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Abstract

Machine automation requires the robotic machine to be at least as productive as a
manually operated machine. To increase robot productivity robot motion speed should be
improved. A feasible approach to improving the motion speed is to minimize the motion
time needed to perform a given task subject to actuator constraints.

This work addresses the problem of optimal trajectory planning for heavy-duty
hydraulic manipulators. These manipulators have the following characteristics: they are
powered by a single engine mounted on the machine and they are under-powered even
during normal operations resulting in dynamic power redistribution to the actuators. For
the hydraulic manipulators, the actuator characteristics are very significant and complex
due to high nonliniarities in the hydraulic system and power coupling between the
actuators.

The method developed in this thesis focuses on utilizing advantageously the
actuator capabilities to minimize the time needed to move the manipulator end-effector
along a specified path. To perform the search for the minimum motion time along the
specified path, a downhill simplex technique is implemented. The method is applied to a
Caterpillar 215B excavator-based log loader in a typical pick and place task.

The main contributions of this thesis are the incorporation of the complex actuator
characteristics in the optimal trajectory planning and the implementation of an
optimization algorithm (downhill simplex method), which shows effective results for

solving the optimal trajectory planning problem.

iv
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Chapter 1

Introduction

1.1 Motivation

Many applications of robotic systems require the manipulators to operate from moving
bases. A moving base - or mobile manipulator - has two important features. First, it has
almost infinite workspace. Secondly, it may find many more applications, especially in
unstructured, hostile environments.

Mobile manipulators are typically applied in primary industries such as
construction, mining, and forestry. Figure 1.1 shows two examples of machines used in
these industries. The common characteristics of mobile manipulators are: (i) they utilize
hydraulic actuators which are powered by a single engine mounted on the machine and,
(ii) they are under-powered even during normal operation resulting in dynamic power
redistribution, i.e. the actuators usually request more power than the engine can supply
(Krishna, 1998).

Robotics are now beginning to examine problems related to automating tasks in
the areas of construction, mining, excavation and forestry. These tasks include mass
excavation and continuous mining where a digging machine fills a bucket with material
from a pile or a rock face, transports the bucket load to a waiting truck or conveyer belt,

and dumps the load in the truck-bed/belt. These tasks are ideal candidates for automation
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(b)

Fig. 1.1:Excavator-based machines (a) on wheels; (b) on tracks.
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since they are repetitive and there exists room for enhancing productivity while
decreasing production costs.

Automation can be a practical reality only if the robotic machinery is more
productive than a manually operated one, while offering lower production cost and
maintaining safe operation. In order to increase the productivity, the performance of the
manipulator should be optimized. This can be done by planning the motion of the
manipulator, in such a way that it can perform its task quickly (i.e., minimizing the
motion time), with the minimum energy consumption, while the stability of the machine
is maintained.

The speeds, which can be achieved by a manipulator during a given task, are
limited by the capabilities of the manipulator. In order to use a manipulator at maximum
efficiency, the optimal motion planning should be performed using the dynamic model of
the manipulator and the more accurate the dynamic model is, the better the manipulator
capabilities can be used. The dynamic model of a manipulator consists of the models of
the linkage and the actuators driving the linkage. The linkage dynamics for a heavy-duty
mobile hydraulic manipulator can be modeled using the Newton-Euler equations. A more
difficult problem is to model the hydraulic dynamics, as the actuator model is very
complex, coupled and nonlinear.

Early work on optimal motion planning was primary devoted to industrial
manipulators driven by electric motors (see for example Bobrow et al., 1985; Rajan,
1985). Those methods exploited the manipulator linkage dynamics to optimize an
objective function, which was typically the execution time or a combination time-energy

for a task. They did not consider the actuator dynamics and assumed a known torque limit
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curve for each joint actuator. However, the torque limit curve is not easy to compute
ahead of time for a heavy-duty hydraulic manipulator since the limit curve is a function
of many variables due to coupled actuation in this type of manipulator.

Lin et al. (1983) developed a method to minimize the time required to move along
a specified path, subject to the constraints on joint velocities, accelerations and jerks. The
drawback of the method is that it uses constant bounds on joint velocities, accelerations
and jerks. Therefore, it did not account for the actual capabilities of the manipulator
actuators and actuators loading. The method can be improved for heavy-duty hydraulic
manipulators, if the joint velocity bounds are determined considering the complex
relation between the velocity and the actuator and linkage effects, such as loading, inter-
actuator coupling and power limitations. Therefore, the velocity bounds should be

determined using the dynamic model of the manipulator.

1.2 Objective and Scope of this Work
In this thesis an off-line method for planning the optimal trajectory for hydrauliic
manipulators is developed. The method aims to improve the manipulator motion speed by
minimizing the execution time needed to perform a given task subject to the constraints
imposed by the limited capabilities of the actuators. The actuator capabilities are limited
due to the fact that they are powered by a limited power engine.

The approach taken is as follow. For a path specified by Cartesian points, the
corresponding joint trajectories are generated using spline functions and the downhill

simplex method is adopted to minimize the motion time. The time intervals between
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adjacent points are the optimization variables. A "feasible solution converter" is
developed to convert, during the search, an infeasible solution into a feasible one. The
feasible solution converter, actually, determines whether a trajectory is dynamically
realizable given the power limitations. If not, it changes the speed at which the
manipulator follows the path so that the power limitations are not violated. By speed
change is meant a constant scaling of the velocity profile so that the total execution time
is scaled without changing the actual path through space. The constant scaling factor is
determined considering the relation between the velocity and the actuator loading and
power limitations.

The method developed in this thesis is applied to a Caterpillar 215B excavator-
based log loader, which is a three-links manipulator with an additional moveable end-
effector, namely the gripper. The first three links motion serves to control the position of
the end-effector. The end-effector itself is not included in the studies performed, since
oniy the position of the end-effector is of interest in this thesis.

The organization of this thesis is as follows. Chapter 2-Relevant Backgrounds-is
divided in two parts. Part 1 presents a description of a heavy-duty mobile manipulator, its
linkage dynamics and the dynamics of the actuators driving the links. Part 2 introduces a
literature survey on optimal motion planning for manipulators. In Chapter 3, the optimal
trajectory planning algorithm is developed. Chapter 4 presents results of the simulation

studies. Conclusions are presented in Chapter 5.
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Chapter 2

Relevant Background

This chapter first describes a typical heavy-duty mobile hydraulic manipulator used in
primary industries. Its linkage dynamics and the dynamics of the hydraulic actuators
driving the links are also described. Next, different optimal motion planning methods are

surveyed and potentials and limitations of each method are outlined.

2.1 An Application Example

The heavy-duty mobile hydraulic manipulator, considered in this thesis, is a Caterpillar
215B excavator based machine (see Fig. 2.1). It is a three-degree-of freedom manipulator
with an additional moveable end-effector, namely the gripper. The upper structure of the
machine is rotated on the carriage by a hydraulic swing motor through a reduction gear.
The other two main links, “boom” and “stick”, are movable around their joints by
hydraulic cylinders. The boom and stick together with the swing motion serve to control
the position of the end-effector.

The power required to actuate the cylinders and the hydraulic motor is derived
from an engine which through a gear train drives two hydraulic pumps. The output flow
from the pumps is used to operate two separate hydraulic circuits that may be selectively
interconnected by cross-overs valves. Pump 1 supplies the hydraulic fluid to the gripper
valve and the boom valve. The two valves control the flow to the hydraulic actuators, i.e.

a hydraulic motor for the gripper, a hydraulic cylinder for the boom. Pump 2 supplies the
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hydraulic fluid to the swing valve, which controls the motor for rotating the Cab and to

the stick valve to actuate the hydraulic cylinder for moving the stick.

Pump
Control [}
r ! N
! i |Implement Boom | _ _ , Stick ,
E i Valve Valve | 1 X O7VEI‘_I
| -‘::é ! N .
 [Gear[ o7
n H_. | i
gin rain . E »° \V\
I i ol SN
i Swing Stick | _ _ _,r Boom :
Valve Valve i_X Over_i
Gear
Train
Cab i 13
Swing i
|

Fig. 2.1: Schematic of a typical excavator-based log-loader.
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Stick movement controlled by the stick main valve, cannot be achieved if the
swing main valve is fully open. If the latter is partly open, the stick can operate but at
slower speed. The motion of the boom and the stick, in some models, are coupled via
cross-over valves (shown by dashed lines in Fig. 2.1). The output from pump 2 may be
shifted to facilitate movement of the boom as indicated by the cross-over and similarly
the output of pump 1 may be shifted to apply fluid to stick valve via the stick cross-over
valve depending on the demands of the two hydraulic circuits. This will allow a faster
movement of one when the other is at less than full speed operation.

Pump 1 services on a priority basis, first the gripper valve, then the boom valve
and finally the stick cross-over of a second hydraulic circuit. Pump 2 supplies the
hydraulic flow on a priority basis first to the swing valve, then to the stick valve and to
the boom cross-over.

When the total sum of the pressures in the implement circuits becomes high
enough, the pumps reduce their outputs. This type of hydraulic circuit is known as load-
sensing torque-limited circuit. The highest load is sensed and the output flow is changed
to meet the maximum torque available from the engine.

The hydraulic system, described above, is an open-center system. In an open-
center system the pumps do not reduce their output to zero. When no actuator flow is
demanded, the pumps still output a non-zero flow. This "idle" flow goes to the tank
through the center orifices. When the actuators are commanded to move, the tank orifices
slowly close and are fully closed when maximum velocity is demanded. A typical open-

center valve and a single-rod (asymmetric) cylinder are shown in Fig. 2.2.
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? Q , input flow

Fig. 2.2: Typical hydraulic actuator working with an open-center valve.

Note that the single-rod cylinders, used for the links (boom, stick) actuation, are
characterized by limited linear motions. Since the joints are revolute, use of linear
actuators result in joint angle limitations. This means that boom, stick motions are
restricted to specific ranges. Kinematic analysis of the machine can be found in Appendix
A.

A Diesel engine is used to turn the two axial-piston variable-displacement pumps.
The two pumps have a common swash plate whose angle is controlled according to the

summing pressure, P, + P,. Consequently, these pumps have identical output flow or

equivalently identical displacement coefficient, but different output pressures.
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Figure 2.3 shows a typical pressure sum versus output curve for these pumps.
According to the schematic diagram shown in the same figure, the output pressure of the
pumps are sampled by two orifices. These pressures are applied to two small pistons that
change the angle of the swash plate against three parallel springs. This mechanical

feedback system serves to limit the power that is drawn from the engine, so that the

pressure-flow curve is below the power limit curve.

curve of the

' maximum

\ / available power
\\

Summing Pressure, P;+ P,
Fig. 2.3: Function of variable-displacement pumps in a Caterpillar 215B excavator-based

machine.

The dynamic model of the hydraulic manipulator consists of the model of the linkage and
the model of the actuators driving the manipulator joints. The linkage and actuator

dynamics are described in the following.

