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Abstract

The focus of this thesis is on estimating multinornial cell probabilities in the

context of sparse, ordered data, in particular, using the normalized beta kernel

estitnator (NBKE). The NBKE is a local smoothing estimator that uses non-

negative weights and that takes advantage of the natural ordering inherent to

certain types of data. It is flexible and self-adapting and leads to estirnated

probabilities that form a proper probability distribution. Furthermore, it is an

asymptotically unbiased and normal estimator that is free of boundary bias.

Specificaily, this thesis begins with a general discussion on probability estimation,

smoothing, and kernel estimation for discrete or categorical data. Secondly, rnany

of the properties and pitfalls of such estimators are discussed. Then the desirabie

properties of tire NBKE are examined through visual and mathematical proofs,

and with a simulation study. The final chapter of this thesis is an illustrative

exatlple using the NBKE on data from a medical survey on inflammatory bowel

disease (IBD).

Key'Words: Kernel estimation; Norrnalized beta kernel estirnator; NBKE; Srnooth-

ing; Bias-variance tradeoff; Boundary bias; Sparseness; Non-negative weights,

N4riltinomial cell probabilities.
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Chapter 1

ïntroduction

The impetus behind this Master's thesis is a medical survey on inflammatory bowel

disease (IBD). One covariate of interest is the type of IBD as diagnosed by a sub-

ject's physician. There are three main types, Crohn's disease, Ulcerative Colitis

and Ulcerative Proctitis with the first two being the most prevalent. One out-

conre lneasure is the number of syrnptom flares (outbursts) subjects experienced

within the six months prior to the study. Subjects were allowed to respond with

values ranging from 0 to a maximum of 99. Thus, under the reasonable assurnp-

tion that subjects are independent, symptom flares can be viewed as observations

from a multinomial distribution with proportion parameters P0, P1, Pz,. . . , Psg.

And, consequently, the focus of this thesis will be on estimating multinomial cell

probabilities, in particular, using the normalized beta kernel estimator (NBKE).

Another important objective of this thesis is to determine if there is a sta-

tistically significant difference in the distribution of symptom flares between the

groilp classified with Crohn's disease and the group classifi.ed as Ulcerative Coli-

tis. Tirere are a total of 247 testable subjects of interest in the IBD survey, fairly



evenly divided between the two IBD groups. There v/ere very few subjects clas-

sified as having Ulcerative Proctitis or some other form of IBD. (See the Data

Appendix on the post processing done to the data.)

Under the null hypothesis, subjects in the two IBD groups corne from the

same homogeneous population. Figure 1.1 plots the observed cell probabilities for

the two IBD groups. These preliminary results show that there couLd possibly

be differences, particularly in the upper-tail with counts for the lJlcerative Colitis

group being more clustered about 0. Observations for cells greater than 40 could

be considered extreme cases. Although this thesis will focus mainly on methods

of estirnating multinornial cell probabilities, we will look at the result of including

and removing these cases in Chapter 6.

Figure 1.1 clearly shows that the assumption of an approximate normal dis-

tribution for the number of sympton flares would not be appropriate for either

group. Thus, a simple analysis using ANOVA or ANCOVA would not sriffice for

this problem. Furthermore, these bar charts reveal the sparseness of the data.

The problem of sparseness in contingency tables occurs when the number of cells

is relatively large in comparison to the number of observations. This leads to

many categories or cells having low counts, namely zeroes and ones. A simple ¡2

goodness-of-fit test for homogeneity would also not be adequate for this problem

as this test is not adequate for sparse data. (Symptom flares could also be treated

as being from a Poisson or zero-inflated Poisson distribution, but that is beyond

the scope of this thesis.)

One solution to the problem of sparseness is to restrict observations into fewer

categories. By doing this, however, v/e lose some inforrnation and statistical tests

become less powerful. Another issue with grouping the data into fewer categories
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is that the rnethod of grouping is quite arbitrary. Results from the same type of

test can vary greatly depending on the grouping configuration. Also, the upper

cut-off within a group is often more similar to the lower cut-off of the next group

than its own lower cut-off. For example, if the range of one group is 11-20 and

the range of the next group is 21-30, the value 20 is more similar to 21 than 11,

which is intuitively undesirable.

Another solution, which v/e pursue here, is to adjust the observed cetl prob-

abilities, also known as maximum likelihood estimates (MLE), by using weights.

One method of ad.justment is to use a so-called kernel estirnator. A kernel is the

underlying function that allocates weights to celis or observations. A higher level

of adjustment or "smoothing" denotes a greater departure from MLE probabiÌi-

ties. When most of the weight is assigned to the cell of interest and its immediate

neighbours, there is less smoothing. When weights are more spread out, there is

greater srnoothing.

The focus of this thesis is on estimating multinomial cell probabilities. Specif-

ically, in Chapter 2, we present a review on nonparametric probability estimators

for ordinal discrete or categorical data. In Chapter 3, we introduce the normal-

ized beta kernel estimator (NBKE) and derive some of its basic properties. In

Clrapter 4, we discuss the properties of the bias and variance, both generally and

asyrnptotically. We also discuss tire bias-variance tradeoff inherent to practically

all smoothing estimators, and offer some practical considerations when dealing

with finite samples. In Chaptet 5, we perform a simulation study to compare and

contrast the effectiveness of the NBKE against the MLE and the geometric kernel

estirnator (GKE) which we will later discuss. In the final chapter, we analyze the

data that was the motivation behind this thesis.



Chapter 2

Probability Estimation for

I)iscrete l)ata

When estirnating probabilities, whether for continuous or discrete data, there is a

need for a measure that specifies what possible values a variable can take, and the

likelihood of obtaining such values. Together, these determine the distribution of

a variable. Within the realm of discrete or categorical data, the probability mass

function (p-f) is such a measure for the distribution.

Moreovet, there is also a need for measures of accuracy and precision of an

estimator. The former describes, on average, how different an estirnate (or that is,

its expected value) is from a true pararneter, and is defined as the bias. The latter

describes how similar estimates are in general, and is defined as the variance. A

measure that encapsulates both the bias and the variance is the mean squared

error (MSE).



For now, let us concentrate on the distribution of rnultinomial data. A his-

togram, or bar chart, is commoniy used as a visual representation of the distribu-

tion of a variable. For continuous data, a histogram groups data into bins. The

width of the bin determines the range of a group. The height determines a group's

overall frequency or relative proportion. The bin width in conjunction with the

range of the histogram determines its overall shape and smoothness. Wider bins

translate to having a larger smoothing effect, and so, flatten the histogram. The

position of the first and last bins can also affect the number of peaks and troughs

that appear in the density curve. Thus, data from a multimodal distribution can

appear to have only one peak; see Silverman [, :] for an illustration using data on

geyser eruption times.

In the case of multinomiaÌ data, the bin width and range of the bar chart

are fixed where each bar represents a cell or category. The bar chart, of course,

can be condensed into fewer bars (or cells). This is what would be reqriired

when conducting a y2 test for sparse data, when many cells have low counts,

namely zeros and ones. One of the goals of this thesis is to explore a method that

eliminates the need to collapse data into fewer cells. This will be emphasized later

in Chapter 6, when we look at the IBD data in greater detail.

The parametric approach to probability estimation assum.es that the data fol-

lows a known fortn of distribution. For example, data assumed to follow a Poisson

distribution wouid have a mean that is equal to its variance and would have a

specific form of prnf depending on only one parameter. A nonparametric ap-

proach requires fewer restrictions or assumptions for the purpose of estimation,

br-rt typically involves tnany more parameters to be estimated.



A common nonparametric rnethod to estimate cell probabilities, or propor-

tions, for discrete data is to use unadjusted observed cell proportions. Note tltat

these are the maximum iikelihood estimates (MLE) of the true underlying cell

probabilities. Let X¿ be an observation from a multinomial distribution with

probabilities Po, Pt, Pz, . . . , P*. AIso, let l/ be the total number of observations

and ,A[ represent the number of observations equal to k. The MLE of P¡, the

probability for cell k : 0, 7,2, . . . ,n'L is,

, 1¡/Pk: ;tr(xn:¡r¡lv .

1VÀ:

^,/ 
'

(21)

wlrere I(Xi : k) is an indicator function. This method, however, is problematic

for data with rnany cells having low or zero frequencies.

Good and Gaskins [],] were the fi.rst to introduce the maximum penalized

likelihood estimator (NIPLE), initially in the continuous setup, then later in the

discrete setup. For the MPLE, a larger number of cells results in a greater penalty.

See Simonoff [. '.1 for a further expansion on the discrete setup.

Simonoff [, l] ulto details several basic methods that account for zero counts.

One such estimator, he describes as a 'flattening' one, adds a constant À to each

cell. The form of the'flattening'estimator is very much like the MLE (2.1). it is

defined as,

Pk()) : ^¡r 
+ ,l

(2 2)N+À(rn+1)'



Note that (2.2) can also be expressed as a Bayesian shrinkage estimator. In

this fortn, the estimator becomes a weighted average of the NILE and the discrete

unifortn distribution which gives the same probability of ll(rn + 1) to all cells.

Recall that shrinkage estimators pull individual estimates toward the overall mean.

The shrinkage estimator is defined as,

Þ¡,çr¡: (r - e)Þ¡,+ -j .m+ r

where e : \(m + I) I [,n/ + À(nz + 1)].

When À : 0, tlie shrinkage estimator is equivalent to the MLE. A larger value

for À gives more weight to the uniform distribution, and thus, implies a higher

level of smoothing. As À approaches infinity, e aproaches 1, and the sÌrrinkage

estimator converges to the uniform distribution.

Several choices of À were considered by Simonoff: 1, Il2,7l(m t 1) and

t/Ñ l@+ 1). To illustrate the effects of varying the level of srnoothing, however,

we use À: 0, 1,10, and 50. Figures 2.1 and 2.2 plot fitted probability curves for

the two IBD groups. In both figures, we see the pronounced redriction of the peak

at the boundary. It is also important to note that for À : 10 (or in general, large

À), the curves for the two IBD groups are almost indistinguishable. At À : 50, the

sitrinkage estimator is already aimost equivalent to the uniform estimator. This is

a precursor to the bias-variance tradeoff dilemma that is inherent to all smoothing

estimators. This issue will be discussed in fuller detail in later sections.
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Another possibie solution to the problem of sparseness is to smooth the data

by using a kernel estimator. In essence, a kernel-weighted estimated probability

is a linear combination, or weighted average, of all the observations or observed

cell probabilities. A general form for a kernel estimator for discrete data can be

expressed as,

Þ*u:î*-ul*.
Á "1v (2 3)

P1,y¡ denotes the probability estimate of cell k, ff is the observed proportion of

observations falling into cell l, and Wx(l) is the weight assignted to cell l, when

estimating the probability of cell k, for k : 0,7,2,... )m and I : 0,7,2,...,tfl.

