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Abstract

The transport of ultrasound through a strongly scattering medium, with either a random
or ordered mesostructure, was studied in the intermediate frequency regime, where the
wavelength in the sample is comparable to the size of the scatterers. The samples were
made by braising aluminum beads to form a solid network, held together by weak bonds
between the beads. In the random samples, wave transport was found to be diffusive in
the lower part of the intermediate frequency regime (~ 0.25 MHz). At higher
frequencies (~2 MHz), the diffusion approximation was found to break down, and the
localization of ultrasound was observed. This demonstration of ultrasonic wave
localization, believed to be the first experimental realization of this effect in three
dimensions, was based on two approaches: the observation of time dependence in the
diffusion coefficient, and evidence for non-Rayleigh statistics and émomalously large
variance of the normalized transmitted intensity. Band gaps were observed in both the
random and crystalline aluminum bead samples, and in the crystals, the group velocity

was found to be negative in the lowest frequency gap.
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Chapter 1 Introduction

1.1 History and background

The phenomenon of Anderson localization, explaining metal-insulator transitions in terms
of the possibility of electron localization in disordered systems, was first predicted by
Anderson in 1958. Electron localization was later realized to be a general wave
phenomenon [loffe and Regel, 1960; John, 1984], suggesting that classical waves could
also be localized in a random medium. The analogy with electron localization and the
advantage of classical waves, which do not suffer from complications arising from
interactions like the Coulomb interaction between electrons, have atiracted great interest
in searching for experimental evidence that classical waves can indeed be localized in

three dimensional systems.

Classical wave localization in random media has been investigated, theoretically and
experimentally, for the past several decades [Sheng, 1995]. Many theoretical principles
and methods, such as Ioffe-Regel criterion [loffe and Regel, 1960], the Thouless criterion
[Thouless, 1974], scaling theory [Abrahams et al, 1979), self-consistent theory
[Volthardt and Walfle, 1992; Gotze, 1979; Vollhardt and Wolfle, 1980, 1982], random
matrix theory [Kogan and Kalveh, 1995], etc., have been developed, and greatly
enhanced basic understanding of the phenomenon. In parallel, many samples and

experiments have been designed and made, but it has been extremely difficult to achieve
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sufficiently strong scattering to realize localization in practice. Even in very favourable
circumstances, it was found that absorption in the samples suppressed the localization, so
that it was difficuit to tell whether the observation of signatures of localization in the
transmission [Weirsma ef al., 1997) were in fact due to localization or just absorption

[Scheffold er al., 1999; Weirsma e al., 1999].

For the past 10 years, a statistical approach to photon localization has been developed
[Nieuwenhuizen and van Rossum, 1994; Kogan and Kalveh, 1995; Marko$ and
Soukoulis, 2005]. Due to the breakdown of diffusion in disordered media, the intensity
of the transmitted waves fluctuates greatly from one position to another on the surface of
the sample, leading to a large variance of the transmitted intensity. These fluctuations
may greatly exceed the more usual variations of intensity in random media associated
with speckles, which in the diffusive regime obey an exponential distribution of
intensitics known as the Rayleigh distribution [Goodman, 1985]. As the localized
regime is approached, the probability of find very intense speckles is enhanced, leading
to a non-Rayleigh distribution described by a stretched exponential at large intensities
[Nieuwenhuizen and van Rossum, 1994; Kogan and Kalveh, 1995]. These predictions
have been extensively studied in quasi-one-dimensional systems using microwaves, and
good agreement between theory and experiment has been found {Stoytchev and Genack,

1997; Chabanov ef al., 2000].



However, up now, most of the successful experiments exhibiting signatures of
localization of classical waves have been limited to quasi-one-dimensional systems, and
all have focused on photons at optical or microwave frequencies. However, despite
some very promising reports [Wiersma et al., 1997, Stérzer et al., 2006], there is no
consensus that photon localization has been achieved in three dimensions.  Furthermore,
no experimental observations of the localization of sound have been reported yet, making
the observation of ultrasound localization in three dimensional disordered media a big

and exciting challenge. The main goal of this thesis is to address this challenge,

While the transport of classical waves in random media continues to attract much
attention, the behaviour of classical waves in periodic systems is also a great current
interest. These periodically structured media are called photonic or phononic crystals,
depending on whether they are designed to diffract light or sound. Photonic band gaps,
where the propagation of photons is prohibited, were first predicted and realized
experimentally in 1987 [John, 1987, Yablonovitch, 1987].  Phononic band gaps,
analogous to photonic band gaps, were then reported theoretically [Economou and
Sigalas, 1994; Kushwaha er al., 1994; Sigalas and Economou, 1996; Sanchez-Perez et al
1998; Montero de Espinosa ef al, 1998; Liu er al, 20007 and finally realized
experimentally in three dimensions only quite recently [Liu, ef al, 2000; Yang, ef al,
2002]. Moreover, an interesting experimental demonstration of ultrasound tunneling

through the band gap of a three-dimensional (3D) phononic crystal was reported [Yang et
3



al, 2002]. These phononic crystals were made by periodically arranging monodisperse
spherical scatterers in a close-packed lattice. What will happen if these scatterers are
connected by weak bonds, instead of just touching each other, so that instead of playing
the role of scatterers in a continuous matrix, the spheres form a periodic network through
which the waves propagate? Does this tunneling effect still exist? Or will some new
striking behaviour appear? A second goal of this thesis is to seek answers to these

questions.

1.2 QOutline of the thesis

The main purpose of this thesis is to present new experimental results on the observation
of sound localization in a three-dimensional disordered material. The thesis is organized
into six chapters: Introduction (chapter 1), Theory (chapter 2), Sample preparation

(chapter 3), Experiments (chapter 4), Results (chapter 5) and Conclusions (chapter 6).

The main part of thesis begins with a review of theory in chapter 2. Section 2.1
provides an introduction, and a summary of diffusion theory that can be used to describe
the propagation of multiply scattered ultrasound is then presented in section 2.2, A
description of the relevant localization theories, including time dependence in the

diffusion coefficient and the statistical approaches, follows in section 2.3.

Chapter 3 describes the preparation of the samples. Section 3.1 introduces the
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principles of braising aluminum beads. The details of making disordered sintered
aluminum bead samples are described in section 3.2. Then, the procedure for making

- sintered aluminum bead crystals is presented in section 3.3.

Next a description of the apparatus and procedure used to perform the experiments is
given in chapter 4 (Experiments). Section 4.1 introduces the general ideas of the
ultrasound experiments. Then the experimental setup is presented in section 4.2,
followed by the apparatus in section 4.3. Section 4.4 discusses the measurement
techniques and geometries used in ultrasonic measurements of both ballistic and diffusive
propagation. The former describes the coherent propagation of a pulse through a
disordered medium, while the latter describes the transport of the ensemble averaged

multiply scattered ultrasonic energy density.

The main results are reported in the chapter 5. Section 5.1 outlines the organization of
this chapter and describes some parameters of our samples. Section 5.2 discusses the
results in the diffusive regime. The ballistic results are first presented, and then the
analysis and results of the diffusive data are described. Section 5.3 presents the results
in the localized regime. Two main approaches to observe signatures of localization are
introduced first. Then the analysis and results showing the time-dependent diffusion
coefficient and the intensity statistics are presented successively. Section 5.4 shows the

experimental results for the crystal samples, and a comparison between our crystals and

5



more traditional phononic crystals is made.

The conclusions that may be drawn from this research are presented chapter 6, where the
main findings are summarized. Additional experimental results that further reinforce

the main conclusions of the thesis are presented in the two appendices.



Chaptér 2 Theory

2.1 Introduction

The theory needed to interpret the experimental results is outlined in this chapter. The
next section deals with the diffusive regime, where phase information in the multiply
scattered waves is ignored and the transport of the ultrasonic energy density through a
strongly scaftering medium is approximated as a random walk. The basic assumptions
of the model are introduced, and the solutions of the diffusion equation for pulse
propagation through a random medium with reflecting boundaries are summarized. One
of the important results of the diffusion approximation is that the transmitted intensity is

predicted to decay exponentially at long propagation times.

In the localized regime, the diffusion approximation breaks down because wave
interference effects become important due to the enhanced probability of the scattered
waves returning to the same point. Recent theoretical predictions, that the transmitted
intensity at long times obeys a power law, and that the diffusion coefficient decreases as
/t, are presented. Finally, the main theoretical results for the statistics of the
transmitted intensity in the localization regime are summarized. These predictions of
non-Rayleigh statistics and very large variance of the normalized transmitted intensity

provide another approach to demonstrate the localization of classical waves.



2.2 Diftusive propagation

The propagation of waves through a multiply scattering medium may be approximated as
a random walk, and thus can be described as a diffusive process. The multiply scattered
energy density U satisfies the diffusion equation,

BU(r, 1)

= DVAUGr0) = 50 - 7)8(2) -

where 5(; - ;:) 1s a point source located at Z, and D is the diffusion coefficient, which
is normally given by the Boltzman diffusion coefficient D, :%vel‘. Here, v, , the
energy velocity, is the velocity at which acoustic energy is transported through the
medium, and l*, the transport mean free path, is distance at which the direction of

propagation becomes randomized. It is also assumed that diffusion begins from a depth

z, = I inside the sample [Page ez al., 1995, Schriemer ef al., 1997].

The solutions to equation (2-1) depend on boundary conditions, and are discussed in
detai] by Carslaw and Jaeger [Carslaw and Jaeger, 1959).  When a short pulse is incident
on a slab-shaped sample, the diffuse energy density on the opposite side of the sample is

described by [Page et al., 1995]

—-r ."4Dt —tit,

e _ppii?
Uny2) == 3G, (2)e 2P0 2-2)
n=i

with r* = (x—x)* +(y-— ¥o)* being the transverse distance from the source position,

and L the sample thickness. The coefficient Cp(z) are given by



C.(2)= LBanos(ﬁnz/L)+sin(ﬁnz/L)]L6anos(,anﬂ /LY +sin(B,z, /L))
= BIK* +142K

The values of £, are given by the positive zeros of the transcendental equation

28K
anff = ﬁ—f%j @2-3)

and the dimensionless constant K is givevn by
K=hnlL (2-4)
Here 4 is the extrapolation length and is defined as

o2l 1+R (2-5)
3 1-R

R is the angle-averaged reflection coefficient, defined by the ratio of the incoming flux to

the outgoing flux at the boundaries [Zhu e af., 1991].

The experiment measures the transmitted flux normal to the slab, which is related to the
energy density by Fick’s law:

J({)=-D, W] (2-6)
fz

Hence, the transmitted flux for a point source is described by

wrzfdi)_,}f ~1/7, o

_ € € -Dp A/ .
J{) — gA,,e (2-7)
with
/- B,| BKsin B, - cos ﬁn;j[/janos(ﬁ”zo JLy+sin(B,z,/L)] 29
BK +1+2K

where 1, is the absorption time.



The transmitted flux for a plane wave source is calculated by integrating over all source

points (xp, ¥p) in the plane z = z; and is given by

2D -t Ty ™ ~ ) 5
T(6) = 2N g o D 2-9)
n=l

In the experiments, the real source is not a delta function in time, but a function with

finite width. Hence, it is also important to convolve the transmitted flux with the finite

width of the input pulse Ji(£):

5}
Jtrans(t) = _“Jin(ﬂ) Jdelm (f - rr) dr’ (2“10)

4

where ,-f; is the width of the incident pulse.

