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Abstract 

ASCE Manual No.74 (2010) and the Electric Power Research Institute (EPRI, 1997) provide 

methods for calculating the unbalanced longitudinal loads on a transmission line due to a wire 

breakage. The calculated loads from the two are different. In this study, a simplified transmission 

line was created using the equivalent geometric properties of a detailed transmission line. Non-

linear dynamic analyses of the 10-span simplified transmission line due to cable breakage events 

in the first span were studied using ANSYS. The analyzed longitudinal loads were found to vary 

for different S/S, S/I, and K’s as specified in the EPRI. An equation for the longitudinal load 

factor as a function of the S/S, S/I, and K was then formulated based on the analysis. The 

longitudinal load factors from the formulated equation were found to be almost double those 

given by the ASCE manual and comparable to those calculated using the EPRI formulation. 
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Chapter 1 Introduction 

1.1 General 

Electrical transmission line systems are a key role in today’s society that has become reliant on a 

constant supply of energy. Any type of failure in the transmission line system that causes a 

disruption in the energy supply will consequently result in economic losses. In order to maintain 

the reliability of the transmission line system, as well as be economical, great care needs to be 

taken to ensure that they are designed well. 

With the advent of finite element software, the behaviour of transmission towers has been 

analyzed vigorously. One area that has not been sufficiently analyzed is the unbalanced 

longitudinal load that transmission towers are subjected to. The unbalanced longitudinal load is a 

dynamic load in the direction of transmission line, and can be caused by unbalanced ice and 

wind load, breakage of a conductor, collapse of a tower, etc. ASCE Manual No.74 (ASCE, 2010) 

provides guidelines for calculating the approximate unbalanced longitudinal load using the 

span/sag ratio and the span/insulator ratio. Since the towers in a transmission line system are 

connected to one another, when one tower in the system fails or suffers a conductor breakage, it 

will produce an unbalanced longitudinal load on the adjacent towers, which may exert a larger 

force on the adjacent towers than they would experience in the balanced condition. This may 

create a domino effect that results in a cascading failure of the transmission line system if the 

towers are unable to resist the additional forces created by the unbalanced longitudinal load.  
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On September 5
th

, 1996, 19 A-402 Manitoba Hydro transmission towers collapsed as a result of a 

high-intensity downburst wind event. The first tower to fail caused the unbalanced longitudinal 

loads on the adjacent towers to be greater than the towers could resist, which resulted in a 

successive, cascading failure. The overall damage to the towers along with the economic 

damages resulting from power disruption totalled to over 10 Million USD. Other examples 

include 289 transmission towers collapsed in Wisconsin in 1975, and 406 supporting structures 

collapsed in Nebraska in 1993. These are just a select few of the many similar cases that have 

happened around the globe. 

ASCE Manual No.74 (ASCE, 2010) section 3.3.2 provides three methods of failure containment 

to prevent a large scale cascade failure, these methods are as follows: 

1. Design all structures for longitudinal loads. The manual provides a figure used to calculate 

the residual static load (RSL) factor corresponding to the broken wire condition in the 

longitudinal direction as a function of the span/insulator ratio (S/I) and the span/sag ratio 

(S/S). The manual also provides longitudinal load factors (LLF’s) as a function of the S/S 

ratio, the S/I ratio, and the stiffness (K) of the supporting towers. The LLF includes dynamic 

effects, structural stiffness, and insulator lengths. It is assumed that all structures are expected 

to resist cascading but the localized structure loss of one or two structures adjacent to the 

origin of the failure is acceptable. 

2. Install failure containment structures at specified intervals. These structures have little ability 

to withstand the longitudinal loads. To strengthen each structure to resist cascading would be 

costly and undesirable. Failure containment structures, often being ordinary suspension 

structures with extra longitudinal guys, are placed at the desired interval.  
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3. Install released mechanisms. The released mechanisms are slip and suspension clamps that 

will limit the longitudinal loads applied to the wires when wires are broken. The technique, 

however, is not recommended in the areas of heavy ice loadings due to the unbalanced ice 

load.  

A common practice done in Manitoba is to install stop-structures at regular intervals to prevent a 

cascade failure. These structures have an increased structural resistance. In practice, stop 

structures are placed at an interval of about every ten structures, as it is assumed in analysis that 

ten spans are affected by the cascading failure. 

Many transmission towers are designed as steel lattices guyed cables. Figure 1.1 shows a 

common type of latticed steel transmission tower. Since transmission towers are very tall and 

slender, wind load is what normally governs the design. Moreover the tower has a low natural 

frequency, a dynamic analysis is important to determine design loads. A dynamic analysis of the 

entire transmission line system is needed because the properties of the system as a whole, 

including the conductors, insulators, and ground wires, needs to be taken into account to 

accurately predict the loads. 
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Figure 1.1: Latticed transmission tower 

1.2 Objectives 

Up until now, sufficient attention has not been given to finite element analysis of the dynamic 

effects of unbalanced longitudinal loads as a result of wire breakage. The effects of the 

conductors in a transmission line system have a significant impact on the loads experienced by 

the adjacent towers. As a result, finite element analysis of a full transmission line needs to be 

undertaken to determine an accurate prediction of the entire system. Since the number of 

elements in a latticed steel transmission tower is very large, a simplified transmission tower of 

beam elements is needed in order to reduce computing time. The objectives of this study are: 

 To develop an equivalent beam element in ANSYS that can accurately represent a 

latticed tower segment both statically and dynamically. 

 To develop a simplified transmission model in ANSYS that can accurately represent a 

detailed transmission tower model both statically and dynamically. 
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 To perform a broken wire analysis of a 10-span simplified transmission tower line in 

ANSYS 

 To determine the LLF obtained from the broken wire analysis and compare them to the 

ones provided by ASCE Manual No. 74 as well as those by the EPRI report. 

1.3 Outline of the Thesis 

This thesis consists of five chapters. Chapter 2 is a literature of the applicable codes and 

guidelines of transmission tower design, broken wire analysis of a transmission line, and 

modelling of a transmission tower in ANSYS. 

Chapter 3 is the formulation of a simplified beam element to represent a latticed tower segment, 

validation of ANSYS ability to accurately represent beam and cable elements, both statically and 

dynamically, the validation of the simplified transmission tower being able to accurately 

represent the detailed transmission tower, and the validation of ANSYS to accurately predict the 

unbalanced longitudinal loads as a result of a broken wire. 

Chapter 4 is the modelling of the system in ANSYS, the parametrical study of the effects of the 

S/S ratio, the S/I ratio and the K of the supporting towers on the LLFs, as well as the analysis of 

the results against the ASCE manual and the EPRI report. 

Finally, Chapter 5 is the conclusion and recommendations of this thesis. 

1.4 Scopes of the Research 

The scopes of this thesis are: 
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 The simplified tower consists of equivalent beam elements in ANSYS 

 A nonlinear dynamic analysis is performed on a 10-span simplified transmission tower 

line 

 All broken cables are taken to be from the left-most span of the transmission line 

 Torsional mass of the transmission line is not considered 

 Buckling of a tower leg is not taken into account 

 All supporting towers do not fail from  the resulting unbalanced load  

 All cables are modelled as three dimensional truss elements in ANSYS 

 A consistent mass matrix is used in dynamic analysis 

 Rayleigh damping is used for all dynamic analyses. 

 All end restraints of the transmission line are pin supports. 
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Chapter 2 Literature review 

The objective of this work is to study and develop a simplified electrical transmission line 

system in the finite element program ANSYS, and perform a dynamic analysis to determine the 

unbalanced longitudinal loads on the system. The presentation of the literature review will begin 

with the applicable codes and guidelines for transmission tower design and analysis, followed by 

the broken wire analysis of a transmission line system, the development of a simplified beam-

column element with equivalent properties of a latticed tower section, and closed with computer 

modelling of transmission towers in the program ANSYS. 

