
Dnsrclq AND VBnrn'rcATIoN

oF A Svsrnu-oN-Cnlp

Pacrnr Cr,¿.ssrrICATroN Ivrpr,nvrENTATroN

by

Doug Cornelsen

AThesis

Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements of the Degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

Universitv of Manitoba

'Winnipeg, Manitoba

Thesis Advisor: R. D. Mcleod. Ph.D.

@ Doug Cornelsen, June 2007

THE UNTVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES
999++

COPYRIGHT PERMISSION

DnsrcN a¡rn VnnrFICATroN

oF A Svsruvr-oN-curP

Doug Cornelsen

A ThesislPracticum submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

MASTER OF SCTENCE

Doug Cornelsen @ 2007

Pacxnr Cr,assrrrcATroN llwr,nvrnNT,{TroN

BY

Permission has been granted to the University of Manitoba Libraries to lend a copy of this
thesis/practicum, to Library and Archives Canada (LAC) to lend a copy of this thesis/practicum,
and to LAC's agent (UMlÆroQuest) to microfilm, sell copies and to publish an abstract of this

thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied

as permitted by copyright laws or with express written authorization from the copyright owner.

Packet classification (PC) is the problem of matching incoming packets at a router against a

database of rules or f,rlters. The rules specify a directive for incoming packets, and provide a

means of implementing new services such as Quality of Service (QoS) guarantees. While many

schemes have been proposed, to solve the multi-dimensional problem, none of them scale well

beyond two dimensions in terms of speed and or rule size. As well, most schemes disregard

updates, the ability to perform rule set modification, in order to increase throughput performance.

This thesis presents a new scheme that decomposes the multi-dimensional problem into a set of 2-

dimensional queries. Every 2-dimensional query can then be solved in parallel, each returning a

set of possible solutions, which are intersected to find the best match. The 2-dimensional scheme

is built upon a combination of prior research yet exhibits some unique features. Specifically,

Compressed Bit-Vectors (CBV) a modification of the Lucent Bit-Vector (BV) t1l and Aggregated

Bit-Vector (ABV) [2] schemes are introduced into a B-tree structure. The first dimension of the

B-tree structure is split into four levels, referred to as buckets, into which rules are inserted based

on rule characteristics. CBVs are stored in the second dimension of the B-tree structure and are

returned as a result of a search. When a search is performed four CBVs are returned and then

combined to produce one result. This thesis describes the verification and implementation of this

new multi-dimensional approach using the Canadian Microelectronics Corporation (CMC)

Rapid Prototyping Platform (RPP). An analysis of performance and scalability metrics obtained

from extensive testing is provided along with a determination of Application-Specffic Integrated

Circuit (ASIC) implementation performance. The analysis shows the multi-dimensional scheme

scales well with regard to memory usage and when implemented in an ASIC could sustain a

Gigabit Ethernet (GE) line rate with packets of average size.

Abstract

-lt-

Many individuals and organizations were in involved in this thesis and deserve to be

acknowledged. Firstly I would like to thank my advisor from the University of Manitoba Dr. R.

D. Mcleod for his patience and guidance throughout the course of the project. His involvement

with the Canadian Microelectronics Corporation (CMC) proved invaluable in obtaining

development hardware and resources for the project.

I would also like to thank the staffat TRLabs. In particular, JeffRohne and JeffDiamond for

the opporfunity to work in such an excellent research environment. TRLabs also provided the

project suggestion from lead industry sponsor PMC-Siena. Additionally, I would like to thank

both the National Sciences and Engineering Research Council (NSERC) and TRLabs for

partnering and providing funding for this thesis. TRLabs also partnered with the University of

Manitoba to provide the development tools which enabled the FPGA work performed in this

thesis.

Acknowledgements

Without the support of CMC the implementation work performed in this thesis would

certainly have not be at the level it is. CMC provided a Rapid Prototyping Platform (RPP),

RLDRAM FPGA development board, ARM software development tools and RLDRAM

controller intellectual property. [r particular I would like to thank Hugh Pollitt-Smith for his

assistance and involvement in this thesis.

Primarily, I would like to thank my research colleague Clint Stuart for his contributions to the

design specifications and software-hardware integration. Clint provided many of the ideas and

concepts for the thesis as well as designing the majority of the hardware and simulation

environment.

I would also like to acknowledge the assistance provided by PMC-Sierra, Vansco Electronics

and IDERS for this project. Finally, I would like thank my wife Jessica for her support and

encouragement during my Masters research.

-ilt-

Table of Contents

-iv-

5.4.5 Software Function Descriptions.63

6.1 Hardware Verification..78

6.2 Software Verification..78

6.3 Packet FilterAlgorithm Verification..79

6.3.2 Step 2 : Building the Search Structures and CBVs83

6.3.3 Step 3 : Producing Test Files......84

6.3.4 Step 4 : Search Operations 85

6.3.5 Step 5:Simulation....86

6.3.6 Step 6 : Final Verification..............87

Figure 3-1 : Hierarchical Compression Example18

Figure 3-2 : First Level B-tree Search Example......23

Figure 3-3 : First Level B-free CBV Search Resu1t...........23

Figure 3-4 : Second Level B-tree Search Example.......24

Figure 3-5 : Second Level B-tree CBV Search Result25

Figure 3-6 : Final ORed Result of Level 1 & 2 CBVs26

List of Figures

Figure 4-1: ARM Inte$ator Rapid-Prototyping Platform t10l29

Figure 4-2: Development Hardware Close Up.......30

Figure 4-3 : ARM Integrator/AP Functional Block Diagram I l]32

Figure 4-4 : ARM Integrator/AP Layout tlll33

Figure 4-5 : ARM Integrator/CMTTDMI Functional Block Diagram [2]34

Figure 4-6 : ARM Integrator/LT-Xc2v6000+ Logic Tile t12l35

Figure 4-7 : ARM Integrator/LT-Xc2v6000+ Functional Block Diagram [13]..........36

Figwe 4-8 : ARM Integrator/LT-Xc2v6000+ Layout t131..............37

Figure 4-9 : RLDRAM Board Block Diagram.......38

Figure 4-10 : Custom Interface 8oard...........39

Figure 5-1 : SOC Hardware/Software Design Flow [4]42

Figure 5-2 : Hardware Development Components and Bus Hierarchy44

Figure 5-3 : ARMTTDMI Processor Block Diagram [16]..........45

Figure 5-4 : ARM Firmware Suite [9].....48

Figure 5-5 : Software Operating States49

Figure 5-6: Main Menu50

Figure 5-7: User Command Mode Menu.50

Figure 5-8: RLDRAM Task Menu51

Figure 5-9 FIFO Tasks Menu 5 1

Figure 5-10: Packet Filter Mode Menu52

Figure 5-1 1: Tests Menu54

Figure 5-12 : Memory Allocation from an Array of Blocks of Memory55

Figure 5-13 : Circular Buffer for Storing De-Allocated Memory Elements......56

Figure 5-14 : Build Mode Command Packet...58

Figure 5-15 : Build Mode Response Packet58

Figure 5-16 : OR Mode Command Packet59

Figure 5-17 : OR Mode Response Packet......59

Figure 5-18 : User Command Mode Task I - 4 Command Packet.......60

Figure 5-19 : User Command Mode Task 5 - 6 Command Packet.......61

Figure 5-20 : User Command Mode Task 7 - 8 Command Packet.......62

Figure5-21 :UserCommandModeTaskT-8ResponsePacket.......62

Figure 6-1 : Rule Generator Software80

-vii-

Figure 6-2

Figure 6-3

Figure 6-4

Figure 6-5

Figure 6-6

Figure 6-7

Figure 7-1

Figure 7 -2

Rule Generation Files and Process for Inbound Rules Example ..81

BuildTreeandCBVs.....83

Tcl Operations Linear Search Files and Process.........84

ARM Files and Process85

Simulation Files and Process87

Final Verification Files and Process88

Perimeter Rule Model Network Topo1ogy.....90

Inbound Destination IP Prefix Mask Leneth Probabilitv Distribution

Figure 7-3

Figure 7-4

Figure 7-5

Figure 7-6

Figwe 7-7

Figure 7-8

Figure 7-9

Figure 7-10

Figure 7-11

Figare 7 -12

Figure 7-13

Figure 7-14

Figure 7-15

Figwe 7-16

Figure 7-17:

Figure 7-18

Figure 7-19:

Figure 7-20

Figure 7-21

Figare 7 -22

FigweT-23

Inbound Memory Growth Rate.............108

Outbound Memory Growth Rate.............108

Worst-Case Growth Rate Analysis P1o1............109

Compression Ratio Statistics110

Number of Rules Per CBV110

Inbound Search Time Growth Rate112

Outbound Search Time Growth Ra1e.............712

Nodes Accesses for Software Search..........113

Histograms of Nodes Accesses for Outbound Search Pairs.............114

Histograms ofNodes Accesses for Inbound Search Pairs............I l5
Inbound CBV Retrieval Time........11,7

Outbound CBV Retrieval Time|fi
Random Search Time and Memory versus Number of Rules... 1i9
Histogram of Nodes Accessed and Average Number of Nodes Accessed.........................120

-vilt-

Table 2-1

Table2-2

Table2-3

Table 3-1

Table 5-1

Table 5-2

Table 5-3

Table 5-4

Table 5-5

Table 5-6

Table 5-7

Table 7-1:

Typical Fields of Interest for IPv4 Packets .'....'..........5

Example Rules (* indicates a wildcard)'.......6

Performance Targets7

Example Rules'.'.'..22

ResponseFIFOFunctions.................'.63

Command FIFO Functions................. .'....'.'.'.....'......64

Linked List Functions65

Point B-tree Functions67

B-tree Range Functions.....'.'.....10

B-tree Range Level Functions............... "..".........'.'..74

Menu Item Functions'.'.'.'76

Statistical distribution for IP address and ports in the perimeter model rule-set.

List of Tables

t8l.'...'.'.e2

Table7-2 Statistical Distribution for Ports t8l'...'93

Table7-3: Inbound Rule Destination IP Type Probability.............. ..'......."....94

Table7-4: Inbound Rule Source IP Type Probability'...95

Table'7 -5: Inbound Rule Source Port Type Probability

Table7-6 Most Used Inbound TCP Ports97

Table7:l: Probability of Range Size for Inbound TCP Port......'.'.'.'.....'.'.97

Table 7-8: Inbound Rule Destination Port Type Probability..............98

Table7-9: Most Used Outbound TCP Ports.... ..'.'.'99

Table 7-10: Probability of Range Size for Outbound TCP Port....."...........99

TableT-11: OutboundRuleDestinationIPTypeProbabilify.............."..100

Table 7-72: Inbound Rule Destination IP Type Probability.............. '.'......... 100

Table 7-13: Rule Field ldentifier......'.'....101

TableT-14:2-Dimensional Field Combinations'.'..'................. 101

Table 7-15: 4-Dimensional Field Combinations'......102

Table 7-16: Rule Field ldentifier...... .'..................118

T able 7 -17: 2-Dimensional Field Combinations '. '. ' '............. '.... I 18

Table 7-18 : Range Probability Distributions '..'...118

TableT-I9: ASIC Performance A¡alvsis Parameters... ..'....."..121

'...,.,,'..97

-tx-

ABV

AFS

AHB

AMBA

APB

API

AQT

ARM

ASIC

BV

cBv
cMc
CPCI

DDR

DPR

DMA

EBI

EDIF

FTFO

FIS

FPGA

Gbps

GE

GEM

GOT

GIII

IIAL
HW

IANA

ICE

IP

IPv4

List of Terms and Abbreviations

Aggregated Bit-Vector

ARM Firmware Suite

Advanced High-performance Bus

Advanced Microcontroller Bus Architecture

Advanced Peripheral Bus

Application Programming lnterface

Area Based Quad Tree

Advanced RISC Machine

Application Specific Lrtegrated Circuit

Bit-Vector

Compressed Bit-Vector

Canadian Microelectronics Corooration

Compact PCI

Double Data Rate

Dual Port RAM

Direct MemoryAccess

External Bus Interface

Electronic Design Interchange Format

First In, First Out

Fat Inverted Segment

Field Programmable Gate Array

Gigabit per second

Gigabit Ethernet

Geometric Effrcient Matchins

Grid of Tries

Graphical User Interface

Hardware Abstraction Layer

Hardware

Internet Assigned Numbers Authority

ln-Circuit Emulator

lntellectual Property, Internet Protocol

Internet Protocol Version 4

K
LSB

LT

LVDS

Mpps

MSB

NAT

NSERC

PC

PCI

PIIAÁE

PLD

Qos

RAM

RLDRAM

RPP

RTOS

SerDes

SSRAM

SoC

SW

Tcl

TCP

I.]DP

\.HDL

VHSIC

7BT

Irs

kilo binary ç210 or fi24)
Lease Significant Bit

Logic Tile

Low Voltage Differential Signaling

Million Packets Per Second

Most Signifrcant Bit

Network Address Translation

National Sciences and Engineering Research Council

Packet Classification

Peripheral Component lnterconnect

Packet Filter Acceleration Assist Engine

Programmable Logic Device

Quality of Service

RandomAccess Memory

Reduced Latency Dynamic Random-Access Memory

Rapid Prototyping Platform

Real Timer Operating System

S erializerlDeserializer

Synchronous Static Random Access Memory

System-on-Chip

Software

Tool Command Language

Transmission Control Protocol

User Datagram Protocol

VHSIC Hardware Description Language

Very-High-Speed Integrated Circuit

Zero Bus Turnaround

Microsecond

-xi-

I Introduction
The growth of the Internet has created a huge commercial market, which feeds competition

between service providers. As user demands and expectations continue to rise so does the

motivation for multi-dimensional packet classification. This type of classification is necessary to

provide differentiated services and more QoS. A firewall provides a good example of a network

component providing a differentiated service. It consists of a set of rules that apply to

information usually extracted from packet header fields. The directive associated with each rule

will result in a packet being accepted or denied. In addition, the state of a flow can be monitored

from the packet header fields. This, combined with state information already maintained by the

firewall allows flow control. For example, a firewall could accept TCP packets with

synchronizarion (SYN) set only as part of TCP connection initiation or allow IIDP packets

through only ifthey are responses to outgoing IIDP packets.

Quality of Service (QoS) routes provides another application for multi-dimensional packet

classification. Traditional routing only uses the destination address to determine a destination,

while QoS also routes and switches using Internet Protocol Version a (Pv4) layer four fields.

Based on IPv4 layer four information preferential treatment can be given to certain traffrc while

others may be denied.

Research Motivation

Current packet classification schemes are optimal for one or more aspects of packet

classification and require tradeoffs between search speed, update performance and storage

requirements. Typically, search speed is the first priority followed by storage requirements and

update performance. While this methodology has worked in the past, new multi-dimensional

packet classification capable of flow identification and state maintenance requires more emphasis

to be placed on updating. An adaptable packet classif,rer is capable of performing intelligent

operations that its static predecessor is not. As a result, one of the goals of this thesis is to find a

more balanced solution to the multi-dimensional packet classification problem that is scalable and

capable of updates while making only a modest sacrifice in search speed.

It is desired to develop a packet classifier scheme with the following characteristics:

. Scalable to large rule-sets (64K) and multiple dimensions (6 and beyond)

. Achieves good update time, storage and query time characteristics

¡ Works in worst-case conditions (small packet sizes)

I- t-

Objective

The objective of this thesis is to verifu a novel multi-dimensional packet classification

implementation using the Canadian Microelectronics Corporation (CMC) Rapid Prototyping

Platform (RPP). The implementation presented is based on knowledge gained from the review of

state of the art algorithms and from direction made by TRLabs lead industry project sponsor

PMC-Sierra. The architecture developed is to be fast, scalable, preserve the flexibility provided

by software programmability and be capable of updates. As such, the project aim is to determine

a balance between hardware optimization and programmable flexibility with the focus on

classification services useful in a network edge device. Prototl.ping is used as a means to provide

a baseline for determining expected performance when implemented in an ASIC. Conclusions

are made with regards to the architecture designed to meet the project objectives and on the

verification flow.

-2-

1.1 Report Structure
This thesis is divided into nine chapters covering the design and verification of a System-On-

Chip (SoC) packet classification implementation. In Chapter 2, background is provided on a

number of topics. First the basic packet classification problem is formulated. Next, a set of

optimal design criteria is developed providing design considerations for the evaluation of

algorithms. After the considerations are presented an outline of past literature and packet

classification approaches is given with regards to the most suitable research for this thesis.

Chapter 3 builds upon this information to outline a design specification, including an example

illustrating typical operation, and justification for design decisions made. This is followed by a

description of the development platform and design flow in Chapter 4. Chapter 5 provides a

description of the hardware and software components designed and implemented in this thesis. ln

Chapter 6 the developed verif,rcation flow is shown, illustrating the steps taken to ensure proper

operation and implementation of the design specification. The result of performance testing is

outlined in Chapter 7, followed by recommendations for future work in Chapter 8 and

conclusions in Chapter 9.

-3-

2 Background Information

2.1 Classification Problem

The basic packet classification problem is well documented and described in [3] and [4] as

follows:

o A network element maintains a database of n rules for processing incoming packets.

Each rule consists of a filter and has an associated action.

Each filter has Ë fields corresponding to the fields in packet headers, which it should

match. Each header field is assigned one of the three match types: exact match, prefix

match, and range match.

If more than one filter matches an incoming packet, the tie is broken by using a priority

value assigned to each filter.

For every incoming packet, the classification algorithm performs a search operation using

the header fields to find the best matchins filter and then executes the associated action.

2.2 Matching Styles

Exact Matching: For exact matching the header field of the packet must exactly match the

corresponding rule or filter field. This type of matching may be associated with fields like the

protocol field or TCP flag field for IPv4.

Prefix Matching: In prefix matching the rule field should be a prefix of the corresponding header

field. This type of matching is amenable to IP source and destination addresses.

Range Matching: ln a range match the header field must fall in a specific range outlined by the

corresponding rule field. This type of matching can be used for matching up port numbers in

ranges.

2.3 Design Considerations

The design considerations outlined in this section have been presented in the extensive

collection ofpapers and address the criteria for effrcient packet classification [1] [5] t6l t7l.

1. Throughpü.' lnternet Service providers are building networks with link capacities of 1

and 10 Gigabits and are envisaged to exceed 40 Gigabitsls l2). Ideally an algorithm

should be fast enough for use with these networks. This requires packet classification

throughput on the order of 1.49 million packets per second and up. Equation 2-1 shows

how this number is derived.

Equation 2-1 : Gigabit-Ethernet Throughput Calculation

Wire speed :l Gbps

Smallest Packet Size : 64 bytes

Interframegap :12 bytes

Preamble:8 bytes

Maximum packet Throughpn = ffi = 1.49 Mpps

2. Worst-case vs. Average-case: There is a widely held view that for access time

performance of packet classification, one must focus on worst-case rather than average-

case. An algorithm should have small worst-case execution times which are independent

of traffrc patterns.

Fields: It is uncertain which headers or fields should be used to provide next generation

services. For the purpose of developing an algorithm however, it is convenient to exploit

layer three and four fields from IPv4 packets. Table 2-1 shows typical IPv4 headers used

for packet classification.

Layer Three Ileader Fields

Source IP Address (32 bits)

Destination IP Address (32 bits)

Table 2-1 : Typical Fields of Interest for IPv4 Packets

Protocol Field (8 bits)

Type of Service (8 bits)

4. Number of rules to be supported: Rule databases are growing and are predicted to

increase to several million rules. In the past packet classification was used for security

and firewalling which generally led to relatively small databases on the order of a few

thousand rules. However, with the new demand for differentiated services, it is likely

that these databases may grow extremely large. Edge equipment normally maintains a

database of a million or more flows and flow association requires a lookup operation

against this large database [7].

TCP and LJDP Source port Numbers (16 bits)

TCP and IJDP Destination port Numbers (16 bits)

Layer four Header Fields

TCP flags (8 bits)

-5-

5. Nøture of rules: TabIe 2-2 illustrates a few simple filter rules. Current routers use rules

with prefix masks on destination IP addresses howevet more general masks such as

arbitrary ranges can also be used.

Rule

Table 2-2 : Example Rules (* indicates a wildcard)

A

Source
Address

B

128.t21.t.x

C

196.134.2.4s

Destination
Address

6.

12g.x.x.x

Updatìng the set of rules (adaptive): The number of changes to the rules depends on the

application ofthe packet filter. Changes can occur as a result of a policy change or in

stateful packet filtering when a new flow is inserted or deleted. To achieve this, an

algorithm needs to perform inserts and deletes in times of 10-100 ps l3l.

Pre-computation: Pre-computation, can be defined as the process of transforming the

representation of a filter database to represent the same data in a way more suitable for a

specific classification procedure. The goal is to reduce the storage requirements or

reduce the search time. Although pre-computation can be used to optimize the results of

almost every algorithm, by conditioning the data or representing it in some convenient

form, update speed suffers. A good algorithm should attempt to look for pre-

computations and data structures that allow for incremental updates. At present no pre-

computation scheme explicitly attempts to optimize the update rates [5].

Priority: It is possible that some packets may match more than one rule. The rule must

allow for priorities to be imposed on these rules, so that only one of these will finally be

applicable to the packet (i.e. allows one to distinguish the lowest cost filter).

Hardwøre Implementation: For operation at very hígh-speed an algorithm must be

amenable to hardware implementation. The algorithm structure should seek to take

advantage of hardware parallelism and pipelining.

ANY

r92.96.*.*

Protocol

1.

1,92.165.2.x

TCP

Source
Port

TCP

<321

UDP

Destination
Porú

aÀJ+

28 -90

*

8.

< 300

*

9.

-6-

10. Memory Accesses: Memory accesses should be minimized since they are the main

bottleneck to performance [1]. Memory accesses are the bottleneck because the time

required to retrieve data from memory is much greater than the operating frequency of

most processors.

11. Storage Requirements: The algorithm should achieve the required target access speed

while minimizing the amount of memory used. ln order for the algorithm to scale there

must not be a memory explosion. An algorithm with memory usage which scales with a

rate of O("k), where Æ is the number of dimensions, is be considered to have explosive

growth. Ideally the memory requirements should be linear, O(n).

2.3.1 PerformanceTargets

Given the eleven design considerations previously outlined, Table 2-3 outlines performance

goals for packet filters. It should be noted the targets outlined provide ideal goals for the major

areas of packet filtering and do not consider the design trade-offs which usually occur. Typically,

memory usage and the time required for updates are traded off with packet throughput. This

thesis seeks to develop an algorittrm which balances memory usage, update performance,

expandability to multiple fields and throughput.

Table 2-3 : Performance Targets

Number of rules

U¡date time

ñùnúei.6ímtiífields
): : !

:...1 .:
:a.::',.

:::..a : t:. : : :
:.: :.. : : :.1. : . :

network edge

128K rules

2 million

10-100 microsecond

6

-7-

2.4 Previous Work
The focus of the background material presented in this thesis is on software and

software/hardware hybrid approaches for packet classification. As one of the main goals of this

thesis is to evaluate and develop a solution that maintains the flexibility of a software solution this

seemed appropriate. The first section of this chapter covers software based tree structures and the

second section covers hardware based bit-vectoring approaches.

2.4.1 Software Tree Structures

The development of various types of search tree structures has long been a very important

part of packet classification research. This section provides an overview of five search tree

structures found in research literature: Fat lnverted Segment Tree [4], Area Based Quad Tree l3],

Geometric Effrcient Matching Algorithm [8], B-tree l9l and Grid of Tries [3].

Fat Inverted Segment Tree [4]

The Fat Inverted Segment (FIS) tree was developed to solve the 2-dimensional packet

classif,rcation problem. Like other approaches FIS views the PC problem in geometric terms.

Each rule is represented by a rectangle on a 2-dimensional grid with a specific cost.

Preprocessing is done so that when a search is performed for a point the rule, or rectangle, with

the lowest cost is returned. The FIS tree is described as follows in [a]:

"The FIS tree is a balanced, inverted t-ary tree with / levels. Each node v has a pointer to its

parent parent(v) and at most I incoming arcs. The leaves of the FIS tree correspond to the

elementary intervals in order. An internal node v corresponds to the larger interval that is the

union of the elementary intervals stored at its leaves."

Elementary intervals are simply the set of non overlapping intervals created when the rule ranges

are projected in a given dimension. Given n rules it is possible to have up to 2n+I elementary

intervals. To build a 2-dimensional FIS tree the projections of the rectangles must be considered

in both the x and y axis. Figure 2-1 illustrates an example of the x projections for a FIS tree. In

the figure the colored rectangles represent rules and the dashed lines represent the elementary

intervals for the x axis. A search is performed by first finding the elementary interval at the top

level of nodes which corresponds to the search point. At this time a second dimension FIS tree,

pointed to by the node found in the first dimension, is searched. This second dimension FIS tree

is built using the y projections of the rules found at the first dimension node. While the nodes at

the top-level represent all of the elementary intervals not all of the rules are contained at these

-8-

nodes. The first dimension parent nodes, shown below the top-level, correspond to larger

intervals which are the union of its children nodes. In effect the top-level nodes provide a guide

for the appropriate parent nodes to search. Once all levels of the FIS structure have been

searched the rule found with the lowest cost is selected and the appropriate action is taken. The

FIS structure is reported to scale with complexity O(""') and require approximately

(t+l)togw memory accesses for a search (w indicates width of search field) []. While FIS

does exhibit excellent characteristics with regard to structure size and search performance its

primary limitation is update performance. While [4] does suggest some methods to allow

improve update performance FIS is not ideally suited for a dynamic environment requiring

updates.

1vl"+* lrtr
I ll

Area Based Quad Tree [3]

Like FIS, Area Based Quad Tree (AQT) views the PC problem in geometric terms. In this

case a tree is implemented in which each node has four children to represent a hierarchically

decomposed search space. As each node has four children the tree is referred to as a quad tree.

