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Abstract

Let L be a finite planar lattice with and let Ch L be the set of
maximal chains on L. We show that each planar embedding e(L) of
L induces a left-right partial order on incomparable elements of L (D.
Kelly and 1. Rival [4]) and under this order, Ch L forms a distributive
lattice. We further show that the poset of join-irreducible elements
J(Ch L) of Ch L forms a planar lattice after the addition of a maximal-
element and a minimal-element and that this planar lattice (called
Ce L) can be obtained directly from the cells of L. For a given lattice
L with planar embedding e(L), the set of all lattices K such that
Ce K 2 Lis described. Finally it is shown that the cell lattice of the cell
lattice of L, written Ce® L, is independent of the planar representation

of L and can be extended to a lattice construction on all finite lattices.
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Introduction

Finite planar lattices have been studied extensively. Two key papers
on the subject were produced by D. Kelly and L. Rival [4] and by C. R.
Platt [5]. Both papers provide a complete description of the class of all
finite planar lattices, and results from each paper will play prominent
roles in this thesis.

The bulk of this thesis focuses on the relationship between the al-
gebraic properties and the graph theoretic properties of finite planar
lattices. In particular, it is shown that in a finite planar lattice L, each
planar embedding induces a partial order on the set of maximal chains

Ch L such that

o Ch L forms a distributive lattice, and
e The poset of join-irreducible elements of Ch L forms a planar

lattice after the addition of a zero-element and a one-element.

Furthermore, a direct relationship is established between the join-irre-
ducible elements of Ch L and the cells of L.

Chapter 1 develops the results using purely algebraic means. The
partial order on the maximal chains of a planar lattice L is defined by
using the left-right order defined in [4]. The cell lattice of L, denoted
Ce L, is defined and shown to be isomorphic to the join-irreducible

elements of Ch L after removing the 0 and 1 elements from Ce L.

vi




INTRODUCTION vii

Chapter 2 shows how the results from Chapter 1 can be obtained

using graph theory. The main theorem from [5] plays a key role in this

discussion. In the main result of this chapter, a complete description is

given of all planar lattices K satisfying Ce K 22 L, where L is a given
planar lattice with planar embedding e(L).

Finally, Chapter 3 uses work from the previous two chapters to

develop applications which can be extended to all lattices.




CHAPTER 1

Maximal Chains of Planar Lattices

In this chapter we restrict our discussion to finite planar lattices.
We use the left-right order, introduced by D. Kelly and 1. Rival [4], to
develop a partial order on the set of maximal chains of a planar lattice,
L. We show that under this order, the set of maximal chains of L forms
a distributive lattice.

In section 3, we show that the join-irreducible elements of the max-
imal chain lattice form a planar lattice, after the addition of a zero-
element and a one-element. We further establish a connection between
these join-irreducible maximal chains and the cells of our original planar
lattice. We conclude this chapter by proving the converse statement:
every distributive lattice whose poset of join-irreducibles is planar af-
ter adding a least element and a greatest element, is the maximal chain

lattice of a planar lattice.

1. Preliminaries

We begin with a brief introduction to lattice theory. For a complete

treatment of the subject, see G. Gréatzer [2].

DEFINITION 1.1. A partially ordered set (poset) is a set P together

with a binary relation < such that the following properties hold for all
1
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elements a,b,c € P:

1. a<a (Reflexivity)
2. a<bandb<aimplya=25b {Antisymmatry)
3. a<bandb<cimplya<c (Transitivity)

Let P be a poset and let a,b € P. Let ¢ € P be an element such
that c is an upper bound of a and b and if d is an upper bound of ¢ and
b then ¢ < d. We say that c is a least upper bound of a and b and we
write ¢ = a V b (called the join of @ and b). We can similarly define the

greatest lower bound (called the meet) of a and b and we write a A b.

DEFINITION 1.2. A lattice L is a partially ordered set in which aVb

and a A b exist for all a,b € L.

Let L be a lattice and let a,be L. fa<bandforallce L,a< ¢
and ¢ < b imply ¢ = b then we say b covers a, or a is covered by b,
written a < b. For a,b € L, a and b are incomparable if a £ b and

a # b (written a || b).

DEFINITION 1.3. An element a¢ € L is join-irreducible {meet-ir-
reducible) if a = zVy {(a = z A y) implies either 2 = a or ¥ = a.
If @ is not join-irreducible (meet-irreducible) then a is join-reducible
(meet-reducible).

If an element is both join-irreducible and meet-irreducible, then it
is doubly-trreducible. If it is both join-reducible and meet-reducible,

then it is doubly-reducible.
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Every lattice L can be represented by a Hasse diagram, written
e(L). In a Hasse diagram of a lattice, L, every element is represented
by a small circle, and if @ < b then bis set higher than @ and is connected
to a by a line. A planar representation of L is a Hasse diagram of L
in which no two covering relations intersect, except possibly at their

endpoints. L is planar if it has a planar representation.

2. A Partial Order on Maximal Chains of L

Let L be a planar lattice and let 2 € L. Then each planar embed-
ding e(L)} of L gives rise to a lincar order on the set of lower (upper)
covers of x. In particular, for lower covers y and z of z, we say ¥ is
to the left of z if the angle the y < z line segment makes with the
horizontal is less than the angle the z < z line segment makes with the
horizontal (from the left). In Figure 1.1, y is to the left of z.

Fix a planar representation e(L) of L. We now define the left-right
order on L (see [4]).

Upper Covers of x

Left /\Right
X

Left Right

Lower Covers of x

FIGURE 1.1. Linear order on lower covers of & in e(L)
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DEFINITION 1.4. z is to the left of y, written z Ay, iff ||y and
there are lower covers 2’ and 3 of z V4 such that z < 2’ and y < ¢/

and z’ is to the left of ¢/ in e(L).

A mazimal chain is a sequence of elements
{O = T3 X1y -3 Tp—1,Tn = 1}

such that for each ¢ = 1 to n, 2;_; < z;. Recall that a planar rep-
resentation is an embedding of L into the plane such that the second
projection satisfies my(2) < ma(y) whenever z < g, and every covering
relation © < y is represented by a straight line segment from z to y
in the plane. Therefore each maximal chain C represents a continu-
ous function fo in the second coordinate from the 0-element to the
l-element of L. So, for an an element 2 € L and a maximal chain
C C L with z ¢ C, we can compare z to C by saying z is to the left of
C whenever ma(z) < fo(m(z)) (pages 640 to 641 of [4] gives a detailed
study of maximal chains of L as continuous functions in the plane).
D. Kelly and I. Rival established the following result about maximal
chains and the A partial order in [4].

ProprosITION 1.5 (D. Kelly and 1. Rival, 1975). If z Ay, then z is
on the left of any mazimal chain throughy. If ||y and z is on the left

of some magzimal chain through y, then T \y

From Proposition 1.5 we get 2|y iff z and y are comparable with
respect to A. We can use the left-right order to apply a partial order
to maximal chains of L. Given two maximal chains A and B of L,

AL, Biffforalla € Aand b € B, a||bimplies aAb. So A <, B if



2. A PARTIAL ORDER ON MAXIMAL CHAINS OF L 5
there is at least one such pair. By Proposition 1.5, A <) B iff A is to
the left of B in e(L).

Let Ch L represent the set of all maximal chains on L with leftmost

chain being O, and rightmost chain being 7.
LEMMA 1.6. Ch L forms a lattice under <,.

ProOF. Let A,B,C € Ch L.

o Reflexivity: A <, A since all elements of A are comparable.

o Antisymmetry. Assume A <, B and A >, B. Then for all
a € Aand b € B, a||b implies a Ab and b a which is not
possible. Therefore all elements of A are comparable to all
elements of B and so A = B since A and B are both maximal.

o Transitivity: Assume A <) Band B <, C. Leta € A and
¢ € C such that a}|c. Then there is no maximal chain D such
that a,c € D. Therefore, for all b € B, either a||b or bf| ¢ {or
both). So either a Ab or b Ac. If a Ab then by Proposition 1.5,
a is to the left of any maximal chain through b, and either C
passes through b, or b is to the left of C. In either case, a Ac.
Dually, if b A ¢, then we conclude a Ae. Therefore A <, C.

Therefore, <, forms a partial order on Ch L.
Let A, B € Ch L. Define

AnB={ze AUB|z€e AN B}
Wz e AU B |3Jy e AU B such that z Ay}

So A Ay B is the lefthand path in e(L) wherever A and B diverge.

As L is planar, if A and B ever cross, it is at points of the lattice,
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hence A Ay B is in fact a maximal chain. Furthermore, A Ay B <, A

and AAy B <, B. Finally, if C € ChL with C <, Aand C <, B

then for all ¢ € C and all a € AU B, c||a implies cAa. Therefore

for all b € AA B, ¢||bimplies cAb, since AN B C AU B. Therefore
C <y ANAB.

