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This thesís presents solutíon techniques for Power system load

flow problems using digital comPuters.

Based on the fact that load florv solution corresponds to the poinÈ

at which po\^/er mismatches at all nodes of the systen are minimumr a

refornulation of the problem as an opËimizatíon problem is introduced.

The least p-th formulation of the objective funcËion is adopted. An

efficient minimization algorithm, Ëhe variable metric meËhod (V¡ßf)

wiËhout linear search, is shov¡n to give better convergence Ëhan the

algor1.thm with línear search. The former requires a total number of

funcËion evaluations about 601l of that required by the latÈer.

It is concluCe<l that this formulation together with the use of an

effícient mi.nimization algoríthm, enables solution to be obtained for

ill-conditioned sysLexos for which the comnonly used iterative method

fails. A 13-bus system wí.th series capacitors, which diverges v¡ith the

successive overrel¿xaËion (SOR) method, is solved by VMlf. Convergence

was obtained with no dífficultY.
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Ênf rødwcf ian

The por,^rer system load flon analysis consists mainly of determining

node voltages, both magnitudes and phases, and consequently the branch

currents for a given schedule of generations and loads at the nodes of

the network under study t29]. Ivlathematically, the probleni involves the

sofution of a set of nonlineaï equations vrhich describes the network and

satisfies the nodal restraints governing the porArer and voltage require-

nents of the load and generation points.

Two comnionly used cligital methods for solving the problem are the

Gauss-Seidel method [14], also knoivn as the method of successive

displacements, and the Nervton-lìaphson method t35]. The Gauss-Seidel

nethod expïesses explicitly each voltage variable in terms of all other

variables and calculates, at each iteration, the new voltage value from

the previous values. The method converges slorvly but the stolage

requirement is ¡nininal. Since an acceleration factor is used to hasten
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the convergence of the process, it is referred to as successive over-

r:elaxation (SOR) nethod subsequently. The I'lervton-Raphson (NR) method of

load florv solves the set of nonlinear equations by first deriving a set of

linear relationships relating sma11 changes in voltages to small changes

in power and then solving. this set of linear equations for the voltage

corrections. The method converges with few iterations but requires

reLatively large storage

Since load flow solution corresponds to the set of node voltages at

which pot{er misnatches at all nodes of the system are minimurn, the

problen is refornulated as an optimization problem [33] by defining an

objective function which neasures the total power mismatches. This

formulation of the problem results in a solution process in which

successive voltage corrections are found with the corresponding monotonic

decrease in por.rer nisnatch. The solution process is terminated when the

povüer mismatch is aeceptable. Hence, it is more physically meaningful

than rnethods based on r,'oltage conveTgence criteria. Further, the

technique is capable of solving problems which diverge with the conmonly

useci iterative methods. Another prornising feature is that, with the

optimization approach, the nonexistence of a solution to a particular

problen considered is clearly indicated from the nonzero minimùm pohter

nismatch obtained at the end of the minimization process. Whereas v¡ith

the normal iterative methocls, when a diverging solution is obtained, it is

not clear whether divergence has been due to instability in the method

or Ëo the facË that there mav not be a solution at all due, for example,

to system instability.

As explicit expression ior the gradient vector of the load flo¡¡ fúncËio.n



so defined is available, gradient methods for unconsttaíned functlon

mínimizaËion can be used. In Chapter 2 tt¿o basic gradient methods, the

steepesË descent method and the genetaLízed Newton-Raphson method, al'e

inclucled as a preliminary study. A second order method called the

variable meLric method (VIßf), which takes ínto account the curvature of

the functíon being minimized but does not require the matrix of second

parÈial derivatives to be caleulated, is described. Some irnportant

propertíes of the method are derived anci proved. chapËer 3 formulates

the load florv problem. Numerical examples and resul¡s are included' A

]3-bus system wíth negative transfer reacËânce is solved demonstraËíng

the instability of the normal iterative nethod. Final1y, C]napxer 4

srrtnmarizes Ëhe conclusions.



opføm tzatíøn mrethods

In this chapËer, the general problem of finding an unconstrained
1_local minimr¡m- of a function f (x) of Ð variables x = l*L, *2, ...,

-T*rrl * ís consídered.

The methods available for solving thís problem are generally

classifíed as rdirectf meËhods and 'gradientf methods 1,21, A direct

method. lgrL7r2or2L,25f for function minimrzatron Ís one which <ioes noË

require the derivatives of the function to be compuËed. Only function

values are needed in the course of the minímization process. GradÍenË

methods [8,11rL2,36] are those which require Ëhe derivaËives of the

function to be computed as well as the function j-tself. The latter,

taking into account an additional derivative information of the function,

has generally better convergence raÈe than the direct meËhod.s. An

exhaustive revierv on opËimízatLon methods has been given by Bandlet l2l.

A list of references is avaílable in that paper.

1 The problem of locaËing Ëhe maximr¡m of a funcËion can be regarded
as Ëhat of locatíng the minimr.r,n of the negative of the function.
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In the first tlo sections of this chapter, commonly used termíno-

Iogies are defined and fundamental concepts are introduced. Two basic

gradient methods, the steepest descent method [36] and the generalized

Newton-Raphson nethod l23l are described. This is follov¡ed by a

detailed description of a class of methods called the variable-metric

nethod (VIß4) [1,6,7,8,10,11] which conbines the characteristics of the

two methods. Two versions of the method are studied. One,due to

Davidon iS] and reformulated by Fletcher and Powell [11], is corunonly

known as the Fletcher and Powell algorithm. The other is a modification

16,7 ,10] of the first algorithm by abandoning the one-dinensional

minimization process at each iteration. The former is referred to as

Algorithm 1 and the latter Algoritlffi 2, hereforth. Both algorithms

utilize partial derivative information to determine the direction of

search and are directly applicable to the solution of load flow proble¡ns.

A recurrence forrnula for the successive search directions of

Algorithn I has been established in this thesis. It is also proved

that the deflection matrix relating two successive search directions is

positive semidefinite. From thís, it is concluded he::e that successive

search directions generated by Algorithn 1 contain an angle less than,

01 at most egual to, i.

2.I Definitions and Notations

The following definitions and notations are used throughout the

chapter.

(i) Superscript T denotes the transpose of a natrix.

(2) x denotes the position vector with component, *1, iZ, ,xn
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(3) 9_ denotes the displacenent vector.

(4) FE) denotes a scalar function of x rvith continuous first and

second derivatives.

(5) g(x) or ve(x) is the gradient vector of F(Ð. The elements of

g(x) are the first partial derivatives of F.

i.e., e(x) = VF(l) = tF AF ðF rT,^l ð*2 ð*r-r'

(6) G(Ð is an n x n s).'mmetric matrix, called the Hessian tnatrix, the

elements of which are the second partial derivatives of F with

respect to *1, *2 , xn.

1))
A,F â.F ð.F

-Z ãx"ãx^ " ðx"ãx-ôx-- I '¿ 1 nI

:

ð2p ð2¡'

(7) H(x) is the inverse Hessian matrix, i.e., H = G-1.

(8) Subscripts associated lvith vectors denote iteration number.

(9) y, denotes the difference of gradients at the (i + l)th iteration
_I

and ith iteration, i.€., I.i = 9i*1 - 91

(10) I lgl I denotes the norm of vector g and is defined as

llsl l' = {s
2..2 Prelininary Study

Consider first the one-dimensional problem of finding the ninimun of

a function, F, of one variable x as in Fig. 2.1(a). The necessary

G(x) =

)
d.ts



and sufficient conditions [16]

the first derivative vanishcs

for a function to have a

and the second derivative

minimum are tirat

is positivc.

VF(X)

Fig. z.I(a) a convex function F of
one variable (top)

(b) gradient of F (bottom)

Now, consider the tlvo-dimensional case. Fig. 2.

of a function, F, with trvo independent variables

Figs. z.I(a) and 2.1(b) show a convex

function and its first derivative,

respectively. A convex function is

one rvhich can never be underestimated

by a linear interpolation betlveen any

two points on the curve. It is obvious

from the graphs that the problem of

locating the minimum of a function is the

same as that of finding the zero of

its first derivative.

2(a) shows the contours

*1'*2. The

(o ) position spoce

Fig. 2.2 (a)
(b)

(b ) grodient spoce

Two-dine:rsional contour sketch
Locus of þradient vector of contour



corresponding locus of the gradient vector of the contour are

sketched in the gradient space of g1 and gZ as sholn in Fig,2.2(b).

For this case, as is implied by the necessary and sufficient conditions

stated earlier, the origin of the gradient space corresponds to the

rninimum point of the function F (x' xr) if the 2 x 2 matrix of

second partial derivatives, the Hessian rnatrix, is positive definite.