2.3 Localization

2.3.1 Introduction

Anderson localization of electrons, due to the breakdown of diffusion in a disordered
material, was first predicted by Anderson in 1958 [Anderson, 1958]. The central idea
was that electrons become localized when the disorder in the electron energy from lattice
site to site exceeds the coupling between sites, so that the wave functions fall
exponentially in space and transport ceases in an infinitely large sample. In a finite
sample, current can still flow, but the transport of electrons decays exponentially with

sample thickness, and the diffusion coefficient tends to zero as the thickness increases.
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In the past two decades, the analogy with electron localization has greatly raised interest
in the possibility of observing the localization of classical waves in random media. One
of the conditions that has been proposed for wave localization to occur is the loffe-Regel
criterion [loffe and Regel, 1960], which states that wave propagation ceases when & < 1,
where £ is the wave vector and / is the mean free path. However, it is still not entirely
clear whether the mean free path in this expression should be the transport mean free path
I*, as is often assumed, or the scattering mean free path /, [van Tiggelen, 1999]. Also, it
has been pointed out that the Toffe-Regel criterion is not very useful for predicting the
localization of acoustic or elastic waves, since 4/ is expected to decrease very gradually
as the localization regime is approached, without any sharp transition I[Sheng ef al., 1994]
and it has been found experimentally that &/, < 1 does not necessarily imply localization
for ultrasonic waves [Page er al., 2004]. A better way to observe the localization of
classical waves is to measure the transmission coefficient as a function of of sample
thickness L. In contrast to the diffusive regime, where the transmission coefficient T(L)
decreases linearly with sample thickness, T(L) is predicted to pass through a fransition
region of 1/1* behaviour to an exponential decay in the localized regime [Anderson, 1958:;
Abrahams et al,, 1979].  Such behaviour has been seen experimentally by Weirsma et al.
(1997) in infrared transmission through a wedge of GaAs particles. However, if
absorption is present, it becomes difficult to distinguish between exponential decay due to
absorption and exponential decay due to localization [Scheffold et al., 1999; Weirsma et

al., 19991,
11



Recently, two new approaches have been proposed to observe the localization of classical
waves that largely circumvent the complications due to absorption. One is the
observation of time-dependence in the diffusion coefficient [Chabanov et al, 2003
Skipetrov and van Tiggelen, 2004, Cheung et al., 2004, Skipetrov and van Tiggelen, 2006,
Stdrzer ef al., 2006], and the other one is the statistical approach [Stoytchev and Genack,
1997, Chabanov ef al., 2000]. In the localization regime, the diffusion coefficient
decays as 1/t instead of being a constant. Furthermore, the variance of the normalized
transmitted intensity becomes much bigger, and the intensity distribution obeys a
stretched exponential decay instead of the Rayleigh distribution. A description of these

two approaches will be presented in the following two sections.

2.3.2 Time-dependent diffusion coefficient

If the diffusion coefficient is time-dependent, the product D, should be fcplaced by

integral ID(r')dt' in equation (2-9) [Crank, 1956]. Hence, the transmission would
0

decay as

21
i1 fouar

)~ de 't ¢ (2-11)
n=l|

When /*/L and R are small, the equation (2-11) can be approximated at long times by

n_!

—Z [ D )
I(t)~e W20 gotin (2-12)

Hence, the expression for D(7) is
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D(1) = —[(L +22,) /72’2:1[:—3—[(11’1 I+ ﬂ (2-13)

The dynamics of Anderson localization in open three dimensional (3D) media was
investigated recently {Skipetrov and van Tiggelen, 2006] using the self-consistent theory
of localization. Tt is assumed that a 3D disordered slab is confined between the planes z
=0andz=L>>] While Skipetrov and van Tiggelen did not explicitly take absorption

into account, this can be achieved by multiplying the transmitted intensity by exp(-t/t,).

In the diffuse regime, &/ >> 1, and if ¢ >> ¢p is assumed, wheref,, = (L +2z,)° /7Z2DB,
which is the typical time needed to cross the disordered sample by diffusion, Skipetrov

and van Tiggelen showed that the diffusion coefficient can be expressed as

=IO 12[1131(7.25)—4111-‘5—}—12-3i Int 222 2-12)
D, ) 21 a2z e, i,

We see that the reduction in D(f) below Dy contains two terms: a static term, which is of
order (1/k7)%, and a dynamic term, which is reduced by an additional factor of I/ smaller.
This implies that non-exponential transmission is very difficult to observe in this diffuse

regime.

In the localization regime, &/ < 1, the transmitted intensity after time ¢, is predicted to

obey a power law: I(t) ~ ¢ "9 with s ~ 0.85, which is very different to exponential decay

13



in the diffusion regime. For very long times ¢ > 1/a’, where a" = (D, /£%)exp(~L/ £)
with¢ = 6/, (kL) /[1 - (k,)*] being the localization length, I(7) ~ exp(-a' )/ (p ~ 0.5).
Hence, the time-dependent diffusion coefficient is predicted to have the following

behavior:

D)
DB

~(s+ 1), /t, ty<<t<lla
~a't, +(p+1),/t, t>1/a’ (2-13)

We can see that there is a window of time over which the time-dependent diffusion

coefficient decays as 1/f in localization regime.

2.3.3 Statistical approach to localization

Because of the random structure of the samples, it is virtually impossible to predict
exactly the intensity variations in the near~ﬁeld pattern.  Therefore, it is both necessary
and more useful to discuss the statistical properties of speckle patterns. The intensity
distribution properly reflects the macroscopic properties, although the microscopic
properties are not possible to determine.  When the intensity is normalized to its
average value, its distribution is universal, independent of the dimensionality of the

system.

In the diffuse regime, the intensity distribution obeys the Rayleigh distribution [Goodman,

1985}, which is a negative exponential:
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P(s,, =1,/<1, >)=exp(-s,) (2-14)
where </;»> is the average intensity. I, means the intensity from an incoming mode a
and outgoing mode b. Hence, the total intensity for incoming mode a is I, = £, 1, and
the corresponding normalized quantity is s, = /<> In contrast to the diffuse regime,
in the localized regime, the int-ensity distribution is non-exponential, and is predicted to
have the form of a stretched exponential for large 5,5 [Nieuwenhuizen and van Rossum,
1995; Kogan and Kalveh, 1995; van Rossum and Nieuwenhuizen, 1999]:
P(s,) ~ exp(-2g's,, ). (2-15)
The parameter g’ was defined by Genack as a localization parameter [Chabanov er al.,
2000], which is also related to variance of s,
g'=2/Pvar(s,)] (2-16)
In the absence of absorption g’ is equal to the dimensionless conductance, g, making a
connection with theory of localization of electrons. Genack conjectures that localization
is achieved for g'< 1 whether absorption is present or not. Kogan er al. (1995), used the
isotropic approximation, which assumes the perfect mode mixing that is only valid for
quasi-one dimensional systems, to relate distribution of s, to that of s,:
2var(s,) = var(sgs)-1 (2-17)
Corresponding to the localization criterion g'< 1, localization is obtained in quasi-one
dimensional systems when

var(sa) = 7/3 (2-18)
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Chapter 3 Sample preparation

3.1 Random sintered aluminum sample preparation

3.1.1 Introduction

To search for the localization of sound in a random three dimensional structure, sintered
aluminum-bead samples were fabricated. The aluminum beads, coated with silicon and
Nocolok power, were brazed at around 650 degrees Celsius in a furnace. The general
instructions for making such samples can be found in two references (Baldantoni ef al,
2000; Bobowski, 2001) listed in the reference section. In this section, the detailed

procedure that I followed is summarized.

The type of aluminum beads we used was Aluminum M362-1100-ALO-TEMP from
ABBOTTBALL Company. The diameter of aluminum beads was 0.162 inch (4.11 mm).
Before starting the preparation, the following ingredients and tools were assembled:

» NOCOLOK powder, Silicon particle

> Stainless steel molds

»  Various beakers and mixing tools like Teflon rods

» NaOH

» Hair dryer

» Reverse Osmosis water
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3.1.2 Principle

The bastic principle for fabricating the samples is as follows.  Aluminum beads are first
coated with a mixture of NOCOLOK powder and silicon particles. Above 562°C,
NOCOLOK powder starts melting, which dissolves the oxide on both aluminum beads
and silicon particles. Aluminum beads are now in contact with silicon particles, and the
absence of oxide layers allows solid state interdiffusion of aluminum and silicon. Very
quickly the composition near a silicon particle reaches that of the Al-Si eutectic (12% Si);
as the temperature increases beyond the eutectic reaction temperature (577°C), a liquid
near eutectic composition is formed. Formation of the liquid leads to rapid dissolution
of the remaining silicon through liquid diffusion. The pool of liquid continues to grow,
consuming aluminum, until all of the silicon is consumed in the melt. The liquid layer
solidifies on cooling to room temperature and the joints of eutectic Al/Si alloy are formed,

connecting individual aluminum beads.

3.1.3 Procedure

(1) My recipe

For every 100g Aluminum beads, 0.4g Silicon and 2g NOCOLOK powder were used.
The final weight of samples may be several times heavier than 100g, but it is
recommended to coat only 100g of aluminum beads at once due to the limited size of the
container. If too many beads were coated at one time, say 200g, the fluctuation in the

coating layer thickness of each bead would be much bigger.
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Note that the strength and size of the joints between the aluminum beads is only
proportional to the amount of silicon powder deposited onto the surface of the Aluminum
beads, so that my recipe can be modified as needed to prepare samples with different

elastic properties.

(2) Removal of the oxide layer of the aluminum beads

The first step of the procedure was removing the oxide layer of the aluminum beads.
Although melting NOCOLOK will consume the oxide layer of aluminum beads, if the
oxide layer is too thick, it will not be totally consumed by the limited amount of
NOCOLOK deposited on the surface of the beads. To remove the oxide layer, T put
aluminum beads into NaOH solution and waited until I saw that hydrogen was produced,
which meant the NaOH had started to react with aluminum. Then the aluminum beads

were washed by reverse osmosis water.

(3) Coating

0.4g Silicon particle and 2g NOCOLOK powder were mixed with Reverse Osmosis
water into a beaker. The amount of Reverse Osmosis water can vary dramatically, since
it will be dried eventually anyway. Then I poured the Aluminum beads into the slurry
and stirred them with a Teflon rod. A hair dryer was used to dry the beads when I

stirred the beads in the slurry.  About half an hour later, after the water had evaporated
18



completely, there should be a uniform coating formed on the surface of the Aluminum
beads. Sometime the coating was not quite uniform. At this point, T usually added
some Reverse Osmosis water into the beaker and repeated the drying procedure. Some

of the coated beads that I made are presented in figure 3.1.1.

To make a random sample, I just simply poured the coated Aluminum beads into a
stainless steel mold with diameter of 120 mm until the beads at the top were 1 or 2 mm
higher than the height of the mold. I then carefully pressed the top plate of the mold
until it tightly touched the mold, in order to ensure a more uniform packing of the beads

and paralielism of the top and bottom surfaces of the samples.
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(4) Heating
After the Aluminum beads were coated, it was time to heat them up, which was done at
645°C in a nitrogen atmosphere. The heating apparatus was located in the basement of
the Allen Building.
a) Apparatus
We needed a furnace, a pump, Nitrogen gas, a sample box, a few plastic tubes and

stainless steel pipes. The apparatus and set-up are shown in figure 3.1.2.

Vacuum pump

Valve 1

Valve 2

Nz

Sample box

o [ ’

Furnace

Valve 3

Figure 3. 1.2 Heating system
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b) Heating procedure

» The mold with coated aluminum beads was placed into the sample box which would
be placed in the furnace later. The bolts on the cover of the sample box were
tightened as much as possible to get good a vacuum seal, having made sure that the

copper gasket sat in the proper position on the cover.

»  Evacuating the sample box
After I closed valves 1, 2 and opened valve 3 (figure 3.1.2), the vacuum pump was
switched on. If the seal was good enough, the vacuum gauge reached a reading of
-29 or lower. To further check the seal of the sample box, I closed valve 2, and
waited 5 minutes. For a good seal, the gauge reading should not drop significantly

during 5 minutes (gauge reading should be no higher than -28).

» Feeding nitrogen gas
After the sample box was sealed well, I fed nitrogen gas into the sample box. To do
this, I closed valve 2 and opened valve 1. Once the vacuum gauge read 10, I opened
exhaust valve 3 and the nitrogen gas flowed out. The nitrogen gas should be run at a
pressure of 10 psi and a flow rate of 1.2 on the flow meter. When nitrogen gas was
flowing, if the seal of the sample box was not good, the sound of gas leaking was
clearly heard. This was another way, which I though was a better way, to test the

seal.
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» Recording temperature
Three thermocouples (K-type) were used to measure the temperature. One was for
the temperature in furnace, and the other two were for the front and the back of the
sample box, respectively. The three voltages were measured using Hewlett-Packard
Digital Voltage Meters (HP DVM) and recorded on a computer using a data

acquisition program called Rebecca.

Based on standard thermocouple tables, the relation between temperature in degrees
Celsius and voltage in millivolts for temperatures between 0 and 800 degrees Celsius
15 that:
T = 25.8xV°%® 4+ RoomTemperature
» Heating

Before brazing the Aluminum beads, I made sure that the temperature monitored by
the thermocouple in the furnace reached 750 degrees and the room temperature was
recorded. The temperature of the sample was raised to around 650 °C by gradually

inserting the sample box into the furnace. The detailed procedure was as follows:

I located the cover of the sample box a distance equal to the length of 2 bricks ( 7.3
inch) outside the furnace. When the temperature of the front thermocouple reached
2.9 mV (100 °C), I started to record the time. Then | waited until the front

thermocouple reached 9.0 mV (250 °C) and the time was recorded again. The time
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interval was about 20 minutes. Then I pushed the sample box 4 inches into the
furnace. At this point, the opening of the furnace was covered by ceramic plates.
It would take about 5 minutes for the front thermocouple to reached 17 mV (440°C).
Then I placed the sample box another 4 inches deeper and waited approximate 5
minutes until the front thermocouple reached around 21mV (535°C ). Finally, I
pushed the sample box as far as it could go and waited for the front thermocouple to
read 25.8 mV (650 °C). Meanwhile the back thermocouple should reach at least 23
mV (585°C), otherwise the back of sample might not braze due to the temperature
gradient in the sample box. At this point, I usually kept the reading of the
temperature of the front thermocouple around 25.8 mV for 5 minutes by pushing and

pulling the sample box to adjust its position inside the furnace.