Dually, AV, B is the righthand path in e(L) wherever A and B

diverge. Therefore Ch L forms a lattice under <. ]

When viewing our maximal chains as continuous functions in the
plane, note that the partial order we defined on the maximal chains of L
corresponds to the natural partial order given to continuous functions
on a closed interval. That is, for f and g continuous on [a, ] then
[ < giff f(y) < gly) for all y € [a,b]. It comes as no surprise then,
that Ch L is distributive (it is a sublattice of the distributive latiice
of continuous functions on a closed interval). Nevertheless, we prove
the distributivity of Ch L in the next section by a study of its join-
irreducible elements, as the join-irreducible elements of Ch L play a
key role in the remainder of our discussion.

We note that any maximal chain A divides L into two: all elements
a of L on the left of A, written a <, C and all elements on the right
of A, written a > C. Let A C L and let C be a maximal chain in L.
If a is on the left of C or a € C for all a € A then we will say A <, C.
If A<, C and there exists a € A such that a is on the left of C, then

we say A <, C.
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3. Elementary Cells and the Cell Lattice

A cell A in alattice L is a sublattice of the form

{0A7$1)" 3 Tmy Y1y -y Yn, IA}

such that two maximal chains are formed:

Ap Oa<z1 < <2, < 1y

Ar: Oa=<pi < <y, <14

where Ay, is to the left of Ag, and such that for elements z; and y; in
the cell, z; Vy; = 14 and ; Ay; = 04.

A cell Ain L will be called an elementary cell if it has empty
interior, that is, if there is no maximal chain C in the sublattice [04, 1.4]
such that Ay <, C <, Ag. For example, in M3, there are three cells,
A= {0,0,b,1}, B = {0,a,¢,1}, and C = {0,b,¢, 1}, but only A and
(' are elementary cells (see figure 1.2). Clearly the left-right order

determines the elementary cells of L. For a fixed a Hasse diagram of

FIGURE 1.2. Mj
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L we will let C'(L) correspond to the set of all elementary cells in that

diagram.

LEMMA 1.7. Let A be an elementary cell and let C be a mazimal

chain. Then either A <, C or A >, C.

PROOF. For the sake of contradiction, assume there are a,b € A
such that a <, C and b >, C. As Ay is to the left of Ag, we can
assume a € Ay and b € Ar. Now Aj; and Ag share endpoints, so a
portion € must lie between Az and Ag, call it C4. That is, in the
sublattice [04,14], AL <x Ca <x Ag. As L is planar, C must cross
Ar, and Ag at elements ¢; and a, of L respectively. Without loss of

generality, we can assume a; < a,. But this creates a maximal chain:
in Ap, Ca in Ar

=04 < g < <G =G = << Gpyg < < 1g

in [04, 14] such that Az <) C% <, Ag contradicting the irreducibility
of A. O

Fix a planar representation of L and let A be an elementary cell.
We can extend Az and Ag into maximal chains on L in several useful
ways. Let Az, and Az, correspond to the leftmost paths in [0,04] and
[14, 1] respectively. Similarly define Ag, and Ap, to be the rightmost
paths. We then let

o A== A, UALUAy,
o At = Ap,UARU Ap,
o AV=A; , UARUA;,
o A= Ag, UALU Ag,
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We call A~ (A") the left (right) maximal chain extension of Ay,
(Ar). We later show that AY (A"} are the join-irreducible (meet-
irreducible) elements of Ch L. In fact, we show that for every join-
irreducible {meet-irreducible) element C of Ch L, there is a cell A such
that C = AY(= A").
With A~ and A™ acting as boundaries, we obtain four regions ori-
ented with respect to A (see figure 1.3):
(1) TA)={zeL|z>14}
2)BA)={zeLl|z<0,4}
@) L{A)={rel|z<,A"}
(4) R(A)y={z e L|z>, At}

LEMMA 1.8, B(A)U T(A)UL(A)UR(A) =L

PROOF. Let z € L and assume z >y A~ and z <3 AT. Then z
is to the right of A~ and to the left of AT™. Soz ¢ A and as A is an
elementary cell, either z € [0,04] or & € [14, 1]. In either case, we are

done. 1

As the borders between the four regions are maximal chains, by
Lemma 1.7, every other elementary cell of L is contained in exactly
one of the regions. This gives us a means of comparing elementary

cells in L.

LEMMA 1.9. Let L be a finite planar lattice and fiz a planar repre-

sentation of L. For elementary cells A and B, we have:

(1) A€ B(B) iff B € T(A)
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1

0

FIGURE 1.3. The four regions of a planar lattice L with

respect to an elementary cell A.

(2) A€ L(B) iff B € R(A)

PROOF. Assume A € B(B). Then for every a € A, a < 0g. In
particular, 14 < 0p. So for every b € B, 14 < 0 < b. Therefore
B e T(A).

Now assume A € L(B). Then for every a € A, a <, B~. So
in particular, Ag <, B~. Therefore AY <, B~. If B € L{A), then
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BY <, A™. But then BY <, A~ < AY <, B~ < BY, a contradiction.
Therefore B ¢ L(A), and by (1), B ¢ B(A) and B ¢ T(A). Therefore,
B € R(A). O

Using Lemma, 1.9, we can impose a partial order on the elementary
cells of L. For elementary cells A and B, let A <¢ B iff A € L(B). So
A<c Biff A<y BY.

LEMMA 1.10. Let A and B be elementary cells in L. Then A < B
iff there exists a € A and b € B such that a A b.

PROOF. Assume A <o B. Then A <, BY. Therefore there exists
a € A and ¢ € BY such that ade. But BY is the leftmost maximal
chain containing Bg. Therefore there exists b € By such that a Ab.

For the converse, assume A and B are incomparable cells. Then
either A € B(B) or A € T(B). So either 14 < 0g or 04 > 1p. In
either case, every a € A is comparable to every b € B. Therefore, there

isnoa€ Aand b€ B such that aAbor bia. 3

This order relation gives us a convenient means of determining the
structure of Ch L. If we let J(Ch L) correspond to the poset of join-

irreducible elements of Ch L then we have the following result.

THEOREM 1.11. Define the function ¢ : C(L) — J(ChL) by
Ap = AY. Then ¢ is a bijection. Furthermore, if C(L) is given the

partial order <¢, then p ts an isomorphism between posets.

PROOF. Let A be an elementary cell. If B is an elementary cell

such that B <, AY then B <¢c A. Sosup{B € C(L) | B<, AV} = A.
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Therefore if C € ChL can be transformed into AY by exactly one
(elementary) cell transformation to the right, then ¢ = A~ and the
cell used in the transformation is A. So A~ <5 AY and A~ is the only
maximal chain covered by AY in Ch L. Therefore AV € J(Ch L) and ¢
is well-defined.

Let A and B be elementary cells such that Apy = By. Then
AY=DBY. So A <, BY implies A <¢ B. But B <, AY implies
B < A. Therefore A= B and ¢ is one-to-one.

Let C € J(ChL). Then there is exactly one D € Ch L such that
D <, C. As D <, O, there exist subchains C; and D; of C and D
respectively such that €y and D; share endpoints @ and b and such that
dAcforall d € Dy \{a,b} and c € C; \ {a,b}. Since D <, C, there is
no maximal chain B such that D <, B <, C, so there is only one set
of such subchains, and D; U C} forms an elementary cell in L, call it A.
Therefore there is a (unique) cell transformation A corresponding to
the covering relation D <, C. So AY = Ay = C and as D is the unique
lower cover of C, A is the unique cell such that A = C. Therefore, ¢
is onto.

Finally, let A and B be elementary cells. Then

A<s Biff A<, BY
iff A <, BY
iff 3C € Ch L such that Ax C C and C <, BY

iff AY <, BY  (since AY =min\{C € ChL | Ag € C})

Therefore  is a poset isomorphism. 0
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Dually, A" corresponds isomorphically to the meet-irreducible ele-

ments of Ch L.
LeMMa 1.12. Ch L is distributive.

ProoF. Let C € ChL and let
r(Cy={Ae J(ChL)| A<, C}

So r(C) is the set of all join-irreducible elements of Ch L less than C.
If A€ r(C)and B € J(ChL) with B <), Athen B <, 4 <, C,
so B € r(C). Therefore, r(C) is hereditary, that is, if A € r(C) and
B < A then B € r(C). Define the map from Ch L to the set of all
hereditary subsets on J{Ch L} by:

w: Cr—r(C)

Now since Ch L is finite, every element is the join of nonzero join-
irreducible elements. Thus C = \/ r(C), showing that ¢ is one-to-one.
By Lemma 1.11, we know that the join irreducible elements below
C' correspond to the elementary cells to the left of C. Therefore for
C,D e ChL, r(CVD)=r{C)Ur(D) and r(C A D) = r(C)nr(D).
So we get (C'V D)y = CipU Dy and (C A D)p = Cpn Dy,

Finally, let H be a hereditary subset of J(Ch L). So H is a set of
elementary cells of L such that if A € H then B € H for all B € L(A).
Let M C H be the set of all maximal cells in H. Then for all A, B € H,
AeB(B)(or Be B(A)),soforallac Agand b€ Bg,a<b (b< a).
Let C' be the leftmost maximal chain such that Ag C C forall A € M.
Then B € r(C) iff B <¢ A for some A € M. Therefore r(C) = H and

@ is onto.
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Therefore Ch L is isomorphic to a ring of sets, and so Ch L is dis-
tributive (G. Birkhoff [1] and M. H. Stone [7]). O]

During the remainder of the discussion, it will be useful to add
a zero and a one element to J(ChL). We will write Jo(Ch L) for
J(ChL) U {0,1}. To maintain the isomorphic relation between the
join-irreducible chains and cells of L, we add a, zero cell O¢ and a one
cell Ie to C(L). The leftmost chain O, of L will be considered the
right chain (Og)y of O¢ and Og will not have a left chain. Similarly,
(Ic)p = I and (Ic)p = 0.

