DESIGN AND VERIFICATION
OF A SYSTEM-ON-CHIP

PACKET CLASSIFICATION IMPLEMENTATION

by

Doug Cornelsen

A Thesis
Submiitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements of the Degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Manitoba

Thesis Advisor: R. D. McLeod, Ph.D.

© Doug Cornelsen, June 2007

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES

2

X

COPYRIGHT PERMISSION
DESIGN AND VERIFICATION
OF A SYSTEM-ON-CHIP

PACKET CLASSIFICATION IMPLEMENTATION
BY
Doug Cornelsen
A Thesis/Practicam submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

MASTER OF SCIENCE

Doug Cornelsen © 2007

Permission has been granted to the University of Manitoba Libraries to lend a copy of this
thesis/practicum, to Library and Archives Canada (LAC) to lend a copy of this thesis/practicum,
and to LAC’s agent (UMI/ProQuest) to microfilm, sell copies and to publish an abstract of this
thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied
as permitted by copyright laws or with express written authorization from the copyright owner.

Abstract

Packet classification (PC) is the problem of matching incoming packets at a router against a
database of rules or filters. The rules specify a directive for incoming packets, and provide a
means of implementing new services such as Quality of Service (QoS) guarantees. While many
schemes have been proposed, to solve the multi-dimensional problem, none of them scale well
beyond two dimensions in terms of speed and or rule size. As well, most schemes disregard
updates, the ability to perform rule set modification, in order to increase throughput performance.
This thesis presents a new scheme that decomposes the multi-dimensional problem into a set of 2-
dimensional queries. Every 2-dimensional query can then be solved in parallel, each returning a
set of possible solutions, which are intersected to find the best match. The 2-dimensional scheme
is built upon a combination of prior research yet exhibits some unique features. Specifically,
Compressed Bit-Vectors (CBV) a modification of the Lucent Bit-Vector (BV) [1] and Aggregated
Bit-Vector (ABV) [2] schemes are introduced into a B-tree structure. The first dimension of the
B-tree structure is split into four levels, referred to as buckets, into which rules are inserted based
on rule characteristics. CBVs are stored in the second dimension of the B-tree structure and are
returned as a result of a search. When a search is performed four CBVs are returned and then
combined to produce one result. This thesis describes the verification and implementation of this
new multi-dimensional approach using the Canadian Microelectronics Corporation (CMC)
Rapid Prototyping Platform (RPP). An analysis of performance and scalability metrics obtained
from extensive testing is provided along with a determination of Application-Specific Integrated
Circuit (ASIC) implementation performance. The analysis shows the multi-dimensional scheme
scales well with regard to memory usage and when implemented in an ASIC could sustain a

Gigabit Ethernet (GE) line rate with packets of average size.

Acknowledgements

Many individuals and organizations were in involved in this thesis and deserve to be
acknowledged. Firstly I would like to thank my advisor from the University of Manitoba Dr. R.
D. McLeod for his patience and guidance throughout the course of the project. His involvement
with the Canadian Microelectronics Corporation (CMC) proved invaluable in obtaining

development hardware and resources for the project.

I would also like to thank the staff at TRLabs. In particular, Jeff Rohne and Jeff Diamond for
the opportunity to work in such an excellent research environment. TRLabs also provided the
project suggestion from lead industry sponsor PMC-Sierra. Additionally, I would like to thank
both the National Sciences and Engineering Research Council (NSERC) and TRLabs for
partnering and providing funding for this thesis. TRLabs also partnered with the University of
Manitoba to provide the development tools which enabled the FPGA work performed in this

thesis.

Without the support of CMC the implementation work performed in this thesis would
certainly have not be at the level it is. CMC provided a Rapid Prototyping Platform (RPP),
RLDRAM FPGA development board, ARM software development tools and RLDRAM
controller intellectual property. In particular I would like to thank Hugh Pollitt-Smith for his

assistance and involvement in this thesis.

Primarily, I would like to thank my research colleague Clint Stuart for his contributions to the
design specifications and software-hardware integration. Clint provided many of the ideas and
concepts for the thesis as well as designing the majority of the hardware and simulation

environment.

I'would also like to acknowledge the assistance provided by PMC-Sierra, Vansco Electronics
and IDERS for this project. Finally, I would like thank my wife Jessica for her support and

encouragement during my Masters research.

Table of Contents

AADSITACE ..ttt ettt a et ettt r e e s e st b e e eh et b beeat et s easeR st sentenrenteaneesentereen s e te s earssaeeteereens 1
ACKNOWISAZEINEITS ...ttt st e st sa e e ebaes e tsebaeteetsessassassensessessonsan iii
J B 61 1s (oo 13o15 1o AU O OO OO O OO OO 1
1.1 REPOIT SIUCTUIC. c.e et cetererecerrereeeetereeitste st eteste et e st e st te e et e s sesb e st stese e s st e st sbe st abestannebeseansssesetanenns 3

2 Background INfOrmMAtiOncociiiiiiiiiecii ettt ettt e rb et e e e r ettt eneereerens 4
2.1 Classification Problem.. ..ottt ts ettt sa e ev e et e b eneeereerens 4

2.2 MatChING SEYLES .oeeiieeiie ettt ettt b e bt ta bbbt e e st easeebe st enbas e naearenes 4

2.3 Design CONSIAETAIONSo.viterteriietertaeiertairrertestes s sses e tessassessessesssensesessesssesesseestesseasessesesasessenes 4
2.3.1 Performance TaIZELScccerurrtriieriiieeieiieeeie et erre s e e eresa e eressaessessesraraeanesannees 7

2.4 Previous WOTK ..ottt et st b e e re et e et e et reereetaeresesssas st eebenes 8
2.4.1 Software Tree SIUCTUIES......cccveeeriereieirereietereerereerreresersiesesesesessessessssssssssssessssensenen 8

24.2 Hardware Based Bit-Vector SChemescccorenverininniniissie s ceeeeseneseeeesenas 12

243 SUIINIATY ... eoueiereenreeteatersteetteteastarsesreessasssessesstesssesssessessssesssssesssesassssasssesssssasesasesses 14

3 Design SPECITICATION ..o.eoiviiiiererieirieiecee ettt ettt ettt sttt s e ere s ese s e s et et es st e s aress s erareeseseaen 15
3.1 OVEIVIEW .entitiiteriieieerttete ettt ettt e bt steete st e s e e e e st eseeseassesseseansesbestansestsabasssbeateassebsessernessassessrasas 15
3.1.1 2-Dimensional Software Searchccoceveiiriiereenieieircieeieeceereieeseeeneveesesaessecens 16

3.1.2 Hardware Based INtersECtionccccvcirirecereeririrerirreerenieesiesress st erese et vseveessassennas 16

3.1.3 Bucketing Enhancementc.cccceveiieiniiinirrieei st sie e sresiesveereseseens 18

3.2 Build SEQUENCEeotiii ittt sttt asae bt e beereebeereeasarseanas 19

33 Search EXamPIe ..cc.ciriiciii ettt n s 21

3.4 Operation COMPIEXILY «..eeceeeeerrireieernerseesirsreseeseesteetesseesteestesseesseestesssesssessessessessessrseessenses 26
3.4.1 Search Time COMPIEXILY ...ccceourrtriiiriiriaie e e e et saestessessesarabessesseseeerens 26

3.4.2 Build Time COmMPIEXILYceoerrereeierientiieniertaniesteniese e essesessessnessssaasssssesrssessessnns 27

343 Memory Use COmPIEXILY....ccocurrtririienienaaentrseeeeriresrsresessescaseseseesseseessesssssansessens 28

4 Design Environment and Platformmcccooe it 29
4.1 ARM Integrator/AP ASIC Development Motherboardccccovevieeiniiccincceeceeeee e 30

4.2 ARM Integrator/CMTTDMI....c.cccoiiiiiniiriennnieereeteeeseeeresssereessassessesrssasasessssesesessneseesseseenenes 33

43 ARM Integrator/ LT-XC2VE000+ccovvieie ettt te et et evenn s ses s ereenesreeneesesens 35

44 Memec MC-XIL-RLDRAM Controller and Board..........ccccceoiiieecviieininniseeceensese v 37

4.5 Custom Interface BOard.......ccocieiiiriiiiiiec ettt ettt et e 38

S SYSIEIM DIESIGN ettt ettt e e be e b e n e b e e b et saee saeerbeeneseresententeaes 40
5.1 Design ReSponsibilitiesc.ccccierriiriieririrereiece vt ste et st este et eres e et te e esesse e e eseenees e eeanens 40
5.1.1 Hardware/Software Design FIoW......ccocoiiiiiriiii et 41

5.2 Hardware Design and Implementationc..ccoveveiriiniresisienieiniesiesinii e seessessssesessesesessessens 43
5.2.1 Design MethodOLOZY ...coiiiirieieieieeiereis ettt n e seeess et e e e nana s 43

5.3 HardwWare OVEIVIEWcccooerieeeeeeceeieeereeteerereeeestesesstestesasae st estessesresresteessereeseoreesesseentonsonsessens 43
5.3.1 Hardware BIOCKSccoiiiiieiiiiiieiiecteeie e vt 44

54 Software Development and Implementationc..cocveevveveieeerieiieiiniiese et cve e eeeseeeens 48
54.1 Design MethodOIOZY ..c.cocviiiiiiiireerireeieisitetectreeteeteteee et esteeree e seeeseereaneernenesseenes 48

5.4.2 Menu DeSCrIPLON co.ueiertiieriseirie sttt ee et sn s seare s st sssessesaes e sressnessessassons 50

543 Software Design ISSUEScocveerirririerieieriiiciesise sttt re et srees e sre s etestanserens 54

544 FIHE IOttt et b e bt et eae et ra e 62

-iv-

5.4.5 Software Function DeSCriptions........cceeoroeerrrrrnvrersessrsnesrecsienssesserenesessrssesesesnsres 63

0 VEIICAION ..ottt ettt ettt b et ts ettt et s e et enenestssete st et esentsese s et eeennaes 78
6.1 HardWare VerifiCatiON........coeoivuicueiiuiicriitiietire ettt st sttt sttt eeee e neseeenenesane 78

6.2 SOfIWAre VErifICatiOn . .ccveciriiiriiietirieiectitete et ettt st es et et e eneeeeeenesneneene 78

6.3 Packet Filter Algorithm Verification..........cuveeeuieieiiiiiciece et 79
6.3.1 Step 1 : Rule Generationc.cooeeeireeeirenrieieresiecrerestesieestesserssteseereessreesestoreessssosesnas 79

6.3.2 Step 2 : Building the Search Structures and CBVSc.ocvevvvvvceeivieiieeee e 83

6.3.3 Step 3 : Producing Test FIles.......cocveverrerrrierririeeriiieeieercees et 84

6.3.4 Step 4 : Search OPEratiOons......oovveuevieieeeirierererereeeeceeereeeerereessetsseeessesessesesseesseseseses 85

6.3.5 Step 5: SIMUIATION . ..cvveeiiierieirieietectee et et et e et ete et et et eeeesereeere st essebeseatesesesoneseeneo 86

6.3.6 Step 6 : Final Verificationcocoeverieeccreece vttt e e s senes 87

T RESUIS ettt ettt e b e r bbb bbb e b e bbb ts e e n e et en e e et en et et st e anene 89
7.1 Perimeter RUIE MOGEL.....ccooiviiiiiicinieicieeee ettt et se et v ent e v st st enne 89

7.2 Statistical DIStIDULIONSveeieriiteeieietcereeet ettt srs st st e ee e eene 90
7.2.1 Inbound IP RUIEScccveiiiiiiiieiiiricict ettt ettt re b 90

722 Outbound IP RULES.......ocvvircrriiiniiiietct sttt vttt ettt eeac e b r s sasssoss 91

7.2.3 Inbound and Outbound POrtS.......cccciiceeiiiieiciiiieceieieeee et tsb e 91

7.2.4 Inbound Rules Detailed DesSCriptionc..eeoreeiverveririircreceicrecineiere e sreeeans 93

7.2.5 Outbound RUIESouivveiiiiieieii ettt e et e re et seen et e ses s 99

7.3 Performance ANALYSISocvieiririeeieiieeieeetcee st ettt ettt et r et es et ettt st et e eeenenes 100
7.3.1 BeStFIEld Order....cccoocviiriiieiiiieieie ettt s s saenne e 100

732 PLOES cirieiieerieistet ettt ettt ettt et et rnen et en b et et ebe st st et et ant et a s emeeeeaeereneenens 102

733 GIOWHH RALE...coiiieeieiricieeseeece ettt ettt ettt te et e erete et es e te st esssteeseaens 107

7.3.4 Software B-tree Node Searchescccovioviuieuieeeceecrieciecieeesise st 112

7.3.5 CBV Retrieval THIICccoceoirieeieirieicesee ettt ettt 115

7.4 Random Rule MOGEL.....c.coviiiieiniiiiiceieectetete ettt e ve sttt st st b e eenanen 117
7.4.1 Growth Rate & Hardware Search Timeccovvevvevevreeer i 119

7.4.2 Software Search TIMe.......ccoeeivieieiiiiiieceiteee ettt st 119

7.5 Estimated ASIC Performancec.ccoouuiuieuiiirieerictieteeetee et eaesess st sve e en e ene 121
7.5.1 System Throughput ReqUIrementccovevvervreierivrereseeieseeec e 121

7.5.2 Software Search Performance ReqUirements.c.cceeveverivenrerererereireereeeserenenns 122

7.5.3 Hardware Performancecoccoveeieieiericieieeievcteccene e ee s es ettt enesens 123

8 Future DeVEIOPIMENLc.cuouiiiiiiiirii ittt sttt ettt sa st et b bt ba st e s s s s st erereneresesansssaesenens 125
8.1 AddIIONal TESESceveciiririiieiiiee ettt ettt te et r bttt ettt st e s en e s e enen 125

8.2 Modifications t0 AlGOIItIINS . .ivuecreiriecreriieictet ettt s et er e er et sttt st e e s e enenesneeereenea 125

8.3 Modifications t0 HATAWAIEcovvveeiiererierreree ettt ettt st s et ess s 126

O COMCIUSION. 1.ttt sttt ettt ettt e et et e e seeaes et etenseseaes e st ot esnasesesssssesbensesoneneanenenenen 127
REFERENCES ...ttt sttt sttt et sttt et eteseeteseeseeresteseossatoss st sstosssasssestsseensnseneasentasennenenenan 129
Appendix A: File IO LISHIE....cocoeceiriiieierinrietrtiteiiee ettt e s s sttt s s ssssensssssesasess st sssssboes 130
AT CBV LISEFILE ..ottt esia ettt er et e s een st et ass e st st tens et sesemeeneanne 130

A2 CBV POINEIS FILE ..ottt sttt sttt ete et ste e eas et sneae s eenebesesbestansas 131

A3 CBV CoUNt File.....ccoiriuiiirirrerieeitseiis ettt er et ss ettt s tosasaain 132

A4 Parsed Rule List Fileccciieivierieirierieiiiiiieie ettt ettt et vt enenes 133

A.5 Search ReSUlS Flecvviiiiiiiiciecieieics ettt st 134

A.6 Search Timer RESUILS FI1Eoooviiiiiiiiecec ettt ee e e va st e e ee e e enenas 135

A.7 Pointer Timer RESUILS FIle....ocouiiiiiiieeiiii et e eeee e e eeseees 136
ALB TICE FIIE ..ottt ettt et e st e e e eaaeeeastetsesaaaaesatenesnasenesasmeeas 137
ALD TSt POINES FIlevviieeeeee ettt st eeee e st e e st teseases s aaeeesasessenasensseananan 138

“\fj~

List of Figures

FIGUIE 2-1 1 X= FIS TTEE...ceeieiieieee ettt ettt et e et ae et st e e b e te e s essese e s estesbantesbestestsensesaessensanseseensen 9
Figure 2-2 : EXample B-tre€ NOGE ...cvovveiiriieceeeceee ettt et sttt s b s e 11
Figure 2-3 : Parallel Implementation.........ccoovvveieinierieecieieesreneeissresteee e assestesteebessestseressssssessassensansennens 12
Figure 2-4 : Bit-Vector EXAMPIEccceciiieririiieiieceere ettt se s sv e n s e e ansta e as e sa e sane e 13
Figure 3-1 : Hierarchical Compression EXampleccveeiierirninnnieninientiesectes st seene e seesn e 18
Figure 3-2 : First Level B-tree Search EXamplec..cccvivvieriiierieninienieine e sieeeere e seese s sse s 23
Figure 3-3 : First Level B-tree CBV Search Result..........cccervviirreeiinerreieecteesrerare e eresesesessasnens 23
Figure 3-4 : Second Level B-tree Search EXample.........covveeivieiecinineiiienee et 24
Figure 3-5 : Second Level B-tree CBV Search ReSultccoceiviivieiiiriireceiereneeceee e 25
Figure 3-6 : Final ORed Result of Level 1 & 2 CBVS .ottt este st evs e eneevens 26
Figure 4-1: ARM Integrator Rapid-Prototyping Platform [10] ...ccccooiievirieirceeecee e vrcee s 29
Figure 4-2: Development Hardware CloSe UPc.ccuiouiiiioeieceieeceeeeeeeeee et eeve s ene st sseoneansens 30
Figure 4-3 : ARM Integrator/AP Functional Block Diagram [11] ...cccocvervveiivierinienecnniesesiecresieceneseeseens 32
Figure 4-4 : ARM Integrator/ AP Layout [11] ..ot ie e ettt esteaesteae v v e enearene 33
Figure 4-5 : ARM Integrator/CM7TDMI Functional Block Diagram [12].....ccooevveieecenenieceeereeceeesceenns 34
Figure 4-6 : ARM Integrator/LT-XC2V6000+ Logic Tile [12] ..ovceviveieriererineinreeiesreiereesiesressesvseveessenens 35
Figure 4-7 : ARM Integrator/LT-XC2V6000+ Functional Block Diagram [13]......cccceviviorivieveeeeeeenen, 36
Figure 4-8 : ARM Integrator/LT-XC2V6000+ Layout [13]...ccieceeiiieceeirererienisceeresnereeveesseeessesieersseenens 37
Figure 4-9 : RLDRAM Board Block DIagramcceeevveciiierinienienieesieieeeieieee s e st s seeseseen e ne e 38
Figure 4-10 : Custom Interface BOArd.......c.ccoirieiiiiic ettt e a s en et asnesans 39
Figure 5-1 : SOC Hardware/Software Design FIOW [14]cccociiieiiiieiecieieiecrececesecve et sre et eea et eeenens 42
Figure 5-2 : Hardware Development Components and Bus HIerarchyccococceeveveeeienieeneieresiecesce s 44
Figure 5-3 : ARM7TDMI Processor Block DIagram [16]......ccoevivuiiieeiiiiiaeeiierenrccieerestesreeveereersesesseennene 45
Figure 5-4 : ARM Firmware SUite [19]......ccceiiiiiiiiiiiieiineresisrrestescesseesrsessnesaesnasasssessensessessensesssssessenns 48
Figure 5-5 : Software Operating STAteSc..cvivevieriiireiiiierceeiecresisteetessesveerestesvesteessessesesssearesesaressenseessreons 49
Figure 5-6: MaIN IMIETIUoruiiiiiieieiiiteient ettt et e s te e ete s sees e e anaeeneeaemsase st e asessaasasenassessessansessessansenes 50
Figure 5-7: User Command Mode MENU.......c.oocivvirriiininieniiieiie e seie e sresiesese s sassesessassessesessssneseseans 50
Figure 5-8: RLDRAM Task MEMUL...c.civiciiiiiiiiieiieiiieresine e e se e seses e e et s s essebe s s snesnans 51
Figure 5-9 FIFO Tasks MENUovciirueiriieieiteieisieessiseresass s e esesseesesessesessssasaesnnsessssessessssensessssesenns 51
Figure 5-10: Packet Filter MOde METLLccevvveieeirieieiiieeeciectieve et evtesret et st esssetesasevesreeseeeseseeseenensesreens 52
Figure 5-11: TEStS IMEIIL ...eeueiuieiiierestite ettt et ettt ea e e e e s et et eeeeacaseente s e s easesaeeseeseeseasessneseasnsssassessans 54
Figure 5-12 : Memory Allocation from an Array of Blocks 0f MEMOTY......cccevvveerieciirininsnsecreevievecaeevins 55
Figure 5-13 : Circular Buffer for Storing De-Allocated Memory Elements........ccccooeeeviiieeeeieneireneeeenens 56
Figure 5-14 : Build Mode Command Packet.........cccocuveciiinieriiinieiiiiecreisieress e sses s e sesse s sesessssnens 58
Figure 5-15 : Build Mode Response PACKetc.ccvivirceiinieiieneiienie s ses e ne e 58
Figure 5-16 : OR Mode Command PACKetccvvieirieeiieririerieieiiesesisiiees e e e e sse s sesse s sessesesnans 59
Figure 5-17 : OR Mode ReSponse PACKEL........ccccoviviriririirierisiecineeresestsrise et essassessessassessessesesereneenns 59
Figure 5-18 : User Command Mode Task 1 - 4 Command Packet............ccooovveevieieieicieeeeeeee e 60
Figure 5-19 : User Command Mode Task 5 - 6 Command Packet............ccoevvveveinnieineicniincenieeeeeeeenenn 61
Figure 5-20 : User Command Mode Task 7 - 8 Command Packet..........cccevereviecineiierieercnenine e ieneenans 62
Figure 5-21 : User Command Mode Task 7 - 8 Response Packetccccveveceeeiecenreninonereieieeseseece e 62
Figure 6-1 : Rule Generator SOLWATEc.ccceieveiriiieiesreireietseesesiesesestrseresesessessessssssssssssasssensessssessasens 80

-vii-

Figure 6-2 : Rule Generation Files and Process for Inbound Rules EXamplecovovevevevrerererereevsecrieneenns 81
Figure 6-3 : Build T1ee and CBVS. ..o uiiieieieeiretistcinie sttt ib e sttt ee e eve e e e ten e e sennnnneneans 83
Figure 6-4 : Tcl Operations Linear Search Files and PrOCESS.c.oveeueeveverieieiereiiisiesciseesseeeeseeeeesnenens 84
Figure 6-5 : ARM FIlE8 80d PIOCESS ...v.vvveeriirerioiireteieeteceieteee et eeesese e s etssest s sssssseae s seeseneseseenesenesnensan 85
Figure 6-6 : Simulation Files and PrOCESScccviivieiiiiiieieticeeree sttt sttt nenee s s e s 87
Figure 6-7 : Final Verification Files and PIOCESScc.covviveuieiveteieiecteeeseceee sttt es e ee e eenreeereaneas 88
Figure 7-1 : Perimeter Rule Model NetWork TOPOIOZY...c.cvvuicririiiirerieietie ittt e ee e eenenen s 90
Figure 7-2 : Inbound Destination IP Prefix Mask Length Probability Distribution

FUDNCHIOI 11ttt e et eb et ea e et as e eeasesesreneetese st sabosesbosssasasoses 95
Figure 7-3 : Inbound Source IP Prefix Mask Length Probability Distribution Function...........cccevecveueene... 96
Figure 7-4 : Outbound 1 K RESUIS......cviieeeiieeeeeetectese st sttt st e e et e st eeee et eesesessaeeeeseseeenen 103
Figure 7-5 : Outbound 2 K RESUILS......c.vevviereieieiircrterinssrsscn s sese e eseseesnes sttt s es e anana s 104
Figure 7-6 : Outbound 4 K RESUIS.....cc.cciieieieiiiiecist ettt sttt n e s e nenee 104
Figure 7-7 : Inbound 1 K RESUILS .c.ccvviririeririerei ettt s ne s sbe sttt et ee s nenares 105
Figure 7-8 : Inbound 2 K RESUIESccueiiirieiiiriciceieeietete ettt ettt st st e en e et eneseeenenenene 106
Figure 7-9 : Inbound 4 K RESULLS ...veciiviieieeiiiieieein ettt ettt sttt ee e emeeneneeneneeeanenes 106
Figure 7-10 : Inbound Memory Growth RALe........cciiviiiicuiiiiieiciiiit it e s e esneneee 108
Figure 7-11 : Outbound Memory Growth RaAtec.ccovvieviuiiiiiiiiiicececcec et 108
Figure 7-12 : Worst-Case Growth Rate ANalysis P1ot.........ccceevivieiiiiiiiitisieeiere e eeenee e seeneeesennes 109
Figure 7-13 : Compression Ratio STASHICSvivevieiirireiicictetceetctieteee et s st sesesee e eenenenenenen 110
Figure 7-14 : Number 0f Rules Per CBV ..ottt n e aneaen 110
Figure 7-15 : Inbound Search Time Growth RAtecccoiuiciiuioiiicriicrieitiietistee e enenns 112
Figure 7-16 : Outbound Search Time Growth Rate........ccccceccviviivivieiiiceicecceeeeeeecitee st 112
Figure 7-17: Nodes Accesses for SORAWare SEarch.........cuiviciiiiiicciieceee it see e 113
Figure 7-18 : Histograms of Nodes Accesses for Qutbound Search Pairs..........ccooveeieveviioiveeeieeeeceenn. 114
Figure 7-19: Histograms of Nodes Accesses for Inbound Search Pairs............ocoveivveivoieceecrereeeeeenenes 115
Figure 7-20 : Inbound CBV Retrieval TilMecccoiiiuiiiiiiccieeeicoeceeit ettt en e 117
Figure 7-21 : Outbound CBV Retrieval TiINE ...ccccveueeieiereeeeieiete ettt ettt sttt sttt esneeonserseenene 117
Figure 7-22 : Random Search Time and Memory versus Number of Rules.......c.ocveeovevrereeveeeeeneeenns 119
Figure 7-23 : Histogram of Nodes Accessed and Average Number of Nodes Accessedcovvvevnen.. 120

~viii-

List of Tables

Table 2-1 : Typical Fields of Interest for IPv4 Packetscccoveeiireeeniiiriiieiesrssceisc e 5
Table 2-2 : Example Rules (* indicates @ wildeard) ... 6
Table 2-3 : Performance TAIZELSeeeceveerieieririniee ettt ettt e sus s e sre e s et bb e b ssn e e eas et s enes 7
Table 3-1 : BXample RULEScoviieiirrireireireii ittt s 22
Table 5-1 : Response FIFO FUNCHONSccuicvrirerneiniiiiir ittt 63
Table 5-2 : Command FIFO FUNCHONS.cccotriterieirirreiniciii sttt sr s e n et eeses 64
Table 5-3 : Linked List FUNCHOIIS ..ovvireceeeerieiesteteieceeetee i enctetse e sstssnssass e saastn e srres s asa s sranssesnsesases 65
Table 5-4 : POInt B-tre€ FUNCHIOMNS ...ccvevvvireiiceereesiesreeeseeieeseeseeesteeseesrnensesiesasesasenaseassessassssebesnsssaasssassassnaes 67
Table 5-5 : B-tree Range FUnCHONSc.covviiiiiiiniie st 70
Table 5-6 : B-tree Range Level FUNCHONSccovvverviiiiiiiiiinc ettt 74
Table 5-7 : Menu It FUICHIONS ...ouviverireeeieiereesteteeesee e sreeeresetesetesassaesresanatssssensesesnsasaesassesssensnsasasans 76
Table 7-1: Statistical distribution for IP address and ports in the perimeter model rule-set.

