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Abstract

Let L be a finite planar lattice with and let ChI be the set of

maximal chains on .L. We show that each planar embedding e(I) of

.L induces a left-right partial order on incomparable elements of f (D.

Kelly and I. Rival [a]) and under this order, Ch.L forms a distributive

lattice. We further show thai the poset of join-irreducible elements

J(Ch ¿) of Ch .L fo¡ms a pLanar lattice after the addition of a maximal-

element and a minimal-element and that this planar lattice (called

Ce-L) can be obtained directly from the ce1Ìs of .L, For a given lattice

-L with planar embedding e(tr), the set of al1 lattices K such that

Ce K =.L is described. Finally it is shown that the cell lattice ofthe cell

lattice of .L, written Ce2.L, is independent of the planar representation

of -L and can be extended to a lattice construction on all finite lattices.
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Introduction

Finite planar lattices have been studied extensively. Two key papers

on the subject were produced by D. Kelly and I. Ríva,l [ ] and by C. R.

Platt [5]. Both papers provide a complete description of ihe class of a.1l

finite planar lattices, and ¡esults from each paper will play prominent

roles in this thesis.

The bulk of this thesis focuses on the relationship between the al-

gebraic properties and the graph theoretic properties of finite planar

lattices. In particular, it is shown that in a finite planar lattice .L, each

planar embedding induces a partial o¡der on the set of maximal chains

Ch.L such that

¡ Ch .L forms a distributive lattice, and

o The poset of join-irreducible elements of Ch.L forms a planar

Iattice a,fter the addiiion of a zero-element and a one-element.

tr\rrthermore, a direct reia,tionship is established between the join-irre-

ducible elements of Ch -L and the cells of -L.

Chapter 1 develops the results r.rsing purely algebraic means. The

partial order on the maximal chains of a planar lattice tr is deñned by

r-rsing the left-right o¡der defined in [4]. The cell lattice of tr, denoted

Ce -L, is defined and shown to be isomorphic to the join-irredr-rcible

elements of Ch .L a.fter removing ihe 0 and 1 elements from Ce.L.
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Chapter 2 shows how the results from Chapter 1 can be obtained

using graph theory. The main theorem from [5j plays a key role in this

discussion. In the main result of this châpter, a compiete description is

given of all planar lattices K satisfying Ce K = .L, where .L is a given

planar lattice with planar embedding e(I).

Finally, Chapte¡ 3 uses work from the previor:s two chapters to

develop applications which can be extended to all lattices.



CHAPTER 1

Maximal Chains of Planar Lattices

In this chapter we ¡estrict our discussion to finite planar lattices.

We use the left-right order, introduced by D. Kelly and I. Rival [4], to

develop a partial order on the set of maximal chains of a planar lattice,

.L. We show that unde¡ this order, the set of maxima,l chains of ,L forms

a distributive lattice.

ln section 3, we show that the join-irreducible elements of the max-

imal chain lattice form a planar lattice, after the addition of a ze¡o-

element and a one-element. We further establish a connection between

these join-irreducible maximal chains and the cells of our original planar

lattice. We conclude this chapter by proving the converse statement:

every distributive lattice whose poset of join-irreducibles is planar af-

ter adding a least element and a greatest element is the maximal chain

iattice of a planar lattice.

L. Prelimina¡ies

We begin with a brief introduction to Lattice theory. For a complete

treatment of the subject, see G. Grätzer [2].

DEFINITIoN 1.1. A partially ordered set (poset) is a set P together

with a binary relation ( such that the following properties hold for all
1



1. PR,ELIMINANMS

elements a,b,c e P:

7. a1a

2. a<ôa,ndö<oimplya:ö

3. a(öandö<cimplyo(c

(Reflexivity)

(Aniisymmatry)

(Ttansiiivity)

Let P be a poset and let ø,ö e P. Let c € P be an element such

that c is an upper bound of ¿ and ö and if d is an upper bound of ¿ and

å then c < d. We sây thât c is a least upper bound of o and ö and we

write c : a V b (called the join of ¿ a¡d b). We can similarly define the

greatest lower bound (called the meet) of a and b and we write ¿ A å.

DEFINITIoN 1.2. A lattice.L is a partially ordered set in which oVb

and ¿ Â b exist for al. a,,b e L.

Let -L be a lattice and let a, ö e L. Ifa<bandforallc€L,a<c
and c ( ö imply c: b then we say å couers a, or ais couered, by b,

written a I b. For a,b € L, øandb are i,ncornpamble if a{band
ofö(writtenøllö).

DEFINITIoN 1.3. An element a € ¿ is joi,n-ilreduci,ble (meet-i,r-

red,ucible) if a : æV g (a : ø Â y) implies either ø : o, or A : a.

If a is not join-irreducible (meet-irreducible) then a is joi,n-red,uci,ble

(meet-red,ucible).

If an element is both join-irreducible and meet-irreducible, then it

is d,oubly-irred,uci,ble. If it is both join-redr.rcible and meet-reducible,

then it is d,oubly-red,ucible,
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Every lattice "L can be represented by a Hasse d,iagram, written

e(L). In a Hasse diagram of a lattice, -L, every element is represented

by a small circle, and if ø < b then b is set higher than ¿ and is connected

to a by a lne. A planar representat'ion of .L is a Hasse diagram of I
in which no two covering relations intersect, except possibly at their

endpoints. L is planar if it has a planar representation.

2. A Pa¡tia] Order on Maximal Chains of -L

Let.L be a planar lattice and let x e L. Then each pianar embed-

ding e(I) of tr gÍves rise to a ìjnear order on the set of lower (upper)

covers of ø, In particular, for lower covers g a¡d z of z, we say g is

to the left of z if the angle the g < r bne segment makes with the

horizontal is less than ihe angle lhe z < r line segment makes with the

horizonta,l (from the left). In Figure 1.1, y is to the \eft of z.

Fix a planar representation e(L) of L. We now define the lefi-right

order on I (see [ ]).

Upper Covers ofx

,,-\Lett/ * \orn,---\\r -

Lerr\Z\ RightH,
Lower Covers ofx

F¡cuR¡ 1.1. Linear order on lowe¡ covers of rine(L)



2. A PARTIAL ORDER. ON MAXIMAL CHAINS OF L 4

DEFINITIoN 14. r i,s to the left of g, written rÀy, iff rlly and

there are lower cove¡s rt and gt of xV y such that x 1 rt and y 1 yt

and ø/ Ís to the left of / in e(L).

A ¡nasi,¡nal chai,n is a sequence of elements

{0 : ø¡, ø1, ... rixn-1rÍn : I}

strch that for each ri : I to ,ft, î¿-1 1, ø¿. Recall that a planar rep-

resentation is an embedding of .L into the plane such that the second

projection satisfies zrz(t:) < a'2(g) whenever r < y, and every covering

relation r < A is represented by a straight line segment from ø to gr

in the plane. Therefore each mâximai chain C represents a continu-

ous function /c' in the second coordinate from the O-element to the

l-element of .L. So, for an an element x) e L and a maximal chain

C c ,L with x Ç. C, we can compare r to C by saying ø is to the left of

C wheneve¡ n"(r) < Íc(tr{'¡¡¡ (pages 640 to 641 of [4] gives a detailed

study of maximal chains of .L as continuous fùnctions in the plane).

D. Kelly and L RivaL established the following result about maximal

chains and the À partial order in [4].

PRoPosIrIoN 1.5 (D. Kelly and I. Rival, 1975). If r),y, thenr às

on the leÍt of any moni,mal chai,n through U. IÍ rllg and, r i,s on the left

oÍ sonxe maø'i¡nal chain through y, then x Àg

Flom Proposition 1.5 we get ø llg iff ø and g/ are comparable with

respect to ). We can use the left-right order to apply a partial order

to maximal chains of .L. Given two maximal chains á and B of .L,

A<xB iff forall ae Aandbe_ B,allåimplies¿Àö. So A<tB if
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there is at least one such pair. By Proposition 1.5, ,4 <¡ B iff á is to

the left of B in e(L).

Let Ch L represent the set of all maximal chains on "L with leftmost

chain being O¡ and rightmost chain being 1¡.

Luuve 1.6. Ch ¿ forms a lattice und,er 1s.

PRoor. Let A,B,C e ChL.

t Refl,eci,aity: A <s A since all elements of A are comparable.

c Antisymmetryr Assume A a^ B and ,4 )¡ B. Then for aLl

a € A and b e B, allö impJies a)å and åÀo which is not

possible. The¡efore a1l elements of .4 a¡e comparable to all

elements of B and so A : B since A and B are both maximal.

o Tlansi,ti,ui,ty: Assume A <s B and B (¡ C. Lef a € ,4 and

c € C such that ø llc. Then there is no maximal cha.in D such

that a,c € D. Therefore, for al1 ö € B, either o llö or b llc (or

both). So either aÀå or bÀc. If ¿Àö then by Proposition 1.5,

o is to the left of any maxima"l chain through b, and either C

passes through ô, or ö is to the left of C. in either case, ø À c.

Dually, if å À c, then we conclude ¿ À c. Therefo¡e A <>. C.

Therefore, (¡ forms a partial order on Ch-L.

Let A,B € Ch.L. Define

A/\^B:{reAUBlreAnB}
u{x e AU B l=y e AU B such that ø)y}

So á A¡ B is the lefthand paih in e(tr) wherever A and B diverge.

As -L is planar, if A and B ever cross, it is at points of the lattice,
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hence ,4 Ar B is in fact a maximal chain. F\rrthermore, .4 A¡ B <x A

and,4A¡ B <s B. Finally, if C e Ch.L with C <¡ AandC <x B

then for all. c e C and al1 ¿ € AtJ B, clla implìes cÀo. Therefore

for all å e A/\8, cllb impiies cÀb, since A/\B c.4 U B. Therefore

C <¡AAB.
Duall¡ ,4 Vr B is the righthand path in e(-L) wherever A and B

diverge. Therefore Ch.L forms a lattice under (¡. n

When viewing our maximal chains as continuous functions in the

plane, note that the partial order we defined on the maximal chains of .L

corresponds to the natu¡al partial order given to continuous functions

on a closed interval. That is, for / and g continuous on [a, b] then

f < g iff Í(y) S S(ù for all g € [¿, å]. It comes as no surprise then,

that Chtr is distributive (it is a sublattice of the distributive lattice

of continuous functions on a closed interval). Nevertheless, we prove

the distributivity of Chl in the next section by a study of its join-

ir¡educible elements, as the join-irreducible elements of Chl play a

key role in the remainder of our discussion.

