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ABSTRACT

This thesis presents sglution techniques for power system load
flow problems using digital computers.

Based on the fact that load flow solution corresponds to the point
at which power mismatches at all nodes of the system are minimum, a
;eformulation of the problem as an optimization problem is introduced.
The least p~th formulation of the objective function is adopted. An
efficient minimization algorithm, the variable metric method (VMM)
without linear search, is shown to give better convergence than the
algorithm with linear search. The former requires a total number of
function evaluations about 60% of that reqﬁired by the latter.

It is concluded that this formulation together with the use of an
efficient minimization algorithm, enables solution to be obtained for
ill-conditioned systems for which the commonly used iterative method
fails. A 13-bus system with series capacitors, which diverges with the
successive overrelaxation (SOR) method, is solved by VMM. Convergence

was obtained with no difficulty.
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introduction

The power system load flow analysié consists mainly of determining
node voltages, both magnitudes and phases, and consequently the branch
curfents for a given schedule of generations and loads at the nodes of
the network under study [29]. Mathematically, the problem involves the
solution of a set of nonlinear equations which describes the network and
satisfies the nodal restraints governing the power and voltage require-
ments of the load and generation points.

Two commonly used digital methods for solving the problem are the
Gauss-Seidel method [14], also known as the method of successive
displacements, and the Newton—Raphéon méthod [35]. The Gauss-Seidel
method expresses explicitly each voltage variable in terms of all other
variables and calculates, at each iteration, the new voltage value from
the previous values. The method converges slowly but the: storage

requirement is minimal. Since an acceleration factor is used to hasten



the convergence of the process, it is referred to as successive over-
relaxation (SOR) method subsequently. The Newton-Raphson (NR) method of
load flow solves the set of nonlinear equations by first deriving a set of
linear relationships relating small changes in voltages to small changes
in power and then solving this set of linear equations for the voltage
- corrections. The method';onverges with few iterations but requires
relatively large storage.

Since load flow solution corresponds to the set of node voltages at
which power mismatches at all nodes of the system are minimum, the
problem is reformulated as an optimization problem [33] by defining an
objective function which measures the total power mismatches. This
formulation of the problem results in a solution process in which
successive voltage corrections are found with the corresponding monotonic
decrease in power mismatch. The solution process is terminated when the
power mismatch is acceptable. Hence, it is morelphysically meaningful
than methods based on voltage convergence criteria. Further, the
technique is capable of solving problems which diverge with the cqmmonly
used iterative methods. Another promising feature is that, with the
optimization approach, the nonexistence of a solution to a particular
problem considered is clearly indicated from the nonzero minimum power
mismatch obtained at the end of the minimization process. Whereas with
the normal iterative methods, when a diverging solution is obtained, it is
not clear whether divergence has been due to instability in the method
or to the fact that there may not be a solution at all due, for example,
to system instability.

As explicit expression for the gradient vector of the load flow function



so defined is available, gradient methods for unconstrained function
minimization can be used. In Chapter 2 two basic gradient methods, the
steepest descent method and the generalized Newton-Raphson method, are
included as a preliminary study. A second 6rder method called the
variable metric method (VMM), which takes into account the curvature of
the function being minimized but does not require the matrix of second
partial derivatives to be calculated, is described. Some important
properties of the method are derived and proved. Chapter 3 formulates
the load flow problem. Numerical examples and results are included. A
13-bus system with negative transfer reactance is solved demonstrating
the instability of the normal iterative method. Finally, Chapter 4

summarizes the conclusions.




optimization methocls

In this chapter, the general problem of finding an unconstrained
local minimuml of a function £(x) of n variables x = [Xl,'xz, ceos
xn]T is considered.

The methods available for solving this problem are generally
classified as 'direct' methods and 'gradient' methods [2]. A direct
method [9,17,20,21,25] for functiog minimization is one which doeé not
require tﬁe derivatives of the function to be computed. . Only function
values are needed in the course of the minimization process. Gradient
methods [8,11,12,36] are those which require the derivatives of the
function to be computed as weil as the functicn jitself., The latter,
taking into account an additional derivative information of the function,
has generally better convergence rate than the direct methods. An

exhaustive review on optimization methods has been given by Bandler [2].

A list of references is available in that paper.

1  The problem of locating the maximum of a function can be regarded
as that of locating the minimum of the negative of the function.




In the first two sections of this chapter, commonly used termino-
logies are defined and fundamental concepts are introduced. Two basic
gradient methods, the steepest descent method [36] and the generalized
Newton-Raphson method [23] are described. This is followed by a
detailed description of a class of methods called the variable-metrig
method (VMM) [1,6,7,8,10,11] ‘which combines the characteristics of the
two methods. Two versions of the method are studied. One,due to
Davidon [8] and reformulated by Fletcher and Powell [11], is commonly
known as the Fletcher and Powell algorithm. The other is a modification
[6,7,10] of the first algorithm by abandoning the one—dimensional
minimization process ét each iteration. The former is referred to as
Algorithm 1 and the latter Algorithm 2, hereforth. Both algorithms
utilize partial derivative information to determine the direction of
search and are directly applicable to the solution of load flow problems.

A recurrence formula for the successive search directions of
Algorithm 1 has been established in this thesis. It is also proved
that the deflection matrix relating two successive search directions is
positive semidefinite. From this, it is concluded here that successive

search directions generated by Algorithm 1 contain an angle less than,

ki

or at most equal to, o

2.1 Definitions and Notations

The following definitions and notations are used throughout the
chapter.

(1) Superscript T denotes the transpose of a matrix.

(2) x denotes the position vector with componernts ~x1, Xps wees Xo-



(3
(4)

(5)

(6)

(7
(8)
(9

(10)

2.2

8 denotes the displacement vector.

F(x) denotes a scalar function of x with continuous first and
second derivatives.

g(x) or VF(x) is the gradient vector of F(ﬁ), The elements of

g(x) are the first partial derivatives of F.

_ .3F  OF 9F T
VF(_)_C_) = [—a;(—' ‘5(—2' R s;(—]-l‘ .

G(x) is an n xn symmetric matrix, called the Hessian matrix, the

i.e., g(x)

elements of which are the second partial derivatives of F with

respect to Xl’ xz, e s Xn'
3p 5°F 5%p
axlz 3x18x2 axlaxn
G(x) =
52F 32F 5 %F
8xn8xl anaxz an2

H(x) is the inverse Hessian matrix, i.e., H = G
Subscripts associated with vectors denote iteration number.

Y; denotes the difference of gradients at the (i + 1)th iteration

and ith iteration, i.e., Yi = 8.1 " &

]Igj] denotes the norm of vector g and is defined as
2 T

Hell" =g

Preliminary Study

Consider first the one-dimensional problem of finding the minimum of

a function, F, of one variable x as in Fig. 2.1(a). The necessary




and sufficient conditions [16] for a function to have a minimum are that

the first derivative vanishes and the second derivative is positive.

F(x)
Figs. 2.1(a) and 2.1(b) show a convex

function and its first derivative,
respectively. A convex function is

one which can never be underestimated

by a linear interpolation between any
VF(X)

two points on the curve. It is obvious

- — ———- f— s — s o}

from the graphs that the problem of

locating the minimum of a function is the

same as that of finding the zero of

its first derivative.
Fig. 2.1(a) a convex function F of
one variable (top)

(b) gradient of F (bottom)

Now, consider the two-dimensional case. Fig. 2.2(a) shows the contours

of a function, F, with two independent variables X5 X, The

kg,

(G

NSa RN

Xz A

>

{(a) position space (b} gradient space

Fig. 2.2 (a) Two-dimensional contour sketch
(b) Locus of gradient vector of contour




-corresponding locus of the gradient vector of the contour are

sketched in the gradient space of g1 and g, as shown in Fig. 2.2(b).
For this case, as is implied by the necessary and sufficient conditions
stated earlier, the origin of the gradient space corresponds to the
minimum point of the function F(xl, x2) if the 2 x 2 matrix of
second partial derivatives, the 'Hessian matrix, is positive definite.
By positive definiteness of a matrix G, we mean that z?G§_> 0 for
all nontrivial Xx and §TG5_= 0 iff x = 0.

Generalized to a space of n dimensions, i.e., a function with n
independent variables, the conditions required are that the gradient
vector is zero and the n x n Hessian matrix is positive definite.

The gradient of a function at any point thus gives a good indication

of the direction in which to proceed during the search process.

Steepest Descent Method

This method is one of the oldest and simplest of gradient methods.
compared to the generalized Newton-Raphson method, it has the property of
being stable and requires only the first partial derivatives of the func-
tion. But convergence is very slow. The m#thematical derivation of
the method and its properties are given below.

| ] A !
A function F(xl > Xy ) of two variables Xy and X, at

(x1 + 61, X, * 62) has a Taylor series expansion about Xy and X, of
the form
_ _ oF oF
F(xl + 61, Xy * 62) = F(xl, x2) + - 61 + ; 62 +
9x ox
1 2
2 2. 2
eus 2 XF Ly s 2 3E s 2E L, (2.1)
1 % 12 2 9x 12 172 ax 'Bx
1 2 1772



In matrix form,

Flx+8) = FG) + g (08 + 28" 608 + ... (2.2)
where
x = [x,, X ]T (2.3a)
— 12 72
T v
8= [6;, 6,] (2.3b)
oF of T
g= [ = (2.3c)
axf Bxé
and
5°F 32p
'2 1 1
Bxl Bxl 3x2
G = (2.3d)
2% 2°F
L 12
__?xz 8x1 8x2 B
Generalized to a function F(x) with n variables x = [xl, cees xn]T,

the Taylor series expansion, in matrix form, of F(x) has an expression
similar to that given by eqn. (2.2) with x , & and g each being a
n~-th order vector and G, a n x n matrix of second partial derivatives.
Now consider the problem of minimizing an objective function F(x) of

n variables X.