-3 OO OO OO SO O OO OO RORUEOROUPO PRSI 92
Table 7-2: Statistical Distribution for POItS [8] ...cvcrvrceecererierr et 93
Table 7-3; Inbound Rule Destination IP Type Probabilityccceciciivinincnieniiiire i 94
Table 7-4: Inbound Rule Source IP Type Probabilityccveeriiiiiiiiiiniiiciieei e 95
Table 7-5: Inbound Rule Source Port Type Probabilityccovivirviiiiiiiiniiiiiii i 97
Table 7-6: Most Used INbound TCP POITScccoverereriirnieeie et sis st s ssesre s s taesassenas 97
Table 7-7: Probability of Range Size for Inbound TCP Port......cccvivmimiiciiiiii i 97
Table 7-8: Inbound Rule Destination Port Type Probabilityccccveiicniiiininniiiniicnicinniee e 98
Table 7-9: Most Used Outbound TCP Ports.......ccococeiivciiiiiiniiiiiencne e drernneareenreerenrenneas 99
Table 7-10: Probability of Range Size for Outbound TCP POTt ..o 99
Table 7-11: Outbound Rule Destination IP Type Probabilityccccooeriviiininiiiniiiii i, 100
Table 7-12: Inbound Rule Destination IP Type Probabilityc.ccccveiieiiiiiiiiniin i 100
Table 7-13: Rule Field Identifler.......coovivviiierircrie ettt et st eresn st aa e nens 101
Table 7-14: 2-Dimensional Field Combinationsc.cceceiviivieviiiiiiiiiiiiiie i seessssee s escssie s 101
Table 7-15: 4-Dimensional Field Combinationsccccecevierrniirmniiciemioneie s evessssesnsssesneas 102
Table 7-16: Rule Field Identifler....cooviierieresee ettt s et bbb e 118
Table 7-17: 2-Dimensional Field CombInationscccceceeieeirinsreerinsinsiinieninsrirsesss et e snssarssssssnesons 118
Table 7-18 : Range Probability DIStHDULIONSc.crvrererirrerccrciiiniie ittt cs et 118
Table 7-19 : ASIC Performance Analysis Parameters........ccooeverreiciiiiiiiiiiinnieninieenieseesneie e assve e 121

—ix-

CBV
CMC
cPCI
DDR
DPR
DMA
EBI
EDIF
FIFO
FIS
FPGA
Gbps
GE
GEM
GOT
GUI

IANA
ICE
P
IPv4

List of Terms and Abbreviations

Aggregated Bit-Vector

ARM Firmware Suite

Advanced High-performance Bus
Advanced Microcontroller Bus Architecture
Advanced Peripheral Bus

Application Programming Interface
Area Based Quad Tree

Advanced RISC Machine

Application Specific Integrated Circuit
Bit-Vector

Compressed Bit-Vector

Canadian Microelectronics Corporation
Compact PCI

Double Data Rate

Dual Port RAM

Direct Memory Access

External Bus Interface

Electronic Design Interchange Format
First In, First Out

Fat Inverted Segment

Field Programmable Gate Array
Gigabit per second

Gigabit Ethernet

Geometric Efficient Matching

Grid of Tries

Graphical User Interface

Hardware Abstraction Layer
Hardware

Internet Assigned Numbers Authority
In-Circuit Emulator

Intellectual Property, Internet Protocol

Internet Protocol Version 4

X

LSB

RLDRAM
RPP
RTOS
SerDes
SSRAM
SoC
SwW

Tel
TCP
UDP
VHDL
VHSIC
ZBT

us

kilo binary (210 or 1024)
Lease Significant Bit
Logic Tile
Low Voltage Differential Signaling
Million Packets Per Second
Most Significant Bit
Network Address Translation
National Sciences and Engineering Research Council
Packet Classification
Peripheral Component Interconnect
Packet Filter Acceleration Assist Engine
Programmable Logic Device
Quality of Service
Random Access Memory
Reduced Latency Dynamic Random-Access Memory
Rapid Prototyping Platform
Real Timer Operating System
Serializer/Deserializer
Synchronous Static Random Access Memory
System-on-Chip
Software
Tool Command Language
Transmission Control Protocol
User Datagram Protocol
VHSIC Hardware Description Language
Very-High-Speed Integrated Circuit
Zero Bus Turnaround

Microsecond

-Xi-

1 Introduction

The growth of the Internet has created a huge commercial market, which feeds competition
between service providers. As user demands and expectations continue to rise so does the
motivation for multi-dimensional packet classification. This type of classification is necessary to
provide differentiated services and more QoS. A firewall provides a good example of a network
component providing a differentiated service. It consists of a set of rules that apply to
information usually extracted from packet header fields. The directive associated with each rule
will result in a packet being accepted or denied. In addition, the state of a flow can be monitored
from the packet header fields. This, combined with state information already maintained by the
firewall allows flow control. For example, a firewall could accept TCP packets with
synchronization (SYN) set only as part of TCP connection initiation or allow UDP packets

through only if they are responses to outgoing UDP packets.

Quality of Service (QoS) routes provides another application for multi-dimensional packet
classification. Traditional routing only uses the destination address to determine a destination,
while QoS also routes and switches using Internet Protocol Version 4 (IPv4) layer four fields.
Based on IPv4 layer four information preferential treatment can be given to certain traffic while

others may be denied.

Research Motivation

Current packet classification schemes are optimal for one or more aspects of packet
classification and require tradeoffs between search speed, update performance and storage
requirements. Typically, search speed is the first priority followed by storage requirements and
update performance. While this methodology has worked in the past, new multi-dimensional
packet classification capable of flow identification and state maintenance requires more emphasis
to be placed on updating. An adaptable packet classifier is capable of performing intelligent
operations that its static predecessor is not. As a result, one of the goals of this thesis is to find a
more balanced solution to the multi-dimensional packet classification problem that is scalable and

capable of updates while making only a modest sacrifice in search speed.
It is desired to develop a packet classifier scheme with the following characteristics:
e Scalable to large rule-sets (64K) and multiple dimensions (6 and beyond)
e Achieves good update time, storage and query time characteristics

o Works in worst-case conditions (small packet sizes)

Objective

The objective of this thesis is to verify a novel multi-dimensional packet classification
implementation using the Canadian Microelectronics Corporation (CMC) Rapid Prototyping
Platform (RPP). The implementation presented is based on knowledge gained from the review of
state of the art algorithms and from direction made by TRLabs lead industry project sponsor
PMC-Sierra. The architecture developed is to be fast, scalable, preserve the flexibility provided
by software programmability and be capable of updates. As such, the project aim is to determine
a balance between hardware optimization and programmable flexibility with the focus on
classification services useful in a network edge device. Prototyping is used as a means to provide
a baseline for determining expected performance when implemented in an ASIC. Conclusions
are made with regards to the architecture designed to meet the project objectives and on the

verification flow.

2

1.1 Report Structure

This thesis is divided into nine chapters covering the design and verification of a System-On-
Chip (SoC) packet classification implementation. In Chapter 2, background is provided on a
number of topics. First the basic packet classification problem is formulated. Next, a set of
optimal design criteria is developed providing design considerations for the evaluation of
algorithms. After the considerations are presented an outline of past literature and packet
classification approaches is given with regards to the most suitable research for this thesis.
Chapter 3 builds upon this information to outline a design specification, including an example
illustrating typical operation, and justification for design decisions made. This is followed by a
description of the development platform and design flow in Chapter 4. Chapter 5 provides a
description of the hardware and software components designed and implemented in this thesis. In
Chapter 6 the developed verification flow is shown, illustrating the steps taken to ensure proper
operation and implementation of the design specification. The result of performance testing is
outlined in Chapter 7, followed by recommendations for future work in Chapter 8 and

conclusions in Chapter 9.

2 Background Information

2.1 Classification Problem
The basic packet classification problem is well documented and described in [3] and [4] as

follows:

e A network element maintains a database of n rules for processing incoming packets.

Each rule consists of a filter and has an associated action.

e Each filter has k fields corresponding to the fields in packet headers, which it should
match. Each header field is assigned one of the three match types: exact match, prefix

match, and range match.

e If more than one filter matches an incoming packet, the tie is broken by using a priority

value assigned to each filter.

o For every incoming packet, the classification algorithm performs a search operation using

the header fields to find the best matching filter and then executes the associated action.

2.2 Matching Styles

Exact Matching: For exact matching the header field of the packet must exactly match the
corresponding rule or filter field. This type of matching may be associated with fields like the
protocol field or TCP flag field for IPv4.

Prefix Matching: In prefix matching the rule field should be a prefix of the corresponding header

field. This type of matching is amenable to IP source and destination addresses.

Range Matching: In a range match the header field must fall in a specific range outlined by the
corresponding rule field. This type of matching can be used for matching up port numbers in

ranges.

2.3 Design Considerations
The design considerations outlined in this section have been presented in the extensive

collection of papers and address the criteria for efficient packet classification [1] [5] [6] [7].

1. Throughput: Internet Service providers are building networks with link capacities of 1
and 10 Gigabits and are envisaged to exceed 40 Gigabits/s [2]. Ideally an algorithm

should be fast enough for use with these networks. This requires packet classification

throughput on the order of 1.49 million packets per second and up. Equation 2-1 shows

how this number is derived.

Equation 2-1 : Gigabit-Ethernet Throughput Calculation
Wire speed : 1 Gbps
Smallest Packet Size : 64 bytes
Interframe gap :12 bytes
Preamble: 8 bytes
1Gbps

Maximum Packet Throughput =
64 bytes +12bytes + 8bytes

=1.49 Mpps

2. Worst-case vs. Average-case: There is a widely held view that for access time
performance of packet classification, one must focus on worst-case rather than average-
case. An algorithm should have small worst-case execution times which are independent

of traffic patterns.

3. Fields: It is uncertain which headers or fields should be used to provide next generation
services. For the purpose of developing an algorithm however, it is convenient to exploit
layer three and four fields from IPv4 packets. Table 2-1 shows typical IPv4 headers used

for packet classification.

Table 2-1 : Typical Fields of Interest for IPv4 Packets

Layer Three Header Fields Layer four Header Fields
Source IP Address (32 bits) TCP and UDP Source port Numbers (16 bits)
Destination IP Address (32 bits) TCP and UDP Destination port Numbers (16 bits)
Protocol Field (8 bits) TCP flags (8 bits)
Type of Service (8 bits)

4. Number of rules to be supported: Rule databases are growing and are predicted to
increase to several million rules. In the past packet classification was used for security
and firewalling which generally led to relatively small databases on the order of a few
thousand rules. However, with the new demand for differentiated services, it is likely
that these databases may grow extremely large. Edge equipment normally maintains a
database of a million or more flows and flow association requires a lookup operation

against this large database [7].

5. Nature of rules: Table 2-2 illustrates a few simple filter rules. Current routers use rules
with prefix masks on destination IP addresses however, more general masks such as

arbitrary ranges can also be used.

Table 2-2 : Example Rules (* indicates a wildcard)

Rule Source Destination Protocol Source Destination
Address Address Port Port
A 128.121.%.* ANY TCP <321 28-90
B 196.134.2.45 192.96.* * TCP 34 <300
C 128 % * * 192.165.2.* UDP * *

6. Updating the set of rules (adaptive): The number of changes to the rules depends on the
application of the packet filter. Changes can occur as a result of a policy change or in
stateful packet filtering when a new flow is inserted or deleted. To achieve this, an

algorithm needs to perform inserts and deletes in times of 10-100 us [3].

7. Pre-computation: Pre-computation, can be defined as the process of transforming the
representation of a filter database to represent the same data in a way more suitable for a
specific classification procedure. The goal is to reduce the storage requirements or
reduce the search time. Although pre-computation can be used to optimize the results of
almost every algorithm, by conditioning the data or representing it in some convenient
form, update speed suffers. A good algorithm should attempt to look for pre-
computations and data structures that allow for incremental updates. At present no pre-

computation scheme explicitly attempts to optimize the update rates [5].

8. Priority: It is possible that some packets may match more than one rule. The rule must
allow for priorities to be imposed on these rules, so that only one of these will finally be

applicable to the packet (i.e. allows one to distinguish the lowest cost filter).

9. Hardware Implementation: For operation at very high-speed an algorithm must be
amenable to hardware implementation. The algorithm structure should seek to take

advantage of hardware parallelism and pipelining.

10. Memory Accesses: Memory accesses should be minimized since they are the main
bottleneck to performance [1]. Memory accesses are the bottleneck because the time
required to retrieve data from memory is much greater than the operating frequency of

most Processors.

11. Storage Requirements: The algorithm should achieve the required target access speed
while minimizing the amount of memory used. In order for the algorithm to scale there

must not be a memory explosion. An algorithm with memory usage which scales with a

rate of O(nk), where k is the number of dimensions, is be considered to have explosive

growth. Ideally the memory requirements should be linear, O(n).

2.3.1 Performance Targets

Given ﬁhe eleven design considerations previously outlined, Table 2-3 outlines performance
goals for packet filters. It should be noted the targets outlined provide ideal goals for the major
areas of packet filtering and do not consider the design trade-offs which usually occur. Typically,
memory usage and the time required for updates are traded off with packet throughput. This
thesis seeks to develop an algorithm which balances memory usage, update performance,

expandability to multiple fields and throughput.

Table 2-3 : Performance Targets

network edge

128K rules

2 million

10-100 microsecond

6

24 Previous Work

The focus of the background material presented in this thesis is on software and
software/hardware hybrid approaches for packet classification. As one of the main goals of this
thesis is to evaluate and develop a solution that maintains the flexibility of a software solution this
seemed appropriate. The first section of this chapter covers software based tree structures and the

second section covers hardware based bit-vectoring approaches.

2.4.1 Software Tree Structures

The development of various types of search tree structures has long been a very important
part of packet classification research. This section provides an overview of five search tree
structures found in research literature: Fat Inverted Segment Tree [4], Area Based Quad Tree [3],
Geometric Efficient Matching Algorithm [8], B-tree [9] and Grid of Tries [3].

Fat Inverted Segment Tree [4]

The Fat Inverted Segment (FIS) tree was developed to solve the 2-dimensional packet
classification problem. Like other approaches FIS views the PC problem in geometric terms.
Each rule is represented by a rectangle on a 2-dimensional grid with a specific cost.
Preprocessing is done so that when a search is performed for a point the rule, or rectangle, with

the lowest cost is returned. The FIS tree is described as follows in [4]:

“The FIS tree is a balanced, inverted t-ary tree with / levels. Each node v has a pointer to its
parent parent(v) and at most ¢ incoming arcs. The leaves of the FIS tree correspond to the
elementary intervals in order. An internal node v corresponds to the larger interval that is the

union of the elementary intervals stored at its leaves.”

Elementary intervals are simply the set of non overlapping intervals created when the rule ranges
are projected in a given dimension. Given » rules it is possible to have up to 2n+1 elementary
intervals. To build a 2-dimensional FIS tree the projections of the rectangles must be considered
in both the x and y axis. Figure 2-1 illustrates an example of the x projections for a FIS tree. In
the figure the colored rectangles represent rules and the dashed lines represent the elementary
intervals for the x axis. A search is performed by first finding the elementary interval at the top
level of nodes which corresponds to the search point. At this time a second dimension FIS tree,
pointed to by the node found in the first dimension, is searched. This second dimension FIS tree
is built using the y projections of the rules found at the first dimension node. While the nodes at

the top-level represent all of the elementary intervals not all of the rules are contained at these

nodes. The first dimension parent nodes, shown below the top-level, correspond to larger
intervals which are the union of its children nodes. In effect the top-level nodes provide a guide
for the appropriate parent nodes to search. Once all levels of the FIS structure have been

searched the rule found with the lowest cost is selected and the appropriate action is taken. The

41
FIS structure is reported to scale with complexity O(n1 n) and require approximately

(l +l)logw memory accesses for a search (w indicates width of search field) [4]. While FIS

does exhibit excellent characteristics with regard to structure size and search performance its
primary limitation is update performance. While [4] does suggest some methods to allow
improve update performance FIS is not ideally suited for a dynamic environment requiring

updates.

X Leaves

Internal nodes (parent)

Figure 2-1 : x- FIS Tree

Area Based Quad Tree [3]

Like FIS, Area Based Quad Tree (AQT) views the PC problem in geometric terms. In this
case a tree is implemented in which each node has four children to represent a hierarchically
decomposed search space. As each node has four children the tree is referred to as a quad tree.
Each child node represents one of the four squares obtained by dividing the parent square into

four equal sub-squares. When used in a two dimensional scheme the quad-tree is referred to as an

Area-based Quad Tree. Every node in an AQT at depth % has a square of size 2°27% x 23°#
associated with it. Worst-case run time for AQT search is O(wlog n) were w is the width of the

search field and # is the number of rules. The structure scales with a worst-case complexity of
O(n2)

Geometric Efficient Matching Algorithm [8]

As its name implies the Geometric Efficient Matching (GEM) takes a geometric approach to
solving the PC problem. However, unlike FIS and AQT, GEM uses more than two dimensions
for implementation and testing. When using d dimensions each field of a rule defines a particular
dimension of a d-dimensional hyper rectangle. These hyper rectangles may overlap and must be
organized into non-overlapping hyper-rectangles so a search can be performed. Searching the

developed geometric structure is done in logarithmic time and exhibits a worst-case space
complexity of O(nd) for a rule-set with 7 rules. As the search is performed in logarithmic time

per dimension the search complexity of the algorithm is O(d logn). Testing indicates when
using more than two dimensions field order has a large effect on structure size. In particular, it is
illustrated that with large rule sets and the proper field order a performance of over 1 million

packets per second can be maintained. Also introduced in the paper is the concept of a space time
trade off in which a rule-set is split into / groups of size % . By splitting the rule-set into groups
[search structures are built each of which need to be searched to produce a final result. As a

result, the search complexity becomes O(Zd log %) and the worst-case space complexity

becomes O(n%,_l)

B-tree

The B-tree is common tree structure used typically for /O operations. Background of the B-
tree is provided because it is used in many systems and is implemented in this thesis. The basic
element of a B-tree is a node containing a set of keys arranged in ascending order and a set of
pointers to link the nodes of the tree together. A node contains x keys has x-+1 pointers to connect
to other nodes. Additionally, a node contains a count of the number of keys present and a flag
indicating if it is a leaf. Figure 2-2 provides an example of a node. A standard way of referring
to a B-tree is ¢, the minimum number of keys a node can have. This is also known as the

minimum degree of the tree and is always greater or equal to two. With regard to ¢, a B-tree

-10-

follows two basic parameters:
* Every node other than the root has a minimum of #-1 keys.
e Every node can have a maximum of 2#-1 keys.
The maximum height % of an n key B-tree is found using the following formula [9]:

Equation 2-2: Maximum B-tree Height

n+l
h<log, —
29 5
Like the GEM structure a B-tree has worst-case space complexity of O(nd) and search

complexity of O(d logn) for d dimensions. More details on the B-tree can be found in [9]

including build and search operations.

Key count Leaf Flag

Key1|Key2| .. |Keyx

X Jajuiod

| Ja)ulod
-
Z Jajuiod
-
¢ Jajuiod
-
-
L+X J8ulod
-

Figure 2-2 : Example B-tree Node

Grid-of-Tries [3]

The Grid-of-Tries (GOT) algorithm performs a basic extension of the standard trie structure
to extend it for 2-dimensional rule matching. In a typical single dimension trie, used for prefix
matching, the position of the node shows the corresponding key rather than the key being stored
at the node. When used in an IP router destination addresses are used to traverse the trie structure

to find the longest matching prefix.

“Grid-of-Tries extends a basic trie to two dimensions, by maintaining two tries — a trie for
destination address and a trie for source address in the packet. Each node in the destination
trie, instead of storing a rule, now points to a relevant source trie, and each node of the source

trie contains a rule that matches the appropriate destination and source prefix pair. [3]”

-11-

GOT has worst-case search complexity of O(Zw) and worse case space complexity of O(n),

where w is the width of the field and 7 is the number of rules. While these complexities are low it

should be noted this structure only works for prefix matching and not range matching.

2.4.2 Hardware Based Bit-Vector Schemes

Lucent Bit-Vector Scheme [1]
This algorithm uses a divide and conquer approach in which a d dimensional problem is
separated in 4 one dimensional problems. A binary search is used to find a result for each one

dimensional problem with O(logn) search complexity. The results are then combined by

performing AND operations on resultant bit-vectors from all dimensions as seen in Figure 2-3.
This scheme is hardware oriented and requires the use of large buses (1000 bits wide). It is
shown in [1] that the bit-vector intersection step requires examining each of the rules at least once
thus requires O(n) execution time, where 7 is the number of bits in the bit-vector. The use of bit

level parallelism does accelerate the execution time but is only reasonable for small rule-sets [1].

The space requirements for this algorithm are O(n2) where » is the number of rules.

Result
AND -
A
Dimension 1 Dimension 2 Dimension D
Processing Element Processing Element Processing Element
A A A
Y Y \
Intervals/Bitmaps Intervals/Bitmaps Intervals/Bitmaps

Figure 2-3 : Parallel Implementation

Bit-Vector intersection Problem

Given a set of / binary vectors vq,.....v; each of length n , the problem is to find which

elements are positively common to all vectors. Each vector represents one of d dimensions where

d is an integer. The case d=1 is the trivial case, and d=2 is the experimental case. This case has

12-

been selected for further testing because a significant amount of previous research has been
performed in the area of two dimensional schemes, particularly for routing and IP forwarding,
where the IP source and destination address are the two fields of interest. Figure 2-4 provides a

simple example of matching up two bit-vectors to find applicable rules.

1{0 11011
110 11110
110 1/{0(0

Figure 2-4 : Bit-Vector Example

With all applicable rules found, the one with the highest priority will determine which one is
applied. The real problem is how to find the common pairs or elements in a timely and efficient
manner. Lucent Bit-Vector [1] uses bit-level parallelism to solve this problem while the

Aggregated Bit-Vector [2] uses aggregation.

Aggregated Bit-Vector [2]

The Aggregated Bit-Vector (ABV) scheme is based on the bit-vector scheme (BV) described
previously. It makes two distinct contributions, the recursive aggregation of bit maps and filter
rearrangement. The paper [2] suggests it takes logarithmic time for many databases.
Aggregation is used to reduce the memory accesses, based on the assumption that the number of

set rules in the bit-vector will be very sparse.

In this scheme, each bit-vector is represented by an aggregate BV with word size 4. Each bit
in this vector then represents n/4 elements in the bit-vector where # is the number of bits in the
bit-vector. If nothing is set in a range it contains a zero. The ABV is then the OR of the
corresponding bits in the BV. This process can be repeated at multiple levels. The goal of this
system is to effectively construct the bit map intersection without looking at all of the leaf bit map

values for each field. This allows one to quickly filter out bit positions where there is no match.

Rearrangement is used to localize matches creating sparser matches in the ABV. However,
vectors must be stored to retain the mapping of priorities. The time required for an insertion or
deletion of a rule is similar to the BV scheme. This is because the ABV is updated each time the
associated bit-vector is updated. The updates can be expensive because adding a filter can

potentially change the bit maps of several nodes.

13-

243 Summary

Overall the background material illustrates no particular tree structure is ideally suited for
multi-dimensional packet classification. In particular, most schemes are suited for 2-dimensional
classification and do not scale well beyond this limit. The one distinction is GEM but it has

worst-case size complexity of O(nd). While the hardware bit-vectoring schemes scale well to a

large number of dimensions they do not scale well in terms of the number of rules. As the

number of rules grow the memory required for bit-vector storage becomes prohibitive.

-14-

3 Design Specification

3.1 Overview

When producing a system design specification it is important to first identify the primary
goal. As outlined in the introduction the primary goal of this thesis is to implement and verify a
fast, flexible, scalable and novel approach to multi-dimensional packet classification problem
with the CMC RPP. The specification outlined in this section strives to meet this goal while
taking into account the design considerations specified in Section 2.3. Like most thesis projects
compromises are made with respect to implementation complexity and time availability. In
particular, a representative implementation based on the RPP is outlined with the end goal of

determining performance scalability based on an ASIC.

After a review of previous work in the field it is clear a fast, flexible and scalable method for
a completely arbitrary multi-dimensional classifier is difficult to find. It is also clear that no one
search scheme can meet all the considerations to produce an ideal packet classification design.
Compromises need to be made based of the target environment and the design goals. The result
is a design which combines several techniques to achieve balance with regard to the design
considerations and the major goal of implementation and verification using the available

hardware.

It is proposed to break the typical multi-dimensional packet classification problem into
multiple 2-dimensional problems and then perform an intersection operation on the solution sets.
This decision is made for two main reasons. Firstly, 2-dimensional schemes have been known to
scale well, with respect to speed and memory usage, to a large number of rules. However,
beyond two dimensions packet classification does not scale well. Potentially one, two or three
different 2-dimensional schemes can be used in a typically system. For example, something like
a Grid-of-Tries (GOT) in paper [3] can be used for the source and destination IP addresses where
both fields contain prefixes. A different scheme can then be used where ranges are important
such as in the port addresses field. It is somewhat intuitive to use different forms of classifiers for
the three forms of matching Exact, Range and Prefix. Secondly, when coupled with a group of
software based 2-dimensional schemes, hardware based intersection has the potential to provide

for a high performance, flexible and scalable solution.

-15-

3.1.1 2-Dimensional Software Search

No speculation is made as to which services should be provided or as to which headers or
fields should be used to provide the services of the future. Effort is focused on a more general
problem, how to find the appropriate rules, having fields either solely or a mixture of exact, prefix
or range matches, from a multi-dimension rule-set. As a goal is to provide a generic solution
with a balance of speed and update performance a B-tree structure is used for the software search.
The B-tree structure is an attractive solution because unlike many other 2-dimensional search
structures it supports updates. Many algorithms, like FIS [4], sacrifice updates to benefit speed
and require a large amount of pre-computation to build the search structure. As inserts and
deletes are required for a system which could potentially be used for stateful packet classification
the B-tree is seen as good solution for the 2-dimensional software search structure. As well, a B-
tree structure has tunable performance, by adjusting the size of the B-tree node the height of the
tree can be tuned to change the worst-case number of nodes accessed during a search. It should
be noted a B-tree with a ¢ value of 3 has been selected for use in this thesis. This means each

node has room for five keys and six pointers.

Another important feature of the B-tree is its performance in a system with a large cache line.
As mentioned earlier in section 2.4.1 a B-tree is made up of nodes containing a number of keys
examined to find the desired search point. If the search point is not found at a node then the keys
are used as guides to determine which pointer should be followed to the subsequenf search node.
A B-tree node will typically be built as a data structure found in a continuous space in memory.
This is as opposed to finding all of the keys spread out throughout the system memory. A
significant performance gain is made when data structure access can be made with one or more
burst operations into a high-speed memory like a cache. The processor is then able access the

data structure, with little latency, from the cache.

3.1.2 Hardware Based Intersection

The solutions from each of the 2-dimensional searches then produce a pointer to a bit-vector
stored in a high-speed memory. As expected the bit-vectors contain a representation of the rules
found to match a particular search. At first glance a scheme based on bit-vectors may not seem to
be the optimal choice because of large storage requirements and lengthy intersection operations.
The prohibitive storage requirements illustrated in [1] and [2] show both Lucent BV and ABV
require large amounts of memory for bit-vector storage. For bit-vectoring to be used successfully
some method of compression needs to be used to mitigate these large storage requirements. Of

course, for compression to be attractive the bit-vectors must have the appropriate properties. The

-16-

primary reason a compressed bit-vectoring scheme is chosen is because research [2] has shown

large rules sets typically only contain a handful of rules which match each incoming packet.

The compression scheme selected to achieve a reduction in memory usage is known as
hierarchical compression. Hierarchical compression employs a tree like structure to compress the
full bit-vector into a smaller representation. Figure 3-1 illustrates the concept by providing a
small example. The top of Figure 3-1 shows the complete bit-vector in its entirety with the
colored items indicating the bits found in the compressed version. Each bit location one level
below the complete bit-vector represents a number of bits above. If nothing is set in the range of
bits represented the bit location contains a ‘0’. However, if a bit is set the bit location contains a
‘1’. When the bit-vectors are sparse a memory savings is obtained because portions containing
all ‘0’s need not be stored because they contain no information. The process of bit representation
is continued to the bottom level of the structure in which each bit represents three bits at a lower
level. It is easy to see this type of compression works well for sparse bit-vectors and provides
rapid identification of only the necessary portions of the bit-vector to check for intersection. The
number of levels chosen for implementation in this thesis is three with each bit at a lower level
representing 32 bits. This allows for bit-vectors of length 32768 to be represented using this

scheme.