Note that (2.:3) reduces to the MLE probability estimates when

I t rorl:k,wr(l): 1

I O otherwise.

In other words, no weight is given to other celis when estimating P¡.

It is also important to note the difference between a simple scalar-weighted

probability estimator (rarely used), and a kernel-weighted one. A scalar-weighted

estirnator can be expressed as,

for some sequence of constansts 0 ( S¡ < 1. This is more similar to the shrink-

age estimator as smaller weights pul Ps,¡ closer to 0 and weights closer to 1

pull Ês,¡ closer to the iVILE probability. Also, with this method, categories with

zero frequencies will continue to have probability estimates of. zero. With kernel

estimators, ltowever, zero frequencies do not necessarily lead to zero probabil-

ity estimates because estirnated probabilities are based on a weighted average of

several cell probabilities, not just one.

Pr,o:s**,

l1



The level of smoothing is determined by the allocation of weights to cells or

categories. lVlost smoothing techniques allocate larger weights to neighbouring

cells. A higher level of srnoothing is achieved as the weights assigned to each

cell approach equality. Figure 2.3 shows the NBKE weight functions for cells 10

and 50 at various levels of smoothing. The parameter c, which will be discussed

in greater detail in Chapter 3, specifies the level of smoothing with a higher

value indicating less smoothing. We can see that the range of cells with non-

neglible weight widens and the peak decreases as the level of smoothing increases.

A challenge to using any smoothing technique is determining the appropriate

level of smoothing for a given situation. For an introductory discussion on kernel

estimation and smootlting parameter selection) see Schucany [, ,].

A local smoothing estimator is one that assigns weights primarily to the cell of

interest and its neighbours. This is practical when neighbouring cells are assumed

to be similar, which is often the case of ordinal, numeric data. One situation where

this assumption is appropriate is if data values are truncated or grouped frorn

continuous values. For example, height measured in centimetres can be rounded

up or grouped into discrete categories. A property inherent to local srnoothing

techniques is the flattening of local extrema. Since fuli weight is not given to the

cell of interest, but distributed among neighbouring cells, the magnitude of a local

minimum and maximum is iessened. In other words, the height of a modal area is

decreased and the depth of a valley area is reduced. In Figure 2.:1,, i¡ either cell 10

or 50 were a local extrema, and probability estimates were plotted, we would see

the mitigation of the height or depth with higher smoothing. See Aerts et al. I t]

for an exampie and discussion on local polynomial fitting for sparse multinomial

data.
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Burman [''] surnrnarizes two rnain reasons for smoothing:

1. Smoothed estimators (which include kernel estimators) are often superior to

the MLE under squared error loss due to the bias-variance tradeoff.

2. The occurrence of zero cell counts can be probiernatic when estimating or

testing in some parametric and nonparametric models.

For now, it would perhaps be better to address the general issues encountered

when using kernel estimators. This will lead to the next chapter where the nor-

rnalized beta kernel estimator (NBKE) is discussed more in depth, specifically

detailing how this estimator does not exhibit some of the problems of other kernel

estimators, but exhibits other desirable properties. For a comparative study of

kernel-based estimators for categorical data, and a discussion on their implemen-

tation for rnissing or incomplete data, see Titterington Ir.:].

Often, in the case of continuous data, the kernel is symmetric. For details on

density estimation for continuous data, see Silverman Ii.;]. In general, whether

for continuolrs or discrete data, most would argue that it is reasonable to allocate

equal weight to cells that are equal-distanced from the cell of interest, especially for

neighbouring cells. This is a problem, however, wiren estimating cell probabilities

near the boundary, or more specifically, cells 0 and m) as there are not an equal

nrimber of cells that are greater than and smaller than the cell of interest. The

term 'bandwidth' is often used to define the range of a weighting function. Kernel

estimators with a bandwidth that allocates non-negligible weights to cells outside

the su.pport of data will exhibit boundary bias. In this case, weights are assigned

to cells that do not exist! It is important to note, however, that this issue is not

exclusive to symmetric kernels.

T4



An example of such an estimator is the geornetric kernel estimator (GKE) as

dicussed by Wang and Ryzin [::']. When estirnating the probability of cell k, the

weighting function of ceil I is defined as,

W",n(t) : 0.b1-1(À:') (t - s)5lr-rl (2 4)

where 0 < s ( 1 is the smoothing parameter, with values closer to 0 denoting less

srnootlring. For each k, the weights sum up to 1 for all integer values of lk - ll.

This is a problem, however, if the total number of cells or categories (m) is small,

as the sum of the weights will not add up to 1. In general, when weights do not

surn up to 1 (either across k or l), this can lead to probability estimates that do

not surn up to 1 which is not a desirable property! We will compare the GKE

with the NBKE in a simulation study Ìater in Chapter 5.

A reflection technique can be used to redistribute the weight from the area

beyond the boundary back to the scope of the data. This increases the weight

assigned to the boundary cell and its neighbours, but does not necessarily solve

the problem of boundary bias completely. Another undesirabie result is that the

resulting estimates do not form a proper probability distribution. This problem,

however, is not lirnited to kernei estimators using data reflection. Kernel estima-

tors that allow negative weights can aÌso lead to probability estimates that are

negative. Thus, these too can result in estimates not forming a proper probability

distribution.

Rajagopalan and Lall ['r:] developed a kernel estimator to account for data ex-

hibiting characteristics of rnultiple geometric distributions. In their case, the data

were highly concentrated about the origin and had a long tail. Their motivation

15



was estimating the distribution for the length (in days) of continrious rainfall, and

dry periods.

Burmau ["i] introduced a kernel estimator for smoothing sparse contingency

tables that requires an irnportant assumption of underlying smoothness in the

density. Burman explains this assumption by defining the probability of cell ,k as

the area under a density curve between kl(^ f 1) and (k+l)l(m* 1) with a

support ranging from0l(m* 1) to (m+1)l(m+ 1) (or more specifically, 0 to 1).

Burman also stipulates that there is no boundary bias when Po : 0 or P^: g.

The focus of this thesis is on the normalized beta kernel estimator (NBKE). It

too is a kernel estimator that is most advantageous when used on discrete data that

is naturally ordered and that may exhibit sparseness, but does not require the same

stipulation as Burman for there to be no boundary bias. Chapters 3 and 4 focus

on the general and asymptotic properties of the NBKE such as the bias-variance

tradeoff and how this affects the choice for the level of smoothing. In Chapter

5, through a similation study we will see the effectiveness of the NBKE over the

MLE and GKE. In Chapter 6, using the IBD data as a case stud¡ the NBKE will

be applied to sparse, ordered multinomial data with a high concentration about

zero, and a long tail.

16



Chapter 3

The lNormalized Beta Kernel

trstimator

Tire normalized beta kerneÌ estimator (NBKE) is a nonparametric estimator for

discrete data adapted from a continuous setup, see Chen If]. It is nonpararnetric

because the estirnated pmf (of the data) is not assumed to belong to a specific

parametric family. Beta weighting functions are just tools used to improve upon

MLE estimates which are simply observed proportions. As previously mentioned,

the NBKE does not exhibit problems common to other kernel estirnators for dis-

crete data, but more importantly, it exhibits other desirable properties. Recall

that its weighting scheme requires an important assumption that there is an un-

derlying smoothness and order to the overall distribution to be estimated. The

assumption implies that neighboring cells are similar to each other so allocating

the most weight to the cell of interest and its imrnediate neighbours rnakes sense.

77



3.1 The Binomial Kernel

We start with the simplest version of the NBKE using binomial probability weights.

It will become clear in the next section how this estimator based on binomial

weights is a specific case of the NBKE. Let X1, X2,.. . ,Xx be observations from

a multinomial distribution with proportion parameters P0, P1, Pz,. . . , P^ and size

parameter N. When weights are assigned to individual observations, the binomial

kernel estimator of the k-th cell (or category) probability is defined as,

(3.1)

wlrere the function B¡,,^(r¿) denotes the binornial weight of the i-th observa-

tion, fori : 7,2,. . . ,N and k : 0,I,.. . ,n1. Note that these weights are all

non-negative and correspond to the binomiai distribution with the probability of

success ,ol^ € [0,1].

Note also that although there are ly' observations, there are only nz f 1 dis-

tinct weights. So, it is possible to rewrite this estimator in a form similar to

equation (.i.1), but with weights expressed in terms of the cells. The binomial

kernel estimator simplifies to,

Þur:*å (f) fTl-(r - #)*-r: *å Bn,*(r¿),

Þu,r :

:

:

n*åt,,:r¿)B¡*,^(r¿)

å*(Ð (*)-('- *)*r

fifi'r,^ra, (3.2)

where I(l : r¿) is an indicator function and Bt,*(l) is the binomial weight of the

l-th cell when estimating the probability of the k-th cell.

18



Proposition 3.1.1. When esti,mati,ng the probabi,Ii.ty of the k-th cell, bi,nomi,al

kernel wei,ghts are marimi,zed at I : k.

In other words, when the weights are plotted, the peak is located at cell I : k.

Hence, estimating P¡ using (:l.l) makes sense as observations close to k contribute

more to this weighted sum of binomial probabilities. Similarly, estimating P¡

using (;j.2) rnakes sense as cells close to k are allocated more weight. Also recall

the assumption that there is an underlying smoothness to the distribution of

multinomial probabilities. This means that neighbouring cells are similar to each

other; so it is reasonable to assign larger weights to ceils closest to k.

We now present the proof for maximal weight at I : k for the special case of

the binomial kernel. We will later formally state this property as a theorem and

provide an asymptotic expression of the weight for the general NBKE.

Proof of Proposition 3.1-.1-:

Recall the binomial weight function in

8,.^o\: (*\ ( t¡
'\1''þ\ / 

\t/ \-

(3 2),

- 
(' - *)*r

We will prove the above proposition for three different cases: (1) k : 0, (2) k : r'r1.,

and(3) 0<k<m.

For the first case, the weight function becomes,

Bo,^(t): (1 - |l-,

As 86,-(/) is a decreasing function of ¿, it is obvious ttrat Bs,-(l) is maximtzed aÍ

L :0, and hence, at I : k.
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For the second case, the weight function becornes,

B*,*(t) : (L)*.
m

Ãs 8,,,^(l) is an increasing function of l, it is obvious that B,,,,n(l) is aiso maxi-

mized at I : rn, where k : m in this case.