From eqn. (2.2), to first order terms, the variation, AF, in the

objective function FE(x) is given by

AE

F(x + §) - F(x)

= g (08 (2.4)



10

Eqn. (2.4) indicates that the maximum change, AF, in function value occurs
when & is in the direction of the gradient vector g. The steepest

descent direction, P, is thus given by
P=-V=-g (2.5)
The iterative process can thus be stated as

= x., + 6. - | (2.6)

X.
—i+1 — -1

(2.7)

|5}
e
+
&)
jro
]
kol
1
Q
Q

where o is a positive scalar which is introduced to control the step
of movement along the direction Ei' Its value is determined such that the
maximum decrease in function value along Bi is obtained. In other words,

oy is the value of « which minimizes F(Ei + aBi) along Ei' i.e.,

d .
3 By - oogy) =0 (2.8)
=0,
i
Therefore,

In words, eqn. (2.9) implies that the gradient at the (i + 1)th iteration

£i.17 is orthogonal to the gradient at the ith iteration” g; - Further,

g:41 is also orthogonal to Bi in view of eqn. (2.5].

We now show that the function value decreases at each step, i.e.,

the process is stable.



11

From eqns. (2.4) to (2.7) dinclusive,

AFi =g

S0 8 BT ll&in (2.10)

Eqn. (2.10) shows that the first-order variation is negative for a > 0 so

that- P(xi+l) < F(xi) for o sufficiently small.

X5 A

=

X

Fig. 2.3 Minimization by a Steepest Descent Method

Fig. 2.3 shows the progress of the method towards the minimum. As shown,

the rate of convergence is very slow near the minimum of a narrow valley.

Generalized Newton-Raphson Method

In this method, the search direction is not solely determined by the

first order gradient information as in the case of steepest descent. It
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also utilizes the second derivatives information to determine the direction of
search. Consider the Taylor series expansion of eqn. (2.2)

T . T
F(x +8) = F(x) + g x)8 +% 6 6(x) &+ ...
Differentiating and neglecting higher order terms give

VE(x + ) = VE(x) + Vg (08

VE(x) + G(x)$ (2.11)

The necessary condition at a minimum of a function is that the gradient

vanishes there. Hence, if it is desired that X4 © X, + §i is the

minimum of F(x), we must have
VE(x;, +8;) =0 (2.12)

Using eqn. (2.12), eqn. (2.11) gives

i

5, = - 67 (x,) VR(x,)

= - H(x)) glx;) = - B g | (2.13)

where H. = G ~(x.).
i =
For a quadratic function, H is a constant matrix, eqn. (2.13) provides
the parameter increments for the minimum to be reached in exactly one step.

If the function is not quadratic, eqn. (2.13) provides the basis of an

iterative scheme

X 7% "% g (2.14)
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where the positive scalar oy is again included as in the case of
steepest descent.

It is noted from eqn. (2.14) that the search direction will be in the
gradient direction if Hi happened to be a multiple of the unit matrix
I. The steepest descent method is a special case of the generalized
Newton-Raphson method with H = I. |

Eqn. (2.14), by teking into account the curvature of the function,
suggests that one proceeds in a direction which is not necessarily along
the gradient. Though the greatest rate of decrease of function value at
any point occurs in the direction of negative gradient, this does not
necessarily imply that the overall convergence of the process is fast.
This is explained in Fig. 2.4 where dotted lines indicate the process

using eqn. (2.14) and sclid straight lines refer to the steepest descent case.

———— steepest descent

————— generalized
Newton-Raphson

T Ty,

Fig. 2.4 Steepest Descent and Generalized Newton-Raphson Processes

As shown in Fig. 2.4 the minimization process in which the corrections
are taken along the direction given by eqn. (2.14) takes fewer steps
to reach the minimum point.

The stability condition of this process will now be established.
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Eqn. (2.4) gives the variation, AF, of the function value
T
E. =
OF; =g (x;)8;
From eqn. (2.13), it follows that
AF, = - g. H. g. (2.15)

it is noted that the right hand side of eqn. (2.15) is quadratic in

form. Therefore,

F(x;,,) < Flx;) " (2.16)

if Hi is positive definite.

As is obvious from eqns. (2.15) and (2.16), a positive definite H
guarantees monotonic convergence of the process. The convergence of the
method thus depends on the behaviour of the function.

The generalized Newton-Raphson method, although it has a fast rate of
convergence if it converges, requires the second derivatives of the func-
tion to be evaluated and a subsequent inversion of the Hessian matrix.
These are time consuming operations.

In the following section, a class of methods, known as the variable
metric method [1, 6, 7, 8, 10, 11], is described in which no matrik

inversion is required.

2.3 Variable Metric Method of Unconstrained Function Minimization

The variable metric method [8] is devised such that matrix H is not
calculated and inverted from the Hessian matrix G. Instead an approxima-
tion H to G—l is kept and updated at each iteration. The updating:

formula has the property that if the initial approximation Ho is chosen
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to be positive definite, the sequence of matrices Hl, H2 , ... generated
are also positive definite. This guarantees convergence of the process
as required by eqn. (2.15). Further, if the function F(x) to be
minimized is quadratic, after n steps, where n is the number of
variables, Hn is precisely the inverse Hessian G_l. If F(x) -is not
quadratic, after n .steps H 1is a good approximation to G—l. Thus the
method converges rapidly as soon as it gets close enough to make a

quadratic approximation valid.

2.4 Derivation of Matrix Updating Formulae

The approximating matrix Hi’ at the ith iteration, is modified
[5] by adding a correction matrix, Ai’ to form the new matrix Hi+1

. . . . . . -1
which gives a better approximation to the inverse Hessian G ". Thus

Ho g = Hy + Ay (2.17)

Consider a quadratic objective function

F(x) = % 5? Gx + E?i +C (2.18)

where G is a n x n constant matrix, b and c¢ are nth order constant

vectors of coefficients. The gradient at the ith iteration is given by

g. = gx,) = Gx, + b (2.19)

Let y. be the difference of gradients at the (i+1)th and ith iterations,

= 6x;,q - Gx; from (2.19) (2.20)
(2.21)

il
o
[og]
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where
8 7 X 7 Xy | (2.22)
Rearranging,
¢y =, ' (2.23)
i i
Since Hi+l should be a closer approximation to G-l, the correction

Ai is chosen such that the relation

H y. = 8. (2.24)

i+l = =~
is satisfied.
Substituting eqn. (2.17) into eqn. (2.24) and rearranging give

Ay, =8 - H ¥, (2.25)

It is obvious from eqn. (2.25) that the choices of Ai are quite
arbitrary. The simplest form that A can have such that eqn (2.25) is

satisfied is
A = (6. - H. y.) Z.T (2.26)
i G - H ) %y '
where Z; satisfies the condition

2, y, =1 (2.27)

. T T '
Ai = §i q; - Ho oy, (2'28)

where 9 and w, are chosen such that



Combining eqns. (2.17) and (2.28),

Eqn. (2.30) gives a class of formulae for updating the H matrix

17

(2.29)

(2.30)

depending on the ways that gq and w are chosen. Two updating formulae

are given below.

Formula (I) [11] - By letting

1
g—i=(6T ) 8
o X
and
B H vy
=1 T
Yy B Yy

where both eqns (2.31) and (2.32) satisfy eqn. (2.29), we have

Formula (II) [6, 7, 10] - By letting

T
. Yy By 8 Hy ¥s
g; = @+ 5 T ) s T T
04 4 4 & X4
and
1
w; = (6 T ) éi
S X

where eqns. (2.34) and (2.35) also satisfy the conditions given by eqn (2.29).

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)
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We have
T - T T T
i Hi Xi 2 §1 §i Y3 Hi Hi Zi —i
H, . = H + (1+—— ) - -
i+1 1 s T T s T s T
S 0Y Y 4 2 X % Yy
or
§i XﬁT b §iT §i §iT
H.oyy = (I - E—T—;—D H, (1 - ; T )+ T | (2.36)
S Y 5 Y &4 4

It is obvious from the expressions that the H matrix at the current
step is obtained from the values of displacements, &, and gradient differ-
ence, y, at that iteration. The amount of computation involved is much

less than that required by direct evaluation of the Hessian and subsequent

matrix inversion.

2.5 Algorithm 1: VMM With Linear Search

An algorithm for locating the minimum of a function F(x), wusing
updating formulae derived in the previous section for the successive
approximation of the H matrix is summarized. This algorithm, due to
Davidon [8] and reformulated by Fletcher and Powell [11], involves a
linear search subminimization process, i.e., at each iteration, the function
is minimized along the search direction.

