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ABSTRACT 

This study is part of a multi-disciplinary research effort to better understand, document 

and optimize the operation of Rimer Alco North America’s Refuge One for the global 

mining industry. In this thesis, an experimental and numerical study of turbulent flow 

inside a Refuge One is undertaken to understand the flow characteristics through a 

Refuge One hopper, compare the predictive performance of five different turbulence 

models and optimize the flow through the Refuge One hopper to enhance its 

performance. The experimental study is performed using a particle image velocimetry 

technique for two Reynolds numbers 53,000 and 23,000, respectively. The numerical 

study is performed by solving the Reynolds-Averaged Navier-Stokes equations 

together with 𝑘 − 𝜀, RNG 𝑘 − 𝜀, 𝑘 − 𝜔, 𝑘 − 𝜔 based SST and Reynolds stress 

turbulence models using the commercial CFD code CFX 15.0. Flow optimization is 

performed for hoppers by choosing different hopper height and wall shape 

configurations and their performances are evaluated.  
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1 CHAPTER: INTRODUCTION 

1.1 Background and Motivation 

Mining accidents are accidents that occur during the process of mining minerals. Over 

the past century, mining accidents have resulted in the deaths of thousands of mine 

workers around the world mostly in coal and hard rock mining industries. International 

Labor Organisation estimates that just one percent of the world’s labour workforce is 

engaged in mining, while the industry accounts for five percent of on the job fatalities 

from mining accidents. 

One of history’s worst mining accidents took place in the Benxihu Colliery coal mine 

on April 26, 1942 in China where mine fires claimed the lives of 1,549 miners. Since 

then many countries have enforced strict regulations and enforcement standards to 

ensure safety of miners. Developed countries like the U.S. and Canada have 

acknowledged the risks from previous mining accidents that these mining accidents 

need not necessarily become human tragedies. The International Labor Organisation’s 

recent statistics show a significant decline in the rate of fatal injuries in the Canadian 

mining sector between 1998 and 2010, falling from 47.1 per 100,000 employees to 9.3 

per 100,000 employees, respectively (Marshall, 2013). One of the most recent mining 

accidents in Canada happened on April 6th, 2015 at Vale Canada mine in northern 

Manitoba, where an underground fire broke out with 39 miners trapped inside. A safety 

procedure was initiated and the miners were sent into multiple mine refuge stations to 

await rescue. Fortunately, within the next day mine rescue teams had accounted for all 

the 39 men and they were secured on surface. Despite this positive outcome, mining 

accidents seem too inevitable because they are dramatic and all too frequent reminders 

of the dangerous and uncertain conditions in which miners work. 
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Most underground mines are equipped with a ventilation system that draws fresh air 

into the mine to dilute and remove potentially dangerous gases and dust. However, the 

safety of miners can be threatened if the ventilation system fails to adequately ventilate 

the mine. In such circumstances, the miners trapped in underground mines without 

breathable air can find themselves at great risk of substantial injury or even death. To 

overcome this, mine refuge stations are built in underground mines. The purpose of 

mine refuge stations is to keep miners safe in case of mining accidents. Mine refuge 

stations comprise a chamber sized and shaped for multiple miner’s occupancy. In such 

chambers, oxygen supply is adapted to ensure supply of oxygen and carbon-dioxide 

reduction system is used to remove carbon dioxide in the chamber. These oxygen 

supply and carbon dioxide removal systems are operable in the mine refuge stations 

even without an electrical power source. 

Rimer Alco North America (RANA) is one of the global leaders in manufacturing and 

supply of mine refuge systems for the international mining industry. RANA supplies 

mine refuge systems to numerous international mining companies such as Vale, 

Goldcorp, HudBay, Glencore, Agnico Eagle Mines Limited and AuRico Gold. RANA 

has developed a mine safety device known as the Refuge One over 20 years ago. The 

development of Refuge One came about with the realization after a mining accident in 

Canada that it was not only important to have mine refuge stations but to have 

breathable air in the stations for a minimal period of time for mine rescue to reach the 

occupants. In 1995, RANA developed the award-winning Refuge One breathable air 

center and the mobile refuge chamber known as the Tommyknocker. The Refuge One 

is recognised both nationally and internationally. In September 1995, Refuge One 

received the top honour in the international field of applied research, the U.S.'s research 

and development award (R and D 100) and again in October 1996, Refuge One received 
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Canada's OHS innovative product award of excellence in occupational health and safety 

(Rimer Alco North America, 2010). 

The Refuge One provides breathable air to both permanent refuge chambers and mobile 

units, such as Tommyknockers. It is an independent system located inside mine refuge 

stations. The Refuge One is used to supplement oxygen flow at controlled rates and 

remove carbon dioxide from the air in enclosed space to maintain breathable air 

environment during mine emergency. To replenish oxygen consumed by the occupants, 

oxygen from high-pressure cylinders is injected at metered rate depending on the 

number of occupants and carbon dioxide is removed by passing the air in the rescue 

chamber through carbon dioxide scrubbers by means of blowers in the Refuge One. 

Some advantages of Refuge One are as follows: compressed air pipelines are eliminated 

as the air in the rescue chamber is processed by the unit, it does not require an external 

power source, it is portable and can be easily moved from one rescue chamber to 

another and it does not need any additional volume of space as the size of the refuge 

stations need to only accommodate the Refuge One and number of occupants. 

The major components of Refuge One are as follows: hopper, blower, chemical 

scrubber, battery, battery charger, chemical bed and oxygen valve. Figure 1.1 shows a 

photo of Refuge One. 



4 

 

 

Figure 1.1: A photo of Refuge One showing its main components with inset showing 

zoomed picture of hopper. 

Since the Refuge One was introduced 20 years ago, there has been little change in its 

design. Demand for RANA’s Refuge One is projected to increase in the near future 

because of the growing mining industry. Therefore, there is a need to redesign the unit 

for efficient manufacturability. There are also changed industry safety requirements 

specifying that the unit be designed in such a way that the unit’s battery life is extended 

to 96 hours from the current 36 hours. In addition, RANA has also received feedback 

from their customer base suggesting that the Refuge One be redesigned to incorporate 

new product features deemed important to their customers. Some of the important 

product features requested by their customers are: redundant blowers, carbon monoxide 

scrubbers, battery indicators and pre-packaged chemical cartridges. 

In order to meet the industry and customer demand, RANA initiated a collaborative 

research project with the University of Manitoba to better understand, document and 

optimize the operation of the Refuge One. The overall objective of this collaborative 

project is to provide a final design prototype of the Refuge One to RANA using design 

for six sigma define, measure, analyze, design and verify (DMADV) methodology. This 

Battery 

Battery 

charger 

Blower 

Hopper 

Chemical bed 
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multidisciplinary project involves optimal manufacturing process based on DMADV 

methodology and also analysis of fluid flow through the Refuge One. However, only 

the second part of this collaborative research which involves the fluid flow analysis and 

optimization through the Refuge One hopper will be presented in this study. 

One approach to perform fluid flow analysis through the Refuge One is to use an 

experimental method. Although experiments remain a powerful methodology in the 

study of fluid flows, design of optimal fluid engineering devices by experimental means 

alone is a daunting task partly because of the huge cost and time required to setup and 

perform refined measurements. An alternative approach is to use computational fluid 

dynamics (CFD) based numerical methods. CFD techniques are relatively less 

expensive and even complex fluid flow geometries can be explored more easily and 

quickly than is possible in physical experiments. Reynolds Averaged Navier-Stokes 

(RANS) technique is one of the popular CFD methods. RANS technique requires less 

computational effort than other numerical techniques such as direct numerical 

simulations and large eddy simulations, and is the method used for calculating most 

engineering fluid flows. However, the accuracy of RANS models depends on the choice 

of turbulence models. RANS models, if selected and applied properly with suitable 

turbulence models, offer engineers a highly attractive balance between computing 

resources and accuracy required for most industrial applications. Therefore, in this 

study it is proposed to employ a balanced approach which involves comprehensive 

experimental study and numerical analysis of fluid flow in the Refuge One hopper. The 

experiments will provide insight into the flow field and this knowledge base will guide 

the selection of appropriate numerical models. The benchmark experimental dataset 

will be used to validate the numerical results. Once the appropriate model is identified, 
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it will be used to perform optimization analysis on a wide range of hopper geometries 

with specific flow conditions to identify the optimal design. 

1.2 Objectives 

The main objectives of this study are as follows: (a) to perform experimental study of 

flow characteristics through the Refuge One hopper (b) to compare the experimental 

results with those of several turbulence models using RANS, in order to assess their 

predictive performance, and (c) to perform optimization of flow through the Refuge 

One hopper after selecting an appropriate turbulence model. 

The first objective is achieved by using a particle image velocimetry (PIV) system to 

conduct detailed whole-field velocity measurements of the fluid flow through Refuge 

One hopper. This experimental study will provide benchmark dataset to validate the 

numerical models. The second objective is achieved by using a commercial CFD code 

ANSYS® CFX 15.0 to numerically analyze fluid flow through the Refuge One hopper 

using different turbulence models available in CFX. The numerical results will be 

validated with the experimental dataset to select the most appropriate turbulence model 

that can accurately predict the experimental results. The third objective is achieved by 

numerical simulation of fluid flow through different hopper geometries using ANSYS® 

CFX 15.0 to identify the optimum design. 

1.3 Layout of the thesis 

A comprehensive literature review is presented in chapter 2. The literature review 

summarizes the most relevant experimental and numerical works on fluid flow through 

contractions. The experimental methodology used in the present study is described in 

chapter 3, and the numerical modelling is discussed in chapter 4. Results and 

discussions of the experimental and numerical works are presented in chapter 5. 
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Numerical optimization of hopper geometry is also presented in chapter 5, while 

conclusions and recommendations for future work are presented in Chapter 6.   
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2 CHAPTER: LITERATURE REVIEW 

The goal of this chapter is to summarize some of the relevant experimental and 

numerical studies from the extensive literature on fluid flow through contractions, 

followed by a summary of studies on optimization of contraction geometry. 

2.1 Background 

A hopper is a mechanical device with a converging section attached to a pipe. They are 

used to collect and facilitate the flow of substances entering through their larger opening 

and exiting through the attached pipe with a smaller opening. Depending on specific 

applications, hoppers may have pyramidal, conical or square taper surfaces connecting 

the fluid entry and exit sections. In Refuge One, conical hoppers are used to collect the 

flow passing through the chemical bed which has a rectangular cross section and 

accelerate the flow as it enters the blower connected at the circular exit of the hopper. 

There are two experiments that have been conducted in the past to study the efficiency 

of Refuge One (Grenier et al., 1993; Gardiner et al., 1994). The purpose of their 

experiments was to test the ability of Refuge One to provide volunteers with breathable 

air during a 24 hour period in the absence of compressed air. The experiments were 

simulated in a real life emergency situation. The major conclusions were that the 

Refuge One was able to keep the carbon dioxide at a safe level which is below 2,300 

ppm, and oxygen level within an acceptable range varying between 19.5% and 20.9%. 

This provided the volunteers with a breathable air environment for the entire 24 hour 

period. Furthermore, the volunteers also recommended that the unit was easy to operate 

and the instruction manuals were clear. However, the fluid flow characteristics through 

the Refuge One hoppers have not been investigated in detail to assess their effects on 

head losses. The efficiency of Refuge One can be improved significantly and its battery 

life increased by performing detailed experimental and numerical analysis to 



9 

 

understand how the hopper geometry and fluid flow conditions affect the losses through 

the Refuge One hoppers. This will help in selecting the optimal Refuge One hopper 

geometry under the most efficient flow conditions. 

2.2 Introduction 

Flows through contractions are an active area of research because of their diverse 

engineering applications such as heating, ventilation and air conditioning systems, 

polymer processes and nozzle designs. They are also used as pipe fittings to connect 

pipes with different diameters. Contractions are also important components of 

aerodynamic and hydrodynamic tunnels as they are used just before the test section to 

reduce turbulence levels as flow acceleration achieved in the contraction produces more 

uniform velocity profile at the inlet of the test section. However, for mixing applications 

higher turbulence levels through contraction may be more desirable. 

Gradual contractions have cross sectional area that slowly decreases, and this slowly 

increases the velocity of the flow as opposed to sudden contractions, where the flow 

velocity increases abruptly causing flow recirculation at the corners. Gradual 

contractions have Tapered or curved surfaces joining the fluid entry and exit locations. 

As shown in Figure 1.1, hoppers are gradual contractions with Tapered surfaces having 

industrial significance. There have been many studies on fluid flows through gradual 

contractions with curved surfaces as these type of contractions are generally used in 

wind and water tunnels. In addition, due to the simple geometry of sudden contractions, 

they have been regarded as a benchmark problem in fluid dynamics and there have been 

numerous studies investigating abrupt contraction fluid flows (Vrentas and Duda, 1973; 

Bullen, et al., 1987;  Hussain, 1990; Bullen, et al., 1996; Sanchez, et al., 2010; Ray, et 

al., 2012). In contrast, limited research has been undertaken to understand fluid flows 
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through contractions such as a hopper which is a type of contraction with Tapered 

surfaces.  