By positive definiteness of a matrix G, we mean that xTGx > O for

allnontrivial x and JC*=0 iff å=0.

Generalized to a space of n dimensions, i. a., ã function with n

independent variables, the conditions required are that the gradient

vector is zero and the n x n Hessian matrix is positive definite.

The gradient of a function at any point tlrus gives a good indication

of the direction in which to ploceed during the search process.

Steepest Descent lr{ethod

This method is one of the oldest and simptrest of gradient nethods.

Compared to the generalized Newton-Raphson method, it has the property of

being stable and requires only the first partial derivatives of the func-

tion. But convergence is very slow. The nathematical derivation of

the method and its properties are given below.
I

at

and x^ of
¿

A function F(xI , *rt ) of two variables *r' and *2

(*1 * ô1, *2 " ôZ) has a Taylor series expansion about *l

the forn

F(x, + ô1, *2 + ô2) - F(xt, *z). å 0, o -\ 0, o
- o*1 o*2

. ^2 a2¡ "z a2n r" â2Fo I-" ö1 

- 

n ,, öZ ;--Z o o1o2 ;- + ...
â*1t' t ,*r'' L& ôxrôx,

(2.1)



In matrix forn,

F(x + g) = F(x) +

where

T,.^ 1c (xJÔ + õ t' .¡*¡o * (2.2)

(2. sa )

(2.3b)

(2.¡c)

(2.3d)

¡x' xrJT

[ôr, ur]t0=

and

s= rtr *rr'
4

oh

-r 
-T

ðx, 3x,

?
dÍ.

-;1dX^
¿

AË = F(x + È) - F(x)

T
= g^ (x)!

f r"-
l^ t2
I dxi

c =l

I u'n.

¡qq
Generalized to a function F(l) with n variables x = [*r, ..., *rrJT,

the Taylor series expansion, in matrix form, of [(l) has an expression

similar to that given iry eqn. (2.2) with x , !- and g each being a

n-th order vector and G, a n x n matrix of second partial derivatives.

Now consider the problem of nininiizing an objective function F(x) of

n variables x.

From eqn" (2.2), to first order terms, the variation, AF, in the

objective function Ë(x) is given by

(2.4)
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Eqn. (2.4) indicates that the maximum change, AF, in function value occurs

when !- is in the direction of the gradient vectol g. The steepest

desccnt direction, P, is thus given by

t =_VF=-g (2.5)

The iterative process can thus be stated as

x.-=x.+ô.
-1 +l -1 -1

+ o¿. P.
a--l_ = x. - CX,. S.

-:t ]-s1

where cx. is a positive scalar which is
1

of rnovement along the direction !. Its

maximum decrease in function value along

0,. is the value of 0 which ninimizes
l_

(2.6)

(2.7)

introduced to control the steP

value is determined such that the

P. is obtained. In other words,
-1

F(x= a cr,P:) along &. i.e.,--a 
-a -1

-1

ånt,a, - ogi)l = o

lo,=oi

(2. 8)

Therefore,

-tT"', åi = o (2.e)

In words, eetr. (2.9) implies that the gradient at the (i + l)'uh iteration

åi*1, is orthogonal to the gradient at the ith iteration q. Further'

s. - is also orthoqonai to P' in viet'; of eqn. (2'5)'si+f
lte now show that the function value decreases at each stepr i'e',

the process is stable.
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Fron eqns , (2.4) to (2.7) inclusive,

^F. 
= s.1sa

T

åi = - oi llg-rll'

T
ô.
-1

-do*i .si

Eqn. (2.10) shows that the first-order variation is negative for

thaË F(xi*f) < f¡xr) for cÌ sufficiently small.

Fig. 2.3 Minimization by a Steepest Descent lt{ethod

Fig. 2.3 shows the progress of the method torvards the minilnunt. As sholn,

the rate of convergence is very slol near the mininiun of a narrol{ valley'

General i zed Nervton-Rapirson l'{ethod

In this method, the search direction is not solel)' dete¡nined by the

first order gradient information as in the case of steepest descent. It

(2.10)

0,>0so

X¡
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also utilizes the second derivatives information to determine the direction of

search. consicler the Taylor series expansion of eqn. (2.2)

TT
F(x + ô) = p(l) * g'(r)6 * L'9'G(r) 6 + "'

Differentiating and neglecting higher order terms gíve

VF (x + ô) = VF (x) . vel C*lg

= VF(l) + G(x)ô (2. r r )

The necessary condition at a mininum of a functio¡ is that the gradient

vanishes there. Hence, if it is desired that åinl = Ii * 9i is the

rninimum of F (.) , we must have

VF(x, * 6.,) = Q
_a_I

(2.12)

Using eqn. (2.L2), eqlr . (2.LL) gives

_1
ô. = - g -(x,) VF(x,)
-:L -r -r

= - H(x=) g(x.,) - - H. g,--1 ' ---l' 1 -1
(2. I g)

_1
rvhere H. - G *(x.).

1 '-r

For a quadratic function, H is a constant rnatrix, eqn. (2.13) provides

the parameter increments for the minirni.u¡l to be reached in exactly one step'

If the function is not quadratic, eQn. (2.I3) prorrides the basis of an

iterative scheme

Iiol = Ii - 0i IIi 8-t
(2. I 4)



I3

wherc the positive scalar oi

steepest descent.

It ís noted fron eqn. (2.I4) that the search direction will be in the

gradient direction if Hi happened to be a nultiple of the unit matrix

I. The steepest descent nethod is a special case of the generalized

Newton-Raphson method with H = I.

Eq¡' (2.14), by taking into account the curvature of the function,

suggests that one proceeds in a direction which is noc necessarily along

the gradient. Though the greatest rate of decrease of function value at

any point occur.s in the directíon of negative gradient, this does not

necessa::ily imply that the overall convergence of the process is fast.

This is explained in Fig. 2.4 where dotted lines indicate the process

using eqn. (2.L4) and sclid straight lines refer tothe steepest clescent case.

steepest descent

- ----generGl¡¿ed
Nlewton- Rophson

9,o

Fig.2.4 Steepest Descent and Generalized Nervton-Raphson Processes

is again included as in the case of

As shot,¡n in Fi-g. 2.4 the mininization process in which

are taken along the direction given by eqn. (2.L4') takes

to reach the mininum point.

The stability condiËion of this process v¡ill now be

the corrections

fewer steps

es tablished.
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Eqn. (2.4) gives the variation, AF, of the function value

T
AF, = g'(x*)ô.

r - r'-L

From eqn. (2.I3), it follows Èhat

^F. 
= - s.T s. s. (2.1b)

1 s1 1::L

It is noted that the right hand side of eqn. (2.15) is quadratic in

forn. Therefore,

F(It*r) < F(xt) (2.16)

if H. is positive definite.

As is obvious from eqns. (2.15) and (2.L6), a positive definite I{

guarantees rnonotonic conrrergence of the process. The convergence of the

method thus depends on the behaviour of the function.

The generaLized Nelton-Raphson method, although it has a fast rate of

convergence if it converges, Tequires the second derivatives of the func-

tion to be evaluated and a subsequent inversion of the Hessian matrix.

These are time consuming operations.

In the follorving section, a class of methods, known as the variable

neiric method [1, 6,7,8, 10, tl], is described in which no matrix

inversion is required.

2.3 Variable Metric Method of Unconstrained Function lufinirnization

The variable metric method [8] is devised such that natrix H is not

calculated and inveried fron the Hessian natrix G. Instead an approxima-

-1tion H to G-r' is kepË and updated at each iteration. The updating

formula has the property that if the initial approxination Ho is chosen
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to be positive definite, the sequence of matrices Il1, I-12 generated

are also positive definite. This guarantees convergence of the process

as required by eqn. (2.15). Further, if the function ¡(t<) to be

minimized is quadratic, after n steps, tvhere n is the number of

variables, Hn is precisely the inverse Hessian G-l" If f(x) is not

quadratic , after n steps FI is a good approxination to G-1. Thus the

method converges rapidly as soon as it gets close enough to make a

quadratic approxination valid.

2,4 Derivation of lrlatrix Updating For:nu1ae

H.1+l

modified

H.1+l

Thus

(2.17)

Consider a quadratic objective function

The approximating matrix Hi,

[5] by adding a correction matrix,

wliich gives a better approxination

at the ith iteration, is

4., to form the new matrix
1

_1
to the inverse Llessian G '

Þ_ and c are nth

at the ith iteration

=H. +4.
11

where G

vectors

isa nxn

of coefficients

+c

constant matrix,

. The gradient

F(x) = zt'.l .t'l (2"18)

order constant

is given by

v.â1

V. =!-I

=

be the difference

o-oqi+l si

(2.re)

at the (i+1)th and ith iterations,

+b

Let of gradients

Gx. . - Gx.
-1+1 -:L

G ô.
-1

(z.zo)

(2"21)

from (2. 19)
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-lSince H,,, should be a closer approximation to G -, the correction
r-+-L

A. is chosen such that the relation
t_

where

6- = x. - - x.
-i -]+l -1

Rearranging,

-1
^Ltr V. = ô.