2.1 Applicable codes and guidelines 

The applicable codes and guidelines for the design of an electrical transmission line are: the 

ASCE Manual on the Design of Steel Transmission Towers No.52 (ASCE, 1988), the ASCE 

Manual on Electrical Transmission Line Structural Loading No.74 (ASCE, 2010), and the ASCE 

Manual on the Design of Latticed Steel Transmission Structures No.10 (ASCE, 1997). 

ASCE Manual No.52 provides guidelines for the design of self-supporting and guyed steel 

transmission towers subject to multiple types of loadings, such as: oblique wind loads, transverse 

wind loads, overhead ground wire loads, maximum and minimum transverse and longitudinal 

loads, etc. 

ASCE Manual No.74 provides detailed guidelines for determining the structural loading on 

electrical transmission lines. The manual provides methods for determining wind, ice, 
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longitudinal, construction, maintenance, and various other loads. Section 3.3 of this manual 

provides information on the calculation of the unbalanced longitudinal load due to broken wires. 

This method requires the determination of the residual static load (RSL) which is the static 

longitudinal load on a wire support point under a broken wire condition. To calculate the RSL, 

the manual provides RSL factors as a function S/S ratio and S/I ratio. These RSL factors are then 

multiplied by the initial wire tension to give an approximate RSL. The RSL provides the 

minimum static load that must be resisted by the attached structures. The RSL does not take into 

account any dynamic effects resulting from the wire break. To consider dynamic effects, the 

manual provides a method to determine the (LLF) as a function of S/S ratio and the K of the 

support structures. The initial wire tension multiplied by the LLF gives an approximate design 

load that takes into account dynamic effects, which must be resisted by the attached structures. 

The Electric Power Research Institute (EPRI, 1997) developed formulas to determine the LLF’s 

of a transmission line. These formulas were the basis for the figures that were developed by 

ASCE Manual No. 74. The EPRI formulas contain correction factors for the tower stiffness and 

the S/I ratio. 

ASCE Manual No.10 provides requirements for the design of self-supporting and guyed latticed 

steel electrical transmission structures subjected to loading that is determined from ASCE 

Manual No.74. It also provides information on the design requirements for individual structural 

elements with respect to size, shape, length, applied loads, etc.; as well as design requirements 

for connections with respect to connection type, applied loads, etc. 
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2.2 Broken wire analysis of an electric transmission line system  

Electric transmission line systems subjected to unbalanced longitudinal loads have been studied 

by many researchers. Three approaches have been used: the full-scale test, the model-scale test, 

and numerical simulation. In the full-scale test and model-scale test approaches, the behaviors of 

the electric transmission line system with a broken wire are obtained from experimental testing. 

In numerical simulation, the finite element program is used to investigate this phenomenon. 

Peyrot et al. (1980) performed a full-scale broken conductor test. The test was carried out on an 

existing electric transmission line system with latticed steel towers designed for a cascading 

failure. In their work, the conductor tension-time history was investigated. They also developed a 

theoretical method called the energy method to calculate the Dynamic Impact Factor (DIF). This 

factor was used to multiply a residual static tension determined from a 2D static finite element 

program called CABLE5 to predict the peak dynamic tension in the conductor. They reported 

0.4% difference between the predicted peak tension and the measured one. The study was the 

only study of a full-scale broken conductor test available in the literature. This is because the 

full-scale test is expensive and difficult to conduct. Following this study, a few model-scale tests 

were reported. In 1981, Mozer et al. carried out a 1/30 model-scale experimental study of the 

broken conductor. In their test, the electric transmission line system consists of steel pole tangent 

structures, suspension insulators, conductors, and shield wires. They also developed a theoretical 

method to calculate the structural response factors which they used to predict maximum 

responses of the structure. They reported that difference between the predicted responses and the 

measured responses was within 2%. Kempner (1997) developed a containment failure 

philosophy from a scale test of an electrical transmission line system. The system was modeled 
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with pin bases tabular aluminum shafts attached with masses and springs. A single conductor 

was used in the study. The properties of the aluminum shafts were selected to provide a 

representation of real tower’s stiffness and natural frequencies. Longitudinal displacements were 

used as criteria of tower failure. He reported that the unbalanced longitudinal load in the system 

reduced to half in the fifth tower away from the broken conductor span.  

Even though the scale-model tests were relatively cheaper than the full-scale tests, they are still 

uncommon. Most of the past researchers selected to study the behavior of an electrical 

transmission line system subjected to an unbalanced longitudinal load using a numerical 

simulation. Campbell (1970) was the first one who developed a nonlinear static analysis 

procedure to analyze an unbalanced longitudinal load in an electric transmission line system. He 

formulated the conductor and the insulator string stiffness incorporating their geometric 

nonlinearity. He concluded that the Newton’s type iterative method provided better results than a 

linear increment method. In 1978, Fleming et al. also developed a nonlinear static finite element 

program considering the geometric nonlinearity of the conductor and the insulator string. In their 

study, the stiffness of a supporting tower was expressed by a longitudinal force and the 

associating degree-of-freedom of the insulator string. In 1984, Siddiqui and Fleming modified 

the program originally written by Fleming et al. (Fleming et al., 1978) to study a dynamic 

response of an electric transmission line system subjected to an unbalanced longitudinal load. A 

time history of wire tension arm loads and the tower support moment or the ground line moment 

due to a conductor loss were computed. The accuracy of this program was verified by comparing 

their results with the small scale experimental results (Mozer et al., 1977) which they reported 

10% and 20% errors in the arm loads and the ground line moment calculations, respectively. 



11 

 

In order to appropriately describe the dynamic behavior, with the advancement of the computing 

facilities, researchers moved towards the dynamic numerical simulations of an electrical 

transmission line system. Thomas and Peyrot (1982) developed a 2D dynamic finite element 

program, CABLE7, to study a broken wire phenomenon. They modeled an insulator string and a 

conductor using the same type of cable element. The tower stiffness was represented by an 

elastic spring with an equivalent horizontal stiffness along the line in their analysis. They 

compared the peak insulator tension due to a broken wire event from their analysis with a full 

scale and model-scale experimental test results and reported that tension history were within 

30% difference. McClure and Tinawi (1987) used ADINA, a commercial finite element 

program, to create the 2D and 3D finite element models of an electric transmission line system 

and to perform a nonlinear dynamic analysis of the system subjected to an unbalanced 

longitudinal load due to a broken wire phenomenon. Their numerical results were compared with 

Mozer’s experimental results (Mozer et al., 1981). They reported that the 3D model was 

considered a more realistic model for an electric transmission line system. Later, Lapointe (2002) 

and McClure and Lapointe (2003) used a tower torsional moment-time history from the analysis 

of a similar model to explain the two tower failures during an ice storm on a 120 kV electric 

transmission line system in Quebec.  

Recently, Shen et al. (2011) developed a general finite element analysis procedure in ABAQUS 

to study the various electric transmission line systems’ responses after the conductor breakage, 

and to determine the broken wire load for the design. In their model, they simulated that the 

broken conductor fell down to the ground and moved along the ground.  The accuracy of this 

procedure was verified by comparing their result with the Peyrot (1980) experimental result. 

They concluded that their model can be used to predict the time history of loading accurately.  
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As can be seen from the literature review, the study of the behavior of an electrical transmission 

line system subjected to unbalanced longitudinal broken conductor loading shifted from a full-

scale test to a model-scale test, then to a numerical simulation of a static system, follow by a 

numerical simulation of a dynamic system using commercial program, and finally to a numerical 

simulation of the dynamic system using their own formulation. The main drawback of 

commercial programs is the versatility of the program which can be cumbersome for a very 

specific study. 

2.3 Transmission tower modelling in ANSYS 

ANSYS is a 3D finite element analysis (FEM) program that is very useful for conducting both 

static and dynamic simulations of a system. ANSYS has been used by many different researchers 

and companies as a very useful way to simulate the effects of an electrical transmission tower 

and an electrical transmission tower line under broken wire, wind, downburst, tornado, seismic, 

unbalanced, and various other types of loads. 