We note that any maximal chain .4 divides Z into two: all elements

a of L on the left of ,4, written a <r C and all elements on the right

of .4, written a )s C. Let ,4 c .L and let C be a maximal chain in -L.

If ø is on the Ieft of C or a e C for all a €,4 then we will say A<sC.

If .4 <À C and there exists o € .A such that a is on the left of C, then

we say ,4 <¡ C.
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3. Elementary Cells and the Cell Lattice

A cell .4 in a lattice ,L is a sublattice of the form

{0,s, rt,,. ., x)^,AIr.,. ry.,I¿,}

such that two maximal chains are formed:

At: 0¡-¿.rr.¿.'.'1r*¡.1¡

An, 0¡ 1!1 I ..' <, ln -l.l¡

where -4¿ is to the left of ,4.¡, and such that for elements r¿ and yj in

the cell, r¿V y¡ : l¡ and x¿ Ay¡ :0t.
A cell á in .L will be called an elementary cell if it has empty

interior, that is, if there is no maximaL chain C in the sublattice [0¿,1¿]

such that At <x C (¡ ,4¿. For example, in ,À43, there are three cells,

¡: {0,a,b,1}, B: {0,a,c,1}, and C: {0,ô,c, 1}, but on1y,4 and

C are elementary ceils (see figure 1.2). Clearly the left-right order

determines the elementary cells of -L. For a fixed a Hasse diagram of

FrcuRn 1.2. Ms
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.L we will let C(L) correspond to the set of all elementary cells in that

diagram.

LEMMA \.7. Let A be an elementary cell and, let C be a mani,mal

chai,n. Then ei,ther A 1s C or A >¡ C.

PRooF. For the sake of contradiction, assume there a¡e a.,b e A

such that a 1s C and ö >¡ C . As At is to the left of .4n, we can

assume o € A¡ and b e Ap. Now á¿ and ,Afi share endpoints, so a

portion C must lie between A1 and A¡, caJl it Ce. That is, in the

snblattice l0¡, 1¿], A¡ 1s C¿ <¡ á¡. As -L is planar, C must cross

A1 and ,4¡ at elements or and b of .L respectively. Without loss of

generalit¡ we can assume o¿ < ø,. But this creates a maximal chain:

i¡ At C4 in Ax

C¿,:0¡ I oo I ,' <at< c¿ I .. 1o+1 a,+1 I ,.' I 1¿

in [0¿, 1n] such that At <¡ CL (¡ ,4¡ contradicting the irreducibility

of A. !

Fix a plana.r representation of tr and let A be an elementary ce1l.

We can extend A1 and A¡7 into maximal chains on Z in seve¡al usefi-rl

',vays. Let .4¿o and A¿1 correspond to the leftmost paths in [0,0¿] and

[1¿, 1] respectiveLy. Similarly define ,4¡o and A¡, io be the rightmost

paths. We then let

t A- : AT,U ATtJ A7,

t A+ : AnaU ApU Ap,

. Av : AhlJ AaU A1,

t A^ : AnoU AlU Apo
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We call A- (A+) the left (right) maximal chain extension of ,4¿

(á¡). We later show that Av (.4^) are the join-irredricible (meet-

irreducible) elements of Ch-L. In fact, we show that for every join-

irredncible (meet-irreducible) element C of Ch L, there is a cell á such

lhat C: Au(: A").

With .4- and á+ acting as bounda.ries, we obtain four regions ori-

ented with respect to ,4 (see figure 1,3):

(1) T(,4):{r€Lløì1¿}
(2) B(,4):{reL lr<0¿}
(3) t(á) : {r Ç L l, <^ A-}

(4) R(á):{x€Llc>^.4+}

Lourr¡e 1.8. .B(á)u 
"(,4)u 

L(40 nØ): L

PRooF. Let u e .L and assume r ); A- and ø <r ,4+. Then ø

is to the right of A- and to the left of A+. So r ( A and as ,4 is an

elementary ce1l, either z e [0,0¿] or ø € [1Á, 1]. In either case, rve are

done.

As the borders between the fotu regions are maximaL chains, by

Lemma 1.7, every other elementary cell of Z is contained in exactly

one of the regions. This gives us a means of comparing elementary

cells in tr.

L¡urte 1.9. Let L be a fi,nite planar latti,ce and fii, a planar repre-

sentz,ti,on of L. For elementz,ry cells A and B, we haue:

(1) .4 € B(B) i,Íf B e r(A)

¡
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FIcURE 1.3. The four regions of a planar lattice -L with

respect to an elementary cell .4.

(2) AeL(B)i,ÍÍB€n@)

PRooF. Assume A € B(B). Then for every o € A, a 108. In
particulâr, 1¿ ( 0¡. So for every b e B,It ( 0a ( ö. Therefore

B eT(A).

Now assume A e L(B). Then for every o € A, a 4s B-. So

in particnlar, An <s B-. Therefore Av 1¡ B-. If B e L(A), then



3. ELEMENTARY CELLS AND TIIE CELL LATTICE 11

Bv 1s A-. But then Bv 1s A- < ,4v (.r B- < B' , a contradiction.

Therefore B çL(A), and by (1), B 4B(A) and B Ç T(,4). Therefore,

B e R(,4).

Using Lemma 1.9, we can impose a partial order on the elementary

cells of .L. For elementary cells ,4 and B,Iet A <c B ifl á e L(B). So

A <c B iff .4 <À Bv.

LEMMA 1.10. Let A and, B be elementary cells i,n L. Then A <6 B

áff there erists a e A and, b Ç B such that aÀb.

PRooF. Assume A <c B. Then ,4 <¡ Bv. Therefo¡e there exists

a € ,4 and c € Bv such that oÀc. But Bv is the leftmost maximal

chain containing B¡. Therefore there exists å € BÃ such that ¿)å.

For the converse, assume A and B are incomparable ceLls. Then

either á e B(B) or.4 e T(B). So either 1¿ ( 0s or 0¿ ) ls. In

either case, every o € .4 is comparable to every å € B. Therefore, there

is no a € ,4 and b € B such that ¿Àb or bÀ¿. ¡

This order relation gives us Ê, convenient means of determining the

structure of Ch.L. If we let J(Ch.L) correspond to the poset of join-

irreducible elements of Ch tr then we have the following result.

THEoREM 1.77. Define the functi,on p : C(L) ------, J(CbL) by

Ap : Au . Then g is a biject'ion. Furthermore, if C(L) is gi,uen the

part'ial order 1ç, then g i,s an isomorphism between posets.

PRooF. Let á be an elementary cell. If B is an elementary cell

snch that B 1s Av then B (s ,4. So sup{B € C(L) | B <^ Av} : A.

n
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Therefore if C € ChL can be transformed into ,4v by exactly one

(elementary) cell transformation to the right, then C - A- and the

cell used in the transformation is á. So .4- <¡ Av and A- is the only

maximal chain cove¡ed by .4v in Ch.L. Therefore .4v e J(Ch tr) and rp

is well-defined.

Let .4 and B be elementary cells such that Atp : 89. Then

Av : Bv. So .4 <¡ Bv implies A <c B. Br.rt B <¡ .4v implies

B <c A. Therefore A: B and g is one-to-one.

Let C e J(Ch¿). Then there is exactly one D € Ch.L such that

D <s C. As D <¡ C, there exist subchains C1 and D1 of C and D

respectively such that Cr and D1 share endpoints ø and b and such that

d,Àclor all de Dt \ {a,ö} and c e Cr \ {ø,å}. Since D r¡ C, there is

no maximal chain B such that D <s B <r C, so there is only one set

of such subchains, and D1 U C1 forms an elementary cell in -L, call it ,4.

The¡efore there is a (unique) ceil transformation .4 corresponding to

the covering relation D {¡ C. So .4v : Ap : C a.nd as D is the unique

lower cover of C, Ais the unique cell such that Ag: C. Therefore, rp

is onto.

Finall¡ let A and B be elementary cells. Then

A <c B iff.4 <À Bv

iff Ap 1¡ Bv

iff ¡C € Ch"L such that á¿ C C and C 1x Bu

iff Av (.r Bv (since áv : min,r{C € Ch , I Ap e C})

trTherefore g is a poset isomorphism.
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Duall¡ .4^ corresponds isomorphically to the meet-irredr-rcible ele-

ments of Ch.L.

Lplr¿rr¡e l.I2. ChL i,s d,ástributi,ue.

PRooF. Let C e Ch,L and let

r(C) : {A € J(Ch ¿) I A 3>, C}

So r(C) is the set of alL join-irreducible elements of Ch.L less than C.

ff A e r(C) and B e J(Ch¿) with B (¡ Athen B 1x A 1x C,

so B e r(C). Therefore, r(C) is heredi,tary, that is, if ,4 e r(C) and

B < ,4 then B e r(C). Define the map from ChL to the set of a,ll

hereditary subsets on J(Ch I) by:

P: C *. r(C)

Now since Ch,L is finite, every element is the join of nonzero join-

irredr.rcible elements. Thus C: V"(C), showing that rp is one-to-one.

By Lemma 1.11, we know that the join i¡reducible elements below

C correspond to the elementa¡y cells to the left of C. Therefore for

C,D e ChL, r(C v D) : r(C)u r(D) and r(C A D) : r(C) nr(D).

So we get (C v n¡p : CpU Dtp and (C A D)p : Cp I' Dp.

Finally, let 1l be a hereditary sribset of J(Ch.L). So 11 is a set of

elementary cells of .L such that if A e H ihen B e 11 for all B €L(A).

Let M C I1 be the set of all maximal cells in .I1. Then for d). A, B € H ,

A € B(B) (or B e B(,4)), so for all a e Ap and b e Bp, a < b (b < a).

Let C be the leftmost maximal chain such that Aa C C for all A e M .

