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Abstract

The focus of this thesis is on estimating multinomial cell probabilities in the
context of sparse, ordered data, in particular, using the normalized beta kernel
estimator (NBKE). The NBKE is a local smoothing estimator that uses non-
negative weights and that takes advantage of the natural ordering inherent to
certain types of data. It is flexible and self-adapting and leads to estimated
probabilities that form a proper probability distribution. Furthermore, it is an

asymptotically unbiased and normal estimator that is free of boundary bias.

Specifically, this thesis begins with a general discussion on probability estimation,
smoothing, and kernel estimation for discrete or categorical data. Secondly, many
of the properties and pitfalls of such estimators are discussed. Then the desirable
properties of the NBKE are examined through visual and mathematical proofs,
and with a simulation study. The final chapter of this thesis is an illustrative
example using the NBKE on data from a medical survey on inflammatory bowel

disease (IBD).

Key Words: Kernel estimation; Normalized beta kernel estimator; NBKE; Smooth-
ing; Bias-variance tradeoff; Boundary bias; Sparseness; Non-negative weights,

Multinomial cell probabilities.
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Chapter 1

Introduction

The impetus behind this Master’s thesis is a medical survey on inflammatory bowel
disease (IBD). One covariate of interest is the type of IBD as diagnosed by a sub-
ject’s physician. There are three main types, Crohn’s disease, Ulcerative Colitis
and Ulcerative Proctitis with the first two being the most prevalent. One out-
come measure is the number of symptom flares (outbursts) subjects experienced
within the six months prior to the study. Subjects were allowed to respond with
values ranging from 0 to a maximum of 99. Thus, under the reasonable assump-
tion that subjects are independent, symptom flares can be viewed as observations
from a multinomial distribution with proportion parameters Fy, Py, Ps, ..., FPog.
And, consequently, the focus of this thesis will be on estimating multinomial cell

probabilities, in particular, using the normalized beta kernel estimator (NBKE).

Another important objective of this thesis is to determine if there is a sta-
tistically significant difference in the distribution of symptom flares between the
group classified with Crohn’s disease and the group classified as Ulcerative Coli-

tis. There are a total of 247 testable subjects of interest in the IBD survey, fairly



evenly divided between the two IBD groups. There were very few subjects clas-
sified as having Ulcerative Proctitis or some other form of IBD. (See the Data

Appendix on the post processing done to the data.)

Under the null hypothesis, subjects in the two IBD groups come from the
same homogeneous population. Figure 1.1 plots the observed cell probabilities for
the two IBD groups. These preliminary results show that there could possibly
be differences, particularly in the upper-tail with counts for the Ulcerative Colitis
group being more clustered about 0. Observations for cells greater than 40 could
be considered extreme cases. Although this thesis will focus mainly on methods
of estimating multinomial cell probabilities, we will look at the result of including

and removing these cases in Chapter 6.

Figure 1.1 clearly shows that the assumption of an approximate normal dis-
tribution for the number of sympton flares would not be appropriate for either
group. Thus, a simple analysis using ANOVA or ANCOVA would not suffice for
this problem. Furthermore, these bar charts reveal the sparseness of the data.
The problem of sparseness in contingency tables occurs when the number of cells
is relatively large in comparison to the number of observations. This leads to
many categories or cells having low counts, namely zeroes and ones. A simple x?
goodness-of-fit test for homogeneity would also not be adequate for this problem
as this test is not adequate for sparse data. (Symptom flares could also be treated
as being from a Poisson or zero-inflated Poisson distribution, but that is beyond

the scope of this thesis.)

One solution to the problem of sparseness is to restrict observations into fewer
categories. By doing this, however, we lose some information and statistical tests

become less powerful. Another issue with grouping the data into fewer categories

2
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Figure 1.1: Bar charts of proportions of symptom flares for the two IBD groups



is that the method of grouping is quite arbitrary. Results from the same type of
test can vary greatly depending on the grouping configuration. Also, the upper
cut-off within a group is often more similar to the lower cut-off of the next group
than its own lower cut-off. For example, if the range of one group is 11-20 and
the range of the next group is 21-30, the value 20 is more similar to 21 than 11,

which is intuitively undesirable.

Another solution, which we pursue here, is to adjust the observed cell prob-
abilities, also known as maximum likelihood estimates (MLE), by using weights.
One method of adjustment is to use a so-called kernel estimator. A kernel is the
underlying function that allocates weights to cells or observations. A higher level
of adjustment or ”smoothing” denotes a greater departure from MLE probabili-
ties. When most of the weight is assigned to the cell of interest and its immediate
neighbours, there is less smoothing. When weights are more spread out, there is

greater smoothing.

The focus of this thesis is on estimating multinomial cell probabilities. Specif-
ically, in Chapter 2, we present a review on nonparametric probability estimators
for ordinal discrete or categorical data. In Chapter 3, we introduce the normal-
ized beta kernel estimator (NBKE) and derive some of its basic properties. In
Chapter 4, we discuss the properties of the bias and variance, both generally and
asymptotically. We also discuss the bias-variance tradeoff inherent to practically
all smoothing estimators, and offer some practical considerations when dealing
with finite samples. In Chapter 5, we perform a simulation study to compare and
contrast the effectiveness of the NBKE against the MLE and the geometric kernel
estimator (GKE) which we will later discuss. In the final chapter, we analyze the

data that was the motivation behind this thesis.



Chapter 2

Probability Estimation for

Discrete Data

When estimating probabilities, whether for continuous or discrete data, there is a
need for a measure that specifies what possible values a variable can take, and the
likelihood of obtaining such values. Together, these determine the distribution of
a variable. Within the realm of discrete or categorical data, the probability mass

function (pmf) is such a measure for the distribution.

Moreover, there is also a need for measures of accuracy and precision of an
estimator. The former describes, on average, how different an estimate (or that is,
its expected value) is from a true parameter, and is defined as the bias. The latter
describes how similar estimates are in general, and is defined as the variance. A
measure that encapsulates both the bias and the variance is the mean squared

error (MSE).



For now, let us concentrate on the distribution of multinomial data. A his-
togram, or bar chart, is commonly used as a visual representation of the distribu-
tion of a variable. For continuous data, a histogram groups data into bins. The
width of the bin determines the range of a group. The height determines a group’s
overall frequency or relative proportion. The bin width in conjunction with the
range of the histogram determines its overall shape and smoothness. Wider bins
translate to having a larger smoothing effect, and so, flatten the histogram. The
position of the first and last bins can also affect the number of peaks and troughs
that appear in the density curve. Thus, data from a multimodal distribution can
appear to have only one peak; see Silverman [ '] for an illustration using data on

geyser eruption times.

In the case of multinomial data, the bin width and range of the bar chart
are fixed where each bar represents a cell or category. The bar chart, of course,
can be condensed into fewer bars (or cells). This is what would be required
when conducting a x? test for sparse data, when many cells have low counts,
namely zeros and ones. One of the goals of this thesis is to explore a method that
eliminates the need to collapse data into fewer cells. This will be emphasized later

in Chapter 6, when we look at the IBD data in greater detail.

The parametric approach to probability estimation assumes that the data fol-
lows a known form of distribution. For example, data assumed to follow a Poisson
distribution would have a mean that is equal to its variance and would have a
specific form of pmf depending on only one parameter. A nonparametric ap-
proach requires fewer restrictions or assumptions for the purpose of estimation,

but typically involves many more parameters to be estimated.



A common nonparametric method to estimate cell probabilities, or propor-
tions, for discrete data is to use unadjusted observed cell proportions. Note that
these are the maximum likelihood estimates (MLE) of the true underlying cell
probabilities. Let X; be an observation from a multinomial distribution with
probabilities Py, Py, P, ..., Py,. Also, let N be the total number of observations
and N represent the number of observations equal to k. The MLE of P, the

probability for cell £ =0,1,2,...,m is,

A

B, = I(X; = k)

2] =

=1

, (2.1)

2|7

where [(X; = k) is an indicator function. This method, however, is problematic

for data with many cells having low or zero frequencies.

Good and Gaskins [}] were the first to introduce the maximum penalized
likelihood estimator (MPLE), initially in the continuous setup, then later in the
discrete setup. For the MPLE, a larger number of cells results in a greater penalty.

See Simonoff [ 1] for a further expansion on the discrete setup.

Simonoff [/ /] also details several basic methods that account for zero counts.
One such estimator, he describes as a ‘flattening’ one, adds a constant A to each
cell. The form of the ‘flattening’ estimator is very much like the MLE (2.1). It is

defined as,
~ Ne+ A

B = omTn 22)



Note that (2.2) can also be expressed as a Bayesian shrinkage estimator. In
this form, the estimator becomes a weighted average of the MLE and the discrete
uniform distribution which gives the same probability of 1/(m + 1) to all cells.
Recall that shrinkage estimators pull individual estimates toward the overall mean.

The shrinkage estimator is defined as,

. A €
P = (1 —¢€¢)P,
k(€) = ( €)k+m+1

where € = A(m + 1)/ [N + A(m + 1)].

When A = 0, the shrinkage estimator is equivalent to the MLE. A larger value
for A gives more weight to the uniform distribution, and thus, implies a higher
level of smoothing. As A approaches infinity, € aproaches 1, and the shrinkage

estimator converges to the uniform distribution.

Several choices of A were considered by Simonoff: 1, 1/2, 1/(m + 1) and
V'N/(m+1). To illustrate the effects of varying the level of smoothing, however,
we use A = 0,1,10, and 50. Figures 2.1 and 2.2 plot fitted probability curves for
the two IBD groups. In both figures, we see the pronounced reduction of the peak
at the boundary. It is also important to note that for A = 10 (or in general, large
A), the curves for the two IBD groups are almost indistinguishable. At A = 50, the
shrinkage estimator is already almost equivalent to the uniform estimator. This is
a precursor to the bias-variance tradeoff dilemma that is inherent to all smoothing

estimators. This issue will be discussed in fuller detail in later sections.
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Another possible solution to the problem of sparseness is to smooth the data
by using a kernel estimator. In essence, a kernel-weighted estimated probability
is a linear combination, or weighted average, of all the observations or observed
cell probabilities. A general form for a kernel estimator for discrete data can be

expressed as,
N,

P = S () 2.3
Wik z; k()N (2.3)

]S’W,;c denotes the probability estimate of cell k, 7]\\7} is the observed proportion of
observations falling into cell {, and Wy(l) is the weight assignted to cell [, when

estimating the probability of cell k, for kK =0,1,2,...,mand [ =0,1,2,...,m.
Note that (2.3) reduces to the MLE probability estimates when

1 for ==k,
Wi(l) =

0 otherwise.
In other words, no weight is given to other cells when estimating .

It is also important to note the difference between a simple scalar-weighted
probability estimator (rarely used), and a kernel-weighted one. A scalar-weighted

estimator can be expressed as,

Psy = Sk%:,

for some sequence of constansts 0 < S, < 1. This is more similar to the shrink-
age estimator as smaller weights pull ﬁg,k closer to 0 and weights closer to 1
pull ]Ss’k closer to the MLE probability. Also, with this method, categories with
zero frequencies will continue to have probability estimates of zero. With kernel
estimators, however, zero frequencies do not necessarily lead to zero probabil-

ity estimates because estimated probabilities are based on a weighted average of

several cell probabilities, not just one.

11



The level of smoothing is determined by the allocation of weights to cells or
categories. Most smoothing techniques allocate larger weights to neighbouring
cells. A higher level of smoothing is achieved as the weights assigned to each
cell approach equality. Figure 2.3 shows the NBKE weight functions for cells 10
and 50 at various levels of smoothing. The parameter ¢, which will be discussed
in greater detail in Chapter 3, specifies the level of smoothing with a higher
value indicating less smoothing. We can see that the range of cells with non-
neglible weight widens and the peak decreases as the level of smoothing increases.
A challenge to using any smoothing technique is determining the appropriate
level of smoothing for a given situation. For an introductory discussion on kernel

estimation and smoothing parameter selection, see Schucany [’ ].

