraordinary men make the
discoveries, which later appear
so easy and simple.”

Georg C. Lichtenberg

In the traditional design of the piezoelectric layer, the entire surface of the cylinder

is covered in piezoelectric materials and metal electrode layers with no consideration

for the size and location of the electrodes. The current chapter is aimed to use

different sizes and configurations of piezoelectric electrode patches to increase the

sound transmission loss (STL) through thick-walled piezo-laminated cylindrical shells.

Therefore, designing a model that can take into account the partial piezoelectric
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electrodes with various configurations while dealing with the structural with various

thicknesses, is very important in acoustic quieting applications. In the following

chapter the proper boundary condition for discrete electrodes will be discussed and

explained.

7.1 Problem Description for Different Size and Con-

figuration of Electrodes

In this section, the structure given in chapter 5 is modified, so instead of having a

distributed piezoelectric electrode, individually separated electrodes with different

sizes and configurations will be modelled.

Let us consider an infinitely long piezo-laminated cylindrical shell that is sub-

merged in an infinite inviscid acoustic medium with the acoustic properties (ρex, cex)

indicating the spatial material density and the speed of the sound in the external

acoustic medium, as depicted in Figure 8.1. The structure is assumed to be filled with

inviscid acoustic fluid with the physical parameters (ρin, cin), indicating the spatial

material density and the speed of sound of the internal acoustic cavity, respectively.

The core layer of the cylinder is assumed to be made of an anisotropic material

with the spatial material density ρo and the thickness, Ho = ra − rin. The core

layer is covered with a continuously distributed smart piezoelectric material with

a spatial density of ρpz and thickness Ha = rex − ra. The piezoelectric cylinder is

then can be charged via different size and configurations of electrodes as depicted

in Figure 8.1. The smart cylinder is experiencing an oblique incident shock wave,

φinc(r, θ, z;ω), with the arbitrary oblique incident angle of α, where r, θ and z are

132



z

x

 Core Layer

Actuator Layer

r

Incident Plane Waves

rin

ra rex

Ha

Ho

θ

y

Transmitted Wave 

Reflected Wave

O

α

Acoustic Medium

r

p(r, ,z,ω)θ

y

β

y

x

o

β
Electrode 
Voltage 

Electrodes 
 

Figure 7.1: Schematic diagram of smart piezo-laminated cylinder embedded with
discrete electrodes submerged in an inviscid acoustic fluid excited by an arbitrary
oblique incident plane wave.

the radials, tangential and axial coordinates in the cylindrical coordinate system,

respectively.

7.2 Mathematical Modeling

Acoustic field equation and smart structure modeling are comprehensively discussed

and explained in section 5.1. In order to consider the effect of the partial piezoelectric

electrode on STL, the spatial Fourier transform will be used to model the partial

discrete electrodes. The details of the electro-mechanical boundary conditions will

be discussed in the next section.
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7.2.1 Electro-mechanical Boundary Conditions

For an inner and outer surface of the piezo-composite cylinder, appropriate fluid-

solid boundary conditions are listed as follows:

vj(r = rin, θ, z, ω) = −iωuj(r = rin, θ, z, ω), j = r, θ, z. (7.1a)

vj(r = rex, θ, z, ω) = −iωUj(r = rex, θ, z, ω), j = r, θ, z. (7.1b)

σfj (rin, ω) = σj(rin, ω), j = rr, rθ, rz. (7.1c)

σfj (rex, ω) = σj(rex, ω), j = rr, rθ, rz. (7.1d)

It is possible to apply the electrical boundary condition for the short-circuited

case at both the inner and outer surfaces of the cylinder as described below [95]

φn(ri, ω) = 0, i = a, ex. (7.2)

The spatial Fourier transform for the case of partial discrete electrodes can be

written as ([159])

Φn(ri, θ, z, ω) =
∞∑
n=0

φn(ri, ω)cos(nθ)ei(ωt−k
ex
z z), (7.3)

where the modal expansion for the case of partial discrete electrode can be given as

([159])

φn(ri, ω) =
1

2π

∫ π

−π
Φn(ri, θ, z, ω)cos(nθ) dθ, (7.4)
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in which , i indicate the inner or outer radius of the piezoelectric cylinder.

By substitution of electro-mechanical boundary conditions presented in Equa-

tion 7.1, Equation 7.2 and Equation 7.4 into the global transfer matrix of Equa-

tion 5.24, eventually, after extensive manipulation, the final result appeared as

Anxn = bn, (7.5)

in which An, xn and bn are given in section B.4. Finally, the STL can be easily

calculated using the procedure given in subsection 5.5.1.

7.3 Model Validation

We shall confirm the validity of the solution before describing the general nature and

behavior of the problem. An optimized Matlabr code is used in order to compute

the TL from the cylinder as well as to solve Equation 7.5 with parallel clustering.

By using the built-in Matlab functions, “besselj" and “besselh", one can calculate

exact Bessel and Hankel functions corresponding to the first and second kinds of

complex arguments. By using the specialized math function “diff", which provides

differentiated symbolic expressions, we were able to find the derivatives of Bessel and

Hankel functions. In order to perform calculations, we used the cluster of Intelr

Xenonr Processor G4400 v4 desktop computer (15M Cache, 3.31 GHz, 7.20 GT/s)

which utilize intense parallel computing via Multi-core architectures and Hyper-

Threading technology. It was decided to use Matlab Parallel Computing

Toolbox to run 26 parallel pools so as to take advantage of the high calculation

power available on multi-threading desktops [208]. By examining an example specific
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to the problem, we can confirm the validity of the analytical solution that has been

proposed.

Since no results have been found in the literature regarding the TL through a

piezoelectric cylindrical shell with discrete electrodes, Comsol Multiphysicsr

have been used to validate the proposed close form solution with the piezoelectric

coupling effect that was investigated in this study. A series of physical models were

described in the software, including elastic, acoustic, and piezoelectric models [209].

As with all finite element packages, Comsol has its pros and cons. There are three

main pores with modeling with Comsol: difficulty in modeling infinitely large

domains, high computational costs, and numerical instability at high frequencies.

With the proposed closed-form solution, though, none of the issues above will be a

problem. To illustrate this, let’s look at the following example. With the boundary

condition enforced at r = ∞, the external acoustic equation can be solved with

Bessel functions, whereas, Comsol uses perfectly matched layer (PML), which

are artificial boundary conditions that absorb the majority of the refracted waves.

With the boundary condition enforced at r =∞, it is possible to solve the external

acoustic equation by using Bessel functions. However, Comsol uses the perfectly

matched layer (PML), which is a boundary condition that is artificial and prevents

most of the scattered waves from entering the surface. Nevertheless, waves are

always partially reflected from the PLM layer, which is the inevitable consequence

when numerical methods truncate the computational regions. To simulate the smart

piezo-laminated cylinder, 25200 mapped elements were used, with approximately

200464 free triangular elements to model the acoustic fluids, both internal cavity

and external fluid medium.
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Figure 7.2: Comparison of STL with finite element method (Comsol Multiphysics)
for a piezo-composite cylinder. The cylinder is assumed to be made of radially
polarized PZT4 (rin = 1.8 m, ra = 1.9 m, rex = 2 m) with closed-loop electrical
boundary condition applied to the internal layer of the actuator, whereas the external
layer of the piezoelectric cylinder is attached to 90o electrode at the top with the
external electrical potential of 1 V as excitation. The core layer of piez-composite
cylinder is made of Aluminum material. The structure is surrounded and filled with
air and excited by a normal incident plane wave (α = π/2).

Figure 7.2 shows the comparison of STL with finite element method (Comsol
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Multiphysics) for a piezo-composite cylinder. The cylinder is assumed to be made

of radially polarized PZT4 (rin = 1.8 m, ra = 1.9 m, rex = 2 m) with closed-loop

electrical boundary condition applied on the internal layer of the actuator, whereas

the external layer of the piezoelectric cylinder is attached to 90o electrode at the

top with the external electrical potential of 1 V as excitation as it depicted in the

Figure 7.2. The mechanical and electrical properties of the piezoelectric materials are

given in Table 5.1 and Table 5.2, respectively. The core layer of the piez-composite

cylinder is made of Aluminum material. The mechanical properties of Aluminum are

given in Table 5.1. The structure is surrounded and filled with air and excited by a

normal incident plane wave (α = π/2). The acoustic properties of the fluid medium

are given in Table 5.3. Based on Figure 7.2, the current study is in an excellent

agreement with the commercial finite element package Comsol multiphysics 4.4

[209]. The next section will address the numerical results.

7.4 Results and Discussion

In this section the case studies will be discussed; before addressing the main results,

it should be mentioned that due to the large number of variables involved in the

proposed analytical solution, while keeping in mind the computational limitations,

we shall focus on some logically selected examples. Accordingly, the elastic layer is

considered to be made of a single aluminum layer (ho = 0.1 m and rin = 1.8 m).

The actuator layer (ha = 0.1 m and ra = 1.9 m) is made of radially polarized

PZT4, perfectly bonded to the host structure with the material properties as given

in Table 5.1 and Table 5.2. The piezo-composite cylinder is filled and surrounded

with air as the acoustic properties of the constituent material are given in Table 5.3.
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The amplitude of the normal plane incident wave is considered to be 1 Pa whereas

the piezoelectric cylinder is considered to be grounded in its internal surface in all

our calculations. In all following figures, the geometry and material properties of

the piezo-composite structure are according to the above-mentioned values, unless

specified otherwise.
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Figure 7.3: Sound transmission loss through a piezo-composite cylinder for different
electrical potential excited by a normal incident plane wave. The cylinder is made
of Aluminum and radially polarized Pzt4 (rin = 1.8 m and rex = 2 m) surrounded
and filled with air-fluid. The piezoelectric cylinder is considered to be grounded in
its internal surface.

7.4.1 Voltage effect

Figure 7.3 shows the sound transmission loss through a piezo-composite cylinder

for different electrical potential excited by a normal incident plane wave. The outer
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surface of the piezoelectric cylinder is considered to be covered with 180o electrode

at the top. In addition, the electrodes on the external surface of the cylinder are

supplied with different electrical potentials as excitation. As seen from Figure 7.3,

the sound transmission loss decreases by increasing the value of the external electric

potential. The reason is that, by increasing the value of external electric potential,

more electrical energy converts to mechanical energy. The mechanical energy then

will increase the value of normal stress which results in increasing the magnitude of

the pressure value inside the cylinder. As we can see from the definition of the sound

transmission loss given in Equation 5.32, by increasing the acoustic transmitted

pressure inside the cylinder, the value of sound transmission loss decreases, resulting

in providing less soundproofing abilities. In conclusion, the value of external electrical

potential has a significant effect on STL in areas far from resonance frequencies.

7.4.2 Electrode size effect

Figure 7.4 shows the sound transmission loss through a piezo-composite cylinder

for different sizes of electrodes excited by a normal incident plane wave. The outer

surface of the piezoelectric cylinder is considered to be covered with an electrode at

its apex. In addition, the electrodes are supplied with an external electrical potential

of 1 V as excitation.

As evident in Figure 7.4, the sound transmission loss is very dependent on the

frequency of the excitation and the size of the electrode. While at a low frequency

of excitation, the size of electrodes doesn’t have too much influence on the level of

sound transmission loss possibly in the frequency range between 0 to 500 Hz. By

increasing the frequency of excitation beyond 500 Hz, one can recognize different
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effects of electrode size on the sound transmission loss of the cylinder. For example at

the frequency of 5 kHz, the electrode with size β = π/12 shows the lowest STL, while

the electrode with size β = π/4 shows higher sound transmission loss which indicates

more sound isolation quality for this size of electrodes. However, this trend cannot

be generalized to all ranges of frequencies. For instance by increasing the frequency

of excitation to 6.5 Khz, one can distinguish the fact that the electrode with size

β = π/12 shows higher STL than the electrode with size β = π/4. The same fact

can be seen for the electrode with the size of β = π/12 around the frequency of 2

kHz. At this frequency, the green plot associated with the electrode size β = π/12

shows the highest level of the STL. This indicated that the level of sound isolation

can be adjusted by using the proper size of the electrode at a specific frequency.

Besides, by proper choice of electrode size, one can avoid the resonance frequency

of the cylinder to provide higher sound transmission loss. For instance, by looking

at the frequencies such as 2.75, 5, and 6.25, we can clearly see that the red plot

associated with the β = π/12 shows the lowest sound transmission loss due to

the resonance at the specified frequency while the other plot associated with the

electrode size β = π/4 and β = π/2 avoid the resonance frequency and shows higher

sound transmission loss. This pattern is not unique and can be seen for other plots

as well. This shows the fact that by the smart choice of electrode size, the designer

can avoid a sharp decrease in sound transmission loss at the resonance frequency

which results in the better acoustic quieting ability of the smart structure.
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Figure 7.4: Sound transmission loss through a piezo-composite cylinder for different sizes of electrodes excited
by a normal incident plane wave. The cylinder is made of Aluminum and radially polarized Pzt4 (rin = 1.8 m
and rex = 2 m) surrounded and filled with air-fluid with external electrical potential of 1 V as excitation. The
piezoelectric cylinder is considered to be grounded in its internal surface.
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Figure 7.5: The sound transmission loss through a piezo-composite cylinder at different positions of the electrode
patch in relation to an incident plane wave. The cylinder is made of Aluminum and radially polarized Pzt4
(rin = 1.8 m and rex = 2 m) surrounded and filled with air-fluid while the internal surface of the cylinder is grounded
. In addition, the electrodes are supplied with an external electrical potential of 1 V as excitation.
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7.4.3 Electrode location effect

Figure 7.5 displays the sound transmission loss through a piezo-composite cylinder for

different positions of the electrode patch with respect to the excitation by a normal

incident plane wave. The cylinder is made of Aluminum and radially polarized Pzt4

(rin = 1.8 m and rex = 2 m) surrounded and filled with air-fluid while the internal

surface of the cylinder is grounded. In addition, the electrodes are supplied with an

external electrical potential of 1 V as excitation. By comparing the plots for the

case with electrode patch at the apex to the case with electrode patch at the bottom

against the plane incident wave, one can recognize the fact that the position of the

electrode patch with respect to the direction of the incident wave has a minor effect

on the sound transmission loss of the smart cylinder. This pattern is also uniform

through all different ranges of frequencies. Thus, the higher sound transmission loss

can not be achieved only by changing the position of the piezoelectric patches with

respect to the direction of the plane incident wave.

