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Abstract 

Machine automation requires the robotic machine to be at least as productive as a 

m a n d y  operated machine. To increase robot productivity robot motion speed should be 

. .  . improved. A feasible approach to improving the motion speed is to mtnimize the motion 

t h e  needed to perform a given task subject to actuator constraints. 

This work addresses the problem of optimal trajectoly planning for heavy-duty 

hydraulic manipulators. These manipulators have the following characteristics: they are 

powered by a single engine mounted on the machine and they are under-powered even 

during normal operations resulting in dynamic power redistribution to the actuators. For 

the hydraulic manipulators, the actuator characteristics are very signifïcant and complex 

due to hi& nonliniarities in the hydraulic system and power coupling between the 

actuators. 

The method developed in this thesis focuses on utilizing advantageously the 

achiator capabilities to minimize the time needed to move the manipulator end-effector 

dong a specified path. To perform the search for the minimum motion time almg the 

specified path, a downhill simplex technique is implemented. The method is applied to a 

Caterpillar 2 15B excavator-based log loader in a typical pick and place task. 

The main contributions of this thesis are the incorporation of the complex actuator 

characteristics in the optimal trajectory planning and the implementation of an 

optimization algorithm (downhill simplex method), which shows effective results for 

solving the optimal trajectory planning problem. 
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Chapter 1. Introduction 

Chapter 1 

Introduction 

1.1 Motivation 

Many applications of robotic systzms require the manipulators to operate nom moving 

bases. A moving base - or mobile manipulator - has two important features. First, it has 

almost innnite workspace. Secondly, it may find many more applications, especially in 

unstnichired, hostile enviroaments. 

Mobile manipulators are typically applied in primary industries such as 

construction, mining, and forestry. Figure 1.1 shows two examples of machines used in 

these industries. The common characteristics of mobile manipulators are: (i) they utilize 

hydraulic actuators which are powered by a single engine mounted on the machine and, 

(ii) they are under-powered even during fiormal operation resulting in dynamic power 

redistribution, i.e. the actuators usually request more power than the engine can supply 

(Krishna, 1998). 

Robotics are now beginning to examine problems related to automating tasks in 

the areas of construction, rnining, excavation and forestry. These tasks include mass 

excavation and confinuous mining where a digging machine nIls a bucket with material 

fiom a pile or a rock face, transports the bucket load to a waiting truck or conveyer belt, 

and dumps the load in the truck-bedhelt. These tasks are ideal candidates for automation 
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O>) 

Fig. 1.l:Excavator-based machines (a) on wheels; (b) on tracks. 
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since they are repetitive and there exists room for enhancing productivity while 

decreasing production costs. 

Automation c m  be a practical reality onIy if the robotic machinery is more 

productive than a manuaiiy operated one, while offering lower production cost and 

maintainhg safe operation. In order to increase the productivity, the performance of the 

manipulator should be optimized. This can be done by planning the motion of the 

manipdator, in such a way that it c m  perform its task quickly (i-e., minimi7.ing the 

motion tirne), with the minimum energy consumption, while the stability of the machine 

is rnaintained. 

The speeds, which can be achieved by a manipulator during a given task, are 

limited by the capabilities of the manipulator. In order to use a manipulator at maximum 

efficiency, the optimal motion planning should be performed using the dynamic model of 

the manipulator and the more accurate the dynamic model is, the better the manipulator 

capabilities can be used. The dynamic model of a manipulator consists of the models of 

the linkage and the actuators driving the linkage. The linkage dynamics for a heavy-duty 

mobile hydraulic rnanipulator c m  be modeled using the Newton-Euler equations. A more 

diftïcult problem is to model the hydraulic dynamics, as the achÿitor model is very 

cornplex, coupled and nonlinear. 

Early work on optimal motion planning was primary devoted to industrial 

manipulators driven by electric motors (see for example Bobrow et al., 1985; Rajan, 

1985). Those methods exploited the manipulator linkage dynamics to optimize an 

objective hc t ion ,  which was typically the execution time or a combination time-energy 

for a task. They did not consider the actuator dynamics and assumed a known torque Limit 
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curve for each joint actuator. However, the torque limit curve is not easy to compute 

ahead of time for a heavy-duty hydraulic manipulator shce the limit cuve is a fbnction 

of many variables due to coupled actuation in this type of manipulator. 

Lin et al. (1983) developed a method to minimize the tirne required to move dong 

a specifïed path, subject to the collsfraints on joint velocities, accelerations and jerks. The 

drawback of the metliod is that it uses constant bounds on joint velocities, accelerations 

and jerks. Therefore, it did not account for the actual capabilities of the manipulator 

actuators and actuators loading. The method can be improved for heavy-duty hydraulic 

manipulators, if the joint velocity bounds are determined considering the complex 

relation between the velocity and the actuator and linkage effects, such as loading, inter- 

actuator couphg  and power limitations. Therefore, the velocity bounds should be 

determined using the dynamic mode1 of the manipulator. 

1.2 Objective and Scope of this Work 

In this thesis an off-line method for planning the optimal trajectory for hydraulic 

manipulators is developed. The method aims to improve the manipulator motion speed by 

minimizing the execution time needed to perform a given task subject to the constraints 

inposed by the limited capabilities of the actuators. The actuator capabilities are limited 

due to the fact that they are powered by a limited power engine. 

The approach taken is as follow. For a path specifïed by Cartesiau points, the 

corresponding joint trajectories are generated using spline fùnctions and the do- 

. . 
simplex method is adopted to mtn:mize the motion tirne. The time intervals between 
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adjacent points are the optimization variables. A "feasible solution converter" is 

developed to convert, during the search, an infeasible solution into a feasible one. The 

feasible sol-ution converter, actuaUy, determines whether a trajectory is dynamically 

realizable given the power limitations. If not, it changes the speed at which the 

manipulator follows the path so that the power limitations are not violated. By speed 

change is meant a constant scaling of the velocity profile so that the total execution time 

is scaled without changing the actual path through space. The constant scaling factor is 

determined considerhg the relation between the velocity and the actuator ioading and 

power limitations. 

The method developed in this thesis is applied to a Caterpillar 215B excavator- 

based log loader, which is a three-links manipulator with an additional moveable end- 

effector, namely the gripper. The flrst three links motion serves to control the position of 

the end-effector. The end-effector itself is not included in the studies performed, since 

oniy the position of the end-effector is of interest in this thesis. 

The organization of this thesis is as fo11ows. Chapter 2-Relevant Backgrounds-is 

divided in two parts. Part 1 presents a description of a heavy-duty mobile manipulator, its 

linkage dynamics and the dynamics of the actuators driving the links. Part 2 introduces a 

literature survey on optimal motion planning for manipulators. In Chapter 3, the optimal 

trajectory planning algorithm is developed. Chapter 4 presents results of the simulation 

-dies. Conclusions are presented in Chapter 5. 
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Chapter 2 

Relevant Background 

This chapter first describes a typical heavy-duty mobile hydraulic manipulator used in 

primary industries. Its linkage dynamics and the dynamics of the hydraulic actuators 

driving the links are also described. Next, different optimal motion planning methods are 

surveyed and potentials and limitations of each method are outlined. 

2.1 An Application Enample 

The heavy-duty mobile hydraulic manipulator, considered in this thesis, is a Caterpillar 

2 15B excavator based machine (see Fig. 2.1). It is a three-degree-of fieedom manipulator 

with an additional moveable end-effector, namely the gripper. The upper structure of the 

machine is rotated on the carriage by a hydraulic swing motor through a reduction gear. 

The other two main links, ccboom" and "stick?, are movable around their joints by 

hydraulic cylinders. The boom and stick together with the swing motion serve to control 

the position of the end-effector. 

The power required to actuate the cylinders and the hydraulic motor is derïved 

fiom an engine which through a gear train drives two hydraulic pumps. The output flow 

fiom the pumps is used to operate two separate hydraulic circuits that may be selectively 

interconnected by cross-overs valves. Pump 1 supplies the hydraulic fluid to the gripper 

valve and the boom valve. The two valves control the flow to the hydraulic actuators, Le. 

a hydraulic motor for the gripper, a hydraulic cylinder for the boom. Pump 2 supplies the 
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hydraulic fluid to the swing valve, which controls the motor for rotating the Cab and to 

the stick valve to actuate the hydrauiic cyhder for moving the stick. 

Kg. 2.1: Schematic of a typical excavator-based log-loader. 
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Stick movement controlled by the stick main valve, cannot be achieved if the 

swing main valve is M y  open. If the latter is partly open, the stick c m  operate but at 

slower speed. The motion of the boom and the stick, in some models, are coupled via 

cross-over valves (shown by dashed lines in Fig. 2.1). The output fiom pump 2 may be 

shifted to facilitate movement of the boom as indicated by the cross-over and similarly 

the output of pump 1 may be shifted to apply fluici to stick valve via the stick cross-over 

valve depending on the dernands of the two hydraulic circuits. This will d o w  a faster 

movement of one when the other is at less than full speed operation. 

Pump 1 seMces on a priority basis, first the gripper valve, then the boom valve 

and hal ly the stick cross-over of a second hydraulic circuit. Pump 2 supplies the 

hydraulic flow on a priority basis kst to the swing valve, then to the stick valve and to 

the boom cross-over. 

When the total sum of the pressures in the implement circuits becomes hi& 

enough, the pumps reduce their outputs. This type of hydraulic circuit is known as load- 

sensing torque-limited circuit. The highest load is sensed and the output flow is changed 

to meet the maximum torque available fiom the engine. 

The hydraulic system, described above, is an open-center system. In an open- 

center system the pumps do not reduce their output to zero. When no actuator flow is 

demanded, the pumps still output a non-zero flow. This "idle" flow goes to the tank 

through the center o s c e s .  When the actuators are commanded to move, the tank orifices 

slowly close and are M y  closed when maximum velocity is demanded. A typical open- 

center valve and a single-rod (asymmetric) cylinder are shown in Fig. 2.2. 
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Fig. 2.2: Typical hydraulic actuator working with an open-center valve. 

Note that the single-rod cylinders, used for the links (boom, stick) actuation, are 

characterized by lirnited linear motions. Since the joints are revolute, use of linear 

actuators result in joint angle limitations. This means that boom, stick motions are 

restricted to specific ranges. Kinematic analysis of the machine can be found in Appendix 

A. 

A Diesel engine is used to tum the two axial-piston variable-displacement pumps. 

The two pumps have a comrnon swash plate whose angle is controlled according to the 

summing pressure, P, +Pz. Consequentiy, these pumps have identical output flow or 

equivalently identical displacement coefficient, but dBerent output pressures. 
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Figure 2.3 shows a typical pressure sum versus output curve for these pumps. 

According to the schematic diagram shown in the same figure, the output pressure of the 

pumps are sampled by two orifices. These pressures are applied to two s m d  pistons that 

change the angle of the swash plate against three pardel springs. This mechanical 

feedback system serves to iimit the power that is drawn fiom the engine, so that the 

pressure-flow cuve is below the power limit curve. 

I 
I 
1 
1 curve of the 

. 
Siimming Pressure, PI + P2 

Fïg. 2.3: Function of variable-displacement pumps in a Caterpillar 2 15B excavator-based 
machine. 