A local smoothing estimator is one that assigns weights primarily to the cell of
interest and its neighbours. This is practical when neighbouring cells are assumed
to be similar, which is often the case of ordinal, numeric data. One situation where
this assumption is appropriate is if data values are truncated or grouped from
continuous values. For example, height measured in centimetres can be rounded
up or grouped into discrete categories. A property inherent to local smoothing
techniques is the flattening of local extrema. Since full weight is not given to the
cell of interest, but distributed among neighbouring cells, the magnitude of a local
minimum and maximum is lessened. In other words, the height of a modal area is
decreased and the depth of a valley area is reduced. In Figure 2.3, if either cell 10
or 50 were a local extrema, and probability estimates were plotted, we would see
the mitigation of the height or depth with higher smoothing. See Aerts et al. [/]
for an example and discussion on local polynomial fitting for sparse multinomial

data.

12
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Burman [] summarizes two main reasons for smoothing:

1. Smoothed estimators (which include kernel estimators) are often superior to

the MLE under squared error loss due to the bias-variance tradeoff.

2. The occurrence of zero cell counts can be problematic when estimating or

testing in some parametric and nonparametric models.

For now, it would perhaps be better to address the general issues encountered
when using kernel estimators. This will lead to the next chapter where the nor-
malized beta kernel estimator (NBKE) is discussed more in depth, specifically
detailing how this estimator does not exhibit some of the problems of other kernel
estimators, but exhibits other desirable properties. For a comparative study of
kernel-based estimators for categorical data, and a discussion on their implemen-

tation for missing or incomplete data, see Titterington [I].

Often, in the case of continuous data, the kernel is symmetric. For details on
density estimation for continuous data, see Silverman [1:]. In general, whether
for continuous or discrete data, most would argue that it is reasonable to allocate
equal weight to cells that are equal-distanced from the cell of interest, especially for
neighbouring cells. This is a problem, however, when estimating cell probabilities
near the boundary, or more specifically, cells 0 and m, as there are not an equal
number of cells that are greater than and smaller than the cell of interest. The
term ‘bandwidth’ is often used to define the range of a weighting function. Kernel
estimators with a bandwidth that allocates non-negligible weights to cells outside
the support of data will exhibit boundary bias. In this case, weights are assigned
to cells that do not exist! It is important to note, however, that this issue is not

exclusive to symmetric kernels.

14



An example of such an estimator is the geometric kernel estimator (GKE) as
dicussed by Wang and Ryzin [ ]. When estimating the probability of cell k, the

weighting function of cell [ is defined as,

W () = 0.5 10=D (1 — 5)slk (2.4)

where 0 < s < 1 is the smoothing parameter, with values closer to 0 denoting less
smoothing. For each k, the weights sum up to 1 for all integer values of |k — [].
This is a problem, however, if the total number of cells or categories (m) is small,
as the sum of the weights will not add up to 1. In general, when weights do not
sum up to 1 (either across k or 1), this can lead to probability estimates that do
not sum up to 1 which is not a desirable property! We will compare the GKE

with the NBKE in a simulation study later in Chapter 5.

A reflection technique can be used to redistribute the weight from the area
beyond the boundary back to the scope of the data. This increases the weight
assigned to the boundary cell and its neighbours, but does not necessarily solve
the problem of boundary bias completely. Another undesirable result is that the
resulting estimates do not form a proper probability distribution. This problem,
however, is not limited to kernel estimators using data reflection. Kernel estima-
tors that allow negative weights can also lead to probability estimates that are
negative. Thus, these too can result in estimates not forming a proper probability

distribution.

Rajagopalan and Lall [ )] developed a kernel estimator to account for data ex-
hibiting characteristics of multiple geometric distributions. In their case, the data

were highly concentrated about the origin and had a long tail. Their motivation

15



was estimating the distribution for the length (in days) of continuous rainfall, and

dry periods.

Burman [] introduced a kernel estimator for smoothing sparse contingency
tables that requires an important assumption of underlying smoothness in the
density. Burman explains this assumption by defining the probability of cell k as
the area under a density curve between k/(m + 1) and (k+ 1)/(m + 1) with a
support ranging from 0/(m 4 1) to (m +1)/(m+ 1) (or more specifically, 0 to 1).

Burman also stipulates that there is no boundary bias when Fy = 0 or B, = 0.

The focus of this thesis is on the normalized beta kernel estimator (NBKE). It
too is a kernel estimator that is most advantageous when used on discrete data that
is naturally ordered and that may exhibit sparseness, but does not require the same
stipulation as Burman for there to be no boundary bias. Chapters 3 and 4 focus
on the general and asymptotic properties of the NBKE such as the bias-variance
tradeoff and how this affects the choice for the level of smoothing. In Chapter
5, through a similation study we will see the effectiveness of the NBKE over the
MLE and GKE. In Chapter 6, using the IBD data as a case study, the NBKE will
be applied to sparse, ordered multinomial data with a high concentration about

zero, and a long tail.

16



Chapter 3

The Normalized Beta Kernel

Estimator

The normalized beta kernel estimator (NBKE) is a nonparametric estimator for
discrete data adapted from a continuous setup, see Chen [{]. It is nonparametric
because the estimated pmf (of the data) is not assumed to belong to a specific
parametric family. Beta weighting functions are just tools used to improve upon
MLE estimates which are simply observed proportions. As previously mentioned,
the NBKE does not exhibit problems common to other kernel estimators for dis-
crete data, but more importantly, it exhibits other desirable properties. Recall
that its weighting scheme requires an important assumption that there is an un-
derlying smoothness and order to the overall distribution to be estimated. The
assumption implies that neighboring cells are similar to each other so allocating

the most weight to the cell of interest and its immediate neighbours makes sense.

17



3.1 The Binomial Kernel

We start with the simplest version of the NBKE using binomial probability weights.
It will become clear in the next section how this estimator based on binomial
weights is a specific case of the NBKE. Let X, Xs,..., Xy be observations from
a multinomial distribution with proportion parameters Py, P;, Ps, ..., P, and size
parameter N. When weights are assigned to individual observations, the binomial
kernel estimator of the k-th cell (or category) probability is defined as,

. 1 X (m\ /z;\* g™k 1 &
., — — —_—— oD m——— [\ - .1
Por= 7. <k>< ) (1 ) szle"’m(xZ)’ (3.1)

m m

where the function By ,(z;) denotes the binomial weight of the i-th observa-
tion, for 7 = 1,2,...,N and k£ = 0,1,...,m. Note that these weights are all
non-negative and correspond to the binomial distribution with the probability of

success z;/m € [0, 1].

Note also that although there are N observations, there are only m + 1 dis-
tinct weights. So, it is possible to rewrite this estimator in a form similar to
equation (3.1), but with weights expressed in terms of the cells. The binomial

kernel estimator simplifies to,

Pgy, = g%gw — 2,) By ()
- SR E) R
- > N,.0, (52)

o~
1l
o

where I({ = ;) is an indicator function and By (1) is the binomial weight of the

[-th cell when estimating the probability of the k-th cell.
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Proposition 3.1.1. When estimating the probability of the k-th cell, binomial

kernel weights are mazimized at | = k.

In other words, when the weights are plotted, the peak is located at cell [ = k.
Hence, estimating P, using (3.1) makes sense as observations close to k contribute
more to this weighted sum of binomial probabilities. Similarly, estimating Py
using (3.2) makes sense as cells close to k are allocated more weight. Also recall
the assumption that there is an underlying smoothness to the distribution of
multinomial probabilities. This means that neighbouring cells are similar to each

other; so it is reasonable to assign larger weights to cells closest to k.

We now present the proof for maximal weight at [ = k for the special case of
the binomial kernel. We will later formally state this property as a theorem and

provide an asymptotic expression of the weight for the general NBKE.
Proof of Proposition 3.1.1:

Recall the binomial weight function in (3.2),

o= (3)(8) (-4

We will prove the above proposition for three different cases: (1) k = 0, (2) k = m,
and (3) 0 < k < m.
For the first case, the weight function becomes,

Bo(l) = (1~ )™

As Bom(l) is a decreasing function of [, it is obvious that By, ({) is maximized at

[ =0, and hence, at [ = k.
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For the second case, the weight function becomes,

Brm(l) = ()"

As B, m(l) is an increasing function of I, it is obvious that B, (1) is also maxi-

mized at [ = m, where £k = m in this case.

For the third case, in order to verify that I = k is a global maximum over

0 <1< m, we need to consider the boundaries. For this, note that,

- () 6-Y 70w

IO

Now, it easy to to see that By, (l) > 0 for 0 < I < m, implying that the maximum

and

will be reached away from the boundaries. So let us consider the natural logarithm

of By (1) for 0 <1 < m,

log By (1) = log <7Z> + klogl — klogm + (m — k) [log (m — )] — (m — k) logm.

The first derivative of log By ., (1) with respect to [ is,
Olog Bym(l) _ k  (m—k)

ol I m-1"
Equating the above to zero and solving for I, we get that [ = k.
Next, consider the second derivative of log By, (1),
PlogBrn(l)  k  (m—k)

021 __Z_Q—(m—l)2<0

for all 0 < 7 < m which tells us that the weight is maximized at [ = k. Therefore,

for any value of k =0,1,...,m, By ,(I) is maximized at [ = k. O
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Note, (3.3) and (3.4) tell us that when we are estimating the probability of an

interior cell, 0 weight is given to both boundary cells.

Proposition 3.1.2. The estimated probabilities PB’k fork=0,1,...,m are non-

negative and sum up to 1.

Proof of Proposition 3.1.2:

First, note that,

Eann-£ () &) (-4~

k=0 k=0

Then, using property (3.5), we have,

m N m m N
> Ppr o= >N NlBk,m(l)
k=0 k=0 1=0
m N m
= > ﬁl > Brm(l)
=0 &V k=0
"N N
g N N

O

The property of having estimated probabilities sum to one is required for

unbiased estimation. To obtain this property, the weights must sum to one across

some index (in our case, k). It is important to note, however, that having weights

sum to one does not always guarantee that estimated probabilities will sum to one.

We will see an example of this in the next section as we explore the importance

of the weighting scheme.
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3.2 The NBKE

The normalized beta kernel estimator (NBKE) is essentially a generalization of the
binomial kernel estimator introduced in the previous section. It is an estimator
that allows an infinite range for the level of smoothing. More importantly, it
is normalized so that the complete collection of estimated probabilities have the

preferable feature of summing to 1.

Let X1, Xs,..., Xy be observations from a multinomial distribution with pro-
portion parameters Py, Py, P, .-+, P, and size parameter N. For ¢ > 0 and
0 <t < m, let the beta kernel function be defined as,

Bc’j,m(t) _ F(cm + 1) ( ¢ )cj (1 _ i>c(m—j) (3.6)

T(cj+ )T (em —cj+1) \m m

where m is the upper boundary cell, j is an index for cells and I'(z + 1) = 2! for
positive integer values of z. Beta kernel functions will serve as tools to compute
initial kernel weights, and eventually, normalized kernel weights. Note that beta
kernel functions are non-negative, and so, a sum of kernel weights is also non-

negative.

The beta kernel function in (3.6) can also be expressed as,

Bosm(t) = (Cg) <%)J (1 _ %)c(m_j). (3.7)

The second form of the beta kernel function in (3.7) is useful for integer values of
c. For the NBKE, a larger value of ¢ translates to less smoothing. (This is often

not the case with smoothing parameters for other kernel estimators.)
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When weights are assigned to individual observations, the general form of the
NBKE of the k-th cell probability is defined as,
1 N
Z We km (), (3.8)

=1

where W, m(z;) denotes the NBKE weight of the i-th observation when estimat-
ing the k-th cell (or category) probability, for i =1,2,..., N and k=10,1,...,m

In terms of beta kernel functions, W, ;.. (z;) can be expressed as,

Bc SR AT
Wc,k,m(xi) - Py i (x)

. (3.9)
=0 Bejm(z:)

Note that B m(z;) in (3.9) can be viewed as the non-normalized beta kernel
weight of the i-th observation, or for lack of a better word, an unscaled kernel
weight. 3770 Bejm(7;) is the sum of all possible beta kernel weights of the i-th
observation. (There are m+1 different beta kernel weights for the i-th observation,
one for each category.) Thus, W, .(z;) can be interpreted as the fraction of
weight for the ¢-th observation used for estimating P, with respect to the sum,

hence the term normalized beta kernel.