2.3 Previous works  

2.3.1 Experimental studies 

Over the years, extensive studies have been conducted to understand the flow 

characteristics through contractions. The availability of experimental data for fluid 

flows through contractions have both practical and theoretical importance. Practically, 

experimental data are needed to develop correlations in the design of contractions. 

Theoretically, data are needed to validate numerical simulations of fluid flows through 

contractions. Some of the pertinent experimental studies performed for fluid flows 

through contractions are summarized in Table 2.1. In Table 2.1, ReD is the Reynolds 

number based on upstream contraction diameter, Red  is the Reynolds number based on 

downstream contraction diameter and contraction ratio is defined as the ratio of inlet 

area to exit area of the contraction.  

Most of the experimental studies on fluid flows through sudden contractions are 

focused on measurement of velocity field, vortex dynamics and pressure drop. Durst 

and Loy (1985), used laser Doppler anemometry (LDA) to investigate laminar flows 

through a sudden contraction and their work presented data on the size of recirculation 

bubble, reattachment length, velocity profiles and pressure losses through the 

contraction region. Khezzar and Whitelaw (1988) used LDA and provided 

measurements for velocity and wall static pressure characteristics in a sudden 

contraction for upstream Reynolds number of 40,000. They reported the presence of 

vena contractra and wall pressure drop through the contraction. Bullen et al. (1987) 

experimentally studied sudden contraction pressure losses for a range of upstream 
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Reynolds numbers from 40,000 to 200,000. They found that pressure coefficient is 

inversely proportional to Reynolds number. In a more recent study, Bullen et al. (1996) 

used LDA technique for an upstream Reynolds number of 153,800 and showed 

formation of vena contracta in the downstream of the contraction and the location of 

the reattachment point. Ozalp et al. (2007) performed experiments using a particle 

image velocimetry (PIV) technique and reported contours of streamwise and wall-

normal mean velocities within the upstream of the contraction for upstream Reynolds 

numbers from 223 to 1,325. The most recent work on sudden contractions was 

performed by Sanchez et al. (2010). They used PIV technique to obtain velocity profiles 

in the streamwise and wall-normal direction along the upstream region of the 

contraction. They also studied flow patterns to observe the formation of vortex regions, 

and pressure coefficients were obtained for upstream Reynolds numbers from 17,000 

to 40,000. Their results showed that the vortex size decreased as Reynolds number 

increased. The experimental results were compared to numerical results obtained using 

standard 𝑘 − 𝜀 turbulence model. It was reported that standard 𝑘 − 𝜀  model was able 

to predict the mean velocities and pressure coefficient reasonably well, however 

discrepancies in maximum velocities near the contraction were observed. Some 

relevant works in sudden contraction fluid flows dealing with non-Newtonian fluids 

(Boger, 1987; Fester, et al., 2008 and Sousa et al., 2011) and multiphase fluids (Jansen, 

1966; Gnglielmini, et al., 1986; Schmidt and Friedel, 1977 and Roul and Dash, 2008) 

have also been reported. 

The early studies on fluid flows through gradual contractions were initiated by 

researchers interested in wind tunnel designs. Uberoi (1956) investigated the effect of 

contraction on free stream turbulence using hot wire probes for contraction ratios of 4, 

9 and 16. The results showed that the streamwise component of turbulence intensity 
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decreased and the wall-normal component increased as the flow passed through the 

contraction. Hussain and Ramjee (1976a) investigated the effects of four different 

axisymmetric shapes with contraction ratio of 11.1. They measured mean and turbulent 

velocity profiles before and after contraction using hot wire anemometers. They found 

that mean velocities and wall-normal turbulence intensities in the core region at the exit 

plane are unaffected by the contraction shape. In most of the measurements, the 

streamwise turbulence first decreased before increasing downstream of the contraction. 

In another study by Hussain and Ramjee (1976b), the effect of contraction ratio on free 

stream turbulence was investigated. They found that exit turbulence is independent of 

initial turbulence produced by grids placed upstream of the contraction. The streamwise 

turbulence intensity decreased through the contraction with increasing contraction ratio, 

the decrease being larger for higher contraction ratios. Prinos and Goulas (1993) 

investigated turbulent pipe flow with a gradual contraction using LDA and hot wires 

along the downstream and upstream of the contraction for upstream Reynolds numbers 

of 100,000 and 150,000. They found that there was a weak dependence of flow 

characteristics on Reynolds numbers investigated. The results were compared to 

standard 𝑘 − 𝜀 model and low Reynolds number 𝑘 − 𝜀 model of Launder and Sharma 

(1974). Both turbulence models reasonably predicted the mean velocities, however 

discrepancies were observed for turbulence kinetic energy. In a more recent study by 

Han et al. (2005), hot wires were used to measure turbulence statistics along the center 

line of the contraction. They reported that contraction reduced the streamwise 

components of turbulence and amplified the wall-normal components.  
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Table 2.1: Summary of the previous experimental studies 

Author (s) Reynolds 

number (s) 

Technique 

(s) 

Contraction 

type 

Contraction 

ratio (s) 

Quantities 

measured 

Khezzar 

and 

Whitelaw 

(1988) 

ReD = 

40,000 

LDA Sudden 2.5 U, V, u, v 

and Cp 

Bullen et 

al. (1987) 

ReD = 

40,000 - 

200,000 

- Sudden 1.4, 1.9, 2.4, 

3.3, 4.8 and 

7.4 

kc 

Bullen et 

al. (1996) 

ReD = 153, 

800 

LDA Sudden 3 U, V, u, v, 

u2, v2 and kc 

Ozalp et 

al. (2007) 

ReD = 223, 

336, 880 

and 1,325 

PIV Sudden 16 U, V, Ω and 

u 

Sanchez et 

al. (2010) 

ReD = 

17,000 - 

40,000 

PIV Sudden 3.8 U, V, ∇P 

and Kc 

Uberoi 

(1956) 

Rem = 6,150 

and 12,300 

(based on 

mesh length 

of grid) 

Hotwire Gradual 4, 9 and 16 U, V, u, v, 

u2 and v2 

Hussain 

and 

Ramjee 

(1976a) 

Red = 

140,000 

Hotwire Gradual 11.1 U, u, v, u2, 

v2, δ*, 𝜃 

and H 

Hussain 

and 

Ramjee 

(1976b) 

Red = 

73,000 - 

140,000  

Hotwire Gradual 11, 22, 44.5, 

64 and 100 

U, u, v, u2, 

v2 and 𝜃 

Prinos and 

Goulas 

(1993) 

ReD = 

100,000 - 

150,000 

LDA and 

hotwire 

Gradual 4.1 U, u, v, u2, 

v2, Cp and 

Cf 

Han et al. 

(2005) 

 Re = 3,400 

(based on 

grid size) 

 Hotwire Gradual 11.3 U, u, v, u2 

and v2 
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2.3.2 Numerical studies 

It is recognized that turbulent flows contain a wide range of length and time scales. 

Therefore, the accuracy of numerical simulation increases if it can resolve all the scales 

of turbulence in a fluid flow. Direct numerical simulation (DNS) is a numerical 

technique that solves the exact fluid flow equations without introducing a turbulence 

model. In DNS, the whole range of turbulent scales is resolved. However, this incurs a 

huge computational cost, and cannot compute complex geometries and high Reynolds 

number engineering fluid flows. The application of large eddy simulations (LES) which 

resolves the highly energetic large scales and models the small scales of turbulence is 

also limited to relatively simple geometries because LES also requires fine grids to 

resolve the small scales compared to Reynolds-averaged Navier-Stokes (RANS) 

technique (Celik, 2005). Thus, the most popular numerical approach in CFD for 

turbulent flows of engineering importance is the RANS technique owing to its less 

computational cost, robustness and reasonable predictive accuracy.  

The ability to correctly predict turbulent flows for complex geometries easily and 

quickly has made RANS technique a valuable tool in the design of many fluid 

engineering systems. In addition, numerical simulation of engineering fluid flows can 

provide very detailed information about the performance of complex fluid engineering 

systems at a much lower cost in comparison to physical experiments. However, there 

are many factors influencing the predictive performance of numerical models. One of 

the critical factors that determines the predictive accuracy of numerical simulations is 

the selection of turbulence models. Therefore, considerable effort has been made in the 

development of turbulence models by many researchers (Hanjalic, 1994; Hwang and 

Jaw, 1998; Gatski and Rumsey, 2002; Leschziner, 2006). As indicated by Hanjalic 

(1994), the complexity of turbulence models vary from the simple algebraic models 
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through two-equation eddy-viscosity models to second moment closures. The two-

equation models use eddy viscosity hypothesis which relates Reynolds stresses to the 

mean velocity gradients and turbulent viscosity. Turbulent viscosity is computed as the 

product of turbulent velocity scale and length scale as proposed by Prandtl and 

Kolmogorov and discussed in Pope (2000). By definition, two-equation models use two 

extra transport equations to represent the turbulent flow properties. Mostly, turbulent 

kinetic energy (𝑘) is one of the transport variables and the second transport variable 

depends on the type of two equation model. The turbulent velocity scale is computed 

from, 𝑘, which is obtained from the solution of its transport equation. The turbulent 

length scale is computed from, 𝑘, and the second transport variable. The second 

moment closure differs from the two equation models because it solves all the 

independent components of the Reynolds stress tensor, and does not invoke the eddy 

viscosity concept. Detailed description of various turbulence models can be found in 

Wilcox (1994). Some of the pertinent numerical studies performed for fluid flows 

through contractions are summarized in Table 2.2, where the parameters ReD, Red, and 

contraction ratio have the same meaning as described earlier. 

The standard 𝑘 − 𝜀 model proposed by Launder and Spalding (1974) has been 

extensively used for predicting fluid flows through gradual and sudden contractions 

because of its robustness, vast validation and reasonable accuracy. Hussain (1990) 

numerically simulated fluid flow through a sudden contraction for upstream Reynolds 

number of 153,800. He concluded that 𝑘 − 𝜀 model was able to reasonably predict the 

mean velocities; however, significant discrepancies were observed close to the wall 

downstream of the contraction. Sanchez et al. (2010) also used 𝑘 − 𝜀 model to predict 

fluid flow through a sudden contraction and concluded that this model was capable of 

reproducing the mean velocity with a reasonable accuracy. However, according to 
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Prinos and Goulas (1993), the 𝑘 − 𝜀 model with a standard wall function may have 

difficulty predicting skin friction values for gradual contraction flows accurately 

compared to turbulence models that have enhanced wall treatment capability. 

Unfortunately, there were no comparisons made with experimental data. 

The Re-Normalization (RNG) 𝑘 − 𝜀 model developed by Yakhot et al. (1992) has also 

been used to predict fluid flows through contractions. In comparison to standard 𝑘 − 𝜀 

model, the RNG 𝑘 − 𝜀 model takes into account the effect of small scale motions and 

low-Reynolds number effects. The RNG 𝑘 − 𝜀 model has been suggested to offer 

improved accuracy over standard 𝑘 − 𝜀 turbulence models for fluid flows with 

significant streamline curvature. Yassen and Abdelhamed (2015) simulated fluid flows 

through wind tunnel consisting of a gradual contraction using the RNG 𝑘 − 𝜀 model 

and obtained satisfactory agreement with the experimental data.  

The 𝑘 − 𝜔 model of Wilcox (1986) is more accurate and numerically stable in the near 

wall region than the standard 𝑘 − 𝜀 model. Ahmed and Eljack (2014) used 𝑘 − 𝜔 model 

to analyze and optimize fluid flow through a three dimensional wind tunnel contraction. 

Also, Mathew (2006) used 𝑘 − 𝜔 model to analyze fluid flow through a gradual 

contraction and found that the model was able to satisfactorily predict flow separation 

through the contraction.  

The 𝑘 − 𝜔  based shear stress transport (SST) model of Menter (1994) has also been 

widely used in predicting fluid flows through contractions because it combines the 

advantages of 𝑘 −  𝜀 and 𝑘 − 𝜔 model to achieve an optimal model formulation for a 

wide range of flow conditions. Wexler (2014) used the 𝑘 − 𝜔 based SST, Spalart-

Allmaras, 𝑘 −  𝜀 and 𝑘 − 𝜔 models to predict the velocity downstream of a gradual 

contraction. By comparing the numerical and experimental results, it was concluded 
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that all the four turbulence models satisfactorily predicted the mean features of the flow, 

however, 𝑘 − 𝜔 based SST model had a better predictive performance. Many existing 

studies on fluid flow optimization through gradual contractions have used 𝑘 − 𝜔 based 

SST model (Sargison et al., 2004; Clark, 2010; Bouriga et al., 2014; Abdelhamed et al., 

2014). 