10
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2.1.1 Linkage Dynamics

The joint torques required to move the linkage are described by the dynamic equations of
motion and depend on instantaneous joint position, velocity, acceleration, and the load
that it is carrying. For an N-joint manipulator, the linkage dynamics can be compactly
written as:

T(r) = M(6(2)B(®) + C(8(1),6(2)) + F (6(r)) + G(B(z)) 2.1

where

T(t) is the N x1 vector of joint torques supplied by the actuators. M(8(t))is an Nx N
matrix, sometimes called the manipulator mass matrix. The vector C(6(¢), é(t)) represents
torques arising from centrifugal and Coriolis forces. The vector F(6(t)) represents
torques due to friction acting at the joints. The vector G(6(¢)) represents torques due to
gravity. O() is the Nx1 vector of joint displacements, with
o) =[6,(t),9,(®),...0,, 1 .
The relationship between the effective actuation force, F , applied on the link and
the joint torque T, is obtained by applying the principle of virtual work.
T-d8=F-dX 2.2)
where d0 and dX denote the incremental changes in joint displacement and piston
displacement, respectively. Therefore, the force ¥ can be calculated from the following

equation:

F=——o 2.3)

11
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where the derivative function J(.)is defined as follows:
J(©)= i (2.4)
= )

The joint displacement, 6, and the piston displacement, X, are related by geometrical

configuration. With respect to the Fig. 2.4 the numerical value of J(0)can be evaluated

as follows:

Fig. 2.4: Typical actuator-arm mechanism.

I* =12 +17 +21,], cos(6 +8) (2.5)
where =25, +8, =const. 1,,],,5, and 5, are the kinematic parameters of the actuator-

p’ r’

linkage mechanism and they are shown in Fig. 2.4. Taking the derivative of (2.5) yields:

dl do
205 = 21,1, sin(8 +8)— 2.6
=2, 1, sin(®+8)" 26)
: —1,1,sin(@+38 .
a_ i G N @7
dt JI2+12+21,1, cos(8 +8)

12
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~1,1,sin(0 + &)
V2 +12 +21,], cos(6 +8)

J(0) = (2.8)

Figure 2.5a shows the function J(8)over full joint angular range for boom and

stick. Figure 2.5b shows the relationship between joint displacement, 6, and the piston

displacement, X for boom and stick. As it is seen the relationship is almost linear.

Boom Stick
0.012 v 0
0.01 /_\
= 0.008 ¢+ = -0.005
(1] [5)
B 0.006} 3
E E
= 0.004} S 001}
0.002 ¢
0 -0.015
-50 0 50 -200 -150 -100 -50 0
6 [deg.] 6 [deg]
2.6 3.5
241 a3l
— 22} —_
E E 25
x 2} x
1.8} 2t
1.6 1.5
-50 a 50 -200 -150 -100 -50 0
0 [deg] 0 [deg]

Fig. 2.5: (a) Function J(8) over full range for Boom/Stick motion; (b) Curve X (0) for
Boom/Stick

2.1.2 Actuator Dynamics

The term “actuator dynamics™ requires a clarification for hydraulic machines. Used in the
context of traditional serial chain electric driven robots, it refers to the dynamics of all the
elements responsible for moving the robot links, i.e., the motors and the gears. The
hydraulic actuator dynamics, on the other hand refers to the dynamics of the entire

hydraulic system responsible for moving the joints, i.e, the engine that supplies the
13
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power, the hydraulic pumps, the valves used to regulate the fluid flow and the hydraulic
cylinders and motors.

The motion of the manipulator presented here is governed by the coupled swing,
boom and stick link dynamics and the actuator dynamics driving the links. The gripper
link and its actuator are not considered, since only the positioning of the end-effector is of
interest in this thesis.

The hydraulic actuator models include orifice flow equations, fluid
compressibility equations, as well as the force balance equations for the cylinders. The

orifice flow equations governing flow and pressure drop across an orifice is
O =kaJAP (2.10)
where Q is the flow rate through an orifice, & is the orifice coefficient of discharge (a
constant), g is the orifice area and AP is the pressure drop across the orifice. The valve
orifice area a is a nonlinear function of spool displacement.
The fluid compressibility equation, which captures the dynamic of the hydraulic
fluid is

. 1 , _V
P—E(Q—Q), C= (2.11)

where P is the pressure in a control volume, C is the hydraulic compliance of the flexible
hoses connecting the valve to the actuator, S is the bulk modulus of the oil and ¥ is the
volume of oil in the control volume. Q' is related to the cylinder velocity X :

Q' =X4 (2.13)
where A is the piston area.

During the steady-state response Eq. (2.11) becomes

14
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0=0'=X4 (2.14)
The force balance equation for a cylinder is

mX=PA —PA —F—dX~F, (2.15)
where m is the mass of the cylinder rod; P, and P, are the pressures in the two cylinder
chambers; 4, and 4, are the piston areas on the two sides of the actuator; d is the viscous
damping of the cylinder; F,is the Coulomb friction of the cylinder

For a steady-state actuator response and neglecting the effect of the friction, the

expression for the force F applied on the link becomes

F=F =PA —-PA, (2.16)
F, is the net force on the cylinder piston.
For the Cab swing actuator the governing equations are:

Q=D,80, (2.18)

t=D,(P—-P) (2.19)
where D, is the volumetric displacement of the hydraulic motor and 8, is the motor
shaft angular velocity. Q and r are motor flow and torque, respectively. In practice, these
equations may not be exact due to two sources of losses, leakage flow and internal
friction. The torque 7 generated by the hydraulic motor is transmitted through a gear train
to rotate the upper structure (i.e, the Cab swing). The torque 7', from motor referred to

the output is:
T=n-t (2.20)

where nis gear reduction from motor to output shaft .The swing rotational velocity 8,, is
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0, =—2 (221

2.2 Motion planning for manipulators

As the terms path and trajectory are used quite extensively in this thesis, it is appropriate
to define them for clarity. The term “path” refers to a continuous curve in the Cartesian
space connecting an initial and a final configuration. A “trajectory” is a continuous curve

in state space connecting initial and final states.

2.2.1 Identification of Various Constraints

The most important constraints are derived from physical limitations of the robot system.
They arise from the limited capabilities of the arm, such as maximum speed for each joint
and limited force/torque output from each actuator. These are the actuator and linkage
constraints, which include the effect of loading. There are also, constraints imposed by
the user, such as maximum allowed deviations from a pre-specified path at the tool tip, as
in automated welding operations. This is called the path constraint.

Another constraint is the collision constraint, which restricts the manipulator
movement due to the potential collision with obstacles in the workspace. Collision or
obstacle avoidance is an important part of motion planning, especially for industrial
manipulators, which operate in restricted spaces. In the presence of fixed and stationary
obstacles in the workspace, the path is given by the path planner. This path typically

contains sharp corners and is not the minimum time path. An algorithm can be used to
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find the minimum time path which lies close to the given one and which avoids the
obstacles (Rajan, 1985).

For the mobile manipulators an additional constraint, namely the stability
constraint, should be considered. The stability constraint restricts the manipulator

movement in order to maintain the stability of the machine.

2.2.2 Minimum-time motion planning

Computer-controlled robots are beginning to have a major impact on contemporary
automation and manufacturing systems due to their potential for increasing productivity.
To increase robot productivity robot motion speed should be improved. The robots speed
and hence their productivity, are limited mainly by the capability of their actuators.
Increasing actuator size and power is not a suitable solution due to increased inertia of the
actuators themselves, and because of the increased cost and power consumption of larger
actuators. A more feasible approach is to minimize the motion time needed to perform a
given task subject to the actuator constraints.

At high speeds of robot motion a dynamic control strategy is required. With the
dynamic control strategy, the instantaneous torque, velocity and position are controlled
simultaneously. At lower speeds of robot motion, a kinematic control strategy, which
controls only the position and, indirectly, the average velocity can be applied. A
kinematic control strategy performs well at lower speeds of robot motion, while at high
speeds, it works poorly. The reason is that at high speeds the hypothesis of static

equilibrium at the points under consideration is less valid.
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The control for manipulators is a very difficult problem due to manipulator
nonlinear and coupled dynamics, physical constraints and the danger of colliding with
other objects in the workspace. The control problem becomes even more complicated for
hydraulic manipulators. For this type of manipulator additional nonlinearities are present
in the actuator dynamics due to nonlinear pressure/flow relationships in the hydraulic
valves and nonlinearity in the orifice due to dead zones.

Because of the difficulty with the control problem for the manipulators, the
overall problem can be divided into two stages.

(1) offline optimal trajectory planning, which results in the prescription of the position,
velocity and acceleration of each joint as a function of time along a given path (and
open-loop optimal control trajectory).

(2) online path tracking, which tries to minimize the deviation of the actual trajectories
from the desired ones using a feedback-control algorithm (e.g., linear quadratic
regulator control law).

Over the last decade, a number of researchers have focused on solving the control
problem for the manipulators. In their approaches they attempted to determine the control
torques applied to each joint that drove a manipulator from a given initial state to a given
final state in minimum time, subject to control torque constraints. This is the general
point-to-point minimum time control (MTC) problem.

The minimum time control problem can be divided into two categories in terms of
different constraints on motion: (1) the MTC problem with unconstrained motion paths

between two endpoints; and (2) the MTC problem with constrained motion paths between
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two endpoints, i.e., intermediate configurations of the robot arm are given so that the

manipulator follows a specified path.

Minimum time control problem with unconstrained path

Roughiy speaking, the approaches to solving the minimum time control problem with
unconstrained motion path can be divided into two groups: the standard control
theoretical approaches (e.g., employ Pontryagin's Minimum Principle) and the
nonstandard approximation approaches, such as exhaustive search technique from
artificial intelligence and nonlinear parameter optimization approaches (Chen and
Desrochers, 1994).

With the manipulator dynamic equations and joint torque/ force constraints in
suitable forms, the minimum time control problem can be addressed as an actual standard
control problem. The usual method of solving such a problem is to employ Pontryagin's
minimum principle. When the Pontryagin's principle is applied to this problem, it leads to
a set of 4N coupled differential equations with a two point boundary value problem (N is
the number of degrees of freedom). If the differential equations are linear, then the two-
point boundary value problem can be solved numerically. However, the differential
equations obtained when the Pontryagin's principle is applied to the robot arms are
nonlinear. A set of coupled nonlinear differential equations with the two-point boundary
value problem is not very tractable computationally. One way to overcome this problem

is to linearize the differential equations. However, this is a drastic approximation, since
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linerization of the dynamics of a robot arm leads to significant errors and therefore is

unsatisfactory (Rajan, 1985).

The difficulties with the control theory approach to the minimum time control
problem led researchers to apply an artificial intelligence approach to this problem. They
discretized the state space and then performed an exhaustive search looking for the
minimum time trajectory. The search was greatly simplified using different techniques
which reduced the search space (Rajan, 1985; Shiller and Dobowsky, 1991). For
example, Rajan proposed an approach with the following steps:
¢ Characterize the path in some manner
¢ Given a path, determine the minimum time trajectory subject to the actuator torque

constraints
¢ Search among all possible paths to find the minimum time path, i.e., the path is varied
until the path, which gives the shortest time among all possible paths is found.
Rajan characterized the paths using splines. The minimum-time trajectory was computed
using the approach by Bobrow et al. (1985), and a gradient descent optimization
technique was used to vary the spline parameters in the search for the minimum time

path.

Minimum time control problem with constrained path

Bobrow et al. (1985) developed an algorithm to find the minimum time optimal motion
for manipulators driven by electrical motors. The algorithm used both the full nonlinear
dynamic characteristic of the manipulator and the constraints imposed by its actuators.