The iterative scheme can be stated as

s s | (2.37)

Livl TE T
At the ith iteration, X5 is known and hence the gradient gQ§i) is

known. The direction of search is defined by

=-H 8 | (2.38)
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where Hi’ the deflection matrix, which deviates the search direction
from that of the steepest descent direction, is evaluated using eqn. (2.33)
or eqn. (2.36). The correction §i to the position vector X, is

given by

= o Py (2.39)

where oy is a positive scalar and is chosen such that 13(5_i *ay pi) is
a minimum alon X. + O P,

g (x4 P:)s
i.e.,

d
3o TGy *oopy) =0
CXF—'O(,i

In other words, the orthogonal property
T -
g, P = 0 (2.40)

holds for all 1i.

The new position vector is given by

(2.41)

X. = X. + 0. P.
~+1 =i i Ei

Setting i = i+l, the process is repeated until every component of §
is less than a prescribed tolerance.

In the Fletcher and Powell algorithm [11], formula (I) of section
(2.4) is used for updating matrix H. It is shown here that formula (II)
of section (2.4), used by Fletcher [10] in an algorithm where linear
search is not done, could also be used in an algorithm with linear search.

A recurrence formula relating two successive search directions is
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established. It is then deduced that two successive search directions
. T
contain an angle, 6, less than or at most equal to > The case

vhere 6 = g- corresponds to the steepest descent scheme.

Stability
It will be shown that the search direction defined by eqn. (2.38)

is downhill. This means that the function value decreases at each step

and thus the process is stable. Eqn. (2.38) gives

p; = - H g

Because g. is the direction of steepest ascent, the direction p; will

be downhill if and only if
T T
p; & ="& H. g. (2.42)

is negative.

To satisfy the above requirement, Hi must be positive definite.
Thus to guarantee convergence of the process, one needs to prove that the
sequence of H matrices generated by eqns. (2.33) and (2.36) are positive
definite. The proofs follow.

For formula (I), eqn (2.33) gives

T T T T
T T X 88 x x My iy X
X Hi+1 x=x H x+ —F - T, (2.43)
% 4 i ti Yy
Define
1 3
s=H*x and _t_=H/21

then
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‘ T .2
T N TS S €
x H . X=85*—F -
= il 8. vy. t t
—1 3 — —
F SN S IR CR S o Ok
= +
T T
te S,y
(LT §_,i)2
> T using Schwarz inequality [16]
S Yy

But, by eqns. (2.20) and (2.40)

from eqns (2.38) and (2.39)

e
-

T

L

> 0 (2.44)
since Hi is assumed positive definite. Therefore,

T
5-'H1+1 x>0 (2.45)

‘for all nontrival X.

Next for formula (II), eqn. (2.36) gives

T
S. vy y.GS, x 6. 6. x
XLH, . x=x (1 - = Ty H (- ) x s T T (2.46)
- irl= = 8it y. T S.Ty. - 6.T Y-
- & — Zi -i
X-éiT T §iXiT
et B=1 = T and z =Bx then B =1 - T . Substituting
S5 Y3 8. Y4

into eqn. (2.46) gives
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T 2
(x" 6.)
xT H. .x = XT‘BTli. BX + e
= i+l= = i = T
% Xy
T ' 5.2
= H, 7 + —
A T
S Xy
' 8,)°
S since H, is positive definite
S ¥
. T
>0 since §i ;2 0 from eqn. (2.44)
Therefore
T

for all nontrival x.

From eqns. (2.45) and (2.47), it is concluded that the H matrices
generated by Formulae (I) and (II) are positive definite if the imnitial
matrix HO is chosen to be positive definite. Therefore, algorithms
outlined in the previous paragraph using either updating formula are

stable.

Recurrence Relation

The search direction at the (i + 1)th iteration is

Rivp = " Mg &4 (2.48)

Using egn. (2.33) and the orthogonality property of eqn (2.40), we have

- i &1 4
Piyp = (- ) R; (2.49)




where
K. =1 - --—-———-HiTy"i % (2.51)
y; My
The derivation of the recurrence formula, eqn. (2.49), is given in
Appendix Al . The above mathematical relations for the search direction
can be interpreted readily using geometrical concepts.

‘Matrix H . in eqn. (2.48) measures the rotation of the search
direction p, from the direction of the gradient g, at the current
point, whereas matrix K in eqn.‘(Z.SO) corresponds to the rotation from

the previous search direction. These relations are shown graphically

in Fig. 2.5 and Fig. 2.6.

I+

E’Pi

Fig. 2.5 Recurrence Relation




24

Ji+i

-Hi+| Pi-{-l

%Pi

Fig. 2.6 Geometric Interpretation of the Relation
Between Search Direction and Gradient vector

The following property can be deduced from the recurrence relation

given by eqgns. (2.50) and (2.51).

Property: The angle €, between two successive search directions of the
quadratic convergent minimization process, does not exceed 90°. The
extreme case where 6 = 90° corresponds to a steepest descent step. The

statement is shown graphically in Fig. 2.7.

Fig. 2.7 Minimization Scheme
of Algorithm 1
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Proof

By definition, eqn. (2.51)

y. K. y. =y. y. - —iT S S (2.52)

y By

Thus Ki is a semidefinite matrix, since Vi # 0 generally. To show

that K, is positive semidefinite, postmultiplying eqn. (2.51) by H.,

K.H =H -+ 2= 1 (2.53)

T
Y By

the quadratic form of the matrix of eqn. (2.53) is
T T

X H. Y. Y- H. X
XT K. H. x = XT H x - SN M (2.54)
= i 1= = i= T H
Xi i Xi
Define
1 1
s=H x t=Hy

substituting into egn. (2.54), we get

T 2
T r, &Y
X Ki Hi x=55- T
(t v
s -
£t

>0 : by the Schwarz inequality (2.55)
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Since Hi is positive definite, we conclude that Ki is positive
semidefinite from eqgns. (2.52), (2.53) and (2.55).

From eqn. (2.50)

T _'TK
Bivp Bi TRy N By
Since ‘Ki is proved to be positive semidefinite, we conclude that

T » .
DPiv P20 (2.57)

2.6 Algorithm 2: VMM Without Linear Search

In algorithm 1, the multiplier oy is taken as the value of o
which minimizes F(ki + d Ei)’ that is, the function is minimized
locally along the direction of search. This is usually done by evaluating
the function and gradient for anumber of different values of « and
interpolating according to some strategy. Though the important properties
of quadratic convergence and stability [11] are the consequences of linear
search, considerable extra computing effort is required in finding a lead
to an attempt to abandon the linear search so that only one evaluation of
F and g per iteration is needed.

However, to guarantee nondivergence of a minimization process, it is
important that the function value decreases monotonically. In other words,
retention of positive definiteness in H 1is necessary. Moreover, the
property of quadratic convergence ensures fast ultimate convergence of the

process. It is therefore desirable to retain some guarantee that the H

"1, It has been shown [10] that this requires that for

matrices tendto G
quadratic functions the eigenvalues of H must tend monotonically to

those of G—l. The updating formulae derived in Section (2.4) satisfy
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this requirement [10] and, thus, can be used in an algorithm not requiring

linear search.

Stability

It has been shown from eqns. (2.15) and (2.16) that the minimization
process is stable if matrices H generated from the updating formulae are
positive definite. To guarantee the positive definiteness of matrix

H generated by updating formulae of Section (2.4), the condition [10]

8, y, >0 (2.58)

=i
is imposed in an algorithm where linear search is abandoned. The deriva-
tion of the above requirement is given below. . It  follows the same lines
as the stability proof of Section (2.5) for the case with linear search.

For formula (I), from eqn. (2.33), we have

T T xT S, G.T X XT H. y. y.T H. x
_ e T T T T T T
x H, . x=x H, x+ - (2.59)
- i+l — = i - s T T H
—1 = Y3 idi
L L
Define s = H®x , t = H* y; eqn. (2.54) becomes,
T ;e 6 o’
g —l . —'
Ry X=s st T T
T T T 2 T 2
(s"s) (" ) - (s t) (x" 8;)
= +
T T
t ot éi Y5
& 8;)°
S
- 6 T
LI A1
> 0 (2.60)
if 8.y, >0 (2.61)
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Therefore, for the process to be stable, it is necessary to update over an
interval éi for which §iT‘Zi > 0.

Next, for updating formula (II), from eqn. (2.36), we have

T T T T
Ty x=x (I—lei ) H (1——-),—-———i di)x+£ NG X
— i+l - = s T s T - T
% Y % 4 % 4
T
Y3 &4 _
Let B = (I - T ) and z = B x we have,
§. V.
—1 1
T T S 9—132
X Hjg x=2 B 2e =
A £
(8 H?
—1
>
s T
A1
since Hi is positive definite. Therefore,
Ty > 0 '
X i+] X (262)
if
T .
§i Yi 0 (2.63)

The same condition, eqns. (2.56) and (2.58) for stability is obtained for
both formulae.