Similarly to (3.2), the estimator in (3.8) can also be expressed in terms of the

cells,

Z chm (3.10)

where W, 1. m (1) is the NBKE weight of the i-th cell (or category), for{ = 0,1,...,m,

when estimating the probability of the k-th cell. It is defined as,

By (l
Wc,k,m(l) T =m - ( )

7=0 Bc,j,m(l). (3.11)
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Similarly, Begm(l) can be viewed as the non-normalized (or unscaled) beta.
kernel weight of the [-th cell when estimating P,. Also, it B.;m(l) is the sum
of all possible beta kernel weights of the I-th cell, and We rm(l) can be interpreted
as the fraction of weight for the I-th cell used for estimating P,. Table 3.1 is an
(m+1) x (m+1) grid of all possible unscaled beta kernel weights, with %, the main
cell of interest indexed along the rows, and [, the index of general cells indexed
across the columns. The normalization method used in this paper is with respect

to the sum of a column.

Table 3.1: Table of non-normalized beta kernel weights B (1.

Cell 0 1 xp [ e m—1 m
0 1| Beom(l) |-++| Beom(l) |+++| Beom(m—1) | 0
1 0 Beam(l) |--+| Beim() |-+ Beim(m—1) |0
k 0 Bc,k,m(l) T Bc,k,m(l) e Bc,k,m(m - 1) 0
m—1 0 Bc,m—-l,m(l) e Bc,m—l,m(l) e Bc,m—l,m(m - 1) 0
m 0| Bemm(l) |-+| Bemm() |+ Bemmim—1) |1

Although, perhaps counterintuitive, it is important to note that the weights
Wekm(l) do not necessarily sum to unity, when added over [, for any fixed k. In
other words, the weights used for estimating P, do not, in general, sum to one.
This implies that (3.10) cannot be interpreted as a convex combination of the

observed cell frequencies.
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In contrast, however,

for any fixed [ because of the method of normalization. In other words, when
the beta kernel weights in Table 3.1 are normalized, the resulting weights sum to
one within a column. We have already seen this property used to prove that the
estimated probabilities obtained from binomial kernel estimator sum up to one.
It will be used again when we prove, for the general case, that NBKE estimated

probabilities sum up to one.

Some readers may be inclined to think that the normalization is with respect
to the wrong sum, that is, that the normalization should be with respect to the
sum of a row, when refering to Table 3.1. Specifically, when estimating P, the

weight assigned to individual observations could be defined as,

Bc k m(xz)
H k,m ‘TZ = m — A
C,Ry ( ) zj=0 Bc,k’m(j)
Or, when weights are assigned to cells,
Bc k m(l)
Hepm(l) = =3 < 3.12
( ) Zj:o Bc,k,m(j) ( )

In this case, when estimating Py, the beta kernel weight of cell [ is divided by
the sum of beta kernel weights of all cells. An advantage of this version of the
normalization is that the proof of maximal weight at [ = k would be easier to
obtain. Since the denominator of H,(I) does not contain I, we could treat it as
a constant, and modify the proof for Proposition 3.1.1 of the binomial case. The
disadvantage, however, is that the estimated multinomial probabilities do not, in

general, sum up to one. This is obviously not a desirable property.
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To see this, let pk(c) denote the probability estimate of cell k using the second

version of the normalization in (3.12). Then,

kﬁj: Pk(c) = ;g: g: %Hc,k,m(l)
-3 %f_ S NiHy (D). (3.13)

&
It
o

l

Il
=}

In order for (3.13) to equal 1, the following must hold true,
ZNch,k,m(l) = Ng.
1=0

This is not always true, however, unlike the normalization method in (3.11).

Now, it is obvious that the beta kernel functions defined as in (3.6) and (3.7)
are non-negative. Hence, the NBKE weights as defined in (3.9) and (3.11) are
non-negative. A useful property of the NBKE, then, is that probability estimates
are non-negative, but more importantly form, a proper probability distribution.
In other words, the probability estimates sum up to one. A formal theorem and

proof are given in the next section.

Moreover, the NBKE weight function naturally varies for each cell, but its
scope is fixed between the minimum and maximum cells (the domain of the data).
This means that the shape of the kernel changes automatically without having to
change any smoothing parameter, and that no weight is assigned to non-exisiting
cells. This is in contrast with most kernel estimators, particularly the ones with

symmetric weight functions as mentioned in Chapter 2.
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Figure 3.1 shows the NBKE weight functions of some interior cells for ¢ = 1,
¢ = 10, and ¢ = 100, where cells range from 0 to 99, as in the IBD study. Values
of 1 and 10 for ¢ were chosen to represent high and moderate levels of smoothing.
A value of 100 for ¢ was chosen to represent an estimate close to the MLE, or in
other words, minimal smoothing. It is clear that for cells closer to the boundary,
weight functions are more asymmetric and their peaks are higher. Asymmetry,

however, is less obvious at lower levels of smoothing (i.e. for larger values of c).

It is also important to note that the range of cells with non-neglible weight
is narrower for cells closer to the boundary. This means that for the same value
of ¢, interior cells receive greater smoothing and boundary cells receive lesser
smoothing. This is a property we will witness through a simulation study in

Chapter 5.

Because the NBKE weight function is self-adapting, its peak is always located
at the cell of interest. In other words, when estimating P, the largest weight is
assigned to cell k. (We prove this property for ¢ = 1 and for asymptotic ¢, but we
do not prove it for ¢ < 1.) This might explain the absence of boundary bias. This
will be formally expressed in Theorem (3.3.1). We can see in Figure 3.1 that for
interior cells, the largest weight (peak) is located at the cell of interest regardless
of the degree of smoothing. This is also true for boundary cells as can be seen
in Figure 3.2. Furthermore, no weight is assigned to cells beyond the boundary.
Thus, because of the NBKE’s self-adapting and local smoothing properties and
because kernel weights become more concentrated as the smoothing parameter ¢
increases, the NBKE is asymptotically unbiased with respect to ¢. This is also

formally expressed as a theorem in the following chapter.
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Figure 3.1: Self-adapting NBKE weight functions, ¢ = 1, 10 and 100.
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Also, note that when ¢ = 0, the NBKE takes the form of a uniform estimator.
This is the greatest level of smoothing possible. When estimating any P;, all cells
are given equal weight, namely 1/(m + 1). The resulting estimate will then be

B,(0) = 1/(m +1) for all cells.

An inherent property of practically all smoothing techniques is the existence
of a tradeoff between bias and variance. Although the NBKE will be proven to be
asymptotically unbiased, it is biased in general, in particular at the local extrema.
Recall that we use local smoothing under the assumption that neighbouring cells
are similar, and that there is an overall smoothness to the distribution. In modal
areas, the NBKE tends to underestimate and in valley regions, the NBKE tends
to overestimate. Dong and Simonoff ['] postulate that for many discrete kernel
estimators, probability estimates for cells about the boundary can exhibit the

most volatilty.

In our simulation study in Chapter 5, we will see that for the NBKE, the
degree of bias differs for modal regions. Thus, choosing the degree of smoothing
is very important. This is a reflection of the bias-variance tradeoff first mentioned
in Chapter 2. The decision whether to accept larger systematic error (bias) versus
random error (variance) has to be made based on the needs of the situation. This
tradeoff, the Mean Squared Error (MSE) and the Mean Sum of Squared Error

(MSSE) of the normalized beta kernel estimator are also discussed in Chapter 4.
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3.3 Basic Properties of the NBKE

In this section, we formally present some useful theoretical results previously men-

tioned in Section 1 of this chapter.

As can be seen in Figures 3.1, and 3.2, the peak is located at cell k regardless of
the level of smoothing. This implies that the k-th cell has the largest contribution
when estimating P, which is, of course, a desirable property. We now formally

state this in the form of a theorem.

Theorem 3.3.1. When estimating Py, the probability for cell k, the largest weight

15 assigned to cell k.

Theorem 3.3.2. When estimating B,

1 ifk=1,
lim Wepm(l) =

0 ifk+#L
This property is useful for confirming two main properties. The first is that the
NBKE estimated probabilities are asymptotically equivalent (with respect to the
smoothing parameter ¢) to the MLE, or, in other words, the observed proportions.
The second is Theorem 3.3.1. When estimating Py, as ¢ increases (or with less
smoothing) the weight allocated to cell k¥ approaches 1 and all other weights
approach 0. We know this condition already holds for the binomial kernel, or,

when ¢ = 1. We, however, leave the case for 0 < ¢ < 1 open for future studies.
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Proof of Theorem 3.3.2:

First, consider,

Bc,k,m(l)
;nOBij(l)
ckm( )/Bclm( )
70 Bejm(1)/Beim(l)
Ckm( )/Bclm( )
L2054 Bejml(l )/ Beam(l)

Wc,k,m(l)

(3.14)

We now need to show that,

. 1 it j=1
lim Bejm(l) = J
=2 Bam(l) | 0 541

It is trivial to show that the above limit holds when 7 = [. The proof, in the case
of j # I, will be derived separately for (1) j > [ and (2) j < I. For these proofs,

Lemma B.1 is required. (See the Technical Appendix.)

For these two cases, first consider,

D(em+1) 1\ l e(m—j)
Beiml) _ Tamtteremm () (1= %)
Bc m [ N T'(cm+1) 1\ ¢ 1\ e(m=1)
b ( ) I(cl+1)T(em—cl+1) <_> ( - E)
D+ 1)T(em —cl+1) 1 =D o 1\ U
B I'(cj+1)T(em —cj + 1) m
T+ 1) (em —cl+ 1) (el)6D 1 e(i~1) .15
T(ej+ 1T (em —cj +1) c(m —1) SRS
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Now, for the case where [ < j < m, expanding (3.15), we get the following

Bejm(l) _ L(cl 4+ 1)T(em —cj)(em —cj+ 1) -+ [em — ¢j + ¢j — ]
Beym(l) Llel +1)(cl+1)--[cl + (¢f — e)]T(em — cj)
) 1 (i)
x(el) L(m - Z)]

{( (c1)°6-D } {(cm —cj+1)--(em— cl)} _ (3.16)

cd+1)---(cj) [e(m — 1)U~

The first term on the right-hand side of the previous equality can be bounded as,

e(i—1) ) ) )
S i g — - = | = ]- —1-] ,
(cl+1)--(cf) c+1 cd+1 cl

so that,

(D) G-
im | — D7 ] [1 - i} g (3.17)
00 (Cl + 1) e (C]) =500 cl

Using Lemma B.1, the second term of (3.16) can be bounded as

[(cm—cj—l—1)---(cm—.cj+cj——cl)}
fe(m = )]

. 1
[cm —cj+ .(ca—gl)+1r(9 )

= T elm Do

cm — ¢j + ——(Cj;d)

. (1)
< { [e(m — 1] {1+2(cm—0j+‘c%c‘l)}}
) [w} e(i-1) [1 . Z(—._.l__)} c(3—1) |

2m — 21 2m — g5 —1

From this, we have,

lim
C— OO

{(cm—cj—#1)---(cm—cj+cj-—cl)}
e(m — D)

)
9 —
lim { m — (j +l)}

IA

C—=C0

2m — 21

C— 00

e(i-1)
! )} L (3.18)

x lim {1%‘2(—2‘77—2_]—._[-
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Now, note that in (3.18),

1 Y viemeioy
lm (14— | = 0=D/Cm—D),
= { * c(2m )} ©

C— 0

and j > [ implies that,

Therefore from (3.16), (3.17) and (3.18), for j > [, we get,

lim ———Bc’j m(l)

oo Bc,l,m(l)

=)