The basic idea behind their work is that a pre-specified constrained motion path leads to
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an overall motion with one degree-of-freedom (DOF) only, expressed by the path
parameter r(¢r). Thus, using the parameterization along the given path, the original
dynamic equations of an N -degree-of-freedom manipulator can be transformed into a set
of N nonlinear differential equations in terms of the path parameter. Then, applying the
constraints on the torques to the parameterized equations, a set of constraints, or bounds
on the second derivative of the path parameter »(¢) with respect to time (i.e., the pseudo-
acccleration of the path) is obtained. The path parameter r(¢) and its first derivative #(¢)
(i.e., the pseudo-velocity of the path) are taken as the state vector and the pseudo-
acceleration is thought of as the control variable. The problem then becomes a minimum
time control problem for a double integrator system with state-dependent control
constraints. The main idea of the solution is to select the control variable that produces
the largest pseudo-velocity profile such that, at each point on the path, the pseudo-
velocity is not greater than the maximum velocity at which the constraint on the motion
will not be violated. The solution is constructed in terms of switching curve in the phase
plane (r — 7 plane). The control torques for individual joints can be determined by a set of
N -parameterized equations of the robot dynamics once the path parameter r(¢), the
pseudo-velocity F(#) and the pseudo-acceleration F(¢f) are obtained. Therefore, the

switching curve indirectly provides a graphical representation of the feedback control law
for MTC problem. However, the resulting bang-bang strategies are physically
unrealizable due to the typical discontinuities at the switching times and the non-
negligible actuator dynamics. In addition, such strategies are undesirable due to the

structural vibrations induced by the control discontinuities, and due to the damage to the
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permanent magnets of the electric motors caused by the abrupt changes in the motor
current (Shiller, 1994).

The approaches mentioned above focused on manipulators driven by electrical
motors. They attempt to exploit the complete robot linkage dynamics model and
simplified actuator models to find the minimum time motion. A simplified actuator
model does not include the dynamics of the actuators. For example, the complete
mathematical model of an electric DC motor is:

di

V=Ri+L—+K_ (2.22)
dt

T=K,i (2.23)
where Vis a vector of applied voltages, i is a vector of the motor currents, and

R,L,K,,K,, are diagonal matrices with the motor parameters: resistance, inductance,

back EMF constant, and torque constant, respectively. Therefore, in a simplified actuator
model Eq. (2.22) becomes:

V=Ri+K.,0 (2.24)
However, the actuator dynamics are not negligible, and therefore some practical
difficulties have been encountered using these approaches. For example, the actuator
torques required for a typical optimal trajectory are discontinuous functions of time. In
practice, due to the delays caused by the actuator dynamics, it is impossible to produce
these torques exactly. Furthermore, the transient response of the neglected actuator
dynamics might cause tracking errors in typical path following applications (Tarn et al.,
1991). This is even more so in applications requiring high accuracy at high speeds

(Youcef-Toumi and Kuo, 1987). Some of these practical difficulties can be addressed by
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modeling the actuator dynamics (see for example Tarkiainen and Shiller, 1993). This,
however, increases the dimensionality of the model and the required computational
effort.

The methods in the literature that allow simplified actuator models assume a
known torque limit curve for each joint actuator (see for example Bobrow et al., 1985).
This torque limit curve is a function of the velocity only, i.e., the actuator torques are all
independent of one another. However, the torque limit curve is not easy to compute ahead
of time for a heavy-duty hydraulic manipulator, since the limit curve is a function of
many variables due to coupled actuation in this type of manipulator. For instance, the
force limit for the stick actuator on the excavator-based machine is dependent on a
number of swing circuit variables, in addition the stick circuit variables. Therefore,
minimum time motion planning for hydraulic robots requires a different approach from
those seen in the literature.

Lin et al. (1983) developed a method to find the minimum time required to move
along a pre-specified path. The method was not concerned with finding the optimal
control to execute the trajectory computed. In their method cubic spline functions were
used for generating the joint trajectories. The resulting spline functions were expressed in
terms of time intervals between adjacent knots. The downhill simplex method was
adopted to schedule the time intervals between each pair of the adjacent knots such that
the total motion time was minimized subject to the constraints on joint velocities,
accelerations and jerks. Therefore, with this method an optimal trajectory was computed
off-line and the control torque remained to be computed on-line. The drawback of the

method is that it uses fixed joint velocities, accelerations and jerks limits.
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Since the fixed limits upon the joint velocities and accelerations, must cover all
possible configurations of the robot, they may be too conservative. For example, an
optimal path for a manipulator has to be generated on the basis of the maximum velocity
and acceleration allowed under the worst (global) conditions. This implies that the
motion planning has to be made with the global least upper bounds of all possible
manipulator’s velocities and accelerations. Therefore, fixed joint velocities, accelerations
and jerks constraints do not account for the actual capabilities of the manipulator
actuators and the actual dynamic load upon them. They only consider some rough
estimates of the allowable joint velocities and accelerations. Therefore, the estimates of
the minimum time may be rough.

In this thesis the method developed by Lin is improved in that instead of fixed
values for joints maximum velocities, variable values are computed using the dynamic
model of the manipulator.

For the heavy-duty hydraulic manipulators under investigation there is a very
complex relationship between joint velocities and dynamics. Each joint velocity is related

to the flow directed to its corresponding actuator as:

Q,=6,-J(6)-4 (2.25)

-

where Q, is the desired flow to the actuator; 0, is the desired joint velocity. Therefore,

given the desired joint velocities the flow rates to the hydraulic actuators required for
achieving these velocities can be determined. Further, it should be checked whether the
desired flow rates can be achieved. The computation of the flow distributions to the

actuators is complicated due to the coupled actuation in the hydraulic system.
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Due to the hydraulic circuit interdependency, the flow from limited power
variable-displacement pumps is supplied to the valves on a priority basis, i.e., the valve
closest to the pump gets all the flow it requires, and the remaining flow is distributed
among the rest of the valves. On the other hand, when multiple actuators request flow
simultaneously, the power demanded exceeds the power output of the engine and the
pumps reduce their flow rates to keep the engine from getting overloaded. The pumps
flow-rate changes according to the pump output pressure, which is load dependent. Thus,
the joint velocities may not be achievable as a result of these constraints and the joint
velocity limits need to be calculated and updated. For example, the maximum joint
velocity for swing is limited to the pump flow, which itself is variable and load
dependent. The maximum velocity that the stick could achieve depends on the remaining
flow that has not been consumed by the swing. Therefore, the maximum achievable joint
velocities are variable for hydraulic machines and depend on the required number of
simultaneous joint motions and loading.

In the following chapter, Lin's method is extended in that the joint velocity
bounds are determined using the linkage model and a simplified model of the actuators
driving the links. Determining these bounds any joint velocity profile can be scaled to
make full use of the actuator capabilities. Lin's method computes only the optimal
trajectory (position, velocity and acceleration of each joint as a function of time); the

method to be presented computes the optimal trajectory and open-loop control trajectory.
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Chapter 3

Minimum-Time Trajectory Planning

The method developed here is particularly suited to finding the minimum time for a
specified path. The work is focused on planning manipulator motions, which
advantageously use the actuator capabilities to optimize the motion time needed to
perform a task for which the path is specified. The optimization is performed with respect
to the combination of actuators and linkage effects. This is especially important for
hydraulic manipulators where the actuator effects are very significant.

To perform the search for the optimal solution, a simple downhill simplex
algorithm is implemented. The algorithm does not require gradient information; it only
uses function evaluations to move towards the optimum solution. This is important since

gradient information is not readily available.

3.1 Joint trajectories generation and time scaling

3.1.1 Formulation of spline function joint trajectories

In this section joint trajectories are generated using spline functions. A spline function is
a way of passing a smooth curve through a given set of points in space (hereafter these
points are referred to as knots). In mathematical terms, a smooth curve is continuously

differentiable.
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A cubic spline f(¢) is a continuous function that coincides, in each partial interval (the
interval between adjacent knot points), with a cubic polynomial, and at every knot point
the spline f(z) itself and its first and second derivatives are continuous. If at each knot,
both the slope and curvature of the cubic pieces to either side will match, the curve will
be twice continuously differentiable. If the slopes of the two polynomial segments to
either side of each knot will match at that knot, but their curvatures will not, the curve
will be continuously differentiable, but in general not twice continuously differentiable.
Spline functions have been found to provide the shortest path that passes through the
knots while satisfying the continuity constraints. A rigorous proof of this property may be

found in Ahlberg et al. (1967), where it is shown that cubic splines possess the "best
approximation property” which minimizes [f f"(t)’dt]"? along the curve, thereby

minimizing the norm value of curvature.

The procedure for generating joint trajectories is as follows. The path is specified
by a sequence of Cartesian knot points E;, E5,...,E,. These n Cartesian knot points are
converted into #knot points in joint space using inverse kinematics. For each joint, the

data specifying the trajectory are position, velocity and acceleration at the initial and the
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final points and the positions or joint displacements at intermediate knot points. The
trajectory can be generated using polynomials between the knot points. These
polynomials are splined together by requiring that the position, velocities and
accelerations are continuous at the junction points. This is necessary for a manipulator to
achieve a smooth motion. Therefore, the sequence of these polynomials splined to each
other describes the desired trajectory that will generate a smooth motion of the
manipulator. The trajectory planning is performed in joint space because the limits on the
manipulator's performance are expressed primarily in this space.

The order of the polynomials is decided considering the trajectory specifications.
Each intermediate knot point imposes four constraints: two position constraints, as each
of the splines is required to pass through the knot points, and two constraints to guarantee
continuity on velocity and acceleration. Four constraints can be met by a third-order
polynomial. The first and last segments need to satisfy five constraints, three at start- and
end-points, since the velocity and acceleration at these points should be zero, and two
from the nearest intermediate points. Five constraints are satisfied using a fourth-order
polynomial. Thus, to develop a trajectory through » knot points n-I polynomials are
required: a fourth-order polynomial for the first segment, n-3 third-order polynomials for
the intermediate segments, and a fourth-order polynomial for the final segment.

Thus, to construct the joint trajectories, »n Cartesian knots are first transformed
into joint vectors [0,,,0,150s8 v1]» [B1250225+5On2 |r+++s[O1s O 5+-sO s |» Where 0, is the

displacement of joint j at knot icorresponding to E; In this section the procedure of

constructing joint trajectories deals with one joint at a time. The joint number ; is not

necessary to be specified, and hence 8 ; is replaced by 0, for simplicity.
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Assuming that the joint knot points are arranged as 6,,9,,...,0,, corresponding to
the instants ¢,,7,,...,¢, , respectively. The problem is to find a set of polynomials to join

these knot points. Intermediate segments require a third-order polynomial of the form:
@(t) = B,t’ + B;t* + B,t + B, 3.1)

where O(t) represents the position of the joint as a function of a parametric variable ¢.
The first and final segments require fourth-order spline segments of the form:
O(t) = Bjt* + B,t* + B,t* + B,t + B, 3.2)
The spline coefficients are determined function of the intervals h;, A;... Ah,.;, where
h; =t,, —t,, and the slope of the curve at the intermediate points where two polynomials
are splined. Using the constraints at the intermediate points, a set of equations is
generated that determines the slopes of the curve at the intermediate points. The slopes
are determined in terms of time intervals 4;'s and the given values of joint displacements.
The calculation of the spline coefficients defining each segment of the trajectory is shown
in Appendix B.
Calculating the spline coefficients, the entire joint trajectory 6(z) is determined.
Note that ¢ is not a physical time, it is a parameter, which varies from =0, at the initial

configuration, to ¢ =, at the final configuration.
A new trajectory 0°(¢) will be defined such that 8 (¢¥)=06(r), where r =r(f) is a
monotonically increasing function of time, with »(0)=0 and r(7,)=¢,for some

T, > 0. Thus one needs to determine the function r(¢), which describes how fast the arm
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moves along the path. Function r(#) must increase monotonically because time cannot
reverse itself, and »(0) = 0, because the movement must start at the same point.
Using chain rule one obtains:

8" () = 0'(r)F () (3.3)
where the dot notation is used for time derivatives and 0'(r) = d6(+)/ dr . Similarly,

8°(r) = 0"(r)F(t)* +0'(r)F(t) (3.4)
One method to optimize the motion for a specified path is to determine the function
r(t)such that the time expired in going from the initial configuration to the final
configuration is minimized.