The next issue to address is the large intersection operations possible with large bit-vectors.
The ABV scheme seeks to exploit the sparse characteristic of bit-vectors by using aggregation to
reduce the intersection operation as compared to Lucent BV. While the aggregation does allow
ABYV to perform an intersection operation on only a fraction of the bit-vector it still requires
storage of all complete bit-vectors. A compressed bit-vector scheme allows both the benefits of
reduced storage and intersection time at the cost of having to perform compression operations. It
is projected the memory and intersection time savings will out weigh the cost of the compression
operations. If the compressed bit-vectors are sparse enough then the intersection and
compression operations can be done at extremely fast rates. Additionally, compressed bit-vector
solutions can be combined using simple hardware and pipelined with the 2-dimensional software
searches. This allows as much time to perform the final intersection operation on the compressed
bit-vector results as is used for the 2-dimensional search done in software. As such a goal of an

implementation taking advantage of pipelining is achieved.

Furthermore, using a solution based on 2-dimensional search structure takes the next logical
step as bit-vectors should be even more sparse then produced by a 1-dimensional search structure.

As the bit-vectors will likely be sparser, the system should have greater performance. It should

-17-

be noted the performance of any packet filter system is mostly determined by the characteristics
of the rule-set. In particular, the system specified is believed to work best with rule-sets which

produced resultant 2-dimensional searches having sparse bit-vectors.

bit number

LT
9T
§T
¥C
%4

(44
|14
0z
61
81
Ll
91
Sl
14!
¢l
4!
I1
01
6
8
L
9
g
14
€
[4
1

1101

Final Compressed Bit-Vector

Figure 3-1 : Hierarchical Compression Example

3.1.3 Bucketing Enhancement
To further enhance the insert and delete potential of the system an additional approach for
breaking the rule-sets into levels is introduced. Levels can be thought of as buckets that rules are

put into as the 2-dimensional search structure is built. Each level corresponds to one of four

range sizes of a field. For example, level one is defined as a field having a range width of less 28

in the first dimension. Likewise, level two is defined as a field having a range greater or equal to

28 and less than 216, In this way each of the four levels corresponded to a different size of
ranges. Effectively this creates four different B-trees each filled with ranges corresponding to the
size specified for their level. It is clear to see in a rule-set with an equal distribution of range
sizes four B-trees will be built in the first dimension instead of just ome. This type of
implementation reduces the number of overlapping ranges as large ranges are never combined in

the same tree with small ranges. The reduction of overlapping ranges also makes insertion and

-18-

deletion of a rule quicker because the possible ranges to combine or split is also reduced. As
well, because the rules are split between four levels the CBVs will be sparser and easier to
update. The approach of splitting into levels does improve the insertion and deletion speed it also
reduces the software search speed. The search speed is lower because four trees have to be
searched instead of one. Although each of the new trees is smaller, the end effect is a longer

search as shown by using Equation 2-2. The worst-case number of nodes, before implementing

+1
bucketing, is the height of the tree, 4 <log, n—z—— After using four buckets the sum of the

1
heights of the new trees is 4 < 4log, E—g—- Using a value of 3 for ¢ and 100 for » the height

without bucketing is 3.56 and the combined height of the four trees after bucketing is 9.23. As
well, each level of B-tree searched produces a pointer to a compressed bit-vector which needs to
be combined with the others to create a complete result. Unlike the final results from the 2-
dimensional searches, which are ANDed together to find matches across dimensions, the results
from the levels are ORed together. This is because each level produces one set of the possible
matching rules. In summary, this method basically trades some of the search speed in order to

improve the update capabilities.

3.2 Build Sequence

To provide further insight into the design implementation the sequence of operations used to
build the software and hardware based search structures is described. The sequence is described
at a high level to provide a basic level of understanding with lower level details provided in

subsequent sections.

It is assumed » rules are available; each containing four fields corresponding to source IP
address, destination IP address, source port and destination port. The IP address portions of the
rules are of prefix match type and the ports are of range match type. Of the four dimensions
specified in the rules two are selected for one of the 2-dimensional B-trees. The other two fields
are selected for the second 2-dimensional B-trees. As mentioned previously each 2-dimensional

B-tree is broken up into four levels based on range size to improve update performance.

The structure for the multi-level 2-dimensional B-tree is first created in software so rules can
be inserted. When a rule is processed for insertion the field corresponding to the first dimension
of the B-tree is evaluated to determine which level the field should be inserted into. Once the

level has been determined the field is inserted into the first dimension of the B-tree. Unlike a

-19-

typical B-tree insert which would insert a number this B-tree insert actually inserts a range. Each
key in the B-tree node corresponds to a non overlapping range known as an elementary interval.

An elementary interval is simply a subspace of the complete rule space of which one or more

rules are part. For example, the IP rule space has values from 0 to 232-1, an example elementary
interval is from 1 to 3. This elementary interval can be the result of a single rule or the
intersection of one or more rules. As new rules are added to the B-tree they may overlap,
intersect, or define new elementary intervals in the B-tree structure. The process of inserting a
new rule is recursive in nature as intersections and overlaps must be handled until the entire range
of the rule has been specified. When an elementary interval, of a B-tree from the first dimension,
is added or matched to a rule the second dimension must be processed as well. Each B-tree
elementary interval in the first dimension has a corresponding second dimension B-tree. This
second dimension B-tree has exactly the same structure as the first dimension but its elementary

intervals are based on the field specified for the second dimension.

Unlike the first dimension B-tree the elementary intervals of the second dimension have a
corresponding B-tree of rule identifications. This B-tree holds all of the identifications for rules
which match the first and second dimension elementary intervals. As a rule may contain a range
which covers more than one elementary interval in the first or second dimensions its rule

identification may be found in multiple rule identification B-trees.

As each rule is inserted into the developing B-tree structure more elementary intervals are
created and the structures grows in size. Once all of the rules have been processed and inserted
into the structure the rule identification B-trees are converted into CBVs by a Packet Filter
Acceleration Assist Engine (PFAAE) contained in an FPGA. An ordered list of rules is provided,
from the rule identification B-tree, to the PFAAE to create a CBV and store it in a high-speed
memory. The PFAAE provides a pointer back to the software to insert into the location of the
rule identification B-tree. At this point the memory for the rule identification B-tree is freed
because it is no longer required. The choice to build the complete B-tree structure and then build
the compressed bit-vectors is done to simplify implementation. A system build for actual use
would build the bit-vectors dynamically as rules are inserted and deleted. This approach, while
being more flexible, was considered too complex of an implementation to fit within the time and

hardware constraints of the project.

In a typical 4-dimensional search both 2-dimensional multi-level B-tree structures would be

built on separate processors each having their own PFAAE for compressed bit-vector creation.

-20-

Unfortunately due to hardware availability issues only one processor was available providing for
only one half of the implementation. The resulting build operations for the implementation
presented in the rest of this thesis create only a 2-dimensional multi-level B-tree and the
corresponding compressed bit-vectors. To achieve the results that would be obtained from having
a full hardware system the available hardware is used to build all possible 2-dimensional field
pairs. In this way all the build information and results are obtained even through the ideal

hardware setup is not available.

3.3 Search Example

The following is an example of the search operation performed after the B-tree search
structures and compressed bit-vectors have been created. The example provided illustrates a
basic set of rules, an example incoming packet, its search through the B-tree structure, the data
flow between hardware and software and the finally the solution. Table 3-1 shows the simple
rule-set used for the example. This example employs only two levels of B-trees, the first is used
for first dimensional range widths between 1 and 2 and the second level for those range widths
greater than 2. Range width is defined as the number obtained when the start value of the range is

subtracted from the end value.

To illustrate a search operation it is assumed a packet has arrived with a value of 4 for the first
dimension and value of 32 for the second dimension. Figure 3-2 shows a partially constructed
first level, first and second dimension B-tree. The B-tree nodes illustrated are capable of holding
three keys and have four pointers to connect to subsequent nodes. The search is performed as

follows:

1. The root node of the B-tree is searched for the point 4. The three elementary
intervals found, contained in each node key, are searched from left to right until
one is found that contains 4 or is greater than 4. The elementary interval eleven
to twelve is found first and since it is greater than 4 it is known to access the node
left of the root as it contains elementary intervals less than eleven. If the pointer
would have been a NULL it would be known no elementary intervals were
created for the value of three and the search could stop. In this case a message
would be passed to the hardware OR operation to indicate the first level returned
a NULL pointer.

2. The node below and to the left of the root node is searched next to determine if 4

-21-

can be found. As before the elementary intervals of this node are searched from
left to right to find an interval which contains 4. The search reveals a match from

the elementary interval from 3 to 4.

The second dimension B-tree is now searched to find the value of 32. Like in
the first dimension search the B-tree is searched from root to leaf to find the
value. The second dimension B-tree contains only one node which is searched to
find the elementary interval from 31 to 32. This elementary interval contains a

pointer to a compressed bit-vector which contains the rules R2 and R27.

The pointer contained at the second dimension elementary interval is passed to

the PFAAE which retrieves the compressed bit-vector shown in Figure 3-3.

Table 3-1 : Example Rules

RleDD | S ot | Dimeosion
R1 1-2 33-34
R2 3-4 31-32
R3 5-6 29-30
R4 7-8 27-28
R5 9-10 25-26
R6 11-12 23-24
R7 13-14 21-22
RS 1-8 1-16
R9 1-8 18-34
R10 1-8 33-34

R11 9-16 1-2
R12 17-25 5-12
R13 26-34 3-9
R27 1-4 1-34

29

(rule list) . . . /
R2, R27 Second Dimension / First Dimension
/ root node
1-30 31-32 | 33-34 / 11-12 ameer:l\:ry
4
root node ‘/ - . S
g - \ IR
— e = "\~ e . ~ ~.
. s \ ~.a
3-4 7-8 13-14
~ . R . . .
/ \ RN YR Y _ u R ¥ Ry LY Ry
M ~
/ \‘ N
/ \ Seo
/ \ ~. ~
| 4 4 A
1-2 5-6 9-10

N N e " N A

.................. Pointer to Second Dimension
—————— - Pointer to Node

Figure 3-2 : First Level B-tree Search Example

bit number

LT
9T

11011

Final Compressed Bit-Vector

Figure 3-3 : First Level B-tree CBV Search Result

-23-

5. The exact same sequence is performed on the second level B-tree shown in

(rule list)
RS

Figure 3-4. This search also passes a pointer to the PFAAE for which it retrieves

the compressed bit-vector shown in Figure 3-5.

Once the PFAAE retrieves both compressed bit-vectors an OR operation is
performed to obtain the complete solution. The complete solution is shown in
Figure 3-6. Should the PFAAE have been passed an indication that no
elementary interval was found the OR operation would not have needed to be
performed as the solution would have been the single retrieved bit-vector.
Likewise, if an indication was provided that both searches could not find a
matching elementary interval no bit-vectors would be retrieved and there would
be no resultant match. Depending on the policy of the packet filter this would

likely result in an action to deny the packet.

’,

/

Second Dimension / ’ First Dimension

18-34 | 33-34 / 17-05 | elementary

/ root node

interval

root node 4

1-8 9-16 26-34

Pointer to Second Dimension
Pointer to Node

Figure 3-4 : Second Level B-tree Search Example

-24-

bit number

RIRIVIRIBINIRB|e|%|5|2|6|5|8|5|2|5]0|e||a]|x|s]w v~
0j0j0j0f0|{06j0|0{1|0|0Of0O|0O|0O|O|OlO0O]O|1|0O|O]|O|O|O|O]|O}O

14010

Final Compressed Bit-Vector

Figure 3-5 : Second Level B-tree CBV Search Result

7. The resultant solution is then returned to software for logging. With regard to the
actual implementation, and not the example, it would have been preferable to
provide this solution to a hardware block to perform the final AND operation but
due to hardware limitations this was not done. As mentioned earlier only one
processor was available to produce the results from one 2-dimensional search so
the implementation of the AND hardware was determined to be unnecessary.
Rather this was proposed to be done in a post processing step. The OR operation
is more complex than the AND operation and as such was seen as an adequate

measure of performance considering the two operations would be pipelined

anyways.

-25-

bit number

LT
9¢
Y4
¥Z
£C
(44
1c
0T
61
81
L1
91
Sl
14!
el
4!
I
01
6
8
L
9
S
4
€
C
1

11010

Final ORed Hierarchical Bit-Vector

Figure 3-6 : Final ORed Result of Level 1 & 2 CBVs

3.4 Operation Complexity
Given the operations previously described the complexity for the search, build time, and

memory usage is presented.

3.4.1 Search Time Complexity
As described previously the search time is broken up into two pipelined operations: a

software search and a hardware search.

The software search complexity is calculated by determining the amount of time spent at
each node of in the B-tree, multiplying by the worst-case height of the tree, and then by factoring
in the dimensions and bucketing factor. As the number of keys to search at each node is a

function of the B-tree parameter ¢, the amount of time spent at each node is of complexity O(¢) .

Multiplying by the height of the tree, h, produces a complexity of O(th). Based on Equation 2-2

the height of the B-tree is substituted to produce O(tlogt (k +%», where k is the number of

-26-

intervals. Given » rules the maximum number of elementary intervals is 2n+1. After

substitution for k£ the complexity simplifies to O(tlog, n) Taking into consideration the

dimensions, d, the complexity becomes O(d xtlog, n) Including the bucket factor results in a

reduction in the number of rules by a factor of b, but increases the number of structures searched

by b. The result is a multiplication by & and a division of # by & to produce O[b xdxtlog, %) .

For constant values of b, d, and ¢ this is reduced to O(log, n)

The hardware portion of the search operation is quite a bit simpler to derive. The most
complicated operation found in hardware is the OR operation. The OR operation is performed on
bit-vectors with a maximum size of n, where n is the number of rules. The worst-case operation
is to perform an OR operation such that all n bits are examined. As such, the worst-case

operation is a function of n, and is therefore O(#n).

Given that the complexity of the search operation is simply the largest of the complexities of

the software and hardware operations the complexity of the search operation is O(n) .

3.4.2 Build Time Complexity
Like the search complexity the build complexity can be broken down into a software and a

hardware component.

The software portion of the build complexity is calculated by considering the complexity to

insert a single item into the B-tree structure. The complexity to insert a range into a single
dimension of the B-tree is O(logt n), where n is the number of rules and ¢ is the B-tree
parameter. Given the maximum number of ranges to insert is a function of n the complexity

becomes O(n log, n) Taking into consideration both dimensions of the B-tree the complexity
becomes O(n2 (logt n)z)

The hardware complexity is simply the complexity of the operation to produce the CBVs.
The CBVs are produced from bit-vectors with a maximum size of », where # is the number of
rules. The worst-case operation is found when all » bits are examined. As such, the worst-case

complexity is a function of #, and is therefore O(n).

Unlike the search operations, the software and hardware portions of the build operations

are not pipelined. As such, the worst-case hardware and software combined build time

27-

complexity is O(n3 (log, n))

343 Memory Use Complexity
The memory use complexity is calculated by considering the size of the B-tree structure and

compressed bit-vectors. Given n rules and » buckets the maximum number of elementary

intervals in the first dimension of one level of the B-tree is 0(2” +%) Taking into

consideration the second dimension the complexity is squared to produce O((Z” +%)z) . In the
worst-case each elementary interval in the second dimension has » bits set so the complexity

becomes O((Zn +%)2n) The equation is then simplified to remove constants, including b, to

produce a worst-case memory use complexity of 0(713)

-08-

4 Design Environment and Platform

For the purposes of implementation of the design specification the RPP from CMC is
employed. The platform, described at a high level in the following sections, contains the basic
elements and development environment needed for such a complex design. These elements
include a processor, software development environment, support code for low level firmware
drivers, large FPGA for logic development and basic bus logic blocks for interfacing with the
processor. While the performance of the processor is limited, the system provides an exceptional
prototyping tool. Figure 4-1 shows a picture of the development system and Figure 4-2 and

shows a close up of the hardware.

Figure 4-1: ARM Integrator Rapid-Prototyping Platform [10]

-29-

-
wfoooo0o000R!
wBO000DS00 0k

Interface
Board

s - 00000 .

» b
g L~°0°°° .

4 Soug Cornmisen
electronics Corporation § TneUslvwraity of Sanitovs

Figure 4-2: Development Hardware Close Up

4.1 ARM Integrator/AP ASIC Development Motherboard

At the base of the RPP system is the ARM Integrator ASIC development mother board. Its
primary function is to provide a connection point for a large selection of ARM processor and
logic development boards. It provides these development boards with clocks, bus arbitration,
interrupt handling, flash memory, boot ROM and basic input and output functionality. Expansion
of the system fs provided by three PCI slots, connectors for stack ups of both processors and logic

modules and a cPCI interface for rack mounting.

Figure 4-3 and Figure 4-4 show a functional block diagram and layout of the mother board.

-30-

The basic features of the mother board, as described in [11] are as follows:
e system controller FPGA that implements:
o system bus interface to processor core and logic modules
o system bus arbiter
o interrupt controller
o peripheral input and output controller
o three counter/timers
o reset controller
o system status and control registers
e clock generator
e 32 MB flash memory
e 256 KB boot ROM
e 512KB SSRAM
e two serial ports (RS232 DTE)
e system expansion supporting processor core and logic modules
e PClinterface bus

e External Bus Interface supporting memory expansion

-31-

Core Module
Connections

Logic Module

Peripheral Input/Output

Connections

System Controller
FPGA

External
Bus
Interface

Flash

SRAM

PCI Host Bridge

Standard
PCl Slots

Boot ROM

PCl to PCI
Bridge

Compact PCI

Figure 4-3 : ARM Integrator/AP Functional Block Diagram [11]

-32-

Extemal

Core module ATX powesr Alphanumeric ’
connector connactor display Cgﬂi{gf?ﬁg.‘

Kayboard'mouse (HDRBx & 8 A/ -~ ’)

connectors (J16) p - S — chﬁ :10?;19
NI ec

4-pol= DIP ;{7@ D // (EXPB}
switch ™=y -

SRAM

Sorial interface 1 e
connadtors . .
(Jid, J157a Serial A / "_rFlash nemory

:]
L foonss
: Si=

System controlier

PGA
Iy~ External bus
Core module I interface connector
connectar (EXPM)
{HDRA}
Systemn tus - PCI Lagi
: agic modulo
bridge [~~~ connactor
PCl expansion (EXPA}
(Jo jgootsm) ™~ Boot ROM
Debug
connactors
PCI-PCI (23, J24)
bridge
T Extemnal interrupts
T - connector
l:l ooje—"" (J20)
CompactPCl - oo — Power
arbiter PLD =t ATX Case L I/ I tutton
218 Ji-0- [-2- -1 Ol
! W T —" S
L e
CompactPCl __..~¥ PCl arbiter LD Power LED Power-up FPGA'CK Reset I’—:e;?t\ Power connsctor (J21)
connectors connector connactor CoNNector CONNECIOr button {for banch powarad uss)
(1. 02} W22l (3 we) {94

Figure 4-4 : ARM Integrator/AP Layout [11]

4.2 ARM Integrator/CM7TDMI

The processor core board available for use with the AP ASIC development mother board is
the CM7DTMI. The CM7DTMI development board contains the popular ARM7TDMI
processor, an FPGA for memory control and bus interfacing, memory and a Multi-ICE interface

for debugging. Figure 4-5 and Figure 4-6 show a functional and layout block diagram of the
board.

-33-

The basic features of this board, as described in [12] are as follows:

e ARMT7TDMI microprocessor core

e core module FPGA that implements:

o SDRAM controller

o system bus bridge

o reset controller

o interrupt controller

o status, configuration, and interrupt registers

® volatile memory comprising:

e 128 MB of SDRAM
e 256KB SSRAM

o SSRAM controller
¢ clock generator

e system bus connectors

¢ Multi-ICE, logic-analyzer, and optional Trace connectors

ARM Core

SSRAM

L

FPGA

Multi-ICE

SDRAM

System Bus Connectors

Figure 4-5 : ARM Integrator/CM7TDMI Functional Block Diagram [12]

-34-

Core module/motherboard

connectors HDRB N Reset button ~ SDRAM DIMM
Y \
TRACE J———
connector
Mult-ICE
connector

Processor /
core

Logic analyzer
pods <

|

Power /

[::: N [
connector
H“ BPPAMIGRAIOEACOONIICAAIORAPGEROS ﬂ

7
Core module/motherboard Memory controller and
connectors HDRA system bus bridge (FPGA)

Figure 4-6 : ARM Integrator/LT-XC2V6000+ Logic Tile [12]

4.3 ARM Integrator/ LT-XC2V6000+

The FPGA board available for use with the AP ASIC development mother board is known as
the LT-XC2V6000+ Logic Tile. The LT-XC2V6000+ development board contains a Xilinx
XC2V6000 FPGA and is specifically designed for the development of ARM AHB and ASB bus
peripherals. Figure 4-7 and Figure 4-8 show a functional and layout block diagram of the board.

The basic features of this board, as described in [13] are as follows:

e Xilinx Virtex I FPGA

e configuration Programmable Logic Device (PLD) and flash memory for storing FPGA
configurations

¢ two 2MB ZBT SSRAM chips

-35-

clock generators and reset sources
switches
LEDs

connectors to other tiles

Push

SSRAM Oscillators Button

LEDs

Switches

FPGA

Figure 4-7 : ARM Integrator/LT-XC2V6000+ Functional Block Diagram [13]

-36-

Battery

User Sl |
switches /i
FPGA i:% HDRX
image
selection
switches

FPGA IMAGE
LED

oo

FPGA OK
LED T
FPGA

External

oscillator
connector
(not fitted)

2

L]
User —¥ 8 Temp Sense El
LEDs

HDRZ

[t—-}«u—n—u—n—ﬂ

Push
button

Figure 4-8 : ARM Integrator/LT-XC2V6000+ Layout [13]

44 Memec MC-XIL-RLDRAM Controller and Board

Early in the project it was determined the four Megabytes of memory available on the LT-
XC2V6000 development board would not be enough for compressed bit-vector storage. A
suitable option found to provide a large amount of very high-speed memory and additional logic
space was the Memec Reduced Latency Dynamic Random Access Memory (RLDRAM)
evaluation board. The RLDRAM evaluation board was chosen because of its exceptional
memory throughput, additional logic space provided by a Xilinx Virtex-II FPGA and standard
Memec P160 interface. The board contains four Infineon Technologies HYB18RIL25632 32-bit
wide RLDRAM chips operating at 200 MHz DDR (400Mbit/s/pin). In total the four chips
provide 128 Megabytes of storage space with an aggregate access speed of 51.2 Gbit/s. As well

-37-

as providing high bandwidth solution RLDRAM also provides a random access time much faster
than typical SDRAM. The RLDRAM controller, resident in the FPGA, was purchased as an
intellectual property core in EDIF form. Due to a non disclosure agreement signed at the time of
purchase no discussion is provided on it operation or design. Figure 4-9 shows a block diagram
of the board.

RLDRAM RLDRAM

FPGA

RLDRAM RLDRAM

Figure 4-9 : RLDRAM Board Block Diagram

4.5 Custom Interface Board

To provide a high-speed connection between the logic tile and the RLDRAM board a custom
interface board was designed. The high-speed interface between the two boards comprises high-
speed LVDS pairs utilizing Xilinx Virtex II capabilities. Enough pairs are routed between the
P160 interface on the RLDRAM board and the Samtec connector interface on the logic tile to
provide for eight LVDS pairs in each direction. Each pair operates at 200 MHz DDR (400
Mbit/sec/pair) providing 1.6 Gbits/sec in each direction. Given the limited performance of the
ARM processor the design effort was made to gain useful experience and to provide a path for
future growth. In particular, design experience was gained performing the impendence
calculations and routing for the high-speed LVDS pairs. Figure 4-10 shows a picture of the

custom interface board.

-38-

oo
B0,

ent Hoarg Rev 0

Stuart % Doug Cornelsen

b toba

paration taniton
o s o

Figure 4-10 : Custom Interface Board

-30-

5 System Design

5.1 Design Responsibilities

As the specification, design and verification effort for the entire project was quite large it was

determined two group members would be required. At the outset of the project clear divisions in

responsibilities were setup with regard to the hardware and software design tasks. As with most

complex embedded systems the hardware and software design tasks are numerous and often

interdependent. The goal of the project was to create a specification for the system as a group

then divide the tasks between hardware and software with integration being performed on a

continual basis. The major focus of my efforts during this thesis was spent on software

development for the ARM processor and developing FPGA hardware to interface to a purchased

RLDRAM controller. In particular my design tasks included:

1. Software design:

a.

b.

Implement B-tree structure and functions for insertion of rules.
Implement menu structure for software tasks to ensure ease of use.
Implement low level tests for bus interfaces and memories.
Implement software tests for custom and purchased hardware blocks.

Implement low level drivers and functions for performing B-tree build

operations and search operations with custom hardware.

Implement software logging features to match hardware simulation
inputs so failures discovered in tests with actual hardware could be used
as inputs in simulations. Tests ran on actual hardware and software
perform orders of magnitude faster than simulation but do not provide

the same visibility.

Implement rule generation software to produce random rule-sets based

on input files containing probability distribution functions.

2. Hardware design:

a.

b.

Assist in the implementation and testing of Xilinx hard macro LVDS
SerDes blocks.

Develop a wrapper for purchased RLDAM controller core to handle

-40-

refreshing operations and commands from a FIFO to transfer memory

between block FPGA block RAMs and RLDRAM memory.

Assist in the design of the interface board between logic tile board and
RLDRAM board.

The remaining responsibilities, handled by my research partner Clint Stuart, were as follows:

1. Software design:

a.

C.

Implement Tcl test bench routines for interfacing with simulation

environment.

Implement Tcl routines for conversions of software logged files for

running in simulation environment.

Design a simulation environment for the FPGA hardware.

2. Hardware design:

a.

Implement ARM AHB bus wrappers for hardware command and
response FIFOs.

Implement and test Xilinx hard macro LVDS SerDes blocks.
Implement logic blocks for compressed bit-vector build operations.
Implement logic blocks for compressed bit-vector OR operation.
Implement logic blocks for hardware test modes.

Produce schematic and layout designs for interface board between logic

tile and RLDRAM board.

With regard to responsibilities, this report focuses largely on my responsibilities related to the

overall project. As the system required both hardware and software for full functionality the

testing, verification and results portions of the work were shared. While the design and

implementation work were separated as much as possible the work done by the both of us

produced one final system producing one set of final results.

5.1.1 Hardware/Software Design Flow

As was identified in the previous section the project tasks were largely divided between

hardware and software development. When designing an embedded system it is important the

hardware and software are co-designed to make testing and integration easier. During the

-41-

development phase it became important for the hardware development to have access to test
software so it could be tested at hardware speeds instead of in simulation. Likewise the software
development benefited from testing using actual hardware instead of relying solely on simulation.
The design flow used, illustrated in Figure 5-1, allows for rapid development of both the
hardware and software and leverages the benefits of both simulation and hardware testing as
appropriate. The top of the design flow begins with the most important phase of any project, the
design specification. The design specification breaks down a complex design into fundamental
operations which can be assigned to either a software or hardware. Design partitioning is the
phase in the design flow to determine which operations will be done in software or hardware.
Typically after design partitioning marks the point at which software and hardware diverge until
each item is ready for integration. Using a design platform specifically designed for rapid
prototyping allows for software and hardware integration to be done on a continual basis. In
effect many loops can be done from the top to the bottom integrating software and hardware as
development occurs. This type of design philosophy proved to be effective as the different buses
and memories were integrated into the design. A major benefit of this flow is the enforcement of
a bottom up verification process in which each element is completely tested before the element

above it is designed.