Horr et al. (2004) performed a dynamic simulation of an A-402 guyed suspension tower and 

tower line subjected to extreme wind conditions in ANSYS and CDSET. The elements modelled 

in ANSYS were done with the built in beam and cable functions, while the elements modelled in 

CDSET were done with an alternative spectral approach.  A modal analysis of a single guyed 

tower was conducted using ANSYS and CDSET. The frequencies for the first six modes of the 

tower were shown to be in good agreement when compared. A non-linear perturbed full dynamic 

time history collapse analysis was simulated for series of three guyed towers with all attached 

cables. The time history results from the finite element method with ANSYS and the spectral 
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element method with CDSET were compared and found to be in good agreement when 

compared.  

Disney and Parke (2004) conducted an analysis of a single A-402 guyed suspension tower 

subjected to Manitoba Hydro’s seven static design load cases, as well as extreme wind 

downburst loading. Analysis of the models was done using ANSYS built in static, transient-

dynamic, modal, and buckling analysis sections. For the seven design load cases and for the 

extreme wind downburst it was found that the main form of collapse was the buckling failure of 

the cross arms of the tower.  They suggested that by reviewing the mode shapes of the tower, 

additional members could be added to the guyed arms to enhance the survivability of the tower. 
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Chapter 3 Transmission line system modelling 

The electrical transmission-line system for this study is modelled after the A-402M guyed 

suspension tower shown in Figure 3.1. The transmission-line system consists of structural beam-

columns, truss elements, conductor cables, guyed cables, ground wire cables, and insulator 

strings. The conductor cables are attached to the insulator strings at the top cross-arm of the 

tower, while the guyed cables are attached to the bottom cross-arm of the tower. The ground wire 

cables are attached the top of tower. The conductor, guyed, and ground wire cables are all pre-

stressed and take the form of a parabolic curve when installed. The insulator strings consist of a 

vertical cable that is attached to the top cross-arm of the tower at one end, and attached to the 

two joining conductor cables at the other end. The beam-column and truss elements of the tower 

consist of steel angles that are connected to one another with structural bolts.  

Since the transmission tower contains a large number of elements, it is very complex and time 

consuming when running a simulation for several spans. As a result, a simplified tower is used. 
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Figure 3.1: A-402M Tower 
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3.1 Simplified A-402M transmission tower line 

Computer analysis of an electrical transmission line takes a sizable amount of processing power 

and is very time consuming. To save on processing power and analysis time, Tabet (2009) 

developed a simplified transmission tower using equivalent properties of the latticed tower 

segments. A latticed tower modelled with segments of tapered and prismatic beam-column 

elements has much less number of degrees of freedom than a tower modelled in detail and hence 

reduce time consumed in the analysis as well as increase the capacity to analyse a system with 

more number of spans. The cables modelled were assumed to be parabolic and have a modified 

Dischinger’s modulus of elasticity. He analyzed the transmission tower line with a developed 

finite element program called Static and Dynamic Analysis Program. The results of the 

simplified and detailed transmission tower line, for static and free vibration analysis, were found 

to be within 7%; therefore the simplified beam-column element with equivalent properties was 

an adequate representation of a latticed tower segment. 

The simplified tower, shown in Figure 3.2, is developed in this analysis to save on the computing 

time that each different load case will take to run. The simplified tower is modelled to represent 

the detailed A-402M tower. The simplified tower was created by taking the geometric properties 

of the detailed A-402M tower at the latticed segments and converting them into beam-column 

elements with equivalent properties to that of the detailed section. These equivalent properties 

include the cross-sectional area, moments of inertia, torsion constant, and mass of the original 

detailed section. An example representation a simplified latticed tower segment is shown in 

Figure 3.3. Since the latticed segments of the tower have been simplified into beam-columns, the 
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number of elements and degrees of freedom of the system has been greatly reduced, resulting in 

a less complex model that takes less time to simulate in ANSYS. 

The equations for calculating the equivalent properties of the beam-column elements are 

presented in Section 3.2 (Tabet, 2009) formulation of tower elements for the A-402M tower. 

 

Figure 3.2: Simplified A-402M Tower 

                                              

 

Figure 3.3: Latticed tower segment represented as a tapered beam-column element 
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3.2 Transmission tower elements 

3.2.1 Straight latticed tower segment 

The tower segment shown in Figure 3.4 represents a straight segment of a latticed transmission 

tower that will be modelled as a straight beam-column element with equivalent geometric 

properties in ANSYS. 
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Figure 3.4: Straight latticed tower segment 

The torsion stiffness of the segment is considered to be provided by the diagonal bars only. 

Figure 3.5 shows the torsion of a straight latticed tower segment. The formula for the torsion 

stiffness is shown in Equation 3.1 where kT is the torsion stiffness, AD of the area of one diagonal 

bar, FD is the force in the diagonal bar, and T is the torsional moment. 



19 

 

b

z

z'

y'y

AL

AL

AL

AL

h

FD

L

bz

a

LD

Elevation Cross-section
 

Figure 3.5: Torsion stiffness of a straight latticed tower segment 
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The formula for the moment of inertia is given in Equation 3.2, A is the cross sectional area of 

the segment, AL is the area of one of the longitudinal bars, and Iy and Iz are the moments of 

inertia about the local y and z axes, respectively.  
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The formula for the mass of the segment is shown in Equation 3.3, where M is the mass of the 

segment, LD is the length of the diagonal bar, ρ is the density of steel, assumed to be 7860 
  

  , 

and L is the longitudinal length of the segment. 

 2 2 2 2

4 4

2

L D D

z y

D

M A L A L

b L b L
L

  

  


 (3.3) 

3.2.2 Tapered latticed tower segment 

The tower segment shown in Figure 3.6 represents a tapered segment of a latticed transmission 

tower that will be modelled as a straight beam-column element with equivalent geometric 

properties in ANSYS. The tapered section causes the moment of inertia change with length. 

Since ANSYS does not allow the input of tapered properties for an arbitrary beam-column 

element, an average moment of inertia of the top and bottom section is used, and will be verified 

for accuracy later. The diagonal bars are once again assumed to only resist torsion. The formulas 

for calculating the equivalent beam properties are given in Equation 3.4.  
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Figure 3.6: Tapered latticed tower segment 
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The formula for the mass of the segment is shown in Equation 3.5, where LDz is the diagonal 

length in the local z direction, and LDy is the diagonal length in the local y direction.  
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3.3 Cable Elements 

The conductor, ground wire, and guyed cables form a parabolic shape as a result of the uniformly 

distributed load from self-weight and pre-stressing force. The parabolic shape was calculated 

according to the formulas presented in Cable Structures by Max Irvine (1981). The profile for a 

parabolic cable is presented in Figure 3.7. The formulas for the determination of the cable profile 

are presented in Equation 3.6, where z is the dip of the profile below the chord, m is mass per 

unit length, g is gravity, l is the horizontal length of the cable, and H is the horizontal component 

of the pre-stressing force. The cables were inputted into ANSYS with the predetermined 

parabolic profile to accurately represent the sagging cables. 
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B

q

x

z

x tan q

 

Figure 3.7: Parabolic cable profile 
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3.4 Validation of beam-column elements 

The beam-column elements were validated using 3D beam-column elements in ANSYS set to 

have a cubic shape function, and were compared to the theoretical results for displacement, 

rotation and natural frequencies. The following examples are presented to validate the accuracy 

of the beam-column element used in ANSYS. 

Example 1: A cantilevered beam subjected to a free end loading  

A cantilevered beam subjected to a free end loading shown in Figure 3.8 is considered in this 

example. The problem is a 2D large deformation problem. The beam geometrical properties are 

5 m, L  3 2 5 4

2 34.8 10  m ,  4.45 10  mA I I      and the material properties are

 210 GPaE  and 80.775 GPaG  . The applied force has a magnitude of 2 600 kNF   .  

1

2
F

Fixed

2

3

 

Figure 3.8: A cantilevered beam with point load at free end 

Table 3.1 shows the free end displacement and rotation compared with Crivelli’s results (1990). 

