
An Operon-Based Data Science Approach for the
Inference of tRNA and rRNA Gene Evolution

by

Tomasz Pawliszak

A thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

December 2019

Copyright c© 2019 by Tomasz Pawliszak

Thesis advisors Author

Drs. Carson K. Leung & Olivier Tremblay-Savard Tomasz Pawliszak

An Operon-Based Data Science Approach for the Inference

of tRNA and rRNA Gene Evolution

Abstract
With advancements in technology, big data can be easily generated and collected. Big

data mining and analytics is in demand for discovery of important information and

useful knowledge from these big data. An example of big data includes ribonucleic

acid (RNA) genes in bacterial genomes in the area of bioinformatics and biological

data mining. Specifically, in bacterial genomes, ribosomal ribonucleic acid (rRNA)

and transfer ribonucleic acid (tRNA) genes are often organized into operons, i.e.,

segments of closely located genes that share a single promoter and are transcribed

as a single unit. Analyzing how these genes and operons evolve can help us under-

stand what the most common evolutionary events are affecting them and give us a

better picture of ancestral codon usage and protein synthesis. We introduce a new

approach for the inference of evolutionary histories of rRNA and tRNA genes in bac-

teria called BOPAL for Bacterial Operon Aligner, which is based on the identification

of orthologous operons. This approach allows for a better inference of orthologous

genes in genomes that have been affected by many rearrangements, which in turn

helps with the inference of more realistic evolutionary scenarios and ancestors. From

our comparisons of BOPAL with other gene order alignment programs using simulated

data, we have found that BOPAL infers evolutionary events and ancestral gene orders

more accurately than other methods based on alignments. An analysis of 12 Bacillus

genomes also showed that BOPAL performs well in building ancestral histories in a

minimal amount of events.

i

Table of Contents

Abstract . i
List of Figures . v
List of Tables . vii
Acknowledgements . viii

1 Introduction 1
1.1 Thesis Statement . 2
1.2 Thesis Organization . 3

2 Biological Background 4
2.1 DNA . 4
2.2 Genes . 7
2.3 Proteins . 8
2.4 Genome . 8
2.5 Operons . 9
2.6 RNA . 10
2.7 Non-Coding RNA (ncRNA) . 10
2.8 Protein Synthesis . 11

2.8.1 Transcription . 11
2.8.2 Translation . 12

2.9 Homologs . 13
2.9.1 Orthologs . 13
2.9.2 Paralogs . 14

2.10 Phylogenetics . 15
2.11 Phylogenetic Tree . 15
2.12 Origins of Early Life . 16
2.13 Evolution of Early Genomes . 17
2.14 Genome Modifying Events . 18

2.14.1 Genome Modifying Events at the Gene Level 18
2.14.2 Genome Modifying Events at the Operon Level 20

2.15 Transfer RNA Evolution . 23
2.15.1 Evolution of Transfer RNA in Escherichia Coli 23

ii

Table of Contents iii

2.15.2 Evolution of Transfer RNA Genes in Drosophila 23
2.16 Summary . 24

3 Related Works 27
3.1 Pairwise Alignments . 27

3.1.1 Needleman-Wunsch Algorithm 28
3.1.2 Smith-Waterman Algorithm 31

3.2 Multiple Sequence Alignment . 34
3.2.1 Sequence Searching in Databases 35
3.2.2 FASTA . 36
3.2.3 BLAST . 41

3.3 Orthology Inference . 44
3.3.1 OrthoMCL . 44
3.3.2 OrthAgogue . 45

3.4 Reconstruction of Ancestral Genomes 46
3.4.1 InferCARs . 46
3.4.2 Anges . 46
3.4.3 Gap Adjacency . 47
3.4.4 ProCARS . 48

3.5 Inference of Evolutionary Histories of Transfer RNA Genes 48
3.5.1 Integer Linear Programming Algorithm 48
3.5.2 OrthoAlign and MultiOrthoAlign 49

3.6 Related Studies on Bacterial Genome, Operon, and Transfer RNA
Gene Evolution . 50

3.7 Summary . 51

4 BOPAL 53
4.1 Evolutionary Model . 53
4.2 Research Problem . 54
4.3 Annotation of the Gene Orders . 55

4.3.1 Location of the Origin and Terminus of Replication 55
4.3.2 Location of the Operons . 55

4.4 Algorithm . 56
4.4.1 Step 1: Inference of Orthologous Operons and Singletons . . . 56
4.4.2 Step 2: Inference of Duplications, Deletions, and Substitutions 58
4.4.3 Step 3: Inference of Rearrangements 59
4.4.4 Step 4: Inference of the Ancestral Gene Order 59

4.5 Runtime Complexity . 61
4.6 Summary . 62

Table of Contents iv

5 Evaluation Results And Discussion 64
5.1 Evaluation on Simulated Datasets . 64

5.1.1 Accuracy on Cherries with Neighbor 65
5.1.1.1 Accuracy on Varying Genome Sizes 70

5.1.2 Runtime . 72
5.2 Evaluation on Biological Datasets . 74
5.3 Summary . 76

6 Conclusions and Future Work 80
6.1 Conclusions . 80
6.2 Future Work . 83

Bibliography 88

List of Figures

2.1 Adenine . 5
2.2 Guanine . 5
2.3 Thymine . 6
2.4 Cytosine . 6
2.5 DNA Sugar Phosphate Backbone . 7
2.6 Genome Modifying Events - Deletion 19
2.7 Genome Modifying Events - Duplication 19
2.8 Genome Modifying Events - Inverted Duplication 20
2.9 Genome Modifying Events - Substitution 20
2.10 Genome Modifying Events - Inversion 21
2.11 Genome Modifying Events - Transposition 22
2.12 Genome Modifying Events - Inverted Transposition 22

3.1 Global Alignment - Matrix Construction 29
3.2 Global Alignment - Matrix Initialization 29
3.3 Global Alignment - Score Computation 30
3.4 Global Alignment - Traceback . 30
3.5 Global Alignment - Alignment . 31
3.6 Local Alignment - Matrix Construction 32
3.7 Local Alignment - Matrix Initialization 33
3.8 Local Alignment - Score Computation 33
3.9 Local Alignment - Traceback . 34
3.10 Local Alignment - Alignment . 34
3.11 FASTA - Initialize the Dot Plot . 37
3.12 FASTA - Score the Diagonals . 38
3.13 FASTA - Re-score the Diagonals . 39
3.14 FASTA - Join Diagonals Using Gaps 40
3.15 BLAST - Generate Words and Scan the Database 43
3.16 BLAST - Construct the Alignment 43

4.1 BOPAL Workflow . 60

v

List of Figures vi

5.1 Total Number of Events Inferred . 66
5.2 F-measure of the Reconstructed Ancestral Gene Orders 67
5.3 Strict Event Accuracy . 69
5.4 Relaxed Event Accuracy . 69
5.5 Average Size of the Events Inferred Correctly 70
5.6 F-measure of the Reconstructed Ancestral Gene Orders for Varying

Genome Sizes . 71
5.7 Strict Event Accuracy for Varying Genome Sizes 71
5.8 Relaxed Event Accuracy for Varying Genome Sizes 72
5.9 Average Runtimes . 72
5.10 Runtime on Large Genomes with DupLoss 73
5.11 Runtime on Large Genomes without DupLoss 73
5.12 Tree Used for the Evaluation on Biological Datasets 75
5.13 Size Distribution of the Duplications 76
5.14 Size Distributions of the Deletions . 76

List of Tables

5.1 Average Runtimes for n = 1000. 73
5.2 Description of the 12 Bacillus Genomes Studied 74
5.3 Number of Events Identified on the Dataset of 12 Bacillus Genomes . 75

vii

Acknowledgements

I would like to thank my academic supervisors, Dr. Carson K. Leung and Dr.

Olivier Tremblay-Savard, for their advice, wisdom and guidance during my M.Sc.

thesis.

I would thank my internal examiner, Dr. Michael Domaratzki, and my external

examiner, Dr. Georg Hausner from Microbiology, for their constructive comments and

suggestions towards this M.Sc. thesis. Also thanks Dr. Max Turgeon for chairing my

M.Sc. thesis oral defense.

I would like to thank all of the students in the Bioinformatics Lab and the Data

Science, Database & Data Mining Lab for all of their advice and feedback to help

me become a better public speaker. I would like to thank Meghan Chua for his help

in this research project and for being a good friend. I would like to thank Vince for

encouragement and support during my M.Sc. thesis. I would also like to thank my

mother and sister for believing in me and being patient.

Tomasz Pawliszak
B.Sc.(Maj.) in Microbiology, The University of Manitoba, 2012
B.C.Sc.(Hons.), The University of Manitoba, 2015

The University of Manitoba

December 05, 2019

viii

Chapter 1

Introduction

With advancements in technology in the current era of big data (including rich

and complex data), high volumes of a wide variety of valuable data (which can be

of different level of veracity) have been generated and collected from various data

sources at high velocity. Hence, big data mining and analytics is in demand for

discovery of important information and useful knowledge from these big data. An

example of big data includes non-coding ribonucleic acid (ncRNA) sequences in the

area of bioinformatics.

With all the advancements in sequencing and culturing methods, coupled with bur-

geoning interests in gut microbiomes [DGKB19, FKA+19] and transmission risks of

pathogenic microbes [KAS19, PWW+19], bacterial genomes are now being sequenced

at a very fast pace. This wealth of genetic information provides a great opportunity to

study bacterial genome evolution, compare evolutionary rates between different gen-

era, and study the prevalence, frequencies and average size of different evolutionary

events.

An interesting aspect of bacterial genomes is the presence of operons [JPSM60]

(operons have been identified more recently in eukaryotes [Blu04], but they seem to

be more prevalent in prokaryotes). An operon is basically a cluster of closely located

genes (also called polycistronic genes) that share a single promoter and are transcribed

simultaneously into a single polycistronic messenger ribonucleic acid (mRNA). These

genes can then be translated together, or separately when spliced into separate mR-

1

Chapter 1: Introduction 2

NAs (differential expression of polycistronic genes has also been observed [CCM+14]).

Some of the most studied and well-defined operons in bacteria are ribosomal RNA

(rRNA) and transfer RNA (tRNA) operons [KDS00, TBBT15]. There are several

reasons for the interest in these operons, since those genes are fundamental for pro-

tein synthesis, and their numbers and organization can be used to better understand

codon usage [DNK96]. Comparing the rRNA and tRNA gene contents and organiza-

tion in different species and inferring evolutionary scenarios allows to make predictions

about core sets of tRNA genes, ancestral protein synthesis, ancestral codon usage and

evolutionary rates.

1.1 Thesis Statement

In this M.Sc. thesis, I propose BOPAL (Bacterial OPeron ALigner) [PCLT19], a new

approach that is designed to consider the organization of genes into operons and to

be more flexible to the relocation of operons into different regions of the genome be-

cause of rearrangements. Instead of trying to find orthologous genes, which might

not be located in the same region in both gene orders being compared, our method

is based on identifying orthologous operons of rRNA and tRNA genes. Indeed, these

operons tend to be more conserved in general, since rearrangement events mostly

change their location inside the genome, but rarely modify their composition (e.g., a

rearrangement event is unlikely to split an operon into two parts) [TBLE15]. Consid-

ering operons also allows our method to infer more realistic events by not considering

events that would affect blocks of genes that are not part of the same operon, so

technically not close to each other on the chromosome. In this thesis we consider the

two small phylogeny problem (2-SPP). Given two gene orders G1 and G2, and a set of

evolutionary events, the 2 small phylogeny problem asks us to infer an ancestral gene

order such that the number of operations required to reconstruct the ancestral gene

order is minimized. Our heuristic, which considers duplications, deletions, inversions,

transpositions and substitutions, can be used for pairwise comparisons (2-SPP), or

it can be used to reconstruct the complete evolutionary history and ancestors of a

set of gene orders on a phylogeny by solving instances of the 2-SPP in a post-order

Chapter 1: Introduction 3

traversal of the tree.

We validate our new approach on simulated datasets (cherries and cherries with

a neighbor), and we also test it on the same Bacillus dataset of 12 genomes used

in [ARC13, BE14]. Our results show that with our simulated data, BOPAL has the

ability to infer events and ancestral gene orders with higher accuracy than other

gene alignment algorithms. Similarly, on a biological dataset, BOPAL has performed

equally as well as multiOrthoAlign [BE14] and DupLoCut [ARC13] at generating the

ancestral tree in a minimal amount of events.

Some key questions we will answer in this M.Sc. thesis are:

1. “Can the alignment of gene orders from operons be used to infer an orthologous

relationship between two operons?”

2. “Can strains on neighboring branches help infer rearrangement events on the

correct branch for two siblings sharing the same parental node?”

3. “Can we prevent incorrectly labeled events from cascading up the phylogeny?”

1.2 Thesis Organization

In Chapters 2 and 3, I will present background material in terms of the biological

aspect and the methodological aspect of the project. Further, I will also introduce

my method BOPAL in Chapter 4, and discuss our evaluation results and findings in

Chapter 5. Both Chapter 4 and Chapter 5 have been adapted from the publication in

BMC Genomics [PCLT19]. Finally, in Chapter 6, I will conclude by discussing where

BOPAL performed well and where there is room for improvement.

Chapter 2

Biological Background

This chapter introduces common biological concepts that will be used throughout

this M.Sc. thesis. The purpose is to provide the reader with insight and background

knowledge about the biological aspect of this M.Sc. thesis rather than just the compu-

tational aspect. This will hopefully provide a better understanding as to why certain

design decisions were made.

2.1 DNA

Deoxyribonucleic acid (DNA) is present in all living organisms. It is the main mech-

anism by which living organisms pass genetic information from one generation to the

next. DNA contains fundamental instructions enabling an organism to grow, develop,

function, and reproduce. A DNA sequence consists of a chain of nucleotides. A nu-

cleotide is the basic unit of DNA. It consists of three main components, a phospate

group, a deoxyribose sugar, and a nitrogen-containing nucleobase. Depending on

the nucleobase, a nucleotide can either be a pyrimidine or a purine. The pyrimidines

consist of cytosine and thymine. The purines consist of adenine and guanine. See Fig-

ures 2.1, 2.2, 2.3, and 2.4 for the molecular structure of each nucleotide. Nucleotides

are able to form base pairs with each other. Generally, the purines form hydrogen

bonds with pyrimidines. Specifically, adenine forms hydrogen bonds with thymine

and guanine forms hydrogen bonds with cytosine. We will discuss this in more detail

4

Chapter 2: Biological Background 5

HO

OH

O

N

N

N

N

NH₂

Adenine

Figure 2.1: Adenine

HO

OH

O

N

N

NH

N
NH₂

Guanine

O

Figure 2.2: Guanine

in Section 2.4. DNA sequences are chains of nucleotides held together by covalent

bonds. A covalent bond is a molecular bond where two atoms share an electron with

each other. A nucleotide forms a covalent bond with a neighboring nucleotide by

Chapter 2: Biological Background 6

HO

OH

O

NH

N
O

Thymine

O

Figure 2.3: Thymine

HO

OH

O

N

N
O

Cytosine

NH₂

Figure 2.4: Cytosine

sharing an election with the sugar component with the neighbor’s phosphate group.

As a result this forms an alternating sugar phospate backbone. See Figure 2.5 for the

molecule structure of a DNA segment.

Chapter 2: Biological Background 7

O

NH

N
O

Thymine

O

O

N

N O

Cytosine
NH₂

O N

N NH

N
NH₂

Guanine

O

OH

O N

N
N

N

NH₂

Adenine

P

O

OO

O

P

O

OO

O

P

O

OO

O

P

O

OO

O

5’ End

3’ End

Phosphate

Deoxyribose

Figure 2.5: DNA Sugar Phosphate Backbone

2.2 Genes

A gene is a sequence of nucleotides within the DNA. The sequence consists of a

combination of adenine (A), thymine (T), guanine (G), and cytosine (C). The length

of a gene may vary from a few hundred nucleotides to several thousand nucleotides.

A genome may contain many genes, therefore, a gene is a sub-component of the

genome. We will discuss genomes in more detail later in Section 2.4. Genes are

generally used for the purpose of synthesizing organic molecules that will be utilized

by the organism for the purpose of structural support, functional support, inhibitors

or facilitators of events within the cell, etc. The genome is generally divided into

coding regions and non-coding regions. The non-coding regions are generally ignored

during transcription, however, they are usually located between the coding regions

and act as separators. The size of a non-coding region can be used to predict whether

a group of coding regions are in a close proximity to be transcribed together. Genes

are located in the coding regions. The coding regions in the genome are what is used

during transcription in order synthesize organic molecules. These regions are coded

using triplets of nucleotides to describe the components required to construct the

Chapter 2: Biological Background 8

molecule. However, certain organic molecules may require multiple genes in order to

be synthesized. Each of these genes acts as a sub-component to the molecule being

synthesized. Various combinations of genes transcribed together result in the organic

molecule having different properties and/or functions.

2.3 Proteins

The sequence of nucleotides within a gene are used to synthesize organic molecules

called proteins. A protein is a large complex molecule that consists of one or more

amino acid chains. These molecules are an essential part of all living organisms since

they provide structure, regulate processes within the body, and transport various

materials throughout the body. The basic unit of a protein consists of an amino acid.

An amino acid is an organic compound consisting of a carboxyl group, an amino

group, and a side chain that is specific to each individual amino acid. These organic

molecules link together to form an amino acid chain called a polypeptide. The length

of a polypeptide can vary depending on the protein but is generally between 2 and

50 amino acids long. These polypeptides join together to form a protein molecule.

Hence a protein molecule consists of multiple polypeptides. Proteins fall into one

of three general categories depending on their function [Pet03]. Fibrous proteins

provide structural support such as bone, connective tissue and muscle fiber. Globular

proteins are utilized for the purpose of regulating chemical processes within the body

and transporting material throughout the body. Finally, membrane proteins are

utilized for the purpose of relaying cellular signals within the body allowing cells to

communicate with each other.

2.4 Genome

The genetic material of an organism is called the genome. The genome contains all of

the genes required to build and maintain the organism. However, the genome may not

necessarily consist of one long continuous sequence of genes. The genome may be bro-

ken down into several segments called chromosomes. All the chromosomes are present

Chapter 2: Biological Background 9

in all different cell types. However, these chromosome might not be compressed in

the same way. Some regions are going to be more accessible in some cell types, some

other regions are going to be more compacted. The reason for this is differential gene

expression. However, depending on the type of organism the general characteristics

of the genome will be different. Organisms generally fall into one of two categories,

prokaryotes or eukaryotes. Prokaryotes are single celled organisms with no nucleus.

Generally, bacteria, cyanobacteria and Archaea are considered prokaryotes. Genomes

in the prokaryotes are generally circular, however, they could be linear genomes and

could consist of multiple chromosomes. Eukaryotes could be single celled or multi-

cellular organisms, however, the key difference between prokaryotes and eukaryotes

is that eukaryotes have a nucleus. In eukaryotes the nucleus is where the genetic

material is stored. Generally, eukaryotic genomes are linear and consist of multiple

chromosomes. Interestingly, it has been observed that genomes in eukaryotes tend to

have a lot more repeated regions, more genes, more complex promoter regions, more

non coding regions and spliceosomal introns than prokaryotic genomes [TR84]. For

this reason, genomes in eukaryotes tend to be a lot longer compared to prokaryotes.