Both Algorithms 1 and 2 are applicable for solving load flow
problems. Algorithm 2 without linear search generally has better
convergence, in terms of number of function evaluations, than Algorithm

1 . The following chapter presents an application of the techniques

described here for power system load flow problems.



solution of

load flow problems

Briefly stated, a load flow study is the determination of the voltage,
current, power and power factor or reactive power at various points in an
electric network under existing or contemplated conditions of normal
operation [29]. Mathematically, the problem involves the soiution of a
set of nonlinear equations satisfying the power and voltage requirements
of the load and generation points. The problem can be solved by many
different methods [18, 26, 28, 29]. The main ﬁethods in use today are
those based on successive overrelaxation, abbreviated SOR, and the
Newton-Raphson method, abbreviated NR. 1In this chapter, nonlinear
programminé formulation of the load flow is introduced. Then it is solved

by techniques discussed in the previous chapter.
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A section on SOR and NR load flow formulations and solutions 1is

included for the convenience of later comparison and discussion.

3.1 System Equations

Consider a network with n busbars,Fig. 3.1. The system can be
~ represented by a set of node equations which relates the voltages and

currents in the network.

Fig. 3.1 One-line Diagram of a Power System Network

The branch current Iki’ flowing between nodes k and 1 1is

I v, - V) : (3.7)

ki - ki Yk

where is the admittance between nodes i and k and V and Vi

Vi k

are node voltages measured with respect to neutral. At node k, the
node equation can be written as

n .
I = .Z (Vk - Vi) Yki k=2,3, ...,n
i=1
i#k
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n
= I Y.V (3.2)
i=1
where
Y. = T vy, . (3.3)
kk ik ki
and Yki = - Yii (3.4)

The voltages ,V, currents, I, and admittances, Y, in the equations are

complex numbers and are represented as follows:

I, =a +]3b (3.5a)

Vi =e +J 6 (3.5b)

Yi; = Gy - 3 By (3.5¢)
The power at node k is

*

S, = Vy I (3.6)
where * denotes complex conjugate

S, =P +3Q (3.7)

and L =a - by

In the load-flow study, three types of nodes are considered. At the slack
node or slack bus, the voltage magnitude and phase angle are specified.
The load nodes or load buses are those at which active power and reactive
power are specified. The generator buses or voltage-controlled buses are

those at which the real power and voltage magnitude are specified.
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3.2 Conventional Load Flow Formulation and Solution Techniques

Two commonly used iterative methods, SOR and Newton-Raphson, of
solving load flow problems are described; The SOR load flow solution
[14, 31] is based on correcting the system voltages successively and
ﬁsing a.small voltage tolerance to ensure satisfactory power mismatches
at the nodes. The Newton-Raphson methodl for load flow [30, 34, 35]
involves, at each iteration step, the solution of a set of linear equations
ekpressing the relationship between the changes in real power and reactive
power (or voltage magnitude in the case of voltage-controlled node) and

the components of node voltages.

Successive Overrelaxation Formulation and Solution

From egns. (3.2) and (3.6), we have

v, : | | (3.8)

Let the scheduled power be Sks = Pks + ka. When the solution is

compiete, the calculated power matches the scheduled power, i.e.,

' . % % I 3
Prs * 3% =V 2 M Yy (3.9)
Rearranging, we get
. (P, . -.3.Q..) .
V= o ks ot -z v, v, | (3.10)
kk V i#k -

k
The iterative process 1is inifiated by assigning estimated voltages for all
buses ekcept the slack bus where the voltage is fi&ed. Eqn. CS.lO) then gives
"the corrected value of voltage at the kth bus based on the scheduled power

Sks ahd the best previous voltage values for the corresponding buses.

1 This should not be confused with the Generalized Newton-Raphson method
of unconstrained function minimization which finds the zeros of the
gradient of a function.
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Once the corrected voltage at each bus is found, it is used in calculating
the voltage correction at the next. One iteration of the SOR scheme
corresponds to the process in which the voltages at all nodes have been
consecutively corrected once. The process is repeated until the change in
voltages between two successive iterations at each node is smaller than a
certain specified tolerance limit. The total power mismatch is then
calculated. This must be zero or less thanacertain preassigned tolerance
at the solution point. If it is not, further iterations are necessary.
Otherwise the process is terminated.

In the case of a voltage controlled node, the reactive power is

obtained from the imaginary part of eqn. (3.6), i.e.,

Q =1 {vk L }

ki

nm~s

Q =1 v [I v, V,]} (3.11)

i=1

Substituting eqn. (3.5), the reactive power is

2 2 |
Q = (e * £ By + T {f(e;6, + £B,.) - o (£,6, - e;By;))

b N | B g e

i=1
ifk
(3.12)

The complex power at a voltage-controlled bus is

n
_ (o2, .2 »

Ss = Fxs T ﬁek P A Bt B IR0 T i)
14K

- e (£;65 - eini)}J (3.13)
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where ey and fk are the components of voltage at node k and must

satisfy the relation

e 24 sz = (V] )2 , (3.14)

k specified

where !V l ~is the magnitude of the specified voltage at node k.
specified

Newton-Raphson Formulation and Solution

Substituting eqn. (3.2) into eqn. (3.6), we have
S, =V YV k=2,3, ..., n (3.15)

Bus No. 1 being the slack bus.

Substituting S = Py * j Qk

V:ek+jf

k k

Yim = Gm ~ 7 B

into eqn. (3.15) and separating real and imaginary parts,

.1 n
Py = & § Gy e * By £) * £ T Gy £n = B ) (3.16a)
m=1 m=1
and
n n
Qk - fk ? (ka ®m * Bkm fm) - % L (ka fm B Bkm em) (3.76b)
m=1 m=1
If PkS and ka are the real and imaginary parts of scheduled power

at node k, the set of 2(n - 1) nonlinear equations to be solved is

(3.17)



35

In the case of a voltage-controlled node, the reactive power equation at

that node is replaced by the equation

T = V.| - (e 2. 2)1/2 (3.18)
k+n k k k ’

The Newton-Raphson method requires that a set of linear equations be
formed expressing the relationship between changes in real and reactive

powers and the components of bus voltages, i.e.,

- ~ ' ~ 7 ~
) i G S B Ao
2 8e2 Ben sz ) N 2
Brn Brn Brn Brn
1‘n de T 56 of Y Aen
2 n 2 n
i 8rn+2 o 8rn+2 8rn+2 o 8rn+2 Af
n+2 oe de of of 2
2 n 2
i 8r2n o 8r2n 8r2n o 8r2n Ag
2n oe oe of of
2 n 2 n J
“~ / ~ ~ -~
or ,  in. matrix form,
r=J Ae (3.19)

where the coefficient matrix J dis the matrix of first derivatives and is
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called the Jacobian matrix.

The voltage correction at the mth iteration is given by

he =J Py (3.20)
—m

m -

Hence, the new estimates for bus voltages are

-1
9m+1=9m+Jm E‘_m (32])
or -1
€1 = Sn ¥t Jm T (3.22)

where t is a scalar multiplier chosen to prevent the process from
diverging. The solution of the set of equations, eqn. (3.20), at. each
iteration involves the evaluation and inversion of the coefficient matrix.
A modified approach, based on Broyden's variation of Newton's method

[4, 15], is used in which no matrix inversion after the first iteration is
required. The approximate inverse Jacobian matrix is computed from the

function values r using the updating formula:

B t By, By Hm Hm L Py Hm
H = H + - (3.23)
m+1 m T H T q
Bn M dm m I
where
H =g
m m
Py 7 Wy Iy
and
Zm = Em+1 T =m

It is noted from the expression that no additional function evaluation 1is

required beyond those that would be neceded if J is not changed, for
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updating the inverse Jacobian matrix.

3.3 Nonlinear Programming Formulation of Load Flow

- Since solution of the load flow problem must satisfy the condition that
power mismatches at all nodes are zero, nonlinear programming can be used
for solving load flow problems by defining an objective function from the
set of 2(n - 1) nonlinear equations, eqns. (3.16) and (3.17), which
describe the system. The point at which the function is minimized
coincides with the solution of the equations.

Referring to the one-dimensional example, Fig. 2.1 of Section (2.2),
it is clear that if a function -F is constructed such thatlthé set of
2(n - 1) nonlinear equations, eqn. (3.17), are the first partial

derivatives of F with respect to the variables, i.e.,
T o= and T = (3.24)

the Generalized Newton-Raphson method of Section (2.2) for minimizing
the function F so constructed, and the Newton-Raphson method of
Section (3.2) for solving the system of nonlinear equations, both give
identical steps. In the load flow problem, an objective function f
satisfying eqn. (3.24) is not available. A least p-th formulation is
used.