For the third case, in order to verify that I : k is a global maximum over

0 < I < trL) we need to consider the boundaries. For this, note that,

/m\ t 0lk¡ o\--À'Bn,^(o):(r)\il\r-il -0 (33)

and

\r,,.(m): (;) G)r (t -#)--u : o (3 4)

Now, it easy to to see that B¡",*(¿) > 0 for 0 < I { m, implying that the maximum

will be reached away from the boundaries. So let us consider the natural logarithrn

of B¡,,-(l) for0< l<m,

/m,\
ros B¡,^(t) : log I ) I + k log l - k tog m-t (m - k) flog (* - t)] - (m - k)tosm.

\Æ/

The first derivative of log Bn,,"(l) with respect to I is,

?loeBn,*(l) _k _(*-k)
AI I m-L

Equating the above to zero and soiving for l, we get that I : Å;.

l\ext, consider the second derivative of log Bk,*(l),

õ2roe-Pt,*(I) : _ _L-_ !- - ll . oA2l P (rn-l)2

for all 0 < ¿ < m whichtells usthat theweight is rnaximized at l: Æ. Therefore,

for any value of k : 0,1,.. .,m, Bp,*(l) is maximized at I : k. !
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Note, (13..Ì) and (3.a) tell us that when we are estimating the probability of an

interior cell, 0 weight is given to both boundary cells.

Proposition 3.1.2. The esti,mated probabi,li,ti,es Þs.¡ for k:0,1,.. . )rn o,re non-

negattue and sum up to 1.

Proof of Proposition 3.t.2:

First, note that,

äur,*,r: å (r) (*)-(' - 
t*)*-r :, (B b)

Then, using property (.:i.5), we have,

ta",r: ääf'^,,_(t)È:o 
: r*îBu*Q)

Á 1\ l:o
3¡/,-. ¡/
I ro lti 

: F:1'
n

The property of having estimated probabiìities sunl to one is required for

unbiased estimation. To obtain this property, the weights must sum to one across

some index (in our case, k). It is important to note, however, that having weights

sum to one does not always guarantee that estimated probabilities will sum to one.

We will see an example of this in the next section as we explore the importance

of the weighting scheme.
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3.2 The NBKE

The normalized beta kernel estimator (NBKE) is essentially a generalization of the

binomial kernel estirnator introduced in the previous section. It is an estimator

that ailows an infinite range for the level of smoothing. More importantly, it

is normalized so that the complete collection of estimated probabilities have the

preferable feature of summing to 1.

Let X1, Xz, . . . , Xw be observations from a multinomial distribution with pro-

portion parameters P0,P1, Pz,...,Prn and size parameter iy'. For c ) 0 and

0 < t < m,IeL the beta kernel function be defined as,

8",¡,^(t): f(crn + 1)

t(cj +7)t(cm- cj +I) (*)"

where nz is the upper boundary cerl, j is an index for cells and f (e + 1) : z! for

positive integer values of z. Beta kernel functions will serve as tools to compr-rte

initial kernel weights, and eventually, normaiized l<ernel weights. Note that beta

kernel functions are non-negative, and so, a sum of kernel weights is also non-

negative.

The beta kernel ftrnction in (ll.il) can aiso be expressed as,

/ + r c(rn--r)
(r -: ) (s.ol\ ?n/

8.,¡,^(t): (î) (*)"'('- *)c(m-i)
(9 n\\r'rl

The second form of the beta kernel function in (.i.7) is useful for integer values of

c. For the NBKE, a ì.arger value of c translates to less smoothing. (This is often

not the case with smoothing parameters for other kernel estimators.)
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When weights are assigned to individual observations, the general form of the

NBKE of the Æ-th cell probability is defined as,

rN
Þuç"¡:*fw",x,*(r¿),

1\ :-.

Þoç"¡:þ*#*",r,al

(3 8)

where W",n,^(r¿) denotes the NBKE weight of the i-th observation when estimat-

ing the k-th cell (or category) probability, foli : I,2,. . . ,N and k, :0,1,. . . ,rrù.

In terms of beta kernel functions, W",n,^(r¿) can be expressed as,

W.,tr,*(r¿):
8",n,,*(r¿)

(3 e)
Ðþo 8.,¡,^(r)'

Note that B"¡,*(r¿) in (3.9) can be viewed as the non-normalized beta kernel

weight of the i-th observation, or for lack of a better word, an unscaied kernei

weight. Ðþo 8",¡,,,(r¿) is tÌre sum of ali possible beta kernel weights of the z-th

observation. (There are mit different beta kernel weights for the z-th observation,

one for each category.) Thus, W",n,^(r¿) can be interpreted as the fraction of

weight for the i-th observation used for estimating P¡, with respect to the sum,

hence the term normalized beta kernel.

Similarly to (13.2), the estimator in (,1.8) can also be expressed in terms of the

cells,

(3.10)

where W.,k,,,(l) is the NBKE weight of the l-tir cell (or category), for I : 0, I,. . . ,r-rL,

when estimating the probability of the k-th cell. It is defined as,

8..n.^(l)

Ðþo 8.,¡,*(l)'
W",k,^(l):

¿ò

(3.11)



Similarly, B.,k,*(l) can be viewed as the non-normalized (or unscaled) beta

kernel weight of the l-th cell when estimating P¡. Also, Ðþo 8",¡,*(l) is the surn

of all possible beta kernel weights of the l-th cell, and W.,¡",^(l) can be interpreted

as the fraction of weight for the l-th cell used for estimating P¡. Table 3.1 is an

(m+1) x (rnt 1) grid of all possible unscaled beta kernel weights, with k, the main

cell of interest indexed along the rows, and l, the index of general cells indexed

across the colurrns. The normalization method used in this paper is with respect

to the sum of a column.

Table 3.L: Table of non-normalized beta kernel weights 8.,k,,-(t).

Cell 0 1 T m,-7 n7

0 1 8",0,*(I) B..o.r-(l) B.,s,*(m - 7) 0

1 0 8",t,*(7) B",t,r"(I) 8.,1,,-(m - I) 0

t^
¡i, 0 B"¡",r"(7) 8.,n,^(l) B".¡r.^(m - 7) 0

m-7 n B",rr-t,*(l) 8",^-r,rr(l) 8.''"_1,(m - I) 0

n'L 0 8.,*,^(7) 8".*.,.(l) B.,r-,^(m - 7) 1

Although, perhaps counterintuitive, it is important to note that the weights

w.,n,^(l) do not necessarily sum to unity, when added over l, for any fixed k. In

other words, the weights used for estimating P¿ do not, in general, sum to one.

This implies that (J.10) cannot be interpreted as a convex combination of the

observed cell frequencies.
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In contrast, however,

î,w"'^"-(l) : 1'
fr:0

for any fixed I because of the method of normalization. In other words, when

the beta kernel weights in Table 3.1 are normalized, the resulting weights surn to

one within a column. We have already seen this property used to prove that the

estimated probabilities obtained from binomial kernel estimator sum up to one.

It will be used again when v¡e prove, for the general case, that NBKE estimated

probabilities slull up to one.

Some readers may be inclined to think that the normalization is with respect

to the wrong sum, that is, that the normalization should be with respect to the

sum of a ro\ry) when refering to Table 3.1. Specifically, when estimating P¡, the

weight assigned to individual observations could be defined as,

H",n,*(r¿)
8",r,^(r¿)

Ðþo B.,n,*(i)'

Or, when weights are assigned to cells,

H.,n,rn(I) : B",t",r-(l)
(3.12)

Dþo 8",n,*(l)'

In this case, when estimating P¡, the beta kernel weight of cell I is divided by

the surn of beta l<ernel weights of all cells. An advantage of this version of the

norrnalization is that the proof of tnaximal weight at I : k would be easier to

obtain. Since the denominator of H",¡,,,(l) does not contain l, we could treat it as

a constant, and modify the proof for Proposition 3.1.'l of the binomial case. The

disadvantage, however, is that the estimated multinornial probabilities do not, in

general, sum up to one. This is obviously not a desirable property.



To see this, let P¡(c) denote the probability estimate of cell k using the second

version of the normalization in (3.12). Then,

n¿

D Pr(") :
k:0 åå #H"*,^(t)

å * f,¡v,u.,r,^Q) (3 13)

In order for (.ì.113) to equal 1, the following must hold true,

i,*,r",r,^(¿) : ¡i*.
,-n

This is not always true, however, unlike the normalization method in (:3.11).

Now, it is obvious that the beta kernel functions defined as in (ll.ti) and (1i.7)

are non-negative. Hence, the NBKE weights as defined in (.1.!)) and (3.11) are

non-negative. A useful property of the NBKE, then, is that probability estimates

are non-negative, but more importantly form, a proper probability distribuiion.

In other words, tire probability estimates sum up to one. A formal theorem and

proof are given in the next section.

Moreover, the NBKE weight function naturally varies for each cell, but its

scope is fixed between the minimum and maximum cells (the domain of the data).

This means that the shape of the kernel changes automatically without having to

change any stnoothing parameter, and that no weight is assigned to non-exisiting

cells. This is in contrast with most kernel estimators, particularly the ones with

symmetric weight functions as rnentioned in Chapter 2.
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Figure.J.l shows the NBKE weight functions of some interior cells for c: I,

c : 10, and c : 100, where cells range from 0 to 99, as in the IBD study. Values

of 1 and 10 for c were chosen to represent high and rnoderate levels of smoothing.

A value of 100 for c was chosen to represent an estimate close to the MLE, or in

other words, minimal smoothing. It is clear that for cells closer to the boundary,

weight functions a e more asymmetric and their peaks are higher. Asymmetry,

however, is less obvious at lower levels of smoothing (i.e. for larger values of c).

It is also important to note that the range of cells with non-neglible weight

is narrower for cells closer to the boundary. This means that for the same value

of c, interior ceils receive greater smoothing and boundary ceils receive lesser

smoothing. This is a property we will witness through a simulation study in

Chapter 5.

Because the NBKE weight function is self-adapting, its peak is always located

at the cell of interest. In other words, when estimating P¡, the largest weight is

assigned to cell ,k. (We prove this property for c : 1 and for asymptotic c, but we

do not prove it for c < 1.) This might explain the absence of boundary bias. This

will be formally expressed in Theorem (il.3.t). We can see in Figure i-1.1 that for

interior cells, the largest weight (peak) is located at the cell of interest regardless

of the degree of smoothing. This is also true for boundary ceils as can be seen

in Figure .1.2. Furthermore) no weight is assigned to cells beyond the boundary.

Thus, because of the NBKE's self-adapting and local smoothing properties and

because kernel weights become rrore concentrated as the smoothing parameter c

increases, the NBKE is asymptotically unbiased with respect to c. This is also

formally expressed as a theorem in the foltowing chapter.
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Also, note that when c:0, the NBKE takes the form of a uniform estimator.

This is the greatest level of srnoothing possible. When estimating any P¡, all cells

are given equal weight, namely ll(m+I). The resulting estimate will then be

Pe(0) : Ll(^ * 1) for all cells.