_I

H.-v.-ô.
1+I L1 

-1

is satisfied.

Substituting eqn. (2.17) into eqn. (2.24) and rearranging give

A.v.-ô.-H.v.
1 Lt --:l- 1 a-L

A. = fô. - H. v.\ Z.T1 '-1 l_ L:l',-1

where Z. satisfies the condition
-1

-TL. V. = I
-1 

a]-

A more general alternative is

TTA. - ð. o.* - H. v. ü).'1 -1 å t_a:L-r

where o. and t¡. are chosen such that*l- 
-L

(2.22)

(2.23)

(2.24)

(z.zs)

It is obvious from eqn. (2.25) that the choices of A:_ a.re quite

arbítrary. The sinplest form that A can have such that eqn (2.25) is

satisfied is

(2.26)

(2.27)

(2.28)
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TTo. y. = (¡. y. = 1
åLI_1LI

Combining eqns. (2.L7) and (2.28),

Hi*l = Hi- * 91 nt - u, ¿1 .9tT

Eqn. (2.30) gives a class of formulae for updating

depending on the ways that q and o are chosen.

are given below.

and

H. y.
r'L

w.----Ë--_:L I .,- y.- H. Y.1-1

where both eqns (2.3L) and

Fornula (I) [11]

1

gr = (- r:-) ô.- Ò. v._1 LL

ô. ô.7_.1 _1
H. _ =fl. +-*-

a+I l- .l0. y.
-1 

Ll

Fornula (II) [6, 7,

T..v. ll. v.!-r l- ¿-1
q; - (i + 

-1- -Ò. y.
_1 LI

By letting

(2.32) satisfy eqn. (2.29)" we have

T
L1 i-lv. v.' H.
'-'l !--t 1

,r.T H. v.!-r 1 :-1

(z.zo¡

(2.30)

the H matrix

Two updating forrnulae

(2. 3r )

(2.32)

(2.33)
H.

1

101 - By

Ò.

) ^T0. v.
-l 

tL

letting

H.
1 (2.34)!-I

"Tô. v.
141

and

.T,,r = r_:-)j*i \^ TÒ. v.
-1 

Ll

where eqns. (2,34)

ô.
-].

(2.35)

by eqn (2.29).and (2.35) also satisfy the conditions given
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ll'e have

,r.T H. v. ô. 6.T ð. u.T H. H- v.6.7
Lr - rJ t 11 q' 1t1 .r -1 -1 -l- 

¿-1 1 1:-r -1ni*r=ni*tt+ 
* 

ril; gr-r. Tt
or

ô. ,r.T '{. ô.T 6. 6.7
H. , = (r - -fl n, ¡1 - =fr1 .Ë (2.35)r-+l gi' .ä ' gr' ¿, gr' ri

It is obvious from the expressions that the H rnatrix at the current

step is obtained from the values of displacements, ô, and gradien'L differ-

ence, y, at that i-reration. The amounL of computation involved is much

less than that required by direct evaluation of the Hessian and subsequent

matrix inversion.

2.5 Algorithm 1:_ VMM With Linear Search

An algorithm for locating the minimrrn of a function F (x), using

updating formulae derived in the previous section for the successive

approximation of the H matrix is summarized. This algorithm, due to

Davidon tB] and reformulated by Fletcher and Poweli 111], involves a

linear search submininization process, i.e., ãt each iteration, the function

is rnj-ninized along the search direction.

The iterative siheme can be stated as

x.-=x.+6.
-a+I -a -:L

(2.37)

At the ith iteration, *i is knotrm and hence the gradient g(x,i) is

known. The direction of search is defined by

D.--H.s.¡-a 1 :1
( 2. 38)
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where Ii. , the deflection matrix, which deviates the sea.rch direction

from that of tire steepest descent direction, is evaluated using eqn' (2'33)

or eqn. (2,36). The correction ql to the position vector li is

given b¡'

ô.=0.P.
-1 l- -r

(2.3e)

wlr.ere cri ís a positive scalar and is chosen such that F(Ii oi_ 9:-) is
1

(It * cr p1),

9- p r*.
d0' t-]. + crn.)l - oLl- |

I c[=c[.
1

In other words, the orthogonal property

a ninimum along

1.ê.,

T
8-1+r Pi = o

holds for all i.

(2. 40 )

The new position vector is given bY

Iinl = Ii * o1 Pi
(2.41)

Setting i = i+1, the pïocess is repeated until every component of !-

is less than a prescribed tolerance.

In the Fletcher and PoweI1 algorithm [11], forrnula (T) of section

(2,4) is used for updating natrix I-1. It is shoivn here tl'rat formula (II)

of section (2.4), used by Fletcher [10] in an algorithrn where linear

search is not done, could also be usecl in an algorithn rvith linear search.

A recurrence fornula relating t',vo successive search directions is
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established. It is then deduced

contain an angle, 0, less than

v¡here O = * corresponds to the
¿

that two successive search directions

or at most equal to + . The case'¿

steepest descent scheme.

Stability

It will be shown that the search direction defined by eqn. (2.58)

is downhill. This means that the function value.decreases at each step

and thus the process is stable. Eqn. (2.38) gives

D.=-Ll

Because g.
_I

be dorvnhill

P1

H.
1

is

if

oÞ.i

the direction of steepest ascent, the direction

and only if

will

D.
À-1

T T..
O =-û H Oè-i gi ^'i si

"To. v._1 LL

(2.42)

is negative.

To satisfy the abor¡e requirenent, Hi nust be positive definite.

Thus to guarantee conveÏgence of the proceSS: orrê needs to prove that Ëhe

sequence of H matrices generated by eqns. (2.33) and (2.36) are positive

definite. The nroofs follorv.

For forrnula (I), eqn (2.33) gives

^Tô. x
-1

T"x o-
-1

*T H.
L Y-i Li (2.43)

Tu. x
l_-T

X H.x+t- T
r-L H. y.

a-1

Define

then

s=H%x and
,

t=H Y
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(t':-r ct'gl - cJo' cf url'
t-t

¡-
^lô. v.
-1 'L

C q,,
> =-o-I- using Schwarz inequality [16]

o. v._1 LT

But, by eqns. (2.20) and (2.40)

^T "T NT.
9i Ii = 9i å1*1 - 91 f.i

= - g.,T n.
-1 -1

T
= oi å.' Hi 4_ from eqns (2.38) and (2.39)

>0

since H= is assumed positive definite. Therefore,
t-

Tx'H..x)01+l. -

(2.44)

(2.4s\

for all nontrival x.

Next for formrrla (II), eqn. (2.36) gives

r r q, ¿T - Y'ô'r *T 6,. 6'T *
*' H,*r I = x' (r - Ë) Hi ¡r - =fr-1 f . --j-1- (2.46)

rrr" - 9i' ri ' 9r^¿t 9i' ri
y ô.,T r 9ry.t

Let B=I :+ and z=Bå then BT=r--1+-i substituting
9i Ii Èr'I,

into eqn. (2.46) gives
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*T Fl. ,xa+I-

r*T 6.12
IJX + ------ã--

"Iô. y.
-1 

Ll

'F ')lx' ô.1'
-"-T--

ô. y.
-1 '1

= f ut H.
1

=rTH.
1

z+

>0

sr_nce

s t_nce

H.
L

is positive definite

Ii t 0 from eqn. (2.44)"Tô.
-1

Therefore

Tx-H.-x>01+l -

for all nontrival x.

(2.47)

Frorn eqns, (2.45) and (2.47), it is concluded that the H matrices

generated by Formulae (I) and (II) are positive definite if the initial

matrix H^ is chosen to be positive definite. Therefore, algorithms
o

outlined in the previous paragraph using either updating formula are

stable.

Recumence Relation

The search direction at the (i + 1)th iteration ís

Pi*l =-¡¡'*tBi+l

Using eqn. (2.33) and the orthogonality property of eqn (2.40),

H. v. .r. T
1L1L1

Bi*r = (I - ff) P'
v. H. v.LT1Ll

( 2. 48)

r{e have

(2.4e)
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= K. D.
141

(2.50)

(2.5r )

vlhere

K.=II

H- v- 'rr.T
1L1-1-;q;

La lLl

The derivation of the recurrence fornula, eQl. (2.49), ís given in

Appendix A1 The above mathematical relations for the search direction

can be interpreted readily using geometrical concepts.