The dynamic model of the hydraulic manipulator consists of the model of the linkage and 

the mode1 of the actuators driving the manipulator joints. The linkage and actuator 

dynamics are described in the following. 
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2.1.1 Linkage Dynamics 

The joint torques required to move the linkage are described by the dynarnic equations of 

motion and depend on instantaneous joint position, velocity, acceleration, and the load 

that it is carrying. For an N-joint manipdator, the Linkage dynamics can be compactly 

Wfitten as: 

where 

T(t)  is the N x 1 vector of joint torques supplied by the actuators. M(0(t)) is an N x N 

matrix, sometimes called the manipulator mass matrix. The vector C(O(t), &t)) represents 

torques arïsing fiom centrifuga1 and Coriolis forces. The vector ~ ( 0 ( t ) )  represents 

torques due to fiction acting at the joints. The vector G(B(t)) represents torques due to 

gravity. B(t )  is the N x  1 vector of joint displacements, with 

e(t) =P, (t),e, (t),*..,0, (tllT 

The relationship between the effective actuation force, F , applied on the link and 

the joint torque T , is obtained by applying the principle of vimial work. 

Tede= F * d X  (2 -2) 

where dû and ctY denote the incremental changes in joint displacement and piston 

displacement, respectively. Therefore, the force F c m  be calculated £iom the following 

equation: 
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where the derivative fûnction J(.) is dehed as follows: 

The joint displacement, 0 ,  and the piston displacement, X,  are related by geometrical 

configuration. With respect to the Fig. 2.4 the numerical value of J(0) can be evaluated 

as follows: 

Fig. 2.4 : T ypical actuator-arm mechanism. 

l 2  = Z: + 1; + 2lP1, cos(8 + 6)  

where 6 = 6 ,  + 6 ,  = const. Z,, Zr, 6 ,  and 6, are the kinematic parameters of the actuator- 

linkage mechanism and they are shown in Fig. 2.4. Taking the denvative of (2.5) yields: 
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Figure 2.5a shows the h c t i o n  J(8) over füll joint anguiar range for boom and 

stick. Figure 2.5b shows the relationship between joint displacement, 8, and the piston 

displacement, X for boom and stick. As it is seen the relationship is almost linear. 

Boom Stick 

Fig. 2.5: (a) Function J(0) over full range for BoodStick motion; @) Curve X(0)  for 
Boom/Stick 

2.1.2 Actuator Dynamics 

The term "actuator dynamics" requires a clarincation for hydraulic machines. Used in the 

context of traditional serial chain electric driven robots, it refers to the dynamics of d the 

elements responsible for rnoving the robot links, Le., the motors and the gears. The 

hydraulic achiator dynamics, on the other hand refers to the dynamics of the entire 

hydraulic system responsible for moving the joints, i.e, the engine that supplies the 
13 
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power, the hydraulic pumps, the valves used to regdate the fluid flow and the hydrauiic 

cylinders and motors. 

The motion of the rnanipulator presented here is govemed by the coupled swing, 

boom and stick link dynamics and the actuator dynamics drïving the links. The gripper 

link and its actuator are not considered, since only the positionhg of the end-effector is of 

interest in this thesis. 

The hydraulic actuator models include orince flow equations, fluid 

compressibility equations, as well as the force balance equations for the cylinders. The 

orifice flow equations goveming flow and pressure drop across an orifice is 

where Q is the flow rate through an orifice, k is the orifice coefficient of discharge (a 

constant), a is the orifice area and LW is the pressure drop across the orifice. The valve 

orifice area a is a nonlinear bction of spool displacement. 

The fluid compressibility equation, which captures the dynamic of the hydraulic 

fluid is 

where P is the pressure in a control volume, C is the hydraulic cornpliance of the flexible 

hoses connecting the valve to the actuator, f l  is the buk rnodulus of the oil and V is the 

volume of oil in the control volume. Q' is related to the cyhder velocity x : 

 fi 

where A is the piston area. 

During the steady-state response Eq. (2.1 1) becomes 



Q=Q* =A 

The force balance equation for a cylinder is 

&=<-A, - P ~ A ,  - F  -&-F, 
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(2.14) 

where rn is the mass of the cylinder rod; P, and Po are the pressures in the two cylinder 

chambers; 4 and A, are the piston areas on the two sides of the actuator; d is the viscous 

damping of the cylinder; F, is the Coulomb friction of the cylinder 

For a steady-state actuator response and neglecting the effect of the iEction, the 

expression for the force F applied on the link becomes 

F = Fa = e A i  -?,Ao 

Fa is the net force on the cylinder piston. 

For the Cab swing actuator the goveming equations are: 

Q =D,& (2.1 8) 

r = D,(q -4) (2.19) 

where Dm is the volumetric displacement of the hydraulic motor and 0, is the motor 

shaft anguia. velocity. Q andr are motor flow and torque, respectively. In practice, these 

equations may not be exact due to two sources of losses, leakage flow and intemal 

Ection. The torque r generated by the hydradic motor is transmitted through a gear train 

to rotate the upper structure (i.e, the Cab swing). The torque T ,  fiom motor re:ferred to 

the output is: 

T = n - z  (2 -20) 

where n is gear reduction f?om motor to output shaft .The swing rotationai velocity 0, is 
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(2.2 1) 

2.2 Motion planning for manipulators 

As the terms path and trajectory are used quite extensively in this thesis, it is appropriate 

to define them for clarity. The term 'path" refers to a continuous curve in the Cartesian 

space comecting an initial and a final configuration. A 'Yrajectory" is a continuous curve 

in state space connecting initial and nnal states. 

2.2.1 Identification of Various Constraints 

The most important constraints are derived fiom physical limitations of the robot system. 

They &se fiom the E t e d  capabilities of the a m ,  such as maximum speed for each joint 

and iimited forcekorque output fiom each actuator. These are the actuafor and Iinkage 

constrainis, which include the effect of loading. There are also, constraints imposed by 

the user, such as maximum dowed deviations fiom a pre-specified path at the tool tip, as 

in automated welding operations. This is c d e d  theputh construint. 

Another comtraint is the collision consbaint, which restricts the manipuiator 

movement due to the potential collision with obstacles in the workspace. Coilision or 

obstacle avoidance is an important part of motion planning, especialiy for industrial 

manipulators, which operate in restricted spaces. In the presence of fixed and stationary 

obstacles in the workspace, the path is given by the path planner. This path typicaily 

contains sharp corners and is not the minimum time path. An algorithm c m  be used to 
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fïnd the rnhimum time path which lies close to the given one and which avoids the 

obstacles (Rajan, 1985). 

For the mobile manipulators an additional constraint, namely the d i l i î y  

consfraint, should be considered. The stability constra.int restricts the manipulator 

movement in order to maintain the stability of the machine. 

2.2.2 Minimum-time motion planning 

Cornputer-controlled robots are beginning to have a major impact on contemporary 

automation and manufachuing systems due to their potential for increasing productivity. 

To increase robot productivity robot motion speed should be improved. The robots speed 

and hence their productivity, are limited mainly by the capability of their actuators. 

Increasing actuator size and power is not a suitable solution due to increased inertia of the 

actuators themselves, and because of the increased cost and power consumption of larger 

actuators. A more feasible approach is to m h b k e  the motion t h e  needed to perform a 

given task subject to the actuator constraints. 

At high speeds of robot motion a dynamic control strategy is required. With the 

dynamic control strategy, the instantaneous torque, velocity and position are controlled 

simdtaneously. At lower speeds of robot motion, a kinematic control strategy, which 

controls only the position and, indirectly, the average velocity cm be applied. A 

kinematic control strategy performs well at lower speeds of robot motion, while at high 

speeds, it works poorly. The reason is that at high speeds the hypothesis of static 

equilibrium at the points under consideration is less valid. 
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The control for manipulators is a very difncult problem due to manipulator 

nonlinear and coupled dynamics, physical constraints and the danger of colliding with 

other objects in the workspace. The control problem becomes even more complicated for 

hydraulic manipulators. For this type of manipulator additional nonlineanties are present 

in the actuator dynamics due to nonlinear pressure/flow relationships in the hydraulic 

valves and nonlineanty in the orifice due to dead zones. 

Because of the difnculty with the control problem for the manipulators, the 

overall problem c m  be divided into two stages. 

(1) o r n e  optimal trajectory planning, which results in the prescription of the position, 

velocity and acceleration of each joint as a function of t h e  dong a given path (and 

open-loop optimal control trajectory). 

(2) online path tracking, which tries to mhimke the deviation of the actual trajectories 

fiom the desired ones using a feedback-control algorithm (e.g., linear quadratic 

regulator control law). 

Over the last decade, a number of researchers have focused on solving the control 

problem for the manipulators. In their approaches they attempted to determine the control 

toques applied to each joint that drove a manipulator fiom a given initial state to a given 

nnal &te in minimum time, subject to control torque constraints. This is the general 

point-to-point minimum t h e  control (M'ïC) problern. 

The minimum time control problem can be divided into two categories in terms of 

different constraints on motion: (1) the MTC problem with unconstrained motion paths 

between two endpoints; and (2) the hlTC problem with constrained motion paths between 
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two endpoints, i.e., intermediate configurations of the robot arm are given so that the 

manipulator follows a specified path. 

Minimum time control problem with unconstrained path 

Roughiy speaking, the approaches to solving the minimum t h e  control problem with 

unconstrained motion path can be divided into two groups: the standard control 

theoretical approaches (e-g., employ Pontryagin's Minimum P ~ c i p l e )  and the 

nomtandard approximation approaches, such as exhaustive search technique fiom 

amficial intelligence and nonlinear parameter optimization approaches (Chen and 

Desrochers, 1994). 

With the manipulator dynamic equations and joint torquel force constraints in 

suitable f o m ,  the minimum tirne control problem c m  be addressed as an actual standard 

control problem. The usual method of solving such a problem is to employ Pontryagin's 

minimum principle. When the Pontryagin's principle is applied to this problem, it leads to 

a set of 4N coupled differential equations with a two point boundary value problem (N is 

the number of degrees of fieedom). If the differentiai equations are linear, then the two- 

point boundary value problem c m  be solved numerically. However, the Merential 

equations obtained when the Pontryagin's principle is applied to the robot arms are 

nonlinear. A set of coupled nonlinear differential equations with the two-point boundary 

value problem is not very tractable computationally. One way to overcome this problem 

is to linearize the differeritial equations. However, this is a drastic approximation, since 
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linerkation of the dynamics of a robot ami leads to signincant erroa and thesefore is 

unsatisfactory (Raj an, 1985). 

The difnculties with the control theory approach to the minimum tirne control 

problem led researchers to apply an artincial intelligence approach to this problem. They 

discretized the state space and then performed an exhaustive search looking for the 

minimum time trajectory. The search was greatly simplined using different techniques 

which reduced the search space (Rajan, 1985; Shiller and Dobowsky, 1991). For 

example, Rajan proposed an approach with the following steps: 

+ Characterize the path in some manner 

+ Given a path, determine the minimum time trajectory subject to the actuator torque 

constraints 

+ Search among all possible paths to h d  the minimum tirne path, Le., the path is varied 

until the path, which gives the shortest tirne among al l  possible paths is found. 

Rajan characterized the paths using spiines. The minimum-time trajectory was computed 

using the approach by Bobrow et al. (1985), and a gradient descent optimization 

technique was used to Vary the spline parameters in the search for the minimum time 

path. 

Minimm t h e  control problem with constrained path 

Bobrow et al. (1985) developed an algorithm to find the minimum tirne optimal motion 

for manipulators dnven by electrical motors. The algorithm used both the full nonlinear 

dynamic characteristic of the manipulator and the constraints imposed by its actuators. 