Cooling

I pulled the sample box back by a couple of inches and waited 2 minutes. I repeated
this procedure until the sample box was totally out of the furnace and then covered
the opening of the furnace. I kept recording readings until the front thermocouple
read 9.0 mV. At this point, I turned off the nitrogen gas and also stopped Rebecca.

An example of the heating profile for a random sample is shown in figure 3.1.3.
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Figure 3. 1.3 Typical temperature cycle for braising the random samples.



(5) Polishing, cleaning and mounting

The sample was often very dirty after it was taken out of the sample box. One example
is shown in figure. 3.1.4 (upper picture). To make a good coupling for waves getting
into the sample, I polished the both surfaces of the samples a little bit to make them flat
and parallel. After polishing, the samples were immersed in NaOH solution for 10
minutes or so, which made the samples shiny. One example of a cleaned sample is
showed in Fig.3.1.3 (lower picture). To mount the samples, I used clear transparencies
as two walls and Stycast 1266 epoxy to make permanent coupling between the sample
and transparencies, with which the sample was fixed in a plastic holder. Since the
experiment was performed in the water tank, the sample had to be sealed well by silicon

rubber,
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Figure 3. 1. 4  Sintered aluminum samples (upper picture: before being cleaned, lower
picture: after being polished and cleaned).
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3.2 Sintered aluminum crystal preparation

3.2.1 Crystal template

The aluminum beads were assembled in a face centered cubic (fcc) crystal structure, with

the beads packed in triangular layers along the [111] direction. The top view of the

stainless steel template, which was used to ensure that the beads could be arranged in this

structure, is shown in figure 3.2.1.  For a sample with a perfect hexagonal bottom layer

having n beads (diameter d) along each side, the formulae for the dimensions of the side

length L+ and Lp and the angles of inclination of the side, o and B, are [Yang, 2003]
L,=(n —1+tg-§—)d

Ly=(n-1+ tg—g—ctg’/’S")d

(-1

tan(c) = +/2
tan(f) = 2+/2
Our samples were designed with 12 beads on each side of the bottom layer. From

equation (3-1), it was calculated that L, =1.8659", L, =1.8127 .

28



@] o
A
A
O O
rt-— LA ] .,
B
O O
O O

A A

Lg

O O
Q B O B
B

Figure 3.2. 1 Top view of one of the sample templates and the side view of the blocks
A and B {Yang, 2002].

3.2.2 C(rystal preparation

There only two differences in the procedure between random and crystal sample
preparation. One is that after the aluminum beads were coated, we needed to arrange
the coated beads in an fcc structure in the template rather than just pouring the coated
beads in the mold. The other difference is that the highest reading of the front
thermocouple in the sample box should reach around 26.2 mV. This reading is higher
than that for random sample making, since the geometry of the template resulted in an
extra distance between the sample and the front of the sample box. One typical heating

profile for crystal preparation is showed in figure 3.2.2
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Figure 3.2.2 Heating profile for sintered aluminum crystal sample preparation.
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Unfortunately, despite the excellent precision with which the beads were positioned on
their lattice sites using this technique, I could not make these crystal samples perfectly.
Some bonds between beads were missing. Thus, the crystals had near perfect

translational order, but non-negligible bond disorder. Some pictures from different view

angles of sintered aluminum crystal samples are showed in figure 3.2.3.

Figure 3.2.3 Sintered aluminum crystals.
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Chapter 4 Experiment

4.1 Introduction

The description of ultrasound propagation in the strongly scattering sintered
aluminum-bead samples requires thekmeasurement of both ballistic and diffusive waves
[Page er al, 1995; Page er al, 1996; Schriemer, 1997]. The experiments were
performed in a water tank that was big enough to eliminate the interference between the
straight signal through the samples and the reflected signals from the walls of the tank or
from the sample surfaces. Water provided a good signal coupling between the
transducers and the sample cell and made it easy to change the relative position between

the sample and the transducer or miniature hydrophone.

Measurements of ballistic waves were accomplished with two large planar wave
transducers, which were fixed on the manual transiation stages in the water, while the
samples could be translated by stepper-motor translation stages in the water and were

usually placed in the far fields of both generating and receiving transducers.

Measurements of diffusive waves were accomplished with planar wave or focusing
transducers and the miniature hydrophone. The face of the miniature hydrophone was
small enough (400 um diameter) to detect the sound in a single coherence area, and thus

to avoid the phase cancellation effects that would occur if the average field over more
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than one coherence area was detected.

The experiments were performed with both planar wave sources and point sources. For
the measurement of the time intensity profile of multiply scattered sound, the plane wave
gec;metry was used. The samples were placed deep in the far field of the plane wave
transducer to achieve a good approximation to a plane wave source. Another reason to
choose the plane wave geometry was that the scattering in the samples was so strong that
it would last longer than 500 ps, but the available focusing transducers did not have long
enough focal lengths to allow all the scattered signals through the samples to be separated
from the reflected signals between the focusing transducer and the samples. For the
plane wave geometry, the plane wave transducer and the sample remained fixed, while a
miniature hydrophone was placed close to the opposite face of the sample to scan the
central portion of the sample face to collect transmitted signals in many uncorrelated

speckles.

For additional measurements of the time-dependent diffusion coefficient D(¢), the point
source transducer was required for the displaced point source technique. For the point
source geometry, the focusing transducer and miniature hydrophone remained fixed,

while the samples were translated to collect data from many speckles.
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4.2 Experimental setup

The main idea common to all experiments was generating an ulirasound pulse which
would propagate through the sample, and detecting the transmitted sound by a recelving
transducer or miniature hydrophone, depending on the type of measurement to be

performed. The experimental setup is presented in figure 4.2.1.

Aquarium
(transducers  and/or

Arbitrary Waveform Generator Amplifier Research

y

h 4

hydrophone, sample)

T

|

Sync Computer h 4
T Attenuator
Digital , .
> . < Amplifier < Pre-amplifier
Oscilloscope [ N

Figure 4.2. 1 Block diagram of the experimental setup.

An electrical pulse was generated by an arbitrary waveform generator which could
pre-store a specifically designed waveform, such as a Gaussian wavepacket. The pulse
was then amplified by an Amplifier Research power amplifier and connected to the
generating transducers, which converted the electrical energy of an electromagnetic
excitation into the mechanical energy of an ultrasonic vibration. The transmitted sound

through the sample was detected by a receiver which converted the uitrasonic vibration
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back to an electrical signal. After the electrical signals were amplified, they were

displayed on the digital oscilloscope and recorded in a personal computer.

4.3 Apparatus
4.3.1 Arbitrary waveform generator (AWG)

I used an Agilent 33220A Arbitrary Waveform Generator to generate an electrical pulse.
The Agilent Technologies 33220A is a 20MHz synthesized function generator with
built-in arbitrary waveform and pulse capabilities. The advantage of an AWG was that
we could store up to four user-defined waveforms in non-volatile memory in addition to
one in volatile memory. The waveform that [ usually used for the experiments was a
Gaussian wavepacket that could be designed as required. I usually used a Gaussian
wave form that contained two oscillations, the so called Gauss 2 waveform. The more
oscillations that the Gaussian wave form contains, the narrower the bandwidth is in the
frequency domain. To create a Gaussian waveform, the AWG, which had its own IP
address, was connected into the Lan first. A command “set AWG_address = SICL;
lan{IP address of AWG]: GPIB0,10” was used to locate the AWG in the Lan. A program
“awgsend” written by Matthew Hasselfield was used to create and store the required

Gaussian waveform in the non-volatile memory of the AWG.

It was recommended that the output voltage of the AWG was around 100mV (peak to

peak), which was the maximum voltage allowed to avoid saturation in the Amplifier
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Research power amplifier. To generate a pulse in the AWG, the burst mode was required.
To make sure that the transmitted sound through the sample vanished before the next
pulse was generated, the period should be set long enough, which was 30ms for my

experiments.

4.3.2 Amplifier Research (AR) power amplifier

The function of the AR power amplifier is to amplify the electronic signal generated by
AWG so that the signal is big enough to excite the generating transducer and create a
large enough ultrasonic pulse to enable it to be detected by the detecting transducer or
hydrophone after propagating through the samples. The working frequency range of the
Amplifier Research power amplifier is from 0.01 to 220 Mz, which can satisfy the

needs of all of our experiments.

4.3.3 Plane wave immersion transducers

A transducer uses the piezoelectric effect to convert electrical energy into ultrasonic
energy. This piezoelectric effect is reversible for transducers. The sound field of a
transducer is divided into two zones: the near field and the far field. The near field is
the region directly in front of the transducer where the echo amplitude goes through a
series of maxima and minima, which end at the last maximum at a distance N from the
transducer. The far field is the region beyond N where the sound field pressure

gradually spreads out in a smoothly diverging beam. Hence, samples are always placed -
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in the far field of a transducer to avoid the amplitude fluctuation regionn. The theoretical

formula for the distance N is expressed by [Panametrics, 1993]

D? A _

where D is the diameter of the surface of a transducer and 1 is wavelength in water.
All transducers have beam spread. Figure 4.2.2 gives a simplistic view of a sound beam

for a plane wave transducer.

-6 dB Beam line

Transducer

Figure4.2.2 Transducer beam spread [from Yang, 2002].

The pulse-echo beam spread angle is give by equation (4-2) [Panametrics, 1993]
sin(6,) =0.514¢/ fD (4-2)
where fp is half angle spread between the -6dB points, ¢ is velocity of the wave, fis

sound frequency and D is the diameter of the transducer.

4.3.4 Focusing transducer

A focusing transducer can focus the sound beam so that it can be applied as a good

37



approximation to a point source. A schematic diagram of a focusing transducer is
shown in figure 4.2.3.  The main parameters shown in figure 4.2.3 are diameter D, the
focal length F, and the length F, and diameter By of the focal zone. F, and By can be

expressed as [Panametrics, 1993]

F* 2
F, = “["—lg:‘] (4-3)
S
ZF'
B, = 1.02DSF/1 2-4)

Backing PZT  Piano-Concave .
Lens

Figure 4. 2.3 Focusing transducer [from Yang, 2002].

4.3.5 Hydrophone

A hydrophone works as a very small detecting transducer. The hydrophone I used has
diameter of 0.4 mm and was used to scan the near field of the scattered waves from the
samples over many single coherent speckles, which arise from interference of the

scattered waves (refer to Sec. 5.2.3.1).
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4.3.6 Oscilloscope

The signals were eventually monitored by a Tektronics Digital Oscilloscope (Model
544A). The oscilloscope has a GPIB interface, which makes it possible to download

data to a computer directly, and to use a computer to control the data acquisition.

4.3.7 Cables

We used 58 A/U RF coaxial cable, which has an impedance of 50 Ohms fo match most of

our electronic equipment.

4.4 Measurement techniques and geometries
4.4.1 Ballistic measurements

Two large-element-diameter planar transducers were used to measure the phase and
group velocities, and the scattering mean free path. The two transducers were aligned in
the aquarium with their faces parallel, and the sample was placed between them in the far
field of the two transducers. The transducers were fixed on manual stages, while the
sample was translated by a motorized stage in a plane parallel to the faces of the
transducers. Figure 4.2.4 shows the ballistic measurement setup. The
large-element-diameter transducer measured the total pressure on its surface; it helped
eliminate the background contribution due to scattered sound from the ballistic pulse.
For even better performance of the cancellation of the scattered sound, the sample was

translated and the transmitted fields from new ensembles of the scatters were averaged.
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Only the unscattered pulse survived. From the unscattered pulse, phase and group

velocities, and scattering mean free path were determined (Section 5.2.1).

generating planar transducer detecting planar transducer

sample
Cross-section

Figure4.4.1 Experimental setup of ballistic measurement [from Schriemer, 1997].