Matrix H in eqn. (2.48) measuïes the rotation of the search

direction p, frorn the direction of the gradient E, at the current

point, whereas natrix K in eqn. (2.50) corlesponds to the rotation from

the previous search direction. These relations are shown graphically

in Fig, 2.5 and Fig. 2.6.

Fig. 2.5 Reculrence Relation
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P¡ +r

Fig. 2.6 Geometric Interpretation of the Relation
Betleen Search Direction and Gra<iient vector

The following property can be deduced from 'Ehe recurrence relaLion

given by eqns. (2.50) and (2.51) .

Property: The angle 0, betv,reen two successive search directions of

quadratic conveïgent mininization process, does not exceed 90o. The

extt'eme case -ri'here 0 = 90o coïresponds to a steepest descent step.

statement is sholn graohically in Fig. 2.7.

the

The

Fig. 2.7 lrfinimization Scheme
of Algorithm 1

Ç ¡"¡
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Proof

By definition, eqn. (2.51)

H. y. y.T
1L].-1

I\.=t--;-1r- y.- H. Y.11 L4-

Premultiply by lrt ancl postmultiply by L1 lead to
TT

,r.T K. y. = u.T u. _ Lr= Hi r-i y.i'¿i - 0 e,Ez)!-L 1 :-1 4. -! ,r. 
, H. y.

!-L 1 al-

Thus K. is a semidefinite natrix, si.nce Y, I 0 generally. To shot'"
1 -r-

that K. is positive senidefinite, postmultiplying eqn. (2'51) by Hi,

i.e.,

H. v. ,r.T H.
K. H. = !1. * l-Lr ¿-r- I ( 2. 53 )1 1 I ,r.'li. v.!-r l- {

the quadratic form of the natrix of eqn. (2.53) is

r-- r,- f tu,Y1 Y1rH1 I
x'K.H.x=x'H.

y.^ H. y.
LI]--1

Define

,=H%* t=t?'y
substituting into eqn. (2.54) r we get

T2
T ,r- (:' !)

*'K.H.x=sls--=-:: '-l_ --t :: 
Ct' g

cf :r cf o - cLÐ2

(2.54)

fr
>0 by thc Sch¡rarz inequalitY (2.55)
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Since Hi is positive definite, we conclude that Ki is positive

semidefinite from eqns. (2.52), (2.53) and (2,55).

Fron eqn. (2.50)

T T-.D- -- D. = D. K. D.L1+I Ll LI 1 LL

Since Ki is prorred to be positive semidefinite, we conclude that

!r*rt Pi ì o (2.s7')

2.6 Algorithm 2: Vl4M Without Linear Search

In algorithm l, the nultiplier oi is taken as the value of o

which nininizes F(x. + o pi), that is, the function is ininimized

1ocaLly along the direction of search. This is usually done by evaluating

the function and gradienl for anumber of different values of o and

interpolating according to some sËraËegy. Though the inportant properties

of quadratic convergence anci stability [11] are the consequences of linear

search, conslderable extra computing effort is required in finding o lead

to ar attempt to abandon the linear search so that only one evaLuation of

F and g per iteration is needed.

However, to guarantee nondiveïgence of a ninimization pïocess, it is

important that the function value decreases monotonically. In other words,

retention of positive definiteness in H is necessary. Moreover, the

property of quadratic convergence ensures fast ultimate convergence of the

process. It is therefore desirable to retain sone guaïantee that the H

matrices tendto G-1. It has been sho,*rn t10] that this reqttires that for

quadratict-unctionstlreeigenva1uesofHmusttendmonotonica11yto

those of G-1. t'lre updating fonnulae derived in Section (2.4) satisfy
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this requirement 110] and,thus,can be

linear search.

Stabi I ity

It has been shown from eqns.

process is stable if matrices H

positive definite. To guarantee

H generated by updating formulae

ô.T ,r. > o
-1 

t-r

used ín an algorithm not requiring

(2 . 15) and (2.16) tliat the minimi zatíon

generated from the updating formulae are

the positive definiteness of rnatrj.x

of Section (2.4), the condition [10]

(2.58)

is imposed in an algorithrn where linear search is abandoned. The deriva-

tion of the above requirement is given belor''., It follorvs tire same lines

as the stability proof of Secti.on (2.5) for the case luith linear search.

For formula (I), from eqn. (2.33), tre have

H. - x=*TH.1+I- 1

T^ ^TX Ô. Ö. X
-] -1X * ------='--

T ,r.T H. v.¿-1 1 !-1

TH. x
1--*T H.

1- -1 L]- (2.5e)

(2.60)

(z.ot)

T

Define s = , t = ll4 y, eqn.
_I

"F)
T (x'6,)'
t--I

(2.54) becones,

rJ ot
ct's

t)2

*T H.
1+ l-

-Ã-J5T--------=--

Ò. v.
-1 -L

TT(s's) (t' t)

7,

H-2 x

v.Ll6.
-1

(J
Ttt

(*r o.)2
-a

"Tô. v-{ -,

0

T)fx'ô.1-
-" T -0. v.
-1 

La

^Tr-f Ò.
-t

v. > 0!-1
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Therefore, for

interval ô.
-1

Next, for

H. - x=1+1 -

the proccss to be

^ltor tJh]-ch Ò. Y.
-1 

:-I

updating formula

stable, it is necessary

> 0.

(II), from eqn. (2.36)

to update over an

have

"To. x
-1

, I'Je

TX Ô.
-1T

x

T
x

*T (r "To. v.
-:t 

Ll

^Tô. y.
-a 

a1
_-tt{

^T r"i
ô. y.
-1 -1

^Tv. ô.
!-1 

-1tl- -Jx+^¡ô. v.
-l. 

_I

Let

"r
v. 0.
L1 J

- tr ¡ ' I
- Lr )

^lÒ. v.
-1 

La

and z. = B x we lìave,

_ T ^ -2[x Ò, )
-l7!-

IÒ. v.
-1 

L].

H. - x=a+I -
zT n.

1

slnce

r*T ô. 
T) 2

\r- -;T--
0. v-
-1 "1

is positive definite. Therefore,

if

T H.-x>01+I -
(z.az)

The same condition, eqns.

both formulae.

(2.63)

(2.56) and (2.58) for stability is obtai:red for

Both Algorithms 1 and 2 are applicable for solving load flotv

problens. Algorithn 2 l^¡ithout linear search generally has better

conveïgence, in ternis of nu:rber of function evaluations, than Algorítlrrn

. The folloiving chapter presents an application of tl"re techniques

desciibe.l here for power systcm load florv problerns.

H.
L

^TÒ.
-1

v. > 0
--L
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i eaC flow probleft,ls

Briefly stated, a load flow stud1, is the determination of the voltage,

current.. power and power factor or reactive pohrer at various points in an

electric network under existing or contemplated conditions of normal

operation [29]. Mathenatically, the problem involves the soiution of a

set of nonlinear equations satisfying the power and voltage requirements

of the load and generation poinis. The problem can be solved by many

differ'ent methods [18, 26,28,29]. The main nethods in use today are

those based on successive overrelaxation, abbreviated SOR, and the

Newton-Raphson rnethod, abbreviated NR. In this chapter, nonlinear

programming formulaticn of the load flcr¿ is introduced. Then iË is solved

by techniques discussed 'ín Ëhe previous chapter.

solatian
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A section on SOR and Nlì

included for the convenience

3. I System Equations

Consider a netlvork ivith

represented by a set of node

currents in the netl'rork.

Fig. 3.1

The branch current

load flow fornulations and solutions

of later comparison and discussion.

1S

n busbars,Fig

equations lvhich

3.1. The system can be

relates the voltages and

One-line Diagrarn of a Polver Systeni Netttorlc

Iki'

- v.)'l'

flowing betiveen nodes and 1S

rki = Yki (vt (s. t ¡

where yti is the admittance betweeu nodes i and

are node voltages measured rvith respect to neutral.

node equation can be ivritten as

V.
L

k

At

and

node

vt

k,

and

the

n
rk = (vt ui) yti

l-= l"

ilk

k = 2, 3, ,n



31

and Yki=-yti

The voltages ,V, currents , I, ând

conplex numbers and are represented

(3.2)

(3.3)

(3.4)

Y, in the equations are

(s. sa )

(3.5b)

(3. bc)

(3.6)

(3.7)

n
= f Y..

Kr-1=I
V.

1

where

c-ur
K

where *

Ykk = .1. rtiLfK

Ik=uk*jbt

adrnittances,

as fo1lolvs:

VU=e¡+jfk

The poler at node

Yki = Gr.i - ì 8..-K].

kis

vr. rt

denotes complex conjugate

Sk=Pk*jQt

and It =aU-jbo

In the load-florv study, three types of nodes are considered. At the slack

node or slacl< bus, the r¡oltage magnitude ancl phase angle are specified.