2.5 Operons

An operon is a cluster of genes in close proximity to each other under the control

of a single promoter. The classic lac operon consists of 3 major components, the

promoter, the operator, and the genes [HG02]. However, this does not describe all

possible operons. Operators are not necessarily found in all operons. In addition,

we can have positive or negative regulators and regulatory proteins. The promoter

is located upstream of the genes being regulated and is used to initiate transcription

by allowing the ribonucleic acid (RNA) polymerase to bind to the DNA. See 2.8.1

for more details about transcription. The operator is located downstream of the

promoter but upstream of the genes. Proteins called repressors can bind to the

operator site to prevent the RNA polymerase from transcribing the genes into a

messenger RNA molecule by blocking its traversal of the DNA. Due to the genes

being in close proximity to each other the RNA polymerase transcribes these genes

Chapter 2: Biological Background 10

into a single messenger RNA strand. Depending on the organism, the messenger RNA

synthesized by the RNA polymerase may be the final product or it may undergo

further processing before it is translated. See Section 2.8.2 for more details about

translation.

2.6 RNA

Ribonucleic acid (RNA) is a fundamental molecule that is required for synthesizing

proteins. RNA is similar to DNA, however, there are several key differences between

them. Firstly, the uracil (U) nucleotide replaces the thymine (T) nucleotide in RNA.

Secondly, RNA is always a single stranded molecule. However, RNA may fold on

itself to form a thermodynamic more favorable state to stabilize the molecule to

prevent it from degrading rapidly. Thirdly, DNA is used for long term storage of

genetic information whereas RNA is a molecule that will degrade over time. This

means the cell must first synthesize RNA molecules in order to synthesize protein

molecules. This is the so called central Dogma of molecular biology, we go from DNA

to RNA to Protein. Cells use this mechanism to control which protein molecules will

be synthesized and which ones will not. This prevents the cell from wasting resources

and energy synthesizing components that will not be utilized.

2.7 Non-Coding RNA (ncRNA)

Non-coding RNA is a molecule that is transcribed from the DNA, however, the RNA

molecule is not translated into a protein molecule [MM06]. Transcription is a process

that copies a section of the DNA into a newly synthesized complementary RNA

molecule. We will discuss transcription and translation in more detail in Section 2.8.

These genes are often described as functional non-coding RNA genes. These genes

are generally used to regulate gene expression at the transcription level. Non-coding

RNAs generally fall into two main categories. The first category comprises of non-

coding RNAs that are shorter than 30 nucleotides and the second category comprises

of non-coding RNAs that are longer than 200 nucleotides. Two very well known classes

Chapter 2: Biological Background 11

of non-coding RNA molecules include transfer RNAs (tRNA) and ribosomal RNAs

(rRNA). Both transfer RNA (tRNA) and ribosomal RNA (rRNA) are fundamental

molecules required for protein synthesis. Each transfer RNA (tRNA) consists of an

anticodon sequence that can recognize a messenger RNA (mRNA) nucleotide triplet

and an amino acid that is specific to the anticodon. Finally, ribosomal RNA (rRNA)

is the molecular component that assembles on the messenger RNA (mRNA), traverses

the strand allowing transfer RNA (tRNA) molecules to bind and transfer their amino

acid to assemble a polypeptide chain that will go to form a protein molecule.

2.8 Protein Synthesis

2.8.1 Transcription

Transcription is the first step of protein synthesis [Pai96]. This process copies a

segment of the DNA into a newly synthesized RNA molecule. The newly synthesized

molecule is called messenger RNA. The messenger RNA is not an identical copy

of the DNA from which it was transcribed (the DNA template strand), rather, it

is complementary to the DNA template strand. Additionally, the messenger RNA

contains uracil instead of thymine. In order to avoid wasting resources and energy

synthesizing messenger RNA when it is not needed there are additional proteins that

are needed to initialize transcription. These proteins will bind to the promoter and

enhancer regions which are upstream of the region that needs to be transcribed in the

DNA. These small protein molecules are called transcription factors and are used to

allow the RNA polymerase to bind to the DNA in order for transcription to initialize.

The transcription initiation complex forms once the RNA polymerase binds. As

the complex traverses the DNA segment, it elongates the messenger RNA molecule

by matching complementary nucleotides with the DNA template strand. Once the

complex reaches the end of the segment, transcription terminates by unbinding from

the DNA and the messenger RNA is released into the cytoplasm.

Chapter 2: Biological Background 12

2.8.2 Translation

Translation is the second step of protein synthesis [Pai96]. In this process the mes-

senger RNA is used to assemble a chain of amino acids. Amino acids are the basic

building blocks of proteins and there are 20 unique amino acids. Translation proceeds

in 3 phases, initiation, elongation, and termination.

1. Initiation. The ribosome attaches to the messenger RNA. The ribosome is

responsible for traversing the messenger RNA and linking the amino acids to-

gether to form a chain. The ribosome consists of two major components, a

small subunit and large subunit. The small subunit is responsible for reading

the messenger RNA strand and the large subunit is responsible for linking the

amino acids. Initially, the small subunit attaches to the ribosome binding site

that includes the start codon in the messenger RNA. A codon is a sequence of

3 nucleotides which is used to specify one of the 20 amino acids. Since there

are 64 possible codons and only 20 amino acids some codons specify the same

amino acid. The start codon consists of the nucleotides, adenine, uracil, and

guanine or AUG. AUG represents the amino acid methionine. A transfer RNA

carrying a methionine amino acid binds to the messenger RNA’s start codon by

forming hydrogen bonds with its anticodon. Transfer RNAs are molecules used

to move amino acids from the cytoplasm to the ribosome for protein synthe-

sis. The anticodon of the transfer RNA is complementary to the codon of the

messenger RNA. At this point the large ribosome subunit is able to attach to

the small subunit, messenger RNA, and transfer RNA completing the ribosome

complex.

2. Elongation. The ribosome traverses to the next codon in the messenger RNA.

The transfer RNA with the appropriate anticodon then binds and transfers the

amino acid to the ribosome. The ribosome then attaches the amino acid to the

growing amino acid chain. The process is mediated with the help of various

elongation factors and repeated until the ribosome encounters a stop codon.

3. Termination. Begins when the ribosome reads a stop codon. A stop codon

Chapter 2: Biological Background 13

could be either, UAG, UAA, or UGA. There are no transfer RNAs with these

anticodons therefore the ribosome recognizes that theses are stop codons. The

ribosome complex with the aid of termination factors releases the amino acid

chain and then comes apart. The amino acid chain starts folding while being

synthesized on the ribosome and it can interact with other synthesized amino

acid chains

in order to form into the appropriate protein molecule. Chaperons are protein factors

that can mediate protein folding to ensure the generation of functional proteins.

2.9 Homologs

In evolutionary biology, homology refers to the existence of a shared ancestry. Nor-

mally we do not define homology for organisms since it does not work for organisms

as a whole. The reason for this is that all living organisms share a common ancestry.

Instead, homology is normally defined in terms of sequences, genes, limbs, organs, or

structure. In this M. Sc. thesis we will be be focusing on the development of bac-

terial gene orders that have descended from a common evolutionary ancestor. Gene

orders that are a strong match is evidence that these two gene orders are related by a

common ancestor. However, homology does not indicate whether the two gene orders

have a shared ancestry due to a speciation event or a duplication event. Gene orders

that are related due a speciation event are generally referred to as orthologous genes

and gene orders that are related due to a duplication event are generally referred to

as paralogous genes.

2.9.1 Orthologs

Orthologous DNA segments can be described as segments of the DNA in two different

species that were present in a common ancestor but these segments evolved indepen-

dently after a speciation event. This means the segment of DNA was originally present

in an ancestor and the ancestor passed this genetic material to its offspring. After

the offspring diverged into two separate species, any changes to the segment in one of

Chapter 2: Biological Background 14

the species would not be reflected in the other because there is no exchange of genetic

material between them. This implies that the DNA segments in the two species may

not necessarily retain the same sequence originally present in the common ancestor.

If the changes introduced into the segment were advantageous, then generally there

were environmental pressures that favored these changes. As a result, these changes

became the norm in that particular species since they probably survived longer and

produced more offspring. This results in the DNA segments diverging from the origi-

nal sequence in the ancestor. Over long periods of time these sequences diverge even

more. However, in order for the sequence to remain functional there must be cer-

tain regions in the segment that must be retained otherwise the byproduct will be

non-functional. We can use these conserved regions to identify orthologous segments

of DNA. If these region were conserved in both species, then it’s strong evidence

that these regions were present in the ancestral genome and provides insight into the

ancestral genome [JRWK02].

2.9.2 Paralogs

Paralogous DNA segments can be described as segments of the genome that have

been duplicated and inserted into another region of the genome [GVSV04]. This

is the key difference between paralogs and orthologs. If a region of the genome is

duplicated before the speciation event, then both of the descendants will inherit the

paralogous regions. If the region is duplicated after the speciation event, then only one

of the species will have the paralogous segment. This makes reconstructing ancestral

genomes difficult since we do not have ancestral genomes available as a reference. If

the only one of the species has an additional segment, then we have to decide whether

this region was duplicated before the speciation event and the region was deleted from

the sibling or whether the region was duplicated after the speciation event and only

one of the siblings had the region. Paralogs are advantageous if an organism is to

acquire a new functional byproduct. Paralogs generally do not interfere with the

original segment. This means there is less pressure to maintain the duplicate segment

[GVSV04]. This allows for minor mutations to be introduced into the duplicates.

Chapter 2: Biological Background 15

These mutations could include nucleotide deletions or insertions. This will generally

result in a functional byproduct, however, due to the mutations the structure of the

byproduct will change which can result in an altered function. Another possibility if

there is no pressure to maintain the duplicate segment is that there could be so many

mutations introduced that the byproduct is no longer functional. These are called

pseudogenes. In addition to paralogs, we could potentially have xenologs. Xenologs

are homologous segments that have been acquired via horizontal gene transfer. They

are rare but are seen in bacterial genomes that are good at transferring exogenous

DNA into their cells.

2.10 Phylogenetics

Phylogenetics is the branch of bioinformatics that studies the evolutionary history of

organisms and reconstructs the evolutionary relationships between a set of sequences

or species. In order to deduce which species are closely related and which species are

distantly related, we need to be able to measure the amount of similarity between

them. Generally, in phylogenetics we compare characteristics that are inherited from

generation to generation including, DNA, morphological features such as beaks in

birds, RNA, etc. [Hal13] A relatively high amount of similarity between two organisms

is an indicator that these two organisms shared a recent common ancestor. The

amount of similarity might be an indicator of whether they shared a recent common

ancestor or whether they shared a more distant ancestor. Two organisms exhibiting a

relatively low amount of similarity is an indicator that these organisms are distantly

related. Using this information we can identify which organisms are similar and which

are distinct and predict how these organisms diverged throughout history.

2.11 Phylogenetic Tree

A phylogenetic tree is a graph that is used to visually represented the genetic re-

latedness and evolutionary relationship of a group of organisms [Hal13]. There are

various sophisticated techniques used to construct phylogenetic trees but the core

Chapter 2: Biological Background 16

idea of these techniques is that organisms exhibiting a high amount of similarity will

be have fewer branches separating them compared to a pair of organisms exhibiting

a low amount of similarity. The leaf nodes of a phylogenetic trees generally represent

extant species. Extant species refer to organisms we can observe today. The internal

nodes of the tree represent ancestors that no longer exist. Generally these trees are

constructed such that the number of branches required to represent the evolutionary

history between these extant organisms is minimized. In some phylogenetic trees the

branch lengths represent estimates as to how many years passed between each node

in the tree. There are two types of phylogenetic trees, a rooted phylogenetic tree

and an unrooted phylogenetic tree. A rooted phylogenetic tree has a node in the

tree that is the common ancestor for all of the organisms in the tree. It is generally

used to provide a time line of when and where species diverged throughout history.

In an unrooted phylogenetic tree we do not have to infer a common ancestor for the

organisms in the tree. The root node in the tree is omitted. The general purpose of

an unrooted phylogenetic tree is to visually show how similar the organisms are to

each other without indicating a root node.

2.12 Origins of Early Life

Scientists hypothesize (Oparine-Haldane theory) that the early oceans formed a pri-

mordial soup over 4 billion years ago [FEF09]. The primordial soup was rich in terms

of organic compounds. Due to these complex, organic compounds being present in

the environment the early ancestral species were able to survive by depending on

external sources for nutrients. For this reason, there was no need for organisms to

synthesize these compounds on their own. Hence, the early organisms were termed as

heterotrophs. Heterotrophic organisms are unable to synthesize organic compounds.

As a result, these organisms rely on the environment to provide these nutrients. Sci-

entists suggest that these ancestral species populated the oceans and over time certain

organic compounds became exhausted. Due to an exhaustion of certain organic ma-

terial it became necessary for organisms to synthesize these compounds themselves.

As a result, this led to the first autotroph. Autotrophs were able to use the inorganic

Chapter 2: Biological Background 17

material in the environment to synthesize organic compounds required for molecular

processes. As a result, there was strong selective pressure favoring organisms that

could synthesize these organic compounds on their own. This led to formation of

the first metabolic pathway. Metabolic pathways are responsible for synthesizing and

catabolizing organic compounds. With the formation of metabolic pathways, organ-

isms became less reliant on the environment to provide all of the organic compounds

[FEF09]. As a result metabolic pathways became the main mechanism for providing

energy to run molecular processes required for life.

2.13 Evolution of Early Genomes

Early genomes were simple, short sequences and contained few metabolic pathways.

These genomes consisted of approximately of 20 to 100 genes [FEF09]. These simple,

short genomes have undergone gradual changes throughout history in order to develop

new metabolic pathways. In order to introduce a new metabolic pathway, the genomes

had to be extended [FEF09]. Various mechanisms were responsible for extending the

genome and developing new metabolic pathways including, gene duplication and exon

shuffling. Gene duplication was one of the first fundamental mechanisms driving the

evolution and elongation of early genomes. The primary function of gene duplication

is to create new genes and new metabolic pathways from pre-existing ones. Genes

that have originated as duplicates are called paralogs. We’ve introduced and discussed

paralogs in 2.9.2. A paralogous gene may undergo successive duplications forming a

paralogous gene family. Upon a close examination of eukaryotes, bacteria and Archaea

genomes researchers hypothesize that the vast majority of genes within a genome are

the result of tandem duplications. However, researchers are unable to explain how the

first ancestral genomes originated. Additionally, exon shuffling allowed for the fusion

of cistronic regions. The segment of the gene that codes for a peptide is called the

cistronic region. With the fusion of multiple cistronic regions, this resulted in proteins

with multiple functions [FEF09]. These types of genes commonly code for catalytic

enzymes used in metabolic pathways and are generally unstable and localized only

within cells.

Chapter 2: Biological Background 18

2.14 Genome Modifying Events

In order to infer an evolutionary history of a genome we have to identify the genome

content modifying events that we will be searching for. This allows us to perform

an evidence based approach when inferring the evolutionary history of a genome.

We will be scanning the genomes identifying regions of similarity and regions that

are distinct. With differing regions, we will be searching for evidence to identify the

sequence of events that must have occurred in order to explain the change. We will

be searching for evidence of duplications, deletions, inversions, transpositions, and

inverted transpositions.

2.14.1 Genome Modifying Events at the Gene Level

Duplication is the process of copying a region of the genome, denoted as the source, to

another region of the genome, denoted as the target, resulting in two identical copies

within the genome. We can have duplications of individual genes, or a group of genes

clustered together, or whole operon duplications. Deletion is the process of removing

genes from genomes. Once a gene is removed it is no longer transcribed since it is no

longer within the genome. Deletions can remove individual genes, or a group genes

in close proximity to each other, or whole operons. Interestingly, we could also have

deletions and duplications within a gene’s nucleotide sequence. A series of deletions

and/or duplications of a gene’s nucleotide sequence could potentially result in a new

gene. This would result in a slightly modified amino acid sequence when the genes

within an operon are transcribed and translated. However, the overall functionality

of the protein generally would not change. The modified amino acid sequence would

retain the original protein’s functionality. Generally, in these types of mutations the

amino acids being modified in the amino acid sequence are interchangeable due to

them having similar chemical characteristics. In the context of transfer RNA (tRNA)

coding genes we could potentially see that one amino acid was substituted for another.

These mutations are called substitutions and we rarely see these types of mutations

in protein coding genes. We could also have less extreme mutations of gene sequences

Chapter 2: Biological Background 19

● Deletions/Losses remove either a singleton, a gene or a segment of
genes inside an operon or a full operon from the genome

1

Initial: <o> < t >

Final: <o> < t >

Deletion

Figure 2.6: Genome Modifying Events - Deletion

● Duplications copy either a singleton, a gene or a segment of genes
inside an operon, or a full operon to another position in the genome

● Singleton genes – Singleton genes are genes that do not belong to
an operon

1

Initial: <o> < t >

Final: <o> < t >

Duplication

Figure 2.7: Genome Modifying Events - Duplication

where the gene is not changed but the codon of the gene changes. As a result the

amino acid would match but the codons would not. These are called silent mutations.

See Figures 2.6, 2.7, 2.8 and 2.9 for examples.

Chapter 2: Biological Background 20

● Inverted Duplications copy either a singleton, a gene or a segment of
genes inside an operon, or a full operon to another position in the
genome that crosses the axis of replication (origin or terminus)

1

Initial: <o> < t >

Final: <o> < t >

Duplication

Figure 2.8: Genome Modifying Events - Inverted Duplication

● Substitutions are an event that modify the anticodon of a tRNA gene
and/or reassign a tRNA to another identity class

1

Initial: <o> < t >

Final: <o> < t >

Substitution

Figure 2.9: Genome Modifying Events - Substitution

2.14.2 Genome Modifying Events at the Operon Level

In bacterial genomes, genes tend to be located mostly on the leading strand of DNA

(pointing away from the origin of replication or in other words pointing towards the

Chapter 2: Biological Background 21

terminus of replication) [Roc04], so as to avoid potential head-on collisions between

the RNA and DNA polymerases [Bre88]. As observed in a previous study of the

Bacillus genus [TBLE15], inversions are mostly occurring around one of the axes of

replication (origin or terminus) because this causes the genes to stay on the leading

strand.

In circular unichromosomal genomes, an inversion moves genes across an axis

of replication (origin or terminus) resulting in the sequence being in the opposite

orientation. This results in the genes being reversed. Inversions generally flip entire

operon sequences and do not split an operon into multiple operons. The required

components to transcribe an operon are located at the 5’ end of an operon and

splitting the operon in half would render the other half of the operon unable to

be transcribed due to missing components. Therefore inversions generally flip one

or more operons in place leaving operon sequences intact. See Figure 2.10 for an

example.

● Inversions reverse the order and changes the sign of the gene
affected. Inversion events can only affect singletons or entire
operons and must occur around an axis of replication (origin or
terminus). The axis of replication does not move because it’s not a
gene.