DEFINITION 1.13. Let L be a finite planar lattice. Define the cell
lattice or cell structure of L to be Ce L = C(L) U {Og, I¢}, partially

ordered by <¢.

For any given cell A C L, we will let
A=A\ AL and A= A\ Ap.

Notice that for A # O¢ and A # Ig, A, = A\ {04,14}, and
Al:AL\{UA, lA}.

LEMMA 1.14. For every element x € L, there are unigue cells A and
B such that x € A, and ¢ € By. Similarly, for every covering relation
x <y C L, there are unique cells C and D such that z < y C Cg and

z<yCDy.

PROOF. Let z € L\ {0, 1} and let X}, be the leftmost chain in [0, z]

and in [z,1]. If 2 € Oy then X; = O, and z is uniquely on (O¢)g.
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Otherwise there are cells to the left of X;. Let
A:{AECGLIA<AXL}

and let A € A If A is a maximal element of A then Ay C X;. But
X1, is the leftmost path in (0,2) and in (z,1). Therefore 04 < z < 14,
soz € A;. Also, as 04,14 € X;, we have AY = X;. Therefore A is
the unique maximal element of 4 and so it is the unique cell such that
z € A,

Dually, using the rightmost maximal chain containing z, we can
show there is a unique cell B such that z € B;.

Now let X = z < y be an edge in L. Then there are unique cells
A and B such that z € A, and y € B,. If A= B then X C Ap and
we are done. Otherwise, either z = 0p or y = 14. So either X C Bg
or X C Bpr (but not both). In either case, we are done.

Dually, there is a unique cell C such that z <y C Cf.

If z =0o0r z =1 then trivially, O¢ is the unique cell such that
RS

c

(O¢)» and I is the unique cell such that z € (Ig); (because
(Oc)p =10

and (I¢)p = 0 respectively). O
THEOREM 1.15. Ce L 1is a planar lattice.

PROOF. Let A, B € Ce L and define the following two linear orders
on Ce L:
(1) A<g Biff Ae L(B) or A€ B(B).
(2) A<y Biff Ae L(B) or A€ T(B).
Lemma 1.9 guarantees that these are both linear orders. Also A <z B

iff A€ L(B)iff A <p B and A <; B. Therefore Ce L is of dimension
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no greater than 2, and has dimension 2 iff there exist cells A and B
such that A € B(B).

Let A, B € CeL. If A and B are comparable, then A Vg B and
A A¢ B are trivially max ¢{A, B} and min o{A, B} respectively.

So assume A and B are incomparable. Then A~ and B~ are in-
comparable in Ch L. Therefore, there exists an x € A~ N B~ such that
z # 0and  # 1. Then A~ Ay B~ is the leftmost path in (0,z) and
in (z,1). By Lemma 1.14, there is a unique cell C such that z € C..
Since A~ Ay B~ is the leftmost path in (0, 2) and in (z, 1), C must be
the unique elementary cell such that Cp C A~ Ay B~. But this implies
C is the unique cell such that CV = A= A, B™.

Now let D € Ce L such that D <gc Aand D <o B. Then D <, A~
and D <, B~. Therefore D <, (A‘ A B‘) =CVY. So D <z C and
C=AN:B.

Dually, AV B exists and therefore Ce L forms a planar lattice. [

As a planar lattice, Ce L may have a variety of planar representa-
tions and corresponding left-right orders. We can use the two linear
orders from the above proof to describe one such representation by us-
ing the partial order on L. For elements a,b € Ce L with corresponding

cells A, B C L, we know

al||biff either a <gband a>1 b, ora>yband a <1 b
iff either A € T(B) or A € B(B)
iff 1A S OB or IB S OA

iffr<yvVreAandyeBorz>yVre Aand y € B.
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We can therefore set aAbin CeL iff 14 < 0. We will refer to this
left-right order on Ce L as the left-right order of Ce L induced by L.

The remaining results in this section about the cell lattice will be

useful tools for the remainder of the paper. Let L be a planar lattice.

LEMMA 1.16. Let a,b € Ce L and let A and B be the corresponding

elementary cells in L. Then the following are equivalent:

(1) a<b
(2) By c At
(3) ApC B~

ProoF. 1 implies 2: We will prove the contrapositive. Assume
a < b but there exists a € By, such that z ¢ A'. Then z is to the
right of A" since B € R(A). As A™T is the rightmost maximal chain
containing Ag, and hence the rightmost maximal chain containing both
04 and 14, we know that for any y € A;, we have y A z.

Now, by Lemma 1.15, there is a unique cell C' such that z € C,.
As z ¢ A,, we know C' # A. So A <¢ C since there exist ¥ € A such
that y Az. But C <¢ B since for any z € (), we have z A z. Therefore,
there exists ¢ € Ce L such that a < ¢ < b, so a 4 b.

2 implies 3: Assume By, C At. Then, in particular, 0g and 15 both
lie on At. As B € R(A), we know Og < 14 and 15 > 04. Therefore
either (at least) one of 1 and Op lies on A,, or A C By. Obviously
in the latter case, we would have Ag C B~. On the other hand, if
Op € A, but 15 > 1,4 then the portion of Ar which lies between
04 and Op would be on B~ because of the irreducibility of A. The
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portion of Ar which lies between O and 14 lies on By, since By, C At.
Therefore Ag € B~. The other cases where 15 € A, and where both
Op and 1p lie on A, are proved similarly.

3 implies 1: Assume Ar € B~. Then 14 > 0g and 04 < 15 as
otherwise B~ would not be the leftmost maximal chain in [0,0p] or
[1g, 1] respectively. So there exists z € A, such that z € B. Therefore,
for y € A; we have z Ay, so A <¢ B.

Now let C be an elementary cell in L such that A <¢ C and
C <¢ B. Then C € L(B}, so C <) B~. But Agp C B, so either there
exist € A and y € C such that y Az or every y € C is comparable to
every £ € Ag. In the latter case, we would conclude that either 1o < 04
or 0c > 14, so A and C are incomparable cells, which contradicts
A <¢ C. Therefore, there exist z € A and y € C such that y Az. So
C <¢c A, and as A <¢ C, we conclude A = C as desired. Therefore

a<bin CelL. O

COROLLARY 1.17. Let a,b € CeL and let A and B be the corre-
sponding elementary cells in L. If a < b then Ar and By share (ot

least) one edge.

Proor. Let a < b. By Lemma 1.16, we know Agp C B, and as
A and B are comparable cells, we know that 14 £ 0p and 15 £ 04.

Therefore, A and B must have at least one edge in common. O
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4. Planar Lattices as Cell Lattices

Every planar lattice has a planar cell lattice. In this section, we
show that for every planar lattice L, there is a planar lattice K such

that L = Ce K. We prove the following theorem:

THEOREM 1.18. Let L be a finite planar lattice. Then Ch L forms
a distributive latlice whose poset of join-irreducibles J(Ch L) forms a
planar lattice when adjoining o 0 and o 1 element.

Conversely, let D be a finite distributive lattice. If the poset of join-
irreducible elements J(D) forms a planar lattice after adjoining a 0 and

a 1 then there is a planar lattice L such that ChL = D,

To create K, a direct relation between the cells and edges of L and
the elements of X will be established. Similarly, a direct relation will
be established between the cells of K and the elements of L. To avoid
confusion, lowercase letters at the end of the alphabet z, 9, z, ... will be
used to refer to elements of K, while the uppercase letters X,Y, Z, ...
will refer to the edge or cell of L which corresponds to that element.
Similarly, elements of L will be denoted by lowercase letters at the
beginning of the alphabet a,b,c,..., while the corresponding cells of
K will be denoted by the respective uppercase letters A, B,C,.... The
zero and one element of L will be denoted 0z, and 17, and similarly, the
zero and one element of K will have a ’K’ as a subscript for distinction.

Let E(L) be the set of all edges (covering pairs) on L. Define the
set K = E(L)U CeL. In order to standardize notation between cells

and edges, when X is an edge of L, we will define Xp = X; = X. In
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this way, we can extend the definitions of X+, X, XV, and X" to
include the case when X is an edge. In this case, we note X+ = X*
and X~ = XV,

Now define an order relation on K: for z,y € K,z <y iff z £ y
and there exists @ € X and b € Y such that a Ab.

Now X is either an elementary cell or an edge in L. In either case,
for any maximal chain C' C L, either X <) C or X >, C (see Lemma
1.7). Therefore if z < y in K then there exist a € X and b € Y
such that a Ab. So a is on the left of any maximal chain through b
(Proposition 1.5). Therefore X is on the left of any maximal chain
through b, so X <, YV. Similarly, Y >, X*. Conversely, if X <, YV
then there exists a € X such that a is on the left of YV, and as YV is
the leftmost maximal chain passing through Yg, this implies there is
b € Yr such that a Ab. Therefore, we can redefine the order relation as
follows: for z,y € K, z < y iff 2 # y and X <, YV (or equivalently
Y >, XM

LEMMA 1.19. < is ¢ partial order on K.