The load nocles or load buses are those at ivhich active power and reactive

power are specified. The generator buses or voltage-controlled buses are

those at rvhich the real power and voltage magnitude are specified.
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3.2 Conventional Load Flow Forrnulation and Solution Techniques

Two comrnonly used iterative rnethods, SOR and Newton-Raphson, of

solving load flow problens are described. The SOR load flow solution

I14, 31] is based on correcting the system voltages successively and

using a sma11 voltage tolerance to ensure satisfactory power mismatches

at the nodes. The Newton-Raphson methodl for load flow [30, 34,35]

involves, at each iteration step, the solution of a set of linear equations

expressing the relationship between the changes in real power and reactive

power (or voltage magnitude in the case of voltage-controlled node) and

the components of node voltages.

Successive Overrelaxation Formulation and Solution

Fron eqns. (3.2) and (3.6), we have

.n
=$. I Y..K K].

l-= L

(3.8)V.
l_

tk

Let the scheduled power be rk, = Pk,

complete, the calculated power matches

+ i 0, . When the solution. -KS

the scheduled power, i.e.,

1S

(Pk, *

Rearranging,

.*n
=$. I Y..V.K-Kr_r-1=I

i Qks) (s.e)

get

Irot_
I
L

:oce

>sl

vaI

;tp

e

I

pr

he

d

ES

w

t

I
Ç

ive

pt

'êct,

tiv
ept

rec

the

atr-

cep

lre

rh

The iter
buses ex

Ëhe co

s. and
KS

(or, :.J
V.

1
=) I

.J

tiat

here

tage

ol-ta

at

re

ge

ta

Qr,

nit
wh

olt

VO

vt - t Y..
ilk Kl

(¡. r o)

ed by assigning estirnated voltages for all

the voltage is fixed. Eqn. (3.10) then gives

at the kth bus based on the scheduled power

ge values for the corresponding buses.

ThÍs should not be confused with the Genera1-ízed Newton-Raphson method
of unconstrained function minímization l¡hich finds the zeros of the
gradienÈ of a function.

pr

the

ed

bes

51n

bus

f'vo

ous

vt

is

kb

of

ss1

ack

ueo

revi
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gnce the corrected voltage at each bus is found, it is used in calculating

the voltage colïection at the next. One íteration of the SOR scheme

coïresponds to the process in rvhich the voltages at all nodes have been

consecutively corrected once. The process is repeated until the change in

voltages betr,veen tivo successive iterations at each node is smaller than a

certain specified tolerance limit. The total power misnatch is then

calculated. This must be zero or less thanAcertain preassigned tolerance

at the solution point. If it is not, further iterations are necessar)r.

Othenvise the process is terninated.

In the case of a voltage controlled node, the reactive poler is

obtained from the imaginary part of eqn. (3.6), i.e.,

Qk = I* {vu ru*}

n*
Q¡ = r, {vu [.r. Yri vi] ]

1=1

Substituting eqn. (3.5), the reactive power is

)')
Qk = ¡eoz * fuz) Bkk * 

rlr{to("iaL, 
* fiut.i) - eu(frGu. - e.Bnr)}

ílk 
(3. r2)

The cornplex power at a voltage-controlled bus is

n
. 

,lr{ft("itLi 
* fiBLi)

ilk
* tu2) Btt

(s.tt ¡

l. 2S- -P. +ille"ks -ks 'L'-u

- eO(frGn, - "rUOr)]]
(3.13)
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where 
"k

satisfy the

into eqn. (3.15)

.n
D-a5",k - "k u-

m=1

and ft are the components

re1 ation

r.2 = (lv, I )2k -l Klspecified

of voltage at node and must

"k
(3. r 4)

(3. r6b)

where lUUl is the nagnitude of the specified voltage at node k.
I "rsPecified

Ner{ton-Raphson Formulation and Solution

Substituting eqn. (3.2) into eqn. (5.6), we have

*?kn
S. =!. I Y- V k-kl("kmm

m= -L

Bus No. 1 being the slack bus.

Substituting SO = PU + j

vk="k*j

-42 at ,n (s. r 5)

o\l-
.r\

fL

Ykr=Gkr-jtU*

and separating real and imaginary parts,

n
fG. e +8. f)*fk (Gkrf*-Bkr"*)'Kln m Km m m=t

(3.16a)

and

Qk=fk

P- and
KS

node k,

n
ï

n=1

Qr,

the

are

set of

the real

2(n -

n
I fc. f -8. e)_ -Km m Km m-

m=l

If

at

and irnaginary parts of scheduled pot''er

1) nonlinear equations to be solved is

T--P.-P.=QKKSK

tk*r, = Q¡r-Q¡ = o

(3.17)

(Gkm 
"m 

+ Bu,n'fr) - ek

k = 2, 3, ..., Il
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In the case of a voltage-controlled node, the reactive po!,rer equation at

that node is replaced by the equation

tk*r, = lvtl - ("t2 * tu2)%

4.,

t1

Lfz

(3. rs)

(3.1e)

The Nervton-Raphson nethod requires that a set of linear equations be

formed expressing the relationship between changes in real and reactive

powers and the components of bus voltages, i.€.,

ðtz
;-ot2

ðtr*2
r-
n+2

1.-2n

or , in natrix form,

ðt, ðr2 ðtz
^fOI

Il
,2 ðe âf-,

nL

gooo

ðr ðr ðr ðr
n'nnoo.n

ðe^ ðe Af^ Afzn¿n

âr^ðr^âr--n+2 --n+2 "'n+2
oo_ôo

âe Af^ ðfn¿nðtz

oooooo

ðr^ âr^ ðr^ âr^¿noo.¿n¿n"¿fr
ðe^ ôe ðf^ ðf¿n¿n ^fn

r=JAe

where the coefficient natrix J ís the matrix of first derivatives and is
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called the Jacobian matrix.

The voltage coïrectj-on at the mth iteration is given by

_1
Ae =J -'t

m -Jn

Hence, the new estimates for bus voltages are

or

_ -1e-=e+Jr-gn+I -Jn In --il

e - = e + t J -1 r
-m+I m Jn

(3.20)

(3. 2r )

(s.zz)

where t is a scalar niultiplier chosen to prevent the process from

diverging. Tire solution of the set of equations,eQn. (3'20),at each

iteration involves the evaluation and itrversion of the coefficient matrix'

A nodified approach, based on Broyden's variation of Newtonts method

14, l5l , is used in which no natrix inversion after the first iteration is

required. The approximate inverse Jacobian natrix is cornputed from the

function values r using the updating fornula:

tn D H Il Y Þ H

H __H *"??-r __m3rln rn (3.23)
"rn+1 'm T -- T 'Itrrr ¡¡r 

P*' H,n ån P*- Hr 4n

where

D -H råm mJn
and

v=r.-f-fl+l -n

It is noted from the expression that no adclitional function evaluation is

required beyond those that would be needed if J is not changed, for

_1
H -J 

I
mm
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updating the inverse Jacobian matrix.

3.3 Nonlinear Programning Formulation of Load Flow

- Since solution of the load flow problem must satísfy the condition that

power rnismatches at all nodes aïe zero, nonlinear programming can be used

for solving load flow problens by defining an objective function from the

set of 2(n - 1) nonlinear equations, eqns. (3.16) and (5.17), which

describe the system. The point at which the function is mininized

coincídes with the solution of the equations

Referring to the one-<ii,nensional exanple, Fig. 2.L of Section (2.2),

it is clear that if a function F is constructed such that the set of.

2(n - 1) nonlinear equations, eqn. (3.17)r are the first partial

clerivatives of F rvith respect to the variables, i"e.,

âF AFr- =- and tt+rr=ã{k o"k and tr+r, = ft 
(3'24)

the GeneraLized Newton-Raphson method of Section (2.2) for rninimizing

the function F so constructedo and the Newton-Ra.phson methocl of

Section (3.2) for solving the system of nonlinear equations, both give

identical steps. In tl're load flow problem, an objective function F

satisfying eqn. (3.24) is not availa.ble. A least p-th formulation is

used.