4.4.2 Diffusion measurement

4.4.2.1 Plane wave source geometry

Diffusion experiments in the plane wave source geometry were performed to measure the
diffusion coefficient D and the absorption time z,. The sample was located deep in the
far field of a planar transducer. Thus, the wave front incident on the sample surface was

a good approximation to a plane wave. The distance between the planar transducer and
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the sample should not be too long either and was set so that the amplitude of the incident
beam at the edge of the sample was at least 3dB smaller than at the centre of the sample;
this reduced interference from edge effects. Since the attenuation in the sample was
very huge, the reflected signal from the walls of the water tank would become
comparable with the transmitted signal through the sample. To eliminate this effect, a
big Styrofoam sheet, which just fitted tightly in the water tank, with a window in the
center to let signal through, was made to block these stray reflected signals. The
generating transducer and the sample remained fixed, while the detecting hydrophone
was placed close to the opposite face of the sample, scanning the near field speckles.
Figure 4.2.5 presents the diagram of the plane wave source experimental setup. The
scanning spacing was determined by the wavelength of sound in water, since this distance
corresponds to the near-field speckle size. Then the pulse shape of the average multiply
scattered intensity of sound, which was determined by an ensembic average of the
scattered wave intensity over a large number of speckles, was fitted by the time-of-flight

profile predicted by the diffusion equation.
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Figure 4.4.2  Planar wave source geometry [from Schriemer, 19971].
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Figure 4.4.3 Point source geometry [from Schriemer, 1997].
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4.4.2.2 Point source geometry

Measurements of the diffusion coefficient in a point source geometry led to the same
result as the plane wave source geometry. In this point source measurements, the
sample was placed at the focal point of a focusing transducer. The hydrophone was
positioned on-axis, directly opposite the focusing tral—lsducer, and was placed close to the
opposite face of the sample. The focusing transducer and the hydrophone remained
fixed, while the sample was moved. A large number of uncorrelated speckles were
recorded by translating the sample. The geometry of point source is illustrated in figure
4.2.6 (on-axis configuration). However, since the transmitted sound through the
samples always lasted longer than 500us for my samples, and the time for the round trip
of sound between the focusing transducer and sample surface was much less than 500ps,
the point source geometry was not recommended for time-of-flight intensity profile

experiment.

One advantage of using point source was that the method could be extended to precisely
determine the numerical value of the diffusion coefficient D(¢) independent of boundary
condition and absorption. This extension of the method was called displaced point
source technigue. This technique is also shown in figure 4.2.6. Both on- and off-axis
configurations were used in this technique. The sample was translated for both on- and
off-axis configurations, respectively, to collect uncorrelated ultrasound speckles. The

displacement of hydrophone in these two configurations was r. As mentioned before
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(section 2.1), the transmitted flux for a point source with boundary conditions for a slab

sample is

24D ~tjzy 27,2
e e 4 DB @-5)

J(@) = .
2zt —
where r is the transverse distance from the point source. In our displaced point source
geometry:

rz :(xo_ﬁ‘ —Mxon)z +(yo_}_‘f _yon)2 (4-6)

The ratio of the ensemble-averaged diffuse intensity for on- and off-axis configurations is

given by
ex —x Y+ —y )
o = p[(xaﬁ’ on ) (yo_{f yon ) ] (4_7)
40
Hence,
_ _ 2, _ 2
D= [(x(yj" xon) (yoﬂ" yan) ] (4-8}
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Note that other parameters, such as those governing the boundary conditions, the mean

free path, the absorption time and the velocities, cancel out in equation (4-8).

The diffusion coefficient D in equation (2-8) was assumed to be constant. If the

diffusion coefficient is not constant but is a function of time, the product Dt in equation

(4-7) would be replaced by [D(f)dt [Crank, 1975]. Then D(z) is given by
0

_ _ 2 . 2
D) = d( [y = %0,)* + Qg = Vun) ]} / . @)
4In7

rafic
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Chapter 5 Results and discussion

5.1 Introduction

In this chapter, the experiment results and discussion are presented. I begin with

ballistic experiments to show how to measure ballistic parameters. 1 then discuss the

results in the diffusive regime (low frequency, ~ 0.25 MHz) and discuss how to determine

diffusion coefficient D in section 5.2.

In section 5.3, I present the results in the

localized regime (high frequency, ~ 2.25 MHz) and discuss two approaches that indicate

signatures of localization.

We made five samples of different thickness. Table 5.1 shows the thickness and density

of each sample.

Thickness (mm) Density (g/cm?)
Sample 03 14,5 1.57
Sample 04 23.05 1.55
Sample 05 14.5 1.55
Sample 06 235 1.57
Sample 07 8.27 1.475

Table 5.1.  Thickness and density of the five samples.
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3.2 Diffusive regime

5.2.1 Ballistic measurements

5.2.1.1 Extraction of the coherent pulse

Ultrasound propagating through a disordered medium has both coherent and incoherent
components. The coherent component has a definite phase relation to the incident pulse,
which propagates straight through a random medium, whereas the incoherent component
scattered many times in the random medium has random phase contributions.  Since the
incoherent component undergoes a random walk, it always travels longer than the

coherent component.

Two 1.5” diameter transducers at a central frequency of 0.25 MHz were used in this
experiment. The large surface of the planar transducer averages the pressure of sound
incident on it, and, because of the random phases of the incoherent component, it is
averaged out. To improve the phase cancellation of the scattered sound, the sample was
translated in grid with a 5-mm spacing, which corresponds to the incident beam width
and all of the transmitted pulses were averaged again to eliminate the contribution of the

scattered sound and extract the coherent component.

The upper panel of figure 5.2.1 shows three typical transmission waveforms obtained

using a 0.25 MHz plane wave generating transducer and the low frequency hydrophone
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detector. From the beginning of the waveforms until about 45us, the three speckles
appear very similar in phase and amplitude. After 45ps, the waveforms are no longer
very similar, but there is still a little coherent trend shown after 45us, which may be
because there is some degree of short-range order in the random sample. The solid

curve in the lower panel of figure 5.2.1 is the average waveform of 25 speckles.

As frequency goes up, the scattering of sound becomes dramatically stronger. Above
0.5 MHz, scattered sound was dominant and no clear coherent pulse could be extracted.
Figure 5.2.2 shows some typical waveforms at 0.5 MHz, measured with 1” diameter
transducers. Even though the first one or two oscillations appear coherent, there is no

way to extract the entire coherent pulse.
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Figure 5. 2. 1 Upper figure: 3 typical transmitted speckles at 0.25 MHz for sample 05
(L = 14.5 mm), showing coherent and incoherent components. Lower figure: The solid
pulse in the lower panel is the average of 25 transmitted pulses, compared to one typical
transmitted speckle (dashed curve).
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bold averaged pulse shows no apparent ballistic pulse.
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5.2.1.2 The scattering mean free path
When a sound pulse propagates through a sample of thickness L, its original intensity 7, is
attenuated as it is scattered out of its original direction. The transmitted intensity [ is
expressed as

1= Iy exp(-L/I) (5-1)
where /; is defined as the scattering mean free path.  The scattering mean free path then

can be expressed as

Y
YU In(I/1,)  2In(A/ 4,)

(5-2)

where 4 and A4, are transmitted and incident amplitudes, respectively.

To determine the scattering mean free path, the ratio of the FFT of the transmitted and
incident pulses was calculated. Since waves were reflected at the interfaces between
water and the sample surfaces, part of energy was lost. Hence, the correction for
reflection was needed. The corrected scattering mean free path in the low frequency
range is illustrated in figure 5.2.3. The scattering mean free paths for sample 5, 6 and 7
decreased as frequency increased (expect for sample 7), and were sﬁaller than the
diameter of the aluminum beads (4.11 mm) in this frequency range, showing scattering
was very strong in this regime. Since we could not extract good ballistic pulses from
the total waveforms at higher frequencies, the scattering mean free path was difficult to

measure, but it is almost certainly smaller than in the low frequency range.
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Figure 5.2.3  Scattering mean free path dependence on frequency.
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5.2.1.3 Phase velocity

The phase velocity of a wave is the rate at which the phase oscillations of the wave
propagate in space. This is the velocity at which the phase of any one frequency
component of the wave will propagate.  The phase velocity may be determined using the

relation

L
sample ( 5 . 3 )

Pphase =
Atphase

v

where L is the thickness of the sample and Az, 1S the transit time that a wave will

take to propagate through the sample at one certain frequency.

To determine Afyngg experimentally, we needed both the transmitted pulse, and the
incident pulse which was determined from the reference pulse acquired by removing the
sample from between the two transducers. Then the transit time Atpuise between the
reference and transmitted pulses relative to water was only dependent on the effect of the
sample and walls on the propagation time. The experimental configuration for

acquiring transmitted and incident pulses is shown in figure 5.2.4.

The time correction that needs to be subtracted from the reference pulse through water in

order to transform it into the incident pulse is

ar, = Lo 240y 2d,, (5-4)

carrection
Vwarcr vwm'f

where dyqp is the thickness of the sample wall, vy and v,y are the phase velocities in
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water and wall material, respectively. Meanwhile, the transmitted pulse was truncated
around 50 ps to eliminate the effect of multiple scattering to obtain the ballistic pulse.
One example of the time corrected reference and ballistic pulse are presented in figure

5.2.5.

The time difference Atypqs. Was determined by the following expression.

AP _A¢ i
phase @ 27ff (5 5)

where A¢ is the phase difference between the ballistic and reference pulses, @ and f

are angular frequency and frequency.

The phase difference A¢ was measured from the complete FFTs of the reference and
transmitted waveforms by subtracting the reference phase from the transmitted phase.
The typical results for the frequency dependence of the phase of the transmitted and
reference pulses, and the phase difference are illustrated in figure 5.2.6. Since the phase
difference A¢ from the FFT analysis contains an unknown phase shift of n2z, where 7 is
an integer, a method to determine » is needed. The best method to achieve this is to
measure Ag down to sufficient low frequencies that the wavelength is greater than the
sample thickness, so #» = 0. Unfortunately, even though the frequencies are quite low in
this case (down to 0.1 MHz), they were not low enough to determine » unambiguously.

Instead we used a different criterion: the correct value of n was determined by comparing
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the phase velocities for samples of different thicknesses. This criterion was successful,
since only one set of values of # was found that gave consistent velocity results for all
samples.  Figure 5.2.7 shows the experimental phase velocities for sample 5, 6 and 7,

determined using this method.
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Figure 5. 2. 4 Experimental geometry for measuring the transmitted and reference
pulses.
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5.2.1.4 Group velocity

The group velocity of a wave is the velocity with which the wave's envelope propagates
through space. As for the phase velocity, the group velocity is given by the ratio of
sample thickness to propagation time. However, the transit time for group velocity is
calculated in a different way from that of the phase velocity, and 50 we use Alggy, to

denote it. Hence, the group velocity is expressed as

L
__ 'sample
vgrr)up - Af (5&6)

group
The time correction due to the effect of sample thickness and wall thickness was also

required for group velocity calculations. The formula to determine the group velocity,

which corresponds to equation (5-3), is therefore given by

v _ ‘Lsample _ Lsamp.’e (5 7)
group - -
Atpu!.ce - Arcorrecti(m L.\'amp.'e + 2d""’” 2dwal'.'
pulse
Vv 1%

water wafl

Here, Atgq,, was experimentally determined from the time difference between the peaks
of the envelopes of the ballistic and reference pulses. Since different frequency
components of pulses may travel at different speeds, to determine the group velocity at
different frequencies, both transmitted and reference pulses were digitally filtered to limit
the signal to a Gaussian pulse with a relative narrow bandwidth before their envelopes

were determined.

The results of filtering the 0.25 MHz data (figure 5.2.5), with a Gaussian band pass
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function of central frequency /= 0.25 MHz and bandwidth of w = 2 = 0.02 MHz are
presented in figure 5.2.8. The dashed curves show typical envelopes of the
corresponding pulses. Figure 5.2.9 shows the group velocity in the low frequency range
(0.05~0.375 MHz). There are very large fluctuations in the group velocity. The most
likely cause of these fluctuations is resonant-like modes of éeveral coupled beads. (Note
that the wavelength in aluminum A varies from about 30 to 4 bead diameters over this
frequency range, and wavelength in the sintered network varies from about 3 to 1 bead
diameters). The average group velocity in this frequency range is around 2.1 mm/us,
which is a little larger than the phase velocity, but still less than the longitudinal velocity

in aluminum (6.4 mm/us).
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3.2.3 Diffusive transmission

5.2.3.1 Ensemble averaging

The scattered waves in the near field of the samples interfere with each other to give rise
to a random speckle pattern, which fluctuates in both phase and amplitude across the
surface of the sample. Each speckle corresponds to a coherence area of the interference
pattern. In the near field of the sample, the size of a speckle, or coherence area, is
approximately equal to A%, where 1 is wavelength in water [Page ef al., 1995, Schriemer,
1997].  The cross section of the speckle pattern of multiply scattered waves is illustrated

in figure 5.2.10 for Schriemer’s 20-mm-thick glass bead sample in water [Schriemer,

1997].