- c(i—1)
{2&—_011)} x [eimD/em=iD] =G0t g,

<1
=8 om — 21

8

For the case where 0 < j < [, expanding (3.15), we get the following,

Bejm(l) _ T(cj+1)(cj+1)--[cj+ (cl — ¢f)|T(em — el + 1)
Beim(l) L(cj+1)C(em —cl+ 1) (em — el + 1) - -+ [(em — cl + cl — ¢j)]
ot ;7o
(e ||

T el [ e e

The first term on the right-hand side of the above equality can be bounded as

(em — cl)et=9) - " em—cl D
(em—cl+1)---(em—cj)] — |em—cd+1
1 e(l=5)
< l1- _}
-0 em—cl+1
r 1 e(l-4)
< 1= J ,
- cm — cl
so that,
— pl\e(l=35) c(l-3) _
lim (em — cI) _| < lim [1 B ] _ o= fm=1).
c=oo | (em—cl+ 1)+ (em — ¢j) c—00 em — cl

(3.20)
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Using Lemma B.1 again, the second term can be bounded as,

. i e(l-3)
(+1) (e +el—cp)] _ [+
(cl)et=3) = [cl]<@=3)
. cl—ci C(l_ )
cj + (Gl 12 1) . 1 ’
(el) + cj + (el=cj)
2

. c(l—7) e(l—3)
< |t 142 .
21 c(j+1)

<

From this, we have,

lim (cj+1)--(cj+cl—cj)
€c—00 (cl)C(l—j)
: (I~7) e(l—j)
. [i+0° . 2
< 1 — 14— . 3.21
= cﬂg{gg} X}B&[“Lc(jﬂ)} (3.21)

However,

e(l—37)
lim |1 + ——— = e(l—j)/(j+l)’
00 C(] + Z)

and, 7 < [ implies that,

Therefore, from (3.19), (3.20) and (3.21), for j < I, we get,

. e(l-4)
lim Bc’j’m(l) < lim P_"’__q % [e(l—j)/(j+l)] x e~ U=0)/(m=1) _ .
c—00 21

c,l,m )

Since m is fixed, the above two cases lead to the following result,

. Bc m(l)
lim E e .
=0 = Beim(l)

From this, we can conclude that,
1 ifk=1
0 ifk=#£1

lm W, m(l) =

C—00
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We now provide a general proof for a property that was mentioned earlier in

Section 3.1.

Theorem 3.3.3. The estimated normalized beta kernel probabilties using (3.10)

fork=0,1,...,m sum up to 1.

Proof of Theorem 3.3.53:

First note that,

e e Bckm(l)
Wc . D = m—”___.__
2 . ( ) Z Zj—o Bc,j m(l)

k=0 k=0
Z?:o Bc,k,m(l)

= 1.
Z;‘nzo Bc,j,m(l)

From (3.8), we have,

Wc,k,m<l>

NE
o >
S
I

NgE

b
It

o
i}
o

=

c,k,m(l)

Mz ==

zl2 == I
i

(= L[
=

N
Il
=}

==
I

J

We have now introduced the NBKE and looked at some of its basic properties.
In the next chapter, we focus on the general and asymptotic properties of the bias
and variance. We also discuss the tradeoff between the two which is a property
inherent to most, if not all, smoothing estimators. We will also offer practical
considerations for selecting the level of smoothing for finite samples that account

for the bias-variance tradeoff.
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Chapter 4

Bias, Variance and Practical

Considerations

In this chapter, we look at the expected value and variance of pk(c) when m is
fixed. Another focus of the chapter is to look at the asymptotic properties of
Pk(c) with respect to the smoothing parameter c¢. By doing so, we confirm that

the properties first alluded to in Chapters 2 and 3 do hold.

Recall that X1, Xs,..., Xy are observations from a multinomial distribution
with proportion parameters Py, Py, Py, - -, P, and size parameter N. Further-

more, recall Theorem 3.3.2 states that,

1 ifk=1,
Um Wpm(l) =I(1 = k) =
e 0 if kL

37



4.1 Expected Value and Bias of P,(c)

Let us start by finding a general expression for the expected value of the estimator

Pk(c), the NBKE of P,. We have,

B[A(0)] = E{iwc,k,muﬁ}

for any cell k.

More formaily, the bias of Pk(c) can be expressed as:

A

Bias[P(c)] = Py — E[P(c)]

= B — Z Wepm(D) B, (4.2)
1=0

Corollary 4.1.1. For fized m, the NBKE is asymptotically unbiased with respect

to the smoothing parameter c, that is, for allk = 0, ..., m,

lim E[B,(c)] = P,.

C— 00
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Proof of Corollary 4.1.1:

As a consequence of Thereom 3.3.2 and (4.1),

A

lim B[Py(c)] = Y lim Werm(DP

Cc— 00

for any value of £ =0,...,m. O

Note that this guarantees asymptotic unbiasedness as ¢ approaches infinity, so
that the reduction of the bias here is not necessarily directly dependent on the
sample size, but it is dependent on the smoothing parameter ¢. Of course, ¢ could
be chosen as a function of the sample size. In other words, if ¢ = ¢y such that

cy — 00 as N — oo, then,

N—oo

Here, a large c¢ implies less smoothing. This is desired because as sparseness
decreases (or as the sample size increases), less smoothing should be required. This
is in contrast to other kernel estimators where typically, the smoothing parameter
h=hy — 0as N — co. In our case, a large value of the smoothing parameter

implies less smoothing.

Also, note that the previous result does not guarantee that there is no boundary

effect which we will see in a later section.
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4.2 Variance of Py(c)

To find the variance of P, (¢), we begin with a result that will shortly prove useful.

Proposition 4.2.1. Pk(c)—E[Pk(c)] can be expressed as an average of independent

identically distributed (i.i.d.) observations. Specifically,

Ae) = BRG] = 5 32 Yiald) = B
where,
Vi(e) = Iiwm 106 = 1)~ B.
=0
This result implies asymptotic normality when ¢ and m are fixed, since the variance
of Yix(c) is finite. This issue will be revisited in Section 4.4.
Proof of Proposition 4.2.1:

First, we have

A0 = BB = 3 Weunl) [§1] - S WA
m -Nl
- g Wc,k,m(l) -"‘]\7 - ]Dl
™ (XX =1)
= ;chm(l) -ZZ:; N —}jl:l
— T Wen® LMK =) - A

Now, the order of summation is changed so that,

1:; k(DI = 1)~ B] = %;{g;wc,k,m(zm(xi:z)~Pl]}

= | N _
— N;Y%,k(c)zyk(@'
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Now, we determine the expectations of ¥; ;(c) and Y%.(c). These will also prove

to be useful in the proof that follows.

Proposition 4.2.2. For any value of i, k and c,

ElYir(c)] =0.

Proof of Proposition 4.2.2:

This is quite straightforward. Since I(X; = I) is Bernoulli (P;), we have that

E[Vis(c)] = E{zwckm . m}

3

= Y Werm@) {E[I(X; = )] — B}

=0

I
NgE

Werm(l)[Pr — P] = 0.

T
o

O

Naturally, this was expected given the form of the equation in Proposition 4.2.1

and the definition of ¥; x(c).

Proposition 4.2.3.

BIYZ(0)] = > W W2B( = P) = 355 W () Wanm ()PP
1=0 1=0 j£I

E[Y2(c)] = Héwckm izl)—Pz]r}
}
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Now, let the terms from the previous expression be denoted as A and B, respec-

tively. A reduces to the following expression,

A = Weem(D)?EI(X; = 1)* — 2P1(X; = 1) + B

NE

N
it
=)

Werm(D?E[L(X; =) — 2PI(X; = 1) + P

Mz Tz

Weem ([P — 2P(1- B) + B

Iy

0

Werm(D*[Fi(1 = B)],

I
NE

I§
=)

while, B reduces to the following expression,

B = ZZchm ckm(])x

1=0 j#l
EI(X; =10) - I(Xi =j) - (X; = )P, - I(X; = j)P, + PP}

= ZZchm ckm( )[O_B}%~HH+BP3]
= Oj;él

= —ZZchm ckm( )[PIPJ]

1=0 j#l

Thus, we have,

Zchm —Pl 1 - —Pl>] ZZWc,k,m(l)Wc,k,m(j)]DlJDj-
=0 1=0 j#I

Using the previous two results, we can now obtain the following theorem.

Theorem 4.2.4. The variance of the NBKE probability estimator is

vt} - & (ot Pll_pl}__{zzwm ckmuPsz}

I= 1=0 j£l
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Proof of Theorem 4.2.4:

Using Proposition 4.2.1, we have

Var[Py(c)] = Var {Pk }
Var[Y (c)]

= Var[Yi(c)] = N

where the Y ;(c) are 1.i.d. Using Proposition 4.2.2, we can further simplify this

expression to

VarlBi()] = - {ENVA©)] - EYiu(@])

N{Z; ckm ckm( )Plpj} (43)

Corollary 4.2.5.

lim Var[ ()] = -]%—(17\[?&).

The proof of this is straightforward in that we must proceed as with Corol-
lary 4.1.1 and apply Theorem 3.3.2 on equation (4.3), the general expression of
Var[Py(c)]. This result implies that estimates for cells with probabilities close
to 0.5 will have larger volatility. Conversely, cells with extremely low or high

probabilities will have smaller volatility.
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4.3 Order of the Bias and Variance

In Section 4.1 and 4.2, we looked at the general forms of the bias and variance and
their asymptotic properties. We have shown that when ¢ or ¢ = cy approaches
infinity, the NBKE probabilities become equivalent to the MLE probabilities.
We do not know, however, about the gains and compromises with respect to
the bias-variance tradeoff of using the NBKE over the MLE for small samples.
Furthermore, we do not know if the order of the bias and the order of the departure
from the MLE-variance is the same for all cells for a particular value of ¢. This
is useful to know as practical situtations never involve the asymptote. Thus, we
look at defining more precise expressions for the bias and variance. We start by

deriving more precise expressions for the weights W, ().

Proposition 4.3.1. The weight of cell I, when estimating Py, can be expressed as,

1-Q. l=k

Wc,k,m(l) =
QUH 1k

where Q. = O[1 — ﬁ]c 18 a positwe quantity less than 1 that approaches 0 as

¢ — oo. (Note that the mazimum weight of any cell is 1.)

Theorem 4.3.2. For fized m, the absolute order for the bias of Pk(c) can be

expressed as,

Bias(]ADk) = Pk - ZWc,k,m(l)Pl =0 [1 - %] .

1=0 m

The proof of this theorem is a direct application of Proposition 4.3.1 to (4.2).
Note how the bias is uniform with respect to k. Hence, there is no boundary

effect. Also note that for larger ¢, the bias is smaller.
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Theorem 4.3.3. For fized m, the variance of Py(c) can be expressed as,

where, again, Q. = O[1 — ﬁ—]c s a positive quantity less than 1 that approaches 0

as ¢ — 0.

Note how the order of the extra term in the above variance expression is also
uniform with respect to k. And, as previously mentioned in Proposition 4.2.5, the
variance is larger for probabilities closer to 0.5 and smaller for values closer to 0
or 1.

Also, note that when ¢ approaches infinity, or in other words, with less smooth-

ing, the quantity (). decreases so the variance of our estimator increases. Smaller

bias, however, requires a larger c value, hence the bias-variance tradeoff.
Proof of Proposition 4.3.1:

Recall Theorem 3.3.2 states that when estimating P,
1 if k=1,
ILI& Wc,k,m(l) =
‘ 0 ifk#L

We will use some of the steps used in that proof for this one. So, also note that

for given k, and m, expanding (3.14) further gives the following result:

B k.m(l) 1
Wekm(l) = =252 TR 7 (4.4)
Begm(l) | 1+ 21 BZ:IZ&)) + X< B:,l:::&))
Once again, we will consider %‘fﬂ(%) separately for the two cases: j > [ and j < [.

Now, recall the expression (3.15),

Bejm(l) _ T(el+ D (em —cl+1) (cl) 6D {_1__ 0
) 3

Beim(l) — T(cj+ 1)T(cm —¢j +1) c(m —1

which is valid for any value of j and L.
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Forj>1(j=10+1,...,m), (3.15) expands to (3.16), or more specifically,

B.im(l) _ [ (el)ei=D } [(cm —cj+ 1) (em — cl)}
Beim(l) (el +1)---(cf) [e(m — Z)]C(J'—l) .