The basic idea behind their work is that a pre-specifïed constrained motion path leads to 
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an overall motion with one degree-of-fieedorn @OF) only, expressed by the path 

parameter r(t) . Thus, using the parameterization dong the given path, the original 

dynamic equations of an N -degree-of-fkeedom manipulator c m  be transformed h to  a set 

of N nonlinear differential equations in terms of the path parameter. Then, applying the 

constrajnts on the torques to the pararneterized equations, a set of constraints, or bounds 

on the second derivative of the path parameter r(t) with respect to t h e  (i.e., the pseudo- 

acccleration of the path) is obtained The path parameter r(t)  and its first derivative T ( r )  

(Le., the pseudo-velocity of the path) are taken as the state vector and the pseudo- 

acceleration is thought of as the control variable. The problem then becomes a minimum 

time control problem for a double integrator system with state-dependent control 

constraints. The main idea of the solution is to select the control variable that produces 

the largest pseudo-velocity profile such that, at each point on the path, the pseudo- 

velocity is not greater than the maximum velocity at which the constra.int on the motion 

will not be violated. The solution is constnicted in tenns of switching cuve in the phase 

plane (r  - f plane). The control torques for individual joints can be determined by a set of 

N -parameterized equations of the robot dynamics once the path parameter r(t) , the 

pseudo-velocity T(t) and the pseudo-acceleration T(t) are obtained. Therefore, the 

switching curve indirectly provides a graphical representation of the feedback control law 

for MTC problem. However, the resulting bang-bang strategies are phy sicall y 

unrealuable due to the typical discontinuities at the switching times and the non- 

negligible actuator dynamics. In addition, such strategies are undesirable due to the 

structural vibrations induced by the control discontinuities, and due to the damage to the 



permanent rnagnets of the electnc motors caused by the abrupt changes in the motor 

current (S hiller, 1 994). 

The approaches mentioned above focused on manipulators driven by electrical 

motors. They attempt to exploit the complete robot linkage dynamics model and 

simplified actuator models to find the minimum t h e  motion. A simplified actuator 

model does not include the dynamics of the actuators. For example, the complete 

mathematical model of an electric DC motor is: 

where V is a vector of applied voltages, i is a vector of the motor currents, and 

R, L, Ke , K t ,  are diagonal matrices with the motor parameters: resistance, inductance, 

back EMF constant, and torque constant, respectively. Therefore, in a simplified actuator 

model Eq. (2.22) becomes: 

v = R ~ + K , ~  (2 .s4) 

However, the actuator dynamics are not negligible, and therefore some practical 

difficulties have been encountered using these approaches. For example, the actuator 

torques required for a typical optimal trajectory are discontinuous hc t ions  of time. In 

practice, due to the delays caused by the actuator dynamics, it is impossible to produce 

these torques exactly. Furthemore, the transient response of the neglected actuator 

dynamics might cause tracking errors in typical path following applications ( T m  et al., 

1991). This is even more so in applications requiring high accuracy at hi& speeds 

(Youcef-Toumi and Kuo, 1987). Some of these practical difnculties can be addressed by 
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modeling the actuator dynamics (see for example Tarkiainen and Shdier, 1993). This, 

however, increases the dirnensionaïty of the mode1 and the required computational 

effort- 

The methods in the literature that allow simplined actuator models assume a 

h o w n  torque limit curve for each joint actuator (see for example Bobrow et al., 1985). 

This torque limit curve is a h c t i o n  of the velocity only, i-e., the actuator torques are all 

independent of one another. However, the torque limit curve is not easy to cornpute ahead 

of tirne for a heavy-duty hydraulic manipulator, since the limit curve is a fiinction of 

many variables due to coupled actuation in this type of manipulator. For instance, the 

force limit for the stick actuator on the excavator-based machine is dependent on a 

number of swing circuit variables, in addition the stick circuit variables. Therefore, 

niinimum time motion planning for hydraulic robots requires a different approach fkom 

those seen in the literature. 

Lin et al. (1983) developed a method to find the minimum time required to move 

dong a pre-specified path. The method was not concerned with fïnding the optimal 

control to execute the trajectory computed. In their rnethod cubic spline fiinctions were 

used for generating the joint trajectories. The resulting spline h c t i o m  were expressed in 

ternis of thne intervals between adjacent hots. The downhill simplex method was 

adopted to schedule the time intervals between each pair of the adjacent knots such that 

the total motion tirne was minimized subject to the constraints on joint velocities, 

accelerations and jerks. Therefore, with this method an optimal trajectory was computed 

off-line and the control torque remained to be computed on-line. The drawback of the 

method is that it uses fked joint velocities, accelerations and jerks limits. 
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Since the f%ed limits upon the joint velocities and accelerations, must cover all 

possible configurations of the robot, they may be too conservative. For example, an 

optimal path for a msnipulator has to be generated on the basis of the maximum velocity 

and acceleration dowed under the worst (global) conditions. This implies that the 

motion planning has to be made with the global least upper bounds of all possible 

manipulator's velocities and accelerations. Therefore, fixed joint velocities, accelerations 

and jerks constraints do not account for the actual capabilities of the manipulator 

actuators and the actual dynamic load upon them. They only consider some rough 

estimates of the allowable joint velocities and accelerations. Therefore, the estimates of 

the minimum time may be rough. 

In this thesis the method developed by Lin is improved in that instead of k e d  

values for joints maximum velocities, variable values are computed using the dynamic 

mode1 of the manipulator. 

For the heavy-duty hydraulic manipulators under investigation there is a very 

complex relationship between joint velocities and dynamics. Each joint velocity is related 

to the flow directed to its correspondhg actuator as: 

Qd =ed  - J ( e ) -A  (2.25) 

where Q, is the desired flow to the actuator; 0, is the desired joint velocity. Therefore, 

given the desired joint velocities the flow rates to the hydraulic actuators required for 

achieving these velocities c m  be determined. Further, it should be checked whether the 

desired flow rates can be achieved. The computation of the flow distributions to the 

actuators is complicated due to the coupled actuation in the hydraulic system. 



Due to the hydrauiic circuit interdependency, the flow fiom liniited power 

variable-displacement pumps is supplied to the valves on a priority basis, i.e., the valve 

closest to the pump gets all the flow it requires, and the remaining flow is distributed 

among the rest of the valves. On the other hanci, when multiple actuators request flow 

simultaneously, the power demanded exceeds the power output of the engine and the 

pumps reduce theK flow rates to keep the engine fiom getting overloaded. The pumps 

flow-rate changes according to the pump output pressure, which is load dependent. Thus, 

the joint velocities may not be achievable as a result of ihese constraints and the joint 

velocity limits need to be calculated and updated. For example, the maximum joint 

velocity for swing is limited to the purnp flow, which itseLf is variable and load 

dependent. The maximum velocity that the stick could achieve depends on the remaining 

flow that has not been consumed by the swing. Therefore, the maximum achievable joint 

velocities are variable for hydraulic machines and depend on the required number of 

simultaneous joint motions and loaduig. 

In the following chapter, Lin's method is extended in that the joint velocity 

bounds are determined using the M a g e  model and a sirnplifïed model of the actuators 

driving the links. Detemllning these bounds any joint velocity profile can be scaled to 

make full use of the actuator capabilities. Lin's method computes only the optimal 

trajectory (position, velocity and acceleration of each joint as a fünction of time); the 

method to be presented computes the optimal trajectory and open-loop control trajectory. 



Chapter 3. Minimum-Time Trqectory Planning 

Chapter 3 

Minimum-Time Traj ectory Planning 

The method developed here is particularly suited to hding the minimum time for a 

specXed path. The work is focused on planning rnanipdator motions, which 

advantageously use the actuator capabilities to optimize the motion t h e  needed to 

perform a task for which the path is specifïrd. The optimization is performed with respect 

to the combination of actuators and linkage effects. This is especially important for 

hydraulic manipulators where the actuator effects are very signincant. 

To perform the search for the optimal solution, a simple downhill simplex 

algorithm is implemented. The algonthm does not require gradient information; it only 

uses fhction evaluatiom to move towards the optimum solution. This is important since 

gradient information is not readily available. 

3.1 Joint trajectories generation and time scaling 

3.1.1 Formulation of spline function joint trajectories 

In this section joint trajectories are generated using spline functions. A spline h c t i o n  is 

a way of passing a smootb. curve through a given set of points in space (hereafter these 

points are referred to as knots). In mathematical t e m ,  a smooth curve is continuously 

differentiable. 
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A cubic spline f (t) is a continuous fimction that coincides, in each partial interval (the 

interval between adjacent h o t  points), with a cubic polynomial, and at every knot point 

the spline f ( t )  itself and its first and second derivatives are continuous. If at each h o t ,  

both the dope and curvature of the cubic pieces to either side will match, the curve will 

be twice continuously Werentiable. If the slopes of the two polynomial segments to 

either side of each knot will match at that knot, but their curvatures will not, the curve 

will be continuously differentiable, but in general not twice continuously differentiable. 

Spline functions have been found to provide the shortest path that passes through the 

lmots while satisfying the continuity constraints. A rigorous proof of this property may be 

found in Ahlberg et al. (1967), where it is show that cubic splines possess the "best 

approximation property" which minimizes [If R(t)2dt]1'2 dong the curve, thereby 

mhimizhg the n o m  value of curvature. 

The procedure for generating joint trajectories is as follows. The path is specified 

by a sequence of Cartesian h o t  points El, E2,.. .,En. These n Cartesian knot points are 

converted into n h o t  points in joint space using inverse kinematics. For each joint, the 

data s p e c m g  the trajectory are position, velocity and acceleration at the initial and the 
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nnal points and the positions or joint displacements at intemediate knot points. The 

trajectory can be generated using poJ.ynomials between the lmot points. These 

polynomials are splined together by requlling that the position, velocities and 

accelerations are continuous at the junction points. This is necessary for a manipdator to 

achieve a smooth motion. Therefore, the sequence of these polynomials splined to each 

other describes the desired trajectory that will generate a smooth motion of the 

manipdator. The trajectory planning is pexformed in joint space because the lirnits on the 

manipdator's performance are expressed primarily in this space. 

The order of the polynomials is decided considering the tnjectory specifications. 

Each intermediate b o t  point imposes four constraints: two position constraints, as each 

of the splines is required to pass through the lmot points, and two constraints to guarantee 

continuity on velocity and acceleration. Four constraints can be met by a third-order 

polynomial. The Grst and last segments need to satisQ five constraints, three at start- and 

end-points, since the velocity and acceleration at these points should be zero, and two 

fiom the nearest intermediate points. Five constraints are satisfied using a fourth-order 

polynomial. Thus, to develop a trajectory through n knot points n-I polynomials are 

required: a fourth-order polynomial for thefirst segment, 12-3 third-order polynomials for 

the intermediate segments, and a fowth-order polynomial for the final segment. 

Thus, to construct the joint trajectories, n Cartesian knots are f is t  transfomed 

into joint vectors [0,,,8,, ,..., O,,], [8,,,0 ,,..., O,,] ,..., [8,,,8 ,,,..., O,], where O ] ,  is the 

displacement of joint j at knot icorresponding to Er In this section the procedure of 

comtructing joint trajectories deals with one joint at a t h e .  The joint number j is not 

necessary to be specined, and hence 8), is replaced by 8, for simplicity. 
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Assuming that the joint h o t  points are arranged as Cl,, 8, ,..., 0, , correspondhg to 

the instants t,, t , ,  ..., t, , respectively. The problern is to fïnd a set of polynomials to join 

these h o t  points. Intermediate segments require a third-order polynornial of the form: 

where O(t) represents the position of the joint as a function of a paramehic variable t . 