A faster way to get there from here is either to "run" at maximum velocity
wherever possible or else accelerate as much as possible and then decelerate as much as
possible (bang-bang theorem). In the algorithm developed by Bobrow ez al. (1985), Egs.
(3.3) and (3.4) were substituted into the dynamic equation (2.1) and the torque constraints
expressed for all N joints:

T (8,0)<T, <T._(8,8) (3.5)
are transformed into a set of lower and upper bounds on the pseudo-acceleration #(¢), i.e,
for all N joints, max, LB, <# <min, UB;, or GLB(r,F)<¥ < LUB(r,7). The path
parameter r(¢t) and its first derivative 7(¢)are taken as the state vector and the pseudo-
acceleration is thought of as the control variable.

The difference between Bobrow et al.’s algorithm and the methods, which use
constant bounds on the acceleration, can be seen in terms of the equations above. Assume

that the parameter ris arc length in Cartesian space. Then 7 is the speed and # the
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acceleration along the geometric path. Therefore, one would have
GLB(r,F)<¥,, <¥F<¥, <LUB(r,r), where 7, and ¥, are constants. The methods,
which use constant bounds on the acceleration, then, restrict the acceleration more than is
really necessary. Likewise, constant bounds on the velocity will also be more restrictive
than necessary.

Bobrow et al.’s algorithm is not directly applicable to hydraulic manipulators
since the actuator constraints cannot be expressed as simple torque limit curves.
However, the algorithm to be presented is based on the same idea of determining the
bounds on the velocity-for the hydraulic manipulator considered here-using the dynamic

characteristics of the manipulator and the constraints imposed by its actuators.

3.1.2 Constant time scaling
Hollerbach (1984), suggested for function r(¢)the following expression:

r(t)=ct (3.6)
for some constant ¢ > 0. If ¢ > 1the movement speed ups; if ¢ <1 the movement slows
down. Equation (3.3) then becomes:

8°(t) = cO'(ct) (3.7)
The above expression for 7(¢) does not give the minimum motion time; it just gives the
time necessary to execute the motion with allowable speeds of movements. By allowable
speed it is meant that the trajectory is stretched or compressed uniformly to fit the
appropriate duration without changing the path or the velocity profile shape. Constant
scaling of velocity is a simple but important method of bringing a trajectory within

actuator constraints (Hollerbach, 1984).
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The following section presents the algorithm, which computes the scaling value
¢ . The algorithm determines allowable speeds of movements for the manipulator, so that
the actuator constraints are not violated. For the hydraulic manipulators under

consideration these constraints are due to the hydraulic power limitations.

3.2 Time scaling of trajectories to satisfy actuator constraints

3.2.1 Maximum achievable joint velocities

The hydraulic system considered here consists of two main lines (see Fig. 3.1). One line

consists of boom main valve, the other line consists of swing and stick main valves. In

this simplified mode of operation boom and stick cross-overs are not included.
Depending upon the maximum available pump flow, Sepehri et al. (1990) has

proposed an algorithm which determines whether the joint velocities specified for a

motion are achievable or not. Basically the algorithm checks the desired flow rates

against two constraints to assure that the system can deliver the required power.
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Fig. 3.1: Excavator-based machine without cross-overs.
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1. Maximum Availability Constraints
When the desired flow to any of the actuators exceeds the maximum available flow to the
respective actuators, the flow rates to all the actuators are reduced on the basis of a

scaling factor k; Thus, the scaling factor k;, should satisfy the following constraints

namely:
Qs <0 (3.8)
Os, sQ (3.9)
O, <0 (3.10)

where O;,,0;,,0,, are the desired flows to the boom, swing and stick actuators; Q is the
maximum available flow from the pumps. Any violation of the above constraints will
require modifying the fluid flows by proportionally scaling down all flow-rates, on the
basis of the scaling factor k,. k, is the smallest scaling factor as determined after
examining all the above constraints. If there is no violation of the constraints, the scaling

factor k, is set at 1; i.e., there is no modification imposed on the flows.

2. Interconnection Constraints

For the excavator-based machine shown in Fig. 3.1 some actuators have higher priority
than others. For example, the swing valve takes priority over the stick valve. In this case,
a second scaling factor &, in which such priorities are considered, may also be applied to

the flows to reduce the relative speeds of all actuators. Therefore, the flow-rates modified

by scaling factor k,, should satisfy the following constraint as well:

0-9, 20, (3.11)
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If the priority constraint is not violated, the scaling factor &, becomes unity. A total
scaling factor £ is then obtained by combining both &; and 4.

Thus, the above procedure provides a scaling factor £. k=/ means the desired joint
velocities are achievable. k<] means the desired joint velocities are not achievable and
should be scaled down. Multiplication of & with the desired joint velocities will give the
maximum achievable joint velocities. The scheme given in Fig. 3.2 shows the steps taken
for computing the scaling factor & .

The algorithm presented requires computation of the flow available from the
pumps. The pumps change their output flow according to the sum of the pressures in the

implement circuits ( P, + P, ), so that the pressure-flow curve is below the engine power

limit curve. Therefore, based on the required supply pressures A, P,, the flow, which
can be delivered by the pumps, is determined from the pressure-flow limit curve.

The following section describes the algorithm, which computes the required
supply pressures and therefore the maximum available flow from the pumps, using a
model of the manipulator. The model of the manipulator consists of the model of the

linkage and the model of the actuators driving the manipulator joints.

Maximum available flow from the pumps

The solution for the response of even the simplified hydraulic system, shown in Fig. 3.1,
involves the simultaneous solution of orifice equations, compressibility equations and
force balance equations for each cylinder. An important approximation is made in this

approach, i.e, the actuator response is approximated by the steady-state actuator response.
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Fig. 3.2: Scheme for computing scaling factor k = k4, .
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A steady-state solution would not include the fluid dynamics, Eq. (2.11). However, the
cylinder forces are not restricted to steady-state forces, they are computed using the
dynamic model of the linkage. This approximation is made since a solution for the
complete actuator dynamics requires specification of an additional set of variables
(P,C), which greatly increases the dimensionality of the model and the required
computational effort.

The linkage model is used to compute the required actuation forces applied on
each lirk for a given trajectory. The actuation forces are used in the actuator model to
obtain the pump pressures P, P,. With the summing pressure (7, + P,), the maximum
output flow from the pumps is determined from the pressure-flow limit curve. The

pressure-flow limit curve is shown in Fig. 3.3. The remainder of this section presents the

100

Pump flow [lit/min]
H D oo
o Q (=]

N
Q

0 1 L L L 1
0 1 2 3 4 5 6

Summing pressure [kPa] x 10

Fig. 3.3: Pumps output flow versus summing pressure A + 5, .
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details of these computations. The maximum output flow is, first, determined for one-link
actuation, i.e, boom actuation. Next, it is determined for two-links actuation with priority
action, i.e., swing and stick actuation. Finally, the maximum output flow is computed for

three-links actuation.

a) One-link actuation

g |
9) 4, |
l - ~ -
T4 (€) P i
P % i o> |
Q) <«

oqa )| fate € =

Fig. 3.4: Single-link actuation.

The actuator is connected to an open center main valve through compliant hoses. The

valve monitors the flow to (Q,) and from (Q,) the actuator. The supply pressure (£) is
provided by the pump, which is run by the engine. The orifice areas a,,a,,a, are
controlled by the displacement in the main valve spool (x,,). Thus, a single spool

position can represent all the orifice area variables for a joint (see Fig 3.5). When the

spool is in a neutral position, orifices g, and a,are closed and the pump flow returns to
the tank through the open orifice, a, , and at atmospheric pressure (P,). O, is the pump

flow to the tank.

38



Chapter 3. Minimum-Time Trajectory Planning

500 . —— — r —
N'g pump-to-cylinder orifice
E
-]
o
© 0 1 2 1
-15 -10 5 0 5 10 15
500 T L] L) L]
o cylinder-to-tank orifice
E
«
e
< 0 ——— L X 1 I
15 -10 5 0 5 10 15
1000 . r . —
N‘E" pump-to-tank orifice
E so00} J
o
o
© 0 L : !
-15 -10 5 0 5 10 5
100 T T r T —
«’E“ pump-to-tank orifice (close-up)
E sot .
3]
o
© 0 1 I I 1 1
-15 -10 -5 0 5 10 15

Spool dispacement [mm]
Fig. 3.5: Variation of orifice areas versus spool displacement for actuator.

With reference to Fig. 3.4, the equations describing the actuator model during steady state
response can be written as follows:

(Tv the actuator):

Q=0 +0. (3.12)
O, =ka,\[R,-P (3.13)
0, = X4, (3.14)

Q, =ka,|F, - P, (3.15)

(Out of the actuator):

0, =ka, [P, - P, (3.16)
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0, = X4,
The force generated by the actuator is:

F=PA4,-PA,

(G-17)

(3.18)

The equations describing the hydraulic system are nonlinear and an iterative method is

applied to solve them. The flow chart, given in Fig. 3.6, shows the steps taken for solving

the hydraulic system equations, in order to determine the maximum available pump flow,

Q. For the joint position 8, velocity 0, acceleration 6, the actuation force F and the

cylinder velocity X can be determined using Eq. (2.3), Eq. (2.7) respectively.

At the beginning of the iterative procedure the spool displacement is initialized, x,, =0.

a,,a,,a, = f,(x,) m=i,o,e

Equating (3.16) with (3.17) the output line pressure is determined as:

3 2
f:,=(X”°] +
ka

o

The input line pressure is determined from Eq. (3.18) as:

_F+ﬁ4

P
4

Equating (3.13) with (3.14) the supply pressure F, is determined as:

. 2
R{XA"J +P
ka

i

(3.19)

(3.20)

(3.21)

(3.22)
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[
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Fig. 3.6: Algorithm for solving boom actuator equations.
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The pump flow changes according to the sum of the supply pressures A, P, as shown in
Fig. 3.3. Supply pressure P, is considered for this case constant and equal to the tank
pressure. Therefore, the available pump flow, Q is determined as:

2=f(F+h) (3.23)
The spool displacement is incremented, until Eq. (3.12) is satisfied:

Therefore, for the spool displacement Xos for the actuation force F and desired

actuator velocity X, the maximum flow from the pump Q can be determined for a

steady-state condition.

To show the actuator response for one-link actuation (i.e boom), the following
manipulator motion is simulated: the manipulator is moved from a start position of
(boom=-27°) to a goal position of (boom=45%). The simulation results are shown in Figs.
3.7to 3.11.

Given a start position and goal position the joint trajectories are generated using
trigonometric series of the following form (Hornick and Ravani, 1986):

k
8() =6, +(0, -6,)¢/T)+ 3 asz sinf%{ (3.24)

n=lNn"T7C

where k& is chosen equal to 4. Joint trajectories are generated using the above
trigonometric series only in this section, in which the main purpose is to show how the
hydraulic system equations are solved. They have been chosen for their simplicity.

The joint trajectories are shown in Fig. 3.7. For the joint position 6(z), velocity
8(z), acceleration 6(¢f), the required joint torque can be computed using linkage

dynamics (2.1). Figure 3.8 shows the required joint torque for the given trajectory. The

force applied on the link by the actuator is shown in Fig. 3.8b.
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To achieve the joint velocity 8, the cylinder piston should be moved by the fluid

with a velocity X . The cylinder velocity profile is shown in Fig. 3.9a. The flow-rate
required to achieve this velocity is shown in Fig. 3.9b. When the spool is displaced,

orificesa; and a,open and the orifice a, start closing. This results is a rise in the supply
pressure due to restricting the pump flow, until it exceeds the line pressure ( F) allowing

fluid flow into the actuator. When the supply pressure becomes high enough, the pump
reduces its output flow to prevent the engine from stalling. Fig. 3.11b shows that the

pump flow reduces as the required supply pressure increases, as shown in 3.11a. The line

pressures P, P, are shown in Fig. 3.10.