Reynolds stress model (RSM) model developed by Launder et al. (1975) is a more 

sophisticated model that abandons the hypothesis of isotropic turbulence and solves the 

transport equations for the Reynolds stresses together with the equation for the 

dissipation rate. Although the complexity of RSM gives it a larger potential to cope 

with complex flows than two equation models, the accuracy of RSM is limited by the 

assumptions related to several terms in the transport equations which often is 

considered responsible for degrading the accuracy of numerical simulations predicted 

by RSM. Notwithstanding the complexity, RSM have been used to predict fluid flows 

through contractions. Mattos et al. (2003) used RSM model to predict the flow field 

through wind tunnel contractions. Yu et al. (2012) compared the predictive 

performances of 𝑘 −  𝜀, RNG 𝑘 −  𝜀, 𝑘 − 𝜔, 𝑘 − 𝜔 based SST and RSM models in the 

context of fluid flow through a nozzle which is a type of a gradual contraction. They 

showed that all the turbulence models satisfactorily predicted the mean velocities, 

however discrepancies were observed for turbulence quantities. Among all the 

turbulence models, 𝑘 − 𝜔 based SST model and RSM reasonably predicted the 

turbulence statistics, however compared to experimental results only RSM model 

captured the peak value of the streamwise turbulent intensity near the wall.  
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Table 2.2: Summary of the previous numerical studies 

Author (s) Reynolds 

number (s) 

Numerical 

Model (s) 

Contraction 

type 

Contraction 

ratio (s) 

Hussain (1990)  ReD= 153,800 𝑘 −  𝜀 Sudden 3 

Sanchez et al. 

(2010) 

ReD = 17,000 - 

40,000 
𝑘 −  𝜀  Sudden 3.8 

Prinos and Goulas 

(1993) 

ReD = 100,000 - 

150,000 
𝑘 −  𝜀  Gradual 4.1 

Yassen and 

Abdelhamed 

(2015) 

- RNG 𝑘 −  𝜀 Gradual 1.63, 2.54, 

2.82, 3.14 

and 5.19 

Ahmed and Eljack 

(2014) 

Re = 1,300,000 

(based on test 

section height) 

Spalart-

Allmaras 

and 𝑘 − 𝜔 

Gradual 9 

Mathew (2006) Red = 4,400,000  𝑘 − 𝜔 Gradual 8, 10, 12 and 

16 

Wexler (2014) ReD = 10,000,000 Spalart-

Allmaras,   

𝑘 −  𝜀, 𝑘 −
𝜔 and SST 

Gradual 12.25 

Sargison et al. 

(2004) 

Re = 30,000 

(based on test 

section width) 

SST Gradual 5.3 

Abdelhamed et al. 

(2014) 

Reϴ = 2,169 and 

2,774( based on 

momentum 

thickness at exit) 

SST Gradual 3.5 and 6.25 

Bouriga et al. 

(2014) 

Reϴ = 5,000 

(based on 

momentum 

thickness at exit) 

SST  Gradual 9 

Yu et al. (2012) Red=50,000 𝑘 −  𝜀, 

RNG 𝑘 −
 𝜀, 𝑘 − 𝜔, 

SST and 

RSM 

Gradual 25 
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2.4 Previous works on optimization of contractions 

As mentioned earlier, contractions are one of the critical components of wind tunnels 

as they are used to accelerate the flow. This in turn increases the velocity in the test 

section, improves flow uniformity and reduces the turbulence levels. Because of their 

importance, there have been numerous studies on optimization of contraction 

geometries. In the absence of separation within contractions, the flow can be adequately 

represented by Laplace equations for the stream function leading to analytical design 

of contractions with arbitrary shapes (Tsein, 1943; Szczenioeski, 1943; Smith and 

Wang, 1944; Thwaites, 1946). Some of these earlier methods of contraction design have 

been verified experimentally. For example, Tulapurkara (1980) experimentally studied 

Thwaite’s method of contraction design and found satisfactory agreement with the 

literature.  

As digital computers became widely available, alternative methods of contraction 

designs were possible by computing flow field as part of the contraction designs. For 

these studies, the most widely used design specifications for optimization of 

contractions were as follows: flow uniformity at contraction exit, avoidance of flow 

separation inside the contraction, minimum contraction length, and minimum exit 

boundary layer thickness. Morel (1975) carried out a study aimed at providing design 

guidelines and charts for axisymmetric contractions. He numerically simulated fluid 

flows inside contractions by specifying the contraction shapes. The contours of the 

contraction were obtained by two power law arcs joined smoothly together at specified 

inflection points. Finite difference solutions of the Euler equations were used to produce 

the design charts that defined contraction lengths and position of inflection points in 

terms of allowable adverse pressure gradient and desired flow uniformity. In another 

study, Morel (1977) carried out an inviscid fluid flow analysis of the maximum wall 
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pressure coefficients at inlet and exit of contractions by assuming a family of wall 

shapes made from two blended arcs. Mikhail (1979) proposed the optimum design of 

contractions defined to be the shortest length that avoids flow separation and has 

uniform exit flow. Bell and Mehta (1989) used three dimensional flow code adapted for 

internal fluid flows to optimize polynomial contraction curves and the results indicated 

that for a fifth order polynomial curve fit and a contraction ratio of 7.7, flow separation 

occurred for length to height ratios below 0.67 and above 1.79. They also observed that 

flow uniformity increased with increasing contraction length as the radius of curvature 

decreased. However, flow separation occurred for large contraction lengths by the 

effects of boundary layer thickening. Tulapurkara and Bhalla (1988) used Morel’s 

contraction design method to design and test two contractions with contraction ratios 

3.5 and 12. The measured values of boundary layer and flow uniformity were smaller 

than values predicted by Morel (1977). Fang (1997) extended Morrel’s procedure to 

three dimensional square to square contraction case and developed a series of design 

charts. In addition, there are many other studies that have used Morel’s design 

guidelines to optimize fluid flows through contractions (Fang et al., 2001; Mattos et al., 

2003; Clark, 2010). Sargison et al. (2004) designed a two dimensional contraction using 

a sixth degree polynomial for a wind tunnel with a square working section. They 

observed that the flow quality improved by placing the inflection point as far 

downstream as possible. Ahmed and Eljack (2014) and Javed and Ali (2014) also used 

the sixth order polynomial to optimize their contraction shape. However, the location 

of inflection point was placed at the middle of the contraction by Ahmed and Eljack 

(2014) for their contraction design. 
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2.5 Summary 

As discussed above, there are both practical and fundamental motivations to understand 

the characteristics of turbulent flows through contractions. In this chapter, the relevant 

experimental and numerical studies on fluid flows through contractions are reviewed. 

The effects of contraction on pressure losses, mean velocities and turbulence statistics 

have been studied extensively for sudden contractions and contractions with curved 

surfaces used for wind tunnel applications. The numerical studies showed the accuracy 

of RANS turbulence models to predict the mean velocity and turbulence characteristics 

for configuration of fluid flows through contractions. However, only a few studies have 

explored the flow characteristics through Tapered contractions such as a hopper. There 

has been a number of studies on optimization of contraction geometry for wind tunnel 

designs based on predefined design criteria. However, very few of them offer concrete 

and direct design information.  
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3 CHAPTER: EXPERIMENTAL SETUP AND MEASUREMENT 

PROCEDURE 

In this chapter, an overview of the PIV system is presented. Also detailed description 

of the experimental setup, descriptions of the measurement procedure, test conditions, 

and measurement uncertainty are presented in this chapter. 

3.1 Principles of PIV 

The velocity measurements is obtained using a PIV system. The PIV is a non-intrusive 

velocity measurement technique that can provide instantaneous whole field velocity 

measurements. Because of its attractive features, PIV has been applied in numerous 

areas of fluid mechanics research. For this study a planar PIV is employed and therefore 

the principles of a planar PIV are outlined, and its various components are described. 

A schematic setup for a planar PIV system is shown in Figure 3.1. The setup consists 

of a laser with generator (light source), charged couple device (CCD) camera (image 

recording device), test section with flow seeded with seeding particles, synchronizer 

for synchronisation of the camera and laser pulses, and computer system to store the 

digital images and post process the data. In the subsequent section the working principle 

of PIV is presented. 
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Figure 3.1: Schematic of a planar PIV system. 

3.1.1 Planar PIV 

The basic principle of PIV is based on seeding the flow with seeding particles that are 

assumed to follow the flow faithfully. A double pulsed laser is used to illuminate the 

seeding particles. The light emitted by the illuminated seeding particles is captured on 

a photographic film or with a CCD camera. The camera takes two snapshots of the flow 

within a short time interval which is known as the time between the laser pulses, Δ𝑡. 

The images captured are divided into grids of small areas known as interrogation area 

(IA). For each IA, a numerical correlation algorithm is applied to statistically determine 

the displacement vector (Δ𝑠) of the seeding particles from the two image pairs. The 

velocity field, v for each IA is determined from the expression v = Δ𝑠 Δ𝑡⁄  . The velocity 

field for the entire area is determined by repeating this for all the IA over the two image 

pairs. From the instantaneous velocity field, other flow quantities such as velocity 

gradients, vorticities and terms in the transport equations for the turbulent kinetic 

Seeding 
particles 

Laser 

CCD camera 

Light sheet 

Synchronizer 

Laser Generator 

Computer 
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energy and Reynolds stresses can be determined. The subsequent sections give 

descriptions of the characteristics of the seeding particles, the light source and the 

recording medium used in a typical planar PIV. 

 Seeding particles 

Since PIV measures velocity of seeding particles not the fluid velocity it is essential to 

ensure that the particles follow the flow faithfully. Some of the important characteristics 

of seeding particles are as follows: the particles should be small enough to follow the 

flow faithfully but large enough to scatter sufficient light for them to be detected by the 

camera and the particles must be distributed homogenously. In addition, the seeding 

particles must have important hydrodynamic properties such as negligible settling 

velocity and settling time. The settling velocity can be estimated from Strokes drag law 

for flow around a sphere under gravity and is given by Mei et al. (1991), 

 
𝑣𝑠  =  

(𝜌𝑝 − 𝜌𝑓)𝑔𝑑𝑝
2

18𝜇𝑓
 

(3.1) 

where 𝜌𝑝 is the particle density, 𝜌𝑓 is the fluid density, 𝑔 is the acceleration due to 

gravity, 𝑑𝑝 is the diameter of the particle and 𝜇𝑓 is the viscosity of the fluid. The settling 

velocity can be reduced by using a seeding particle with smaller diameter and density 

similar to that of the working fluid.  

The ability of particles to follow the flow is characterized by their response time. The 

response time of seeding particles gives a measure of the tendency of the particles to 

attain velocity equilibrium with the fluid. The response time for the particles is given 

by Raffel et al. (1998), 
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𝜏𝑟  = 𝜌𝑝

𝑑𝑝
2

18𝜇𝑓
 

(3.2) 

The seeding particles must also be good at scattering light to ensure that they are visible 

to the CCD sensor (Willert and Gharib, 1991). The particle size and shape, the refractive 

index and wavelength of radiation are factors that affect the light scattered by the 

particles. There are different seeding particles available for use depending on the type 

of flow that needs to be visualized. Some of the most widely used particles for liquids 

are polyamide seeding particles, silver coated hollow glass spheres, hollow glass 

spheres, polystyrene latex and fluorescent polymer particles. 

 Light source 

The light source for the PIV must have very high intensity to illuminate the seeding 

particles so that the scattered light can be captured by the camera. For a planar PIV, the 

plane of light sheet is usually in the direction of the flow and the camera is mounted at 

a right angle to the laser plane. Frequency doubled neodymium-yttrium-aluminium-

garnet (Nd:YAG) lasers are commonly used for PIV measurements because they 

provide monochromatic light with very high illumination. The light emitted by the laser 

is passed through the lens system to create a plane sheet of light to illuminate the region 

of interest. The length and width of the light sheet can be adjusted to the required field 

of view.  

 Recording medium 

The CCD camera is the most widely used recording device for PIV. There are many 

advantages of CCD camera over photographic films. Some of the advantages of CCD 

camera are as follows: higher frame rates, possibility of on-line image analysis and 

higher resolution of pictures. The CCD camera has a major component called the CCD 

sensor which consists of an array of detectors called pixels. For PIV, the CCD chips 
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used in such cameras are high performance progressive scan interline type. These chips 

consist of an array of photographic cells that acquire the first image when the first laser 

pulse is triggered and then transfer this image to the storage cells. This allow the 

photographic cells to store the second image when the second laser pulse is triggered. 

Then the first and second images which are stored in the storage and photographic cells 

are sequentially transferred from the camera to the computer storage system. This 

allows the CCD camera exposure interval to be less than one microsecond.  

3.2 Experimental setup 

The experiments are conducted in the test facility shown in Figure 3.2. The facility is 

built and assembled at the University of Manitoba. The facility consists of a flow 

conditioning unit, Refuge One hopper supplied by RANA, circulating pump and piping, 

supporting framework, laser and CCD camera. The flow conditioning unit is 667 mm 

long, 309 mm wide and 300 mm deep. The unit contains series of sieves to break down 

large scale turbulence and straighten the flow prior to entering the hopper. Although 

the Refuge One uses air as the working fluid, water is used in the present facility for 

convenience.  
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Figure 3.2: Experimental setup. 