Each child node represents one of the four squares obtained by dividing the parent square into

four equal sub-squares. When used in a two dimensional scheme the quad-tree is referred to as an

Figure 2-l z x- FIS Tree

Leaves

Internal nodes (parent)

-9-

Area-based Quad Tree. Every node in anAQT at depth h has a square of size 232-h xz32-h

associated with it. Worst-case run time forAQT search is O(wlogn) *"r" w is the width of the

search field and n is the number of rules. The structure scales with a worst-case complexity of

o("')

Geometric EffTcient Matching Algorithm [8]

As its name implies the Geometric Efficient Matching (GEM) takes a geometric approach to

solving the PC problem. However, unlike FIS and AQT, GEM uses more than two dimensions

for implementation and testing. When using d dimensions each f,reld of a rule defines a particular

dimension of a d-dimensional hyper rectangle. These hyper rectangles may overlap and must be

organized into non-overlapping hyper-rectangles so a search can be performed. Searching the

developed geometric structure is done in logarithmic time and exhibits a worst-case space

complexity of Oþ^) for a rule-set with n rules. As the search is performed in logarithmic time

per dimension the search complexity of the algorithm is O(dlogn). Testing indicates when

using more than two dimensions field order has a large effect on structure size. In particular, it is

illustrated that with large rule sets and the proper field order a performance of over 1 million

packets per second can be maintained. Also introduced in the paper is the concept of a space time

trade off in which a rule-set is split into / groups of size % . Ut splitting the rule-set into groups

/ search structures are built each of which need to be searched to produce a final result. As a

result, the search complexity becomes Oþabgfi) *O the worsr-case space complexity

becomes oþ/r,)

B-tree

The B-tree is common tree structure used typically for VO operations. Background of the B-

tree is provided because it is used in many systems and is implemented in this thesis. The basic

element of a B-tree is a node containing a set of keys arranged in ascending order and a set of
pointers to link the nodes of the tree together. A node contains x keys has x+1 pointers to connect

to other nodes. Additionally, a node contains a count of the number of keys present and a flag

indicating if it is a leaf. Figure 2-2 provides an example of a node. A standard way of referring

to a B-tree is l, the minimum number of keys a node can have. This is also known as the

minimum degree of the tree and is always greater or equal to two. With regard to t, a B-tree

-1 0-

follows two basic parameters:

. Every node other than the root has a minimum of ¡-l keys.

. Every node can have a maximum of 2r-1 keys.

The maximum height h of ann key B-tree is found using the following formula [9]:

Equation 2-2: Maximum B-tree Height

h <los..n+7ôL

Like the GEM structure a B-tree has worst-case space complexity of O(nd) uoa search

- ^t,, '
complexity of O\dlogn) for d dimensions. More details on the B-tree can be found in [9]

including build and search operations.

Key count

Key 1

!
o.

o

Figure 2-2 : Example B-tree Node

Grid-of-Tlies [3]

The Grid-of-Tries (GOT) algorithm performs a basic extension of the standard trie srrucrure

to extend it for 2-dimensional rule matching. ln a typical single dimension trie, used for prefix

matching, the position of the node shows the corresponding key rather than the key being stored

at the node. When used in an IP router destination addresses are used to traverse the trie srrucrure

to find the longest matching prefix.

"Grid-of-Tries extends a basic trie to two dimensions, by maintaining two tries - a trie for

destination address and a trie for source address in the packet. Each node in the destination

trie, instead of storing a rule, now points to a relevant source trie, and each node of the source

trie contains a rule that matches the appropriate destination and source prefix pair. [3],,

Key 2

T]
o.

o

Leaf Flag

-l-l-tt$(rx

!
o.
f,
o

Key x

!
o.

o

!
o.

o
x
+

-11-

GOT has worst-case search complexity of O(2.w) and worse case space complexity of O(n),

where w is the width of the field and n is the number of rules. While these complexities are low it
should be noted this strucfure only works for prefix matching and not range matching.

2.4.2 Hardware Based Bit-Vector Schemes

Lucent Bit-Vector Scheme [1]

This algorithm uses a divide and conquer approach in which a d dimensional problem is

separated in d one dimensional problems. A binary search is used to find a result for each one

dimensional problem with o(logn) search complexity. The results are then combined by

performing AND operations on resultant bit-vectors from all dimensions as seen in Figure 2-3.

This scheme is hardware oriented and requires the use of large buses (1000 bits wide). It is
shown in [1] that the bit-vector intersection step requires examining each of the rules at least once

thus requires O(n) execution time, where n is the number of bits in the bit-vector. The use of bit

level parallelism does accelerate the execution time but is only reasonable for small rule-sets [1].

The space requirements for this algorithm are o(n2) where n is the number of rules.

Figure 2-3 : Parallel Implementation

Bit-Vector intersection Problem

Given a set of I binary vectors vl,.....v1each of length n , the problem is to find which

elements are positively common to all vectors. Each vector represents one of d dimensions where

d is an integer. The case d=I is the trivial case, and d=2 is the experimental case. This case has

Dimension D
Processing Element

Intervals/Bitmaps

-tz-

been selected for further testing because a significant amount of previous research has been

performed in the area of two dimensional schemes, particularly for routing and IP forwarding,

where the IP source and destination address are the two fields of interest. Figure 2-4 provides a

simple example of matching up two bit-vectors to find applicable rules.

'üith all applicable rules found, the one with the highest priority will determine which one is

applied. The real problem is how to find the common pairs or elements in a timely and efficient

manner. Lucent Bit-Vector [1] uses bit-level parallelism to solve this problem while the

Aggregated Bit-Vector [2] uses aggregation.

Aggregated Bit-Vector [2]

The Aggregated Bit-Vector (ABV) scheme is based on the bit-vector scheme (BV) described

previously. It makes two distinct contributions, the recursive aggregation of bit maps and filter

reaffangement. The paper [2] suggests it takes logarithmic time for many databases.

Aggregation is used to reduce the memory accesses, based on the assumption that the number of
set rules in the bit-vector will be very sparse.

In this scheme, each bit-vector is represented by an aggregate BV with word size A. Eachbit

in this vector then represents n/A elements in the bit-vector where ¡z is the number of bits in the

bit-vector. If nothing is set in a range it contains a zero. The ABV is then the OR of the

corresponding bits in the BV. This process can be repeated at multiple levels. The goal of this

system is to effectively construct the bit map intersection without looking at all of the leaf bit map

values for each freld. This allows one to quickly filter out bit positions where there is no match.

Rearrangement is used to localize matches creating sparser matches in the ABV. However,

vectors must be stored to retain the mapping of priorities. The time required for an insertion or

deletion of a rule is similar to the BV scheme. This is because the ABV is updated each time the

associated bit-vector is updated. The updates can be expensive because adding a filter can

potentially change the bit maps of several nodes.

Bit-Vector I

Bit-Vector 2

Mátches

0 I

0

0

Figure 2-4 : Bit-Vector Example

I

0

0

I 0

I 0

I

I

I

I

0

0 0

- tó-

2.4.3 Summary

Overall the background material illustrates no particular tree structure is ideally suited for

multi-dimensional packet classification. In particular, most schemes are suited for 2-dimensional

classification and do not scale well beyond this limit. The one distinction is GEM but it has

worst-case size complexity of O("') While the hardware bit-vectoring schemes scale well to a

large number of dimensions they do not scale well in terms of the number of rules. As the

number of rules grow the memory required for bit-vector storage becomes prohibitive.

1A

3

3.1 Overview

Design Specification

When producing a system design specification it is important to first identifii the primary

goal. As outlined in the introduction the primary goal of this thesis is to implement and verif,i a

fast, flexible, scalable and novel approach to multi-dimensional packet classification problem

with the CMC RPP. The specification outlined in this section strives to meet this goal while

taking into account the design considerations specified in Section 2.3. Llke most thesis projects

compromises are made with respect to implementation complexity and time availability. In

particular, a representative implementation based on the RPP is outlined with the end goal of

determining performance scalability based on an ASIC.

After a review of previous work in the freld it is clear a fast, flexible and scalable method for

a completely arbitrary multi-dimensional classifier is diffrcult to find. It is also clear that no one

search scheme can meet all the considerations to produce an ideal packet classification design.

Compromises need to be made based of the target environment and the design goals. The result

is a design which combines several techniques to achieve balance with regard to the design

considerations and the major goal of implementation and verification using the available

hardware.

It is proposed to break the typical multi-dimensional packet classification problem into

multiple 2-dimensional problems and then perform an intersection operation on the solution sets.

This decision is made for two main reasons. Firstly, 2-dimensional schemes have been known to

scale well, with respect to speed and memory usage, to a large number of rules. However,

beyond two dimensions packet classification does not scale well. Potentially one, two or three

different 2-dimensional schemes can be used in a typically system. For example, something like

a Grid-of-Tries (GOT) in paper [3] can be used for the source and destination IP addresses where

both fields contain prefixes. A different scheme can then be used where ranges are important

such as in the port addresses field. It is somewhat intuitive to use different forms of classifiers for

the three forms of matching Exact, Range and Prefix. Secondly, when coupled with a group of

software based 2-dimensional schemes, hardware based intersection has the potential to provide

for a high performance, flexible and scalable solution.

3.1.1 2-Dimensional Software Search

No speculation is made as to which services should be provided or as to which headers or

fields should be used to provide the services of the future. Effort is focused on a more general

problem, how to find the appropriate rules, having frelds either solely or a mixture of exact, prefix

or range matches, from a multi-dimension rule-set. As a goal is to provide a generic solution

with a balance of speed and update performance a B-tree structure is used for the software search.

The B-tree structure is an attractive solution because unlike many other 2-dimensional search

structures it supports updates. Many algorithms, like FIS [4], sacrifice updates to benefit speed

and require a large amount of pre-computation to build the search structure. As inserts and

deletes are required for a system which could potentiatly be used for stateful packet classification

the B-tree is seen as good solution for the 2-dimensional software search structure. As well, a B-

tree structure has tunable performance, by adjusting the size of the B-tree node the height of the

tree can be tuned to change the worst-case number of nodes accessed during a search. It should

be noted a B-tree with a / value of 3 has been selected for use in this thesis. This means each

node has room for five keys and six pointers.

Another important feature of the B-tree is its performance in a system with a large cache line.

As mentioned earlier in section 2.4.1 a B-tree is made up of nodes containing a number of keys

examined to find the desired search point. If the search point is not found at a node then the keys

are used as guides to determine which pointer should be followed to the subsequent search node.

A B-tree node will typically be built as a data structure found in a continuous space in memory.

This is as opposed to finding all of the keys spread out throughout the system memory. A
significant performance gain is made when data structure access can be made with one or more

burst operations into a high-speed memory like a cache. The processor is then able access the

data structure. with little latencv. from the cache.

3.1.2 IlardwareBasedlntersection

The solutions from each of the 2-dimensional searches then produce a pointer to a bit-vector

stored in a high-speed memory. As expected the bit-vectors contain a representation of the rules

found to match a particular search. At first glance a scheme based on bit-vectors may not seem to

be the optimal choice because of large storage requirements and lengthy intersection operations.

The prohibitive storage requirements illustrated in l1l and [2] show both Lucent BV and ABV

require large amounts of memory for bit-vector storage. For bit-vectoring to be used successfully

some method of compression needs to be used to mitigate these large storage requirements. Of
course, for compression to be attractive the bit-vectors must have the appropriate properties. The

-1 6-

primary reason a compressed bit-vectoring scheme is chosen is because research [2] has shown

large rules sets typically only contain a handful of rules which match each incoming packet.

The compression scheme selected to achieve a reduction in memory usage is known as

hierarchical compression. Hierarchical compression employs a tree like structure to compress the

fuIl bit-vector into a smaller representation. Figure 3-1 illustrates the concept by providing a

small example. The top of Figure 3-1 shows the complete bit-vector in its entirety with the

colored items indicating the bits found in the compressed version. Each bit location one level

below the complete bit-vector represents a number of bits above. If nothing is set in the range of

bits represented the bit location contains a '0'. However, if a bit is set the bit location contains a

'1'. When the bit-vectors are sparse a memory savings is obtained because portions containing

all '0's need not be stored because they contain no information. The process of bit representation

is continued to the bottom level of the structure in which each bit represents three bits at a lower

level. It is easy to see this type of compression works well for sparse bit-vectors and provides

rapid identification of only the necessary portions of the bit-vector to check for intersection. The

number of levels chosen for implementation in this thesis is three with each bit at a lower level

representing 32 bits. This allows for bit-vectors of length 32768 to be represented using this

scheme.

The next issue to address is the large intersection operations possible with large bit-vectors.

The ABV scheme seeks to exploit the sparse characteristic of bit-vectors by using aggregation to

reduce the intersection operation as compared to Lucent BV. While the aggregation does allow

ABV to perform an intersection operation on only a fraction of the bit-vector it still requires

storage of all complete bit-vectors. A compressed bit-vector scheme allows both the benefits of

reduced storage and intersection time at the cost of having to perform compression operations. It

is projected the memory and intersection time savings will out weigh the cost of the compression

operations. If the compressed bit-vectors are sparse enough then the intersection and

compression operations can be done at extremely fast rates. Additionally, compressed bit-vector

solutions can be combined using simple hardware and pipelined with the 2-dimensional software

searches. This allows as much time to perform the final intersection operation on the compressed

bit-vector results as is used for the 2-dimensional search done in software. As such a soal of an

implementation taking advantage of pipelining is achieved.

Furthermore, using a solution based on 2-dimensional search structure takes the next logical

step as bit-vectors should be even more sparse then produced by a 1-dimensional search structure.

As the bit-vectors will likely be sparser, the system should have greater performance. It should

47-tr-

be noted the performance of any packet filter system is mostly determined by the characteristics

of the rule-set. In particular, the system specified is believed to work best with rule-sets which

produced resultant 2-dimensional searches having sparse bit-vectors.

{ l\J

0

N)

I

N.)è

0

t\)
UJ

0

b.J
N)

0 0

f..J

0 0

oo

0

\)

bit number

0

o\

0 0

À,

0

UJ

0

N)

0 0 0

3.1.3 BucketingEnhancement

0

oo

To further enhance the insert and delete potential of the system an additional approach for

breaking the rule-sets into levels is introduced. Levels can be thought of as buckets that rules are

put into as the 2-dimensional search structure is built. Each level corresponds to one of four

range sizes of a field. For example, level one is defined as a field having a range width of less 28

in the first dimension. Likewise, level two is def,rned as a field having a range greater or equal to

28 and less than 2i6. In this way each of the four levels corresponded to a different size of
ranges. Effectively this creates four different B-trees each filled with ranges corresponding to the

size specified for their level. It is clear to see in a rule-set with an equal distribution of range

sizes four B-trees will be built in the first dimension instead of just one. This type of
implementation reduces the number of overlapping mnges as large ranges are never combined in

the same tree with small ranges. The reduction of overlapping ranges also makes insertion and

0

-J

0

Final Compressed Bit-Vector

0

Figure 3-1 : Ilierarchical Compression Example

0 0

a

0

N)

0 0 I

-1 8-

deletion of a rule quicker because the possible ranges to combine or split is also reduced. As

well, because the rules are split between four levels the CBVs will be sparser and easier to

update. The approach of splitting into levels does improve the insertion and deletion speed it also

reduces the software search speed. The search speed is lower because four trees have to be

searched instead of one. Although each of the new trees is smalle¡ the end effect is a longer

search as shown by using Equation 2-2. The worst-case number of nodes, before implementing

bucketing, is the height of the tree, h< log, + After using four buckets the sum of the
z

heights of the new trees is h<+tog,!. Using a value of 3 for ¿ and 100 for ntheheight
8

without bucketing is 3.56 and the combined height of the four trees after bucketing is 9.23. As

well, each level of B-tree searched produces a pointer to a compressed bit-vector which needs to

be combined with the others to create a complete result. Unlike the final results from the 2-

dimensional searches, which are ANDed together to find matches across dimensions, the results

from the levels are ORed together. This is because each level produces one set of the possible

matching rules. In summary this method basically trades some of the search speed in order to

improve the update capabilities.

3.2 Build Sequence

To provide further insight into the design implementation the sequence of operations used to

build the software and hardware based search structures is described. The sequence is described

at a high level to provide a basic level of understanding with lower level details provided in

subsequent sections.

It is assumed n rules are available; each containing four fields corresponding to source IP

address, destination IP address, source port and destination port. The IP address portions ofthe

rules are of prefix match type and the ports are of range match type. Of the four dimensions

specified in the rules two are selected for one of the 2-dimensional B-trees. The other two fields

are selected for the second 2-dimensional B-trees. As mentioned previously each 2-dimensional

B-tree is broken up into four levels based on range size to improve update perforrnance.

The structure for the multilevel 2-dimensional B-tree is first created in software so rules can

be inserted. When a rule is processed for insertion the freld corresponding to the first dimension

of the B-tree is evaluated to determine which level the field should be inserted into. Once the

level has been determined the field is inserted into the first dimension of the B-tree. Unlike a

-19-

typical B-tree insert which would insert a number this B-tree insert actually inserts a range. Each

key in the B-tree node corresponds to a non overlapping range known as an elementary interval.

An elementary interval is simply a subspace of the complete rule space of which one or more

rules are part. For example, the IP rule space has values from 0 to 232-I, an example elementary

interval is from 1 to 3. This elementary interval can be the result of a single rule or the

intersection of one or more rules. As new rules are added to the B-tree they may overlap,

intersect, or define new elementary intervals in the B-tree structure. The process of inserting a

new rule is recursive in nature as intersections and overlaps must be handled until the entire range

of the rule has been specified. When an elementary interval, of a B-tree from the first dimension,

is added or matched to a rule the second dimension must be processed as well. Each B-tree

elementary interval in the first dimension has a corresponding second dimension B-tree. This

second dimension B-tree has exactly the same structure as the first dimension but its elementary

intervals are based on the field specified for the second dimension.

Unlike the first dimension B-tree the elementary intervals of the second dimension have a

corresponding B-tree of rule identifications. This B-tree holds all of the identifications for rules

which match the first and second dimension elementary intervals. As a rule may contain a range

which covers more than one elementary interval in the first or second dimensions its rule

identification may be found in multiple rule identification B-trees.

As each rule is inserted into the developing B-tree structure more elementary intervals are

created and the structures grows in size. Once all of the rules have been processed and inserted

into the structure the rule identification B-trees are converted into CBVs by a Packet Filter

Acceleration Assist Engine (PFAAE) contained in an FPGA. An ordered list of rules is provided,

from the rule identification B-tree, to the PFAAE to create a CBV and store it in a high-speed

memory. The PFAAE provides a pointer back to the software to insert into the location of the

rule identification B-tree. At this point the memory for the rule identification B-tree is freed

because it is no longer required. The choice to build the complete B-tree structure and then build

the compressed bit-vectors is done to simpliff implementation. A system build for actual use

would build the bit-vectors dynamically as rules are inserted and deleted. This approach, while

being more flexible, was considered too complex of an implementation to fit within the time and

hardwa¡e constraints of the project.

ln a typical 4-dimensional search both 2-dimensional multi-level B-tree structures would be

built on separate processors each having their own PFAAE for compressed bit-vector creation.

-¿u-

Unforfunately due to hardware availability issues only one processor was available providing for

only one half of the implementation. The resulting build operations for the implementation

presented in the rest of this thesis create only a 2-dimensional multilevel B-tree and the

corresponding compressed bit-vectors. To achieve the results that would be obtained from having

a full hardware system the available hardware is used to build all possible 2-dimensional freld

pairs. In this way all the build information and results are obtained even through the ideal

hardware setup is not available.

3.3 Search Example
The following is an example of the search operation performed after the B-tree search

structures and compressed bit-vectors have been created. The example provided illustrates a

basic set of rules, an example incoming packet, its search through the B-tree structure, the data

flow between hardware and software and the finally the solution. Table 3-1 shows the simple

rule-set used for the example. This example employs only two levels of B-trees, the frrst is used

for first dimensional range widths between 1 and 2 and the second level for those range widths

greater than2. Range width is defined as the number obtained when the start value of the ranse is

subtracted from the end value.

To illustrate a search operation it is assumed a packet has arrived with a value of 4 for the first

dimension and value of 32 for the second dimension. Figure 3-2 shows a partially constructed

first level, first and second dimension B-tree. The B-tree nodes illustrated are capable of holding

three keys and have four pointers to connect to subsequent nodes. The search is performed as

follows:

I. The root node of the B-tree is searched for the point 4. The th¡ee elementary

intervals found, contained in each node key, are searched from left to right until

one is found that contains 4 or is greater than 4. The elementary interval eleven

to twelve is found first and since it is greater lhan 4 it is known to access the node

left of the root as it contains elementary intervals less than eleven. If the pointer

would have been a NIrLL it would be known no elementary intervals were

created for the value of three and the search could stop. In this case a message

would be passed to the hardware OR operation to indicate the first level returned

a NIILL pointer.

The node below and to the left of the root node is searched next to determine if 42.

-21-

can be found. As before the elementary intervals of this node are searched from

left to right to find an interval which contains 4. The search reveals a match from

the elementary interval from 3 to 4.

The second dimension B-tree is now searched to find the value of 32. Like in

the first dimension search the B-tree is searched from root to leaf to find the

value. The second dimension B-tree contains only one node which is searched to

find the elementary interval from 31 to 32. This elementary interval contains a

pointer to a compressed bit-vector which contains the rules R2 and R27.

The pointer contained at the second dimension elementary interval is passed to

the PFAAE which retrieves the compressed bit-vector shown in Fizure 3-3.

a
J.

Rule ID

Table 3-1 : Example Rules

R1

Rule Range
Dimension L

R2

R3

R4

1-2

RuIe Range
Dimension 2

3-L+

R5

5-6

R6

33-34

7-8

R7

5 t-)z

9-10

R8

r1-t2

29-30

R9

27-28

t3-r4

R10

25-26

Rl1

1-8

23-24

Rl2

1-8

2t-22

Rl3

1-8

9-16

1-16

r7-25

I 8-34

R27

26-34

i)-3+

t-2

5-12

t-+

3-9

-22-

1aÁ
I -J+

(rule list)
R2, R2.7

1-30

Second

31-32

root node

U¡menslon ././
,/

JJ-J4

First Dimension

11-12

Pointer to Second Dimension
Pointer to Node

root node

€remsnIary
interual

-'-.'\ '\ '\ '\ '\ '\ '\ '\

\\

tJ{ N)

I

f.J

0

Figure 3-2 : First Level B-tree Search Example

À

0

(j)

0

NJ

\\

0

N)

0

N)

0 0

oo

0

\

bit number

0

o\

0 0 0

(¡)

0

N)

0 0 0 0

C,o

0

!

0

Final Compressed Bit-Vector

0

EE

Figure 3-3 : First Level B-tree CBV Search Result

0

è

0 0

N)

0 I 0

-¿,1-

5. The exact same sequence is performed on the second level B-tree shown in

Figure 3-4. This search also passes a pointer to the PFAAE for which it retrieves

the compressed bit-vector shown in Figure 3-5.

Once the PFAAE retrieves both compressed bit-vectors an OR operation is

performed to obtain the complete solution. The complete solution is shown in

Figure 3-6. Should the PFAAE have been passed an indication that no

elementary interval was found the OR operation would not have needed to be

performed as the solution would have been the single retrieved bit-vector.

Likewise, if an indication was provided that both searches could not find a

matching elementary interval no bit-vectors would be retrieved and there would

be no resultant match. Depending on the policy of the packet filter this would

likely result in an action to deny the packet.

6.

(rule list)
KY

I -16

Second

I 8-34

root nooe

Dimension

,'/
33-34

Pointer to Second Dimension
- - - Pointer to Node

^".-- -'- \ ----^

[';f';T--] E,*[-t--_] [-T-rl
\

First Dimension

17-25

\

rool nooe

etemenGry
¡nt€ilal

\

Figure 3-4 : Second Level B-tree Search Example

\\ \ \ \\ \ \ \

-24-

f..J
!

ò.J

0

N)(À

0

NJÀ

0

N)
UJ

0

N)
N)

0

t\)

0

N)

0 0

cð

I

bit number

0 0 0

è

0

(,)

0

N.)

0 0 0 0

oê

I

\¡

0

7. The resultant solution is then returned to software for logging. With regard to the

actual implementation, and not the example, it would have been preferable to

provide this solution to a hardware block to perform the final AND operation but

due to hardware limitations this was not done. As mentioned earlier only one

processor was available to produce the results from one 2-dimensional search so

the implementation of the AND hardware was determined to be umecessary.

Rather this was proposed to be done in a post processing step. The OR operation

is more complex than the AND operation and as such was seen as an adequate

measure of performance considering the two operations would be pipelined

anyways.

Final Compressed Bit-Vector

0

Figure 3-5 : Second Level B-tree CBV Search Result

0

À

0

()J

0 0 0 0

-25-

N)
-J

¡J

I 0

N)À

0

0

NJ(¡)

0

0

l..J
f.J

0

0

tù

0

0

t\)

0

0

0

0

oo

0

0

-t

0

bit number

0

0

0

0

0

è

0

0

(JJ

0

0

NJ

0

0

0

0

0

0

0

0

3.4 OperationComplexity

0

oo

0

0

Given the operations previously described the complexity for the search, build time, and

memory usage is presented.

3.4.1 Search Time Complexity

As described previously the search time is broken up into two pipelined operations: a

software search and a hardware search.

The software search complexity is calculated by determining the amount of time spent at

each node of in the B-tree, multiplying by the worst-case height of the tree, and then by factoring

in the dimensions and bucketing factor. As the number of keys to search at each node is a

function of the B-tree parameter l, the amount of time spent at each node is of complexity O(t) .

Multiplying by the height of the tree, h, produces a complexity of O(th). Based on Equation 2-2

\Ì

0

1

0

0

Final ORed Hierarchical Bit-Vector

0

m

0

À

Figure 3-6 : Final ORed Result of Level 1 & 2 CBVs

0

())

0

0

N

0

0

0

I

0

0

0 0

the height of the B-tree is substituted to produc" OQbg,F./r)),where k is the number of

-26-

intervals. Given n rules the maximum number of elementary intervals is Zn+I. After

substitution for Æ the complexity simplifies to OQlog, n). Taking into consideration the

dimensions, d, the complexity becomes O(dxilog,r). to"tuOing the bucket factor results in a

reduction in the number of rules by a factor of ó. but increases the number of structures searched

/\
by ó. The result is a multiplication by b and adivision of n byó to produce Ol ø" d xtlog,!\.