Design
Specs
System Architecture
Design SW
(HW/ SW Partitioning) Specificaton
1
] HDL Coding
1
1
. b
- Func. Sim
(ModelSim)
- _) Synthesis
i (Leonardo Spectrum)
] .
1
Timing: Sim
(Model!Sim) lecocoe -
0 :
|
i f ARM7
: Place and Route Bitstream File : Image
All -9 (Xilinx) H
1

h 4

HW/SW Integration
(ARM Integrator)

Levels

Figure 5-1 : SOC Hardware/Software Design Flow [14]

-42-

5.2 Hardware Design and Implementation

5.2.1 Design Methodology

The hardware portions of this thesis were written in VHDL targeted for the two separate
Xilinx Virtex II FPGAs found on the RLDRAM and LT-XC2V6000+ boards. The design flow
follows Figure 5-1 which shows that ModelSim was used for RTL and timing simulations,
Leonardo Spectrum was used for synthesis and the Xilinx tool ISE was used for place and route.
Over the course of the project this suite of tools proved to be very effective providing excellent

simulation capabilities and detailed representations of the designed hardware.

5.3 Hardware Overview

When all of the circuit boards, described in previous sections, are connected together a very
powerful and capable development system is created. Figure 5-2 illustrates the bus and
component hierarchy of the final design. The items shown in Figure 5-2 are color coded based on

the location of the component in the particular development board.

-43-

Serial Bus | Serial Bus

SSRAM
ARM7TDMI ©
Local

Memory Bus

| [~

Memory. Local Memory
Controller Bus/AHB

A<.

AHB Bus

SDRAM

T

APB Bus

MC-XIL-
RLDRAM Board

ARM Integrator/

ARM Integrator/ ARM Integrator/
AP CM7TDMI LT-XC2V6000+

Figure 5-2 : Hardware Development Components and Bus Hierarchy

5.3.1 Hardware Blocks
As the focus of this thesis is largely on the software development only a high level overview

of the hardware blocks is provided.

ARM7TDMI [15]

The processor used in this thesis is the ARM7TDMI. Figure 5-3 provides a high level block
diagram of this 32-bit embedded RISC processor. Of note of the blocks shown in Figure 5-3 is
the embedded ICE logic. The embedded ICE logic is an extremely useful feature of the
ARMT7TDMI providing access for a JTAG-based debugging system. The ARM Multi-ICE
debugging tool is used for this purpose to provide typical debugging features and access to files
on a Multi-ICE host computer. For the purposes of this thesis the processor was run at a speed of

40 MHz.

-44-

ETM Interface

Bus Interface Unit

Figure 5-3 : ARM7TDMI Processor Block Diagram [16]

ARM APB Bus

The Advanced Peripheral Bus (APB) is part of the ARM family of Advanced Microcontroller
Bus Architecture (AMBA) buses designed for on chip communication. It is primarily used to
provide connectively to low speed devices and is designed with a simple interface and for
minimal power usage. The APB bus is typically used in conjunction with a system bus like AHB.
APB is implemented in the system as a 32-bit bus running at 20 MHz. For more information see

reference [17].

ARM AHB Bus
The Advanced High-Performance Bus (AHB) provides a high level of capabilities and is
typically used as a system back bone. AHB is implemented in the system as 32-bit bus running at

20 MHz. For more information see reference [17].

Command FIFO

The command FIFO logic block provides an AHB interface to send commands to the
PFAAE. Commands inputted into the FIFO are serialized by a special hardware block and then
sent via LVDS pairs to the RLDRAM FPGA. Special logic was made so commands could be
gated in the FIFO so that accurate performance estimates could be made of the PFAAE. This was

-45-

done because the PFAAE could process commands faster than the processor was able to write
them to the FIFO.

Response FIFO
The response FIFO logic block provides an AHB interface to a buffer containing responses
from the PFAAE.

Control Status Register Bus

The control status register bus (CSR) is used to read and write registers in the PFAAE. It
provides a low speed method of accessing registers as opposed to using the high-speed serial
buses. The serial buses use complex commanding and response methods for transmitting and
receiving large packets of data. This type of complexity is not needed for simple reads and writes

so the CSR bus was implemented.

LVDS SerDes

The LVDS serializer/deserilizer (SerDes) blocks are ported from Xilinx application note
XAPP265 “High-Speed Data Serialization and Deserialization (840 Mb/s LVDS)” [18]. The
application note provides a code base and details on how to implement high-speed SerDes logic

for the Xilinx Virtex II family of FGPAs.

SSRAM 1

The SSRAM found on the LT-XC2V6000+ board is extremely important for testing. This
memory is used for storing rules and CBV pointers. The rules are used for tests in which the
complete B-tree structures and CBV are built. CBV pointer storage is used for hardware

performance testing of the PFAAE.

Dual Port RAM 0 -4

Dual Port RAM 0 to 4, located in the RLDRAM FPGA are memories used by PFAAE for
operating on and creating CBVs. As the name implies, these memories are dual port such that
two different logic blocks have interfaces to the memory. Data transferred to and from the
RLDRAM can only be done through the dual port memories. When the PFAAE finishes
constructing a CBYV, it is transferred from one of the dual port memories to the RLDRAM in a
DMA like operation. Likewise, in search mode when a CBV pointer arrives from the software
the PFAAE requests the CBV located in RLDRAM be transferred to one of the dual port

memories.

-46-

RLDRAM Wrapper

The main purpose of the RLDRAM wrapper is to provide a command interface to the
RLDRAM controller and to ensure refresh commands are issued as required. The most important
portion of the wrapper is a FIFO command interface so the PFAAE can queue up several different
transfers between the dual port memories and the RLDRAM. A state machine in the wrapper
reads out and executes commands from the FIFO one at a time inserting refreshes between FIFO
commands when necessary. To execute a command the state machine reads the type of
command, read or write, issues the proper command to the RLDRAM controller and then controls
the data flow between the RLDRAM controller. Whenever a command from the FIFO finishes

being executed, a done signal is pulsed so tracking of command completion can be performed.

RLEDRAM Controller
The RLDRAM controller was a purchased IP block from Memec provided in EDIF form. No
details of the controller will be provided as a non-discloser agreement was signed at the time of

purchase.

Packet Filter Acceleration Assist Engine
The main component found in the RLDRAM FPGA is the PFAAE. It consists of four main
subcomponents each handling one of the four major operations required. Each of these four

operations corresponds to a particular operating mode outlined below:

Build Mode: The major function of this mode is to convert lists of rules into hierarchical
CBVs. Once built the CBVs are stored in external RLDRAM and a pointer is returned to

the software.

Filter Mode: The function of this mode is to provide hardware acceleration for the
packet filtering operations. In particular it retrieves CBVs from RLDRAM and then
performs the OR operation. Two sub modes of operation are available known as quick
and normal mode. In normal mode the full resultant CBV of the OR operation is
provided in the response FIFO. By contrast in quick mode only a flag indicating the
operation is complete is written into the response FIFO. Quick mode is used to as a
feature to accurately benchmark the throughput of the filter mode operations without the
overhead of the sending the full CBV responses.

Loop Mode: The function of this mode is to provide a feature to loop back data received

-47-

by the FIFO link block on the RLDRAM FPGA back to the response FIFO. This feature
is used for testing of the buses and FIFOs.

User Command Mode: The function of this mode is to provide access for test
commands to ensure correct hardware operation. Primary functions include commands
for performing memory transfers between RLDRAM board dual port RAM memories,
the command/response FIFOs and the RLDRAM.

5.4 Software Development and Implementation

5.4.1 Design Methodology

The software portion of this thesis is written in C using Code Warrior and the ARM Firmware
Suite (AFS) targeted for the ARM7TDMI processor. The ARM Firmware Suite proved to be
vitally important in development as it provides development board independent functions
including: system initialization, serial port drivers, timers, interrupt control and memory
management. Software written using the API provided by the ARM firmware suite is capable of
running on various development platforms provided the proper Hardware Abstraction Layer
(HAL) is used. The Hardware Abstraction Layer provided by the ARM Firmware Suite is called
Micro Hardware Abstraction Layer (WHAL). pHAL provides the middle layer, shown in Figure

5-4, which aids in the development of new code and porting of operating systems.

User application AFS utilities A General
C and C++
libraries
AFS board-specific uHal routines AFS sgpport
routines

Development Board Specific

Figure 5-4 ;: ARM Firmware Suite [19]

In an embedded system designed to run multiple tasks, like the one employed for this project,
a Real Time Operating System (RTOS) is typically used to provide the framework for task
switching. At the start of the project the MicroC/OS-II RTOS was reviewed as one potential
candidate. Given more time the MicroC/OS-II operating system would have been selected

because of its small size, free academic license, excellent reputation in industry and an available

-48-

port for the development platform. The reason it was not used is because of the time constraints
of the project and the limited processing capabilities of the processor. As the processor does not
have the capability to run one task at the speed of the hardware, there is little benefit in having the
ability to switch tasks. As well, the operations performed during testing are sequential in nature
and can be performed adequately without task switching. While concurrent operations are
necessary in an actual design it is not required for testing purposes. The following are the three

major operating modes of the software, each of which is run at a different time:

1. User Command Mode, also known as Test Mode: Includes memory tests and

bus tests.

2. Build Mode: Includes all of the operations to build the B-tree structures and
CBV’s from an input rule file.

3. Filter Mode: Includes all of the operations necessary to perform a search of test

points.

To capitalize further on the simplification of having separate non concurrent modes the

hardware is also written to operate in one of these modes at a given time.

A high level flow of the software showing its basic operating states is shown in Figure 5-5.
The software begins with a boot sequence which initializes clocks, timers, memory and interrupts.
Once the system is initialized a menu is displayed outlining various groupings of software which

can be run.

Boot
Memory & Interrupt
Initilization

'

» User Menus / Command Line
Interface

Perform Task

Figure 5-5 : Software Operating States

-40-

5.4.2 Menu Description

The hierarchy of the menu system described in this section is shown through indentation in a
series of figures. Access to items in the menu or sub menus is controlled through a serial port, on
a test computer, using the number keys of the keyboard. For example, if a user desires to view
the Tests Menu under Main Menu they simply push three on the keyboard. If the user then wants
to run a test they push the number of the desired test. The test runs and the menu becomes active
again once it is finished running. A press of the number zero results in a move back one step in
the menu hierarchy. Described in the rest of this section are the submenus for running various

tasks.

RS SRS RS EEEEEEEEEEEE L EEEEEEEEEEEEEE TSRS LR
Main Menu

1: User Cmd Mode...

2: Packet Filter Mode...

3: Tests...

Please enter a selection

kkkkkhkkkkhkkkkkhkhkhkkkkkkkkhkhkhkhkkhhkkhkkkkkkkk

Figure 5-6: Main Menu

Main Menu: Main Menu is the top level menu seen when the software is started. It contains

three sub menus: User Cmd Mode, Packet Filter Mode and Tests.

LR EEE R SRS ELEEEEEEEREEE SRR LR EE RS ESEREEEEEX S
User Cmd Mode

1: RLDRAM Tasks...

2: FIFO Tasks...

Please enter a selection

kkkkkkkhkkhkkkkkhkkhkhkkhkhkhkhkhhhhhhkhhkhhhkhkhkkrkkkk

Figure 5-7: User Command Mode Menu
User Command Mode Menu: User Cmd Mode contains two items RLDRAM Tasks and FIFO

Tasks. These items are a grouping of tasks related to the commands available to be sent to the

hardware through the command FIFO.

-50-

hkkkhkkhkhkkhkkhkhkhhkhhkhkhhkhhhkhhkdhdhhkhdkhxkkdk

RLDRAM Tasks

1:
2:
3:
4:
5:

Rd DPR 0 to RLDRAM
Rd DPR 1 to RLDRAM
Rd RLDRAM to DPR O
Rd RLDRAM to DPR 1
RLDRAM Task Parameters...

Please enter a selection

khkkkkkhkhkhkhhhkhdhhkhhhkhkhkkhhkkhhkkhhhkhhkkkhkkkhkxk

Figure 5-8: RLDRAM Task Menu

RLDRAM Task Menu: RLDRAM Tasks Menu contains a list of tasks for testing the transferring
of data between RLDRAM and Dual Port RAM 0 or 1.

hhkhkkkhkkkhkkhkkhkhhkkhhhhhkkhhkkhhkkhhhkkhhhkdhkkkdkxk

FIFO Tasks

1
2
3:
4
5

Rd FIFO 1 to DPR 0
Rd FIFO 1 to DPR 1
Rd DPR 0 to FIFO O
Rd DPR 1 to FIFO O

FIFO Task Parameters...

Please enter a selection

khkkkhkkhkhkhkhhkhhhhhkhhhhhkhhkhhkhkhdkhhkhkhhkhkhhkdddhkik

Figure 5-9 FIFO Tasks Menu

FIFO Tasks Menu: FIFO Tasks Menu contains a list of tasks for testing the FIFOs and Dual Port
SRAMs found on the Memec RLDRAM board. These tasks consist of transferring data between
one of two dual port SRAMSs and FIFOs, internal to the FPGA.

-51-

hhkkhhkhhkkhhhkhhkkkhhkkhhkdhhhhhhkkhhhdhdhhdhhkrdhkrxs

Packet Filter Mode
Build Search Trees
Build Search Tree

Run Oring

Run Search File
Ld SRAM Ptrs

1

2

3

4: Ld SRAM Search Pts
5

6

7: Run Ptr Search

8

Run Search Files

Please enter a selection

khkkkhhkkhkhhhhkkhhkkhhkkhhkhhhkhhkhhhkkkhdhhkdhhhkhkksk

Figure 5-10: Packet Filter Mode Menu

Packet Filter Mode Menu: The Packet Filter Mode Menu contains a list of tasks for testing the
PFAAE. In particular it contains tasks to:

1) Build all of the search trees

In this task all 12 different search trees, described in section 7.3, are built each

with 10 different random rule sets.
2) Build Search Tree

In this task one search tree is built with 10 different random sets of rules.
3) Run ORing

In this task pre-calculated CBV pointers are read from a file and then passed to
the ORing hardware to perform the OR operation. This task is primarily used for

testing.
4) Load SRAM Search Points

In this task search points are loaded from a file on a test computer into SSRAM
1.

5) Run Search File

In this task search points are read out of SSRAM 1 and then searched. The

-52-

search operation consists of first passing the search points to the software.
Software then passes the pointers to the CBVs found during the search to the
PFAAE. The ORed resultant bit-vector from all of the retrieved bit-vectors is
sent back to software to be logged. As well, performance information and B-tree

node pointers obtained while searching are all logged for off-line analysis.
6) Load SRAM Pointers

In this task CBV pointers are loaded into SSRAM 1 external to the FPGA on the
LI-XC2V6000+ Logic Tile Board. The CBV pointers are obtained from a

previous search which logged the pointers during the search operations.
7) Run Pointer Search

In this task software passes the pointers of the CBVs stored in SSRAM 1 to the
PFAAE. This task is the same as the Run Search File task except the software
portion of the test is not run. Rather the CBV pointers have been pre-calculated
and stored into the SSRAM 1. This mode is used purely to obtain accurate
performance results for the PFAAE.

8) Run Search Files

This task runs a script of previous tasks to perform all necessary operations and
calculate all results required for a particular rule test set. When setup with a rule
size, a rule test set and direction it will perform the following operations for each

of the ten different rule files.

a. Build all the appropriate tree’s and CBVs using the function
run_single build_tree [Table 5-7].

b. Load search points into SSRAM using the function

load_search_file sram [Table 5-7].
c. Run the search using the function run_search_file [Table 5-7].

d. Reload the search pointers using the function load ptr_file sram S :
[Table 5-7].

e. Run the pointer search using the function run_ptr_search [Table 5-7].

f. Free up all memory

-53-

Upon completion all data will have been logged for later analysis.

kkkkhkhhkhkhkkhkhhkhkkhkkhhhkhhkhkhkkhkhkhkdhdhbhkhhhkhkkik

Tests

RLDRAM Test

DUAL PORT 0 RAM Test
DUAL PORT 1 RAM Test
Run Batch Command File
Run Loop Back Test

Run RLDRAM Refresh Test
Read All HASPF Regs
Run SRAM Tests

o 0 3 &6 U1 oW N R

Run SRAM Write Test

Please enter a selection

khkhkkkhkhhkkhkhkkhkhhkhkdhkdhkhhkhhhhhkhhkdhdhdrhhrxhchkdk

Figure 5-11: Tests Menu

The tests menu contains a list of tests originally run during hardware development. They allow
for regression tests to be preformed on the hardware as modifications are made during
development. Tests are written for exercising RLDRAM, exercising internal FPGA SRAM,
loop back for board to board communication links, RLDRAM refresh tests, register tests, and
external FPGA SSRAM tests.

5.4.3 Software Design Issues

Dynamic Memory Allocation

Dynamic memory allocation turned out to be one of the larger issues when initially designing
the software. The C functions Malloc and Free are typically used most often to allocate and de-
allocate memory. For the purposes of this software design the blocks of memory required are for
the nodes of B-trees and various linked lists. These nodes are quite small, typically less than 50
bytes, and very numerous. The default settings for the built-in Malloc function requires that the
smallest block of memory allocated to be significantly larger than the typical size actually
required. Although this number can be adjusted to a lower value the associated overhead grows

proportionally. Each time Malloc is called a large amount of memory is wasted in overhead and

-54-

only a small portion of memory is actually used for storage. To allocate the memory more
efficiently and faster special Malloc functions were written to allocate memory for both B-tree
nodes and linked list nodes. The speed is primarily improved because the new Malloc functions
do not reassemble the freed memory into larger blocks and simply return the block to the
available pool of memory. The blocks of memory for nodes and linked lists have the following

characteristics used to create new functions:

1) Most of the memory blocks are not freed until the entire structure is destroyed. For
example a linked list node is used and not freed until the entire linked list is no longer
needed. As well, the number of blocks freed is quite small and can be reused.

2) The entire structure needs to be freed quickly to speed up processing between tests

using different parameters.

These two main requirements led to the creation of special functions for allocating and de-

allocating memory. Each of the functions had very similar characterizes:
1) An array of large memory blocks.

Each large memory block contains an array of the required memory elements.
Figure 5-12 shows the created memory structure. Variables called index and
block_index are used to store the current pointer to the next available element

and to the current block pointer respectively.

index

e e e e e e e e e ————_— — o ——————

| — |

. | ‘ 5 |

block_index —» | | ¥ I | | e £ i
[3)

| L :

block of memory

Array of Blocks

Figure 5-12 : Memory Allocation from an Array of Blocks of Memory

-55-

2) A circular buffer for holding pointers to freed memory elements captured

during processing.

When a new memory element is required this buffer is checked to see if it
contains any pointers to available memory before obtaining an element from one
of the large blocks of memory. If any memory elements are de-allocated during
the course of processing the pointer to this element is inserted into the circular
buffer so the memory can be reused. The buffer is circular with a read and write
pointer so that pointers to memory elements can be added and removed
continuously. The buffer only needs to be as large as the largest amount of
memory de-allocated at one time and allows for an efficient way of recycling

memory. The circular buffer is shown in Figure 5-13.

read_index write_index

.........

element
pointer

circular buffer

Figure 5-13 : Circular Buffer for Storing De-Allocated Memory Elements

Hardware Software Interface

Communication between software and hardware takes place through the use of command and
response FIFOs. When software requires hardware to perform a particular task it writes a
command into the command FIFO. In the case when a response is required software waits for an
interrupt indicating data is available from the response FIFO. Initially the software was to be
designed using an RTOS allowing for preemptive multitasking. The primary reason for this was
to make the software more efficient, allowing for task switching while waiting for hardware.
Unfortunately the combination of the developed software and available processor turned out to be

much slower than the hardware. In particular, it takes the software longer to read the response

-56-

buffer than it takes for the hardware to create the response. The software can not even write the
commands to the command FIFO as fast as the hardware can process them. Even with little or

no processing, just memory reads and writes, the processor can not keep up with the hardware.

To fetch response data an interrupt indicating data is available results in the execution of an
interrupt service routine which clears the interrupt and reads out the data. Once again because the
hardware is so much quicker than the software, the whole response packet is guaranteed to be in

the FIFO by the time the interrupt service routine is executed.

Command and Response Packets

Commands and responses available at a particular time is dependant on the mode of
operation the hardware is in. The current mode is controlled by a write to a register over the CSR
bus. Available modes include build mode, filter mode, and user command mode. The following

is a list of commands and responses available in each mode.
1. Build Mode :

In build mode one type of command packet is available for use. This packet contains
a packet header, shown in Figure 5-14, and payload data of rule identification
numbers. In build mode the final step is for software to send the PFAAE a list of
rules contained at each node. The PFAAE then converts this list of rules into a
compressed bit-vector and stores it in the RLDRAM. Once completed, the PEAAE
returns a pointer to the software identifying the location of the compressed bit-vector.
The response packet is shown in Figure 5-14. The parameters used in defining the

command and response packets are described below:

a) s : [packet size] indicates the size of the current packet being
sent. It has a maximum size of 255 32-bit words including the

header.

b) # : [number of rules] indicates the total number of rules
contained at the node to be received by the hardware. This is
used by hardware so it can keep track of how many rules

should be received.
c) p:[RLDRAM pointer]

d) r:[rule identification list]

-57-

e) x:[don’tcare]

Bit
o R RS RS RN RS RN RS RNE RN R EE RS R) Rl B Rl ol Bl e e e R el R R R R el N R el N
B = T 7
- ‘ . Packet
X X X X X X | i | X | X X
R
- ,ﬂ Header
Payload
Figure 5-14 : Build Mode Command Packet
(o 0 B ol o) (= Q1 ~ | \O (=]
P I B2 FSE RN RSl Rl S I PN Pl S o o onl o) sy Bl Bl o) ol B CN

Figure 5-15 : Build Mode Response Packet

2. Filter Mode :

In filter mode one type of command packet, shown in Figure 5-16, is available. The
purpose of filter mode is to OR together compressed bit-vectors obtained from
pointers sent by software. As expected, the packet available in filter mode is used by
software to send information about the pointer obtained during a search. It is
possible a particular search can find no match at a particular B-tree level so a null
pointer flag is inserted into the packet. This indicates to the hardware that no
compressed bit-vector has to be retrieved. A flag is used instead of a particular
memory value because it was unclear at the start of the design which addresses would
be unused. The result of sending four pointers to the PFAAE is a response containing
the resultant ORed compressed bit-vector. The response packet is shown in Figure
5-16. The parameters used in defining the command and response packets are

described below:

a. n: [null pointer flag] indicates no pointer is found during search of a

-58-

Packet
Header

particular B-tree level because no range is found containing the search

point.
b. p:[pointer value]

c. s: [packet size] indicates the size of the current packet being sent. It has

a maximum size of 255 32-bit words including the header.

d. b [bit-vector] series of bits containing the compressed bit-vector value

. H
e. x:[don’t care]
Bit
7|2’ 8| 8|8 8|3|a|q|a|&]2|2|s| 22| 2| 2| 2| =|2]e|w] ||| |n]~]~|o
Number
Pointer

Figure 5-16 : OR Mode Command Packet

Figure 5-17 : OR Mode Response Packet

3. User Command Mode :

User command mode commands are used primarily for testing purposes. These
commands allow transfers between the command and response FIFOs, dual port
memories and the RLDRAM. For development purposes each command is given a
different task number which makes up part of the packet header. These tasks are

outlined below.
Transfers between RLDRAM and Dual Port Memory

The first four commands used in user command mode share the same packet

-50-

structure and create no response packets. These first four commands are used solely

for transferring data between the dual port memories on the RLDRAM board FPGA

and the RLDRAM memory. These commands implement a function very similar to a

DMA operation. The packet structure of each of these commands is shown in Figure

5-18.

C.

d.

Task 1 : read data from dual port RAM 0, write data to RLDRAM
Task 2 : read data from dual port RAM 1, write data to RLDRAM
Task 3 : read data from RLDRAM, write data to dual port RAM 0

Task 4 : read data from RLDRAM, write data to dual port RAM 1

The parameters used in defining the command and response packets are described

below:

P

s : [packet size] indicates the size of the current packet being sent. It has

a maximum size of 255 32-bit words including the header.
a : [dual port RAM address] starting address of the dual port RAM

¢ : [count] count of the number of 64 bit words to transfer

Ll

: [task identifier] determines which task to be performed

r : [RLDRAM address] starting address of the RLDRAM memory

i

: [don’t care]

Figure 5-18 : User Command Mode Task 1 - 4 Command Packet

Transfers from FIFO 1 to Dual Port Memory

The next two commands used in user command mode share the same packet structure

and create no response packets. These two commands are used solely for transferring

-60-

Packet
Header

Payload

data between the command FIFO and the dual port RAM on the RLDRAM board
FPGA. These commands implement a function very similar to a DMA operation.

The packet structure of each of these commands is shown in Figure 5-19.
a. Task 5 :read data from FIFO 1, write data to dual port RAM 0

b. Task 6 : read data from FIFO 1, write data to dual port RAM 1

The parameters used in defining the command and response packets are described

below:
a. s: [packet size] indicates the size of the current packet being sent. It has
a maximum size of 255 32 words including the header.

b. a:[dual port RAM address] starting address of the dual port RAM

c. c: [count] count of the number of 64 bit words to transfer

d. t:[task identifier] determines which task to be performed

e. d:[data to transfer]

f. x:[don’t care]

Bit
SRS/ |K|QIQQF || 2|2 2|22 |g| 2| |o|em|elw|s|ala|~lol L

Packet
Header
Payload

Figure 5-19 : User Command Mode Task 5 - 6 Command Packet

Transfers from Dual Port Memory to FIFO 0

The next two commands used in user command mode share the same packet structure
and create response packets. These two commands are used solely for transferring
data between the dual port RAM on the RLDRAM board FPGA and the response
FIFO. These commands implement a function very similar to a DMA operation. The

packet structure of the command and response packets is shown in Figure 5-20 and

-61-

Figure 5-21 respectively.
a. Task 7 : read data from dual port RAM 0, write data to FIFO 0
b. Task 8 : read data from dual port RAM 1, write data to FIFO 0

The parameters used in defining the command and response packets are described

below:

a. s: [packet size] indicates the size of the current packet being sent. It has

a maximum size of 255 32-bit words including the header.

=

a : [dual port RAM address] starting address of the dual port RAM
c. c:[count] count of the number of 64 bit words to transfer
d. t:[task identifier] determines which task to be performed

e. d: [response data]

f. x:[don’t care]

25
24
23
22
21
20

Figure 5-20 :

Packet
Header

Figure 5-21 : User Command Mode Task 7 - 8 Response Packet

54.4 Filel/O

Through the Multi-ICE debugging interface code running on the processor has the capability
of accessing files on the development computer. This feature of the system proved to be
invaluable with regard to inputting test vectors and logging results. The files produced by the

software are described in section 6.3.

-62-

5.4.5 Software Function Descriptions
The following section provides high level details about the most important software functions

built for use in this thesis. The functions are grouped by task function.

Response FIFO Functions

The functions related to the response FIFO are used to manage an array of buffers for holding
response packets. The array is managed by two pointers; a read pointer and a write pointer. The
read pointer indicates the next buffer to read from and the write pointer indicates the next buffer
to insert a response packet into. The difference in values between the two pointers is used to
determine the number of response buffers containing pending response data. The functions are

outlined in Table 5-1.

Table 5-1 : Response FIFO Functions

Function Name: Buffer Free

Function Description Arguments Description Returns - | Description

Determines if a buffer is available to store a packet | void int Returns FAIL if no

received from the response FIFO. buffers are available
and PASS if buffers

are available.

Function Name: InitilizeBuff. Ptrs

Function Description Arguments Description Returns - | Description

Clears buffer write and read pointer indexes. void void

Function Name: Buffers. Pending

Function Description Arguments Description Returns | Description

Indicates if there are any buffers with response void int Returns FAIL if no

packets waiting to be read. buffers are available
with data and PASS if
a buffer is available
with data.

Function Name: Read RD_Rec' Ptr

Function Description Arguments Description Returns. | Description

Reads the current buffer read pointer index. void int Returns an integer of
the index for the
current read pointer.

Function Name: Read. WR. Rec Ptr
Function Description Arguments Description Returns: | Description

Reads the current buffer write pointer index. void int Returns an integer of
the index for the
current write pointer.