3.3 Test section 

The test section is fabricated from a hopper of Refuge One. A picture of the Refuge 

One hopper is shown in Figure 3.3. The hopper is made from fiber glass. It has 

rectangular inlet which is 495 mm long, 195 mm wide, and height (h) of the hopper is 

215 mm. The inlet section of the hopper transitions into a circular cross section at the 

exit plane with a diameter, d = 82 mm. The resulting contraction ratio is 18. A quarter 

of the hopper’s symmetric section is cut and replaced with a transparent clear acrylic to 

facilitate velocity measurements using a PIV. The acrylic section is joined with the 

hopper by screwing it onto an aluminium metal plate. Polyurethane adhesive is used to 

seal any openings to ensure that the test section is water tight. During fabrication of the 

hopper, polyurethane adhesive used to seal the hopper exit connecting to a pipe 

prevented optical access at the exit. Figure 3.3 shows the modified hopper used to 

conduct the PIV measurements. A schematic of the test section with the transparent part 

represented by dotted lines is shown in Figure 3.4. The Cartesian coordinate system 
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adopted has the origin of the streamwise distance (x = 0) at the inlet and the origin of 

the wall-normal distance (y = 0) at the mid-section of the hopper. 

 

Figure 3.3: Hopper test section before (a) and after modification (b) 

 

Figure 3.4: Schematic drawing of hopper test section. 

3.3.1 Measurement procedure 

A PIV is used to conduct velocity measurements in the x-y plane located at the mid-

span of the test section. In the present study, the working fluid (i.e. water) is seeded 

with 10 µm silver coated hollow glass spheres having specific gravity of 1.4. The 

settling velocity of the particles is estimated from Equation (3.1) to be 0.22 µm/s, which 

is significantly smaller than the velocity of the flow. Also, the response time of the 

seeding particles is estimated from Equation (3.2) to be 7.76 µs. The settling velocity 

and the response time show that the seeding particles follow the flow faithfully. 

(b) (a) 

y 
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An Nd-YAG double pulsed laser with pulse energy of 120 mJ/pulse that emits a green 

light at a wavelength of 532 nm is used to illuminate the flow field. Because a quarter 

part of the test section is made with acrylic material the laser is shot from the side of 

the test section through the transparent part. The light sheet is aligned with the mid-

section of the hopper. The scattered light from the seeding particles is captured by a 12-

bit HiSense 4M CCD camera with 2048 pixels × 2048 pixels CCD array size and 7.4µm 

pixel pitch. The camera is fitted with 60 mm AF Micro Nikkor lens. The images 

captured are stored on a hard disk. The field of view of the camera is set to 108 mm × 

108 mm in the x-y plane. Four different measurement planes (P1-P4) are used to map 

out the transparent quarter of the flow domain as shown in Figure 3.5. 

 

Figure 3.5: Measurement planes (P1-P4). 

Based on a preliminary convergence test, a sample size of 6000 instantaneous image 

pairs are acquired in each plane. The 6000 image pairs used in the present study are 

substantially greater than 1047 image pairs used by Sanchez et al. (2010), for example, 

to compute the mean velocities in sudden contraction flows. The instantaneous images 

are post processed using the adaptive correlation and moving average validation options 

of the commercial software Dynamic Studio version 3.41 developed by Dantec 

Dynamics Inc. The IA size for the adaptive correlation is set to 64 pixels × 64 pixels 

with 50 % overlap in both the x and y directions. The adaptive correlation uses a multi-
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pass fast Fourier transform cross-correlation algorithm to determine the average particle 

displacement within the interrogation area. A three point Gaussian curve fit is used to 

determine particle displacement with subpixel accuracy. The moving average validates 

or rejects vectors based on a comparison between neighbouring vectors. The rejected 

vectors are then replaced by vectors estimated from surrounding values. The particle 

image diameter is estimated to be dp = 1.61 pixels, a value that is close to the 

recommended optimum value of dp = 2 pixels recommended by Raffel et al. (1998) to 

avoid peak locking. 

3.4 Test conditions 

As mentioned earlier, water is used as the working fluid instead of air for convenience. 

However, the concept of Reynolds number similarity is employed to minimize any 

effect of Reynolds number on the mean and turbulence statistics that may arise from 

differences in working fluid used. Upon consultation with RANA engineers, it is found 

that the operating flow rate of the blower used in the Refuge One is 0.0519 m3/s which 

results in Reynolds number based on the maximum exit velocity of air (Umax = 9.83 

m/s) and exit diameter of the hopper (d = 0.082 m), Red = 53,000. Following Reynolds 

number similarity, the equivalent flow rate and maximum exit velocity when water is 

used as working fluid are Q = 0.0034 m3/s and Umax = 0.65 m/s, respectively. Therefore, 

the experiment is performed at Q = 0.0034 m3/s and Red = 53,000. Another experiment 

is conducted at a flow rate of 0.0015 m3/s and Red = 23,000 to investigate any possible 

effects of Reynolds number on the flow characteristics. For simplicity, the experiments 

conducted at Red = 53,000 and 23,000 are hereafter referred to as Red-53 and Red-23 

respectively. The corresponding maximum exit velocities for test conditions Red-53 and 

Red-23 are Umax = 0.65 m/s and 0.28 m/s, respectively.  
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3.5 Measurement uncertainty 

The measurement uncertainty is performed following the guidelines of AIAA standard 

described by Coleman and Steele (1995). The total error is defined as the sum of bias 

and precision errors. Bias error is the systematic error and the precision error 

contributes to the scatter of the data. Detailed procedure for calculating the bias and 

precision errors for PIV measurements is described by Prasad et al. (1992) and Forliti 

et al. (2000). Therefore, this will not be repeated here. On the basis of the size of the 

interrogation area and Gaussian fit curve used to calculate the instantaneous vector 

maps, which are then used to calculate the mean velocities at 95% confidence level, the 

uncertainties are estimated to be ±2%, ±4% for U and V, respectively, in the near wall 

region. The uncertainties in the turbulence intensities and Reynolds stress are, 

respectively, estimated to be ±7%, ±10% of the peak values.  
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4 CHAPTER: NUMERICAL PROCEDURE AND MODELLING 

This chapter presents a description of the governing equations, the various turbulence 

models (𝑘 − 𝜀 model, RNG 𝑘 − 𝜀 model, 𝑘 − 𝜔 model, 𝑘 − 𝜔 based SST model and 

Reynolds stress model (RSM)) and numerical procedure used to perform numerical 

modelling of flow through the Refuge One hopper using a commercial CFD code 

ANSYS CFX 15.0.  

4.1 Governing equations 

The RANS equations for continuity and momentum conservation for a three-

dimensional steady state incompressible turbulent flow can be written as: 

 𝜕𝑈𝑗

𝜕𝑥𝑗
= 0    

(4.1) 

 𝜕

𝜕𝑥𝑗
(𝜌𝑈𝑗𝑈𝑖) =  − 

𝜕𝑃

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(𝜇

𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝜌𝑢𝑖𝑢𝑗)     

(4.2) 

where 𝑈𝑗 and 𝑢𝑖 denote the mean and fluctuating velocity components in the 𝑥𝑖 

direction, 𝜌 is the density, 𝜇 is the dynamic viscosity, 𝑃 is the pressure and 𝑢𝑖𝑢𝑗 is the 

Reynolds stress tensor.  

As a result of averaging, the Reynolds stress tensor 𝑢𝑖𝑢𝑗 appears in the above set of 

governing equations. The tensor is symmetric and it represents correlation between 

fluctuating velocities. It is an additional term due to turbulence and it is unknown, 

therefore, the appearance of Reynolds stress tensor introduces a closure problem. That 

is, the number of unknowns (a total of ten unknowns comprising three velocity 

components, pressure and six independent stresses from the Reynolds stress tensor) is 

larger than the number of equations (continuity and momentum). There is a need for 
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additional equations that relate the Reynolds stress tensor to known quantities; 

however, no such equations exits. Closure of Equation (4.2), therefore, requires 

modelling of the unknown Reynolds stress tensor. Various turbulence models have 

been developed to represent the Reynolds stresses in terms of the mean flow quantities 

and some turbulence parameters.  

4.2 Turbulence modelling 

In this study, five turbulence models are used. These include four two-equation 

turbulence models, and one Reynolds stress model. The two-equation models are the 

𝑘 − 𝜀  model developed by Launder and Spalding (1974), RNG 𝑘 − 𝜀 model by Yakhot 

et al. (1992), 𝑘 − 𝜔 model by Wilcox (1986) and 𝑘 − 𝜔 based SST model by Menter 

(1994). The Reynolds stress model is the 𝜀 based second moment closure model 

developed by Launder et al. (1975). In the following sections, a brief overview of the 

turbulence models is presented. 

4.2.1 Eddy viscosity based models 

For the two-equation turbulence models used in this study, the Reynolds stresses are 

linearly related to the mean rate of strain by eddy viscosity as follows: 

−𝜌𝑢𝑖𝑢𝑗 = 𝜇𝑡 (
𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
) −

2

3
 𝜌𝛿𝑖𝑗𝑘        

 (4.3) 

where 𝜇𝑡  is the eddy viscosity, 𝛿𝑖𝑗 is the Kronecker delta and 𝑘 is the turbulent kinetic 

energy. In the solution of the model equations, the pressure is the thermodynamic 

pressure plus 
2

3
 𝜌𝛿𝑖𝑗𝑘. The 𝑘 − 𝜀 model, RNG 𝑘 − 𝜀 model, 𝑘 − 𝜔 model and 𝑘 − 𝜔 

based SST turbulence models are briefly summarized below. 
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 The 𝒌 −  𝜺 model 

The 𝑘 − 𝜀 model consists of the following two transport equations for the turbulent 

kinetic energy, k, and its dissipation rate, 𝜀, given by: 

 𝜕

𝜕𝑥𝑗
(𝜌𝑈𝑗𝑘) =

𝜕

𝜕𝑥𝑗
((𝜇 +

𝜇𝑡 

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
) + 𝑃𝑘 − 𝜌𝜀 

(4.4) 

 𝜕

𝜕𝑥𝑗
(𝜌𝑈𝑗𝜀) =

𝜕

𝜕𝑥𝑗
((𝜇 +

𝜇𝑡 

𝜎𝜖
)

𝜕𝜀

𝜕𝑥𝑗
) +

𝜀

𝑘
(𝐶𝜀1𝑃𝑘 − 𝐶𝜀2𝜌𝜀) 

(4.5) 

where the production term, 𝑃𝑘 is: 

 
𝑃𝑘 = 𝜇𝑡 (

𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
 )

𝜕𝑈𝑖

𝜕𝑥𝑗
 

(4.6) 

and the eddy viscosity is computed using  𝜇𝑡 =  𝐶𝜇𝜌𝑘2/𝜀. The 𝑘 − 𝜀 model constants 

are as follows: 𝐶𝜀1 = 1.44, 𝐶𝜀2 = 1.92, 𝜎𝑘 = 1.0, 𝜎𝜖 = 1.3 and 𝐶𝜇 = 0.09. 

 The RNG 𝒌 −  𝜺 model 

The RNG 𝑘 − 𝜀 model is developed using re-normalisation group (RNG) methods to 

renormalize the Navier-Stokes equations to account for the effect of smaller scales of 

turbulence. Compared to the 𝑘 − 𝜀 model, the RNG 𝑘 − 𝜀 model calculates the model 

constants explicitly and contains additional terms in the transport equations. The RNG 

approach has a similar transport equation for turbulent kinetic energy but has a modified 

transport equation for the dissipation rate, which attempts to take into account the 

different scales of turbulence through changes to the production term. The modified 

form of the 𝜀 equation is given by: 
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 𝜕

𝜕𝑥𝑗
(𝜌𝑈𝑗𝜀) =

𝜕

𝜕𝑥𝑗
((𝜇 +

𝜇𝑡 

𝜎𝜀𝑅𝑁𝐺
)

𝜕𝜀

𝜕𝑥𝑗
) +

𝜀

𝑘
(𝐶𝜀1𝑅𝑁𝐺𝑃𝑘 − 𝐶𝜀2𝑅𝑁𝐺𝜌𝜀) 

(4.7) 

with 

 

 𝐶𝜀1𝑅𝑁𝐺 = 1.42 − 𝑓𝜂 (4.8) 

 
𝑓𝜂 =

𝜂 (1 −
𝜂

4.38⁄ )

(1 + 𝛽𝑅𝑁𝐺𝜂3)
 

(4.9) 

 

𝜂 = √
𝑃𝑘

𝜌𝐶𝜇𝑅𝑁𝐺𝜀
 

(4.10) 

where the eddy viscosity is calculated in the same manner as with the 𝑘 − 𝜀 model. The 

RNG 𝑘 − 𝜀 model constants are as follows: 𝐶𝜀2𝑅𝑁𝐺 = 1.68, 𝐶𝜇𝑅𝑁𝐺 = 0.085, 𝜎𝜀𝑅𝑁𝐺= 

0.7179 and 𝛽𝑅𝑁𝐺= 0.012. 