\ o)

For constant values of b, d,and ¿ this is reduced to O(log, n) .

The hardware portion of the search operation is quite a bit simpler to derive. The most

complicated operation found in hardware is the OR operation. The OR operation is performed on

bit-vectors with a maximum size of n, where n is the number of rules. The worst-case operation

is to perform an OR operation such that all n bits are examined. As such, the worst-case

operation is a function of n, and is therefore O(n) .

Given that the complexity of the search operation is simply the largest of the complexities of

the software and hardware operations the complexity of the search operation ts O(n) .

3.4.2 Build Time Complexity

Like the search complexity the build complexity can be broken down into a software and a

hardware component.

The software portion of the build complexity is calculated by considering the complexity to

insert a single item into the B-tree structure. The complexity to insert a range into a single

dimension of the B-tree is O(log, n), where n is the number of rules and ¡ is the B-tree

parameter. Given the maximum number of ranges to insert is a function of n the complexity

becomes O(n\og, n) . Taking into consideration both dimensions of the B-tree the complexity

becomes oþ'(og,ò').

The hardware complexity is simply the complexity of the operation to produce the CBVs.

The CBVs are produced from bit-vectors with a maximum size of n, where n is the number of

rules. The worst-case operation is found when all n bits are examined. As such, the worst-case

complexity is a function of n, and is therefore O(n) .

Unlike the search operations, the software and hardware portions of the build operations

are not pipelined. As such, the worst-case hardware and software combined build time

-27-

complexity is Oþ'(tog ,ù').

3.4.3 Memory Use Complexity

The memory use complexity is calculated by considering the size of the B-tree structure and

compressed bit-vectors. Given n rules and b buckets the maximum number of elementary

intervals in the first dimension of one level of the B-tree is O?"*/U) Taking into

consideration the second dimension the complexity is squared to produce o(P"-/rÏ). In the

worst-case each elementary interval in the second dimension has n bits set so the complexity

becomes O(P"./UY "). The equation is then simplified to remove constants, including ó, to

produce a worst-case memory use complex ity of O(n3) .

-28-

4 Design Environment and Platform
For the purposes of implementation of the design specification the RPP from CMC is

employed. The platform, described at a high level in the following sections, contains the basic

elements and development environment needed for such a complex design. These elements

include a processor, software development environment, support code for low level f,rrmware

drivers, large FPGA for logic development and basic bus logic blocks for interfacing with the

processor. While the performance of the processor is limited, the system provides an exceptional

prototyping tool. Figure 4-l shows a picture of the development system and Figure 4-2 and

shows a close up of the hardware.

Figure 4-1: ARM Integrator Rapid-Prototyping Platform [10]

-29-

4.1 ARM Integrator/AP ASIC Development Motherboard
At the base of the RPP system is the ARM Integrator ASIC development mother board. Its

primary function is to provide a connection point for a large selection of ARM processor and

logic development boards. It provides these development boards with clocks, bus arbitration,

intemrpt handling, flash memory boot ROM and basic input and output functionality. Expansion

of the system is provided by three PCI slots, connectors for stack ups of both processors and logic

modules and a oPCI interface for rack mounting.

Figure 4-3 and Figure 4-4 show a functional block diagram and layout of the mother board.

Figure 4-2: Development Hardware Close Up

-30-

The basic features of the mother board, as described in [11] are as follows:

. system controller FPGAthat implements:

o system bus interface to processor core and logic modules

o system bus arbiter

o intemrpt controller

o peripheral input and output controller

o three counter/timers

o reset controller

o system status and control registers

" clock generator

32MB flash memory

256 KB boot ROM

512 KB SSRAM

. two serial ports (RS232 DTE)

. system expansion supporting processor core and logic modules

. PCI interface bus

¡ Extemal Bus Interface supporting memory expansion

-J t-

Core Module
Connections

Logic Module
Connections

Peripheral lnpuUOutput

System Controller
FPGA

Standard
PCI Slots

PCI Host Bridge

Figure 4-3 : ARM Integrator/AP Functional Block Diagram [11]

PClto PCI
Bridge

Compact PCI

-32-

Itslboaml¡mlusÊ
connÈclors (J l6i

4-pole DIP
\

sñitch \

Serial interhæ
connÐdors
(Ji 4, Ji sfìr

ATX pouær
ff'nngctoly' (Js)

Core rnûdule
conneclc,f
(HDRAi

Si,stÈrn h.is - PCI
bridge

PCI expansicn

AlphanumÊdc
display

(J9, J10. J11)
slols

Extêrnal
alpha display

connsctÕr (J l2j

CompactPCl
ænngctors

(J1, J2i

Flash memory

4.2 ARMIntegrator/CMTTDMI
The processor core board available for use with the AP ASIC development mother board is

the CMTDTMI. The CMTDTMI development board contains the popular ARMTTDMI
processor, an FPGA for memory control and bus interfacing, memory and a Multi-ICE interface

for debugging. Figure 4-5 and Figure 4-6 show a functional and layout block diagram of the

board.

connsctor olnnector connector connÊctor
lJ22I (J13) (J8) (J4j

Figure 4-4 : ARM Integrator/AP Layout [11]

PCI arbitÊr PLD Fov¡Êr LE

interFaoP connFctor
(EXPfuli

Externål bus

Lcgic rnodule
. connEctor

(EXPA¡

Bool Rofvl

-uÞ FPGAOK -RÊ€st

Debug
ænnsctofs
iJ23, J24)

Exlernal intsrrupts
connector

L
BeseÞ Êrñsr conrËctor (J2 I I
button (forbsnch ÞûNåråd uspi

Fou,er
Lutlon

(J20i

-Jó-

The basic feafures of this board, as described in l12l are as follows:

o ARMTTDMI microprocessor core

o core module FPGAthat implements:

o SDRAM controller

o system bus bridge

o reset controller

o internrpt controller

o status, configuration, and intemrpt registers

o volatile memory comprising:

¡ 128 MB of SDRAM

o 256 KB SSRAM

o SSRAM controller

o clock generator

. system bus connectors

o Multi-ICE, logic-analyzer, and optional Trace cor¡rectors

ARM Core

Figure 4-5 : ARM Integrator/CMTTDMI Functional Block Diagramll2l

-,54-

Core module/motherboard
connectors HDRB

TRACE
connector

MultlCE
conneclor

Reset button

ataoaa

Logic analyzer
pods

IAM DIMM

\

Figure 4-6 : ARM Integrator/LT-Xc2v6000+ Logic Tile [12]

4.3 ARM Integrator/ LFXC2V6000+
The FPGA board available for use with the AP ASIC development mother board is known as

the I1-XC2V6000+ Logic Tile. The L|-XC2V6000+ development board contains a Xilinx

XC2V6000 FPGA and is specifically designed for the development of ARM AHB and ASB bus

peripherals. Figure 4-7 arÃ Figure 4-8 show a functional and layout block diagram of the board.

The basic features of this board, as described in [13] are as follows:

¡ Xilinx Virtex tr FPGA

. configuration Progrømmable Logic Device (PLD) and flash memory for storing FPGA
configurations

. two zMB ZBT SSRAM chios

aaaaaa

Memory controller and
system bus br¡dge (FPGA)

-35-

o clock generators and reset sources

¡ switches

. LEDs

o corurectors to other tiles

Figure 4-7 : ARM Integrator/LT-Xc2v6000* Functional Block Diagram [13]

-36-

Battery
User

s'¡ritches

FPGA
image

selection
sruitches

FPGA IMAGE
LED

FPGA OK
LED

HDRX

External
oscillator
conneclor
(not filted)

User
LEDs

Push
button

FPGA

4.4 Memec MC-XI-RLDRAM Controller and Board
Early in the project it was determined the four Megabytes of memory available on the LT-

XC2V6000 development board would not be enough for compressed bit-vector storage. A

suitable option found to provide alarge amount of very high-speed memory and additional logic

space was the Memec Reduced Latency Dynamic Random Access Memory (RLDRAM)

evaluation board. The RLDRAM evaluation board was chosen because of its exceptional

memory throughput, additional logic space provided by a Xilinx Virtex-Il FPGA and standard

Memec P160 interface. The board contains four Infineon Technologies IfYB18RL25632 32-bit

wide RLDRAM chips operating at 200 MHz DDR (400Mbils/pin). In total the four chips

provide i28 Megabytes of storage space with an aggregate access speed of 51.2 GbiVs. As well

c

HDRY

Figure 4-8 : ARM Integrator/LT-Xc2v6000+ Layout [13]

HDRZ

-37-

as providing high bandwidth solution RLDRAM also provides a random access time much faster

than typical SDRAM. The RLDRAM controller, resident in the FPGA, was purchased as an

intellectual property core in EDIF form. Due to a non disclosure agreement signed at the time of
purchase no discussion is provided on it operation or design. Figure 4-9 shows a block diagram

ofthe board.

Figure 4-9 : RLDRAM Board Block Diagram

4.5 Custom Interface Board
To provide a high-speed corurection between the logic tile and the RLDRAM board a custom

interface board was designed. The high-speed interface between the two boa¡ds comprises high-

speed LVDS pairs utilizing Xilinx Virtex II capabilities. Enough pairs are routed between the

P160 interface on the RLDRAM board and the Samtec connector interface on the logic tile to

provide for eight LVDS pairs in each direction. Each pair operates at 200 MHz DDR (400

Mbilsecþair) providing 1.6 Gbits/sec in each direction. Given the limited performance of the

ARM processor the design effort was made to gain useful experience and to provide a path for

future growth. In particular, design experience was gained performing the impendence

calculations and routing for the high-speed LVDS pairs. Figure 4-10 shows a pictue of the

custom interface board.

-38-

Figure 4-10 : Custom Interface Board

-39-

5 System Design

5.1 Design Responsibilities
As the specification, design and verification effort for the entire project was quite large it was

determined two group members would be required. At the outset of the project clear divisions in

responsibilities were setup with regard to the hardware and software design tasks. As with most

complex embedded systems the hardware and software design tasks are numerous and often

interdependent. The goal of the project was to create a specification for the system as a group

then divide the tasks between hardware and software with integration being performed on a

continual basis. The major focus of my efforts during this thesis was spent on software

development for the ARM processor and developing FPGA hardware to interface to a purchased

RLDRAM controller. In particular my design tasks included:

i. Software desisn:

a. Implement B-tree structure and functions for insertion of rules.

b. Implement menu structure for software tasks to ensure ease of use.

c. Implement low level tests for bus interfaces and memories.

d. Implement software tests for custom and purchased hardware blocks.

e. Implement low level drivers and functions for performing B-tree build

operations and search operations with custom hardware.

f. Implement software logging features to match hardware simulation

inputs so failures discovered in tests with actual hardware could be used

as inputs in simulations. Tests ran on actual hardware and software

perform orders of magnitude faster than simulation but do not provide

the same visibility.

g. Implement rule generation software to produce random rule-sets based

on input files containing probability distribution functions.

2. Hardware desisn:

a. Assist in the implementation and testing of Xilinx hard macro LVDS

SerDes blocks.

b. Develop a wrapper for purchased RLDAM controller core to handle

-40-

refreshing operations and commands from a FIFO to transfer memory

between block FPGAblock RAMs and RLDRAM memory.

c. Assist in the design of the interface board between logic tile board and

RLDRAM board.

The remaining responsibilities, handled by my research partner Clint Stuart, were as follows:

1. Software desisn:

a. Implement Tcl test bench routines for interfacing with simulation

environment.

b. Implement Tcl routines for conversions of software logged files for

running in simulation environment.

c. Desisn a simulation environment for the FPGAhardware.

2. Hardware desisn:

a. Implement ARM AHB bus wrappers for hardware command and

response FIFOs.

b. Implement and test Xilinx hard macro LVDS SerDes blocks.

c. Implement logic blocks for compressed bit-vector build operations.

d. Implement logic blocks for compressed bit-vector OR operation.

e. Implement logic blocks for hardware test modes.

f. Produce schematic and layout designs for interface board between logic

tile and RLDRAM board.

With regard to responsibilities, this report focuses largely on my responsibilities related to the

overall project. As the system required both hardware and software for full functionality the

testing, verification and results portions of the work were shared. While the design and

implementation work were separated as much as possible the work done by the both of us

produced one final system producing one set offinal results.

5.1.1 Hardware/Software Design Flow

As was identified in the previous section the project tasks were largely divided between

hardware and software development. When designing an embedded system it is important the

hardware and software are co-designed to make testing and integration easier. During the

-41-

development phase it became important for the hardware development to have access to test

software so it could be tested at hardware speeds instead of in simulation. Likewise the software

development benefited from testing using actual hardware instead of relying solely on simulation.

The design flow used, illustrated in Figure 5-1, allows for rapid development of both the

hardware and software and leverages the benefits of both simulation and hardware testing as

appropriate. The top of the design flow begins with the most important phase of any project, the

design specification. The design specif,rcation breaks down a complex design into fundamental

operations which can be assigned to either a softwa¡e or hardware. Design partitioning is the

phase in the design flow to determine which operations will be done in software or hardware.

Typically after design partitioning marks the point at which software and hardware díverge until

each item is ready for integration. Using a design platform specifically designed for rapid

prototyping allows for software and hardware integration to be done on a continual basis. kl

effect many loops can be done from the top to the bottom integrating software and hardware as

development occurs. This type of design philosophy proved to be effective as the different buses

and memories \¡r'ere integrated into the design. A major benefit of this flow is the enforcement of

a bottom up verification process in which each element is completely tested before the element

above it is designed.

Figure 5-1 : SOC Hardware/Software Design Flow [14]

-42-

5.2 Hardware Design and Implementation

5.2.1 DesignMethodology

The hardware portions of this thesis were written in VHDL targeted for the two separate

Xilinx Virtex II FPGAs found on the RLDRAM and LT-XC2V6000+ boards. The design flow

follows Figure 5-1 which shows that ModelSim was used for RTL and timing simulations,

Leonardo Spectrum was used for synthesis and the Xilinx tool ISE was used for place and route.

Over the course of the project this suite of tools proved to be very effective providing excellent

simulation capabilities and detailed representations of the designed hardware.

5.3 Hardware Overview
When all of the circuit boards, described in previous sections, are connected together a very

powerful and capable development system is created. Figure 5-2 illustrates the bus and

component hierarchy of the final design. The items shown in Figure 5-2 are color coded based on

the location of the component in the particular development board.

-43-

ffi eaum"eoro't [^TJlHlil"' ffi tx*ml;f ffi *.JåÎ,ñ'bì".

tr'igure 5-2 : Hardware Development Components and Bus Ilierarchy

5.3.1 Hardware Blocks

As the focus of this thesis is largely on the software development only a high level overview

of the hardware blocks is orovided.

ARMTTDMT [1s]

The processor used in this thesis is the ARMTTDML Figure 5-3 provides a high level block

diagram of this 32-bit embedded RISC processor. Of note of the blocks shown in Figure 5-3 is

the embedded ICE logic. The embedded ICE logic is an extremely useful feature of the

ARMTTDMI providing access for a JTAG-based debugging system. The ARM Multi-ICE

debugging tool is used for this purpose to provide typical debugging features and access to files

on a Multi-ICE host computer. For the purposes of this thesis the processor was run at a speed of

40 MHz.

-44-

ARM APB Bus

The Advanced PeripheralBzrs (APB) is part of the ARM family of Advanced Microcontroller

Bus Architecture (ANIBA) buses designed for on chip communication. It is primarily used to

provide connectively to low speed devices and is designed with a simple interface and for

minimal power usage. The APB bus is typically used in conjunction with a system bus like AHB.

APB is implemented in the system as a 32-bit bus running at 20 MHz. For more information see

rwrw¡wr¡wv Lr / l.

ARM AIIB Bus

The Advanced High-Pedormance Bas (AHB) provides a high level of capabilities and is

typically used as a system back bone. AHB is implemented in the system as 32-bit bus running at

20 MHz. For more information see reference 1171.

Command FIFO

The command FIFO logic block provides an AHB interface to send commands to the

PFAAE. Commands inputted into the FIFO are serialized by a special hardware block and then

sent via LVDS pairs to the RLDRAM FPGA. Special logic was made so commands could be

gated in the FIFO so that accurate performance estimates could be made of the PFAAE. This was

Figure 5-3 : ARMTTDMI Processor Block Diagram [16]

-45-

done because the PFAAE could process commands faster than the þrocessor was able to write

them to the FIFO.

Response FIFO

The response FIFO logic block provides an AHB interface to a buffer containing responses

from the PFAAE.

Control Status Register Bus

The control status register ózs (CSR) is used to read and write registers in the PFAAE. It

provides a low speed method of accessing registers as opposed to using the high-speed serial

buses. The serial buses use complex commanding and response methods for transmitting and

receiving large packets of data. This type of complexity is not needed for simple reads and writes

so the CSR bus was imolemented.

LVDS SerDes

The LVDS serializer/deserilizer (SerDes) blocks are ported from Xilinx application note

XAPP265 "High-Speed Data Serialization and Deserialization (840 Mb/s LVDS)" [18]. The

application note provides a code base and details on how to implement high-speed SerDes logic

for the Xilinx Virtex tr familv of FGPAs.

SSRAM 1

The SSRAM found on the UI-XC2V6000+ board is extremely important for testing. This

memory is used for storing rules and CBV pointers. The rules are used for tests in which the

complete B{ree structures and CBV are built. CBV pointer storage is used for hardware

performance testing of the PFAAE.

Dual Port RAM 0 - 4

Dual Port RAM 0 to 4, located in the RLDRAM FPGA are memories used by PFAAE for

operating on and creating CBVs. As the name implies, these memories are dual port such that

two different logic blocks have interfaces to the memory. Data transferred to and from the

RLDRAM can only be done through the dual port memories. When the PFAAE finishes

constructing a CBV, it is transferred from one of the dual port memories to the RLDRAM in a

DMA like operation. Likewise, in search mode when a CBV pointer arrives from the software

the PFAAE requests the CBV located in RLDRAM be transferred to one of the dual port

memories.

-46-

RLDRAM Wrapper

The main purpose of the RLDRAM wrapper is to provide a command interface to the

RLDRAM controller and to ensure refresh commands are issued as required. The most important

portion of the wrapper is a FIFO command interface so the PFAAE can queue up several different

transfers between the dual port memories and the RLDRAM. A state machine in the wrapper

reads out and executes commands from the FIFO one at a time inserting refreshes between FIFO

commands when necessary. To execute a command the state machine reads the type of

command, read or write, issues the proper command to the RLDRAM controller and then controls

the data flow between the RLDRAM controller. Whenever a command from the FIFO finishes

being executed, a done signal is pulsed so tracking of command completion can be performed.

RJ,DRAM Controller

The RLDRAM controller was a purchased IP block from Memec provided in EDIF form. No

details of the controller will be provided as a non-discloser agreement was signed at the time of

purchase.

Packet Filter Acceleration Assist Engine

The main component found in the RLDRAM FPGA is the PFAAE. It consists of four main

subcomponents each handling one of the four major operations required. Each of these four

operations corresponds to a particular operating mode outlined below:

Build Mode: The major function of this mode is to convert lists of rules into hierarchical

CBVs. Once built the CBVs a¡e stored in external RLDRAM and a oointer is returned to

the software.

Filter Mode: The function of this mode is to provide hardware acceleration for the

packet filtering operations. In particular it retrieves CBVs from RLDRAM and then

performs the OR operation. Two sub modes of operation are available known as quick

and normal mode. In normal mode the fulI resultant CBV of the OR operation is

provided in the response FIFO. By contrast in quick mode only a flag indicating the

operation is complete is written into the response FIFO. Quick mode is used to as a

feature to accurately benchmark the throughput of the filter mode operations without the

overhead of the sending the full CBV responses.

Loop Mode: The function of this mode is to provide a feature to loop back data received

-47-

by the FIFO link block on the RLDRAM FPGA back to the response FIFO. This feature

is used for testing of the buses and FIFOs.

User Command Mode: The function of this mode is to provide access for test

commands to ensure correct hardware operation. Primary functions include commands

for performing memory transfers between RLDRAM board dual port RAM memories,

the command/response FIFOs and the RLDRAM.

5.4 Software Development and Implementation

5.4.1 DesignMethodology

The software portion of this thesis is written in C using Code Warrior and the ARM Firmware

^Søire
(AFS) targeted for the ARMTTDMI processor. The ARM Firmware Suite proved to be

vitally important in development as it provides development board independent functions

including: system initialization, serial port drivers, timers, intemrpt control and memory

management. Software written using the API provided by the ARM firmware suite is capable of

running on various development platforms provided the proper Hardware Abstraction Layer

(HAL) is used. The Hardware Abstraction Layer provided by the ARM Firmware Suite is called

Micro Hardware Abstraction Layer (¡rlIAL). pHAL provides the middle layer, shown in Figure

5-4, which aids in the development of new code and porting of operating systems.

User applicat

AFS board-specific pHal routines

ron

C an,
libr¿

In an embedded system designed to run multiple tasks, like the one employed for this project,

a Real Time Operating System (RTOS) is typically used to provide the framework for task

switching. At the start of the project the MicroC/OS-II RTOS was reviewed as one potential

candidate. Given more time the MicroC/OS-II operating system would have been selected

because of its small size, free academic license, excellent reputation in industry and an available

i C++
¡ries

A FS utilities

Development Board

AFS support
routines

Figure 5-4 : ARM Firmware Suite [19]

General

Specific

-48-

port for the development platform. The reason it was not used is because of the time constraints

of the project and the limited processing capabilities of the processor. As the processor does not

have the capability to run one task at the speed of the hardware, there is little benefit in having the

ability to switch tasks. As well, the operations performed during testing are sequential in nature

and can be performed adequately without task switching. While concurrent operations are

necessary in an actual design it is not required for testing purposes. The following are the th¡ee

major operating modes of the software, each of which is run at a different time:

1. User Command Mode, also known as Test Mode: Includes memory tests and

bus tests.

2. Build Mode: Includes all of the operations to build the B-tree structures and

CBV's from an inout rule file.

3. Filter Mode: fn"frr¿", all of the operations necessary to oerform a search of test

points.

To capitalize fuither on the simplification of having separate non concurrent modes the

hardware is also written to opemte in one of these modes at a given time.

Ahigh level flow of the software showing its basic operating states is shown inFigure 5-5.

The software begins with a boot sequence which initializes clocks, timers, memory and intemrpts.

Once the system is initialized a menu is displayed outlining various groupings of software which

can be run.

Figure 5-5 : Software Operating States

-49-

5.4.2 MenuI)escrintion

The hierarchy of the menu system described in this section is shown through indentation in a

series of figures. Access to items in the menu or sub menus is controlled through a serial port, on

a test computer, using the number keys of the keyboard. For example, iÎ a user desires to view

the Tests Menu lunder Main Menu they simply push three on the keyboard. If the user then wants

to run a test they push the number of the desired test. The test runs and the menu becomes active

again once it is finished running. A press of the number zero results in a move back one step in

the menu hierarchy. Described in the rest of this section are the submenus for rururing various

tasks.

Main Menu

1: User Cmd Mode. . .

2: Packet Fi]ter Mode. . .

3: Tests. . .

Please enter a selection
**

Figure 5-6: Main Menu

Main Menu: Main Menu is the top level menu seen when the software is started. It contains

three sub menus: User Cmd Mode. Packet Filter Mode and Tests.

User Cmd Mode

l-: RLDRAM Tasks. . .

¿i f, I¡u J_asj<s.. _

P]ease enter a selection

Figure 5-7: User Command Mode Menu

User Command Mode Menu: User Cmd Mode contains

Tasks. These items are a grouping of tasks related to the

hardware throush the command FIFO.

two items RLDRAM Tasks and FIFO

commands available to be sent to the

-50-

KLIJt<lìtvl l asKS

l-: Rd DPR 0 to RLDRAM

2: Rd DPR 1 to RLDRAM

3: Rd RLDR-AM to DPR 0

4: Rd RLDR-AM to DPR l-

5: RLDRAM Task Parameters.
Please enter a se]ection

RLDRAM Task Menu: RLDRAM Tasks Menu contains a list of tasks for testins the transferrins

of data between RLDRAM and Dual Port RAM 0 or l.

Figure 5-8: RLDRAM Task Menu

FIFO Tasks

l-: Rd FIFO 1 to DPR 0

2: Rd FIFO l- t.o DPR l-

3: Rd DPR 0 to FIFO 0

4: Rd DPR l- t.o FIFO 0

5: FIFO Task Parameters. . .

Please enter a sel-ection

f igure 5-9 FIFO Tasks Menu

FIFO Tasks Menu: FIFO Tasks Menu contains a list of tasks for testing the FIFOs and Dual Port

SRAMs found on the Memec RLDRAM board. These tasks consist of transferrins data between

one of two dual port SRAMs and FIFOs. intemal to the FPGA.

-51-

Packet Fil-ter Mode

1: Build Search Trees

2: Build Search Tree

4: Ld SRÄM Search Pts
5: Run Search File
6z Ld SRÄM Ptrs
7: Run Ptr Search

8: Run Search Files
P]ease enter a selection

Figure 5-10: Packet Filter Mode Menu

Packet Filter Mode Menu: The Packet Filter Mode

PFAAE. In particular it contains tasks to:

1) Build all of the search trees

In this task all 12 different search trees, described in section 7.3, arc built each

with 10 different random rule sets.

Ð Build Search Tree

In this task one search tree is built with l0 different random sets of rules.

3) Run ORing

In this task pre-calculated CBV pointers are read from a file and then passed to

the ORing hardware to perform the OR operation. This task is primarily used for

testing.

q Load SRAM Search Points

Menu contains a list of tasks for testins the

In this task search points are loaded from a file on a test computer into SSRAM

1.