1

Initial: <o> < t >

Final: <o> < t >

Inversion

Figure 2.10: Genome Modifying Events - Inversion

Transpositions generally fall into one of two categories, replicative transpositions

or conserved transpositions. Replicative transpositions make a copy of genome seg-

ment and relocate the copy into another region of the genome. Conserved trans-

Chapter 2: Biological Background 22

● Transpositions move either singletons or entire operons to a
different place in the genome but does not cross the axis of
replication (origin or terminus)

1

Initial: <o> < t >

Final: <o> < t >

Transposition

Figure 2.11: Genome Modifying Events - Transposition

● Inverted Transpositions move either singletons or entire operons to
a different place in the genome that crosses the axis of replication
(origin or terminus)

1

Initial: <o> < t >

Final: <o> < t >

Transposition

Figure 2.12: Genome Modifying Events - Inverted Transposition

positions excise a region of the genome and reinsert it into another location in the

genome. In this thesis, replicative transpositions will be referred to as duplications

and conserved transpositions will be referred to as transpositions. An inverted trans-

Chapter 2: Biological Background 23

position is a combination of an inversion followed by a transposition or a transposition

followed by an inversion. See Figures 2.11 and 2.12 for examples.

2.15 Transfer RNA Evolution

2.15.1 Evolution of Transfer RNA in Escherichia Coli

Withers et al. [WWD06] focused on the evolution of tRNA genes in 5 different Es-

cherichia coli strains. Closely related strains were selected in order to minimize the

number of evolutionary events between the genomes [WWD06]. An analysis of the

phylogeny was performed by constructing an archaeological map in order to identify

the evolutionary events between the genomes. In order to construct an archaeo-

logical map, an alignment was performed between Salmonella typhimurium and the

other four Escherichia coli strains using MultipPipMaker [WWD06] since Salmonella

typhimurium is the common ancestor of the other four strains. After an optimal

alignment was constructed, Kimuras two-parameter model was used to compute the

number of evolutionary events between the genomes [WWD06]. Using this informa-

tion a tree was constructed to infer potential ancestral gene orders. As a result, it

was discovered that horizontal gene transfers, duplications, and losses were the main

content modifying events of tRNA gene orders [WWD06]. Interestingly, the authors

discovered that the tRNA backbone, which is a set of conserved tRNA genes across

multiple genomes, is a strong regulator of what genes are utilized during protein

synthesis [WWD06].

2.15.2 Evolution of Transfer RNA Genes in Drosophila

In another study, Rogers et al. [RBG10] studied the evolution of tRNA gene orders

by performing an analysis on 12 Drosophila genomes. Here the authors focused on

identifying orthologous tRNA genes by performing an analysis of the flanking regions

in the tRNA genes [RBG10]. The flanking regions consist of the promoter and protein

binding sites required for transcription. However, flanking regions are not transcribed

Chapter 2: Biological Background 24

into RNA. In general, mutations in these regions result in the gene no longer being

functional, therefore these regions are generally conserved [RBG10]. For this reason,

the authors used these flanking regions to identify orthologous tRNA genes. Two

tRNA genes exhibiting similarity in the flanking region is a strong indicator of these

genes being orthologous [RBG10]. Each of the flanking regions in the Drosophila

genomes were mapped to flanking regions in D. melanogaster. A unique mapping

was a strong indicator of an ortholog and multiple mappings were an indication of

duplication events. Again, the authors found that 110 tRNA genes were conserved

across 11 of the 12 Drosophila genomes indicating a core set of tRNA genes regulating

protein synthesis [RBG10].

2.16 Summary

In this chapter we introduced several concepts to better understand the biological

aspect of this M.Sc. thesis. We started out by identifying the various components

of an operon. An operon is a cluster of genes in close proximity to each other under

the control of a single promoter. We went into further detail by describing what

a gene is. A gene is a sequence of nucleotides connected by covalent bonds. We

also learned that the genome comprises all of the genetic material (coding and non-

coding). Additionally, we identified the functional role of gene operons. As we have

learned in this chapter, the primary purpose of an operon is to synthesize proteins.

Proteins are required by all living organisms in order to function properly. We went

on to describe the entire protein synthesis process. We learned that operons first have

to be transcribed into a mRNA molecule and then the mRNA molecule is translated

in order to construct the amino acid chain which becomes the protein molecule.

We went on to identify the concepts we will be addressing in this M.Sc. thesis.

We described what are homologous sequences and further noted that homologous se-

quences can fall into two general categories, orthologs and paralogs. We stated that

orthologous operons were present in the ancestral genome prior to the speciation event

whereas paralogous operons are the result of a duplication event after the speciation

event. It is important to be able to make the distinction between the two. We are

Chapter 2: Biological Background 25

primarily interested in identifying orthologous operons. The reason being that or-

thologous operons were present in the original ancestral genome and allow us to infer

an evolutionary history for these operons. We want to be able to apply our algorithm

in a phylogenetic context and in order to do that we had to discuss what a phylo-

genetic tree is. We learned that a phylogenetic tree is a visual representation of the

evolutionary history and relationships between various organisms. Phylogenetic trees

are one of the fundamental components required by our algorithm. The reason being

that a phylogenetic tree informs us in what order to compare the various genomes in.

The order in which the comparisons are performed will affect the ancestral genome

reconstructed.

Finally we conclude the chapter by discussing previous studies that suggest how

operons and genomes gradually evolve over time. We learned that gene duplication

was the primary mechanism for elongating a genome and for creating a new metabolic

pathway. Additionally, we learned that changes which render proteins non-functional

are not favoured and are generally avoided. Generally changes to the genomes are slow

and minimal when it comes to genes required for survival. Additionally, we learned

from studies researching tRNA genes in Escherichia coli and Drosophila that these

genes are very well preserved across several species even after speciation. Interestingly,

we also learned that there appears to be a core of tRNA genes that are preserved

among all organisms within a given phylogeny.

In any research project having the background knowledge surrounding the field

of study is always beneficial as it allows us, as a researcher, to understand the scope

of the problem, whether the goals are realistic or not, and to be able to interpret

the results, etc. At the same time it allows us to make decisions when designing

the algorithm and the experiment. As in most cases, the data being analyzed has

a set of constraints. By learning about the data’s background we can identify what

those constraints are. In this M.Sc. thesis we are analyzing operons containing tRNA

and rRNA genes and it is important to understand what an operon is, what is its

role and function in living organisms, know the difference between orthologous and

paralogous operons, the scope in which we want to apply our algorithm, how these

operons change over time, identify the possible events that could have contributed to

Chapter 2: Biological Background 26

their changes over time, and what events did not.

Chapter 3

Related Works

This chapter will introduce fundamental methods and algorithms that have in-

spired BOPAL. Our goal is to introduce the reader to these methods so they will

understand the inspiration behind BOPAL. The purpose of this chapter is to introduce

and familiarize the reader with all of the required background knowledge to fully

understand the method used in this thesis.

3.1 Pairwise Alignments

In comparative genomics we generally want to be able to compare two sequences to

infer differences and similarities between them. These sequences could include, DNA

sequences, RNA sequences, protein sequences, etc. In order to compare two sequences

we need to perform an alignment. An alignment can be described as an arrangement of

two sequences based on a match mismatch scheme. The comparison of two sequences

is denoted as a pairwise alignment. We generally use alignments to identify structural

similarities, functional similarities, and common evolutionary characteristics such as

deletions or duplications between sequences. To perform a pairwise alignment we

generally use one of the two following techniques, global alignment or local alignment.

We will go into more detail about the global alignment and local alignment in the

following sections.

27

Chapter 3: Related Works 28

3.1.1 Needleman-Wunsch Algorithm

The Needleman-Wunsch algorithm from 1970, also known as the global alignment

technique, is used commonly to compare two sequences of approximately the same

length [HC03]. Generally a marker can refer to either a nucleotide, amino acid, or

even a gene label. The main function of the technique is to pair all of the markers

to construct an alignment that is approximately just as long as the sequences be-

ing compared. Sequences with significant differences will result in large gaps in the

alignment. The Needleman-Wunsch algorithm is best suited for sequences of roughly

equal length with relatively low divergence. The Needle-Wunsch algorithm is a two

step method.

1. We compute a score for the sequences being compared by constructing a matrix.

The two sequences being compared are inserted into the matrix, one horizontally

at the top row and one vertically on the far left column. We traverse the matrix

row by row, from left to right, computing a score for each cell in the matrix.

The markers in the sequences may either match, mismatch, or be mapped to a

gap which can be interpreted as a deletion in the sequence with the gap or an

insertion in the sequence with the marker. In general, matches are rewarded

whereas mismatches and gaps are penalized. When computing the score of a cell

there are three potential paths and we select the path with the highest score.

The top and left paths represent a gap and we apply the penalty for a gap in

each of these paths. The third path is the diagonal representing either a match

or mismatch. If the markers match, then we add the score for a match. If the

markers mismatch, then we add the score for a mismatch. We select the path

with the highest score and repeat this process until the matrix is completely

filled. The number in the bottom right most cell represents the score of the best

alignment.

2. We construct the alignment sequence by tracing a path from the bottom right

cell to the top left cell of the matrix. The path is computed by determining

which operation generated the score in the current cell. A diagonal path rep-

Chapter 3: Related Works 29

T C G C A

T

C

C

A

● Construct a matrix. Insert one sequence at the top most row and the other
sequence in the left most column.

Figure 3.1: Global Alignment - Matrix Construction

T C G C A

0 -1 -2 -3 -4 -5

T -1

C -2

C -3

A -4

● Initialize the top row and left column. The scores are computed by incrementing the
values by the gap penalty from left to right and top to bottom.

Figure 3.2: Global Alignment - Matrix Initialization

resents either a match or mismatch. A horizontal path represents a gap in the

left sequence and a vertical path represents a gap in the top sequence. The

resulting path in the matrix represents the alignment sequence. However, there

Chapter 3: Related Works 30

T C G C A

0 -1 -2 -3 -4 -5

T -1 1 0 -1 -2 -3

C -2 0 2 1 0 -1

C -3 -1 1 1 2 1

A -4 -2 0 0 1 3

● Fill in the matrix. A path from the top left represents a match or mismatch. A path
from the top or left represents a gap. We select the path resulting in the highest
score. As a result, the score of this alignment is 3.

Figure 3.3: Global Alignment - Score Computation

T C G C A

0 -1 -2 -3 -4 -5

T -1 1 0 -1 -2 -3

C -2 0 2 1 0 -1

C -3 -1 1 1 2 1

A -4 -2 0 0 1 3

● To compute the alignment we have to construct a path from the bottom right cell to
the top left cell such that a diagonal arrow represents a mismatch or a match and a
leftwards or upwards arrow represents a gap. We use the current cell’s score and
the two letters to determine which neighboring cell is the correct path.

Figure 3.4: Global Alignment - Traceback

could potentially be multiple paths in the matrix which represent equally viable

sequences. Figures 3.1, 3.2, 3.3, 3.4, 3.5 demonstrate a simple global alignment

example with a scoring schema of +1 for matches, -1 for mismatches or gaps.

Chapter 3: Related Works 31

T C G C A

T C C A

● The alignment consists of 4 matches and one gap since there is no
matching G in the other sequence.

Figure 3.5: Global Alignment - Alignment

3.1.2 Smith-Waterman Algorithm

The Smith-Waterman algorithm from 1981, also known as the local alignment tech-

nique, is generally used for comparing sequences with significantly different lengths

[SW92]. The main function of this technique is to identify regions of similarity and

to ignore regions that are distinct. This technique is well suited for comparing se-

quences where one of the sequences has become more divergent than the other or

when one sequence is longer than the other. This could include a number of dupli-

cations or deletions in one of the sequences. However, if there is a region that has

been retained in both sequences, then the Smith-Waterman algorithm will be able

to identify it. The Smith-Waterman algorithm is a two step process similar to the

Needleman-Wunsch algorithm in Section 3.1.1. However, there are some key differ-

ences between the two algorithms. In the first step we construct a score matrix by

inserting one of the sequences in the top row of the matrix and inserting the other

sequence into the far left column of the matrix just like in the Needleman-Wunsch

algorithm. Again, the markers may match, mismatch, or be mapped to a gap and

we select the operation that results in the highest score. However, if the operation

Chapter 3: Related Works 32

results in a negative score, then we select a score of 0 instead of the negative score.

This is one of the key differences between the Needleman-Wunsch algorithm and the

Smith-Waterman algorithm. The Smith-Waterman algorithm does not permit neg-

ative scores in the matrix. Once again, we repeat this process until the matrix has

been completely filled. In the second step we construct the alignment by tracing

through the matrix, however, we do not necessary have to start at the bottom right

and finish at the top left of the matrix. This is the second key difference between the

Smith-Waterman algorithm and the Needleman-Wunsch algorithm. In the Smith-

Waterman algorithm the starting point will be the cell with the highest score. We

continue traversing the matrix by determining which operation generated the score

just like in the Needleman-Wunsch algorithm, however, we stop when we encounter

a 0 in the path. The resulting path represents a valid local alignment. However,

there could potentially be multiple paths in the matrix which are equally viable just

like in the Needlman-Wunsch algorithm. Figures 3.6, 3.7, 3.8, 3.9, 3.10 demonstrate

a simple local alignment example with a scoring schema of +1 for matches, -1 for

mismatches, and a -1 for gaps.

● Construct a matrix. Insert one sequence at the top most row and the other
sequence in the left most column.

G G C A T G G

C

A

T

Figure 3.6: Local Alignment - Matrix Construction

Chapter 3: Related Works 33

● Initialize the top row and left column. The scores are computed by incrementing the
previous cell value by the gap penalty from left to right and top to bottom. However,
the Smith-Waterman algorithm does not allow negative values into the matrix.
Therefore, the top row and left column will be initialized to zeros.

G G C A T G G

0 0 0 0 0 0 0 0

C 0

A 0

T 0

Figure 3.7: Local Alignment - Matrix Initialization

● Fill in the matrix. The current cell`s score can come from one of 4 possibilities. The
score can come from the top or left which represents a gap in one of the
sequences. The score can also come from the top left if the letters match or
mismatch. We select the path that yields the highest score. If the highest score is a
negative value, then zero is entered into the cell. Additionally, the location of the
highest score must be tracked in order to construct the alignment. The highest
score may not necessarily be the bottom left corner of the matrix. The highest score
of this alignment is 3.

G G C A T G G

0 0 0 0 0 0 0 0

C 0 0 0 1 0 0 0 0

A 0 0 0 0 2 1 0 0

T 0 0 0 0 1 3 2 1

Figure 3.8: Local Alignment - Score Computation

Chapter 3: Related Works 34

● In order to construct the alignment we have to start at the cell containing the highest
score. If there are multiple cells with the same high score then all of those
alignments are equally valid. We traverse through the matrix constructing the
alignment such that a diagonal arrow represents a match or mismatch and a
leftwards or upwards arrow represents a gap in one of the sequences. We stop
traversing the matrix when a zero is encountered along the pathway. We use the
current cell’s score and the two letters to determine which neighboring cell is the
correct path.

G G C A T G G

0 0 0 0 0 0 0 0

C 0 0 0 1 0 0 0 0

A 0 0 0 0 2 1 0 0

T 0 0 0 0 1 3 2 1

Figure 3.9: Local Alignment - Traceback

C A T

C A T

● Based on the results of the local alignment matrix we can see that
the local alignment sequence is C, A, T. Local alignments are useful
for identifying regions of similarity when sequences are not
necessarily similar in terms of sequence size.

Figure 3.10: Local Alignment - Alignment

3.2 Multiple Sequence Alignment

In comparative genomics occasionally it may be necessary to compare many se-

quences. In order to compare more than two sequences we would perform a multiple

Chapter 3: Related Works 35

sequence alignment. Recall that in a pairwise alignment we are computing an align-

ment using one comparison. In a multiple sequence alignment we are computing an

alignment using n − 1 comparisons where n is the number of sequences. For exam-

ple, say we have 10 sequences. Initially we would select two sequences and compute

an alignment. Then we would select another sequence from the list of 8 remain-

ing sequences and perform another alignment. However, we would be computing an

alignment using the selected sequence and the computed alignment from the previous

step. We would repeat this process 7 more times until all of the sequences have been

exhausted. At the end of the last alignment computation we would have an alignment

representing all 10 sequences.

3.2.1 Sequence Searching in Databases

In order to make biological data manageable researchers started storing sequence data

into databases. This included DNA sequences, RNA sequences, protein sequences,

etc. As the amount of sequence data accumulated analyzing the data became prob-

lematic. Researchers wanted a mechanism to compare a sequence with a large dataset

of sequences. Initially, when the databases were small using the global alignment and

local alignment techniques was a feasible solution. However, as the amount of se-

quence data increased in the databases it became a very time consuming process to

compute every single alignment. Recall that the global alignment and local alignment

construct a matrix for the two sequences, compute an overall score, and construct an

alignment by tracing through the matrix. This is a very expensive process in terms

of computing power. Therefore researchers needed an alternative solution in order to

compare one sequence with an entire database of sequences.

To reduce the amount of time spent computing alignments on a large dataset, in

1988 David J. Lipman and William R. Pearson developed a software package called

FASTA. FASTA was one the first algorithms to efficiently and quickly compare a

sequence against an entire database of sequences. FASTA was originally designed for

the purpose of comparing protein sequences, however, it was later extended to com-

pare DNA sequences and DNA sequences with protein sequences. In 1990, Altschul

Chapter 3: Related Works 36

developed Basic Local Alignment Search Tool (BLAST) for a similar purpose. BLAST

was an improvement over FASTA in terms of search speed, ease of use and statistical

rigor. The basic idea that makes FASTA and BLAST faster compared to the global

alignment and local alignment is that FASTA and BLAST identify exact matches in

short stretches rather than performing an entire sequence comparison. The main idea

is that good alignments contain short sequences of exact matches. Initially FASTA

and BLAST identify very short exact matches between the sequences. After iden-

tifying these short stretches of exact matches, these techniques extend these short

matches into longer regions of similarity. After the regions can no longer be extended

they are optimized to construct an alignment.

3.2.2 FASTA

FASTA is known as the dot plot algorithm since a dot plot is constructed to iden-

tify regions of similarity between the sequences being compared [DDA14]. The two

sequences being compared by FASTA are denoted as the query sequence and the

test sequence. The query sequence is the sequence the user provides as input and

the test sequence is the sequence from the database. FASTA identifies whether the

two sequences are potentially a good match by comparing the words between the

query sequence and the test sequence. A word is a substring of a given sequence.

FASTA divides the query sequence and the test sequence into words. By comparing

the words between the query and the test sequence, FASTA users this as an indicator

whether the two sequences are potentially good matches. If there are many words

with exact matches, this indicates the sequences are similar. If there are not many

exact matches, then this indicates that the sequences being compared are not a good

match and should not be processed any further. The length of the words is different

depending on the sequence type. Generally for DNA sequences a word consists of 6

nucleotides and for protein sequences a word consists of 2 amino acids. Recall that

a set of 3 nucleotides forms a codon. A codon represents an amino acid and a set of

codons represent an amino acid sequence, i.e., a protein sequence. In order to keep

the comparisons consistent, FASTA divides the protein sequence into words which

Chapter 3: Related Works 37

consist of 2 amino acids which is 6 nucleotides since 1 amino acid is 1 codon which

consists of 3 nucleotides.

The FASTA algorithm performs a series of 5 steps in order to compare the query

sequence and the test sequence.

• In the first step FASTA identifies the similarities between the query sequence

and test sequence. FASTA constructs a dot plot in order to compare the se-

quences. The dot plot maps the regions of similarity between the two sequences.

If we have a “dot” in the cell i, j, then this means that the nucleotide at position

i in the query sequence matches the nucleotide at position j in the test sequence.

The entire matrix is traversed and filled in appropriately. See Figure 3.11 for

an example of this step.

