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ABSTRACT

In this thesis expressions for the real and imaginary
barts of the eigenvalues of an RLC network are derived in terms
of the matrices used in'the state-variable formulation.
Consequences of the real or purely imaginary property of the
eigenvalueS'arg also derived and topological interpretations
~given. Finally, a topological scheme is presented whereby it is
possible to obtain transformation matrices, by inspecting

network topology, which can be applied to eliminate the zero

eigenvalues.
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CHAPTER

]

INTRODUCTT

The unforced response of electrical networks is
cnaracterised by the eigenvalues of the A-matrix of +the
state equation [{] Thus if the eigenvalues are the set

(isﬁndt
ofAcomplex numbers
.= +3. I.1)

21 O(i }:jﬁl eee(»LoI,
then the zero input state response can be written (for s
gsingle state variable) .

_1
. () = =X, e2 cool(I.2)

J i
where the K. are constants (possibly complex) which depend
on the initial conditions. The eigenvalues ;?i .can be

(a) =zero,in which case the corresponding term is

a constant,

(b) real, and necessarily negative for passive
physical networks, in which case the corres-
ponding term is a decaying exponential,

(c) pure imaginary, in which case the corres ponding

term is an undamped oscillatory one,and

negafive
(d) complex,with necessarilyAreal part,in which
case the corresponding term is a damped

oscillatory one,

Zero Eigenvalues

The eigenvalues can be determined in several ways.
If the non-zero eigenvalues are desired,the roots of the
appropriate loop impedance or node admittance delberminant

K=
o

to zero su

o

equate

jaY]

ficese.

g




These methods of calculating the eigenvalues do not

give the number of the zero eigenvalues. However, much
information concerning the number of zero eligenvalues
has been obtained, Thus Bryant [ﬁ] hag shown that if
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the determinant of the nodal admittance matrix, and 1 is

the number of inductors in the network., Hakimi and Kuo [?]
further elaborate on the rank of the Bashkow-Bryant
A—-matrix and give a network characterisation of the

inte:

h

dependence of the state variables.

In the computation of the response of networks by
the state variable technique, unnecessary complexity is
introduced by the presence of these zero eigenvalues,Thus
their elimination is a desirable thing., Parkin |3
discusses eliminstion of the zero eigenvalues of the
transition matrix but he uses a nodal state variable

technique rather than the conventional one.Martens and
a

ate the

I

Guerra [?I] use bvopological technicues to elimir
zero eigenvalues., In this thesis a topological technique
for the elimination of the zero eigenvalues of the

A-matrix to reduce circult computation complexity is

presented,

Graph Theoretvical Concepts.
It is the purpose of this thesis to study
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employed will be reviewed. Seshu and Reed [4 ] is a

comprehensive text on the subject with special reference

A

to electrical applications, The concepts of a node,and of

an edge joining a pair of nodes,are self explanatory,

Lol o) LI

The concept of illustrated in the diagram

[0}
|~
=

a loop 1

below: edges AB,BC,CD,AD constitute a loop

A

The dual concept of the loop

minimal set of edges,whose removal results ‘in the decompo

each set of nodes being connected by itself, This is

illustrated by the edges AD,BE,CF of the graph below

A > D
B =

€

< F

Topological relationships are conveniently represented

by means of matrices which are of various kinds such as

incidence matrix,cut-set matrix,circuit matrix, Te[:i}




concept of a tree is one o
theory, and intimately connects the concepts of loop
and cut-set. Defined in an intuitive manner, a tree is aA
set of edges of a graph, such that = it includes all the

o

nodes of the graph but such that no subset of ed
tree forms a loop, RLC networks without gsources,which are

the subject of this thesis,have the Ffeature that every

edge of the graph involved hasg the property of being
either resistive,inductive or capacitive Bryant found
that the Normal Tree ———— which contain the maximum
number of capacitances and the minimum number of
inductanceg————- plays a central role in the state-=variable

analysis of electrical networks,

State Variable Characterisation

It is necessary to choose the voltages and

currents which are to be state variables. Hot all
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capacitance voltages ar
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when there are capacitance loops in the networik; not all

independently specifiable
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inductanc

when there are inductance cut-sets.
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set of state variables is given by

i
[
t

S ( of state variables )

t

S ( of all C voltages)

- Subseto(where order of Subsetoznumber of C loops)

+ S ( of all L currents)

—SubsetL(where order of Subsetﬂznumber of T cut-sebs)
eeo(I3)

Thus to find the state equations,eliminate all nonstate

variables i.e, all resistance voltages and currents,and

those C voltages and I currents corresponding to certain

members of C loops and L cut—-sets,

Network Topology

2

Uppos

¢

there are n nodes,b branches and 1 fundamental

-

oops. Let V be the voltage matrix, and I the current
matrix and let them be partitioned inbto link elements

and tree branch elements

I
1 R !
. I

V: oee(Ia4>

<3 <

4
The state equations for an RLC network are now derived,

The matrix eguations which describe the network are

i
O

ees(I.5)