5) Run Search File

In this task search points are read out of SSRAM 1 and then searched. The

-52-

search operation consists of first passing the search points to the software.

Software then passes the pointers to the CBVs found during the search to the

PFAAE. The ORed resultant bit-vector from all of the retrieved bit-vectors is

sent back to software to be logged. As well, performance information and B-tree

node pointers obtained while searching are all logged for off-line analysis.

Load SRAM Pointers

In this task CBV pointers are loaded into SSRAM 1 extemal to the FPGA on the

Ll-xc2v6000+ Logic Tile Board. The cBV pointers are obtained from a
previous search which logged the pointers during the search operations.

Run Pointer Search

In this task software passes the pointers of the CBVs stored in SSRAM 1 to the

PFAAE. This task is the same as the Run Search File task except the software

portion of the test is not run. Rather the CBV pointers have been pre-calculated

and stored into the SSRAM 1. This mode is used purely to obtain accurate

performance results for the PFAAE.

o/

7)

8) Run Search Files

This task runs a script of previous tasks to perform all necessary operations and

calculate all results required for a particular rule test set. When setup with a rule

size, a rule test set and direction it will perform the following operations for each

of the ten different rule files.

a. Build all the appropriate tree's and CBVs using the function

run_single_build_tree fTable 5-7].

b. Load search points into SSRAM using the function

load search file_sram [Table 5-7].

c. Run the search using the function run_search_file fTable 5-7].

d. Reload the search pointers using the function load ptr_file_sram

[Table 5-7].

e. Run the pointer search using the function runjtr_search lTable 5-7].

f. Free up all memory

-53-

Upon completion all data will have been logged for later analysis.

1

¿

3

4

5

6

7

I
9

RLDRAM TesI
DUAL PORT O RAM TesT

DUAL PORT 1 RAM TesT

Run Batch Command FiIe
Run Loop Back TesL

Run RLDRAM Refresh Test
Read All IIASPF Regs

Run SRAM Tests
Run SRÄ,M Wrrte Test

Please enter a sel-ection

Figure 5-11: Tests Menu

The tests menu contains a list of tests originally run during hardware development. They allow

for regression tests to be preformed on the hardware as modifications are made during

development. Tests are written for exercising RLDRAM, exercising internal FPGA SRAMs,

loop back for board to board communication links, RLDRAM refresh tests, register tests, and

external FPGA SSRAM tests.

5.4.3

Dynamic Memory Allocation

Software Design Issues

Dynamic memory allocation turned out to be one of the larger issues when initially designing

the software. The C functions Malloc and Free are typically used most often to allocate and de-

allocate memory. For the purposes of this software design the blocks of memory required are for

the nodes of B-trees and various linked lists. These nodes are quite small, typically less than 50

bytes, and very numerous. The default settings for the built-in Malloc function requires that the

smallest block of memory allocated to be significantly larger than the typical size actually

required. Although this number can be adjusted to a lower value the associated overhead grows

proportionally. Each time Malloc is called a large amount of memory is wasted in overhead and

-54-

only a small portion of memory is actually used for storage. To allocate the memory more

effrciently and faster special Malloc functions were written to allocate memory for both B-tree

nodes and linked list nodes. The speed is primarily improved because the new Malloc functions

do not reassemble the freed memory into larger blocks and simply return the block to the

available pool of memory. The blocks of memory for nodes and linked lists have the following

characteristics used to create new functions:

1) Most of the memory blocks are not freed until the entire structure is destroyed. For

example a linked list node is used and not freed until the entire linked list is no longer

needed. As well, the number of blocks freed is quite small and can be reused.

2) The entire structure needs to be freed quickiy to speed up processing between tests

using different parameters.

These two main requirements led to the creation of special functions for allocating and de-

allocating memory. Each of the functions had very similar characterizes:

1) An array of large memory blocks.

Each large memory block contains an array of the required memory elements.

Figure 5-12 shows the created memory structure. Variables called index and

block_index are used to store the current pointer to the next available element

and to the current block pointer resoectivelv.

block_index

index

Figure 5-1.2 : Memory Allocation from an Array of Blocks of Memory

block of memory

O)
E
c)
()

Array of Blocks

-55-

2) A circular buffer for holding pointers to freed memory elements captured

during processing.

When a new memory element is required this buffer is checked to see if it
contains any pointers to available memory before obtaining an element from one

of the large blocks of memory. If any memory elements are de-allocated during

the course of processing the pointer to this element is inserted into the circular

buffer so the memory can be reused. The buffer is circular with a read and write

pointer so that pointers to memory elements can be added and removed

continuously. The buffer only needs to be as large as the largest amount of

memory de-allocated at one time and allows for an efficient way of recycling

memory. The circular buffer is shown in Figure 5-13.

read_index write index

Figure 5-13 : Circular Buffer for Storing De-A-llocated Memory Elements

Hardware Software Interface

Communication between software and hardware takes place through the use of command and

response FIFOs. When software requires hardware to perform a particular task it writes a

command into the command FIFO. In the case when a response is required software waits for an

intemrpt indicating data is available from the response FIFO. Initially the software was to be

designed using an RTOS allowing for preemptive multitasking. The primary reason for this was

to make the software more efficient, allowing for task switching while waiting for hardware.

Unforfunately the combination of the developed software and available processor turned out to be

much slower than the hardware. In particular, it takes the software longer to read the response

circular buffer

-56-

buffer than it takes for the hardware to create the response. The software can not even write the

commands to the command FIFO as fast as the hardware can process them. Even with little or

no processing, just memory reads and writes, the processor can not keep up with the hardware.

To fetch response data an intemrpt indicating data is available results in the execution of an

intemrpt service routine which clears the intemrpt and reads out the data. Once again because the

hardware is so much quicker than the software, the whole response packet is guaranteed to be in

the FIFO by the time the intemrpt service routine is executed.

Command and Response Packets

Commands and responses available at a particular time is dependant on the mode of
operation the hardware is in. The current mode is controlled by a write to a register over the CSR

bus. Available modes include build mode, filter mode, and user command mode. The followine

is a list of commands and responses available in each mode.

1. Build Mode :

In build mode one type of command packet is available for use. This packet contains

a packet header, shown in Figure 5-I4, and payload data of rule identification

numbers. In build mode the final step is for software to send the PFAAE a list of
rules contained at each node. The PFAAE then converts this list of rules into a

compressed bit-vector and stores it in the RLDRAM. Once completed, the PFAAE

returns a pointer to the software identifying the location of the compressed bit-vector.

The response packet is shown in Figure 5-14. The parameters used in defining the

command and response packets are described below:

a) s : fpacket size] indicates the size of the current packet being

sent. It has a maximum size of 255 32-bit words includins the

header.

b) # : [number of rules] indicates the total number of rules

contained at the node to be received by the hardware. This is

used by hardware so it can keep track of how many rules

should be received.

c) p:IRLDRAMpointer]

d) r : [rule identifrcation list]

-57-

e) x:fdon'tcare]

N æ
ôl

r
N

Figure 5-14 : Buitd Mode Command Packet

(\ !+
ôl N

NN

x

N d

x

tr'igure 5-15 : Build Mode Response Packet

2. FilterMode:

æ r

x

In filter mode one type of command packet, shown in Figure 5-16, is available. The

purpose of filter mode is to OR together compressed bit-vectors obtained from

pointers sent by software. As expected, the packet available in filter mode is used by

software to send information about the pointer obtained during a search. It is

possible a particular search can find no match at a particular B-tree level so a null

pointer flag is inserted into the packet. This indicates to the hardware that no

compressed bit-vector has to be retrieved. A flag is used instead of a particular

memory value because it was unclear at the start of the design which addresses would

be unused. The result of sending four pointers to the PFAAE is a response containing

the resultant ORed compressed bit-vector. The response packet is shown in Figure

5-16. The parameters used in defining the command and response packets are

described below:

a. n : [null pointer flag] indicates no pointer is found during search of a

N

X

o.\

x

æ r N
Bir

Number

Packet

Header

-58-

particular B-tree level because no range is found containing the search

point.

b. p:fpointervalue]

s : þacket size] indicates the size of the current packet being sent. It has

a maximum size of 255 32-bit words including the header.

b : fbit-vector] series of bits containing the compressed bit-vector value

x : fdon't care]

d.

6
d

æ
d

rcl

;j

Figure 5-16 : ORMode Command Packet

'['l'l'[',

ôì (\ êì
N
N o

IJ

cì ol

ffi

Figure 5-17 : OR Mode Response Packet

3. User Command Mode :

;

æ

1:#

',1r#

r

it.¿
rb:¡
/,1:1i

tl'1

User command mode commands are used primarily for testing purposes. These

commands allow transfers between the command and response FIFOs, dual port

memories and the RLDRAM. For development purposes each command is given a

different task number which makes up part of the packet header. These tasks are

outlined below.

Tfansfers between RLDRAM and Dual Port Memory

The first four commands used in user command mode share the same oacket

\+

x

ít

X

''tÉi

i,e^

cl

l, 'lrl,',

o\

,[;j

æ r

o.
ti,,i
l.#,
't{,.$, il'[i'['.

N
Bit

Numbe¡

Packet

Header

Payload

-59-

structure and create no response packets. These first four commands are used solely

for transferring data between the dual port memories on the RLDRAM board FPGA

and the RLDRAM memory. These commands implement a function very similar to a

DMA operation. The packet structure of each of these commands is shown in Figure

5-1 8.

a. Task 1

b. Task 2

c. Task 3

d. Task 4

read data from dual port RAM 0, write data to RLDRAM

read data from dual port RAM 1, write data to RLDRAM

read data from RLDRAM, write data to dual port RAM 0

read data from RLDRAM, write data to dual port RAM 1

The parameters used in defining the command and response packets are described

below:

a. s : þacket size] indicates the size of the current packet being sent. It has

a maximum size of 255 32-bit words includins the header.

b.a

c.c

d.t

fdual port RAM address] starting address of the dual port RAM

fcount] count of the number of 64bit words to transfer

ftask identifrer] determines which task to be performed

IRLDRAM address] starting address of the RLDITAM memory

[don't care]

e.r

f.x

ô
ôì

æ(\ r
ôì N N

$
c.l

x

ôì
c\¡cl

x

cl

X

Figure 5-18 : User Command Mode Task I - 4 Command Packet

Tlansfers from FIFO 1 to Dual Port Memorv

o.\

.:':

æ

,t,

r

,. 1l

The next two commands used in user command mode share the same packet structure

and create no response packets. These two commands are used solely for transferring

'['.

ôì

t.

æ r

,', 'l'l'' ¡¡

cì
Bit

Number

-60-

Packet

Header

Payload

data between the command FIFO and the dual port RAM on the RLDRAM board

FPGA. These commands implement a function very similar to a DMA operation.

The packet structure of each of these commands is shown in Figure 5-19.

a. Task 5 : read data from FIFO 1, write data to dual port RAM 0

b. Task 6 : read data from FIFO 1. write data to dual port RAM 1

The parameters used in defining the command and response packets are described

below:

a.s
a

þacket size] indicates the size of the current packet being sent. It has

b.a

maximum size of 255 32 words including the header.

d.t

e.d

f.x

fdual port RAM address] starting address of the dual port RAM

[count] count of the number of 64 bit words to transfer

[task identifier] determines which task to be performed

[data to transfer]

[don't care]

Figure 5-19 : User Command Mode Task 5 - 6 Command Packet

Ttansfers from Dual Port Memorv to FIFO 0

The next two commands used in user command mode share the same packet structure

and create response packets. These two commands are used solely for transferring

data between the dual port RAM on the RLDRAM board FPGA and the response

FIFO. These commands implement a function very similar to a DMA operation. The

packet structure of the command and response packets is shown in Figure 5-20 and

-61-

Figure 5-21 respectively.

a. Task 7 : read data from dual port RAM 0, write data to FIFO 0

b. Task 8 : read data from dual port RAM 1, write data to FIFO 0

The parameters used in defining the command and response packets are described

below:

a. s : þacket size] indicates the size of the current packet being sent. It has

a maximum size o1255 32-bit words including the header.

b. a : ldual port RAM addressl stafing address of the dual port RAM

c. c : fcount] count of the number of 64 bit words to transfer

d. t : ftask identifrer] determines which task to be performed

e. d:[responsedata]

f. x:[don'tcare]

o1
eì

æ
N

r
N ôì ôl

+
c.¡ N

N
Õì Õì

Oi
cì

ô¡

æ
cì

Figure 5-20 : Llser Command Mode Task 7 - 8 Command Packet

6

r
ôì

æ

lilllú
t¡:.r:l

r

N

X

;]

cl

x

it;Ll t)

t#¡

N

t:

N
cl

5.4.4 Fite VO

ui

Õì

d

Through the Multi-ICE debugging interface code running on the processor has the capability

of accessing files on the development computer. This feature of the system proved to be

invaluable with regard to inputting test vectors and logging results. The files produced by the

software are described in section 6.3.

{i,

(\

/,1¿1

fii

6

X

æ

.
l. I

,,

Figure 5-21 : User Command Mode Task 7 - 8 Response Packet

Ol

r

æ r

,1.' t.

N

N

l.[,'

Bit

Number

€ r

X x

),:: '!&

?!ji;
I

cì

t l'' 'l ''

Bir

Numbe¡

ul

-o¿-

*,lt
,ht

Packet

Header

ti&:
íìl¡

;, Payload

5.4.5 SoftwareFunctionDescriptions

The following section provides high level details about the most important software functions

built for use in this thesis. The functions are grouped by task function.

Response FIFO Functions

The functions related to the response FIFO are used to manage an array of buffers for holding

response packets. The anay is managed by two pointers; a read pointer and a write pointer. The

read pointer indicates the next buffer to read from and the write pointer indicates the next buffer

to insert a response packet into. The difference in values between the two pointers is used to

determine the number of response buffers containing pending response data. The functions are

outlined in Table 5-1.

Function Namez B uffe r _F ree

Function Description
Determines if a buffer is available to store a packet
received from the response FIFO.

Function Name: Initilize _Buff]trs
Function Description
Clears buffer write and read oointer indexes

Table 5-1 : Response FIFO Functions

Function N ame: B ufers _P ending

Function Description
Indicates ifthere are any buffers with response
packets waiting to be read.

Arguments
void

Function Name: Read _RD -f.ec _Pt r
Function Description
Reads the current buffer read pointer index.

Description

Arguments

Function Name: Read_íüR _Rec_P tr

void

Function Descripton
Reads the current buffler write pointer index.

Returns

Arguments

int

Description

void

(Table continued on next page)

Description
Retums FAIL if no
buffers are available
and PASS if buffers
are available.

Description

Returns
void

Arguments
void

Description

Returns
rnt

Description

Arguments

Description

void

Retums FAIL if no
buffers are available
with data and PASS if
a buffer is available
with data.

Returns

Description

int
Description
Returns an integer of
the index for the
current read pointer.

-oJ-

Returns
int

Description
Retums an integer of
the index for the
current write pointer.

Function Namez Increment Rec Rd Ptr

Function Description
Increments the current read pointer index. Used
when data is read from a buffer and the read
pointer index needs to be incremented.

Function Name: Increment Rec Wr Ptr
Function Descriotion
Increments the cur¡ent write pointer index. Used
when data is written into a buffer and the write
pointer index needs to be inc¡emented.

Command FIf'O Functions

The functions related to the command FIFO are used to create the proper packet headers and

payload data for sending command packets to the PFAAE. The commands are formatted

according to mode of operation and to ensure large data transfers are broken up into maximum

size packets. The functions are outlined in Table 5-2.

Arsuments
void

Description

Arsuments

Function Name:,Flfo Write Line

void

Function Description
When passed a buffe¡ of data and a record
containing information about the header
this function breaks up the data into
packets and writes them to the command
FIFO. It calls Build_Pkt_Header to w:ite
nrrf The ann¡nnnqfe hcc.1øt tn tha nnmma¡¡l

Returns

Descripúion

void

FIFO.

Description

Table 5-2 : Command FIFO Functions

Function Namez BuÌld Pkt Header

Returns

Function Descriotion

void

When passed packet header information
and the packet size this function writes out
the proper packet header to the command

Description

FIFO. The operating mode is checked to
create the proper header for the appropriate
mode.

Arguments
data_buff

ph_header_info

num_words

Description
Buffer of 32 bit data
words.

Arquments

Information used to
create the heade¡s for the
packets.

ìnfo

Number of words in the
data buffer.

rale_size

Descrintion

Returns

Pointer to information about the
packet header to create.

void

Size ofthe packet in 32 bit
words.

Description

Number or rules being written
out, only applicable to build
mode commands. All other
commands have pre-determined
packet lengths

Returns
void

Description

-o4-

Linked List Functions

Linked list functions are created for storing test rules in memory. The rules are stored in a

linked list structure if a post build verification of the B-tree structure was to be performed. After

the B-tree structures are built the rules contained in the linked list are checked against the B-trees

to ensure a proper build operation had been performed. The functions are outlined in Table 5-3.

Function Namez Allocate L Node Memory

Function Description
Allocates memory for a specified number of blocks
of memory. Each block contains an array of linked
list nodes. The nodes are pre-allocated because the
C Malloc function is too inefficient. The minimum
size block is much too large to make efficient use
of available memory. As such arrays of nodes are
pre-allocated then used when the linked list is
dvnamicallv created.

Table 5-3 : Linked List Functions

Function Name: Initilize L Node Memorv

Function Description
Initialize the indexes into the arrays ofblock
memory used to allocate and free node memory.

Function Name: Free L Node

Function Description

Arguments

Used to retum a linked list node to the oool of
available node memory.

void
Description

Function Name: Mal lo c _L_!{o de

Function Description

Arguments

Returns

Used to allocate a linked list node of memory from
a pool of available linked list nodes. This function
wili first use memory returned by Free_L_Node
and then retrieve from the available blocks of
memory.

void

void
Description

Description

Arguments

F unction Name: Il_create

ptr

Function Description
Used to create a new root of a linked list. The root
contains a pointer to the head and tail ofthe linked
list.

Returns

Description

(Table continued on next page)

void

This function is
passed a pointer to the
link list node to be
freed. It puts this
pointer into an array
so that it can be reused
when a new linked list
node is required.

Description

Arguments

void

Returns
void

Description

Description

Arguments
void

Returns

I_node

Description

Description

þode is a pointer
to an available
linked list node of
memory.

-65-

Returns
I root

Description
l_root is a pointer to
the root ofa new
linked list.

Function Namet ll _append

Function Description
Used to append a new node to a linked list.
node is appended to the end of the list.

Function Name: ll prínt

Function Description
Used to print out a linked list.

Function Namez ll delete

Arguments

Function Description

root

Used to free the memory used to create the root of
the linked list.

rulelttr

Description

Function Name: // rule test

Pointer to the linked
list to add node to.

Function Description
This function is passed a linked list of rules and a
2-dimensional B-tree structure which is supposed
to contain a representation of the rules. The free is
checked to ensure it contains each rule properly.
This function calls BTreeRngLvlRuleTest to ensure
the rule has been properly inserted into the tree.

Pointer to a node to
add to the linked
list. In the context
of this software the
node is always a
rule.

Arguments
root

Returns
void

Description

B-tree Point tr'unctions

Pointer to the root
of a linked list to

Arguments

Description

root

For the purposes of this thesis two types of B-trees are created. The first is a point B-tree and

the second is a range B-tree. The point B-tree is used to store single or point values which do not

correspond to a range. In other words these values can be represented by a single point and do

not require a start and end value like a range. A point B-tree is used as temporary storage for the

rule identifier list found at every second dimension B-tree node elementary internal. This is the

list which eventually becomes converted into a compressed bit-vector and replaced with a pointer.

The functions used to manage point B-trees are outlined in Table 5-4.

Description

Returns

Pointer to the
root of a
linked list to
be deleted.

Arguments

void

Ivl_tree

Description

root

Returns
void

Description
Multilevel B-
tree containing
all of the rules.

Description

Pointer to the
root of a
linked list
containing
rules.

Returns
int

Description
Retums FAIL if
rules have been
inserted improperly
and PASS if rules
have been inserted
properly.

-66-

Function Name: Allocate PT Memorv

Function Description
Allocates memory for a specified number of blocks
of memory. Each block contains an aûay of B-tree
nodes or B-trees. The nodes are pre-allocated
because of the C Malloc function is to inefficient.
The minirnum size block is much too large to make
efficient use of available memory. As such, arrays
ofnodes are pre-allocated then used when the B-
free is dSmamically created.

Table 5-4 : Point B-tree Functions

Function Name: Initilíze Pt Memory

Function Description
Initialize the indexes into the arrays ofblock
memory used to allocate and free node and B-tree
memory.

Function Name: Free Pt Tree

Arguments

Function Description

void

Used to retum a B-tree to the pool of
available node memory.

Description

Function Name: Malloc Pt Tree

Function Desciiption

Arguments

Used to ailocate a node of memory from a pool of
available B-trees. This function will first use
memory returned by Free_Pt_Tree and then
retrieve from the available blocks of memorv.

Returns

void

void

Areuments
ptr

Function Ntme: Free *Pt _No de

Description

Description

Function Description
Used to retum a B-tree node to the
pool of available node memory.

Description
This function is passed a pointer
to the B-tree to be freed. This
function then goes and puts this
pointer into an array so that it
can be reused when a new B-free
is required.

Returns
void

Function Name:. Malloc Pt Node

Function Description
Used to allocate a node of memory from a pool of
available B-tree nodes. This function will first use
memory retumed by Free_Pt_Node and then
retrieve from the available blocks of memory.

Description

Arguments
void

(Table continued on next page)

Arguments

Returns

pÛ

void

DescriptÍon

Description

Description

This function is passed a pointer to
the B-hee node to be freed. This
function then goes and puts this
pointer into an array so that it can be
reused when a new node is required.

Returns
b_tree_pt

Arguments
void

Description
b_tree pt is a
pointer to an
available B-
tree.

Description

Returns
void

Description

Returns
b_tree_pt_node

-67-

Description
b_tree pt_node
is a pointer to an
available B-tree
node of memory.

Function Name: BTreePtCreate

Function Description
Used to create a B-tree and its root node. The root
node is the first node inserted into the B-tree.
Upon insertion the root node is set to be a leafnode
with no keys.

Function Name: BTreeP t Ins e rt

Function Description

Used to insert a new point rule value into a B-tree.
This function checks to ensure the root node is not
tull betore lnsertlng a value. lt the root node is lull
a new root node is created and a BTreePtSplitChild
operation is performed on the old root node.

Function Namet BTreePtSplitChíld

Arguments

Function Description
This function splits a full B-tree node y in the

middle inserting y's middle key into the ith key
position in x. Half of y's keys are inserted into a
new node and half remain in the old node. See [9]
for more details.

void
Description

Arguments

tree

rule val

Function Namet BTreeP tlns ertNo nful I

Returns
b_tree_pt

Function Description

Description

This function inserts a point or value into a non fuil
B-tree. Non full indicates the B-tree root node has
room for at least one key. Room for one key is
required because ofthe split operation. The split
operation pushes one of the keys from a full node
up the B-tree into the parent node when a split is
performed. At least one free key is required in the
root node to ensure when a split operation occurs
space is available in the root node. See [9] for more
information.

Pointer to the B-tree to
insert the new point into.

Description

Integer value ofthe rule
identification number.
refer¡ed to as a point, to
be inserted into the tree

b_keejt is a
pointer to a newly
created B-tree.

Arguments

I

Returns

Description

void

x is a pointer to a B-tree
node which has a child
node which is full.

v

Description

i is the index into an

array of child pointers in
x which points to a full
B-tree node.

Function Name: BTreePtCopy

Function Description

This function copies a B-tree and retums a pointer
to the copy.

Arguments
tree

y is a pointer to the full
B-tree node to be solit.

Returns

(Table continued on next page)

void

Description

Description

tree is a pointer to a B-
tree to insert the point
into.

x is a pointer to a B-t¡ee
node which is the current
location in the B-tree
which the insert
algorithm is looking to
insert the new value.

rule val

Returns

rule_val is the value
attempting to be inserted
into the B-tree.

Arguments

void

tree

Description

Description

tree is a pointer to a B-
nee 10 copy.

-68-

Returns

b_tree_.¡tt

Description

b_tree pt is a
pointer to the
coov created.

Function Name: BTreeP tP trco Dy

F'unction Description
This function copies a B-tree node and then
recursively copies its children.

Function Name: MerseBTreePt

Function Description
This function merges the nodes from
tree2 into treel.

Function Name: MergeNo deB TreeP t

Arguments
node

Function Description

This function inserts a node into a tree.

Arguments
treel

Description

tree2

node is a pointer to a

node to copy.

Description

Function Namez BTreeP tP rínt

remove

freel is a pointer to a B-tree to
insert nodes from tree2 into.

Function Description
This function copies all of the values in a B-tree
into an array in ascending order. This function is
used to copy all of the ruies at a B-tree range node

tree2 is a pointer to a B-tree to
copy nodes from to insert into
treel.

Returns

and then send them to the ORing hardware. It is
recursively called to obtain all ofthe values in the
point B-hee.

b_tree_pt

_node

Indicates if tree2 should be deleted
after the merge operation.

Arguments

tree

Description

node

b_tree_pt_nod
e is a pointer
to copy
created.

remove

Description

tree is a pointer to a B-tree to insert
the new node into.

Returns

Function Namez BTreeP tNo deFree

void

Function Description

node is pointer to a B-tree node.

This function frees the memory from a B-tree node
and its children.

Indicates ifnode should be deleted
after the merge operation.

Description

Function Namel. BTreePtFree

Arguments

Function DescriÞtion

node

This function frees the memory used bv a B-tree

level

(Table continued on next page)

Returns

Description

void

buff

node is the cur¡ent
pointer in the B-tree
being printed out.

Description

Unused variable fo¡
future use.

Array passed

recursively to the
function to store all of
the values in the tree.