An inherent property of practically all smoothing techniques is the existence

of a tradeoff between bias and variance. Although the NBKE wilt be proven to be

asyrnptotically unbiased, it is biased in general, in particular at the local extrema.

Recall that we use local smoothing under the assumption that neighbouring cells

are sitnilar, and that there is an overall smoothness to the distribution. In modal

areas, the NBKE tends to underestimate and in valley regions, the NBKE tends

to overestimate. Dong and Simonoff [.,] postulate that for many discrete kernel

estimators, probability estimates for cells about the boundary can exhibit the

most volatilty.

In our simulation study in Chapter 5, we will see that for the NBKE, the

degree of bias differs for modal regions. Thus, choosing the degree of smoothing

is very important. This is a reflection of the bias-variance tradeoff first mentioned

in Chapter 2. The decision whether to accept larger systematic error (bias) versus

random error (variance) has to be made based on the needs of the situation. This

tradeoff, the Mean Squared Error (MSE) and the Mean Sum of Squared Error

(MSSE) of the normalized beta kernel estimator are a,lso discussed in Chapter 4.
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3.3 Basic Properties of the NBKE

In this section, we formally present some useful theoretical results previously men-

tioned in Section 1 of this chapter.

As can be seen in Figures 3.1, and l?t.2, the peak is located at cell k regardless of

the level of srnoothing. This irnplies that the k-th cell has the largest contribution

when estimating P¿, which is, of course) a desirable property. We now formaliy

state this in the form of a theorem.

Theorem 3.3.1. When esti,mati,ng P¡,, the probabili,ty for ceIIk, the largest wei,ght

i.s assigned to cell k.

Theorem 3.3.2. When estimattng P¡,,

fflt:1,
fik+t.

This property is useful for confirming two main properties. The first is that the

NBKE estimated probabilities are asymptotically equivalent (with respect to the

smoothing parameter c) to the MLE, or, in other words, the observed proportions.

The second is Theorem il.ll.l. When estirnating P¡, â,s c increases (or with less

smoothing) the weight allocated to cell k approaches 1 and all other weights

approach 0. We know this condition already holds for the binomial kernel, or,

when c: r. We, however, leave the case for 0 < c < 1 open for future studies.

Jt
lo
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Proof of Theorern 3.3.2:

First, consider,

w",x,^(t) : =:'!t9-u'^"'¿\ ' Ði'":g 8.,¡,',-(l)

8",k.*(l) I 8",,.^(l)
Ðþo 8.,¡,,"(l) I B.,t,*(l)

B.,k,*(l) I 8.,t,,-(I)
(3.14)

I * 
',¡+t 

B",j,,"(l) I B",t,*(l)'

We now need to show that,

n^B,,¡,*\t):[t ír j:¡
.-*8",¿,*(t) [o ifi+t.

It is trivial to show that the above limit holds when j : L. The proof, in the case

of j + l, will be derived separately for (1) j > I and (2) j <1. Forthese proofs,

Lemrna R.1 is required. (See the Technical Appendix.)

For these two cases, first consider,

8",j,*(¿) : xffia+¡ (*)" G - *)"(*-i)
8.,¿,*(r) *#ffirÐ (*)", (r _ *)",*-',

_ f(cl+ l)f(crn- cl+ 1) / ¿ ¡"{i-'l (^- t\-c(i-I)-rl,|+: \n) \*)
: !(cI + r)l(cm - ct + t) ¡"¡.ai-D I t 

I 
"(i-t) 

(

f (c7 + l)f (cm - cj + 7)' ' l4n - Dl 
(3'15)

32



Now, for the case where I < j < nz, expanding (.3.15), we get the following

8.,¡,^(l) : l(cl+I)l(cm- cj)(cm- cj +I)...lcm- cj +cj - ctl
8",¿,*(l) r(cl + l)(cl + I)..-lct+ (cj - ct)lt(cm- cj)

xþr)4t-a [--11""-"
lc(rrt - Q )

I q"t¡ot-¿) I lk^ - cj + L)...("* - ct)1

LGr+lI"øJ 16,
The first term on the right-hand side of the previous equality can be bounded as,

| (rt)ot-, I - t cl '1"('-') 
_ l, 1 1c(;-r¡ . t. r¡4i-tt

Len¡l-øl =L,*t] :L1 -cr+1J <lt-aJ ,

so that,

hm l, ' 
(cl):(i-¿) I a t,* lt - 1l "Q-t) : e-u-'DttËco LþI+1)...ki)l -c;&L ct)

Using Lemma 13.1, the second term of (3.16) can be bounded as

t)

(3.16)

(3. 1 7)

lcm-ci+ki.?¡t)"u-¿t
l"(* - t)l4i-t)

ci -cI12)
t.U

_t
¿)j

2(

+-

cm-cj* l)""-"
-¿)

c(2m - j

From this, we have,

ri- [
"_* L

"-- L

(3.18)



Now, note that in (3.18),

Å* l'**-L

andj>limpliesthat,

D]J-
l

c(2m

c(i-¿)
_ -(j-t)/(zm-j-I)

)

,rn lz* - (i + t) 
1",r-', : n.

"=ðòL 2m_2t I "

Therefore frorn (.3.16), (:1,.17) and (3.18), for j > l, we get,

ru, @ r -riq lztn - 
(i !t)1cri-t) x leri-tttrz^-i-,)l x e-(i-t)/t - 0.

"-* p",t,*(l) - ;;a | 2m _ 2l I L-

For the case where 0 < j < l, expanding (.3.15), we get the following,

8.,¡,,-(l) : l(ci +7)(cj +I)...lcj + (cl- cj)lt(cm- cl+I)
B",t,*(l) l(cj +I)l(cm- cl*I)(cm- cI+I)...1(cm- cl-rcl- c.j)l

xþt)"{i-a l--+l"t'-"\ / 
lc(m-l)1

: l, (c!n- cÌ"(t-n .llk¡ +t)",kt * 
" - ",r1 .1r.rn¡lk* - ct + r).. .(" - "i)) L (.t)41-i) ]

The first term on the right-hand side of the above equality can be bounded as

I k* - cl)c(L-t, I I an - cI 1'(t-¡)r 

-r 

/ r_ |

lþ*- cI +7).'. ("* - "j)) 
-ì l"*- ct +t)

I 1 t"(¿-i)./ t1 _ _l
L ctn-cI+Il

L cm- cI)

so that,

y^|- ("Y-:t)"Q t) 
J=,,,r. lt---f -lc(¿-i) :e-(t-i)/(^--t)

á-^d, Lk*- cI+1)...(" - rj))-c;co L cm- cI)
(3.2o)
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Using

From this, we have,

However,

Urn I
"-** L

(cj +I)." (cj + cl

Lemma 8.1 again, the second term can be bounded

(ci + r) "'(ci + ct - c )f . þ+ @-tùtt)'{t-i)

@1 >w
âS'

rl¿l

and,j<limpliesthat,

n,' l' + l'1""-" : n-.*ä L 2t

Tlrereíore, from (3.19), (3.20) and (3.21),for j < l, we get,

.. 8",¡,,-(l), 1. lj +¡aril
11111. 

-i* 
< llm l" I

"-* B",t,,n(L) -.-*l2L I 
t le(r-iltri+0f xe-(t-ilt(--1):0'

Since m is fixed, the above two cases lead to the following resrilt,

Iråtu#:,
From this, we can conclude that,

(cl)"(t-¡7

(3.21)

)Æw.,n,*(t):
7 if k:l
0 Lf k+1.

n

35



We now provide a general proof for a property that was mentioned earlier in

Section 3.1.

Theorem 3.3.3. The est'imated normali,zed beta kernel probabi,lt'ies us'ing (:l I0)

for k:0,1,.. . )m sLLrn up to 1.

Proof of Theorem i3.3.3:

First note that,

From (;Ì.S), we have,

!

We have now introduced the NBKE and looked at some of its basic properties.

In the next chapter) we focus on the general and asyrnptotic properties of the bias

and variance. We also discuss the tradeoff between the two which is a property

inherent to most, if not all, smootiring estimators. We will also offer practical

considerations for selecting the level of smoothing for finite samples that account

for the bias-variance tradeoff.

i,prg: ääf:w.,r,,*(t)
: å* iw'."*Q)

3.¡/'.': ) ït1l?ót
¡/: F:1'



Chapter 4

Bias, Variance and Practical

Considerations

In tlris chapter, we look at the expected value and variance of p¡(c) when nz is

fixed. Another focus of the chapter is to look at the asyrnptotic properties of

4(.) *itn respect to the smoothing parameter c. By doing so) we confirrn that

the properties first alluded to in Chapters 2 and 3 do hold.

Recall that X1, Xz,. .. , X¡¿ are observations from a multinomial distribution

witlr proportion parameters Po, Pr, Pz,. . . , P^ and, size parameter N. Further-

m.ore) recall Theorem ll..l.2 states that,

ifk:1,
ffk+t.J!gw,u,*(l) : I(¿ : n, : 

{ ;

.f/



4.L Expected Value and Eias of Þ¡r@)

Let us start by finding a general expression for the expected value of the estimator

Pr("), tlie NBKE of P¡. We have,

elp¡,(")l : 
" [Ë w",r,Ø+f

L¿:o .l v I

äw#0Et¡/¿l
: irr",u.*Q) t¡rprl

l:0 -¿ v

: ir",n,^1t¡r,, (4.r)

for any cell k.

lVlore formaily, the bias of Þ¡"þ) can be expressed as:

Bias[P¿(c)] : Pk - ElPk(c)l

Pr - iw",t",*(I)Pt. (4.2)
t:0

Corollary A.L.L. For fi"red, m, the NBKE 'is asymptoti.caltE unb'iased uith respect

to the smoothi,ng parameter c, that i,s, for all k : 0, . . . , ffi,

lirn E[P¿(c)l : Pu.
A+6
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Proof of Corollarv ¿1 1 1.

As a consequence of Thereom tl.lJ.2 and (4.1),

Jl,å el4(.)l : Ë gå w",*,,,(t) R
l:0
7n, f r(r: Ðn
t:0

:P¡

for any value of k :0,.. . ,1r1,.

Note that this guarantees asymptotic unbiasedness as c approaches infinity, so

that the reduction of the bias here is not necessarily directly dependent on tire

sample size, but it is dependent on the smoothing parameter c. Of course, c could

be clrosen as a function of the sample size. In other words, if c : cN such that

cN ---+ oo as N -- oo, then,

lim EIP¡(c)): Px.
'|y'-co

Here, a large c implies less smoothing. This is desired because as sparseness

decreases (or as the sample size increases), less smoothing should be required. This

is in contrast to other kernel estimators where typically, the smoothing parameter

h : h¡v --+ 0 as N --+ oo. In our case) a large value of the smoothing parameter

implies less smoothing.