B-d- AR

(1xb) (bxI) (1x1) 1x(n-W

.t
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KCT:
v 1= [o, = 0 L..,(1.6)
(n-I)xb. bxI (n-T
The element relatio
Vy=2q1q coo(I.7)
where V, I,Bf,Qf,Zl,Yt and U stand for voltage,current,
fundamental circuit matrix,fundamental cut-set matriz,
link impedance,twig admittance and unit matrix,
respectively. By orthogonality
B. = -0F v (1.8)
Combining XVL,KCL in a single equation
10 Tl - 0 cen(1.9)
e Tl T
If we choose a normal tree and partition accordingly
we get
E%sl 0 0 Bgeo o [ 1S
O Ry O Bpe Bpg O Iz
O 0 Ix Brg Brg By | L)l o ee.(1.70)
“os Sor %¢r O4 O O Vg |
0 QGRQGLO G5‘O VG
I 0 0 «r' 0 .0 ;r6J Vc
where p is the differential operator d/dt, and where the sub-
script denotes the element type, Here SyR and L denote chord

elastances,resistances and in

]

I denote tree branch capac

inductances,respectively ;Q

itances,conductances

appropriate submatrices of the fundamental
partitioned according to element type; and
In the topological partitioning of Bf as
3? = BFC O o)
Bre Ppg O
Pre Pre P

ductances, respectively;C,G and

and reciprocal

together with subscripts stands for

cut—-set matrix

simi
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A
the links and the tree branches, Thus BSC expresses tThe

The coefficient matrix of (I.I0) has been called
b Martens[6] the primitive hybrid matrix of the

QO
=
O]

network, If the nonstate variables Ig,I15,Vy and V
eliminated from (I.I0), the following matrix is

obtained:

p +H H, I
11 12 = 0 .eo(I.I2)
T P +H

where
.

€ = 95019

C1 57

Hyp o= Gu18 Qer | o (113)
G o= G5 Q%2R

6, = BT

Hy, = QupR Qg

R = B, + BRGRBBgG

Ry = GEI

g o T o e Ig gl
2 = ¢ 7 <GLY  “GRT2°CR
It is noted that matricesd and 44 are symmetric and

positive definite; HII and H92 re symmetric and

a,
positive semidefinite or positive definite,




Martens [?] calls the coefficient matrix of (I.I2
the near primitive hvbrid matrix and it can be writter
in the form of the matrix binomial

ﬁ= A+ H ceo(I.74)
where N =1L 0 oss (I.15)
o 6
and H ={ By Hy, e o (1.76)
m
-, oy
If x denotes the state vector,then the free
network is described by
(pA +H)x =0 voo(I.I7)
or X = —/\_IHX .o
which,when compared with the unforced state
equation,
X = Ax ceo(I1.I8)
vields the.result that the A matrix is given by
= A ve e (1.19)

Non—-zero Rigenvalues

saed

Having discu

the significance of

the zero

eigenvalues,outlined the graph theoretical concepts,

and introduced the
discvss
now

A

natural freqguencies,and together with a knowledge

the initial conditions permits a determination

relevant

Hoti~zero eigenvalues,

-n -

network topology we

The eigenvalues are the

of

response of a nebtwork or system to any forcing

functions. The equations describing the linear

systems




with x(t) being the state vector, u(t) the input

vector, y(t) the output vector, are (cf, L.Zadeh

{  and C.A.Desoer [71)
px = Ax + Bu eee(I620)
y = Cx + Du 0ool(TIo2T)
With u(t)=0, the zero-input state response 1s
x(t) = exp(At) x(0) veool(1.22)
andkthe zero—input output response is
y(t) = ¢ exp(at) x(0) eesl(I.23)

To evaluate exp(At) is the major task, and this is
done through a knowledge of the eigenvalues of A,
and an application of the Cayley-iHamilton theorem
(cf. B.Bodewig[E]) '
Taking the initial state Lo be gzero i.e,
% (t=0)=0 eoo (I, 24)
the zero-staﬁg S%éte respoﬁse is given by
X(t)z‘/c;exp(A(Jc-—z.’>) B u(wlde eeol(T.25)
and the zero-state outpul response is given by
y(t):lg exp(A(t-2)) B u(e)iz + Du(t) ...(1.26)
Both these latter two integrals contain the matrix
exponential function exp(A(t-9 ).
Martens[ﬁ] has obtained some bounds on the

envalues, in terms of the network elements and

Bendixson, Pick,Wittmeyer,Wegner and Gerschgorin[gle

Thus if an eigenvalue is = o(+JF , then
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‘P’é cot(7r/ 2n) eeo(I.27)
min ( mln(C4),m1n(g3) )

where min(®) stands for the minimum entry of the

<<%

matrix F and n is the order of the A-matrix.
The real parte{ is bounded above and below
by
min( m.,m,) £= —ax £ max{ M M,)e..(I1.28)
1272 2 )
Is
where the constants rnI,lng,D-’EIpT’IP are determined from
the element values and an inspection of network
topology.,
Some further expressions are obtained in the
ter T