The fkt  and final segments require fourth-order spline segments of the fom: 

@(t) = ~ , t ~  + ~~t~ + ~~t~ + Bzt + Br (3.2) 

The spline coefficients are determined function of the intervals hl, h2, ..., hnel, where 

hi = ti+, -ti , and the slope of the curve at the intemediate points where two polynomials 

are splined. Using the constraints at the intermediate points, a set of equations is 

generated that determines the slopes of the curve at the btermediate points. The slopes 

are determined in tenns of time intervals hi's and the given values of joint displacements. 

The calculation of the spline coefficients defining each segment of the trajectory is shown 

in Appendix B. 

Calculating the spline coefficients, the entire joint trajectory B ( t )  is determined. 

Note that t is not a physical tirne, it is a parameter, which varies fiom t=0, at the initial 

configuration, to t = t, at the final configuration. 

A new trajectory 0' ( t )  will be defined such that 0' (t) = 0(r) , where r = r (t) is a 

monotonically increasing h c t i o n  of tirne, with r(0) = O and r(Tf ) = tf for some 

T' > O . Thus one needs to determine the hct ion r(t) , which describes how fast the arm 
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moves dong the path. Fmction r(t) must increase monotonically because time cannot 

reverse itself, and r(0) = 0, because the movement must start at the same point. 

Using chah rule one obtains: 

0. (t) = Br(r)i(t) (3-3) 

where the dot notation is used for t h e  denvatives and Br(r) = dû(,-) l dr . Similarly, 

0' ( t)  = en(r)i(t) + 0 '(r)F(t) (3 -4) 

One method to optimize the motion for a specined path is to determine the function 

r(t)such that the time expired in going fiom the initial configuration to the h a 1  

configuration is minimized. 

A faster way to get there fiom here is either to "run" at maximum velocity 

wherever possible or else accelerate as much as possible and then decelerate as much as 

possible (bang-bang theorem). In the algorithm developed by Bobrow et al. (1985), Eqs. 

(3.3) and (3.4) were substituted into the dynamic equation (2.1) and the torque conskaints 

expressed for all N joints: 

T, (€1~9) < < T, (0,è) (3 -5) 

are transformed into a set of lower and upper bounds on the pseudo-acceleration T( t )  , i.e, 

for all N joints, maxi LB, 5 T 5 min, UB,, or GLB(r,i) < i' l LUB(r,T). The path 

parameter r(t) and its first derivative i(t)are taken as the state vector and the pseudo- 

acceleration is thought of as the control variable. 

The clifference between Bobrow et al. '.Y algorithm and the methods, which use 

constant bounds on the acceleration, can be seen in te- of the equations above. Assume 

that the parameter ris  arc length in Cartesian space. Then >: is the speed and i' the 
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acceleration dong the geometric path. Therefore, one would have 

.. .* GLB(r,i)  S F,, S r S r,, S LUB(r,f) ,  where F- and i', are constants. The methods, 

which use constant bounds on the acceleration, then, restrict the acceleration more than is 

really necessary. Likewise, constant bounds on the velocity will also be more restrictive 

than necessary. 

Bobrow et a2.k algorithm is not directiy applicable to hydraulic manipulators 

since the actuator coIlStraints caanot be expressed as simple torque limit curves. 

However, the algorithm to be presented is based on the same idea of determining the 

bounds on the velocity-for the hydraulic rnanipulator considered here-using the dynamic 

characteristics of the manipulator and the constraints imposed by its actuators. 

3.1.2 Constant time scaling 

Hollerbach (1 9 84), suggested for function r (0 the following expression: 

r (t) = ct (3 -6) 

for some constant c > O .  If c > 1 the movement speed ups; if c c 1 the movement slows 

down. Equation (3.3) then becornes: 

e ' (t) = Cet(ct) (3.7) 

The above expression for r(t)  does not give the minimum motion t h e ;  it just gives the 

time necessary to execute the motion with allowable speeds of rnovements. By allowable 

speed it is meant that the trajectory is stretched or compressed unifody to fit the 

appropriate duration without changing the path or the velocity profile shape. Constant 

scaling of velocity is a simple but important method of bringing a trajectory within 

actuator constraints (Hollerbach, 1984). 
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The following section presents the algorithm, which computes the scaling value 

c . The algorithm determines dowable speeds of movements for the manipulator, so that 

the achiator constraints are not violated. For the hydradic manipulators under 

consideration these constrints are due to the hydraulic power limitations. 

3.2 T h e  scahg of trajectories to satisfy actuator constraints 

3.2.1 Maximum achievable joint velocities 

The hydraulic system considered here consists of two main lines (see Fig. 3.1). One line 
> 

consists of boom main valve, the other line consists of swing and stick main valves. In 

this simplined mode of operation boom and stick cross-overs are not included. 

Depending upon the maximum available purnp flow, Sepehri et al. (1990) has 

proposed an algorithm which determines whether the joint velocities specified for a 

motion are achievable or not. Basicdy the algorithm checks the desired flow rates 

against two constraints to assure that the system c a .  deiiver the required power. 
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Fig. 3.1: Excavator-based machine without cross-overs. 
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1. Maximum Availability Constraints 

When the desired flow to any of the achiators exceeds the maximum available flow to the 

respective actuators, the flow rates to al l  the actuators are reduced on the basis of a 

scaling factor ki. Thus, the scaling factor kl, should satisQ the following constraints 

namely : 

Q, s e  (3 -8) 

Qsw Q (3-9) 

Qst S Q  (3.10) 

where Q, , Qsw , Qst are the desired fl ows to the boom, swing and stick actuators; Q is the 

maximum available flow fkom the purnps. Any violation of the above constraints will 

require m o m g  the fhid flows by proportionally scaling down alI  flow-rates, on the 

basis of the scaling factor k,. k, is the smallest scaling factor as determined after 

examining al l  the above constraints. If there is no violation of the constraints, the scaling 

factor k, is set at 1; i.e., there is no modification imposed on the flows. 

2. Interconnecfion Constraints 

For the excavator-based machine shown in Fig. 3.1 some actuators have higher priority 

than others. For example, the swing valve takes prioriw over the stick valve. In this case, 

a second scaling factor k2, in which such pnorities are considered, may also be applied to 

the flows to reduce the relative speeds of al l  actuators. Therefore, the flow-rates modified 

by scaling factor k, , should satisfy the following constraint as well: 

Q-Qm ZQ, (3.1 1) 
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If the prionty constraint is not violated, the scaling factor k, becomes unity. A total 

scaling factor k is then obtained by cornbining both kI and kr. 

Thus, the above procedure provides a scaiing factor k. k=l means the desired joint 

velocities are achievable. k c l  means the desired joint velocities are not achievable and 

should be scaled down. Multiplication of k with the desired joint velocities will give the 

maximum achievable joint velocities. The scheme given in Fig. 3.2 shows the steps taken 

for cornputhg the scaiing factor k . 

The algorithm presented requires computation of the flow available fiom the 

pumps. The pumps change their output flow according to the sum of the pressures in the 

implement circuits (4 + P, ), so that the pressure-flow cuve is below the engine power 

limit curve. Therefore, based on the required supply pressures 4 ,  P, , the flow, which 

cm be delivered by the pumps, is determined fiom the pressure-flow limit curve. 

The foilowing section describes the algorithm, which cornputes the required 

supply pressures and therefore the maximum available flow fiom the pumps, using a 

model of the manipulator. The model of the manipulator consists of the model of the 

M a g e  and the model of the actuators driving the manipulator joints. 

Maximum available flow fiom the pumps 

The solution for the response of even the simplined hydraulic system, shown in Fig. 3.1, 

involves the simultaneous solution of o s c e  equations, compressibility equations and 

force balance eqwtions for each cylinder. An imprtant approximation is made in this 

approach, i.e, the actuator response is approximated by the steady-state actuator response. 
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each actuator can receive alone 

Perfomi for evek achiator (link) 

1 
No 

Calculate kl 
for tbat 
actuator Yes 

1 

I Determine smallest kl I 1 1 
t 

Menti& the actuator(s) with lower priority 

6 
Perform for every actuator with lover priority 

* 
Detennine flow available to actuators 

Calculate kt 
for that Yes 
actuator 

I + 
v 

Determine smallest k2 I 1 

Fig. 3.2: Scheme for computing scaling factor k = k, k, . 
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A steady-state solution would not include the fluid dynamics, Eq. (2.1 1). However, the 

cylinder forces are not restricted to steady-state forces, they are computed using the 

dynamic model of the Linkage. This approximation is made since a solution for the 

complete actuator dynamics requires specincation of an additional set of variables 

(P,c),  which greatly increases the dirnensionality of the model and the required 

computational effort. 

The linkage model is used to cornpute the required actuation forces applied on 

each liuk for a given trajectory. The actuation forces are used in the actuator model to 

obtain the pump pressures 4 ,  P, . With the summing pressure (4 + P,) , the maximum 

output flow i50m the pumps is determined fiom the pressure-flow limt curve. The 

pressure-flow limit curve is shown in Fig. 3.3. The remainder of this section presents the 

Summing pressure [kPa] x lo4 

Fig. 3.3: Pumps output flow versus sumrning pressure P, + P, . 
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details of these computations. The maximum output flow is, first, detemiined for one-link 

actuation, i.e, boom actuation. Next, it is determined for two-links actuation with priorïty 

action, i.e., swing and stick actuation. Finally, the maximum output flow is computed for 

three-links actuation. 

a) One-link actuation 

Fig. 3.4: Single-link actuation. 

The actuator is comected to an open center main valve through cornpliant hoses. The 

valve monitors the flow to (Q i )  and fiom (Q, ) the actuator. The supply pressure (4)  is 

provided by the pump, which is nui by the engine. The orifice areas ai,a,,a, are 

controlied by the displacement in the main valve spool (x,). Thus, a single spool 

position c m  represent ail the orifice area variables for a joint (see Fig 3.5). When the 

spool is in a neuîrd position, orinces a, and a, are closed and the pump flow returns to 

the tank through the open orifice, a,, and at atmospheric pressure (P, ). Q, is the pump 

flow to the tank. 
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Fig. 3.5: Variation of orifice areas versus spool displacement for actuator. 
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(3.17) Q. =a 
The force generated by the actuator is: 

F =CA, -POAD (3.18) 

The equations describing the hydraulic system are nonlinear and an iterative rnethod is 

applied to solve them. The flow chart, given in Fig. 3.6, shows the steps taken for solvhg 

the hydraulic system equations, in order to determine the maximum available pump flow, 

Q . For the joint position 0 , velocity 0 , acceleration 6 , the actuation force F and the 

cyhder velocity x c m  be determined using Eq. (2.3), Eq. (2.7) respectively. 

At the beginning of the iterative procedure the spool displacement is initialized, x, = O . 

%a&, =f,(x,) rn = i,o,e (3.19) 

Equating (3.16) with (3.17) the output line pressure is determined as: 

The input line pressure is determined fiom Eq. (3.18) as: 

Equating (3.13) with (3.14) the supply pressure P, is detemiined as: 
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current jomt 
variables 

1 ~ a l c ~ l a t e  output line pressure I 

( Calculaie input line pressure 

( Calculate supply pressure 

I 

Adj ust 

*SP 

L 

d 

Fig. 3.6: Algorithm for solving boom actuator equations. 
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The pump flow changes according to the sum of the supply pressures 4, P2 as shown in 

Fig. 3.3. Supply pressure P- is considered for this case constant and equal to the tank 

pressure. Therefore, the available pump flow, Q is determined as: 

Q = f ( 4  +Pz) 

The spool displacement is incremented, until Eq. (3.12) is satisfied: 

Therefore, for the spool displacement x, , for the actuation force F and desired 

actuator velociw X ,  the maximum flow fiom the pump Q cm be detennined for a 

steady-state condition. 