The percent difference (P.D) in table 1 is calculated using Crivelli’s results for 16 elements, as 

they are the most accurate for each of Crivelli’s cases. The ANSYS results were found to be 

accurate by using only one element. 
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Table 3.1: A comparison of the results for a large deformation cantilevered beam 

Number of Displacement (m) Rotation (rad) P.D. (%) 

elements ANSYS Crivelli (1990) ANSYS Crivelli (1990) Displacement Rotation 

1 2.157 1.833 0.672 0.747 0.00 0.00 

2 2.158 2.078 0.672 0.688 0.05 0.00 

4 2.158 2.139 0.672 0.676 0.05 0.00 

8 2.158 2.154 0.672 0.676 0.05 0.00 

16 2.158 2.157 0.672 0.672 0.05 0.00 

Example 2: A cantilevered beam subjected to end moments 

A 2D cantilevered beam of length 1 mL   with a cross-sectional area 4 21 10  mA   , the 

moments of inertia 8 4

2 3 5 10  mI I    , the Poisson’s ratio of 0.3   and the elastic modulus 

210 GPaE   is considered in this example. This cantilever beam is subjected to an end moment 

of 3 10000 N-mM  as shown in Figure 3.9. The problem is a 2D large displacement and large 

rotation problem. 

1
3M

Fixed

2

3
 

Figure 3.9: A cantilevered beam subjected to an end moment 
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The maximum values of the beam deformation are compared with the results from Wang et al. 

(2008), shown in Table 3.2. In this example, ten loading steps with ten elements were used. 

Wang et al. (2008) used 10 loading steps and 20 elements. It should be noted that the results 

from ANSYS remain the same, regardless of the number of elements used.  

Table 3.2: The maximum deflection of the beam and the result comparison 

Deformation (mm) ANSYS Wang et al. (2008) P.D. (%) 

ux 144.46 147.0 1.73 

uy 441.27 471.9 6.49 

Example 3: A 45
o
 bend subjected to an out-of-plane loading  

In this example, a 3D response of a cantilevered 45
o
 bend in a horizontal plane subjected to a 

vertical load at free end, shown in Figure 3.10, is presented. The problem was studied by Simo 

and Vu-Quoc (1986), Cardona and Geradin (1988), Crisfield (1990) and Li (2007). The problem 

is considered to be a 3D large displacement and large rotation. 

1

2

3

P

 70.71,  0.00, 29.29

100 in
R 

o45

 

Figure 3.10: Curved Cantilever bend with a concentrated load 
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Table 3.3: The tip location (in) of the cantilevered 45-degree bend 

 

Tip location (in) 

300 lbP   450 lbP   600 lbP   

ANSYS 58.84, 40.09, 22.33 52.31, 48.41, 18.61 47.22, 53.39, 15.80 

Simo and Vu-Quoc 

(1986) 

58.84, 40.08, 22.33 52.32, 48.39, 18.62 47.23, 53.37, 15.79 

Cardona and Geradin 

(1988) 

58.64, 40.35, 22.14 52.11, 48.59, 18.38 47.04, 53.50, 15.55 

Crisfield (1990) 58.53, 40.53, 22.16 51.93, 48.79, 18.43 46.84, 53.71, 15.61 

Li  (2007) 58.78, 40.15, 22.28 52.24, 48.46, 18.56 47.15, 53.43, 15.74 

The bend has a unit cross-section with elastic modulus 
710  psiE  and zero Poisson’s ratio. The 

ANSYS analysis uses eight straight beam elements as used in all other studies. The maximum 

load is 600 lbP  . The tip locations at loads 300,  450 and 600 lbP  are shown in Table 3.3. It 

can be seen that the results from ANSYS are in good agreement with the results from the other 

studies. 

Example 4: A simply supported beam subjected to a step force with finite rising time 

loading 

In this example, a simply supported beam subjected to a step force with finite rising time loading 

shown in Figure 3.11 is considered. The beam geometrical properties are 12 mL  , 
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3 28.06 10  mA   , the moments of inertia 4 4

2 3 1.858 10  mI I   
 
and the material properties 

are  210 GPaE  , 80.775 GPaG   and 
37850 kg/m  . 

F(t) 4 m

12 m

 

Figure 3.11: A simply support beam with a step force with finite rising time loading 

a) Without Damping 
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Figure 3.12: The vertical displacement history under loading point 

Figure 3.12 shows the displacement under the loading point compared with theoretical results. 

The maximum displacement and the displacement at 0.15s under the loading point are shown in 

Table 3.4, where they are compared to the theoretical results. 

Table 3.4: The undamped displacement under loading point 

Deformation (mm) ANSYS Theoretical result P.D. (%) 

 0.15 syu  6.501 6.456 0.69 

 Maximumyu  8.637 8.617 0.23 

 

b) With Damping,  = 0.01. 

The results from ANSYS for the damped analysis are compared to the solution presented by 

Tabet (2009) in Table 3.5. 
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Table 3.5: The damped displacement under loading point 

Deformation (mm) ANSYS Tabet (2009) P.D. (%) 

 0.15 syu  6.53 6.43 1.56 

 Maximumyu  8.48 8.49 0.12 

 

Example 5: A cantilever beam support to a sinusoidal force  

A cantilever beam shown in Figure 3.13 has a rectangular cross section 0.25 mh   and 

0.5 mb  , where h and b denote the depth and the width, respectively. This cantilever beam has 

a length 10 mL  , elastic modulus  210 GPaE  , the Poisson’s ratio 0.3    and mass density

37850 kg/m  .  A sinusoidal force 10sin50P t MN is applied at the free end of the beam. 

This problem is a large displacement and large rotation problem. 

 

Figure 3.13: A cantilevered beam with sinusoidal load at free end 

Le et al. (2011) used the Co-rotational finite element to solve the problem. In his analysis, he 

used 3 elements with the CR mass matrix to solve this problem while 10 elements with lumped 

mass were used in ANSYS for comparison. Both of the free end displacement-time histories are 

shown in Figure 3.14. 
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Figure 3.14: The free end of vertical displacement history  

3.5 Validation of cable elements 

The cable elements were modelled using truss members set to tension only. For both static and 

dynamic check of the cable, the results obtained from using a varying number of truss elements 

in ANSYS were compared to the theoretical results by Irvine (1981). The conductor cable, 

ground wire, and a guyed cable of a transmission tower system were chosen for the verification 

purpose. Since the ground wires and guyed cables are modelled similarly to the conductor cables, 

only the verification results of the conductor cables are shown here. Table 3.6 shows the 

properties used for the analysis of the cables considered in this analysis.  
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Table 3.6: Properties of the conductors, ground wires, and guyed cables 

 Conductor Ground Wire Guyed Cable 

Horizontal Span (m) 480 480 24.16 

Effective Diameter (mm) 57.47 9.00 11.10 

Effective Area (m
2
) 2.5944E-03 6.3617E-05 1.9355E-04 

Density (ton/m
3
) 2.2765 6.25 7.86 

Weight(N/m) 57.94 3.90 14.92 

Modulus of Elasticity (kN/m
2
) 6.23E+07 1.86E+08 1.86E+08 

Sag (m) 20.00 13.54 0.113 

Pretension per cable (kN) 83.44 8.30 26.68 

 

3.5.1 Static Analysis  

To validate the use of truss elements to represent a conductor cable in the static analysis, the 

cable was inputted into ANSYS with the parabolic profile for this analysis. Two load cases were 

considered, i.e. a point load applied at the mid-span and a uniformly distributed load applied 

between two points on the cable. Figure 3.15 shows the deflection resulting from a point load on 

a cable, where L is the length between supports, P is the point load, x1 is the distance to the point 

load from the left support, x is the distance from the left support to the point of interest, z is the 

sag as the point of interest, and w is the deflection at the point of interest.  Table 3.7 shows a 

comparison of the resulting deflection at mid-span along with the maximum stress in each cable 

obtained due to a point load applied at the mid-span of the conductor cable.  
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Figure 3.15: Point load on a cable 

 

Figure 3.16 shows the deflection resulting from a uniformly distributed load applied partially on 

a cable, where p is the load per unit length, where x2 is the distance from the left support to the 

beginning of the uniformly distributed load, and x3 is the distance from the left support to the end 

of the uniformly distributed load.  