To detect the transmitted field, we used a hydrophone that is smaller than the coherence
area of the speckles to avoid phase cancellation. The near field speckle pattern was
scanned over many single coherence areas in a plane parallel to the surface of the sintered
aluminum disordered samples, and then the intensity of all the speckles was averaged to
determine the average transmitted intensity. Because the size of the speckles is 4%, the
spacing of the grid over which hydrophone was scanned was approximately equal to the

ultrasonic wavelength in water.

As mentioned before, for the diffusive transmission experiments, it is better to use a plane

wave source rather than a point source due to the long transmission times for scattering in
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the sample. Since our “plane wave” was generated by a 1.5” diameter transducer, the
source was not an ideal plane wave. The measured amplitude profile of the input beam
form of the 0.25 MHz transducer is shown in the upper panel of figure 5.2.11. Ballistic
pulses should have no contribution to the diffusive transmission; hence, we need to
subiract the ballistic pulse from each individual transmitted speckle. To do so, we first
need to correct the transmitted speckles in amplitude and phase to eliminate the
deviations from ideal plane wave behavior of the source. The amplitude and phase
difference of the reference pulses at all measured speckle positions were found relative to
the central position in order to correct the amplitude and phase of corresponding
transmitted speckles. A C program “correctgrid.c” was used for this purpose. The
corrected field pattern for the 0.25 MHz transducer is shown in the lower panel of figure
5.2.11. The same correction was applied to transmitted speckles as well. We then
averaged all the corrected transmitted speckles to determine 'the ballistic pulse, which is
illustrated in figure 5.2.12, and finally subtracted the ballistic component from individual
corrected transmitted speckles, leaving the purely diffusive component, Three typical

corrected diffusive transmitted speckles at 0.25 MHz are presented in figure 5.2.13.

Diffusion properties may be dependent on frequency. To exhibit the frequency
dependence, the diffusive transmitted speckles were digitally filtered by a Gaussian band
pass filter with a narrow bandwidth which was usually 10% of the central frequency.

The filtered pulses of the typical diffusive transmitted speckles in figure 5.2.13 are shown
64



in figure 5.2.14.

To construct the mean diffuse intensity, the phase information contained in the individual
speckles was ignored and the waveform envelopes were determined. The envelopes of
the three filtered transmitted speckles in figure 5.2.14 are showed in figure 5.2.15. —Then
the envelopes were squared to achieve intensities, which were averaged to produce the
ensemble averaged diffuse intensity. An example of a diffusive pulse centered at 0.25

MHz with 0.02 MHz bandwidth for sample 05 is illustrated in figure 5.2.16.
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Figure 5. 2. 10 The cross section of the acoustic speckle pattern of multiply scattered
sound [from Page et al., 1995; Schriemer, 1997].
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3.2.4 Fitting the diffusive pulse
5.2.4.1 Introduction

As mentioned in Chapter 2, for a planar wave source, the transmitted flux is described by

2De™'™ Z” [ L) 2
- "1,'
N

L2 n=]

J(®)= (5-8)

A C program called con_fit7w was written to fit the diffusive pulse to the expression
above.  The input parameters that the C program needed were:

(1) D: Starting value of the diffusion coefficient

(2) 7, Starting value of the absorption time

(3) 7*: The transport mean free path, which was estimated from the weighted average of

longitudinal and transverse scattering mean free paths

L2,
vzl +;Ei

l*:m’i’—L—;’T, (5-9)
_“;w*,.m___
v;,L v;‘r

where L and T represent longitudinal and transverse, respectively, and vy is phase
velocity.

(4) zo: The penetration depth into the sample where the source begins to diffuse, which
was assumed to be equal to the transport mean free path /* [Durian, 1994].

(3) L: The thickness of the sample

(6) v.: the Energy velocity, which was estimated by

73



> p.r
v, =— 5 (5-10)
+
2 2
vp,ng,L "p,r"g,r

where p and g represent phase and group velocity, respectively.

{7) R: Angle-averaged reflection coefficient of the diffuse waves, The details of the
calculation of R for acoustic wave are summarized by Schriemer (1997). This
calculation has been extended to elastic wave by Beck (2000).

(8) An amplitude factor that allows a normalization correction to be made.

The transport mean free path /*, the penetration depth z, the sample thickness L, the
energy velocity v, and the reflection coefficient R were fixed parameters, which were
determined numerically, based on ballistic measurements, by using a C program call

“crbar.c”,

The diffusion coefficient D and absorption time 1, were the fitting parameters. “crbar.c”

provided the estimated diffusion coefficient D based on the expression:

p=1yr (5-11)

3
We needed to estimate the initial values of the absorption time 7, and the normalization
factor by guessing. The fitting program calculated a diffusive pulse by using the fixed

parameters and estimated parameters, The calculated pulse was then compared to the

experimentally determined pulse to see if they were within the given convergence. If
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not, the program would adjust the fitting parameters, using a nonlinear least squares

minimum procedure, until the given convergence was achieved.

5.2.4.2 Preliminary analysis before fitting

To meet the requirement of the fitting program and make time and amplitude corrections,
some preliminary analysis of the reference and diffusive pulses was done. All the
analysis could be done on a personal computer rather than a unix/linux machine. In this

section, I would like to present the procedure for such analysis.

(1) Filtering.

As mentioned before, to investigate the frequency dependence of the diffusion properties,
we needed to filter the pulses with a Gaussian bandpass filter function with a narrow
bandwidth. A C program “Gauss4alltimes” was applied in this analysis. Usually,
~10% of the transducer frequency was used as the bandwidth, i.e., for 0.25 MHz data, a

bandwidth of 0.02 MHz was used.

For the reference pulse, we simply used “Gauss4alltimes” to filtered it to attain required

frequency components.

For the diffusive pulse, we made time and amplitude corrections on each individual

speckle, as described above, and extracted the ballistic pulse by averaging all of the
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corrected speckles, and subtracted the ballistic pulse from each speckle. Then
“Gaussdalltimes” was applied to all of the diffusive speckles with the same frequency

setting as that of reference pulse.

(2) Envelope
A C program “envelope” was used to calculate envelopes of both the filtered reference

pulse and the diffusive pulses.

(3) Intensity profile
The intensity profiles of individual diffusive pulses were obtained by squaring the
envelopes of them and then averaging the diffuse intensity profiles. This analysis was

done by using a C program “intdist.c”.

The intensity profile of the reference pulse was also required, which was ecasily created in

Origin by squaring the envelope of filtered reference pulse.

(4) Time correction

The fitting program required the center of the reference intensity profile to be located at ¢
= 0. To do this, we needed to find the time tpear COtresponding to the peak of the
envelope in Origin. Then the time fy., was subtracted from the reference intensity

profile in Origin or by using the C program “subtime.c”.
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The time correction of the ensemble averaged diffuse intensity required the same peak
time correction as the reference pulse and the time correction due to the effect of the
thickness of the sample and the walls. Hence, the total time that should be subtracted

from the ensemble averaged diffuse intensity profile is expressed by

‘me {c] + 2dwa 2d
(=1 —[ . < “"’”J (5-12)

v vV

water wall

(5) Normalization

The fitting program required the normalization of the reference intensity profile. To do
this, the numerical value .. of the reference peak was found and the reference intensity
profile was then divided by s To correct the ensemble averaged diffuse intensity,
another correction factor due to the difference in the attenuator setting between
measurements of reference and diffusive pulses was required in addition to dividing by
Apeat.  The total intensity correction for the ensemble averaged diffuse intensity is

expressed by
Inorm =1 measured / (] peak X IOAdB /10 )

where AdB is the attenuator difference between reference and diffusive pulses when the

data were acquired.

(6) Deleting redundant data points

There should be equal number of data points on both sides of the peak of the reference

77



intensity profile. Meanwhile, the data points in the reference profile whose absolute
values were smaller than 0.01 should be also deleted. To make the fitting program
converge quickly, the number of points in the diffusive intensity profile should be around

1000. This elimination of redundant points was done in Origin.

Afier all the procedures above were done, con_fit7w was used to fit the ensemble average

diffusive pulse.

5.2.4.3 Plane wave source results

Ensemble averaged diffusive pulses were determined at several frequencies in this
frequency regime (0.25 MHz). The incident pulse was Gauss 2 centered at 0.25 MHz.
The ensemble averaged diffusive pulses at some certain frequencies (0.2 MHz, 0.25 MHz
and 0.3 MHz) for samples 5, 6 and 7 were fitted by the predictions of diffusion theory.
The fitting results for sample 5 at each frequency are illustrated in figures 5.2.17, 5.2.18
and 5.2.19. In this frequency regime, the absorption time 7, determined from the fitting
program was infinity, which meant there was no measurable absorption present. The
diffusion coefficient D was found to be around 1 mm/us’® for all frequencies, which
suggested that the diffusion coefficient D was frequency independent in this frequency
regime. The values of diffusion coefficient D are shown in table 5.2.1. The diffusion
coefficients D for sample 3 and sample 4 are bigger than those for sample 5 and sample 6.

These results may suggest that the strength of bonds in sample 3 and sample 4 are

78



stronger, which was seen from a visual inspection of the size of the necks between the
beads in the samples. Stronger bonds are expected to result in larger velocities and

mean free paths [Schriemer ef al., 1996], and hence larger diffusion coefficients, so that

the wave diffuses more rapidly.

D (mm?/ps) | Sample 3 Sample 4 Sample 5 Sample 6 | Sample 7
0.2 MHz 4.6 5.6 2.5 2.0 2.1
0.25 MHz 4.2 5.1 2.3 1.8 1.8
0.3 MHz 4.2 4.3 1.9 1.7 1.7

Table 5.2.1 Diffusion coefficients for different samples.

One thing we should notice is that the values of the diffusion coefficient D in Table 5.2.1
are inconsistent with the relation D = %ve xI". This disagreement may bé attributed to
difficulties in determining the energy velocity v,, the penetration depth zy and reflection
coefficient . The group velocity graph (figure 5.2.9) shows that the group velocities
oscillated, which was due to resonant-like standing wave reflections inside the samples.
Hence, it was difficult to determine the group velocity. The penetration depth zq was
taken to be equal to the transport mean free path /°, which was estimated from the
scattering mean free path (5-9), and [° could be bigger than this estimate. The

angle-averaged reflection coefficient could also be bigger when the reflection in the
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sample walls was considered. If we adjusted v,, I and R in the fitting procedure, the
diffusion coefficient D could be determined that satisfied the refationDzéve x1".
Figure 5.2.20 shows the fitting result based on the possible values of v, and I that
satisfy D = %ve x{". In this fit, the input values v, = 3 mm/us and 7’ = 1.4 mm were in

the reasonable range.

5.2.5 Conclusion

In this section, the method of determining ballistic parameters, and the procedure of
analyzing and fitting intensity time profiles were presented. In the diffusive regime, the
transmitted intensity shows an exponential decay at long times and the diffusion theory

gives a very good description of the data.

80



Normalized intenstiy

0.01

1E-3

1E-4

1E-5

1E-6

1E-7

1E-8

1E-9

1 IIIIISII ] Illl?lll 1 IIIIIIII T ’l!llill T Illlllll T LML AN

T T Illill‘

o Data
Fitting curve

D=2.5 mm/us
R=0.89
[*=1.46 mm
Ve = 1.06 mm/us

amp = 4.8¢-2

L=14.5 mm

7 ~infinity, no absorption

| T TR ST TSR AU N TR M SN NN BT SR |

L l!llllll 1 1Ll

pav ol L1133 prinl

1 1 III!IIE

0 50 100 150 200 250 300 350 400 450

Time (ps)

Figure 5.2. 17 Fitting profile for sample 5 at 0.2 MHz.
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83



Normalized Intensity

0.0l Fr——T——T—————
¥ o Experiment | ;
Theory fit §°
1E-3 3
1E-4 | E
IE-5E 2 3
¢ D =3.0 mm/ps 1
i I*=25mm
R= 85
1E-6 __g v = 3.6 mm/ps =
| L=145mm “
[ ;8’ v ~ infinite (no absorption)
1E-7 Ll ' :

0 100 200 300 400
Time (ps)

Figure 5. 2.20  Adjusted fitting for sample 5 at 0.2 MHz.