To show the actuator response for one-link actuation (i.e boom), the following 

manipdator motion is sirnuiated: the manipdator is moved f?om a start position of 

(boom=-274 to a goal position of (boom=454. The simulation resuits are shown in Figs. 

3.7 to 3.11. 

Given a start position and goal position the joint trajectories are generated using 

trigonomeûic series of the following form (Hornick and Ravani, 1986): 

where k is chosen equal to 4. Joint trajectories are generated using the above 

trigonometric series only in this section, in which the main purpose is to show how the 

hydraulic system equations are solved. They have been chosen for theK simplicity. 

The joint trajectories are shown in Fig. 3.7. For the joint position O@), velocity 

&), acceleration &), the required joint torque can be computed ushg Mage  

dynamics (2.1). Figure 3.8 shows the required joint torque for the given trajectory. The 

force applied on the link by the actuator is shown in Fig. 3.8b. 
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To achieve the joint velocity 0, the cylinder piston should be moved by the fluid 

with a velocity X .  The cylinder velocity profile is shown in Fig. 3.9a. The flow-rate 

required to achieve this velocity is shown in Fig. 3.9b. When the spool is displaced, 

orifices ai and a, open and the orince a, start closing. This results is a rise in the supply 

pressure due to restricting the pump flow, until it exceeds the lhe pressure ( 4-) aliowing 

fluid fiow into the actuator. When the supply pressure becomes high enough, the pump 

reduc e s it s output fiow to prevent the engine fiom stalling. Fig. 3.1 1b shows that the 

pump flow reduces as the required supply pressure increases, as shown in 3.1 1 a. The line 

pressures 4, Po are shown in Fig. 3.1 O. 

Fig. 3.7: Boom position, velocity, acceleration profiles. 
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Fig. 3.8: (a) Boom torque; (b) boom hydraulic force. 
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Fig. 3.9: (a) Boom cylinder velocity; @) Desired flow to the boom. 
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Fig. 3.10: Boom h e  pressures and boom spool displacement. 

Fig. 3-11 : (a) Summiog pressure, P, + 4 ; (b) Maximum available pump flow-rate. 
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b) Two-link actuation with prioritv action 

Fig. 3.12: Two-link actuation with priority action. 

Figure 3.12 shows two open-center valves connected in series, which control the flow to 

two hydraulic actuators (a motor and a cyluider). This hydraulic system is similar to the 

swing and stick actuation system. The pump supplies the hydrauiic flow on a priority 

basis, fust to the swing valve, then to the stick valve. The equation describing the 

hydraulic system cm be written as follows: 
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(Out of the actuator 1): 

(To the actuator 2): 

(Out of the actuator 2): 

The torque and force generated by the actuator 1 and actuator 2 respectively are: 
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Fig. 3.13: Algorithm for solving swing and stick actuator equatioiis. 
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The steps taken for solving the hydradic system equations are described in the flow 

diagram shown in Fig. 3.13. With reference to this figure the steps are described in the 

following. 

Given the current joint position €3, velocity 0 , acceleration 0 ,  the actuation toque T is 

computed using Linkage dynamics equation (2.1). The actuation force F i s  computed 

using Eq. (2.3). 

At the beginning of the iterative procedure, the spool displacement for valve 2 is 

initialized, xV2 = O .  

Equating (3.35) with (3.36) the output line pressure for actuator 2 is determined as: 

The input line pressure for actuator 2 is determined fiom Eq. (3.3 8) as: 

Equating Eqs. (3.32) with (3.33) the required pressure to valve 2, P , is computed as: 

The spool displacement for valve 1 is initialized, xsp, = O . 

~ C I . Q , I A  = fp (~ ,J  p = il, al, el (3.43) 

Equating (3.29) with (3.30) the output line pressure for actuator 1 is determined as: 
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The input line pressure for actuator 1 is determined fiom Eq. (3.37) as: 

Equating Eqs. (3.26) Hith (3.27) the supply pressure to valve 1, P, , is computed as: 

Then, pump flow Q is determined as a function of the summing pressure P, + Pz, where 

P, is considered constant and equal to the tank pressure. The input flow Q,, is 

determined with Eq. (3.26) and the exit flow Q,, is computed using Eq. (3.28). The spool 

displacement x,, is incremented until Eq. (3.25) is satisfied. Next, the input flow Q,, is 

computed with (3.32) and the exit flow Q,, with (3.34). The spool displacement xVz is 

incremented untii Eq. (3.3 1) is satisfied. 

Therefore, for the spool displacements x,, , x W 2 ,  the actuation forcehorque F,T 

and actuator velocities x.0, the maximum flow Qcan be determined for a steady-state 

condition. 

To show the actuator response for two-link actuation with priority action (i.e., 

swing and stick), the following manipulator motion is simulated: the manipulator is 

moved fiom a start position of (swing=Oo; stick-857 to a goal position of (swing=120°; 

stick-259. Joint traject~ries for this motion are generated using tnincated trigonometric 

senes and they are shown in Fig. 3.14. Plots of swing actuation torque and stick actuation 

force are shown in Fig. 3.15. 

Figure 3.17 shows that even for providing the flow required to realize a slow 

motion of 10 degls, the stick valve has to be fully opened (i.e. the stick spool is displaced 
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mtil it reaches its maximum value)- This is due to the fact that the swing actuator draws a 

greater fiaction of the total flow and only the rest of it is delivered to the stick actuator. 

Figure 3.19a shows that the required supply pressure is not large. For this 

manipulator motion the power demand does not exceed the capacity of the engine and 

therefore, there is no need for the pumps to reduce their flow. Fig. 3 . 1 9 ~  shows that the 

maximum available flow is constant for this motion. 

c. 

g 100 - 
0 -/---- --- swing ----- 
ui 
O 0 -------- ---- - - H e - -  - stick 
a 

-1 00 I 1 1 1 I 1 I 1 

O 1 2 3 4 5 6 7 8 9 

20 - 
I I I I 1 1 --- swing - 

N 
f----- - stick 
0 

z, fl 
8 .--.-----' a 
-20 - 1 1 1 I 1 I I 1 

O 1 2 3 4 5 6 7 8 9 
Tirne [s] 

Fig. 3.14: Swing and stick position, velocity and acceleration profiles. 
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Fig. 3.15: Swing, boom and stick actuator torque/forces. 
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Fig. 3.16: Swing and stick achiator velocities. 
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Fig. 3.17: Swing and stick spool displacements. 
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Big. 3.18: Swing and stick line pressures. 
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Fig. 3.19: (a) Supply pressures; @) Summing pressure, P, + P, ; (c) Maximum available 
pump flow-rates. 

C) Three-links actuation 

For three-links actuation the algorithms shown for single link actuation and two-links 

actuation are combined. However, a slight modification in the two algorithms is irnposed. 

For each step in the algorithm the hydraulic system variables are determined based on the 

flow rate determined in the previous step. Therefore for a tirne t ,  the supply pressures 

P, (t, ) and P, (t, ) are determined using flow rate Q(t,-, ) . For these supply pressures, the 

corresponding flow-rate Q(t,) is determined, considering the pressure-flow iimit curve. 
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The following test shows the actuator response for a manipulator motion, which 

involves the movement of all links. The manipdator has to move fiom a start position of 

(swinrO0; boom=27'; stic+854 to a goal position of (swing=120°; boom=45'; stick== 

254. 

Figure 3.20 shows the joint trajectories generated using tmcated tngonometric 

senes. The actuator velocity profiles are shown in Fig. 3.2 1. The spool displacements 

required to achieve the desired trajectories for swing, boom and stick are shown in Fig. 

3.22. Figure 3.23 shows plots of the supply pressures 4, P, and the maximum available 

pump flow Q . 

I ---- swing I - 
c------------ - -.-. 5 20- -- boom --. - 

0 )  
çt-ck 

\ 
\ 
\ 

I r 1 

Fig. 3.20: Swing, boom and stick position, velocity and acceleration profiles. 
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Fig. 3.21: Swing, boom and stick actuator velocities. 
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fig. 3.22: Swing, boom and stick spool displacements. 
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Fig. 3.23: (a) Supply pressures; (b) Summing pressure, P, + P, ; (c) Maximum available 
pump flow-rates. 

The following tests show the effect of the payload on the output flow from the pumps. 

The tests are performed for three different cases: (1) the manipulator does not cany a 

payload; (2) the manipulator carries a payload of 500 kg; (3) the manipulator carries a 

payload of 1000 kg. It c m  been seen from Fig. 25a that as the load increases the 

hydraulic power demand increases and the pumps reduce their output as shown in Fig. 

3.25b. 
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Fig. 3.24: Pump supplies pressures. 
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Fig. 3.25: (a) Summing pressure, P, + P, ; @) Maximum available pump flow-rates 
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The maximum fiow-rates, which can be delivered fiom the pumps without 

exceeding the power limitation, can be computed using the linkage dynamic mode1 and 

the actuator model for a steady-state situation. The results obtained show that the output 

flow fkom the pumps is load dependent. The iterative algorithrns developed for solving 

the actuator model cornputes also the spool displacements required to achieve the desired 

trajectones. Once the open-loop spool displacement has been determined, the 

ccrresponding open-loop input voltage can be fomd, i.e. the relationship between the 

input voltage and the spool displacement is modeled as a first-order differential equation. 

This open-loop input voltage should drive the manipulator dong the desired path if the 

dynamic model is accurate. However, this is not a realistic assumption because of the 

approximation made (i.e., the actuator response is approximated by the steody-state 

actuator response), unmodeled disturbances, etc. For this reason it is necessary to apply 

the open-loop voltage in conjunction with feedback control. 

Depending upon the maximum available flow from the pumps, the algorithm 

presented here determines the flow distribution to each actuator and therefore the scaling 

factor for joint velocities. A scaling factor k is computed for each time t . The velocity 

scaling factor c for the entire trajectory is equal to min(k(t)) . Therefore, the time scaling 

factor h is equal to 1 / c . 

3.2.2 Computation of time scaling factor 

The steps taken for computing A are shown in Fig 3.26. For the given Cartesian knot 

points El, E2,. . .am the joint displacements O,, , ej2  ,.. ., el, ( j = 1,2,. .., N , where N is the 

total number of joints) are calculated using inverse kinematics. Given the tirne intervals, 



4,  &. . . . , hn, , and the joint displacements, the joint trajectories 0, (t), 0 (t), 9, ( t )  are 

generated for each joint jusing spline functiom. For these joint trajectories the 

maximum flow-rate which can be delivered by the pumps Q(t) (O  < t s Tf and 

T' = h, + h, + ... hn-, ) is determined. Next, the velocity scaling factor, k(t)  , is 

determined. Finally, the time scaling factor il is determined as h = 1 / rnin(k(r)) . 

1 Enter Cartesiankt 1 
I points I 

Calculate joint 
displacements 

I Construct j oint 
trajectories wit. splines I 
I Determine maximum 

aMilable flow 1 
1 Determine velocity 1 
1 scaling factor 1 

I Determine time scaling 
factor î~=l/min( Kt)) I 

Fig. 3.26: Scheme for deteduhg time scaling factor A. 
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3.3 Optimization of joint trajectories 

The d o w W  sirnplex method is used to h d  the minimum motion time for a given path. 