Then B e r(C) iff B 1c A for some Ae M. Therefore r(C) :1¿ ¿¡1¿

tp is onto.
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Therefore Ch.L is isomorphic to a ring of sets, and so Ch -L is dis-

tributive (G. Birkhoff [1] and M. H. Stone [7]). n

During the remainder of the discussion, it will be useful to add

a zerc and a one element to J(ChI). We will write J6(Chtr) for

J(Ch ¿) U {0, 1}. To maintain the isomorphic ¡elation between the

join-irreducible chains and cells of ,L, we add a zero cell Oc and a one

cell 1¿ to C(L). The leftmost chain O¡ of ,L will be considered the

right chain (O¿)*of 06 and 06' will not have a left chain. Similarl¡

(Ic) t : 1r and (Ic)n : Ø.

DnrlNrrrou 1.13. Let -L be a finite planar lattice. Define the cell

latti,ce ot cell structure of tr to be CeL : C(L)U {Oc,Ic}, partially

ordered by <c.

For any given cell ,4 C -L, we will let

A,: A\AL a¡d h: A\AR.

Notice that for A I Oc and A I Ic, A, : An \ {0¿, 1a}, and

At: A¡. \ {0¿' 1¿}.

Lptr¡tr¡ 7.74. For euery element x e L, there are uni,que cells A and,

B such that ï e Ar o,nd, r e &. Si,mi,larly, for euery couering relo,ti,on

fr <y C L, there o,re un'¿que cells C and D such that r <A CCa and,

r1yCD7.

PRooF. Let ø e I\{0, 1} and lei X¿ be ihe leftmost chain in l0,u]

and in [ø, 1], If ø e O¡ then Xt = O¡ and ø is uniquely on (Os)..
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Otherwise there are cells to the left of X¿. Let

A:{AeCeLIA<xXt}

and let ,4 e 4,. 11 .4 is a maximal element of "4 then Ap c X7. Btrt

X¿ is the leftmost path in (0, z) and in (ø, 1). Therefore 0¡ < r 1 I¡,
so î € A¡. Also, as 0¿,7¿ € X¿, we have Av : Xt. Therefore á is

the unique maximal element of 4 and so it is the uniqr.re cell such that

T€4,,

Duall¡ using the rightmost maxima.l chain containing u, we can

show there is a unique cell B sirch that r e B¡.

Now let X : x I y be an edge in .L. Then there are r-rnique cells

A and B such that r € A, and, y € 8,. I1 A : B then X C Ap and

we are done. Otherwise, either u: 0s or g : 1¡. So either X C B¡

or X C Bn (but noi both). In either case, we are done.

Dually there is a unique cell C such that z I A C Ct.

If z : 0 or ¿ : 1 then triviall¡ Oc is the r.rnique cell such thâ,t

r e (Os), and Ic' is the unique cell such that ø € (16r)¿ (because

(oc)z: Ø and (Iç)*: Ø respectively). ¡

TunoRolt 1.15. Cel is a planar lattice.

PRooF. Let A, B e Ce -L and define the following two [near orde¡s

on Ce -L:

(i) á<o BiffA€L(B)or A€B(B).

(2) A<,BinA€ L(B)or A€T(B).

Lemma 1.9 guarantees that these are both linear orders. AIso A <s B

i[| A eL(B) iff ,4 <0 B and A <r B. Therefore Ce.L is of dimension
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no greater than 2, and has dimension 2 iff there exist cells ,4 and

strch that A eB(B).

Lel A, B € Ce L If A and B are comparable, then ,4 Vc B and

A t¡c B are trivially max ¿{A, B} and min ¿{4, B} respectively.

So assume A and B are incomparable. Then ,4- and B- are in-

comparable in Ch,L. Therefore, there exists an ï €. A- tî B- such that

r I 0 and r I 7. "Ihen A- ¡x B- is the leftmost path in (0,2) and

in (ø, 1). By Lemma 1.14, there is a unique cell C such that x e C,.

Since .4- A.r B- is the leftmost path in (0, ø) and in (ø, 1), C mr.rst be

the unique elementary cell such that Cn C A- A^B-. Br.rt this implies

C is the nniqrie cell such that Cv : A- Ax B- .

Now let D eCeL such that D <cAandD <c B. Then D <>,A-

and D <r B-. Therefore p .^ (A- A) B-) : Cv. So D 1¿ C and

C:AncB.
Duall¡ ,4V¿B exists and therefore Cetr forms a planar lattice. !

As a planar lattice, Ce-L may have a variety of planar representa-

tions and corresponding left-right o¡ders. We can use the two iinear

orders from the above proof to describe one such representation by us-

ing the partiaL order on .L. For elements 0,,b e Ce L with corresponding

cells ,4, B C -L, we know

øllbiff eitherø(¡ôand a )1b, or ø >6 åand a <1 b

iff either ,4 € T(B) or á e B(Ë)

iffl¿<03orls(Q¡

ifl r < yVr e Á and A e B or r) yVæ e A and y e B.

16

B
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We can therefore set øÀö in Cel iff Le 108. We will refer to this

left-right o¡der on Ce.L as the left-right order of Ce L i,nd,uced, bg L.

The remaining results in this section about the cell lattice will be

useful tools for the remainder of the paper. Let .L be a planar lattice.

LEMMA 7.16. Let a,b e CeL and let A and, B be the correspondtin g

elem,entary cells i,n L. Then the following are equi,u0,lent:

(1) ø<ò

(2) B7 c A+

(3) A4 c B-

PRooF. 1 implies 2: We will prove the contrapositive. Assume

ø < b but there exists a r € B7 such that r ê A+. Then ø is to the

righi of .4+ since B e R(,4). As ,4+ is the rightmost maximal chain

containing ,4¿, and hence the rightmost maximal chain containing both

0¿ and 1¿, we know that for any A e,4¡, we have g Àø.

Now, by Lemma 1.15, there is a unique cell C such that r e Cî.

As r Ç. A,,we know C I A. So A <c C since there exist gr € á such

thatyÀr. But C <6r B since for an1u z € C¿, we have aÀø. Therefore,

there exists c€CeL such that a<c<b,so o, lb.
2 implies 3: Assume B7 c A+. Then, in particular, 0s and 1s both

lie on,4+. As B e R(,4), we know 0e < 1a and 1s ) 0¿. Therefore

either (at least) one of 1s and 0s Iies on A,, or Ap C B¿. Obviously

in the latter case, we would hâve AR C B-. On the other hand, if

0e e A, but 16 ) 1¿ then the portion of A¡ which lies between

0¿ and 0s would be on B- because of the irreducibiliiy of ,4. The
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portion of .4¡ which fies between 0¿ and 1¿ lies on B¿ since B¿ C á+,

Therefo¡e An C B-. The other cases where lB € A, and whe¡e both

0s ând 1¡ lie on .4, are proved similarly.

3 implies 1: Assume Ap C B- . Then 1¿ ) 0s and 0¿ ( 1s as

otherwise B- would not be the leftmost maximal chain in [0, 0s] or

[1¡, 1] respectively. So there exists ¿ € .4, such that ¿ € B. Therefore,

for y e A¡ we have t 
^yt 

so A <c B.

Now let C be an elementary cell in -L such that A <¿ C and

C <c B. Then C € L(B), so C <¡ B-. But ApC B-, so either there

exist ø € Aandy € C such ihat 3rÀø or every A €C is comparable to

every u e .4n. In the latter case, we would conclude that either ls < 0Á

or 06 ) 1¿, so á and C are incomparable cells, which contradicts

A <c C. Therefore, there exist ï € A and y € C such that yÀø. So

C <c A, and as ,4 1¿ C, we conclude A : C as desired. Therefore

albinCeL. ¡

CoRol,leRv LI7. Let a,b € Ce L and let A and, B be the corre-

spond,i,ng elernentary cells i,n L. If a < b then Ap and, B7 share (at

least) one ed,ge.

PRooF. Let o I b. By Lemma 1.16, we know A¿ C B-, and as

A and B are comparable cells, we know that h l0e and 1s f 0¿.

Therefore, A and B must hâve at least one edge in common. ¡
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4, Plana¡ Lattices as Cell Lattices

Every planar lattice has a planar cell lattice. In this section, we

show that for every planar lattice.L, there is a pìanar lattice K such

that L: CeK. We prove the following theorem:

THpoRon¡ LI9. Let L be a finite platmr latti,ce. Ther"t ChL fornts

a d,i,stri,buti,ue lattice whose poset of joi,n-irred,uci,bles J(Ch ¿) forrns a

planar latti,ce uhen ad,joini,ng a 0 and a I element.

Conuersely, let D be a fi,ni,te d,i,stri,buti,ue lattàce. If the poset of join-

'irred,uci,ble elenxents J(D) forms o, planzr latti,ce after ad,joining a 0 and

a 1 then there i,s a pll,nar latti,ce L such that Ch L = D .

To c¡eate K, a direct relation between the cells and edges of .L and

the elements of K will be established. Similarly, a direct relation will

be established between the cells of K and the elements of l. To avoid

confusion, Iowercase letters at the end of the alphabet t,!, z, . .. will be

used to ¡efer to elements of K, while the uppercase letters X,Y,Z,.. .

will refe¡ to the edge or cell of .L which corresponds to that element.

Similarl¡ elements of ,L wiÌl be denoted by lowercase letters at the

beginning of the alphabet o,,b,c,... , while the corresponding cells of

K will be denoted by the respective uppercase letters .4, 8,C,. . . . "Ihe

ze¡o and one element of ,L will be denoted 0¿ and 1¿, and similarl¡ the

zero and one element of K will have a'K' as a subscript for distinction.

Let E(L) be the set of all edges (covering pairs) on .L. Define the

set K : E(L) U Ce L. I¡ o¡der to standardize notation between cells

and edges, when X is an edge of L, we will define Xn: Xt : X. In
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this way, we can extend the definitions of X+ , X- ,, Xv, and X^ to

include the case when X is an edge. In this case, we note X+ : X^

and X- : Xv.

Now define an order relation on K: for r,y €. K, r < g iff t. I g

and there exists a e X and b e Y such that ¿Àå.