 The 𝒌 − 𝝎 model 

The 𝑘 − 𝜔 model has a near wall treatment capability in CFX that allows the model to 

use finer meshes near the wall. It consists of the following two transport equations for 

turbulent kinetic energy, 𝑘, and specific turbulence dissipation, 𝜔: 

 

 𝜕

𝜕𝑥𝑗
(𝜌𝑈𝑗𝑘) =

𝜕

𝜕𝑥𝑗
((𝜇 +

𝜇𝑡 

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
) + 𝑃𝑘 − 𝜌𝛽∗𝑘𝜔 

(4.11) 

 𝜕

𝜕𝑥𝑗
(𝜌𝑈𝑗𝜔) =

𝜕

𝜕𝑥𝑗
((𝜇 +

𝜇𝑡 

𝜎𝜔
)

𝜕𝜔

𝜕𝑥𝑗
) + 𝛼

𝜔

𝑘
𝑃𝑘 − 𝜌𝛽𝜔2  

(4.12) 



36 

 

where 𝑃𝑘 is the same as in the 𝑘 − 𝜀 model. The eddy viscosity is computed using  𝜇𝑡 =

 𝜌𝑘/𝜔 and the 𝑘 − 𝜔 model constants are as follows: 𝛽∗ = 0.09, 𝛼 = 5/9, 𝛽 = 0.075, 𝜎𝑘 

and 𝜎𝜔 = 2. 

 The 𝒌 − 𝝎 based SST model 

The 𝑘 − 𝜔 based SST model combines the 𝑘 − 𝜀 and 𝑘 − 𝜔 models using a blending 

function. This allows the SST model to activate 𝑘 − 𝜔 model in the near wall region 

and 𝑘 − 𝜀 model for the rest of the flow. By doing this, the higher performance of 𝑘 −

𝜔 model is utilized. The equations for the 𝑘 − 𝜔 based SST model are: 

 

 𝜕

𝜕𝑥𝑗
(𝜌𝑈𝑗𝑘) =

𝜕

𝜕𝑥𝑗
((𝜇 +

𝜇𝑡 

𝜎𝑘2
)

𝜕𝑘

𝜕𝑥𝑗
) + 𝑃𝑘 − 𝜌𝛽∗𝑘𝜔 

(4.13) 

 𝜕

𝜕𝑥𝑗
(𝜌𝑈𝑗𝜔) =

𝜕

𝜕𝑥𝑗
((𝜇 +

𝜇𝑡 

𝜎𝜔3
)

𝜕𝜔

𝜕𝑥𝑗
) + (1 − 𝐹1)2𝜌

1

𝜎𝜔2𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗

+ 𝛼3

𝜔

𝑘
𝑃𝑘 − 𝜌𝛽3𝜔2  

(4.14) 

where  𝛽∗, 𝛼1, 𝛽1, 𝜎𝑘1, 𝜎𝜔2, 𝛼2, 𝛽2, 𝜎𝑘2 and 𝜎𝜔2are model constants with values 0.09, 

5/9, 0.075, 2, 2, 0.44, 0.0828, 1 and 1/0.856, respectively. All other symbols have their 

usual meaning and blending function, 𝐹1 is: 

 𝐹1 = tanℎ (arg1
4) (4.15) 

with 

 
arg1 = min (max (

√𝑘

𝛽∗𝜔𝑦
,
500𝜈

𝑦2𝜔
) ,

4𝜌𝑘

𝐶𝐷𝑘𝜔𝜎𝜔2𝑦2
) 

(4.16) 
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𝐶𝐷𝑘𝜔 = max (2𝜌

1

𝜎𝜔2𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 1.0 × 10−10) 

(4.17) 

The distance of the first nodal point away from the wall is 𝑦, and 𝜈 is the kinematic 

viscosity. The formulation of the eddy viscosity is given by: 

 
𝜇𝑡 =

𝜌𝛼1𝑘

max (𝛼1𝜔, 𝑆𝐹2)
 

(4.18) 

with 𝐹2 = tanh(𝑎𝑟𝑔2
2) and 𝑎𝑟𝑔2 = max (

2√𝑘

𝛽∗𝜔𝑦
,

500𝜈

𝑦2𝜔
) , where 𝐹2 is a blending function 

similar to 𝐹1 and 𝑆 is an invariant measure of the strain rate, given by: 

 

S = √(
𝜕𝑈𝑗

𝜕𝑥𝑖
+

𝜕𝑈𝑖

𝜕𝑥𝑗
)

𝜕𝑈𝑖

𝜕𝑥𝑗
 

(4.19) 

4.2.2 Reynolds stress model (RSM) 

In contrast to the two-equation turbulence models where the Reynolds stresses are 

based on the eddy viscosity hypothesis, the RSM model calculates the Reynolds stresses 

directly from their respective transport equations. In RSM, six transport equations are 

solved to obtain the six Reynolds stresses along with the transport equation for 

calculating the turbulence dissipation rate. The RSM adopted in the present study is 

based on the 𝜀 equation. The Reynolds stress transport equations are expressed as: 

 𝜕

𝜕𝑥𝑘
(𝑈𝑘𝜌𝑢𝑖𝑢𝑗) =

𝜕

𝜕𝑥𝑘
((𝜇 +

2

3
𝐶𝑠𝜌

𝑘2

𝜀
)

𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑘
) − 𝜕𝜌𝑢𝑘𝑢𝑖

𝜕𝑈𝑗

𝜕𝑥𝑘
−

𝜕𝜌𝑢𝑘𝑢𝑗
𝜕𝑈𝑖

𝜕𝑥𝑘
+ 𝜙𝑖𝑗 −

2

3
𝛿𝑖𝑗𝜌𝜀  

(4.20) 

The pressure-strain term, 𝜙𝑖𝑗, is modelled using: 
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 𝜙𝑖𝑗 =  −𝜌𝜀𝐶𝑠1𝑎𝑖𝑗 + 𝐶𝑟2𝜌𝑘𝑠𝑖𝑗

+ 𝐶𝑟4𝜌𝑘 (𝑎𝑖𝑘𝑆𝑗𝑘 + 𝑎𝑗𝑘𝑆𝑖𝑘 −
2

3
𝛿𝑖𝑗𝑆𝑘𝑙𝑎𝑘𝑙)

+ 𝐶𝑟5𝜌𝑘(𝑎𝑖𝑘𝑊𝑗𝑘 + 𝑎𝑗𝑘𝑊𝑖𝑘) 

(4.21) 

where 

 
𝑎𝑖𝑗 =  

𝑢𝑖𝑢𝑗

𝑘
−

2

3
𝛿𝑖𝑗 

(4.22) 

 
𝑆𝑖𝑗 =

1

2
(

𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
) 

(4.23) 

 
𝑊𝑖𝑗 =

1

2
 (

𝜕𝑈𝑖

𝜕𝑥𝑗
−

𝜕𝑈𝑗

𝜕𝑥𝑖
 ) 

(4.24) 

are the anisotropy, mean rate of strain and mean vorticity tensors, respectively. The 

dissipation rate equation that is solved with Reynolds stress model is: 

 𝜕

𝜕𝑥𝑘
(𝜌𝑈𝑘𝜀) =

𝜕

𝜕𝑥𝑘
((𝜇 +

𝜇𝑡 

𝜎𝜀
)

𝜕𝜀

𝜕𝑥𝑘
) +

𝜀

𝑘
(𝐶𝜀1 (−𝜌𝑢𝑖𝑢𝑗

𝜕𝑈𝑖

𝜕𝑥𝑘
) − 𝐶𝜀2𝜌𝜀)   

(4.25) 

The Reynolds stress model constants are as follows: 𝐶𝑠 = 0.22, 𝐶𝑠1 = 1.8, 𝐶𝑟2 = 0.8 ,

𝐶𝑟4 = 0.6, 𝐶𝑟5 = 0.6, 𝐶𝜀1 = 1.45, 𝐶𝜀2 = 1.9 and 𝜎𝜀 = 1.10. 

4.3 CAD geometry 

A 3D laser scan of the interior surface of the hopper using Creamfirm EXAscan is 

performed at the Industrial Technology Center near the University of Manitoba. As 

mentioned in Chapter 3, Refuge One hopper is fitted with an acrylic section that is 

joined to the fiberglass hopper body with an aluminium plate. Also an extended pipe is 

attached at the exit of the hopper. It is ensured that after this modification the inner 

surface of the hopper is smooth; however there are slight discontinuities along the 
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joined surfaces. During the 3D scanning process, all the discontinuities are smoothened 

to simplify data post processing. The scanned data are then imported into Autodesk 

Inventor 2014 in an STL file format and a CAD model of the hopper geometry is 

generated from this data.  

4.4 Mesh configuration 

In this study, ANSYS CFX-Mesh is used to generate the mesh for the numerical 

simulation. Unstructured, non–orthogonal, non–uniform grids are generated for 

discretizing the computational domain. The grids are created using body sizing and 

inflation option to account for the boundary layer growth along the walls of the hopper 

and pipe. The grid independence is checked using four different grid densities to ensure 

that grid resolution does not have a notable impact on the numerical results.  

Specific to the hopper, the mesh used in the regions with larger velocity gradients 

should be sufficiently fine to capture the local small scale flow physics. On the other 

hand, to reduce the computational expenses, relatively coarse meshes should be applied 

to the rest of the domain. In the near wall region of the hopper there are relatively large 

velocity gradients because of boundary layer development. For this reason, the height 

of the first node is kept at 1.0×10-5 m with an expansion factor of 1.15. This ensures that 

the dimensionless distance from the wall (𝑦+) is less than one, which is recommended 

for boundary layer flows in CFX. Also, to reduce computational expense, sphere of 

influence of varying sizes are tested before selecting a sphere with radius 0.3 m. Smaller 

element size is used within the sphere which contains the hopper and for the remaining 

part of the computational domain outside the sphere which includes the attached pipe, 

relatively large element size is used. Thus, significant reduction in mesh requirements 

is achieved without compromising on the quality of mesh for the most important part 
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of the computational domain (i.e., hopper) for this study. The mesh configuration of the 

computational domain is shown in Figure 4.1. 

 

Figure 4.1: Mesh configuration of the computational domain (a) Plan view of the 

hopper inlet with inset showing the zoomed mesh configuration (b). 

  

(a) 

(b) 
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4.5 Numerical method 

The numerical solution of the governing equations is obtained using a commercial CFD 

code, ANSYS CFX 15.0. In this code, the governing equations are solved by 

subdividing the fluid domain into finite number of cells and the equations are changed 

into algebraic form via discretization process based on a finite volume method (FVM). 

Versteeg and Malalasekera (2007) provided an extensive review of the FVM used in 

the CFX code. A collocated grid is used where the values of all the variables are 

calculated at cell centers. To prevent decoupling of the velocity and pressure fields, 

mass conservation discretization is applied using the Rhie and Chow (1983) 

interpolation algorithm. The semi-implicit method for pressure-linked equations 

algorithm is used to couple the pressure and velocity. High resolution advection scheme 

based on the work of Barth and Jespersen (1989) is used for discretizing the advection 

terms. The discretized mass, momentum and turbulence model equations is solved 

iteratively using an additive correction multi-grid method to accelerate convergence. 

For this study, double precision is used in all the computations and the solution is 

considered converged when the normalized residual of each of the discretized equations 

is less than 1.0×10-6. 

4.6 Boundary conditions 

Appropriate prescription of boundary conditions is critically important to obtain correct 

and reliable results from a numerical simulation. Different types of boundary conditions 

that are used are explained in this section. 

The boundary conditions for the solution domain are shown in Figure 4.2. At the inlet, 

a constant mass flow rate, 𝑚 ̇  = 3.15 kg/s is specified corresponding to test condition 

Red-53. In addition, at the inlet the relative turbulence intensity is set to 5% based on the 
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experimental results. At the outlet, the average static pressure is set to zero and the 

outlet is specified at a distance of 4 m (48 d) downstream from the hopper exit. This 

distance is chosen to ensure that a fully developed turbulent flow condition is achieved 

at the outlet. A no-slip boundary condition is prescribed along hopper and pipe walls. 

In 𝑘 − 𝜀  model, RNG 𝑘 − 𝜀 model and RSM a scalable wall-function is used. A near 

wall treatment with automatic switch from wall-function to a low Reynolds number 

formulation based on grid refinement is employed for the 𝑘 − 𝜔 model and 𝑘 − 𝜔 

based SST model. It should be noted that for all the turbulence models 𝑦+< 1 is 

maintained. The Cartesian coordinate system adopted for the numerical simulation is 

the same as described in Chapter 3. 