50 -
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[«]
o
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g
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0 1 2 3 4 5 6 7 8 9
Time [s}]

Fig. 3.7: Boom position, velocity, acceleration profiles.
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Fig. 3.11: (a) Summing pressure, P, + P, ; (b) Maximum available pump flow-rate.
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b) Two-link actuation with priority action
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Fig. 3.12: Two-link actuation with priority action.

Figure 3.12 shows two open-center valves connected in series, which control the flow to
two hydraulic actuators (a motor and a cylinder). This hydraulic system is similar to the
swing and stick actuation system. The pump supplies the hydraulic flow on a priority

basis, first to the swing valve, then to the stick valve. The equation describing the

hydraulic system can be written as follows:
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(To the actuator 1):

(Out of the actuator 1):

(To the actuator 2):

(Out of the actuator 2):

Q=Ql'l +Qel
O, =ka, P, - P,
Q,=0Q,=n-6-D,

Qel =ka¢1 Pz -P

(O = ka,, P, —P,

Q;l =Qal =n'é'Drn

On=0,+0.,
0, = kaoJP—F;
QxiZ = X : Ax'

Q02 = kaol ‘Poz _‘Pe

QoZ =‘Y'fio
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(3.25)

(3.26)
(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

The torque and force generated by the actuator 1 and actuator 2 respectively are:

't:(le _Pol)'Dm =

F=P,4,-P,4,

T

(3.37)

(3.38)
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Fig. 3.13: Algorithm for solving swing and stick actuator equations.
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The steps taken for solving the hydraulic system equations are described in the flow

diagram shown in Fig. 3.13. With reference to this figure the steps are described in the
following.
Given the current joint position 6, velocity 8, acceleration 6, the actuation torque T is
computed using linkage dynamics equation (2.1). The actuation force F is computed
using Eq. (2.3).
At the beginning of the iterative procedure, the spool displacement for valve 2 is
initialized, x,,, =0.

Q;3,8,5,8,, = [, (%) s =i2,02,e2 (3.39)

Equating (3.35) with (3.36) the output line pressure for actuator 2 is determined as:

. 2
XA
P02=(kao) +1)e (340)

02

The input line pressure for actuator 2 is determined from Eq. (3.38) as:

== T o2f (3.41)

Equating Eqs. (3.32) with (3.33) the required pressure to valve 2, P, is computed as:

p=[’“ﬁ] +P, (342)
ka

i2

The spool displacement for valve 1 is initialized, x, =0.
a:'l ’ aol ’ ael = fp (x;pl ) p= il, OIa el (343)

Equating (3.29) with (3.30) the output line pressure for actuator 1 is determined as:

{";Dm] P (3.44)

ol

P

ol
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The input line pressure for actuator 1 is determined from Eq. (3.37) as:

T
Py = ot P, (3.45)

m

Equating Egs. (3.26) with (3.27) the supply pressure to valve 1, P,, is computed as:

- 2
néD,_
P, =( — ] +P, (3.46)

il

Then, pump flow Q is determined as a function of the summing pressure P, + P,, where
P, is considered constant and equal to the tank pressure. The input flow Q, is
determined with Eq. (3.26) and the exit flow Q,, is computed using Eq. (3.28). The spool
displacement x,,, is incremented until Eq. (3.25) is satisfied. Next, the input flow Q,, is
computed with (3.32) and the exit flow 0,, with (3.34). The spool displacement x,,, is

incremented until Eq. (3.31) is satisfied.

Therefore, for the spool displacements x,, x,,,, the actuation force/torque F,T

and actuator velocities X,8, the maximum flow Qcan be determined for a steady-state

condition.

To show the actuator response for two-link actuation with priority action (i.e.,
swing and stick), the following manipulator motion is simulated: the manipulator is
moved from a start position of (swing=0°; stick=-85°) to a goal position of (swing=120°;
stick=-25%). Joint trajectories for this motion are generated using truncated trigonometric
series and they are shown in Fig. 3.14. Plots of swing actuation torque and stick actuation
force are shown in Fig. 3.15.

Figure 3.17 shows that even for providing the flow required to realize a slow

motion of 10 deg/s, the stick valve has to be fully opened (i.e. the stick spool is displaced
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until it reaches its maximum value). This is due to the fact that the swing actuator draws a
greater fraction of the total flow and only the rest of it is delivered to the stick actuator.
Figure 3.19a shows that the required supply pressure is not large. For this
manipulator motion the power demand does not exceed the capacity of the engine and
therefore, there is no need for the pumps to reduce their flow. Fig. 3.19¢c shows that the

maximum available flow is constant for this motion.
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Fig. 3.14: Swing and stick position, velocity and acceleration profiles.
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Fig. 3.19: (a) Supply pressures; (b) Summing pressure, P, + P, ; (¢) Maximum available

¢) Three-links actuation

pump flow-rates.

For three-links actuation the algorithms shown for single link actuation and two-links

actuation are combined. However, a slight modification in the two algorithms is imposed.

For each step in the algorithm the hydraulic system variables are determined based on the

flow rate determined in the previous step. Therefore for a time ¢, the supply pressures

B (t,)and P,(t,) are determined using flow rate Q(¢,_,). For these supply pressures, the

corresponding flow-rate Q(¢,) is determined, considering the pressure-flow limit curve.
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The following test shows the actuator response for a manipulator motion, which

involves the movement of all links. The manipulator has to move from a start position of

(swing=0°; boom=-27°; stick=-85°) to a goal position of (swing=120° boom=45°; stick=-

25°).

Figure 3.20 shows the joint trajectories generated using truncated trigonometric

series. The actuator velocity profiles are shown in Fig. 3.21. The spool displacements

required to achieve the desired trajectories for swing, boorn and stick are shown in Fig.

3.22. Figure 3.23 shows plots of the supply pressures P, P, and the maximum available

pump flow Q.

Vel. [deg/s] Pos. [deg]

Acc. [degls?]

200 . . . ‘ ‘ ‘
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Fig. 3.20: Swing, boom and stick position, velocity and acceleration profiles.
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Fig. 3.21: Swing, boom and stick actuator velocities.
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Fig. 3.22: Swing, boom and stick spool displacements.
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Fig. 3.23: (a) Supply pressures; (b) Summing pressure, P, + P, ; (c) Maximum available
pump flow-rates.

The following tests show the effect of the payload on the output flow from the pumps.

The tests are performed for three different cases: (1) the manipulator does not carry a

payload; (2) the manipulator carries a payload of 500 kg; (3) the manipulator carries a

payload of 1000 kg. It can been seen from Fig. 25a that as the load increases the

hydraulic power demand increases and the pumps reduce their output as shown in Fig.

3.25b.
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The maximum flow-rates, which can be delivered from the pumps without
exceeding the power limitation, can be computed using the linkage dynamic model and
the actuator model for a steady-state situation. The results obtained show that the output
flow from the pumps is load dependent. The iterative algorithms developed for solving
the actuator model computes also the spool displacements required to achieve the desired
trajectories. Once the open-loop spool displacement has been determined, the
ccrresponding open-loop input voltage can be found, i.e. the relationship between the
input voltage and the spool displacement is modeled as a first-order differential equation.
This open-loop input voltage should drive the manipulator along the desired path if the
dynamic model is accurate. However, this is not a realistic assumption because of the
approximation made (i.e., the actuator response is approximated by the steady-state
actuator response), unmodeled disturbances, etc. For this reason it is necessary to apply
the open-loop voltage in conjunction with feedback control.

Depending upon the maximum available flow from the pumps, the algorithm
presented here determines the flow distribution to each actuator and therefore the scaling
factor for joint velocities. A scaling factor kis computed for each time ¢. The velocity

scaling factor ¢ for the entire trajectory is equal to min(4(z)) . Therefore, the time scaling

factor A isequalto1/c.

3.2.2 Computation of time scaling factor

The steps taken for computing A are shown in Fig 3.26. For the given Cartesian knot
points Ej, E»,...,En, the joint displacements 6,0 ,,...,0 , (j=12,...,N, where N is the

total number of joints) are calculated using inverse kinematics. Given the time intervals,
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hy.h,,....h, ,, and the joint displacements, the joint trajectories 6,(¢),6,(r),6,(t) are
generated for each joint jusing spline functions. For these joint trajectories the
maximum flow-rate which can be delivered by the pumps Q@) (0<t<T , and
T,=h,+h,+..h,_,) is determined. Next, the velocity scaling factor, k(f), is

determined. Finally, the time scaling factor A is determined as A =1/ min(k(?)).

Enter Cartesian knot
points

E,, E,,..., E,
\ 4

Calculate joint
displacements

1o, 0p...05

Construct joint
trajectories with splines
l6,®.6,0.8,®

Determine maximum
available flow

low

Determine velocity
scaling factor

IPS

Determine time scaling
factor A=1/min( k()

Fig. 3.26: Scheme for determining time scaling factor A.
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3.3 Optimization of joint trajectories
The downhill simplex method is used to find the minimum motion time for a given path.
The method is based on an initial design of p+/ points, where p is the number of
variables to be determined. A p+/ geometric figure in a p-dimensional space is called a
simplex. The comers of the simplex are called vertices. The downhill simplex algorithm
determines which vertex has the least favorite objective function and tries to replace it
with a new vertex having a better value of the objective function. The best vertex, found
during the search, is used to construct a new simplex for the next search. As a result, the
flexible simplex is expected to move closer to the optimal solution, step-by-step. The
algorithm determines the search direction by utilizing p+/ points in the variable space
and following two basic rules: expand in a direction of more favorable conditions, or
contract if a move was taken in a direction of less favorable conditions.

Figure 3.27 shows possible outcomes for a step in the downhill simplex method.
The simplex at the beginning of the step is shown. The simplex at the end of the step can
be any one of: (1) a reflection away from the worst point, (2) a reflection and expansion
away from the worst point, (3) a contraction along one dimension from the worst point
(a) or from the reflection point (b), or (4) a contraction along all dimensions towards the
best point. An illustration of the downhill simplex method operations is given in
Appendix C.

Here the objective of the optimization is to adjust the time intervals between
adjacent knot points. For a path specified by » knot points, there are n-/ time intervals to

be adjusted. Downhill simplex method requires three essential elements:
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worst

reflection

reflection and expansion

contractions (a) and (b)

&)

Fig. 3.27: Possible outcomes for a step in the downhill simplex method.
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1. Search space: the search space for the optimization is the space of the time intervals

[A,,h,,...,h, ] between adjacent knot points.

n—l|
2. Objective function: it is represented by the sum of the time intervals Zh‘. . The

i=1
ultimate goal is to minimize this objective function.

3. Stopping criteria: an optimization process terminates when the optimization objective
is reached or when the responses cannot be improved further. For the downhill
simplex method presented here, the stopping criteria are: (1) the vector distance
moved in the terminating step must be smaller than a preselected tolerance ¢, ; (2) the
decrease in the function value in the terminating step must be smaller than a
preselected tolerance €, .

Either of the above criteria might be deceived by a single anomalous step that, for one

reason or another, failed to get anywhere. Therefore, it is frequently a good idea to restart

the optimization algorithm at a point where it claims to have found a minimum (Press et

al., 1992).