C C A T C G C C A T C G

G * *

C * * * * * *

A * *

T * *

C * * * * * *

G * *

G * *

C * * * * * *

● Initialize the matrix. The query sequence is inserted into the left column and
the test query is inserted into the top row. Insert a marker into the cell if the
nucleotides at (i, j) match.

Figure 3.11: FASTA - Initialize the Dot Plot

• In the second step, FASTA analyzes the matrix constructed from the previous

step. In this analysis FASTA identifies all of the dots in the matrix that form

a diagonal. The diagonals cannot have gaps between them, therefore the dots

must be consecutive when forming the diagonal. Additionally, there could be

more than one diagonal. There could potentially be many diagonals in the ma-

Chapter 3: Related Works 38

trix. All of these diagonals may not necessarily be part of the optimal alignment.

In order to filter out the diagonals that are not significant, FASTA applies a

threshold where the diagonals must be a certain length otherwise they are dis-

carded. The minimum length threshold is represented by the k value. Any

diagonals shorter than k units are discarded. Generally, FASTA uses a k value

of 2. In addition, FASTA also computes the offset for each of the diagonals in

the matrix. See Figure 3.12 for a visual example.

C C A T C G C C A T C G

G * *

C * * * * * *

A * *

T * *

C * * * * * *

G * *

G * *

C * * * * * *

● The matrix is scanned to identify diagonals in the matrix. The diagonals are
scored and the high scoring diagonals are recorded. The longer the diagonal,
the higher the score. We can see there are two high scoring diagonals in the
matrix starting at (1, 1) and (7, 1).

Figure 3.12: FASTA - Score the Diagonals

• In the third step FASTA analyzes the quality of each diagonal identified in

the previous step. With many diagonals it is difficult to compute the optimal

alignment, therefore we have to filter out the diagonals not part of the optimal

alignment. FASTA does this by computing a score for each of the diagonals.

Diagonals that score high are recorded and the rest are discarded. FASTA uses

a substitution matrix called the PAM matrix to compute the score for each of

the diagonals. See Figure 3.13 for a visual example.

Chapter 3: Related Works 39

● The image on the left represents all of the diagonals identified with a length greater than or
equal to 2. The image on the right represents the same diagonals after re-scoring with the
PAM matrix. There are two high scoring diagonals marked as thicker lines. These diagonals
are recorded and the remaining diagonals are discarded.

Test Sequence

Q
ue

ry
 S

eq
ue

nc
e

Test Sequence

Q
ue

ry
 S

eq
ue

nc
e

Figure 3.13: FASTA - Re-score the Diagonals

• In the fourth step all of the remaining diagonals from the previous step are

joined together using a gap. A matrix can potentially still have many diagonals.

If there are many diagonals, it is possible that the diagonals can be joined in

various combinations. The purpose of this step is to join as many diagonals

as possible to construct a path from the top left to the bottom right of the

matrix. The only requirement is that the diagonals do not overlap each other.

Since the diagonals can not overlap each other, there could potentially be many

combinations of diagonals leading from the top left to the bottom right of the

matrix. However, we want to maximize the total diagonal length for the path

and we want to minimize the amount of gaps we use to join these diagonals. In

order to identify which paths are better than others, FASTA computes a score

for each path traversing from the top left to the bottom right. The score for a

path is computed by summing the PAM matrix scores for the diagonals used

in the path and applying a penalty for each gap in the path. The score for

each path is stored and we compute the score for each path in the matrix. Once

we’ve scored every possible path traversing from the top left to the bottom right

of the matrix, the path that resulted in the highest score is the path that is

Chapter 3: Related Works 40

selected. If there are multiple paths that result in the same score, then all of

these paths are equally viable. However, FASTA will select the path with the

lowest offset to be the optimal path in the matrix.

● FASTA tries to join as many diagonals as possible using gaps such that the diagonals do no
overlap each other. Diagonals joined together form a path from the top left to the bottom right. All
possible combinations of paths are computed along with a score for each path. The score for
each path is computed by summing the scores of the diagonals in the path from the PAM matrix
and adding a penalty for each gap. The path with the highest score is selected.

Test Sequence

Q
ue

ry
 S

eq
ue

nc
e

Test Sequence

Q
ue

ry
 S

eq
ue

nc
e

Figure 3.14: FASTA - Join Diagonals Using Gaps

• In the fifth and final step, FASTA takes the path selected from the previous step

and uses this path to construct an alignment. Each path from the previous step

represents one potential alignment and the scores from the previous step were

used to help identify the best alignment. At this point FASTA has identified

the optimal alignment.

To assess and analyze the significance of the alignment produced by FASTA we

have to look at the z score and the e value returned by the algorithm [DDA14].

To compute these values, FASTA generates random alignments and calculates their

scores. Those scores are used to compute a mean and a standard deviation from

these random scores. The z score represents the deviation of the actual score from

the mean. The z value is a combination of the mean and the standard deviation of

Chapter 3: Related Works 41

the random scores.

z =
Mean

StandardDeviation
(3.1)

The probability of a z score is called the e value. A high deviation will result in

a high z score therefore the e value will also be high. This generally indicates the

alignment is not significant. A low deviation will result in a low z score therefore the

e value will also be low. This generally indicates the alignment is significant. The

general rule to follow is,

• e values that are below 10−6 are statistically significant

• e values that are above 10−6 but below 10−3 might be significant and require

further analysis

• e values that are above 10−3 are not significant.

3.2.3 BLAST

BLAST or the Basic Local Alignment Search Tool was originally published in 1990.

It is a heuristic method for the local alignment and it is specifically designed for

searching through a sequence database [DDA14]. BLAST was designed on the same

concept as FASTA that good alignments contain short stretches of exact matches.

However, BLAST’s and FASTA’s algorithms and statistical approaches are different.

BLAST however is advantageous over FASTA in terms of speed, providing a user

friendly interface, statistical rigor, and sensitivity. In BLAST the input consists of

the query sequence, a database of sequences, and an s score. BLAST uses the s score

as a threshold when determining whether an alignment is significant or not. If the

score for the alignment is below the s score, then BLAST will not mark the alignment

as significant. The output of BLAST consists of the sequences from the database

that were marked as significant, a z score, and an e value. There are some similarities

between the BLAST and FASTA algorithms since BLAST was developed based on

FASTA. Both BLAST and FASTA break long sequences into substrings called words.

Chapter 3: Related Works 42

However, the length of the words in BLAST is different compared to FASTA. In

BLAST amino acid sequences are broken down into substrings of 3 amino acids and

DNA sequences are broken down into substrings of 11 nucleotides whereas in FASTA

each are 2 amino acids long and 6 nucleotides long respectively. Additionally, BLAST

does not require word matches between the sequences to be exact matches whereas

in FASTA the words have to be exact matches. However, FASTA handles gaps and

short sequences a lot better compared to BLAST. There have been modifications to

BLAST over the years to handle gaps and short sequences but we will be focusing on

BLAST originally published in 1990.

Unlike FASTA, there are 3 main steps to the BLAST algorithm. In the first

step BLAST takes the query sequence just like in FASTA and breaks the sequence

into substrings called words. The words are length w depending on the sequence

type. A word for amino acids is three amino acids long. A word for nucleotides is

11 nucleotides long. The number of words that can be generated from a sequence

is given by the following formula: NumberOfWords = L − w + 1 where L is the

length of the sequence in terms or nucleotides or amino acids, w is the length of of the

word. For example, for a DNA sequence 130 nucleotides long, the maximum number

of words that can generated from the sequence is 120. In addition, the neighborhood

of these words is calculated expanding the number of words that are going to be

searched in the database. So even though we look for exact matches in the database,

the words we look for are not all present exactly in the query. This is an indirect way

of looking for inexact matches. In the second step the list of words generated from

the previous step are used to find matches in the sequence database. However, in this

step the word matches between the query sequence and the database sequence must

be exact. In the third step after BLAST finds all of the words with exact matches

between the query sequence and database sequence, BLAST tries to extend these

regions. When there are multiple words with exact matches, BLAST selects one of

these words to act as an anchor to extend the region. The region extended represents

one possible alignment. These alignments are scored based on the number of matches,

mismatches, and gaps. If the score is above the s score, then the alignment is marked

as significant. In addition to the alignment score, a z score and e value is also

Chapter 3: Related Works 43

● Generate a list of words from
the query sequence of length w.
We will have a maximum L + w
- 1 words.

Store
word
into list

Database of Sequences

List of words

● Compare the word list with the
sequences in the database and identify
exact matches.

words of
length w

Figure 3.15: BLAST - Generate Words and Scan the Database

Database Sequence

Word from query sequence
used as anchor

Word match is extended left
and right

● Initially BLAST identifies exact word matches between the query sequence and the database
sequence. BLAST selects one of these words to use as an anchor and extends the alignment in both
the left and right direction. As the matches accumulate, the score of the alignment increases.
However, as soon as the alignment starts to decrease the extension process is halted. The score
decrease would be either due to a gap or a mismatch. The alignment is evaluated and assigned a
score. If the alignment score is above the s score, the alignment is marked as significant otherwise it is
discarded. These alignments are called HSPs (High Scoring Pairs) and are evaluated by computing
their e value.

Figure 3.16: BLAST - Construct the Alignment

computed. We use the e value to assess the significance of the results. An e value of

10−13 or below indicates that the alignment is significant compared to FASTA where

an e value of 10−6 indicated an alignment is significant. The regions between two

Chapter 3: Related Works 44

anchors that score above the s score are called High Scoring Segment Pairs or HSPs.

BLAST generally computes several short HSPs rather than one long aligned region.

Figures 3.15 and 3.16 briefly outline BLAST.

3.3 Orthology Inference

3.3.1 OrthoMCL

In 2003, Li et al. [LSR03] published orthoMCL, which is graph clustering algorithm

designed to identify homologous sequences based on sequence similarity and distin-

guish whether these homologs are orthologs or paralogs. It was designed for the

purpose to study the functional conservation of proteins between different organisms

in addition to identifying ancestry and evolutionary conservation of sequences be-

tween organisms. Recall that orthologous genes are the result of a speciation event

and paralogous genes are the result of a duplication event. Paralogs can be catego-

rized into 2 different subcategories, in-paralogs and out-paralogs. An in-paralog gene

is the result of a duplication event, however, the duplication event occurred after

the speciation event whereas an out-paralog’s duplication event occurs prior to the

speciation event [EKM13].

OrthoMCL processes the data using the following sequence of steps. In the first

step orthoMCL uses BLAST to compare all of the sequences together to compute a

score and identify regions of similarity between each sequence. Using the comparisons

from the previous step, in the second step orthoMCL implements the inparanoid algo-

rithm to distinguish between orthologous and paralogous sequences. The inparanoid

algorithm consists of constructing a graph. In the graph, vertices represent a sequence

and the edge between two vertices represents a measure of similarity between the se-

quences. The edge’s weight will be the score computed by BLAST when comparing

the sequences. Recall in-paralogs are duplications within the same genome, therefore,

if orthoMCL is able to find a better match for a sequence within the same genome

rather than with the genome being compared, then orthoMCL will mark this sequence

as an in-paralog. After the graph is constructed, in the third step orthoMCL reduces

Chapter 3: Related Works 45

the number of edges in the cluster graph by implementing the Markov Clustering Al-

gorithm to eliminate edges that are not significant. The remaining edges and output

after the Markov Clustering algorithm processes the graph are clustered groups of

orthologs and recent paralogs [EKM13].

3.3.2 OrthAgogue

Researchers studying homologous sequences using orthoMCL to perform their analysis

soon realized as the amount of data accumulated, orthoMCL was increasingly taking

longer to process the data. As an example, it took orthoMCL days to process 200

proteomes [EKM13]. Ekseth et al. [EKM13] performed an extensive analysis of the

orthoMCL algorithm. They discovered two primary bottlenecks in the algorithm. The

first bottleneck was located at the point where orthoMCL uses BLAST to compute

the similarities between sequences. However, Ekseth et al. [EKM13] proposed that

this bottleneck can be mitigated by running the BLAST analysis on a larger computer

cluster. The second bottleneck was located at the point where orthoMCL performs an

analysis on the similarities using the inparanoid algorithm. The authors concluded

that this bottleneck would have to be resolved by re-implementing this section of

orthoMCL’s code since this component was designed as a serial process. A serial

process refers to a method that processes one item at a time.

In 2013, Ekseth et al. [EKM13] also published orthAgogue, which is an optimized

solution that mitigated the bottleneck caused by the inparanoid implementation in

orthoMCL. When designing orthAgogue, the authors considered two factors when

optimizing the inparanoid algorithm. The first factor was to make the parsing of

data more efficient. The second factor was to optimize memory usage. In order to

achieve these goals, the authors utilized several C programming libraries to handle a

lot of these optimizations internally within the code. The authors re-implemented the

inparanoid algorithm utilizing the Threading Building Blocks library and the Message

Passing Interface in order for data to be processed in parallel. Additionally, the

authors utilized the C Minimal Perfect Hashing library in order ensure that memory

usage was being optimized within the algorithm. It took orthoMCL 33.5 hours to

Chapter 3: Related Works 46

process 147 proteomes whereas orthAgogue processed the same data in 10 minutes.

Overall, orthAgogue was 200 times faster than orthoMCL without reducing accuracy.

3.4 Reconstruction of Ancestral Genomes

In the following subsections we will briefly introduce four methods that infer ancestral

gene orders using different techniques.

3.4.1 InferCARs

InferCARs [MZS+06] assigns each marker in a genome a unique identifying, signed

integer. InferCARs assumes there are no duplicate markers in the genomes being

compared. Markers on the genome have a predecessor and successor [MZS+06]. In

the first step, InferCARs generates a predecessor graph for each node in the species

tree in a bottom up fashion [MZS+06]. A path in the predecessor graph represents a

chromosome from the genome. This process is repeated recursively until the prede-

cessor graph is computed for the root node of the species tree. After the predecessor

graph is computed for each of the nodes in the species tree, InferCARs computes a

secondary modified predecessor graph for each node starting at the root node. The

secondary modified predecessor graph is computed by taking the intersection of the

predecessor graphs of the two direct descendents of the ancestor. This process is

repeated until the target ancestor’s secondary predecessor graph is computed. In the

second step, InferCARs generates a successor graph for each node in the species tree

using the same methodology as the predecessor graphs. Once the successor graph

has been computed for the target ancestral node, InferCARs takes the intersection of

the predecessor and successor graph such that the edges are maximized and this new

graph represents the ancestral genome [MZS+06].

3.4.2 Anges

Anges [JRTC12] proceeds in a two step process where in the first step we compute the

Ancestral Contiguous Sets which are sets of markers that are assumed to have been

Chapter 3: Related Works 47

present in the ancestor. These sets are computed from an informative pair of genomes.

A pair of genomes is considered informative by Anges if the two genomes being

compared both have an evolutionary history path that intersects with the ancestral

node in the species tree. In the second step Anges organizes the Ancestral Contiguous

Sets to form Ancestral Contiguous Regions which are organized into an ancestral

genome [JRTC12]. To assemble the Ancestral Contiguous Sets into an ancestral

genome, the Ancestral Contiguous Sets are organized into a binary matrix where

consecutive ones in a row indicate a Contiguous Ancestral Region [JRTC12]. If the

sets do not satisfy the consecutive ones property, then they are prioritized by using

a computed weight and are assembled into Contiguous Ancestral Regions. If any

of the sets cause a conflict during the assembly process, then they are discarded.

Additionally, Anges uses PQ trees which represent a potential organization of the

markers in the ancestral genome [JRTC12].

3.4.3 Gap Adjacency

GapAdj [GBE12] describes a genome as a sequence of paired markers within a genome.

Additionally, GapAdj tracks the multiplicity of each gene in a genome [GBE12]. If

the multiplicity of a gene increases from an ancestor to a descendant, then GapAdj

assumes that a whole genome duplication event was responsible for the multiplicity

increase as previous studies have shown that whole genome duplication events were

responsible for multiplicity increases in eukaryotic species [GBE12]. In the first step,

GapAdj computes the left and right multisets for each gene in all of the extant

genomes [GBE12]. GapAdj traverses in a bottom up fashion in the species tree

computing these multisets for each gene for each internal node [GBE12]. In the

second step GapAdj attempts to assemble these multisets into an ancestral genome.

Initially, GapAdj constructs a complete graph where each node represents a gene and

the edge between the nodes represents a weight computed from the previous step

[GBE12]. GapAdj then computes a Hamiltonian cycle, of maximum weight, in the

graph using the Chained Lin-Khernigan heuristic [GBE12]. The Hamiltonian cycle

constructed represents an ancestral genome [GBE12].

Chapter 3: Related Works 48

3.4.4 ProCARS

ProCARs [PVBO15] is a homology based method that works iteratively on both lin-

ear and circular genomes to detect and assemble features into Contiguous Ancestral

Regions or CARs while allowing micro rearrangements at the extremities of segments

[PVBO15]. In the first step ProCARs computes the divergence for each adjacency

to classify them into one of the three following groups; fully conserved adjacency,

partly conserved adjacency, or a non-conserved adjacency [PVBO15]. After classify-

ing each of the adjacencies the non-conflicting adjacencies are selected and assembled

into CARs. In the second step ProCARs analyzes the conflicting adjacencies and at-

tempts to resolve them. If the conflicts for an adjacency are resolved, then it will be

assembled into a CAR. If ProCARs is unable to resolve the conflict then the adjacency

will be discarded. Finally, in the third step ProCARs attempts to find additional ad-

jacencies that are not conserved but are supported due to micro-rearrangements. If

the adjacency is non-conflicting then it will be assembled into a CAR otherwise it

will be discarded [PVBO15]. In their analysis, the authors concluded that ProCARs

detected most of the CARs detected by Anges, InferCARs, and GapAdj and it con-

structs a completely resolved set of CARs [PVBO15].

3.5 Inference of Evolutionary Histories of Transfer

RNA Genes

3.5.1 Integer Linear Programming Algorithm

In 2012, a new method was developed to infer evolutionary histories of rRNA and

tRNA genes that was based on a gene order alignment approach and considered du-

plication and loss events [HSAE13]. The alignment of the gene orders was used to

identify orthology relationships between the genes (since there are multiple copies

of each type of rRNA and tRNA genes), instead of using traditional methods for

identifying gene orthologies from sequence information. The rationale for using this

approach is that tRNA genes especially are very short (maximum length is around 90

Chapter 3: Related Works 49

nucleotides), and the sequences are highly conserved [WWD06]. As a consequence,

there is simply not enough signal in the sequences themselves to identify orthology

relationships. This alignment problem was then shown to be NP-hard for the dupli-

cation and losses model of evolution [ARC13, BDE13, DE13]. The exact algorithm

proposed in [HSAE13], based on integer linear programming (ILP), was designed to

solve the 2-Small Phylogeny Problem (2-SPP), which is to find a common ancestor

A of two gene orders X and Y that minimizes the number of events on each of the

two branches. Andreotti et al. [ARC13] then proposed a faster and more efficient

linear programming algorithm for the duplication-loss model, and generalized it to

the median of three genomes setting.

3.5.2 OrthoAlign and MultiOrthoAlign

Researchers studying the evolution of tRNA Repertoires in Bacillus in 2015 published

OrthoAlign, which is a pairwise alignment approach that is used in a phylogenetic

framework to infer the evolutionary history of transfer RNA within bacteria genomes.