7.4.4 Electrode asymmetric effect

Figure 7.6 shows sound transmission loss comparison for different asymmetric patches

of electrodes through a piezo-composite cylinder, excited by a normal incident plane

wave. The size of the top electrode is equal to β = π/3 while the size of the

asymmetric electrode is equal to β′ = π/12 . The cylinder is made of Aluminum

and radially polarized Pzt4 (rin = 1.8 m and rex = 2 m) surrounded and filled

with air-fluid. In addition, the electrodes are supplied with an external electrical

potential of 1 V as excitation. It can be seen from the Figure 7.6 that the degree

of asymmetry in the configuration of electrodes does have some influence on the
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sound transmission loss at some specific frequency. For example, at a frequency

around 6.5 kHz, the first case shows lower sound transmission loss compared to the

second case. However, in general, the two cases don’t show a major difference at

many frequency ranges. For instance, there is no major difference between the two

cases in the frequency ranges between 0 to 4 kHz. This indicates that the degree of

asymmetry in the configuration of electrodes has less effect on sound transmission

loss compared to the size of electrodes as shown in Figure 7.4.
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Figure 7.6: Sound transmission loss through a piezo-composite cylinder for different asymmetric patches of electrodes,
excited by a normal incident plane wave. The size of the top electrode is equal to β = π/3 while the size of the
asymmetric electrode is equal to β′ = π/12 . The cylinder is made of Aluminum and radially polarized Pzt4
(rin = 1.8 m and rex = 2 m) surrounded and filled with air-fluid while the piezoelectric cylinder is considered to be
grounded in its internal surface
. The external electrodes are supplied with an external electrical potential of 1 V as excitation.
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7.4.5 Electrode number effect

Figure 7.7 shows sound transmission loss through a piezo-composite cylinder with

different configurations of electrode patches, excited by a normal incident plane wave.

Three different cases of electrode patches are considered for comparison purposes.

The size of all electrodes is considered the same with the angle of β = π/6. For

the first case, there is only one patch of the electrode at the apex of the cylinder

where the incident plane wave impinges. In the second case, there are two patches

of electrodes at the top and bottom of the piezoelectric cylinder. The third case has

four patches of electrodes placed at an equal distance of 90o from each other. In

addition, the electrodes are supplied with an external electrical potential of 1 V as

excitation.

As it is evident from the Figure 7.7, the configuration of the electrode patches

has a minor effect on the sound transmission loss in the lower frequency ranges

between 0 to 1 kHz. However, by increasing the frequency of the incident plane

wave, different patterns on the sound transmission loss can be distinguished for

different configurations of the electrode patches. For instance, the third case shows

higher sound transmission loss at the frequency of 2 kHz compared to the first and

second configurations. However, the third case shows the lowest sound transmission

loss at the frequency of 4 kHz. This reveals that providing a higher level of sound

quieting abilities can not be achieved only by increasing the number of piezoelectric

patches. In fact, the higher sound transmission loss can be achieved by the intelligent

choice of electrode patches for the specific excitation frequency of the plane incident

wave. Besides, in some cases, different configurations of electrode patches can avoid

resonance frequency in different cases. For example, the plot of sound transmission
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loss for case 2 and case 3 passes the frequency of 6.5 kHz without a sharp decrease in

STL, however, a sharp dip of negatives can be seen for the first case at this frequency.

This indicated that using the proper configuration of electrode patches, the designers

can prevent the transmission of noise into the structure by avoiding the resonance

frequencies.
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Figure 7.7: Sound transmission loss through a piezo-composite cylinder for different arrangements of electrodes,
excited by a normal incident plane wave. The size of all electrodes is equal to β = π/6. The cylinder is made
of Aluminum and radially polarized Pzt4 (rin = 1.8 m and rex = 2 m) surrounded and filled with air-fluid. In
addition, the electrodes are supplied with an external electrical potential of 1 V as excitation. In addition, the
internal surface of the cylinder is grounded.

149



7.5 Conclusions

This study is focused on rigorously examining the influence of size and configuration

of piezoelectric electrodes on sound transmission loss (STL) through thick-walled

piezo-laminated cylindrical shells, excited by a plane wave incident obliquely. The

cylindrical shell is modeled using the three-dimensional (3D) exact theory of elasticity

and piezoelasticity, and the Helmholtz equation is used for the propagation of waves

inside the acoustic cavity as well as through the surrounding fluids. A closed-form

solution is generated by enforcing the proper boundary conditions and expanding

the harmonic field. Comsol Multiphysics software is used to verify the validity

of the analytical solution. Parameter studies are conducted to investigate the effects

of size and configurations of electrodes on STL. Results are presented with specific

recommendations regarding the size and configuration of piezoelectric electrodes

for active sound absorption. Based on the findings of this research, the following

conclusions can be drawn:

• The level of sound isolation can be adjusted by using the proper size of the

electrode at each specific frequency

• Increasing the number of electrode patches may not necessarily provide higher

soundproofing abilities

• By proper choice of electrode size, one can avoid the resonance frequency of

the cylinder to provide higher sound transmission loss

• The position of the electrode patch with respect to the direction of the incident

wave has a minor effect on the sound transmission loss of the smart cylinder
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• The higher sound transmission loss can be achieved by the intelligent choice of

electrode configurations for each specific excitation frequency

• The degree of asymmetry in the configuration of electrodes has less effect on

sound transmission loss compared to the size of electrodes
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Chapter 8

Effect of Fluid Viscosity on the
Sound Transmission Loss of Smart
Piezo-laminated Structures

“The whole of science is nothing
more than a refinement of everyday
thinking.”

Albert Einstein

When the sound waves impinge on the wall of a cylinder, the sound wave attenuates

because of the boundary layer effects. These losses can be significant when the

structure is quite small compared to the surrounding media and submerged in a

viscous fluid. This chapter aims to rigorously investigate the effects of fluid viscosity

on the STL through a submerged thick smart anisotropic piezo-composite cylinder

subject to an oblique incident plane wave. The three-dimensional (3D) theory

of elasticity and piezoelasticity are used to model a solid smart piezo-composite

cylinder, while the Navier-Stokes equation is employed to describe the surrounding
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viscous acoustic medium as well as the internal acoustic cavity. The Helmholtz

decomposition is used to resolve the velocity field of fluid into longitudinal and

transverse vectors, whereas the state space method and transfer matrix approach are

used to model the smart cylindrical structure. Subsequently, the closed-form solution

is derived by enforcing mechanical and electrical boundary conditions along with

a proper wave harmonic field expansion. The validity of the proposed closed-form

solutions is investigated using different data from a simplified analytical model

found in the literature as well as finite element modeling by making simplified

assumptions. Parametric studies are carried out to investigate the effect of fluid

viscosity (dynamic viscosity and bulk viscosity), shell anisotropicity and piezoelectric

boundary conditions on the STL through a piezo-composite cylinder submerged in a

viscous fluid. The results show that the magnitude of STL linearly increases as the

value of bulk and dynamic viscosities increases, which results in providing a better

soundproofing ability.
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8.1 Problem Description For Transmission Loss in

Viscous Fluid

In this section the structure given in chapter 5 will be used to model the piezo-

laminated cylinder. However, instead of using inviscid fluid, the viscous acoustic

model will be used to model the internal cavity and surrounding fluid.

Let us consider an infinitely-long smart piezo-composite cylinder with an internal

cavity filled with a viscous acoustic fluid, as depicted in Figure 8.1. The radius of the

internal cavity is rin, while ρin and cin denote the spatial density and speed of sound

in the internal cavity. µin and λin describe the dynamic viscosity and the expansive

(bulk) viscosity of the viscous fluid filling the internal cavity, respectively. The core

layer of the smart structure is assumed to be made of isotropic/anisotropic materials

with thickness Ho and density of ρo. The core layer of the structure is coated with a

piezoelectric actuator layer. The continuously distributed outer smart layer of the

cylinder is made of piezoelectric materials with a thickness of Ha and density of

ρpz. The smart piezo-composite structure is assumed to be submerged in an infinite

viscous fluid with the physical parameters (ρex, cex, µex, λex) referring respectively to

the spatial density, speed of sound, dynamic viscosity and the bulk viscosity of the

surrounding viscous fluid. Furthermore, the stationary but flexible elasto-acoustic

smart structure (not moving in whole in the fluid) is obliquely insonified by a

monochromatic harmonic progressive plane incident wave, φinc(r, θ, z;ω), with the

oblique incident angle of α and the cylindrical coordinate system (r, θ, z) as set in

Figure 8.1. Before describing the smart elastic structure, we shall concisely describe

the viscous acoustic model for the internal cavity and external fluid medium. Please
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note that, the detail of smart structure modeling is discussed in section 5.1.

z
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Transmitted Wave 
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Figure 8.1: Schematic diagram of a smart piezo-composite cylinder submerged in a
viscous fluid excited by an oblique incident plane wave.

8.1.1 Viscous Acoustic Model

Equation 3.20 can be used to solve the acoustic fields inside the internal cavity and

outside of the cylinder. Considering the radiation boundary conditions and the

unbounded surrounding fluid, the scattered acoustic waves can be expressed as ([18])
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φexc (r, θ, z, ω) =
∞∑
n=0

An(ω)H2
n(Γexc r) cos(nθ)e

ikzz, (8.1a)

ψexr (r, θ, z, ω) =
∞∑
n=1

Bn(ω)H2
(n+1)(Γ

ex
s r) sin(nθ)eikzz, (8.1b)

ψexθ (r, θ, z, ω) = −
∞∑
n=0

Bn(ω)H2
(n+1)(Γ

ex
s r) cos(nθ)e

ikzz, (8.1c)

ψexz (r, θ, z, ω) =
∞∑
n=1

Cn(ω)H2
n(Γexs r) sin(nθ)eikzz, (8.1d)

where H1
n(Z) is the Hankel functions of the first kind, Γexi =

√
(kexi )2 − k2

z in which

(i = c, s), and kz = R[kexc sin(α)] in which α is the angle of oblique incident wave.

Furthermore, the superscript “ex” indicates the external viscous fluid medium. In

addition, An(ω), Bn(ω) and Cn(ω) are the modal scattered coefficients. Similarly,

the transmitted waves inside the internal acoustic cavity can be given by [18]

φinc (r, θ, z, ω) =
∞∑
n=0

Dn(ω) H1
n(Γinc r) cos(nθ)e

ikzz, (8.2a)

ψinr (r, θ, z, ω) =
∞∑
n=1

En(ω) H1
(n+1)(Γ

in
s r) sin(nθ)eikzz, (8.2b)

ψinθ (r, θ, z, ω) = −
∞∑
n=0

En(ω) H1
(n+1)(Γ

in
s r) cos(nθ)e

ikzz, (8.2c)

ψinz (r, θ, z, ω) =
∞∑
n=1

Fn(ω) H1
n(Γins r) sin(nθ)eikzz, (8.2d)

where Dn(ω), En(ω) and Fn(ω) are the unknown transmitted coefficients, and H2
n(Z)

is the Hankel function of the second kind. Moreover, the superscript “in” indicates
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the internal fluid medium and Γini =
√

(κini )2 − κ2
z in which (i = c, s).

Next, the modal expansion of the oblique incident plane wave impinging on the

external surface of the cylinder can be expressed in the cylindrical coordinate as

[214]

φinc(r, θ, z, ω) =
∞∑
n=0

φ0εn(−i)nJn(Γexc r) cos(nθ)e
i(kzz), (8.3)

where Jn(Z) is the Bessel function of the first kind ([215]), φ0 is the magnitude of

the incident plane wave, and

εn =

{
1 n = 0,

2 n ≥ 1.

The stress components in the viscous fluid is given by [16, 17]

σfrr = −p+
(
λ− 2

µ

3

)
∆ + 2µ

∂ur
∂r

, (8.4a)

σfrθ = µ

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
, (8.4b)

σfrz = µ

(
∂ur
∂z

+
∂uz
∂r

)
, (8.4c)

in which

p = −iωρφ+

(
λ+

4

3
µ

)
∆, (8.5)

where ∆ = k2
cφ and φ = φinc + φc.
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8.1.2 Electro-mechanical Boundary Conditions

The appropriate fluid-solid boundary conditions that must be imposed at the inner

and outer surfaces of the piezo-composite cylinder are written as follows [194]

vj(r = rin, θ, z, ω) = −iωuj(r = rin, θ, z, ω), j = r, θ, z. (8.6a)

vj(r = rex, θ, z, ω) = −iωUj(r = rex, θ, z, ω), j = r, θ, z. (8.6b)

σfj (rin, ω) = σj(rin, ω), j = rr, rθ, rz. (8.6c)

σfj (rex, ω) = σj(rex, ω), j = rr, rθ, rz. (8.6d)

The compatibility of the electrical boundary condition for the short- circuited

case can be applied at the inner and outer surface of the piezo-composite cylinder as

φn(ri, ω) = 0, i = a, ex. (8.7)

Likewise, the open-circuited electrical boundary condition can be given as

Dn
r (ri, ω) = 0, i = a, ex, (8.8)

By substituting electro-mechanical boundary conditions presented in Equation 8.6,

Equation 8.7 and Equation 8.8 into the global transfer matrix of Equation 5.24, after

some algebraic manipulations, the final solution can be derived as

Anxn = bn, (8.9)

in which An, xn and bn are provided in section C.1.

8.2 Model Validation

Before discussing the numerical results, we shall investigate the convergence of the

proposed analytical solution. The convergence of the current solution is attained by
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Parameters Glycerine Olive oil Water FC-75 Air
c(m/s) 1910 1440 1497 613.77 343
ρ(kg/m3) 1250 900 1000 1730 1.21
µ(kg/m.s) 0.95 0.084 0.000894 0.00079 1.825× 10−5

λ(kg/m.s) 0.95 0.084 0.00250 0.00079 1.825× 10−5

Table 8.1: Acoustic parameters for several Newtonian fluids at 25oC.

checking the stability of the estimated value of the STL while increasing the value

of the series truncation constant, N in Equation 5.38. The Matlab m-file is coded

in a way to allow the code to be executed repeatedly until the difference between

two consecutive calculated STL becomes smaller than the predefined error bounds

(∆TL ≤ 10−15). When the loop check becomes false, the iteration is terminated,

and the final value of the STL is considered to be converged. The flowchart diagram

of the solution procedure is displayed in Figure 8.2.

Before illustrating the nature and general behavior of the problem, we shall confirm

the validity of the solution. A general Matlabr code is scripted to calculate the

TL for the piezo-composite cylinder as well as obtaining the solution of Equation 8.9.

The exact calculation of Bessel functions, Hankel functions of the first and the second

kinds of the complex argument is attained by taking advantage of Matlab “besselj"

and “besselh" built-in functions. The derivatives of the Bessel and Hankel functions

were achieved using the specialized math function “diff" which provides differentiate

symbolic expression. The computations were performed on a cluster of Intelr

Core(TM) i5-7500 CPU @ 3.40 GHz desktop computer (32.0 GB Ram DDR4)

capable of exhaustive parallel calculations. The Matlab Parallel Computing

Toolbox was utilized to expedite our calculation of STL [208].