From (3.17) and (3.18), we know that,

Bc,j,m(l) < [1 _ _]'_:I C(j"l) 1+ _———1——— c(j—1) w c(j-1)
Beym(l) ~ cl c(2m —j—1) 2m — 21 '

Since ¢ > 0 and 7 > [, the first term on the right-hand side of the inequality can

be bounded as,

11¢6-0
{1 — —] < 1.
cl

The second term is a strictly increasing function of ¢ converging to elU=1/@m=i=1

and hence can be bounded as,

1 c(j_l)
14— < eU=0/Cm—=j=l) ~ o
c(2m—j-1) -

To handle the third part, note that,

{%‘Q} B {1 - zyiilzz} = {1 - 2m—2l] = {1 - %n—} |

Therefore, we have that

Bejm(l)
Bc,l,m(l)

1 1e@-D
<e [1 — _}

1 7<=
2m }

:0{1__

2m

= Qi (4.5)

Note that when [ = m (for fixed k¥ and m), only the case of j < [ needs to be

considered.
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Similarly, for j <1 (§=0,...,1—1), (3.15) expands to (3.19),

Bejm(l) _ { (em — cl)=) } [@' +1)-(ej +el Cj)J
Beim(l) (em —cl+1)---(em — ¢j) (cl)=7) .

From (3.20) and (3.21), we know that,

Bejm®) _[,__ 1 ] L2 W=9) [y )
Beml) = 1 elm=1) e +1) 21 '

The first term on the right-hand side of the inequality can be bounded as,

1 C(l_j)
l1—- ———— 1.
{ m— 1)} <

The second term is a strictly increasing function of ¢ converging to e2(—7)/U+0,

and hence, can be bounded as,

2 c(l—7)
14+ < eQ(Z‘j)/(j-H) < e2.
c(y+10) -

For the third part, note that
J+l [—3j { 1} [ 1 J
=1 <|1—-=] < |1 —=—].
= s gl = e
Therefore, we see that

Besm(1) g ! JCM | ! r“‘” -
3J 3 1 - —_ 1 —_— —— = J 4.6
Bun) ~¢ ' 2m o @ (4.6)

Note that when [ = 0 (for fixed k and m), only the case of j > I needs to be

considered.
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Let o = [1 - L} . The expressions in (4.5) and (4.6) then lead to the following

2m

results,

Z Bc,j,m(l) < eZac(j—l),

3>l Beim(l) 3>l

and,

T Bejmll) _ 2 T a9,

i<l Beym(l) j<l

Now consider ¥ ;.; V=) where o < 1. Let s = j — L.

m

-1
Zac(j—l) — Z ot
i>l s=1

= of + a?c RS ac(m—l)

< af+(m—1-1a*

= o+ 0(a®)

Similarly, consider >, a®=7) where v < 1. Let t = [ — j.

act

MN

3 qel=9)

i<l 1

— CYC—|-0420+-"+OKCZ

<
Il

< of+(I—1)e*

= a°+0(a®).

From the above results, since ;. g“:'m((g is a positive quantity, it can then be

bounded as,
Bejm(l)

< (e +e?)a’ + 0(a®) = Q..
2 Bl ( ) (@)
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Using Lemma B.2 (see Appendix B for details) and the previous result,

1 _ “Z cJml

L+ Ti 22200 57 B
= 1-Q.

Boim(l)]’
|z gl

il

Note that the left-hand side of the above equation is a fraction less than or equal

to 1.

Using (4.5) and (4.6) and the above result, the weights W, (I) can now be

expressed as,

Wepm(l) = Dekml) :
ks Berm(l) |14+ 5,4 Bci:g
Bckm(l)
— Lk} 1-— c
c,lm(l) { Q }

B
1-Q, I=k
= QNI -Q.) 1>k
QED(1-Q) 1<k

Thus,

1-Q. =k
Wc,k,m(l) -
QU Ak

where @, = O[1 — -21%]0 is a positive quantity less than 1 that approaches 0 as

¢ — 00, O
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Proof of Theorem 4.3.3:

Expanding on equation (4.3), we get the following:

1 ™ m
VaI‘Pk Nzwckm ]Dl 1*Pl Z ckm BZchm )P
=0 =0 J#l

Applying Proposition 4.3.1, the first term on the right-hand side of the above

expression simplifies to the following,

1

Wk (FPIPL(1 = B+ 5 Weton (1R (1 = )

1 ) 1 2|l—k
= N{l_Qc} Pk(l_Pk)-f_J_V—{ZQc' lPl(l_B)}

1k
{1 - 2Q. + Qz} P(1— PRy) + % {Z Qgil—klpl(l _ Pl)}

I#k
2 2
Pk(1—P)—%+?v+%

2= ==

The second term simplifies to the following,

1 ) 1 .
_]—V: C»k,m(k)Pk Z Wc,k,m(J)]Dj - ]_\f Z Wc,k,m<l)PZ Z Wc,k,m(])Pj
7k Ik j#k
1
- ——N{1+QC}P,€}:QIJ Hp,— N{ZQ” klpZQla k‘lp}
7k £k J#l
Q. Q2 @
- TNV W

Since the lowest order of Q is ¢ for both terms, Var[P,(c)] can be expressed as,

Var[]sk(c)] = ——Pk(l - Pk) —_ .

where 0 < Q. < 1. O
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4.4 Asymptotic Normality

Consider the following three asymptotic cases for the NBKE, when m is fixed:
1. the smoothing parameter ¢ approaches infinity while the sample size is fixed,
2. the smoothing parameter ¢ is fixed while the sample size approaches infinity,
3. both the smoothing paramter ¢ and the sample size approach infinity.

The Central Limit Theorem, of course, can be applied to only the second and

third cases to show that the NBKE is asymptotically normal.

Theorem 4.4.1. The NBKE is asymptotically normal. Specifically,

1. If c € R is fized, then,

A

Py(c) — E[Py(c)] ~ Normal {0, ai(c)},
where o2(c) is the expression of the variance in Theorem 4.2.4.

2. Ifc=cy — o0 and\/]—\f_(l—z)c—>0 as N — oo, then,

Py(1— Py)
-

Pyi(c) ~ Normal {Pk,

Recall that the NBKE weighting scheme requires an important assumption
that there is an underlying smoothness and order to the overall distribution. The
assumption of underlying smoothing is not used mathematically in any of these
asymptotic results as we will prove shortly for fixed m. It is more of a conceptual
construct that is most appropriate for data that is sparse, particularly when m,
the number of cells approaches infinity. In this case, it will even be more necessary

to borrow information from neighbouring cells. We, however, will leave this issue

open for future studies.
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Proof of Theorem 4.4.1:

For the first case, we need only apply Proposition 4.2.1 which states that
Py(c) —B[Py(c)] can be expressed as an average of iid observations. For the second
case, the proof will parallel that of Babu et al [2] and Leblanc [']. It requires the
Central Limit Theorem for double arrays. For this, we start by showing that if

¢c=cy — 00 as N — 00, then,

Pule) — B[By()] <~ Normal {0, &Q_N:P_H} |

'To prove this, recall that Proposition 4.2.1 states that,

Pi(e) = BIPL(0)] = 1 > Yia(e) = Vi(o)

. 1 N
=1

Let s? = E[Y%(c)]. Then the wanted result holds if and only if the following

Lindeberg condition is satisfied for every € > 0 as N — oo,

B{YA(@IYis(o)| > esov/N]}

2 — 0. (4.7)
Using Theorem 3.3.2 on Proposition 4.2.3, we have,
lim s7 = P(1 - Py).
We can also bound |Y; ()| as,
Ykl = |2 Werm() [1(X; =1) — F]|
1=0
< 1D WermIX = D] + 13- Werm(D) B
1=0 1=0
< max(Wepm(D] + > Werm(D P

=0
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Simplifying the previous expression further, we get,

for any c. Thus, (4.7) holds when ¢ and N — oo, implying in turn that

Py(c) — E[B(c)] ~ Normal {O, %N:P—]”)} :

| VN {Bile) - BB}

~ Normal(0,1).
Pk(l — Pk)

First, note that

Pi(c) —E[Pi(c)] = Pilc) — Py + Py — E[P(c)]

= Pi(c) - P + Bias[B(c)),

or,

~

Pi(c) — P, = Py(c) — E[Py(c)] — Bias[Py(c)].
Now, note that

VN[Py(c) - B VN {Bi(c) - E[P(0)]} VIBias[Pi(c)]

P(1-P)  JR(I-B)  RO-P)

Hence, if v/ NBias[P;(c)] — 0, or equivalently, v N(1 — 2)¢ — 0, then,

&U_HW'

By(c) ~ Normal {Pk, W
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4.5 Practical Considerations

In the previous sections, we discussed the order of the bias and variance and their
asymptotic properties with respect to the smoothing parameter c. We also showed
that the NBKE is asymptotically normal. These results, however, are not useful
in obtaining an appropriate or practical value of ¢ for a given sample. Thus, in this
section, we focus on a data-driven technique for selecting the level of smoothing
and discuss some of the implications regarding the aforementioned bias-variance

tradeoff.

One measure often used to describe the precision of a point estimator is the
Mean Squared Error (MSE). It describes the expected degree of departure of an

estimator from its target value. Recall, for cell 5 = 0,1,...,m,

MSE[B,(c)] = E{[ﬁk(c) —P,C]Q}

= {Biz’;xs[lﬁk(c)]}2 + Var[Py(c)].

Increasing the value of ¢, or equivalently smoothing less, reduces the bias of P, (c).
Reducing the bias, however, occurs at the cost of increasing the variance. Hence,
one hopes to choose a ¢ value that strikes a balance between the bias and variance.
Furthermore, working with mulitnomial data adds to that complexity because of
the need to estimate several parameters simultaneously. For the NBKE, the same
level of smoothing has to be applied to all cells. (Recall, however, that the weight
function varies according to the cell of interest, so smoothing is adaptive in that
sense.) It is then only natural to consider a more global measure of accuracy such

as the Mean Sum of Squared Error (MSSE).
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In some studies, it may be sufficient to use a subjective or trial-and-error
method for choosing the level of smoothing. For comparative studies, or for the
sake of efficiency, however, it may be more appropriate to use a standardized
or objective method for choosing the level for smoothing. For an introduction
to different techniques for choosing the level of smoothing for continuous data,
see Silverman [I”]. Park and Marron [/] compare three different data-driven
approaches for choosing the level of smoothing in their paper: least squares cross-

validation, biased cross-validation, and a plug-in method.

One method for choosing the level of smoothing, that is adaptable to the
discrete case, is least squares cross-validation. The objective is to minimize the
MSSE, or rather, an unbiased estimate of the MSSE since it is an unknown quan-
tity. The least squares component involves minimizing the MSSE, with respect to
the smoothing parameter ¢. The cross-validation component involves estimating
a series of probabilities where each probability is based on the removal of a sin-
gle observation, also known as the leave-one-out estimated probabilities. Because
least-squares cross-validation is data-driven and fairly easily implemented, it is

the method selected for optimal smoothing in this thesis.

Consider the following expression for MSSE as a function of ¢,

MSSE(c) = E{i[Pk(C)—Pk]Q}

- E [gﬁk(c)ﬂ —9E {g‘a Pk(c)Pk} + é P

= E E‘B JE’k(c)Q} — 2B {By [Py (c)]} + é P2, (4.8)

where Y follows a multinomial distribution with probabilities Py, P, ..., B, and

is independent of Xi,..., Xy, and Ey denotes an expectation with respect to Y.
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Let G/(c) be the portion of (4.8) involving smoothing parameter ¢. Obviously,

G(c) =5k l:ki pk(0)2:I —2E {EY [pY(C)]}

and,

MSSE(c) = G(c) + >_ PZ.
k=0

Minimizing G(c) is then equivalent to minimizing MSSE(c). Now, let

0(6) = 3 Pile) - 2By [Pyt

(4.9)

and note that g(c) is an unbiased estimator of G(c) that cannot itself be calculated

from the observed data. Let ]sz_z(c) = ﬁ’c(Xi = z;|N_;) be the leave-one-out

estimated probability of observing the value X; = z;, based on the estimated

NBKE probabilities calculated by leaving the observed X; out of the sample.