Arguments
node

Returns
int

Description

Description

Arguments

Count ofall of
the values in
the B-tree.

tree

node is pointer to a B-
tree node

Description
kee is a pointer to a B-

Returns

void

-69-

Description

Returns
void

Description

Function Namez BTreePtSearchPoínt

Function Description
This function searches a B-tree to find a particular
value. It is recursively called to search from one
node to the next.

B-tree Range Functions

The second type of B-tree created is used for storing ranges. The functions are used to

manage range B-trees are outlined in Table 5-5.

Arguments

Function Name: Allocate !.ng_Node_Memory

poml

Function Description
Allocates memory for a specified number of blocks
of memory. Each block contains an array of B-tree
nodes or B-trees. The nodes are pre-allocated
because of the C Malloc function is to inefficient.
The minimum size block is much too large to make
efficient use of available memory. As such, arrays
of nodes and trees are pre-allocated then used when
the B-tree is dvnamicallv created.

Description

count

Pointer to the current
B-tree node being
searched.

Value to search for in
the B-hee.

Pointer to an integer to
keep track ofhow
many keys have been
searched against.

Table 5-5 : B-tree Range Functions

Returns

Function Namez Initi lize Rng _No de-!t'[emo ry

int

Function Description
Initialize the indexes into the arrays ofblock
memory used to allocate and free node and B-tree
memory.

Description
PASS oT FAIL
indication of
whether or not
the search
value was
found.

Function Name: Free_-R ng _No de

Arguments

Function Description

void

Used to retum a node to the pool ofavailable node
memory.

Description

(Table contùlued on next page)

Arguments
void

Returns
void

Description

Arguments

Description

ptr
Description
This function is
passed a pointer to the
B-tree node to be
freed. It puts this
pointer into an array
so that it can be reused
when a new node is
reouired.

Returns
void

Description

Returns
void

-70-

Description

Function Name: Malloc Rng Node

Function Description
Used to allocate a node of memory from a pool of
available B-tree nodes. This function will first use
memory returned by Free_Rng_Node and then
retrieve from the available blocks of memory.

Function Name: BTreeRngcreate

Function Description
Used to create a B-tree and its root node. The root
node is the first node inserted into the B-tree.
Upon insertion the root node is set to be a leafnode
with no kevs.

Function Name: BTreeRngTreeDes troy

Function Description
Free the memory used to create the range B-tree.

Arguments
void

Function Name: BTreeRnglnser I

Function Description
Used to insert a new 2-dimensional
range rule value into a 2-dimensional B-
tree. This function checks to ensure the
root node is not full before inserting a

value. If the ¡oot node is full a new root
node is created and a
BTreeRngSplitChild operation is
performed on the old root node.

Description

Arguments
void

Returns
b_tree_rng_node

Description

Arguments

Function Name: BTreeRngSp litChi ld

tree

Description

Function Description

Arguments

b_kee_mg_node is
a pointer to an

available B-tree
node of memory.

This function spiits a full B-tree node y
in the middle inserting y's middle key

,t}',
into the it'¡ key position in x. Half of y's
keys are inserted into a new node and
half remain in the old node. See [9] for
more details.

tree

Returns
b_tree_rng

level

Description
Pointer to the range B-
hee to be freed.

dimen

Description
Pointer to the B-tree to insert
the new ranse into.

Description

rule_¡ttr

(Table continued on next page)

b_tree_mg is a
pointer to a
newly created
B-tree.

Used to keep track of which
level is being inserted into,
not currently used.

Returns

Used to keep track of which
dimension is being inserted
into.

void

Arguments

Pointer to a structure
containing aÍange

Description

Returns

I

void

DescriÞtion

v

Description

x is a pointer to a B-tree node
which has a child node which
is tull.
i is the index into an array of
child pointers in x which
points to a full B-tree node.

y is a pointer to the full B-tree
node to be split.

Returns
void

Description

a1- I t-

Function Namez BTreeRngIns ertNo nfu ll
Function Description
This function inserts a 2-dimensional range value
into a non full 2-dimensional B-tree. Non full
indicates the B-tree root node has room for at least
one key. Room for one key is required because of
the split operation. The split operation pushes one
of the keys from a fulI node up the B-tree into the
parent node when a split is performed. At least one
free key is required in the root node to ensure when
a split operation occurs space is available in the
root node. See frgure [9] for more information.

Arguments
tree

Function Namel. BTreeRnsS earch

Function Description

level

This function searches a

range tree for a point.

Description
tree is a pointer to a B-
hee to insert the point
into.

dimen

Used to keep frack of
which level is being
inserted into, not
currently used.

,

Used to keep track of
which dimension is
beine inserted into.

Arguments

Returns
void

rule_¡ttr

x is a pointer to a B-
tree node which is the
current location in the
B-tree which the insert
algorithm is looking to
insert the new value.

pomt

Function Namez BTreeRngCreateCBV

count

Description

Function Description
This function calls the
functions needed to create
compressed bit-vectors for
every rule identification list.

Description

node count

x is the current pointer in the
B-tree being searched.

pointer to a structure
containins a ranse

Value to be searched for.
Used to keep track of the
number of key comparisons
done durine the search

(Table continued on next page)

operat

Arguments

Used to keep track of the
number of B-tree nodes
accessed during the search
operation.

node

lon.

dimen

Returns
void*

Ievel

counl

Description

Description
node is the current pointer in the B-tree
being printed out.

Pointer to the
compressed bit-vector in
RLDRAM memory.

Used to keep hack of which dimension
is being operated on.

Unused variable for fi¡ture use.

used to keep track ofthe number of
comoressed bit-vecto¡s created

Returns
void

Description

-72-

Function Namel BTreeRnsP ri nt

Function Description

This function prints out the
contents of a range tree.

Arguments

node

dimen

Function Namez BTreeRngCopy

Function Description

level

This function copies a B-tree and
rerurns a pointer to this copy.

node count

Description

node is the current pointer in the B-
tree being printed out.

rutm_key

Used to keep track of which
dimension is being operated on.

Function Na,me¿ BTreeRngP trCopy

Function Description

potnî_counî

Unused variable for future use.

This function copies a B-tree node
and then recursively copies its
children.

Used to keep track ofthe nurnbe¡ of
B-tree nodes in the B-tree structure
Used to keep track of the number total
number ofkeys used for all ofthe
nodes in the B-tree structure.

Arguments

Used to keep track ofrule identifier
counts while printing.

tree

Returns

void

Function Name: MergeBTreeRng

Function Description

Description

Arguments

Description

This function merges the
nodes from tree2 into
treel

parent

tree is a pointer to a B-
tree to copy.

dimen

Description

node

Pointer to the parent
node of the node being
copied.

Arguments

Returns

level

b_tree_rng

Used to keep hack of
which dimension is
being operated on.

dimen

(Table continued on next page)

treel

Pointer to the node to be
copied.

Returns

tree2

Description

b_tree_rng node

Description

b_tree_mg is a

pointer to the
copv created.

Used to keep track of which level is
being onerated on.

remove

Used to keep track of which dimension
is being ope¡ated on.

treel is a pointer to a B-tree to insert
nodes from tree2 into.

Description
b_tree_mg_node
is a pointer to
copy created.

tree2 ìs a pointer to a B-tree to copy
nodes from to insert into treel.

Indicates if tree2 should be deleted afte¡
the merge operation.

Returns
void

Description

-73-

Function Name: MergeNo deB TreeRng

Function Description
This function inserts a node into
tree.

Arguments
level

B-tree Range Level Functions

B-tree range level functions are created to manage the multilevel B-tree structure. The

functions outlined in Table 5-6 are used to create and perform operations on all four levels of the

B-tree structure.

dimen

Description

Iree

Used to keep track of which level is
being operated on.

node

Used to keep track of which dimension
is beins operated on.

remoye

treel is a pointer to a B-tree to insert
nodes from tree2 into.

Function Name: B TreeRnsLv lCreate

node is pointer to a B-tree node

Function Description
Used to create the fou¡ B-trees
which make up the multi-level
B-tree structure.

Indicates if node should be deleted after
the merse ooeration.

Function Name: BTreeRndLvlD es trov

Returns
void

Function Description

Table 5-6 : B-tree Range Level Functions

Free the memory used to create the multi-levei B-tree

Description

Arguments
void

Function Name: B TreeRnsLv llnsert

Function Description

Used to determine which of the four levels a 2-dimensional
rule should be inserted into. Determination is made based on
the range width of the first dimension.

Description Returns
b_tree_rng_lvl

(Table continued on next page)

Arguments

tree_rng_lvl_ptr

Description
b_tree_rng_lvl is a pointer to a
newly created multi-level B-

Description

Arguments

Pointer to
multi-level B-
rree stmcture.

lvl_tree

rulejtr

Returns

void

Description

Pointer to
multilevel B-
tree sfructure.

Descripti
on

Pointer to a
süucrure
containing a 2-
dimensional
rule.

Returns

-74-

void

Descripti
on

Function Name: BTreeRnsLvlPrint

Function Description

This function prints out the contents
of a multi-level B-tree.

Function Name: BTreeRnsLvlCreateCBV

Arguments

tree

Function Description

This function calls the functions need to create
compressed bit-vectors for the four levels of B-
tfees.

node_count

Description

num_key

tree is a pointer to a multi-level B-tree
structure to be printed out.

Function Namez B TreeRndLvlSearch

Used to keep track of the number of B-tree
nodes in the multi-level B-tree structure

point_count

Function Description

Used to keep track of the numbe¡ total
number ofkeys used for all ofthe nodes in
the multilevel B-tree structure.

This function sea¡ches the multiJevel
B-tree strucrure for a 2-dimensional
point. The compressed bit-vecto¡
nnintprc fn'rnã ¡l"rinc tha coa.nl' c

Used to keep track ofrule identifier counts
while printing.

sent the PFAAE to perform the ORing
operation.

Argument

Returns

lree

void

Arguments

Descripti

Function N amez B TreeRnsLv lRuleTes t

Description

on

lvl tree

Function Descrintion

tree is a pointer to a multi-
level B-tree structure for
which the CBV will be
created for.

Used to check if a 2-dir¡ensional rule
has been properly inserted into the B-
tree after the structure is finished
beine built.

diml

dim2

Description

kee is a pointer to a multilevel B-tree
structure to be searched.

count

Value to be searched for in first dimension.

Value to be searched for in second
dimension.

node_count

Menu Item Functions

Menu item functions are created to run hish level tasks for runnins tests to create results flles.

The functions are outlined in Table 5-7.

Returns

Used to keep track of the number of key
comparisons done during the search
operation.

voíd

Arguments

Used to keep track of the nurnber of B-tree
nodes accessed during the search operation.

Descripti
on

lvl tree

test_rule

Description

Returns

Pointe¡ to multi-level B-tree
süucrure.

void

Pointer to a structure containing
a 2-dimensional rule to be
checked.

Descripti
on

Returns
int

Description
Retums a PASS or
a FAIL depending
on if the rule has

been inserted
properly.

Function Name
run searchfiles

Function Description
This function runs a script of functions to perform all necessary operations and caiculate all
results required for a particular rule test set. When setup with a rule size, a rule test set and
direction it will perform the following operations fo¡ each ofthe ten different rule sets:
a. Build all the appropriate B-tree sfructure and CBVs using the function run_single_build_t¡ee.
b. Load search points into SSRAM using the function load search_file_sram.
c. Run the search using the function run search file.
d. Reload the search pointers using the function loadjrr_file_sram.
e. Run the pointer search using the function runjtr_search.
f. Free up all rnemory

Upon completion all data will have been logged for later analysis.

Table 5-7 : Menu Item Functions

Function Name
run sinsle build t¡ee

Function Name
load search file sram

Function Description
This function builds a single multiJevel B-hee based on a rule-set provided. After the B-tree
structure is complete compressed bit-vectors are created and the end result is ready to perform
search ooerations.

Function Name
load ptr_file_sram

Function Description
In this function search points are loaded from a file on a test computer into SSRAM i

Function Name
runjtr_search

Function Description
In this function CBV pointers a¡e loaded into SSRAM 1 external to the FPGA on the LT-
XC2V6000+ Logic Tile Board. The CBV pointers are obtained from a previous search which
logged the pointers during the search operations.

Function Name
run_search_

Function Description
In this function software passes the pointers of the CBVs stored in SSRAM I to the PFAAE. This
function is the same as the run_search_file function except the software portion of the test is not
run. Rather the CBV pointers have been pre-calculated and stored into the SSRAM 1. This mode
of operation is used purely to obtain accurate performance results for the PFAAE.

file

Function Name: Create CBV

Function Description

Function Description
In this function search points a¡e read out of SSRAM 1 and then searched. The sea¡ch operation
consists of first passing the search points to a software search function. Software then passes the
pointers to the CBVs found during the search to the PFAAE. The ORed resultant bit-vector frorn
all of the retrieved bit-vectors are logged. As well, performance information and B-tree node
pointers obtained while searching are all logged for later analysis.

Sends a buffer of rules to the PFAAE to
build a compressed bit-vector, waits for the
response pointer and then logs the resultant
bit-vector usins the Read CBV function.

: (Table continued on next page)

Arguments

buff

cbvjointer

Description

Buffer containing a list of rule
identifiers used to create the
compressed bit-vector.

Pointer in RLDRAM to the created
compressed bit-vector.

-76-

Returns

int

Descripti
on
Returns a

PASS if
successful
and FAIL
if not.

Function Name: Read_CBV

Function Description
Reads a compressed bit-vector located at a pointer
in RLDRAM and logs the result to a file.

ll Function Name I Function Description lltl
ll
run-dprl-test I I his tunction is used to write data to the dual port RAM 1 and then read it back and perform u ll

I comparison.

ll Function Name I Function Description lltl
ll nrn dpru test I I hrs tunctron is used to write data to the dual port RAM 0 a¡d then read it back and perform " llll -- - lcomoarison.

Function Name
run rldram test

Arguments
pfr

Function Name: TestSsram

Description

Function Description

Pointer in RLDRAM
to read compressed
bit-vector from.

Function Description

Test SSRAM functionality by
writing and reading a test pattem to
and from memory

This function is used to test that the RLDRAM controller and wrapper is *o.king p.operly. The
test is performed in a number of stages. Firstly data is written to dual port RAM 0, next this data
is w¡itten to RLDRAM, next the data is written from the RLDRAM to dual port RAM I and
finally the data is retumed from dual port RAM I for comparison with the sent dara.

Returns
inl

Description

Arguments

Returns a PASS
if successful and
FAIL if not.

start

end

Itbase

Description

Starting address of
memorv to test.

Ending address of
memory to test.

Base address of
memory to test.

Returns

int

Descripti
on
TRUE is
returned if
an error is
f^,.-¡

FALSE is
retumed
otherwise.

-77-

6

6.1

Verifïcation

Hardware verification was done in an incremental fashion testing the basic building blocks of
the system until all of the logic components and buses were fully verified. The time required for

testing was some\ryhat underestimated in the project and took longer than expected. The

following are the major elements tested during hardware verification:

Hardware Verification

l. LVDS serial Bus communication Testing: Low-voltage Dffirential signaling

(LVDS) serial bus testing was the primary test item which took longer than

expected. The two primary reasons for this was inadequate equipment and

inexperience in the determination of appropriate Virtex II input/output block

delays. without having a logic analyzer there is no effective method of viewing

the serial data stream during testing and determining delay adjustments. The

virtex II FPGA allows for precise adjustments to be made to the delays of
outputs. These delays are adjusted until no bit errors are found in a loop back

test of the serial bus. unfortunately, the process used to determine appropriate

delay values involves tweaking the values until the serial bus operated properly.

As such, the tweaking process is quite time consuming.

System Communication Testing (Loop Back): Once reliable serial bus transmit

and receive functionality was proven, loop back testing was performed with the

rest of the communication components. The loop back test consists of software

writing data to the command FIFO, which is then sent to the RLDRAM FPGA

and then looped back into the response FIFO. The software then checks that the

data received to ensure it is the same as data sent.

Memory Testing: Memory testing involves transfers of data between the dual

port memories internal to the RLDRAM FPGA and the RLDRAM memory.

These tests ensure proper operation of the RLDRAM wrapper, RLDRAM

controller, memory refresh operations, and dual port RAM memories.

2.

6.2 SoftwareVerifTcation
For the most part the software verification was done at the same time as the hardware

verification. Co-verification of hardware and low level software drivers was almost always done

-78-

to ensure both items functioned properly. The one major exception to this was the verification of
the B-tree structure. At the time of B-tree construction each input rule from the test set was added

to a linked list for a final post processing step. In this step each field of every rule was double

checked via a search in the B-tree structure to ensure its entire range is covered. properly. As

well, each second dimension elementary interval, a range was apart of, was double checked to

ensure the rule number was apart of the node rule list. In this way the B-tree was ensured to be

built correctly.

6.3 Packet Filter Algorithm Verification
ln order for a smooth hardware and software integration a collaborative flow was developed.

This flow was used to verifu the functionality and evaluate the performance of the packet filter

design. The flow is presented as a series of figures, each containing one portion of the integration

phase. At the left side of each figure a box shows the input files needed for the particular

operation, shown by the box with rounded edges in the center. On the right side of the diagram

the output files produced are listed. Each diagram illustrates the flow of operations from top to

bottom and includes labels to show the flow from one diagram to the next.

Asterisks are used to delimit the location of variables inserted into the file names. Most of
the files are appended with the mode, seed and rule size of the test to organize the results. Mode

refers to the 2-dimensional pair under test, seed refers to the seed used for the test and rule size

indicates the number of rules used for the test. These variables were inserted to make the results

files identifiable.

6.3.1 Step 1 : Rule Generation

To verifli and benchmark the packet filter, realistic rules sets needed to be acquired or

developed. It was found to be extremely difficult to acquire rules sets to test against.

Unfortunately, unlike compression testing there are no corpus' available providing commercial

rules sets. However, as part of the project a C++ tool was developed capable of generating test

rule-sets of varying size and distribution statistics. Figure 6-1 shows a picture of the created tool

and Figure 6-2 shows a basic flow of the rule generation software.

-79-

- Flule Set Soulce - --

OpenSeedFile I lNoFileLoaded

0ulput Flule File Deslination

0pen Output Fule File I lÑãllJlo¿¿e¿ Ì

I

Sowce lP Probabiliþ Densiþ Function*---*--

0penSourcelPPDF I lNoFileLoaded

0pen Destination lP PDF I lNo File Loôded

¡ Source Port Probabiliþ Densiþ Location

i [JpenSourcePortPDF I lN"Fll"L""d"d

tl

0pen DestinatÌon Porl PDF I lNo File Loaded

ll
i_. __--_--_,-

Figure 6-1 : Rule Generator Software

f- none

l- none

-80-

C++ Program Files:
Rule_MakerDlg.h
Rule_MakerDlg.cpp
Rule_Maker.rc

P rcbabil ity D istri bution F iles :
dest_i p_cpdf_bytes.txt
dest_po rt_cpdf_bytes.txt
sou rce_ip_cpdf_bytes.bd
source_port_cpdf_bytes.bd

Random Number Gen
Seeds.'seeos.Ix

Rule Generation Input Files Descriptions

l. C++ Prosram Files:

Figure 6-2 : Rule Generation Files and Process for Inbound Rules Example

a. Rule_MakerDlg.h: Contains constants used in creating a rule generation

executable.

b. Rule_MakerDlg.cpp: Contains classes and functions used in creating a rule

generation executable.

c. Rule_Maker.rc: Resource file containing project parameters for the Graphical

User Interface (GIJI).

2. Discrete Cumulative Probability Distribution Files:

a. des+ ip_cpdf b¡tes.txt: Defines the destination IP probability distribution.

b. source ip_cpdf_b¡tes.txt: Defines the source IP probability distribution.

c. destjort_cpdf_bytes.txt: Defines the destination port probability distribution.

d. sourcelort_cpdf_bytes.txt: Defines the source port probability distribution.

3. Random Number Generation Seed File

a. seeds.txt: Holds ten different seeds

different seeds are used to generate

conf,rdence interval.

for

ten

the random number generator. The ten

different files required for creation of a

-8'l-

Rule Generation Output Files

1. rules_*model*_*seed*.txt: Stores a set of rules for a particular seed and rule model.

A rule model consists of the set of four probabilitv distribution files outlined above.

Rule Generation Process

The steps performed when generating a set of rules are as follows:

1. Select the appropriate seed file so that ten different rule f,rles can be created, each with a

different seed.

2. Select the number of output rules desired for testing.

3. Select a base file to output the rules into. The output of the rules then appears in ten

different files with the prefix of each rule file being the name of the base file.

4. Select the four distribution files describine the distributions for the source and destination

IP and port protocols.

5. Press Create Rules and the ten rule files are created.

An example of how a rule is stored in a file is shown below (numeric values shown in

hexadecimal format):

dd07496b : Source IP (32 bit value)
b3891-85b : Destination IP (32 bit vaLue)

87b00000 : Bits 37:26 Mask I'ength for source IP (32 in this case)

Bits 25:20 Mask Length for destination IP (27 in this
case)

Bits 79:0 RuTe lD number

0000ffft : Source Port (start of range is first 76 MSB, end is LSB

76)

006a006a : Destination port (start of range is first 76 MSB, end js

LSB 75)

The rule format allows ports to be represented using the range matching style and IPs to be

represented using the prefix matching style. Having the start and the end specified allows a port

rule to be specified as an exact value or a particular range. Likewise the five bits used to speciff

the mask for an IP rule allow for specification of a single IP value or any one of the 32 prefix

lengths. A value of 32 for the IP mask specifies a single IP and a mask length of zero represents a

wildcard.

-82-

6,3.2 Step 2 : Building the Search Structures and CBVs

The second step in the verif,rcation flow is building the search trees and the CBVs. The rule

files are used as inputs to the software to produce 2-dimensional B-trees containing the rule lists

for the creation of CBVs. A flow diasram for steo two is shown in Fisure 6-3.

ARM SW Build Tree & Verification

Build Tree File Descriptions

ARM SWHW Build & Read CBV

Output Files for Test Point
Generation:
par_rule list_*_*_*.txt

Output Files for Simulation:
tree_"_._*.ût

Output Files for Analysis:
cbvcount*.*.txt

1. par_rule list_*mode*_*seed*_*rule_size*.txt : The purpose of this frle is to store

parsed rules with the start and end of the each of the selected two dimensions. This frle is

then used as an input to a Tcl script to produce random test points in the specified ranges

of each of the rules. This ensures that a number of test Doints are created for each rule.

See Appendix A for a file example.

2. tree_*mode*_*seed*_*rule_size*.txt : Contains a text based representation of the

search tree. It provides the start and end of each elementary interval in the tree as well as

a count and list of rules. See Appendix A for a file example. This was an optional file

generated for simulation and Tcl validation.

3. cbv_count_*mode*_*seed*_*rule_size*.txt: Contains a list of the number of rules

encompassed within each CBV. See Appendix A for a file example.

Figure 6-3 : Build Tree and CBVs

Output Files for Verification &
Performance Analysis:
cbv_list_"_*_".txt
cbv_ptrs_-_"_-.txt

-83-

4. cbv_list_*mode*_*seed*_*rule_size*.txt : Contains a list of the

elementary interval in the tree. See Appendix A for a file example.

cbv¡ltrs_*mode*_*seed*_*rule_size*.txt: Contains a list of the

one for each CBV. See AppendixA for a file example.

6.3.3 Step 3 : Producing Test Files

In this stage of the verification flow Tcl is used to create a set of stimulus f,rles to exercise the

packet filter. Multiple test points are generated from each rule to ensure each rule is tested. The

test points are also used with the rule-set to perform a basic linear search. The results of this

search are used to validate the final results produced by the packet filter.

Tcl Script F¡les:
creâle_testjo¡nls.tcl
common_ul¡ls.tcJ

Parse Rule L¡st F¡les:
paLrule_list_t_-_*.tX

CBVs one for each

Tcl Script Files:
I¡near_se¿rch.tcl
common_utils.tcJ

Parse Rule List F¡les:
par_ru¡e_list_._'_..txt

Test Point Files:

RLDRAM pointers

File Descriptions

1. common-utils.tcl : Contains coûrmon utilities and flle VO procedures used in Tcl packet

filter operations.

2. create testSoints.tcl : Creates a file of test points for each mode, seed and rule size of a

given rule model. Random test points are picked in the specified ranges of each of the

rules to ensure that a number of test points are created for each rule.

Figure 6-4 : Tcl Operations Linear Search Files and Process

Output Linear Search Results:
I¡ near_search_results_-_._..txt

-84-

3. test¡loints_*mode*_*seed*_*rule_size*.txt : Contains random test points for each of

the parsed rules in the parsed rule list frle þar_rule_list). See the Appendix A for a file

example.

linear_search.tcl : Performs a linear search of the parsed rules list file for each test point

and returns a list of matching rule. The list of rules is then converted into CBV format.

The CBVs produced by the linea¡ search are used as a set of "golden" test results for the

final verification sten.

4.

5. linear_search_results_*mode*_*seed*_*rule_size*.txt : Contains results from linear

search operations converted into CBV format.

6.3.4 Step 4 : Search Operations

The next phase of the verification flow involves using the test points generated to verifu the

operation of the hardware and software and to determine performance. A flow diagram for step

four is shown in Fizure 6-5.

ARM SW & HW Perform Search
(Ver¡ficat¡on Test)

HW Perform Search
(Performance Test)

Output Files for Pertormance
and Verification:
ptr_log_-_-_-.txt
search_timer_resu lts_*_*_*.txt
search resulls

Figure 6-5 : ARM Files and Process

Output Files for HW OR
Operation Pertormance:
ptr timer results * * ".txt

-85-

File Descriptions

1. ptrJog_*mode*_*seed*_*rule_size*.txt : This is a log of the CBV pointers retrieved

from the tree during a test point search. If no pointer is returned from a level in the B-

tree then a null pointer OxFFFFFFFF is stored.

2. search_timer_results_*mode*_*seed*_*rule_size*.txt: The purpose of this file is to

1og statistics during a search operation. See Appendix A for an example of this log frle.