Noting the large number of parameters involved in the problem that affects the
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Figure 8.2: Flowchart diagram followed for the calculation of STL.

STL and keeping in mind the intensive computational cost, we shall focus our

attention on some specific examples. In all calculations, the material properties and

structural geometry of the smart cylinder are considered as follows, unless specified
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Figure 8.3: STL comparison between Flugge-Lure-Byrne thin walled theory as
presented in [2] and the current study for three different incident angles (α =
π/6;π/3;π/2) at Mach=0 for a cylinder submerged in an inviscid fluid.

Parameters Temperature oC
0 20 40 60 100

µ (Centipoise) 9390 1150 234 68 13
λ (Centipoise) 12000 1410 283 81 14

Table 8.2: Viscosity of Glycerol solution in different temperatures ([1]).

otherwise. The smart piezo-composite cylinder is assumed to be submerged in a

viscous acoustic fluid with its acoustic properties given are Table 8.1 and Table 8.2

[1, 194]. The material used in the core layer of the piezo-composite cylinder is made

of Aluminium, while the actuator layer is made of piezoelectric materials. The

mechanical and electrical properties of the smart piezo-composite cylinder are given

in Table 5.1 and Table 5.2, respectively. The amplitude of the incident plane wave

pressure is considered to be 1 Pa. In this section, firstly, the viscous effect of fluid

on the STL will be discussed, followed by the temperature effect, and anisotropic
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Figure 8.4: Angular distributions of the scattering patterns of pressures at a far-field
for a brass cylinder submerged in glycerine at 77 0F (<[kc]rin = 0.1) .

material property effect. Finally, the effect of piezoelectric boundary conditions on

the STL will be discussed and explained.

Figure 8.3 shows the TL through a single layer of cylinder calculated by the

Flugge-Lure-Byrne thin-walled shell theory and the 3D theory of elasticity under

no-flow condition (Mach=0) for three different attack angles (α = π/6;π/3; π/2).

The shear and bulk coefficient of viscosity was set to zero in Equation 8.2d in order

to calculate the STL for non-viscous fluids. The cylinder is assumed to be made of

Aluminium, filled and surrounded with air as the acoustics properties of the fluid

medium and the mechanical properties of the Aluminium materials are given in

Table 8.1, and Table 5.1, respectively. Figure 8.3 demonstrates a good agreement

with the results presented in Ref.[2].

The most relevant acoustic field parameter is the far-field scattered pressure. The
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Figure 8.5: STL comparison between the current study and FEM model for a
piezo-composite cylinder, filled and submerged in Glycerol at 40oC. The cylinder is
assumed to be made of a single layer of Aluminium coated with radially polarized
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scattered far-field pressure amplitude can be defined using Equation 8.5 as [216],

∣∣pscat∞ (r, θ, z, ω)
∣∣ = lim

r→+∞

∣∣∣∣−iωρφc(r, θ, z, ω) + k2
c

(
λ+

4

3
µ

)
φc(r, θ, z, ω)

∣∣∣∣ . (8.10)

Figure 8.4 demonstrates the angular distribution of the scattered pressures at

far-field for a single layer brass cylinder, fully submerged in glycerine at 77 oF ,

excited by a normal incident plane wave at a selected dimensionless wave number

of R ([kc]rin) = 0.1. The acoustic properties of glycerine are given in Table 8.1.
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The angular distribution of the scattered pressures at the far field was calculated

by setting the thickness of the piezoelectric layer equal to zero. The results for

the angular distribution of the scattered pressures at far-field shown in Figure 8.4,

displays an excellent agreement with results presented in Ref.[16].

Figure 8.5 shows the STL comparison between the current study and FEM model

(Comsol Multiphysics) for a piezo-composite cylinder, filled and submerged

in Glycerol at 40oC. The dynamic viscosity and expansive viscosity of Glycerol

at different temperatures are given in Table 8.2, while the acoustic properties of

Glycerol are given in Table 8.1. The cylinder is assumed to be made of a single

layer of Aluminium coated with radially polarized PZT4 piezoelectric material. The

mechanical properties of the constituent materials are given in Table 5.1, whereas

the electrical properties of the radially polarized PZT4 are shown in Table 5.2.

Besides, the cylinder is excited by a normal incident plane wave while the closed-loop

electrical boundary condition is enforced at the internal and external surface of the

cylinder.

In order to simulate the boundless domain of an acoustic medium in finite element

software, a PLM is used to truncate the domain. PLM is an artificial absorbing

layer that prevents the reflection of outgoing acoustic waves back into the internal

domain. Nevertheless, there is always a partial reflection of outgoing waves from

the PLM layer, which is the inevitable result of truncated computational regions in

numerical methods. In order to perform FEM simulation, 51648 tetrahedron mesh

were used to model the piezo-composite cylinder in addition to the internal and

external acoustic fluids. Moreover, the mesh size sensitivity analysis was carried out

for checking numerical convergence. The outcome, as shown in Figure 8.5, displays
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an excellent agreement between the current study and FEM modelling results.

8.3 Results and discussion

in this section, we will perform a parametric study to investigate the effect of viscosity,

anisotropicity and piezoelectricity on the STL.

8.3.1 Effect of Viscosity on STL

In this section, the effect of the viscosity of the surrounding acoustic fluid on the STL

will be discussed and explained. Most calculations are performed in the frequency

range of f < 1 MHz due to the slow convergence of the series solution.

Figure 8.6 displays STL comparison between inviscid and viscous models at

different frequency spectra. The short-circuited electrical boundary condition is

applied at the outer and inner layers of the piezoelectric cylinder, while the cylinder

is excited by a normal incident plane wave with the amplitude of 1 Pa. The core layer

of the cylinder is made of Aluminum, while the piezoelectric layer is made of radially

polarized PZT4 (rin = 19 mm, ra = 20 mm and rex = 21 mm). The mechanical

properties for the Aluminum and PZT4 are given in Table 5.1, whereas the electrical

properties of the radially polarized PZT4 are given in Table 5.2. The internal cavity

of the piezo-composite cylinder is filled with Glycerol; also, the piezo-composite

cylinder is submerged in Glycerol at 0oC. The dynamic viscosity and expansive

viscosity of Glycerol at different temperatures are given in Table 8.2. Furthermore,

the acoustic properties of Glycerol at 0oC are given in Table 8.1.
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As seen in Figure 8.6, the effect of fluid viscosity is not dominant on the STL

at the frequency range between 0 to 10 kHz. Consequently, the difference between

the STL obtained when the fluid is non-viscous or viscous is insignificant. This

shows that the non-viscous model can only be used when the value of the excitation

frequency is relatively low (here the excitation frequency should be lower than 40

kHz) and the non-viscous model should not be used for relatively high frequencies;

otherwise the final result for the STL will be underestimated. As the frequency

of the incident wave increases to a higher value in the range between 400 to 600

kHz, the viscous model shows a different behavior compared to the non-viscous

model; the higher the frequency of the incident wave is, the bigger the difference

is. The reason is that the value of shear and compressional wave numbers given in

Equation 3.21 becomes a complex number for the viscous model, while the value of

the compressional wave is a real number in the non-viscous model. Due to the lack

of viscosity, there is no shear wave number in the non-viscous model.

As shown in Equation 3.21, for a low value of excitation frequency, the imaginary

part of both shear and compressional waves are small and can be neglected. This is

why the non-viscous and vicious plot shows the same behavior in low-frequency ranges.

However, as the value of excitation frequency of the incident wave increases, the

imaginary part of the compressional and shear wave becomes significant, especially

the imaginary part of the compressional wave increases with power 2 of frequency.

This is why, as the excitation frequency increases, we can see more differences in

the results of the STL. So, the imaginary part of the compressional and shear waves

numbers plays an important role at high frequencies. Furthermore, the value of

STL shows a higher magnitude of STL compare to the non-viscous model in the
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frequency range between 100 to 600 kHz. This indicates that viscosity decreases

the acoustic power transmitting inside the cylinder. The reason is that some of the

acoustic waves are attenuated due to viscous loss before entering the cylinder, and

as result, it increases the soundproofing performance of the structure.

Figure 8.7 shows the STL versus dynamic viscosity of the fluid for the cylinder

submerged in Glycerol at 0oC. The cylinder is made of a single layer of Aluminum

excited by a normal incident plane wave with the amplitude of 1 Pa (rin = 19 mm,

ra = 20 mm). The mechanical properties for Aluminum are given in Table 5.1. As

seen from the figure, the effect of viscosity is insignificant in lower frequencies such

as f = 100 kHz, however, the effect of dynamic viscosity becomes significant at a

higher excitation frequency such as f = 300 kHz and f = 400 kHz. In addition,

the STL linearly increases as the value of dynamic viscosity increases, especially

for the case of f = 400 kHz. The reason is that as the value of dynamic viscosity

increases at a higher range of excitation, the imaginary part of the compressional

wave number increases by the exponent two of the excitation frequency as it is

given in Equation 3.21b. As result, the imaginary part of the compressional wave

number will have a higher magnitude compared to the real part. The higher value

of compressional wave number results in viscous dissipation [217]. As more incident,

acoustic waves attenuated due to the high value of dynamic viscosity, the magnitude

of STL increases, which results in providing a better soundproofing ability for the

fluid with higher dynamic viscosity.

Figure 8.8 compares the effect of dynamic viscosity and bulk viscosity on the

STL of the cylinder submerged in glycerol. The frequency of the incident plane

wave is set to 100 kHz. As seen from the figure, it is obvious that the value of the
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Figure 8.7: STL versus dynamic viscosity for a cylinder submerged in glycerol at
0oC. The cylinder is made of a single layer of Aluminum excited by a normal incident
plane wave with the amplitude of 1 Pa (rin = 19 mm, ra = 20 mm).

dynamic viscosity of the surrounding fluid has more effect on the STL compared

to the bulk viscosity of the fluid. The plot for the dynamic viscosity also shows a

higher slope compare to the plot associated with the bulk viscosity. The reason

is that the complex part of the compressional wave has a linear relation with the

dynamic viscosity and bulk viscosity, as described in Equation 3.21b. However, the

slope for the dynamic viscosity is 4
3
, whereas this coefficient is 1 for the case of bulk

viscosity. This way, the effect of dynamic viscosity on the imaginary part of the

compressional wave number is slightly higher than the buck viscosity. This results

in a higher attenuation of acoustic waves due to a viscous loss. This is why the STL

is slightly more sensitive to the changes in the dynamic viscosity compared to the

bulk viscosity.
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Figure 8.8: Comparison of the effect of dynamic viscosity and bulk viscosity on the
STL of the cylinder submerged in glycerol. The cylinder is made of a single layer
of Aluminum excited by a normal incident plane wave with the amplitude of 1 Pa
(rin = 19 mm, ra = 20 mm). The frequency of the incident plane wave is set to 100
kHz

.

8.3.2 Effect of temperature on the STL

Figure 8.9 shows the effect of fluid temperature on the STL through a piezo-composite

cylinder at different frequency spectra for the short-circuited electrical boundary

conditions. The cylinder is excited by a normal incident plane wave (α = π/2).

As seen from the figure, the differences between the values of the STL for glycerol
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at 0oC and glycerol at 40oC are very close in the frequency range between 1 to 100

kHz, while the differences are more dominant as the frequency of excitation increases

to a higher value such as the frequency range between 300 to 500 kHz. Also, as the

temperature increases, the value of STL decreases especially when the excitation

frequency of the incident wave is high. The reason is that as the temperature of the

surrounding fluid increases, the dynamic viscosity and expansive (volume) viscosity

of the fluid decreases accordingly. When the temperature of the fluid increases, there

is an increase in the molecular interaction because the molecules travel faster in high

temperatures [218, 219]. In addition to the molecular interchange, cohesive forces

between the molecules contribute to liquid viscosity [219]. As fluid temperature

increases, cohesive forces are decreased and molecular interactions are increased,

which results in a reduction in the shear viscosity of the fluid [219]. On the other

hand, by decreasing the temperature, the cohesive forces become dominant and the

molecular interactions decrease; this leads to an increase in the shear viscosity of

the fluid. Increasing the viscosity of the fluid at low temperatures results in a more

significant attenuation of acoustic waves. As a result of these losses, less acoustic

power can be transmitted inside the cylinder, which leads to increasing the STL. So,

the lower the temperature is, the higher the STL becomes and vice versa.
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Figure 8.9: Effect of fluid temperature on the STL through a piezo-composite cylinder at different frequency spectra
for the short circuited electrical boundary conditions; the cylinder is excited by a normal incident plane wave
(α = π/2). The core layer of the cylinder is made of Aluminum, while the piezoelectric layer is made of radially
polarized PZT4 (rin = 19 mm, ra = 20 mm and rex = 21 mm). The Piezo-composite cylinder is filled with and
submerged in Glycerol at different temperatures (T = 0OC,µ = 9390 cp, λ = 12000 cp; T = 40OC, µ = 234 cp,
λ = 238 cp).
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8.3.3 Effect of anisotropicity on the STL considering fluid

viscosity

In this section, the effect of anisotropicity of a cylindrical shell submerged in a

viscous fluid on the STL will be discussed. Most calculations are performed in the

frequency range of f < 500 kHz due to the slow convergence of the solution.

Figure 8.10 shows the effect of anisotrpicity of the piezoelectric actuator layer

with three different levels of anisotropicity on the STL spectra for the short-circuited

piezo-composite cylinder submerged in Fluorocarbon (FC-75) at 25oC at different

ranges of frequencies. The acoustic properties of Fluorocarbon (FC-75) are given in

Table 8.1. The cylinder is excited by a normal incident plane wave (α = π/2) with a

pressure amplitude of 1 Pa. The elastic layer of the cylinder is made of Aluminum

(rin = 19 mm, ra = 20 mm and rex = 100 mm). The actuator layer of the cylinder

is changed for three different materials with isotropic, orthotropic, and triclinic

mechanical properties. For the triclinic case, the actuator is constituted of one layer

of Lithium niobate (LiNbO3) with the crystalline Z axis along z and the crystalline

Y axis along r and the second layer is made up Lithium tantalate (LiTaO3) with

crystalline X axis along z and the crystalline Y along r, in order to show the triclinic

effect on the STL (see Akcakaya and Farnell [199]). The mechanical and electrical

properties of the triclinic piezoelectric materials are given in Table 4.1.