The evolutionary model of OrthoAlign was restricted to the following operations;

duplications, losses, substitutions, inversions and inverted duplications [TBLE15].

Tremblay-Savard et al. [TBLE15] primarily used the algorithm to analyze bacterial

genomes from the Bacillus genus. OrthoAlign uses the species tree and genomes an-

notated with transfer RNAs as input. The species tree is very important information

since it describes the evolutionary history between the bacterial genomes. OrthoAlign

uses species tree to determine which bacterial genomes are siblings, or in other words,

which bacterial genomes have a recent common ancestor. Using all of this information

OrthoAlign constructs the output which consists of an inferred gene order for each

of the internal nodes in the species tree. This gene order is assumed to have been

present in the ancestral genome. In addition to the gene order, OrthoAlign also infers

a sequence of evolutionary events that must have occurred through out the course

of the genome’s evolutionary history in order to transform the ancestral genome into

the genome at the leaf of the species tree.

Both OrthoAlign [TBLE15] and multiOrthoAlign [BE14] were developed to gen-

Chapter 3: Related Works 50

eralize the evolutionary model to account for rearrangements (inversions and trans-

positions) in addition to duplications and losses. The idea there was to use dynamic

programming to align the rRNA and tRNA gene orders and identify orthologs, and

then explain the mismatches and gaps in the alignment by inferring rearrangement

events (inversions and transpositions) and content-modifying events (duplications and

losses). While OrthoAlign was designed for pairwise comparisons between gene orders

(2-SPP), multiOrthoAlign was created to compare a full set of gene orders related

through a phylogenetic tree by taking initial ancestral assignments (inferred by Or-

thoAlign or another method) and improving them using a heuristic for the median of

three problem.

OrthoAlign and multiOrthoAlign are well adapted to the study of bacterial genera

which have a relatively low amount of divergence between the genomes. However, just

like with traditional sequence alignment, when the gene orders being compared are not

very well conserved, it quickly becomes difficult to correctly identify matches (which

correspond to orthologous genes in this case). Moreover, existing methods do not

consider the physical proximity of the genes in their inference of events, which might

lead to evolutionary histories that are not necessarily realistic — inferring events on

blocks of genes that are contiguous in terms of gene order but not necessarily close

to each other on the chromosome for example.

3.6 Related Studies on Bacterial Genome, Operon,

and Transfer RNA Gene Evolution

It was observed in [TBLE15] that duplications can either insert the copied genes in-

side or outside other operons, thus extending pre-existing operons or creating new

ones. Also, rearrangements (inversions and transpositions) do not seem to break

operons into separate parts. In the study of 50 Bacillus genomes, the inferred re-

arrangements always affected entire operons and not just a part of them [TBLE15].

Although these constraints on rearrangements were observed in a study of the Bacil-

lus genus specifically, we assume that they can be generalized to other bacteria, since

Chapter 3: Related Works 51

a rearrangement affecting only part of an operon would most likely leave one part of it

without a promoter. Several methodologies have been proposed to find operons in mi-

crobial genomes, which are based on several different genomic features like intergenic

distances [TECM18], metabolic pathways [ZSF+02], expression profiles [PHAA05],

phylogenetic information [BPHQ07], etc.

Multiple sites in tRNA sequences, extending beyond the anticodon region, are

responsible for their recognition by the aminoacyl-tRNA synthetases, which charge

the tRNA molecules with the appropriate amino acid [GSF98]. Mutations in these

identity elements can sometimes change the identity class of tRNA genes [SSA98,

LL05], which can be viewed as a substitution to a different tRNA gene.

3.7 Summary

In this chapter we presented the concept of sequence alignment. Initially we intro-

duced two very common sequence comparison algorithms, the global alignment and

the local alignment. These two algorithms compute a score for the sequences being

compared and an alignment. However, as the amount of sequence data accumulated,

it was discovered that running either of these algorithms on large datasets was a time

consuming process. In response to optimizing searches within databases, FASTA

and BLAST were both introduced. Instead of comparing whole sequences, these al-

gorithms used the concept that sequences that are good matches contain matches

in short stretches. If we do not find similarities in short stretches then we can as-

sume that the sequences being compared are not a good match. We also introduced

OrthoMCL which was designed to identify orthologous sequences. The algorithm pri-

marily consisted of using BLAST to identify similar sequences, using the inparanoid

algorithm to construct a graph and then reduce the graph using the Markov Clus-

tering algorithm. The most important concept from OrthoMCL was that it used an

existing method, in this case BLAST, to perform the sequence comparison to iden-

tify all of the potentially interesting sequences and then expanded it by using the

inparanoid and Markov Clustering algorithm to filter for orthologous sequences. Or-

thAgogue was an optimization of OrthoMCL by using additional computing power,

Chapter 3: Related Works 52

processing data in parallel and optimizing memory usage.

Further, we introduced orthoAlign and multiOrthoAlign which were designed

specifically to infer the evolutionary history of tRNA and rRNA gene orders in bac-

teria genera with a relatively low amount of divergence. These algorithms aligned

tRNA and rRNA genes orders and inferred gaps and mismatches using inversions,

transpositions, duplications, and deletions. We also introduce ProCARS, Anges,

InferCARs, and Gap Adjacency which are each unique in terms of computing the

ancestral genome. However, the underlying idea of each method is to identify regions

of similarity and assembling these regions into an ancestral genome.

In comparative genomics in order to make meaningful analyses and conclusions

about genomic sequences we have to be able to compare them. The method that

compares these genomic sequences generally has to provide a scoring system such

that we can measure how similar or distinct the sequences are to each other. We

have to be able to identify which sequences are more similar to each other compared

to other sequences. Additionally, when reconstructing ancestral genomes we have

to be able explain the sequence of events at every step in the phylogeny. For this

reason, a detailed, explicit evolutionary model is very important. An evolutionary

model specifies which events we are searching to identify and what the constraints

for each of these events are. Further, we have to able to justify why an algorithm

made a particular selection over another such as why a deletion would be favoured

in one genome rather than a duplication in another genome. At the same time

when considering genome sequences, we have to take into account that there will be

duplicate sequences. When there are duplicate sequences, we have to decide which

pair of sequences will be selected as orthologs. We have to design a system such that

if we have multiple sequences that are equally similar, we have to compute another

score that reduces the number of options to one.

Chapter 4

BOPAL

In this chapter we will introduce our evolutionary model, the research problem this

M.Sc. thesis will address and a step by step explanation detailing BOPAL’s workflow.

Additionally, this chapter has been adapted from the publication in BMC Genomics

[PCLT19].

4.1 Evolutionary Model

Our evolutionary model is based on the results and observations of previous studies on

bacterial genome, operon and tRNA gene evolution, as described in Section 3.6. Based

on these observations, our evolutionary model aims to represent realistic histories. We

define a realistic history as an evolutionary history (series of events transforming a

genome into another) that considers: (1) the organization of genomes into operons,

(2) that rearrangements do not split operons into separate parts, (3) events that move

or copy genes across an axis of replication (origin or terminus) reverse the genes, and

(4) block (or segmental) duplication/deletion events can only affect genes that are

closely located (part of the same operon).

More specifically, our evolutionary model considers the following events:

• A duplication copies either a singleton, a gene or a segment of genes inside

an operon, or a full operon to another position in the genome. If the dupli-

cated gene(s) are copied to the other side of an axis of replication, an inversed

53

Chapter 4: BOPAL 54

duplication occurs, which involves reversing the order and changing the signs

(representing transcriptional orientation/strand) of the genes in the duplicated

segment.

• A deletion (or a loss) removes either a singleton, a gene or a segment of genes

inside an operon, or a full operon from the genome.

• An inversion (or reversal) reverses the order and changes the sign of the genes

affected. The rRNA genes and tRNA genes are either part of an operon (poly-

cistronic) or not (monocistronic), in which case we refer to them as singletons in

this M. Sc. thesis. Inversion events can only affect singletons or entire operons

(not breaking an operon into separate parts), and must occur around an axis

of replication, i.e., the segment that is reversed must be immediately next to

either the origin or terminus of replication. These constraints are based on the

prevalence of these types of inversions as described in [TBLE15].

• A transposition moves either singletons or entire operons to a different place

in the genome (for the same reasons described above for inversions). Similarly

to duplications, transpositions that move genes to the other side of an axis of

replication will be reversed transpositions, also reversing the order and changing

the signs of the transposed segment.

• A substitution is an event that modifies the anticodon of a tRNA gene and/or

reassigns a tRNA gene to another identity class.

4.2 Research Problem

The algorithm we propose takes as input a phylogeny representing a bacterial genus,

and annotated rRNA and tRNA gene orders, i.e., circular unichromosomal gene or-

ders in which the locations of origin and terminus of replication, the operons, the

anticodons (in the case of tRNA genes), and the signs of the genes have been identi-

fied. The rRNA genes and tRNA genes are either part of an operon (polycistronic)

or not (monocistronic), in which case we refer to them as singletons in this M. Sc.

Chapter 4: BOPAL 55

thesis. Each gene order for each extant genome studied is associated to a leaf node.

For conciseness, in this M. Sc. thesis we will not make a distinction between a node

and its associated gene order.

We aim to infer a parsimonious realistic history for the annotated gene orders

considering the evolutionary model described above on a full input phylogeny.

4.3 Annotation of the Gene Orders

4.3.1 Location of the Origin and Terminus of Replication

Recall from Section 3.6, there are several methodologies for finding operons in mi-

crobial genomes. To annotate the gene orders with the locations of the origin and

terminus of replication, we use the SeqUtils module from the Biopython package

[CAC+09]. The SeqUtils module allows us to calculate the GC skews using a sliding

window in the full genome sequences, and identify the minimum and maximum values

of GC skews. The extrema of the GC skew function are known to be correlated with

the loci of the origin and terminus of replication [FL99].

4.3.2 Location of the Operons

Since rRNA and tRNA operons do not contain any other types of genes in the bi-

ological dataset presented below, we used a simple rule for determining operons: a

maximum intergenic size of 200 bp is allowed between each consecutive rRNA or

tRNA gene to consider them part of the same operon. Note that more sophisticated

approaches, and/or databases of annotated bacterial operons would be necessary if

one were to consider all types of operons in the genomes. An even more precise ap-

proach would be to consider experimentally identified transcriptional units, such as

those integrated into the DOOR 2.0 database of prokaryotic operons [MMZ+13] (un-

fortunately, the DOOR 2.0 database was inaccessible at the time of experimentation).

Chapter 4: BOPAL 56

4.4 Algorithm

The proposed approach traverses the whole input phylogeny in post-order, and com-

pares two siblings (left and right child of an internal node, also called cherry) at a

time to produce an evolutionary scenario and an ancestral gene order for the internal

node. Once the ancestral gene order is produced, the post-order traversal continues

to produce the next ancestral genomes and so on until the full evolutionary history

(on all branches of the phylogeny) has been inferred. Below is a description of the

four steps of the algorithm for each comparison of two child nodes (each instance of

the 2-SPP), when a neighboring species is available (also see Figure 4.1 for a flowchart

describing the steps on an example).

4.4.1 Step 1: Inference of Orthologous Operons and Single-

tons

We first use all-vs-all pairwise global alignments between the operons of the two

genomes compared to identify orthologous operons. This is one of the major dif-

ferences between our approach and the previous ones presented in [HSAE13, BE14,

TBLE15]: instead of aligning the full gene orders to identify orthologous genes, we

align only the operons, which tend to be more conserved. Moreover, the global align-

ments are not used to label events at this time, but only to find similar operons, which

allows us to use a simpler scoring mechanism. Once pairs of orthologous operons have

been identified, the matched genes contained in the paired operons are considered to

be orthologous.

Let M be the dynamic programming table for the global alignment of operons X

and Y , and M [i− 1, j − 1] be the optimal score of aligning the prefix of X ending at

position i − 1 and the prefix of Y ending at position j − 1, the score M [i, j] can be

Chapter 4: BOPAL 57

calculated using the following recursive function:

M [i, j] = Max

M [i− 1, j − 1] + 1, full match

M [i− 1, j − 1] + 0.5, partial match

M [i− 1, j − 1]− 1, mismatch

M [i, j − 1]− 1, gap in Y

M [i− 1, j]− 1, gap in X

(4.1)

where a full match is when both the gene and the anticodon match, a partial match

is when the gene matches but with a different anticodon and a mismatch is when

both the gene identity class and (necessarily) the anticodon don’t match. This notion

of partial match only applies to tRNA genes and not rRNA genes, which are not

annotated with anticodons. Note that many different scoring schemes could be used

here, as long as the score for a match is greater than the score of a partial match,

which itself should be greater than the score of mismatches and gaps. The main

assumption for setting the score of a partial match in between the one of a full match

and the one of a mismatch is that more mutations (not just in the anticodon) would

be necessary to completely change the identity class of a tRNA gene, as opposed to

a change in the anticodon that preserves the identity class. We ended up using this

specific scoring system because it performed well in practice.

After completing all the comparisons, we discard all pairs that have an alignment

score < 0. We then label pairs of operons from the two genomes as orthologous

starting from the highest alignment scores to the lowest. In case of ties (e.g., an

operon from genome X aligns with two operons of genome Y with the same score),

we select the pair of operons that is closest in terms of their respective indexes in the

genomes.

As for singletons between the two genomes, we simply label them as orthologous

if they are identical (same identity class and same anticodon, in the case of tRNA

genes). When there are multiple choices, we choose the pairs that are located in the

same (or most similar) position in the genome based on their respective indexes.

Chapter 4: BOPAL 58

4.4.2 Step 2: Inference of Duplications, Deletions, and Sub-

stitutions

During this step, we first infer duplications, losses and substitutions within the or-

thologous operons, based on the alignments that were made in Step 1. Mismatches

or partial matches simply correspond to substitutions. Gaps in the alignment can be

labeled either as duplications in one genome, or deletions in the other genome. We

follow a simple rule for determining if a gap is a duplication or a loss:

• if the gap has a size ≥ 2 and there exists an identical sequence of genes some-

where else in the same genome, we label it as a duplication;

• otherwise, we arbitrarily label the gap as a deletion.

This simple rule is prone to produce errors, especially for gaps of size one which are

always considered to be deletions. The problem with gaps of size 1 is that, since there

are almost always multiple copies of each rRNA and tRNA genes in each genome,

we could almost always either infer a duplication (recall that to infer a duplication,

we must find the same gene — same identity class and anticodon — somewhere

else in the genome) or a loss. To alleviate this problem, we allow our algorithm to

correct itself by changing deletions into duplications during the next comparison with

the neighboring genome, i.e., when we compare the produced ancestor with another

sibling (see Step 4 below for more details).

Once all the orthologous operon pairs have been resolved, we deal with the operons

that have not been mapped to an orthologous one in the other genome. We must

then infer if these “leftover” operons are the product of a whole operon duplication in

one genome (thus being paralogous operons), or a whole operon deletion in the other

genome. For each of them, we perform a global alignment with all the other operons

within the same genome to find the strongest match with a score ≥ 0. If it exists, we

label the whole operon as being duplicated and then we infer duplications, losses and

substitutions to explain the gaps and mismatches/partial matches in the alignment in

the same manner described above. This is another strength of our approach, because

Chapter 4: BOPAL 59

it allows us to infer overlapping, or non-visible events, ı.e., consecutive events on the

same genes that do not directly appear on an alignment of the two genomes. This is

another improvement over the previous algorithms, which were designed to consider

only visible events [HSAE13, BE14, TBLE15]. If no match within the same genome

is found with a score ≥ 0, we simply infer that the non-mapped operon was deleted

in the other genome. We proceed in the same manner for the non-mapped singletons,

except that the alignment is not required: we simply infer them as duplicated if there

is an identical singleton in the same genome, and deleted otherwise.

4.4.3 Step 3: Inference of Rearrangements

Another advantage of our approach is that we infer rearrangements independently

of duplications, deletions and substitutions, which once again permits the inference

of overlapping events, in the sense that a gene affected by a duplication, deletion or

substitution can also be affected by a rearrangement.

In this step, we produce a dot-plot representing all the orthologous operons and

singletons paired in Step 1 (each axis represents a genome and there is one dot

for each pair of orthologs; see Figure 4.1 for an example). We use this dot-plot to

identify conserved segments, inversed segments and transposed segments. Just like

in any dot-plot, conserved segments are series of dots that are located on the main

diagonal. Inversed segments can be identified on the dot-plot as a series of dots that

cross the main diagonal in the opposite orientation. The other dots or series of dots

which are not found on the main diagonal and not inversed are simply identified as

transposed segments (either forward transposed or reversed transposed, depending on

their orientation).

4.4.4 Step 4: Inference of the Ancestral Gene Order

One important detail about inversions and transpositions, as described in [TBLE15],

is that they can be applied to any of the two sequences. There is simply not enough

information in a pairwise comparison that can allow us to discriminate between the

two equally probable scenarios. To identify the genome in which the event occurred,

Chapter 4: BOPAL 60

< o >, [16S, 23S, 5S, Ile_AUC, Ala_GCG, Ser_UCG, Met_AUG], Lys_AAA, Phe_UUC, < t >, -[Met_AUG, Ser_UCG], -Gly_GGA, -Thr_ACG

< o >, [16S, 23S, 5S, Ile_AUC, Ala_GCG], [16S, 23S, 5S, Ala_GCG], [His_CAU, Ser_UCG, Met_AUG], < t >, -Phe_UUC, -Lys_AAA, -Gly_GGA

< o >, [16S, 23S, 5S, Ile_AUC, Ala_GCG, Glu_GAG], Lys_AAA, Phe_UUC, < t >, -[Met_AUG, Ser_UCG, His_CAU], -Gly_GGA, -Thr_ACG
A B C

A:

B:

C:

Input genomes and phylogeny

< o >, [16S, 23S, 5S, Ile_AUC, Ala_GCG, Ser_UCG, Met_AUG], Lys_AAA, Phe_UUC, < t >, -[Met_AUG, Ser_UCG], -Gly_GGA, -Thr_ACG

< o >, [16S, 23S, 5S, Ile_AUC, Ala_GCG], [16S, 23S, 5S, Ala_GCG], [His_CAU, Ser_UCG, Met_AUG], < t >, -Phe_UUC, -Lys_AAA, -Gly_GGA

Step 1: Inference of orthologous operons and singletons

A:

B:

[16S, 23S, 5S, Ile_AUC, Ala_GCG, Ser_UCG, Met_AUG]

Step 2: Inference of duplications, deletions and substitutions

Orthologous
operons:

Unmapped
operon:

[16S, 23S, 5S, Ile_AUC, Ala_GCG, ----- , -----]

[----- , Ser_UCG, Met_AUG]

[His_CAU, Ser_UCG, Met_AUG]

Duplication Deletion

[16S, 23S, 5S, ----- , Ala_GCG]

[16S, 23S, 5S, Ile_AUC, Ala_GCG]

< o >, [16S, 23S, 5S, Ile_AUC, Ala_GCG], [16S, 23S, 5S, Ala_GCG], …

Operon duplication

Deletion

Unmapped
singleton:

-Thr_ACG because no identical singleton is found in the same genome

Deletion

B:

A:

Step 3: Inference of rearrangements

Dot-plot
of ortho-
logous
operons
and
singletons:

indexes in A

in
d

ex
es

 in
 B

Inversion

Step 4a: locating rearrangements

Dot-plot of
comparison
of A with
neighbor C:

indexes in A

in
d

ex
es

 in
 C

No inversion;
implies the
inversion was
on the branch
leading to B

< o >, [16S, 23S, 5S, Ile_AUC, Ala_GCG], Lys_AAA, Phe_UUC, < t >, -[Met_AUG, Ser_UCG, His_CAU], -Gly_GGA, -Thr_ACG

A B C

AB:

Step 4b: Inference of the ancestral gene order

AB

Figure 4.1: Flowchart describing the 4 main steps of BOPAL on a cherry (A,B) with a
neighboring genome C. Operons are enclosed in square brackets, whereas singletons
are not, and 〈o〉 and 〈t〉 represent the origin and terminus of replication respectively.