84



3.3 Localized regime
5.3.1 Introduction

In the section 5.2, we presented the intensity time profiles of normal diffusive pulses in
the lower part of the intermedijate frequency range. The time profiles were found to fit
the theoretical predictions of the diffusion approximation very well, and had an
exponential decay, which indicates that the diffusion coefficient was constan{ over time.
In this section, I will present the results in the upper part of the intermediate frequency
range, in which the localization of sound was observed. Two different approaches, both
consistent with the theoretical predictions, were applied to demonstrate the localization of
sound in this regime. One of the approaches was the observation of a time-dependent
diffusion coefficient. In contrast to the exponential tail of the time profile in the
diffusive regime, the tail was non-exponential, indicating that the diffusion coefficient
was changing over time. The behavior of time-dependent diffusion coefficient was
consistent with recent theory predictions for localization. [Skipetrov and Tiggelen, 2006]
The other approach was based on measurements of the statistical distribution of the
intensity. Rather than the Rayleigh distribution in diffusive regime, the normalized
intensity distribution exhibits stretched exponential behavior, which indicates sound

localization,
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5.3.2 Time-dependent diffusion coefﬁciént

5.3.2.1 Time profile with non-exponential tail

In the upper part of the intermediate frequency regime, a non-exponential tail was
observed in the time profile of the ensemble-averaged intensity of the multiply scattered
waves. This non-exponential behavior starts at frequencies as low as 1.5 MHz at least
and was seen in all samples. Data for all samples are collected in Appendix A. Here I
focus on the analysis of data for sample 5. The transmitted intensities in the 2 MHz
frequency range were obtained by averaging 3025 speckles to attain smooth results.
Figure 5.3.1 shows the transmitted intensity for sample 5 at frequencies of 1.8 MHz, 2
MHz, 2.2 MHz, 2.4 MHz, 2.6 MHz and 2.8 MHz with a 0.2 MHz bandwidth. The solid
line shows exponential decay for comparison. A clear departure from exponential decay
was found at long times, an effect that cannot be explained by normal diffusion. To
make sure that this departure was not due to noise, the noise background before diffusion
started was subtracted from the transmitted intensity before further amalysis. The
dashed line in figure 5.3.2 shows the noise level (2.34x107 ), and the dotted curve
shows the transmitted intensity after noise subtraction. To calculate the diffusion
coefficient, the derivative of In(/(r)) should first be taken for every transmission profile,
according to equation (2-13). However, the little bumps in the transmission profiles
lead to a very noisy signal when the derivative is taken. We found that the intensity
transmission profiles of three high frequencies (2.4 MHz, 2.6 MHz and 2.8 MHz) had

similar behavior. To improve the signal-to-noise ratio, the average of the transmission
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profiles was taken for these three frequencies.

Before further analysis was performed, we tried to use diffusion theory to fit the early
time behavior of the high frequency averaged time profile (2.4 — 2.8 MHz), including
only the rise and initial exponential decay. Since the transmitted field in this regime was
dominated by scattered sound, the ballistic pulse was difficult to determine, so that we
could not use independent measurements of the mean free path and phase velocity to
estimate /* and R. Hence, we varied all the fitting parameters to find the best fit, shown
by the solid curve in figure 5.3.3; this curve gives a nearly perfect fit to the early time
part of the intensity profile. The parameters for the fitted curve are shown in the text
panel in figure 5.3.3.  The diffusion coefficient was 2.7 mm%ps and the absorption time
7, was 83 ps.  Apparently, absorption became large enough to measure in this frequency
range. Then the intensity transmission profile was cdrrected by multiplying it by
exp(i/t,) to eliminate the effect of absorption. The hollow circle symbols in the figure
5.3.3 show the modified time profile with no absorption; these corrected data were found
to satisfy the power law, shown by the dashed curve in figure 5.3.3, J(r) oc £ with s
~0.85.  This behavior is in sharp contrast to the exponential decay in the diffuse regime.
This observation of power law decay suggests the localization of sound. {Skipetrov and

Tiggelen, 2006]

To directly investigate the behavior of the diffusion coefficient, the logarithm of this
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average profile in figure 5.3.3 was taken and is shown by the hollow circles in the upper
panel of figure 5.3.4. Before taking the derivative of In(/(r)), the In({(r)) data still
needed further smoothing, which was done in origin by averaging 200 adjacent data
points, yielding the solid curve in the upper panel of figure 5.3.4. The derivative of
[-In(Z(D))] is shown as hollow circle symbols in the lower panel of figure 5.3.4. A fitofa
constant plus a function that is proportional to 1/f is shown by the solid curve. This fit

to the tail of the derivative (for £ > 150 ps, i.e. £ >> 1) gave 1.81//+1/83 4.

The theory prediction (2-13) giveshi(ln N E D(t)z 5 +i . However, this
dt [(L4+2z) /x"] =

a

expression used an approximate solution, which is valid only when /*/L and R are small.
This condition is not true for our case, so we need to use the exact solution instead of the

approximate solution. From equation (2-11) we obtain

2

4 _ By 1 )
ACHO) P D0+~ (5-8)

n=l a

Since /3y is dominant at long times, equation (5-8) can be approximated as

_d B e L -
o n1@) =2 D)+~ (5-9)

a

By comparing this expression to the fitted expression 1.81/r+1/83 .4, the absorption time

7o of 83.4 ps can be determined, which is consistent with the fitting parameter

2
7, = 83 us given by the diffusion theory. Meanwhile, the result {Z—;D(t) =1.81/¢ can
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1.8177
lzt

be derived. Hence, D(f) 1s expressed as D(t) = The value of g, is given

by the lowest positive zeros of the transcendental equation (2-3), which was calculated to
be 1.054 by using Maple. Therefore, D(¢) = 340/¢, which is plotted in figure 5.3.5, along
' d 1

with the scaled experimental data, ———(In{{t))——.
P 7 d[( (1)) .

1 a

The same analysis was done for lower frequency averaged time profiles as well. The
fitted result is presented in figure 5.3.6, giving D = 2.6 mm®/us and 7, = 110 ps. B, for
this setting was calculated to be 1.33. Hence, the time-dependent D(¢) was expressed as

260/t. The other relevant results are presented in figures 5.3.7 and 5.3.8.

This time-dependent diffusion clearly indicates that the localized regime has been
reached. However, there is still some uncertainty in the magnitude of D(¢), since this
depends on f,, which is depends on the fitting parameters /* and R, although D(¥) clearly
decays as 1/z. In the next section, I will describe ratio measurements by which the
additional information on time-dependent diffusion coefficient can be measured

independent of all other parameters in the model! for X(7).
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Figure 5. 3. 1 Intensity transmission for different frequency components. The solid
line shows the exponential decay for comparison.

90



IE3F T " T =T 7T " T T 7T T T T T T 773
164 | E
2| :
28] B B
= - ]
&
R= i ‘
E 15 | :
g . .
" i ]
& [ ]
b P -
"3
8
-_ 1E-6 -
S} I ]
= - ]
- :‘ﬁ | -]
1E7 || -
1E_8 :l PEEN DU R N R BT TR PR L a1 + 1 lE }

-50 0 50 100 150 200 250 300 350 400 450 500
Time (ps)
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Figure 5. 3.3 Solid circles: Transmitted intensity averaged over frequencies of 2.4
MHz, 2.6 MHz and 2.8 MHz. Solid curve: fit of the solution of the diffusion equation
to the early time behavior. Hollow circles: Transmitted intensity corrected by
eliminating absorption. Dashed curve: Power law fit to the intensity transmission at
long times (see text).
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Figure 5. 3. 4 Upper panel: The hollow circles show the logarithm of the transmitted
intensity and the solid curve is the smoothed result for In(/(f)). Lower panel: The
hollow circle symbol shows the derivative of In(/(£)) and the solid curve is the theoretical
fit to the data.
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5.3.2 Ratio measurements
5.3.2.1 The displaced point source technique
To circumvent the uncertainty in the parameters other than D(¢) that determine I(t), we
first applied the displaced point source technique. The experiment procedure was
described in section 4.4.2.2, where it was shown that the expression for the

time-dependent diffusion coefficient D(r) is

D) :dit

[—[(xa,f ~5,) + (g —ym)zlJ (5-10)

4In7_,
The displacement between the on- and off-axis positions of the hydrophone in our
experiment was 20 mm. This expression for D{¥) is independent of absorption and
boundary effects. Again, to reduce the uncertainty in the data, we averaged the
transmitted intensity over a band of frequencies that had similar behavior. The average
was taken of 2.4 MHz, 2.6 MIz, 2.8 MHz, 3 MHz and 3.2 MHz intensity transmission
profiles for both on- and off-axis measurements, as shown in the upper panel of figure
5.3.9. Since the input beam was not an ideal point source, a correction for this was
needed before performing the next step in the analysis. The cross section of the input
beam was approximated by a Gaussian profile, as shown in figure 5.3.10. The solid
curve in figure 5.3.10 is the Gaussian fit to the input beam profile, which gave a width
=229 mm. Then, the point source transmitted flux was corrected by convolving the

point source transmitted flux with the Gaussian input beam profile. Since the input

beam profile was symmetric in x and y directions, and only the integral in x direction was
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considered;

" -if S —Dg Bl
. A w, -t/ afDiad e’ E Ae™
e 2 x? 2 =
qurrccfed (t) = jJ(f)e 207 dx = Ie o e [2e dx n=1

—o0

21%

-xf/l(o-%2jﬂ(l')dt‘} e—f/fa iA e“DBﬁnZ’ /L2
2yme i (5-11)

\/(02 +2] D(t‘)dt') / [osz(r')dz') 2L

xo was 0 and 20 mm for on- and off-axis geometry respectively. Then, the ratio of

off-axis intensity to on-axis intensity is given by

£t

2 a’+2}1)(r')c.f:'
]ratio (t) =¢ ( ! J
Hence,
' 2 2
[D@Ydr = - e T
0 4 ln(jratr'o (t)) 2
Therefore,
2 2
D(t) = i{_ IS G_}
dt| 4In({,, (1)) 2

Because of noise, further smoothing of ID(t')dt' was needed before taking the
0

derivative, which was done in Origin by averaging 500 adjacent points. JD(t')dz" is
4]
shown by the hollow circle symbols in the middle panel in figure 5.3.9 and the smoothing

of jD(t')dt' is illustrated by the solid curve in the middle panel in figure 5.3.9. After
0
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taking the derivative of j D(¢')dt', the diffusion coefficient thus obtained is illustrated by
]

the hollow circles in the lower panel in figure 5.3.9. The diffusion coefficient was fitted
to the theoretical prediction that D < 1/¢ at long times. The result of this fit is shown
by the solid curve, giving D(t) = 6.6/¢, which also proved that the diffusion coefficient

was decreasing as 1/7.

100



1E-3
1E-4
1E-5
1E-6
1E-7
1E-8
1E-9

Transmitted intensity

! 3
_[D (¢")dt'95 -

0 20
(mm2/ 1s) 15
10

D(?) (mm’/us)

on-axis

150

175

TTT T FT Y

o D

1 I ¥

25

50

75 100
Time (ps)

125

150

i i
175 200

Figure 5. 3. 9 Upper panel: The solid and dashed curves show the on- and off-axis

f
intensity {ransmission, respectively. Middle panel: The hollow circles show ID(I‘)dt'

and the solid curve is the smoothed result.

¢]

Lower panel: The hollow circles show the

time-dependent diffusion coefficient D(#} and the solid curve is the fitted theoretical curve

for D(¥).

101



1-0 I L} I 1 I L} I ) i L] E L4 I
] o data
Gaussian fitting
0.8 _
06 - -
el
B
=
(7]
g
= 04 -
0.2 _
N ° i
0.0 1 1 I 4 1 1 | L i 1 ] 2 I

Position (mm)
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5.3.2.2 Ratio of plane wave measurements to point source measurements

In addition to the displaced point source technique, the ratio of the plane wave
measurement of /(7 to the point source measurement can also be applied to cancel out all
parameters other than D and to check the displaced point source technique result. The
same frequency range of data as that analyzed for the displaced point source technique
was used.  After correcting for the finite widths of the input beam of the quasi-plane

wave source and the point source, and taking the ratio of their intensities, we get:

2 [Dryar
1+——
plane 2 point
ratin = P (5-12)
point 2'[D(f)dld
1+-2
O-;n’ane
Hence,
! Jzaim ([ io 1)
J‘D(ﬂ)dfr —_PF ratio (5_13)
’ 2 1 - ]rﬂl‘fﬂ ( O-Pof”‘ )2
plane
Therefore,
d O—zf’fﬂ (Irario -1
D() =4 T - ) (5-14)
1 - Ira!ia ( e )2

plane

f
Before taking the derivative, we again smoothed jD(t')dt' , shown by hollow circles in
0

the upper panel in figure 5.3.11, by averaging over 500 adjacent points, giving the solid

curve in the upper panel in figure 5.3.11.  After taking the derivative, D(f) was obtained,
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as shown in the lower panel in figure 5.3.11.  The fitting of D(/) at long times gave 4.0/,
also showing that the diffusion coefficient decreased with time as 1/¢, although the value

found for D(f) was smaller than that found by the displaced point source technique.
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diffusion coefficient D(f) and the solid curve is the fit of the theoretical prediction.