(Table continued on next page)

-63-

Function Name: Increment Rec Rd- Ptr

Function Description

Arguments Description Returns

Description

Increments the current read pointer index. Used

when data is read from a buffer and the read
pointer index needs to be incremented.

void void

Function Name: Increment. Rec: Wy Ptr

Function Description

Arguments Description Returns

Description

Increments the current write pointer index. Used
when data is written into a buffer and the write

pointer index needs to be incremented.

void void

Command FIFO Functions

The functions related to the command FIFO are used to create the proper packet headers and

payload data for sending command packets to the PFAAE. The commands are formatted

according to mode of operation and to ensure large data transfers are broken up into maximum

size packets. The functions are outlined in Table 5-2.

Table 5-2 : Command FIFO Functions

Function Name: Fifo. Write_Line

out, only applicable to build
mode commands. All other
commands have pre-determined
packet lengths

Function Description Arguments Description Returns | Description
When passed a buffer of data and a record data_buff Buffer of 32 bit data void
containing information about the header words.
this function breaks up the data into pkt_header_info Information used to
packets and writes them to the command create the headers for the
FIFO. It calls Build_Pkt Header to write packets.
out the appropriate header to the command
FIFO. num_words Number of words in the
data buffer.
Function Name: Build Pkt Header
Function Description Arguments Description Returns - | Description
When passed packet header information info Pointer to information about the | void
and the packet size this function writes out packet header to create.
the proper packet header to the command
FIFO. The operating mode is checked to size Size of the packet in 32 bit
create the proper header for the appropriate words.
mode. rule_size Number or rules being written

-64-

Linked List Functions

Linked list functions are created for storing test rules in memory. The rules are stored in a
linked list structure if a post build verification of the B-tree structure was to be performed. After
the B-tree structures are built the rules contained in the linked list are checked against the B-trees

to ensure a proper build operation had been performed. The functions are outlined in Table 5-3.

Table 5-3 : Linked List Functions

Funection Name: 4/locate L. Node: Memory

Function Description Arguments Description Returns. - | Description
Allocates memory for a specified number of blocks | woid void
of memory. Each block contains an array of linked
list nodes. The nodes are pre-allocated because the
C Malloc function is too inefficient. The minimum
size block is much too large to make efficient use
of available memory. As such arrays of nodes are
pre-allocated then used when the linked list is
dynamically created.

Function Name: Initilize L Node Memory

Function Description Arguments Description Returns - |- Description

Initialize the indexes into the arrays of block void void
memory used to allocate and free node memory.

Function Name: Free L Node

Function Description Arguments Description Returns . | Description
Used to return a linked list node to the pool of ptr This function is void
available node memory. passed a pointer to the

link list node to be
freed. It puts this
pointer into an array
so that it can be reused
when a new linked list
node is required.

Function Name: Malloc: L. Node

Function Description Arguments Description Returns Description

Used to allocate a linked list node of memory from | void [node 1_node is a pointer
a pool of available linked list nodes. This function to an available
will first use memory returned by Free L. Node linked list node of
and then retrieve from the available blocks of memory.

memory.

Function Name: /[create

Function Description Arguments Description Returns Description

Used to create a new root of a linked list. Theroot | void [_root 1_root is a pointer to
contains a pointer to the head and tail of the linked the root of a new
list. linked list.

(Table continued on next page)

-65-

Function Name: /[append

This function calls BTreeRngLviRuleTest to ensure
the rule has been properly inserted into the tree.

root of a
linked list
containing
rules.

Function Description Arguments Description Returns Description
Used to append a new node to a linked list. New root Pointer to the linked | void
node is appended to the end of the list. list to add node to.
rule_ptr Pointer to a node to

add to the linked

list. In the context

of this software the

node is always a

rule.
Function Name: /[print :
Function Description Arguments Description Returns Description
Used to print out a linked list. root Pointer to the root void

of a linked list to

print out.
Function Name: /] delete
Function Description Arguments Description Returns Description
Used to free the memory used to create the root of | root Pointer to the void
the linked list. root of a

linked list to

be deleted.
Function Name: /[rule test
Function Description Arguments Description Returns Description
This function is passed a linked list of rules and a Wl _tree Multilevel B- int Returns FAIL if
2-dimensional B-tree structure which is supposed tree containing rules have been
to contain a representation of the rules. The tree is all of the rules. inserted improperly
checked to ensure it contains each rule properly. : and PASS if rules

root Pointer to the

have been inserted
properly.

B-tree Point Functions

For the purposes of this thesis two types of B-trees are created. The first is a point B-tree and

the second is a range B-tree. The point B-tree is used to store single or point values which do not

correspond to a range. In other words these values can be represented by a single point and do

not require a start and end value like a range. A point B-tree is used as temporary storage for the

rule identifier list found at every second dimension B-tree node elementary internal. This is the

list which eventually becomes converted into a compressed bit-vector and replaced with a pointer.

The functions used to manage point B-trees are outlined in Table 5-4.

-66-

Table 5-4 : Point B-tree Functions

Function Name: 4/locate PT_Memory

Function Description Arguments Description Returns Description
Allocates memory for a specified number of blocks | void void
of memory. Each block contains an array of B-tree
nodes or B-trees. The nodes are pre-allocated
because of the C Malloc function is to inefficient.
The minimum size block is much too large to make
efficient use of available memory. As such, arrays
of nodes are pre-allocated then used when the B-
tree is dynamically created.
Function Name: [nitilize Pt Memory
Function Description Arguments Description Returns Description
Initialize the indexes into the arrays of block void void
memory used to allocate and free node and B-tree
memory.
Function Name: Free Pt Tree
Function Description Arguments Description Returns: | Description
Used to return a B-tree to the pool of ptr This function is passed a pointer | void
available node memory. to the B-tree to be freed. This
function then goes and puts this
pointer into an array so that it
can be reused when a new B-tree
is required.
Function Name: Malloc. Pt Tree
Function Description Arguments Description Returns: - | Description
Used to allocate a node of memory from a pool of | void b_tree_pt | b_tree ptisa
available B-trees. This function will first use pointer to an
memory returned by Free_Pt Tree and then available B-
retrieve from the available blocks of memory. tree.
Function Name: Free Pt Node
Function Description Arguments: | Description Returns | Description
Used to return a B-tree node to the ptr This function is passed a pointer to void
pool of available node memory. the B-tree node to be freed. This
function then goes and puts this
pointer into an array so that it can be
reused when a new node is required.
Function Name: Malloc. Pt. Node
Function Description Arguments Description | Returns Description
Used to allocate a node of memory from a pool of | void b_tree_pt node b_tree pt node

available B-tree nodes. This function will first use
memory returned by Free_Pt Node and then
retrieve from the available blocks of memory.

is a pointer to an
available B-tree
node of memory.

(Table continued on next page)

-67-

Function Name: BTreePtCreate

Function Description Arguments Description Returns Description
Used to create a B-tree and its root node. The root | void b_tree pt b_tree ptisa
node is the first node inserted into the B-tree. pointer to a newly
Upon insertion the root node is set to be a leaf node created B-tree.
with no keys.
Function Name: BTrecPtinsert
Function Description Arguments Description Returns | Description
Used to insert a new point rule value into a B-tree. | tree Pointer to the B-tree to void
This function checks to ensure the root node is not insert the new point into.
full before 1nsert%ng a value. If the root node? is fgll rule_val Integer value of the rule
a new root node is created and a BTreePtSplitChild identification number,
operation is performed on the old root node. referred to as a point, to
be inserted into the tree
Function Name: BTreePtSplitChild
Function Description Arguments Description Returns. - | Description
This function splits a full B-tree node y in the X x is a pointer to a B-tree void
middle inserting y's middle key into the ith key node which has a child
position in x. Half of y's keys are inserted into a node which is full.
new node and half remain in the old node. See[9] | i iis the index into an
for more details. array of child pointers in
x which points to a full
B-tree node.
y y is a pointer to the full
B-tree node to be split.
Function Name: BTreePtinsertNonfill
Function Description Arguments Description Returns : | Description
This function inserts a point or value into a non full | tree tree is a pointer to a B- void
B-tree. Non full indicates the B-tree root node has tree to insert the point
room for at least one key. Room for one key is into.
required because of the split operation. The split * X is a pointer to a B-tree
operation pushes one of the keys from a full node node which is the current
up the B-tree into the parent node when a split is s
. LA location in the B-tree
performed. At least one free key is required in the which the insert
root ngde to 1er;)slur‘e w}}:en a sphtd op;rat109n c;ccurs algorithm is looking to
space is available in the root node. ee [9] for more insert the new value.
information. -
rule_val rule_val is the value
attempting to be inserted
into the B-tree.
Function Name: BTreePtCopy
Function Description Arguments Description Returns | Description
This function copies a B-tree and returns a pointer | tree treeisapointertoaB- | b_tree pr | b_tree ptisa
to the copy. tree to copy. pointer to the
copy created.

(Table continued on next page)

-68-

Function Name: BTreePtPtrCopy

Function Description Arguments Description Returns . | Description
This function copies a B-tree node and then node node is a pointer to a b_tree pt | b_tree_pt nod
recursively copies its children. node to copy. _node e is a pointer
to copy
created.
Function Name: MergeBTreePt
Function Description Arguments Description Returns - | Description
This function merges the nodes from treel treel is a pointer to a B-tree to void
tree2 into treel. insert nodes from tree2 into.
tree2 tree2 is a pointer to a B-tree to
copy nodes from to insert into
treel.
remove Indicates if tree2 should be deleted
after the merge operation.
Function Name: MergeNodeBTreePt
Function Description Arguments | Description Returns - | Description
This function inserts a node into a tree. tree tree is a pointer to a B-tree to insert | void
the new node into.
node node is pointer to a B-tree node.
remove Indicates if node should be deleted
after the merge operation.
Function Name: BTreePtPrint
Function Description Arguments Description Returns | Description
This function copies all of the values in a B-tree node node is the current int Count of all of
into an array in ascending order. This function is pointer in the B-tree the values in
used to copy all of the rules at a B-tree range node being printed out. the B-tree.
and then send them to the ORing hardware. It is level Unused variable for
recursively called to obtain all of the values in the future use.
point B-tree. buff Array passed
recursively to the
function to store all of
the values in the tree.
Function Name: BTreePtNodeFree
Function Description Arguments Description Returns | Description
This function frees the memory from a B-tree node | rode node is pointer to a B- | void
and its children. tree node
Function Name: B7reePiFree
Function Description Arguments Description Returns: | Description
This function frees the memory used by a B-tree tree tree is a pointer to a B- | void
tree

(Table continued on next page)

-69-

Function Name: BTreePtSearchPoint

Function Description Arguments Description Returns. - | Description
This function searches a B-tree to find a particular | x Pointer to the current int PASS or FAIL
value. It is recursively called to search from one B-tree node being indication of
node to the next. searched. whether or not
point Value to search for in the search
the B-tree. value was
found.
count Pointer to an integer to
keep track of how
many keys have been
searched against.

B-tree Range Functions
The second type of B-tree created is used for storing ranges. The functions are used to

manage range B-trees are outlined in Table 5-5.

Table 5-5 : B-tree Range Functions

Function Name: Allocate_Rng Node Memory

Function Description Arguments Description Returns: - | Description

Allocates memory for a specified number of blocks | void void
of memory. Each block contains an array of B-tree
nodes or B-trees. The nodes are pre-allocated
because of the C Malloc function is to inefficient.
The minimum size block is much too large to make
efficient use of available memory. As such, arrays
of nodes and trees are pre-allocated then used when
the B-tree is dynamically created.

Function Name: Initilize Rng Node. Memory -

Function Description Arguments Description Returns | Description
Initialize the indexes into the arrays of block void void

memory used to allocate and free node and B-tree

memory.

Function Name: Free Rng Node

Function Description Arguments Description Returns ' | Description
Used to return a node to the pool of available node | ptr This function is void
memory. passed a pointer to the

B-tree node to be
freed. It puts this
pointer into an array
so that it can be reused
when a new node is
required.

(Table continued on next page)

-70-

Function Name: Malloc_Rng Node

Function Description Arguments: | Description | Returns Description
Used to allocate a node of memory from a pool of | void b _tree_rng node | b_tree g nodeis
available B-tree nodes. This function will first use a pointer to an
memory returned by Free Rng Node and then available B-tree
retrieve from the available blocks of memory. node of memory.
Function Name: BTreeRngCreate
Function Description Arguments Description Returns Description
Used to create a B-tree and its root node. Theroot | void b_tree_rng b_tree_mgisa
node is the first node inserted into the B-tree. pointer to a
Upon insertion the root node is set to be a leaf node newly created
with no keys. B-tree.
Function Name: BTreeRngTreeDestroy
Function Description Arguments Description Returns | Description
Free the memory used to create the range B-tree. tree Pointer to the range B- | void
tree to be freed.
Function Name: BTreeRnglnsert
Function Description Arguments Description Returns - | Description
Used to insert a new 2-dimensional tree Pointer to the B-tree to insert void
range rule value into a 2-dimensional B- the new range into.
tree. This function checks to ensure the | Jeye/ Used to keep track of which
root node is not full before inserting a level is being inserted into,
value. If the root node is full a new root not currently used.
node is created and a - -
BTreeRngSplitChild operation is dimen gsed to keep ér ?Ck (.)f Wf_lt“gl
performed on the old root node. irﬁr;ensmn 15 belng mserte
rule_ptr Pointer to a structure

containing a range
Function Name: BTreeRngSplitChild
Function Description Arguments Description Returns - | Description

This function splits a full B-tree node y x
in the middle inserting y's middle key

into the ith key position in x. Half of y's

x is a pointer to a B-tree node void
which has a child node which
is full.

keys are inserted into a new node and i
half remain in the old node. See [9] for
more details.

1is the index into an array of
child pointers in x which
points to a full B-tree node.

y is a pointer to the full B-tree
node to be split.

(Table continued on next page)

-71-

Function Name: BTreeRnglnsertNonfull

Function Description Arguments Description Returns | Description
This function inserts a 2-dimensional range value tree tree is a pointer to a B- | void
into a non full 2-dimensional B-tree. Non full tree to insert the point
indicates the B-tree root node has room for at least into.
one key. Room for one key is required because of | Jeye/ Used to keep track of
the split operation. The split operation pushes one which level is being
of the keys from a full node up the B-tree into the inserted into, not
parent node when a split is performed. At least one currently used.
free key is required in the root node to ensure when -
a split operation occurs space is available in the dimen U}Sfdht?i'keep t.rac1$ of
root node. See figure [9] for more information. WILCh dimension 1
being inserted into.
x X is a pointer to a B-
tree node which is the
current location in the
B-tree which the insert
algorithm is looking to
insert the new value.
rule_ptr pointer to a structure
containing a range
Function Name: BTreeRngSearch
Function Description Arguments Description Returns . | Description
This function searches a x x is the current pointer in the void* Pointer to the
range tree for a point. B-tree being searched. compressed bit-vector in
RLDRAM memory.
point Value to be searched for. Y
count Used to keep track of the
number of key comparisons
done during the search
operation.
node_count Used to keep track of the
number of B-tree nodes
accessed during the search
operation.
Function Name: BTreeRngCreateCBV
Function Description Arguments Description Returns. | Description
This function calls the node node is the current pointer in the B-tree void
functions needed to create being printed out.
compresls eqdbltt_.\/; ctgrs f?.rt dimen Used to keep track of which dimension
every rule identification list. is being operated on.
level Unused variable for future use.
count used to keep track of the number of

compressed bit-vectors created

(Table continued on next page)

-72-

Function Name: BTreeRngPrint

Function Description Arguments Description Returns - | Description
This function prints out the node node is the current pointer in the B- void
contents of a range tree. tree being printed out.
dimen Used to keep track of which
dimension is being operated on.
level Unused variable for future use.
node_count Used to keep track of the number of
B-tree nodes in the B-tree structure
num_key Used to keep track of the number total
number of keys used for all of the
nodes in the B-tree structure.
point_count Used to keep track of rule identifier
counts while printing.
Function Name: BTreeRngCopy
Function Description Arguments Description Returns Description
This function copies a B-tree and tree tree is a pointer to a B- b_tree_rng b_tree mgisa
returns a pointer to this copy. tree to copy. pointer to the
copy created.
Function Name: BTreeRngPtrCopy
Function Description Arguments Description Returns Description
This function copies a B-tree node | parent Pointer to the parent b_tree_rng node | b_tree_mg_node
and then recursively copies its node of the node being is a pointer to
children. copied. copy created.
dimen Used to keep track of
which dimension is
being operated on.
node Pointer to the node to be
copied.
Function Name: MergeBTreeRng
Function Description Arguments Description Returns | Description
This function merges the | level Used to keep track of which level is void
nodes from tree2 into being operated on.
treel dimen Used to keep track of which dimension
is being operated on.
treel treel is a pointer to a B-tree to insert
nodes from tree2 into.
tree2 tree2 is a pointer to a B-tree to copy
nodes from to insert into treel.
remove Indicates if tree2 should be deleted after

the merge operation.

(Table continued on next page)

-73-

Function Name: MergeNodeBTreeRng

Function Description Arguments . | Description Returns | Description
This function inserts a node into level Used to keep track of which level is void
tree. being operated on.
dimen Used to keep track of which dimension
is being operated on.
tree treel is a pointer to a B-tree to insert
nodes from tree2 into.
node node is pointer to a B-tree node.
remove Indicates if node should be deleted after

the merge operation.

B-tree Range Level Functions
B-tree range level functions are created to manage the multi-level B-tree structure. The
functions outlined in Table 5-6 are used to create and perform operations on all four levels of the

B-tree structure.

Table 5-6 : B-tree Range Level Functions

Function Name: BTreeRngLviCreate

Function Description Arguments Description: | Returns Description

Used to create the four B-trees void b_tree_rng vl b_tree_mg_lvl is a pointer to a
which make up the multi-level newly created multi-level B-
B-tree structure. tree.

Function Name: BTreeRndLvIDestroy

Function Description Arguments Description Returns lo)nescrlp !
Free the memory used to create the multi-level B-tree. tree_rng_Ivl ptr | Pointer to void
multi-level B-
tree structure.
Function: Name: BTreeRngLvlinsert
N L Lo Descripti
Function Description Arguments Description Returns on pt
Used to determine which of the four levels a 2-dimensional Wi_tree Pointer to void
rule should be inserted into. Determination is made based on multi-level B-
the range width of the first dimension. tree structure.
rule_ptr Pointer to a
structure
containing a 2-
dimensional
rule.

(Table continued on next page)

-74-

Function Name: BTreeRngLviPrint

tree after the structure is finished test rule
being built.

Pointer to a structure containing
a 2-dimensional rule to be
checked.

Function Description Arguments | Description Returns oDnescnptx
This function prints out the contents tree tree is a pointer to a multi-level B-tree void
of a multi-level B-tree. structure to be printed out.
node_count | Used to keep track of the number of B-tree
nodes in the multi-level B-tree structure
num_key Used to keep track of the number total
number of keys used for all of the nodes in
the multi-level B-tree structure.
point_count | Used to keep track of rule identifier counts
while printing.
Function Name: BTreeRngLviCreateCBY
Function Description Argument . | Description Returns oD:scnptl
This function calls the functions need to create tree tree is a pointer to a multi- void
compressed bit-vectors for the four levels of B- level B-tree structure for
trees. which the CBV will be
created for.
Function Name: BTreeRndLvlSearch
Function Description Arguments: | Description Returns ?:scrlptl
This function searches the multi-level | i tree tree is a pointer to a multi-leve] B-tree void
B-tree structure for a 2-dimensional structure to be searched.
point. The compressed bit-vector diml Value to be searched for in first dimension.
pointers found during the search as
sent the PFAAE to perform the ORing | dim2 Value to be searched for in second
operation_ dimension.
count Used to keep track of the number of key
comparisons done during the search
operation.
node_count | Used to keep track of the number of B-tree
nodes accessed during the search operation.
Funection Name: BTreeRngLviRuleTest
Function Description Arguments | Description Returns .. | Description
Used to check if a 2-dimensional rule | vi_tree Pointer to multi-level B-tree int Returns a PASS or
has been properly inserted into the B- structure. a FAIL depending

on if the rule has
been inserted

properly.

Menu Item Functions

Menu item functions are created to run high level tasks for running tests to create results files.

The functions are outlined in Table 5-7.

-75-

Table 5-7 : Menu Item Functions

Function Name

Function Description

run_searchfiles

This function runs a script of functions to perform all necessary operations and calculate all
results required for a particular rule test set. When setup with a rule size, a rule test set and
direction it will perform the following operations for each of the ten different rule sets:

a. Build all the appropriate B-tree structure and CBVs using the function run_single build_tree.
b. Load search points into SSRAM using the function load_search_file_sram.

¢. Run the search using the function run_search_file.

d. Reload the search pointers using the function load ptr file sram.

€. Run the pointer search using the function run_ptr_search.

f. Free up all memory

Upon completion all data will have been logged for later analysis.

Function Name

Function Description

run_single build_tree

This function builds a single multi-level B-tree based on a rule-set provided. After the B-tree
structure is complete compressed bit-vectors are created and the end result is ready to perform
search operations.

Function Name

Function Description

load_search_file sram

In this function search points are loaded from a file on a test computer into SSRAM 1.

Function Name

Function Description

load_ptr file sram

In this function CBV pointers are loaded into SSRAM 1 external to the FPGA on the LT-
XC2V6000+ Logic Tile Board. The CBV pointers are obtained from a previous search which
logged the pointers during the search operations.

Function Name

Function Description

run_ptr_search

In this function software passes the pointers of the CBVs stored in SSRAM 1 to the PFAAE. This
function is the same as the run_search_file function except the software portion of the test is not
run. Rather the CBV pointers have been pre-calculated and stored into the SSRAM 1. This mode
of operation is used purely to obtain accurate performance results for the PEAAE.

Function Name

Function Description

run_search_file

In this function search points are read out of SSRAM 1 and then searched. The search operation
consists of first passing the search points to a software search function. Software then passes the
pointers to the CBVs found during the search to the PFAAE. The ORed resultant bit-vector from
all of the retrieved bit-vectors are logged. As well, performance information and B-tree node
pointers obtained while searching are all logged for later analysis.

Function Name: Create CBV

Function Description Argumients Description Returns OD:SCHP t
Sends a buffer of rules to the PFAAE to buff Buffer containing a list of rule int Returns a
build a compressed bit-vector, waits for the identifiers used to create the PASSif
response pointer and then logs the resultant compressed bit-vector. successful
bit-vector using the Read_CBV function. and FAIL
: - - if not.
cbv_pointer Pointer in RLDRAM to the created
compressed bit-vector.

: (Table continued on next page)

-76-

Function Name: Read CBV

Function Description Arguments - | Description Returns - | Description

Reads a compressed bit-vector located at a pointer | ptr Pointer in RLDRAM int Returns a PASS

in RLDRAM and logs the result to a file. to read compressed if successful and
bit-vector from. FAIL if not.

Function Name

Function Description

run_dprl_test

This function is used to write data to the dual port RAM 1 and then read it back and perform a
comparison.

Function Name

Function Description

run_dprQ_test

This function is used to write data to the dual port RAM 0 and then read it back and perform a
comparison.

Function Name

Function Description

run_rldram_test

This function is used to test that the RLDRAM controller and wrapper is working properly. The
test is performed in a number of stages. Firstly data is written to dual port RAM 0, next this data
is written to RLDRAM, next the data is written from the RLDRAM to dual port RAM 1 and
finally the data is returned from dual port RAM 1 for comparison with the sent data.

Function Name: TestSsram

Function Description Arguments Description Returns OD:scrlp t
Test SSRAM functionality by start Starting address of int TRUE is
writing and reading a test pattern to memory to test. returned if
and from memory end Ending address of an error is
memory to test. found,
FALSE is
Itbase Base address of returned
memory to test. otherwise.

-77-

6 Verification

6.1 Hardware Verification

Hardware verification was done in an incremental fashion testing the basic building blocks of

the system until all of the logic components and buses were fully verified. The time required for

testing was somewhat underestimated in the project and took longer than expected. The

following are the major elements tested during hardware verification:

1.

LVDS Serial Bus Communication Testing: Low-Voltage Differential Signaling
(LVDS) serial bus testing was the primary test item which took longer than
expected. The two primary reasons for this was inadequate equipment and
inexperience in the determination of appropriate Virtex II input/output block
delays. Without having a logic analyzer there is no effective method of viewing
the serial data stream during testing and determining delay adjustments. The
Virtex I FPGA allows for precise adjustments to be made to the delays of
outputs. These delays are adjusted until no bit errors are found in a loop back
test of the serial bus. Unfortunately, the process used to determine appropriate
delay values involves tweaking the values until the serial bus operated properly.

As such, the tweaking process is quite time consuming.

System Communication Testing (Loop Back): Once reliable serial bus transmit
and receive functionality was proven, loop back testing was performed with the
rest of the communication components. The loop back test consists of software
writing data to the command FIFO, which is then sent to the RLDRAM FPGA
and then looped back into the response FIFO. The software then checks that the

data received to ensure it is the same as data sent.

Memory Testing: Memory testing involves transfers of data between the dual
port memories internal to the RLDRAM FPGA and the RLDRAM memory.
These tests ensure proper operation of the RLDRAM wrapper, RLDRAM

controller, memory refresh operations, and dual port RAM memories.

6.2 Software Verification

For the most part the software verification was done at the same time as the hardware

verification. Co-verification of hardware and low level software drivers was almost always done

-78-

to ensure both items functioned properly. The one major exception to this was the verification of
the B-tree structure. At the time of B-tree construction each input rule from the test set was added
to a linked list for a final post processing step. In this step each field of every rule was double
checked via a search in the B-tree structure to ensure its entire range is covered properly. As
well, each second dimension elementary interval, a range was apart of, was double checked to
ensure the rule number was apart of the node rule list. In this way the B-tree was ensured to be

built correctly.

6.3 Packet Filter Algorithm Verification

In order for a smooth hardware and software integration a collaborative flow was developed.
This flow was used to verify the functionality and evaluate the performance of the packet filter
design. The flow is presented as a series of figures, each containing one portion of the integration
phase. At the left side of each figure a box shows the input files needed for the particular
operation, shown by the box with rounded edges in the center. On the right side of the diagram
the output files produced are listed. Each diagram illustrates the flow of operations from top to

bottom and includes labels to show the flow from one diagram to the next.

Asterisks are used to delimit the location of variables inserted into the file names. Most of
the files are appended with the mode, seed and rule size of the test to organize the results. Mode
refers to the 2-dimensional pair under test, seed refers to the seed used for the test and rule size
indicates the number of rules used for the test. These variables were inserted to make the results

files identifiable.

6.3.1 Step 1 : Rule Generation

To verify and benchmark the packet filter, realistic rules sets needed to be acquired or
developed. It was found to be extremely difficult to acquire rules sets to test against.
Unfortunately, unlike compression testing there are no corpus’ available providing commercial
rules sets. However, as part of the project a C++ tool was developed capable of generating test
rule-sets of varying size and distribution statistics. Figure 6-1 shows a picture of the created tool

and Figure 6-2 shows a basic flow of the rule generation software.

-79-

:;WFvlule;Mékér

~Rule Set Source

Open Seed File | [No File Loaded

i
'
i
{

- Rule Number Slider

EA s hEh) A es b ED E s a1 0 E e r TN T R B Ea T (300 F et Ot 0 it ittt b re i s anignnanl

|

i Tl I L e T B R R O R IR O LR e BN E]

- Output Rule File Destination

Open Output Rule File [IND File Loaded

- Source IP Probability Density Function

Open Source IP PDF I !No File Loaded

~ Destination IP Probability Density Location

Open Destination IP PDF l]No File Loaded

— Source Port Probabilty Density Location

Open Source Port PDF [tNo File Loaded ™ none
- Destination Port Probability Density Location
Open Destination Port PDF ' INo File Loaded ™ none

]

~Result

CREATE RULES | |

,TI Cancel

Figure 6-1 : Rule Generator Software

-80-

Start of

Hardware Software
C++ Program Files: Integration

Rule_MakerDlg.h
Rule_MakerDlg.cpp
Rule_Maker.rc

Probability Distribution Files: v

dest_ip_cpdf_bytes.txt C++ out iles:

1P lout Rule Files:
dest_port_cpdf_bytes.txt Rule Generator rules_*_*.txt
source_ip_cpdf_bytes.txt

source_port_cpdf_bytes.ixt

Random Number Gen
seeds.ixt Seeds:

Figure 6-2 : Rule Generation Files and Process for Inbound Rules Example

Rule Generation Input Files Descriptions
1. CH4+ Program Files:

a. Rule_MakerDIg.h: Contains constants used in creating a rule generation

executable.

b. Rule_MakerDlg.cpp: Contains classes and functions used in creating a rule

generation executable.