PROOF. Trivially < is antireflexive.

Let z,y € K such that 2 < y. Then there exists a € X and b€ Y
such that a Ab. So X <, YV and therefore there cannot be ¢ € X and
d € Y such that d Ac. Therefore y £ z and < is antisymmetric.

Let z,y,2 € K such that z < y and ¥y < z. Then X <, Y and
Y <y ZY. Therefore YV <, ZVso X <y ZY. fYY <y ZVY then
a <y Z¥ for all a € X, so X # Z and therefore < z as desired.

So assume YV = ZVY. Asy < z, there exist b € Y and ¢ € Z such
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that bAc, therefore ¥ is a cell and Z is an edge such that Z C Yp.
As X <, YV = ZY, there exist a € X such that ¢ <y ZY. Therefore

X # Z and so = < z. Therefore < is transitive. OJ

THEOREM 1.20. (K, <) is a planar lattice.

ProOOF. Let z,4 € K and let 2 € K be an upper bound of z and
y. Then there exist a € X, b € Z such that aAbandceY,de Z
such that cAd. If Z is an edge of L then there is a unique cell W C L
such that Z C Wg (by Lemma 1.14)}. So w is also an upper bound of
z and y (since b,d € W) and w < z (since Z C Wg and W, <, Wg).
'Therefore, if the least upper bound of z and y exists in K, it must
correspond to a cell in L, and so we will restrict our discussion to cells
of L.

For z € K, the set of all elements z € K such that z > z is the set
of all cells Z of L such that Z >, X”. Therefore z is an upper bound of
zandyin Kiff Z >, X" and Z >, Y*; that is, iff 7 >, X"V, Y. So
zVy will exist in K iff there is a unique cell Z such that Z;, C X v, Y.
But, either X is an elementary cell, or it is an edge, in which case there
is & unique cell X’ such that X C X}, so X* = X'*. In either case,
X" corresponds to a meet-irreducible element of Ch L. Similarly, Y is
a meet-irreducible element of Ch L. But the meet-irreducible elements
of Ch L correspond isomorphically to the cells of I, call them X’ and
Y’ (dual of Theorem 1.11. So z V y will exist iff X' Vo Y’ exists. But
Ce L is a lattice, so X' VoY exists. Soif Z = X'VeY' thenz=2zVy
in K.
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Dually, using XV Ay YV, we can obtain z A y. Therefore, K is a
lattice.

We can easily show that K has dimension no greater than 2. Let
z,y € K with z # y. If z||y, then every element of X must be
comparable to every element of Y. Therefore, either 1y <0x or 1x <
Oy. As these two conditions are mutually exclusive, we can now define

two total orders <o and <; on K whose intersection forms the partial

order of K
oz <gyiffe <yorly <0yin L
erx < yiffe<yorOx > 1y in L.

Therefore, K is a planar lattice. 0

So, for z,y € K, ||y iff either 1x < Oy or 0x > 1y. That is, z and
y are incomparable iff either a < bforeverya € X andbcY ora > b
for every a € X and b € Y. So the left-right order of the lattice K is
determined by the partial order of L, where z Ay iff for every a € X
andbeY,a<b.

In order to analyze the cell structure of K, it is useful to first

describe the covering relations in K.

LeMMA 1.21. Let z,y € K. Then z < y iff one of the following
0CCUTS!

(1) X is a cell and Y is an edge such that Y C X,
(2} Y is a cell and X is an edge such that X C Yy,

PROOF. Assume X is a cell and Y is an edge such that Y C Xp.

Then forae X;and be Y we have adAbso z < .
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Now let z € K such that z < y and 2 > 2. Then XY < ZY and
ZV <YV, Butas Y C Xg, we have XY =YV. S0 2V = XV =YV,
Now z < gy, so there exists b € Y and ¢ € Z such that cAb. But
Z¥ =YY, so Z must be an elementary cell such that Zp C YV (for,
if Z were an edge then Z~ = ZY so every element of Z would be
comparable to every element of ¥). But Z¥ = XV so X is the unique
cell such that Xr C YV. Therefore X = Z and therefore z < .
By using a dual argument of the above, we can similarly show that
if Y is a cell and X is an edge such that X C Y then z < y.
To prove the converse, we show that if z < y but z and ¥ do not
satisfy either above condition then there exists a z € K such that
z < z <y. Soassume z < y. Then z # y and there exist a € X and

b€ Y such that a Ab. Now assume X is a cell in L.

CLaIM. We can choose a € X and b € Y such that a € X and
aib
Proof of Claim. Assume this is not the case. Then every b € Y is on
some maximal chain C such that Xz C C. But Y is not an edge on X5
by assumption. Therefore either b > 1y (or b < Oy) for every b € Y.

But then a < b (a > b) for every a € X contradicting z < y. |

Let Z C Xr be an edge on Xg such that ¢ € Z. Then z < y and
by our above work, z < z.

Now assume that X is an edge in L. By Lemma 1.14, there is a
unique cell Z such that X C Z;. Furthermore, Z # Y as otherwise

2 and y would satisfy condition 2. But X C Z, so there exist @ € Z
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and b € Y such that zAb. Therefore z < y and by our above work,

T <z 0
Let a € L and define k(a) = {z € K |a € X}.

LEMMA 1.22. k(a) is an elementary cell in K. Conversely, for

every elementary cell A C K, there is a € L such that A = k(a).

PROOF. For 0y, € L, k(0r) consists of all the edges between 0y, and
atoms of L and all the elementary cells to which these edges belong.
Therefore, by Lemma 1.21, this is a covering chain in K. As 0z is an
element of the zero cell and the one cell of L, £(0;) is a maximal chain
of K. Furthermore, 0 € X for every z € k(0;) and 0y < a for every
a € L. Therefore, for every z € k(01) and y € K, if z ||y then z \y.
Therefore, k(0z) is the leftmost maximal chain in K, and therefore it
is the zero cell of K (since (O¢)r = Oy and (Og); = 0). Therefore
k(0L) = O¢ in K.

Dually, for 1, € L, k(1) is the one cell of K.

Now let @ € L\ {0,1}. Then there exist elementary cells X and Y’
of L such that a € X, and a € ¥].

CrLAM. For all z € k(a), z < zand z < y.
Proof of Claim. If Y = I5 in L, then y = 1g so trivially z < y for all
z € k(a). Otherwise, there exists b € Y;, so aAb in L (since a € Y}).
Let z € k(a). Thene € Z and b € ¥ with aAb,s0 Z < Y. So
y =\ k(a) as required. Dually, z = A k(a). [
Now let z € k{a) \ {z,y}. As X and Y are the unique cells such

that ¢ € X, and a € Y}, we know that either a = 1z or a = 0z.
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Therefore, we can divide k(a) \ {z,y} into two subsets:, call them A,
and A, respectively:
o Ai={z€k(a)|a=1z}
o A, ={z€k(a)]| a=0z}

We know that both sets are non-empty, since a # 0 and a # 1,
imply the existence of edges W and Z such that @ = 1w and a = 0.
Furthermore, if 2z € A, then a = 0z so Z is in the convex sublattice
la,1;] of L. Therefore, we know by the first half of the proof, that A;
is a covering chain in K, and if we let Ay = A; U {z,y} then Ay, is a
covering chain in A with maximal element y and minimal element z.

Similarly, if we define Ag = A, U {z,y} then Ag is a covering chain
in K. Let we A; and 2 € A,.. Then a = 1w and a = 0z. Therefore
lw = 0z, s0 wAz in K. Therefore k(a) is a cell in K. Furthermore,
since 1w = 0z for every w € A; and z € A, there can no edge or cell V
in K such that Iy < 0y < 1y < 0z. Therefore k(a) is an elementary
cell in K.

Conversely, assume A € Ce K with maximal element y = 14 and
minimal element © = 04. Then for every w € A; and every z € A,,
r<w<yandz<z<y butwAz=xand wV z=1y. Therefore X

and Y are elementary cells in L. Also, wAz in K, so 1y < 0z in L.

CLAIM. For every w € A; and z € A,, 1w = 0.
Proof of Claim. Assume, for the sake of contradiction, that there exist
w € Ay and z € A, such that 1w # 0z. Then 1y < 0z, so there is a
covering chain from 1y to 0z. Therefore there is an edge V' such that

lw < 0y < 1y < 0z. But this would imply v € K such that wAwv
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and vAz. Also if Oy > 1x then 0z > 1y, contradicting z > z in K.
Similarly, Oy #£ 0x. Therefore there exists b € X such that Oy || b. Now
Oy < cfor every ¢ € Z, and there exists a ¢ € Z and b € X such that
bAc. Therefore as a corollary to Proposition 1.5, bA0y. Sov > z in

K. Similarly, v < y. But this contradicts the irreducibility of A. B

Let a € L be the unique element such that 1y = 0z = a, for every
w € Ay and z € A,. We need only show that e € X and a € Y. But
there exists a w € A such that £ < w and a = ly. Therefore, by
Lemma 1.21, W C Xg so @ € Xg. Similarly, there exists z € A such
that 2 < y and a = 0z. Therefore a € Y. So a € L is the unique
element such that a € X for every © € A. Therefore A C k(a). But
from the first half of this proof, we know that k({a) is an elementary

cell in K. Therefore k(a) = A, and we are done. O

THEOREM 1.23. For every finite planar lattice L, there is a finite

planar lattice K such that Ce K = L.