105



5.3.2.3 Discussion

From both of the direct time profile analysis and ratio measurement analysis, we found
the diffusion coefficient is time dependent and decays as 1/¢ at long times. However, the
value of D(¥) found from the ratio measurements was much smaller than that from the
time profile measurement. This difference suggésts that the localization in the
transverse direction is much stronger than the localization in longitudinal direction.
This result may be taken as experimental evidence that the diffusion coefficient is a
function of both position and time in the localized regime, as proposed in a recent
theoretical model for the dynamics of localization in open 3D media. [Skipetrov and

Tiggelen, 2006]
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5.3.3 Statistical approach
5.3.3.1 Probability distribution of normalized intensity
As described in Chapter 2, in the diffuse regime, the probability distribution of the

normalized intensity is described by the Rayleigh distribution as fe.g., see Chabanov et

P&fﬁﬁ”""[‘éﬁiﬁJ 19

where (1) is the averaged intensity of all the speckles,

al., 2000]

In the localized regime, the probability distribution of the normalized intensity is

predicted to satisfy a stretched exponential distribution [Chabanov er al., 2000]

Lo ;
P( 0, >J ~ exp(— 2./gl, /(Iab)) (5-16)

where g'is a localization parameter. This stretched exponential form is predicted to hold

Iab

"

for large

For a complete set of data over a wide frequency range and for several samples, see
Appendix B. To calculate the probability of ,,/(1,,), the number of values of
1, /(Iab) falling in a certain bin size was counted and then was normalized by the total

number and the bin width. Usually, a larger bin width was chosen for large I, /(Iab),

where the number of counts was low and 1o decreased relatively slowly, than for low
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1, /(1,), thus ensuring optimal statistics at large I,; while not forgoing good resolution
at small /5. Take the intensity distributions for sample 3 in the low frequency range (~
0.7 MHz) for example. 289 speckles were acquired in this frequency range. The

intensity distributions at 0.6 MHz, 0.7 MHz and 0.9 MHz were found to be similar, To

improve the statistics, the number of counts in each 7, /(Iab) bin for these three
frequencies was added together, and the resulting average distribution was then
normalized. The resulting intensity distribution for this frequency range is shown in
figure 5.3.12. The solid line represents the Rayleigh distribution. The excellent

agreement between this distribution and the data indicates that the modes are diffusive.

The high frequency range around 2 MHz was also investigated. More than 3025

speckles were acquired for this frequency range. The distribution of I, /(Iab) for
sample 5, sample 6 and sample 7 in the frequency range 2.3 MHz, 2.4 MHz, 2.5 MHz
behaved similarly. Thus, to improve statistics, the distribution of I, /(Ia,,>for these
frequencies and samples were averaged together. Hence, the number of speckles
involved was more than 26500, which gave very good statistics. The resulting intensity
distribution is shown in figure 5.3.13. We can sce the intensity distribution shows a
clear departure from the Rayleigh distribution, which is shown by the dashed line. The
solid curve is a fit to the tail ([, /(Iab) > 10) of the data with equation (5-16). The best

fit of equation (5-16) to the data gives g'=0.84+0.10, which indicates the modes are

localized in this frequency range.
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Figure 5. 3. 12 Intensity distribution in the low frequency range (~ 0.7 MHz) compared
with the Rayleigh distribution.
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5.3.3.2 Variance of the normalized intensity

The localization of waves is characterized by large fluctuations in all transmission
quantities.  For quasi-one dimensional samples, it has been demonstrated that
localization is achieved when the variance of the normalized transmission satisfies

{Chabanov et al., 2000]

var(d,, /(1)) = “Z” (5-17)

whether absorption is present or not. This condition (5-17) corresponds to the
localization parameter g'<1. Although, equation (5-17) is only known to hold for
quasi-one dimensional systems, measurements of the variance of the normalized intensity

can still be used to probe the approach to localization for our 3D samples.

The upper panel in figure 5.3.14 illustrates the dependence of the variance of the
normalized intensity on frequency. The horizontal dashed line shows the threshold
value of 7/3.  Although this threshold may not be an accurate criterion for localization in
3D [Kogan and Kaveh, 1995], we can see that as the frequency increased, the variance
also increased, suggesting that the modes become more localized at higher frequencies.
The variances for different samples were also compared, and were found to have a similar
increasing trend, as shown in figure 5.3.15. The average variance for 2.3 MHz, 2.4

MHz and 2.5 MHz for sample 5, sample 6 and sample 7 was calculated to be 2.90+0.13,

corresponding to  g'=0.701£0.06 if equation (2-17) is assumed, which was close to the

value (g'=0.84 £0.10) obtained from the stretched exponential fitting in the last section.
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This suggests that equation (5-17), or a relationship that is very similar to it, may also

hold for three dimensions as well.

The dependence of the transmission coefficient on frequency was also measured, and is
shown in the lower panel in figure 5.3.14. _ To measure the transmission coefficient, the
amplitudes of the FFT spectra of each speckle, obtained by hydrophone scanning, were
averaged and then normalized by the reference pulse. This normalization therefore
eliminated the dependence on transducer response, and gave an accurate measure of the
average amplitude of the response function of the medium. The most striking feature of
the transmission coefficient is the existence of band gaps, which correspond to the large
dips in the transmission; the existence of band gaps in this random system was also
observed previously by Turner ef ol (1998). As pointed out by Turner e al., the upper
edges of the bandgaps correspond to scattering resonances of the isolated aluminum
spheres, suggesting that the mechanism that gives rise to the band gaps is more analogous
to the tight binding model in solid state physics than the Bragg scattering mechanism
(which requires a periodic structure). In this weak network system, the scattering
resonances, which correspond to large amplitude ultrasonic displacements in the beads,
become broadened by the coupling between adjacent beads and also shifted to somewhat
higher frequencies, forming the transmission bands that are seen above 0.5 MHz. In

between the transmission bands, band gaps are formed, since the overlap in the

resonances of the weakly sintered beads is not complete.
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The scattering resonances of the beads, short-range order effects that influence the
coupling between the beads, and the associated band gaps, facilitate the transition from
propagating to localized modes in the samples. We can see that spikes in the variance of
the transrwnitted intensity appear near the lower frequency edge of the band gaps of the
sample, indicating that the modes are strongly localized at these frequencies. The
widest band gap appears around 0.55 MHz, as shown in figure 5.3.16. The variance

reached 360 at the lower frequency edge of the band gap near 0.45 MHz.

The near-field intensity speckle pattern is also very helpful to demonstrate the signature
of diffusive or localized regimes. Figure 5.3.17 shows the near-field intensity speckle
pattern at 0.7 MHz. Most speckles overlap with each other, indicating that ultrasound
can readily diffuse through the sample suggesting that the modes are diffusive. By
contrast, the near field intensity speckle pattern at 2.4 MHz is shown in figure 5.3.18.
The pattern is dominated by a few bright spikes with little overlap between speckles,
which is another signature of the localization of classical waves [John, 1997]. Thus
figure 5.3.18 adds additional evidence that the localization of sound has been observed in

the upper part of the intermediate frequency regime in these samples.
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Figure 5. 3. 14 Upper panel: Variance of normalized intensity dependence of frequency.
Lower panel: Amplitude transmission coefficient dependent of frequency.
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Figure 5. 3. 17 Near-field speckle pattern at 0.7 MHz.
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Figure 5. 3. 18 Near-field speckle patiern at 2.4 MHz.
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5.4 Crystal

5.4.1 Motivation

In the last section, the band gaps, associated with short range order and the effect of
scattering resonances of the weakly sintered beads, were found for the random samples.
Here, the transmission spectrum of the crystals, for which the sintered aluminum beads
were periodically positioned, was investigated. Recently there has been a lot of work,
theoretically and experimentally, on band gaps in three-dimensional phononic crystals
[Liu et al., 2000; Yang e al., 2002; Page et al., 2003, Sukhovich ef al., 2004, Page et al.,
2005]. For those phononic crystals, the scatterers were monodisperse beads periodically
arranged in a close packed lattice, in which the beads touched each other but were not
attached to each other by bond connections. In this section, we present the results for
crystals made from our sintered beads system, in which sound propagation must proceed
through the network of coupled beads rather than through the surrounding medium,

making a complementary phononic structure to those studied previously.

5.4.2 Transmission coefficient

Three crystals of 3 layers, 4 layers and 6 layers, respectively, were made. In the
experiment, the incident pulse propagated along the [111] direction of a face centered
cubic lattice, in accordance with the design of the crystals. Two large-element-diameter
transducers were used to perform transmission coefficient measurements at 0.1 MHz,

0.25 MHz, 0.5 MHz, and 1 MHz. The experimental procedure was the same as that of
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ballistic measurements for random samples. From the transmission measurement, band
gaps, which corresponded to very small values of the transmission coefficient, were
found in some frequency ranges. The first widest band gap appeared around 0.55 MHz
for the three crystals. Figure 5.4.1 shows the details of input and averaged transmitted
pulses, and their Fourier spectra around 0.5 MHz for the 3-layer crystal. Figure 5.4.2

shows the details of the band gap around 0.5 MHz for the 3-layer crystal.

The transmission coefficient over the whole frequency range that we investigated is
plotted in figure 5.4.3 for three crystals with different thicknesses. As was mentioned in
the sample preparation section, our crystals had some missing bonds. Due to some
degree of disorder in the crystals, the amplitude transmission coefficient became noisier
as the sample thickness increased. The band gaps showed up in the same frequency
range for the three crystals. The comparison of the transmission coefficient between the
4-layer crystal and the random sample number 3 is shown in figure 5.4.4. The band
gaps appeared around the same frequencies, and have a similar width. Remarkably, the
random sample has a deeper band gap, showing that short range order, rather than perfect

periodic order, is all that is needed to form band gaps in this system.
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5.4.2 Group and phase velocity, and dispersion

For phononic crystals made from tungsten carbide beads immersed in water, ultrasound
tunneling was reported in the band gap [Yang e al., 2002]. In the band gaps of these
phononic crystals, the group velocities were found to increase as the sample thickness
increased, implying a tunneling time that is independent of thickness. In this section,
group velocities were also determined for our three crystals. In our crystals, an even
more striking effect was observed: the group velocity was found to be negative in the first
widest band gap of the 3 crystals, as illustrated in figure 5.4.5. This counterintuitive
effect results from the unusual dispersion in our crystals, which causes the beginning of
the pulse to travel faster than the tail, so that the peak of the pulse traveling through the
crystal emerges from the far side of the crystal before the peak of the incident pulse has
entered the crystal. From the plot, we can see that the negative group velocities became
more negative in the band gap as the crystal thickness increased, Meanwhile, because
of some degree of disorder in the crystals, the frequency range of negative group velocity

shrank as the crystals became thicker.

This observation of negative group velocities for evanescent modes in the gap is a rather
dramatic extension of previous observations of “supersonic” acoustic velocities in
phononic crystals [Yang et al., 2002], as well as superluminal group velocities for optical
pulses tunneling through the band gap of photonic crystals [e.g., see Steinberg ef al.,

1993].  For example, in a 1D photonic crystal made from a multilayer dielectric mirror,
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a group velocity equal to 1.7¢ was found, where ¢ is the velocity of light in vacuum
{Steinberg ef al., 1993]. More recently, a coaxial photonic crystal has been constructed
in which the tunneling of a pulse through the band gap is so fast that a negative group
velocity was observed [Munday and Roberston, 2002], although it is not clear that the
origin of negative group velocity in this simple 1D coaxial cable structure is same as in
our 3D phononic crystal. In all these cases, it is important to realize that there is no
violation of causality: the effect arises from a change in shape of the pulse due to
interference of the different frequency components, which in the case of anomalous
dispersion cause the peak of the pulse to be advanced rather than retarded in time as it

travels through the crystal.

Phase velocities were also measured from the pulse transmission data, starting at lowest
frequency range (0.1 MHz) where the correct n27 shift was casiest to determine. It was
found that the phase velocity was remarkably small at low frequencies, even for the
largest possible values (z = 0). Thus the data shown in figure 5.4.6 are the fastest phase
velocities in the 0.1 MHz frequency range, and data for higher frequencies were joined
smoothly to form a continuous curve over the entire frequency range. Figure 5.4.6
shows that phase velocities increased rapidly in low frequency range and dropped

significantly around 0.7 MHz, which was the high frequency edge of the gap.

Figure 5.4.7 illustrates the dispersion relation, which gives the relation between
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frequency and wave vector, where the wave vector & is determined from the measured

frequency and phase velocity v,

(2727 61
Ay,
The group velocity can be expressed as
vy =949, (5-2)

where w=2x/f'is angular frequency.  Hence, the negative slope around 0.5 MHz in the

dispersion curve is consistent with negative group velocity.
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Chapter 6 Conclusions

The transport of ultrasonic waves through sintered aluminum bead samples was studied
in the intermediate frequency range, in order to investigate the effects of very strong

scatlering on wave propagation in both disordered and crystalline media.