The actuator layer with orthotropic mechanical properties is made of the same

triclinic material by allocating all the nonzero elastic constants to zero in a way that

it alternates from a triclinic material to an orthotropic piezoelectric material with

only 9 distinct elastic constants (see [3] for more details). Lastly, the same approach
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was used to model the isotropic actuator layer by adjusting the non-zero orthotropic

stiffness constants in the stiffness matrix, which includes only two independent

material constants with 12 nonzero terms.
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Figure 8.10: Effect of anisotrpicity of actuator layer on the STL spectra for the short-circuited piezo-composite
cylinder submerged in Fluorocarbon (FC-75) at 25oC at different frequency ranges. The cylinder is excited by
a normal incident plane wave (α = π/2) with a pressure amplitude of 1 Pa. The elastic layer of the cylinder is
made of Aluminum, while three different actuator layers are considered to be made of isotropic, orthotropic, or
triclinic materials. The triclinic case is constitute of one layer of Lithium niobate (LiNbO3), and the second type of
layer is made of Lithium tantalate (LiTaO3) (rin = 19 mm, ra = 20 mm and rex = 100 mm). The mechanical and
electrical properties of the triclinic piezoelectric materials are given in Table 4.1. The cylinder is also considered to
be short-circuited at both its external and internal layers.
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Figure 8.11: Comparison of the effect of anisotrpicity on the STL of a piezo-laminated
cylinder submerged in Fluorocarbon (FC-75) at 25oC for different ranges of dynamic
viscosity. The frequency of the incident plane wave is set to 250 kHz. The core layer
of the cylinder is made of Aluminum, while the external layer is made of anisotropic
piezoelectric material constituting of one layer of Lithium niobate (LiNbO3), and
the second type of layer is made up of Lithium tantalate (LiTaO3) (rin = 19 mm,
ra = 20 mm and rex = 100 mm). The cylinder is considered to be short-circuited on
both its external and internal layers. The cylinder is excited by a normal incident
plane wave (α = π/2) with a pressure amplitude of 1 Pa. The mechanical and
electrical properties of the triclinic piezoelectric materials are given in Table 4.1. [3].

As seen from the Figure 8.10, there is a shift between the resonance frequency of

the triclinic, orthotropic, and isotropic materials. Also, the triclinic material has a

higher value of the STL compared to the orthotropic and isotropic cases. It is worth

noting that the triclinic materials have 21 independent elastic constants, while the

orthotropic materials have only 9 distinct elastic constants whereas the isotropic
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materials have only 2 independent material constants. It means that the triclinic

materials have a higher elastic stiffness compared to the orthotropic and isotropic

materials. In particular, if the elastic cylinder is stiffer, the outer layer and the inner

layer of the shell would move less, which would reduce the acoustic power of the

waves that were transmitted. Consequently, the STL will increase because a lower

acoustic power is transmitted into the cylinder. As a result, the cylinder can provide

better sound isolation if the piezoelectric layer is made of triclinic materials with a

higher level of anisotropicity.

Figure 8.11 shows the effect of anisotrpicity on the STL of a piezo-laminated

cylinder submerged in Fluorocarbon (FC-75) at 25oC for different ranges of dynamic

viscosity. The excitation frequency of the incident plane wave is set to 250 kHz. The

core layer of the cylinder is made of Aluminum, while the external layer is made

of anisotropic piezoelectric material constituting of one layer of Lithium niobate

(LiNbO3), and the second type of layer is made up of Lithium tantalate (LiTaO3)

(rin = 19 mm, ra = 20 mm and rex = 100 mm).

As seen from Figure 8.11, the triclinic materials show a higher value of STL

compare to the orthotropic materials. This shows that the triclinic materials, which

have a higher level of anisotropicity, submerged in a fluid with a higher value of

dynamic viscosity provide better performance for the sound isolation.

8.3.4 Effect of piezoelectricity on the STL with the viscous

fluid

In this section, the effect of piezoelectric boundary conditions on the STL will be

discussed. The calculations are performed in the frequency range of f < 1 MHz due
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Figure 8.12: Comparison of viscous and inviscid models for the effect of piezoelectric
boundary conditions on the STL spectra for the short-circuited and open-circuited
piezo-composite cylinder submerged in glycerin at 0oC at different ranges of frequen-
cies. The cylinder is excited by a normal incident plane wave (α = π/2) with the
pressure amplitude of 1 Pa. The core layer of the cylinder is made of Aluminum,
while the external layer is made of radially polarized PZT4 (rin = 19 mm, ra = 20
mm and rex = 30 mm).

to the slow convergence of the series solution.

Figure 8.12 shows the comparison of viscous and inviscid model for the effect

of piezoelectric electrical boundary condition on the STL spectra for the short-

circuited and open-circuited piezo-composite cylinder submerged in Glycerin at 0oC

at different ranges of frequency. As seen from the figure, the effect of the piezoelectric

boundary conditions is not dominant on the STL at the frequency ranges between

0 to 200 kHz. Consequently, the difference between the STL calculated for the
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open-loop and short-circuited electrical boundary conditions for both viscous and

inviscid models is insignificant. However, as the excitation frequency increases to

higher values such as 1 MHz, the difference between the calculated values becomes

significant. Particularly, the short-circuited cylinder submerged in a viscous fluid

shows a higher STL than the open-loop smart cylinder submerged in an inviscid fluid.

In addition, the dips of negatives for the open-loop case show a lower STL than

the short-circuited boundary condition, especially at the frequency ranges beyond

1.2 MHz. This means that short-circuited electrical boundary conditions absorb

more energy during the charging and discharging process. Additionally, we see that

viscosity also affects STL in the case of inviscid and viscous models.. For example,

the short-circuited invsicd plot shows a lower STL compared to the vicious one at

high-frequency ranges (1.2 MHz). Thus, viscosity contributes a significant amount

to higher STL values in comparison to short circuit electrical boundary conditions,

particularly at high frequencies.

Figure 8.13 shows the effect of different electrical boundary conditions on the STL

of piezo-laminated cylinder submerged in oil at 25oC for different ranges of dynamic

viscosity. The frequency of the incident plane wave is set to 400 kHz. As seen from

Figure 8.13, by increasing the value of dynamic viscosity the magnitude of the STL

increases for both the open-loop and short-circuited electrical boundary conditions.

However, the short-circuited electrical boundary conditions show a higher value of

the STL compare to the open-loop boundary conditions. The higher value of STL

for the short-circuited electrical boundary condition makes this type of electrical

boundary condition to be suitable for sound isolation purposes.
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Figure 8.13: Comparison of the effect of different electrical boundary conditions on
the STL of piezo-laminated cylinder submerged in the Oil at 25oC for a different
range of dynamic viscosity. The frequency of the incident plane wave is set to 400
kHz. The elastic layer of the cylinder is made of Aluminum, while the external layer
is made of radially polarized PZT4 (rin = 19 mm, ra = 20 mm and rex = 30 mm).
The cylinder is excited by a normal incident plane wave (α = π/2) with a pressure
amplitude of 1 Pa.

8.4 Conclusions

The current study is aimed to rigorously investigate the effects of fluid viscosity,

electrical boundary condition, and anisotropicity on the STL through a thick smart

anisotropic piezo-composite cylinder, excited by an oblique incident plane wave. The

3D theory of elasticity and piezoelasticity are used to model the smart piezo-composite

cylinder, while the Navier-Stokes equation is employed to describe the viscous acoustic
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medium. The Helmholtz decomposition is used to resolve the velocity field of fluid

into longitudinal and transverse vectors, whereas the state space method and transfer

matrix approach are used to model the smart cylindrical structure. Subsequently,

the closed-form solution is developed by enforcing appropriate boundary conditions

along with proper wave harmonic field expansion. The validity of the proposed

closed-form solutions is checked with different data from the simplified model

given in the literature as well as a finite element package known as Comsol

Multiphysics. Parameter studies are carried out to investigate the effect of fluid

viscosity (dynamic viscosity and bulk viscosity), shell anisotropicity, and piezoelectric

boundary conditions on the STL through a piezo-composite cylinder submerged in a

viscous fluid. The main findings of this research are as follows:

• The non-viscous model can only be used when the value of the excitation

frequency is relatively low (Less than 20 kHz). The inviscid model should not

be used for a broad range of frequencies when the submerging fluid has a high

value of dynamic and expansive viscosities, otherwise, the final result for STL

will not be accurate.

• An acoustic power transmitting within the cylinder can be decreased when

the fluid has a high dynamic viscosity and a high bulk viscosity.

• As the temperature of the surrounding fluid increases, the value of STL

decreases and vice versa, especially, when the excitation frequency of the

incident wave is relatively high.

• With an increase in dynamic viscosity, the magnitude of STL linearly increases,

which leads to a greater degree of soundproofing for fluids.
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• There is a shift between the resonance frequency of the triclinic, the orthotropic,

and isotropic materials. The triclinic materials have a higher value of the STL

compare to the isotropic and orthotropic materials.

• The cylinder submerged in a viscous fluid with short-circuited electrical bound-

ary conditions provides a higher sound isolation performance. The viscosity

effect on STL is more significant than the effect of electrical boundary condi-

tions at a higher frequency range (for the specific structure of this work, the

frequency should be approximately greater than 200 kHz).

As suggestions of the important future works, the exact size effect should be

studied to reveal the possible application of our idea to practical applications like

underwater vehicles. In addition, the proposed model is based on special assumptions

that the whole structure is not running in the fluid or the fluid is not flowing in

and outside the solid. To make the STL study closer to some practical operations,

the relative motions between the solid and fluid can be considered in the following

works.
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Chapter 9

Conclusions and Future Works

9.1 Conclusions

Dynamic studies of thick smart cylindrical piezo-composite structures are studied in

an effort to use an-isotropic piezoelectric materials to design structures with superior

soundproofing performances. A robust mathematical approach is used to address

the multiphysics nature of the problem.

Firstly, the free vibration of the general form of an anisotropic piezoelectric

material which is known as triclinic materials with all possible material constants is

analytically modeled and studied to cover a broad range of anisotropic piezoelectric

materials. The current model can handle piezoelectric materials with stronger

anisotropy such as lead Lithium Tantalate, Lithium Niobate, and Oxyborate crystals

of Y Ca4O(BO3)3 (YCOB). The main findings of this investigation are as follows

• The orthotropic model can only be used to model triclinic piezoelectric materials

when the circumferential wave number, axial wave number, and the value of

the lowest natural frequency are all relatively small.
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• The results of the orthotropic piezoelectric model can not be extended to

investigate the behavior of the triclinic piezoelectric materials in high-frequency

ranges.

Next, the first study was extended to investigate sound transmission through a

thick-walled FGM piezo-laminated cylindrical shell filled with and submerged in

compressible inviscid fluids. STL is calculated by exact integration over the shell’s

outer surface. Parameter studies are conducted to investigate the effects of piezo-

electric material properties, piezoelectric polarization direction, shell thickness ratio,

electrical boundary conditions, and FGPM on the STL due to the piezoelectricity.

This study shows several important findings such as:

• The radially polarized piezoelectric shows a better performance in the cylinder

isolation compared to the axially polarized one, especially in the high value of

incident angles at a high frequency larger than 500Hz.

• Short-circuited electrical boundary conditions can be used to improve the

sound isolation performance of the piezo-composite cylinder in high-frequency

ranges considering the energy dissipation during the charging and discharging

process.

In order to provide higher STL at the resonance frequency, the previous model

was utilized to control STL through the piezo-composite cylinder. The active control

strategy is achieved by sending a control signal from the distributed piezoelectric

sensor layer through a controller with specific feedback gain to drive the external

piezoelectric actuators. The mechanical stress generated by the piezo-actuator layer

cancels the parts of the input incident wave to enhance the STL. Comprehensive
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numerical studies are carried out to investigate the poling direction, and feedback

gain effects on the STL. This study shows new distinguished findings such as:

• A significant wave isolation effect is realized at the resonant frequencies on

the STL spectra for a radially/axially polarized piezo-composite cylinder with

different feedback gains.

• In the case of the axially polarized piezoelectric actuator and sensor, the control

feedback strategy reduces the unfavorable oscillatory motion of the cylinder in

addition to providing a superior sound isolation enhancement, particularly for

near-grazing incident angles (α = π/12 &π/6).

Next, our model was improved to consider the influence of size and configuration

of piezoelectric electrodes on sound transmission loss (STL) through thick-walled

piezo-laminated cylindrical shells. A closed-form solution is generated by enforcing

the proper boundary conditions and expanding the harmonic field.

• Increasing the number of electrode patches may not necessarily provide higher

soundproofing abilities

• By proper choice of electrode size, one can avoid the resonance frequency of

the cylinder to provide higher sound transmission loss

Finally, due to the failure of the inviscid model when the structure is submerged

in the fluid with a high level of viscosity, the acoustic viscous model was used to

study the sound transmission loss through the smart piezo-laminated cylindrical

shell. The main findings of this study are as follows:
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• The non-viscous model can only be used when the value of the excitation

frequency is relatively low (Less than 20 KHz). The inviscid model should not

be used for a broad range of frequencies when the submerging fluid has a high

value of dynamic and expansive viscosities, otherwise, the final result for STL

will not be accurate.

• An acoustic power transmitting within the cylinder can be decreased when

the fluid has a high dynamic viscosity and a high bulk viscosity.

• With an increase in dynamic viscosity, the magnitude of STL linearly increases,

which leads to a greater degree of soundproofing for fluids.

More detailed conclusions can be found at the end of each previous chapter.

9.2 Possible Future Works

This work presented a very robust mathematical model to investigate the effect of

anisotropicity of piezoelectric materials in addition to studying the STL through

the piezo-composite cylindrical structure. The model was later on used to control

the STL in order to provide engineering structures with better sound isolation

performances. Unquestionably, this powerful complex model can be further extended

to consider other effects. In our future work, we are interested in studying Auxetic

materials. Auxetics are structures or materials that have a negative Poisson’s

ratio. This means when these materials are subjected to the applied force, they

become thicker in the perpendicular direction of the applied force. Auxetics can

be structured on a macroscopic scale, in crystals, or molecules. These materials

can show high energy absorption and fracture resistance. In future works, we will
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investigate the effect of Auxetic materials on the STL from cylindrical structures

in order to predict the sound isolation performance of these new materials. Such

a study can have a widespread application in the development of products with

enhanced sound absorption characteristics, which can be used for sound attenuation

purposes. Auxetic materials also have a very low density, which makes them a

better candidate when the weight of the structure is of concern, for instance, sound

isolation in airplane cabins.