The method is based on an initial design of p+l points, where p is the number of 

variables to be detenrined. A p+l geometric figure in a p-dimensional space is cailed a 

simplex. The corners of the simplex are caIied vertices. The downhill simplex algorithm 

determines which vertex has the least favorite objective fûnction and tries to replace it 

with a new vertex having a better value of the objective fûnction. The best vertex, found 

during the search, is used to constnict a new simplex for the next search. As a result, fie 

flexible simplex is expected to move closer to the optimal solution, step-by-step. The 

algorithm determines the search direction by utilizing p+l points in the variable space 

and following two basic rules: expand in a direction of more favorable conditions, or 

contract if a move was taken in a direction of less favorable conditions. 

Figure 3.27 shows possible outcornes for a step in the downhill simplex method. 

The simplex at the beginning of the step is shown. The simplex at the end of the step c m  

be any one oE (1) a reflection away fiom the worst point, (2) a reflection and expansion 

away fiom the worst point, (3)  a contraction dong one dimension fkom the worst point 

(a) or fiom the reflection point @), or (4) a contraction dong all dimensions towards the 

best point An illustration of the downhill simplex method operations is given in 

Appendix C. 

Here the objective of the optimization is to adjust the tune intervals between 

adjacent h o t  points. For a path specified by n h o t  points, there are n-I time intervals to 

be adjusted. Downhill simplex method requires three essential elements: 
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worst 
2 simplex at be-g of step 

best 

Fig. 3.27: Possible outcornes for a step in the downhill simplex method. 
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Search space: the search space for the optimi7ation is the space of the time intervals 

[& , 4 ,..., hn-, 3 between adjacent h o t  points. 

n-1 

Objective function: it is represented by the s u  of the time intervals C h i  . The 
i=l 

ultimate goal is to minimize this objective hction. 

Stopping critena: an optimization process terminates when the optimization objective 

is reached or when the responses cannot be improved finther. For the downhill 

simplex method presented here, the stopping criteria are: (1) the vector distance 

moved in the texminahg step rnust be smder than a preselected tolermce E, ; (2) the 

decrease in the function value in the terminating step must be smaller than a 

preselected toierance E, . 

Either of the above criteria might be deceived by a single anomalous step that, for one 

reason or another, failed to get anywhere. Therefore, it is fiequently a good idea to restart 

the optimization algorithm at a point where it claims to have found a minimum (Press et 

al., 1992). 

The method must start with n points, d e W g  an initial simplex. A point (vertex) 

V is defined as the vector of time intervals between knots, [hl, h, ,. . ., h,-, ] . The objective 

fiuiction for V is represented by F(V) = h, + h, + . .. hn-, . The n vertices Y,, (i = 1,2..n ) 

are selected to form the initial simplex as: 

V, =Vo + p e ,  

where el's are (n-1) unit vectors, and the scalar p is a constant which might be chosen so 

as to equalize, as far as possible, the quantities I F ( v ,  + p e,) - F(v,)[. msh, 1975). 
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Thus, to select these n vertices, one should select the first vertex Vo and decide 

for the value of the constant p. Vo is selected as the iower bound of time intervais. Let 

8 /, ,O ,, .. ., 0 ,  denote the displacement sequence of joint j. The lower bound of the vector 

of tirne intervals V, is estimated as: 

Where v- is the highest joint velocity determined by the manipulatorts physical 

Limitations: 

If the maximum flow-rate fmm the pumps Q,, is used by each actuator alone then: 

For the restart of the optimization algorithm at a point where it claims to have found a 

minimum, n-I of n vertices of the simplex are reinitialized by Eq. (3.47) with V, being 

the vertex of the claimed minimum. 

A flow diagram for implementing the downhill simplex method is shown in Fig. 

3.28. With reference to this figure the notations used and the steps taken are explained in 

the following. The procedure for defining first simplex has been already explained. For 

this simplex the vertices are ranked in order: B, N,,  W , where B is the vertex with the 

Iowest fundon value, N, is the vertex with the second highest function value and W is 

the vertex with the highest function value. Operations for searching a better vertex and 
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for reducing the size of the simplex include reflection, expansion, contraction and 

shrinking. They are defhed as foIlows: 

(1) Reflection: 

~ ' = C + a ( c -  W) (3.5 1) 

where a is the reflection factor, Cis the centroid of ali vertices except W , i.e., 

Each vertex obtained by the search is a vector of time intervals. With these time intemals 

and the joint displacements, the joint trajectories can be determined. However, these 

trajectones might not be dynamically realizable given the achiator constraints. In this 

case, these time intervals should be adjusted to bring the trajectories w i t h  the actuator 

constraints. Therefore, in the general downhill simplex algorithm should be added a 

procedure which converts an ideasible vertex to a feasible one. The procedure is called 

Feasible Solution Converter and it is as follows: 

1) Determine time scalhg factor A. 

2) Replace time intervals f i I ,  h2. ..h,.~) by @hl, Ah2 . . . hhnn3- 

Hence, using the Feasible Solution Converter procedure, the infeasible vertex R' is 

converted to the feasible vertex R = M t .  

Another aspect particular to the problem under investigation is the nature of the 

elements of the vertex, i.e., al l  the elements are time intervals, therefore, it is necessary to 

assure that al l  ofthem are positive. For this, the reflection factor a should be properly 

determined. a is determinecl as suggested by Lin et al. (1983). At fi&, a is set to 1.  If 



Chapter 3. Minimum-Time Trajectory PImning 

any element of R' is negative a will be changed to a smaIler value. For a = 1 ,  Rr is 

obtained as: 

- 
C R' = 2 c  - W = [2h,C - h: ,2h,' - h y  ,...., 2hn-, - h:,] (3.53) 

I f  2h,' - h y  < O for some i ,  then a should be reduced. From Eq. (3.5 1) one obtains 

- - - 
w R' = [h,' + a(hF - hr  ), h: + a(h: - h, ) ,...., h:, + a(hz ,  - hnwI 11 (3 54) 

Therefore, 

hy = hic + a(h," 4:) for some i .  

- 
h," 

Consequently, a should be less than - to make h,Rpositive. Based on the above 
f i y -h ; )  

discussions, a is detennined as: 

1 i f 2 h i F - h y > O  foralli 

- (3.55) 

6 ,  = min{ h' - } if 2 h F  hy  > 0 foi rome i 
(h,W - h,C ) 

where O c 6 ,  < 1 .  

(2) Expansion: 

E' = C + y ( ~ - C )  (3 .56) 

To keep all elements of E'as positive, the expansion coefficient y can be determined as: 

where O < 6, < 1 
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(3) Contraction: 

Here there are two cases to consider. contractioda) h d  Cf as 

cr= C+ P(R -Cl 

contraction@' find Cf as 

cr= ë+p(w -C) 

(4) Shrinking: 

This operation reduces the size of the simplex by halving the distances fkom B . 

V, =B+0.5(Vl - B )  i = l , 2  ,..., n 
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Chapter 4 

Demonstrative Results 

In this chapter the optimization algori-hm descnbed in Chapter 3 is employed to 

determine the minimum time trajectories for a specined path. The path is specified by a 

sequence of h o t  points. The control variables for the optirnisrrition are the time intervais 

between adjacent h o t  points and the objective h c t i o n  is the total motion time, therefore 

the sum of these time intervals. The stopping criteria for tbe optimization algorithm are: 

(1) the vector distance moved in the terminating step must be srnalier than a tolerance E, , 

and (2) the decrease in the fùnction value in the terminating step must be smalier than a 

tolerance E, . The tolerances E ~ , E ~  , were chosen, for aii the tests performed, equal to 

104. 

4.1. Example 1 

In this example a typical pick and place task was considered. The task required the end- 

effector to move along the three-dimensional path shown in Fig. 4.1. As it can be seen 

fiom the figure four h o t  points initially specified the path. A set of tests was performed 

to investigate the effect of increasing the number of h o t  points along the path, in order to 

pick the "best" nurnber of knot points, Le., the number of h o t  points for which the 

optimization algorithm £ïnds the best solution. The opr3mi7ntion was performed for four, 

six, eight and ten knot points along the path, therefore for three, five, seven and nine 

control variables. 



Fig. 4.1: Initial Cartesian path. 

From the results shown in Table 4.1 it can be seen that the minimum function 

value (minimum motion time), found by the optimization algorithm, decreased with the 

number of the control variable (time intervals). However, for more than seven control 

variables the optimization algorithm did not converge. Actually, it is known that downhill 

simplex method works particularly well if the number of variables is not large (i.e. £ive or 

six, with reference to Walsh, 1975). This effect might be due to the fact that adding 

dimensions to the simplex causes more local minima and searching among the local 

minima becomes more complicated as the dimensionality increases. 

On the other hand, increasing the number of control variables increases the 

computation t h e .  The optimization algorithm is computationally expensive due to the 

feasible solution converter procedure, particularly the calculation of the pump flow 
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trajectory curve, which requires the iterative solutions for the hydraulic manipulator 

model. The minimum objective hction values in Table 4.1 were obtained for two runs. 

The first run consists of starting the optimization algorithm fkom .a staaing point and 

letting it run until it reaches the final solution. The downhill simplex method searches for 

a better solution imtü it reaches a point where the solution c m  not be M e r  improved, in 

the other words when the stopping criteria are satisfied. The second run consists of 

restarting the optimization algonthm at the solution obtained for the fkst nin and letting it 

run until it reaches the Einal solution. 

Table 4.1: Effect on increasing the number of knot points on optimal solu.tion. 

No. of control variables 1 l* nin 

The above results indicate that for seven control variables, which means eight h o t  points 

dong the path, the minimum motion t h e ,  found by the optjmization algorithm, has the 

smallest value for al l  three cases. Therefore, the best number of h o t  points dong the 

path is eight knot points. 

2nd run 

3 

e g  
point 

12.98 s 

m g  
point 

12.50 s 

h d  
point 

12.50 s 

final 
point 

11.30 s 



Chapter 4. Demomtrative Results 

Optimal hajectory planningfor a puth specified by eight h o t  points 

In the following are shown the results of the optimization performed for a path specined 

by eight b o t  points. These r e d t s  are obtained by nmning the optimization algorithm for 

two cases: 

Case 1- the end-effector moves dong a specified path with no payload. 

Case 2-the end-effector moves dong a specined path carrying a 500 kg payload 

Manipulutor with no pqload 

Eight knot points specified the Cartesian path of the end-effector. By means of inverse 

Jacobian, joint displacements were computed for these bots as shown in Table 4.2. 

Table 4.2: Joint displacements corresponding to Cartesian knot points. 

Swing [deg] 1 Boom [deg] Stick [deg] 

results are explained in detail in the following. 

First run 

To start the search for the minimum motion time, the initial sirnplex was defined using 

Eq. (3.47). The value for the constant p was selected as 0.05. 
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The f h t  vertex was determined computing the lower bound of the vector of the tirne 

intervals with Eq. (3.48) 

v,' = 10.43 0.42 0.67 0.75 0.81 0.6 0.431 

The feasible solution converter procedure was applied to convert each infeasibfe vertex of 

the initial simplex, y*, to a feasible one, so that the actuator constraints were satisfied. 

The vertices of the initial simplex are shown in Table 4.3. 

Table 4.3: Initial simplex. 

h a 1  solution. The motion time at the staaing point of the optimization algorithm was 

1 

2 

3 

4 

5 

6 

7 

13.71 s and the final value for the motion time was 9.74 S. The optimal solution found for 

the first run was: 

For the first run, the algorithm performed 1 156 fiinction evaluations of hi to reach the 
i=l 

vo 
1.44 

1.40 

2.23 

2.5 1 

2.70 

1.99 

1.43 

V =[l.l4 0.71 2.05 1.54 1.82 0.89 1.581. 