Table 3.8 shows a comparison of the resulting deflection at mid-span along with the maximum 

stress in each cable obtained due to a uniformly distributed load applied between two points on 

the conductor cable.  

 

 

 

Figure 3.16: Uniformly distributed load on a cable
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Table 3.7: Maximum deflection and stress for a point load on a conductor cable mid-span 

 

 

Maximum Deflection (m) Maximum Stress (MPa) 

ANSYS 

Irvine 

P.D. (%) ANSYS 

Irvine 

P.D. (%) 

Load (N) 8 elements 16 elements 8 elements 16 elements 8 elements 16 elements 8 elements 16 elements 

25000 4.1102 4.2020 4.2333 2.9 0.7 75.41 75.17 74.96 0.6 0.3 

50000 5.8722 5.9678 5.9922 2.0 0.4 115.43 115.05 114.71 0.6 0.3 

75000 7.2578 7.3501 7.3626 1.4 0.2 152.51 152.05 151.60 0.6 0.3 

100000 8.4610 8.5494 8.5483 1.0 0.0 187.28 186.75 186.19 0.6 0.3 
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Table 3.8: Maximum deflection and stress for a uniformly distributed load on a conductor cable 

 

Maximum Deflection (m) Maximum Stress (MPa) 

ANSYS 

Irvine 

P.D. (%) ANSYS 

Irvine 

P.D. (%) 

p 

(N/m) 

x2 

(m) 

x3 

(m) 

8 

elements 

16 

elements 

8 

elements 

16 

elements 

8 

elements 

16 

elements 

8 

elements 

16 

elements 

500 120 360 6.2378 6.2019 6.1433 1.5 1.0 186.33 186.63 186.04 0.2 0.3 

1000 120 360 9.7711 9.7089 9.5751 2.0 1.4 308.32 309.00 307.64 0.2 0.4 

1500 120 360 12.5411 12.4611 12.2488 2.4 1.7 415.26 416.30 414.03 0.3 0.5 

2000 120 360 14.8764 14.7828 14.4898 2.7 2.0 512.84 514.23 510.93 0.4 0.6 
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The maximum percent difference for the static analysis from Table 3.7 and Table 3.8, was 2.7% 

for 8 elements, and 2.0% for 16 elements, respectively. Using 8 elements gives a fairly accurate 

representation of the conductor cable while using 16 elements gives a more accurate 

representation of the cable, therefore, 16 elements was found to be sufficiently accurate for static 

analysis. 

3.5.2 Free vibration 

Free vibration of a conductor cable was validated for the first five modes in ANSYS with the 

frequencies arrived from Irvine’s (Irvine, 1981) theoretical results. Here the conductor cable had 

to be modelled without sag in order to achieve the first mode. As in section 3.5.1, only the 

conductor cable’s results will be presented here. Figure 3.17 and Figure 3.18 show the 

convergence of the results obtained from ANSYS compared to the results obtained from Irvine’s 

formulas for both the Out-of-Plane and In-Plane natural frequencies for an increasing number of 

elements, respectively. The solid lines in Figure 3.17: Out of plane conductor frequencies and 

Figure 3.18 represent the theoretical values obtained using Irvine’s formulas.  
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Figure 3.17: Out of plane conductor frequencies 

 

 

Figure 3.18: In plane conductor frequencies 

From the figures, using 16 elements does not give achieve a good representation of the dynamic 

analysis for higher modes, although it provides an accurate representation of the static analysis. 
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Using 32 elements was found to accurately predict the frequencies for higher modes, therefore, 

32 truss elements will be used to represent each sagging cable in ANSYS. 

3.6 Validation of simplified A-402M tower 

3.6.1 Static Analysis 

The validation of a simplified tower to accurately represent a detailed tower was carried out 

using several load cases with only two will be presented here. Figure 3.19 shows an isometric 

view of the detailed tower and the simplified tower. Table 3.9 shows two of the load cases used 

for this verification. Figure 3.20 shows the locations and axis on which each force acts for the 

tower. Figure 3.21 shows the corresponding node numbers at which the loads act for the detailed 

and simplified towers top section and cross arms. 

 

Figure 3.19: Detailed tower compared to simplified tower 
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Figure 3.20: Load case forces and nodes on which they act 

 

Figure 3.21: Detailed and simplified tower nodes 
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Table 3.9: Transmission Tower Load Cases 

Load Case 1 

    kN   kN   kN 

Ground Wire V1 -8.3800 L1 8.4960 T1 0.0000 

Conductor1 V2 -70.4780 L2 32.4360 T2 0.0000 

Conductor2 V3 -70.4780 L3 32.4360 T3 0.0000 

Load Case 2 

    kN   kN   kN 

Ground Wire V1 2.8470 L1 1.9570 T1 2.1260 

Conductor1 V2 -43.4010 L2 18.7710 T2 9.2660 

Conductor2 V3 -43.4010 L3 18.7710 T3 9.2660 

 

Table 3.10 and Table 3.11 present the results of load cases one and two for the deflection of the 

detailed and simplified tower top section and cross arms, respectively. 



40 

 

Table 3.10: Detailed and Simple Tower Deflections for Load Case 1 (unit mm) 

Detailed tower Simplified tower P.D. (%) 

Node UX UY UZ Node UX UY UZ UX UY UZ 

214 274.52 56.502 0.23765 102 269.34 54.714 1.74E-10 1.9 3.3 NA 

235 264.84 -131.75 -0.09306 103 267.83 -135.53 -8.57E-11 1.1 2.8 NA 

Top 

Section 

358.92 -17.765 0.0153 47 357.91 -16.618 5.59E-11 0.3 6.9 NA 

 

Table 3.11: Detailed and Simple Tower Deflections for Load Case 2 (unit mm) 

Detailed tower Simplified tower P.D. (%) 

Node UX UY UZ Node UX UY UZ UX UY UZ 

214 144.99 22.459 190.76 102 142.01 21.536 190.88 2.1 4.3 0.1 

235 137.86 -69.347 -21.523 103 139.93 -71.881 -21.402 1.5 3.5 0.6 

Top 

Section 

184.66 -10.534 88.879 47 184.31 -10.112 90.713 0.2 4.2 2.0 
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From the results presented in Table 3.10 and Table 3.11, it can be seen that the simplified tower 

model gives an accurate representation of the detailed tower model.  

3.6.2 Free vibration 

A free vibration analysis of the detailed and simplified towers was conducted to validate that the 

simplified tower can accurately represent the dynamics of the detailed tower. The frequencies of 

the first 50 mode shapes of the detailed and simplified tower are compared in Table 3.12.  

Table 3.12: Detailed and Simplified Tower Mode Frequencies 

 Detailed Tower  Simplified Tower  

Mode Freq (Hz) Mode Freq (Hz) P.D. (%) 

1 1.49327 1 1.49311 0.01 

2 1.49519 2 1.49468 0.03 

3 1.49763 3 1.49647 0.08 

4 1.50428 4 1.50359 0.05 

5 1.51117 5 1.51092 0.02 

6 1.51405 6 1.51358 0.03 

7 1.51561 7 1.51547 0.01 

8 1.52534 8 1.52478 0.04 

9 2.29582 9 2.27249 1.03 

10 2.41437 10 2.48061 2.67 

11 2.97219 11 2.94659 0.87 

12 3.00466 12 3.00327 0.05 

13 3.00471 13 3.00337 0.04 

14 3.00492 14 3.00353 0.05 

15 3.00493 15 3.00353 0.05 

16 3.00494 16 3.00355 0.05 

17 3.01817 17 3.01538 0.09 

18 3.01878 18 3.02047 0.06 

19 3.43632 19 3.22646 6.50 

20 3.53811 20 3.45077 2.53 

21 4.41072 21 4.44386 0.75 

22 4.49832 22 4.49627 0.05 

23 4.49850 23 4.49650 0.04 

24 4.49911 24 4.49702 0.05 

25 4.49915 25 4.49705 0.05 

26 4.50116 26 4.49908 0.05 

27 4.50153 27 4.49979 0.04 
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28 4.50877 28 4.50405 0.10 