In the lower part of the intermediate frequency range (~0.25 MHz), we first measured the
ballistic parameters, the scattering mean free path as well as the phase and group
velocities, and used these parameters to evaluate the boundary conditions that influence
diffusive transport.  Then the ensemble-averaged transmitted intensity I(f) was
determined at different frequencies. [(z) for all the samples was found to have an
exponential decay at long times, which was very well explained by diffusion theory.
The fitting to the measured (¢} with the predictions of diffusion model enabled the values
of the diffusion coefficient D and the absorption time 7, to be determined. The values of
D varied from 1 mm?/ps to 2 mm?%ps for different samples, and D was found to be
independent of frequency in this frequency regime. This result is consistent with
measurements of the diffusion coefficient in very porous glass bead networks throughout
the lower part of the intermediate frequency regime [Page ef al., 2004], which in that case
extended over a much wider frequency range than in our léss porous samples. The
absorption time 7, was found to be infinity by the fitting, so that it was too small to

measure in the diffusive regime. The success of explaining the data by diffusion theory
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indicated that the multiply scattered ultrasound propagates by diffusion in the lower part

of the intermediate frequency range, which is therefore the diffusive regime,

In the upper part of the intermediate frequency range (~ 2 MHz), the scattering of
ultrasonic waves became stronger, so that the ballistic parameters were difficult to
measure. By contrast, the ensemble-averaged transmitted intensity I(r) was accurately
determined in this frequency range. In contrast to the diffusive regime, the tail of X7
had a non-exponential decay, which cannot be interpreted by the diffusion theory. In
this frequency range, the absorption time 7, became measurable. By fitting the initial
increase and the exponential part of the early time behavior of 1(r), 7, was determined.
After making a correction for absorption by multiplying I(#) by exp(t/z,), the tail of Kr)
~was found to obey the power law, I(¢) ~ t " with 5 ~ 0.85, which was predicted by the
theoretical calculations for localization [Skipetrov and van Tiggelen, 2006]. We then
calculated the values of the diffusion coefficient D from 1), and found the diffusion
coefficient D was time-dependent and was decreasing as 1/t at long times, which was also

consistent with the localization theory.

In addition to the observation of time dependence in the diffusion coefficient, the
statistical approach was used to show another signature of localization. The normalized
transmitted intensity was measured and the intensity distribution P(Lap/{apy) was then

obtained.  The tail (s;»>10) of the intensity distribution at frequencies near 2.4 MHz
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was found to exhibit stretched exponential behavior, P(s,, )~ exp(——2\/ﬁ ), instead of
the observed exponential decay in the diffusive regime. By fitting this stretched
exponential model to the data, the localization parameter g’ was determined, giving g’ =
0.84 + 0.10, which was consistent with the theoretical predication for localization that g
<1 [Chabanov ef al., 2000]. A large variance of the normalized transmitted intensity
was also found, which again is consistent with localization of classical waves. We
found that the variance increased as the frequency increased, indicating that the waves
become more localized at higher frequencies, but no sudden onset of localization can be

inferred from these data. This is also consistent with a recent theoretical prediction that

the localization transition is smooth for open systems [Skipetrov and van Tiggelen].

o0

Although the relation, P(s,)= I as, P(s,)exp(~5,/s,) [Kogan and Kaveh, 1995], is
s

0 a

only known to be valid for quasi-one dimensional systems, hence, so is the relation
between g’ and the variance of s,5, we still used it to obtain an additional estimate for g.
This relation gives g’ = 0.70 + 0.06, which is close to the value of g’ obtained from the
fitting to the tail of the intensity distribution, suggesting the relation between g and sg
may even hold for three-dimensional samples. The consistency of these observations
with the localization theory indicated the modes were localized in the upper part of the

intermediate frequency range, which can therefore be termed the localized regime,

Additional experiments were performed on phononic crystals, made from sintered
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aluminum beads in an fec structure, to investigate the effects of positional order on the
band gaps that underlie much of the interesting wave physics in this system. Incommon
with other phononic crystal systems, the main focus was on the transmission coefficient
and the coherent velocities (phase and group). It was found that the long range periodic
order of the crystals had litile effect on ﬂ;e position of the band gaps, confirming that the
dominant mechanism for the band gaps is coupled bead resonances and not Bragg
scattering.  The slight shift in the lowest band gap to higher frequencies can be
explained by the additional number of contacts between the beads in the crystal (12 for a
close-packed fec structure), since this will have the effect of shifting the resonances to
higher frequencies due to the additional stiffness imposed by neighboring beads. The
dynamics of wave transport through the band gap was investigated by measuring the
group velocity, which was found to be negative in the gap, with increasingly large
negative values for v, being observed as the thickness of the crystals increased. This
observation of negative group velocity is intriguing, because of the close analogy
between the tunneling of evanescent waves through a band gap in a phononic crystal and
the tunneling of a particle through a potential barrier in quantum mechanics [Yang ef al,

2002].

In conclusion, the most significant contribution reported in this thesis is the evidence for
the localization of ultrasonic (acoustic or elastic) waves in a random system with very

strong scattering. For over 20 years, convincing evidence for localization of acoustic
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-waves in three dimensional systems has been elusive, so that these new results on time
dependent diffusion and non-Rayleigh statistics represent a very significant step forward
by demonstrating that classical wave localization is indeed possible in 3D. In addition,
these data are motivating new theoretical work that has already begun in collaboration
with Sergey Skipetrov and Bart van Tiggelen to model the time and position dependence
of the diffusion coefficient quantitatively, and thus hold promise for advancing our
understanding of this challenging wave phenomenon. My results are also motivating
new experiments in the Ulirasonics Research Laboratory to explore additional
phenomena that have not previously been seen for ultrasonic waves, such as the behavior
of the phase and phase derivatives near the localization transition, as well as the
possibility of observing enhanced correlations, both dynamic and static, in speckle
patterns in the localization regime; in all these cases, there have been recent theoretical

predictions that so far have not been examined experimentally.
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Appendices

Appendix A Transmitted intensity profiles
A.1  Transmitted intensity profiles in the 0.25 MHz frequency
range
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Figure A. 1 Transmitted intensity profile at 0.2 MHz for sample 3.
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Fig. A2.  Upper figure: transmitted intensity profile at 0.25 MHz for sample 3;
Lower figure: transmitted intensity profile at 0.3 MHz for sample 3.
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A.1.2 Sample 4
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Fig. A.3. Upper figure: transmitted intensity profile at 0.2 MHz for sample 4;
Lower figure: transmitted intensity profile at 0.25 MHz for sample 4.

139



01—
0.01 Sample 04, centered at 0.3 MHz
1E3 f
1E4 |
2 eS|
& :
2
g 1ESr / D =43 mm'ps
2 157k R=0.88
X E J I*=1.6mm
g 1E-8 ) i v =13 mm/us
S E9f amp = 5.7e-2
1E10 b L=%3.05‘ num .
z, ~ infinity, no absorption
1E-11 -
1E-12 r ; i * 1 L i 1 1 1 1 .
-100 0 100 200 300 400 500

Time (ps)

A.1.3 Sample 6

S B S e e e B e e B
- E-3 _ Sample 06, centered at 200kHz _
1E-4 | .
Ry : ]
wr B B
5 - -
& ESE E
5 F D=2.0 mm’/us E
g : R=0.87
5 TESE /%= 1.6 mm 3
g v, = 1.3 mm/ps
“ ETE amp = 1.5¢-2 1
- L=235mm
1E-8 i 7 ~ infinity ]
1E-9 i PR IY NS ST YN NESIPHR NS M S SET T RS R T ST N ]

-100 -50 0 50 100 150 200 250 300 350 400 450 500
Time {ps)

Fig. A.4. Upper figure: transmitted intensity profile at 0.3 MHz for sample 4;
Lower figure: transmitted intensity profile at 0.2 MHz for sample 6.
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A.1.4 Sample 7
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Fig. A.6. Upper figure: transmitted intensity profile at 0.2 MHz for sample 7;
Lower figure: transmitted intensity profile at 0.25 MHz for sample 7.
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Fig. A7. Transmiited intensity profile at 0.3 MHz for sample 7.
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A.2  Transmitted intensity profiles in the 1 MHz frequency range
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MHz for sample 4.
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Fig. A.12, Transmitted intensity profile at 1.75 MHz, 2 MHz, 2.25 MHz and 2.5

MHz for sample 3.

148



A3.2 Sample 4
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Fig. A.13. Transmitted intensity profile at 1.75 MHz, 2 MHz, 2.25 MHz and 2.5
MHz for sample 4.
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A.3.3 Sample 6
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Fig. A.14. Transmitted intensity profile at 1.6 MHz, 1.8 MHz, 2 MHz and 2.2
MHz for sample 6.
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Fig. A.15. Transmitted intensity profile at 2.4 MHz, 2.6 MHz and 2.8 MHz for
sample 6.
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Appendix B Normalized intensity distributions

B.1  Normalized intensity distributions in the 1 MHz frequency
range

289 speckles were acquired in the | MHz frequency range for sample 3. As the
frequency increased, the deviations in the i_ntensity distributions from the Rayleigh
distribution became more pronounced. Since the statistics were not very good, it was

difficult to fit equation (2-15) to the tail of the experimental distributions.
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Fig. B.1. Intensity distribution at 0.6 MHz for sample 3.
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Fig. B.2. Upper figure: intensity distribution at 0.7 MHz for sample 3;
Lower figure: intensity distribution at 0.8 MHz for sample 3.
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Fig. B.3. Upper figure: intensity distribution at 0.9 MHz for sample 3;
Lower figure: intensity distribution at 1 MHz for sample 3.
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Fig. B.4. Upper figure: intensity distribution at 1.1 MHz for sample 3;
Lower figure: intensity distribution at 1.2 MHz for sample 3,
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Fig. B.5. Upper figure: intensity distribution at 1.3 MHz for sample 3;
Lower figure: intensity distribution at 1.4 MHz for sample 3,
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B.2  Normalized intensity distributions in the 2 MHz frequency
- range

B.2.1 Sample 3

3025 speckles were acquired in the 2 MHz frequency range for sample 3. The intensity
distributions all looked non-Rayleigh-like. However, the statistics for 7 /(] ) >10 were

not good enough to reliably fit equation (2-15) to the tail. ~Average of 7/(I) for some

frequencies for different samples will improve the statistics. (section 5.3.3.1)
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Fig. B.6. Intensity distribution at 1.6 MHz for sample 3.
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Fig. B.7. Upper figure: intensity distribution at 1.7 MHz for sample 3;
Lower figure: intensity distribution at 1.8 MHz for sample 3.
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Fig. B.8. Upper figure: intensity distribution at 1.9 MHz for sample 3;
Lower figure: intensity distribution at 2 MHz for sample 3.
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Fig. B.9. Upper figure: intensity distribution at 2.1 MHz for sample 3;
Lower figure: intensity distribution at 2.2 MHz for sample 3.
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Fig. B.10. Upper figure: intensity distribution at 2.3 MHz for sample 3;
Lower figure: intensity distribution at 2.4 MHz for sample 3.
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Fig. B.11. Upper figure: intensity distribution at 2.5 MHz for sample 3;
Lower figure: intensity distribution at 2.6 MHz for sample 3.
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Fig. B.12.  Upper figure: intensity distribution at 2.7 MHz for sample 3;
Lower figure: intensity distribution at 2.8 MHz for sample 3.
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B.2.2 Samples 5, 6 and 7

The intensity distributions for samples 5, 6 and 7 in the 2 MHz frequency range are

presented below
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Fig, B.13. Intensity distribution at 1.6 MHz for samples 5, 6 and 7.
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Fig. B.14.  Upper figure: intensity distribution at 1.7 MHz for samples 5, 6 and 7;
Lower figure: intensity distribution at 1.8 MHz for samples 5, 6 and 7.
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Fig. B.15. Upper figure: intensity distribution at 1.9 MHz for samples 5, 6 and 7;
Lower figure: intensity distribution at 2 MHz for samples 5, 6 and 7.
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Fig. B.16. Upper figure: intensity distribution at 2.1 MHz for samples 5, 6 and 7;
Lower figure: intensity distribution at 2.2 MHz for samples 5, 6 and 7.
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Fig. B.17. Upper figure: intensity distribution at 2.3 MHz for samples 5, 6 and 7;
Lower figure: intensity distribution at 2.4 MHz for samples 5, 6 and 7.
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Fig. B.18. Upper figure: intensity distribution at 2.5 MHz for samples 5, 6 and 7;
Lower figure: intensity distribution at 2.6 MHz for samples 5, 6 and 7.
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Fig. B.19. Upper figure: intensity distribution at 2.7 MHz for samples 5, 6 and 7;
Lower figure: intensity distribution at 2.8 MHz for samples 5, 6 and 7.
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