Chapter 4: BOPAL 61

we use the same strategy proposed in [TBLE15], where we use one of the two sibling

genomes X and compare it with another neighboring genome N . N is simply the

first resolved genome (either a leaf of a previously built ancestor) encountered in the

subtree that is the sibling of the cherry’s parent. If the same segment is found to

be inversed (respectively transposed) again in that other comparison, then we know

that the event occurred on the branch leading to X. Otherwise, if the segment is not

inversed (respectively transposed) again, then we know that the event occurred on

the branch leading to the other sibling Y (see Figure 4.1 for an example).

Once all the events have been inferred on the correct branches (leading either

to genome X or Y), the ancestral gene order can trivially be produced simply by

“undoing” the events (e.g., a deleted gene will be placed back into the ancestor,

etc.). Once the ancestor is produced, the next comparison can be made following a

post-order traversal of the phylogeny. Similarly to how we deal with rearrangement

events, we use the next comparison with a neighboring genome to potentially correct

for errors in inferred deletions. We keep track of all the genes that were added back

into the ancestor because of a deletion event, and if they cause a gap in an alignment

(during Step 1), we replace the previously inferred deletion event by a duplication

event and modify the ancestor accordingly.

4.5 Runtime Complexity

For each comparison of two child nodes (each cherry), suppose for simplicity that both

gene orders contain n genes, distributed among c operons. On average, an operon

will contain about n/c genes. Step 1 of the algorithm requires a global alignment

of all pairs of operons between the two genomes: there are c2 such pairs, and each

alignment can be done in O((n/c)2), which results in O(n2) time for Step 1. In Step

2, labeling the gaps in the selected alignments (representing orthologous operons)

requires scanning the genome for potential sources of duplications: each scan takes

O(n) and there is a maximum of O(n) gaps in total (because selected alignments must

have a score ≥ 0), which results in O(n2) time. The other part of Step 2 that identifies

whole operon duplications takes O(n2), similarly to Step 1, for all the pairwise global

Chapter 4: BOPAL 62

alignment of operons within the same genome. Finally, Step 3 can be done in linear

time, and Step 4 is similar to Step 1 but with a neighboring genome, so it takes O(n2)

as well. This leads to a worst-case complexity of O(n2) for each cherry.

4.6 Summary

In this chapter we presented an operon-based approach to infer an evolutionary history

of tRNA and rRNA genes. We began by identifying our evolutionary model. Our

evolutionary model considers the organization genomes into operons, rearrangement

evolutionary events do not split operons into separate parts, any events that move

or copy genes across the origin of replication or the terminus reverses the genes, and

deletions and duplications can only affect multiple genes only if they are in the same

operon. The evolutionary model is a fundamental component; the reason being that

it identifies the data’s constraints and specifies the general rules of how the algorithm

is expected to function. The input for BOPAL is a phylogeny representing the bacterial

genera along with each of their rRNA and tRNA gene orders.

We identified the problem we intend BOPAL to address in this M.Sc. thesis. We

want BOPAL to infer a parsimonious realistic history for the annotated gene orders

using the evolutionary model described in the chapter along with the ancestral gene

orders based on the bacterial genus’s phylogeny. We also discuss how we identified

the location of the origin and terminus by using SeqUtils to identify regions in the

genome where the nucleotides guanine and cytosine are over abundant and under

abundant. The following principle was used identify the location of operons within

the bacterial genomes; the intergenic size cannot be larger than 200 base pairs. Recall

that the intergenic region is the stretch of DNA located between genes.

We describe step by step BOPAL’s procedure for processing the bacterial genomes

along with their phylogeny. In the first step BOPAL identifies the orthologous operons

and singleton genes. BOPAL identifies whether a pair of operons is a good match by

performing a global alignment. The global alignment outputs a score based on the

number of matches, partial matches, mismatches, and gaps. After performing all of

the comparisons, BOPAL discards all of the comparisons that have resulted in a score <

Chapter 4: BOPAL 63

0. In the event there is an operon in genome X that aligns with 2 operons in genome

Y with the same score, BOPAL selects the pair of operons that is closest in terms of

their respective indexes in the genomes.

In the second step BOPAL infers duplications, losses and substitutions within the

orthologous operons using the alignment computed from the global alignment in the

previous step. Gene and codon mismatches correspond to substitutions while gaps

correspond to a deletion one genome or duplication in the other genome. A gap

consisting of 1 gene is labelled as a deletion by default whereas if the gap consists

of multiple genes then BOPAL scans the genome to see if an identical sequence exists

to label it as a duplicate otherwise it is labeled as a deletion as well. As for the

remaining operons that were not paired with another operon from the previous step,

BOPAL performs a global alignment for each of them with all of the other operons to

check if there are any matches with a score ≥ 0. If there are matches found, then

these operons will be labelled as duplicates and deletions and duplications will be

inferred within the operon as well.

In the third step BOPAL infers rearrangement events for each of the operons by

constructing a dot-plot aligning all of the orthologous operons identified in the first

step. BOPAL performs a scan of the dot plot to identify the conserved segments,

inverted segments, and the transposed segments. However, inversions and transposi-

tions can be applied to either of the two genomes. There is not enough information

to determine which genome the event should be applied to. For this reason, in the

fourth step BOPAL uses one of the genomes to compare it with a neighboring genome

on a different branch to determine if the same transposition/inversion exists as well.

Once all of the events have been identified on the correct branch, BOPAL reconstructs

the ancestral genome removing the duplicate segments, adding the deleted segments,

and reverse the inversions/transpositions. Finally, we identified that BOPAL has a

worst-case complexity of O(n2) for each pair of siblings compared.

Chapter 5

Evaluation Results And Discussion

We implemented our algorithm in Python 2.7 and named it BOPAL — Bacterial

OPeron ALigner. We then evaluated it on both simulated and real biological datasets.

5.1 Evaluation on Simulated Datasets

We developed a simulated data generator that takes as input a tree topology of L

leaves, an ancestral genome size denoted by a number of genes n, and the number of

events to be generated on each branch of the tree E. The generator creates a random

ancestral gene order (note that we do not simulate sequences, since our approach

does not use sequence information, other than the tRNA anticodons), annotated

with operons and anticodons, at the root of the phylogeny and randomly simulates

evolution of each branch according to the selected parameters. We use a geometric

distribution, with a parameter that we named pop, to sample the size of the operons

and then we populate them with genes. Singletons are randomly added to genomes

using a probability probs, and the probability of adding an operon instead is 1−probs.
During the simulated evolution, when an event is chosen to be performed on a branch,

a random starting point is selected and its size (number of genes or operons affected) is

also sampled from a geometric distribution (we named the parameter of this geometric

distribution pevent). In accordance with the evolutionary model described earlier, the

generator will not simulate rearrangements that break operons into separate parts,

64

Chapter 5: Evaluation Results And Discussion 65

simulate inversions that are not occurring around an axis of replication, etc.

5.1.1 Accuracy on Cherries with Neighbor

We tested how our new approach compares with the 2-SPP algorithm of [HSAE13]

(hereafter referred to as DupLoss) and OrthoAlign [TBLE15] on cherries, i.e., two

sibling leaves that share the same parental node. We also added to our simulations a

third neighboring genome to test how OrthoAlign and BOPAL perform with the addi-

tional information coming from the neighbor. Note that we did not test the DupLoCut

algorithm because the output only reports the total number of events, which would

not allow us to analyze all the types of accuracy that we consider below. Also, we

were not able to perform tests with multiOrthoAlign because no implementation was

available online at the time of experimentation. For the analysis of the simulations

an Intel Core i5 2.5 GHz with 8GB of memory was used.

For this test we used a triplet phylogeny (L = 3 leaves), a constant ancestral

genome size (in genes) n = 120, pop = 0.125 (producing an average operon size of

8.2 genes), probs = 0.35 (resulting in an average number of singletons and operons

of 7.8 and 13.7 respectively), and pevent = 0.7. These probabilities and parameters

were chosen to represent as closely as possible the biological dataset studied below (see

Table 5.2 for more information on the biological dataset). As for the simulated events,

we used one inversion randomly applied to one of the branches of the cherry, and x

times a duplication, a deletion, a transposition and a substitution on each branch

(so the total number of events per branch are multiples of 4, excluding the single

inversion). Note that we simulated only one inversion because our model considers

inversions around an axis of replication only, and multiple consecutive inversions

tend to cancel each other out. Based on the previous analysis of 50 Bacillus genomes

[TBLE15], inversions do not seem to occur very frequently (only 23 inversions were

inferred in total, for an average of 0.232 inversions per branch), which makes the

simulation of 1 inversion per cherry reasonable. All the results presented below are

averaged over 100 replicates.

To measure the accuracy of the different approaches, we first compared the total

Chapter 5: Evaluation Results And Discussion 66

number of events inferred by the three different methods with the total number of

events that were simulated by the data generator (see Figure 5.1). Unsurprisingly,

DupLoss, which does not consider rearrangements, has to infer a lot more events to

explain these evolutionary scenarios. All the other methods tend to underestimate

the number of events when more events are generated, which is expected since the

traces of some events can disappear after successive events, and some shortcuts can

be found in the evolutionary scenarios. The use of a neighbor with BOPAL does not

make much of a difference in the total number of events inferred, since the neighbor

is used only to place rearrangements on the correct branch and potentially modify a

deletion of size 1 into a duplication of size 1. In OrthoAlign however, using a neighbor

increases the number of events, this probably occurs when it modifies deletions of a

block of genes for more smaller duplications.

5 10 15 20 25 30
Number of Events per Branch

20

40

60

80

100

120

Nu
m

be
r o

f E
ve

nt
s

Average Number of Events
BOPAL
Generator
OrthoAlign
DupLoss
BOPAL with Neighbour
OrthoAlign with Neighbour

Figure 5.1: Total number of events inferred, for multiples of 4 events per branch and
one inversion on one of the branches leading to the cherry.

We also measured how accurate the ancestral gene orders produced were. To

do this, we used DupLoss [HSAE13] to align the inferred gene order with the simu-

lated one and counted the gaps in this alignment (DupLoss [HSAE13] does not allow

mismatches and only produces matches and gaps). Matches in this comparison of

ancestral gene orders were counted as true positives (TP), gaps in the inferred an-

cestor, which correspond to missing genes, were counted as false negatives (FN), and

Chapter 5: Evaluation Results And Discussion 67

finally gaps in the simulated ancestor, which correspond to extra genes, were counted

as false positives (FP). These allowed us to calculate recall and precision:

recall =
TP

TP + FN
(5.1)

prec. =
TP

TP + FP
(5.2)

We then combined recall and precision into one measure by calculating their har-

monic mean, which is traditionally called the F-measure:

F = 2 ∗ recall ∗ prec.
recall + prec.

(5.3)

Results on the F-measure for the inferred ancestors are presented in Figure 5.2.

In general, all methods perform similarly, except BOPAL with the neighbor which

infers considerably more accurate ancestors. BOPAL without the help of the neighbor

seems to perform the worst, however, this was expected, since BOPAL does make some

arbitrary choices between deletions and duplications when there is no neighbor, and

might infer rearrangements on the wrong branches. Interestingly, having a neighbor

5 10 15 20 25 30
Number of Events per Branch

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

F-
m

ea
su

re

Average F-measure
BOPAL
OrthoAlign
DupLoss
BOPAL with Neighbour
OrthoAlign with Neighbour

Figure 5.2: F-measure of the reconstructed ancestral gene orders.

Chapter 5: Evaluation Results And Discussion 68

does not seem to improve the ancestral prediction of OrthoAlign. As for DupLoss, it

performs similarly to OrthoAlign for the F-measure. It is still reasonably accurate in

its inference of the ancestral gene order, even if it has to use a lot more events.

Finally, we measured the accuracy of the events that were inferred on each branch

of the cherry in two different ways: strict event accuracy and relaxed event accuracy.

On the one hand, we define the strict event accuracy by the ratio of the number of

events inferred completely correctly, (i.e., with the exact same length and position)

over the total number of events generated. On the other hand, we define the relaxed

event accuracy as the ratio of genes labeled with the correct event over the total

number of genes affected by events in the simulated data. In other words, the relaxed

ratio focuses on the genes being labeled with the correct event, and not on the number

or size of the events. For example, if a deletion of two consecutive genes a1, a2 was

simulated on a branch by the data generator, and the algorithm inferred two separate

deletions a1 and a2, the strict event accuracy would be 0%, but the relaxed event

accuracy would be 100%.

The strict and relaxed event accuracy graphs are shown in Figures 5.3 and 5.4.

Clearly, inferring accurate events is very difficult in general, and it becomes more

difficult as the number of events per branch increases. Note that the tests went up to

32 events per branch, which is much more than what we would typically expect in a

real dataset (in the study of 50 Bacillus genomes [TBLE15], an average of 2.525 events

were inferred per branch). In terms of strict event accuracy, BOPAL with a neighboring

genome performs the best, with values in the range of 60% to 25%. BOPAL without a

neighbor performs similarly to OrthoAlign with a neighbor, while OrthoAlign without

a neighbor and DupLoss exhibit the worst performances.

For the relaxed event accuracy, we observe a small improvement of BOPAL both

with or without the neighbor compared with the values of strict accuracy. On the

other hand, all the other methods (except OrthoAlign without the neighbor) perform

worse in terms of relaxed accuracy than for the strict accuracy. To better interpret

this result, we analyzed the average size (in number of genes) of all the events inferred

completely correctly (the ones that were counted in the strict event accuracy), and

found that BOPAL infers more of the longer events on average than its competitors (see

Chapter 5: Evaluation Results And Discussion 69

5 10 15 20 25 30
Number of Events per Branch

10

20

30

40

50

60

Ac
cu

ra
cy

 P
er

ce
nt

ag
e

Average Strict Accuracy
BOPAL
OrthoAlign
DupLoss
BOPAL with Neighbour
OrthoAlign with Neighbour

Figure 5.3: Strict event accuracy.

5 10 15 20 25 30
Number of Events per Branch

10

20

30

40

50

60

Ac
cu

ra
cy

 P
er

ce
nt

ag
e

Average Relaxed Accuracy
BOPAL
OrthoAlign
DupLoss
BOPAL with Neighbour
OrthoAlign with Neighbour

Figure 5.4: Relaxed event accuracy.

Figure 5.5). BOPAL with a neighbor performs the best all the time, with values ranging

between 63% and 27%. Interestingly, it is followed by BOPAL without a neighbor, and

then OrthoAlign both with and without a neighbor performing almost similarly. The

curve for DupLoss is relatively flat and very low, which is a bit surprising considering

that half of the events inferred on each branch are duplications and losses.

Recall that for this test we used a triplet phylogeny (L = 3 leaves), a constant

Chapter 5: Evaluation Results And Discussion 70

5 10 15 20 25 30
Number of Events per Branch

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

Ev
en

t S
ize

Average Event Size for Strict Accuracy
BOPAL
OrthoAlign
DupLoss
BOPAL with Neighbour
OrthoAlign with Neighbour

Figure 5.5: Average size of the events that were inferred completely correctly by the
different methods.

ancestral genome size n = 120, pop = 0.125 (producing an average operon size of 8.2),

probs = 0.35 (resulting in an average number of singletons and operons of 7.8 and

13.7 respectively), pevent = 0.7. As for the simulated events, we used one inversion

randomly applied to one of the branches of the cherry, and x times a duplication, a

deletion, a transposition and a substitution on each branch.

Figure 5.5 presents the average size of the events that were inferred completely

correctly, (i.e., the events considered for calculating the strict accuracy) by the 5

different approaches.

5.1.1.1 Accuracy on Varying Genome Sizes

We also evaluated how the number of genes in the gene orders affects the accuracy of

the different approaches, for a fixed number of events. Basically, we used the same

parameters described above, except that x was set to 4 (resulting in 16 events per

branch plus one inversion), and we used an ancestral genome size n varying from 50

to 250. The results, presented in Figures 5.6, 5.7 and 5.8, show that all the types of

accuracy increase with the number of genes. These results suggest that considering

more types of operons in the bacterial genomes could lead to even better inferences

of evolutionary scenarios and ancestors.

Chapter 5: Evaluation Results And Discussion 71

50 75 100 125 150 175 200 225 250
Size of Genome

0.60

0.65

0.70

0.75

0.80

0.85

0.90

F-
m

ea
su

re

Average F-measure

BOPAL
OrthoAlign
DupLoss
BOPAL with Neighbour
OrthoAlign with Neighbour

Figure 5.6: F-measure of the reconstructed ancestral gene orders.

50 75 100 125 150 175 200 225 250
Size of Genome

10

15

20

25

30

35

40

45

50

Ac
cu

ra
cy

 P
er

ce
nt

ag
e

Average Strict Accuracy
BOPAL
OrthoAlign
DupLoss
BOPAL with Neighbour
OrthoAlign with Neighbour

Figure 5.7: Strict event accuracy.

For this test, we used the same parameters described above (Section 5.1.1), except

that x was set to 4 (resulting in 16 events per branch plus one inversion), and we

used an ancestral genome size n varying from 50 to 250.

Figures 5.6, 5.7 and 5.8 are presenting respectively the F-measure of the recon-

structed ancestors, the strict event accuracy and the relaxed event accuracy.

Chapter 5: Evaluation Results And Discussion 72

50 75 100 125 150 175 200 225 250
Size of Genome

10

20

30

40

50

Ac
cu

ra
cy

 P
er

ce
nt

ag
e

Average Relaxed Accuracy
BOPAL
OrthoAlign
DupLoss
BOPAL with Neighbour
OrthoAlign with Neighbour

Figure 5.8: Relaxed event accuracy.

5.1.2 Runtime

We also measured the average runtimes of the 5 different methods (see Figure 5.9),

using an Intel Core i5 2.5 GHz with 8GB of memory. The runtimes of OrthoAlign

and BOPAL without the neighbor are not affected by the number of events. BOPAL

with a neighbor is unsurprisingly slower than BOPAL without a neighboring genome,

5 10 15 20 25 30
Number of Events per Branch

0

1

2

3

4

5

6

7

8

Ru
nt

im
e

(s
)

Average Runtime

BOPAL
OrthoAlign
DupLoss
BOPAL with Neighbour
OrthoAlign with Neighbour

Figure 5.9: Average runtimes of the different methods compared.

Chapter 5: Evaluation Results And Discussion 73

Table 5.1: Average Runtimes for n = 1000.