The three values logged in this f,rle are shown below:

a. 0x00000CA8 : Total time for a search operation from the time the software

retrieved the test point. Included the search through the levels of the B-tree until

the hardware returns the search result.

b. 0x0000000C : Count of how many B-tree node keys (elementary intervals) were

accessed during as search.

c. 0x00000004: Count of how many B-tree nodes were accessed during a search.

search_results_*mode*_*seed*_*rule_size*.txt : The search_results file contains the

resultant CBVs when a 2-dimensional search is performed. The first data word includes

the time to perform an OR of the CBVs in the hardware. See Appendix A for an example

of this file.

ptr_timer_results_*mode*_*seed*_*rule_size*.txt : The purpose of the file is to store

the results from a performance test in which pre-calculated CBV pointers are read from

SRAM and passed to hardware to be retrieved and ORed. Logged values include time

for hardware to complete a f,ilter operation and return a value to the response FIFO. This

test is performed such that the command FiFO is always full to determine a maximum

throughput rate. See Appendix A for an example of this file.

J.

4.

6.3.5 Step 5: Simulation

To assist in debugging and verification a simulation environment was developed to exactly

model the entire hardware setup contained on the RLDRAM and LT-XC2V6000+ development

boards. The environment was setup such that when problems were found with the actual

hardware the log files from tests could be used as inputs to the simulation environment to

accurately determine the problem. By doing this hardware can be tested at operational speed to

identify problems which can then be diagnosed in simulation. This methodology sometimes

referred to as emulation, works exceptionally well for speeding up the verification process. The

-86-

simulation and hardware environments both produce CBV list, CBV pointer and OR results f,rles

which are compared to ensure correct translation from design files to hardware implementation.

A flow diagram for step five is shown in Figure 6-6.

Modelsim Tcl Script Files:
common_utils.tcl
cbv_tree.tcl

B-Tree Representaton File:
tree_*_L".txt

B-Tree Search CBV Pointer
Log:
ptrJog_-_-_-.txt

File Descriptions

1. cbv_tree.tcl : Contains procedures for building the CBVs, logging CBV pointers,

logging CBV lists, and performing OR operations from lists of pointers.

2. sim_cbv_list_*mode*_*seed*_*rule_size.txt : Contains a list of the CBVs for each

elementary interval in the B-tree.

3. sim_cbvjtrs_*mode*_*seed*_*rule_size*.txt: Contains a list of the RLDRAM

pointers for each CBV.

4. sim_search_results_*mode*_*seed*_*rule_size*.txt : The sim_search_results file

stores resultant CBVs when a 2-dimensional search is performed in simulation. The first

data word includes the time to perform an OR of the CBVs.

6.3.6 Step6 : finalVerification

During the final verification step, the CBV search file results from simulation, hardware

testing, and a simple linear search are compared against each other to ensure there are no

differences in results. This step ensures all of the operations in both simulation and hardware

testing match up with the "golden" standard test results produced by a basic linear search. A flow

diagram for step six is shown in Figure 6-7.

Figure 6-6 : Simulation Files and Process

Output Files for Verification:
sim_cbv_l¡st_*_:*.txt
sim_cbvjtrs_"_"_".txi
sim search results " " *.txt

-87-

Tcl Süipt Files:
support.td
cbv_val¡date.tcl

Search Resurús Fires;
search_res ults_*_*_*.txt
s ¡m_search_results_-_i.txt
l¡near_search_results_*_*_*.tX

File Descriptions

1. cbv_validate.tcl: Compares results from the simulation search, linear search and actual

test results.

2. cbv_search check_*mode*_*seed*_*rule_size*.txt: Logs results of the CBV validate

operation, flagging any differences found in the results.

Figure 6-7 : Final Verification Files and Process

O uþut Comparison Files:
cbv_s earch_check_-_-_-.ûd

-88-

7 Results

7.1 Perimeter Rule Model
When benchmarking a packet classifier it is desirable to use rule-sets similar to reallife

firewall rule-sets. To that end several papers were investigated for possible rule distributions

t1lt2l[8]. Of the papers reviewed the distributions found in the GEM paper [8] are most closely

followed because of the specific presentation of rule-set distributions. It should be noted however

the GEM model is not always followed as liberties are taken where ambiguities exist. The

differences between the GEM model and the developed model are outlined later in this section.

The first item of note obtained from the GEM paper is that a large degree of structure is found in

most rule-sets. In particular, rule-sets contain a large percentage of rules pertaining to TCP

traffic. As a result, benchmarking is performed using TCP fields including two 32-bit IP fields

and two 16-bit port fields. These fields are used to mimic inbound and outbound traffrc for a

network the GEM paper describes as the perimeter firewall.

"The perimeter firewall assumes a network with two sides: a protected network on the inside,

and the Internet on the outside. The inside network consists of 10 class B networks. and the

Internet consists of all other IP addresses. Thus. the internal network contains 10x65536

possible IP addresses" [8].

It is also highlighted that organizations large enough to allocate 10 class B networks are quite

rare but still should be used for the following reasons:

1. Many organizations use private (RFC 1918) IP addresses internally, and export them via

Nerwork Address Translation (NAT) on outbound traffic. Such organizations often use

large subnets liberally, e.g., assign a 1J2.x.*.* class B subnet to each department [8].

2. Having a large internal subnet stresses the GEM algorithm since random ranges are

selected from the internal ranges. The larger the internal net is, the closer the model is to

the Random Model described in section 7.4.l8l.

Based on the distributions found in GEM, rule-sets are split between inbound and outbound.

Figure 7-1 shows a basic diagram of the network topology.

-89-

10 Class B

Networks
(Protected
Network)

Figure 7-1 : Perimeter Rule Model Network Topology

7.2 StatisticalDistributions
Table 7 -l and Table 7 -2 provide a summary of the probability distributions found in the GEM

paper l8]. The following sections present a summary of the details regarding the inbound and

outbound characteristics of the IP address and oort rules.

7.2.L Inbound IP Rules

o source IP addresses are rarely specified in the rules

o 95o/o are specified as wild cards

Outbound Rules

o 5o/o arc specif,red as a range uniformly selected from the available IP space

. Instead a probability distribution is created with increasing probability

from Class B to slightly smaller than Class C. This is done, rather than a

complete uniform distribution, because it is felt to be more representative

of the actual Internet. Figure 7-3 shows the resultant probability

distribution function.

destination addresses for inbound rules are always internal, belonging to the 10 internal

class B subnets

o 45o/o of the rules have a randomlv chosen individual internal IP address as a

destination

" models server machines

o 15%o have a small random range: a range which completely lies inside one of the

internal class C networks

30% of the rules have a complete class C as a destination

10% of the rules have a complete class B as a destination

-90-

7.2.2 Outbound IP Rules

o destination IP addresses are rarely specified in the rules

o 90%o are specified as wild cards

o 70o/o are either specified as a specific address or a range

Figure 7-3 shows the chosen probability distribution function for the

range

. source IP addresses for outbound rules are always internal, belonging to the ten internal

class B subnets

o 45%o of the rules have a randomly chosen individual internal IP address as a

destination

models server machines

o 15o/ohave a small random range: a range which completely lies inside one of the

internal class C networks

o 25o/o of the rules have a complete class C as a destination

o 10% allow access to a full class B

o 5o/o are soecified as wild card

7.2.3 Inbound and Outbound Ports

The same statistics are used regardless of whether the direction is inbound or outbound

. source port is rarely specif,red

o 98o/o of the time it is a wildcard. consistent with stateful firewalls which do

need to monitor return traffic

o 1% specified as a range

o 1% specified as a single port value

o destination port is precisely specified

o 96%o are specified as single port value from a predefined list

o 2%o are specified as ranges

o 2o/o are specified as random single ports

-v t-

Table 7-1: Statistical distribution for IP address and ports in the perimeter model rule-set. [8]

Source address

*

range

Class B

Class C

single IP

Destination
address

Destination port

(service)

range

Class B

Class C

single iP

from list of I 00 services dst

port is random range

dst port is single port

Source port
src port is a random range

src port is from a use port list

src port is random 0-65535

t5%

t0%

30%

4s%

5%

t5%

r0%

2s%

45%

96%

2%

2%

98%

I%

0.5%

05%

96%

2%

2%

98%

1%

0.5%

05%

-v¿-

x

Source Port Distribution

Ranges

single port

Table 7-2: Statistical Distribution for Ports [8]

98%

t%

t%

t¡

Destination Port Distribution

Ranges

average range srze

single ports

average number of single ports per

rule base

7.2.4 Inbound Rules Detailed Description

Inbound Destination IP

most used ports

As mentioned in section 6.3.1 a rule-set generator is used to generate rule-sets based on a

given distribution. The distributions input into the generator are largely modeled after the

information provided in the GEM paper. Table 7 -3 shows the three parameters used to determine

an inbound destination IP rule. As in a typical probability distribution function, when the

probabilities of all of the elements are summed, they equal 1.

0%

4%

27030

96%

)U

80 6.89%

21 5.6s%

23 4.87%

443 39%

8080 2.25%

-93-

Table 7-3: Inbound Rr¡le Destination IP Type Probability

1. Random IP Address: To speci$' the random IP probability distribution function more

easily the 32 bits of the address space are broken up into bytes. Each byte can have one

of 256 possible values each of which is specified a probability of occurrence. By

repeating this procedure for each byte the probability distribution function of the random

IP address is fully specified. Using a common notation for an IP Address the bytes are

specified as follows : (B¡e4). (Byte3). (Byte2). (Byte I).

. Byte 1: uniform distribution (each value has probability of 11256)

o Byte 2: uniform distribution (each value has probability of 11256)

Distribution Type

0 Random IP Address

I Range

2 Wild Card

Probabilitv

c Byte 3: uniform distribution across 10 Class B subnets : [128:137]. Consecutive

subnets with same first octet chosen to simplifu creation of the seneration tool.

. Byte 4: For a class B network the range ";*" flrrst octet i, u"tlu""r, 128 and I9I

(179 was selected).

It should be noted the distribution specified is not only used for single random IP address

rules but also to find suitable IP address for prefix ranges. Rules for specifuing ranges

are also required to be based offvalid IP addresses found in the protected network.

2. Range: For the purposes of defining ranges with respect to IP addresses, mnges are

specified using the prefix method. Range selection begins by first selecting an IP address

based on the IP distribution specified and then by selecting a prefix range length based on

the range distribution. A value of 32 for the range is used to speciff a single IP and a

value of zero represents a wildca¡d. Figure 7-2 shows the probability distribution

function chosen for the inbound destination IP address rules. A value of 24 indicates the

lower 8 bits of the IP address are used for the range and are'do not care'. As such, a

range is created because the lower 8 bits are masked off for comparison against an

incomins IP address.

0.45

0.55

0.00

-94-

60

50

30

Prefix Mask Length Probability Distribution

0)
o)

Q)o

À

Figure 7-2 : Inbound Destination IP Prefix Mask Length Probability Distribution Function

Notes on Figure 7-2:

20

10

0

e First spike is class B prefix length mask

o Second spike is class C prefix length mask

10 '15 20
Mask Length

3. Wild Card: Specifies a condition in which a whole field of the rule is specified as a 'do

not care'. In this case zero percent of the rules contain a wild card for the inbound

destination IP address.

Inbound Source IP

The tables and distributions in this section describe the probability distribution functions and

probabilities used to create the rules for the inbound source IP. Table 7-4 shows the th¡ee

parameters used to determine the inbound source IP rule.

Table 7-4: Inbound Rule Source IP Type Probability

e Remaining are uniformly spread out to create small networks

Distribution Type

0 Random IP Address

I Range

2 Wild Card

Probability

0.00

0.0s

0.95

0. Random IPAddress: Using a common notation for an iP Address the bytes are specified

as follows : (Bytea).(Byte3). (Byte2). (Byte I).

. Byte 1 ; uniform distribution (each value has probability of 11256)

o Byte 2 ; uniform distribution (each value has probability of 11256)

o Byte 3: uniform distribution (each value has probability of 11256)

. Byte 4 : uniform distribution, has several blocks of IP address removed

o Specific addresses reserved by the Internet Assigned Numbers Authority

(IANA) such as 10.0.0.0 - 10.255.255.255 are removed

o I79.x.x.x addresses are removed because are they used for the test

network

1. Range: Figure 7-3 shows the probability distribution function used to define ranges for

the inbound source IP rules.

1Àtr

12

10

I

6

+

z

0

Prefix Mask Length Probability Distribution

o

c.)

c
q)
r

Figure 7-3 : Inbound Source IP Prefix Mask Length Probability Distribution Function

2. Wild Card: Specifies a condition in which a portion of the rule is specified as do not

care. úl this case 95 percent of the rules contain a wild card for the inbound source IP

address.

Inbound Source Port

The tables and distributions in this section describe the probability distribution functions and

probabilities used to create the rules for the inbound source port.

0510152025
Mask Length

-96-

Table 7-5: Inbound Rule Source Port Type Probabilify

Type Descriptions

0. Single Random Number: Allows for a small rate of growth in the number of services

by adding random generated services, where the port is randomly picked from 0 to 65535

(uniform probability distribution across all ports).

1. Selected Ports: Picked from a list of 100 most used ports, ports are selected with the

probabilities shown in Table 7-6.

Distribution Type

0 Random Port Number

I Used Ports

2 Range

3 Wild Card x

Probability

0.s%

05%

t%

98%

Most Used Ports

Table 7-6: Most Used Inbound TCP Ports

80

2l

z)

443

2. Range: l%o of source port rules are a range. Common ranges are "all high ports" (1024-

65535) and "X11 ports" (6000-6003). As such, most of the weight is placed in extremely

low ranges and extremely high. TableT-7 shows the different probabilities assigned to

each range.

8080

list of 95 individual
ports

100-194

Service

HTTP

FTP

Telnet

Range

SSL

Probability

3-30

7.08%

HTTP

100-1000

5.65%

r0000

4.87%

60000

Table 7-7: Probability of Range Size for Inbound TCP Port

3.9%

25%

0.8% per
port

Probability

Total

45%

5%

100%

5%

45%

Allows small ranses of 3-30 in size

Allows any range between 100-1000

Allows range of size 10000 only

Allows range of 60000 only

-97-

The average range size is calculated by sumrning up the possible range values for a given

range subset, dividing by the number of possible ranges for a given range subset and then

multiplying by the given probability. IVhen the values from each of the range subset

calculations are summed an average range is obtained, as shown in Equation 7-1. The

values shown in Table 7 -7 are selected to create an averase as close as possible to the one

specified in the GEM paper.

Equation 7-1 : Source Port Average Range Size Calculation

þ0000"0.45+10000x0.0s+(:+4+...+zo)"O.+s/rr+(too+l0r+...+1000)xo.\s/ror)=ztsts

3. Wild card: Specifies a condition in which a portion of the rule is specified as do not care.

In this case 98 percent of the rules will contain a wild card for the inbound source port.

Inbound Destination Port

The tables and distributions in this section describe the probability distribution functions and

probabilities used to create the rules for the inbound destination port.

Table 7-8: Inbound Rr¡le Destination Port Type Probability

0. Random Single Number: Allows a small rate of growth in the number of services by

adding of random generated services, where the port is randomly picked from 0 to 65535

(uniform probability distribution across all ports).

1. Selected Ports: Picked from a list of 100 most used ports, ports are selected with the

probabilities shown in Table 7-9.

Distribution Type

0 Random Port Number

I Used Ports

2 Range

3 Wild Card x

Probabilitv

2%

96%

2%

0%

-98-

Table 7-9: Most Used Outbound TCP Ports

Most Used Ports

80

21

z)

443

2. Range: 2 percent of source ports in rules are def,rned as ranges. Common ranges are "all
high ports" (1024-65535) and "X11 ports" (6000-6003). Therefore, most of the weight

was placed in extremely low ranges and extremely high.

8080

list of 95 individual
ports

100-194

Service

HTTP

FTP

Range

Telnet

3-30

SSL

Probability

100-1000

HTTP

7.08%

10000

s.6s%

Table 7-10: Probability of Range Size for Outbound TCP Port

60000

4.87%

3.9%

2.5%

Probabilify

Like the source port the goal was to create an average as close as possible to the one

specified in the GEM paper. The calculation of the average range size is shown in

EquationT-2

Equation 7-2 : Destination Port Average Range Size Calculation

45%

0.8%oper
port

Total

5%

5%

r00%

45%

I

(ooooo*0.45+10000x0.0s+(: +4+...+30)x0.4%B+(roo+101+...+1000)x o.\s/nor)*ztszs

Allows small ranges of 3-30 in size

3. Wild card: Specifies a condition in which a portion of the rule is specified as do not care.

ln this case 0 percent of the rules contain a wild card for the inbound source port.

7.2.5 Outbound Rules

With a few slight variations in probability distribution functions the outbound rules are

almost the exact opposite of the inbound rules. Other than differences in distribution type

probabilities the outbound destination IP matches the inbound source IP and the outbound source

IP matches the inbound destination IP. The format for speci$ing the outbound rules are exactly

the same and as with the inbound rules.

Allows any range between 100-1000

Allows range of size 10000

Allows range of 60000 only

-99-

Outbound Destination IP

The destination addresses for outbound rules are selected from the Internet with the

probabilities shown in Table 7-11.

Table 7-11: Outbound Rule Destination IP Type Probabilify

Outbound Source IP

The source addresses for outbound rules are selected from the internal addresses with the

probabilities shown in Table 7 -I2.

Table 7-12: Inbound Rule Destination IP Type Probabilify

Distribution Type

0 Random IP Address

I Range

2 Wild Card

Probabilify

Outbound Destination Port
Same as inbound destination port, see section 7.2.4 for details.

Outbound Source Port
Same as inbound source port, see section 7 .2.4 for details.

0.0s

0.05

0.90

Distribution Type

0 Random IP Address

I Range

7.3 PerformanceAnalvsis

2 Wild Card

7.3.1 Best Field Order

During development and initial testing it became apparent field order greatly impacted the

size of the data structure produced. As such, it became an important objective to compare the

performance and data structure size of different field orders. Table 7-13 shows the identifiers for

the four fields used for creatins the rules.

Probability

0.45

0.50

0.05

-1 00-

For a four dimensional search there is typically twenty four different combinations of field order.

However, when combining 2-dimensional search operations which operate in parallel only twelve

variations are possible. Only twelve variations exist because the searches are performed in

parallel and the order of the pair is inconsequential. The twelve 2-dimensional pairs are outlined

in Table 7-14 and the twelve groupings of 2-dimensional pairs are shown in Figure 7-15. The

identifiers for these pairs and groupings are used in the result plots in the remainder of this

document.

ID

0

Table 7-13: Rr¡le Field Identifier

I

2

J

Field

Source IP

Destination IP

Source Port

Destination Port

Size

32-bits

File
Numbering

32-bits

16-bits

I

16-bits

¿

Table 7-14: 2-Dimensional Field Combinations

J

2-D Pair
Identifier

4

P0l

5

P02

6

P03

7

P10

Field I
@imension 1)

8

Source IP

P12

9

Source IP

P13

10

Source IP

P20

n

Destination IP

P2r

T2

Destination IP

P23

Destination IP

P30

Source Port

P31

Field 2

(Dimension 2)

Source Port

Destination IP

P32

Source Port

Source Port

Destination Port

Destination Port

Destination Port

Source IP

Destination Port

Source Port

Destination Port

Source IP

Destination IP

Destination Port

Source IP

Destination IP

Source Port

-tut-

File
Numbering

lo

r.12

2,6

4-D Group
Identifier

2,71

P01_P23

Table 7-15: 4-Dimensional Field Combinations

?5

P0l

3,8

P02

4,9

P32

P02_P31

41)

Pl3

Source IP, Destination IP

P03

5,10

Source IP, Destination IP

P03_P21

6,7

P12

Pairl

Source IP, Source Port

P10

7,11

Source IP, Source Port

P10

8,10

P23

Source IP. Destination Port

Pl2
P32

Source IP. Destination Port

P13 P20

Results indicate the size of the data structure varies greatly between field orders. As a result

it is not possible to obtain test results for all cases because the memory space required for

building the structures becomes prohibitive. Lr an effort to remove the worst field orders an

iterative elimination process is used. As a first step small rules sets of size 1024 are generated.

The data structures sizes for each of the twelve 2-dimensional field combinations are logged

along with the search time results. These results are then used as a basis for elimination of the

worst performing field orders. For eliminating a combined analysis is performed in which both2-

dimensional pairs are considered. This is because often one of the 2-dimensional pairs performs

exceptionally well while the other performs very poor. In these cases both are removed because

the end goal is to find an optimal ordering for a 4-dimensional search.

7.3.2 Plots

The data points for the plots in this section are obtained from generating ten different ru1e-

sets based on the distributions identified in section 7.2. Eachrule-set is initialized with a different

random seed to obtain a group of rule-sets from which a ninety percent confidence interval can be

obtained. The confidence intervals are shown by the line with bars on the top and bottom for

each data points in the upcoming plots. If a line is not present it is because the interval is too

small to show. Each data point represents the avetage obtained from the ten runs with the

confidence interval indicating ninety percent certainty that the true result lies between the bars.

The search time plots also indicate the maximum and minimum values by the lines above and

P30

Destination IP, Source IP

P20 P3l

Destination IP, Source IP

P21_P30

Destination IP. Source Port

Destination IP, Destination Port

Source Port, Destination Port

Source Port. Source IP

Destination Port, Source Port

Source Port. Destination IP

Destination IP, Destination Port

Pair 2

Destination Port, Destination IP

Destination IP, Source Port

Source Port. Destination IP

Source Port, Destination Port

Destination Port. Source Port

Destination Port, Source IP

Source Port, Source IP

Destination Port, Destination IP

Destination Port, Source IP

- tuz-

below the bars. It should be noted the memory usage includes both the CBV and B-tree

requirements while the search times represent only the time required for the PFAAE OR

operation. Software throughput is evaluated based on memory accesses in section 7.3.4. The

result for the 4-dimensional memory usage is created by summing the memory usage results of

the two 2-dimensional pairs. By contrast, the result for the 4-dimensional search time is obtained

by selecting the worst of the two 2-dimensional results. This is done because in an actual system

the 2-dimesional search operations would occur simultaneously.

Outbound Results

Memory Usage: (OB 1K Rules)

1 500
Ø
q)

d]Y tooo

F01 F02 F03 HO E¡t2F'3 720 n1 n3 P30 P31 P32

P1 Pairs

Figure 7-4: Outbound l KResults

Outbound 1 KResults Summary

o Worst by Memory Use: P10, P20,P2I

o Worst by Search Time: P01, P02,P72,P21

o Eliminated for 1 K test: None

x 10-6 Mean Search Ime: (OB 1K Rules)

F01 P02 P03 HO çlt2 H3 n0 21 23 W n1 n2
P1 Pairs

-1 03-

450

400

SU

300

E 250

t:4 ZUU
f

150

100

50

0

Memory Usage: (OB 2K Rules)

m1 Ð2 F03

Figure 7-5 : Outbound 2 KResults

Outbound 2 K Results Summary

o 'Worst by Memory Use: P03, P30,P23

o Worstby SearchTime:P01, P02,PI2

o Eliminated for 2 K test:

o P10: previously worst by memory usage

o P20: previously worst by memory usage

o P21: previously worst by memory usage

8

7

6

Oq
6e

0)FÁ
tr
c^
c)

1

0

x 10-8 Mean Search lìme: (OB 2K Rules)

s2 73 723

P1 Pairs
F30 P31

Memory Usage: (OB 4K Rules)

U'
0)
>à WU

co
Y

Figure 7-6 : Outbound 4 KResults

Outbound 4 K Results Summary

o Worst by Memory Use: P01, P02

x 1O'5 Mean Search Ime: (OB 4K Rules)

(J
o
U)

0)
E
tr

0)

1

0.8

u.o

0.4

0

-104-

o Worst by Search Time: P01, P02

o Eliminated for 4 K test:

P03: previously worst by memory usage

P10: previously worst by memory usage

P12: removed because it has no 2-dimensional pair left (P03 or P30)

P20: previously worst by memory usage

P21: previously worst by memory usage

P23: previously worst by memory usage

P30: previously worst by memory usage

Outbound Results Summarv

The final remaining five 2-dimensional pairs (P01, P02,P73, P31, P32) are used in the following

sections for analysis of the 4-dimensional groups P01_P32, P02_P13 and P02_P31.

Inbound Results

Memory Usage: (lB 1K Rules)

15006
q)

c0)< looo

rc1 F02 P03 H0 72 A3 n0 n1 n3 w n1 n2
P1 Pair

Inbound L K Results Summarv

2.5

1.5

1

0.5

0

* 166 Mean Search Ime: (lnbound 1K Rules)

c Worst by Memory Use: P01, P20,P2l

o Worst by Search Time: P02, P20

o Eliminated for 1 K test: None

()
(¡)
tt
o)

._E-c
(¡)

Figure 7-7 : Inbound 1 KResults

FOl P02 ru3 PtO H2 E/t3 n0 n1 n3 P30 P31 P32

P1 Pairs

-1 05-

600

500

Memory Usage: (lnbound 2K Rules)

400

tt
C)

>à wu
U
:<

200

100

0

Inbound 2 K Results Summarv

I

7

6

(.)
o)q6r
o
FÀ
tr

o

1

0

x 10
6 Mean Search Ime: (lB 2K Rules)

e Worst by Memory Use: P01, PI3,P23

o Worst by Search Time: P02

o Eliminated for 2 K test:

Figure 7-8 : Inbound 2 K Results

a. P20: previously worst by search time and memory usage

b. P21: previously worst by memory usage

600

500

400

a
0)
>wu

co
Y

200

100

0

Memory Usage w P1 Pairs: (lnbound 4K Rules)

Figure 7-9 : Inbound 4 K Results

Inbound 4 K Results Summary

o Worst by Memory Use: Pi0, P31

aÀ

1.2

1

0.8

0.6

0.4

0.2

0
Pl0

* 16'5 Mean Search Ime: (lnbound 4K Rules)

72 F30

P1 Pairs

()
0)
U)

(¡)

.E

c
(g
o

-1 06-

. Worst by Search Time:P02,P32

o Eliminated for 4 K test:

c. P01: previously worst by memory usage

d. Pl3: previously worst by memory usage

e. P20: previously worst by search time and memory usage

f. P21: previously worst by memory usage

g. P23: previously worst by memory usage

Inbound Results Summary

Of the remaining seven 2-dimensional pairs P31 is eliminated due to memory usage. As

such, P02 is also eliminated because there are no longer any 2-dimensional pairs left for 4-

dimensional analysis. The final remaining five 2-dimensional pairs (P03, P10, P12, P30, P32) are

used in the following sections for analysis of the 4-dimensional groups P10_P32, P03_P12 and

P30 P12.