Now X is eithe¡ an elementary cell or an edge in .L. In either case,

for any maximal chain C C "L, either X 1>.C or X )¡ C (see Lemma

1.7). Therefore iÎ n <g in K then there exist o, e X and b eY
such that o À b. So a is on the left of any maximal chain through b

(Proposition 1.5). Therefore X is on the left of any maximal chain

through å, so X <¡ Yv. Similarly, Y )s Xn. Conversel¡ if X <À yv

then there exists ø € X such that o is on the left of Yv, and as Yv is

the leftmost maximal cha,in passing through Y¡, this implies there is

b € yR such that oÀb. Therefore, we can redefine the o¡der ¡elation as

follows: for r,y e K, x < y iff r I y and X <¡Y' (or equivalently

Y >.1 Xn).

LEMMA 1.19. < is a parti,al ord,er on K.

PRooF. Tfivially < is antireflexive.

Letr,g € K such that ø < g. Then there exists ae X and b e Y

such that ø À ö. So X 1¡Yu and therefore there cannot be c e X and

d € Y such that dÀc. Therefore y I x and < is antisymmetric.

Let n,y,z €Ksuchthatr<yandy (2. Then X <¡ Yv and

Y 1x Z'. Therefore Yv 1x Zv so X <¡ Zv. I1 Yv <¡ Zv then

a 1s Zv fo¡ a.lL ø € X, so X + Z and the¡efo¡e ï < z às desired.

So assume Yv : Zv. Asy < z, there exist b eY andc e Z guch
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that öÀc, therefore ]z is a cell and Z is an edge such that Z C YR.

As X <r Yv: Zv, there exist ¿ € X such that ø <r Zv. Therefore

X I Z and so î < z. Therefore < is transitive. tr

THEoREM 1.20. (K,1) i,s a planar latti,ce.

PRooF. Let :r,11 € K and Iet z e K be an upper bound of ø and

g. Then there exist 0,eX,b€ Z such that aÀöândc € Y,d€ Z
such that c).d,. Il Z is an edge of .L then there is a unique cell W C -L

such that Z C WR (by Lemma f .i4). So u is also an upper bound of

r and y (since b,d e I4z) and r, < z (since Z cWnandW¡ <sWn).

Therefore, if the least upper bound of u and gr exists in K, it mr.rst

correspond to a cell in .L, and so we will restrict our discussion to cells

of L.

For r € K, the set of all elements z € K such thal z > ø is the set

of all cells Z of L s:ch thal Z >s X^. Therefore z is an r:pper bound of

rD and g in K iff Z >^ X^ a¡d Z >sYn;f,hatis,iff Z >¡ X^V¡Y^. So

øVg will exist in K iff there is a unique cell Z such that Zt C X^V xY^.

But, either X is an elementary cell, o¡ it is an edge, in r.vhich case there

is a unique cell X/ such that X C Xt", so X^: X/^. In either case,

X^ corresponds to a meet-irreducible element of Ch.L. Similarly, Y^ is

a meet-irreducible element of Ch.L. But the meet-Írredr.¡cible elements

of Ch.L correspond isomorphically to the cells of .L, calL them X/ and

Y/ (dual of Theorem 1.11. So ø V g will exist iff XtVcYt exists. But

Ce.L is a lattice, so XtV6Yt exists. So if Z : XtYcYt then z: rV y

ín K.
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DuaJI¡ using Xv A¡ Yv, we can obtain ø Â g. Therefore, K is a

lattice.

We can easily show that K has dimension no greater than 2. Let

r,g e K with t: I g. If x llg, then every element of X must be

compa.rable to every element of Y. Therefore, either ly ( 0x or 1x (
0y. As these two conditions are mutually exchrsive, we can now define

two total orders (¡ and <1 on K whose intersection forms the partial

order of K:

¡ a lo?iff r<y or1¡([yi¡
c n 1tgii| x<y or0¡¡ ) 1y in

Therefore, K is a planar lattice.

So, for ø,g e K., xlly iff either 1x ( 0v or 0¡ ) 1y. That is, ø a.nd

g are incomparable iff either albfor every ø € X andb e Y or a) b

for every a € X and ó e Y. So the left-righi order of the lattice K is

determined by the partial order of .L, where xÀy iff for every a € X

utdbeY,a<b.
In order to analyze the cell structure of K, it is useful to first

describe the covering ¡elations in K.

Lpunre 1.21. Let r,A e K. Then r I g i,ff one of the followi,ng

occurs:

(t) X zs a cell and,Y i,s an ed,ge such that Y c Xn,

(2) Y is a cell and, X is an ed,ge such that X CYz.

Pnoor. Assume X is a cell and Y is an edge such that Y c Xn.

Then for a€ Xt and b € Y we have øÀå so x) <A.

L

L

tr
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Nowlet z € K such that z < y and z ) ø. Then Xv 1 Zv and

Zv <Yv. But as Y C X¡, we have Xv: Yv. So Zv : Xv -Yv.
Now z ( g/, so there exists å € Y and c €. Z such that cÀb. But

Zv : Yv, so Z must be an elementa¡y cell such that Zp C Yv (for,

if Z werc an edge then Z- : Zv so every element of Z wodd be

comparable to every element of Y). But Zv : Xv so X is the unique

cell such that Xn C Yv. The¡efore X : Z and therefore z < y,

By using a dual argument of the above, \rye can similarly show that

if Y is a cell and X is an edge such that X CYL Lhen r < y.

To prove the converse, we show that if ø < y but ø and gr do not

satisfy either above condition then there exists a z € K such that

r < z < g. So assume ø < g/. Then rly and there exist ¿ e X and

ö e Y such that ¿ À b. Now assume X is a cell in -L.

CteItt. We can choose ¿ € X and å e Y such that ¿ € Xa and

a ),b

Proof of Cløirn. Assume this is not the case. Then every b e Y is on

some maximal chain C such that XnCC. But Y is not an edge on X¡
by assumption. Therefore either b > 1¡ (or ö < 0¡) for every å € Y.

But then a<b(a > å) for every o, € X contradicting ø < gr. I

Let Z C Xa be an edge on X¿ such that o e Z.Thenz<yand
by our above wotk, x < z.

Now assume that X is an edge in tr. By Lemma 1.14, there is a

unique cell Z such that X C ZL. F\rrthermore, Z lY as otherwise

x and y would satisfy condition 2. But X C Z, so there exist ¿ € Z
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ând å € ]z such that zÀb. Therefore z < y and by or-rr above work,

ï<2. ¡

Let a e L and define k(a) : {x e K I a e X}.

LEMMA 7.22. k(a) i,s an elernentary cell in K. Conuersely, for

euery elementary cell A c K, there is a € L such that A: k(a).

PRooF. For 0¿ € L, k(0¡) consists of all the edges between 0¿ ând

atoms of .L and all the elementary cells to which these edges belong.

Therefore, by Lemma 1.21, this is a covering chain in K. Às 0¿ is an

element of the zero cell and the one celi of L, k(0) is a maximal chain

of K. F\rrthermore,0 € X for every r e k(0) and 0¿ ( ø for every

¿ € tr. Therefore, for every x e k(0 ¡) and gr € K, if rlly lhen rÀg.

Therefore, k(0¿) is the leftmost maximal chain in K, and therefore it

is the zero ceÌl of K (since (Oo)* : O.i and (O.)z : Ø). Therefore

k(0¿) : Os ín K.

Dnally, for Lt e L, k(7t) is the one cell of K.

Now let ¿ € ¿ \ {0, 1}. Then there exist elementa.ry cells X and Y

of -L such that o € X, and a €Yt.

CLaIIr,r. For aII z e k(a), r 1 z and z 1 y.

Proof of Clai,m. If Y : Ic in L, lhen g: 1r so trivially z 1 y lor a\l

z e k(a). Otherwise, there exists b e Y", so a),b in L (since a € I).
Letze k(ø). Then ae Zald b e Y with øÀb, so Z < Y. So

a:V k(a) as required. Duall¡ ø: Ak(o), t
Now let z e k(a) \ {r, g}. As X and Y are the unique cells such

that ø € X, and a € Y¿, welmow that either ø : Iz or a : 02.
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Therefore, we can divide Æ(o) \ {ø, y} into two subsets:, call them .4¿

and .4, respectively:

t A¡:{zek(a)la:t2)
c 1,: {z e h(a) | a:02}

We know that both sets are non-empt¡ since a f 07 and a 111
imply the existence of edges W and Z such thât a: Iw and a: 02.

Fbrthermore, if z e A, then ¿ : 0z so Z is in the convex sublattice

[a, 1¿] of ,L. Therefore, we know by the first half of the proof, that ,4¡

is a covering chain in K, and if we let á¿ : A¡U {t,y} then ,4¿ is a

covering chain in K with maximal element gr and minimal element ø.

Similarly, if we define An: A,lJ {r,A} then .4¡ is a covering chain

in K. Let w € A¡ and z € 4,. Then a: Iw and ø:02. Therefore

lw : 02, so w ),2 in K. Therefore &(a) is a cell in K. F\rrthermore,

since lql :02 fot evely u € At and z € Aî lherc can no edge or cell I/
in K such that l¡y 10v < Iv ( 02. Therefore k(ø) is an elementa.ry

cell in K.

Conversely, assume á e CeK with maximal element U: 1¿ and

minimal element r:0¡. Then for every u € .4¿ and every z € A,,

r <w <y and r 1z 1A, but,¿r.r Â z:n andwV z: gr. Therefore X

ând y are elementary cells in .L. Also, tu Àz in K, so lw 102 in L.

Cl¡Iv. For every u € á¿ and z € A,,ly : Q2.

Proof of Cl¿¿rn. Assume, for the sake of contradiction, that there exist

w € A1 and z € .4," such that l¡,y # 02. Then 7w < 02, so there is a

covering chain from ls to 02. Therefore there is an edge I/ sr-rch that

Lw 10v < Iv 102. But this would implv o € K such that uÀo
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and u À2. Also if 0v ) lx then 0z > Ix, contradicting z > c in K.