 

Figure 4.2: Boundary conditions used for the computational domain. 

4.7 Grid independent tests 

The grid dependence is checked using four different grid densities to ensure that grid 

resolution does not have notable impact on the numerical results. The grid 

𝑃𝑆𝑡𝑎𝑡𝑖𝑐 = 0 𝑃𝑎 

(Outlet) 

 𝑚̇ = 3.15𝑘𝑔/𝑠 

(Inlet) 

𝑦 

𝑥 

No slip condition 
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independence tests are conducted using four different grids which are as follows: grid 

A with 1,866,246 elements, grid B with 3,837,910 elements, grid C with 5,299,553 

elements and grid D with 6,011,243 elements. As mentioned earlier in section 4.4, the 

solutions are considered converged when the sum of the normalized residuals for each 

of the discretized equations is less than 1.0×10-6.  

Based on the area averaged streamwise velocity at the hopper exit, streamwise and wall-

normal mean velocity profiles extracted at midpoint and exit of the hopper (x/h = 0.5 

and 1) and area averaged pressure difference between inlet and exit of the hopper, the 

maximum differences between the four different grids for 𝑘 − 𝜔 based SST model are 

presented in Table 4.1. Based on these results, grid C is selected for the present 

investigation using 𝑘 − 𝜔 based SST model. The grid independence tests using the four 

computational grids discussed above are extended to the remaining two-equation 

models and RSM. These grid independent results will not be shown here because the 

results are similar to 𝑘 − 𝜔 based SST model. Based on the results, grid C is also 

selected for the present investigation using 𝑘 − 𝜀 model, RNG 𝑘 − 𝜀 model, 𝑘 − 𝜔 

model and RSM. 
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Table 4.1: Grid independence test results for maximum percentage differences between 

four grids (grids A-D) for area averaged streamwise mean velocity at hopper exit, 

streamwise and wall-normal mean velocity profiles at two locations (x/h = 0.5 and 1) 

and area averaged pressure difference between the inlet and exit of the hopper for 𝑘 −
𝜔 based SST model. 

Grids  Streamwise 

velocity at 

hopper exit  

Streamwise 

velocity at x/H 

Wall-normal 

velocity at x/H 

Pressure 

difference  

0.5 1 0.5 1 

A and B -0.20% -1.16% -3.00% -1.09% -4.92% 1.43% 

B and C 0.02% -0.72% 0.60% -0.93% 3.87% 0.51% 

C and D -0.01% -0.03% 0.05% 0.07% -0.74% 0.08% 
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5 CHAPTER: RESULTS AND DISCUSSIONS 

In the first part of this chapter, the experimental results are presented and discussed. In 

this section, contour plots of mean velocities and turbulent statistics are presented to 

visualize the flow characteristics through the Refuge One hopper. This is followed by 

Section 5.2 which presents the numerical results. In this section, contour plots of mean 

velocities and profiles of mean velocities at selected streamwise locations are compared 

against the experimental results to assess the predictions of different turbulence models. 

In Section 5.3, comparison of mean velocities, pressure coefficient, skin friction 

coefficient and head losses for different hopper geometries are presented to quantify 

the effect of hopper height and wall shape on flow characteristics and energy loss.  

5.1 Experimental results 

5.1.1 Contour plots of mean velocities 

In this section, contour plots of the streamwise and wall-normal mean velocities for two 

Reynolds numbers (Red = 53,000 and 23,000) are presented and discussed. For brevity, 

the two Reynolds number will be referred to as Red-53 and Red-23 hereafter. The contour 

plots are used to visualize the flow characteristics through the Refuge One hopper as 

well as examine the effect of Reynolds number on the flow statistics. In each of the 

contour plots, the streamwise and wall-normal distances are normalized by the exit 

diameter of the hopper, d. The streamwise and wall-normal mean velocities are 

normalized by the maximum streamwise exit velocity, Umax. 

Figure 5.1 shows the contour plots of the streamwise mean velocities obtained from the 

PIV measurements for Red-53 and Red-23. The contour plots of the mean velocities 

obtained in the four planes of measurement are combined to obtain a whole field 

visualization of the flow field. For each test condition, the streamwise mean velocity 
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accelerates with increasing streamwise distance until the maximum velocity occurs near 

the exit of the hopper. The acceleration of the flow with the increasing streamwise 

distance is caused by the gradual contraction of the hopper. The flow pattern near the 

exit of the test section is qualitatively similar for the two flow conditions investigated. 

Similar results were also obtained by Prinos and Goulas (1993) for a gradual contraction 

with upstream Reynolds numbers 100,000 and 150,000, respectively. 

The contour plots of the wall-normal mean velocities for Red-53 and Red-23 are shown in 

Figure 5.2. As can be seen, the maximum wall-normal mean velocity occurs close to 

the wall and near the exit of the hopper. At the centerline of the hopper, the wall-normal 

mean velocity is identically zero. For the higher Reynolds number flow (Red-53) the 

maximum wall-normal mean velocity is 10% higher. The gradual transition from a 

wider cross-sectional area at the inlet of the hopper to a smaller circular cross-section 

at the exit plane causes a gradual increase in the mean velocities with the increasing 

streamwise distance.  

  



47 

 

 

Figure 5.1: Contour plots of streamwise mean velocities for Red-53 (a) and Red-23 (b). 
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Figure 5.2: Contour plots of wall-normal mean velocities for Red-53 (a) and Red-23 (b).  
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5.1.2 Contour plots of turbulent quantities 

Contour plots of turbulent kinetic energy (k) and Reynolds shear stress (-uv) for Red-53 

and Red-23 are presented in Figures 5.3 and 5.4 to examine the turbulence field through 

the Refuge One hopper. Since, the spanwise Reynolds stress, w2 is not measured in the 

present study, the turbulent kinetic energy is approximated as k = 0.75(u2+v2). The 

contour plots are shown only for plane 1 as the maximum values are observed in this 

plane. The contours of turbulent kinetic energy are qualitatively similar for both flow 

conditions. The maximum turbulent kinetic energy occurs near the exit of the hopper. 

The contours of Reynolds shear stress are also qualitatively similar for Red-53 and Red-

23. The location of the minimum value of Reynolds shear stress is located near the wall 

at the exit of the hopper.  
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Figure 5.3: Contour plots of turbulent kinetic energy, k for Red-53 (a) and Red-23 (b). 

 

Figure 5.4: Contour plots of Reynolds shear stress, -uv for Red-53 (a) and Red-23 (b). 
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5.2 Numerical results 

In this section, 𝑘 − 𝜀, RNG 𝑘 − 𝜀, 𝑘 − 𝜔, 𝑘 − 𝜔 based SST and RSM turbulence 

models discussed in Chapter 4 are used to predict the experimental data. The quantities 

predicted are the streamwise and wall-normal mean velocities at selected x/d locations. 

This will help in assessing the performance of the turbulence models in predicting these 

quantities. 

5.2.1 Contour plots of mean velocities 

For comparison with the experimental data, contours of the streamwise and wall-normal 

mean velocities are presented in this section. The contours predicted by the five 

different turbulence models are qualitatively similar and therefore only the results for 

𝑘 − 𝜔 based SST model are presented. Figure 5.5 shows the contour plots of the 

streamwise and wall-normal mean velocities predicted by 𝑘 − 𝜔 based SST model. The 

contours of the streamwise and wall-normal mean velocities are in good agreement with 

the experimental data.  
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Figure 5.5: Contour plots of streamwise (a) and wall-normal (b) mean velocities for 

Red-53 predicted using 𝑘 − 𝜔 based SST turbulence model. 

5.2.2 Profiles of mean velocities 

For quantitative assessment of the five different turbulence models in predicting the 

experimental data, profiles of the mean velocities at selected streamwise locations are 

examined in this section. The mean velocity profiles are obtained at selected streamwise 

locations; x/d = 0.8, 1.05, 1.6, 1.9 and 2.1, respectively. An illustration of the profile 

locations through the hopper, for example, is shown in Figure 5.6. For each profile, the 

maximum velocity at hopper exit, Umax is used to normalize the velocity data. 

(a) 

(b) 

U/U
max

 

V/U
max

 



53 

 

Figures 5.7, 5.8 and 5.9 compare the prediction and experimental values of the 

streamwise and wall-normal mean velocities at x/d = 0.8, 1.05, 1.6, 1.9 and 2.1. The 

results indicate that the five different turbulence models used in this study reproduce 

the correct trends of the mean velocity profiles at all x/d locations. Near the inlet of the 

hopper (x/d = 0.8, 1.05 and 1.6) the streamwise mean velocity profiles have a saddle 

back shape which is correctly predicted by all the turbulence models. However, along 

the center of the hopper all the turbulence models over predicts the streamwise mean 

velocity with the prediction improving closer towards the wall. At the same x/d 

locations, the wall-normal mean velocity is under predicted by all the turbulence 

models. Near the outlet of the hopper (x/d = 1.9 and 2.1) the agreement between the 

experimental and numerical results is good. Overall, the differences between the five 

different turbulence models for all x/d locations are found to be small, less than 5%; 

however only 𝑘 − 𝜔 and 𝑘 − 𝜔 based SST models are able to capture the mean 

velocities going to zero at the wall. This is because for 𝑘 − 𝜔 and 𝑘 − 𝜔 based SST 

turbulence models in CFX, the computed 𝑦+ value is allowed to fall below 11.06 based 

on grid refinement and therefore they are able to capture the mean velocities going to 

zero near the wall. Based on the results, 𝑘 − 𝜔 based SST model is preferred over 𝑘 −

𝜔 model for the optimization of hopper geometry as 𝑘 − 𝜔 based SST model combines 

the advantages of 𝑘 − 𝜀 and 𝑘 − 𝜔 models to give better predictions for contraction 

flows.  
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Figure 5.6: Schematic of profile locations for comparison with the experimental data. 

 

Figure 5.7: Experimental and numerical comparison of streamwise (a) and wall-normal 

(b) mean velocities at x/d = 0.8. 
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Figure 5.8: Experimental and numerical comparison of streamwise(a);(c);(e) and wall-

normal mean velocities (b);(c);(d) at x/d = 1.05 (a),(b); x/d = 1.6 (c),(d); and x/d = 1.9 

(e);(f). 
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Figure 5.9: Experimental and numerical comparison of streamwise (a) and wall-normal 

(b) mean velocities at x/d = 2.1. 

It should also be noted that when velocity profiles obtained from the experiment are 

used as inlet boundary condition in CFX, the agreement between the experimental and 

numerical results are worse compared to mass flow as inlet boundary condition 

described in chapter 4 because the experimental profiles are obtained only along the 

center plane and do not include a full sweep at the inlet of the hopper. 

Evidence supporting discrepancy between experimental and numerical results through 

contractions is found in the literature. For example Sanchez et al. (2010), reported that 

𝑘 − 𝜀 turbulence model over predicted the streamwise and wall-normal mean velocities 

through a sudden contraction which is much simpler than the hopper geometry used in 

the present study. In the present study, numerical simulations are performed with five 

different turbulence models (𝑘 − 𝜀, RNG 𝑘 − 𝜀, 𝑘 − 𝜔, 𝑘 − 𝜔 based SST and RSM 

turbulence models) with the intention of reproducing the experimental results. The 

numerical results for all the turbulence models over predict streamwise mean velocity 

and under predict wall-normal mean velocity near the hopper inlet.  

A possible explanation for the discrepancy between the numerical and experimental 

results is that the model constants for the turbulence models are not calibrated for the 

(a) (b) 
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geometry or flow conditions of the current study since all the turbulence models used 

in the present study use default model constants in CFX described in chapter 4.  

5.3 Optimization of hopper geometry 

This section presents the results for the optimization of Refuge One hopper geometry. 

The optimization parameters include the hopper height (h) and wall shape. The 

dimensions of the hopper for optimization are slightly smaller than the hopper 

mentioned in Chapter 3 because it is designed for the prototype Refuge One. It has a 

rectangular inlet which is 471 mm long and 273 mm wide and transitions into a circular 

exit with 75 mm diameter. This results in a contraction ratio of 29. Three different 

values are chosen for the first optimization parameter, h = 150 mm, 90 mm and 60 mm, 

respectively. These values are chosen based on the maximum available space in the 

prototype Refuge One. 

5.3.1 Wall shapes 

For the second optimization parameter, two contraction wall shapes are chosen based 

on the wind tunnel contraction studies by Morel (1975) and Sargison et al. (2004) in 

order to avoid flow separation. For each of the hopper heights, wall shapes are generated 

based on the equations of Morel (1975) and Sargison et al. (2004). A Tapered wall 

shape similar to the hopper described in Chapter 3 is also selected for comparison.  