The current model can be used for data transmission through a thick-walled

tunnel. As we know the majority of tunnels are steel-containing structures. In order

to protect electronic equipment, shielding the radio waves with steel-containing

structures is desirable. However, it is detrimental to receiving telecommunication

signals. This means that radio waves that are used in the cell phone can not pass

through the tunnel for communication purposes. This problem can be solved by

using acoustic waves. Acoustic waves can easily propagate through concrete, metal,

etc. Therefore, acoustic waves can be used for the transmission of multimedia data

includes images and videos. The current work provides a suitable framework for

using acoustic waves to transfer data through the tunnel. The incident wave can

propagate through the concrete tunnel and the transmitted wave can be used to

transfer multimedia data. In order to amplify the transmitted signal, the data should

be transferred at a frequency with lower sound transmission loss in order to increase

the power of the transmitted signal.

In addition, in order to make structures with superior soundproofing abilities,

pro-elastic materials can be used in the core layer of the cylinder. The use of porous

materials for noise control is increasing due to their sound-absorbing properties.
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They are frequently used in a structure-lined design, bonded, unbounded, or mounted

close to the vibrating component. The piezo-laminated shell can be made of the

internal layer of poroelastic materials bound to the internal sensor and an external

actuator layer made of piezoelectric materials. The controller system like the one

given in Chapter 6 can be used to derive the external actuator in order to increase the

sound transmission loss from the cylinder. The poroelastic layer can be developed

based on Biot’s theory of poroelasticity. Then, by using the transfer matrix given in

Equation 6.2, and considering the continuity of different layers, the global transfer

matrix for the new structure integrated with poroelastic material can be achieved.

Using proper mechanical and electrical boundary conditions, the sound transmission

loss through the new structure can be obtained. Such structure would show higher

sound transmission loss and can be used when there is a great need for a quieter

composite structure.

In order to check the results from this work, an experimental setup should be

considered. A cylindrical shell with a poroelastic layer should be constructed. To

eliminate direct sound transmission from the inside when measuring TL, the ends

of the shell should be closed with thick end caps, which should be snugly fitted

and sealed with tapes [66]. In order to avoid the reflection of the sound scattered

waves from the walls of confined space in order to simulate the infinite medium, the

structure should be placed in an anechoic chamber [66]. An anechoic chamber is

a room designed to eliminate reflections of electromagnetic or sound waves. Such

rooms are often also isolated from other sources of energy. TL can be calculated

by installing two microphone pairs on the inside surface and the outside of the

shell at the same position [66]. White noise should be used to drive the external
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sound sources. Sound waves from the external sound source are reflected both inside

and outside the space [66]. The difficult point is to match the assumption in the

introduced STL model that only the inward wave on the two surfaces of the solid

shell is precisely measured to accurately evaluate the STL value.

It is evident that TL is calculated differently depending on the incident angle of

the plane wave used in the analysis [66]. TL can be averaged across all possible

incident angles to remove this dependency [66]. The average power transmission

coefficient τ can be calculated based on the Paris formula [203] and Equation 5.38 as

τ = 2

∫ αmax

0

Ψ(α)Sin(α)Cos(α)dα

According to the Mulholland et al. [220], the maximum incident angle should be

chosen 80. The cost of such an experimental setup will be 16.44 Cad for 1 m of

poroelastic soundproofing foam. The piezoelectric cylinder should cost 129.59 cads

for 25 mm with an 18 mm diameter. A DS3 Dodecahedron Loudspeaker needs to be

used to send plane wave incident waves which cost approximately around 2,963.84

Cad , if the inward wave can be precisely measured on the solid shell surfaces with

the finely prepared experimental setup.
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A

A.1 Anisotropic Piezoelectric Constitutive Model

The constitutive equation for a triclinic piezoelectric material in an expanded matrix

form can be written as



σrr
σθθ
σzz
σθz
σrz
σrθ


=


C11 C12 C13 C14 C15 C16

. C22 C23 C24 C25 C26

. . C33 C34 C35 C36

. . . C44 C45 C46

. . . . C55 C56

. . . . . C66





εrr
εθθ
εzz
εθz
εrz
εrθ


−


e11 e21 e31

e12 e22 e32

e13 e23 e33

e14 e24 e34

e15 e25 e35

e16 e26 e36



Er
Eθ
Ez


(A.1.1)

and


Dr

Dθ

Dz

 =

 e11 e12 e13 e14 e15 e16

e21 e22 e23 e24 e25 e26

e31 e32 e33 e34 e35 e36




εrr
εθθ
εzz
εθz
εrz
εrθ


+

κ11 κ12 κ13

. κ22 κ23

. . κ33


Er
Eθ
Ez

 .

(A.1.2)

Equation A.1.1 and Equation A.1.2 are corresponding to those of Equation 4.1.

A.2 Differential Operator

The cylindrical gradient operator, ∇, is

∇ =
∂

∂r
er +

1

r

∂

∂θ
eθ +

∂

∂z
ez. (A.2.1)
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A.3 Kinematic Relations

The Cauchy-Green infinitesimal deformation tensor in an expanded matrix form

becomes

εrr εrθ εrz
. εθθ εθz
. . εzz

 =


∂ur
∂r

1
2

(
1
r
∂ur
∂θ
− uθ

r
+ ∂uθ

∂r

)
1
2

(
∂uz
∂r

+ ∂ur
∂z

)
. 1

r
∂uθ
∂θ

+ ur
r

1
2

(
∂uθ
∂z

+ ∂uz
r∂θ

)
. . ∂uz

∂z

 . (A.3.1)

Equation A.3.1 corresponds to the one of Equation 4.3.

A.4 Conservation Laws

The expanded matrix form of conservation of linear momentum in the absence of

body force is given as

1

r

∂

∂r
(rσrr) +

1

r

∂σrθ
∂θ

+
∂σrz
∂z
− σθθ

r
= ρür, (A.4.1a)

1

r

∂

∂r
(rσrθ) +

1

r

∂σθθ
∂θ

+
∂σθz
∂z

+
σrθ
r

= ρüθ, (A.4.1b)

1

r

∂

∂r
(rσrz) +

1

r

∂σθz
∂θ

+
∂σzz
∂z

= ρüz, (A.4.1c)

where a double over-dot represents the second-order differentiation with respect

to time. Equation A.4.1 corresponds to the one of Equation 4.4. The electrostatic

charge equilibrium of a piezoelectric material in the absence of free charge density is

written as
1

r

∂ (rDr)

∂r
+

1

r

∂Dθ

∂θ
+
∂Dz

∂z
= 0. (A.4.2)

Equation A.4.2 corresponds to the one of Equation 4.5.
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A.5 Modal Coefficient Matrices

The modal coefficient elements of the piezoelectric medium, Ξ, can be written as

Ξ8×8 =

Ξ(1, 1) · · · Ξ(1, 8)
... . . . ...

Ξ(8, 1) · · · Ξ(8, 8)

 , (A.5.1)

where

Ξ(1, 1) =
(
−C25C66e11e51 − C15C66e21e51 − C16C26e

2
51 + C12C66e

2
51 + C16C25e51

e61+C15C26e51e61−C15C25e
2
61−C15C25C66ε11−C2

56 (C12ε11 + e11e21)+C55 (e61 (−C16

e21 +C12e61) + C66 (C12ε11 + e11e21)− C26 (C16ε11 + e11e61))+C56 ((C25e11 + C15e21

− 2C12e51) e61 + C26 (C15ε11 + e11e51) + C16 (C25ε11 + e21 e51))) / (r (2C15C66e11e51

C2
56

(
C11ε11 + e2

11

)
+C2

15e
2
61−2C16C15e51e61 +C2

16e
2
51−C11C66e

2
51 +C66C

2
15ε11−C55C66(

C11ε11 + e2
11

)
−2C16e11e61 +C11e

2
61 +C2

16 (−ε11)−2C56 (e61 (C15e11 − C11e51) +C16

(C15ε11 + e11e51) ,

...
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Ξ(1, 8) =
(
i
(
C16e51e52e61n+ C16e51e53e61ζr + C55e12e

2
61n+ C55e13e

2
61ζr−

C15e52e
2
61n− C15e53e

2
61ζr − C16e

2
51e62n− C55e11e61e62n+ C15e51e61e62n− C16e

2
51e63

ζr − C55e11e61e63ζr + C15e51e61e63ζr − C16C55e62nε11 − C16C55e63ζrε11 + C16C55e61

nε12 + C16C55e61ζrε13 + C66 (e11e51e52(−n)− e11e51e53ζr − C15e52nε11 − C15e53ζ

rε11 + e12n
(
C55ε11 + e2

51

)
+ −C55e11nε12 + C15e51nε12 + e13ζr

(
C55ε11 + e2

51

)
+

ζrε13 (C15e51 − C55e11) + C56 (−2e12e51e61n− 2e13e51e61ζr + e11e52e61n+ e11

e53e61ζr + e11e51e62n+ e11e51e63ζr +C16e52nε11 +C16e53ζrε11 +C15e62nε11 +C15e63

ζrε11 − C16e51nε12 − C15e61nε12 −
(
r
(
2C15C66e11e51 + C2

16e
2
51 − C11C66e

2
51 − 2C15

C16e51e61 + C2
15e

2
61 + C2

15C66ε11 + C2
56

(
C11ε11 + e2

11

)
− C55

(
C66

(
C11ε11 + e2

11

)
− 2

C16e11e61 + C11e
2
61 + C2

16 (−ε11)− 2C56 (C16 (C15ε11 + e11e51) + e61 (C15e11 − C11

e51)))),

...
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Ξ(8, 1) =
(
−C12C

2
56e11 + C12C55C66e11 + C11C

2
56e21 − C11C55C66e21 − C11C26C56

e51+C11C25C66e51+C2
16 (C55e21 − C25e51)+C11 (C26C55 − C25C56) e61+C2

15 (C66e21−

C26e61 +C16 (C56 (C25e11 − 2C15e21 + C12e51) + C26 (C15e51 − C55 e11) + (C15 C25 −

C12C55e61 + C15 (C26C56e11 − C66 (C25e11 + C12e51) + C12C56e61))/ (r (2 C15 C66 e11

e51+C2
16e

2
51−C11C66e

2
51−2C15C16e51e61+C2

15e
2
61+C2

15C66ε11+C2
56

(
C11ε11 + e2

11

)
−C55(

C66

(
C11ε11 + e2

11

)
− 2C16e11e61 + C11e

2
61 + C2

16 (−ε11)
)
−2C56 (e61 (C15e11 − C11e51

+ C16 (C15ε11 + e11e51 )))),

...
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Ξ(8, 8) = −
((
i
(
C15C66e12e51n+ C15C66e13e51ζr + C15C66e11e52n+ C2

16e51e52n

−C11C66e51e52n+C15C66e11e53ζr+C2
16e51e53ζr−C11C66e51e53ζr−C15C16e52e61n−

C15C16e53e61ζr−C15C16e51e62n+C2
15e61e62n−C15C16e51e63ζr+C2

15e61e63ζr+C2
15C66

nε12 +C2
15C66ζrε13 +C2

56 (C11 (nε12 + ζrε13) + e11 (e12n+ e13ζr))+C55 (−C11e61 (e62

n+ e63ζr+C16 (e11 (e62n+ e63ζr) + e12e61n+ e13e61ζr) + .C2
16 (nε12 + ζrε13)−C66(

C11 (nε12 + ζrε13) + e11(e12n+ e13ζr)))− C56 (C15 (e11 (e62n+ e63ζr) + e12e61 n +

e13e61ζr − C11 (e51 (e62n+ e63ζr) + e52e61n+ e53e61ζr) + (C15 (e11 (e62n+ e63ζr) +

e12e61n+ e13e61ζr − C11 (e51 (e62n+ e63ζr) + e52e61n+ e53e61ζr) + C16 (e12e51n+ n

(2C15ε12 + e11e52) + rζ (2C15ε13 + e13e51 + e11e53 )))))/
(
r
(
2C15C66e11e51 + C2

16e
2
51

−C11C66e
2
51− 2C15C16e51e61 +C2

15e
2
61 +C2

15C66ε11 +C2
56

(
C11ε11 + e2

11

)
−C55 (C66 (

C11ε11+e2
11−2C16e11e61+C11e

2
61+C2

16 (−ε11)−2C56 (e61 (C15e11 − C11e51) + C16 (C15

ε11 + e11e51))))).

Hint: The rest of the arrays of Matrix Ξ can be found on the supplementary files.
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A.6 Final System of Linear Algebraic Equation

The expanded matrix form of the transformed modal coefficients of Equation 4.18

can be expressed as



Θ(1, 1) Θ(1, 2) Θ(1, 3) −1 0 0 Θ(1, 7) 0
Θ(2, 1) Θ(2, 2) Θ(2, 3) 0 −1 0 Θ(1, 7) 0
Θ(3, 1) Θ(3, 2) Θ(3, 3) 0 0 −1 Θ(1, 7) 0
Θ(4, 1) Θ(4, 2) Θ(4, 3) 0 0 0 Θ(4, 7) 0
Θ(5, 1) Θ(5, 2) Θ(5, 3) 0 0 0 Θ(5, 7) 0
Θ(6, 1) Θ(6, 2) Θ(6, 3) 0 0 0 Θ(6, 7) 0
Θ(7, 1) Θ(7, 2) Θ(7, 3) 0 0 0 Θ(7, 7) −1
Θ(8, 1) Θ(8, 2) Θ(8, 3) 0 0 0 Θ(8, 7) 0





ur(a, ω)
uθ(a, ω)
uz(a, ω)
ur(b, ω)
uθ(b, ω)
uz(b, ω)
Dr(a, ω)
Dr(b, ω)


= 08×1.

(A.6.1)

B

B.1 Constitutive Relations

B.1.1 Constitutive relation of the orthotropic materials

As a specific case of the anisotropic material, the expanded form of the orthotropic

constitutive model can be written as



σrr
σθθ
σzz
σθz
σrz
σrθ


=


c11 c12 c13 0 0 0
. c22 c23 0 0 0
. . c33 0 0 0
. . . c44 0 0
. . . . c55 0
. . . . . c66





γrr
γθθ
γzz
γθz
γrz
γrθ


. (B.1.1)

Equation B.1.1 is the expanded form of Equation 5.8.
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B.1.2 Constitutive relation of axially polarized piezoelectric

materials

The constitutive relation of axially polarized piezoelectric materials can be written

as



Σrr

Σθθ

Σzz

Σθz

Σrz

Σrθ


=


C11 C12 C13 0 0 0
. C22 C23 0 0 0
. . C33 0 0 0
. . . C44 0 0
. . . . C55 0
. . . . . C66





Γrr
Γθθ
Γzz
Γθz
Γrz
Γrθ


−


0 0 e31

0 0 e32

0 0 e33

0 e24 0
e15 0 0
0 0 0



Er
Eθ
Ez

 ,

(B.1.2)

Equation B.1.4 is corresponding to the one of Equation 5.9. The direct piezoelectric

effect can be expressed as


Dr

Dθ

Dz

 =

 0 0 0 0 e51 0
0 0 0 e42 0 0
e13 e23 e33 0 0 0




Γrr
Γθθ
Γzz
Γθz
Γrz
Γrθ


+

ε11 0 0
. ε22 0
. . ε33


Er
Eθ
Ez

 .