¢. Rule_Maker.rc: Resource file containing project parameters for the Graphical

User Interface (GUI).
2. Discrete Cumulative Probability Distribution Files:
a. dest_ip_cpdf bytes.txt: Defines the destination IP probability distribution.
b. source ip_cpdf_bytes.txt: Defines the source IP probability distribution.
c. dest_port_cpdf_bytes.txt: Defines the destination port probability distribution.
d. source_port_cpdf_bytes.txt: Defines the source port probability distribution.
3. Random Number Generation Seed File

a. seeds.txt: Holds ten different seeds for the random number generator. The ten
different seeds are used to generate ten different files required for creation of a

confidence interval.

-81-

Rule Generation Output Files

1. rules_*model*_*seed*.txt: Stores a set of rules for a particular seed and rule model.

A rule model consists of the set of four probability distribution files outlined above.

Rule Generation Process

The steps performed when generating a set of rules are as follows:

1.

Select the appropriate seed file so that ten different rule files can be created, each with a

different seed.
Select the number of output rules desired for testing.

Select a base file to output the rules into. The output of the rules then appears in ten

different files with the prefix of each rule file being the name of the base file.

Select the four distribution files describing the distributions for the source and destination

IP and port protocols.

Press Create Rules and the ten rule files are created.

An example of how a rule is stored in a file is shown below (numeric values shown in

hexadecimal format):

ddo7496b : Source IP (32 bit value)

b389185b : Destination IP (32 bit value)

81b00000 : Bits 31:26 Mask Length for source IP (32 in this case)

Bits 25:20 Mask Length for destination IP (27 in this
case)

Bitg 19:0 Rule ID number

0000ff£ff : Source Port (start of range is first 16 MSB, end is LSB

16)

006a006a : Destination port (start of range is first 16 MSB, end is

LSB 16)

The rule format allows ports to be represented using the range matching style and IPs to be

represented using the prefix matching style. Having the start and the end specified allows a port

rule to be specified as an exact value or a particular range. Likewise the five bits used to specify

the mask for an IP rule allow for specification of a single IP value or any one of the 32 prefix

lengths. A value of 32 for the IP mask specifies a single IP and a mask length of zero represents a

wildcard.

-82-

6.3.2

Step 2 : Building the Search Structures and CBVs

The second step in the verification flow is building the search trees and the CBVs. The rule

files are used as inputs to the software to produce 2-dimensional B-trees containing the rule lists

for the creation of CBVs. A flow diagram for step two is shown in Figure 6-3.

Output Files for Test Point
Generation:

Input Rule Files: ARM SW Build Tree & Verification Output Files for Simulation:
rules_*_*.txt tree * * *ixt

¥ par_rule_list * * *ixt

Output Files for Analysis:
cbv_count_*_*_*.txt

Y

Output Files for Verification &
ARM SW/HW Build & Read CBV Performance Analysis:

cbv_list_* * *.txt

cbv_ptrs_* * *.txt

Figure 6-3 : Build Tree and CBVs

Build Tree File Descriptions

1.

par_rule list *mode*_*seed*_*rule_size*.txt : The purpose of this file is to store
parsed rules with the start and end of the each of the selected two dimensions. This file is
then used as an input to a Tcl script to produce random test points in the specified ranges
of each of the rules. This ensures that a number of test points are created for each rule.

See Appendix A for a file example.

tree_*mode*_*seed*_*rule_size*.txt : Contains a text based representation of the
search tree. It provides the start and end of each elementary interval in the tree as well as
a count and list of rules. See Appendix A for a file example. This was an optional file

generated for simulation and Tcl validation.

cbv_count_*mode*_*seed*_*rule_size*.txt: Contains a list of the number of rules

encompassed within each CBV. See Appendix A for a file example.

-83-

4. cbv_list *mode*_*seed*_*rule size*.txt : Contains a list of the CBVs one for each

elementary interval in the tree. See Appendix A for a file example.

5. cbv_ptrs_*mode*_*seed*_*rule_size*.txt: Contains a list of the RLDRAM pointers

one for each CBV. See Appendix A for a file example.

6.3.3 Step 3 : Producing Test Files

In this stage of the verification flow Tcl is used to create a set of stimulus files to exercise the
packet filter. Multiple test points are generated from each rule to ensure each rule is tested. The
test points are also used with the rule-set to perform a basic linear search. The results of this

search are used to validate the final results produced by the packet filter.

Tcl Script Files: A

create_test_points.tel Ttk
common_utils.tel Output Test Point Files:
L h{ Command Shell test_points. * * *txt
bk Eims Test Point Generator -—=
Parse Rule List Files:
par_rule_list_* * *.txt
Tcl Script Files: é
linear_search.tci
common_utiis.tcl /

Telitk : .
Parse Rule List Files: —{ Command Shell]—» Dutput Linear Search Results:
par_rule_list_*_*_*.ixt Linear Search - = ——

Test Point Files:
test_points_*_*_*txt

Figure 6-4 : Tcl Operations Linear Search Files and Process

File Descriptions

1. common_utils.tcl : Contains common utilities and file I/O procedures used in Tecl packet

filter operations.

2. create_test_points.tcl : Creates a file of test points for each mode, seed and rule size of a
given rule model. Random test points are picked in the specified ranges of each of the

rules to ensure that a number of test points are created for each rule.

-84-

3. test_points_*mode*_*seed*_*rule_size*.txt : Contains random test points for each of
the parsed rules in the parsed rule list file (par_rule list). See the Appendix A for a file

example.

4. linear_search.tel : Performs a linear search of the parsed rules list file for each test point
and returns a list of matching rule. The list of rules is then converted into CBV format.
The CBVs produced by the linear search are used as a set of “golden” test results for the

final verification step.

5. linear_search_results *mode* *seed*_*rule_size*.txt : Contains results from linear

search operations converted into CBV format.

6.3.4 Step 4 : Search Operations
The next phase of the verification flow involves using the test points generated to verify the
operation of the hardware and software and to determine performance. A flow diagram for step

four is shown in Figure 6-5.

Output Files for Performance
and Verification:
ptr_log_* * *.txt
search_timer_results_*_* *.txt
search_results_*_*_*.ixt

Input File s: ARM SW & HW Perform Search
test_points_*_*_*.txt (Verification Test)

\ /

Input File s: HW Perform Search gufggttig,’e:eﬁg :nvg ’g:':
ptr_log_*_*_*.txt (Performance Test) P -

ptr_timer_results_*_* *.txt

Figure 6-5 : ARM Files and Process

-85-

File Descriptions

1.

6.3.5

ptr_log_*mode*_*seed*_*rule_size*.txt : This is a log of the CBV pointers retrieved
from the tree during a test point search. If no pointer is returned from a level in the B-

tree then a null pointer OXFFFFFFFF is stored.

search_timer_results_*mode*_*seed* *rule_size*.txt: The purpose of this file is to
log statistics during a search operation. See Appendix A for an example of this log file.

The three values logged in this file are shown below:

a. 0x00000CAB : Total time for a search operation from the time the software
retrieved the test point. Included the search through the levels of the B-tree until

the hardware returns the search result.

b. 0x0000000C : Count of how many B-tree node keys (elementary intervals) were

accessed during as search.
c. 0x0000000A: Count of how many B-tree nodes were accessed during a search.

search_results_*mode*_*seed*_*rule_size*.txt : The search results file contains the
resultant CBVs when a 2-dimensional search is performed. The first data word includes
the time to perform an OR of the CBVs in the hardware. See Appendix A for an example
of this file.

ptr_timer_results *mode*_*seed*_*rule_size*.txt : The purpose of the file is to store
the results from a performance test in which pre-calculated CBV pointers are read from
SRAM and passed to hardware to be retrieved and ORed. Logged values include time
for hardware to complete a filter operation and return a value to the response FIFO. This
test is performed such that the command FIFO is always full to determine a maximum

throughput rate. See Appendix A for an example of this file.

Step 5: Simulation

To assist in debugging and verification a simulation environment was developed to exactly

model the entire hardware setup contained on the RLDRAM and LT-XC2V6000+ development

boards.

The environment was setup such that when problems were found with the actual

hardware the log files from tests could be used as inputs to the simulation environment to

accurately determine the problem. By doing this hardware can be tested at operational speed to

identify problems which can then be diagnosed in simulation. This methodology sometimes

referred to as emulation, works exceptionally well for speeding up the verification process. The

-86-

simulation and hardware environments both produce CBV list, CBV pointer and OR results files
which are compared to ensure correct translation from design files to hardware implementation.

A flow diagram for step five is shown in Figure 6-6.

Modelsim Tcl Script Files:
common_utils.tcl
¥ Y

cby_tree.tcl

Output Files for Verification:
B-Tree Representaton File: . . sim_cbv_list *_* *.txt
free_*_* *txt ModelSim Environment sim_cbv_ptrs_*_*_*xt

sim_search_resulfs_*_* *.txt

B-Tree Search CBV Pointer
Log:
ptr_log_* * *.xt

Y

View Waveforms

Figure 6-6 : Simulation Files and Process

File Descriptions
1. cbv_tree.tel : Contains procedures for building the CBVs, logging CBV pointers,

logging CBV lists, and performing OR operations from lists of pointers.

2. sim_cbv_list_*mode*_*seed*_*rule_size.txt : Contains a list of the CBVs for each

elementary interval in the B-tree.

3. sim_cbv_ptrs *mode*_*seed*_*rule size*.txt: Contains a list of the RLDRAM

pointers for each CBV.

4. sim_search_results_*mode*_*seed*_*rule_size*.txt : The sim_search results file
stores resultant CBVs when a 2-dimensional search is performed in simulation. The first

data word includes the time to perform an OR of the CBVs.

6.3.6 Step 6 : Final Verification

During the final verification step, the CBV search file results from simulation, hardware
testing, and a simple linear search are compared against each other to ensure there are no
differences in results. This step ensures all of the operations in both simulation and hardware
testing match up with the “golden” standard test results produced by a basic linear search. A flow

diagram for step six is shown in Figure 6-7.

-87-

Tel Script Files:

support.tel
cbv_validate.tcl

Comr-xrwgzg(Shell Output Comparison Files:
Search Results Files: Comparision cbv_search_check * *_*.txt
search_results_* * *.ixt P

sim_search_resuits_* * *.txt
linear_search_resuits_*_* *.ixt

Figure 6-7 : Final Verification Files and Process

File Descriptions

1. cbv_validate.tcl: Compares results from the simulation search, linear search and actual

test results.

2. cbv_search_check *mode*_*seed*_*rule_size*.txt: Logs results of the CBV validate

operation, flagging any differences found in the results.

-88-

7 Results

7.1 Perimeter Rule Model

When benchmarking a packet classifier it is desirable to use rule-sets similar to real-life
firewall rule-sets. To that end several papers were investigated for possible rule distributions
[1][2][8]. Of the papers reviewed the distributions found in the GEM paper [8] are most closely
followed because of the specific presentation of rule-set distributions. It should be noted however
the GEM model is not always followed as liberties are taken where ambiguities exist. The
differences between the GEM model and the developed model are outlined later in this section.
The first item of note obtained from the GEM paper is that a large degree of structure is found in
most rule-sets. In particular, rule-sets contain a large percentage of rules pertaining to TCP
traffic. As a result, benchmarking is performed using TCP fields including two 32-bit IP fields
and two 16-bit port fields. These fields are used to mimic inbound and outbound traffic for a

network the GEM paper describes as the perimeter firewall.

“The perimeter firewall assumes a network with two sides: a protected network on the inside,
and the Internet on the outside. The inside network consists of 10 class B networks, and the
Internet consists of all other IP addresses. Thus, the internal network contains 10%*65536

possible IP addresses™ [8].

It is also highlighted that organizations large enough to allocate 10 class B networks are quite

rare but still should be used for the following reasons:

1. Many organizations use private (RFC 1918) IP addresses internally, and export them via
Network Address Translation (NAT) on outbound traffic. Such organizations often use

large subnets liberally, e.g., assign a 172.x.*.* class B subnet to each department [8].

2. Having a large internal subnet stresses the GEM algorithm since random ranges are
selected from the internal ranges. The larger the internal net is, the closer the model is to

the Random Model described in section 7.4. [8].

Based on the distributions found in GEM, rule-sets are split between inbound and outbound.

Figure 7-1 shows a basic diagram of the network topology.

-89-

Outbound traffic

Outbound Rules >
10 Class B
Networks a—» Packet Filter Internet
(Protected i
Inbound traffic
Network)
Inbound Rules [

Figure 7-1 : Perimeter Rule Model Network Topology

7.2 Statistical Distributions
Table 7-1 and Table 7-2 provide a summary of the probability distributions found in the GEM
paper [8]. The following sections present a summary of the details regarding the inbound and

outbound characteristics of the IP address and port rules.
7.2.1 Inbound IP Rules
e source IP addresses are rarely specified in the rules
o 95% are specified as wild cards
o 5% are specified as a range uniformly selected from the available IP space

= Instead a probability distribution is created with increasing probability
from Class B to slightly smaller than Class C. This is done, rather than a
complete uniform distribution, because it is felt to be more representative
of the actual Internet. Figure 7-3 shows the resultant probability

distribution function.

e destination addresses for inbound rules are always internal, belonging to the 10 internal

class B subnets

o 45% of the rules have a randomly chosen individual internal IP address as a

destination
= models server machines

o 15% have a small random range: a range which completely lies inside one of the

internal class C networks
o 30% of the rules have a complete class C as a destination

o 10% of the rules have a complete class B as a destination

-90-

7.2.2 Outbound IP Rules

e destination IP addresses are rarely specified in the rules
o 90% are specified as wild cards
o 10% are either specified as a specific address or a range

= Figure 7-3 shows the chosen probability distribution function for the

range

e source IP addresses for outbound rules are always internal, belonging to the ten internal

class B subnets

o 45% of the rules have a randomly chosen individual internal IP address as a

destination
= models server machines

o 15% have a small random range: a range which completely lies inside one of the

internal class C networks
o 25% of the rules have a complete class C as a destination
o 10% allow access to a full class B
o 5% are specified as wild card
7.2.3 Inbound and Outbound Ports

The same statistics are used regardless of whether the direction is inbound or outbound

e source port is rarely specified

o 98% of the time it is a wildcard, consistent with stateful firewalls which do not

need to monitor return traffic
o 1% specified as a range
o 1% specified as a single port value
e destination port is precisely specified
o 96% are specified as single port value from a predefined list
o 2% are specified as ranges

o 2% are specified as random single ports

-91-

Table 7-1: Statistical distribution for IP address and ports in the perimeter model rule-set. [8]

Inbound Outbound

* 95% 5%

range 5% 15%

Source address Class B 10%
Class C 25%

single IP 45%

® 90%

range 15% 5%

Destination Class B 10%
address
Class C 30%
single IP 45% 5%
from list of 100 services dst 96% 96%
Destination port
port is random range 2% 2%
(service) o

dst port is single port 2% 2%

* 98% 98%

src port is a random range 1% 1%

Source port)

src port is from a use port list 0.5% 0.5%
src port is random 0-65535 0.5% 0.5%

-92-

Table 7-2: Statistical Distribution for Ports [8]

Source Port Distribution

Destination Port Distribution

* 98% * 0%
Ranges 1% Ranges 4%
single port 1% average range size 27030
single ports 96%
average number of single ports per S0
rule base
most used ports 80 6.89%
21 5.65%
23 4.87%
443 3.9%

8080 2.25%

7.2.4 Inbound Rules Detailed Description

Inbound Destination IP

As mentioned in section 6.3.1 a rule-set generator is used to generate rule-sets based on a

given distribution. The distributions input into the generator are largely modeled after the

information provided in the GEM paper. Table 7-3 shows the three parameters used to determine

an inbound destination IP rule.

probabilities of all of the elements are summed, they equal 1.

As in a typical probability distribution function, when the

-93-

Table 7-3: Inbound Rule Destination IP Type Probability

Distribution Type Probability
0 Random IP Address 0.45
1 Range 0.55
2 Wild Card 0.00

Random IP Address: To specify the random IP probability distribution function more
easily the 32 bits of the address space are broken up into bytes. Each byte can have one
of 256 possible values each of which is specified a probability of occurrence. By
repeating this procedure for each byte the probability distribution function of the random
IP address is fully specified. Using a common notation for an IP Address the bytes are
specified as follows: (Byte4).(Byte3).(Byte2).(Bytel).

e Byte 1: uniform distribution (each value has probability of 1/256)
e Byte 2: uniform distribution (each value has probability of 1/256)

e Byte 3: uniform distribution across 10 Class B subnets : [128:137]. Consecutive

subnets with same first octet chosen to simplify creation of the generation tool.

e Byte 4: For a class B network the range of the first octet is between 128 and 191
(179 was selected).

It should be noted the distribution specified is not only used for single random IP address
rules but also to find suitable IP address for prefix ranges. Rules for specifying ranges

are also required to be based off valid IP addresses found in the protected network.

Range: For the purposes of defining ranges with respect to IP addresses, ranges are
specified using the prefix method. Range selection begins by first selecting an IP address
based on the IP distribution specified and then by selecting a prefix range length based on
the range distribution. A value of 32 for the range is used to specify a single IP and a
value of zero represents a wildcard. Figure 7-2 shows the probability distribution
function chosen for the inbound destination IP address rules. A value of 24 indicates the
lower 8 bits of the IP address are used for the range and are ‘do not care’. As such, a
range is created because the lower 8 bits are masked off for comparison against an

incoming IP address.

-94-

Prefix Mask Length Probability Distribution

[+
o

Percentage
N w P [42]
o o [en} (e

_
(=)

ol M e
0 5 10 15 20 25 30
Mask Length

Figure 7-2 : Inbound Destination IP Prefix Mask Length Probability Distribution Function

Notes on Figure 7-2:
e Tirst spike is class B prefix length mask
e Second spike is class C prefix length mask

e Remaining are uniformly spread out to create small networks

3. 'Wild Card: Specifies a condition in which a whole field of the rule is specified as a ‘do

not care’. In this case zero percent of the rules contain a wild card for the inbound

destination IP address.

Inbound Source IP

The tables and distributions in this section describe the probability distribution functions and

probabilities used to create the rules for the inbound source IP. Table 7-4 shows the three

parameters used to determine the inbound source IP rule.

Table 7-4: Inbound Rule Source IP Type Probability

Distribution Type Probability
0 Random IP Address 0.00
1 Range 0.05
2 Wild Card 0.95

-05-

0. Random IP Address: Using a common notation for an IP Address the bytes are specified
as follows: (Byte4).(Byte3).(Byte2).(Bytel).

e Byte | ; uniform distribution (each value has probability of 1/256)
e Byte 2 ; uniform distribution (each value has probability of 1/256)
o Byte 3: uniform distribution (each value has probability of 1/256)
e Byte 4 : uniform distribution, has several blocks of IP address removed

o Specific addresses reserved by the Internet Assigned Numbers Authority
(IANA) such as 10.0.0.0 - 10.255.255.255 are removed

o 179.x.x.x addresses are removed because are they used for the test

network
1. Range: Figure 7-3 shows the probability distribution function used to define ranges for
the inbound source IP rules.

Prefix Mask Length Probability Distribution
14 . - . .

12

10

Percentage

0 5 10 15 20
Mask Length

Figure 7-3 : Inbound Source IP Prefix Mask Length Probability Distribution Function

2. Wild Card: Specifies a condition in which a portion of the rule is specified as do not
care. In this case 95 percent of the rules contain a wild card for the inbound source IP

address.

Inbound Source Port
The tables and distributions in this section describe the probability distribution functions and

probabilities used to create the rules for the inbound source port.

-96-

Table 7-5: Inbound Rule Source Port Type Probability

Distribution Type Probability
0 Random Port Number | 0.5%

1 Used Ports 0.5%

2 Range 1%

3 Wild Card * 98%

Type Descriptions
0. Single Random Number: Allows for a small rate of growth in the number of services
by adding random generated services, where the port is randomly picked from 0 to 65535

(uniform probability distribution across all ports).

1. Selected Ports: Picked from a list of 100 most used ports, ports are selected with the
probabilities shown in Table 7-6.

Table 7-6: Most Used Inbound TCP Ports

Most Used Ports Service Probability
80 HTTP 7.08%
21 FTP 5.65%
23 Telnet 4.87%
443 SSL 3.9%
8080 HTTP 2.5%
list of 95 individual 0.8% per
ports port
100-194

Total | 100%

2. Range: 1% of source port rules are a range. Common ranges are “all high ports” (1024—
65535) and “X11 ports” (6000-6003). As such, most of the weight is placed in extremely
low ranges and extremely high. Table 7-7 shows the different probabilities assigned to

each range.

Table 7-7: Probability of Range Size for Inbound TCP Port

Range Probability

3-30 45% Allows small ranges of 3-30 in size
100-1000 5% Allows any range between 100-1000
10000 5% Allows range of size 10000 only
60000 45% Allows range of 60000 only

-97-

The average range size is calculated by summing up the possible range values for a given
range subset, dividing by the number of possible ranges for a given range subset and then
multiplying by the given probability. When the values from each of the range subset
calculations are summed an average range is obtained, as shown in Equation 7-1. The
values shown in Table 7-7 are selected to create an average as close as possible to the one

specified in the GEM paper.

Equation 7-1 : Source Port Average Range Size Calculation

(60000x 0.45+10000x 0.05+ (3 +4 +...+30)x 043/ + (100 +101+...+1000)x O-O%Ol)z 27535

3. Wild card: Specifies a condition in which a portion of the rule is specified as do not care.

In this case 98 percent of the rules will contain a wild card for the inbound source port.

Inbound Destination Port
The tables and distributions in this section describe the probability distribution functions and

probabilities used to create the rules for the inbound destination port.

Table 7-8: Inbound Rule Destination Port Type Probability

Distribution Type Probability
0 Random Port Number | 2%

1 Used Ports 96%

2 Range 2%

3 Wild Card * 0%

0. Random Single Number: Allows a small rate of growth in the number of services by
adding of random generated services, where the port is randomly picked from 0 to 65535
(uniform probability distribution across all ports).

1. Selected Ports: Picked from a list of 100 most used ports, ports are selected with the

probabilities shown in Table 7-9.

-08-

Table 7-9: Most Used Outbound TCP Ports

Most Used Ports Service Probability
80 HTTP 7.08%
21 FTP 5.65%
23 Telnet 4.87%
443 SSL 3.9%
8080 HTTP 2.5%
list of 95 individual 0.8% per
ports port
100-194

Total | 100%

2. Range: 2 percent of source ports in rules are defined as ranges. Common ranges are “all
high ports” (1024-65535) and “X11 ports” (6000-6003). Therefore, most of the weight

was placed in extremely low ranges and extremely high.

Table 7-10: Probability of Range Size for Outbound TCP Port

Range Probability

3-30 45% Allows small ranges of 3-30 in size
100-1000 5% Allows any range between 100-1000
10000 5% Allows range of size 10000

60000 45% Allows range of 60000 only

Like the source port the goal was to create an average as close as possible to the one
specified in the GEM paper. The calculation of the average range size is shown in

Equation 7-2

Equation 7-2 : Destination Port Average Range Size Calculation

(60000x 0.45+10000x 0.05 + (3 +4 +...+30)x 0-4%8 +(100+101+...+1000)x 0-05901)z 27535

3. Wild card: Specifies a condition in which a portion of the rule is specified as do not care.

In this case 0 percent of the rules contain a wild card for the inbound source port.

7.2.5 Outbound Rules

With a few slight variations in probability distribution functions the outbound rules are
almost the exact opposite of the inbound rules. Other than differences in distribution type
probabilities the outbound destination IP matches the inbound source IP and the outbound source
IP matches the inbound destination IP. The format for specifying the outbound rules are exactly

the same and as with the inbound rules.

-99-

Outbound Destination IP

The destination addresses for outbound rules are selected from the Internet with the

probabilities shown in Table 7-11.

Table 7-11: Outbound Rule Destination IP Type Probability

Distribution Type Probability
0 Random IP Address 0.05
1 Range 0.05
2 Wild Card 0.90

Outbound Source IP

The source addresses for outbound rules are selected from the internal addresses with the

probabilities shown in Table 7-12.

Table 7-12: Inbound Rule Destination IP Type Probability

Distribution Type Probability
0 Random IP Address 0.45
1 Range 0.50
2 Wild Card 0.05

Outbound Destination Port

Same as inbound destination port, see section 7.2.4 for details.

Outbound Source Port

Same as inbound source port, see section 7.2.4 for details.

7.3 Performance Analysis

7.3.1 Best Field Order
During development and initial testing it became apparent field order greatly impacted the
size of the data structure produced. As such, it became an important objective to compare the

performance and data structure size of different field orders. Table 7-13 shows the identifiers for

the four fields used for creating the rules.

-100-

Table 7-13: Rule Field Identifier

D Field Size
0 Source IP 32-bits
1 Destination IP 32-bits
2 Source Port 16-bits
3 Destination Port 16-bits

For a four dimensional search there is typically twenty four different combinations of field order.
However, when combining 2-dimensional search operations which operate in parallel only twelve
variations are possible. Only twelve variations exist because the searches are performed in
parallel and the order of the pair is inconsequential. The twelve 2-dimensional pairs are outlined
in Table 7-14 and the twelve groupings of 2-dimensional pairs are shown in Figure 7-15. The

identifiers for these pairs and groupings are used in the result plots in the remainder of this

document.

Table 7-14: 2-Dimensional Field Combinations

File 2-D Pair Field 1 Field 2

Numbering | Identifier (Dimension 1) (Dimension 2)
PO1 Source IP Destination IP

2 P02 Source IP Source Port
3 P03 Source IP Destination Port
4 P10 Destination IP Source IP
5 P12 Destination IP Source Port
6 P13 Destination IP Destination Port
7 P20 Source Port Source IP
8 P21 Source Port Destination IP
9 P23 Source Port Destination Port
10 P30 Destination Port Source IP
11 P31 Destination Port Destination IP
12 P32 Destination Port Source Port

-101-

Table 7-15: 4-Dimensional Field Combinations

File 4-D Group Pairl Pair 2
Numbering | Identifier-
1,9 P01 P23 Source IP, Destination IP Source Port, Destination Port
1,12 P01 P32 Source IP, Destination IP Destination Port, Source Port
2,6 P02 P13 Source IP, Source Port Destination IP, Destination Port
2,11 P02 P31 Source IP, Source Port Destination Port, Destination IP
3,5 P03 P12 Source IP, Destination Port Destination IP, Source Port
3,8 P03 P21 Source IP, Destination Port Source Port, Destination IP
4.9 P10 P23 Destination IP, Source IP Source Port, Destination Port
4,12 P10 P32 Destination IP, Source IP Destination Port, Source Port
5,10 P12 P30 Destination IP, Source Port Destination Port, Source IP
6,7 P13 P20 Destination IP, Destination Port | Source Port, Source IP
7,11 P20 P31 Source Port, Source IP Destination Port, Destination IP
8,10 P21 P30 Source Port, Destination IP Destination Port, Source IP

Results indicate the size of the data structure varies greatly between field orders. As a result
it is not possible to obtain test results for all cases because the memory space required for
building the structures becomes prohibitive. In an effort to remove the worst field orders an
iterative elimination process is used. As a first step small rules sets of size 1024 are generated.
The data structures sizes for each of the twelve 2-dimensional field combinations are logged
along with the search time results. These results are then used as a basis for elimination of the
worst performing field orders. For eliminating a combined analysis is performed in which both 2-
dimensional pairs are considered. This is because often one of the 2-dimensional pairs performs
exceptionally well while the other performs very poor. In these cases both are removed because

the end goal is to find an optimal ordering for a 4-dimensional search.