The objective function is defined by

> P, . D
X (]rk] + lrl 1)

k=2 K+

*T]
1]

E(eys vons s £yu vevs ) | (3.25)

where p is a positive real number which governs the degree of convexity.
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of the function.

n
Tk T Pxs T [ek § (ka ®n T Bkm fm) * fk Z (ka m o Bkm em)]
m=1 m=1
and
n n
Txan =~ ka ) [fk mZ (ka ®n " Bkm fm) - % mfl(ka m Bkm em)]
The elements of the gradient vectors are
or. or
oF n -1 k p-1 Tk .
sem=p I lx P g sign (3] +p z [t olP T 5o sign (ry,,
j k=2 j k=2 J
= (-p) []r.]pn1 ;'(G. e - B, f)sign(r.)
j pe]  Jmm jm m j
p-1
lrj+n| mzl(Gjmfm + Bjmem) sign (rj+n)]
n p-1
+ (-p) kzz []rk] (ijek_Bkjfk)31gn(rk)
+ lr lp-l (G, .f, + B .e ) sign (r )] (3.26)
k+n kj'k T Pkik S8 Uyup '
and
or. n or
oF - -1 %k, p-1 “Tken |
ap =P 2 L lP gpsien(n) v p I 0lm I g sien(m )]
j k=2 J k=2 ]
= p-1
SAIEN mz (8 Bipep)sien (z))
-1 B
+ ]r. ]p r (G, e +B. f 351gn(r )]

J+u mn=1 Jm m ]m +1

)]
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]p_l(Bkjfk—ijek)sign(r )]

k+n

n
~1 . ’
+ (-p)kzz[!rk]p (Bkjek+ijfk)s;gn(rk) + ‘rk+n

(3.27)

This formulation of load flow, based on power mismatches together
with a solution process which seeks directly the set of voltage values
satisfying the terminal conditions,is physically more meaningful than the
SOR iterative method where each individual voltage is corrected assuming
that all others are already correct and without any control on the
mismatches.

A number of standard test systems were solved using both Algorithms

1 and 2. The results are included in the next section.

3.4 Numerical Results and Discussion

The following systems were used to test the method:
(a) a five-bus system from Stagg and El-Abiad [28];
(b) a six-bus system of Ward and Hale [35];
(c) the IEEE standard 14-bus test system [13]; and
(d) the IEEE standard 30-bus test system [13].
All cases were started with a flat voltage profile of (1 + j0) per unit.
All the voltage, power, reactive power and admittance data are per unit
quantities throughout the chapter. The tests were taken to a high
solution precision to study the complete response of the nonlinear
programming approach.

The load flow function, as defined by eqn. (3.25),1is the least p-th
sum of power mismatches. Tests were carried out to determine the

dependence of convergence rate on p. The results of this test using
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Algorithm 2 on the 5-bus system are given in Table 3.1.

Table 3.1

Convergence Rate vs. p

Exit Criterion = 10”10

No. of No. of TFunction
P Iterations Evaluations
1.3 41 . 70
1.8 25 28
2.0 13 15
2.2 20 22
2.5 4] ’ 43

It is ﬁoted from Table 3.1 that the value of p  has an important
effect on the rate of convergence. Numerical results presented later
in the section and in the following sections are based on a least square
definition of load flow function which is considered to give the optimum
convergence rate of the solution process. For large ‘p values, the.
function tends to become flat in the region F < 1, and a slower rate of
convergence is expected in this region. Small p value improves the
convergence rate in the region F < 1, but has poorer convergence in the
region F > 1. This is shown in Fig. 3.2 for a one dimensional. case.
.Tests had been carried out using different p values for regions F > 1
and F < 1. This does result in faster convergence but the improvement
is not significant.
Tables 3.2 and 3.3 summarize the results obtained by the nonlinear
programming approach using two versions of the variable metric method and
the normal iterative approach using the successive overrelaxation method.

All tests were run cn an IBM 360/65 computer with double precision. A
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- X

Fig. 3.2 Effect of p on the Convexity of the Objective Function

listing of the subroutines is given in Appendix A3. In the SOR process,
the rate of convergence is very sensitive to the choice of the accelerating
factor, poor choices could cause divergence. Whereas in the nonlinear
programming approach, an accéleration factor is not required. The accuracy
of the solution is measured by the degree to which the terminal condition

of the problem is satisfied, that is, by the total power mismatch €, at

all nodes.

Table 3.2
Convergence Comparison of Solutions

Using Algorithm 1 and Algorithm 2

Exit Criterion, &2 = 10710
Algorithm 1 Algorithm 2
System No. of No. of Function No. of No. of Function
Size Iterations Evaluations Iterations " Evaluations
5 11 24 13 15
6 - 15 38 20 22
14 31 - 70 36 : 41

30 66 152 74 79



42

" 'Table ‘3.3
Comparison of Solutions Using

Algorithm 2 and SOR

Exit Criterion, e2 = 10710
Algorithm 2 ‘ SOR
System No. of Computation Mismatch No. of Computation Mismatch
Size Iterations Time (sec.) "EE. Iterations wopt ‘Time (séc.) _Ei
5 13 0.199 .34x1071° 19 1.4 0.055 .90x10” 11
6 20 0.410 .39x10” M1 27 1.5 0.177 .28x10” !}
14 36 5.690 .33x10 12 54 1.6 1.190 .71x10” 1t
30 74 56.390 .76x10" 13 87 1.8

9.220 .72x107 1!

Table 3.4 presents data showing the order of the minimum total power
mismatch squared €2 that can be obtained by SOR. The corresponding
number of iterations required by VMM and SOR to achieve this accuracy is
includgd. It is noted that a small increase in accuracy requires much more

computation.

Table 3.4
Comparison of Number of Iterations Required

for Solution with Highest Accuracy, 82 Obtainable by SOR

b

System ‘ Algorithm 2 SOR
Size €2 Iterations Iterations
5 .75 x 10743 13 35
6 .11 x 10 !2 20 ' 46
14 .15 x 10712 36 120

Table 3.5 summarizes the results obtained by the Newton-Raphson method -

without implementing the optimally ordered elimination scheme [30].
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Table 3.5

Results of the Newton-Raphson Method

System No. of Computation Mismatch
Size Iterations Time (sec.) gi
5 3 0.095 0.50 x 10°°
6 4 0.160 0.14 x 10 *°
14 4 1.570 0.20 x 10 °
30 4 13.300 0.70 x 10 °

It has beén reported [SOj that the Newton-Raphson method of load flow with
the implementation of the optimally ordered elimination scheme requires
less computer time than the SOR method. Further, the normal Newton-
Raphson method involves the formation and solution of a system of linear
equations or inversion of the coefficient matrik, the Jacobian, at each
iteration. The modification, based on Broyden's variation of Newton's
method, can be made such that the Jacobian matrix is formed and is then
inverted only at the first iteration. The inverse Jacobian is then
updated at subsequent iterations using eqn. (3.23) which involves only a
few matrix-vector multiplications. It is estimated that computation time
is approximately half of that fequired by the normal method. It can be
seen fromTables 3.3 and 3.5 that in both the SOR method and the VMM
method, the number of iterations increases with system size whereas

the number of iterations of the Newton-Raphson method is independent of
system size. Fig. 3.3 shows that variable metric method requires fewer
iteration steps than SOR to attain a solution with the same accuracy.
However, as the number of operations performed at each iteration step of

the VMM algorithm is larger than that required by one SOR iteration, the
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time per iteration of VMM is greater than that of SOR.
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Fig. 3.3 Number of Iteratioﬁs vs.
System Size

The computation time required to solve

extent on the programming techniques.
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3.4 Number of Multiplications
per Iteration M vs. System
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36 + 1/3)%-4 for VMM (solid line)
4(n + 2)% -16 for SOR {(dashed line)

Fig.

]

M
M

the problem depends to a certain

The data for the overall computation

time given in Tables 3.3 and 3.5 is included to give a picture of the rela-

tive amount of time required by the three methods which is after all our

main interest.

Appendix A2 analyses and compares the amount of computations

per iteration, in terms of the number of multiplications involved, of the

SOR and VMM methods for solving load flow problems. The rate of increase

of arithmetic operations, and hence computation time, per iteration with

system size for the VMM and the SOR methods is shown in Fig. 3.4  Fig. 3.5

shows the breakeven curve

1.2
_.36(n.r‘§g.A..4

K =

A + 2)° - 16
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where n is the system size. The condition for VMM computation time to be

less than SOR is that the ratio of SOR iterations Ng» to VMM iterations

-Nv, has a value greater than K, i.e.,
N
= s x
Ny

Wallach [33] claims that the reformulation of load flow problem as an
optimization problem may reduce the required computer time. It is
concluded from the experimental data obtained that computation time is

unlikely to be reduced using the VMM approach.
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Fig. 3.5 The Breakeven Curve.
Points indicated are the ratios of number of iteratiomns

of Wopt to VMM results of Fig. 3.3.

The convergence characteristics of the two methods, VMM and SOR, are
given in Figs. 3.6 and 3.7, respectively{ The SOR convergence characteristics ’
as shown in Fig. 3.7 for the 5-bus system is different from the nonlinear

programming approach and is based on the variation of voltages between
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two successive iterations.

In both the NR and the VMM methods, voltages
are varied in order to reduce power mismatches.

—_

2 .
~~~~~~~ ALGORITHM |
ALGORITHM 2
(1) 5-bus
~~~~~~~~~~~~~~~~~~ 1) 14~ bus
paNg (IT)30- bus
S

\\ \\

\ Y

1 A Y

) Y

1 Ay

\ \

\ \

\ !