Similarly, 0v l0x. Therefore there exists å e X such thai 0y ll b. Now

0y ( c for every c € Z, and there exists a c€. Z and å e X such that

bÀc. Therefore as a corollary to Proposition 1.5, å)0y. So ,¿, > ø in

K. Similarly, u < gr. But this contradicts the irreducibility of ,4. I

Let a e L be the unique element such that 7w : 0z: ø, for every

w€A¡andz€A,. We need only show that ae X and ø€Y. But

there exists a w e A such that î < u and a : lw. Therefore, by

Lemma 1.21, W CXR soa€X¡. Similarl¡ thereexistsz€Asuch

lhal z 1y and a:02. Therefore a e Yt. So ¿ e .L is the unique

element such that a € X lot every r e á. Therefore .4 c ,b(o). But

from the fi¡st half of this proof, we kno\ry that ,k(ø) is an elementary

cell in K. The¡efore k(a) : A, and we are done. ¡

THEoREM L23. For eaery fr,nite planar lattice L, there i,s a fi,nàte

pLanar Latti,ce K such that Ce K = L.

PRooF. We will use the K lattice that we have constructed in this

section. We already know by Lemma 7.22 lhall the ,k mapping is an

bijection between L and CeK. We need only show thai the order is

preserved. So let a,b € tr such that a < b. If a:0L(b:1¿) then

we know k(a) : 6. (k(b) : Ic) in K, so h(a) < k(b) as desired. So

assume o > 0¿ and ó < 1¿. Then the¡e exist edges X and Y in I such

thai a: 1¡ and b:0y. But then 1¡¡ ( 0y so rÀg in K. As ø e k(ø)

and y € k(å), by Lemma 1.10, we are done.
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Conversely let ,4 and B be elementary ce1ls of K such that A <t B

and let a and å be the corresponding elements of .L such fhat k(a) : A

a 1lx 10v ( b as desired. Therefore CeK = L. tr

We can now prove Theorem 1.18.

Pnoor'. Let -L be a finite planar lattice. Then by Lemma 1.12,

Ch-L is a finite distributive lattice whose poset of join-irreducibles is

isomorphic to C (L) (Theorem 1.11). But when we adjoin a ze¡o and a

one, we get Ce-L, which is a finite planar lattice by Theorem 1.15.

Conversel¡ let D be a distributive lattice whose poset of join-

irreducible elements J(D) forms a planar lattice after adjoining a zero

and a one. Let -L be J(r) U {0, 1}. Then by Theorem 1.23, there is a

finite planar lattice K such that Ce K = L. But Ce K : C(K) U {0, 1}

so C(K) " J(D). By Theorem 1]-1, C(K) = J(ChK), therefore

DdChK, tr

So for every planar lattice L, therc exists a planar lattice K such

that L e Ce K. However K is by no means uniqr.le. For exampie, any

finite chain, C", will have the two element chain C2 as its cell lattice.



CHAPTtrR 2

Cell Lattices and Dual Graphs

In this chapter we use graph theory to obtain an alternate descrip-

tion of cell lattices of planar lattices. We show that by using dual

graphs, we can obtain the covering graph of the cell lattice Ce L of L.

We conclude this chapter by showing that this process is reversible,

thereby allowing us to obtain a complete description of all lattices K

such that CeK : L.

L. Introduction

In [5], C. R. Platt showed that every finite lattice .L is planar if and

only if the graph, obtained from the covering graph of Z by adding an

edge between its least and greatest elements, is a planar graph. By

using his main theorem, we show that the cell lattice can be directly

obtained from the d,ual graph of the extended covering graph of -L.

We will begin with some relevant graph theory.

2. Background Graph Theory

DEFINITToN 2.1. A d,i,rected, rtultigraph (or d,i,graph) G is a vertex

set Iz(G) together with an edge set E(G) where each edge E € E(G)

is a ordered pair of vertices. A si,mple d,igraph is a digraph with no

28
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repeated edges (multiple edges) and no edges which begin and end at

the same vertex (loops).

In this paper, multiple edges will be allowed in a general graph

G, so the terms 'graph' and 'multigraph' wiLl be interchangeable. lf a

graph G cannot have multiple edges, then it will be explicitly called a

'simple graph'to avoid confusion. A graph is planar if it can be drawn

in the plane with no intersecting edges.

DEFINITIoN 2.2. Let G and H be graphs such that V(G) CV(H)

and ð(G) C E(H). Then G is a subgraph of 11 and H is a supergraph

of G, written G Ç 11.

For a planar graph G, ils geometri,c d,ual graph, G*, is constructed

by placing a vertex in each face of G and if two faces have an edge 'Ð

in common, joining the corresponding vertices by an edge E* crossing

only at.Ð (Ref: Diag). We note that in this deñnition, ¡ve must allow

fo¡ the existence of mr.rltiple edges and loops. Clearly G* has a loop if

ând only if G has a vertex incident with only one edge. Simiiarly, G*

has multiple edges if and only if G has two faces which sharing more

than one edge. The dual graph G* of a planar graph G is itself a planar

graph.

3. Cell Lattices as Graphs

We can now resume orìr discussion. In [5], C. R. Platt proved that

a finite lattice .L is planar if and only if the graph obtained from its

Hasse diagram by adding an edge between the 0 and I of .L is a planar
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graph. This plana.r graph will be ca"lled the ertend,ed, coueri,ng graph,

denoted 9(I) and the added edge wiII be called the dist'ingu.ished edge,

w¡itten D.

As a directed graph (digraph), 9(.L) will have the orientation which

respects the covering relation on .L. That is, every edge E : ø < g from

the covering graph of the lattice is directed fro¡n the lesser element ø

to the greater element gr. The distinguished edge is oriented f¡om 1 to

0, so we can think of 0 as the upper cover of I in the extended graph.

In this way, 9(I) will be a digraph such that every cycle contains the

distinguished edge.

C. R. Platt ga,ve the following necessary and sufrcient conditions

in order for a digraph to be the covering graph of a planar lattice (see

t5l).

THEoREM 2.3 (C. R. Platt, 1976). LetG be a simple d.igraphuith

at least 2 elements. Then G is the (oriented,) coaeri,ng graph of a planar

lattáce áf and only if there ni;t elements 0 and, 1 i,n G such that the

f ollowino hold,:

G U (1,0) is planar

G contai,ns no cgcles

If r e G then there i,s a path from 0 to r and, 0, path from r to

l i,nG

G is strongly antitransitive (that i,s, i,f there i,s a driected path

from r to g i,n G of length ) 2 then there i,s no ed,ge from r to

y i,n G).

(1)

(2)

(3)

(4)
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Flom Theo¡em 2.3, we obtain the following necessary and sufficient

conditions for a digraph to be the extended covering graph of a planar

lattice.

CoRorr,eRy 2.4. Let G be a simple d,i,graph wi,th at least one ed,ge.

Then G i,s the ettended, couering graph of a planar lattice i,f and, only i,f

there exists an ed,ge D i,n G such that the followi,ng hold,:

(1) G i,s planar

(2) Euery cycle in G contains the edge D

(3) IJxeG then there erists a cycleC suchthatreC

@) G is strongly anti,transi,tàue.

Now let .L be a finite planar lattice with lzl ) 2 and fix a planar

representation e(L) of L. Then, by adding the distinguished edge, we

obtain the associated planar graph 9(I). With the addition of this

edge, we note that the exterior, unbounded region of the lattice is

divided into two new regions. One region has the leftmost maximal

chain, O¡ together with the distinguished edge as the boundary; the

other region has the rightmost maximal chain Ä together with the

distinguished edge as the bor.rndary. We consider the distinguished

edge to form both the left chain of the zero cel., Oç, and the right

chain of the one cell, Is. As such, the two exterior regions of the lattice

described above are respectiveLy the cells Oc anð, Ic. Every other cell

of the latiice represents a unique region of the corresponding $aph. In

this manner, we have a bijective relation between the elementary cells

of L and the regions on g(L).
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Let g. (L) be the dual graph of g(L), and let D* be the corresponding

edge in 9*(Z) of ihe distinguished edge D in g(L). By Lemma 1.14, we

know that for every edge E, there are unique cells C and D such that

E C Cn and .Ð c D¡,. We the¡efore apply the following orientation to

g*(L). Every dr.ral edge E* of g*(L) is oriented towards the cell of g(tr)

which contains E on its left chain (see figure 2.1).

We now discr.rss some properties of g-Q).

LEMMA 2.5. g. (L) contains no loops.

PRooF. As the distinguished edge D represents the covering rela-

tion 1 < 0, every element of .L (including 0 and 1) has both an upper

and a lower cover in the extended covering graph. Therefore every ele-

ment is incident wiih at least two edges, one directed úo that element

and one directed from thal, element. So g-(I) has no loops. tr

Lpuue 2.6. Euery cgcle i,n g* (L) conta'ins the edge D*.

PRooF. Let C be a cycle in 9*(.L). So

(,: c0 --+ ci---+...+ cn_t + có.

As each element of g. (L) represents â region in 9(I) and hence an

elementary ce11 of Z, we obtain a sequence of cells of .L:

Co, Ct,, . . . ,, Cn-!, C. : Co

such that for a1l i: 0 to n, the right chain of Q shares an edge E with

the left chain of G+r. If E¿ is the distinguished edge, then C; : Ic

and C¿+r : Oc; otherwise, C¿-1 1Q. Therefore, we know one of the

edges nsed in the cycle must be the distinguished edge, as otherwise
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"+" G(L)

F-> G.(L)

./' i/
./

------ 
--t/

FIcURE 2.1. The extended covering graph of a lattice

and the associated dual graph,



3, CÐLL LATTICES AS GRAPHS 34

the partial order of Ce.L would contain a cycle. So every cycle in g. (L)

must use the dual distingrrished edge, or equivalently, g-(¿) \ {r-}
contains no cycles.

LEMMA 2.7. Let n e g.(L). Then there eui,sts a cycle C such that

ï€c.

PRoo¡. Let A and B be two elementâry cells such lhat A <ç B.

By Corollary 1.17, we know,4n and B¿ must have at ieast one edge

in common. So the corresponding elements ø* and b* are connected by

an edge from a* to br in g*(L).

Let C be a maximal chain in Ce,L. So

C : Oc 4c Ct 4c .'. 4c C,-t 4c Ic

As each covering relation represents an edge in g*(tr), we obtain a path:

Oc --+ Ct ---'t . . ' -t Cn-t --+ Ic,

With the addition of the distinguished edge, we obtain a cycle in 9*(¿).

As every element of Ce tr is on a maximal chain, we know that every

element of g. (L) is on a cycle. !