7.3.2 Plots

The data points for the plots in this section are obtained from generating ten different rule-
sets based on the distributions identified in section 7.2. Each rule-set is initialized with a different
random seed to obtain a group of rule-sets from which a ninety percent confidence interval can be
obtained. The confidence intervals are shown by the line with bars on the top and bottom for
cach data points in the upcoming plots. If a line is not present it is because the interval is too
small to show. Each data point represents the average obtained from the ten runs with the
confidence interval indicating ninety percent certainty that the true result lies between the bars.

The search time plots also indicate the maximum and minimum values by the lines above and

-102-

below the bars. It should be noted the memory usage includes both the CBV and B-tree
requirements while the search times represent only the time required for the PFAAE OR
operation. Software throughput is evaluated based on memory accesses in section 7.3.4. The
result for the 4-dimensional memory usage is created by summing the memory usage results of
the two 2-dimensional pairs. By contrast, the result for the 4-dimensional search time is obtained
by selecting the worst of the two 2-dimensional results. This is done because in an actual system

the 2-dimesional search operations would occur simultaneously.

Outbound Results

Memory Usage: (OB 1K Rules)
2500 —

2000

KBytes

1000+

Mean Time (sec)

500+

B T
FO1 F02 FO3 P10 P12 P13 P20 P21 P23 P30 P31 P32
P1 Pairs P1 Pairs

o

Figure 7-4 : Outbound 1 K Results

Outbound 1 K Results Summary
e Worst by Memory Use: P10, P20, P21
e Worst by Search Time: P01, P02, P12, P21
e Eliminated for 1 K test: None

-103-

Memory Usage: (OB 2K Rules) x10° Mean Search Time: (OB 2K Rules)

450 8
400 4 7
350 - 6
300 0
&5
@ 250 o
Q
% 200 E ¢
X ; = el I
150 . < a
100 . e i 2 ' ~ :
50 - sl } - | : ; I H [o
FO1 P02 FO3 P12 P13 P23 P30 P31 P32 FO1 FO2 FO3 P12 P13 P23 P30 P31 P32
P1 Pairs P1 Pairs

Figure 7-5 : Outbound 2 K Results

Outbound 2 K Results Summary
e Worst by Memory Use: P03, P30, P23
e Worst by Search Time: P01, P02, P12
e Eliminated for 2 K test:
o P10: previously worst by memory usage
o P20: previously worst by memory usage

o P21: previously worst by memory usage

Memory Usage: (OB 4K Rules) x10° Mean Search Time: (OB 4K Rules)

600 1.4

500 12

1
400 g
@2

8 ® 0.8+
=, 300 E

o ~ : = o6
o = 5

7 = 04

100 }—“”“’ ' [—m 0.2

Fo1 R2 P13 P31 P32 FO1 2 P13 P31 P32
P1 Pairs P1 Pairs

Figure 7-6 : Outbound 4 K Results

Outbound 4 K Results Summary
e Worst by Memory Use: P01, P02

-104-

e Worst by Search Time: P01, P02
o Eliminated for 4 K test:
o PO03: previously worst by memory usage

o P10: previously worst by memory usage

o P12: removed because it has no 2-dimensional pair left (P03 or P30)
o P20: previously worst by memory usage
o P21: previously worst by memory usage
o P23: previously worst by memory usage

o P30: previously worst by memory usage

Outbound Results Summary
The final remaining five 2-dimensional pairs (P01, P02, P13, P31, P32) are used in the following
sections for analysis of the 4-dimensional groups PO1_P32, P02 _P13 and P02 P31.

KBytes

Inbound Results
Memory Usage: (IB 1K Rules) x 10° Mean Search Time: (Inbound 1K Rules)
2500 . — 45—y . . .
& 7
41 & '”A R 2
2000 35 . & f
. 2ol o |\
g 3 . -
1500 @ - .
© 25+ , | b
1000 g & 5 : 7 8
g 1.5 1 - ':,,’ - i 4
500 gl dLien =
; sl LI 1 ; ,
ol el A L B B
FO1 P02 FO3 P10 P12 P13 P20 P21 P23 P30 P31 P32 FO1 FO2 P03 P10 P12 P13 P20 P21 F23 P30 P31 P32
P1 Pair P1 Pairs

Figure 7-7 : Inbound 1 K Results

Inbound 1 K Results Summary
e Worst by Memory Use: P01, P20, P21
e Worst by Search Time: P02, P20

o Eliminated for 1 K test: None

-105-

Memory Usage: (Inbound 2K Rules) x10° Mean Search Time: (IB 2K Rules)
600 —————— §—— —

500

400

300

KBytes

200

Mean Time (sec)

100

- , - o |
ROt F02 FO3 P10 P12 P13 P23 P30 P31 P32 FO1 R02 FO3 P10 P12 P13 P23 P30 P31 P32
P1 Pairs P1 Pair

Figure 7-8 : Inbound 2 K Results

Inbound 2 K Results Summary
e Worst by Memory Use: P01, P13, P23
e Worst by Search Time: P02

e Eliminated for 2 K test:
a. P20: previously worst by search time and memory usage
b. P21: previously worst by memory usage

Memory Usage vs P1 Pairs: (Inbound 4K Rules) x 10° Mean Search Time: (Inbound 4K Rules)
600 ; ; : ; . . ; 1.4 . .
500 12 1
-1
400 4 Q
L
2 Py 0.8
5, 300 £
2 = oo |
200 3
= 04
P2 FR3 PIO P12 P30 P31 P32 F2 FR03 PIO P12 P30 P31 P32
P1 Pairs P1 Pairs

Figure 7-9 : Inbound 4 K Results

Inbound 4 K Results Summary
e Worst by Memory Use: P10, P31

-106-

e Worst by Search Time: P02, P32

e Eliminated for 4 K test:

PO1: previously worst by memory usage

P13: previously worst by memory usage

P20: previously worst by search time and memory usage
P21: previously worst by memory usage

oo o

P23: previously worst by memory usage

Inbound Results Summary

Of the remaining seven 2-dimensional pairs P31 is eliminated due to memory usage. As
such, P02 is also eliminated because there are no longer any 2-dimensional pairs left for 4-
dimensional analysis. The final remaining five 2-dimensional pairs (P03, P10, P12, P30, P32) are
used in the following sections for analysis of the 4-dimensional groups P10 P32, P03 P12 and
P30 _P12.

7.3.3 Growth Rate
From the results of the inbound and outbound elimination process the remaining 2-
dimensional pairs are evaluated up to a rule size of 16 K. The results are used to determine the

growth rate of memory usage and search time with respect to rule-set size.

Memory Usage Growth Rate
Based on evaluations of rule-set sizes from 1 K to 16 K the results of the best field order
search 2-dimensional pairs and 4-dimensional groups are plotted in Figure 7-10 and in Figure

7-11.

-107-

Num Rules vs Memory Usage (IB P1 Pairs) Num Rules vs Memory Usage (IB P2 Pairs)

3000 5000
— P03/P12
2500 4000
——— P10/P32
2000
w » 30001 | ——P12/P30
Q [V
S, 1500 S
i) i)
x X 2000
1000+
500 1000
R : : : 0 : : :
0 5 10 15 20 0 5 10 15 20
Number of K Rules Number of K Rules
Figure 7-10 : Inbound Memory Growth Rate
Num Rules vs Memory Usage (OB P1 Pairs) Num Rules vs Memory Usage (OB P2 Pairs)
3500 ‘ - - 6000
3000 . 5000. | —— PO1/P32
2500 . —— P02/P13
4000
@ 2000 J @ - P02/P31
= <, 3000
2 1500 T
2000]
1000 _
500 1000 .
0L : : . 0 : : :
0 5 10 15 20 0 5 10 15 20
Number of K Rules Number of K Rules

Figure 7-11 : Outbound Memory Growth Rate

From reviewing the resultant memory usage data it is apparent even when rules sizes of 16 K
are used the memory required for storage is quite small. No 2-dimensional pair exceeds 3.5 MB
and no 4-dimensional group exceeds 6 MB. To determine the actual growth rate of the best
performing pair, outbound P02 P13, an analysis is performed using a log-log plot. Figure 7-12
shows the data structure size as a function of rule-set size for the best performing pair. The plot

shows the growth on a log-log scale. The green line represents P02_P13 data points, the red line

is a curve fit of the worst-case slope of the line, and the blue line represents the plot y=10°x2.

On a log-log plot equations of the form y =10°x® have a slope equal to @ and a y intercept equal

-108-

to b. This is clear to see when the log of both sides of y=10°x" is taken to produce

log,g y =alog;y x+b. Using the Matlab function polyfit the equation of the red line is determined

071717 412276 - As such, the data structure size grows almost linearly as a function of

tobe y=1
rule-set size with a slope of approximately 5/4. This is much lower than the theoretical upper
bound of O(n’). Also evaluated is the outbound pair P02 31, it has a growth rate of

approximately 3/2. It is mentioned because it is the pair with the worst growth rate.

s LoglLog Plot Size Vs Rules : Outbound : P02 P13 s LogLog Piot Size Vs Rules : Outbound : P02 P31

IEEEEE EEEEE R R EISEEEE 10 §
- | I I"Y_|7f'|f___l—‘l Frianr T
" sl ainih Kl
oI e A
g g
z &
£ £
Q
a'l" N y r_»—x—l—n—n»———r— —I= = e
7] 0) Bt Sl el o B s il sl ol it o o 9 4
P02 P13 4 - P02 P31 {4
g Curve Fit [Cure fit
] Lot o]
1 T e U ' L e T I N R I = 2 |
, T : T T : 5—x2 :_ X i
10 i L4 1 elase i I T - | l”4 I llHHls
10° 10° 10* 10° 10 10
Number of Rules Number of Rules

Figure 7-12 : Worst-Case Growth Rate Analysis Plot

Inbound and Outbound CBV Compression Ratio Statistics

To provide insight into the effectiveness of CBV storage as compared to storage without
compression Figure 7-13 is provided. The compression ratio is calculated by dividing the number
of bits required for a bit-vector without compression by the number of bits required for storage as
a CBV. The memory savings are apparent, particularly when the first field is an IP and not a port.
Figure 7-14 provides some insight into why the compression ratio difference occurs. As shown
by Figure 7-14 the pairs with IP addresses as the first field have much lower number of rules set
per CBV as compared to the pairs with a port as the first field. This is because the distributions
used for the ports create more clustering as a result of the large percentage of rules assigned to the
commonly used port numbers. By contrast, the IP field distributions create more of a spread
resulting in CBVs in the second dimension with smaller numbers of rules set. An addition reason
for the higher number of rules set in pairs with ports as the first field is because only two levels of
B-trees are used. It is obvious the fewer rules are set in a bit-vector the better the compression

ratio when creating a CBV.

-100-

Compression Ratio vs Num Rules (IB P1 Pairs) Compression Ratio vs Num Rules (OB P1 Pairs)

50
— P01
40t | — P03
2 2 — P12
3] 3] e — -
< R
2 S
(2] 2]
8 8
S a 20
£ £
[Q
o O
10
0 : : :) S : :
0 5 10 15 20 0 5 10 15 20
Number of K Rules Number of K Rules
Figure 7-13 : Compression Ratio Statistics
Rules Per CBV vs Num Rules (IB P1 Pairs) Rules Per CBV vs Num Rules (OB P1 Pairs)
600 600 .
— P03 — PO1
S00r | p1o 1 R p—, b
— P12 g — P13 e
400 — P30 /,,/‘ 1 400 — P31 // 7
@ — P32 2 — P32 /,./
= 300} = 300
[va 74
200 200
100 100
OLsE 0 ‘ ‘
0 5 10 15 20 0 5 10 15 20
Number of K Rules Number of K Rules

Figure 7-14 : Number of Rules Per CBV

Search Time Growth Rate

Like the memory usage, the search times are also plotted with respect the rule-set size.
Figure 7-15 and Figure 7-16 show the inbound and outbound results for the best performing 2-
dimensinal pairs and 4-dimensional groups. The result for the 4-dimensional groups is obtained
by selecting the worst performing 2-dimensional pair of the available two. This is done because
both search operations would be performed in parallel and the worst performing of the two would

be the bottleneck for the final AND operation. Once again it should be noted the search times

-110-

obtained are only from the PFAAE portion of the search operation. The PFAAE time includes the
time to retrieve the CBVs from memory and perform the OR operation. The hardware and
software are considered separately because the hardware operations perform orders of magnitude
faster than the software. The PFAAE search times are accurately obtained by filling the
command FIFO with CBV pointers and then allowing the hardware to run once the FIFO was
completely full. In this way the hardware can operate at its maximum speed because it is never
waiting for a CBV pointer from software. While this type of operation is not typical, the
processor and software are so much slower, this was necessary to test in this manner to obtain an
accurate estimate of hardware performance. The results obtained illustrate search time grows
linearly with the rule-set size. The reason for the linear growth is attributed to the characteristics
of the rules sets used and the fact that the OR operation is O). In particular, the probability
distribution functions and probabilities for rule types are not a function of rule-set size and as
such the characteristics scaled as the rule-set size grew. Research found no mention of the
relationship between rule-set characteristics and rule-set size. Unfortunately no evidence was
found to prove the theory that the rule-set characteristics likely change with size. Looking at the
results the hardware is able to sustain, a throughput of 18 ps/packet, or 56,000 packets per
second, for inbound and 24,000 packets per second for outbound traffic. While these results are
considerably less than desired one must consider the fact that the algorithm is being run on a
development platform. Section 7.5 extrapolates the results obtained for an ASIC to illustrate how
the design can be used for Gigabit Ethernet. It should be noted no results are obtained or
presented for the final AND operation which intersects the resultant CBVs from each of the 2-
dimensional searches. The reason for this is because this operation would be pipelined with the
OR operation and is less complex. As such, the bottleneck in the pipelined system is the OR

operation.

-111-

X 10'5 Search Time vs Num Rules (IB P1 Pairs)

—— P03
—— P10
—— P12
~——— P30
— P32

-
()]

Mean Search Time (sec)
=]
[4;) -

10 15

Number of K Rules

20

Mean Search Time (usec)

Search Time vs Num Rules (1B P2 Pairs)

101 - ---ZZZ-ZZ1-—-—-Z--Z-Z-1
——— P03/P12
———————— ;s —-----| —— P10/P32
0 ; | — P12/P30
10 i | I
0 5 10 15 20
Number of K Rules

Figure 7-15 : Inbound Search Time Growth Rate

x 10~°Search Time vs Num Rules (OB P1 Pairs)
5 .

~—— PO1
5 4} | —— P02
& —— P13
2 | ——Fal
= — P32
L
S
8 2 1
D
f =
1]
4]
s 1
0 L

10
Number of K Rules

15

20

Mean Search Time (usec)

10

Search Time vs Num Rules (OB P2 Pairs)

N

—— P01/P32

N
o_n

10

Number of K Rules

7.3.4 Software B-tree Node Searches

Figure 7-16 : Outbound Search Time Growth Rate

When performing a search the software portion of the system searched through a multi-level

B-tree as outlined in the example shown in section 3.3. Due to the limited capabilities of the

ARM processor available it was chosen to characterize the software performance based on B-tree

node accesses during a search. The number of B-tree nodes accesses during a search also

provides a generic metric which allows for what if analysis based on hypothetical systems.

Figure 7-17 shows the growth of B-tree nodes access with respect to rule-set size. The figures

-112-

indicate average numbers of nodes accessed not minimum or maximum. As expected the growth
is logarithmic in nature due to the fact that the height of the B-tree grows as the logarithm of the
number of elements inserted. The results obtained from this section are used to determine ASIC
performance in section 7.5. The distributions for B-tree nodes accessed during searches for 16 K
rule sets are shown in Figure 7-18 and Figure 7-19. These plots are provided as additional

information with no analysis provided.

Nedes Searched vs Number Rules (1B P1 Pairs) Nodes Searched vs Number Rules (OB P1 Pairs)

18 20
3 16 B 18
¥ o
(] 5]
& 14 A} 16
i1 =
2 12 2 14
g —— P03 g — P01
£ 10 ——P10] | £ 12 — P02 |
2 —— P12 “ —— P13
2 g l o4
z — P30 E 10 o - P31

— P32 — P32
6 - : . 8 . . :
0 5 10 15 20 0 5 10 15 20
Number of K Rules Number of K Rules

Figure 7-17: Nodes Accesses for Software Search

-113-

Count

Count

Count

x 10° Pair : P01

x 10" Pair: P02

6 6
4 4
€
S
8
2 2
0 0
10 15 20 25 5 10 15 20
Nodes Searched, Avg: 18.617594 # Nodes Searched, Avg: 16.572086
x 10° Pair: P13 x 10" Pair: P31
6 6
4 S 4
O
2 2
0 0
10 15 20 25 5 10 15 20
Nodes Searched, Avg: 17.997211 # Nodes Searched, Avg: 14.036353
x 10° Pair: P32

5 10
Nodes Searched, Avg: 13.020360

Figure 7-18 : Histograms of No

15

des Accesses for Outbound Search Pairs

-114-

x 10 Pair: P03 x 10* Pair: P10

15 8
6
10
5 g
Q 3 ¢
O 5 O
2
0 0
12 14 16 18 20 5 10 15 20
Nodes Searched, Avg: 17.592193 # Nodes Searched, Avg: 14.582862
« 10" Pair: P12 x 10 Pair: P30
8 8
6 6
g g
3 4 3 4
O O
2 2
0 0
6 8 10 12 14 16 6 8 10 12 14 16
Nodes Searched, Avg: 14.109010 # Nodes Searched, Avg: 13.041780
x 10° Pair: P32
8
6
£
3 4
O
2
0

6 8 10 12 14 16
Nodes Searched, Avg: 12.552348

Figure 7-19: Histograms of Nodes Accesses for Inbound Search Pairs

7.3.5 CBYV Retrieval Time

When designing a system for optimal throughput it is beneficial to break down the main
operations in order to find bottlenecks. To this end the PFAAE filer operation is broken down

into the following two operations:

1. Retrieval of the CBV from RLDRAM memory

-115-

2. OR operation of CBVs

The primary reason this analysis is done is to verify that the bottleneck of the OR operation is not
the RLDRAM memory. Knowing the split of time spent between memory retrieval and actual
hardware operations allows for more accurate ASIC performance estimation. Figure 7-20 and
Figure 7-21 show the results obtained for CBV retrieval time as a function of rule size. The
results show the RLDRAM retrieval time is less than 2 ps for inbound and 3.5 ps for outbound
traffic. In either case these results indicate that approximately one tenth of the OR time is spent

in retrieval.

Confidence Interval Explanation:

As shown by Figure 7-20 and Figure 7-21 the confidence intervals of the 2-dimensional rule,
combinations beginning with a destination port are much larger than the others. The first reason
for this is because only two levels of B-trees are used when a port was assigned for use in the first
dimension. Only two levels are used because each level is assigned a range width of increasing
size. The first level range is assigned values with ranges up to 255 and the second level is
assigned values with ranges between 256 and 65535. As the maximum range size for a port is
65535 only two levels are required to contain any possible port rule. Additionally, the probability
distribution function for the destination port causes large and small CBVs to be created in the first
B-tree level. This is because common single ports apply to many rules resulting in large CBVs
and small ranges applying to few rules result in small CBVs. By contrast, the second level of the
B-tree only contains small CBVs. These small CBVs result from the small number of rules with
ranges large enough to be selected for insertion into the second level. These conclusions are
drawn by reviewing the CBV files created. Only the first dimension provides any effect on the
final CBVs because the second dimension always contains rules consistent of mostly wild cards.
A second dimension containing almost all wild cards provides little or no splitting creating very

few elementary intervals. The end result is the following combinations of CBVs:
1. Small CBV from first dimension, Small CBV from second dimension
2. Large CBV from first dimension, Small CBV from second dimension

The combination of these two types of OR operations lead to the larger confidence as compared

to the others.

-116-

Retrieval Time vs Number Rules (IB P1 Pairs)

Mean Retrieval Time (usec)

Num of K Rules

0 5 10 15 20

Mean Retrieval Time (usec)

1.9

1.8

1.7

1.6}

1.5

1.4

1.3

Retrieval Time vs Number Rules (1B P2 Pairs)

— P03/P12
— P10/P32

— P12/P30

5

10 15
Num of K Rules

20

Figure 7-20 : Inbound CBV Retrieval Time

Retrieval Time vs Number Rules (OB P1 Pairs)

3.5 :
—— PO1

o~ — PO2
0 F
§ 8 — p13
> — P31
€ 251 —— P32
i_
=
>
[0
s 2
[
©
o
8 15
L1

1

0 5 10 15
Num of K Rules

20

Mean Retrieval Time (usec)

Retrieval Time vs Number Rules (OB P2 Pairs)

3.5
3
2.5 .
——— PO1/P32
2 ———— P02/P13
—— PO2/P31
1.5 : : :
0 5 10 15 20

Num of K Rules

Figure 7-21 : Outbound CBYV Retrieval Time

7.4 Random Rule Model

To provide additional insight into the performance of the hardware a rule model was

developed based purely on uniformly distributed random rule-sets. This rule model does not

consider a particular network structure but rather treats inbound and outbound the same.

As

inbound and outbound are considered the same the number of possible combinations of pairs is

greatly reduced. The reduction is shown in Table 7-16 and Table 7-17 in which the random

identifier is shown next to all of the perimeter identifiers it covers. It should be noted these types

-117-

of rule-sets are typically not used because they exhibit worst-case memory growth. Actual testing
confirmed the expected memory explosion as only one rule-set was able to work at a size of 8 K.
A best field order search is not performed as most of the pairs are not able to run because of
prohibitive memory requirements. Rather a pair able to run up to the highest possible rule size is
chosen to illustrate effects of the random distributions. It is expected the random rule-set will

create much larger data structures, resulting in sparse bit-vectors and very fast hardware

operations.
Table 7-16: Rule Field Identifier
ID Field Size
0 IP Dist 32-bits
Port Dist 16-bits
Table 7-17: 2-Dimensional Field Combinations
File Random Perimeter | Field 1 Field 2
Numbering | Ydentifier Identifier (Dimension 1) (Dimension 2)
1 RPOO P0O1,P10 1P 1P
2 RPO1 P02,P03, 1P Port
P12,P13
7 RP10 P20,P21, Port IP
P30,P31
9 RP11 P23,P32 Port Port

The probabilities and probability distribution functions for the random IP rules are as follows:
e 50% of the rules contain a random IP selected from the entire IP space

e 50% contain a random IP range based on uniform distribution of prefix lengths

For the random port probabilities are the following:
e 50% of the rules contain a random single number Port 0:65535

e 50% contain a range of ports, the ranges and probabilities are shown in Table 7-18

Table 7-18 : Range Probability Distributions

Range Probability

3-30 25% Allows small ranges of 3-30 in size
100-1000 25% Allows any range between 100-1000
1000-10000 25% Allows range of between 1000-10000
10000-60000 25% Allows range between 10000-60000

-118-

7.4.1 Growth Rate & Hardware Search Time
The results for growth rate and hardware search time are obtained for illustrative purposes

and are shown in Figure 7-22. The main insights gained from this figure are as follows:

1. Search times are dramatically lower, in fact almost a full order of magnitude.
This is likely due to the reduction in wild cards as compared to the perimeter rule
model. As there are fewer wildcards, more splitting will occur, creating smaller
CBVs, in turn making the hardware operation faster. In the future it would be
insightful to perform an analysis of the average number of bits set as a function

of rule size.

2. Memory usage is dramatically higher, almost a full order of magnitude. The
shape of the plot also appears to be exponentially rising as opposed to being
almost linear for the perimeter rule model. This large increase as compared to

the perimeter rule model is expected.

x 10° Search Time vs Num Rules Num Rules vs Memory Usage
. . 8000
g 6000
@2
> 2.5
£ "
= i
5 2 4000
3 X
n
= 2
3 2000
=
1.5 : : s s oL— . , ,
0 2 4 6 8 10 0 2 4 6 8 10
Number of K Rules Number of K Rules

Figure 7-22 : Random Search Time and Memory versus Number of Rules

7.4.2 Software Search Time

Figure 7-23 provides confirmation for the expectation of an increase in the structure size.
Clearly the average number of nodes searched has increased dramatically as compared to the
results obtained from the perimeter rule model. These results indicate that while the hardware

operations are faster the time required for software would be greater.

-119-

Count

6000

Pair: P01

5000

4000

3000

2000

1000

22 24 26 28
Nodes Searched, Avg: 27.257874

30

Avg. Number Nodes Searched

28

26

24

22

20

18

16

Nodes Searched vs Number Rules (IB P1 Pairs)

14
0

2 4 6 8
Number of K Rules

Figure 7-23 : Histogram of Nodes Accessed and Average Number of Nodes Accessed

-120-

7.5 Estimated ASIC Performance

The previous studies were an effort meant to validate the algorithm functionality and help
produce realistic performance estimates using two different rule-set types. While the
development environment was extremely useful for prototyping it had numerous limitations. In
particular the bus speeds and processor capabilities turned out to be very restrictive. The addition
a more capable processor, DMA functionality and an Ethernet interface would have made the
system much faster. Unfortunately, there was simply not enough time to explore these options.
To make up for these short comings a performance analysis is presented assuming components
selected from common high performance designs. The analysis seeks to prove that with common
components the design presented can meet the packet filtering requirements for Gigabit Ethernet.

Table 7-19 provides a list of the basic parameters and assumptions made for analysis purposes.

Table 7-19 : ASIC Performance Analysis Parameters

Parameter Value Description
Rule-set Size 8K 4 X for inbound and 4 K for outbound, (n =4 K)
Bucket number 4 The first dimension contains four buckets for ranges of

equal size (b=4)

Number of Dimensions 4 Two 2-dimensional searches are performed in parallel
(d=2)

B-tree Node Size 96 bytes Approximate amount of memory required to store
ranges in a B-tree with a minimum degree of three (¢ =
3)

Packet Size 256 bytes Assumes an average packet size for Gigabit Ethernet

7.5.1 System Throughput Requirement

Assuming a wire speed of 1 Gbps for Ethernet, 12 bytes of interframe gap, 8 bytes of
preamble and an average packet size of 256 bytes every stage of the system pipeline must be able
to process each packet in approximately 2 us. Equation 7-3 shows how the value is determined.
For the algorithm presented in this thesis there are three stages of the pipeline to consider:

software search, PFAAE OR operation, and final intersection operation.

-121-

Equation 7-3 : Processing Time per Packet

Wire Speed __ _ Throughput
Average Packet Size
! Gbps. =486,296 packets/sec
276 bytes x 8 bits/byte
Throughput = ! = 2 us processing time per packet

488281.25 packets/sec

7.5.2 Software Search Performance Requirements

In the following analysis it is assumed a processor exists to process the software nodes fast
enough such that the main bottleneck is memory access. The assumption is made that the
memory access portion of the software processing is much more time consuming than the effort
required to analyze each retrieved B-tree node. This is believed to be a fair assumption as the

operations made when processing a B-tree node are quite simple.

Assuming 4 K rules are used for both inbound and outbound rules sets the required memory
performance needs to be determined for the software. Given the operations required for packet

filtering are run in pipelined fashion 2 ps is available to obtain the memory for a single packet.
Assumptions for Calculations:

1. A four level B-tree is implemented with the rules spread out equally in each of the Trees.

In other words each level of the tree contains 1 K rules.

2. A worst-case number of pointers are produced from each search. Every search performed
will match to a particular node in each level producing four CBV pointers for the

hardware.