29 4.51759 29 4.53110 0.30 

30 5.98052 30 5.97785 0.04 

31 5.98075 31 5.97809 0.04 

32 5.98094 32 5.97817 0.05 

33 5.98095 33 5.97817 0.05 

34 5.98095 34 5.97817 0.05 

35 5.98275 35 5.98036 0.04 

36 5.98334 36 5.98102 0.04 

37 5.98664 37 5.98289 0.06 

38 7.44799 38 7.44515 0.04 

39 7.44850 39 7.44520 0.04 

40 7.44911 40 7.44566 0.05 

41 7.44924 41 7.44579 0.05 

42 7.44927 42 7.44580 0.05 

43 7.44949 43 7.44638 0.04 

44 7.45011 44 7.44684 0.04 

45 7.45158 45 7.44801 0.05 

46 8.89656 46 8.89384 0.03 

47 8.89702 47 8.89397 0.03 

48 8.89728 49 8.89521 0.02 

49 8.89869 48 8.89472 0.04 

50 8.89934 50 8.89523 0.05 

3.7 Validation of Cable Breakage 

The validation of the cable breakage simulator was done by comparing results obtained from 

ANSYS to results obtained by Peyrot et al. (1980). Peyrot et al. performed a full scale 

transmission line test in Wisconsin on a 138 kV segment. The segment used for the conductor 

breakage consisted of five spans on one side of the conductor cable breakage shown in Figure 

3.22. Peyrot et al. determined that a minimum of three spans was needed in order to prevent 

reduction of the broken wire forces. Five different cases were compared to the results obtained 

by Peyrot et al. Each of the five cases have different properties that are presented in Table 3.13. 

The first tower at the location of the cable break was modelled as a spring element with a 

stiffness of 392400 N/m. A lumped mass of 100 kg was added to the arm of the first tower to 

represent the tower mass for dynamic analysis. 
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Figure 3.22: Five span transmission line in Peyrot’s full scale test (Peyrot, 1980) 

Table 3.13: Five span transmission line material properties 

Case 

Conductor 

Area  
(×10

-4
 m

2
) 

Conductor 

Modulus 
(GPa) 

Conductor 

Mass 
(kg/m) 

Pretension 

Force (N) 

Insulator 

Length 
(m) 

Insulator 
Area  

(×10
-4
 

m
2
) 

Insulator 

Modulus 
(GPa) 

Insulator 

Mass 
(kg/m) 

1 1.438 102.97 1.296 18639 2.2 7.9173 200 18.18 

2 1.438 102.97 1.296 19130 2.2 7.9173 200 18.18 

3 2.342 65.651 0.814 12459 2.2 7.9173 200 18.18 

4 2.342 65.651 0.814 17756 2.2 7.9173 200 18.18 

5 2.342 65.651 0.814 21288 2.2 7.9173 200 18.18 

 

In the analysis, the “ekill” command was used in ANSYS to simulate the conductor cable break. 

Each conductor span was modelled using 50 elements with a catenary profile that follows 

Equation 3.7. A damping ratio of 2% was used for all five cases. A time step of 0.001 seconds 

was used and the “ekill” command was issued at 0.001 seconds. The analysis was run up until 2 

seconds in order to determine the force of the first two peaks in the insulator string at point B. 

The results obtained from ANSYS were compared to the results presented by Peyrot et al. in 

Table 3.14. The results that were compared were the final residual static force of the insulator 

string, and the first and second peak forces. Figure 3.23 shows a comparison of the tensile forces 

obtained from ANSYS and those presented by Peyrot et al. in the insulator string at point B. 
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Table 3.14: Comparison of ANSYS results to Peyrot et al. results for five span cable break 

Case 

ANSYS Peyrot et al. Percent Difference (%) 

Final 
Tension 

(N) 

First 
Peak 

(N) 

Second 

Peak (N) 

Final 
Tension 

(N) 

First 
Peak 

(N) 

Second 

Peak (N) 

Final 
Tension 

(N) 

First 
Peak 

(N) 

Second 

Peak (N) 

1 11103 24121 37196 10987 24623 31883 1.06 2.04 16.66 

2 11287 24362 37725 10987 24623 34727 2.73 1.06 8.63 

3 7050 18787 25651 7063 15009 20307 0.18 25.17 26.32 

4 8459 22393 28966 8731 20307 24623 3.12 10.27 17.64 

5 9345 24720 28951 9320 24623 21778 0.27 0.39 32.94 

 

 

Figure 3.23: Tension at point B of the insulator string AB [Dash line – full scale case 1 test 

(Peyrot et al. 1980), Solid line – ANSYS simulation (Smoothed with RLOESS 0.15%) 
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Chapter 4 Longitudinal Load Factors (LLF) 

 

The main objective of this paper is to investigate the LLF’s as a result of cable breakages in the 

A-402M transmission line system. A ten-span transmission line system that consisted of nine 

simplified towers and two dead end towers was modelled in ANSYS to investigate this objective. 

It should be noted that the conductors and the ground wire were considered to break 

simultaneously for all cases that were considered. The properties of the conductor, ground wire, 

and guyed cable are the same as those that were presented in Table 3.6. As stated earlier, section 

3.3.2 of ASCE Manual No.74 provides figures to calculate the approximate LLFs of a 

transmission line system as a function of the S/S ratio, the S/I ratio and the stiffness of the 

supporting tower. The results obtained from ANSYS were then compared to the results obtained 

from using ASCE Manual No.74 and the EPRI equations. 

4.1 ANSYS Modelling 

A ten-span transmission line was created in ANSYS using nine simplified towers and two-dead 

end models that are shown in Figure 4.1 in order to simulate the different cable breakage cases. 

The two-dead end models are modelled using pin supports in ANSYS to resist movement in all 

directions. The conductors and ground wire cable were all broken simultaneously in the left-most 

span of the developed model. 

Cable breakge
11 2 3 4 5 6 7 8 9

 

Figure 4.1: A ten-span tower model 
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4.1.1 Cable Breakage Cases 

Several cases were needed to accurately compare the results from ANSYS to those obtained with 

the ASCE and the EPRI methods. Therefore, ten different cases were considered and simulated 

in ANSYS to obtain accurate results by varying the S/S ratios, the S/I ratios, and the stiffness K 

of the towers. The stiffness of both the detailed and simplified A-402M towers was calculated to 

be 296 kN/m at the conductor location. The properties used for each case are presented in Table 

4.1. It should be noted that the span length for all cases is 480 metres. 

Table 4.1: Cable breakage cases 

Case Sag (m) Insulator Length (m) K (kN/m) S/S S/I 

1 8 4.27 296.0 60 112.4 

2 10 4.27 296.0 48 112.4 

3 15 4.27 296.0 32 112.4 

4 20 4.27 296.0 24 112.4 

5 20 3.27 296.0 24 146.8 

6 20 5.27 296.0 24 91.1 

7 20 6.27 296.0 24 76.6 

8 20 4.27 274.9 24 112.4 

9 20 4.27 243.9 24 112.4 

10 20 4.27 212.7 24 112.4 
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4.1.2 Solution Controls 

4.1.2.1 Time Step Size 

In order to obtain an accurate solution with ANSYS, a small enough time must be used. The time 

step used for all cases was 0.001 seconds. This time step was found to provide an accurate 

solution for all cases, while also maintaining a relatively quick analysis time. All cases were run 

for a 16 second analysis, with the cable breakages occurring at 1 second. 

4.1.2.2 Damping Coefficients 

Damping is a key part of dynamic as it takes into account the structures ability to dissipate 

energy. There are several different methods that can be used to determine the damping of a 

structure. In this analysis, Rayleigh damping was used for all cases. 