(B.1.3)

Equation B.1.3 is corresponding to the one of Equation 5.11.

B.1.3 Constitutive relation of radially polarized piezoelectric

materials

The constitutive relation of radially polarized piezoelectric materials can be written

as
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Σrr

Σθθ

Σzz

Σθz

Σrz

Σrθ


=


C11 C12 C13 0 0 0
. C22 C23 0 0 0
. . C33 0 0 0
. . . C44 0 0
. . . . C55 0
. . . . . C66





Γrr
Γθθ
Γzz
Γθz
Γrz
Γrθ


−


e11 0 0
e21 0 0
e31 0 0
0 0 0
0 0 e53

0 e62 0



Er
Eθ
Ez

 ,

(B.1.4)

Equation B.1.4 is corresponding to the one of Equation 5.9. The direct piezoelectric

effect can be expressed as


Dr

Dθ

Dz

 =

 e11 e21 e31 0 0 0
0 0 0 0 0 e62

0 0 0 0 e53 0




Γrr
Γθθ
Γzz
Γθz
Γrz
Γrθ


+

ε11 0 0
. ε22 0
. . ε33


Er
Eθ
Ez

 .

(B.1.5)

Equation B.1.5 is corresponding to the one of Equation 5.11.

B.2 Matrix Operators

The matrix operator, K that relates the strain field to the Lagrangian deformation

is given as

K =



∂
∂r

0 0
1
r

1
r
∂
∂θ

0

0 0 ∂
∂z

0 1
2
∂
∂z

1
2r

∂
∂θ

1
2
∂
∂z

0 1
2
∂
∂r

1
2r

∂
∂θ

1
2
∂
∂r
− 1

2r
0


. (B.2.1)
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Equation B.2.1 is corresponding to those in Equation 5.14 and Equation 5.15.

The expanded form of matrix operators, m and M are given as

m =

 ∂
∂r

+ 1
r

0 0 0 ∂
∂z

1
r
∂
∂θ
− 1

r

0 1
r
∂
∂θ

0 ∂
∂z

0 ∂
∂r

+ 2
r

0 0 ∂
∂z

1
r
∂
∂θ

∂
∂r

+ 1
r

0

 , (B.2.2)

and

M =


∂
∂r

+ 1
r

0 0 0 ∂
∂z

1
r
∂
∂θ
− 1

r
0 0 0

0 1
r
∂
∂θ

0 ∂
∂z

0 ∂
∂r

+ 2
r

0 0 0

0 0 ∂
∂z

1
r
∂
∂θ

∂
∂r

+ 1
r

0 0 0 0

0 0 0 0 0 0 ∂
∂r

+ 1
r

1
r
∂
∂θ

∂
∂z

 . (B.2.3)

Matrix operators, m and M given in Equation B.2.2 and Equation B.2.3 are

corresponding to those in Equation 5.16 and Equation 5.17.

B.3 Modal Coefficient Matrices

B.3.1 Elastic Modal Coefficient Matrices

Modal coefficient elements of elastic medium are as follows

gn(r, ω) =

(
S

(1,1)
n (r, ω) S

(1,2)
n (r, ω) S

(1,3)
n (r, ω)

S
(2,1)
n (r, ω) S

(2,2)
n (r, ω) S

(2,3)
n (r, ω)

)
(B.3.1)

where S(i,j)
n ≡ S

(i,j)
n (r, ω) are

S(1,1)
n =

− c12
rc11

− inc12
rc11

− in
r

1
r

−ikz 0

 , S(1,2)
n =

− ikzc13
c11

1
c11

0 0
0 0

 ,
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S(2,1)
n =


c22− (c12)

2

c11

r2
− ω2ρ

in(c11c22−(c12)2)
r2c11

in((c12)2−c11c22)
r2c11

c44k
2
z +

n2(c11c22−(c12)2)
r2c11

− ω2ρ
ikz(c12c13−c11c23)

rc11

kzn(c11(c23+c44)−c12c13)
rc11

 ,

S(2,2)
n =


ikz(c11c23−c12c13)

rc11

c12
c11
−1

r
kzn(c11(c23+c44)−c12c13)

rc11
− inc12

rc11(
c33 − (c13)2

c11

)
k2
z + n2c44

r2
− ω2ρ − ikzc13

c11

 ,

S(1,3)
n =

 0 0
1
c66

0

0 1
c55

 , S(2,3)
n =

− in
r
−ikz

−2
r

0

0 −1
r

 .

Equation B.3.1 corresponds to the one of Equation 6.1a.

B.3.2 Modal Matrix of Axially Polarized Piezoelectric Mate-

rial

Modal coefficient elements of axially polarized piezoelectric material can be written

as

Gn(r, ω) =

(
W

(1,1)
n (r, ω) W

(1,2)
n (r, ω) W

(1,3)
n (r, ω) W

(1,4)
n (r, ω)

W
(2,1)
n (r, ω) W

(2,2)
n (r, ω) W

(2,3)
n (r, ω) W

(2,4)
n (r, ω)

)
(B.3.2)

in which W (i,j)
n ≡ W

(i,j)
n (r, ω) are

W (1,1)
n =


− C12

rC11
− inC12

rC11

− in
r

1
r

−ikz 0

C22− (C12)
2

C11

r2
− ω2ρpz

in(C11C22−(C12)2)
r2C11

 ,
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W (1,2)
n =


− ikzC13

C11

1
C11

0 0
0 0

ikz(C11C23−C12C13)
rC11

C12
C11
−1

r

 , W (1,3)
n =


0 0
1
C66

0

0 ε11
e215+C55ε11

− in
r

−ikz

 ,

W (1,4)
n =


0 − ikze31

C11

0 0
e15

e215+C55ε11
0

0 ikz(C11e32−C12e31)
rC11

 ,

W (2,1)
n =


in((C12)2−C11C22)

r2C11
C44k

2
z +

n2(C11C22−(C12)2)
r2C11

− ω2ρpz
ikz(C12C13−C11C23)

rC11

kzn(C11(C23+C44)−C12C13)
rC11

ikz(C12e31−C11e32)
rC11

kzn(C11(e24+e32)−C12e31)
rC11

0 0

 ,

W (2,2)
n =


kzn(C11(C23+C44)−C12C13)

rC11
− inC12

rC11(
C33 − (C13)2

C11

)
k2
z + n2C44

r2
− ω2ρpz − ikzC13

C11(
e33 − C13e31

C11

)
k2
z + n2e24

r2
− ikze31

C11

0 0

 ,

W (2,3)
n =


−2
r

0

0 −1
r

0 0
0 e15

e215+C55ε11

 ,

W (2,4)
n =


0 kzn(C11(e24+e32)−C12e31)

rC11

0
(
e33 − C13e31

C11

)
k2
z + n2e24

r2

−1
r

−ε33k
2
z −

e231k
2
z

C11
− n2ε22

r2

− C55

e215+C55ε11
0

 .

Equation B.3.2 corresponds to the one of Equation 6.1b.
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B.3.3 Modal Matrix of Radially Polarized Piezoelectric Ma-

terials

Modal coefficient elements of a radially polarized piezoelectric material can be

written as

G(1,1)
n (r, ω) = −C12ε11 + e11e21

C11ε11r + e2
11r

, G(1,2)
n (r, ω) = −C12ε11n+ e11e21n

C11ε11r + e2
11r

,

G(1,3)
n (r, ω) = −ikz(C13ε11 + e11e31)

C11ε11 + e2
11

,G(1,4)
n (r, ω) =

ε11

C11ε11 + e2
11

,

G(1,5)
n (r, ω) = 0, G(1,6)

n (r, ω) = 0, G(1,7)
n (r, ω) =

e11

C11ε11 + e2
11

,

G(1,8)
n (r, ω) = 0, G(2,1)

n (r, ω) =
n

r
, G(2,2)

n (r, ω) =
1

r
, G(2,3)

n (r, ω) = 0,

G(2,4)
n (r, ω) = 0, G(2,5)

n (r, ω) =
1

C66

, G(2,6)
n (r, ω) = 0, G(2,7)

n (r, ω) = 0,

G(2,8)
n (r, ω) =

e62n

C66r
, G(3,1)

n (r, ω) = −ikz, G(3,2)
n (r, ω) = 0,G(3,3)

n (r, ω) = 0,

G(3,4)
n (r, ω) = 0, G(3,5)

n (r, ω) = 0, G(3,6)
n (r, ω) =

1

C55

,G(3,7)
n (r, ω) = 0,

G(3,8)
n (r, ω) = −ie53kz

C55

,

G(4,1)
n (r, ω) =

C11e
2
21 + C2

12(−ε11)− 2C12e11e21

r2 (C11ε11 + e2
11)

+
C22

r2
+ ω2(−ρp),

G(4,2)
n (r, ω) = − C2

12ε11n

r2 (C11ε11 + e2
11)
− 2C12e11e21n

r2 (C11ε11 + e2
11)

+

C11e
2
21n

r2 (C11ε11 + e2
11)

+
C22n

r2
,
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G(4,3)
n (r, ω) = −iC13kz(C12ε11 + e11e21)

r (C11ε11 + e2
11)

− iC12e11e31kz
r (C11ε11 + e2

11)
+

iC11e21e31kz
r (C11ε11 + e2

11)
+

iC23kz
r

,

G(4,4)
n (r, ω) =

ε11(C12 − C11) + e11(e21 − e11)

r (C11ε11 + e2
11)

, G(4,5)
n (r, ω) = −n

r
,

G(4,6)
n (r, ω) = −ikz, G(4,7)

n (r, ω) =
C12e11 − C11e21

C11ε11r + e2
11r

, G(4,8)
n (r, ω) = 0,

G(5,1)
n (r, ω) = − C2

12ε11n

r2 (C11ε11 + e2
11)
− 2C12e11e21n

r2 (C11ε11 + e2
11)

+

C11e
2
21n

r2 (C11ε11 + e2
11)

+
C22n

r2
,

G(5,2)
n (r, ω) =

n2 (C11e
2
21 + C2

12(−ε11)− 2C12e11e21)

r2 (C11ε11 + e2
11)

+
C22n

2

r2
+

C44k
2
z − ω2ρp,

G(5,3)
n (r, ω) = − iC12C13ε11kzn

r (C11ε11 + e2
11)
− iC12e11e31kzn

r (C11ε11 + e2
11)
−

iC13e11e21kzn

r (C11ε11 + e2
11)

+
iC11e21e31kzn

r (C11ε11 + e2
11)

+
iC23kzn

r
+

iC44kzn

r
,

G(5,4)
n (r, ω) =

C12ε11n+ e11e21n

C11ε11r + e2
11r

, G(5,5)
n (r, ω) = −2

r
, G(5,6)

n (r, ω) = 0,

G(5,7)
n (r, ω) =

C12e11n− C11e21n

C11ε11r + e2
11r

, G(5,8)
n (r, ω) = 0,

206



G(6,1)
n (r, ω) =

iC12C13ε11kz
r (C11ε11 + e2

11)
+

iC12e11e31kz
r (C11ε11 + e2

11)
+

iC13e11e21kz
r (C11ε11 + e2

11)
− iC11e21e31kz
r (C11ε11 + e2

11)
− iC23kz

r
,

G(6,2)
n (r, ω) =

iC12C13ε11kzn

r (C11ε11 + e2
11)

+
iC12e11e31kzn

r (C11ε11 + e2
11)

+

iC13e11e21kzn

r (C11ε11 + e2
11)
− iC11e21e31kzn

r (C11ε11 + e2
11)
− iC23kzn

r
− iC44kzn

r
,

G(6,3)
n (r, ω) = − C2

13ε11k
2
z

C11ε11 + e2
11

− 2C13e11e31k
2
z

C11ε11 + e2
11

+
C33e

2
11k

2
z

C11ε11 + e2
11

+

C11C33ε11k
2
z

C11ε11 + e2
11

+
C44e

2
11n

2

r2 (C11ε11 + e2
11)

+
C11C44ε11n

2

r2 (C11ε11 + e2
11)

+

C11e
2
31k

2
z

C11ε11 + e2
11

− e2
11ω

2ρp
C11ε11 + e2

11

− C11ε11ω
2ρp

C11ε11 + e2
11

,

G(6,4)
n (r, ω) = −ikz(C13ε11 + e11e31)

C11ε11 + e2
11

, G(6,5)
n (r, ω) = 0, G(6,6)

n (r, ω) = −1

r
,

G(6,7)
n (r, ω) = −ikz(C13e11 − C11e31)

C11ε11 + e2
11

, G(6,8)
n (r, ω) = 0, G(7,1)

n (r, ω) = 0,

G(7,2)
n (r, ω) = 0, G(7,3)

n (r, ω) = 0, G(7,4)
n (r, ω) = 0, G(7,5)

n (r, ω) = −2e62n

C66r
,

G(7,6)
n (r, ω) = −2ie53kz

C55

, G(7,7)
n (r, ω) = −1

r
,

G(7,8)
n (r, ω) = −k

2
z (C55ε33 + 2e2

53)

C55

− n2 (C66ε22 + 2e2
62)

C66r2
,
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G(8,1)
n (r, ω) =

C11e21 − C12e11

r (C11ε11 + e2
11)

, G(8,2)
n (r, ω) =

C11e21n− C12e11n

r (C11ε11 + e2
11)

,

G(8,3)
n (r, ω) =

i(C11e31kz − C13e11kz)

C11ε11 + e2
11

, G(8,4)
n (r, ω) =

i(C11e31kz − C13e11kz)

C11ε11 + e2
11

,

G(8,5)
n (r, ω) = 0, G(8,6)

n (r, ω) = 0, G(8,7)
n (r, ω) = − C11

C11ε11 + e2
11

,

G(8,8)
n (r, ω) = − C11

C11ε11 + e2
11

,

subsection B.3.3 corresponds to the one of Equation 6.1b.