The objective function is defined by

n
F = -x_ (ltulP * ì"¡*nlp)

7.-a Â
k-¿

- f (ez, ... , en, f 2, ..., f-) (3.2s)

where p is a positive real number rvhich governs the degree of convexity
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nn
tk = Pk, - [et,lr(tu* "n, 

* Bkr fr) * tn 
n,I,.(Gkn, 

fr - nur e*)l

and

tk,*r, = Qk, - [fr. 
,n]r(tur "r 

* Bkr fr) - "u ,lr(Gkr 
fr - Bk* 

"n,)l

The elernents of the gradient vectors are

F = n l,¡¡'ulp-' 4 rrr" ¡ru)] . o olrll'¡*nln-t þ,rr' ('¡*,,)J
d€:.,

J K=¿

= (-p) t lr, lp-t ..i, 
(G3r"* - uj,nrr)sign(rr)

m=l

* Itj*nln-t 
-!, 

(G¡*fm * 
'jr"*) sig' (t¡*n)l

n. ¡-n) 
¡12 

tl'rlp 1(Grj"L-Brjru)sien(ru)

* Iro*nl 
n- t (atj ft * Bt3 "¡) sign (r¡*,., ) J

of the function.

and

(3. 26 )

âp n âr- n ,p-1 ârk*n

q = n u!, tì'kln-' # sign(ru) . n ol, Il'r*nln-' ãå; sign(r¡*,,)J

= (-p) r I '¡ ln- 
t-i, (G¡rrr- rir"n,) sign (r, )

* lr. ìP-l ; rG. e +8. r' t'¡+¡¡t 
n=I Jn m Jm n)sign(r¡*n)J
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* (-l)ulrtlrrlp 1(tstj"k*.kjro)sien(ru) * Itr*r,lp-1(Brjro-.ujeu)siBn(ru*,.)J

(3.27)

This formulation of load f1ow, based on power mismatches together

with a solution process which seeks directLy the set of voltage values

satisfying the terminal conditions,is physically more lneaningful than the

SOR iterative method where each individual voltage is corrected assurning

that all others are already correct and rvithout any control on the

mismatches.

A nunber of standard test systems t'rere solved using both Algorithms

1 and 2, The results are includecl in the next section.

3,4 Numerical Results and Discussion

The follorving systems we::e used to test the method:

(a) a five-bus system from Stagg and El-Abiad l29l;
(b) a six-bus system of Ward and Ilale [gS];

(c) the IEEE standard 14-bus test system [13]; and

(d) the IEEE standard 30-bus test systen [13].
:.

All cases were started with a flat voltage profile of (1 + j0) per unit. ',,*,,:,

All the voltager power, reactive por^ier and admittance data are per unit

quantities throughout the chapter. The tests were taken to a high

solution precision to study the complete response of the nonlinear

programming approach. 
i '

The load flol function, as defined by eqn. (3.25), is the least p-tl'r

sum of power misnatches. Tests l{ere carried out to deterni:re the

dependence of co¡tvergence rate on p. The results of this test using
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Algorithm 2 on the S-bus system are given in Table 3.1.

Table 3.1

Converge:rce Rate vs. P

Exit Criterion = 19-10

N-o; of
Iterations

No. of Function

D

1.3
1.8
2.4
)')
2.5

Evaluations

41.

25
l5
20
4t

70
2B
15

'J43

ft is noËed from Table 3.1 that the value of p has an important

effect on the rate of convergence. Numerical results presented laÈer

in the section and in the fo.llowing sections are based on a least square

definítion of load fl-ow function which is considered to give the optimr:rn

convergence rate of the solution process. For large p values, the

functiorr tends Èc become flat ín Ëhe region F < 1, and a slower raËe of

convergence is expected in Ëhis region. Snall p value improves the

convergence rate in the region F < l, but has poorer convergence in the

region F > 1. This is shorvn in Fig. 3.2 f.or a one dimensional case.

Tests had been carried our using different p values for regions F > I

and F < l. This does result in faster convergence but the improvement

is not significant.

Tables 3.2 and 3.3 summarize the results obtained by Ëhe nonlinear

programming approacir using two versions of the variable metric method and

the normal iterative approach using ihe successive overrelaxation meËhod.

All tests were run on an IBÌ'f 360/65 computer wiÈh double precision. A
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Table 3.2

Convergence Conparison

Using Algorithn I and

Exit Criterion, e.2

Algorithm L

No. of Function

Evaluations

a.4

58
70

t52

Pz,

of Solutions

Algorithn 2

= 19-10

No. of
Iterations

Pl tl

Algorithn 2

No. of Function

Evaluations

X

Fig. 3.2 Effect of p on the Convexity of tire Objective Furction

listing of the subroutines is given in Appendix 43. In the SOR process,

the rate of convergence ís very sensítíve io the choice of the acceleratíng

factor, poor choices could cause divergence. I,trhereas in the nonlinear

programming approach, an acceleration factor ís noË requíred. The accuracy

of the solutíon is measured by the degree to \dhich the Ëerminal condiËion

of the probleu is satísfierJ, that is, by the total povler mismatch c, at

all nodes.

System

Size

5
6

I4
30

No. of
Iterations

11
15
3i
66

13
20
36
74

'ttr

22
4!
79
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System No. of
Size Iterations

Tablè 3.3

Comparison of Solutions Using

Algorithm 2 and SOR

Exít Críterion, e2 = 16-10

Mismatch No. of
e.- Iterations

SOR

Computation ltlismatch

Time (sec. ) ez

Algorithm 2

Comput¿.tion

Time (s ec. )

0. 199
0. 410
5. 690

56. 390

. 34x10- r o

. 39x10- I I

. 33x10- I 2

. 76x10- I 3

ûlopt

5
6

l4
30

T3
20
36
74

19
27
5I+

81

7.4
1.5
L.6
1.8

0.055
0 "r77
1.190
9.220

.90x10- I I

.28x10 ¡ ¡
-l I

.71x10 "

.72xL0 "

Table 3.4 presents data showing the order of the minímum toËal po\¡rer

mismaËch squared e2 thaE can be obtained by SOR. The corresponding

number of iterations required by VMM and SOR to achieve this accuracy is

included. IË ís noÈed that a small increase in accuracy requires much more

computation.

Table 3.4

Comparison of Number of Iterations Required

for Solution with Highesr Àccrrrucy, e2, Obtainable by SOR

System-

Size 2c

.75 x

.11 x

.15 x

Algorithm 2

Iterations
SOR

Iterations

10
10
10

5
6

L4

-f a

-L2
-72

35
46

r20

T3
20
36

Table 3.5 sunrnarizes the

without implementing the

results obtained by the NervLon-Rapirson method

opiinally ordered elinination scheme 1301.
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Table _3.5

Results of the Newton-Raphson Method

System

Si ze

No. of
Iterations

Conputation

Time (sec. )

0. 09s
0. 160
1. s70

13.300

Mismatch

0.50 x 10-e
0.14 x 10-10
0.20 x 10-e
0.70 x 10-s

)

3
4
4
4

It has been reported [30] that the Newton-Raphson method of load flow rqith

the implementation of the optimally orclered elimination scheme requires

less computer tine than the SOR method. Further, the normal Newton-

Raphson nethod involves the formation and solution of a systern of linear

equations or inversion of the coefficient natrix, the Jacobian, at each

iteration. The nodification, based on Broydents variation of Newtonfs

method, can be made such that the Jacobian matrix is formed and is then

inverted only at the first iteration. The inverse Jacobian is then

updated at subsequent iterations using eqn. (3.23) lvhich involves only a

few matrix-vector rnultiplications. It is estÍmat.ed that computation time

is approximately half of that required by the normal method. It can be

seen fromTables 5.3 and 3.5 that in both the SOR method and the Vlrß{

metl"rod, the number of iterations increases rvith system size whereas

the nunber of iterations of the Newton-Raphson method is independent of

system size. Fig. 3.3 shoivs that variable metric method requires felver

iteration steps than SOR to attain a solution lvith the same accuracy.

However, as the number of operations performed at each iteration step of

the Vlt{t4 algorithm is larger than that required by one SOR iteration, the

5

6

I4
30
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time per iteration of VMM is greater than that of SOR.