next chap or the real part o¢ and the imaginary

it to be purely imaginary i.e.,exX=0,




CHAPTER II

Ixopressions for the real and imazinary parlts of the

eigenvalues and topological comseqguences of Their reality

or vpure imaginariness

The eigenvalues or natural fregquencies of a nebtwork are

the eigenvalues of the A matrix, But since

A= -Alm o (2.T)
pI - 4 = pI +AN'H
A{pI - 4)= pA+ H

and taking determinants

det AN det(pIl - A)= det(pA + H) c0s(2s2)

s
tad

!
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J—

Conseguently the eigenvalues of A which are the zeroes

of the characteristic polynomial,are also the zeroes of

the determinant of the near-primitive hyvbrid matrix,

%: pA'f" H eae(2°5>

The symmetric and skew symmetric parts of H are

denoted by Hs and H, where

k
N ; . 1
HS: HII O - I_S : H, = O jl:[z :—.(T.Lk oo (2 R 4)
H T’T
0 H, -Hio
H = —[S -+ J.‘[k eee(2e5>
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operation to Hk and noting its relation
to Hk; it is obvious that

With these observations, we proceed in the next
section to find expressions for the eigenvalues and

conditions under which they are real or pure

Derivation of fxpressions for the real and imaginary

parts of the eigenvalue A=xX+jp

The eigenvalue )= °<%\}€ , and the eigenvector X

are related by

A = A x cee(2.7)
Using equation (2,T) for A in terms of A and H, we obta
Hr = -AAx seol2.8
~ . _T .
Premultiply by = to obtain
'm P
— 2 =x Hx ve(2.9)

Consider the denominator of this expression forAz

i
. T o . . ; - y
VizZ. X A:{, for reality or otherwise., By taking its

=5

N

b

i

"
> =

|

because N\ is real,

becaunse the preceding number,

ain
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-1

that is a IxI matrix, and therefore since /\is

symmetric
—-r —a—
X“A: = X A:@ 0s0(2,10)

which assures us that the denominator expression in the

formula for-%] in equation (2,9) is a real number,

Consider now the numerator expression for - A in

Q

formula (28). Using the equation (2.5) which says

t H = H_ 2+ H
S k
we have
m -7 =T
e T s T A
X Hx = SXHx o+ X Hpx vel(2.11)
We now test each component part in the right hand side

of equation (2.II) for reality or otherwise by taking

the complex conjugate,

Thus
=0 . _ Ty =
L LS_ — e JISJ\.
= T =
= X HSX7
because HS is real,
P = 7
= ( x H. X )T,
__f"\
t = XlH X
S
because HS ig symmetric,
[ Thus
3 m
-—_L_‘_ "‘T T S
¥Hx = X H x weol(2,12)
-n -
from which we conclude that X"HSX is real,




2]
. . . o =T "
Taking the complex conjugate of x7H x we get
=T T =
3:"&?1_35 = :f‘"fil_zc
Ty
= b b
25 I.Lk_
because H, is real,
k S
— "(7“-1— -+
= ( e '[—KX )
m
=TT ~
= X }H{'X eee(2oID>
But since Hk ig gkew symmetric
k T |
L”k = —'}..—"_ e ee (2914‘>
Eaw
we conclude that
=T =T,
X Hx = =X H, X veol(2.1I5)
A EAY
so that we have proved that the second component in

the right hand side of equation (2.II) ig pure
imaginary.
Thus from equation (2.9)

iy 3H x )

I

m
=T
A x
- -
x"H x + x IVX
m
-~
X A}{
—.TTT‘ "'TT
x H x xH x
. K
~ -7
=N\ x T N\ x

i
|
X
l
55

Using (2.,1I2) and (2.I5) we see that
T

Pt

IZSX 009(23I6)

A

— X =

&Jl

be




1
Ul

and =T,

X X

_.Jlg = —— eeo(2.77)

=T

X /\x
From the avove and the fact that H_ is positive

g

semidefinite we note thatX£0 , which is well known,
Alternate expressions fochEMK3{3nmy’be derived as
followw. The eigenvector x is in general complex, S0

o
i

x X, + in 00ol2,18)

!
|
§

. T i
| Then
! m m m
i A ik oL
% e = X;'r"‘ - JXi 099(29_—[9>

where x_ and x., aré real vectors,

~T..
We now expand X H_x as follows

| s
-TH ( T . T){ p
X H x = (x_ —~ix )H_{ +3x Com
s p TdE IR K, HIX )
m m
Loy il
= x_H x <L H x
Lptlg®pn X RS
oD .
+ J(xH x, = % H %) 0.0(2,20)

r s 1 i s

Because of the symmetry of Hs the second term of

equation (2.20 vanishes, which proves in another way

- -] —‘T T - 2 ~

that x hsg is real and given by
=T T T \
XHx o= ox Hoxoo+ xPHX; coo(2421)
—T_

We also expand x 0, x as follows
T i Ty .
XH, = ({x_ -~ix. ! - s
T oy TdEg JL(X ! J{1>