B.4 Final Solution

B.4.1 Short Circuited and Active Electrical Boundary Con-

ditions

The matrix of coefficients, An given in Equation 6.6 is expanded for the active

applied boundary conditions in the form of

An =



−ζ5 [Θ
(1,1)
n ζ6 −Θ

(1,4)
n ζ3] Θ

(1,2)
n Θ

(1,3)
n 0 0 Θ

(1,7)
n 0

0 [Θ
(2,1)
n ζ6 −Θ

(2,4)
n ζ3] Θ

(2,2)
n Θ

(2,3)
n −1 0 Θ

(2,7)
n 0

0 [Θ
(3,1)
n ζ6 −Θ

(3,4)
n ζ3] Θ

(3,2)
n Θ

(3,3)
n 0 −1 Θ

(3,7)
n 0

ζ2 [Θ
(4,1)
n ζ6 −Θ

(4,4)
n ζ3] Θ

(4,2)
n Θ

(4,3)
n 0 0 Θ

(4,7)
n 0

0 [Θ
(5,1)
n ζ6 −Θ

(5,4)
n ζ3] Θ

(5,2)
n Θ

(5,3)
n 0 0 Θ

(5,7)
n 0

0 [Θ
(6,1)
n ζ6 −Θ

(6,4)
n ζ3] Θ

(6,2)
n Θ

(6,3)
n 0 0 Θ

(6,7)
n 0

0 [Θ
(7,1)
n ζ6 −Θ

(7,4)
n ζ3] Θ

(7,2)
n Θ

(7,3)
n 0 0 Θ

(7,7)
n −1

0 [Θ
(8,1)
n ζ6 −Θ

(8,4)
n ζ3] Θ

(8,2)
n Θ

(8,3)
n 0 0 Θ

(8,7)
n 0


, (B.4.1)
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where

ζ1 = p0εn(−i)nJn(kexr rex), ζ2 = H2
n(kexr rex), ζ3 = H1

n(kinr rin), (B.4.2a)

ζ4 =
1

ρexω2

∂pIn(r, ω)

∂r

∣∣∣∣
r=rex

, ζ5 =
1

ρexω2

∂pRn (r, ω)

∂r
, (B.4.2b)

ζ6 =
1

ρinω2

∂pTn (r, ω)

∂r

∣∣∣∣
r=rin

. (B.4.2c)

The unknowns modal vector xn is written as

xn =



An(ω)
Bn(ω)

unθ (rin, ω)
unz (rin, ω)
Un
θ (rex, ω)

Un
z (rex, ω)

Dn
r (rin, ω)

Dn
r (rex, ω)


. (B.4.3)

The expanded form of the constants vector, bn is given as

bn =



−Φ(ra, ω) Θ
(1,8)
n + ζ4

−Φ(ra, ω) Θ(2,8)

−Φ(ra, ω) Θ
(3,8)
n

−Φ(ra, ω) Θ
(4,8)
n − ζ1

−Φ(ra, ω) Θ
(5,8)
n

−Φ(ra, ω) Θ
(6,8)
n

−Φ(ra, ω) Θ
(7,8)
n

−Φ(ra, ω) Θ
(8,8)
n + Φ(ra, ω)


. (B.4.4)

For the short circuited boundary condition case, the modal electrical voltage,

Φn(ri, ω), shall be equal to zero in the Equation C.1.6 (i.e. Φ(ra, ω) = Φ(rex, ω) = 0).
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B.4.2 Open Circuited Electrical Boundary Condition

The matrix of coefficients, An given in Equation 6.6 is expanded for the case of

open-circuited electrical boundary condition in the form of

An =



−ζ5 [Θ
(1,1)
n ζ6 −Θ

(1,4)
n ζ3] Θ

(1,2)
n Θ

(1,3)
n 0 0 Θ

(1,8)
n 0

0 [Θ
(2,1)
n ζ6 −Θ

(2,4)
n ζ3] Θ

(2,2)
n Θ

(2,3)
n −1 0 Θ

(2,8)
n 0

0 [Θ
(3,1)
n ζ6 −Θ

(3,4)
n ζ3] Θ

(3,2)
n Θ

(3,3)
n 0 −1 Θ

(3,8)
n 0

ζ2 [Θ
(4,1)
n ζ6 −Θ

(4,4)
n ζ3] Θ

(4,2)
n Θ

(4,3)
n 0 0 Θ

(4,8)
n 0

0 [Θ
(5,1)
n ζ6 −Θ

(5,4)
n ζ3] Θ

(5,2)
n Θ

(5,3)
n 0 0 Θ

(5,8)
n 0

0 [Θ
(6,1)
n ζ6 −Θ

(6,4)
n ζ3] Θ

(6,2)
n Θ

(6,3)
n 0 0 Θ

(6,8)
n 0

0 [Θ
(7,1)
n ζ6 −Θ

(7,4)
n ζ3] Θ

(7,2)
n Θ

(7,3)
n 0 0 Θ

(7,8)
n 0

0 [Θ
(8,1)
n ζ6 −Θ

(8,4)
n ζ3] Θ

(8,2)
n Θ

(8,3)
n 0 0 Θ

(8,8)
n −1


, (B.4.5)

where ζi (i.e. i = 1, 2, ..., 6) is given in subsection B.4.1.

The unknowns modal vector xn is written as

xn =



An(ω)
Bn(ω)

unθ (rin, ω)
unz (rin, ω)
Un
θ (rex, ω)

Un
z (rex, ω)
φnr (rin, ω)
φnr (rex, ω)


. (B.4.6)

The expanded form of the constants vector, bn is given as

bn =



ζ4

0
0
−ζ1

0
0
0
0


. (B.4.7)
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B.4.3 Feedback Control With a Closed-loop Gain Amplifier

The matrix of coefficients, An given in Equation 6.6 is expanded for the case of the

feedback control condition in the form of

An =

−ζ5 [Θ
(1,1)
n ζ6 −Θ

(1,4)
n ζ3] Θ

(1,2)
n Θ

(1,3)
n 0 0 Θ

(1,8)
n Θ

(1,9)
n 0 0

0 [Θ
(2,1)
n ζ6 −Θ

(2,4)
n ζ3] Θ

(2,2)
n Θ

(2,3)
n −1 0 Θ

(2,8)
n Θ

(2,9)
n 0 0

0 [Θ
(3,1)
n ζ6 −Θ

(3,4)
n ζ3] Θ

(3,2)
n Θ

(3,3)
n 0 −1 Θ

(3,8)
n Θ

(3,9)
n 0 0

ζ2 [Θ
(4,1)
n ζ6 −Θ

(4,4)
n ζ3] Θ

(4,2)
n Θ

(4,3)
n 0 0 Θ

(4,8)
n Θ

(4,9)
n 0 0

0 [Θ
(5,1)
n ζ6 −Θ

(5,4)
n ζ3] Θ

(5,2)
n Θ

(5,3)
n 0 0 Θ

(5,8)
n Θ

(5,9)
n 0 0

0 [Θ
(6,1)
n ζ6 −Θ

(6,4)
n ζ3] Θ

(6,2)
n Θ

(6,3)
n 0 0 Θ

(6,8)
n Θ

(6,9)
n 0 0

0 [Θ
(7,1)
n ζ6 −Θ

(7,4)
n ζ3] Θ

(7,2)
n Θ

(7,3)
n 0 0 Θ

(7,8)
n Θ

(7,9)
n −1 0

0 [Θ
(8,1)
n ζ6 −Θ

(8,4)
n ζ3] Θ

(8,2)
n Θ

(8,3)
n 0 0 k + Θ

(8,8)
n Θ

(8,9)
n 0 0

0 [Θ
(9,1)
n ζ6 −Θ

(9,4)
n ζ3] Θ

(9,2)
n Θ

(9,3)
n 0 0 Θ

(9,8)
n Θ

(9,9)
n 0 −1

0 [Θ
(10,1)
n ζ6 −Θ

(10,4)
n ζ3] Θ

(10,2)
n Θ

(10,3)
n 0 0 Θ

(10,8)
n Θ

(10,9)
n 0 0



,

(B.4.8)

where ζi (i.e. i = 1, 2, ..., 6) is given in subsection B.4.1 ([3]).

The unknowns modal vector xn is written as

xn =



An(ω)
Bn(ω)

unθ (rin, ω)
unz (rin, ω)
Un
θ (rex, ω)

Un
z (rex, ω)
φnr (rin, ω)
Dn
r (ra, ω)

Dn
r (rex, ω)
Dn
r (rs, ω)


. (B.4.9)

The expanded form of the constants vector, bn is given as

bn =
(
ζ4 0 0 −ζ1 0 0 0 0 0 0

)T
. (B.4.10)
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C

C.1 Final Solution of Viscous Model

C.1.1 Open Circuited Electrical Boundary Conditions

The matrix of coefficients, An given in Equation 8.9 is expanded for the open

circuited boundary conditions in the form of

An =



Ωn[1, 1] Ωn[1, 2] Ωn[1, 3] Ωn[1, 4] Ωn[1, 5] Ωn[1, 6] Ωn[1, 7] Ωn[1, 8]
Ωn[2, 1] Ωn[2, 2] Ωn[2, 3] Ωn[2, 4] Ωn[2, 5] Ωn[2, 6] Ωn[2, 7] Ωn[2, 8]
Ωn[3, 1] Ωn[3, 2] Ωn[3, 3] Ωn[3, 4] Ωn[3, 5] Ωn[3, 6] Ωn[3, 7] Ωn[3, 8]
Ωn[4, 1] Ωn[4, 2] Ωn[4, 3] Ωn[4, 4] Ωn[4, 5] Ωn[4, 6] Ωn[4, 7] Ωn[4, 8]
Ωn[5, 1] Ωn[5, 2] Ωn[5, 3] Ωn[5, 4] Ωn[5, 5] Ωn[5, 6] Ωn[5, 7] Ωn[5, 8]
Ωn[6, 1] Ωn[6, 2] Ωn[6, 3] Ωn[6, 4] Ωn[6, 5] Ωn[6, 6] Ωn[6, 7] Ωn[6, 8]
Ωn[7, 1] Ωn[7, 2] Ωn[7, 3] Ωn[7, 4] Ωn[7, 5] Ωn[7, 6] Ωn[7, 7] Ωn[7, 8]
Ωn[8, 1] Ωn[8, 2] Ωn[8, 3] Ωn[8, 4] Ωn[8, 5] Ωn[8, 6] Ωn[8, 7] Ωn[8, 8]


,

(C.1.1)

where,

Ωn[1, 1] =
iΓex

c (H2
n)
′
(rexΓex

c )

ω
,

Ωn[1, 2] =
kzH

2
n+1 (rexΓex

s )

ω
,

Ωn[1, 3] = −inH
2
n (rexΓex

s )

ωrex
,
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Ωn[1, 4] =Hn

(
rinΓin

c

) (
r2
in

(
kzΘn(1, 3) + iωΘn(1, 4)

(
ωρin + 2iµink

2in
c

))
− 2nωµin

Θn(1, 5) + inrinetan(1, 2) + rinΓin
c H

′
n

(
rinΓin

c

)
(2nωµinΘn(1, 5)− irin (2ω

µinkzΘn(1, 6) + Θn(1, 1)− 2ωµinr
2
inΘn(1, 4)Γ2in

c H ′′n
(
rinΓin

c

)
/ωr2

in,

Ωn[1, 5] =− irinΓin
s H

′
n+1

(
rinΓin

s

)
(rin (Θn(1, 3)− ωµinkz (2Θn(1, 4) + Θn(1, 5)))−

i(n+ 1)ωµinΘn(1, 6) +Hn+1

(
rinΓin

s

) (
r2
in (−kz) (ωµinkzΘn(1, 6) + Θn(1, 1) +

Θn(1, 2)− i(n+ 1)rin (ωµinkzΘn(1, 5) + Θn(1, 3)) + (n+ 1)ωµinΘn(1, 6)−

ωµinr
2
inΘn(1, 6)Γ2in

s H ′′n+1

(
rinΓin

s

)
/ωr2

in,

Ωn[1, 6] = inHn

(
rinΓin

s

)
(rin (ωµinkzΘn(1, 6) + Θn(1, 1)) + iωµin (2Θn(1, 4)

+nΘn(1, 5) + rinΓin
s (ωµin (2nΘn(1, 4) + Θn(1, 5))− irinΘn(1, 2))H ′n

(
rinΓin

s

)
−ωµinr

2
inΘn(1, 5)Γ2in

s H ′′n
(
rinΓin

s

)
/ωr2

in,

Ωn[1, 7] = Θn(1, 8),

Ωn[1, 8] = 0,

Ωn[2, 1] = −inH
2
n (rexΓex

c )

ωrex
,
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Ωn[2, 2] =
kzH

2
n+1 (rexΓex

s )

ω
,

Ωn[2, 3] =
iΓex

s (H2
n)
′
(rexΓex

s )

ω
,

Ωn[2, 4] = Hn

(
rinΓin

c

) (
r2
in

(
kzΘn(2, 3) + iωΘn(2, 4)

(
ωρin + 2iµink

2in
c

))
−

2nωµinΘn(2, 5) + inrinΘn(2, 2) + rinΓin
c H

′
n

(
rinΓin

c

)
(2nωµinΘn(2, 5)−

irin (2ωµinkzΘn(2, 6) + Θn(2, 1))− 2ωµinr
2
inΘn(2, 4)Γ2in

c H ′′n
(
rinΓin

c

)
/ωr2

in,

Ωn[2, 5] = −irinΓin
s H

′
n+1

(
rinΓin

s

)
(rin (Θn(2, 3)− ωµinkz (2Θn(2, 4) + Θn(2, 5)))

−i(n+ 1)ωµinΘn(2, 6) +Hn+1

(
rinΓin

s

) (
r2
in (−kz) (ωµinkzΘn(2, 6) + Θn(2, 1) +

Θn(2, 2)− i(n+ 1)rin (ωµinkzΘn(2, 5) + Θn(2, 3)) + (n+ 1)ωµinΘn(2, 6)−

ωµinr
2
inΘn(2, 6)Γ2in

s H ′′n+1

(
rinΓin

s

)
/ωr2

in,

Ωn[2, 6] = inHn

(
rinΓin

s

)
(rin (ωµinkzΘn(2, 6) + Θn(2, 1)) + iωµin (2Θn(2, 4)

+nΘn(2, 5) + rinΓin
s (ωµin (2nΘn(2, 4) + Θn(2, 5))− irinΘn(2, 2))H ′n

(
rinΓin

s

)
−

ωµinr
2
inΘn(2, 5)Γ2in

s H ′′n
(
rinΓin

s

)
/ωr2

in,

Ωn[2, 7] = Θn(2, 8),
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Ωn[2, 8] = 0,

Ωn[3, 1] = −kzωH2
n (rexΓex

c ) ,

Ωn[3, 2] =
iω
(
rexΓex

s

(
H2
n+1

)′
(rexΓex

s ) + (n+ 1)H2
n+1 (rexΓex

s )
)

rex
,

Ωn[3, 3] = 0,

Ωn[3, 4] = Hn

(
rinΓin

c

) (
r2
in

(
kzΘn(3, 3) + iωΘn(3, 4)