So 9-(I) is an planar digraph which satisfies (1), (2), and (3) of

Corolla.ry 2.4. However, 9-(I) is not a simple graph and it may not be

strongly antitra¡sitive either. Clearl¡ g*(.L) contains multiple edges if

and only if the¡e are two regions of 9(I) which sha¡e a bo¡der of more

than one edge. But g(I) was obtained by a planar representation of

the lattice tr, and every finite planar lattice is dismantlable (see [6]).

Therefore -L contains a doubly-irreducible element ø which implies the



3, CELL LATTICES ,{S GRAPHS 35

cells to either side of ø share both edges connected to z. Therefore for

every lattice .L with greater than one element, 9-(I) will have multiple

edges.

Although 9*(Z) does not satisfy Corollary 2.4 and hence is not

the extended covering graph of a planar lattice, we can obtain planar

lattices from it in two different ways. We can either find ihe la,rgest

snbgraph of g- (L) which satisfies Corollary 2.4, or we can "add" new

elements onto the middle of the problem edges (those edges which are

either mr-rltiple edges, or which disrupt the antitransivity of 9*(.t)) to

obtain a larger graph which satisfies Corollary 2.4.

The first way is to use the acyclic digraph g-(¿) \ r- to impose a

partial order on elements of g.(L). For a,y e g-(L), we set ø < g iff

there is a d,i,rected, wak from E Lo A in g*(¿) \ D- (that is, if and only

if there is a sequence of vertices t : o,o,ar,...tan : y such that for

each á, a¿ and a¿11 are connected by an edge from o¿ to o¿a1). This

technique to induce a partial order from an acyclic digraph will be

called the directed, walk parl,ial ord,er of a digraph. In this case, the

poset we obtained will be called Z*.

Let r,y € tr* suchthatø<g/. Then n<y and there is no z such

that ø < z < g. So in g*(L), there is a di¡ected walk from ø to gr,

and no such walk can pass through any other element along the way.

Therefore there is an edge from x) to A a,nd so the covering graph of ¿*

is a subgraph of g.(L).

Lpnue 2.8. L* = Ce L
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PRooF. Let a,b e Ce.L such that ¿ < b. By Corollary 1.17, there

exists an edge E: x 1y in.L such that E C An [ì B¿. Therefore, in

the graph g(L), the regions .4 and B sha¡e the edge -Ð, which Lies on

the left chain of B. So \n g*(L), the edge E* points from ø* to b*, so

there is a directed walk from ¿+ to b* in g.(L). Therefore, ø* ( ö* in

L*.

Conversely, let a*,b* € .L* such that ø* { ö*. Then there is an edge

.Ð* from a* to ö* in 9-(,L). So the cells A and B share the edge E in -L,

and since .Ð* points from ¿* to å*, we know E c AnO B¿. Therefore

a<binCeL.

Therefore CeL= L*. n

So the directed walk partial order of g(¿) \ D- is the cell lattice

of .L. Or equivalently, the extended covering graph of Cetr is a maxi-

mal sr.rbgraph of g. (L) which spans g-(tr) and is strongly antit¡ansitive

(maximal in the sense that the addition of any edge of g* ("L) not a1-

ready in Ce .L will either c¡eate a multiple edge or will disrupt the

strong anritransiiivity of Ce tr).

The second approach is to "add" elements onto the middle of some

edges of g. (L) to obtain a graph which satisfies Corollary 2.4 (and

hence is the extended covering graph of a poset). By adding elements

to an edge, we mean replacing an edge p --r q with a chain of elements

p(: rù -- ?"1 + . . . --+ yn-1 -- q(: rn)

where each r¿ is adjacent only with the two edges (ro-t, r¡) and (r¿, r¿a1)

in the graph, for z : I to n - L Clearl¡ we obtain an infinite famiLy of

possible posets (dependant on the number of elements added to each
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edge). Adding a single element to an edge is called a subdivision of

that edge. Two graphs are homeomorphi,c if they can be obtained f¡om

a common graph by a sequence of subdivision by lines (see, for example

[3], page 107). Therefore, this technique will give r.rs an infrnite family

of posets whose extended covering graphs are homeomorphic to g. (L).

The set of all planar lattices K whose extended covering graphs

g(K) are homeomorphic to 9-(I) will be denoted Ç*(tr). So we are

working with all graphs which are homeomorphic to g*(,L) and which

satisfy Coroilary 2.4.

THEoREM 2.9. If K e ç.(L) then K i,s a planar latti,ce such that

CeK = L.

We begin by proving a Lemma:

LEMMA 2.70. Let H and, G be two planar gmphs.

i,ng are equi,u alent:

(l) G and, H are homeomorphi,c

(2) The si,mple graphs obtained, from G* and H*

rnulti,ple ed,ges between pai,rs ol uerti,ces wi,th

'isomorphic.

Then the f ollow-

by ád,enti,fyi,ng all

si,ngle ed,ges are

PRooF. Ttivial. We simply observe that, given a graph G and an

edge E of G, the subdivision of .Ð into Eo, E1 merely replaces the edge

-Ð* in G* by the two edges Efi and Eï, both of which connect the same

two elements as did E. ü

With this Lemma, we can prove Theorem 2.9.
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PRooF. Let K € Çr (L). "Ihen K is a planar lattice whose ex-

tended covering graph 9(K) is homeomorphic to g.(L). Let Da be

the distinguished edge in K. If the¡e are more than one possible edges

eligible to be the distinguished edge, we choose one of the edges in K

which correspond to the dual distinguished edge D* in g- (L) by a series

of subdivision of lines.

By Lemma 2.10, the simple graphs obtained by Sr(K) and 9(I)
by identifying all multiple edges between paim of vertices with single

edges are isomorphic. In particular, the underlying set of elements is

invariant between 9*(K) a.nd 9(f). So for two elements r and y in the

trnderlying set, there exists (at least) one edge from r to y in g* (K)

if and onLy if there exists (at least) one edge f¡om ø to y in 9(.L). So

the directed walk poset of g(I) \ D is isomorphic to the poset induced

by the directed edges of 9-(¡f) \ D-*. In other words, L ? QeK, as

desired.

The easiest way to construct a homeomorphic image of g-(tr) which

satisfies Corollary 2.4 is to subdivide each edge in gr (L) \ D* exactly

once. Doing this, we obtain the graph of a lattice with elements corre-

sponding to the cells ând edges of e(L). That is, we obtain the lattice

K, constructed in section 4.

Notice that aithough any edge in g- (L) cøn be subdivided, there are

certain edges which must be subdivided in order to create a graph which

satisfies Corollary 2.4 and hence represents a lattice inÇ-(L). We know

9-(I) is not a simple graph and also may not be strongly antit¡ansÍtive.

So there are two types of edges which must be subdivided in 9*(.L):

ü
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. An edge E which disrirpts the strong antitransitivity of gr (L)

* that is, an edge E : (ø,b) for which the¡e exists a path of

length greater than two from ¿ to ö in 9-(I) \ {Æ}

r A multiple edge that is, an edge E : (o, b) for which there

exists a path of length trvo f¡om a to å in 9-(¿) \ {E}

Combining the above two cases, an edge E: (a,b) in 9-(.L) must be

subdivided iffthere exists a path from o to b in 9-(I) \ {E}.
We can partially order the lattices in 9. (L) by the number of el-

ements in each lattice. With this partial order, Ç*(tr) will have a

least member gr ¡ : /1Ç- (L) whose extended covering graph is ob-

tained from S. Ø) by only subdividing the edges which must be sub-

divided, doing so exactly once in each case. Working backwards now:

E. : {A, B) is an edge which is not subdivided in transforming g*(.L)

to C* ¿ iff there is no path from ,4 to B in 9-(1,) \ {E*}. That is, if and

only if E : r 1! is an edge in g(tr) such that {E} : Anì Bt wherc

A and B are elementary cells in ¿ such that A <c B. By Lemma 1.16,

we know Ap c B- and B7 C A+. AIso, since A a¡rd B are comparable,

we have l¡ / 0B and ls f 0¿. Therefore 1¿ ) 0B and ls > 0Á. As

A and B share only one edge, there are only two possibilities for ,Ð:

either ,Ð: 0¿ I 1¿r or -Ð: 0s i 1¿.

So .E* is not subdivided in obtaining Cr L iff E: 0¿ I ls for two

arbitrary cells á and B of Z. Equivalentl¡ this occurs if E : a < b

and there exist elements c, d, e L where c I b and d, I b swh that ¿ < c

and ¿l < b.
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DorINItloN 2.11. An edge E : a I b in -L is called a prunable

ed,ge iff L \ {E} is a lattice.

LEMMA 2.I2. Let L be a planar latti,ce and let a < b C L. Then

a < b ás prunable iJf there æi,st c,d e L uhere c I b and, d, I b such

thata<c and,d,<b.

PRooF. Assnme there exist c,d e L such that a < c and d < b.

Let K :¿\{o < ö}. Now ¿ < c a¡d c f b,so b I L As c > a, the

covering relation a < å does not occur in any covering chain from c

to 1. The¡efore, for a1I ø € tr such that r 11, either ¿ > ¿ or not.

In either case, there is a covering chain from ø to 1. Therefore for all

fie K,r < 1. Similarly, since øf 0, we can show that for alTxe K,

¿)0.
As .L is planar, there is a left-right order À on L. K was obtained

from ,L by removing an edge, so there are mo¡e incomparable elements

in K than in tr, namely those elements r < g in -L where every covering

chain f¡om ir to g must use the edge ¿ < b. We can extend À to include

these elements by setting c À g iff a À d. Therefore K is pla.nar, and as

it has a zero and a one element, K is a iattice.

Conversel¡ assume d does not exist. Then ¿ is a maximal element

in K. But o -( b in.L implies that a 11. Therefore øVl does not exist

in K. Similarl¡ if c does not exist then b n 0 does not exist. In either

câ,se, K is not a lattice.

Therefore, given a lattice .L, we can construct C* L by subdividing

the dua.l edges of a1l non-prunable edges of -L. Using the terminology Ín

tr
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Section 4, C* Z is the lattice of ali cells arÌd non-prunable edges, with

the pariial order: for ï,A e C* L,rly if there exist a€X andb eY
such that a À b. Although C* -L is the least member of Ç. (L), we have

not established that this lattice is a lower bound for aLi lattices having

.L as a cell lattice.