Comparing vectors of t h e  intervals shown in Table 4.3 to the optimal solution Y, it is 

seen that al l  time intervals were adjusted simultaneously to achieve a shorter motion tirne. 

v, 
1.51 

1.40 

2.23 

2.5 1 

2.70 

1.99 

1.43 

v2 

1.44 

1.47 

2.23 

2.5 1 

2.70 

1.99 

1.43 

v, 
1.44 

1.40 

2.34 

2.5 1 

2.70 

1.99 

1.43 

v 4  

1.44 

1.40 

2.23 

2.63 

2.70 

1.99 

1.43 

V5 
1.44 

1.40 

2.23 

2.5 1 

2.83 

1.99 

1.43 

V6 

1.44 

1.40 

2.23 

2.5 1 

2.70 

2.09 

1.43 

n-1 
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Second run 

For the second run the first vertex V, of the initial simplex was reinitialized with the 

value of the solution found for the fïrst run V . 

V, =[1.14 0.71 2.05 1.54 1.82 0.89 1.581. 

The final value for the motion t h e  obtained for the second run was 8.98 s and the vector 

V of time intervals was: 

V=[1.13 0.73 1.52 1.28 1.85 0.82 1.641. 

Fig. 4.2 shows the algorithm convergence to the optimal solution. For each step in the 

optimization algorithm a tentative solution was obtained. The figure shows the minimum 

objective h c t i o n  value for each solution found during the search. 

Fig. 4.3a shows how the algorithm, through successive expansions and 

contractions of the simplex, made its way until it encountered a minimum (at least a local 

one). Fig. 4.3b indicates the decrease in the function value in each step. When the vector 

distance moved in one step and also the decrease in the b c t i o n  value become smaller 

than the specifïed tolerances, it means that the optimization cm not h d  a better solution 

than the one already at the hand, and the optimization terminates. Very small tolerances 

were chosen for the stopping criteria, i.e., E ~ ,  E~ were equal to 1 O? Fig. 4.5 shows that 

for almost 200 steps, as the simplex became very small (see Fig. 4.4), the solution could 

not be improved significantly. To improve computation tirne, an alternative to using very 

small tolerances might be to use larger tolerances for the fist  run and smaller ones for the 

second one. 
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Fig. 4.2: Convergence behavior of the optimization algorithm; 1st m. 

"O IO0 200 300 400 500 600 700 800 
Number of steps 

O 100 200 300 400 500 600 700 800 
Number of steps 

Fig. 4.3: Stopping criteria: (a) Vector distance moved in each step; @) Decrease in 
function value in each step; lR m. 
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Number of steps 

5 ,  
10' 

I 1 I 1 I 

Nurnber of steps 

Number of steps 

Fig. 4.5: Blow-up of Fig. 4.2; lS nui. 
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Fig. 4.6: Convergence behavior of the optimization algorithm; 2nd run. 

Fig. 4.7 shows the Cartesian path corresponding to the optimal solution. It can be seen 

that the path is smooth everywhere, including at h o t  points. Figures 4.8 to 4.10 show a 

cornparison of the trajectories corresponding to the optimal solution to the trajectoxies 

obtained at the starting point of the optimization. In Figs. 4.8b, 4.9b and 4. lob are 

showed the values that the rnanipulator rnust follow to achieve a minimum motion t h e .  

It can be seen fiom Fig. 4.10 that a high acceleration brings up the velocity in a shorter 

time interval so that the motion time for the manipulator is shortened. Figure 4.1 1 shows 

the spool displacements required to achieving the optimal trajectories s h o w  in Fig. 4.8b 

to 4.1 Ob. 

Figures 4.12 to 4.14 show the optimal trajectories generated with four h o t  points 

and eight h o t  points respectively. For four h o t  points s m d  joint accelerations for the 

end segments of the trajectories resulted in s m d  velocities and therefore the minimum 

motion time found by the optimization algorithm was larger for four h o t  trajectories. 
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MuniNator with payload 

A similar test to the previous one was performed for the manipulator carrying a payload. 

The end-effector moved dong the specifïed path carrying a 500 kg payload. The resulting 

minimum motion time for this test was 9.1 1 s, comparable to 14.53 s the motion t h e  for 

the starting point of the optimization algorithm. 

Fig. 4.15 shows the velocity profiles in the two cases, Case (1)-the manipulator 

does not cany a payload, Case (2)-the manipulator carries a 500 kg payload. For Case (2) 

it can be seen a decrease in joint velocities. In Chapter 3 it had been shown the effect of 

the payload on the output flow fiom the pumps (see Fig. 3.25). Increasing the payload 

results in a decrease of the output flow fiom the pumps. This is due to the fact that 

increasing the load, the power demand increases and might exceed the capacity of the 

engine. To prevent such a situation, the pumps reduce their flow to the actuators. As less 

flow is delivered to the actuators, srnaller actuator velocities can be achieved and 

therefore smaller joint velocities. 

The optimization algorithm checks each solution obtained by the search for 

feasibility. In the following an example of conversion of an iafeasible solution, for which 

the actuator constraints are not satisfied, into a feasible one is presented. 

For the desired joint velocity trajectories shown in Fig. 4.17, the desired flow-rate 

to each hydraulic actuator was determined. Fig. 4.18 shows plots of the desired flow-rates 

to swing, boom and stick. From Fig. 4.19, it can be seen that the desired flow-rates to 

both hydraulic circuits exceed the avdable flow fiom the pumps. Therefore, the desired 

flow-rates shouid be modified. The modification was perfonned using the algorithm 



described in Section 3.2.1. The desired flow-rates were checked against the maximum 

availability and interconnection constraints and two scaling factors kl , k, , respectively, 

were obtained. With k, and k, a factor k is determined as k = k,k,. Figure 4.20 shows 

plots of the scaling factors kl (t) , k,(t) and k(t) . The desired flow-rates are scaled by a 

constant scaling factor c=min(k(t)) (see Fig. 4.21). The time scaling factor A is 

determined as l / c  . The scaled joint velocities are show in Fig. 4.22. 

A new test was performed to investigate what would happen if  the end-effector 

was to follow the optimal trajectory, computed with no payload, carrying a 5000 kg 

payload. With reference to Fig. 4.23, a large increase in the sumrning pressure and a large 

decrease in the pump fiows is noticed as a result of carrying the 5000 kg payload. Thus, 

the optimal trajectory computed for the no-load case becomes infeasible. This cm be seen 

fiom Figs. 4.25 and 4.26 where the required flows exceed the available flow from the 

pumps. The conversion to a feasible solution is shown in Figs. 4.27 to 4.29. Fig 4.29 

shows the resulting feasible velocity trajectories. These are achievable trajectories but 

may not be optimal ones. Therefore, the optimization algorithm should be employed 

again to compute minimum-time traj ectories. 

Similar to the previous tests the optimization algorithm was run twice to obtain 

the optimal solution for the case with 5000 kg payload. The minimum motion tirne, found 

by the optimization dgorithm, was 14 s and the vector V of tïme intervals was: 

V=[2.2154 1.3104 1.9775 2.2245 2.5875 1.5115 2.18151. 

The resulting optimal position, velocity, acceleration trajectories are shown in Figs. 4.30 

to 4.32. They are cornpared with the position, velocity, and acceleration trajectories at the 

starting point of the optimization. 



Fig. 4.33 shows the optimal velocity profles for the case with no payload and for 

the case with 5000 kg payload. A decrease in joint velocities is observed for the case with 

5000 kg payload, which is expected. 

Fig. 4.7: Cartesian path correspondhg to the optimal solution. 
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Time [s] 

O 5 10 15 
Time [s] 

4.8: Joint position profiles: (a) initial solution; @) optimal solution. 

5 

O ~~~ -5 O 5 Tirne [s] 10 15 ~~~ -5 O 5 Time [s] 1 O 15 

Fig. 4.9: Joint velocity profiles: (a) initial solution; (b) optimal solution. 
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Fig. 4.10: Joint acceleration pronles: (a) initial solution; (b) optimal solution. 
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Fig. 4.11: Swing, boom and stick spool displacements. 
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Fig. 4.12: Joint positions for four and eight knot points. 

Fig. 4.13: Joint velocities for four and eight b o t  points. 
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Fig. 4.14: Joint accelerations for four and eight knot points. 
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Fig. 4.15: Cornparison of joint velocities for no payload versus payload. 
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Fig. 4.16: Cornparison of joint accelerations for no payload versus payload. 
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Hg. 4.17: Swing, boom and stick velocities. 
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Fig. 4.18: Desired flow-rates to swing, boom and stick. 

Fig. 4.19: Desired flow-rates: (a) to line 1 (boom), @) to iine 2 (swing and stick), 
versus maximum available pump flow. 
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Fig. 4.20: Flow-rates scaling factors. 
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Fig. 4.21: Scaied desired fiow-rates: (a) to h e  1 (boom); @) to h e  2 (swing and 
stick), versus available pump fIow. 
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Fig. 4.22: Unscaled versus scaled swing, boom and stick velocities. 

Fig. 4.23 : (a) Summing pressure, P, + P, ; @) Maximum available pump flow-rates. 
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Fig. 4.24: Swing, boom and stick velocities. 

Fig. 4.25: Desired flow-rates to swing, boom and stick versus maximum available pump 
flow. 



200 - I I I I I I 1 5 - available 

\ 
\ 

I \ 

O-' 1 1 1 I 1 I 1 

\ 

1 -. 
O 1 2 3 4 5 6 7 8 9 

Fig. 4.26: Desired flow-rates: (a) to line 1 @oom), @) to line 2 (swing and stick), versus 
maximum available pump flow. 

Time [s] 

Fig. 4.27: Flow-rates scaling factors. 
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Fig. 4.28: Scaled desued fiow-rates: (a) to line 1 (boom); @) to line 2 (swing and stick), 
versus available pump flow. 
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Fig. 4.30: Joint position profiles: (a) initial solution; (b) optimal solution. 
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Fig. 4.31: Joint velocity profiles: (a) initial solution; (b) optimal solution. 
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Fig. 4.32: Joint acceleration profiles: (a) initial solution; @) optimal solution. 
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Fig. 4.33: Cornparison of joint velocities for no payload versus payload. 



This example presents a test performed to investigate the effect of increasing the number 

of knot points on the error between the desired path and the approximated path obtained 

using spline fiuictions in joint space. 

In this test the manipulator task was to move along a straight-line fiom a start 

position to a goal position. The start position of the end-effector in Cartesian coordinate 

was represented by [xs ,ys, z, J =[4.352 m, -0.12 m, -1.757 m] and the goal position by 

Lx,, y,, 2, ] =[5.8359 m, -0.12 m, 2.4445 m] as s h o w  in Fig. 4.34. These Cartesian end- 

points correspond to the joint space points [swing-O deg, boom=-4.4121 deg., stick= 

126.67 deg.] and [ swin~O deg., boom=40.58 deg., stick-7 1.9 deg.]. Note that the given 

task required only boom and stick motion. Initially, two b o t  points were introduced 

between the staa and goal positions. Fig. 4.35 shows that ifthe knot points spec-g the 

desired path in the Cartesian space are located at equidistant intervals, the corresponding 

points in the joint space are not equally spaced and the path connecting these points is not 

a straight line. Given the knot points show in Fig. 4.35b, the joint trajectories were 

generated using spline Eunctions and the optimi7ntion algorithm was employed to 

optimize the joint trajectories. The optimization algorithm was run twice with the same 

values for the stopping tolerances, c, = c ,  = 104 and constant p = 0.05, as in Example 1. 