Damping of a structure can be determined by experimental results. Battista et al. recommends a 

damping ratio of 2% for steel bolted structures when no experimental results are given (Battista 

et al. 2003). Since no experimental results are given in this analysis, a damping ratio of 2% was 

assumed for all cases. Rayleigh damping assumes that the damping matrix [C] is proportional to 

both the mass [M] and the stiffness [K] of the structure. If the structure has natural frequencies 

lower than 1 Hz, damping can be assumed to be proportional to the mass matrix only, and when 

the natural frequencies are much higher than 1 Hz the damping matrix can be assumed to be 

proportional to the stiffness matrix only (Tabet, 2009). Since the tower in this study has natural 

frequencies that range from 1.49 Hz to 1.52 Hz for the first eight mode shapes, the damping 

matrix was assumed to be proportional to both the mass and stiffness of the structure. The 

formula for the damping takes the form of 
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 [ ] [ ] [ ]  C M K  (4.1) 

Where the coefficients  and  are a function of the i
th

 frequencies i and the i
th

 modal damping 

ratios i , and is shown in Equation 4.2. 

 
2 2

i
i

i





   (4.2) 

The equation can then be rearranged in term of  and  , and takes the form: 
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 (4.3) 

When the damping ratio of the system is assumed to be constant, Equation 4.3 can be simplified 

into the following: 

 

2
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i j

i j

i j
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 




 







 (4.4) 

Where i  and j  are chosen from the extremes of the design frequency range (Oliveira, 2006). 

For this study, the values of i  were taken to be the frequency of the first mode shape, and the 

value of j  was taken to be 18.97 Hz for all cases. This value of j  was chosen because all 

models have that frequency within the specified range and a change in value has a negligible 

effect on the damping matrix (Tabet, 2009). The frequency of the first mode shape for all ten 

cases and the resulting damping coefficients that were used for analysis in ANSYS are presented 

in Table 4.2. 
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Table 4.2: First mode shape natural frequencies and damping coefficients 

Case i (Hz)     

1 0.15039 0.037499 0.000333 

2 0.14494 0.036151 0.000333 

3 0.12536 0.031299 0.000333 

4 0.11198 0.027979 0.000334 

5 0.11443 0.028587 0.000334 

6 0.10966 0.027402 0.000334 

7 0.10745 0.026853 0.000334 

8 0.11195 0.027971 0.000334 

9 0.11190 0.027959 0.000334 

10 0.11185 0.027946 0.000334 

4.1.2.3 Element Death 

In order to model the cable breakage in ANSYS, the command “ekill” must be issued to all 

elements that are required to be killed. To ensure that the program converges properly, the “ekill” 

command was issued for every conductor and ground wire element in the far left span. Since 

ANSYS has no command to kill nodes, every node in the far left span was constrained from 

moving. It was found that if this was not done, the elements would be free to move about the 

model as they have no stiffness matrix, and would result in ANSYS giving displacements that 

are larger than the program can handle for the analysis. As a result, these conditions had to be 

met to ensure proper convergence. 
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4.2 Results 

The resulting LLF’s for all ten cases are presented in Table 4.3. The LLF’s are the maximum 

tension at the conductor location (obtained from the dynamic analysis mentioned in section 4.1) 

divided by the initial conductor tension. 

Table 4.3: Longitudinal Load Factors 

Case K (kN/m) S/S S/I LLF 

1 296.0 60 112.4 1.3277 

2 296.0 48 112.4 1.5403 

3 296.0 32 112.4 2.0630 

4 296.0 24 112.4 2.5432 

5 296.0 24 146.8 2.3649 

6 296.0 24 91.1 2.4470 

7 296.0 24 76.6 2.3196 

8 274.9 24 112.4 2.5212 

9 243.9 24 112.4 2.4545 

10 212.7 24 112.4 2.3211 

 

Figure 4.2 shows the plot of normalized LLF’s for cases 1 to 4, which is used to investigate the 

effect of S/S on the LLF values when both S/I and K are fixed. The normalized value of LLF at 

each point is equal to the LLF at the considered point divided by the maximum value of LLF 

among the data points. The normalized values of LLF in Figure 4.2 are for the first tower 

adjacent to the cable breakage, i.e. tower 1 in Figure 4.1. Here the S/I and the K values of the 

tower are fixed at 112.4 and 296 kN/m, respectively. 
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Figure 4.2: Normalized LLF at the conductor location for the first tower 

The LLF’s based on the EPRI report is given by the equation: 

 
 

/ 0.5

A

/
S I KLLF CF CF

S S
  (4.5) 

Where /S ICF is the S/I Correction Factor, KCF is the K Correction Factor, and A is the response 

coefficient of the structure. It is therefore assumed that the values of LLF obtained from ANSYS 

will follow the same format. A trend line was then added to the ANSYS simulation to determine 

the equation of LLF, which is found to be: 
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/ 0.712
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Where /S ICF is the S/I Correction Factor, and KCF is the K Correction Factor. The plot of the 

LLF’s based on the EPRI report includes the Span/Insulator and Stiffness Correction Factors for 

the first tower. 

The LLF’s calculated by ANSYS contain the correction factors from for S/I and K that are 

shown in Equation 4.6. The correction factor for S/I must first be determined by varying the 

length of the insulator string. Table 4.4 lists the LLF’s for the tower adjacent to the cable 

breakage obtained from ANSYS. The S/S and K values are fixed at 24 and 296 kN/m, 

respectively. The correction factor of S/I based on the EPRI report is given by the equation: 

 /

/
1

2000
S I

S I
CF     (4.7) 

The plot of the LLF vs. S/I for ANSYS in Figure 4.3 (cases 4 to 7), which are obtained from the 

analysis, shows polynomial dependency. It is therefore assumed that the relationship of the 

correction factor will be a second order polynomial as:  

    
2

/

1
1 / / 1.0

constant
S ICF a S I b S I    

 
  (4.8) 

Using the information in Table 4.4 with Equation 4.8, the correction factor is found to be: 

    
22 5

/ 0.10006 1.56985 10 / 6.84333 10 /S ICF S I S I        (4.9) 

Table 4.4: Effect of S/I on LLF 

S/I 76.6 91.1 112.4 146.8 

LLF 2.3196 2.4470 2.5432 2.3649 

 

The effect of the tower stiffness, K, is determined by fixing the values of S/S and S/I. Here these 

values are set at 24 and 112.4, respectively. The results of cases 4, 8, 9, and 10 are presented in 

Table 4.5 and Figure 4.4, which show the effect of K on the LLF’s. 
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Figure 4.3: Normalized LLFs from ANSYS simulation and EPRI calculation 

   

Table 4.5: Effect of the K on the LLFs 

K (kN/m) 296.0 274.9 243.9 212.7 

LLF 2.5432 2.5212 2.4545 2.3211 
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Figure 4.4: The effect of K on the normalized LLFs 

The equation for the correction factor due to the stiffness of the supporting tower given by the 

EPRI report is: 

 
1/

200
1/

K

KCF e


   (4.10) 

Where, K is in kip/in. The plot from the ANSYS simulation indicates that the relationship 

between LLF and K is linear. The correction factor therefore assumed to be in the form: 

  
1

1.0
constant

KCF a bK     (4.11) 

Using equation 4.11 and Table 4.5, this correction factor was found to be: 

 
40.87824 4.1134x10KCF K    (4.12) 

From Equations 4.6, 4.9, and 4.12, along with the results from the ANSYS simulations, the LLF 

can be expressed as: 
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The above equation is valid for 20 ≤ S/S ≤ 90; 70 ≤ S/I ≤ 130. It should be noted that the stiffness 

of the supporting structure has a prominent effect on the resulting value of LLF. This reason for 

this is that when the tower stiffness increases, the unbalanced force will be larger. The ASCE 

manual shows that the LLF for rigid support structures is almost 1.4 times that of a flexible 

supporting structure. The plots of the LLF’s that were calculated based on Equation 4.13 and 

those obtained by the EPRI equation by varying S/I from 70 to 105 with a fixed K value of 275 

kN/m are shown in Figure 4.5. The figure shows that the LLF values calculated using both 

Equation 4.13 developed from ANSYS and equation 4.5 from the EPRI report are in very good 

accordance. At an S/S value of 20, the difference is 14%, and at an S/S value of 90, the 

difference is 3%. Increasing K from 275 to 300 kN/m, will result in difference of 15% at an S/S 

value of 20, and a difference of 2% at an S/S value of 90. 