7.3.3 Growth Rate

From the results of the inbound and outbound elimination process the remaining 2-

dimensional pairs are evaluated up to a rule size of 16 K. The results are used to determine the

gowth rate of memory usage and search time with respect to rule-set size.

Memory Usage Growth Rate

Based on evaluations of rule-set sizes from 1 K to 16 K the results of the best field order

search 2-dimensional pairs and 4-dimensional groups are plotted in Figure 7-10 and in Figure

7 -tr.

-107-

3000
Num Rules rs Memory Usage (lB P1 Pairs)

2000

Ø
(¡)

É 1500o
Y

-

P10
_ P12

P30
_ P32

1000

500

----7a

3500

3000

2500

6 2000

I rsoo

1000

500

0

/:

10 15

Number of K Rules

5000

Num Rules r,o Memory Usage (OB P1 Pairs)

Num Rules re Memory Usage (lB P2 Pairs)

-

P01

-

P13

------P31

-

P32

3000ø
c)

d)Y 2ooo

Figure 7-L0 : Inbound Memory Growth Rate

51015
Number of K Rules

10

Number of K Rules

6000

From reviewing the resultant memory usage data it is apparent even when rules sizes of 16 K

are used the memory required for storage is quite small. No 2-dimensional pair exceeds 3.5 MB

and no 4-dimensional group exceeds 6 MB. To determine the actual growth rate of the best

performing pair, outbound P02_P13, an analysis is performed using a 1og-log plot. FigureT-12

shows the data structure size as a function of rule-set size for the best performing pair. The plot

shows the growth on a log-log scale. The green line represents P02_P13 data points, the red line

is a curve fit of the worst-case slope of the line, and the blue line represents the plot y=lTbx2.

On a log-log plot equations ofthe form y =70b xo have a slope equal to ø and a y intercept equal

Num Rules vs Memory Usage (OB P2 Pairs)

| -
Pozrn3l

|

-
P0zP31

I

th
a)
>r cuuu

co
Y

2000

15

Figure 7-11 : Outbound Memory Growth Rate

20 10

Number of K Rules

20

-1 08-

to b. This is clear to see when the log of both sides of y=tTbx" is taken to produce

logro / = ølog1e x+å . Using the Matlab function polyfit the equation of the red line is determined

to be y =lo-1 7t17 x1'22'6. As such, the data structure size grows almost linearly as a function of

rule-set size with a slope of approximately 5/4. This is much lower than the theoretical upper

bound of O(n3). Also evaluated is the outbound pair P02_31, it has a growth rate of

approximately 3/2. It is mentioned because it is the pair with the worst growth rate.

l0-
Loglog Plot Size Vs Rules : Outbound : P02 P13

10

Ø
o)

c fu
'õ
.!
u)

: :r:
__t_

r-t-taHH--
J-l_tl!!__

102

rotL
102

=l
-l

:'
I

:t=tl
: r: r_i

itl

Figure 7-12 : \ilorst-Case Growth Rate Analysis Plot

Inbound and Outbound CBV Compression Ratio Statistics

!lf
lrl

103 104

Number of Rules

l0-

-{F

To provide insight into the effectiveness of CBV storage as compared to storage without

compression Figure 7 -13 is provided. The compression ratio is calculated by dividing the number

of bits required for a bit-vector without compression by the number of bits required for storage as

a CBV. The memory savings are apparent, particularly when the first field is an IP and not a port.

Figure 7-I4 provides some insight into why the compression ratio difference occurs. As shown

by Figure 7-I4 The pairs with IP addresses as the first field have much lower number of rules set

per CBV as compared to the pairs with a port as the first field. This is because the distributions

used for the ports create more clustering as a result of the large percentage of rules assigned to the

commonly used port numbers. By contrast, the IP field distributions create more of a spread

resulting in CBVs in the second dimension with smaller numbers of rules set. An addition reason

for the higher number of rules set in pairs with ports as the f,rrst field is because only two levels of
B-trees are used. It is obvious the fewer rules are set in a bit-vector the better the comnression

ratio when creatins a CBV.

Loglog Plot Size Vs Rules : Outbound : P02 P31

P02 P13

Cune Fit

*2

10

øo
ó n^3
c rv

õ
.N
U)

Erf Ê
Ltf !
r:rl E
Lt_-t t_.1

r rltl
trrl ü
t_tl û
tst+ H

10-

101

102 103 104

Number of Rules
10-

-1 09-

Compression Ratio r,s Num Rules (lB P1 Pairs)

40

.F
(g
Éan
c-'
'õ
.J'

åzo
Eo

10

5 10 '15

Number of K Rules

Ã^
Compression Ratio \6 Num Rules (OB P1 Pairs)

600

500

o
(g
s?n
c""
'õ
th
E^^dzv
Eo

Rules Per CBV w Num Rules (lB P1 Pairs)

400

300

200

100

-

r lu

-

P12

Figure 7-13 : Compression Ratio Statistics

--- P30

20

10

10

Number of K Rules

10

Number of K Rules

600

500

Search Time Growth Rate

Rules Per CBV w Num Rules (OB P'l Pairs)

Like the memory usage, the search times are also plotted with respect the rule-set size.

Figure 7-75 and Figure 7-16 show the inbound and outbound results forthe best performing2-

dimensinal pairs and 4-dimensional groups. The result for the 4-dimensional groups is obtained

by selecting the worst performing 2-dimensional pair of the available two. This is done because

both search operations would be performed in parallel and the worst performing of the two would

be the bottleneck for the f,rnal AND operation. Once again it should be noted the search times

400

300

200

100

0

lÂ

tc

Figure 7-14 : Number of Rules Per CBV

20

20

44^

obtained are only from the PFAAE portion of the search operation. The PFAAE time includes the

time to retrieve the CBVs from memory and perform the OR operation. The hardware and

software are considered separately because the hardware operations perform orders of magnitude

faster than the software. The PFAAE search times are accurately obtained by frlling the

command FIFO with CBV pointers and then allowing the hardware to run once the FIFO was

completely full. In this way the hardware can operate at its maximum speed because it is never

waiting for a CBV pointer from software. While this type of operation is not typical, the

processor and software are so much slower, this was necessary to test in this manner to obtain an

accurate estimate of hardware performance. The results obtained illustrate search time grows

linearly with the rule-set size. The reason for the linear growth is attributed to the characteristics

of the rules sets used and the fact that the OR operation is O(n). In particular, the probability

distribution functions and probabilities for rule types are not a function of rule-set size and as

such the characteristics scaled as the rule-set size grew. Research found no mention of the

relationship between rule-set characteristics and rule-set size. Unfortunately no evidence was

found to prove the theory that the rule-set characteristics likely change with size. Looking at the

results the hardware is able to sustain, a throughput of 18 ps/packet, or 56,000 packets per

second, for inbound and 24,000 packets per second for outbound trafüc. While these results are

considerably less than desired one must consider the fact that the algorithm is being run on a

development platform. Section 7.5 extrapolates the results obtained for an ASIC to illustrate how

the design can be used for Gigabit Ethernet. It should be noted no results are obtained or

presented for the final AND operation which intersects the resultant CBVs from each of the 2-

dimensional searches. The reason for this is because this operation would be pipelined with the

OR operation and is less complex. As such, the bottleneck in the pipelined system is the OR

operation.

444_t I t-

x 10-s Search Tìme vs Num Rules (lB P1 Pairs)

I r.so
o)

._E

Y
(!
o
U)

10

Numberof K Rules

)
10-

o
(¡)
a

0)

.E

stv
I
o
0)

U)
c
o)

Search ljme r,s Num Rules (lB P2 Pairs)

* 1¡,sSearch Tìme r,s Num Rules (OB P1 Pairs)

^Ão'
o)tt
o)

I
Qo

U)
c
G
a)>1

::::l: == _ _ _ _ t::::::: I:::::::

Figure 7-15 : Inbound Search Time Growth Rate

20 100
10

Number of K Rules

51015
Number of K Rules

102

7.3.4 Software B-tree Node Searches

o
(¡)
a

0)
E
i:1
clu()

c)
U)

o)

Search ïme rs Num Rules (OB P2 Pairs)

When performing a search the software portion of the system searched through a multi-level

B-tree as outlined in the example shown in section 3.3. Due to the limited capabilities of the

ARM processor available it was chosen to characteri ze the software performance based on B-tree

node accesses during a search. The number of B-tree nodes accesses during a search also

provides a generic metric which allows for what if analysis based on hypothetical systems.

Figure 7-17 shows the growth of B-tree nodes access with respect to rule-set size. The figures

Figure 7-16 : Outbound Search Time Growth Rate

20

20
100

10

Number of K Rules
15 20

-112-

indicate average numbers of nodes accessed not minimum or maximum. As expected the growth

is logarithmic in nature due to the fact that the height of the B-tree grows as the logarithm of the

number of elements inserted. The results obtained from this section are used to determine ASIC

performance in section 7.5. The distributions for B-tree nodes accessed during searches for 16 K
rule sets are shown in Figure 7-18 and Figure 7-19. These plots are provided as additional

information with no analvsis provided.

Nodes Searched r,s Number Rules (lB P1 Pairs)

lno
Ëru
c
(Ú

Eu
Ø
c)
E'
212
(t)

E1n=-z
ó
Ìö

10

Number of K Rules

-

P03
_ P10

Nodes Searched rs Number Rules (OB P1 Pairs)

E,'tIo
3ro
Ø
c)
E'o 1^zta
õ

E12z
9ro

-

P12

-

P30

-

P32

Figure 7-17: Nodes Accesses for Soffware Search

20 51015
Number of K Rules

-

P01

_ P.l3
' rJl

-

P32

¿v

-113-

x10
o

4

2

0

e

o

Pair: P01

10 15 20
trbdes Searched, Avg: 18.617594

x 10o Pair: P13
a_

o

4

2

4
x10

o

o

4

2

tl

Pair: P02

10 15 20
lùdes Searched, Avg:17.997211

104 Pair: P32
a_

5101520
l$des Searched, Avg: 16.572086

x 104 Pair: P31

o

4

2

rì

o

I

o

4

2

0

o

5101520
ÌSdes Searched, Avg: 14.036353

Figure 7-18 : Histograms of Nodes Accesses for Outbound Search Pairs

44 A

x 104 Pair : P03

trbdes Searched, Avg: 17.592193

x j1a Pair: P12
8

o

c
Á

o
C)

2

0

14 16 18

x 1oa Pair: P10
R

4

2

0

c

\J

6810121416
l\odes Searched, Avg: 14.109010

x 104 Pair: P32

51015
t\odes Searched, Avg:14.582862

xloa Pair: P30
8

o

4

2

0

î
()

6810121416
t\odes Searched, Avg:.12.552348

Figure 7-19: Histograms of Nodes Accesses for Inbound Search Pairs

7.3.5 CBV Retrieval Time

6810121416
l\odes Searched, Avg: 13.041780

When designing a system for optimal throughput it is beneficial to break down the main

operations in order to find bottlenecks. To this end the PFAAE filer operation is broken down

into the following two operations:

1. Retrieval of the CBV from RLDRAM memory

11 Ê,

2. OR operation of CBVs

The primary reason this analysis is done is to verify that the bottleneck of the OR operation is not

the RLDRAM memory. Knowing the split of time spent between memory retrieval and actual

hardware operations allows for more accurate ASIC perfonnance estimation. Figure 7-20 and

Figure 7-21 show the results obtained for CBV retrieval time as a function of rule size. The

results show the RLDRAM retrieval time is less than 2 ¡rs for inbound and 3.5 ps for outbound

traffrc. In either case these results indicate that approximately one tenth of the OR time is spent

in retrieval.

Confidence Interval Explanation:

As shown by Figure 7-20 and Figure 7-21the confidence intervals of the 2-dimensional rule,

combinations begiruring with a destination port are much larger than the others. The first reason

for this is because only two levels of B-trees are used when a port was assigned for use in the f,rrst

dimension. Only two levels are used because each level is assigned a tange width of increasing

size. The first level range is assigned values with ranges up to 255 and the second level is

assigned values with ranges between 256 and 65535. As the maximum range size for a port is

65535 only two levels are required to contain any possible port rule. Additionally, the probability

distribution function for the destination port causes large and small CBVs to be created in the first

B-tree level. This is because coÍr.mon single ports apply to many rules resulting in large CBVs

and small ranges applying to few rules result in small CBVs. By contrast, the second level of the

B-tree only contains small CBVs. These small CBVs result from the small number of rules with

ranges large enough to be selected for insertion into the second level. These conclusions are

drawn by reviewing the CBV files created. Only the first dimension provides any effect on the

final CBVs because the second dimension always contains rules consistent of mostly wild cards.

A second dimension containing almost all wild cards provides little or no splitting creating very

few elementary intervals. The end result is the following combinations of CBVs:

1. Small CBV from first dimension, Small CBV from second dimension

2. Large CBV from first dimension, Small CBV from second dimension

The combination of these two types of OR operations lead to the larger confidence as compared

to the others.

-116-

çì rc
Ø5
o

-
o'E 14.
0)
É.

(ú

I 1.2¿

Retriewl ïme rs Number Rules (lB P1 Pairs)

51015
Num of K Rules

¿

-
l.Vo

a)a

o
Ei- 1ar r.t
=
.g 1.6
o)Í
- 4Ec r.u
o
2.n

42

Retriewl Tme rs Number Rules (lB P2 Pairs)

P03

P10

P12

P32

8e
u)3
c)

.E z.st-r
c)E2o
É.
c
(It
o l4

Retriewl Tjme re Number Rules (OB P1 Pairs)

_ P01

-

P13

t-J I

_ P32

Figure 7-20 : Inbound CBV Retrieval Time

20051015
Num of K Rules

51015
Num of K Rules

Retrielal lìme rs Number Rules (OB P2 Pairs)

o

$s
o)

.E

(Ú Z.5

.q
o)
É.

tÍ¿
o)

7.4 Random Rule Model
To provide additional insight into the performance of the hardware a rule model was

developed based purely on uniformly distributed random rule-sets. This rule model does not

consider a particular network structure but rather treats inbound and outbound the same. As

inbound and outbound are considered the same the number of possible combinations of pairs is

greatly reduced. The reduction is shown in Table 7-16 andTable 7-17 in which the random

identifier is shown next to all of the perimeter identifiers it covers. It should be noted these types

Figure 7-21 : Outbound CBV Retrieval Time

20 5 '10 15

Num of K Rules

20

444-t tr-

of rule-sets are typically not used because they exhibit worst-case memory growth. Actual testing

confirmed the expected memory explosion as only one rule-set was able to work at a size of 8 K.

A best f,reld order search is not performed as most of the pairs are not able to run because of
prohibitive memory requirements. Rather a pair able to run up to the highest possible rule size is

chosen to illustrate effects of the random distributions. It is expected the random rule-set will
create much larger data structures, resulting in sparse bit-vectors and very fast hardware

operations.

File
Numbering

ID

Table 7-16: Rule Field Identifier

0

I

I

Field

z

IP Dist

Random
Identifier

Port Dist

7

T able 7 -17 : 2-Dimensional Field Combinations

RPOO

9

RPOI

Perimeter
Identifier

Size

The probabilities and probability distribution functions for the random IP rules are as follows:

" 50%o of the rules contain a random IP selected from the entire IP space

o 50%o contain a random IP range based on uniform distribution ofprefix lengths

For the random port probabilities are the following:

c 50o/o of the rules contain a random single number Port 0:65535

" 50o/o contain a range of ports, the ranges and probabilities are shown in Table 7-18

RPlO

32-bits

P01,P10

l6-bits

P02,P03,

P12,P13

RPIl

Field 1

@imension 1)

P20,P21,

P30,P31

IP

Þ?? Þ?t

IP

Port

Range

Port

3-30

Field 2

@imension2)

100-1000

IP

1000-10000

Port

10000-60000

IP

Table 7-18 : Range Probabilify Distributions

Probability

Port

25%

2s%

25%

25%

Allows small ranges of 3-30 in size

Allows any range between 100-1000

Allows range of between 1000-10000

Allows ranse befween 10000-60000

-118-

7.4.1 Growth Rate & Ifardware Search Time

The results for growth rate and hardware search time are obtained for illustratíve purposes

and are shown in Figure 7-22. The main insights gained from this figure are as follows:

1. Search times are dramatically lower, in fact almost a full order of magnitude.

This is likely due to the reduction in wild cards as compared to the perimeter rule

model. As there are fewer wildcards, more splitting will occur, creating smaller

CBVs, in turn making the hardware operation faster. In the future it would be

insightful to perform an analysis of the average number of bits set as a function

of rule size.

2. Memory usage is dramatically higher, almost a full order of magnitude. The

shape of the plot also appears to be exponentially rising as opposed to being

almost linear for the perimeter rule model. This large increase as compared to

the perimeter rule model is expected.

x 1O6 Search 1ìme rs Num Rules

o
o)ø
a l.c

._E-
IooØ2
c-
G
C)

4F
46

Number of K Rules

8000

7.4.2 Software Search Time

Figure 7-22 : Random Search Time and Memory versus Number of Rules

Figure 7-23 provides confirmation for the expectation of an increase in the structure size.

Clearly the average number of nodes searched has increased dramatically as compared to the

results obtained from the perimeter rule model. These results indicate that while the hardware

operations are faster the time required for software would be greater.

Num Rules rs Memory Usage

ø
Q)

Ë 4000
d)
Y

10 ¿+þ
Number of K Rules

10

-1'19-

Pair: P01

22 24 26 28

Nodes Searched, Atg:27.257874

29.

?,26cI
824

U)
a
9.22
oz
õ20
E
218
c;
ìro

14

Figure 7-23 : Histogram of Nodes Accessed and Average Number of Nodes Accessed

Nodes Searched r,s Number Rules (lB P1 Pairs)

z+o
Number of K Rules

-120-

7.5 Estimated ASIC Performance
The previous studies were an effort meant to validate the algorithm functionality and help

produce realistic performance estimates using two different rule-set types. While the

development environment was extremely useful for prototyping it had numerous limitations. In

particular the bus speeds and processor capabilities turned out to be very restrictive. The addition

a more capable processor, DMA functionality and an Ethernet interface would have made the

system much faster. Unfortunately, there was simply not enough time to explore these options.

To make up for these short comings a performance analysis is presented assuming components

selected from common high performance designs. The analysis seeks to prove that with coÍlmon

components the design presented can meet the packet filtering requirements for Gigabit Ethernet.

TableT -I9 provides a list of the basic parameters and assumptions made for analysis purposes.

Parameter

Rule-set Size

Bucket number

Table 7-19 : ASIC Performance Analysis Parameters

Number of Dimensions

B-tree Node Size

Value

Packet Size

8K

À

Description

7.5.1 System ThroughputRequirement

4

Assuming a wire speed of 1 Gbps for Ethernet, 12 bytes of interframe Eap, 8 bytes of

preamble and an average packet size of 256 bytes every stage of the system pipeline must be able

to process each packet in approximately 2 ps. Equation 7-3 shows how the value is determined.

For the algorithm presented in this thesis there are three stages of the pipeline to consider:

software search, PFAAE OR operation, and f,rnal intersection operation.

4 K for inbound and 4 K for outbound , (n : 4 K)

The first dimension contains four buckets for ranses of
equal size (b:4)

96 bytes

Two 2-dimensional searches are performed in parallel
(d:2)

256 bytes

Approximate amount of memory required to store
ranges in a B-tree with a minimum degree of three (l:
3)

Assumes an average packet size for Gigabit Ethernet

-t¿t-

AveragePacket Size

WireSpeed

1 Gbps

,?6 byt*" 8 bttr/bf"

Equation 7-3 : Processing Time per Packet

Throughput =

7.5.2 Software SearchPerformance Requirements

In the following analysis it is assumed a processor exists to process the software nodes fast

enough such that the main bottleneck is memory access. The assumption is made that the

memory access portion of the software processing is much more time consuming than the effort

required to analyze each retrieved B-tree node. This is believed to be a fair assumption as the

operations made when processing a B-tree node are quite simple.

Assuming 4 K rules are used for both inbound and outbound rules sets the required memory

performance needs to be determined for the software. Given the operations required for packet

filtering are run in pipelined fashion 2 ps is available to obtain the memory for a single packet.

Assumptions for Calculations :

i. A four level B-tree is implemented with the rules spread out equally in each of the Trees.

In other words each level of the tree contains 1 K rules.

= Throughput

= 486.296 Dackets/sec

488281.25 packets/sec
= 2 us processing time per packet

2. A worst-case number of pointers are produced from each search. Every search performed

will match to a particular node in each level producing four CBV pointers for the

hardware.

Software Complexity:

The search complexity for the software portion of the algorithm is the time taken searching

the B-tree structure. Given a r degree B-tree the time taken at each node is O(/) and the total

search time is O(th)where ¿ is the height of the tree. Recall from the section 2.4.I rhe height of

a B-tree can be determined using Equation2-Z. After substitution the formula for the time at a B-

tree can be rewritten as O(tlog, n) . Taking into consideration that there is a B-tree in each

dimension, where d represents the number of dimensions the equation is rewritten as:

O(d x tlog, n). Therefore the worst-case depth is really d xlog,n . Accounting for the multi-

- t¿¿-

level B-tree structure the tree is now split into ó groups of size

B-trees. This leads to:

This indicates the software is required to retrieve a maximum of 16 nodes for each packet.

To keep up with the desired line rate the software portion must be able to retrieve 16 nodes of
size 96 b¡es 0.486 million times a second. The result is memory throughput requirement of 0.75

GBps. A common memory meeting the throughput requirements for memory access is DDR2-

800. DDR2-800 with clock speed 400 MHz has a maximum theoretical throughput of 6.4 GBps

providing more than enough bandwidth to meet the requirements presented.

Bus Requirement for Tlansferring CBV Pointers to PFAAE:

Given that ó pointers are produced for each packet search the number of pointers required to

be moved from processor to the PFAAE is roughly 2 million. Assuming each pointer is 32-bits

only a throughput rate of 8 MB per second would be required to transfer the pointers. While little

consideration has been made in this thesis with regard to update performance it is clear this would

be the driving factor when selecting a suitable bus. Clearly the performance requirements for

transferring CBV pointers to the PFAAE are so low that almost any bus would meet the

requirements. Given current state of the art it is conceivable the on-chip bus selected would be a

full duplexARMAHB 32-b1t bus running at250 MHz. This bus provides, 8 Gbps of bandwidth,

more than the required bandwidth for CBV pointer transfers and potentially enough bandwidth

for speedy build and update operations. At this point no analysis is provided for the speed

requirements for build and updates operations and is left as a possible area of future research.

7.5.3 HardwarePerformance

To meet the throughput requirements the time for CBV retrieval and PFAAE OR operation

needs to be less than 2 ¡rs. At this point it is assumed if the CBV retrieval and OR operation are

fast enough the final intersection is also fast enough as well. This assumption is made because

the intersection operation is typically done as fìrst match and is less complex than the OR

operation.

RLDRAM CBV Retrieval Requirement

The development system used for the purposes of this thesis utilized a 32-biÍ. wide DDR

RLDRAM interface running at 200 MHz. Cur¡ent RLDRAM technology, referred to as

bx d xlos,l 4x2xrorrT *15.25

IL

b
and to create å 2-dimensional

-123-

RLDRAM II, is capable of running at 400 MHz providing an easy method of doubling the

memory bandwidth. Another logical adjustment is to increase the width of accesses from 32 to

128 bits wide. These two improvements combined lead to a factor of eight increase in CBV

access performance. Given a retrieval time of 2.25 ¡ts for a 4 K rule-set on the cuffent platform

this time needs to be scaled to account for the new memory. As the improvements lead to a factor

of eight improvement in performance the retrieval time with the new memory would be 0.28 ps.

By subtracting this 0.28 ¡rs from2 p"s, L72 ps is left for the PFAAE OR operation.

PFAAE ORing Requirement

The current PFAAE hardware OR time is 10.25 ps for a 4 K rule set size running at 50 MHz.

This number includes the CBV retrieval time and when reduced to account for the 2.25 lts of

retrieval time produces 8 ¡rs. Based on the assumption that the hardware can be moved to an

ASIC with a clock rate of 300 MHz a factor of six improvement could be made. This would

result in a PFAAE OR operation in l 33 ¡rs lower than the required 1.72 ps.

Based on an ASIC implementation including the improvements outlined in this section it is

clear the packet classification algorithm outlined in this thesis is capable ofoperation at a line rate

of Gigabit Ethernet assuming an average packet size of 256 bytes.

-124-

I Future Development
Throughout the course of design, verification and implementation for this thesis a number of

opportunities for future development became apparent. The opportunities can be categorized into

three major types: additional tests to be performed with the system, modifications to the

algorithms and modifications to the hardware. These three opportunities are discussed in this

chapter.

8.1 Additional Tests

With regard to performing additional testing the major limiting factor in this thesis was time.

One of the original goals of the thesis was to test the effect of different bucketing schemes on

build time, update time and memory usage. Unfortunately the time was simply not available to

allow this testing to be done. The verification phase took longer than expected and cut into this

plan.