[} 1

A \

\ |

(1 )‘.‘ (1) (1)
i |
| |
| i | | ! 11 ] i
40 60 80 100 120 140 160 180
FUNCTION EVALUATION

. Fig. 3.6 VMK Convergence Characteristics

-2k
.———.-.3 B
=
)
>
e
o
L
—5}
-8~
-7 1 I ‘ ! | | |
0 5 10 15 20 25
ITERATION COUNTS

Fig. 3.7  SOR Cenvergence Characteristics




It is shown from the curves_of Fig. 3.6, the convergence characteristic
of VMM, that convergence is fast for the first few steps, followed by a
very slow region and finally a steep curve indicating fast rate of
convergence as the solution is approached. A large proportion of the
computation time is spent in this middle section. This indicates that with
the formulation of the load flow function given in section (3.3), there

is a region remote from the solution which is neerly stationary, thus
causing small steps to be taken for a number of iterations. Inspite of the
above mentioned somewhat unfavorable feature, the negative slopes of the
curves in Fig. 3.6 reveal the important property of the monotonic conver-
gence of the process. In other words, the method provides corrections

which always produce better values for the variables.

Both algorithms of VMM were

180 -
————— ALGORITHM | . R
ALGORITHM 2 : tested. Algorithm 2  without
160 |- '
/ linear search converges to the
K¥opr V4
V4 solution requiring about 60% of the
2 s
O 120 / . .
= total number of function evaluations
2
2 ol .
A of that required by algorithm 1
=
3 ,
§ sof with linear search [27] as shown
3 |
5 ol in Fig. 3.8.
g
a0 |- A final comment on the
experimental results is that a
201
2 second solution can be detected
1 ! ! ! 1 !
o ' o .
5 o2 by VMM, whereas this is not shown
SYSTEM SIZE
by the SOR method. The Newton-
Fig. 3.8 Number of Function ' Raphson method diverges for a poor

evaluations vs. system
size
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starting point. The nonlinear programming approach always converges
irrespeétive of the starting value, although it may not converge to the
physical solution. As an ekample, using the starting voltage value of
(0.5 + jO) instead of (1 + jO), the following busbar voltages were

obtained as the solution to the 5-bus system.

Bus No. Voltages
1 1.060000 + 30
2 0.567100 - j0.049820
3 0.107033 - j0.078465
4 0.019248 - j0.060000
5 0.189300 -j0.1442670

Although the voltage values given above are not feasible operating points,
the result givgs an indication that a second feasible solution near the
first one can exist. This causes system instability. Such a test is,
therefore, important at the system design stage to ensure that the system
is stable.

The systems chosen as examples in this section to test the method
are more or less well-behaved systems. The most desirable characteristic
that the method always converges for systems of all kinds is shown in
the next section where a 13-bus system with negative transfer reactance

branches with which the SOR method diverges is solved.

3.5 SOR Divergent Case

In this section, a 13-bus' system with negative reactance branches,
solved by A. Brameller using matrix projection method, is solved by the
SOR and the VMM methods. It is shown that the system diverges with the

SOR method. However, solution was cbtained by VMM with no difficulty.
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The system is connected by 13 lines and is supplied by 5 generators.
The network diagram is shown in Fig. 3.9 with the specified terminal

conditions and line impedance data given in Tables 3.6 and 3.7, respectively.

, O,

-
6 2 3
©
WEMT mu‘.«.,ss8 | sigtonis u3 K-"“"*"‘Z}Edp
8 | 7 4
“To

Fig. 3.9 Network Diagram

Both Algorithms 1 and 2 of VMM are used to solve the problem.
Solution with a total power mismatch of order 10_10 is obtained after 74
function evaluations using Algorithm 1, whereas Algorithm 2 requires
only 40 function evaluétions. The convergence characteristics for both

cases are given in Fig. 3.10. It is shown in Table 3.8 that the SOR process
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diverges in this case. The terminal conditions of the solution obtained

by VMM are included in Table. 3.9.

2.._
----- ALGORITHM |
——— ALGORITHM 2
[P
o
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\
\
-10 | L\ !
) 020 30 40 50 60 70 80 90

FUNCTION LVALUATIONS

Fig. 3.10 VMM Convergence Characteristic (13-bus system)

Table 3.6

Busbar Data for 13-node System

Bus. No. Volt. Mag. Generation Load
MW MW MVAR
1 1.000 - 1650 560
2 - - 0 0
3 - - 0 0
4 - - 0 0
5 1.000 0 0 0
6 1.037 450 50 30
7 - - 0 0
8 1.100 0 0 0
9 0.943 50 0 0
10 1.100 0 0 0
11 - - 50 30
12 - - 50 32
13 - - 0 0

Bus No. 1 is the slack node




Iteration

No.

0

5
10
15
20
25
30
35
40

Table 3.7

Line Impedance Data

(1000 MVA Base)

‘Branch No.

QOO UTE WM

Convergence Comparison

R X
.0040 .0850
. 0040 .0847
.0040 . 0947
.0074 .1430
L0481 .4590
.0090 .1080
L0121 L2330
.0 . 1500
.0105 .2020
.0 -.1500
.0086 . 1660
.0075 .1460
.0 -.1500
Table 3.8

Algorithm 2 of VMM

(Power Mismatch Squared)

| o

436
.246
.016
.712

.620

.508
.448

SOR
(Max. Vol. Disp.)

COOCOOOKFMN

. 78378
.16962
.03761
.288843
. 761436
.215440
.736803
.518713
. 886626

o K R
Jo
o
=

6.703451
0.7477635 x 108
0.7816136 x 10*°
0.7494661 x 1022

51
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Table 3.9

Solution for Terminal Conditions

Bus No. Voltage P (MW) Q (MVAR)
1 1.000 + jO -338 -1059
2 1.022 + j0.015 0 0
3 1.077 + j0.011 0 0
4 1.057 + j0.012 0 0
5 0.999 + j0.013 0 - 600.9
6 1.032 + j0.100 400 - 172.6
7 1.023 + j0.078 0 0
8 1.011 + j0.047 0 -2006.4
9 0.999 + j0.048 50 - 657
10 1.006 + j0.038 0 -1395.6
11 0.886 + j0.041 - 50 - 30
12 0.949 + j0.040 - 50 - 32
13 0.878 + j0.049 0 0



conclusions and

suggestions for future Work

A reformulation of the load flow problem as an optimization problem
was presented. This was achieved by the fact that at solution, the sum
of the power flows-at each bus had to equal zero.

In the SOR method, the voltage at each busbar is expressed explicitly
in terms of the voltages at other busbars. The iterative process is
based on the voltage convergence. The Newton-Raphson method of load flow
solution invoives a direct solution of the system of power flow equations
which are nonlinear and one equation is written for each bus. Hence,
better power balance is obtained using the NR method than the SOR method.
Tn the optimization approach, the load flow function is defined as the sum
of squares of the mismatches; the minimum of which corresponds .to-the

solution when the minimum is zero.




This thesis has also presented the application of the. variable metric
method without linear search to solve the load flow problem. The main
emphésis of this work is placed on the investigation of the use of the
minimization approach as a tool in load flow study. The following = =
conclusions are drawn.

(1) The rapid final convergence characteristic of the minimization process

process for the load flow function gives a solution with a total

mismatch of the order of 10~15 with only a few additional iterationms

beyond that required by a solution with less accuracy. This
means that high solution accuracy is obtained at almost no extra
cost. Solution with this high degree of accuracy is essential in
power loss studies which involve the subtraction of power flows
that are almost equal and also in the optimum power scheduling
problem which is concerned with the minimization of power losses
which are small quantities. Though the SOR has given  fairly
satisfactory power mismatches for the systems tested, it is the
experience of the Manitoba Hydro that power loss studies often

cannot be done by SOR which is based on voltage convergehce criteria.

(2) An encouraging feature of the nonlinear programﬁing approach is that
the process is nondivergent for systems of all kinds} The SOR method
fails to cater for systems with negative transfer reactance branches.
The process diverges for such‘cases. In load flow studies using the
SOR method, the series capacitive reactance in the line is usually
netted out by the inductive reactance. In those cases where there
is a net capacitive reactance, methods such as the NR method and

the nonlinear prcgramming approach which converge for the negative
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reactance case are nevertheless essential when information at any

intermediate points along the line is required.

Another characteristic of the nonlinear programming approach is that
a second solution can be detected, whereas this is not shown by the
normal iterative methods. A load flow study using the nonlinear
programming approach is, therefore, beneficial at the system design
stage to ensure that the system is not, perhaps, bistable. Usnally
the "extra" solution is far from the real one and so would not be
permitted by system controls. But one cannot be éure that this

need always be so. One day a system having two operating points
that are close to each other could be constructed and found unable

to be put into operation.

Wallach [33] claims that the reformulation of ,the load flow problem
as an optimization problem may reduce the computer time. From the
analysis of the methods and the experimental data obtained, it is
concluded that with the optimization methods available so far, a
nonlinear programming approach to load flow requires greater
computation time than normal iterative methods. Algorithm 2, the
VMM without linear search, has better convergence thap.the algorithm
with linear search. The number of function evaluations of the former
is about 60% that of the lattef. It has been reported by Tinney [30]
that the computation time of the NR method with the iﬁplementation of
the cptimally ordered elimination scheme is less than that required
by the best accelerated SOR methodf Estimated from the data given,

the computation time for a 30-bus system is approximately 3 seconds.
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From Table 3.3 of chapter 3, the computation time required by SOR

and Algorithm 2 of VMM are approﬁimately 9 and 56 seconds respectively
on an IBM 360/65 computer. In other words, the ratios of the
computation time for the three methods, the NR, SOR and VMM are
approximately 0.3 : 1 : 6. The figures given do not include input
data time which is common to all methods. Estimated on the basis

that the charge for one hour df cpu time is $450.00, the computation
costs involved in thevsolution of the 30-bus system using NR, SOR

and VMM are approkimately $0.40, $1.20 and $7.00 respectively.