(
ωρin + 2iµink

2in
c

))
− 2nω

µinΘn(3, 5) + inrinΘn(3, 2) + rinΓin
c H

′
n

(
rinΓin

c

)
(2nωµinΘn(3, 5)− irin (2ω

µinkzΘn(3, 6) + Θn(3, 1)− 2ωµinr
2
inΘn(3, 4)Γ2in

c H ′′n
(
rinΓin

c

)
/ωr2

in,

Ωn[3, 5] = −irinΓin
s H

′
n+1

(
rinΓin

s

)
(rin (Θn(3, 3)− ωµinkz (2Θn(3, 4) + Θn(3, 5)

− i(n+ 1)ωµinΘn(3, 6) +Hn+1

(
rinΓin

s

) (
r2
in (−kz) (ωµinkzΘn(3, 6) + Θn(3, 1) +

Θn(3, 2)− i(n+ 1)rin (ωµinkzΘn(3, 5) + Θn(3, 3)) + (n+ 1)ωµinΘn(3, 6)− ωµin

r2
inΘn(3, 6)Γ2in

s H ′′n+1

(
rinΓin

s

)
/ωr2

in,

Ωn[3, 6] = inHn

(
rinΓin

s

)
(rin (ωµinkzΘn(3, 6) + Θn(3, 1)) + iωµin (2Θn(3, 4)

+nΘn(3, 5) + rinΓin
s (ωµin (2nΘn(3, 4) + Θn(3, 5))− irinΘn(3, 2))H ′n

(
rinΓin

s

)
−ωµinr

2
inΘn(3, 5)Γ2in

s H ′′n
(
rinΓin

s

)
/ωr2

in,
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Ωn[3, 7] = Θn(3, 8),

Ωn[3, 8] = 0,

Ωn[4, 1] = 2µexΓ2ex
c

(
H2
n

)′′
(rexΓex

c ) +H2
n (rexΓex

c )
(
2µexk

2ex
c − iωρex

)
,

Ωn[4, 2] = −2iµexkzΓ
ex
s

(
H2
n+1

)′
(rexΓex

s ) ,

Ωn[4, 3] =
2nµex

(
H2
n (rexΓex

s )− rexΓex
s (H2

n)
′
(rexΓex

s )
)

r2
ex

,

Ωn[4, 4] = Hn

(
rinΓin

c

) (
r2
in

(
kzΘn(4, 3) + iωΘn(4, 4)

(
ωρin + 2iµink

2in
c

))
−

2nωµinΘn(4, 5) + inrinΘn(4, 2) + rinΓin
c H

′
n

(
rinΓin

c

)
(2nωµinΘn(4, 5)− irin

(2ωµ inkzΘn(4, 6) + Θn(4, 1)− 2ωµinr
2
inΘn(4, 4)Γ2in

c H ′′n
(
rinΓin

c

)
/ωr2

in,

Ωn[4, 5] = −irinΓin
s H

′
n+1

(
rinΓin

s

)
(rin (Θn(4, 3)− ωµinkz (2Θn(4, 4) + Θn(4, 5)))

−i(n+1)ωµinΘn(4, 6) +Hn+1

(
rinΓin

s

) (
r2
in (−kz) (ωµinkzΘn(4, 6) + Θn(4, 1)

+Θn(4, 2)− i(n+ 1)rin (ωµinkzΘn(4, 5) + Θn(4, 3)) + (n+ 1)ωµinΘn(4, 6)−

ωµinr
2
inΘn(4, 6)Γ2in

s H ′′n+1

(
rinΓin

s

)
/ωr2

in,
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Ωn[4, 6] = inHn

(
rinΓin

s

)
(rin (ωµinkzΘn(4, 6) + Θn(4, 1)) + iωµin (2Θn(4, 4)+

nΘn(4,5) + rinΓin
s (ωµin (2nΘn(4, 4) + Θn(4, 5))− irinΘn(4, 2))H ′n

(
rinΓin

s

)
−

ωµinr
2
inΘn(4, 5)Γ2in

s H ′′n
(
rinΓin

s

)
/ωr2

in,

Ωn[4, 7] = Θn(4, 8),

Ωn[4, 8] = 0,

Ωn[5, 1] =
2nµex

(
H2
n (rexΓex

c )− rexΓex
c (H2

n)
′
(rexΓex

c )
)

r2
ex

,

Ωn[5, 2] =
iµexkz

(
(n+ 1)H2

n+1 (rexΓex
s )− rexΓex

s

(
H2
n+1

)′
(rexΓex

s )
)

rex
,

Ωn[5, 3] =
µex
(
rexΓex

s

(
rexΓex

s (H2
n)
′′

(rexΓex
s )− (H2

n)
′
(rexΓex

s )
)

+ n2H2
n (rexΓex

s )
)

r2
ex

,

Ωn[5, 4] = Hn

(
rinΓin

c

) (
r2
in

(
kzΘn(5, 3) + iωΘn(5, 4)

(
ωρin + 2iµink

2in
c

))
− 2n

ωµinΘn(5, 5) + inrinΘn(5, 2) + rinΓin
c H

′
n

(
rinΓin

c

)
(2nωµinΘn(5, 5)− irin (2ω

µinkzΘn(5, 6) + Θn(5, 1)− 2ωµinr
2
inΘn(5, 4)Γ2in

c H ′′n
(
rinΓin

c

)
/ωr2

in,
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Ωn[5, 5] = −irinΓin
s H

′
n+1

(
rinΓin

s

)
(rin (Θn(5, 3)− ωµinkz (2Θn(5, 4) + Θn(5, 5)

− i(n+ 1)ωµinΘn(5, 6) +Hn+1

(
rinΓin

s

) (
r2
in (−kz) (ωµinkzΘn(5, 6) + Θn(5, 1)

+Θn(5, 2)− i(n+ 1)rin (ωµinkzΘn(5, 5) + Θn(5, 3)) + (n+ 1)ωµinΘn(5, 6)−

ωµinr
2
inΘn(5, 6)Γ2in

s H ′′n+1

(
rinΓin

s

)
,

Ωn[5, 6] = inHn

(
rinΓin

s

)
(rin (ωµinkzΘn(5, 6) + Θn(5, 1)) + iωµin (2Θn(5, 4)+

nΘn(5, 5) + rinΓin
s (ωµin (2nΘn(5, 4) + Θn(5, 5))− irinΘn(5, 2))H ′n

(
rinΓin

s

)
−ωµinr

2
inΘn(5, 5)Γ2in

s H ′′n
(
rinΓin

s

)
/ωr2

in,

Ωn[5, 7] = Θn(5, 8),

Ωn[5, 8] = 0,

Ωn[6, 1] = 2iµexkzΓ
ex
c

(
H2
n

)′
(rexΓex

c ) ,

Ωn[6, 2] = µex

(
rexΓex

s

(
(n+ 1)

(
H2
n+1

)′
(rexΓex

s ) + rexΓex
s

(
H2
n+1

)′′
(rexΓex

s )
)
−

(
r2
ex

(
−k2

z

)
+ n+ 1H2

n+1 (rexΓex
s ) /r2

ex,

Ωn[6, 3] = −inµexkzH
2
n (rexΓex

s )

rex
,
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Ωn[6, 4] = Hn

(
rinΓin

c

) (
r2
in

(
kzΘn(6, 3) + iωΘn(6, 4)

(
ωρin + 2iµink

2in
c

))
− 2n

ωµinΘn(6, 5) + inrinΘn(6, 2) + rinΓin
c H

′
n

(
rinΓin

c

)
(2nωµinΘn(6, 5)− irin (2ωµin

kzΘn(6, 6) + Θn(6, 1)− 2ωµinr
2
inΘn(6, 4)Γ2in

c H ′′n
(
rinΓin

c

)
/ωr2

in,

Ωn[6, 5] = −irinΓin
s H

′
n+1

(
rinΓin

s

)
(rin (Θn(6, 3)− ωµinkz (2Θn(6, 4) + Θn(6, 5)))

−i(n+1)ωµinΘn(6, 6) +Hn+1

(
rinΓin

s

) (
r2
in (−kz) (ωµinkzΘn(6, 6) + Θn(6, 1) +

Θn(6,2)− i(n+ 1)rin (ωµinkzΘn(6, 5) + Θn(6, 3)) + (n+ 1)ωµinΘn(6, 6)− ω

µinr
2
inΘn(6, 6)Γ2in

s H ′′n+1

(
rinΓin

s

)
/ωr2

in,

Ωn[6, 6] = inHn

(
rinΓin

s

)
(rin (ωµinkzΘn(6, 6) + Θn(6, 1)) + iωµin (2Θn(6, 4)

+nΘn(6,5) + rinΓin
s (ωµin (2nΘn(6, 4) + Θn(6, 5))− irinΘn(6, 2))H ′n

(
rinΓin

s

)
−ωµinr

2
inΘn(6, 5)Γ2in

s H ′′n
(
rinΓin

s

)
/ωr2

in,

Ωn[6, 7] = Θn(6, 8),

Ωn[6, 8] = 0,

Ωn[7, 1] = 0,

Ωn[7, 2] = 0,
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Ωn[7, 3] = 0,

Ωn[7, 4] = Hn

(
rinΓin

c

) (
r2
in

(
kzΘn(7, 3) + iωΘn(7, 4)

(
ωρin + 2iµink

2in
c

))
− 2n

ωµinΘn(7, 5) + inrinΘn(7, 2) + rinΓin
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rinΓin
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in, ,

Ωn[7, 5] = −irinΓin
s H

′
n+1

(
rinΓin

s

)
(rin (Θn(7, 3)− ωµinkz (2Θn(7, 4) + Θn(7, 5)))

−i(n+1)ωµinΘn(7, 6) +Hn+1
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2
inΘn(7, 6)Γ2in
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(
rinΓin
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)
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in,
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(
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s

)
(rin (ωµinkzΘn(7, 6) + Θn(7, 1)) + iωµin (2Θn(7, 4)+
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in,

Ωn[7, 7] = Θn(7, 8),

Ωn[7, 8] = 0,

Ωn[8, 1] = 0,
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Ωn[8, 2] = 0,

Ωn[8, 3] = 0,

Ωn[8, 4] = Hn

(
rinΓin

c
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(
ωρin + 2iµink

2in
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−
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in,
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The unknowns modal vector xn is written as

xn =



An(ω)
Bn(ω)
Cn(ω)
Dn(ω)
En(ω)
Fn(ω)
φn(ra, ω)
φn(rex, ω)


. (C.1.2)

The expanded form of the constants vector, bn is given as

bn =



(−i)n+1εnpoΓex
c J
′
n(rexΓex

c )
ω

i(−i)nnεnpoJn(rexΓex
c )

ωrex

(−i)neizkzkzεnpoωe−izkzJn (rexΓex
c )

−2(−i)nµexεnpok
2ex
c Jn (rexΓex

c )− 2(−i)nµexεnpoΓ
2ex
c J ′′n (rexΓex

c ) +
i(−i)nωρexεnpoJn (rexΓex

c )

−2(−i)nnµexεnpo(Jn(rexΓex
c )−rexΓex

c J
′
n(rexΓex

c ))
r2ex

−2i(−i)nµexkzεnpoΓ
ex
c J
′
n (rexΓex

c )

0

0



. (C.1.3)

C.1.2 Short Circuited Electrical Boundary Condition

The matrix of coefficients, An given in Equation 8.9 for the case of short-circuited

electrical boundary condition can be written in the form of
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An =



Ωn[1, 1] Ωn[1, 2] Ωn[1, 3] Ωn[1, 4] Ωn[1, 5] Ωn[1, 6] Πn[1, 7] Πn[1, 8]
Ωn[2, 1] Ωn[2, 2] Ωn[2, 3] Ωn[2, 4] Ωn[2, 5] Ωn[2, 6] Πn[2, 7] Πn[2, 8]
Ωn[3, 1] Ωn[3, 2] Ωn[3, 3] Ωn[3, 4] Ωn[3, 5] Ωn[3, 6] Πn[3, 7] Πn[3, 8]
Ωn[4, 1] Ωn[4, 2] Ωn[4, 3] Ωn[4, 4] Ωn[4, 5] Ωn[4, 6] Πn[4, 7] Πn[4, 8]
Ωn[5, 1] Ωn[5, 2] Ωn[5, 3] Ωn[5, 4] Ωn[5, 5] Ωn[5, 6] Πn[5, 7] Πn[5, 8]
Ωn[6, 1] Ωn[6, 2] Ωn[6, 3] Ωn[6, 4] Ωn[6, 5] Ωn[6, 6] Πn[6, 7] Πn[6, 8]
Ωn[7, 1] Ωn[7, 2] Ωn[7, 3] Ωn[7, 4] Ωn[7, 5] Ωn[7, 6] Πn[7, 7] Πn[7, 8]
Ωn[8, 1] Ωn[8, 2] Ωn[8, 3] Ωn[8, 4] Ωn[8, 5] Ωn[8, 6] Πn[8, 7] Πn[8, 8]


,

(C.1.4)

where,

Πn[1, 7] = Θn(1, 7),

Πn[1, 8] = 0,

Πn[2, 7] = Θn(2, 7),

Πn[2, 8] = 0,

Πn[3, 7] = Θn(3, 7),

Πn[3, 8] = 0,
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Πn[4, 7] = Θn(4, 7),

Πn[4, 8] = 0,

Πn[5, 7] = Θn(5, 7),

Πn[5, 8] = 0,

Πn[6, 7] = Θn(5, 7),

Πn[6, 8] = 0,

Πn[7, 7] = Θn(7, 7),

Πn[7, 8] = −1,

Πn[8, 7] = Θn(8, 7),

Πn[7, 8] = 0,
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The unknowns modal vector xn is written as

xn =



An(ω)
Bn(ω)
Cn(ω)
Dn(ω)
En(ω)
Fn(ω)

Dn
r (ra, ω)

Dn
r (rex, ω)


. (C.1.5)

The expanded form of the constants vector, bn is given as

bn =



(−i)n+1εnpoΓex
c J
′
n(rexΓex
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ω

i(−i)nnεnpoJn(rexΓex
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−2(−i)nµexεnpok
2ex
c Jn (rexΓex

c )− 2(−i)nµexεnpoΓ
2ex
c J ′′n (rexΓex

c ) +
i(−i)nωρexεnpoJn (rexΓex

c )

−2(−i)nnµexεnpo(Jn(rexΓex
c )−rexΓex

c J
′
n(rexΓex
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r2ex

−2i(−i)nµexkzεnpoΓ
ex
c J
′
n (rexΓex

c )

0

0



. (C.1.6)
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