V}IM
SOR

;,,///
ù,'

;
e
Fro
U
È
ÉU
d

I
ã
fè
Eroj

=
o
ô
=5

,rt - ,--/- rloS>' -.1
' 

-tt /'
*t --'

Fig. 3.3 Number of Iterations vs.
System Síze

Fig. 3.4 Number of Multiplications
per Lteration M vs. Systen
Size n

M = 36 (n + t/S)z-+ for VNr't (solid line)
lrlt = 4(n + 2)2 -16 for SOR (dashed line)

The computation time required to solve the problem depends to a certain

extent on the prograruning techniques. The data for the overall computation

time given in Tables 3.3 and 3.5 is included to give a pictr-re of the rela-

tive amount of time required by the three methods which is after all our

rnain interest. Appendíx A2 analyses and compaïes the amount of conputations

per iteration, in ternls of the nurnber of multiplications involved, of the

SOR and VlrM methods for solving load flow problems. The rate cf increase

of arithmetic operations, and hence computation tirne, per iteration with

system size for the \&1M and the SOR methods is shown in Fíg. 3.4 Fig. 5.5

shows the breakeven curve

36(n + þ2 - +

4(n + z)2 - to
K-
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u/here n

less than

N hasav'
N-5
Nv

is the system size. The condition for vMM computation time to be

SOR is that the ratio of SOR iterationr Nr, to VI,[t{ iterations

value greater than K, i.e.,

K

I¡Ja11ach [33] claims that the reformulation of load flow problem as an

optinization problem may reduce the required cornputer tirne. It is

concluded from the experimental data obtained that computation time is

unlikely to be reduced using the VMM approach.

t5 20

SYSTEM SIZE, N

Fig. 3.5 The Breakeven Curve.
Points indícated are the ratios of number of íteraËions
of oopt to VMM results of Fig' 3'3"

The convergence characteristics of the tvto methods, VMM and SOR, are

given in Figs. 3,6 and 3.7, respectively. The SOR convergence characteristics

as shown in Fig. 3.7 for the S-bus system is different from the nonlinear

progranmring approach and is based on the variation of voltages between

Flo
,â
tri9
z.oËa
É
!-,1 7
=

c

U'Z4
ui
z.93
k
E4trJ L
f-

;,o
9

o
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two successive iterations. In both

are varied in order to reduce po\^ler

VlvM methods, voltagesthe NR and the

mismatcl"res.

(][)

ALG0RlTHivl

ALGCRITiIi\4

(l) 5-bus
.(II) l4- bus-"--- (III )30- bus\\-\\

\\\\

I

2

I
\
I
t
t
I
I
t
I
t
I

Itur
t
I
I

rl r I
J-1-J

140 t60 r80

:-
x
o
E

Þt
o

60 BO tOO t20

FUNCTICN EVALUATION

Fig. 3.6 M"fi.{ Convergence Characteristics

I
I
t
t

t
I
I
I

I
I
I
I
I

K¡I illIrlrIrll

ITERATION COUNTS

Fig. 3.7 SOR Conùergence Characteristics
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the conveïgence characteristicIt is shown fron the curves of Fig. 3.6,

of VNßI, that convergence is fast for the first few steps, followed by a

very slorv region a:rd final-1y a steep curve indicating fast rate of

convergence as the solution is approache<i. A large proportion of the

conputation time is spent in this ¡niddle section. 1'his indicates that with

the fornulation of rhe 1oád flcw furction girren in sectíon (3.3), there

is a region remote from the solution which is nearly stationary, thus

causing small steps to be taken for a nunber of iterations. lnspite of the

above nentioned sornewhat unfavora'ole feature, the negative slopes of the

curves in Fig. 3.6 reveal the important property of the nonotonic conver-

gence of the process. In other rvords, the nethod provides corrections

which always produce better r¡alues for the variables.

N.unrber of Function
evaluations vs. system
size

Both algorithms of VMM were

tested. Algorithm 2 rvithout

Linear search converges to the

solution requiri.ng about 60% of the

total number of function evaluations

of that requirecí by algorithm 1

with linear search [27] as shorvn

in Fig. 3.8.

A final comment on the

experimental results is that a

second solution can be detected

by Wßí, whereas this is not shown

by the SOR method. The Nelton-

R.aphson method diverges for a poor

t40

1^

á tzc
E
?
f;oc
z.o
Eeo
z,
5
lL

bao
oz

40

Fig. 3.8
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starting point. The nonlinear programrning approach always converges

irrespective of the starting rraiue, although it may not converge to the

physical solution. As an exarnple, using the starting voltage value of

(0.5 + j0) instead of (1 * j0), the following busbar voltages were

obtained as the solution to the S-bus systen.

Bus No.

1

2

3
4
5

Voltages

1.060000 + j0
0.s67100 - j0.049820
0.107033 - j0.07846s
0.019248 - j0.060000
o. 189300 -j0.t442670

Although the voltage values given above are not r"easible operating points,

the result gives an indication that a second feasible solution near the

first one can exist. This causes system instability. Such a test is,

therefore, irnportant at the system design stage to ensure that the system

is stable.

The systerns chosen as exanples in this section to test the nethod

are more or less v¡el1-behaved systems. The most desirable characteristic

that the method always converges for systens of ali kinds is showu in

the next section where a 13-bus system with negative transfer reactance

branches with whích the SOR nethod diverges is soived.

3.5 SOR Divergent Case

In this section, ¿ 13-bus'system rvith negative reacta:rce branches,

solved by A. tsramel1er using matrix projection method, is solved by the

SOR and the Wß'f methods. It is shorl¡n that the systen diverges with the

SOR nethod. However, solution was cbtained by VI4M wittL no difficulty.
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The systein is

The netruork diagran

conditions and line

connected bY 13 lines

is shotvn in Fig. 3.9

impedance data given

and is supplied by

lvith the specified

in Tables 5.6 and

5 generators.

terminal

3. 7 , respectively.

Fig. 3.9 l.letrvork Diagran

Both Algorithms 1 and 2 of VMM are used to solve the problem.

Solutj-on with a total por{er nismatch of order 10-10 is obtained after 74

function evaluations using Algorithm l , whereas Algorithn 2 requires

only 40 function evaluations. The conr¡ergence characteristics for both

casesaregiven in Fig. 3.10. It is shown in Table 3.8 that the SORprocess
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diverges in this case.

by VMM are included in

The terninal conditions

Table. 3.9"

of the solution obtained

ALGORITHI,/1 I

ALGORITHM 2

\
' 

f \ i!
30 40

FUI'lCTl0N

50 60 70

EVALUATICNS

BO 90

Fig. 3.10 Wß{ Convelgcnce Characteristic (13-bus systen)

Table 3.6

Busbar Data for 1S-node SYstem

Bus. No. Vo1t. Mag. Generation Load

I
?

3
4
5
6

7

B

9

10
11
L2
l3

Bus No.

1. 000

1. 000
r.037

1. 100
0. 943

':"

is the slacl< lrode

MW

:

0

4s0

0

50

:

MW IWAR

1650 s60
00
00
00
00

s0 30
00
00
00
00

50 30
50 32
00
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rSþIe 3.2

Line Impedance Data

(1000 MVA Base)

Branch No.

1

2

3

4
5
6

8

9
10
11
12
13

.0040

.0040

.0040

.007 4

.0481

.0090

.0r21

.0

.0105

.0

. 0086

.0075

.0

Table 3. B

Convergence Cornparison

Algorithm 2 of {MM

(Pow.er lr{ismatch Squared)

.0850 .0

.0947 .0

.0947 .0

.1430 .436

.4590 .246

.1080 .016

.2330 .7r2

. i500 .0

.2020 .620
-.1s00 .0

, 1660 .508
.L460 .448

-. 1s00 .0

Iteration S9R

No.

0
5

10
1s
20
25
30
35
40

10- l
10- 3

10- 4

10- 6

10- 12

2.78378
r.16962
r.a376r
0. 288843
0.761436 x
0.215440 x
0.736803 x
0.518713 x
0.886626 x

(ltlax. Vot. Disp. )

6.70345r
0.7477635 x 108
0.7816136 x 101 

s

0.749466I x 1022
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Táb1e 3.9

Solution for Terminal Conditions

Bus lJo. P (MW)

- 338
0

0
0
0

400
0

0
50
0

-50
-50

0

Q (I\4VAR)

- 1059
0
0
0

- 600.9
- 172.6

0
-2046.4
- 657
- 1395.6
-30

0

1

2

3
4
5
6
7

B

9
10
1I
T2
13

Voltage

1.000 + j0
1.022 + j0.015
I .077 + j 0. 011
1.057 + j0.012
0.999 + j0.013
L032 + j0.100
L0Z3 + j0.078
1.011 + j0.047
0.999 + j0.048
1.006 + j0.038
0. 886 + j 0. 041
0.949 + j 0.040
0. B7B + j 0. 049



ceffiefusíoms snd

suggestíons for f uture wærft

A reformulation of the load flow problem as an optimization problen

was presented. This was achieved by the fact that at solution, the sum

of the power flows at each bus had to equal zero,

In the SgR method, the voltage at each busbar is expressed explicitly

in tetms of the voltages at other busbars. The iterative process is

based on the voltage convergence. The Newton-Raphson methoc of load flor'r

solution invoives a óirect solution of the systen of polter fiow equations

which are nonlinear and one equation is written for each bus. Hence,

better power bala¡ce is obtained using the NR nethod than the SOR nethod'

In the optimization approach, the load flow function is defined as the si:rn

of squares of the rnismatches, the minimun of which corresponds to the

solution rqhen the mi-nimum is zero.
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Thís thesis has also presented the applícation of ttre.varj.able meÈrÍc

method r¿ithout linear search to solve the load flow problern. The main

emphasis of thÍs work is placed on the investigation of the use of the

mínímizaÈíon approach as a tool in load flow study. The following

conclusions are drawn.