PROOF. We will use the K lattice that we have constructed in this
section. We already know by Lemma 1.22 that the k£ mapping is an
bijection between L and Ce K. We need only show that the order is
preserved. So let a,b € L such that a < b. If @ = 0y, (b = 1) then
we know k(a) = O¢ (k(b} = I¢) in K, so k{a) < k(b) as desired. So
assume a > 0y, and b < Iy. Then there exist edges X and Y in L such
that a = 1x and b = Oy. But then 1x < Oy soz Ay in K. As z € k(a)

and y € k(b), by Lemma, 1.10, we are done.
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Conversely, let A and B be elementary cells of K such that A <, B
and let ¢ and b be the corresponding elements of L such that k(a) = A
and k(b) = B. Then there exist z € A and y € B such that z Ay. So
a < 1y <0y < b as desired. Therefore Ce K == L. O

We can now prove Theorem 1.18.

PROOF. Let L be a finite planar lattice. Then by Lemma 1.12,
Ch L is a finite distributive lattice whose poset of join-irreducibles is
isomorphic to C(L) (Theorem 1.11). But when we adjoin a zero and a,
one, we get Ce L, which is a finite planar lattice by Theorem 1.15.

Conversely, let D be a distributive lattice whose poset of join-
irreducible elements J(D) forms a planar lattice after adjoining a zero
and a one. Let L be J(D) U {0,1}. Then by Theorem 1.23, there is a
finite planar lattice K such that Ce K = L. But Ce K = C(K)U{0,1}
so C(K) = J(D). By Theorem 1.11, C(K) = J(ChK), therefore
D=ChK. O

So for every planar lattice L, there exists a planar lattice K such
that L = Ce K. However K is by no means unique. For example, any

finite chain, C,, will have the two element chain Cj as its cell lattice.




CHAPTER 2

Cell Lattices and Dual Graphs

In this chapter we use graph theory to obtain an alternate descrip-
tion of cell lattices of planar lattices. We show that by using dual
graphs, we can obtain the covering graph of the cell lattice Ce L of L.
We conclude this chapter by showing that this process is reversible,
thereby allowing us to obtain a complete description of all lattices K

such that Ce X = L.

1. Introduction

In {5], C. R. Platt showed that every finite lattice L is planar if and
only if the graph, obtained from the covering graph of L by adding an
edge between its least and greatest elements, is a planar graph. By
using his main theorem, we show that the cell lattice can be directly
obtained from the dual graph of the extended covering graph of L.

We will begin with some relevant graph theory.

2. Background Graph Theory

DEFINITION 2.1. A directed multigraph (or digraph) G is a vertex
set V(Q) together with an edge set E(G) where each edge F € E(Q)

is a ordered pair of vertices. A simple digraph is a digraph with no
28
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repeated edges (multiple edges) and no edges which begin and end at

the same vertex (loops).

In this paper, multiple edges will be allowed in a general graph
G, so the terms ’graph’ and 'multigraph’ will be interchangeable. If a
graph G cannot have multiple edges, then it will be explicitly called a
’simple graph’ to avoid confusion. A graph is planar if it can be drawn

in the plane with no intersecting edges.

DEFINITION 2.2. Let G and H be graphs such that V(G) C V(H)
and E(G) C E(H). Then G is a subgraph of H and H is a supergraph
of G, written G C H.

For a planar graph G, its geometric dual graph, G*, is constructed
by placing a vertex in each face of G and if two faces have an edge E
in common, joining the corresponding vertices by an edge E* crossing
only at E (Ref: Diag). We note that in this definition, we must allow
for the existence of multiple edges and loops. Clearly G* has a loop if
and only if G has a vertex incident with only one edge. Similarly, G*
has multiple edges if and only if G has two faces which sharing more

than one edge. The dual graph G* of a planar graph & is itself a planar

graph.

3. Cell Lattices as Graphs

We can now resume our discussion. In [5], C. R. Platt proved that
a finite lattice L is planar if and only if the graph obtained from its
Hasse diagram by adding an edge between the 0 and 1 of L is a planar
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graph. This planar graph will be called the extended covering graph,
denoted g(L) and the added edge will be called the distinguished edge,
written D.

As a directed graph (digraph), g(L) will have the orientation which
respects the covering relation on L. That is, every edge £ = z < y from
the covering graph of the lattice is directed from the lesser element =
to the greater element 4. The distinguished edge is oriented from 1 to
0, so we can think of 0 as the upper cover of 1 in the extended graph.
In this way, g{(L) will be a digraph such that every cycle contains the
distinguished edge.

C. R. Platt gave the following necessary and sufficient conditions

in order for a digraph to be the covering graph of a planar lattice {see

[5])-

THEOREM 2.3 {C. R. Plati, 1976). Let G be a simple digraph with
at least 2 elements. Then G is the (oriented) covering graph of a planar
lattice if and only if there exist elements 0 and 1 in G such that the

following hold:

(1) GU(1,0) is planar

(2) G contains no cycles

(3) If x € G then there is a path from 0 to z and a path from z to
IinG

(4} G is strongly antitransitive (that is, if there is a driected path
fromz toy in G of length > 2 then there is no edge from x to
y i G).
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From Theorem 2.3, we obtain the following necessary and sufficient
conditions for a digraph to be the extended covering graph of a planar

lattice.

COROLLARY 2.4. Let G be a simple digraph with at least one edge.
Then G is the extended covering graph of a planar lattice if and only if
there exists an edge D in G such that the following hold:

(1) G is planar
(2) Ewvery cycle in G contains the edge D

(3) If x € G then there exists a cycle C such that z € C
(4)

4) G is strongly antitransitive.

Now let L be a finite planar lattice with |L| > 2 and fix a planar
representation e(L) of L. Then, by adding the distinguished edge, we
obtain the associated planar graph g(L). With the addition of this
edge, we note that the exterior, unbounded region of the lattice is
divided into two new regions. One region has the lefimost maximal
chain, O, together with the distinguished edge as the boundary; the
other region has the rightmost maximal chain I together with the
distinguished edge as the boundary. We consider the distinguished
edge to form both the left chain of the zero cell, O¢, and the right
chain of the one cell, 7¢. As such, the two exterior regions of the lattice
described above are respectively the cells O¢ and Ip. Every other cell
of the lattice represents a unique region of the corresponding graph. In
this manner, we have a bijective relation between the elementary cells

of L and the regions of g{L).
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Let g*(L) be the dual graph of g(L), and let D* be the corresponding

edge in g*(L) of the distinguished edge D in g(L). By Lemma 1.14, we

know that for every edge F, there are unique cells C' and D such that

E C Cg and E C Dy. We therefore apply the following orientation to

¢*(L). Every dual edge E* of g*(L) is oriented towards the cell of g(L)
which contains E on its left chain (see figure 2.1).

We now discuss some properties of g*(L).
LEMMA 2.5. g*(L) contains no loops.

PROOF. As the distinguished edge D represents the covering rela-
tion 1 < 0, every element of L (including 0 and 1) has both an upper
and a lower cover in the extended covering graph. Therefore every ele-
ment is incident with at least two edges, one directed to that element

and one directed from that element. So ¢*(ZL) has no loops. 0J
LEMMA 2.6. Fvery cycle in g*(L) contains the edge D*.

PROOF. Let C be a cycle in g*(L). So
C= ¢g—g— - —c_|—d.

As each element of g*(L) represents a region in g{L) and hence an

elementary cell of I, we obtain a sequence of cells of L:
Co,Ct,y...,Cn1,Cn = Gy

such that for all 4 = 0 to n, the right chain of C; shares an edge F; with
the left chain of Cyyy. If E; is the distinguished edge, then C; = I
and Ciyq = Og; otherwise, C;_; < C;. Therefore, we know one of the

edges used in the cycle must be the distinguished edge, as otherwise
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1

FIGURE 2.1. The extended covering graph of a lattice

and the associated dual graph.
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the partial order of Ce L would contain a cycle. So every cycle in g*(L)
must use the dual distinguished edge, or equivalently, g*(L) \ {D*}

contains no cycles. ]

LEMMA 2.7. Let ¢ € g*(L). Then there exists a cycle C such that

z€C.

PROOF. Let A and B be two elementary cells such that A <o B.
By Corollary 1.17, we know Ag and By, must have at least one edge
in common. So the corresponding elements ¢* and b* are connected by
an edge from o* to b* in g*(L).

Let C be a maximal chain in Ce L. So
C=0s=<cCi=c =cCh1=clc
As each covering relation represents an edge in g*(L), we obtain a path:
Oc—Ci— = Chy — I

With the addition of the distinguished edge, we obtain a cycle in g*(L).
As every element of Ce L is on a maximal chain, we know that every

element of g*(L) is on a cycle. O

So g*(L) is an planar digraph which satisfies (1), (2), and (3) of
Corollary 2.4. However, g*(L) is not a simple graph and it may not be
strongly antitransitive either. Clearly, ¢*(L) contains multiple edges if
and only if there are two regions of g(IL) which share a border of more
than one edge. But g(L) was obtained by a planar representation of
the lattice L, and every finite planar lattice is dismantlable {see [6]).