T

Because of the skew symmetry of H, the first term

in equation (2.22) vanishes, which leaves us with

-:T'F' P 3 (—V-TT—T B 1{TT-T =7
X lk}& = J \.A.r _L-_!;I:_’\.i _/_illk.lx_.:rf)
. T =
= 23 XT"H—_‘[{:-'T 306(2029>

This proves in another way, bthat x H,x is imaginary.
. =T . .
Pinally X' Ax is found to be

- m
X—LAX = X AXI’ -+ Xi /\Xi oee(ZaZAr)

3

We now use these results in the expression for —_)

in the equation (2.9)

-T
2 _ % Hx
T Ax
=T, =T
= XTHSX . X HeX
-7 -
T N\x ZTA
T. T T
x H x  + x H x x_H, X,
= (Crxe’r L87d, pyrkd
T T A T T
X A X, + X} A X, Xr/\ Xr+Xi/\X1
e e <2 025>

an imaginary

ray

Thus ~A has been separated into a real an
part in the equation (2.28),

Consequently we have

xTH x| + xiH_x
= rer  Cigti 000 (2:26)
!p m
Xl“;/\xr + Xi/\}{i
2% H, x
K eeo(2.27)

—f= 7 -
T T
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the Bigenvalues,

igenvalues 2 of the network may be

<

e
(1) zero,iee,2=0 orX= 0, ‘3:0 s
(2) real, so that X # O, @: 0
(3)imaginary,so thato= O, ‘Q% c
(4) complex,so that o # O,(Z# 0 W
Consequences of any of these eventualities will be
derived, and topological interpretations of these
consequences given,

Consider the consequence of the real part being
zero i.e.oX= 0 . By vittue of equation (2,I16)

m
XF

~

S

ET/\X

Hence we musg
I _X’: O oeo<2028>

We partition the vector x into subvectors X ,X,

where Xy corresponds to the inductive link currents and
X corresponds to the capacitive twig voltages,

x = |xg 0ool(2:29)

We then have



Thus becauvse =0 , and using its consequence,equation

(2.28),we must have

_TT_— ' _I.DTT gy 3 )
XIILII 1 -+ 3 2.1'122_/>.2 = 0 e o8 (2090)

Now HITgigz are both positive semidefinite. Hence
7. .
XIhIIKI >0 ss0(2.31)
T
.77 [ 4
X2ﬂ22X2 =0 090(2032)
toguations (2 ),(2.32) in conjunction with equation

RpHppx = O ceo(2.33
FoHyot, = O eoo(2,34)
Consider equation (2.33), Making use of the expression
Tor Hyg ven in equation (2,.6) we have
FrQar 0 TQgyxy = O v (2.35)
But since (x is vositive definite, so is C——Ie This fact

- Jo — . 1.
o the subne

. enablesnto conclude tha

L"G-L}:T = O oao<2936)
? Using the equation (2,34) and substituting the expression
% for H,, given in equation (2.6) , gives us

:% - Rl _{_I M

. XnGrnR "QAeX =

§ DROR C(R*0 = O 0o l(2.37)
| o . T

| But R is positive definite, and therefore R is also

1

1

? positive definite, Hence

f T

% Q‘CR—.LZZ O ooo<2098>
| The equation (2.36) is the Kirchoff Current ILaw

|

’§ o~ ] Clle) 3

| for the subnetwork described by QCT? whereas egquation

|

|

i

O
{\

e
f

3
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g

R

and similarly for Xos
X, = X p:
o = Fop FJ FEpy e

Then equation £{2,36)cimplies that

QX =
O, wGL‘_T_:L

o)
]
Qu
@

ol
o
)
(=
]_.J
o)
[
N
N
(-]
oV
Q0
N’
]..J
Fd

_J
o
)

-
=
o

ot

the numerator of the expression for
m

which gives a simplified expression

ad

case of a pure imaginary eigenvalue
A furthe

nature of an eigenvalue (i.e.X =0,

—-@ reduces to

for-—ﬁ for the

-3

onsequence of the pure imaginary

@# o) will now be

_L_

derived, 1f 9 is an eigenvalue of the A matrix with

eigenvector x, then

e
X = 2__

But

- A
989(2999)




—Xﬁx:ﬂx
or

(AN + H)x = eoo(2.40)

We now replace A, H , x by their components by using

the compatible partitioning mentioned above, so that

A ol + [ Hyp "= = 0 ...(2.41)

Multiplying out we get the following two matrix
equations
; A\
)x}XI + Hppxq + lexz = 0 0ool(2.42)
L T -
These two equations can be simplified as follows,
T i —] T F; ° T 1 XDTres i ko) :f‘ s _—T - Ay
Congider hiIAI he expression for 17 18
T =1
1 = 0 &
Hrp = Q& Qg -
Then
T =T
" X = 0,..G = L e A4
11T \“‘GLG ”G‘IJYI eos (2 e )

But by equation (2,36), which is a consequence of

Q- = 0
"GIFT °
Hence
HIIXI = 0 ooo<20r5

Similarly comnsidexr H22X2 . The expression Tor the jz
matrix is

- -1 T

T i

Aop = Qop® "Qpp

20




Then
: o=l T \
HA X = 0 R A6
J.22*»_2 QC:R-J.\_ CJCR_Cz s e e (2 e 4D )
But by equation{2,38) which is a consequence of the fact

Q@gz..o
Hence
.L'TZ 2 = O ooe(zelz“?)