Software Complexity:

The search complexity for the software portion of the algorithm is the time taken searching
the B-tree structure. Given a ¢ degree B-tree the time taken at each node is O(¢) and the total
search time is O(th) where 4 is the height of the tree. Recall from the section 2.4.1 the height of

a B-tree can be determined using Equation 2-2. After substitution the formula for the time at a B-

tree can be rewritten as O(tlog,n). Taking into consideration that there is a B-tree in each
dimension, where d represents the number of dimensions the equation is rewritten as:

O(d x tlog, n). Therefore the worst-case depth is really d xlog, n. Accounting for the multi-

-122-

level B-tree structure the tree is now split into b groups of size ; and to create b 2-dimensional

B-trees. This leads to:
bxdxlog, %= 4x2xlog, fg—{;zlS.ZS

This indicates the software is required to retrieve a maximum of 16 nodes for each packet.
To keep up with the desired line rate the software portion must be able to retrieve 16 nodes of
size 96 bytes 0.486 million times a second. The result is memory throughput requirement of 0.75
GBps. A common memory meeting the throughput requirements for memory access is DDR2-
800. DDR2-800 with clock speed 400 MHz has a maximum theoretical throughput of 6.4 GBps

providing more than enough bandwidth to meet the requirements presented.

Bus Requirement for Transferring CBV Pointers to PFAAE:

Given that b pointers are produced for each packet search the number of pointers required to
be moved from processor to the PFAAE is roughly 2 million. Assuming each pointer is 32-bits
only a throughput rate of 8 MB per second would be required to transfer the pointers. While little
consideration has been made in this thesis with regard to update performance it is clear this would
be the driving factor when selecting a suitable bus. Clearly the performance requirements for
transferring CBV pointers to the PFAAE are so low that almost any bus would meet the
requirements. Given current state of the art it is conceivable the on-chip bus selected would be a
full duplex ARM AHB 32-bit bus running at 250 MHz. This bus provides, 8 Gbps of bandwidth,
more than the required bandwidth for CBV pointer transfers and potentially enough bandwidth
for speedy build and update operations. At this point no analysis is provided for the speed

requirements for build and updates operations and is left as a possible area of future research.

7.5.3 Hardware Performance

To meet the throughput requirements the time for CBV retrieval and PFAAE OR operation
needs to be less than 2 ps. At this point it is assumed if the CBV retrieval and OR operation are
fast enough the final intersection is also fast enough as well. This assumption is made because
the intersection operation is typically done as first match and is less complex than the OR

operation.

RLDRAM CBYV Retrieval Requirement
The development system used for the purposes of this thesis utilized a 32-bit wide DDR
RLDRAM interface running at 200 MHz. Current RLDRAM technology, referred to as

-123-

RLDRAM 1I, is capable of running at 400 MHz providing an easy method of doubling the
memory bandwidth. Another logical adjustment is to increase the width of accesses from 32 to
128 bits wide. These two improvements combined lead to a factor of eight increase in CBV
access performance. Given a retrieval time of 2.25 ps for a 4 K rule-set on the current platform
this time needs to be scaled to account for the new memory. As the improvements lead to a factor
of eight improvement in performance the retrieval time with the new memory would be 0.28 us.

By subtracting this 0.28 us from 2 ps, 1.72 ps is left for the PFAAE OR operation.

PFAAE ORing Requirement

The current PFAAE hardware OR time is 10.25 us for a 4 K rule set size running at 50 MHz.
This number includes the CBV retrieval time and when reduced to account for the 2.25 ps of
retrieval time produces 8 pus. Based on the assumption that the hardware can be moved to an
ASIC with a clock rate of 300 MHz a factor of six improvement could be made. This would
result in a PFAAE OR operation in 1.33 us lower than the required 1.72 us.

Based on an ASIC implementation including the improvements outlined in this section it is
clear the packet classification algorithm outlined in this thesis is capable of operation at a line rate

of Gigabit Ethernet assuming an average packet size of 256 bytes.

-124-

8 Future Development

Throughout the course of design, verification and implementation for this thesis a number of
opportunities for future development became apparent. The opportunities can be categorized into
three major types: additional tests to be performed with the system, modifications to the
algorithms and modifications to the hardware. These three opportunities are discussed in this

chapter.

8.1 Additional Tests

With regard to performing additional testing the major limiting factor in this thesis was time.
One of the original goals of the thesis was to test the effect of different bucketing schemes on
build time, update time and memory usage. Unfortunately the time was simply not available to
allow this testing to be done. The verification phase took longer than expected and cut into this

plan.

Additionally, testing could also be performed to check the effect of random test points on the
perimeter rule model distributions. While the testing performed did use random points the values
were constrained to be selected within the bounds of an existing rule. This was done so
performance and verification checks could be done at the same time. The effect of using random
tests points constrained by the bounds of existing rules may indicate lower performance as
compared to testing with random testing points from the entire field space. This is because
selecting test points from existing rules creates a higher probability a search will require an OR
operation from more than one CBV. There is a high probability a random test point from the
entire field space will only find a match in the fourth level of the B-tree and will not require an
OR operation. The fourth level of the B-tree contains rules with large ranges and will likely find
a match to any input test point. As such the performance results would likely have a higher

average performance.

The effect of the pre-processing step, rule rearrangement, described in the paper on ABV [2]
could also be checked. Rearrangement may have a large effect on the CBVs and may provide

some interesting results.

8.2 Modifications to Algorithms
The first algorithm modification would be the creation of a hash table to improve the

performance of the software search. This involves developing a hash table to find a more

-125-

appropriate point in the B-tree to start searching. As such, the search would begin from a node in
the B-tree closer to the result than the root reducing the number of nodes to access. The starting
search node is located by hashing the input search point with the range limit of the current B-tree
level used as a mask. For example, if the search point 0x12345678 was to be searched in a level
1 B-tree the lowest eight bits would be masked off and used as the input into the hash function.
Using this method any input starting with the sequence 0x123456XX would hash to the same
value. The hash table is then used to return a pointer to the best starting point in the B-tree for
searching for a value between 0x12345600 and 0x12345FF. If no pointer is found at a particular
hash value then it is immediately known the range is not covered by the B-tree and the search can

continue with the next B-tree level.

Secondly, a modification could be made to use different 2-dimensional algorithms instead of
the B-tree search algorithm. The effect each algorithm has on the CBVs presents an interesting
research topic. Likewise, the use of different algorithms in combination with the scheme
developed may produce excellent results. The scheme developed works well when the bit-vectors
are sparse created by rule sets with a low percentage of wildcards. This effect was shown by the
tests with the random rule-set. There may be other methods the wild cards could be more

effectively off loaded to thereby creating sparser bit-vectors.

8.3 Modifications to Hardware

The most obvious modification to hardware would be to implement the software portion on a
more capable processor. Additionally, implementation on a platform with a multi-core processor,
FPGA, high-speed memory interfaces and Gigabit Ethernet interface would allow for testing of
the complete system. Development on a personal computer with an FPGA board for hardware
acceleration would be ideal. This type of system should be the target for future development

instead of an embedded development platform.

-126-

9 Conclusion

In this thesis, the design and verification of a SoC packet classification implementation was
discussed. The motivation for this research came from the fact that many schemes have been
proposed to solve the multi-dimensional classification problem but none have been shown to
scale well beyond two dimensions in terms of speed or rule-set size. Additionally, most schemes

disregard update speed in order to increase throughput performance.

To overcome these short comings this thesis introduced three concepts: a compressed bit-
vector, 2-dimensional search approach and bucketing. The compressed bit-vector concept was
introduced to improve the scalability of a typical bit-vector scheme while still maintaining a
hardware amendable implementation. The 2-dimensional search approach was used to reduce the
sparseness of the bit-vectors thereby increasing the potential performance of the bit-vector
operations. While the effect of the bucketing actually reduced search performance its inclusion in
the thesis was done to improve the update and build time. Through the use of pipelining stages
for the 2-dimensional search operation, CBV OR operation, and final bit-vector intersection

operation performance is further improved.

To test the effectiveness of these concepts a multi-dimensional packet classification scheme
was designed and verified using the CMC RPP. The RPP allowed for software and hardware co-
design leveraging the benefits of testing at hardware speed to greatly reduce the time required for
verification. Having fully testing the hardware and software the next goal was to validate the
systems scalability with regard to memory usage and throughput. During initial testing the
processor was discovered to be a major performance bottleneck. This required the addition of
special hardware to allow the PFAAE to be tested at its maximum rate. As well, it was
determined the software would be analyzed with respect to memory accesses rather than actual
test performance. To test the scalability of memory usage and throughput synthetic rule-sets were

developed based on real firewall database statistics.

Testing first began to determine the best field orders for memory usage and throughput.
Once the best fields orders were determined tests were run with rule-sets up to 16 K in size.
Testing results showed that the compressed bit-vector concept exhibits a large memory saving as
compared to a bit-vectoring scheme without compression. Overall the total data structure was

shown to grow at a rate of less than 5/4 as a function of the rule-set size. Compared to the
theoretical worst-case growth rate of O(n3) this is quite good and illustrates the scheme presented

is a scalable solution. Testing results showed the PFAAE was able to sustain a throughput of 18

-127-

us/packet, or 56,000 packets per second, for inbound and 24,000 packets per second for outbound
traffic. 'While these results were considerably less than desired, it must be considered that the
algorithm was run on a development platform. These results were extrapolated for an ASIC to

illustrate how the design can be used for Gigabit Ethernet.

Overall this thesis achieved its primary goal to find a scalable solution to the multi-
dimensional packet classification problem. It is believed a reasonable balance was achieved
between hardware optimization and programmable flexibility. It should however be noted that
additional testing is required to verify the effectiveness of the bucket concept with regard to
update and build time performance. Valuable insight was gained on packet classification,

embedded system design and verification which can hopefully be built upon in the future.

-128-

[1]

(2]

[3]

[4]

[6]
[7]
[8]
[9]
[10]
[11]
[12]

[13]
[14]

[15]
[16]
[17]
[18]

[19]

REFERENCES

T.V. Lakshman, D. Stiliadis, “High Speed Policy Based Packet Forwarding Using
Efficient Multi Dimensional Range Matching,” ACM SIGCOMM Computer
Communication Review, vol.28, no. 4, pp. 203-214, Oct. 1998.

F. Baboescu, G. Varghese, “Aggregated Bit Vector Search Algorithms for Packet Filter
Lookups,” UCSD Technical Report ¢s2001-0673, pp.1-27, June 2001.

V. Sahasranaman, M. Buddhikot, “Comparative Evaluation of Software Implementations
of Layer-4 Packet Classification Schemes,”” Proceedings of the Ninth International
Conference on Network Protocols (ICNP'01), pp. 220-228, Nov. 2001.

A. Feldmann, S. Muthukrishnan, “Tradeoffs for Packet Classification,” Proceedings of
the Conference on Computer Communications (IEEE INFOCOM 2000), vol. 3, pp. 1193-
1202, Mar. 2000.

C. Macian, R. Finthammer, “An Evaluation Of The Key Design Criteria To Achieve
High Update Rates In Packet Classifiers,” IEEE Network, vol. 15, no.6, pp. 24-29, Nov.
2001.

P. Gupta, N. McKeown, “Classifying Packets Using Hierarchical Intelligent Cuttings”,
IEEE Micro vol. 20, no. 1, pp. 34-41, Jan-Feb 2000.

S. Iyer, R. Rao Kompella, A. Shelat, “ClassiPI: An architecture for fast and flexible
packet classification,” IEEE Network, vol. 15, no. 2, pp. 33-41, Mar. 2001.

D. Rovniagin, A. Wool, “The Geometric Matching Algorithm for Firewalls,” Tel Aviv
University Technical Report Ees2003-6, pp. 1-17, July 2003.

T. H Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, The
MIT Press, Second Edition, 2001, 1180 pp.

Canadian Microelectronics Corporation, CMC-CMP-MOSIS 2001, [Online].
http://www.mseconference.org/mse 03 archive/mse03 5 cmc cmp mosis v2.pdf
(available as of Nov. 2001).

ARM Limited, ARM Integrator™/AP: User Guide, 2001.
ARM Limited, ARM Integrator™/CM7TDMI: User Guide, 1999.
ARM Limited, ARM Integrator™/LM-XC2V4000+: User Guide, 2002.

Canadian Microelectronics Corporation, CMC Rapid-Prototyping Platform: Design Flow
Guide, Version 1.0, Feb. 8 2002.

ARM Limited,. ARM7TDMI-S Technical Reference Manual (Rev. 4), 2001.
ARM Limted, http://www.arm.com/products/CPUs/ARM7TDMULhtm]
ARM Limited, AMBA™ Specification (Rev. 2), 1999.

N. Sawyer, High-Speed Data Serialization and Deserialization (840 Mb/s LVDS), Xilinx
Inc., Application Note Virtex II Family, XAPP265, Version 1.3, pp. 1-13, June 2002.

ARM Limited, Firmware Suite (Rev 1.4), 2002.

-128-

Appendix A: File I/O Listing

A.1 CBYV List File

Seed:
Mode:
Rule

T3 3k ok b 3k ok 3F ok ok 3k S ok 3k tk 3F 3 oF ok

0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000040
0x00000000
0x00000000
0x00200000
0x00000000
0x00200000

Direction:
Description: This file contains all of the CBVs generated for a
particular rule set.
Example:

0
0

Size: 512
Inbound

0x00000001
0x00000001
0x00000001
0x00000001
0x00000001
0x00000001L
0x00000001
0x00000001
0x00000001
0x00000001
0x00000001
0x00000001
0x00000000
0x00000001
0x00000001
0x00010000
0x00000001
0x00010000

0x00000001 0x00000001
0x00000001 0x00000001
0x00000001 0x00000001
0x00000001 0x00000001
0x00000001 0x00000001
0x00000001 0x00000001
0x00000001 0x00000001
0x00000001 0x00000001
0x00000001 0x00000001
0x00000001 0x00000001
0x00000001 0x00000001L
0x00000001 0x00000002

0x00000001 0x00000001
0x00000001 0x00000005
0x00000040 0x00440400
0x00000001 0x00000005
0x00000050 0x00440400

0x00000200
0x00000001
0x00002000
0x00000020
0x00000010
0x00001000
0x00008000
0x00000800
0x00001000
0x00000800
0x00000800
0x00008201

0x00000408
0x000016ED
0x04000000
0x000016ED
0x04000000

0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

0x00000000
0x00000000
0x00010000
0x00000000
0x00010000

{revel 1} {L2 count, L3 Count} {L2 Vectors} {L3 Vectors}

0x00000010
0x00040000
0x01000000
0x00000400
0x00400000
0x00000400
0x00000800
0x00002000
0x00200000
0x00200000
0x00001000
0x00004000

0x00040000
0x10000000
0x00000040
0x10000000
0x00000040

Starting cbv_list LogFile

0x00000000 0x00000001 0x00000001 0x00000001 0x00000200 0x00000000
0x00000010 0x00000000

{0x00000000 0x00000001} {0x00000001 0x00000001} {0x00000200 0x00000000}
{0x00000010 0x00000000)}

0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000400

0x00020000
0x00200000
0x00000000
0x00200000
0x00000000

-130-

A.2 CBV Pointers File

Starting cbv_ptrs LogFile

Seed: 0

Mode: O

Rule Size: 512

Direction: Inbound

Description: Each line represents a pointer into RLDRAM, which corresponds
to the start of a CBV

e T i

0x00000000
0x00000004
0x00000008
0x0000000C
0x00000010
0x00000014
0x00000018
0x0000001C
0x00000020
0x00000024
0x00000028
0x0000002C
0x00000030
0x00000034
0x00000038
0x0000003C
0x00000040
0x00000044
0x00000048
0x0000004C
0x00000050
0x00000054
0x00000058
0x0000005C
0x00000060
0x00000064
0x00000068
0x0000006C
0x00000070
0x00000074
0x00000078
0x0000007C
0x00000080
0x00000087

0x000013E7

-131-

A.3 CBYV Count File

__
Starting cbv_count LogFile

#

Seed: 0

Mode: 0

Rule Size: 512

Direction: Inbound

Description: Each line represents a count of the number of rule-set in a
CBV.

#

__
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

10

3

2

11

5

6

11

12

11

11

__
Completed cbv_count LogFile

#

__

-132-

A.4 Parsed Rule List File

Starting parsed Rule List LogFile
Seed: 0
Mode: 0

Rule Size: 512

Direction: Inbound

Description: This file contains the start and end ranges for a pair
of fields of a 2-dimensional search.

Example:

{Rule 1D} {start Field 1} {End Field 1} {Start Field 2} {End Field 2}
0x00000000 0x00000000 OXFFFFFFFF 0xB3891800 OxB38918FF

H ok F o3E 3E otk e 3 R ok ok 3 Sk 3%

0x00000000 0x00000000 OxFFFFFFFF 0xB3891800 0xB38918FF
0x00000001 0x00000000 OXFFFFFFFF 0xB3834FC7 0xB3834FC7
0x00000002 0x00000000 OXFFFFFFFF 0xB389S5EBA 0xB3895EBA
0x00000003 0x00000000 OXFFFFFFFF 0xB3879D1A 0xB3879D1A
0x00000004 0x00000000 OXFFFFFFFF 0xB3842C00 0xB3842CFF
0x00000005 0x00000000 OXFFFFFFFF OxB388EA79 0xB388EA79
0x00000006 0x00000000 OXFFFFFFFF 0xB38813F2 0xB38813F2
0x00000007 0x00000000 OXFFFFFFFF 0xB3894B08 0xB3894B08
0x00000008 0x00000000 OXFFFFFFFF 0xB3850000 OxB385FFFF
0x00000009 0x00000000 OXFFFFFFFF 0xB388F730 0xB388F730
0x0000000A 0x00000000 OxXFFFFFFFF 0xB389EC00 0xB389ECFF
0x0000000B 0x1C388000 Ox1C38FFFF 0xB388721B 0xB388721B
0x0000000C 0x00000000 OXFFFFFFFF 0xB388B5A9 0xB388B5A9
0x0000000D 0x00000000 OXFFFFFFFF 0xB3876000 0xXxB38760FF
0x0000000E 0x00000000 OXFFFFFFFF 0xB3860000 O0xB386FFFF
0x0000000F 0x00000000 OxXFFFFFFFF 0xB3812F86 0xB3812F86
0x00000010 0x00000000 OXFFFFFFFF 0xB388FFD1 0xB388FFD1
0x00000011 0x00000000 OXFFFFFFFF 0xB3870000 0xB387FFFF
0x00000012 0x7CB06F80 Ox7C806FBF 0xB384E900 0xB384E9FF
0x00000013 0x00000000 OXFFFFFFFF 0xB380EBOO 0xB380EBFF
0x00000014 0x00000000 OXFFFFFFFF 0xB389B700 0xB389B7FF
0x00000015 0x00000000 OXFFFFFFFF 0xB3808900 0OxXB38089FF
0x00000016 0x00000000 OXFFFFFFFF 0xB381FA70 0xB381FA7F
0x00000017 0x00000000 OxXFFFFFFFF 0xB3859AEQ 0xB3859AFF
0x00000018 0x00000000 OXFFFFFFFF 0xB3865A20 0xB3865A2F
0x00000019 0x00000000 OXFFFFFFFF 0xB3813510 0xB381351F
0x0000001A 0x05551000 OxO05551FFF 0xB3867748 O0xB386774F
0x0000001B 0x00000000 OXFFFFFFFF 0xB3865F0B 0xB3865F0B
0x0000001C 0x00000000 OXFFFFFFFF 0xB3800000 0xB380FFFF
0x0000001D 0x00000000 OXFFFFFFFF 0xB386134B 0xB386134B
0x0000001E 0x00000000 OXFFFFFFFF 0xB384EAA3 0xB384EAA3
0x0000001F 0x00000000 OXFFFFFFFF 0xB3806900 0xB38069FF

O0x000001FE 0x00000000 OXFFFFFFFF 0xB3897200 O0xB38972FF
0x000001FF 0x00000000 OxXFFFFFFFF 0xB386DF00 0xB386DFFF

-133-

A.5 Search Results File

Seed:
Mode:
Rule

HoH H o3 3 3k 3k

0x00001E0D
0x00000001
0x00001E0D
0x00000001
0x00001EQOD
0x00000001
0x00001ECD
0x00000001
0x00001EOD
0x00000001
0x00002A0F
0x20000000
0x00002A0F
0x20000000
0x00002A0F
0x20000000
0x00002A0F
0x20000000

0x0000160B
0x00000400

Direction:
Note: The resultant packet {first
an OR of the CBVs in the PFAAE.

0
0
Size:

0x00000000
0x02000000
0x00000000
0x02000000
0x00000000
0x02000000
0x00000000
0202000000
0x00000000
0x02000000
0x00000000
0x08000040
0x00000000
0x08000040
0x00000000
0x08000040
0x00000000
0x08000040

0x00000000
0x80000040

512
Inbound

0x00000001
0x00000010
0x00000001
0x00000010
0x00000001
0x00000010
0x00000001
0x00000010
0x00000001
0x00000010
0x00000001
0x00800000
0x00000001
0x00800000
0x00000001
0x00800000
0x00000001
0x00800000

0x00000001
0x00000080

0x00000001
0x00000080
0x00000001
0x00000080
0x00000001
0x00000080
0x00000001
0x00000080
0x00000001
0x00000080
0x00000001
0x80000000
0x00000001
0x80000000
0x00000001
0x80000000
0x00000001
0x80000000

0x00000001

Starting Search Results LogFile

DW} includes the time to perform

0x00000003
0x08000080
0x00000003
0x08000080
0x00000003
0x08000080
0x00000003
0x08000080
0x00000003
0x08000080
0x00000004
0x00000100
0x00000004
0x00000100
0x00000004
0x00000100
0x00000004
0x00000100

0x00000002

0x00000073
0x00000073
0x00000073
0x00000073
0x00000073

0x0000692D
0x02000000
0x0000692D
0x02000000
0x0000692D
0x02000000
0x0000692D
0x02000000

0x00008201

OxBB89F7E7
0xXBB89F7E7
OxBB89F7E7
OxXBB8SF7E7
0XBB8B8SFT7E7

0xXBB89FTE7
0x80000100
0xBB89F7E7
0x80000100
0xBB8SF7E7
0x80000100
0xBB89F7E7
0x80000100

0XBB8SF7E7

0x00000001

0x00000001

0x00000001

0x00000001

0x00000001

0x00000002

0x00000002

0x00000002

0x00000002

0x00004000

-134-

A.6 Search Timer Results File

Starting Search Timer Results LogFile

Seed: 0

Mode: O

Rule Size: 512

Direction: Inbound

Description:

0x00000CA9 : Total Search Time measured in 20 MHz clock cycles.
0x0000000C : Count of the number of keys examined in the software search.
0x0000000A : Count of the number of nodes accessed during the software
search.

0x00000CAS
0x0000000C
0x0000000A
0x00000CEL
0x0000000D
0x0000000A
0x00000CBE
0x00000015
0x0000000A
0x00000ESB
0x0000000F
0x0000000A
0x00000C75
0x0000000D
0x0000000A
0x00000D39
0x0000000F
0x0000000A
0x00000D13
0x0000000E
0x0000000A
0x00000D2D
0x00000011
0x0000000A
0x00000E87
0x0000000B
0x0000000A
0x00000CD3
0x0000000F
0x0000000A
0x00000EAC
0x0000000F
0x0000000B

H ok ok ok o o ko 4k H %k

0x00000BCF
0x00000013
0x00000008

-135-

A.7 Pointer Timer Results File

Starting Pointer Timer Results LogFile

Seed: 0

Mode: 0

Rule Size: 512

Direction: Inbound

Description: Each line represents the time for the hardware to retrieve
and OR the CBVs for search operation. The time is in 20MHz clock cycles.

HodE o

0x00000026
0x00000023
0x00000026
0x00000023
0x00000024
0x00000028
0x00000028
0x00000028
0x0000002B
0x00000028
0x00000023
0x00000023
0x00000026
0x00000023
0x00000027
0x00000023
0x00000024
0x00000023
0x00000024
0x00000023
0x00000023
0x00000024
0x00000023
0x00000024
0x00000023
0x00000020
0x00000020
0x00000022
0x00000020
0x00000020
0x00000020

0x00000023
0x00000020
0x0000001F

-136-

A.8 Tree File

Starting Tree LogFile
Seed: 0

Rule Size: 512
Direction: Inbound

#
#
#
#
Mode: O
#
#
#
#

Level 0

Level: 0 Start: B3844700 End:
0x00000001 0x00000124

Level: 0 Start: B384E9S00 End:
0x00000001 0x00000012

Level: 1 Start: B3860000 End:
0x00000001 0x000001B8

Level: 1 Start: B3886CE4 End:
0x00000001 0x000000AA

Level 2

Level 3

Level: 0 Start: B3832500 End:
0x000C000A 0x0000005D 0x00000066
0x000001BS 0x000001C8 0x000001DF
Level: 0 Start: B3860100 End:
0x00000003 Ox0000000E 0x0000012A
Level: 0 Start: B38834CE End:
0x00000002 0x00000072 0x00000151
Level: 1 Start: B3808A00 End:
0x0000000B 0x0000001C 0x00000055
0x000000F6 0x0000013A 0x00000150
Level: 1 Start: B381FA70 End:
0x00000006 0x00000016 0x00000021
Level: 1 Start: B3828800 End:
0x0000000B 0x00000025 0x0000002E
0x000000D6 0x00000113 0x000001CO
Level: 2 Start: B3804000 End:
0x0000000C 0x0000001C 0x00000055
0x000000F2 0x000000F6 0x0000013A
Level: 3 Start: B380284B End:
0x0000000B 0x0000001C 0x00000055
0x000000F6 0x0000013A 0x00000150

Level: 4 Start: B3800000 End:
0x0000000B 0x0000001C 0x00000055
0x000000F6 0x0000013A 0x00000150

B38447FF

B384ESFF

B386FFFF

B3886CE4

B38325FF
0x0000007B 0x000000A6

B3860EFF
0x000001E6
B38834FF

B3808AFF

0x00000075 0x000000BO
0x00000186

B381FATF

0x00000030 0x00000065
B38288FF

0x0000004F 0x00000058
0x000001ED

B38040FF

0x00000075 0x000000BO
0x00000150 0x00000186
B3802B82

0x00000075 0x000000BO
0x00000186

B3800BFF
0x00000075 0x000000BO
0200000186

0x000000B7

0x000000Ce6

0x000000F0

0x0000005B

0x000000C4

0x000000Cs6

0x000000Cse

0x0000011F

0x000000EA

0x000001D3

0x0000008C

0x000000C6

0x000000EA

0x000000EA

0x00000168

0x000000F2

0x0000009A

0x000000EA

0x000000F2

0x000000F2

-137-

A.9 Test Points File

Starting Test Points LogFile

Seed: 0

Mode: 0

Rule Size: 512
Direction: Inbound

o3k 33k 3 H

0x145E5426
0x464FB560
OxXE7AL123AF
0x62B3D354
0X9E5ER697
0xX3F11B334
0x780740FC
0xC5FF10C1
0x49758874
0x23316096
0x7362FCOA
0x6CD3078A
0x3E0BEOCS
0x897540CF
0x1659655C
0xC8F7D807
0x67B70F8E
0x0B344870
O0xF3BADBOF
0xE64CAC31
0x3B9CO0F2
0x6836FC34
0xB2148065
0xF5682277
OXEDC2ECTF
OxXAEAF7B8D
0x53335410
0x44AF6DB2
0x43D57B34
0x8046FB81
Ox25ADS4AE
0x6BC4DD86

OxBD4BEEAF
0xXE6ES6DC1L

0xB389183C
0xB389181B
0xB3891804
0xB389180B
0xB3891858
0xB3834FC7
0xXB3834FC7
0xXB3834FC7
0xB3834FC7
0xXB3834FC7
0xXB3895EBA
0XB3895EBA
0XB3895EBA
0XB3895EBA
0xB38395EBA
0xB3879D1A
0xB3879D1A
0xB3879D1A
0xB3879D1A
0xXB3879D1A
0xB3842C7F
0xB3842CF1
0xB3842C5F
0xB3842C87
0xB3842C98
0XB388EA79
0xB388EA79
0xB388EA79
0xB388EAT9
0xB388EA7S
0xB38813F2
0xB38813F2

0xB386DFC4
0xB386DFE7

-138-