The method must start with » points, defining an initial simplex. A point (vertex)

V is defined as the vector of time intervals between knots, [4,,4,,...,/,_]. The objective
function for ¥ is represented by F(V' )=h, +h, +...h,_,. The n verticesV,, (i =12...n)
are selected to form the initial simplex as:

V, =V, +n-e, (3.47)
where e,'sare (n-1) unit vectors, and the scalar x is a constant which might be chosen so

as to equalize, as far as possible, the quantities lF(V0 +u-e,)-F¥, )l. (Walsh, 1975).
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Thus, to select these n vertices, one should select the first vertex ¥, and decide
for the value of the constant p. ¥, is selected as the lower bound of time intervals. Let
0,,9,...,0, denote the displacement sequence of joint j. The lower bound of the vector

j1rTj2

of time intervals ¥ is estimated as:

V, = (muw,maxw,mmm{lw) (2.48)

I vmax.j 4 vmax.j J vmax.i

Where v, is the highest joint velocity determined by the manipulator's physical
limitations:
X

Yy = —m (3.49)
min(J(9))

If the maximum flow-rate from the pumps @, is used by each actuator alone then:

s
X g = =2 (3.50)

For the restart of the optimization algorithm at a point where it claims to have found a
minimum, »-! of n vertices of the simplex are reinitialized by Eq. (3.47) with ¥V being
the vertex of the claimed minimum.

A flow diagram for implementing the downhill simplex method is shown in Fig.
3.28. With reference to this figure the notations used and the steps taken are explained in

the following. The procedure for defining first simplex has been already explained. For

this simplex the vertices are ranked in order: B,N_,W , where B is the vertex with the
lowest function value, NV, is the vertex with the second highest function value and W is

the vertex with the highest function value. Operations for searching a better vertex and
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Start

Rank vertices in Replace old simplex

Convergence
order: B, Nw,. W | with new one

criteria satisfied ?

Make contraction’, || Make contraction®,

Cl Cl
Make expansion, I \ 2
E Covert C’ using
l FSC, C=AC’
Covert £’ using N —
= ’ 0o eSs 2,
FSC, E=AE ‘ th,mkm
¥
No es Covert S’ using
FSC, S=AS'
Yes v l
Replace W for E Replace W for R Replace W for C Replace W for §

Fig. 3.28: Optimization algorithm.
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for reducing the size of the simplex include reflection, expansion, contraction and
shrinking. They are defined as follows:
(1) Reflection:

R' =C +a{(C -W) (3.51)

where « is the reflection factor, C is the centroid of all vertices except W , i.e.,
C-= ——[ZV,— WJ (3.52)

Each vertex obtained by the search is a vector of time intervals. With these time intervals
and the joint displacements, the joint trajectories can be determined. However, these
trajectories might not be dynamically realizable given the actuator constraints. In this
case, these time intervals should be adjusted to bring the trajectories within the actuator
constraints. Therefore, in the general downhill simplex algorithm should be added a
procedure which converts an infeasible vertex to a feasible one. The procedure is called
Feasible Solution Converter and it is as follows:
1) Determine time scaling factor A.
2) Replace time intervals (h;, Az...h,.;) by (A, Ah; ... Mhy, ).
Hence, using the Feasible Solution Converter procedure, the infeasible vertex R'is
converted to the feasible vertex R =AR’.

Another aspect particular to the problem under investigation is the nature of the
elements of the vertex, i.e., all the elements are time intervals, therefore, it is necessary to
assure that all of them are positive. For this, the reflection factor a should be properly

determined. o is determined as suggested by Lin ef al. (1983). At first, o is setto 1. If

66



Chapter 3. Minimum-Time Trajectory Planning

any element of R’is negative o will be changed to a smaller value. For « =1, R'is
obtained as:
R =2C —W =[2hS —h¥ 2hC —h” .2k, - 1", (3.53)
If 2hiE — A <0 for some i, then a should be reduced. From Eq. (3.51) one obtains
R’ =[hE +a(ht —h?),hS +a(hS —hY),....hC, + kS, - h¥ )] (3.54)
Therefore,

hE = hC +a(hC — R )for some i.

C
Consequently, o should be less than WLE)to make A" positive. Based on the above

i i

discussions, o is determined as:

r

1 if 2h° —h” >0 foralli
o =1 W ) (3.55)
§, =min{———>% if 2h° —h” >0 forsomei
L (hiW _htc)
where 0<§, <1.
(2) Expansion:
E'=C +y(R-C) (3.56)

To keep all elements of E’as positive, the expansion coefficient y can be determined as:

2 if zh® —h" >0 foralli

13

(3.57)
8, =mm{a;=~——‘-——} if 2h% —hC >0 forsomei

where 0< 5, <1
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(3) Contraction:
Here there are two cases to consider. Contraction® find C’ as

C'=C+B(R-C) (3.58)
Contraction® find C’ as

C'=C+BW-C) (3.59)
(4) Shrinking:
This operation reduces the size of the simplex by halving the distances from B .

V,=B+0.5(V,~B) i=12,..n (3.60)
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Chapter 4

Demonstrative Results

In this chapter the optimization algorithm described in Chapter 3 is employed to
determine the minimum time trajectories for a specified path. The path is specified by a
sequence of knot points. The control variables for the optimization are the time intervals
between adjacent knot points and the objective function is the total motion time, therefore
the sum of these time intervals. The stopping criteria for the optimization algorithm are:
(1) the vector distance moved in the terminating step must be smaller than a tolerance ¢,,
and (2) the decrease in the function value in the terminating step must be smaller than a

tolerance €,. The tolerances g,,e,, were chosen, for all the tests performed, equal to

107,

4.1. Example 1

In this example a typical pick and place task was considered. The task required the end-
effector to move along the three-dimensional path shown in Fig. 4.1. As it can be seen
from the figure four knot points initially specified the path. A set of tests was performed
to investigate the effect of increasing the number of knot points along the path, in order to
pick the "best" number of knot points, i.e., the number of knot points for which the
optimization algorithm finds the best solution. The opiimization was performed for four,

six, eight and ten knot points along the path, therefore for three, five, seven and nine

control variables.

69



Chapter 4. Demonstrative Results

Fig. 4.1: Initial Cartesian path.

From the results shown in Table 4.1 it can be seen that the minimum function
value (minimum motion time), found by the optimization algorithm, decreased with the
number of the control variable (time intervals). However, for more than seven control
variables the optimization algorithm did not converge. Actually, it is known that downhill
simplex method works particularly well if the number of variables is not large (i.e. five or
six, with reference to Walsh, 1975). This effect might be due to the fact that adding
dimensions to the simplex causes more local minima and searching among the local
minima becomes more complicated as the dimensionality increases.

On the other hand, increasing the number of control variables increases the
computation time. The optimization algorithm is computationally expensive due to the

feasible solution converter procedure, particularly the calculation of the pump flow
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trajectory curve, which requires the iterative solutions for the hydraulic manipulator
model. The minimum objective function values in Table 4.1 were obtained for two runs.
The first run consists of starting the optimization algorithm from .a starting point and
letting it run until it reaches the final solution. The downbhill simplex method searches for
a better solution until it reaches a point where the solution can not be further improved, in
the other words when the stopping criteria are satisfied. The seccnd run consists of
restarting the optimization algorithm at the solution obtained for the first run and letting it

run until it reaches the final solution.

Table 4.1: Effect on increasing the number of knot points on optimal solution.

No. of control variables 1% run 2% run
starting final starting final
point point point point
3 1298 s 12.50 s 12.50 s 11.30s
5 13.04 s 10.44 s 10.44 s 10.15s
7 13.71s 974 s 9.74 s 8.98 s
9 13.70 s 13.70 s - -

The above results indicate that for seven control variables, which means eight knot points
along the path, the minimum motion time, found by the optimization algorithm, has the
smallest value for all three cases. Therefore, the best number of knot points along the

path is eight knot points.
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Optimal trajectory planning for a path specified by eight knot points

In the following are shown the results of the optimization performed for a path specified
by eight knot points. These results are obtained by running the optimization algorithm for
two cases:

e Case 1- the end-effector moves along a specified path with no payload.

e Case 2-the end-effector moves along a specified path carrying a 500 kg payload

Manipulator with no payload
Eight knot points specified the Cartesian path of the end-effector. By means of inverse

Jacobian, joint displacements were computed for these knots as shown in Table 4.2.

Table 4.2: Joint displacements corresponding to Cartesian knot points.

_ Swing [deg] Boom [deg] Stick [deg]

1 | 0 -25 -111.5

2 5.7 -17 -106

3 10 -10 -96.3

4 20 -3 -81

5 50 11.5 -78.5

6 70 23.5 -60.2

7 80 345 -51.6

8 90 40 -42

The optimal solution was obtained by running the optimization algorithm twice. The
results are explained in detail in the following.

First run

To start the search for the minimum motion time, the initial simplex was defined using

Eq. (3.47). The value for the constant p was selected as 0.05.
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The first vertex was determined computing the lower bound of the vector of the time

intervals with Eq. (3.48)

V,=[043 042 067 075 081 06 043]

The feasible solution converter procedure was applied to convert each infeasible vertex of

the initial simplex, ¥, to a feasible one, so that the actuator constraints were satisfied.

The vertices of the initial simplex are shown in Table 4.3.

Table 4.3: Initial simplex.

¥ Vi v, Vs Vs Vs Vs V;
1 1.44 1.51 1.44 1.44 1.44 1.44 1.44 1.44
2 1.40 1.40 1.47 1.40 1.40 1.40 1.40 1.40
3 2.23 2.23 2.23 2.34 2.23 2.23 2.23 2.23
4 251 2.51 2.51 2.51 2.63 2.51 2.51 2.51
5 2.70 2.70 2.70 2.70 2.70 2.83 2.70 2.70
6 1.99 1.99 1.99 1.99 1.99 1.99 2.09 1.99
7 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.51

n—1

For the first run, the algorithm performed 1156 function evaluations of Z h; to reach the

=1
final solution. The motion time at the starting point of the optimization algorithm was

13.71 s and the final value for the motion time was 9.74 s. The optimal solution found for
the first run was:

V=[1.14 071 205 154 182 0.89 1.58].
Comparing vectors of time intervals shown in Table 4.3 to the optimal solution ¥V, it is

seen that all time intervals were adjusted simultaneously to achieve a shorter motion time.
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Second run

For the second run the first vertex ¥V, of the initial simplex was reinitialized with the

value of the solution found for the first run V.

V,=[1.14 071 205 154 182 089 1.58].
The final value for the motion time obtained for the second run was 8.98 s and the vector
V of time intervals was:

V=[1.13 0.73 152 128 1.85 0.82 1.64].

Fig. 4.2 shows the algorithm convergence to the optimal solution. For each step in the
optimization algorithm a tentative solution was obtained. The figure shows the minimum
objective function value for each solution found during the search.

Fig. 4.3a shows how the algorithm, through successive expansions and
contractions of the simplex, made its way until it encountered a minimum (at least a local
one). Fig. 4.3b indicates the decrease in the function value in each step. When the vector
distance moved in one step and also the decrease in the function value become smaller
than the specified tolerances, it means that the optimization can not find a better solution
than the one already at the hand, and the optimization terminates. Very small tolerances

were chosen for the stopping criteria, i.e., €,,5, were equal to 10™. Fig. 4.5 shows that

for almost 200 steps, as the simplex became very small (see Fig. 4.4), the solution could
not be improved significantly. To improve computation time, an alternative to using very

small tolerances might be to use larger tolerances for the first run and smaller ones for the

second one.