For a given lattice -L with a fixed planar representation e(-L), let

C-(I) be the set of all lattices K with a planar representation e(K)

such that L = CeK. By Theorem 2.9, we know thaf Ç.(L) C C-(L).

However, it is not necessarily true that ç.(L) : C*(.L). Given a poset

P, there may be non-homeomorphic simple acyclic digraphs Go,Gt,.. .

with the di¡ected walk partial order P (see figure 2.2). Let e(P) denote

the covering digraph of P and define the p artàal ord,er d,i,graph on P to be

G(P), where G(P) has the elements of P as elements, and fo¡ :t.,y € P

the¡e is an edge from r f,o 9 iff z < y, The following proposition will

allow us to characterize C*(.L).

PRoPoSITioN 2.I3. Let G be an acycli,c d,i,graph and, P be a poset.

Let Gt be the simple graph obtl,ined, lrom G by ádenti.fying all multiple

ed,ges between pairs oÍ uerti,ces with si,ngle edges. Then the following

are equ'iu alent:

P 'is the d,i,rected, walk parti,al ord,er oÍ G

e(P) c GtE G(P).

PRooF. Let Q directed walk poset of G. We note that Gt and G

have the same directed walk partial order, so without loss of generality,

(1)

(2)
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FIGURE 2.2. Two lattices whose extended covering

graphs are non-homeomorphic but have the same cell

Iattice.

assume G is a simple graph (so G : G'). We also note that since

v @@)) : v (G(P)), we have V (c) : V þ@)).

Assnme e(P) ç G ç G(P). For a,b € y(G), if there is a directed

walk from ¿ to å in e(P) then there is a directed walk from ¿ to b in

G (becar.rse e(P) ç G). Therefore the directed walk poset of e(P) is
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a subposet of Ç. Similarly Ç is a sr.rbposet of the directed walk poset

of G(P). But the directed wâlk poset of e(P) and G(P) is P in both

cases. So P c Q and Ç c P, therefote P: Q as desired.

Now assume e(P) is not a subgraph of G. Then there exists an edge

(a,bl e E(e(P)) which does not occur in G. So o < å in P. However,

in G, either there is no path from a to b, in which case a I b in Q, or

there is a path from ¿ to å in G of length greater than 2, so there exists

anelementc€Qsuchthat¿< c<b. In either case, weknowQlP.

if G is not a subgraph of G(P) then there exists an edge (ø, å) e G

which is not an edge in G(P). Since (o, b) is not an edge in G(P), we

know a I ö in P, but a 1b in Q. Therefore Q I P. ¡

We can now characterize all lattices K which are members of C. (L).

For a planar lattice K, Let g¡(K) be the homeomorphic graph of g(K)

obtained by removing al1 doubly-irreducible elements of K (that is, of

all graphs homeomorphic to g(K),9¡(K) is the graph with the sma,llest

vertex set).

THEoREM 2,14. Let L be a fi,ni,te planar latti,ce. For a planar latti,ce

K , the followáng are equiualent:

(1) K ec.(L)

(Ð sQ) ç sÅ(K) ç (G(L) u (1,0)).

PRooF. Combine Lemma 2.10 with Proposiiion 2.13. tr



CHAPTER 3

A New Lattice Construction

1. Limitations of the Cell Lattice

Although useful for describing the structure of the maximal chains

in a planar lattice, the cell lattice has its limitations. For a given lattice

.L, different planar representations may give rise to different left-right

orders and hence to different cell structures. Therefore there can be

severaL lattices Lo, Lt,. .. , -L," such that K e C* (L¿) lor i, - 0 to n.

tr\rrthermore, we can find lattices Ko and K1 such that Ko e C. (Lo)

and Kr € C-(tr1) bui such that Ko ç Cr(K) and K1 f C-(K6) (see

figirre 3.1). Therefore, the relation K : L[6] iff CeK : Cel is not

an equivalence relation on the c1ass, Pl, of all finite planar lattices.

Ftrthermore, the cell lattice is only defined for finite planar lattices;

there is no analogous lattice construction for non-planar lattices,

In this chapter, we obtain a lattice construction ¡elated to the celL

lattice which addresses all these limitations.

2. An Alternate Descriptior- of Ce2 L

Let, L be a finite planar lattice. We will write Ce2 L for the cell lat-

tice of the cell lattice of -L, where Ce tr has the left-right order induced

by,L (ihe left-right order induced by tr is defined on page 17). That

is, we let Cez L : Ce(Ce I). In this section, we study Cez -L.

44



2. AN ALTERNATE DESCRIPTION OF Ce2¿

-> r>

D> D>

et(L) K1

FIGURE 3. 1. Different planar representations of a lattice

giving rise to two non-isomorphic cell structures

We begin by deflning a congruence relation, Õ on tr. For a, ö e

with ø < å:

(3.1) a: å lÕ] iff ø is meet-irreducible and ö is join-irreducible.

It is useful to observe that Þ does not depend on the plana.rity of tr.

?
ö

10 (¿) = 1(1(o)

$
L(L)= r (K,)

eo(L) Ko



2. AN ALTERNATE DESCRIPTION OF CE2¿ 46

The following proposition proves that Õ does in fact describe a

congruence relation on Z, For 0,,b e L, the pri,nci,ple congruence rela-

tion O(4, å) of o and å is the least congruence relation on tr such that

a = b lØ(a,b)1.

PRoPoSITIoN 3,1. Let a,b e L wàth a < b. Then the followi,ng are

equàualent:

(I) ø i,s rneet-i,rred,uci,ble and b is join-i,rred,uci,ble,

(2) a < b is the uni,que ed,ge of L whách is collapsed, under 6(a,b) ,

(3) ForC eCeL

¡ a € Ct áf and, only b € Ct and,

c a e C, i,f and only b e C,.

PRooF. l impJies 2: Let a e J(I) andb€ M(¿) andletc € trwith

xlaandxlb.Thenï^,b<b so øÂb ( ø. But r f a, therelore

fr Ab < 0,, and hence r Ab : r t\ a. Duall¡ tY a: rV b.

2 implies 1: Assume å is join-reducible. Then there exists c € -L

such that c < å and cl a. So c\b: c but cÂ¿ f c. Therefore

cAa=c[O(a,b)].

Similarly, if ¿ is meet-redr.rcible then vre can find an edge u < g

snch that x: y l1(a,b)).

1 implies 3: Let ¿ be meet-irreducible and let b be join-irreducible.

Let C,D e CeZ be the unique cells such that ¿ < b c Cp and a <

b C DL (by Lemma 1.14). Since a is meet-irreducible, ø cannot be

the zero element of a cell. Similarly, b cannot be the one-element of a
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cell. Therefore a<bC Ç and so both o e C, and b e Ç. Similarlv,

a<bcD¡.
3 implies 1: Tbiviai.

The congruence relation, Õ will be called the cell congruen ce rela-

ti,on on L because of part 3 of Proposition 3.1. By using the results

from Proposition 3.1, we can rewrite equation 3.1 as:

o : ! {O14, A; I a < b,, a meet-irreducible, å join-irredricible}

(3.2) : V {O(o,Ð | a < ö is the unique edge collapsed by O(o,b)}

So every congruence class of Õ consists of either isolated elements:

þlÕ: {"},

or of a chain of elements:

þ]Õ:{ø6 <...<rn Ir¿>t}

where each z¿ is meet-irreducible for 0 < i < r¿ - I and each ø¡ is

join-irreducible for L < j < n.

Lpvua 3.2. Let x € L and, let lælÞ : {ro < ... < r" l?? > 0}.

Then ue haue:

r [ø]Õ zs join-rducible in LlÞ ,iJJ r¡ is join-reducible i,n L,

r [z]Õ zs meet-red,uci,ble in Ll@ i,ff r" i,s meet-reducible i,n L.

PRooF. Tbivial. If ø6 is join-reducible, then there exist a,b e L

wilh. a I å such that rz { ø¡ and b < ø¡. AIso, since z¡ is join-reducible,

we know [a]O I þlo and [b]Õ I [ø]Õ. But ø llb, so [a]@ I [å]Õ. Finally

ay b: ao impJies lolÕ v [å]Õ : þ¡lÕ : [ø]Õ, so þlÕ is join_reducible.

tr
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Conversel¡ let þ]Õ be join-reducible. Then the¡e exist ø, å e Z such

that [a]Õ I [ø]Õ and [b]Þ I [r]ø but [ø]Õ v [ô]Õ : þlÕ. Therefore

o V b € [¿]O, and as ø¿ is join-irreducible for 1 ( ,i 1 n, we conclude

aV b : ro. Therefore z6 is join-reducible.

The case for meet-irreducibility follows by duality. !

We can now describe Ce2 -L.

THEoREM 3.3. Let P be the poset of doubly-red,uci,ble elernents of

LlÞ and, let P¡ : P U {0p, lp} where\p,Tp 4 P are added least and,

greL,test elements respecti,uely. Then P] = Ce2 L.

PRooF. Cez ¿ is the cell lattice of Ce tr, where Ce .L has the natural

left-right order induced by .L, Therefore, for every ø € Ce2 ¿ there

is a corresponding cell X in Ce-L. We will restrict our attention to

ce'?¿\{0,1}. so

X : {0x, ¿o, . ., ,e^rbo,. . . ,bnrlx},

with the following left and right chains:

Xt:0xl¿ol"'1o'^-l.7y

Xn:0x{óo{"'.¿.bn<.lx.

The elements of X are elements of Qe L, hence are elementary cells of

L. Let, A¿,, B¡, Iy and Ox be the cells in ¿ corresponding to a¿, b¡,ly

and 0x respectively (for 0 1 i, < m and 0 < j < n).

By Coroliary LI7, A¿ and .4¿a1 share an edge for each i, as do B¡

and B¡1r for each j. A1so, by Lemma 1.16,

. (Ao)t c (Ox)+ and (Bo)¿ c (Ox)+,
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ttit
FIGURE 3.2. The cells of -L which form the elements of

X in CeL

. (A,")nc (1x)- and (8")n c (1x)-.

Clalu. There is a k ( rn such that, for all i ( m,7¡o S 1¿u, that

is, 1¿* is maximal in "4(X) 
: {1Á | ¿ e X¿}. Similarly, B(X) : {08 |

b € X,\ has a minimal element; call it 0s, (see figure 3.2).