Method Runtime (s)

DupLoss 17161.50
OrthoAlign 1.14

OrthoAlign with neighbour 3.76
BOPAL 14.75

BOPAL with neighbour 130.58

and becomes a little bit slower with more events, which can be explained by the

comparisons that have to be made with the neighbor for each rearrangement event to

infer it on the correct branch. DupLoss, which uses ILP is unsurprisingly the slowest

method of all. BOPAL is a little bit slower in practice than OrthoAlign, with average

runtimes of just over 1 second without a neighbor, and between 2 and 3 seconds with

a neighbor, in comparison with average runtimes of approximately 0.5 seconds for

OrthoAlign.

To get an evaluation of the scalibility of our method, we measured the runtime

of the different approaches on ancestral genome sizes n varying from 200 to 1000

genes (see Figures 5.10 and 5.11). The other parameters are the same as presented in

Section 5.1.1.1. Table 5.1 shows the average runtimes of the 5 differents approaches

for n = 1000. Due to the time required to run DupLoss, these results are averaged

over only 2 replicates.

200 300 400 500 600 700 800 900 1000
Size of Genome

0

2500

5000

7500

10000

12500

15000

17500

Ru
nt

im
e

(s
)

Average Runtime
BOPAL
OrthoAlign
DupLoss
BOPAL with Neighbour
OrthoAlign with Neighbour

Figure 5.10: Runtime on large
genomes with DupLoss.

200 300 400 500 600 700 800 900 1000
Size of Genome

0

20

40

60

80

100

120

Ru
nt

im
e

(s
)

Average Runtime
BOPAL
OrthoAlign
BOPAL with Neighbour
OrthoAlign with Neighbour

Figure 5.11: Runtime on large
genomes without DupLoss (zoom-in
view).

Chapter 5: Evaluation Results And Discussion 74

5.2 Evaluation on Biological Datasets

We compared the performance of our algorithm to multiOrthoAlign and DupLoCut

on the same biological dataset of 12 Bacillus gene orders used in [ARC13] and [BE14],

to which we added the operon annotations (see Table 5.2 for details on the genomes

studied and their operon annotations, and Figure 5.12 for the phylogeny used). BOPAL

completed the analysis of the whole tree with a runtime of 6.45 seconds (on the same

Intel Core i5 2.5 GHz with 8GB of memory used for the simulations).

Table 5.2: Description of the 12 Bacillus genomes studied, their NCBI accession
number and information about the annotated rRNA/tRNA singletons (sing.) and
operons (op.). The “% of genes” column represents the proportion of all tRNA and
rRNA genes over the total number of coding genes in the genome.

Genome name Accession # # of sing. # of op. Avg. op. size % of genes

Bacillus cereus ATCC 10987 NC 003909 6 15 8.47 2.46
Bacillus cereus E33L NC 006274 5 16 8.13 2.30

Bacillus cereus ATCC 14579 NC 004722 7 15 9.33 2.69
Bacillus thuringiensis BMB171 NC 014171 5 17 8.29 2.58

Bacillus thuringiensis serovar kurstaki str. HD73 NC 020238 6 15 8.93 2.45
Bacillus thuringiensis serovar konkukian str. 97-27 NC 005957 9 14 9.79 2.77

Bacillus subtilis subsp. spizizenii str. W23 NC 014479 9 11 8.36 2.57
Bacillus subtilis subsp. spizizenii TU-B-10 NC 016047 9 13 8.69 2.99

Bacillus subtilis subsp. subtilis str. 168 NC 000964 9 11 9.73 2.56
Bacillus amyloliquefaciens FZB42 NC 009725 9 15 7.20 3.17

Bacillus amyloliquefaciens subsp. plantarum CAU B946 NC 016784 8 15 7.80 3.30
Bacillus amyloliquefaciens DSM 7 NC 014551 9 16 7.19 3.20

Figure 5.12 presents the tree that was used for the analysis of the 12 Bacillus

genomes. It is the same tree that was used in [ARC13] and [BE14].

BOPAL inferred 56 duplications, 37 deletions, 8 transpositions and 16 substitutions

for a total of 117 events. Based on the results presented in [ARC13] and [BE14],

multiOrthoAlign converged at 123 events and DupLoCut converged to a minimum of

120 events on this dataset (see Table 5.3 for a summary). However, multiOrthoAlign

was restricted to inferring duplications and losses only, just like DupLoCut, whereas

BOPAL was using its full evolutionary model. Interestingly, the added constraints of the

operon boundaries and the fact that BOPAL does not calculate multiple iterations of

the median problem did not result in a scenario with more events. The transpositions

events inferred by BOPAL probably played a role in the inference of a slightly lower

number of events.

Chapter 5: Evaluation Results And Discussion 75

Table 5.3: Number of events identified by BOPAL, multiOrthoAlign, DupLoCut on the
dataset of 12 Bacillus genomes.

Algorithm Reported Events

BOPAL 117
multiOrthoAlign 123

DupLoCut 120

87.5% of the duplications inferred by BOPAL were affecting 1, 2 or 3 genes, whereas

the rest of the duplications were of size greater than 5, with the largest one being a

whole operon duplication of size 25 (see Figure 5.13 for the size distribution of du-

plication events). Similarly, the majority of the inferred deletions were short. About

75% of the deletion events were of size 1, 2 or 3, and the rest of them had a length in

the range of 5 to 17 genes. Out of the 8 transpositions inferred, three were of size 3,

two of size 5, and one of each sizes 6, 12 and 15. Although we were not able to analyze

the events inferred by the other methods, it is quite possible that the restrictions of

NC_014551

NC_016784

NC_009725

NC_000964

NC_016047

NC_014479

NC_005957

NC_020238

NC_014171

NC_004722

NC_006274

NC_003909

Figure 5.12: Tree used for the evaluation on biological datasets. The leaf labels
represent the Genbank accession numbers of the genomes analyzed.

Chapter 5: Evaluation Results And Discussion 76

1 2 3 5 7 9 13 15 25
Size of Occurrence

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

Nu
m

be
r o

f O
cc

ur
re

nc
es

Distribution of Duplications

Figure 5.13: Size distribution of the duplications inferred by BOPAL on the 12 Bacillus
genomes.

1 2 3 5 7 12 15 17
Size of Occurrence

2

4

6

8

10

12

14

16

Nu
m

be
r o

f O
cc

ur
re

nc
es

Distribution of Deletions

Figure 5.14: Size distribution of the deletions inferred by BOPAL on the 12 Bacillus
genomes.

our evolutionary model have given rise to a different but equivalent (in terms of the

total number of events) evolutionary history.

5.3 Summary

In order to evaluate BOPAL, we performed an analysis using simulated datasets and

a biological dataset. For the simulated dataset we developed a simulator where the

Chapter 5: Evaluation Results And Discussion 77

input consists of the tree topology of L leaves, the ancestral genome size denoted by

a number of genes n, and the number of events to be simulated on each branch of the

tree E. The simulator generates a random gene order that is annotated with operons

and anticodons by starting at the root of the phylogeny and simulating evolution on

each branch according to the parameters specified.

The first set of experiments consists of measuring the accuracy of each method

on cherries with a neighbor. In this analysis we compared BOPAL, DupLoss and

orthoAlign. The reason for the addition of the neighbor was to test how BOPAL and

orthoAlign perform with additional information from another genome. In the test

we considered a triplet phylogeny, a constant ancestral genome size of 120 genes, an

average operon size of 8.2 and an average number of 7.8 singletons and 13.7 operons.

The reason we selected these parameters was that we wanted the simulated data to

be similar to biological data as much as possible. In the simulated data we considered

x duplications, deletions, transpositions and substitutions so that the total number

of events per branch are multiples of 4. We also simulated 1 inversion around the

axis of replication on one branch.

In the first experiment we measured the accuracy of the different methods by

comparing the total number of events computed by each algorithm with the total

number of events that were simulated by the data generator. DupLoss inferred the

most events since it does not consider rearrangements and requires more events to

explain the evolutionary scenarios. The other algorithms under estimated the number

of events the reason being that traces of some events can disappear after successive

events. Additionally, it is possible that BOPAL and orthoAlign found shortcuts in

terms of the number of events required explain the evolutionary scenario. However,

the use of a neighbor in BOPAL does not significantly change the number of events

inferred the reason being that the neighbor is used to infer rearrangement events and

switch deletions of size 1 to duplications of size 1. Interestingly we saw an increase

in the number of events when orthoAlign used a neighbor. The reason behind this

was probably due to orthoAlign modifying blocks of deletions to small individual

duplications.

In the second experiment we measured the accuracy of the ancestral gene orders

Chapter 5: Evaluation Results And Discussion 78

produced by each method. Generally the accuracy of all the methods was similar,

however, BOPAL with the neighbor was able to infer more accurate ancestors com-

pared to the other methods. Interestingly BOPAL without the neighbor exhibited the

worst accuracy which was expected since BOPAL arbitrarily makes decisions on dele-

tions, duplications and rearrangements when no neighbor is present. Additionally,

it was observed that orthoAlign did not exhibit a significant improvement with the

addition of the neighbor. We also observed that DupLoss performed similarly to or-

thoAlign which was interesting the reason being that DupLoss inferred a lot more

events compared to orthoAlign.

In the third experiment we inferred the accuracy of the events that were inferred

on each branch of the cherry using strict event accuracy and relaxed event accuracy.

Strict accuracy refers to the ratio of the number of events inferred completely correctly

and relaxed accuracy refers to the ratio of the genes labeled with the correct event.

With values ranging between 60% to 25%, BOPAL with the neighbor performed the

best in the strict accuracy portion of the test which was expected due to the neigh-

bor providing additional information about the ancestral genome. BOPAL without the

neighbor performed similarly to orthoAlign with the neighbor. Finally, orthoAlign

without a neighbor and DupLoss performed the worst in this portion of the exper-

iment. For relaxed accuracy, there was only a small improvement for BOPAL with

the neighbor and without the neighbor. The other methods all performed worse in

the relaxed accuracy portion of the experiment. Interestingly we also found during

our analysis that BOPAL was able to infer more of the longer events than the other

methods.

In the fourth experiment we evaluated how the number of gene orders affects

the accuracy of each method. In the experiment we used an ancestral genome size

n varying between 50 to 250. We observed that as the number of genes increase,

so does the accuracy. This suggests that considering more types of operons within

the bacterial genomes leads to more accurate inferences of the evolutionary history

and ancestral genomes. In addition, we measured the run time of the 5 methods.

We observed that orthoAlign and BOPAL without the neighbor are not affected by

the number of events. However, we observed that BOPAL with the neighbor is slower

Chapter 5: Evaluation Results And Discussion 79

than BOPAL without the neighbor and becomes even slower as the number of events

increase. This is to be expected since there are more comparisons that need to be

made. Interestingly DupLoss was the slowest method compared to the other methods.

We observe that BOPAL is a bit slower compared to orthoAlign, however, BOPAL is still

scalable to large genomes.

In our final analysis we compared the performance of BOPAL, multiOrthoAlign,

and Duplocut on the same biological data of 12 Bacillus gene orders to which we

added operon annotations. BOPAL identified a total of 117 events whereas multi-

OrthoAlign identified 123 events and Duplocut identified 120 events. The reason we

see a more significant difference between BOPAL and multiOrthoAlign was due to the

fact that multiOrthoAlign was restricted to a duplication and loss evolutionary model

whereas BOPAL used our whole evolutionary model. Additionally transpositions in-

ferred by BOPAL most likely resulted in a lower number of events compared to the

multiOrthoAlign. We were not able to analyze the evolutionary events inferred by

multiOrthoAlign and Duplocut. However it is possible that due to the restriction

of our evolutionary model BOPAL has given a different but equivalent evolutionary

history.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this M.Sc. thesis, I presented BOPAL which is an operon based approach for the

inference of realistic evolutionary histories of rRNA and tRNA genes. The primary

purpose of this thesis was to provide a proof of concept that we can identify orthol-

ogous operons, which ultimately helps with the identification of orthologous genes

when the genomes have been transformed by many evolutionary events. Even though

the analysis we presented here was focused on the evolution of rRNA and tRNA

genes, our method can be adapted to the inference of evolutionary scenarios of any

type of genes that are organized into operons.

Further, there were three key questions I sought to answer, as presented in 1.1.

1. “Can the alignment of gene orders from operons be used to infer an orthologous

relationship between two operons?”

The Needleman-Wunsch is more advantageous for our purposes as this algorithm

constructs an alignment that is similar in length to the two operons being com-

pared. As stated in Section 1.1, operons tend to be more conserved in general.

If two operons are a good match, then the Needleman-Wunsch algorithm should

be able to identify them. In order for two operons to be a good match they

cannot have a score below zero. This condition does not allow for an alignment

80

Chapter 6: Conclusions and Future Work 81

where mismatches/gaps/substitutions are the majority but at the same time it

permits for blocks of genes to be deleted/duplicated from an alignment. Based

on our results, we found this approach to be an accurate method for narrowing

down our options for which operons are suitable to be orthologous candidates.

2. “Can strains on neighboring branches help infer rearrangement events on the

correct branch for two siblings sharing the same parental node?”

Rearrangement events, in this case inversions and transpositions, can be equally

applied to either branch of two siblings that share the same parental node. There

is simply not enough information to deduce which branch the event belongs to

solely on the siblings. For this reason we have to identify which arrangement of

these same operons exists in other neighboring genomes located on a different

branch. We randomly select one of the siblings, it does not matter which sib-

ling is selected, and we check if the same rearrangement event is visible when

comparing with the neighboring genome. If the same rearrangement event is

visible, then we can assume the rearrangement event belongs on the branch of

the sibling that was selected for the neighbor comparison. If the rearrangement

event is not visible, then we can assume the event belongs on the branch of

the other sibling that was not compared with the neighbor. As discussed in

Section 5.1.1 we applied one inversion event to one of the siblings and used the

neighboring genome to identify which branch to place the event on.

3. “Can I prevent incorrectly labeled events from cascading up the phylogeny?”

Incorrectly labelling genes as deletions instead of duplications was one of the

major problems that had to be addressed by BOPAL. If a gene is labelled as a

deletion, then it will be included in the ancestral genome. However, if BOPAL

is wrong and the gene is indeed a duplication, then the same gene will be

repeatedly marked as a deletion as we traverse the phylogeny in a bottom-up

fashion reconstructing ancestral genomes. Recall that we want to reconstruct

ancestral gene orders with the number of events minimized and with mislabelled

genes that are constantly being labeled as deletions over and over would increase

Chapter 6: Conclusions and Future Work 82

this number. For this reason BOPAL tracks which genes are labelled as deletions

when reconstructing an ancestral genome. If the same gene is lost again when

reconstructing the next ancestral gene order, then BOPAL will switch the gene to

a duplication to avoid having the same gene deleted repeatedly. Based on our

result in Section 5.1.1 we can see that BOPAL was able to minimize the number of

events for reconstructing ancestral gene orders compared to the other methods

based on this ability to correct itself when a gene is labelled incorrectly.

Our evaluation results have shown that BOPAL is able to infer more accurate events

and ancestors compared to previous approaches with a reasonable runtime. To elab-

orate, major advantages of BOPAL include the following:

• BOPAL is robust in terms of identifying orthologous operons regardless of their

length. The reason our approach is robust is due to the fact that the global

alignment always finds an optimal alignment.

• BOPAL is able to verify whether an operon is a deletion or a duplication by

identifying whether the same operon is present in a neighboring genome. This

prevents BOPAL from repetitively marking the same operon as a deletion or a

duplication when traversing up the phylogenetic tree reconstructing ancestral

genomes.

• BOPAL is able to identify orthologous operons based on their positions within

each of their respective genomes. If there are multiple operons that are equally

viable, then BOPAL is able to narrow the selection down based on each of the

operon’s position in their respective genomes. BOPAL makes the decision by

selecting the two operons that are closest to each other in terms of their genome

position. This solution works when the equally viable operons are spread out

in the two genomes.

• BOPAL is able to make the distinction between an operon and a singleton gene

and handle each one accordingly. Singleton genes are a special case and are

treated as such. A singleton gene can only be orthologous with another singleton

Chapter 6: Conclusions and Future Work 83

gene. If we fail to find a suitable match then we try to identify whether we can

find another copy within the same genome within an operon. For the vast

majority of the time this is an approach that leads to an optimal ancestral

genome.

• BOPAL is able to reverse its decision if a gene is incorrectly marked as a deletion.

If the same gene is deleted across multiple generations, then BOPAL will switch

the gene to a duplication instead and adjust the ancestral genomes, accordingly.

• BOPAL is able to identify a rare situation that is present in the biological data

where we have two operons that are a good match within the same genome

but neither of these operons has a good match with any of the operons in the

sibling’s genome. This is a special case where one of the operons was duplicated

in one of the sibling’s genome resulting in the two operons being a good match

and the same operon was deleted from the other sibling’s genome resulting in

no good matches being found in the other genome. BOPAL able to identify this

case and selects one of these operons to insert into the ancestral gene order and

the other will be labelled as a duplicate.

6.2 Future Work

In this research project, based on the results, we have shown that BOPAL is able to

infer more accurate events and ancestors compared to previous approaches with a

reasonable runtime. However, there are certain areas where BOPAL could have been

improved upon. In the following Section we will reflect where we believe BOPAL

performed well and some potential future work to improve BOPAL.

Although BOPAL is robust in terms of identifying orthologous operons (regardless

of their length) due to the fact that the global alignment always finds an optimal

alignment, a global alignment may have multiple optimal alignments and BOPAL only

selects one of the alignments. We think this is one area where BOPAL could have been

improved. Rather than randomly selecting one optimal alignment, BOPAL should

maintain a list of these alignments to avoid selecting an alignment that may not

Chapter 6: Conclusions and Future Work 84

necessary result in an optimal ancestral genome. In order to resolve which alignment

to select as the optimal alignment, BOPAL should use a neighboring genome. In this

case BOPAL would perform an alignment of the same operon in the neighboring genome

and verify whether one of the alignments from the list is favored over the other. If

the alignment from the neighbor matches one of the alignments from the list, then

that alignment would be selected. If none of the alignments is favored, then BOPAL

should retain all of the alignments and reduce the list when computing the ancestral

genomes further up the phylogenetic tree by removing alignments that result in more

evolutionary events.

BOPAL is able to verify whether an operon is a deletion or a duplication by iden-

tifying whether the same operon is present in a neighboring genome. This prevents

BOPAL from repetitively marking the same operon as a deletion or a duplication when

traversing up the phylogenetic tree reconstructing ancestral genomes. However, we

think BOPAL could have potentially been improved by performing more than one

neighbor comparison. Indeed comparing with one neighboring genome significantly

reduced the number of operons incorrectly marked as duplications or deletions. How-

ever, we would have liked to have seen if more accuracy could have been been attained

if we compared with more than one neighboring genome. We think that BOPAL should

verify with 3 neighboring genomes whether an operon should be marked as a dupli-

cate or a deletion in order to prevent any ties and the majority would win. The

reason for this additional check would be to verify whether the neighboring genome

deleted the same operon. We could have a scenario where the operon was present in

the ancestral genome, however, after speciation the operon was deleted from one of

siblings on both neighboring branches.