74



Chapter 4. Demonstrative Results

- A o o
- N W &

-
o

Objective function [s)

0 100 200 300 400 500 600 700 800
Number of steps

©

Fig. 4.2: Convergence behavior of the optimization algorithm; 1st run.
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Fig. 4.6: Convergence behavior of the optimization algorithm; 2™ run.

Fig. 4.7 shows the Cartesian path corresponding to the optimal solution. It can be seen
that the path is smooth everywhere, including at knot points. Figures 4.8 to 4.10 show a
comparison of the trajectories corresponding to the optimal solution to the trajectories
obtained at the starting point of the optimization. In Figs. 4.8b, 4.9b and 4.10b are
showed the values that the manipulator must follow to achieve a minimum motion time.
It can be seen from Fig. 4.10 that a high acceleration brings up the velocity in a shorter
time interval so that the motion time for the manipulator is shortened. Figure 4.11 shows
the spool displacements required to achieving the optimal trajectories shown in Fig. 4.8b
to 4.10b.

Figures 4.12 to 4.14 show the optimal trajectories generated with four knot points
and eight knot points respectively. For four knot points small joint accelerations for the
end segments of the trajectories resulted in small velocities and therefore the minimum

motion time found by the optimization algorithm was larger for four knot trajectories.
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Manipulator with payload

A similar test to the previous one was performed for the manipulator carrying a payload.
The end-effector moved along the specified path carrying a 500 kg payload. The resulting
minimum motion time for this test was 9.11 s, comparable to 14.53 s the motion time for
the starting point of the optimization algorithm.

Fig. 4.15 shows the velocity profiles in the two cases, Case (1)-the manipulator
does not carry a payload, Case (2)-the manipulator carries a 500 kg payload. For Case (2)
it can be seen a decrease in joint velocities. In Chapter 3 it had been shown the effect of
the payload on the output flow from the pumps (see Fig. 3.25). Increasing the payload
results in a decrease of the output flow from the pumps. This is due to the fact that
increasing the load, the power demand increases and might exceed the capacity of the
engine. To prevent such a situation, the pumps reduce their flow to the actuators. As less
flow is delivered to the actuators, smaller actuator velocities can be achieved and
therefore smaller joint velocities.

The optimization algorithm checks each solution obtained by the search for
feasibility. In the following an example of conversion of an infeasible solution, for which
the actuator constraints are not satisfied, into a feasible one is presented.

For the desired joint velocity trajectories shown in Fig. 4.17, the desired flow-rate
to each hydraulic actuator was determined. Fig. 4.18 shows plots of the desired flow-rates
to swing, boom and stick. From Fig. 4.19, it can be seen that the desired flow-rates to
both hydraulic circuits exceed the available flow from the pumps. Therefore, the desired

flow-rates should be modified. The modification was performed using the algorithm
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described in Section 3.2.1. The desired flow-rates were checked against the maximum
availability and interconnection constraints and two scaling factors k,, k,, respectively,
were obtained. With &, and £, a factor kis determined as k = k%, . Figure 4.20 shows
plots of the scaling factors k,(f), k,(¢f)and k(¢). The desired flow-rates are scaled by a
constant scaling factor c=min(k(r))(see Fig. 4.21). The time scaling factor A is
determined as 1/c¢. The scaled joint velocities are shown in Fig. 4.22.

A new test was performed to investigate what would happen if the end-effector
was to follow the optimal trajectory, computed with no payload, carrying a 5000 kg
payload. With reference to Fig. 4.23, a large increase in the summing pressure and a large
decrease in the pump flows is noticed as a result of carrying the 5000 kg payload. Thus,
the optimal trajectory computed for the no-load case becomes infeasible. This can be seen
from Figs. 4.25 and 4.26 where the required flows exceed the available flow from the
pumps. The conversion to a feasible solution is shown in Figs. 4.27 to 4.29. Fig 4.29
shows the resulting feasible velocity trajectories. These are achievable trajectories but
may not be optimal ones. Therefore, the optimization algorithm should be employed
again to compute minimum-time trajectories.

Similar to the previous tests the optimization algorithm was run twice to obtain
the optimal solution for the case with 5000 kg payload. The minimum motion time, found
by the optimization algorithm, was 14 s and the vector V of time intervals was:

V =[22154 1.3104 19775 22245 2.5875 1.5115 2.1815].

The resulting optimal position, velocity, acceleration trajectories are shown in Figs. 4.30
to 4.32. They are compared with the position, velocity, and acceleration trajectories at the

starting point of the optimization.
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Fig. 4.33 shows the optimal velocity profiles for the case with no payload and for
the case with 5000 kg payload. A decrease in joint velocities is observed for the case with

5000 kg payload, which is expected.

2 2
z[m] 0 z[m] o}
2 2!
0 s 0 5
y[mj x{m]

Fig. 4.7: Cartesian path corresponding to the optimal solution.
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Fig. 4.10: Joint acceleration profiles: (a) initial solution; (b) optimal solution.
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Fig. 4.13: Joint velocities for four and eight knot points.
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Fig. 4.15: Comparison of joint velocities for no payload versus payload.
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Fig. 4.16: Comparison of joint accelerations for no payload versus payload.
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4.2. Example 2
This example presents a test performed to investigate the effect of increasing the number
of knot points on the error between the desired path and the approximated path obtained
using spline functions in joint space.

In this test the manipulator task was to move along a straight-line from a start
position to a goal position. The start position of the end-effector in Cartesian coordinate

was represented by [x,,y,,z ]=[4.352 m, -0.12 m, -1.757 m] and the goal position by
[xg:);,2,1=[5.8359 m, -0.12 m, 2.4445 m] as shown in Fig. 4.34. These Cartesian end-

points correspond to the joint space points [swing=0 deg, boom=-4.4121 deg., stick=-
126.67 deg.] and [swing=0 deg., boom=40.58 deg., stick=-71.9 deg.]. Note that the given
task required only boom and stick motion. Initially, two knot points were introduced
between the start and goal positions. Fig. 4.35 shows that if the knot points specifying the
desired path in the Cartesian space are located at equidistant intervals, the corresponding
points in the joint space are not equally spaced and the path connecting these points is not
a straight line. Given the knot points shown in Fig. 4.35b, the joint trajectories were
generated using spline functions and the optimization algorithbm was employed to

optimize the joint trajectories. The optimization algorithm was run twice with the same
values for the stopping tolerances, €, =€, =107 and constant p = 0.05, as in Example 1.

The same test was applied for eight knot points located at equidistant intervals
along the path. Figures 4.36 and 4.37 show the optimized position and velocity joint
trajectories obtained for four knot points along the path and eight knot points

respectively. It can be seen that for eight knot points trajectories the motion time is
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shorter than for four knot points trajectories and therefore higher joint velocities are
obtained.

The foregoing trajectories were then mapped (pointwise) into the Cartesian space
to obtain x(¢), y(¢),z(¢), which represent the desired trajectories in Cartesian space (see
Fig. 4.38). Figure 4.39 shows that increasing the number of knot points from four to eight
almost eliminates the error between the desired path and the approximated one.
Therefore, to reduce the error between the desired path and the approximated one,
additional knot points should be specified along the desired path. Figure 4.40 indicates
smaller jumps in the Cartesian velocities for eight knot points. Therefore, the result for
eight knot points improved even in terms of Cartesian velocities. Figure 4.41 shows the
optimal velocity profiles for the case with no payload and for the case with 5000 kg

payload.

ximi

Fig. 4.34: Straight line Cartesian path.
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Chapter 5

Conclusions

5.1 Achievements

In this thesis, the optimal motion planning along a specified path was performed for a
hydraulic manipulator. The path specified by knot points was mapped from Cartesian
space to joint space using inverse kinematics and joint trajectories were generated using
spline functions. The resulting joint trajectories were smooth everywhere inclusive at
knot points (i.e. position, velocity, acceleration were continuous over the duration of the
motion).

Downhill simplex method was adopted to optimize the joint trajectories. The
search space for the optimization was the space of the time intervals between adjacent
knot points. The objective of optimization was to adjust the time intervals subject to
constraints imposed by the limited capabilities of the actuators, so that the total motion
time was minimized. The actuator capabilities are limited due to the fact that they are
powered by a limited power engine.

Each solution obtained by the search was evaluated for feasibility. A solution was
feasible, if the corresponding trajectory was dynamically realizable given the actuator
constraints. If it was not, the trajectory was modified by a constant scaling of the joint
velocity profile, so that the total movement duration was scaled without changing the

actual path through space. The bounds on joint velocities were computed with respect to
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the combination of actuator and linkage effects, such as loading, inter-actuator coupling
and power limitation.

The main contributions of this work are: (1) the incorporation of complex and
coupled hydraulic actuation in optimal trajectory planning for heavy-duty hydraulic
manipulators and, (2) utilization of an optimization algorithm, downhill simplex method,
that has been shown to be effective in solving the optimal trajectory planning problem
addressed here. Although the downhill simplex method does not guarantee that the global
minimum can be reached, it improves the chances of reaching the global minimum by

restarting the optimization at the claimed minimum.

5.2. Future Development

This work could be extended to the global optimal motion computation. A method, such
as workspace discretization, can be used to generate all possible paths between the start
and goal position and the method developed here can be used to test each one for the time
optimality. The one with the lowest time is obviously the global optimal.

Another possible development could be the incorporation of the machine stability
constraint in optimal motion planning. Ghasempoor (1994) defined a measure of stability
margin, which included the effect of dynamic forces/moments arising from the
manipulator motion. For the purpose of optimal motion planning with machine stability
constraint, the motion should be computed, so that these forces/moments will not be

larger than the machine can handle and cause the machine to tip-over.
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Appendices

A. Excavator-Based Manipulator Kinematics
In this section, the forward and inverse kinematics equations are derived for the 215B

Caterpillar excavator-based machine.

A.1 Forward kinematics
Problem: Given the joint angles (6, 6, 65) calculate position and orientation of the end

effector with respect to the base frame.
The Denavit-Hartenberg parameters for the coordinate frames associated with all joints

are listed in Table A.1. The coordinate frames associated with all joints are shown in Fig.

Al.

Table A.1: Kinematic parameters of 215B Caterpillar excavator-based machine.

"0, (unbounded)

2 Boom 0 5.19 0 62 (27 to 45)

3 Stick 0 1.8 0 03 (-157 to -25)

An intermediate coordinate frame {x,_,y,,,z,} is used to account for the fact that link 1
is not collinear with the x, axis. The homogeneous transformations have been computed

by Singh, (1995) as following:
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Fig. A.1: Coordinate frames.
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¢ 0 s ac 1 00 O
£ = s, 0 —¢ as; A = 010 0
01 0 0 0 0 1 4,
0 0 o 1 0 0 0 1
¢ 0 s ac +ds
A° =Al°aAlla |5 0 -¢ as—dg
1 0 0
0 0 O 1
¢, =5, 0 a,c, c; —s; 0 ac,
s ¢, 0 a,s 5 c 0 a,s
Al = 2 2 22 , AZ = 3 3 3~3 Al
1o o0 1 o0 1o 0 1 o0 A
0 0 o0 1 0O 0 0 1

The position of the end-effector, in Cartesian coordinate is the last column of matrix
resulting from multiplying matrices 4;, 4, A;:

x =cos(,)a, +a, cos(, ) +a; cos(6, +6,)]+ d, sin(6,)
y =sin(8,)[a, +a, cos(6,) +a, cos(8, +0,)]—-d, cos(®,) (A.2)
z =a, sin(0,) + a, sin(6, +0,)

A.2 Inverse kinematics

Problem: Given the position of the end-effector in Cartesian coordinates (x,y,z), find the

joint angles (6,, 6>, 63).
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The joint angles are calculated through geometric relations as below:

4

0, =tan(r +a)y+dx

(r+a)x-d,y
0, =tan™ (ij +cos™ @+l -a

g r 2a,l
2 2 _ g2
0, = —m+cos| 2% =L (A.6)
2a,a,

where :

[=Art+z*

One should note that, due to the joint angle constraints, “elbow up” is the only possible

configuration. Therefore, the problem of inverse kinematics has a unique solution.
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B. Spline Interpolation

The results in this appendix are derived following the method of Ranky and Ho (1985).