As is indicated in (4), the optimization approach involves more
computation. But the stability of the solution process is guaranteed.
It is proposed that power system programs should use the NR method,
which is the fastest, and switch to VMM if in trouble. Imn this way,
the manhours wasted in trying to locate the cause of trouble, which may
be due to the instability of the method.or the nonexistence of a
solution, could be reduced. Although the VMM requires higher computa-

tion costs, it is not expensive with respect to engineers time.

Convergence characteristics of Fig. 3.4 indicates that a large propor-
tion of the total number of iterations is spent on the flat region of
the curve at the beginning of the solution process. It is suggested
that further work should be done to study the behaviour of the load
flow functicn as well as to develop new minimization-algorithms capable
of catering for this situation and giving a steep convergence through-
out. The rapid convergence rate of the optimization approach may find

its usefulness in on-line control in which small perturbations to a
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solved system could be solved rapidly. Also, one can envisage the
application of optimization methods in the solution of system

transients by predictor-corrector methods.

The author warns that a solution of a nonlinear problem, such as the
load flow problem, may not have a solution for a specified schedule

of loads - even with a slack bus included. Also, local nonzero
minima may exist that may be discoveredvby the optimization or
Newton-Raphson schemes. The prior will locate the nonzero minimum,
whereas, the latter may oscillate about it. It is recommended that
the total power mismatch be printed out so that, if it is nonzero, the
user will not confuse such a point with a solution. Also, as pointed
out earlier, multiple solutions may exist. In such cases, one should

use a number of different starting points.
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APPENDICES

Al Derivation of Recurrence Formula for Successive Search Direction

VMM Without Linear Search

From eqn. (2.48), the search direction at the (i + 1)th iterations is

Bivp =7 Hiug 8549 g (A1)

Substituting eqn. (2.33) into eqn. (Al) gives

T T
=_(H+§i§i RS0 N
Bj+1 i T T, £i4+1
504 L M4
T
i 4 Hl
= - Hi &4 T €541 from eqns.(2.39) and (2.40)
Y B Yy
H., y. y.T_H
; i T
= - Hl &1 7 hi y; * T " g5 from eqn. (2.20)
e N ]
T
H. y. y.” H. g.
=- Hi g + = % S using eqn. (2.20) again
Xi Hi Xi
T
) (I_Hiyiyi)E
. _XlT Hi Xl 1 as Bi - Hl &l
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SOR "and 'VMM

SOR

{(I) Formulation:

*

p i-1

. . n .
i (m+1) Y.V (m)
| pEm Tk T e T Tk
v, Dy ) 4 _y, @)
1 1 Y 1
ii
i=2,3, , N

where bracketted superscript denotes iteration count. All quantities

are complex.
(II) Estimated number of multiplications per iterationm, Ms‘
o 2
Ms =4(n + 2)" - 16

VMM
(1) Formulation

(1) function evaluation

2(n-1)
P
F = )} ]ri]
i=1
n n
where r, = PSi - le kZ (gikek + bikfk) + fi § (gikfk—bikek)
b =0 k=0
n n
= - ¥ f - { - '
R e T A L I e




(2) gradient calculation

2n _.or

_0F _ k

8 “5er =2 I (55
i k=1 i

(3) voltage correction

RN O NG

where Ae(m) = - H(m) g(m)
‘ £ (o (-
m) _ 2(Emin - E(e™))
o
,Ae(m)T g
(4) updating H
adealde H X.XT H
H=H + —e— -
abe’ y y Hy

where superscripts are omitted for clarity.
(ITI) Estimated Number of Multiplicatians Per Iteration,

2

(1) function evaluation 8n” + 12n
(2) gradient calculation 12n2

(3) correction 4n2 + 4n

(4) wupdating H ’ 12n2 + 8n

Therefore, M = 36(n + %02 -

I

M
v
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A3 Program Description and Listings

The program consists of three parts:

(1) the main program which reads in all the data required. Input data
consists of initial voltage values, specified terminal conditions of
the network, admittance data and all appropriate parameters required

by the minimization subroutines.

(2) subroutine FUNCT which computes the load flow function to be minimized
and the gradient vector. It is of the form FUNCT (NN, EN, U, GRAD).
For each NN-dimensional argument EN, the function value and gradient

vector are computed and on return, stored in U and GRAD, respectively.

(3) a’minimization subroﬁtine which performs the calculation of an
unconstrained minimum of a function of several variables. Subrbutine
FMFP locates the minimum of a function using variable metric method
with linear search, (Algorithm 1 of Chapter 2). Subroutine VMMO1
uses variable metric method without linear search (Algorithm 2 of

Chapter 2).



FORTRAN 1V G LEVEL 20.1 FUNCT DATE = 72109 R 22763781

o001 SUBROUTINE FUNCTUMN.ENs U, GRAD)
LOAD FLOW FUNCTICH SUSROUTINE wHICH EVALUATES THE PJKCY!O‘ VALUE
AND GRADIENT VECTOR

VARJAALE DESCRIPTIONST

N == NUMBER OF BUSBAAS

NN == NUMAER OF VaRIAILES OF THE FULCTION BEING MINIPIIED

E == VECTOR OF DIMENSION (KE=ZK} SHISE ELEMENTS ARE Tt REAL &l
IMAGINARY PARTS CF THE SUSBAR VALIAGLS

EN == VECTOR CF DIMENSION NN «HOSE ELEVESTS ARE THE REAL AND
IMASENARY PARTS OF THE QUSEAR V7L Taue$S EXCHPT Tng SLALK HUS

G~ A NXN YATRIX WwiAGSE ELEVENTS ARE TrE REAL COVPININTIS OF THE
ADWMITTANCE MATRIX

B = A NXN WATRIX WHACSE ELEMENTS ARE THE IMAGINARY COWPINERTS CF
THE ADMITTANCE MATRIX

PS ~~ & N~CROER VECTCR OF REAL CIMPCHENT OF POJER AT EACH 8US

QS == A K-OKDER VECTSR IMAGINARY COVPONENT OF POWER AT £ACH 34US

U == FUNCYICN VALUE

GRAD ~— GRADIENT VECTOR OF FUNCTICR U

DOUéLE PRECISIGN ELRE) ENINNIsGRADINNY s TANGINE) o FULE ) ¢ PSIXD 4 OSINY o
I6INGRI 8 INN) A1) DIND P 0EBS s JLIRT (VHIND

La e R e Na R e aNa e RaNaRa e N o oo NaXaRata uliel

0002 DOUEBLE PRECISTOHN EN(26)¢P5013),Q50131,7a46126746(1341309800341309
lA(lS)yuRAJ(Zh)'HZM.I:(ZM.&(D).P.J,OABS'DSQRI'VNIl!l
0003 COMMCN Ge2,PSeASsEe VN PIXOUNTSN
0004 0O 6 I=2,% . : .
£005 ELEE=ENTI-1)
0006 6 EUE+N)I2EN({IN=2) .
0007 FEIRIUNTLGTL0) Pn2.00
0008 00 1 [#2.N
0009 AL1)=0.D0
0010 D11)#0.00 -
notY DO 1 J=1.N ’
0012 KsJeN
0013 ullxunoeu)tcu.noeuu-au.n
0014 1 DUII=DLL)¢EIKIGIJ E)-ELIIZBLIeT)
0015 U=0e
0916 DO 8 1=2.8
0017 K=lel
0018 FLI1ePSE{TI-CECTISALTIEIRISOLIY)
4 GENERATOR BJS — VGLTAGE VAGHITUDE SPECIFIED
0019 IFI1.EQ.5.C%.1.EQ.6) GO YO 3
0020 IFtT,EV.8.0R.1.EQ.9) GD 10 3 -
0021 1F(T1.6Q.10) 60 1D 3
c LOAD 905 —- REACTIVE POWER SPECIFIED
0022 FARI=QSLII={E(RIYACLII-ECTI*D(1D)
0023 GO 10 8
on2é 3 FUKIeVMLI1)=0SIRTIECT)*»2¢E(X )02}
6025 8 USU$DA3SIFI1))*eP+DASS{F(5) ) oep :
4 GRADIE“T CALCULATION .
0026 DO 2 122N
0027 KufeN - -
0028 JF{1.63.5.0R.,1.EQ.6) GO TO 7
0029 TF{1.EQ.3.03.3.62.9) GO 10 7
00390 1FL1,E2.13) GO TO 7
2031 TANGEII={DA3SIHETI ee(P-210F LTl At 1 ¢CLIIBGII,T)-ECK)I*BL 0000
1DABSUFIK)I#a(P=2)eF(RI+(GIT, 1I0E(K)I=0l1)edli,1)ECLI))OL-P)
0032 TANGIKI®{OAUSIFLIIIne(P-218F L1V*(S{T IPELTIDLTI G, IIvELCE)e
FORTRAM IV G LEVEL 20.1 FUNCT DATE = 72109 2274376}
IDABSIFIKIISOIP-2) #F{X IS (AL +ATL, TISEAKI~GIL, JISLITI)}o(-P)
6033 Gd T0 9
0034 T TANGUINs (DABSIFUINI SR (P2} *F{1FoLAITIOE(TIOG( T, TI=ELK)ea(Lall)
LOUABSUE (RIS (P2 10F (x)OE([J/OSURT(E(TIIra2ez(RIsn2) )n{~P}
0035 TANG{KIa(DAGSIFIL)I®o{p=2)oF [1)o (St LIRELTIODLIIGLTIRoF kDD
LeORSSIFIRIIO®(P=2)0F(KISE(KI/GOIRTIEITI R 2¢E(RIe92})0i=P)
0036 9 D0 2 ME24N
0037 IF{4.E3.1) GO TC 2
2338 LaMeN
0039 IF[M.EQ.5.0R¥,EG.8) GO TO 10
0040 IFIMLEQ 8.0/ M.E3.9) GO 10 10
00wl 1F(R.EJ.10) GO T2 10
0042 TANG(IIxTANG{ ) ¢ (ULASF (NN )E0(P=2)aF (U} O (G{M, 3= {X)=dt4, 11%E(L )T e
IDABSLFILII»®(P=2)2F (L) o (514, LIRE(L)+8{¥, 1)SE( M) ))8(~P)
6043 TANG(K)xTANC () # (DABS(F{U)} )oa(P=2 o (M1x{u(v, [}25(2)+3{N,1}0(L))e
LCABSUFIL)Ios{P=2)sF{L)sladlP, 1)PELLI-GIM, TISEL4DDI)I0(~P)
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Q0a5 10 TANGUIS=TANGIT)+(DASSIF (NI bav(P=2)ae(4nlGIN, IOE(N)=ALN, TIAELLIND
19(-P)
0046 TANG(KI=TANGIK) #{0ABS(FIN) 12 o (P=2)PF {414 (BIM, 1IPELNIeSINGTIRE(L YY) I .
1#{~P) ) :
[ 2% 2 CONTINUE
0048 D3 4 I=1,NN
0049 IFL1.GE.N} GO T2 ¢
0050 GRAD(I)=TANGEI#L) °
cost ENUIV=ETTeL) .
0osz G TO &
0052 S GRADCII=TANG(1+2)
0054 ENCIM=El}e2)
0055 & CCNTINUE -
0056 RETURN