Applying the leave-one-out technique to (4.9), we further estimate g(c) using

the following,

96 = - B0 = 3 Prm)

k=0

This can be further written as,

30) = 3 Bule — = 3° 3" 10K = KAL)
k=0 =1 k=0
where B
Bc) = gj—v-]fl—lwmm,
and,

_ N, for [ £ k,
gl #
Ny —1 forl=k.
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We can simplify this further to obtain the following expression for g(c),

m m N
i) = S AP -2 3 106 = KA
k=0 k=0 i=1
— S B - %Z NiBy(c). (4.10)
k=0 k=0

The final expression in (4.10) requires computing new probabilities for all cells
by sequentially deleting each observation. This, of course, can be extremely time
consuming! To avoid this problem, we can further express (4.10) in terms of the

original observed NBKE probabilities and weights. If we do this, we have,

mo m Nl 1
g = Pi(c)* — — N, crmll) — ——W_. . m(k
g(c) kZ:O Z k lng_IW,k, (1) N1 Vek (k)
mo 2 m Nl 9 m
= Z k ‘_'—ZNICZ ckm(l)"f‘”—_‘ZNch,k,m(k)
k=0 kO lON N(N_l)k=o
mo 9 . ) m
= (07— === D> NpPlo) + ——— > NiWopm(k),  (4.11)
kgo N — 12) N(N -1) }CZ::O

which does not depend on the leave-one-out estimated probabilities. Then, for a
given observed sample, optimal smoothing is obtained using the value of ¢ that

minimizes (4.11).
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Chapter 5

Simulation Study

A simulation study was performed to compare and contrast the effectiveness of
the NBKE against the GKE and MLE at various levels of sparseness. Another
interest is to compare the effectiveness of the NBKE against the GKE (both
with optimal smoothing), particularly for estimating boundary cell probabilities
as the GKE is an estimator that can produce boundary bias. Two simulation
scenarios were considered, each with three different sample sizes to adjust for the
level of sparseness. Both sets were based on multinomial distributions exhibiting
characteristics of the IBD survey data, and mainly for the type of data where
the NBKE is most appropriate. Thus, each simulation consisted of sparse, ordinal
data. Furthermore, we apply the assumption of a smooth underlying density curve.
In other words, probabilities of neighbouring cells are similar to each other. Also,
data points are highly concentrated about zero and form one or two small modes

in other cell-regions.
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In the first simulation scenario, there are 25 cells (k = 0,1, ..., 24) with sample
sizes N = 50,125, and 1000. In the second simulation case, there are 100 cells
(k =0,1,...,99) with sample sizes N = 200, 500, and 2500. For each scenario
and sample size combination, 1000 sets of data were simulated using R Software

(Version 2.8.1).

For each set of simulated data, probability estimates were computed using
three methods: the NBKE with optimal smoothing, the GKE with optimal smooth-
ing and the MLE. In Figures 5.1 and 5.2, probabilities are plotted for the first
set of simulated data for each sample size in the 25-cell and 100-cell scenarios, re-
spectively. Both figures show general smoothness for the curves representing the
probability estimates using optimal smoothing with the NBKE, regardless of the
number of cells and sample size. The curves for the MLE probabilities, however,
can vary greatly in the level of smoothness. Smoothness seems to be inversely
related to the number of cells, but positively related to sample size. Also, greater
volatility appears about modal regions. The level of smoothness of the GKE ap-
pears to fall between the NBKE and MLE. Thus, per any given simulation (or
dataset) using the NBKE appears to produce estimates reflecting the true shape
of smooth, multinomial data better than the GKE and MLE. On the other hand,
there are some indications of the bias-variance tradeoff in effect for the NBKE and
GKE. This effect is much more pronounced in the figures based on the aggregate

of 1000 simulations. This will be discussed shortly.

Figures 5.3, 5.4, 5.5 and 5.6 show probability curves of the first five sets of
simulated data for the NBKE and GKE. They are included to indicate the level
of variability among the simulated datasets. (Probability curves for the MLE

were omitted due to excessive volatilty.) They suggest that increasing the sample
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size reduces the overall level of variability, as expected. And again, we can that
the curves for the NBKE are generally smoother and less volatile than the GKE.
Looking at these figures more closely, we see that for the NBKE, there is greater
volatility and bias at the lower boundary than other regions. These effects are
even more apparent for the GKE, particularly for the 100-cell scenario. Perhaps,
the lower boundary cells exhibit more variability because probabilities in that
region are closer to 0.5, as previously proposed in Theorem 4.2.5. Also, although
the NBKE is asymptotically unbiased with respect to the smoothing parameter
¢, the ¢ value from optimal smoothing may not be large enough to eliminate or
reduce the bias to negligible levels. These preliminary findings are confirmed with

subsequent figures that encapsulate each 1000-set simulation combination.

Figures 5.7, 5.8, 5.9 and 5.10 show the NBKE and GKE cross-validation func-
tions for the first five simulation runs. Recall that the smoothing parameter s
for the GKE ranges between 0 and 1 with lower values indicating less smoothing.
This is the opposite to the NBKE smoothing parameter ¢ which ranges from 0 to
infinity. We can see that increasing the sample size lead to larger optimal values
of ¢ or smaller optimal values of s which means that less smoothing is required,
as expected again. They also suggest that the cross-validation function flattens

out more rapidly with larger sample size.

The distributions of the optimal smoothing parameter c are shown in Figures
5.11 and 5.12. These figures have modes at higher values as sample size increases.
This further supports the finding that larger ¢ values are required for optimal
smoothing as sample sizes increases. Figures 5.13 and 5.14 consist of histograms
of all the optimal s values for the GKE which clearly show that less smoothing is

required for larger sample sizes. More precisely, this means for both the NBKE
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and GKE, less smoothing is needed for large sample sizes which intuitively makes
sense. Note that both the 25-cell and 100-cell scenarios have similar ratios of cell
size to sample size. We can see that more smoothing is required as the number of

cells increase.

For each cell-sample size combination consisting of 1000 simulations, the em-
pirical mean and 95% confidence interval were determined for each cell proportion
(or probability). For example, to determine the lower confidence limit for the cell
k = 10, we used the 2.5% quantile and for the upper confidence limit, we used
the 97.5% quantile. Means and confidence intervals were computed for all three
estimators. Means for all three estimators are fairly similar to each other. Similar

results are expected since the simulated data are not necessarily sparse.

In Figures 5.15 and 5.16 we can see that confidence bands for the NBKE are
much narrower than the MLE, even for very large sample sizes, and thus the
NBKE can provide more precise estimates than the MLE. The NBKE, however,
does produce some bias at local extrema, as expected. Peak regions are slightly
lower and valley regions are slightly higher. Boundary cells appear somewhat
biased or exhibit greater variability. (It is also important to note that these
are not global confidence bands at the 95% level. They are actually obtained

separately for each cell.)

Figures 5.17 and 5.18 confirm that there is less variability overall for both the
NBKE and GKE as sample size increases. We do, however, see that the GKE has
greater lower-boundary bias and slightly more variability than the NBKE in most
regions. For the GKE, the lower-boundary bias can be attributed to it being a
symmetric kernel. Weights also allocated to cells beyond the domain so they do

not sum up to 1 within the support.
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It is also interesting to note the absence of upper-boundary bias. Dong and
Simonoff [*] propose that estimators in general are unbiased at the boundary if
the true probabilities are zero which intuitively makes sense. In other words, if
either Py = 0 or P, = 0, then there is no boundary bias at the respective region.

Hence, there is no significant upper-boundary bias as P, = 0.

SSE was computed for each simulation to compare the precision of the three
estimators. (SSE is defined as the sum of the squared difference between the
estimated probability and the true probability across all cells.) In Figures 5.19
and 5.20, SSE values decrease as sample size increases, as expected. These figures
also show that SSE values for the NBKE tend to be lower than values for the
GKE and MLE. For each sample size in the 25-cell scenario, about 75% or more
of the NBKE SSE values are smaller than at least the 50% quantile of the MLE
SSE. This contrast is even more striking for the scenario with 100 cells. Almost
all of the NBKE SSE values are smaller than minimum MLE SSE! Even with a
very large sample size (where the cell size to sample size ratio is 1:25), precision
is greatly increased with data driven optimal smoothing. Overall, we see that the

NBKE has slightly more consistently precise estimates.

To summarize, NBKE estimates are smoother than both the GKE and MLE
estimates, or in other words, the NBKE fitted curves better reflect the true density
curve. NBKE estimates have smaller variance as indicated by the smaller con-
fidence band. Both the NBKE and GKE, however, experience some bias about
local extrema, with the GKE experiencing particularly large bias about the lower
boundary. As expected, less smoothing is required for larger samples sizes, and

more smoothing is required for multinomial data with a larger number of cells.
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GKE with optimal smoothing and MLE for the first set of simulated data, based on

the scenario with 25 cells. From top to bottom, IV = 50, 125, and 1000.

63



005
I

N = 200
_— True
NBKE

004

003
l

Propertion

002
I

001
|

000
l

Cell

005
J

004
|

Proporon
002 003
|

001

000

Cell

005
l

N = 2500
True

Proportion
008

002
|

Cell

Figure 5.2: Probabilities for the true distribution and estimates using the NBKE and
GKE with optimal smoothing and MLE for the first set of simulated data, based on

the scenario with 100 cells. From top to bottom, N = 200, 500, and 2500.

64




N = 50
— True
— Simulation 1
Simulation 2
—  Simulation 3
Simulation 4
—  Simulation 5

Proporion

000 005 010 015 020 0% 03 0%

Cell

N = 125

—  True

—— - Simulation 1

Rt Simulation 2

— Simulation 3
Simulation 4

— Simulation S

Proporiion

000 005 010 015 020 025 030 0%

Cell

N = 1000
—e—  True
Simulation
Simulation
— Simulation
Simulation
Simulation

QAN

Proportion

000 005 010 015 020 0% 0% 0%

Cell

Figure 5.3: Probability estimates using the NBKE with optimal smoothing for the
first five sets of simulated data, based on the scenario with 25 cells. From top to

bottom, N = 50,125, and 1000.

65



>
[=—1 —
L= i N = 200
% — True
- Simulation 1
g — Simulation 2
Simulation 3
Simulation 4
Simulation S
=
=1 p=—
=
=
=
>
=
—
S
bt T T T T T T
o 20 40 S0 80 100
Cell
=
= 3
- N = 500
—— True
-t —  Simulation 1
g — Simulation 2
e Simulation 3
Simulation 4
o> — Simulation 5
L -]
s ==
i=
=2
=
o S
=
=
<>
—
=
= T T T T T T
(o] 20 40 [=1e) 80 100
Cetl
L
<> —
e N = 2500
— True
= - Simulation 1
g Simulation 2
Simulation 3
Simulation 4
o Simulation S
=
s =3
=
£
=2
o

002

001

000

Cell

Figure 5.4: Probability estimates using the NBKE with optimal smoothing for the
first five sets of simulated data, based on the scenario with 100 cells. From top to

bottom, N = 200, 500, and 2500.

66



N = S0

True

Simulation 1

Simulation 2

Simulation 3
a
5

000 005 010 0f5 020 025 0% 0%

é 1 Simulation
g Simulation
=3
oa- 1
T T T ! l I
o s 10 15 =0 =2s
Cell
]
o> —=t
-
=
< —
= N = 125
- —e— True
CC; — —————— Fimulation 1
----------- Simulation 2
_ = | e ngulat?on 3
-g s Simulatiorn a4
=] e Simutation S
= =2
[<w —
=
=1
LD
- —
—
—
- —
<
T T T ' ' l
o s 10 15 =0 =s
Cell
— N = 1000
—— True
- Simulation 1
Simulation 2
_ ——  Simulation 3
S Simulatiorn a4
g Simulation S
)=
f=w

000 005 00 015 020 025 0% 0%

Cell

Figure 5.5: Probability estimates using the GKE with optimal smoothing for the first
five sets of simulated data, based on the scenario with 25 cells. From top to bottom,

N = 50,125, and 1000.