Also, note that the previous result does not guarantee that there is no boundaly

effect which we will see in a later section.
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4.2 Variance of Þr@)

To find the variance of f¡(c), we begin with a resuÌt that will shortly prove usefui.

Propositi on 4.2.L. Þrç"¡-n¡Þrþ)) can be erpressed" as an auerage of i,nd,epend,ent

i,denticallg d'istributed (i, i d.) obseruati,ons. Spec,ificallg,

pn@) -Bip¡(")l : + Ë y,,r(c) : h("),
f Y ,-.

where,

y,n(c): h"(xo):iW",k,^(I)[I(x,: t) - pt].
t:0

This result implies asymptotic normality when c and TL Ð.refixed, since the variance

of Y,,¡(c) is finite. This issue will be revisited in Section 4.4.

Proof of Proposition 4.2.L:

First, we have

pu(,) -p[&(.)] : iw.,u,^(¿) l+l -ir",*,*(t)n
t:o "L1V) "t=_'.

: iw.*,^(,1 fff-n]J:0

ê," ," lå I(xt: ¿1 -l: L W",t",,n(¿) l>,# - P¿ 
Ir:o l,= 1v l

: li w",*,^(t)Ë ttrt : D - nl.N í:o i:7

Now, the order of summation is changed so that,

+Ëfr",r,*(r) [r(x, :t)-pt]: +Ë {ir",u,(¿) [r(x¿:¿) -p,]]
"¿:o¿:1 lvã[É -)

1N: ;tY,,,(c):Yr(").
.tY

tr
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Now, we determine the expectations of \,¡(c) and\2¡,(c). These wiil also prove

to be useful in the proof that follows.

Proposition 4.2.2. For any ualue of i, k and c,

E[Y¿,¡(c)] :0.

Proof of Proposition 4.2.2:

This is quite straightforward. Since I(Xi: l) is Bernoulli (p¿), we have that

E[Y,rk)] : r {Ë w,,k,,,(t)[r(x, : l) - P,] it¿:o ')

: iw.,o,*(r) {EtI(x, : t)l - p,}
J:0
,rn: Ðw",r,*(Dln - P¿l : o.
I:0

n

Natnrally, this was expected given the form of the equation in Proposition 4.2.1

and the definition of Y,,¡"(c).

Proposition 4.2.3.

øly?rk)l: Ë w 
",r,*(r)r lne - pùl -Ë f w 

",k,^(t)w.,t,^(j ) 
pt p¡ .

¿:0 t:o jll

Proof of Proposition 4.2.8:

^ (fr" r2ì
el4i(")l : u{ltw".k,,-Q)[r(x,:t) -p,]l I[Lr:o J )

- f i {w",n.*(t)[r(x,: ¿) - p,]]'] +Ir (
I(¿:o )

" {f Ðw.,u,*(¿)lr(x¿- r) k).w,x,,,(j)U(xo : j) -prl}
lr:o ¡¡, 

"t - t) " c'rìrrn\r ' t 
)
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Now, let the terms from the previous expression be denoted as A and B, respec-

tively. -4 reduces to the following expression,

A : iw.,r,^(D2llr(xi: t), 2nr(xi: t)-t pfl
t:0
m

= , w",k.*(l)2tr[I(x, : t) - 2p\(xi: t) + pt2)

I:0
fn: Ðw.,*,*(Drln - 2pt(r . pù + pt2)

I-n

= i,w",u,*(t)'[Pr(r - P¿)],
,-n

while, B reduces to the following expression,

rn

B : t t W",¡,,*(l)W",N,^(j) x
r:0 i*L
B[t(æ : l).1(X¿: j) -I(Xi: t)p¡ -r(Xá: j)pt+ ptp¡]

s./_ Ðw.,¡,,,-(l)w.,n,*(j)10 - ptpj - p¡ p, + ptpjl
r:0 i+r

{- i, >, w 
",k,^(t)w ",n,^(j )lp¿ 

p ¡l
r:0 i+r

Thus, we have,

Bty,i(r)l : t w.,n,^(t)r[pt(7 - n] - I t w",¡,,,(t)w",n,*(j) ptp¡.
l:0 I:0 itt

!

Using the previous two results, we can now obtain the following theorem.

Theorem 4.2.4. The uarzance of the NBKE probabi,lity esti,matoris

var[p¡(c)] : + {É w,,x,,,(t),[n6 -p,)f ]- + {É \w",u,,,(L)w",t,,^(j)p,p,\' 1v [Êo "') ¡/ 
[ã ,?, 

',","',-r c1^1ttl\r /' þ r 
)
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Proof of Theorern 4.2.4:

{Jsing Proposition -tr.2.1, we have

varfr¡(c)] : var {4(c) - Btp.(.)l}

\/,
" 
arlfi.lc)l _ var[y¡,¡(c)] 

."^L-N\-./J 
¡ú 

)

where the \,¡,(c) are i.i.d. Using Proposition 4.2.'2, \Me can further simplify this

expression to

var[r¡(c)] : ] 1"fn'*f ")) - Ely,n(")l,i

: *ttu?rr"ll¡/

Finally, frorn Proposition '1.2.i), we have

var[r¡(c)] : + {Ë w",t,*(t),1p,(1 - p,)l}
lv t¿:o )

-+ {r Ðw",u,^(t)w",x,^(i)p,p¡\ (4 3)Nlfo¡+, .\r/"')

n

Corollary 4.2.5.

lirn VarlP,.lc)l : Pk(I - Pk)
C--OO L 't\ /J 

N

The proof of this is straightforward in that we must proceed as with Corol-

lary -l.l.l and apply Theorem 3.;J.2 on equation (4.13), the general expression of

Var[P¡(c)]. This result implies that estimates for cells with probabilities close

to 0.5 will have larger volatility. Conversely, cells with extremely low or high

probabilities will irave smaiier volatility.
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4.3 Order of the Bias and Variance

InSection4.l and 4.2,we lookedatthegeneralforrnsof thebiasandvarianceand

tlreir asymptotic properties. We have shown that when c or c: cN approaches

infinity, the NBKE probabilities become equivalent to the MLE probabilities.

We do not know, ltowevet, about the gains and compromises with respect to

the bias-variance tradeoff of using the NBKE over the MLE for smail samples.

Furthermore, we do not know if the order of the bias and the order of the departure

from the MlE-variance is the same for all cells for a particular value of c. This

is useful to know as practical situtations never involve the asymptote. Thus, we

look at defining tnore precise expressions for the bias and variance. We start by

deriving more precise expressions for the weightsW",¡",,,(l).

Proposition 4.3.1. The we'ight of cell l, when esti,matzng P¡, cl,n be erpressed as,

W.,r,rr(l) :
7-Q. l:k
Q!-rt t + k

where Q. : O[1 - *]" ¿t a posi,ti,ue quantitg less than 1 that approaches 0 as

c --+ oo. (Note that the marimum wei,ght of any celt is 1.)

Theorem 4.3.2. For fi,red m, the absolute order for the bias of P¡,(c) can be

enpressed as,

Bias(fl) : Pk -ir.,u,^(t)n: olt -:1"1:o L 2mJ

The proof of this theorem is a direct application of Proposition 4.iì.1 to (.1.2).

Note how the bias is uniform with respect to ,k. Hence, there is no boundary

effect. Also note that for larger c, the bias is smaller.



Theorem 4.3.3. For fired m, the uariance o¡ Þ¡þ) can be erpressed, as,

var[r¡(c)] : *ou(t - pò - *,^y' '|L/ N

where, aga'in, Q": OII - *)" 'is a posi,ti,ue quantity less than I that approaches 0

as c --+ 6.

Note how the order of the extra term in the above variance expression is also

uniform with respect to k. And, as previously mentioned in Proposition,.[.2.5, the

variance is larger for probabilities closer to 0.5 and srnaller for values closer to 0

or 1.

Also, note that when c approaches infinity, or in other words, with less smooth-

ing, the quantity Q" decreases so the variance of our estimator increases. Smaller

bias, however, requires a larger c value, hence the bias-variance tradeoff.

Proof of Proposition 4.&.'lz

Recall Theorem il.ll.2 states that when estimating P¡,

( t ifÃ;:1.
Iim W'¡.^(¿) : {c+co 

Io irk+t.

TVe will u.se some of the steps used in that proof for this one. So, also note that

for given k, and m, expanding (.1.t,1) further gives the following result:

(4 4)

once again, we will consider æ# separately for the two cases: j > t anð, j < t.

Now, recall the expression (i1.15),

8",¡,^(l) l(cl + I)l(cm * cl +
*1r,¡""-"B"t-(l) l(ci -r I)l(cm - cj +ç)Lrtt.\ / - \-J

which is valid for any value of 7 and l.
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For 7 ) I (j : I + 7,. ..,m), (3.15) expands to (3.16), or more specifically,

8",¡,^(t) _ I kt)ot-u 1 lk* - ci + r). -. (cm - rt)1

E;;ø-LG¿+lt-øJ t61
From (3.17) and (;:1.18), we know that,

8.,¡,,.(t). l, _ rlai-u l, * t 1"0-t) P* - (i *Dfc(i-t)
B.,r,*(t) ' L- ct) L' c(Zm - j - Dl L 2tn - 2¿ l

Since c ) 0 and 7 > l, the first term on the right-hand side of the inequality carr

be bounded as,

I 1 l'U-t)
Lt-al <1

Tlre second term is a strictly increasing function of c converging to sU-I)/(2'n-i-t),

and hence can be bounded as.

T

I r + ,=---l 
- 

1 

c{r-r) 
I su-t)/(2'n-i-L) < e.I c(2m-j-t))

To handle the third part, note that,

lr*-(¡*t)l :l-,- j-t I I 1 r .t- 1r
I z*-n l: Lr 

- ,*_ rr) s lt - z*-rtl < 
L1 

- z*)

Therefore, we have that

8",¡,*(t) l. 1 '1c(i-z¡ 
^ l" 1 1"(i-r¡

s",,,*ó' ' Lt - ,*) : o ll_- ^) 
: Q'"-'' (4 5)

Note that when I : m (for fixed k and nz), only the case or j < I needs to be

considered.
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Similarly, for j < I (j :0,..., I - 7), (3.15) expands to (tl.tg),

8,,j,^(¿) _ [ ("*-ct)"(t-it ] [("r+1) ...("j+ct-cj)lE";ø-l@l LWI
From (3.20) and (.l.Zt), we know that,

"=",t,^\.!-). L - --r-..l"(t-r) ¡, * --1-l 
<t-it 

þ-l]c(/-i)8.,,,^(t) ' l- c(m - t) ) t' c(j + t) ) I zt l

The first term on the right-hand side of the inequality can be bounded as,

I r ye_i)

l1- cþn - t)l "
The second term is a strictly increasing function of c converging to e2(I-i)/(i+I),

and hence, can be bounded as,

I z I "(¡-¡l

Lr+ 4j +T] = 
e2(t-i)/(i+I) < e2.