Using these equations viz. (2.45),(2.47) we have the
following simplified forms of equations (2,42) and
(2.,43) for the case of a pure imaginary eigenvalue
i ; il
2£4§.i -+ "ITZ ) 0] 300(2058>
- 1 = ° e Z’
M6 x, - Hy,xp = 0 coe(2.49)

rp
Premultiply the equation (2.48) by x7 , aad the

Il

equation (2.49) by XZ, and add

D (=3 5 x7 + ,_96 %p) + (AIhIz__Q - X8
90@(205())

In equation (2,50) we observe the second bracket as

contributing zero,

T T _ -
x7H 5% 'XZIIZXI =0 0ool2.51)
Hence equation (2.50) becomes
;T LT _ \
A( zId7XI + A21g XZ) = 0 vool2.52)
Since we have asgumed;?: O + jﬁ £ 0, we finally get
T T . N\
xyd xp o+ A_4§ X, = 0 0eal2:53)

Wext some consequences of the reality of the eigenva

~lue 2 of a network will be derived, i.e. 0(‘-"750 9 (3 =0




22

where A = Q{LJ@ o By equation (2.I7)
. - \ -
—ngz(z“mkx;/(x A x)
If /%_ 0, then
}—CTH X = 0 000(205f)
But
] - T B
) X — . X T, =
X Hy X [; Vz]' O Hro | %1
0 X
|~ 2
T =T Forr .
= [E %] [ oy
T
| ~H10%1
o 0T
= Epfipo¥o T Kofyo¥r

Hence from equation (2.,54) we have as a consequence of

ﬁ =0, the equation

T %, - FoHeoxr = O (2.55)
ﬁ..I 1'2 ..2 _-2 1'2 L:l" b g e 0 0/)/
If as before we congider the real and imaginary parts

of Xy as Xq., and X4 respectively, and similarly for
X,, then the equation (2,55) simplifies *to
T T .7 ~ =
- H P, Lo -‘A’-— - = - =
J,_I L_T_?__J(:Zi __ZrHIZ_-Il U o6 6 (2 s 58..)
The equation (2,55) will now be written in terms of
topological relationships and of element values,
We use the following expression for HI2 derived in
Chapter T, viz.,
T I T
H = Qs ﬂ LG
12 lor, * Qe Qentolcr
to obtain the following consequence of the reality of

the eigenvalue 2




=TT =TT C«I G0 P
=Xy T ERQAb o =i,
I~CIL2 TG “ORT2SCRT2 + F5Qa-x
2 RS + Xolar¥y
FrQrnCa Qe (1) 0z = 0 (2,56)
TE2RCRT2UGRYT TSI T AR
In terms of the real and imaginary parts of the vectors
X1,%, the equation (2,56) becomes
T AT T AT I
—x= 0 fme + wT QG G
Tr 017521 IrGLT  “GRT2CRT2i
T T 7.7 —T .\ \
+XA e = XL GARQnn (G Q o= 0 63,
5001511~ Foperfor(® ) Qur¥rs= 0 ee0(26562)
We next derive the consequences of an eigenvalue 4 of a
network being zero, soc that X = 0, =0 ., Substituting

the consequences of o« alone being zero,l.c.

ez = 0
m
o~
Yor¥e = O

into the equation (2.,56) which is the conseguence

"'T/\T T - _ —;T T T A 7
19017y = FpQ0rxr = (Frlgpp) oo s (2:57)

) AT _;T f:j ’. '—T - - o -
Hence both X1QpXos XpQpp¥y are real numbers.
Now
=TT LT Ty AT
XpQary = (7= Ixpy) Quplep, + 3%p5)
_ AT T T 3
= ( x1Q00%0, + %15 Q07%05 /
9 1T T ~, T ng'l ~
+3 (210105~ ¥15%1¥0r)
) .. —T T . —] Wal
But since AIQOTAZ is real, therefore
T T T T
K = 3 R A .2 ) a9 0 or
FQar¥s = 1915 + ¥15%01%01 (2.58)
and

T T moT
e Tkl :

000(2359>




Complex Bigenvalues,

s

(e
13—'
[
O]
>
=
H
O]
(6]
o)
o
O
et
(9]
)
O
H
3
ot
(S
)
»
=
D
)
I_J
4]
ot
jol]

Tinally,

imaginary parts of the eigenvalue 9 = X+ jfﬁ

4

bed vector x

jol)
}_)
3
t
D
=
2
[©)]
O
oy
ok
=
[©)
[4)]
o
1;\)
ot
@

will be sta

partitioned into the inductive link currents and the

N

)
|

=
)
@]

capacitive twig voltages) and matrices of element va
and of topological relationships.