A sequence of knot points is given for a single joint as 6,,0,,...,0, , corresponding to the
instants ¢,,¢,,...,£, , respectively. The planning of the entire joint trajectory can be divided
into three parts: (1) the start segment which connects 6, and 0,; (25 the intermediate
segments which connect 6,,0,,...,0,_, together and (3) the final segment which connects

6,,and 6, .

n—{

Fig. B.1: n-points trajectory.

The intermediate segments

The equation of the spline segment for two intermediate knot points 6, and 0,,, (2<k<

n-2) of the n-points trajectory consisting of n-/ spline segments can be written for a
single joint as:

®F) =B, +B,t> + Byt + B, (B.1)
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Where O(¢) represents the position of the joint as a function of parametric variable ¢.
Letting ¢ for this segment run from 0 — 4, where &, =t¢, , —t,, the boundary conditions

can be expressed as:

®0) =6, Oh)=0,,,
@' (0)=0« @'(h)=90,,

(B.2)
Where 6, and 6),, represent the velocities of the joint at the points 6, and 0,

respectively. Substituting Eq. (B.2) into Eq. (B.1) the coefficients for the intermediate

segments can be expressed:

1 0o 0 o071
j’ 03 0 1 0 Gek
- 3 -2 -1
2 = _ k+1 '3
B, h* k% h, h | 6% @-3)
B, 2 -2 1 1 _9'k+1
| By B R R

In order to calculate the spline coefficients, one must first know the values of #,, 6} and
0,,,- The parametric intervals 4, can be determined using (3.48); the velocities 6;, and
6,,, can be determined using the continuity constraint on the acceleration at the knot
points. Given 6,,6,,, and 6, ,(2 < k < n-3) with two spline segments connecting them
with parameters 0 <f < A, and 0 <t < h,,, the acceleration at the end of the first segment

is:
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®'(h,)=2B, +6B,h, = hi[—z(e—k—M +6' +9'k+1:’

A h,
+1[M—2e'k -e'm] (B.4)
hk hk

The acceleration at the beginning of the second segment is:

@ (0)=2B, = h2 [3(6"*3 ~ 041 ~20 ¢ —9'k+2] (B.5)

k+1 hk+l

The continuity constraint on acceleration requires Egs. (B.4) and (B.5) to be equal.
Equating them and rearranging terms gives:

e ® 20, + 10, +0 O,

3
= [r26,., -0,.)+H2.(0r. —0,)] (B.6)
hkhk+l

Expressing Eq. (B.6) in matrix form for 2<k <n-3 yields:
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-h3 2(h, +h;) h, 0 0 o,
0 h4 2(h3 + h4) h3 0 6'3
) 0 0 h""z ’ Z(hﬂ-i'l + hn-Z) hn—3 E _e'n—l .
237'3_[’122(64 —0;)+ (8, -6,)]
o 2
h3h4 [h3 (95 —64)+h4 (94 _93)]
) - (B.7)
2 (A2, (8 _9. Y+ k2@ . —6 )]
B h"_3 hn-z n-3\" n-1 n-2 n-2\Y p-2 n=3 |

Or symbolically, [m][0'] =[a], where [m]is an (»-4)x(#-2) matrix, [0']is an (n-2)x 1

vector, and [a] is an (#n-4) x 1 vector.

The first and last segments

For the first and last segments, the additional constraints 6] =67 =0/ =87 =0 require a
fourth-order spline segment of the following form:

O@t)=Bys* + B’ + B;t* + B,t + B, (B.8)
For the first segment, letting 0 <t < 4, the boundary conditions are expressed:

0(0) =0, 0(h) =8,
©'(0)=0 ©'(h) =65 (B.9)
0"(0)=0
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Substituting (B.9) into (B.8), the spline coefficients for the first segment are expressed:

Br=9, B~0 B~0
4 1
B, = hu’ —(0,-0,)—- h‘ 0,
3 1
—(0,-6,)+—
s hf

For the last segment, let 0 <z < /2, , and have the following boundary conditions:

8(0)=90,, 0'(h,)=0
©'(0)=6,, ©"(h,,)=0 (B.10)
O, )=9,

Substituting (B.10) into (B.8), the spline coefficients for the last segment are expressed:
B - 0 n—l

B~=0;

n-1

B, = %(69" _60_,—30' k)

n-1

} (-86,+86,_, +30',_, A, )

n-1

1 :
BS = 7(36.-1 _3611—-[ —e n-I hn—l)

'n-1

B, =

The equation (B.7) for finding [6’] must be redefine since 4™ order segments are
included at the beginning and end. Finding the acceleration at the end of the first segment

yields:

0"(h) = 6B,y + 128 = 5140, ~0) ~h31+ 12130, ~0:)+ 4] (.11
1

Equating Eq. (B.11) with Eq. (B.5) yields:
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2 3. 1 .. 3 6
2210, + =0, = (8, —0,) +—(8, -9, 12
(hch Y 2 T G0 (0. -0 ®-12)

Performing the same operations for the beginning of the last segment and equating it with

the acceleration found for the end of the previous intermediate segment yields:

[ 2 +iJe’,,_,+—1—e’ =20, ~0,.)+—(®,-6,.) (B.13)

hn-Z hn—l hn—z " hrf—2 o hn—l
From Egs. (B.12), (B.13) and (B.7) the matrix equation for solving for n-2 unknown
velocities can be expressed as [M][6 '1=[A], where [M] is (n-2)x(n-2) matrix, [0 '] is (n-

2)x 1 vector, and [A] is (n-2)x 1 vector in the form:

M, My 0 . . . . : 0 Te,]
hy 2R, +h) h, 0 . . . .oy
0 . . .

. 0
h,, 2(h,5+h,,) h,_, .

i 0 0 Mn—l,n-Z Mn—l,n-l__e’n—l_

) 5 -
h3h3 [42(0, —8,)+ (8, —6,)]

= (B.14)

h,,_33h,,_z [hf_3 ©,,-6,,)+ hnz-z (®,2—6,)]
an i
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where :
2 3 1
M, =—+— M, =—
2 h ok 370
1 2 3
M, = M =—+
n-ln-2 h,,_z n-l.n-1 h,,_o h,,‘l
3 6
a, = _hz?(ea -9,) +'h?(ez —el)
3 6
a,, = E(en——l - en-l) +‘;,,2__|(en - en—l)

Solving Eq. (B.14) for [ 6’ ] allows us to find spline functions for a single joint. The same

procedure is applied for each joint, using the same values of #4, . Thus a path through »

points for a robot with N joints will consists of (n-1)x N unique spline functions.
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C. Application of Downhill Simplex Method

The following example serves to illustrate the downhill simplex method operations,
namely, reflection, expansion and contraction. This example has been adopted from the
reference by Rao, (1984). Note that the stopping criteria used in this thesis is based on
Matlab M-file: Fmins.m and it is different from the one suggested by Rao. The stopping
criteria used in this thesis is formulated as: (1) the vector distance moved in the

terminating step must be smaller than a tolerance ¢, and (2) the decrease in the function
value in the terminating step must be smaller than a tolerance ¢, . The stopping criteria in

the example shown here is: the standard deviation of the objective function at the n+ /

vertices of the current simplex must be smaller than a tolerance €.

Problem Statement:
Minimize F(x,,x,)=x —x, +2x] +2xx, +x,. The points (vertices) defining the initial

simplex are taken as:

. .0 4.0
V, = 40,V2=5 and V, = ,
4.0 4.0 5.0

and o = 1.0, B = 0.5, y = 2.0. For convergence, take the value of €as 0.2.

Solution

Iteration 1

1. The function value at each vertices of the current simplex is given by:

F, =F(V,)=4.0-4.0+2(16.0) +2(16.0)+16.0 = 80.0

FE,=F¥,)=5.0-4.0+2(25.0)+2(20.0) +16.0=107.0

117



Appendices
F,=FW¥;)=4.0-5.0+2(16.0) +2(20.0) +25.0 = 96.0
W=V, = >0 F(W)=107.0, B=V, = 4.0 d F(B)=80.0
S E P40 =070, BEVI= 4 o 2nd F(B)=800.
. The centroid C is obtained as

C=

N —

4.0 —
¥, +V,) ={4 5} with F(C )=87.75
. The reflection point is found as
— 3.0
R=2C—W={5 O} and F(R)=171.0
. As F(R)<F(B), Eis as

2.0
E=2R-C= {5 5} and F(E)=56.75
. Since F(E)< F(B), W is replaced by E and the vertices of the new simplex are
obtained as
4.0 2.0 4.0
4.0 5.5 5.0
. To test for convergence, the standard deviation of the function at the n + / vertices of

the current simplex is computed as

0- {(so.o —~87.75)% +(56.75 —87.75)* +(96.0 —87.75)> }”2 _log
= 3 e

As this quantity is not smaller than &, we go to the next iteration.

The next two iterations are similar to the Iteration 1.

Iteration 4

1. The vertices of the current simplex are
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35 2.0 1.0
V., = s V., = dVv, = ,
1 {6.625} 2 {5.5} s {4.25}

F¥,)=11.89, FW,)=56.75, F(¥;)=25.3125,

2.0 -35
W=V, = and B=V, =
5.5 6.625

2. The centroid C is obtained as

— 1 —
C=—W,+V,)= ith F(C)=12.4037.
;i) {5.4375}“’l ©

3. The reflection point is found as

-

_ 5
R=2C-W = d F(R)=11.14.
{5.375}an (R)

4. As F(R)<F(B), Eis found as

E=2R—6={'7'75

and F(E)=52.9525
5.3125

5. Since F(E)> F(B), the new vertices are obtained as

-3.5 —-4.5 1.0
V= V= and V; =
6.625 5.375 422

6. For testing convergence, @ is computed as

3

Q= {(l 1.89 ~12.40375)° +(11.14 - 12.40375)" +(25.3125-12.40375)" }IIZ =75

As Q > &, we go to the next iteration.

Iteration §

1. As

Appendices
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-3.5 -4.5 .
I,l = . Vz = and I/3 = 1.0
6.625 5.375 4.22

F(V,)=11.89, F(V,)=11.14, F(V,)=25.3125,

1.0 —45
W=V, = and B=V, =
425 5375

2. The centroid C is obtained as

(l/l'*'Vz):{ )

C = ith F(C)=10.0..
6.0 }m <)

1
2
3. The reflection point is found as
— -9.0
R=2C-W = and F(R)=65.8125.
7.75
4, As F(R)> F(B)and F(R)> F(W), C is found by contraction as
C=05W +05C =] =\ and F(C)=875
= (. . = an: =0.
5.125 ©)
5. As F(C) > F(W), the vertices of the new simplex are found as

-3.5 -4.5 -1.5
6.625 5.375 5.125

6. For testing convergence, @ is computed as

_ ) _ 5 _ 5 1/2
Q={(11.89 10.0) +(11.143 10.0) +(8.75—10.0) } _1.466

As @ > €, we go to the next iteration.

This procedure can be continued until the specified convergence is satisfied.
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