67



0.05

N = 200
—_—— True
Simulation 1
- Simulation 2
Simulation 3
\I’A‘ Simulation 4
A (R, Simulationrn 5

004

003

Proportion
®
|

=
(==
= _
=1
¥ v T T y i
o 0 a0 80 f=Ye) 100
Cell
Ly
o —
(=1 N = 500
—  True
Simulation 1
§ 1 Simulation 2
Simulation 3
Simulation 4
o Simulation 5
= =2
=
=3
=)
(== S ]
=
=
=
~—
= S—
L=
Y d T T ! !
=0 a0 &0 80 100
Cell
Y =]
e -
=1 N = 2500
— True
- Simulation 1
g — Simulation =2
e Simulation 3
Simulation 4
= | o™\ ] e Simulationrn 5
= =2
=
==
—.
=
L e
= \
— o
. SENR,
SV x/mrmvf\a
L= —
(=1
T T ' T ! i
o =0 40 P=Ye) 80 100
Celt

Figure 5.6: Probability estimates using the GKE with optimal smoothing for the first
five sets of simulated data, based on the scenario with 100 cells. From top to bottom,

N =200, 500, and 2500.

68



N = 50
Simulation 1
Simulation 2
Simulation 3
PN
=]

Simulation
Simulation

Cross-Validation Value
Q10 008 006 04 D0 0

o s 10 15 20 25

C Value

—
3 —
=3 N = 125
—_— Simulation 1
CC\'? ] e — Simulation 2
= s Simulation 3
— Simulatiomn 4
§ Simulation S
=] L
= [
= g i
= < H
2 3
L g _| AN
< \\ -
.
= _| 0 s
b=l T —
T T T ! ! y
o s 10 15 20 =5
< Value
=
= N = 1000
— Simulation 1
= ] - Simulation 2
= E Simulation 3
———— Simutlation a4
= - Simulation 5
= =
= - :
&2 ¥
= é
= =R
= = z
o
&= 1
1= 3
L s ]
e
=
<

< Value

Figure 5.7: Cross-validation functions (with optimal c) for the NBKE for the first
five sets of simulated data, based on the scenario with 25 cells. From top to bottom,

N = 50,125, and 1000.

69



005
l

N = 200
— Simulation 1
Simulation 2
Simulation 3
— Simulation 4
Simulation S

010
I

I

0t
!

Cross-Validation Value
(N

N\
P
o
— —a
= r T T ! '
o s 10 1s =0
C Value
>
= _|
= N = 500
——— Simuliation 1
— Simulation 2
------------- Simulation 3
- Simulation 4
§ e | Simulation 5
= ~
= :
= i
=1 5
= :
= i
= H
74 =t \
= Lo e
S S
=]
5 T T ! I I
o s 10 15 =0
C Value
=
—_— —
= N = 2500
R — Simulation 1
Simulation 2
Simulation 3
- e Simulatiorn 4
—%j = Simulation S
= <
=
=
=]
=
==
5 e
=3 =
= =S —
= < -.
fo—-1
[ = -
il T T ! j l

< Value

Figure 5.8: Cross-validation functions (with optimal c) for the NBKE for the first
five sets of simulated data, based on the scenario with 100 cells. From top to bottom,

N = 200, 500, and 2500.

70



)
= -
5 N = 50
— Simulatior 1
Simulation 2
_ Simulation 3
= — Simulation 4
. Simulation S
s
=
=
&2
£ 2 4
= =
=
P
3
2 e
<> —
?' ] . - PR - -
x4
= . T T I I l
- - o o o.8 1.0
S Value
LD
[ — -
= N = 125
Simulation 1
— Simulation 2
_ . Simulation 3
= —— Simulation a4
N Simulation S
=
p=
=2
£ E 4
=
>l =
b
=
S =
< 7]
j=x4
=
7 T T I l I l
- o2 o4 o.6 0.8 1.0
S Vvalue
1L
— -
= N = 1000
Simulation 1
Simulation 2
Simulation 3
% ] —  Simulation a4
= Simulation S
=
=
&
= 2
= 7
&
=3
=
S = =
<G 7] ”
=y
<

S Value

Figure 5.9: Cross-validation functions (with optimal s) for the GKE for the first five
sets of simulated data, based on the scenario with 25 cells. From top to bottom,

N = 50,125, and 1000.

71



g
= N = 200
—_— Simulation 1
Simulation 2
b= Simulation 3 :
= —_— Simulation 4
= = Simulatiorn 5
= {
= H
= =3
= =
= 7
&
f=3
S >
=
<
—_—
ol
— —
5 T T ' T ' ‘
o.0 o.2 O.a o.6 0.8 1.0
S Value
=
= N = S00
—_— Simulation 1
—_— Simulation 2
w0 Simulation 3
= ——— Simulation 4
= < Simulation S
=
= i
= = /
= =
= < '
= = -
Z .
s o =
=
<
b=
—= —]
< T T T ! ! l
0.0 o.z o.4 ©.8 -8 1o
S Value
—
g
= N = 2500
Simulation 1
Simulation =2
w3 Simulation 3
[o Q— e Simulation 4
§ = Simulation 5
=
P=
= =
= =
= <
P
s
<> Ly
=S
= “g“ =
o>
S ]
e T T T ! ' I
0.0 0.2 ©.4 ©-8 ©-8 e

S Value

Figure 5.10: Cross-validation functions (with optimal s) for the GKE for the first
five sets of simulated data, based on the scenario with 100 cells. From top to bottom,

N =200, 500, and 2500.

72



05

=
‘o
= -
QO
[amn}
o __| I
1 T T T T 1
o 5 10 1S 20 25
Optimatl C
we ]
<
s ol
< ]
=
K= oz _|
5 =
—
<
< 7]
= l——
¥ T T T T 1
(o] 5 10 15 20 25
Optimal C
R J—
=
=
p==3 o
T
—
s -
= _| —I_]—m_H_l—
—

1 T T T T 1
o =3 10 1S 20 =25

Optimal C

Figure 5.11: Density histograms of optimal smoothing parameter ¢ values for
the NBKE, based on the scenario with 25 cells. From top to bottom, N =

50,125, and 1000.

73



Densty
03 04 05
|

02
I

01

T T T T 1
o E=3 10 15 20 25

Optimal C

Densiy
02 04 05
| |

01

T T T T 1
o S 10 15 20 25

Optimal C

05

Densty

Optimal C

Figure 5.12: Density histograms of optimal smoothing parameter ¢ values for
the NBKE, based on the scenario with 100 cells. From top to bottom, N =

200, 500, and 2500.

74



203

Frequency
0 150 20
L

el
I

0
I

Freqency
0 1% 20 % W0
|

Gl

0
r

T T
O.4 o.6

Optimal S

30
|

Frequency
50 200 20
|

00

el

T T
O.4 o.e

Optimal S

T T
oO.4 0.6

Optimatl S

Figure 5.13: Frequency histograms of optimal smoothing parameter s values

for the GKE, based on the scenario with 25 cells.

50,125, and 1000.

75

From top to bottom, N =



W 400 50
| | |

Freguency

m
|

0
|

f T T T T 1
0.0 0.2 o.4 0.6 o.8 1.0

Optimal S

LU
[

Frequency
30
1

20
I

0 100
|
|

1 T T T T i
O.0 o.2 o.4 o.se o.8 1.0

Optimal S

i 50
L1

Frequency
0

20

0 10
[

—

Optimal S

Figure 5.14: Frequency histograms of optimal smoothing parameter s values for
the GKE, based on the scenario with 100 cells. From top to bottom, N =

200, 500, and 2500.

76



N = 50
- —e— True
- 3 s NBKE Mean
i - NBKE 952 CL
W — MLE Mean
] s MlLE 9526 CL.

Proportion

000 005 040 045 020 02 030 0%

Celil

N =125

——  True
—_— NBKE Mean

% - - - NBKE 959 CL
R — MLE Mean
N e MLE 956 CL

Proporion

000 005 040 015 020 025 030 0%

Cell

N = 1000
— True
| NBKE Mean
- - NBKE 9529 CL.
— MLE Mean
...... MllE 95% CL

Proporion

000 005 040 015 020 025 030 0%

Cetl

Figure 5.15: Empirical means and 95% Cls for the NBKE with optimal smooth-
ing and MLE, based on the scenario with 25 cells. From top to bottom, N =
50,125, and 1000.

77



o>
== —
— N = 200
—_—  True
s NBKE Mean
= _| - NBKE 95 CL
— _— MILE Mean
= e e MLE 959 CL.
5=
5 = _|
[= =4
L% |
2 pa—
>
= _|
= ¥ T T ¥ T T
(o] 20 40 SO 80 100
Cetil
o=
— —
A N = 500
—_— True
E—— NBKE Mean
= _| - NBKE 9526 CL
£== _— MLE Mean
s s e MLE 959 CL
o=
=3
=3 =
f = =1
oy
1 —
=
—
oo
= T T T T T T
[e] 20 40 Ss0 80 100
Cell
g _|
(== N = 2500
True
NBKE Mean
= | - NBKE 959 CL
= _— ML.E Mean
s b MLE 9526 CL
=
S =
[~ =
<
—
>
=2
P
b T T T ¥ T T
o 20 <10 SO 80 100
Cell

Figure 5.16: Empirical means and 95% Cls for the NBKE with optimal smooth-
ing and MLE, based on the scenario with 100 cells. From top to bottom, N =

200, 500, and 2500.

78



N = 50
—e— TJrue
NBKE Mean
NBEBKE 952 CL
G — GKE Mean
] . EE R GKE 95% Cl-

000 005 010 015 02 0% 030 0%

o= —]
=4
—
=3
=
= ]
T T ! T ' l
o 5 10 15 =20 25
Cetlt
B
(e N =125
- —e— True
g _ s NBKE Meean
N NBKE 9526 CL
o . — GKE Mean
=~ R EE GKE 952 CL
=
= -
£ =
==
2.
= [
[~ = ]
= _|
=1
<
[ —
=
—>
=
= . " T T i !
o = 10 15 20 =25
Cell
-1 N = 1000
—e—  True
— s NBKE Mean
— —
=
=
=
=
[~ -

000 005 010 045 020 02 030 0%

Cell

Figure 5.17: Empirical means and 95% Cls for the NBKE and GKE with optimal
smoothing. From top to bottom, N = 50, 125, and 1000.

79



o
o —_
= : N = 200
| —  True
5 I —" NBKE Mean
= _| ! - NBKE 95%% CL.
(= R — GKE Mean
= P GKE 952 CL
=
=3
5 = _]
[= =
e
P —
L=
o> i
— —
P= . T T T T !
o 20 a0 s0O 80 100
Cell
= _|
= N = 500
— True
_— NBKE Mean
= | . - NBKE 95%% CL
= ' — GKE Mean
= LS R GKE 959 CL
= N
=l
g = _|
[ = =1
LN}
< —
=]
o>
=
p= . T T T T T
o 20 40 s0 80 100
Cell
oo
p=—
== N = 2500
—  True
_— NBKE Mean
= | - - - NBKE 9526 CL
== — GKE Mean
- s GKE 959% CL
=
s = _|
= ==
o
— ]
L=
= _|
P . : T T T T
o 20 40 sO 80 100
Cell

Figure 5.18: Empirical means and 95% Cls for the NBKE and GKE with optimal
smoothing. From top to bottom, N = 200, 500, and 2500.

80



008 040
L

006
|

%t

002

000

i
4 FM({@ 00 0 00
-

FD@OOOO 0 0

00

SSE
0000 0005 000 0015 0020 0025
|
}- ---}lnmmmo W 0
{»mmmoo 0

0.004
|
0

0.003

0.001
[

SSE
0002
|
4 mewo 00 00
}mmooo wo 0

0.000

NBKE GKE MLE

Figure 5.19: SSE Box-plots for the NBKE and GKE with optimal smoothing
and MLE, based on the scenario with 25 cells. From top to bottom, N =
50,125, and 1000.