Therefore L contains a doubly-irreducible element 2 which implies the
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cells to either side of = share both edges connected to z. Therefore for
every lattice L with greater than one element, ¢*(L) will have multiple
edges.

Although g*(L) does not satisfy Corollary 2.4 and hence is not
the extended covering graph of a planar lattice, we can obtain planar
lattices from it in two different ways. We can either find the largest
subgraph of g*(L) which satisfies Corollary 2.4, or we can "add” new
elements onto the middle of the problem edges (those edges which are
either multiple edges, or which disrupt the antitransivity of g*(L)) to
obtain a larger graph which satisfies Corollary 2.4.

The first way is to use the acyclic digraph ¢*(L) \ D* to impose a
partial order on elements of g*(L). For z,y € g*(L), we set z < y iff
there is a directed walk from x to y in g*(L) \ D* (that is, if and only
if there is a sequence of vertices z = ag, ay,...,a, = y such that for
each 1, a; and a;4; are connected by an edge from a; to a;41). This
technique to induce a partial order from an acyclic digraph will be
called the directed walk partial order of a digraph. In this case, the
poset we obtained will be called L*.

Let z,y € L* such that z < y. Then z < y and there is no z such
that z < z < y. So in ¢*(L), there is a directed walk from z to y,
and no such walk can pass through any other element along the way.
Therefore there is an edge from z to y and so the covering graph of L*

is a subgraph of g*(L).

LEMMA 2.8. L*=CelL
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PrROOF. Let a,b € Ce L such that a < b. By Corollary 1.17, there
exists an edge F = z < y in L such that £ C Agr N By. Therefore, in
the graph g(L), the regions A and B share the edge F, which lies on
the left chain of B. So in g*(L), the edge E* points from a* to b*, so
there is a directed walk from a* to b* in g*(L). Therefore, a* < b* in
Lx
Conversely, let o*,0* € L* such that a* < b*. Then there is an edge
E* from a* to b* in g*(L). So the cells A and B share the edge E in L,
and since E* points from a* to b*, we know E C Az N By. Therefore
a<bin CelL.
Therefore Ce L =2 L*. O

So the directed walk partial order of g{L) \ D* is the cell lattice
of L. Or equivalently, the extended covering graph of Ce L is a maxi-
mal subgraph of g*(L) which spans g*(L) and is strongly antitransitive
(maximal in the sense that the addition of any edge of ¢g*(L) not al-
ready in Ce L will either create a multiple edge or will disrupt the
strong anritransitivity of Ce L).

'The second approach is to ”add” elements onto the middle of some
edges of ¢*(L) to obtain a graph which satisfies Corollary 2.4 (and
hence is the extended covering graph of a poset). By adding elements

to an edge, we mean replacing an edge p — ¢ with a chain of elements
p=rg) = r1— = gl=T)

where each r; is adjacent only with the two edges (r;—1,7:) and {r;, 7:41)
in the graph, for i = 1 to n — 1. Clearly, we obtain an infinite family of

possible posets (dependant on the number of elements added to each
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edge). Adding a single element to an edge is called a subdivision of
that edge. Two graphs are homeomorphic if they can be obtained from
a common graph by a sequence of subdivision by lines (see, for example
[3], page 107). Therefore, this technique will give us an infinite family
of posets whose extended covering graphs are homeomorphic to g*(L).

The set of all planar lattices K whose extended covering graphs
g(X) are homeomorphic to ¢g*(L) will be denoted G*(L). So we are
working with all graphs which are homeomorphic to g*(L) and which

satisfy Corollary 2.4.

THEOREM 2.9. If K € G*(L) then K is a planar lattice such that
CeK == L.

We begin by proving a Lemma:

LEMMA 2.10. Let H and G be two planar graphs. Then the follow-
g are equivelent:
(1} G and H are homeomorphic
(2) The simple graphs obtained from G* and H* by identifying all
multiplé edges between pairs of vertices with single edges are

isomorphic.

PROOF. Trivial. We simply observe that, given a graph G and an
edge E of G, the subdivision of E into Ey, E; merely replaces the edge
E* in G* by the two edges Ej and Ej, both of which connect the same

two elements as did F. |

With this Lemma, we can prove Theorem 2.9.
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PROOF. Let K € G*(L). Then K is a planar lattice whose ex-
tended covering graph g(X) is homeomorphic to ¢g*(L). Let Dg be
the distinguished edge in K. If there are more than one possible edges
eligible to be the distinguished edge, we choose one of the edges in K
which correspond to the dual distinguished edge D* in g*(L) by a series
of subdivision of lines.

By Lemma 2.10, the simple graphs obtained by ¢*(X) and g(L)
by identifying all multiple edges between pairs of vertices with single
edges are isomorphic. In particular, the underlying set of elements is
invariant between g*(K) and g(L). So for two elements  and y in the
underlying set, there exists (at least) one edge from z to y in ¢*(K)
if and only if there exists (at least) one edge from z to ¥ in g{L). So
the directed walk poset of g(L) \ D is isomorphic to the poset induced
by the directed edges of g*(K) \ D%. In other words, L 2 Ce K, as
desired. 0

The easiest way to construct a homeomorphic image of g*(L) which
satisfies Corollary 2.4 is to subdivide each edge in ¢*{(L) \ D* exactly
once. Doing this, we obtain the graph of a lattice with elements corre-
sponding to the cells and edges of e(L). That is, we obtain the lattice
K, constructed in section 4.

Notice that although any edge in g*(L} can be subdivided, there are
certain edges which must be subdivided in order to create a graph which
satisfies Corollary 2.4 and hence represents a lattice in G*(L). We know
g*(L) is not a simple graph and also may not be strongly antitransitive.

So there are two types of edges which must be subdivided in g*(L):
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e An edge E which disrupts the strong antitransitivity of g*(L)
— that is, an edge F = {a,b) for which there exists a path of
length greater than two from a to b in g*(L) \ {E£}
e A multiple edge — that is, an edge E = (a,b) for which there
exists a path of length two from a to b in g*(L) \ {E}

Combining the above two cases, an edge F = (a,b) in ¢*(L) must be
subdivided iff there exists a path from a to b in g*(L) \ {E}.

We can partially order the lattices in G*(L) by the number of el-
ements in each lattice. With this partial order, G*(L) will have a
least member C* L = A G*(L) whose extended covering graph is ob-
tained from ¢*(L) by only subdividing the edges which must be sub-
divided, doing so exactly once in each case. Working backwards now:
E* = (A, B) is an edge which is not subdivided in transforming g*(L)
to C* L iff there is no path from A to B in g*(L)\ {£*}. That is, if and
only if & = 2 < y is an edge in g(L) such that {E} = Agr N By, where
A and B are elementary cells in L such that A <¢ B. By Lemma 1.16,
we know Agr C B~ and By, C A, Also, since A and B are comparable,
we have 14 £ 0p and 1 £ 04. Therefore 14 > O and 15 > 04. As
A and B share only one edge, there are only two possibilities for F:
either K =04 < 1gor E=0p5 < 14.

So E* is not subdivided in obtaining C* L iff E = 04 < 15 for two
arbitrary cells A and B of L. Equivalently, this occurs if £ =a < b
and there exist elements ¢,d € L where ¢ # b and d # b such that a < ¢

and d < b.
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DEFINITION 2.11. An edge F = a < b in L is called a prunable

edge iff L\ {E} is a lattice.

LEMMA 2.12. Let L be a planar lattice and let a < b C L. Then
a < b is prunable iff there exist c,d € L where c £ b and d # b such

that a < c and d < b.

PROOF. Assume there exist ¢,d € L such that @ < cand d < b.
Let K =L\{a<b}. Nowa <cand c# b, so b# 1. As ¢ > a, the
covering relation a < b does not occur in any covering chain from ¢
to 1. Therefore, for all £ € L such that z # 1, either ¢ > z or not.
In either case, there is a covering chain from z to 1. Therefore for all
z € K, z <1. Similarly, since a # 0, we can show that for all z € K,
x> 0.

As L is planar, there is a left-right order A on L. K was obtained
from L by removing an edge, so there are more incomparable elements
in K than in L, namely those elements ¢ < y in L where every covering
chain from z to y must use the edge a < b. We can extend X to include
these elements by setting Ay iff @ Ad. Therefore K is planar, and as
it has a zero and a one element, K is a lattice.

Conversely, assume d does not exist. Then a is a maximal element
in K. But @ < bin L implies that a # 1. Therefore a V1 does not exist
in K. Similarly, if ¢ does not exist then b A 0 does not exist. In either

case, K is not a lattice. J

Therefore, given a lattice L, we can construct C* L by subdividing

the dual edges of all non-prunable edges of L. Using the terminology in
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Section 4, C* L is the lattice of all cells and non-prunable edges, with
the partial order: for z,y € C* L, z < yif there exist a € X and be Y
such that a Ab. Although C” L is the least member of G*(L), we have
not established that this lattice is a lower bound for all lattices having
L as a cell lattice.