Thus _m
X ﬂSX

=
N x

P %T] - i
I Vol © It

T
E

=

. . I . e -
Substituting for ITI,MZZ,GC s (é the matrices ol
element values and of topological relationships

T -
/o o Y
¢t vg QCSCIQCS ) C
veol(2.60)

Tn +the abvove I. are the inductive link currents, and

V. the capacitive twig vol




N
\J

For the imaginary part of the eigenvalue we have

iy g O

R
—>
It
> b

&

But

- =T =T

£ = [IT" C]

=0 i, A= o O

m
T \
Then =T 7.7
s ﬁ’ ATy - Tk ToTr

0 T
TLoC I, o+ T

C
Substituting for HIZ’ K , 4o in terms of matrices of

element values and of topological relationships we

get
T =1 T
T 7 (= OCLT Qar® Qar0ts0%g ) Ve
T ToT (o=IyT
. —VC( C—r+ QC?—\,TZ CI\(C ) ‘\Z“G.IJ>IL
~J@ = — -
T (BB g by )T
m
+ Tg(Cy +00sC1%s) 70

Igr(—Q2L+Q£TG_IRGRG2Q213V01
Eﬂm”vg;‘QoL+QcRGglga(G~I)TQG:>IL1
? T (B BBy )Ty 4Ty, (BeBy TBr )Ty
(04400501905 gy + 761 (€4 #0501 ) Vo3




CHAPTHER TTT
Topological elimination of the zero eigenvalues of
the A-matrix
Introduction, The sgstate equation for an unforced linear
system is
¥ = Ax sool(B3eL)
where p is the differential operator d/dt. If the A
matrix contains zero eigenvalues, the compubation of
the state vector is beset with difficulty ( see for
example V%fﬂa[ﬁ]), The Bashkow-Bryant A-matrix which
is used in the gtate equation description of an RIC
network includes zero eigenvalues 1if there are
I~loops and C—cut-sets. In this case the order of the
A matrix is greater Tthan its rank, and thus
unnecessarily large, increasing the computational
complexitys.
me work has been done on This problem,
~vulas For
Thus Hakimi and Kuo [é] have given forAthe order of
A and the number of zero eigenvalues. Parkin [3
discusses the elimination of the zero eigenvalues
of the transition matrix but uses a nodal state
variable technique,
In this chapber, a direct topological
method to eliminate the zero eigenvalues is described,
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The method is in the form of topological rules for
obtaining transformation matrices which reduce A
and H ( A= —A_TL ) to ﬂ and ﬁ (ﬁ_~ﬂflﬁ ) where the
zero eigenvalues have been eliminated,

The number of zero eigenvalues, o s is
given by the number of independent IL-~loops plus the
number of independent C—éutnsets,[ﬂ,éI cAlTernatively

in terms of the submatrices of equation (I.I0)

= nuimber of rows of B B
n, = nuiber o ows of [ 10 1@]

+number of wows of [QCR Qurd
— rank of [BLC DLé]

-] coal(3.2)

This suggests that in order to eliminate the zexro

- rank of [QCR Q

eigenvalues, elementary row operations could be

applied to reduce the dependent rows of the above
two matrices,

Elementary Transformation of Topological Matrices,

In order to obtain the elementary
transformation to eliminate the zero eligenvalues we
consider two subnetworks: an IL-subnetwork and a
G—gnbnetwork, The I-suhnetwork is obtained by open-

(removing) all non-inductive elements
plus the inductive twigs., From eguation (1.70) it

5

is then clear that this subnetwork is described by the
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cut—-set matrix

The inductors in the T subnetwork may be

-

)

) by choosing

vartitioned onto links (denoted by subscript
J-
v

and twigs ( denoted by subscript

g tree or a forest. Then the columns correspo

i

to the twigs are linearly independenﬁ[}ﬂ and the
remaining link columns are dependent and may be
expressed as linear combinations of the twig
columns. Therefore, there exists a matrix
ik = {0 M ‘ ooo(BoB)
I
0 U

where U is the unit matrix, such that

T _ . .
I — (\I TT — 0 . -z 3
U] T = [Qr %r [V 9] =[O % | eeo(5e4)
1 T 7 1
: Q Q M Qner
oL o, %er, LT Y ° %1,
~ ~ ~
Qrr, rr. ST, © Sz,
or, in terms of the circuit submatrices B
T ™ ~ ~ />
TIL-BTJO BLG‘ _L)—Lr = O ooo\)oj)

The C-subnetwork is obtalned by short-circuiting all
non—-capacitive elements and, in addition, open

inal network, This

{—a
b
T

circuiting all C-links of the ori




N
O

il L) he B

subnetwork is then described by the circult matrix

o/

If we choose a tree in this subnetbtwork,the

-

capacitors may be partitioned into links and twigs.

m 1.