Note that BOPAL is also able to identify orthologous operons based on their po-

sitions within each of their respective genomes. If there are multiple operons that

are equally viable, then BOPAL is able to narrow the selection down based on each

of the operon’s position in their respective genomes. BOPAL makes the decision by

selecting the two operons that are closest to each other in terms of their genome po-

sition. This solution works when the equally viable operons are spread out in the two

genomes. However, if there are multiple identical or very similar operons in a consec-

Chapter 6: Conclusions and Future Work 85

utive sequence, then this solution does not necessarily produce the optimal mapping

of orthologous operons. In this scenario, if there is a deletion or duplication of an

operon or a singleton prior to these consecutive operons, then this will cause a frame

shift in one of the genomes. This will result in one the genome’s first operons being

mapped to the second genome’s last operon for these consecutive operons. In order to

prevent this from happening, we propose that there could be some work done to check

whether there are any consecutive operons within the genome that are identical or

very similar. The process would be as follows: BOPAL would scan both genomes and

determine if there is a sequence of consecutive operons that identical or very similar

to each other that could potentially result in multiple mappings of orthologous oper-

ons. After these consecutive operons have been identified, BOPAL would treat these

operons as one large sequence rather than as individual operons. Essentially BOPAL

would treat this sequence of consecutive operons as one large operon which would

resolve the issue of not mapping the orthologous operons optimally. The remaining

operons would be handled normally.

Moreover, BOPAL is able to make the distinction between an operon and a singleton

gene and handle each one accordingly. A singleton gene can only be orthologous with

another singleton gene. If we fail to find a suitable match then we try to identify

whether we can find another copy within the same genome within an operon. For

the vast majority of the time this is an approach that leads to an optimal ancestral

genome. However, based on our observations, we would have liked to have made a

modification to this approach. We have observed in a small number of cases where

we have an operon next to a singleton gene in one genome, we could potentially have

the same singleton gene located within the neighboring operon in the other genome.

Our current approach would be unable to find a suitable match and the singleton

gene would be marked as a deletion it would be included in the ancestral genome

resulting in two copies of the same gene being present in the ancestral genome. There

would be a copy of the gene within the operon and another copy of the gene next to

the operon. We propose an additional approach where if BOPAL is unable to find an

identical singleton gene in the sibling genome, then BOPAL should perform a check to

see if the same gene is located within a neighboring operon in the sibling genome.

Chapter 6: Conclusions and Future Work 86

If we are able to find this gene within an operon where the two operons between

the genomes are similar, then this would indicate that we are able to find a match,

however, it is within another operon. Now the tricky part would be to determine

whether to keep the gene as a singleton or as part of an operon in the ancestral

genome. In order to make this decision, BOPAL would have to check with the genomes

on the neighboring branches to see if the same gene is present in the genome as a

singleton or if it is part of an operon. Again, we believe that comparing with 3

neighbors would give a good indication how the gene should be handled.

Furthermore, BOPAL is able to reverse its decision if a gene is incorrectly marked

as a deletion. If the same gene is deleted across multiple generations, then BOPAL will

switch the gene to a duplication instead and adjust the ancestral genomes accordingly.

However, BOPAL does not make the same check for duplicate genes. The same gene is

marked as a duplicate across multiple generations then BOPAL will not switch the gene

to a deletion. This is an area where BOPAL can be expanded upon to reverse decisions

where genes are incorrectly marked as duplicates. Based on our results marking genes

incorrectly as deletions has increased the accuracy but we believe that applying the

same rule set to duplications would further increase the accuracy by reducing the

number of genes marked as duplications incorrectly. Additionally, if a group of genes

is incorrectly marked as a deletion and the genes are switched to duplications, BOPAL

changes each gene individually into a duplicate which causes the number of events

to increase. This design decision was made in the event we have a group of genes

marked as a deletion, however, if only one of the genes from the group is deleted then

only the one gene would be switched to a duplication. To resolve this we propose

that BOPAL performs a scan of the events after the genes have been switched to a

duplication and concatenate consecutive genes on the same operon and reduce the

number of evolutionary events appropriately.

BOPAL is also able to use a singleton gene’s position and its codon to identify an

orthologous singleton in the other genome. This approach for the vast majority of

the time leads to an optimal mapping. We propose an additional step that could

potentially be added to BOPAL in the future. If there is a sequence of consecutive

singleton genes in one of the genomes, these genes do not necessarily have to be

Chapter 6: Conclusions and Future Work 87

duplicates of each other, that BOPAL prioritize finding an orthologous mapping that

minimizes the separation of these genes. In this case BOPAL would prioritize on keeping

these genes together rather than their placement in the genome. The reason for this

approach is that there could be a frame shift in one of the genomes due to deletions,

duplications, or inversions, etc. However, the gene and codon would still have to

match identically in order for the singleton genes to be marked as orthologs. We

believe this would reduce the number of events inferred by BOPAL since it minimizes

the separation of conserved singleton gene regions.

Although we did not consider xenologs in our evolutionary model, we propose a

potential strategy to infer these events. Assuming that an HGT event could copy an

operon from an unrelated genome, which is not necessarily present in the considered

phylogeny, this operon would not be mapped to an ortholog in the sibling genome in

Step 1. In Step 2, this operon would probably not be mapped to another operon in

the same genome either, which would not allow the algorithm to infer a duplication

of the operon. Currently, this would result in the method labeling this operon as lost

in the sibling genome, and it would be placed back into the ancestor. However, we

could then compare this operon with a neighboring genome N , to see if it actually

matches. If it matches well with an operon in N , then we keep it as lost, otherwise, the

algorithm could label it as being the result of an HGT, and similarly to a duplication,

the operon would not be added to the ancestor.

In the future, a lot more work will be necessary to improve even more the accuracy

of the events inferred. In order to accomplish that, more information will probably be

necessary: exact position of the operons and singletons on the genome, intergenic dis-

tances between each pair of consecutive genes, and alignments of the flanking regions

of each gene considered in the analysis are potential sources of additional information

that could be leveraged. Also, similarly to the generalization of OrthoAlign to multi-

OrthoAlign, it would be interesting to generalize the proposed algorithm to compute

the median of three genomes, which could then be used iteratively on a phylogeny

with initialized ancestors to further reduce the number of events inferred.

Bibliography

[ARC13] Sandro Andreotti, Knut Reinert, and Stefan Canzar. The duplication-loss

small phylogeny problem: from cherries to trees. Journal of Computa-

tional Biology, 20(9):643–659, 2013.

[BDE13] Billel Benzaid, Riccardo Dondi, and Nadia El-Mabrouk. Duplication-loss

genome alignment: Complexity and algorithm. In International Confer-

ence on Language and Automata Theory and Applications, pages 116–

127. Springer, 2013.

[BE14] Billel Benzaid and Nadia El-Mabrouk. Gene order alignment on trees

with multiOrthoAlign. BMC Genomics, 15(6):S5, 2014.

[Blu04] Thomas Blumenthal. Operons in eukaryotes. Briefings in Functional

Genomics, 3(3):199–211, 2004.

[BPHQ07] Nicholas H. Bergman, Karla D. Passalacqua, Philip C. Hanna, and Zhao-

hui S. Qin. Operon prediction for sequenced bacterial genomes with-

out experimental information. Appl. Environ. Microbiol., 73(3):846–854,

2007.

[Bre88] Bonita J. Brewer. When polymerases collide: replication and the tran-

scriptional organization of the E. coli chromosome. Cell, 53(5):679–686,

1988.

[CAC+09] Peter J.A. Cock, Tiago Antao, Jeffrey T. Chang, Brad A. Chapman, Cy-

mon J. Cox, Andrew Dalke, Iddo Friedberg, Thomas Hamelryck, Frank

88

Bibliography 89

Kauff, Bartek Wilczynski, et al. Biopython: freely available python tools

for computational molecular biology and bioinformatics. Bioinformatics,

25(11):1422–1423, 2009.

[CCM+14] Tyrrell Conway, James P. Creecy, Scott M. Maddox, Joe E. Grissom,

Trevor L. Conkle, Tyler M. Shadid, Jun Teramoto, Phillip San Miguel,

Tomohiro Shimada, Akira Ishihama, et al. Unprecedented high-resolution

view of bacterial operon architecture revealed by RNA sequencing. MBio,

5(4):e01442–14, 2014.

[DDA14] Eric S. Donkor, Nicholas T.K.D. Dayie, and Theophilus K. Adiku.

Bioinformatics with basic local alignment search tool (BLAST) and fast

alignment (FASTA). Journal of Bioinformatics and Sequence Analysis,

6(1):1–6, 2014.

[DE13] Riccardo Dondi and Nadia El-Mabrouk. Aligning and labeling genomes

under the duplication-loss model. In Conference on Computability in

Europe, pages 97–107. Springer, 2013.

[DGKB19] Maria Gloria Dominguez-Bello, Filipa Godoy-Vitorino, Rob Knight, and

Martin J. Blaser. Role of the microbiome in human development. Gut,

68(6):1108–1114, 2019.

[DNK96] Hengjiang Dong, Lars Nilsson, and Charles G. Kurland. Co-variation of

tRNA abundance and codon usage in escherichia coli at different growth

rates. Journal of Molecular Biology, 260(5):649–663, 1996.

[EKM13] Ole Kristian Ekseth, Martin Kuiper, and Vladimir Mironov. orthAgogue:

an agile tool for the rapid prediction of orthology relations. Bioinformat-

ics, 30(5):734–736, 2013.

[FEF09] Marco Fondi, Giovanni Emiliani, and Renato Fani. Origin and evo-

lution of operons and metabolic pathways. Research in Microbiology,

160(7):502–512, 2009.

Bibliography 90

[FKA+19] Samuel C. Forster, Nitin Kumar, Blessing O. Anonye, Alexandre

Almeida, Elisa Viciani, Mark D. Stares, Matthew Dunn, Tapoka T.

Mkandawire, Ana Zhu, Yan Shao, et al. A human gut bacterial genome

and culture collection for improved metagenomic analyses. Nature

Biotechnology, 37(2):186, 2019.

[FL99] A.C. Frank and J.R. Lobry. Asymmetric substitution patterns: a re-

view of possible underlying mutational or selective mechanisms. Gene,

238(1):65–77, 1999.

[GBE12] Yves Gagnon, Mathieu Blanchette, and Nadia El-Mabrouk. A flexible

ancestral genome reconstruction method based on gapped adjacencies.

In BMC Bioinformatics, volume 13, page S4. BioMed Central, 2012.

[GSF98] Richard Giegé, Marie Sissler, and Catherine Florentz. Universal rules

and idiosyncratic features in tRNA identity. Nucleic Acids Research,

26(22):5017–5035, 1998.

[GVSV04] Dirk Gevers, Klaas Vandepoele, Cedric Simillion, and Yves Van de Peer.

Gene duplication and biased functional retention of paralogs in bacterial

genomes. Trends in Microbiology, 12(4):148–154, 2004.

[Hal13] Barry G. Hall. Building phylogenetic trees from molecular data with

mega. Molecular Biology and Evolution, 30(5):1229–1235, 2013.

[HC03] Xiaoqiu Huang and Kun-Mao Chao. A generalized global alignment

algorithm. Bioinformatics, 19(2):228–233, 2003.

[HG02] Gretchen Hagen and Tom Guilfoyle. Auxin-responsive gene expression:

genes, promoters and regulatory factors. Plant Molecular Biology, 49(3-

4):373–385, 2002.

[HSAE13] Patrick Holloway, Krister Swenson, David Ardell, and Nadia El-Mabrouk.

Ancestral genome organization: an alignment approach. Journal of Com-

putational Biology, 20(4):280–295, 2013.

Bibliography 91

[JPSM60] François Jacob, David Perrin, Carmen Sánchez, and Jacques Monod.

Operon: a group of genes with the expression coordinated by an operator.

Comptes rendus hebdomadaires des seances de l’Academie des sciences,

250:1727–1729, 1960.

[JRTC12] Bradley R. Jones, Ashok Rajaraman, Eric Tannier, and Cedric Chauve.

ANGES: reconstructing ANcestral GEnomeS maps. Bioinformatics,

28(18):2388–2390, 2012.

[JRWK02] I. King Jordan, Igor B. Rogozin, Yuri I. Wolf, and Eugene V. Koonin.

Essential genes are more evolutionarily conserved than are nonessential

genes in bacteria. Genome Research, 12(6):962–968, 2002.

[KAS19] Maciej Kaczmarek, Simon V. Avery, and Ian Singleton. Microbes associ-

ated with fresh produce: Sources, types and methods to reduce spoilage

and contamination. Advances in Applied Microbiology, 107:29–82, 2019.

[KDS00] Joel A. Klappenbach, John M. Dunbar, and Thomas M. Schmidt. rrna

operon copy number reflects ecological strategies of bacteria. Appl. En-

viron. Microbiol., 66(4):1328–1333, 2000.

[LL05] Dennis V. Lavrov and B. Franz Lang. Transfer RNA gene recruitment

in mitochondrial DNA. Trends in Genetics, 21(3):129–133, 2005.

[LSR03] Li Li, Christian J. Stoeckert, and David S. Roos. Orthomcl: identi-

fication of ortholog groups for eukaryotic genomes. Genome Research,

13(9):2178–2189, 2003.

[MM06] John S. Mattick and Igor V. Makunin. Non-coding rna. Human Molecular

Genetics, 15(suppl 1):R17–R29, 2006.

[MMZ+13] Xizeng Mao, Qin Ma, Chuan Zhou, Xin Chen, Hanyuan Zhang, Jincai

Yang, Fenglou Mao, Wei Lai, and Ying Xu. Door 2.0: presenting operons

and their functions through dynamic and integrated views. Nucleic Acids

Research, 42(D1):D654–D659, 2013.

Bibliography 92

[MZS+06] Jian Ma, Louxin Zhang, Bernard B. Suh, Brian J. Raney, Richard C.

Burhans, W. James Kent, Mathieu Blanchette, David Haussler, and

Webb Miller. Reconstructing contiguous regions of an ancestral genome.

Genome Research, 16(12):1557–1565, 2006.

[Pai96] Virginia M. Pain. Initiation of protein synthesis in eukaryotic cells. Eu-

ropean Journal of Biochemistry, 236(3):747–771, 1996.

[PCLT19] Tomasz Pawliszak, Meghan Chua, Carson K. Leung, and Olivier

Tremblay-Savard. Operon-based approach for the inference of rRNA and

tRNA evolutionary histories in bacteria. BMC Genomics (in press), 2019.

[Pet03] Howard R. Petty. Overview of the physical state of proteins within cells.

Current Protocols in Protein Science, 31(1):1–5, 2003.

[PHAA05] Morgan N. Price, Katherine H. Huang, Eric J. Alm, and Adam P. Arkin.

A novel method for accurate operon predictions in all sequenced prokary-

otes. Nucleic Acids Research, 33(3):880–892, 2005.

[PVBO15] Amandine Perrin, Jean-Stéphane Varré, Samuel Blanquart, and Aı̈da

Ouangraoua. ProCARs: Progressive reconstruction of ancestral gene

orders. BMC Genomics, 16(5):S6, 2015.

[PWW+19] Anutthaman Parthasarathy, Narayan H. Wong, Amanda N. Weiss, Su-

san Tian, Sara E. Ali, Nicole T Cavanaugh, Tyler M. Chinsky, Chelsea E

Cramer, Aditya Gupta, Rakshanda Jha, et al. SELfies and CELLfies:

Whole genome sequencing and annotation of five antibiotic resistant bac-

teria isolated from the surfaces of smartphones, an inquiry based labora-

tory exercise in a genomics undergraduate course at the rochester insti-

tute of technology. Journal of Genomics, 7:26, 2019.

[RBG10] Hubert H. Rogers, Casey M. Bergman, and Sam Griffiths-Jones. The

evolution of tRNA genes in Drosophila. Genome Biology and Evolution,

2:467–477, 2010.

Bibliography 93

[Roc04] Eduardo P.C. Rocha. The replication-related organization of bacterial

genomes. Microbiology, 150(6):1609–1627, 2004.

[SSA98] Margaret E. Saks, Jeffrey R. Sampson, and John Abelson. Evolution of a

transfer RNA gene through a point mutation in the anticodon. Science,

279(5357):1665–1670, 1998.

[SW92] Michael Schöniger and Michael S. Waterman. A local algorithm for dna

sequence alignment with inversions. Bulletin of Mathematical Biology,

54(4):521–536, 1992.

[TBBT15] Tam T.T. Tran, Hassiba Belahbib, Violaine Bonnefoy, and Emmanuel

Talla. A comprehensive tRNA genomic survey unravels the evolutionary

history of tRNA arrays in prokaryotes. Genome Biology and Evolution,

8(1):282–295, 2015.

[TBLE15] Olivier Tremblay-Savard, Billel Benzaid, B Franz Lang, and Nadia El-

Mabrouk. Evolution of tRNA repertoires in bacillus inferred with Or-

thoAlign. Molecular Biology and Evolution, 32(6):1643–1656, 2015.

[TECM18] Blanca Taboada, Karel Estrada, Ricardo Ciria, and Enrique Merino.

Operon-mapper: a web server for precise operon identification in bac-

terial and archaeal genomes. Bioinformatics, 34(23):4118–4120, 2018.

[TR84] Diethard Tautz and Manfred Renz. Simple sequences are ubiquitous

repetitive components of eukaryotic genomes. Nucleic Acids Research,

12(10):4127–4138, 1984.

[WWD06] Mike Withers, Lorenz Wernisch, and Mario Dos Reis. Archaeology and

evolution of transfer rna genes in the Escherichia coli genome. RNA,

12(6):933–942, 2006.

[ZSF+02] Yu Zheng, Joseph D. Szustakowski, Lance Fortnow, Richard J Roberts,

and Simon Kasif. Computational identification of operons in microbial

genomes. Genome Research, 12(8):1221–1230, 2002.

	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Thesis Statement
	Thesis Organization

	Biological Background
	DNA
	Genes
	Proteins
	Genome
	Operons
	RNA
	Non-Coding RNA (ncRNA)
	Protein Synthesis
	Transcription
	Translation

	Homologs
	Orthologs
	Paralogs

	Phylogenetics
	Phylogenetic Tree
	Origins of Early Life
	Evolution of Early Genomes
	Genome Modifying Events
	Genome Modifying Events at the Gene Level
	Genome Modifying Events at the Operon Level

	Transfer RNA Evolution
	Evolution of Transfer RNA in Escherichia Coli
	Evolution of Transfer RNA Genes in Drosophila

	Summary

	Related Works
	Pairwise Alignments
	Needleman-Wunsch Algorithm
	Smith-Waterman Algorithm

	Multiple Sequence Alignment
	Sequence Searching in Databases
	FASTA
	BLAST

	Orthology Inference
	OrthoMCL
	OrthAgogue

	Reconstruction of Ancestral Genomes
	InferCARs
	Anges
	Gap Adjacency
	ProCARS

	Inference of Evolutionary Histories of Transfer RNA Genes
	Integer Linear Programming Algorithm
	OrthoAlign and MultiOrthoAlign

	Related Studies on Bacterial Genome, Operon, and Transfer RNA Gene Evolution
	Summary

	BOPAL
	Evolutionary Model
	Research Problem
	Annotation of the Gene Orders
	Location of the Origin and Terminus of Replication
	Location of the Operons

	Algorithm
	Step 1: Inference of Orthologous Operons and Singletons
	Step 2: Inference of Duplications, Deletions, and Substitutions
	Step 3: Inference of Rearrangements
	Step 4: Inference of the Ancestral Gene Order

	Runtime Complexity
	Summary

	Evaluation Results And Discussion
	Evaluation on Simulated Datasets
	Accuracy on Cherries with Neighbor
	Accuracy on Varying Genome Sizes

	Runtime

	Evaluation on Biological Datasets
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