(1) The rapid final convergence characteristíc of the minimization process

process for the load flcw function gives a solution with a total

mismatch of the order of t0-15 with only a few aclditional iterations

beyond that required by a solution with less accuracy. This

(2)

meåns that high solution accuracy is obtained aÈ almost no extra

cost. solution with this high degree of accuracy i-s essentíal in

poríer loss studies which involve the subtraction of power flows

that are almost equal and also in the optÍmum poT¡rer scheduling

problem which is concerned vrith the mínimízat.ion of power losses

which are small quantities. Though the SOR has given fairly

satísfactory po\,rer mismatches for the systems tested, it is Ëhe

experience o f the }fanitoba Hydr'o that porver loss studíes of ten

carinot be done by SOR which ís based on voltage cc.nvergence critefia.

An encouraging feature of the nonlinear programming approach is that

the process is nonciivergent for systems of all kinds. The SOR method

fails to cater for systems with negaËive transfer reactance branches.

The process diverges for such cases. In load flow stud.ies using the

SOR method, the series capacitive reactance in the line is usually

neÈted out by the ind.ucÈive reactance. In those cases r,¡here there

is a neE capaciËive reacËânce, methods such as Ëhe NR method and

Ëhe nonlínear prcgramming approach r¿hich converge for Ëhe negaËive
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reactance case are neverËheless essential r¿hen information at any

intermediate points along the line is required.

(3) Another characteristic of the nonlinear programming approach is that

a second solution can be d.etected, whereas this is not shown by the

normal iËerative methods. e load flow study using the nonlinear

programmírrg approach ís, therefore, beneficial aÈ the system design

stage to ensure that the sysEem is not, perhaps, bistable. usually

the rrextra't solution is far from the real one and so r¿ould not be

permitËed by system controls. BuË one cannot be sure that thís

need always be so. one day a system having two operaEing poinËs

that are close to each other could be constructed and found unable

to be put into operation.

(4) I,lallach t33l claims Ëhat Ëhe refornulation of ,the load flow problern

as en optimization problem may reduce the comput,er tíme. From the

analysis of the methods and the experimental data obtained, it is

concluded that r+iËh the optimization methods available so far, a

nonlinear prograumning approach to load flow requíres greater

computatiou time than normal iterative methods. Algorithm 2, the

VMM v¡íthout linear search, has better convergence than the algorithm

I^rith línear search. The number of function evaluatiorrs of the former

is about 6O7i that of the laEter. It has been reported. by Tinney t30l

that the computation time of the NR method with the implementation of

the cpËinally ordered eliinination scheme is less than thaÈ required

by the best accelerated SOR ¡uethod. Estimated from Êhe data given,

the computaiÍon time for a 30-bus sysËem is approximately 3 seconds.
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From Tab1e 3.3 of chapter 3, the computation time required by SOR

and Algorithn 2 of VMM are approxinately 9 an<l 56 seconds respectively

on an iBM 360/65 computer. In other words, the ratios of the

computation tirne for the three methods, the NR, SOR and WfM are

approximately 0.3 : I ' 6: The figures given do not include input

data time which is comrnon to all nethods. Estimated on the basis

that the charge for one hour of cpu tine is $450.00, the computation

costs involved in the solution of the 30-bus system using NR, SOR

and VMM are approximately $0.40, $1.20 and $7.00 respectively.

(5) As is indicated in (4), the optimization approach involves more

computation. But the stability of the solution process is guaranteed.

It is proposed that power system programs should use the NR method,

which is the fastest, and switch to VMM if in trouble. In this way,

the n,anhours hrasted in trying to locate the cause of trouble, which may

be due to the instability of the method or the nonexistence of a

solution, could Ï.¡e reduced. Although the VMM requires higher computa-

tion costs, it is not expensive with respect to engineers time.

(6) Convergence characteristics of Fig, 3.4 indicates that a large propor-

tion of the total- number of iterations is spent on the flat region of

the curve at the beginning of the soLuticn process. It is suggested

that further work should be done to study the behaviour of the load

flow functicn as well as to develop ne\tr mininization algorithms capable

of catering for this situation o.nd giviag a steep convergence through-

out. The rapid convergence rate of the optimization apnroach may find

its usefulness in on-line control in which sna11 perturbaticns to a
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solved sysËem could be solved rapidly. Also, one can envísage the

application of opÈimizaËion methods in the solution of system

transients by predictor-corrector methods.

(7) The author r{arns that a solut.ion of a nonlinear problem, such as the

load flow problem, may not have a solution for a specified schedule

of loads - even with a slack bus included. Also, local nonzero

minima may exist that. may be discovered by the optimizaËion or

Ner¿ton-Raphson schemes. The prior will locate the nonzero minimr-m,

whereas, the latter may oscillaËe abouË it. It is recommended that

the total power mismaËch be printed out so that, if it is nonzero, the

user will not confuse such a point with a solut.ion. Also, as pointed

out earlier, multíple solutions rnay exíst. In such cases, one should

use a nr:mber of different starÈing points.
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,&ppffrupf effis

AL Derivation of Recurrence Formula for Successive Search Direction

VMM Without Linear Search

From eqn. (2.48), the search direction at the (i + l)th iterations is

Pi*l=-Hi*lgi*l

Substituting eqn. (2.33) into ec1n. (41) gives

6. ô.T H. ,r. ,, T 
H.

-1-1 ]-r]-li ]-

^T Tô.- v. v.- H. v.
-lLa411L1

.ìo
' si+l

Hi Ii Y1T H1 e1
=-fi. s. +

ls1isi v.- H. v-:-1 l- aI

H. y. u.T H.
- - H, g.,, + 1 -* Lr L s. - fron eqns.(2.3g) and (2.40)--i si+l T -- ei-+l

ri Hi ri

H. y. y.T H.

= - Hi åi*1 * Hi Li . t -Ë..t t 
t, from eqn. (z.zo)

y. fl. v.c-]. 1 a-]-

(Al )

H. r.,r-TL.L.I=(I-+f€pi
v.' H. v.Ll 1 :-:L

using eqn. (2.20) again

as D. = - H. q.
'l- l- *l

Q.E.D.
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Analysis and arison of the Amount of tation iréd

SOR and VMM

SOR

(i) Fornulation:

(II) Estimated

M, = 4(n +

VMM

(r)

u. (rn+1)
L

P.
1

*=q
1

-, = 2,

where bracketted superscript denotes

are complex.

Y..
1L

3, ...r ll

iteration count. All

i-1
-T

k=1
= y. (n) * ,

1

y.. u. (n+1)
]-K K

i 
" 
rrouu (*)

K=A+ I
- v.(t

l_

quantities

Formulation

(1) function evaluation

2 (n- 1)
F = '.t.'l"r.ln

l-=l r
Iwhere r. =PS. -le-1 1 
Lt

number of multipLications

z¡2 - to

per iteration, M,

(Bit"tobitft)*fi

(s1¡eg*bi¡f¡) - e.

-orn"n) 
]

-orn*n)]

n
I

k=0

n
x

k=0

n
T

k=0

n

k=0

(si-rrr

(eitrr

1:iÍ
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(2) gradíent calculation

AF 2n âr
ti = ã* = ':;- (tk #J1K=IL

(3) voltage correction

"(n+1)="(m)*q^u(,n)

where ¡"(*) = _ ¡1(m) ,(rn)

,-\ 2 (8.-,- - F, te 
(n) 

r 

'
lml 'mln

¡" (r)T 
g

(4) updating H

oa"oql "¿t'tH=H 
Ã-F;

where superscripts are omitted for clarity.

(Ii) Estimated Number of Multiplications Per Iteration, Mu

(1) function evaluation 8n2 + Izn

(2) gradient calculation LZIZ

(3) correction 4n2 + 4n

(4) updating H 12n2 + 8n

Therefore, Mv = 36(n * Þ' - O.
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A3 Program Description and Ligli.ng:

The program consists of three parts:

(1) the main program which reads in all the data required. Input data

consists of initial voltage values, specified terminal conditions of

the network, admittance data and all appropriate pararneters required

by the minimization subroutines

(2) subroutine FUNCT which computes the load flow function to be mini¡nized

and the gradient vector. It is of the form FUNCT (NN, EN, U, GRAD).

For each NN-dimensional aïgument EN, the function value and gradient

vector are computed and on return, stored in U and GRAD, respectively.

(3) a niinimization subroutine which perforrns the calculation of an

unconstrained minimum of a function of several variables. Subroutine

FIr{FP locates the minimum of a function using variable metric nethod

with linear search, (A.lgorithm I of Chapter 2). Subroutine Vlt{vf0l

uses variable netric method without linear search (Algorithm 2 of

Chapter 2).
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