The twig columms are linear combinations of the

]

—

linearly independent link columns. Thus there exists

a matrix

m — ocd
"I‘Z _ U O @80(,)06)
U
such that
. 17 [ 1 7 B . ~
Beg | T5 = Bgg. Bsg U 0| =By Of e0el3.7)
1 4 1
Brg Bpg. Bao jl © 0 Bpe. O
1 t 1
B B_. B B.., O
i g J [N
A C— i Cl CJE_] ,lCl
. -t

and in terms of the corresponding cub-set matrix

m 3 I / Z o
L, [@os U Qoﬁ] = 1%, s %o S0y 0ee(3:8)

O O O

Blimination of Zero Ligenvalues,

We now apply the transformations TI and T,

N\

to the equation (I.I0), and make a change of

A

variables in order to apply the corresponding operation

<

to the columng. We partition I. and V., and define new
T C

variables as follows.
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= v o]t cee(3.9)
iy T ‘
1 L

- T . 3

I U -

| + J J . L _tJ

m

Vel = [T 1 BT ces(3.10)
1 1

v O U1V,
Ct i Cy

I -

1% we eliminate IS and V  from equation (IQIO)g
apply the transformations TI and TZ’ and make the

above change of variables,

then we obtain

- [~ "!
R, 0 0 BDLC1 0 BRG IR
o~ o
O p-.:ll **Jl't O C 0 IT-J:L
s o~
0 L. DL, . B+ 0] B Jr
t1 6t Ltcl LtG Ly
=0 oeo(BoII)
Q 0 Q T pt,. O B
a! _P g T 1 + o i
Cq R CTt 11 1t Cl
'~ o~ .
0 0 0 *G'l *Ctt 0 Vct
Qr O “%r, O 0 G5 ||V
~
We note in passing that Lljandfé’t,t are positive

definite since they are nonsingular congruence

transformations of positive definite matrices.
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Vext w liminat he variables I,,VA, T
xt we eli ate the variables I,,V.,Il

-

and VC from equation (3,II) and as a result obtain
.

the reduced equation
AN A -
pL + Hig Hyp JLt =0 Le0(3.12)
Am A AN
- o+ H o
Hoo pC Hs0 LC'}
or more compactly,
AN A A

O 909(5913)

1

(oA +H ) x

At this point we note from equation (3.II) that

~ _ v AN
Phyyty # Phygdy, = O coe(Fe1d)
and therefore
~_ T
T = — ; _ ¥ ) 5
—L_L]-L .Jllwl—tJJJt + .L-I o e D(QOID>
and similarly
Vo = =CiCiqBq. + X eool3.16)
+ 1 -

where the constant vectors K KZ are determined by the
the network,

I we further define transformations

. o= [u o] oo (3.I7)
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- _ B ~ (/}(}"‘I z T
_L_ = TJ ~Cltbtt eae(jolo}
. O U
and
F = FI O oee(BeIg}
_O de
T — TT O oec(5020>
"O ’_]?2_J
then
] .
det( P T ( pA+ H) T7F )= det(pN +H) o.e(3.21)
However,
m [~ ~ T
(A + B ) TF = |plq O 0 cea(3.22)
AN
O pAN+H O
0 0 61
o ’ S

I therefore

&)
s
j@1]

det{pI-4




Thus the zero eigenvalues have clearly been
eliminated to yield the reduced matrix binomial
equation

N A
(}QA + H)x = 0 oo 24)
or equivalently the reduced A-matrix
T A /
//\f} = “/\ H aes\)aZS)
The order of @ igs of course equal to the order of
A minus the number of zero eigenvalues,
Lxample,

To illustrate the method for the elimination
of the zero eigenvalues, we consider the network of
Fig,I. This network contains one I-loop and one
Cmcut-set, therefore there are two zero eigenvalues,
A normal tree is chosen with the state vector

X = lLW
c
ar
a
i
Ty
<
"o
a
v
C
b
Ve
The relevant submatrices of /N and H arve







of equation ¢%,6) are then

=1 1 1], T, =
0 I O
o o I}
A
= T g(‘TT 1 4T 4T ]
-1 T = Mt Ta
2 2
LTy 0
_o 4 7= c+C C
2 2 a c
C ¢, +C
c 0 C
| O ~C

i = T

.-——'{‘08v

ir oy T
Lyt te

]

= O

-

—




Finally,

>

o>

a

i

no
b

Pa)

C,

_C
b

s in (3,22) we obtain

——

L

——

T (L, +L )
Ja( e

T +T, +1
18, '-b'l‘_JC

-7 T
‘2"

—l-‘ -‘n" n "_
_La’f .L}-b F,JC

C_(C +C)
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bnefwork C- sobnetwork
L- subn