Equations (5.1) and (5.2) show the variables that are used to define Morel (1975)’s wall 

shapes, where D1 and D2 are the inlet and exit diameters, xi is the inflection point where 

the two equations intersect, D is the loci of the wall shape along the wall-normal axis, 

x is the distance along x axis and h is the height of the contraction. For the present work, 

the equations used by Morel (1975) are modified to a hopper with a rectangular cross 

section. The diameters D1 and D2 in the equations are replaced with the width and height 
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of the hopper to obtain two different equations defining the vertical and horizontal wall 

shapes. The inflection point (xi) is placed at 0.5h based on the data provided by Morel 

(1975). 
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Equation (5.3) shows the variables that are used to define the wall shape proposed by 

Sargison et al. (2004), where y is the loci of the wall shape, x is the distance along 

streamwise direction and a-g are contraction parameters as defined by Sargison et al. 

(2004). 

 𝑦 = 𝑎𝑥6 + 𝑏𝑥5 + 𝑐𝑥4 + 𝑑𝑥3 + 𝑒𝑥2 + 𝑓𝑥 + 𝑔 (5.3) 

5.3.2 Test conditions 

The test conditions for optimization of hopper geometry are summarized in Table 5.1. 

The test conditions for the Tapered hoppers are denoted by HiT where H represents the 

height of the hopper (i = 60 mm, 90 mm and 150 mm) and T represents Tapered wall 

shape. Similarly, the test conditions for Sargison’s and Morel’s hoppers are denoted by 

HiS and HiM where S and M represents Sargison’s and Morel’s wall shapes. A total of 

nine configurations of heights and wall shapes are generated. For all the tests, flow rate 

of 0.0396 m3/s is used. This flow rate is based on the operating conditions of the 

prototype Refuge One. For the numerical simulations, a corresponding mass flow of 𝑚̇ 

= 0.034 kg/s is set as the inlet boundary condition. All other boundary conditions are 

similar to those described in Chapter 4. The simulations are performed with 𝑘 − 𝜔 
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based SST turbulence model as discussed in Section 5.2. From here on, the hoppers 

designed using Tapered wall shape will be referred to as Tapered hoppers, hoppers 

designed using Morel (1975)’s wall shape will be referred to as Morel’s hoppers and 

hoppers designed using Sargison et al. (2004)’s wall shape will be referred to as the 

Sargison’s hoppers for ease of use.  

Table 5.1: Summary of test conditions for optimization of hopper 

Test condition Hopper height (mm) Wall shape 

H150T 150 Tapered 

H150M 150 Morel 

H150S 150 Sargison 

H90T 90 Tapered 

H90M 90 Morel 

H90S 90 Sargison 

H60T 60 Tapered 

H60M 60 Morel 

H60S 60 Sargison 
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5.3.3 Grid independent tests 

Grid independent tests are conducted for the nine test conditions using 4 computational 

grids: 1,235,295 elements (gird A), 2,180,646 elements (grid B), 4,031,428 elements 

(grid C) and 6,165,376 elements (grid D), respectively. Table 5.2 shows the grid 

independence test results for the Tapered hoppers. Based on the results, grid C is chosen 

for the optimization of Tapered hoppers. Grid independent tests are also conducted for 

Sargison’s and Morel’s hoppers and similar results are observed. Therefore, grid C is 

also chosen for the optimization of Sargison’s and Morel’s hoppers. 

Table 5.2: Grid independence test results for maximum percentage differences between 

four grids (grids A-D) for area averaged streamwise mean velocity at hopper exit, 

streamwise and wall-normal mean velocity profiles at two locations (x/h = 0.5 and 1) 

and area averaged pressure difference between the inlet and exit for Tapered hopper 

Grids  Streamwise 

velocity at 

hopper exit  

Streamwise 

velocity at x/H 

Wall-normal 

velocity at x/H 

Pressure 

difference  

0.5 1 0.5 1 

A and B -0.34% -2.41% -7.30% -2.22% 2.09% 1.42% 

B and C -0.04% -1.54% -1.59% -2.59% 1.08% 0.50% 

C and D -0.01% -0.07% -0.07% -1.02% 0.07% 0.05% 

 

5.3.4 Optimization results 

 Contour plots of mean velocities 

This section shows the contour plots of streamwise and wall-normal mean velocities 

along the center plane (x-y) for the nine hopper configurations. The contour plots of 

streamwise and wall-normal mean velocities are presented to visualize the effect of 

contraction height and wall shape on the flow pattern. The contour plots are normalized 

by the centerline streamwise velocity at hopper exit, Uexit. 

Figures 5.10, 5.11 and 5.12 show the contour plots of streamwise mean velocities for 

the three hopper heights designed using Tapered, Sargison’s and Morel’s methods. For 
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each test condition, the contours of the streamwise velocities show flow acceleration 

along the streamwise distance. This is expected because of favourable pressure gradient 

caused by the contraction. As a result of strong favourable pressure gradient, none of 

the hoppers show flow separation as indicated by the contours. The contours of 

streamwise mean velocities are qualitatively similar for all the hopper test conditions, 

however on a closer look the contours are identical for Sargison’s and Morel’s hoppers 

which have curved wall shapes in comparison to Tapered hoppers which have a straight 

wall shape. Irrespective of the hopper height, Tapered hoppers have the maximum 

streamwise velocity and Morel’s hoppers have the minimum streamwise velocity at the 

hopper exit. The maximum streamwise velocity for H150T, where subscript 150 refers 

to hopper height and T refers to Tapered wall profile (see ) , is 14.7% and 16.8% higher 

than H150S and H150M where S and M refer to Sargison’s and Morel’s wall profiles. The 

contours also show that the maximum velocity increases with decreasing hopper height. 

The streamwise velocity increases by 11.9% for Tapered hoppers, 24.6% for Sargison’s 

hoppers and 25.2% for Morel’s hoppers as the hopper height decreases from 150 mm 

to 60 mm. The contours also show that Tapered hopper of height 60 mm (H60T) has the 

maximum velocity and Morel’s hopper of height 150 mm (H150M) has the minimum 

velocity among all the test conditions. The results indicate that in terms of the maximum 

velocity, both the choice of hopper wall and height combine to augment the effect 

produced by one another.  
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Figure 5.10: Contour plots of streamwise mean velocities for hoppers designed using 

Tapered (a) Sargison’s (b) and Morel’s (c) methods for contraction height 150 mm. 

 

Figure 5.11: Contour plots of streamwise mean velocities for hoppers designed using 

Tapered (a) Sargison’s (b) and Morel’s (c) methods for contraction height 90 mm. 

 

(a) H150T (b) H150S 

(c) H150M U/U
exit

 

(a) H90T (b) H90S 

(c) H90M 

U/U
exit

 



63 

 

 

Figure 5.12: Contour plots of streamwise mean velocities for hoppers designed using 

Tapered (a) Sargison’s (b) and Morel’s (c) methods for contraction height 60 mm. 

Figures 5.13, 5.14, 5.15 show the contour plots of wall-normal mean velocities for the 

three hopper heights designed using Tapered, Sargison’s and Morel’s methods. The 

contours display positive velocities on one side, negative velocities on the opposite side 

and zero velocity along the center of the hopper. The positive and negative wall-normal 

mean velocities are indications that gradual contraction of the hopper causes flow from 

opposite sides to move towards each other and converge along the center of the hopper. 

The increase in wall-normal mean velocities along the streamwise distance can be 

attributed to the favourable pressure gradient. Among the three wall shapes, the 

maximum velocity is obtained for Tapered hoppers and minimum velocity is obtained 

for Morel’s hoppers. The contours also show that as the height of the hopper is reduced 

the effect of wall shapes on maximum wall-normal velocity becomes less significant. 

The maximum velocity for Tapered hopper of height 150 mm (H150T) is 38.7% and 

44% higher than Sagison’s (H150S) and Morel’s (H150M) hoppers of the same height 

whereas for Tapered hopper of height 60 mm (H60T) the maximum velocity is only 

(a) H60T (b) H60S 

(c) H60M 

U/U
exit
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12.7% and 19.1% higher than Sagison’s (H60S) and Morel’s (H60M) hoppers of the 

same height. 

 

Figure 5.13: Contour plots of wall-normal mean velocities for hoppers designed using 

Tapered (a) Sargison’s (b) and Morel’s (c) methods for contraction height 150 mm. 
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Figure 5.14: Contour plots of wall-normal mean velocities for hoppers designed using 

Tapered (a) Sargison’s (b) and Morel’s (c) methods for contraction height 90 mm. 

 

Figure 5.15: Contour plots of wall-normal mean velocities for hoppers designed using 

Tapered (a) Sargison’s (b) and Morel’s (c) methods for contraction height 60 mm. 
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The contours of streamwise mean velocities at the cross sectional exit plane (x/h = 1) 

are presented to show the effect of hopper wall shape and height on velocity non 

uniformity. Velocity non uniformity is defined as the deviation between the maximum 

streamwise velocity and the centerline streamwise velocity at the hopper exit. Figure 

5.16 shows the contours of streamwise mean velocities at the exit plane for hopper 

height 150 mm with different wall shapes in order to study the effect of wall shape on 

velocity non uniformity. Figures 5.17 and 5.18, show the contours of streamwise mean 

velocities for hopper heights 90 mm and 60 mm, respectively. At the hopper exit (x/h = 

1), the contours reveal that maximum velocity occurs close to the hopper walls. The 

contours also show that Tapered hoppers have the highest and Morel’s hoppers have 

the lowest velocity non uniformity. This implies that the core flow for Morel’s hoppers 

is less affected by maximum velocity compared to Tapered hoppers. The velocity non 

uniformity at the hopper exit increases for decreasing hopper height. This is expected 

since the wall curvature at the hopper exit increases which increases the velocity non 

uniformity for shorter hopper heights. The results also show that the influence of 

decreasing height is felt more strongly for Morel’s hoppers even though it has the least 

velocity non uniformity.  



67 

 

 

Figure 5.16: Contour plots of streamwise mean velocities at exit plane for hoppers 

designed using Tapered (a) Sargison’s (b) and Morel’s (c) methods for contraction 

height 150 mm. 

 

Figure 5.17: Contour plots of streamwise mean velocities at exit plane for hoppers 

designed using Tapered (a) Sargison’s (b) and Morel’s (c) methods for contraction 

height 90 mm. 
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Figure 5.18: Contour plots of streamwise mean velocities at exit plane for hoppers 

designed using Tapered (a) Sargison’s (b) and Morel’s (c) methods for contraction 

height 60 mm. 

 Contour plots of pressure coefficient 

Since the flow is accelerated through the contraction, strong favourable pressure 

gradient is formed in the hopper, as would be expected. However, there can be localized 

regions of adverse pressure gradient near the hopper inlet and outlet depending on the 

hopper wall shape and height. In this section, the contour plots of pressure coefficient 

are used to study the effect of hopper wall shape and height on the pressure distribution. 

The coefficient of pressure, Cp, is defined as: 

 
Cp = 

(𝑝−𝑝𝑒𝑥𝑖𝑡)
1

2⁄ 𝜌𝑈𝑒𝑥𝑖𝑡
2 

(5.4) 

 where 𝑝 is the local pressure, 𝑝𝑒𝑥𝑖𝑡 is the centerline pressure at hopper exit, 𝜌 is the 

density of air and 𝑈𝑒𝑥𝑖𝑡 is the centerline streamwise velocity at hopper exit. 
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(c) H60M 
U/U

exit
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The distribution of Cp for all the nine hopper configurations is presented in Figures 

5.19, 5.20 and 5.21. The contours reveal the presence of strong favourable pressure 

gradient caused by the contraction which is expected. Adverse pressure gradient near 

the hopper inlet and exit is not observed for any of the hopper designs. The largest 

pressure gradient occurs near the corners, and thus, the maximum velocity also occurs 

near the corners. The effect of hopper wall shape on the pressure distribution for h = 

150 mm is shown in Figure 5.19. The contours of the pressure distribution are 

qualitatively similar for all the three wall shapes, however the contours show the strong 

effect that varying wall shape has on the Cp extrema near the corners. The Cp minimum 

near the corners for Tapered hopper of height 150 mm is nearly 60% and 65% larger 

than Sargison’s and Morel’s hoppers. The Cp extrema is also sensitive to hopper height. 

For decreasing hopper height the minimum pressure significantly increases for all the 

wall shapes. The Cp extrema near the hopper outlet also indicates the location where 

the flow separation probability is the most. This means that the hopper with least Cp 

extrema near the outlet is desirable to avoid any possibility of flow separation.  
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Figure 5.19: Contour plots of pressure coefficient for hoppers designed using Tapered 

(a) Sargison’s (b) and Morel’s (c) methods for contraction height 150 mm. 

 

Figure 5.20: Contour plots of pressure coefficient for hoppers designed using Tapered 

(a) Sargison’s (b) and Morel’s (c) methods for contraction height 90 mm. 
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Figure 5.21: Contour plots of pressure coefficient for hoppers designed using Tapered 

(a) Sargison’s (b) and Morel’s (c) methods for contraction height 60 mm. 