Additionally, testing could also be performed to check the effect of random test points on the

perimeter rule model distributions. While the testing performed did use random points the values

were constrained to be selected within the bounds of an existing rule. This was done so

performance and verification checks could be done at the same time. The effect of using random

tests points constrained by the bounds of existing rules may indicate lower perfonnance as

compared to testing with random testing points from the entire field space. This is because

selecting test points from existing rules creates a higher probability a search will require an OR

operation from more than one CBV. There is a high probability a random test point from the

entire field space will only find a match in the fourth level of the B-tree and will not require an

OR operation. The fourth level of the B-tree contains rules with large ranges and will likely find

a match to any input test point. As such the performance results would likely have a higher

average performance.

The effect of the pre-processing step, rule rearrangement, described in the paper on ABV [2]

could also be checked. Rearrangement may have a large effect on the CBVs and may provide

some interestins results.

8.2 ModifÌcations to Algorithms
The first algorithm modification would be the creation of a hash table

performance of the software search. This involves developing a hash table

-125-

to

to

improve the

f,rnd a more

appropriate point in the B-tree to start searching. As such, the search would begin from a node in

the B-tree closer to the result than the root reducing the number of nodes to access. The starting

search node is located by hashing the input search point with the range limit of the current B-tree

level used as a mask. For example, if the search point 0x12345678 was to be searched in a level

1 B-tree the lowest eight bits would be masked off and used as the input into the hash function.

Using this method any input starting with the sequence 0x123456XX would hash to the same

value. The hash table is then used to return a pointer to the best starting point in the B-tree for

searching for a value between 0x12345600 and 0xI2345FF. If no pointer is found at a particular

hash value then it is immediately known the range is not covered by the B-tree and the search can

continue with the next B-tree level.

Secondly, a modification could be made to use different 2-dimensional algorithms instead of

the B-tree search algorithm. The effect each algorithm has on the CBVs presents an interesting

research topic. Likewise, the use of different algorithms in combination with the scheme

developed may produce excellent results. The scheme developed works well when the bit-vectors

are sparse created by rule sets with a low percentage of wildcards. This effect was shown by the

tests with the random rule-set. There may be other methods the wild cards could be more

effectively off loaded to thereby creating sparser bit-vectors.

8.3 Modifications to Hardware
The most obvious modification to hardware would be to implement the software portion on a

more capable processor. Additionally, implementation on a platform with a multi-core processor,

FPGA, high-speed memory interfaces and Gigabit Ethernet interface would allow for testing of

the complete system. Development on a personal computer with an FPGA board for hardware

acceleration would be ideal. This type of system should be the target for future development

instead of an embedded development platform.

-t¿o-

9 Conclusion
In this thesis, the design and verification of a SoC packet classification implementation was

discussed. The motivation for this research came from the fact that many schemes have been

proposed to solve the multi-dimensional classification problem but none have been shown to

scale well beyond two dimensions in terms of speed or rule-set size. Additionally, most schemes

disregard update speed in order to increase throughput performance.

To overcome these short comings this thesis introduced three concepts: a compressed bit-

vector, 2-dimensional search approach and bucketing. The compressed bit-vector concept was

introduced to improve the scalability of a typical bit-vector scheme while still maintaining a

hardware amendable implementation. The 2-dimensional search approach was used to reduce the

sparseness of the bit-vectors thereby increasing the potential performance of the bit-vector

operations. While the effect of the bucketing actually reduced search performance its inclusion in

the thesis was done to improve the update and build time. Through the use of pipelining stages

for the 2-dimensional search operation, CBV OR operation, and final bit-vector intersection

operation performance is further improved.

To test the effectiveness of these concepts a multi-dimensional packet classification scheme

was designed and verified using the CMC RPP. The RPP allowed for software and hardware co-

design leveraging the benefits of testing at hardware speed to greatly reduce the time required for

verification. Having fully testing the hardware and software the next goal was to validate the

systems scalability with regard to memory usage and throughput. During initial testing the

processor was discovered to be a major performance bottleneck. This required the addition of

special hardware to allow the PFAAE to be tested at its maximum rate. As well, it was

determined the software would be analyzed with respect to memory accesses rather than actual

test performance. To test the scalability of memory usage and throughput synthetic rule-sets were

developed based on real firewall database statistics.

Testing first began to determine the best field orders for memory usage and throughput.

Once the best fields orders were determined tests were run with rule-sets up to 16 K in size.

Testing results showed that the compressed bit-vector concept exhibits a large memory saving as

compared to a bit-vectoring scheme without compression. Overall the total data structure was

shown to grow at a rate of less than 514 as a function of the rule-set size. Compared to the

theoretical worst-case $owth rate of oþ3) tnis is quite good and illustrates the scheme presented

is a scalable solution. Testine results showed the PFAAE was able to sustain a throushout of i 8

-127-

ps/packet, or 56,000 packets per second, for inbound and24,000 packets per second for outbound

traffrc. While these results were considerably less than desired, it must be considered that the

algorithm was run on a development platform. These results were extrapolated for an ASIC to

illustrate how the design can be used for Gigabit Ethernet.

Overall this thesis achieved its primary goal to f,rnd a scalable solution to the multi-

dimensional packet classification problem. It is believed a reasonable balance was achieved

between hardware optimization and programmable flexibility. It should however be noted that

additional testing is required to veriff the effectiveness of the bucket concept with regard to

update and build time performance. Valuable insight was gained on packet classification,

embedded system design and verification which can hopefully be built upon in the future.

-128-

tll T.V. Lakshman, D. Stiliadis, "High Speed Policy Based Packet Forwarding Using
Efficient Multi Dimensional Range Matching," ACM SIGCOMM Computer
Communication Review, vol.28, no.4, pp. 203-214, Oct. 1998.

l2l F. Baboescu, G. Varghese, "Aggregated Bit Vector Search Algorithms for Packet Filter
Lookups," UCSD Technical Report cs200l-0673, pp.7-27 , June 2001.

t3] V. Sahasranaman, M. Buddhikot, "Comparative Evaluation of Software Implementations
of Layer-4 Packet Classification Schemes, " Proceedings of the Ninth International
Conference on Network Protocols (ICNP'1L), pp.220-228, Nov. 2001.

l4l A. Feldmann, S. Muthukrishnan, "Tradeoffs for Packet Classification," Proceedings of
the Conference on Computer Communications (IEEE INFOCOM 2000), vol. 3, pp. 1193-
1202,Mar.2000.

t5] C. Macian, R. Finthammer, "An Evaluation Of The Key Design Criteria To Achieve
High Update Rates In Packet Classifiers," IEEE Network, voI. 15, no.6, pp.24-29,Nov.
200r.

16l P. Gupta, N. McKeown, "Classifying Packets Using Hierarchical Intelligent Cuttings",
IEEE Micro vol.20, no. l, pp. 34-47, Jan-Feb 2000.

l7l S. Iyer, R. Rao Kompella, A. Shelat, "ClassiPl: An architecture for fast and flexible
packet classification," IEEE Network, vol. i5, no. 2, pp. 33-41, Mar. 2001.

t8] D. Rovniagin, A. Wool, "The Geometric Matching Algorithm for Firewalls," Tel Aviv
University Technical Report Ees2003-6,pp. I-17, July 2003.

t9] T. H Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, The
MIT Press, Second Editioq 2001, 1180 pp.

110l Canadian Microelectronics Corporation, CMC-CMP-MOSIS 2001, fOnline].
http://www.mseconference.org/mse_03_archive/mse03_5_cmc cmp mosis v2.pdf
(available as of Nov. 2001).

[1i] ARM Limited, ARM IntegratorrM/AP: User Guide,2}}l.

ï12) ARM Limited, ARM IntegratorrM/CM7TDMI. User Guide, 1999.

tl3l ARM Limited, ARM IntegratorrM/LM-XC2V4000+: User Guide,2002.

ll4l Canadian Microelectronics Corporation, CMC Rapid-Prototyping Platform: Design Flow
Guide, Version 1.0, Feb. 8 2002.

[15] ARM Limited,. ARMTTDMI-S Technical Reference Manual (Rev. 4), 2001.

l16l ARM Limted, http://www.arm.com/products/CPUs/ARMTTDMl.html

U7) ARM Limited, AMBATM Specification (Rev. 2),1999.

t18l N. Sawyer, High-Speed Data Serialization and Deserialization (840 Mb/s LWS), Xilinx
Inc., Application Note Virtex II Family, XAPP265, Version 1.3, pp. 1-13, June 2002.

[19] ARM Limited, Fírmware Suite (Rev L4),2002.

REFERENCES

-129-

4.1 CBV List File
F--------
Starting cbv_lJ-st LogFil-e

Seed: 0

Mode: 0

Pule Size: 5I2
Direction: rnlcound
nac¡r'inrìn¡'Thís file contains al-l of the CBVs oencrafed for aL¡¡s uDvÞ ystlçrquçu !v! 4
particular rule set.
S Example:
fr
0x00000000 0x00000001 0x00000001 0x00000001 OxOOOO02OO OxOO00OOOO
0x0000001-0 0x00000000
#
{level r} {lz Count, L3 Count.} {r,z vecrors} {i,: vectors}
+
{oxooo0oooo 0x00ooo0o1} {oxooooooor- oxooo000ol-} {oxooooozo0 0x0oo0ooo0}
{oxoooooor-o oxoooooooo}
fr
4-----

Appendix A: File I/O Listing

0x00000000 0x00000001 0x00000001 0x00000001
0x00000000 0x00000001 0x00000001 0x00000001
0x00000000 0x0000000L 0x00000001 0x0000000i-
0x00000000 0x00000001- 0x00000001 0x00000001
0x00000000 0x00000001 0x00000001 0x000OOO01
0x00000000 0x00000001 0x00000001 0x00000001
0x00000000 0x00000001- 0x00000001 0x00000001
0x00000000 0x00000001- 0x00000001_ 0x00000001-
0x00000000 0x00000001 0x00000001 0x00000001-
0x00000000 0x00000001 0x00000001 oxo00OOOO1
0x00000000 0x00000001 0x00000001 oxoO0OOO01
0x00000000 0x00000001 0x00000001 0x00000002
0x00000040 0x00000000
0x00000000 0x00000001- 0x00000001 0x00000001
0x00000000 0x00000001_ 0x00000001 0x00000005
0x00200000 0x00010000 0x00000040 0x00440400
0x00000000 0x00000001 0x00000001 0x00000005
0x00200000 0x0001-0000 0x00000050 0x00440400

0x00000200 0x00000000
0x00000001 0x00000000
0x00002000 0x00000000
0x00000020 0x00000000
0x00000010 0x00000000
0x00001-000 0x00000000
0x00008000 0x00000000
0x00000800 0x00000000
0x00001000 0x00000000
0x00000800 0x00000000
0x00000800 0x00000000
0x00008201 0x00000000

0x00000408 0x00000000
0x000016ED 0x00000000
0x04000000 0x00010000
0x00001-6ED 0x00000000
0x04000000 0x0001-0000

0x00000010 0x00000000
0x00040000 0x00000000
0x01000000 0x00000000
0x00000400 0x00000000
0x00400000 0x00000000
0x00000400 0x00000000
0x00000800 0x00000000
0x00002000 0x00000000
0x00200000 0x00000000
0x00200000 0x00000000
0x00001000 0x00000000
0x00004000 0x00000400

0x00040000 0x00020000
0x10000000 0x00200000
0x00000040 0x00000000
oxl-0000000 0x00200000
0x00000040 0x00000000

-1 30-

,4..2 CBV Pointers File

F
f
F
f
#
*
+
+

F
#

St.arting cbvjtrs

Seed: 0

lvlooe: U

Rule Size: 512
Direction: Inbound
Tlcq¡rì nf i nn . E'¡ ¡lr

to the start of a

ñ-----
0x00000000
0x00000004
0x00000008
0x0000000C
0x0000001-0
0x00000014
0x00000018
0x0000001"C
0x00000020
0x00000024
0x00000028
0x0000002C
0x00000030
0x00000034
0x00000038
0x0000003C
0x00000040
0x0 0 000044
0x00000048
0x0000004C
0x00000050
0x00000054
0x00000058
0x0000005C
0x00000050
0x00000064
0x00000068
0x0 0 00006C
0x00000070
0x00000074
0x00000078
0x0000007C
0x00000080
0x00000087

0x0 0 0 01-387

f - - - - -

*t ñamn l a¡azl ¡l.rr¡ nt- rc T.n¡Fi l at uvLLt-,rçLçu uvv__-¡rurÐ lvvr rrç
#
ñ-----

LOg¡ r1e

line represents a pointer into RLDRAM, which corresponds
CBV

-131-

^4..3 CBV Count File

#-----
4 ql- âri- ì na ¡l.rr¡ õ^lìñf- T.nnFì I a
F
Seed: 0

Mode: 0

Rule Size: 51-2

Direction: Inbound
Description: Each line represents a count of the number of rule-set ln a
CBV.
F

F-----
1
1

1

l_

t-

t-

1

1

l_

l_

1
t
l-
1

1
l-
1
1
1
l_

l_

1

t-

:

10
3

2

l_ l-

5

b

11
1_2

11
11
fr-----
{ Onmnl aj- od ¡}:r¡ ô^rìnf T-^ñFi I ô

F

F-----

-132-

4.4 Parsed Rule List FiIe
#-
fr
fi
#
*
F
F
++

fr
+

F
F
++

.qf ârti no nerccd Þrrl o T.ì <f T.^ñFi I ôuvYr ¿¿ç

Seed:0
Mode: 0

Rule Size: 5l-2
Direction: fnbound
Description: This file contains the start and end ranses for a pair
of fields of a 2-dí¡nensional search.
Example:
{nure ro} {start Field 1} {rna riero r} {start pierd. z} {rna Fierd 2}
0x00000000 0x00000000 oXFFFFFFFF 0xB3B91BOO OxB3Bgl-BFF

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009
0x00000004
0x00000008
0x0000000C
0x0000000D
0x00000008
0x0000000F
0x0000001-0
0x00000011
0x00000012
0x00000013
0x00000014
0x00000015
0x0000001-6
0x00000017
0x0000001"8
0x0000001-9
0x00000014
0x00000018
0x0000001C
0x0000001D
0x000000LE
0x0000001F

0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x1C388000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x7CB 06F80
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x05551000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

OxFFFFFFFF
OXFFFFFFFF
OxFFFFFFFF
OxFFFFFFFF
OXFFFFFFFF
OXFFFFFFFF
OXFFFFFFFF
OXFFFFFFFF
OxFFFFFFFF
OxFFFFFFFF
OxFFFFFFFF
0xl-C3 SFFFF
OXFFFFFFFF
OXFFFFFFFF
OxFFFFFFFF
OxFFFFFFFF
OxFFFFFFFF
OXFFFFFFFF
0x7C8 0 6FBF
OxFFFFFFFF
OXFFFFFFFF
OXFFFFFFFF
OxFFFFFFFF
OXFFFFFFFF
OxFFFFFFFF
OXFFFFFFFF
0x05551FFF
OXFFFFFFFF
OxFFFFFFFF
OxFFFFFFFF
OxFFFFFFFF
OxFFFFFFFF

0x83891800
0xB3 834FC7
0xB3 I 9 5EBA
0xB3 8 7 9D1A
0x83842C00
0xB3 8 8EA7 9
0x838813F2
0xB3 8 94808
0x83850000
0xB3 I 8F73 0

0xB3 I 9EC0 0

0xB3 8872l-B
0xB3 I 88549
0x83876000
0x83860000
0xB3 I 12Fg 6
0xB3 I 8 FFD1
0x83870000
0xB3 848900
oxB3 80E800
0x33898700
0x83808900
0xB3 I 1FA7 0
0xB3 85 9AE0
0x83865Ä'20
0xB3IL3510
0x838677 48
0xB3 I 65F08
0x83800000
0x83861348
0xB3 84EAA3
0x83805900

0xB3I9l-8FF
0xB3 83 4FC7
0xB3 I 9 sEBA
0xB3 I 7 9D1A
0xB3 842CFF
0xB3 8 8E479
0xB3 8 8l-3 F2
0xB3 8 94808
uxljJ u 5¡ -t ¡ ¡'
0x8388F730
oxB3 I 9ECFF
0x83887218
0xB3 I 88549
0xB3 I 760FF
oxB3 8 6FFFF
0xB3 812F86
0xB3 8 8FFD1
OXB3 8 TFFFF
oxB3 84E9FF
OxB3 8 OEBFF
0xB3 I 9B7FF
0x838089FF
OxB3 I l-FA7F
0xB3 8 5 9AFF
0x8386542F
0xB38L351F
0x83867 7 4F
0xB3 I 65F08
OxB3 8 OFFFF
0xB3 I 6L348
0xB3 84EAA3
0x838069FF

:::::
0x00000]-FE 0x00000000 oXFFFFFFFF 0x83997200 OxB3g972FF
0x000001FF 0x00000000 o}CFFFFFFFF OxB3g6DF00 OxB3B6DFFF
F-----
Completed parsed Rule List LogFile

L
f------

-1 33-

4.5 Search Results File

#
F
#
F
F
F

fi
l+

et:rf- ì ñõ qêãrôL\ Pê ---r -uuarLrrry ^CÞUILÞ luyrIrc

Seed: 0

Mode: 0

RLl-Le SaZe: 5-LZ

Direction: Tnbound
Note: The resultant packet {first nw} includes the time to perform
an oR of the CBVS in the PFA-A,E.

0x00001E0D 0x00000000 0x00000001-
0x00000001- 0x02000000 0x00000010
0x00001-E0D 0x00000000 0x00000001
0x00000001 0x02000000 0x0000001-0
0x00001-E0D 0x00000000 0x00000001
0x00000001 0x02000000 0x00000010
0x00001E0D 0x00000000 0x00000001
0x00000001 0x02000000 0x0000001-0
0x00001E0D 0x00000000 0x00000001-
0x00000001 0x02000000 0x00000010
0x00002.A'0F 0x00000000 0x00000001
0x20000000 0x08000040 0x00800000
0x0000240F 0x00000000 0x00000001-
0x20000000 0x08000040 0x00800000
0x0000240F 0x00000000 0x00000001-
0x20000000 0x08000040 0x00800000
0x0000240F 0x00000000 0x00000001
0x20000000 0x08000040 0x00800000

0x00000001 0x00000003 0x00000073
0x00000080 0x08000080
0x00000001 0x00000003 0x00000073
0x00000080 0x08000080
0x00000001 0x00000003 0x00000073
0x00000080 0x08000080
0x00000001- 0x00000003 0x00000073
0x00000080 0x08000080
0x00000001 0x00000003 0x00000073
0x00000080 0x08000080
0x00000001 0x00000004 0x0000692Ð
0x80000000 0x00000100 0x02000000
0x00000001 0x00000004 0x0000592D
0x80000000 0x00000100 0x02000000
0x00000001 0x00000004 0x0000692D
0x80000000 0x00000100 0x02000000
0x00000001- 0x00000004 0x0000692D
0x80000000 0x00000100 0x02000000

:'.::
0x00001-608 0x00000000 0x00000001 0x00000001-
0x00000400 0x80000040 0x00000080
fr-----
t l-ômnl êf êd Seârch Res¡rl l- s T,ôõF i I e
+
E- - - - -

0xBB89F7E7 0x00000001-

0xBB89F7E7 0x00000001-

0xBB89F7E7 0x00000001

0xBB89F7E7 0x00000001

0xBB89F7E7 0x0000000L

0xBB89F7E7 0x00000002
0x800001-00
0xBB89F7E7 0x00000002
0x80000100
0xBB89F7E7 0x00000002
0x80000100
0xBB89F7E7 0x00000002
0x80000100

:

0x00000002 0x00008201- 0xBB89F7E7 0x00004000

-134-

4.6 Search Timer Results File
F-----
Starting Search Timer Results Logrile
F

Seed: 0

Mode: o

Rule Síze: 5L2
Direction: Inbound
Description:
0x00000C49 : Total Search Time measured j-n 20 MHz cl-ock cycles.
0x0000000C : Count of the number of keys examined in the software search.
0x00000004 : Count of the number of nodes accessed during the software
search.
F-----
0x00000C49
0x000 00 0 0C
0x0000000.A'
0x000 00C81
0x0000000D
0x00000004
0x00000C88
0x0000001-5
0x00000004
0x00000E58
0x0000000F
0x00000004
0x00000C75
0x0000000D
0x00000004
0x00000D39
0x0000000F
0x00000004
0x00000D13
0x0000000E
0x00000004
0x00000D2D
0x00000011
0x00000004
0x00000E87
0x00000008
0x0000000.ê.
0x00000CD3
0x0000000F
0x00000004
0x00000EAC
0x0000000F
0x00000008

0x000008CF
0x0000001-3
0x00000008
F-----
Completed Search Tj-mer Results LogFiLe
#
F-----

-l ?6-

4.7 PoÍnter Timer Results File

Starting Pointer Timer Results LogFile
F
Seed: 0

Mode: 0

Rule Size: 5]-2
Direction: Inbound
! ñ^^^-i-tr ^* Rach I inc renrescnts the timeff uEÞLIIIJU¿9rr: bqgrr rrrrE !sI/!çÐçrl

and OR the CBVs for search operation. The
*
F-----
0x00000026
0x00000023
0x00000026
0x00000023
0x00000024
0x00000028
0x00000028
0x00000028
0x00000028
0x00000028
0x00000023
0x0 0 000023
0x00000026
0x00000023
0x00000027
0x00000023
0x00 000024
0x00000023
0x00 000024
0x00 000023
0x00 000023
0x00000024
0x00000023
0x00000 024
0x00000 023
0x00000 02 0
0x00000020
0x00000022
0x00000020
0x00000020
0x00000020

for the hardware to retrieve
time is in 20MHz clock cvcles.

;

0x00000023
0x00000020
0x000000LF
F-----
Completed Pointer limer Results LogFil-e
.l+

F-----

- tJo-

^4..8 Tree File
F-----
Starting Tree LogFj-l-e
#
Seed: 0

Mode: o

Rul-e Size: 5!2
oirect.ion: Tnbound
F
+-----
Level 0

Level: 0 Start: 83844700 End:
0x00000001- 0x00000124
LeveL: 0 Start: 8384E900 End:
0x00000001 0x00000012
f¡ Leve-L: -L ¡'tarc: jJJU6UUUU ¡inc1:
0x00000001 0x00000189
Level: 1- start: 83886c84 End:
0x00000001 0x000000.A.4,
Level 2

Level- 3
$ Level: U Start: IJJAJZ5UU .Einc1:

0x00000004 0x0000005D 0x00000066
0x00000189 0x000001-CB 0x000001-DF
$ Leve-L: U Sc'arc: lJJbbU-LUU ¡incl:
0x00000003 0x00000008 0x00000124
Level: 0 start: 838834cE End:
0x00000002 0x00000072 0x00000151
l+ LeVe-L : l- s;Carc : lJJ ó U óAU U -Eincl :

0x00000008 0x0000001C 0x00000055
0x000000F6 0x000001-34 0x00000150
l¡ LeVe-L: -L s;Carc: lJJb-L-bA/U -Einct:
0x00000006 0x0000001-6 0x00000021-
Level: l- start: 83828800 End:
0x00000008 0x00000025 0x00000028
0x000000D6 0x00000113 0x00000Lco
Level-: 2 Start: 83804000 End:
0x0000000C 0x0000001-C 0x00000055
0x000000F2 0x000000F6 0x00000L3Ã'
Levef: 3 Start: 83802848 End:
0x00000008 0x0000001-C 0x00000055
0x000000F6 0x000001-34 0x00000150

838447FF

B3 84E9FF

83 8 6FFFF

83 I I 6CE4

83 83 25FF
0x00000078 0x00000046 0x00000087 0x000001-1F 0x000001-68

83 8 6 OEFF
0x000001E6
83 I 834FF

83 8 O EAI'F
0x0000007s 0x00000080 0x000000C6 0x000000E4 0x000000F2
0x000001-86
83 81FA7F
0x00000030 0x00000065 0x000000F0 0x000001-D3
83 82 I 8FF
0x0000004F 0x00000058 0x00000058 0x0000008C 0x0000009.{
0x000001ED
83 I 04 0FF
0x00000075 0x00000080 0x000000C4 0x000000C5 0x000000E4
0x00000150 0x00000186
83 802882
0x00000075 0x00000080 0x000000C6 0x00000084 0x000000F2
0x000001-86

Levef: 4 St.art: 83800000 End: 83800BFF
0x00000008 0x0000001-C 0x00000055 0x00000075 0x00000080 0x000000C6 0x000000E4 0x000000F2
0x000000F6 0x00000134 0x00000150 0x00000185
#_ _ _ _ _

f compJ.eceo Iree .L,ogr,r-Le
E

=- - - - -

-137-

4.9 Test Points File
fr-----
Starting Test Points LogFiIe
#

Mode: 0

Rule Sizet 51-2

Direction: Inbound
#

F-----
0xr4585426 0x8389183C
0x464F8560 0x83891-818
0xE7Al-234F 0xB3 I 91-804
0x6283D354 0x83891808
0x9858A697 0x83891-858
0x3Fl-l-8334 0xB3 834FC7
0x780740FC 0x83834FC7
0XC5FF10C1 0x83834FC7
0x49758874 0x83834FC7
0x233L6096 0x83834FC7
0x7362FC0.A 0xB389sEBA
0x6CD30784 0xB3895EBA
0x3E0BEoC8 0xB3895EBA
0x89754oCF 0xB3895EBA
oxl-659655C 0xB3 895EBA
0XC8F7D807 0x838?9D14
0x67B70FBE 0xB3 879D1-A
0x08344870 0xB3 879D1-A
0xF3BAÐBoF 0x83879D14
oxE64CAC31 0x83879D14
0x389C00F2 0x83842C7F
0x6836FC34 0x83842CF1
0x82L48O65 0xB3842C5F
OxF5682277 0x83842C87
OXEDC2ECTF 0x83842C98
0XAEAFTBSD 0x83888479
0x53335410 0x8388E479
0X44AF6DB2 0x83888ê'79
0x43D57834 0x8388E479
0x8046F881 0x8388E479
0x254Ð544E 0xB3 881-3F2
0X5BC4DD86 0x838813F2

o*ton"""* o*rråoran
0xE6E95DC1 0xB386DFE7
F-----
Completed Test Points LogFile
#
F-----

-1 38-