0057 "END
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€009
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0012
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0014
0015
0016
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0019
0020
0021
o022
0023
0024
2025
0026
0027
0028
o028
0032
0031
0032
0033
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0035
0038
0037
0038
0039
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0041
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0043
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0045
00406
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0050
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0056
0059
006¢C
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0070
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007¢
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104
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21

22038729

SURRDUTINE VHMMOLAIN, X¢F o GoHiUNTTH FEST oEPS MAXFNS IPRINTLIEUUT)
FUNCTIUN MINI®IZATION SURRCUTEINE OF ALGURITHN 2

YARILBLE ODESCRIPTIONS:
N == NUMRER (F VARTARLES
X{N) ~~ CURREAT APPRCXIVATICN TO VARIASLES - &\ IVITIAL

APPROXIMAYION SHOULY BE PROVIDED ON ENTQY, wHILY wILL
BE REPLACED BY THb AeST ESTIMATE OBTAINED ON EXIY

F ~~ ESTIVATE OF “{NIWUM VALJE OF FUNCTIJW 1S LEFT 2N EXIY
GINY == ESTI“ATE OF GRADIENT AT MINIMIN IS LEFT UY EXIY

UNITH == {LCGICAL) T1F L TRUE. THEW V¥4CL SETS H TD & UKIT vaATRIX.
FEST -= A LOWER BOUND ON THE VALUE OF F

EPSIN} == ACCURACY REQUIRED IV EACH ELEVFRT OF X

MAXFN == MAXIHMI% KUYHER OF TIMES FUNCYT Can 8€ CALLGD

TPRINT == PRINTING WILL TAKE PLACE TN ENTRY, AT EVERY [PRINY
ITERATICNS, AND ON €XITy GIVING <ITERATILN NUeo N2o OF

.CALLS OF FUNCTs CURRENT FeXeOw IN THAT CRUER.
N3 PRINTING AT ALL IF IPRINT=)

NORMAL EXIT

G DX 0 NOV POSSIBLE WITHIUT ROUNDING ERROR
FUNCT CALLED MAXFN FEAES

TEXIT ==

U e

KTH ITERATION
5 FUNCTION VALUE LESS TAAN FEST OETECTED
HIN®{NeT)/2} ~—= aURKING SPALE VECTCR

A ULTRA=QUADKATIC VARIATION IN F DETECTED AFTER THE

DIUBLE PRECISIIN X(Zhl.G(Zé)-q(372)'EPS(Z§)'FvSTEP.GDXyl'd'FESTg -

1FP+GPOX, 050X 405027, DGHOG+DABS

LOGICAL CONV,UHTTH
IF (IPRINT.NE.O) PRINT 102
FORMAT(2Xs *ENTRY T2 VNuQl*)
iTh=0

KK=0

CALL FUNCTEN¢X,FoG)
IF{F.LTLFEST) GO TO 98
NEHS=1

S!EP-!-DO

IDX=N

10G=N+N

THIDG+N

1F( JNOTLUNITH) GO YO I
1IxIHel

DD 2 I=l.M

D0 2 J=leN

HUi3)=0,00

IF{1.E2.J) Hi1I)=1.00
14=1Jel

1IN 1T}

CONV=.TRUE,

GOx=0.00

D0 3 1lsl,N

I=0.00

FJalHel

1FLI1.€Q.1) GO TO Zl .
11=21=-1

00 & J=l,1l

Le2-HLI312GT I}

1J=21J4Jd

00°S Jsi,N

Z'Z-N(IJ)OG(JI

S [J=fJel

JFIDASSITI GTLEPSIEI) CONV2LFALSE,
H(10X¢l}=Z

3 GOX=GOX+GII) el

1FCIPRINTLEQ.00 GO YO 6
JELHOD( LTINS IPRINT).NELO) GO YO &

6 lEXITE)
IF{CONV) GO TO 99
1EX1TeZ
IF{GUX,5E.0.D0) GO TO 99
I=1.00

W13

7

o

10
9

12

i1

IFLITH.LT Mo ANDLUNITH) ZeSTEP
We2.00* (FEST-F)/GDX ’
IF(H.LTL2) Zew

STEPel

GDX=GOXsZ

DO T Isled

HUIDX*]) =1L IDX*T Y *Z ~
XCI)=X{ 1) #HE 1DXe1)

CALL FUNCTIRoX,FPyH)
IFUFP.LTL.FEST) GO TO 98
NENS®NFNSeL

TEX1Tr3

1F INFNS.EQ.MAXEN) GD TD 99
GPOX=0,DO

00 8 I=1,%

HUIDC+ 11 7R{1)-GL Y}
GrURsGPIAerii I vn{ IOXeT)
DOUX*GPUX=COX

IF(F.GT.FP-0,10-3%GDX} GO 1O 9 .

1EXIT=4

JF(GPOXsLTo0 D0LANDLITHGGT, N) GO TO 99
I=3.00%(F=FP }+GPDX+GODL
#=DSQRT{1.UJ=-GOX/ 2% GPIX/LYSUABSLZ)
151.05-{GPOX+4=2)1/{DCDX42,00%W}
IF{Z.17.0.100}) 290,100

00 10 I=xl,N

X3 ex{}V~-HEJDXe])

GG TO 11

FxFp

DD 12 =N

GUI}=HIL)

IF{DGDX.GT40.D0) GC ¥D 1e
GDllOPDX

1=

SYEP-I.STEP
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cosl
0082
0083
Co84
0085
cose
€087
0088
0089
€090
0091
0092
€093
0094
0095
0096
0097
o0y
0099
0100
olo1
0102
0103
0104
Q105
olos
0107
0108
0109
oli0
oLt
ot12
o113
0ils
oLts
olis
1824

14
107

js

18

23
100

98
99

G0 1O 13
IF{GPDX.LT40.5002C0X} STEP=2,000STEP
DGHDG=0.00

03 15 1sleN

1=0,00

[Jelve]

1FL5.EQ.1) GO TO22

11=i-1

D0 16 J=1.81
2=2+H{1JISHLIDGS)
ti=1JeK-y

00 17 Jal.N
2=2+H{TJI*HIT0GH I}
1J=1J4¢}
DGHDGaUGHEGHIsHL 10G L)
H{I)=2

IFIDGHOG.LT.C.70} DGHOG=DGDX#0410~1
TF{DGUX.LT,DGKOG) GO TO18
W=1.00¢DGHDG/DGOX

D0 19 I=l.N ’
H{IOXe ) ewaHl [OXS1)=HIT}
OGDX=DGDX +DGHDG
OGHDG=0GDX

1J=Iu

DO 20 U=leN

WeHt 1DX¢13/70G0X
L=H{1)/0GHDG

00 20 J=l¢N

1d=1Je}
H{TJI=H{TS) e qvHIIDX*2)=~221L )
WRITEL69 1001 ITHINENSF

FORMATI® JTN®¢,215,4Xy'Fu?yD14,694Ks"0LIG F =2%9D24.8)

GO TO L

1EX1Ta5
IFUIPAINTLEQ.0) RETURN
RETURN

END
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