 Contour plots of skin friction coefficient 

In this section, the contours of skin friction coefficient (Cf) are presented to visualize 

the effect of hopper wall shape and height on the wall shear stress for different hopper 

configurations. The contours of Cf are also used to indicate if the flow separates through 

the hopper. The contours are obtained along the center plane for all the hopper 

configurations. The Cf is defined using the following relationship:  

 Cf = 
𝜏𝑤

1
2⁄ 𝜌𝑈𝑒𝑥𝑖𝑡

2 (5.4) 

where 𝜏𝑤 is the wall shear stress, 𝜌 is the density of air and 𝑈𝑒𝑥𝑖𝑡 is the centerline 

streamwise velocity at hopper exit.  

The effects of hopper wall shape and height on the skin friction coefficient are depicted 

in Figures 5.22, 5.23 and 5.24, respectively. The Cf  remains positive all through the 

hopper, thus indicating that there is no separation for any of the hopper designs. Among 

(a) H60T (b) H60S 

(c) H60M 
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the wall shapes, Tapered hoppers have the highest Cf and Morel’s hoppers have the 

lowest Cf. For shorter hopper heights, Cf increases for all the wall shapes, however the 

increase in Cf varies for different wall shapes. It is found that Cf for Tapered hoppers 

are least affected by changes in hopper height whereas for Sargison’s and Morel’s 

hoppers the Cf are significantly affected by changes in hopper height.  

 

Figure 5.22: Contour plots of skin friction coefficient for hoppers designed using 

Tapered (a) Sargison’s (b) and Morel’s (c) methods for contraction height 150 mm. 
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Figure 5.23: Contour plots of skin friction coefficient for hoppers designed using 

Tapered (a) Sargison’s (b) and Morel’s (c) methods for contraction height 90 mm. 

 

Figure 5.24: Contour plots of skin friction coefficient for hoppers designed using 

Tapered (a) Sargison’s (b) and Morel’s (c) methods for contraction height 60 mm. 
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 Profile plots of streamwise mean velocities, pressure and skin friction 

coefficient 

To quantify the effect of hopper height and wall shape on the streamwise mean velocity, 

pressure and skin friction coefficient, profiles along the hopper centerline and wall are 

examined in this section. For the velocity profiles, the centerline streamwise mean 

velocity at hopper exit, Uexit is used as the velocity scale. The streamwise distance is 

normalized by the corresponding hopper height, h for each profile. 

Figure 5.25 shows that the streamwise mean velocity along the centerline for all the 

hopper test conditions remains nearly constant from the inlet until x/h = 0.1. This is 

followed by a rapid increase through the hopper. The centerline velocities for 

Sargison’s and Morel’s hoppers have slight differences between them as the velocity 

increase is slightly delayed for Sargison’s hoppers because of differences in wall 

shapes. However, the centerline velocity for Tapered hoppers is significantly delayed, 

followed by a sharper rise. This is due to the fact that Tapered hoppers have a straight 

wall shape which results in a smaller cross sectional area, hence the greatest velocity 

increase along the centerline. As the hopper height is reduced, the Tapered, Sargison’s 

and Morel’s hoppers all exhibit similar increase in streamwise mean velocity along the 

centerline. 
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Figure 5.25: Comparison of streamwise mean velocities along hopper centerline for the 

three hopper heights (h = 150 mm, 90 mm and 60 mm) designed using Tapered, 

Sargison’s and Morel’s methods. 

Figure 5.26 shows the pressure distribution along the hopper centerline for the Tapered, 

Sargison’s and Morel’s hoppers. For each hopper test condition, the effect of favourable 

pressure gradient causes the pressure to decrease along the streamwise distance. As the 

flow passes through the hopper, the effect of favourable pressure gradient increases and 

the Cp profiles gradually decrease along the center line from the maximum at the hopper 

inlet to minimum at the hopper exit (x/h = 1). The location of Cp minimum corresponds 

to the location of maximum streamwise mean velocity. The trend of Cp agrees with the 

profiles of the streamwise mean velocity along the center line. The pressure drop 

however, depends on the hopper shape and height. Among the three wall shapes, 

Tapered hoppers have the highest pressure drop while Morel’s hoppers have the least 

pressure drop. As the hopper height decreases the pressure drop also decreases for all 

the wall shapes, however the effect of wall shape on pressure drop becomes less 

significant for shorter heights.  
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Figure 5.26: Comparison of pressure coefficient along hopper centerline for the three 

hopper heights (h = 150 mm, 90 mm and 60 mm) designed using Tapered, Sargison’s 

and Morel’s methods. 

The pressure distribution along the hopper walls is presented in Figure 5.27. For a 

contraction of finite length, there exists two locations (one near the inlet and one near 

the outlet) where pressure extremes exist and due to this the possibility of flow 

separation is of considerable concern. This phenomenon occurs because the wall 

suddenly changes from curved to a flat region which causes localized pressure 

extremes. The pressure coefficient profiles, shown in Figure 5.27, are characterized by 

a steady decline in Cp till x/h = 0.6 before falling to a minimum value near the hopper 

exit. A short region of adverse pressure gradient follows the Cp minimum near the exit. 

There is also a region of pressure extrema near the hopper inlet, but its effect is subtle 

and not visible from the wall Cp profiles. The hopper wall shapes, however have a 

dramatic effect on the pressure extrema near the hopper exit. As the wall curvature near 

the hopper exit decreases, the pressure extrema and adverse pressure gradient are also 

expected to decrease which are indicated by the profiles. For Tapered hoppers the Cp 

extrema and the adverse pressure gradient at exit are significantly larger than all the 
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other hopper wall shapes. However, as the wall curvature near the exit decreases the Cp 

extrema also decreases for Sargison’s and Morel’s hoppers compared to Tapered 

hopper. Also, for Sargison’s and Morel’s hoppers the location of Cp minimum is placed 

slightly away from the contraction exit as they have a smoother transition from a curved 

to a straight region compared to Tapered hoppers. The least Cp extrema is obtained for 

Morel’s hoppers as they have a slightly smoother wall curvature compared to 

Sargison’s hoppers. Previous studies also show that contraction shape affects the 

localized pressure gradient near the inlet and exit of contractions and the shape may be 

varied to obtain the desired results depending on their application (Watmuff, 1986; Bell 

and Mehta, 1989).  

Figure 5.27 also shows the effect of hopper height on wall pressure distribution. 

Irrespective of wall shapes, Cp extrema near the exit is enhanced when the hopper height 

is reduced. Shorter heights are desirable for savings in space and cost, however the risk 

of flow separation increases as the height is reduced. Among the three wall shapes, 

Morel’s hoppers exhibit the greatest increase in Cp extrema and Tapered hoppers show 

the least increase in Cp extrema as the height is reduced. Also, for shorter heights the 

pressure extrema at the inlet increases. For hoppers with height 150 mm, the Cp near 

the inlet is nearly 1, however as the height decreases the Cp increases by 14% and 31% 

for h = 90 mm and 60 mm, respectively. 
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Figure 5.27: Comparison of pressure coefficient along hopper wall for the three hopper 

heights (h = 150 mm, 90 mm and 60 mm) designed using Tapered, Sargison’s and 

Morel’s methods. 

Figure 5.28 shows the skin friction coefficient for the three hopper heights designed 

using Tapered, Sargison’s and Morel’s methods. The Cf increases through the hopper 

caused by the passage of the flow through a strong favourable pressure gradient. For all 

the hopper test conditions, the Cf distribution clearly shows that flow separation is not 

expected since Cf remains positive throughout the contraction. The maximum Cf is 

observed for Tapered hoppers and the minimum Cf is observed for Morel’s hoppers. 

The location of Cf maximum shifts further inside the hopper exit for Sargison’s and 

Morel’s hoppers because they have a smoother wall transition at the exit. As the hopper 

height decreases the Cf increases for all the wall shapes, however the Cf difference 

between the wall shapes diminishes for shorter hopper heights.  
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Figure 5.28: Comparison of skin friction coefficient along hopper wall for the three 

hopper heights (h = 150 mm, 90 mm and 60 mm) designed using Tapered, Sargison’s 

and Morel’s methods. 

 Comparison of head loss 

In this section the effect of hopper wall shape and height on the head loss is presented 

in order to choose the optimum hopper design that would yield minimum head loss. 

Equation (5.5) is a convenient way of writing modified Bernoulli equation to include 

the difference in static and dynamic pressure and hopper height equated to the head 

loss. The head loss is shown below. 

 
∆H = (

𝑝1

𝜌𝑔
+

𝑣1
2

2𝑔
+ ℎ1) − (

𝑝2

𝜌𝑔
+

𝑣2
2

2𝑔
+ ℎ2) 

(5.5) 

where 𝑝1 is the area averaged pressure at inlet, 𝑣1 is the area averaged velocity at 

inlet, 𝑝2 is the area averaged pressure at hopper exit (x/h = 1), 𝑣2 is the is the area 

averaged velocity at hopper exit, 𝜌 is the density of air, 𝑔 is the acceleration due to 

gravity and (ℎ1 − ℎ2) is the hopper height.  
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When the fluid passes through the hopper, the velocity of the flow will increase at the 

region of smallest cross sectional area and consequently the static pressure will 

decrease. There will be dissipation of energy through the hopper as some of the static 

pressure drop converts into kinetic energy and head loss or total pressure loss. Figure 

5.29 shows the comparison of head loss for the three hopper heights designed using 

Tapered, Sargison’s and Morel’s methods. The head loss is very much dependent on 

hopper wall shape and height. Among the wall shapes, the head losses for Sargison’s 

and Morel’s hoppers are smaller than Tapered hoppers. This can be attributed to a 

smoother wall transition which reduces the pressure drop for Sargison’s and Morel’s 

hoppers. For shorter hopper heights, the head loss increases however, the choice of wall 

shape has a significant effect on the percentage increase in head loss. On the contrary, 

for hopper height 90 mm, the head loss for Morel’s hopper decreases in spite of 

reduction in hopper height. Consequently, the smallest head loss is obtained for Morel’s 

hopper with a height of 90 mm. Among the wall shapes, the greatest increase in head 

loss is obtained for Sargison’s hoppers and similarly the least increase in head loss is 

obtained for Tapered hoppers as the height is decreased from 150 mm to 60 mm. This 

implies that head loss for Sargison’s hopper has a strong correlation with hopper height. 

Similarly, the head loss for Tapered hopper has a weak correlation with hopper height. 
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Figure 5.29: Comparison of head loss for the three hopper heights (h = 150 mm, 90 mm 

and 60 mm) designed using Tapered, Sargison’s and Morel’s methods. 
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6 CHAPTER: SUMMARY AND CONCLUSIONS 

6.1 Summary 

An experimental and numerical study is conducted to investigate the flow 

characteristics through the Refuge One hopper, to numerically simulate flow through 

the Refuge One hopper and compare the predictive performance of five different 

turbulence models, and to optimize the hopper geometry. A high resolution particle 

image velocimetry system is used to perform detailed velocity measurements within the 

Refuge One hopper to better understand the flow characteristics. The experiments are 

conducted at Reynolds numbers based on the maximum exit velocity and exit diameter 

of the hopper, Red = 53,000 and 23,000 to investigate the effects of Reynolds number 

on the flow characteristics. Numerical simulations of the flow are performed using 𝑘 −

𝜀, RNG 𝑘 − 𝜀, 𝑘 − 𝜔, 𝑘 − 𝜔 based SST and Reynolds stress models in ANSYS CFX 

15.0. For the optimization study of hopper geometry, three different hopper heights, h 

= 150 mm, 90 mm and 60 mm are selected for Tapered, Sargison’s and Morel’s wall 

shapes. 

6.2 Conclusions 

The major conclusions are summarized as follows 

1. The mean flow characteristics, turbulent kinetic energy and Reynolds shear stress 

through the Refuge One hopper are weakly dependent on the Reynolds numbers 

investigated in this study. 

2. The mean velocity profiles predicted by all the turbulence models through the Refuge 

One hopper are qualitatively and quantitatively similar, however only 𝑘 − 𝜔 and  𝑘 −

𝜔 based SST models captures velocities near the wall. Comparison between the 

numerical and experimental values demonstrates that the shape of the mean velocity 
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profiles are reasonably predicted by all the turbulence models. Near the hopper inlet, 

however, all the turbulence models over predict the streamwise mean velocity and 

under predict the wall-normal mean velocity.  

3. From the optimization study, it is found that hoppers designed with Morel’s wall 

shape performs better compared than hoppers designed with Tapered and Sargison’s 

wall shapes in terms of flow non-uniformity, pressure distribution and head loss.  

5. Optimization of hopper geometry also shows that as the hopper height decreases the 

head loss and flow non-uniformity increase; however the least head loss is obtained for 

Morel’s hopper with height 90 mm. The results also show that the difference between 

the three wall shapes decreases as the hopper height is reduced. 

6.3 Future work 

It is recommended that experimental study should be conducted for the hopper 

configuration designed using Morel’s equations to confirm the findings of the 

numerical simulations. Future work should also measure pressure difference through 

the hopper since this will facilitate comparison of the head losses. 
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