For the third part, note that

l¡+t1:1,_L-il I rr r_ 1l
l " ): Lr- a )< 11 

- alsl'- ^)
Therefore, we see that

n",¡,^\.!! 
< 

", lt_ 1 
I 
"1t-i) : o h _ 1 

1c{r-¡¡ : ot-jB"J,,-\L) l, 2m) - L- 2m) 
: v" " (4 6)

Note that when l : 0 (for fixed k and rn), only the case of j > I needs to be

considered.

47



Let a: [f - #] ffr" expressions in (a.5) and (a.ii) then lead to the following

results,

\- 8",¡,-(l) .- o\- ^"(j-t)
î,8",,,^(t) 

-"î," )

and,

y. ?.,r,-!11 < e2 \- a"(r-i).
?,8",,,*(t) 

- " 
r.",-

Now consider !rr, d'U-L) where a < 1. Let s : j - t.

m-l

lo4i-D : f """

Similarly, consider Ð¡a¡ a"(I-i) where a < I. Let, t : I - j.

I

\a4;it : L*"'j<¿ t:L
: ùt+Q2"1...*A"l

: a" + o(a2").

From the above results, since !¡7¿ ffi is a positive quantity, it can then be

bounded as,

>.u:,t,*l,t), < (e f e2)a" + o(a.) : e..- B^'-ll) -'-.1+L v'þ)t¡o \ /

j>L
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Using Lemma 8.2 (see Appendix B for details) and the previous result,

1 ç 8",¡,-(l) -., [- 8..i,,.Q)1't.r;ffi: 1-)-ffi*ulkffi)
: I_e".

l{ote that the left-hand side of the above equation is a fraction less than or equal

to 1.

lJsing (a.5) and ("f .6) and the above result, the weights W",¡,,*(t) can now be

expressed as,

W",k,*(¿) : I
I

Thus,

( t-a^ r:k
w,,k,*(¿) : { ""

Io!-o' t+k.

where Q" : OII - *]" ¡" a positive quantity less than 1 that approaches 0 as

c --+ oo. n

8.,¡,*(l)
i+I B",rr^ø

I
J

l:k
l>k
I<k.
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Proof of Theorem 4.3.3:

Expanding on equation (.1..ì), we get the following:

var[p¡ (c)] : * å 
w.,r,^(t),[pL(r -p,)] - + å 

w",¡",^(t) p¿Ðw",r,*(j) p¡

Applying Proposition.tr.lJ.l, the first term on the right-hand side of the above

expression sirnplifies to the following,

1 1_
frr",r,^(Æ), [pÈ ( 1 - ,pr )] . F ä 

w 
",0,*(t), lpt(r - pùl

r ,, - n \2 p. (1 - D.r --. 1 f -.,r,,-u,r 
ì: 

F t1- Q,j'Pu(t - Pì, ¡/ ì ?ro-. "t(, - 
PùÌ

7 l.
F \1- 2e"+a7\ ruçt- pk). + {Ðelt'ktr,(1 - p,)}

rv l.¿+À )

: !r,rr-p,.) -Q'*QZ*Q?¡¿',t',- 
t A¡J 

¡/ 
, 

¡/ - ¡/'

The second term simplifies to the following,

- *, ",0,^(k) 
Pr Ð w 

",0,^(j ) P¡ - * nw.,t",,-(t) 
Pt Ð w 

",*,,,(j ) 
p ¡

7 ,.,,: -¡ t 7 + Q.j pkÐQt!-utp¡- 
# h Q!-utp,Ðqti-rt p,I

Q",A? Az
__J_F- ¡/ - N

Since the lowest order of Ç is c for both terms, var[r¡(c)] can be expressed. as,

var[r¿(c)] : #".,t - 
pù -*

trwhere0<Q"<7.
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4"4 Asymptotic Normality

Consider the followíng three asymptotic cases for the NBKE, when rn is fixed:

1. the smoothing parameter c approaches infinity while the sample size is fixed,

2. the smoothing parameter c is fixed while the sample size approaches infinity,

3. both the smoothing paramter c and the sample size approach infinity.

The Central Limit Theorem, of course, can be applied to only the second and

third cases to show that the NBKE is asymptotically normal.

Theorem 4.4.L The NBKE is asgmptoti,cally normaL. Spec'ifi,cally,

1. If c € ft zs f,red, then,

Pn@ - ElPkk)l þ Normal {0, "f 1.¡} ,

where o!(c) i,s the erpressi.on of the aari,ance i,n Theorem .(.i!./1.

2. If c- cN --+ æ and,.,/N(i - *)" ---+ 0 as N -+ æ, then,

Þuç"¡ - Normal {ru, 
Pu(1- Po)}

¡,uwú 

lr 
/r, ¡/ J

Recall that the NBKE weighting scheme requires an important assumption

that there is an underlying smoothness and order to the overail distribution. The

assumption of underlying smoothing is not used rnathematically in any of these

asymptotic results as we will prove shortly for fixed m. It is more of a conceptual

construct that is most appropriate for data that is sparse, particularly when rn,

the number of cells approaches infinity. In this case, it will even be more necessary

to borrow information frorn neighbouring cells. We, however, will leave this issue

open for future studies.
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Proof of Theorern 4.4.\:

For the first case, we need only appiy Proposition 11.2.1 which states that

P^(")-e[pr(.)] can be expressed as an average of iid observations. For the second

case, the proof will parallel that of Babu et al [.;] and Leblanc [ ]. It requires the

Central Limit Theorem for double arrays. For this, we start by showing that if

c: cN --+ oo as /y' -+ oo, then,

e(") - n[&(c)] L Normat {0, 
P*(t__ Pu) \\ ut ,ILUL 

ì."t ¡/ /

To prove this, recall that Proposition 4.2.i states that,

Þrk) _Et4(c)l : + Ë y,t (c) :h(").
-tv .

Ler sf; : E[Ynlrþ)] Then the wanted result holds if and only if the foilowing

Lindeberg condition is satisfied for every e > 0 as N --* oo,

E {Yu2rk)rlly,r(c)l > es"Jñl}
--+ 0. (4.7)

sl

Using Theorem ;J.il.2 on Proposition 4.2..1, we have,

I*'3:Pn(r-pr)

We can also bound lY¿,¡(c)l as,

;y,,"þ)l : liw",n,^(¿) Ir(x, : t) - n)l
t:0
rnm

l:0 I:0

P-O
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Simplifying the previous expression further, we get,

lY,"(c)l < 1 + i,w",*,^(t)PL 31 + Ë n < 2
l:0 ¿:0

for any c. Thus, (a.7) holds when c and N --+ oo, implying in turn that

4(.) -Bt&(r)l þ Normat 
{r,U(1;-i)},

oIt

Æ {o-øl - Eta(")l}
- Normal (0,1).

First, note that

Po(") - Blrr(")] Pn(c)-Px*Pr-E[P¡(c)]

þ*k)-PrfBiaslþ*k\,

Pn(c) - Pn: Pn(c) - E[P¡(c)] - Bias[P¡(c)].

Now, note that

Jñ[Þok) - Pn] ß {þ-f"S - .',/.nreias[r^1c¡1

yrPúr - Pr)

Hence, if r/,^/Bias[&(r)] ---+ 0,or equivalently, r,/l/(1 - *)' -> 0, then,

Þuç"¡ - Normat {pu, 
Pu(1: Pu)}

"'ì.'*r N I

OI,

EtP*(")l)

n

Pr(1 - Pn(I -
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4.5 Fractical Considerations

In the previous sections, we discussed the order of the bias and variance and tireir

asymptotic properties with respect to the smoothing parameter c. We also showed

that the NBKE is asymptotically normal. These results, however, are not useful

in obtaining an appropriate or practical value of c for a given sarnple. Thus, in this

section, we focus on a data-driven technique for selecting the level of smoothing

and disctiss some of the implications regarding the aforementioned bias-variance

tradeoff.

One tneasure often used to describe the precision of a point estimator is the

Mean Sqriared Error (MSE). It describes the expected degree of departure of an

estimator from its target value. Recall, for cell k : 0, I,. . . ,rn,

MSE[P¿(c)] :

Increasing the value of c, or equivalently smoothing less, reduces the bias of f¡,@).

Reducing the bias, however, occurs at the cost of increasing the variance. Hence,

one hopes to choose a c value that strikes a balance between the bias and variance.

Furthermore, working with mulitnomial data adds to that complexity because of

the need to estimate several parameters simultaneously. For the NBKE, the same

level of smoothing has to be applied to all cells. (Recail, however, that the weight

function varies according to the cell of interest, so smoothing is adaptive in that

sense.) It is then only natural to consider a more global measure of accuracy such

as the X4ean Sum of Squared Error (MSSE).

E{fa(") - rr)'}

{eias[r¡ (c)l ]' + var[e¡ (c)]
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In some studies, it may be sufficient to use a subjective or trial-and-error

rnethod for choosing the levei of srnoothing. For comparative studies, or for the

sake of efiÊciency, ltowever, it may be more appropriate to use a standardized

or objective method for choosing the ievel for smoothing. For an introduction

to different techniques for choosing the level of smoothing for continuous data,

see Silverman [l-r]. Park and Marron [],] compare three different data-driven

approaches for choosing the level of smoothing in their paper: least squares cross-

validation, biased cross-validation, and a plug-in method.

One method for choosing the level of smoothing, that is adaptable to the

discrete case, is least squares cross-validation. The objective is to minimize the

MSSE, or rather, an unbiased estimate of the MSSE since it is an unknown quan-

tity. The least squares component involves minimizing the MSSE, with respect to

the smoothing parameter c. The cross-validation component invoives estirnating

a series of probabilities where each probability is based on the removal of a sin-

gle observation, also known as the leave-one-out estirnated probabilities. Because

least-squares cross-validation is data-driven and fairly easily implemented, it is

the method selected for optimal smoothing in this thesis.

Consider the following expression for MSSE as a function of c,

MSSE(c) : r{å[at"l -",]']
lrn ^ 1 rm I m: E lf Pok), | - ,u lÐ þuk)rol *f ,i
L¡:o .J LÈ:o I rE
f m 1 rn: E lt Þuçc)'l - zy, {pu lÞu(")]} * f pi, (4 8)
Llo "".] ( L" 

a:o

where Y follows a multinomial distribution with probabilities P¡, Pt,. . . , p^, and.

is independent of Xt , . . . , XN, and -Ey denotes an expectation with respect tro y .