For a given lattice L with a fixed planar representation e(l), let
C*(L) be the set of all lattices K with a planar representation e(K)
such that L = Ce K. By Theorem 2.9, we know that G*(L) C C*(L).
However, it is not necessarily true that G*(L) = C*(L). Given a poset
P, there may be non-homeomorphic simple acyclic digraphs Gy, G1, . ..
with the directed walk partial order P (see figure 2.2). Let e(P) denote
the covering digraph of P and define the partial order digraph of P to be
G(P), where G(P) has the elements of P as elements, and for z,y € P
there is an edge from z to y iff # < y. The following proposition will

allow us to characterize C*(L).

PROPOSITION 2.13. Let G be an acyclic digraph and P be a posel.
Let G' be the simple graph obtained from G by identifying all multiple
edges between pairs of vertices with single edges. Then the following

are equivalent:

(1) P is the directed walk partial order of G
(2) e(P) C &' C G(P).

PRrROOF. Let @ directed walk poset of G. We note that G’ and G

have the same directed walk partial order, so without loss of generality,
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& (8
(&

FIGURE 2.2. Two lattices whose extended covering
graphs are non-homeomorphic but have the same cell

lattice.

assume G is a simple graph (so G = G'). We also note that since
V(e(P)) = V(G(P)), we have V(G) = V(e(P)).

Assume e(P) C G C G(P). For a,b € V(G), if there is a directed
walk from a to b in e(P) then there is a directed walk from a to b in

G (because e(P) C G). Therefore the directed walk poset of e(P) is
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a subposet of (. Similarly @ is a subposet of the directed walk poset
of G(P). But the directed walk poset of e(P) and G(P) is P in both
cases. So P C @) and @ C P, therefore P = @} as desired.

Now assume e(P) is not a subgraph of G. Then there exists an edge
(a,b) € E(e(P)) which does not occur in G. So @ < b in P. However,
in G, either there is no path from @ to b, in which case a < b in @, or
there is a path from a to b in G of length greater than 2, so there exists
an element ¢ € @ such that @ < ¢ < b. In either case, we know Q 2 P.

If G is not a subgraph of G(P) then there exists an edge (a,b) € G
which is not an edge in G(P). Since {a,b) is not an edge in G{P), we
know a £ bin P, but a < b in Q. Therefore Q 2 P. 0J

We can now characterize all lattices K which are members of C*(L).
For a planar lattice K, let ga(K) be the homeomorphic graph of g{K)
obtained by removing all doubly-irreducible elements of K (that is, of
all graphs homeomorphic to g{K), ga(K) is the graph with the smallest

vertex set).

THEOREM 2.14. Let L be a finite planar lattice. For a planar lattice
K, the following are equivalent:
(1) K € C*(L)
(2) g(L) € ga(K) € (G(L) U (1,0)).

PROOF. Combine Lemma 2.10 with Proposition 2.13. ]



CHAPTER 3

A New Lattice Construction

1. Limitations of the Cell Lattice

Although useful for describing the structure of the maximal chains
in a planar lattice, the cell lattice has its limitations. For a given lattice
L, different planar representations may give rise to different left-right
orders and hence to different cell structures. Therefore there can be
several lattices Lg, L1,..., L, such that K € C*(L;} for ¢ = 0 to n.
Furthermore, we can find lattices Ko and K such that Ky € C*(Lo)
and Ky € C*(L1) but such that Ko ¢ C*{K,) and K; ¢ C*(Ky) (see
figure 3.1). Therefore, the relation KX = L[O] iff Ce K = Ce L is not
an equivalence relation on the class, Pl, of all finite planar lattices.

Furthermore, the cell lattice is only defined for finite planar lattices;
there is no analogous lattice construction for non-planar lattices.

In this chapter, we obtain a lattice construction related to the cell

lattice which addresses all these limitations.

2. An Alternate Description of Ce? L

Let L be a finite planar lattice. We will write Ce? L for the cell lat-
tice of the cell lattice of L, where Ce L has the left-right order induced
by L (the left-right order induced by L is defined on page 17). That

is, we let Ce® L = Ce(Ce L). In this section, we study Ce? L.
44
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eo(L) L (L)=1(Ky) K,y
ei(L) L) =1(KY) K

FI1GURE 3.1. Different planar representations of a lattice

giving rise to two non-isomorphic cell structures

We begin by defining a congruence relation, ® on L. For a,b € L

with a < b:

(3.1) a=0b[®]iff a is meet-irreducible and b is join-irreducible.

It is useful to observe that ® does not depend on the planarity of L.
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The following proposition proves that ® does in fact describe a
congruence relation on L. For a,b € L, the principle congruence rela-

tion O(a,b) of @ and b is the least congruence relation on L such that

a=b[0(a,b)]

PROPOSITION 3.1. Let a,b € L with a < b. Then the following are

equivalent:

(1) a is meet-irreducible and b is join-irreducible,
(2) a < b is the unique edge of L which is collapsed under ©{a, b),
(3) ForCeCel

e a € if and only b € C; and

eacC, ifand only b € C,.

PROOF. 1implies 2: Let ¢ € J(L) and b € M(L) and let z € L with
z#aand x £b ThenzAb<bsozAb< a Butz# a, therefore
zAb< a,and hence z Ab==zAa. Dually,zVa=2zVb.

2 implies 1: Assume b is join-reducible. Then there exists ¢ € L
such that ¢ < b and ¢ # a. So cAb = c but ¢Aa # c. Therefore
cAa =c[B(a,b).

Similarly, if ¢ is meet-reducible then we can find an edge z < ¥
such that z = y [O(a, b)].

1 implies 3: Let a be meet-irreducible and let b be join-irreducible.
Let C,D € CeL be the unique cells such that a < b € Cr and a <
b C Dy, (by Lemma 1.14). Since a is meet-irreducible, a cannot be

the zero element of a cell. Similarly, b cannot be the one-element of a
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cell. Therefore a < b C C, and so both a € C, and b € C,. Similarly,
a~<bC D.

3 implies 1: Trivial. O

The congruence relation, ® will be called the cell congruence rela-
tion on L because of part 3 of Proposition 3.1. By using the results
from Proposition 3.1, we can rewrite equation 3.1 as:

¢ = \/ {O(a,b) | a < b, a meet-irreducible, b join-irreducible }

(3.2) = \/ {B(a,b) | a < b is the unique edge collapsed by 6(a, b)}
So every congruence class of ® consists of either isolated elements:
[#]® = {=},
or of a chain of elements:
[2]® ={zg < -+ <z, | n > 1}

where each z; is meet-irreducible for 0 < ¢ < n — 1 and each z; is

join-irreducible for 1 < 7 < n.

LEMMA 3.2. Let x € L and let [z]® = {@o < -+ <z, | n > 0}.
Then we have:
e [z2|® is join-reducible in L/® iff o is join-reducible in L,

e [x]® is meet-reducible in L/® iff z., is meet-reducible in L.

Proor. Trivial. If zg is join-reducible, then there exist a,b € L
with a # b such that a < zg and b < 2. Also, since g is join-reducible,
we know [a|® # [2]® and [b]® # [z]®. But a||b, so [a]® # [b]®. Finally
a Vb= zg implies [a]|® V [b]® = [24]® = [2]®, so [z|® is join-reducible.
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Conversely, let [z]® be join-reducible. Then there exist a, b € L such

that [a|® # [z]® and [0]® # [z]® but [a]® V [b]® = [z]®. Therefore

aVb € [z]®, and as z; is join-irreducible for 1 < ¢ < n, we conclude
a V b= xy. Therefore z; is join-reducible.

The case for meet-irreducibility follows by duality. U

We can now deseribe Ce? L.

THEOREM 3.3. Let P be the poset of doubly-reducible elements of
L/® and let P} = PU{0p,1p} where Op,1p ¢ P are added least and

greatest elements respectively. Then Pl =2 Ce® L.

PROOF. Ce? L is the cell lattice of Ce L, where Ce L has the natural
left-right order induced by L. Therefore, for every z € Ce? L there
is a corresponding cell X in Ce L. We will restrict our attention to
Ce? L\ {0,1}. So

X = {Ox,aﬂ,. ..,am,b{},.. . ,bn,lx},
with the following left and right chains:
Xp=0x<a< - <a,<1x
Xp=0x <by<---<b, <1lyx.
The elements of X are elements of Ce L, hence are elementary cells of
L. Let A;, B;, Ix and Ox be the cells in L corresponding to a;, by, 1x
and Ox respectively (for 0 <i<mand 0 < j <n).

By Corollary 1.17, A; and A;4; share an edge for each Z, as do B;
and B, for each j. Also, by Lemma 1.16,

o (Ao); C (Ox)" and (Bo), C (Ox)",
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Fi1gurk 3.2. The cells of L. which form the elements of
Xin Cel

o (Am)p C (Ix)” and (Ba)g C (Ix)™.

CrLAIM. There is a £ < m such that, for all i < m, 14, < 14,, that
is, 14, is maximal in A(X) = {14 | a € X;}. Similarly, B(X) = {0p |
b € X,} has a minimal element; call it Op; (see figure 3.2).