Proof of Claim. We will prove that max,4(X) exists; the existence of

min6(X) is assured by duaìity. So assume max "4(X) does not exist.
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Then there exist 1( s <t1m such that:

(3.3) le. I h, and l¿, f 1¿, for all z ( n.

In particnlar, It. / It, and I¡, f 1¡,, so 1¡, ll 1¿,. Since s < ú, we

know 1¿, À 1¿,. By Lemma 1.14, there is a unique cell C C .L such that

l¿" e Cr Let c be the corresponding element in Ce-L. We claim that

c lies in the interior of X, contradicting ihe irreducibility of X.

o c is to ihe right of X¡.

Proof. We know 1¡, € Q, so a" < c in Ce.L. Also

L¡" \I¡, implìes c ( ¿¿. But 7a" 1 16,, so by 3.3,

c f. X7. As Ic > I¡" and X¿ is a covering chain,

we can conclude the¡e is an ? with s < z < ú such

that o¿ À c in Ce -L.

¡ 0x(c(1x.
Proof . We have already shown that as < c < a+.

¡ c is to the ieft of Xn.

Proof. X is a cell in CeL, so a¡Vb¡: lx and

a¿Yb¡:1¡ for all i' 1m and j < ø' Bui

a" 1 c 1o¿ implies b¡ A c: 0y and b¡V c: lx
for all j. Therefore cllb¡, and as 1¿, € C and

a" Àb¡ lot al' j 1 n, we conclude c À å¡.

Thus X is not an elementary cell - a contradiction. So max ,4"(X)

exists. I

Let 1¿: max "4(X) and 0B: minB(X). Then 1¿ ( 0s, and as

X is an eLementary celì. in Ce-L, the convex sublattice ll¿,$l c L

50
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must be a chain (possibly of length 0, if 1Á : 0s). Therefore [1¿, 06] is

collapsed to a single element under Õ, a.nd as 1¡ is join-reducible and

0s is meet-reducible,

[1Á]O: [0r]O: [1¡,0s].

Define the map tþ : Ce'z¿ \ {0, 1} ----, P by

crþ : [t¡]Þ

where c € Ce2 L corresponds to the elementa¡y cell X € Cetr and

lt: max A(X ). We already know ry' is welL-defined ftinction by ihe

first part of this proof.

Letr€ P. Then ¡: lz]A for some z € ¿. Since ø e P, [z]Õ is

doubly-reducible in Ll@. Therefore lz)ø : {zs

where z6 is join-reducible and z, is meet-reducible (Lemma 3.2 ). So

there exist cells .4 and B such that zo : lt and z. :0¡. if n > 0

then as z¿ is join-irreducible for 1 < ? < ?2, there is no cell C such

lhat z¿ - 1d. Similarly, there is no cell C such that z¡ :0c lor all

0 < j < ¡z -1. Therefore the¡e exist cells O and 1 such that lz¡, z.] c O,

andlz6,znl c 4. If rve \et a,b,o,'i € Ce.L correspond to,4, B,O, and I
respectively, then we have shown that o < a <'i, o < b < i, and ¿Àb.

In fact, we know ¿ A ä : o, since I¡ e O, and 06 € O,. Similarl¡

aY b: z. Finally, lei c e Cel such that øÀc and cllb. Then, for

the corresponding cell C c L, 0s I 1¿(: z6). Since c llå, we know

either 16l ( 0¿Ì or 0¿ ) 18. But 06' ) 1¿ and [1¡,06] is a chain (hence

contains no cells). Therefo¡e 0¿ ) 78, and hence bÀc. Therefore,
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there exists a unique celL Z C Ce,L such that {02,c,d,,I2} C 2., so tþ

is onto.

Lel r,y e Cez L such that nþ : Atþ. Let X,Y be the cells in

Ce.L which correspond to ø and g respectively and let 1¿ : rna".,4(X)

and 1¿l : max ",4(Y). So .4 and B are cells of .L such that, for the

corresponding elements a,b e CeL, we have o, € X¡ and ö e U þy
the definition of ,t(X)). Now øry': gry' impJìes [1Á]Õ: [1¡]Õ. In

particular, 11 e [18]Õ. But 1¿ and ls are both join-reducible, so la

must be the least element in [13Õ, that is, 1¿ : 1¡. Therefore a eYr,

and by Lemma 1.I4, Y : X. Therefore ¡ : y and ry' is one-to-one and

hence is a bijection,

Finatl¡ tet r,y e Ce2 L with corresponding cells X and Y of Ce L,

and let

rnþ - [1¡]ô: [1¿,0a]

yrþ : lrclÞ: [1c,0¿],

where .4, B, C, and D are cells of .L, Then, for the corresponding

elements a,b,c,d, of CeL,we have ø € X¡,b€X,,¿çY¡,andd€Y..

Let x < g. Then there exist elements e,f € CeL such that e €X,

/ e Y, and e À / (Lemma 1.10). Therefore, for the corresponding celis

E, F c L, 1¿ ( 0¡. tr\rthermore, since æ f g/ we can assume that

e e X¡ and / e Y¿. Therefore, either e € X, of e:0x 01 e- lx.
In any case, 1¿ > 0e. Similarly, 0¡ < 1c. Therefore 0s ( 16r, so

nþ < gtþ.

Conversel¡ Iet rtþ < ytþ. 'lhen [1¿]Õ < [16]Õ, and so 0s ( 16r. In

particular, 1¿ < 0¡. Therefore ø À d, so by Lemma 1.10, ø ( g. Br.rt
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n þ I Arþ and ry' is one-to-one, so r < y. Therefore ry' is an isomorphism

from Ce2.L \ {0, 1} onto P.

If we expand ry' to map zero-element to zero-element and one-

element to one-element, then we have an isomorphism from Ce2 "L onto

Po1, completing the proof. ¡

CoRol,leRy 3.4. Ce2 L i,s i,nd,epend,ent of planar representati,on

e(L) of L.

3. Applications to Generaì Lattices

In Section 2, we showed Ce2 L can be obtained from ,L by the

dotrbly-reducible elements of LlÞ, and hence can be obtained with-

out any reference to the planarity of l We can therefore expand the

definition of Ce2 L to include the class of all finite lattices.

DEFINITIoN 3.5. Let .L be a finite iattice and let P be the poset of

doubly-redr.rcible elements of Lf ø, where Õ is the congruence ¡elation

on,L described in eqr.ration 3.2. We define the latti,ce of doubly reducible

cell classes of .L to be Re tr : P U {0, 1} where 0,1 ê P and 0 < p < I

loralJ.peP.

By Theorem 3.3, we know Re L : Cez L for all finite planar lattices

-L, and hence know that Re -L is a lattice r.vhenever .L is planar. We

must show that Re -L is a lattice for all finite lattices.

THEoREM 3.6. Re.L i,s a latti,ce.

PRooF. Let a,b e Re tr. We must show that ¿ V b exists in Re .L;

the existence of o A å follows by duality. Then ¿: lrlÞ and ô : [g]Õ
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for some ï,A e L and [ø]Õ and [g]Õ are both doubly-reducibl e in LlQ.

trÌom onr work on Õ in Section 2, we have:

¿: [ø]Õ : {øo < .'. l xi* I nz I 0}

b : W)Þ : {so < "' < s. I rz ) o}

where r¿, 9¡ e .L for 0 f i 1 m,, 0 S j S n, and such that ø¿ and 916 are

both join-redr.rcible and x* and yn are both meet-reducible (Lemma

3.2). If m > 0 (", > 0), then we also have ø¿ (g¡) being join-irreducible

for 1 ( i, < m (l 3 j I n) and r¿ (y¡) being meet-irredr.rcible for

0<i,<m-1(0< j3n-I).
Ciearly, if ¿Vö exists in ReI then aVb> [a* V b,]Õ. So look at

ø-Vö",.If there are no meet-¡educible elements ø such that a) a*Vbn,

then by Lemma 3.2, there is no doubly-irreducible element A € LlÞ

such that y > lA," v å"]Õ. So ø and ö have no common upper bound

in P. Therefo¡e aV b : I in Re .L.

On the other hand assume there exists at least one meet-reducible

element greater than or equal to a*Y b. in L. Let

U : {n } a,.V b. I z is meet-reducible}

As tr is finite, M has a greatest lower bound, d: AM.

CreIIr¿. de M (Hence d is meet-reducible. )

Proof of Claim. 11 d, ç .M, then d is meet-irreducible. So d has a

r-rniqr.re npper cover,;. Since d: AM and d < r, we know there exists

ag € M such that d,<g < ø. Therefore, d,: a, à contradiction. I
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If a*Y b, I d then for all ¿ € .L such lha.., a^Y bn ! x < c, r
is meet-irreducible. Therefore [a,- V b", d] forms a chain (possibly of

length zero if d,: a^ V b"). Set C: la,- V b,, d] and 1et

J : {x e C | ø is join-reducible in -L}.

"lhen J f Ø because a,*Vb. e .7. Also,.TcCimpLies J forms a

chain of one or more elements. Since -L is frnite, J has a least upper

bound, c : V,1. By a dual argument to that used for Â,rVl, we know

c € J , and hence is join-reducible.

So we have [c, d] forming a chain of one or more elements such that c

is join-reducible and ¿l is meet-reducible. F\rthermore, if c f d then we

know every r e fc, dl with ø > c is join-irreducible, and every y e [c,, d,]

with g < d is meet-irreducible. Therefore lclÞ : [c, d] and by Lemma

3.2, [c]Õ e P.

We already know that [c]Õ is an upper bound of o and ð; we will

show that o y 6 : lc)@. Let r € Retr such that z > a and o > b. If

ø: 1, then ø > [c]Õ and we are done. Otherwise, n: {16 * .. . < 
"o}

with z¿ € L for i,:0 to k. As ø € P, we know c is doubly-reducible

in LlA. Therefore z¡ is meet-reducible, F\rrthermore, ¿ > a and r > b

together imply that r¿ 2 a^ V b, for all i. In particular, r¡ / a*V bn.

Therefore r¡ € M, so d, 1 x* and we conclude [c]Õ < ø.

By dualit¡ a A ò exists. Therefore, Re -L is a lattice. ¡
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