Let G(c) be the portion of (a.S) involving smoothing parameter c. Obviously,

rm 1

G(") : E It Pok)'l - zø{e" lp"f.)l}L7- "'l t'1"'rr
and,

MSSE(c) : G(") *i pi
k:0

Minimizine G(c) is then equivalent to minimizing MSSB(c). Now, let

s(c) : i PrAf - 2Ev lp"(.)l Øs)
È:0

and note that, g(c) is an unbiased estimator of G(c) that cannot itself be calculated

from tlre observed data. Let Þ,',_.,(c) : P"(Xo : r¿lN_.¿) be the leave-one-out

estimated probability of observing the value X¿ : ø¿, based on the estimated

NBKE probabilities calculated by leaving the observed X, out of the sample.

Applying the leave-one-out technique to (.1.9), we further estimate 9(c) using

the following,

gþ) : i prra'- + Ë P,,,-n(,).
À:o f i:7

This can be further written as.

rngNrn
g(") : D, Þr@)' - + Ð Ð t (x, : k) p¡,(c),

l,:0 rt ¿:IÀ:o

where
m

P¡çc¡:f J\r",*.-(l),
l:6 rv - t

and,

^r tlvl 
- \

[ ¡¿--1 for l:k.
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We can simplify this further to obtain the following expression for g(c),

TN

s("): ÐPr(")'-,-^tu-u
rn

: Ð Pr(")' -
k:0

*äåt," : r')Pr(c)

22
F à 

r/rPr(c) (4.10)

The final expression in (4.t0) requires computing new probabilities for all cells

by sequentially deleting each observation. This, of course, can be extremely time

consuming! To avoid this problem, we can further express (4.10) in terms of the

original observed NBKE probabilities and weights. If we do this, we have,

rn ^ 2 2 lm M 1 lþ(,) : ÐPr@' - F_t-"- LÐ #r",r,,-(t) - ñ\*",0,-(k)]
: î, prr"Y - #É r- 

ä#*",r,^(t) 
+"#r i ruuw",o,çr,¡

À;:o rY-rA-o I=
'tTL .., rn , '¡n: Ð Prk)' - 

^=\ 
N,,Þ¡"]c) + -=i ^ \) N¡,w",r,^(k), (4.i1)

r¡:o 1"1 -Ik:-o ' L\/ N(N-I)îo

which does not depend on the leave-one-out estimated probabilities. Then, for a

given observed sample, optimal smoothing is obtained using the value of c that

minimizes (4.,1I ).
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Chapter 5

Simulation Study

A simulation study was performed to compare and contrast the effectiveness of

the NBKE against the GKE and MLE at various levels of sparseness. Another

interest is to compare the effectiveness of the NBKE against the GKE (both

with optimal smoothing), particularly for estimating boundary cell probabilities

as the GKE is an estimator that can produce boundary bias. Two simulation

scenarios were considered, each with three different sarnple sizes to adjust for the

level of sparseness. Both sets were based on multinomial distributions exhibiting

characteristics of the IBD survey data, and mainly for the type of data where

the I\BKE is most appropriate. Thus, each simulation consisted of sparse, ordinal

data. Furthelmore, we apply the assumption of a srnooth underlying density curve.

In other words, probabilities of neighbouring cells are similar to each other. Also,

data points are highly concentrated about zero and forrn one or two small modes

in other cell-regions.
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In the first simulation scenario, there are25 cells (k : 0,1, .. . ,24) with sample

sizes Iy' - 50, 125, and 1000. In the second simulation case, there are 100 cells

(k : 0, 1, . . . ,99) with sample sizes ly' : 200,500, and 2500. For each scenario

and sample size combination, 1000 sets of data were simulated using R Software

(Version 2.S.1).

For each set of simulated data, probability estimates were computed using

three methods: the NBKE with optimal smoothing, the GKE with optimal smooth-

ing and the MLE. In Figures ii.I and 5.2, probabilities are plotted for the first

set of simulated data for each sarnple size in the 25-cell and 100-cell scenarios, re-

spectively. Both figures show general smoothness for the curves representing the

probability estimates using optimal smoothing with the NBKE, regardless of the

number of cells and sample size. The curves for the MLE probabilities, however,

can vary greatly in the level of stnoothness. Smoothness seems to be inversely

related to the number of cells, but positively related to sampie size. Also, greater

voÌatility appears about modal regions. The level of srnoothness of the GKE ap-

pears to fall between the NBKE and MLE. Thus, per any given simulation (or

dataset) using the NBKE appears to produce estimates reflecting the true shape

of stnooth, rnultinomial data better than the GKE and MLE. On the other hand,

there are some indications of the bias-variance tradeoff in effect for the NBKE and

GKE. This effect is much more pronorinced in the figures based on the aggregate

of 1000 simulations. This will be discussed shortly.

Figures ii.iì, 5.4, li.ir and 5.6 show probabiiity curves of the first fi.ve sets of

simulated data for the NBKE and GKE. They are included to indicate the level

of variability among the simulated datasets. (Probability curves for the MLE

were omitted due to excessive voiatiltv.) They suggest that increasing the sample



size reduces the overall level of variability, as expected. And again, we can that

the curves for the NBKE are generally smoother and less volatile than ttre GKE.

Looking at these figures more closel¡ we see that for the NBKE, there is greater

volatility and bias at the lower boundary than other regions. These effects are

even Ílore apparent for the GKE, particularly for the 100-cell scenario. Perhaps,

the lower boundary cells exhibit more variability because probabilities in that

region are closer to 0.5, as previorisly proposed in Theorern 4.2.I¡. Also, although

the NBKE is asymptotically unbiased with respect to the smoothing parameter

c, the c value from optimal smoothing may not be large enough to eliminate or

reduce the bias to negligible levels. These preliminary findings are confirmed with

subsequent figures that encapsulate each 1000-set simulation combination.

Figures 5.7, 5.8, 5.9 and ir.lll show the NBKE and GKE cross-validation func-

tions for the first five simulation runs. Recall that the smoothing parameter s

for the GKE ranges between 0 and 1 with lower values indicating less smoothing.

This is the opposite to the NBKE smoothing parameter c which ranges from 0 to

infinity. We can see that increasing the sample size lead to larger optimal values

of c or smalier optirnal values of s which means that less smoothing is required,

as expected again. They aiso suggest that the cross-validation function flattens

out more rapidly with larger sample size.

The distributions of tire optimal srnoothing parameter c are shown in Figures

i1.11 and 5..12. These figures have modes at higher values as sample size increases.

This further supports the finding that larger c values are required for optirnal

smoothing as sample sizes increases. Figures 5.lIJ and I¡.1r1 consist of histograms

of all the optimal s values for the GKE which clearly show that less smoothing is

required for larger sample sizes. More precisely, this m.eans for both the NBKE

60



and GKE, less smoothing is needed for large sample sizes which intuitively makes

sense. Note that both the 25-ceII and 100-cell scenarios have similar ratios of cell

size to sample size. We can see that more smoothing is required as the number of

cells increase.

For each cell-sarnple size combination consisting of 1000 simulations, the em-

pirical mean and gSTo confidence interval were determined for each cell proportion

(or probability). For example, to determine the lower confidence limit for the cell

k : I0, we used the 2.5% quantile and for the upper confidence limit, we used

t'he 97.5% quantile. Means and confidence intervals were computed for all three

estimators. Means for ail three estimators are fairly similar to each other. Similar

results are expected since the simulated data are not necessarily sparse.

In Figures lr.1l-: and 5.16 we can see that confidence bands for the NBKE are

much narrower than the MLE, even for very large sample sizes, and thus the

NBKE can provide more precise estimates than the MLE. The NBKE, hovrever,

does produce some bias at local extrema, as expected. Peak regions are slightly

lower and valley regions are slightly higher. Boundary cells appear somewhat

biased or exhibit greater variability. (It is also important to note that these

are not global confidence bands at the 95% level. They are actually obtained

separately for each cell.)

Figures 5.17 and 5.1.3 confirm that there is less variability overall for both the

NBKE and GKE as sarnple size increases. We do, however, see that the GKtr has

greater lower-boundary bias and slightly more variability than the NBKE in most

regions. For the GKE, the lower-boundary bias can be attributed to it being a

sytnmetric kernel. Weights also allocated to cells beyond the domain so they do

not sum up to 1 within the support.
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It is also interesting to note the absence of upper-boundary bias. Dong and

Simonoff [';] propose that estimators in general are unbiased at the boundary if

the true probabilities are zero which intuitively makes sense. In other words, if

either Po : 0 or Pn : 0, then there is no boundary bias at the respective region.

Hence, there is no significant upper-boundary bias as P- x 0.

SSE was computed for each simulation to compare the precision of the three

estimators. (SSE is defined as the sum of the squared difference between the

estirnated probability and the true probability across all cells.) In Figures fi.lf)

and ir.2{), SSE values decrease as sample size increases) as expected. These figures

also show ihat SSE values for the NBKE tend to be lower than values for the

GKE and MLE. For each sample size in the 25-celt scenario, about 75Yo or more

of the NBKE SSE values are smaller than at least lhe 50% quantile of the MLE

SSE. This contrast is even more striking for the scenario with 100 cells. Almost

all of the NBKE SSE values are smaller than m,ini,mum MLE SSE! Even with a

very large sample size (where the cell size to sampie size ratio is 1:25), precision

is greatly increased with data driven optimal srnoothing. Overall, \Me see that the

NBKE has slightly tnore consistently precise estimates.