Proof of Claim. We will prove that max A4(X} exists; the existence of

min B(X) is assured by duality. So assume max A(X) does not exist.
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Then there exist 1 < s < ¢ < m such that:
(3.3) 1a, £ 14, and 14, £ 14, for all ¢ < n.

In particular, 14, € 1a, and 14, % 1a,, s0 14, || 14,. Since s < &, we
know 14, Ala,. By Lemma 1.14, there is a unique cell C' C L such that
14, € C}. Let ¢ be the corresponding element in Ce L. We claim that

¢ lies in the interior of X, contradicting the irreducibility of X.

e cis to the right of Xj.
Proof. We know 14, € C, 50 a; < cin Ce L. Also
14, A1y, implies ¢ < a;. But 14, < 1¢, so by 3.3,
cé¢ Xy. As1lg > 1,4, and X, is a covering chain,
we can conclude there is an 7 with s < 1 < ¢ such
that a; Acin Ce L.
e Iy <ec<lyx.
Proof. We have already shown that a, < ¢ < ¢;.
e ¢ is to the left of Xp.
Proof. X is a cell in CelL, so a; V b; = 1x and
a; Vb; = 1y for all 1 < m and 7 < n. But
as, < ¢ < a; implies b; Ac=0x and b; Ve= 1x
for all j. Therefore c||b;, and as 14, € C and

as Ab; for all 7 < n, we conclude cAb;.
Thus X is not an elementary cell — a contradiction. So max . A(X)

exists. ]

Let 14 = max A(X) and 0 = min B(X). Then 14 < 0p, and as

X is an elementary cell in Ce L, the convex sublattice [14,0g8] C L
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must be a chain (possibly of length 0, if 14 = 0g). Therefore [14,0p] is
collapsed to a single element under ®, and as 14 is join-reducible and

Op is meet-reducible,
[14]® = [05]® = [14,05].
Define the map 1 : Ce? L\ {0,1} — P by
z) = [14]®

where z € Ce? L corresponds to the elementary cell X € CeL and
14 = max A(X). We already know % is well-defined function by the
first part of this proof.

Let 2 € P. Then z = [2]® for some z € L. Since z € P, [2]® is
doubly-reducible in L/®. Therefore [2]® = {7z < ... < 2z, | n > 0}
where zp is join-reducible and z, is meet-reducible (Lemma 3.2 ). So
there exist cells A and B such that zgp = 14 and 2, = 0. If n > 0
then as z; is join-irreducible for 1 < {1 < n, there is no cell C such
that z; = 1¢. Similarly, there is no cell C such that z; = 0¢ for all
0 < j < n—1. Therefore there exist cells O and I such that [z, z,] C O,
and [20,2,) C I;. If we let a,b,0,7 € Ce L correspond to A, B,0, and I
respectively, then we have shown that 0 < a <4, 0 <b <4, and a Ab.
In fact, we know a A b = o, since 14 € O, and 0g € O,. Similarly,
aVb =14. Finally, let ¢ € CeL such that a Ac and ¢||b. Then, for
the corresponding cell C C L, 0¢ > la(= z). Since c||b, we know
either 1o < 0g or 0g > 1p. But Oc > 1,4 and [14,035] is a chain (hence

contains no cells). Therefore 0¢c > 1, and hence bAc. Therefore,
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there exists a unique cell Z C Ce L such that {0z,¢,d, 12} C Z, so 9
is onto.

Let 2,4 € Ce® L such that ztp = y3b. Let X,Y be the cells in
Ce L which correspond to z and y respectively and let 14 = max A(X)
and 1p = max A(Y). So A and B are cells of L such that, for the
corresponding elements a,b € Ce L, we have a € X; and b € Y} (by
the definition of A(X)). Now ztp = ytp implies [14]® = [15]®. In
particular, 14 € [15]®. But 14 and 13 are both join-reducible, so 14
must be the least element in [15®, that is, 14 = 1. Therefore a € ¥},
and by Lemma 1.14, Y = X. Therefore z = y and 9 is one-to-one and
hence is a bijection.

Finally, let =,y € Ce? L with corresponding cells X and ¥ of Ce L,
and let

ztp = [14]® = [14,05]
yp = [1¢]® = [1¢,0p),

where A, B,C, and D are cells of L. Then, for the corresponding
clements a,b,¢c,d of Ce L, we have a € X}, be X, ce Y, and d €Y.

Let < y. Then there exist elements e, f € Ce L such that e € X,
feY,and e f (Lemma 1.10). Therefore, for the corresponding cells
E,F C L, 1p £ 0p. Furthermore, since £ # y we can assume that
e € Xg and f € Yr. Therefore, either e € X, of e = 0x or e = 1x.
In any case, 1 > Op. Similarly, 0 < 1g. Therefore 0p < 1g, so
P <y,

Conversely, let 2t < yo. Then [14]® < [1¢]®, and so 05 < 1¢. In

particular, 14 < 0p. Therefore a Ad, so by Lemma 1.10, z < 3. But
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z1 # y and 9 is one-to-one, so z < y. Therefore 7 is an isomorphism
from Ce?® L\ {0,1} onto P.

If we expand % to map zero-element to zero-element and one-
element to one-element, then we have an isomorphism from Ce? L onto

P}, completing the proof. O

COROLLARY 3.4. Ce®L is independent of planar representation

e(L) of L.
3. Applications to General Lattices

In Section 2, we showed Ce?L can be obtained from L by the
doubly-reducible elements of L/®, and hence can be obtained with-
out any reference to the planarity of L. We can therefore expand the

definition of Ce? L to include the class of all finite lattices.

DEFINITION 3.5. Let L be a finite lattice and let P be the poset of
doubly-reducible elements of L/®, where ® is the congruence relation
on L described in equation 3.2. We define the lattice of doubly reducible
cell classes of L to be ReL = PU{0,1} where 0,1 ¢ Pand 0 <p <1
forall pe P.

By Theorem 3.3, we know Re L = Ce? L for all finite planar lattices
L, and hence know that Re L is a lattice whenever L is planar. We

must show that Re L is a lattice for all finite lattices.
THEOREM 3.6. Re L s a lattice.

PROOF. Let a,b € Re L. We must show that a V b exists in Re L;

the existence of a A b follows by duality. Then a = [z]® and b = [y]®
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for some z,y € L and {z]® and [y|® are both doubly-reducible in L/®.

From our work on ® in Section 2, we have:
a=[2P={z0 < <2m|m>0}

and
b=[®={yo < - <y |n >0}

where z;,y; € L for 0 <4 <m, 0 < j < n, and such that z, and y, are
both join-reducible and z,, and g, are both meet-reducible (Lemma
3.2). If m > 0 {n > 0), then we also have z; (y;) being join-irreducible
for 1 <¢<m (1< j<n)and z; (y;) being meet-irreducible for
0<i<m—-10<j5j<n-1).

Clearly, if a V b exists in Re L then a Vb > [a,, V b,]®. So look at
@ V by, If there are no meet-reducible elements z such that > a,, Vb,
then by Lemma 3.2, there is no doubly-irreducible element y € L/®
such that y > [An V b,]®. So a and b have no common upper bound
in P. Therefore aVb=11in Re L.

On the other hand assume there exists at least one meet-reducible

element greater than or equal to a,, V b, in L. Let
M={z > a, Vb, |z is meet-reducible}
As L is finite, M has a greatest lower bound, d = AM.
CLamM. d € M (Hence d is meet-reducible.)
Proof of Claim. If d ¢ M, then d is meet-irreducible. So d has a

unique upper cover z. Since d = AM and d < z, we know there exists

ay € M such that d <y < z. Therefore, d = y, a contradiction. B
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If a,, Vb, # d then for all x € L such that a,, Vb, <z < ¢, z
is meet-irreducible. Therefore [a,, V b,,d] forms a chain (possibly of

length zero if d = an, V b,). Set C = [ay, V by, d] and let
J = {z € C | z is join-reducible in L}.

Then J # B because a,, Vb, € J. Also, J C C implies J forms a
chain of one or more elements. Since L is finite, J has a least upper
bound, ¢ = VJ. By a dual argument to that used for AM, we know
c € J, and hence is join-reducible.

So we have [c, d| forming a chain of one or more elements such that ¢
is join-reducible and d is meet-reducible. Furthermore, if ¢ # d then we
know every x € [c,d] with 2 > ¢ is join-irreducible, and every y € [c, d]
with y < d is meet-irreducible. Therefore [c|]® = [c,d] and by Lemma
3.2, [c]® e P.

We already know that [c]® is an upper bound of g and b; we will
show that a Vb = [c]®. Let z € ReL such that z > a and z > b. If
z =1, then z > [c|]® and we are done. Otherwise, z = {zp < - -+ < =%}
with z; € Lfori=0to k. As z € P, we know z is doubly-reducible
in L/®. Therefore z;, is meet-reducible. Furthermore, z > a and > b
together imply that z; > a,, Vb, for all <. In particular, z; > a.,, V b,,.
Therefore z € M, so d < 2, and we conclude [¢]® < z.

By duality, a A b exists. Therefore, Re L is a lattice. O
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