81



=)
>
= — (=
= N -
[¥=1 H
> .
=1 3 .
— .
" = S I |
= _| (=
= = o
i a
= _ B
=1 N
= b N
L =—1 N
| ] = ]
i T
> .
<> ——,
<=
= T T T
NBKE GKE ML
o
=
= — =3
<= =
Lo H
= l |
=
<>
s | g
= _E—
S J__
o> 1
i : :
- | ]
— 1
>
=
g T T T
NBKE GKE MLE
L)
—
< _|
= o
Py
- H
q) ] .
B =
] — 8 g ! I
- ' ,
S - 8 : :
(=] E [ I N
—] v L |
H =3
&% I ]
a> -1 — J
- s
T T T
NBKE GKE MLE

Figure 5.20: SSE Box-plots for the NBKE and GKE with optimal smoothing
and MLE, based on the scenario with 100 cells. From top to bottom, N =

200, 500, and 2500.

82



Chapter 6

Case Study: IBD Data

In the IBD survey, there are two main IBD groups of interest. Between the two
groups, there are a total of 247 subjects; 137 diagnosed with Crohn’s disease and
the other 110 diagnosed with Ulcerative Colitis. (See the Data Appendix on the
post processing done to the data.) One objective of the study was to determine
whether or not a statistically significant difference exists between the two groups
with respect to the number of symptom flares experienced within the last six
months. Figure 6.1 shows the fitted curves for the proportions of subjects with
a given number of IBD symptom flares, using the MLE approach and using the
NBKE approach with optimal smoothing. As previously stated in Chapter 1, the
most likely area for the difference between the two groups is in the upper tail.

This difference, however, is less apparent in the graph with smoothed curves.
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Figure 6.1: Fitted curves of proportions of symptom flares for the two IBD groups.
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Specifically, we are interested in testing the following hypothesis,

HO : ﬁCD = ﬁyc VS. HA . ﬁCD 75 ﬁUC’ (61)

where ﬁCD and ﬁUC are the vectors of cell probabilities for the Crohn’s Disease

and Ulcerative Colitis IBD groups, respectively.

Under the null hypothesis, both groups belong to the same population. How-
ever, due to the small ratio of the sample size to the number of cells, low cell
frequencies, and the fact that MLE estimates are not recommended, a Chi-Square
test of homogeneity is not appropriate if applied to the data in its current state. A
common approach would be to group cells together so there are fewer categories.
As first mentioned in Chapter 1, there are some potential pitfalls in doing this.
We lose information and tests for detecting differences between the two groups
become less powerful. Also, defining groups is quite arbitrary, so tests results are
potentially highly dependent on the grouping method. For the sake of complete-
ness, however, we will first try this method using three grouping configurations to
show how much results can vary. We will later compare these results to what is

obtained with our suggested methodology relying on a permutation test.

For the first Chi-Square test, we combined the 100 cells into 7 categories so
that the expected count for each category is approximately 5 or more. Table 6.1
shows the 2X7 contingency table with 6 degrees of freedom. The value of the test
statistic is 11.3578 and the p-value is 0.07793. Based on this configuration, there

is no statistically significant difference between the two IBD groups at a = 5%.

For the second Chi-Square test, we combined the 100 cells into 6 categories
so that there were at least 5 observations in each category. Table 6.2 shows the

2x6 contingency table with 5 degrees of freedom. The value of the test statistic
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is 11.3449 and the p-value is 0.04495. Based on this configuration, there is a
statistically significant difference between the two IBD groups at o = 5%. Of
course, this does not necessarily mean there is a practical difference between the

two IBD groups.

Most of the survey participants reported having fewer than 40 symptom flares
within the last six months. The Ulcerative Colitis group actually has only 1
observation greater than 30 at cell 99. Now, suppose we focus on a subset with a
low or moderately high number of symptom flares. Or in a different perspective,
we treat the observations in cells beyond 40 as extreme (but still possible) cases.
By doing this, we still capture over 96% of the original sample. Table 6.3 shows
the 2x6 contingency table with 5 degrees of freedom for the third Chi-Square test.
The value of the test statistic is then 8.2363 and the p-value is 0.14370. Based on
this test, there is no statistically significant difference between the two IBD groups
at a = 10%. This brings us back to our original hypothesis that the difference, if
any, is most likely to occur in the upper region. It could be argued, however, that

this isn’t a practical difference as it affects less than 4% of the subjects.

We now consider testing (6.1) using the NBKE. We do this to avoid having
to condense the data into fewer categories. For this case study, we used permu-
tation tests, but bootstrapping could also be used. For the permutation tests,
observations from both groups were combined together and tests for their differ-
ences were based on random permutations (re-arrangements) of the data. There
is a total of 247!/(137!110!) possible re-arrangements, so that, due to time and
computational constraints, only 1000 of these were randomly selected. For each
re-arrangement, estimated probabilities were computed for each group using the

NBKE with optimal smoothing.
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These tests were performed using two different scenarios. The first scenario
uses all the available data, while the second scenario focuses on participants re-
porting fewer than 40 IBD symptom flares which is similar to the grouping con-
figuration used previously in the third Chi-Square test. (Note that were are we

considering cells 0 to 39.)

Three empirical tests to detect differences in probabilities between the groups
were considered: (1) sum of squared differences, (2) maximum absolute difference,
and (3) sum of absolute differences. Specifically, for the first test, a sum of the
squared difference between corresponding cell probabilities from each IBD group
is calculated in each permutation. For the second test, a maximum absolute dif-
ference between corresponding cell probabilities from each IBD group is calculated
in each permutation. For the third test, a sum of the absolute difference between
corresponding cell probabilities from each IBD group is calculated in each per-
mutation. The p-value is then the probability of having a test statistic from a
permutation that is larger than the observed statistic from the original sample.
Empirical 90%, and 95% confidence intervals (or rather upper-bounds since these
are one-sided tests) were also computed. (They are empirical in the sense that

they are not based on any specific parametric distribution.)

The following are the results of the 1000 permutations. Figures 6.2, 6.3, and
6.4 are histograms of the aforementioned three types of differences. In Table 6.4,
where tests are performed using all 100 cells, there is only a statistically significant
difference for the third test at the 5% level of significance. Tests using the absolute
max difference are known to be not very powerful. From that standpoint, the much
larger p-value was to be expected. The first test suggests that there might be a

difference between the two IBD groups (since the p-value is very close to 0.05) and
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this is using all the categories. Recall, however, that for the Chi-Square test, we

had to collapse the data into 6 categories in order to be able to detect a difference.

Table 6.5 shows the results of the permutation tests using only 40 cells. At
the 5% level of significance, there is no statistically significant difference for any
of the permutation tests. These results agree with the Chi-square test based on

40 cells as well.

Hence, if we consider all 100 cells, there is some evidence of a statistical dif-
ference in distribution of symptom flares between the two IBD groups (either at
5% or 10% level of significance). Once we consider the smaller subset, however,
there is weak evidence to suggest that there could be a statistically significant
difference. This suggests that most of the statistical difference can be attributed
to the extreme upper values which account for less than 4% of the total sample.
Therefore, although there may be a statistical difference between the two IBD
group, this does not necessarily translate to a practical difference, at least with

respect to the number of symptom flares.
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Table 6.1: 2x7 contingency table for Grouping Configuration 1.

Groups 01| 2]35]6-10|11-20 | 21-99 | Row Total
Crohn’s Disease |40 (22 19| 15 | 19 14 8 137
Ulcerative Colitis | 42 122 | 9 | 18 | 13 4 2 110
Column Total 82144 |28 33 | 32 18 10 247

Table 6.2: 2x6 contingency table for Grouping Configuration 2.

Groups 0 (1] 2]35]|6-10| 11-99 | Row Total
Crohn’s Disease |40 22|19 15 | 19 22 137
Ulcerative Colitis | 42 | 22| 9 | 18 | 13 6 110
Column Total 82 |44 | 28 | 33 | 32 28 247

Table 6.3: 2x6 contingency table for Grouping Configuration 3.

Groups 011]2]35|6-10 | 11-40 | Row Total
Crohn’s Disease |40 22|19 15 | 19 15 130
Ulcerative Colitis | 42 [ 22| 9 | 18 | 13 5 109
Column Total 82 (44 | 28| 33 | 32 20 239
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Figure 6.2: Histograms of sum of squared differences between 1BD groups.
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Figure 6.3: Histograms of maximum absolute difference between IBD groups.
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Figure 6.4: Histograms of sum of absolute differences between IBD groups.
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Table 6.4: Permutation tests of difference based on 1000 random re-arrangements

using 100 cells.

Difference Observed | RT p-value | 90% Quantile | 95% Quantile
Squared Sum | 0.02112431 0.052 0.01702809 0.02149444
Absolute Max | 0.08984738 0.176 0.10203655 0.11728899
Absolute Sum | 0.46407519 0.029 0.40889484 0.44231978

Table 6.5: Permutation tests of difference based on 1000 random re-arrangements

using 40 cells.

Difference Observed | RT p-value | 90% Quantile | 95% Quantile
Squared Sum | 0.01950796 0.119 0.02127143 0.025605625
Absolute Max | 0.08266466 0.253 0.11102016 0.12708662
Absolute Sum | 0.40474644 0.084 0.39505111 0.42808815

93




Appendix A

Data Appendix

Although the main outcome of interest is the number of symptom flares within
the past six months, two survey responses were considered to verify the reliability
of the data. (1) The number of symptoms flares in the past six months. (2) The
time to the last symptom flare. If the value for the number of flares is missing,
and the last flare occurred 6 months or later, the number of flares is set to 0.

Some respondents contradicted themselves, so these records were not kept:

1. Individuals with a missing value for the number of flares, but reported to

have experienced the last symptom flare within 6 months.

2. Individuals who claimed to have experienced their last symptom flare more
than six months before the survey, but reported a non-zero value for the

number of flares experienced within six months.

3. Individuals who claimed to have experienced their last symptom flare within
6 months, but also reported of experiencing 0 symptom flares within six

months.
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Appendix B

Mathematical Lemmas

Lemma B.1. The product of r consecutive numbers (each 1 unit apart) is less
than the average of the first and last term to the power of r. In other words, for

y >0

(y+Dy+2) - (y+7r) < (y+1;7m>r-

Proof of Lemma B.1: A result in Lorch (1984) [] states that for r > 2, and

fory=20,1,...,2,

%—%—i—% < <y+ —;—)T_l.

We generalize Lorch’s result for non-integer values of ¢, and derive the following,
valid for r > 1:
My+r+1) ( 7’+1>T
T(y+1) ¥

or, (y+ V(y+2)---(y+71) < <y+7‘;—1>r
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1 1 .
Lemma B.2. - and 1= can be expressed as the following:

1

T = 1 — 2+ O(z?), and,
1

. = 14z +O(z?).

where |z| < 1.

Proof of Lemma B.2:

1

We start by expanding the expression for into the following,

142
1 1 + i
et — T .
1+z 1+z
Now, note that for z > 0,
72
<z
1+2 ™~
Thus, we have,
1
— =1 O(z?).
1+z z+0@)

. . . 1
Similarly, we can expand the expression T as,

2

=1 .
1=z +x+1—x
Now, note that as long as z — 0,
2
x
= O(z?
l—2z (=)
Thus, we have,
—— =1+2+0(
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bias-variance tradeoff, 30, 54, 61 . .
histogram, 6
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Chi-square test, 6 leave-one-out, 55
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data reflection, 14 local smoothing, 12

discrete data, 5 maximum weight, 27, 31
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MPLE, 7
MSE, 5, 30, 54
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multinomial data, 6
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negative weights, 15
nonparametric, 6
normalized, 23

normalized beta kernel estimator, 22

optimal smoothing, 54, 59
order of the bias, 44
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ordered data, 15

parametric, 6

pmf, 5
reflection, 14

sample size, 58

scope, 20
self-adapting, 26
shrinkage estimator, 8
simulation, 58
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symmetric kernel, 14
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