To summarize, NBKE estiinates are smoother than both the GKE and MLE

estimates, or in other words, the NBKE fi.tted curves better reflect the true density

curve. NBKE estimates have smaller variance as indicated by tire smaller con-

fidence band. Both the NBKE and GKE, however, experience some bias about

local extrema, with the GKE experiencing particularly large bias about the lower

boundary. As expected, less smoothing is required for larger samples sizes, and

more smoothing is required for multinomial data with a larger number of cells.
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Figure 5.L: Probabilities for the true distribution and estimates using the NBKE and

GKE with optimal smoothing and MLE for the first set of simulated data, based on

the scenario with 25 cells. From top to bottom, iy' : 50, 125, and 1000.
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Figure 5.2: Probabilities for the true distribution and estimates using the NBKE and

GKE with optimal smoothing and MLE for the first set of simulated data, based on

the scenario with 100 cells. From top to bottom, Iy' : 200,500, and 2500.
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Figure 5.3: Probability estimates using the NBKE with optimal smoothing for the

first five sets of simulated data, based on the scenario with 25 cells. From top to

bottom, ly' : 50, 125, and 1000.
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first five sets of simulated data, based on the scenario with 100 cells. From top to

bottom, i/ : 200,500, and 2500.
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Figure 5.5: Probability estimates using the GKE with optimal smoothing for the first

five sets of simulated data, based on the scenario with 25 cells. From top to bottom,

N: 50,125, and 1000.
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Figure 5.6: Probability estimates using the GKE with optimal smoothing for the first

five sets of simulated data, based on the scenario with 100 cells. From top to bottom,

ly' : 200,500, and 2500.
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five sets of simulated data, based on the scenario with 25 cells. From top to bottom,
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Chapter 6

Case Study: IBD Data

In the IBD survey, there are two main IBD groups of interest. Between the two

groups, tirere are a total of 247 subjects; 137 diagnosed with Crohn's disease and

the other 110 diagnosed with IJlcerative Colitis. (See the Data Appendix on the

post processing done to the data.) One objective of the study was to determine

whether or not a statistically significant difference exists between the two groups

with respect to the number of symptom flares experienced within the iast six

months. Figure 6.1 shows the fitted curves for the proportions of subjects with

a given number of IBD symptom flares, using the MLE approach and rising the

NBKE approach with optimal smoothing. As previously stated in Chapter 1, the

most likely area for the difference between the two groups is in the upper tail.

This difference, however, is less apparent in the graph with smoothed curves.
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Specifically, we are interested in testing the following hypothesis,

Hs: Psp : PuC vs. H¡: Pcn I Puc (6 1)

where Psp and Puç àre the vectors of cell probabilities for the Crohn's Disease

and Ulcerative Colitis IBD groups, respectively.

Under the null hypothesis, both groups belong to the same population. How-

ever, due to the small ratio of the sample size to the number of cells, low cell

frequencies, and the fact that MLE estimates are not recommended, a Chi-Square

test of homogeneity is not appropriate if appiied to the data in its current state. A

common approach would be to group ceils together so there are fewer categories.

As first mentioned in Chapter 1, there are some potential pitfalls in doing this.

We lose information and tests for detecting differences between the two groups

become less powerful. AIso, defining groups is quite arbitrary, so tests results are

potentially highly dependent on the grouping method. For the sake of complete-

ness, however, we will first try this method using three grouping configurations to

show how much results can vary. We will later compare these results to what is

obtained witir our suggested methodology relying on a permutation test.

For the first Chi-Square test, we combined the 100 cells into 7 categories so

that the expected count for each category is approxirnately 5 or more. Table 6.1

shows the 2 x 7 contingency table with 6 degrees of freedom. The value of the test

statistic is 11.3578 and the p-value is 0.07793. Based on this configuration, there

is no statistically significant difference between the two IBD groups at o :5Y0.

For the second Chi-Square test, we combined the 100 cells into 6 categories

so that there were at least 5 observations in each category. Table 6.2 shows the

2x6 contingency table with 5 degrees of freedom. The value of the test statistic



is 11.3449 and the p-value is 0.04495. Based on this configuration, there is a

statistically significant difference between the two IBD groups at c : 570. Of

course, this does not necessarily mean there is a practical difference between the

two IBD groups.

Most of the survey participants reported having fewer than 40 symptorn flares

within the iast six months. The Ulcerative CoÌitis group actually has oniy 1

observation greater than 30 at celi 99. Now, suppose we focus on a subset with a

Iow or tnoderately high number of symptom flares. Or in a different perspective,

we treat the observations in cells beyond 40 as extreme (but stiil possible) cases.

By doing this, we still capture over 96% of the original sample. Table 6.:Ì shows

the 2x6 contingency table with 5 degrees of freedom for the third Chi-Square test.

The value of the test statistic is then 8.2363 and the p-value is 0.14370. Based on

this test, there is no statistically significant difference between the two IBD groups

at Q.:10%. This brings us back to our original hypothesis that the difference, if

any, is most likely to occur in the upper region. It could be argued, however, that

this isn't a practical difference as it affects less than 4% of the subjects.

We now consider testing (ti.t) using the NBKE. We do this to avoid having

to condense the data into fewer categories. For this case study, we used permu-

tation tests, but bootstrapping could also be used. For the permutation tests,

observations from both groups were combined together and tests for their differ-

ences were based on random permutations (re-arrangements) of the data. There

is a total of 2aTllQ37!110!) possible re-arrangernents, so that, due to time and

computational constraints, only 1000 of these were randomly selected. For each

re-arrangement, estimated probabilities were computed for each group using the

NBKE with optimal smoothing.



These tests were performed using two different scenarios. The first scenario

uses all the available data, while the second scenario focuses on participants re-

porting fewer than 40 IBD symptom flares which is similar to the grouping con-

fi.guration used previously in the third Chi-Square test. (Note that were are we

considering cells 0 to 39.)

Three empirical tests to detect differences in probabilities between the groups

were considered: (1) sum of squared differences, (2) maximum absolute difference,

and (3) sum of absolute differences. Specifically, for the first test, a sum of the

squared difference between corresponding cell probabilities from each IBD group

is calculated in each permutation. For the second test, a maximum absoiute dif-

ference between corresponding cell probabilities from each IBD grolrp is calculated

in each permutation. For the third test, a sum of the absolute difference between

corresponding cell probabilities from each IBD group is calculated in each per-

mutation. The p-value is then the probability of having a test statistic from a

permutation that is larger than the observed statistic from the original sample.

Empirical 90To, and 95% confidence intervals (or rather upper-bounds since these

are one-sided tests) were also computed. (They are empirical in the sense that

they are not based on any specific parametric distribution.)

The following are the results of the 1000 permutations. Figures 6.2, 6.ìì, and

6.¡l are histograms of the aforementioned three types of differences. In Table 6.{,

where tests are performed using all 100 cells, there is only a statistically significant

difference for the third test at the 5% Ievel of significance. Tests using the absolute

max difference are known to be not very powerful. From that standpoint, the much

larger p-value was to be expected. The first test suggests that there rnight be a

difference between the two IBD groups (since the p-value is very close to 0.05) and
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this is using ail the categories. Recall, however, that for the Chi-Square test, we

had to collapse the data into 6 categories in order to be able to detect a difference.

Table ti.5 shows the results of the permutation tests using only 40 cells. At

the 5% level of significance, there is no statistically significant difference for any

of the permutation tests. These results agree with the Chi-square test based on

40 cells as weil.

Hence, if we consider all 100 cells, there is some evidence of a statistical dif-

ference in distribution of symptom flares between the two IBD groups (either at

5To or 10% Ievel of significance). Once we consider the smaller subset, however,

there is weak evidence to suggest that there could be a statistically significant

difference. This suggests that most of the statistical difference can be attributed

to the extreme upper values which account for less lhan 470 of the total sampie.

Therefore, although there may be a statistical difference between the two IBD

group) this does not necessarily translate to a practical difference, at least with

respect to the number of symptom flares.
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Groups 0 1 2 3-5 6-10 17-20 2r-99 Row Total

Crohn's Disease 40 22 19 15 19 I4 8 1tF7
-Lt) I

Ulcerative Colitis 42 22 I 18 13 4 2 110

Colurnn Total 82 44 28 ,f ,J
t.1¿L 18 10 247

Table 6.1: 2x7 contingency table for Grouping Configuration 1.

Tabfe 6.2: 2x6 contingency table for Grouping Configuration 2.

Table 6.3: 2x6 contingency table for Grouping Configuration 3.

Groups 0 1 2 Ðtr()-(J 6-10 11-99 Row Total

Crohn's Disease 40 22 19 15 19 22 1tnIÙI

Ulcerative Colitis 42 22 o 18 13 C) 110

Column Total 82 44 28 ó,f 32 28 247

Groups 0 1 2 3-5 6-10 11-40 Row Total

Crohn's Disease 40 22 19 15 19 15 130

Ijlcerative Colitis 42 22 I 18 13 5 109

Column Total 82 44 28 ÓJ 9ô¿L 20 239
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Table 6.4: Permutation tests of difFerence based on 1000 random re-arrangements

using 100 cells.

Difference Observed Hf p-value 90% Quantile 95% Quantile

Squared Sum 0.02172437 0.052 0.01702809 0.02749444

Absolute Max 0.08984738 0.776 0.10203655 0.1 1728899

Absolute Sum 0.464075t9 0.029 0.40889484 0.44231978

Table 6.5: Permutation tests of diflerence based on 1000 random re-arrangements

using 40 cells.

Difference Observed RT p-value 90% Quantile 95% Quantile

Squared Surn 0.01950796 0.1 19 0.02t27143 0.02560525

Absolute Max 0.08266466 0.253 0.1 1 102016 0.L2708662

Absolute Sum 0.40474644 0.084 0.39505111 0.42808815
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Appendix A

Data Appendix

Although the rnain outcome of interest is the number of symptom flares within

the past six months, two survey responses were considered to verify the reliability

of the data. (1) The number of symptoms flares in the past six months. (2) The

time to the Ìast symptom flare. If the value for the nurnber of flares is missing,

and the last flare occurred 6 months or later, the number of flares is set to 0.

Some respondents contradicted themselves, so these records were not kept:

1. Individuals with a missing value for the number of flares, but reported to

have experienced the last symptom flare within 6 months.

2. Individuals who claimed to have experienced their last symptom flare more

than six months before the survey, but reported a non-zero value for the

number of flares experienced within six months.

3. Individuals who claimed to have experienced their last syrnptom flare within

6 tnonths, but also reported of experiencing 0 symptom flares within six

months.



Appendix B

Mathematical Lemrrras

Lemma B.L. The product of r consecut'iae numbers (each I uni,t apart) 'is less

than the aaerz,ge of the fi"rst and last term to the power of r. In other words, for

y>0
(s + r) @ + 27... (a + Ò . (, *+)'

Proof of Lemma ts.l: A result in Lorch (1984) [r,] states that for r > 2, and

fory:0,7,...,2,
l(a+r) / r\'-r
r(s+ t¡t\a+il

We generalize Lorch's result for non-integer values of g, and derive the following,

validforr>I:

r(s+r*1) /,lJr\'-rt,*r-
or, (a + I)(a + 2). . .@ + r)
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Lemma 8.2. + and fi can be erpressed as the follouing:

'f- : l-r+o(r2),and",7*r
.f- : 7*r-lo(r').I-r

where l"l < t.

Proof of Lemma 8.2:

We start by expanding the expression for fr into the following,

In2
:1---!-

rlr L e t rlr'

Now, note that for r ) 0,

12

r+"112'

Thus, we have,

1

*"-1-r+O(x2)'
Similarly, we can expand the expression fr as,

7z.2
:1_r+)__

L- r - L t & ' r- r'

Now, note that as long as r ---+ 0,

Thus, we have,

12 : o(r2).I-r

1

;-:1*r+o@2).I-r

!
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