Fig. 1




A
0

zero eigenvalues, In a network with many I~loops and

C—cut-sets, this reduction in the dimension of the A
matrix is correspondingly large, which is of

significance in the numerical computations, This reduction

is useful both for the determination of all the eigen—

values and Tor the calculation of




Conclusion and Recommendsation for Ffuture woxrk,

a network, i.e

o

L4
¥ = AX oee(ﬂrel)
of the unforced system, are important in characbterising

the transient response of the system. For RLC networks
they may lie only in the closed left hal
2 plane. These eigenvalues are also needed in

evaluating the response when external sources v are

=

introduced into the network which is then described

by the state equation
° /
x = Ax + Bu eeel(4o2)

where B is also a matrix like A, but not necessarily
of the same order, nor necessarily square, This is
because the orders of the state vector x and of the

ing vector u are usually unequal,

-te

fore

T+t should be clearly pointed out that the

networks under shtudy are RLC networks. Thus for a
network containing negative resistances or time-

varying elements, the matrices HIT and Hz? are not

-

positive definite or semidefinite and the bound

<

on - given by equation (I.28)

min(mi,mz)fé ~x = max(

is no longer applicable. Such networks

. {
&




decomposed by the Murata method [i@]o

3

o the gignificance of the

jescribii

r).:

After

H

eigenvalues in chargcterising the network response,

* 4

the first chapber continued with a description of

-

cal btechnigues as used in stat able

ot
)
¢}
ck
P]
[
e

WV

:(D

r

studies of networks, It was shown that the

L}

calculation of the network response involves evaluati
of matrix functions, which is complicated by the
existence of zero eigenvalues, Thus if the A-matrix

hag zero eigenvalues, it is singular i.e. de

and the inverse

-1
A T =(Adjugate A)/deth

is undefined, Thus elimination of the zero elgenvalu

ig desirable, Next all the relevant equations which

describe network topology were derived, These equa
are used in later chapbters,and demonstrate The merit

-

ter closed

of the topological +technique., The chapt

with some results on non-zero eigenvalues, such as
! oy - 1 S - N 3 v 5 7 - e

bounds on theilr real and imaginary »arts.

Tn the second chapter some further expressions
Tor the real part o and the imaginary Dafu‘B of a
typical eigenvalue'ﬁ , were given explicitly in term
of the partitioned sta variable x { partitioned

into inductive link currents and capacitive twilg

voltages) and the matrices of

4.0

iomn

es

ions

pel




A
I

topological relationships. Consequences of the reallity
of an eigenvalue, its pure imaginariness, and iTs
being zero were derived and some topologlcal
interpretations were given,
In +the third chapter a +topological scheme for the
elimination of zero eigenvalues of the A-matrix was

The method is in the form of

o
)
o)
Q
i}
}_J-
]
®
o
3

fp A L4 N

vhich enable one to obtain,by inspection of the

graph of the network, elementary transformation matrice
Y . N
which reduce A and H to A and H, where the zero
. -T. . I I
eigenvalues of A = =N "H have been eliminated

r

The conditions under winich zero elgenvalues bceur,

their number, and their elimination have been studied, It

l_
e
)]
O

+

ermine like

D

would Dbe JJWﬂrly of interest
information fox pufe imaginary and for real eigenvaluége
Their elimination would then enable us to determine
envalues, and the reduction in ordex

involved would imply immense reduction in numerical

effort, It is quite possible that novel graph theoretical
techniques will be reguired. Consider the networlk helow

S VA ORI

£ iom - €




and two complex eigenvalues, The elgenequation is
RO O T T, ) 3(@ e \(T - )
o RC C, (L I+ LL 451 + 7 - V(L T, L3 440
2 g, a b 5/ DPAYT Yp/ita R
25 - TN [+

+p I (CW(TJ-H. /J—,’-Cﬂ“ (u-i-_[xb )) o+ P\'["a—E—T”Lb) + R = 0O,
Here we have a network with two pure imaginary
eigenvalues, and a topology and an exact equation
relating its element values, necessary bto assure us of

the pair of pure imaginary eigenvalues. An attempt was

made to relate this exact equation,l CA:LICﬂ, to the
a D D
topological matrices and graph theovebtic entities

already in general use in electrical network theory.

Under the condition LaC = Lbe, it was observed that the
LA ! }
ove quartic eigenequation factors into two eigen-—
equations,firstly,
2. -

d-(p) = pRL_C_+ p(L_+ I,) + R =0

1(p) = PR, O+ plTy+ p) T
which iz the eigenequation for the network below,which

is obtainable by short circuiting nodes B,D of the

original network
L’Q

Ly
Ca Cep
R
and secondly
: do(p)= p2(T.C_+ IO +LC.) + I = O
II- * a’a , b
which is the eilgenequation for the resistanceless

network below, which is obtainable by open cicuitin

-
G2




,l_
W

Ca L

Cy Ly
This shows That with certain topology, and certain

exact relationships between element values, we can

obtain a rezistanceless subnetwork which will possess

the pure imaginary eigenvalues, This wag in fact
observed by the auvthor for other networks with
different topology and a set of equgtions relating

)
®
o
d..

element values, More research is needed to arriv

{

eneral conditions for pure imgginary elgenvalues,

g

and for purely real ones,
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