 

Figure 4.5: LLFs comparison between 4.13 and EPRI report 
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Chapter 5 Conclusions and Recommendations 

 

5.1 Conclusions 

The finite element program ANSYS was used to analyse a 10-span guyed transmission line 

system. In the analysis, the towers were modelled with the simplified towers. These simplified 

towers used equivalent geometric properties developed to represent the detailed towers. Non-

linear transient dynamic analyses of this 10-span transmission line system subject to conductor 

and ground wire cable breakages in the first span was simulated using the dynamic solver in 

ANSYS for ten different cases. The results from these ten cases were then used to formulate an 

equation that can be used to predict the LLF for this guyed transmission line having different 

S/S, S/I, and K values. 

In summary, the program ANSYS was used to: 

a) Model both the detailed and simplified version of the A-402M transmission tower 

using beam and three-dimensional truss elements. 

b) Verify the non-linear static and dynamic solver. 

c) Verify the accuracy of the number of beam and three-dimensional truss elements 

needed to represent the transmission line. 

d) Verify that the simplified tower can accurately represent the detailed tower in both 

non-linear static and dynamic analysis. 

e) Verify that the dynamic solver could accurately simulate a cable breakage. 

f) Simulate conductor and ground wire cable breakages in the first span of a ten-span 

transmission line for ten different cases. 
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This study showed that: 

a) The simplified tower that was developed from using equivalent geometric properties 

could accurately represent the detailed tower both statically and dynamically to 

within a 7% margin of error. 

b) A minimum of 32 three-dimensional truss elements are needed to accurately model a 

sagging cable in a transmission line both statically and dynamically. 

c) The LLF depends on the S/S ratio, the S/I ratio, and the K of the supporting tower. 

d) The LLF for an A402-M guyed transmission line can be obtained using the equation: 

 
 

/ 0.712

24.305

/
S I KLLF CF CF

S S
  

where the correction factors due to the S/I ratio and the K of the supporting 

structures are, respectively: 

    
22 5

/ 0.10006 1.56985 10 / 6.84333 10 /S ICF S I S I       

 
40.87824 4.1134x10KCF K   

e) The predicted LLFs using the equation are comparable with the LLFs calculated 

using the EPRI report and almost doubled the values suggested in the ASCE manual. 

f) The effect of the K of the supporting structures is found to be more pronounced than 

what is suggested by the EPRI report. 
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5.2 Recommendations for Future Work 

 The author recommends the following for future research: 

a) Perform a non-linear dynamic cable breakage analysis for values of S/S, S/I, and K 

that are outside the spectrum of this study. 

b) Perform a non-linear dynamic analysis under other types of unbalanced longitudinal 

loadings (i.e. wind and ice load).  

c) Consider the buckling of one or more tower members and their effect on the 

longitudinal loads. 

d) Perform a non-linear dynamic cable breakage analysis under different combinations 

of cable breakages (e.g. Conductor cable breakages in different spans). 
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Appendix - A 

 

The mode shapes of the detailed and simplified transmission towers 
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 Isometric view  Top view 

 

 Longitudinal view  Transverse view

Figure A.1: 1
st
 mode shape of the detailed tower (Frequency = 1.49 Hz) 
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 Isometric view  Top view 

 

 Longitudinal view  Transverse view

Figure A.2: 1
st
 mode shape of the simplified tower (Frequency = 1.49 Hz) 
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 Isometric view  Top view 

 

 Longitudinal view  Transverse view

Figure A.3: 2
nd

 mode shape of the detailed tower (Frequency = 1.50 Hz) 
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 Isometric view  Top view 

 

 Longitudinal view  Transverse view

Figure A.4: 2
nd

 mode shape of the simplified tower (Frequency = 1.49 Hz) 
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 Isometric view  Top view 

 

 Longitudinal view  Transverse view

Figure A.5: 3
rd

 mode shape of the detailed tower (Frequency = 1.49 Hz) 
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 Isometric view  Top view 

 

 Longitudinal view  Transverse view

Figure A.6: 3
rd

 mode shape of the simplified tower (Frequency = 1.50 Hz) 
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 Isometric view  Top view 

 

 Longitudinal view  Transverse view

Figure A.7: 4
th
 mode shape of the detailed tower (Frequency = 1.50 Hz) 
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 Isometric view  Top view 

 

 Longitudinal view  Transverse view

Figure A.8: 4
th
 mode shape of the simplified tower (Frequency = 1.50 Hz) 



72 

 

 

 Isometric view  Top view 

 

 Longitudinal view  Transverse view

Figure A.9: 5
th
 mode shape of the detailed tower (Frequency = 1.51 Hz) 
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Figure A.10: 5
th
 mode shape of the simplified tower (Frequency = 1.51 Hz) 
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Figure A.11: 6
th
 mode shape of the detailed tower (Frequency = 1.51 Hz) 
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Figure A.12: 6
th
 mode shape of the simplified tower (Frequency = 1.51 Hz) 
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Figure A.13: 7
th
 mode shape of the detailed tower (Frequency = 1.52 Hz) 
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Figure A.14: 7
th
 mode shape of the simplified tower (Frequency = 1.52 Hz) 
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Figure A.15: 8
th
 mode shape of the detailed tower (Frequency = 1.53 Hz) 
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Figure A.16: 8
th
 mode shape of the simplified tower (Frequency = 1.52 Hz) 



80 

 

 

 Isometric view  Top view 

 

 Longitudinal view  Transverse view

Figure A.17: 9
th
 mode shape of the detailed tower (Frequency = 2.30 Hz) 
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Figure A.18: 9
th
 mode shape of the simplified tower (Frequency = 2.27 Hz) 
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Figure A.19: 10
th
 mode shape of the detailed tower (Frequency = 2.41 Hz) 
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Figure A.20: 10
th
 mode shape of the simplified tower (Frequency = 2.48 Hz) 
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Figure A.21: 11
th
 mode shape of the detailed tower (Frequency = 2.97 Hz) 
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Figure A.22: 11
th
 mode shape of the simplified tower (Frequency = 2.95 Hz) 
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Figure A.23: 12
th
 mode shape of the detailed tower (Frequency = 3.00 Hz) 
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Figure A.24: 12
th
 mode shape of the simplified tower (Frequency = 3.00 Hz) 
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Figure A.25: 13
th
 mode shape of the detailed tower (Frequency = 3.00 Hz) 
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Figure A.26: 13
th
 mode shape of the simplified tower (Frequency = 3.00 Hz) 
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Figure A.27: 14
th
 mode shape of the detailed tower (Frequency = 3.00 Hz) 
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Figure A.28: 14
th
 mode shape of the simplified tower (Frequency = 3.00 Hz) 
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Figure A.29: 15
th
 mode shape of the detailed tower (Frequency = 3.00 Hz) 
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Figure A.30: 15
th
 mode shape of the simplified tower (Frequency = 3.00 Hz) 
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Figure A.31: 16
th
 mode shape of the detailed tower (Frequency = 3.00 Hz) 
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Figure A.32: 16
th
 mode shape of the simplified tower (Frequency = 3.00 Hz) 
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Figure A.33: 17
th
 mode shape of the detailed tower (Frequency = 3.02 Hz) 
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Figure A.34: 17
th
 mode shape of the simplified tower (Frequency = 3.02 Hz) 
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Figure A.35: 18
th
 mode shape of the detailed tower (Frequency = 3.02 Hz) 
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Figure A.36: 18
th
 mode shape of the simplified tower (Frequency = 3.02 Hz) 
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Figure A.37: 19
th
 mode shape of the detailed tower (Frequency = 3.44 Hz) 
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Figure A.39: 19
th
 mode shape of the simplified tower (Frequency = 3.23 Hz) 
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Figure A.39: 20
th
 mode shape of the detailed tower (Frequency = 3.54 Hz) 

  



103 

 

 

 Isometric view  Top view 

 

 Longitudinal view  Transverse view

Figure A.40: 20
th
 mode shape of the simplified tower (Frequency = 3.45 Hz) 

 