The same test was applied for eight knot points located at equidistant intervals 

along the path. Figures 4.36 and 4.37 show the optimized position and velocity joint 

trajectories obtained for four knot points along the path and eight h o t  points 

respectively. It can be seen that for eight hot  points trajectories the motion t h e  is 
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shorter than for four knot points trajectories and therefore higher joint velocities are 

obtained. 

The foregoing trajectories were then mapped (pointWise) into the Cartesian space 

to obtain x(t),y(t),z(t) , which represent the desired trajectories in Cartesian space (see 

Fig. 4.38). Figure 4.39 shows that increasing the number of b o t  points fkom four to eight 

almost eliminates the error between the desired path and the approximated one. 

Therefore, to reduce the error between the desired path and the approximated one, 

additional knot points should be specined dong the desired path. Figure 4.40 indicates 

smaller jumps in the Cartesian velocities for eight h o t  points. Therefore, the result for 

eight hot points improved even in terms of Cartesian velocities. Figure 4.41 shows the 

optimal velocity profiles for the case with no payload and for the case with 5000 kg 

payload. 

Fig. 4.34: Straight line Cartesian path. 



Fig. 4.35: Path in: (a) Cartesian space; (b) joint space. 
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Fig. 4.38: Cartesian position trajectories. 



Fig. 4.39: Effect of increasing number of h o t  points on path error. 
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Fig. 4.40: Cartesian velocity trajectories. 
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Fig. 4.41: Cornparison of optimal joint velocities for no payload versus payload. 
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Chapter 5 

Conclusions 

5.1 Achievements 

In this thesis, the optimal motion planning dong a specified path was performed for a 

hydraulic manipulator. The path specined by h o t  points was mapped fiom Cartesian 

space to joint space using inverse kinematics and joint trajectories were generated using 

spline fiindom. The resdting joint trajectories were smooth everyvhere inclusive at 

h o t  points (Le. position, velocity, acceleration were continuous over the duration of the 

motion). 

Downhill simplex method was adopted to optimize the joint trajectories. The 

search space for the optimization was the space of the tirne intervals between adjacent 

h o t  points. The objective of optimization was to adjust the thne intervals subject to 

constraints imposed by the limited capabiiities of the actuators, so that the total motion 

time was minimized. The actuator capabilities are Iirnited due to the fact that they are 

powered by a limited power engine. 

Each solution obtained by the search was evaluated for feasibility. A solution was 

feasible, if the correspondhg trajectory was dynamically realizable given the actuator 

comtraints. If it was no4 the trajectory was modined by a constant scaling of the joint 

velocity profile, so that the total movement duration was scaled without changing the 

actual path through space. The bounds on joint velocities were computed with respect to 



the combination of achüitor and Iinkage eBects, such as loading, inter-actuator coupling 

and power limitation. 

The main contributions of this work are: (1) the incorporation of complex and 

coupled hydraulic actuation in optimal trajectory planning for heavy-duty hydraulic 

manipulators and, (2) utilization of an optimization algonthm, downhill simplex method, 

that has been shown to be effective in solving the optimal trajectory planning problem 

addressed here. Although the d o m  simplex method does not guarantee that the global 

minimum can be reached, it improves the chances of reaching the global minimum by 

restarting the optimization at the claimed minimum. 

5.2. Future Development 

This work could be extended to the global optimal motion computation. A method, such 

as workspace discretization, c m  be used to generate a i l  possible paths between the start 

and goal position and the method developed here c m  be used to test each one for the time 

optimality. The one with the lowest time is obviously the global optimal. 

Another possible development could be the incorporation of the machine stability 

cornaint in optimal motion planning. Ghasempoor (1994) defhed a measure of stability 

margin, which included the effect of dynamic forces/moments arising fiom the 

manipulator motion. For the purpose of optimal motion planning with machine stability 

constraint, the motion should be computed, so that these forces/moments will not be 

larger than the machine can handle and cause the machine to tip-over. 
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Appendices 

Appendices 

A. Excavator-Based Manipdator Kinematics 

In this section, the forward and inverse kinematics equations are derived for the 215B 

Caterpillar excavator-based machine. 

A.1 Forward kinematics 

Problem: Given the joint angles (O1, &, 65) calculate position and orientation of the end 

effector with respect to the base fiame. 

The Denavit-Hartenberg panuneters for the coordinzte fiames associated with ai l  joints 

are listed in Table A. 1. The coordinate fiames associated with ail joints are shown in Fig. 

Al. 

Table A.l: Kinematic parameters of 215B Caterpiliar excavator-based machine. 

An intermediate coordinate fiame {x,. ,y,,, z,,} is used to account for the fact that link 1 
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Kg. A.l: Coordinate fiames. 
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The position of the end-effector, in Cartesian coordinate is the last column of matrix 

resulting firom muitiplying matrices AI, Az, As: 

A.2 Inverse bernatics 

Problem: Given the position of the end-effector in Cartesian coordinates (xpy,z). find the 

joint angles (Ol, 6, @). 
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The joint angles are caiculated through geometric relations as below: 

where : 

One should note that, due to the joint angle constraints, c'elbow up" is the only possible 

configuration. Therefore, the problem of inverse kinematics has a unique solution. 
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B. S p h e  Interpolation 

The results in this appendix are derived following the method of R d c y  and Ho (1985). 

A sequence of knot points is given for a single joint as O,, 0, ,. .., 8, , correspondhg to the 

instants t, , t, ,..., tn , respectively. The planning of the entire joint trajectory can be divided 

into three parts: (1) the start segment which c o ~ e c t s  8, and O 2  ; (2) the intermediate 

segments which comect O,, 8, ,..., On-, together and ( 3 )  the nnal segment which connects 

en-, and O, 

Fig. B.1: n -points trajectory. 

The intermediate segments 

The equation of the s p h e  segment for two intermediate h o t  points 8, and 8 ,+, (2 c k< 

12-2) of the n-points trajectory consisting of n-I spline segments can be written for a 

single joint as: 
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Where O@) represents the position of the joint as a fllnction of parametric variable t . 

Letting t for this segment nm fkom O + hk , where hk = tk+, - tk , the boundary conditions 

c m  be expressed as: 

Where 0; and O;+, represent the velocities of the joint at the points 8, and O,,, 

respectively. Substituthg Eq. (B.2) into Eq. (B.1) the coefficients for the intermediate 

segments cm be expressed: 

In order to calculate the spline coefficients, one must fist lmow the values of hk , 8; and 

0:+, . The parametric intervals hk can be determined using (3.48); the velocities 0; and 

O ,  can be detemiined using the continuity constraint on the acceleration at the h o t  

points. Given 8, , O,,, and 8 ,+, (2 5 k 2 n-3) with two spline segments co~ec t ing  them 

with parameters 0 I t S h, and 0 S t 5 hk+, , the acceleration at the end of the fist segment 

is: 
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The acceleration at the beginning of the second segment is: 

The continuity constraint on acceleration requires Eqs. (B.4) and (B.5) to be equal. 
Equating them and rearranging terms gives: 

k + P k  + 2 ( h k + ,  + hk )e'k+I +hke'k+2 

Expressing Eq. p .6 )  in matrix form for 2 1 k  l n - 3  yields: 
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Or symbolicaiiy, [m][Bf] = [a], where [ml is an (n-4) x (12-2) matrix, [et] is an (n-2) x 1 

vector, and [a] is an (n-4) x 1 vector. 

The fkst and last segments 

For the first and last segments, the additional constraints 8; = 8; = Cl: = 0; = 0 require a 

fourth-order spline segment of the following form: 

For the fïrst segment, letting O S t 5 h, the boundary conditions are expressed: 
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Substituting (B.9) into (B.8), the spline coefficients for the fïrst segment are expressed: 

&=Cl, &=O B r 0  

For the last segment, let O S t < hn-, and have the folIowiug boundary conditions: 

Substituting (B. 10) into (B.8), the spline coefficients for the last segment are expressed: 

BI= en-, 

The equation p.7)  for finding [8'] must be redefhe since 4h order segments are 

included at the beginning and end. Finding the acceleration at the end of the first segment 

yields: 

Equating Eq. (B. 11) with Eq. (B.5) yields: 
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OB- 12) 

Performing the same operations for the beginning of the last segment and equating it with 

the acceleration found for the end of the previous intermediate segment yields: 

From Eqs. (33.12), (B.13) and (B.7) the matrix equation for solving for n-2 unknown 

velocities can be expressed as M [ B  ']=[A], where M is (n-2)x(n-2) ma&, [9 '1 is (n- 

2) x 1 vector, and [A] is (12-2) x 1 vector in the fom: 
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where : 

Solving Eq. (B. 14) for [O' ] allows us to fhd s p h e  functions for a single joint The same 

procedure is applied for each joint, using the same values of h, . Thus a path through n 

points for a robot with N joints will consiçts of (n-1) x N unique spline hctions. 
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C. Appiication of Downhill Simplex Method 

The following example serves to illustrate the downhill simplex method operations, 

namely, reflection, expansion and contraction. This example has been adopted fiom the 

reference by Rao, (1984). Note that the stopping critena used in this thesis is based on 

Matlab M-nle: Frnins.m and it is different nom the one suggested by Rao. The stopping 

critena used in this thesis is fonnulated as: (1) the vector distance moved in the 

terrninating step must be smaller than a tolerance E, , and (2) the decrease in the fûnction 

value in the terminating step rnust be smalIer than a tolerance E, . The stopping criteria in 

the example shown here is: the standard deviation of the objective function at the n + 2 

vertices of the current simplex must be smder than a tolerance E . 

Problem Statement: 

Minimize F(x, , x,) = x, - x, + 2x: + 2x,x2 + x: . The points (vertices) denning the initial 

simplex are taken as: 

= {4.0} , V2 = r'} and V3 = {::O}, 
4.0 4.0 

and a = 1 .O, p = 0.5 , y = 2.0 . For convergence, take the value of E as 0.2. 

Solution 

Iteration I 

1. The h c t i o n  value at each vertices of the current simplex is given by: 

F, = F(Y,) = 4.0 - 4.0 + 2(16.0) + 2(16.0) + 16.0 = 80.0 

F, = F V , )  = 5.0 - 4.0 + 2(25.0) + 2(20.0) + 16.0 = 107.0 
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:. W = V, = {:::} and B = V, = {Z} 
2. The centroid C is obtained as 

3. The reflection point is found as 

4. As F(R) < F ( B ) ,  Eis foundas 

5. Since F(E) > F(B) , the new vertices are obtained as 

6. For testing convergence, Q is computed as 

As Q > c , we go to the next iteration. 

Iteration 5 

1. As 



Appendices 

:. w = 5 = Ili5} and B = Y, = {z} 
2. The centroid C is obtained as 

3. The reflection point is found as 

R = ~ C - W =  {:;} and F(R) = 658125. 

4. As F(R) > F(B) and F(R) > F(W) , C is found by contraction as 

5. As F(C) > F(W) , the vertices of the new simplex are found as 

6.  For testing convergence, Q is computed as 

Q={ 
(11.89-10.0)~ t(11.14-10.0)~ +(8.75-10.0)' r2 = 1.466 

3 

As Q > E , we go to the next iteration. 

This procedure can be continued until the specified convergence is satisfied. 




